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Zusammenfassung

Vergröberung von frequenzabhängigen Phänomenen
und “Gedächtnis” in der Physik weicher Materie

In den letzten Jahren hat sich der Fokus in der Physik weicher Materie stark von
Gleichgewichts- zu Nichtgleichgewichtssystemen verschoben. Das vielleicht beste
Beispiel dafür ist die derzeitige Popularität von aktiven Teilchen und Mikroschwim-
mern in der Forschung. Eine wichtige Eigenschaft von Prozessen im Nichtgleichge-
wicht ist ihre Abhängigkeit von den dynamischen Eigenschaften des Systems. Dies
verkompliziert die Herleitung von vergröberten Modellen erheblich, da diese automa-
tisch eine stark veränderte Dynamik aufweisen. In dieser Doktorarbeit untersuchen
und vergröbern wir frequenzabhängige Phänomene in der Physik weicher Materie.
Die in dieser Arbeit vorgestellten Methoden sind weiterhin auf Gleichgewichtssys-
teme beschränkt, allerdings stellen sie einen wichtigen Schritt zur Entwicklung von
Vergröberungstechniken von Nichtgleichgewichtssimulationen dar.

Im ersten Teil dieser Doktorarbeit werden die dielektrischen Eigenschaften von
Polyelektrolyten in ionischer Lösung analysiert. Wir können zeigen, dass die
elektrische Polarisierbarkeit stark von der Qualität des Lösungsmittels abhängt.
Aufgrund der überlappenden Relaxationszeitskalen beobachten wir außerdem eine
nicht-monotone Frequenzabhängigkeit der dielektrischen Eigenschaften des Polyelek-
trolyts. Im Anschluss werden die hydrodynamischen Wechselwirkungen von gelösten
Nanokolloiden untersucht. Auch diese Studie zeigt, dass physikalische Prozesse
auf unterschiedlichen aber überlappenden Zeitskalen “Gedächtniseffekte” im Sys-
tem hervorrufen. Zum Beispiel erzeugt die Bewegung eines Nanokolloids Wirbel
im Lösungsmittel, welche seine eigene Dynamik und die Bewegung benachbarter
Kolloide beeinflussen. Diese “Gedächtniseffekte” können mithilfe der verallge-
meinerten Langevin Gleichung beschrieben werden, indem man frequenzabhängige
Reibungsfunktionen und zeitkorrelierte Zufallskräfte einführt.

Um diese Erkenntnisse für dynamisches Vergröbern zu nutzen, haben wir zwei
neuartige Methoden entwickelt: Die “iterative Gedächtnisrekonstruktion”, um sys-
tematisch Gedächtnisfunktionen von mikroskopischen Systemen herzuleiten, und
die “verallgemeinerte Brownsche Dynamik”, um die verallgemeinerte Langevin
Gleichung zu lösen. Die Kombination dieser Techniken ermöglicht die Erzeu-
gung eines vergröberten nicht-Markovschen Modells der gelösten Nanokolloide,
welches die Dynamik des zugrundeliegenden mikroskopischen Systems perfekt repro-
duziert. Die Besonderheit dieses Modells ist, dass es nicht nur die Selbstdiffusion
der Kolloide nachstellt, sondern auch die korrekten Kreuzkorrelationen zwischen
unterschiedlichen Teilchen integriert. Zusätzlich können wir zeigen, dass die Zeitin-
tegration dieses transferierbaren vergröberten Modells etwa 104 Mal schneller ist
als die ursprünglichen Molekulardynamik-Simulationen.
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Abstract

Coarse-Graining Frequency-Dependent Phenomena
and Memory in Soft Matter Systems

In recent years, the focus of soft matter science has shifted more and more from
equilibrium to non-equilibrium systems. One of the best examples for this trend is
the popularity of active matter and microswimmers in modern research. One major
feature of non-equilibrium processes is their strong dependence on the dynamical
properties of the system. This complicates the construction of coarse-grained models
for these systems, because the coarse-graining inherently changes their dynamics.
In this thesis, we investigate and coarse-grain frequency-dependent phenomena
in soft matter science. The methods proposed in this work are still restricted to
systems in equilibrium, however, they represent an important first step to develop
coarse-graining techniques for non-equilibrium simulations.

In the first part of this thesis we investigate the dielectric properties of flexible
polyelectrolytes in ionic solution. We can demonstrate that the electric polarizability
strongly depends on the solvent quality. Due to the overlapping of different relaxation
times, it is also revealed that the dielectric properties depend non-monotonically on
the frequency of the externally applied electric field. Afterwards, the hydrodynamic
interactions of dispersed nanocolloids are analyzed. Similar to the observation
made for the previous system, the study shows that physical processes on different
but overlapping time scales induce significant memory effects in the system. The
movement of a nanocolloid in dispersion, e.g., generates fluid vortices that affect its
own dynamics and the movement of other nearby nanocolloids at later times. These
memory effects can be described with a generalized Langevin equation by including
frequency-dependent friction kernels and time-correlated stochastic forces.

To utilize these insights for dynamic coarse-graining, we develop two novel methods:
the “iterative memory reconstruction” to systematically determine memory kernels
from microscopic systems, and the “generalized Brownian dynamics” technique to
integrate the generalized Langevin equation. The combination of these tools enables
the construction of a non-Markovian coarse-grained model for the dispersed nanocol-
loids that perfectly reproduces the dynamics of the underlying microscopic system.
The distinct feature of this model is that it not only includes the hydrodynamic
self-diffusion of the colloids but it also incorporates the correct frequency-dependent
pair-correlations between different particles. Additionally, we can show that the
time-integration of this transferable coarse-grained model is roughly 104 times faster
than the original molecular dynamics simulations.
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Meinen Großeltern gewidmet.

“Das erste, das der Mensch im Leben vorfindet, das letzte, wonach er die Hand
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1
Introduction

The field of soft condensed matter includes the study of liquids, polymers and

colloids. All these systems have in common that their dynamics is governed by

physical processes on very different length and time scales. Brownian motion is

a characteristic example of this feature. It describes the dynamics of colloids or

macroscopic particles in dispersion. While the microscopic dynamics of the fluid

particles happen on time scales of picoseconds, the diffusion time of the colloid is

between nanoseconds and seconds, depending on the size of the dispersed particle.

Bridging the gap between these scales is a major challenge when studying Brownian

motion or other soft matter phenomena with computer simulations. The method

used to approach this problem is called coarse-graining.

Coarse-graining describes the process of reducing the number of degrees of freedom

of a system. In the example of Brownian motion, the positions of the colloids are

relevant and not the detailed configurations of the fluid particles. This suggests the

use of an effective model with the colloid positions as the coarse-grained variables

and replace the solvent particles by effective equations of motion. Such a model

is called implicit solvent model and is widely used in soft matter physics. In most

implicit solvent models, the fluid is replaced by effective potentials that restore the

correct structural properties of the coarse-grained variables. This process, however,

often changes the dynamical properties of the system significantly. In colloidal

systems, for example, the movement of a colloid induces a fluid flow which indirectly

affects its own dynamics and that of other colloids. This long-range interaction is

called hydrodynamic interaction and it crucially influences various physical processes

in soft matter science, including Brownian motion. To construct coarse-grained

models with meaningful dynamics, it is therefore necessary to go beyond mere static

pair-potentials.

Various techniques have been proposed in the literature to preserve the correct

dynamical properties in a coarse-grained model. Basically, they can be divided

into two fundamentally different approaches. The first approach is to introduce

pseudo particles that interact with the coarse-grained variables and thus restore the

hydrodynamic interactions. Examples are smoothed particle hydrodynamics (SPH),

dissipative particle dynamics (DPD), lattice Boltzmann (LB) or multi particle

collision dynamics (MPCD). In the second approach, the equations of motion of

the coarse-grained particles are manipulated in such a way that the important
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dynamical properties of the underlying system are restored. This class includes

techniques like Stokesian dynamics or Brownian dynamics (BD). These approaches

have the advantage of being computationally efficient, since the number of degrees

of freedom is small. However, they are based on the assumption of time scale

separation. This means it is assumed that the dynamics of the fluid particles are

much faster than the dynamics of the coarse-grained variables. This is a reasonable

assumption for colloidal dispersions with micrometer-sized colloids, however it is

questionable for smaller colloids, proteins or polymers. In general, coarse-graining

frequency-dependent phenomena is difficult, since the dynamics strongly depend on

the interplay between different time scales and a separation cannot be assumed.

In this case, it is necessary to consider coarse-grained equations of motion with

non-Markovian time-dependent interactions. Such a coarse-grained model can be

constructed on the basis of the Mori-Zwanzig formalism.

The Mori-Zwanzig formalism was introduced in the 1950s by Robert Zwanzig and

Hajime Mori to understand the principles of systematic coarse-graining theoret-

ically. Their formalism applies projection operators to divide the whole set of

dynamical variables into relevant, coarse-grained, variables and irrelevant variables.

For Brownian motion, for example, the relevant variables would be the positions

and momenta of the colloids and the irrelevant variables would be the fluid par-

ticles. The result of the Mori-Zwanzig formalism is a non-Markovian stochastic

differential equation called “generalized Langevin equation” (GLE). The GLE in-

cludes frequency-dependent friction functions, called memory kernels, to model

the frequency-dependent dynamical properties of the underlying system. Although

this formalism has been known since 60 years, only in recent years people started

to use it as a framework to construct coarse-grained models. However, most of

the proposed techniques are restricted to one or two particles and cannot be used

to construct realistic models of soft matter systems. The reasons for this lack of

suitable methods are first, the difficulties in the numerical integration of the GLE in

many-body systems, and second, the efficient determination of transferable memory

kernels from first principles.

The aim of this thesis is to approach the two problems stated above. For this purpose

two methods have been developed: the “iterative reconstruction of memory kernels”

and “generalized Brownian dynamics” techniques. It will be shown that this toolkit

is very versatile and allows for a general and transferable coarse-graining procedure.

This thesis thus combines the best of both worlds: Computational efficiency as

well as correct dynamics even when a complete separation of time scales cannot be

assumed. To show the range of possible applications of these methods, two model

systems will be presented which are governed by frequency-dependent phenomena.

The first system is a polyelectrolyte in ionic solution driven by an AC electric

field. The polarizability of the polyelectrolyte strongly depends on the dynamical

properties of the system and the frequency of the external field. The second system

is a nanocolloid dispersion. The overlapping of fluid and colloid relaxation times
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leads to strong memory effects in the hydrodynamic interactions. The latter system

will be chosen for a first application of the proposed coarse-graining techniques.

The first part of this thesis is a general literature review of frequency-dependent

phenomena in dispersions. Chapter 2 gives an introduction to rheology and fluid

dynamics. These basics are then used to describe the frequency-dependent hydro-

dynamic interactions between colloids in Chapter 3. In Chapter 4, polyelectrolytes

in ionic solution are discussed. This includes a presentation of the electrokinetic

equations that can be used to describe the frequency-dependent polarizability of

polyelectrolytes. Afterwards, the principles of static and dynamic coarse-graining

are explained in Chapter 5. In Chapter 6, the relevant simulation methods are

introduced: DPD, non-Markovian DPD and the ConDiff algorithm.

In the second part, the frequency-dependent polarizability of polyelectrolytes is

investigated. So far, all simulation studies assumed stiff, rod-like particles as models

for the polyelectrolytes. However, this assumption is questionable, especially for the

application to proteins or DNA, since their chain length is much larger than their

persistence length. Therefore, the effect of solvent quality on the polarizability of

flexible polyelectrolytes is analyzed in the present work. First, the coarse-grained

simulation model for the polyelectrolyte in ionic suspension is described in Chapter

7. Afterwards, it will be shown in Chapter 8 that the polarizability depends non-

monotonically on the frequency of the applied AC electric field. In Chapter 9, the

main results for the dependence of the polarizability on chain length and solvent

quality are reported. Chapter 10 summarizes and concludes this part.

The third and main part of this thesis presents the newly developed “iterative re-

construction of memory kernels” and “generalized Brownian dynamics” techniques,

applied to nanocolloid dispersions. To derive theoretical memory kernels that

describe hydrodynamic interactions between the colloids, the transport coefficients

of the dispersion medium have to be determined. Chapter 11 therefore discusses

generalized Green-Kubo relations to determine the shear and bulk viscosity of

complex fluids. In Chapter 12, the iterative reconstruction of memory kernels from

simulation data is presented. With this technique, the theoretically derived memory

kernel can be compared to results from molecular dynamics simulations. Afterwards,

the “generalized Brownian dynamics” algorithm is introduced in Chapter 13. Ap-

plying the proposed methods, the frequency-dependent hydrodynamic interactions

between nanocolloids can be analyzed in-depth in Chapter 14. This chapter also

includes an investigation of the efficiency and transferability of the constructed

non-Markovian coarse-grained models. In Chapter 15, conclusions are drawn and

an outlook for future work is given.
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Part I

Frequency-Dependent Phenomena

in Dispersions
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2
Fluid Dynamics

Fluid dynamics is the study of flows in gases or liquids. Historically, scientists

wanted to understand the fundamental properties of moving liquids which led to

discoveries like Bernoulli’s principle. In the 19th century advances in mathematics

finally enabled the derivation of the basic equations that govern the dynamics of

liquids and it was observed that these equations are based on only a few important

principles.1;2 Today, fluid dynamics is a huge field of research including topics

like aerodynamics that have many important applications, e.g., in the automobile

industry (see Figure 2.1).

The main principle behind fluid dynamics is the continuum hypothesis, stating that

the fluid is described by effective, hydrodynamic fields instead of single particles.

This assumption is justified if the mean free path λf of the fluid is much smaller than

the relevant length scales in the system (e.g. the size of an immersed particle) and

if the mean collision time τc is much shorter than the relevant time scales. However,

it has been observed that the description of fluids in terms of hydrodynamic fields

is still applicable on very small length and time scales, even if the above conditions

are not strictly fulfilled.5 The analysis that will be presented in Chapter 14 of this

thesis is an example for this observation.

The hydrodynamic fields that are most commonly used for fluid dynamics are the

particle density ρ(r, t), the velocity field u(r, t), and the energy density e(r, t), which

are all related to macroscopically conserved quantities. To derive the equations of

Figure 2.1: Aerodynamic analysis of a race car and a cyclist. Small changes in the shape
of the object can lead to significant turbulences which make an optimization of air drag
inevitable for the construction of fast moving vehicles. Pictures taken from Ref. 3 (left)
and Ref. 4 (right).
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motion for these hydrodynamic fields, it is necessary to utilize two fundamental

relations: the conservation laws and the constitutive relations. The conservation

laws are based on the aforementioned relation between hydrodynamic fields and

conserved macroscopic quantities. For example, it is assumed that the total mass

M of the fluid is conserved. Therefore, the particle density ρ(r, t) in an arbitrary

volume can only change in time if a flow of particles out of this volume emerges.

Similarly, the total linear momentum P , and the total energy E are conserved.

Consequentially, three fundamental conservation laws can be derived,

∂

∂t
ρ(r, t) +∇ · Jρ(r, t) = 0, Jρ(r, t) = ρ(r, t)u(r, t), (2.1)

∂

∂t
Jρ(r, t) +∇ ·Π(r, t) = 0, Πij = ρ(r, t)ui(r, t)uj(r, t) + σij(r, t),

∂

∂t
e(r, t) +∇ · Je(r, t) = 0, Je(r, t) = (e(r, t) + p(r, t))u(r, t) + J ′e(r, t),

with particle flux Jρ(r, t), momentum flux tensor Π(r, t), and energy flux Je(r, t).

To close these equations, it is necessary to find explicit expressions for the dissipative

stress tensor σ(r, t) and the dissipative energy flux J ′e(r, t). These dissipative

currents depend on the microscopic interactions of the fluid particles and are thus

important for modeling distinct fluids. The equations for these currents are called

constitutive relations. In this thesis we investigate isotropic, compressible Newtonian

fluids. Under these assumptions, the constitutive relations are2

σij(r, t) = p(r, t)δij +

(
2

3
η − ζ

)
∇ · u(r, t)δij − η (∂iuj + ∂jui) , (2.2)

J ′
e(r, t) = u(r, t) · σ(r, t)− λ∇T (r, t), (2.3)

with thermodynamic pressure p(r, t), shear viscosity η, bulk viscosity ζ, heat

conductivity λ and temperature T (r, t).

By combining these relations, the Navier-Stokes equations can be derived. However,

solving these equations is very complicated, especially due to their non-linearity.

Finding general solutions of the Navier-Stokes equations for arbitrary initial condi-

tions is in fact one of the Millennium Price Problems.6 In the following, we will be

using a simplified version: the linearized Navier-Stokes equations. These equations

are a suitable approximation of the Navier-Stokes equations if the velocities in

the system are small and a non-turbulent flow can be assumed. For the system

investigated in the present work, this assumption is well justified. The linearized

Navier-Stokes equations read as follows,

ρe
∂

∂t
u(r, t) = −∇σ(r, t) + F

(1)
1 (r, t),

∂

∂t
ρ(r, t) = −ρe∇ · u(r, t), (2.4)

with uniform equilibrium density of the fluid ρe, external force density F
(1)
1 (r, t),

∇p(r, t) = c2
0∇ρ(r, t), and the speed of sound c0. To solve the linearized Navier-
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Stokes equations analytically, we determine the Fourier transform of velocity field,

û(r, ω) =

∫ ∞
−∞

eiωtu(r, t), (2.5)

particle density ρ̂(r, ω) and external force density F̂
(1)
1 (r, ω). In Fourier space, the

linearized Navier-Stokes equations transform to7

(−iωρe − η∆)û(r, ω) = −µ∇ρ̂(r, ω) + F̂
(1)
1 (r, ω), (2.6)

(−ω2ρe − c2∆)ρ̂(r, ω) = −∇ · F̂ (1)
1 (r, ω). (2.7)

Here, we have introduced the parameter µ(ω) and the frequency-dependent speed

of sound c(ω),

µ(ω) = c2
0 − iω

(
1

3
η + ζ

)
ρ−1
e , (2.8)

c(ω)2 = c2
0 − iω

(
4

3
η + ζ

)
ρ−1
e , (2.9)

with Im(c) > 0. Equations (2.6) and (2.7) can be solved using the Green’s function

formalism.8 The final result for the Fourier transform of the velocity field û(r, ω)

induced by an external force density F
(1)
1 (r, ω) published by Mazur et al.7 is

û(r, ω) =

∫
dr′
(
Gtr(r − r′, ω) + α−2 ∂

∂r′
∂

∂r′
(2.10)

×
[
η−1c2Gl(r − r′, ω)−Gtr(r − r′, ω)

] )
· F (1)

1 (r′, ω),

with longitudinal and transversal Green’s functions,

Gtr(r, ω) = (4πηr)−1e−α(ω)r, (2.11)

Gl(r, ω) = (4πc(ω)2r)−1e−iωr/c(ω), (2.12)

distance r = |r|, and α(ω) = (−iωρe/η)
1
2 , Re(α) > 0. The origin of the force

density F
(1)
1 (r, ω) can, for example, be the movement of a colloid immersed in the

fluid. The induced velocity field û(r, ω) then affects the movement of other colloids

and thus mediates hydrodynamic interactions between colloids. In Chapter 3 we

will utilize the equations presented in this section to derive theoretical predictions

for these hydrodynamic interactions.

To describe a certain Newtonian fluid, it is necessary to determine the transport

coefficients of the fluid, namely the shear viscosity η and the bulk viscosity ζ.

9



2.1 Transport coefficients and rheology

The shear viscosity η is a measure for the resistance of the fluid against deformation

of shape. It thus determines how much energy is dissipated in the fluid if layers of

different flow velocities emerge. Therefore, it is an important quantity to describe

flows in the fluid close to boundaries or immersed particles. Additionally, it describes

the propagation of the transversal shear waves (see Eq. (2.11)). Contrarily, the bulk

viscosity ζ is related to the movement and damping of longitudinal sound waves (see

Eq. (2.12)). It is thus a measure for the resistance of the fluid against deformation of

volume. In many studies, the bulk viscosity is neglected due to incompressibility of

the fluid. However, on small time scales, the propagation of sound waves does matter,

even in liquids that are generally assumed to be approximately incompressible (see

also Chapters 3 and 14).

In computer simulations two fundamentally different approaches exist to determine

these transport coefficients. The first one is creating a non-equilibrium state

by externally inducing a flow and calculating the transport coefficients by direct

measurements (e.g., the flow velocity or the dissipative stress tensor). These

methods are generally referred to as non-equilibrium molecular dynamics (NEMD)

methods.9–13 The other option is to evaluate equilibrium fluctuations and use the

well-known Green-Kubo14;15 or Einstein-Helfand relations.16 In the main part of this

thesis we will discuss the second option in detail, for NEMD we refer to Attachment

B and Ref. 17.

The standard Green-Kubo formulas for the shear viscosity η and the bulk viscosity

ζ used in the literature are

η =
V

kBT

∫ ∞
0

dt 〈σxz(0)σxz(t)〉0 , (2.13)

ζ =
V

kBT

∫ ∞
0

dt 〈Iζ(0)Iζ(t)〉0 , (2.14)

where σxz(t) are the off-diagonal components of the volume-averaged dissipative

stress tensor, and

Iζ(t) =
1

3

∑
α

[σαα(t)− 〈σαα〉0] , (2.15)

with the diagonal-components σαα(t) of the dissipative stress tensor and the time-

average 〈...〉0. These equations were derived by Green14 and Kubo15 and have

found a huge variety of applications (see, e.g., Refs. 18–20). To derive the Green-

Kubo relations, it is necessary to understand the coarse-graining procedure from a

microscopic system of particles i at positions ri with velocities vi to an effective

system described by the hydrodynamic fields, ρ(r, t), u(r, t), and e(r, t). For this

coarse-graining procedure, the Mori-Zwanzig projection operator formalism can be
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utilized (for details see Section 5.2). This formalism defines projection operators to

project from the full space of dynamical variables (which are the trajectories of the

particles) onto a subspace that is given by the dynamics of the hydrodynamic fields.

In this way it can be shown that the Fourier transform of the transverse particle

flux J⊥ρ (r, t) follows the non-Markovian evolution equation21;22

lim
k→0

d

dt
J⊥ρ,z(kx, t) =

−k2
x

3NkBT

∫ t

0

ds 〈σxz(kx, s)σxz(−kx, 0)〉0 J⊥ρ,z(kx, t−s)+ikxσxz(kx, t),

(2.16)

with wavevector k and the Fourier transforms,

J⊥ρ,z(kx, t) =

∫
dxJ⊥ρ,z(x, t)e

ikxx, (2.17)

σxz(kx, t) =

∫
dxσxz(x, t)e

ikxx. (2.18)

For simplicity, we have defined the coordinate system such that k = kxex and the

transverse particle flux in z-direction, obviously related equations can be derived for

J⊥ρ,z(ky, t) and J⊥ρ,y(kx, t). The conservation laws introduced in this chapter indicate

that the left-hand side of Eq. (2.16) corresponds to a momentum flux Πxz in the

fluid,

lim
k→0

d

dt
J⊥ρ,z(kx, t) = ikΠxz. (2.19)

Similarly, the transverse particle flux J⊥ρ,z(kx, t) is related to the strain rate,

γ̇xz = − ikJ⊥ρ,z(kx, t)

ρ
. (2.20)

Eq. (2.16) therefore corresponds to a constitutive relation, Πxz = −ηγ̇xz. This

indicates that the term 〈σxz(kx, t)σxz(−kx, 0)〉0 is connected to the shear viscosity

η and indeed, the Green-Kubo relations can be derived with this formalism. An

extended and complete derivation can be found in the article by Ernst et al.21 and

in Ref. 22.

For the application of the Mori-Zwanzig formalism it is necessary that the time

evolution of the system is defined by a Hermitian Liouville operator L. This also

requires the forces to be invariant under time reversal symmetry .23 For dissipative,

velocity-dependent forces that are used in many simulation techniques (see, e.g.,

Section 6.1) the symmetry is, however, broken, since the velocity changes the sign

under time inversion. In Chapter 11 we will therefore introduce a generalized

Green-Kubo relation that can be applied to fluids with dissipative and stochastic

forces.
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3
Colloids and Hydrodynamic

Interactions

Colloidal systems play an important role in physics, chemistry and medicine. In

physics, they are often used as a model for atomic systems, for example to study

nucleation,25 crystallization26;27 or melting phenomena.28;29 The big advantage over

atomistic systems is the huge amplification of relevant length and time scales. This

allows the investigation of colloidal systems with visible light on time scales of the

order of milliseconds making single-particle tracking possible (see Fig. 3.1). Addi-

tionally, colloids are subject to Brownian motion which makes them an interesting

model system in the field of statistical physics. In chemistry, the synthesis and

characterization of colloids is studied extensively, in particular because of their ap-

plications in inks, emulsions or composite materials. Recently, colloids also received

(a) The nucleation and growth of colloidal crystals induces bragg reflections in
the visible spectrum. The time between two photographs is 3 min.

(b) Single-particle tracking of an active colloidal Janus particle under the influence
of three point traps. Picture taken from Ref. 24.

Figure 3.1: Examples for experiments with colloids that are possible due to the huge
amplification of length and time scales of colloidal dispersions compared to atomistic
systems.
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an increasing amount of attentions in the field of nanomedicine. New technologies,

for example, could allow for the embedding of genetic material in nanoparticles and

thus the controlled manipulation of genetically modified cells.30

The category “colloid” includes particles of very different length scale, type and

surface structure. The length scales range from nanometers to micrometers, leading

to completely different static and dynamical properties (see also Tab. 3.1). Colloids

can have a significant surface charge and therefore a strong polarizability, which can

for example be utilized to grow two-dimensional crystals.31 In recent years active

colloids have been investigated extensively to model dynamic phase separation and

swarming behavior.32;33 The surface of colloids can be very smooth, leading to nearly

perfect hard-core interactions, which makes it possible to perform experiments with

hard spheres29;34 and testing several theories known from statistical mechanics35

and simulations.36;37 But various studies have also been performed with thermo-

responsive polymer-coated colloids, leading to temperature-dependent short-range

attraction between the colloids. This allows the investigation of reversible colloid

aggregation and absorption.38;39

The focus of this thesis is on an important dynamical feature of colloidal dispersions,

viz. their hydrodynamic interactions. The movement of colloids in a fluid induces a

disturbance of the velocity field that affects the movement of themselves and of other

colloids. Therefore, hydrodynamic interactions strongly depend on the interplay

of colloid and fluid dynamics. The relevant time scales for colloid (Rc ≈ 100 nm)

and nanocolloid (Rc ≈ 1 nm) dynamics in water are presented in Tab. 3.1. For

the large colloids the compressibility of the fluid does not play an important role,

since sound waves are propagated on time scales much smaller than the Brownian

relaxation time. This picture completely changes when considering nanocolloids.

Now, three different time scales overlap, which leads to significant memory effects

in the dynamics. The best known memory effect is hydrodynamic backflow, which

is a consequence of the non-Markovian self-interaction of colloids in dispersion.

The origin of hydrodynamic backflow are fluid vortices, which are induced by the

movement of a colloid and interact with it at later times. The long-time tail in

the velocity auto-correlation function observed by Alder et al.40 is one important

consequence of this hydrodynamic self-interaction (see Section 5.3). The pair-

interactions of nanocolloids are also governed by memory effects. The theoretical

and simulation analysis of these pair-memory effects were part of my master thesisa

and published in Ref. 5. The main results of this work will be shortly recapitulated

on the following three pages.

Using the solution of the linearized Navier-Stokes equations, derived in Chapter

2, allows to derive the velocity field û(r, ω) created by a point force F̂
(1)
1 (r, ω) =

aMy cumulative master thesis was written as part of the Fast-Track program of the Department
of Physics at the University of Mainz. Therefore, the work presented in this paper was done in
summer 2017, parallel to the research presented in this PhD thesis.
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Time scale Colloid Nanocolloid

Sonic time τs = Rc/c0 10−10 s 10−12 s

Kinematic time τv = ρR2
c/η 10−8 s 10−12 s

Brownian relaxation time τB = ρR2
c/η 10−8 s 10−12 s

Colloid diffusion time τd = ηR3
c/kBT 10−3 s 10−9 s

Table 3.1: Different time scales that are relevant in colloidal dispersions. The time scales
of colloids (Rc ≈ 100 nm) are compared to nanocolloids (Rc ≈ 1 nm). The parameters in
SI units are derived in Appendix A. Table adapted from Ref. 5.

F̂
(1)
1 (ω)δ(r) acting on the center of particle 1,

û(r, ω) = − 1

8πη

[
A(r, ω)F̂

(1)
1 (ω) +B(r, ω)(F̂

(1)
1 (ω) · n)n

]
, (3.1)

with n = r/|r|. The interaction parameters A(r, ω) and B(r, ω) depend on the

longitudinal and transversal modes of the fluid,

A(r, ω) = Al(r, ω) + Atr(r, ω), (3.2)

B(r, ω) = Bl(r, ω) +Btr(r, ω), (3.3)

Al(r, ω) = −
(

2iω

r2α2c
+

2

r3α2

)
e−iωr/c, (3.4)

Atr(r, ω) =

(
2

r
+

2

αr2
+

2

α2r3

)
e−αr, (3.5)

Bl(r, ω) =

(
−ω

2

c2

2

α2r
+

6iω

r2α2c
+

6

r3α2

)
e−iωr/c, (3.6)

Btr(r, ω) = −
(

2

r
+

6

αr2
+

6

α2r3

)
e−αr. (3.7)

The velocity field created by the movement of the colloids can now be decomposed

into basic velocity fields described by Eq. (3.1). This decomposition is possible due to

the linearity of the underlying equations.41–43 In the method of reflections the velocity

field created by particle 1 induces the friction force F̂
(1)
2 (ω) = −γ̂(ω)(v̂2 − û(r, ω))

on particle 2. Here, γ̂(ω) denotes the frequency-dependent friction of a solitary

sphere in a flow û(r, ω). Additionally, the velocity field is reflected and applies a

similar force on particle 1. With every reflection, the amplitude of the velocity field

is reduced and the sum of forces describes the hydrodynamic interactions between

the colloids.

The final result for the force F̂1(R,ω) on particle 1 induced by the velocities v̂1(ω)

and v̂2(ω) of particles 1 and 2, respectively, can be expressed as

F̂1,‖(R,ω) = −γ̂11,‖(R,ω)v̂1,‖(ω)− γ̂12,‖(R,ω)v̂2,‖(ω), (3.8)

with colloid distance R = |R12|. The subscript (‖) stands for the contributions

parallel to the line-of-centers R12 between particles 1 and 2. Similar equations can
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be derived for the perpendicular direction (⊥). The frequency-dependent self- and

pair-memory kernels are given by

γ̂11,‖(R,ω) =
γ̂(ω)

1−D‖(R,ω)2
, (3.9)

γ̂12,‖(R,ω) = − γ̂(ω)D‖(R,ω)

1−D‖(R,ω)2
, (3.10)

and the interaction functions are defined as

D‖(R,ω) =
γ̂(ω)

8πη
(A(R,ω) +B(R,ω)) , (3.11)

D⊥(R,ω) =
γ̂(ω)

8πη
A(R,ω). (3.12)

This result is valid for small radius to distance ratios Rc/R. It can be further

improved, by considering appropriate boundary conditions for the velocity at the

surface of the sphere (see Refs. 5; 43 for details). Our theoretical results refer to this
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Figure 3.2: Time-
dependence of the
hydrodynamic memory
kernels for different
colloid distances R. The
input parameters roughly
correspond to a nanocol-
loid (Rc ≈ 1 nm) in
water (see Appendix A).
The upper panel shows
the self-memory kernel
and the lower panel
the pair-memory kernel.
Figure adapted from
Ref. 5.
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quantitatively improved theory, however, qualitatively the results do not change

significantly.

Figure 3.2 illustrates the Fourier transform of the frequency-dependent memory

kernels describing the hydrodynamic interaction of nanocolloids. The response

function of the solitray sphere, γ̂(ω), in a compressible fluid was derived by Mazur

et al.7 The input parameters that are chosen to evaluate the results from fluid

dynamics are equivalent to the ones of the nanocolloid dispersion which is studied

in this thesis (see Chapter 5 and Tab. 5.2). The upper panel of Figure 3.2 shows the

self-interaction of the colloids. The curves visualize hydrodynamic backflow, which

becomes apparent through the negative values in the self-memory kernel. It can be

observed that nearby colloids have a significant influence on the self-diffusion of a

nanocolloid in dispersion. It should be mentioned that the values for t < 0.25 τ are

not comparable to computer simulations or experiments, since the particle-character

of the fluid molecules significantly influences the dissipative force on the nanocolloids

on small time scales. These high-frequency interactions cannot be modeled within

the fluid dynamics framework because of the continuum hypothesis (see Chapter 2).

The lower panel of Figure 3.2 visualizes the pair-interactions of the nanocolloids via

sound waves that are induced by the motion of the colloids. This can for example

be shown by calculating the propagation velocities of these waves, and proving that

they are equivalent to the speed of sound c0 in the fluid. As a major result of my

master thesis it could be shown that on this scale the hydrodynamic pair-interaction

is actually dominated by sound waves.

In this thesis we will go further and establish a coarse-graining procedure that is

able to construct effective models which precisely reproduce the presented results.

This will be the topic of Part III.
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4
Polyelectrolytes and Electric

Polarizability

Understanding the physical behavior of polyelectrolytes became increasingly impor-

tant since proteins and DNA were brought into the focus of biology and biotechnology.

For example, one of the key elements of a supervised gene transfer is a controlled

separation, manipulation and navigation of DNA molecules. Dielectrophoresis is

one possibility to achieve the former, however, it strongly depends on the dielec-

tric properties of the DNA.44;45 Therefore, it is of large interest to investigate

dielectric properties of polyelectrolytes and understand the conformation- and

frequency-dependence of the electric polarizability.

Polyelectrolytes in ionic solution are characterized by many different relevant length

and time scales. The length scales, for example, range from the diameters of

the solute particles and ions over the size of the electric double layer around the

polyelectrolyte to the radius of gyration of the polyelectrolytes. The interplay of

these different scales complicates the modeling of polyelectrolytes in ionic solution

and makes it difficult to derive theoretical predictions for the electric polarizability.

To give an insight into the system, we will therefore first discuss the dynamics and

dielectric properties of charged colloids.46–49

It is well known that charged colloids in ionic solution are surrounded by an electric

double layer (see Figure 4.1). The thickness of the double layer is given by the

Debye screening length,

λD =

[
4πλB

∑
i

z2
i c

0
i

]− 1
2

. (4.1)

Here, λB = e2/(4πεmkBT ) is the Bjerrum length (λB ≈ 0.7 nm in water), zi and c0
i

the valency and bulk concentration of ion species i, respectively, and εm the medium

permittivity. The properties of the electric double layer can be well described within

the Poisson-Boltzmann theory since dynamical effects do not play a role.

However, the situation gets more complicated if an external electric field drives the

system out of equilibrium. Now, the interplay of ion and colloid mobilities strongly

effects the dynamics of the system. In fact, the mobility of the ions is not constant,

19



Figure 4.1: Sketch of the elec-
tric double layer that surrounds a
charged colloid in ionic solution.
The Stern layer includes condensed
counterions and the slipping plane
uncondensed ions with high mobility.
Due to the aggregation of counteri-
ons around the colloid, its charge is
effectively screened. Figure adapted
from Ref. 50.

but depends on the distance of the ions to the colloid surface.49;51 Therefore, the

different constituents of the electric double layer will react very differently to the

external field. To describe this system it is necessary to combine three different

fundamental equations: the Poisson equation, the Nernst-Planck equation and the

Navier-Stokes equations. The Poisson equation defines the electric field created

by the charged particles. The Nernst-Planck equation describes the convection

and diffusion of ions in a fluid flow and their dynamics in a given electric field.

It is therefore sometimes called convection-diffusion equation. The Navier-Stokes

equations describe the hydrodynamic interactions in the ionic solution (see also

Chapter 2). Combining these three equations leads to the electrokinetic equations,

0 = ∇2ψ +
e

εm

∑
i

zici, (4.2)

0 = ∇ ·
(
Di∇ci +

Di

kBT
ezi(∇ψ)ci − uci

)
, (4.3)

0 = −∇p+ η∇2u− e(∇ψ)
∑
i

zici, (4.4)

0 = ∇ · u. (4.5)

Here, we assume an incompressible flow and introduce the electrostatic potential ψ

as well as the diffusion constant Di of ion species i. These equations can be solved

numerically using finite-element techniques.51–53 Additionally it is possible to apply

appropriate boundary conditions to consider large molecules, like colloids, in ionic

solution.

If a charged colloid is immersed in ionic solution and an external electric field is

applied, several polarization mechanisms play an important role. For very high

frequencies the permanent dipole moments of the water molecules are reorientated

in the electric field. The characteristic frequency of this orientation polarization is

in the gigahertz regime. Due to the non-polarity of the solvent particles used in

our simulations (see Chapter 7), this contribution cannot be captured in the model,

however, the orientation time scales of water do not overlap with the polarization

time scales that will be discussed in the following. This effect would therefore just
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be an additive factor to the other polarization mechanisms. At medium frequencies

the electric double layer will be deformed, because the counterions in the solution

are dragged in the opposite direction of the charged colloid. This deformation

polarization leads to the emergence of a strong dipole moment around the colloid

on a time scale τuc. The field-induced ion concentration gradient, however, leads

to diffusion of both co- and counterions. This diffusion polarization reduces the

strength of the induced dipole on a time scale τd, that is larger than the deformation

time scale τuc. For colloids we expect an additional contribution to the polarizability

due to steric effects, called volume polarization. Since the ions cannot pass the

hard-core colloid, the anions will accumulate on the side facing the direction of the

external field, and the cations on the opposite side.

The polarizability of charged colloids has been extensively studied in the litera-

ture.46–49;54;55 Zhou et al. compared in Ref. 49 simulation results to results from

Maxwell-Wagner-O’Konski (MWO) theory46;47;54 and from numerically solving

the electrokinetic equations (using the software MPEK52). The Maxwell-Wagner-

O’Konski theory models the electric polarizability by introducing a frequency-

dependent conductivity K(ω), called the Clausius-Mossotti factor. This factor is

related to the difference between the frequency-dependent dielectric constants of

the colloid and the ions (for details, see Appendix A in Ref. 49). In Figure 4.2

results from Zhou et al.49 for the polarizability of a charged colloid in ionic solution

are presented. The system chosen in the reference is a colloid of size R = 3σ and

charge Q = 50 e in a DPD fluid (see Section 6.1). The ions are modeled by assigning

a unit charge to some DPD particles and adding a hard-core repulsion to avoid

accumulation of oppositely charged ions. The detailed parameters of the system can

be found in Ref. 49. Since the frequency-dependence shown in this figure is universal

for very different systems, the precise values are not of importance for this thesis.

The figure clearly shows that the MWO theory gives a qualitatively good prediction

for the polarizability. Especially the transition frequency ft = 0.1 τ−1, where the

dielectric loss has a maximum (corresponding to a minimum in the imaginary part

α′′ of the polarizability), is modeled very accurately, considering the simplicity of

the MWO theory. This transition is also called anomalous dispersion.56 The MWO

theory, however, fails to describe the non-trivial behavior of the polarizability at

small frequencies because it does not consider the diffusion of ions on the time scale

τd. In the zero-frequency limit the diffusion of ions significantly reduces the electric

polarizability. When increasing the frequency of the electric field to f ≈ 0.01 τ−1

its period becomes larger than the diffusion time τd and an increase in the electric

polarizability compared to the zero-frequency limit is observed. This non-monotonic

frequency dependence can be described by the electrokinetic equations and indeed

their numerical solution is in perfect agreement with the simulation results.

We expect to observe a similar frequency-dependence for the polarizability of

polyelectrolytes. This has already been extensively studied in experiments,45;57–63

theory64–70 and simulations.71–73 However, in most theoretical and simulation studies
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Figure 4.2: Frequency-
dependence of the real
part α′ and imaginary
part α′′ of the electric po-
larizability of a charged
colloid. The red data
points are simulation re-
sults for a colloid of size
R = 3σ and charge
Q = 50 e in a DPD fluid.
The green lines were
obtained by numerically
solving the electrokinetic
equations (using the soft-
ware MPEK). The blue
lines correspond to the
original Maxwell-Wagner-
O’Konski (MWO) theory.
The pink lines show a
correction to the MWO
theory for finite ion iner-
tia. Figure adapted from
Ref. 49.

rod-like, stiff polyelectrolytes are considered. The models range from stiff cylinders71

over rod-like particles64–67 to short weakly-bent chains.72;73 The conclusion of these

studies is that the chain length dependence of the polarizability α is given by a

power law, α ∝ Nγ, with γ = 2− 3. This super-linear growth of the polarizability

is explained by correlations between local dipoles induced in the backbone of the

chain. For flexible chains, a generalization of these formulas has been proposed

that considers a finite persistence length λQ.59;68 This leads to reduced scaling

exponents for chains that are longer than their persistence length L > λQ. In the

limit of very long polyelectrolytes the scaling exponent is γ = 1. The transition

from cubic to linear scaling could be observed in an outstanding experiment by

Elias and Eden59 (see Fig. 4.3). Moreover, in recent experiments by Regtmeier et

al., a sub-linear scaling was observed45 (γ = 0.4). They explain their findings by

proposing a modified power law that scales linearly with the radius of gyration Rg,

i.e. the polyelectrolytes could be modeled as spheres with radius Rg and constant

surface charge density.
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In a Master thesis I recently supervised it could be shown by computer simulations

that for flexible polyelectrolytes in a good solvent a scaling exponent γ = 1.1 can

be observed.74 In Part II of this thesis, we will continue this study and analyze

the polarizability of polyelectrolyte chains with flexible backbone. There, we will

investigate three models corresponding to polyelectrolytes in solvents of different

quality. This enables us to systematically analyze the influence of chain length and

solvent quality on the frequency-dependent polarizability of flexible polyelectrolyte

chains. The advantage of computer simulations compared to experiments is that they

enable a detailed comparison between the contribution of counterion polarization

in close vicinity to the polyelectrolyte and that of high-mobility uncondensed co-

and counterions. This allows us to get a much deeper insight into the mechanisms

that drive the polarization of the polyelectrolytes.
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5
Systematic Coarse-Graining of Soft

Matter Systems

To simulate complex phenomena in soft matter, it is very often necessary to coarse-

grain (CG) atomistic details and construct reduced model systems. In the example of

colloidal dispersions, it would be preferable to consider an implicit solvent model and

simulate colloids with effective interactions. However, it has already been shown

in Chapter 3 that these interactions will include frequency-dependent pairwise

friction forces. It is therefore non-trivial to construct and simulate such a dynamic

coarse-grained model. In some situations, reproducing the correct dynamics is not

necessary, because one is only interested in static propertiesa. Therefore, we will

first give an introduction to static coarse-graining. Afterwards, we will present

the Mori-Zwanzig formalism to theoretically understand the transition from a fine-

grained system to a coarse-grained model. In this section we will also derive the

generalized Langevin equation (GLE), which is the fundamental equation for the

CG procedure that will be derived in Part III. In the last section we will analyze

the GLE and discuss how it can be applied to dynamic coarse-graining.

5.1 Static coarse-graining

The main idea behind static coarse-graining is reproducing structural properties of

an underlying fine-grained system. In Figure 5.1, a coarse-graining procedure of a

biomembrane is sketched. Firstly, one has to define a mapping from the all-atom

system to the effective coarse-grained model. Here, every DOPCb lipid is replaced

by 14 beads that are supposed to resemble the original atomistic lipid. Secondly,

the interaction between the beads has to be determined. For this step, a huge

variety of methods have been proposed. Each method targets the optimization of

one or several static properties. The example in Figure 5.1 is based on a MARTINI

force-field.75;76 This force-field is optimized to reconstruct thermodynamic properties

of biomolecules like solvation free energy, interfacial tension or curvature profile.

aEven in these situations one has to be careful. In systems with particle aggregation, for
example, the dynamics can have an impact on the emerging structures.

bDOPC stands for Dipalmitoylphosphatidylcholin, a biomolecule that is an important building
block of many biomembranes.
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Figure 5.1: Exam-
ple for a static coarse-
graining procedure of
a biomembrane. The
all-atom DOPC lipid
is replaced by effective
beads that reproduce the
static properties of the
lipid. Figure taken from
Ref. 76.

Other coarse-graining techniques are based on reproducing the mean force,77 radial

distribution functions78;79 or entropy.80 Since the dynamic coarse-graining procedure

that is proposed in this thesis builds upon the iterative Boltzmann inversion (IBI)

method,79 we will present this technique in the following.

The basis of the iterative Boltzmann inversion is Henderson’s theorem. It states

that “for quantum and classical fluids with only pairwise interactions, and under

given conditions of temperature and density, the pair potential V (r) which gives rise

to a given radial distribution function g(r) is unique up to a constant.” (Henderson

1974).81 The radial distribution function (RDF) or pair-correlation function g(r)

describes the local, distance-dependent density around a tagged particle. The RDF

is normalized by the bulk density so that an ideal gas particle fulfills,

g(r) = 1 ∀r. (5.1)

A radial distribution function g(r) 6= 1 for some distances r is an indication of

local structure formation and thus describes a complex fluid. It follows from the

Henderson theorem that there exists a unique coarse-grained pair potential VCG(r)

that reproduces a given fine-grained radial distribution function gFG(r). In practice

it is, however, non-trivial to reconstruct the pair potential VCG(r) because small

fluctuations in gFG(r) lead to large differences in the reconstructed potential. The

aim of the iterative Boltzmann method is to construct a static coarse-grained

model with a straightforward and robust algorithm that perfectly reproduces the

fine-grained radial distribution functionc.

Table 5.1 summarizes the important properties of the iterative Boltzmann inversion.

The first iteration step is initialized with the inverse Boltzmann potential. This

potential is the final solution if the simulated fluid is infinitely dilute. In every

subsequent iteration step i, a coarse-grained simulation is performed using the pair

potential VCG,i(r). From these simulations, a coarse-grained RDF gCG,i(r) can be

cRecently, it could in fact be shown that IBI is similar to iterative regularization techniques
known from numerical analysis.82
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Iterative Boltzmann inversion

Unknown quantity X PMF V (r)

Matched observable Y RDF g(r)

Mapping function φ(Y ) −kBT ln(Y )

Initial guess X0 φ(Y )

Iteration step Xi+1 = Xi + φ(YMD)− φ(Yi)

X = X0 = φ(YMD) valid in limit ρ→ 0

Table 5.1: Summary of the important properties of the iterative Boltzmann inversion
(IBI).79 Table adapted from Ref. 83.

determined. The difference between gCG,i(r) and gFG(r) is then used to calculate a

better guess VCG,i+1(r) for the static pair potential. If the algorithm converges, the

iteration ensures that the final pair potential VCG(r) indeed reproduces the correct

radial distribution function gFG(r).

An exemplary coarse-graining procedure applying the IBI method is shown in

Figure 5.2. The investigated system is nanocolloids in a Lennard-Jones (LJ) fluid.

The system is initialized by placing LJ particles on a fcc-lattice with lattice constant

a = 1.71σ and therefore a reduced density of ρ∗ = ρσ3 = 0.8. The reduced
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Figure 5.2: Exemplary
iterative Boltzmann
inversion (IBI) steps of
the static pair potential
between two nanocolloids

The upper figure shows the
different iterations of the
radial distribution function
g(r). The gray reference
curve lies precisely on top
of iteration 50.

The lower figure visu-
alizes the static pair
potential V (r). For
r < 6σ the potential just
corresponds to a hard-core
potential.
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temperature is set to T ∗ = kBT/ε = 1.0. The LJ diameter σ, energy ε and time

τ = σ
√
m/ε = 1 are defining the length, energy and time units of the simulation.

The LJ interactions are determined for a diameter σLJ = 1σ, amplitude εLJ = 1 ε,

cutoff rc = 2.5σ and a particle mass m∗ = 1m. This corresponds to a hard-core

interaction with a small attractive tail. The colloid is carved out off the fcc-lattice

with a radius Rc = 3σ and defined as a rigid body, i.e., the distances of all LJ

particles forming one colloid are fixed. The resulting colloid mass is M = 80m

with a hydrodynamic radius RH = 2.7σ (determined by the radial distribution

function). LJ particles that are part of a colloid interact with other LJ particles

with a cutoff rc = 6
√

2σ, and are purely repulsive. The cubic simulation box has

periodic boundary conditions in all three dimensions. To sample at the correct

temperature, we equilibrate the system using a Langevin thermostat. It is then

integrated with a time step ∆tMD = 0.001 τ in the NVE -ensemble. The simulations

are performed with the simulation package Lammps .84 This system is used for all

simulations concerning hydrodynamic interactions and coarse-graining (see Part III).

The important parameters and transport coefficients of the fluid are summarized

in Tab. 5.2. Here, we derive the static pair-potential between two nanocolloids

that will be later used to determine the conservative force for the coarse-grained

simulations (see also Eq. (5.16)). The upper panel of Figure 5.2 shows that in the

first iteration step, the structure is significantly overestimated. The reason for this

overestimation is that the structure in the many-body simulations emerges due to

layering effects, as a consequence of the hard-core potential, and not due to an

attractive pair potential (see red line in the lower figure). This shows that the

inverse Boltzmann potential is only valid in an infinitely dilute system. Using the

iterative procedure, the potential can then be corrected until the original structure

is reproduced. In the last iteration, the results for the radial distribution function

from coarse-grained and molecular dynamics simulations coincide and the static

pair potential has converged.

With the static pair potential derived with the IBI technique it is now possible

to perform large-scale coarse-grained simulations that reproduce the correct static

properties of the underlying microscopic system. The dynamical features of the

two systems will, however, be completely different. To perform dynamical coarse-

graining it is necessary to go one step further and derive extended equations of

motion with dissipative and stochastic forces using the Mori-Zwanzig formalism.

5.2 Mori-Zwanzig formalism

In the previous section, it was shown how structural properties of atomistic systems

can be recovered in coarse-grained models. The proposed methods, however, do

not include the interactions of the coarse-grained variables with the fluid particles.

A colloid, for example, will dissipate energy when propagating through the fluid.
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Parameter description Value LJ Value SI

kBT temperature 1.0 ε 300 K

L box size 40.0− 100.0σ -

ρLJ LJ number density 0.8σ−3 -

ε LJ interaction amplitude 1.0 ε -

σLJ LJ particle diameter 1.0σ -

rc LJ cutoff 2.5σ -

Rc radius of the nanocolloid 3.0σ 3.45σ

η shear viscosity 2.11 ετ/σ3 6.23 ετ/σ3

ζ bulk viscosity 0.88 ετ/σ3 18.69 ετ/σ3

c0 speed of sound 5.63σ/τ 4.05σ/τ

Table 5.2: Summary of the coarse-grained model parameters for the colloidal dispersion.
The transport coefficients are determined with Green-Kubo relations introduced in Section
2.1 and Chapter 11. The values used in this thesis are compared to a nanocolloid
(Rc ≈ 1 nm) in water (30 ◦C) by applying the conversion derived in Appendix A.

Additionally, the fluid particles will randomly collide with the colloid and thus

transfer energy back to the colloid. We therefore expect additional dissipative and

stochastic contributions to the coarse-grained force and these contributions can be

systematically derived using the Mori-Zwanzig formalism.85–88

The Mori-Zwanzig formalism starts with a microscopic system consisting of N

particles with positions qi and momenta pi. The time evolution of the phase space

variables Γ = {{qi} , {pi}} is given by Hamilton’s equations of motion,

q̇i =
∂H
∂pi

, (5.2)

ṗi = −∂H
∂qi

, (5.3)

with the Hamiltonian H. Using these equations, we can write down the time-

dependence of an observable A(Γ),

d

dt
A(Γ(t)) =

∑
i

[
∂H
∂pi

∂

∂qi
− ∂H
∂qi

∂

∂pi

]
A(Γ) ≡ iLA. (5.4)

Here, we introduced the Liouville operator L. The formal solution of this equation

is

A(t) = exp(iLt)A(0). (5.5)

Next, we assume the system to be in equilibrium with Boltzmann distributed phase

space variables. For this system, we can define a scalar product,

〈A|B〉 =

∫
dΓρ(Γ)A(Γ)B∗(Γ), (5.6)
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with Boltzmann distribution,

ρ(Γ) =
exp(−βH(Γ))∫
dΓ exp(−βH(Γ))

, (5.7)

and β = 1/kBT . In the physical picture, this scalar product determines the

correlation between the observables A(Γ) and B(Γ). This scalar product can now

be utilized to define a projection operator P that distinguishes between relevant

and irrelevant dynamical variables. It is important to point out that the choice of

relevant and irrelevant variables is therefore not an outcome of the Mori-Zwanzig

formalism but an input. To identify the most reasonable choice of coarse-grained

variables already requires some insight into the microscopic system. In the following,

the unspecified observable A(Γ) will be considered as relevant variable and P is

defined as,

P =
|A〉 〈A|
〈A|A〉 . (5.8)

It is easy to show that P is indeed a projection operator. For the derivation of

the coarse-grained equations of motion the operator Q = 1− P on the irrelevant

variables is of great importance. The definitions of P and Q are also intuitively

accessible since it is

〈A|Q |B〉 = 0 (5.9)

for an arbitrary observable B(Γ). Thus there are no correlations between A(Γ) and

the space of irrelevant variables. To derive the equations of motion of A(Γ), we

determine its time derivative using Eq. (5.5),

dA(t)

dt
= iL exp(iLt)A(0), (5.10)

and then apply Dyson’s operator relation,87

exp(iLt)−exp(iLt)P = exp(iLt)Q =

∫ t

0

du exp(iL(t−u))P iL exp(iQLu)Q+exp(iQLt)Q.

(5.11)

After some transformation we finally end up with the generalized Langevin equation

(GLE),87;88

dA(t)

dt
= iΩA(t)−

∫ t

0

dsK(t− s)A(s) +R(t), (5.12)
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with

iΩ =
〈A(0)|Ȧ(0)〉
〈A(0)|A(0)〉 , (5.13)

K(t) =
〈Ȧ(0)|R(t)〉
〈A(0)|A(0)〉 , (5.14)

R(t) = exp(iQLt)QȦ(0). (5.15)

In the next chapter we interpret the different terms in the GLE to give an insight

into the physical picture behind this equation.

5.3 Generalized Langevin equation and dynamic

coarse-graining

In the following, we will make the particular choice that A(Γ) = P , where P are

the momenta of the coarse-grained particles in the system. The three contributions

to the GLE can then be identified straightforwardly.

The first term in Eq. (5.12) is already the full solution if A(Γ) is eigenvector of

the Liouville operator L. Therefore, this term corresponds to coarse-grained forces

without the influence of the irrelevant variables. This term can thus be identified as

the coarse-grained force-field that was derived in the previous section about static

coarse-graining.

The second term in the GLE is a time-dependent friction force. This contribution

therefore represents the systematic interaction of the coarse-grained particles with

the irrelevant variables. The non-Markovian nature of the interaction indicates that

this term represents the “memory” of the system. Consequentially, the tensor K(t)

is called the memory kernel. If the relaxation of the irrelevant variables is much

faster than the relaxation of the coarse-grained particles, the memory kernel becomes

a delta-distribution, K(t) = γδ(t). In this limit, the GLE therefore becomes the

standard Langevin equation.

The third term in the GLE mimics the random collisions between the coarse-grained

particles and the irrelevant degrees of freedom. Similar to the standard Langevin

equation, the time-correlation function of this stochastic force is directly related to

the memory kernel. This connection is called the generalized fluctuation-dissipation

theorem89 (FDT) (see Eq. (5.14)). This fundamental relation will be very important

for the non-Markovian modeling since it allows one to determine the properties of

the stochastic force by measuring time-correlation functions and reconstructing the

memory kernel only.

Applying the above identifications, the generalized Langevin equation and the FDT
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for a system of N identical particles of mass M become,

F (t) = M V̇ (t) = F C(t)−
∫ t

0

dsK(t− s)V (s) + ∂F (t), (5.16)

〈∂F (t)∂F (t′)〉 = kBTK(t− t′). (5.17)

Here, we have introduced the velocities of the coarse-grained particles V (t), the

conservative force-field F C(t), and the stochastic force ∂F (t). The memory kernel

is now a 3N × 3N -dimensional tensor, describing the dissipative self- and pair-

interactions between the particles. The identification of the conservative, dissipative

and stochastic contributions to the GLE can be done more rigorously by applying

the projection operator formalism on a concrete atomistic system (see Ref. 88). The

final result is then similar to Eq. (5.16).

For a systematic coarse-graining procedure it is necessary to determine the memory

kernel of a microscopic system by computer simulations or theory. The latter has

already been discussed in Chapter 3 using the example of frequency-dependent

hydrodynamic interactions. For more complex soft matter systems it will, however,

be very difficult to determine theoretical predictions for the memory kernel. There-

fore, it is important to develop a coarse-graining technique to determine memory

kernels from atomistic simulations. Several methods have been proposed in the

literature for this purpose.90–95 From these, the most efficient and stable method

is the inverse Volterra technique92 that will be derived in the following. Like all

the other methods the inverse Volterra technique cannot be applied to many-body

systems. We will therefore consider the one-dimensional single-particle GLE in this

section.

By definition, the stochastic force ∂F (t) and the velocity V (t) are orthogonal,

〈∂F (t)V (0)〉 = 0, (5.18)

which can be used to derive a noise-free differential equation for the velocity

correlation function using the GLE. For this purpose, we multiply Eq. (5.16) with

V (0) and take the ensemble average. The result is

M
d

dt
C(t) = −

∫ t

0

dsK(t− s)C(s), (5.19)

with C(t) = 〈V (t)V (0)〉. This Volterra equation of first kind can in principle be

numerically inverted to determine the memory kernel. However, Shin et al.92 showed

that it is more stable to invert a Volterra equation of second kind. This can be

achieved by taking the time derivative of Eq. (5.19),

M
d2

dt2
C(t) = −C(0)K(t)−

∫ t

0

dsK(s)
d

dt
C(t− s), (5.20)
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and identifying the derivatives of the velocity correlation function:

d

dt
C(t) =

1

M
〈F (t)V (0)〉 =

1

M
CFV (t), (5.21)

d2

dt2
C(t) = − 1

M2
〈F (t)F (0)〉 = − 1

M2
CF (t). (5.22)

Now, it is straightforward to discretize the equations and reconstruct the memory

kernel:

K(i∆t) =

{
1

M
CF (i∆t)− ∆t

M

i−1∑
j=0

ωjCFV ((i− j)∆t)K(j∆t)

}
/

{
C(0) +

∆tωi
M

CFV (0)

}
.

(5.23)

Here, we have introduced the time resolution ∆t of the correlation functions

determined from atomistic simulations and the weight factor ωi = 1/2 for i = 0

and ωi = 1 otherwise. The initial condition of the reconstruction is MK(0) =

CF (0)/C(0).

Figure 5.3 shows an application of the inverse Volterra method to the self-memory

kernel of a single nanocolloid. The memory kernel shows hydrodynamic backflow.

At small times, the interaction of the colloid with the fluid decelerates the particle,

which becomes apparent through a positive friction kernel. But the motion of the

colloid induces fluid vortices which interact with the colloid at later times and

therefore accelerate the particle again. At intermediate times, we can thus observe

negative values for the memory kernel (see upper figure). This negative friction

leads to the long-time tail in the velocity auto-correlation function.40 The lower

figure shows the relation between the memory kernel and the force auto-correlation

function in Fourier space. Surprisingly, this relation is very simple, which allows

a straightforward reconstruction of the memory kernel. This observation can be

understood by applying a one-sided Fourier transform,

K(ω) =

∫ ∞
0

dteiωtK(t), (5.24)

on Eq. (5.20). The result is

−Mω2C(ω) = −C(0)K(ω) + iωK(ω)C(ω), (5.25)

⇒ M

K(ω)
=
kBTM

CF (ω)
+

1

iω
. (5.26)

Here, we have used C(0) = kBT/M . The inverse Volterra method, memory recon-

struction via Fourier transform and other related techniques like the orthogonal

backward dynamics93 are very efficient for non-interacting particles. In special cases

they can also be applied to two-particle systems with pair-interactions.5 However,

these methods are restricted in their applicability, since they require a default input.

Additionally, they are strongly dependent on the quality and time-resolution of the

input correlation functions. The most successful static coarse-graining techniques
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Figure 5.3: Exemplary
memory reconstruction
with the inverse Volterra
technique using the ex-
ample of hydrodynamic
backflow of a nanocolloid
in solution.

The upper figure visualizes
the time-dependence of
the memory kernel and
the force auto-correlation
function.

The lower figure shows
the difference of the
(inverse) memory kernel
and force auto-correlation
function in Fourier space
by applying a one-sided
Fourier transform (see
Eq. (5.24)). The second
and third curve lie exactly
on top of each other.

are based on iterative algorithms. This means that they perform coarse-grained

simulations with initial input parameters and optimize these parameters depending

on the difference between the target function and the output of the coarse-grained

simulation (see Section 5.1 about IBI). In Part III we will transfer this idea to

dynamic coarse-graining using the generalized Langevin equation.
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6
Computer Simulations:

State of the Art

The simulations performed for this thesis are all based on the molecular dynamics

(MD) method.96;97 The basic idea of MD is to numerically solve Newton’s equations

of motion,

dX(t)

dt
= V (t), (6.1)

dV (t)

dt
=

1

M
F (t), (6.2)

with position X(t), velocity V (t) and mass M of the particles. The force-field

F (t) is defined by the underlying microscopic model. On the smallest, quantum

mechanical scale, this could be the force exerted by the electronic structure on

the nucleus.98–100 The nucleus itself is described classically because of its large

mass. On the atomistic scale, huge effort has been invested to derive consistent

force-fields that model covalent or hydrogen bonds.75;101;102 This already allows

the description of single biomolecules. Furthermore, as discussed in the previous

chapter, many techniques have been proposed to develop coarse-grained force-fields

on the mesoscale. For a detailed description of the MD method we refer to the

two excellent books “Understanding Molecular Simulation” from D. Frenkel and

B. Smit103 and “Computer Simulation of Liquids” from M. P. Allen and D. J.

Tildesley.104

In this chapter we introduce three advanced simulation techniques that are funda-

mental for this work. First, we present the dissipative particle dynamics (DPD)

method, a versatile Galilean-invariant thermostat that allows to efficiently model

simple liquids but can also be used for polymers or colloids.105;106 The inclusion

of charged particles in the system is, however, problematic, since DPD is based

on soft potentials. To efficiently simulate ionic systems, it is thus convenient to

describe the charged particles within a mean-field theory. In Section 6.2, we will

therefore present a numerical integrator to solve the convection-diffusion equation

(see Eq. (4.3)).107 The last section of this chapter introduces the non-Markovian

DPD method, a generalization of DPD using memory kernels instead of simple

friction constants.108;109
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Figure 6.1: Illustration
of the DPD coarse-graining
procedure. Every DPD
“blob” is built up of several
solvent molecules. Picture
taken from Ref. 113.

6.1 Dissipative particle dynamics (DPD)

The basic idea behind dissipative particle dynamics is modeling simple or complex

fluids in a coarse-grained fashion. DPD was developed in 1992 by Hoogerbrugge and

Koelman105 and reformulated in a thermodynamic consistent way by Español and

Warren.106 In the former version, the algorithm did not strictly fulfill the fluctuation-

dissipation theorem and the system therefore did not represent a canonical ensemble.

Following the lines of Español and Warren,106 the DPD equations of motion can be

written as stochastic differential equations,

dXi

dt
= Vi (6.3)

M
dVi
dt

=
∑
j 6=i
F C
ij (Rij)−

∑
j 6=i

γωD(Rij)(eij · Vij)eij +
∑
j 6=i

σωR(Rij)eijWij,

with the velocity difference Vij = Vi − Vj, the distance Rij = Xi −Xj, eij =

Rij/ |Rij|, Gaussian white noise, 〈Wij(t)Wi′j′(t
′)〉 = (δii′δjj′ + δij′δji′)δ(t− t′), the

friction constant γ and the fluctuation-dissipation theorems σ =
√

2kBTγ and

ωD(r) = ωR(r)2. In this work we use the weight function,

ωR(r) =

{
1− r

rc,DPD
, if r < rc,DPD

0, otherwise.
(6.4)

The DPD interactions are governed by two main properties: they are pairwise and

soft. The former feature is necessary to ensure local momentum conservation and

therefore a straightforward implementation of hydrodynamic interactions. The

softness of the interactions is important to allow large time steps and further

increase the efficiency of the method. The picture behind the DPD algorithm

is that every DPD “blob” represents a whole fluid region (see Fig. 6.1). If two

“blobs” approach each other, they will have coarse-grained, soft interactions and

the dynamics are governed by dissipative and stochastic forces (see Eq. (6.3)).

Obviously, this resembles a Markovian formulation of the generalized Langevin

equation. Is has indeed been shown that the DPD technique can be motivated

using the Mori-Zwanzig formalism.110;111 There are many extensions to DPD like

energy-conserving, many-body or non-Markovian dissipative particle dynamics. A

recent review of these extensions can be found in Ref. 112.
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DPD has two major drawbacks. Although it is a very efficient mesoscale simulation

technique, it is still significantly slower than similar techniques that use slightly

different approaches: the Lattice-Boltzmann (LB) method114;115 and multiparticle

collision dynamics (MPCD).116 However, DPD is more versatile and easier to

implement, especially if particles are suspended in the DPD fluid. For further

information, we recommend Refs. 117 and 118. Another problem is the complicated

relationship between DPD input parameters and the transport coefficients of the

model. Since the analytic formulas are only approximations,119 it is always necessary

to determine the transport coefficients like shear or bulk viscosity explicitly. This

will be the topic of Chapter 11.

6.2 ConDiff

Since the DPD technique is based on soft potentials, the inclusion of charges in the

system is problematic. Oppositely charged particles will have divergent interaction

energies if they are not separated by a hard-core potential. In the literature, one

can find two ways to deal with this challenge. In many studies, hard-core potentials

are included, and the time step is adapted in a way that the simulation is still

stable and represents a canonical ensemble with a predefined temperature (see,

e.g.,49). Alternatively, the Coulomb interaction can be split into a short-range and a

long-range contribution. The long-range contribution can be calculated using Ewald

summation or related methods,120;121 and the short-range interaction is neglected,

accounting for smeared charges. Both techniques function in practice, however, it is

very difficult to tune ion specific properties like their diffusivity, since the ions still

interact via the DPD equations of motion.

In our group Stefan Medina has developed an alternative method that treats the ions

on a mean-field basis.107;113 The idea is to solve the convection-diffusion equation

(see Eq. (4.3)) using pseudo particles. The velocities of these ConDiff particles are

linked to the velocities of the DPD particles and thus couple to the hydrodynamic

flow. Additionally, the forces of the ConDiff particles are transferred to the DPD

particles according to Eq. (4.4). This force-coupling is defined in a momentum-

conserving way to maintain the hydrodynamic interactions (see Fig. 6.2). The

derivation of the ConDiff algorithm utilizes the well known correspondence between

a deterministic Fokker-Plank equation, describing the time evolution of a density

field ρ(x, t),

∂ρ(x, t)

∂t
+∇ · [v(x, t)ρ(x, t)] = D∇2ρ(x, t), (6.5)

and a stochastic process X(t) describing the equations of motion of individual

particles,

dX(t) + V (X(t))dt =
√

2DdW (t). (6.6)
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Figure 6.2: Illustration of
the force-coupling between
ConDiff pseudo-ions and
DPD particles. The elec-
tric force is mapped on a
grid, and then transferred
to the DPD particles. Sim-
ilarly, the velocity of the
DPD particle is transferred
to the pseudo-ions. Picture
taken from Ref. 113.

Here, D is the diffusion constant of the particles and W (t) a Wiener process with

zero mean and unit variance. It can be shown that the density of the particles

evolved according to the stochastic process in Eq. (6.6) can indeed be described by

the Fokker-Plank Eq. (6.5).122 With this relationship we find that the stochastic

process X(t) of the ions in the hydrodynamic flow V (X(t)) of the solute is defined

by

dX(t) + V (X(t))− zD∇ψ(X(t))dt =
√

2DdW (t), (6.7)

with the valency z of the ions and the electrostatic potential ψ(X(t)). This

stochastic process can be integrated numerically, similar to the Langevin equation,

and coupled to the DPD algorithm. For a detailed description of the algorithm, see

Ref. 107.

6.3 Non-Markovian DPD

The DPD equations of motion that were introduced in Section 6.1 obviously describe

a Markov process, since the time evolution of the system only depends on the present

state. The algorithm can, however, be generalized to frequency-dependent friction

functions using the generalized Langevin equation.108;109 The derivation starts by

rewriting the GLE Eq. (5.16) in a pairwise fashion under the assumption that one

has

∂Fi(t) ≈
∑
j 6=i

δFij(t). (6.8)
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The equations of motion for particle i then read as follows,

Fi(t) = M V̇i(t) =
∑
j 6=i

[
F C
ij (Rij)−

∫ t

0

dsKij(t− s)Vij(s) + ∂Fij(t)

]
, (6.9)

〈∂Fij(t)∂Fij(t′)〉 = kBTKij(t− t′), (6.10)

with the same notation as used for the DPD equations of motion. If the coarse-

grained particles have spherical symmetry, it is natural to decompose the friction

into contributions parallel and orthogonal to the line-of-centers Rij between the

particles,

Kij(t) ≈ K
‖
ij(t)eije

T
ij +K⊥ij (t)(1− eijeTij), (6.11)

∂Fij(t) = ∂F
‖
ij(t) + ∂F⊥ij (t) = [eij · ∂Fij(t)] eij + (1− eijeTij)∂Fij(t). (6.12)

If it is further assumed that the orthogonal contribution is negligible, and a straight-

forward discretization of the generalized Langevin equation is applied, one ends up

with the non-Markovian DPD model,108

dXi

dt
= Vi, (6.13)

M
dVi
dt

=
∑
j 6=i
F C
ij (Rij)

−
∑
j 6=i

T∑
n=0

∆tK
‖
ij,n(Rij(t− n∆t))V

‖
ij (t− n∆t) +

∑
j 6=i

∂F
‖
ij. (6.14)

Here, we discretize the memory kernel K
‖
ij(t) =

∑T
n=0 ∆tK

‖
ij,nδ(t− n∆t) and define

V
‖
ij (t− n∆t) = [eij(t− n∆t) · Vij(t− n∆t)] eij(t− n∆t).

This model was introduced by Li et al.108 and represents the first numerical integrator

of the generalized Langevin equation that includes pairwise interactions. The huge

advantage of the model is that albeit it introduces cross-correlations between

the particles, the pairs themselves are uncorrelated. This allows to integrate the

equations of motion very efficiently, especially since the determination of the time-

correlated random forces is more or less straightforward (see also Section 13.2.1).

Li et al. applied their method to an incompressible star-polymer melt and they

reported very promising results.108;109

The modeling of the colloidal suspension is, however, difficult with this technique

because the coarse-grained system containing only colloidal particles is not Galilean-

invariant. The reason of this symmetry breaking is the interaction of the colloids

with the fluid, which is, on average, at rest in the underlying microscopic system.

Therefore, the memory kernel tensor introduced in Eq. (5.16) cannot be decomposed

into purely pairwise memory kernels (which corresponds to the assumption made in

Eq. (6.8)). Similar to Brownian123;124 or Stokesian dynamics125 it is thus necessary

to consider separately the dissipative self- and pair-interactions and include auto-
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and cross-correlated stochastic forces. Otherwise, it would already be impossible

to describe the Brownian motion of a single particle, because it only depends on

the self-memory kernel of the colloids. The inclusion of self- and pair-memory

kernels, however, complicates the generation of the stochastic force, since it has

to be time- and cross-correlated. The discretization of this extended generalized

Langevin equation and a suitable integrator will be presented in Chapter 13.
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7
A Coarse-Grained Model for

Polyelectrolytes in Ionic Solution

The investigation of the frequency-dependent dielectric properties of flexible poly-

electrolytes cannot be carried out with atomistic simulations, because the necessary

system size does not allow for sufficiently long simulations. It is therefore necessary

to establish an efficient coarse-grained model for the polyelectrolytes (PE). This

model should maintain several important properties of the microscopic system:

the flexibility of the chain, the hydrodynamic interactions and a realistic diffusion

of the fluid and the ions. All these features have an important impact on the

frequency-dependent polarizability of the PE.

The model proposed in this thesis is a combination of the DPD method105;106

as a model for the fluid and the ConDiff technique126 to include ions within a

mean-field description (see also Chapter 6). To evaluate the long-range electrostatic

interactions between charged particles the P3M technique is used.121 The PE

consists of N “beads” that are DPD particles themselves, connected by harmonic

bonds. The monomers in each chain additionally interact via a 12-6-Lennard Jones

(LJ) potential. This enables the regulation of the chain solvent quality. The total

charge of the PE is q = N/2 e since every second bead is charged. Taking all of this

into account, the total force on bead i in the polyelectrolyte chain is given by the

following contributions,

F PE
i = FDPD

i + λB

∑
j

qiqj

|Rij|2
eij − 2K

∑
{j}

(|Rij| − r0)eij (7.1)

−4εLJ

∑
j:|Rij |<rc,LJ

[
12

(
σLJ

|Rij|

)13

− 6

(
σLJ

|Rij|

)7
]

eij. (7.2)

Here, {j} denotes the sum over next neighbors along the chain and rc,LJ the cutoff

of the LJ potential between the polyelectrolyte beads. In Table 7.1 the model

parameters are summarized. This model was introduced in the Master thesis by

Sebstian Kasper, which I recently supervised.74 There, the power law dependence of

the electric polarizability on the chain length of a polyelectrolyte in a good solvent

was analyzed.127;128 It could be shown that the polarizability of the polyelectrolytes

was negligible for ions with hard-core repulsion (see Section 6.2), which made the

usage of a mean-field description inevitable. This observation can be explained by
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Parameter explanation Value Influence

kBT temperature 1.0 ε -

L box size 20.0− 70.0σ -

ρDPD DPD number density 3.0 σ−3 -

γ DPD friction constant 5.0 τε/σ2 -

rc,DPD DPD cutoff 1.0σ -

D ConDiff diffusion constant 0.1− 0.5σ2/τ diffusion of the ions

ρsalt salt number density 0.025 σ−3 -

λB Bjerrum length 1.0σ -

z valency of the ions ±1 -

N number of monomers 10− 100 size of the PE

Q charge of the polyelectrolyte N/2 e -

K harmonic bond strength 60 ε/σ2 -

r0 harmonic bond length 1.0σ -

εLJ LJ interaction strength 0.6− 1.0 ε solvent quality

σLJ LJ particle diameter 1.0σ -

rc,LJ LJ cutoff 6
√

2− 2 6
√

2σ solvent quality

Table 7.1: Summary of the coarse-grained model parameters for the polyelectrolyte (PE)
solution, including the values used in this thesis and a short explanation of their influence
on the PE (“-” indicates that the influence has not been analyzed in this thesis).

the emergence of an unphysical volume polarization due to the hard-core interactions

of the ions with the charged beads of the PE. Subsequently, we continued this study

by investigating the influence of solvent quality and frequency on the dielectric

properties of the polyelectrolyte. Since the system represents a perfect example

for frequency-dependent phenomena in dispersions, it is included in this thesis. To

vary the solvent quality, we studied three different polyelectrolyte models:

• PE 1: εLJ = 1.0 ε, rc,LJ = 6
√

2σ,

• PE 2: εLJ = 0.6 ε, rc,LJ = 2 6
√

2σ,

• PE 3: εLJ = 0.7 ε, rc,LJ = 2 6
√

2σ.

The conversion from LJ units to SI units shows that the polyelectrolyte models

are comparable to DNA with about 50-500 basepairs. However, the total charge

of the coarse-grained polyelectrolyte is smaller than for DNA. We therefore expect

quantitative differences between the polarizability of DNA and the model studied

in this thesis (see also Appendix A.1).

Figure 7.1 visualizes the apparent scaling exponents ν of the radius of gyration,

Rg ∝ N ν , of the different PE models in equilibrium. The first polyelectrolyte without

any attractive interaction between the beads is strongly elongated corresponding
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PE 1, ν = 0.72
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PE 2, ν = 0.68
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PE 3, ν = 0.33

Figure 7.1: Dependence of the radius of gyration Rg on size of the polyelectrolyte (PE)
and solvent quality. Simulation results are fitted to power laws, Rg ∝ Nν (the data points
for N = 10, 20 were not included in the fit).

to a power law exponent of ν = 0.718 ± 0.002. This is much larger than the

scaling expected from real chains (ν ≈ 0.58). Experiments on DNA have shown

Flory exponents in the range of 0.45− 0.57, depending on their length and the salt

concentration.45;129;130 The reason for this discrepancy is the significant contribution

of charged-induced repulsion since the screening length λD = 1.78σ is in the same

order of magnitude as the size of the polyelectrolyte. Comparing the screening

length to the standard scaling theories for polyelectrolytes in ionic solution127;131–134

confirms that we are indeed in the transition regime between the rod-like limit and

the ideal chain. We therefore include a small short-range attraction between the

beads in the second polyelectrolyte model, leading to an apparent scaling exponent

of ν = 0.68± 0.01. The inclusion of this short-range attraction corresponds to a

change of solvent quality from good to poor. However, for small chains as simulated

in this thesis, the electrostatic repulsion still leads to elongated chains. This pictures

changes in the third polyelectrolyte model. The quality of the solvent is even worse

in this model which leads to an exponent of ν = 0.33± 0.02. This value perfectly

matches the scaling of real chains in a poor solvent. The linear fits in Figure 7.1

show that the scaling of the polyelectrolytes depends on the chain length which

indicates that we are not yet in the long-chain limit. Exemplary configurations of

polyelectrolyte model 3 are visualized in Figure 7.2. It can indeed be observed that

the configuration of the longer chain is much more coiled.

To induce a dipole moment around the polyelectrolyte an external electric field

E(t) = E0e
iωt with frequency ω = 2πf and amplitude E0 is applied to the system.

To determine the polarizability, all ions i that are within the range R = 4.5σ of the
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Figure 7.2: Configurations of the polyelectrolyte (PE 3) for different chain lengths N
(left panel N = 50, right panel N = 80). Obviously, the right panel shows a more coiled
conformation. The illustrations were created using the visualization software VMD.135

polyelectrolyte are considered, and the time-dependent dipole moment is,

p(t) =
∑
i

qi(ri(t)− rcom(t)). (7.3)

Here, qi = ±1 e is the charge of the co- and counterions, ri their position and rcom the

center-of-mass of the polyelectrolyte. The total charge Q within the considered tube

around the polyelectrolyte is zero, therefore, the dipole moment does not depend on

the reference point. The amplitude of the electric field is E0 = (0.5 ε/(σe), 0, 0)T ,

which is well within the linear response regime. The time-dependence of the dipole

moment is Fourier transformed,

p(ω) =

∫ T

0

dteiωtp(t), (7.4)

which enables the determination of the frequency-dependent polarizability,

α(w) = px(ω)/Ex(ω). (7.5)

In general, the polarizability α(ω) is a complex number. The real part, α′(ω) =

Re[α(w)], characterizes the in-phase and lossless response of a dielectric material

to an electric field. On the contrary, the imaginary part α′′(ω) = Im[α(w)], also

called the dielectric loss, quantifies the absorption of electric energy of this dielectric

material. The transition from large values in the real part of the polarizability

at small frequencies to a vanishing polarizability at high frequencies is called

anomalous dispersion.56 The transition frequency ft is related to a typical relaxation

time τ ≈ 1/ft of the polarization. If the externally applied electric field has a
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frequency fAC ≈ ft, we therefore expect a phase difference between the field and

the polarization leading to an increase in the dielectric loss.

It has to be mentioned that the polyelectrolytes have the tendency to slightly

unfold under the influence of the external field. This can be explained by the

deformation of the double layer and therefore reduced screening of the electrostatic

repulsion. However, the radius of gyration Rg did not show any significant frequency-

dependence, this observation will thus not have an impact on the reported results.

Interestingly, Zhou and Riehn136 found the opposite effect for DNA under very strong

alterning electric fields. They interpret their findings by large scale polarization

of uncondensed ions that could lead to attractive interactions between polarizable

subunits. Investigating the scaling behavior of polyelectrolytes in strong electric

fields would be an interesting field of research, however, it goes beyond the scope

of this work. In the next chapter we will study the anomalous dispersion of the

polyelectrolyte model introduced in the previous paragraph and compare it to the

results of colloid polarizability (see Chapter 4).

47



48



8
The Frequency-Dependence of the

Electric Polarizability

The polyelectrolyte in ionic solution as described in the previous chapter is sur-

rounded by an electric double layer of co- and counterions. Similar to the polarization

mechanisms of charged colloids as discussed in Chapter 4, this double layer will

deform in an external electric field and induce an effective dipole moment. The main

difference compared to the polarization of colloids is the negligible contribution of

volume polarization. Since the polyelectrolytes do not have a hard core, the ions

can freely diffuse along the polyelectrolyte and will therefore not accumulate on

its surface. This free diffusion of ions also leads to an increased relaxation of the

polarized double layer. Especially for small frequencies, this is expected to have a

significant impact on the polarizability of the polyelectrolytes.

When applying an external AC field with a frequency fAC to the system, there are

three important time scales that have an impact on the polarizability: the period of

the external field τAC = 1/fAC, the time scale on which the electric double layer is

deformed τuc, and the time τd in which the ions can diffuse along the polyelectrolyte

to compensate ion concentration gradients. The time scale τuc is directly related

to the size of the double layer, given by the Debye length λD = 1.78σ. In our

system, the Debye length is smaller than the size of the polyelectrolyte Rg and we

expect τuc < τd. However, the two length scales are not strongly separated which

automatically implies an overlapping of these time scales.

The simulation results are shown in Figure 8.1. At high frequencies f > 1.0 τ−1, the

electric polarizability α is zero, because the time scale on which the electric field

is varied is much smaller than the deformation time scale τuc. In other words, the

particles do not have enough time to respond to the electric field. In this regime,

the system with the largest ion diffusion constant D has the highest polarizability.

When decreasing the frequency to f ≈ 0.1 τ−1 (100 MHz) the polarization grows

significantly. Interestingly, at this point all three curves collapse, indicating that the

polarizability is independent of the ion diffusion constant D. For lower frequencies,

the system with the smaller diffusion constant has larger polarizability. This can

be explained by the negative contribution of ion concentration relaxation, which

becomes more significant on larger time scales. At a frequency of about 0.02 τ−1,

corresponding to 20 MHz, the two systems with D > 0.2σ2/τ reach a maximum
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Figure 8.1: Frequency-
dependence of the electric
polarizability |α| for dif-
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of the electric polarizability
for different ion diffusion
constants D. The polyelec-
trolyte consists of N = 60
monomers (PE 1).

in polarizability, because at this point the contribution of diffusion polarization

(which is approximately 180◦ phase-delayed to the electric field) increases stronger

with frequency than the deformation polarization and consequentially the total

polarization decreases (see also the comparison of co- and counterion polarizability

in Figure 8.3).

In Figure 8.2 the real part of the polarizability α′(ω) and the dielectric loss α′′(ω) are

illustrated. The frequency-dependence of α′(ω) and α(ω) is very similar, however,

it is noteworthy that α′(ω) becomes negative for high diffusion constants and

frequencies f ≈ 0.2 τ−1, showing that the dipole moment points in the opposite

direction of the electric field. The reason for this observation is a phase difference

φ > 90◦ between the high-frequency electric field and the response of the electric

double layer. As discussed in the previous chapter, the dielectric loss is non-zero

only around the transition frequency ft = 0.05 τ−1. The sign of the dielectric loss is

negative indicating that the polarizability is phase-delayed relative to the electric
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field. The dielectric loss has a pronounced minimum at a frequency of around

f ≈ 0.02 τ−1. This minimum is strongly dependent on the diffusion constant of the

ions, which is not surprising because the minimum corresponds to the relaxation

time τ of the polarization.

The results for the polarizability of polyelectrolytes are very similar to the results

for charged colloids presented in Chapter 4. In particular, the distinct transition at

ft ≈ 0.05 τ−1 and the maximum at f ≈ 0.02 τ−1 for large ion diffusion constants

D can be observed for both polyelectrolytes and colloids in ionic solution. This

shows that although the two systems are very different, the physical processes that

drive the polarizability are strongly related. In the colloidal dispersion, the relevant

length scales are the Debye length and the diameter of the colloid d = 2R = 6σ.

The diameter is thus comparable to the radius of gyration of the polyelectrolyte Rg

which explains the comparable results. The transition frequency ft = 50 MHz can

also be compared to experiments of Bellini et al. reporting a transition frequency

of fexp = 20 MHz.61 Considering that the model is only qualitatively matched to

the experimental conditions, the agreement is very satisfying.

Figure 8.3 shows the contribution of co-ions to the polarizability. The only process

that leads to a non-zero co-ion contribution is their diffusion due to concentration

gradients on a time scale τd. And indeed, it can be observed that for frequencies

f > 0.05 τ−1 > τd, the co-ion contribution is zero. This analysis therefore supports

our previous discussions and shows that the time scale τd is indeed significantly

larger than the deformation time scale τuc. Investigating the contribution of different

counterion layers around the polyelectrolyte shows that there is a high-frequency

(f > 0.1 τ−1) contribution of low-mobility counterions in close vicinity to the

polyelectrolyte and a low-frequency (f < 0.1 τ−1) contribution of loosely bound

counterions in the outer regions of the double layer. This has already been observed

and extensively discussed for charged, hard rods in various publications.71–73
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In Figure 8.4 the frequency-dependent polarizability is plotted for polyelectrolytes

with different chain lengths N . The figure shows that the size of the polyelectrolyte

has an important influence on the amplitude of the polarizability, however, the

frequency-dependence is not significantly altered. This is slightly surprising, con-

sidering that the radius of gyration is connected to the ion diffusion time scale τd.

However, due to the strong elongation of the chain, the double layer is non-spherical

and therefore the radius of gyration Rg is only a rough estimate for τd. It can

thus be argued that this time scale does not increase significantly, leading to the

observed similarities in the frequency-dependence of the polarizability. The chain

length dependence of the low-frequency polarizability will be studied in detail in

the next chapter.
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9
The Effect of Solvent Quality on the

Electric Polarizability

The precise knowledge of the dielectric properties of polyelectrolytes is especially

important in view of the application to dielectrophoresis and the separation of

DNA or proteins. In these experiments an external DC field is used to induce a

drift of the polyelectrolytes through an array of dielectric traps. After injection

of the polyelectrolytes, the amplitude of the AC field in the traps is increased

stepwise. In this way, polyelectrolytes can be sorted by the amplitude of their

electric polarizability.45 To interpret the resulting electropherograms (see Figure 9.1)

it is necessary to understand the dependence of the electric polarizability on size

and conformation of the polyelectrolyte. In our simulation study we investigate

polyelectrolytes with various chain lengths in solvents of different quality and thus

distinct conformations (see Chapter 7).

Figure 9.2 illustrates that the chain length dependence of the polarizability is given

by distinct power laws, |α| ∝ Nγ , for all polyelectrolyte models. The first model has

Figure 9.1: Steady-state
electropherogram showing
the separation of fluo-
rescently labeled DNA
molecules of different size
(12200 − 24400 basepairs)
and conformation (cova-
lently closed circular (ccc)
and linear DNA). Picture
taken from Ref. 45.
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a slightly super-linear power law exponent γ = 1.10± 0.02. This can be explained

by the fact that the polarizability combines contributions from the polarization of

condensed counterions and the deformation of the electric double layer. The former

is supposed to scale super-linearly with exponents γ = 1 − 3 due to correlations

between locally induced dipoles.64–66;68 On the other hand, the contribution of

the uncondensed ions was calculated to increase linearly with chain length.67 The

scaling exponent γ = 1.1± 0.02 is therefore consistent with the theories described

in the literature. The simulation study allows to investigate this scaling further and

study the contribution of counterions in different layers at distances R around the

polyelectrolyte.

The results are shown in Figure 9.3. It can be observed that the closest layer,

containing the condensed counterions (γ = 1.40± 0.04), has indeed a significantly

larger scaling exponent than the loosely bound counterions (γ = 1.25 ± 0.07).

Consequentially, for small chains the contribution of the uncondensed counterions

dominates the polarizability, while for large chains the polarization of the condensed

counterions becomes increasingly important. This explains why the experimental

results for polarizability of long DNA chains59 can be very well described by the

theoretical description of Bowers and Prud’homme68 although the latter does not

include any contributions of uncondensed ions. The same observations are valid

for the second polyelectrolyte model. Different from the first polyelectrolyte, in

this model the solvent quality is poor, but apparently the polarizability is not

significantly changed. This is in agreement with the observed similarity between

the models in the scaling exponent ν shown in Chapter 7.

The scaling behavior of the third polyelectrolyte model is, however, fundamentally

different. Figure 9.2 shows that the scaling is now sub-linear with an exponent

γ = 0.90±0.01 and therefore dramatically changed compared to the previous models.

The simulation results can be understood by investigation of the contributions of

uncondensed and condensed co- and counterions (see Figure 9.4). The condensed
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Figure 9.3: Dependence of the electric polarizability |α| on the chain length N of the
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Figure 9.4: Dependence of the electric polarizability |α| on the chain length N of the
polyelectrolytes (PE 3). The different curves visualize the total contribution of co-ions
and the contribution of counterions in layers with a distance of R to the polyelectrolyte.
The simulation results are fitted to power laws, |α| ∝ Nγ (the data points for N = 10, 20
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ion diffusion constant is D = 0.25σ2/τ .
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counterions can still be described by a scaling exponent of γ = 1.40± 0.02. For our

polyelectrolyte model, this is apparently the fundamental exponent for the response

of counterions in close vicinity to the polyelectrolyte. However, the contribution

of the outer layers now has a significant sub-linear scaling (γ = 0.50 ± 0.04)

which is further reduced by the low-frequency diffusion of the co-ions. We have

therefore shown that, depending on the scaling behavior of the polyelectrolyte, it is

possible to observe both super- and sub-linear scaling of the electric polarizability.

This might explain why Regtmeier et al.45 only observed a scaling exponent of

γ = 0.4± 0.1 in their experimental study. In these experiments, they found a Flory

exponent of ν = 0.45± 0.05 for the investigated very long DNA chains, which is

considerably smaller than the one observed in previous experimental studies of DNA

(ν = 0.57± 0.01).130 Hence their buffer solution apparently was not a good solvent.

It should also be mentioned that the polarization presented in Figure 9.2 scales

perfectly with the chain length N . This is not obvious because the apparent scaling

exponent of the radius of gyration Rg was shown to be chain length dependent (see

Chapter 7). This strongly indicates that the chain length is indeed the relevant

parameter to quantify the size-dependent polarizability of polyelectrolytes.

The reason for the variety of observed scaling behaviors could be strongly con-

nected to the shape of the electric double layer. The derivation of linear scaling

of the low-frequency polarizability is based on the assumption of charged hard

rods.67Consequentially, the double layer has a tube-like shape with a radius similar

to the Debye length λD and a length that corresponds to the size of the rod. It is

easy to understand that in the limit of small Debye length, the polarization of this

double layer scales linearly with rod size. If the conformation of the polyelectrolyte

is considerably different from a hard rod, the situation becomes less straightforward.

In the case of polyelectrolyte models 1 and 2, the double layer is apparently still

tube-like and a linear scaling is observed. However, for the coiled structures of

polyelectrolyte model 3, the picture changes drastically. Now, a spherical double

layer is recovered which seemingly leads to a very different scaling behavior of

the low-frequency polarizability. In an interesting theoretical study by Zhao70

the different scaling exponents are explained with a size-dependent hydrodynamic

draining behavior, ranging from free draining around small chains to non-draining

in very long chains. The theory is based on a coil-like DNA model with radius

Rg and analyzed with the electrokinetic equations (see Chapter 4). While it is

appealing to explain the crossover from super-linear to sub-linear scaling with a

single draining parameter f , this does not explain the very different behavior of

condensed counterions and uncondensed ions studied in this work. However, in

the limit of very long chains corresponding to non-draining (f = 0) the theory

gives a possible explanation why the contribution of condensed counterions in the

experiments of Regtmeier et al.45 did not dominate the polarizability.

56



10
Conclusions and Outlook

In the previous chapters we studied the frequency and chain length dependence

of the electric polarizability of flexible polyelectrolyte chains in ionic solution.

We found that the frequency-dependence is dominated by anomalous dispersion,

similar to results reported for charged colloids. The transition-frequency from

high polarizability at small frequencies to low polarizability at high frequencies is

approximately ft = 0.05 τ−1 (50 MHz), which is in good agreement with experiments.

Additionally, we could observe a distinct maximum in the polarizability, which

goes beyond the Maxwell-Wager polarization model. This non-monotonic behavior

is caused by the overlapping of two time scales: the relaxation and deformation

time of the double layer, τuc, and the relaxation time of concentration gradients,

τd. The flexibility of the polyelectrolyte therefore plays a minor role for the

frequency-dependence of the polarizability. On the other hand, the amplitude of the

polarizability is strongly affected by the solvent quality and thus the apparent scaling

exponent of the polyelectrolyte. It has already been discussed in the literature

that the polarization of condensed counterions depends on the correlation of local

dipoles and therefore on the flexibility of the chain. However, the contribution of

uncondensed ions in the electric double layer was only investigated for charged

hard rods. In our analysis we could show that the chain length dependence of

this low-frequency polarization is also strongly affected by the conformation of the

polyelectrolyte. We rationalized our findings with the transition from tube-like

to spherical shape of the double layer. In the tube-like limit, we found a linear

dependence, in agreement with the literature about charged hard rods. However, for

coiled conformations with a more spherical double layer, the scaling was significantly

sub-linear.

The results are important with respect to their applications to the separation and

manipulation of proteins or DNA. For example, dielectrophoresis is one possible

technique to separate polyelectrolytes by their dielectric properties. The precise

understanding of the different polarization mechanisms as discussed in this work is

therefore essential for the correct interpretation of experimental results. In future

work it will be interesting to study the flexibility-dependence of the scaling exponent

γ(ν) in a more quantitative way and derive a scaling theory similar to the results

of Bowers and Prud’homme.68 In view of the application to DNA, it would also

be interesting to further improve the coarse-grained model and enable a more

quantitative comparison with experimental results.
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The analysis also shows how the overlapping of different time scales can lead to

complex dynamical behavior. The system of polyelectrolytes or charged colloids in

ionic solution would therefore be an interesting but very challenging application

of the dynamical coarse-graining techniques that will be proposed in the next

part. Such a coarse-grained model of charged, polarizable particles could enable

interesting studies in the field of electrohydrodynamics, for example the formation

of two-dimensional crystals with a frequency-dependent lattice constant.31
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Coarse-Graining
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11
Rheology and Generalized

Green-Kubo Relations
The work described in this chapter is reproduced from the publication “Computing

bulk and shear viscosities from simulations of fluids with dissipative and stochas-

tic interactions”, Gerhard Jung and Friederike Schmid, The Journal of Chemical

Physics, 144, 204104 (2016).

The analysis of the frequency-dependent polarizability of polyelectrolytes shows,

how physical processes on different, overlapping time scales can lead to complex

dynamical properties of a soft matter system. In this part of the thesis we go

one step further and propose a systematic coarse-graining technique that enables

the modeling of such systems. As a first application of the method we study the

frequency-dependent hydrodynamic interactions between colloids. The idea is to

coarse-grain a microscopic system of colloids in dispersion and to develop a model

where the fluid particles are replaced by effective equations of motion. This model

is supposed to have the exact same dynamical feature as the underlying microscopic

system.

In Chapters 2 and 3, we have already introduced a theoretical description of

the hydrodynamic interactions using fluid dynamics. To evaluate the theoretical

prediction and compare them to computer simulations, it is necessary to determine

precise values for the transport coefficients that characterize the fluid. Therefore,

we have introduced the Green-Kubo relations that enable the calculation of shear

viscosity η and bulk viscosity ζ by evaluating equilibrium fluctuations of the

dissipative stress tensor (see Section 2.1). However, we have also discussed that

forces which are not invariant under time reversal symmetry do not fulfill the

assumptions made in the derivation of the Green-Kubo relations.21;23 In this chapter,

we thus introduce more general equations that account for dissipative and stochastic

forces and can, e.g., be applied to DPD simulations (see Chapter 6 and Part II).

In 2006 Ernst and Brito23 suggested a generic Green-Kubo relation that can be

used to derive generalized Green-Kubo formulas, depending on the properties of

the Liouville operator L,

µ = µ∞ +
V

kBT

∫ ∞
0

dt
〈
(I−e

tLI+

〉
0
. (11.1)

Here, µ denotes an arbitrary transport coefficient and µ∞ its instantaneous con-
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tribution (e.g. due to stochastic forces). The projected momentum current I is

the projection of the dissipative stress tensor onto the dynamical subspace that is

perpendicular to the space spanned by the time-dependent hydrodynamic fields (for

details, see the following Sections 11.1 and 11.2),

I = Q(σ − 〈σ〉0). (11.2)

In other words, the projection operator Q projects onto the irrelevant variables

that are neglected when describing the system by hydrodynamic fields, similar to

the notation that was introduced in Section 5.2 for the Mori-Zwanzig projection

operator formalism. The pseudo-streaming operator etL then defines the time-

evolution of these projected momentum currents, I+(t) = etLI+. It has to be

emphasized that the Liouville operator L is not necessarily Hermitian. Therefore,

the notation was chosen in a way that I+ refers to a forward-in-time propagation,

while I− is connected to the time-reversed transform Lε of the Liouville operator,

I−(t) = etL
ε
I−. To account for this asymmetry, the dissipative stress tensor has to be

separated into three different contributions, σC, σD and σR. Here, the conservative

contribution σC is related to such forces that are consistent to a Hermitian Liouville

operator LεC = −LC. The dissipative contribution σD includes dissipative, velocity-

dependent forces, which implies LεD = LD. The random contribution σR is related to

the stochastic forces that are separated from the Green-Kubo integral as indicated

in Eq. (11.1). In MD simulations, the dissipative stress tensor can be evaluated

using the Irving-Kirkwood formula137

σIK
αβ =

〈
σC
αβ(t) + σD

αβ(t) + σR
αβ(t)

〉
, (11.3)

σC
αβ(t) =

1

V

∑
i<j

Rijα(t)FC
ijβ(t) +

1

V

∑
i

muiα(t)uiβ(t), (11.4)

σD
αβ(t) =

1

V

∑
i<j

Rijα(t)FD
ijβ(t), (11.5)

σR
αβ(t) =

1

V

∑
i<j

Rijα(t)FR
ijβ(t), (11.6)

with volume V , distance Rij = Ri −Rj, conservative force F C
ij , dissipative force

FD
ij and random force F R

ij between two particles. With these equations it is possible

to determine the different contributions to the stress tensor and apply the generic

Green-Kubo relations.

In the following, we will study the consequences of the generic formula (11.1) on

the Green-Kubo relations for shear viscosity η and bulk viscosity ζ.
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11.1 Generalized Green-Kubo relation for the shear

viscosity η

The shear viscosity η is related to the off-diagonal component of the dissipative stress

tensor, σxz. The projected momentum current is thus defined as Iη = Q(σxz−〈σxz〉0).

However, since the mean value 〈σxz〉0 is zero and the off-diagonal components are

already in the orthogonal subspace, we get a trivial identity, Iη = σxz. With these

considerations we can write down the generalized Green-Kubo relation for the shear

viscosity,

η =η∞ +
V

kBT

∫ ∞
0

dt
〈
(σC

xz(0)− σD
xz(0)(σC

xz(t) + σD
xz(t))

〉
0
,

η∞ =
V

kBT

∆t

2

〈
σR
xz

2
〉

0
, (11.7)

where ∆t is the time step of the MD simulation in which the stress tensor fluctuations

are determined. The main difference to the standard Green-Kubo relation in

Eq. (2.13) is the minus-sign in the integral and the separation of the stochastic force

contribution. In Figure 11.1 results for the application of this generalized equation

are presented. We simulated a DPD fluid (see Section 6.1) without conservative

force F C and parameters γ = 5.0 ετ/σ2, ∆t = 0.01 τ , and rc,DPD = 1.0σ for various

densities ρ. The figure clearly shows that there are significant differences between

the shear viscosity determined from non-equilibrium molecular dynamics (NEMD,

for details, see Attachment B.1 or Refs. 11; 17) and from the standard Green-

Kubo relation (2.13). When applying the generalized Green-Kubo relation, the

results agree perfectly. The plot therefore reveals that for high densities and strong

dissipative coupling the usage of the generalized Green-Kubo formula is obligatory.

Additionally, it can be observed that the theoretical prediction from Marsh et
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NEMD Müller-Plathe
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gen. Green-Kubo
stand. Green-Kubo

Figure 11.1: Density-
dependence of the
shear viscosity η of a
DPD fluid. The figure
compares the results
from non-equilibrium
molecular dynamics
(NEMD)11 (see also
Appendix B), theory
(MBE, see Ref. 119)
and the Green-Kubo
formulas in Eqs. (2.13)
and (11.7). The error
bars are smaller than the
size of the data points.
Figure adapted from
Ref. 17.
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al.119 drastically underestimates the shear viscosity, as has already been noticed in

Ref. 119. The reason for this discrepancy is the approximate determination of the

kinetic contribution to the dissipative stress tensor.

11.2 Generalized Green-Kubo relation for the bulk

viscosity ζ

The bulk viscosity depends on the trace of the dissipative stress tensor, Tr(σ). In

contrast to the off-diagonal, we now have to consider a non-vanishing mean value

(which is actually related to the pressure in the system), and a non-trivial projection

on the orthogonal dynamical subspace.17;21 This can be understood by analyzing

the conservative contribution to the dissipative stress tensor Eq. (11.4). The trace of

the kinetic term includes the kinetic energy of the system and is therefore connected

to the energy density. Since the energy density is one of the hydrodynamic fields,

this contribution is not in the orthogonal subspace. It is therefore necessary to

subtract the contributions to the projected momentum current that arise from

energy fluctuations, and indeed the final result is21;23

IC
ζ (t) =

1

3

∑
α

[
σC
αα(t)−

〈
σC
αα

〉
0
− 1

V

∂p

∂e
(H(t)− 〈H〉0)

]
,

ID
ζ (t) =

1

3

∑
α

[
σD
αα(t)−

〈
σD
αα

〉
0

]
, (11.8)

with Hamiltonian H, pressure p and average energy density e = V −1 〈H〉0. For an

ideal gas (like the DPD fluid without conservative forces introduced in the previous

section) it is easy to evaluate the thermodynamic relation,

∂p

∂e
=

2

3
. (11.9)

With these considerations, the generalized Green-Kubo relation for the bulk viscosity

is

ζ =ζ∞ +
V

kBT

∫ ∞
0

dt
〈
(IC
ζ (0)− ID

ζ (0))(IC
ζ (t) + ID

ζ (t))
〉

0
,

ζ∞ =
V

kBT

∆t

18

〈
[
∑
α

σR
αα]2

〉
0

. (11.10)

We applied this generalized Green-Kubo formula to the same system used in the

previous section. The results are displayed in Figure 11.2. It can be observed

that the viscosities determined from NEMD simulations17 (see Attachment B.2)

and the generalized Green-Kubo relation match very well. Applying the standard

formula would give very inconsistent results, therefore, we did not include these

64



0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

3 3.5 4 4.5 5 5.5 6 6.5 7

ζ
[ε
τ
/σ

3
]

ρ [σ−3]

NEMD
theory MBE

theory MBE, no kin.
gen. Green-Kubo

Figure 11.2: Density-
dependence of the bulk
viscosity ζ of a DPD
fluid. The figure com-
pares the results from
NEMD17 (see also Ap-
pendix B), theory (MBE,
see Ref. 119, plotted
with and without the ki-
netic contribution) and
the Green-Kubo formula
in Eq. (11.10). The
error bars are smaller
than the size of the data
points. Figure adapted
from Ref. 17.

into the figure. Very interestingly, the theoretical prediction for the bulk viscosity

is also different from the simulation results. However, the discrepancy between

theory and simulations can be resolved by neglecting the kinetic contribution in

the theoretical prediction. We explain this observation as follows: The kinetic

contribution in the theoretical prediction for the bulk viscosity ζ in fact corresponds

to the contribution of energy fluctuations to the pressure p. In formula (11.8) for

the projected momentum current the corresponding term had to be subtracted.

Likewise, it should also be subtracted in the Chapman-Enskog expansion that is

used to derived the theoretical prediction.119

The presented results show that we have indeed found the correct generalized Green-

Kubo relations to account for dissipative and stochastic forces. With these equations

we are now able to determine consistent transport coefficients from NEMD and

Green-Kubo relations. Furthermore, we can utilize the results to derive theoretical

predictions for the frequency-dependent hydrodynamic interactions of colloids in

a specific fluid (see Figure 3.2). In the next chapter, we will introduce a novel

technique to determine these hydrodynamic interactions from computer simulations

in order to be able to compare theory and simulations.
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12
Iterative Reconstruction of Memory

Kernels
The work reported in this chapter is reproduced from the publication “Iterative

reconstruction of memory kernels”, Gerhard Jung, Martin Hanke and Friederike

Schmid, Journal of Chemical Theory and Computation, 13, 2481 (2017).

A systematic coarse-graining procedure based on the generalized Langevin equation

(see Eq. (5.16)) requires two important input functions. The first is the mean

conservative force-field, F C(t), which includes information about structural or

thermodynamic properties of the system. In the field of static coarse-graining

several techniques have been proposed to reconstruct such a force-field from a

microscopic system (see Section 5.1). The second input function is the memory

kernel, K(t), that defines the dynamical features of the coarse-grained model.

Several numerical methods have been proposed in the literature that can be used to

determine memory kernels from microscopic systems.90–95 One of these, the inverse

Volterra technique, was introduced in Chapter 5. Another interesting method is the

backward orthogonal dynamics technique.93 Very different from the approaches of

the other methods this technique aims at reconstructing directly the stochastic force

∂F (t) and not the memory kernel K(t). This could be very interesting for future

applications in non-equilibrium systems, because it might enable the investigation

of generalized fluctuation-dissipation theorems. In Ref. 83 we have derived a

second order scheme for this reconstruction method. Despite this improvement,

the orthogonal backwards dynamics technique and also the other methods are

not applicable to many-body systems and suffer from major discretization errors

if the resolution of the reconstructed dynamical correlation functions is low (see

Section 5.3). In this chapter we therefore propose a technique that circumvents

these problems and allows for flexible and robust determination of memory kernels.

The main idea behind our novel reconstruction scheme is to use an iterative algorithm

to invert the generalized Langevin equation, similar to the iterative Boltzmann

inversion (IBI) known from static coarse-graining.79 To start the iteration a coarse-

grained simulation is performed with a given memory kernel. The deviation of

dynamical correlation functions determined in this simulation from those of the

microscopic system will then be used to calculate a small correction to the memory

kernel and so forth. If the iteration converges, the result is a memory kernel that
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IBI IMRF IMRV

Unknown quantity X pair potential V (r) memory kernel K(t)

Matched observable Y RDF g(r) 〈F (t)F (0)〉 〈V (t)V (0)〉
Mapping function φ(Y ) − 1

β
ln(Y ) βY −βM2 Y (t+∆t)−2Y (t)+Y (t−∆t)

∆t2

Mapping function 2 φ2(Y ) − − −βM2 Y (t+∆t)−Y (t)
∆t2

Initial guess X0 φ(YMD)

X = X0 valid in limit ρ→ 0 M →∞
Basic iteration step Xi+1 = Xi + ∆φi with ∆φi = φ(YMD)− φ(Yi)

Optimized iteration step Xi+1 = Xi + α ∆φi Xi+1 = Xi + hi(t) ∆φi (Eq. ())

Table 12.1: Comparison of the iterative Boltzmann inversion (IBI) to the iterative
memory reconstruction (IMRF, IMRV). Table adapted and extended from Ref. 83.

precisely reproduces the same dynamical correlation functions as determined from

the microscopic system.

The most straightforward dynamical correlation function that can be utilized

to reconstruct the memory kernel is the force auto-correlation function (FACF),

〈F (t)F (0)〉. This has two reasons: in the infinite mass limit, the FACF corresponds

to the memory kernel (see Eqs. (5.20) and (5.22)) and the force fluctuations 〈F (0)2〉
are related to the memory kernel at t = 0 (see the fluctuation-dissipation theorem,

Eq. (5.17)),

lim
M→∞

〈F (t)F (0)〉 = 〈∂F (t)∂F (0)〉 = kBTK(t), (12.1)〈
F (0)2

〉
=
〈
∂F (0)2

〉
= kBTK(0). (12.2)

These considerations show the strong similarity between the IBI technique and

the iterative reconstruction of memory kernels that is proposed in this thesis, as

summarized in Table 12.1. In the following, we will call this technique the force

iterative memory reconstruction (IMRF). The iteration is initialized with the original

FACF and uses the difference between the FACFs of the coarse-grained simulation

and the MD reference directly as a correction for the memory kernel in the next

iteration step.

In practical applications, the convergence of the iteration procedure described

in Table 12.1 is still poor. When applying a global correction we observed that

differences between the FACFs did not disappear, but were only shifted to larger

times t. Introducing a constant prefactor α < 1 to the iteration step (as is done

in IBI) was not sufficient to achieve a well-behaved convergence. Therefore, the

simple solution to this problem is to introduce a “correction” time tcor = ncor∆t

that localizes the time window in which the correction is applied (see Eq. (12.4)).

This approach leads to the iteration prescription

Ki+1(t) = Ki(t) + hi(t)
(
φ(YMD)− φ(Yi)

)
, (12.3)
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with

hi(t) =


1 t/tcor ≤ i

2

1− t/tcor + i/2 i
2
< t/tcor <

i
2

+ 1

0 t/tcor ≥ i
2

+ 1

, (12.4)

mapping variable Y and mapping function φ(Y ) as defined in Table 12.1. While the

specific choice of hi(t) for t/tcor ∈ [i/2, i/2 + 1] is arbitrary, it has to be nonnegative

and continuous to prevent discontinuities in the memory kernel. The optimal choice

of tcor is strongly system dependent and should be determined individually. For

small tcor, the algorithm will always converge, the necessary number of iterations

can, however, be large. Therefore, we suggest to start with large correction times

and optimize until no “shifting” can be observed anymore.

Another important aspect is the choice of the fine-grained correlation function

used as input for the iteration. The integration procedure that will be derived in

Chapter 13 integrates the velocity with an error of the order of O(∆t3). However,

the force can only be calculated by finite differences,

F (t) = M
V (t+ ∆t)− V (t)

∆t
, (12.5)

with an error in O(∆t). This leads to significant deviations in the FACF at larger

time steps even though the velocity auto-correlation function 〈V (t)V (0)〉 (VACF)

is reproduced very accurately. Therefore, we also propose a procedure that uses

the VACF as matched observable (see Table 12.1, right column), motivated by the

identity,

〈F (t)F (0)〉 = −M2 ∂
2

∂t2
〈V (t)V (0)〉 . (12.6)

This method will be called the velocity iterative memory reconstruction (IMRV).

The mapping function φ(Y ) shown in the table is only one possible option. The

mapping can for example also utilize the first derivative of the VACF to correct

the memory kernel. This is sometimes necessary, because the second derivative can

obviously not correct a linear-in-time increasing difference between the VACFs (see

”Mapping function 2” in Table 12.1). In the following chapter, we will apply this

alternative mapping for the IMRV because it indeed leads to a better convergence

of the algorithm (see Section 14.2).

An exemplary application of the IMRV scheme is shown in Figure 12.1. The

reconstructed memory kernel describes the hydrodynamic backflow of a single

nanocolloid and is equivalent to the memory kernel derived with the inverse Volterra

technique in Section 5.3. The numerical integrator for the GLE that is used to

determine the coarse-grained time-correlation functions will be developed in the

next chapter. The figure shows a well-behaved convergence that improves stepwise.

The final GLE simulations using the IMRV show no significant deviations from the
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Figure 12.1: Exemplary
iterative memory recon-
struction. The memory
kernel describes the hy-
drodynamic backflow of a
single nanocolloid in dis-
persion. Results from the
force and velocity iterative
memory reconstruction
(IMRF,IMRV) are com-
pared to the MD results,
reconstructed with the in-
verse Volterra technique.92

The reconstruction time
step is ∆t = 0.005 τ and
tcor = 0.05 τ .

The upper figure shows
the reconstructed memory
kernel for different itera-
tion steps.

The lower figure visualizes
the velocity correlation
function used to correct
the memory kernel in each
iteration step. The final
IMRV result lies exactly
on top of the MD reference
simulation.

results using the inverse Volterra technique. Furthermore, one can see that the

IMRF gives quite accurate results as well. This was expected, since the underlying

MD time-correlation functions have a high resolution and small statistical errors.

In the following, we will analyze the applicability of the proposed reconstruction

techniques for GLE simulations with larger time steps. The IMRV method optimizes

the memory kernel in such a way that the velocity auto-correlation function is

correctly reproduced. This can be observed in Figure 12.2. Independent of the

time step, the final results of the iteration always match with the MD reference

simulation. For time steps ∆tGLE < 0.1 τ this observation is also valid for the inverse

Volterra technique. However, for larger time steps, significant differences between

the coarse-grained and the reference simulations can be observed. This example

illustrates the strength of the iterative memory reconstruction. If the iteration

converges, the final result will always have exactly the same dynamical properties

as the underlying microscopic system. In the practical application of these methods

in Chapter 14 it will be shown that this property indeed enables the determination
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Figure 12.2: Velocity auto-correlation functions determined from GLE simulations with
different time steps ∆tGLE. Results from the velocity iterative memory reconstruction
(IMRV) are compared to the inverse Volterra technique. Except for the curve “Volterra
∆tGLE = 0.2” all lines lie almost exactly on top of each other.

of distance-dependent self- and pair-memory kernels. There, many-body effects

come into play and the inverse Volterra technique can no longer be applied.

In the next chapter, an integrator will be derived that can be used to perform

coarse-grained simulations based on the generalized Langevin equation. Together

with the iterative memory reconstruction presented in this chapter, we then have a

powerful toolkit for dynamic coarse-grained modeling.
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13
Derivation of Generalized Brownian

Dynamics

In recent years several algorithms have been proposed to include non-Markovian

dynamics into coarse-grained models.108;109;138–142 Most of them are restricted to

non-interacting particles without pair-memory kernels138;139;141;142 or two-particle

systems.140 The publications of Li et al.108;109 present the only technique that

includes pair-memory effects into coarse-grained systems of arbitrary size. This

technique is based on the assumption that the non-Markovian coarse-grained model

is Galilean-invariant. This approach works well for the star-polymer melt that

is investigated in Ref. 108, but the construction of implicit solvent models is not

possible because the interaction of the colloids with the fluid breaks the Galilean-

invariance of the system. The approximation of purely pairwise forces is thus

not valid for the coarse-grained system with colloidal particles only (see also the

discussion in Section 6.3). In Section 13.1, we will therefore derive a discretization of

the generalized Langevin equation that allows for the integration of coarse-grained

models with both self- and pair-memory kernels, called the “generalized Brownian

dynamics” technique. Afterwards, we will introduce the Fourier transform technique

proposed in Ref. 143 that is used to calculate time-correlated random numbers

which is necessary for the determination of the stochastic force contribution.

13.1 Discretization of the generalized Langevin

equation

The derivation of the generalized Brownian dynamics technique is based on the

N -particle generalized Langevin equation (5.16) restricted to one- and two-body

interactions,

M V̇i(t) =
∑
j 6=i
F C(Rij(t))−

∫ t

0

ds
∑
j

Kself(Rij(t), t− s)Vi(s)

−
∑
j 6=i

∫ t

0

dsKp(Rij(t), t− s)Vj(s) + ∂Fi(t). (13.1)

Here, Rij(t) = Ri(t)−Rj(t) is the distance vector between the particles i and j,

with position Ri(t) and velocity Vi(t). The 3× 3-dimensional distance-dependent
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memory kernelK(Rij(t), t−s) is composed of a self-memory kernelKself, describing

the self-diffusion of the particles, and a pair-memory function Kp that defines the

non-Markovian dissipative interaction between two particles. In Ref. 5 we have

shown that the hydrodynamic self-interaction is influenced by nearby particles. In

a general description it is therefore necessary to consider a distance-dependent

self-memory kernel Kself(Rij(t), t− s). In this work, we make the particular choice

that Kself(Rij(t), t− s) = Ks(t− s)δij + ∆Ks(Rij(t), t− s), where the first term

corresponds to the single-particle self-memory kernel and the second term accounts

for the distance-dependent corrections due to nearby particles. In many applications

it might be possible to assume ∆Ks(Rij(t), t− s) ≈ 0. For the above formulation

of the generalized Langevin equation, the fluctuation-dissipation theorem is

〈∂Fi(t)∂Fj(t′)〉 = kBTK
p(Rij(t), t− t′), (13.2)

〈∂Fi(t)∂Fi(t′)〉 = kBT

(
Ks(t− t′) +

∑
j 6=i

∆Ks(Rij(t), t− t′)
)
.

It has to be noted that the distance-dependence of the memory-kernel breaks

the stationarity of the stochastic force, because the positions of the particles are

obviously not time-invariant. However, it is not clear at which point in time the

distance needs to be evaluated. In the present work we make the assumption

that the distance of the colloid is approximately constant on the time scale on

which the memory decays. We therefore chose t as the relevant time for the

distance-dependence of the memory kernel in Eq. 13.2.

As a first step to find a numerical integrator for Eq. (13.1) it is necessary to introduce

a discretized memory kernel. Therefore, the continuous memory kernel K(Rij(t), t−
s) is replaced by a discretized memory sequence Km(Rij(t)). After inserting this

approach into the GLE, the final results for the GLE and the fluctuation-dissipation

theorem are (see Attachment C for details)

M V̇i(t) =
∑
j 6=i
F C(Rij(t))−

T−1∑
m=0

(
Ks

m +
∑
j 6=i

∆Ks
m(Rij(t))

)
Vi(t−m∆t)

−
∑
j 6=i

T−1∑
m=0

Kp
m(Rij(t))Vj(t−m∆t) + ∂Fi(t), (13.3)

〈∂Fi(t)∂Fj(t′)〉 = kBT
T−1∑
m=0

amK
p
m(Rij(t))δ(t− t′ −m∆t), (13.4)

〈∂Fi(t)∂Fi(t′)〉 = kBT
T−1∑
m=0

am

(
Ks

m +
∑
j 6=i

∆Ks
m(Rij(t))

)
δ(t− t′ −m∆t),

with the discretization time step ∆t of the GLE and the weight factor am = 2

for m = 0 and am = 1, otherwise. For computational reasons we introduce a

cutoff T of the memory sequence, thus the memory of the system is included

on a time scale τmem = T∆t. An important alternative to the discretization of
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the memory kernel is to introduce auxiliary variables to the generalized Langevin

equation. These additional degrees of freedom mimic the memory of the system and

recover Markovian equations of motion. This formalism was successfully applied

to non-interacting particles,139;141 two-particle microrheology140;144 and the non-

Markovian DPD method.109 The inclusion of auto- and cross-correlations into the

system, however, complicates the situation and makes it difficult to derive a similar

formalism. A detailed discussion on the auxiliary variable expansion can be found

in Attachment D.

Starting from Eqs. (13.3)-(13.4) we derive a numerical integrator for the generalized

Langevin equation by following the scheme introduced by Grønbech-Jensen and

Farago.145 An application of this scheme to the single-particle GLE can be found

in Ref. 83. Here, we show the extension to the full multiparticle GLE. The first

step is to integrate the GLE from tn = n∆t to tn+1 = tn + ∆t. For the time-

discretized velocity and position of particle i we use the notation Vi,n = Vi(n∆t)

and Ri,n = Ri(n∆t), respectively. The integration leads to the following equations

of motion,

M(Vi,n+1−Vi,n) = −Ks
0 [Ri,n+1 −Ri,n]+∆t

(
FD
i,n+F R

i,n

)
+
∑
j 6=i

∫ tn+∆t

tn

dtF C(Rij(t)),

(13.5)

with the non-Markovian dissipative force FD
i,n and stochastic force F R

i,n given by

∆tFD
i,n = −

∑
j 6=i

T−1∑
m=0

∫ tn+∆t

tn

dt
[
∆Ks

m(Rij(t))Vi(t−m∆t) +Kp
m(Rij(t))Vj(t−m∆t)

]
−

T−1∑
m=1

Ks
m [Ri,n−m+1 −Ri,n−m] , (13.6)

(∆t)2
〈
F R
i,n+mF

R
j,n

〉
= kBTam

tn+m+∆t∫
tn+m

dtKp
m(Rij(t)), (13.7)

(∆t)2
〈
F R
i,n+mF

R
i,n

〉
= kBTam

Ks
m∆t+

∑
j 6=i

tn+m+∆t∫
tn+m

dt∆Ks
m(Rij(t))

 .

Except for the discretization of the memory kernel, no approximations were made

in the derivation of the above equation. However, to find an explicit integration

scheme, it is now necessary to make the following assumptions:

• The pair-memory kernel Kp
m(Rij(t)) and distance-dependent self-memory

kernel ∆Ks(Rij(t)) do not change significantly during one time step,

Kp
m(Rij(t)) = Kp

m(Rij,n) ∀t ∈ [tn, tn + ∆t], (13.8)

∆Ks
m(Rij(t)) = ∆Ks

m(Rij,n) ∀t ∈ [tn, tn + ∆t]. (13.9)
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• The integration of the position, Ṙi = Vi, can be approximated by145;146

Ri,n+1 −Ri,n =
∆t

2
(Vi,n+1 + Vi,n) +O(∆t3). (13.10)

• Similar to Ref. 145 the integral of the conservative force F C(Rij(t)) will be

approximated such that positions and velocities are correct to second order in

∆t.

On the basis of these approximations the generalized Brownian dynamics integrator

can be derived,

Ri,n+1 = Ri,n + b∆tVi,n +
b∆t2

2M

(
F C(Rij,n) + FD

i,n + F R
i,n

)
, (13.11)

Vi,n+1 = aVi,n +
∆t

2M

(
aF C(Rij,n) + F C(Rij,n+1)

)
+
b∆t

M

(
FD
i,n + F R

i,n

)
,

with,

∆tFD
i,n = −

∑
j 6=i

[
Kp

0 (Rij,n)Vj,n + ∆Ks
0(Rij,n)Vi,n

]
∆t (13.12)

−
N−1∑
m=1

Ks
m [Ri,n−m+1 −Ri,n−m]−

∑
j 6=i

N−1∑
m=1

Kp
m(Rij,n) [Rj,n−m+1 −Rj,n−m]

−
∑
j 6=i

N−1∑
m=1

∆Ks
m(Rij,n) [Ri,n−m+1 −Ri,n−m] ,

(∆t)2
〈
F R
i,n+mF

R
j,n

〉
= kBTamK

p
m(Rij,n+m)∆t,

(∆t)2
〈
F R
i,n+mF

R
i,n

〉
= kBTam

(
Ks

m +
∑
j 6=i

∆Ks
m(Rij,n+m)

)
∆t, (13.13)

a ≡ 1− Ks
0∆t

2M

1 +
Ks

0∆t

2M

and b ≡ 1

1 +
Ks

0∆t

2M

. (13.14)

Up to this point, the memory kernels Ks
m, ∆Ks

m(Rij,n+m) and Kp
m(Rij,n+m) have

not been specified. However, two important constraints have to be considered:

• Positive definiteness : The auto- and cross-correlations of the 3N -dimensional

stochastic force vector F R
i,n can be described by a 3N × 3N -dimensional

correlation matrix (see also Eq. (13.23)) which has to be positive definite.

Since this matrix depends on the positions of the particles it is, in principle,

necessary to prove that the input memory kernels lead to a positive definite

correlation matrix for all possible particle configurations (similar to comparable

proofs of the positive definiteness of the Rotne-Prager tensor used in Brownian

dynamics147). In practice, proving the general positive definiteness will be

obviously very difficult, therefore, we always checked for positive definiteness

in our simulations.
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• Instantaneous contribution: The instantaneous contributions of the memory

kernels, Kp
0 (Rij,n) and ∆Ks

0(Rij,n), are integrated differently than the other

memory kernels, which is necessary in order to obtain an explicit integration

scheme (see Eq. (13.12)). This will have an impact on the precision of

the method if the instantaneous contribution is large. Therefore, it has to

be ensured that Kp
0 (Rij,n) ≈ ∆Ks

0(Rij,n) � Ks
0. Otherwise, an implicit

integration scheme has to be derived, which can be solved by matrix inversion

(this inversion could be efficiently realized using the Lanczos algorithm,148–150

see Section 13.2.2).

In most applications, the interactions between two particles will be separated into

contributions parallel and orthogonal to the line-of-centers between the particles,

as discussed in Section 6.3. The memory kernels are therefore decomposed in the

following way,

K(Rij(t), t
′) ≈ K‖(Rij(t), t

′)eije
T
ij +K⊥(Rij(t), t

′)(1− eijeTij), (13.15)

∂F (t) = ∂F ‖(t) + ∂F⊥(t) = [eij · ∂F (t)] eij + (1− eijeTij)∂F (t), (13.16)

with eij = Rij(t)/Rij(t). For simplicity, only the parallel component for the distance-

deponent memory kernels Kp(Rij(t), t
′) and ∆Ks(Rij(t), t

′) is considered in this

thesis. In Ref. 5 we have shown via theory and simulations that the orthogonal

component is indeed much smaller than the parallel component. Additionally, the

single-particle self-memory kernel Ks
αβ(t) = Ks(t)δαβ is assumed to be isotropic.

To perform generalized Brownian dynamics simulations, the remaining challenge is

to calculate the correlated random force FR
i,n following the fluctuation-dissipation

theorem Eq. (13.13).

13.2 Calculating time- and cross-correlated ran-

dom numbers

In this section, we will first introduce the Fourier transform technique to determine

time-correlated random numbers. This method was proposed by Barrat et al.143

and applied in several publications.83;108;109 In the second subsection, the technique

is generalized to include cross-correlations between the random numbers, which

then enables the inclusion of pair-memory kernels.

13.2.1 The Fourier transform technique

This section is reproduced from Appendix A of the publication “Iterative recon-

struction of memory kernels”, Gerhard Jung, Martin Hanke and Friederike Schmid,

Journal of Chemical Theory and Computation, 13, 2481 (2017).
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The goal is to generate time-correlated Gaussian distributed random numbers Fn,

that fulfill the correlation function

〈Fn+mFn〉 = Km, (13.17)

with the discretized memory sequence Km for m = 0, ..., T − 1, where T denotes

the number of time steps for which the memory is considered. First, we introduce

the real parameter αs for s = −T + 1, ..., T − 1, defined by

Km ≡
T−1∑

s=−T+1

αsαs+m, (13.18)

with αs+m = αs+m−2T+1 if s+m ≥ T . It can now be shown that for a sequence of

uncorrelated Gaussian distributed random numbers Wn, the relation

Fn =
T−1∑

s=−T+1

αsWn+s (13.19)

generates random numbers with the target correlation function. The challenge

therefore lies in the determination of the parameter αs. This can be achieved by

applying the discrete Fourier transform (DFT) to the memory sequence,

K̂ω =
T−1∑

m=−T+1

Kme
−iωm 2π

2T−1 , (13.20)

with K−m = Km. We will now define

α̂ω =

√
K̂ω, (13.21)

and consequentially determine the parameter αs by inverse DFT,

αs =
1

2T − 1

T−1∑
ω=−T+1

α̂ωe
iωs 2π

2T−1 . (13.22)

It is straightforward to show that the definitions in Eqs. (13.18) and (13.21) are

consistent. We close with one important comment: In practical applications, a

small number of coefficients K̂ω was slightly below zero. While this is theoretically

impossible, because the modes connected to the negative values K̂ω would be

instable, the problem can occur due to discretization errors if the memory sequence

Km has “edges”. The solution used in this thesis is to set all values K̂ω < 0 to

zero. Although this leads to very small deviations from the FDT (≈ 0.01%), the

difference did not have any physical consequences.

78



13.2.2 Generalized Fourier transform technique

Different than in the previous subsection, the stochastic forces will now also be

cross-correlated. This can be described by considering random numbers Fi,n for

every particle i = 1, ..., N and time step n. The generalized correlation function

that has to be fulfilled is

〈Fi,n+mFj,n〉 = Kij,m. (13.23)

Here, every entry (i, j) of the N ×N -dimensional matrix Km is a discretized self- or

pair-memory kernel. We then introduce the real and symmetric N ×N -dimensional

matrices As for s = −T + 1, ..., T − 1, defined by

Km ≡
T−1∑

s=−T+1

AsAs+m, (13.24)

where As+m = As+m−2T+1 if s+m ≥ T . The correlated random numbers Fn can

now be determined by multiplying these matrices with a sequence of uncorrelated

Gaussian distributed random numbers Wn,

Fn =
T−1∑

s=−T+1

AsWn+s. (13.25)

Similar to the previous section, the difficulty is to find an algorithm that efficiently

determines the matrices As. The solution proposed in this thesis is combining

the Fourier transform technique and the Lanczos algorithm148–150 to efficiently

determine the matrix square root. To derive the final algorithm, we first Fourier

transform Eq. (13.24) by utilizing the convolution theorem,

K̂ω = ÂωÂω (13.26)

⇒ Âω =

√
K̂ω, (13.27)

with the Fourier transforms of the memory matrix K̂ω, and the convolution matrix

Âω, according to Eq. (13.20). This result can now be applied on the Fourier

transform of Eq. (13.25),

F̂ω =

√
K̂ωŴω. (13.28)

Here, F̂ω and Ŵω are the Fourier transforms of the correlated and uncorrelated noise

vector, respectively. This equation shows that is not necessary to calculate the full

square root matrix within cubic time, but only to determine the square root matrix

multiplied by a vector. This operation can be performed within linear time using the

Lanczos algorithm148–150 if it is assumed that the particle interaction has a cutoff

rc. This linear time complexity is obviously the best possible scaling that can be

achieved for the given problem. The main idea behind the Lanczos algorithm is to

determine the eigenvalues of a given matrix by projection on Krylow subspaces. In
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Algorithm 1 Generating correlated random numbers Fi,n following the distribution
〈Fi,n+mFj,n〉 = Kij,m

1: Inputs:
Kij,m for m = 0, ..., T − 1 with Kij,m = Kij,−m
Wi,n with 〈Wi,n+mWj,n〉 = δm0δij

2: Initialize:
compute K̂ij,ω =

∑T−1
m=−T+1Kij,m exp(−imω 2π

2T−1
)

compute Ŵi,ω =
∑T−1

m=−T+1 Wi,n+m exp(−imω 2π
2T−1

)

3: for ω = 0 to T − 1 do
4: set v0

i = 0, β0 = 0, v1
i = Ŵi,ω/‖Ŵω‖, k = 1,∆ = 1

5: compute α1 = v1
i K̂ij,ωv

1
j

6: while ∆ > tol do
7: compute rk+1

i = K̂ij,ωv
k
j − αkvki − βk−1vk−1

i

8: set βk = ‖rk+1‖
9: set vk+1

i = rk+1
i /βk

10: compute αk+1 = vk+1
i K̂ij,ωv

k+1
j

11: define V k+1
ip = vpi , p = 1, ..., k + 1

12: construct tridiagonal Hk+1
pq with diagonal elements equal to

(α1, ..., αk+1) and super- and sub-diagonal elements equal to
(β1, ..., βk)

13: compute xk+1 = ‖Ŵω‖V k+1
√
Hk+1e0, with e0

1 = 1 and e0
q = 0,

q = 2, ..., k + 1

14: set ∆ = ‖xk+1 − xk‖
15: set k = k + 1
16: end while
17: set F̂i,ω = xki
18: end for
19: compute Fi,n = 1

T

(
F̂i,0 + 2

∑T−1
ω=1 F̂i,ω

)

our case, the projection is performed on symmetric, tridiagonal matrices. For these

tridiagonal matrices there are, however, simple and fast techniques to determine

their square root.151 Therefore, the Lanczos algorithm can also be used for the

approximate determination of the square root matrix.

The pseudo code to determine auto- and cross-correlated random numbers using

the methods described above is displayed in Algorithm 1. For practical applications

several comments about the algorithm have to be made:

• If there is a clear separation between the typical diffusion times of the coarse-

grained particles and the time scale of the memory, Eq. 13.13 can be simplified

to 〈
F R
i,n+mF

R
j,n

〉
= kBTamK

p
m(Rij,n)/∆t. (13.29)

This enables the precalculation of the Fourier transform of the memory kernels

(step 2).

80



• In step 19, we only evaluate the correlated random numbers Fi,n and not the

full inverse Fourier transform of F̂i,ω. Considering the time scale separation

from the previous comment it could also be possible to introduce a time-window

TFT for which the correlated random numbers Fi,n+m for m = 0, ..., TFT − 1

are determined. This would lead to a speed up of approximately TFT.

• The bottleneck of this method is the matrix-vector multiplication (steps

5,7,10). The results of steps 5 and 10 are therefore saved and reused in step 7.

• In our implementation, the most efficient way to perform the matrix-vector

multiplication is by looping over the neighbor lists in every iteration step.

Using sparse-matrix multiplication leads to a very time consuming overhead.

• The square root of the matrix Hk+1 in step 13 can be evaluated easily by

realizing that Hk+1 is a real, symmetric and tridiagonal matrix (see Ref. 151).

• If the system can be described by the self-memory kernel only, it is possible to

use the algorithm presented in Section 13.2.1. Therefore, the parameters for

the noise calculation can be precalculated before the simulation run, which

significantly increases the efficiency (see Ref. 83).

In Fig. 13.1 the time-correlation functions of the stochastic force determined for an

exemplary system are shown. The system consists of four particles sitting in the

edges of a square with edge length 7σ. The input memory kernel will be derived

in Chapter 14. The exit condition was set to tol = 0.0001 (see Algorithm 1). The

figure clearly shows that the time-correlation functions of the random force perfectly

match the input memory kernels. The presented simulation includes both distance-

dependent self-memory kernels and projections, due to the two-dimensionality of

the system; these results are therefore highly non-trivial. For example, the memory

Figure 13.1: Auto- and
cross-correlation functions
of the stochastic force
FR(t) produced using Al-
gorithm 1. The figure
shows the simulated time-
correlation functions (data
points) along with the in-
put memory kernels (lines).
The simulated system con-
sists of four particles sit-
ting at the edges of a
square with edge length 7σ
(see black sketch).
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kernel K14(t) is given by,

K14(t) = 0.5K(R = 9.8σ, t), (13.30)

because particle 1 and 4 have a distance R = 9.8σ and the projection on the x-axis

includes a factor of 0.5 (see Eq. (13.15) and sketch in Figure 13.1).

This analysis shows that the algorithm presented in this section precisely calculates

stochastic forces with the desired correlation functions. Therefore, we finally have

developed a systematic method to integrate the generalized Langevin equation with

pair-memory kernels. In the next chapter, this generalized Brownian dynamics

technique will be applied to investigate the frequency-dependent hydrodynamic

interactions between nanocolloids in dispersion.
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14
Generalized Brownian Dynamics

Applied to Nanocolloids

The dynamics of colloids in dispersion are strongly influenced by their hydrodynamic

interactions. In Chapters 3, 5 and 12 we have already extensively discussed the self-

interaction of colloids, which is dominated by hydrodynamic backflow. Additionally,

the flow field that is induced by the movement of each colloid will lead to frequency-

dependent hydrodynamic pair-interactions between different colloids. These pair-

interactions play an important role for many processes in soft matter physics on very

different length and time scales.27;152;153 As a consequence, various methods have

been proposed to include them into coarse-grained models.105;114;116;123–125 The most

efficient ones are implicit solvent models, in which the solvent particles are replaced

by effective equations of motion for the dissolved particles.123–125 However, in the

literature it is always assumed that there exists a time scale separation between

the relaxation of the particles and the dynamics of the solvent, i.e., hydrodynamic

interactions are mediated instantaneously. In Ref. 5 we have already shown that this

approximation is not valid for nanocolloids and that the hydrodynamic interactions

are characterized by significant memory effects in two-particle systems (see also

Chapter 3). In this thesis we use the methods proposed in the previous chapters to

determine and implement these pair-memory effects into an implicit solvent model

based on the multiparticle generalized Langevin equation. This means that we set

up a coarse-grained system of N freely diffusing particles that are supposed to have

the exact same dynamics as the nanocolloids in the underlying microscopic system.

In the first section of this chapter, we derive the distance-dependent memory kernels

that describe the hydrodynamic interaction of nanocolloids under the assumption

that many-body effects do not play a role. This can be done very efficiently

using a trick introduced in Ref. 5. With this approach, the two-particle GLE can

be decomposed into two GLEs without pair-interactions and modified dynamics.

Afterwards, we use the determined memory kernels as input to perform generalized

Brownian dynamics (GBD) simulations in combination with the IMRV to account for

many-body effects. In the third section, the transferability of the determined memory

kernels is investigated. This already gives some insights into the applicability of the

GBD technique. Finally, we make some important remarks on the efficiency of the

technique as well as on the inclusion of long-range interactions and long-time tails

to the non-Markovian coarse-grained model that is constructed in this chapter.
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14.1 Constructing non-Markovian coarse-grained

models in the highly dilute limit

In this section we will utilize the auto- and cross-correlation functions determined

from multiparticle MD simulations to determine the self- and pair-memory kernels in

the highly dilute limit. To do so, we consider the generalized Langevin equation (13.1)

for two particles within a constant distance R in the absence of a conservative force,

F C(t) = 0. We therefore assume that the hydrodynamic interactions are purely

additive and many-body effects do not have an impact on the dynamical correlation

functions. Under these assumptions, the equation of motion for particle 1 is

MV̇1(t) = −
∫ t

0

ds
(
Ks(t−s)+∆Ks(R, t−s)

)
V1(s)−

∫ t

0

dsKp(R, t−s)V2(s)+∂F1(t).

(14.1)

Since we only consider the contributions parallel to the line-of-centers between the

two particles, this problem is effectively one-dimensional. By multiplying Eq. (14.1)

with V1(0) and taking the time-average, this equation can be transformed into a

noise-free differential equation for the velocity auto- and cross-correlation functions,

MĊ11(R, t) = −
∫ t

0

ds
(
Ks(t−s)+∆Ks(R, t−s)

)
C11(R, s)−

∫ t

0

dsKp(R, t−s)C21(R, s),

(14.2)

with Cij(R, t) = 〈Vi(t)Vj(0)〉R12=R. An analogous equation can be derived by

multiplication of Eq. (14.1) with V2(0). Under the justified assumption that

C11(R, t) = C22(R, t) and C12(R, t) = C21(R, t), we can combine these two equations

and derive decoupled GLEs with modified dynamics,

MĊ±(R, t) = −
∫ t

0

dsK±(R, t− s)C±(R, s). (14.3)

Here, we introduce the additive and subtractive velocity correlation functions

C±(R, t) = C11(R, t)±C12(R, t) and memory kernelsK±(R, t) = Ks(t)+∆Ks(R, t)±
Kp(R, t), respectively. This equation motivates the following coarse-graining proce-

dure to derive a first approximation for the distance-dependent self- and pair-memory

kernels:

• Perform a molecular dynamics (MD) simulation of freely diffusing particles

and determine the velocity auto- and cross-correlation functions,

Ca(R, t) =
1

2N(N − 1)

∑
i,j 6=i
〈Vi(t)Vi(0) + Vj(t)Vj(0)〉Rij(t)=R , (14.4)

Cc(R, t) =
1

2N(N − 1)

∑
i,j 6=i
〈Vi(t)Vj(0) + Vj(t)Vi(0)〉Rij(t)=R . (14.5)
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These functions describe the velocity auto- and cross-correlations of particle i

under the assumption that there exists a particle j in distance R. In these

definitions it is assumed that the distance does not change significantly on the

time scale on which the velocity correlation functions decay. The correlation

functions are binned with a spatial discretization ∆R, which is equivalent to

the binning of the memory kernels (see also next paragraph).

• Determine the additive and subtractive velocity correlation functions C±(R, t)

and utilize the iterative memory reconstruction to derive the memory kernels

K±(R, t). This reconstruction is very efficient, since it does not require to

consider cross-correlations between the particles.

• Calculate the self- and pair-memory kernels,

Ks(t) + ∆Ks(R, t) =
K+(R, t) +K−(R, t)

2
, (14.6)

Kp(R, t) =
K+(R, t)−K−(R, t)

2
, (14.7)

and determine the distance-dependent correction ∆Ks(R, t) by subtracting

the known single-particle memory Ks(t) (see Chapter 12).

Step 2 can also be performed with the inverse Volterra technique92 (as is done in

Ref. 5). However, for the simulations considered in this thesis, the results of the

inverse Volterra technique are much less accurate than the results obtained with

the IMRV method. The reason for this observation are accumulated errors in the

inverse Volterra technique for large correlation times that can be traced back to the

significant statistical errors of the MD cross-correlation functions. This shows that

the IMRV method is indeed more robust than the other non-iterative techniques.

Figure 14.1 illustrates the iterative memory reconstruction for the additive and

subtractive memory kernels. The underlying MD simulation model consists of

125 nanocolloids with box size L = 107.728σ, corresponding to a number density

ρ = 0.0001σ−3 and thus a volume fraction of 1 % (see also Chapter 3). The time

step of the GLE simulations is ∆t = 0.05 τ . The cutoff of the memory sequence

is T = 50, which leads to the memory time scale τmem = 2.5 τ . The spatial

discretization is ∆R = 0.2σ, with a cutoff rc = 15 σ. Determining the mean velocity

v =
√
M−1 ≈ 0.1σ/τ for kBT = 1 ε reveals that the particles roughly diffuse over

a distance ∆R on a time scale τmem. It can thus be assumed that the distance-

dependent memory kernels change only slightly on this time scale. Therefore, the

assumptions made for the discretization of the GLE in the last chapter are fulfilled.

This also enables, amongst others, the precalculation of the Fourier transform of

the memory kernels (see Algorithm 1). If not stated differently, the same system

properties are used for all simulations in the next sections. Figure 14.1 clearly shows

that the final results for the memory kernels perfectly reproduce the target velocity

correlation functions (bottom panel).
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Figure 14.1: Iterative
memory reconstruction of
the additive and subtrac-
tive memory kernels. The
reconstruction is shown for
the distances R = 7.2σ
and R = 9σ. All recon-
structions are initialized
with the memory kernel
Ks(t) that was determined
in Chapter 12. The
reconstruction time step is
∆t = 0.05 τ and the correc-
tion times are t+cor = 0.1 τ
and t−cor = 0.05 τ .

The two upper figures show
the reconstructed memory
kernels for different itera-
tion steps, compared to the
single-particle self-memory
kernel (see Chapter 12).

The two lower figures
visualize the velocity cor-
relation functions used to
correct the memory kernels
in each iteration step, com-
pared to the single-particle
auto-correlation function.
The final results lie exactly
on top of the MD reference
simulations. The nega-
tive values in the curve
“C−(R, t) : R = 7.2σ, It.
101” are not shown.
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Figure 14.2 visualizes many-body effects in the hydrodynamic interactions by com-

parison between the generalized Brownian dynamics simulation using the memory

kernels derived in this section and the original MD simulation. While the velocity

cross-correlation function shows a good agreement, there are significant deviations

between the velocity auto-correlation function observed in GBD and MD simulations.

Here, the figure shows that the velocity decorrelation is substantially overestimated

in GBD for both distances R. This can be explained as follows: The disturbance of

the flow field caused by the movement of nearby colloids leads to a strong decor-

relation of the velocity, because the backflow effect is reduced. In the two-body

reconstruction performed in this section, the decorrelation is attributed to one

neighboring colloid in the distance R only, instead of the set of all nearby colloids.

This leads to an overestimation of the distance-dependent self-memory correction

∆Ks(R, t) and thus to the observed discrepancies between the coarse-grained model

and the microscopic system.

To account for these many-body effects it is inevitable to perform generalized

Brownian dynamics simulations and use the iterative memory reconstruction to

correct the differences between the GBD and MD results.
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Figure 14.2: Generalized
Brownian dynamics (GBD)
simulations of nanocolloids
in dispersion. The input
memory kernels are deter-
mined in Section 13.1. The
figures show results for the
velocity auto- (upper fig-
ure) and cross- (lower fig-
ure) correlation functions
for distances R = 7.2σ and
R = 9.0σ, compared to
molecular dynamics (MD)
simulations. To visualize
the statistical errors, five
data points with y-error
bars are included in the
curves.
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14.2 Accounting for many-body effects in non-

Markovian coarse-grained models

In this section the IMRV is applied to reconstruct the frequency-dependent hydrody-

namic interactions between freely diffusing nanocolloids in many-body systems. The

reconstruction of Ca(R, t) and Cc(R, t) is performed in parallel for all distances R,

however, the corrections in every iteration step are determined separately, without

considering correlations between different distances. Similar to the observation

discussed in the last section, this will lead to an overshooting in the corrected

memory kernels. Therefore, a regularization parameter α is included as prefactor to

the mapping function φ2(Y ) (see Tab. 12.1). Additionally, we use the first derivative

of the velocity correlation functions as correction to the memory kernels, to avoid

the emergence of a linear-in-time increasing difference between the GBD and MD

correlation functions, as discussed in Chapter 12. The mapping function for the

IMRV is thus

φ′2(Y ) = −αβM2Y (t+ ∆t)− Y (t)

∆t2
, (14.8)

with α ≈ 0.3, β = 1/kBT and the respective velocity correlation function Y .

Additionally we need to point out that we focus in the present work on the

hydrodynamic regime in which at least a few solvent particles are located between the

surfaces of the colloids, i.e., we disregard lubrication forces in the GBD simulations.

This is done by including a lower cutoff rc,min = 6.8σ to the memory kernels. For

distances R < 6.8σ, the memory kernels are thus replaced by the ones at R = rc,min.

The exclusion of lubrication forces has two reasons: The statistical errors of the

correlation functions for small distances are very large because the number of

neighbors Nneigh at a distance R of a colloid obviously scales quadratically with R.

Additionally, the radial distribution function is strongly decreasing for R < 6.8σ,

therefore, the quality of the reproduced memory kernels would be poor. The

lubrication forces also lead to very strong cross-correlations between the particles

that are difficult to handle within the assumptions made in this thesis, like, for

example, that the memory kernels are approximately constant on the memory time

scale τmem.

The iterative procedure is illustrated in Figure 14.3. The reconstruction time step

is ∆t = 0.05 τ and tcor = 0.05 τ . Iterations 101 − 200 correspond to an iterative

reconstruction initialized with the final memory kernels of the first reconstruction

(It. 0 − 100). The figure shows that the auto- and cross-correlation functions

converge. As mentioned in the last section, the cross-correlation functions already

agree very well even without the inclusion of many-body contributions. The only

significant deviations between the different iteration steps can thus be observed

for R = 7.2σ and t > 1.0 τ . The picture changes when analyzing the iterative

reconstruction for the distance-dependent auto-correlation function. Here, the
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Figure 14.3: IMRV applied to the nanocolloidal dispersion to derive the hydrodynamic
self- and pair-memory kernels. Simulation results for different iteration steps are shown
for particle distances R = 7.2σ and R = 9σ. The upper and middle figure illustrate the
difference between the velocity auto- (upper) and cross- (middle) correlation function
determined from GBD and MD simulations (∆C(t) = CGBD(t)− CMD(t)). To visualize
the statistical errors, five data points with y-error bars are included in the curves. The
lower figure shows the self- and pair-memory kernels.
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former discrepancies between GBD and MD simulations almost completely vanish

and a good agreement between the correlation functions can be achieved, especially

for larger distances. Therefore, we have reconstructed distance-dependent memory

kernels for non-Markovian coarse-grained models that almost perfectly describe the

short-range hydrodynamic interactions of freely diffusing nanocolloids in dispersion.

It is worth emphasizing that the difference between the coarse-grained model and

the original MD simulation can easily become larger than the statistical error of

the correlation functions. This is due to the fact that we do not use the absolute

value of this difference to correct the memory kernel, but the first derivative (see

Eq. 14.8). As a consequence, the statistical errors of the determined correlation

functions accumulate with increasing correlation time t and thus increase with

the square root of the correlation time, ∆C(t) ∝
√
t. The straightforward way to

minimize this discrepancy is performing longer coarse-grained simulations and thus

reduce the statistical error.

The reconstructed memory kernels are illustrated in the lower panel of Figure 14.3.

It can be observed that the final memory kernels calculated in this section signifi-

cantly differ from the results of the previous section (see curves labeled “It. 0” in

Figure 14.3). Especially the overestimation of the distance-dependent self-memory

kernel was corrected, i.e., ∆Ks(R, t) was reduced. However, despite the reduction of

∆Ks(R, t), this distance-dependent correction to the single-particle self-memory ker-

nel still considerably differs from zero, which retrospectively justifies its introduction

in Chapter 13.

Figure 14.4 shows the auto- and cross-correlation functions determined from GBD

simulations using these reconstructed memory kernels for various distances R. The

results confirm all observations made in the previous paragraph. In particular, the

discrepancies in the velocity auto-correlation function are removed and a perfect

agreement between GBD and MD simulations is achieved. The only differences

can be observed for small distances R < 8.0σ. However, the statistical error of

these small-distance correlation functions is relatively large. These uncertainties

in the determination of the correlation function will thus reduce the quality of the

reproduced memory kernels.

The final results for the hydrodynamic self- and pair-memory kernels are presented

in Figure 14.5 and compared to results from fluid dynamics (see Chapter 3). The

agreement between theory and simulations for the pair-memory kernel Kp(R =

9.0σ, t) is very good. For smaller distances, significant deviations can be observed,

which are caused by the approximate nature of the theory in the case of R ≈ 2Rc,

with the radius of the colloid Rc, as discussed in Ref. 5. The situation is different

for the distance-dependent correction to the self-memory kernel, ∆Ks(R, t). The

figure shows that this correction is substantially underestimated by the theory for

all distances R. This could have three reasons: Firstly, this contribution is strongly

affected by the boundary-conditions of the colloids, because it depends on the precise
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Figure 14.4: Hydrodynamic auto- and cross-correlation functions of nanocolloids in
dispersion for different particle distances R. The presented results relate to the non-
Markovian coarse-grained model derived in Section 14.2 simulated with generalized
Brownian dynamics (GBD) and compared to results from molecular dynamics (MD).
The upper and middle figure illustrate the velocity auto-correlation function in double-
logarithmic (upper) and zoomed linear (lower) representation. The lower figure shows
the velocity cross-correlation function. To visualize the statistical errors, five data points
with y-error bars are included in the curves.
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Figure 14.5: Hydrodynamic self- and pair-memory kernels of nanocolloids in dispersion
for different particle distances R. The figure shows the distance-dependent self- and
pair-memory kernels of the non-Markovian coarse-grained model derived in Section 14.2,
compared to results from fluid dynamics (FD, see Chapter 3).

reflection of the sound wave that transmits the hydrodynamic interaction between

two colloids. Since this reflection cannot be modeled in full detail in hydrodynamic

theory, we expect deviations between theory and simulations. Secondly, the high-

frequency response of the hydrodynamic interactions is influenced by the particle

character of the fluid in MD simulations that cannot be described by continuum fluid

dynamics. Thirdly, as discussed in this section, the distance-dependent correction

∆Ks(R, t) is affected by many-body contributions that are not integrated in the

theory.

In this section we have shown that the generalized Brownian dynamics technique

can be used to construct non-Markovian coarse-grained models that have exactly

the same dynamical properties as the underlying microscopic model. An important

property for the applicability of these coarse-grained models is their transferability,

which will be investigated in the next section.

14.3 Transferability of memory kernels

To study the transferability of the non-Markovian coarse-grained model describing

the frequency-dependent hydrodynamic interactions of nanocolloids, we investigate

the dependence of the dynamical correlation functions on the nanocolloid density

ρ. We therefore perform GBD simulations with the self- and pair-memory kernels

derived in the previous section for various densities ρ. The results are presented in

Figure 14.6. The density-dependence of the velocity correlation functions in the

microscopic system is small and thus not shown in the plot. The figure illustrates

that the reduction of the density in the GBD simulations has only a small effect
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Figure 14.6: Hydrodynamic auto- and cross-correlation functions of nanocolloids in
dispersion for different particle distances R. The presented results use the memory kernels
derived in Section 14.2 to perform generalized Brownian dynamics (GBD) simulations
for various nanocolloid densities ρ. The upper and lower figure illustrate the velocity
auto- (upper) and cross- (lower) correlation function determined from GBD and molecular
dynamics (MD) simulations. The density-dependence of the MD results is small and
thus only one representative curve for ρ = 10−4 σ−3 is shown. To visualize the statistical
errors, five data points with y-error bars are included in the curves.
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on the velocity correlation functions. This is a very important result, because it

justifies the approach used in Chapter 13. On the other hand, the figure also shows

that the approach has its limitations. When substantially increasing the density,

significant differences in the correlation functions emerge. The reason for this is the

approximate nature of the self-memory kernel,

Kself
i ({Ri}, t) = Ks(t) +

∑
j

∆Ks(Rij, t), (14.9)

as defined in Chapter 13. The consequence of this definition is that the contribution

of all particles within the cutoff rc are added up to yield the density-dependent

self-diffusion of particle i. If there are many colloids within the neighborhood

of particle i, this leads to an unrealistic strong decorrelation as visualized in the

figure. Therefore, the observed discrepancy is caused by many-body effects that

go beyond the many-body corrections applied in Section 14.2. The transferability

of the proposed technique is therefore limited to densities ρ < 5.0 · 10−4 σ−3. For

even higher densities ρ & 10−3 σ−3, an increasing amount of interaction matrices

is not positive-definite (see Section 13.1), which could lead to inconsistent results,

since the fluctuation-dissipation theorem is not fulfilled. However, it should be

emphasized that the cross-correlations considered in this thesis are very strong due

to the small bulk viscosity and high sound velocity of the Lennard-Jones fluid (see

Appendix A). In most applications, we thus expect that this upper density should

not be the limiting factor of the GBD method.

The above analysis demonstrates that the non-Markovian coarse-grained models

integrated with the generalized Brownian dynamics technique are indeed applicable

to a large range of nanocolloid densities ρ. The memory kernels derived in this chap-

ter thus indeed describe the fundamental hydrodynamic self- and pair-interactions

between the nanocolloids. This is a crucial conclusion: using the iterative memory

reconstruction one can construct coarse-grained models with the correct dynamical

properties, without necessarily capturing the underlying physical features of the

system. This can for example occur if the set of relevant dynamical variables chosen

for the derivation of the generalized Langevin equation was not optimal (see also

Section 5.2).

14.4 Final remarks

As a first remark, we present the benchmarks of the GBD simulations (see Tab. 14.1).

The table shows that the speedup of the non-Markovian coarse-grained model

is obviously strongly dependent on the density of the simulated system. This

makes sense because MD systems with higher densities contain fewer solvent

particles. Additionally, the number of neighbors in the GBD simulations is in-

creased. Therefore, the speedup of the systems considered in this thesis ranges
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ρ [σ−3]

Simulation technique 0.33 · 10−4 1.0 · 10−4 3.3 · 10−4

MD 61000± 2000 s 19500± 750 s 6400± 100 s

GBD 60± 1 s 63± 1 s 145± 1 s

CG MD 0.35± 0.01 s 0.56± 0.01 s 1.19± 0.02 s

Table 14.1: Benchmarks of the generalized Brownian dynamics (GBD) technique com-
pared to molecular dynamics (MD) simulations for different nanocolloid densities ρ. The
coarse-grained (CG) MD results refer to simulations using only the mean force FC(R),
determined in Chapter 5. The simulations correspond to 125 nanocolloids integrated
for 104 time steps, with time step ∆tMD = 0.001 τ and ∆tGBD,CG-MD = 0.05 τ . The
benchmarks were run on the Mogon I cluster (https://mogonwiki.zdv.uni-mainz.de/
dokuwiki/nodes) using 1 core on an “AMD Opteron 6272” CPU.

from Su = 1017∆tGLE/∆tMD = 5.1 · 104 (for ρ = 0.33 · 10−4 σ−3 =∧ 0.33 % volume

fraction), to Su = 44∆tGLE/∆tMD = 0.2 · 104 (for ρ = 3.3 · 10−4 σ−3 =∧ 3.3 % volume

fraction). The most meaningful benchmark perhaps is the comparison between the

GBD simulations and a corresponding coarse-grained model integrated without

memory kernels (labeled as CG MD in Tab. 14.1). Here, a constant slowdown of

Sd = 150 can be observed. This slowdown is thus the consequence of the inclusion

of corrected dynamics using the generalized Langevin equation.

Since hydrodynamic interactions are long-range and governed by long-time tails,

it is obviously not possible to model them in full detail with the methods derived

in this thesis. The only technique known in the literature to deal with the long-

range nature of hydrodynamic (or Coulomb) interactions is Ewald summation,120

which determines the long-range contributions in reciprocal space. Due to the non-

Markovian nature of the memory kernels, this technique cannot be straightforwardly

adapted to the generalized Langevin equation. We therefore expect that the main

applications of the methods proposed in this thesis will be connected to short-

range interactions like frequency-dependent dipole interactions (see also Part II) or

potentially active particles with non-instantaneous local reorientations. However,

the short-range hydrodynamic interactions between nanocolloids are a perfect model

system for the exemplary application of the proposed techniques, since they exhibit

pronounced memory effects that can be analyzed by theory and simulations. In

order to consider the long-range nature of hydrodynamic interactions it is possible

to combine the generalized and the standard Brownian dynamics technique. The

former is applied for the frequency-dependent short-range interactions, R < rc,

between the particles to model the high-frequency response of the colloids. The

latter includes long-range interactions, R > rc, using Ewald summation to ensure

consistency with the long-range nature of the microscopic interactions. It might

even be possible to combine Ewald summation and GBD under the assumption

K(R > rc, t) = K(R = rc, t)Φ(R). This, however, goes beyond the scope of this

work.
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Another important remark concerns the long-time tails of the velocity correlation

functions. For computational reasons it is necessary to cutoff the memory kernel

after a time τmem (see Chapter 13). This will, however, always lead to deviations

between the GBD and MD simulations on time scales larger than the memory time

scale, t > τmem (see Appendix E). One possibility to circumvent this problem is the

introduction of an auxiliary variable expansion that is discussed in Appendix D.

In this expansion, the memory kernels are basically approximated by exponential

functions. While it is obviously still not possible to represent the long-time tails in

full detail, this expansion would at least guarantee some kind of continuity in the

correlation functions.

An important impact of the short-range pair memory effects derived in this chapter

compared to instantaneous friction constants is the precise modeling of the sound

wave that mediates the interaction between two colloids. In standard Brownian

dynamics simulations, two approaching colloids would just feel an increase of the

friction force that decelerates the particles. The correlation between the particles

would, however, decrease rapidly, similar to the decorrelation shown in Figure E.1

for t > τmem. In contrast, the pair-memory kernel leads to a time-delayed interaction

due to the finite propagation velocity of the sound wave. Subsequently, the sound

wave leads to a long-time correlation between the velocities of the particles, which

has positive sign and thus indicates that the particles move into the same direction.

One consequence of this memory effect is that two particles are less likely to approach

each other. Additionally, the propagated sound wave will be reflected and interacts

with other colloids which leads to more realistic collective dynamics.

With the coarse-graining techniques developed in this chapter we are now able

to systematically investigate these memory effects and include them into non-

Markovian coarse-grained models. The methods proposed in this thesis therefore

open up new ways for dynamical coarse-graining and for understanding dynamical

processes in soft matter physics.
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15
Conclusions and Outlook

In the main part of this thesis we introduced two fundamentally new techniques

for dynamic coarse-graining. Firstly, we proposed the iterative reconstruction of

memory kernels (IMR). The purpose of this method is solving the inverse problem

of calculating the memory kernel that generates a given time-correlation function.

The IMR is inspired by the iterative Boltzmann inversion, an algorithm to approach

a similar inverse problem known from the field of static coarse-graining. The

strength of our reconstruction in comparison to previously proposed techniques is its

applicability to many-body simulations and its inherent ability of constructing coarse-

grained models that have precisely the same dynamical features as the underlying

microscopic system. Secondly, we developed the generalized Brownian dynamics

(GBD) technique to integrate these non-Markovian coarse-grained models. GBD is

based on a discretization of the generalized Langevin equation including distance-

dependent self- and pair-memory kernels. This allows for a precise definition

of the detailed dynamical properties of a coarse-grained model by specifically

tuning the frequency-dependent self- and pair-interactions of the particles. We

presented a combined application of both techniques to derive the short-range

frequency-dependent hydrodynamic interactions of nanocolloids in dispersion. The

self-interactions of these nanocolloids is governed by the hydrodynamic backflow

effect, i.e., the movement of the colloids induces fluid vortices that affect their

dynamics at later times. On the other hand, the hydrodynamic pair-interactions

between different colloids are dominated by sound waves that are generated by

one colloid and transmitted by the fluid to interact with another colloid. The

reconstructed non-Markovian coarse-grained model is able to precisely reproduce

these very different dissipative interactions. Additionally, the model was shown

to be very efficient with a speedup of up to Su = 104 and transferable to various

nanocolloid densities ρ.

Like every scientific work this thesis poses as many new challenges as it has solved.

Although we have very well understood the iterative reconstruction technique from

an application-oriented view, it is not fully clear why and under which circumstances

the iteration converges. In particular, the necessity of introducing a time-dependent

regularization is not clear. Since this regularization strongly affects the performance

of the algorithm, we plan to collaborate with mathematicians to get better insight

into the method and thus further increase the efficiency of the reconstruction.

Another open problem is the construction of an auxiliary variable system that
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describes the same generalized Langevin equation as considered in this thesis. One

possible technique known from numerical analysis is the construction of hidden

Markov models. This approach might be more promising than the a posteriori

fitting procedures used in the literature to construct Markov models, since the

latter is not generalizable to distance-dependent self- and pair-memory kernels. In

general, the construction of non-equilibrium coarse-grained models first requires a

deeper understanding of the Mori-Zwanzig formalism in non-equilibrium situations.

One fundamental principle of this work was for example the fluctuation-dissipation

theorem, which is not valid anymore in systems out of equilibrium.

The above list of possible future research, in combination with the considerations

made in the previous chapter, shows that the field of dynamic coarse-graining is

still in the early stages of development. However, there are already many possible

applications for non-Markovian coarse-grained modeling in the emerging fields

of active particles and dynamic self-organization. More generally, the methods

presented in this thesis could be important for systems that are strongly defined by

their dynamical properties. This includes in particular the field of non-equilibrium

soft matter physics. We therefore suspect that in the near future an increasing

effort will be put into dynamic coarse-graining. Without any doubt many exciting

new techniques and applications will emerge and we thus hope that the presented

methods will be useful in future research.
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A
About Reduced Units and Mapping

to Realistic Systems

All physical quantities in this thesis are given in reduced Lennard-Jones units. This

unit system consists of four independent units, which are the units of energy ε,

length σ, time τ and charge e. Since the coarse-grained models do not have a direct

connection to an atomistic system, there is no a priori conversion between the

reduced unit system and SI units. It is, however, possible to map the simulations

onto a specific microscopic system and in this way estimate the values of the

reduced units. In the following, this mapping will be performed individually for the

polyelectrolyte in ionic solution and the colloidal suspension.

A.1 Reduced units of the polyelectrolyte in ionic

solution

The polyelectrolyte in ionic solution has several important quantities that should

be similar to the experimental system. The viscosity η of the DPD fluid describes

the hydrodynamic interactions in the fluid and therefore the convection of the ions.

The Debye length λD determines the relevant length scale on which the electrostatic

interactions are screened. Additionally, we want to ensure room temperature. These

considerations lead to the following mapping from the reduced units system to SI

units:

• The viscosity η of the DPD fluid corresponds to 1 mPa · s (the viscosity of

water).

• The Debye screening length λD = 1.78σ corresponds to 3 nm (the approximate

screening length of the ionic solution used in Ref. 45).

• The charge e corresponds to the elementary charge e = 1.6 · 10−19C.

• The temperature T = ε/kB corresponds to 295 K.
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Red. units SI units (see Sec. A.1)

σ 1.69 · 10−9 m

ε 4.05 · 10−21 J

τ 9.2 · 10−10 s

e 1.6 · 10−19C

Table A.1: Mapping of reduced LJ
units to SI units for the polyelec-
trolyte in ionic solution studied in
this thesis.

DNA model Real DNA45;59

Basepairs [bp] 50-500 120-164000

Charge per basepair [e] 0.1 2

Table A.2: Comparison of our model DNA to experimental values of real DNA. The
mapping was performed according to Tab. A.1

The results of the mapping can be found in Tab. A.1. It can be observed that

the time scale τ corresponds to about 1 ns and the length scale σ is approximately

1.7 nm. The mapping therefore shows that we are indeed performing coarse-grained

simulations, since one DPD particle represents several fluid molecules.

The conversion from reduced to SI units now allows us to compare the DNA model

used in our simulations to real DNA (see Tab. A.2). First, it can be noticed that

one coarse-grained bead in the polyelectrolyte corresponds to about 5 basepairs

(dbp ≈ 0.34 nm). The system considered in this thesis thus contains DNA with about

50 − 500 basepairs which is much smaller than the standardly investigated DNA

samples in experiments. This length and time scale separation between simulations

and experiments is a typical problem in soft matter physics. The charges on the

DNA are also differently distributed and the total charge of the model DNA is

much smaller than the one of real DNA. Due to the coarse-grained nature of the

model, it is not possible to obtain a 1:1 correspondence between the model and

the microscopic system. The largest impact of this difference is the change of

the Manning parameter γ0 = λB/lc,
133;154–157 where lc is the distance between

neighboring charged monomers. This parameter gives a rough approximation of

the amount of counterions that will condense on the polyelectrolyte. For values

γ0 < 1, very few counterions are expected to condense while larger values indicate

a strong condensation. The Manning parameter for the DNA is γ0,DNA = 4.2, and

for the model used in this thesis it is γ0,PE = 0.5. The two-state categorization into

condensed and “free” counterions is, however, much debated for ionic solutions with

a significant salt concentration.133;158;159 In the present work we therefore use the

term “condensed counterions” to denote low-mobility counterions in close vicinity

to the polyelectrolyte (Stern layer), without strictly referring to Manning-type

condensation.
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Red. units SI units Dysthe et al.160

σ 0.29 · 10−9 m 0.29 · 10−9 m

ε 4.0 · 10−21 J 5.5 · 10−21 J

τ 8.0 · 10−13 s -

Table A.3: Mapping of the re-
duced units describing the col-
loidal suspension studied in this
thesis to water. The results are
compared to the triple point map-
ping performed in Ref. 160. Table
adapted from Ref. 5.

LJ fluid Water (30 ◦C)

Shear viscosity η [ετ/σ3] 2.11 6.23

Bulk viscosity ζ [ετ/σ3] 0.88 18.69

Speed of sound c0 [σ/τ ] 5.63 4.05

Table A.4: Transport coefficients and speed of sound of the colloidal suspension compared
to water at room temperature. The mapping of units was performed according to Tab. A.3.
Table adapted from Ref. 5.

A.2 Reduced units of the colloidal suspension

To study the hydrodynamic interactions between colloids, we model a colloidal

suspension using spherical hard-core particles in a LJ fluid. To compare the

simulation results to experimental systems, we map the LJ fluid to water. The

following assignments are performed:

• The mass m of a LJ particle corresponds to 18u (the mass of a water molecule).

• The mass density of the LJ fluid corresponds to 1000 kg/m3 (the density of

water).

• The temperature T = ε/kB corresponds to 300 K.

The results of this mapping are presented in Tab. A.3. Compared to the conversion

derived in the previous section, the degree of coarse-graining is much smaller in

this system. The length scale σ is related to the mean distance between two water

molecules and the time scale τ corresponds to just one picosecond. Applying this

mapping to compare the transport coefficients in the LJ fluid to water reveals that

the systems are indeed qualitatively comparable (see Tab. A.4). The speed of sound

that determines the propagation of the longitudinal waves and therefore the time

scale of the hydrodynamic interactions is actually very similar in the two systems.

The most significant difference can be observed for the bulk viscosity ζ. However,

this value just determines the damping of the sound waves and has therefore only a

qualitative influence on the results presented in Chapter 14.
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B
Non-Equilibrium Molecular

Dynamics (NEMD)
This chapter is reproduced from the publication “Computing bulk and shear viscosi-

ties from simulations of fluids with dissipative and stochastic interactions”, Gerhard

Jung and Friederike Schmid, The Journal of Chemical Physics, 144, 204104 (2016).

In this chapter, the non-equilibrium molecular dynamics (NEMD) technique is

discussed. Contrary to the Green-Kubo relations that are applied in equilibrium

(see Chapters 2 and 11) in the NEMD method a non-equilibrium steady-state is

created. This enables the direct calculation of the transport coefficients, e.g., by

measuring the steady-state momentum flux in the system. The advantage compared

to Green-Kubo relations is that these methods are not restricted to the linear

response regime and therefore enable the study of non-linear phenomena like shear

thinning or thickening, i.e., the shear-rate dependence of the shear viscosity η.

Several techniques have been proposed to utilize NEMD for the determination of the

shear viscosity.9–13 In Section B.1, the momentum interchange method, proposed by

Müller-Plathe,11 will be explained. In this technique the simulation box is divided

into different slabs that can interchange the momentum of their respective particles.

In this way, a linear shear-flow is created very efficiently.

The determination of the bulk viscosity ζ via NEMD is, however, more difficult. This

can be explained by the fact that the bulk viscosity is related to the deformation of

the volume of a fluid element and thus to a change of the local thermodynamic state

of the system. The only available NEMD calculations of the bulk viscosity use either

cyclic compression18 or the relaxation of an instantaneous distortion.161;162 The

methods used in these studies cannot be applied to systems with stochastic dynamics

– either because they are explicitly designed for Hamiltonian systems,18;162 or, in

the case of Ref. 161, because they cannot be used to determine the instantaneous

contribution of the random force to the viscosity. In addition to the above mentioned

calculations, there have been extensive NEMD studies of the elongational viscosity

using the so called SLLODa equations of motion.164 This boundary-driven NEMD

method does not rely on Hamiltonian dynamics and it should be possible to generalize

it to include dissipative and stochastic forces. However, it is necessary to choose a

aThe abbreviation SLLOD comes from the close relationship to Doll’s equations of motion,
introduced by Hoover in Ref. 163.
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vanishing strain rate in order to minimize the change of volume. In Section B.2,

we will therefore propose two new techniques to create a steady-state compressible

flow and determine the bulk viscosity ζ. One, denoted “particle transfer method”,

creates a divergent flow field by manually displacing particles. This method is

most efficient for systems with particles interacting via soft potentials. The other

technique, denoted “force-driven method”, makes use of a spatially varying body

force and a non-zero center-of-mass velocity and can be used in a wider range of

molecular dynamics simulations.

B.1 NEMD simulations creating shear flow

If a shear flow ∂zux emerges in a fluid, it will be damped due to shear viscosity η.

This damping can be described by a momentum flux

jz(px) = −η∂ux
∂z

, (B.1)

which transports momentum px in −z-direction. To maintain the shear flow it is

thus necessary to counteract the damping by enforcing a similar momentum flux in

+z-direction. The idea of the momentum interchange method11 is to produce this

counter flux by swapping the momentum of particles with a certain rate. This is

done in three steps (see Figure B.1, right panel):

1. Choose the particle with the highest velocity in +x-direction in the middle

slab.

2. Choose the particle with the highest velocity in −x-direction in the top slab.

3. Swap the momentum of these two particles.

The shear rate γ̇ = ∂zux will depend on the rate of these momentum interchange

steps and the velocity profile will be linear in good approximation if the interchange

rate is not too large (see Figure B.1, left panel). By calculating the momentum flux

jz(px) =
Px

2TA
=

∑
{i}m∆vi

2TA
, (B.2)

with Px the total momentum exchange during the simulation, simulation time T

and area A = LxLy, the shear viscosity can be determined using Eq. B.1.
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Figure B.1: Momentum interchange
method to generate steady-state shear flow.
Right panel illustrates the idea of the
method. Left panel shows the emerging
shear profile of a DPD fluid with density
ρ = 4σ−3. Figure adapted from Ref. 17.

B.2 NEMD simulations creating compressible flow

Unfortunately, the momentum interchange method cannot be used to create a

steady-state divergent flow, with gradient ∂xux. This is because the transported

momentum px and the direction of flux jx(px) are no longer orthogonal. In fact, the

directions of particle and momentum transport are parallel and therefore a transport

of particles is necessary to maintain the steady-state. This can be achieved in two

different ways: either by manually displacing particles or by imposing a global flow.

Our two methods of generating steady-state divergent flow are based on these two

types of mass transport.

The methods can be motivated theoretically by solving the mass and momentum

continuity equations with appropriate source terms (see also Chapter 2). The local

conservation of mass on a continuum level with source term is

∂tρ+∇ · (ρu) = Qρ(r), (B.3)

with density ρ(r, t), velocity field u(r, t) and mass source term Qρ(r). Similarly

one can write down the local conservation of momentum,

∂t(ρu) +∇(ρu⊗ u) +∇σ = Qρ(r)u+ f(r), (B.4)

with the external force field f(r) and the constitutive relation2

σ(r, t) = pI +

(
2

3
η − ζ

)
∇ · uI − η

(
∇u+∇uT

)
. (B.5)

To this point, these equations are similar to the conservation laws introduced in

Chapter 2 with the inclusion of mass and momentum source terms. These sources

can be chosen freely and allow us to manipulate the flow and density profiles.

However, to conserve global mass and momentum both the mass source term Qρ(r)
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and the force field f(r) must fulfill the relations∫
V

Qρ(r)dr = 0, (B.6)∫
V

u(r)Qρ(r)dr +

∫
V

f(r)dr = 0. (B.7)

In the following, we assume that the fluid is barotropic, i.e., there exists a unique

relation p = P (ρ). We are interested in stationary solutions ∂tρ = 0 and ∂t(ρu) = 0,

where u = uex exhibits a gradient in x-direction and profiles are constant in all

other directions. Assuming that higher order derivatives of the flow field can be

neglected, we obtain the following equations,

Qρ(x) = ∂x(ρu), (B.8)

f(x) = −Qρ(x)u+ P ′(ρ)∂xρ+ ∂x(ρu
2). (B.9)

B.2.1 Particle transfer method

In the particle transfer method, we aim at creating a velocity gradient while keeping

the density profile constant, ρ(x) = ρ̄. This leads to,

Qρ(x) = ρ̄u′(x), (B.10)

f(x) = ρ̄ u u′(x). (B.11)

To get a linear profile u(x) = ε |x|, one therefore has to choose a mass source term,

Qρ(x) = ρ̄ ε sign(x), (B.12)

and a force field f(x) = ρ̄xε2 ≈ 0 which vanishes at order O(ε). These source terms

can be realized by transferring particles between two halves of the box at a certain

rate (see Fig. B.2). The algorithm is very simple:

1. Choose a random particle in the right half of the simulation box.

2. Place it at a random position in the left half of the simulation box.

This algorithm conserves momentum and – in the special case of vanishing con-

servative forces – also energy. As shown in Fig. B.2, the resulting velocity profile

is approximately linear and the density profile almost constant, in perfect agree-

ment with the above described theoretical prediction. Therefore, this algorithm

is perfectly suitable to study the bulk viscosity ζ of fluids that are interacting

only via soft potentials, like the DPD fluid studied in Chapter 11 (see also results

in Fig. 11.2). However, the particle transfer method can become problematic in

the presence of hard-core potentials, like the widely used Lennard-Jones potential,

because particle insertion in dense fluids is difficult and usually associated with

large energy penalties.
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Figure B.2: Particle transfer
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B.2.2 Force-driven method

In the force-driven method there is no particle transfer and hence no mass source

term, Qρ(r) = 0. This directly leads to ρu = const. A velocity gradient is invariably

associated with a density gradient and can only exist if the mean velocity ū is

nonzero. The force density is now

f(x) = −ρ
u

(P ′(ρ)− u2) u′(x). (B.13)

To create a linear profile u(x) = ū + ε |x|, one therefore has to apply an external

force

f(x) = −ε C sign(x) +O(ε2), (B.14)

where the constant C is given by C = (P ′(ρ̄) ρ̄/ū− ρ̄ ū). These equations explain

how to create a linear velocity profile in the absence of a mass source term: One has

to create a steady-state particle flow in the presence of periodic boundary conditions

by imposing a non-zero center-of-mass velocity. To create a divergent flow field,

one has to combine this global background flow with an external force acting on all

particles, which changes sign between the two halves of the box (see Fig. B.3). This

method has the advantage that one does not have to manually change the position

of particles. It can thus be used in combination with hard-core potentials. It is also

physically more ”realistic” since it only requires an external force and a non-zero

flow velocity. Therefore, the basic idea might be applicable in experiments.
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The main disadvantage of this technique is that the gradient in the flow field

is unavoidably associated with a density gradient. This is a problem because the

bulk viscosity strongly depends on the density. One can reduce the problem by

applying a very small force. However, very long simulations are then necessary

to obtain sufficiently good statistics and the method would be restricted to the

linear response regime. The solution proposed in this thesis is to calculate a bulk

viscosity ζ for every bin in the simulation box and associate it to the density in the

respective box. In this way one obtains many data points for various densities that

can be used to determine not only the bulk viscosity for a constant density but also

the density-dependence.
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C
The Discretized

Fluctuation-Dissipation Theorem
This chapter is reproduced from the publication “Iterative reconstruction of memory

kernels”, Gerhard Jung, Martin Hanke and Friederike Schmid, Journal of Chemical

Theory and Computation, 13, 2481 (2017)

In this chapter, we derive the discrete version of the fluctuation-dissipation theorem

for a generalized Langevin equation with discretized memory kernel (see Eq. 13.3),

M V̇ (t) = −
T−1∑
m=0

KmV (t−m∆t) + ∂F (t), (C.1)

with an arbitrary 3N × 3N -dimensional memory sequence Km for m = 0, ..., T − 1

and a finite time step ∆t. To derive the fluctuation-dissipation theorem we first

identify the frequency-dependent response γ̂(ω) of the discretized memory kernel

by Fourier transform of Eq. C.1,

V̂ (ω) = [iωMI + γ̂(ω)]−1 ∂F̂ (ω), (C.2)

with γ̂(ω) =
T−1∑
m=0

Kme
−iwm∆t. (C.3)

Here, V̂ (ω) denotes the Fourier transform of the velocity,

V̂ (ω) =

∫ ∞
−∞

dte−iwtV (t), (C.4)

and similarly ∂F̂ (ω) the Fourier transform of the random force. Following the

derivation of Hauge and Martin-Löf165 of the fluctuation-dissipation theorem for

continuous memory kernels, we can identify the power-spectrum Ĉ∂F (ω) of the

random force, defined as the Fourier transform of the random force correlation

function,

Ĉ∂F (ω) = 2kBT<{γ̂(ω)} = 2kBT
T−1∑
m=0

Km cos(wm∆t), (C.5)

with the real part <{γ̂(ω)} of the response function. By inverse Fourier transform
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we finally find the fluctuation-dissipation theorem,

〈∂F (t)∂F (t′)〉 = kBT
T−1∑
m=0

amKmδ(t− t′ −m∆t), (C.6)

with the weight factor a0 = 2 and am = 1 for m 6= 0. The most important implica-

tion of this equation is the factor of 2 that enters the instantaneous contribution of

the correlation function. This factor is also present in the fluctuation-dissipation

theorem for the Langevin equation without memory. The presented results can

be directly applied to the specific generalized Langevin equation considered in

Section 13.1.
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D
About the Auxiliary Variable

Expansion

In the literature, the most popular approach to include non-Markovian dynamics

into coarse-grained models is the auxiliary variable expansion.109;139–141;144 The

idea behind this approach is to add additional, auxiliary variables to the system

with Markovian dynamics. These variables couple to the dynamical variables in

the original coarse-grained system and thus mimic the non-Markovian dynamics,

although the equations of motion are purely Markovian. The auxiliary variables are

determined by fitting (complex) exponentials to the memory kernel. However, it

was not possible to adapt this procedure to the coarse-grained models considered in

this thesis, including self- and pair-memory kernels. For future reference, we want

to shortly sketch the problems that occur in this context.

To integrate the N -particle generalized Langevin equation (13.1) we start with the

following approach,(
V̇ (t)

ṡ(t)

)
=

(
F C(t)

0

)
−
(

0 Avs

Asv Ass

)(
V (t)

s(t)

)
+

(
0 0

0 B

)(
0

ζ(t)

)
, (D.1)

with the auxiliary variables s(t), the coupling matrices Avs, Asv and the dissipative

matrices Ass. We also introduce uncorrelated Gaussian white noise ζ(t) with zero

mean and unit variance. If the matricesAss are diagonal, the matricesB are defined

by the fluctuation-dissipation theorem BBT = Ass +AssT. The 2KN -dimensional

vector s(t) consists of K uncoupled auxiliary variables sk(t). In the following,

the subscript k = 0, ..., K − 1 will be used to refer to submatrices that relate to

the auxiliary variable sk(t). Solving the linear equations (D.1) for the auxiliary

variables,

sk(t) =
K−1∑
k=0

∫ t

0

dt′e−(t−t′)Assk (Asv
k V (t′) +Bkζk(t

′)) , (D.2)

and inserting this result back into the original approach shows that Eq. (D.1) indeed

corresponds to a generalized Langevin equation,

M V̇ (t) = F C(t)−
K−1∑
k=0

(∫ t

0

dsKk(t− s)V (t) + ∂Fk(t)

)
. (D.3)
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Here, the memory kernel is

Kk(t) = −MAvs
k e
−tAssk Asv

k , (D.4)

and the correlation function of the random force is given by

〈∂Fk(t)∂Fk(t′)〉 = kBTM
2Avs

k e
−(t−t′)Assk Avs

k
T . (D.5)

To fulfill the fluctuation-dissipation theorem we therefore have to define Avs
k =

−M−1Asv
k
T . To simplify the notation we will also choose

Ass
k =

A′ssk 0 0

0 ... 0

0 0 A′ssk

 with A′ssk =

(
qk rk
−rk qk

)
, (D.6)

and introduce the reduced N ×N -dimensional coupling matrices A′svk ,

Asvk,ij = A′svk,(2i)j for even i, (D.7)

Asvk,ij = 0 for odd i. (D.8)

This finally leads to

Kk(t) = A′svk
T
A′svk e−qkt cos(rkt) = Pke

−qkt cos(rkt). (D.9)

The coupling matrices A′svk thus have to be determined by Cholesky-decomposition

from the matrices Pk that contain the amplitudes of the complex exponential

functions that are fitted to the self- and pair-memory kernels. In simulations,

however, we observed that the inclusion of self- and pair-memory kernels often leads

to fitting matrices P k that are not positive definite, which makes the determination

of A′svk impossible. This observation is also intuitively accessible: When fitting

the exponential functions to the distance-dependent memory kernels, the distance-

dependence of the fitting parameters can be very complicated and discontinuous. In

a system with three particles, it will therefore occur that for an auxiliary variable

k one of the particles is strongly correlated with the others, while the others are

anti-correlated with each other. This problem can be reduced by strongly restricting

the fitting parameters. However, for large systems it was not possible to find a

suitable auxiliary variable expansion.

If it is possible to replace the GLE (13.1) by Markovian equations of motion with

additional degrees of freedom, the construction of these Markov models has to be

based on more sophisticated methods than an a posteriori fitting of memory kernels,

as derived in this chapter. One possible idea could be the construction of hidden

Markov models that are directly based on the microscopic dynamics,166 which could

be an interesting project for future research.
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E
About the Long-Time Behavior of

Non-Markovian Models

In Section 14.3 we have already analyzed the transferability of the non-Markovian

coarse-grained model derived in Chapter 14 to various nanocolloid densities ρ . Here,

we study the long-time behavior of the correlation functions. The results are shown
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Figure E.1: Hydrodynamic auto- and cross-correlation functions of nanocolloids in
dispersion for different particle distances R. The generalized Brownian dynamics (GBD)
simulations use the memory kernels derived in Section 14.2. The upper and lower figure
illustrate the velocity auto- (upper) and cross- (lower) correlation function determined
from GBD and molecular dynamics (MD) simulations. To visualize the statistical errors,
ten data points with y-error bars are included in the curves.
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in Figure E.1. For times larger than the memory time scale, t > τmem = T∆tGLE a

significant decrease of both correlation functions can be observed. This is expected,

because the cutoff of the memory interrupts the backflow effect that leads to a

strong correlation of the particles. In the microscopic system, this backflow effect

leads to the long-time tails in the velocity correlation functions,40 which thus cannot

be reproduced in the non-Markovian model. The only way to prevent this decline in

the correlation functions is by increasing the memory cutoff T . This will, however,

reduce the efficiency of the method, since the total computation time scales linearly

with the cutoff T . For the effective application of the GBD technique it is thus

important to analyze on which time scale the memory ought to be considered.
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[140] Córdoba, A.; Indei, T.; Schieber, J. D. Elimination of inertia from a Generalized
Langevin Equation: Applications to microbead rheology modeling and data analysis.
Journal of Rheology 2012, 56, 185–212.

[141] Baczewski, A. D.; Bond, S. D. Numerical integration of the extended variable
generalized Langevin equation with a positive Prony representable memory kernel.
The Journal of Chemical Physics 2013, 139, 044107.

[142] Meyer, H.; Voigtmann, T.; Schilling, T. On the non-stationary generalized Langevin
equation. The Journal of Chemical Physics 2017, 147, 214110.

[143] Barrat, J.-L.; Rodney, D. Portable Implementation of a Quantum Thermal Bath
for Molecular Dynamics Simulations. Journal of Statistical Physics 2011, 1 .
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