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Zusammenfassung

Die Entdeckung von Pseudouridin (Ψ) als fünftem Sequenzbaustein der RNA vor 60 Jahren gab
den Auftakt zu einer fortlaufenden Erweiterung des bekannten Alphabets von Ribonukleinsäuren
auf derzeit rund 150 verschiedene Nukleotid-Derivate. Kartierung und funktionelle Assoziation
dieser Modi�kationen sind die wesentlichen Schwerpunkte eines der aktuellsten und dynamisch-
sten Gebiete der modernen Lebenswissenschaften, der Erforschung des Epitranskriptoms. Über
den fortgeschrittenen Kenntnisstand im Bereich der dicht und systematisch modi�zierten tRNAs
und rRNAs hinaus gelangen während der letzten Jahre entscheidende Durchbrüche in der Ka-
tegorie kodierender Transkripte. Detektionsgrundlage ist ein modi�kationsspezi�sches Überset-
zungsverhalten der Reversen Transkriptase (RT) bei der Abschrift von RNA zu cDNA, eine RT
Signatur. Die Kombination von Next Generation Sequencing (NGS) mit spezi�schem Labeling
oder auch Immunopräzipitation o�enbarte individuelle Modi�kationslandschaften in mRNAs für
z.B. Ψ, m5C und m6A, zum Teil mit Anhaltspunkten für regulatorische Bedeutung.
Diese Doktorarbeit befasste sich mit der Entwicklung bioinformatischer Methoden zur Beschrei-
bung und Identi�kation von Nukleotidmodi�kationen anhand von Deep Sequencing-Daten. Das
Konzept wurde durch die Charakterisierung der RT-Signatur von N -1-Methyladenosin (m1A)
demonstriert. Dieses an der Watson-Crick-Edge methylierte Adenosin kommt in tRNAs von Bak-
terien, Archaen und Eukaryoten vor und erregte mit seiner kürzlichen Entdeckung in zahlreichen
Säuger-mRNAs Aufsehen. Während die in der Arbeit entwickelte Software auch den Vergleich
von RT-E�ekten nach di�erenzieller chemischer Behandlung erlaubt, erfolgte die Analyse von
m1A ausschlieÿlich anhand nativer Signaturen, d.h. ohne spezi�sches Labeling oder antikörper-
basierte Anreicherung. Künstlich erzeugte m1A-Instanzen sind in der Strukturaufklärung von
RNAs von Interesse, bei der man den lokalen Methylierungserfolg als Lösemittelzugänglichkeit
von Nukleotiden, d.h. als Strukturierungsgrad von RNA-Strängen interpretiert. Die Detektion
basiert auf der Tendenz der Modi�kation zur RT-Blockade, welche sich in der Gelelektrophore-
se oder in Sequenzierpro�len von Primer Extension-Assays als Häufung von Abbruchprodukten
an der betre�enden Position äuÿert. Read-Through-Produkte wiederum weisen laut Studien ein
bevorzugtes Verhältnis an missinkorporierten cDNA-Bausteinen an m1A-Stellen auf.
Die somit duale RT-Signatur von m1A, bestehend aus Abbruch- und Missinkorporationsraten,
wurde durch die vorliegende Arbeit anhand natürlicher Instanzen in tRNA und rRNA charak-
terisiert und di�erenziert, zwecks verbesserter Au�ösung und erweiterten Erkennungspotentials.
Abbruch- und Read-Through-Produkte wurden durch ein spezialisiertes Protokoll zur Präpara-
tion sequenzierbereiter cDNA-Bibliotheken erfasst. Die digitale Analyse erfolgte durch Abgleich
der Sequenzierdaten mit Referenzsequenzen. Kern des Work�ows ist die eigenständige Software
CoverageAnalyzer, entwickelt im Rahmen dieser Arbeit als universelle Plattform zur Prozes-
sierung, Visualisierung und Filterung von Sequenzierpro�len nach Signaturmerkmalen. Damit
wurden m1A-Signaturen extrahiert und sodann durch deskriptive und inferentielle Statistik ana-
lysiert, auch auf Unterscheidbarkeit von un- oder anderweitig modi�zierten Adenosinen au�älliger
RT-Merkmale. Überwachtes Machine Learning mit Random Forest-Modellen zur Erkennung von
m1A in Adenosin-Pools, abgestuft nach Unterscheidungsschwierigkeit, gab Aufschluss über das
Nutzungspotential acht formulierter Features, darunter ein kontext-sensitiver Deskriptor für RT-
Stops. Es zeigte weiterhin den Vorteil simultaner Verwendung mismatch- und arrestbezogener
Information und hob die Sonderstellung von m1A unter nativen RT-Signaturen von Adenosinde-
rivaten hervor, welche die sensitive und spezi�sche Detektion von m1A erlaubt.
Erfolge in der Entdeckung unbekannter m1A-Stellen in Mensch, Maus und T. brucei gelangen per
Signaturabgleich und Sequenzhomologie. Mithilfe synthetischer Oligoribonukleotide wurde das
Bild um E�ekte unvollständiger Modi�kationslevels verfeinert. Künstliche Instanzen bestätigten
zudem ein Hauptergebnis der Studie: Die Mismatch-Zusammensetzung in m1A's RT-Signatur ist
abhängig vom Sequenzkontext, nämlich der Identität des 3'-gelegenen Nachbarnukleotids.
Die entwickelte Analysemethodik, spezialisierte Software sowie Erkenntnisse zur RT-Signatur von
m1A mit Implikationen für andere Modi�kationen sind wegbereitend für Prüfungen bestehender
Vorhersagen und den Ausbau der Kartierungsstrategie für das Epitranskriptom.
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Summary

The discovery of pseudouridine (Ψ) as the �fth sequence residue of RNA 60 years ago marked
the beginning of a successive extension of the known alphabet of ribonucleic acids up to cur-
rently around 150 di�erent nucleotide derivatives. Mapping and functional association of these
modi�cations are the essential emphases of one of the most topical and dynamic areas of modern
life sciences, the exploration of the epitranscriptome. Beyond the advanced state of knowledge
concerning the densely and systematically modi�ed tRNAs and rRNAs, major breakthroughs
were achieved in the class of coding transcripts during the last years. Basis for detection is
a modi�cation-speci�c behavior of Reverse Transcriptase (RT) in the transcription of RNA to
cDNA, an RT signature. The combination of Next Generation Sequencing (NGS) with speci�c
labeling or immunoprecipitation revealed individual modi�cation landscapes in mRNA for e.g.
Ψ, m5C and m6A, partially with evidence for regulatory relevance.
This PhD thesis addressed the development of bioinformatic methods for description and iden-
ti�cation of nucleotide modi�cations based on Deep Sequencing data. The concept was demon-
strated by the characterization of the RT signature of N -1-methyladenosine (m1A). This adeno-
sine residue, methylated at the Watson-Crick edge, occurs in tRNAs of bacteria, archea and
eukarya, and called attention by its recent discovery in numerous mammalian mRNAs. Whereas
the software developed in this project also allows comparison of RT e�ects after di�erential chem-
ical treatment, analysis of m1A relied on native signatures only, i.e. without speci�c labeling or
antibody-mediated enrichment. Arti�cially induced m1A instances are of interest in structural
probing of RNA, wherein the local methylation e�ciency is interpreted as the accessibility of
nucleotides to the solvent, i.e. as the degree of structuring of RNA strands. The detection is
based on the tendency of the modi�cation to block RT, which is re�ected by accumulation of
abortive products at the respective position in gel electrophoresis or in sequencing pro�les of
primer extension assays. In turn, according to previous studies, read-through products exhibit
a preferred composition of misincorporated cDNA residues at m1A sites.
The hence dual RT signature of m1A, consisting of arrest and misincorporation rates, was char-
acterized and di�erentiated by the present work based on natural instances in tRNA and rRNA,
for the purpose of improved resolution and enhanced recognition potential. Arrest and read-
through products were captured by a specialized protocol for preparation of cDNA libraries
ready for sequencing. The digital analysis was carried out by comparison of sequencing data to
reference sequences. Core of the work�ow is the standalone software CoverageAnalyzer, which
was engineered in the scope of this work as a universal platform for processing, visualization
and screening of sequencing pro�les for signature features. In this way, m1A signatures were
extracted and then analyzed by descriptive and inferential statistics, also in terms of their capa-
bility of discrimination from non- or otherwise modi�ed adenosines with noticeable RT features.
Supervised machine learning with Random Forest models for recognition of m1A in adenosine
pools staggered by distinction di�culty shed light on usage potential of eight formulated fea-
tures, including a context-sensitive descriptor of RT stops. Furthermore, it showed the bene�t of
simultaneous utilization of mismatch- and arrest related information and highlighted the special
nature of m1A among native RT signatures of adenosine derivatives, which allows the sensitive
and speci�c detection of m1A.
Achievements in discovery of unreported m1A sites in human, mouse and T. brucei were made by
signature comparison and sequence homology. With the help of synthetic oligoribonucleotides,
the picture was re�ned by e�ects of incomplete levels of modi�cation. Arti�cial instances more-
over con�rmed a central result of this study: the composition of mismatches in m1A's RT signa-
ture depends on the sequence context, namely the identity of the 3'-adjacent nucleotide.
The developed analytical methodology, the specialized software as well as �ndings regarding
m1A's RT signature with implications for other modi�cations prepare the ground for revisal of
existing predictions and for advancement of mapping strategies for the epitranscriptome.
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1 Introduction

1.1 Motivation and Background

Discovery and exploration of epigenetic mechanisms have drastically changed our understand-
ing of the relationship between genotypes and phenotypes of cells beyond mere translation of
invariant code. Besides DNA associated phenomena such as methylation, chromatin remodel-
ing and histone modi�cation, substantial contribution to gene expression and cell di�erentiation
was revealed also in the world of RNA. A post-transcriptional regulatory machinery, includ-
ing alternative splicing [1], alternative polyadenylation (APA) [2], RNA interference (RNAi) [3]
and other mechanisms orchestrates the fate of molecular messages by qualitative and quantita-
tive modulation on their way to ribosomal translation. Another crucial impact resides in RNA
modi�cations, which occur in the form of more than 150 chemical derivatives [4] of the four
canonical ribonucleotides rA, rG, rU and rC, being found in coding as well as in non-coding
RNAs of all three phylogenetic domains of life. During RNA maturation, sequence residues are
modi�ed by numerous speci�c enzymes, such as methyltransferases [5]. Decades after the �rst
discovery of a modi�ed nucleotide, pseudouridine (Ψ), in 1957 [6], the interest in identi�cation
and especially localization of modi�cation sites underwent a renaissance, driven by progressive
evolution of analytical methods and increasing awareness of the functional role of such events.
The epitranscriptome was born [7].

1.1.1 Role of RNA Modi�cations

Highly modi�ed: tRNAs. Despite the ubiquitous occurrence of non-canonical nucleotides,
the progress in understanding of biological functions is still in its infancy for many RNA modi�-
cations, and most success is achieved in positional mapping. Therein, tRNAs represent a special
category, already being well-annotated [4, 8] with identities and positions of nucleotide modi�ca-
tions, in parts due to good experimental accessibility of this RNA species (∼15% of total RNA
in rapidly growing mammalian cells [9]), but also due to tRNAs' conserved structural domains,
decorated by modi�cations in exceptional density and diversity [10]. Closer inspection shows that
mitochondrial tRNAs exhibit lower modi�cation densities (9.5% and 7.5% of residues in yeast
[11] and bovine [12] mtRNA positions) compared to cytosolic ones (16.4% of residues in yeast),
suggesting an evolutionary trend towards intensely decorated tRNAs, analogous to observations
made between archea, eubacteria and eukaryotes [13]. With a median of 8 modi�ed residues
per molecule in sequence lengths from 70 to 100 nt (cross-species compilation [11, 14]), cytosolic
tRNAs are a popular system to study the roles of RNA modi�cations.

Structure and function. Similarly to rRNAs, where Ψ and 2'-O-methylations accumulate in
functional and structural domains and are therefore involved in aspects of ribosome assembly
and translation [15], also tRNA modi�cations can ful�ll structural tasks. Correct formation
of cloverleaf secondary structure and folding into L-like tertiary conformation is dependent on
various modi�cation types, e.g. Ψ at positions 32 and 39 having a critical role in shaping the
anticodon stem loop [16]. While organisms living in hot environments tend to stabilize RNA
structures by increased modi�cation levels, higher abundance of dihydrouridine can be used to
maintain nucleotide �exibility at cold temperatures [17]. Interestingly, s4U8 between the D-loop
and the acceptor stem is highly conserved in prokaryotes and archea, and does not only stabilize
[18, 19] tRNA fold, but is also described as a sensor for near-UV radiation [20, 21]. Another
example of a functional e�ect is Gm18, by which bacteria suppress activation of immune response
[22, 23]. A more common fact is that modi�cations and editing (A→I) are involved in functional
�ne tuning of tRNAs, especially in the wobble position 34 at the 5' end of the anticodon (34-36)
[10]. Thus, they are overall essential for accurate and e�cient translation [24]. Strikingly, various
modi�cations at position 37 can prevent frameshifts [25], such as m1G37 [26]. In studies of a
more medical angle, mutations in certain tRNA modi�cation enzymes and corresponding lack of
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modi�cations (e.g. m5C and s4U) were shown to be associated with several human diseases, such
as intellectual disability, cancer and diverse mitochondria linked disorders (reviewed in Torres

et al. 2014 [27]). Regarding all the above structural and functional aspects, it is not surprising
that hypomodi�ed tRNAs are even targeted for degradation [28].

Non-coding and coding context. Also outside of tRNAs and rRNAs, the role of RNA mod-
i�cations gained increased attention. A long-known example for non-coding context are U2
snRNAs, which are decorated by a 5'-trimethylguanosine cap, ten 2'-O-methylated residues and
13 pseudouridines, acquired (e.g. guided by C/D box) in the nucleus and essential for splicing
function of U2 [29]. But also coding RNAs undergo modi�cation, even though to a lower de-
gree. Under a dozen of known mRNA modi�cations, the 5' cap with its variants is the most
famous example, since it e.g. protects transcripts from exonuclease degradation [30]. Recently,
an enormous interest in m6A mapping has emerged, for example because of the �nding that
a fat mass- and obesity-associated gene encodes a speci�c demethylase (FTO) converting m6A
to adenosine [31]. If the enzyme is dysfunctional, signi�cant alterations in metabolism are the
consequence. FTO mutations have also been linked with higher risk for Alzheimer's disease and
decrease in brain mass, too [32, 33]. These observations suggest potential physiological roles
of m6A in signaling as well as in neurodegeneration. Later studies described a dynamic m6A
epitranscriptome regulated by 'writer' and 'eraser' enzymes [34]. On the quest for e�ects of
mRNA modi�cations in codon translation, recent analyses con�rmed 'rewiring' of genetic code
by occurrence of 2'-O-methylation, m5C, m6A and Ψ [35]. Another functional facet can be found
in the context of therapeutic mRNAs designed to change cell fate, where m5C and m6A are of
potential use to evade innate immune responses in transfected cells [36].

Recent momentum. Before one further prominent representative of RNAmodi�cations, namely
N -1-methyladenosine (m1A), is introduced as the main subject of this work (see section 1.1.3),
we present relevant techniques for identi�cation of modi�ed nucleotides in sequence context. In
doing so, the current distributional and functional picture of some at present highly attended
mRNA modi�cations such as Ψ, m5C and m6A is reviewed along with underlying cutting-edge
techniques developed in a strong recent momentum of the �eld. Thereupon, we motivate the
focus on m1A by its wide-spread occurrence, diverse function and importantly eligibility for se-
quencing based detection.

1.1.2 Deep Sequencing based Detection

From con�rmation to localization. Identi�cation of modi�ed nucleotides is feasible by sev-
eral analytical techniques, including 2D Thin-Layer Chromatography (TLC), High Pressure Liq-
uid Chromatography (HPLC) and Liquid Chromatography combined with Mass Spectrometry
(LC-MS). These approaches exploit the physicochemical properties of a target analyte, the lat-
ter method with enormous sensitivity: tandem mass spectrometry (LC-MS/MS) has limits of
quanti�cations (LOQ) in single-digit femtomolar and limits of detection (LOD) even in atto-
molar range [37]. However, information on location of modi�cations in sequence context is not
accessible, with some exceptions where mass measurements from RNA fragments of a limited
molecular pool can be unambiguously linked to reference sequences, allowing to reconstruct some
sequential modi�cation pro�les [38]. Alternative methods use DNA chips prepared with speci�c
oligonucleotides that distinguish modi�ed from unmodi�ed residues by di�erential hybridization
e�ciency [39], but they require prior knowledge of the modi�ed sites and are thus not suitable
for de novo detection.
Usage of reverse transcription arrest as a modi�cation indicator is one of the key approaches de-
veloped in the past. The underlying idea is that bulky modi�cations prevent RT read-through,
observable by an accumulation of truncated primer extension products, which is traditionally
analyzed by polyacrylamide gel electrophoresis (PAGE) or capillary electrophoresis [40]. A dif-
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ferent principle is applied in the case of inosine (I) resulting from A→I deamination. The modi�ed
residue is read as guanosine by reverse transcriptases (RT), and therefore reliably transcribed
into cytidine in cDNA. This 'misreading' property allowed the �rst transcriptome-wide mapping
of an RNA modi�cation [41] even before the advent of methods that are nowadays subsumed as
deep sequencing for RNA [42].

Combining treatments and sequencing. Modern approaches for localization of RNA modi-
�cations are still mostly based on the principle of primer extension by RT [43]. Whereas e�cient
quantitative sequencing of highly modi�ed RNAs can require diligent methods (e.g. DM-TGIRT-
seq [44]) for enzymatic demethylation of m1G, m1A and m3C, the impeding e�ects on RT are
a fundamental prerequisite and readout for modi�cation detection. Therefore, a prevalent tech-
nique is the combination of speci�c chemical treatments and Next Generation Sequencing (NGS),
in order to induce or enhance RT impeding e�ects at modi�ed sites.
For instance, RT-blocking properties of CMC-labeled Ψ were exploited in studies that shed light
on numerous occurrences of this modi�cation in eukaryotic mRNAs, recently [45, 46, 47]. The key
reagent N-cyclohexyl-N-(2-morpholinoethyl)-carbodiimide metho-p-toluenesulfonate (CMCT) is
applied prior to RT, such that NGS pro�les indicate accumulated cDNA ends next to Ψ sites la-
beled by CMCT's bulky carbodiimide moiety (CMC). Additional click chemistry allows targeted
pulldown of Ψ-featuring RNA molecules in an approach named N3-CMC-enriched pseudouridine
sequencing (CeU-Seq) [48]. Ψ is formed in a complex mechanism involving base detachment of
uracil from the ribose, �ipping and reattachment [49], catalyzed by either dyskerin Ψ synthase
or a family of Ψ synthase (Pus) enzymes [50]. Occurring in tRNA and rRNA, as well as in small
nuclear RNAs (snRNAs) and further noncoding RNAs (ncRNAs), it is the most abundant base
modi�cation in cells [50]. However, according to PSI-Seq, Pseudo-Seq and Ψ-Seq [45, 46, 47] this
modi�cation has much less non-redundant sites in mRNAs (only 100-400 in human cell lines)
than e.g. has m6A, and apparently features no regional preferences such as a�nity to UTRs or
coding sequences (CDS). Hence, the picture of functional roles of the �fth nucleotide in coding
transcripts is still mostly limited to exemplary observations of half-life prolongation [51] and
some vague speculations. To the latter belong possible amino acid substitution by Ψ occurring
in open reading frames [45] or nonsense suppression by read-through at transcription termination
sites [52]. In the near future, identi�cation of transcripts with maximum Ψ stoichiometry, and
mutagenesis of those residues, could reveal functional details [53].
An RT stop based example from the RNA editing �eld is cyanoethylation of inosines and sub-
sequent di�erential comparison to sequencing pro�les from untreated samples [54]. Conversely,
alkaline hydrolysis forces RT stops at all but 2'-O-methylated sites by selective strand cleavage,
detectable as depletion of sequence read ends at 2'-O-methylation sites [55]. A repertoire of fur-
ther chemical reagents with exploitable modi�cation speci�city was reviewed in Behm-Ansmant

et al. 2011 [56].
Instead of RT stop, examples for transcriptome wide mappings of m5C [57, 58, 59, 60] rely on in-
formation from successful read-through, and exploit the selective conversion of (5'-)unmethylated
cytidines to uridines by bisul�te (HSO3

−) ions. Replacement of Cs by Ts (Us) in reference se-
quences allows highlighting of the una�ected m5C residues as C mismatches in mapping pro�les.
In this way, more than 10,000 m5C sites could be identi�ed in eukaryal mRNAs [60].

Real-time alternative. Recently established photonic nanostructures, so called zero-mode
waveguides (ZMWs), are used for single-molecule resolved real-time sequencing (SMRT R© tech-
nology) and allow identi�cation of RNA base modi�cations by analysis of the kinetics of RTs,
as e.g. demonstrated for m6A [61]. Yet, this young technique is still under development and
relatively cost intensive, while distinction power across modi�cation species is unclear. Thus,
most RNA-Seq projects still rely on conventional techniques, which separate the RT step from
sequencing.
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Enrichment. During the last �ve years, the �eld has experienced a contesting development of
novel NGS based approaches for modi�cation prediction on transcriptomal scale. The mentioned
clickable CMC used for Ψ detection is only one example of targeted enrichment techniques for
modi�ed RNA molecules, a rising trend, which has completely revolutionized the research area in
terms of throughput and knowledge about distribution and functional context of modi�cations.
The major advantage is to bundle the available sequencing depth only at those molecules bear-
ing the modi�cation of interest with high con�dence. To this class of approach belong m6A-Seq
[62, 63] and methyl-RNA-immunoprecipitation-sequencing (MeRIP-Seq) [64], which were inde-
pendently developed for m6A site detection in eukaryotic mRNA by antibody based enrichment of
the respective RNA molecules. The earlier established photoactivatable ribonucleoside-enhanced
crosslinking and immunoprecipitation (PAR-CLIP) is a method to identify target sites of RNA-
binding proteins in high resolution [65]. It incorporates photoactivatable ribonucleosides (s4U
or s6G) into mRNA, which can covalently crosslink with nearby aromatic amino acids in RNA-
binding proteins (or e.g. m6A-bound antibodies) upon UV irradiation. Recently, PAR-CLIP
was utilized to improve accuracy of MeRIP-Seq [66] and m6A-Seq [67], yielding highly reliable
m6A annotations on transcriptomal scale. Although taking advantage of base transitions (oc-
curring in RT-PCR) at crosslinked residues and sequence motifs in order to increase accuracy,
these methods still generate unsharp probability peaks, since m6A itself neither causes RT stop
nor mismatch information. Finally, so called miCLIP advanced the idea by antibody-induced
mismatch and truncation patterns, unique enough to call m6A sites at single nucleotide reso-
lution [68]. Improved reliability will contribute signi�cantly to deeper insights into biological
aspects of this most abundant mRNA modi�cation [69]. Examples are dynamic enzymatic reg-
ulation [31, 34], tissue speci�c enrichment (as found for brain [64]) and regional preference in
transcripts, namely near stop codons and in 3'UTRs, potentially in�uencing miRNA binding
and mRNA half-life [64]. The principle to combine immunoprecipitation with sequencing was
successfully adopted in mapping studies of other modi�cations, too. hMeRIP-seq, an analog of
MeRIP-Seq was recently developed to reveal 5-hydroxymethylcytosine (hm5C) distribution in the
transcriptome of D. melanogaster [70]. In doing so, evidence on hydroxylation of m5C to hm5C,
which is catalyzed by a Tet methyldioxygenase, was found prevalent in brain, where a knockout
of the responsible enzyme caused impaired tissue development accompanied by low hm5C lev-
els. Another two recently published enrichment-based studies, undertaking transcriptome-wide
detection of m1A, are introduced in section 1.2.1, whereas section 1.2.2 sheds light on implied
bioinformatic challenges in downstream analysis.

1.1.3 Prominence of m1A

Figure 1: m1A's chemical
structure [4, 71].

Subject of this work is N -1-methyladenosine (m1A), an RNA
modi�cation eligible by threefold interest: i) structural and
functional importance, ii) abundant and diverse natural oc-
currence and iii) amenability to sequencing based detec-
tion.

Occurrence and Function. Shared by organisms from all three
domains of life (eukaryotes, bacteria, archea) [5], m1A is most
famous for its conserved occurrence at position 58 in the TΨC-
loop of many tRNA species. At this position it forms a reverse
Hoogsteen base pair with s2T54, e�ecting a stabilization of the L-
shaped tertiary tRNA structure [72], with e.g. increased heat tolerance of extremophilic bacteria
as a documented consequence [73]. m1A58 de�ciency in yeast mutants lacking the responsible
methyltransferase (Trm6, formerly Gcd10/Gcd14 complex) even has a lethal e�ect due to the
modi�cation's role in processing and stability of initiator tRNA [74]. In order to restore viability,
degradation of the hypomodi�ed tRNAIni can be compensated by overexpression [75]. Another
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conserved m1A site in eukaryotic mtRNA, as well as prokaryotic and archeal tRNA is position
9 [4, 76]. Its importance was demonstrated for nematodes, which showed poor aminoacylation
of tRNAs lacking the T-arm and m1A9 [77]. This is not overly surprising with respect to earlier
�ndings of misfolded human mitochondrial tRNALys cloverleafs in absence of m1A9 [78]. Ensu-
ing FRET based studies led to the conclusion that the methyl group controls a conformational
equilibrium [79]. Furthermore, m1A is common in eukaryotic [80, 81] and bacterial [82, 83, 4]
rRNA, where in Streptomyces pactum it mediates antibiotic resistance [84]. Recent news are
widespread m1A occurrences in mRNA, which are dynamically regulated by stress stimuli like
heat, starvation and oxidizing treatment, and show notable conservation across higher eukary-
otic organisms, [85, 71]. The underlying approaches for enrichment and detection of modi�ed
transcripts were published by Dominissini et al. 2016 and Li et al. 2016, and will be introduced
in section 1.2 along with resultant �ndings.

Natural origin. In nature, formation of m1A is catalyzed by site-speci�c methyltransferases
(MTases), wherein S -adenosyl-L-methionine (AdoMet/SAM) acts as a methyl group donor being
hydrolyzed to adenosine and homocysteine via S-adenosylhomocysteine [86]. Mutation exper-
iments demonstrated that methyltransferases, such as TrmI responsible for m1A formation in
eubacterial tRNA, recognize their substrate regions by base identities, e.g. in the combination of
aminoacyl stem, the variable region and the T-loop [87]. For archea, TrmI was shown to perform
even bi-speci�c methylation of two adjacent adenosines 57 and 58 [88]. Another special case
in human is a subcomplex of mitochondrial RNase P, reported to have a bifunctional methyl-
transferase activity responsible for m1A9 and m1G9 formation [89]. In the context of dynamic
regulation of m1A occurrence, also reversibility of the modi�cation by ALKBH3 DNA/RNA
demethylase was described [71].

Structural probing. Besides natural occurrences, also chemically induced m1A sites are rele-
vant. Analysis of 2D and 3D RNA structures is of utmost importance for understanding of func-
tional aspects. In a popular method for structural probing, the reactivity towards the alkylating
reagent dimethylsulfate (DMS) is interpreted as accessibility of nucleobase atoms to solvents,
as observable e.g. in single-stranded loops [40]. While other DMS-induced methylations, such
as m3C and m7G can be revealed by further treatments, arti�cial m1A sites are detected by
RT stops in primer extension [90, 56]. The readout are cDNA 3'-ends accumulating opposite
to the RNA position 3'-adjacent to m1A, since the modi�cation causes the enzyme to stall. In
contrast to later �ndings, the readout of DMS structural probing was, for decades, tacitly as-
sumed quantitative, as if every encounter of the RT with m1A led to arrest. Meanwhile, less
base-speci�c probing methods have emerged: FragSeq and parallel analysis of RNA structure
(PARS) use structure-speci�c nucleases cleaving either single- or double-stranded RNAs [91, 92].
SHAPE-Seq instead, relies on 1-methyl-7-nitroisatoic anhydride (1M7) formation via selective
2'-hydroxyl acylation analyzed by primer extension (SHAPE) combined with Deep-Seq for high-
throughput in vitro probing [93, 94]. However, recent powerful DMS methods renew the actuality
of m1A using its pronounced RT blocking e�ect as readout for in vivo structural probing [95].

Misincorporation. While m1A-mediated RT stop even has a biological role in HIV replication
[96, 97], also misincorporations caused by this modi�cation are of interest. Misincorporation
has bearings in bypass of DNA lesions by Polymerases, which is essential during replication but
can be error-prone, such that DNA modi�cations have mutagenic consequences [98]. Studies
on mutagenic potential of m1A in DNA, where T(anti)·A(anti) Watson-Crick base pairing is
changed to a T(anti)·m1A(syn) Hoogsteen base pair [99], allowed insights into m1A �ipping for
AlkB mediated demethylation [100]. They found unexpected base pairing preferences of m1A, an
essential characteristic addressed in our work. A more detailed review of the state of knowledge
about speci�c polymerase behavior towards m1A and the challenge to utilize these properties to
identify the modi�cation is presented in the next section.
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1.2 Status Quo and Challenges

Understanding of m1A's RT e�ect has gradually improved, and so have the possibilities to utilize
this knowledge. A major portion of challenges resides on the computational side, beginning with
detection and extending to validation and downstream analysis towards biological aspects.

1.2.1 Picture of m1A's RT E�ects

Dual evidence. Early work on deep sequencing data [101, 102] has pointed out the fact that
m1A and other RNA modi�cations leave cryptic traces by simultaneously causing RT stops and
misincorporation. Using di�erent RNA-Seq protocols, several recent studies generated data fea-
turing mismatch contents at positions known or postulated as m1A sites [103, 104]. This clearly
suggests a read-through capability of the RT encountering m1A's altered Watson-Crick face,
which results in unobtrusive traces in cDNA. More comprehensive studies of mismatch patterns
revealed correlation between a given modi�cation and the relative composition of misincorpo-
rated nucleotides [105]. However, their protocol for preparation of cDNA libraries for NGS was
unsuited for simultaneous capture of mismatch and arrest information, which are the major con-
stituents of what we would term m1A's RT signature, a characteristic �ngerprint allowing to
detect the modi�cation by computational analysis of NGS pro�les. The fact that even recent
work fails to fully resolve the dual error pattern, signalizes a lasting challenge in sequencing-based
m1A identi�cation, only to be solved by specialized approaches, which can ideally be directly
applied without tedious speci�c chemical labeling or enrichment.

Latest developments. While the lack of a fully resolved native RT signature of m1A motivated
realization of this PhD thesis, (see section 2), valuable insights into a transcriptome-wide m1A
landscape were published during the last months, wherein incomplete access to evidence on RT
errors was compensated by antibody-mediated enrichment and di�erential treatment [85, 71].
Using their m1A-ID-seq approach with random priming, Li et al. 2016 [71] managed to identify
∼900 m1A peaks in coding and noncoding RNA from 600 human genes. They abandoned to
exploit mismatch information, pointing out the issue of sequencing depth, which is especially
diminished at RT blocking m1A sites. However, they claim massive enrichment of m1A-bearing
sequence regions by highly speci�c immunoprecipitation (> 500-fold in case of m1A1322 in 28S
rRNA), recognizable as coverage peaks of mapped sequence reads obtained via RT and NGS.
Con�dence is further increased by comparison of peaks from native samples to those from repli-
cates treated with E. coli 's AlkB demethylase, which converts m1A to A. m1A peaks generated
via random priming typically show a central coverage trough, separating the reads originating
from transcripts primed 3' (downstream) of the RT-blocking m1A, from those reads of cDNAs
primed 5' (upstream) of m1A, while the latter fraction overlaps with read-through cases of the
�rst fraction. Thus, superimposition of native m1A peaks with those from demethylated (AlkB-
treated) replicate RNA samples, allows calculation of a demethylation sensitivity (DS) score,
indicating high-con�dence m1A regions, where m1A-troughs disappear in favor of augmented
read-through sequences. Finally, Li et al. 2016 used Dimroth rearrangement as orthogonal
method for con�rmation of their �ndings.
This reaction converts m1A to m6A under alkaline conditions and was recently employed in the
m1A-seq (adapted from MeRIP-seq) approach by Dominissini et al. 2016 [85] as primary con�-
dence indicator of m1A peaks from antibody-enriched RNA. Mismatch contents within sequence
peaks indicate read-trough cDNAs at m1A sites, if they disappear upon Dimroth rearrangement.
While the protocol allowed only blurred resolution of the stop-component of m1A's RT e�ect, the
di�erential mismatch information provided su�cient evidence to call ∼7000 peaks, in ∼200 cases
at single-nucleotide resolution. According to Li et al. 2016, m1A/A ratio is 0.02% in mRNA,
meaning an m1A level of about 5-10% of the global m6A level [71].
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1.2.2 Computational Methods and Tools

Detection and evidence. Access to misincorporation or RT stop information as native or
induced RT e�ects of modi�cations requires mapping of NGS reads to reference transcript se-
quences by alignment programs like Bowtie2 [106], tolerating mismatches to retain evidence
on modi�ed sites. Whether for prediction [45, 46, 47, 85, 71] or for characterization studies
[101, 105], indicative parameters of annotated instances need to be extracted from the alignment
pro�les, in order to compile a collective representative recognition measure, e.g. referred to as
MetaPsi by Carlile et al. 2014 [45] in case of Ψ.
Few guidelines exist on read counts to be produced by sequencing platform in RNA-Seq, since this
parameter highly depends on the investigated biological question, addressing small nucleotide
polymorphisms (SNPs), di�erential expression (DE), splice variants or other phenomena (re-
viewed in Sims et al. 2014 [107]). Also in RNA-Seq based modi�cation detection, the decisive
element of required sequencing depth is the expression level of the least abundant RNA species of
interest, which can theoretically range from one to millions of copies per cell. By means of deple-
tion or enrichment of certain over- or underrepresented RNA fractions, the total necessary read
count can be lowered. However, de�nition of a local coverage cuto� for con�dence, as needed for
instance in modi�cation site calling, is still up to the analyst and depends on the desired tradeo�
between quality and quantity of predictions. Thanks to highly speci�c immunoprecipitation,
Dominissini et al. 2016 could a�ord de novo prediction of peaks based on a required minimum
of only 20 reads and a mismatch content greater than 0.1 at 'reportable' m1A sites. In contrast,
analyses of m1A's detailed RT characteristics based on con�rmed sites need to ensure at least an
order of magnitude more in coverage, if description of individual mismatch components in single-
digit percentage precision is desired, even though the problem of site authenticity does not apply
in such studies. The RT-stop e�ect of m1A, entailing a coverage drop at the site of mismatch
measurement aggravates the provision of su�cient sequencing depth. Nevertheless, the HAMR
method, in which m1A was analyzed in parallel to many other modi�cations, applied a minimum
threshold of only ten reads per reference base, although actual coverages were not published [105].

Downstream analysis. Computational analysis of predicted sites by region-normalized super-
imposition of transcripts revealed an enrichment of m1A in 5'-UTRs, particularly in structured
domains in the vicinity of translation start codons (AUG) upstream of �rst splice sites [85, 71].
Conversely, m1A is under-represented in 3'-UTRs in contrast to m6A, which is associated with
stop codons [62, 64], allowing for speculations on a potential complementing interplay of these
marks in mRNA metabolism and translation [85].
While Li et al. 2016 had to make use of combination of replicate samples only to narrow down
peaks to ∼130 nt diameter [71], studies on m6A achieved single-nucleotide resolution by bioin-
formatic prediction in peaks with a single clear summit based on the 'DRACH' sequence motif.
Whereas success of this method is limited if motifs occur outside of peak centers or if multi-
ple m6A residues are clustered [64], Linder et al. 2015 proceeded from MeRIP-Seq peaks of
100-200 nt in width to single-nucleotide resolution via mutational RT e�ects induced by the
previously mentioned miCLIP method, instead of relying on motif search [68].
Further computational downstream analysis performed by Li et al. 2016 based on Gene Ontol-
ogy (GO) terms, revealed association of m1A-bearing mRNAs with transcription-factor binding
and RNA binding [71]. While widespread occurrence in mRNA could alter interactions with
RNA-binding proteins by m1A's positive charge under physiological conditions, �ndings in cod-
ing sequence (CDS) have even more striking bearings with regard to impact on translation.
Nevertheless, expression was found positively correlated with overall methylation level [85].

Models. One can distinguish simple threshold-based methods from complex machine learning
models, both applied to maximize discriminatory power in modi�cation site calling. An example
of the �rst kind is a logistic classi�er function used by Schwartz et al. 2014 [47] combining two
positional readouts in Ψ-Seq, namely the relative read stop frequency (Ψ-ratio) in treated sam-
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ples as independent component and the fold-change of Ψ-ratios upon CMCT treatment (Ψ-fc) as
di�erential component. Another example of threshold-based technique is a peak score calculated
from normalized di�erential (treated vs. untreated) counts of read stops within a sliding-window,
as applied by Carlile et al. 2014 [45]. These thresholds are then calibrated towards optimal dis-
criminatory power on an annotated training landscape like rRNA in a supervised prediction
scenario. Examples from the machine learning side are highly e�cient black-box models such
like Random Forests (RFs), as used for RNA/DNA Di�erence (RDD) detection [108], or Sup-
port Vector Machines (SVMs), as applied for uridine modi�cation prediction in tRNA based on
sequence context and structural data [109]. Such models are preferably used when descriptors
become numerous or di�cult to rate.

Evaluation. As a guideline, maximum comparability to various existing or future studies should
be esteemed in prediction or characterization of RNA modi�cations. Hence, it was desirable, if
RT e�ects like the one of m1A were evaluated by both, descriptive and inferential statistics,
also by means of machine learning models. Previous publications (discussed later) unfortunately
provide only very limited information on distinction power of modi�cation signatures and un-
derlying reasons. By reporting sensitivities (= True Positive Rate, TPR) and speci�cities (=
True Negative Rate, TNR), behavior of prediction models can be re�ected from the perspective
of de�ned modi�cation landscapes based on the relative amount of achieved recognitions among
existing target instances and successful rejections among the remainder respectively. Conversely,
by Positive and Negative Predictive Values (PPV, NPV), reliability of predictions can be ren-
dered transparent under speci�c settings for input data textures. Ideally, these measures are
complemented by further discrete parameters, e.g. scenario-speci�c False Discovery Rate (FDR),
which is the fraction of false positives among called modi�cation sites and serves as reference
point for expectable reliability. A continuous representation of model performance, preferably
published along with de novo predicted modi�cations, is the Receiver Operating Characteristic
(ROC), describing the selectivity of model-speci�c scores attributed to candidate sites by the
corresponding tradeo� between TPR and False Positive Rate (FPR, = 1-TNR). ROC curves
can be found e.g. in Schwartz et al. 2014 [47] and Carlile et al. 2014 [45] for evaluation of
Ψ-prediction. However, the performance measures must be interpreted with caution, regarding
the common problem of α-error accumulation by multiple hypothesis testing [110] observed in
large-scale sequencing data analysis towards highly underrepresented events like RNA modi�-
cations. In fact, the requirements for prediction performance highly depend on the application
scope. Using tRNAs and rRNAs as examples Schaefer et al. 2009 [57] demonstrated that cy-
tosine methylation can be reproducibly and quantitatively detected by bisul�te sequencing. In
turn, for Ψ studies, reviews exposed poor cut-sets of predicted sites [111], in parts explainable
by di�erences in read depth and stringency criteria [53].
Whereas the recent approaches to m1A mapping can be considered milestones in terms of volume
and claimed accuracy, they require a complex workup, including diligent immunoprecipitation
with highly speci�c antibodies and ensuing application of di�erential treatment. Peaks detected
by e.g. the MACS2 algorithm [85] need to be reinspected for di�erential information, namely
demethylation sensitivity near troughs or high-mismatch sites, while only the latter allow calls
in single-nucleotide resolution. Clearly, a remaining challenge is the validation of a vast amount
of predictions. One promising way to achieve this task would be additional consultation of a
characteristic, highly detailed description of m1A's native RT e�ects, which should be recogniz-
able at candidate positions. However, a hurdle is the introduced backward state of progress in
characterization of such a �ngerprint.

Big Data: quantity vs. quality. The availability of NGS has evoked a wide range of computer
programs developed for analysis of sequencing pro�les in manifold aspects, such as di�erential
expression, regulation and variant calling. Like the SNP detection area, also the RNA modi-
�cation �eld is challenged by a vast number of predicted candidates. While collection [4] and
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curation [112] of the modi�cation sites in databases is steadily promoted, experimental veri�-
cation of predictions by independent methods must typically be restricted to a small subset of
sites. Before engaging in e�ortful veri�cation or subsequent in-depth investigations of biological
aspects of given sites, the experimentalist needs to assess the signi�cance of an identi�cation
event, and visually inspect typical features of RT e�ects.

Unmet software demands. In principal, a huge variety of so called alignment viewers like IGV,
Tablet, Savant, UGENE and Persephone provides more or less detailed graphical representations
of mapping results, typically resolving the base composition and orientation of reads covering
a reference sequence. While powerful in navigation and sometimes rich in database-driven an-
notation tracks, these visualizers are missing essential functions for e�cient and comprehensive
characterization of RNA modi�cations' RT signatures. Options to reduce or organize sequence
positions by signature-relevant feature thresholds are very limited. As becomes clear from the
introduced state of the art, in-depth characterization of modi�cation e�ects requires parallel ac-
cess to both, graphical and numerical representation of a tailored set of parameters beyond the
scope of standard viewers and variant detectors. Besides read end counts, a key aspect of primer
extension based modi�cation detection, which can typically neither be plotted nor exported by
existing viewers, there is also a lack of options for context-sensitive rating of RT stop frequen-
cies, and thus no possibility to account for potential regional tendencies in RNA sequences. Such
lack of specialized functions in existing tools was decisive for the tasks and goals of this work,
formulated in section 2.

1.3 Interdisciplinary Task Force

This work is part of a general research e�ort towards Deep-Seq based detection of RNA modi�-
cations, which is undertaken by a task force of PhD students working on interdigitating topics.
Since modern Life Science projects (like the one for m1A) require interdisciplinary skills, tech-
niques and resources, close cooperation and diligent coordination within the group was essential.
The major responsibilities resided in library preparation (Lyudmil Tserovski), RNA isolation &
LC-MS/MS based quanti�cation (Kathrin Thüring, Katharina Schmid) and bioinformatics (Ralf
Hauenschild). The joint research progress bene�ted from mutual support across projects in ac-
cordance with individual priorities.
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2 Goal of the Work

This PhD project aimed at the development of bioinformatic analysis methods for identi�cation
of RNA modi�cations based on RT signatures in Deep Sequencing data. As a proof of principle,
the suitability of the corresponding approach was supposed to be demonstrated by application
to m1A, a modi�cation species uniting important criteria: biological relevance, well annotated
prevalence in experimentally accessible RNA species, and prior record of pronounced impact on
RT behavior.

Based on the introduced state of knowledge about m1A's typical RT stop and mismatch ten-
dencies, one important goal was an advanced characterization of m1A's native RT signature, i.e.
a detailed description of the �ngerprint this modi�cation leaves in sequencing pro�les without a
need for speci�c chemical labeling. This task included the identi�cation and formal de�nition of
suitable, characteristic parameters and features, in order to assess the variability of the signature
and to improve its resolution beyond the hitherto picture. Besides qualitative con�rmation of
m1A sites and potential evidence based identi�cation of previously unreported occurrences, it
was also planned to estimate the extent, to which m1A levels can be narrowed down by readouts
from NGS pro�les. While large-scale prediction of m1A sites was beyond the scope of this work,
a major objective was to evaluate the distinction power of m1A's RT signature by means of
machine learning. In this process, attention should be drawn to thorough statistical evaluation
under di�erent conditions and scenarios of m1A instances intermixed with data points from other
adenosines. Ideally, suitable models would also be used to shed light on importance of various
signature features, and to identify other eligible modi�cation types amenable to the developed
method.

Major tasks of this project resided in both, elaboration of an experimental concept for the
characterization of m1A's signature as well as in the design of a tailored computational work-
�ow. The requirements for an extensive analysis pipeline from raw NGS data to highly resolved
RT signatures comprised versatile aspects. Major premises included e�ciency in processing of
sequencing pro�les and compatibility with common sequence and alignment formats. Under
compliance with �exibility and adaptability, the work�ow should be designed not only towards
requirable adjustment to and re�ection of potential parametrical changes in vivo (modi�cation
levels and landscapes in RNA), in vitro (treatments, RT enzymes, library preparation settings)
and in silico (sequencing properties, trimming, mapping), but also allow transfer to modi�cation
types other than m1A. Aiming at a modular conception of the pipeline, optionality between
di�erent application scenarios was envisaged: (i) in-depth characterization of RT signatures by
ensuing statistical analysis based on a de�ned feature set and facultatively supported by machine
learning, (ii) utilization of established signatures for detection of unreported modi�cation sites,
and (iii) comparative quick-runs of analysis schemes under varied input conditions.

A particular goal was the engineering of a graphical user interface (GUI) software, for an
ideally seamless connection of specialized visualization and directed numerical extraction of site-
speci�c features relevant for modi�cation detection based on RT signatures. Aiming at maximum
synergy between scienti�c outcome of RT signature studies and according functional repertoire
of the GUI software, the plan provided a development of the application in parallel to m1A
characterization. Thus, features identi�ed as most characteristic for RT signatures should be
taken into account in software conception. Provided such a program would prove substantial
assistance in characterization of m1A's RT signature and show potential beyond, re-engineering
of the software in a distributable, platform independent format was envisaged, allowing for a
continued standalone application in various endeavors of Deep-Seq based modi�cation detection.
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3 Results & Discussion

Overview. This chapter is divided into three sections according to a modular project conception
in response to the de�ned goals of this work. Brie�y, a computational work�ow for detection of
RNA modi�cations based on Deep-Seq pro�les was developed and applied for characterization
of m1A's RT signature as a proof of principle. The core component of our analysis pipeline
was conceived as a standalone graphical user interface (GUI) software, named CoverageAnalyzer

(CAn). The project parts are presented in an order most conducive for understanding:

• Section 3.1 characterizes m1A's RT signature and thereby demonstrates an application
scenario of the work�ow.

• Section 3.2 addresses the corresponding functional repertoire of the analysis interface
CoverageAnalyzer , discussing its use for signature analysis.

• Section 3.3 �nally provides a technical outline of the entire work�ow for NGS-based mod-
i�cation detection, here used for examination of m1A.

3.1 RT Signature of m1A

The term RT signature of a particular ribonucleotide species universally entitles the behavior of
reverse transcriptases towards this residue during cDNA synthesis. From a theoretical point of
view, this would comprise enzymatic responses of all RT types, described by a set of di�erential
equations based on a high-dimensional space of experimental settings (e.g. temperatures, dNTP
concentrations, pH milieu etc.) as variables. For a practical application however, it is su�cient,
to reduce this complex system to a small set of descriptive and robust features observed under
one reproducible experimental setup for a conventional RT enzyme (see Methods section 5.2).

The following sections progressively present such a robust RT signature allowing for a sensi-
tive and speci�c identi�cation of m1A in deep sequencing data.
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3.1.1 Technical Approach

Figure 2: Principle of RNA-Seq data gen-
eration for the detection of m1A residues.
Adopted from Hauenschild et al. 2015 [113].

As common in RNA-Seq procedures, RNA
preparations were reverse transcribed to cDNA
libraries and submitted to sequencing on an
NGS platform, here Illumina. According
to the introduced literature, three types of
cDNA products are expected in reverse tran-
scription of m1A sites in RNA (Fig. 2).
Among the stop products (a), a substan-
tial fraction originates from m1A induced ter-
mination of RT after complementing its 3'-
adjacent neighbor residue in the template
RNA, as mentioned in the structural prob-
ing context. On the other hand, read-
through products (b) and (c) contain ei-
ther misincorporated (dA, dG, dC) or cor-
rect (dT) residues at the cDNA position cor-
responding to m1A. Most RNA-Seq proto-
cols can a�ord certain loss of sequence in-
formation from cDNA products not reach-
ing the second primer binding site due to
RT drop-o�. Our study addresses m1A
sites mainly in tRNAs, where spontaneous
RT arrests are accompanied by massive
stop frequencies at roadblock modi�cations.
Missing abortive products not only elimi-
nates type (a), but also substantially dec-
imates type (b) and (c) products, leading
to low coverage and bad signature resolu-
tion.

Therefore, in this work, we employed a li-
brary preparation protocol suitable for simulta-
neous capture of both, abortive and full-length
cDNA products. The steps were conducted by
Lyudmil Tserovski. A key feature of the proto-
col is a primer ligation for second-strand cDNA
synthesis rather at the cDNA level (at 3' end
of �rst-strand cDNA products a, b, c) instead
of at the RNA level, where the RT primer for
�rst-strand cDNA synthesis is ligated (3' end
of RNA) [114, 115].

Thus, in contrast to conventional methods, which are prone to biased ampli�cation of RT
products, the combined readout of modi�cation-caused RT arrests and detailed mismatch infor-
mation in NGS data could be utilized for extraction of single m1A �ngerprints to establish a
collective RT signature. To obtain the best possible resolution of m1A signatures, pro�les of par-
ticularly high coverage were generated by increased sequencing depths (see Table 1) for targeted
RNA pools. Further improvements of the protocol are the result of Lyudmil Tserovski's work
within a greater research e�ort addressing Deep-Seq based RNA modi�cation detection. The
experimental details are speci�ed in section 5.2, whereas the resulting sequence libraries are pre-
sented in Table 1. From the raw reads, several key parameters were scrutinized in post-processing
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steps, and will be referred to throughout the Results section. Details on sequencing, trimming,
mapping and signature extraction are provided in Materials and Methods sections 5.2-5.6. As
illustrated in Fig. 2, the speci�ed goal of a well-described RT signature of m1A is pursued via

collection of single-site observations. The latter followed a strategic concept, presented in the
next section.

3.1.2 Characterization Strategy

For systematic characterization of m1A's RT signature throughout this project, a powerful bioin-
formatic analysis platform, CoverageAnalyzer, was developed gradually, synchronized with its
application to m1A, allowing for insights into the corresponding features of the modi�cation.
This key component for targeted visual inspection of sequencing pro�les and e�cient access to
statistical information by automated screening is presented in section 3.2. We characterized
m1A's RT signature based on RNA preparations chosen guided by a holistic concept, including
examination of annotated m1A sites, knockout examples as negative controls and other consid-
erable presets to capture a comprehensive picture, such as fractional occupancy and variation of
sequence context. By comparison of known m1A positions in native tRNA and rRNA samples to
those from null mutants, our analysis covered also signatures potentially in�uenced by strongly
structured RNA domains. Quantitative analysis was complemented by studies of qualitative
signal dependence on the local nucleotide environment. In this context, synthetic oligoribonu-
cleotides were designed to assess the in�uence of the 3'-neighboring nucleotide of an m1A site,
which is the last conventionally reverse transcribed residue before the direct encounter of the
RT's active site with the modi�cation.

Once characterized, the signature was tested for identi�cation of bona-�de m1A sites, based
on known modi�ed positions. Indeed, co-occurrence of the described patterns in homologous se-
quence contexts of related organisms provided su�cient evidence for calling of unreported m1A
sites. Subsequent exemplary LC-MS/MS-based con�rmation of m1A's presence in an isolated
tRNA demonstrated the viability of such predictions.

Major concerns are the choice of reference sequences and the corresponding mapping strategy.
The previously published HAMR [105] method relied on de�nition of tRNA families from the
ensemble of all genetic loci predicted by tRNAscan-SE [116]. In contrast, we rather preferred a
well-annotated modi�cation landscape of spliced and maturated sequences, such as available at
MODOMICS [4]. Our tRNA reference pools from this database (see Methods section 5.4) cover
the acceptor-space to a large extent, representing 20 amino acid types and including sequences
both, with and without m1A annotation. The latter were intentionally added in order to allow
for evidence based identi�cation of hitherto unreported m1A sites and to include negative con-
trol instances. RNA sequences that were experimentally available and provided with database
annotations of m1A sites include yeast cytosolic tRNAs, human mitochondrial tRNAs, as well as
yeast, murine and human rRNA (see Table 2). Furthermore, rRNA from Streptomyces pactum

was of particular interest, featuring the only m1A site in the pool situated in the small ribosomal
subunit. Notably, the modi�cation mediates antibiotic resistance [84] of this bacterium.

Operating on this sequence pool, we providently assessed the possibility of multiple mapping
targets for reads originating from a tRNA with several isoforms. Isoacceptors, supposed to be
charged with the same amino acid [117], frequently show strong sequence similarities. As a
consequence, cross-mapping rates are usually higher between isoacceptors than between other
tRNAs. The conclusive results of a closer analysis are shown in section 3.1.11.2. Therein,
report settings addressing cases of multiple mappings were compared in their e�ects. From
those, we used a regime termed 'k1', reporting one valid mapping site per read only. Initial
characterization of m1A signature was conducted using yeast rRNA, allowing to circumvent the
above tRNA-related challenges. The latter are discussed in more detail in section 3.1.11.2.
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Table 1: Sequence libraries. Adopted from Hauenschild et al. 2015 [113].

ID Interest Material Organism Raw reads Mapped [%] Bp End ∅ Reads / kb ref ∅ cov. 3' of m1A ∅ arr. (m1A) [%] ∅ mism. (m1A) [%]

1 Signature pool total tRNA S. cerevisiae 2.95 M / 2.23 M 40.0 / 40.7 151 p 370 k / 260 k 10.0 k / 6.6 k 21 / 22 54 / 54
2 Signature pool total mito. RNA H. sapiens 2.1 M 14.3 151 p 189 k 1.6 k 62 32
3 m1A58 knockout total tRNA S. cerevisiae ∆ trm6 5.58 M 89.9 / 89.1 35, 88 p 16.4 MIni 776 kIni 0.1Ini 0.4Ini

4 Positive control total tRNA S. cerevisiae 6.37 M 77.3 / 82.1 35, 88 p 579 kIni 1.25 kIni 18.1Ini 7.0Ini

5 Positive control rRNA S. cerevisiae 4.95 M 47.9 150 s 213 k 9.3 k (10.0 / 8.6 k) 35 (54.0 / 15.0) 28.0 (44.7 / 11.2)
6 single knockout m1A645 rRNA S. cerevisiae ∆rrp8 5.40 M 63.1 150 s 407 k 25.6 k (39.1 k / 12.0 k) 9.15 (2.0 / 16.3) 9.6 (1.2 / 18.0)
7 single knockout m1A2142 rRNA S. cerevisiae ∆bmt2 3.82 M 76.4 150 s 308 k 12.6 (13.7 k / 11.6 k) 23.35 (44.7 / 2.0) 24.3 (47.0 / 1.6)
8 double knockout m1A645 and m1A2142 rRNA S. cerevisiae ∆rrp8 + ∆bmt2 7.37 M 68.33 150 s 402 k 21.6 k (28.3 / 14.8 k) 2.75 (3.2 / 2.3) 0.8 (0.8 / 0.8)
9 m1A on SSU of rRNA total RNA S. pactum 6.27 M 1.2 / 0.6 35, 88 p 250 k 6.4 k 76.0 56.9
10 Homologous identi�cation rRNA H. sapiens 5.14 M 77.7 / 72.0 35, 88 p 12 k 8.0 k 90.0 30.3
11 Homologous identi�cation rRNA M. musculus 7.18 M 71.0 / 68.7 35, 88 p 150 k 11.4 k 89.7 30.9
12 RT sequence context dependency oligo. synthetic 1.42 M 92.6 / 86.8 35, 88 p 18.6 M 430 k 76.0 48.9
13 RT sequence context dependency oligo. synthetic 1.66 M 87.9 / 82.3 35, 88 p 23.9 M 550 k 54.4 56.7
14 RT sequence context dependency oligo. synthetic 1.56 M 84.1 / 80.1 35, 88 p 20.1 M 410 k 82.7 24.5
15 RT sequence context dependency oligo. synthetic 1.89 M 88.4 / 68.0 35, 88 p 27.1 M 510 k 81.4 22.2
16 RT sequence context dependency 2 oligo. ligate 0.37 M 42.7 / 15.1 151 p (500 k / 400 k) 2.9 k (44.1 / 60.5) (39.1 / 27.2)
17 Signature vs. occupancy oligo. in vitro transcr. 1.77 M 89.1 / 81.1 35, 88 p 16.0 M 350 k 8.2 3.1
18 Signature vs. occupancy oligo. synthetic 2.00 M 90.1 / 83.1 35, 88 p 21.2 M 480 k 41.5 11.7
19 Signature vs. occupancy oligo. synthetic 1.72 M 91.0 / 84.4 35, 88 p 20.0 M 450 k 48.5 12.8
20 Signature vs. occupancy oligo. synthetic 2.17 M 91.8 / 86.0 35, 88 p 26.4 M 610 k 64.0 25.0
S21 Positive control total tRNA S. cerevisiae 1.95 M 44.4 / 49.7 80, 80 p 145 k 5.6 k 51.9 60.2
S22 m1A58 knockout total RNA S. cerevisiae 3.21 M 58.8 / 51.9 80, 80 p 571 k 11.2 k 0.2 0.3
S23 Novel sites total tRNA T. brucei 1.36 M 4.8 / 3.9 80, 80 p 7.5 k 0.4 k 36.6 83.0
S24 Signature vs. occupancy tRNAArg_1 T. brucei 1.79 M 13.1 / 12.4 80, 80 p 2.6 M 85 k 18.3 82.8

Raw reads denote the number of FASTQ sequences obtained from Illumina prior to bioinformatic processing. Mapped reads re�ect the relative number of processed

reads mappable to references provided to Bowtie2. Value pairs refer to reads from paired end libraries or replicates (sample 1). Bp is the length of these reads

in base pairs, where 150 bp were used in the single end (s) mode of sequencing and 151 or 35 + 88 bp for the reads in paired end (p) mode of libraries. For

comparability, the average number (∅ reads / kb ref) of reads mapped on a kilobase (kb) of an m1A-annotated target reference sequence is listed, e.g. tRNAIni in

sample 3 and rRNA in sample 5. The mean coverage (∅ cov. 3' of m1A) at +1 positions 3' of m1A provides a reference for the arrest rate, ∅ arr. (m1A), at the

m1A position and ∅ mism. (m1A) provides the mismatch contents. Sample 1 values originate from replicates (N=2). Numbers annotated with Ini refer to tRNAIni

only. Entries in brackets refer to pairs of m1A sites in the corresponding sample, such as m1A645 and m1A2142 in rRNA. The mean is given in front of each bracket.
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Table 2: m1A sites

RNA spec. Position Organism Distinct RNAs Replicates

Con�rmed
tRNA cyt. 58 S. cerevisiae 20 2
tRNA mit. 9 H. sapiens 13 1
rRNA LSU 25S 645 S. cerevisiae 1 2
rRNA LSU 25S 2142 S. cerevisiae 1 2
rRNA LSU 28S 1309 H. sapiens 1 1
rRNA SSU 16S 964 S. pactum 1 1
Artif. oligo 9∗ 2 2
Revolver oligo 9∗ 4 1
tRNAArg_UCG cyt. 58 T. brucei 1 2
Uncon�rmed
rRNA LSU 28S 1136 M. musculus 1 2
tRNA mit. 9 H. sapiens 1 1
tRNA cyt. 58 T. brucei 15 1

Con�rmed instances include published and self-designed m1A sites, whereas uncon�rmed sites rely

on homologous identi�cation. 'Distinct RNAs' refers to the number of non-redundant RNAs, in which

m1A signatures were found. LSU - large subunit. SSU - small subunit. * asterisk-labeled synthetic

oligoribonucleotides contain m1A9 in a sequence derived from mitochondrial tRNALys of Homo sapiens.

3.1.3 Arrest Rate and Mismatch Rate

Various studies already described m1A's e�ect as road-block [90] or indicated a composed mis-
match rate in NGS pro�les caused by misincorporations of dA, dG and dC [101] at the cDNA
position opposite to m1A. Nevertheless, most approaches lack simultaneous capture of abortive
products [105] and mismatch information [95].

A �rst demonstration of the combined resolution potential of both kinds of RT errors is given
in the sequencing pro�les from pure yeast 25S ribosomal RNA shown in Fig. 3A. This large
ribosomal subunit features known m1A sites at positions 645 and 2142. Samples isolated from
whole ribosomes of a wildtype strain as described in [81] showed clear coverage drops and in-
creased amounts of mismatches at the modi�ed positions compared to the surrounding sequence
pro�le. Since ribosomal RNAs of several kilobases exceed the read length by far, fragmentation
of rRNA was necessary in order to cover the whole template sequence by a su�cient density of
RT start sites. As a consequence of such start sites overlapping with RT stops, coverage drops
may provide only an underestimate readout of RT arrest frequency.

Thus, we de�ned arrest rate ai of a position i as the relative portion of read alignments
starting at i+ 1 (covering i+ 1 but not i) among all reads covering i+ 1, referred to as coverage
ci+1. If si + 1 is the number of reads starting at i + 1, the arrest rate of position i is de�ned
as: ai = si+1

ci+1
. Let di be the number of read alignments that cover i with a base di�erent from

reference base at i. Then, mismatch rate is de�ned as mi = di
ci
. These simple de�nitions of

a and m are abstracted from the corresponding computational steps presented in Material and
Methods section 5.6.

Importantly, the features are absent at one or both sites in pro�les from single or dou-
ble knockout mutant samples, where the corresponding responsible methyltransferases [81] are
missing. As expected, Rrp8-de�cient yeast lacks the signature at position 645, which respec-
tively holds at position 2142 for the Bmt2 null mutants. Similarly, signatures at m1A58 sites in
tRNA disappear, if the responsible enzyme Trm6 is missing [74, 75], as demonstrated for yeast
tRNAIle_TAT and tRNACys_GCA in Fig. 3B exemplarily.
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Figure 3: Detection of m1A signatures in deep sequencing data. The representations illustrate
the coverage of a given site in gray, the arrest rate is plotted as a red line, and the mismatch composition is
visualized by colored stacks at the m1A sites. For a position p, the arrest rate re�ects the relative amount
of mapped reads ending at p + 1, i.e. not covering p. (A) Sequencing pro�les from single and double
methyltransferase knockouts of Saccharomyces cerevisiae's LSU rRNA with m1A sites 645 and 2142.
Signatures of m1A residues are clearly apparent in the wild-type, and disappear in the corresponding
knockout constructs. (B) Sequencing pro�les of tRNAIle_TAT and tRNACys_GCA from wild-type and
Trm6-knockout yeast strains. The signatures clearly disappear in RNA from a knockout strain of the
enzyme, which is responsible for synthesis of m1A58 in tRNAs [75]. tRNAIle_TAT and tRNACys_GCA

are depicted as examples out of 37 signatures, which are detailed in Appendix subsection 6.2, �gure 27.
Positions are labeled according to absolute length of reference sequences, including variable regions.
Adopted from Hauenschild et al. 2015 [113].

On the one hand, the results clearly demonstrate a distinct m1A-induced signature even in
RNA species whose stable structures are known to a�ect RT arrest rates [94]. However, a sig-
ni�cant variation is evident already when comparing the two m1A sites of the wildtype rRNA
sample. Interestingly, while m and a are close in value, both parameters are higher at m1A site
645 (m = 45.9%, a = 49.3%) than at m1A2142 (m = 11.4%, a = 15.6%).
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Figure 4: Quanti�cation of ribosomal
m1As by LC-MS using a biosynthetic in-
ternal standard. LC-MS/MS chromatograms
showing the m1A and 13C-labeled peaks in 25S
rRNA from wild-type and Rrp8/Bmt2 knock-
out yeast. Continuous lines represent the peaks
of unlabeled m1A, dotted lines those of 13C-
labeled m1A added as an internal standard
[37]. To ensure inter-sample comparability of
the m1A peaks, the peak heights were adjusted
to the respective 13C-m1A peaks and normal-
ized to the injected amount of 25S rRNA. The
amount of analyzed 25S rRNA was determined
by calculating the amount of adenosine in the
respective samples using the UV peak of adeno-
sine and dividing the amount by the number of
adenosines per molecule. AU=arbitrary units.
Adopted from Hauenschild et al. 2015 [113].
Measurements done by Katharina Schmid and
Kathrin Thüring.

Contrary to the impression that m1A site
2142 might possess a lower modi�cation oc-
cupancy than position 645, a control analy-
sis of the wildtype, single and double knock-
out samples by LC-MS/MS (Fig. 4) veri�ed
equal levels of 0.7 mol m1A per mol rRNA at
both sites, consistent with 1.4 mol m1A per
mol rRNA in the wildtype. While the read-
out at position 645 correlates roughly with the
determined m1A content, the decreased sig-
nal at 2142 suggests a much lower modi�ca-
tion level. Of note, quanti�cation of fractional
occupancy can be fraught with a ∼10% er-
ror in overall precision. However, since the
analyses were conducted with aliquots from
the same rRNA preparation, numerous error
sources are equalized in case of relative com-
parison of rRNA from both knockout mutants
[37]. The fact that signatures can vary strongly
between sites of similar occupancy leads to the
conclusion that arrest and mismatch rates are
of limited reliability for quanti�cation of mod-
i�cation level. Nonetheless, the sum of both
rates serves as lower limit estimate of m1A con-
tent, since the signals disappear at unmodi�ed
adenosine residues. Deeper implications and
consequences of this �nding apply particularly
to DMS experiments for structural probing,
where RT stops serve as a semi-quantitative
readout of RNA's accessibility to a methylat-
ing reagent [95].

Motivated by the conclusion that signature intensities may be modulated not only by the
modi�cation level itself but also by RT sensitivity to the modi�cation's structural context, we
introduced a new parameter. What we termed Context Sensitive Arrest rate (CSA), normalizes
a positional arrest rate a with respect to the median of surrounding arrest rates:

CSAr(i) = ai
median(ai−r,...,ai−1,ai+1,...ai+r)

Here, r denotes the number of contributing positions (visual range) upstream or downstream
of position i. If not speci�ed otherwise, we used CSA5 (r = 5), providing a visual range long
enough to compensate up to four positions of increased arrest due to potentially higher mod-
i�cation density or aggregated RNA fragment ends: 15.5% of positions in our yeast cytosolic
tRNA reference pool are annotated with modi�cations. By using the median instead of mean
surrounding arrest rate, high coverage drops due to such modi�cations within the 2·r neighboring
positions are less likely to bias CSA. On the other hand, r = 5 is still short enough to re�ect
the local pro�le of RT arrests, e.g. in loop structures.
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3.1.4 Signature by m1A Occupancy

Figure 5: Signature intensity by m1A
content. (A) Arrest and mismatch rates at
di�erent ratios of modi�ed (synthetic) and un-
modi�ed (in vitro transcript) equivalents of
a human tRNALys-derived oligonucleotide are
shown: 0% synth. in (i), 25% in (ii), 50%
in (iii), 75% in (iv) and 100% synth. in (v).
(B) Correlation of m1A level (quanti�ed by LC-
MS/MS) in sample mixes from (A) and signa-
ture intensities. Adopted from Hauenschild et
al. 2015 [113].

Once the modi�cation level is veri�ed for
certain arrest and mismatch rates, lower
signature intensities at the same position
should re�ect fractional occupancy reliably.
In order to gauge the e�ect of incom-
plete modi�cation in a real scenario, we
used a synthetic analog of yeast mito-
chondrial tRNALys's �rst 20 bases bear-
ing an m1A at position 9 [78]. This
wild-type sequence was mixed with equiva-
lents of an unmodi�ed twin (in vitro tran-
script) in equidistant ratios as shown in �g-
ure 5A (i-v). Obviously, the rates of ar-
rest and misincorporation increase linearly
with the content of m1A. Additional veri�-
cation of the modi�cation levels in the mix-
tures in �gure 5A was performed by quan-
titative LC-MS/MS using the recently devel-
oped biosynthetic stable isotope labeled stan-
dard [37].

Although neither of the readouts is pre-
cise enough for de�nite quanti�cation of in-
complete modi�cation, Figure 5B demon-
strates the clear linear correlation of both,
with these results. The mixture ratios
(i-v), indicated by 'S' markers are lo-
cated at equidistant positions on the or-
dinate, whereas their positions on the ab-
scissa re�ect the de facto m1A levels. Im-
portantly, this discrepancy does not a�ect
the quality of dependency, since the lin-
ear equations were �tted based on the ab-
scissa values determined by LC-MS/MS. In
parts, the incomplete m1A level even in
the 100% mixture can be attributed to
traces of m6A, a rearrangement product
of m1A [118], we identi�ed even in syn-
thetic samples. In total, the results of
the mixture assay suggest that many natu-
ral m1A sites are probably incompletely mod-
i�ed. Thoroughly calibrated RT pro�les may
be used to estimate the underlying mod-
i�cation e�ciency to a remarkable degree,
though.

While causality between common signa-
ture characteristics and the presence of m1A
residues was demonstrated, the signatures of di�erent natural m1A sites vary not only in quan-
tity, but also in quality. This applies in particular to mismatch composition. Clearly, a larger
number of m1A instances has to be analyzed in order to obtain a comprehensive picture.
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3.1.5 Mismatch Composition

Figure 6: Average m1A signature. Arith-
metic mean of pro�les of 37 m1A sites in yeast
cytosolic tRNAs (supplementary Fig. 27) and
standard deviations (SD) of arrest and mis-
match parameters among and between tRNA
isoacceptor groups. The threshold for displayed
events was set to a minimum mismatch rate of
5%. -1 and +1 refer to the sequence positions
5'- and 3'-adjacent to the m1A site. Adopted
from Hauenschild et al. 2015 [113].

As a central goal of this work, we re-
�ne m1A's RT signature beyond its es-
tablished description to a level of maxi-
mum resolution. Therein, we optimize its
value when approaching prediction of m1A
sites by computational screening of NGS
data.

Closer assessment of the signatures at
multiple m1A sites revealed that arrest and
mismatch rates are not the only parame-
ters to �uctuate. This is demonstrated
in Fig. 6, which shows an average signa-
ture of 37 m1A sites from yeast cytosolic
tRNAs (Appendix Fig. 27). Di�erences in
both, read-through e�ciency and misincor-
poration frequency can be mainly ascribed
to heterogeneous fractional modi�cation oc-
cupancies. In contrast, the law of large
numbers (Bernoulli/Poisson) would suggest
a G/T/C mismatch composition converging
towards a narrow range as a consequence
of the huge amount of molecular copies re-
�ected by the Deep-Seq results of each m1A
site. However, variation of mismatch con-
tributions among the analyzed sites is evi-
dent.

Previous studies [101] had described in-
creased misincorporation rates of mainly dA and dC into the cDNA, accompanied by a small
fraction of dG opposite to an m1A residue. The resulting G/T mismatch ratio underlies sig-
ni�cant variation, as found by further analysis more recently [105]. However, the reason for
this variation had remained unclear, leaving a blurred picture of the mismatch composition as a
signature component.

The described G/T-driven distribution of mismatch compositions was veri�ed by the average
pro�le. In order to obtain a more detailed picture, we extracted signatures from the entirety of
annotated m1A sites in Table 2. Next, the mismatch compositions were gathered in a ternary
plot [105] (Fig. 7A), resulting in a pattern consistent with the described preference of data points
scattering along the T-axis, indicating the G/T-driven mismatch range. As per the goal of sig-
nature re�nement, this unexplained scattering was investigated from various angles.

Reconsideration of the average pro�le (Fig. 6) yielded the decisive hint, when it became clear
that the mismatch components di�er much more between distinct groups of tRNA isoacceptors
than among tRNAs of the same isoacceptor group. Thus, we correlate sequence context with
mismatch patterns in the subsequent section.
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3.1.6 Sequence Dependence

Figure 7: Mismatch composition: +1
dependence & binning. G/T/C balance at
41 natural m1A sites (A) in a ternary plot are
colored by base con�gurations guanosine (yel-
low), cytidine (blue), uridine (red, T in map-
ping pro�le) and adenosine (green) at position
+1 relative to m1A. (B) Data points from re-
volver oligonucleotides are represented as col-
ored letters (same color code). (C) 22 hierar-
chically binned data points derived from ini-
tial 41 measurements in (A) and (B). Adopted
from Hauenschild et al. 2015 [113].

Corresponding to their occurrence in dif-
ferent tRNAs, the 41 m1A instances from
Fig. 7 were found to be located within dif-
ferent sequence contexts. The fact that
the reverse transcriptase proceeds from 3'
to 5' of the RNA template during cDNA
synthesis, implies that position +1 (see
Fig. 6) is reverse transcribed before the m1A
site, de�ned as position 0, enters the ac-
tive site of the enzyme. Consequently,
the -1 position can only act as a tem-
plate after the RT has bypassed the m1A
site.

Reasoning that the immediate molecular en-
vironment is most likely to a�ect RT behav-
ior in its direct encounter with m1A, the po-
sitions -1, +1 and +2 were chosen for as-
sessment of their in�uence on the signature.
Next, the signature parameters of all m1A in-
stances in Tab. 2 were analyzed as a func-
tion of the base con�gurations of neighbor-
ing nucleotides. Whereas arrest rate and
mismatch rate did not show notable depen-
dence on the sequence context, the compo-
sition of mismatches was sensitive all the
more. This could be demonstrated visually:
distinct in�uences of the given base iden-
tity at either of the three positions would be
re�ected by a clustering of mismatch com-
positions, when plotted in a ternary dia-
gram.

Strikingly, the ternary plot showed clear
clustering of colors, when the mismatch compo-
sition values were colored according to the +1
base con�guration (Fig. 7B). The result demon-
strates that a 5'-m1A-U-3' motif, present in red
data points clustering in the upper corner of
the ternary plot, leads to highly e�cient dATP
misincorporation into cDNA. These misincor-
porations are re�ected by a high contribution
of T mismatches in the mapping pro�les us-
ing the RNA sequence as reference, which ob-
viously involves low relative amounts of G and
T mismatches. Similarly, the motifs 5'-m1A-
A-3' (green) and 5'-m1A-G-3' (yellow) lead to
distinct clusters of generally low misincorpo-
ration frequency of dGTP corresponding to C
mismatches. The 5'-m1A-G-3' motif has the
stronger G mismatch tendency here. Moreover, four spread-out 5'-m1A-C-3' motifs were ob-
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served. They share low T mismatch signals, but a larger set of instances would be required to
characterize a more distinct trend.

Figure 8: Revolver Assay. (A) RT pro�les
of synthetic oligonucleotides with variegated
+1 base con�guration, termed revolvers. The
m1A9 site is marked by an asterisk. (B) Quan-
ti�cation of m1A in revolver oligonucleotides by
LC-MS/MS using a biosynthetic internal stan-
dard. Chromatograms show the m1A and 13C-
labeled peaks. Continuous lines represent the
peaks of unlabeled m1A, dotted lines those of
13C-labeled m1A added as an internal standard
[37]. To ensure inter-sample comparability of
the m1A peaks, the peak heights were adjusted
to the respective 13C-m1A peaks and normal-
ized to the injected amount of oligonucleotide.
Amounts of oligonucleotides were determined
by calculating the amount of adenosine in the
respective samples using the UV peak of adeno-
sine and dividing the amount by the number of
adenosines per molecule. AU=arbitrary units.
Adopted from Hauenschild et al. 2015 [113].
LC-MS/MS measurements done by K. Schmid
and K. Thüring.

In the light of this sequence depen-
dence, it is important to reconsider the un-
derlying assumptions and applicative per-
spectives of m1A's RT signature de�ni-
tion. Obviously, the sequence context
pool analyzed here, is biased by evolu-
tion, by database annotation and even by
the modi�cation level which is decisive of
a detectable mismatch signal. On the
one hand, it is arguable that the en-
tirety of accessible m1A instances at least
roughly approximates the natural distribu-
tion of the modi�cation's sequence con-
text at positions -1, +1 and +2 rel-
ative to the m1A site. This would
suggest acquisition of an overall signa-
ture from the given distribution in or-
der to yield the most transferable, ro-
bust and therefore valuable description,
in particular for the analyzed tRNA and
rRNA landscape. On the other hand
though, when describing the impartial in-
�uence of a �xed +1 nucleotide con�g-
uration X minimally biased by nonuni-
form frequencies of -1 and +2 con�gu-
rations, 3'-m1A-X-5' instances of identi-
cal (over-represented) -1 and +2 sequence
contexts need to be averaged before be-
ing pooled with such 3'-m1A-X-5' from
other -1 and +2 sequence contexts. This
procedure already makes analogous aver-
aging for �xed -1 and +2 positions ob-
solete, since it yields only unique com-
binations of -1, +1 and +2 con�gura-
tions.

First, from originally 54 m1A instances, ex-
perimental replicates were averaged, which led
to the 41 data points in Fig. 7A. Next, over-
representation of certain sequences was taken
account of by averaging instances from map-
ping references exceeding 95% similarity (see
Methods section 5.7), e.g. tRNAs featuring
SNPs. Now, as described in the previous paragraph, the �nal averaging step reduced the data
points to those mismatch compositions observed under unique sequence contexts. Crucially,
the described sequence dependent mismatch composition persists also in the resulting 22 hier-
archically averaged (=binned) data points presented in Fig. 7C. Fig. 9E presents the observed
combinations in the 41 data points, which cover the theoretical combinatorial space of 43 = 64
con�gurations by roughly one third (22 unique wedges in pie chart).
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Pursuing two goals, veri�cation of the pronounced e�ect of the +1 nucleotide and a �rst expan-
sion of the incomplete pool of sequence contexts, an additional four data points were generated.
In what we termed 'revolver' concept, four versions of synthetic oligonucleotides were used,
which contained m1A in a uniform sequence context, but featured variegated +1 base con�g-
uration (Tab. 6). Exactly as in section 3.1.4, the sequence was derived from natural human
mitochondrial tRNALys [78] bearing an m1A9. If the assumed +1 dependence was true, the
m1A mediated mismatch compositions of the four revolver oligoribonucleotides di�ering only
at +1 position would turn out in an allocation ideally congruent to the corresponding colored
clusters in Figures 7B and 7C. Indeed, the revolver sequencing pro�les presented in Fig. 8 and
their mismatch compositions, plotted as colored letters A, G, T (U) and C in the ternary plots
respectively, re�ect well the trends detected in the natural instances. Statistical analysis veri�ed
this in a permutation test (Methods section 5.7), the results of which are shown in Fig. 9F.
The overall mismatch and arrest rates were similar between the oligoribonucleotides, which is
in agreement with previously observed absence of sequence context impact on these parameters
when analyzed for the natural m1As.

As a consequence of the described impact of the +1 sequence context on m1A induced mis-
match composition, knowledge of the +1 base con�guration improves the resolution of this
signature component signi�cantly. Theoretically, knowledge of all three investigated base con�g-
urations could re�ne this resolution even slightly further, but acceptable reliability would require

Figure 9: Signature dependence on sequence context. Mismatch composition at m1A site by
nucleotide con�guration at -1 (A), +1 (B∗, identical with Figure 7B), and +2 (C). Data points from
revolver oligonucleotides are speci�ed by base at +1. (D) Observed combinations of base con�gurations
at positions +1, +2 and -1 relative to m1A. (E) Positional comparison by clustering measures cohesion,
separation & silhouette coe�cient [119] as well as Random Forest prediction performance in ten repetitions
of seven-fold strati�ed cross-validation. Means for negative and positive predictive values (NPV & PPV),
sensitivity and speci�city indicate the model's performance predicting the base con�guration at position
-1, +1 or +2 from the m1A site's mismatch composition. (F) Accordance of revolver assay with m1A
pool. Knowing that the mismatch compositions of the synthetic instances correspond to four distinct
populations of the global pool, 22 of 23 alternative permutations are outperformed (i) by the actual
assignment, based on the mean of the four corresponding distances to cluster centers (MDC), detailed in
section 5.7. The correct assignment ranks at 97.6% of the mean MDC of the best-performing permutation
(ii). Hauenschild et al. 2015 [113].
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a much larger volume of data points, preferably covering a maximum variety of sequence context
space. An ideal data set should include a su�cient number of technical and biological replicates
in order to obtain a proper estimate of the variance in redundant, homogenous data. The next
level of variation would then be implemented by multiple of such replicate sets sharing the -1,
+1 and +2 context but di�ering in RNA species origin. Provided such data sets for each of the
64 combinations of analyzed sequence context, a potential cooperative impact of -1, +1 and +2
con�gurations may be assessed.

Nevertheless, the available m1A signature pool allows evaluation of the independent impact
of individual base con�gurations. Fig. 9A, B and C illustrate a direct comparison of mismatch
compositions with respect to base con�gurations at positions -1, +1 and +2. Clearly, the +2
con�guration does not have a systematic individual impact in the 41 misincorporation patterns,
as is re�ected by a promiscuous arrangement of colors. Position -1, although the ternary plot
appears slightly better organized in color distribution, had only one single ribocytidine (blue)
con�guration and resolution is clearly inferior to that of the +1 diagram B∗. These visually
apparent di�erences were veri�ed by both, descriptive and inferential statistics, also including the
four revolver data points. Cohesion, separation and the Silhouette Coe�cient [119] were chosen
as indicators of clustering quality. For each of the three context positions, these parameters were
calculated for the individual color clusters and then reported as a mean weighted by cluster sizes.
The indicators were calculated based on an edit distance measure di,j between two mismatch
compositions i and j, de�ned as the minimum required alteration of mismatch components
mismk ∈ {mismG,mismT ,mismC} to transform i into j:

di,j := (
∑

mismk

|mismk,i −mismk,j |)−max
k
|mismk,i −mismk,j |

More details on weighting and normalization can be found in Methods section 5.7.

As illustrated in Fig. 9E, the clusters colored by the +1 base con�guration exhibit the best
cohesion and are more separated from each other leading to less overlap. This is exposed even
more evidently by comparing the average Silhouette Coe�cients at -1, +1 and +2.

Practical bene�t of the improvement of mismatch composition resolution by the impact of a
given +1 nucleotide was initially evaluated by using a Random Forest [120, 121] machine learning
model. If such a model could learn to predict the +1 adjacent base con�gurations of the m1A
sites based on their mismatch composition (i.e. the data point's location in the G/T/C triangle),
then one could reciprocally rate new m1A candidates by the plausibility of their G/T/C balance
occurring under their corresponding +1 nucleotide. As expected, when trained and tested in
separated cross-validation setups for positions -1, +1 and +2, the model showed best prediction
results in each performance category, when predicting the +1 base con�guration. The results are
depicted in Fig. 9E. Utilization of the +1 dependence of mismatch composition for computational
prediction of m1A candidates is discussed in section 3.1.9.

From a biochemical point of view, the predominant impact of the +1 base con�guration is
plausible. As illustrated based on m1A's sequence context in the revolver oligoribonucleotides in
Fig. 10, at the very moment of the enzyme's encounter with m1A, both, the -1 and +1 residue
are closer to the RT's active site than is the +2 ribonucleotide. Crucially, the +1 neighbor
is already base-paired, which extends the spatial sphere of in�uence by the properties of the
complementary deoxynucleotide. Since canonical Watson-Crick base pairing shown in (viii) is
apparently impeded by a clash due to m1A's methyl group (i-vii), alternatives, such as Hoogsteen
/ C-H edge pairing [100, 122] must be considered. For what physicochemical reasons pyrimidines
or purines, or even speci�c deoxynucleotides are preferred on the cDNA side under a given +1
con�guration, remains to be clari�ed in extensive studies and is beyond the scope of this work.
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Figure 10: RT sequence context and m1A base pairing. Scheme of positions 8-11 of the tRNALys

revolver sequence sketches how methyl group of m1A with constant +1 neighbor rG, impairs base pairing
with mismatching residues (i-iii) dA (green), dG (yellow), and dC (blue) or with matching dT (red) in
cDNA (iv). Matching dT (red) in cDNA is furthermore shown in di�erent +1 base con�gurations (v-vii)
rA (green), rC (blue) and rU (turquoise). Steric clashes are indicated by jagged lines in contrast to
standard rA-dT base pairing with conventional H-bond formation (viii).
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3.1.7 Homologous Identi�cation

Figure 11: Homology based con�rmation
of m1A. For a position p, the arrest rate re-
�ects the relative amount of mapped reads end-
ing at p + 1, i.e. not covering p. (A) Homol-
ogous identi�cation of m1A1136 in murine 28S
rRNA (i) by alignment to human sequence con-
taining m1A1309 (ii). (B) m1A9 in human mi-
tochondrial tRNA, identi�ed by alignment to
identical bovine sequence with published m1A9.
Adopted from Hauenschild et al. 2015 [113].

Adopting the above described improvements
of signature resolution, the identi�cation
of previously unreported m1A sites comes
within reach, already by visual inspection
of RNA-Seq pro�les. Arguably the easi-
est deployment of the characteristic signa-
ture is the qualitative con�rmation of puta-
tive m1As, where they have not yet been
detected by other methods, but show plau-
sible sequence homology to annotated sites.
For example, the obvious homology be-
tween human and murine 28S rRNA allowed
the identi�cation of m1A1136 in mouse by
analysis of the murine pro�le in the re-
gion corresponding to the known m1A1309

[123] in the human sequence. Fig. 11A
shows intense arrest and mismatch rates
at both sites. Similarly, m1A's signa-
ture was found in human mitochondrial
tRNAAsn identical to the sequence of the
bovine homolog, which was recently se-
quenced and annotated with an m1A9 site
[8].

During the �nal phase of this project, the
great potential of such homologous identi�ca-
tions by software-aided visual inspection was
thereupon made use of in a more challenging
endeavor. Trypanosoma brucei 's tRNA had so
far been poorly annotated in terms of m1A
sites. Total RNA [124] of this eukaryote was
submitted to the same library preparation pro-
tocol as the previous samples. Sequencing yielded typical m1A signatures at positions 58 (de-
viations due to variable loops) in 16 tRNA species when inspected visually, as demonstrated
in Appendix section 6.5, Fig. 29. Importantly, this applies also to the mismatch composi-
tion and dependence on the +1 base con�guration, which shows impressive agreement with
the �ndings in Fig. 7B. As to verify the presence of the modi�cation in at least one of the
species, tRNAArgUCG was isolated by hybridization with a biotinylated cDNA and subsequently
sequestered on streptavidin-beads (see details in Methods section 5.1). Now, the puri�ed tRNA
was submitted to LC-MS/MS analysis. The results suggested near complete modi�cation, namely
one m1A residue per molecule tRNA as presented in Appendix Tab. 10. Subsequently, an ad-
ditional sequencing run was performed for the isolated tRNA, yielding a coverage pro�le in
excellent agreement with that of the bulk-sequenced version. This experiment con�rmed that
the tRNA-speci�c mismapping e�ects discussed in section 3.1.2 are indeed minor. However, we
intensify this topic in section 3.1.11.2.
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3.1.8 Supervised Prediction

Distinctiveness is the crucial benchmark of m1A's RT signature in predictive application. To
evaluate how reliably the signature can distinguish the modi�cation from non-m1A sites, a ma-
chine learning based supervised prediction was conducted.

Model choice. A Random Forest [120] model (RF) was deployed using an R package [121].
Though reported as inferior to support vector machines (SVMs) [125], this versatile data mining
method is widely used in Life Sciences [126, 127, 128] gaining popularity by high prediction ac-
curacy and unique advantages, e.g. variable importance readout [129]. Importantly, with respect
to our sparse m1A data, RFs master scenarios with many variables but few samples [130], a.k.a.
'course of dimensionality' problems [126] being robust to over�tting and outliers [129].

Random Forest principle. RFs take advantage of the bootstrap aggregation (='bagging')
principle related to boosting, which combines a set of potentially weak learners, here decision
trees, to obtain a strong meta learner. Each tree is grown based on a new random 2/3 'bootstrap'
sample of the available training data drawn with replacement. Recursively at every branching
(node) in the tree, a random subset of features describing these data is drawn, a.k.a random
subspace method [131]. Next, the bootstrap sample is split at that node by a binary fork using
the variable providing the highest increase in purity of the child nodes, i.e. best separation of
items by class labels based on a decisive threshold value of that variable. Growing ends, when
the terminal nodes of all trees have reached 'leaf' status, i.e. they contain items of one class
type only. A new item is classi�ed by the majority consensus of all votes returned by the sin-
gle trees after processing that item along their decision forks and assigning class labels in the leafs.

Figure 12: Validation scheme for super-
vised prediction. RT signatures (yellow)
of m1A and non-m1A (A*) sites and are dis-
tributed into sub-samples ('folds'), with uni-
form ratios (strati�cation) m1A/A*. The sys-
tem was tuned toward both, sensitivity and
speci�city by equal class abundances, minimiz-
ing learning biases due to a priori class prob-
abilities. In each of 10 repetitions, a Random
Forest was trained all 5 possible combinations
of 4 folds and tested on the respective 5th fold.
Adopted from Hauenschild et al. 2015 [113].

Validation scheme. Throughout growing,
RFs already perform self-evaluation based on
the average classi�cation error on out-of-bag
(OOB) data sets presented to the respec-
tive 2/3 fractions of trees grown without that
data. However, regarding the small m1A pool,
we preferred a validation scheme, which al-
lows to use a larger fraction (> 2/3) of the
available data as training background in the
moment of RF assessment on unseen data.
By a post-training k-fold cross-validation with
k = 5 > 3 (Fig. 12), we slightly reduced the ex-
pected overall model performance, since only
k − 1 = 4 folds are used for training. However,
this setup allows to estimate the error on the
respective ith's of k folds data, truly unseen
of the entire RF, which now knows 4/5 in-
stead of 2/3 of maximum training background
in the moment of OOB testing. This way,
also other reported biases [132] in built-in er-
ror estimation are circumvented. Instead of a
plain OOB error, an ensemble of performance
measures was calculated based on the average
results from 10 repetitions of a 5-fold cross-
validation, including sensitivity, speci�city as
well as positive and negative predictive value
(PPV & NPV) (details in Methods section 5.8).
Brie�y, the 45 collected m1A signatures from
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tRNA, rRNA and synthetic oligoribonucleotides were merged with equal amounts (1:1 ratio) of
data points (coverage ≥ 10, +1 pos. coverage ≥ 15) randomly drawn from all non-m1A sites
of the bona �de m1A containing landscape: mitochondrial (human) and cytosolic (yeast) tRNA
and rRNA (yeast and mouse), named setting (i) in Methods section 5.8. As shown in Fig. 12,
each cross-validation run included shu�ing of m1A (positive) and non-m1A (negative) instances.
Then, the data were split into �ve 'strati�ed' folds, preserving a 1:1 ratio by alternation of pos.
and neg. examples. The RF was trained once on each of �ve possible combinations of four folds,
while the respective �fth fold served as test data.

Feature selection. Modern machine learning approaches successively move from hand-crafted
features to automatically engineered features [133] learned from raw input. Instead, preferring
transparency in this early-stage study of very limited data, we relied on intuitive features that
either provide a direct quantitative or qualitative visual readout, such as arrest rate a, mismatch
rate m and mismatch components mG, mT and mC , or at least have interpretable semantics
like the m/a ratio and the Context Sensitive Arrest rate (CSA, see section 3.1.3), when used by
black-box models. Thus, features visible to the RF were a, m, m/a, mG, mT , mC and CSA.

Sequence dependence. Despite its documented impact, the +1 nucleotide identity was not used
in this setup, in order to avoid over�tting to the biased sequence context of collected m1A sites.
Otherwise, special precautions in data preparation and model settings would be necessary, to
prevent the RF from 'cheating', i.e. learning m1A signatures by abusing the over-representation
of certain neighboring bases (section 3.1.6, Fig. 9D) �rst o�, rather than taking advantage of
the correlation with mismatch composition. Compared to sequence motifs of later reported m1A
sites in mRNA [85, 71] di�ering in +1 base frequencies from our tRNA/rRNA m1A pool, our
mismatch composition is biased in a similar way as their determinant, the +1 con�guration.
However, approaching this bias by averaging (section 3.1.6), is not suitable, training towards
prediction of real m1A instances: the latter may carry their maximum information content and
detective potential in the original signatures. Averaging would further reduce the limited train-
ing instances down to an intolerable amount and diversity. Alternative omission of the entire
mismatch composition information, for a training bias reduction when aiming at transcriptome-
wide mapping [71], should also be refrained from, facing the bad trade-o� between the valuable
G/T/C balance information lost and the expectable correction of a bias neither fully veri�ed nor
quanti�ed.

Inducing m1A resemblance. The RF scored solid 97% in speci�city and PPV with over
96% in sensitivity and NPV, when predicting m1A in the standard setting (i) (details in Ap-
pendix section 6.6, Tab. 7). In a more stringent variation, setting (ii), random non-m1As were
selected, only if they showed a minimum 'resemblance' to m1A signatures. This way, the impact
of a more di�cult scenario could be assessed. In principle, distance measures for resemblance
can be extracted from an RF itself (e.g. similarity scores or regression outputs) or established
by importance-based (see section 3.1.9) weighting. However, this implies undesired circular
reasoning, i.e. a pointless conclusion, when the RF is challenged by issues de�ned by itself. Al-
ternative calculation of neutral distances (e.g. Euklidian) in the manner of clustering methods
(e.g. k-Means) or a principal component analysis (PCA) based strategy either lack in su�cient
importance-weighted consideration or else in intuition, qualitative interpretation and control.
Such downsides were circumvented by a custom �lter rule ful�lled by eligible non-m1As, su�c-
ing any of the conditions a ≥ 0.2, m ≥ 0.2 or at least two mismatch types with ≥ 0.1 share
of an m ≥ 0.1 (setting (ii), Methods section 5.8). From these readouts, which showed being
instrumental in visual inspection, the third is most informative and characteristic for m1A: it
neither occurs in SNPs nor plays a greater role in many other inspected signatures of adenosine
modi�cations. If still shared by several modi�cation types, the actual combination of mismatch
components as variable sub-features can provide further potential for distinction. According to



30 3 RESULTS & DISCUSSION

said priority order established in feature inspection, the demand for m1A-specialized, transparent
weighting of these parameters, gave rise to diversity score, a primitive weight-based qualitative
indicator of signature characteristics. Since this index proved pro�cient in preliminary investiga-
tions on prediction dynamics for di�erent data textures beyond (i) and (ii) (Appendix section 6.6,
Fig. 31), it was integrated in the software, CoverageAnalyzer (CAn) (section 3.2). The impact of
various combinations of training and testing textures on predictive performances underlines the
importance of appropriate training background for models deployed on unseen RNA sequences.

Performance. Setting (ii) was a harder task for the RF than setting (i), but since both, training
and test sets featured non-m1A pro�le patterns of a minimum m1A resemblance, performance
dropped to still remarkable ∼89% sensitivity and ∼89% NPV, along with ∼87% speci�city and
∼87% PPV. Appropriate usage of scenario-speci�cally trained models is discussed in section
3.1.11.2. The accuracy drop under setting (ii) can be ascribed to deliberate inclusion of other
adenosine modi�cations passing the selection �lter, e.g. two consecutive m6,6A sites in yeast's
18S rRNA. Like m1A, this species has a methyl group on the Watson-Crick face, causing a mis-
match pattern [105]. Indeed, the signature of m6,6A1781 is indistinguishable from m1A's, even by
visual inspection (Appendix section 6.6, Fig. 30). Consequently, the algorithm misclassi�ed this
position as m1A site. Its neighbor however, m6,6A1782, albeit also featuring a pronounced pat-
tern, deviated from the typical m1A signature, and was correctly reported as non-m1A, therefore.

Comparison: Out of concern whether limited data sets, such as the 2x 45 instances from setting
(ii), are suitable for complex methods like RFs, the model's Receiver Operating Characteristic
(ROC) was compared to that of a more basic classi�er, namely a k-Nearest Neighbor (kNN).
In a ROC analysis, the area under curve (AUC) in Fig. 13 corresponds to the probability, the
corresponding classi�er scores a random positive (m1A) instance higher than a random negative

Figure 13: Receiver Operating Characteristic (ROC) plot [134] showing the areas under curve
(AUC) for Random Forest and k-Nearest Neighbor (kNN) in supervised prediction of m1A vs. other sites
(setting (ii), described in the text). Curves are averaged from 10 repetitions of a 5-fold cross validation.
Error bars show standard deviations of the ROC curve at the models' rating scores attributed to the
m1A candidates. The gray diagonal corresponds to the performance of a guessing classi�er. Adopted
from Hauenschild et al. 2015 [113].
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(non-m1A) one. With an average AUC of 94%, the RF consistently outperformed various kNN
settings (max. 57%) by a huge margin. The shape of the RF curve indicates its excellent scoring-
tradeo�, which achieves high sensitivities at low cost in speci�city.

Maximum training set: In order to obtain a closer estimate of the upper performance limit of
a model trained on the entire available data, we developed the idea of a large-k cross-validation
further, leading to a 'leave-one-out' cross-validation. More precisely, with a maximum of 45 folds,
only a single pair of positive and negative instances was left in each test folder. As expected,
the average performance increased with the availability of training data (Appendix section 6.6,
Tab. 8). This not only recon�rms the feasibility of our concept, but also underlines the need for
a maximum number of training instances, essentially including pronounced signatures of non-
m1As. As a rule of thumb, statisticians advise an at least 5-10-fold number of training instances
in each class for a given number of learning features [135]. This should be kept in mind, when we
go signi�cantly below the recommended ratio in a scenarios presented later on in section 3.1.10.
In contrast, the 4

5 · 45 = 36 training instances for both classes (m1A, non-m1A), used in each
constellation within the 5-fold cross-validation schemes so far, can be regarded as just su�cient
for the 7 used features. Some dimensions are not fully orthogonal, which, while lowering the
information content on the one hand, slightly relativizes the problem of increasing sparsity in
the curse of dimensionality on the other hand.

Transferability: As a �nal challenge, the RF was trained on the entire amount of available
tRNA instances of m1A with as many random non-m1As of the same sequence pool (setting
(iii)). When tested (10-repetitions 5-fold strati�ed cross-validation) on an analogously composed
unseen rRNA data set, the �ve ribosomal m1A sites (2x S. cerevisiae, 1x S. pactum, 1x M.

musculus, 1x H. sapiens were consistently identi�ed with 100% accuracy. Handling the scenario
without a single false-positive classi�cation, the method provided further evidence of its robust-
ness.
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3.1.9 Feature Importance

Figure 14: Feature importance. 10 rep-
etitions of a 5-fold strati�ed cross-validation
training a Random Forest with equal amounts
of bona �de 45 m1A signatures and non-m1A
counter-examples from cyt. (yeast, tryp.) and
mitoch. (human) tRNA as well as from rRNA
(human, mouse, yeast) and synthetic oligori-
bonucleotides. ( ) A high Gini-Index [136]
∈ [0, 1] indicates a high node purity, i.e. inequal-
ity of item class frequencies, corresponding to
a progressed class separation. Important vari-
ables tend to increase the Gini-Index. ( ) If
prediction accuracy is sensitive to value permu-
tation of a certain variable between instances of
di�erent classes, that variable tends to be im-
portant. Variables insensitive to permutation
usually have low impact on prediction accuracy.

In order to assess, which of the characteris-
tic features identi�ed in visual inspection are
predominantly exploited by the RF model, we
repeated the cross-validation scheme from sec-
tion 3.1.8 (setting (ii)). This time, the data
set was extended by bona �de m1A and non-
m1A instances from trypanosomal tRNAs (sec-
tion 3.1.7), leading to a slightly improved re-
sults of ∼81% sens., ∼92% spec., ∼88% PPV
and ∼88% NPV, due to the additional train-
ing material. Next, as an experiment, also
the critically discussed (section 3.1.8) +1 base
information was provided to the RF, which
again raised the performance to ∼86% sens.,
∼97% spec., ∼95% PPV and ∼91% NPV.
When we extracted the feature importances
from the RF, a clear hierarchy was observed
(Fig. 14). The underlying rational is that im-
portant features, typically promote class split-
ting e�ciency when used at the RF's decision
forks, which is measurable as high Gini-Index
[136]. The latter indicates the resulting in-
equality of item class frequencies in the cor-
responding child nodes (a.k.a. node purity) of
decision trees. Important variables not only
tend to increase the Gini-Index, but permuta-
tion of their values easily leads to deteriorated
prediction accuracy. The results indicate con-
siderable importance of both types, arrest and
mismatch related features. They also con�rm
the pro�ciency of a Context Sensitive Arrest
rate (CSA) for m1A detection in contexts rich in RT stops.

The fact that the RF attributed an only minor importance to the +1 neighboring base, hav-
ing access to seven other descriptors, can be explained by the data texture combined with the
model's working principle. While signature assessment by human visual inspection is not bound
to a strict order by information content, the computational model takes a greedy approach us-
ing the available variable subspace for item splitting. Particularly in scenarios, in which a high
percentage of the non-m1A signatures are plain adenosines without notable RT patterns (i) or
even for more m1A-resembling instances (ii), the RF can simply apply cuto�s for mismatch or
arrest. A fallback on the more sophisticated features (mG/mT /mC balance, +1 base) is seldom
necessary. Increased importance of the +1 base information would be expected for higher m1A-
similarity of non-m1As, which remains an interesting aspect to be revealed in future projects.

Aware that interpretability of above measures can su�er from biases [137] and importances do
not necessarily correlate with feature selection frequencies [138] inside the RF, we performed an
independent, more straightforward analysis to identify combinations promotive to classi�cation
power, when visible to the RF. For the original two setups (i) and (ii) from section 3.1.8, we
generated all possible feature combinations, then cross-validated the RF under each. For presen-
tation reasons, performances were generalized as arithmetic mean of sensitivity, speci�city, PPV
and NPV (showing high mutual correlation). The results were plotted according to the number
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Figure 15: Prediction quality vs. number and category of predictors. Quality is generalized as
arithmetic mean of sensitivity, speci�city, positive and negative predictive value. (A) Low and (B) high
avg. resemblance of non-m1As to m1As as speci�ed in section 3.1.8. 27-1=127 combinations of 7 used
or omitted features were tested for classi�cation by Random Forest. The number of data points in each
column corresponds to the possible combinations for the categories i)-iii) using the respective feature
count 1-7. Adopted from Hauenschild et al. 2015 [113].

of involved features (1-7) and colored by categories 'mismatch info. only', 'arrest info. only' and
'mixed info.' leading to the representations in Fig. 15. Where readability su�ered from large
numbers of combinations, box plots were chosen to facilitate evaluations. As an example, in the
�rst column of panel A, the only hybrid feature m/a outperforms any other single feature. In the
second column, most mixed feature pairs lead to higher performance than homogeneous pairs.
Column 7 of Fig. 15A and B corresponds to the full feature set provided to the RF, resulting in
the performances reported in section 3.1.8. Not only, these �ndings demonstrate improved learn-
ing with increasing number of features. Underlining the key aspect of our library preparation,
this analysis clearly signalizes the need for combined capture and usage of mismatch and arrest
information, to yield prediction performances neither of them alone can come close to.
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3.1.10 Discrimination from other A-Modi�cations

Above, we demonstrated the distinction potential of m1A's signature, accessed by the combined
use of characteristic features in machine learning based detection. Considering the di�erential
prediction outcome for scenarios of modulated minimum signature intensities, an essential prac-
tical requirement is the discrimination of m1A from other adenosine derivatives. This aspect was
addressed in what we termed an eligibility chart, a study conceived to obtain a comprehensive,
bundled readout of the modi�cations' distinction potential, based on their typical RT pro�les
and frequencies in the modi�cation landscape of the primary RNA pool examined in this work.
By means of such vis-à-vis representations for modi�cations of all four main nucleotides, one
can not only recognize m1A's unrivaled role among adenosine modi�cation signatures (Fig. 16),
but also identify other promising modi�cation species of guanosines (section 3.1.11.3, Fig. 18),
uridines and cytidines (Appendix 6.7 Fig. 32 and 33) of comparable pivotal rank, eligible for
future deployment of the concept.

For the generation of eligibility charts, we used reference sequences from yeast's cytosolic
tRNA and rRNA as well as human mitochondrial tRNA, non-redundantly compiled from the en-
tire available modi�cation-annotated pools at MODOMICS [4] and Sprinzl tRNAdb [139]. After
mapping the corresponding NGS samples 1, 2 and 5 from Tab. 1, a 5 bp margin (regions prone
to bias/artifacts and CSA5 is unde�ned) at both ends of each resulting pro�le was discarded,
yielding 9425 sequence positions left for analysis. Under those, 621 were annotated modi�cation
sites, which, by applying a minimum coverage threshold of 10 reads, were further decimated to
a total of 604, de�ned as setting (iv), a scenario based on modi�cation sites exclusively: 88 (A,
8 types), 120 (G, 7 types), 327 (U, 12 types) and 69 (C, 6 types). Due to the strongly uneven
distribution of modi�cation type frequencies, a Random Forest binary (type X vs. non-X) clas-
si�cation scheme was used. It was carried out in 5+3+3+5=16 feasible (X has ≥5 occurrences)
from 8+7+12+6=33 theoretical setups of a 10-repetitions 5-fold strati�ed cross-validations, each
opposing all available instances of a respective modi�cation type X with as many random non-X
instances. As per usual, features visible to the RF were a, m, m/a, mG, mT , mC and CSA.

From the pie chart in Fig. 16A, the suitability of m1A becomes apparent by its relative
numeric prevalence among the annotated adenosines, providing enough training material for a
proper learning performance. Obviously, its mismatch composition can be easily distinguished
from that of inosine, a species also subject to RNA-Seq based approaches [54] and even Ran-
dom Forest based prediction [108]. To a limited extent, the scattering misincorporation values
overlap with those of other modi�cation types (the color legend in form of a ternary plot shows
means only), such as the rare m6,6A (rRNA) discussed in section 3.1.8 or the more frequent t6A
(tRNA). Nevertheless, the previously yielded average ∼94% AUC from the ROC analysis could
be reproduced even in this modi�cations-only scenario, also entailing a total False Discovery Rate
(FDR) as low as 8%, thereby outvying even inosine among the modi�cations of ≥5 occurrences
(Fig. 16B). Interestingly, no predominant contributor can be observed for m1A, in contrast to
t6A, i6A and inosine, which all were preferably miscalled on actual 2'-O-methyladenosine sites
(contributions normalized by frequencies). Fig. 16C introduces two of the remaining key param-
eters, arrest and mismatch rate, which together shift m1A's signature into an isolated position
within the feature space, resolving uncertainties on the mismatch composition level to a large
extent. Re�ned by m/a and CSA, m1A can be discriminated highly accurately from other
modi�cations, a crucial prerequisite when envisaging large-scale de novo prediction. In contrast,
premature conclusions based on sizeable AUC values of species such as 2'-O-methyladenosine that
lack any arrest and mismatch rates (here referred to as 'freeloaders') should be refrained from:
although theoretically even low CSA values could be indicative for certain modi�cation species,
good classi�cation results of 'freeloaders' (if seen as positive class) can often be ascribed to the in-
direct recognition of characteristic inosine and m1A signatures, which are overrepresented among
counterexamples (negative) in the binary classi�cation setup (iv). For relative contributions to
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FDRs (B), addressing the aspect of a priori confusion potential, this bias was accounted for
by normalization of negatives by class counts. However, compilation of counterexamples in the
cross-validation scheme was done without forced uniformity of corresponding representatives of
negative sub-classes, in favor of a more realistic constellation of modi�cation frequencies.

Figure 16: Eligibility chart - Random Forest performance by RT signatures: adenosines.
All annotated (MODOMICS) modi�cation sites in yeast cyt. tRNA & rRNA and human mitoch. tRNA
sequences were grouped by modi�cation type. Results were determined in 10 repetitions of a 5-fold strat-
i�ed cross-validation using equal amounts of a speci�c modi�cation (minimum required frequency = 5)
vs. a random composition of 'other'-labeled modi�cations. (A) Colors of pie chart code for mismatch
composition displayed in ternary plot. Pie radii re�ect Area Under Curves (AUC) from Receiver Operat-
ing Characteristic (ROC) curves of a Random Forest model tested for discrimination performance of the
modi�cation types. Circular fractions of pies represent the relative frequencies (abs. frequencies displayed
in round brackets) of modi�cation types. (B) Total speci�c False Discovery Rates (FDR) of modi�cation
types (vertical axis and color bar) and relative contributions by other modi�cation types (horizontal axis,
bar heights are normalized by relative medication frequencies). (C) Random Forest performance (AUC)
represented as cone height vs. arrest rates, mismatch rates and mismatch compositions (colors). Radii
were squared (=normalized) for presentation reasons. Black whiskers indicate standard deviations.
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3.1.11 Positioning in Current RNA Modi�cation Field

Encounters of RT enzymes with non-canonical RNA residues become more and more a focus
of intense research. Early investigations into m1A's RT e�ect were mostly concerned with the
application in structural probing in vitro [40], and the replication of the HIV genome, which
remarkably was found to rely on RT arrest at m1A58 of the HIV primer tRNALys3 [96, 97].
In vivo methods followed [140, 141]. The topic experienced renewed impetus, since RNA-Seq
based approaches are being developed to detect RNA modi�cations on a transcriptome-wide
scale. Sequencing methods for m5C [57], m6A [62] and pseudouridine [45, 46, 47] have recently
revolutionized the RNA modi�cation �eld, and lately published proceedings in large scale m1A
mapping [85, 71] a�rm the common belief that transcriptomes harbor a range of modi�cation
types left to be traced by similar approaches. A better understanding of RT arrest behaviors
will clearly improve accuracy, in particular of approaches like Psi-Seq, which completely relies
on RT stop upon the enzyme's encounter with a CMC modi�ed nucleotide.

Here, we present an in-depth analysis of m1A's e�ect on the composition of cDNA prod-
ucts generated during reverse transcription of RNA templates. In contrast to later published
transcriptome-wide de novo prediction studies [85, 71], this work concentrated on known m1A
instances with well-curated database annotations and prioritizes a comprehensive capture of
those feature combinations that make m1A's RT signature maximally unique. Whereas previ-
ous studies aimed at a general picture of various modi�cation types in parallel [105, 101], we
focused on a single modi�cation species and characterized its heterogeneous arrest and mismatch
patterns in dependence on the sequence environment in over 50 RNA sequences. The herein de-
tected variability of m1A instances was presented to a computational model, taught to identify
the modi�cation in various supervised scenarios.

While large scale prediction is beyond the scope of this project, the various strong machine
learning performances indicate feasibility of future m1A candidate calling, essentially without
chemical treatment or enrichment strategy. A direct comparison of accuracy between the men-
tioned related methods is hardly possible, in parts because they were validated to very di�er-
ent degrees. More importantly, each of them evaluated their performance on highly individual
scenarios, distinct modi�cation types of unequally complicated signatures and therefore under
dissimilar quality requirements. Bearing that in mind, however, our approach can be ranked at
least on a par with prevailing published variants, as demonstrated in Tab. 3 based on supplied
information. Essentially, our reference settings (i-iii) (section 3.1.8) represented highly altering,
but never trivial challenges. From the outcomes, one can derive that corresponding margins to
perfect prediction performance can be ascribed almost exclusively to occasional overlap of m1A's
signature (e.g. with m6,6A), rather than to selection and extraction of features, the machine
learning model itself or the library preparation approach. Hypothesized that 100% accuracy is
a justi�ed common demand for the exemplary cases listed in Tab. 3, our approach outperforms
e.g. the HAMR [105] method, which claimed its performance for 'RT-a�ecting' modi�cations,
thus of course handicapped by modi�cation species of more blurred signature, but also missing
out e.g. the arrest based criteria we could exploit maximally in full focus on m1A. Concurrent
Random Forest based methods [142, 108] are challenged by SNP/SNV miscalling in RNA/DNA
di�erence (RDD) detection, and cannot keep up with our m1A approach under the typical sce-
nario (i). Dominissini et al. [85] pro�t from the additional di�erential readout for mismatch
information upon Dimroth rearrangement of m1A to m6A, but don't provide any performance
estimate, except an applied 5% FDR limit ensuring that 95% of detected peaks indeed re�ect
enriched RNA regions, which does not refer to actual m1A site con�dence. Our speci�ed FDR
of still acceptable 8% results from the worst case scenario (iv), in which m1A was identi�ed in a
modi�cation-only data set. We can also compete with FDRs claimed in Ψ mappings [45]. Their
ROC curve dominates our TPR/FPR tradeo� under very conservative acceptance thresholds,
but exhibits early massive breakdowns of speci�city, when attempting sensitivities above ∼87%.
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Table 3: Prediction performance of current methods. Numbers marked with asterisks (*) are valid for speci�c application scenarios. Values under Hauenschild
et al. 2015 marked with (i-iv) result from the corresponding settings in section 3.1.8 (low and high minimum m1A similarity of non-m1As) and 3.1.10 (m1A vs. other
modi�cations). The ribosomal m1As in setting (iii) were predicted 100 % accurately. Numbers marked with '∼' were estimated/approximated in all conscience based
on the authors' claims for certain validation schemes. '-' indicates performance values from Hauenschild et al. 2015 not speci�ed by the other authors: Carlile et
al. 2014 [45], Ryvkin et al. 2013 [105], St. Laurent et al. 2013 [142], Kim et al. 2016 [108] and Dominissini et al. 2016 [85] (modi�cation species is speci�ed under
author/year). FPR = False Positive Rate (fraction among negative instances, which is erroneously reported as positive) = 1-speci�city. FDR = False Discovery
Rate (fraction of actually negative instances among all instances reported as positive).

Carlile et al. 2014

Ψ
HAMR, Ryvkin et al. 2013

various
St. Laurent et al., 2013

Inosine
RDDpred, Kim et al. 2016

RDDs - RNA-editing: A→I, C→U
Dominissini et al. 2016

m1A
Hauenschild et al. 2015

m1A (+ other eligible)

Approach CMC + RNA-Seq (Illumina) RNA-Seq RNA-Seq (SMS) RNA-Seq Antibody capture + RNA-Seq RNA-Seq (Illumina)

RNA species whole transcriptome small RNAs ribo− total RNA mRNA / whole transcriptome mRNA tRNA, rRNA, synth. RNA

Readouts

Arrest
-
-

-
Mismatch

-

-
Mismatch

Alignment qualities

-
-

Alignment qualities

Arrest
Mismatch + Dimroth rearrangement

-

Arrest
Mismatch

(-)

Prediction
hardcoded threshold
custom procedure

Basic classi�er:
k-Nearest Neighbor (kNN)

Machine Learning:
Random Forest (RF)

Machine Learning:
Random Forest (RF)

statistical algorithm:
MACS peak caller

Machine Learning:
Random Forest (RF)

Sensitivity - 92% of 'RT-a�ecting' mods. - 90-95 %* - 96 %*(i)

Speci�city - - - - - 97 % (1-FPR)*(i)

Positive Predictive Value (PPV) 87.5-95 %* - ∼70-80 %* - - 97 % (3 % FDR)*(i)

Negative Predictive Value (NPV) - - - 75-84 %* - 96 %*(i)

False Discovery Rate (FDR) 5-12.5 %* ∼15 %* - - - worst: ≤8%*(iv) (m1A vs. other mods.)

Area Under Curve (AUC from ROC) ∼90-95 %* - 92-93/94 %* - - ≥94 %*(ii)
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3.1.11.1 Parameters that Shape m1A's RT-signature

One important message implied in the presented data is the very substantial e�ect of misincor-
poration by the reverse transcriptase, which results in a non-negligible read-through e�ciency.
Occasional 'correct' complementation with dTTP can even partially disguise actual occupancy.
According to literature, read-through by RT-enzymes in vitro may depend on a variety of pa-
rameters, such as Mg2+ ions and dNTP concentrations [143] e.g. in case of 2'-OMe modi�cations
[144]. As hinted in our de�nition of the term RT signature (section 3.1), the nature of the RT it-
self is important in the encounter with an RNA modi�cation [145], which is currently investigated
in Prof. Dr. Mark Helm's research group. Furthermore, pH, ion strength and divalent cations
can be expected to play a crucial role as well. Whereas these in vitro parameters could serve
as additional dimensions of potentially di�erential e�ects on the individual modi�cation types,
they were kept constant in the present study. In doing so, we focused fully on the identi�cation
of factors residing in the RNA template itself, such as the immediate sequence context.

Our investigations into the in�uence of the neighboring nucleotides -1, +1 and +2 unrav-
eled the otherwise unsystematic mismatch compositions by a clear in�uence of the +1 residue,
3'-adjacent to the m1A site. While total arrest and mismatch rate seemed una�ected, this
fundamental insight has signi�cant implications for all endeavors of transcriptome-wide m1A
de novo prediction that rely on mismatch composition. But the �ndings of this project have
bearings beyond: the negative e�ect of higher order RNA structure on primer extension e�-
ciency has long been known. This issue is frequently encountered in structural probing of rRNA
[95], where a strong noise from structure-driven RT-arrests makes signal interpretation towards
DMS-generated m1A residues di�cult. Our data, however, suggest that in certain cases RNA
structure may even facilitate read-through, exempli�ed by comparison of m1A2142 in yeast' 25S
rRNA (3.1.3, Fig. 3A) and m1A9 in the revolver oligonucleotides (3.1.6, Fig. 8A). The latter can
reasonably be assumed to be weakly structured [78]. While all revolver m1A sites showed ∼80%
arrest and ∼45% mismatch rate, the ribosomal sites caused strongly diverging arrest, albeit being
equally modi�ed to ∼70%. Considering the quite similar immediate sequence neighborhood of
both rRNA sites, the discrepancy is indicative of other factors beyond occupancy, such as higher
level structures. These in�uences are yet to be envisaged in ensuing projects.

3.1.11.2 Determinants of Resolution Capacity

As became apparent throughout the discussion of strategy and results of m1A signature char-
acterization, various determinants set limits to the resolution of the approach and its present
application. Even despite the structural in�uences discussed in the context of ribosomal m1A
sites (section 3.1.3, Fig. 3A), signature intensities are still merely semi-quantitative estimates
also of fractional m1A occupancies in weakly structured RNAs, which deteriorates the overall
signature resolution. However, individual m1A sites show robust correlation of sequencing pro�les
with corresponding LC-MS/MS data under di�erent modi�cation levels (see section 3.1.4, Fig. 5).

Although system inherent factors such as site-speci�c read-through e�ciency, varying mod-
i�cation levels and sequence dependence infer variability of m1A's RT signature, they are not
considered actual blur, but constitute the natural range of signals ideally recognized in pro-
�le inspection. In contrast, the choice of positive and negative training examples based on the
available database annotations, certainly introduces biased sequence contexts. That said, best
prediction quality by maximum availability of training instances (leave-one-out validation, sec-
tion 3.1.8) without any debiasing or strategic adaption to a target RNA pool may come at a cost
in impartiality, when deploying the signature model to another RNA landscape. Also reliability
of the database annotations themselves is decisive for the quality of training input.
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Figure 17: Pairwise Levenshtein edit distances of cytosolic tRNA sequences of S. cerevisiae.
Normalization was done by division of each distance value by the length of the longer of two compared
sequences.

In contrast to these principal limitations, also biases from sequence processing were of con-
cern. Herein, proper handling of ambiguous target sites for reads mapped to multiple similar
tRNA sequences plays a central role, since mismatch and arrest information in the reads should
represent modi�cation levels of tRNA species they really originate from. By using the k=1
(termed 'k1 regime') setting for Bowtie2, we decided to report one arbitrary alignment only,
whenever the mapper found multiple valid target sites for a read. While in its standard setting
Bowtie2 instead reports the 'best' alignment, the k1 regime allows to report 'secondary' (with
respect to alignment score) mapping sites. Not surprisingly, isoacceptors, i.e. tRNAs charged
with the same amino acid [117], show much higher sequence similarity than di�erent acceptors
do (Fig. 17), such that most concerns about mismapping must be directed to isoacceptors. Based
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on this result, we compared the cross-mapping tendencies (reads mapped to tRNAs of di�erent
isoacceptor groups) of three report settings and showed that their impact on m1A's signature
parameters is negligible (Appendix section 6.4, Fig. 28). As therein discussed (page 71), we
could keep the initially used k1 regime throughout the project for consistence reasons based on
its minor impact, but point out that standard settings ('best') should be preferred for future
mapping tasks. In contrast to the mapping strategy, we expect variation and impact of certain
experimental parameters more signi�cant, such as salt conditions, temperature and the type of
the RT enzyme. These parameters are known to a�ect polymerization characteristics e.g. in
PCR reactions [146], and will be addressed in near future.

3.1.11.3 Potential Applications and Scope

In the rapidly developing RNA modi�cation �eld, there is an urgent need for new approaches,
which can be applied to solve a variety of biological questions. These imply not only transcriptome-
wide detection of modi�ed nucleotides but also address quanti�cation of the modi�cation occu-
pancy in response to stress conditions. An example of the latter are elevated temperatures,
which were recently shown to ablate a thiol-modi�cation in yeast [147, 148]. Analogously, we
have compared m1A signatures in tRNAs from yeast under normal growing conditions versus
39◦C. Although quanti�cation accuracy is limited (compare section 3.1.4, Fig. 5), total ablation
of m1A could be ruled out. In contrast, transcriptome-wide studies found m1A levels in mRNA
dynamically regulated by di�erent stress stimuli, e.g. glucose starvation, and observed variation
between tissues [85, 71]. Other applications reside in studies on detection of antibiotic resistance.
In analogy to the m1A964 we con�rmed in S. pactum, where the methylation mediates resistance
to pactamycin [84], also modi�cations of similar RT signature, such as m6,6A could be envisaged,
provided a larger set of bona �de positive training instances and moderate parameter adaption.
This modi�cation could for instance be monitored at position 1519 of bacterial rRNA, where its
absence causes resistance to kasugamycin [149, 150].

Although transcriptome-wide application of our Random Forest machine learning model was
beyond the scope of this work, the crucial determinants for success of such an endeavor became
evident from the supervised validation scenarios. On the one hand, the amount of both, positive
and negative training instances is crucial for prediction accuracy. On the other hand, negative
training data should include examples of su�ciently pronounced RT signatures, especially if the
model is supposed to be deployed on another RNA landscape of distinct modi�cation texture.
Also the quality of real m1A training signatures is of major concern. Besides a biological bias in
sequence context, e.g. due to evolution of m1A methyltransferases [88, 87], also the way training
pools are compiled based on database annotations has a strong in�uence (technical bias). Herein,
two interests collide, aiming at maximum, preferably impartial coverage of possible sequence con-
texts, while calibrating the model to an m1A signature distribution as natural as possible.

Besides the discovery of new m1A sites, such as the homology based predictions in try-
panosomal tRNAs (Appendix section 6.5, Fig. 29), this project serves as a proof of principle for
modi�cation detection based on RT signatures without chemical labeling. Now that the method
is established, it can easily be con�gured for detection of other eligible modi�cations. The eli-
gibility assay introduced in section 3.1.10 revealed m2,2G as a highly promising candidate to be
analyzed. The Random Forest prediction performance for this double-methylation illustrated in
Fig. 18 is comparable to that for m1A, thanks to extraordinarily distinct arrest and mismatch
rates compared to other guanosine derivatives, and a representative amount of training instances.
Interestingly, a second methyl-group may a�ect RT behavior more than twice as much than a
single methyl-group does, exempli�ed by comparison of m2,2G's and m1G's signatures.
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Figure 18: Eligibility chart - Random Forest performance by RT signatures: guanosines.
All annotated (MODOMICS) modi�cation sites in yeast cyt. tRNA & rRNA and human mitoch. tRNA
sequences were grouped by modi�cation type. Results were determined in 10 repetitions of a 5-fold strat-
i�ed cross-validation using equal amounts of a speci�c modi�cation (minimum required frequency = 5)
vs. a random composition of 'other'-labeled modi�cations. (A) Colors of pie chart code for mismatch
composition displayed in ternary plot. Pie radii re�ect Area Under Curves (AUC) from Receiver Operat-
ing Characteristic (ROC) curves of a Random Forest model tested for discrimination performance of the
modi�cation types. Circular fractions of pies represent the relative frequencies (abs. frequencies displayed
in round brackets) of modi�cation types. (B) Total speci�c False Discovery Rates (FDR) of modi�cation
types (vertical axis and color bar) and relative contributions by other modi�cation types (horizontal axis,
bar heights are normalized by relative medication frequencies). (C) Random Forest performance (AUC)
represented as cone height vs. arrest rates, mismatch rates and mismatch compositions (colors). Radii
were squared (=normalized) for presentation reasons. Black whiskers indicate standard deviations.

Once the repertoire of natively detectable RT signatures is exhausted, the approach can be
con�gured to �nd modi�cations by comparison of usual pro�les to those obtained after RT-
a�ecting modi�cation-speci�c chemical treatments. Similarly, di�erential pro�les for variegated
types of RT enzymes as an additional dimension can reveal characteristic responses to non-
canonical residues. Visual inspection and automated screening of both, native and di�erentially
treated pro�les are the focus of the next chapter of this work, which presents a novel analysis
tool for NGS data, CoverageAnalyzer.
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3.2 CoverageAnalyzer

Besides a holistic experimental concept, characterization of m1A's RT
signature substantially relied on specialized software engineered dur-
ing this project according to the outlined objectives. The need for
suitable NGS data processing tools, candidate screening along with
site speci�c extraction and tailored visualization of signature fea-
tures resulted in the all-in-one platform CoverageAnalyzer. This cen-
terpiece of our pipeline generates a direct visual and numerical re-
sponse to in vivo, in vitro and in silico conditions shaping RT sig-
natures.

Figure 19: CoverageAnalyzer - Outline.
a) Input SAM �les are processed to a posi-
tional pro�le. b) Sorting and �ltering of data
by various statistical criteria. From the de-
picted result table, users select sequences for
visualization. c) Visualization tab. Indepen-
dent plots and di�erential comparison for mis-
match and/or arrest parameters with marked
above-threshold sites (yellow triangle). Display
of base sequences is enabled automatically de-
pending on the horizontal plot dimension. d)
Candidate casting tab. i) Formula editor: Spec-
i�cation of screening thresholds. Conditions
are combined with Boolean operators AND, OR
and XOR and can be parenthesized. ii) Control
panel for serial plotting of a resulting candidate
batch. Submitted to Bioinformatics.

Outline. A typical session, conceived to
identify, highlight and collect sequence po-
sitions that show native or conditional RT
signatures is depicted in Fig. 19. Users
specify an arbitrary set of NGS mapping
pro�les (a), which are converted to Cov-

erageAnalyzer 's internal format. Therein
generated statistics on coverage, mismatch
sites, RT arrests and other properties al-
low subsequent selection (b) of interest-
ing sequences for closer inspection. De-
tailed plots of the selected pro�les (c), al-
low indication of characteristic sequence po-
sitions according to variable feature thresh-
olds. Depending on the sort of data, visu-
alizations of signature features can be used
to reveal modi�cation sites either by in-
dependent inspection (ci) or by compar-
ative plotting (ci−iii) of data sets from
di�erentially treated samples. Both op-
tions allow the export of numerical fea-
ture information, too. For scenarios, in
which features shall be spotted in large
sequence pools, a screening environment
(di) allows candidate casting by highly de-
tailed queries. Via batch plotting of
search results (dii), the analyst can in-
spect hundreds of candidates in a highly
time-saving manner, skipping forward im-
ages outside of CoverageAnalyzer, or per-
form arbitrary ensuing statistical analysis
and plotting of exported signature data
points.

Format. CoverageAnalyzer was implemented
as a JAVA/Python hybrid, and released in edi-
tions for 64bit Windows, Linux and MacOSX
systems. The software runs on modern desk-
top computers and notebooks (i5+ processor
and 4GB+ memory recommended). The pro-
gram takes advantage of JAVA's platform in-
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dependence, object orientation, speed and intuitive control elements of its Swing GUI (graphical
user interface), while using the highly �exible matplotlib [151] Python library for customized
visual data representations. Setup archives including test data sets are hosted on SourceForge
under https://sourceforge.net/projects/coverageanalyzer along with descriptions, a de-
tailed manual and an audiovisual screencast that guides novice users through installation and
typical analysis steps.

While technical aspects are detailed in Materials and Methods section 5.10, the following
sections present the functional range of CoverageAnalyzer in the order shown in the scheme in
Fig. 19.

3.2.1 Input and Selection

Upon launching CoverageAnalyzer, users are prompted to specify NGS pro�les in SAM [152]
format along with the FASTA reference they have used for mapping. In a live scheme on the
Input tab (Fig. 20), the analyst can follow the current progress of data conversion, which gen-
erates sorted and indexed BAM and Pileup �les via included SAMtools [152] before storing
positional information in the Pro�le format (see section 5.5). Meanwhile, detailed statistics are
created, facilitating preselection of mapping pro�les in the next tab of the interface. The format
conversion steps take place within the greater context of our work�ow presented in section 3.3.
Materials and Methods section 5.10 describes special provisions for acceleration, and exempli�es
the formulas used for calculation of statistical indices. Ensuing sessions on the same data, do
not require repeated data processing and automatically restore statistics from a backup �le in
the analysis folder. However, the user may manipulate intermediate formats such as Pileup (e.g.
for mapping based overhang trimming) and start over processing from the corresponding stage
upon prior deletion of the consecutive �les (e.g. Pro�le).

Figure 20: CoverageAnalyzer - Input tab. NGS data sets in SAM format are speci�ed via �le
browser or text �eld, processed to internal formats and analyzed statistically in preparation for targeted
inspections. Progress is shown in a live scheme highlighting the current steps in red, before the results
are presented in the Selection tab (Fig. 21).

https://sourceforge.net/projects/coverageanalyzer
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Figure 21: CoverageAnalyzer - Selection tab. NGS pro�les of reference segments can be �ltered
by minimum and maximum cuto�s and sorted by various mapping characteristics including RT signature
features. Subsequently, selected pro�les can be sent to the Visualization tab (Fig. 22).

The Selection tab (Fig. 21) allows �exible �ltering and sorting of reference segments by various
criteria. Besides requirement or exclusion of name parts or subsequences of reference segments,
also reference length and importantly indicators of mapping characteristics can be used to dras-
tically reduce even large transcriptomal sequence pools to a manageable subset that is worth
closer inspection. Useful hints herein are the number of 'signi�cant' arrest sites and mismatch
sites, especially those with two or more mismatch components, hence classi�ed as heterogeneous.
Calculation formulas of the latter are found in Materials and Methods 5.10. Once the user has
identi�ed his pro�le of interest, also taking the number of mapped reads and peak coverage into
account, the table entry can be selected and sent to closer inspection in the Visualization tab
(Fig. 22).

3.2.2 Visualization

In the plotting environment of CoverageAnalyzer, selected mapping pro�les can be evaluated by
detailed visual inspection of RT signature features. By exact speci�cation of positional intervals,
or usage of a range slider and zoom buttons, the user can navigate to the sequence region of
interest. Display of sequence information and activation of a low-detail mode are automatically
toggled depending on zoom level and plot dimensions. The latter can be controlled by dragging
the window frame or the right-side split pane. In combination with various options for details
such as grid lines, legends and sequence letters, these features allow generation of print-ready,
high-quality custom plots, which are automatically saved on the hard drive and named by time
codes. Two visualization modes can be chosen, which are available under both, independent and
di�erential analysis as described in the next paragraphs.

3.2.2.1 Independent Inspection

In a standard scenario, a user may load several plots representing the same sample, but di�erent
reference sequences. Depending on the types of modi�cations and potential treatments he inves-
tigates, he would then inspect the pro�les either in 'Mismatch Patterns (MP)' mode, 'Context
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Sensitive Arrest (CSA)' mode or both consecutively, typically specifying a minimum threshold
for mismatch rate or arrest rate respectively, in order to control the number of highlighted posi-
tions. MP mode, which was used for all pro�les shown throughout this thesis, reveals full details
of positional mismatch compositions for all above-threshold sites, and optionally indicates the
course of arrest rate by a red line. The second mode, which is exempli�ed in Fig. 22, high-
lights context sensitive arrest rates (CSA) introduced in section 3.1.3 as a complementation of
the standard arrest rate curve. Both modes allow focus restrictions on reference base types of
preferential interest. Explicit restriction to the central sequence position is applicable, too.

Figure 22: CoverageAnalyzer - Visualization tab. Controls for plot management (selection,
refresh and delete buttons, images per page spinner, zooming and progress bar) are placed on the upper
left, while plot scope can also be speci�ed via start and end in the analysis panel in the upper center as
well as by the light-blue range slider right above the plots. Further applicable analysis parameters are the
plotting modes ('Mismatch Patterns (MP)' vs. 'Context Sensitive Arrest (CSA)' with selectable visual
range (VR)) alongside respective minimum thresholds, a mark-top-x-results-only option and a di�erential
plotting function. The upper right panel toggles show/hide options for plot details and automatic PDF
generation. It also applies numerical speci�cations from other panels. Visual and numerical export can
be managed on the subjacent panel. The example shows mapping pro�les of yeast's tRNAPro_TGG from
a wild type (top) and a chemically treated (middle) sample, which are di�erentially plotted (bottom)
showing the top ten signi�cant positions according to p-value from Fisher's Exact Test. For the di�erential
visualization, the coverages are plotted as average, while the arrest rate (or in MP mode the mismatch
rate respectively) is shown as absolute di�erence by the red line and as relative di�erence (middle vs.
upper plot) by a color gradient. Independent and di�erential analysis can also be done in automatic
high-throughput mode (Fig. 23).
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3.2.2.2 Di�erential Analysis

In contrast to individual inspection, di�erential plots highlight positions according to maximum
thresholds for p-values calculated via Fisher's Exact Test, ranking di�erential positions by sig-
ni�cance. A feature also available under individual inspection, becomes particularly useful in
di�erential analysis: where minimum (or maximum in case of p-values) thresholds can be tedious
to regulate, in order to obtain the desired discriminatory power for highlighting of interesting
events, the mark-top-x-results-only option is a helpful alternative. The result (bottom of Fig. 22)
is displayed based on an averaged coverage pro�le, derived from the single plots of the same RNA
sequence present in two samples. CoverageAnalyzer indicates both, absolute and relative dif-
ferences at one glance. Typical applications of di�erential analysis are wildtype vs. knockout
(e.g. of a methyltransferase) scenarios, or comparisons of samples exposed to varied concentra-
tions of chemical reagents that modify speci�c nucleotides (or modi�cations) for induction or
alteration of interference with RT enzymes as exempli�ed in Fig. 22. Variation of in vivo, in
vitro and in silico conditions entails manifold additional occasions that make di�erential analysis
necessary. Whether assessing e�ects of stress, characteristics of polymerase species, or optimal-
ity of mapping parameters, the user of CoverageAnalyzer is provided with direct feedback, not
only visually, but also by a thorough composition of all substantial RT signature parameters in
numerical format.

3.2.2.3 Export

Positional details from both, independent and di�erential plots can be exported graphically as
single (PNG, PDF) or line-by-line (PDF) images. Deviations of reference positions from canon-
ical numbering due to variable loops or because of purposeful manipulation of the mapping
template can be be accounted for by specifying a correctional shift. Numerical export of position
speci�c signature parameters allows collection and arbitrary plotting and statistical analysis by
external software (SPSS, QtiPlot, Origin, Excel...) or preparation as input for machine learning
models.

3.2.3 High-Throughput Candidate Screening

As experience has shown, collection of modi�cation site speci�c data points by manual inspection
may quickly reach the limit of feasibility, when moving from single sequences to comprehensive
sequence pools such as tRNA sets, whole rRNAs or even transcriptomes or genomes. This prob-
lem was solved by CoverageAnalyzer 's environment for high-throughput screening (Fig. 23) of
mapping pro�les for candidate positions according to user-de�ned rules for recognition of complex
RT signatures. In contrast to the basic means of common variant callers and SNP identi�cation
tools, CoverageAnalyzer allows the de�nition of a highly detailed query, based on combinations
of up to more than a dozen di�erent criteria in arbitrary complexity. Independent screening
is carried out one-by-one or for the entirety of available samples (data sets). Correspondingly,
di�erential screening is run for a single sample pair or for all possible pairs.

3.2.3.1 Formula Editor

Either for unexperienced users or in simpler application scenarios, the 'required', 'su�cient' or
'mutual exclusive' �lter modes can be a recommendable choice. These, generate linear connec-
tions of checkbox-activated criteria for signi�cance (coverage, 3'-adjacent coverage) and signature
(arrest rate, mismatch, mismatch per arrest, CSA and diversity score recognizing heterogeneous
mismatch sites as detailed in Appendix 6.6). In the standard case, connectors are all of the same
type of Boolean operators, i.e. all AND, all OR, or all XOR respectively. More individualized
formulas can be created in custom mode, in which conditions are applicable via Boolean buttons
in arbitrary order. Beyond the rule work of conventional binding priority (AND > XOR > OR),
CoverageAnalyzer assists in correct placement of user-desired parenthesis by its built-in auto-
matic recognition and quick-selection algorithm for Boolean expressions. Di�erential screening
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restricts the set of available features to mismatch and arrest, but di�erentiates between absolute
and relative di�erences, which can be ranked by p-values in the sense of 3.2.2.1. Finally, �lter
formulas can be stored as presets (e.g. for certain modi�cation species) and restored in later
sessions. Besides the formula, search parameters for exclusion of positions and base types are
available. Upon a casting run, independent or di�erential candidates can be statistically analyzed
and visualized by external software as mentioned for manually exported signatures in 3.2.2.3.

Figure 23: CoverageAnalyzer - Candidate Casting tab. According to the speci�ed search type,
single or multiple data sets can be screened independently or di�erentially based on customizable con-
ditions, which can be combined using Boolean operators in four �lter modes. Custom logical formulas
can be generated using an intuitive editor that allows composition of �lter criteria in arbitrary order and
hierarchy featuring parenthesis assistance by automatic expression recognition. Formulas can be saved
as reusable presets for future sessions. Once completed a �lter rule, casting can be launched, saving
results in Candidates format on the hard drive alongside the formula they were found with. By means of
the batch plotting function, the user generates snapshot image �les showing each candidate in pro�le
context for convenient and e�cient visual assessment.

3.2.3.2 Batch Plotting

An indispensable feature for e�cient case-by-case assessment is the batch plotting functionality,
which enables the user to generate snapshot images on the hard drive for each of the candidate
sites. Such visual feedback can reveal important details, such as sequence neighborhood or sig-
nature features that have not been taken into account by the screening formula. Ideally, this
highly e�cient and convenient way of qualitative review can drastically narrow down the �eld of
candidates to be further pursued, and thus be a valuable preparation step for a directed design
of veri�cation experiments.

3.2.4 Further Comments

Accumulation of alpha errors is a common problem in multiple testing, such as candidate screen-
ing on large sequence pools. While it is always up to the user how p-values are used to gauge
the signi�cance of �ndings, we recommend to use techniques like the Bonferroni correction [153]
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in order to account for the number of tested positions. In addition, the False Discovery Rate
(FDR) can be controlled in the manner of Benjamini and Hochberg [110]. Both strategies are
planned to be included in future releases of CoverageAnalyzer. Further improvements include a
sequence search already indicated in Fig. 22 as well as a target range of positions to be screened
in candidate casting.

3.3 Bioinformatic Work�ow

Figure 24: Pipeline for DeepSeq based RNA modi�cation analysis. Input: Raw sequence
libraries in FASTQ format. Outcome: i) modi�cation speci�c RT signatures, ii) trained machine learning
models iii) homologous identi�cations, iv) candidates from visual inspection, threshold based screening
or model based prediction, v) visual and numerical feedback for experimental conditions. MBOT =
Mapping Based Overhang Trimming (see Methods section 5.3 and 5.5). Processing steps of (binary)
Sequence Alignment/Map data formats (SAM, BAM...) are described in section 5.5.
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Summary. One goal of this work was the establishment of a comprehensive bioinformatic
concept for analysis of NGS pro�les with respect to characteristic RT signatures that, provided
su�cient native or induced discriminatory potential, can ideally be used for identi�cation of RNA
modi�cations. As becomes clear from the introduced past e�orts in detection and description of
RT e�ects, standardized technical approaches may pave the way to a certain degree, but actual
breakthroughs in the �eld require intense focus on single members of the family of modi�ed RNA
residues. Therefore, instead of all-encompassing wideband application to multiple modi�cation
types in parallel, demonstration of the pipeline's suitability was enacted in form of a holistic
characterization of m1A's RT signature, a highly topical target covering and demanding the
entirety of analytical stages in our work�ow. This is illustrated by the generalized scheme in
Fig. 24, presenting the methodological result of this work.
Besides its role as user interface, CoverageAnalyzer covers a substantial portion of data process-
ing steps, and serves as central junction to all orbiting objectives of the analysis pipeline. While
in vivo conditions, such as stress (section 3.1.11.3) or RNA species were intentionally variegated
to investigate in�uences on m1A levels, in vitro and in silico parameters were kept constant at
settings empirically chosen to obtain a pronounced and sharp �ngerprint of the modi�cation.
Nevertheless, the conception of the work�ow allows a direct numerical and visual re�ection of
e�ects of changes in the experimental setup. Such can include employment of alternative types of
RT enzymes or modi�cations of the library preparation protocol e.g. in terms of adapter ligations
and priming strategy, a�ecting raw read sequences and thus demanding appropriate trimming
steps. More typical examples of di�erential feedback reside in the application of chemical treat-
ments or speci�c antibodies in order to highlight certain kinds of modi�ed nucleotides in sequence
context, even though this study characterized m1A based on its native signature, only.
Whether acquired through CoverageAnalyzer 's di�erential analysis functionality, or by indepen-
dent inspection of plots and statistics, extracted information on native or induced RT signatures
can be utilized for evidence based identi�cation of unannotated modi�cation sites. Therein, se-
quence homology, knockout comparisons, chemical treatments and LC-MS/MS data may serve
with helpful evidence. In turn, existing database annotations provide the basis for machine
learning methods that use the measured properties of modi�cation instances as training data.
Apart from application of the resulting model for detection of novel modi�cation sites, the super-
vised training procedure itself can already reveal useful information, including feature importance
and discriminatory power of signatures, assessed under di�erent conditions in cross-validation
scenarios. In this way, one can re�ne feature engineering on the one hand. On the other hand,
under consideration of �ndings from statistical analysis of signatures, one can derive feedback
and strategies for experimental design and generation of sequence libraries. An example is the
identi�ed sequence dependence in composition of m1A-induced mismatches, which was addressed
by the revolver concept.
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4 Conclusion & Outlook

This study was conceived to develop a computational framework for characterization and iden-
ti�cation of RNA modi�cations based on complex RT signatures in Deep-Seq pro�les, choosing
m1A as demonstration object in a proof-of-principle. Documented biological relevance, a rea-
sonable number of annotated examinable instances, and existing knowledge of m1A's native RT
arrest and misincorporation tendencies were the major motives. From that starting point, the
endeavor aimed to uncover a high-resolution RT �ngerprint of m1A by combination of a tailored
biomolecular approach with integral bioinformatic analysis of a detailed digital readout.

4.1 Achievements, Scope and Impact

According to the de�ned project emphases, a modular analysis work�ow was established, includ-
ing CoverageAnalyzer as a stand-alone GUI software for processing, inspection and screening
of NGS pro�les. Application of these computational solutions directly promoted the successful
characterization of m1A's RT signature and its utilization for identi�cation of unreported sites.

4.1.1 m1A's RT Signature

Proof of principle. By a holistic experimental and analytical concept, we demonstrated the
suitability and signi�cant advantage of a library preparation method that captures full-length
and abortive cDNA products. Although m1A has proven to be a particularly favorable target
compared to other modi�cations, the approach allowed its recognition still solely by a native
RT signature, i.e. without any speci�c chemical treatment. A key factor therein was to identify
important characteristics and teach them to a machine learning model. The results show a clear
bene�t of a combined access to arrest and mismatch information, which should be kept in mind
for any modi�cation mapping scenario, in which both aspects can be made available, either di-
rectly or by chemical treatment.

Sequence dependent, high-resolution signature. Demonstration of technical suitability of
capture and utilization of such a two-fold readout was only part of the study's objective. The
major strength of this work lies in the substantial improvement of m1A's signature resolution.
On the one hand, our main set of features, arrest rate, mismatch rate and mismatch compo-
nents, already allowed a precise statistical description of the modi�cation's �ngerprint. On the
other hand, we found that arrest and mismatch can vary remarkably even between sites of equal
modi�cation levels, which is plausible for strongly structured rRNAs with contingent local in�u-
ences on RT error patterns. The possibility that structure can even increase read-through, has
important implications for RNA probing studies, which directly correlate fractional RT block
with fractional m1A occupancy. By introducing a Context Sensitive Arrest rate (CSA), we pro-
vided a helpful parameter to gauge the credibility of candidate sites with respect to observed
arrest rates in their immediate environment. The fact that our Random Forest machine learning
model preferentially used CSA, re�ects the importance of this resolution improvement. A plus of
antibody-based methods is the option to estimate m1A stoichiometry by microarrays, subtract-
ing a gene's proportional expression value by non-precipitated transcripts from the one by all
transcripts (100%), leaving the relative number of m1A-bearing RNAs. Nevertheless, from the
comparison of LC-MS/MS data and RT patterns one can conclude that our signatures provide
lower boundaries for modi�cation levels and therefore may be used at least as semi-quantitative
readout. Moreover, good linear single-site correlation of signature intensity with m1A occupancy
was shown, not only speaking for integrity of experimental and computational workup, but also
preparing the ground for future applications like signature-based stress response studies.
Arguably the most interesting �nding of this work, a dependence of the mismatch composition on
the base con�guration at the +1 position 3'-adjacent to m1A, has drastically enhanced the signa-
ture resolution. Based on the observed distinct +1-dependent clustering of mismatch patterns,
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assessment of modi�cation candidates with respect to sequential neighborhood could be used to
notably increase prediction performance. Adoption of the revolver idea would be a promising
step in analysis also of other modi�cation types with potential dependence of RT signatures on
sequence context, especially under low availability of natural instances.
While large-scale de novo prediction was beyond the scope of this project, recently published
transcriptome-wide m1A sites called via peak assessment after antibody pull-down, enzymatic
demethylation and Dimroth conversion provide an interesting target pool for future investiga-
tions. For the moment, a review of the predicted m1A instances under consultation of the +1 base
con�guration, may be undertaken to estimate con�dence of sites that provide su�cient coverage.
By means of undersampling, one can simulate the statistical deviation of measured mismatch
compositions from a virtual underlying m1A with given +1 neighbor in dependence on the num-
ber of supporting reads. This allows calculation of p-values for hypothesis-based judgment on
acceptance or rejection of new candidates according to plausibility of their m1A-similarity in
terms of mismatch composition given their read counts. Caution should be exercised, since the
RT type used in the large-scale prediction runs di�ers from ours, and so might the pattern
of sequence dependence. Provided high-throughput mappings achieve more sequencing depth
in future attempts, assessment of mismatch patterns with respect to +1 nucleotides might be
adopted as additional criterion in site calling algorithms, calibrated according to preferences of
underlying RT enzymes. One should bear in mind, that the statistical distribution of base con-
�guration in m1A's sequence context in mRNA is most likely di�erent from the one observed in
our tRNA/rRNA pool, not least with regard to some enriched m1A-associated sequence motifs
found by Li et al. 2016 [71].

Limitations. Constraints of resolution, generalizability and applicability of the characterization
and identi�cation of m1A's RT signature can be found on both, the technical and the biological
level. Sources of variance and bias in the �nal results reside in �exible modi�cation occupancy as
well as in absolute and relative molecular representation of RNA species. Moreover, RT reaction
conditions, non-uniform PCR ampli�cation, sequencing errors, untrimmed library preparation
artifacts and mapping ambiguity can in�uence the outcome. While most of these factors in-
troduce noise to the sequencing pro�les, the discussed �ndings regarding mapping strategies
demonstrate that not all variables necessarily a�ect actual RT signatures at modi�cation sites.
Statistical variation of RT patterns between biological and technical replicates was minor. Mod-
eling of a collective signature furthermore neutralizes at least unsystematic �uctuation of single
instances, wherefore concerns of impaired classi�cation power by potential qualitative issues can
be directed toward unseen input data rather than against inappropriate learning content.
A limitation intrinsic to RNA-Seq is caused by the enormous di�erences in gene expression lev-
els. It takes ∼10 billion 50 bp reads to quantify 60% of the known human transcripts with no
more than 20% error [154], which is not only a matter of cost but also of computational feasibil-
ity. Thus, capturing complex signatures with a coverage allowing to read mismatch components
in single digit percentage resolution is restricted to the subset of high-abundant RNAs, unless
workarounds like CaptureSeq are used to bundle sequencing power in the RNA deep-�eld [155].
Even better for analysis of modi�cation signatures is immunoprecipitation of RNAs bearing the
target, concentrating coverage to narrow regions of relevant RNA fragments only, and not wast-
ing depth in case of fractional occupancy, since all reads represent modi�ed molecules. In the
light of dropping sequencing costs and increasing computational power, our RNA-Seq based ap-
proach has a good long-term perspective, though. Another advantage is its comparability to the
technical workup of a wide range of existing data sets, allowing direct application of our m1A
signature model or adoption of the analytical concept.
The results from simulations of model behavior in supervised scenarios of varied di�culty at-
test remarkable classi�cation performance. Nevertheless, premature conclusions drawn in view
of deployment of the signature model for m1A prediction on transcriptome-wide scale easily ig-
nore some pitfalls. Supposing that input data for de novo prediction is either generated under
su�cient methodological conformity with our training background or ideally allows reconstruc-
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tion of the signature model based on annotated instances resequenced together with the target
transcriptome, another challenge comes up: Whereas a deployed model's average a priori dis-
tinction power for a certain positive or negative query instance is constant, e.g. at the obtained
96% sensitivity and 97% speci�city, the reliability of made predictions highly depends on the
relative frequencies of both classes in an unknown query sequence pool. The claimed size of
a non-redundant transcriptome varies signi�cantly, e.g. depending on the tissue type: Between
1.5 and 5.3% of ∼3.2 billion genomic base pairs are transcribed in human [156]. Since such
a sequence pool is sparsely decorated with m1A, as deducible from the recent publications of
m1A predictions in mRNA, rejections typically become highly reliable in lack of chance to even
encounter positive instances, yielding a good Negative Predictive Value (NPV). Conversely and
much more detrimentally, a rising False Discovery Rate (FDR) displaces the Positive Predictive
Value (PPV) almost completely due to α-error accumulation by multiple hypothesis testing, such
that few m1A candidates are real positives.

Immediate and implied value of novel sites. The question whether an integrally char-
acterized picture of m1A's RT signature allows for sensitive and speci�c identi�cation of the
modi�cation was positively answered by the outcome of diverse supervised machine learning
scenarios. Instead of immediately launching out automated transcriptome-wide prediction, only
to yield large candidate sets to be intensely reviewed and experimentally veri�ed, we preferred
to demonstrate the practical value of our signature description by comparison of patterns in
homologous RNAs. The results reinforce the view of m1A as highly conserved modi�cation in
di�erent RNA types across species and even kingdoms. On the one hand, the presented novel
sites in murine rRNA, human mtRNA and trypanosomal tRNA exemplify the direct application
potential of �ndings of this work for annotation of unreported modi�cation sites within an ample
published repertoire of sequenced model organisms or more exotic species. On the other hand,
novel sites, ideally those veri�ed by isolation and LC-MS/MS analysis, can be integrated into
the m1A signature model, in order to further improve recognition power in de novo prediction
on non-homologous RNAs. Homology-based co-occurrence of m1A often goes along with strong
sequence similarity like in the example of human, murine and yeast rRNA. However, here identi-
�ed or previously known m1A instances in tRNAs of limited sequence identity demonstrate that
actual underlying triggers for conserved methylation are rather structural and thus functional
commonalities, of note for the selection of new targets for homology-based identi�cation.

4.1.2 Bioinformatic Solutions

Section 3.3 summarized the rational behind the analytical concept developed for characterization
of m1A's RT signature and identi�cation of modi�cations in sequencing pro�les. The established
work�ow demonstrates the important interplay between standardized data processing and au-
tomated screening on the one hand, and detailed visual inspection and in-depth customized
analysis on the other.

Analysis interface. The demand for a tailored tool allowing to retrieve compact numerical
and graphical representations of RT signatures from NGS data in order to describe or identify
modi�cations in sequence pools that exceed capacity of unaided review, was supplied by the
engineered all-in-one platform CoverageAnalyzer. Compatible with SAM, a universal format of
mapping results, the software comprises the processing steps up to Pro�le, a human-readable
tabular representation of signature-relevant features for each position of reference sequences.
Versatile �ltering and sorting options facilitate the selection of RNAs of interest for closer in-
spection. The latter takes place in a multifunctional environment for navigation, plotting and
export of signature features, which supports independent and di�erential analysis of NGS pro-
�les. Manual collection of data points and images is complemented by a powerful automated
screening facility, parsing detailed conditional queries of arbitrary complexity phrased by the user



54 4 CONCLUSION & OUTLOOK

to either gather information from multiple known sites of interest or perform de novo casting
of modi�cation candidates. One can project that CAn's intuitive graphical interface will add to
usage intensity, reaching a clientele without background in bioinformatics. As intended, devel-
opment of CoverageAnalyzer and characterization of m1A in parallel have mutually promoted
their progress. While the software supplied all numerical data and graphical representations of
sequencing pro�les presented in this work, its functional repertoire was guided directly by the
needs of the study. This synergy is one bottom line of the project. A second is that the seamless
layout of CAn indeed builds a bridge between case-by-case scrutiny and broad-scale survey, as
demonstrated for m1A and continued with the look-out for further eligible targets. Thus, the
program closes a technical and conceptual gap in curation and extension of the knowledge base
around RNA modi�cations.

Machine learning. From the positive outcome of various tested scenarios of m1A instances
composed with data points from modi�ed and canonical nucleotides, one can conclude that Ran-
dom Forests are suitable models for the identi�cation of complex RT signatures. Yet, we learn
that this complexity, namely the diverse mismatch composition, is not necessarily utilized in the
same way or priority order by computational models as it would be used under human assess-
ment. Instead, it essentially depends on texture and quality of negative instances and is driven
by information content. Therefore, also regarding further discussed strengths of RF models,
potential improvements are hardly to be found in the way how (by which model) features are
evaluated, but reside in what additional features provide unemployed discriminatory informa-
tion. Such could be modi�cation speci�c di�erential behavior of distinct types of RT enzymes.
Then, to cope with the course of dimensionality, the demand for training material increases. To
calibrate models towards di�cult query data, m1A-similar negative instances are invaluable and
make the di�erence in training quality and thus in robust classi�cation performance. In turn,
for recognition of low-diversity signatures like the one of m3C (page 76), consisting of homoge-
nous (T) mismatches combined with a sizeable arrest rate, the number of training instances is
probably less critical. In fact, one might want to replace an RF model by simple threshold based
screening in this case, in favor of transparency and control.

Methodological innovations. In the course of this study a variety of algorithmic and statis-
tical approaches was developed that provided valuable insights into m1A's RT signature on the
one hand, but also represent methodological building blocks reusable in future projects. Among
these, innovative value can be attributed to de�nition and technical acquisition of parameters
describing RT arrest. Previously published measures to assess RT stops at potentially modi-
�ed sites are mostly conceived for di�erential approaches. Some compare positional counts of
mapped 5' read ends by a fold-change between NGS pro�les from native and treated samples
under normalization with respective total read counts on a reference sequence [95]. Similarly,
others compute the positional gain of such 5' counts upon treatment and normalize it with the
average positional sum of stops from native and treated samples in a surrounding sliding window
[45]. The challenge in direct interpretation of values of the latter kind lies in the semide�nite
scale and in the arbitrariness of window size. Instead, HRF-Seq for RNA probing uses the more
intuitive 'termination-coverage ratio', an equivalent to what we de�ned as RT arrest rate ∈ [0, 1],
yet on a single-position basis, but again integrated into a formula for di�erential comparison
[157]. To our knowledge, we were the �rst to describe technical retrieval of a non-di�erential
positional arrest rate from the popular and universally used Pileup format. Besides using it for
characterization of native RT signatures, we implemented the steps in a distributable tool, Cov-
erageAnalyzer. The �nding that RT signatures of various modi�cations exhibit certain preference
areas for the ratio of mismatch rate m and arrest rate a, encourages also future utilization of
another novel parameter developed in this work, m/a. Finally, CSA takes up the sliding window
principle from di�erential studies, here accounting for potential regional tendencies of a, e.g. due
to RNA structure, but was designed for non-di�erential analysis of RT arrest.
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Innovations regarding statistical analysis include a novel distance measure for mismatch com-
positions and a permutation-based matching assessment of 4:4 assignments between data points
and clusters, applied for comparison of revolver mismatch patterns and natural data points.
Conventional indicators of clustering quality were furthermore complemented by a special appli-
cation of inferential statistics, namely the prediction of 3'-neighboring bases from the mismatch
composition of m1A data points. Practical value of this approach resides in hypothesis testing
of potential sequence dependence of RT signatures of other modi�cation types in the future.
Another novel method, presented in the context of mapping strategy (Appendix, page 71), is a
normalization technique for Levenshtein distances between sequences, for the purpose of com-
parability of distance values obtained for sequence pairs of di�erent lengths. Finally, a mapping
based overhang trimming algorithm, MBOT, represents a completely new approach to sequence
trimming, namely removal of auxiliary sequence elements stemming from library preparation,
here ligation assistance overhangs, by comparison of mapped reads and references.

4.2 Prospects

Having characterized m1A's RT signature holistically, established an analytical concept and
developed specialized software for identi�cation of RNA modi�cations based on NGS pro�les,
a broad application spectrum awaits future activities. While some �ndings of this work also
raised several interesting ensuing questions, certain potential was recognized for optimization
and expansion of methods and tools themselves.

4.2.1 Re�nement and Scaling

Polishing and future measurement of signatures. For mere �ne-correction of present
signatures, or in view of engagement in transcriptomal detection, the experimental and compu-
tational pipeline is under steady review. Currently, the library preparation protocol is optimized,
e.g. by introducing a circularization step that deprecates overhang-based ligation and certain pu-
ri�cation requirements. Goals of the new strategy are improved quality and increased yield of
mappable target sequences, while trimming is simpli�ed compared to the current version. Other
setscrews to be further optimized but also scrutinized regarding potential modi�cation-speci�c
impact on signatures are experimental parameters like ion strengths, dNTP concentrations, tem-
perature and the RT type itself. On the computational side, future processing of raw reads will
involve removal of PCR duplicates for bias reduction. Mapping policies are planned to be revised
regarding the discussed advantage of reporting 'single-best' alignments. A challenge would then
be a potential switch to the much more comprehensive genomic references e.g. for remeasurement
of m1A signatures in order to extend the model by tRNA instances from sequences missing in the
current set of modi�cation-annotated references. Optimal handling of ambiguous mappings is a
long-term task, and RT signatures of tRNA instances of modi�cations can't ever be free of error.
A promising alternative to tRNA training data could be the acquisition of recently published
m1A sites in mRNA, provided these are reproducible with su�cient coverage.

Exploration of sequence context. For future investigations on sequence dependence of RT
signatures, it is advisable to cover the sequence space of modi�cation instances as complete and
uniform as possible, allowing for expedient statistics. The presented sequence contexts of m1A
sites analyzed in this work re�ect the non-random distribution of neighboring bases of mod-
i�cations, a phenomenon especially intrinsic to nucleotides modi�ed in dependence on certain
sequence motifs. In particular for the latter scenario, design of synthetic oligoribonucleotides will
be a promising alternative, if statistics and machine learning su�er from short natural supply of
certain base combinations. Examination of the '+1 information' and appropriate implementa-
tion into RF models are promising prospects in terms of m1A as well as of other modi�cation
species. A remaining challenge is the investigation of physicochemical circumstances that cause
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+1 dependence as observed for m1A's RT signature, or even potential cooperative in�uences of
neighboring nucleotides. Valuable insights therefor could be derived from crystal structures.

Further development of CoverageAnalyzer. Whereas the formula based screening facility
of CAn readily processes long genomic references e�ciently, detailed visual inspection was so
far conceived rather for the size range of transcripts. In the current version, low-detail mode is
activated in favor of navigation performance, if the displayed sequence exceeds a length of 1000
kb. Future porting of the plotting component from Python to JAVA will signi�cantly improve
responsiveness of zooming and resizing of plots, allowing for dynamic user experience in anal-
ysis even of chromosomal mapping pro�les. For the latter, future activation of the at present
disabled seek-and-visit sequence search function, will be instrumental. As an alternative to �le
based export of statistics, real-time display of positional signature information upon mouse hover
is planned to be integrated, too. Another valuable functional expansion would be an interface
to online resources from NCBI and Gene Ontology, allowing on-demand retrieval of functional
details for transcripts that bear modi�cation candidates.

4.2.2 Applications and Transfer

De novo prediction. Obvious potential for application of the signature model and the an-
alytical work�ow resides in large-scale prediction of modi�cation sites on transcriptomal level,
following a two-fold goal: Reproducibility of published sites can shed light on reliability of such
predictions. On the other hand, extension of the map of bona �de modi�cation sites by high-
con�dence hits may provide a better idea of distributional patterns, and can yield targets for
isolation and LC-MS/MS-based con�rmation if candidates occur in a context of special biological
interest. Discussed limitations and caveats in terms of size and texture of the target sequence
pools should be tackled by sequencing depth and calibration of prediction models.

Biological questions. Recent studies reporting numerous occurrence of m1A in mRNA revealed
a dynamic response of the modi�cation status to stress stimuli like heat or starvation, a positive
correlation with protein production and distinct tissue-speci�c modi�cation levels [85]. However,
concrete association with certain diseases was not intensi�ed and awaits future analysis. Cases
like m1A964 in rRNA from S. pactum, mediating pactamycin resistance, or m6,6A1519 in rRNA
of E. coli preserving kasugamycin sensitivity [149], call out on application of our approach for
detection of antibiotic resistance by focused monitoring of relevant sites also in other organisms.
The methods and software developed in this work could also be used for identi�cation of modi-
�cations that represent markers for medical conditions.

Further eligible modi�cations. Charts comparing RT signatures of modi�cations of all four
standard nucleotides revealed m2,2G as a highly promising target for future transfer of our an-
alytical concept, being separable from other guanosines by distinct arrest and mismatch rates,
the latter featuring a certain heterogeneity. With its number of annotated tRNA instances qual-
i�es m2,2G for machine learning. Care should be taken to avoid confusion with the signature of
the cognate m1G, exhibiting a similar mismatch composition. In fact, the observed m1G signa-
tures have weaker intensities than those of m2,2G, but may simply stem from lower occupancies.
Another eligible target is m3C, displaying almost complete T-transition in mapping pro�les in
tRNASer and tRNAThr, accompanied by strong arrest rates. Transcriptome-wide search for can-
didates would ideally be undertaken as di�erential screening using data from a control sample
featuring Trm140 knockout, the human ortholog of yeast's m3C methyltransferase [158]. This
way, one might be able to enqueue another modi�cation type into the growing map of the epi-
transcriptome. In the latter context, the developed work�ow and software are instrumental for
testing of new chemical treatments that induce speci�c RT signatures for further unexplored
representatives of the rich pool of RNA modi�cations.
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4.3 Quintessence

The combination of reverse transcription and deep sequencing is a powerful instrument for iden-
ti�cation of nucleotide modi�cations in RNA. Our holistic characterization of m1A beyond the
hitherto point of view demonstrated that modi�ed residues can have complex native RT signa-
tures providing signi�cant distinction potential. Full access to the latter puts high requirements
on specialized analytical methods and tools, which were developed in this work. By establish-
ment of an integral concept for processing, inspection and screening of NGS data, complemented
by machine learning, statistics and a tailored experimental scheme, we created the framework for
studies of various eligible modi�cations with native or inducible RT e�ects. CoverageAnalyzer,
engineered as universal standalone bioinformatic platform for specialized analysis of RT signa-
tures in NGS pro�les, was the key software on the way to the �ndings revealed in this work:
As demonstrated for m1A, misincorporation patterns in RT signatures of modi�cations can be in-
�uenced by the nature of the 3'-neighboring nucleotide. Di�erentially structured macromolecular
contexts should be considered as determinants of signature intensity, too. Whereas estimation
of occupancy is restricted to semi-quantitative assessment, m1A's speci�c RT e�ects allow its
qualitative con�rmation or identi�cation based on sequence homology. Distinction power of RT
signatures modeled by machine learning methods essentially depends on balanced and complete
availability of arrest and misincorporation information. Moreover, success in identi�cation of
modi�cation types is bound to quality and texture of both, training and target data. The �nd-
ings of this work have signi�cant bearings on the understanding and appropriate utilization of
RT signatures. Together with custom-made methodology and a novel multifunctional tool, they
represent a valuable contribution to future progress in exploration of the epitranscriptome.
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5 Materials & Methods

5.1 RNA Sources

Yeast rRNA was prepared as described in [81], yeast tRNA as described in [114]. The synthetic
oligonucleotides were purchased from IBA (Göttingen, Germany). Sequence information is pro-
vided in Appendix section 6.3, table 6. An S. pactum strain, DSM40530 (DSMZ, Braunschweig,
Germany) was cultivated as recommended for liquid media growth [159] with slight modi�cations.
The total bacterial RNA was extracted with TRIzol R© reagent according to the manufacturers
protocol.

5.2 Library Preparation & Sequencing

Figure 25: Library preparation proto-
col. The procedure captures cDNA from both,
abortive and full-length reverse transcription
events. Primer information is given in Table 6.
(1) Ligation of preadenylated ssRNA adapter
(RAdaptor) at the template's 3' end. (2) RT
start from hybridized RT Primer. (3) Forma-
tion of three product types: abortive (a) and
read-through with misincorporation (b) or cor-
rect base (c) at m1A position. (4) C-Tailing
and ligation of double stranded adaptor to the
3' end of the cDNA. (5) Complementation to ds
cDNA. (6) PCR step yields template to be am-
pli�ed and sequenced using barcoded p5 and p7
Illumina primers. Adopted from Hauenschild et
al. 2015 [113].

The preparation of all RNA samples for se-
quencing was conducted by Lyudmil Tserovski.
He used a speci�c protocol to generate se-
quence libraries designed for detection of RT
signatures by capturing full-length as well
as abortive RT products. The method
is based on a previously published version
[114, 115], but was optimized in many as-
pects as detailed in Hauenschild et al. 2015

[113].

The steps can be summarized as follows for
total / ribosomal RNA. rRNA was fragmented
(ZnCl2, heat) and size-selected by excision of
50-150 nt bands after polyacrylamide gel elec-
trophoresis (PAGE). A dephosphorylation of
both extremities by fast alkaline phosphatase
(FastAP), was followed by 3' adapter ligation
(RAdapter, activated via chemical preadenyla-
tion using imidazolide of 5'-AMP's free acid)
by T4 RNA Ligase 2, as described in [114]
(see also Fig. 25, step 1). This adapter in-
cluded a single C at its 5' end followed by
a random 9 nt sequence (N9), used as indi-
vidual barcode for every cDNA molecule pro-
duced during RT. Excess adapters were treated
by 5'-Deadenylase, heat-denatured, and di-
gested by Lambda exonuclease. Next, Re-
verse Transcription (RT) was performed us-
ing RT Primer (Fig. 25, steps 2 & 3) com-
plementary to RAdapter. Superscript III re-
verse transcriptase synthesized cDNA at 50◦C
in a 1h reaction. Primers were digested us-
ing Lambda exonuclease, followed by treat-
ment with single strand speci�c Exonuclease I
and dephosphorlylation of dNTPs by FastAP.
The cDNA 3' ends were tailed using terminal
deoxynucleotide transferase (TdT) and ribocy-
tidine triphosphate (rCTP) under conditions
shown to result in tails of three C's in > 90%
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of the molecules [114]. A double-stranded DNA adapter was prepared from single stranded DNA
oligonucleotides, DAnchor A & DAnchor B, and ligated to the tailed 3' end of the cDNA using
T4 DNA ligase (Figure 25, step 4). Taq-Polymerase was used to obtain double stranded prod-
ucts (Fig. 25, step 5) and to amplify them in 7-12 PCR cycles using p5 and p7 Illumina primers
(Fig. 25, step 6) containing 8 nt barcodes for multiplexed sequencing. The resulting amplicons
contained p5 and p7 sequences required for �ow cell clustering, barcodes, sequences of read1's
and read2's sequencing primers and the target sequence corresponding to the RNA template
used for RT. Via PAGE size-separation, the molecule size of interest (150-300 bp, which exceeds
length of potential adapter dimers) was excised and submitted to Illumina sequencing on aMiSeq

platform in Prof. Dr. Yuri Motorin's laboratory (Nancy, France. See Tab. 1 for details on read
lengths). In paired-end mode, read1 corresponds to the 3'-end of RNA template in antisense
direction (= 5'-end of cDNA in sense) and read2 to the RNA 5'-end in sense direction (= 3'-end
of cDNA in antisense).

5.3 Trimming

The raw reads from the sequence libraries speci�ed in Tab. 1 were demultiplexed in Prof. Dr. Yuri
Motorin's laboratory (Nancy, France) using the Casava pipeline and processed further in Prof.
Dr. Mark Helm's lab by Ralf Hauenschild using a custom Python/Java based pipeline for FASTQ
�les. Corresponding to the preparation settings in section 5.2, this accommodated removal of
auxiliary sequence elements (primers, adapters, barcodes) not detected in Casava trimming, as
well as ligation-assistance overhangs. Leftovers of the auxiliary sequence elements were trimmed
by searching for their su�xes/pre�xes (≥5) at read starts/ends under a one-mismatch-tolerance
accounting for sequencing errors. Overhangs are reported to have a length of three in ≥ 90% of
the cases under optimized conditions [114]. Thus, after removal of other artifacts, trimming of up
to three 3'-terminal Cs from read1 and up to three 5'-leading Gs from read2, mapping could be
carried out widely unimpeded by mismatches due to overhangs. This implied toleration of a small
fraction of reads that had actual overhang lengths ≤ 2 and hence was trimmed unjusti�edly, if
its cDNA templates ended/began with non-arti�cial C(s)/G(s). However, therein implied harsh
reduction of overhang-related mismatches payed o� in a better tolerance of modi�cation-induced
mismatch positions, when mapping the reads. A specialized method for posterior trimming of
overhangs of lengths ≥ 4 based on the mapping result is presented in section 5.5.

5.4 Reference Sequences & Mapping

Except for sample IDs 9, S23 and S24, reference sequences for all samples listed in Tab. 1 were
obtained from MODOMICS [4]. In case of the eligibility charts, the pool of tRNAs (yeast cy-
tosolic, human mitochondrial) was nonredundantly complemented by sequences from the Sprinzl
tRNAdb database [139]. Reads from synthetic oligonucleotides were mapped to custom shorter
reference templates derived from the tRNALys sequence from MODOMICS. S. pactum data was
mapped to rRNA reference gi|636560031|ref|NR_116091.1| from NCBI RefSeq [160] database,
and T. brucei data to tRNA references from triTrypDB [161]. The raw FASTQ sequence li-
braries from Tab. 1 are available upon request from Prof. Dr. Mark Helm. Mapping of the
trimmed reads was carried out using Bowtie2 [106] in global alignment ('end-to-end') mode
without soft-clipping. Splicing junctions were not taken into account with respect to our focus
on mature RNAs. Also paired-end read information was not relevant to the mapping strategy,
which was chosen for tRNA and rRNA sequences. In tRNA scenarios, the respective reference
sequences were provided to the mapper at once in a single FASTA �le. One mismatch ('-N 1')
was tolerated in the seed of six nucleotides ('-L 6') with setting '-k 1' reporting only one (the
�rst) alignment declared as valid by Bowtie2 (see discussion in section 3.1.11.2).



5.5 Postprocessing 61

5.5 Postprocessing

The mapping results in SAM (Sequence Alignment/Map) format were converted to BAM (Bi-
nary Sequence Alignment/Map) �les using SAMtools [152]. With the latter tool, the data was
also sorted and indexed, and �nally converted to Pileup format via the mpileup function ('-BQ0',
'd10000000' to avoid dumping of read information in regions of high coverage). At the Pileup

Algorithm: Mapping Based Overhang Trimmer (MBOT)

m := reference sequence
l := length of m
B := {A,G, T,C} set of base types
Sm(i) := returns set of reads mapped to position i of m, spanning positions [i..]
Xm(Bx, i) := returns set of reads r ∈ Sm(i) starting with Bx

Om(Bx, i) := returns no. of reads covering pos. [.. i-1] with G and i with Bx

Cm(Bx) := {i ∈ [1..l − 1] where m[i] 6= G ∧m[i+ 1] = Bx} set of positions i eligible for
frequency check of tailing of base type Bx within m's sequencing pro�le.

Tm(Bx) := median
i∈Cm(Bx)

{
Om(Bx,i+1)

|Xm(Bx,i+1)|+Om(Bx,i+1)

}
approx. tailing frequency of type Bx, w.r.t. presumable real-sequence starts

1: procedure MBOT(m, l)
2: for i ← {1 to l − 1} do
3: EA, EG, ET , EC ← 0 . Counters for statistical trimming events
4: Qr[i+1] ←

Tm(r[i+1])·|Xm(r[i+1],i+1)|
1−Tm(r[i+1]) . Expected no. of overhang bases at i

5: for r ∈ Xm(G, i) do . Trimming candidates
6: if m[i] 6= G then . Read begins with G-mismatch?*
7: r ← r[2 ..] . Remove �rst base from read!**
8: else . Follow G-stretch (if any) till...
9: k ← 1
10: while r[k] = G ∧ m[i+ k] = G do

11: k ← k + 1
12: end while . ...non-G in m or r
13: if r[k]=G then . Evidence found?
14: r ← r[k + 1..] . Remove �rst k bases (Gs) from read!
15: else . No evidence found
16: if Er[i+1] < Qr[i+1] then . Quota left?
17: r ← r[2 ..] . Statistical trimming!
18: Er[i+1] ← Er[i+1] + 1
19: end if

20: end if

21: end if

22: end for

23: end for

24: end procedure

*Since the Pileup format represents both, C- and G-overhangs in read1 / read2 sequences as Gs (actually
lower or upper case), i.e. from the perspective of the reference sequence, the algorithm does not have to
di�erentiate between Cs and Gs from raw reads. Positional indices in reads mapped refer to their orien-
tation along the reference after alignment, irrespective whether aligned in sense or reverse complement.
** Whenever reads are trimmed, all variables and functions report the respective updated information of
the modi�ed mapping pro�le, when being called.



62 5 MATERIALS & METHODS

stage, the mapping-based trimming of presumable overhang relics mentioned in section 5.3 took
place. A Python procedure named MBOT was written to perform the necessary operations ac-
cording to the above pseudocode of the algorithm. While in three of four cases overhangs can be
trimmed thanks to the mismatch between read Gs and reference As, Ts and Cs, the fourth case, a
G in the reference, prohibits the di�erentiation whether a read's tailing G is part of the overhang
or true sequence. This case was accommodated by empirical estimation of 'tailing e�ciencies'
for the four base types on the respective reference. To this end, for each reference sequence m,
the pro�le was screened from 5' to 3' in order to generate four sets Cm(Bx) of eligible positions
i of non-G base con�guration and 3'-neighbored by the corresponding base type Bx, i.e. A, G, T
or C. For the positions in each Cm(Bx), the algorithm determined the relative frequency of reads
covering the reference position from their start to i with G-mismatches under all reads having
their �rst base match at i + 1, i.e. presumably having their real-sequence starting with Bx at
i+ 1. The medians Tm(Bx) of these four collections were saved. Albeit termed 'tailing frequen-
cies', these statistics described only relics of overhangs that are left over from the pre-mapping
trimming step. Using the resulting ratios as approximation of the likelihood Pfour by which
overhangs are elongated by (at least) a 4th C, MBOT estimated the probability of encountering
overhang relics of length n as Pfour

n.

First, the main procedure iterated over all positions i of reference m and applied a three-
options trimming strategy for the reads r starting at i. Those r starting with a clear G-mismatch
were immediately trimmed (lines 6-7). In contrast, those r starting with an arbitrary number of
G-matches were traced to the �rst non-G in r or m at a position i+ k (lines 8-12). If r had a G
at i + k, this was considered evidence of an overhang spanning a G-stretch from i to i + k − 1
in the reference, and the stretch was trimmed in r (lines 13-14). Conversely, if the G-span was
ended by a reference non-G, i.e. no evidence could be found, the read was trimmed o� its �rst
base (G), with respect to a contingency EX of trimmable bona �de tailed reads covering i (lines
16-18). EX is determined based on the empirical median tailing quota of base type X of r at i+1
using the number of reads starting withX at i+1 as untailed relative complement 1−Tm(r[i+1]).

Using median instead of mean tailing frequencies reduced potential biases from e�ects like
modi�cation-caused high G-mismatch sites or SNPs. The tailing mechanism underlying to this
trimming concept is interpreted and modeled as a base-dependent likelihood of repeated elonga-
tion events, estimated by Tm(Bx). Index k used for evidence based trimming (lines 13-14) was
limited to four, such that G-spans in the reference were followed up to a maximum length of
four bases (corresponding to an overhang probability of Tm(Bx)4), as a compromise of compu-
tation e�ort, reliability of the probability based tailing hypothesis and corresponding expectable
reduction of bias in mismatch signals.

5.6 Signature Extraction

The Pileup �les were further processed to custom tab-separated text �les termed Pro�le which
contained the important features quickly accessible for each reference position. Pro�le served
as source format for Random Forest input generation as well as for visualization and screening
as described in section 3.2. While the actual format distinguished between sense and antisense
mapping by counting lower and upper case read bases and also counts Ns (unknown read bases),
the example in Fig. 4 is shown in a simpli�ed version, uniting sense and antisense mapped read
bases as capital letters.

Table 4: Pro�le format. Adopted from Hauenschild et al. 2015 [113].

reference position (i) ref_base (R) coverage (c) matches A G T C arrest (a) mismatch (m)

tdbD00003245|Sacch..cer..|4932|Val|AAC 59 A 7793 3822 3822 858 3057 56 0.612 0.515
...
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Mismatch rate m and arrest rate a, as introduced in section 3.1.3, are determined from the
Pileup format, counting commas (,) and periods (.) in the row (pile) pi as sense and antisense
matches and ∧ characters as read starts, such that

mi := 1−

∑
x∈pi

1, if x ∈ {comma, period}, 0 else

ci
and ai :=

∑
x∈pi+1

1, if x = ∧, 0 else

ci+1
.

When Pro�le is screened for modi�cation candidates via CoverageAnalyzer (section 3.2), Context
Sensitive Arrest rate (CSA, de�ned in section subsubsec:mismatchrate), 3'-neighboring reference
base and respective relative mismatch components mism1, mism2, mism3 are determined and
stored together with the other features relevant for signature de�nition and machine learning
(3'coverage 3'c, mismatches per arrest m

a , and the diversity score mentioned in section 3.1.8 and
discussed in Appendix, page 74). The storage format was termed Candidates and is exempli�ed
in Tab. 5. For statistical characterization of m1A's e�ect on RT behavior, the signatures were
extracted from Candidates format at the database-annotated positions.

Table 5: Candidates format.

reference position c 3'c a m m
a CSA mismG mismT mismC 3'base diversity

22tRNA|Lys|3TT|Sacch..cer..|cyt. 58 1962 2296 0.151 0.891 5.895 0.151 0.604 0.373 0.0240 G 11001.0 ...

5.7 Descriptive Statistics

Synthetic vs. natural m1As. (Fig. 9F) Accordance of m1A mismatch compositions from
revolver oligoribonucleotides with mismatch data from natural instances was evaluated by an
outperformance assay. Based on the known +1 base identities of the four revolver data points,
the minimum edit distance of each revolver data point to the center (mean) of its corresponding
natural cluster was calculated using the same distance formula as for Silhouette coe�cients, co-
hesion and separation (page 25). The M ean of these four D istances to C luster centers, MDC,
was now determined for all possible permutations of the true revolver↔natural 1:1 assignment to
4!−1 = 23 alternative 1:1 assignments. Accordance was evaluated based on two measures: (i) the
relative number of permutations outperformed (in reciprocal value of MDC, i.e. MDCtrue

−1) by
the true assignment in terms of MDC, and (ii) the performance (MDCtrue

−1) normalized with
(divided by) that of the best assignment: MDCtrue

−1

MDCbest
−1 , which equals MDCbest

MDCtrue
. The permutation

test was repeated using MDCs with weighted contributions of clusters based on respective num-
bers of data points (cluster size, corrects for di�ering a priori cluster likelihoods and expectable
standard error of centers) and mean deviations from their means (intra-cluster variation), which
led to comparable results.

Cohesion, separation and Silhouette Coe�cients (Fig. 9E). Cohesion describes the in-
verse of average intra-cluster deviation from the respective center, while separation denotes the
average inter-cluster center distance. Edit distances were calculated for clusters with more than
one data point only. For cohesion, the performance scale was normalized constituting the weak-
est performance as the maximum possible average deviation of data points from cluster centers,
which amounts to 2/3 in the hypothetic worst case of uniform distribution of a cluster's data
points to the three corners of a ternary plot. As described for MDCs in the previous paragraph,
calculation of means from the four cohesion values was done using relative weights correspond-
ing to the number of data points in each cluster. The maximum theoretical average inter-cluster
center distance was used for normalization of the separation parameter. It was set to 100 per-
centage points, corresponding to three perfectly condensed clusters of contrary misincorporation
characteristics.
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5.8 Machine Learning

Using the R package 'Random Forest' [121] with standard settings (500 trees, m-try =
√
m,

where m = total no. of features), machine learning was carried out for scenarios (i-iv) as de-
scribed in the Results sections 3.1.8, 3.1.9 and 3.1.10. For each scenario, 10 repetitions of a
5-fold strati�ed cross-validation were performed using a Python script, which managed R based
Random Forest training and testing on shu�ed data sets. From exported confusion matrices of
each fold, sensitivities and speci�cities as well as positive and negative predictive values were
calculated and averaged �rst within single runs, then in total. This way, standard deviations
could be determined as presented in Tab. 7.

In our investigation on sequence context dependent misincorporation (3.1.8), a Random For-
est was trained to infer the base type of a corresponding neighbor position from the mismatch
composition. Empirical optimization suggested 4-fold rather than 5-fold strati�ed cross valida-
tion for maximum prediction performance. As a consequence, sensitivities of (34.7, 54.5 and
17.3), speci�cities of (64, 84.8, 72.4) as well as positive and negative predictive values of (29.8,
49.5, 12.9) and (63.6, 86.5, 70.6) were obtained for the RF model on average for positions (-1,
+1, +2) respectively.

5.9 LC-MS/MS Analysis

Quanti�cation of m1A in yeast 28S rRNA, trypanosomal tRNA and synthetic oligonucleotides
was conducted by Katharina Schmid & Kathrin Thüring using an HPLC-DAD-MS/MS approach
(details in Hauenschild et al. 2015 [113]). Single tRNA species were isolated from Trypanosoma

brucei 's total RNA (details in Rubio et al. 2013 [124]) by hybridization with complementary bi-
otinylated DNA-oligonucleotides and subsequent immobilization on streptavidin-coated magnetic
beads (Dynabeads). After denaturation, the target tRNAArg(UCG) was captured using the se-
quence biotin-CGGCAGGACTCGAACCTGCAACCCTCA. Puri�cation steps included washing
(SSC bu�er), denaturing polyacrylamide gel electrophoresis (PAGE) and ethanol precipitation.
Next, the samples were prepared for LC-MS/MS analysis by digestion into nucleosides. As sta-
ble internal standard (SIL-IS as described in Kellner et al. 2014 [37]) 13C-labeled total RNA
from S. cerevisiae was added. Calibration solutions and digested RNA were analyzed on an
Agilent 1260 HPLC series equipped with a diode array detector (DAD) and a triple quadrupole
mass spectrometer (Agilent 6460). Upon a photometrical measurement of column e�uents by
DAD, MS was operated in positive ion mode using a time-segmented multiple-reaction monitor-
ing (MRM mode) allowing separation of m1A from other methylated adenosine derivatives by
exclusive elution times. Using SIL-IS, a response factor could be determined for 12C-m1A and
13C-m1A peak areas and allowed m1A quanti�cation in the RNA samples. Quanti�cation of A
(adenosine) was performed by peak extraction from UV chromatograms and the m1A amounts
were normalized to the A contents of the analyzed RNA molecules.

5.10 CoverageAnalyzer - Software Engineering

Distribution and Dependencies. CoverageAnalyer was published under GNU GPL licence
version 3, which is displayed during setup. For the Windows release, an SFX setup archive was
built using 7-Zip SFX Maker. The Linux and MacOSX editions were packed by conventional
zip compression. The software does not interfere with existing Python installations on the user
machine, but comes with its own tailored Python environment. Using the package manager Mini-
conda, the setup routine downloads and installs all required libraries and dependencies, including
numpy, scipy (for Fisher's exact test) and matplotlib. For Windows, SAMtools was included as
an executable, whereas the Shell-Script setup routine on MacOSX installs SAMtools via Home-
brew and Linux does via apt-get install. JAVA Runtime Environment 1.7+ is required. On
Windows, launching CoverageAnalyzer.EXE (created via launch4j) redirects the user to Oracle's
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download website, if necessary. Under MacOSX, JRE is usually preinstalled, and under Linux,
the installation is automatically ensured by the installation script via apt-get install. Included
JAVA dependencies are the libraries itextpdf (PDF generation), prefuse (sequence range slider),
commons-exec (threading) and swing-layout.

Tuning Strategies. In order to enable usability of CoverageAnalyzer for longer mapping tem-
plates, such as rRNA, mRNA and even chromosomal reference sequences, a tiling method was
implemented, which partitions the Pro�le data into chunks of 1000 lines saved as positional �les.
These �les are indexed by according x_y.txt name tags, where x represents the reference num-
ber and y the yth block. This allows fast access to a query region of interest without reading
or memorizing the leading positions 1 to y − 1 of the reference. Further acceleration of the
program was accomplished by a low-detail mode automatically toggled in response to the zoom
level. Moreover, implementation of multithreading drastically reduced runtime of both, input
processing and candidate screening. Parallelization enables simultaneous conversion of mapping
data from several samples to Pro�les and blockwise positional tables, according to the num-
ber of available CPUs. Casting of candidates in multiple samples is parallelized in the same
manner, but additionally takes advantage of a highly performant hashing based decomposition
and interpretation mechanism for Boolean expressions and hierarchical conditions based on the
user's screening formula. The interplay of the involved functions and objects is illustrated in a
simpli�ed scheme in Appendix section 6.1, Fig. 26.

Mapping statistics. In the Selection tab of CoverageAnalyzer, sorting criteria comprise refer-
ence ID, �le path, length, sequence (�rst 100 nt), coverage peak, number of 'high-arrest' sites
(SA), of 'high-mismatch' sites (SM ), of 'heterogeneous mismatch' sites (SH) and of mapped
reads. Let c be the coverage at position i of reference f of length n. Let R be the reference base
at i. Let Fb(f, i) := obs.(b,i)

c(fi)
, where b ∈ {A,G, T,C} be the observed frequency of base type b

covering i in f . Thus, mF (f, i) := {Fb(f, i), with b 6= R} is the set of mismatching Fb(f, i). All
i with c(fi) ≥ 20 contribute to SHf

, if two or more mismatch components exhibit a minimum
relative coverage contribution of 0.1:

SHf
:=

n∑
i=1

x, where x = 1 if c(fi) ≥ 20 and median
k

mF (f, i)k ≥ 0.1, 0 else.

SA and SM are calculated similarly, for arrest rates and mismatch rates exceeding a threshold
normalized with coverage c, such that low arrest rates are considered insigni�cant at low c, but
are captured if c is high.





6 Appendix

6.1 CoverageAnalyzer - Example of Software Architecture

Figure 26: CoverageAnalyzer - Architecture of candidate screening system. Simpli�ed scheme of the interplay of functions and subfunctions, interpreting
the tree of conditions represented by the user-generated Boolean formula, and screening Pro�les for agreeing candidate sites. A recursive function decomposes the
input formula into its tokens (conditions), which consist of connectors (Booleans) and subtokens. In this way, a tree structure is built from the condition hierarchy.
The leaf level is occupied by statements of the types y <= x or x <= z, which can occur as pairs such as e.g. (0.05 <= mism.rate, mism.rate <= 0.9). Therein, x,
y and z are recognized as values or parameters and >= as operator. Then throughout screening, a hash based 'Command Map' channels candidate sites along the
formula tree evaluating their features in a depth-�rst approach until a termination condition accepting or rejecting the candidate.
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6.2 Wildtype and Knockout Pro�les

Figure 27: m1A58 signature compilation from 37 cytosolic tRNAs of wildtype and m1A-negative
(∆Trm6) S. cerevisiae. Plot scope: 5 bp upstream and 5 bp downstream of m1A. Arrest and mis-
match rates range on a [0, 1] scale, normalized to height of each plot as in results subsection 3.1.3, �gure
3. Adopted from Hauenschild et al. 2015 [113].



6.3 Library Preparation

Table 6: Library preparation: sequence elements

Element Sequence

RAdapter 5'-P-CNNNNNNNNNAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT-3'-C6-spacer
RTPrimer 5'-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-3'
DAnchorA 5'-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGG-3'
DAnchorB 5'-P-AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC-3'-C6-spacer
PCR P7 primer 5'-CAAGCAGAAGACGGCATACGAGAT77777777GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3'
PCR P5 primer 5'-AATGATACGGCGACCACCGAGATCTACAC55555555ACACTCTTTCCCTACACGACGCTCTTCCGATCT-3'

Barcodes used with P7 Sequence Barcodes used with P5 Sequence

N701 TCGCCTTA N501 TAGATCGC
N702 CTAGTACG N502 CTCTCTAT
N703 TTCTGCCT N503 TATCCTCT
N704 GCTCAGGA N504 AGAGTAGA
N705 AGGAGTCC N505 GTAAGGAG
N706 CATGCCTA N506 ACTGCATA
N707 GTAGAGAG N507 AAGGAGTA
N708 CCTCTCTG N508 CTAAGCCT
N709 AGCGTAGC
N710 CAGCCTCG
N711 TGCCTCTT
N712 TCCTCTAC

Oligoribonucleotide type Sample ID Sequence

A-G 17 5'-CACUGUAAAGCUAACUUAGC-3'
revolver m1A-G 12 5'-CACUGUAAm1AGCUAACUUAGC-3'
revolver m1A-C 13 5'-CACUGUAAm1ACCUAACUUAGC-3'
revolver m1A-U 14 5'-CACUGUAAm1AUCUAACUUAGC-3'
revolver m1A-A 15 5'-CACUGUAAm1AACUAACUUAGC-3'
hybridization oligo for tRNAArg_UCG S24 biotin-CGGCAGGACTCGAACCTGCAACCCTCA

69



70 6 APPENDIX

6.4 Multiple Mapping on tRNAs

Figure 28: Impact and handling of multiple mapping problem. (A) Relative read count com-
parison of k = 1 ('report best only', set as 100% for each tRNA) and k = 3 ('report best three') modes
for valid alignments by Bowtie2. (B) Isotype confusion behavior for k = 3. The red bars indicate the
relative amount of mapped reads per tRNA also mapped to tRNA(s) of a di�erent acceptor group. (C)
Distribution of absolute di�erence in arrest and mismatch rates: k = 1 vs. k = 3 and k = 1 vs. 'best'.
(D) Exemplary comparison of m1A58 (sequence position 59) RT signatures for reporting modes k = 1, k
= 3 and 'best' (default) in yeast's cytosolic tRNAV al_AAC . Adopted from Hauenschild et al. 2015 [113].
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Since under k1, Bowtie2 can stop looking for better alternatives once it has found a valid
alignment, instead of testing all other possible mapping sites, k1 can be interesting in runtime-
critical applications. Because runtime is not an issue w.r.t. our limited reference sequence pool,
the only scenario, in which k1 is preferable to 'best', can occur if a read has mismatches due to
modi�cations. In such a case, 'secondary' alignments, inferior in mapping quality compared to
'best' alignments, may be ignored under standard settings, which could redirect important mis-
match information to similar but unmodi�ed sequences, resulting in biased signatures. Report
settings with k≥ 2 report valid alignments per read up to a certain limit, e.g. up to three results
for k=3 ('k3'). In case of several isoforms of one tRNA acceptor type, such a setting tends to
distribute reads to more than one target site (multiplication) and thus equalizes the coverage
pro�les among isoforms. Of course this enforces erroneous mappings, since every read can have
only one real molecular origin. Certainly, none of the strategies can solve the mapping problem
perfectly. However, with further progress of the project, it turned out that standard ('best')
setting is the overall most recommendable, in order to retrieve correct molecular origins when
dealing with mutually similar tRNA isotype sequences.

Because earlier results had been generated under k1, the setting was kept for the subsequent
data sets presented in this work for consistence reasons, but only after excluding a signi�cant im-
pact on the quality of m1A's RT signature. In the �rst step of an in-depth analysis, the reference
pool used for mapping of yeast cytosolic tRNAs was analyzed for pairwise sequence similarities
based on the Levenshtein [162] edit distance. By normalizing each distance with the length of
the longer of both sequences, absolute distances were penalized harder for shorter sequences than
for longer ones, resulting in a penalty in relation to sequence length, thus comparable between
all pairs of tRNAs. As can be recognized in section 3.1.11, Fig. 17, sequence similarity is much
higher among isotypes than between di�erent acceptor groups (tRNAIni and tRNAfMe are both
initiator tRNAs). Therefore, under any of k1, k3 or 'best' settings, most concerns of mismap-
ping should be directed to the similar isoacceptors, while cross-group similarities are minor in
comparison. Among isoacceptors, mismapping can be considered less harmful, assuming that
also the modi�cation levels responsible for mismatches in the reads should be much more similar
among isotypes than across groups.

When the amounts of mapped reads was relatively compared between k1 and k3 for each
single reference (Fig. 28A), the disadvantages of both strategies became apparent. For several
references, k3 can in fact outnumber the reported mappings of k1 by more than an order of
magnitude. This happens preferentially in case of shorter reads from subsequences shared in
similar variants by multiple tRNAs. Under k3, these reads can be mapped also to those tRNAs
listed after the tRNA sequence, which yields the �rst valid alignment in the reference �le. k1
in contrast, never reaches these alternative alignments due to the sequential processing order
of references. Thus, reporting the �rst valid alignment only, introduces a strong group-internal
representation bias among isotypes on the one hand, but avoids over-representation of tRNA
groups with many isotypes, which was observed under k3. Fig. 28B shows that even under k3,
most multiple mappings happen within the same isotype group, which is a �rst requirement
when characterizing m1A's RT signature under a k1 setting. Actual legitimation of k1 for our
purpose was shown by comparison of the signature features under settings k1, k3 and 'best'.
As illustrated in Fig. 28C and exempli�ed by the tRNAV al_AAC pro�le, the tRNA pro�les had
reference sequences unique enough to be almost una�ected by the reporting mode in terms of
m1A signature.
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6.5 Trypanosomal m1As

Figure 29: Application to unannotated trypanosomal m1A. (A) 16 single tRNA pro�les from
total tRNA preparation from Trypanosoma brucei. (B) Sequencing pro�le of a puri�ed sample of
tRNAArg_UCG. (C) Mismatch composition by base con�guration at position +1. The data points
taken from (A) were treated in the same way as described in section 3.1.6 and averaged, then visualized
as open circles. For comparison, remaining m1A data averaged from Figure 7C are plotted in full circles.
Adopted from Hauenschild et al. 2015 [113].
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6.6 Prediction Dynamics

Table 7: Random Forest performance - 10 rep. 5-fold cross-validation. SDR is the absolute
standard deviation of a mean value calculated from 10 runs. SDF is the mean SD of 10x5 = 50 fold-wise
outcomes for the corresponding performance measure. Settings (i) and (ii) are de�ned in section 3.1.8.
Adopted from Hauenschild et al. 2015 [113].

performance for class m1A (avg. of 10 runs) low resemblance (i) high resemblance (ii)

sensitivity [%] (+/- SD)R(+/- SD)F 96.2 (+/- 1.0)R (+/- 6.2)F 88.9 (+/- 1.4)R (+/- 9.1)F

speci�city [%] (+/- SD)R(+/- SD)F 96.9 (+/- 2.0)R (+/- 4.1)F 87.0 (+/- 2.8)R (+/- 10.5)F

positive predictive value (PPV) [%] (+/- SD)R(+/- SD)F 97.1 (+/- 1.8)R (+/- 3.8)F 87.4 (+/- 2.4)R (+/- 8.9)F

negative predictive value (NPV) [%] (+/- SD)R(+/- SD)F 96.6 (+/- 0.9)R (+/- 5.5)F 89.4 (+/- 1.1)R (+/- 8.1)F

Table 8: Random Forest performance - 10 rep. leave-one-out cross-validation. Settings (i)
and (ii) are de�ned in section 3.1.8. Adopted from Hauenschild et al. 2015 [113].

performance for class m1A (avg. of 10 runs) low resemblance (i) high resemblance (ii)

sensitivity [%] 96.0 +/- 0.9 89.3 +/- 1.9
speci�city [%] 98.0 +/-1.8 86.7 +/- 3.8
positive predictive value (PPV) [%] 95.1 +/-1.4 82.8 +/- 3.2
negative predictive value (NPV) [%] 96.1 +/- 2.0 81.4 +/- 4.2

Figure 30: RT signatures of m6,6As 1781
and 1782 in yeast 18S rRNA. For a position
p, the arrest rate re�ects the relative amount of
mapped reads ending at p + 1, i.e. not covering
p. Adopted from Hauenschild et al. 2015 [113].
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Figure 31: Excursion. Performance by texture of training and testing data: speci�city. For
each tile of the heatmap, non-m1A signatures for training and testing are selected according to a
minimum threshold for their diversity score. Diversity d of a single non-m1A signature is rep-
resented as a 5-bit binary code, e.g. 10101 with the ith bit set to 1, if the ith of properties{

(m ≥ 0.1 ∧ m−max(mG,mT ,mC) ≥ 0.1,m ≥ 0.2, a ≥ 0.2, CSA ≥ 2, 10 ≥ m/a ≥ 0.1
}
is ful�lled by

the instance. Correspondingly,

d :=
4∑

i=0

f ·2i, where f = 1 if condi-

tion 5− i is ful�lled and d ∈ [0, 31]
is the decimal representation. In
fact, most actual m1A sites have a
diversity ≥ 11100. Thus, a higher
non-m1A diversity score mimics
higher similarity to m1A. The bit
code serves two purposes, provid-
ing a rough impression of pro-
nounced global signature parame-
ters at �rst glance, while uprating
particularly such non-m1As meet-
ing the most characteristic fea-
tures of m1A by the implied ex-
ponential weighting. Random For-
est (RF) performance (here speci-
�city with m1A as positive classi-
�cation outcome) was then deter-
mined in a 10-rep. 5-fold strati�ed
cross-validation with data points
selected like in settings i) and ii)
in section 3.1.8. The brindle ap-
pearance of the heatmap can be as-
cribed to both, the stepwise sudden
activation of diversity 's features i
judging eligible non-m1As by one
single arbitrary cuto�, and to sub-
sequent combinatorial activation of subordinate thresholds ∈ [i+ 1 , 5]. In these terms, diversity has a
highly discrete character and is, due to its strict exponential weighting of arbitrarily ordered parame-
ters, only a non-monotonous estimation function of actual m1A similarity. A smoother result would be
obtained for a weight-neutral continuous similarity measure S based on the 5-dimensional feature space,
but the qualitative indication, i.e. which features are mainly responsible for this resemblance, would be
lost in that case and feature values could still �uctuate intensely among elected non-m1As of similar S.
The very limited amount of diverse non-m1As progressively promoted disordered model performance on
the right-side and upper border areas of the heat map. The lack of instances made clipping of the assay
necessary, where meaningful model testing in the validation scheme was not feasible anymore, close to
d = 11111. For better orientation, we marked settings i) and ii) from section 3.1.8 in the map. Region
(A) demonstrates how the rejection of non-m1As with increasingly diverse RT signature is corrupted
(turquoise) under soft training conditions too rich in plain adenosines. (A) is �anked by a huge �eld of
combinations with widely acceptable outcome. (B) illustrates how the high-weighted mismatch feature
m ≥ 0.2 (d ≥ 1000) decimates the training population to a learning background based on which the
RF failed in rejection of most non-m1As that have a CSA ≥ 2 or ful�ll 10 ≥ m/a ≥ 0.1 in the tests.
Only the again intensely decimated non-m1A testing instances a ≥ 0.2 (atop of (B)), which often nat-
urally exhibit mismatch properties, could be sensitively rejected (purple). (C) basically resumes (B),
but had intermittent good speci�cities, where a certain combination of population-shrinking thresholds
coincidentally favored the model's rejection quota for non-m1A in the tests. Of interest, the maximum
number of decimation steps by an order of magnitude a starting population of non-m1As can cope with
before the assay needs to be clipped, is an upper limit of therein possible improvements of speci�city by
an order of magnitude. With respect to the above discussion of diversity 's scope, i.e. weighted quick-
selection and qualitative information on m1A candidates, we emphasize the limited use of this parameter
for other purposes. Here, diversity was used in an excursion demonstrating the core message, the impact
of training quality on model performance, which should be taken into account in any potential application.
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6.7 Discrimination of Modi�cation Types

Figure 32: Eligibility chart - Random Forest performance by RT signatures: uridines. All
annotated (MODOMICS) modi�cation sites in yeast cyt. tRNA & rRNA and human mitoch. tRNA
sequences were grouped by modi�cation type. Results were determined in 10 repetitions of a 5-fold strat-
i�ed cross-validation using equal amounts of a speci�c modi�cation (minimum required frequency = 5)
vs. a random composition of 'other'-labeled modi�cations. (A) Colors of pie chart code for mismatch
composition displayed in ternary plot. Pie radii re�ect Area Under Curves (AUC) from Receiver Operat-
ing Characteristic (ROC) curves of a Random Forest model tested for discrimination performance of the
modi�cation types. Circular fractions of pies represent the relative frequencies (abs. frequencies displayed
in round brackets) of modi�cation types. (B) Total speci�c False Discovery Rates (FDR) of modi�cation
types (vertical axis and color bar) and relative contributions by other modi�cation types (horizontal axis,
bar heights are normalized by relative medication frequencies). (C) Random Forest performance (AUC)
represented as cone height vs. arrest rates, mismatch rates and mismatch compositions (colors). Radii
were squared (=normalized) for presentation reasons. Black whiskers indicate standard deviations.
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Figure 33: Eligibility chart - Random Forest performance by RT signatures: cytidines.
All annotated (MODOMICS) modi�cation sites in yeast cyt. tRNA & rRNA and human mitoch. tRNA
sequences were grouped by modi�cation type. Results were determined in 10 repetitions of a 5-fold strat-
i�ed cross-validation using equal amounts of a speci�c modi�cation (minimum required frequency = 5)
vs. a random composition of 'other'-labeled modi�cations. (A) Colors of pie chart code for mismatch
composition displayed in ternary plot. Pie radii re�ect Area Under Curves (AUC) from Receiver Operat-
ing Characteristic (ROC) curves of a Random Forest model tested for discrimination performance of the
modi�cation types. Circular fractions of pies represent the relative frequencies (abs. frequencies displayed
in round brackets) of modi�cation types. (B) Total speci�c False Discovery Rates (FDR) of modi�cation
types (vertical axis and color bar) and relative contributions by other modi�cation types (horizontal axis,
bar heights are normalized by relative medication frequencies). (C) Random Forest performance (AUC)
represented as cone height vs. arrest rates, mismatch rates and mismatch compositions (colors). Radii
were squared (=normalized) for presentation reasons. Black whiskers indicate standard deviations.
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6.8 LC-MC/MS

Table 9: QQQ parameters of dynamic MRM method. Adopted from Hauenschild et al. 2015 [113].
Measurements done by Katharina Schmid and Kathrin Thüring.

Mod. nucleoside Precursor ion [m/z] Product ion [m/z] Fragm. voltage [V ] Coll. energy [eV ] Cell accel. voltage [V ] Time segment [min]
12C-m1A 282 150 92 17 2 5-8.5
13C-m1A 293 156 92 17 2 5-8.5

Table 10: LC-MS/MS quanti�cation of m1A. Adopted from Hauenschild et al. 2015 [113]. Mea-
surements done by Katharina Schmid and Kathrin Thüring.

ID Sample Material Interest m1A/molecule % m1A/A

3 S. cer. ∆trm6 total tRNA m1A58 knockout 0.04
4 S. cer. wt total tRNA positive control 3.89
5 S. cer. 25S wt rRNA wildtype 1.50
6 S. cer. 25S ∆rrp8 rRNA single knockout m1A645 0.73
7 S. cer. 25S ∆bmt2 rRNA single knockout m1A2142 0.77
8 S. cer. 25S ∆rrp8 + ∆bmt2 rRNA double knockout m1A645 and m1A2142 0.01
9 S. pactum total RNA m1A on SSU of rRNA 0.15
10 H. sapiens rRNA Homologous identi�cation 0.15
11 M. musculus rRNA Homologous identi�cation 0.09
12 revolver m1A-G synthetic oligo. RT sequence context dependency 0.77
13 revolver m1A-C synthetic oligo. RT sequence context dependency 0.82
14 revolver m1A-U synthetic oligo. RT sequence context dependency 0.92
15 revolver m1A-A synthetic oligo. RT sequence context dependency 0.79
17 A-G in vitro transcr. negative control 0.00
S24 Signature vs. occupancy tRNAArg_UCG Novel site 1.01
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