Tris(trimethylsilyl)silyl Stabilized Phosphorus and Lead Clusters

Dissertation

Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy

In the Institute of Inorganic and Analytical Chemistry

Department of Chemistry and Pharmacy

at

Johannes Gutenberg - University of Mainz

by

Shenglai Yao

from P. R. China

Mainz 2005

Dekan:	Prof. Dr. R. Zentel
Hauptberichter:	Prof. Dr. K. W. Klinkhammer
Mitberichter:	Prof. Dr. J. J. Schneider

Tag der mündlichen Prüfung: 20.05.2005

Abstract

Hypersilyl (Me₃Si)₃Si behaves as a very bulky, electron releasing substituent and can be utilized for stabilizing low oxidation states and unusual structural fragments. By reactions of base-free alkali metal hypersilanides and dihypersilyl plumbylene with various phosphorus containing reagents, a series of hypersilyl stabilized phosphorus and lead clusters have been obtained.

Potassium hypersilanide readily reacts with white phosphorus in toluene at room temperature to yield red-violet potassium bis(hypersilyl)tetraphosphenide $[(Me_3Si)_3Si]_2P_4K_2$ (1), a potassium salt of the tetraphosphene $(Me_3Si)_3Si-PH-P=P-PH-Si(SiMe_3)_3$, quantitatively. In toluene or benzene solution there exists an equilibrium between 1 and its dimer, octaphosphanide $[(Me_3Si)_3Si]_4P_8K_4(2)$. In toluene 1 decomposes slowly through protolysis to give yellowish pentaphosphanide $[(Me_3Si)_3Si]_3P_5K_2$ (4). In benzene, most probably also by partial protolysis of the dimer 2, another octaphosphanide $[(Me_3Si)_3Si]_3P_8K_3$ (5) is obtained. By using coordinating solvents such as diethyl ether, the reaction of potassium hypersilanide with P_4 yields 1 and blue triphosphenide $[(Me_3Si)_3Si]_2P_3K$ (3), which comprises a triphosphaallyl anion with a partial P-P double-bond. Replacing potassium for lithium, *i.e.* reacting lithium hypersilanide with white phosphorus in toluene dramatically changes the type of products obtained. Several polyphosphanes such as $[(Me_3Si)_3Si]_2P_4$ (6) could be found in the resulting mixture and $[(Me_3Si)_3Si]_2P_4Li_2$ (7) could be isolated only in low yield. In the presence of hexahydro-1,3,5-trimethyl-S-triazine, lithium hypersilanide reacts with P₄ to give [(Me₃Si)₃Si]₂P₃Li (8) along with considerable amounts of (Me₃Si)₄Si, suggesting that cleavage of Si-Si bonds took place during the reaction process. The reaction of sodium hypersilanide with P₄ gives no clean reaction and leads directly to the formation of [(Me₃Si)₃Si]₃P₅Na₂ (9). The treatment of 1 with [(Me₃Si)₂Si]₂Sn affords the unexpected compounds $[(Me_3Si)_3Si]_3P_4SnK$ (10) and $[(Me_3Si)_3Si]_2[(Me_3Si)_2N]P_4SnK$ (11), instead of [(Me₃Si)₃Si]₂P₄Sn, depending on the solvent used. All the new compounds are identified by NMR spectroscopy and the structures of the phosphenides 1, 7, 8, and the phosphanides 2, 4, 5, 9, 10 are established by X-ray diffraction studies.

When dihypersilyl plumbylene or stannylene is allowed to react with P₄, MPH₂ (M=Li, K), PMe₃, and PH₃ at low temperature, the formal Lewis acid-base adducts are formed, respectively. The adducts $\{[(Me_3Si)_3Si]_2Pb\cdot PH_2\}M$ [M = Li (**15**), K (18)]. $\{\{[(Me_3Si)_3Si]_2Pb\}_2 \cdot PH_2\}M [M = Li (19), K (20)], and [(Me_3Si)_3Si]_2E \cdot PMe_3 [E = Pb (21), Sn (20)]\}$ (22)] are obtained as pure compounds and were characterized by NMR spectroscopy and Xray diffraction studies. However, the metastable adducts $\{[(Me_3Si)_3Si]_2E\}_4 \cdot P_4$ (E = Pb, Sn) and [(Me₃Si)₃Si]₂Pb·PH₃ could only be detected by NMR spectroscopy at low temperature. They undergo ligand exchange at room temperature yielding $[(Me_3Si)_3Si]_4P_4E_4$ [E = Pb (12), Sn (14)] along with $(Me_3Si)_3SiP=PSi(SiMe_3)_3$ (13) and $[(Me_3Si)_3SiPbP(H)Si(SiMe_3)_3]_2$ (17), respectively. X-ray analyses reveal a heterocubane core for 12 and 14 a monocyclic Pb₂P₂ skeleton for the **17**.

Dihypersilyl plumbylene also reacts very slowly with PH₃ at low temperature in pentane to give the totally unexpected lead cluster compound $[(Me_3Si)_3Si]_6Pb_{12}$ (23) in very low yields. It comprises a still centrosymmetric icosahedron Pb₁₂ core. It is suggestive that the formation of the lead cluster proceeds via the elusive hydridoplumbylene HPbSi(SiMe₃)₃, which has been initially formed by ligand exchange between Pb[Si(SiMe₃)₃]₂ and PH₃. Replacing PH₃ by other hydride sources, such as (Ph₃PCuH)₆, (^{*i*}Bu)₂AlH, and Me₃NAlH₃, another molecular lead cluster, [(Me₃Si)₃Si]₆Pb₁₀ (24), is isolated as main product. Both molecular clusters, 23 and 24 match the predictions made by Wade's rules.

Die Hypersilylgruppe (Me₃Si)₃Si stellt einen sehr sperrigen, Elektronen liefernden Substituenten dar und kann zur Stabilisierung niedriger Oxidationsstufen sowie ungewöhnlicher Strukturelemente dienen. Durch Reaktionen der base-freien Hypersilanide der Alkalimetalle sowie des Dihypersilylplumbandiyls mit unterschiedlichsten phosphorhaltigen Reagenzien konnten eine Reihe hypersilyl-stabilisierter Phosphor- und Bleicluster-Verbindungen erhalten werden.

Kaliumhypersilanid reagiert in Toluol glatt mit weißem Phosphor bei Raumtemperatur in Toluol unter quantitativer Bildung von rotem Kalium-bis(hypersilyl)tetraphosphenid [(Me₃Si)₃Si]₂P₄K₂ (1), einem Kaliumsalz des Tetraphosphens (Me₃Si)₃Si-PH-P=P-PH-Si(SiMe₃)₃. In Benzol oder Toluol steht 1 im Gleichgewicht mit dem dimeren Octaphosphanid [(Me₃Si)₃Si]₄P₈K₄ (2). Bei längerem Stehen der toluolischen Lösungen zerfällt 1 langsam vermutlich in Folge einer Protolyse zum gelben Pentaphosphanid $[(Me_3Si)_3Si]_3P_5K_2$ (4). Aus benzolischer Lösung konnte hingegen ein weiteres Oktaphosphanid, [(Me₃Si)₃Si]₃P₈K₃ (5), isoliert werden. Führt man die Reaktion Kaliumhypersilanid mit P₄ in stärker koordinierenden Lösungsmitteln wie Diethylether durch, so entstehen neben 1 größere Mengen des Triphosphenids [(Me₃Si)₃Si]₂P₃K (**3**); dieses enthält ein Triphosphaallyl-Anion mit partieller P-P-Doppelbindung. Setzt man Lithiumhypersilanid mit weißem Phosphor um, so beobachtet man eine vollständig andere Produktpallette. Als Hauptprodukte lassen Polyphosphane wie beispielsweise $[(Me_3Si)_3Si]_2P_4$ (6) nachweisen, das zu 1 analoge $[(Me_3Si)_3Si]_2P_4Li_2$ (7) entsteht nur in vergleichsweise kleinen Mengen. In der Gegenwart von Hexahydro-1,3,5trimethyl-S-triazin, entsteht aus Lithiumhypersilanid und P₄ hingegen im wesentlichen [(Me₃Si)₃Si]₂P₃Li (8) neben beträchtlichen Mengen von (Me₃Si)₄Si. Dessen Bildung erfordert eine Si-Si-Bindungsspaltung im Verlauf der Reaktion. Die Reaktion von Natriumhypersilanid mit P₄ verläuft sehr unübersichtlich, das Pentaphosphanid [(Me₃Si)₃Si]₃P₅Na₂ (9) ist das einzige isolierbare Produkt. Setzt man 1 mit [(Me₃Si)₂Si]₂Sn um, so bilden sich überraschenderweise, je nach verwendetem Solvens $[(Me_3Si)_3Si]_3P_4SnK$ (10) oder $[(Me_3Si)_3Si]_2[(Me_3Si)_2N]P_4SnK$ (11). Alle Verbindungen wurden NMRneuen spektroskopisch charakterisiert, die Phosphenide 1, 7, 8 sowie die Phosphanide 2, 4, 5, 9, 10 darüber hinaus durch Kristallstrukturanalvsen.

Dihypersilylplumbandiyl und -stannandiyl reagieren bei tiefer Temperatur mit P₄, MPH₂ (M=Li, K), PMe₃, and PH₃ zu formalen Lewis-Säure-Base-Addukten. Die Addukte {[(Me₃Si)₃Si]₂Pb·PH₂}M [M = Li (**15**), K (**18**)], {{[(Me₃Si)₃Si]₂Pb}₂·PH₂}M [M = Li (**19**), K (**20**)], und [(Me₃Si)₃Si]₂E·PMe₃ [E = Pb (**21**), Sn (**22**)] wurden als kristalline Feststoffe erhalten und konnten vollständig charakterisiert werden. Die metastabilen Addukte {[(Me₃Si)₃Si]₂E}₄·P₄ (E = Pb, Sn) und [(Me₃Si)₃Si]₂Pb·PH₃ konnten lediglich NMR-spektroskopisch nachgewiesen werden. Bei Raumtemperatur entstehen in Folge von Ligandenaustausch-Prozessen die kristallographisch charakterisierten Heterokubane [(Me₃Si)₃Si]₄P₄E₄ [E = Pb (**12**), Sn (**14**)], das Diphosphen (Me₃Si)₃SiP=PSi(SiMe₃)₃ (**13**) sowie der Pb₂P₂-Heterocyclus [(Me₃Si)₃SiP=PCH)

Bei tiefer Temperatur wird einer sehr langsamen aus Reaktion von Dihypersilylplumbandiyl und PH₃ in sehr kleinen Ausbeuten ein weiteres, völlig unerwartetes Produkt gebildet: der Bleicluster [(Me₃Si)₃Si]₆Pb₁₂ (23). Er weist ein verzerrt ikosaedrisches, zentrosymmetrisches Pb₁₂-Gerüst auf. Nach jetzigen Erkenntnissen läuft seine Bildung über nicht fassbare Hydridoplumbandiyl HPbSi(SiMe₃)₃, das intermediär durch das Substituentenaustausch zwischen Pb[Si(SiMe₃)₃]₂ and PH₃ entsteht. Der Ersatz des Phosphans durch andere Hydridquellen wie (Ph₃PCuH)₆, (^{*i*}Bu)₂AlH, and Me₃NAlH₃ führt ebenfalls zur Bildung von Bleiclustern, allerdings ist jetzt der Cluster [(Me₃Si)₃Si]₆Pb₁₀ (24) das Hauptprodukt. Beide Cluster, 23 und 24, gehorchen den Wade-Regeln.

Contents

1	Introduction	1
	1.1 Syntheses and Reactivity of Alkan Metal Hypersitanides	1
•	1.2 Reactivity of Dinypersityl Stannylene and Plumbylene	4
2	2.1 Overview	8
	2.2 $Hyp_2P_4K_2(1)$, $Hyp_4P_8K_4(2)$ and $Hyp_2P_3K(3)$	9
	2.2.1 Synthesis	9
	2.2.2 NMR Spectroscopy	11
	2.2.3 Crystal Structure	15
	2.2.4 Protolysis and Oxidation of Hyp ₂ P ₄ K ₂	24
	2.3 Hyp ₃ P ₅ K ₂ (4) and Hyp ₃ P ₈ K ₃ (5)	25
	2.3.1 Synthesis	25
	2.3.2 NMR Spectroscopy	26
	2.3.3 Crystal Structure	30
	2.4 Hyp ₂ P ₄ (6), Hyp ₂ P ₄ Li ₂ (7), and Hyp ₂ P ₃ Li(8)	35
	2.4.1 Synthesis	35
	2.4.2 NMR Spectroscopy	37
	2.4.3 Crystal Structure	40
	2.5 Hyp ₃ P ₅ Na ₂ (9)	45
	2.5.1 Synthesis	45
	2.5.2 NMR Spectroscopy	46
	2.5.3 Crystal Structure	49
	$2.6 \ Hyp_{3}P_{4}SnK(10) \ and \ [(Me_{3}Si)_{2}N] \ Hyp_{2}P_{4}SnK(11) \$	52
	2.6.1 Synthesis of Hyp ₃ P ₄ SnK	52
	2.6.2 NMR Spectroscopy	53
	2.6.3 Crystal Structure	55
3	Hypersilyl Stabilized Lead (Tin) and Phosphorus Clusters	. 59
	3.1 Overview	59
	3.2 Hyp ₄ P ₄ Pb ₄ (12), Hyp ₂ P ₂ (13) and Hyp ₄ P ₄ Sn ₄ (14)	60
	3.2.1 Synthesis	60
	3.2.2 NMR Spectroscopy	62
	3.2.3 Crystal Structure	64

	3.3 Li[Hyp ₂ Pb·PH ₂] (15), Li[Hyp ₂ Pb·P(H)Hyp] (16) and K[Hyp ₂ Pb·PH ₂] (18)	69
	3.3.1 Synthesis	69
	3.3.2 NMR Spectroscopy	71
	3.3.3 Crystal Structure	73
	3.4 Li[(Hyp ₂ Pb) ₂ ·PH ₂] (19) and K[(Hyp ₂ Pb) ₂ ·PH ₂](20)	77
	3.4.1 Synthesis	77
	3.4.2 NMR Spectroscopy	79
	3.4.3 Crystal Structure	82
	3.5 $Hyp_2Sn \cdot PMe_3(21)$ and $Hyp_2Pb \cdot PMe_3(22)$	85
	3.5.1 Synthesis	85
	3.5.2 NMR Spectroscopy	86
	3.6 [HypP(H)PbHyp] ₂ (17)	87
	3.6.1 Synthesis	87
	3.6.2 NMR Spectroscopy	88
	3.6.3 Crystal Structure	89
4	Hypersilyl Stabilized Lead Clusters 4.1 Overview	92
	4.2 Hyp ₆ Pb ₁₂ (23)	92
	4.2.1 Synthesis	92
	4.2.2 Crystal Structure	94
	4.3 Hyp ₆ Pb ₁₀ (24)	97
	4.3.1 Synthesis	97
	4.3.2 NMR Spectroscopy	99
	4.3.3 Mass Spectroscopy	100
	4.3.4 Crystal Structure	101
5	5.1 General Comments	 105 105
	5.2 Characterization	105
	5.2.1 Elemental Analyses	105
	5.2.2 Melting Points and Decomposition Temperatures Measurement	105
	5.2.3 NMR Spectroscopy	105
	5.3.4 Uv-Spectroscopy	106
	5.2.5 Mass Spectroscopy	106
	5.2.6 X-ray Analysis	106
	5.3 Syntheses and Reactions	106

5	5.3.1 Syntheses of Reactants	107
5	5.3.2 Synthesis of $Hyp_2P_4K_2(1)$ and $Hyp_2P_3K(3)$	109
5	5.3.3 Synthesis of $Hyp_4P_8K_4(2)$	112
5	5.3.4 Oxidation of $Hyp_2P_4K_2$	112
5	5.3.5 Protolysis of Hyp ₂ P ₄ K ₂	113
5	5.3.6 Synthesis of $Hyp_3P_5K_2$ (4)	114
5	5.3.7 Synthesis of $Hyp_3P_8K_3$ (5)	115
5	5.3.8 Synthesis of $Hyp_2P_4(6)$ and $Hyp_2P_4Li_2(7)$	115
5	5.3.9 Synthesis of Hyp ₂ P ₃ Li (8)	116
5	5.3.10 Synthesis of Hyp ₃ P ₅ Na ₂ (9)	117
5	5.3.11 Synthesis of Hyp ₃ P ₄ SnK (10)	118
5	5.3.12 Synthesis of $(Me_3Si)_2N(Hyp)_2P_4K_2(11)$	119
5	5.3.13 Synthesis of $Hyp_4P_4Pb_4$ (12) and Hyp_2P_2 (13)	120
5	5.3.14 Synthesis of Hyp ₄ P ₄ Sn ₄ (14)	121
5	5.3.15 Synthesis of Li[Hyp ₂ Pb·PH ₂] (15)	122
5	5.3.16 Synthesis of Li[Hyp ₂ Pb·P(H)Hyp] (16)	123
5	5.3.17 Synthesis of [HypP(H)PbHyp] ₂ (17)	123
5	5.3.18 Synthesis of K[Hyp ₂ Pb·PH ₂] (18)	125
5	5.3.19 Synthesis of $Li[(Hyp_2Pb)_2 \cdot PH_2]$ (19)	125
5	5.3.20 Synthesis of $K[(Hyp_2Pb)_2 \cdot PH_2]$ (20)	128
5	5.3.21 Synthesis of Hyp ₂ Sn·PMe ₃ (21)	130
5	5.3.22 Synthesis of Hyp ₂ Pb·PMe ₃ (22)	130
5	5.3.23 Synthesis of Hyp ₆ Pb ₁₂ (23)	131
5	5.3.24 Synthesis of Hyp ₆ Pb ₁₀ (24)	132
Su	mmary	135
Ap	ppendix	145
7.1	Crystallographic data for $Hyp_2P_4K_2 \cdot 4C_6H_6$	145
7.2	Crystallographic data for $Hyp_4P_8K_4 \cdot 4C_6H_6$	152
7.3	Crystallographic data for $Hyp_3P_5K_2 \cdot 2C_6H_6$	157
7.4	Crystallographic data for $Hyp_3P_8K_3 \cdot 2C_6H_6$	163
7.5	Crystallographic data for Hyp ₂ P ₄ Li ₂ ·4THF	168
7.6	Crystallographic data for Hyp ₂ P ₃ Li·2(MeNCH ₂) ₃	172
7.7	Crystallographic data for Hyp ₃ P ₅ Na ₂	176
7.8	Crystallographic data for Hyp ₃ P ₄ SnK	184
7.9	Crystallographic data for Hyp ₄ P ₄ Pb ₄	187

10 References	
9 Numbering List of the New Compounds	
8 List of Abbreviations	
7.16 Crystallographic data for Hyp ₆ Pb ₁₀	
7.15 Crystallographic data for Hyp ₆ Pb ₁₂	209
7.14 Crystallographic data for [(Hyp ₂ Pb·P(H)Hyp] ₂	
7.13 Crystallographic data for [{(MeNCH ₂) ₃ } ₃ K] [(Hyp ₂ Pb) ₂ ·PH ₂]	198
7.12 Crystallographic data for (Hyp ₂ Pb·PH ₂)K·2(MeNCH ₂) ₃	194
7.11 Crystallographic data for (Hyp2Pb·PH2)Li·Et2O(DME)	192
7.10 Crystallographic data for Hyp ₄ P ₄ Sn ₄	189

1 Introduction

Spatially overcrowded substituents play an important role in stabilizing elements in low oxidation states and give way to determine their frequently unusual molecular geometries^{1 2 3} ^{4 5 6}. Tris(trimethylsilyl)silyl, referred to as "hypersilyl"⁷ and abbreviated as "Hyp", is one of the most frequently used bulky groups. Due to its high steric requirements⁸, interesting electronic properties^{9 10}, and facile preparation, it has been usually used for the synthesis of several novel compounds which otherwise proofed difficult to isolate such as silenes¹¹, stannylene, plumbylene¹² and thus has attracted much attention in the last decade.

1.1 Syntheses and Reactivity of Alkali Metal Hypersilanides

Among all of the alkali metal hypersilyl derivatives lithium hypersilanide is a thoroughly studied species and a versatile reagent for the syntheses of other hypersilyl derivatives of both main group elements ^{13 14 15} and transition metal elements^{16 17 18}. It was first prepared in *situ* by Gilman und Smith in 1967^{19 20} and later isolated and characterized as solvates with tetrahydrofuran (THF)^{21 22 23}, or 1,2-dimethoxyethane (DME)^{24 25} (Scheme 1.1).

Scheme 1.1

Historically, due to its facile synthesis and high solubility in organic solvents, lithium hypersilanide is usually prepared as the ether solvates and frequently used in the preparation processes. Their applicability may be, however, limited by side reactions, such as deprotonation, cleavage of the coordinating donor ligand, the formation of ate-complexes or other undesirable solvated products as happened for other silyl lithium derivatives^{26 27 28}.

Accordingly, Klinkhammer investigated in 1990's the preparation of solvent-free alkali metal hypersilanides. By transmetallation of the dihypersilyl derivatives of the zinc group elements with appropriate alkali metals in n-pentane at room temperature, he obtained solvent-free potassium, rubidium and cesium hypersilanides ^{29 30}, and solvent-free lithium and sodium hypersilanides at higher temperature by using molten alkali metal in boiling n-heptane³¹. All of solvent-free alkali metal hypersilanides are dimers in solid state.

Later a direct synthesis of solvent-free lithium hypersilanide using hypersilyl chloride and lithium was developed by Weidlein's group³²³³. This method became a facile method for preparation of solvent-free lithium hypersilanide.

In 1998 Marschner³⁴ developed a pratical synthetic route to potassium hypersilanide by treatment of tetrakis(trimethylsilyl)silane with equimolar potassium *tert*-butanolate in THF. Actually, potassium, rubidium as well as cesium hypersilanides can be prepared with this method in good yields and high purity even in the unsolvated form.

The hypersilyl anion exhibits a high tendency for delivering electrons. Consequently, alkali metal hypersilanides act as strong Brönsted bases. However, unlike some other solvent-free alkali metal silanides^{35 36 37 38 39}, the applications of which are limited due to the extreme reactivity, *i.e.* deprotonation of hydrocarbon when dissolved in many organic solvents⁴⁰, the deprotonation caused by hypersilyl anion are often kinetically hindered. Experiment indeed showed that the solvent-free alkali metal hypersilanides are readily soluble in aromatic hydrocarbons, such as benzene or toluene without deprotonation under ambient conditions. This is probably caused by the extensive steric shielding of the nucleophilic centre in conjunction with an intramolecular stabilization of the alkali metal complexes through M…CH₃ agostic interaction.

NBO-analyses using Hartree-Fock densities reveal that the central silicon atom within the hypersilyl group bears a relatively high negative charge, as do the peripheral carbon atoms, whereas in the supersilyl group Si^{*t*}Bu₃ the negative charge is nearly equally distributed amongst all carbon atoms³¹. Therefore the alkali cation is bonded more tightly to the central silicon in hypersilyl group and alkali metal hypersilanides are much less reactive than the corresponding supersilanides towards weak acids such as benzene or toluene.

The reactivity of hypersilyl anion, however, towards Lewis-acidic substrates such as metal halides, amides, and alcoholates remains high. The impressive application of solvent-free alkali metal hypersilanides is the syntheses of solvent-free hypersilyl derivatives of other elements. For example, aluminium, gallium and indium hypersilanides were synthesized by metatation of lithium hypersilanide with respective metal halides. The dialkyl aluminium chlorides R₂AlCl(R=Me, Et) react with base-free lithium hypersilanide to give the dialkyl aluminiumhyersilanides R₂Al-Hyp^{41 42}. Trihypersilylgallium can be prepared in good yield from the reaction of gallium trichloride with base-free lithium hypersilanide⁴³. However, not all metatations would result in the expected hypersilyl derivatives. The reaction of the same hypersilanide with InCl₃ mainly affords LiCl, metallic indium and "dihypersilyl" Hyp-Hyp; only the unexpected (Hyp)₂In-In(Hyp)₂ could be obtained in low yield⁴¹. The reaction of alkali metal hypersilanides with PbCl₂ or TlCl quantitatively led to the formation of Hyp-Hyp, neither PbHyp₂ nor TlHyp was obtained.⁴⁴. These examples show that the strong nucleophile Hyp⁻ may also act as strongly reducing agent.

By substituting the halides for the weaker oxidizing amides, the redox-process could be suppressed. Temperature-sensitive hypersilyl derivatives of thallium(I)⁴⁵, tin(II) and lead(II)¹² were synthesized by metathesis of base-free potassium or rubidium hypersilanide with bis(trimethylsilyl)amides of thallium(I), tin(II) and lead(II), respectively.

Not only hypersilyl derivatives of main group elements, but also some transition metal complexes could be synthesized by employing solvent-free lithium hypersilanide with CuO^tBu in toluene, such as copper hypersilanide. The compound which was prepared before by an unusual ligand exchange between an copper aryl and dihypersilyllead⁴⁶, can be obtained along with [Li₇(O^tBu)₆][Cu₂Hyp₃] by the reation of hypersilyllithium with CuO^tBu⁴⁷. Using the solvent-free heavier alkali metal hypersilanides, the reactions with copper *tert*-butoxide instead lead to formation of novel hypersilyl complexes of Cu^I, the heteroleptic *tert*-butoxy(hypersilyl)cuprates of heavier alkali metals, which have been proved to be valuable starting compounds for other hypersilyl copper complexes⁴⁸.

Moreover, treatments of alkali metal hypersilanides with a variety of halosilanes expectedly lead to the formation of polysilanes, which can be further metallated to afford interesting silyl anions with different sterical demand^{34 49 50}. Very recently, addition of solvent-free alkali metal hypersilanides to unsaturated system such as guaiazulene has been investigated by our group. Thus number of hypersilyl substituted alkali metal and transition metal guaiazulenides could be synthesized⁵¹.

1.2 Reactivity of Dihypersilyl Stannylene and Plumbylene

Since 1973 Lappert et al. reported the first well-characterized distannene, $[(Me_3Si)_2CH]SnSn[CH(SiMe_3)_2]^{52}$, especially in the last decade, a great progress has been made in the chemistry of low-coordinate compounds of heavier Group 14 elements. Taking advantage of kinetic stabilization with bulky substituents, a variety of these compounds have been synthesized and many of them have been structurally characterized. These include, among others, 2,2,5,5-tetrakis(trimethylsilyl)stannacyclopentane-1,1-diyl (Scheme1.3)^{53 54}, [2,6-Mes₂C₆H₃]₂Pb⁵⁵, R₂Pb (R=2-t-butyl-4,5,6-Me₃C₆H)⁵⁶ as well as dihypersilyl stannylene and plumbylene¹² (Scheme1.3). Since the progress in the chemistry of the reactivity of the heavier tetrylenes, especially that of plumbylenes, is far behind those of its lighter congeners, there are only has been very few reports about their reactivity⁵⁷.

Scheme 1.3

Whereas carbenes which, due to the relatively small energy difference between triplet and singlet, may have a singlet or triplet ground state, stannylenes and plumbylenes as other homologous species of heavier elements exclusively exist in singlet ground states⁵⁸. The energetically high-lying HOMO is predominantly constituted by a lone-pair of high s-character on the tetrel atom and the low-lying LUMO has high contributions of the empty valence p-orbital of the two-valent tetrel atom. The values of singlet-triplet energy difference usually increase with increasing atomic mass of the Group 14 element⁵⁹. As shown by Kutzelnigg both the difference in energy and the radial expansion of s- and p-valence orbitals strongly increase down Group 14, thus leading to a low hybridization tendency and resulting in non-radical singlet species for all heavier carbene congeners⁶⁰. Therefore, all stannylenes and plumbylenes are Lewis-amphoteric compounds and can act as donors (through their lone-pair in 5 σ or 6 σ orbitals) or as acceptors (through their empty 5p or 6p orbitals) in Lewis-acid/Lewis-base reaction. Because the Lewis-acidic and Lewis-basic behaviour is located at the same tetrel atom in these species, not only the addition of external Lewis-acids or Lewis-bases, but also the oligomerization of these heavier tetrylenes may take place. The bonding

within the *dimerization* products -formal alkene homologues- as well as their structural features, spectroscopic and chemical behaviour has been a topic of controversial discussions in the last decade, but is now well understood and widely accepted as a more or less strong double donor-acceptor bond between the two constituting tetrylenes⁶¹ ⁶² ⁶³ ⁶⁴ ⁶⁵ ⁶⁶ ⁶⁷ ⁶⁸ ⁶⁹ ⁷⁰. The typical trans-bent geometry found for these alkene homologues can be understood with a pattern of multiple bonding, which is between the spⁿ σ orbital on one atom with a p π orbital on the other, as shown in Scheme 1.4.

Scheme 1.4

Quantitative criteria for existence of such double donor-acceptor bonds are based on a simple theoretical approach, the CGMT model^{61 67 69 70}, which relates the singlet-triplet energy difference ($\Sigma \Delta E_{ST}$) of the constituting tetrylene fragment with the dimerization energy ($E_{\sigma+\pi}$) of the corresponding hypothetical triplet species. Following general rules are provided: classical planar structures are obtained if $\Sigma \Delta E_{ST} < 1/2 E_{\sigma+\pi}$; trans-bent structures are observed if $1/2 E_{\sigma+\pi} < \Sigma \Delta E_{ST} < E_{\sigma+\pi}$; in the case of $\Sigma \Delta E_{ST} > E_{\sigma+\pi}$, monomers without E-E bonding will be expected.

Calculations by Apeloig and others^{71 72} showed that electropositive substituents should generally lead to a diminished HOMO-LUMO gap for tetrylenes and thus should increase their tendency to form Lewis-acid-Lewis-base adducts and strengthen the bonds within the corresponding dimers. According to calculation by Klinkhammer⁷³, the substitution of CH₃ for the more electropositive SiH₃ group in E(CH₃)₂ (E=Sn, Pb) dramatically increases the dimerization energies. This indicates that the tendency to dimerize of bis(silyl)stannylenes and bis(silyl)plumbylenes is expected to be much higher than that of related diorganyl substituted species.

X-ray structural analysis reveals that dihypersilylstannylene exhibits a dimer molecular structure with double donor-acceptor bond in the solid state, as expected for stannylenes by CGMT-model. Like Lappert's bis[bis(trimethylsilyl)methyl]tin, a monomer-dimer equilibrium already exists in solution for dihypersilylstannene. In contrast, the lead analogue is monomer even in solid state¹².

As expected, both dihypersilyl stannylene and plumbylene react as Lewis-amphoteric carbene homologues with several Lewis-acids and Lewis-bases. In some cases, however, migration of one hypersilyl group from tin or lead may occur. The reactions of dihypersilylstannylene or plumbylene with some diaryltetrylenes yielded quantitatively dimers in the solid state^{56 74 75 76 77 78 79}. Unexpectedly, according to Eq. 1.1, a rearrangement took place after the putative initial hetero-dimerisation and homodimers of the heteroleptic tetrylenes were obtained as final products. All heteroleptic dimers synthesized show an undistorted *trans*-bent structure with C_i molecular symmetry. Moreover, several plumbylene dimers diplumbenes with double donor-acceptor bond were finally prepared by this method.

Very recently Schneider et al. showed that the Lappert's stannylene and some diarylstannylenes have high donor capability towards Fe, Co, and Ni atoms in metal organyl compounds and can thus be used to stabilize low-valent transition metal centres^{80 81 82 83}. Similarly dihypersilylstannylene and plumbylene can also react as a Lewis-base. With arylcopper complexes, heteroleptic tetrylenes are obtained. Depending on bulkiness of the aryl substituents, they may exist as monomers or dimers in the solid state (Scheme 1.5) ⁴⁶. Although the primary adducts of the dihypersilyltetrylene with organylcopper could neither be isolated nor be detected spectroscopically, a rearranged adduct of heteroleptic stannylene with hypersilylcopper was obtained from treatment of dihypersilylstannylene with the extremely congested 2,6,-dimesityl-phenylcopper.

DFT calculations by Klinkhammer on several simple adducts of Lewis-bases with $Pb(CH_3)_2$ and $Pb(SiH_3)_2$ showed that the acidity of the divalent tetrel centre for the latter is stronger than that of the former⁷³. Some outcomes of the experiment also showed that dihypersilylstannylene and plumbylene are remarkably strong Lewis-acids compared to the related species bearing more electronegative hydrocarbyl substituents. The reactions with *tert*-butyl isonitrile⁸⁴ and cyclohexyl isonitrile⁸⁵ quantitatively led to the formation of fairly stable adducts. In contrast to the related isonitrile-stannylene adduct MesN=C \rightarrow Sn(2,4,6-(F₃C)₃C₆H₂)₂, reported by Grützmacher⁸⁶, there is no experimental evidence for redissociation of these adducts in solution or under reduced pressure.

Dihypersilylplumbylene also reacts with ambident nitrogen/oxygen bases such as azide or isocyanates, but instead of the simple Lewis-adducts, which may be formulated as an initial intermediate, migration of hypersilyl groups leads to heteroleptic Pb(II) derivatives. Spectroscopical and structural data indicate that one hypersilyl group migrates from the lead atom to that heteroatom which bears a formal negative charge⁷³.

Whereas the reaction of sodium hypersilanide with dihypersilylstannylene in toluene gives sodium tris(hypersilyl)stannanide³¹, treatment of these tetrylenes with simple lithium organyls in non-coordinating solvents did not yield any isolable product. Only lithium hypersilanide could be detected spectroscopically. Again ligand exchange reactions probably occurred leading to heteroleptic alkyl(hypersilyl) tetrylene which could not be isolated to date⁷³. Recently, experiment shows that the introduction of small amount of coordinating solvents such as diethyl ether changed the reation course and led to the formation of stable stannanides and plumbanides⁸⁷.

2 Hypersilyl Stabilized Phosphorus Clusters

2.1 Overview

Alkali metal salts of phosphorus-containing compounds continue to be of considerable interest because of their synthetic value as transfer reagents and structural diversity of their solid-state structures. Among the variety of the alkali metal phosphides, numerous binary metal polyphosphides containing isolated Zintl anion species of the general formula $M_4P_6^{88}$, M_3P_7 and $M_3P_{11}^{89}$ or derivatives of phosphanides $M[PR_2]$ as well as $M[PR(H)]^{90}$ have become known and well established since the early seventies. However, only a very limited number of molecular alkali metal polyphosphanides with general formula $R_mP_nM_x$ have been structurally characterized.

According to the double-bond rule, nitrogen hydrides with the formula N_nH_n and their derivatives adopt an acyclic structure with double bonds, whereas phosphanes P_nH_n and their derivatives prefer cyclic structure without a double bond^{91 92 93}. After deprotonation of the phosphanes, however, the negatively charged phosphides obtained may form unsaturated acyclic structures because the negative charges are probably better stabilized by a π system in a phosphorus chain. It is especially evident that the unsaturated phosphenides $R_2P_3^-$ and $R_2P_4^{2-}$, with sterically overloaded substituents R, are readily formed. For instance, the compounds with the formula Mes^{*}₂P₂ELi (E=P, As; Mes^{*} = 2,4,6-tri-tert-buthylphenyl) were reported by Jutzi et al⁹⁴. The 2,3,4-triphosphapentadienide [(Me₃Si)₂CPPPC(SiMe₃)₂]⁻⁹⁵ and [RPPPR]⁻⁹⁶ (RR = - CH₂CH₂- and -CHPhCHPh-) containing a P₃ skeleton with a π system were synthesized as alkali metal salts. A lithium salt containing a tetraphosphenide dianion $R_2R'_2P_4^{2-}$ [R=SiMe₃, R'=Cr(CO)₅] was prepared by Fritz⁹⁷.

Sterically overloaded supersilylated phosphane and phosphanide clusters were thoroughly investigated by Wiberg and co-workers⁶. In addition to bis(supersilyl)tetraphosphane (${}^{t}Bu_{3}Si_{2}P_{4}$, tris(supersilyl)heptaphosphane (${}^{t}Bu_{3}Si_{3}P_{7}^{98} {}^{99}$ and tris(supersilyl)nanophosphane [(Me₃C)₃Si]₂P₃Na¹⁰⁰, two unsaturated P=P containing phosphenides [(Me₃C)₃Si]₂P₃Na¹⁰⁰ and [(Me₃C)₃Si]₂P₄Na₂ 101 as well as polyphosphanides [(Me₃C)₃Si]₄P₈Na₄ 101 and [(Me₃C)₃Si]₃P₅Na₂ 102 were prepared as ether adducts. In those investigations, supersilyl groups were introduced by reactions of supersilyl radicals with white phosphorus, supersilyl anions with white phosphorus and with phosphorus trichloride, respectively. Very recently, another kind of tetraphosphanides [(Me₃C)₃Si]₃P₄M₃ (M=Li, Na) and [(Me₃C)₂PhSi]₃P₄Na₃¹⁰³ were synthesized by Lerner.

Hypersilyl group, similar to supersilyl group, should also stabilize polyphosphane or polyphosphanide clusters. However, to our best knowledge, no well-characterized hypersilyl stabilized phosphanide has been reported to date. The only hypersilyl stabilized phosphanes ever characterized are (Me₃Si)₃SiPH₂, [(Me₃Si)₃Si]₂PH¹⁰⁴, and [(Me₃Si)₃Si]₃P7¹⁰⁵.

2.2 $Hyp_2P_4K_2(1)$, $Hyp_4P_8K_4(2)$ and $Hyp_2P_3K(3)$

2.2.1 Synthesis

Solvent-free potassium hypersilanide readily reacts with white phosphorus in a molar ratio of 2:1 in toluene at room temperature to give a violet solution from which, on cooling to - 20°C, violet rhombohedral crystals precipitate in good yield. The NMR spectroscopic data indicate that potassium bis(hypersilyl)tetraphosphenide $[(Me_3Si)_3Si]_2P_4K_2$ (1), a potassium salt of $(Me_3Si)_3SiP-PH-P=P-PH-Si(SiMe_3)_3$, is formed nearly quantitatively (Eq. 2.1). The identity of compound 1 is unambiguously derived from the ³¹P-NMR spectrum and subsequently confirmed by single-crystal X-ray diffraction studies.

$$2 (Me_{3}Si)_{3}SiK + P_{4} \xrightarrow{< toluene or benzene >} (Me_{3}Si)_{3}Si \xrightarrow{P} \xrightarrow{P} Si(SiMe_{3})_{3} (Eq.2.1)$$

$$R.T \xrightarrow{R.T} (Me_{3}Si)_{3}Si \xrightarrow{P} \xrightarrow{P} Si(SiMe_{3})_{3} (Eq.2.1)$$

$$1 (as toluene or benzene solvate)$$

Under the same conditions, the treatment of potassium hypersilanide with white phosphorus in benzene provides a deep red reaction solution, which contains almost only compound **1** according to the ³¹P-NMR spectrum. The solubility of **1** in benzene is not as good as in toluene and the product would precipitate as very fine red crystals immediately from the reaction mixture.

The reaction of the same reactants proceeding in diethyl ether at room temperature gives also $[(Me_3Si)_3Si]_2P_4K_2$, but some side reactions take place, *i.e.* bis(hypersilyl)triphosphenide $[(SiMe_3)_3Si]_2P_3K(3)$, tris(hypersilyl)pentaphosphanide $[(SiMe_3)_3Si]_3P_5K_2$ (4) as well as small amounts of several other phosphorus-containing compounds are formed in the resulting reaction mixture. According to the ³¹P NMR spectrum, compound 1, 3, and 4 were found in the mixture in a molar ratio of 6:9:5. After work-up, compound 3 was isolated as deep blue powder and characterized as a potassium salt of bis(hypersilyl)triphosphene (Me₃Si)₃SiP=P-PH-Si(SiMe₃)_3 by NMR spectroscopy.

The reaction of $KSi(SiMe_3)_3$ with white phosphorus in THF under the same conditions is even more complicated according to the solution ³¹P NMR spectrum. All attempts to isolate some of the products were unsuccessful. This differs significantly from the reaction of sodium supersilanide with white phosphorus in THF, in which $[(Me_3C)_3Si]_2P_4Na_2$ is isolated as THF solvate quantitatively¹⁰¹.

Presumably, the insertion of a potassium hypersilanide molecule into a P-P bond of P_4 to form a potassium biscyclotetraphosphanide represents the first step of the reaction. A further combination of the intermediate species with a second molecule of potassium hypersilanide affords thus the final product as shown in Scheme 2.1.

Sheme 2.1

Compound **1** in the solid state is thermally quite stable and can be stored under argon indefinitely at room temperature. However, it is extremely air- and moisture-sensitive and ignites spontaneously on contact with air. This compound is well soluble in toluene, but according to the 31 P-NMR(10% benzene-d₆ in toluene) spectrum, an equilibrium exists between [(Me₃Si)₃Si]₂P₄K₂ and its dimer [(Me₃Si)₃Si]₄P₈K₄ (**2**) in toluene solution (Scheme 2.2). In benzene, the dimer is also found according to the 31 P-NMR spectrum recorded in benzene-d₆. However, both compound **1** and its dimer **2** can be obtained as solids from benzene solution by controlling the crystallization conditions.

Scheme 2.2

If the toluene solvate $Hyp_2P_4K_2 \cdot 2C_7H_8$ (**1b**) crystals are dissolved in a small amount of warm benzene and quickly cooled to 5°C, benzene solvate $Hyp_2P_4K_2 \cdot 4C_6H_6$ (**1a**) will be obtained as deep red X-ray diffraction quality crystals. The dimer of this compound, $Hyp_4P_8K_4 \cdot 4C_6H_6$ (**2a**), could precipitate as light red well shaped X-ray analysis suitable crystals by cooling a clear room-temperature saturated benzene solution of **1b** at 5°C or by simply standing a saturated solution at ambient temperature.

By dissolving the dimer **2a** in toluene or benzene, the equilibrium (Scheme 2.2) may also be established. However, if the deep red violet crystals of **1b** or the light red crystals of **2a** dissolve in benzene in the presence of triazine, the colour of the solution would change immediately from red to green. Yellow-green crystals of benzene and triazine solvate $Hyp_2P_4K_2 \cdot 2C_6H_6 \cdot 2(MeNCH_2)_3$ (**1c**) could precipitate at room temperature.

Scheme 2.3

According to the molecular structure determined by X-ray diffraction investigation, $Hyp_4P_8K_4$ might be understood as a [2+2] cycloadduct of $Hyp_2P_4K_2$. Obviously, the cisconfigurated phosphorus skeleton has to change to the trans conformation during the $[2_{\pi}+2_{\pi}]$ –cycloaddition. In addition, the formation tendency of the four membered ring of phosphorus atoms is normally not preferred comparing with that of the three, five or six membered ring of phosphorus atoms^{106 107}. However, the dimerization of $Hyp_2P_4K_2$, taking place even under ambient conditions in toluene or benzene, may be due to the building up of a mixed phosphorus and potassium heterocluster and probably also to solvent effect.

2.2.2 NMR Spectroscopy

The ³¹P-NMR spectra of Hyp₂P₄K₂ recorded in donor solvents such as THF, diethyl ether, TMEDA, toluene or benzene show similar resonance of two multiplets with the classical splitting pattern of an AA'XX' system, however, the chemical shifts depend strongly on the solvent used. The proton decoupled ³¹P-NMR spectrum recorded in THF consists of two groups of signals centred at -23.6 and 416.3ppm, which lie in the range for a phosphorus atom in phosphenides and for an unsaturated two-coordinate phosphorus atom in diphosphene, respectively ¹⁰⁸, ¹⁰⁹. This spectrum is very similar to that of disodium

bis(supersilyl)tetraphosphenide, $[(Me_3C)_3Si]_2P_4Na_2^{101}$. In order to determine the four ${}^{31}P_{-}$ ${}^{31}P_{-}$ coupling constants (${}^{1}J_{AX}$, ${}^{2}J_{AX'}$, ${}^{3}J_{AA'}$, ${}^{1}J_{XX'}$), a simulation of the spectrum using the parameters published for $[(Me_3C)_3Si]_2P_4Na_2$ as a starting point and a subsequent iteration were performed¹¹⁰. The experimental and calculated spectra are shown in Figure 2.1. The chemical shifts and coupling constants are summarized in Table 2.1 and compared with those of its analogues $[(Me_3C)_3Si]_2P_4Na_2^{101}$ and $[(Me_3Si)_3Si]_2P_4Li_2$ (**7**, see below).

Figure 2.1 The ³¹P{H}-NMR spectrum of **1** in THF + 5% benzene-d6(300K) at 101.256Hz. δ (P1, P4)= -23.6, δ (P2, P3)=416.3. ³J_{p1,p4}=151.5Hz, ¹J_{p1,p2}= ¹J_{p3,p4}=-431.1Hz, ²J_{p1,p3}=²J_{p2,p4}=-28.5Hz, ¹J_{p2,p3}=-497.1Hz.

	1 ^a	$[(Me_3Si)_3Si]_2P_4Li_2(7)$	$[(Me_3C)_3Si]_2P_4Na_2^{101}$
δ (P1, P4) (ppm)	-23.6	-45.8	-41.1
$\delta(P2, P3)$ (ppm)	416.3	398.1	403.0
${}^{3}J_{p1,p4}$ (Hz)	151.5	247.1	184.1
${}^{1}J_{p1,p2}^{1}, {}^{1}J_{p3,p4}(Hz)$	-431.1	-410.3	-432.3
${}^{2}J_{p1,p3}^{1}$, ${}^{2}J_{p2,p4}^{1}$ (Hz)	-28.5	-31.5	-34.7
${}^{1}J_{p2,p3}$ (Hz)	-497.1	-481.0	-502.6

Table 2.1 Comparison of ³¹P-NMR(THF-d8, 300K) chemical shifts and coupling constants

a: recorded in THF + 5% benzene-d6.

Most related coupling constants of the three compounds are similar. Lager difference of up to 96 Hz are found only for the values of ${}^{3}J_{p1,p4}$. As can be seen later in the X-ray diffraction studies a correlation to the distances between P1 and P4 in these compounds can be established.

It is worth noting that a trans-P₄ skeleton with a double bond reported by Fritz⁹⁷ shows also an AA'XX'-spin pattern at -104ppm and 552ppm in the ³¹P-NMR spectrum. Here a considerably large ¹J_{XX'} value of -640 Hz arises from the two double-bond phosphorus atoms in the middle of the phosphorus chain and no coupling is observed between the trans terminal phosphorus atoms (³J_{AA'}= 0 Hz). By contrast, no resonance for the trans conformer of **1** was found in the ³¹P-NMR spectrum recorded in toluene solution even over the temperature range from -40°C to 70°C (Scheme 2.4). The adoption of the cis rather than the trans conformation in **1** may be due to the distribution of the two negative charges on all four phosphorus atoms. Thus the two potassium cations could be better coordinated by all four phosphorus atoms from both sides of the phosphorus skeleton plane.

Scheme 2.4

The ²⁹Si-NMR spectrum of **1** displays a broad signal at -12.7ppm for peripheral silicon atoms of the hypersilyl groups and a triplet of triplet originating from the X part of an AA'MM'X spin system for the central silicon atoms at -92.4ppm. Unfortunately, the simulation is impossible because the intensity of the signal is not strong enough to identify all the lines in the spectrum. Only the values of ${}^{1}J_{Si,P} + {}^{4}J_{Si,P}$ and ${}^{2}J_{Si,P} + {}^{3}J_{Si,P}$ can be obtained as 46Hz and 14.5Hz, respectively.

As mentioned above, an equilibrium between compound 2 and 1 exists in toluene or benzene solution and the relatively higher concentration of 2 is found in toluene solution. Thus, the best NMR spectrum of compound 2 was obtained in toluene in the presence of a small amount of benzene-d₆. In proton decoupled ³¹P-NMR spectrum of compound 2, two groups of signals are observed at 44.8ppm and -207.3 ppm with relative intensities of 1:1 for the cyclotetraphosphane-phosphorus and phosphanide-phosphorus atoms, respectively. The pattern of the signals, as shown in Figure 2.2, reveals multiplets of higher order ([AX]₄ spin system). Unfortunately, the comparatively broad signals in this spectrum do not allow an iterative determination of the coupling constants with satisfactory accuracy. Corresponding investigation of a THF-d8 solution is impossible for compound 2, since only the monomer 1 exists in the THF solution.

Figure 2.2 The ³¹P{H}-NMR spectrum of **2** in toluene + 10% C₆D₆ (300K) at 81.015MHz. δ = 44.8, -207.3 ppm.

Compound **3** was characterized by NMR spectroscopy only. Both ¹H and ¹³C{H} NMR spectra show a singlet for the hypersilyl groups. In the ³¹P NMR spectrum of **3**, a doublet and a triplet can be observed at 199.8 and 717.2 ppm with relative intensities of 2:1 (Figure.2.3). Obviously, such an AX₂ spin system with a coupling constant of ¹J_{p,p} = 541Hz found in low field is assignable to a triphosphaallyl anion with partial double bond character and a transtrans conformation (Figure 2.3). According to the NMR spectrum, no trans-cis isomer is present in solution.

Figure 2.3 The ³¹P{H}-NMR spectrum of **3** in C₆D₆ (300K) at 101.256MHz. $\delta(P_2)$: 717.2 (t, ¹J_{p-p}=541Hz)ppm, $\delta(P_{1,3})$: 199.8(d, ¹J_{p-p}=541Hz) ppm.

2.2.3 Crystal Structure

$2.2.3.1 \ Hyp_2P_4K_2{\cdot}4C_6H_6\,(1a)$

Deep red single crystals of the benzene solvate $Hyp_2P_4K_2$ (1a) were grown by quickly cooling a saturated solution of compound 1 in benzene to 5°C. The molecular structure of 1a was established by X-ray crystallographic analysis (Figure 2.4) and the crystal data for 1a are summarized in Table 2.2. Selected bond lengths and angles are listed in Table 2.3 and compared with those of the toluene (1b) and triazine solvates (1c) in Table 2.6.

1a	1b	1c
Hyp ₂ P ₄ K ₂ ·4benzene	$Hyp_2P_4K_2$ ·2toluene	$Hyp_2P_4K_2 \cdot 2C_6H_6 \cdot 2triazine$
1009.84	881.68	1112.05
173(2)	173(2)	173(2)
monoclinic	monoclinic	orthorhombic
P2(1)/n	P2(1)/m	Cmc2 ₁
14.935(2)	10.032(3)	22.156(5)
17.063(2	29.133(15)	18.087(5)
48.800(8)	18.405(7)	16.856(5)
90	90	90
90.380(12)	92.173(3)	90
	1a Hyp2P4K2·4benzene 1009.84 173(2) monoclinic P2(1)/n 14.935(2) 17.063(2 48.800(8) 90 90.380(12)	1a1bHyp2P4K2·4benzeneHyp2P4K2·2toluene1009.84881.68173(2)173(2)monoclinicmonoclinicP2(1)/nP2(1)/m14.935(2)10.032(3)17.063(229.133(15)48.800(8)18.405(7)909090.380(12)92.173(3)

Table 2.2 Crystallographic data of compound 1a, 1b, and 1c.

2 Hypershyr Stabilized I hosphorus Clusters	2	Hypersilyl	Stabilized	Phosphorus	Clusters
---	---	------------	------------	------------	----------

γ(°)	90	90	90
Volume(Å ³)	12436(3)	5375(4)	6754(3)
Formula units	8	4	4
Density(g/cm ³)	1.079	1.089	1.094
$\mu(Mo-K_{\alpha})(mm^{-1})$	0.434	0.493	3.728
2Θ range(°)	2.05 to 20.00	2.15 to 24.00	3.15 to 55.29
Refl. collected	14566	8788	2203
Refl. uniqe	11593	8306	2157
R(int)	0.0361	0.1105	0.0558
Ind. Refl. with $F_0 > 4\sigma(F_0)$	11593	8306	2157
Parameter	1009	656	277
R1	0.0492	0.0560	0.0778
R1(all refl.)	0.0868	0.2301	0.1101
wR2	0.1227	0.0509	0.1825
wR2(all refl.)	0.1331	0.0747	0.2027
GooF	0.816	0.654	0.95
Larg. Resid. peak(e/Å ³)	0.352	0.347	0.778

Figure 2.4 Molecular structure of **1a**. Benzene molecules and hydrogen atoms are omitted for clarity. Atoms are represented by spheres of arbitrary radii.

Table 2.3 Selected interatomic distances (pm) and $angles(^{\circ})$ for 1a.

P1-P2	214.0(2)	P2-P1-K2	78.78(7)
P2-P3	208.87(19)	P3-P4-Si2	97.81(9)
P4-P3	214.6(2)	P1-Si3-Si31	107.62(9)
P4-K1	327.4(2)	P1-Si3-Si33	116.22(10)
P3-K1	348.4(2)	P1-Si3-Si32	103.39(9)
P2-K1	348.6(2)	P4-Si2-Si22	108.55(9)

2	Hypersily	yl Stabilized	Phosphorus	Clusters
---	-----------	---------------	------------	----------

P1-K1	323.1(2)	P4-Si2-Si21	116.84(9)
K2-P1	330.8(2)	P4-Si2-Si23	104.39(10)
K2-P2	357.3(2)	Si3-P1-K1	121.22(8)
K2-P3	357.1(2)	Si3-P1-K2	122.13(8)
K2-P4	326.5(2)	Si2-P4-K2	124.98(8)
Si2-P4	225.4(2)	Si2-P4-K1	118.09(8)
Si3-P1	226.5(2)	Si-Si-Si	107.78(10) to 11.70(10)
Si-Si	234.4(3) to 235.5(3)	P3-P4-K2	79.68(7)
K-C _{benzene}	>=316.8(8)	P3-P4-K1	76.89(7)
P3-P2-P1	109.52(9)	K1-P1-K2	114.67(5)
P2-P3-P4	109.65(9)	K1-P3-K2	102.58(6)
P1-K1-P4	65.63(5)	K1-P2-K2	102.49(5)
P4-K2-P1	64.86(5)	K1-P4-K2	114.70(5)
P2-P1-K1	78.04(7)	P2-P1-Si3	98.47(9)

The central moiety of the molecular structure of **1a** exhibits a undistorted C_{2v} -symmetric U-shaped P₄ skeleton with all four P atoms as well as the two central silicon atoms of hypersilyl groups in one plane. The two potassium atoms coordinate from opposite sides of the P₄ plane to all four phosphorus atoms, forming a boat-like P₄K₂ framework with a notably flat rhomboid K₂P₂ ring (folding angle between the plans defined by P1-K1-P4 and P1-K2-P4: 3.2°) as shown in Figure 2.4. Presumably, this cyclobutane-type arrangement of the K₂P₂ ring may partially contribute to the stabilization of the high concentration of negative charges in this molecule. A similar Na₂P₂ ring is observed for the C₂-symmetric disodium 1,2,3,4-tetraphenyltetraphosphane-1,4-diide [Na₂(P₄Ph₄)(thf)₄(tmu)] (tmu = tetramethylurea)¹¹¹.

Two narrow angles (65.63° and 64.86°) for P-K-P and two wide angles [114.67(5) and 114.70(5)°] for K-P-K can be observed in this K_2P_2 ring. The contacts of K(1,2)-P(1,4) ranging between 323.1(2) and 330.8(2)pm are considerably longer than the sum of covalent radii of phosphorus and potassium, but still comparable to those found in KPH(Mes*)[Mes*=2,4,6-*t*Bu₃C₆H₂][327.1(2), 318.1(2), 335.7(2)pm]¹¹². The distances of K(1,2)-P(2,3)[ranging between 348.4(2) and 357.(2)pm] are notably longer than those of K(1,2)-P(1,4). The coordination spheres of K atoms are each completed by one η^6 -bonded benzene molecule [K…C distances ranging between 316.8(8) and 349.7(9)pm] and one η^2 -bonded benzene molecule [K…C distances $\geq 327.5(9)pm$] (Figure 2.5). No significant additional K…CH₃ agostic-type interaction with hypersilyl groups is observed in this structure.

The distance between P2 and P3 [208.87(19) pm] is significantly shorter than that between P1 and P2 [214.0(2)pm]or P3 and P4 [214.6(2)pm]. The P2-P3 bond length, however, is significantly longer than the P=P double bond [202.5(1)pm] in $[Li(DME)_3]_2\{(Me_3Si)[Cr(CO)_5]_2P-P=P-P[Cr(CO)_5]_2(SiMe_3)\}^{97}$, in which the P₄ skeleton shows a trans conformation. On the other hand, the other two bond lengths (P1-P2 and P3-P4) in **1a** are in contrast considerably shorter than the single P-P bonds [221.9(1)pm] in the

chromium complex. These obviously suggest significant charge delocalization over the whole P_4 chain and are in harmony with the ³¹P-NMR spectrum described above.

It is worth mentioning that the two hypersilyl groups in the molecule are staggered with respect to each other with a torsion angle Si22-Si2-Si3-Si32 of 64°, as shown in Figure 2.5. In the toluene and triazine solvates of compound **1**, eclipsed arrangements of two hypersilyl groups are found. Therefore, these arrangements may be simply caused by packing effects within thin the crystals.

Figure 2.5 Perspective drawings of **1a** in the solid state; atoms are represented by spheres of arbitrary radii; K-P contacts are symbolized as dashed lines; the other dashed lines are used to symbolize interatomic distances markedly smaller than the sum of the corresponding van der Waals radii; methyl groups and hydrogen atoms are omitted for clarity.

2.2.3.2 Hyp₂P₄K₂·2C₇H₈ (1b)

Violet rhombohedral single crystals of the toluene solvate $Hyp_2P_4K_2$ (**1b**) were obtained by cooling the concentrated reaction mixture in toluene to -20°C for several days. The molecular structure of **1b** was established by X-ray analysis and shown in Figure 2.6. The crystal data are summarized in Table 2.2 along with those of the other two solvates. Selected bond lengths and angles are listed in Table 2.4 and compared with that of **1a** and **1c** in Table 2.6.

Figure 2.6 Perspective drawing of **1b**: atoms are represented by spheres of arbitrary radii; dashed lines are used to symbolize interatomic distances markedly smaller than the sum of the corresponding van der Waals radii; hydrogen atoms are omitted for clarity. Symmetry operation ('): x, -y+0.5, z

214.2(3)	P5-K22-P6'	61.67(7)
208.5(5)	P5-K22-P6	37.00(6)
225.8(3)	P6'-K22-P6	34.71(8)
324.7(3)	Si3-P5-K22	115.01(11)
320.3(3)	Si3-P5-K21	128.03(11)
349.4(3)	K21-P6-K22	103.04(8)
234.0(3)	K22-P5-K21	114.46(8)
234.6(3)	P6'-P6-P5	109.01(8)
235.8(3)	P6-P5-Si3	98.70(12)
> 314(3)	P5-Si3-Si31	113.44(13)
185.2(7) to 196(3)	P5-Si3-Si32	102.20(12)
	P5-Si3-Si33	111.51(13)
	Si31-Si3-Si33	112.00(13)
64.80(10)	Si31-Si3-Si32	107.45(12)
65.82(10)	Si33-Si3-Si32	109.67(13)
	$\begin{array}{c} 214.2(3)\\ 208.5(5)\\ 225.8(3)\\ 324.7(3)\\ 320.3(3)\\ 349.4(3)\\ 234.0(3)\\ 234.6(3)\\ 235.8(3)\\ > 314(3)\\ 185.2(7) \ {\rm to}\ 196(3)\\ \end{array}$	$\begin{array}{ccccc} 214.2(3) & P5-K22-P6' \\ 208.5(5) & P5-K22-P6 \\ 225.8(3) & P6'-K22-P6 \\ 324.7(3) & Si3-P5-K22 \\ 320.3(3) & Si3-P5-K21 \\ 349.4(3) & K21-P6-K22 \\ 234.0(3) & K22-P5-K21 \\ 234.6(3) & P6'-P6-P5 \\ 235.8(3) & P6'-P5-Si3 \\ > 314(3) & P5-Si3-Si31 \\ 185.2(7) \ to \ 196(3) & P5-Si3-Si32 \\ P5-Si3-Si33 \\ Si31-Si3-Si33 \\ 64.80(10) & Si31-Si3-Si32 \\ 65.82(10) & Si33-Si3-Si32 \\ \end{array}$

Table 2.4 Selected interatomic distances (pm) and angles (°) for 1b.

The conformation of Si₂P₄K₂ skeleton in **1b** is almost the same as in **1a**. The main differences between the two structures are found in the coordination spheres of the potassium atoms. As shown in Figure 2.7, two kinds of toluene rings with different coordination modes can be found in this structure. One coordinates only to one of the K atoms in an η^6 -bonded fashion, while the other bonds simultaneously to two K atoms from adjacent Hyp₂P₄K₂ units, which finally leads to one-dimensional coordination polymers (Figure 2.7). Due to the twofold disordering of the toluene ligands the K···C distances can not be determined to a great accuracy, but the observed values range between 314 and 354pm, thus lying in the expected region. The two hypersilyl groups in Hyp₂P₄K₂ adopt an ideal eclipsed conformation.

Figure 2.7 View parallel to the crystallographic b axis of the one-dimensional coordination polymer of **1b** in the solid state; dashed lines indicate potassium-toluene contacts; hydrogen atoms are omitted for clarity.

2.2.3.3 Hyp₂P₄K₂·2C₆H₆·2(MeNCH₂)₃(1c)

The triazine solvate $Hyp_2P_4K_2 \cdot 2C_6H_6 \cdot 2(MeNCH_2)_3$ (1c) was obtained as yellowish green well shaped crystals by crystallization of $Hyp_2P_4K_2 \cdot 4C_6H_6$ from a benzene/triazine mixture (5:1). The X-ray analysis shows 1c to be monomeric in the solid state. Two triazine and two benzene molecules are found in each unit of $Hyp_2P_4K_2$ (Figure 2.8). The crystal data are summarized in Table 2.2 together with those of the other two solvates. Selected bond lengths and angles are listed in Table 2.5 and compared with those of 1a and 1b in Table 2.6.

Figure 2.8 Molecular structure of **1c**: View parallel to the crystallographic axis of c emphasizing the eclipsed conformation; atoms are represented by spheres of arbitrary radii; dashed lines are used to symbolize interatomic distances markedly smaller than the sum of the corresponding van der Walls radii; hydrogen atoms are omitted for clarity. Symmetry operation ('): -x, y, z

P1-P2	213.9(5)	P2-P1-Si1	98.0(2)
P1-Si1	223.7(6)	P2'-P2-P1	109.71(16)
P2-P2'	205.8(8)	P1-Si1-Si2	112.8(2)
K-P1	av. 340.4	P1-Si1-Si3	117.0(2)
K-P2	av. 352.6	P1-Si1-Si4	105.1(2)
K-N	av. 293.6		
K-C(triaz.)	av. 342.1		
K-C(benz.)>=	340.7		
Si-Si	av. 234.6		

Table 2.5 Selected interatomic distances (pm) and angles (°) for 1c

The Si₂P₄K₂ skeleton of **1c** is almost identical with those of **1a** and **1b**. Major differences between the three structures are found only in the coordination environment of potassium. Each potassium atom in **1c** is coordinated by an η^3 -N(η^3 -C) bonded triazine molecule and an η^2 -bonded benzene molecule. The mean distances of K-N of 293.6pm are larger than the sum of the covalent radii of potassium and nitrogen (273pm). Despite different solvent molecules, this coordination environment of potassium atoms is quite similar to that in **1a**. The two hypersilyl groups in this structure, however, are exactly eclipsed with respect to each other as observed in **1b**.

The average distances of K-P(1,4) and K-P(2,3) in 1c(340.4 and 352.6 pm) and in 1a(326.9 and 352.8 pm) are slightly longer than those observed in 1b(325.0 and 344.7 pm). This may be due to the fact that each potassium atom in 1b is coordinated by only one toluene molecule in average, whereas those in 1a and 1c are attached to two (C_6 or N_3C_3 ring).

Compound	1a	1b	1c
_			
P1-P2	214.4	213.8	213.9
P2-P3	208.9	208.8	205.8
P3-P4	214.6	213.8	213.9
K(1,2)-P(1,4)	326.9	325.0	340.4
K(1,2)-P(2,3)	352.8	344.7	352.6
P-Si	226.0	225.8	223.7
Si-Si	235.1	234.8	234.6
P1-K-P4	65.2	65.0	61.9
Si-P1-P2	98.2	98.5	98.0
P1-P2-P3	109.5	109.2	109.7
P-Si-Si	109.6	109.8	111.6

Table 2.6 Comparison of selected interatomic distances (pm) and angles (°) for 1a, 1b, and 1c.

The numbering of the atoms in 1b and 1c has been related to that of 1a.

2.2.3.4 Hyp₄P₈K₄·4C₆H₆ (2a)

Bright red well-shaped single crystals of the benzene solvate 2a were obtained from benzene solution. X-ray diffraction analysis data were collected at 193K under conditions detailed in Table 2.7. The benzene molecules were slightly disordered; however, the P₈K₄

skeleton and hypersilyl groups were ordered and the structure determination gave welldefined structural parameters (Figure 2.9). Selected bond lengths and angles are summarized in Table 2.8.

Empirical formula Formula weight(g/mol) Temperature(K) Crystal system Space group Lattice constants(Å,°) Volume(Å ³) Formula units Density(g/cm ³)	Hyp ₄ P ₈ K ₄ .7benzene 1941.58 193(2) monoclinic P2/n $a = 15.1356(7) \alpha 90$ $b = 14.6526(6) \beta 99.297(4)$ $c = 26.9623(14) \gamma 90$ 5901(5) 2 1.093
$\mu(MO-R_{\alpha})(\min)$ 2 Θ range(°)	1.39 to 26.29
Reflections measured	67117
Independent reflections	11884 [$R(int) = 0.0621$]
Ind. Reflections with $F_0 > 4\sigma(F_0)$	11884
Parameter	657
R1,R1(all reflections)	0.0288, 0.0439
wR2,wR2(all reflections)	0.0713, 0.0741
GooF	0.936
Residual electron density(e/Å ³)	0.272

Table 2.7	Crystal	lographic	c data	of	2a
-----------	---------	-----------	--------	----	----

The molecular structure may be described as a double cube with a shared four membered P_4 ring (the sum of the angles: 355.3°) in the middle, two phosphorus atoms and two potassium atoms in alternating positions on the top and the bottom, in which the four exophosphorus atoms each bear a hypersilyl group. The molecule possesses D_{2d} symmetry to a very good approximation. The small deviations are possibly caused by packing effects within the crystal.

The observed P-P bond lengths in the P₄ ring of 226.0 ± 0.6 pm are slightly longer than the distances between P_{ring} and P_{exo} of 219.0 ± 0.4 pm. However, they all lie in the expected single P-P bond range and resemble the corresponding distances of 226 ± 1 and 219 ± 1 pm observed in (^tBu₃Si)₄P₈Na₄.4DME ¹⁰¹, respectively. The rhomboid distortion of the two K₂P₂ planes in K₄P₈ skeleton leads to P-K-P and K-P-K bond angles of approximately 66° and 106°, respectively. The K-P distances ranging from 318.42(7) to 323.05(6)pm are smaller than those (325.0 - 352.8 pm) found for all three Hyp₂P₄K₂ solvates described above.

Figure 2.9 Molecular structure of **2a.** Atoms are represented by spheres of arbitrary radii. Methyl groups and hydrogen atoms on benzene are omitted for clarity. Symmetry operation ('):-x+3/2, y, -z+3/2

Apart from the coordination by three phosphorus atoms, the coordination environment around each potassium atom is completed by an η^6 -bonded benzene molecule. Because of the two fold disordering of benzene molecules in the crystal, the K…C distances could not be determined with great accuracy. Nevertheless, the observed contacts of K and C atoms (327 - 344 pm) lie within the expected range. No significant short agostic interaction between potassium and methyl of hypersilyl group is found in this structure.

According to the symmetry, the hypersilyl groups at each face of the double cube in **2a** are orientated eclipsed with respect to each other. The P-Si bonds (221.45(6) - 221.61(6) pm) are shorter than the sum of the covalent radii of phosphorus and silicon atom (228pm) and even slightly shorter than the P-Si bonds [ranging between 223.7(6) and 226.5(2)pm] observed for the three solvates of $Hyp_2P_4K_2$.

P1-P2	219.36(6)	P2-P3-K2	95.802(19)
P2-P3	225.96(6)	P3'-P3-K2	94.13(2)
P3-P4	218.67(6)	P3-P4-K2'	96.24(2)
P3-P3′	226.59(8)	P3-P4-K1'	95.75(2)
P2-P2'	226.82(9)	P2-P1-K1	95.21(2)
P1-K2	318.51(7)	P2-P1-K2	98.48(2)
P1-K1	320.72(7)	P4'-K1-P1	70.403(15)
P3-K2	323.05(6)	P4'-K1-P2'	66.365(14)
P4-K1′	318.42(7)	P1-K1-P2'	66.341(14)
P4-K2′	321.19(7)	P1_K2_P4'	70.332(15)
	318.42(7)	11 112 14	64.571(13)

 Table 2.8
 Selected interatomic distances (pm) and angles (°) for 2a.

2 Hypersilyl Stabilized Phosphorus Clusters

K1-P4'	321.69(6)	P1-K2-P3	65.608(14)
K1-P2'	221.61(6)	P4'-K2-P3	105.732(18)
P4-Si2	221.45(6)	K2-P1-K1	105.643(18)
P1-Si1	327.6(7) to 339.5(9)	K1'-P4-K2'	105.35(2)
K-C	233.32(7) to 234.78(6)	P2-P1-Si1	125.33(2)
Si-Si	185.7(3) to 188.0(3)	Si1-P1-K2	119.82(2)
Si-C	103.98(2)	Si1-P1-K1	105.09(2)
P4-P3-P2	103.22(3)	P3-P4-Si2	123.09(2)
P4-P3-P3'	88.863(16)	Si2-P4-K1'	123.30(2)
P2-P3-P3'	100.62(2)	Si2-P4-K2'	114.77(3)
P1-P2-P3	103.94(3)	P1-Si1-Si12	114.51(3)
P1-P2-P2'	88.808(16)	P1-Si1-Si11	99.76(3)
P3-P2-P2'	157.74(2)	P1-Si1-Si13	115.33(3)
P1-P2-K1′	93.40(2)	P4-Si2-Si21	114.99(3)
P3-P2-K1'	93.47(2)	P4-Si2-Si22	99.00(2)
P2'-P2-K1'	153.76(2)	P4-Si2-Si23	107.76(3) to
P4-P3-K2		Si-Si-Si	110.35(3)

2.2.4 Protolysis and Oxidation of Hyp₂P₄K₂

The protolysis of $[(Me_3Si)_3Si]_2P_4K_2$ depends strongly on the reaction conditions. When dry hydrochloric gas was bubbled through a toluene solution of **1b** at room temperature, the deep violet colour vanished gradually. According to the ³¹P-NMR spectrum, the reaction led to the formation of $(Me_3Si)_3SiPH_2$ and tris(hypersilyl)heptaphosphane $[(Me_3Si)_3Si]_3P_7$ (Eq.2.2), which had been synthesized at first from sodium-potassium phosphide and chlorotris(trimethylsilyl)silanide¹¹³.

$$((Me_{3}Si)_{3}Si)_{2}P_{4}K_{2} \xrightarrow{H^{+}} ((Me_{3}Si)_{3}Si)_{3}P_{7} + (Me_{3}Si)_{3}SiPH_{2}$$
(Eq.2.2)

Gradual protolysis of **1** with 2,6-di-*tert*-butyl-phenol in benzene at room temperature gave $[(Me_3Si)_3Si]_3P_5K_2$, $[(Me_3Si)_3Si]_2P_3K$, $(Me_3Si)_3SiPH_2$, and further unidentified phosphorus-containing compounds as intermediates. The dominant phosphorus-containing product observed by ³¹P-NMR spectra was $(Me_3Si)_3SiPH_2$; $[(Me_3Si)_3Si]_3P_7$ was detected in traces only.

Treatment of compound **1** with anhydrous $FeCl_2$ in THF at -20°C led to the oxidation of **1**. According to the ³¹P-NMR spectrum of the reaction mixture $[(Me_3Si)_3Si]_3P_7$ was found as the main product along with small amounts of $[(Me_3Si)_3Si]_2P_4$, $(Me_3Si)_3SiPH_2$ and other unidentified phosphorus-containing compounds.

2.3 $Hyp_3P_5K_2(4)$ and $Hyp_3P_8K_3(5)$

2.3.1 Synthesis

Although in the crystalline state $Hyp_2P_4K_2$ had been stored for more than two years without any sign of decomposition under argon, in toluene solution it decomposes slowly at room temperature giving yellowish well-shaped crystals of potassium tris(hypersilyl)pentaphosphanide $Hyp_3P_5K_2$ (4) within several weeks. This process becomes even quicker when the solution is warmed to 70°C.

Compound **4** is also formed as described above by protolysis of $Hyp_2P_4K_2$ with 2,6-di-^tBu-phenol. According to the suggestion made for $[(Me_3C)_3Si]_3P_5Na_2$ by Wiberg¹⁰², the formation of **4** may be understood with Scheme 2.5. Compound **4** is a formal [1+2] addition product of **1** with HypP. Latter might be formed through protolysis of **1**, followed by elimination of "P₂". Other products detected, such as HypPH₂ are further evidence for protolysis and a subsequent cleavage of the phosphorus chain.

Another polyphosphanide, potassium tris(hypersilyl)octaphosphanide $Hyp_3P_8K_3$ (5), is found and isolated as orange cubic shaped X-ray diffraction quality crystals by concentrating a very dilute benzene solution of compound 2 and cooling at 5°C for several days. This compound is formally generated from 2 by elimination of potassium hypersilanide. A possible path to 5 may be a partial protonation of compound 2 by traces of water followed by the elimination of (Me₃Si)SiH and subsequent rearrangement of the phosphorus cage (Eq. 2.4).

2.3.2 NMR Spectroscopy 2.3.2.1 Hyp₃P₅K₂ (4)

The two inequivalent hypersilyl groups give rise to two singlets with relative intensities of 2:1 in the ¹H-NMR spectrum and two singlets in the ¹³C{H}-NMR spectrum. In ¹H decoupled ³¹P-NMR spectrum, three groups of broad signals are observed at -87.4, -197.0 and - 242.3ppm with relative intensities of 2:1:2 (Figure 2.10).

P5)=-242.3 . δ (P3)= -197.0 ppm.

In order to get well-resolved signals, a THF-d8 solution of compound **4** was investigated. The ³¹P{H}-NMR spectrum exhibits three complex multiplets at -81.5, -206.7, and -247ppm in a ratio of 2:1:2 arising from an AA'MM'X spin system, which are verified by simulation using the parameters published for $[(Me_3C)_3Si]_3P_5Na_2^{102}$ as a starting point followed by several iterations. The experimental and simulated resonances are shown in Figure 2.11. In order to compare the values of compound **4** with those of its analogues, the corresponding chemical shifts and coupling constants are summarized in Table 2.9. The chemical shifts and the one-bond coupling constants of the three membered ring phosphorus atoms of compound **4**, similar to those of $[(Me_3Si)_3Si]_3P_5Na_2(9)$, see below) and $[(Me_3C)_3Si]_3P_5Na_2^{102}$, are in the typical range of triphosphiranes¹¹⁴ ¹¹⁵. Compared to the values of ¹J_{P1,P2}, ¹J_{P2,P3}, and ¹J_{P1,P3}, the coupling constants ¹¹⁴ ¹¹⁵. Compared to the values of ¹J_{P1,P2}, ¹J_{P2,P3}, and ¹J_{P1,P3}, the

	4	9	$[(Me_3C)_3Si]_3P_5Na_2$
δ (P1, P2) (ppm)	-81.5	-94.4	-93.4
δ(P4, P5) (ppm)	-247.2	-249.1	-240.3
δ (P3) (ppm)	-206.7	-193.4	-179.6
${}^{3}J_{p4,p5}$ (Hz)	214	302.9	231.8
${}^{1}J_{p_{1},p_{2}}^{1}$ (Hz)	-189.8	-195.3	-201.6
${}^{2}J_{p_{1},p_{5}}^{p_{7},p_{2}}$ ${}^{2}J_{p_{2},p_{4}}(Hz)$	-6.9	-7.3	-5.1
${}^{1}J_{p_{1},p_{3}}^{r_{1},r_{2},r_{3}}$ ${}^{1}J_{p_{2},p_{3}}^{r_{2},r_{3}}$ (Hz)	-178.3	-178.8	-191.9
${}^{2}J_{p3,p4}$ ${}^{2}J_{p3,p5}(Hz)$	61.7	61.4	64.9
${}^{1}J_{p1,p4}$ ${}^{1}J_{p2,p5}(Hz)$	-347.5	-336.6	-348.9

Table 2.9 Comparison of the ³¹P-NMR(THF-d8, 300K) spectroscopic data of **4**, **9**, and [(Me₃C)₃Si]₃P₅Na₂¹⁰²

δ(P4, P5)=-247.2

value¹¹⁶.
2 Hypersilyl Stabilized Phosphorus Clusters

The ²⁹Si{H}-NMR spectrum of compound **4** in THF-d₈ shows two broad signals without fine structure at -9.8 and -12.2ppm for the peripheral silicon atoms of hypersilyl groups in agreement with ¹H- and ¹³C{H}-NMR spectra, each of which exhibits two singlets. The spectrum also shows two less intense resonances at -90.1 and -91.8 ppm for the two types of the central silicon atoms of hypersilyl groups. The signal at -90.1ppm for Si3, according to a first order interpretation, is a doublet (with a coupling constant of 116Hz split by P3) of triplets (with a two-bond coupling constant of about 6Hz split by P1 and P2). The accuracy of these coupling constants is however reduced to about ±2Hz by peak broadening due to long-range coupling with the other P atoms. The other signal for Si1 and Si2 is a multiplet representing the X part of an AA'MM'RX spin system originating from the two possible isotopomers, each containing one ²⁹Si-nucleus ¹¹⁷. A simulation using the parameters published for [(Me₃C)₃Si]₃P₅Na₂ ¹⁰² as a starting point yielded the coupling constants of **4**, sodium analogues **9** and [(Me₃C)₃Si]₃P₅Na₂ are shown in Table 2.21 and will be discussed later.

 Table 2.10
 The calculated silicon-phosphorus coupling constants for compound 4.

¹ J _{p3,Si3} (Hz)	$^{2}J_{p1,Si3}^{2}J_{p2,Si3}^{2}$ (Hz)	$^{1}J_{p4,Si2,}^{1}J_{p5,Si1}^{1}$ (Hz)	${}^{2}J_{p1,Si2,} {}^{2}J_{p2,Si1}$ (Hz)	${}^{3}J_{p3,Si2,} {}^{3}J_{p1,Si1}$ (Hz)	${}^{4}J_{p5,Si2,} {}^{4}J_{p4,Si1}$ (Hz)
-116.3	7.3	-106.8	-21.4	-17.3	7.6

2.3.2.2 Hyp₃P₈K₃ (5)

The ³¹P{H}-NMR spectrum of **5** in benzene-d6 displays five groups of signals at δ =43.0, -45.7, -56.0 ppm for the formally uncharged phosphorus atoms P3, P4 and P5 and -181.3, -234.5 ppm for phosphanide-phosphorus atoms with relative intensities of 2:1:2:2:1, respectively (Figure 2.12). The signals are all broad, just as those of **4** in benzene (Figure 2.10). Attempts to obtain the coupling constants by simulation are thus unsuccessful. The structure, however, has been unambiguously determined by single crystal X-ray diffraction studies. Approximatively, neglecting the two-bond coupling of the five-membered ring phosphorus atoms, the broad triplet at -234.5ppm for P4 and doublet at -181.3ppm for P1 and P8 as well as the triplet at - 45.7ppm for P7 are consistent with the molecular structure established crystallographically. In the ¹H-NMR spectrum, two singlets originating from the two inequivalent hypersilyl groups can be observed at 0.505 and 0.527ppm with relative intensities of 2:1, which are comparable to those found in compound **4** of 0.507 and 0.512 ppm. Moreover, the chemical shifts in the ¹³C-NMR spectrum of 3.3 and 3.4 ppm for the two types of hypersilyl groups are also similar to those observed for compound **4** (3.1 and 3.8 ppm).

6)=43.0, δ (P3, P5)= -56.0, δ (P4)=-234.5. δ (P7)= -45.7 ppm.

2.3.3 Crystal Structure

2.3.3.1 (Hyp₃P₅K₂)₂·3C₆H₆ (4a)

The X-ray crystal structure analysis of a yellow well shaped single crystal of compound **4a** obtained from benzene solution shows that **4a** crystallizes as a coordination dimer. The molecule has a C_{2h} symmetry, with the twofold axis running through the two bridging potassium atoms as shown in Figure 2.13. Collection parameters and other crystallographic data are summarized in Table 2.11. Selected bond lengths and angles are listed in Table 2.12.

Table 2.11Crystallographic data of 4a.

Empirical formula Formula weight(g/mol) Temperature(K) Crystal system space group Lattice constants(Å,°)	Hyp ₃ P ₃ K ₂ ·1.5benzene 1093.21 193(2) triclinic P $\overline{1}$ a = 14.7289(14) α 97.292 b = 17.2007(15) β 93.032(7) c = 27.467(2) α 105.980(7)
Volume(Å ³) Formula units Density(g/cm ³) μ (Mo-K _a)(mm ⁻¹) 2Θ range(°) Reflections measured Independent reflections Ind. Reflections with F _o >4 σ (F ₀) Parameter R1,R1(all reflections) wR2,wR2(all reflections) GooF Residual electron density(e/Å ³)	$\begin{array}{c} (2 - 27.467(2) - \gamma - 105.986(7)) \\ 5607.5(10) \\ 4 \\ 1.099 \\ 0.505 \\ 1.36 \text{ to } 26.37 \\ 63967 \\ 26523 \ [R(int) = 0.0813] \\ 26523 \\ 1155 \\ 0.0573, \ 0.1050 \\ 0.1314, \ 0.1455 \\ 0.904 \\ 0.638 \end{array}$

Figure 2.13 Perspective drawing of **4a**; atoms are represented by spheres of arbitrary radii; dashed lines are used to symbolize interatomic distances markedly smaller than the sum of the corresponding van der Waals radii. (a): Benzene and and methyl groups are omitted. (b): $Hyp_3P_5K_2$ unit (hydrogen atoms are omitted for clarity). Symmetry operation ('):-x+1, -y+1, -z

The [(Me₃Si)₃Si]₃P₅ moiety comprises cyclotriphosphane skeleton with two exocyclic phosphorus atoms attached in a cis fashion. Each of latter links further to a hypersilyl group,

while the third P atom in the P₃ ring bears directly a hypersilyl group in trans position to the two Pexo atoms. The Pring-Pring distances ranging between 223.03(14) and 225.15(14) pm are significantly longer than the other two Pring-Pexo bond lengths [217.57(15), 217.24(14) pm]. All P-P the bond lengths very similar to those observed in sodium are tris(supersilyl)petaphosphanide [(Me₃C)₃Si]₃P₅Na₂¹⁰² (with a mean distance of 224pm for P-P bonds in P_3 ring and 218pm for P_{ring} - P_{exo} bonds), which crystallizes as monomeric THF solvate. A similar difference between endo- and exocyclic bondlengths were found for compound 2a.

The formally negatively charged atoms P2 and P3 are each linked to two potassium atoms, displaying a distorted tetrahedral coordination environment with K-P-K angles of 126.86(4)° for P2 and 122.30(4)° for P3. With a total coordination number of five (two K atoms, two P atoms and one hypersilyl group), P1 exhibits a distorted square pyramidal environment. The K-P bonds ranging between 316.32(15) and 345.26(14) pm are comparable to those observed for other substituted potassium phosphanides ¹¹⁸ ¹¹⁹ ¹²⁰. Apart from the two phosphorus atoms with a P2-K2-P3 angle of 72.22(4)°, the coordination sphere of K2 is completed by disordered η^2 -bonded benzene molecule (K···C distances: about 329pm) and agostic interactions to hypersilyl groups with a shortest K···C contact of 317pm. Due to the steric crowding , no short contact to a benzene ring is found for K1. However, agostic-type interactions to methyl groups (K···C ≥ 340 pm) are observed.

D1 D4	222 02(14)	D2 K1 D1	(2,(1/2))
P1-P4	223.03(14)	P3-K1-P1	63.61(3)
P1-P5	224.42(14)	P2'-K1-P1	107.02(4)
P2-P5	217.57(15)	P1'-K1-P1	100.92(3)
P3-P4	217.24(14)	K1-P3-K2	122.32(4)
P4-P5	225.15(14)	K2-P2-K11'	126.86(4)
P1-Si1	227.08(15)	K1′-P1-K1	79.08(3)
P2-Si2	224.77(15)	P4-P1-K1	86.51(4)
P3-Si3	224.31(15)	P5-P1-K1	124.62(5)
P2-K2	316.32(15)	P4-P1-K1'	126.21(5)
P1-K1	345.26(14)	P4-P3-K1	93.65(5)
P1-K1′	336.34(15)	P5-P1-K1'	86.48(4)
P2-K1′	322.97(14)	P4-P3-K2	110.42(5)
P3-K1	321.71(14)	P5-P2-K1'	91.05(5)
P3-K2	323.54(16)	P5-P2-K2	112.88(5)
K1-K1′	434.0(2)	P4-P1-Si1	101.43(5)
K2-C111′	317.0(5)	P5-P1-Si1	107.07(5)
K2-C22	338.2(7)	P5-P2-Si2	96.51(6)
K2-C21	347.9(8)	P4-P3-Si3	97.60(6)
Si-Si	234.16(18) to	Sil_P1_K1'	129.76(5)
	235.72(16)	Si1-P1-K1	123.19(5)
P2-P5-P1	104.78(5)	Si7_P7_K7	112.87(5)
P2-P5-P4	109.11(6)	Si2 P2 K1'	110.29(5)
P1-P5-P4	59.48(4)	Si2 P3 K1	131.56(5)
P1-P4-P5	60.09(4)	Si3_P3_K7	97.25(5)
P3-P4-P5	111.81(6)	D2 V1 V1'	85.87(4)
P3-P4-P1	106.19(5)	r J-N1-N1	83.95(4)

Table 2.12 Selected interatomic distances (pm) and angles (°) for 4a.

P4-P1-P5	60.42(4)	P2'-K1-K1'	51.37(3)
P2-K2-P3	72.22(4)	P1'-K1-K1'	49.55(3)
P3-K1-P2'	169.35(4)	P1-K1-K1′	100.24(6) to 117.95(6)
P3-K1-P1′	111.31(4)	P-Si-Si	105.76(6) to 111.55(6)
P2'-K1-P1'	64.12(3)	Si-Si-Si	

2.3.3.2 Hyp₃P₈K₃·4C₆H₆(5a)

An orange cubic-shaped single crystal of **5a** obtained from a benzene solution was investigated by X-ray diffraction analysis. The molecular structure is presented in Figure 2.14. One of the hypersilyl groups is disordered in the crystal (Figure 2.14b); however, the K_3P_8 skeleton is ordered and the structure determination gives well-defined structural parameters. Crystal data for **5a** are summarized in Table 2.13. Selected bond lengths and angles are listed in Table 2.14.

Table 2.13 Crystallographic data of **5a**.

Empirical formula Formula weight(g/mol) Temperature(K) Crystal system Space group Lattice constants(Å,°)	Hyp ₃ P ₈ K ₃ ·3benzene 1419.48 173(2) triclinic P $\overline{1}$ a = 14.920(3) α 72.961(13) b = 16.401(3) β 77.152(12) α 72.961(13) b = 16.401(3) β 77.152(12)
Volume(Å ³) Formula units Density(g/cm ³) μ (Mo-K _a)(mm ⁻¹) 2 Θ range(°) Reflections measured Independent reflections Ind. Reflections with F _o >4 σ (F ₀) Parameter R1,R1(all reflections) wR2,wR2(all reflections) GooF Residual electron density(e/Å ³)	c = $18.743(4) \gamma$ 80.088(12) 4247.2(14) 2 1.110 0.509 2.29 to 25.00 15225 14620 [R(int) = 0.0396] 14620 729 0.0411, 0.0835 0.0817, 0.0890 0.827 0.597

Figure 2.14 Perspective drawing of **5a**; (a): $Si_{24}P_{16}K_6$ skeleton; (b): $Hyp_3P_8K_3$ skeleton. Atoms are represented by spheres of arbitrary radii; dashed lines are used to symbolize interatomic contacts of potassium and phosphorus atoms. Symmetry operation ('):-x, -y, -z

The Hyp₃P₈ moiety displays a boat-like puckered [3,1,0] bicyclohexaphosphane skeleton having local C_s symmetry. Two hypersilylphosphanyl groups (HypP) are located at the fivemembered ring and a hypersilyl group at the three-membered ring (Figure 2.14b). Linked by a potassium dumbbell, two Hyp₃P₈ fragments form a C₂ symmetric coordination dimer as shown in Figure 2.14a.

The P-P bond lengths, ranging between 218.03(12) and 225.24(13) pm, are in the P-P single bond region and similar to those observed in **4a**. The formally negatively charged atoms P1, P3 and P5 display slightly shorter P-P distances (ranging from 218.03(12) to 220.33(12) pm). The two exocyclo-phosphorus atoms (P1 and P3) coordinate to two potassium atoms (K2, K3), forming a distorted K_2P_2 rhomboid with P-K-P and K-P-K bond angles of 81.7 and 96°, respectively. Apart from P1 and P3, the coordination environment of K2 is accomplished by two phosphorus atoms (P7, P8) and an η^6 -bonded benzene molecule (average K…C distance: 333pm), while that of K3 is completed by other three phosphorus atoms (P4, P5 and P6) and another η^6 -bonded benzene molecule (average K…C distance: 329pm). No benzene molecule is found to coordinate to both potassium atoms of the shared dumbbell; only a slight agostic-type interaction (K…C: 365pm) with hypersilyl group is found. The P-K distances, ranging from 317.42(13) to 382.58(14) pm with a shortest value observed for K3-P5 and the longest for P2-K1, are in regions observed previously for related compounds.

	4 / U		
P1-P6	220.33(12)	P7-P2-P8	60.92(4)
P2-P7	221.76(12)	P5-P4-P3	115.61(5)
P2-P8	222.57(12)	P5-P4-P8	103.15(5)
P3-P4	219.29(12)	P3-P4-P8	100.58(5)
P4-P5	218.03(12)	P5-P6-P1	114.54(5)
P4-P8	221.36(13)	P5-P6-P7	103.49(5)
P5-P6	218.42(13)	P1-P6-P7	102.05(5)
P6-P7	221.98(12)	P2-P7-P6	100.79(5)
P7-P8	225.24(13)	P2-P7-P8	59.72(4)
P1-K2	326.83(13)	P6-P7-P8	106.33(5)
P1-K3	328.50(14)	P4-P8-P2	103.37(5)
P2-K1′	351.15(13)	P4-P8-P7	106.09(5)
P3-K3	321.73(13)	P2-P8-P7	59.36(4)
P3-K2	322.91(13)	P7-P2-Si2	104.49(5)
P4-K3	371.74(13)	P4-P5-P6	106.27(5)
P5-K3	317.42(13)	P8-P2-Si2	102.09(5)
P5-K1′	320.22(12)	P4-P3-Si3	99.22(5)
P6-K1′	337.80(13)	P6-P1-Si1	96.10(5)
P6-K3	381.30(13)	P4-K1-P6'	167.90(3)
P7-K2	341.95(13)	P3-K2-P1	81.77(3)
P8-K2	353.06(13)	P3-K3-P1	81.69(3)
K1-P2	382.58(14)	K2-P1-K3	95.08(3)
K1-P4	323.23(12)	K3-P3-K2	97.18(3)
K1-P5	337.44(13)	K1'-P2-K1	69.26(3)
K1-K1′	417.75(17)	Si2-P2-K1	127.54(4)
K2-K3	483.46(13)	Si2-P2-K1'	133.35(4)
P1-Si1	225.18(13)	P3-P4-K1	154.97(5)
P2-Si2	229.69(12)	P1-P6-K1′	159.24(4)
P3-Si3	226.21(13)		
Si-Si	234.84(14) to 238.9(3)		
K-C	319.1(4) to 341.6(6)		

Table 2.14 Selected interatomic distances (pm) and angles (°) for 5a.

$2.4 Hyp_2P_4(6), Hyp_2P_4Li_2(7), and Hyp_2P_3Li(8)$

2.4.1 Synthesis

Replacing potassium for lithium, i.e. reacting base-free lithium hypersilanide with white phosphorus, dramatically changes the type of products obtained. Under the same conditions *i.e.* a toluene solution of lithium hypersilanide was added to a suspension of white phosphorus in toluene at room temperature, the colour of the solution turned from yellow to brown-red and a pale yellowish precipitate was formed gradually.

The ³¹P-NMR spectrum of the filtrate of the reaction mixture, showing complicated resonances, indicated that $[(Me_3Si)_3Si]_3P_7$, bis(hypersilyl)tetraphosphane $[(Me_3Si)_3Si]_2P_4(6)$, and some other phosphorus-containing compounds were formed in this reaction. Attempt to isolate some of them by crystallization failed. However, several light orange crystals were found in the NMR tube after standing for several months at ambient temperature. According to the X-ray diffraction analysis, these crystals represent the lithium salt:

[(Me₃Si)₃Si]₃P₅Li₂·LiP(SiMe₃)Si(SiMe₃)₂Si(SiMe₃)₃. Unfortunately, the reflection data were of low quality and gave no well-defined structural parameters.

The pale yellowish precipitate isolated by filtration is extremely air- and moisture-sensitive and ignites spontaneously on contact with air. In THF it is solable and give a violet solution. -20°C On cooling to for several days, violet crystals of dilithium bis(hypersilyl)tetraphosphenide Hyp₂P₄Li₂ \cdot 4THF (7a) precipitated in low yield (based on P₄). In the solid state compound 7a is air- and moisture-sensitive, but does not ignite spontaneously in air. In contrast to the potassium analogue, this compound is fairly stable in THF solution at room temperature under argon.

When the pale yellowish precipitate is dissolved in hexahydro-1,3,5-trimethyl-S-triazine, a violet-blue solution is obtained. The ³¹P-NMR spectrum shows that, instead of the tetraphosphenide **7**, lithium bis(hypersilyl)triphosphenide Hyp₂P₃Li (**8**) is the dominant phosphorus-containing compound (Scheme 2.6).

In order to get X-ray diffraction analysis suitable crystals of compound 8, base-free lithium hypersilanide was allowed to react with white phosphorus in toluene in the presence of hexahydro-1,3,5-trimethyl-S-triazine at room temperature. A violet-blue solution was obtained and no precipitate was found in the reaction mixture this time. The ³¹P-NMR spectrum of the showed for resulting reaction mixture a dominant resonance lithium bis(hypersilyl)triphosphenide along with some resonances for small amounts of other phosphorus-containing compounds. On cooling to -20°C for several days, violet X-ray diffraction quality crystals of Hyp₂P₃Li·2(MeNCH₂)₃ (8a) were obtained along with a considerable amount of colourless tetrakis(trimethylsilyl)silane crystals.

The reaction of lithium hypersilanide with white phosphorus in THF under the same conditions was quite complicated. Along with compound **7**, several unknown phosphorus-containing compounds, showing mutually overlapping resonances in the ³¹P-NMR spectrum, were formed in the resulting solution. In an attempt to isolate some of the products, the reaction mixture was stored at -30°C for several days. Surprisingly, quite large amounts of tetrakis[trimethyl(silyl)]silane precipitated. Obviously, cleavage of Si-Si within the hypersilyl group took place during the reaction process and resulted in the complexity of the reaction.

2.4.2 NMR Spectroscopy

2.4.2.1 Hyp₂P₄Li₂ (7)

Compound **7** is characterized by ³¹P-NMR spectroscopy and a single-crystal X-ray diffraction study. Similar to compound **1**, the ³¹P{H}-NMR spectrum of **7** exhibits two resonance signals at -45.8 and 398.1 ppm representing an AA'XX' spin system. In spite of the low resolution of the spectrum owing to the relatively poor solubility of Hyp₂P₄Li₂·4THF (**7a**) in THF, a simulation of the spectrum has been performed with sufficient accuracy. The simulated and experimental spectra are shown in Figure 2.15. The comparison of the chemical shifts and coupling constants of **7** with its analogues $[(Me_3C)_3Si]_2P_4Na_2^{101}$ and compound **1** has been shown in Table 2.1.

Figure 2.15 The ³¹P{H}-NMR spectrum of **7** in THF-d8(300K) at 101.256MHz. δ (P1, P4)= -45.8ppm, δ (P2, P3)=398.1ppm. ³J_{p1,p4}=247.1Hz, ¹J_{p1,p2} = ¹J_{p3,p4}=-410.3Hz, ²J_{p1,p3}=²J_{p2,p4}=-31.5Hz, ¹J_{p2,p3}=-481.0Hz.

2.4.2.2 Hyp₂P₃Li (8)

In the ${}^{31}P{H}$ -NMR spectrum of **8**, a doublet and a triplet of an AX₂ spin system are observed at δ =198.2 and 718.4 ppm with relative intensities of 2:1, respectively. The chemical shifts and the coupling constants of this compound as well as those of compound **3** and $[(Me_3C)_3Si]_2P_3Na^{100}$ are summarized in Table 2.15. With small differences, the chemical shifts

of P2 of the three compounds are all in the typical range for the unsaturated two-coordinate phosphorus atom in diphosphene¹²¹, whereas those of P1 and P3 are all in a range expected for unsaturated anionic phosphorus atoms^{122 123}. The one-bond coupling constants of a range from 533 to 552.6Hz, without showing any additional coupling constant of ${}^{2}J_{P,P}$, suggest a transtrans configuration of the anions as derived from the X-ray diffraction studies of [(Me₃Si)₃Si]₂P₃Li (see blow) and [(Me₃C)₃Si]₂P₃Na¹⁰⁰. The other isomeric anion with trans-cis configurations, which exists in Mes*₂P₃Li along with the trans-trans isomer¹²⁴, haven't been observed in the benzene-d6 solutions according to the ³¹P-NMR spectroscopy. Presumably this is a consequence of the steric crowding of the supersilyl or hypersilyl groups in these compounds.

Figure 2.16 The ³¹P{H}-NMR spectrum of **8** in benzene-d6(300K) at 161.976MHz. ${}^{1}J_{p1,p2} = {}^{1}J_{p2,p3} = 533$ Hz.

Table 2.15 Comparison of the ³¹P-NMR(benzene-d6) chemical shifts and coupling constants of **8**, **3**, and $[(Me_3C)_3Si]_2P_3Na^{100}]$

		8 ^a	3	[(Me ₃ C) ₃ Si] ₂ P ₃ Na ^b
δ (P1, P3)	(ppm)	198.2	199.8	212.5
δ (P2)	(ppm)	718.4	717.2	732.5
${}^{1}\mathbf{J}_{p,p}$	(Hz)	533	541	552.6

a: as hexahydro-1,3,5-trimethyl-s-triazin solvate ; b: as THF solvate

2.4.3 Crystal Structure

2.4.3.1 Hyp₂P₄Li₂·4THF (7a)

After many unsuccessful attempts, a suitable crystal of **7a** could be found and was investigated by X-ray diffraction analysis. The crystal data are summarized in Table 2.16. Selected bond lengths and angles are listed in Table 2.17. Compound **7a** crystallizes in the monoclinic space group P2/c with two symmetry-independent molecules, one of which shows a statistical disordering of the phosphorus atoms. The discussion therefore concentrates on the well-ordered structural unit.

Empirical formula Formula weight(g/mol) Temperature(K) Crystal system Space group Lattice constants(Å,°)	Hyp ₂ P ₄ Li ₂ ·4THF 921.51 193(2) monoclinic P2/c $a = 23.723(3) \alpha 90$ $b = 9.9065(15) \beta 92.734(9)$
Volume(Å ³) Formula units Density(g/cm ³) μ (Mo-K _a)(mm ⁻¹) 2 Θ range(°) Reflections measured Independent reflections Ind. Reflections with F _o >4 σ (F ₀) Parameter R1,R1(all reflections) wR2,wR2(all reflections) GooF Residual electron density(e/Å ³)	$c = 24.352(3) \gamma 90$ 5716.4 4 1.071 0.329 2.06 to 26.54 56355 11688 [R(int) = 0.1100] 11688 571 0.0419, 0.1552 0.0936, 0.1303 0.650 0.136

Table 2.16	Crystall	lographic	data of 7a .
	-		

Figure 2.17 Molecular structure of **7a**; atoms are represented by spheres of arbitrary radii; dashed lines are used to symbolize interatomic distances markedly smaller than the sum of the corresponding van der Waals radii; hydrogen atoms are omitted for clarity. Symmetry operation ('):-x, y, -z+3/2

As shown in Figure 2.17, the anionic part of **7a** displays the same Hyp₂P₄ fragment as its potassium analogues, showing a cis-configurated P₄ skeleton with a hypersilyl group attached at each end of the phosphorus chain. In the molecule, each lithium atom is coordinated by two phosphorus and two oxygen atoms from THF, forming a tetrahedral coordination environment with an acute P-Li-P angle [P1-Li1-P1' =79.25(19)°]. The distance between the two lithium atoms is found to be 349.8(15) pm and no additional short contact – *i.e.* agostic interactions with hypersilyl groups is observed. All of the lithium atoms and oxygen atoms lie in the σ_v mirror plane of the P₄ skeleton (Figure 2.18). Thus, the molecule exhibits a nearly undistorted C_{2v}-symmetric Si₂P₄Li₂O₄ framework.

Figure 2.18 View of $P_4O_4Li_2$ skeleton of **7a**; atoms are represented by spheres of arbitrary radii.

As shown in Figure 2.18, unlike the benzene solvate of the potassium analogue, which exhibits an almost planar K_2P_2 ring (folding angle=3.2°), the Li₂P₂ ring is puckered. The Li atoms bent away from the P=P double bond with a folding angle of 61.3° between the planes defined by Li1- P1- P1' and Li1'-P1- P1'. Thus, considerably long Li-P(2, 2') distances (about 369pm) are observed, whereas the Li-P(1, 1') contacts [262.0(7), 265.9(7)pm] lie in the expected Li-P range and close to the value of 262(2)pm found for Li-P in dimeric Li(thf)₂P(SiMe₃)₂¹²⁵.

As far as the P₄ skeleton is concerned, notable structural differences compound **7a** and **1a** are the less obtuse narrow P-P-P angle in **7a** (107.7 vs 109.5° on average, Table 2.18) and the shorter distance between P1 and P1' (337.7 pm for **7a** vs 352.5 pm for **1a**). This is consistent with the different coupling between P1 and P1'. As shown in Table 2.1, the three-bond coupling constant of 247.1Hz for **7a** is considerable larger than that of 151.5Hz for **1a**.

P1-P2	213.89(15)	Si1-P1-Li1	131.99(16)
P2-P2'	206.5(2)	P2-P1-Li1'	99.99(16)
P1-Si1	224.56(15)	Si1-P1-Li1'	135.56(17)
P1-Li1	262.0(7)	Li1-P1-Li1'	83.0(3)
P1-Li1′	265.9(7)	P1-Li1-P1'	79.25(19)
Li1-Li1'	349.8(15)	01-Li1-02	104.3(4)
O1-Li1	189.9(9)	O1-Li1-P1	117.1(3)
O2-Li1	193.2(7)	01-Li1-P1'	119.0(4)
Si2-P3	225.05(15)	02-Li1-P1'	117.5(3)
Si1-Si11	233.92(15)	02-Li1-P1	119.3(4)
Si1-Si13	234.73(15)	P1-Si1-Si11	112.84(6)
Si1-Si12	235.13(15)	P1-Si1-Si12	113.83(6)
P2'-P2-P1	107.72(4)	P1-Si1-Si13	104.59(6)
P2-P1-Si1	98.62(6)	Sil1-Sil-Sil3	108.66(6)
P2-P1-Li1	100.74(17)	Sill-Sil-Sil2	109.79(6)
		Si13-Si1-Si12	106.69(6)

Table 2.17 Selected interatomic distances (pm) and angles (°) of 7a.

 Table 2.18
 Comparison of selected interatomic distances (pm) for 7a and 1.

Compound		7a	1 a	1b	1c
P1-P1'	(av. pm)	337.7	352.5	349.1	350.1
P1-P2-P2'	(av. deg)	107.7	109.5	109.2	109.7
Folding angle or (Li-P-P-Li	e(K-P-P-K)) (av. deg)	61.3	3.2	8.3	11.6

2.4.3.2 Hyp₂P₃Li·2(MeNCH₂)₃

Violet single crystals of the triazine solvate **8a** were obtained from toluene in the presence of triazine at -30°C and investigated by X-ray diffraction analysis. The crystal data are summarized in Table 2.19. Selected bond lengths and angles are listed in Table 2.20.

Table 2.19: Crystallographic data of 8a.

Volume(Å3) $0 = 10.4357(10)^{\circ} p = 90.511(3)^{\circ}$ Formula units $0 = 24.0715(15)^{\circ} \gamma = 90^{\circ}$ Formula units 4 Density(g/cm3) 1.047 μ (Mo-Ka)(mm-1) 0.287 2Θ range(°) 2.37 to 28.46 Reflections measured 106062 Independent reflections 14990 [R(int) = 0.0983]Ind. Reflections with $F_0 > 4\sigma(F_0)$ 14990 Parameter 596 R1,R1(all reflections) $0.0459, 0.1065$ wR2,wR2(all reflections) $0.1004, 0.1243$ GooF 1.006 Residual electron density(e/Å3) 0.363	Empirical formula Formula weight(g/mol) Temperature(K) Crystal system Space group Lattice constants(Å,°)	Hyp ₂ P ₃ Li·3triazine(toluene) 945.74 173(2) monoclinic P2(1)/n $a = 15.3307(10) \ \alpha \ 90$ $b = 16.4357(10) \ \beta \ 98.311(3)$
Formula units 4 Density(g/cm ³) 1.047 μ (Mo-K _a)(mm ⁻¹) 0.287 2Θ range(°) 2.37 to 28.46 Reflections measured 106062 Independent reflections 14990 [R(int) = 0.0983] Ind. Reflections with $F_o > 4\sigma(F_0)$ 14990 Parameter 596 R1,R1(all reflections) 0.0459, 0.1065 wR2,wR2(all reflections) 0.1004, 0.1243 GooF 1.006 Residual electron density(e/Å ³) 0.363	Volume($Å^3$)	$c = 24.0715(15) \gamma 90$ 6001 6(7)
Density (g/cm ³) 1.047 μ (Mo-K _a)(mm ⁻¹) 0.287 2Θ range(°) 2.37 to 28.46 Reflections measured 106062 Independent reflections 14990 [R(int) = 0.0983] Ind. Reflections with $F_o > 4\sigma(F_0)$ 14990 Parameter 596 R1,R1(all reflections) 0.0459, 0.1065 wR2,wR2(all reflections) 0.1004, 0.1243 GooF 1.006 Residual electron density(e/Å ³) 0.363	Formula units	4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Density (g/cm^3)	1.047
2Θ range(°) 2.37 to 28.46 Reflections measured 106062 Independent reflections 14990 [R(int) = 0.0983] Ind. Reflections with $F_o > 4\sigma(F_0)$ 14990 Parameter 596 R1,R1(all reflections) 0.0459, 0.1065 wR2,wR2(all reflections) 0.1004, 0.1243 GooF 1.006 Residual electron density(e/Å ³) 0.363	$\mu(Mo-K_{\alpha})(mm^{-1})$	0.287
Reflections measured 106062 Independent reflections 14990 [R(int) = 0.0983] Ind. Reflections with $F_0 > 4\sigma(F_0)$ 14990 Parameter 596 R1,R1(all reflections) 0.0459, 0.1065 wR2,wR2(all reflections) 0.1004, 0.1243 GooF 1.006 Residual electron density(e/Å ³) 0.363	2\O range(°)	2.37 to 28.46
Independent reflections $14990 [R(int) = 0.0983]$ Ind. Reflections with $F_o > 4\sigma(F_0)$ 14990 Parameter 596 R1,R1(all reflections) $0.0459, 0.1065$ wR2,wR2(all reflections) $0.1004, 0.1243$ GooF 1.006 Residual electron density(e/Å ³) 0.363	Reflections measured	106062
Ind. Reflections with $F_o > 4\sigma(F_0)$ 14990 Parameter 596 R1,R1(all reflections) 0.0459, 0.1065 wR2,wR2(all reflections) 0.1004, 0.1243 GooF 1.006 Residual electron density(e/Å ³) 0.363	Independent reflections	14990 [R(int) = 0.0983]
Parameter 596 R1,R1(all reflections) $0.0459, 0.1065$ wR2,wR2(all reflections) $0.1004, 0.1243$ GooF 1.006 Residual electron density(e/Å ³) 0.363	Ind. Reflections with $F_0 > 4\sigma(F_0)$	14990
R1,R1(all reflections) $0.0459, 0.1065$ $wR2,wR2(all reflections)$ $0.1004, 0.1243$ $GooF$ 1.006 Residual electron density(e/Å ³) 0.363	Parameter	596
wR2,wR2(all reflections) $0.1004, 0.1243$ GooF 1.006 Residual electron density(e/Å ³) 0.363	R1,R1(all reflections)	0.0459, 0.1065
GooF1.006Residual electron density($e/Å^3$)0.363	wR2,wR2(all reflections)	0.1004, 0.1243
Residual electron density($e/Å^3$) 0.363	GooF	1.006
	Residual electron density(e/Å ³)	0.363

Figure 2.19 Structure of **8a**; atoms are represented by spheres of arbitrary radii; dashed lines are used to symbolize interatomic distances markedly smaller than the sum of the corresponding van der Waals radii; hydrogen atoms are omitted for clarity.

As shown in Figure 2.19, the structure of **8a** exhibits a salt composed of solvated Li^+ cations $[Li(N,N',N''-trimethyltriazinane)_2]^+$ and $[Hyp_2P_3]^-$ anions. No unusually short Li-P contacts are observed from the complex cation to the corresponding anion. The structure of the anion displays a nearly undistorted C_{2v} -symmetric W-shape Si₂P₃ skeleton with two similar P-P [P1-P2= bond lengths 207.74(8), P2-P3= 207.30(8) pm]. Analogous to [(Me₃C)₃Si]₂P₃Na(THF)₄ (av 210pm)¹⁰⁰, these P-P distances lie in between those for P-P single (about 220pm) and P=P double bonds (about 200pm)^{91 126 127 107}, suggesting that both P-P bonds have partial double-bond character (Scheme 2.7). The P-P-P angle of 105.52(3)° is close to those found in $[(Me_3C)_3Si]_2P_3Na(THF)_4$ [ranging between 101.3(7) and 106.6(9)°]¹⁰⁰. The P-Si bond lengths with a value of 224.59(9)pm are comparable to those found in Hyp₂P₄Li₂ [225.05(15)pm].

Scheme 2.7

As shown in Figure 2.20, the lithium cation in $[\text{Li}(N,N',N''-\text{trimethyltriazinane})_2]^+$ is coordinated to two (MeNCH₂)₃ molecules, which are eclipsed with respect to each other with only slight distortion (torsion angel: C413-N43-N31-C311=-6.7°), forming a sandwich structure. The Li-N distances ranging between 215.3(4) and 234.0(4)pm are comparable to those found for the same cation in $[(\mu-NO_3-O,O')R_2AlCH_2AlR_2]^-$ [Li(N,N',N''trimethyltriazinane)₂]⁺ (between 215.7 and 234.0pm)¹²⁸, in which the two triazine molecules are staggered with respect to each other.

Figure 2.20 Structure of $[Li((MeNCH_2)_3)_2]^+$ cation in solid state of **8a**; atoms are represented by spheres of arbitrary radii; dashed lines are used to symbolize interatomic distances markedly smaller than the sum of the corresponding van der Waals radii; hydrogen atoms are omitted for clarity.

P2-P3	207.30(8)	P3-P2-P1	105.52(3)	
P2-P1	207.74(8)	P2-P3-Si2	100.20(3)	
Si13-Si1	235.09(9)	P2-P1-Si1	99.10(3)	
P3-Si2	224.59(8)	P1-Si1-Si11	112.82(3)	
P1-Si1	224.54(9)	P1-Si1-Si12	116.39(4)	
Si-Si	233.85(10) to 234.46(10)	P1-Si1-Si13	104.46(3)	
N-Li	215.3(4) to 234.0(4)	P3-Si2-Si21	112.76(3)	
C-Li	261.7(5) to 275.2(5)	P3-Si2-Si22	111.68(3)	
Li····P1	505.9	P3-Si2-Si23	105.65(3)	
Li·····P2	588.9	Si21-Si2-Si23	106.79(4) to 110.01(3)	
Li·····P3	525.0			

Table 2.20: Selected interatomic distances (pm) and angles (°) for 8a.

$2.5 Hyp_{3}P_{5}Na_{2}(9)$

2.5.1 Synthesis

The reaction of white phosphorus with base-free sodium hypersilanide in toluene again strongly differs from those with potassium and lithium hypersilanide under the same reaction conditions. In this reaction, no tetraphosphenide $Hyp_2P_4Na_2$ was found in the resulting reaction mixture according to ³¹P-NMR spectroscopy. Instead, $Hyp_3P_5Na_2$ (9) could be evidently identified among the complicated products from a ³¹P NMR spectrum. After exchanging the solvent to n-pentane and storing the extract at -20°C for several weeks, a small amount of compound 9 was isolated as well-shaped yellow crystals (Eq.2.6).

$$2 (Me_{3}Si)_{3}SiNa + P_{4} \xrightarrow{\langle toluene \rangle} R.T \xrightarrow{(Me_{3}Si)_{3}Si} P \xrightarrow{(Na)} Si(SiMe_{3})_{3}} (Eq. 2.6)$$

$$(Me_{3}Si)_{3}Si \xrightarrow{P} P \xrightarrow{(Na)} Si(SiMe_{3})_{3}} (Eq. 2.6)$$

$$(as dimer)$$

$$9$$

Compound $Hyp_3P_5Na_2$ is fairly stable in n-pentane or benzene at room temperature and the C_6D_6 solution in a NMR tube can be stored more than six months without decomposition. However, it is sensitive towards air and moisture even in the solid state.

2.5.2 NMR Spectroscopy

The ¹H- and 13C{H}-NMR spectra of **9** recorded in benzene-d6 or THF-d8 show two singlets for the two kinds of hypersilyl groups with relative intensities of 2:1. In the ³¹P{H}-NMR spectrum recorded in THF-d8 solution, three multiplets representing an AA'MM'X spin system are observed at -94.4, -193.4, and -249.1ppm with an integral ratio of 2:1:2. The spectrum can be solved by iterative fitting ¹¹⁰, starting from the values of compound **4**. The experimental and simulated spectra are presented in Figure 2.20.

In this spectrum, the signal of P-4 and P-5 are relatively broad, similar to the resonances observed for supersilyl analogue $[(Me_3C)_3Si]_3P_5Na_2^{102}$ but differing from that of its potassium analogue **4**, presumably owing to the quadrupolar moment broadening caused by sodium. The chemical shifts and coupling constants, along with those of its analogues, are summarized in Table 2.9 and have been compared previously.

The ²⁹Si{H}-NMR spectrum of **9** (Figure 2.21), similar to that of the potassium analogue **4**, exhibits two broad resonance signals with different intensities at -9.6 and -11.7ppm for the peripheral silicon of the two kinds of hypersilyl groups, consistent with the ¹H- and ¹³C{H}-NMR spectra, each of which displays two singlets, respectively. In addition, two less intense signals at -87.9 and -92.7ppm are found for the two types of central silicon atoms. The former, which is less intense than the latter and may be assignable to Si-3, is a broad doublet with a coupling constant of 113.8Hz split by P-3. The accuracy is reduced to about ±5Hz by peak broadening due to the long-rang coupling with other ³¹P atoms within the molecule. The latter signal for Si-1 and Si-2 is a multiplet exhibiting the X part of the classical splitting pattern of an AA'MM'RX spin system similar to that observed for compound **4**. A simulation using the parameters calculated for **4** as a starting point was performed and the spectrum could be solved by iterative fitting (Figure 2.21)¹¹⁰. In Table 2.21, the final chemical shifts and coupling constants are compared with those of **4** and [(Me₃C)₃Si]₃P₅Na₂¹⁰².

Figure 2.20 The ³¹P{H}-NMR spectrum of **9** in THF-d8(300K) at 161.976MHz. δ (P1, P2)= -94.4, δ (P4, P5)=-249.1. δ (P3)= -193.4. ¹J_{p1,p4}=¹J_{p2,p5}= -336.6Hz, ²J_{p3,p4}= ²J_{p3,p5}=61.4Hz, ¹J_{p1,p3}=¹J_{p2,p3}=-178.8Hz, ²J_{p1,p5}=²J_{p2,p4}=-7.3Hz, ¹J_{p1,p2}=-195.3Hz, ³J_{p4,p5}=302.9Hz. The signs of the coupling constants except for ²J_{p3,p4}and ²J_{p3,p5} originate from the iteration under setting ¹J_{P,P} as a negative value¹²⁹.

Figure 2.21 The ²⁹Si{H}-DEPT-NMR spectrum of **9** in THF-d8(300K) at 79.495MHz. δ (Si1, Si2)= -92.7, δ (Si3)=-87.9. δ (Si4,Si5)= -11.7, δ (Si6)=-9.6 ppm. ¹J_{P3,Si3}=-113.8Hz, ¹J_{P4,Si2}=¹J_{P5,Si1}=-98.8Hz, ²J_{P1,Si2}=²J_{P2,Si1}=-18.4Hz, ³J_{P3,Si2}=³J_{P1,Si1}=-14.3Hz, ⁴J_{P5,Si2}=⁴J_{P4,Si1}=15.6Hz. The signs of the coupling constants concerned Si1 and Si2 originate from the iteration under setting ¹J_{P,Si} and ²J_{P,Si} as negative values¹²⁹.

Table 2.21. The ²⁹Si-NMR(THF-d8, 300K) chemical shifts and some coupling constants of **4**, **9**, and $[(Me_3C)_3Si]_3P_5Na_2^{102}$.

Compound	4	9	$[(Me_3C)_3Si]_3P_5Na_2$
δ (Si1, Si2) (ppm)	-91.8	-92.7	31.3
δ (Si3) (ppm)	-90.1	-87.9	18.0
${}^{1}J_{p3,Si3}$ (Hz)	-116.3	-113.8	-106.9
${}^{1}J_{p4,Si2,} {}^{1}J_{p5,Si1}(Hz)$	-106.8	-98.8	-90.8
${}^{2}J_{p1,Si2,}$ ${}^{2}J_{p2,Si1}(Hz)$	-21.4	-18.4	-15.6
${}^{3}J_{p3,Si2,} {}^{3}J_{p1,Si1}(Hz)$	-17.3	-14.3	-2.1
${}^{4}J_{p5,Si2,}$ ${}^{4}J_{p4,Si1}(Hz)$	7.6	15.6	21.4

The chemical shifts of the central silicon of the two hypersilyl derivatives **4** and **9** are almost identical. They differ considerably from those of the supersilyl compound, indicating the significant influence of peripheral trimethylsilyl and *tert*-butyl groups, respectively. The phosphorus-silicon coupling constants in these three compounds, however, are comparable to one another. A closer inspection of the coupling constants in Table 2.21 reveals that all the values for **9** lie in between those of **4** and $[(Me_3C)_3Si]_3P_5Na_2^{102}$. Obviously, the small

deviation of **9** from **4** is derived from the replacement of sodium for the more electropositive potassium atoms, while the difference between **9** and $[(Me_3C)_3Si]_3P_5Na_2$ is caused by the replacement of the peripheral silicon for the more electronegative carbon atoms.

2.5.3 Crystal Structure

Compound **9** was obtained as yellowish well shaped single crystals from n-pentane. As shown by X-ray diffraction analysis (Figure 2.22), **9** crystallizes as a coordination dimer, again linked by a dumbbell of two sodium cations as its potassium analogue described above. Pentane molecules cocrystallize as free molecules along with compound **9**. Some of the hypersilyl groups are disordered in the crystal and the structure determination gave only moderate-defined structural parameters. Crystal data for **9** are summarized in Table 2.22.

Empirical formula	$Hyp_3P_5Na_2 \cdot 1/3C_5H_{12}$
Formula weight(g/mol)	967.88
Temperature(K)	193(2)
Crystal system	monoclinic
Space group	P2(1)/n
Lattice constants(Å,°)	$a = 45.543(2)$ α 90
	$b = 25.3055(9) \beta 106.608(3)$
	$c = 48.6244(19) \gamma 90$
Volume(Å ³)	53701(4)
Formula units	36
Density(g/cm ³)	1.077
μ (Mo-K _{α})(mm ⁻¹)	0.48
2\Operange(°)	1.56 to 21.00
Reflections measured	55236
Independent reflections	55236 [R(int) = 0.0000]
Ind. Reflections with $F_0 > 4\sigma(F_0)$	55236
Parameter	3925
R1,R1(all reflections)	0.0722, 0.1679
wR2,wR2(all reflections)	0.1602, 0.1830
GooF	0.688
Residual electron density($e/Å^3$)	0.753

Table 2.22Crystallographic data of 9.

Figure 2.22 Perspective drawing of **9**; atoms are represented by spheres of arbitrary radii; dashed lines are used to symbolize interatomic distances between potassium and phosphorus atoms; methyl groups are omitted for clarity.

As shown in Figure 2.23, strong agostic-type interactions are found between Na2 and hypersilyl groups(Na···C: 288pm), whereas no significant agostic interaction is found for the bridging sodium Na1. The parameters of the P₅ skeleton in **9** are comparable to those observed for **4a**, but differ from those of its sodium supersilyl analogue. The selected bond lengths and angles are summarized in Table 2.23 and compared with its potassium analogue **4a** and a supersilyl derivative in Table 2.24. The angles P3-P4-P5 and P2-P5-P4 of 111.13°, for instance, are about 6° larger than those found in $[(Me_3C)_3Si]_3P_5Na_2(THF)_4$ and the distance between Na2 and P(2,3) of 275.8pm (mean value) is considerably shorter than the corresponding values found in $[(Me_3C)_3Si]_3P_5Na_2(THF)_4$ [287.8(5) , 282.6(5)pm], although, the P1-Na1 distance of 314.9pm (mean value) in **9** lies close to that observed in $[(Me_3C)_3Si]_3P_5Na_2(THF)_4$ [316.7(5)pm]¹⁰². The differences between the two sodium species are probably not only because of the different substituents, but also due to the solvent. In $[(Me_3C)_3Si]_3P_5Na_2(THF)_4$, THF molecules strongly coordinate to the Na atoms, thus leading to a monomers in the solid state.

Figure 2.23 Perspective drawing of $Hyp_3P_5Na_2$ unit in the solid state of **9** with the numbering referring to that of compound **3a** depicted above; atoms are represented by spheres of arbitrary radii; dashed lines are used to symbolize interatomic distances markedly smaller than the sum of the corresponding van der Waals radii; hydrogen atoms are omitted for clarity.

Table 2.23 Selected interatomic distances (pm) and angles (°) for 9^{*}.

	-	-		
P1-P4, P1-P5	av. 222.9	Na1-P1	av. 314.9	_
P3-P4, P2-P5	av. 218.1	Na1-P3	av. 283.4	
P4-P5	av. 225.3	Na2-P2,P3	av. 275.8	
P2-Si2,P3-Si3	av. 225.3	P2-P5-P1,P3-P4-P1	av.105.09	
P1-Si	av. 227.6	P4-P4-P5,P2-P5-P4	av.111.13	
Si-Si	av. 234.6	P5-P2-Si2,P4-P3-Si3	av. 98.15	
Na1-Na1 **	av. 385.7	P5-P1-Si1,P4-P1-Si1	av. 103.75	
*				

The numbering is shown is Figure 2.23. ** Na1': the other bridging Na atom within the dimer molecule.

Table 2.24 Comparison of selected interatomic distances (pm) and angles (°) of 9, 4a and [(Me₃C)₃Si]₃P₅Na₂¹⁰².

Compound	4a	9	$[(Me_3C)_3Si]_3P_5Na_2$
P1-P4, P1-P5	223.72	av. 222.9	224.3
P3-P4, P2-P5	217.40	av. 218.1	218.1
P4-P5	225.15	av. 225.3	224.4
P2-Si2,P3-Si3	224.54	av. 225.3	223.6
P1-Si	227.08	av. 227.6	230.7
P2-P5-P1,P3-P4-P1	105.48	av.105.09	106.8
P3-P4-P5,P2-P5-P4	110.46	av.111.13	106.0
P5-P2-Si2,P4-P3-Si3	97.05	av. 98.15	107.1
P5-P1-Si1,P4-P1-Si1	104.25	av. 103.75	109.9

2.6 $Hyp_3P_4SnK(10)$ and $[(Me_3Si)_2N]Hyp_2P_4SnK(11)$

2.6.1 Synthesis of Hyp₃P₄SnK

The treatment of $[(Me_3Si)_3Si]_2P_4K_2$ with bis[bis(trimethylsilyl)amino]stannylene in toluene at room temperature, accompanied by a colour change from deep red to orange, leads to the formation of the unexpected compounds $[(Me_3Si)_3Si]_3P_4SnK$ (10) and $[(Me_3Si)_3Si]_2[(Me_3Si)_2N]P_4SnK$ (11) instead of $[(Me_3Si)_3Si]_2P_4Sn$, which is expected from a simple metathesis reaction.

Compound **10** was isolated as orange crystals and was characterized by NMR spectroscopy and X-ray crystallography. The other product, $[(Me_3Si)_3Si]_2[(Me_3Si)_2N]P_4SnK$ (**11**), which has a similar solubility as the by-product $(Me_3Si)_2NK$ in the resulting mixture solution, has not been isolated as pure substance. However, from its ³¹P-NMR spectrum a four phosphorus skeleton similar to that of compound **10** could be concluded. The satellites of ¹¹⁹Sn and ¹¹⁷Sn in the ³¹P-NMR spectrum imply the existence of Sn atoms in this compound. Three signals observed in the ¹H-NMR spectrum with a intensity ratio of 27:27:18 indicate

that two hypersilyl groups and a bis(trimethylsilyl)amino group may be included in this compound. Unfortunately, the molecular structure remains unknown.

The same reactants were allowed to react in benzene and n-pentane respectively, both giving only compound **11** and $(Me_3Si)_2NK$ as main products. But again the compound **11** has not yet been isolated in its pure state.

In these reactions the expected metathesis product Hyp_2P_4Sn , which is putatively formed primarily, could neither be isolated nor detected spectroscopically. Once formed it immediately undergoes an addition reaction with the other product $(Me_3Si)_2NK$ to form compound **11** (Scheme 2.7). In the presence of potassium hypersilanide, presumably formed according to Eq. 2.7, compound **10** is obtained.

Scheme 2.7

$$2 [(Me_{3}Si)_{3}Si]_{2}P_{4}K_{2} \implies [(Me_{3}Si)_{3}Si]_{4}P_{8}K_{4} \longrightarrow [(Me_{3}Si)_{3}Si]_{3}P_{8}K_{3} + (Me_{3}Si)_{3}SiK (Eq. 2.7)$$

$$1 \qquad 2 \qquad 4$$

2.6.2 NMR Spectroscopy

2.6.2.1 Hyp₃P₄SnK (10)

The ³¹P{H}-NMR spectrum of **10** displays four multiplets at -58.5, -192.4, -231.3, and - 256.1ppm with the same intensity and can be understood according to a first-order interpretation (Figure 2.24). The ¹¹⁹Sn and ¹¹⁷Sn satellites are found in signals of P-1, P-3 and P-4. Three inequivalent hypersilyl groups are observed in the ¹H- and ¹³C{H}-NMR spectra with the same intensity, respectively. This resonance information suggests a molecule with low symmetry, which is confirmed later by X-ray diffraction studies.

Figure 2.24 The ³¹P{H}-NMR spectrum of **10** in benzene-d6(300K) at 101.256MHz. δ (P1)=-256.1, δ (P2)=-58.5, δ (P3)=-231.3, δ (P4)=-192.4ppm. ¹J_{p1,p2}=-239Hz, ³J_{p1,p4}=-11Hz, ¹J_{p2,p3}=-109Hz, ²J_{p2,p4}=-169Hz, ¹J_{p3,p4}=-163Hz.

2.6.2.2 Hyp₂[(Me₃Si)₂N]P₄SnK (11)

The ³¹P{H}-NMR spectrum of **11** exhibits four multiplets with the same intensity at - 211.0, -128.2, -234.4, and -184.6 ppm, which are comparable to those of compound **10**. This spectrum can be solved as a first-order spectrum and the resulting coupling constants are shown in Figure 2.25. With a closer inspection of this spectrum, ¹¹⁹Sn and ¹¹⁷Sn satellites are found in the signals arising from P-1 and P-4, indicating that at least one tin atom coordinates with phosphorus in this compound.

Figure 2.25 The ³¹P{H}-NMR spectrum of **11** in benzene-d6(300K) at 101.256MHz. δ (P1)=-211.0, δ (P2)=-128.2, δ (P3)=-234.4, δ (P4)=-184.6 ppm. ¹J_{p1,p2}=-167Hz, ¹J_{p1,p3}=-195Hz, ¹J_{p2,p3}=-196Hz, ¹J_{p2,p4}=-213Hz, ¹J_{p3,p4}=-124Hz.

The ¹H-NMR spectrum of a mixture of **11** and $(Me_3Si)_2NK$ shows three singlets at 0.58, 0.43, 0.24ppm with relative intensities of 27:27:18, and one singlet at 0.09ppm for $(Me_3Si)_2NK$, respectively, implying that two magnetically inequivalent hypersilyl groups and one bis(trimethylsilyl)amino group should be attached to the phosphorus skeleton.

2.6.3 Crystal Structure

Figure 2.26 shows the structure and numbering scheme of **10**. Discrete molecules weakly interlinked by K…Sn and agostic-type interactions are formed in the crystal (Figure 2.27). Each asymmetric unit contains one tin, one potassium, four phosphorus atoms, and three hypersilyl groups.

Table 2.25Crystallographic data of 10.

Empirical formula Formula weight(g/mol) Temperature(K) Crystal system Space group Lattice constants(Å,°)	Hyp ₃ P ₄ SnK 1024.67 173(2) monoclinic P2(1)/c $a = 14.057(3) \alpha \ 90$ $b = 24.037(4) \beta \ 103.135(13)$
Volume(Å ³)	$c = 17.628(3) \gamma - 90$ 5800.3(18)
Formula units	4
$Density(g/cm^3)$	1.173
μ (Mo-K _a)(mm ⁻¹)	0.888
2\O range(°)	2.27 to 30.00
Reflections measured	13722
Independent reflections	13302 [R(int) = 0.0287]
Ind. Reflections with $F_0 > 4\sigma(F_0)$	13302
Parameter	433
R1,R1(all reflections)	0.0475, 0.0763
wR2,wR2(all reflections)	0.1110, 0.1210
GooF	1.161
Residual electron density(e/Å ³)	1.765

Figure 2.26 Molecular structure of **10**; atoms are represented by spheres of arbitrary radii; dashed lines are used to symbolize interatomic distances markedly smaller than the sum of the corresponding van der Waals radii; hydrogen atoms are omitted for clarity.

The central moiety of this structure is a P_4SnK framework, in which the tin atom is connected to three phosphorus atoms and to the potassium cation from the neighbouring unit. The phosphorus chain, showing a torsion angle of 73.5° (P1- P2-P3-P4), is no longer

coplanar as in its precursor Hyp₂P₄K₂. The P-P bond lengths in this compound, with a narrow range between 222.33(13) and 223.80(12)pm are clearly single bonds and are comparable to those found in **2a**, **4a** and **5a**. Two short K…P distances of 335.5 and 330.9pm are slightly longer than those found in **1a** and **2a**, but lie in the range of those observed for **4a**, **5a** and compare well with the K-P distances observed in $[K(thf)P(SiMe_3)_2]_{\infty}[331.69(7)$ to 342.73(8)pm]¹³⁰. The coordination sphere of potassium is completed by a K…Sn interaction of 384.7pm between the neighbouring units as well as K…CH₃ agostic interactions to one hypersilyl group within the molecular unit (K…C: 341.8pm) and to the neighbouring unit (K…C: 346.6, 348.6, 353.5pm), which finally results in one-dimensional coordination polymers (Figure 2.27). The Sn-P distances [257.95(10), 262.86(10), and 264.92(10) pm] are only slightly longer than the sum of covalent radii. The three P-Si bond lengths, with two similar values to P1 and P4 [228.43(13), 228.05(12)pm] and a slightly longer value to P3 [230.27(13) pm], are in good agreement with the sum of the covalent radii of phosphorus and silicon.

Figure 2.27 Plot of the structure of **10** in the crystal in a view along the a axes. Atoms are represented by spheres of arbitrary radii; dashed lines are used to symbolize interatomic distances markedly smaller than the sum of the corresponding van der Waals radii; hydrogen atoms are omitted for clarity.

	-			
P3-P2	223.49(12)	P1-Sn1-P2	50.31(3)	
P1-P2	222.33(13)	P4-Sn1-P2	80.05(3)	
P4-P3	223.80(12)	P2-P1-Sn1	66.47(3)	
Sn1-P1	257.95(10)	P1-P2-Sn1	63.22(3)	
Sn1-P4	262.86(10)	P3-P2-Sn1	89.55(4)	

Table 2.26Selected interatomic distances (pm) and angles (°) for 10.

2 Hypersilyl Stabilized Phosphorus Clusters

Sn1-P2	264.92(10)	P3-P4-Sn1	90.01(4)
K1-P3	330.9(2)	Si1-P1-Sn1	100.10(4)
K1-P1	335.5(2)	Si2-P4-Sn1	107.93(4)
P4-Si2	228.43(13)	P1-Si1-Si13	104.78(5)
P1-Si1	228.05(12)	P1-Si1-Si11	105.92(5)
P3-Si3	230.27(13)	P1-Si1-Si12	120.26(5)
Si2-Si22	235.08(15) to 238.37(14)	P3-Si3-Si31	108.24(5)
P2-P3-P4	98.72(5)	P3-Si3-Si32	116.86(5)
P1-P2-P3	96.56(5)	P3-Si3-Si33	107.33(5)
P4-P3-Si3	102.65(5)	P4-Si2-Si22	109.14(6)
P2-P1-Si1	96.21(5)	P4-Si2-Si21	97.62(5)
P3-P4-Si2	114.13(5)	P4-Si2-Si23	123.33(5)
P2-P3-Si3	95.46(5)	Si-Si-Si	. 80(5) to 109.97(6)
P1-Sn1-P4	96.06(3)		

3 Hypersilyl Stabilized Lead (Tin) and Phosphorus Clusters

3.1 Overview

Since du Mont and Kroth¹³¹ in 1977 published synthetic pathways to bis(di-*tert*-butylphosphanyl)stannylene, which were shown to be dimers by NMR-spectroscopy, only few further homoleptic tin(II) and lead(II) phosphido complexes had been reported. X-ray diffraction experiments showed them to have one of the structural motifs A-D (Scheme 3.1) unless multidental phosphanes are utilized.

Scheme 3.1

The first structurally characterized lead(II) and tin(II) phosphido complexes with central M_2P_2 (M= Sn, Pb) ring (Scheme3.1 B) were published by Cowley and Jones¹³², Buhro and coworkers¹³³ in 1980's, respectively. Several years later, using bulkier substituents, Driess et al. successfully synthesized and structurally characterized the first monomeric bis(phosphanyl)stannylene and plumbylene¹³⁴ with the expected V-shaped molecular structure (Scheme3.1 A) as well as the first example of a formal tin(II) phosphandiide¹³⁵, which crystallizes as a hexamer with a hexagonal prismatic P_6Sn_6 core (Scheme 3.1 **D**). A related tetramer with a P_4Sn_4 heterocubane structure (Scheme3.1 C) was synthesized by Westerhausen et al. using the extremely bulky tri(*tert*-butyl)silvl substituent¹³⁶. Very recently, the first structurally characterized homologous compound with chemical bonds between lead and arsenic atoms, [*i*Pr₃SiAsPb]₆, was prepared by Hänisch, exhibiting a hexagonal prismatic As₆Pb₆ core (Scheme3.1 **D**)¹³⁷. However, no similar cage-like lead-phosphorus cluster with molecular structure **C** or **D** (Scheme3.1) has been reported to date.

As mentioned above, previous work in our group showed that dihypersilyl plumbylene and stannylene with several Lewis-acids and Lewis-bases react as Lewis-amphoteric carbene homologues. However, the initial formation of the simple adducts is sometimes followed by subsequent ligand exchange reactions, especially if the initial adduct still provides a Lewis-acidic centre. Such rearrangement reactions allowed for the preparation of several novel compounds, such as a neutral copper(I) silanide, a stannylene complex of Cu(I) as well as heteroleptic distances and diplumbenes with very short M=M bonds⁴⁶.

White phosphorus, phosphanes (PH_3 and PMe_3) as well phosphanides ($LiPH_2$ and KPH_2) provide lone-pairs which should allow for an initial formation of Lewis-acid-base adducts with tetrylenes. White phosphorus is expected to be a very weak base and to our knowledge no adduct to a heavier tetrylene has been reported.

$3.2 Hyp_4P_4Pb_4(12), Hyp_2P_2(13) and Hyp_4P_4Sn_4(14)$

3.2.1 Synthesis

3.2.1.1 Reaction of dihypersilylplumbylene and stannylene with white phosphorus

When dihypersilyl plumbylene is allowed to react with white phosphorus at room temperature in toluene, after a few seconds the colour of the solution changes from blue to violet and on further warming to 50°C again changes to brown. A colour change from deep brown to brown can also be observed for the reaction of dihypersilyl stannylene with P_4 under the same reaction conditions.

Scheme 3.2

According to the ³¹P NMR spectra, several products containing phosphorus are present in the resulting solutions, but two dominant species for both reactions giving rise to resonances in the very low field region, at +735 ppm, and in the very high field region, at -506.2 (E=Pb) and -463.6 ppm (E=Sn), respectively. The former gives just a singlet with ²⁹Si satellites (¹J_{P,Si} = 46.2 Hz) and can unambiguously be attributed to dihypersilyldiphosphene, (Me₃Si)₃SiP=PSi(SiMe₃)₃ (**13**). It is very soluble and can be isolated as bright green crystals in small amounts only by fractional crystallization at a temperature below -60°C. Unfortunately those are not suitable for X-ray structure analysis. The latter resonances exhibit an intense central line with a complicated satellite structure, indicating the presence of four coupling Pb or Sn atoms, respectively. Fortunately, these species are not well soluble in toluene. Therefore they could be almost quantitatively isolated as dark brown crystals from toluene. By X-ray diffraction they were identified as tetrameric lead(II) (**12**) and tin(II) (**14**) hypersilylphosphandiide, respectively. Both are fairly stable in hydrocarbon solution at room temperature as far as air is excluded.

When dihypersilyl plumbylene is treated with P_4 at -30°C in toluene, again a colour change from deep blue to violet within several minutes indicates that a reaction took place. The ³¹P NMR spectrum of the reaction mixture now in addition to the signals mentioned above showing a strong signal at -350 (${}^{1}J_{P,Pb} = 510 \text{ Hz}$) ppm, suggests that a third compound is formed under these conditions. The ²⁰⁷Pb satellites in the ³¹P NMR spectrum exhibit intensities consistent with four Pb atoms which are equivalent on the NMR time scale and show no fine structure, indicating a rapid exchange process. We suggest the initial formation of a 1:4 Lewis-acid-base adduct between P_4 with dihypersilylplumbylene. Such an adduct would be a very probable intermediate for the formation of the mentioned products (Scheme 3.2), since it allows for the low energy approach of both reactants.

According to the ³¹P NMR data of the reaction mixture further products are formed to a smaller extent, most of them giving complicated multiplet signals and showing no ²⁰⁷Pb satellites. At least two of those are polycyclic hypersilyl substituted phosphanes. By their coupling pattern they could be unambiguously identified as dihypersilyltetraphosphane Hyp_2P_4 (6) with a butterfly structure and the trihypersilylheptaphosphane Hyp_3P_7 with a nortricyclene- P_7 core.

3.2.1.2 Reaction of bis[bis(trimethylsilyl)amino]-stannylene and plumbylene with hypersilylphosphane

Similar to Westerhausen's method to get tin (II) tri(*tert*-butyl)silylphosphandiide¹³⁶, the metallation of HypPH₂ with bis[bis(trimethylsilyl)amino]-substituted stannylene or plumbylene affords also compound **12** and **14**. The reactions are almost quantitatively carried out in toluene at 50°C and the products are again isolated by crystallization at low temperature (Eq. 3.1).

$$4 [(Me_{3}Si)_{2}N]_{2}E + 4 (Me_{3}Si)_{3}SiPH_{2} \rightarrow [(Me_{3}Si)_{3}SiPE]_{4} + 8 (Me_{3}Si)_{2}NH$$
(Eq. 3.1)
E=Pb, **12**; E=Sn, **14**

3.2.2 NMR Spectroscopy

The ¹H-NMR spectrum of compound **12** shows only one singlet at 0.42 ppm in benzened6, while the ¹³C{¹H}-NMR spectrum displays one singlet at 2.7 ppm. Both are consistent with the heterocubane molecular structure and lie in the expected chemical shift range for hypersilyl groups. Since compound **12** does not dissolve very well in benzene-d6, only the signal of the peripheral silicon atoms can be observed as a singlet at 7.4 ppm in the ²⁹Si{¹H}-NMR spectrum, the signal of the central silicon should be split into a multiplet and may hardly be found due to its poor intensity. The ³¹P{¹H}-NMR spectrum recorded in benzene solution, as described above, displays a signal with high order ²⁰⁷Pb satellites at -506.2 ppm, as shown in Figure 3.1. Unfortunately, again owing to the poor intensity of the ²⁰⁷Pb satellites, corresponding simulation has not been successful.

Figure 3.1 Observed ³¹P-NMR spectrum of **12** at 81.015MHz in benzene-d6(300K): δ =-506.2ppm.

741

138

The ¹H-NMR spectrum of compound **14** recorded in deuterated benzene solution shows a singlet at $\delta = 0.43$ and the ¹³C{¹H}-NMR spectrum exhibits a singlet at $\delta = 2.6$ for the hypersilyl groups. The ³¹P{¹H}-NMR spectrum displays at -463.6ppm a singlet with high order ¹¹⁷Sn /¹¹⁹Sn satellites(Figure 3.2), which is close to that for the carbon analogue tetrameric tin(II)tri-tert-butylsilylphosphandiide(-452.1ppm)¹³⁶ (Table 3.1). Remarkably, the phosphorus atoms in another tin-phosphorus cluster, hexatin(II)-hexakis-[µ₃-tri(iso-propyl)silylphosphandiide], resonate at -475.2ppm showing an even more unordinary up-field shift.

Compound	14	$\mathbf{Sn}_{e}\mathbf{P}_{e}[\mathbf{Si}(\mathbf{CHMe}_{2})_{3}]_{e}^{135}$	$\frac{1}{\text{Sn}_4\text{P}_4\text{[Si(CMe_3)_3]_4}^{136}}$
$\delta(^{31}\text{P NMR, ppm})$	-463.6	-475.2	-452.1 ^b
δ(¹¹⁹ Sn NMR,ppm)	1515.7	_	1234.3 ^b

708

_

766^b

84^b

Table 3.1 Comparison of ${}^{31}P{}^{1}H{}$ - and ${}^{119}Sn{}^{1}H{}$ - NMR(benzene-d6, 300K) shifts and some coupling constants.

^b: recorded in toluene-d₈.

 $^{1}J_{P.Sn}(Hz)$

 ${}^{3}J_{P.Sn}(Hz)$

Figure 3.2 Observed ${}^{31}P{}^{1}H$ -NMR spectrum of 14 at 101.256MHz in benzene-d6(300K): δ =-463.6ppm.

The ¹¹⁹Sn{¹H}-NMR spectrum recorded in deuterated benzene exhibits a quartet of doublets pattern at 1515.7ppm with a one-bond coupling constant of ¹J_{Sn,P} = 741Hz and a three-bond coupling constant of ³J_{Sn,P} = 138Hz (Figure 3.3). The ³¹P{¹H}- and ¹¹⁹Sn{¹H}- NMR shifts and some coupling constants are summarized in Table 3.1 and compared with the

values reported for the analogue ${}^{t}Bu_{3}Si$ -substituted heterocubane 136 and the ${}^{i}Pr_{3}Si$ -substituted hexagonal $Sn_{6}P_{6}$ -prism 135 . As found for the ${}^{t}Bu_{3}Si$ -substituted heterocubane and contrasting the high-field shift of the resonance found in the ${}^{31}P{}^{1}H$ -NMR spectrum, the signal of compound 14 in the ${}^{119}Sn{}^{1}H$ -NMR spectrum is strongly shifted to low field.

Figure 3.3 Observed ¹¹⁹Sn{¹H}-NMR spectrum of **14** at 74.631MHz in benzene-d6(300K): δ =1515.7ppm, ¹J_{PSn}= 741Hz, ³J_{PSn}= 138Hz.

3.2.3 Crystal Structure

3.2.3.1 Hyp₄P₄Pb₄ (12)

The dark brown single crystals of $Hyp_4P_4Pb_4$ suitable for X-ray diffraction analysis were grown from cyclo-pentane at -20°C. Space group $P_3 c1$ was suggested and later confirmed by a successful structure solution. The molecular structure of **12** and its numbering scheme are illustrated in Figure 3.4. The methyl groups are neglected for clarity. The disordered cyclopentane molecules originating from the recrystallization solution are not shown. Selected crystallographic data are summarized in Table 3.2. Selected interatomic distances and angles are listed in Table 3.3:
Empirical formula	Hyp ₄ P ₄ Pb ₄ · 1.5Cyp*
Formula weight [g/mol]	2048.50
Temperature[K]	173(2)K
Crystal system	hexagonal
Space group	$P\overline{3}c1$
a[Å]	16.201(2)
b[Å]	16.201(2)
c[Å]	37.756(8)
α[°]	90
β[°]	90
γ[°]	120
Volume[Å ³]	8582(2)
Formula units	4
Density[g/cm ³]	1.585
μ (Mo-K _{α})[mm ⁻¹]	8.146
2Θ range[°]	2.16 to 22.50
Reflections measured	7522
Independent reflections	3770 [R(int) = 0.1147]
Ind. Reflections with $F_0 > 4\sigma(F_0)$	3770
Parameter	213
R1 $[I>2\sigma(I)]$	0.0718
R1(all reflections)	0.1397
wR2	0.1449
wR2(all reflections)	0.1709
GooF	1.101
Residual electron density[e/Å ³]	2.565, -1.452

 Table 3.2
 Selected crystallographic data of 12.

* Cyp: cyclo-pentane.

Figure 3.4 Molecular structure of **12**; atoms are represented by spheres of arbitrary radii; methyl groups are omitted for clarity. Symmetry operation ('):-x+y, -x+1, z; (''):-y+1, x-y+1, z

The tetrameric lead hypersilylphosphandiide **12** is the first isolated lead- and phosphoruscontaining compound with a heterocubane molecular unit. As shown in Figure 3.4, the lead atoms possess no exocyclic ligands and consequently have a trigonal pyramidal coordination sphere. The phosphorus atoms each bear a hypersilyl group and display a distorted tetrahedral coordination environment. The rhomboid distortion of the Pb₂P₂ planes of the Pb₄P₄ heterocubane arrangement leads to P-Pb-P and Pb-P-Pb angles of approximately 81° and 97°, respectively. The Pb-P-Si angles range between 118.3(2) and 119.71(16)°. The Pb-P bond lengths in this molecule, ranging between 272.0(5) and 274.6(5)pm, are significantly longer than the mean value of 265.4pm for the Pb-P bond lengths in bis{[(*tert*-butyl(2,4,6-triisopropylphenyl)fluorosilanyl](tri-isopropylsilanyl)phosphanyl)}-lead¹³⁴, in which the lead atom is coordinated only to two three-coordinate phosphorus atoms. The P-Si bond lengths [226.1(7) and 228.2(12)pm] are significantly longer than those observed in **2a** [221.61(6) and 221.45(6)pm].

Pb1-P1 233.0(8) to 236.4(8) 272.9(5) Si-Si Pb2-P1 272.0(5) P-Pb-P 80.3(2) to 82.01(16) Pb2-P2 273.4(4) Pb-P-Pb 97.5(2) to 99.29(16) Pb2-P1 274.6(5) Si-P-Pb 118.3(2) to 119.72(16) P1-Si1 P-Si-Si 106.3(3) to 111.5(3) 226.1(7) P2-Si2 228.2(12) Si-Si-Si 110.2(3) to 110.6(3)

Table 3.3 Selected interatomic distances (pm) and angles (°) for 12.

3.2.3.2 Hyp₄P₄Sn₄ (14)

A dark brown well shaped single crystal of Hyp₄P₄Sn₄ obtained from a benzene solution was investigated by X-ray diffraction analysis. The molecular structure of **14** and its numbering scheme are depicted in Figure 3.5. The methyl groups are neglected for clarity. One of the hypersilyl groups in the molecule was disordered in the crystal (Figure 3.6), however, the structure determination gave well-defined structural parameters. Selected crystallographic data are summarized in Table 3.4. Selected interatomic distances and angles are listed in Table 3.5:

Table 3.4	Crystallograp	hic data	of 14.
-----------	---------------	----------	--------

Empirical formula	Hyp ₄ P ₄ Sn ₄ ·1.5benzene
Formula weight(g/mol)	1706.47
Temperature(K)	173(2)K
Crystal system	hexagonal
Space group	$P32_1$
Lattice constants($Å$.°)	$a = 16.2775(3)$ $\alpha = 90$
	$b = 16.2775(3)$ β 90
	c = 18.5675(4) y 120
Volume($Å^3$)	4260.49(14)
Formula units	2
Density(g/cm^3)	1.330
$\mu(Mo-K_{\star})(mm^{-1})$	1 485
$2\Theta \operatorname{range}(^{\circ})$	2.50 to 28.31
Reflections measured	31724
Independent reflections	7064 [R(int) = 0.0328]
Ind. Reflections with $F_{-} > 4\sigma(F_{0})$	7064
Parameter	230
R1 R1(all reflections)	0.0213 0.0327
wR2 wR2(all reflections)	0.0541 0.0561
GooF	1 100
Residual electron density $(e/Å^3)$	0.735
Residual election defisity(C/A)	0.155

Figure 3.5 Molecular structure of **14**; atoms are represented by spheres of arbitrary radii; methyl groups are omitted for clarity. Symmetry operation ('):-x+y, -x+1, z; (''):-y+1, x-y+1, z

Similar to the molecular structure of **12**, the central moiety of molecular structure of **14** is a slightly distorted cubane-like P_4Sn_4 core with trigonal pyramidal coordinated tin atoms. The

rhomboid distortion of the P₂Sn₂ planes of the P₄Sn₄ heterocubane arrangement again leads to a difference of 16° between the angles of P-Sn-P and Sn-P-Sn. Distorted tetrahedral coordination environment with Sn-P-Si angles ranging between 117.45(3) and 120.973(16) was found for the phosphorus atoms in this compound. The Sn-P distances with an average length of 265.4pm lie very close to the mean value of 265.1pm found in its supersilyl analogue $[(Me_3C)_3SiPSn]_4$ ¹³⁶, which exhibits the same Si₄P₄Sn₄ core in the molecular structure. Similar distances were also observed for another tin-phosphorus cluster, hexatin(II)hexakis-[µ₃-tri(*iso*-propyl)silylphosphandiide], $[(Me_2CH)_3SiPSn]_6^{135}$, with a distorted hexagonal P₆Sn₆-prism, showing 262.6(3) pm for Sn-P bond distances within the P₃Sn₃ planes and 266.5(3)pm for those between the two planes. The P-Si bond lengths vary in a narrow range between 225.65(8) and 226.76(12) pm are also similar to those observed in $[(Me_3C)_3SiPSn]_4^{136}$ and $[(Me_2CH)_3SiPSn]_6^{135}$.

Figure 3.6 Representation of the disordering of the hypersilyl group in the crystal of **14**. The population ratio amounts to 0.904(solid bonds)/0.006(empty bonds).

 Table 3.5
 Selected interatomic distances (pm) and angles (°) for 14.

Sn1-P2	265.65(6)	Si-Si	234.79(9) to 235.00(9)
Sn2-P2	264.46(6)	P-Sn-P	81.427(18) to 83.487(17)
Sn2-P2'	265.08(6)	Sn-P-Sn	95.90(2) to 97.993(19)
Sn2-P1	265.76(5)	Sn-P-Si	117.45(3) to 121.51(3)
P1-Si1	226.76(12)	P-Si-Si	106.28(4) to 110.13(4)
P2-Si2	225.65(8)	Si-Si-Si	110.30(4) to 110.90(4)

3.3 Li[Hyp₂Pb·PH₂] (15), Li[Hyp₂Pb·P(H)Hyp] (16) and K[Hyp₂Pb·PH₂] (18)

3.3.1 Synthesis

3.3.1.1 Li[Hyp₂Pb·PH₂] (15)

The adduct Li[Hyp₂Pb·PH₂] (**15**) is prepared by reaction of dihypersilylplumbylene with an equimolar amount of lithium phosphanide at -20°C in diethyl ether(Eq 3.2).

$$(Me_{3}Si)_{3}Si \xrightarrow{Pb + LiPH_{2}} \xrightarrow{\langle diethylether \rangle} Li \begin{bmatrix} (Me_{3}Si)_{3}Si \\ (Me_{3}Si)_{3}Si \\ (as DME adduct) \end{bmatrix} (Eq.3.2)$$

$$15$$
(as DME and Et₂O adduct)

The reaction mixture immediately changes its colour from deep blue to orange-red when the dihypersilylplumbylene solution is dropwise added to the suspension of lithium phosphanide in diethyl ether, indicating a rapid reaction. The ³¹P-NMR spectrum of the resulting mixture reveals that almost only one phosphorus-containing product (compound **15**) is formed. After work-up, orange-brown crystals of Li[Hyp₂Pb·PH₂]·Et₂O·DME (**15a**) are isolated in good yield. Compound **15a** is air- and moisture-sensitive, but stable enough to be stored under argon over a period of one year.

3.3.1.2 Li[Hyp₂Pb·P(H)Hyp] (16)

When dihypersilylplumbylene was reacted with equimolar amounts of LiPH₂(as DME adduct) in DME at -20°C, the immediate colour change from blue to violet-red indicates a fast reaction occurred. According to the ³¹P-NMR spectrum of the resulting mixture, the expected 1:1 adduct of compound **15** was obtained in good yield. As mentioned above, solid **15a** is fairly stable at room temperature as long as air and moisture is excluded. In solution, however, this compound is unstable and may slowly decompose to give some metallic lead and some other lead- and phosphorus-containing compounds. One of these decomposition products, Li[Hyp₂Pb·P(H)Hyp] (**16**), has been isolated as red crystals and identified by X-ray diffraction analysis (Scheme 3.2). Unfortunately, the diffraction data are not good enough to

give good structure parameters mainly due to the strong disordering within the coordinating ether. However, the anionic $[Hyp_2Pb\cdot P(H)Hyp]^-$ fragment can be readily identified.

Just as many other adducts of dihypersilylplumbylene, compound **16** is unstable in ether solution and decomposes further under formation of $[HypPbP(H)Hyp]_2$ **17** over a period of several months even at -60°C. Compound **17** is also unstable at room temperature in ether or benzene-d6 solution. On standing at ambient temperature it undergoes decomposition finally leading to the heterocucane cluster **12** along with small amounts of $[(Me_3Si)_3Si]_2PH$, $HSi(SiMe_3)_3$, and $Si_2(SiMe_3)_6$.

3.3.1.3 K[Hyp₂Pb·PH₂] (18)

Treatment of a diethyl ether solution of Hyp_2Pb with equimolar amounts of KPH_2 in diethyl ether at -20°C immediately gives a reaction, indicated by a colour change from deep blue to orange-brown (Eq.3.3). This reaction proceeds nearly quantitative, giving compound

 $K[Hyp_2Pb\cdot PH_2]$ (18) as the only product. After adding small amounts of triazine, the expected adduct 18 can be obtained in good yield as orange-brown crystals at -60°C.

$$(Me_{3}Si)_{3}Si \rightarrow Fb + KPH_{2} \xrightarrow{\langle diethyl \ ether \rangle} K \begin{bmatrix} (Me_{3}Si)_{3}Si \rightarrow Fb - PH_{2} \\ (Me_{3}Si)_{3}Si \rightarrow Fb - PH_{2} \end{bmatrix} (Eq. 3.3)$$

$$18$$

In the solid state, compound **18** is fairly stable at room temperature under argon, but decomposes slowly to precipitate elementary lead in diethyl ether solution when stored under ambient light at ambient temperature for several days.

3.3.2 NMR Spectroscopy

The ³¹P{¹H}-NMR spectrum of **15** recorded in Et₂O/10%THF-d8 at 253K shows a singlet at -278.8ppm with satellites of ²⁰⁷Pb (${}^{1}J_{P,Pb}=$ 653Hz), while the ³¹P-NMR(THF-d8, 253K) spectrum of **15** displays a triplet (${}^{1}J_{P,H}=$ 155Hz) at -280.9ppm with satellites of ²⁰⁷Pb, indicating that there are two hydrogen atoms bonded to phosphorus atom within the molecule(Figure 3.7). The room temperature ³¹P-NMR spectrum of this compound, however, gives only a very broad signal with the same chemical shift, reflecting probably the presence of a rapid ligand exchange under these conditions.

Figure 3.7 Observed ³¹P-NMR spectrum of **15a** in THF-d8 at 101.256MMHz(253K); δ =-280.9ppm, ¹J_{PH}=155Hz.¹J_{PPb}=653Hz.

The ¹H-NMR(THF-d8, 253K) spectrum of **15** shows two small peaks at 0.66ppm and 1.05ppm, which should be considered as a doublet derived from the coupling of phosphorus with a ¹J_{P,H} coupling constant of 155Hz. The same spectrum shows also an intense singlet at 0.17ppm for the two equivalent hypersilyl groups. The integral ratio of the former ($-PH_2$) to the latter (hypersilyl) protons amounts to 2:54. The presences of the signals at 1.10ppm(triplet) and 3.35ppm(quartet) for Et₂O , 3.25ppm(singlet) and 3.42ppm(singlet) for DME, reflect that these donors strongly coordinate to lithium cation, yielding a large cation moiety for the stabilization of the huge anionic part of [Hyp₂PbPH₂]⁻.

The ²⁹Si{¹H}-NMR(THF-d8, 253K) spectrum exhibits an intense singlet at -3.6ppm for the peripheral silicon atoms (Figure 3.8a) and a small doublet with a coupling constant ${}^{2}J_{Si,P}$ of 10Hz for the central silicon atom(Figure 3.8b). Interestingly, satellites of 207 Pb can be observed for the signal of the central silicon with a one-bond coupling constant ${}^{1}J_{Si,Pb}$ of 1555Hz.

Figure 3.8 Observed ²⁹Si{¹H}-NMR spectrum of **15a** in THF-d8 at 79.495MHz(253K): (a): δ =-3.66 for the peripheral silicon; (b): δ =-135.2 for the central silicon, ¹J_{Si,Pb}=1555Hz. ²J_{Si,P}=10Hz. Note: The figure (b) has been arbitrarily enlarged

The ³¹P{H}-NMR spectrum of K[Hyp₂Pb·PH₂] (**18**) displays a singlet at -281.7ppm with satellites of ²⁰⁷Pb, which is similar to that of compound **15** described above. The ¹H coupled ³¹P-NMR spectrum, showing a triplet with ¹J_{P,H} coupling constant of 156 Hz as well as ²⁰⁷Pb (¹J_{Pb,P}=590 Hz) satellites, is shown in Figure 3.9. In the ¹H-NMR spectrum, a doublet at 0.95 ppm with a coupling constant of ¹J_{P,H}=156Hz and an intense singlet at 0.21 ppm derived from hypersilyl groups are found in an integral ratio of about 2: 54, suggesting the formulated simple 1:1 adduct of KPH₂ and dihypersilylplumbylene.

Figure 3.9 Observed ³¹P-NMR spectrum of **18** at 161.976 MHz in D_8 -THF (253K): δ =-281.7 ppm, ¹J_{PH}= 156 Hz, ${}^{1}J_{P,Pb} = 590$ Hz

3.3.3 Crystal Structure

3.3.3.1 [Et₂O(DME)Li] [Hyp₂Pb·PH₂] (15a)

A brown crystal of 15a was investigated by X-ray diffraction analysis. The diethyl ether solvate molecule is twofold disordered in the crystal, however, the structure determination gave well-defined structural parameters. Selected crystallographic data are given in Table 3.6. Selected interatomic distances and angles are shown in Table 3.7. The molecular structure of 15a, showing the numbering scheme, is depicted in Figure 3.10.

Empirical formula	$Hyp_2PbP(H_2)Li \cdot Et_2O(DME)$
Formula weight(g/mol)	906.69
Temperature(K)	173(2)
Crystal system	triclinic
Space group	$P\overline{1}$
Lattice constants(Å,°)	$a = 13.084(2)$ α 88.150(17)
	$b = 13.334(3)$ β 79.516(12)
	$c = 15.404(3)$ γ 68.553(15)
Volume(Å ³)	2457.8(9)
Formula units	2
Density(g/cm ³)	1.225
μ (Mo-K _a)(mm ⁻¹)	3.681
2\Overlap range(°)	2.08 to 25.00
Reflections measured	8968
Independent reflections	8565 [R(int) = 0.0532]
Ind. Reflections with $F_0 > 4\sigma(F_0)$	8565
Parameter	409
R1,R1(all reflections)	0.0333, 0.0594

Тε

wR2,wR2(all reflections)	0.0587, 0.0624	
GooF	0.733	
Residual electron density(e/Å ³)	0.865	

Figure 3.10 Molecular structure of **15a** with the disordered arrangement of the coordinated diethyl ether[the minor components(24%) are depicted as empty bonds]. Atoms are represented by spheres of arbitrary radii; hydrogen atoms except for the two bonded to phosphorus are omitted for clarity.

The molecular structure is best described as an intimate ion-pair with a predominantly ionic binding mode between the Li⁺ cation and the phosphanide anion. The Li–P distance of 262.2(11) pm lies in the range observed for **7a** [between 262.0(7) and 265.9(7)pm]. The coordination sphere of lithium cation is accomplished by one DME and one diethyl ether molecule. Thus the lithium atom has a distorted tetrahedral coordination (three O atoms and one P atom). The Li-O bond lengths, with a value of 188.6(11)pm for Li-O2(Et₂O) and two longer values [198.8(11), 201.0(10) pm] for Li-O(DME), are still within the normal range. Two hydrogen atoms can be found near the phosphorus atom, showing P-H distances of 126(7) and 118(7)pm, respectively. A distorted tetrahedral coordination environment of P atom is completed by the coordination to the Pb atom of a dihypersilylplumbylene with a large Li-P-Pb angle of 128.3(2)°. The phosphorus-lead bond of 275.73(17) pm is only slightly longer than those observed for **12** [ranging from 271.9(5) to 274.6(5)], and lies in the range found in bis[bis(diphenylphosphino)-trimethylsilylmethanide-P,P']-lead(II) (271.5-297.1ppm)¹³⁸. With

this coordinated phosphorus atom, the lead atom is found to be three coordinate with P-Pb-Si angles of 94.37(5) and 94.75(5)°, respectively. The Si-Pb-Si angle with a value of 114.79(4)°, is slightly wider however, only than that in the precursor dihypersilylplumbylene[113.55(10)°]. Due to the increase in coordination number at Pb atom, elongated Pb-Si bond lengths [276.60(15) and 275.66(15) vs 270.0(3) and 270.4pm in dihypersilylplumbylene] are observed. The other parameters of plumbylene fragment in this structure including Si-Si bond lengths ranging between 233.7(2) and 236.4(2) pm are comparable to those found in dihypersilylplumbylene.

	· ·	•	
Pb-P	275.73(17)	Si12-Si1-Pb	108.29(6)
P-Li	262.2(11)	Si23-Si2-Pb	104.74(7)
P-H1	126(7)	Si21-Si2-Pb	128.31(7)
P-H2	118(7)	Si22-Si2-Pb	101.94(7)
Li-O3	201.0(10)	Li-P-Pb	128.3(2)
Li-O1	198.8(11)	Li-P-H1	117(3)
Li-O2	188.6(11)	Pb-P-H1	102(3)
Li-C71	274.3(11)	Li-P-H2	112(3)
Li-C51A	277.9(14)	Pb-P-H2	104(3)
Pb-Si1	276.60(15)	H1-P-H2	83(4)
Pb-Si2	275.66(15)	O2-Li-O1	109.2(5)
Si-Si	233.7(2) to 236.4(2)	O2-Li-O3	114.1(5)
		O1-Li-O3	83.5(4)
Si2-Pb-P	94.37(5)	O2-Li-P	127.3(4)
P-Pb-Si1	94.75(5)	O1-Li-P	113.4(5)
Si2-Pb-Si1	114.79(4)	O3-Li-P	100.3(4)
Si13-Si1-Pb	125.98(7)	Si-Si-Si	103.50(8) to 109.37(8)
Si11-Si1-Pb	101.19(6)		

Table 3.7 Selected interatomic distances (pm) and angles (°) for 15a.

3.3.3.2 [{(MeNCH₂)₃}₂K] [Hyp₂Pb·PH₂] (18a)

Crystallization of **18** from diethyl ether in the presence of triazine yielded large orangebrown crystals of $[{(MeNCH_2)_3}_2K]$ $[Hyp_2Pb\cdot PH_2]$ (18a), which were suitable for X-ray structural analysis. The anion $[Hyp_2Pb\cdot PH_2]^-$ was disordered in a ratio of 0.87/0.13. In the following discussion only the structural parameters of the major component are considered. Selected data collection parameters and other crystallographic data are summarized in Table 3.8. Selected bond lengths and angles are listed in Table 3.9. Table 3.8 Crystallographic data of 18a.

Empirical formula Formula weight(g/mol) Temperature(K) Crystal system	Hyp ₂ PbP(H ₂)K·2triazine 1020.93 193(2) triclinic
Space group	$P\overline{1}$
Lattice constants($Å$, $^{\circ}$)	$a = 12.5404(10)$ $\alpha = 86.5800(10)$
	$b = 13.0367(11)$ β $82.5140(10)$
	$c = 17.4872(14)$ γ 76.9430(10)
Volume(Å ³)	2759.9(4)
Formula units	2
$Density(g/cm^3)$	1.229
$\mu(Mo-K_{\alpha})(mm^{-1})$	3.359
2Θ range(°)	1.60 to 28.33
Reflections measured	32172
Independent reflections	12902 [R(int) = 0.0844]
Ind. Reflections with $F_0 > 4\sigma(F_0)$	12902
Parameter	750
R1,R1(all reflections)	0.0400, 0.0635
wR2,wR2(all reflections)	0.0810, 0.0881
GooF	0.942
Residual electron density(e/Å ³)	0.900

Figure 3.11 Molecular structure of **18a**. Atoms are represented by spheres of arbitrary radii; dashed lines are used to symbolize interatomic distances markedly smaller than the sum of the corresponding van der Waals radii; hydrogen atoms except for the two bonded to phosphorus are omitted for clarity.

The result of the structure determination of **18a** is shown in Figure 3.11. The molecule comprises an intimate ion-pair of $[Hyp_2Pb\cdot PH_2]^-$ and $[{(MeNCH_2)_3}_2K]^+$ with a K…P distance of 401.0 pm. In addition to the phosphorus atom, the K atom is coordinated to two η^3 -N bonded triazine molecules (K…N distances: 284.2 to 296.8 pm) and the coordination sphere is completed by agostic-type interactions between K and hypersilyl groups.

Similar to **15a**, in the anion part the lead atom of the plumbylene is coordinated to the phosphanide with two slightly different P-Pb-Si angles of 93.9 and 97.6°. The Pb-P distance of 269.15(19) pm is 5 pm shorter than that observed in the lithium analogue **15a**. The Pb-Si bond lengths (276.1 and 277.4 pm), however, lie very close to those found in **15a** and are longer than those found in the precursor dihypersilylplumbylene (about 270 pm) again due to the increase in coordination number at Pb atom. In contrast to the observation in **15a**, the Si-Pb-Si angle of 111.2° observed in **18a** is slightly smaller than that in the precursor [113.55(10)°].

Table 5.7 Science II	iteratorine distances (pin) and	angles () for 16a .	
Pb1-Si1	276.1	Pb1-P1	269.15(19)
Pb1-Si2	277.4	Si1-Si12	233.1(3)
P1-Pb1-Si1	97.6	Si1-Si11	234.29(17)
P1-Pb1-Si2	93.9	Si1-Si13	235.23(19)
Si1-Pb1-Si2	111.2	Si2-Si23	233.4(15)
K1-N	284.2 to 296.8	Si2-Si21	235.8(12)
K1-C221	333.7	Si2-Si22	237.9(15)
K1P1	401.0	Si-Si-Si	102.0(5) to 109.47(11)

 Table 3.9
 Selected interatomic distances (pm) and angles (°) for 18a.

3.4 $Li[(Hyp_2Pb)_2 \cdot PH_2](19)$ and $K[(Hyp_2Pb)_2 \cdot PH_2](20)$

3.4.1 Synthesis

3.4.1.1 Li[(Hyp₂Pb)₂·PH₂] (19)

Li[(Hyp₂Pb)₂·PH₂] (**19**) with two dihypersilylplumbylene molecules bonded to the same phosphorus atom in phosphanide, is readily synthesized either by reaction of PbHyp₂ with LiPH₂ in a molar ratio of 2:1 or by reaction of Li[Hyp₂Pb·PH₂] with an equimolar amount of PbHyp₂.

Reaction of LiPH₂ (as DME adduct) with two equiv of PbHyp₂ at -20°C in DME or in a diethyl ether/12-crown-4 ether mixture affords dark brown crystals of **19** in good yield (Scheme 3.3). The ³¹P-NMR spectrum of the reaction mixture shows that a small amount of **15** may be found as side product along with the main product of **19**. Although compound **19** can be isolated as a pure product by fractional crystallization, a small excess of dihypersilylplumbylene may improve the yield and facilitate the purification.

Scheme 3.3

Treatment of solution of **15a** (as DME and Et₂O adduct) in a 12-crown-4 ether/diethyl ether mixture (or a hexahydro-1,3,5-trimethyl-S-triazine/diethyl ether mixture) with a solution of equimolar dihypersilylplumbylene in diethyl ether at -20°C also produces **19** according to Scheme 3.3. The reaction mixture changes colour from orange-brown to deep violet-red immediately when the reactants are combined. After work-up, dark brown crystals of **19** were obtained in good yield. The crystals of this compound are air- and moisture-sensitive, but stable to be stored under argon up to one year at -20°C. They are insoluble in common hydrocarbons such as pentane or toluene, thus could be purified by washing with these solvents. However, they dissolve very well in diethyl ether or THF. At ambient temperature, the THF-d8 solution of **19** decomposes completely during a period of several days.

3.4.1.2 K[(Hyp₂Pb)₂·PH₂] (20)

Compound K[(Hyp₂Pb)₂·PH₂] (**20**) was first found as one of the products from reaction of PH₃ with dihypersilylplumbylene in the presence of some KN(SiMe₃)₂ (formed during the preparation of dihypersilylplumbylene). As shown in Scheme 3.4, KN(SiMe₃)₂ might first react with PH₃ to give KPH₂. The so-formed KPH₂ combined dihypersilylplumbylene, which was excess in the reaction solution, to yield compound **20** as a black precipitate in n-pentane. This assumption has been verified by a direct reaction of dihypersilylplumbylene with KPH₂, which is prepared and isolated from the reaction of KN(SiMe₃)₂ with PH₃ in DME.

Scheme 3.4

The precipitate of **20** could be dissolved in diethyl ether, but the crystals obtained from the solution cooled at -60°C were not suitable for X-ray diffraction analysis. Recrystallization with a diethyl ether/triazine mixture finally afforded X-ray diffraction quality crystals of [(Hyp₂Pb)₂·PH₂]K·3triazine (**20a**). Compound **20a** is air- and moisture-sensitive, but stable enough to be stored at -20°C under argon over one year.

3.4.2 NMR Spectroscopy

3.4.2.1 Li[(Hyp₂Pb)₂·PH₂] (19)

The ³¹P-NMR spectrum of the 12-crown-4 ether solvate of Li[(Hyp₂Pb)₂·PH₂] (**19a**), like that of compound **15**, gives only a broad flat signal at room temperature. At lower temperature, the ³¹P{¹H}-NMR(THF-d8, 243K) spectrum shows a singlet at -352.0ppm with ²⁰⁷Pb satellites. The coupling constant ¹J_{P,Pb} of 1420Hz is even two times larger than that observed for compound **15**(Table 3.10). The ³¹P NMR(Et₂O+10%THF-d8, 243K) spectrum, showing a triplet at -352.0ppm with coupling constants of ¹J_{P,H} = 222Hz, indicates that two hydrogen atoms are bonded to the phosphorus atom within the molecule(Figure 3.12). The presence of 1.11ppm(triplet) and 3.37ppm(quartet) for Et₂O, 3.26ppm(singlet) and 3.42ppm(singlet) for DME, 3.70ppm(singlet) for 12-crown-4 ether in the ¹H-NMR spectrum suggests that these ethers coordinate to the lithium atom as donor ligands, forming a large cation to stabilize the huge phosphanide anion with two dihypersilylplumbylene molecules attached.

Figure 3.12 Observed ³¹P-NMR spectrum of **19a** in THF-d8 at 101.256MHz(243K): δ =-352.0ppm, ¹J_{PH}=222Hz, ¹J_{PPb}=1428Hz.

The ³¹P-NMR spectra of the DME solvate (**19b**) and triazine solvate (**19c**) recorded in THF-d8 show virtually identical signals as that of **19a**, so do the signals for the hypersilyl group observed in the ¹H- and ¹³C-NMR spectra. Temperature-dependent ¹H-NMR spectra of **19c** in THF-D8 were recorded over a temperature range of -50°C to 25°C. A broad doublet with a coupling constant ¹J_{P,H} of 218Hz at 2.67ppm derived from the hydrogen atoms bonded to phosphorus, along with an intense singlet for the hypersilyl group, could be found at the spectrum recorded at room temperature. Lowering the temperature led to broadening of the latter and sharpening of the former. At the temperature below -20°C, the resonance of the hypersilyl group began to split into two singlets. On cooling, the resonance of the hypersilyl group shifted slightly to higher field, while the resonance of the hydrogen bonded to phosphorus atoms, in contrast, shifted to lower field, accompanying a slight increasing of the coupling constant ¹J(P,H). In accordance with the ¹H-NMR spectra, the ²⁹Si{¹H}-NMR spectrum of **19c** recorded at room temperature shows a singlet assignable to the peripheral silicon at -2.36ppm, which splits into two single resonances(-2.05, -2.56ppm) at -50°C.

3.4.2.2 K[(Hyp₂Pb)₂·PH₂] (20)

The ¹H-, ¹³C-, ²⁹Si, and ³¹P-NMR spectra of K[(Hyp₂Pb)₂·PH₂] (**20**) are very similar to those of the Lithium analogue **19**, implying their ionic properties. The similar thermodynamic effect has also been observed from the temperature-dependent ³¹P-, ¹H-, and ²⁹Si-NMR 80

spectra. The ³¹P-NMR spectrum recorded at -20°C exhibits a sharp triplet with broad ²⁰⁷Pb satellites at -350.9ppm while that measured at 25°C shows no signal (Figure 3.13). The ¹H-NMR spectrum shows a singlet assignable to the hypersilyl group at room temperature; but it splits into two single resonances if the temperature is lower than -30°C. The ²⁹Si-NMR spectrum recorded at room temperature again exhibits a singlet at -2.4ppm for the peripheral silicon atoms, which splits into two peaks at -2.1 and -2.6 ppm when the sample is measured at -50°C. Further measurements show that no resonance can be observed in the temperature range of -30°C to 0°C.

Figure 3.13 Observed ³¹P-NMR spectrum of **20** at 161.976MHz in THF-d8 (253K): δ =-350.9ppm, ¹J_{P,H}= 222Hz, ¹J_{P,Pb}= 1420Hz.

Selected chemical shifts and coupling constants of **20a** are summarized in Table 3.10 and compared with the values for **15a** and **19c**. All data for **20a** are similar to those for **19c**, but significantly differ from those for **15a**. In addition to the chemical shift difference in the ³¹P-NMR spectra (about 70 ppm), the one-bond phosphorus-hydrogen coupling constants of **20a** and **19c** are 67 Hz larger than that observed for **15a**. Moreover, the one-bond phosphorus-lead coupling constants of the formers are even more than two times as large as that of the latter.

Compound	20a	19c	15a
δ(¹ H NMR, SiMe ₃ ppm)	0.24	0.24	0.17
δ(¹ H NMR, PH _{2,} ppm)	2.79	2.78	0.86
δ(¹³ C NMR, ppm)	6.5	6.4 ^a	5.6

Table 3.10 Selected ¹H-, ¹³C-, ³¹P-, ²⁹Si- ,and ⁷Li-NMR spectra data of **20a**, **15a**, and **19c**.

$\delta(^{31}\text{P NMR, ppm})$	-350.9	-352.0 ª	-280.9
¹ J _{P,H} (Hz)	222	222 ^a	155
$^{1}J_{P,Pb}(Hz)$	1420	1428 ^a	653
δ(²⁹ Si NMR, SiMe ₃ ,ppm)	-2.4 ^b	-2.36 ^b	-3.6
δ(⁷ Li NMR, ppm)	-	0.95 ^a	2.1

3 Hypersilyl Stabilized Lead (Tin) and Phosphorus Clusters

All recorded in THF-d8 at 253K except ^a: at 243K, ^b: 300K

3.4.3 Crystal Structure

Dark brown X-ray diffraction quality crystals of $[{(MeNCH_2)_3}_3K] [(Hyp_2Pb)_2 \cdot PH_2]$ (**20a**) were obtained from diethyl ether in the presence of triazine at -60°C. The compound crystallizes together with one free molecule of diethyl ether as triclinic, P-1, with two formula units in the unit cell. Crystal data for **20a** are summarized in Table 3.11. Selected bond length and angles are listed in Table 3.12. Several atoms are disordered in the crystal, however, the structure determination gives defined structural parameters.

Fable 3.11	Crystallographic data of 20a .	

Empirical formula Formula weight(g/mol) Temperature(K) Crystal system Space group Lattice constants(Å,°)	Hyp ₄ Pb ₂ PK·3triazine(Et ₂ O) 1936.86 173(2)K triclinic $P\overline{1}$ a = 16.460(5) α 95.48(3) b = 16.906(6) β 100.81(3) 100.62(2)
Volume(Å ³) Formula units Density(g/cm ³) μ (Mo-K _a)(mm ⁻¹) 2 Θ range(°) Reflections measured Independent reflections Ind. Reflections with F _o >4 σ (F ₀) Parameter R1,R1(all reflections) wR2,wR2(all reflections) GooF Residual electron density(e/Å ³)	$c = 19.253(6) \gamma = 100.62(3)$ $5125(3)$ 2 1.255 8.881 $2.68 \text{ to } 73.89$ 21220 $20580 [R(\text{int}) = 0.0906]$ 20580 914 $0.0743, 0.0945$ $0.1928, 0.2081$ 1.021 4.631

Figure 3.14: The structure of the anion part of **20a.** Atoms are represented by spheres of arbitrary radii; hydrogen atoms are omitted for clarity. Dashed bonds are used to symbolize the disordered orientations. One of the trimethylsilyl groups is two-fold disordered in a ratio of 0.41/0.59.

As revealed by X-ray diffraction analysis, the structure of **20a** displays a salt composed of separated solvated potassium cations, $[{(MeNCH_2)_3}_3K]^+$, and $[(Hyp_2Pb)_2 \cdot PH_2]^-$ anions. No short K^{...}P contacts are found.

In the anionic part(Figure 3.14), one of the lead atoms is disordered in a ratio of 0.87 (Pb1) to 0.13 (Pb1A) as stereoscopically displayed in Figure 3.15. Although the two hydrogen atoms bonded to phosphorus, which could be unambiguously deduced from NMR data, can not be observed in the structure, the angle of Pb-P-Pb of 142.00(9) implies already the distorted tetrahedral coordination environment of phosphorus. Both lead atoms of the dihypersilylplumbylene molecules, coordinated to the same phosphorus atom, have coordination number three and each display a trigonal pyramidal environment. The Pb-P bond lengths with a mean value of 283.2pm are approximately 8 pm longer than in compound **15a**, probably owing to the steric demand of hypersilyl groups. Additionally, the average angle of P-Pb-Si of 97.42° is also wider than those observed in **15a** (av. 94.55°). As a consequence of the higher coordination number of the Pb atoms, the Pb-Si bond lengths in this anion ranging between 273.5(2) and 279.2(2)pm are significantly longer than the corresponding contacts in dihypersilylplumbylene [270.0(3), 270.4(3)pm]. The elongation of the Pb-Si bond lengths are comparable to that observed for compound **15a**.

Figure 3.15 Stereoscopic representation of the disordering of the lead atom in the anion part of compound **20a** with the same orientation as shown in Figure 3.13. Empty bonds are used to symbolize the arrangement of the minor component.

At first glance, the unusual structural feature of the cation part of compound **20a** is that the potassium center is coordinated to three triazine molecules with mearly ideal C_{3h} symmetry. The threefold axis runs through the K atom and is oriented perpendicular to the plane defined by the three centroids of the triazine molecules. As Figure 3.16(a) reveals, the potassium atom is approximately coplanar with the centers of the three triazine molecules, however, the whole cation part does not possess a C_{3h} symmetry due to the orientation of methyl groups in triazine.One of the triazine molecules is two-fold disordered as shown in Figure 3.16(b). The K…N distances, ranging from 278.9(18) to 318(2)pm are considerably longer than the sum of the covalent radii of potassium and nitrogen(273pm) and comparable to those found in the structure of compound **1c**.

Figure 3.16 (a). Structure of the cation part of compound **20a** (one of the disordered conformation of triazine is omitted). (b). The arrangement of the disordered triazine (dashed lines are used to symbolize the disordered orientations). The population ratio of the two conformations amounts to 0.58/0.42. Atoms are represented by spheres of arbitrary radii; hydrogen atoms are omitted for clarity.

Pb1-Si15	273.5(2)	K1-N53	306.8(11)
Pb1-Si11	277.7(3)	K1-N41A	308.6(18)
Pb1-P1	283.6(2)	K1-N42A	310(2)
Pb1A-Si15	277.6(4)	K1-N31	316(2)
Pb1A-Si11	284.4(4)	K1-N33	318(2)
Pb1A-P1	286.4(3)	Pb2-P1-Pb1A	133.69(10)
Pb1A-Si16	326.4(4)	Pb2-P1-Pb1	142.00(9)
P1-Pb2	282.8(2)	Si15-Pb1-Si11	112.24(8)
Pb2-Si25	276.3(2)	Si15-Pb1A-Si11	109.05(12)
Pb2-Si21	279.2(2)	Si11-Pb1A-Si16	121.88(12)
Si-Si	av. 234.2	Si25-Pb2-Si21	101.8(7)
K1-N43A	278.9(18)	Si15-Pb1A-P1	98.40(12)
K1-N32	284.8(15)	Si11-Pb1A-P1	92.72(10)
K1-N41B	282(3)	P1-Pb1A-Si16	133.80(13)
K1-N42B	280(3)	Si15-Pb1-P1	100.03(8)
K1-N52	293.2(8)	Si11-Pb1-P1	94.75(7)
K1-N51	299.3(11)	Si25-Pb2-P1	98.28(7)
K1-N43B	306(3)	Si21-Pb2-P1	96.62(7)

Table 3.12 Selected interatomic distances (pm) and angles (°) of 20a.

3.5 $Hyp_2Sn \cdot PMe_3(21)$ and $Hyp_2Pb \cdot PMe_3(22)$

3.5.1 Synthesis

If both dihypersilylstannylene and plumbylene are treated with trimethylphosphane in npentane or toluene at -20°C, an immediate colour change from brown to yellow and blue to red will be observed, respectively. The ³¹P-NMR spectra, showing only one signal for each of the reaction solutions, indicate that the reactions of Eq. 3.4 quantitatively occurred.

$$(Me_{3}Si)_{3}Si = + PMe_{3} \xrightarrow{< n-pentane \text{ or toluene } >} (Me_{3}Si)_{3}Si = PMe_{3} (Eq. 3.4)$$

$$(Me_{3}Si)_{3}Si = E = Sn 21$$

$$E=Pb 22$$

The expected phosphane adducts **21**, **22** are obtained in high yields as orange-yellow and red crystalline compounds. No re-dissociation is detectable in solution under reduced pressure. These compounds are air- and moisture-sensitive, although they can be stored in the solid state for a long time under argon. Attempt to grow single crystals from n-pentane,

cyclopentane, or toluene unfortunately failed. The formulated forms, however, have been proved unambiguously by NMR spectroscopy.

3.5.2 NMR Spectroscopy

The ³¹P{¹H}-NMR(cyclopentane+10%C₆D₆, 243K) spectrum of phosphane adduct **21** exhibits a broad singlet flanked by ^{117/119}Sn satellites, showing a ¹J_{119Sn,P} coupling constant of 1960Hz and a ¹J_{117Sn,P} coupling constant of 1881Hz (Figure 3.17). The chemical shift of the resonance (-60.1ppm), however, is similar to that of free PMe₃(-62ppm).

Figure 3.17 Observed ³¹P{¹H}-NMR spectrum of **21** at 101.256MHz in 10% benzene-d6+cyclopentane(243K): δ =-60.1ppm, ¹J_{P119Sn}= 1960Hz, ¹J_{P117Sn}= 1881Hz.

In accordance with the ¹¹⁹Sn satellites observed in the ³¹P{¹H}-NMR spectrum, the ¹¹⁹Sn-NMR(C₆D₆, 300K) spectrum exhibits a doublet at -37ppm with a coupling constant ¹J_{119Sn,P} of 1930Hz, which is considerably greater than ¹J_{117/119Sn,P} of 1580Hz observed in (PMe₃)Sn[TeSi(SiMe₃)₃]₂¹³⁹. From the ¹H-NMR(C₆D₆, 300K) spectrum of **21**, which shows a singlet at 0.44ppm(54H) derived from the hypersilyl group and a doublet with a two-bond phosphorus-hydrogen coupling constant ²J_{P,H} of 7.5Hz at 1.07ppm(9H) assignable to the methyl groups of trimethylphosphane, the formulated simple 1:1 adduct of dihypersilylstannylene and trimethylphosphane can be concluded directly.

The ³¹P NMR(C₆D₆,300K) spectrum of **22** exhibits also a broad singlet at -111.8ppm, shielded strongly compared to that of uncoordinated PMe₃. No satellites of ²⁰⁷Pb can be observed in the spectrum, just as no satellites of ^{117/119}Sn found in the ³¹P{¹H}-NMR spectrum of **21** recorded at 300K, implying the existence of dynamic behaviour in benzene-d₆ solution

at room temperature. The ¹H NMR(C₆D₆, 300K) spectrum of **22** is similar to that of **21** and shows a singlet at 0.48ppm (54H) for the hypersilyl group and a doublet with ${}^{2}J_{P,H}=$ 7.5Hz at 1.17ppm (9H) for trimethylphosphane. These reflect again the composition of the Lewis acid-base adduct, the formulated 1:1 adduct of dihypersilylplumbylene and trimethylphosphane.

$3.6 [HypP(H)PbHyp]_2$ (17)

3.6.1 Synthesis

When phosphane (PH₃), generated from the reaction of LiPH₂ with 2,6-di-tert-butylphenol in DME, is allowed to bubble through a solution of dihypersilylplumbylene in n-pentane at room temperature, an immediate reaction takes place, indicated by a colour change from deep blue to dark red. On cooling at -60°C black crystals are isolated which were identified by its NMR and X-ray diffraction data as dimeric hypersilyl lead(II) hypersilylphosphanide (17). The yields are good, however, according to the NMR spectra of the reaction mixture, (Me₃Si)₃SiH as well as small amounts of dihypersilylphosphane and 12 were formed along with the main product 17. After standing the sealed NMR tube of a C₆D₆ solution of 17 for 24h at ambient temperature, the resonance of 17 disappears completely, and dihypersilylphosphane and 12 are formed quantitatively.

Scheme 3.5

We assumed that compound **17** has been formed via a Lewis adduct of dihypersilylplumbylene and PH₃ followed by hypersilyl group migration and $(Me_3Si)_3SiH$ elimination. In an attempt to find some experimental evidences, PH₃ was allowed to bubble through a cooled (-30°C) n-pentane solution of dihypersilylplumbylene. The ¹H-coupled ³¹P

NMR spectrum of the resulting solution recorded at -20°C shows only a quartet at -286.5ppm (${}^{1}J_{P,H} = 236Hz$) and a triplet at -224.2ppm (${}^{1}J_{P,H} = 236Hz$). In spite of showing no ${}^{207}Pb$ satellites, because of the observed high-field shift of more than 40 ppm when compared with uncoordinated PH₃ ($\delta = -242.5ppm$, ${}^{1}J_{P,H} = 187Hz$) we think that the quartet originates from the primary Lewis-acid-base adduct of PH₃ and dihypersilylplumbylene. The triplet at -224.2ppm indeed shows ${}^{207}Pb$ satellites and can be ascribed to either HypPb(H) \leftarrow PH₂Hyp or to (HypPbPH₂)_x, both being most probable intermediates in the reaction to **17**^{*}.

Compound **17** can also be synthesized by treating HypPH₂ (prepared from protolysis of compound **1**) with dihypersilylplumbylene in benzene at room temperature (Eq. 3.4). The reaction is completed in about 30 minutes, further standing at ambient temperature would lead to decomposition of **17** as decribed above. According to the ³¹P-NMR spectrum of the reaction mixture, compound **17** could be obtained in about 70% yield.

$$2 \text{ Hyp}_2\text{Pb} + 2 \text{ Hyp}\text{PH}_2 \rightarrow [\text{Hyp}\text{Pb}\text{P}(\text{H})\text{Hyp}]_2 + 2 (\text{Me}_3\text{Si})_3\text{SiH}$$
(Eq. 3.4)

17

3.6.2 NMR Spectroscopy

Compound **17** was unambiguously identified by ³¹P NMR data and confirmed by X-ray structure analysis. The ³¹P{H} NMR(C₆D₆, 300K) spectrum displays a sharp singlet flanked by ²⁰⁷Pb satellites at characteristic high field (δ =-367.4). The considerably large one-bond coupling constant of ¹J_{p,pb}=1622Hz lies very close to those observed for the bridging phosphorus atoms in the cis- and trans-isomer of {Pb[P(SiMe₃)₂]₂}¹³³ (598Hz and 1658Hz). The ¹H-coupled ³¹P-NMR spectrum of the same sample exhibits a multiplet of higher order flanked by ²⁰⁷Pb satellites, the A part of a AA'XX' spin system (A, A'=³¹P; X, X'=¹H). The X part of this spin system is also observed at 3.4 ppm in the ¹H NMR spectrum. Approximate values for J_{P,P} and J_{P,H} can be estimated by simple examination of the experimental spectrum. Starting from these values the spectrum can be solved by iterative fitting¹¹⁰. The experimental and the calculated spectra are summarized in Figure 3.18. These resonances pertain obviously to the structure observed in the solid state (see blow), in which the hypersilyl groups are all trans to one another. On cooling, the signals in the ¹H, ³¹P, and ²⁹Si NMR spectra of **17** shift

^{*} As mentioned above, if the dihypersilylplumbylene is not pure enough, *i.e.*, containing $KN(SiMe_3)_2$ from the preparation, PH₃ may react with the potassium amide and compound **20** may precipitate as a black solid from the reaction mixture according to Scheme 3.4.

only slightly. Even at our low-temperature limit (-60°C), no significant change can be observed. It is remarkable, cis and trans isomers of the model complex $[Pb(\mu-H)H]_2$ was found to be nearly isoenergetic¹⁴⁰. The existence of only one isomer of **17** in the solid state as well as in solution may be owing to the steric demands of the hypersilyl groups.

Figure 3.18 Observed (a) and calculated (b) ³¹P NMR spectrum of **17** at 101.256MHz in C₆D₆ (300K): δ =-367.4ppm, ¹J_{P,H}= 233.2Hz, ³J_{P,H}= 2.3Hz, ⁴J_{H,H}= 0 Hz, ²J_{P,P}= 59.8Hz, ¹J_{P,Pb}=1622Hz.

3.6.3 Crystal Structure

Dark crystals of compound **17** suitable for X-ray diffraction analysis were obtained from diethyl ether. Figure 3.19 shows the molecular structure and the numbering scheme of dimeric **17**. The diethyl ether molecule originating from the recrystallization is not shown. The crystal data are summarized in Table 3.13. Selected bond lengths and angles are listed in Table 3.14.

Empirical formula	$Hyp_4P_2(H)_2Pb_2\cdot Et_2O$
Formula weight(g/mol)	1541.10
Temperature(K)	188(2)K
Crystal system	monoclinic
Space group	P2(1)/n

Table 3.13Crystallographic data of 17.

3 Hypersilyl Stabilized Lead (Tin) and Phosphorus Clusters

Lattice constants(Å,°)	$a = 14.4402(4) \alpha 90$
	$b = 24.4936(6) \beta 94.287(2)$
	$c = 22.2942(6) \gamma 90$
Volume(Å ³)	7863.2(4)
Formula units	4
$Density(g/cm^3)$	1.302
μ (Mo- K_{α})(mm ⁻¹)	4.585
2Θ range(°)	3.43 to 28.31
Reflections measured	71278
Independent reflections	19355 [R(int) = 0.0738]
Ind. Reflections with $F_0 > 4\sigma(F_0)$	19355
Parameter	745
R1,R1(all reflections)	0.0460, 0.0835
wR2,wR2(all reflections)	0.0995, 0.1197
GooF	1.036
Residual electron density(e/Å ³)	1.917

Figure 3.19. Molecular structure of compound **17**. Atoms are represented by spheres of arbitrary radii; hydrogen atoms are omitted for clarity.

The whole molecule was disordered in a ratio of 0.91/0.09 (Figure 3.20). In the solid state, compound **17** adopts a dimeric molecular structure with the central moiety of a slightly distorted Pb₂P₂ ring shielded by the sterically bulky hypersilyl substituents which are all trans to one another and stretch away from the Pb₂P₂ ring. According to the NMR investigation, both phosphorus atoms each bear an additional hydrogen atom. Unfortunately, these hydrogen atoms could hardly be identified by crystallography because the disordered Pb atoms are found almost right at the position where the hydrogen atoms may locate. The central Pb₂P₂ ring with a puckered rather than a planar geometry (folding angles are approximately 20°) also implys the existence of stereochemically active lone pairs on the three-coordinate lead

atoms. It is remarkable that $\{Pb[P(SiMe_3)_2]_2\}_2^{133}$ displays a cis-isomer conformation with a similarly puckered Pb₂P₂ ring, whereas $\{Pb[P-tert-Bu_2]_2\}_2^{132}$ shows a trans-isomer structure with a planar central Pb₂P₂ ring. The Pb-P bond lengths of **17**, ranging from 277.62(17) to 279.65(17) pm, lie very close to those observed in $\{Pb[P(SiMe_3)_2]_2\}_2^{133}$ [274.7(7) to 279.6(7)pm], but slightly longer than those observed in compound **12** [272.0 to 274.6(5)pm]. With the three-coordinate lead atoms, the two Pb-Si distances [277.1(3) and 278.5(2)pm] are expectedly longer than those found in its precursor dihypersilylplumbylene (about 270pm).

Figure 3.20 Representation of the disordering model of **17**. The population ratio amounts to 0.91 (solid bonds) / 0.09 (empty bonds).

Pb1-P1	277.62 (17)	P2-Si4	228.2 (2)
Pb1-P2	279.43 (16)	Si-Si	233.0(3) to 237.1(3)
Pb2-P1	279.21 (17)	P1-Pb1-P2	79.56 (5)
Pb2-P2	279.65 (17)	P1-Pb2-P2	79.25 (5)
Pb1-Si1	278.5(2)	Pb1-P2-Pb	98.46 (5)
Pb2-Si2	277.1(3)	Pb1-P1-Pb2	98.99 (5)
P1-Si3	228.6(3)		

Table 3.14Selected interatomic distances (pm) and angles (°) for 17.

4 Hypersilyl Stabilized Lead Clusters

4.1 Overview

Several anionic cluster compounds of lead have been synthesized during the last decades^{141 142 143}. The first species NaPb₄ and KPb₂ had already been obtained in 1891 by Joanis from the reaction of alkali metals with lead in liquid ammonia^{144 145}. Extensive exploration of this chemistry was done by Kraus, Zintl and others during the first decades of the 20th century ^{146 147}. Addition of cryptants finally allowed for the isolation of macrocrystalline material and the structural characterization of several anionic species such as Pb_5^{2-} , Pb_9^{4-} and $Pb_9^{3-148 149}$. The structures observed may all be understood using Wade's electron counting rules.

Molecular species bearing hydrocarbyl or related organoelement substituents at the lead skeleton are, however, very scarce. Very recently, Power et al. reported the first lead analogue of a substituted acetylene molecule, $2,6-\text{Trip}_2H_3C_6PbPbC_6H_3-2,6-\text{Trip}_2$ (Trip = 2,4,6triisopropylphenyl)¹⁵⁰. Using the smaller substituent (Trip) Weidenbruch et al. synthesized Pb_2Trip_4 as the first example of a molecule with a lead / lead double bond ¹⁵¹. Later they prepared the cyclotriplumbane Pb_3R_6 by utilizing a less bulky substituent 2,4,6triethylphenyl¹⁵². All attempts to transform the Pb_x^{y} salts to such derivatives by the reaction with electrophiles failed and no organically substituted lead deltahedron species with naked lead atoms reported to date. There are some reports however for transition-metal carbonyl complexes of lead clusters¹⁵³. Only for the lighter congeners germanium and tin hydrocarbyl or organoelement substituted species became available very recently: [Sn₈ (2,6- $Mes_2C_6H_3)_4](Mes=2,4,6-Me_3C_6H_2)^{154}$, $[Sn_8 {Si(CMe_3)_2}_6]^{155}$, $[Ge_9 {Si(SiMe_3)_3}_3]^{-156}$ and $[Ge_8 {N(SiMe_3)_2}_6]^{157}$. Their synthesis had not used anionic clusters, however, but proceeded through cluster formation from smaller units. It became evident that for those examples as for cluster of the neighbouring elements of the group 13 Wade's rules are sometimes, but not generally obeyed.

4.2 Hyp_6Pb_{12} (23)

4.2.1 Synthesis

As mentioned above, when phosphane was bubbled through a dihypersilylplumbylene solution at a temperature below -30°C, compound **12** and **17** were not found in the resulting solution; instead, the primary Lewis-acid-base adduct between PH₃ and dihypersilylplumbylene as well as either HypPb(H) \leftarrow P(H)₂Hyp or (HypPbPH₂)_x were formed

according to the ³¹P spectrum of the reaction mixture recorded at -20°C. In an attempt to isolate one of these metastable species, the supernatant solution of the resulting mixture was stored at -60°C for several weeks. A few dark brown well shaped crystals were found in a matrix of unconsumed red dihypersilylplumbylene crystals. Astonishingly, the structure analysis revealed that the dark brown crystals contained no phosphorus. Instead, the molecular lead cluster [(Me₃Si)₃Si]₆Pb₁₂ (**23**) was found (Scheme 4.1).

Other products detected in the supernatant liquid, such as the monocyclic compound **17**, the heterocubane **12** and $[(Me_3Si)_3Si]_2PH$, indicate that during the reaction hypersilyl groups are transferred from Pb to P. In turn, hydrogen may be transferred from P to Pb to give the presumably unstable hydrido(hypersilyl)plumbylene (Me_3Si)_3Si PbH (Scheme 4.2). It is well known that the Pb-H bond is very weak and labile. Compounds bearing this structural fragment easily loose hydrogen or decompose otherwise. Recently a hydridoplumbylene with a very bulky meta-terphenyl substituent was postulated by Power et al as the key intermediate in the formation of the appropriate "diplumbyne" – the first alkyne homologue of lead¹⁵⁰. Other than this diplumbyne, the analogue [(Me_3Si)_3Si]_2Pb_2 would not be stable under normal conditions. It may associate to oligomers, or due to its bis(plumbylene) nature may give self-insertion reactions. By loosing hydrogen or hypersilane such compounds could be possible intermediates in the formation of lead clusters.

4.2.2 Crystal Structure

A suitable crystal of compound **23** selected from matrix of unconsumed reactant dihypersilylplumbylene was investigated by X-ray diffraction analysis. The view of the molecule in the crystal is shown in Figure 4.1. The crystal data are summarized in Table 4.1. Selected bond lengths and angles are listed in Table 4.2.

Table 4.1	Crystallographic	data	of 23.
-----------	------------------	------	--------

The state of the second state	
Empirical formula	Hyp ₆ Po ₁₂ ·pentane
Formula weight(g/mol)	4044.42
Temperature(K)	173(2)K
Crystal system	hexagonal
Space group	$R_{\overline{3}}$
Lattice constants(Å,°)	$a = 16.1051(3) \alpha 90$
	$b = 16.1051(3)$ β 90
	$c = 41.6827(10) \gamma$ 120
Volume(Å ³)	9363.0(3)
Formula units	3
Density(g/cm ³)	2.152
$\mu(Mo-K_{\alpha})(mm^{-1})$	16.374
2Θ range(°)	2.44 to 28.31
Reflections measured	23561
Independent reflections	5183 [R(int) = 0.0798]
Ind. Reflections with $F_0 > 4\sigma(F_0)$	5183
Parameter	192
R1,R1(all reflections)	0.0459, 0.0756
wR2,wR2(all reflections)	0.1093, 0.1242
GooF	1.044
Residual electron density(e/Å ³)	1.332

Figure 4.1 $Pb_{12}Si_{24}$ skeleton of the lead cluster **23** as found in the crystal structure. Differing orientations have been chosen for better illustrating the structure details. Methyl groups are omitted for clarity. (a): Pb-Pb contacts within the open faces of the icosahedron are indicated by dashes, short intramolecular Pb-Si contacts are indicated by dots. Atom groups belonging to the "belt" are denoted as Pb_A, those of the capping triangles as Pb_B.

Despite of disordering of the lead atoms about the crystallographic three-fold axis, the structure parameters could be refined with great accuracy. The twelve lead atoms constitute a distorted but still centrosymmetric icosahedron. It can be seen from the space filling model (Figure 4.2) that the sterically crowding hypersilyl groups effectively surround the Pb_{12} moiety thereby ensuring its stability against decomposition. As shown in Figure 4.1a, six atoms (Pb_A) bear no substituent and form a puckered ring with chair conformation (the belt). The remaining six atoms (Pb_B) each bearing a hypersilyl group form two three-membered rings above and below the central Pb₆ belt. The Pb-Pb distances between neighbouring lead atoms range from 307.6(1) to 338.9(1)pm. The longest distances are found between the lead atoms of type Pb_B the shortest between Pb_A and Pb_B, giving rise to the description of the polyhedron as an icosahedron with two open faces. This finding is in line with the expectations according to Wade's rules. Having 30 electrons for the Pb₁₂ skeleton (2 from each naked Pb and 3 from each lead bearing a substituent) an arachno-type cluster is expected. One structural peculiarity of compound 23 remains worth mentioning and is not understood. Whereas four hypersilvl groups are bonded in the expected end-on fashion (Pb-Si 263.8(2) – 269.6(2) pm), two substituents show a bridging functionality [Pb(2A)-Si1M 3 308.5(2), Pb6-Si1M 328.2(2) pm and their symmetry equivalents].

Figure 4.2 Space filling model of **23** illustrating the high steric protection of the Pb_{12} moiety (hydrogen atoms are omitted).

	-		
Pb1-Pb4	311.0(5)	Pb3-Pb4A	311.0(9)
Pb1-Pb5	311.18(13)	Pb3-Pb6	323.35(13)
Pb1-Pb3	332.41(10)	Pb4-Pb6	323.3(9)
Pb1-Pb6	334.92(12)	Pb4-Pb5	326.7(6)
Pb1-Pb2	336.82(11)	Pb5-Pb6A	324.52(11)
Pb2-Pb6A	305.58(14)	Pb3-Si1E	263.8(2)
Pb2-Pb5	319.88(11)	Pb2-Si1A	308.5(2)
Pb2-Pb4A	321.7(2)	Pb4A-Si1A	328.2(2)
Pb3-Pb5A	310.13(13)	Si-Si	234.3(3) to 234.7(3)

Table 4.2Selected interatomic distances (pm) for 23.

$4.3 Hyp_6Pb_{10}$ (24)

4.3.1 Synthesis

In order to prove our assumption of the formation of $Hyp_6Pb_{12}(23)$ and find a rational route to synthesize Pb(H)Hyp, some efforts have been made. The reactions of dihypersilylplumbylene with several hydride sources, such as B_2H_6 and NaBH₄ at various conditions, however, lead only to the nearly quantitative formation of elementary lead and hypersilane (Me₃Si)₃SiH or the reversible formation of adducts (Eq. 4.1, 4.2).

$$(Me_{3}Si)_{3}Si \rightarrow Pb + B_{2}H_{6} \rightarrow Pb + (Me_{3}Si)SiH + ? (Eq. 4.1)$$

$$(Me_{3}Si)_{3}Si \rightarrow Pb + NaBH_{4} \rightarrow THF \qquad (Me_{3}Si)_{3}Si \rightarrow Pb - BH_{4} \rightarrow Db - BH_{4} \rightarrow Db - BH_{4} \rightarrow Db - BH_{4} \rightarrow Db - BH_{4}$$

$$(Me_{3}Si)_{3}Si \rightarrow Db - BH_{4} \rightarrow Db$$

Finally, by using the strategy of synthesis of unsymmetrical substituted plumbylenes aryl(hypersilyl)plumbylene⁴⁶, dihypersilylplumbylene is allowed to react with the triphenylphospine adduct of copper hydride at -20°C and indeed a spontaneous but slow reaction is found. The deep blue suspension turns to a dark brown solution from which, on cooling to -60°C, appreciable amounts (ca. 30% yield) of dark brown crystals are isolated.

The structural analysis shows them not to consist of the expected $[(Me_3Si)_3Si]_6 Pb_{12}$ but another molecular lead cluster compound: $[(Me_3Si)_3Si]_6Pb_{10}(24)$.

Scheme 4.3

The inspection of the NMR data obtained from pure **24** and from the crude reaction mixture revealed that ligand exchange took place, since the main products besides cluster compound **24** comprise $(Me_3Si)_3SiH$, $(Me_3Si)_3SiCu(PPh_3)$, and $[(Me_3Si)_3Si]_3Cu_9(H)_6(PPh_3)_2$. Further products are present, however, giving unusual high field ¹H-NMR signals between 0.6 and 0.8 ppm as does compound **24** (0.64 ppm). Moreover, a small singlet observed at 0.51 ppm, which could also be found at the ¹H NMR spectrum of the reaction mixture of dihypersilylplumbylene with PH₃, might be assignable to compound **23**. It is therefore assumable that a mixture of several cluster compounds is produced, from which only the predominant and less soluble species crystallizes easily.

Similar experiments have been carried out with two aluminium hydrides. According to the NMR spectra, the reactions lead to the formation of compound **24** (Eq. 4.3; Eq. 4.4). No resonance at 0.51 ppm or between 0.6 and 0.8 ppm except for the signal assignable to **24** is observed in ¹H NMR spectrum of the resulting mixture for these reactions, indicating that compound **24** is the only lead cluster formed under these conditions. However, because of the reactivity of these aluminium hydrides, the expected product of compound **24** isolated from the resulting mixtures always contaminates with small amounts of elementary lead. Therefore, the most suitable route to cluster compound **24** is still the reaction with copper hydride, which can provide pure product as crystals.

$$(Me_{3}Si)_{3}Si \longrightarrow Pb + (iso Bu)_{2}AIH \longrightarrow [(Me_{3}Si)_{3}Si]_{6}Pb_{10} + (Me_{3}Si)_{3}SiAI(iso Bu)_{2} + (Me_{3}Si)SiH (Me_{3}Si)_{3}Si \longrightarrow [(Me_{3}Si)_{3}Si]_{6}Pb_{10} + (Me_{3}Si)_{3}SiAI(H)_{2} \cdot N(CH_{3})_{3} + (Me_{3}Si)SiH (Me_{3}Si)_{3}Si \longrightarrow [(Me_{3}Si)_{3}Si]_{6}Pb_{10} + (Me_{3}Si)_{3}SiAI(H)_{2} \cdot N(CH_{3})_{3} + (Me_{3}Si)SiH (Me_{3}Si)_{3}Si \longrightarrow [(Me_{3}Si)_{3}Si]_{6}Pb_{10} + (Me_{3}Si)_{3}SiAI(H)_{2} \cdot N(CH_{3})_{3} + (Me_{3}Si)SiH (Me_{3}Si)_{3}Si \longrightarrow [(Me_{3}Si)_{3}Si]_{6}Pb_{10} + (Me_{3}Si)_{3}SiAI(H)_{2} \cdot N(CH_{3})_{3} + (Me_{3}Si)SiH (Me_{3}Si)_{3}Si \longrightarrow [(Me_{3}Si)_{3}Si]_{6}Pb_{10} + (Me_{3}Si)_{3}SiAI(H)_{2} \cdot N(CH_{3})_{3} + (Me_{3}Si)SiH (Me_{3}Si)_{3}Si \longrightarrow [(Me_{3}Si)_{3}Si]_{6}Pb_{10} + (Me_{3}Si)_{3}SiAI(H)_{2} \cdot N(CH_{3})_{3} + (Me_{3}Si)SiH (Me_{3}Si)_{3}SiAI(H)_{3} + (Me_{3}Si)_{3} + (Me_{3}Si)_{3}SiAI(H)_{3} + (Me_{3}Si)_{3}SiAI(H)_{3} + (Me_{3}Si)_{3} + (Me_{3}Si)_{3}SiAI(H)_{3} + (Me_{3}Si)_{3}SiAI(H)_{3} + (Me_{3}Si)_{3}SiAI(H)_{3} + (Me_{3}Si)_{3} + (M$$

At ambient temperature solid **24** is indefinitely stable as long as light is excluded. In solution the cluster slowly undergoes first-order decomposition, yielding the octasilane $(Me_3Si)_3SiSi(SiMe_3)_3$ and a black powder (presumably elementary lead). Further investigation shows that the decomposition of **24** first leads to the formation of dihypersilylplumbylene, which decomposes further to give octasilane and lead as final products. Obviously, disproportionation of compound **24** occurs as the first stage of the decomposition, producing the more stable dihypersilylplumbylene and elementary lead.

4.3.2 NMR Spectroscopy

The ¹H-NMR spectrum of **24** recorded at room temperature exhibits only one peak for the protons of hypersilyl groups at 0.64 ppm (in benzene- d_6) or at 0.59ppm (in toluene- d_8). On cooling, the peak at 0.59ppm in toluene- d_8 vanishes. This finding indicates a dynamic behaviour of compound **24** in the solution. The coalescence point is reached at 240K. At 213K, two signals of equal intensity at 0.60 and 0.64 ppm can be observed, giving an approximate activation barrier of 50KJ/mol (Figure 4.2).

Figure 4.2 Observed temperature dependent ¹H-NMR spectrum of **24** at 400.130MHz in toluene-d8.

4.3.3 Mass Spectroscopy

The mass spectrum recorded in $Et_2O/MeCN$ is shown in Figure 4.3. Although the molecular ion of **24** has not been observed in the spectrum, the major ion at mass-to-charge (m/z) 3311 could be unambiguously assigned to $[Hyp_5Pb_{10}]^+$, an ion originating from **24** by losing a hypersilyl group. In addition, the ion at 2815 might be assignable to $[Hyp_3Pb_{10}]^+$.

4.3.4 Crystal Structure

Different crystalline phases of **24** were obtained from different solvents. The structure analysis was hampered by twinning. However, from benzene solutions very small single-crystals had been isolated which finally gave structural parameters of sufficient accuracy. Selected data collection parameters and other crystallographic data are summarized in Table 4.3. Selected bond lengths and angles are listed in Table 4.4.

Fable 4.3	Crystallograp	hic	data	of	24	••
-----------	---------------	-----	------	----	----	----

]	Empirical formula	Hyp ₆ Pb ₁₀ ·2benzene
]	Formula weight(g/mol)	3714.11
	Temperature(K)	186(2)K
(Crystal system	orthorhombic
	Space group	$P\overline{3}c1$
J	Lattice constants(Å,°)	$a = 15.597(2) \alpha 90$
		$b = 24.943(4) \beta 90$
		$c = 33.873(5) \gamma 90$
	Volume(Å ³)	13178(2)
]	Formula units	4
]	Density(g/cm ³)	1.872
ļ	$\mu(Mo-K_{\alpha})(mm^{-1})$	12.971
4	2\Operange(°)	2.76 to 25.00
]	Reflections measured	62117
]	Independent reflections	22869 [$R(int) = 0.3679$]
]	Ind. Reflections with $F_0 > 4\sigma(F_0)$	22869
]	Parameter	609

Figure 4.4 (a) Molecular structure of **24**; atoms are represented by spheres of arbitrary radii; methyl groups are omitted for clarity (b): $Pb_{10}Si_6$ skeleton of the lead cluster **24** as found in the crystal structure. Pb-Pb between the *hypo*-type cluster and the capping atom Pb7 are indicated by dashes.

The Pb_{10} skeleton of **24** has approximate C_{3v} symmetry(Figure 4.4) and is best derived from Pb_{12} icosahedron by replacing one trigonal face by a single lead atom (Scheme 4.4). This picture also matches the prediction made by Wade's rules. These only hold for cluster compound **24** if it is formally composed from a $[(Me_3Si)_3Si]_6$ Pb₉ *hypho*-type cluster dianion (26 skeleton electrons) and a model compound with hypersilyl groups replaced by SiH₃ groups indeed revealed a charge distribution according to the proposed model. The negative charge (derived from NBO analyses) is mainly concentrated at the open face (Pb2, Pb3, Pb4), whereas Pb7 bears the highest positive charge within the Pb₁₀ skeleton. This uneven charge distribution should result in a significant dipole moment. It was calculated to be 2.7 D for the model compound.

Scheme 4.4

The Pb-Pb distances within the Pb₉ fragment (except for Pb7) of **24** differ only slightly [310.3(3)-319.84(17)pm] and are all within the range found for compound **23** and the known lead clusters anions ¹⁵⁸ ¹⁵⁹ ¹⁶⁰, whereas the three bonds to the capping atom (Pb7) are significantly shorter [298.3(4)-299.33(16)pm]. Other than in **23** all six hypersilyl groups are located at the puckered six-membered ring (Pb1, Pb4, Pb5, Pb2, Pb6, Pb3) and the capping Pb₃ triangle (Pb8, Pb9, Pb10) only consists of naked Pb atoms. The hypersilyl groups are bonded in an end-on fashion. The three Pb-Si bonds directed to the naked lead triangle – perhaps for steric reasons – are significantly longer [276.0(5) ppm] than the remaining [267.3(5) ppm]. Therefore, as shown by the space filling model in Figure 4.5, the Pb₁₀ core is also well-shielded by the six hypersilyl groups, which may account for the stability of the species.

Figure 4.5 Space filling model of 24 (view almost along the C₃ axis)

		(1)8(-)	
Pb1-Pb3	313.9(4)	Pb6-Pb9	317.9(3)
Pb1-Pb4	314.5(4)	Pb6-Pb8	319.3(5)
Pb1-Pb9	318.1(3)	Pb8-Pb10	318.2(4)
Pb1-Pb10	318.5(4)	Pb8-Pb9	319.0(4)
Pb2-Pb7	299.33(16)	Pb9-Pb10	319.84(17)
Pb2-Pb8	312.20(18)	Pb1-Si1	276.8(7)
Pb2-Pb5	313.4(5)	Pb2-Si2	267.0(7)
Pb2-Pb6	314.3(5)	Pb3-Si3	269.4(7)
Pb3-Pb7	298.3(4)	Pb4-Si4	265.7(7)
Pb3-Pb9	310.3(3)	Pb5-Si5	275.2(7)
Pb3-Pb6	314.1(3)	Pb6-Si6	275.9(4)
Pb4-Pb7	298.6(4)	Si-Si	231.6(5) to 235.0(8)
Pb4-Pb10	310.8(4)	Pb3-Pb7-Pb4	86.43(5)
Pb4-Pb5	314.3(3)	Pb3-Pb7-Pb2	87.14(10)
Pb5-Pb10	318.0(3)	Pb4-Pb7-Pb2	86.90(11)
Pb5-Pb8	318.6(5)		

 Table 4.4
 Selected interatomic distances (pm) and angles (°) for 24.

5 Experiment Section

5.1 General Comments

All experiments were performed under inert gas atmosphere of purified dry argon(BTS-Katalysator¹⁶¹, P₄O₁₀) with standard Schlenk techniques. Toluene, benzene, triazine, and tetrahydrofuran were dried over sodium and potassium (Na/K) alloy, n-pentane, cyclopentane, diethyl ether, and DME over lithiumaluminiumtetrahydride (LiAlH₄), and freshly distilled prior to use. All glassware was oven-dried at 130°C over night.

5.2 Characterization

5.2.1 Elemental Analyses

Carbon- and hydrogen-contents were determined using combustions analysis with an instrument from Perkin Elmer Company, model PE 2400. Because of the existence of the silicon element in these compounds, which would combine with carbon to SiC instead of CO_2 , the carbon contents obtained by using this method were often lower than the actual values¹⁶².

5.2.2 Melting Points and Decomposition Temperatures Measurement

The determination of melting point (MP) and decomposition temperature (DT) was done in sealed glass-capillary with a melting point determination apparatus from Büchi Company. The data measured are uncorrected.

5.2.3 NMR Spectroscopy

¹H, ¹³C, ³¹P, ²⁷Al, ¹¹B, ²⁹Si, ¹¹⁹Sn, and ⁷Li NMR spectra were recorded with Brucker Spectrometers AM 200, AC250, and AM 400, respectively. Chemical shifts of the deuterated solvents in ¹H NMR data: benzene- d_6 : $\delta(C_6D_5H) = 7.15$ ppm, toluene- d_8 : $\delta(CD_2H) = 2.08$ ppm, THF- d_8 : $\delta(\beta$ -CDH) = 1.72 ppm. Chemical shifts of the deuterated solvents in ¹³C NMR data: benzene- d_6 : $\delta = 128.02$ ppm, toluene- d_8 : $\delta(CD_3) = 20.4$ ppm, THF- d_8 : $\delta(\beta$ -C) = 25.3 ppm. ²⁹Si NMR data: SiMe₄ (external, $\delta = 0$ ppm); ⁷Li NMR data: 14.4M LiCl in D₂O (external, $\delta = 0$ ppm); ¹¹B NMR data: BF₃-diethylether adduct (external, $\delta = 0$ ppm); ³¹P NMR data: 85% H₃PO₄ (external, $\delta = 0$ ppm). The signal types are assigned as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. The solvent for NMR measurement were dried over potassium and trap-to-trap distilled before use.

5.3.4 Uv-Spectroscopy

UV-vis spectra were measured on a JASCO V-530 UV/VIS Spectrophotometer at 25 °C using a 0.5 cm path-length cell for the 190-1100 nm region.

5.2.5 Mass Spectroscopy

Mass spectra were measured with Micro Mass Q-TOF Ultima 3 from Micro Mass by ESI technique

5.2.6 X-ray Analysis

Crystals were removed from Schlenk tubes and immediately covered with a layer of viscous hydrocarbon oil (Paratone N, or Nujol). A suitable crystal was selected, attached to a glass fiber, and immediately mounted on the diffractometer under a stream of cold nitrogen gas¹⁶³. All data were collected with either a Siemens SMART CCD or a Siemens P4 fourcircle diffractometer using monochromated Mo- K_a radiation (λ =0.71073 Å). The cell dimensions were determined from the positions of 35-52 selected reflections ($20 < 2\theta < 25^{\circ}$). Calculations were carried out with the SHELXTL-PC 5.03¹⁶⁴ and SHLXL-97¹⁶⁵ program system installed on a local PC. The phase problem was solved by direct methods and the structures were refined on F_0^2 by full-matrix least-squares refinement. Absorption corrections were applied by the use of semiempirical ψ scans. The data with $F_o^2 \ge -3\sigma(F_o^2)$ were used. The residuals R-factor were calculated with formula $R1=\sum ||F_o|-|F_c|| / \sum |F_o|$, where F_o means the measured (observed) structure factor, and F_c the theoretical (calculated) structure factor. The weighted R-factor were calculated with $wR_2 = \{\sum [w(F_0^2 - F_c^2)^2] / \sum w(F_0^2)^2 \}^{1/2}$, in which $w=1/(\sigma^2(F_0^2)+(a\cdot P)^2+bP)$ and $P=[max(0, F_0^2)+2F_c^2]/3$. Goodness of fit on S were calculated with $S = \{\sum [w(F_o^2 - F_c^2)^2]/N_o - N_p \}^{1/2}$, where N_o is the number of reflections, and N_p is the number of parameters. Anisotropic thermal parameters were included for all nonhydrogen atoms. Hydrogen atoms were placed geometrically and refined with riding model, including free rotation of methyl groups. Their isotropic thermal parameters were either allowed to refine or were constrained to 1.2(aryl-H) or 1.5(methyl groups) times the U_{eq} of the bonded carbon.

5.3 Syntheses and Reactions

[CuH(PPh₃)]₆ was purchased from Fluka; Hexahydro-1,3,5-trimethyl-S-triazine, LiN(SiMe₃)₂, KO^tBut, HSiCl₃, Me₃SiCl, ClSi(SiMe₃)₃, 2,6-di-^tBu-phenol, PMe₃, NaBH₄, F₃B·Et₂O, 12-crown-4 ether and diisobutylaluminiumhydride from Aldrich. LiPH₂·0.86DME was friendly given by Manfried. All anhydrous metal salts and elemental metals were commercially obtained. HSiCl₃ and Me₃SiCl were heated with CaH₂ under reflux and then distilled. Pb[N(SiMe₃)₂]₂¹⁶⁶, Sn[N(SiMe₃)₂]₂¹⁶⁷, and H₃Al·NMe₃¹⁶⁸ were prepared as described in the literature.

5.3.1 Syntheses of Reactants

1. Tetrakis(trimethylsilyl)silane¹⁶⁹

32.3mL of HSiCl₃ (0.320mol, d=1.342g/mL) and 179.0mL of Me₃SiCl (1.410mol, d=0.856 g/mL) in 200mL of THF was dropwise added to a suspension of 25.0g (3.57mol) of lithium in 500mL of THF with stark stirring at 0°C (ice bath). The dripping period was controlled for about 4h and the reaction mixture turned gradually from pale yellow to dark brown. After the addition of HSiCl₃ and Me₃SiCl, the reaction mixture was slowly allowed to come to room temperature and stirred overnight. The resulting mixture was filtered through a porosity fritted glass filter(G3). The THF in the filtrate and all other volatile were then removed under reduced pressure and the residue was dried in vacuum (1×10⁻³ torr) at room temperature for 24h. Sublimation of the brown residue at 80°C in vacuum (1.0×10⁻³ torr) gave white wax-like crystals in 44.8% yield (based on HSiCl₃). Formula: Si(SiMe₃)₄, M=320.84g/mol. : ¹H NMR(250.133MHz, C₆D₆, 298K): δ 0.26(s, ²J_{Si,H}=6.4Hz, SiMe₃); ¹³C{H} NMR (62.896Hz, C₆D₆, 298K): δ 2.85(s, SiMe₃); ²⁹Si{H} NMR(39.761Hz, C₆D₆, 298K): δ -9.8(s, <u>SiMe₃</u>), -134.3(s, <u>Si</u>Si₃).

2. Solvent free potassium tris(trimethylsilyl)silanide³⁴

The synthesis of KSi(SiMe₃)₃ is mainly according to Marschner's method. 73.4g (0.229mol) of tetrakis(trimethylsilyl)silane Si(SiMe₃)₄ in 250mL of THF was added to a solution of potassium *tert*-butanolate(25.7g, 0.229mmol) in 250mL of THF at room temperature. After 24 hours, the ¹H-NMR spectrum showed that the reaction had quantitatively taken place. The solvent THF as well as the volatile by-product Me₃SiO^tBu were removed at 40°C under reduced pressure and the resulting solid was dried in vacuum(1.0×10^{-3} torr) overnight. After washing the solid with 3×30 mL of n-pentane and drying the residue in vacuum for 5h, a white solid of pure KSi(SiMe₃)₃ was obtained in 85% yield. Formula: KSi(SiMe₃)₃, M=286.75g/mol. ¹H NMR(250.133MHz, C₆D₆, 298K): δ 0.54(s,

SiMe₃); ¹³C{H} NMR (62.896MHz, C₆D₆, 298K): δ 7.40(s, SiMe₃); ²⁹Si{H} NMR(39.761, C₆D₆, 298K): δ -5.8(s, SiMe₃), -185.7(s, SiSi₃).

3. Solvent free lithium tris(trimethylsilyl)silanide¹⁷⁰

LiSi(SiMe₃)₃ was synthesized mainly according to R.E. Wochele's dissertation. A solution of ClSi(SiMe₃)₃ (25.00g, 88.30mmol) in 50mL of toluene was added to a suspension of lithium(4.3g, 619.6mmol) and sodium(0.20g, 8.70mmol) in 200mL of toluene at room temperature. The reaction mixture was then heated to about 85°C and stirred for 3.5 hours. The surplus solid lithium, sodium as well as the produced LiCl and NaCl were then separated away from the solution with a G3 porosity fritted glass filter. To the filtrate was added 2.0 g of lithium and the reaction mixture was again heated to 85°C for 2 h in order to convert NaSi(SiMe₃)₃ formed at the first step to LiSi(SiMe₃)₃. After the filtration through a G4 porosity fritted glass filter, the volatile in the filtrate was carefully distilled under reduced pressure at 50°C and the residue was extracted with n-pentane. The resulting n-pentane solution was concentrated under reduced pressure and cooled at -20°C for 24h to afford colourless crystals of pure product, solvent free LiSi(SiMe₃)₃, in 85.4% yield (based on ClSi(SiMe₃)₃). Formula: LiSi(SiMe₃)₃. M=254.60g/mol. ¹H NMR(250.133MHz, C₆D₆, 298K): δ 0.36(s, SiMe₃); ¹³C{H} NMR (62.896MHz, C₆D₆, 298K): δ 5.7(s, SiMe₃); ²⁹Si{H} NMR(39.761, C₆D₆, 298K): δ -7.2(s,SiMe₃), -181.9(s, SiSi₃).

4. Dihypersilylplumbylene¹²

A yellow solution of Pb[N(SiMe₃)₂]₂ (8.20g, 15.5mmol) in 100mL of n-pentane was added to a stirred suspension of KSi(SiMe₃)₃ (8.91g, 31.0mmol) in 100mL of n-pentane at a temperature below -30°C. About 1h later the mixture was allowed to come to room temperature, whereupon it was stirred for a further 10 minutes. Filtration, followed by concentration of the deep blue reaction mixture to ca. 16mL and cooling to -60°C for 24 h, gave 9.0g (12.8mmol) black well shaped crystals of the title compound. Yield: 83%. Formula: Pb[Si(SiMe₃)₃]₂, M=702.51/mol. ¹H NMR(400.132MHz, C₆D₆, 298K): δ 0.54(s, SiMe₃); ¹³C{H} NMR (100.620MHz, C₆D₆, 298K): δ 8.5(s, SiMe₃).

5. Dihypersilylstannylene¹²

5 Experiment Section

A orange solution of $Sn[N(SiMe_3)_2]_2$ (6.70g, 15.2mmol) in 100mL of n-pentane was added to a stirred suspension of KSi(SiMe_3)_3 (8.74g, 30.4mmol) in 80 mL of n-pentane at a temperature below -50°C. About 1h later the mixture was allowed to come to room temperature and was stirred for a further 10 minutes. The dark brown reaction mixture was filtered through a G4 frit and the filtrate was concentrated under reduced pressure. On cooling to -60°C for 24 h, 7.28g black crystals of the title compound was obtained in 78% yield. Formula: $Sn[Si(SiMe_3)_3]_2$, M=614.0g/mol. ¹H NMR(400.132MHz, C₆D₆, 298K): δ 0.44(s, SiMe_3); ¹³C{H} NMR (100.620MHz, C₆D₆, 298K): δ 4.9(s, SiMe_3).

5.3.2 Synthesis of $Hyp_2P_4K_2(1)$ and $Hyp_2P_3K(3)$

a). Reaction of potassium hypersilanide with white phosphorus in toluene

A solution of KSi(SiMe₃)₃ (6.5g, 22.6mmol) in 50mL of toluene was added to a suspension of white phosphorus(P₄, 1.4g, 11.3mmol) in 30 mL of toluene with intense stirring at room temperature. The colour of the solution turned rapidly from pale yellow to deep violet-red. After stirring 2 hours at room temperature until the white phosphorus was consumed, about 65mL of solvent was removed under reduced pressure and the remaining solution was cooled at -20°C for 24 h to give deep violet-red rhombohedral crystals of Hyp₂P₄K₂·2C₇H₈, which was suitable for X-ray diffraction analysis.

Yield: 79% (7.87g, 8.93mmol), violet, extremely air- and moisture-sensitive crystals. Formula: $[(Me_3Si)_3Si]_2P_4K_2 \cdot 2C_7H_8$

¹**H NMR**(250.133MHz, C₆D₆, 298K): Si(Si(C<u>H</u>₃)₃)₃: δ = +0.52 ppm (s), ²J_{Si,H}=6.4Hz.

¹³C{H} NMR (62.896MHz, C₆D₆, 298K): Si(Si(<u>C</u>H₃)₃)₃: δ = +2.6ppm(s).

³¹**P{H} NMR**(101.256MHz, C₆D₆, 298K): δ (P1, P4) = -9.6 ppm, δ (P2, P3) = +423.2 ppm. ³J_{p1,p4}=139.3Hz, ¹J_{p1,p2} = ¹J_{p3,p4} =-434.5Hz, ²J_{p1,p3}=²J_{p2,p4} =-32.2Hz, ¹J_{p2,p3}=-492.8Hz.

³¹**P{H} NMR**(101.256MHz, THF+5%C₆D₆, 298K): (P1, P4) = -23.6 ppm, δ (P2, P3) = +416.3 ppm; ³J_{p1,p4}=151.5Hz, ¹J_{p1,p2} = ¹J_{p3,p4}=-431.1Hz, ²J_{p1,p3}=²J_{p2,p4}=-28.5Hz, ¹J_{p2,p3}=-497.1Hz.

²⁹Si{H} NMR(79.490MHz, THF-D₈, 298K): Si(<u>Si</u>(CH₃)₃)₃: δ = -12.7ppm (m), <u>Si</u>(Si(CH₃)₃)₃: δ = -92.4ppm (m). ¹J_{Si,p} + ⁴J_{Si,p} = 46 Hz, ²J_{Si,p} + ³J_{Si,p} = 14.5 Hz.

b). Reaction of potassium hypersilanide with white phosphorus in benzene

A solution of $K(Si(SiMe_3)_3 (0.98g, 3.4 \text{ mmol}) \text{ in } 12\text{mL} \text{ of benzene was added to a stirred}$ suspension of white phosphorus(P₄, 0.21g, 1.7 mmol) in 4mL of benzene at room temperature.

The reaction led almost quantitatively to a deep red solution of desired compound of $Hyp_2P_4K_2$ after 2 hours according to ³¹P NMR spectrum of a sample of the resulting solution. The volume of the solution was then reduced to about 5 mL under reduced pressure and the resulting saturated solution was cooled at 5°C for 24 h. A deep red crystalline product of $Hyp_2P_4K_2 \cdot 4C_6H_6$ was obtained.

Yield: 79% (1.34mmol, 1.36g), deep-red, extremely air- and moisture-sensitive crystals. Formula: : $[(Me_3Si)_3Si]_2P_4K_2 \cdot 4C_6H_6$

¹**H NMR**(250.133MHz, C₆D₆, 298K): Si(Si(C<u>H</u>₃)₃)₃: δ = +0.52 ppm (s), ²J_{Si,H}=6.4Hz.

¹³C{H} NMR (62.896MHz, C₆D₆, 298K): Si(Si(<u>C</u>H₃)₃)₃: δ = +2.6ppm(s).

³¹P{H} NMR(101.256MHz, C₆D₆, 298K): δ (P1, P4) = -9.6 ppm, δ (P2, P3) = +423.2 ppm. ³J_{p1,p4}=139.3Hz, ¹J_{p1,p2} = ¹J_{p3,p4}=-434.5Hz, ²J_{p1,p3}=²J_{p2,p4}=-32.2Hz, ¹J_{p2,p3}=-492.8Hz.

²⁹Si{H} NMR(79.490MHz, THF-D₈, 298K): Si(<u>Si</u>(CH₃)₃)₃: δ = -12.7ppm (m), <u>Si</u>(Si(CH₃)₃)₃: δ = -92.4ppm (m). ¹J_{Si,p} + ⁴J_{Si,p} = 46 Hz, ²J_{Si,p} + ³J_{Si,p} = 14.5 Hz.

Note: Dissolved $Hyp_2P_4K_2 \cdot 2C_7H_8$ crystals in benzene at room temperature and cooled the deep red saturated solution at 5°C for 24h, $Hyp_2P_4K_2 \cdot 4C_6H_6$ was also obtained as the deep red X-ray diffraction quality crystals.

c). Synthesis of potassium bis(hypersilyl)octaphosphenide $(Hyp_2P_4K_2)$ as benzene and triazine solvate

Dissolved 0.82g(0.81 mmol) of deep red crystals of $Hyp_2P_4K_2 \cdot 4C_6H_6$ in 4 mL of a mixture of benzene (2 mL) and triazine (2 mL), the colour of the solution turned immediately from red to green. Yellowish green crystals of monomeric $Hyp_2P_4K_2$ as benzene and triazine solvate were obtained at ambient temperature after several days.

Yield: 76% (0.62mmol, 0.68g), yellowish green, extremely air- and moisture-sensitive crystals.

Formula: $[(Me_3Si)_3Si]_2P_4K_2 \cdot 2C_6H_6 \cdot 2(MeNCH_2)_3$

d). Reaction of potassium hypersilanide with white phosphorus in diethyl ether

A solution of $K(Si(SiMe_3)_3 (1.47g, 5.2 \text{ mmol})$ in 15mL of diethyl ether was added to a stirred suspension of white phosphorus (P₄, 0.32g, 2.6 mmol) in 5mL of diethyl ether at ambient temperature. The colour of the solution turned to violet immediately. After stirring for 1h, ³¹P NMR analysis(in C₆D₆) of a sample of this resulting mixture indicated that Hyp₂P₄K₂, Hyp₃P₅K₂, Hyp₂P₃K, and small amounts of several other phosphor-containing compounds were formed. In order to isolate Hyp ₂P₃K, diethyl ether was distilled off and the

residue was extracted with 20 mL of cyclo-hexane and the undissolvable $Hyp_2P_4K_2$ and $Hyp_3P_5K_2$ were filtered off. Concentration of the violetish blue cyclo-hexane solution to a volume of 5 mL and cooling at 5°C furnished a small amount of thermally stable dark blue solid of Hyp_2P_3K . Attempts of recrystallization in n-pentane and benzene failed.

³¹ P NMR	(101.256MHz,	C_6D_6 ,	298K)	of the	resulting	reaction	mixture:
---------------------	--------------	------------	-------	--------	-----------	----------	----------

Products	Chemical shifts and coupling constants	Percentage
$Hyp_2P_4K_2$	δ 423.2(m, 2P), $δ$ -9.6(m, 2P);	30%
	$^{1}J_{p1,p2} = ^{1}J_{p3,p4} = -434.5$ Hz,	
	$^{2}J_{p1,p3} = ^{2}J_{p2,p4} = -32.2$ Hz,	
	$^{1}J_{p2,p3}^{-1}=-492.8Hz, ^{3}J_{p1,p4}=139.3Hz$	
Hyp ₂ P ₃ K ₃	δ 717.2(t, 1P, ¹ Jp,p=541Hz),	45%
	δ 199.8(d, 2P, ¹ Jp,p=541Hz)	
Hyp ₃ P ₅ K ₂	δ-87.4(q, broad, 2P), δ-197.0(t, broad,	25%
	1P), δ -242.3(d, broad, 2P)	

NMR spectra of Hyp ₂P₃K:

¹**H NMR**(250.133MHz, C₆D₆, 298K): Si(Si(C<u>H</u>₃)₃)₃: δ = +0.47 ppm (s).

¹³C{H} NMR (62.896MHz, C₆D₆, 298K): Si(Si(<u>C</u>H₃)₃)₃: δ = +2.3ppm(s).

³¹**P{H} NMR**(101.256MHz, C₆D₆, 298K): δ (P2) = 717.2 ppm (t), ¹J_{p,p} = 541Hz, δ (P1,P3) = 199.8 ppm (d), ¹J_{p,p} = 541Hz.

e). Reaction of potassium hypersilanide with white phosphorus in THF

To a suspension of white phosphorus (P₄, 0.22g, 1.77mmol) in 3mL of THF was added dropwise a solution of potassium hypersilanide (1.02g, 3.55mmol) in 7mL of THF at room temperature with stirring. The colour of the solution turned to violetish red immediately. After stirring for 1h, ³¹P- NMR spectrum of the reaction mixture with 10% d₆-benzene showed that a number of products were formed. Attempts of isolating some of the products failed.

Products	Chemical shifts and coupling constants	Percentage
Hyp ₂ P ₄ K ₂	δ (P1, P4) = -23.6 ppm(m), δ (P2, P3) =	8%
	+416.3 ppm(m); $J_{p1,p4}=151.5Hz$, $J_{p1,p2}$	
	$= {}^{1}J_{p3,p4} = -431.1$ Hz, ${}^{2}J_{p1,p3} = {}^{2}J_{p2,p4} = -$	
	28.5Hz, ${}^{1}J_{p2,p3}$ =-497.1Hz.	
$Hyp_2P_3K_3$	δ 717(t, 1P), δ 200(d, 2P, ¹ Jp,p=540Hz)	15%
Hyp ₃ P ₅ K ₂	δ -81.5(m), δ -206.9(m), δ -247.8(m).	7%
unknown phosphorus-	δ-56.7(t, br), δ-103.4(m,br), δ-	70%
containing compounds	108.0(m, br), δ -117.0(m,br).	

³¹**P NMR** (101.256MHz, 10% C_6D_6 , 298K) of resulting reaction mixture:

5.3.3 Synthesis of Hyp₄P₈K₄(2)

1.36g (1.5mmol) of crystalline $Hyp_2P_4K_2 \cdot 2C_7H_8$ was slowly dissolved in 25mL of benzene at room temperature with stirring. The deep red solution was then concentrated under reduced pressure gradually to a volume of about 8mL and cooled at 5°C in refrigerator for several days. Light-red well shaped X-ray diffraction quality crystals of [(Me_3Si)_3Si]_4P_8K_4 as benzene solvate were obtained.

Yield: 0.93g (0.47mmol, 62%), light-red, extremely air- and moisture-sensitive crystals.

Formula: $[(Me_3Si)_3Si]_4P_8K_4 \cdot 8C_6H_6$

¹³C{H}-NMR (50.323MHz, 10%C₆D₆+toluene, 298K): Si(Si(<u>C</u>H₃)₃)₃: δ = +3.0ppm(s).

³¹P{H}-NMR(81.015MHz, 10%C₆D₆+toluene, 298K): 40% (intensity) at δ = 44.8 ppm(m, 4P, P_{ring}), δ = -207.3 ppm(m, 4P, P_{exo}) originated from Hyp₄P₈K₄; 60% (intensity) at δ (m,P1, P4) = -9.6 ppm, δ (m,P2, P3) = +423.2 ppm originated from Hyp₂P₄K₂.

²⁹Si{H}-NMR(39.761MHz, 10%C₆D₆+toluene, 298K): Si(Si(CH₃)₃)₃: δ = -12.8ppm (m).

³¹**P{H}-NMR** (101.256MHz, 298K) of $[(Me_3Si)_3Si]_4P_8K_4 \cdot 8C_6H_6$ in benzene-d6:

Products	Chemical shifts and coupling constants	Percentage
Hyp ₂ P ₄ K ₂	$ \begin{split} \delta & (P1, P4) = -9.6 \text{ ppm}, \\ \delta & (P2, P3) = +423.2 \text{ ppm}. \\ {}^{1}J_{p1,p2} = {}^{1}J_{p3,p4} = -434.5 \text{Hz}, \\ {}^{2}J_{p1,p3} = {}^{2}J_{p2,p4} = -32.2 \text{Hz}, \\ {}^{3}J_{p1,p4} = 139.3 \text{Hz}, {}^{1}J_{p2,p3} = -492.8 \text{Hz}. \end{split} $	95%
$Hyp_4P_8K_4$	$\delta = 43.2 \text{ ppm}(m, 4P, P_{ring}), \delta = -208.1$	5%
	$ppm(m, 4P, P_{exo}).$	

5.3.4 Oxidation of $Hyp_2P_4K_2$

A solution of $[(Me_3Si)_3Si]_2P_4K_2\cdot 4C_6H_6(1.12g, 1.1mmol)$ in 8mL of THF was added to a suspension of anhydrous FeCl₂ (0.14g, 1.1mmol) in 4 mL of THF with stirring at -20°C. The colour of the reaction mixture turned from violet to dark-brown immediately. After stirring about 1 hour, the resulting mixture, from which a NMR sample was taken, was stored in - 20°C refrigerator. A layer of a fine black precipitate, presumably metallic iron, was found at the bottom of the flask the next day.

³¹**P{H}-NMR**(101.256MHz, C₆D₆, 298K):

Products	Chemical shifts and coupling constants	Percentage
Hyp ₃ P ₇	$\delta = -7.3 \text{ ppm(m, 3P)}, \ \delta = -101.0 \text{ ppm(m, 1P)}$	63%
	1P), $\delta = -162.2 \text{ ppm}(\text{m}, 3\text{P})$	
Hyp ₂ P ₄	$\delta = -153.2 \text{ ppm}(t, 2P), \ \delta = -329.6 \text{ ppm}(t, 2P)$	15%
	2P), ${}^{1}J_{p,H} = 161.0$ Hz	
HypPH ₂	$\delta = -265.5 \text{ ppm}(s)$	12%
unknown phosphorus-	$\delta = -71.1 \text{ ppm}(t, \text{ br}), \ \delta = -116.4$	10%
containing compounds	ppm(m,br), $\delta = -201.5$ ppm(s), $\delta = -$	
	211.6ppm(s), $\delta = -256.3$ ppm(s), $\delta = -$	
	299.8 ppm(s).	

5.3.5 Protolysis of Hyp₂P₄K₂

a). Reaction of potassium bis(hypersilyl)tetraphosphenide with HCl

To a solution of $[(Me_3Si)_3Si]_2P_4K_2\cdot 4C_6H_6(2.28g, 2.26mmol)$ in 20mL of toluene was bubbled a HCl gas (8mmol, excess, generated from reaction of CaCl₂ and concentrated sulphuric acid) at room temperature. The colour of the reaction mixture turned from deep-red to light yellow gradually. The toluene and all volatile compounds were removed under reduced pressure and residue was extracted with 50 mL of n-pentane in portions. After filtration, the filtrate was dried under reduced pressure to afford an oil-like liquid.

Products	Chemical shifts and coupling constants	Percentage
Hyp ₃ P ₇	$\delta = -7.3 \text{ ppm}(\text{m}, 3\text{P}), \ \delta = -101.0$	28%
	ppm(m, 1P), $\delta = -162.2$ ppm(m, 3P)	
HypPH ₂	$\delta = -265.5 \text{ ppm}(s)$	49%
unknown phosphorus-	$\delta = -188.3 \text{ ppm}(d, {}^{1}J_{p,p} = -137 \text{Hz}),$	23%
containing compounds	$\delta = -229.6 \text{ ppm}(d, {}^{1}\text{J}_{p,p} = -137\text{Hz})$	

³¹ P{H}-NMR(101.256MHz,	C_6D_6 ,	298K):
------------------------------------	------------	--------

From this liquid, $(Me_3Si)_3SiPH_2$ was separated by sublimation $(100^\circ C/10^{-3} mbar)$ as colourless wax-like crystals.

Yield: $0.26g(41\%, based on Hyp_2P_4K_2)$.

¹**H-NMR**(250.133MHz, C₆D₆, 298K): Si(Si(C<u>H</u>₃)₃)₃: δ = +0.21ppm (s, 27H). PH₂: δ = +1.34ppm (d, 2H), ¹J_{p,H}= 179.2 Hz.

¹³C{H}-NMR (62.896MHz, C₆D₆, 298K): Si(Si(<u>C</u>H₃)₃)₃: δ = +0.7ppm(s), ¹J_{C,Si} = 45.1 Hz.

³¹**P{H}-NMR**(101.256MHz, C_6D_6 , 298K): $\delta = -265.5$ ppm (s).

³¹**P-NMR**(101.256MHz, C₆D₆, 298K): $\delta = -265.5$ ppm (t), ¹J_{p,H} = 179.2 Hz.

b). Reaction of potassium bis(hypersilyl)tetraphosphenide with 2,6-di-^tBu-phenol

1). A solution of 2,6-di-^tBu-phenol(0.21g, 1.0mmol) in 5 mL of benzene was added to a solution of $[(Me_3Si)_3Si]_2P_4K_2 \cdot 4C_6H_6$ [1.02g, 1.0mmol (1:1)] in 12mL of benzene with stirring at room temperature. The solution changed colour from deep red to violet gradually. According to the ³¹P-NMR spectrum (C₆D₆) the reaction solution contained, in addition to unconsumed starting material, HypPH₂, Hyp₂P₃K, and Hyp₃P₅K₂ (identified by comparison with authentical samples) in a molar ratio of 6:3:1, as well as small amounts of unidentified phosphorus-containing compounds.

2). A solution of 2,6-di-^tBu-phenol(0.33g, 1.62mmol) in 5 mL of benzene was added to a solution of $[(Me_3Si)_3Si]_2P_4K_2\cdot 4C_6H_6$ [0.82g, 0.81mmol (2:1)] in 10mL of benzene with stirring at room temperature. The deep red colour of the reaction mixture vanished immediately. According to the ³¹P-NMR spectrum (C₆D₆), the starting material was completely consumed and the reaction solution contained HypPH₂ as the main product along with small amounts of Hyp₃P₇ and unidentified phosphorus-containing compounds(presumably, oligophosphane).

5.3.6 Synthesis of Hyp₃P₅K₂ (4)

A solution of $K(Si(SiMe_3)_3 (1.74g, 6.1mmol)$ in 15mL of toluene was added to a stirred suspension of white phosphorus(P₄, 0.38g, 3.05mmol) in 5mL of toluene at room temperature. The colour of the reaction mixture turned to violet immediately. The mixture was stirred for about 2h until the white phosphorus completely disappeared. The volume of the resulting mixture was reduced to 10mL under vacuum. On standing for about several weeks at room temperature, the deep violet solution turned gradually to yellowish brown and a few large yellow rhombohedral X-ray diffraction quality crystals of title compound was obtained. Hyp₃P₅K₂ can also be recrystallized from benzene solution as benzene solvate.

Yield: 0.82g. yellow rhombohedral, air- and moisture-sensitive crystals.

Formula: $[(Me_3Si)_3Si]_6P_{10}K_4 \cdot 3C_6H_6$

Mp(decomp.): crystals turned dark $>410^{\circ}$ C.

¹**H-NMR**(400.132MHz, C₆D₆, 300K): $\delta = 0.507$ ppm (s, 54H, Si(Si(C<u>H</u>₃)₃)₃), $\delta =$

0.512 ppm (s, 27H, Si(Si(CH₃)₃)₃).

¹³C{H}-NMR (100.620MHz, C₆D₆, 300K): $\delta = 3.1$ ppm (s, Si(Si(<u>C</u>H₃)₃)₃), $\delta = 3.8$ ppm(s, Si(Si(<u>C</u>H₃)₃)₃).

³¹P{H}- NMR(162.048MHz, C₆D₆, 300K): δ = -87.4ppm (q, broad, 2P), δ = -197.0ppm (t, broad, 1P), δ = -242.3ppm (d, broad, 2P). ³¹P{H}-NMR(101.256MHz, D₈-THF, 300K): δ (P1, P2)= -81.5 ppm, δ (P4, P5)=-247.2ppm. δ (P3)= -206.7ppm. ¹J_{p1,p4}=¹J_{p2,p5}= -347.5Hz, ²J_{p3,p4} = ²J_{p3,p5} = 61.7Hz, ¹J_{p1,p3}=¹J_{p2,p3} = -178.3Hz, ²J_{p1,p5}=²J_{p2,p4} = -6.9Hz, ¹J_{p1,p2}=-189.8Hz, ³J_{p4,p5} = 214.0Hz.

²⁹Si{H}-DEPT-NMR(79.495MHz, THF-d8, 300K): δ = -9.8ppm (m, broad, Si6, Si(Si(CH₃)₃)₃), -12.2ppm (s, broad, Si4, Si5, Si(Si(CH₃)₃)₃)), -90.1ppm(dt, Si3, Si(Si(CH₃)₃)₃), ¹J_{P3,Si3}=-116.3Hz, ²J_{P1,Si3}= ²J_{P2,Si3}=-7.3Hz), -91.8 ppm(m, Si1,Si2, SiSi₃, ¹J_{P4,Si2}= ¹J_{P5,Si1}=-106.8Hz, ²J_{P1,Si2}= ²J_{P2,Si1}=-21.4Hz, ³J_{P3,Si2}= ³J_{P1,Si1}=-17.3Hz, ⁴J_{P5,Si2}= ⁴J_{P4,Si1}=7.6Hz).

5.3.7 Synthesis of Hyp₃P₈K₃(5)

Some crystals of potassium tetrakis(hypersilyl)octaphosphanide $(Hyp_4P_8K_4 \cdot 4C_6H_6)$ was dissolved in D₆-benzene and stored at a refrigerator (5°C) for several days. Cubic orange X-ray diffraction quality crystal was obtained.

Formula: [(Me₃Si)₃Si]₆P₁₆K₆·4C₆H₆

¹**H-NMR**(250.133MHz, toluene-d₈, 300K): $\delta = 0.51$ ppm (s, 54H, Si(Si(C<u>H</u>₃)₃)₃), $\delta = 0.53$ ppm (s, 27H, Si(Si(C<u>H</u>₃)₃)₃).

¹³C{H}-NMR (62.896MHz, toluene-d₈, 300K): $\delta = 3.3$ ppm (s, Si(Si(<u>C</u>H₃)₃)₃), $\delta = 3.4$ ppm(s, Si(Si(<u>C</u>H₃)₃)₃).

³¹P{H}- NMR(101.256MHz, toluene-d₈, 300K): δ = 43.0ppm (q, broad, 2P), δ = -45.7ppm (t, broad, 1P), δ = -56.0ppm (q, broad, 2P), δ = -181.3ppm (d, broad, 2P), δ = -234.5ppm (t, broad, 2P).

5.3.8 Synthesis of Hyp₂P₄(6) and Hyp₂P₄Li₂(7)

a) Reaction of lithium hypersilanide with white phosphorus in toluene

To a suspension of white phosphorus (P₄, 0.70g, 5.6mmol) in 8mL of toluene was added a solution of LiSi(SiMe₃)₃(2.85g, 11.2mmol) in 12mL of toluene with stirring at room temperature. Immediately, the reaction mixture became deep red and a light yellow precipitate appeared. Stirring continued for about 1.5h followed by filtration, the ³¹P NMR spectrum of the filtrate indicated that it consisted of P₇(Si(SiMe₃)₃)₃(³¹P NMR(101.256, C₆D₆, 300K): δ =-8.6(m,3P), -102.0(m,1P), -163.0(m,3P)), P₄(Si(SiMe₃)₃)₂ (δ = -153.6(t, 2P), -329.8(t, ¹Jp,p=161Hz,2P)), and some other phosphorus-containing compounds. Attempts of separating them by crystallization failed.

The light yellow residue of the filtration mentioned above was washed with $2\times5mL$ of toluene and extracted with 15mL of tetrahydrofuran to give a violet solution. The volume of the solution was then reduced under dynamic vacuum at room temperature until a few violet crystals appeared. The resulting solution was cooled at -20°C for 3d to afford deep violet X-ray diffraction quality crystals of Li₂P₄[Si(SiMe₃)₃]₂·4THF.

Yield: 0.4g(9.2%).

Formula: [(Me₃Si)₃Si]₂P₄Li₂·4THF

¹**H-NMR**(400.132MHz, THF-D₈, 300K): $\delta = 0.21$ ppm (s, 54H, Si(Si(C<u>H</u>₃)₃)₃).

¹³C{**H**}-NMR (100.613MHz, THF-D₈, 300K): $\delta = 1.34$ ppm (s, Si(Si(<u>C</u>H₃)₃)₃).

³¹P{H}-NMR(101.256MHz, THF-D₈, 300K): δ (P2, P3)= 406.3 ppm(m, 2P), δ (P1, P4)=-60.1ppm(m, 2P); ³J_{p1,p4}=247.1Hz, ¹J_{p1,p2} = ¹J_{p3,p4}=-410.3Hz, ²J_{p1,p3}=²J_{p2,p4}=-31.5Hz, ¹J_{p2,p3}=-481.0Hz.

²⁹Si{H}-NMR(79.495MHz, THF-D8, 300K): $\delta = -11.3$ ppm (m, broad, Si(Si(CH₃)₃)₃).

b) Reaction of lithium hypersilanide with white phosphorus in THF

To a suspension of white phosphorus(P_4 , 0.58g, 4.8mmol) in 5 mL of THF was added dropwise a solution of LiSi(SiMe₃)₃ (2.42g, 9.5mmol) in 20mL of THF with stirring at room temperature in 0.5h. The colour turned to red-brown gradually and no precipitate formed. The reaction mixture was stirred for an additional 1.5h until the white phosphorus was consumed. According to ³¹P-NMR spectrum, the reaction solution contained, in addition to Li₂P₄[Si(SiMe₃)₃]₂ and LiP₃[Si(SiMe₃)₃]₂, some other phosphorus-containing products, which could not be identified owing to superposition of the signals. Attempts of isolating some of them failed.

5.3.9 Synthesis of Hyp₂P₃Li (8)

a) A solution of $LiSi(SiMe_3)_3(6.63g, 26.0mmol)$ in 30mL of toluene was added to a suspension of white phosphorus(P₄, 1.61g, 13.0mmol) in 10mL of toluene with stirring at room temperature. A pale yellow precipitate formed gradually. After stirring for about 1.5h, the reaction mixture was filtered through a porosity fritted glass filter and the residue was washed with 15mL of toluene in portions. Dissolved some of this light yellow powder-like solid in a mixture of benzene and hexahydro-1,3,5-trimethyl-S-triazine, an intense violet-blue

solution was obtained. According to the ³¹P-NMR spectrum, Hyp₂P₃Li was the dominant phosphorus-containing product. But attempts of crystallization of this compound from n-pentane, benzene, or toluene failed.

b) A solution of LiSi(SiMe₃)₃ (1.73g, 6.80mmol) in 10mL toluene was added dropwise to a suspension of white phosphorus(P₄, 0.42g, 3.40mmol) and 2.0mL of hexahydro-1,3,5trimethyl-S-triazine(13.8mmol, d=0.89g/ml) in 5 mL of toluene with stirring at room temperature in 0.5h. The reaction mixture was then stirred for an additional 1.5h until the white phosphorus was consumed. The ³¹P NMR spectrum indicated that more than 70% of the white phosphorus had been changed to the title compound. The resulting deep violet mixture was filtered through a porosity fritted glass filter and concentrated under reduced pressure to ca. 4 mL. Adding 2mL of n-pentane and cooling to -30°C for 2d, the solution furnished the title compound as deep violet rod-like crystals, along with some colourless crystals of Si(SiMe₃)₄.

Formula: [(Me₃Si)₃Si]₂P₃Li·2(MeNCH₂)₃

¹**H-NMR**(400.132MHz, C₆D₆, 300K): $\delta = 0.49$ ppm (s, 54H, Si(Si(C<u>H</u>₃)₃)₃), $\delta =$

2.03ppm(s,18H, NC<u>H</u>₃);

¹³C{H}-NMR (100.613MHz, C₆D₆, 300K): $\delta = 2.17$ ppm (s, Si(Si(<u>C</u>H₃)₃)₃), $\delta = 77.3$ ppm (s,N<u>C</u>H₂N), $\delta = 39.5$ ppm(s,NCH₃);

³¹**P{H}-NMR**(162.048MHz, C₆D₆, 300K): $\delta = 198.2 \text{ ppm}(d, 2P, {}^{1}\text{Jp}, p=533\text{Hz}), \delta = 718.4 \text{ ppm}(t, 1P, {}^{1}\text{Jp}, p=533\text{Hz}), \delta = 718.4 \text$

²⁹Si{H}-NMR(79.495MHz, C₆D₆, 300K): $\delta = -11.0$ ppm (d, broad, Si(<u>Si</u>(CH₃)₃)₃, ²Jsi,p=10Hz).

⁷Li{¹H}- NMR(155.506MHz, C₆D₆, 300K): $\delta = 0.41$ ppm(s).

5.3.10 Synthesis of Hyp₃P₅Na₂ (9)

A solution of NaSi(SiMe₃)₃ (0.49g, 3.7mmol) in 10mL of toluene was added to a stirred suspension of white phosphorus(P₄, 0.23g, 1.85mmol) in 3mL of toluene at room temperature. The reaction mixture was stirred for about 1h until the white phosphorus completely was consumed and the colour of the mixture turned from pale yellow to brown. After filtration through a G3 porosity fritted glass filter, the dark brown filtrate was concentrated under reduced pressure and cooled at -20 °C for several days, no crystal precipitated. All volatile compounds in the solution were then removed under vacuum and the residue was extracted

with 15 mL of n-pentane. After concentration, the resulting solution was cooled at 5°C for several weeks to provide a small amount of X-ray diffraction quality yellow crystals.

Yield: 0.21g (15.8%). Air- and moisture-sensitive yellow crystals.

Formula: [(Me₃Si)₃Si]₆P₁₀Na₄

¹**H-NMR**(400.132MHz,C₆D₆, 300K): $\delta = 0.46$ ppm (s, 54H, Si(Si(C<u>H</u>₃)₃)₃), $\delta = 0.47$ ppm (s, 27H, Si(Si(C<u>H</u>₃)₃)₃); ¹**H-NMR**(400.132MHz, THF-D₈, 300K): $\delta = 0.28$ ppm (s, 54H, Si(Si(C<u>H</u>₃)₃)₃), $\delta = 0.27$ ppm (s, 27H, Si(Si(C<u>H</u>₃)₃)₃).

¹³C{H}-NMR (100.613MHz, C₆D₆, 300K): $\delta = 2.91$ ppm (s, Si(Si(<u>C</u>H₃)₃)₃), $\delta = 3.40$ ppm(s, Si(Si(<u>C</u>H₃)₃)₃);¹³C{H}-NMR (100.613MHz, THF-D₈, 300K): $\delta = 3.94$ ppm (s, Si(Si(<u>C</u>H₃)₃)₃), $\delta = 2.82$ ppm(s, Si(Si(<u>C</u>H₃)₃)₃).

³¹P{H}- NMR(162.048MHz, C₆D₆, 300K): δ = -65.4ppm (m, broad, 2P), δ= -202.0ppm (m, broad, 1P), δ = -281.5ppm (m, broad, 2P). ³¹P{H}-NMR(101.256MHz, D₈-THF, 300K): δ (P1, P2)= -94.3 ppm(m,2P), δ(P4, P5)=-249.1ppm(m,2P). δ (P3)= -193.4ppm(m, 1P). ¹J_{p1,p4}=¹J_{p2,p5}= -336.6Hz, ²J_{p3,p4} = ²J_{p3,p5}=61.4Hz, ¹J_{p1,p3}=¹J_{p2,p3}=-178.8Hz, ²J_{p1,p5}=²J_{p2,p4}=-7.3Hz, ¹J_{p1,p2}=-195.3Hz, ³J_{p4,p5}=302.9Hz.

²⁹Si{H}-DEPT-NMR(79.495MHz, THF-d8, 300K): δ = -9.6ppm (m, broad, Si6, Si(<u>Si</u>(CH₃)₃)₃)), -11.7ppm (s, broad, Si4, Si5, Si(<u>Si</u>(CH₃)₃)₃)), -87.9ppm(dt, Si3, <u>Si</u>(Si(CH₃)₃)₃), ¹J_{P3,Si3}=-113.8Hz, ²J_{P1,Si3}=²J_{P2,Si3}=-7.3Hz), -92.6ppm(m, Si1,Si2, <u>Si</u>Si₃, ¹J_{P4,Si2}=¹J_{P5,Si1}=-98.8Hz, ²J_{P1,Si2}=²J_{P2,Si1}=-18.4Hz, ³J_{P3,Si2}=³J_{P1,Si1}=-14.3Hz, ⁴J_{P5,Si2}=⁴J_{P4,Si1}=15.6Hz).

5.3.11 Synthesis of Hyp₃P₄SnK (10)

To a solution of $Sn(N(SiMe_3)_2)_2$ (0.43g, 0.99mmol) in 5mL of toluene was added a solution of $K_2P_4(Si(SiMe_3)_3)_2 \cdot 2C_7H_8$ (0.87g, 0.99mmol) in 8 mL of toluene with stirring at - 20°C. The reaction solution changed colour gradually from deep red to yellow-brown. After 30min, the mixture was allowed to warm to room temperature and stirred for another 1h. The ³¹P-NMR(C₆D₆) spectrum of a sample of the reaction mixture indicated that compound **10** (δ -58.5(o, 1P), -192.4(t, 1P), -231.3(q, 1P), -256.1(d, 1P)) and KSnP₄(Si(SiMe_3)_3)_2N(SiMe_3)_2 (δ -128.2(o, 1P), -184.6(q, 1P), -211.0(q, 1P), -234.4(h, 1P)) formed in a molar ratio of 2:3. Toluene was removed in vacuo and the residue was extracted with 15mL of n-pentane followed by filtration through a porosity fritted glass filter. The filtrate was cooled at -20°C for 24h and fine yellow-orange crystalline solid precipitated. After decanting the supernatant

liquid, the residue was washed with 10mL of n-pentane in portions and extracted with benzene-d6. The ³¹P-NMR spectrum of this residue showed that it contained almost only compound **10**. On standing for several weeks at 5°C, a large well shaped orange X-ray diffraction quality crystal formed in the NMR tube.

Formula: [(Me₃Si)₃Si]₃P₄SnK

Mp(decomp.): crystal turned dark $> 168^{\circ}$ C.

¹**H-NMR**(250.133MHz, C₆D₆, 300K): $\delta = 0.60$ ppm (s, ²J_{Si,H}= 6.4Hz, 27H, Si(Si(C<u>H</u>₃)₃)₃), $\delta = 0.47$ ppm (s, ²J_{Si,H}= 6.4Hz, 27H, Si(Si(C<u>H</u>₃)₃)₃), $\delta = 0.39$ ppm (s, ²J_{Si,H}= 6.4Hz, 27H, Si(Si(C<u>H</u>₃)₃)₃);

¹³C{H}-NMR (62.896MHz, C₆D₆, 300K): $\delta = 4.1$ ppm (s, Si(Si(<u>C</u>H₃)₃)₃), $\delta = 4.0$ ppm (s, Si(Si(<u>C</u>H₃)₃)₃), $\delta = 3.3$ ppm (s, Si(Si(<u>C</u>H₃)₃)₃);

³¹P{H}-NMR(101.256MHz, C₆D₆, 300K): δ (P2)= -58.5 ppm(o,1P), δ (P4) = -192.4 ppm(t, 1P), δ(P3) = -231.3 ppm(q,1P), δ(P1) = -256.1 ppm(d, 1P); ${}^{1}J_{p1,p2}$ =-239Hz, ${}^{3}J_{p1,p4}$ = -11Hz, ${}^{1}J_{p2,p3}$ =-109Hz, ${}^{2}J_{p2,p4}$ =-169Hz, ${}^{1}J_{p3,p4}$ =-163Hz.

5.3.12 Synthesis of (Me₃Si)₂N(Hyp)₂P₄K₂(11)

To a suspension of $K_2P_4(Si(SiMe_3)_3)_2 \cdot 4C_6H_6$ (0.82g, 0.81mmol) in 10mL of n-pentane was added a solution of $Sn(N(SiMe_3)_2)_2$ (0.36g, 0.81mmol) in 15mL of n-pentane with stirring at -20°C. The reaction solution changed colour gradually from red to yellow-orange and a yellow precipitate formed. The mixture was allowed to come to room temperature after 30 min and stirred for another 1h. The ³¹P NMR(C₆D₆) spectrum of a sample of the reaction mixture indicated that the starting material was almost all converted into $KSnP_4(Si(SiMe_3)_3)_2N(SiMe_3)_2$ and $KN(SiMe_3)_2$. After filtration through a porosity fritted glass filter, the filtrate was concentrated under dynamic vacuum at room temperature until a few yellow-orange crystals appeared and then placed at -60°C for 24h. A mixture of $KSnP_4(Si(SiMe_3)_3)_2N(SiMe_3)_2$ and $KN(SiMe_3)_2$ was precipitated as a yellow-orange crystalline solid. Attempts of isolating $KSnP_4(Si(SiMe_3)_3)_2N(SiMe_3)_2$ failed.

¹**H-NMR**(400.132MHz, C₆D₆, 300K): $\delta = 0.58$ ppm (s, 27H, Si(Si(C<u>H</u>₃)₃)₃), $\delta = 0.43$ ppm (s, 27H, Si(Si(C<u>H</u>₃)₃)₃), $\delta = 0.24$ ppm (s, 18H, N(Si(C<u>H</u>₃)₃)₂).

³¹P{H}-NMR(101.256MHz, C₆D₆, 300K): δ (P2) = -128.2 ppm(o,1P), δ (P4) = -184.6 ppm(q, 1P), δ (P1) = -211.0 ppm(q,1P), δ (P3) = -234.4 ppm(h, 1P); ¹J_{p1,p2}=-167Hz, ¹J_{p1,p3}= - 195Hz, ¹J_{p2,p3}=-196Hz, ¹J_{p2,p4}=-213Hz, ¹J_{p3,p4}=-124Hz.

5.3.13 Synthesis of Hyp₄P₄Pb₄(12) and Hyp₂P₂(13)

a) Reaction of dihypersilylplumbylene with white phosphorus

A solution of $Pb(Si(SiMe_3)_3)_2$ (1.0g, 1.4mmol) in 10mL of toluene was added to a stirred suspension of white phosphorus(P₄, 0.086g, 0.7mmol) in 5mL of toluene at room temperature. The reaction mixture was heated to about 50°C for 20 min until white phosphorus was completely consumed. The resulting dark brown solution was then concentrated in vacuo to incipient crystallization and cooled at -60°C for 2d. Decanting of the supernatant liquid gave a dark brown crystalline solid. Recrystallization of this solid with cyclopentane and subsequent cooling at -20°C for several days afforded dark brown hexagonal shaped X-ray analysis suitable crystals of $Pb_4P_4(Si(SiMe_3)_3)_4$.

Yield: 0.38g(0.20mmol, 57%, based on plumbylene), dark brown hexagonal platelets.

Formula: Pb₄P₄(Si(SiMe₃)₃)₄

Mp(decomp.): crystals turned dark $>280.3^{\circ}$.

¹**H-NMR**(250.133MHz, C₆D₆, 300K): $\delta = 0.42$ ppm (s, 54H, Si(Si(C<u>H</u>₃)₃)₃).

¹³C{**H**}-NMR (50.323MHz, C₆D₆, 300K): $\delta = 2.7$ ppm (s, Si(Si(<u>C</u>H₃)₃)₃).

³¹**P**{**H**}-**NMR**(81.015MHz, C₆D₆, 300K): $\delta = -506.2$ ppm(s, with ²⁰⁷Pb satellites, Pb₄<u>P</u>₄).

²⁹Si{H}-NMR(39.761MHz, C₆D₆, 300K): $\delta = 7.4$ ppm (s, Si(Si(CH₃)₃)₃).

Elemental analysis: Cal: C: 22.25%; H: 5.60%

Exp: C: 22.47%; H: 6.27%

Further concentrating the supernatant liquid of the crystals of $Pb_4P_4(Si(SiMe_3)_3)_4$ mentioned above and cooling at -60°C for several days yielded light green crystals, which were not suitable for X-ray analysis, but identified unambiguously as (SiMe₃)₃SiP=PSi(SiMe₃)₃ according to the ³¹P NMR spectrum: ¹H-NMR(250.133MHz, C₆D₆, 300K): δ 0.36(s, ${}^{2}J_{Si,H}$ = 6.65Hz, SiMe₃); ${}^{13}C{H}$ -NMR (62.896MHz, C₆D₆, 300K): δ 1.87(s,SiMe₃); ${}^{31}P{H}$ -NMR(101.256MHz, C₆D₆, 300K): δ 735.2(s, ${}^{1}J_{Si,P}$ =46.2Hz). The final supernatant liquid contained then $P_7(Si(SiMe_3)_3)_3(^{31}P{H}-NMR(101.256MHz, C_6D_6, 300K))$: 8.6(m,3P), -102.0(m,1P), -163.0(m,3P)), $P_4(Si(SiMe_3)_3)_2$ (³¹P{H}-NMR(101.256MHz, C₆D₆, 300K):-153.6(t, ¹Jp,p=161Hz,2P), -329.8(t, 2P)) as well as some other phosphorus-containing compounds according to ³¹P NMR spectrum.

b) Reaction of lead bis[bis(trimethylsilyl)amide] with hypersilylphosphane

0.16g(0.30mmol) of $[(Me_3Si)_2N]_2Pb$ and 0.085g(0.30mmol) $(Me_3Si)_3SiPH_2$ were solved in 2 mL of toluene at room temperature. The reaction mixture was allowed to warm up to about 50°C for 20 min and the colour of the solution turned to brown. According to ³¹P NMR spectrum of the resulting mixture, $(Me_3Si)_3SiPH_2$ were converted to **12** quantitatively. The solution was then concentrated under reduced pressure and cooled at -60°C. After 12h, dark brown hexagonal shaped crystals of $[(Me_3Si)_3SiPPb]_4$ formed. Yield: 82%.

5.3.14 Synthesis of Hyp₄P₄Sn₄ (14)

a). Reaction of dihypersilylstannylene with white phosphorus

A solution of $Sn(Si(SiMe_3)_3)_2$ (1.4g, 2.3mmol) in 15mL of toluene was added to a suspension of white phosphorus(P₄, 0.14g, 1.15mmol) in 5mL of toluene with stirring at room temperature. The reaction mixture was then heated to about 50°C for 20 min until white phosphorus was completely consumed. The ³¹P-NMR(C₆D₆) spectrum of this reaction mixture indicated that along with $Sn_4P_4(Si(SiMe_3)_3)_4$ some $(SiMe_3)_3SiP=PSi(SiMe_3)_3$ (δ 735.2(s, ¹J_{Si,P}=46.2Hz)) formed. Removal of all volatile compounds in vacuo gave a dark brown residue. Extracting the residue with toluene and cooling the brown saturated extract at 5°C for several days afforded hexagonal-shaped dark brown X-ray diffraction quality crystals of $Sn_4P_4(Si(SiMe_3)_3)_4$. Recrystallization with cyclohexane or benzene gave also X-ray diffraction quality crystals.

Yield: 0.47g (0.30mmol, 52%, based on stannylene), hexagonal-shaped dark brown crystals.

Formula: Sn₄P₄(Si(SiMe₃)₃)₄

¹**H-NMR**(250.133MHz, C₆D₆, 300K): $\delta = 0.43$ ppm(s, ²J_{Si,H}= 6.4Hz, Si(Si(C<u>H</u>₃)₃)₃).

¹³C{**H**}-**NMR** (50.323MHz, C₆D₆, 300K): $\delta = 2.6$ ppm (s, Si(Si(<u>C</u>H₃)₃)₃).

³¹P{H}-NMR(81.015MHz, C₆D₆, 300K): $\delta = -463.6 \text{ ppm}(\text{s}, {}^{117/119}\text{Sn satellites}, \text{Sn}_4\underline{P}_4)$. ¹¹⁹Sn{¹H}- NMR(74.631MHz, C₆D₆, 300K) : $\delta = 1515.7 \text{ppm}(\text{qd}, {}^{1}J_{\text{Sn},\text{P}} = 741\text{Hz}, {}^{3}J_{\text{Sn},\text{P}} = 138\text{Hz}, \underline{\text{Sn}}_4\text{P}_4)$.

b) Reaction of tin bis[bis(trimethylsilyl)amide] with hypersilylphosphane

0.19g(0.44mmol) of $[(Me_3Si)_2N]_2Sn$ and 0.12g(0.44mmol) $(Me_3Si)_3SiPH_2$ were solved in 3 mL of toluene at room temperature. The reaction mixture was heated to about 50°C for 20 min and the colour of the solution turned to red-brown. According to ³¹P NMR spectrum of the resulting mixture, **14** was quantitatively formed. The solution was concentrated under

reduced pressure and cooled at -60°C. After 24h, brown crystals of [(Me₃Si)₃SiPSn]₄ precipitated. Yield: 79%.

5.3.15 Synthesis of Li[Hyp₂Pb·PH₂] (15)

a). Reaction of dihypersilylplumbylene with lithium phosphanide in diethyl ether

To a precooled (-20°C) stirred suspension of LiPH₂·0.86DME (0.23g, 2.0mmol) in 22mL of diethyl ether was added dropwise a solution of Pb(Si(SiMe₃)₃)₂ (1.37g, 2.0mmol) in 8mL of diethyl ether. The deep blue reaction mixture turned gradually to orange-red. After stirring for about 1h, the reaction mixture was allowed to come to room temperature and stirred for an additional 10min. The resulting mixture was then filtered through a porosity fritted glass filter and the filtrate was concentrated under reduced pressure. Cooling of the saturated orange-red solution at -60°C for 24h provided yellow-brown X-ray diffraction quality crystals of Pb(Si(SiMe₃)₃)·LiPH₂·DME·Et₂O, which turned to dark brown by immerging in nujol in the air.

Yield: 1.61g(1.8mmol, 91%), air- and moisture-sensitive yellow-brown crystals.

 $\textbf{Formula:} ((Me_{3}Si)_{3}Si)_{2}Pb \cdot LiPH_{2} \cdot DME \cdot Et_{2}O.$

Mp (decomp.): crystals turned dark >108 °C.

¹**H-NMR**(400.130MHz, THF-d8, 253K): $\delta = 0.17$ ppm(s, 54H, Si(Si(C<u>H</u>₃)₃)₃), $\delta = 0.86$ ppm(d, ¹J_{P,H}= 155Hz, 2H, P<u>H</u>₂); $\delta = 1.10$ ppm(t, (C<u>H</u>₃CH₂)₂O), $\delta = 3.35$ ppm (q, (CH₃C<u>H</u>₂)₂O); $\delta = 3.25$ ppm (s, C<u>H</u>₃O(CH₂)₂OC<u>H</u>₃), $\delta = 3.42$ ppm (s, CH₃O(C<u>H</u>₂)₂OCH₃).

¹³C{¹H }- NMR (62.896MHz, THF-d8, 253K): $\delta = 5.6$ ppm(s, Si(Si(<u>C</u>H₃)₃)₃), $\delta = 15.8$ ppm(s, (<u>C</u>H₃CH₂)₂O), $\delta = 66.4$ ppm(s, (CH₃<u>C</u>H₂)₂O); $\delta = 58.9$ ppm(s, <u>C</u>H₃O(CH₂)₂O<u>C</u>H₃), $\delta = 72.7$ ppm(s, CH₃O(<u>C</u>H₂)₂OCH₃).

³¹**P-NMR**(101.256MHz, THF-d8, 253K): δ= -280.9ppm(t, ¹J_{P,H}= 155Hz, <u>P</u>H₂);

³¹**P**{¹**H**}-**NMR**(81.015MHz, Et₂O+10%THF-d8, 253K) : δ = -278.8ppm(s, ¹J_{P,Pb}= 653Hz, <u>P</u>H₂).

⁷Li{¹H}- NMR(77.779MHz, Et₂O+10%THF-d8, 253K): δ= 2.1ppm.

²⁹Si{¹H }-NMR(79.495MHz, THF-d8, 253K): δ = -3.6ppm (s, Si(Si(CH₃)₃)₃), δ =-135.2ppm (d, Si(CH₃)₃)₃, ¹J_{Si,Pb}= 1555Hz).

b) Reaction of dihypersilylplumbylene with lithium phosphanide in DME(1:1)

A solution of Pb(Si(SiMe₃)₃)₂ (1.10g, 1.56mmol) in 5mL of DME was added to a precooled(-20°C) suspension of LiPH₂·0.86DME (0.184g, 1.56mmol) in 5mL of DME with stirring. Immediately, the reaction mixture changed colour to violet-red. After stirring for 1h at -20°C, the mixture was allowed to come to room temperature and filtered through a porosity fritted glass filter. The ³¹P-NMR (THF-d8) spectrum of the filtrate indicated that an adduct Hyp₂Pb·LiPH₂ was almost quantitatively formed.

³¹**P**{¹**H**}-**NMR**(101.256MHz, DME +10% THF-d8, 253K) : δ = -279.7ppm(s, ¹J_{P,Pb}= 563Hz, <u>P</u>H₂);

³¹**P-NMR** (101.256MHz, DME +10% THF-d8, 253K): δ= -279.7ppm(t, ¹J_{P,H}= 155.1Hz, 1 J_{P,Pb}= 564Hz, <u>P</u>H₂).

5.3.16 Synthesis of Li[Hyp₂Pb·P(H)Hyp] (16)

To a precooled (-20°C) suspension of LiPH₂·0.86DME (0.16g, 1.4mmol) in 6mL of DME was added a solution of Pb(Si(SiMe₃)₃)₂ (1.0g, 1.4mmol) in 6mL of DME with stirring. The reaction mixture changed colour gradually to deep violet-red. After stirring about 1h at -20°C, the mixture was allowed to warm to room temperature and stirred for an additional 10min, followed by filtration through a G4 porosity fritted glass filter, the deep violet-red filtrate was concentrated to about 4mL under vacuum. Cooling of the resulting solution to -60°C for several weeks, didn't afforded crystals. Removal of the solvent(DME) under vacuum and crystallization of the dark brown residue with THF at -60°C for several days afforded dark brown crystals, which were not suitable for single-crystal X-ray analysis. After removal of the supernatant liquid, the crystals were washed with n-pentane and extracted with diethyl ether. On cooling to -60°C for several weeks, dark red crystals of title compound precipitated, which was investigated by X-ray diffraction analysis. Unfortunately, the cation moieties were disordered in the crystal and the structure determination gave bad-defined structural parameters; however, the anion [Hyp₂Pb·P(H)Hyp]⁻ was ordered and could be unambiguously identified.

5.3.17 Synthesis of [HypP(H)PbHyp]₂ (17)

a) Reaction of [(Me₃Si)₃Si]₂Pb with PH₃

Dry PH₃ gas [generated from reaction of LiPH₂·0.86DME (0.33g, 2.8mmol) with 2,6-di-^tBu-phenol (0.58g, 2.8mmol) in 16 mL of diethyl ether] was bubbled through a solution of [(Me₃Si)₃Si]₂Pb (0.91g, 1.3mmol) in 10mL of n-pentane at room temperature. After 20 minutes the dark blue solution changed colour to red-brown. The resulting solution was concentrated in dynamic vacuum at ambient temperature until a few dark brown crystals appeared then placed at -60°C for several days. The compound **17** was obtained as black crystals in 54% yield (based on PbHyp₂). X-ray diffraction-quality crystals of **17** was crystallized from diethyl ether for several weeks at -60°C.

¹**H** NMR (400.132MHz, toluene-*d*₈): **298K**: $\delta = 0.34$ (s, 54H, ²J_{Si,H}=6.2Hz, SiMe₃), 0.52(s, 54H, ²J_{Si,H}=6.5Hz, SiMe₃), 3.40(m, 2H, ¹J_{P,H}=232.8Hz, ³J_{P,H}= 1.4Hz, ⁴J_{H,H}= 0 Hz, ²J_{P,P}= 60.7Hz, P*H*) ppm; **253K**: $\delta = 0.35$ (s, 54H, ²J_{Si,H}=6.2Hz, SiMe₃), 0.59(s, 54H, ²J_{Si,H}=6.5Hz, SiMe₃), 3.59(m, 2H, ¹J_{P,H}=233.9Hz, ³J_{P,H}= 1.9Hz, ⁴J_{H,H}= 0 Hz, ²J_{P,P}= 63.4Hz, P<u>H</u>)ppm.

¹³C{¹H} NMR(100.613MHz, toluene- d_8): **298K**: δ = 3.3(s, SiMe₃), 6.9(s, SiMe₃) ppm; **253K**: δ = 3.0(s, SiMe₃), 6.6(s, SiMe₃)ppm.

³¹**P NMR**(101.256MHz, benzene-d6, 300K): -367.4(m, ${}^{1}J_{P,H}= 233.2Hz$, ${}^{3}J_{P,H}= 2.3Hz$, ${}^{4}J_{H,H}= 0$ Hz, ${}^{2}J_{P,P}= 59.8$ Hz, 207 Pb satellites: ${}^{1}J_{P,Pb}=1622$ Hz) ppm.

³¹**P NMR**(161.975MHz, touluene-*d*₈, 298K): δ = -367.0(m, 2H, ¹J_{P,H}=232.8Hz, ³J_{P,H}= 1.4Hz, ⁴J_{H,H}= 0 Hz, ²J_{P,P}= 60.7Hz, ²⁰⁷Pb satellites: ¹J_{P,Pb}=1620Hz) ppm.

³¹P{H} NMR(161.975MHz, touluene- d_8 , 298K): δ = -367.0(s, ²⁰⁷Pb satellites:

 ${}^{1}J_{P,Pb}$ =1620Hz) ppm.

³¹**P** NMR(161.975MHz, toluene- d_8 , 253K): δ = -370.0(m, 2H, ¹J_{P,H}=233.9Hz, ³J_{P,H}= 1.9Hz, ⁴J_{H,H}= 0 Hz, ²J_{P,P}= 63.4Hz, ²⁰⁷Pb satellites: ¹J_{P,Pb}=1622Hz)ppm.

²⁹Si{H} NMR(79.490MHz, toluene- d_8 , 298K): $\delta = -0.2$ (s, Si(SiMe₃)₃), -4.9 (s, Si(SiMe₃)₃) ppm.

²⁹Si{H} NMR(79.490MHz, toluene- d_8 , 253K): $\delta = -0.2$ (s, Si(SiMe₃)₃), -5.0 (s, Si(SiMe₃)₃).

b) Reaction of [(Me₃Si)₃Si]₂Pb with (Me₃Si)₃SiPH₂

0.093g(0.13mmol) of $[(Me_3Si)_3Si]_2Pb$ and 0.037g(0.13mmol) $(Me_3Si)_3SiPH_2$ were solved in 1 mL of benzene- d_6 and sealed in a 5mm i. d. NMR tube at room temperature. After 30min, the ³¹P{H} NMR (161.975MHz, C₆D₆, 298K) spectrum of the resulting mixture showed that more than 70% phosphorus was converted to **17** (identified by comparison with an authentic sample prepared above), which then decomposed gradually on standing at ambient temperature. Note: After a solution of **17** in toluene- d_8 had been stored for 24h at ambient temperature in a sealed NMR tube, the resonance of **17** was no longer observable in the ³¹P NMR and ¹H NMR spectra, new signals appeared instead, which could be assigned to the compounds **12**, (Me₃Si)₃SiPH₂ (identified by comparison with authentic sample), and (Me₃Si)₃SiH.

5.3.18 Synthesis of K[Hyp₂Pb·PH₂] (18)

To a precooled (-20°C) suspension of KPH₂ (0.073g, 1.01 mmol) in 10mL of diethyl ether was added a solution of Pb(Si(SiMe₃)₃)₂ (0.71 g, 1.01 mmol) in 10mL of diethyl ether with stirring. The deep blue reaction mixture developed immediately a orange-brown colour. After stirring for approximately 1h, the mixture was allowed to come to room temperature and continued stirring for about 10min. The mixture then filtered through a porosity fritted glass filter and the filtrate was concentrated under reduced pressure. After adding 0.5 mL triazine, the resulting solution was cooled in a -60°C refrigerator for several days to afford the orange-brown crystals of Hyp₂Pb·KPH₂ (as triazine adduct).

Yield: 0.95g.

Formula: $[(Me_3Si)_3Si]_2Pb \cdot KPH_2 \cdot 2[(MeNCH_2)_3]$

¹**H-NMR** (400.132 MHz, THF-d8 + 50% toluene, 253K): $\delta = 0.21$ ppm(s, Si(Si(C<u>H</u>₃)₃)₃); $\delta = 0.95$ ppm,(d, ¹J_{P,H}=156Hz, P<u>H</u>₂); $\delta = 1.99$ ppm(t, (NC<u>H</u>₃), $\delta = 2.36$ (s), 2.38 (s) ppm (NCH₂N).

¹³C{H}-NMR(100.613 MHz, THF-d8 + 50% toluene, 253K): δ =5.5 ppm(s, Si(Si(<u>C</u>H₃)₃)₃), δ =40.2 ppm (s, N<u>C</u>H₃), δ = 77.9 ppm(s, NCH₂N).

³¹P{H}-NMR(161.976 MHz, THF-d8 + 50% toluene, 253K): $\delta = -281.7$ ppm (s, ¹J_{Pb,P}= 590 Hz).

³¹**P-NMR**(161.976 MHz, THF-d8 + 50% toluene, 253K): $\delta = -281.7$ ppm (t, ¹J_{P,H}=156Hz, ¹J_{Pb,P}= 590 Hz).

²⁹Si{¹H}- NMR (79.495 MHz, THF-d8 + 50% toluene, 253K): $\delta = -3.46$ ppm (s, SiSi₃); -133.94 ppm (s, SiSi₃).

5.3.19 Synthesis of Li[(Hyp₂Pb)₂·PH₂] (19)

a) Reaction of dihypersilylplumbylene with lithium phosphanide in DME(2:1)

A solution of $Pb(Si(SiMe_3)_3)_2$ (2.41g, 3.43mmol) in 15mL of DME was added to a precooled(-20°C) suspension of LiPH₂·0.86DME (0.20g, 1.72mmol) in 10mL of DME with stirring. The reaction mixture changed colour immediately to dark violet-red. After stirring for

lh, the mixture was allowed to come to room temperature and filtered through a porosity fritted glass filter. The ³¹P-NMR(THF-d8) spectrum of the filtrate indicated that along with some of LiPH₂ · Pb(Si(SiMe₃)₃)₂ and small amounts of some other phosphorus- and lead-containing compounds, adduct LiPH₂ · 2Pb(Si(SiMe₃)₃)₂ was formed as the main product . The resulting reaction mixture was filtered through a porosity fritted glass filter and the solvent was removed in vacuo. The residue was then washed with 15mL of pentane in portions and extracted with 20mL of diethyl ether. Reduction of the volume of the extract to approximately 4mL and cooling at -60°C for several days led to the deposition of dark brown crystals of Hyp₂Pb·LiPH₂(as DME solvate). Due to the strong disordering of the cation moiety, the single-crystal X-ray diffraction analysis revealed only a structure of the anion moiety [(Hyp₂Pb)₂PH₂]⁻ for this compound.

Yield: 1.23g

Formula: $(((Me_3Si)_3Si)_2Pb)_2 \cdot LiPH_2 \cdot xDME.$

¹**H-NMR**(250.133MHz, THF-d8, 253K): δ =0.24ppm(s, Si(Si(C<u>H</u>₃)₃)₃), δ =3.26 ppm (s, C<u>H</u>₃O(CH₂)₂OC<u>H</u>₃), δ =3.42ppm(s, CH₃O(C<u>H</u>₂)₂OCH₃).

¹³C{¹H}-NMR (62.896MHz, THF-d8, 253K): δ =6.4ppm(s, Si(Si(<u>C</u>H₃)₃)₃), δ =58.9ppm(s, <u>C</u>H₃O(CH₂)₂O<u>C</u>H₃), δ =72.6ppm(s, CH₃O(<u>C</u>H₂)₂OCH₃).

³¹**P-NMR**(101.256MHz, THF-d8, 253K):δ= -350.5ppm(t, ¹J_{P,H}= 222Hz, <u>P</u>H₂);

³¹**P**{¹**H**}-**NMR** (101.256MHz, THF-d8, 253K) : $\delta = -350.5$ ppm(s, ¹J_{P,Pb}= 1411Hz, <u>P</u>H₂).

b) Reaction of dihypersilylplumbylene with lithium phosphanide (2:1) in 12-crown-4 ether

A diethyl ether (10mL) solution of Pb(Si(SiMe₃)₃)₂ (1.20g, 1.7mmol) was slowly added to a diethyl ether (10mL) suspension of LiPH₂·0.86DME (0.10g, 0.85mmol) and 12-crown-4 ether (0.30g, 1.7mmol) with stirring at -25°C. Gradually, the reaction mixture became dark violet-red. After 1h, the mixture was allowed to warm up to room temperature and stirred for an additional 10min. After filtration through a G3 porosity fritted glass filter, the filtrate was dried under vacuo. The residue was washed with 10mL of n-pentane in portions and extracted with in 8mL of diethyl ether. The volume of the solution was then reduced to about 4mL under reduced pressure. Cooling of the solution to -60°C for several days led to recrystallization of 2Hyp₂Pb·LiPH₂ as ether solvate. Again, due to the strong disordering of the cation moiety, the single-crystal X-ray diffraction analysis revealed only a structure of the anion moiety [(Hyp₂Pb)₂PH₂]⁻ for this compound. Yield: 1.02g, dark brown, air- and moisture-sensitive crystals.

Formula: $2Pb(Si(SiMe_3)_3)_2 \cdot LiPH_2 \cdot x12$ -crown- $4 \cdot yDME \cdot zEt_2O$.

¹**H-NMR**(250.133MHz, THF-d8, 253K): $\delta = 0.25$ ppm(s, 54H, Si(Si(C<u>H</u>₃)₃)₃); $\delta =$

1.11ppm(t, CH₃CH₂)₂O), δ =3.37ppm(q, CH₃CH₂)₂O); δ =3.26ppm(s, CH₃O(CH₂)₂OCH₃),

 δ =3.42ppm(s, CH₃O(C<u>H₂</u>)₂OCH₃); δ =3.70ppm(s, 12-crown-4 ether);

¹³C{¹H}-NMR(62.896MHz, THF-d8, 253K): δ 6.4ppm(s, Si(Si(<u>CH</u>₃)₃)₃); δ =15.7ppm(s, <u>CH</u>₃CH₂)₂O), δ =66.4ppm(s, CH₃<u>C</u>H₂)₂O); δ =58.8ppm(s, <u>CH</u>₃O(CH₂)₂O<u>C</u>H₃), δ =72.6ppm(s, CH₃O(<u>CH</u>₂)₂OCH₃); δ =68.9ppm(s, 12-crown-4 ether);

³¹**P-NMR**(101.256MHz, THF-d8, 253K) : δ = -350.5ppm(s, ¹J_{P,Pb}= 1420Hz);

³¹**P**{¹**H**}-NMR(81.015MHz, Et₂O+10% THF-d8, 253K) : δ = -350.5ppm(t, ¹J_{P,H}= 222Hz);

⁷Li{¹H}-NMR(77.779MHz, Et₂O+10%THF-d8, 253K): δ= 2.2ppm(s);

²⁹Si{¹H}-NMR((49.694MHz, Et₂O+10%THF-d8, 253K)): δ = 3.4 ppm(s, Si(Si(CH₃)₃)₃).

c) Reaction of dihypersilylplumbylene with 15a (2:1) in diethyl ether in presence of triazine

A solution of Pb(Si(SiMe₃)₃)₂ (0.56g, 0.80mmol) in 6mL of diethyl ether was added to a stirred solution of Hyp₂Pb·LiPH₂·DME ·Et₂O (0.69g, 0.80mmol) in 9mL of diethyl ether and 1mL of triazine at -20°C. The reaction led almost quantitatively to a deep violet-red solution of expected adduct 2PbHyp₂·LiPH₂ after 1 hour according to the ³¹P-NMR spectrum of a sample of the resulting solution. The volume of the solution was then reduced to about 4 mL under reduced pressure and the resulting saturated solution was cooled to -60°C for several days to give dark brown crystals of 2PbHyp₂·LiPH₂ as triazine solvate. Attempts to grow single crystals suitable for X-ray diffraction investigation failed.

Yield: 0.97g, dark brown, air- and moisture-sensitive crystals.

Formula: 2Pb(Si(SiMe₃)₃)₂ ·LiPH₂·x triazine·yEt₂O.

temp.	-50°C	-30°C	-20°C	-10°C	0°C	25°C
Р <u>Н</u> 2	d	d	d (br)	d (br)	d (br)	d (br)
	2.53 3.09	2.52 3.08	2.50 3.05	2.48 3.03	2.45 3.01	2.39 2.94
	(223Hz)	(223Hz)	(222Hz)	(221Hz)	(220Hz)	(218Hz)
С <u>Н</u> ₃	d	d	s	s	s	s
(Нур)	0.223 0.238	0.227 0.242	0.243	0.247	0.252	0.259
C <u>H</u> ₃	s	s	s	s	s	s
(triazine)	2.154	2.158	2.165	2.17	2.17	2.18
C <u>H</u> ₂ (triazine)	d 2.56(10.0Hz) d	d 2.57(10.0Hz) d	d(br) 2.59(9.1Hz) d(br)	s (br) 2.60 s(br)	s (br) 2.61 s(br)	s (very br) 3.1

¹**H-NMR**(400.13MHz, THF-d8, δ: ppm)

	3.54(10.3Hz)	3.54(10.3Hz)	3.53(9.4Hz)	3.52	3.51	
$\begin{array}{c} C\underline{H}_{3} \\ (Et_{2}O) \end{array}$	t	t	t	t	t	t
	1.10(7.0Hz)	1.10(7.0Hz)	1.10(7.0Hz)	1.10(7.0Hz)	1.10(7.0Hz)	1.10(7.0Hz)
$\begin{array}{c} C\underline{H}_2\\ (Et_2O) \end{array}$	q	q	q	q	q	q
	3.35(7.0Hz)	3.35(7.0Hz)	3.36(7.0Hz)	3.36(7.0Hz)	3.36(7.0Hz)	3.37(7.0Hz)

¹³C-NMR(100.613MHz, THF-d8, 243K): δ = 6.4ppm(s, ¹J_{Si,C}=42Hz, Si(Si(<u>C</u>H₃)₃)₃); δ = 15.8ppm(s, <u>C</u>H₃CH₂)₂O), δ = 66.5 ppm (s, CH₃<u>C</u>H₂)₂O); δ = 40.5 ppm (s, N-<u>C</u>H₃), δ = 78.2 ppm (s, N-<u>C</u>H₂-N)(triazine).

³¹P{H}-NMR(161.93MHz, THF-d8, 243K): δ = -352.0ppm (s, ²⁰⁷Pb satellites: ¹Jp,pb=1420Hz);

³¹**P-NMR**(161.93MHz, THF-d8, 243K): δ = -352.0ppm (t, ¹Jp,_H=222Hz, with ²⁰⁷Pb satellites).

⁷**Li**{**H**}-**NMR**(155.51MHz, THF-d8, 243K): δ= 0.95ppm(s).

²⁹Si{H}-NMR(79.50MHz, THF-d8, 298K): δ = -2.36ppm (s, Si(Si(CH₃)₃)₃).

²⁹Si{H}-NMR(79.50MHz, THF-d8, 223K): δ = -2.05ppm, δ =-2.56ppm (d, Si(Si(CH₃)₃)₃).

5.3.20 Synthesis of K[(Hyp₂Pb)₂·PH₂] (20)

a) Reaction of dihypersilylplumbylene(excess) with potassium phosphanide

LiPH₂·0.86DME (1.0g, 8.53mmol) and 2,6-di-^tBu-phenol (1.76g, 8.53mmol) were brought together at -70°C in 25mL of DME. The mixture was slowly warmed to room temperature, and the liberated gas PH₃ was then bubbled through a solution of Pb[Si(SiMe₃)₃]₂ (1.60g, with a small amount of KN(SiMe₃)₂ as by product from the preparation) in 25mL of n-pentane at a temperature below -30°C. After 30 minutes the dark blue solution changed colour to violet-red and a dark brown precipitate formed. This precipitate was then separated by filtration and extracted with a 5 mL of diethyl ether. Cooling to -60°C led to the crystallization of KPH₂·2Pb[Si(SiMe₃)₃]₂ as ether solvate.

Yield: 0.18g.

Formula: $KPH_2 \cdot 2Pb[Si(SiMe_3)_3]_2 \cdot xDME \cdot yEt_2O$.

temp.	-70°C	-60°C	-30°C	-20°C	25°C
PH ₂	d	d	d	d (br)	d(br)
	2.55 3.11	2.54 3.10	2.51 3.07	2.51 3.06	2.25 2.77
	(224Hz)	(224Hz)	(222Hz)	(222Hz)	(215Hz)
SiMe ₃	d	d	s	s	s
	0.22 0.24	0.23 0.24	0.238	0.243	0.26

¹**H-NMR**(400.13MHz, THF-d8, δ:ppm):

CH ₃	s	s	s	s	s
(DME)	3.25	3.25	3.25	3.25	3.26
CH ₂	s	s	s	s	s
(DME)	3.41	3.41	3.41	3.41	3.42
CH ₃	t	t	t	t	t
(Et ₂ O)	1.10(7.0Hz)	1.10(7.0Hz)	1.10(7.0Hz)	1.10(7.0Hz)	1.11(7.0Hz)
CH ₂	q	q	q	q	q
(Et ₂ O)	3.35(7.0Hz)	3.35(7.0Hz)	3.36(7.0Hz)	3.36(7.0Hz)	3.37(7.0Hz)

¹³C-NMR(100.613MHz, THF-d8, 253K): δ = 6.5ppm(s, ¹J_{Si,C}=43Hz, Si(Si(C<u>H</u>₃)₃)₃); δ = 15.8ppm(s, <u>C</u>H₃CH₂)₂O), δ = 66.5ppm(s, CH₃<u>C</u>H₂)₂O); δ = 58.9ppm(s, <u>C</u>H₃O(CH₂)₂O<u>C</u>H₃), 72.7(s, CH₃O(<u>C</u>H₂)₂OCH₃).

²⁹Si{H}-NMR(79.495MHz, THF-d8, 300K): $\delta = -2.4$ ppm(s, Si(Si(CH₃)₃)₃);

²⁹Si{H}-NMR(79.495MHz, THF-d8, 223K): δ = -2.0ppm(s, Si(Si(CH₃)₃)₃), δ = -2.6ppm(s, Si(Si(CH₃)₃)₃), -82.0(m, Si(Si(CH₃)₃)₃).

³¹P{H}-NMR(161.976MHz, THF-d8, 253K): $\delta = -350.9$ ppm(s, ²⁰⁷Pb satellites: ¹J_{P,Pb}=1420Hz).

³¹**P-NMR**(161.976MHz, THF-d8, 253K): δ = -350.9ppm(t, ¹J_{P,H=}222Hz, with ²⁰⁷Pb satellites).

Note: Single-crystal X-ray diffraction analysis suitable crystals were recrystallized from a mixture of diethyl ether and triazine at -60°C.

b) Reaction of dihypersilylplumbylene with potassium phosphanide

To a precooled(-20°C) suspension of KPH₂ (0.04g, 0.55mmol) in 5mL of diethyl ether was added a solution of Pb(Si(SiMe₃)₃)₂ (0.78g, 1.1mmol) in 15mL of diethyl ether and 1mL of triazine(6.9mmol) with stirring. The reaction mixture turned to deep violet-red immediately. After stirring for about 30min at -20°C, the mixture was allowed to warm to room temperature and stirred for an additional 10min. The volume of the resulting solution was reduced to about 5 mL under vacuum. On cooling to -60°C for several days, dark red crystals of title compound precipitated.

Yield: 0.91g(92%).

Formula: KPH₂·2Pb[Si(SiMe₃)₃]₂·3(MeNCH₂)₃.

¹³C-NMR(100.613MHz, THF-d8, 253K): δ = 6.6ppm(s,Si(Si(<u>C</u>H₃)₃)₃); δ = 40.6 ppm (s, N-<u>C</u>H₃), δ = 78.5 ppm (s, N-<u>C</u>H₂-N)(triazine).

³¹P{H}-NMR(161.93MHz, THF-d8, 253K): δ = -350.91ppm (s, ²⁰⁷Pb satellites: ¹Jp,pb=1400Hz);

³¹**P-NMR**(161.93MHz, THF-d8, 253K): δ = -350.9ppm (t, ¹Jp,_H=222Hz, with ²⁰⁷Pb satellites).

5.3.21 Synthesis of Hyp₂Sn·PMe₃ (21)

To a precooled(-20°C) solution of Sn(Si(SiMe₃)₃)₂ (0.82g, 1.3mmol) in 5mL of n-pentane was added dropwise a solution of trimethylphosphane (0.10g, 1.3mmol) in 3mL of n-pentane with stirring at -20°C. Immediately the reaction solution changed colour from dark brown to yellow-brown. After stirring for about 1h, the resulting solution was allowed to come to room temperature and concentrated under reduced pressure. The yellow-brown saturated solution was cooled at -60°C for 2 days to afford orange crystals of Hyp₂Sn·PMe₃ in good yield. Attempts to obtain X-ray diffraction suitable single crystal by recrystallization with n-pentane, cryclopentane, or toluene failed.

Yield: 0.79g(1.1mmol, 88%), air- and moisture-sensitive yellow-orange crystals.

Formula: Sn(Si(SiMe₃)₃)₂·P(CH₃)₃

¹**H-NMR**(250.133MHz, C₆D₆, 300K): $\delta = 0.44$ ppm(s, ²J_{Si,H}= 6.3Hz, 54H, Si(Si(C<u>H</u>₃)₃)₃), $\delta = 1.07$ ppm(d, ²J_{P,H}= 7.5Hz, 9H, P(C<u>H</u>₃)₃).

¹³C{H}-NMR (62.896MHz, C₆D₆, 300K): $\delta = 5.3$ ppm (s, Si(Si(<u>C</u>H₃)₃)₃). $\delta = 18.7$ ppm(d, ¹J_{P,C}= 7.8Hz, P(<u>C</u>H₃)₃).

³¹**P{H}-NMR**(101.256MHz, C₆D₆, 300K): $\delta = -61.0$ ppm(s, <u>P</u>(CH₃)₃).

³¹P{H}-NMR(101.256MHz, cyclopentane+10%C₆D₆, 243K): δ = -60.1ppm(s,

¹J_{119Sn,P}=1960 Hz, ¹J_{117Sn,P}=1881 Hz, <u>P</u>(CH₃)₃).

²⁹Si-NMR(39.761MHz, C₆D₆, 300K): δ = -6.9ppm(s, Si(<u>Si</u>(CH₃)₃)₃), δ =-126ppm(s, <u>Si</u>(Si(CH₃)₃)₃).

¹¹⁹Sn{¹H}-NMR(74.631MHz, C₆D₆, 300K): δ =-37ppm(d, ¹J_{119Sn,P}= 1930Hz).

5.3.22 Synthesis of Hyp₂Pb·PMe₃ (22)

To a precooled(-20°C) solution of $Pb(Si(SiMe_3)_3)_2$ (0.80g, 1.1mmol) in 5mL of n-pentane was added a solution of trimethylphosphane (0.086g, 1.1mmol) in 3mL of n-pentane with stirring at -20°C. The reaction mixture turned immediately from deep blue to deep red. After stirring for about 1h, the resulting solution was allowed to come to room temperature and

concentrated under reduced pressure. The deep red saturated solution was cooled at -60° C for 2 days to provide dark red crystals of Hyp₂Pb·P(CH₃)₃. Attempts to obtain X-ray diffraction analysis suitable single crystal by recrystallization with n-pentane, cyclopentane, or toluene failed.

Yield: 0.79g(0.99 mmol, 90%). air- and moisture-sensitive dark red crystals.

Formula: Pb(Si(SiMe₃)₃)₂·P(CH₃)₃.

¹**H-NMR**(250.133MHz, C₆D₆, 300K): δ = 0.48ppm(s, 54H, Si(Si(C<u>H</u>₃)₃)₃), δ = 1.17ppm(d, ²J_{P,H}= 5.7Hz, 9H, P(C<u>H</u>₃)₃).

¹³C{H}-NMR (62.896MHz, C₆D₆, 300K): $\delta = 6.5$ ppm (s, Si(Si(<u>C</u>H₃)₃)₃). $\delta = 19.8$ ppm(d, ¹J_{P,C}= 5.0Hz, P(<u>C</u>H₃)₃).

³¹P{H}-NMR(101.256MHz, C₆D₆, 300K): $\delta = -111.8 \text{ ppm}(s, \underline{P}(CH_3)_3).$

5.3.23 Synthesis of Hyp₆Pb₁₂ (23)

Reaction of dihypersilylplumbylene with PH₃

Dry PH₃ gas (generated from the reaction of LiPH₂·0.86DME (1.0g, 8.53mmol) with 2,6di-^tBu-phenol (1.76g, 8.53mmol) in 25 mL of DME) was bubbled through a solution of Pb[Si(SiMe₃)₃]₂ (1.60g, 2.2mmol) in 25mL of n-pentane at a temperature below -30°C. After 30 minutes the dark blue solution changed colour to deep violet-red. The ³¹P NMR(161.975MHz, toluene- d_8 , 253K) spectrum of the reaction solution showed two resonances at δ =-286.5(q, br, ¹J_{P,H}= 236Hz), -224.2(t, ¹J_{P,H}= 163.5Hz, ²⁰⁷Pb satellites: ¹J_{Pb,P}= 733.9Hz) ppm. The ³¹P{H} NMR(161.975MHz, toluene- d_8 , 253K) of the same sample showed two singlets at -286.5 (s, br) and -224.2(s, ²⁰⁷Pb satellites: ¹J_{Pb,P}= 736Hz) ppm.

After filtration, the volume of the filtrate was reduced in vacuo to $2\sim3mL$. Cooling at - 60°C for two weeks, nearby unconsumed crystals of Pb[Si(SiMe₃)₃]₂ several dark brown rhombohedral crystals of Pb₁₂[Si(SiMe₃)₃]₆ formed, which is suitable for single-crystal X-ray diffraction analysis.

Note a) Reaction of dihypersilylplumbylene with (BH₃)₂

Dry $(BH_3)_2$ gas (generated from NaBH₄ (0.34g, 9.0mmol) and BF₃·Et₂O (1.52mL, 12.0mmol, d=1.12g/mL) in DME) was bubbled through a deep blue solution of Pb[Si(SiMe₃)₃]₂(1.0g, 1.4mmol) in 15mL of n-pentane at -40°C. After 30 minutes the reaction mixture changed colour to light blue and a black precipitate of metal lead formed. The NMR spectra of the resulting mixture indicated that along with some of the unconsumed plumbylene almost only HSi(SiMe₃)₃ was formed:

Note b) Reaction of dihypersilylplumbylene with NaBH₄

A solution of $Pb[Si(SiMe_3)_3]_2$ (1.36g, 1.9mmol) in 8mL of THF was added to a suspension of NaBH₄(0.073g, 1.9mmol) in 7mL of THF with stirring at room temperature. The reaction mixture changed colour gradually to brown-red. After stirring for about 30 min, the resulting solution was then concentrated and cooled to -60°C to give red crystals of adduct of dihypersilylplumbylene and NaBH₄ in good yield. X-ray diffraction quality crystals was obtained by recrystallization from a mixture of diethyl ether(4mL) and triazine(1mL) at -60°C.

Yield: 1.12g.

¹**H-NMR**(400.613MHz, THF-d8, 253K): δ = 0.26ppm(s, Si(Si(C<u>H</u>₃)₃)₃); δ = 2.17 ppm (s, N-C<u>H</u>₃), δ = 2.54ppm(d, ²J_{H,H}=8.3Hz), δ = 3.56ppm(d, ²J_{H,H}=8.3Hz)(N-C<u>H</u>₂-N), δ = 1.77ppm(m), δ = 3.61(m)(THF), δ = -1.5ppm(s,br)(BH₄).

¹³C{H}-NMR(100.613MHz, THF-d8, 253K): δ = 5.9ppm(s, ¹J_{C,Si}=42.3Hz, Si(Si(<u>C</u>H₃)₃)₃); δ = 26.4ppm(s), δ = 68.2ppm(s, THF); δ = 40.4ppm(s, N-<u>C</u>H₃), δ = 78.3ppm(s, N-<u>C</u>H₂-N).

²⁹Si{H}-NMR(79.495MHz, THF-d8, 253K): δ = -1.8ppm(s, Si(Si(CH₃)₃)₃), δ = 36.9ppm(s, Si(Si(CH₃)₃)₃).

¹¹**B{H}-NMR**(128.378MHz, THF-d8, 253K): δ = -49.5ppm(s, br);

¹¹**B-NMR**(128.378MHz, THF-d8, 253K): δ= -49.5ppm(quintet, br).

5.3.24 Synthesis of Hyp₆Pb₁₀ (24)

a) Reaction of dihypersilylplumbylene with (CuHPPh₃)₆

A solution of Pb[Si(SiMe₃)₃]₂ (3.01g, 4.28mmol) in 20mL of toluene was added to a stirred suspension of triphenylphosphane-copper(I)-hydride hexamer (90%) (1.55g, 4.28mmol) in 30mL of toluene at -20°C. After 25 min the mixture was allowed to come to room temperature and stirred for an additional 20 min. The brown resulting mixture was filtered through a porosity fritted glass filter and the volume of the filtrate was reduced to about 9mL in vacuo. On cooling to -60°C for 48h, dark brown rhombohedral crystals of Pb₁₀[Si(SiMe₃)₃]₆ precipitated.

Yield: 0.51g (32.7%, 0.14mmol), dark brown, air- and moisture-sensitive crystals.

Formula: Pb₁₀[Si(SiMe₃)₃]₆

¹**H-NMR**(400.133MHz, C₆D₆,298K): δ =0.63ppm(s, ²J_{Si,H}=6.2Hz, Si(Si(C<u>H</u>₃)₃)₃);

¹**H-NMR**(400.133MHz, toluene-d8, 298K):

Temp.	25°C	0°C	-20°C	-30°C	-35°C	-40°C	-60°C
δ (ppm)	0.591	0.598	0.604	0.613	0.622 0.598	0.629 0.593	0.642 0.597
	(s)	(s)	(s)	(s)	(d)	(d)	(d)
¹³ C NMD (100 620 MUz C D 200 K); $S = 0.07$ mm (c S:(S:(CU)))							

¹³**C-NMR**(100.620MHz, C₆D₆, 298K): $\delta = 9.07$ ppm (s, Si(Si(<u>C</u>H₃)₃)₃).

¹³**C-NMR**(100.620MHz, toluene-d8, 298K): $\delta = 9.0$ ppm (s, Si(Si(<u>CH</u>₃)₃)₃).

The supernatant liquid was dried in vacuo and extracted with two portions of 15mL of npentane. The extract was then concentrated to incipient crystallization under reduced pressure and cooled to -60°C for 12 h to afford 1.69g(47%, based on CuHPPh₃) of CuSi(SiMe₃)₃·2PPh₃ as colourless X-ray diffraction quality crystals:

¹**H-NMR**(400.133MHz, C₆D₆, 298K): δ =0.53ppm(s, 27H, ²J_{Si,H}=6.5Hz, Si(Si(C<u>H</u>₃)₃)₃); δ =6.98ppm(m,18H), δ =7.37ppm(m,12H) (PPh₃).

¹³**C-NMR**(100.620MHz, C₆D₆, 298K) δ =5.6ppm(s, Si(Si(<u>C</u>H₃)₃)₃), δ =133.8ppm(d, ²J_{c,p} = 16.7Hz), δ =129.4ppm(s), δ =128.6ppm (d, ³J_{c,p} = 8.4Hz)(PPh₃).

³¹**P-NMR**(162.048MHz, C₆D₆,298K) δ=-7.3ppm(s, PPh₃).

²⁹Si-NMR(79.490MHz, C₆D₆,298K) δ =-6.8ppm(s,Si(Si(CH₃)₃)₃),

Further crystallization of the pentane supernate by cooling at -60°C for a week provided a few orange well shaped X-ray diffraction quality crystals: $Cu_9H_6(Si(SiMe_3)_3)_3\cdot 2PPh_3$.

¹**H-NMR**(400.133MHz, C₆D₆, 298K): δ =0.48ppm(s, ²J_{Si,H}=6.2Hz, Si(Si(C<u>H</u>₃)₃)₃); δ=2.5ppm(s, 6H, br, Cu<u>H</u>); δ=7.1 ppm (m,6H), δ=7.2 ppm (m,12H), δ=7.8 ppm (m, 12H)(PPh₃).

¹³**C-NMR**(100.620MHz, C₆D₆, 298K): δ =6.0ppm(s, Si(Si(<u>C</u>H₃)₃)₃); δ = 128.9 ppm (d, ³J_{c,p} = 8.8Hz), δ =130.0 ppm (s), δ =133.2 ppm (d, ¹J_{c,p} = 33.2Hz), δ =134.8ppm(d, ²J_{c,p} = 14.4Hz)(PPh₃).

³¹**P-NMR**(162.048MHz, C₆D₆, 298K): δ= 9.7ppm (s, br, <u>P</u>Ph₃).

²⁹Si-NMR(79.490MHz, C₆D₆, 298K): δ=-8.1ppm (s, Si(<u>Si</u>(CH₃)₃)₃).

b) Reaction of dihypersilylplumbylene with diisobutylaluminiumhydride

To a precooled (-20°C) solution of $Pb(Si(SiMe_3)_3)_2$ (2.61g, 3.72mmol) in 15mL of npentane was added a hexane solution of diisobutylaluminiumhydride(5.58mL, 1M, 5.58mmol). After stirring at -20°C for 4h, the resulting solution was allowed to come to room temperature and stirred for an additional 30 minutes. During this period the colour of the mixture turned gradually from deep blue to brown. Reduction of the mixture to a volume of approximately 6mL under reduced pressure and storage at -60°C for 24 h led to the deposition of black crystalline solid, which consisted of $Pb_{10}[Si(SiMe_3)_3]_6$ (67%) and $Pb(Si(SiMe_3)_3)_2(33\%)$ according to ¹H-NMR spectrum. Recrystallization from n-pentane furnished black crystals of $Pb_{10}[Si(SiMe_3)_3]_6$.

Yield of compound 24: 0.74g (56%, based on Pb in dihypersilylplumbylene).

NMR of (i-bu)₂AlSi(SiMe₃)₃:

¹**H-NMR**(400.132MHz, C₆D₆, 300K): δ = 0.33ppm(s, 27H, Si(Si(C<u>H</u>₃)₃)₃).1.05ppm(d, CH₂CH(C<u>H</u>₃)₂, 12H, ³J_{C,H}=6.75Hz)).

¹³C{H}-NMR (100.613MHz, C₆D₆, 300K): $\delta = 4.2 \text{ ppm} (s, \text{Si}(\text{Si}(\underline{C}H_3)_3)_3).$

MS[ESI; Et₂O/MeCN (4:1)]: m/z (%): 3311 (100, M⁺-Hyp), 2815 (8, [Pb₁₀Hyp₃]⁺), 2113 (25, [Pb₁₀Hyp]⁺), 2099 (43, [Pb₉ Hyp-H-CH₃]⁺), 717 (51, [Hyp₂MePb]⁺).

c) Reaction of plumbylene with trihydrido(trimethylamine)aluminium

At -30°C a solution of Pb(Si(SiMe₃)₃)₂ (2.79g, 3.97mmol) in 15mL of n-pentane was added to a suspension of trihydrido(trimethylamine)aluminium(0.35g, 3.97mmol) in 5 mL of n-pentane. The colour of the mixture turned from deep blue to brown immediately. After stirring about 1.5h, the reaction mixture was allowed to come to room temperature. The volatile components were removed in vacuo and the residue was extracted with 15mL toluene. Concentration and storage of the resulting solution at -60°C for 24 h afforded black crystals of $Pb_{10}[Si(SiMe_3)_3]_6$.

Yield of compound 24: 0.89g (63%, based on Pb in dihypersilylplzumbylene).

NMR of (Me₃Si)₃SiAlH₂·NMe₃:

¹**H-NMR**(400.132MHz, C₆D₆, 300K): $\delta = 0.43$ ppm(s, 27H, Si(Si(C<u>H</u>₃)₃)₃), 1.92ppm(s, 9H, C<u>H</u>₃).

¹³C{H}-NMR (100.613MHz, C₆D₆, 300K): $\delta = 4.1$ ppm (s, Si(Si(<u>C</u>H₃)₃)₃), 48.9 ppm (s, N(<u>C</u>H₃)₃).

²⁹Si{H}-NMR (79.495MHz, C₆D₆, 300K): $\delta = -7.9$ ppm (s, Si(Si(CH₃)₃)₃).

²⁷Al{H}-NMR (104.261MHz, C₆D₆, 300K): δ = -31.7ppm (s, br).

6 Summary

Hypersilyl (Me₃Si)₃Si behaves as a very bulky, electron delivering substituent and can be utilized for stabilizing elements in low oxidation states and unusual geometries. By reactions of base-free alkali metal hypersilanides and dihypersilyl plumbylene with various phosphorus sources, a series of hypersilyl stabilized phosphorus and lead clusters have been obtained. The syntheses and structural characterization of these novel compounds represent the main theme of this thesis.

Solvent-free potassium hypersilanide readily reacts with white phosphorus in a molar ratio of 2:1in toluene or benzene at room temperature to give potassium bis(hypersilyl)tetraphosphenide [(Me₃Si)₃Si]₂P₄K₂ (I), a potassium salt of (Me₃Si)₃Si-PH-P=P-PH-Si(SiMe₃)₃, quantitatively. The ³¹P-NMR spectrum shows two multiplets with the classical splitting pattern of an AA'XX' system in the range for a phosphorus atom in phosphenide and for an unsaturated phosphorus atom in diphosphene, respectively. Toluene, benzene, and hexahydro-1,3,5-trimethyl-S-triazine solvates of $[(Me_3Si)_3Si]_2P_4K_2$ are investigated by X-ray crystallography. The central moiety of the molecular structures exhibits an undistorted C_{2v}-symmetric U-shaped P₄ skeleton featuring two hypersilyl groups either staggered or eclipsed with respect to each other at each end of the P chain. The P-P distance between both middle P atoms (about 209 pm) is only about 5 pm shorter than the other two

P-P bonds and all three display partial P=P double-bond character, suggesting significant charge delocalization over the whole P_4 chain. The two potassium atoms each coordinate from one side of the P_4 plane to all four phosphorus atoms and the coordination sphere of K is completed by the corresponding solvent molecules.

There exists an equilibrium between $[(Me_3Si)_3Si]_2P_4K_2$ and its dimer tetrakis(hypersilyl)octaphosphanide $[(Me_3Si)_3Si]_4P_8K_4$ (II) in toluene or benzene solution. Both monomer and dimer, however, can be obtained from benzene by crystallization, respectively. According to the molecular structure determined by X-ray diffraction analysis, the P_8K_8 -core of $[(Me_3Si)_3Si]_4P_8K_4$ may be described as a double cube with a four membered P_4 ring in the middle, two phosphorus atoms and two potassium atoms in alternating positions

on the top and the bottom, in which the four exophosphorus atoms each bear a hypersilyl group and the potassium atoms are each coordinated to a η^6 bonded benzene molecule. The P-P bond lengths of 219 pm within the P₄ ring are 7 pm longer than the other P-P contacts, but they all lie in the P-P single bond range. Obviously, [(Me₃Si)₃Si]₄P₈K₄ may be understood as a [2+2] cycloadduct of [(Me₃Si)₃Si]₂P₄K₂, in which the cis-configurated phosphorus skeleton has to change to the transconfigurated conformation during the [2_π+2_π]– cycloaddition.

In toluene potassium bis(hypersilyl)tetraphosphenide decomposes slowly at room temperature to give yellowish well-shaped crystals of potassium tris(hypersilyl)pentaphosphanide $[(Me_3Si)_3Si]_3P_5K_2$ (III) within several weeks. This process becomes even quicker on heating to about 70°C. Other products detected, such as $(Me_3Si)_3SiPH_2$, indicate that protolysis has played an important role in this reaction and cleavage of phosphorus chain should be involved in the course of formation of $[(Me_3Si)_3Si]_3P_5K_2$. Its ${}^{31}P{H}$ -NMR spectrum exhibits three multiplets arising from an AA'MM'X spin system in the expected range. The X-ray crystal structure analysis of a single

crystal obtained from benzene solution shows that [(Me₃Si)₃Si]₃P₅K₂ crystallizes as a coordination dimer with a K_4P_{10} skeleton linked by two potassium atoms. The molecule exhibits C_{2h} symmetry, with the twofold axis running through the two central potassium atoms. The $[(Me_3Si)_3Si]_3P_5$ moiety comprises а three-membered phosphorus ring featuring two exocyclo-phosphorus atoms in a cis orientation, each of which

links further to a hypersilyl group, while the third P atom in the P3 ring bears directly a hypersilyl group in trans position to the two P_{exo} atoms. The P-P bond lengths range between 217.24(14) pm and 225.15(14) pm with the three longer contacts in the P₃ ring, however, all falling within the single bond range. The terminal K atoms are each coordinated by a benzene molecule in addition to the agostic interaction to methyl groups, while the bridging K atoms have only the agostic interaction with methyl groups aside from the coordination of P atoms.

Most probably by partial hydrolysis another potassium octaphosphanide $[(Me_3Si)_3Si]_3P_8K_3$ (IV) may be generated. It is isolated as orange cubic shaped crystals by concentrating a very dilute benzene solution of [(Me₃Si)₃Si]₄P₈K₄ and cooling to 5°C for several days. Similar to $[(Me_3Si)_3Si]_3P_5K_2$, in the solid state $[(Me_3Si)_3Si]_3P_8K_3$ exists as a coordination dimer with a twofold axis running through the two potassium atoms in the center of the two [(Me₃Si)₃Si]₃P₈ fragments. The P₈ skeleton comprises a five-membered and a three-membered ring with a shared edge. The cyclo-pentaphosphorus ring features two exocyclo-phosphorus atoms, each of which links further to a hypersilyl group, while one of the cyclo-triphosphorus binds directly to a hypersilyl group. The P-P contacts range from

218.03(12) to 225.24(13) pm also lying in the typical single bond range. The coordination spheres of the terminal K atoms in this molecule are each completed by a η^6 -bonded benzene molecule, whereas the bridging K atoms join the two K₃P₈ fragments together by coordination atoms to phosphorus in both fragments, showing only a slight agostic-type interaction with hypersilyl groups.

The reaction of the same reactants, namely solvent-free potassium hypersilanide with white phosphorus, but now using coordinating solvents such as diethyl ether at room temperature yields bis(hypersilyl)triphosphenide $[(Me_3Si)_3Si]_2P_3K$ (V) in addition to $[(Me_3Si)_3Si]_2P_4K_2$ as well as small amounts of several other phosphorus-containing compounds. $[(Me_3Si)_3Si]_2P_3K$ is isolated as deep blue powder and characterized as a

potassium salt of bis(hypersilyl)triphosphene (Me₃Si)₃Si-P=P-PH-Si(SiMe₃)₃ by NMR spectroscopy. An AX₂ spin pattern with a coupling constant of ${}^{1}J_{p,p} = 541$ Hz observed at low field in the 31 P NMR spectrum is assignable to a triphosphaallyl anion with partial double-bond character and a trans-trans structure can be concluded.

Replacing potassium for lithium, *i.e.* reacting base-free lithium hypersilanide with white phosphorus, dramatically changes the type of products obtained. Under the same reaction conditions, а pale yellowish precipitate was formed along with $[(Me_{3}Si)_{3}Si]_{3}P_{7},$ $[(\mathrm{Me}_3\mathrm{Si})_3\mathrm{Si}]_2\mathrm{P}_4,$ and [(Me₃Si)₃Si]₃P₅Li₂ according to NMR data. The pale yellowish precipitate isolated by filtration was dissolved in THF, giving red violet [(Me₃Si)₃Si]₂P₄Li₂. X-ray structure

analysis of $[(Me_3Si)_3Si]_2P_4Li_2\cdot 4THF$ (**VI**) displays a $[(Me_3Si)_3Si]_2P_4$ moiety similar to that in its potassium analogue. In this molecule the lithium atoms, however, are each only coordinated by two phosphorus in addition to two oxygen atoms of THF, showing a Li…Li separation of 349.48(15) pm.

When base-free lithium hypersilanide was allowed to react with white phosphorus in toluene in the presence of hexahydro-1,3,5-trimethyl-S-triazine at room temperature, the main phosphorus-containing product turned out to be $[(Me_3Si)_3Si]_2P_3Li$ (VII). It precipitated as violet crystals along with a considerable amount of colourless (Me_3Si)_4Si crystals, suggesting that cleavage of Si-Si within hypersilyl group took place during the reaction process and led to the complexity of the reaction. The structure of the triazine solvate may be described as a salt composed of a sandwiched Li⁺ cation {Li[(MeNCH₂)₃]₂}⁺ and

an triphosphaallyl anion $\{[(Me_3Si)_3Si]_2P_3\}^{-}$ without short Li…P contact. The structure of the

anion thus displays a nearly undistorted C_{2v} -symmetric W-shape Si₂P₃ skeleton with a P-P-P angle of 105.52(3)° and two similar P-P bond lengths (about 207 pm) again with partial P=P double-bond character.

The reaction of white phosphorus with base-free sodium hypersilanide in toluene does not lead to the formation of tetraphosphenide, instead, [(Me₃Si)₃Si]₃P₅Na₂ (**VIII**) is isolated as yellow crystals. As shown by X-ray diffraction analysis, it crystallizes as a dimer similar to its potassium analogue described above despite of the lack of benzene molecule in this crystal. However, strong agostic-type interaction is found

between the terminal sodium atoms and hypersilyl groups, whereas no significant agostic interaction is found for the bridging sodium atoms in this structure.

The treatment of $[(Me_3Si)_3Si]_2P_4K_2$ with bis[bis(trimethylsilyl)amino]stannylene in toluene at room temperature affords the unexpected compounds $[(Me_3Si)_3Si]_3P_4SnK$ (IX) and $[(Me_3Si)_3Si]_2[(Me_3Si)_2N]P_4SnK$ (X) instead of $[(Me_3Si)_3Si]_2P_4Sn$, which may be expected from the metathesis reaction. $[(Me_3Si)_3Si]_3P_4SnK$ was isolated as orange crystals and was characterized by NMR spectroscopy and X-ray crystallography, while

[(Me₃Si)₃Si]₂[(Me₃Si)₂N]P₄SnK, being mixed with the by-product (Me₃Si)₂NK, has not yet isolated been substance. as pure [(Me₃Si)₃Si]₃P₄SnK crystallizes as discrete molecules weakly interlinked by K...Sn (384.7 pm) and agostic-type interactions between K atoms and hypersilyl groups of neighbouring molecule units. The phosphorus chain, showing a torsion angle of 73.5° and an average bond length of 223 pm, is no longer coplanar and has no P=P bouble bond character.

When dihypersilyl plumbylene is allowed to react with white phosphorus at room temperature in toluene, the tetrameric lead(II) hypersilylphosphandiide $[(Me_3Si)_3Si]_4P_4Pb_4$ (XI) and dihypersilylphosphene $[(Me_3Si)_3Si]_2P_2$ are formed as the main products along with amounts of dihypersilyltetraphosphane $[(Me_3Si)_3Si]_2P_4$ well small as as the trihypersilylheptaphosphane $[(Me_3Si)_3Si]_3P_7$. A 1:4 Lewis-acid-base adduct between P₄ with dihypersilylplumbylene, which could be trapped at -30°C and resonances at -350ppm with ²⁰⁷Pb satellites in ³¹P NMR spectrum, would be a very probable intermediate for the formation of the mentioned products, since it allows for the low energy approach of both reactants. Analogously, reaction of dihypersilylstannylene with P_4 forms [(Me_3Si)_3Si]_4P_4Sn_4 (XII) in good yields under the same conditions. Both [(Me₃Si)₃Si]₄P₄Sn₄ and [(Me₃Si)₃Si]₄P₄Pb₄ can also be synthesized and isolated in almost quantitative yields by the metallation of (Me₃Si)₃SiPH₂ with bis[bis(trimethylsilyl)amino]-substituted stannylene or plumbylene in toluene.

Lead(II) and tin(II) hypersilylphosphandiide form tetrameric aggregates containing a P_4Pb_4 or P_4Sn_4 heterocubane core. The lead and tin atoms possess no exocyclic ligands and consequently have a trigonal pyramidal coordination sphere, while the phosphorus atoms each bear a hypersilyl group and display a distorted tetrahedral coordination environment. The interatomic distances of Pb-P range from 272.0(5) to 274.6(5) pm and those between tin and phosphorus atoms range between 264.46(6) and 265.76(5) pm in the heterocubane cores, respectively.

The reactions of dihypersilylplumbylene with MPH₂ (M = Li, K) in a ratio of 1:1 in diethyl ether at -20°C quantitatively yield ate-complexes $M\{[(Me_3Si)_3Si]_2Pb\cdot PH_2\}$ (M = Li, K) as ether solvates, respectively. The structures of both products are established by NMR spectroscopy and confirmed by X-ray crystallography.

The molecular structure of $[\text{LiEt}_2O(\text{DME})]\{[(\text{Me}_3\text{Si})_3\text{Si}]_2\text{Pb}\cdot\text{PH}_2\}$ (XIII) is best described as an intimate ion-pair with predominantly ionic binding between the Li⁺ cation and the phosphanide [Li…P distance: 262.2(11) pm]. The lead atom is found to be three-coordinate with two P-Pb-Si angles of 94.37(5) and 94.75(5)°.

(XIII) The X-ray analysis shows that $\{K[(MeNCH_2)_3]_2\}\{[(Me_3Si)_3Si]_2Pb\cdot PH_2\}\$ (XIV) comprises an contact ion-pair of $\{[(Me_3Si)_3Si]_2Pb\cdot PH_2\}^-$ and $\{K[(MeNCH_2)_3]_2\}^+$ with a K···P distance of 401.0 pm. In addition

to the phosphorus atom, the K atom is coordinated to two hexahydro-1,3,5trimethyl-S-triazine molecules and the coordination sphere is completed by intra- and inter-molecular agostic-type K…CH₃ interactions leading to a onedimensional coordination polymer chain. The lead atom of the anion shows a trigonal pyramidal coordination environment with Pb-P bond of 269.15(19) pm.

In the presence of a stronger donor ligand, such as DME, crown ether, or triazine, MPH₂ (M = Li, K) can even add to two dihypersilyl plumbylene moieties to produce the 1:2 adducts $M\{\{[(Me_3Si)_3Si]_2Pb\}_2$.

 PH_2 (M = Li, K) in good yields. X-ray diffraction analysis of $[K((MeNCH_2)_3)_3]$ $\{\{[(Me_3Si)_3Si]_2Pb\}_2 \cdot PH_2\}$ (XV) reveals salt а composed of a solvated potassium cation,

 $[K((MeNCH_2)_3)_3]^+$, and an anion, $\{\{[(Me_3Si)_3Si]_2Pb\}_2 \cdot PH_2\}^-$, which separate from each other and no unusually short K^{...}P contact is observed. Both lead atoms of the dihypersilylplumbylene moieties, coordinated to the same phosphorus atom, have coordination number three and each display a pyramidal environment with Pb-P contacts approximately 14 pm longer than that observed for $\{K[(MeNCH_2)_3]_2\}\{[(Me_3Si)_3Si]_2Pb \cdot PH_2\}$.

If dihypersilylstannylene and plumbylene are treated with trimethylphosphane in pentane or toluene at -20°C, simple 1:1 adducts with PMe₃ are formed quantitatively. Unfortunately, the orange and red crystals isolated from these reaction mixtures were not suitable for structure analysis by X-ray diffraction. Their constitutions, however, have been proved unambiguously by NMR spectroscopy. The ³¹P NMR spectrum of $[(Me_3Si)_3Si]_2Sn \cdot PMe_3$ (**XVI**) exhibits a broad singlet at -60.1 ppm flanked by ^{117/119}Sn satellites with a coupling constant ¹J_{119/117Sn,P} = 1900Hz. In the ³¹P NMR spectrum of $[(Me_3Si)_3Si]_2Pb \cdot PMe_3$ (**XVII**), no ²⁰⁷Pb satellites could be found. However, an up-field shift of about 40 ppm when compared with uncoordinated PMe₃ (-62 ppm) indicates that adduct **XVII** is also present in solution, but most probably in equilibrium with its components.

When phosphane (PH_3) was allowed to bubble through a solution of dihypersilylplumbylene in npentane at room temperature, an immediate reaction took place, yielding the dimeric hypersilyl lead(II) hypersilylphosphanide $[(Me_3Si)_3SiPbP(H)Si(SiMe_3)_3]_2$ (XVIII). This compound can also be synthesized in good yields treating (Me₃Si)₃SiPH₂ by with dihypersilylplumbylene in benzene at room temperature. On standing at ambient temperature,

however, $[(Me_3Si)_3SiPbP(H)Si(SiMe_3)_3]_2$ in solution undergoes further condensation to give finally $[(Me_3Si)_3Si]_4P_4Pb_4$ (**XI**). The existence of hydrogen atoms bound to phosphorus atoms could be concluded from the AA'XX' spin pattern observed in both ¹H- and ³¹P-NMR spectra. In the solid state, a puckered Pb₂P₂ ring shielded by four hypersilyl substituents mutually trans to one another is observed. The three-coordinate lead atoms possess a trigonal pyramidal coordination geometry with Pb-P bond lengths of about 279 pm. When phosphane was bubbled through a dihypersilylplumbylene solution at a temperature below -30°C, the primary Lewis-acid-base adduct between PH₃ and dihypersilylplumbylene as well as either (Me₃Si)₃SiPb(H) \leftarrow P(H)₂Si(SiMe₃)₃ or [(Me₃Si)₃SiPbPH₂]_x were formed according to the ³¹P spectrum of the reaction mixture recorded at -20°C. After keeping the resulting mixture at -60°C for several weeks, dark brown crystals of molecular lead cluster [(Me₃Si)₃Si]₆Pb₁₂ (**XIX**) were astonishingly found. According to the X-ray diffraction studies, the twelve lead atoms of this species constitute a distorted but still centrosymmetric icosahedron. Six atoms (Pb_A) bear no substituent and form a puckered ring with chair conformation (the belt). The remaining six atoms (Pb_B) each bearing a hypersilyl group form two three-membered rings above and below the central Pb₆ belt. The Pb-Pb distances between neighbouring lead atoms range from 307.6(1) to 338.9(1)pm. The longest distances are found between the lead atoms of type Pb_B, the shortest between Pb_A and Pb_B, giving rise to the

description of the polyhedron as an icosahedron with open faces. two This finding is in line with the expectations of а arachno-type cluster according to Wade's rules.

We suppose that the formation of the lead cluster proceeds via the elusive hydridoplumbylene HPbSi(SiMe₃)₃ which has been initially formed by ligand exchange between PH₃ and Pb[Si(SiMe₃)₃]₂. The intermediate species may associate to oligomers, or due to its bis(plumbylene) nature may give self-insertion reactions. By loosing hydrogen or hypersilane this could possibly lead to the formation of lead clusters. This particular reaction, however, is not suitable for giving access to larger quantities of lead clusters, since the thermodynamically favored process is the competitive formation of hypersilyl substituted lead phosphanides. We therefore looked for hydride sources other than PH₃.

By using a strategy which was already successful in synthesizing other unsymmetrically substituted plumbylenes, dihypersilylplumbylene is allowed to react with the triphenylphospine adduct of copper hydride. Surprisingly, in addition of $[(Me_3Si)_3Si]_6Pb_{12}$ another molecular lead cluster $[(Me_3Si)_3Si]_6Pb_{10}$ (**XX**) is formed and isolated. Similar results

had been obtained by treatment of dihypersilylplumbylene with two aluminium hydrides. At ambient temperature solid $[(Me_3Si)_3Si]_6Pb_{10}$ is indefinitely stable as long as light is excluded. In solution the cluster slowly undergoes first-order decomposition, *i.e.* a disproportionation yielding dihypersilyl plumbylene and finally giving $(Me_3Si)_3SiSi(SiMe_3)_3$ as well as elementary lead.

[(Me₃Si)₃Si]₆Pb₁₀ is characterized by NMR spectroscopy, mass spectroscopy, and X-ray crystallography. The Pb₁₀ skeleton has approximate C_{3v} symmetry and is best derived from Pb₁₂ icosahedron by replacing one trigonal face by a single lead atom. This picture also matches the prediction made by Wade's rules. However, these only hold for cluster [(Me₃Si)₃Si]₆Pb₁₀ if it is formally composed from a [(Me₃Si)₃Si]₆Pb₉ *hypho*-type cluster dianion and Pb²⁺. A model compound with hypersilyl groups replaced by SiH₃ groups indeed revealed a charge distribution according to the proposed model. The negative charge derived from NBO analyses is mainly concentrated at the open face, while Pb7 bears the highest positive charge within the Pb₁₀ skeleton. This uneven charge distribution should result in a significant dipole moment, which was calculated to be 2.7 D for the model compound. The

Pb-Pb distances within the Pb₉ fragment differ only slightly [310.3(3)-319.84(17)pm] and are all within the range found for [(Me₃Si)₃Si]₆Pb₁₂ and the known lead clusters anions, whereas the three bonds to the capping atom P7 are significantly shorter [298 3(4)-299 33(16

shorter [298.3(4)-299.33(16)pm].

7 Appendix

7.1 Crystallographic data for $Hyp_2P_4K_{2'}4C_6H_6$

7.1.1 Crystal data and structure refinement

```
Empirical formula
                                         Hyp_2P_4K_2 \cdot 4benzene
Formula weight
                                         1009.84
                                         293(2) K
Temperature
                                         0.71073 Å
Wavelength
Crystal system, space group
                                         Monoclinic, P2(1)/n
Unit cell dimensions
                             a = 14.935(2) \text{ \AA}

b = 17.063(2) \text{ \AA}

c = 48.800(8) \text{ \AA}
                                                 alpha = 90 deg.
beta = 90.380(12) deg.
gamma = 90 deg.
Volume
                                         12436(3) Å<sup>3</sup>
                                         8, 1.079 \text{ g/cm}^3
Z, Calculated density
                                         0.434 \text{ mm}^{-1}
Absorption coefficient
F(000)
                                         4320
Theta range for data collection
                                         2.05 to 20.00 deg.
Limiting indices
                                         -2<=h<=14, -1<=k<=16, -46<=l<=46
Reflections collected / unique
                                         14566 / 11593 [R(int) = 0.0361]
Completeness to theta = 20.00
                                         99.9 %
Refinement method
                                         Full-matrix least-squares on F^2
Data / restraints / parameters
                                         11593 / 0 / 1009
Goodness-of-fit on F^2
                                         0.816
Final R indices [I>2sigma(I)]
                                         R1 = 0.0492, wR2 = 0.1227
R indices (all data)
                                         R1 = 0.0868, wR2 = 0.1331
Largest diff. peak and hole
                                         0.352 and -0.291 e.Å ^{-3}
```

7.1.2 Atomic coordinates (x 10⁴), equivalent isotropic displacement parameters (Å² x 10³) and Anisotropic displacement parameters (Å² x 10³). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U11 + ... + 2hka^*b^*U12]$

Atom	Х	у	Z	U(eq)	U11	U22	U33	U23	U13	U12
Si(4)	2477(1)	-4572(1)	4526(1)	39(1)	44(1)	35(1)	37(1)	0(1)	1(1)	-2(1)
Si(3)	7582(1)	466(1)	2979(1)	38(1)	40(1)	37(1)	37(1)	1(1)	-1(1)	-1(1)
P(1)	7448(1)	450(1)	3441(1)	44(1)	46(1)	49(1)	38(1)	5(1)	2(1)	3(1)
P(5)	2573(1)	-4558(1)	4063(1)	44(1)	48(1)	47(1)	38(1)	-3(1)	1(1)	-3(1)
Si(32)	6393(1)	1275(1)	2836(1)	46(1)	46(1)	44(1)	47(1)	4(1)	-4(1)	4(1)
Si(1)	2440(1)	-5390(1)	2921(1)	36(1)	40(1)	33(1)	37(1)	2(1)	-1(1)	-1(1)
K(4)	893(1)	-4017(1)	3659(1)	70(1)	51(1)	92(1)	66(1)	-9(1)	-1(1)	14(1)
Si(42)	3667(1)	-3757(1)	4667(1)	48(1)	53(1)	42(1)	49(1)	0(1)	-6(1)	-8(1)
Si(2)	7507(1)	-432(1)	4578(1)	37(1)	36(1)	38(1)	37(1)	0(1)	2(1)	1(1)
K(2)	9104(1)	991(1)	3854(1)	67(1)	47(1)	87(1)	67(1)	9(1)	-3(1)	-11(1)
Si(11)	2301(1)	-4258(1)	2649(1)	47(1)	53(1)	40(1)	49(1)	6(1)	-6(1)	-2(1)
Si(21)	8726(1)	-1254(1)	4682(1)	42(1)	42(1)	41(1)	43(1)	4(1)	-1(1)	3(1)

Atom	Х	у	Z	U(eq)	U11	U22	U33	U23	U13	U12
Si(43)	2662(1)	-5801(1)	4739(1)	61(1)	69(1)	46(1)	69(1)	15(1)	-11(1)	-6(1)
Si(12)	1230(1)	-6230(1)	2820(1)	45(1)	44(1)	39(1)	50(1)	-1(1)	-5(1)	-2(1)
P(8)	2526(1)	-4916(1)	3352(1)	45(1)	49(1)	44(1)	40(1)	-4(1)	4(1)	-6(1)
Si(33)	7465(1)	-755(1)	2757(1)	61(1)	75(1)	43(1)	65(1)	-14(1)	-12(1)	2(1)
P(4)	7454(1)	79(1)	4152(1)	43(1)	45(1)	44(1)	40(1)	5(1)	1(1)	5(1)
P(7)	1922(1)	-5883(1)	3563(1)	53(1)	74(1)	46(1)	40(1)	-3(1)	3(1)	-19(1)
P(3)	8072(1)	-880(1)	3941(1)	52(1)	68(1)	50(1)	38(1)	4(1)	0(1)	15(1)
Si(23)	7556(1)	668(1)	4869(1)	47(1)	48(1)	46(1)	45(1)	-10(1)	-8(1)	4(1)
K (1)	5870(1)	-525(1)	3736(1)	77(1)	54(1)	113(2)	66(1)	21(1)	-7(1)	-23(1)
P(2)	8086(1)	-651(1)	3520(1)	53(1)	66(1)	57(1)	36(1)	2(1)	2(1)	18(1)
K(3)	4134(1)	-5530(1)	3759(1)	80(1)	58(1)	110(2)	71(1)	-18(1)	-6(1)	21(1)
Si(13)	3764(1)	-6065(1)	2821(1)	44(1)	44(1)	45(1)	45(1)	-2(1)	4(1)	3(1)
P(6)	1932(1)	-5661(1)	3984(1)	55(1)	73(1)	55(1)	37(1)	0(1)	3(1)	-20(1)
Si(31)	8931(1)	1100(1)	2875(1)	51(1)	47(1)	57(2)	51(1)	-2(1)	12(1)	-4(1)
Si(22)	6188(1)	-1145(1)	4652(1)	45(1)	40(1)	50(1)	46(1)	2(1)	2(1)	-4(1)
Si(41)	1137(1)	-3970(1)	4657(1)	57(1)	51(1)	57(2)	62(1)	-6(1)	13(1)	-1(1)
C(221)	6136(5)	-1625(5)	5003(1)	74(2)	75(5)	89(6)	59(4)	21(4)	8(4)	-16(5)
C(321)	5304(4)	848(5)	2952(1)	64(2)	55(4)	73(6)	63(4)	12(4)	0(3)	0(5)
C(044)	8177(8)	2724(7)	3800(2)	97(3)	97(7)	104(8)	89(8)	-25(6)	-26(6)	20(7)
C(311)	9013(5)	1444(5)	2510(1)	75(2)	65(5)	82(5)	78(5)	18(4)	20(4)	-3(4)
C(211)	9782(4)	-865(4)	4527(1)	55(2)	46(4)	63(6)	57(4)	8(4)	2(3)	5(4)
C(121)	1016(5)	-6265(4)	2437(1)	64(2)	78(5)	58(5)	56(4)	0(4)	-15(4)	-17(4)
C(322)	6335(4)	1416(5)	2454(1)	67(2)	66(5)	74(5)	60(4)	27(4)	-8(3)	11(4)
C(031)	4197(5)	-1514(5)	3533(2)	88(3)	84(6)	65(6)	115(8)	2(6)	3(6)	-19(5)
C(122)	173(4)	-5872(5)	2988(1)	71(2)	46(4)	65(6)	103(5)	-3(5)	11(4)	-5(5)
C(083)	-1201(6)	-3173(6)	3734(3)	100(3)	86(7)	93(9)	122(8)	-23(7)	6(6)	13(6)
C(421)	3746(5)	-3626(5)	5047(1)	78(2)	109(6)	60(5)	64(4)	5(4)	-23(4)	-14(5)
C(212)	8882(4)	-1303(4)	5066(1)	55(2)	47(4)	56(5)	60(4)	-2(4)	-8(3)	0(4)
C(086)	-1155(5)	-4663(6)	3532(2)	84(3)	82(6)	89(8)	83(6)	-38(7)	-4(5)	3(6)
C(013)	11185(5)	1848(5)	3773(2)	92(3)	91(6)	67(7)	119(8)	15(6)	-14(6)	-17(5)
C(015)	11219(5)	498(6)	3688(2)	73(2)	61(5)	83(8)	76(7)	-11(5)	6(4)	-3(5)
C(431)	2816(6)	-5682(5)	5121(1)	115(3)	176(9)	86(6)	80(5)	43(5)	-65(6)	-48(7)
C(051)	6338(6)	-5180(7)	3993(3)	97(3)	90(7)	85(8)	114(9)	-18(7)	-21(6)	-2(6)
C(032)	4048(6)	-1487(6)	3809(2)	83(3)	83(6)	78(8)	88(8)	32(6)	1(5)	-23(6)
C(411)	1061(6)	-3769(8)	5025(2)	189(7)	103(7)	390(20)	79(6)	-85(9)	38(5)	24(10)
C(034)	3565(5)	-183(6)	3773(2)	90(3)	73(6)	101(8)	95(7)	-8(6)	7(5)	-17(6)
C(123)	1463(5)	-7254(4)	2932(1)	55(2)	64(5)	43(5)	57(4)	2(3)	-2(3)	-9(4)
C(064)	1799(7)	-2312(5)	3760(2)	93(3)	114(8)	85(7)	78(7)	14(5)	-26(5)	-13(6)
C(011)	11116(6)	905(8)	4138(2)	81(3)	70(6)	109(9)	63(6)	$\Gamma/(7)$	-11(4)	2(7)
C(213)	8538(5)	-2283(4)	4561(1)	57(2)	61(5)	41(5)	69(4)	-4(4)	I(4)	8(4)
C(012)	11128(5)	1690(7)	4055(2)	98(3)	73(6)	115(10)	10/(8)	-46(7)	-14(5)	-3(6)
C(084)	-1141(6)	-3292(7)	3455(3)	110(4)	81(7)	9/(9)	152(11)	62(8)	-4(7)	6(7)
C(085)	-1130(6)	-4063(9)	3350(2)	9/(4)	//(6)	151(12)	65(6) 97(7)	8(8)	-13(5)	1/(8) 12(5)
C(016)	11167(5)	329(6)	3956(2)	79(3)	80(6) 71(6)	105(0)	$\frac{8}{(1)}$	8(6) ((7)	2(5)	12(5)
C(082)	-122/(6)	-3/98(7)	3904(2)	84(3) 129(5)	/1(0)	105(9)	/5(6) 72(7)	-0(/)	5(4)	/(6)
C(042)	8443(12)	2766(7)	4264(2)	128(5)	208(15)	104(9)	1/2(1)	-1(0)	9(9)	50(10)
C(323)	0522(5)	2279(4) 1240(7)	2997(1) 2505(2)	75(2)	09(3)	49(5)	108(0)	-3(4)	-12(4)	14(5)
C(014)	11222(0)	1240(7)	3393(2) 3375(2)	81(3) 86(3)	/3(0) 85(7)	91(8) 112(0)	80(0) 61(5)	2/(7)	-3(5)	-22(0)
C(030) C(422)	4000(0) 3544(5)	-603(6)	3373(2)	$\frac{30(3)}{72(2)}$	0J(7) 86(6)	112(9)	01(3) 86(5)	-5(7) 15(4)	-7(3)	-33(7) 19(5)
C(422) C(022)	3344(3)	-2701(4)	4300(1) 2028(2)	72(2) 86(2)	60(0) 68(6)	129(10)	50(3)	13(4)	-20(4)	-10(3)
C(055)	$\frac{5727(0)}{1602(5)}$	-626(6)	3920(2)	80(3) 80(2)	00(0)	130(10)	52(5)	4(7) 17(4)	4(4) 12(4)	-43(7)
C(432)	1093(3)	-04/3(3)	4094(1) 4284(1)	$\frac{80(2)}{76(2)}$	68(5)	63(3)	08(4)	1/(4) 10(4)	-15(4)	-27(5)
C(222)	3707(5)	-1740(4) 180(6)	+30+(1) 3501(2)	70(2) 84(2)	00(3)	04(0) 88(0)	90(J) 88(J)	-17(4)	0(4) 14(5)	-22(3) 5(6)
C(055)	5702(0)	-109(0) 1090(4)	3301(2) 3104(1)	04(3) 71(2)	(1)(0)	00(0) 75(6)	00(1)	34(0) 14(4)	-14(3) 12(4)	-3(0)
C(312) C(025)	5202(5)	1707(4) 1176(1)	3104(1) 3781(2)	75(2)	03(3) 75(6)	73(0) 72(5)	10(3) 82(6)	-14(4) 10(4)	13(4) 21(4)	-25(5) 14(5)
C(023) C(072)	$J_{203(3)}$	$_{-3547(4)}$	3606(2)	78(2) 78(2)	81(6)	51(5)	02(0) 101(7)	10(4)	21(4) 17(5)	$\frac{14(3)}{7(4)}$
C(072) C(111)	+700(3) 1158(4)	-3347(4)	2710(1)	65(2)	61(0)	$J_{1}(J) = J_{1}(J)$	20(5)	-12(4) 7(4)	17(3)	-7(4) 5(4)
C(231)	8673(A)	-3022(4) 115 $A(A)$	2710(1) 4877(1)	71(2)	77(5)	4J(4) 67(5)	75(3)	-12(4)	-20(4)	-10(4)
C(237)	6655(5)	1384(5)	4769(1)	77(2)	82(5)	58(5)	75(5)	-12(4) -18(4)	-10(4) -11(4)	18(A)
C(232) C(423)	4760(5)	-4178(5)	4553(2)	83(3)	56(5)	78(7)	113(6)	-16(5)	-1(4)	-8(5)
$\mathcal{L}(\mathcal{L}\mathcal{D})$	1,00(0)	11,0(3)	(2) (2)	00(0)	20(2)	, 0(,)	110(0)	10(3)	1(1)	0(3)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Atom	X	у	Z	U(eq)	U11	U22	U33	U23	U13	U12
$ \begin{array}{c} C(13) & 3166(4) & -3519(4) & 2755(1) & 60(2) & 65(5) & 49(5) & 66(4) & 10(4) & -11(3) & -16(4) \\ C(331) & 8480(5) & -1379(4) & 2794(1) & 78(2) & 102(6) & 55(5) & 77(5) & -13(4) & 0(4) & 22(5) \\ C(131) & 3782(5) & -6493(4) & 2466(1) & 61(2) & 72(5) & 45(4) & 66(4) & -10(3) & 8(3) & 1(4) \\ C(233) & 7422(4) & 448(4) & 5243(1) & 66(2) & 81(5) & 72(5) & 46(4) & -12(4) & -2(3) & 15(4) \\ C(132) & 3924(5) & -6881(4) & 007(1) & 63(2) & 58(5) & 66(5) & 64(4) & 11(4) & -3(3) & 20(4) \\ C(412) & 1013(6) & -3025(6) & 4469(2) & 176(6) & 103(8) & 88(8) & 339(16) & 90(9) & 108(9) & 56(7) \\ C(313) & 9909(4) & 444(5) & 2956(1) & 75(2) & 50(4) & 91(6) & 82(5) & -7(4) & -1(4) & 3(5) \\ C(056) & 6035(6) & -5860(8) & 4120(2) & 92(3) & 84(7) & 124(10) & 67(6) & -3(8) & -11(5) & 42(7) \\ C(433) & 3673(5) & -6297(5) & 4592(2) & 130(3) & 116(7) & 70(6) & 204(9) & 47(6) & 35(7) & 45(6) \\ C(133) & 4769(4) & -5404(4) & 2855(1) & 64(2) & 53(4) & 66(5) & 74(4) & -10(4) & 4(3) & -4(4) \\ C(413) & 154(5) & -4569(6) & 4549(2) & 118(4) & 51(5) & 129(9) & 174(9) & 41(7) & -16(5) & 11(6) \\ C(333) & 6492(5) & -1305(4) & 2902(2) & 121(3) & 109(7) & 61(6) & 192(9) & -22(6) & 2(6) & -31(5) \\ C(054) & 5940(6) & -6487(6) & 3689(2) & 92(3) & 96(7) & 86(9) & 95(8) & -18(6) & -1(6) & 36(7) \\ C(052) & 6449(6) & -5178(6) & 3714(3) & 94(3) & 67(6) & 83(8) & 132(9) & 14(7) & 1(6) & -6(5) \\ C(025) & 5429(6) & -6492(6) & 3961(2) & 95(3) & 93(7) & 92(8) & 100(8) & 10(7) & 5(6) & 23(6) \\ C(053) & 6252(6) & -5835(8) & 3560(2) & 92(3) & 93(7) & 92(8) & 100(8) & 10(7) & 5(6) & 23(6) \\ C(053) & 6252(6) & -5835(8) & 3560(2) & 92(3) & 93(7) & 92(8) & 100(8) & 10(7) & 5(6) & 23(6) \\ C(053) & 6252(6) & -5835(8) & 3560(2) & 92(3) & 93(7) & 92(8) & 100(8) & 10(7) & 5(6) & 23(6) \\ C(053) & 6252(6) & -5835(8) & 3560(2) & 92(3) & 93(7) & 92(8) & 100(8) & 10(7) & 5(6) & 23(6) \\ C(053) & 6252(6) & -5835(8) & 3560(2) & 92(3) & 37(7) & 92(8) & 100(8) & 10(7) & 5(6) & 23(6) \\ C(025) & 5220(5) & 136(14) & 4052(2) & 110(3) & 87(8) & 133(9) & 111(8) & -19(7) & 41(6) & 8(6) \\ C(063$	C(112)	2425(5)	-4441(4)	2269(1)	76(2)	96(5)	78(5)	54(4)	23(4)	1(4)	-14(5)
$ \begin{array}{c} C(331) \\ C(332) \\ C(333) \\ C(332) \\ C(333) \\ C(332) \\ C(333) \\ C(33$	C(113)	3166(4)	-3519(4)	2755(1)	60(2)	65(5)	49(5)	66(4)	10(4)	-11(3)	-16(4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(331)	8480(5)	-1379(4)	2794(1)	78(2)	102(6)	55(5)	77(5)	-13(4)	0(4)	26(5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(332)	7300(6)	-610(5)	2378(1)	120(4)	195(10)	81(6)	83(6)	-30(5)	-51(6)	45(7)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(131)	3782(5)	-6493(4)	2466(1)	61(2)	72(5)	45(4)	66(4)	-10(3)	8(3)	1(4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(233)	7422(4)	448(4)	5243(1)	66(2)	81(5)	72(5)	46(4)	-12(4)	-2(3)	15(4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(132)	3924(5)	-6881(4)	3079(1)	63(2)	58(5)	66(5)	64(4)	11(4)	-3(3)	20(4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(412)	1013(6)	-3025(6)	4469(2)	176(6)	103(8)	88(8)	339(16)	90(9)	108(9)	56(7)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(313)	9909(4)	444(5)	2956(1)	75(2)	50(4)	91(6)	82(5)	-7(4)	-1(4)	3(5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(056)	6035(6)	-5860(8)	4120(2)	92(3)	84(7)	124(10)	67(6)	-3(8)	-11(5)	42(7)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(433)	3673(5)	-6297(5)	4592(2)	130(3)	116(7)	70(6)	204(9)	47(6)	35(7)	45(6)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(133)	4769(4)	-5404(4)	2855(1)	64(2)	53(4)	66(5)	74(4)	-10(4)	4(3)	-4(4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(413)	154(5)	-4569(6)	4549(2)	118(4)	51(5)	129(9)	174(9)	-41(7)	-16(5)	1(6)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(333)	6492(5)	-1305(4)	2902(2)	121(3)	109(7)	61(6)	192(9)	-22(6)	2(6)	-31(5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(043)	7933(6)	2554(5)	4054(4)	112(3)	97(8)	81(7)	160(10)	-6(8)	61(9)	-2(6)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(054)	5940(6)	-6487(6)	3689(2)	92(3)	96(7)	86(9)	95(8)	-18(6)	-1(6)	36(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(052)	6449(6)	-5178(6)	3714(3)	94(3)	67(6)	83(8)	132(9)	14(7)	1(6)	-6(5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(223)	5177(4)	-502(5)	4608(1)	65(2)	41(4)	85(6)	70(4)	0(4)	5(3)	-8(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(055)	5829(6)	-6492(6)	3961(2)	95(3)	93(7)	92(8)	100(8)	10(7)	5(6)	23(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(053)	6252(6)	-5835(8)	3560(2)	92(3)	56(5)	137(11)	83(6)	2(8)	9(5)	34(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(073)	4778(6)	-3637(4)	3418(2)	90(2)	97(7)	71(6)	100(7)	-25(5)	-38(6)	0(5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(022)	3769(7)	1943(6)	4082(2)	110(3)	87(8)	133(9)	111(8)	-19(7)	41(6)	8(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(026)	5220(5)	1361(4)	4053(2)	75(2)	71(5)	74(5)	80(6)	16(4)	-9(5)	10(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(076)	6218(7)	-2983(6)	3684(2)	96(3)	77(7)	95(8)	115(8)	1(6)	-7(6)	-33(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(066)	1558(8)	-2206(6)	3282(2)	106(3)	126(9)	112(8)	82(6)	4(6)	-6(7)	-15(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(063)	1021(9)	-1909(6)	3804(2)	95(3)	131(10)	61(6)	94(7)	-13(5)	20(7)	0(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(046)	9470(6)	3345(5)	3958(4)	117(4)	83(7)	89(7)	180(11)	-58(8)	47(9)	-30(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(045)	8942(11)	3115(6)	3747(2)	102(4)	172(12)	48(6)	86(7)	10(5)	48(8)	11(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(065)	2062(5)	-2447(4)	3498(2)	91(2)	67(5)	67(6)	138(8)	7(6)	11(6)	9(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(024)	4477(7)	1815(5)	3657(2)	88(3)	117(8)	76(6)	70(5)	7(5)	-16(6)	14(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(081)	-1209(5)	-4520(6)	3802(2)	83(3)	74(6)	60(7)	115(9)	-2(5)	9(5)	-2(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(062)	508(6)	-1662(5)	3587(3)	107(3)	76(7)	70(6)	177(10)	27(7)	31(8)	23(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(075)	6234(7)	-3059(6)	3401(3)	110(3)	80(7)	105(8)	146(10)	22(7)	48(7)	-11(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(074)	5506(8)	-3405(6)	3270(2)	102(3)	130(9)	114(8)	63(5)	-9(5)	13(6)	-3(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(041)	9234(9)	3170(9)	4220(3)	130(5)	92(8)	163(13)	135(12)	-71(9)	-33(7)	14(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(071)	5502(7)	-3225(5)	3826(2)	91(3)	128(8)	77(6)	68(5)	-14(5)	-14(6)	-8(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(061)	798(8)	-1814(7)	3331(2)	114(4)	84(8)	129(10)	127(10)	31(8)	-34(7)	15(8)
<u>C(021)</u> 4486(8) 1601(7) 4211(2) 103(3) 121(8) 137(9) 51(5) 7(5) -1(6) -7(7)	C(023)	3764(7)	2060(6)	3804(2)	104(3)	83(7)	104(8)	125(9)	1(7)	-14(6)	28(6)
	C(021)	4486(8)	1601(7)	4211(2)	103(3)	121(8)	137(9)	51(5)	7(5)	-1(6)	-7(7)

7.1.3 Bond lengths [Å]

Atoms	Bond length	Atoms	Bond length	Atoms	Bond length
Si(4)-P(5)	2.264(2)	P(8)-K(3)	3.277(2)	Si(41)-C(413)	1.861(8)
Si(4)-Si(41)	2.342(3)	Si(11)-C(113)	1.876(6)	Si(41)-C(412)	1.862(9)
Si(4)-Si(43)	2.356(3)	Si(11)-C(111)	1.888(6)	C(044)-C(043)	1.323(11)
Si(4)-Si(42)	2.358(3)	Si(11)-C(112)	1.890(6)	C(044)-C(045)	1.350(12)
Si(3)-P(1)	2.265(2)	Si(21)-C(213)	1.872(7)	C(031)-C(032)	1.370(10)
Si(3)-Si(31)	2.344(3)	Si(21)-C(211)	1.874(6)	C(031)-C(036)	1.381(11)
Si(3)-Si(32)	2.352(3)	Si(21)-C(212)	1.892(6)	C(083)-C(082)	1.352(12)
Si(3)-Si(33)	2.355(3)	Si(43)-C(432)	1.857(7)	C(083)-C(084)	1.383(12)
P(1)-P(2)	2.140(2)	Si(43)-C(433)	1.878(8)	C(086)-C(081)	1.346(10)
P(1)-K(1)	3.231(2)	Si(43)-C(431)	1.887(6)	C(086)-C(085)	1.355(12)
P(1)-K(2)	3.308(2)	Si(12)-C(123)	1.863(7)	C(013)-C(014)	1.355(11)
P(5)-P(6)	2.147(2)	Si(12)-C(122)	1.884(7)	C(013)-C(012)	1.403(11)
P(5)-K(3)	3.229(2)	Si(12)-C(121)	1.896(6)	C(015)-C(016)	1.340(10)
P(5)-K(4)	3.312(2)	Si(33)-C(331)	1.860(7)	C(015)-C(014)	1.345(11)

Atoms	Bond length	Atoms	Bond length	Atoms	Bond length
Si(32)-C(321)	1.872(7)	Si(33)-C(333)	1.874(8)	C(051)-C(052)	1.374(11)
Si(32)-C(322)	1.882(6)	Si(33)-C(332)	1.879(7)	C(051)-C(056)	1.394(12)
Si(32)-C(323)	1.895(7)	P(4)-P(3)	2.146(2)	C(032)-C(033)	1.355(12)
Si(1)-P(8)	2.258(2)	P(4)-K(1)	3.274(2)	C(034)-C(035)	1.348(10)
Si(1)-Si(13)	2.343(3)	P(7)-P(6)	2.0885(19)	C(034)-C(033)	1.355(12)
Si(1)-Si(11)	2.353(3)	P(7)-K(3)	3.485(2)	C(064)-C(065)	1.358(10)
Si(1)-Si(12)	2.355(3)	P(3)-P(2)	2.0887(19)	C(064)-C(063)	1.369(11)
K(4)-C(064)	3.245(8)	P(3)-K(1)	3.484(2)	C(011)-C(016)	1.327(11)
K(4)-P(8)	3.254(2)	Si(23)-C(233)	1.877(5)	C(011)-C(012)	1.400(12)
K(4)-C(065)	3.297(8)	Si(23)-C(231)	1.878(6)	C(084)-C(085)	1.410(13)
K(4)-C(086)	3.305(8)	Si(23)-C(232)	1.879(7)	C(082)-C(081)	1.328(11)
K(4)-C(081)	3.332(8)	K(1)-C(031)	3.168(8)	C(042)-C(043)	1.324(12)
K(4)-C(085)	3.368(9)	K(1)-C(032)	3.200(8)	C(042)-C(041)	1.384(14)
K(4)-C(082)	3.413(9)	K(1)-C(036)	3.335(8)	C(036)-C(035)	1.382(12)
K(4)-C(084)	3.423(9)	K(1)-C(033)	3.380(8)	C(025)-C(026)	1.345(8)
K(4)-C(083)	3.465(8)	K(1)-C(035)	3.475(8)	C(025)-C(024)	1.366(9)
K(4)-P(7)	3.568(2)	K(1)-P(2)	3.486(2)	C(072)-C(073)	1.366(9)
K(4)-P(6)	3.572(2)	K(1)-C(034)	3.497(9)	C(072)-C(071)	1.380(10)
Si(42)-C(421)	1.869(6)	K(3)-C(055)	3.169(8)	C(056)-C(055)	1.364(12)
Si(42)-C(423)	1.872(7)	K(3)-C(054)	3.174(8)	C(054)-C(055)	1.339(10)
Si(42)-C(422)	1.883(7)	K(3)-C(053)	3.356(8)	C(054)-C(053)	1.361(12)
Si(2)-P(4)	2.254(2)	K(3)-C(056)	3.379(8)	C(052)-C(053)	1.378(12)
Si(2)-Si(22)	2.345(3)	K(3)-P(6)	3.481(2)	C(073)-C(074)	1.366(11)
Si(2)-Si(21)	2.352(3)	K(3)-C(052)	3.518(8)	C(022)-C(021)	1.367(11)
Si(2)-Si(23)	2.355(3)	K(3)-C(051)	3.527(9)	C(022)-C(023)	1.375(11)
K(2)-P(4)	3.265(2)	K(3)-C(072)	3.528(7)	C(026)-C(021)	1.404(11)
K(2)-C(044)	3.275(9)	Si(13)-C(131)	1.877(6)	C(076)-C(071)	1.342(11)
K(2)-C(011)	3.305(8)	Si(13)-C(133)	1.883(7)	C(076)-C(075)	1.389(11)
K(2)-C(016)	3.316(8)	Si(13)-C(132)	1.892(6)	C(066)-C(061)	1.341(12)
K(2)-C(043)	3.338(8)	Si(31)-C(313)	1.880(7)	C(066)-C(065)	1.355(10)
K(2)-C(015)	3.372(8)	Si(31)-C(311)	1.883(6)	C(063)-C(062)	1.367(12)
K(2)-C(012)	3.390(8)	Si(31)-C(312)	1.892(7)	C(046)-C(045)	1.352(12)
K(2)-C(014)	3.441(9)	Si(22)-C(223)	1.877(7)	C(046)-C(041)	1.365(13)
K(2)-C(013)	3.460(8)	Si(22)-C(222)	1.896(7)	C(024)-C(023)	1.353(11)
K(2)-P(3)	3.571(2)	Si(22)-C(221)	1.900(6)	C(062)-C(061)	1.350(12)
K(2)-P(2)	3.573(2)	Si(41)-C(411)	1.834(7)	C(075)-C(074)	1.387(12)
P(8)-P(7)	2.147(2)				

7.1.4 Angles [deg]

Atoms	Angle	Atoms	Angle
D(5) S(4) S(41)	100.08(0)	C(201) S(20) C(200)	109 2(2)
P(3)-SI(4)-SI(41) P(5) Si(4) Si(43)	109.08(9) 116.26(10)	C(321)-SI(32)-C(322) C(321) Si(32) $C(323)$	108.3(3) 108.2(3)
r(3)-3i(4)-3i(43) $s_i(41) s_i(4) s_i(43)$	110.20(10) 111.61(10)	C(321)-SI(32)- $C(323)$	108.2(3) 107 5(3)
P(5) Si(4) Si(42)	103 47(9)	C(321) Si(32) Si(3)	107.5(3) 109.7(2)
Si(41)-Si(4)-Si(42)	103.47(9) 107 74(10)	C(322)-Si(32)-Si(3)	109.7(2) 113 6(2)
Si(43)-Si(4)-Si(42)	108.07(9)	C(322) - Si(32) - Si(3)	109.5(2)
P(1)-Si(3)-Si(31)	107.62(9)	P(8)-Si(1)-Si(13)	109.14(9)
P(1)-Si(3)-Si(32)	103.39(9)	P(8)-Si(1)-Si(11)	103.67(10)
Si(31)-Si(3)-Si(32)	108.21(10)	Si(13)-Si(1)-Si(11)	110.91(9)
P(1)-Si(3)-Si(33)	116.22(10)	P(8)-Si(1)-Si(12)	116.80(9)
Si(31)-Si(3)-Si(33)	111.70(10)	Si(13)-Si(1)-Si(12)	107.78(10)
Si(32)-Si(3)-Si(33)	109.16(9)	Si(11)-Si(1)-Si(12)	108.50(9)
P(2)-P(1)-Si(3)	98.47(9)	C(064)-K(4)-P(8)	100.3(2)
P(2)-P(1)-K(1)	78.04(7)	C(064)-K(4)-C(065)	23.95(17)
Si(3)-P(1)-K(1)	121.22(8)	P(8)-K(4)-C(065)	82.74(15)
P(2)-P(1)-K(2)	78.78(7)	C(064)-K(4)-C(086)	135.4(3)
Si(3)-P(1)-K(2)	122.13(8)	P(8)-K(4)-C(086)	116.86(16)
K(1)-P(1)-K(2)	114.67(5)	C(065)-K(4)-C(086)	135.8(3)

Atoms	Angle	Atoms	Angle
P(6) P(5) Si(4)	07.06(0)	C(064) K(4) P(5)	81 14(16)
D(6) D(5) V(2)	77.90(7)	D(8) K(4) D(5)	61.14(10)
$\Gamma(0) - \Gamma(3) - K(3)$ $S_{1}(4) P(5) V(2)$	12022(8)	$\Gamma(0)$ - $K(4)$ - $\Gamma(3)$ C(0.65) K(4) D(5)	04.00(J) 99.15(19)
D(6) D(5) V(4)	120.22(6)	C(005) - K(4) - F(5)	125 7(2)
$\Gamma(0) - \Gamma(3) - K(4)$ S:(4) $D(5) V(4)$	10.30(7)	C(060)- $K(4)$ - $F(3)$	133.7(2) 126.2(2)
SI(4)-P(5)-K(4)	122.93(8)	C(004)- $K(4)$ - $C(081)$	120.3(3) 122.24(10)
K(3)-P(3)-K(4)	114.57(0)	$P(\delta) - K(4) - C(0\delta 1)$	133.24(19)
P(5)-K(4)-C(085)	159.0(3)	C(005)- $K(4)$ - $C(081)$	139.3(2)
C(081)- $K(4)$ - $C(085)$	41.0(2)	C(086)- $K(4)$ - $C(081)$	23.39(18)
C(064)- $K(4)$ - $C(082)$	103.6(3)	P(5)-K(4)-C(081)	120.95(17)
P(8)-K(4)-C(082)	155.9(2)	C(064)- $K(4)$ - $C(085)$	117.4(3)
C(065)-K(4)-C(082)	119.3(2)	P(8)-K(4)-C(085)	117.14(19)
C(086)-K(4)-C(082)	40.8(2)	C(065)-K(4)-C(085)	112.8(3)
P(5)-K(4)-C(082)	121.52(16)	C(086)-K(4)-C(085)	23.4(2)
C(081)-K(4)-C(082)	22.67(19)	C(081)-K(4)-P(7)	101.83(18)
C(085)-K(4)-C(082)	47.8(2)	C(085)-K(4)-P(7)	107.9(3)
C(064)-K(4)-C(084)	95.1(3)	C(082)-K(4)-P(7)	123.0(2)
P(8)-K(4)-C(084)	134.7(3)	C(084)-K(4)-P(7)	131.8(3)
C(065)-K(4)-C(084)	96.2(2)	C(083)-K(4)-P(7)	140.81(18)
C(086)-K(4)-C(084)	41.2(2)	C(064)-K(4)-P(6)	117.23(16)
P(5)-K(4)-C(084)	160.3(3)	P(8)-K(4)-P(6)	60.63(5)
C(081)-K(4)-C(084)	47.0(2)	C(065)-K(4)-P(6)	121.00(16)
C(085)-K(4)-C(084)	24.0(2)	C(086)-K(4)-P(6)	102.7(2)
C(082)-K(4)-C(084)	40.4(2)	P(5)-K(4)-P(6)	36.09(4)
C(064)-K(4)-C(083)	89.2(3)	C(081)-K(4)-P(6)	96.40(16)
P(8)-K(4)-C(083)	157.60(19)	C(085)-K(4)-P(6)	124.5(3)
C(065)-K(4)-C(083)	99.6(2)	C(082)-K(4)-P(6)	109.37(19)
C(086)-K(4)-C(083)	47.5(2)	C(084)-K(4)-P(6)	142.67(17)
P(5)-K(4)-C(083)	137.2(2)	C(083)-K(4)-P(6)	132.0(2)
C(081)-K(4)-C(083)	39.9(2)	P(7)-K(4)-P(6)	34.02(4)
C(085)-K(4)-C(083)	41.4(2)	C(421)-Si(42)-C(423)	107.0(3)
C(082)-K(4)-C(083)	22.66(19)	C(421)-Si(42)-C(422)	108.3(3)
C(084)-K(4)-C(083)	23.2(2)	C(423)-Si(42)-C(422)	107.7(4)
C(064)-K(4)-P(7)	129.8(2)	C(421)-Si(42)-Si(4)	113.8(3)
P(8)-K(4)-P(7)	36.31(4)	C(423)-Si(42)-Si(4)	110.1(3)
C(065)-K(4)-P(7)	117.70(14)	C(422)-Si(42)-Si(4)	109.8(2)
C(086)-K(4)-P(7)	94.41(18)	P(1)-K(2)-C(015)	118.81(15)
P(5)-K(4)-P(7)	60.28(4)	C(016)-K(2)-C(015)	23.09(17)
P(4)-Si(2)-Si(22)	108.55(9)	C(043)-K(2)-C(015)	139.7(2)
P(4)-Si(2)-Si(21)	116.84(9)	P(4)-K(2)-C(012)	135.5(2)
Si(22)-Si(2)-Si(21)	107.93(10)	C(044)-K(2)-C(012)	94.6(3)
P(4)-Si(2)-Si(23)	104.39(10)	C(011)-K(2)-C(012)	24.1(2)
Si(22)-Si(2)-Si(23)	110.10(9)	P(1)-K(2)-C(012)	159.3(2)
Si(21)-Si(2)-Si(23)	108.93(9)	C(016)-K(2)-C(012)	41.4(2)
P(4)-K(2)-C(044)	98.4(3)	C(043)-K(2)-C(012)	95.9(3)
P(4)-K(2)-C(011)	118.62(17)	C(015)-K(2)-C(012)	47.3(2)
C(044)-K(2)-C(011)	117.1(3)	P(4)-K(2)-C(014)	157.07(19)
P(4)-K(2)-P(1)	64.86(5)	C(044)-K(2)-C(014)	104.4(3)
C(044)-K(2)-P(1)	83 67(16)	C(011)-K(2)-C(014)	47 4(2)
C(011)-K(2)-P(1)	1564(2)	P(1)-K(2)-C(014)	119 76(16)
P(4)-K(2)-C(016)	118 30(17)	C(016)-K(2)-C(014)	40 7(2)
C(044)-K(2)-C(016)	135 3(3)	C(043)-K(2)-C(014)	119 5(2)
C(011)-K(2)-C(016)	23 13(19)	C(015)-K(2)-C(014)	22 75(19)
P(1)-K(2)-C(016)	1333(2)	C(012)-K(2)-C(014)	40.7(2)
P(4)-K(2)-C(043)	81 52(16)	P(4)-K(2)-C(013)	158 99(18)
C(044)- $K(2)$ - $C(043)$	23 06(19)	C(044)- $K(2)$ - $C(013)$	89 3(3)
C(011)- $K(2)$ - $C(043)$	112 9(3)	C(011)- $K(2)$ - $C(013)$	41 5(2)
P(1)-K(2)-C(043)	90.6(3)	P(1)-K(2)-C(013)	135 78(18)
C(016)- $K(2)$ - $C(043)$	135 7(3)	C(016)- $K(2)$ - $C(013)$	47 7(2)
P(4)-K(2)-C(015)	134 33(19)	C(043)- $K(2)$ - $C(013)$	997(2)
C(044)- $K(2)$ - $C(015)$	127 0(3)	C(015)- $K(2)$ - $C(013)$	40 1(2)
C(011)- $K(2)$ - $C(015)$	40 42(19)	C(012)- $K(2)$ - $C(013)$	23 61(18)
C(011) IX(2) C(013)	10.74(17)	C(012) II(2) C(013)	23.01(10)

Atoms	Angle	Atoms	Angle
$\frac{P(4)}{V(2)} \frac{P(2)}{P(2)}$			
P(4)-K(2)-P(3)	30.24(4)	C(014)- $K(2)$ - $C(015)$	22.04(18)
C(044)- $K(2)$ - $P(3)$	129.4(3)	C(113)-Si(11)-C(111)	108.3(3)
C(011)-K(2)-P(3)	107.6(2)	C(113)-Si(11)-C(112)	108.1(3)
P(1)-K(2)-P(3)	60.12(4)	C(111)-Si(11)-C(112)	108.4(3)
C(016)-K(2)-P(3)	94.53(17)	C(113)-Si(11)-Si(1)	109.7(2)
C(043)-K(2)-P(3)	116.90(16)	C(111)-Si(11)-Si(1)	108.1(2)
C(015)-K(2)-P(3)	102.18(18)	C(112)-Si(11)-Si(1)	114.1(3)
C(012)-K(2)-P(3)	131.7(2)	C(213)-Si(21)-C(211)	109.3(3)
C(014)-K(2)-P(3)	123 5(2)	C(213)-Si(21)-C(212)	106 7(3)
C(013) - K(2) - P(3)	123.3(2) 1/11.26(16)	C(211)-Si(21)-C(212)	108 5(3)
D(4) K(2) D(2)	60.62(5)	C(212) = Si(21) - C(212) C(213) = Si(21) = Si(2)	100.3(3) 112.2(2)
$\Gamma(4)$ - $K(2)$ - $\Gamma(2)$	110.52(3)	C(213)-SI(21)-SI(2)	112.2(2)
C(044)- $K(2)$ - $P(2)$	119.56(17)	C(211)-S1(21)-S1(2)	110.7(2)
C(011)-K(2)-P(2)	122.6(2)	C(212)-S1(21)-S1(2)	109.3(2)
P(1)-K(2)-P(2)	35.97(4)	C(432)-Si(43)-C(433)	107.7(4)
C(016)-K(2)-P(2)	101.15(19)	C(432)-Si(43)-C(431)	105.9(3)
C(043)-K(2)-P(2)	122.5(2)	C(433)-Si(43)-C(431)	109.4(4)
C(015)-K(2)-P(2)	95.25(15)	C(432)-Si(43)-Si(4)	114.1(3)
C(012)-K(2)-P(2)	141.59(17)	C(433)-Si(43)-Si(4)	108.9(3)
C(014)-K(2)-P(2)	108.60(19)	C(431)-Si(43)-Si(4)	110.7(3)
C(013)-K(2)-P(2)	131.23(19)	C(123)-Si(12)-C(122)	109.4(3)
P(3)-K(2)-P(2)	34 00(3)	C(123)-Si(12)-C(121)	106.8(3)
C(122)-Si(12)-C(121)	107 6(3)	C(233)-Si(23)-C(231)	107 9(3)
C(122) $Si(12)$ $C(121)$	107.0(3) 111.6(2)	C(233) Si(23) C(231)	107.6(3)
C(123) - SI(12) - SI(1) C(122) - SI(12) - SI(1)	111.0(2) 110.0(2)	C(221) S(22) - C(222)	107.0(3) 108.5(2)
C(122)-SI(12)-SI(1)	110.9(2)	C(231)-SI(23)-C(232)	108.3(3)
C(121)-S1(12)-S1(1)	110.4(2)	C(233)-SI(23)-SI(2)	115.1(2)
P(7) - P(8) - Si(1)	98.62(9)	C(231)-S1(23)-S1(2)	107.6(2)
P(7)-P(8)-K(4)	79.82(7)	C(232)-S1(23)-S1(2)	110.0(2)
Si(1)-P(8)-K(4)	124.01(8)	C(031)-K(1)-C(032)	24.84(19)
P(7)-P(8)-K(3)	76.83(7)	C(031)-K(1)-P(1)	135.4(2)
Si(1)-P(8)-K(3)	119.18(8)	C(032)-K(1)-P(1)	159.66(18)
K(4)-P(8)-K(3)	114.83(6)	C(031)-K(1)-P(4)	157.9(2)
C(331)-Si(33)-C(333)	108.1(4)	C(032)-K(1)-P(4)	134.70(18)
C(331)-Si(33)-C(332)	105.8(4)	P(1)-K(1)-P(4)	65.63(5)
C(333)-Si(33)-C(332)	110.0(4)	C(031)-K(1)-C(036)	24.4(2)
C(331)-Si(33)-Si(3)	113.8(2)	C(032)-K(1)-C(036)	42.5(2)
C(333)-Si(33)-Si(3)	108 9(3)	P(1)-K(1)-C(036)	117 58(17)
C(332)-Si(33)-Si(3)	110.2(3)	P(4)-K(1)-C(036)	168 3(2)
P(3) P(4) Si(2)	07.81(0)	C(031) K(1) C(033)	42 2(2)
P(2) P(4) V(2)	70.69(7)	C(022) K(1) C(022)	72.2(2)
$\Gamma(3)-\Gamma(4)-\Gamma(2)$	124.09(9)	C(032)- $K(1)$ - $C(033)$	23.0(2)
SI(2)-P(4)-K(2)	124.98(8)	P(1)- $K(1)$ - $C(035)$	153.8(2)
P(3)-P(4)-K(1)	/6.89(/)	P(4)-K(1)-C(033)	123.87(15)
$S_1(2)-P(4)-K(1)$	118.09(8)	C(036)-K(1)-C(033)	48.07(19)
K(2)-P(4)-K(1)	114.70(5)	C(031)-K(1)-C(035)	41.7(2)
P(6)-P(7)-P(8)	109.39(9)	C(032)- $K(1)$ - $C(035)$	48.0(2)
P(6)-P(7)-K(3)	72.44(7)	P(1)-K(1)-C(035)	116.67(15)
P(8)-P(7)-K(3)	66.31(7)	P(4)-K(1)-C(035)	145.1(2)
P(6)-P(7)-K(4)	73.10(7)	C(036)-K(1)-C(035)	23.3(2)
P(8)-P(7)-K(4)	63.87(6)	C(033)-K(1)-C(035)	40.1(2)
K(3)-P(7)-K(4)	102.59(6)	C(031)-K(1)-P(3)	137.57(19)
P(2)-P(3)-P(4)	109.65(9)	C(032)-K(1)-P(3)	132.89(17)
P(2)-P(3)-K(1)	72.62(7)	C(055)-K(3)-C(054)	24.37(19)
P(4)-P(3)-K(1)	66 24(6)	C(055)-K(3)-P(5)	134 5(2)
P(2)-P(3)-K(2)	73.06(7)	C(054)-K(3)-P(5)	15852(19)
P(A) - P(B) - K(B)	64.08(6)	C(055)-K(3)-P(8)	150.02(17)
K(1) D(2) K(2)	102 58(6)	C(054) K(2) D(2)	135.1(2)
$\mathbf{K}(1)^{-1}(3)^{-1}\mathbf{K}(2)$ $\mathbf{D}(1) \mathbf{V}(1) \mathbf{D}(2)$	102.30(0)	$U(0) + J^{-1}U(0) = U(0)$ D(5) $U(2) = D(8)$	133.7(2) 65 56(5)
I(1) - IX(1) - I(3) D(4) V(1) D(2)	26.97(4)	$\Gamma(J) = \Gamma(J) = \Gamma(0)$ C(0.55) V(2) C(0.52)	42.0(2)
$\Gamma(+)-\Gamma(1)-\Gamma(3)$	JU.07(4)	C(053)- $K(3)$ - $C(053)$	+2.0(2)
C(0.30)- $K(1)$ - $P(3)$	154.8(2)	U(054)-K(5)-U(053)	23.8(2)
C(033)-K(1)-P(3)	141.95(18)	P(5)-K(3)-C(053)	153.8(2)
C(035)-K(1)-P(3)	177.4(2)	P(8)-K(3)-C(053)	124.23(17)
C(031)-K(1)-P(2)	128.41(18)	C(055)-K(3)-C(056)	23.8(2)

Atoms	Angle	Atoms	Angle
C(032)-K(1)-P(2)	1443(2)	$\Gamma(054)$ -K(3)- $\Gamma(056)$	42 2(2)
P(1)-K(1)-P(2)	36.90(4)	P(5)-K(3)-C(056)	12.2(2) 116 93(17)
P(A) - K(1) - P(2)	50.50(4)	P(8)-K(3)-C(056)	168.2(2)
C(0.36)-K(1)-P(2)	$128\ 37(17)$	C(053)-K(3)-C(056)	483(2)
C(033)-K(1)-P(2)	167 6(2)	C(055)-K(3)-P(6)	128 56(18)
C(035)-K(1)-P(2)	1/2 62(18)	C(053)- $K(3)$ - $P(6)$	1/23.30(10) 1/13.7(2)
$P(3)_{K(1)}P(2)$	34.88(A)	P(5)-K(3)-P(6)	37.08(4)
C(031) K(1) C(034)	480(2)	P(8) K(3) P(6)	57.00(+)
C(032)-K(1)-C(034)	40.0(2)	C(053)-K(3)-P(6)	167 3(2)
P(1)-K(1)-C(034)	1312(2)	C(056)-K(3)-P(6)	107.3(2)
P(4)-K(1)-C(034)	131.2(2) 128 48(17)	C(055)-K(3)-P(7)	138 5(2)
C(036)-K(1)-C(034)	40.4(2)	C(054)-K(3)-P(7)	133.3(2)
C(033)-K(1)-C(034)	22 65(19)	P(5)-K(3)-P(7)	61 94(5)
C(035)-K(1)-C(034)	22.03(17) 22.28(17)	P(8)-K(3)-P(7)	36 86(4)
P(3)-K(1)-C(034)	160.32(19)	C(053)-K(3)-P(7)	141.9(2)
P(2)-K(1)-C(034)	160.32(17) 164 3(2)	C(056)-K(3)-P(7)	141.9(2) 154 9(2)
P(3)-P(2)-P(1)	109.52(9)	P(6)-K(3)-P(7)	34.90(4)
P(3)-P(2)-K(1)	7250(7)	C(055) - K(3) - C(052)	47 5(2)
P(1)-P(2)-K(1)	65.06(6)	C(054)- $K(3)$ - $C(052)$	40.9(2)
P(3)-P(2)-K(2)	72 95(7)	P(5)-K(3)-C(052)	130.9(2)
P(1)-P(2)-K(2)	65 25(6)	P(8)-K(3)-C(052)	128 56(19)
K(1)-P(2)-K(2)	102 49(5)	C(053)-K(3)-C(052)	23 0(2)
P(5)-K(3)-C(051)	116 (19(18)	C(056)- $K(3)$ - $C(052)$	404(2)
P(8)-K(3)-C(051)	145 1(2)	P(6)-K(3)-C(052)	164.2(2)
C(053)-K(3)-C(051)	40 5(2)	P(7)-K(3)-C(052)	160.2(2) 160.4(2)
C(056)- $K(3)$ - $C(051)$	232(2)	C(055)-K(3)-C(051)	410(2)
P(6)-K(3)-C(051)	1423(2)	C(054)- $K(3)$ - $C(051)$	47 9(2)
P(7)-K(3)-C(051)	177.1(2)	C(313)-Si(31)-C(311)	109 1(3)
C(052)-K(3)-C(051)	22.49(18)	C(313)-Si(31)-C(312)	106 8(3)
C(052) - K(3) - C(072)	1081(2)	C(311)-Si(31)-C(312)	107.6(3)
C(054)- $K(3)$ - $C(072)$	104.8(3)	C(313)-Si(31)-Si(3)	110.4(3)
P(5)-K(3)-C(072)	75 05(12)	C(311)-Si(31)-Si(3)	114 3(2)
P(8)-K(3)-C(072)	80.53(15)	C(312)-Si(31)-Si(3)	108.3(2)
C(053)-K(3)-C(072)	82.5(3)	C(223)-Si(22)-C(222)	106.9(3)
C(056)-K(3)-C(072)	88.9(3)	C(223)-Si(22)-C(221)	108.5(3)
P(6)-K(3)-C(072)	110.10(13)	C(222)-Si(22)-C(221)	107.8(3)
P(7)-K(3)-C(072)	113.30(14)	C(223)-Si(22)-Si(2)	110.8(2)
C(052)-K(3)-C(072)	64.4(2)	C(222)-Si(22)-Si(2)	108.9(2)
C(051)-K(3)-C(072)	67.4(2)	C(221)-Si(22)-Si(2)	113.7(2)
C(131)-Si(13)-C(133)	107.4(3)	C(411)-Si(41)-C(413)	109.0(4)
C(131)-Si(13)-C(132)	108.9(3)	C(411)- $Si(41)$ - $C(412)$	108.3(6)
C(133)-Si(13)-C(132)	106.6(3)	C(413)-Si(41)-C(412)	105.1(5)
C(131)-Si(13)-Si(1)	113.6(2)	C(411)-Si(41)-Si(4)	114.0(3)
C(133)-Si(13)-Si(1)	111.1(2)	C(413)-Si(41)-Si(4)	110.8(3)
C(132)-Si(13)-Si(1)	109.0(2)	C(412)-Si(41)-Si(4)	109.2(3)
P(7)-P(6)-P(5)	109.63(9)	C(043)-C(044)-C(045)	121.9(9)
P(7)-P(6)-K(3)	72.66(7)	C(043)-C(044)-K(2)	81.1(6)
P(5)-P(6)-K(3)	65.08(6)	C(045)-C(044)-K(2)	95.9(6)
P(7)-P(6)-K(4)	72.88(7)	C(032)-C(031)-C(036)	119.3(9)
P(5)-P(6)-K(4)	65.35(6)	C(032)-C(031)-K(1)	78.9(5)
K(3)-P(6)-K(4)	102.59(5)	C(036)-C(031)-K(1)	84.6(5)
C(014)-C(013)-C(012)	119.0(9)	C(082)-C(083)-C(084)	119.3(10)
C(014)-C(013)-K(2)	77.9(5)	C(082)-C(083)-K(4)	76.5(6)
C(012)-C(013)-K(2)	75.4(5)	C(084)-C(083)-K(4)	76.7(5)
C(016)-C(015)-C(014)	122.2(8)	C(081)-C(086)-C(085)	120.4(9)
C(016)-C(015)-K(2)	76.1(5)	C(081)-C(086)-K(4)	79.4(5)
C(014)-C(015)-K(2)	81.5(5)	C(085)-C(086)-K(4)	80.9(6)
C(052)-C(051)-C(056)	119.1(10)	C(083)-C(084)-C(085)	119.7(9)
C(052)-C(051)-K(3)	78.4(5)	C(083)-C(084)-K(4)	80.1(5)
C(056)-C(051)-K(3)	72.4(6)	C(085)-C(084)-K(4)	75.8(6)
C(033)-C(032)-C(031)	120.6(9)	C(086)-C(085)-C(084)	117.9(9)

Atoms	Angle	Atoms	Angle
C(033)-C(032)-K(1)	85.7(5)	C(086)-C(085)-K(4)	75.7(5)
C(031)-C(032)-K(1)	76.2(5)	C(084)-C(085)-K(4)	80.2(6)
C(035)-C(034)-C(033)	121.1(10)	C(011)-C(016)-C(015)	119.8(9)
C(035)-C(034)-K(1)	77.9(5)	C(011)-C(016)-K(2)	78.0(5)
C(033)-C(034)-K(1)	73.8(5)	C(015)-C(016)-K(2)	80.8(5)
C(065)-C(064)-C(063)	118.9(8)	C(081)-C(082)-C(083)	120.1(9)
C(065)-C(064)-K(4)	80.2(5)	C(081)-C(082)-K(4)	75.3(6)
C(063)-C(064)-K(4)	96.9(5)	C(083)-C(082)-K(4)	80.8(5)
C(016)-C(011)-C(012)	120.9(8)	C(043)-C(042)-C(041)	120.4(11)
C(016)-C(011)-K(2)	78.9(5)	C(015)-C(014)-C(013)	120.3(8)
C(012)-C(011)-K(2)	81.3(5)	C(015)-C(014)-K(2)	75.7(5)
C(011)-C(012)-C(013)	117.9(8)	C(013)-C(014)-K(2)	79.5(5)
C(011)-C(012)-K(2)	74.5(5)	C(055)-C(056)-C(051)	118.5(9)
C(013)-C(012)-K(2)	81.0(5)	C(055)-C(056)-K(3)	69.5(5)
C(031)-C(036)-C(035)	119.2(8)	C(051)-C(056)-K(3)	84.4(6)
C(031)-C(036)-K(1)	71.0(5)	C(044)-C(043)-C(042)	120.1(10)
C(035)-C(036)-K(1)	84.1(5)	C(044)-C(043)-K(2)	75.8(5)
C(032)-C(033)-C(034)	119.9(8)	C(042)-C(043)-K(2)	98.3(6)
C(032)-C(033)-K(1)	70.7(5)	C(055)-C(054)-C(053)	120.4(10)
C(034)-C(033)-K(1)	83.5(5)	C(055)-C(054)-K(3)	77.6(5)
C(034)-C(035)-C(036)	119.9(9)	C(053)-C(054)-K(3)	85.6(5)
C(034)-C(035)-K(1)	79.8(5)	C(051)-C(052)-C(053)	120.6(10)
C(036)-C(035)-K(1)	72.6(5)	C(051)-C(052)-K(3)	79.1(5)
C(026)-C(025)-C(024)	120.5(7)	C(053)-C(052)-K(3)	71.9(5)
C(073)-C(072)-C(071)	119.1(7)	C(054)-C(055)-C(056)	122.1(10)
C(073)-C(072)-K(3)	89.1(5)	C(054)-C(055)-K(3)	78.0(5)
C(071)-C(072)-K(3)	123.6(6)	C(056)-C(055)-K(3)	86.8(5)
C(062)-C(063)-C(064)	120.4(9)	C(054)-C(053)-C(052)	119.2(9)
C(045)-C(046)-C(041)	119.9(10)	C(054)-C(053)-K(3)	70.6(5)
C(044)-C(045)-C(046)	119.0(9)	C(052)-C(053)-K(3)	85.1(5)
C(066)-C(065)-C(064)	121.1(8)	C(074)-C(073)-C(072)	120.3(7)
C(066)-C(065)-K(4)	98.0(5)	C(021)-C(022)-C(023)	121.0(9)
C(064)-C(065)-K(4)	75.9(5)	C(025)-C(026)-C(021)	119.4(7)
C(023)-C(024)-C(025)	121.6(8)	C(071)-C(076)-C(075)	120.1(9)
C(082)-C(081)-C(086)	122.5(9)	C(061)-C(066)-C(065)	118.6(9)
C(082)-C(081)-K(4)	82.1(6)	C(046)-C(041)-C(042)	118.6(10)
C(086)-C(081)-K(4)	77.2(5)	C(076)-C(071)-C(072)	121.4(8)
C(061)-C(062)-C(063)	118.4(9)	C(066)-C(061)-C(062)	122.5(9)
C(074)-C(075)-C(076)	118.6(8)	C(024)-C(023)-C(022)	118.6(9)
C(073)-C(074)-C(075)	120.4(8)	C(022)-C(021)-C(026)	119.0(8)

7.2 Crystallographic data for $Hyp_4P_8K_4$ ·4C₆H₆

7.2.1 Crystal data and structure refinement

Empirical formula	Hyp ₄ P ₈ K ₄ :7benzene
Formula weight	1941.58
Temperature	193(2) K
Wavelength	0.71073 Å
Crystal system, space group	monoclinic; P2/n
Unit cell dimensions	a = $15.1356(7)$ Å alpha = 90 deg. b = $14.6526(6)$ Å beta = $99.297(4)$ deg. c = $26.9623(14)$ Å gamma = 90 deg.
Volume	5901.0(5) Å ³

Z, Calculated density	2, 1.093 g/cm^3
Absorption coefficient	0.455 mm^{-1}
F(000)	2076
Theta range for data collection	1.39 to 26.29 deg.
Limiting indices	-18<=h<=18, -18<=k<=18, -33<=1<=33
Reflections collected / unique	67117 / 11884 [R(int) = 0.0621]
Completeness to theta = 26.29	99.3 %
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	11884 / 440 / 657
Goodness-of-fit on F^2	0.936
Final R indices [I>2sigma(I)]	R1 = 0.0288, $wR2 = 0.0713$
R indices (all data)	R1 = 0.0439, $wR2 = 0.0741$
Extinction coefficient	0.00134(14)
Largest diff. peak and hole	0.272 and -0.257 e.Å $^{-3}$

7.2.2 Atomic coordinates (x 10⁴), equivalent isotropic displacement parameters (Å ² x 10³) and Anisotropic displacement parameters (Å ² x 10³). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U11 + ... + 2hka^*b^*U12]$

Atom	Х	У	Z	U(eq)	U11	U22	U33	U23	U13	U12
P(1)	8803(1)	4980(1)	6924(1)	46(1)	39(1)	51(1)	51(1)	14(1)	13(1)	1(1)
P(2)	7422(1)	4916(1)	7075(1)	42(1)	38(1)	47(1)	42(1)	5(1)	11(1)	-2(1)
P(3)	7213(1)	3390(1)	7085(1)	41(1)	34(1)	47(1)	41(1)	-3(1)	3(1)	-5(1)
P(4)	5774(1)	3239(1)	7080(1)	48(1)	35(1)	60(1)	51(1)	-16(1)	6(1)	-9(1)
K(1)	9687(1)	5351(1)	8069(1)	69(1)	54(1)	78(1)	71(1)	-12(1)	-1(1)	-20(1)
K(2)	9093(1)	2863(1)	6737(1)	66(1)	69(1)	68(1)	66(1)	-13(1)	27(1)	11(1)
Si(1)	8801(1)	6071(1)	6356(1)	42(1)	42(1)	44(1)	43(1)	6(1)	11(1)	0(1)
Si(11)	8415(1)	7515(1)	6620(1)	67(1)	64(1)	45(1)	96(1)	2(1)	22(1)	5(1)
C(111)	7178(2)	7718(2)	6439(1)	97(1)	77(1)	79(2)	135(2)	4(1)	22(1)	26(1)
C(112)	9012(2)	8470(2)	6352(1)	117(1)	114(2)	52(1)	193(3)	25(2)	47(2)	-2(1)
C(113)	8704(2)	7578(2)	7320(1)	97(1)	96(2)	91(2)	106(2)	-42(2)	23(1)	4(1)
Si(12)	7986(1)	5734(1)	5567(1)	67(1)	64(1)	91(1)	45(1)	6(1)	1(1)	4(1)
C(121)	6798(1)	5465(2)	5628(1)	84(1)	63(1)	107(2)	73(1)	1(1)	-12(1)	-2(1)
C(122)	8463(2)	4702(2)	5297(1)	108(1)	94(2)	149(2)	76(2)	-47(2)	3(1)	12(2)
C(123)	7977(2)	6700(2)	5107(1)	121(1)	117(2)	168(3)	73(2)	58(2)	-3(1)	-8(2)
Si(13)	10330(1)	6098(1)	6295(1)	56(1)	48(1)	59(1)	68(1)	-1(1)	25(1)	-8(1)
C(131)	10977(1)	6596(2)	6881(1)	101(1)	52(1)	133(2)	119(2)	-46(2)	20(1)	-19(1)
C(132)	10578(2)	6760(2)	5742(1)	112(1)	107(2)	113(2)	135(2)	39(2)	77(2)	-1(2)
C(133)	10757(1)	4916(2)	6229(1)	84(1)	54(1)	77(1)	124(2)	-10(1)	28(1)	4(1)
Si(2)	5332(1)	2196(1)	6498(1)	39(1)	32(1)	46(1)	39(1)	-4(1)	3(1)	-2(1)
Si(21)	5942(1)	744(1)	6664(1)	61(1)	50(1)	48(1)	85(1)	4(1)	13(1)	3(1)
C(211)	7089(1)	679(2)	6502(1)	100(1)	68(1)	82(2)	156(2)	22(2)	38(2)	26(1)
C(212)	5262(2)	-186(2)	6316(2)	153(2)	102(2)	57(2)	283(5)	-40(2)	-22(2)	6(1)
C(213)	6034(2)	489(2)	7346(1)	144(1)	180(3)	139(3)	129(2)	81(2)	72(2)	80(2)
Si(22)	5468(1)	2623(1)	5679(1)	57(1)	52(1)	80(1)	40(1)	1(1)	8(1)	4(1)
C(221)	4939(2)	1773(2)	5200(1)	104(1)	104(2)	158(3)	52(1)	-26(1)	16(1)	-35(2)
C(222)	6672(1)	2764(2)	5608(1)	71(1)	66(1)	84(1)	66(1)	8(1)	24(1)	4(1)
C(223)	4898(2)	3749(2)	5540(1)	92(1)	85(2)	119(2)	76(1)	42(1)	23(1)	37(1)
Si(23)	3806(1)	2141(1)	6565(1)	52(1)	33(1)	66(1)	57(1)	-15(1)	6(1)	-6(1)
C(231)	3147(1)	1391(2)	6085(1)	95(1)	46(1)	124(2)	114(2)	-58(2)	10(1)	-21(1)
C(232)	3673(2)	1725(2)	7203(1)	98(1)	67(1)	150(2)	84(2)	5(2)	34(1)	-14(1)

Atom	X	v	Z	U(eq)	U11	U22	U33	U23	U13	U12
C(233)	3295(1)	3307(2)	6502(1)	92(1)	53(1)	86(2)	139(2)	-12(2)	16(1)	13(1)
C(31)	10770(10)	1731(14)	6381(6)	67(3)	47(3)	96(10)	58(4)	-7(5)	11(3)	12(5)
C(32)	10624(10)	2315(11)	5973(6)	65(3)	68(6)	87(4)	45(6)	-8(4)	24(4)	-19(4)
C(33)	9807(11)	2291(9)	5662(5)	64(3)	71(8)	71(6)	49(4)	7(4)	10(5)	7(6)
C(34)	9183(8)	1650(10)	5711(5)	60(3)	56(5)	69(9)	54(7)	-14(5)	9(4)	-4(5)
C(35)	9369(10)	1017(9)	6084(7)	64(3)	71(7)	45(3)	78(9)	-1(5)	21(5)	7(5)
C(36)	10147(11)	1064(11)	6427(6)	69(3)	66(7)	75(8)	71(6)	13(6)	25(5)	23(5)
C(31A)	10634(11)	1477(11)	6400(6)	70(3)	62(7)	73(7)	75(5)	-12(4)	7(5)	21(5)
C(32A)	10705(7)	2266(9)	6126(6)	60(3)	46(3)	83(5)	52(7)	-19(5)	14(4)	-8(3)
C(33A)	10056(11)	2477(10)	5730(5)	66(3)	66(6)	79(5)	59(5)	-5(4)	25(5)	-9(4)
C(34A)	9302(10)	1962(13)	5630(5)	73(4)	59(5)	104(10)	56(4)	-20(5)	10(4)	-7(6)
C(35A)	9193(8)	1228(11)	5923(6)	73(4)	63(5)	74(11)	85(12)	-33(7)	23(7)	-19(7)
C(36A)	9856(13)	967(8)	6308(6)	75(4)	100(12)	50(3)	81(9)	-7(5)	32(7)	0(7)
C(41)	10641(9)	7295(6)	8529(5)	77(3)	79(7)	56(3)	97(7)	-18(4)	12(5)	-1(4)
C(42)	11308(11)	6865(13)	8311(6)	79(3)	63(9)	98(7)	74(4)	2(4)	9(5)	-31(6)
C(43)	11715(7)	6079(10)	8517(6)	77(3)	47(3)	99(6)	86(7)	-20(4)	13(3)	-14(3)
C(44)	11500(10)	5769(10)	8969(6)	86(3)	55(7)	110(5)	84(5)	6(4)	-16(5)	3(4)
C(45)	10830(12)	6184(11)	9161(5)	86(4)	84(11)	113(9)	60(3)	-20(4)	13(6)	-15(7)
C(46)	10401(10)	6941(12)	8951(7)	94(5)	87(6)	110(12)	86(11)	-49(8)	17(7)	-7(8)
C(43A)	10551(12)	6439(15)	9128(7)	78(5)	63(9)	111(13)	62(6)	-10(7)	13(6)	-12(8)
C(44A)	11239(12)	5884(10)	9037(7)	74(4)	47(10)	78(7)	91(8)	21(6)	-6(6)	-6(6)
C(42A)	10325(12)	7165(14)	8806(8)	72(4)	57(4)	79(6)	81(10)	-16(6)	14(5)	-1(4)
C(46A)	11527(14)	6834(17)	8366(9)	74(4)	34(6)	93(7)	96(9)	-5(6)	15(6)	-7(5)
C(45A)	11740(10)	6110(12)	8681(7)	77(4)	56(4)	91(7)	80(10)	-11(6)	-3(5)	21(4)
C(41A)	10820(12)	7352(11)	8420(7)	76(4)	50(5)	95(7)	84(7)	18(5)	14(5)	-14(4)
C(61)	12084(12)	10331(8)	4982(5)	111(5)	123(11)	104(5)	92(7)	-36(5)	-28(8)	9(8)
C(62)	11357(11)	10169(10)	5233(7)	117(6)	104(10)	110(10)	121(15)	-59(8)	-25(9)	10(8)
C(63)	11340(7)	9445(11)	5543(5)	101(4)	96(7)	111(10)	96(7)	-41(7)	12(6)	-3(6)
C(64)	12085(9)	8869(8)	5619(5)	102(3)	97(9)	103(6)	102(5)	-30(4)	0(6)	-6(6)
C(65)	12805(7)	9034(7)	5379(4)	83(2)	93(5)	74(4)	80(5)	-24(3)	5(3)	-4(4)
C(66)	12829(6)	9747(9)	5051(3)	91(2)	118(6)	88(6)	66(4)	-23(4)	7(3)	-18(5)
C(61A)	12404(14)	10201(18)	4946(10)	94(5)	85(10)	98(10)	98(7)	-41(7)	13(8)	-7(8)
C(62A)	11568(15)	10449(14)	5064(7)	94(4)	91(10)	113(10)	77(7)	-39(6)	11(7)	-6(8)
C(63A)	11225(15)	9891(18)	5390(8)	93(6)	101(8)	99(16)	77(12)	-43(10)	13(8)	-7(11)
C(64A)	11683(17)	9116(14)	5595(7)	109(7)	111(18)	120(16)	89(7)	-42(10)	-3(13)	-1(11)
C(65A)	12510(16)	8863(13)	5490(9)	111(7)	104(15)	115(10)	103(13)	-27(9)	-11(9)	-5(11)
C(66A)	12793(11)	9436(15)	5175(7)	87(4)						
C(51)	3399(2)	-848(2)	7491(2)	119(1)	110(2)	107(2)	141(3)	18(2)	25(2)	-14(2)
C(52)	3081(2)	-836(2)	7944(1)	112(1)	136(3)	94(2)	102(2)	14(2)	6(2)	-17(2)
C(56)	2809(3)	-832(2)	7052(1)	110(1)	141(3)	95(2)	98(2)	3(2)	31(2)	0(2)

7.2.3 Bond lengths [Å].

Atoms	Bond length	Atoms	Bond length	Atoms	Bond length
P(1)-P(2)	2.1937(5)	K(2)-C(31A)	3.33(2)	Si(21)-C(212)	1.867(3)
P(1)-Si(1)	2.2142(6)	C(31)-C(36)	1.377(11)	Si(22)-C(223)	1.872(2)
P(1)-K(2)	3.1852(6)	C(31)-C(32)	1.382(10)	Si(22)-C(222)	1.8741(18)
P(1)-K(1)	3.2070(6)	C(32)-C(33)	1.377(10)	Si(22)-C(221)	1.877(2)
P(2)-P(3)	2.2599(6)	C(33)-C(34)	1.354(9)	Si(23)-C(231)	1.862(2)
P(2)-P(2)#1	2.2680(8)	C(34)-C(35)	1.363(10)	Si(23)-C(232)	1.864(2)
P(2)-K(1)#1	3.2167(6)	C(35)-C(36)	1.377(11)	Si(23)-C(233)	1.872(2)
P(3)-P(4)	2.1862(5)	C(31A)-C(36A)	1.383(10)	C(43)-C(44)	1.388(15)
P(3)-P(3)#1	2.2648(8)	C(31A)-C(32A)	1.386(10)	C(44)-C(45)	1.356(13)
P(3)-K(2)	3.2307(5)	C(32A)-C(33A)	1.366(10)	C(45)-C(46)	1.361(15)
P(4)-Si(2)	2.2156(6)	C(33A)-C(34A)	1.358(10)	C(43A)-C(44A)	1.373(15)
P(4)-K(1)#1	3.1843(7)	C(34A)-C(35A)	1.361(9)	C(43A)-C(42A)	1.38(2)
P(4)-K(2)#1	3.2120(6)	C(35A)-C(36A)	1.377(10)	C(44A)-C(45A)	1.356(18)
K(1)-P(4)#1	3.1843(7)	C(41)-C(46)	1.353(15)	C(42A)-C(41A)	1.41(2)
K(1)-P(2)#1	3.2167(6)	C(41)-C(42)	1.398(16)	C(46A)-C(41A)	1.34(2)

K(1)-C(43)	3.290(11)	C(42)-C(43)	1.379(17)	C(46A)-C(45A)	1.37(2)
K(1)-C(42)	3.293(19)	Si(1)-Si(12)	2.3341(7)	C(61)-C(62)	1.403(12)
K(1)-C(44A)	3.310(18)	Si(1)-Si(11)	2.3369(7)	C(61)-C(66)	1.404(12)
K(1)-C(41)	3.339(11)	Si(1)-Si(13)	2.3455(6)	C(62)-C(63)	1.354(15)
K(1)-C(43A)	3.345(19)	Si(11)-C(113)	1.868(3)	C(63)-C(64)	1.396(10)
K(1)-C(42A)	3.36(2)	Si(11)-C(112)	1.873(2)	C(64)-C(65)	1.376(11)
K(1)-C(46)	3.380(15)	Si(11)-C(111)	1.881(2)	C(65)-C(66)	1.373(12)
K(1)-C(45)	3.392(15)	Si(12)-C(122)	1.872(3)	C(61A)-C(66A)	1.37(2)
K(1)-C(44)	3.412(14)	Si(12)-C(121)	1.873(2)	C(61A)-C(62A)	1.403(16)
K(2)-P(4)#1	3.2120(6)	Si(12)-C(123)	1.879(3)	C(62A)-C(63A)	1.36(2)
K(2)-C(36)	3.259(17)	Si(13)-C(133)	1.867(2)	C(63A)-C(64A)	1.398(17)
K(2)-C(35A)	3.269(12)	Si(13)-C(131)	1.867(2)	C(64A)-C(65A)	1.377(14)
K(2)-C(32A)	3.275(13)	Si(13)-C(132)	1.869(2)	C(65A)-C(66A)	1.31(2)
K(2)-C(36A)	3.288(15)	Si(2)-Si(21)	2.3333(7)	C(51)-C(56)	1.364(4)
K(2)-C(35)	3.290(15)	Si(2)-Si(22)	2.3353(6)	C(51)-C(52)	1.382(4)
K(2)-C(31)	3.30(2)	Si(2)-Si(23)	2.3483(6)	C(52)-C(56)#2	1.349(4)
K(2)-C(34)	3.309(13)	Si(21)-C(211)	1.858(2)	C(56)-C(52)#2	1.349(4)
K(2)-C(34A)	3.326(15)	Si(21)-C(213)	1.860(3)		· · · · · · · · · · · · · · · · · · ·

7.2.4 Bond angles [deg].

Atoms	Angle	Atoms	Angle
	105.05(0)		
P(2)-P(1)-Si(1)	105.35(2)	S1(2)-P(4)-K(1)#1	123.11(2)
P(2)-P(1)-K(2)	98.478(19)	P(3)-P(4)-K(2)#1	96.212(19)
Si(1)-P(1)-K(2)	125.34(2)	S1(2)-P(4)-K(2)#1	123.29(2)
P(2)-P(1)-K(1)	95.206(19)	K(1)#1-P(4)-K(2)#1	105.629(16)
Si(1)-P(1)-K(1)	119.82(2)	P(4)#1-K(1)-P(1)	/0.416(14)
K(2)-P(1)-K(1)	105.726(17)	P(4)#1-K(1)-P(2)#1	66.364(13)
P(1)-P(2)-P(3)	100.63(2)	P(1)-K(1)-P(2)#1	66.348(12)
P(1)-P(2)-P(2)#1	103.95(3)	P(4)#1-K(1)-C(43)	122.3(2)
P(3)-P(2)-P(2)#1	88.793(14)	P(1)-K(1)-C(43)	128.9(3)
P(1)-P(2)-K(1)#1	157.73(2)	P(2)#1-K(1)-C(43)	163.3(2)
P(3)-P(2)-K(1)#1	93.398(17)	P(4)#1-K(1)-C(42)	145.1(3)
P(2)#1-P(2)-K(1)#1	93.47(2)	P(1)-K(1)-C(42)	119.1(3)
P(4)-P(3)-P(2)	103.98(2)	P(2)#1-K(1)-C(42)	148.3(3)
P(4)-P(3)-P(3)#1	103.27(3)	C(43)-K(1)-C(42)	24.2(3)
P(2)-P(3)-P(3)#1	88.873(14)	P(4)#1-K(1)-C(44A)	116.2(2)
P(4)-P(3)-K(2)	153.74(2)	P(1)-K(1)-C(44A)	158.7(3)
P(2)-P(3)-K(2)	95.790(17)	P(2)#1-K(1)-C(44A)	134.9(4)
P(3)#1-P(3)-K(2)	94.11(2)	C(43)-K(1)-C(44A)	29.9(3)
P(3)-P(4)-Si(2)	105.11(2)	C(42)-K(1)-C(44A)	43.4(3)
P(3)-P(4)-K(1)#1	95.755(19)	P(4)#1-K(1)-C(41)	161.53(18)
C(43)-K(1)-C(41)	42.7(3)	P(1)-K(1)-C(41)	126.2(2)
C(42)-K(1)-C(41)	24.3(3)	P(2)#1-K(1)-C(41)	125.1(2)
C(44A)-K(1)-C(41)	45.3(3)	P(4)#1-K(1)-C(45)	122.0(3)
P(4)#1-K(1)-C(43A)	128.2(4)	P(1)-K(1)-C(45)	166.3(2)
P(1)-K(1)-C(43A)	161.3(4)	P(2)#1-K(1)-C(45)	122.2(3)
P(2)#1-K(1)-C(43A)	116.2(3)	C(43)-K(1)-C(45)	41.4(2)
C(43)-K(1)-C(43A)	47.1(4)	C(42)-K(1)-C(45)	47.7(3)
C(42)-K(1)-C(43A)	48.3(4)	C(44A)-K(1)-C(45)	14.8(3)
C(44A)-K(1)-C(43A)	23.8(3)	C(41)-K(1)-C(45)	40.7(3)
C(41)-K(1)-C(43A)	36.0(4)	C(43A)-K(1)-C(45)	9.5(3)
P(4)#1-K(1)-C(42A)	151.4(4)	C(42A)-K(1)-C(45)	31.3(4)
P(1)-K(1)-C(42A)	137.5(4)	C(46)-K(1)-C(45)	23.2(3)
P(2)#1-K(1)-C(42A)	114.3(3)	P(4)#1-K(1)-C(44)	113.5(2)
C(43)-K(1)-C(42A)	50.6(4)	P(1)-K(1)-C(44)	151.3(3)
C(42)-K(1)-C(42A)	38.5(5)	P(2)#1-K(1)-C(44)	142.2(3)
C(44A)-K(1)-C(42A)	41.3(3)	C(43)-K(1)-C(44)	23.8(2)
C(41)-K(1)-C(42A)	16.6(4)	C(42)-K(1)-C(44)	41.4(3)
C(43A)-K(1)-C(42A)	23.7(3)	C(44A)-K(1)-C(44)	8.2(5)
			0.2(0)

Atoms	Angle	Atoms	Angle
P(4)#1-K(1)-C(46)	142.9(4)	C(41)-K(1)-C(44)	48.2(3)
P(1)-K(1)-C(46)	146.2(4)	C(43A)-K(1)-C(44)	31.7(4)
P(2)#1-K(1)-C(46)	114.8(2)	C(42A)-K(1)-C(44)	47.0(4)
C(43)-K(1)-C(46)	49.1(3)	C(46)-K(1)-C(44)	41.1(3)
C(42)-K(1)-C(46)	41.7(3)	C(45)-K(1)-C(44)	23.0(2)
C(44A)-K(1)-C(46)	34.6(3)	P(1)-K(2)-P(4)#1	70.341(13)
C(41)-K(1)-C(46)	23.2(3)	P(1)-K(2)-P(3)	64.578(12)
C(43A)-K(1)-C(46)	15.1(3)	P(4)#1-K(2)-P(3)	65.602(12)
C(42A)-K(1)-C(46)	8.7(4)	P(1)-K(2)-C(36)	156.1(3)
C(36)-K(2)-C(35A)	32.6(3)	P(4)#1-K(2)-C(36)	116.0(2)
P(1)-K(2)-C(32A)	118.2(2)	P(3)-K(2)-C(36)	139.3(3)
P(4)#1-K(2)-C(32A)	127.8(2)	P(1)-K(2)-C(35A)	147.4(4)
P(3)-K(2)-C(32A)	166.6(2)	P(4)#1-K(2)-C(35A)	142.2(4)
C(36)-K(2)-C(32A)	38.7(4)	P(3)-K(2)-C(35A)	120.61(19)
C(35A)-K(2)-C(32A)	49.3(2)	C(36)-K(2)-C(31)	24.2(2)
P(1)-K(2)-C(36A)	160.7(2)	C(35A)-K(2)-C(31)	46.8(3)
P(4)#1-K(2)-C(36A)	121.6(3)	C(32A)-K(2)-C(31)	18.1(4)
P(3)-K(2)-C(36A)	132.8(3)	C(36A)-K(2)-C(31)	31.1(4)
C(36)-K(2)-C(36A)	9.1(3)	C(35)-K(2)-C(31)	42.4(3)
C(35A)-K(2)-C(36A)	24.23(18)	P(1)-K(2)-C(34)	132.9(2)
C(32A)-K(2)-C(36A)	42.7(3)	P(4)#1-K(2)-C(34)	156.6(2)
P(1)-K(2)-C(35)	156.7(3)	P(3)-K(2)-C(34)	121.9(2)
P(4)#1-K(2)-C(35)	132.8(3)	C(36)-K(2)-C(34)	42.6(3)
P(3)-K(2)-C(35)	123.1(2)	C(35A)-K(2)-C(34)	14.6(2)
C(36)-K(2)-C(35)	24.3(2)	C(32A)-K(2)-C(34)	45.7(3)
C(35A)-K(2)-C(35)	9.9(3)	C(36A)-K(2)-C(34)	35.7(3)
C(32A)-K(2)-C(35)	48.9(3)	C(35)-K(2)-C(34)	23.84(19)
C(36A)-K(2)-C(35)	15.3(3)	C(31)-K(2)-C(34)	49.4(3)
P(1)-K(2)-C(31)	131.9(3)	P(1)-K(2)-C(34A)	124.4(3)
P(4)#1-K(2)-C(31)	116.6(2)	P(4)#1-K(2)-C(34A)	163.7(3)
P(3)-K(2)-C(31)	163.6(3)	P(3)-K(2)-C(34A)	124.9(2)
C(36)-K(2)-C(34A)	47.7(3)	C(113)-Si(11)-C(112)	107.66(14)
C(35A)-K(2)-C(34A)	23.79(18)	C(113)-Si(11)-C(111)	108.42(12)
C(32A)-K(2)-C(34A)	42.0(3)	C(112)-Si(11)-C(111)	107.72(12)
C(36A)-K(2)-C(34A)	42.2(3)	C(113)-Si(11)-Si(1)	108.85(8)
C(35)-K(2)-C(34A)	32.3(3)	C(112)-Si(11)-Si(1)	113.44(9)
C(31)- $K(2)$ - $C(34A)$	49.5(4)	C(111)-Si(11)-Si(1)	110.60(8)
C(34)-K(2)-C(34A)	9.5(2)	C(122)-Si(12)-C(121)	107.49(12)
P(1)-K(2)-C(31A)	139.3(3)	C(122)-Si(12)-C(123)	108.31(14)
P(4)#1-K(2)-C(31A)	116.2(2)	C(121)-Si(12)-C(123) C(122)-Si(12)-Si(1)	108.21(11)
P(3)-K(2)-C(31A)	156.1(3)	C(122)-S1(12)-S1(1)	110.12(8)
C(30)-K(2)-C(31A)	$10.\delta(3)$ 42.2(2)	C(121)-SI(12)-SI(1) C(122)-Si(12)-Si(1)	109.77(7)
C(33A) - K(2) - C(31A)	42.2(5)	C(122)-SI(12)-SI(1) C(122)-Si(12)-C(121)	112.60(10) 107.51(12)
C(32A) - K(2) - C(31A) C(36A) K(2) C(31A)	24.2(2)	C(133) - SI(13) - C(131) C(133) - SI(13) - C(132)	107.31(12) 106.75(12)
C(30A) - K(2) - C(31A) C(35) K(2) C(21A)	24.1(2)	C(133)-SI(13)-C(132) C(131) $Si(13)$ $C(132)$	100.73(12) 100.00(14)
C(33) - K(2) - C(31A) C(31) K(2) C(31A)	75(4)	C(131) - SI(13) - C(132) C(133) Si(13) Si(1)	109.09(14)
C(31)- $K(2)$ - $C(31A)C(34)$ $K(2)$ $C(21A)$	7.3(4) 47.1(3)	C(133) - SI(13) - SI(1) C(131) Si(13) Si(1)	10.01(0)
$C(34A)_{K(2)}-C(31A)$	-7.1(3) 48 7(3)	C(132) - Si(13) - Si(1)	113.03(7)
$P(1)_Si(1)_Si(12)$	114 78(3)	$C(36)_C(31)_C(32)$	119.0+(9)
P(1)-Si(1)-Si(11)	114 51(3)	C(36)-C(31)-K(2)	76 1(11)
Si(12)-Si(1)-Si(11)	110 37(3)	C(32)-C(31)-K(2)	83 6(10)
P(1)-Si(1)-Si(13)	99.75(2)	C(33)-C(32)-C(31)	118.7(9)
Si(12)-Si(1)-Si(13)	108.84(2)	C(33)-C(32)-K(2)	75.2(9)
Si(11)-Si(1)-Si(13)	107.74(2)	C(31)-C(32)-K(2)	72.8(10)
P(4)-Si(2)-Si(21)	115.34(2)	C(34)-C(33)-C(32)	122.0(8)
P(4)-Si(2)-Si(22)	114.99(3)	C(34)-C(33)-K(2)	76.2(8)
Si(21)-Si(2)-Si(22)	109.47(2)	C(32)-C(33)-K(2)	81.5(9)
P(4)-Si(2)-Si(23)	99.01(2)	C(33)-C(34)-C(35)	118.7(9)
Si(21)-Si(2)-Si(23)	108.51(2)	C(33)-C(34)-K(2)	80.3(8)
Si(22)-Si(2)-Si(23)	108.71(2)	C(35)-C(34)-K(2)	77.3(8)

Atoms	Angle	Atoms	Angle
C(211)-Si(21)-C(213)	107.38(14)	C(34)-C(35)-C(36)	120.8(10)
C(211)-Si(21)-C(212)	107.74(14)	C(34)-C(35)-K(2)	78.8(8)
C(213)-Si(21)-C(212)	107.28(19)	C(36)-C(35)-K(2)	76.6(10)
C(211)-Si(21)-Si(2)	110.92(8)	C(35)-C(36)-C(31)	119.9(10)
C(213)-Si(21)-Si(2)	109.70(10)	C(35)-C(36)-K(2)	79.1(9)
C(212)-Si(21)-Si(2)	113.57(9)	C(31)-C(36)-K(2)	79.7(11)
C(223)-Si(22)-C(222)	107.90(10)	C(36A)-C(31A)-C(32A)	119.5(9)
C(223)-Si(22)-C(221)	108.38(13)	C(36A)-C(31A)-K(2)	76.4(10)
C(222)-Si(22)-C(221)	108.50(10)	C(32A)-C(31A)-K(2)	75.8(9)
C(223)-Si(22)-Si(2)	108.47(7)	C(33A)-C(32A)-C(31A)	119.8(9)
C(222)-Si(22)-Si(2)	111.18(6)	C(33A)-C(32A)-K(2)	80.3(8)
C(221)-Si(22)-Si(2)	112.29(8)	C(41)-C(42)-K(1)	79.7(8)
C(231)-Si(23)-C(232)	108.89(12)	C(42)-C(43)-C(44)	118.3(11)
C(231)-Si(23)-C(233)	107.90(12)	C(42)-C(43)-K(1)	78.1(8)
C(232)-Si(23)-C(233)	106.18(12)	C(44)-C(43)-K(1)	83.0(7)
C(231)-Si(23)-Si(2)	112.92(7)	C(45)-C(44)-C(43)	119.0(10)
C(232)-Si(23)-Si(2)	109.71(7)	C(45)-C(44)-K(1)	77.7(8)
C(233)-Si(23)-Si(2)	111.00(7)	C(43)-C(44)-K(1)	73.2(7)
C(31A)-C(32A)-K(2)	80.0(9)	C(44)-C(45)-C(46)	122.9(12)
C(34A)-C(33A)-C(32A)	120.4(10)	C(44)-C(45)-K(1)	79.3(9)
C(34A)-C(33A)-K(2)	78.0(9)	C(46)-C(45)-K(1)	77.9(8)
C(32A)-C(33A)-K(2)	75.8(8)	C(41)-C(46)-C(45)	119.1(11)
C(33A)-C(34A)-C(35A)	120.0(11)	C(41)-C(46)-K(1)	76.7(8)
C(33A)-C(34A)-K(2)	78.4(9)	C(45)-C(46)-K(1)	78.9(9)
C(35A)-C(34A)-K(2)	75.8(8)	C(44A)-C(43A)-C(42A)	117.5(15)
C(34A)-C(35A)-C(36A)	121.1(9)	C(44A)-C(43A)-K(1)	76.7(11)
C(34A)-C(35A)-K(2)	80.4(8)	C(42A)-C(43A)-K(1)	78.9(12)
C(36A)-C(35A)-K(2)	78.7(8)	C(45A)-C(44A)-C(43A)	120.6(9)
C(35A)-C(36A)-C(31A)	118.7(9)	C(45A)-C(44A)-K(1)	84.6(11)
C(35A)-C(36A)-K(2)	77.1(8)	C(43A)-C(44A)-K(1)	79.5(11)
C(31A)-C(36A)-K(2)	79.5(10)	C(43A)-C(42A)-C(41A)	120.5(15)
C(46)-C(41)-C(42)	119.5(7)	C(43A)-C(42A)-K(1)	77.3(12)
C(46)-C(41)-K(1)	80.1(8)	C(41A)-C(42A)-K(1)	81.6(11)
C(42)-C(41)-K(1)	76.0(9)	C(41A)-C(46A)-C(45A)	119.0(15)
C(43)-C(42)-C(41)	120.9(11)	C(41A)-C(46A)-K(1)	76.0(14)
C(43)-C(42)-K(1)	77.8(8)	C(45A)-C(46A)-K(1)	76.1(11)
C(46A)-C(45A)-K(1)	81.3(11)	C(44A)-C(45A)-C(46A)	121.8(13)
C(46A)-C(41A)-C(42A)	120.1(11)	C(44A)-C(45A)-K(1)	72.4(10)
C(46A)-C(41A)-K(1)	81.9(15)	C(63A)-C(62A)-C(61A)	116(2)
C(42A)-C(41A)-K(1)	74.7(11)	C(62A)-C(63A)-C(64A)	122(2)
C(62)-C(61)-C(66)	120.6(10)	C(65A)-C(64A)-C(63A)	123.2(18)
C(63)-C(62)-C(61)	121.6(12)	C(66A)-C(65A)-C(64A)	111.2(16)
C(62)-C(63)-C(64)	118.0(14)	C(65A)-C(66A)-C(61A)	130.9(15)
C(65)-C(64)-C(63)	120.5(13)	C(56)-C(51)-C(52)	119.6(3)
C(66)-C(65)-C(64)	122.8(10)	C(56)#2-C(52)-C(51)	119.9(3)
C(65)-C(66)-C(61)	116.4(9)	C(52)#2-C(56)-C(51)	120.4(3)
C(66A)-C(61A)-C(62A)	116.6(18)		

Symmetry transformations used to generate equivalent atoms: #1 -x+3/2, y, -z+3/2 #2 -x+1/2, y, -z+3/2

7.3 Crystallographic data for $Hyp_3P_5K_2 \cdot 2C_6H_6$

7.3.1 Crystal data and structure refinement

Empirical formula	$Hyp_3P_3K_2 \cdot 1.5$ benzene
Formula weight	1093.21
Temperature	193(2) K

Wavelength	0.71073 Å
Crystal system, space group	triclinic; $P_{\overline{1}}$
Unit cell dimensions	a = 14.7289(14) Å alpha = 97.292(7)deg. b = 17.2007(15) Å beta = 93.032(7)deg. c = 27.467(2) Å gamma=105.980(7) deg.
Volume	6607.5(10) Å ³
Z, Calculated density	4, 1.099 g/cm^3
Absorption coefficient	0.505 mm^{-1}
F(000)	2348
Theta range for data collection	1.36 to 26.37 deg.
Limiting indices	-18<=h<=18, -21<=k<=21, -31<=1<=34
Reflections collected / unique	63967 / 26523 [R(int) = 0.0813]
Completeness to theta = 26.37	98.2 %
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	26523 / 352 / 1155
Goodness-of-fit on F^2	0.904
Final R indices [I>2sigma(I)]	R1 = 0.0573, $wR2 = 0.1314$
R indices (all data)	R1 = 0.1050, wR2 = 0.1455
Largest diff. peak and hole	0.638 and -0.504 e.Å $^{-3}$

7.3.2 Atomic coordinates (x 10⁴), equivalent isotropic displacement parameters (Å ² x 10³) and Anisotropic displacement parameters (Å ² x 10³). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U11 + ... + 2hka^*b^*U12]$

Atom	Х	у	Z	U(eq)	U11	U22	U33	U23	U13	U12
P(1)	4173(1)	6134(1)	280(1)	38(1)	36(1)	36(1)	42(1)	8(1)	8(1)	8(1)
P(2)	4810(1)	6362(1)	-915(1)	43(1)	44(1)	46(1)	40(1)	10(1)	5(1)	13(1)
P(3)	6575(1)	7157(1)	205(1)	42(1)	34(1)	37(1)	53(1)	6(1)	4(1)	6(1)
P(4)	5218(1)	7367(1)	345(1)	39(1)	35(1)	36(1)	43(1)	4(1)	4(1)	7(1)
P(5)	4155(1)	6902(1)	-321(1)	40(1)	38(1)	42(1)	41(1)	7(1)	2(1)	11(1)
K(1)	6064(1)	5440(1)	625(1)	56(1)	64(1)	42(1)	63(1)	11(1)	9(1)	15(1)
K(2)	6982(1)	7291(1)	-932(1)	61(1)	57(1)	54(1)	65(1)	11(1)	11(1)	4(1)
C(21)	8196(6)	7214(6)	-1981(3)	111(2)	105(6)	131(7)	72(5)	11(5)	5(4)	-3(5)
C(22)	8424(7)	8000(6)	-1793(3)	118(3)	123(7)	117(7)	119(7)	53(6)	44(5)	18(5)
C(23)	9265(8)	8353(6)	-1535(4)	141(4)	103(7)	107(6)	179(9)	-16(6)	53(7)	-15(6)
C(24)	9872(7)	7922(9)	-1453(4)	172(5)	70(5)	192(11)	210(12)	-75(9)	7(6)	12(7)
C(25)	9677(8)	7142(8)	-1652(4)	140(3)	111(7)	161(9)	165(9)	28(8)	42(7)	61(7)
C(26)	8813(8)	6764(6)	-1931(4)	130(3)	140(8)	102(6)	126(7)	1(5)	50(6)	-3(6)
Si(1)	3116(1)	6385(1)	807(1)	41(1)	37(1)	37(1)	48(1)	8(1)	9(1)	8(1)
Si(11)	1904(1)	5152(1)	745(1)	54(1)	41(1)	44(1)	72(1)	9(1)	12(1)	1(1)
C(111)	2433(4)	4353(3)	950(2)	64(1)	64(3)	44(2)	78(3)	8(2)	21(3)	5(2)
C(112)	1360(4)	4755(4)	95(2)	89(2)	78(4)	79(4)	88(4)	5(3)	-11(3)	-7(3)
C(113)	931(4)	5250(3)	1138(3)	85(2)	49(3)	71(4)	134(5)	26(3)	30(3)	5(3)
Si(12)	3918(1)	6617(1)	1601(1)	48(1)	53(1)	46(1)	43(1)	8(1)	11(1)	13(1)
C(121)	4938(3)	6154(3)	1555(2)	60(1)	69(3)	62(3)	50(3)	9(2)	-3(2)	22(2)
C(122)	4410(4)	7735(3)	1824(2)	63(1)	67(3)	58(3)	61(3)	4(2)	9(2)	17(2)
C(123)	3149(4)	6149(3)	2068(2)	76(2)	90(4)	73(3)	53(3)	11(3)	22(3)	3(3)
Si(13)	2447(1)	7442(1)	680(1)	50(1)	44(1)	48(1)	62(1)	11(1)	10(1)	18(1)
C(131)	3336(3)	8411(3)	583(2)	60(1)	66(3)	48(3)	73(3)	11(2)	19(2)	23(2)
C(132)	1539(4)	7098(3)	138(2)	70(1)	54(3)	77(3)	83(4)	10(3)	0(3)	25(3)

Atom				U(ag)	1111	1122	1122	1122	1112	1112
Atom	1042(4)	<u>y</u>	<u>Z</u>	O(eq)	(0(2)	72(2)	033	1((2)	17(2)	20(2)
C(133)	1843(4)	/661(3)	1243(2)	68(1)	60(3)	/3(3)	81(4)	16(3)	1/(3)	30(3)
S1(2)	3892(1)	6569(1)	-1537(1)	44(1)	48(1)	43(1)	41(1)	5(1)	1(1)	12(1)
S1(21)	2446(1)	5540(1)	-1696(1)	62(1)	45(1)	61(1)	70(1)	-7(1)	-6(1)	8(1)
C(211)	2665(4)	4542(3)	-1941(3)	85(2)	/0(4)	54(3)	115(5)	-13(3)	-2(3)	3(3)
C(212)	1882(4)	5398(4)	-1104(2)	94(2)	61(3)	99(5)	102(5)	3(4)	10(3)	-6(3)
C(213)	1575(4)	5771(4)	-2148(3)	99(2)	78(4)	104(5)	102(5)	-28(4)	-41(4)	32(4)
Si(22)	3608(1)	7855(1)	-1456(1)	57(1)	73(1)	53(1)	51(1)	5(1)	-3(1)	29(1)
C(221)	2594(5)	7891(4)	-1081(2)	89(2)	103(5)	98(4)	84(4)	6(3)	10(3)	65(4)
C(222)	3303(5)	8122(3)	-2080(2)	83(2)	120(5)	74(4)	66(4)	15(3)	-12(3)	47(4)
C(223)	4681(4)	8650(3)	-1148(2)	77(2)	98(4)	55(3)	68(4)	3(3)	-10(3)	9(3)
Si(23)	4773(1)	6505(1)	-2219(1)	57(1)	75(1)	54(1)	47(1)	14(1)	14(1)	24(1)
C(231)	5410(4)	5700(3)	-2198(2)	63(1)	75(3)	60(3)	60(3)	16(2)	23(2)	25(3)
C(232)	5691(4)	7502(3)	-2218(2)	83(2)	96(4)	72(4)	97(4)	34(3)	39(3)	32(3)
C(233)	4010(5)	6267(4)	-2822(2)	87(2)	127(5)	93(4)	51(3)	11(3)	8(3)	52(4)
Si(3)	7502(1)	8402(1)	532(1)	40(1)	35(1)	39(1)	45(1)	7(1)	2(1)	5(1)
Si(31)	7404(1)	8862(1)	1367(1)	53(1)	49(1)	58(1)	44(1)	5(1)	0(1)	5(1)
C(311)	6465(4)	9400(3)	1444(2)	69(1)	75(3)	73(3)	56(3)	0(2)	8(2)	22(3)
C(312)	8550(4)	9596(4)	1661(2)	86(2)	64(3)	110(5)	55(3)	-11(3)	-5(3)	-14(3)
C(313)	7128(4)	7988(4)	1726(2)	81(2)	82(4)	100(4)	65(4)	36(3)	13(3)	21(3)
Si(32)	9005(1)	8188(1)	488(1)	54(1)	36(1)	57(1)	66(1)	10(1)	1(1)	8(1)
C(321)	9104(4)	7405(4)	888(2)	82(2)	58(3)	102(4)	101(5)	37(4)	3(3)	39(3)
C(322)	10038(4)	9119(4)	677(2)	86(2)	53(3)	80(4)	107(5)	-5(3)	13(3)	-4(3)
C(323)	9138(4)	7782(4)	-159(2)	79(2)	57(3)	96(4)	87(4)	1(3)	8(3)	31(3)
Si(33)	7359(1)	9468(1)	102(1)	47(1)	51(1)	38(1)	51(1)	9(1)	5(1)	8(1)
C(331)	7524(4)	9273(3)	-574(2)	61(1)	77(3)	53(3)	54(3)	9(2)	5(2)	18(2)
C(332)	8289(4)	10439(3)	370(2)	66(1)	71(3)	42(2)	75(3)	5(2)	5(3)	5(2)
C(333)	6150(3)	9635(3)	137(2)	62(1)	61(3)	64(3)	71(3)	26(2)	10(2)	24(2)
P(8)	-49(1)	8131(1)	-5886(1)	44(1)	42(1)	50(1)	38(1)	1(1)	2(1)	14(1)
P(7)	-1530(1)	8015(1)	-4828(1)	45(1)	38(1)	40(1)	56(1)	10(1)	6(1)	7(1)
P(6)	932(1)	9010(1)	-4668(1)	40(1)	39(1)	37(1)	41(1)	4(1)	-2(1)	8(1)
P(9)	755(1)	7925(1)	-5249(1)	41(1)	39(1)	43(1)	40(1)	3(1)	4(1)	12(1)
P(10)	-159(1)	7840(1)	-4619(1)	41(1)	40(1)	40(1)	43(1)	9(1)	5(1)	8(1)
K(3)	798(1)	10088(1)	-5636(1)	59(1)	64(1)	46(1)	68(1)	4(1)	7(1)	18(1)
K(4)	-2308(1)	7375(1)	-5969(1)	63(1)	55(1)	61(1)	63(1)	5(1)	-4(1)	2(1)
C(41A)	-3960(19)	6076(14)	-6843(9)	82(6)	93(14)	73(13)	68(13)	-9(9)	-11(9)	17(11)
C(42A)	-3841(12)	6797(18)	-7046(8)	76(6)	65(8)	77(15)	73(9)	2(10)	-13(6)	5(9)
C(43A)	-4399(18)	7308(13)	-6948(10)	90(7)	76(14)	101(10)	82(12)	4(10)	-25(10)	19(9)
C(44A)	-5142(17)	7070(16)	-6673(11)	99(6)	78(12)	122(14)	100(11)	8(11)	5(10)	40(10)
C(45A)	-5298(15)	6360(20)	-6467(9)	93(6)	72(9)	111(16)	86(10)	-1(12)	19(8)	14(10)
C(46A)	-4700(20)	5887(11)	-6551(9)	82(6)	75(15)	81(9)	76(13)	3(9)	6(10)	5(10)
C(41B)	-4260(20)	5857(15)	-6678(12)	80(7)	67(14)	79(11)	82(16)	-13(10)	17(10)	10(11)
C(42B)	-3834(16)	6450(20)	-6966(10)	76(8)	68(9)	80(20)	64(14)	-28(13)	1(9)	18(14)
C(43B)	-4090(20)	7149(19)	-6986(12)	88(9)	80(17)	94(16)	74(11)	5(12)	-5(13)	4(13)
C(44B)	-4820(30)	7265(17)	-6723(14)	101(8)	82(18)	114(13)	106(15)	8(13)	-15(14)	36(13)
C(45B)	-5250(20)	6710(20)	-6433(12)	98(8)	88(12)	115(18)	91(13)	-13(14)	1(11)	42(12)
C(46B)	-4990(20)	5999(16)	-6423(10)	80(6)	74(14)	87(12)	79(12)	3(10)	24(10)	23(9)
Si(6)	2119(1)	8936(1)	-4125(1)	42(1)	39(1)	42(1)	43(1)	3(1)	-3(1)	10(1)
Si(61)	3382(1)	10038(1)	-4257(1)	58(1)	45(1)	60(1)	59(1)	12(1)	-5(1)	-3(1)
C(611)	3026(4)	10997(3)	-4072(2)	76(2)	77(4)	51(3)	88(4)	12(3)	-9(3)	-1(3)
C(612)	4529(4)	10115(4)	-3895(2)	85(2)	45(3)	90(4)	108(5)	28(3)	-13(3)	-5(3)
C(613)	3584(5)	10000(4)	-4923(2)	93(2)	88(4)	106(5)	76(4)	24(3)	21(3)	3(4)
Si(62)	1719(1)	9265(1)	-3323(1)	54(1)	56(1)	59(1)	44(1)	2(1)	1(1)	16(1)
C(621)	1151(4)	8342(4)	-3037(2)	75(2)	70(3)	90(4)	66(3)	26(3)	13(3)	20(3)
C(622)	2813(4)	9879(4)	-2909(2)	83(2)	86(4)	89(4)	51(3)	-8(3)	-6(3)	-1(3)
C(623)	851(5)	9893(4)	-3338(2)	89(2)	108(5)	100(5)	76(4)	10(3)	21(3)	57(4)
Si(63)	2590(1)	7729(1)	-4162(1)	55(1)	56(1)	55(1)	58(1)	8(1)	-1(1)	25(1)
C(631)	3223(5)	7557(4)	-4714(2)	89(2)	102(5)	118(5)	64(4)	5(3)	2(3)	68(4)
C(632)	3446(4)	7880(4)	-3604(2)	75(2)	79(4)	90(4)	65(3)	16(3)	-5(3)	43(3)
C(633)	1602(4)	6777(3)	-4148(3)	89(2)	77(4)	52(3)	137(6)	17(3)	-8(4)	17(3)
Si(7)	-2369(1)	6967(1)	-4482(1)	45(1)	39(1)	41(1)	51(1)	6(1)	9(1)	3(1)
Si(71)	-1951(1)	6976(1)	-3642(1)	60(1)	55(1)	67(1)	49(1)	7(1)	9(1)	3(1)

Atom	Х	у	Z	U(eq)	U11	U22	U33	U23	U13	U12
C(711)	-2996(4)	6400(5)	-3338(2)	101(2)	74(4)	148(6)	62(4)	25(4)	13(3)	-5(4)
C(712)	-999(4)	6473(3)	-3547(2)	79(2)	87(4)	77(4)	66(4)	20(3)	-2(3)	10(3)
C(713)	-1553(4)	8048(4)	-3321(2)	87(2)	81(4)	93(4)	76(4)	-23(3)	-7(3)	23(3)
Si(72)	-3900(1)	7128(1)	-4529(1)	55(1)	41(1)	54(1)	67(1)	7(1)	12(1)	6(1)
C(721)	-4826(4)	6224(3)	-4382(2)	81(2)	45(3)	77(4)	110(5)	24(3)	7(3)	-3(3)
C(722)	-3938(4)	8037(4)	-4094(3)	89(2)	66(4)	83(4)	108(5)	-16(3)	9(3)	19(3)
C(723)	-4251(4)	7292(4)	-5167(2)	83(2)	65(3)	107(5)	87(4)	30(3)	9(3)	36(3)
Si(73)	-2379(1)	5681(1)	-4895(1)	53(1)	53(1)	40(1)	59(1)	6(1)	9(1)	4(1)
C(731)	-3043(4)	4837(3)	-4565(2)	71(1)	66(3)	49(3)	92(4)	15(3)	11(3)	2(2)
C(732)	-2959(4)	5482(3)	-5553(2)	75(2)	90(4)	57(3)	65(3)	0(2)	-3(3)	6(3)
C(733)	-1139(4)	5624(3)	-4948(2)	67(1)	64(3)	50(3)	84(4)	-1(2)	15(3)	12(2)
Si(8)	716(1)	7600(1)	-6468(1)	42(1)	45(1)	42(1)	37(1)	3(1)	6(1)	10(1)
Si(81)	500(1)	6198(1)	-6473(1)	62(1)	84(1)	43(1)	58(1)	5(1)	22(1)	16(1)
C(811)	1107(5)	5740(4)	-6969(2)	95(2)	146(6)	71(4)	86(4)	15(3)	50(4)	53(4)
C(812)	949(5)	5969(3)	-5870(2)	84(2)	127(5)	59(3)	77(4)	21(3)	23(4)	37(3)
C(813)	-801(5)	5663(3)	-6569(2)	96(2)	110(5)	57(3)	95(5)	3(3)	26(4)	-16(3)
Si(82)	-35(1)	7747(1)	-7212(1)	56(1)	53(1)	69(1)	41(1)	10(1)	3(1)	11(1)
C(821)	-1325(3)	7609(4)	-7136(2)	78(2)	50(3)	117(5)	57(3)	13(3)	-5(2)	10(3)
C(822)	65(4)	6972(4)	-7737(2)	81(2)	87(4)	100(4)	44(3)	0(3)	6(3)	14(3)
C(823)	469(4)	8788(3)	-7396(2)	76(2)	78(4)	80(4)	79(4)	34(3)	10(3)	28(3)
Si(83)	2327(1)	8295(1)	-6471(1)	51(1)	44(1)	55(1)	52(1)	7(1)	10(1)	11(1)
C(831)	2786(4)	8145(3)	-7090(2)	73(1)	68(3)	79(4)	71(4)	5(3)	25(3)	21(3)
C(832)	2511(4)	9418(3)	-6273(2)	68(1)	55(3)	61(3)	77(4)	0(3)	10(2)	3(2)
C(833)	3060(4)	7946(4)	-6008(2)	79(2)	52(3)	105(4)	86(4)	32(3)	8(3)	22(3)
C(31A)	7374(13)	9828(18)	-2133(12)	70(6)	73(8)	72(14)	63(17)	18(13)	27(12)	12(8)
C(32A)	7040(20)	9500(16)	-2608(12)	77(7)	91(17)	62(11)	71(17)	12(12)	25(13)	6(13)
C(33A)	6130(20)	9474(18)	-2780(8)	75(7)	79(17)	76(10)	70(11)	15(9)	12(12)	18(12)
C(34A)	5575(14)	9790(18)	-2454(11)	79(7)	83(10)	78(15)	78(18)	16(13)	13(12)	24(9)
C(35A)	5940(20)	10124(14)	-1970(10)	69(5)	101(15)	50(10)	56(13)	6(9)	7(10)	25(11)
C(36A)	6840(30)	10107(19)	-1806(8)	73(6)	109(17)	54(9)	57(10)	1(7)	25(11)	24(13)
C(31B)	7266(16)	9951(13)	-1935(8)	82(5)	96(11)	71(9)	67(12)	-6(9)	32(9)	8(8)
C(32B)	7373(13)	9590(12)	-2391(10)	81(5)	96(10)	74(10)	64(14)	13(10)	24(10)	5(8)
C(33B)	6620(20)	9367(12)	-2749(6)	80(6)	105(17)	60(8)	64(9)	9(6)	13(11)	7(11)
C(34B)	5777(17)	9553(14)	-2648(9)	89(7)	101(14)	72(11)	86(16)	24(11)	1(11)	10(11)
C(35B)	5706(13)	9950(12) -	-2182(12)	90(6)	105(11)	67(10)	87(17)	-2(12)	16(12)	10(8)
C(36B)	6460(20)	10152(16)	-1827(8)	89(6)	111(16)	78(9)	77(11)	5(8)	19(11)	26(14)

7.3.3 Bond lengths [Å].

Atoms	Bond length	Atoms	Bond length	Atoms	Bond length
P(1)-P(4)	2.2303(14)	Si(3)-Si(31)	2.3544(17)	Si(33)-C(331)	1.887(5)
P(1)-P(5)	2.2442(14)	P(8)-P(9)	2.1819(14)	Si(63)-C(633)	1.873(6)
P(1)-Si(1)	2.2708(15)	P(8)-Si(8)	2.2448(16)	Si(63)-C(632)	1.875(5)
P(2)-P(5)	2.1757(15)	P(7)-P(10)	2.1814(14)	Si(7)-Si(72)	2.3454(17)
P(2)-Si(2)	2.2477(15)	P(7)-Si(7)	2.2404(16)	Si(7)-Si(73)	2.3503(17)
P(3)-P(4)	2.1724(14)	P(6)-P(10)	2.2273(15)	Si(7)-Si(71)	2.3517(18)
P(3)-Si(3)	2.2431(15)	P(6)-P(9)	2.2437(14)	Si(71)-C(713)	1.861(6)
P(4)-P(5)	2.2515(14)	P(6)-Si(6)	2.2770(14)	Si(71)-C(712)	1.862(6)
C(21)-C(22)	1.328(11)	P(9)-P(10)	2.2426(15)	Si(71)-C(711)	1.886(6)
C(21)-C(26)	1.358(12)	C(41A)-C(46A)	1.382(16)	Si(72)-C(722)	1.859(6)
C(22)-C(23)	1.338(12)	C(41A)-C(42A)	1.395(16)	Si(72)-C(721)	1.868(5)
C(23)-C(24)	1.338(14)	C(42A)-C(43A)	1.370(16)	Si(72)-C(723)	1.879(6)
C(24)-C(25)	1.329(13)	C(43A)-C(44A)	1.362(17)	Si(73)-C(733)	1.869(5)
C(25)-C(26)	1.395(13)	C(44A)-C(45A)	1.371(17)	Si(73)-C(731)	1.879(5)
Si(1)-Si(11)	2.3455(16)	C(45A)-C(46A)	1.365(16)	Si(73)-C(732)	1.906(5)
Si(1)-Si(13)	2.3476(15)	C(41B)-C(46B)	1.384(16)	Si(8)-Si(81)	2.3433(17)
Si(1)-Si(12)	2.3572(16)	C(41B)-C(42B)	1.399(17)	Si(8)-Si(83)	2.3464(17)
Si(11)-C(113)	1.871(6)	C(42B)-C(43B)	1.366(17)	Si(8)-Si(82)	2.3469(16)
Si(11)-C(112)	1.879(6)	C(43B)-C(44B)	1.364(17)	Si(81)-C(813)	1.870(6)

Atoms	Bond length	Atoms	Bond length	Atoms	Bond length
Si(11)-C(111)	1.884(5)	C(44B)-C(45B)	1.366(18)	Si(81)-C(811)	1.877(6)
Si(12)-C(122)	1.867(5)	C(45B)-C(46B)	1.368(17)	Si(81)-C(812)	1.879(6)
Si(12)-C(123)	1.867(5)	Si(6)-Si(61)	2.3431(17)	Si(82)-C(821)	1.875(5)
Si(12)-C(121)	1.887(5)	Si(6)-Si(62)	2.3497(18)	Si(82)-C(822)	1.876(6)
Si(13)-C(132)	1.868(5)	Si(6)-Si(63)	2.3553(16)	Si(82)-C(823)	1.886(5)
Si(13)-C(133)	1.872(5)	Si(61)-C(613)	1.866(6)	Si(83)-C(831)	1.877(5)
Si(13)-C(131)	1.873(5)	Si(61)-C(612)	1.877(5)	Si(83)-C(832)	1.879(5)
Si(2)-Si(23)	2.3416(18)	Si(61)-C(611)	1.882(6)	Si(83)-C(833)	1.882(5)
Si(2)-Si(21)	2.3426(18)	Si(62)-C(621)	1.869(5)	C(31A)-C(36A)	1.353(16)
Si(2)-Si(22)	2.3477(16)	Si(62)-C(622)	1.890(5)	C(31A)-C(32A)	1.361(16)
Si(21)-C(212)	1.877(7)	Si(62)-C(623)	1.891(6)	C(32A)-C(33A)	1.388(17)
Si(21)-C(211)	1.882(5)	Si(63)-C(631)	1.856(6)	C(33A)-C(34A)	1.398(17)
Si(21)-C(213)	1.892(6)	Si(31)-C(313)	1.866(5)	C(34A)-C(35A)	1.395(17)
Si(22)-C(223)	1.860(5)	Si(31)-C(311)	1.869(5)	C(35A)-C(36A)	1.387(17)
Si(22)-C(221)	1.869(6)	Si(31)-C(312)	1.876(5)	C(31B)-C(36B)	1.360(16)
Si(22)-C(222)	1.894(5)	Si(32)-C(323)	1.865(6)	C(31B)-C(32B)	1.362(15)
Si(23)-C(232)	1.870(6)	Si(32)-C(322)	1.874(5)	C(32B)-C(33B)	1.384(15)
Si(23)-C(231)	1.879(5)	Si(32)-C(321)	1.874(5)	C(33B)-C(34B)	1.392(16)
Si(23)-C(233)	1.884(6)	Si(33)-C(332)	1.879(5)	C(34B)-C(35B)	1.395(16)
Si(3)-Si(32)	2.3485(16)	Si(33)-C(333)	1.886(5)	C(35B)-C(36B)	1.377(16)
Si(3)-Si(33)	2.3528(15)				

7.3.4 Bond angles [deg].

Atoms	Angle	Atoms	Angle
P(4)-P(1)-P(5)	60.42(4)	P(7)-P(10)-P(9)	111.28(6)
P(4)-P(1)-Si(1)	101.43(5)	P(6)-P(10)-P(9)	60.26(5)
P(5)-P(1)-Si(1)	107.07(5)	C(46A)-C(41A)-C(42A)	115.9(18)
P(5)-P(2)-Si(2)	96.51(6)	C(43A)-C(42A)-C(41A)	122.4(19)
P(4)-P(3)-Si(3)	97.60(6)	C(44A)-C(43A)-C(42A)	118.6(18)
P(3)-P(4)-P(1)	106.19(5)	C(43A)-C(44A)-C(45A)	121.3(18)
P(3)-P(4)-P(5)	111.81(6)	C(46A)-C(45A)-C(44A)	118.7(14)
P(1)-P(4)-P(5)	60.09(4)	C(45A)-C(46A)-C(41A)	122.8(15)
P(2)-P(5)-P(1)	104.78(5)	C(46B)-C(41B)-C(42B)	116(2)
P(2)-P(5)-P(4)	109.11(6)	C(43B)-C(42B)-C(41B)	123.3(17)
P(1)-P(5)-P(4)	59.48(4)	C(44B)-C(43B)-C(42B)	118.3(17)
C(22)-C(21)-C(26)	121.3(9)	C(43B)-C(44B)-C(45B)	120.5(19)
C(21)-C(22)-C(23)	119.7(9)	C(44B)-C(45B)-C(46B)	120.7(18)
C(24)-C(23)-C(22)	121.0(9)	C(45B)-C(46B)-C(41B)	121(2)
C(25)-C(24)-C(23)	120.6(10)	P(6)-Si(6)-Si(61)	102.44(6)
C(24)-C(25)-C(26)	119.4(10)	P(6)-Si(6)-Si(62)	108.06(6)
C(21)-C(26)-C(25)	117.9(9)	Si(61)-Si(6)-Si(62)	106.16(6)
P(1)-Si(1)-Si(11)	105.73(6)	P(6)-Si(6)-Si(63)	120.21(6)
P(1)-Si(1)-Si(13)	117.21(6)	Si(61)-Si(6)-Si(63)	110.74(7)
Si(11)-Si(1)-Si(13)	109.29(6)	Si(62)-Si(6)-Si(63)	108.34(6)
P(1)-Si(1)-Si(12)	105.34(6)	C(613)-Si(61)-C(612)	108.6(3)
Si(11)-Si(1)-Si(12)	107.13(6)	C(613)-Si(61)-C(611)	106.7(3)
Si(13)-Si(1)-Si(12)	111.55(6)	C(612)-Si(61)-C(611)	108.9(3)
C(113)-Si(11)-C(112)	107.9(3)	C(613)-Si(61)-Si(6)	111.3(2)
C(113)-Si(11)-C(111)	109.0(3)	C(612)-Si(61)-Si(6)	113.99(19)
C(112)-Si(11)-C(111)	106.6(3)	C(611)-Si(61)-Si(6)	107.00(19)
C(113)-Si(11)-Si(1)	112.04(19)	C(621)-Si(62)-C(622)	107.8(3)
C(112)-Si(11)-Si(1)	112.8(2)	C(621)-Si(62)-C(623)	107.3(3)
C(111)-Si(11)-Si(1)	108.30(16)	C(622)-Si(62)-C(623)	108.6(3)
C(122)-Si(12)-C(123)	108.2(2)	C(621)-Si(62)-Si(6)	112.9(2)
C(122)-Si(12)-C(121)	108.3(2)	C(622)-Si(62)-Si(6)	110.4(2)
C(123)-Si(12)-C(121)	108.7(3)	C(623)-Si(62)-Si(6)	109.7(2)
C(122)-Si(12)-Si(1)	110.86(16)	C(631)-Si(63)-C(633)	107.7(3)
C(123)-Si(12)-Si(1)	113.15(19)	C(631)-Si(63)-C(632)	107.6(3)

Atoms	Angle	Atoms	Angle
C(121)-Si(12)-Si(1)	107 48(15)	C(633)-Si(63)-C(632)	108 2(3)
C(122) Si(12) Si(1) C(132) Si(13) C(133)	108 6(2)	C(631) Si(63) Si(6)	1123(2)
C(132) - SI(13) - C(133) C(132) - SI(13) - C(131)	108.0(2)	C(631)-Si(05)-Si(0) C(632) Si(63) Si(6)	112.3(2) 114.74(10)
C(132)-SI(13)-C(131) C(122) Si(12) $C(121)$	108.9(2)	C(033)-SI(03)-SI(0) C(622), Si(62), Si(6)	114.74(17) 105.02(18)
C(133)-SI(13)-C(131)	108.3(2)	C(052)-SI(05)-SI(0)	102.05(()
C(132)-S1(13)-S1(1)	109.79(17)	P(7) - SI(7) - SI(72)	102.95(6)
C(133)-S1(13)-S1(1)	107.08(16)	P(7)-S1(7)-S1(73)	113.52(7)
C(131)-S1(13)-S1(1)	113.83(15)	$S_1(/2)-S_1(/)-S_1(/3)$	110.55(6)
P(2)-Si(2)-Si(23)	104.07(6)	$P(7)-S_1(7)-S_1(7)$	116.64(6)
P(2)-Si(2)-Si(21)	111.83(7)	Si(72)-Si(7)-Si(71)	106.02(7)
Si(23)-Si(2)-Si(21)	109.07(7)	Si(73)-Si(7)-Si(71)	106.83(7)
P(2)-Si(2)-Si(22)	115.63(6)	C(713)-Si(71)-C(712)	109.5(3)
Si(23)-Si(2)-Si(22)	106.21(6)	C(713)-Si(71)-C(711)	108.1(3)
Si(21)-Si(2)-Si(22)	109.58(7)	C(712)-Si(71)-C(711)	106.3(3)
C(212)-Si(21)-C(211)	107.1(3)	C(713)-Si(71)-Si(7)	109.6(2)
C(212)-Si(21)-C(213)	108.2(3)	C(712)-Si(71)-Si(7)	112.34(19)
C(211)-Si(21)-C(213)	109.1(3)	C(711)-Si(71)-Si(7)	111.0(2)
C(212)-Si(21)-Si(2)	109.38(19)	C(722)-Si(72)-C(721)	107.8(3)
C(211)-Si(21)-Si(2)	109.61(19)	C(722)-Si(72)-C(723)	107.7(3)
C(213)-Si(21)-Si(2)	113.3(2)	C(721)-Si(72)-C(723)	107.1(3)
C(223)-Si(22)-C(221)	108.0(3)	C(722)-Si(72)-Si(7)	110.22(19)
C(223)-Si(22)-C(222)	109.1(3)	C(721)-Si(72)-Si(7)	113.27(19)
C(221)-Si(22)-C(222)	106.8(3)	C(723)-Si(72)-Si(7)	110.47(19)
C(223)-Si(22)-Si(2)	109.73(19)	C(733)-Si(73)-C(731)	109.7(2)
C(221)-Si(22)-Si(2)	112.2(2)	C(733)-Si(73)-C(732)	105.9(3)
C(222)-Si(22)-Si(2)	110.83(18)	C(731)-Si(73)-C(732)	107.7(3)
C(232)-Si(23)-C(231)	107.4(3)	C(733)-Si(73)-Si(7)	110.24(16)
C(232)-Si(23)-C(233)	107.5(3)	C(731)-Si(73)-Si(7)	110.99(19)
C(231)-Si(23)-C(233)	108.2(2)	C(732)-Si(73)-Si(7)	112.17(18)
C(232)-Si(23)-Si(2)	110.5(2)	P(8)-Si(8)-Si(81)	112.59(6)
C(231)-Si(23)-Si(2)	110.62(16)	P(8)-Si(8)-Si(83)	115 46(6)
C(233)-Si(23)-Si(2)	112.4(2)	Si(81)-Si(8)-Si(83)	110.83(7)
P(3)-Si(3)-Si(32)	100.24(6)	P(8)-Si(8)-Si(82)	104 02(6)
P(3)-Si(3)-Si(33)	114 87(6)	Si(81)-Si(8)-Si(82)	106.88(7)
Si(32)-Si(3)-Si(33)	111 48(6)	Si(83)-Si(8)-Si(82)	106.25(6)
P(3)-Si(3)-Si(31)	117 95(6)	C(813)-Si(81)-C(811)	108.8(3)
$S_i(32)_S_i(3)_S_i(31)$	106 18(6)	C(813)-Si(81)-C(812)	107.0(3)
Si(32)-Si(3)-Si(31)	105.76(6)	C(811)-Si(81)-C(812)	107.0(3)
C(313) $Si(31)$ $C(311)$	108 2(3)	C(812) - Si(81) - C(812) C(813) - Si(81) - Si(8)	107.2(3) 108 5(2)
C(313) - Si(31) - C(311) C(313) - Si(31) - C(312)	107.0(3)	C(813)- $Si(81)$ - $Si(8)$	100.5(2) 112 1(2)
C(313)- $Si(31)$ - $C(312)$	107.0(3)	C(812) Si(81) Si(8)	113.1(2) 112.07(18)
C(311)- $Si(31)$ - $C(312)C(313)$ $Si(31)$ $Si(3)$	107.2(3) 110.7(2)	C(812)-SI(81)-SI(8) C(821) Si(82) $C(822)$	$108 \ 3(3)$
C(313)-SI(31)-SI(3) C(211)-Si(21)-Si(3)	110.7(2) 111.75(17)	C(821)- $SI(82)$ - $C(822)$	107.7(2)
C(311)-SI(31)-SI(3) C(312)-Si(31)-Si(3)	111.73(17) 111.78(10)	C(821)- $SI(82)$ - $C(823)$	107.7(3)
C(312) - SI(31) - SI(3)	111.70(19) 106.5(2)	C(822)- $SI(82)$ - $C(823)$	107.2(3) 108.76(17)
C(323)-SI(32)-C(322)	100.3(3) 108.1(2)	C(821)-SI(82)-SI(8)	108.70(17) 112.26(10)
C(323)-SI(32)-C(321)	108.1(3)	C(822)-SI(82)-SI(8)	112.20(19)
C(322)-SI(32)-C(321)	108.1(3)	C(823)-SI(82)-SI(8)	112.48(18)
C(323)-S1(32)-S1(3)	109.01(17)	C(831)-S1(83)-C(832)	108.9(3)
C(322)-S1(32)-S1(3)	115.5(2)	C(831)-S1(83)-C(833)	108.5(3)
C(321)-S1(32)-S1(3)	108.85(18)	C(832)-S1(83)-C(833)	106.9(3)
C(332)-Si(33)-C(333)	109.2(2)	C(831)-S1(83)-S1(8)	113.07(18)
C(332)-Si(33)-C(331)	106.8(2)	C(832)-S1(83)-S1(8)	109.16(17)
C(333)-S1(33)-C(331)	106.2(2)	C(833)-S1(83)-Si(8)	110.13(18)
C(332)-S1(33)-Si(3)	109.63(17)	C(36A)-C(31A)-C(32A)	122.9(17)
C(333)-Si(33)-Si(3)	111.36(15)	C(31A)-C(32A)-C(33A)	119.9(17)
C(331)-Si(33)-Si(3)	113.44(15)	C(32A)-C(33A)-C(34A)	118(2)
P(9)-P(8)-Si(8)	97.07(6)	C(35A)-C(34A)-C(33A)	120(2)
P(10)-P(7)-Si(7)	94.69(6)	C(36A)-C(35A)-C(34A)	119.6(18)
P(10)-P(6)-P(9)	60.21(5)	C(31A)-C(36A)-C(35A)	118.7(16)
P(10)-P(6)-Si(6)	100.70(5)	C(36B)-C(31B)-C(32B)	122.6(18)
P(9)-P(6)-Si(6)	103.72(5)	C(31B)-C(32B)-C(33B)	119.1(17)
P(8)-P(9)-P(10)	108.23(6)	C(32B)-C(33B)-C(34B)	119.7(17)

Atoms	Angle	Atoms	Angle
P(8)-P(9)-P(6)	106.52(6)	C(33B)-C(34B)-C(35B)	119.5(18)
P(10)-P(9)-P(6)	59.53(5)	C(36B)-C(35B)-C(34B)	120.0(16)
P(7)-P(10)-P(6)	106.60(5)	C(31B)-C(36B)-C(35B)	119.1(15)

7.4 Crystallographic data for Hyp₃P₈K₃·2C₆H₆

7.4.1 Crystal data and structure refinement

Empirical formula Formula weight	Hyp ₃ P ₈ K ₃ ·3benzene 1419.48					
Temperature	173(2) K					
Wavelength	0.71073 Å					
Crystal system, space group	triclinic; P1					
Unit cell dimensions	$ \begin{array}{llllllllllllllllllllllllllllllllllll$					
Volume	4247.2(14) Å ³					
Z, Calculated density	2, 1.110 g/cm ³					
Absorption coefficient	0.509 mm ⁻¹					
F(000)	1510					
Theta range for data collection	2.29 to 25.00 deg.					
Limiting indices	0<=h<=17, -18<=k<=18, -21<=1<=22					
Reflections collected / unique	15225 / 14620 [R(int) = 0.0589]					
Completeness to theta = 25.00	97.7 %					
Refinement method	Full-matrix least-squares on F^2					
Data / restraints / parameters	14620 / 49 / 729					
Goodness-of-fit on F^2	0.861					
Final R indices [I>2sigma(I)]	R1 = 0.0447, $wR2 = 0.0927$					
R indices (all data)	R1 = 0.0868, wR2 = 0.1003					
Largest diff. peak and hole	0.651 and -0.327 e.Å ⁻³					

7.4.2 Atomic coordinates (x 10⁴), equivalent isotropic displacement parameters (Å² x 10³) and Anisotropic displacement parameters (Å² x 10³). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U11 + ... + 2hka^*b^*U12]$

Atom	Х	у	Z	U(eq)	U11	U22	U33	U23	U13	U12
K(1)	-1262(1)	577(1)	474(1)	38(1)	44(1)	35(1)	23(1)	2(1)	3(1)	3(1)
P(1)	1225(1)	-3224(1)	2128(1)	28(1)	30(1)	22(1)	26(1)	-3(1)	-1(1)	0(1)
P(2)	1057(1)	150(1)	1147(1)	25(1)	31(1)	21(1)	23(1)	-4(1)	-3(1)	-6(1)
P(3)	-1289(1)	-1910(1)	3029(1)	27(1)	27(1)	28(1)	21(1)	-2(1)	3(1)	-3(1)
P(4)	-889(1)	-932(1)	1969(1)	23(1)	23(1)	24(1)	20(1)	-4(1)	1(1)	-2(1)
P(5)	-161(1)	-1420(1)	1006(1)	24(1)	27(1)	27(1)	17(1)	-5(1)	-3(1)	-1(1)
P(6)	1209(1)	-1985(1)	1256(1)	24(1)	25(1)	22(1)	21(1)	-5(1)	0(1)	0(1)
P(7)	1557(1)	-1122(1)	1846(1)	26(1)	27(1)	23(1)	26(1)	-4(1)	-6(1)	-4(1)
P(8)	208(1)	-409(1)	2269(1)	27(1)	31(1)	28(1)	21(1)	-9(1)	1(1)	-7(1)

Atom	Х	у	Z	U(eq)	U11	U22	U33	U23	U13	U12
Si(1)	2589(1)	-3815(1)	1592(1)	30(1)	31(1)	30(1)	26(1)	-7(1)	-5(1)	6(1)
Si(11)	2834(5)	-3737(4)	278(2)	37(1)	42(3)	40(2)	24(2)	-9(1)	-1(1)	5(2)
C(111)	2629(16)	-2643(10)	-387(14)	49(5)	52(9)	53(9)	19(6)	5(7)	1(6)	20(7)
C(112)	1970(12)	-4365(7)	166(6)	72(5)	132(14)	58(7)	46(7)	-13(6)	-40(8)	-34(9)
C(113)	4043(9)	-4211(10)	-67(6)	87(6)	80(10)	108(11)	49(7)	-26(7)	3(6)	48(8)
Si(1A)	2476(5)	-3901(3)	365(2)	38(1)	50(3)	33(2)	24(1)	-5(1)	-1(2)	7(2)
C(114)	3270(11)	-4783(7)	19(5)	94(6)	149(15)	77(8)	46(6)	-35(6)	-18(7)	44(9)
C(115)	2814(14)	-2877(10)	-358(13)	56(5)	65(11)	55(9)	42(7)	-8(7)	-16(8)	8(9)
C(116)	1255(8)	-4063(8)	352(6)	68(3)	70(8)	88(9)	57(7)	-12(6)	-25(6)	-35(7)
$S_1(12)$	3842(1)	-3168(1)	1682(1)	49(1)	29(1)	43(1)	61(1) 120(5)	l(1)	-4(1)	-2(1)
C(121)	4988(3)	-38/3(3)	1582(3)	83(2)	30(3)	62(3)	130(5)	1(3)	-6(3)	8(2)
C(122)	360/(3)	-2940(3)	2641(3)	68(2)	/1(4)	69(3)	/3(3)	-10(3)	-34(3)	-24(3)
C(123)	3994(3)	-2107(3)	948(3)	$\frac{0}{27}(1)$	$\frac{3}{(3)}$	29(1)	91(4) 42(1)	1(3)	$\delta(3)$	-0(2)
SI(13)	2/60(1)	-5250(1)	2330(1) 1922(2)	5/(1)	59(1)	28(1) 42(2)	42(1)	-8(1)	-14(1) 17(2)	5(1) 10(2)
C(131) C(132)	3040(3) 3124(3)	-3979(3)	1000(0) 2054(0)	54(1)	03(3)	42(3) 52(3)	80(4) 42(2)	-22(3)	-1/(3)	19(2) 11(2)
C(132) C(133)	1629(3)	-5319(3)	3234(2) 2580(3)	54(1) 55(1)	58(3)	32(3) 30(3)	70(3)	14(2)	-20(2) 17(3)	-11(2) 10(2)
C(133) Si(2)	1029(3) 1796(1)	-3732(3) 1108(1)	2369(3) 1/23(1)	25(1)	20(1)	23(1)	70(3) 24(1)	-14(2) 5(1)	-17(3) 3(1)	-10(2) 7(1)
Si(2) Si(21)	2950(1)	1/00(1)	332(1)	$\frac{23(1)}{37(1)}$	29(1) 29(1)	$\frac{23(1)}{42(1)}$	$\frac{24(1)}{38(1)}$	-3(1) -14(1)	-3(1) 6(1)	-10(1)
C(211)	3716(3)	509(3)	171(3)	76(2)	$\frac{2}{1}$	$\frac{1}{86(4)}$	78(1)	-3/(3)	10(3)	12(3)
C(211) C(212)	2419(3)	2007(3)	-537(2)	51(1)	58(3)	63(3)	29(2)	-12(2)	$\frac{10(3)}{8(2)}$	-18(2)
C(212) C(213)	3667(3)	2007(3) 2274(3)	435(3)	70(2)	62(3)	99(4)	58(3)	-30(3)	12(3)	-50(3)
Si(22)	2474(1)	666(1)	2520(1)	49(1)	70(1)	38(1)	46(1)	-2(1)	-33(1)	-15(1)
C(221)	3451(4)	-220(3)	2454(4)	92(2)	111(5)	54(3)	142(6)	-27(3)	-98(4)	12(3)
C(222)	1602(4)	313(3)	3406(2)	88(2)	139(5)	99(4)	33(3)	18(3)	-36(3)	-71(4)
C(223)	2965(3)	1614(3)	2604(2)	57(1)	76(4)	57(3)	50(3)	-13(2)	-25(3)	-21(3)
Si(23)	634(1)	2278(1)	1477(1)	34(1)	39(1)	28(1)	32(1)	-12(1)	2(1)	-1(1)
C(231)	146(3)	2329(3)	2478(2)	58(1)	54(3)	68(3)	48(3)	-29(2)	7(2)	3(3)
C(232)	1094(3)	3327(2)	920(3)	66(2)	84(4)	26(2)	69(3)	-13(2)	18(3)	-1(2)
C(233)	-351(3)	2162(3)	1053(3)	59(1)	53(3)	61(3)	69(3)	-30(3)	-22(3)	13(2)
Si(3)	-2652(1)	-1229(1)	3482(1)	28(1)	28(1)	32(1)	22(1)	-7(1)	4(1)	-6(1)
Si(31)	-3722(1)	-2244(1)	3788(1)	44(1)	33(1)	44(1)	48(1)	-9(1)	7(1)	-13(1)
C(311)	-3888(4)	-2442(3)	2889(3)	79(2)	75(4)	86(4)	96(4)	-38(3)	-22(3)	-32(3)
C(312)	-4917(3)	-1892(3)	4277(4)	96(2)	49(3)	84(4)	133(5)	-32(4)	49(3)	-27(3)
C(313)	-3225(4)	-3288(3)	4383(3)	73(2)	81(4)	48(3)	82(4)	10(3)	-20(3)	-27(3)
Si(32)	-2450(1)	-913(1)	4576(1)	44(1)	46(1)	59(1)	30(1)	-22(1)	-2(1)	-1(1)
C(321)	-2111(4)	-1953(3)	5284(3)	74(2)	98(4)	87(4)	39(3)	-18(3)	-24(3)	3(3)
C(322)	-14/4(4)	-218(3)	4311(3)	75(2) 78(2)	93(4)	89(4) 107(4)	58(3) 57(2)	-40(3)	-1(3)	-3/(3)
C(323)	-3493(4)	-325(3)	3002(3)	78(2)	70(4)	$\frac{10}{(4)}$	$\frac{5}{(3)}$	-35(3)	-5(3)	24(3)
SI(33)	-3240(1) 2516(3)	40(1) 044(3)	2039(1) 2451(3)	59(1) 55(1)	53(1) 57(3)	39(1) 30(3)	50(1) 61(3)	-8(1) 10(2)	-2(1)	1(1) 5(2)
C(331)	-2310(3)	434(3)	2431(3) 3135(3)	53(1) 62(1)	$\frac{37(3)}{41(3)}$	57(3)	68(3)	-10(2) 17(3)	2(2) 5(2)	-3(2) 13(2)
C(332)	-3400(3)	-123(3)	1742(2)	57(1)	56(3)	63(3)	46(3)	-3(2)	-3(2) -18(2)	-4(2)
C(011)	-4297(6)	3112(7)	2847(6)	154(4)	109(7)	216(11)	150(9)	-67(8)	-84(7)	62(7)
C(012)	-3528(8)	3430(4)	2365(4)	122(3)	193(10)	80(5)	82(5)	-10(4)	-59(6)	38(6)
C(012)	-2694(5)	3259(3)	2618(4)	91(2)	134(6)	48(3)	87(5)	-7(3)	-11(4)	-30(4)
C(014)	-2660(4)	2774(3)	3345(3)	71(2)	72(4)	75(4)	79(4)	-34(3)	-17(3)	-16(3)
C(015)	-3435(4)	2446(4)	3820(3)	76(2)	77(4)	99(4)	60(3)	-34(3)	-10(3)	-9(4)
C(016)	-4241(5)	2602(6)	3565(5)	121(3)	64(5)	193(9)	116(6)	-62(6)	-8(4)	-18(5)
C(021)	549(4)	-2648(7)	5447(3)	97(2)	62(4)	201(8)	39(3)	-53(5)	-11(3)	-3(5)
C(022)	927(6)	-1882(5)	5158(5)	110(3)	130(7)	107(6)	125(7)	-83(6)	-78(6)	62(5)
C(023)	1790(6)	-1877(4)	4748(4)	87(2)	138(7)	53(4)	89(5)	2(3)	-75(5)	-23(4)
C(024)	2282(4)	-2611(5)	4611(3)	77(2)	63(4)	115(5)	59(3)	-10(4)	-28(3)	-21(4)
C(025)	1909(4)	-3358(4)	4891(3)	72(2)	88(5)	60(4)	83(4)	-19(3)	-59(4)	10(3)
C(026)	1045(5)	-3379(4)	5300(3)	77(2)	107(5)	87(4)	40(3)	16(3)	-34(3)	-52(4)
C(031)	-815(3)	-5148(3)	1954(3)	61(1)	57(3)	43(3)	82(4)	-25(3)	-7(3)	5(2)
C(032)	-1373(5)	-4789(3)	1437(3)	67(2)	104(5)	58(3)	49(3)	-18(3)	-12(3)	-35(3)
C(033)	-2268(5)	-4467(3)	1651(4)	79(2)	87(5)	47(3)	112(5)	8(3)	-63(4)	-25(3)
C(034)	-2604(4)	-4511(3)	2413(5)	87(2)	39(3)	52(3)	158(7)	-24(4)	4(4)	-10(3)
C(035)	-2026(5)	-4881(3)	2933(3)	76(2)	102(5)	63(4)	62(4)	-21(3)	15(4)	-40(4)
C(036)	-1144(4)	-5191(3)	2704(3)	65(1)	79(4)	45(3)	73(4)	-1(3)	-36(3)	-11(3)

Atom	Х	У	Z	U(eq)	U11	U22	U33	U23	U13	U12
C(041)	-4876(4)	-5036(4)	4265(3)	77(2)	68(4)	113(5)	58(3)	-21(4)	-21(3)	-23(4)
C(042)	-5527(4)	-4428(4)	4524(3)	86(2)	71(4)	98(5)	72(4)	4(4)	-30(3)	12(4)
C(043)	-5639(4)	-4399(3)	5257(4)	73(2)	63(4)	66(4)	93(5)	-29(3)	-17(3)	-1(3)
C(051)	-859(3)	-4611(3)	5242(3)	61(1)	60(3)	43(3)	66(3)	-10(2)	7(3)	-3(2)
C(052)	-431(3)	-4318(3)	4485(3)	55(1)	63(3)	48(3)	49(3)	-4(2)	-7(2)	-18(3)
C(053)	431(4)	-4713(3)	4258(2)	56(1)	87(4)	45(3)	29(2)	-1(2)	4(2)	-23(3)
K(2)	686(1)	-2399(1)	3578(1)	40(1)	46(1)	48(1)	24(1)	-5(1)	-11(1)	-3(1)
K(3)	-926(1)	-3187(1)	1953(1)	41(1)	46(1)	36(1)	44(1)	-13(1)	-4(1)	-15(1)

7.4.3 Bond lengths[Å].

Atoms	Bond length	Atoms	Bond length	Atoms	Bond length
K(1)-P(5)#1	3.2021(13)	Si(11)-C(113)	1.888(9)	C(013)-C(014)	1.368(7)
K(1)-P(4)	3.2319(13)	Si(1A)-C(114)	1.880(9)	C(014)-C(015)	1.376(7)
K(1)-P(5)	3.3743(13)	Si(1A)-C(115)	1.889(12)	C(015)-C(016)	1.348(8)
K(1)-P(6)#1	3.3777(13)	Si(1A)-C(116)	1.892(9)	C(021)-C(026)	1.362(8)
K(1)-P(2)#1	3.5119(14)	Si(12)-C(122)	1.886(5)	C(021)-C(022)	1.380(9)
K(1)-P(2)	3.8265(15)	Si(12)-C(123)	1.888(4)	C(021)-K(2)	3.369(5)
K(1)-K(1)#1	4.1777(18)	Si(12)-C(121)	1.897(4)	C(022)-C(023)	1.345(9)
P(1)-P(6)	2.2039(13)	Si(13)-C(132)	1.887(4)	C(022)-K(2)	3.416(6)
P(1)-Si(1)	2.2510(14)	Si(13)-C(133)	1.887(4)	C(023)-C(024)	1.359(8)
P(1)-K(2)	3.2687(14)	Si(13)-C(131)	1.900(4)	C(023)-K(2)	3.382(5)
P(1)-K(3)	3.2857(15)	Si(2)-Si(22)	2.3612(16)	C(024)-C(025)	1.347(7)
P(2)-P(7)	2.2183(13)	Si(2)-Si(21)	2.3644(15)	C(024)-K(2)	3.303(5)
P(2)-P(8)	2.2251(13)	Si(2)-Si(23)	2.3650(15)	C(025)-C(026)	1.346(7)
P(2)-Si(2)	2.2965(13)	Si(21)-C(211)	1.871(4)	C(025)-K(2)	3.256(5)
P(2)-K(1)#1	3.5119(14)	Si(21)-C(213)	1.879(4)	C(026)-K(2)	3.273(5)
P(3)-P(4)	2.1930(13)	Si(21)-C(212)	1.881(4)	C(031)-C(032)	1.354(7)
P(3)-Si(3)	2.2610(14)	Si(22)-C(222)	1.876(5)	C(031)-C(036)	1.368(7)
P(3)-K(3)	3.2174(14)	Si(22)-C(221)	1.884(5)	C(031)-K(3)	3.191(4)
P(3)-K(2)	3.2301(14)	Si(22)-C(223)	1.888(4)	C(032)-C(033)	1.366(7)
P(4)-P(5)	2.1802(13)	Si(23)-C(231)	1.876(4)	C(032)-K(3)	3.265(5)
P(4)-P(8)	2.2146(14)	Si(23)-C(233)	1.879(4)	C(033)-C(034)	1.390(8)
P(4)-K(3)	3.7169(14)	Si(23)-C(232)	1.885(4)	C(033)-K(3)	3.374(5)
P(5)-P(6)	2.1838(14)	Si(3)-Si(32)	2.3482(16)	C(034)-C(035)	1.381(8)
P(5)-K(3)	3.1738(13)	Si(3)-Si(31)	2.3650(16)	C(034)-K(3)	3.398(5)
P(5)-K(1)#1	3.2021(13)	Si(3)-Si(33)	2.3700(15)	C(035)-C(036)	1.349(7)
P(6)-P(7)	2.2191(13)	Si(31)-C(313)	1.881(5)	C(035)-K(3)	3.320(5)
P(6)-K(1)#1	3.3777(13)	Si(31)-C(311)	1.881(5)	C(036)-K(3)	3.216(5)
P(6)-K(3)	3.8127(14)	Si(31)-C(312)	1.892(5)	C(041)-C(043)#2	1.351(7)
P(7)-P(8)	2.2524(14)	Si(32)-C(323)	1.885(4)	C(041)-C(042)	1.384(7)
P(7)-K(2)	3.4199(14)	Si(32)-C(322)	1.893(5)	C(042)-C(043)	1.360(7)
P(8)-K(2)	3.5318(14)	Si(32)-C(321)	1.898(5)	C(043)-C(041)#2	1.351(7)
Si(1)-Si(12)	2.3623(17)	Si(33)-C(331)	1.879(4)	C(051)-C(053)#3	1.388(6)
Si(1)-Si(13)	2.3698(15)	Si(33)-C(333)	1.887(4)	C(051)-C(052)	1.398(6)
Si(1)-Si(11)	2.376(3)	Si(33)-C(332)	1.893(4)	C(052)-C(053)	1.374(6)
Si(1)-Si(1A)	2.389(3)	C(011)-C(012)	1.370(11)	C(053)-C(051)#3	1.388(6)
Si(11)-C(112)	1.864(10)	C(011)-C(016)	1.373(10)	K(2)-K(3)	4.8346(14)
Si(11)-C(111)	1.881(13)	C(012)-C(013)	1.384(9)		

7.4.3 Bond angles [deg].

Atoms	Angle	Atoms	Angle	
P(5)#1-K(1)-P(4)	130.07(4)	C(011)-C(012)-C(013)	119.3(7)	
P(5)#1-K(1)-P(5) P(4) K(1) P(5)	101.17(3)	C(014)-C(013)-C(012) C(013) C(014) C(015)	119.1(7)	

Atoms	Angle	Atoms	Angle
P(5)#1-K(1)-P(6)#1	38.65(3)	C(016)-C(015)-C(014)	119.6(6)
P(4)-K(1)-P(6)#1	167.90(4)	C(015)-C(016)-C(011)	120.3(7)
P(5)-K(1)-P(6)#1	130.75(3)	C(026)-C(021)-C(022)	119.7(6)
P(5)#1-K(1)-P(2)#1	62 58(3)	C(026)- $C(021)$ - $K(2)$	74 3(3)
P(A) K(1) P(2)#1	113,00(3)	C(020) C(021) K(2)	80 2(4)
$\Gamma(4)$ - $K(1)$ - $\Gamma(2)$ #1	79.25(2)	C(022)- $C(021)$ - $K(2)$	80.2(4)
P(5)-K(1)-P(2)#1	78.35(3)	C(023)-C(022)-C(021)	118.9(6)
P(6)#1-K(1)-P(2)#1	59.46(3)	C(023)-C(022)-K(2)	77.2(4)
P(5)#1-K(1)-P(2)	75.92(3)	C(021)-C(022)-K(2)	76.3(3)
P(4)-K(1)-P(2)	58.43(3)	C(022)-C(023)-C(024)	120.9(6)
P(5)-K(1)-P(2)	57.70(3)	C(022)-C(023)-K(2)	80.0(4)
P(6)#1-K(1)-P(2)	112.86(3)	C(024)-C(023)-K(2)	75.0(3)
P(2)#1-K(1)-P(2)	110.75(3)	C(025)-C(024)-C(023)	120.0(6)
P(5)#1-K(1)-K(1)#1	52 41(3)	C(025)-C(024)-K(2)	76 2(3)
P(A) K(1) K(1)#1	82.01(3)	C(023) C(024) K(2)	81 6(3)
P(5) V(1) V(1) # 1	49.7(2)	C(025)- $C(024)$ - $K(2)$	120.2(6)
P(3)-K(1)-K(1)#1	48.70(3)	C(026)-C(025)-C(024)	120.2(0)
P(6)#1-K(1)-K(1)#1	85.91(3)	C(026)-C(025)-K(2)	/8.8(3)
P(2)#1-K(1)-K(1)#1	58.93(3)	C(024)-C(025)-K(2)	80.1(3)
P(2)-K(1)-K(1)#1	51.82(3)	C(025)-C(026)-C(021)	120.3(6)
P(6)-P(1)-Si(1)	96.11(5)	C(025)-C(026)-K(2)	77.4(3)
P(6)-P(1)-K(2)	95.67(4)	C(021)-C(026)-K(2)	82.1(3)
Si(1)-P(1)-K(2)	131.00(5)	C(032)- $C(031)$ - $C(036)$	120.0(5)
P(6)-P(1)-K(3)	85 58(4)	C(032)- $C(031)$ - $K(3)$	81.0(3)
$S_{i}(1) P(1) K(2)$	133 18(5)	C(032) C(031) K(3)	78 7(3)
SI(1) - I(1) - K(3) K(2) D(1) K(2)	155.18(5)	C(030)- $C(031)$ - $K(3)$	10.7(3)
K(2)-P(1)-K(3)	95.00(3)	C(031)-C(032)-C(033)	121.1(5)
P(7)-P(2)-P(8)	60.92(4)	C(031)- $C(032)$ - $K(3)$	/4.8(3)
P(7)-P(2)-Si(2)	104.53(5)	C(033)-C(032)-K(3)	82.6(3)
P(8)-P(2)-Si(2)	102.07(5)	C(032)-C(033)-C(034)	119.0(5)
P(7)-P(2)-K(1)#1	93.98(4)	C(032)-C(033)-K(3)	73.7(3)
P(8)-P(2)-K(1)#1	124.16(4)	C(034)-C(033)-K(3)	79.1(3)
Si(2)-P(2)-K(1)#1	133.38(4)	C(035)-C(034)-C(033)	119.2(5)
P(7)-P(2)-K(1)	122.31(4)	C(035)-C(034)-K(3)	75.0(3)
P(8) - P(2) - K(1)	83 30(4)	C(033)-C(034)-K(3)	77 2(3)
$S_{1}(0) = 1(2) = K(1)$ $S_{1}(2) = D(2) = K(1)$	127, 52(4)	C(035) - C(034) - K(3)	120 5(5)
SI(2)-F(2)-K(1)	127.32(4)	C(030)- $C(033)$ - $C(034)$	120.3(3)
K(1)#1-P(2)-K(1)	69.25(3)	C(030)-C(035)-K(3)	/5.8(5)
P(4)-P(3)-Si(3)	99.26(5)	C(034)-C(035)-K(3)	81.3(3)
P(4)-P(3)-K(3)	84.53(4)	C(035)-C(036)-C(031)	120.2(5)
Si(3)-P(3)-K(3)	128.02(5)	C(035)-C(036)-K(3)	82.5(3)
P(4)-P(3)-K(2)	98.58(4)	C(031)-C(036)-K(3)	76.7(3)
Si(3)-P(3)-K(2)	132.57(5)	C(043)#2-C(041)-C(042)	119.7(5)
K(3)-P(3)-K(2)	97.15(4)	C(043)-C(042)-C(041)	119.8(5)
P(5)-P(4)-P(3)	115.63(5)	C(041)#2-C(043)-C(042)	120.5(5)
P(5)-P(4)-P(8)	103 12(5)	C(053)#3-C(051)-C(052)	1210(4)
P(3)-P(4)-P(8)	100.60(5)	C(053)-C(052)-C(051)	1177(4)
P(5) P(4) K(1)	74.30(4)	C(052) C(052) C(051)	121.2(A)
$\Gamma(3) - \Gamma(4) - K(1)$	154.06(5)	C(052)- $C(053)$ - $C(051)$ #5	121.3(4)
P(3)-P(4)-K(1)	154.96(5)	P(3)-K(2)-C(025)	149.91(13)
P(8)-P(4)-K(1)	99.07(4)	P(3)-K(2)-P(1)	81.79(3)
P(5)-P(4)-K(3)	58.38(4)	C(025)-K(2)-P(1)	112.81(11)
P(3)-P(4)-K(3)	59.50(4)	P(3)-K(2)-C(026)	126.53(13)
P(8)-P(4)-K(3)	127.13(4)	C(025)-K(2)-C(026)	23.79(13)
K(1)-P(4)-K(3)	118.08(4)	P(1)-K(2)-C(026)	125.82(14)
P(4)-P(5)-P(6)	106.28(5)	P(3)-K(2)-C(024)	160.17(12)
P(4)-P(5)-K(3)	85 81(4)	C(025)-K(2)-C(024)	23 69(13)
P(6)-P(5)-K(3)	88 74(4)	P(1)-K(2)-C(024)	117 98(12)
$P(A)_P(5), K(1) \# 1$	130 87(5)	$C(026)_{K(2)} C(024)$	A1 5 9(1 <i>A</i>)
$I(\tau)^{-1}(J)^{-1}(1)^{\#1}$ D(6) D(5) V(1) $\#1$	75 02(4)	D(2) V(2) C(021)	$\pm 1.32(14)$
$\Gamma(0) - \Gamma(3) - N(1) + 1$ V(2) D(5) V(1) + 1	142,52(4)	$r(3)-\mathbf{K}(2)-\mathbf{C}(021)$	114.10(11)
K(3)-F(3)-K(1)#1	142.33(4)	C(025)-K(2)-C(021)	41.48(13)
P(4)-P(5)-K(1)	07.23(4)	P(1)-K(2)-C(021)	149.20(17)
P(6)-P(5)-K(1)	136.51(5)	C(026)-K(2)-C(021)	23.62(15)
K(3)-P(5)-K(1)	131.21(4)	C(024)-K(2)-C(021)	47.93(14)
K(1)#1-P(5)-K(1)	78.83(3)	P(3)-K(2)-C(023)	138.53(15)
P(5)-P(6)-P(1)	114.56(5)	C(025)-K(2)-C(023)	41.29(13)

Atoms	Anglo	Atoms	Anglo
$\frac{P(5)}{P(6)} \frac{P(7)}{P(7)}$	102 52(5)	$\frac{P(1) K(2) C(022)}{P(1) K(2) C(022)}$	127 08(16)
P(1) P(2) P(7)	103.33(3)	$\Gamma(1)$ - $K(2)$ - $C(023)$	137.38(10) 47.01(12)
P(1)-P(0)-P(7)	102.02(3)	C(020)- $K(2)$ - $C(023)$	47.91(13)
P(3)-P(0)-K(1)#1 P(1) P(C) K(1)#1	150, 22(5)	C(024)- $K(2)$ - $C(023)$	25.41(14)
P(1)-P(0)-K(1)#1 P(7) P(6) K(1)#1	139.23(3)	C(021)- $K(2)$ - $C(023)$	40.08(10)
P(7) - P(6) - K(1) = 1	97.68(4)	P(3)-K(2)-C(022)	119.25(14)
P(5)-P(6)-K(3)	56.33(4)	C(025)- $K(2)$ - $C(022)$	48.11(14)
P(1)-P(6)-K(3)	59.23(4)	P(1)-K(2)-C(022)	158.89(13)
P(7)-P(6)-K(3)	123.60(4)	C(026)- $K(2)$ - $C(022)$	41.45(16)
K(1)#1-P(6)-K(3)	114.09(3)	C(024)- $K(2)$ - $C(022)$	40.94(16)
P(2)-P(7)-P(6)	100.77(5)	C(021)- $K(2)$ - $C(022)$	23.45(16)
P(2)-P(7)-P(8)	59.69(4)	C(023)- $K(2)$ - $C(022)$	22.82(15)
P(6)-P(7)-P(8)	106.33(5)	P(3)-K(2)-P(7)	86.12(3)
P(2)-P(7)-K(2)	133.50(5)	C(025)-K(2)-P(7)	123.88(13)
P(6)-P(7)-K(2)	91.30(4)	P(1)-K(2)-P(7)	61.81(3)
P(8)-P(7)-K(2)	73.81(4)	C(026)-K(2)-P(7)	145.81(11)
P(4)-P(8)-P(2)	103.39(5)	C(024)-K(2)-P(7)	104.23(11)
P(4)-P(8)-P(7)	106.08(5)	C(021)-K(2)-P(7)	141.08(16)
P(2)-P(8)-P(7)	59.39(4)	C(023)-K(2)-P(7)	102.09(12)
P(4)-P(8)-K(2)	89.92(4)	C(022)-K(2)-P(7)	117.78(19)
P(2)-P(8)-K(2)	127.81(5)	P(3)-K(2)-P(8)	60.00(3)
P(7)-P(8)-K(2)	68.42(4)	C(025)-K(2)-P(8)	142.80(11)
P(1)-Si(1)-Si(12)	111.73(6)	P(1)-K(2)-P(8)	86.69(3)
P(1)-Si(1)-Si(13)	105.35(6)	C(026)-K(2)-P(8)	146.25(13)
Si(12)-Si(1)-Si(13)	106.65(6)	C(024)-K(2)-P(8)	119.30(13)
P(1)-Si(1)-Si(11)	118.39(16)	C(021)-K(2)-P(8)	123.99(17)
Si(12)-Si(1)-Si(11)	102.9(2)	C(023)-K(2)-P(8)	103.09(10)
Si(13)-Si(1)-Si(11)	111.36(16)	C(022)-K(2)-P(8)	104.90(14)
P(1)-Si(1)-Si(1A)	109.26(16)	P(7)-K(2)-P(8)	37.77(3)
Si(12)-Si(1)-Si(1A)	117.58(18)	P(3)-K(2)-K(3)	41.32(2)
Si(13)-Si(1)-Si(1A)	105.33(14)	C(025)-K(2)-K(3)	137.96(10)
Si(11)-Si(1)-Si(1A)	14.65(11)	P(1)-K(2)-K(3)	42.61(2)
C(112)-Si(11)-C(111)	104.8(9)	C(026)-K(2)-K(3)	130.95(10)
C(112)-Si(11)-C(113)	109.8(6)	C(024)-K(2)-K(3)	156.39(13)
C(111)-Si(11)-C(113)	107.3(7)	C(021)-K(2)-K(3)	138.16(14)
C(112)-Si(11)-Si(1)	106.3(4)	C(023)-K(2)-K(3)	178.80(12)
C(111)-Si(11)-Si(1)	116.8(9)	C(022)-K(2)-K(3)	156.31(18)
C(113)-Si(11)-Si(1)	111.5(4)	P(7)-K(2)-K(3)	79.12(3)
C(114)-Si(1A)-C(115)	104.9(8)	P(8)-K(2)-K(3)	77.85(3)
C(114)-Si(1A)-C(116)	107.0(5)	P(5)-K(3)-C(031)	142.86(10)
C(115)-Si(1A)-C(116)	110.4(8)	P(5)-K(3)-C(036)	164.00(12)
C(114)-Si(1A)-Si(1)	115.5(4)	C(031)-K(3)-C(036)	24.66(12)
C(115)-Si(1A)-Si(1)	108.7(9)	P(5)-K(3)-P(3)	70.77(3)
C(116)-Si(1A)-Si(1)	110.2(4)	C(031)-K(3)-P(3)	143.84(11)
C(122)-Si(12)-C(123)	106.8(2)	C(036)-K(3)-P(3)	119.35(11)
C(122)-Si(12)-C(121)	108.3(2)	P(5)-K(3)-C(032)	132.07(9)
C(123)-Si(12)-C(121)	107 3(2)	C(031)-K(3)-C(032)	24 18(12)
C(122)-Si(12)-Si(1)	108 46(15)	C(036)- $K(3)$ - $C(032)$	42.67(13)
C(122) - Si(12) - Si(1)	112 83(17)	P(3)-K(3)-C(032)	15372(10)
C(121)-Si(12)-Si(1)	112.03(17)	P(5)-K(3)-P(1)	69 69(3)
C(122) - Si(12) - Si(13)	107 3(2)	C(031)-K(3)-P(1)	97 37(10)
C(132)- $Si(13)$ - $C(131)$	107.3(2)	C(036)- $K(3)$ - $P(1)$	98 45(10)
C(132) SI(13) C(131)	107.0(2)	P(3)-K(3)-P(1)	81 71(3)
C(132)-Si(13)-Si(1)	110 80(14)	C(032)-K(3)-P(1)	116.06(12)
C(133)-Si(13)-Si(1)	110.73(14)	P(5)-K(3)-C(035)	171 78(13)
$C(131)_{Si(13)_{Si(1)}}$	113 06(16)	C(031)- $K(3)$ - $C(035)$	42 36(13)
$P(2)_Si(2)_Si(2)$	119.04(5)	C(036)- $K(3)$ - $C(035)$	72.30(13)
$P(2)_Si(2)_Si(22)$	103 52(5)	$P(3)_K(3)_C(035)$	106 48(10)
$S_i(22) - S_i(22) - S_i(221)$	109.73(6)	C(032)- $K(3)$ - $C(035)$	48 88(13)
$P(2)_Si(2)_Si(2)_Si(21)$	102.75(0)	$P(1)_K(3)_C(035)$	118 00(13)
$S_1(2) - S_1(2) - S_1(2)$	111 20(6)	$P(5)_K(3)_C(033)$	134 59(10)
Si(22)-Si(2)-Si(23) Si(21)-Si(2)-Si(23)	109 90(5)	C(031)- $K(3)$ - $C(033)$	<i>A</i> 2 18(13)
51(21)-51(2)-51(23)	107.70(3)	$C(031)^{-1}C(033)$	72.10(13)

Atoms	Angle	Atoms	Angle
C(211)-Si(21)-C(213)	109.5(2)	C(036)-K(3)-C(033)	49.16(13)
C(211)-Si(21)-C(212)	107.4(2)	P(3)-K(3)-C(033)	132.99(14)
C(213)-Si(21)-C(212)	107.9(2)	C(032)-K(3)-C(033)	23.67(13)
C(211)-Si(21)-Si(2)	109.69(16)	P(1)-K(3)-C(033)	138.95(12)
C(213)-Si(21)-Si(2)	111.21(15)	C(035)-K(3)-C(033)	41.82(14)
C(212)-Si(21)-Si(2)	111.00(14)	P(5)-K(3)-C(034)	149.48(13)
C(222)-Si(22)-C(221)	109.8(3)	C(031)-K(3)-C(034)	49.00(13)
C(222)-Si(22)-C(223)	107.4(2)	C(036)-K(3)-C(034)	41.90(14)
C(221)-Si(22)-C(223)	108.0(2)	P(3)-K(3)-C(034)	112.23(13)
C(222)-Si(22)-Si(2)	111.96(17)	C(032)-K(3)-C(034)	41.69(14)
C(221)-Si(22)-Si(2)	111.43(18)	P(1)-K(3)-C(034)	140.25(12)
C(223)-Si(22)-Si(2)	108.15(14)	C(035)-K(3)-C(034)	23.69(14)
C(231)-Si(23)-C(233)	107.2(2)	C(033)-K(3)-C(034)	23.69(14)
C(231)-Si(23)-C(232)	108.9(2)	P(5)-K(3)-P(4)	35.80(2)
C(233)-Si(23)-C(232)	107.8(2)	C(031)-K(3)-P(4)	176.11(10)
C(231)-Si(23)-Si(2)	112.05(15)	C(036)-K(3)-P(4)	155.24(11)
C(233)-Si(23)-Si(2)	109.65(14)	P(3)-K(3)-P(4)	35.97(2)
C(232)-Si(23)-Si(2)	111.07(15)	C(032)-K(3)-P(4)	158.85(11)
P(3)-Si(3)-Si(32)	106.53(6)	P(1)-K(3)-P(4)	78.74(3)
P(3)-Si(3)-Si(31)	104.79(6)	C(035)-K(3)-P(4)	139.62(10)
Si(32)-Si(3)-Si(31)	111.11(6)	C(033)-K(3)-P(4)	141.68(11)
P(3)-Si(3)-Si(33)	117.47(5)	C(034)-K(3)-P(4)	134.49(10)
Si(32)-Si(3)-Si(33)	108.85(6)	P(5)-K(3)-P(6)	34.94(2)
Si(31)-Si(3)-Si(33)	108.04(6)	C(031)-K(3)-P(6)	121.38(10)
C(313)-Si(31)-C(311)	107.6(2)	C(036)-K(3)-P(6)	131.37(11)
C(313)-Si(31)-C(312)	110.6(3)	P(3)-K(3)-P(6)	77.37(3)
C(311)-Si(31)-C(312)	105.8(3)	C(032)-K(3)-P(6)	128.49(11)
C(313)-Si(31)-Si(3)	108.80(16)	P(1)-K(3)-P(6)	35.19(2)
C(311)-Si(31)-Si(3)	109.18(16)	C(035)-K(3)-P(6)	153.03(13)
C(312)-Si(31)-Si(3)	114.55(17)	C(033)-K(3)-P(6)	148.32(14)
C(323)-Si(32)-C(322)	107.2(2)	C(034)-K(3)-P(6)	169.93(11)
C(323)-Si(32)-C(321)	108.2(2)	P(4)-K(3)-P(6)	55.24(2)
C(322)-Si(32)-C(321)	108.3(2)	P(5)-K(3)-K(2)	73.81(3)
C(323)-Si(32)-Si(3)	115.12(17)	C(031)-K(3)-K(2)	120.39(10)
C(322)-Si(32)-Si(3)	108.93(15)	C(036)-K(3)-K(2)	105.06(9)
C(321)-Si(32)-Si(3)	108.86(16)	P(3)-K(3)-K(2)	41.52(2)
C(331)-Si(33)-C(333)	109.8(2)	C(032)-K(3)-K(2)	144.57(11)
C(331)-Si(33)-C(332)	106.2(2)	P(1)-K(3)-K(2)	42.34(2)
C(333)-Si(33)-C(332)	106.3(2)	C(035)-K(3)-K(2)	109.55(11)
C(331)-Si(33)-Si(3)	112.24(15)	C(033)-K(3)-K(2)	151.36(11)
C(333)-Si(33)-Si(3)	112.66(15)	C(034)-K(3)-K(2)	129.75(15)
C(332)-Si(33)-Si(3)	109.28(15)	P(4)-K(3)-K(2)	56.51(2)
C(012)-C(011)-C(016)	120.7(8)	P(6)-K(3)-K(2)	55.38(2)

Symmetry transformations used to generate equivalent atoms: #1 -x, -y, -z = #2 -x-1, -y-1, -z+1 = #3 -x, -y-1, -z+1

7.5 Crystallographic data for Hyp₂P₄Li_{2'}4THF

7.5.1 Crystal data and structure refinement

Empirical formula	$Hyp_2P_4Li_2\cdot 4THF$
Formula weight	921.51
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	monoclinic, P2/c

Unit cell dimensions	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
Volume	5716.4(13) Å ³
Z, Calculated density	4, 1.071 g/cm ³
Absorption coefficient	0.329 mm ⁻¹
F(000)	2000
Theta range for data collection	2.06 to 26.54 deg.
Limiting indices	-29<=h<=28, -12<=k<=12, -30<=l<=30
Reflections collected / unique	56355 / 11688 [R(int) = 0.1100]
Completeness to theta = 26.54	98.1 %
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	11688 / 238 / 571
Goodness-of-fit on F^2	0.650
Final R indices [I>2sigma(I)]	R1 = 0.0419, $wR2 = 0.0936$
R indices (all data)	R1 = 0.1552, wR2 = 0.1303
Largest diff. peak and hole	0.136 and -0.141 e. ${\rm \AA}^{-3}$

7.5.2 Atomic coordinates (x 10⁴), equivalent isotropic displacement parameters (Å² x 10³) and Anisotropic displacement parameters (Å² x 10³). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U11 + ... + 2hka^*b^*U12]$

Atom	Х	у	Z	U(eq)	U11	U22	U33	U23	U13	U12
D (1)	40((1))	2122(1)	0010/1)	71(1)	70(1)	(2 (1))	70(1)	1(1)	0(1)	1(1)
P(1)	496(1)	3132(1)	8018(1)	/1(1)	79(1)	62(1)	70(1)	1(1)	-8(1)	1(1)
SI(1)	1165(1)	2773(1)	8686(1)	66(1)	/5(1)	61(1)	60(1)	-1(1)	-3(1)	-2(1)
P(2)	302(1)	1075(1)	/819(1)	89(1)	102(1)	63(1)	9/(1)	5(1)	-33(1)	-2(1)
S1(11)	2010(1)	1973(1)	8350(1)	80(1)	81(1)	79(1)	80(1)	-6(1)	2(1)	4(1)
Si(12)	875(1)	1354(1)	9393(1)	78(1)	89(1)	72(1)	71(1)	8(1)	3(1)	5(1)
Si(13)	1329(1)	4907(1)	9081(1)	78(1)	93(1)	64(1)	77(1)	-6(1)	-2(1)	-5(1)
O(1)	1087(1)	3467(4)	6570(1)	111(1)	121(3)	131(3)	80(2)	28(2)	4(2)	14(2)
C(121)	984(2)	-454(4)	9217(2)	101(1)	126(4)	68(3)	110(3)	17(2)	14(3)	8(3)
C(131)	1979(2)	4978(5)	9554(2)	105(2)	105(3)	106(3)	104(3)	-20(3)	-7(3)	-29(3)
C(122)	110(2)	1648(5)	9514(2)	112(2)	96(3)	118(4)	121(4)	24(3)	16(3)	9(3)
C(11)	1287(3)	2107(7)	6647(2)	182(3)	270(9)	185(7)	96(4)	45(4)	47(5)	120(6)
C(132)	704(2)	5401(4)	9482(2)	97(1)	129(4)	81(3)	82(3)	-13(2)	3(3)	1(3)
C(111)	1911(2)	353(4)	7969(2)	91(1)	99(3)	89(3)	84(3)	-6(2)	2(2)	17(2)
C(112)	2539(2)	1635(5)	8925(2)	127(2)	90(3)	143(4)	146(5)	-60(4)	-23(3)	48(3)
C(12)	1454(3)	1573(6)	6136(3)	145(2)	147(5)	155(6)	131(5)	16(5)	-2(4)	31(4)
C(133)	1436(2)	6170(4)	8522(2)	98(1)	123(4)	61(2)	109(3)	2(2)	1(3)	-5(2)
C(123)	1301(2)	1703(5)	10048(2)	112(2)	128(4)	117(4)	88(3)	24(3)	-6(3)	11(3)
C(113)	2299(2)	3279(4)	7862(2)	114(2)	116(4)	99(3)	131(4)	-3(3)	48(3)	-5(3)
C(14)	1166(2)	3827(6)	6011(2)	123(2)	141(5)	123(4)	104(4)	35(3)	1(3)	-26(4)
C(13)	1528(3)	2693(7)	5770(2)	149(2)	206(7)	143(5)	100(4)	18(4)	34(4)	-14(5)
Si(2)	6165(1)	2090(1)	3690(1)	67(1)	73(1)	61(1)	66(1)	-1(1)	-2(1)	1(1)
P(3)	5506(1)	1685(1)	3014(1)	70(1)	77(1)	62(1)	72(1)	-5(1)	-5(1)	2(1)
Si(21)	5763(1)	3009(1)	4469(1)	77(1)	91(1)	73(1)	67(1)	-7(1)	1(1)	2(1)
Si(22)	6896(1)	3490(1)	3412(1)	86(1)	87(1)	86(1)	85(1)	-5(1)	2(1)	-18(1)
Si(23)	6565(1)	-14(1)	3924(1)	87(1)	97(1)	71(1)	92(1)	-2(1)	-14(1)	13(1)
P(4A)	5437(2)	3673(4)	2709(2)	83(1)	93(3)	63(2)	91(3)	-8(2)	-19(2)	2(2)
P(4B)	4817(2)	3703(4)	2084(2)	80(1)	94(3)	58(1)	87(2)	6(2)	-20(2)	2(2)
C(221)	7175(2)	2904(5)	2758(2)	123(2)	122(4)	139(4)	112(4)	5(3)	31(3)	-17(3)
C(211)	5181(2)	1949(5)	4683(2)	111(2)	137(4)	95(3)	105(3)	-19(3)	33(3)	-7(3)

Atom	Х	у	Z	U(eq)	U11	U22	U33	U23	U13	U12
C(212)	6301(2)	3172(7)	5052(2)	148(2)	123(4)	238(7)	81(3)	-47(4)	-15(3)	-3(4)
C(231)	7053(3)	46(6)	4542(3)	210(4)	278(9)	148(6)	188(7)	-50(5)	-145(6)	91(6)
C(222)	7507(2)	3387(9)	3926(2)	202(4)	128(5)	349(11)	127(5)	27(6)	-15(4)	-106(6)
C(213)	5480(2)	4733(4)	4303(2)	126(2)	167(5)	80(3)	137(4)	6(3)	62(4)	29(3)
C(232)	6000(2)	-1307(5)	4042(3)	146(2)	168(5)	80(3)	193(6)	32(3)	43(5)	0(3)
C(233)	6981(2)	-659(5)	3347(2)	126(2)	124(4)	88(3)	167(5)	-15(3)	7(4)	25(3)
C(223)	6667(3)	5231(5)	3315(3)	197(4)	184(6)	66(3)	351(10)	13(4)	136(7)	-18(4)
O(2)	605(1)	6112(3)	6955(2)	123(1)	99(2)	102(2)	165(3)	63(2)	-33(2)	-20(2)
C(23)	480(3)	8001(6)	6423(3)	135(2)	112(5)	141(5)	153(5)	50(4)	14(4)	20(4)
C(21)	1113(2)	6862(7)	7033(2)	156(3)	121(4)	204(7)	139(5)	68(5)	-39(4)	-82(5)
Li(1)	538(3)	4178(7)	7033(3)	91(2)	90(5)	79(5)	102(5)	28(4)	-18(4)	-13(4)
C(24)	198(2)	7033(5)	6729(3)	130(2)	116(4)	96(4)	174(6)	22(4)	-23(4)	-4(3)
C(22)	1037(3)	8079(5)	6675(3)	148(2)	171(6)	86(4)	187(6)	25(4)	8(5)	-29(4)
Li(2)	4404(3)	1232(8)	3045(3)	95(2)	105(6)	91(5)	89(5)	19(4)	1(4)	-5(4)
O(3)	3923(8)	2138(14)	3502(10)	100(7)	128(14)	50(8)	124(14)	-15(8)	36(10)	23(8)
C(31)	3877(8)	3592(13)	3500(11)	130(7)	175(14)	74(9)	140(15)	3(8)	-10(11)	-5(9)
C(32)	3329(7)	3909(11)	3730(9)	123(5)	130(10)	67(7)	172(13)	5(8)	-3(10)	24(7)
C(33)	3231(10)	2760(20)	4128(9)	154(7)	147(15)	131(13)	187(14)	-34(12)	34(13)	-3(12)
C(34)	3543(9)	1625(15)	3908(10)	116(6)	122(13)	83(9)	147(14)	-6(8)	51(11)	-8(9)
O(3A)	3905(7)	2080(14)	3548(9)	97(6)	99(10)	87(9)	108(10)	23(7)	13(8)	-31(6)
C(31A)	3897(7)	3462(15)	3734(9)	129(6)	129(10)	88(8)	166(15)	33(9)	-28(9)	-29(8)
C(32A)	3443(7)	3585(19)	4122(10)	159(6)	145(12)	117(11)	218(15)	-30(12)	18(12)	-11(9)
C(33A)	3030(6)	2474(16)	3950(8)	140(6)	108(9)	130(10)	182(13)	-47(9)	12(9)	-19(7)
C(34A)	3379(7)	1445(12)	3701(8)	106(5)	101(9)	78(7)	139(12)	-11(7)	12(8)	-23(6)
O(4)	4293(7)	-582(9)	3176(3)	88(4)	112(9)	68(4)	82(5)	20(3)	-8(4)	-25(5)
C(41)	4482(7)	-1178(12)	3657(4)	127(5)	160(11)	101(9)	119(8)	25(7)	-18(7)	-4(8)
C(42)	4541(5)	-2660(11)	3541(4)	125(5)	160(10)	85(8)	128(8)	7(6)	-28(7)	27(7)
C(43)	4094(5)	-2928(9)	3125(5)	125(4)	159(9)	47(4)	166(10)	4(6)	-21(8)	15(5)
C(44)	4012(6)	-1678(8)	2810(4)	134(4)	183(11)	85(6)	130(8)	29(5)	-41(7)	-68(6)
O(4A)	4157(11)	-810(15)	3172(7)	96(6)	92(10)	66(8)	130(11)	25(7)	12(8)	-22(8)
C(41A)	4265(11)	-1533(18)	3646(6)	113(7)	169(16)	61(9)	111(11)	26(8)	34(10)	-14(10)
C(42A)	4353(12)	-2973(19)	3468(7)	137(8)	186(17)	64(10)	161(16)	0(12)	5(15)	29(13)
C(43A)	4651(7)	-2826(13)	2963(5)	124(5)	157(13)	94(9)	120(11)	-1(8)	-17(9)	18(9)
C(44A)	4461(9)	-1557(12)	2718(5)	130(6)	165(14)	75(9)	151(12)	10(9)	19(11)	-32(10)

7.5.3 Bond length (Å)

Atoms	Bond length	Atoms	Bond length	Atoms	Bond length
P(1)-P(2)	2.1389(15)	P(3)-P(4A)	2.110(4)	Li(2)-O(4)	1.846(12)
P(1)-Si(1)	2.2456(15)	P(3)-P(4B)#2	2.150(4)	Li(2)-O(3A)	1.936(14)
P(1)-Li(1)	2.620(7)	P(3)-Li(2)#2	2.637(7)	Li(2)-O(4A)	2.13(2)
P(1)-Li(1)#1	2.659(7)	P(3)-Li(2)	2.657(8)	Li(2)-P(3)#2	2.637(7)
Si(1)-Si(11)	2.3392(15)	Si(21)-C(211)	1.829(4)	Li(2)-P(4A)#2	3.069(8)
Si(1)-Si(13)	2.3473(15)	Si(21)-C(213)	1.872(4)	Li(2)-P(4B)#2	3.092(8)
Si(1)-Si(12)	2.3513(15)	Si(21)-C(212)	1.870(5)	O(3)-C(31)	1.445(9)
P(2)-P(2)#1	2.065(2)	Si(22)-C(223)	1.821(5)	O(3)-C(34)	1.460(10)
Si(11)-C(111)	1.864(4)	Si(22)-C(221)	1.846(5)	C(31)-C(32)	1.475(12)
Si(11)-C(112)	1.866(5)	Si(22)-C(222)	1.873(6)	C(32)-C(33)	1.516(14)
Si(11)-C(113)	1.906(4)	Si(23)-C(231)	1.856(6)	C(33)-C(34)	1.465(10)
Si(12)-C(121)	1.863(4)	Si(23)-C(233)	1.869(5)	O(3A)-C(31A)	1.442(9)
Si(12)-C(123)	1.878(5)	Si(23)-C(232)	1.885(5)	O(3A)-C(34A)	1.460(10)
Si(12)-C(122)	1.877(4)	P(4A)-P(4B)	2.065(3)	C(31A)-C(32A)	1.470(12)
Si(13)-C(133)	1.874(4)	P(4A)-Li(2)#2	3.069(8)	C(32A)-C(33A)	1.519(14)
Si(13)-C(131)	1.881(5)	P(4B)-P(3)#2	2.150(4)	C(33A)-C(34A)	1.463(10)
Si(13)-C(132)	1.879(4)	P(4B)-Li(2)#2	3.092(8)	O(4)-C(41)	1.369(7)
O(1)-C(14)	1.428(5)	O(2)-C(21)	1.421(5)	O(4)-C(44)	1.537(11)
O(1)-C(11)	1.437(6)	O(2)-C(24)	1.420(5)	C(41)-C(42)	1.503(10)
O(1)-Li(1)	1.899(9)	O(2)-Li(1)	1.932(7)	C(42)-C(43)	1.455(12)
C(11)-C(12)	1.425(7)	C(23)-C(24)	1.405(6)	C(43)-C(44)	1.465(9)

C(12)-C(13)	1.439(7)	C(23)-C(22)	1.430(7) 1.494(7)	O(4A)- $C(41A)O(4A)$ $C(44A)$	1.372(9)
Si(2)-P(3)	2.2505(15)	Li(1)-P(1)#1	2.659(7)	C(41A)-C(44A) C(41A)-C(42A)	1.509(11)
$S_1(2)-S_1(22)$ $S_1(2)-S_1(21)$	2.3449(16) 2.3488(15)	$L_1(1)-L_1(1)\#1$ $L_1(2)-O(3)$	3.498(15) 1.862(14)	C(42A)-C(43A) C(43A)-C(44A)	1.455(14) 1.454(10)
Si(2)-Si(23)	2.3485(15)				

7.5.4 Bond Angle (deg).

Atoms	Angle	Atoms	Angle
	č		<u> </u>
P(2)-P(1)-Si(1)	98.62(6)	P(4A)-P(4B)-Li(2)#2	69.8(2)
P(2)-P(1)-Li(1)	100.74(17)	P(3)#2-P(4B)-Li(2)#2	57.60(17)
Si(1)-P(1)-Li(1)	131.99(16)	C(21)-O(2)-C(24)	105.8(4)
P(2)-P(1)-Li(1)#1	99.99(16)	C(21)-O(2)-Li(1)	125.4(4)
Si(1)-P(1)-Li(1)#1	135.56(17)	C(24)-O(2)-Li(1)	128.1(4)
Li(1)-P(1)-Li(1)#1	83.0(3)	C(24)-C(23)-C(22)	105.2(5)
P(1)-Si(1)-Si(11)	112.84(6)	O(2)-C(21)-C(22)	105.4(5)
P(1)-Si(1)-Si(13)	104.59(6)	O(1)-Li(1)-O(2)	104.3(4)
Si(11)-Si(1)-Si(13)	108.66(6)	O(1)-Li(1)-P(1)	117.1(3)
P(1)-Si(1)-Si(12)	113.83(6)	O(2)-Li(1)-P(1)	119.3(4)
Si(11)-Si(1)-Si(12)	109.79(6)	O(1)-Li(1)-P(1)#1	119.0(4)
Si(13)-Si(1)-Si(12)	106.69(6)	O(2)-Li(1)-P(1)#1	117.5(3)
P(2)#1-P(2)-P(1)	107.72(4)	P(1)-Li(1)-P(1)#1	79.25(19)
C(111)-Si(11)-C(112)	106.5(2)	O(1)-Li(1)-Li(1)#1	158.2(2)
C(111)-Si(11)-C(113)	108.3(2)	O(2)-Li(1)-Li(1)#1	97.5(3)
C(112)-Si(11)-C(113)	109.9(2)	P(1)-Li(1)-Li(1)#1	48.97(19)
C(111)-Si(11)-Si(1)	112.16(14)	P(1)#1-Li(1)-Li(1)#1	48.02(18)
C(112)-Si(11)-Si(1)	110.80(15)	C(23)-C(24)-O(2)	108.1(4)
C(113)-Si(11)-Si(1)	109.15(15)	C(23)-C(22)-C(21)	106.9(5)
C(121)-Si(12)-C(123)	107.4(2)	O(3)-Li(2)-O(4)	105.6(7)
C(121)-Si(12)-C(122)	109.3(2)	O(3)-Li(2)-O(3A)	3.4(12)
C(123)-Si(12)-C(122)	108.9(2)	O(4)-Li(2)-O(3A)	102.5(6)
C(121)-Si(12)-Si(1)	110.92(14)	O(3)-Li(2)-O(4A)	101.0(7)
C(123)-Si(12)-Si(1)	110.35(15)	O(4)-Li(2)-O(4A)	7.8(11)
C(122)-Si(12)-Si(1)	109.87(15)	O(3A)-Li(2)-O(4A)	98.0(6)
C(133)-Si(13)-C(131)	106.6(2)	O(3)-Li(2)-P(3)#2	125.7(9)
C(133)-Si(13)-C(132)	109.9(2)	O(4)-Li(2)-P(3)#2	110.7(4)
C(131)-Si(13)-C(132)	108.4(2)	O(3A)-Li(2)-P(3)#2	128.7(8)
C(133)-Si(13)-Si(1)	109.24(14)	O(4A)-Li(2)-P(3)#2	109.8(5)
C(131)-Si(13)-Si(1)	113.57(15)	O(3)-Li(2)-P(3)	124.6(8)
C(132)-Si(13)-Si(1)	109.10(14)	O(4)-Li(2)-P(3)	108.5(6)
C(14)-O(1)-C(11)	107.5(4)	O(3A)-Li(2)-P(3)	125.3(7)
C(14)-O(1)-Li(1)	126.8(4)	O(4A)-Li(2)-P(3)	116.2(7)
C(11)-O(1)-Li(1)	120.1(4)	P(3)#2-Li(2)-P(3)	79.6(2)
C(12)-C(11)-O(1)	109.7(5)	O(3)-Li(2)-P(4A)#2	94.2(7)
C(11)-C(12)-C(13)	107.5(6)	O(4)-Li(2)-P(4A)#2	153.2(4)
O(1)-C(14)-C(13)	106.3(4)	O(3A)-Li(2)-P(4A)#2	97.6(6)
C(12)-C(13)-C(14)	103.9(5)	O(4A)-Li(2)-P(4A)#2	151.2(6)
P(3)-Si(2)-Si(22)	113.08(6)	P(3)#2-Li(2)-P(4A)#2	42.56(13)
P(3)-Si(2)-Si(21)	111.40(6)	P(3)-Li(2)-P(4A)#2	72.63(18)
Si(22)-Si(2)-Si(21)	109.79(6)	O(3)-Li(2)-P(4B)#2	93.8(6)
P(3)-Si(2)-Si(23)	106.10(6)	O(4)-Li(2)-P(4B)#2	151.5(6)
Si(22)-Si(2)-Si(23)	107.46(6)	O(3A)-Li(2)-P(4B)#2	96.2(5)
Si(21)-Si(2)-Si(23)	108.80(6)	O(4A)-Li(2)-P(4B)#2	159.3(7)
P(4A)-P(3)-P(4B)#2	21.72(9)	P(3)#2-Li(2)-P(4B)#2	71.91(18)
P(4A)-P(3)-Si(2)	97.55(12)	P(3)-Li(2)-P(4B)#2	43.11(13)
P(4B)#2-P(3)-Si(2)	98.46(11)	P(4A)#2-Li(2)-P(4B)#2	39.16(10)
P(4A)-P(3)-Li(2)#2	79.74(19)	C(31)-O(3)-C(34)	107.5(7)
P(4B)#2-P(3)-Li(2)#2	95.36(19)	C(31)-O(3)-Li(2)	121.7(12)

Atoms	Angle	Atoms	Angle
Si(2)-P(3)-Li(2)#2	131.29(18)	C(34)-O(3)-Li(2)	130.7(10)
P(4A)-P(3)-Li(2)	96.14(19)	O(3)-C(31)-C(32)	106.1(8)
P(4B)#2-P(3)-Li(2)	79.29(19)	C(31)-C(32)-C(33)	104.4(10)
Si(2)-P(3)-Li(2)	131.27(17)	C(34)-C(33)-C(32)	104.3(9)
Li(2)#2-P(3)-Li(2)	97.1(2)	O(3)-C(34)-C(33)	108.6(8)
C(211)-Si(21)-C(213)	108.5(2)	C(31A)-O(3A)-C(34A)	107.7(7)
C(211)-Si(21)-C(212)	109.3(3)	C(31A)-O(3A)-Li(2)	128.9(10)
C(213)-Si(21)-C(212)	108.1(3)	C(34A)-O(3A)-Li(2)	122.0(11)
C(211)-Si(21)-Si(2)	110.39(14)	O(3A)-C(31A)-C(32A)	107.5(8)
C(213)-Si(21)-Si(2)	109.51(15)	C(31A)-C(32A)-C(33A)	104.3(10)
C(212)-Si(21)-Si(2)	111.00(17)	C(34A)-C(33A)-C(32A)	104.3(9)
C(223)-Si(22)-C(221)	107.6(3)	O(3A)-C(34A)-C(33A)	108.3(7)
C(223)-Si(22)-C(222)	110.8(4)	C(41)-O(4)-C(44)	107.9(7)
C(221)-Si(22)-C(222)	105.1(3)	C(41)-O(4)-Li(2)	121.6(10)
C(223)-Si(22)-Si(2)	112.22(18)	C(44)-O(4)-Li(2)	130.5(7)
C(221)-Si(22)-Si(2)	111.29(17)	O(4)-C(41)-C(42)	106.8(7)
C(222)-Si(22)-Si(2)	109.6(2)	C(43)-C(42)-C(41)	103.8(8)
C(231)-Si(23)-C(233)	106.8(3)	C(42)-C(43)-C(44)	106.5(7)
C(231)-Si(23)-C(232)	108.6(3)	C(43)-C(44)-O(4)	104.5(6)
C(233)-Si(23)-C(232)	106.7(2)	C(41A)-O(4A)-C(44A)	106.2(9)
C(231)-Si(23)-Si(2)	113.43(19)	C(41A)-O(4A)-Li(2)	125.1(15)
C(233)-Si(23)-Si(2)	110.00(17)	C(44A)-O(4A)-Li(2)	102.2(10)
C(232)-Si(23)-Si(2)	111.01(17)	O(4A)-C(41A)-C(42A)	105.9(9)
P(4B)-P(4A)-P(3)	108.3(3)	C(43A)-C(42A)-C(41A)	103.2(11)
P(4B)-P(4A)-Li(2)#2	71.0(2)	C(44A)-C(43A)-C(42A)	106.2(10)
P(3)-P(4A)-Li(2)#2	57.71(17)	C(43A)-C(44A)-O(4A)	105.6(8)
P(4A)-P(4B)-P(3)#2	107.9(2)		

Symmetry transformations used to generate equivalent atoms: #1 - x, y, -z+3/2 #2 - x+1, y, -z+1/2

7.6 Crystallographic data for Hyp₂P₃Li·2(MeNCH₂)₃

7.6.1 Crystal data and structure refinement

Empirical formula	Hyp ₂ P ₃ Li·3triazine(toluene)
Formula weight	945.74
Temperature	173(2) K
Wavelength	0.71073 Å
Crystal system, space group	monoclinic, P2(1)/n
Unit cell dimensions	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
Volume	6001.6(7) Å ³
Z, Calculated density	4, 1.047 g/cm^3
Absorption coefficient	0.287 mm^{-1}
F(000)	2064
Theta range for data collection	2.37 to 28.46 deg.
Limiting indices	-20<=h<=20, -21<=k<=21, -31<=1<=32
Reflections collected / unique	106062 / 14990 [R(int) = 0.0983]
Completeness to theta = 28.46	98.9 %
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	14990 / 177 / 596
Goodness-of-fit on F^2	1.006
-------------------------------	------------------------------
Final R indices [I>2sigma(I)]	R1 = 0.0459, wR2 = 0.1004
R indices (all data)	R1 = 0.1065, wR2 = 0.1243
Largest diff. peak and hole	0.363 and -0.254 e.Å $^{-3}$

7.6.2 Atomic coordinates (x 10⁴), equivalent isotropic displacement parameters (Å ² x 10³) and Anisotropic displacement parameters (Å ² x 10³). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U11 + ... + 2hka^*b^*U12]$

Atom	Х	у	Z	U(eq)	U11	U22	U33	U23	U13	U12
D(2)	02(0(1)	1564(1)	1544(1)	21/1)	$2\mathbf{C}(1)$	24(1)	22(1)	$\mathcal{L}(1)$	7(1)	1/1)
P(2)	9268(1)	1564(1)	1544(1)	31(1)	26(1)	34(1)	33(1)	-0(1)	(1)	1(1)
S1(13)	12/90(1)	1369(1) 1257(1)	2035(1)	30(1)	26(1)	39(1)	42(1)	-4(1)	2(1)	1(1)
P(3)	841/(1) 10528(1)	125/(1) 1260(1)	$\frac{\delta}{20(1)}$	33(1)	20(1) 25(1)	43(1)	32(1) 37(1)	-8(1)	0(1) 7(1)	1(1)
P(1)	10328(1) 11212(1)	1509(1) 1672(1)	1349(1) 2195(1)	34(1)	23(1) 27(1)	41(1) 21(1)	$\frac{3}{(1)}$	-9(1)	(1)	0(1)
SI(1)	11312(1) 7116(1)	10/2(1) 1521(1)	2103(1) 1110(1)	32(1)	2/(1) 25(1)	26(1)	39(1)	-0(1)	S(1)	-1(1)
SI(2)	(110(1))	1331(1) 1604(1)	1110(1)	52(1)	23(1)	50(1)	55(1)	-2(1)	0(1)	1(1)
SI(23)	6662(1)	1004(1) 472(1)	200(1) 1654(1)	43(1)	20(1) 25(1)	$\frac{3}{(1)}$	44(1)	0(1) 2(1)	2(1) 16(1)	-2(1)
SI(22) Si(21)	7127(1)	473(1) 2756(1)	1034(1) 1609(1)	41(1)	33(1) 30(1)	44(1) 40(1)	49(1)	5(1)	10(1) 14(1)	-5(1)
$S_{i}(21)$ $S_{i}(12)$	11050(1)	2730(1) 2053(1)	1000(1) 2556(1)	40(1)	$\frac{39(1)}{40(1)}$	40(1) 38(1)	43(1) 54(1)	-0(1) 17(1)	5(1)	0(1)
SI(12) Si(11)	11039(1) 11133(1)	2933(1) 716(1)	2330(1) 2870(1)	44(1)	40(1)	$\frac{36(1)}{44(1)}$	$\frac{34(1)}{44(1)}$	2(1)	5(1)	0(1) 8(1)
N(42)	11133(1)	1241(1)	2079(1)	40(1)	$\frac{40(1)}{20(1)}$	$\frac{44(1)}{25(1)}$	$\frac{44(1)}{21(1)}$	2(1) 2(1)	J(1) 11(1)	-0(1)
$\Gamma(43)$	4030(1)	1/241(1) 1/21(2)	-700(1)	54(1)	39(1) 20(1)	55(1) 67(2)	51(1)	-3(1)	11(1) 4(1)	-2(1)
C(231) C(131)	4939(2) 13566(2)	1431(2) 1448(2)	437(1) 2705(1)	50(1)	30(1) 30(2)	$\frac{07(2)}{82(2)}$	51(2)	0(2) 1(2)	4(1) 5(1)	-3(1)
C(131)	13300(2)	1440(2)	$\frac{2703(1)}{61(1)}$	59(1)	$\frac{39(2)}{44(2)}$	82(2)	51(2)	-1(2)	-3(1)	$\frac{3(1)}{7(2)}$
C(232)	5680(2)	2020(2) 768(2)	-01(1) 1002(1)	62(1)	44(2) 10(2)	74(2)	69(2)	$\frac{2}{4(2)}$	3(1) 33(2)	-7(2) 2(1)
C(221) C(132)	12929(2)	657(2)	1592(1)	61(1)	$\frac{1}{41(2)}$	60(2)	81(2)	7(2)	$\frac{33(2)}{8(2)}$	$\frac{-2(1)}{7(1)}$
C(132)	7555(2)	2574(2)	2365(1)	54(1)	41(2)	67(2)	$\frac{31(2)}{48(2)}$	$\frac{23(2)}{17(1)}$	0(2)	6(1)
C(211) C(133)	13180(2)	2374(2) 2470(2)	1672(1)	54(1) 61(1)	$\frac{4}{(2)}$	61(2)	+0(2) = 80(2)	17(1) 12(2)	$\frac{9(1)}{17(2)}$	4(1)
C(133)	12032(2)	2470(2) 3249(2)	3081(1)	56(1)	64(2)	17(2)	54(2)	12(2) 15(1)	-5(2)	-4(1)
C(212)	5986(2)	32 + J(2) 310A(2)	1559(1)	58(1)	54(2)	$\frac{1}{66(2)}$	57(2) =	-1(2)	-3(2) 17(1)	-11(1) 21(1)
C(212)	7568(2)	18/(2)	2226(1)	58(1)	57(2) 62(2)	56(2)	57(2) 55(2)	15(1)	10(2)	-1(1)
C(222)	6360(2)	-452(2)	1216(1)	57(1)	54(2)	30(2) 17(2)	74(2)	-3(1)	10(2) 19(2)	-1(1)
C(111)	9950(2)	539(2)	2936(2)	74(1)	59(2)	78(2)	89(3)	20(2)	21(2)	-14(2)
C(213)	7854(2)	3525(2)	1333(1)	59(1)	55(2) 65(2)	39(2)	77(2)	-9(1)	27(2)	-3(1)
C(112)	11618(2)	-287(2)	2726(2)	75(1)	85(2)	47(2)	90(3)	13(2)	27(2) 2(2)	7(2)
C(122)	10884(2)	3749(2)	2720(2) 2002(1)	71(1)	83(2)	42(2)	80(2) -	10(2)	-18(2)	14(2)
C(122) C(113)	11716(3)	1055(2)	3579(1)	82(1)	108(3)	92(3)	43(2)	5(2)	5(2)	-31(2)
C(233)	6334(2)	802(2)	-221(1)	69(1)	47(2)	101(3)	55(2) -	23(2)	-3(1)	0(2)
C(123)	10077(2)	2951(2)	2934(2)	90(1)	65(2)	87(2)	126(3) -	60(2)	42(2)	-9(2)
N(41)	11118(1)	1344(1)	-490(1)	41(1)	39(1)	38(1)	46(1)	1(1)	8(1)	0(1)
N(31)	9412(1)	3262(1)	-330(1)	41(1)	41(1)	39(1)	42(1)	3(1)	8(1)	0(1)
N(33)	10462(1)	3800(1)	-844(1)	42(1)	47(1)	41(1)	38(1)	3(1)	8(1)	-4(1)
N(42)	10497(1)	1697(1)	-1401(1)	44(1)	52(1)	43(1)	42(1)	7(1)	23(1)	4(1)
N(32)	10894(1)	3261(1)	53(1)	44(1)	41(1)	48(1)	40(1)	8(1)	-1(1)	1(1)
C(43)	9719(2)	1217(2)	-1350(1)	39(1)	50(2)	35(1)	35(2)	-2(1)	14(1)	2(1)
C(42)	10345(2)	855(2)	-429(1)	39(1)	45(1)	34(1)	39(2)	-1(1)	11(1)	-3(1)
C(413)	8767(2)	841(2)	-687(1)	47(1)	44(1)	54(2)	47(2)	-2(1)	15(1)	-9(1)
C(33)	10010(2)	3359(2)	187(1)	44(1)	53(2)	44(2)	38(2)	-4(1)	9(1)	3(1)
C(32)	9571(2)	3906(2)	-721(1)	43(1)	50(2)	38(1)	42(2)	3(1)	6(1)	5(1)
C(41)	11258(2)	1314(2)	-1075(1)	49(1)	46(2)	42(2)	63(2)	1(1)	24(1)	-1(1)
C(331)	10652(2)	4372(2)	-1274(1)	63(1)	67(2)	75(2)	46(2)	15(2)	10(2)	-11(2)
C(31)	11082(2)	3895(2)	-330(1)	46(1)	46(2)	45(2)	47(2)	-1(1)	4(1)	-5(1)
C(311)	8494(2)	3236(2)	-239(1)	63(1)	48(2)	77(2)	66(2)	17(2)	13(2)	2(2)
C(412)	10607(2)	1783(2)	-1991(1)	70(1)	85(2)	79(2)	54(2)	22(2)	38(2)	9(2)
C(411)	11891(2)	1085(2)	-104(1)	61(1)	48(2)	60(2)	71(2)	2(2)	-2(2)	-2(1)

Atom	X	у	Z	U(eq)	U11	U22	U33 U	J23 U1	3 U12
C(321)	11555(2)	3250(2)	552(1)	76(1)	60(2)	108(3)	55(2) 25	(2) -13(2) -12(2)
Li	10315(3)	2419(2)	-642(2)	44(1)	47(2)	34(2)	53(3) -6	5(2) 15(2) 3(2)
C(01)	3687(4)	4053(4)	-104(3)	86(2)	71(3)	95(3)	95(4) -14	(3) 17(3) 12(3)
C(011)	3930(8)	4382(6)	474(4)	143(4)	181(10)	114(8)	128(8) -45	5(6) 3(7) 2(7)
C(02)	3486(6)	4573(5)	-559(4)	89(2)	79(4)	79(4)	113(4) 0	(4) 26(4) 3(3)
C(03)	3316(5)	4275(5)	-1068(3)	91(2)	76(4)	102(4)	99(4) 26	6(4) 25(3) 1(3)
C(04)	3290(5)	3495(5)	-1186(3)	87(2)	74(3)	113(5)	79(4) -11	(4) 30(3) -9(4)
C(05)	3494(5)	2935(5)	-733(3)	82(2)	70(3)	80(4)	96(4) -19	(4) 18(4) -1(3)
C(06)	3658(7)	3240(4)	-220(3)	71(2)	62(3)	68(4)	83(4) 16	i(3) 17(4) 18(3)
C(07)	3523(7)	3643(7)	-641(5)	79(2)	68(3)	83(4)	91(4) -2	2(3) 32(3) 3(3)
C(071)	3249(12)	3030(9)	-1093(7)	105(6)	112(12)	94(11)	110(14) -8(12) 14(10) -39(10)
C(08)	3741(16)	3438(11)	-58(7)	84(3)	68(5)	84(5)	103(6) 9	(5) 22(5) 15(5)
C(09)	3934(10)	3959(9)	334(7)	103(3)	72(5)	125(6)	112(6) -3	6(6) 14(6) 12(5)
C(0A)	4031(10)	4798(9)	182(7)	110(3)	101(6)	115(6)	115(6) -25	6) 21(6) 4(5)
C(0B)	3813(9)	4977(9)	-347(6)	109(3)	100(5)	99(5)	126(6) -7	(5) 14(5) 5(5)
C(0C)	3602(13)	4447(9)	-755(7)	93(3)	86(5)	92(5)	105(5) 5	5(5) 27(5) 4(4)

7.6.3 Bond lengths [Å].

Atoms	Bond length	Atoms	Bond length	Atoms	Bond length
P(2)-P(3)	2.0730(8)	Si(12)-C(121)	1.874(3)	N(32)-C(33)	1.445(3)
P(2)-P(1)	2.0774(8)	Si(11)-C(111)	1.862(3)	N(32)-C(31)	1.447(3)
Si(13)-C(133)	1.862(3)	Si(11)-C(112)	1.865(3)	N(32)-C(321)	1.456(3)
Si(13)-C(132)	1.869(3)	Si(11)-C(113)	1.875(3)	N(32)-Li	2.252(5)
Si(13)-C(131)	1.870(3)	N(43)-C(43)	1.447(3)	C(43)-Li	2.682(5)
Si(13)-Si(1)	2.3509(9)	N(43)-C(42)	1.452(3)	C(42)-Li	2.619(5)
P(3)-Si(2)	2.2459(8)	N(43)-C(413)	1.468(3)	C(33)-Li	2.617(5)
P(1)-Si(1)	2.2454(9)	N(43)-Li	2.227(4)	C(32)-Li	2.693(5)
Si(1)-Si(11)	2.3385(10)	N(41)-C(41)	1.455(3)	C(41)-Li	2.628(5)
Si(1)-Si(12)	2.3415(9)	N(41)-C(42)	1.456(3)	C(31)-Li	2.752(5)
Si(2)-Si(21)	2.3414(9)	N(41)-C(411)	1.459(3)	C(01)-C(06)	1.365(10)
Si(2)-Si(22)	2.3420(9)	N(41)-Li	2.153(4)	C(01)-C(02)	1.388(10)
Si(2)-Si(23)	2.3446(10)	N(31)-C(33)	1.443(3)	C(01)-C(011)	1.487(10)
Si(23)-C(233)	1.873(3)	N(31)-C(311)	1.455(3)	C(02)-C(03)	1.310(10)
Si(23)-C(232)	1.872(3)	N(31)-C(32)	1.460(3)	C(03)-C(04)	1.312(10)
Si(23)-C(231)	1.874(2)	N(31)-Li	2.170(4)	C(04)-C(05)	1.428(10)
Si(22)-C(222)	1.869(3)	N(33)-C(32)	1.449(3)	C(05)-C(06)	1.321(9)
Si(22)-C(223)	1.870(3)	N(33)-C(31)	1.454(3)	C(07)-C(0C)	1.360(16)
Si(22)-C(221)	1.879(3)	N(33)-C(331)	1.458(3)	C(07)-C(08)	1.434(16)
Si(21)-C(213)	1.868(3)	N(33)-Li	2.340(4)	C(07)-C(071)	1.499(15)
Si(21)-C(211)	1.871(3)	N(42)-C(43)	1.449(3)	C(08)-C(09)	1.277(16)
Si(21)-C(212)	1.879(3)	N(42)-C(41)	1.452(3)	C(09)-C(0A)	1.439(17)
Si(12)-C(122)	1.860(3)	N(42)-C(412)	1.461(3)	C(0A)-C(0B)	1.303(15)
Si(12)-C(123)	1.867(3)	N(42)-Li	2.230(5)	C(0B)-C(0C)	1.317(15)

7.6.4 Bond Angles (deg).

Atoms	Angle	Atoms	Angle
P(3)-P(2)-P(1)	105.52(3)	N(31)-C(33)-Li	55.99(15)
C(133)-Si(13)-C(132)	107.40(14)	N(32)-C(33)-Li	59.26(15)
C(133)-Si(13)-C(131)	106.42(14)	N(33)-C(32)-N(31)	107.2(2)
C(132)-Si(13)-C(131)	107.17(14)	N(33)-C(32)-Li	60.22(14)
C(133)-Si(13)-Si(1)	113.36(9)	N(31)-C(32)-Li	53.51(14)
C(132)-Si(13)-Si(1)	109.67(9)	N(42)-C(41)-N(41)	106.8(2)
C(131)-Si(13)-Si(1)	112.51(9)	N(42)-C(41)-Li	58.03(16)

Atoms	Angle	Atoms	Angle
P(2) P(3) Si(2)	100.20(3)	$\mathbf{N}(A1) \mathbf{C}(A1) \mathbf{L}_{\mathbf{J}}$	54.07(15)
P(2) P(1) S(1)	100.20(3)	N(41)-C(41)-Li N(22) C(21) N(22)	107.4(2)
P(2)-P(1)-SI(1)	99.10(3)	N(32)-C(31)-N(33)	107.4(2)
P(1)-SI(1)-SI(11)	112.82(3)	N(32)-C(31)-L1	54.70(15)
P(1)-Si(1)-Si(12)	116.39(4)	N(33)-C(31)-L1	58.23(15)
$S_1(11)-S_1(1)-S_1(12)$	106.79(4)	$N(41)-L_1-N(31)$	147.5(2)
P(1)-Si(1)-Si(13)	104.46(3)	N(41)-Li-N(43)	64.49(13)
Si(11)-Si(1)-Si(13)	106.04(3)	N(31)-Li-N(43)	105.88(18)
Si(12)-Si(1)-Si(13)	109.89(3)	N(41)-Li-N(42)	64.30(13)
P(3)-Si(2)-Si(21)	112.76(3)	N(31)-Li-N(42)	141.8(2)
P(3)-Si(2)-Si(22)	111.68(3)	N(43)-Li-N(42)	62.96(13)
Si(21)-Si(2)-Si(22)	109.43(4)	N(41)-Li-N(32)	103.0(2)
P(3)-Si(2)-Si(23)	105.65(3)	N(31)-Li-N(32)	63.42(13)
Si(21)-Si(2)-Si(23)	110.01(3)	N(43)-Li-N(32)	140.2(2)
Si(22)-Si(2)-Si(23)	107.10(3)	N(42)-Li-N(32)	148.6(2)
C(233)-Si(23)- $C(232)$	108 32(16)	N(41)-Li- $N(33)$	139 6(2)
C(233)-Si(23)- $C(231)$	107.43(13)	N(31)-Li- $N(33)$	62 41(12)
C(232)-Si(23)- $C(231)$	108.06(13)	N(43)-Li- $N(33)$	151 2(2)
C(232)- $Si(23)$ - $C(231)$	1100.00(13)	$N(42) \downarrow N(33)$	101.2(2) 108 60(10)
C(233)-SI(23)-SI(2)	110.03(10) 111.28(10)	N(42)-LI- $N(53)N(22)$ L: $N(22)$	106.00(19)
C(232)- $SI(23)$ - $SI(2)$	111.30(10) 111.45(10)	N(32)-Li- $N(33)$	(11.19(12))
C(231)-S1(23)-S1(2)	111.45(10)	N(41)-L1-C(33)	121.0(2)
C(222)-Si(22)-C(223)	107.83(14)	N(31)-L1-C(33)	33.46(10)
C(222)-Si(22)-C(221)	107.63(14)	N(43)-Li-C(33)	118.43(18)
C(223)-Si(22)-C(221)	107.72(13)	N(42)-Li-C(33)	174.7(2)
C(222)-Si(22)-Si(2)	110.69(9)	N(32)-Li-C(33)	33.47(10)
C(223)-Si(22)-Si(2)	110.96(10)	N(33)-Li-C(33)	67.58(13)
C(221)-Si(22)-Si(2)	111.83(10)	N(41)-Li-C(42)	33.77(9)
C(213)-Si(21)-C(211)	107.99(14)	N(31)-Li-C(42)	123.61(19)
C(213)-Si(21)-C(212)	108.44(13)	N(43)-Li-C(42)	33.65(9)
C(211)-Si(21)-C(212)	108.31(12)	N(42)-Li-C(42)	68.73(13)
C(213)-Si(21)-Si(2)	111.19(9)	N(32)-Li-C(42)	117.7(2)
C(211)-Si(21)-Si(2)	109.75(9)	N(33)-Li-C(42)	173.3(2)
C(212)-Si(21)-Si(2)	111.07(10)	C(33)-Li- $C(42)$	115.49(18)
C(122)-Si(12)-C(123)	107 94(18)	N(41)-Li-C(41)	33 61(10)
C(122)-Si(12)- $C(121)$	108 60(14)	N(31)-Li-C(41)	173 8(2)
C(122) Si(12) C(121) C(123) Si(12) C(121)	106.00(14) 106.05(15)	N(31) Li C(41)	68 68(13)
C(123)- $Si(12)$ - $C(121)$	100.93(13) 111.02(10)	$N(42) \downarrow C(41)$	22.51(10)
C(122)-SI(12)-SI(1) C(122) S;(12) S;(1)	111.92(10) 111.08(11)	N(42)-LI-C(41) N(22) L $C(41)$	33.31(10) 122 6(2)
C(123)- $Si(12)$ - $Si(1)$	111.96(11)	N(32)-LI-C(41)	122.0(2)
C(121)-S1(12)-S1(1)	109.28(9)	N(33)-L1-C(41)	120.80(18)
C(111)-S $i(11)$ -C(112)	107.31(15)	C(33)-L1- $C(41)$	151.5(2)
C(111)-S $i(11)$ -C(113)	108.87(17)	C(42)-L1- $C(41)$	53.47(11)
C(112)-Si(11)-C(113)	106.73(17)	N(41)-Li-C(43)	68.76(13)
C(111)-Si(11)-Si(1)	111.90(11)	N(31)-Li-C(43)	121.0(2)
C(112)-Si(11)-Si(1)	111.20(11)	N(43)-Li-C(43)	32.64(9)
C(113)-Si(11)-Si(1)	110.63(11)	N(42)-Li-C(43)	32.70(9)
C(43)-N(43)-C(42)	109.10(19)	N(32)-Li-C(43)	170.5(2)
C(43)-N(43)-C(413)	110.56(19)	N(33)-Li-C(43)	128.0(2)
C(42)-N(43)-C(413)	111.25(18)	C(33)-Li-C(43)	146.84(19)
C(43)-N(43)-Li	91.27(17)	C(42)-Li-C(43)	52.89(11)
C(42)-N(43)-Li	88.18(17)	C(41)-Li-C(43)	52.81(11)
C(413)-N(43)-Li	142.48(18)	N(41)-Li-C(32)	169.3(2)
C(41)-N(41)-C(42)	108.4(2)	N(31)-Li-C(32)	32,75(9)
C(41)-N(41)-C(411)	112.7(2)	N(43)-Li-C(32)	125 69(19)
C(42)-N(41)-C(411)	111.8(2)	N(42)-Li- $C(32)$	121.8(2)
C(41)-N(41)-I	91 41(19)	N(32)-Li-C(32)	67 12(13)
$C(42)_N(41)$ I	90.96(17)	$N(32) = L^{-}C(32)$ $N(33) = L^{-}C(32)$	32 50(9)
$C(+2)^{-1}(+1)^{-1}$ C(A11) N(A1) I;	137.7(2)	C(33) Li $C(32)$	52.50(9) 52 04(11)
$C(+11)^{-1N}(+1)^{-L1}$ C(22) N(21) C(211)	137.7(2) 112 4(2)	C(33)-LI- $C(32)$	32.74(11) 154 12(10)
C(33)-IN(31)-C(311)	112.4(2)	C(42)-LI- $C(32)$	134.13(19)
C(33)- $N(31)$ - $C(32)$	109.5(2)	C(41)-L1- $C(32)$	148.3(2)
C(311)-IN(31)-C(32)	112.0(2)	U(43)-L1-U(32)	121.44(19)
C(33)-N(31)-L1	90.34(18)	N(41)-L1-C(31)	11/.//(19)
C(311)-N(31)-L1	155.5(2)	N(31)-L1-C(31)	0/.12(13)

Atoms	Angle	Atoms	Angle
C(32)-N(31)-Li	93.73(18)	N(43)-Li-C(31)	170.7(2)
C(32)-N(33)-C(31)	109.4(2)	N(42)-Li-C(31)	126.38(19)
C(32)-N(33)-C(331)	111.0(2)	N(32)-Li-C(31)	31.66(9)
C(31)-N(33)-C(331)	111.2(2)	N(33)-Li-C(31)	31.90(9)
C(32)-N(33)-Li	87.28(17)	C(33)-Li-C(31)	52.30(11)
C(31)-N(33)-Li	89.87(18)	C(42)-Li-C(31)	144.8(2)
C(331)-N(33)-Li	143.9(2)	C(41)-Li-C(31)	118.63(17)
C(43)-N(42)-C(41)	109.0(2)	C(43)-Li-C(31)	156.20(19)
C(43)-N(42)-C(412)	110.2(2)	C(32)-Li-C(31)	51.59(11)
C(41)-N(42)-C(412)	111.8(2)	C(06)-C(01)-C(02)	116.3(7)
C(43)-N(42)-Li	91.07(17)	C(06)-C(01)-C(011)	122.9(8)
C(41)-N(42)-Li	88.46(19)	C(02)-C(01)-C(011)	120.8(8)
C(412)-N(42)-Li	142.3(2)	C(03)-C(02)-C(01)	120.0(8)
C(33)-N(32)-C(31)	110.0(2)	C(02)-C(03)-C(04)	124.2(7)
C(33)-N(32)-C(321)	112.4(2)	C(03)-C(04)-C(05)	117.9(7)
C(31)-N(32)-C(321)	110.9(2)	C(06)-C(05)-C(04)	117.5(7)
C(33)-N(32)-Li	87.26(18)	C(05)-C(06)-C(01)	124.0(8)
C(31)-N(32)-Li	93.58(19)	C(0C)-C(07)-C(08)	114.3(12)
C(321)-N(32)-Li	139.2(2)	C(0C)-C(07)-C(071)	122.0(13)
N(43)-C(43)-N(42)	107.0(2)	C(08)-C(07)-C(071)	123.7(13)
N(43)-C(43)-Li	56.09(14)	C(09)-C(08)-C(07)	124.1(17)
N(42)-C(43)-Li	56.24(14)	C(08)-C(09)-C(0A)	118.4(16)
N(43)-C(42)-N(41)	106.97(19)	C(0B)-C(0A)-C(09)	116.3(14)
N(43)-C(42)-Li	58.17(14)	C(0A)-C(0B)-C(0C)	125.5(15)
N(41)-C(42)-Li	55.27(14)	C(0B)-C(0C)-C(07)	120.7(15)
N(31)-C(33)-N(32)	107.2(2)		

7.7 Crystallographic data for Hyp₃P₅Na₂

7.7.1 Crystal data and structure refinement

Empirical formula	$Hyp_3P_5Na_2 \cdot 1/3C_5H_{12}$
Formula weight	967.88
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	monoclinic, P2(1)/n
Unit cell dimensions	a = $45.543(2)$ Å alpha = 90 deg. b = $25.3055(9)$ Å beta = $106.608(3)$ deg c = $48.6244(19)$ Å gamma = 90 deg.
Volume	53701(4) Å ³
Z, Calculated density	36, 1.077 g/cm ³
Absorption coefficient	0.428 mm ⁻¹
F(000)	18792
Theta range for data collection	1.56 to 21.00 deg.
Limiting indices	-45<=h<=0, -25<=k<=0, -43<=1<=48
Reflections collected / unique	55236 / 55236 [R(int) = 0.0000]
Completeness to theta = 21.00	95.8 %
Refinement method	Full-matrix least-squares on $ extsf{F}^2$
Data / restraints / parameters	55236 / 180 / 3929
Goodness-of-fit on F^2	0.688
Final R indices [I>2sigma(I)]	R1 = 0.0722, $wR2 = 0.1602$
R indices (all data)	R1 = 0.1679, wR2 = 0.1830
Largest diff. peak and hole	0.753 and -0.418 e.Å $^{-3}$

Atom	X	V	Z	U(eq)
		J		
SiDA	11090(1)	11581(1)	2393(1)	85(1)
SiDB	10579(1)	11302(2)	2391(2)	120(3)
C(0D1)	10466(4)	11591(10)	2690(4)	248(17)
C(0D2)	10599(5)	10570(7)	2451(6)	288(19)
C(0D3)	10294(3)	11526(7)	2051(4)	114(7)
SiDC	11124(1)	12473(2)	2491(2)	97(2)
C(0D4)	11502(5)	12730(9)	2503(6)	227(12)
C(0D5)	11085(5)	12597(8)	2864(5)	189(10)
C(0D6)	10840(5)	12874(8)	2208(5)	160(10)
SiDD	11142(2)	11380(3)	1948(1)	166(4)
C(0D7)	10870(3)	11741(6)	1633(4)	122(6)
C(0D8)	11531(4)	11709(10)	1946(6)	273(16)
C(0D9)	11160(5)	10729(8)	1871(6)	306(17)
SiDE	10685(4)	11053(8)	2150(5)	150(6)
C(0DA)	10360(10)	11390(20)	1902(13)	180(40)
C(0DB)	10858(8)	10569(13)	1931(8)	39(13)
C(0DC)	10522(16)	10690(20)	2416(13)	200(40)
SiDF	10975(6)	12371(7)	2563(5)	123(6)
C(0DD)	10758(11)	12828(16)	2293(10)	63(19)
C(0DE)	10753(15)	12290(20)	2835(12)	200(40)
C(0DF)	11355(10)	12724(18)	2752(13)	130(20)
SiDG	11375(7)	11770(11)	2067(6)	228(8)
C(0DG)	11752(11)	12140(20)	2216(14)	240(50)
C(0DH)	11137(16)	12280(20)	1804(13)	550(150)
C(0DI)	11431(10)	11225(15)	1878(9)	56(15)
SiPA	7076(1)	3353(1)	1764(1)	86(1)
SiPB	7512(1)	2952(3)	1684(2)	78(2)
C(0P1)	7670(7)	3415(11)	1466(6)	106(16)
C(0P2)	7805(6)	2752(10)	2007(5)	106(11)
C(0P3)	7381(4)	2329(7)	1491(5)	107(8)
SiPC	7277(1)	4021(2)	2128(1)	70(2)
C(0P4)	7575(4)	4445(7)	2033(4)	77(6)
C(0P5)	6955(5)	4493(8)	2125(5)	89(8)
C(0P6)	7440(4)	3720(7)	2484(4)	87(7)
SiPD	6809(1)	2744(2)	1937(2)	85(2)
C(0P7)	6542(5)	2329(8)	1642(5)	73(8)
C(0P8)	7084(4)	2226(7)	2175(4)	93(7)
C(0P9)	6599(5)	3041(9)	2177(5)	89(9)
SiPE	6923(2)	3577(4)	2162(2)	99(4)
C(0PA)	7250(7)	3393(13)	2479(6)	140(15)
C(0PB)	6863(7)	4296(10)	2147(8)	98(13)
C(0PC)	6572(6)	3254(12)	2183(8)	97(15)
SiPF	7571(2)	3389(5)	1816(3)	110(4)
C(0PD)	7694(8)	3299(15)	1480(6)	58(15)
C(0PE)	7821(8)	2921(13)	2086(8)	116(17)
C(0PF)	7679(7)	4086(10)	1954(8)	149(16)
SiPG	6877(3)	2417(3)	1658(3)	116(4)
C(0PG)	6447(5)	2411(15)	1590(11)	150(30)
C(0PH)	7053(6)	1969(10)	1978(6)	108(12)
C(0PI)	6999(8)	2163(12)	1353(7)	155(16)
SiWA	8092(1)	10019(1)	1632(1)	94(1)
SiWB	8314(1)	9199(2)	1850(2)	88(2)
C(0W1)	8102(6)	8631(9)	1647(7)	116(15)

7.7.2 Atomic coordinates (x 10^4), equivalent isotropic displacement parameters (Å ² x 10^3). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom	v	X 7	7	U(og)
	X 9717(4)	y 0160(8)	L 1921(5)	122(8)
C(0W2)	$\frac{8}{1}$	9100(8)	1051(5)	122(8)
C(0W3)	8275(4)	910/(/)	2212(4)	95(7)
SIWC	8381(2)	10/10(3)	1888(2)	103(2)
C(0W4)	8571(6)	10613(10)	22/4(5)	130(9)
C(0W5)	8117(5)	11305(7)	1868(5)	136(9)
C(0W6)	8679(6)	10914(10)	1713(6)	117(8)
SiWD	7593(2)	10051(3)	1653(2)	116(3)
C(0W7)	7412(6)	10749(10)	1516(6)	124(11)
C(0W8)	7559(7)	9984(12)	2018(6)	197(12)
C(0W9)	7378(7)	9428(12)	1455(7)	184(13)
SiWE	8566(2)	10247(5)	1934(2)	123(4)
C(0WA)	8825(7)	9661(11)	1979(8)	139(10)
C(0WB)	8751(8)	10783(12)	1781(9)	111(9)
C(0WC)	8577(8)	10356(15)	2308(6)	136(11)
SiWF	7709(3)	10643(5)	1694(3)	137(4)
C(0WD)	7645(9)	10562(16)	2053(7)	197(14)
C(0WE)	7838(9)	11334(10)	1646(10)	200(20)
C(0WF)	7332(5)	10552(12)	1418(6)	78(11)
SiWG	7910(7)	9214(5)	1735(4)	338(6)
C(0WG)	7860(30)	9220(30)	2126(12)	2000(600)
C(0WH)	7526(10)	9090(20)	1490(13)	290(40)
C(0WI)	8148(14)	8626(18)	1644(19)	310(70)
P(1J)	7009(1)	5281(1)	789(1)	66(1)
P(4E)	12225(1)	9704(1)	2836(1)	62(1)
P(1I)	6391(1)	3787(1)	1396(1)	77(1)
P(4D)	11571(1)	8925(1)	2677(1)	63(1)
P(4C)	12033(1)	8938(1)	2633(1)	66(1)
P(9E)	9566(1)	4586(1)	153(1)	70(1)
P(3C)	11280(1)	11147(1)	3067(1)	69(1)
P(9D)	10208(1)	3801(1)	364(1)	71(1)
P(3E)	12108(1)	11201(1)	3412(1)	73(1)
P(2E)	5023(1)	1091(1)	2448(1)	64(1)
P(1H)	6180(1)	4540(1)	1188(1)	70(1)
P(1G)	6922(1)	6025(1)	1355(1)	73(1)
P(4B)	12378(1)	8949(1)	3069(1)	70(1)
P(1F)	6775(1)	6009(1)	572(1)	74(1)
P(2D)	4675(1)	1097(1)	2006(1)	67(1)
P(2C)	4829(1)	339(1)	2234(1)	60(1)
P(1D)	6314(1)	6003(1)	619(1)	70(1)
P(1C)	6294(1)	3773(1)	626(1)	74(1)
P(5E)	5772(1)	-1104(1)	2091(1)	72(1)
P(1B)	7130(1)	6065(1)	1001(1)	76(1)
P(5D)	4979(1)	-1097(1)	1631(1)	71(1)
P(2B)	5493(1)	1121(1)	2420(1)	66(1)
P(2A)	4906(1)	1131(1)	1672(1)	65(1)
P(1E)	6855(1)	3795(1)	1359(1)	69(1)
P(5C)	5647(1)	-340(1)	1856(1)	65(1)
P(5B)	5459(1)	-1093(1)	1637(1)	69(1)
P(3B)	11454(1)	10404(1)	3297(1)	64(1)
P(3D)	11467(1)	11125(1)	2701(1)	72(1)
Si(4A)	7412(1)	5121(1)	608(1)	69(1)
P(5A)	5510(1)	-1121(1)	2405(1)	72(1)
P(3A)	11656(1)	11173(1)	3482(1)	69(1)
Si(9A)	5688(1)	1675(1)	2793(1)	67(1)
P(4A)	12158(1)	8926(1)	3411(1)	70(1)
P(9C)	9744(1)	3946(1)	-422(1)	74(1)
SiHA	12634(1)	9888(1)	2671(1)	72(1)
SiNA	6076(1)	-166(1)	1718(1)	71(1)
SiIA	9107(1)	4724(1)	248(1)	82(1)
P(1A)	6055(1)	3774(1)	956(1)	76(1)
Si(7B)	7298(1)	4277(1)	408(1)	81(1)

Alom x y z U(eq) SiQA 7175(1) 6681(1) 1634(1) 82(1) SiZA 839(1) 8188(1) 417(1) 76(1) P(BB) 9719(1) 3781(1) 314(1) 82(1) SiCA 1115(1) 10209(1) 3584(1) 71(1) P(BD) 2510(1) 10675(1) 2405(1) 84(1) P(GD) 8505(1) 9059(1) 461(1) 77(1) SiRA 6092(1) 6472(1) 220(1) 84(1) P(BD) 8135(1) 8017(1) 645(1) 83(1) P(SC) 7258(1) 940(1) 21(1) 82(1) SiFA 1136(1) 8421(1) 2291(1) 66(1) SiKA 513(1) 1586(1) 1334(1) 76(1) SiKA 513(1) 1586(1) 1334(1) 76(1) SiKA 513(1) 1342(1) 72(1) 86(1) SiKA 513(1) 1334(1) 75(1) 53(1) </th <th>A .</th> <th></th> <th></th> <th></th> <th></th>	A .				
SiQA 717(1) 6681(1) 1634(1) 82(1) SiZA 839(1) 818(1) 417(1) 76(1) P(B) 9719(1) 3781(1) 314(1) 82(1) SiCA 11151(1) 10209(1) 3584(1) 71(1) P(B) 8098(1) 925(1) 1172(1) 86(1) SiHD 12510(1) 10675(1) 2405(1) 84(1) P(G) 905(1) 917(1) 64(1) 77(1) SiRA 6092(1) 917(1) 64(1) 83(1) P(GC) 905(1) 9147(1) 220(1) 86(1) SiFA 135(1) 1669(1) 234(1) 80(1) SiGA 12467(1) 832(1) 151(1) 80(1) SiKA 5813(1) 156(1) 1339(1) 68(1) SiKA 5813(1) 156(1) 1339(1) 68(1) SiKA 5813(1) 1513(1) 271(1) 83(1) SiKA 5814(1) 153(1) 124(1) <t< th=""><th>Atom</th><th>X</th><th>у</th><th>Z</th><th>U(eq)</th></t<>	Atom	X	у	Z	U(eq)
SiZA 8391(1) 8188(1) 417(1) 76(1) SiCA 11151(1) 10209(1) 3584(1) 71(1) SiCA 11151(1) 10209(1) 3584(1) 71(1) SiCA 11151(1) 1075(1) 2405(1) 84(1) SiHD 12510(1) 10675(1) 2405(1) 84(1) SiRA 6092(1) 6472(1) 220(1) 84(1) SiRA 6092(1) 6472(1) 220(1) 84(1) P(8D) 8135(1) 940(1) 417(1) 83(1) SiFA 1136(1) 842(1) 2291(1) 67(1) SiFA 1136(1) 842(1) 237(1) 86(1) SiFA 513(1) 158(6) 1339(1) 68(1) SiKA 5813(1) 1669(1) 2734(1) 80(1) SiKA 4531(1) 158(1) 157(1) 83(1) SiKA 463(1) 124(1) 242(1) 83(1) SiKA 463(1) 125(1) 243(1)	SiQA	7175(1)	6681(1)	1634(1)	82(1)
P(9B) 9719(1) 3781(1) 314(1) 82(1) SICA 11151(1) 10290(1) 3584(1) 7(1) P(8E) 8098(1) 9925(1) 1172(1) 86(1) P(6D) 8505(1) 9059(1) 440(1) 77(1) SIRA 6092(1) 6472(1) 220(1) 84(1) P(6D) 9055(1) 917(1) 517(1) 86(1) P(8C) 9052(1) 9140(1) 421(1) 82(1) SIGA 11361(1) 8421(1) 2291(1) 69(1) SIGA 1236(1) 4488(1) 1344(1) 75(1) SIGA 513(1) 1571(1) 83(1) 518(1) SIKA 581(1) 5513(1) 1571(1) 83(1) SIKA 9608(1) 9712(1) 96(1) 77(1) SIKA 4402(1) 158(1) 173(1) 83(1) SIKA 4403(1) 158(1) 171(1) 83(1) SIKA 4403(1) 171(1) 83(1)	SiZA	8391(1)	8188(1)	417(1)	76(1)
SiCA 11151(1) 10209(1) 3584(1) 71(1) NRE 8098(1) 922(1) 1172(1) 86(1) SiHD 12510(1) 10675(1) 2405(1) 84(1) P(6D) 8305(1) 0677(1) 220(1) 84(1) P(8D) 8135(1) 10817(1) 615(1) 83(1) P(8C) 7528(1) 9940(1) 421(1) 82(1) SiFA 1136(1) 842(1) 2291(1) 69(1) SiGA 12467(1) 8332(1) 3705(1) 76(1) SiKA 5813(1) -1669(1) 2734(1) 80(1) SiKA 4531(1) 1538(1) 171(1) 83(1) SiKA 9608(1) 9712(1) 964(1) 92(1) SiKA 9608(1) 9712(1) 2461(1) 77(1) SiAC 4822(1) 112(1) 2432(1) 83(1) SiAA 4822(1) 112(1) 243(1) 83(1) SiAC 4092(1) 812(1) 245(1)<	P(9B)	9719(1)	3781(1)	314(1)	82(1)
PR8E) 8098(1) 9925(1) 1172(1) 86(1) PGDD 3505(1) 9059(1) 4461(1) 77(1) SIRA 6092(1) 6472(1) 220(1) 84(1) PRDD 8135(1) 10817(1) 645(1) 83(1) PR6C 9005(1) 9117(1) 517(1) 86(1) PR6C 7528(1) 9440(1) 421(1) 82(1) SIGA 11361(1) 8421(1) 2291(1) 69(1) SIGA 1236(1) 4669(1) 1344(1) 75(1) SIKA 5813(1) 1669(1) 2734(1) 80(1) SIKA 5813(1) 1585(1) 1339(1) 68(1) SIKA 4551(1) 1586(1) 1237(1) 82(1) SIKA 4622(1) -1633(1) 1249(1) 77(1) SIAC 4092(1) 812(1) 242(1) 84(1) SIMA 463(1) 155(1) 2445(1) 84(1) SIAC 4092(1) 1633(1) 2492(1) </td <td>SiCA</td> <td>11151(1)</td> <td>10209(1)</td> <td>3584(1)</td> <td>71(1)</td>	SiCA	11151(1)	10209(1)	3584(1)	71(1)
SHD 12510(1) 10075(1) 2405(1) 84(1) P(6D) 8505(1) 907(1) 220(1) 84(1) SIRA 6092(1) 6472(1) 220(1) 84(1) P(8D) 8135(1) 10817(1) 617(1) 83(1) P(8C) 7528(1) 9940(1) 421(1) 82(1) SIFA 1136(1) 8421(1) 2291(1) 66(1) SIGA 12467(1) 8332(1) 3705(1) 76(1) SIKA 5813(1) -1669(1) 2734(1) 80(1) SIKA 5813(1) 1556(1) 1334(1) 83(1) YA 9608(1) 9712(1) 964(1) 92(1) SIAC 4822(1) -1633(1) 1249(1) 77(1) SIAC 4822(1) -1633(1) 1249(1) 86(1) P(6A) 9123(1) 9904(1) 706(1) 85(1) SIAC 4292(1) 812(1) 2375(1) 83(1) SIAC 4293(1) 7907(1) 84(1)	P(8E)	8098(1)	9925(1)	1172(1)	86(1)
Pi6D 8505(1) 9059(1) 461(1) 77(1) SIRA 6092(1) 6472(1) 220(1) 84(1) P(8D) 8135(1) 10817(1) 645(1) 83(1) P(8C) 7528(1) 9940(1) 421(1) 82(1) SIFA 11361(1) 8421(1) 2291(1) 69(1) SIGA 12367(1) 8332(1) 3705(1) 76(1) SIGA 5758(1) 4886(1) 1344(1) 75(1) SIKA 5813(1) 156(1) 1339(1) 68(1) SIKA 5813(1) 1571(1) 83(1) SIKA 4851(1) 158(1) 1271(1) 84(1) SIKA 9608(1) 9712(1) 964(1) 92(1) SILA 4822(1) -163(1) 1249(1) 77(1) SIAC 4092(1) 812(1) 237(1) 83(1) SIAC 4052(1) 753(1) 1243(1) 84(1) SIAC 4052(1) 771(1) 53(1) 146(1)	SiHD	12510(1)	10675(1)	2405(1)	84(1)
SiRA 6092(1) 6472(1) 220(1) 84(1) P(8D) 8135(1) 10817(1) 645(1) 83(1) P(6C) 9005(1) 9117(1) 517(1) 86(1) P(8C) 7528(1) 9940(1) 421(1) 82(1) SiFA 1136(1) 842(1) 2291(1) 69(1) SiGA 12467(1) 8332(1) 3705(1) 76(1) SiKA 5813(1) -1669(1) 2734(1) 80(1) SiKA 4551(1) 1586(1) 1339(1) 66(1) YiKA 9060(1) 912(1) 944(1) 92(1) SiLA 4822(1) -1633(1) 1249(1) 77(1) SiAC 4902(1) 812(1) 2423(1) 86(1) SiAC 4463(1) 155(1) 2417(1) 87(1) SiAA 4463(1) 155(1) 245(1) 82(1) SiGD 12138(1) 175(1) 284(1) 83(1) SiGD 12138(1) 175(1) 284(1) <td>P(6D)</td> <td>8505(1)</td> <td>9059(1)</td> <td>461(1)</td> <td>77(1)</td>	P(6D)	8505(1)	9059(1)	461(1)	77(1)
P(8D) 8135(1) 10817(1) 645(1) 83(1) P(6C) 9005(1) 9117(1) 517(1) 86(1) P(8C) 7528(1) 9940(1) 421(1) 82(1) SiFA 1136(1) 8421(1) 2391(1) 69(1) SiFA 5758(1) 4686(1) 1344(1) 75(1) SiKA S133(1) -1669(1) 2734(1) 80(1) SiKA S131(1) 156(1) 1339(1) 68(1) SiKA \$851(1) 5131(1) 1249(1) 77(1) SiKA 9068(1) 9712(1) 964(1) 22(1) SiLA 4822(1) -1633(1) 1249(1) 77(1) SiAC 4092(1) 812(1) 243(1) 83(1) SiMD 6204(1) -798(2) 1417(1) 87(1) SiAA 4463(1) 155(1) 245(1) 68(1) SiGD 5341(1) 297(1) 2882(1) 84(1) SiGD 5341(1) 297(1) 946(1) <td>SiRA</td> <td>6092(1)</td> <td>6472(1)</td> <td>220(1)</td> <td>84(1)</td>	SiRA	6092(1)	6472(1)	220(1)	84(1)
Pf6C) 9005(1) 9117(1) 517(1) 86(1) Pf8C) 7258(1) 9940(1) 421(1) 82(1) SiFA 1136(1) 8421(1) 2291(1) 67(1) SiGA 12467(1) 8332(1) 3705(1) 76(1) SiKA 5813(1) -1669(1) 2734(1) 80(1) SiKA 4813(1) -1669(1) 2734(1) 86(1) Pf6B) 8670(1) 9188(1) 77(1) 82(1) SiTE 5851(1) 5513(1) 157(1) 83(1) SiAC 4902(1) 912(1) 242(1) 76(1) SiAC 4902(1) 912(1) 242(1) 86(1) SiAA 4822(1) -1633(1) 245(1) 83(1) SiAA 4463(1) 155(1) 245(1) 83(1) SiAA 4463(1) 155(1) 245(1) 84(1) SiGD 12138(1) 7882(1) 392(1) 84(1) SiGD 5454(1) 10005(1) -46(1)	P(8D)	8135(1)	10817(1)	645(1)	83(1)
P(8C) 7528(1) 9940(1) 421(1) 829(1) SiFA 1136(1(1) 8421(1) 239(1) 76(1) SiTA 5758(1) 4686(1) 1344(1) 75(1) SiKA 5813(1) -1669(1) 2734(1) 80(1) SiKA 5813(1) -1669(1) 2734(1) 80(1) SiKA 5815(1) 5513(1) 177(1) 82(1) SiXA 9608(1) 9712(1) 964(1) 92(1) SiAC 4092(1) 812(1) 2423(1) 86(1) SiAC 4092(1) 812(1) 2423(1) 86(1) SiAC 4092(1) 812(1) 243(1) 87(1) SiAA 4463(1) 155(1) 2451(1) 83(1) SiAA 4463(1) 155(1) 2451(1) 84(1) SiGD 12138(1) 7852(1) 3758(1) 82(1) SiGD 12138(1) 7852(1) 3758(1) 82(1) SiGD 564(1) 4082(2) 1677(1)<	P(6C)	9005(1)	9117(1)	517(1)	86(1)
SiFA 11361(1) 8421(1) 2291(1) 69(1) SiGA 12467(1) 8332(1) 3705(1) 76(1) SiKA 5813(1) -1669(1) 2734(1) 80(1) SiKA 5813(1) -1669(1) 2734(1) 80(1) SiKA 4551(1) 1586(1) 1339(1) 68(1) P6B 8670(1) 9188(1) 77(1) 82(1) SiTE 5851(1) 5513(1) 1571(1) 83(1) SiXA 4822(1) -1633(1) 1249(1) 77(1) SiAC 4092(1) 812(1) 2423(1) 86(1) P66A) 9123(1) 9904(1) 706(1) 85(1) SiAA 443(1) 155(1) 245(1) 68(1) SiGD 12138(1) 7832(1) 3922(1) 84(1) SiGD 564(1) 10745(1) 583(1) 84(1) SiGD 5644(1) 4082(2) 1677(1) 95(1) SiGD 5644(1) 4082(2) 1677(1)	P(8C)	7528(1)	9940(1)	421(1)	82(1)
SiGA 12467(1) 8332(1) 3705(1) 76(1) SiTA 5758(1) 4686(1) 1344(1) 75(1) SiKA 5813(1) -1669(1) 2734(1) 80(1) SiKA 5813(1) 156(1) 1339(1) 68(1) SiKA 9608(1) 9712(1) 964(1) 92(1) SiLA 4822(1) -1633(1) 1249(1) 77(1) SiAC 4092(1) 812(1) 2423(1) 86(1) F(6A) 9123(1) 9904(1) 706(1) 85(1) SiAC 4092(1) 812(1) 243(1) 83(1) SiAA 4463(1) 155(1) 245(1) 83(1) SiGD 12138(1) 7882(1) 392(1) 84(1) SiGD 12138(1) 7882(1) 375(1) 82(1) SiGD 12138(1) 7882(1) 375(1) 82(1) SiGD 12138(1) 735(1) 82(1) 83(1) SiGD 12138(1) 10005(1) 548(1) <td>SiFA</td> <td>11361(1)</td> <td>8421(1)</td> <td>2291(1)</td> <td>69(1)</td>	SiFA	11361(1)	8421(1)	2291(1)	69(1)
SiTA 5758(1) 4686(1) 1344(1) 75(1) SiKA Sil3(1) -1669(1) 2734(1) 80(1) Si(8A) 4551(1) 1586(1) 1339(1) 68(1) P(6B) 8670(1) 9188(1) 77(1) 82(1) SiTE 5851(1) 5513(1) 1571(1) 83(1) SiYA 9608(1) 9712(1) 964(1) 92(1) SiAC 4092(1) 812(1) 2423(1) 86(1) P(6A) 9123(1) 9904(1) 706(1) 85(1) SiND 6204(1) -798(2) 1417(1) 87(1) SiAA 4463(1) 155(1) 2451(1) 68(1) SiGD 12138(1) 7882(1) 3922(1) 88(1) P(6E) 8548(1) 10005(1) -46(1) 85(1) SiFD 5664(1) 4082(2) 1677(1) 91(1) SiKA 12328(1) 11795(1) 3758(1) 82(1) SiTD 5664(1) 4082(2) 56	SiGA	12467(1)	8332(1)	3705(1)	76(1)
SiKA 5813(1) -1669(1) 2734(1) 80(1) SiKA 4551(1) 1586(1) 1339(1) 68(1) SiTE 587(1) 9188(1) 77(1) 82(1) SiTE 5851(1) 513(1) 1571(1) 83(1) SiXA 9608(1) 9712(1) 964(1) 92(1) SiAC 4092(1) 812(1) 2423(1) 86(1) P(6A) 9123(1) 9904(1) 706(1) 85(1) SiND 6204(1) -798(2) 1417(1) 87(1) SiAC 4463(1) 155(1) 2451(1) 68(1) SiGD 12138(1) 782(1) 382(1) 83(1) SiGD 12138(1) 10745(1) 583(1) 84(1) SiGD 5341(1) 2297(1) 2882(1) 82(1) SiGD 5341(1) 2297(1) 2882(1) 82(1) SiTC 5962(1) 638(1) 46(1) 81(1) SiLA 1232(1) 1465(1) 83(1)	SiTA	5758(1)	4686(1)	1344(1)	75(1)
Si(8A) 4551(1) 1586(1) 1339(1) 68(1) P(6B) 8670(1) 9188(1) 77(1) 83(1) SiTE 5851(1) 5513(1) 1571(1) 83(1) SiYA 9608(1) 9712(1) 964(1) 92(1) SiAA 4822(1) -1633(1) 1249(1) 77(1) SiAC 4092(1) 812(1) 2433(1) 86(1) P(6A) 9123(1) 9904(1) 706(1) 85(1) SiND 6204(1) -798(2) 1417(1) 87(1) SiAA 4463(1) 155(1) 2451(1) 68(1) SiGD 12138(1) 7882(1) 3922(1) 88(1) YGBD 7635(1) 10745(1) 583(1) 82(1) SiGD 12138(1) 1005(1) -46(1) 82(1) SiGD 564(1) 4082(2) 1677(1) 95(1) SiTD 5664(1) 4082(2) 1677(1) 93(1) SiLA 8199(1) 11696(1) 577(1	SiKA	5813(1)	-1669(1)	2734(1)	80(1)
P(6B) 8670(1) 9188(1) 77(1) 82(1) STE 5851(1) 5513(1) 1571(1) 83(1) SiYA 9608(1) 9712(1) 964(1) 92(1) SiLA 4822(1) -1633(1) 1249(1) 77(1) SiAC 4092(1) 812(1) 2423(1) 86(1) P(6A) 9123(1) 9904(1) 706(1) 85(1) SiND 6204(1) -798(2) 1417(1) 87(1) SiAA 4463(1) 155(1) 245(1) 83(1) SiGD 12138(1) 7882(1) 3922(1) 88(1) SiGD 1238(1) 1005(1) 46(1) 85(1) SiGD 5341(1) 2297(1) 2882(1) 82(1) SiGD 5344(1) 10005(1) 46(1) 85(1) SiTD 5664(1) 4082(2) 1677(1) 91(1) Na(1) 6292(1) 638(1) 1465(1) 83(1) SiLQ 569(1) 977(1) 91(1)	Si(8A)	4551(1)	1586(1)	1339(1)	68(1)
SiTE S81(1) 5513(1) 1571(1) 83(1) SiYA 9608(1) 9712(1) 964(1) 92(1) SiLA 4822(1) -1633(1) 1249(1) 77(1) SiAC 4092(1) 812(1) 2423(1) 86(1) P(6A) 9123(1) 9904(1) 706(1) 85(1) SiND 6204(1) -798(2) 1417(1) 87(1) SiAA 4463(1) 155(1) 245(1) 68(1) SiGD 12138(1) 7882(1) 3922(1) 88(1) P(8B) 7635(1) 10745(1) 583(1) 84(1) SiGD 12138(1) 1292(1) 2882(1) 82(1) SiGD 544(1) 10005(1) -46(1) 82(1) SiEA 12328(1) 11795(1) 375(1) 82(1) SiEA 12328(1) 11696(1) 597(1) 91(1) SiLA 8199(1) 16696(1) 597(1) 91(1) SiCD 5962(1) 638(1) 1465(1	P(6B)	8670(1)	9188(1)	77(1)	82(1)
SiYA9608(1)9712(1)964(1)92(1)SiLA4822(1)-1633(1)1249(1)77(1)SiAC4092(1)812(1)2423(1)86(1)P(6A)9123(1)9904(1)706(1)87(1)SiND6204(1)-798(2)1417(1)87(1)SiHC12753(1)9234(1)2375(1)83(1)SiAA4463(1)155(1)2451(1)88(1)SiGD12138(1)7882(1)3922(1)88(1)SiGD5341(1)2297(1)2882(1)82(1)SiPD564(1)10005(1)-46(1)85(1)SiEA12328(1)11795(1)3758(1)82(1)SiEA12328(1)11795(1)3758(1)82(1)SiTD5664(1)4082(2)618(1)93(2)SiUA8199(1)11696(1)597(1)91(1)Na(1)6292(1)4888(2)618(1)93(1)SiKC5962(1)638(1)1465(1)83(1)SiCC903(1)5428(2)569(1)97(1)P(9A)9447(1)3128(2)166(1)78(1)SiKA6025(1)118(2)1656(1)78(1)SiKD6162(1)-1210(2)3115(1)93(1)Na(16)11533(1)10029(2)2703(1)80(1)Na(2)4973(1)18(2)1656(1)78(1)SiKB6470(1)46(1)2142(1)84(1)Na(16)1153(1)10053(2)3094(1)83(1)SiKB<	SiTE	5851(1)	5513(1)	1571(1)	83(1)
SiLA 482(1) -1633(1) 1249(1) 77(1) SiAC 4092(1) 812(1) 2423(1) 86(1) P(6A) 9123(1) 9904(1) 706(1) 85(1) SiND 6204(1) -798(2) 1417(1) 87(1) SiHC 12753(1) 9234(1) 2375(1) 83(1) SiAA 4463(1) 155(1) 2451(1) 66(1) SiGD 12138(1) 7882(1) 3922(1) 82(1) SiGD 5341(1) 2297(1) 2882(1) 82(1) SiEA 12328(1) 11795(1) 3758(1) 82(1) SiEA 12328(1) 11795(1) 3758(1) 82(1) SiTD 5664(1) 4082(2) 1677(1) 95(1) SiTD 5664(1) 4082(2) 569(1) 93(2) SiNC 5962(1) 638(1) 1465(1) 83(1) SiTD 5664(1) 488(2) 618(1) 93(2) SiNC 5962(1) 638(1) 144(1)	SiYA	9608(1)	9712(1)	964(1)	92(1)
SiAC 4092(1) 812(1) 2423(1) 86(1) P(6A) 9123(1) 9904(1) 706(1) 85(1) SiND 6204(1) -798(2) 1417(1) 87(1) SiHC 12753(1) 9234(1) 2375(1) 83(1) SiAA 4463(1) 155(1) 2451(1) 68(1) SiGD 12138(1) 7882(1) 3922(1) 88(1) SiGD 5341(1) 2297(1) 2882(1) 82(1) SiPD 5341(1) 1005(1) -46(1) 85(1) SiEA 12328(1) 11795(1) 3758(1) 82(1) SiTD 5664(1) 4082(2) 6177(1) 95(1) SiUA 8199(1) 11696(1) 597(1) 91(1) Na(1) 6292(1) 638(1) 1465(1) 83(1) SiLO 5962(1) 638(1) 1465(1) 83(1) SiLO 1078(1) 10830(1) 3635(1) 91(1) SiSA 6025(1) 3128(2) 366(SiLA	4822(1)	-1633(1)	1249(1)	77(1)
P(6A)9123(1)9904(1)706(1)85(1)SiND6204(1)-798(2)1417(1)87(1)SiAC12753(1)9234(1)2375(1)83(1)SiAA4463(1)155(1)2451(1)68(1)SiGD12138(1)7882(1)3922(1)88(1)P(8B)7635(1)10745(1)583(1)84(1)Si(POD)5341(1)2297(1)2882(1)82(1)P(6E)8548(1)10005(1)-46(1)85(1)SiEA12328(1)11795(1)3758(1)82(1)SiTD5664(1)4082(2)1677(1)91(1)Na(1)6292(1)4888(2)618(1)93(2)SiNC595(2)638(1)1465(1)83(1)SiIC9203(1)5428(2)569(1)97(1)P(9A)9447(1)3892(1)-144(1)81(1)SiSA6025(1)3128(2)342(1)90(1)SiCD10788(1)10029(2)2703(1)80(1)Na(16)11533(1)10029(2)2703(1)80(1)Na(2)4973(1)18(2)1656(1)78(1)SiJA9460(1)3506(1)-810(1)86(1)SiA6470(1)-46(1)2142(1)84(1)SiGB12844(1)8751(1)91(2)81(1)SiA9450(1)315(1)91(2)81(1)SiA9400(1)3506(1)-810(1)86(1)SiA9400(1)315(1)90(1)81(1)SiA940	SiAC	4092(1)	812(1)	2423(1)	86(1)
SiND 6204(1) -798(2) 1417(1) 87(1) SiHA 12753(1) 9234(1) 2375(1) 83(1) SiAA 4463(1) 155(1) 2451(1) 68(1) SiGD 12138(1) 7882(1) 3922(1) 88(1) P(BB) 7635(1) 10745(1) 583(1) 84(1) Si(PD) 534(1) 10005(1) -46(1) 85(1) SiEA 12328(1) 11795(1) 3758(1) 82(1) SiTD 5664(1) 4082(2) 1677(1) 91(1) Na(1) 6292(1) 4888(2) 618(1) 93(2) SiNC 596(2) 658(1) 1465(1) 83(1) SiKC 9203(1) 5428(2) 569(1) 97(1) P(9A) 9447(1) 3892(1) -144(1) 81(1) SiSA 6025(1) 3128(2) 342(1) 90(1) SiKD 6162(1) -1210(2) 3115(1) 93(1) SiKD 6162(1) -1210(2) 3	P(6A)	9123(1)	9904(1)	706(1)	85(1)
SiHC 12753(1) 9234(1) 2375(1) 83(1) SiAA 4463(1) 155(1) 2451(1) 68(1) SiGD 12138(1) 7882(1) 3922(1) 88(1) P(BB) 7635(1) 10745(1) 583(1) 84(1) SiGD 534(1) 2297(1) 2882(1) 82(1) P(6E) 8548(1) 10005(1) 46(1) 85(1) SiEA 12328(1) 11795(1) 3758(1) 82(1) SiTD 5664(1) 4082(2) 1677(1) 95(1) SiUA 8199(1) 11696(1) 597(1) 91(1) Na(1) 6292(1) 4888(2) 618(1) 93(2) SiNC 5962(1) 538(1) 1465(1) 83(1) SiCD 9203(1) 5428(2) 569(1) 97(1) SiAG 6025(1) 3128(2) 3635(1) 93(1) SiKD 6162(1) -1210(2) 3115(1) 93(1) Na(16) 11533(1) 10029(2) <td< td=""><td>SiND</td><td>6204(1)</td><td>-798(2)</td><td>1417(1)</td><td>87(1)</td></td<>	SiND	6204(1)	-798(2)	1417(1)	87(1)
SiAA4463(1)155(1)2451(1)68(1)SiGD12138(1)7882(1)3922(1)88(1)SiGD12138(1)1795(1)S35(1)84(1)Si(9D)5341(1)2297(1)2882(1)82(1)P(6E)8548(1)10005(1)-46(1)85(1)SiEA12328(1)11795(1)3758(1)82(1)SiTD5664(1)4082(2)1677(1)95(1)SiUA8199(1)11696(1)597(1)91(1)Na(1)6292(1)4888(2)618(1)93(2)SiNC5962(1)638(1)1465(1)83(1)SiC9203(1)5428(2)569(1)97(1)SiSA6025(1)3128(2)342(1)90(1)SiCD10788(1)10830(1)3635(1)93(1)SiKD6162(1)-1210(2)3115(1)93(1)Na(16)11533(1)10029(2)2703(1)80(1)Na(2)4973(1)18(2)1656(1)78(1)SiNB6470(1)-46(1)2142(1)84(1)Na(13)6895(1)4906(2)1355(1)91(2)SiHB1303(1)10053(2)3094(1)83(1)SiGC7470(1)5691(2)249(1)90(1)SiGB12844(1)8751(1)4080(1)87(1)SiGB12844(1)8751(1)4080(1)87(1)SiGB12844(1)8750(2)485(1)96(1)SiGB12844(1)3252(2)656(1)97(1)SiG	SiHC	12753(1)	9234(1)	2375(1)	83(1)
SiGD 12138(1) 7882(1) 3922(1) 88(1) P(8B) 7635(1) 10745(1) 583(1) 84(1) Si(9D) 5341(1) 2297(1) 2882(1) 82(1) P(6E) 8548(1) 10005(1) -46(1) 85(1) SiEA 12328(1) 11795(1) 3758(1) 82(1) SiTD 5664(1) 4082(2) 1677(1) 95(1) SiUA 8199(1) 11696(1) 597(1) 91(1) Na(1) 6292(1) 638(1) 1465(1) 83(1) SiNC 592(2) 569(1) 97(1) 91(1) Na(1) 6292(1) 3128(2) 342(1) 91(1) SiSA 6025(1) 3128(2) 342(1) 90(1) SiCD 10788(1) 10830(1) 3635(1) 93(1) Na(2) 4973(1) 18(2) 1565(1) 78(1) SiMD 6162(1) -1210(2) 3115(1) 940(1) SiMA 9460(1) 3506(1)	SiAA	4463(1)	155(1)	2451(1)	68(1)
P(8B) 7635(1) 10745(1) 583(1) 84(1) Si(9D) 5341(1) 2297(1) 2882(1) 82(1) P(6E) 8548(1) 10005(1) -46(1) 85(1) SiEA 12328(1) 11795(1) 3758(1) 82(1) SiTD 5664(1) 4082(2) 1677(1) 95(1) SiUA 8199(1) 1468(1) 597(1) 91(1) Na(1) 6292(1) 4888(2) 618(1) 93(2) SiNC 5962(1) 638(1) 1465(1) 83(1) SiAC 9203(1) 5428(2) 569(1) 97(1) SiSA 6025(1) 3128(2) 342(1) 90(1) SiCD 10788(1) 10830(1) 3635(1) 93(1) SiKD 6162(1) -1210(2) 3115(1) 93(1) Na(2) 4973(1) 18(2) 1656(1) 78(1) SiAA 9460(1) 3506(1) +810(1) 84(1) Na(13) 6895(1) 4906(2) <td< td=""><td>SiGD</td><td>12138(1)</td><td>7882(1)</td><td>3922(1)</td><td>88(1)</td></td<>	SiGD	12138(1)	7882(1)	3922(1)	88(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(8B)	7635(1)	10745(1)	583(1)	84(1)
P(6E) $8548(1)$ $10005(1)$ $-46(1)$ $85(1)$ SIEA $12328(1)$ $11795(1)$ $3758(1)$ $82(1)$ SiTD $5664(1)$ $4082(2)$ $1677(1)$ $91(1)$ Na(1) $6292(1)$ $4888(2)$ $618(1)$ $93(2)$ SiNC $5962(1)$ $638(1)$ $1465(1)$ $83(1)$ SiIC $9203(1)$ $5428(2)$ $569(1)$ $97(1)$ P(9A) $9447(1)$ $3892(1)$ $-144(1)$ $81(1)$ SiSA $6025(1)$ $3128(2)$ $342(1)$ $90(1)$ SiCD $10788(1)$ $10830(1)$ $3635(1)$ $93(1)$ SiKD $6162(1)$ $-1210(2)$ $3115(1)$ $93(1)$ Na(16) $11533(1)$ $10029(2)$ $2703(1)$ $80(1)$ Na(2) $4973(1)$ $18(2)$ $1656(1)$ $78(1)$ SiNB $6470(1)$ $-46(1)$ $2142(1)$ $84(1)$ Na(13) $6895(1)$ $4906(2)$ $1355(1)$ $91(2)$ SiHB $13033(1)$ $10053(2)$ $3094(1)$ $83(1)$ SiGB $12844(1)$ $8751(1)$ $4080(1)$ $87(1)$ SiGB $12844(1)$ $8751(1)$ $96(1)$ SiGB $12844(1)$ $8751(1)$ $92(1)$ SiGB $12844(1)$ $8790(2)$ $1857(1)$ $92(1)$ SiGA $7966(1)$ $10727(1)$ $1029(1)$ $96(1)$ SiGB $12844(1)$ $8790(2)$ $1857(1)$ $92(1)$ SiGB $12844(1)$ $3232(2)$ $505(1)$ $101(1)$ Si(1D) $1018(1)$	Si(9D)	5341(1)	2297(1)	2882(1)	82(1)
SiEA12328(1)11795(1)3758(1)82(1)SiTD $5664(1)$ $4082(2)$ $1677(1)$ $95(1)$ SiUA $8199(1)$ $11696(1)$ $597(1)$ $91(1)$ Na(1) $6292(1)$ $4888(2)$ $618(1)$ $93(2)$ SiNC $5962(1)$ $638(1)$ $1465(1)$ $83(1)$ SiIC $9203(1)$ $5428(2)$ $569(1)$ $97(1)$ P(9A) $9447(1)$ $3892(1)$ $-144(1)$ $81(1)$ SiSA $6025(1)$ $3128(2)$ $342(1)$ $90(1)$ SiCD $10788(1)$ $10830(1)$ $3635(1)$ $93(1)$ SiKD $6162(1)$ $-1210(2)$ $3115(1)$ $93(1)$ Na(16) $11533(1)$ $10029(2)$ $2703(1)$ $80(1)$ Na(2) $4973(1)$ $18(2)$ $1656(1)$ $78(1)$ SiJA $9460(1)$ $3506(1)$ $-810(1)$ $86(1)$ SiHB $6470(1)$ $-46(1)$ $2142(1)$ $84(1)$ Na(13) $6895(1)$ $4906(2)$ $1355(1)$ $91(2)$ SiHB $13033(1)$ $10053(2)$ $3094(1)$ $83(1)$ SiGB $12844(1)$ $8751(1)$ $4080(1)$ $87(1)$ Si(4C) $7470(1)$ $5691(2)$ $249(1)$ $90(1)$ SiGB $12844(1)$ $8750(2)$ $498(1)$ $96(1)$ Si(1D) $1018(1)$ $3230(2)$ $1857(1)$ $92(1)$ Si(A) $7966(1)$ $10727(1)$ $1029(1)$ $96(1)$ Si(A) $7966(1)$ $10727(1)$ $1029(1)$ $96(1)$	P(6E)	8548(1)	10005(1)	-46(1)	85(1)
SiTD $5664(1)$ $4082(2)$ $1677(1)$ $95(1)$ SiUA $8199(1)$ $11696(1)$ $597(1)$ $91(1)$ Na(1) $6292(1)$ $4888(2)$ $618(1)$ $93(2)$ SiNC $5962(1)$ $638(1)$ $1465(1)$ $83(1)$ SiIC $9203(1)$ $5428(2)$ $569(1)$ $97(1)$ P(9A) $9447(1)$ $3892(1)$ $-144(1)$ $81(1)$ SiSA $6025(1)$ $3128(2)$ $342(1)$ $90(1)$ SiCD $10788(1)$ $10830(1)$ $3635(1)$ $93(1)$ SiKD $6162(1)$ $-1210(2)$ $3115(1)$ $93(1)$ Na(16) $11533(1)$ $10029(2)$ $2703(1)$ $80(1)$ Na(2) $4973(1)$ $18(2)$ $1656(1)$ $78(1)$ SiJA $9460(1)$ $3506(1)$ $-810(1)$ $86(1)$ SiJA $9460(1)$ $3506(1)$ $-810(1)$ $84(1)$ Na(2) $4973(1)$ $4906(2)$ $1355(1)$ $91(2)$ SiJB $6470(1)$ $-46(1)$ $2142(1)$ $84(1)$ SiIB $13033(1)$ $10053(2)$ $3094(1)$ $83(1)$ SiGB $12844(1)$ $8751(1)$ $4080(1)$ $87(1)$ SiGB $12844(1)$ $8751(1)$ $4080(1)$ $87(1)$ SiFD $11383(1)$ $8790(2)$ $1857(1)$ $96(1)$ SiFD $11383(1)$ $8790(2)$ $1857(1)$ $96(1)$ SiFD $11383(1)$ $8790(2)$ $1857(1)$ $96(1)$ Si(1A) $10332(1)$ $3162(1)$ $698(1)$ $87(1)$	SiEA	12328(1)	11795(1)	3758(1)	82(1)
SiUA $8199(1)$ $11696(1)$ $597(1)$ $91(1)$ Na(1) $6292(1)$ $4888(2)$ $618(1)$ $93(2)$ SiNC $5962(1)$ $638(1)$ $1465(1)$ $83(1)$ SiIC $2903(1)$ $5428(2)$ $569(1)$ $97(1)$ P(9A) $9447(1)$ $3892(1)$ $-144(1)$ $81(1)$ SiSA $6025(1)$ $3128(2)$ $342(1)$ $90(1)$ SiCD $10788(1)$ $10830(1)$ $3635(1)$ $93(1)$ Na(16) $11533(1)$ $10029(2)$ $2703(1)$ $80(1)$ Na(16) $11533(1)$ $10029(2)$ $2703(1)$ $80(1)$ Na(2) $4973(1)$ $18(2)$ $1656(1)$ $78(1)$ SiJA $9460(1)$ $3506(1)$ $-810(1)$ $86(1)$ SiIB $6470(1)$ $-46(1)$ $2142(1)$ $84(1)$ Na(13) $6895(1)$ $4906(2)$ $1355(1)$ $91(2)$ SiHB $13033(1)$ $10053(2)$ $3094(1)$ $83(1)$ SiGB $12844(1)$ $8751(1)$ $4080(1)$ $87(1)$ SiGB $12844(1)$ $8790(2)$ $1857(1)$ $96(1)$ SiFD $11383(1)$ $8790(2)$ $1857(1)$ $96(1)$ SiFD $11383(1)$ $8790(2)$ $1857(1)$ $96(1)$ SiFD $11383(1)$ $8790(2)$ $1857(1)$ $96(1)$ Si(1A) $10332(1)$ $3162(1)$ $698(1)$ $84(1)$ Si(1A) $10857(1)$ $3235(2)$ $860(1)$ $97(1)$ SiGC $10902(1)$ $9426(1)$ $3400(1)$ $87(1)$ <td>SiTD</td> <td>5664(1)</td> <td>4082(2)</td> <td>1677(1)</td> <td>95(1)</td>	SiTD	5664(1)	4082(2)	1677(1)	95(1)
Na(1) $6292(1)$ $4888(2)$ $618(1)$ $93(2)$ SiNC $5962(1)$ $638(1)$ $1465(1)$ $83(1)$ SiIC $9203(1)$ $5428(2)$ $569(1)$ $97(1)$ P(9A) $9447(1)$ $3892(1)$ $-144(1)$ $81(1)$ SiSA $6025(1)$ $3128(2)$ $342(1)$ $90(1)$ SiCD $10788(1)$ $10830(1)$ $3635(1)$ $93(1)$ SiKD $6162(1)$ $-1210(2)$ $3115(1)$ $93(1)$ Na(16) $11533(1)$ $10029(2)$ $2703(1)$ $80(1)$ Na(2) $4973(1)$ $18(2)$ $1556(1)$ $78(1)$ SiJA $9460(1)$ $3506(1)$ $-810(1)$ $86(1)$ SiNB $6470(1)$ $-46(1)$ $2142(1)$ $84(1)$ Na(13) $6895(1)$ $4906(2)$ $1355(1)$ $91(2)$ SiHB $13033(1)$ $10053(2)$ $3094(1)$ $83(1)$ SiGB $12844(1)$ $8751(1)$ $4080(1)$ $87(1)$ SiGB $12844(1)$ $8751(1)$ $4080(1)$ $87(1)$ SiGB $12844(1)$ $8790(2)$ $1857(1)$ $96(1)$ SiFD $11383(1)$ $8790(2)$ $1857(1)$ $96(1)$ SiFD $11383(1)$ $8790(2)$ $1857(1)$ $96(1)$ Si(1A) $10332(1)$ $3162(1)$ $698(1)$ $84(1)$ Si(1B) $10867(1)$ $3235(2)$ $800(1)$ $97(1)$ SiRD $5869(1)$ $5887(2)$ $-154(1)$ $96(1)$ Si(4B) $7855(1)$ $5107(1)$ $1004(1)$ $78(1)$	SiUA	8199(1)	11696(1)	597(1)	91(1)
SiNC $5962(1)$ $638(1)$ $1465(1)$ $83(1)$ SiIC $9203(1)$ $5428(2)$ $569(1)$ $97(1)$ P(9A) $9447(1)$ $3892(1)$ $-144(1)$ $81(1)$ SiSA $6025(1)$ $3128(2)$ $342(1)$ $90(1)$ SiCD $10788(1)$ $10830(1)$ $3635(1)$ $93(1)$ SiKD $6162(1)$ $-1210(2)$ $3115(1)$ $93(1)$ Na(16) $11533(1)$ $10029(2)$ $2703(1)$ $80(1)$ Na(2) $4973(1)$ $18(2)$ $1656(1)$ $78(1)$ SiNB $6470(1)$ $-46(1)$ $2142(1)$ $84(1)$ Na(13) $6895(1)$ $4906(2)$ $1355(1)$ $91(2)$ SiHB $13033(1)$ $10053(2)$ $3094(1)$ $83(1)$ Si(4C) $7470(1)$ $5691(2)$ $249(1)$ $90(1)$ SiGB $12844(1)$ $8751(1)$ $4080(1)$ $87(1)$ SiGD $11383(1)$ $8790(2)$ $1857(1)$ $96(1)$ SiFD $11383(1)$ $8790(2)$ $1857(1)$ $96(1)$ SiFD $11383(1)$ $8790(2)$ $1857(1)$ $92(1)$ F(A) $7966(1)$ $10727(1)$ $1029(1)$ $96(1)$ Si(1A) $10332(1)$ $3162(1)$ $698(1)$ $84(1)$ Si(1B) $10867(1)$ $3235(2)$ $860(1)$ $97(1)$ SiRD $5869(1)$ $5887(2)$ $-154(1)$ $96(1)$ Si(4B) $7855(1)$ $5107(1)$ $1004(1)$ $78(1)$ Si(4B) $7855(1)$ $5107(1)$ $2209(1)$ $92(1)$ </td <td>Na(1)</td> <td>6292(1)</td> <td>4888(2)</td> <td>618(1)</td> <td>93(2)</td>	Na(1)	6292(1)	4888(2)	618(1)	93(2)
SiIC9203(1) $5428(2)$ $569(1)$ $97(1)$ P(9A)9447(1) $3892(1)$ $-144(1)$ $81(1)$ SiSA $6025(1)$ $3128(2)$ $342(1)$ $90(1)$ SiCD $10788(1)$ $10830(1)$ $3635(1)$ $93(1)$ SiKD $6162(1)$ $-1210(2)$ $3115(1)$ $93(1)$ Na(16) $11533(1)$ $10029(2)$ $2703(1)$ $80(1)$ Na(2) $4973(1)$ $18(2)$ $1656(1)$ $78(1)$ SiIA $9460(1)$ $3506(1)$ $-810(1)$ $86(1)$ SiNB $6470(1)$ $-46(1)$ $2142(1)$ $84(1)$ Na(13) $6895(1)$ $4906(2)$ $1355(1)$ $91(2)$ SiHB $13033(1)$ $10053(2)$ $3094(1)$ $83(1)$ SiGB $12844(1)$ $8751(1)$ $4080(1)$ $87(1)$ Si(1D) $10118(1)$ $3280(2)$ $1085(1)$ $95(1)$ SiVA $8584(1)$ $9987(2)$ $-498(1)$ $96(1)$ SiFD $11383(1)$ $8790(2)$ $1857(1)$ $92(1)$ P(8A) $7966(1)$ $10727(1)$ $1029(1)$ $96(1)$ Si(1A) $10332(1)$ $3162(1)$ $698(1)$ $844(1)$ Si(1C) $1094(1)$ $2312(2)$ $505(1)$ $101(1)$ SiRD $5869(1)$ $587(2)$ $-154(1)$ $96(1)$ SiRD $5869(1)$ $5887(2)$ $-154(1)$ $96(1)$ SiRD $5869(1)$ $5887(2)$ $-154(1)$ $96(1)$ SiRD $5869(1)$ $5887(2)$ $-154(1)$ $96(1)$ <td>SiNC</td> <td>5962(1)</td> <td>638(1)</td> <td>1465(1)</td> <td>83(1)</td>	SiNC	5962(1)	638(1)	1465(1)	83(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	SiIC	9203(1)	5428(2)	569(1)	97(1)
SiSA $6025(1)$ $3128(2)$ $342(1)$ $90(1)$ SiCD $10788(1)$ $10830(1)$ $3635(1)$ $93(1)$ SiKD $6162(1)$ $-1210(2)$ $3115(1)$ $93(1)$ Na(16) $11533(1)$ $10029(2)$ $2703(1)$ $80(1)$ Na(2) $4973(1)$ $18(2)$ $1656(1)$ $78(1)$ SiJA $9460(1)$ $3506(1)$ $-810(1)$ $86(1)$ SiNB $6470(1)$ $-46(1)$ $2142(1)$ $84(1)$ Na(13) $6895(1)$ $4906(2)$ $1355(1)$ $91(2)$ SiHB $13033(1)$ $10053(2)$ $3094(1)$ $83(1)$ Si(4C) $7470(1)$ $5691(2)$ $249(1)$ $90(1)$ SiGB $12844(1)$ $8751(1)$ $4080(1)$ $87(1)$ SiGB $12844(1)$ $8751(1)$ $4080(1)$ $95(1)$ SiVA $8584(1)$ $9987(2)$ $-498(1)$ $96(1)$ SiFD $11383(1)$ $8790(2)$ $1857(1)$ $92(1)$ P(8A) $796(1)$ $10727(1)$ $1029(1)$ $96(1)$ Si(1A) $1032(1)$ $3162(1)$ $698(1)$ $84(1)$ Si(1B) $10867(1)$ $3235(2)$ $860(1)$ $97(1)$ SiRD $5869(1)$ $587(2)$ $-154(1)$ $96(1)$ SiRD $5869(1)$ $587(2)$ $-154(1)$ $96(1)$ SiK4B) $7855(1)$ $5107(1)$ $1004(1)$ $78(1)$ SiLC $4292(1)$ $-1696(2)$ $1181(1)$ $92(1)$ SiAB $4241(1)$ $-600(1)$ $2209(1)$ $90(1)$ <	P(9A)	9447(1)	3892(1)	-144(1)	81(1)
SiCD $10788(1)$ $10830(1)$ $3635(1)$ $93(1)$ SiKD $6162(1)$ $-1210(2)$ $3115(1)$ $93(1)$ Na(16) $11533(1)$ $10029(2)$ $2703(1)$ $80(1)$ Na(2) $4973(1)$ $18(2)$ $1656(1)$ $78(1)$ SiJA $9460(1)$ $3506(1)$ $-810(1)$ $86(1)$ SiNB $6470(1)$ $-46(1)$ $2142(1)$ $84(1)$ Na(13) $6895(1)$ $4906(2)$ $1355(1)$ $91(2)$ SiHB $13033(1)$ $10053(2)$ $3094(1)$ $83(1)$ Si(4C) $7470(1)$ $5691(2)$ $249(1)$ $90(1)$ SiGB $12844(1)$ $8751(1)$ $4080(1)$ $87(1)$ Si(D) $10118(1)$ $3280(2)$ $1085(1)$ $95(1)$ SiVA $8584(1)$ $9987(2)$ $-498(1)$ $96(1)$ SiFD $11383(1)$ $8790(2)$ $1857(1)$ $92(1)$ P(8A) $7966(1)$ $10727(1)$ $1029(1)$ $96(1)$ Si(1C) $10194(1)$ $2312(2)$ $505(1)$ $101(1)$ Si(1B) $10867(1)$ $3235(2)$ $860(1)$ $97(1)$ SiCC $10902(1)$ $9426(1)$ $3400(1)$ $87(1)$ SiRD $5869(1)$ $5107(1)$ $1004(1)$ $78(1)$ SiRD $5869(1)$ $5107(1)$ $1004(1)$ $78(1)$ SiLC $4292(1)$ $-1696(2)$ $1181(1)$ $92(1)$ SiFC $11565(1)$ $7562(1)$ $2349(1)$ $82(1)$ SiAB $4241(1)$ $-600(1)$ $2209(1)$ $90(1)$	SiSA	6025(1)	3128(2)	342(1)	90(1)
SiKD $6162(1)$ $-1210(2)$ $3115(1)$ $93(1)$ Na(16) $11533(1)$ $10029(2)$ $2703(1)$ $80(1)$ Na(2) $4973(1)$ $18(2)$ $1656(1)$ $78(1)$ SiJA $9460(1)$ $3506(1)$ $-810(1)$ $86(1)$ SiNB $6470(1)$ $-46(1)$ $2142(1)$ $84(1)$ Na(13) $6895(1)$ $4906(2)$ $1355(1)$ $91(2)$ SiHB $13033(1)$ $10053(2)$ $3094(1)$ $83(1)$ Si(4C) $7470(1)$ $5691(2)$ $249(1)$ $90(1)$ SiGB $12844(1)$ $8751(1)$ $4080(1)$ $87(1)$ Si(1D) $10118(1)$ $3280(2)$ $1085(1)$ $95(1)$ SiVA $8584(1)$ $9987(2)$ $-498(1)$ $96(1)$ SiFD $11383(1)$ $8790(2)$ $1857(1)$ $92(1)$ P(8A) $7966(1)$ $10727(1)$ $1029(1)$ $96(1)$ Si(1C) $10194(1)$ $2312(2)$ $505(1)$ $101(1)$ Si(1B) $10867(1)$ $3235(2)$ $860(1)$ $97(1)$ SiCC $10902(1)$ $9426(1)$ $3400(1)$ $87(1)$ SiRD $5869(1)$ $5107(1)$ $1004(1)$ $78(1)$ SiRD $5869(1)$ $5107(1)$ $1004(1)$ $78(1)$ SiLC $4292(1)$ $-1696(2)$ $1181(1)$ $92(1)$ SiFC $11565(1)$ $7562(1)$ $2349(1)$ $82(1)$ SiAB $4241(1)$ $-600(1)$ $2209(1)$ $90(1)$	SiCD	10788(1)	10830(1)	3635(1)	93(1)
Na(16)11533(1)10029(2)2703(1)80(1)Na(2)4973(1)18(2)1656(1)78(1)SiJA9460(1)3506(1)-810(1)86(1)SiNB6470(1)-46(1)2142(1)84(1)Na(13)6895(1)4906(2)1355(1)91(2)SiHB13033(1)10053(2)3094(1)83(1)Si(4C)7470(1)5691(2)249(1)90(1)SiGB12844(1)8751(1)4080(1)87(1)Si(1D)10118(1)3280(2)1085(1)95(1)SiFD11383(1)8790(2)498(1)96(1)SiFD11383(1)8790(2)1857(1)92(1)P(8A)7966(1)10727(1)1029(1)96(1)Si(1A)10332(1)3162(1)698(1)84(1)Si(1C)10194(1)2312(2)505(1)101(1)SiRD5869(1)5887(2)-154(1)96(1)SiRD5869(1)5887(2)-154(1)96(1)SiLC4292(1)-1696(2)1181(1)92(1)SiLC11565(1)7562(1)2349(1)82(1)SiAB4241(1)-600(1)2209(1)90(1)Na(3)5019(1)-1740(2)2099(1)92(2)	SiKD	6162(1)	-1210(2)	3115(1)	93(1)
Na(2) $4973(1)$ $18(2)$ $1656(1)$ $78(1)$ SiJA $9460(1)$ $3506(1)$ $-810(1)$ $86(1)$ SiNB $6470(1)$ $-46(1)$ $2142(1)$ $84(1)$ Na(13) $6895(1)$ $4906(2)$ $1355(1)$ $91(2)$ SiHB $13033(1)$ $10053(2)$ $3094(1)$ $83(1)$ Si(C) $7470(1)$ $5691(2)$ $249(1)$ $90(1)$ SiGB $12844(1)$ $8751(1)$ $4080(1)$ $87(1)$ Si(D) $10118(1)$ $3280(2)$ $1085(1)$ $95(1)$ SiVA $8584(1)$ $9987(2)$ $-498(1)$ $96(1)$ SiFD $11383(1)$ $8790(2)$ $1857(1)$ $92(1)$ P(8A) $7966(1)$ $10727(1)$ $1029(1)$ $96(1)$ Si(1A) $10332(1)$ $3162(1)$ $698(1)$ $84(1)$ Si(1B) $10867(1)$ $2235(2)$ $860(1)$ $97(1)$ SiRD $5869(1)$ $5887(2)$ $-154(1)$ $96(1)$ SiRD $5869(1)$ $5887(2)$ $-154(1)$ $96(1)$ Si(AB) $7855(1)$ $5107(1)$ $1004(1)$ $78(1)$ SiAB $4241(1)$ $-600(1)$ $2349(1)$ $82(1)$ SiAB $4241(1)$ $-600(1)$ $2209(1)$ $90(1)$	Na(16)	11533(1)	10029(2)	2703(1)	80(1)
SiJA9460(1) $3506(1)$ $-810(1)$ $86(1)$ SiNB $6470(1)$ $-46(1)$ $2142(1)$ $84(1)$ Na(13) $6895(1)$ $4906(2)$ $1355(1)$ $91(2)$ SiHB $13033(1)$ $10053(2)$ $3094(1)$ $83(1)$ Si(4C) $7470(1)$ $5691(2)$ $249(1)$ $90(1)$ SiGB $12844(1)$ $8751(1)$ $4080(1)$ $87(1)$ Si(1D) $10118(1)$ $3280(2)$ $1085(1)$ $95(1)$ SiVA $8584(1)$ $9987(2)$ $-498(1)$ $96(1)$ SiFD $11383(1)$ $8790(2)$ $1857(1)$ $92(1)$ P(8A) $7966(1)$ $10727(1)$ $1029(1)$ $96(1)$ Si(1A) $10332(1)$ $3162(1)$ $698(1)$ $84(1)$ Si(1C) $10194(1)$ $2312(2)$ $505(1)$ $101(1)$ SiCC $19902(1)$ $9426(1)$ $3400(1)$ $87(1)$ SiRD $5869(1)$ $587(2)$ $-154(1)$ $96(1)$ SiRD $5869(1)$ $5107(1)$ $1004(1)$ $78(1)$ SiLC $4292(1)$ $-1696(2)$ $1181(1)$ $92(1)$ SiFC $11565(1)$ $7562(1)$ $2349(1)$ $82(1)$ SiAB $4241(1)$ $-600(1)$ $2209(1)$ $90(1)$	Na(2)	4973(1)	18(2)	1656(1)	78(1)
SiNB $6470(1)$ $-46(1)$ $2142(1)$ $84(1)$ Na(13) $6895(1)$ $4906(2)$ $1355(1)$ $91(2)$ SiHB $13033(1)$ $10053(2)$ $3094(1)$ $83(1)$ Si(4C) $7470(1)$ $5691(2)$ $249(1)$ $90(1)$ SiGB $12844(1)$ $8751(1)$ $4080(1)$ $87(1)$ Si(1D) $10118(1)$ $3280(2)$ $1085(1)$ $95(1)$ SiVA $8584(1)$ $9987(2)$ $-498(1)$ $96(1)$ SiFD $11383(1)$ $8790(2)$ $1857(1)$ $92(1)$ P(8A) $7966(1)$ $10727(1)$ $1029(1)$ $96(1)$ Si(1A) $10332(1)$ $3162(1)$ $698(1)$ $84(1)$ Si(1B) $10867(1)$ $3235(2)$ $860(1)$ $97(1)$ SiCC $10902(1)$ $9426(1)$ $3400(1)$ $87(1)$ SiRD $5869(1)$ $587(2)$ $-154(1)$ $96(1)$ SiKD $7855(1)$ $5107(1)$ $1004(1)$ $78(1)$ SiLC $4292(1)$ $-1696(2)$ $1181(1)$ $92(1)$ SiFC $11565(1)$ $7562(1)$ $2349(1)$ $82(1)$ SiAB $4241(1)$ $-600(1)$ $2209(1)$ $90(1)$	SiJA	9460(1)	3506(1)	-810(1)	86(1)
Na(13) $6895(1)$ $4906(2)$ $1355(1)$ $91(2)$ SiHB $13033(1)$ $10053(2)$ $3094(1)$ $83(1)$ Si(4C) $7470(1)$ $5691(2)$ $249(1)$ $90(1)$ SiGB $12844(1)$ $8751(1)$ $4080(1)$ $87(1)$ Si(1D) $10118(1)$ $3280(2)$ $1085(1)$ $95(1)$ SiVA $8584(1)$ $9987(2)$ $-498(1)$ $96(1)$ SiFD $11383(1)$ $8790(2)$ $1857(1)$ $92(1)$ P(8A) $7966(1)$ $10727(1)$ $1029(1)$ $96(1)$ Si(1A) $10332(1)$ $3162(1)$ $698(1)$ $84(1)$ Si(1C) $10194(1)$ $2312(2)$ $505(1)$ $101(1)$ Si(1B) $10867(1)$ $3235(2)$ $860(1)$ $97(1)$ SiRD $5869(1)$ $5887(2)$ $-154(1)$ $96(1)$ Si(4B) $7855(1)$ $5107(1)$ $1004(1)$ $78(1)$ SiLC $4292(1)$ $-1696(2)$ $1181(1)$ $92(1)$ SiFC $11565(1)$ $7562(1)$ $2349(1)$ $82(1)$ SiAB $4241(1)$ $-600(1)$ $2209(1)$ $90(1)$	SiNB	6470(1)	-46(1)	2142(1)	84(1)
SiHB $13033(1)$ $10053(2)$ $3094(1)$ $83(1)$ Si(4C) $7470(1)$ $5691(2)$ $249(1)$ $90(1)$ SiGB $12844(1)$ $8751(1)$ $4080(1)$ $87(1)$ Si(1D) $10118(1)$ $3280(2)$ $1085(1)$ $95(1)$ SiVA $8584(1)$ $9987(2)$ $-498(1)$ $96(1)$ SiFD $11383(1)$ $8790(2)$ $1857(1)$ $92(1)$ P(8A) $7966(1)$ $10727(1)$ $1029(1)$ $96(1)$ Si(1A) $10332(1)$ $3162(1)$ $698(1)$ $84(1)$ Si(1C) $10194(1)$ $2312(2)$ $505(1)$ $101(1)$ Si(1B) $10867(1)$ $3235(2)$ $860(1)$ $97(1)$ SiRD $5869(1)$ $5887(2)$ $-154(1)$ $96(1)$ Si(4B) $7855(1)$ $5107(1)$ $1004(1)$ $78(1)$ SiLC $4292(1)$ $-1696(2)$ $1181(1)$ $92(1)$ SiFC $11565(1)$ $7562(1)$ $2349(1)$ $82(1)$ SiAB $4241(1)$ $-600(1)$ $2209(1)$ $90(1)$	Na(13)	6895(1)	4906(2)	1355(1)	91(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SiHB	13033(1)	10053(2)	3094(1)	83(1)
SiGB $12844(1)$ $8751(1)$ $4080(1)$ $87(1)$ Si(1D) $10118(1)$ $3280(2)$ $1085(1)$ $95(1)$ SiVA $8584(1)$ $9987(2)$ $-498(1)$ $96(1)$ SiFD $11383(1)$ $8790(2)$ $1857(1)$ $92(1)$ P(8A) $7966(1)$ $10727(1)$ $1029(1)$ $96(1)$ Si(1A) $10332(1)$ $3162(1)$ $698(1)$ $84(1)$ Si(1C) $10194(1)$ $2312(2)$ $505(1)$ $101(1)$ Si(1B) $10867(1)$ $3235(2)$ $860(1)$ $97(1)$ SiRD $5869(1)$ $5887(2)$ $-154(1)$ $96(1)$ Si(4B) $7855(1)$ $5107(1)$ $1004(1)$ $78(1)$ SiLC $4292(1)$ $-1696(2)$ $1181(1)$ $92(1)$ SiFC $11565(1)$ $7562(1)$ $2349(1)$ $82(1)$ SiAB $4241(1)$ $-600(1)$ $2209(1)$ $90(1)$ Na(3) $5019(1)$ $-1740(2)$ $2099(1)$ $92(2)$	Si(4C)	7470(1)	5691(2)	249(1)	90(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SiGB	12844(1)	8751(1)	4080(1)	87(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Si(1D)	10118(1)	3280(2)	1085(1)	95(1)
SiFD $11383(1)$ $8790(2)$ $1857(1)$ $92(1)$ P(8A) $7966(1)$ $10727(1)$ $1029(1)$ $96(1)$ Si(1A) $10332(1)$ $3162(1)$ $698(1)$ $84(1)$ Si(1C) $10194(1)$ $2312(2)$ $505(1)$ $101(1)$ Si(1B) $10867(1)$ $3235(2)$ $860(1)$ $97(1)$ SiCC $10902(1)$ $9426(1)$ $3400(1)$ $87(1)$ SiRD $5869(1)$ $5887(2)$ $-154(1)$ $96(1)$ Si(4B) $7855(1)$ $5107(1)$ $1004(1)$ $78(1)$ SiLC $4292(1)$ $-1696(2)$ $1181(1)$ $92(1)$ SiFC $11565(1)$ $7562(1)$ $2349(1)$ $82(1)$ SiAB $4241(1)$ $-600(1)$ $2209(1)$ $90(1)$ Na(3) $5019(1)$ $-1740(2)$ $2099(1)$ $92(2)$	SiVA	8584(1)	9987(2)	-498(1)	96(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SiFD	11383(1)	8790(2)	1857(1)	92(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(8A)	7966(1)	10727(1)	1029(1)	96(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Si(1A)	10332(1)	3162(1)	698(1)	84(1)
$\begin{array}{cccccccc} Si(1B) & 10867(1) & 3235(2) & 860(1) & 97(1) \\ SiCC & 10902(1) & 9426(1) & 3400(1) & 87(1) \\ SiRD & 5869(1) & 5887(2) & -154(1) & 96(1) \\ Si(4B) & 7855(1) & 5107(1) & 1004(1) & 78(1) \\ SiLC & 4292(1) & -1696(2) & 1181(1) & 92(1) \\ SiFC & 11565(1) & 7562(1) & 2349(1) & 82(1) \\ SiAB & 4241(1) & -600(1) & 2209(1) & 90(1) \\ Na(3) & 5019(1) & -1740(2) & 2099(1) & 92(2) \\ \end{array}$	Si(1C)	10194(1)	2312(2)	505(1)	101(1)
$\begin{array}{cccccccc} SiCC & 10902(1) & 9426(1) & 3400(1) & 87(1) \\ SiRD & 5869(1) & 5887(2) & -154(1) & 96(1) \\ Si(4B) & 7855(1) & 5107(1) & 1004(1) & 78(1) \\ SiLC & 4292(1) & -1696(2) & 1181(1) & 92(1) \\ SiFC & 11565(1) & 7562(1) & 2349(1) & 82(1) \\ SiAB & 4241(1) & -600(1) & 2209(1) & 90(1) \\ Na(3) & 5019(1) & -1740(2) & 2099(1) & 92(2) \\ \end{array}$	Si(1B)	10867(1)	3235(2)	860(1)	97(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SiCC	10902(1)	9426(1)	3400(1)	87(1)
Si(4B)7855(1)5107(1)1004(1)78(1)SiLC4292(1)-1696(2)1181(1)92(1)SiFC11565(1)7562(1)2349(1)82(1)SiAB4241(1)-600(1)2209(1)90(1)Na(3)5019(1)-1740(2)2099(1)92(2)	SiRD	5869(1)	5887(2)	-154(1)	96(1)
SiLC4292(1)-1696(2)1181(1)92(1)SiFC11565(1)7562(1)2349(1)82(1)SiAB4241(1)-600(1)2209(1)90(1)Na(3)5019(1)-1740(2)2099(1)92(2)	Si(4B)	7855(1)	5107(1)	1004(1)	78(1)
SiFC11565(1)7562(1)2349(1)82(1)SiAB4241(1)-600(1)2209(1)90(1)Na(3)5019(1)-1740(2)2099(1)92(2)	SiLC	4292(1)	-1696(2)	1181(1)	92(1)
SiAB4241(1)-600(1)2209(1)90(1)Na(3)5019(1)-1740(2)2099(1)92(2)	SiFC	11565(1)	7562(1)	2349(1)	82(1)
Na(3) 5019(1) -1740(2) 2099(1) 92(2)	SiAB	4241(1)	-600(1)	2209(1)	90(1)
	Na(3)	5019(1)	-1740(2)	2099(1)	92(2)

Atom	v	X 7	7	U(og)
STD	X 5220(1)	y 4721(2)	$\frac{L}{024(1)}$	0(eq)
SILD	3539(1)	4731(2)	934(1) 1229(1)	93(1) 07(1)
SITC S:(0C)	9029(1)	9080(2)	1520(1)	9/(1) 92(1)
S1(9C)	6053(1)	2150(1) 2841(2)	2039(1)	83(1)
212B	0.528(1)	2841(2)	50(1)	90(1)
SIKC	5477(1)	-2127(2)	2938(1)	102(1)
S1(9B)	5941(1)	1239(1)	3222(1)	85(1)
Na(14)	5522(1)	0(2)	2428(1)	78(1)
S1(8C)	4333(1)	2318(1)	1501(1)	86(1)
SIRC	6416(1)	7061(2)	69(1)	95(1)
SIJC	9195(1)	4108(2)	-1167(1)	100(1)
SiLD	5037(1)	-2483(1)	1350(1)	101(1)
SIXA	7027(1)	10038(1)	188(1)	90(1)
SIRB	5710(1)	6969(2)	338(1)	107(2)
S1YB	9796(1)	10506(2)	1189(1)	119(2)
SiCB	11507(1)	10020(2)	4035(1)	98(1)
Na(4)	12152(1)	10061(2)	3432(1)	82(1)
SiZB	8235(1)	8000(1)	825(1)	88(1)
Si(8B)	4167(1)	1028(1)	1058(1)	89(1)
SiFB	10845(1)	8413(1)	2298(1)	80(1)
Na(12)	10225(1)	3314(2)	-134(1)	99(2)
Si(8D)	4843(1)	1919(2)	1048(1)	93(1)
Na(6)	5387(1)	1775(2)	1944(1)	115(2)
SiUB	8738(1)	11770(2)	738(1)	109(2)
Na(9)	11657(1)	8289(2)	3146(1)	95(2)
SiJB	9817(1)	3069(2)	-994(1)	94(1)
SiAD	4721(1)	-52(1)	2927(1)	90(1)
SiYD	9933(1)	9423(2)	696(1)	105(1)
SiIB	8786(1)	5005(2)	-205(1)	104(1)
Na(5)	6816(1)	3178(2)	884(1)	94(2)
Na(8)	11975(1)	11765(2)	2905(1)	103(2)
Na(10)	8607(1)	9924(2)	930(1)	98(2)
SiXD	6831(1)	9166(2)	188(1)	110(2)
SiZD	7988(1)	8156(2)	-10(1)	98(1)
SiLB	4906(1)	-1285(2)	827(1)	99(1)
Na(7)	6380(1)	6561(2)	1115(1)	102(2)
SiGC	12711(1)	7702(1)	3490(1)	90(1)
Na(11)	8030(1)	9972(2)	173(1)	90(2)
SIVC	8934(1)	9377(2)	-589(1)	117(2)
SiZC	8764(1)	7558(2)	396(1)	99(1)
SiXC	6732(1)	10554(2)	407(1)	127(2)
SIKB	6074(1)	-2315(2)	2552(1)	102(1)
SIQD	//02(1)	0031(2) 2841(2)	1840(1)	115(2)
SIJD	9128(1)	2841(2)	-/49(1)	110(2)
SIVD	8109(1)	9910(2)	-855(1)	121(2)
51UD	(951(1) 0757(1)	118/8(2)	110(1)	152(2)
Na(17)	9/5/(1)	5070(2)	-392(1)	89(2)
SilD	8882(1)	4013(2)	413(1)	113(2)
SIVB CIVD	8/83(1)	10831(2)	-545(1)	117(2)
SIXB	6943(1) 9917(1)	10311(2)	-286(1)	120(2)
SIUC	801/(1)	12251(2)	899(1)	121(2)
SIED	12/05(1)	12194(2)	3592(2)	164(3)
515U	5985(2) (021(1)	2355(2)	015(2) 1002(1)	215(4)
SIQU	0931(1) 7089(1)	0/33(3)	1995(1)	1/3(3)
21/UB	/088(1)	1010(2)	1390(1)	150(2)
SIEC	12021(1) 1257((2))	12462(2)	5844(2) 4101(1)	1/4(5)
SIEB	123/0(2)	11300(3)	4191(1) 010(1)	208(3)
INA(15)	1301(1) 5562(1)	9409(2) 2407(4)	919(1) 28(2)	13/(2) 220(4)
515D No(19)	5502(1)	34U/(4) 10420(2)	30(2)	229(4) 145(2)
C(1)	9110(1) 1110(2)	10439(3)	223(1) 2401(2)	143(2)
C(1)	11190(2)	0714(4) 122(5)	5401(5) 2426(2)	04(4) 00(4)
C(2)	0501(5)	152(3)	2430(3)	77(4)

Atom	X	y	Z	U(eq)
C(3)	12864(2)	10175(4)	3398(2)	86(4)
C(4)	11566(3)	7279(4)	2705(3)	90(4)
C(5)	5012(3)	-572(4)	890(3)	94(4)
C(6)	7317(2)	3808(4)	708(3)	83(4)
C(7)	5872(3)	6022(4)	1297(3)	96(4)
C(8)	11340(3)	7116(4)	2050(3)	100(5)
C(9)	10919(3)	11524(4)	3652(3)	104(5)
C(10)	9328(2)	6008(4)	394(3)	106(5)
C(11)	9001(3)	7744(5)	153(3)	116(5)
C(12)	6307(2)	1679(4)	2508(3)	91(4)
C(13)	4072(3)	2131(5)	1730(3)	117(5)
C(14)	5905(3)	1156(4)	1711(3)	107(5)
C(15)	5471(2)	4908(5)	626(3)	102(4)
C(16)	13252(3)	10664(5)	3061(3)	124(5)
C(17)	13301(3)	9478(5)	3180(3)	113(5)
C(18)	5486(3)	6547(5)	520(3)	109(5)
C(19)	11510(3)	9488(4)	1914(3)	112(5)
C(20)	12451(3)	9174(5)	2018(3)	104(5)
C(21)	5941(3)	4188(5)	2047(3)	103(4)
C(22)	8534(3)	8195(5)	1144(3)	101(4)
C(23)	4097(3)	2705(4)	1185(3)	105(5)
C(24)	10814(3)	8166(5)	2649(3)	98(4)
C(25)	4257(2)	1463(4)	2558(3)	79(4)
C(26)	4531(2)	-1145(4)	2304(3)	80(4)
C(27)	5932(3)	-786(5)	1056(3)	125(5)
C(28)	6229(2)	-1477(4)	1563(3)	98(5)
C(29)	10584(2)	7986(5)	2013(3)	101(5)
C(30)	6379(3)	-2047(5)	2397(3)	122(5)
C(31)	7168(3)	5539(5)	-105(2)	98(4)
C(32)	13033(3)	8004(5)	3372(3)	126(6)
C(34)	7746(3)	5002(5)	1336(3)	109(5)
C(35)	4124(3)	-479(4)	1809(3)	111(5)
C(36)	13028(3)	8279(5)	4371(3)	143(6)
C(37)	12428(3)	7390(6)	3176(3)	156(7)
C(38)	8896(3)	11349(5)	1058(3)	119(5)
C(39)	5060(3)	5260(6)	965(3)	133(6)
C(41)	6683(3)	7399(4)	365(3)	120(5)
C(42)	6699(2)	-657(4)	2241(3)	100(4)
C(43)	4989(3)	-2725(5)	1696(3)	117(5)
C(44)	4206(3)	-1906(5)	1522(3)	104(5)
C(46)	12813(3)	8564(4)	2538(3)	100(5)
C(47)	4756(3)	525(4)	3164(3)	104(5)
C(48)	4117(3)	-1053(5)	1074(3)	132(6)
C(50)	3829(2)	869(5)	2048(3)	104(5)
C(51)	6732(3)	498(5)	2105(3)	126(5)
C(52)	7790(3)	8813(4)	-76(3)	108(5)
C(53)	7912(3)	6555(6)	1562(3)	144(6)
C(54)	8260(3)	12133(5)	1296(3)	124(5)
C(55)	8538(3)	5579(5)	-148(3)	128(6)
C(56)	8066(3)	5751(4)	1020(3)	99(4)
C(57)	12256(3)	12993(5)	4070(3)	129(6)
C(58)	8890(3)	3364(4)	217(3)	118(5)
C(59)	11016(3)	3240(5)	551(3)	123(6)
C(60)	6629(3)	6735(5)	-160(3)	103(5)
C(61)	8119(2)	4558(4)	976(3)	99(4)
C(62)	7870(3)	8402(5)	793(3)	114(5)
C(63)	9642(3)	2559(5)	-1277(3)	124(5)
C(64)	12317(3)	7292(5)	4147(3)	122(5)
C(65)	13120(3)	9458(5)	2304(3)	116(5)
C(66)	5668(3)	3374(4)	1564(3)	101(4)
C(67)	7460(2)	6395(4)	346(3)	92(4)

Atom	v	17	7	LI(eq)
$\frac{\Gamma(68)}{\Gamma(68)}$	<u> </u>	<u>y</u> 8428(5)	1707(3)	108(5)
C(69)	58/19(3)	2589(5)	2322(3)	125(6)
C(09)	9034(3)	2389(5) 5234(5)	2322(3)	123(0)
C(70)	5608(3)	582(5)	1166(3)	150(7)
C(73)	10387(3)	3048(6)	1/00(3) 1/27(3)	132(6)
C(73)	10387(3)	11179(5)	1427(3)	108(5)
C(74)	6234(3)	5505(5)	1852(3)	132(6)
C(75)	7594(3)	12177(5)	852(3)	134(6)
C(77)	7903(3)	12177(5) 11246(5)	-94(3)	132(5)
C(78)	4853(3)	-2980(5)	1073(3)	141(6)
C(79)	5267(3)	4227(5)	1703(3)	122(5)
C(80)	11889(3)	9887(5)	3975(3)	119(5)
C(81)	8159(3)	8038(5)	-333(3)	108(5)
C(82)	5516(3)	5576(5)	-92(3)	114(5)
C(83)	8870(3)	11547(6)	411(3)	138(6)
C(84)	9283(3)	9327(6)	-274(3)	143(6)
C(85)	5056(2)	2532(4)	2540(3)	91(4)
C(87)	6249(2)	815(5)	3160(3)	99(4)
C(88)	6590(2)	-609(5)	1386(3)	110(5)
C(90)	10696(3)	10661(5)	3982(3)	115(5)
C(91)	5805(3)	-2715(6)	2262(4)	195(9)
C(92)	13149(3)	9042(6)	3946(3)	139(6)
C(93)	12672(3)	9284(6)	4235(3)	147(7)
C(94)	5446(3)	7270(5)	20(3)	133(6)
C(95)	10349(4)	2193(5)	194(3)	165(7)
C(96)	6563(3)	10061(6)	-535(3)	171(7)
C(97)	9022(3)	7402(5)	767(3)	125(5)
C(99)	7570(3)	4059(4)	208(3)	96(4)
C(011)	6877(3)	11242(5)	481(4)	161(8)
C(012)	10672(3)	9537(5)	3023(3)	105(5)
C(013)	11974(2)	7538(4)	2338(3)	89(4)
C(015)	10115(2)	2735(5)	-696(3)	104(5)
C(016)	12843(3)	10947(5)	2299(3)	121(5)
C(017)	9207(3)	10891(6)	-296(4)	155(7)
C(018)	5556(3)	5716(5)	1734(3)	124(6)
C(019)	5555(3)	2900(4)	3057(3)	116(5)
C(110)	8071(3)	12948(4)	794(3)	134(6)
C(111)	3858(3)	586(5)	2663(3)	114(5)
C(112)	8144(3)	7270(4)	849(3)	117(5)
C(113)	6281(4)	-2773(6)	2851(4)	192(9)
C(114)	6289(3)	3288(5)	-245(3)	134(6)
C(115)	11792(3)	7626(5)	3645(3)	115(5)
C(116)	4637(3)	2740(5)	1726(3)	116(5)
C(117)	6897(2)	4278(5)	151(3)	103(5)
C(118)	6226(3)	2149(5)	-91(3)	117(5)
C(119)	10700(2)	9116(4)	2258(3)	87(4)
C(120)	9286(3)	9192(6)	1459(3)	144(6)
C(121)	5465(3)	-2492(5)	1389(4)	137(6)
C(122)	5741(3)	6231(5)	-506(3)	117(5)
C(123)	12897(3)	7156(5)	3/41(3)	139(6)
C(124)	6323(3)	10601(6)	140(5)	214(11)
C(125)	3893(3) 8544(2)	-803(5)	2321(4)	160(8)
C(127)	8344(<i>3</i>)	0945(5)	249(3)	125(5)
C(128)	10944(3)	3894(3) 1794(5)	10//(3)	130(0)
C(129) C(120)	10355(3)	1/84(3)	/ 8U(3) 841(2)	1/24(0) 1/12(6)
C(130) C(121)	00/3(3)	12440(3) 2184(5)	041(3)	143(0)
C(131) C(132)	4104(3) 5121(2)	-2104(3)	070(3)	119(3)
C(132) C(133)	5151(5) 6275(2)	2023(3)	3130(3) 1216(3)	103(3)
C(133) C(134)	11067(3)	033(3) 2685(5)	1010(0)	114(3)
C(13+)	6168(3)	2003(3)	1000(3)	127(0) 1/1(7)
C(155)	0100(3)	1575(5)	-155(5)	141(7)

				** ()
Atom	Х	У	Z	U(eq)
C(136)	9625(3)	8395(4)	1196(3)	122(5)
C(137)	10042(3)	4010(5)	1123(3)	118(5)
C(138)	4513(3)	-591(5)	3061(3)	134(6)
C(139)	10656(3)	9185(5)	3624(3)	104(5)
C(142)	8199(4)	12328(8)	-19(4)	219(10)
C(143)	10429(3)	10760(5)	3328(3)	144(6)
C(144)	12201(3)	10571(5)	2074(3)	158(7)
C(145)	5977(3)	-600(5)	3199(3)	128(6)
C(146)	9076(3)	3978(5)	804(3)	108(5)
C(147)	8856(3)	5620(5)	680(3)	119(5)
C(148)	10992(3)	8770(8)	1577(3)	179(8)
C(149)	6317(3)	2571(5)	2931(3)	114(5)
C(150)	6506(3)	6918(6)	1816(4)	164(8)
C(150)	6682(3)	7569(6)	1145(4)	150(7)
C(151)	0002(3)	11046(5)	028(3)	150(7)
C(152) C(153)	5238(A)	1652(5)	720(3)	150(7) 164(8)
C(153)	5230(4)	5201(5)	(13)(4)	104(0) 124(5)
C(154)	9324(3) 7800(2)	3201(3)	907(3)	124(3) 124(6)
C(155)	7899(3) (400(2)	9289(5)	-795(3)	134(0)
C(150)	6400(2) 0426(2)	9139(3)	83(3)	155(0)
C(157)	9436(3)	4/2/(4)	-1160(3)	112(5)
C(158)	9758(3)	2912(5)	1033(3)	117(5)
C(160)	7704(3)	7634(5)	6(3)	121(5)
C(161)	6973(3)	8866(5)	568(3)	128(6)
C(163)	6746(2)	2810(5)	268(3)	110(5)
C(164)	4568(3)	-1347(6)	506(3)	175(8)
C(165)	5652(3)	-2719(5)	3167(3)	136(6)
C(166)	8819(3)	3075(6)	-592(3)	152(7)
C(167)	9048(4)	9597(6)	-913(4)	170(7)
C(168)	5116(3)	-267(5)	2941(3)	112(5)
C(169)	6148(3)	5325(5)	-154(3)	113(5)
C(170)	9120(3)	3800(5)	-1543(3)	117(5)
C(171)	11389(3)	9395(5)	4197(3)	127(6)
C(172)	5665(3)	809(5)	3347(3)	114(5)
C(173)	6120(3)	1734(5)	3520(3)	136(6)
C(174)	9371(3)	2325(5)	-491(4)	172(8)
C(175)	7841(3)	7267(6)	2044(4)	164(8)
C(176)	6961(3)	11027(5)	-307(3)	128(5)
C(177)	5887(3)	7473(6)	589(4)	158(7)
C(178)	10045(3)	3559(5)	-1143(3)	112(5)
C(179)	8904(3)	2592(6)	-1120(3)	149(7)
C(180)	8553(3)	11371(5)	-447(3)	136(6)
C(181)	11792(6)	12133(10)	4123(7)	420(30)
C(183)	10323(3)	9223(5)	953(3)	126(6)
C(185)	9760(3)	2222(5)	353(3)	135(6)
C(186)	8819(3)	4261(6)	-1103(3)	135(6)
C(187)	8468(3)	4181(5)	354(3)	136(6)
C(187)	12953(3)	11760(6)	3503(4)	191(9)
C(180)	12755(5) 11000(3)	8336(5)	4160(3)	151(5) 152(7)
C(109)	7855(2)	5553(5)	188(3)	132(7) 120(5)
C(190)	5760(5)	2438(7)	871(5)	120(3) 273(14)
C(191) C(102)	5709(3) 5109(2)	2430(7) 4002(5)	0/1(3) 072(2)	273(14) 125(5)
C(192)	5128(5)	4092(5)	8/2(3)	125(5)
C(193)	7/0U(J) 7756(A)	0002(0) 6024(5)	409(3)	12/(0) 160(7)
C(194)	7730(4)	1297(6)	2033(3)	100(7)
C(195)	39U3(4)	138/(0)	/ 33(4)	290(17)
C(197)	9630(3)	10626(5)	1502(3)	12/(5)
C(199)	4933(4)	1424(6)	825(4)	181(8)
C(200)	11551(3)	10593(6)	4290(3)	136(6)
C(03B)	5345(6)	5028(8)	2535(6)	208(12)
C(234)	7567(3)	12200(5)	87(4)	158(7)
C(238)	9994(3)	9968(6)	461(3)	152(7)
C(217)	5141(3)	-2377(5)	2641(3)	132(6)

Atom	X	у	Z	U(eq)
C(237)	10238(3)	10514(6)	1324(4)	193(9)
C(240)	8773(4)	10985(6)	-921(3)	156(7)
C(01B)	5450(5)	5974(8)	2533(5)	204(10)
C(221)	3937(4)	786(7)	1290(4)	207(10)
C(233)	8536(3)	4443(5)	-403(3)	140(6)
C(242)	6955(3)	8728(5)	-69(3)	131(6)
C(235)	7873(3)	10533(6)	-878(4)	182(8)
C(219)	4683(5)	2482(8)	834(5)	307(18)
C(241)	8761(3)	8692(5)	-652(3)	136(6)
C(215)	6515(3)	-1009(6)	3012(3)	132(6)
C(201)	7358(3)	7586(8)	1174(5)	258(13)
C(216)	6290(4)	-1616(5)	3450(3)	165(7)
C(222)	4343(3)	461(5)	922(4)	177(9)
C(243)	6679(4)	10223(7)	729(4)	203(9)
C(239)	9984(3)	9170(6)	1651(3)	146(6)
C(236)	8154(4)	9808(8)	-1230(3)	229(11)
C(220)	5243(4)	2106(7)	1305(4)	203(9)
C(203)	6971(4)	6038(11)	2171(4)	311(18)
C(218)	5318(4)	-1686(6)	3164(4)	177(8)
C(244)	7257(3)	10020(6)	-435(3)	166(7)
C(230)	12602(9)	10804(9)	4189(6)	770(60)
C(228)	12485(5)	12552(8)	3213(5)	276(14)
C(05B)	5227(7)	4062(8)	2547(5)	247(15)
C(02)	5524(7)	9424(12)	-16(8)	282(17)
C(229)	12938(3)	12707(7)	3836(4)	217(11)
C(04B)	5254(6)	4551(11)	2625(5)	226(12)
C(03)	5503(6)	9754(15)	206(6)	242(14)
C(205)	5406(3)	2874(9)	-235(5)	328(19)
C(223)	11764(5)	12712(8)	3531(5)	360(20)
C(208)	6456(4)	2220(8)	885(5)	235(11)
C(204)	7098(4)	7199(13)	2270(6)	440(30)
C(04)	5432(6)	10343(14)	148(9)	380(40)
C(202)	7107(4)	8048(7)	1690(6)	319(19)
C(05)	5371(15)	10610(20)	344(12)	720(40)
C(206)	5294(3)	3512(12)	248(6)	450(30)
C(209)	5821(8)	1780(9)	411(7)	470(30)
C(207)	5601(6)	4000(9)	-123(4)	310(20)
C(231)	12861(6)	11789(8)	4438(6)	420(30)
C(01)	5532(7)	8820(10)	42(5)	297(17)
C(02B)	5375(6)	5524(12)	2640(6)	247(14)
C(01A)	3258(5)	-655(8)	1329(7)	320(20)
C(02A)	3104(12)	-230(30)	1372(10)	530(70)
C(03A)	3087(16)	340(40)	1353(15)	670(110)
C(04A)	2951(7)	381(17)	1506(6)	260(14)
C(05A)	2945(5)	1026(9)	1468(6)	227(13)

7.8 Crystallographic data for Hyp₃P₄SnK

7.8.1 Crystal data and structure refinement

Empirical formula	Hyp ₃ P ₄ SnK
Formula weight	1024.67
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	monoclinic, P2(1)/c

Unit cell dimensions	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
Volume	5800.3(18) Å ³
Z, Calculated density	4, 1.173 g/cm^3
Absorption coefficient	0.888 mm ⁻¹
F(000)	2160
Theta range for data collection	2.27 to 30.00 deg.
Limiting indices	-5<=h<=18, -7<=k<=31, -23<=1<=23
Reflections collected / unique	13722 / 13302 [R(int) = 0.0287]
Completeness to theta = 30.00	78.7 %
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	13302 / 0 / 433
Goodness-of-fit on F^2	1.161
Final R indices [I>2sigma(I)]	R1 = 0.0475, $wR2 = 0.1110$
R indices (all data)	R1 = 0.0763, wR2 = 0.1210
Largest diff. peak and hole	1.765 and -0.824 e. $\hbox{\AA}^{-3}$

7.8.2 Atomic coordinates (x 10⁴), equivalent isotropic displacement parameters (Å ² x 10³) and Anisotropic displacement parameters (Å ² x 10³). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U11 + ... + 2hka^*b^*U12]$

Atom	Х	у	Z	U(eq)	U11	U22	U33	U23	U13	U12
G (1)	2440(1)	0715(1)	2502(1)	20(1)	20(1)	20(1)	25(1)		0(1)	1 / 1 \
Sn(1)	3449(1)	2/15(1)	/59/(1)	28(1)	29(1)	29(1)	25(1)	-6(1)	8(1)	I(1)
P(4)	4390(1)	1867(1)	7173(1)	24(1)	21(1)	26(1)	25(1)	I(1)	6(1)	1(1)
P(1)	2599(1)	3022(1)	6205(1)	24(1)	28(1)	19(1)	29(1)	-1(1)	11(1)	3(1)
Si(33)	762(1)	887(1)	6256(1)	29(1)	28(1)	27(1)	31(1)	-1(1)	4(1)	-7(1)
Si(1)	1418(1)	3590(1)	6474(1)	23(1)	26(1)	17(1)	26(1)	-2(1)	8(1)	1(1)
P(3)	3085(1)	1666(1)	6223(1)	22(1)	23(1)	18(1)	25(1)	-1(1)	6(1)	1(1)
Si(3)	2498(1)	867(1)	6675(1)	24(1)	28(1)	17(1)	25(1)	-1(1)	4(1)	-2(1)
P(2)	2006(1)	2236(1)	6577(1)	26(1)	21(1)	20(1)	37(1)	-3(1)	9(1)	0(1)
K(1)	2672(1)	2350(1)	4551(1)	50(1)	73(1)	48(1)	29(1)	-3(1)	13(1)	-5(1)
Si(13)	2065(1)	4495(1)	6477(1)	32(1)	40(1)	18(1)	42(1)	-5(1)	14(1)	-2(1)
Si(32)	2904(1)	721(1)	8041(1)	33(1)	44(1)	27(1)	25(1)	2(1)	3(1)	-8(1)
Si(2)	5688(1)	2209(1)	6740(1)	24(1)	20(1)	28(1)	26(1)	1(1)	6(1)	2(1)
Si(31)	3085(1)	95(1)	6084(1)	33(1)	42(1)	20(1)	35(1)	-3(1)	2(1)	7(1)
Si(12)	899(1)	3487(1)	7654(1)	30(1)	36(1)	27(1)	32(1)	-3(1)	16(1)	4(1)
Si(23)	5665(1)	3078(1)	6106(1)	36(1)	26(1)	29(1)	54(1)	7(1)	12(1)	-2(1)
Si(22)	6273(1)	1515(1)	6024(1)	39(1)	43(1)	34(1)	46(1)	-2(1)	24(1)	6(1)
Si(21)	6804(1)	2268(1)	7962(1)	52(1)	31(1)	86(1)	34(1)	4(1)	-3(1)	-11(1)
Si(11)	45(1)	3477(1)	5429(1)	34(1)	27(1)	39(1)	36(1)	-10(1)	4(1)	2(1)
C(321)	2089(4)	146(2)	8255(3)	59(1)	92(4)	48(3)	36(2)	1(2)	16(2)	-29(3)
C(331)	355(3)	1215(2)	5267(2)	41(1)	39(2)	42(2)	38(2)	3(2)	-1(2)	-1(2)
C(121)	1786(3)	3834(2)	8478(2)	43(1)	58(3)	42(3)	33(2)	-12(2)	16(2)	3(2)
C(131)	1191(3)	5042(2)	6685(3)	50(1)	61(3)	24(2)	66(3)	-3(2)	16(2)	12(2)
C(132)	2333(4)	4632(2)	5500(3)	64(2)	101(4)	37(3)	65(3)	4(2)	46(3)	-7(3)
C(322)	2685(3)	1356(2)	8600(2)	42(1)	56(2)	41(2)	28(2)	-3(2)	12(2)	-11(2)
C(122)	-315(3)	3849(2)	7528(3)	44(1)	47(2)	41(3)	51(2)	-4(2)	25(2)	8(2)
C(332)	147(3)	1253(2)	6967(3)	46(1)	36(2)	51(3)	53(3)	-9(2)	18(2)	-7(2)
C(333)	277(3)	155(2)	6173(3)	49(1)	49(2)	36(2)	57(3)	-3(2)	2(2)	-16(2)
C(111)	-824(3)	4073(2)	5331(3)	52(1)	42(2)	51(3)	55(3)	6(2)	-8(2)	12(2)
C(123)	699(3)	2759(2)	7970(2)	39(1)	42(2)	34(2)	49(2)	5(2)	26(2)	4(2)
C(311)	2663(5)	-575(2)	6411(4)	81(2)	106(5)	29(3)	111(5)	5(3)	30(4)	4(3)
C(323)	4212(3)	499(2)	8419(3)	56(1)	61(3)	54(3)	42(2)	13(2)	-6(2)	12(2)
C(221)	5301(4)	1328(3)	5149(3)	65(2)	67(3)	71(4)	60(3)	-29(3)	20(2)	2(3)

Atom	Х	у	Z	U(eq)	U11	U22	U33	U23	U13	U12
C(133)	3232(3)	4564(2)	7224(3)	54(1)	45(2)	36(3)	78(3)	-22(2)	9(2)	-6(2)
C(312)	2673(5)	141(3)	5004(3)	83(2)	133(5)	75(4)	35(2)	-11(3)	9(3)	51(4)
C(231)	5283(4)	3673(2)	6658(4)	69(2)	70(3)	32(3)	110(5)	-11(3)	32(3)	-6(2)
C(222)	6664(4)	894(2)	6677(3)	69(2)	83(4)	46(3)	80(4)	10(3)	24(3)	20(3)
C(223)	7384(3)	1732(3)	5683(3)	61(1)	47(3)	82(4)	64(3)	-4(3)	32(2)	2(3)
C(211)	6823(5)	1615(3)	8557(3)	96(2)	99(5)	120(7)	55(3)	36(4)	-8(3)	17(4)
C(112)	-619(3)	2823(2)	5558(3)	58(1)	31(2)	40(3)	94(4)	-13(3)	0(2)	-4(2)
C(113)	454(4)	3416(3)	4490(3)	77(2)	52(3)	133(6)	44(3)	-36(3)	7(2)	-5(3)
C(232)	4815(4)	3068(3)	5114(3)	62(1)	57(3)	71(4)	55(3)	27(3)	8(2)	-2(3)
C(313)	4446(4)	78(3)	6335(4)	76(2)	54(3)	71(4)	100(5)	-27(4)	13(3)	14(3)
C(212)	6384(7)	2812(4)	8554(4)	155(5)	203(10)	167(10)	60(4)	-64(6)	-43(5)	39(8)
C(233)	6922(3)	3251(2)	5981(4)	72(2)	39(2)	64(4)	121(5)	29(4)	33(3)	-4(2)
C(213)	8063(5)	2410(6)	7861(4)	186(6)	50(4)	419(18)	75(4)	61(7)	-17(3)	-106(7)

7.8.3 Bond lengths [Å].

Atoms	Bond length	Atoms	Bond length	Atoms	Bond length
Sn(1)-P(1)	2.5795(10)	P(3)-Si(3)	2.3027(13)	Si(12)-C(121)	1.881(4)
Sn(1)-P(4)	2.6286(10)	Si(3)-Si(31)	2.3656(14)	Si(12)-C(123)	1.878(4)
Sn(1)-P(2)	2.6492(10)	Si(3)-Si(32)	2.3705(14)	Si(12)-C(122)	1.884(4)
P(4)-P(3)	2.2380(12)	Si(13)-C(133)	1.863(5)	Si(23)-C(233)	1.876(4)
P(4)-Si(2)	2.2843(13)	Si(13)-C(132)	1.874(5)	Si(23)-C(231)	1.875(5)
P(1)-P(2)	2.2233(13)	Si(13)-C(131)	1.890(4)	Si(23)-C(232)	1.881(5)
P(1)-Si(1)	2.2805(12)	Si(32)-C(322)	1.881(4)	Si(22)-C(223)	1.871(4)
Si(33)-C(333)	1.882(4)	Si(32)-C(323)	1.884(5)	Si(22)-C(221)	1.867(5)
Si(33)-C(331)	1.880(4)	Si(32)-C(321)	1.887(5)	Si(22)-C(222)	1.888(5)
Si(33)-C(332)	1.893(4)	Si(2)-Si(22)	2.3508(15)	Si(21)-C(213)	1.850(6)
Si(33)-Si(3)	2.3837(14)	Si(2)-Si(21)	2.3627(15)	Si(21)-C(212)	1.852(8)
Si(1)-Si(13)	2.3588(14)	Si(2)-Si(23)	2.3659(15)	Si(21)-C(211)	1.885(7)
Si(1)-Si(11)	2.3608(14)	Si(31)-C(312)	1.863(5)	Si(11)-C(111)	1.865(5)
Si(1)-Si(12)	2.3680(14)	Si(31)-C(313)	1.864(5)	Si(11)-C(112)	1.869(5)
P(3)-P(2)	2.2349(12)	Si(31)-C(311)	1.854(6)	Si(11)-C(113)	1.877(5)

7.8.4 Bond angles [deg].

Atoms	Angle	Atoms	Angle
P(1)-Sn(1)-P(4)	96.06(3)	C(321)-Si(32)-Si(3)	107.14(15)
P(1)-Sn(1)-P(2)	50.31(3)	P(4)-Si(2)-Si(22)	109.14(6)
P(4)-Sn(1)-P(2)	80.05(3)	P(4)-Si(2)-Si(21)	97.62(5)
P(3)-P(4)-Si(2)	114.13(5)	Si(22)-Si(2)-Si(21)	106.93(6)
P(3)-P(4)-Sn(1)	90.01(4)	P(4)-Si(2)-Si(23)	123.33(5)
Si(2)-P(4)-Sn(1)	107.93(4)	Si(22)-Si(2)-Si(23)	109.97(6)
P(2)-P(1)-Si(1)	96.21(5)	Si(21)-Si(2)-Si(23)	108.18(6)
P(2)-P(1)-Sn(1)	66.47(3)	C(312)-Si(31)-C(313)	107.9(3)
Si(1)-P(1)-Sn(1)	100.10(4)	C(312)-Si(31)-C(311)	108.8(3)
C(333)-Si(33)-C(331)	106.9(2)	C(313)-Si(31)-C(311)	106.9(3)
C(333)-Si(33)-C(332)	106.0(2)	C(312)-Si(31)-Si(3)	110.22(18)
C(331)-Si(33)-C(332)	109.3(2)	C(313)-Si(31)-Si(3)	110.81(19)
C(333)-Si(33)-Si(3)	109.40(15)	C(311)-Si(31)-Si(3)	112.0(2)
C(331)-Si(33)-Si(3)	111.71(13)	C(121)-Si(12)-C(123)	107.5(2)
C(332)-Si(33)-Si(3)	113.20(14)	C(121)-Si(12)-C(122)	108.1(2)
P(1)-Si(1)-Si(13)	104.78(5)	C(123)-Si(12)-C(122)	105.78(19)
P(1)-Si(1)-Si(11)	105.92(5)	C(121)-Si(12)-Si(1)	110.49(14)
Si(13)-Si(1)-Si(11)	110.73(6)	C(123)-Si(12)-Si(1)	117.06(13)
P(1)-Si(1)-Si(12)	120.26(5)	C(122)-Si(12)-Si(1)	107.51(14)
Si(13)-Si(1)-Si(12)	106.80(5)	C(233)-Si(23)-C(231)	106.3(3)
Si(11)-Si(1)-Si(12)	108.22(5)	C(233)-Si(23)-C(232)	108.0(3)

Atoms	Angle	Atoms	Angle
P(2)-P(3)-P(4)	98.72(5)	C(231)-Si(23)-C(232)	107.2(3)
P(2)-P(3)-Si(3)	95.46(5)	C(233)-Si(23)-Si(2)	109.85(18)
P(4)-P(3)-Si(3)	102.65(5)	C(231)-Si(23)-Si(2)	113.76(19)
P(3)-Si(3)-Si(31)	108.24(5)	C(232)-Si(23)-Si(2)	111.44(18)
P(3)-Si(3)-Si(32)	116.86(5)	C(223)-Si(22)-C(221)	108.0(2)
Si(31)-Si(3)-Si(32)	107.67(5)	C(223)-Si(22)-C(222)	105.5(3)
P(3)-Si(3)-Si(33)	107.33(5)	C(221)-Si(22)-C(222)	111.7(3)
Si(31)-Si(3)-Si(33)	108.37(5)	C(223)-Si(22)-Si(2)	113.16(19)
Si(32)-Si(3)-Si(33)	108.12(5)	C(221)-Si(22)-Si(2)	109.56(17)
P(1)-P(2)-P(3)	96.56(5)	C(222)-Si(22)-Si(2)	108.81(19)
P(1)-P(2)-Sn(1)	63.22(3)	C(213)-Si(21)-C(212)	111.0(6)
P(3)-P(2)-Sn(1)	89.55(4)	C(213)-Si(21)-C(211)	108.3(4)
C(133)-Si(13)-C(132)	107.7(3)	C(212)-Si(21)-C(211)	103.9(4)
C(133)-Si(13)-C(131)	108.0(2)	C(213)-Si(21)-Si(2)	112.0(2)
C(132)-Si(13)-C(131)	109.4(2)	C(212)-Si(21)-Si(2)	109.0(2)
C(133)-Si(13)-Si(1)	111.13(17)	C(211)-Si(21)-Si(2)	112.3(2)
C(132)-Si(13)-Si(1)	108.48(17)	C(111)-Si(11)-C(112)	108.8(2)
C(131)-Si(13)-Si(1)	112.02(16)	C(111)-Si(11)-C(113)	107.7(3)
C(322)-Si(32)-C(323)	107.9(2)	C(112)-Si(11)-C(113)	107.6(3)
C(322)-Si(32)-C(321)	108.0(2)	C(111)-Si(11)-Si(1)	112.75(16)
C(323)-Si(32)-C(321)	108.0(3)	C(112)-Si(11)-Si(1)	110.13(17)
C(322)-Si(32)-Si(3)	112.46(14)	C(113)-Si(11)-Si(1)	109.68(16)
C(323)-Si(32)-Si(3)	113.10(16)		

7.9 Crystallographic data for Hyp₄P₄Pb₄

7.9.1 Crystal data and structure refinement

Empirical formula	Hyp ₄ P ₄ Pb ₄ · 1.5Cyclo-pentane
Formula weight	2048.50
Temperature	293(2) К
Wavelength	0.71073 Å
Crystal system, space group	hexagonal, $P\overline{3}c1$
Unit cell dimensions	a = 16.201(2) Å alpha = 90 deg. b = 16.201(2) Å beta = 90 deg. c = 37.756(8) Å gamma = 120 deg.
Volume	8582(2) Å ³
Z, Calculated density	4, 1.585 g/cm^3
Absorption coefficient	8.146 mm ⁻¹
F(000)	3984
Theta range for data collection	2.16 to 22.50 deg.
Limiting indices	0<=h<=15, 0<=k<=15, -40<=l<=40
Reflections collected / unique	7522 / 3770 [R(int) = 0.1147]
Completeness to theta = 22.50	99.9 %
Refinement method	Full-matrix least-squares on $ extsf{F}^2$
Data / restraints / parameters	3770 / 30 / 213
Goodness-of-fit on F^2	1.101
Final R indices [I>2sigma(I)]	R1 = 0.0718, $wR2 = 0.1449$
R indices (all data)	R1 = 0.1397, wR2 = 0.1709
Largest diff. peak and hole	2.565 and -1.452 e.Å ⁻³

7.9.2 Atomic coordinates (x 10⁴), equivalent isotropic displacement parameters (Å ² x 10³) and Anisotropic displacement parameters (Å ² x 10³). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U11 + ... + 2hka^*b^*U12]$

Atom	Х	у	Z	U(eq)	U11	U22	U33	U23	U13	U12
Pb(1)	3333	6667	3282(1)	35(1)	39(1)	39(1)	27(1)	0	0	20(1)
Pb(2)	4325(1)	5974(1)	4184(1)	38(1)	39(1)	40(1)	40(1)	3(1)	-1(1)	23(1)
P(1)	2729(4)	5223(3)	3763(1)	26(1)	31(3)	20(3)	27(3)	-4(2)	1(3)	12(2)
P(2)	3333	6667	4543(2)	25(2)	28(3)	28(3)	18(4)	0	0	14(2)
Si(2)	3333	6667	5147(2)	22(2)	28(3)	28(3)	10(4)	0	0	14(2)
Si(21)	2190(4)	7056(4)	5343(2)	40(2)	37(3)	48(4)	39(4)	-15(3)	-1(3)	26(3)
Si(1)	2124(4)	3712(4)	3565(2)	27(1)	37(3)	21(3)	27(3)	-3(3)	2(3)	16(3)
Si(11)	1586(5)	2695(4)	4057(2)	41(2)	59(4)	26(3)	34(4)	6(3)	2(3)	19(3)
Si(12)	885(4)	3306(4)	3164(2)	39(2)	34(3)	44(4)	28(4)	-7(3)	-7(3)	10(3)
Si(13)	3398(4)	3647(4)	3287(2)	42(2)	42(4)	43(4)	47(5)	-1(3)	9(3)	27(3)
C(131)	4013(15)	4657(16)	2982(6)	53(7)	39(14)	70(17)	42(16)	-4(14)	14(12)	22(13)
C(211)	968(14)	6149(14)	5202(7)	46(7)	30(12)	46(14)	70(18)	-29(13)	-5(12)	25(11)
C(121)	-57(15)	3500(18)	3351(6)	55(7)	43(14)	84(19)	33(16)	20(14)	18(12)	28(14)
C(122)	330(16)	2062(18)	3056(8)	74(9)	35(14)	80(20)	90(20)	-22(18)	-40(15)	12(14)
C(132)	2990(20)	2504(19)	3042(9)	88(10)	100(20)	90(20)	100(30)	-30(20)	0(20)	58(19)
C(123)	1358(15)	4034(18)	2751(6)	51(7)	42(13)	90(19)	25(14)	-1(13)	-13(11)	36(14)
C(111)	460(15)	2610(16)	4221(6)	42(6)	67(16)	56(15)	15(12)	1(11)	15(12)	39(13)
C(212)	2506(17)	8250(17)	5160(7)	63(8)	76(18)	70(17)	70(20)	-27(15)	-3(15)	56(15)
C(112)	1304(18)	1483(14)	3912(8)	76(10)	70(19)	17(12)	120(30)	0(15)	18(19)	5(13)
C(113)	2532(18)	3162(17)	4404(8)	81(10)	58(17)	47(16)	100(30)	24(17)	-6(18)	0(14)
C(213)	2140(20)	7010(30)	5850(7)	107(13)	110(30)	190(40)	60(20)	-90(20)	-30(19)	110(30)
C(133)	4300(19)	3810(20)	3646(7)	78(10)	100(20)	130(30)	70(20)	23(19)	37(18)	110(20)
C(021)	2920(40)	7240(30)	6950(20)	57(11)						
C(022)	2400(30)	6170(30)	6920(17)	57(11)						
C(023)	3130(50)	5850(40)	6960(30)	57(11)						
C(024)	4020(40)	6680(50)	7120(20)	57(11)						
C(025)	3920(40)	7560(30)	7088(19)	57(11)						
C(031)	600(60)	-60(50)	4930(20)	40(15)						
C(032)	-460(50)	-780(70)	4967(19)	40(15)						
C(033)	-590(40)	-1330(60)	5310(20)	40(15)						
C(034)	380(50)	-940(60)	5481(18)	40(15)						
C(035)	1120(40)	-320(70)	5200(20)	40(15)						

7.9.3 Bond lengths [Å].

Atoms	Bond length	Atoms	Bond length	Atoms	Bond length
Pb(1)-P(1)#1	2.729(5)	Si(2)-Si(21)#2	2.354(6)	Si(13)-C(131)	1.84(2)
Pb(1)-P(1)#2	2.729(5)	Si(21)-C(211)	1.86(2)	Si(13)-C(132)	1.87(3)
Pb(1)-P(1)	2.729(5)	Si(21)-C(212)	1.87(3)	Si(13)-C(133)	1.91(3)
Pb(2)-P(1)#2	2.720(5)	Si(21)-C(213)	1.91(3)	C(021)-C(025)	1.518(5)
Pb(2)-P(2)	2.734(4)	Si(1)-Si(12)	2.330(8)	C(021)-C(022)	1.519(5)
Pb(2)-P(1)	2.746(5)	Si(1)-Si(11)	2.344(8)	C(022)-C(023)	1.521(5)
P(1)-Si(1)	2.261(7)	Si(1)-Si(13)	2.363(8)	C(023)-C(024)	1.520(5)
P(1)-Pb(2)#1	2.720(5)	Si(11)-C(112)	1.86(2)	C(024)-C(025)	1.518(5)
P(2)-Si(2)	2.282(12)	Si(11)-C(111)	1.86(2)	C(031)-C(032)	1.519(5)
P(2)-Pb(2)#1	2.734(4)	Si(11)-C(113)	1.87(3)	C(031)-C(035)	1.520(5)
P(2)-Pb(2)#2	2.734(4)	Si(12)-C(122)	1.79(2)	C(032)-C(033)	1.517(5)
Si(2)-Si(21)	2.354(6)	Si(12)-C(121)	1.85(2)	C(033)-C(034)	1.519(5)
Si(2)-Si(21)#1	2.354(6)	Si(12)-C(123)	1.87(2)	C(034)-C(035)	1.522(5)

7.9.4 Bond angles [deg].

Atoms	Angla	Atoms	Angla	
Atoms	Aligie	Atoms	Aligie	
P(1)#1 Pb(1) P(1)#2	90 46(15)	$S_{1}(12)$ $S_{1}(1)$ $S_{1}(11)$	110 5(2)	
$\Gamma(1)$ #1- Γ U(1)- $\Gamma(1)$ #2 D(1)#1 Db(1) D(1)	80.40(13)	D(1) S(1) S(1)	110.3(3) 106.2(2)	
$P(1)$ $H^{1-r} O(1) - P(1)$ $P(1)$ $H^{2} P(1) P(1)$	80.40(15)	F(1)-SI(1)-SI(13) F(12) $F(1)$ $F(12)$	100.3(3) 110 4(2)	
P(1)#2 Pb(2) P(2)	80.40(13)	Si(12)-Si(1)-Si(13) Si(11) Si(1) Si(12)	110.4(3) 110.2(2)	
P(1)#2 Pb(2) P(1)	82.01(10)	C(112) S(11) - SI(13)	110.2(3) 107.8(11)	
P(1)=P(2) $P(2)$ $P(1)$	80.3(2) 81.54(16)	C(112)-SI(11)-C(111) C(112) Si(11) $C(113)$	107.0(11) 110 7(13)	
r(2)-r(1) S;(1) D(1) Db(2)#1	110.8(2)	C(112)-SI(11)-C(113) C(111) S(11) $C(112)$	110.7(13) 111.8(12)	
SI(1) - F(1) - FU(2) = 1 Si(1) D(1) Db(1)	119.0(2) 118.0(2)	C(112) S(11) - C(113) C(112) S(11) S(1)	111.0(12) 108 5(10)	
$D_{b}(2) \# 1 D(1) D_{b}(1)$	110.9(2) 00.20(16)	C(112)-SI(11)-SI(1) C(111) Si(11) Si(1)	108.3(10) 108.8(7)	
FU(2)#1-F(1)-FU(1) S;(1) D(1) Db(2)	$\frac{33.23(10)}{118.2(2)}$	C(112) S(11) S(1)	100.0(7) 100.2(0)	
SI(1)-F(1)-FU(2) Dh(2) # 1 D(1) Dh(2)	110.3(2) 07.50(16)	C(113)- $SI(11)$ - $SI(1)C(122)$ $S(12)$ $C(121)$	109.3(9) 106.6(12)	
PU(2) = P(1) P(1) P(2)	97.39(10)	C(122)-SI(12)-C(121) C(122) Si(12) $C(123)$	100.0(12) 100.6(12)	
FU(1)-F(1)-FU(2) S;(2) D(2) Db(2)#1	110.72(16)	C(122)-SI(12)-C(123) C(121) Si(12) $C(123)$	109.0(12) 108.0(11)	
SI(2) - F(2) - F(2) + F(2) + F(2) = SI(2) - F(2) - F(2) + F(2)	119.72(10) 110.72(16)	C(121)-SI(12)-C(123) C(122) Si(12) Si(1)	100.9(11) 110.0(8)	
SI(2) = I(2) = I(0(2) + 2) Db(2) + 1 D(2) Db(2) + 2	119.72(10) 07.5(2)	C(122)-SI(12)-SI(1) C(121) S;(12) S;(1)	110.0(8) 111.0(8)	
FU(2)#1-F(2)-FU(2)#2 S:(2) D(2) Db(2)	97.3(2) 110.72(16)	C(121)-SI(12)-SI(1) C(122) Si(12) Si(1)	111.9(0) 100.8(7)	
SI(2) - F(2) - FU(2) Dh(2) + 1 D(2) Dh(2)	119.72(10) 07.5(2)	C(123)-SI(12)-SI(1) C(121) S:(12) $C(122)$	109.0(7) 100.7(14)	
PD(2) #1 - P(2) - PD(2) Pb(2) #2 P(2) Pb(2)	97.3(2)	C(131)-SI(13)- $C(132)C(131)$ Si(13) $C(132)$	109.7(14) 106.6(12)	
FU(2)#2-F(2)-FU(2) P(2) Si(2) Si(21)	97.3(2) 109.2(2)	C(131)- $SI(13)$ - $C(133)$	100.0(12) 110.8(12)	
P(2) - SI(2) - SI(21) P(2) - Si(2) - Si(21) + 1	108.3(3) 108.2(2)	C(132)-SI(13)-C(133) C(131) Si(13) Si(1)	110.6(12) 100.6(8)	
$\Gamma(2)$ -SI(2)-SI(21)#1 S:(21) S:(2) S:(21)#1	100.3(3) 110.6(2)	C(131)- $SI(13)$ - $SI(1)C(122)$ $SI(12)$ $SI(1)$	109.0(8)	
SI(21)-SI(2)-SI(21)#1 D(2) Si(2) Si(21)#2	110.0(2) 108.2(2)	C(132)-SI(13)-SI(1) C(122) S:(12) S:(1)	112.2(9) 107.8(9)	
P(2)-SI(2)-SI(21)#2	108.3(3) 110.6(2)	C(155)-SI(15)-SI(1) C(025)-C(021)-C(022)	107.0(0) 107.7(4)	
SI(21)-SI(2)-SI(21)#2 SI(21)#1 SI(2) SI(21)#2	110.0(2) 110.6(2)	C(023)- $C(021)$ - $C(022)$	107.7(4) 107.2(6)	
SI(21)#1-SI(2)-SI(21)#2	110.0(2) 110.1(11)	C(021)- $C(022)$ - $C(023)$	107.3(0) 107.1(7)	
C(211)-SI(21)- $C(212)$	110.1(11) 104.2(12)	C(024)- $C(023)$ - $C(022)$	10/.1(/) 107.5(()	
C(211)-SI(21)-C(213)	104.3(13) 112.1(12)	C(025)-C(024)-C(025)	107.3(0) 107.8(4)	
C(212)-SI(21)-C(213)	113.1(13) 111.0(7)	C(021)- $C(025)$ - $C(024)$	107.8(4)	
C(211)-SI(21)-SI(2)	111.0(7) 109.5(9)	C(032)- $C(031)$ - $C(035)$	107.0(8) 107.6(4)	
C(212)-SI(21)-SI(2)	108.5(8)	C(033)- $C(032)$ - $C(031)$	107.0(4)	
U(213)-SI(21)-SI(2)	109.3(9)	C(034)- $C(035)$ - $C(032)$	107.7(5) 106.0(7)	
P(1)-S1(1)-S1(12)	111.5(3)	C(033)-C(034)-C(035)	106.9(7)	
P(1)-S1(1)-S1(11)	107.8(3)	C(031)-C(035)-C(034)	106.6(9)	

Symmetry transformations used to generate equivalent atoms: #1 -x+y,-x+1,z #2 -y+1,x-y+1,z

7.10 Crystallographic data for Hyp₄P₄Sn₄

7.10.1 Crystal data and structure refinement

Empirical formula	Hyp ₄ P ₄ Sn ₄ ·1.5benzene
Formula weight	1706.47
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	hexagonal, P321
Unit cell dimensions	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
Volume	4260.49(14) Å ³
Z, Calculated density	2, 1.330 g/cm^3
Absorption coefficient	1.485 mm^{-1}
F(000)	1742
Theta range for data collection	2.50 to 28.31 deg.

Limiting indices	-21<=h<=21, -20<=k<=21, -24<=1<=22
Reflections collected / unique	31724 / 7064 [R(int) = 0.0328]
Completeness to theta = 28.31	99.6 %
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	7064 / 22 / 230
Goodness-of-fit on F^2	1.100
Final R indices [I>2sigma(I)]	R1 = 0.0213, $wR2 = 0.0541$
R indices (all data)	R1 = 0.0237, $wR2 = 0.0561$
Absolute structure parameter	-0.032(11)
Largest diff. peak and hole	0.735 and -0.303 e.Å $^{-3}$

7.10.2 Atomic coordinates (x 10⁴), equivalent isotropic displacement parameters (Å² x 10³) and Anisotropic displacement parameters (Å² x 10³). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U11 + ... + 2hka^*b^*U12]$

Atom	Х	у	Z	U(eq)	U11	U22	U33	U23	U13	U12
Sn(1)	3333	6667	1570(1)	34(1)	36(1)	36(1)	30(1)	0	0	18(1)
Sn(2)	1723(1)	5741(1)	3341(1)	32(1)	29(1)	32(1)	35(1)	1(1)	1(1)	14(1)
P(1)	3333	6667	4078(1)	28(1)	30(1)	30(1)	24(1)	0	0	15(1)
P(2)	2729(1)	5252(1)	2512(1)	30(1)	31(1)	26(1)	32(1)	-3(1)	-1(1)	14(1)
Si(1)	3333	6667	5299(1)	26(1)	27(1)	27(1)	25(1)	0	0	13(1)
Si(1A)	3609(1)	8139(1)	5731(1)	39(1)	51(1)	34(1)	34(1)	-8(1)	-4(1)	22(1)
C(111)	3294(5)	8048(4)	6711(2)	58(1)	69(4)	65(3)	40(2)	-17(2)	0(2)	33(3)
C(112)	2915(6)	8580(4)	5231(3)	61(1)	93(4)	58(2)	57(3)	-6(2)	-8(2)	56(3)
C(113)	4900(3)	9013(3)	5637(2)	63(1)	62(2)	37(2)	66(2)	-9(2)	1(2)	7(2)
Si(1B)	2726(5)	7613(5)	5728(3)	37(2)	48(4)	49(4)	26(3)	8(3)	12(3)	34(4)
C(114)	3000(30)	7910(30)	6708(11)	40(11)						
C(115)	3170(40)	8740(20)	5230(30)	80(20)						
C(116)	1400(12)	6900(20)	5675(16)	52(7)						
Si(2)	2126(1)	3735(1)	2150(1)	30(1)	30(1)	27(1)	33(1)	-5(1)	-2(1)	14(1)
Si(21)	1579(1)	2751(1)	3169(1)	39(1)	40(1)	33(1)	42(1)	2(1)	3(1)	17(1)
C(211)	423(2)	2626(2)	3476(2)	54(1)	44(2)	56(2)	57(2)	10(1)	14(1)	21(1)
C(212)	1397(3)	1544(2)	2953(2)	66(1)	93(3)	40(2)	72(2)	10(2)	14(2)	39(2)
C(213)	2475(2)	3294(3)	3909(2)	62(1)	51(2)	76(2)	44(2)	6(2)	-2(1)	20(2)
Si(22)	3379(1)	3647(1)	1598(1)	39(1)	40(1)	42(1)	40(1)	-8(1)	0(1)	24(1)
C(221)	4005(3)	4671(3)	956(2)	64(1)	51(2)	74(2)	68(2)	14(2)	20(2)	32(2)
C(222)	2928(3)	2516(3)	1084(2)	69(1)	71(2)	66(2)	76(2)	-32(2)	-1(2)	39(2)
C(223)	4227(2)	3700(3)	2299(2)	59(1)	56(2)	85(2)	55(2)	-10(2)	-8(1)	49(2)
Si(23)	876(1)	3325(1)	1335(1)	42(1)	34(1)	46(1)	41(1)	-9(1)	-7(1)	17(1)
C(231)	-51(3)	3547(3)	1730(2)	68(1)	54(2)	106(3)	61(2)	9(2)	3(2)	52(2)
C(232)	1354(2)	4028(3)	486(2)	58(1)	52(2)	74(2)	44(2)	-3(1)	-9(1)	29(2)
C(233)	284(3)	2023(3)	1117(2)	73(1)	55(2)	52(2)	88(3)	-22(2)	-24(2)	9(2)
C(01)	487(3)	971(3)	5001(2)	73(1)	92(3)	62(2)	55(2)	2(2)	7(2)	32(2)
C(02)	2923(5)	5726(4)	-979(4)	121(2)	95(4)	58(3)	207(7)	9(3)	34(4)	37(3)
C(03)	6251(5)	3863(4)	958(4)	114(2)	91(4)	79(3)	191(6)	-1(4)	-4(4)	57(3)

7.10.3 Bond lengths [Å].

Atoms	Bond length	Atoms	Bond length	Atoms	Bond length
Sn(1)-P(2)#1	2.6565(6)	Si(1)- $Si(1A)$	2.3471(8)	Si(21)-C(212)	1.878(3)
Sn(1)-P(2)#2	2.6565(6)	Si(1)-Si(1A)#2	2.3471(8)	Si(22)-C(222)	1.867(3)
Sn(1)-P(2)	2.6565(6)	Si(1)-Si(1A)#1	2.3471(8)	Si(22)-C(223)	1.868(3)
Sn(2)-P(2)	2.6446(6)	Si(1A)-C(112)	1.863(5)	Si(22)-C(221)	1.881(4)

Sn(2)-P(2)#1	2.6508(6)	Si(1A)-C(113)	1.865(4)	Si(23)-C(231)	1.870(4)
Sn(2)-P(1)	2.6576(5)	Si(1A)-C(111)	1.876(4)	Si(23)-C(232)	1.873(3)
P(1)-Si(1)	2.2676(12)	Si(1B)-C(115)	1.848(18)	Si(23)-C(233)	1.882(4)
P(1)-Sn(2)#1	2.6576(5)	Si(1B)-C(116)	1.874(16)	C(01)-C(01)#3	1.363(9)
P(1)-Sn(2)#2	2.6576(5)	Si(1B)-C(114)	1.877(16)	C(01)-C(01)#4	1.374(10)
P(2)-Si(2)	2.2565(8)	Si(2)-Si(23)	2.3479(9)	C(02)-C(03)#5	1.329(8)
P(2)-Sn(2)#2	2.6508(6)	Si(2)-Si(21)	2.3489(9)	C(02)-C(03)#6	1.337(8)
Si(1)-Si(1B)	2.346(6)	Si(2)-Si(22)	2.3500(9)	C(03)-C(02)#5	1.329(8)
Si(1)-Si(1B)#2	2.346(6)	Si(21)-C(213)	1.872(3)	C(03)-C(02)#7	1.337(8)
Si(1)-Si(1B)#1	2.346(6)	Si(21)-C(211)	1.876(3)		

7.10.4 Bond angles [deg].

Atoms	Angle		Atoms		Angle
P(2)#1-Sn(1)-P(2)#2	81.427(18)		C(112)-Si(1A)-C	C(113)	109.2(3)
P(2)#1-Sn(1)-P(2)	81.427(18)		C(112)-Si(1A)-C	C(111)	108.6(2)
P(2)#2-Sn(1)-P(2)	81.427(18)		C(113)-Si(1A)-C	C(111)	108.1(2)
P(2)-Sn(2)-P(2)#1	81.75(3)		C(112)-Si(1A)-S	Si(1)	112.33(18)
P(2)-Sn(2)-P(1)	83.487(17)		C(113)-Si(1A)-S	Si(1)	108.32(13)
P(2)#1-Sn(2)-P(1)	83.369(17)		C(111)-Si(1A)-S	Si(1)	110.24(16)
Si(1)-P(1)-Sn(2)	120.973(16)	C(115)-Si(1B)-C	C(116)	110.3(18)
Si(1)-P(1)-Sn(2)#1	120.973(16)	C(115)-Si(1B)-C	C(114)	108.2(17)
Sn(2)-P(1)-Sn(2)#1	95.90(2)	,	C(116)-Si(1B)-C	C(114)	105.2(13)
Si(1)-P(1)-Sn(2)#2	120.973(16))	C(115)-Si(1B)-S	Si(1)	113.1(16)
Sn(2)-P(1)-Sn(2)#2	95.90(2)	,	C(116)-Si(1B)-S	Si(1)	107.9(9)
Sn(2)#1-P(1)-Sn(2)#2	95.90(2)		C(114)-Si(1B)-S	Si(1)	111.8(12)
Si(2)-P(2)-Sn(2)	120.43(3)		P(2)-Si(2)-Si(23		110.13(4)
Si(2)-P(2)-Sn(2)#2	117.45(3)		P(2)-Si(2)-Si(21	ý	108.39(3)
Sn(2)-P(2)-Sn(2)#2	96.372(18)		Si(23)-Si(2)-Si(2)	21)	110.30(4)
Si(2)-P(2)-Sn(1)	121.51(3)		P(2)-Si(2)-Si(22	.)	106.28(3)
Sn(2)-P(2)-Sn(1)	97.993(19)		Si(23)-Si(2)-Si(2)	22)	110.90(4)
Sn(2)#2-P(2)-Sn(1)	97.84(2)		Si(21)-Si(2)-Si(2)	22)	110.73(4)
P(1)-Si(1)-Si(1B)	109.84(15)		C(213)-Si(21)-C	C(211)	109.36(17)
P(1)-Si(1)-Si(1B)#2	109.84(15)		C(213)-Si(21)-C	(212)	109.19(19)
Si(1B)-Si(1)-Si(1B)#2	109.10(15)		C(211)-Si(21)-C	C(212)	109.05(18)
P(1)-Si(1)-Si(1B)#1	109.84(15)		C(213)-Si(21)-S	i(2)	109.20(11)
Si(1B)-Si(1)-Si(1B)#1	109.10(15)		C(211)-Si(21)-S	i(2)	109.63(11)
Si(1B)#2-Si(1)-Si(1B)	#1 109.10(15)		C(212)-Si(21)-S	i(2)	110.40(12)
P(1)-Si(1)-Si(1A)	109.98(3)		C(222)-Si(22)-C	2(223)	108.62(18)
Si(1B)-Si(1)-Si(1A)	30.95(19)		C(222)-Si(22)-C	(221)	108.74(19)
Si(1B)#2-Si(1)-Si(1A)) 132.18(18)		C(223)-Si(22)-C	2(221)	109.83(18)
Si(1B)#1-Si(1)-Si(1A)	80.68(18)		C(222)-Si(22)-S	i(2)	110.96(13)
P(1)-Si(1)-Si(1A)#2	109.98(3)		C(223)-Si(22)-S	i(2)	109.75(11)
Si(1B)-Si(1)-Si(1A)#2	2 80.68(18)		C(221)-Si(22)-S	i(2)	108.93(12)
Si(1B)#2-Si(1)-Si(1A))#2 30.95(19)		C(231)-Si(23)-C	2(232)	109.98(17)
Si(1B)#1-Si(1)-Si(1A)	#2 132.18(18)		C(231)-Si(23)-C	2(233)	107.1(2)
Si(1A)-Si(1)-Si(1A)#2	2 108.96(3)		C(232)-Si(23)-C	2(233)	109.22(18)
P(1)-Si(1)-Si(1A)#1	109.98(3)		C(231)-Si(23)-S	i(2)	111.13(13)
Si(1B)-Si(1)-Si(1A)#1	132.18(18)		C(232)-Si(23)-S	i(2)	109.43(11)
Si(1B)#2-Si(1)-Si(1A)	#1 80.68(18)		C(233)-Si(23)-S	i(2)	109.96(13)
Si(1B)#1-Si(1)-Si(1A))#1 30.95(19)		C(01)#3-C(01)-	C(01)#4	120.000(4)
Si(1A)-Si(1)-Si(1A)#1	108.96(3)		C(03)#5-C(02)-0	C(03)#6	120.5(6)
Si(1A)#2-Si(1)-Si(1A)#1 108.96(3)		C(02)#5-C(03)-	C(02)#7	119.4(6)
Symmetry tra	nsformations	used to	o generate	equivale	nt toms:
#1 -x+	y,-x+1,z	#2 -3	/+1,x-y+1,z	#3 y,z	ĸ,-z+1
#4 -x,	-x+y,-z+1	#5 y	, x , -z	#6 x-y,-	y+1,-z
#7 x-y	+1,-y+1,-z				

7.11 Crystallographic data for (Hyp₂Pb·PH₂)Li·Et₂O(DME)

7.11.1 Crystal data and structure refinement

Empirical formula	$Hyp_2PbP(H_2)Li \cdot Et_2O(DME)$							
Formula weight	906.69							
Temperature	173(2) K							
Wavelength	0.71073 Å							
Crystal system, space group	triclinic, P1							
Unit cell dimensions	a = 13.084(2) Å alpha = 88.150(17) deg. b = 13.334(3) Å beta = 79.516(12) deg. c = 15.404(3) Å gamma = 68.553(15) deg.							
Volume	2457.8(9) Å ³							
Z, Calculated density	2, 1.225 g/cm^3							
Absorption coefficient	3.681 mm ⁻¹							
F(000)	936							
Theta range for data collection	2.08 to 25.00 deg.							
Limiting indices	-7<=h<=15, -15<=k<=15, -18<=l<=18							
Reflections collected / unique	8968 / 8565 [R(int) = 0.0532]							
Completeness to theta = 25.00	98.9 %							
Refinement method	Full-matrix least-squares on F^2							
Data / restraints / parameters	8565 / 42 / 409							
Goodness-of-fit on F^2	0.733							
Final R indices [I>2sigma(I)]	R1 = 0.0333, $wR2 = 0.0587$							
R indices (all data)	R1 = 0.0594, wR2 = 0.0624							
Largest diff. peak and hole	0.865 and -0.666 e.Å ⁻³							

7.11.2 Atomic coordinates (x 10⁴), equivalent isotropic displacement parameters (Å² x 10³) and Anisotropic displacement parameters (Å² x 10³). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U11 + ... + 2hka^*b^*U12]$

Atom	X	y	Z	U(eq)	U11	U22	U33	U23	U13	U12
		č								
Pb	7822(1)	6721(1)	6714(1)	27(1)	28(1)	27(1)	26(1)	1(1)	-4(1)	-10(1)
Si(1)	5876(1)	6374(1)	7392(1)	25(1)	25(1)	27(1)	24(1)	5(1)	-8(1)	-10(1)
Si(2)	7788(1)	8736(1)	7110(1)	27(1)	30(1)	26(1)	27(1)	3(1)	-6(1)	-13(1)
Р	8906(1)	5744(1)	8067(1)	40(1)	40(1)	34(1)	50(1)	9(1)	-22(1)	-12(1)
Si(13)	4758(1)	6983(1)	8778(1)	36(1)	38(1)	45(1)	25(1)	0(1)	-2(1)	-16(1)
Si(23)	6986(1)	9830(1)	6002(1)	38(1)	46(1)	28(1)	43(1)	10(1)	-19(1)	-14(1)
Si(12)	4676(1)	6931(1)	6352(1)	36(1)	31(1)	45(1)	31(1)	5(1)	-11(1)	-11(1)
Si(22)	9707(1)	8474(1)	6784(1)	38(1)	32(1)	50(1)	37(1)	5(1)	-7(1)	-21(1)
Si(21)	7065(1)	9734(1)	8459(1)	38(1)	46(1)	36(1)	33(1)	-4(1)	1(1)	-21(1)
Si(11)	6503(1)	4486(1)	7286(1)	33(1)	31(1)	29(1)	43(1)	3(1)	-10(1)	-14(1)
O(3)	11007(4)	3525(3)	6757(3)	58(1)	46(3)	72(3)	47(3)	-1(2)	-6(2)	-11(3)
O(1)	11948(4)	3818(4)	8074(3)	62(1)	49(3)	85(3)	63(3)	9(3)	-16(3)	-33(3)
C(213)	5577(5)	10689(5)	8534(4)	53(2)	54(5)	37(4)	55(4)	-9(3)	7(4)	-7(3)
C(123)	3577(5)	8301(4)	6634(4)	49(2)	34(4)	54(4)	53(4)	15(3)	-11(3)	-10(3)
C(232)	7175(5)	11174(4)	5952(4)	56(2)	71(5)	35(4)	68(4)	19(3)	-24(4)	-22(4)
C(113)	5369(5)	3928(5)	7608(4)	52(2)	44(4)	53(4)	64(4)	6(3)	-7(3)	-26(3)
C(212)	7150(5)	8810(5)	9413(3)	54(2)	66(5)	57(4)	31(3)	3(3)	-4(3)	-19(4)
C(122)	3879(5)	6022(5)	6245(4)	54(2)	47(4)	71(5)	53(4)	1(3)	-30(3)	-23(4)
C(121)	5512(5)	6944(5)	5223(3)	52(2)	46(4)	70(5)	32(3)	13(3)	-12(3)	-11(4)
C(112)	7172(5)	4028(5)	6104(4)	58(2)	58(5)	43(4)	69(5)	-16(3)	6(4)	-23(4)

Atom	Х	У	Z	U(eq)	U11	U22	U33	U23	U13	U12
C(222)	10429(6)	7996(6)	7755(4)	69(2)	59(5)	95(6)	70(5)	30(4)	-31(4)	-41(5)
C(133)	4297(6)	8484(5)	8896(4)	62(2)	65(5)	60(5)	58(4)	-12(4)	-6(4)	-22(4)
C(111)	7558(6)	3791(5)	7993(5)	69(2)	68(5)	44(4)	105(6)	20(4)	-45(5)	-21(4)
C(132)	5536(6)	6387(5)	9699(4)	64(2)	77(5)	88(6)	33(4)	14(4)	-13(4)	-37(5)
C(131)	3447(5)	6661(5)	8978(4)	57(2)	45(4)	72(5)	54(4)	2(4)	4(3)	-28(4)
C(231)	7611(6)	9120(5)	4891(4)	59(2)	94(6)	41(4)	46(4)	18(3)	-26(4)	-24(4)
C(221)	9994(5)	9721(5)	6430(4)	62(2)	56(5)	83(5)	61(4)	24(4)	-12(4)	-43(4)
C(211)	7865(6)	10617(5)	8631(4)	71(2)	95(6)	79(5)	58(4)	-21(4)	9(4)	-61(5)
C(41)	9678(6)	2608(6)	9542(4)	65(2)	57(5)	86(6)	51(4)	24(4)	-15(4)	-24(4)
C(223)	10472(5)	7462(5)	5859(4)	73(2)	45(5)	77(5)	95(6)	-23(4)	-6(4)	-20(4)
C(233)	5446(5)	10123(6)	6169(4)	67(2)	55(5)	88(6)	71(5)	20(4)	-37(4)	-32(4)
C(72)	10319(6)	3734(6)	6086(4)	83(3)	76(6)	102(6)	40(4)	-11(4)	-14(4)	4(5)
C(42)	9366(6)	3669(6)	10016(4)	76(2)	80(6)	104(7)	57(5)	19(5)	-17(4)	-47(5)
C(62)	12581(6)	3489(7)	8753(5)	92(3)	74(6)	135(8)	90(6)	23(6)	-43(5)	-55(6)
C(71)	11870(7)	3917(8)	6556(5)	102(3)	101(7)	180(10)	54(5)	11(6)	2(5)	-95(8)
C(61)	12624(7)	3503(9)	7221(6)	120(4)	63(6)	229(12)	97(7)	-4(8)	-6(6)	-89(8)
Li	10434(8)	3810(9)	8063(6)	46(3)	30(6)	66(7)	38(6)	2(5)	-6(5)	-15(5)
O(2)	10276(4)	2610(3)	8673(3)	60(1)	49(3)	51(3)	81(3)	7(3)	-14(3)	-19(2)
C(51A)	10547(8)	1687(7)	8108(7)	54(3)	55(7)	36(6)	73(7)	4(5)	-27(6)	-14(5)
C(52A)	11483(13)	758(9)	8367(11)	125(7)	124(13)	54(8)	169(16)	-22(9)	-62(12)	22(9)
C(51B)	10790(40)	1475(8)	8500(30)	100(14)	80(20)	26(18)	170(30)	10(20)	-50(30)	22(18)
C(52B)	11740(30)	1170(30)	7730(30)	111(14)	110(30)	70(20)	150(30)	50(20)	-60(30)	-10(20)

7.11.3 Bond lengths [Å].

Atoms	Bond length	Atoms	Bond length	Atoms	Bond length
Pb-Si(2)	2.7566(15)	Si(23)-C(233)	1.877(6)	O(3)-C(72)	1.448(7)
Pb-P	2.7573(17)	Si(23)-C(232)	1.895(5)	O(3)-Li	2.010(10)
Pb-Si(1)	2.7660(15)	Si(12)-C(123)	1.869(6)	O(1)-C(62)	1.412(8)
Si(1)-Si(13)	2.337(2)	Si(12)-C(121)	1.883(5)	O(1)-C(61)	1.424(8)
Si(1)-Si(11)	2.347(2)	Si(12)-C(122)	1.893(6)	O(1)-Li	1.988(11)
Si(1)-Si(12)	2.360(2)	Si(22)-C(223)	1.862(6)	C(41)-O(2)	1.423(5)
Si(2)-Si(23)	2.348(2)	Si(22)-C(221)	1.879(6)	C(41)-C(42)	1.496(7)
Si(2)-Si(21)	2.351(2)	Si(22)-C(222)	1.884(6)	C(71)-C(61)	1.503(11)
Si(2)-Si(22)	2.364(2)	Si(21)-C(212)	1.880(5)	C(71)-Li	2.743(11)
P-Li	2.622(11)	Si(21)-C(213)	1.882(6)	Li-O(2)	1.886(11)
P-H(1)	1.26(7)	Si(21)-C(211)	1.891(6)	Li-C(51A)	2.779(14)
P-H(2)	1.18(7)	Si(11)-C(111)	1.870(6)	O(2)-C(51B)	1.425(6)
Si(13)-C(133)	1.872(6)	Si(11)-C(113)	1.875(5)	O(2)-C(51A)	1.427(6)
Si(13)-C(132)	1.881(6)	Si(11)-C(112)	1.885(6)	C(51A)-C(52A)	1.493(8)
Si(13)-C(131)	1.887(6)	O(3)-C(71)	1.392(8)	C(51B)-C(52B)	1.494(8)
Si(23)-C(231)	1.875(6)	/		,	~ /

7.11.4 Bond angles [deg].

Atoms	Angle	Atoms	Angle
Si(2)-Pb-P	94.37(5)	C(213)-Si(21)-C(211)	104.9(3)
Si(2)-Pb- $Si(1)$	114.79(4)	C(212)-Si(21)-Si(2)	110.68(19)
P-Pb-Si(1)	94.75(5)	C(213)-Si(21)-Si(2)	112.9(2)
Si(13)-Si(1)-Si(11)	109.37(8)	C(211)-Si(21)-Si(2)	112.1(2)
Si(13)-Si(1)-Si(12)	106.41(8)	C(111)-Si(11)-C(113)	104.9(3)
Si(11)-Si(1)-Si(12)	103.50(8)	C(111)-Si(11)-C(112)	107.6(3)
Si(13)-Si(1)-Pb	125.98(7)	C(113)-Si(11)-C(112)	107.3(3)
Si(11)-Si(1)-Pb	101.19(6)	C(111)-Si(11)-Si(1)	113.9(2)
Si(12)-Si(1)-Pb	108.29(6)	C(113)-Si(11)-Si(1)	114.1(2)
Si(23)-Si(2)-Si(21)	108.02(8)	C(112)-Si(11)-Si(1)	108.7(2)

Atoms	Angle	Atoms	Angle
Si(23)-Si(2)-Si(22)	105.71(8)	C(71)-O(3)-C(72)	113.1(6)
Si(21)-Si(2)-Si(22)	106.20(8)	C(71)-O(3)-Li	106.0(5)
Si(23)-Si(2)-Pb	104.74(7)	C(72)-O(3)-Li	125.3(5)
Si(21)-Si(2)-Pb	128.31(7)	C(62)-O(1)-C(61)	112.0(6)
Si(22)-Si(2)-Pb	101.94(7)	C(62)-O(1)-Li	127.8(5)
Li-P-Pb	128.3(2)	C(61)-O(1)-Li	109.6(5)
Li-P-H(1)	117(3)	O(2)-C(41)-C(42)	110.5(5)
Pb-P-H(1)	102(3)	O(3)-C(71)-C(61)	108.0(6)
Li-P-H(2)	112(3)	O(3)-C(71)-Li	44.8(3)
Pb-P-H(2)	104(3)	C(61)-C(71)-Li	76.7(5)
H(1)-P-H(2)	83(4)	O(1)-C(61)-C(71)	107.2(7)
C(133)-Si(13)-C(132)	107.6(3)	O(2)-Li-O(1)	109.2(5)
C(133)-Si(13)-C(131)	106.5(3)	O(2)-Li-O(3)	114.1(5)
C(132)-Si(13)-C(131)	107.1(3)	O(1)-Li-O(3)	83.5(4)
C(133)-Si(13)-Si(1)	110.1(2)	O(2)-Li-P	127.3(4)
C(132)-Si(13)-Si(1)	111.6(2)	O(1)-Li-P	113.4(5)
C(131)-Si(13)-Si(1)	113.6(2)	O(3)-Li-P	100.3(4)
C(231)-Si(23)-C(233)	106.7(3)	O(2)-Li-C(71)	130.7(5)
C(231)-Si(23)-C(232)	108.0(3)	O(1)-Li-C(71)	57.1(3)
C(233)-Si(23)-C(232)	107.1(3)	O(3)-Li-C(71)	29.2(2)
C(231)-Si(23)-Si(2)	110.2(2)	P-Li-C(71)	98.6(4)
C(233)-Si(23)-Si(2)	111.1(2)	O(2)-Li-C(51A)	28.1(3)
C(232)-Si(23)-Si(2)	113.4(2)	O(1)-Li-C(51A)	108.6(5)
C(123)-Si(12)-C(121)	108.8(3)	O(3)-Li-C(51A)	86.0(4)
C(123)-Si(12)-C(122)	105.0(3)	P-Li-C(51A)	137.9(4)
C(121)-Si(12)-C(122)	106.3(3)	C(71)-Li-C(51A)	105.6(4)
C(123)-Si(12)-Si(1)	112.5(2)	C(41)-O(2)-C(51B)	98.7(16)
C(121)-Si(12)-Si(1)	109.8(2)	C(41)-O(2)-C(51A)	117.2(6)
C(122)-Si(12)-Si(1)	114.1(2)	C(51B)-O(2)-C(51A)	30(2)
C(223)-Si(22)-C(221)	105.2(3)	C(41)-O(2)-Li	127.4(5)
C(223)-Si(22)-C(222)	107.1(3)	C(51B)-O(2)-Li	133.4(16)
C(221)-Si(22)-C(222)	105.3(3)	C(51A)-O(2)-Li	113.3(6)
C(223)-Si(22)-Si(2)	111.7(2)	O(2)-C(51A)-C(52A)	110.7(8)
C(221)-Si(22)-Si(2)	114.1(2)	O(2)-C(51A)-Li	38.6(4)
C(222)-Si(22)-Si(2)	112.8(2)	C(52A)-C(51A)-Li	124.8(8)
C(212)-Si(21)-C(213)	109.0(3)	O(2)-C(51B)-C(52B)	113(3)
C(212)-Si(21)-C(211)	107.0(3)		

7.12 Crystallographic data for (Hyp₂Pb·PH₂)K·2(MeNCH₂)₃

7.12.1 Crystal data and structure refinement

Empirical formula	$Hyp_2PbP(H_2)K \cdot 2triazine$		
Formula weight	1020.93		
Temperature	193(2) K		
Wavelength	0.71073 Å		
Crystal system, space gro	pup triclinic, $P_{\overline{1}}$		
Unit cell dimensions	a = 12.5404(10) Å alpha = 86.5800(10) deg. b = 13.0367(11) Å beta = 82.5140(10) deg. c = 17.4872(14) Å gamma = 76.9430(10) deg.		
Volume	2759.9(4) Å ³		
Z, Calculated density	2, 1.229 g/cm^3		
Absorption coefficient	3.359 mm^{-1}		
F(000)	1048		

Theta range for data collection	1.60 to 28.33 deg.
Limiting indices	-16<=h<=16, -16<=k<=16, -23<=1<=23
Reflections collected / unique	32172 / 12902 [R(int) = 0.0844]
Completeness to theta = 28.33	93.7 %
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	12902 / 307 / 750
Goodness-of-fit on F^2	0.942
Final R indices [I>2sigma(I)]	R1 = 0.0400, wR2 = 0.0810
R indices (all data)	R1 = 0.0635, $wR2 = 0.0881$
Extinction coefficient	0.00062(15)
Largest diff. peak and hole	0.900 and -0.966 e.Å $^{-3}$

7.12.2 Atomic coordinates (x 10^4), equivalent isotropic displacement parameters (Å² x 10^3) and Anisotropic displacement parameters (Å² x 10^3). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U11 + ... + 2hka^*b^*U12]$

Atom	X	у	Z	U(eq)	U11	U22	U33	U23	U13	U12
Pb(1)	7707(1)	7214(1)	6902(1)	45(1)	35(1)	42(1)	60(1)	-13(1)	4(1)	-12(1)
P(1)	8753(2)	6212(2)	8075(2)	107(1)	73(1)	77(1)	177(2)	60(1)	-55(1)	-21(1)
Pb(1A)	7239(3)	7618(3)	6612(2)	48(1)	40(1)	64(2)	42(1)	-21(1)	11(1)	-18(1)
P(1A)	5736(14)	8961(16)	5868(10)	105(6)	109(13)	139(16)	74(11)	20(11)	-35(10)	-33(12)
Pb(1B)	7351(5)	7247(5)	7956(4)	82(3)						
P(1B)	9097(15)	5841(16)	8106(13)	18(5)						
Si(1A)	7573(15)	9182(16)	7399(12)	118(12)						
Si(14)	7843(11)	10609(10)	6583(7)	66(4)						
C(141)	6550(30)	11640(30)	6480(40)	60(20)						
C(142)	8480(30)	10180(30)	5585(14)	32(11)						
C(143)	8790(30)	11390(30)	6950(20)	57(11)						
Si(15)	9334(10)	8504(9)	7767(7)	59(3)						
C(151)	10370(30)	8350(50)	6900(20)	70(30)						
C(152)	9760(40)	9270(30)	8500(20)	60(18)						
C(153)	9440(30)	7156(19)	8230(20)	62(12)						
Si(16)	6451(15)	9995(13)	8483(10)	11(3)						
C(161)	6850(70)	11190(40)	8790(40)	120(60)						
C(162)	4960(20)	10390(70)	8350(40)	100(50)						
C(163)	6560(50)	9000(30)	9313(19)	24(11)						
Si(1)	7564(1)	9250(1)	7329(1)	38(1)	39(1)	35(1)	44(1)	-2(1)	-11(1)	-10(1)
Si(11)	9389(1)	9338(1)	7421(1)	45(1)	46(1)	46(1)	47(1)	3(1)	-12(1)	-19(1)
C(113)	9620(4)	10727(3)	7314(3)	61(1)	70(3)	59(3)	67(3)	7(2)	-21(2)	-36(2)
C(112)	10383(4)	8544(6)	6664(5)	68(2)	42(3)	81(4)	82(4)	-4(4)	-4(3)	-17(2)
C(111)	9814(5)	8836(5)	8389(3)	63(1)	69(3)	65(4)	65(3)	12(3)	-28(3)	-28(3)
Si(12)	6530(3)	10020(3)	8437(2)	63(1)	57(1)	74(1)	58(1)	-14(1)	-6(1)	-12(1)
C(122)	5053(5)	10603(9)	8285(4)	76(3)	59(4)	83(4)	79(5)	-14(3)	-2(3)	-2(3)
C(121)	6531(9)	9003(8)	9225(5)	98(4)	82(5)	144(7)	65(4)	19(4)	-10(4)	-20(4)
C(123)	7022(10)	11130(7)	8799(5)	88(4)	88(5)	96(6)	84(6)	-51(4)	2(3)	-26(4)
Si(13)	7098(1)	10332(1)	6244(1)	55(1)	64(1)	47(1)	50(1)	-1(1)	-18(1)	-2(1)
C(131)	6833(8)	11779(5)	6417(5)	99(3)	150(7)	52(3)	88(5)	5(3)	-27(5)	1(4)
C(132)	8227(6)	10083(6)	5419(3)	84(2)	102(5)	95(5)	55(4)	2(3)	-13(4)	-18(4)
C(133)	5851(5)	10055(5)	5888(4)	102(2)	83(4)	117(5)	108(5)	23(4)	-50(4)	-13(4)
Si(2)	5768(10)	6557(9)	7397(9)	31(2)	21(3)	24(3)	47(4)	-2(2)	8(3)	-11(2)
Si(21)	3982(3)	7519(4)	7827(3)	32(2)	17(2)	25(3)	55(4)	0(2)	-5(2)	-6(2)
C(211)	3820(20)	7900(20)	8850(10)	75(8)	58(13)	66(14)	89(17)	1(10)	8(10)	-2(10)
C(212)	3660(20)	8740(16)	7189(15)	58(7)	57(14)	43(8)	75(15)	-7(8)	-20(10)	-2(8)
C(213)	2888(18)	6780(20)	7723(17)	88(9)	39(9)	56(9)	170(30)	-23(14)	-7(12)	-6(7)

Atom	Х	у	Z	U(eq)	U11	U22	U33	U23	U13	U12
Si(22)	6056(5)	5202(5)	8370(3)	66(2)	61(2)	68(3)	62(3)	5(2)	-12(2)	2(2)
C(221)	7243(14)	4128(13)	7994(13)	82(6)	86(12)	56(10)	116(14)	6(8)	-37(12)	-28(9)
C(222)	6371(14)	5635(14)	9295(8)	93(6)	94(12)	114(14)	58(9)	-12(9)	-33(8)	18(9)
C(223)	4866(11)	4535(13)	8644(9)	106(6)	110(11)	116(13)	90(11)	42(10)	1(9)	-42(10)
Si(23)	5600(5)	5677(5)	6311(3)	59(1)	69(2)	50(3)	61(3)	-14(2)	-12(2)	-17(2)
C(231)	7009(14)	4945(19)	5887(12)	85(7)	93(17)	107(15)	55(9)	-48(9)	5(10)	-18(12)
C(232)	4718(10)	4683(11)	6461(10)	89(6)	53(8)	95(13)	128(14)	-65(10)	8(8)	-31(8)
C(233)	5020(20)	6665(15)	5565(11)	161(14)	240(30)	133(19)	94(14)	-8(13)	-103(18)	43(19)
Si(2A)	5777(13)	6682(13)	7340(10)	67(7)	85(11)	46(12)	58(11)	0(7)	1(8)	7(7)
Si(24)	6215(4)	4916(4)	7006(4)	76(2)	47(3)	46(3)	132(6)	-22(3)	13(3)	-16(2)
C(241)	5019(16)	4328(16)	6890(20)	95(13)	53(15)	24(10)	210(40)	-6(17)	-26(19)	-1(9)
C(242)	7110(30)	4810(30)	6051(15)	180(40)	90(30)	100(30)	340(80)	-160(40)	140(40)	-80(20)
C(243)	7070(30)	4100(20)	7720(20)	190(40)	180(50)	35(19)	390(100)	-40(30)	-180(50)	-20(20)
Si(25)	4452(5)	7453(4)	6500(5)	83(2)	52(3)	58(4)	145(7)	-19(4)	-42(4)	-5(3)
C(251)	5130(30)	7390(30)	5485(12)	130(30)	100(30)	200(60)	40(20)	-30(30)	-10(20)	50(30)
C(252)	3810(30)	8866(13)	6702(15)	91(11)	100(20)	64(16)	90(20)	-19(16)	-30(20)	29(16)
C(253)	3264(19)	6784(19)	6530(30)	230(30)	110(30)	69(18)	560(90)	20(30)	-220(50)	-30(18)
Si(26)	4859(6)	6740(5)	8578(4)	87(2)	84(5)	81(4)	92(5)	-16(4)	45(4)	-37(4)
C(261)	4020(30)	8094(19)	8810(20)	110(20)	35(17)	180(50)	120(40)	20(30)	-22(19)	-30(20)
C(262)	5860(20)	6320(20)	9318(12)	117(11)	160(30)	150(30)	44(15)	-16(19)	0(18)	-40(30)
C(263)	3870(30)	5830(30)	8720(17)	200(30)	240(40)	250(40)	160(30)	-120(30)	140(30)	-220(40)
Si(2B)	5691(11)	6573(10)	7375(8)	57(5)	29(6)	81(9)	64(9)	-26(6)	-5(5)	-15(5)
Si(27)	5997(5)	4948(5)	8049(7)	73(3)	44(2)	42(3)	121(7)	22(3)	16(3)	-9(2)
C(271)	4986(12)	4121(10)	7890(19)	152(15)	54(9)	34(8)	360(50)	35(16)	4(17)	-15(7)
C(272)	5895(19)	5200(20)	9090(8)	138(13)	120(20)	200(30)	42(13)	38(14)	35(12)	44(19)
C(273)	7421(15)	4140(20)	7750(20)	149(18)	88(16)	150(30)	140(30)	42(18)	12(15)	90(17)
Si(28)	5466(5)	6130(8)	6118(5)	66(2)	52(3)	80(5)	70(5)	-32(4)	16(3)	-28(3)
C(281)	4126(12)	5780(20)	6032(11)	122(10)	74(12)	210(30)	103(14)	-79(16)	-5(10)	-64(16)
C(282)	6584(14)	5015(16)	5720(14)	69(6)	74(13)	69(11)	65(13)	-24(9)	4(10)	-22(10)
C(283)	5520(30)	7271(18)	5413(13)	101(9)	90(17)	130(20)	58(13)	-27(14)	7(10)	21(15)
Si(29)	3978(8)	7522(8)	7864(7)	85(4)	90(7)	73(7)	84(8)	-26(6)	12(5)	-13(5)
C(291)	2920(20)	6680(30)	7982(19)	61(7)	42(11)	70(14)	70(13)	-15(9)	15(8)	-22(10)
C(292)	3950(30)	8050(30)	8843(12)	74(11)	130(30)	45(11)	43(13)	-32(9)	52(13)	-30(13)
C(293)	3410(30)	8670(20)	7210(20)	62(9)	37(11)	66(14)	84(19)	-2(11)	-16(8)	-10(8)
K (1)	9952(1)	3160(1)	7624(1)	54(1)	48(1)	73(1)	41(1)	-3(1)	-2(1)	-17(1)
N(31)	11183(3)	1772(2)	8774(2)	53(1)	57(2)	48(2)	57(2)	-9(2)	-15(2)	-8(2)
N(32)	9550(3)	2929(3)	9293(2)	53(1)	56(2)	61(2)	41(2)	-8(2)	1(2)	-16(2)
N(33)	11119(3)	3591(2)	8812(2)	54(1)	58(2)	52(2)	59(2)	-7(2)	-8(2)	-22(2)
C(31)	10253(4)	1883(3)	9364(2)	61(1)	77(3)	57(3)	54(3)	5(2)	-17(2)	-22(2)
C(32)	10179(4)	3705(3)	9407(2)	60(1)	76(3)	53(2)	53(3)	-14(2)	-9(2)	-11(2)
C(33)	11816(3)	2547(3)	8882(3)	61(1)	57(2)	66(3)	65(3)	-8(2)	-17(2)	-17(2)
C(321)	8576(4)	3038(4)	9870(3)	84(2)	75(3)	112(4)	62(3)	-9(3)	16(2)	-29(3)
C(331)	11750(4)	4395(4)	8879(3)	88(2)	104(4)	72(3)	104(4)	-15(3)	-17(3)	-49(3)
C(311)	11884(4)	702(3)	8808(3)	83(2)	91(4)	58(3)	102(4)	-16(3)	-34(3)	-6(3)
C(341)	9786(4)	2762(5)	5327(3)	89(2)	97(4)	130(5)	54(3)	-15(3)	-17(3)	-48(4)
C(351)	11140(5)	5446(4)	6399(4)	93(2)	98(4)	58(3)	128(5)	1(3)	-4(3)	-31(3)
N(34)	10366(3)	3021(3)	5942(2)	53(1)	60(2)	62(2)	40(2)	1(2)	-8(2)	-20(2)
N(35)	11040(3)	4337(2)	6472(2)	56(1)	57(2)	46(2)	67(2)	2(2)	-14(2)	-14(2)
N(36)	11978(3)	2563(3)	6567(2)	61(1)	53(2)	61(2)	57(2)	5(2)	-7(2)	9(2)
C(34)	10513(3)	4096(3)	5839(2)	58(1)	56(2)	59(3)	55(3)	15(2)	-7(2)	-6(2)
C(35)	12106(3)	3642(3)	6462(3)	64(1)	50(2)	74(3)	65(3)	0(2)	-3(2)	-13(2)
C(36)	11437(4)	2308(3)	5937(2)	63(1)	77(3)	57(2)	46(2)	-5(2)	12(2)	-8(2)
C(361)	13054(4)	1833(5)	6599(3)	104(2)	77(4)	109(4)	99(4)	10(4)	-7(3)	34(3)

7.12.3 Bond lengths [Å].

Atoms	Bond length	Atoms	Bond length	Atoms	Bond length
Pb(1)-P(1)	2.6915(19)	Si(2)-Si(23)	2.334(15)	Si(27)-C(272)	1.853(13)

Pb(1A)-P(1A)	2.680(13)	Si(2)-Si(21)	2.358(12)	Si(27)-C(273)	1.885(14)
Pb(1B)-P(1B)	2.550(15)	Si(2)-Si(22)	2.379(15)	Si(27)-C(271)	1.896(12)
Si(1A)-Si(14)	2.334(16)	Si(21)-C(211)	1.859(14)	Si(28)-C(281)	1.864(11)
Si(1A)-Si(15)	2.344(17)	Si(21)-C(213)	1.879(13)	Si(28)-C(282)	1.873(13)
Si(1A)-Si(16)	2.359(18)	Si(21)-C(212)	1.886(13)	Si(28)-C(283)	1.882(14)
Si(14)-C(141)	1.873(19)	Si(22)-C(222)	1.862(11)	Si(29)-C(292)	1.874(14)
Si(14)-C(142)	1.885(18)	Si(22)-C(221)	1.877(13)	Si(29)-C(293)	1.884(15)
Si(14)-C(143)	1.915(17)	Si(22)-C(223)	1.888(11)	Si(29)-C(291)	1.892(15)
Si(15)-C(151)	1.853(19)	Si(23)-C(232)	1.872(11)	N(31)-C(31)	1.440(5)
Si(15)-C(152)	1.874(18)	Si(23)-C(233)	1.873(13)	N(31)-C(33)	1.453(5)
Si(15)-C(153)	1.876(18)	Si(23)-C(231)	1.887(14)	N(31)-C(311)	1.474(5)
Si(16)-C(162)	1.86(2)	Si(2A)-Si(26)	2.312(16)	N(32)-C(32)	1.452(5)
Si(16)-C(161)	1.87(2)	Si(2A)-Si(24)	2.334(16)	N(32)-C(31)	1.456(5)
Si(16)-C(163)	1.887(19)	Si(2A)-Si(25)	2.373(18)	N(32)-C(321)	1.465(5)
Si(1)-Si(12)	2.331(3)	Si(24)-C(241)	1.867(14)	N(33)-C(33)	1.450(5)
Si(1)-Si(11)	2.3429(17)	Si(24)-C(243)	1.877(16)	N(33)-C(32)	1.454(5)
Si(1)-Si(13)	2.3523(19)	Si(24)-C(242)	1.883(16)	N(33)-C(331)	1.467(5)
Si(11)-C(111)	1.877(5)	Si(25)-C(251)	1.866(15)	C(341)-N(34)	1.469(5)
Si(11)-C(112)	1.879(6)	Si(25)-C(252)	1.871(13)	C(351)-N(35)	1.476(5)
Si(11)-C(113)	1.893(4)	Si(25)-C(253)	1.883(14)	N(34)-C(36)	1.449(5)
Si(12)-C(121)	1.855(7)	Si(26)-C(261)	1.875(16)	N(34)-C(34)	1.452(5)
Si(12)-C(123)	1.868(6)	Si(26)-C(263)	1.886(14)	N(35)-C(35)	1.434(5)
Si(12)-C(122)	1.882(5)	Si(26)-C(262)	1.888(15)	N(35)-C(34)	1.445(5)
Si(13)-C(133)	1.871(6)	Si(2B)-Si(29)	2.307(14)	N(36)-C(35)	1.450(5)
Si(13)-C(132)	1.872(6)	Si(2B)-Si(27)	2.340(13)	N(36)-C(36)	1.458(5)
Si(13)-C(131)	1.877(7)	Si(2B)-Si(28)	2.372(16)	N(36)-C(361)	1.471(5)

7.12.4 Bond angles [deg].

Atoms	Angle	Atoms	Angle
Si(14)-Si(1A)-Si(15)	102.6(8)	Si(24)-Si(2A)-Si(25)	102.4(6)
Si(14)-Si(1A)-Si(16)	103.2(9)	C(241)-Si(24)-C(243)	109.6(12)
Si(15)-Si(1A)-Si(16)	107.3(10)	C(241)-Si(24)-C(242)	107.2(12)
C(141)-Si(14)-C(142)	107.9(18)	C(243)-Si(24)-C(242)	106.2(13)
C(141)-Si(14)-C(143)	102.8(17)	C(241)-Si(24)-Si(2A)	115.7(8)
C(142)-Si(14)-C(143)	106.6(15)	C(243)-Si(24)-Si(2A)	110.1(11)
C(141)-Si(14)-Si(1A)	113.9(16)	C(242)-Si(24)-Si(2A)	107.6(10)
C(142)-Si(14)-Si(1A)	112.0(14)	C(251)-Si(25)-C(252)	107.9(13)
C(143)-Si(14)-Si(1A)	113.0(12)	C(251)-Si(25)-C(253)	106.3(13)
C(151)-Si(15)-C(152)	109.8(19)	C(252)-Si(25)-C(253)	105.4(11)
C(151)-Si(15)-C(153)	106.2(18)	C(251)-Si(25)-Si(2A)	109.2(12)
C(152)-Si(15)-C(153)	103.5(16)	C(252)-Si(25)-Si(2A)	113.0(10)
C(151)-Si(15)-Si(1A)	109.7(16)	C(253)-Si(25)-Si(2A)	114.6(10)
C(152)-Si(15)-Si(1A)	115.6(15)	C(261)-Si(26)-C(263)	106.5(13)
C(153)-Si(15)-Si(1A)	111.5(13)	C(261)-Si(26)-C(262)	108.3(12)
C(162)-Si(16)-C(161)	107(2)	C(263)-Si(26)-C(262)	106.9(12)
C(162)-Si(16)-C(163)	106(2)	C(261)-Si(26)-Si(2A)	111.8(13)
C(161)-Si(16)-C(163)	108(2)	C(263)-Si(26)-Si(2A)	111.9(9)
C(162)-Si(16)-Si(1A)	113.5(19)	C(262)-Si(26)-Si(2A)	111.2(10)
C(161)-Si(16)-Si(1A)	114(2)	Si(29)-Si(2B)-Si(27)	107.4(6)
C(163)-Si(16)-Si(1A)	107.6(14)	Si(29)-Si(2B)-Si(28)	104.7(6)
Si(12)-Si(1)-Si(11)	105.76(11)	Si(27)-Si(2B)-Si(28)	103.6(6)
Si(12)-Si(1)-Si(13)	109.47(11)	C(272)-Si(27)-C(273)	107.8(11)
Si(11)-Si(1)-Si(13)	104.11(7)	C(272)-Si(27)-C(271)	109.6(10)
C(111)-Si(11)-C(112)	107.8(3)	C(273)-Si(27)-C(271)	106.8(10)
C(111)-Si(11)-C(113)	105.2(2)	C(272)-Si(27)-Si(2B)	108.2(8)
C(112)-Si(11)-C(113)	106.9(3)	C(273)-Si(27)-Si(2B)	111.3(10)
C(111)-Si(11)-Si(1)	111.53(18)	C(271)-Si(27)-Si(2B)	113.0(7)
C(112)-Si(11)-Si(1)	111.73(19)	C(281)-Si(28)-C(282)	107.1(9)

Atoms	Angle	Atoms	Angle
C(113)-Si(11)-Si(1)	113.27(15)	C(281)-Si(28)-C(283)	104.8(10)
C(121)-Si(12)-C(123)	107.6(4)	C(282)-Si(28)-C(283)	105.5(10)
C(121)-Si(12)-C(122)	107.9(4)	C(281)-Si(28)-Si(2B)	115.0(6)
C(123)-Si(12)-C(122)	104.5(4)	C(282)-Si(28)-Si(2B)	112.8(8)
C(121)-Si(12)-Si(1)	109.2(3)	C(283)-Si(28)-Si(2B)	111.0(9)
C(123)-Si(12)-Si(1)	115.1(3)	C(292)-Si(29)-C(293)	107.7(12)
C(122)-Si(12)-Si(1)	112.2(2)	C(292)-Si(29)-C(291)	105.6(12)
C(133)-Si(13)-C(132)	106.2(3)	C(293)-Si(29)-C(291)	105.1(12)
C(133)-Si(13)-C(131)	108.3(4)	C(292)-Si(29)-Si(2B)	113.4(10)
C(132)-Si(13)-C(131)	105.6(4)	C(293)-Si(29)-Si(2B)	113.3(12)
C(133)-Si(13)-Si(1)	110.7(2)	C(291)-Si(29)-Si(2B)	111.2(11)
C(132)-Si(13)-Si(1)	111.6(2)	C(31)-N(31)-C(33)	109.1(3)
C(131)-Si(13)-Si(1)	114.0(3)	C(31)-N(31)-C(311)	110.5(4)
Si(23)-Si(2)-Si(21)	106.2(6)	C(33)-N(31)-C(311)	110.0(3)
Si(23)-Si(2)-Si(22)	104.0(5)	C(32)-N(32)-C(31)	108.6(3)
Si(21)-Si(2)-Si(22)	102.0(5)	C(32)-N(32)-C(321)	110.3(3)
C(211)-Si(21)-C(213)	107.7(10)	C(31)-N(32)-C(321)	109.9(3)
C(211)-Si(21)-C(212)	109.3(9)	C(33)-N(33)-C(32)	109.3(3)
C(213)-Si(21)-C(212)	105.3(9)	C(33)-N(33)-C(331)	110.2(3)
C(211)-Si(21)-Si(2)	113.3(8)	C(32)-N(33)-C(331)	110.7(3)
C(213)-Si(21)-Si(2)	112.4(9)	N(31)-C(31)-N(32)	109.2(3)
C(212)-Si(21)-Si(2)	108.5(9)	N(32)-C(32)-N(33)	108.6(3)
C(222)-Si(22)-C(221)	108.0(8)	N(33)-C(33)-N(31)	108.7(3)
C(222)-Si(22)-C(223)	105.4(8)	C(36)-N(34)-C(34)	109.1(3)
C(221)-Si(22)-C(223)	105.1(8)	C(36)-N(34)-C(341)	110.1(4)
C(222)-Si(22)-Si(2)	114.5(7)	C(34)-N(34)-C(341)	110.6(3)
C(221)-Si(22)-Si(2)	108.4(8)	C(35)-N(35)-C(34)	108.9(3)
C(223)-Si(22)-Si(2)	114.9(5)	C(35)-N(35)-C(351)	110.6(3)
C(232)-Si(23)-C(233)	107.2(9)	C(34)-N(35)-C(351)	109.8(3)
C(232)-Si(23)-C(231)	106.1(8)	C(35)-N(36)-C(36)	109.2(3)
C(233)-Si(23)-C(231)	107.9(10)	C(35)-N(36)-C(361)	110.7(4)
C(232)-Si(23)-Si(2)	116.7(6)	C(36)-N(36)-C(361)	110.5(4)
C(233)-Si(23)-Si(2)	109.2(7)	N(35)-C(34)-N(34)	109.1(3)
C(231)-Si(23)-Si(2)	109.4(7)	N(35)-C(35)-N(36)	109.4(3)
Si(26)-Si(2A)-Si(24)	106.4(7)	N(34)-C(36)-N(36)	108.8(3)
Si(26)-Si(2A)-Si(25)	107.0(7)		

7.13 Crystallographic data for [{(MeNCH₂)₃}₃K] [(Hyp₂Pb)₂ ·PH₂]

7.13.1 Crystal data and structure refinement

Hyp ₄ Pb ₂ PK·3triazine(Et ₂ O)
1936.86
173(2) K
1.54178 Å
triclinic, $P_{\overline{1}}$
= 16.460(5) Å alpha = 95.48(3) deg. = 16.906(6) Å beta = 100.81(3) deg. = 19.253(6) Å gamma = 100.62(3) deg.
5125(3) Å ³
2, 1.255 g/cm^3
8.881 mm ⁻¹
2008
n 2.68 to 73.89 deg.

Limiting indices Reflections collected / unique	-20<=h<=20, -20<=k<=21, -23<=l<=0 21220 / 20580 [R(int) = 0.0906]
Completeness to theta = 73.89	99.0 %
Max. and min. transmission	0.2697 and 0.0408
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	20580 / 311 / 914
Goodness-of-fit on F^2	1.021
Final R indices [I>2sigma(I)]	R1 = 0.0743, wR2 = 0.1928
R indices (all data)	R1 = 0.0945, $wR2 = 0.2081$
Extinction coefficient	0.00007(4)
Largest diff. peak and hole	4.631 and -3.168 e.Å $^{-3}$

7.13.2 Atomic coordinates (x 10⁴), equivalent isotropic displacement parameters (Å² x 10³) and Anisotropic displacement parameters (Å² x 10³). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U11 + ... + 2hka^*b^*U12]$

Atom	Х	у	Z	U(eq)	U11	U22	U33	U23	U13	U12
DI (1)	1 < 10 (1)	0002(1)	2510(1)	22(1)	20(1)	22(1)	24(1)	2(1)		7(1)
Pb(1)	1643(1)	8003(1)	3510(1)	32(1)	30(1)	32(1)	34(1)	3(1)	6(1)	7(1)
Pb(IA)	1594(2)	8146(2)	2219(2)	44(1)	27(1)	50(2)	51(2)	-13(1)	13(1)	5(1)
P(1)	13(1)	7579(1)	2607(1)	38(1)	29(1)	38(1)	43(1)	-1(1)	5(1)	0(1)
Si(11)	1966(1)	9591(1)	3208(1)	38(1)	33(1)	31(1)	46(1)	-1(1)	7(1)	1(1)
Si(12)	1009(2)	10112(2)	3799(2)	57(1)	49(2)	47(2)	81(2)	7(1)	25(2)	16(1)
C(123)	1346(10)	11220(8)	4159(8)	83(4)	108(11)	57(8)	98(10)	-3(7)	51(9)	29(7)
C(122)	-29(7)	10013(8)	3201(10)	90(5)	37(6)	58(8)	174(16)	22(9)	10(8)	16(5)
C(121)	867(11)	9567(10)	4578(9)	99(5)	125(13)	97(11)	114(12)	38(9)	87(11)	51(10)
Si(13)	3296(2)	10202(2)	3905(1)	48(1)	38(1)	53(2)	46(1)	9(1)	2(1)	-3(1)
C(133)	4142(8)	9789(9)	3575(8)	79(4)	52(6)	80(9)	107(11)	25(8)	21(7)	12(6)
C(132)	3565(8)	11324(7)	3921(7)	71(3)	55(6)	55(7)	83(8)	-2(6)	-1(6)	-14(5)
C(131)	3350(9)	10012(10)	4838(7)	82(4)	87(9)	93(11)	57(7)	23(7)	-3(7)	9(8)
Si(14)	1881(2)	10111(2)	2133(2)	64(1)	72(2)	70(2)	44(2)	14(1)	1(1)	9(2)
C(143)	963(12)	9521(11)	1434(8)	109(6)	139(16)	88(12)	71(9)	8(8)	-22(10)	-4(11)
C(142)	1752(10)	11185(9)	2239(9)	87(4)	91(10)	68(9)	111(11)	48(8)	10(9)	28(8)
C(141)	2881(11)	10156(10)	1795(7)	92(5)	127(13)	107(12)	60(8)	21(8)	54(9)	26(10)
Si(15)	2469(2)	7030(2)	2806(1)	41(1)	35(1)	41(1)	49(1)	-3(1)	9(1)	14(1)
Si(16)	3079(2)	7258(2)	1819(2)	66(1)	55(2)	80(2)	61(2)	-7(2)	22(2)	3(2)
C(163)	3322(12)	6338(10)	1373(11)	121(7)	140(16)	84(11)	148(16)	-37(11)	91(14)	11(11)
C(162)	4062(8)	8067(9)	2043(8)	77(4)	56(7)	83(9)	92(9)	5(7)	28(7)	5(6)
C(161)	2292(10)	7599(13)	1133(8)	105(6)	95(11)	163(18)	61(8)	38(10)	22(8)	23(11)
Si(17)	3520(2)	6800(2)	3727(2)	60(1)	48(2)	58(2)	70(2)	5(1)	0(1)	16(1)
C(173)	4252(8)	6222(9)	3369(10)	89(5)	46(6)	75(9)	144(14)	2(9)	4(8)	29(6)
C(172)	3008(9)	6174(9)	4353(8)	86(4)	83(9)	84(10)	79(9)	26(8)	-9(7)	4(8)
C(171)	4179(9)	7756(8)	4249(8)	77(4)	72(8)	62(8)	82(9)	-2(6)	-16(7)	14(6)
Si(18)	1538(2)	5763(2)	2507(2)	51(1)	42(1)	41(1)	69(2)	-8(1)	12(1)	10(1)
C(183)	2094(9)	4885(7)	2470(9)	82(4)	72(8)	44(7)	129(12)	-11(7)	21(8)	22(6)
C(182)	832(7)	5688(8)	1621(6)	64(3)	48(6)	71(8)	61(6)	-27(6)	7(5)	3(5)
C(181)	838(7)	5594(7)	3164(7)	61(3)	60(6)	46(6)	74(7)	1(5)	15(6)	8(5)
Pb(2)	-1346(1)	6243(1)	2066(1)	31(1)	30(1)	33(1)	30(1)	4(1)	6(1)	7(1)
Si(21)	-2097(1)	6923(1)	908(1)	36(1)	37(1)	34(1)	34(1)	6(1)	4(1)	4(1)
Si(22)	-3400(2)	6035(2)	404(1)	44(1)	40(1)	46(1)	39(1)	11(1)	-4(1)	1(1)
C(223)	-3718(8)	5946(8)	-592(6)	69(3)	72(8)	63(8)	52(6)	9(5)	-17(5)	-10(6)
C(222)	-3329(7)	4986(6)	612(6)	57(3)	70(7)	41(6)	52(6)	14(4)	0(5)	3(5)
C(221)	-4299(7)	6358(9)	756(7)	70(3)	40(5)	87(9)	82(8)	25(7)	8(5)	8(6)
Si(23)	-2235(2)	8264(2)	818(2)	52(1)	63(2)	38(1)	50(1)	10(1)	-4(1)	10(1)
C(231)	-3030(30)	8310(20)	20(20)	109(16)	150(30)	60(20)	90(20)	3(18)	-50(20)	40(20)
C(232)	-2400(30)	8850(20)	1634(18)	96(12)	130(30)	60(20)	85(17)	-22(17)	9(19)	20(30)

					T T 1 1	1100	1122	1100	1110	1110
Atom	X	<u>y</u>	Z	U(eq)	UII 100(10)	022	100(40)	023	50(20)	11(10)
C(233)	-1200(20)	8863(19)	690(30)	10/(15)	108(19)	21(13)	190(40)	0(20)	50(20)	-11(16)
C(234)	-1660(30)	8/79(16)	196(15)	109(11)	220(30)	50(15)	81(15)	34(13)	70(20)	32(19)
C(235)	-3388(14)	8327(14)	590(20)	113(12)	77(9)	3/(11)	200(30)	8(16)	-56(13)	24(11)
C(236)	-1858(17)	8919(14)	1/00(10)	65(6)	81(14)	48(11)	56(8)	5(7)	8(9)	-6(12)
S1(24)	-1221(2)	6646(2)	124(1)	44(1)	46(1)	53(2)	31(1)	6(1)	6(1)	6(1)
C(243)	-1566(8)	68/1(9)	-807(6)	72(4)	81(8)	95(10)	38(5)	11(6)	17(5)	5(7)
C(242)	-101(7)	7234(8)	466(6)	64(3)	51(6)	85(9)	52(6)	10(6)	14(5)	0(6)
C(241)	-11/2(8)	5558(7)	51(6)	60(3)	74(7)	61(7)	49(6)	0(5)	20(5)	18(6)
S1(25)	-2211(1)	6355(2)	3158(1)	38(1)	35(1)	46(1)	34(1)	3(1)	12(1)	5(1)
S1(26)	-1304(2)	6243(3)	4219(2)	69(1)	47(2)	117(3)	38(1)	17(2)	7(1)	7(2)
C(263)	-1791(8)	6325(11)	5033(6)	86(5)	73(8)	142(14)	39(6)	20(7)	20(6)	-3(8)
C(262)	-328(9)	7102(15)	4434(8)	132(9)	58(8)	240(30)	63(9)	24(12)	-3(7)	-35(12)
C(261)	-975(12)	5238(14)	4163(9)	116(7)	110(13)	190(20)	82(10)	59(12)	23(9)	81(14)
S1(27)	-3233(2)	5135(2)	2977(1)	43(1)	49(1)	39(1)	43(1)	7(1)	21(1)	5(1)
C(273)	-4228(6)	5167(7)	2334(7)	62(3)	42(5)	61(7)	78(8)	1(6)	12(5)	2(5)
C(272)	-3576(9)	4862(7)	3815(6)	66(3)	94(9)	53(6)	56(6)	7(5)	44(6)	1(6)
C(271)	-2808(8)	4260(6)	2622(6)	60(3)	87(8)	45(6)	62(6)	15(5)	36(6)	23(6)
Si(28)	-2812(2)	7459(2)	3408(2)	49(1)	47(1)	44(2)	57(2)	0(1)	23(1)	4(1)
C(283)	-1949(8)	8393(7)	3680(7)	70(3)	78(8)	54(7)	69(7)	3(6)	20(6)	-10(6)
C(282)	-3575(8)	7605(8)	2607(8)	75(3)	68(8)	65(8)	95(10)	14(7)	15(7)	18(6)
C(281)	-3396(9)	7359(9)	4145(8)	81(4)	95(9)	77(9)	87(9)	2(7)	62(8)	20(7)
K(1)	7477(2)	2124(2)	2152(1)	70(1)	50(1)	99(2)	64(1)	33(1)	15(1)	9(1)
N(51)	8998(7)	1843(6)	1602(6)	70(3)	84(7)	47(6)	82(7)	16(5)	13(6)	26(5)
C(51)	8925(9)	2473(7)	1135(7)	66(3)	92(9)	41(6)	68(7)	8(5)	21(6)	17(6)
C(511)	9237(14)	1145(10)	1247(11)	121(7)	157(18)	63(10)	143(17)	-1(10)	10(14)	56(11)
N(52)	8668(5)	3139(5)	1481(5)	50(2)	58(5)	41(4)	56(5)	17(4)	16(4)	16(4)
C(52)	9304(7)	3469(7)	2128(6)	59(3)	58(6)	55(7)	66(7)	17(5)	19(5)	11(5)
C(521)	8589(8)	3760(7)	1020(7)	65(3)	87(8)	43(6)	74(7)	24(5)	22(6)	22(6)
N(53)	9379(7)	2849(7)	2589(6)	69(3)	74(7)	68(7)	70(6)	26(5)	14(5)	15(5)
C(53)	9605(10)	2189(9)	2247(8)	81(4)	84(9)	73(9)	88(10)	33(8)	8(8)	20(8)
C(531)	9971(12)	3185(12)	3262(9)	110(6)	126(15)	108(14)	79(10)	13(9)	-11(10)	14(12)
N(41A)	6407(9)	2005(9)	3309(10)	62(5)	61(9)	66(10)	75(10)	20(8)	34(8)	30(8)
C(41A)	6582(13)	1206(12)	3389(13)	94(7)	114(15)	92(13)	105(14)	46(11)	54(12)	44(12)
C(411)	5575(14)	2110(20)	3392(17)	105(10)	56(14)	150(30)	120(20)	0(20)	38(15)	28(16)
N(42A)	7867(11)	2463(13)	3804(11)	100(7)	74(11)	152(17)	83(12)	57(12)	17(10)	23(12)
C(42A)	6993(13)	2493(15)	3916(12)	81(6)	66(11)	116(16)	75(12)	27(11)	30(10)	33(11)
C(421)	8490(20)	3110(20)	4362(19)	158(17)	90(20)	210(40)	130(30)	10(30)	-30(20)	-20(30)
N(43A)	7403(16)	1174(13)	3255(13)	92(6)	121(14)	93(14)	103(14)	55(11)	65(12)	61(11)
C(43A)	7920(20)	1700(20)	3819(17)	118(9)	113(16)	157(19)	101(17)	48(16)	49(14)	25(16)
C(431)	7600(30)	430(20)	3320(20)	141(12)	200(30)	130(30)	130(20)	30(20)	80(20)	100(20)
N(41B)	6483(13)	1988(13)	319/(16)	83(8)	74(13)	87(15)	101(15)	29(13)	43(12)	13(13)
C(41B)	6211(17)	1119(15)	3168(16)	88(8)	90(16)	74(15)	115(18)	15(15)	68(14)	8(14)
C(412)	5910(20)	2470(20)	3410(20)	116(15)	80(30)	110(30)	140(30)	10(30)	30(30)	0(20)
N(42B)	7856(17)	1/30(20)	3538(17)	127(10)	12/(16)	148(19)	117(18)	55(17)	45(16)	15(16)
C(42B)	7214(18)	2160(20)	37/6(16)	99(8)	86(15)	130(18)	95(16)	34(15)	49(13)	22(15)
C(422)	8690(20)	2040(40)	4080(30)	180(20)	150(40)	230(40)	150(40)	50(40)	30(30)	10(40)
N(43B)	6810(20)	712(16)	2916(15)	104(8)	122(17)	89(16)	124(17)	42(14)	70(14)	22(14)
C(43B)	7510(20)	960(20)	3470(20)	108(9)	122(17)	122(19)	114(18)	43(17)	76(15)	4/(1/)
C(432)	6590(40)	-110(20)	2870(30)	164(19)	240(50)	100(30)	180(40)	50(30)	60(40)	70(30)
N(31)	6684(13)	1106(13)	632(11)	145(7)	160(17)	129(16)	164(18)	17(13)	91(15)	19(13)
C(31)	6031(19)	569(15)	799(14)	169(13)	210(30)	130(20)	150(20)	-41(16)	100(20)	-46(18)
C(311)	7015(19)	788(17)	63(16)	193(14)	200(30)	160(30)	220(30)	-70(20)	90(20)	30(20)
N(32)	6081(9)	2172(10)	1043(9)	108(5)	82(9)	96(11)	133(13)	17(9)	I(9)	11(8)
C(32)	5416(13)	1540(20)	1227(14)	159(11)	177(13)	220(30)	150(20)	-20(20)	7(13)	8(17)
C(321)	5731(15)	2848(14)	927(14)	161(11)	150(20)	127(19)	180(20)	31(17)	-58(17)	66(17)
N(33)	5/93(14)	844(13)	1407(11)	138(7)	146(17)	119(15)	142(16)	9(12)	47(14)	-2(13)
C(33)	6402(13)	1852(11)	503(10)	99(5)	114(13)	82(12)	96(12)	11(9)	21(10)	6(10)
C(331)	5160(20)	200(20)	1586(17)	280(30)	350(50)	260(40)	180(30)	-10(30)	140(30)	-160(40)
C(64)	3814(16)	2720(14)	2106(9)	130(8)	190(20)	134(18)	73(10)	49(11)	20(12)	32(16)
C(63)	3540(13)	3281(12)	2602(11)	111(6)	106(13)	101(14)	128(16)	41(12)	-1(12)	39(11)
U(6)	4092(7)	3347(7)	3285(6)	92(3)	101(7)	86(7)	111(8)	41(6)	46(7)	37(6)

Atom	Х	y z	U(eq)	U11	U22	U33	U23	U13	U12
C(62)	3862(14)	3787(12) 3804(13)	119(7)	126(16)	83(12)	170(20)	20(13)	65(16)	47(11)
C(61)	4430(14)	3833(13) 4508(10)	123(7)	138(17)	141(18)	100(13)	18(12)	71(13)	4(14)

7.13.3 Bond lengths [Å].

Atoms	Bond length	Atoms	Bond length	Atoms	Bond length
Pb(1)-Si(15)	2.735(2)	Si(22)-C(222)	1.875(10)	C(51)-N(52)	1.424(14)
Pb(1)-Si(11)	2.777(3)	Si(22)-C(221)	1.886(12)	N(52)-C(521)	1.447(12)
Pb(1)-P(1)	2.836(2)	Si(23)-C(231)	1.84(2)	N(52)-C(52)	1.457(14)
Pb(1A)-Si(15)	2.776(4)	Si(23)-C(234)	1.85(2)	C(52)-N(53)	1.444(14)
Pb(1A)-Si(11)	2.844(4)	Si(23)-C(236)	1.866(19)	N(53)-C(53)	1.386(18)
Pb(1A)-P(1)	2.864(3)	Si(23)-C(232)	1.87(2)	N(53)-C(531)	1.460(19)
Pb(1A)-Si(16)	3.264(4)	Si(23)-C(233)	1.88(2)	N(41A)-C(42A)	1.44(2)
P(1)-Pb(2)	2.828(2)	Si(23)-C(235)	1.89(2)	N(41A)-C(41A)	1.45(2)
Si(11)-Si(14)	2.314(4)	Si(24)-C(241)	1.849(12)	N(41A)-C(411)	1.45(2)
Si(11)-Si(13)	2.338(4)	Si(24)-C(243)	1.872(11)	C(41A)-N(43A)	1.43(2)
Si(11)-Si(12)	2.355(4)	Si(24)-C(242)	1.888(11)	N(42A)-C(43A)	1.31(4)
Si(12)-C(122)	1.841(14)	Si(25)-Si(28)	2.321(4)	N(42A)-C(42A)	1.50(3)
Si(12)-C(121)	1.864(14)	Si(25)-Si(26)	2.340(4)	N(42A)-C(421)	1.53(3)
Si(12)-C(123)	1.876(13)	Si(25)-Si(27)	2.360(4)	N(43A)-C(43A)	1.37(4)
Si(13)-C(131)	1.843(12)	Si(26)-C(261)	1.88(2)	N(43A)-C(431)	1.37(3)
Si(13)-C(133)	1.854(13)	Si(26)-C(263)	1.894(11)	N(41B)-C(42B)	1.44(2)
Si(13)-C(132)	1.862(13)	Si(26)-C(262)	1.908(17)	N(41B)-C(41B)	1.45(2)
Si(14)-C(142)	1.863(14)	Si(27)-C(273)	1.870(12)	N(41B)-C(412)	1.45(2)
Si(14)-C(141)	1.873(14)	Si(27)-C(271)	1.874(10)	C(41B)-N(43B)	1.43(2)
Si(14)-C(143)	1.876(16)	Si(27)-C(272)	1.877(10)	N(42B)-C(43B)	1.31(4)
Si(15)-Si(16)	2.341(4)	Si(28)-C(281)	1.861(11)	N(42B)-C(42B)	1.50(3)
Si(15)-Si(18)	2.343(4)	Si(28)-C(282)	1.864(14)	N(42B)-C(422)	1.53(3)
Si(15)-Si(17)	2.348(4)	Si(28)-C(283)	1.877(12)	N(43B)-C(43B)	1.37(4)
Si(16)-C(163)	1.848(14)	K(1)-N(43A)	2.789(18)	N(43B)-C(432)	1.37(3)
Si(16)-C(162)	1.867(13)	K(1)-N(32)	2.848(15)	N(31)-C(31)	1.38(3)
Si(16)-C(161)	1.879(16)	K(1)-N(41B)	2.82(3)	N(31)-C(311)	1.42(3)
Si(17)-C(171)	1.853(13)	K(1)-N(42B)	2.80(3)	N(31)-C(33)	1.45(3)
Si(17)-C(173)	1.870(13)	K(1)-N(52)	2.932(8)	C(31)-N(33)	1.37(3)
Si(17)-C(172)	1.894(14)	K(1)-N(51)	2.993(11)	N(32)-C(33)	1.36(2)
Si(18)-C(182)	1.855(12)	K(1)-N(43B)	3.06(3)	N(32)-C(321)	1.39(2)
Si(18)-C(181)	1.870(11)	K(1)-N(53)	3.068(11)	N(32)-C(32)	1.51(3)
Si(18)-C(183)	1.885(12)	K(1)-N(41A)	3.086(18)	C(32)-N(33)	1.46(3)
Pb(2)-Si(25)	2.763(2)	K(1)-N(42A)	3.10(2)	N(33)-C(331)	1.48(3)
Pb(2)-Si(21)	2.792(2)	K(1)-N(31)	3.16(2)	C(64)-C(63)	1.47(3)
Si(21)-Si(23)	2.340(4)	K(1)-N(33)	3.18(2)	C(63)-O(6)	1.43(2)
Si(21)-Si(24)	2.347(3)	N(51)-C(53)	1.437(18)	O(6)-C(62)	1.34(2)
Si(21)-Si(22)	2.356(3)	N(51)-C(511)	1.461(17)	C(62)-C(61)	1.48(3)
Si(22)-C(223)	1.874(11)	N(51)-C(51)	1.465(14)	· · · · /	~ /

7.13.4 Bond angles [deg].

Atoms	Angle	Atoms	Angle
Si(15)-Pb(1)-Si(11)	112.24(8)	N(42B)-K(1)-N(43B)	45.0(7)
Si(15)-Pb(1)-P(1)	100.03(8)	N(52)-K(1)-N(43B)	157.3(6)
Si(11)-Pb(1)-P(1)	94.75(7)	N(51)-K(1)-N(43B)	110.8(5)
Si(15)-Pb(1A)-Si(11)	109.05(12)	N(43A)-K(1)-N(53)	96.4(6)
Si(15)-Pb(1A)-P(1)	98.40(12)	N(32)-K(1)-N(53)	138.6(4)
Si(11)-Pb(1A)-P(1)	92.72(10)	N(41B)-K(1)-N(53)	120.2(6)
Si(15)-Pb(1A)-Si(16)	44.71(9)	N(42B)-K(1)-N(53)	78.6(6)
Si(11)-Pb(1A)-Si(16)	121.88(12)	N(52)-K(1)-N(53)	46.5(3)

Atoms	Angle	Atoms	Angle
P(1)-Pb(1A)-Si(16)	133.80(13)	N(51)-K(1)-N(53)	45.2(3)
Pb(2)-P(1)-Pb(1)	142.00(9)	N(43B)-K(1)-N(53)	116.3(7)
Pb(2)-P(1)-Pb(1A)	133.69(10)	N(43A)-K(1)-N(41A)	47.0(5)
Pb(1)-P(1)-Pb(1A)	52.20(7)	N(32)-K(1)-N(41A)	93.9(5)
Si(14)-Si(11)-Si(13)	106.37(14)	N(41B)-K(1)-N(41A)	1.0(6)
Si(14)-Si(11)-Si(12)	106.88(16)	N(42B)-K(1)-N(41A)	49.6(7)
Si(13)-Si(11)-Si(12)	104.30(15)	N(52)-K(1)-N(41A)	148.1(3)
Si(14)-Si(11)-Pb(1)	131.36(13)	N(51)-K(1)-N(41A)	150.6(3)
Si(13)-Si(11)-Pb(1)	105.98(12)	N(43B)-K(1)-N(41A)	47.8(6)
Si(12)-Si(11)-Pb(1)	99.09(11)	N(53)-K(1)-N(41A)	119.4(4)
Si(14)-Si(11)-Pb(1A)	78.64(13)	N(43A)-K(1)-N(42A)	44.7(6)
Si(13)-Si(11)-Pb(1A)	125.71(13)	N(32)-K(1)-N(42A)	135.3(5)
Si(12)-Si(11)-Pb(1A)	126.39(13)	N(41B)-K(1)-N(42A)	45.7(6)
Pb(1)-Si(11)-Pb(1A)	52.98(8)	N(42B)-K(1)-N(42A)	24.6(6)
C(122)-Si(12)-C(121)	109.0(8)	N(52)-K(1)-N(42A)	114.3(4)
C(122)-Si(12)-C(123)	105.0(7)	N(51)-K(1)-N(42A)	111.5(4)
C(121)-Si(12)-C(123)	106.2(7)	N(43B)-K(1)-N(42A)	64.2(7)
C(122)-Si(12)-Si(11)	111.7(6)	N(53)-K(1)-N(42A)	74.6(4)
C(121)-Si(12)-Si(11)	110.0(4)	N(41A)-K(1)-N(42A)	45.0(4)
C(123)-Si(12)-Si(11)	114.7(4)	N(43A)-K(1)-N(31)	112.4(7)
C(131)-Si(13)-C(133)	108.1(7)	N(32)-K(1)-N(31)	45.8(5)
C(131)-Si(13)-C(132)	106.8(7)	N(41B)-K(1)-N(31)	117.1(6)
C(133)-Si(13)-C(132)	106.7(6)	N(42B)-K(1)-N(31)	134.4(8)
C(131)-Si(13)-Si(11)	110.2(5)	N(52)-K(1)-N(31)	87.9(4)
C(133)-Si(13)-Si(11)	111.0(5)	N(51)-K(1)-N(31)	76.9(4)
C(132)-Si(13)-Si(11)	113.7(4)	N(43B)-K(1)-N(31)	92.1(7)
C(142)-Si(14)-C(141)	104.4(7)	N(53)-K(1)-N(31)	120.7(4)
C(142)-Si(14)-C(143)	107.3(8)	N(41A)-K(1)-N(31)	118.1(4)
C(141)-Si(14)-C(143)	109.7(8)	N(42A)-K(1)-N(31)	156.3(5)
C(142)-Si(14)-Si(11)	111.1(5)	N(43A)-K(1)-N(33)	82.3(7)
C(141)-Si(14)-Si(11)	111.8(5)	N(32)-K(1)-N(33)	46.6(5)
C(143)-Si(14)-Si(11)	112.1(6)	N(41B)-K(1)-N(33)	74.7(6)
$S_1(16) - S_1(15) - S_1(18)$	106.62(15)	N(42B)-K(1)-N(33)	104.3(7)
$S_1(16) - S_1(15) - S_1(17)$	107.88(15)	N(52)-K(1)-N(33)	128.5(4)
S1(18)-S1(15)-S1(17)	102.89(16)	N(51)-K(1)-N(33)	113.5(5)
S1(10)-S1(15)-Pb(1)	128.74(15)	N(43B)-K(1)-N(33)	60.0(8)
SI(18)-SI(15)-PD(1) Si(17)-Si(15)-PL(1)	105.21(11) 102.91(12)	N(33)-K(1)-N(33) N(41.4), K(1), N(22)	157.8(5)
SI(17) - SI(15) - PD(1) SI(17) - SI(15) - PD(14)	102.81(12)	N(41A)-K(1)-N(55) N(42A)-K(1)-N(22)	(5.7(5))
SI(10)-SI(15)-PD(1A) Si(10)-Si(15)-PD(1A)	(8.78(14))	N(42A)-K(1)-N(55) N(21) K(1) N(22)	117.0(5)
SI(18)-SI(15)-PD(1A) Si(17)-Si(15)-Pb(1A)	100.30(13) 146.60(15)	N(31)-K(1)-N(33) C(52) N(51) C(511)	42.5(5)
$D_{h}(1) = S_{h}(15) = D_{h}(14)$	140.09(13) 54 13(7)	C(53)- $N(51)$ - $C(511)C(53)$ $N(51)$ $C(51)$	111.1(12) 108 8(10)
$C(163)_{Si}(16)_{C}(162)$	1083(7)	C(53)-N(51)-C(51)	108.8(10) 111 2(12)
C(163)-Si(16)-C(161)	106.3(7) 106.0(10)	C(53)-N(51)-K(1)	96 1(8)
C(162)-Si(16)-C(161)	107.8(8)	C(511)-N(51)-K(1)	135 1(11)
C(163)-Si(16)-Si(15)	113 8(6)	C(51)-N(51)-K(1)	915(7)
C(162)-Si(16)-Si(15)	112.7(5)	N(52)-C(51)-N(51)	110 5(9)
C(161)-Si(16)-Si(15)	108.0(5)	N(52) - C(51) - K(1)	60.2(5)
C(163)-Si(16)-Pb(1A)	145.9(6)	N(51)-C(51)-K(1)	62.7(6)
C(162)-Si(16)-Pb(1A)	105.2(5)	C(51)-N(52)-C(521)	110.7(9)
C(161)-Si(16)-Pb(1A)	56.8(5)	C(51)-N(52)-C(52)	108.0(9)
Si(15)-Si(16)-Pb(1A)	56.51(11)	C(521)-N(52)-C(52)	109.9(9)
C(171)-Si(17)-C(173)	107.0(7)	C(51)-N(52)-K(1)	94.8(6)
C(171)-Si(17)-C(172)	108.6(7)	C(521)-N(52)-K(1)	133.6(7)
C(173)-Si(17)-C(172)	107.5(8)	C(52)-N(52)-K(1)	97.1(5)
C(171)-Si(17)-Si(15)	112.6(4)	N(53)-C(52)-N(52)	109.8(9)
C(173)-Si(17)-Si(15)	111.4(5)	N(53)-C(52)-K(1)	63.3(6)
C(172)-Si(17)-Si(15)	109.5(5)	N(52)-C(52)-K(1)	58.0(5)
C(182)-Si(18)-C(181)	106.6(5)	C(53)-N(53)-C(52)	110.8(10)
C(182)-Si(18)-C(183)	106.9(6)	C(53)-N(53)-C(531)	112.0(13)
C(181)-Si(18)-C(183)	107.2(6)	C(52)-N(53)-C(531)	110.5(12)

Atoms	Angle	Atoms	Angle
C(182)-Si(18)-Si(15)	111.2(4)	C(53)-N(53)-K(1)	94.0(8)
C(181)-Si(18)-Si(15)	111.4(4)	C(52)-N(53)-K(1)	91.8(7)
C(183)-Si(18)-Si(15)	113.2(4)	C(531)-N(53)-K(1)	135.1(10)
Si(25)-Pb(2)-Si(21)	110.18(7)	N(53)-C(53)-N(51)	111.4(12)
Si(25)-Pb(2)-P(1)	98.28(7)	N(53)-C(53)-K(1)	62.4(7)
Si(21)-Pb(2)-P(1)	96.62(7)	N(51)-C(53)-K(1)	59.5(7)
Si(23)-Si(21)-Si(24)	105.28(13)	C(42A)-N(41A)-C(41A)	101.4(15)
Si(23)-Si(21)-Si(22)	109.53(14)	C(42A)-N(41A)-C(411)	105.9(17)
Si(24)-Si(21)-Si(22)	103.75(13)	C(41A)-N(41A)-C(411)	115.7(17)
Si(23)-Si(21)-Pb(2)	130.05(12)	C(42A)-N(41A)-K(1)	101.3(10)
Si(24)-Si(21)-Pb(2)	98.34(10)	C(41A)-N(41A)-K(1)	88.8(9)
Si(22)-Si(21)-Pb(2)	106.50(10)	C(411)-N(41A)-K(1)	138.1(13)
C(223)-Si(22)-C(222)	106.0(5)	N(43A)-C(41A)-N(41A)	109.8(14)
C(223)-Si(22)-C(221)	105.7(6)	N(43A)-C(41A)-K(1)	54.0(9)
C(222)-Si(22)-C(221)	109.4(6)	N(41A)-C(41A)-K(1)	65.9(8)
C(223)-Si(22)-Si(21)	114.8(4)	C(43A)-N(42A)-C(42A)	105(2)
C(222)-Si(22)-Si(21)	108.9(4)	C(43A)-N(42A)-C(421)	118(2)
C(221)-Si(22)-Si(21)	111.8(4)	C(42A)-N(42A)-C(421)	107(2)
C(231)-Si(23)-C(234)	73.2(16)	C(43A)-N(42A)-K(1)	88.4(18)
C(231)-Si(23)-C(236)	132.9(14)	C(42A)-N(42A)-K(1)	99.2(12)
C(234)-Si(23)-C(236)	106.0(11)	C(421)-N(42A)-K(1)	134.6(16)
C(231)-Si(23)-C(232)	112.2(17)	N(41A)-C(42A)-N(42A)	106.8(18)
C(234)-Si(23)-C(232)	120.7(16)	C(43A)-N(43A)-C(431)	107(3)
C(236)-Si(23)-C(232)	26.8(14)	C(43A)-N(43A)-C(41A)	102(2)
C(231)-Si(23)-C(233)	105.8(17)	C(431)-N(43A)-C(41A)	113(2)
C(234)-Si(23)-C(233)	33.1(16)	C(43A)-N(43A)-K(1)	100.7(17)
C(236)-S1(23)- $C(233)$	79.7(14)	C(431)-N(43A)-K(1)	130.0(17)
C(232)-S1(23)- $C(233)$	102.5(15)	C(41A)-N(43A)-K(1)	101.5(12)
C(231)-S1(23)- $C(235)$	42.1(17)	N(43A)-C(43A)-N(42A)	115(3)
C(234)-S1(23)- $C(235)$	110.0(13)	N(43A)-C(43A)-K(1)	55.4(12)
C(236)-S1(23)- $C(235)$	102.3(11)	N(42A)-C(43A)-K(1)	68.5(16)
C(232)-S1(23)- $C(235)$	76.2(14)	C(42B)-N(41B)- $C(41B)$	101.4(15) 105.0(17)
C(233)-SI(23)- $C(235)$	130.3(13) 110.6(11)	C(42B)-N(41B)- $C(412)$	105.9(17) 115.6(17)
C(234) Si(23) Si(21)	110.0(11) 115.4(0)	C(41B)-N(41B)-C(412) C(42B) N(41B) K(1)	113.0(17) 02.0(12)
C(234)-SI(23)-SI(21) C(236) Si(23) Si(21)	113.4(9) 111.6(8)	C(42B)-N(41B)-K(1) C(41B) N(41B) $K(1)$	92.9(12) 103 2(12)
C(232) - SI(23) - SI(21) C(232) - SI(23) - SI(21)	111.0(0) 116 3(14)	C(41B)-N(41B)-K(1) C(412) N(41B) K(1)	103.2(12) 131.6(15)
C(232)-Si(23)-Si(21) C(233) Si(23) Si(21)	10.3(14) 108 6(12)	N(43B) C(41B) N(41B)	100.8(14)
C(235)-Si(23)-Si(21)	100.0(12) 110 7(7)	N(43B)-C(41B)-K(1)	62 3(11)
C(241)-Si(24)-C(243)	106.6(6)	N(41B)-C(41B)-K(1)	52.3(11) 52.7(10)
C(241)-Si(24)- $C(243)$	106.5(6)	C(43B)-N(42B)-C(42B)	105(2)
C(243)-Si(24)-C(242)	107.1(5)	C(43B)-N(42B)-C(422)	118(2)
C(241)-Si(24)-Si(21)	109.8(4)	C(42B)-N(42B)-C(422)	107(2)
C(243)-Si(24)-Si(21)	115.0(4)	C(43B)-N(42B)-K(1)	103(2)
C(242)-Si(24)-Si(21)	111.3(4)	C(42B)-N(42B)-K(1)	92.5(14)
Si(28)-Si(25)-Si(26)	106.08(16)	C(422)-N(42B)-K(1)	126.0(18)
Si(28)-Si(25)-Si(27)	110.38(13)	N(41B)-C(42B)-N(42B)	106.8(18)
Si(26)-Si(25)-Si(27)	102.40(15)	N(41B)-C(42B)-K(1)	60.7(11)
Si(28)-Si(25)-Pb(2)	122.40(12)	N(42B)-C(42B)-K(1)	59.8(12)
Si(26)-Si(25)-Pb(2)	107.96(11)	C(43B)-N(43B)-C(432)	107(3)
Si(27)-Si(25)-Pb(2)	105.86(10)	C(43B)-N(43B)-C(41B)	102(2)
C(261)-Si(26)-C(263)	106.8(8)	C(432)-N(43B)-C(41B)	113(2)
C(261)-Si(26)-C(262)	109.8(10)	C(43B)-N(43B)-K(1)	89.6(17)
C(263)-Si(26)-C(262)	104.4(7)	C(432)-N(43B)-K(1)	145.2(18)
C(261)-Si(26)-Si(25)	110.6(6)	C(41B)-N(43B)-K(1)	93.2(12)
C(263)-Si(26)-Si(25)	113.8(5)	N(43B)-C(43B)-N(42B)	115(3)
C(262)-Si(26)-Si(25)	111.2(6)	N(43B)-C(43B)-K(1)	66.1(14)
C(273)-Si(27)-C(271)	107.5(6)	N(42B)-C(43B)-K(1)	54.4(16)
C(273)-Si(27)-C(272)	105.3(6)	C(31)-N(31)-C(311)	114(2)
C(271)-Si(27)-C(272)	106.5(5)	C(31)-N(31)-C(33)	109(2)
C(273)-Si(27)-Si(25)	113.1(4)	C(311)-N(31)-C(33)	112(2)

Atoms	Angle	Atoms	Angle
C(271)-Si(27)-Si(25)	110.7(4)	C(31)-N(31)-K(1)	100.0(15)
C(272)-Si(27)-Si(25)	113.3(4)	C(311)-N(31)-K(1)	135.0(18)
C(281)-Si(28)-C(282)	107.1(7)	C(33)-N(31)-K(1)	81.4(12)
C(281)-Si(28)-C(283)	107.6(6)	N(33)-C(31)-N(31)	113(2)
C(282)-Si(28)-C(283)	109.1(6)	C(33)-N(32)-C(321)	117(2)
C(281)-Si(28)-Si(25)	113.5(5)	C(33)-N(32)-C(32)	110.1(17)
C(282)-Si(28)-Si(25)	110.7(5)	C(321)-N(32)-C(32)	108(2)
C(283)-Si(28)-Si(25)	108.7(5)	C(33)-N(32)-K(1)	95.7(11)
N(43A)-K(1)-N(32)	124.9(6)	C(321)-N(32)-K(1)	125.4(13)
N(43A)-K(1)-N(41B)	46.7(7)	C(32)-N(32)-K(1)	99.7(13)
N(32)-K(1)-N(41B)	93.4(6)	N(33)-C(32)-N(32)	108.4(17)
N(43A)-K(1)-N(42B)	22.9(8)	N(33)-C(32)-K(1)	67.6(12)
N(32)-K(1)-N(42B)	141.6(7)	N(32)-C(32)-K(1)	54.7(10)
N(41B)-K(1)-N(42B)	49.8(5)	C(31)-N(33)-C(32)	105(2)
N(43A)-K(1)-N(52)	142.4(5)	C(31)-N(33)-C(331)	110(2)
N(32)-K(1)-N(52)	92.2(4)	C(32)-N(33)-C(331)	110(3)
N(41B)-K(1)-N(52)	149.1(5)	C(31)-N(33)-K(1)	99.4(15)
N(42B)-K(1)-N(52)	124.8(6)	C(32)-N(33)-K(1)	87.3(13)
N(43A)-K(1)-N(51)	104.9(5)	C(331)-N(33)-K(1)	140.1(19)
N(32)-K(1)-N(51)	112.8(4)	N(32)-C(33)-N(31)	113.7(16)
N(41B)-K(1)-N(51)	150.6(5)	N(32)-C(33)-K(1)	59.9(10)
N(42B)-K(1)-N(51)	101.5(6)	N(31)-C(33)-K(1)	72.6(12)
N(52)-K(1)-N(51)	47.2(2)	O(6)-C(63)-C(64)	107.1(15)
N(43A)-K(1)-N(43B)	22.4(5)	C(62)-O(6)-C(63)	113.2(15)
N(32)-K(1)-N(43B)	104.1(7)	O(6)-C(62)-C(61)	112.3(16)
N(41B)-K(1)-N(43B)	47.0(5)		

7.14 Crystallographic data for [(Hyp₂Pb·P(H)Hyp]₂

7.14.1 Crystal data and structure refinement

Empirical formula		$Hyp_4P_2(H)_2Pb_2\cdot Et_2O$				
Formula weight		1541.10				
Temperature		188(2) K				
Wavelength		0.71073 Å				
Crystal system, space group		monoclinic, P2(1)/n				
Unit cell dimensions a b c	. = . = . =	14.4402(4) Å alpha = 90 deg. 24.4936(6) Å beta = 94.287(2) deg. 22.2942(6) Å gamma = 90 deg.				
Volume		7863.2(4) Å ³				
Z, Calculated density		4, 1.302 g/cm^3				
Absorption coefficient		4.586 mm^{-1}				
F(000)		3136				
Theta range for data collecti	on	3.43 to 28.31 deg.				
Limiting indices		-19<=h<=17, -32<=k<=31, -29<=l<=27				
Reflections collected / uniqu	.e	71278 / 19355 [R(int) = 0.0738]				
Completeness to theta = 28.31		98.9 %				
Refinement method		Full-matrix least-squares on F^2				
Data / restraints / parameter	S	19355 / 167 / 745				
Goodness-of-fit on F^2		1.036				
<pre>Final R indices [I>2sigma(I)]</pre>		R1 = 0.0460, wR2 = 0.0995				
R indices (all data)		R1 = 0.0835, wR2 = 0.1197				
Largest diff. peak and hole		1.917 and -0.791 e.Å $^{-3}$				

Atom	U11	U22	U33	U23	U13	U12
Pb(1)	44(1)	35(1)	45(1)	1(1)	4(1)	3(1)
Pb(2)	39(1)	36(1)	43(1) 42(1)	4(1)	2(1)	2(1)
P(2)	34(1)	36(1)	50(1)	4(1)	$\frac{2(1)}{4(1)}$	-1(1)
P(1)	37(1)	38(1)	46(1)	5(1)	$\frac{4(1)}{8(1)}$	-1(1)
$P(1\Delta)$	54(2)	$\frac{30(1)}{43(2)}$	40(1) 55(2)	$\frac{3(1)}{1(1)}$	9(1)	-4(1)
Pb(2A)	51(2)	49(2)	56(2)	2(1)	9(1)	-4(1)
P(1R)	54(10)	$\frac{4}{2}$	81(13)	-43(8)	-47(9)	-9(7)
P(2R)	58(11)	0(5)	90(14)	3(8)	-24(9)	-7(6)
Si(2)	36(1)	38(1)	39(1)	5(1)	3(1)	1(1)
Si(2)	44(1)	48(1)	47(1)	7(1)	12(1)	1(1)
Si(22)	49(1)	42(1)	54(1)	11(1)	7(1)	1(1)
Si(22) Si(23)	46(1)	62(2)	45(1)	0(1)	4(1)	-12(1)
Si(23) Si(4)	34(1)	40(1)	39(1)	6(1)	2(1)	-3(1)
Si(41)	36(1)	60(1)	48(1)	11(1)	$\frac{2(1)}{4(1)}$	-7(1)
Si(42)	47(1)	40(1)	62(1)	0(1)	-3(1)	-4(1)
Si(42)	57(1)	60(1)	45(1)	16(1)	-3(1)	0(1)
Si(3)	41(1)	42(1)	50(1)	13(1)	12(1)	4(1)
Si(3)	56(1)	52(1)	50(1)	5(1)	12(1) 10(1)	$\frac{11(1)}{11(1)}$
Si(32)	61(1)	74(2)	64(1)	29(1)	15(1)	23(1)
Si(32)	51(1)	60(1)	78(2)	$\frac{29(1)}{8(1)}$	17(1)	-15(1)
Si(33)	54(1)	34(1)	53(1)	-1(1)	4(1)	8(1)
Si(1)	63(1)	58(1)	79(2)	-11(1)	19(1)	2(1)
Si(12)	68(1)	57(1)	81(2)	-16(1)	-3(1)	5(1)
Si(12) Si(13)	117(2)	48(1)	61(1)	6(1)	9(1)	25(1)
C(111)	91(7)	72(6)	86(6)	5(5)	34(5)	-6(5)
C(112)	64(6)	72(0) 76(7)	146(10)	-9(6)	-9(6)	10(5)
C(112) C(113)	114(8)	81(7)	104(8)	-34(6)	54(7)	-11(6)
C(121)	115(9)	133(10)	73(7)	27(7)	-13(6)	-4(8)
C(122)	75(6)	72(6)	142(11)	-22(6)	-3(7)	-12(5)
C(123)	98(8)	109(9)	161(12)	-88(9)	-31(8)	12(0) 18(7)
C(131)	147(9)	68(6)	41(4)	4(4)	-16(5)	28(6)
C(132)	133(10)	51(5)	80(6)	3(5)	5(6)	39(6)
C(133)	203(14)	50(5)	112(9)	12(6)	61(9)	-19(7)
C(211)	93(7)	64(6)	109(8)	1(5)	60(7)	14(5)
C(212)	61(5)	96(8)	78(6)	3(5)	17(5)	-29(5)
C(213)	77(6)	133(9)	46(4)	27(5)	11(4)	14(6)
C(231)	97(7)	53(5)	82(6)	-11(4)	6(5)	-17(5)
C(232)	58(5)	84(7)	112(8)	-20(6)	26(5)	-27(5)
C(233)	88(7)	122(9)	63(5)	19(6)	-31(5)	-29(6)
C(221)	107(8)	88(7)	73(6)	30(5)	10(5)	48(6)
C(222)	92(6)	54(5)	65(5)	4(4)	24(4)	17(4)
C(223)	84(7)	44(5)	151(10)	-7(5)	17(6)	-2(4)
C(311)	90(7)	60(5)	73(7)	-16(5)	-7(5)	1(4)
C(313)	108(9)	90(7)	86(7)	19(6)	53(7)	37(6)
C(312)	65(5)	49(4)	74(5)	10(4)	2(4)	9(4)
C(321)	94(7)	120(8)	78(6)	61(6)	43(5)	45(6)
C(322)	88(6)	69(6)	113(8)	43(5)	44(6)	35(5)
C(323)	109(10)	134(11)	98(8)	19(8)	-29(7)	26(8)
C(331)	53(5)	135(10)	95(7)	8(7)	18(5)	-21(6)
C(332)	60(5)	105(8)	84(6)	2(6)	-2(5)	-20(5)
C(333)	134(10)	53(6)	145(12)	14(6)	13(8)	-19(6)
C(411)	63(5)	110(7)	53(5)	19(5)	8(4)	-20(5)
C(413)	42(4)	77(5)	70(5)	18(4)	4(3)	-15(4)

7.14.2 Anisotropic displacement parameters (Å $^2 \times 10^3$). The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U11 + ... + 2hka^*b^*U12]$

Atom	U11	U22	U33	U23	U13	U12
C(412)	56(5)	67(5)	89(6)	3(4)	20(4)	6(4)
C(421)	67(6)	62(5)	123(9)	-27(6)	-1(6)	-22(4)
C(422)	115(8)	52(5)	89(7)	20(5)	-7(6)	12(5)
C(423)	59(5)	71(6)	89(6)	-17(5)	13(4)	-7(4)
C(431)	100(8)	140(11)	72(6)	27(7)	-39(6)	-33(7)
C(432)	65(5)	69(6)	101(8)	30(6)	-2(5)	8(4)
C(433)	130(9)	110(9)	65(6)	27(6)	31(6)	24(7)
C(01)	290(30)	370(40)	154(18)	40(20)	22(19)	-70(30)
C(02)	180(20)	280(30)	560(60)	-220(40)	-90(30)	-40(20)
O(03)	320(20)	720(50)	261(19)	340(30)	156(18)	290(30)
C(04)	820(110)	650(90)	890(110)	260(80)	100(80)	-240(80)
C(05)	220(20)	310(30)	210(20)	70(20)	-21(17)	10(20)

7.14.3 Bond lengths [Å].

Atoms	Bond length	Atoms	Bond length	Atoms	Bond length
Pb(1)-P(1)	2.7762(17)	Si(26)-C(263)	1.90(2)	Si(3B)-Si(34)	2.360(5)
Pb(1)-Si(1)	2.785(2)	Si(4)-Si(43)	2.355(3)	Si(34)-C(342)	1.864(10)
Pb(1)-P(2)	2.7943(16)	Si(4)-Si(41)	2.356(3)	Si(34)-C(341)	1.868(11)
Pb(2)-Si(2)	2.771(3)	Si(4)-Si(42)	2.362(3)	Si(34)-C(343)	1.881(11)
Pb(2)-P(1)	2.7921(17)	Si(41)-C(411)	1.858(8)	Si(35)-C(352)	1.882(10)
Pb(2)-P(2)	2.7965(17)	Si(41)-C(412)	1.873(8)	Si(35)-C(351)	1.885(10)
P(2)-Si(4)	2.282(2)	Si(41)-C(413)	1.879(8)	Si(35)-C(353)	1.886(15)
P(1)-Si(3)	2.286(3)	Si(42)-C(423)	1.852(9)	Si(36)-C(362)	1.853(11)
Pb(1A)-P(2B)	2.707(14)	Si(42)-C(422)	1.855(11)	Si(36)-C(363)	1.853(12)
Pb(1A)-P(1B)	2.767(18)	Si(42)-C(421)	1.894(8)	Si(36)-C(361)	1.884(11)
Pb(1A)-Si(3B)	2.80(3)	Si(43)-C(432)	1.850(10)	Si(1)-Si(12)	2.330(3)
Pb(2A)-P(2B)	2.81(2)	Si(43)-C(433)	1.858(10)	Si(1)-Si(13)	2.349(3)
Pb(2A)-P(1B)	2.84(2)	Si(43)-C(431)	1.859(10)	Si(1)-Si(11)	2.371(3)
Pb(2A)-Si(4B)	3.138(19)	Si(4B)-Si(45)	2.329(16)	Si(11)-C(111)	1.860(10)
P(1B)-Si(1B)	2.11(2)	Si(4B)-Si(44)	2.349(16)	Si(11)-C(112)	1.860(11)
P(2B)-Si(2A)	2.30(4)	Si(4B)-Si(46)	2.397(16)	Si(11)-C(113)	1.882(9)
Si(2)-Si(23)	2.348(3)	Si(44)-C(441)	1.87(2)	Si(12)-C(121)	1.870(11)
Si(2)-Si(21)	2.353(3)	Si(44)-C(442)	1.88(2)	Si(12)-C(123)	1.885(10)
Si(2)-Si(22)	2.354(3)	Si(44)-C(443)	1.88(2)	Si(12)-C(122)	1.896(11)
Si(21)-C(213)	1.851(8)	Si(45)-C(453)	1.85(2)	Si(13)-C(132)	1.871(9)
Si(21)-C(212)	1.862(9)	Si(45)-C(452)	1.86(2)	Si(13)-C(131)	1.889(9)
Si(21)-C(211)	1.870(9)	Si(45)-C(451)	1.900(19)	Si(13)-C(133)	1.938(14)
Si(22)-C(223)	1.863(10)	Si(46)-C(462)	1.84(2)	Si(1B)-Si(15)	2.329(6)
Si(22)-C(221)	1.867(9)	Si(46)-C(461)	1.85(2)	Si(1B)-Si(16)	2.349(5)
Si(22)-C(222)	1.877(8)	Si(46)-C(463)	1.86(2)	Si(1B)-Si(14)	2.371(6)
Si(23)-C(231)	1.866(10)	Si(3)-Si(32)	2.359(3)	Si(14)-C(142)	1.860(12)
Si(23)-C(232)	1.883(9)	Si(3)-Si(33)	2.359(3)	Si(14)-C(141)	1.861(11)
Si(23)-C(233)	1.890(9)	Si(3)-Si(31)	2.361(3)	Si(14)-C(143)	1.881(10)
Si(2A)-Si(24)	2.354(17)	Si(31)-C(312)	1.859(8)	Si(15)-C(151)	1.871(12)
Si(2A)-Si(26)	2.355(17)	Si(31)-C(311)	1.866(9)	Si(15)-C(153)	1.885(11)
Si(2A)-Si(25)	2.364(17)	Si(31)-C(313)	1.878(9)	Si(15)-C(152)	1.896(12)
Si(24)-C(243)	1.85(2)	Si(32)-C(322)	1.882(9)	Si(16)-C(162)	1.871(11)
Si(24)-C(242)	1.85(2)	Si(32)-C(321)	1.884(9)	Si(16)-C(161)	1.890(11)
Si(24)-C(241)	1.88(2)	Si(32)-C(323)	1.887(14)	Si(16)-C(163)	1.938(14)
Si(25)-C(253)	1.85(2)	Si(33)-C(332)	1.852(10)	C(01)-C(02)	1.51(3)
Si(25)-C(252)	1.87(2)	Si(33)-C(333)	1.852(11)	C(02)-O(03)	1.08(4)
Si(25)-C(251)	1.87(2)	Si(33)-C(331)	1.884(10)	C(02)-C(04)	1.93(8)
Si(26)-C(261)	1.86(2)	Si(3B)-Si(35)	2.359(5)	O(03)-C(04)	1.10(4)
Si(26)-C(262)	1.87(2)	Si(3B)-Si(36)	2.359(6)	C(04)-C(05)	1.54(3)

Atoms	Angle	Atoms	Angle
P(1)-Pb(1)-Si(1)	106.38(6)	C(452)-Si(45)-Si(4B)	109.5(19)
P(1)-Pb(1)-P(2)	79.56(5)	C(451)-Si(45)-Si(4B)	112.6(18)
Si(1)-Pb(1)-P(2)	106.36(6)	C(462)-Si(46)-C(461)	106.2(19)
Si(2)-Pb(2)-P(1)	106.21(7)	C(462)-Si(46)-C(463)	110(2)
Si(2)-Pb(2)-P(2)	105.43(7)	C(461)-Si(46)-C(463)	111(2)
P(1)-Pb(2)-P(2)	79.25(5)	C(462)-Si(46)-Si(4B)	114.5(17)
Si(4) - P(2) - Pb(1)	112.71(8)	C(461)-S1(46)-S1(4B)	106.6(16)
$S_1(4)-P(2)-Pb(2)$	11/.14(9)	C(463)-S1(46)-S1(4B)	108.5(17)
Pb(1)-P(2)-Pb(2)	98.46(5)	P(1)-Si(3)-Si(32)	112.76(11)
$S_1(3) - P(1) - Pb(1)$	114.11(8)	P(1)-S1(3)-S1(33)	108.00(14)
S1(3)-P(1)-PD(2)	115.93(9)	SI(32)-SI(3)-SI(33)	107.10(13)
PD(1)-P(1)-PD(2)	98.99(5)	P(1)-S1(3)-S1(31)	109.20(16) 107.08(12)
P(2B) - PD(1A) - P(1B) P(2B) - Db(1A) - Si(2B)	82.5(5)	SI(32)- $SI(3)$ - $SI(31)Si(22)$ $Si(2)$ $Si(21)$	107.98(13) 111.78(12)
P(2D)-PU(1A)-SI(3D) P(1D) Pb(1A) Si(2D)	102.0(7)	SI(55)-SI(5)-SI(51) C(212) S(21) C(211)	111.70(13) 108.0(4)
P(1D)-P(1A)-S(3D) P(2P) D(2A) P(1P)	100.4(0)	C(312)-SI(31)-C(311) C(312)-Si(31)-C(312)	108.9(4)
P(2D) - P(2A) - P(1D) P(2D) - P(2A) - Si(AD)	19.3(<i>3</i>) 07.2(5)	C(312)- $SI(31)$ - $C(313)$	108.9(3)
P(1B) Pb(2A) Si(4B)	$\frac{97.2(5)}{101.0(4)}$	C(312) Si(31) - C(313)	107.0(3) 109.5(3)
F(1D) - F U(2A) - SI(4D) Si(1B) D(1B) Db(1A)	101.0(4)	C(312)- $Si(31)$ - $Si(3)C(311)$ $Si(31)$ $Si(3)$	109.3(3) 112 1(3)
Si(1B)-P(1B)-Pb(2A)	121 6(11)	C(313)-Si(31)-Si(3)	109 8(3)
$Ph(1\Delta) - P(1B) - Ph(2\Delta)$	95 9(6)	C(322)-Si(32)-C(321)	109.8(3) 109.1(4)
$S_i(2A) - P(2B) - P(1A)$	114 5(10)	C(322)- $Si(32)$ - $C(321)C(322)$ - $Si(32)$ - $C(323)$	105.1(4)
Si(2A)-P(2B)-Pb(2A)	112 8(12)	C(321)-Si(32)-C(323)	110.5(6)
Ph(1A)-P(2B)-Ph(2A)	97 9(5)	C(322)-Si(32)-Si(3)	110.5(0) 112 2(4)
Si(23)-Si(2)-Si(21)	107 93(12)	C(321)-Si(32)-Si(3)	107.0(3)
Si(23)-Si(2)-Si(22)	106.68(13)	C(323)-Si(32)-Si(3)	111.5(4)
Si(21)-Si(2)-Si(22)	107.98(12)	C(332)-Si(33)-C(333)	108.2(6)
Si(23)-Si(2)-Pb(2)	117.12(13)	C(332)-Si(33)-C(331)	107.1(5)
Si(21)-Si(2)-Pb(2)	117.69(13)	C(333)-Si(33)-C(331)	108.6(6)
Si(22)-Si(2)-Pb(2)	98.09(10)	C(332)-Si(33)-Si(3)	111.6(3)
C(213)-Si(21)-C(212)	107.3(5)	C(333)-Si(33)-Si(3)	111.0(5)
C(213)-Si(21)-C(211)	108.1(5)	C(331)-Si(33)-Si(3)	110.2(4)
C(212)-Si(21)-C(211)	107.5(5)	Si(35)-Si(3B)-Si(36)	107.0(5)
C(213)-Si(21)-Si(2)	112.3(3)	Si(35)-Si(3B)-Si(34)	107.9(5)
C(212)-Si(21)-Si(2)	111.4(3)	Si(36)-Si(3B)-Si(34)	112.0(5)
C(211)-Si(21)-Si(2)	110.1(3)	Si(35)-Si(3B)-Pb(1A)	97.8(9)
C(223)-Si(22)-C(221)	107.1(5)	Si(36)-Si(3B)-Pb(1A)	117.0(14)
C(223)-Si(22)-C(222)	106.4(5)	Si(34)-Si(3B)-Pb(1A)	113.4(10)
C(221)-Si(22)-C(222)	107.7(5)	C(342)-Si(34)-C(341)	108.9(7)
C(223)-Si(22)-Si(2)	111.9(3)	C(342)-Si(34)-C(343)	108.6(7)
C(221)-Si(22)-Si(2)	112.3(3)	C(341)-Si(34)-C(343)	107.7(7)
C(222)-Si(22)-Si(2)	111.2(3)	C(342)-Si(34)-Si(3B)	109.4(6)
C(231)-Si(23)-C(232)	109.9(5)	C(341)-Si(34)-Si(3B)	112.3(6)
C(231)-Si(23)-C(233)	106.0(5)	C(343)-Si(34)-Si(3B)	109.8(6)
C(232)-Si(23)-C(233)	106.0(5)	C(352)-Si(35)-C(351)	109.1(7)
C(231)-Si(23)-Si(2)	110.8(3)	C(352)-Si(35)-C(353)	106.6(8)
C(232)-Si(23)-Si(2)	111.7(3)	C(351)-Si(35)-C(353)	110.5(8)
C(233)-Si(23)-Si(2)	112.3(3)	C(352)-Si(35)-Si(3B)	112.2(6)
P(2B)-Si(2A)-Si(24)	114.4(16)	C(351)-Si(35)-Si(3B)	106.9(6)
P(2B)-Si(2A)-Si(26)	110.6(16)	C(353)-Si(35)-Si(3B)	111.5(6)
S1(24)-S1(2A)-S1(26)	106.9(13)	C(362)-S1(36)-C(363)	108.1(8)
P(2B)-S1(2A)-S1(25)	110.6(15)	C(362)-S1(36)-C(361)	107.2(7)
S1(24)-S1(2A)-S1(25)	10/.8(13)	C(363)-S1(36)-C(361)	108.6(8)
S1(26)-S1(2A)-S1(25)	106.2(13)	C(362)-S1(36)-S1(3B)	111.0(0)
C(243)-S1(24)- $C(242)$	108(2)	C(363)-S1(36)-S1(3B)	111.0(/)
C(243)-S1(24)- $C(241)$	108(2) 107(2)	U(301)-S1(30)-S1(3B) S(12)-S(1)-S(12)	110.3(0) 106.25(12)
U(242)-SI(24)-U(241)	107(2)	SI(12)-SI(1)-SI(13)	100.33(13)

7.14.4 Bond angles [deg].

Atoms	Angle	Atoms	Angle
C(243)-Si(24)-Si(2A)	112(2)	Si(12)-Si(1)-Si(11)	108.22(12)
C(242)-Si(24)-Si(2A)	112.2(19)	Si(13)-Si(1)-Si(11)	105.42(12)
C(241)-Si(24)-Si(2A)	109.1(17)	Si(12)-Si(1)-Pb(1)	120.86(10)
C(253)-Si(25)-C(252)	109(2)	Si(13)-Si(1)-Pb(1)	102.54(9)
C(253)-Si(25)-C(251)	108(2)	Si(11)-Si(1)-Pb(1)	112.07(9)
C(252)-Si(25)-C(251)	107(2)	C(111)-Si(11)-C(112)	109.9(5)
C(253)-Si(25)-Si(2A)	112.3(19)	C(111)-Si(11)-C(113)	105.1(5)
C(252)-Si(25)-Si(2A)	110.3(17)	C(112)-Si(11)-C(113)	108.8(6)
C(251)-Si(25)-Si(2A)	109.8(17)	C(111)-Si(11)-Si(1)	111.6(3)
C(261)-Si(26)-C(262)	111(2)	C(112)-Si(11)-Si(1)	110.1(4)
C(261)-Si(26)-C(263)	106(2)	C(113)-Si(11)-Si(1)	111.1(4)
C(262)-Si(26)-C(263)	106(2)	C(121)-Si(12)-C(123)	109.8(7)
C(261)-Si(26)-Si(2A)	111.8(18)	C(121)-Si(12)-C(122)	108.7(6)
C(262)-Si(26)-Si(2A)	112.0(18)	C(123)-Si(12)-C(122)	106.5(5)
C(263)-Si(26)-Si(2A)	110.0(18)	C(121)-Si(12)-Si(1)	109.8(4)
P(2)-Si(4)-Si(43)	111.45(10)	C(123)-Si(12)-Si(1)	110.4(4)
P(2)-Si(4)-Si(41)	110 78(10)	C(122)-Si(12)-Si(1)	111 5(4)
Si(43)-Si(4)-Si(41)	107 52(10)	C(122) -Si(12) -Si(1) C(132) -Si(13) -C(131)	106 9(5)
P(2)-Si(4)-Si(42)	108.19(9)	C(132)-Si(13)-C(133)	106.8(6)
Si(43)-Si(4)-Si(42)	108.74(10)	C(131)-Si(13)- $C(133)$	108 7(6)
Si(41)-Si(4)-Si(42)	110 15(10)	C(132)-Si(13)-Si(1)	112 3(4)
C(411)-Si(41)-C(412)	109 1(5)	C(132) SI(13) SI(1) C(131) - Si(13) - Si(1)	112.3(1)
C(411)-Si(41)-C(413)	105.1(5) 106.7(4)	C(133)-Si(13)-Si(1)	109.6(4)
C(412)-Si(41)-C(413)	100.7(4) 107 8(4)	P(1B)-Si(1B)-Si(15)	115 8(9)
C(412)-Si(41)-C(413) C(411)-Si(41)-Si(4)	107.0(+) 111.7(3)	P(1B)-Si(1B)-Si(15)	117.0(8)
C(412)-Si(41)-Si(4)	110.7(3)	$S_{i}(15) - S_{i}(1B) - S_{i}(16)$	106 5(4)
C(412) Si(41) Si(4)	110.2(3) 111 2(3)	P(1B)-Si(1B)-Si(1A)	103 3(9)
C(473)-Si(47)-Si(47)	109 5(6)	$S_i(15)-S_i(1B)-S_i(14)$	107.8(4)
C(423)-Si(42)-C(421)	107.5(0) 107.5(4)	Si(16) - Si(1B) - Si(14)	107.0(4) 105.7(4)
C(422)-Si(42)-C(421)	107.5(4)	C(142)-Si(14)-C(141)	109.8(7)
C(422)-Si(42)-C(421) C(423)-Si(42)-Si(4)	111.8(3)	C(142)-Si(14)-C(143)	108.9(8)
C(422)-Si(42)-Si(4)	108.3(4)	C(142) $Si(14)$ $C(143)C(141)$ - $Si(14)$ - $C(143)$	105.1(7)
C(421)-Si(42)-Si(4)	100.5(4) 112 6(3)	C(142)-Si(14)-Si(1B)	110.2(6)
C(432)-Si(43)-C(433)	108 3(5)	C(142) Si(14) Si(1B) C(141) Si(14) Si(1B)	111.3(6)
C(432)-Si(43)-C(431)	105.3(5)	C(143)-Si(14)-Si(1B)	111.3(6)
C(433)-Si(43)-C(431)	105.5(5) 110.2(6)	C(151)-Si(15)-C(153)	109 7(9)
C(432)-Si(43)-Si(4)	110.2(0) 114 5(3)	C(151)-Si(15)- $C(152)$	108 7(8)
C(433)-Si(43)-Si(4)	114.5(5) 111.0(4)	C(153)-Si(15)- $C(152)$	106.7(0) 106.4(7)
C(431)-Si(43)-Si(4)	107 A(3)	C(153) SI(15) C(152) C(151) - Si(15) - Si(1B)	110.0(6)
Si(45)-Si(4B)-Si(4A)	107.4(3) 112 0(9)	C(153)-Si(15)-Si(1B)	110.0(0)
Si(45)-Si(4B)-Si(46)	105 6(9)	C(152)-Si(15)-Si(1B)	111.5(6)
Si(44)-Si(4B)-Si(46)	105.0(9) 107.4(9)	C(162)-Si(16)-C(161)	106 9(7)
Si(45)-Si(4B)-Ph(2A)	984(7)	$C(162) \cdot Si(16) - C(163)$	106.9(8)
Si(44)-Si(4B)-Pb(2A)	1020(7)	C(161)-Si(16)-C(163)	108 7(8)
Si(46)-Si(4B)-Pb(2A)	130.9(8)	C(162)-Si(16)-Si(1B)	112 4(6)
C(AA1)-Si(AA)-C(AA2)	108(2)	C(162) Si(16) Si(1B)	112.4(0)
C(441)-Si(44)-C(443)	106(2)	C(163)-Si(16)-Si(1B)	109 6(6)
C(442)-Si(44)-C(443)	109(2)	O(03)- $C(02)$ - $C(01)$	118(3)
C(441)-Si(44)-Si(4R)	1107(17)	O(03)- $C(02)$ - $C(04)$	28(3)
C(442)-Si(44)-Si(4R)	110.9(17)	C(01)- $C(02)$ - $C(04)$	131(4)
C(443)-Si(44)-Si(4B)	112 2(19)	C(02) - O(03) - C(04)	125(5)
C(453)-Si(45)-C(452)	109(2)	O(03)- $C(04)$ - $C(05)$	108(3)
C(453)-Si(45)-C(451)	108(2)	O(03) - C(04) - C(02)	27(3)
C(452)-Si(45)-C(451)	106(2)	C(05)- $C(04)$ - $C(02)$	129(3)
C(453)-Si(45)-Si(4R)	111 7(17)		127(3)
	111./(1/)		
7.15 Crystallographic data for Hyp₆Pb₁₂

7.15.1 Crystal data and structure refinement

Empirical formula	Hyp ₆ Pb ₁₂ ·pentane
Formula weight	4044.42
Temperature	293(2) К
Wavelength	0.71073 Å
Crystal system, space group	hexagonal, $R\overline{3}$
Unit cell dimensions	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
Volume	9363.0(3) Å ³
Z, Calculated density	3, 2.152 g/cm^3
Absorption coefficient	16.374 mm^{-1}
F(000)	5544
Theta range for data collection	2.44 to 28.31 deg.
Limiting indices	-12<=h<=21, -21<=k<=18, -55<=1<=54
Reflections collected / unique	23561 / 5183 [R(int) = 0.0798]
Completeness to theta = 28.31	99.6 %
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	5183 / 13 / 192
Goodness-of-fit on F ²	1.044
Final R indices [I>2sigma(I)]	R1 = 0.0459, wR2 = 0.1093
R indices (all data)	R1 = 0.0756, $wR2 = 0.1242$
Largest diff. peak and hole	1.332 and -0.780 e.Å ⁻³

7.15.2 Atomic coordinates (x 10⁴), equivalent isotropic displacement parameters (Å² x 10³) and Anisotropic displacement parameters (Å² x 10³). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U11 + ... + 2hka^*b^*U12]$

Atom	Х	У	Z	U(eq)	U11	U22	U33	U23	U13	U12
Pb(1)	4785(1)	6228(1)	1375(1)	39(1)	35(1)	38(1)	38(1)	0(1)	4(1)	13(1)
Pb(2)	5237(1)	7484(1)	2062(1)	44(1)	32(1)	51(1)	36(1)	-1(1)	-3(1)	10(1)
Pb(3)	3463(1)	5162(1)	2020(1)	37(1)	41(1)	31(1)	36(1)	2(1)	3(1)	15(1)
Pb(4)	3494(2)	6670(8)	936(1)	41(1)	41(2)	39(1)	32(1)	-8(1)	-1(1)	11(2)
Pb(5)	5199(1)	8334(1)	1372(1)	41(1)	37(1)	37(1)	36(1)	0(1)	4(1)	9(1)
Pb(6)	2430(1)	4667(1)	1326(1)	47(1)	52(1)	34(1)	37(1)	-6(1)	5(1)	9(1)
Si(1)	6099(1)	6529(1)	921(1)	38(1)	37(1)	35(1)	43(1)	-2(1)	0(1)	18(1)
Si(13)	7579(1)	7485(1)	1174(1)	47(1)	35(1)	40(1)	64(1)	-8(1)	-2(1)	17(1)
Si(12)	5895(1)	4991(1)	853(1)	42(1)	36(1)	37(1)	56(1)	-5(1)	2(1)	20(1)
Si(11)	6034(2)	7185(2)	426(1)	48(1)	60(1)	52(1)	39(1)	3(1)	9(1)	32(1)
C(121)	4642(5)	4082(5)	753(2)	55(2)	46(4)	43(4)	75(5)	-10(4)	2(4)	21(3)
C(111)	6011(7)	8312(6)	481(2)	59(2)	73(6)	49(4)	59(5)	13(4)	11(4)	34(4)
C(122)	6688(6)	4992(6)	517(2)	60(2)	48(4)	62(5)	74(5)	-16(4)	6(4)	30(4)
C(131)	7513(6)	7192(7)	1606(2)	62(2)	52(5)	76(6)	68(5)	-12(4)	-15(4)	41(4)
C(123)	6244(7)	4614(6)	1229(2)	63(2)	66(5)	46(4)	80(6)	8(4)	-1(4)	30(4)
C(132)	8531(6)	7281(7)	990(2)	66(2)	37(4)	76(6)	84(6)	-10(5)	5(4)	26(4)
C(133)	7949(6)	8775(6)	1143(3)	70(3)	56(5)	38(4)	105(8)	-9(4)	-10(5)	15(4)
C(112)	4946(8)	6302(7)	197(2)	76(3)	98(7)	73(6)	52(5)	-7(4)	-17(5)	38(6)
C(113)	7131(9)	7475(9)	183(3)	91(4)	104(8)	113(9)	80(7)	34(6)	54(6)	72(7)
C(01)	10080(170)	9910(160)	536(14)	110(30)						
C(02)	9990(80)	9340(70)	240(20)	140(30)						
C(03)	9520(50)	9540(60)	-36(17)	100(20)						

C(04)	10200(80)	10380(50)	-240(20)	110(30)
C(05)	10580(100)	10110(120)	-520(30)	200(50)

7.15.2 Bond lengths [Å].

Atoms	Bond length	Atoms	Bond length	Atoms	Bond length
Pb(1)-Pb(3)#1	0.8500(10)	Pb(3)-Si(1)#2	2.638(2)	Pb(6)-Pb(5)#4	1.0615(12)
Pb(1)-Pb(2)#2	1.1210(12)	Pb(3)-Pb(5)#4	2.7576(11)	Pb(6)-Pb(3)#2	1.3625(14)
Pb(1)-Pb(6)#3	2.1794(15)	Pb(3)-Pb(4)#2	2.769(3)	Pb(6)-Pb(1)#4	2.1794(15)
Pb(1)-Pb(5)#2	2.4683(11)	Pb(3)-Pb(4)#1	3.090(7)	Pb(6)-Pb(2)#2	2.4119(13)
Pb(1)-Pb(5)#4	2.4985(12)	Pb(3)-Pb(5)#5	3.1013(13)	Pb(6)-Pb(1)#2	2.7205(12)
Pb(1)-Si(1)	2.697(2)	Pb(3)-Pb(4)#5	3.110(9)	Pb(6)-Pb(4)#4	3.049(4)
Pb(1)-Pb(6)#1	2.7206(12)	Pb(3)-Pb(6)	3.2335(13)	Pb(6)-Pb(2)#5	3.0558(14)
Pb(1)-Pb(4)	3.110(5)	Pb(3)-Pb(2)#2	3.2690(11)	Pb(6)-Pb(2)#4	3.0955(11)
Pb(1)-Pb(5)	3.1118(13)	Pb(4)-Pb(4)#3	0.443(6)	Pb(6)-Pb(5)#5	3.2452(11)
Pb(1)-Pb(3)	3.3241(10)	Pb(4)-Pb(4)#4	0.443(6)	Si(1)-Si(11)	2.343(3)
Pb(1)-Pb(6)	3.3492(12)	Pb(4)-Pb(3)#1	2.769(3)	Si(1)-Si(13)	2.344(3)
Pb(1)-Pb(2)	3.3682(11)	Pb(4)-Pb(2)#2	2.829(8)	Si(1)-Si(12)	2.347(3)
Pb(2)-Pb(1)#1	1.1211(12)	Pb(4)-Pb(2)#1	2.996(9)	Si(1)-Pb(3)#1	2.638(2)
Pb(2)-Pb(5)#2	1.5420(13)	Pb(4)-Pb(6)#3	3.049(4)	Si(1)-Pb(2)#2	3.085(2)
Pb(2)-Pb(3)#3	1.7378(13)	Pb(4)-Pb(3)#2	3.090(7)	Si(13)-C(131)	1.854(9)
Pb(2)-Pb(6)#1	2.4119(13)	Pb(4)-Pb(3)#5	3.110(9)	Si(13)-C(133)	1.857(8)
Pb(2)-Pb(4)#1	2.829(8)	Pb(4)-Pb(2)#5	3.217(2)	Si(13)-C(132)	1.883(8)
Pb(2)-Pb(4)#2	2.996(10)	Pb(4)-Pb(6)	3.233(9)	Si(12)-C(121)	1.854(8)
Pb(2)-Pb(6)#5	3.0558(14)	Pb(4)-Pb(5)	3.267(6)	Si(12)-C(123)	1.866(9)
Pb(2)-Si(1)#1	3.085(2)	Pb(5)-Pb(6)#3	1.0616(12)	Si(12)-C(122)	1.893(8)
Pb(2)-Pb(6)#3	3.0955(11)	Pb(5)-Pb(2)#1	1.5421(13)	Si(11)-C(111)	1.848(8)
Pb(2)-Pb(5)	3.1988(11)	Pb(5)-Pb(3)#1	2.3252(13)	Si(11)-C(112)	1.873(10)
Pb(2)-Pb(4)#5	3.217(2)	Pb(5)-Pb(1)#1	2.4683(11)	Si(11)-C(113)	1.882(9)
Pb(2)-Pb(3)#1	3.2690(11)	Pb(5)-Pb(1)#3	2.4985(12)	C(01)-C(02)	1.50(5)
Pb(3)-Pb(1)#2	0.8499(10)	Pb(5)-Pb(3)#3	2.7576(11)	C(02)-C(03)	1.50(5)
Pb(3)-Pb(6)#1	1.3624(15)	Pb(5)-Pb(3)#5	3.1013(13)	C(03)-C(04)	1.50(5)
Pb(3)-Pb(2)#4	1.7378(13)	Pb(5)-Pb(6)#5	3.2452(11)	C(04)-C(05)	1.50(5)
Pb(3)-Pb(5)#2	2.3253(13)	Pb(5)-Pb(4)#3	3.311(9)		

7.15.3 Bond angles [deg].

Atoms	Angle	Atoms	Angle
Pb(3)#1-Pb(1)-Pb(2)#2	123.10(12)	Pb(2)#2-Pb(4)-Pb(3)#2	69.73(19)
Pb(3)#1-Pb(1)-Pb(6)#3	12.55(6)	Pb(2)#1-Pb(4)-Pb(3)#2	114.25(9)
Pb(2)#2-Pb(1)-Pb(6)#3	132.98(8)	Pb(6)#3-Pb(4)-Pb(3)#2	113.55(10)
Pb(3)#1-Pb(1)-Pb(5)#2	100.84(8)	Pb(4)#3-Pb(4)-Pb(3)#5	37.0(13)
Pb(2)#2-Pb(1)-Pb(5)#2	121.39(7)	Pb(4)#4-Pb(4)-Pb(3)#5	83(2)
Pb(6)#3-Pb(1)-Pb(5)#2	88.34(4)	Pb(3)#1-Pb(4)-Pb(3)#5	96.44(16)
Pb(3)#1-Pb(1)-Pb(5)#4	128.65(9)	Pb(2)#2-Pb(4)-Pb(3)#5	118.73(5)
Pb(2)#2-Pb(1)-Pb(5)#4	23.90(5)	Pb(2)#1-Pb(4)-Pb(3)#5	33.00(10)
Pb(6)#3-Pb(1)-Pb(5)#4	133.14(5)	Pb(6)#3-Pb(4)-Pb(3)#5	76.22(18)
Pb(5)#2-Pb(1)-Pb(5)#4	98.66(4)	Pb(3)#2-Pb(4)-Pb(3)#5	90.15(6)
Pb(3)#1-Pb(1)-Si(1)	76.94(8)	Pb(4)#3-Pb(4)-Pb(1)	141.3(9)
Pb(2)#2-Pb(1)-Si(1)	99.38(7)	Pb(4)#4-Pb(4)-Pb(1)	124.8(18)
Pb(6)#3-Pb(1)-Si(1)	83.86(5)	Pb(3)#1-Pb(4)-Pb(1)	15.25(4)
Pb(5)#2-Pb(1)-Si(1)	129.10(5)	Pb(2)#2-Pb(4)-Pb(1)	21.08(4)
Pb(5)#4-Pb(1)-Si(1)	122.67(5)	Pb(2)#1-Pb(4)-Pb(1)	84.88(9)
Pb(3)#1-Pb(1)-Pb(6)#1	120.27(9)	Pb(6)#3-Pb(4)-Pb(1)	41.43(4)
Pb(2)#2-Pb(1)-Pb(6)#1	98.71(7)	Pb(3)#2-Pb(4)-Pb(1)	84.23(19)
Pb(6)#3-Pb(1)-Pb(6)#1	108.31(4)	Pb(3)#5-Pb(4)-Pb(1)	104.94(11)
Pb(5)#2-Pb(1)-Pb(6)#1	22.95(3)	Pb(4)#3-Pb(4)-Pb(2)#5	56.6(19)
Pb(5)#4-Pb(1)-Pb(6)#1	76.77(4)	Pb(4)#4-Pb(4)-Pb(2)#5	26.8(6)

Atoms	Angle	Atoms	Angle
Si(1)-Pb(1)-Pb(6)#1	140 21(6)	Pb(3)#1-Pb(4)-Pb(2)#5	117.09(10)
$Pb(3)#1_Pb(1)_Pb(4)$	58 9/(19)	$Pb(2)#2_Pb(4)_Pb(2)#5$	90.3(2)
$D_{b}(2)$ #2 $D_{b}(1)$ $D_{b}(4)$	55.94(19)	$D_{L}(2)$ #2-1 $D(4)$ -1 $D(2)$ #5 Db(2)#1 Db(4) Db(2)#5	99.3(2) 05.81(17)
Pb(6)#3 $Pb(1)$ $Pb(4)$	67.80(19)	Pb(6)#3 Pb(4) Pb(2)#5	120.76(7)
$D_{b}(5)$ #2 $D_{b}(1)$ $D_{b}(4)$	127 10(10)	$D_{h}(2)$ #2 $D_{h}(4)$ $D_{h}(2)$ #5	120.70(7)
PU(3)#2-PU(1)-PU(4) Pb(5)#4 Pb(1) Pb(4)	127.19(10) 71.42(16)	PU(3)#2-PU(4)-PU(2)#3 Ph(2)#5 Ph(4) Ph(2)#5	51.90(4)
PU(3)#4-PU(1)-PU(4) S:(1) Db(1) Db(4)	(1.42(10))	PU(3)#3-PU(4)-PU(2)#3 Pb(1) Pb(4) Pb(2)#5	04.77(9) 108.80(15)
SI(1)-PU(1)-PU(4) PL(C)=1 $PL(1)$ $PL(4)$	95.08(5)	PU(1)-PU(4)-PU(2)#3 PL(4)#2 PL(4) PL(6)	108.80(13) 112.1(10)
PD(0)#1-PD(1)-PD(4)	124.09(4)	PD(4)#3-PD(4)-PD(0)	(10,10)
PD(3)#1-PD(1)-PD(5)	19.09(7)	PD(4)#4-PD(4)-PD(6)	61.9(19) 78.18(10)
PD(2)#2-PD(1)-PD(5)	12/.05(7)	PD(3)#1-PD(4)-PD(6)	/8.18(19)
Pb(6)#3-Pb(1)-Pb(5)	11.18(3)	Pb(2)#2-Pb(4)-Pb(6)	46.30(14)
Pb(5)#2-Pb(1)-Pb(5)	84.08(4)	Pb(2)#1-Pb(4)-Pb(6)	121.97(3)
Pb(5)#4-Pb(1)-Pb(5)	123.51(4)	Pb(6)#3-Pb(4)-Pb(6)	100.68(14)
$S_1(1)-Pb(1)-Pb(5)$	94.57(5)	Pb(3)#2-Pb(4)-Pb(6)	24.76(7)
Pb(6)#1-Pb(1)-Pb(5)	101.82(3)	Pb(3)#5-Pb(4)-Pb(6)	108.12(4)
Pb(4)-Pb(1)-Pb(5)	63.36(19)	Pb(1)-Pb(4)-Pb(6)	63.71(16)
Pb(3)#1-Pb(1)-Pb(3)	126.19(9)	Pb(2)#5-Pb(4)-Pb(6)	56.56(10)
Pb(2)#2-Pb(1)-Pb(3)	77.44(6)	Pb(4)#3-Pb(4)-Pb(5)	92(2)
Pb(6)#3-Pb(1)-Pb(3)	117.00(4)	Pb(4)#4-Pb(4)-Pb(5)	137.3(14)
Pb(5)#2-Pb(1)-Pb(3)	44.34(3)	Pb(3)#1-Pb(4)-Pb(5)	44.37(7)
Pb(5)#4-Pb(1)-Pb(3)	54.32(2)	Pb(2)#2-Pb(4)-Pb(5)	79.17(4)
Si(1)-Pb(1)-Pb(3)	154.59(6)	Pb(2)#1-Pb(4)-Pb(5)	28.08(7)
Pb(6)#1-Pb(1)-Pb(3)	23.43(3)	Pb(6)#3-Pb(4)-Pb(5)	18.95(5)
Pb(4)-Pb(1)-Pb(3)	105.39(6)	Pb(3)#2-Pb(4)-Pb(5)	115.58(3)
Pb(5)-Pb(1)-Pb(3)	107.41(3)	Pb(3)#5-Pb(4)-Pb(5)	58.14(15)
Pb(3)#1-Pb(1)-Pb(6)	116.16(9)	Pb(1)-Pb(4)-Pb(5)	58.35(4)
Pb(2)#2-Pb(1)-Pb(6)	27.57(5)	Pb(2)#5-Pb(4)-Pb(5)	111.55(14)
Pb(6)#3-Pb(1)-Pb(6)	120.62(4)	Pb(6)-Pb(4)-Pb(5)	110.32(8)
Pb(5)#2-Pb(1)-Pb(6)	101.31(3)	Pb(6)#3-Pb(5)-Pb(2)#1	134.94(8)
Pb(5)#4-Pb(1)-Pb(6)	12.60(2)	Pb(6)#3-Pb(5)-Pb(3)#1	18.65(5)
Si(1)-Pb(1)-Pb(6)	125.71(5)	Pb(2)#1-Pb(5)-Pb(3)#1	121.13(5)
Pb(6)#1-Pb(1)-Pb(6)	81.35(3)	Pb(6)#3-Pb(5)-Pb(1)#1	91.99(7)
Pb(4)-Pb(1)-Pb(6)	59.93(15)	Pb(2)#1-Pb(5)-Pb(1)#1	112.18(6)
Pb(5)-Pb(1)-Pb(6)	111.27(3)	Pb(3)#1-Pb(5)-Pb(1)#1	87.76(4)
Pb(3)-Pb(1)-Pb(6)	57.96(2)	Pb(6)#3-Pb(5)-Pb(1)#3	136.49(7)
Pb(3)#1-Pb(1)-Pb(2)	76.04(7)	Pb(2)#1-Pb(5)-Pb(1)#3	17.13(4)
Pb(2)#2-Pb(1)-Pb(2)	135.35(6)	Pb(3)#1-Pb(5)-Pb(1)#3	119.00(4)
Pb(6)#3-Pb(1)-Pb(2)	63.67(3)	Pb(1)#1-Pb(5)-Pb(1)#3	95.48(4)
Pb(5)#2-Pb(1)-Pb(2)	25.08(3)	Pb(6)#3-Pb(5)-Pb(3)#3	107.13(7)
Pb(5)#4-Pb(1)-Pb(2)	111.58(3)	Pb(2)#1-Pb(5)-Pb(3)#3	94.75(5)
Si(1)-Pb(1)-Pb(2)	125.09(5)	Pb(3)#1-Pb(5)-Pb(3)#3	99.41(4)
Pb(6)#1-Pb(1)-Pb(2)	45.13(3)	Pb(1)#1-Pb(5)-Pb(3)#3	17.62(2)
Pb(4)-Pb(1)-Pb(2)	109.37(15)	Pb(1)#3-Pb(5)-Pb(3)#3	78.29(3)
Pb(5)-Pb(1)-Pb(2)	59.00(2)	Pb(6)#3-Pb(5)-Pb(3)#5	124.24(7)
Pb(3)-Pb(1)-Pb(2)	60.86(2)	Pb(2)#1-Pb(5)-Pb(3)#5	20.21(4)
Pb(6)-Pb(1)-Pb(2)	109.06(3)	Pb(3)#1-Pb(5)-Pb(3)#5	$107\ 10(4)$
Pb(1)#1-Pb(2)-Pb(5)#2	138 96(8)	Pb(1)#1-Pb(5)-Pb(3)#5	98 95(4)
Pb(1)#1-Pb(2)-Pb(3)#3	24 18(5)	Pb(1)#3-Pb(5)-Pb(3)#5	12 36(2)
Ph(5)#2-Ph(2)-Ph(3)#3	141 94(6)	Pb(3)#3-Pb(5)-Pb(3)#5	82 90(3)
$Pb(1)#1_Pb(2)_Pb(6)#1$	141.94(0) 140.00(7)	$Pb(6)#3_Pb(5)_Pb(1)$	23.70(5)
Pb(5)#2-Pb(2)-Pb(6)#1	140.00(7) 18 15(4)	$Pb(2)#1_Pb(5)_Pb(1)$	120.87(5)
$D_{b}(3)$ #2 $D_{b}(2)$ $D_{b}(6)$ #1	13.13(4) 132.02(5)	Db(2)#1 Db(5) Db(1)	120.07(3)
$Ph(1) # 1_Ph(2)_Ph(4) # 1$	93.72(17)	$Ph(1) # 1_Ph(5)_Ph(1)$	81.53(3)
$D_{1}(1)$ $\pi_{1} + U(2) + U(4)$ π_{1} $D_{2}(5)$ μ_{2} $D_{2}(2)$ $D_{2}(4)$ μ_{1}	93.12(11) 03.82(11)	$D_{h}(1)$ + 2 $D_{h}(5)$ $D_{h}(1)$	116 48(4)
$1 \cup (3) \# 2 - 1 \cup (2) - 1 \cup (4) \# 1$ Db(3) # 3 Db(3) Db(4) # 1	70.04(11)	$1 \cup (1) \# 3 = 1 \cup (3) = 1 \cup (1)$ Db(2) #2 Db(5) Db(1)	02 68(3)
$r \cup (3) + 3 - r \cup (2) - r \cup (4) + 1$ Db(6) + 1 Db(2) Db(4) + 1	70.04(10) 75.71(11)	F U(3)#3-F U(3)-F U(1) Db(3)#5 Db(5) Db(1)	72.00(3)
$r \cup (\cup) \# 1 - r \cup (\angle) - r \cup (4) \# 1$ Db(1)#1 Db(2) Db(4)#2	(J, I(11)) 100.22(8)	F U(3)#3-FU(3)-FU(1) Db(6)#2 Db(5) Db(2)	103.07(3)
ru(1)#1-ru(2)-ru(4)#2 ph(5)#2 ph(2) ph(4)#2	$100.52(\delta)$ 95.77(10)	FU(0)#3-FU(3)-FU(2) DF(2)#1 DF(5) DF(2)	14.03(0) 122.02(5)
ru(3)#2-ru(2)-ru(4)#2	03.//(10) 77.09(6)	PU(2)#1-PD(3)-PD(2)	122.93(3)
PU(3)#3-PD(2)-PD(4)#2	(1.000)	PU(3)#1-PD(3)-PD(2)	10.33(3)
PD(0)#1-PD(2)-PD(4)#2	0/.05(10)	PD(1)#1-PD(5)-PD(2)	1/.41(5)
Pb(4)#1-Pb(2)-Pb(4)#2	8.08(7)	Pb(1)#3-Pb(5)-Pb(2)	105.81(3)

Atoms	Angle	Atoms	Angle
Pb(1)#1-Pb(2)-Pb(6)#5	31.45(6)	Pb(3)#3-Pb(5)-Pb(2)	32.88(3)
Pb(5)#2-Pb(2)-Pb(6)#5	135.51(5)	Pb(3)#5-Pb(5)-Pb(2)	106.02(3)
Pb(3)#3-Pb(2)-Pb(6)#5	8.58(3)	Pb(1)-Pb(5)-Pb(2)	64.50(3)
Pb(6)#1-Pb(2)-Pb(6)#5	124.02(4)	Pb(6)#3-Pb(5)-Pb(6)#5	127.75(7)
Pb(4)#1-Pb(2)-Pb(6)#5	62.28(16)	Pb(2)#1-Pb(5)-Pb(6)#5	70.58(4)
Pb(4)#2-Pb(2)-Pb(6)#5	69.07(5)	Pb(3)#1-Pb(5)-Pb(6)#5	115.26(4)
Pb(1)#1-Pb(2)-Si(1)#1	59.61(6)	Pb(1)#1-Pb(5)-Pb(6)#5	42.17(3)
Pb(5)#2-Pb(2)-Si(1)#1	159.28(6)	Pb(1)#3-Pb(5)-Pb(6)#5	54.69(3)
Pb(3)#3-Pb(2)-Si(1)#1	58.66(5)	Pb(3)#3-Pb(5)-Pb(6)#5	24.55(3)
Pb(6)#1-Pb(2)-Si(1)#1	157.03(5)	Pb(3)#5-Pb(5)-Pb(6)#5	61.21(3)
Pb(4)#1-Pb(2)-Si(1)#1	93.57(8)	Pb(1)-Pb(5)-Pb(6)#5	108.46(3)
Pb(4)#2-Pb(2)-Si(1)#1	100.90(12)	Pb(2)-Pb(5)-Pb(6)#5	56.61(3)
Pb(6)#5-Pb(2)-Si(1)#1	64.60(4)	Pb(6)#3-Pb(5)-Pb(4)	68.85(16)
Pb(1)#1-Pb(2)-Pb(6)#3	60.31(6)	Pb(2)#1-Pb(5)-Pb(4)	66.15(16)
Pb(5)#2-Pb(2)-Pb(6)#3	81.40(4)	Pb(3)#1-Pb(5)-Pb(4)	56.36(16)
Pb(3)#3-Pb(2)-Pb(6)#3	78.49(4)	Pb(1)#1-Pb(5)-Pb(4)	120.09(10)
Pb(6)#1-Pb(2)-Pb(6)#3	91.83(3)	Pb(1)#3-Pb(5)-Pb(4)	70.40(13)
Pb(4)#1-Pb(2)-Pb(6)#3	120.81(11)	Pb(3)#3-Pb(5)-Pb(4)	116.54(6)
Pb(4)#2-Pb(2)-Pb(6)#3	120.15(9)	Pb(3)#5-Pb(5)-Pb(4)	58.39(12)
Pb(6)#5-Pb(2)-Pb(6)#3	80.74(3)	Pb(1)-Pb(5)-Pb(4)	58.29(16)
Si(1)#1-Pb(2)-Pb(6)#3	111.03(5)	Pb(2)-Pb(5)-Pb(4)	109.73(13)
Pb(1)#1-Pb(2)-Pb(5)	41.20(5)	Pb(6)#5-Pb(5)-Pb(4)	108.33(5)
Pb(5)#2-Pb(2)-Pb(5)	99.23(4)	Pb(6)#3-Pb(5)-Pb(4)#3	76.53(7)
Pb(3)#3-Pb(2)-Pb(5)	59.47(4)	Pb(2)#1-Pb(5)-Pb(4)#3	58.49(5)
Pb(6)#1-Pb(2)-Pb(5)	106.97(3)	Pb(3)#1-Pb(5)-Pb(4)#3	63.70(4)
Pb(4)#1-Pb(2)-Pb(5)	112.09(14)	Pb(1)#1-Pb(5)-Pb(4)#3	120.85(11)
Pb(4)#2-Pb(2)-Pb(5)	114.23(7)	Pb(1)#3-Pb(5)-Pb(4)#3	62.91(6)
Pb(6)#5-Pb(2)-Pb(5)	62.46(3)	Pb(3)#3-Pb(5)-Pb(4)#3	114.74(11)
$S_1(1)#1-Pb(2)-Pb(5)$	95.86(4)	Pb(3)#5-Pb(5)-Pb(4)#3	51.03(6)
Pb(6)#3-Pb(2)-Pb(5)	19.33(2)	Pb(1)-Pb(5)-Pb(4)#3	65.26(5)
Pb(1)#1-Pb(2)-Pb(4)#5	93.26(19)	Pb(2)-Pb(5)-Pb(4)#3	112.61(10)
PD(5)#2-PD(2)-PD(4)#5	91.5(2)	PD(6)#3-PD(3)-PD(4)#3	103.63(10)
PD(3)#3-PD(2)-PD(4)#3 Pb(6)#1 Pb(2) Pb(4)#5	(19)	PD(4)-PD(5)-PD(4)=5 Pb(5)=4 $Pb(6) Pb(2)=2$	/.09(14)
PD(0)#1-PD(2)-PD(4)#3 Pb(4)#1 Pb(2) Pb(4)#5	75.3(2)	PU(5)#4-PU(0)-PU(5)#2 Pb(5)#4 Pb(6) Pb(1)#4	140.93(9) 145.25(7)
PD(4)#1-PD(2)-PD(4)#5 Pb(4)#2 Pb(2) Pb(4)#5	4.03(4)	PU(3)#4-PU(0)-PU(1)#4 Pb(3)#2 Pb(6) Pb(1)#4	143.33(7)
Pb(6)#5 $Pb(2)$ $Pb(4)$ #5	(1.1(2))	Pb(5)#4 Pb(6) Pb(2)#2	7.79(4)
$S_{1}(1)#1 Pb(2) Pb(4)#5$	01.90(10) 06.81(17)	Pb(3)#2 Pb(6) Pb(2)#2	20.91(3) 125 52(6)
Ph(6)#3 $Ph(2)$ $Ph(4)$ #5	117 17(A)	Pb(1)#4 Pb(6) Pb(2)#2	125.52(0) 127.61(4)
$Ph(5)_Ph(2)_Ph(4)=5$	109 23(9)	Pb(5)#4-Pb(6)-Pb(1)#2	65 06(6)
$Pb(1)#1_Pb(2)_Pb(3)#1$	83 00(5)	Pb(3)#2-Pb(6)-Pb(1)#2	103 99(5)
Pb(5)#2-Pb(2)-Pb(3)#1	57 21(4)	Pb(1)#4-Pb(6)-Pb(1)#2	96 59(4)
Pb(3)#3-Pb(2)-Pb(3)#1	97.09(4)	Pb(2)#2-Pb(6)-Pb(1)#2	81.79(4)
Pb(6)#1-Pb(2)-Pb(3)#1	67 45(3)	Pb(5)#4-Pb(6)-Pb(4)#4	92.2(2)
Pb(4)#1-Pb(2)-Pb(3)#1	113.98(6)	Pb(3)#2-Pb(6)-Pb(4)#4	65.2(2)
Pb(4)#2-Pb(2)-Pb(3)#1	109.89(11)	Pb(1)#4-Pb(6)-Pb(4)#4	70.8(2)
Pb(6)#5-Pb(2)-Pb(3)#1	96.76(3)	Pb(2)#2-Pb(6)-Pb(4)#4	65.34(19)
Si(1)#1-Pb(2)-Pb(3)#1	135.23(5)	Pb(1)#2-Pb(6)-Pb(4)#4	119.44(5)
Pb(6)#3-Pb(2)-Pb(3)#1	24.53(3)	Pb(5)#4-Pb(6)-Pb(2)#5	136.90(7)
Pb(5)-Pb(2)-Pb(3)#1	42.12(2)	Pb(3)#2-Pb(6)-Pb(2)#5	10.98(4)
Pb(4)#5-Pb(2)-Pb(3)#1	109.93(8)	Pb(1)#4-Pb(6)-Pb(2)#5	15.57(3)
Pb(1)#2-Pb(3)-Pb(6)#1	159.66(10)	Pb(2)#2-Pb(6)-Pb(2)#5	114.56(4)
Pb(1)#2-Pb(3)-Pb(2)#4	32.70(7)	Pb(1)#2-Pb(6)-Pb(2)#5	104.24(3)
Pb(6)#1-Pb(3)-Pb(2)#4	160.44(7)	Pb(4)#4-Pb(6)-Pb(2)#5	55.2(2)
Pb(1)#2-Pb(3)-Pb(5)#2	154.04(9)	Pb(5)#4-Pb(6)-Pb(2)#4	85.84(6)
Pb(6)#1-Pb(3)-Pb(5)#2	14.42(4)	Pb(3)#2-Pb(6)-Pb(2)#4	84.89(5)
Pb(2)#4-Pb(3)-Pb(5)#2	146.96(5)	Pb(1)#4-Pb(6)-Pb(2)#4	77.21(3)
Pb(1)#2-Pb(3)-Si(1)#2	84.78(8)	Pb(2)#2-Pb(6)-Pb(2)#4	99.93(4)
Pb(6)#1-Pb(3)-Si(1)#2	105.75(7)	Pb(1)#2-Pb(6)-Pb(2)#4	20.97(2)
Pb(2)#4-Pb(3)-Si(1)#2	87.10(5)	Pb(4)#4-Pb(6)-Pb(2)#4	118.76(7)
Pb(5)#2-Pb(3)-Si(1)#2	118.89(6)	Pb(2)#5-Pb(6)-Pb(2)#4	87.13(3)

Atoms Angle Atoms Angle Pb(1)#2-Pb(3)-Pb(5)#4 61.54(7) Pb(5)#4-Pb(6)-Pb(4) 84.84(8) Pb(6)#1-Pb(3)-Pb(5)#4 98.20(5) Pb(3)#2-Pb(6)-Pb(4) 71.73(10) Pb(2)#4-Pb(3)-Pb(5)#4 87.66(5) Pb(1)#4-Pb(6)-Pb(4) 76.95(10) Pb(5)#2-Pb(3)-Pb(5)#4 95.29(3) Pb(2)#2-Pb(6)-Pb(4) 57.99(6) Si(1)#2-Pb(3)-Pb(5)#4 119.66(5) Pb(1)#2-Pb(6)-Pb(4) 115.54(8)	
Pb(1)#2-Pb(3)-Pb(3)#4 $01.34(7)$ $Pb(3)#4-Pb(0)-Pb(4)$ $84.84(8)$ $Pb(6)#1-Pb(3)-Pb(5)#4$ $98.20(5)$ $Pb(3)#2-Pb(6)-Pb(4)$ $71.73(10)$ $Pb(2)#4-Pb(3)-Pb(5)#4$ $87.66(5)$ $Pb(1)#4-Pb(6)-Pb(4)$ $76.95(10)$ $Pb(5)#2-Pb(3)-Pb(5)#4$ $95.29(3)$ $Pb(2)#2-Pb(6)-Pb(4)$ $57.99(6)$ $Si(1)#2-Pb(3)-Pb(5)#4$ $119.66(5)$ $Pb(1)#2-Pb(6)-Pb(4)$ $115.54(8)$	
Pb(0)#1- $Pb(3)$ - $Pb(3)$ #4 $96.20(3)$ $Pb(3)$ #2- $Pb(0)$ - $Pb(4)$ $71.73(10)$ $Pb(2)$ #4- $Pb(3)$ - $Pb(5)$ #4 $87.66(5)$ $Pb(1)$ #4- $Pb(6)$ - $Pb(4)$ $76.95(10)$ $Pb(5)$ #2- $Pb(3)$ - $Pb(5)$ #4 $95.29(3)$ $Pb(2)$ #2- $Pb(6)$ - $Pb(4)$ $57.99(6)$ $Si(1)$ #2- $Pb(3)$ - $Pb(5)$ #4 $119.66(5)$ $Pb(1)$ #2- $Pb(6)$ - $Pb(4)$ $115.54(8)$	
PD(2)#4-PD(3)-PD(5)#4 $87.00(5)$ $PD(1)#4-PD(6)-PD(4)$ $76.95(10)$ $Pb(5)#2-Pb(3)-Pb(5)#4$ $95.29(3)$ $Pb(2)#2-Pb(6)-Pb(4)$ $57.99(6)$ $Si(1)#2-Pb(3)-Pb(5)#4$ $119.66(5)$ $Pb(1)#2-Pb(6)-Pb(4)$ $115.54(8)$	
PD(2)#2-PD(3)-PD(3)#4 95.29(3) PD(2)#2-PD(4) 57.99(6) 57.99(6) 57.99(6) 115 57(8) 115	
$S_1(1)#_2 = P_0(3) $	
$P_1(1) = P_1(2) = P_1(2) = 10.50(2)$ $P_1(1) = P_1(1) = P_1(1) = 10.50(2)$ $P_1(1) = P_1(2) = P_1(1) = 10.50(2)$	
Pb(1)#2-Pb(3)-Pb(4)#2 105.8(2) $Pb(4)#4-Pb(6)-Pb(4)$ 7.4(2)	
Pb(6)#1-Pb(3)-Pb(4)#2 88.3(2) Pb(2)#5-Pb(6)-Pb(4) 61.47(9)	
Pb(2)#4-Pb(3)-Pb(4)#2 73.8(2) Pb(2)#4-Pb(6)-Pb(4) 117.70(11)	
Pb(5)#2-Pb(3)-Pb(4)#2 79.3(2) Pb(5)#4-Pb(6)-Pb(3) 54.59(6)	
Si(1)#2-Pb(3)-Pb(4)#2 105.81(9) $Pb(3)$ #2-Pb(6)-Pb(3) 108.51(5)	
Pb(5)#4-Pb(3)-Pb(4)#2 129.79(5) Pb(1)#4-Pb(6)-Pb(3) 101.82(4)	
Pb(1)#2-Pb(3)-Pb(4)#1 109.47(19) Pb(2)#2-Pb(6)-Pb(3) 69.01(3)	
Pb(6)#1-Pb(3)-Pb(4)#1 83.51(15) Pb(1)#2-Pb(6)-Pb(3) 13.12(2)	
Pb(2)#4-Pb(3)-Pb(4)#1 78.10(16) Pb(4)#4-Pb(6)-Pb(3) 109.48(6)	
Pb(5)#2-Pb(3)-Pb(4)#1 73.87(13) Pb(2)#5-Pb(6)-Pb(3) 106.25(3)	
Si(1)#2-Pb(3)-Pb(4)#1 110.53(7) Pb(2)#4-Pb(6)-Pb(3) 31.78(2)	
Pb(5)#4-Pb(3)-Pb(4)#1 126.83(11) Pb(4)-Pb(6)-Pb(3) 104.68(7)	
Pb(4)#2-Pb(3)-Pb(4)#1 6.0(3) Pb(5)#4-Pb(6)-Pb(5)#5 111.58(6)	
Pb(1)#2-Pb(3)-Pb(5)#5 38.98(7) Pb(3)#2-Pb(6)-Pb(5)#5 57.25(4)	
Pb(6)#1-Pb(3)-Pb(5)#5 145.51(6) Pb(1)#4-Pb(6)-Pb(5)#5 49.49(3)	
Pb(2)#4-Pb(3)-Pb(5)#5 17.85(3) Pb(2)#2-Pb(6)-Pb(5)#5 118.33(4)	
Pb(5)#2-Pb(3)-Pb(5)#5 131.12(4) Pb(1)#2-Pb(6)-Pb(5)#5 48.54(3)	
Si(1)#2-Pb(3)-Pb(5)#5 104.93(5) Pb(4)#4-Pb(6)-Pb(5)#5 105.26(14)	
Pb(5)#4-Pb(3)-Pb(5)#5 79.80(3) Pb(2)#5-Pb(6)-Pb(5)#5 60.93(3)	
Pb(4)#2-Pb(3)-Pb(5)#5 68.4(2) Pb(2)#4-Pb(6)-Pb(5)#5 28.02(2)	
Pb(4)#1-Pb(3)-Pb(5)#5 71.23(17) Pb(4)-Pb(6)-Pb(5)#5 107.71(12)	
Pb(1)#2-Pb(3)-Pb(4)#5 101.41(10) Pb(3)-Pb(6)-Pb(5)#5 57.20(2)	
Pb(6)#1-Pb(3)-Pb(4)#5 91.67(10) Pb(5)#4-Pb(6)-Pb(1) 30.90(5)	
Pb(2)#4-Pb(3)-Pb(4)#5 69.91(8) Pb(3)#2-Pb(6)-Pb(1) 117.47(5)	
Pb(5)#2-Pb(3)-Pb(4)#5 81.73(10) Pb(1)#4-Pb(6)-Pb(1) 118.18(4)	
Si(1)#2-Pb(3)-Pb(4)#5 109.06(12) Pb(2)#2-Pb(6)-Pb(1) 12.42(2)	
Pb(5)#4-Pb(3)-Pb(4)#5 124.87(9) Pb(1)#2-Pb(6)-Pb(1) 73.73(3)	
Pb(4)#2-Pb(3)-Pb(4)#5 5.53(11) Pb(4)#4-Pb(6)-Pb(1) 63.62(17)	
Pb(4)#1-Pb(3)-Pb(4)#5 8.19(10) Pb(2)#5-Pb(6)-Pb(1) 106.80(3)	
Pb(5)#5-Pb(3)-Pb(4)#5 63.48(5) Pb(2)#4-Pb(6)-Pb(1) 90.08(3)	
Pb(1)#2-Pb(3)-Pb(6) 46.60(7) Pb(4)-Pb(6)-Pb(1) 56.35(4)	
Pb(6)#1-Pb(3)-Pb(6) 113.87(5) Pb(3)-Pb(6)-Pb(1) 60.63(2)	
Pb(2)#4-Pb(3)-Pb(6) 69.73(4) Pb(5)#5-Pb(6)-Pb(1) 106.32(3)	
Pb(5)#2-Pb(3)-Pb(6) 108.17(3) Si(11)-Si(1)-Si(13) 111.04(11)	
Si(1)#2-Pb(3)-Pb(6) 120.02(5) Si(11)-Si(1)-Si(12) 110.79(10)	
Pb(5)#4-Pb(3)-Pb(6) 18.28(2) Si(13)-Si(1)-Si(12) 107.88(10)	
Pb(4)#2-Pb(3)-Pb(6) 118.10(10) Si(1)-Si(1)-Pb(3)#1 106.41(9)	
Pb(4)#1-Pb(3)-Pb(6) 116.86(14) Si(13)-Si(1)-Pb(3)#1 99.96(8)	
Pb(5)#5-Pb(3)-Pb(6) 61.59(3) Si(12)-Si(1)-Pb(3)#1 120.21(9)	
Pb(4)#5-Pb(3)-Pb(6) 112.67(6) Si(11)-Si(1)-Pb(1) 119.49(9)	
Pb(1)#2-Pb(3)-Pb(2)#2 89.34(8) Si(13)-Si(1)-Pb(1) 104.55(9)	
Pb(6)#1-Pb(3)-Pb(2)#2 70.59(5) Si(12)-Si(1)-Pb(1) 102.22(8)	
Pb(2)#4-Pb(3)-Pb(2)#2 112.06(5) Pb(3)#1-Si(1)-Pb(1) 18.29(2)	
Pb(5)#2-Pb(3)-Pb(2)#2 67.32(3) Si(11)-Si(1)-Pb(2)#2 112.12(9)	
Si(1)#2-Pb(3)-Pb(2)#2 131.45(5) Si(13)-Si(1)-Pb(2)#2 124.16(9)	
Pb(5)#4-Pb(3)-Pb(2)#2 28.04(3) Si(12)-Si(1)-Pb(2)#2 87.91(7)	
Pb(4)#2-Pb(3)-Pb(2)#2 122.07(11) Pb(3)#1-Si(1)-Pb(2)#2 34.24(3)	
Pb(4)#1-Pb(3)-Pb(2)#2 116.79(4) Pb(1)-Si(1)-Pb(2)#2 21.01(3)	
Pb(5)#5-Pb(3)-Pb(2)#2 99.86(3) C(131)-Si(13)-C(133) 107.2(5)	
Pb(4)#5-Pb(3)-Pb(2)#2 119.32(12) C(131)-Si(13)-C(132) 107.4(4)	
Pb(6)-Pb(3)-Pb(2)#2 43.54(2) C(133)-Si(13)-C(132) 109.5(4)	
Pb(4)#3-Pb(4)-Pb(4)#4 60.000(3) C(131)-Si(1) 111.1(3)	
Pb(4)#3-Pb(4)-Pb(3)#1 133.3(17) C(133)-Si(1) 110.9(3)	
Pb(4)#4-Pb(4)-Pb(3)#1 137.5(14) C(132)-Si(13)-Si(1) 110.6(3)	
Pb(4)#3-Pb(4)-Pb(2)#2 149.2(6) C(121)-Si(12)-C(123) 108.5(4)	
Pb(4)#4-Pb(4)-Pb(2)#2 108(2) C(121)-Si(12)-C(122) 107.5(4)	

Atoms	Angle	Atoms	Angle						
Pb(3)#1-Pb(4)-Pb(2)#2	36.16(8)	C(123)-Si(12)-C(122)	107.9(4)						
Pb(4)#3-Pb(4)-Pb(2)#1	64(2)	C(121)-Si(12)-Si(1)	112.6(3)						
Pb(4)#4-Pb(4)-Pb(2)#1	116(2)	C(123)-Si(12)-Si(1)	109.7(3)						
Pb(3)#1-Pb(4)-Pb(2)#1	71.91(13)	C(122)-Si(12)-Si(1)	110.5(3)						
Pb(2)#2-Pb(4)-Pb(2)#1	104.70(6)	C(111)-Si(11)-C(112)	109.7(5)						
Pb(4)#3-Pb(4)-Pb(6)#3	111(2)	C(111)-Si(11)-C(113)	107.5(5)						
Pb(4)#4-Pb(4)-Pb(6)#3	147.4(4)	C(112)-Si(11)-C(113)	108.6(6)						
Pb(3)#1-Pb(4)-Pb(6)#3	26.52(4)	C(111)-Si(11)-Si(1)	111.1(3)						
Pb(2)#2-Pb(4)-Pb(6)#3	62.51(6)	C(112)-Si(11)-Si(1)	110.0(3)						
Pb(2)#1-Pb(4)-Pb(6)#3	47.02(11)	C(113)-Si(11)-Si(1)	109.8(4)						
Pb(4)#3-Pb(4)-Pb(3)#2	88.5(19)	C(03)-C(02)-C(01)	114(5)						
Pb(4)#4-Pb(4)-Pb(3)#2	40.7(14)	C(02)-C(03)-C(04)	114(5)						
Pb(3)#1-Pb(4)-Pb(3)#2	96.90(19)	C(05)-C(04)-C(03)	114(5)						
Symmetry transformati	Symmetry transformations used to generate equivalent atoms:								

Symmetry transformations used to generate equivalent atoms: #1 x-y+2/3, x+1/3, -z+1/3 #2 y-1/3, -x+y+1/3, -z+1/3 #3 -y+1, x-y+1, z #4 -x+y, -x+1, z #5 -x+2/3, -y+4/3, -z+1/3

7.16 Crystallographic data for Hyp₆Pb₁₀

7.16.1 Crystal data and structure refinement

Empirical formula	Hyp ₆ Pb ₁₀ ·2benzene					
Formula weight	3714.11					
Temperature	186(2) K					
Wavelength	0.71073 Å					
Crystal system, space group	orthorhombic, $P\overline{3}cl$					
Unit cell dimensions	15.597(2) Å alpha = 90 deg. 24.943(4) Å beta = 90.042(6) deg. 33.873(5) Å gamma = 90 deg.					
Volume	13178(3) Å ³					
Z, Calculated density	4, 1.872 g/cm^3					
Absorption coefficient	12.971 mm^{-1}					
F(000)	6904					
Theta range for data collection	2.76 to 25.00 deg.					
Limiting indices	-18<=h<=17, -29<=k<=29, -40<=l<=26					
Reflections collected / unique	62117 / 22869 [R(int) = 0.3679]					
Completeness to theta = 25.00	98.4 %					
Refinement method	Full-matrix least-squares on F^2					
Data / restraints / parameters	22869 / 522 / 609					
Goodness-of-fit on F^2	0.932					
Final R indices [I>2sigma(I)]	R1 = 0.0783, wR2 = 0.1639					
R indices (all data)	R1 = 0.2867, wR2 = 0.2781					
Extinction coefficient	0.00163(2)					
Largest diff. peak and hole	2.289 and -2.101 e. $\textrm{\AA}^{-3}$					

7.16.2 Atomic coordinates (x 10⁴), equivalent isotropic displacement parameters (Å² x 10³) and Anisotropic displacement parameters (Å² x 10³). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U11 + ... + 2hka^{*}b^{*}U12]$

Atom	х	у	Z	U(eq)	U11	U22	U33	U23	U13	U12	
------	---	---	---	-------	-----	-----	-----	-----	-----	-----	--

Atom	X	у	Z	U(eq)	U11	U22	U33	U23	U13	U12	
Pb(1)	7103(1)	7501(2)	1661(1)	31(1)	Pb(1)	24(1)	27(1)	40(1)	-6(3)	-1(1)	1(3)
Pb(2)	10004(1)	7499(2)	650(1)	31(1)	Pb(2)	27(1)	28(1)	37(1)	6(3)	1(1)	-3(3)
Pb(3)	7892(1)	8320(1)	1059(1)	30(1)	Pb(3)	26(1)	20(1)	43(1)	2(1)	-9(1)	4(1)
Pb(4)	7893(1)	6681(1)	1057(1)	30(1)	Pb(4)	27(1)	20(1)	42(2)	-2(1)	-8(1)	-3(1)
Pb(5)	9860(1)	6422(1)	1122(1)	32(1)	Pb(5)	$\frac{2}{30(1)}$	22(1)	42(1)	-1(1)	-5(1)	6(1)
Pb(6)	9858(2)	8580(1)	1122(1)	31(1)	Pb(6)	28(1)	23(1)	44(2)	-1(1)	-7(1)	-6(1)
Ph(7)	8147(1)	7502(2)	426(1)	33(1)	Pb(7)	$\frac{2}{34(1)}$	27(1)	38(1)	11(3)	-12(1)	5(3)
Pb(8)	10446(1)	7499(2)	1549(1)	33(1)	Pb(8)	23(1)	$\frac{2}{30(1)}$	45(1)	-1(4)	-12(1)	0(3)
Ph(9)	8813(1)	8142(1)	1860(1)	31(1)	Pb(9)	$\frac{20(1)}{30(1)}$	25(1)	36(1)	-5(1)	-6(1)	-1(1)
Pb(10)	8815(2)	6859(1)	1860(1)	31(1)	Pb(10)	32(1)	24(1)	37(2)	4(1)	-6(1)	0(1)
Si(1)	6795(3)	7501(2)	2465(2)	35(2)	Si(1)	30(5)	39(5)	35(5)	1(19)	5(4)	7(19)
Si(1)	7794(4)	7764(2)	2936(2)	61(4)	Si(11)	74(10)	55(8)	54(9)	-12(8)	4(8)	-4(7)
C(111)	8881(6)	7519(8)	2735(5)	190(30)	51(11)	/ (10)	22(0)	0.(2)	12(0)	.(0)	.(,)
C(112)	7429(12)	7400(6)	3410(3)	83(17)							
C(112)	7686(14)	8533(3)	2961(6)	360(100)							
Si(12)	5627(5)	8074(3)	2518(2)	88(6)	Si(12)	89(12)	103(13)	71(12)	13(11)	24(10)	54(10)
C(121)	5479(12)	8175(8)	3078(3)	230(60)	<i>S</i> I (I_)	0)(1_)	100(10)	, 1(1-)	10(11)	(10)	0.(10)
C(122)	5962(12)	8715(4)	2241(5)	100(20)							
C(123)	4699(7)	7688(7)	2270(6)	170(40)							
Si(13)	6321(4)	6649(3)	2634(2)	70(5)	Si(13)	92(12)	68(10)	52(9)	1(9)	18(9)	-5(9)
C(132)	7351(7)	6258(6)	2760(6)	170(40)	51(10)	/=(1=)	00(10)	0=(>)	-(>)	10())	0())
C(133)	5740(11)	6390(7)	2168(4)	110(20)							
C(131)	5568(9)	6759(8)	3078(4)	68(18)							
Si(2)	11073(3)	7495(2)	35(2)	36(2)	Si(2)	37(5)	31(4)	39(5)	0(20)	1(4)	4(19)
Si(21)	10667(5)	6742(3)	-327(2)	59(6)	Si(21)	112(15)	26(9)	38(10)	-13(9)	17(10)	-8(10)
C(211)	10596(17)	6165(5)	-22(5)	140(40)	~-()	()	(-)		(>)	- (- •)	0(-0)
C(212)	9506(7)	6836(10)	-509(7)	110(30)							
C(213)	11282(12)	6655(10)	-788(5)	180(50)							
Si(22)	10669(5)	8269(3)	-303(2)	61(7)	Si(22)	71(13)	39(11)	72(14)	25(11)	33(11)	-2(10)
C(221)	10765(17)	8845(5)	1(6)	120(30)	~-()	. = (==)		()		()	-()
C(222)	9456(7)	8239(11)	-409(8)	170(40)							
C(223)	11150(14)	8325(10)	-799(5)	90(20)							
Si(23)	12544(5)	7493(4)	153(3)	98(5)	Si(23)	33(6)	150(14)	111(11)	20(40)	17(7)	20(30)
C(231)	12775(13)	7447(15)	666(4)	94(16)		(-)	()		- (-)		- (/
C(232)	13004(15)	8185(7)	14(11)	100(20)							
C(233)	13146(14)	7027(11)	-166(9)	250(70)							
Si(3)	6881(4)	9159(3)	875(2)	39(5)	Si(3)	24(8)	27(8)	67(12)	3(9)	-19(8)	-2(7)
Si(31)	7513(5)	9490(3)	302(2)	48(5)	Si(31)	43(9)	35(9)	65(12)	23(9)	14(9)	2(7)
C(311)	8598(7)	9709(9)	376(6)	64(16)	· · /			. ,			
C(312)	7543(17)	9034(6)	-91(5)	70(17)							
C(313)	6924(11)	10080(6)	107(6)	29(10)							
Si(32)	5566(5)	8764(3)	732(2)	70(8)	Si(32)	33(10)	17(7)	160(20)	-6(10)	-29(12)	0(7)
C(321)	4806(10)	9234(7)	533(7)	130(30)							
C(322)	5062(12)	8454(9)	1132(5)	130(40)							
C(323)	5675(15)	8230(6)	354(6)	69(16)							
Si(33)	6753(6)	9823(4)	1355(3)	71(7)	Si(33)	35(9)	46(9)	131(17)	-58(10)	-23(10)	26(7)
C(331)	7293(17)	9657(10)	1807(5)	80(20)							
C(332)	5697(10)	9985(10)	1481(8)	68(17)							
C(333)	7230(18)	10465(7)	1186(8)	80(20)							
Si(4)	6913(4)	5849(3)	867(2)	30(5)	Si(4)	25(9)	21(8)	45(11)	-12(8)	-4(8)	6(7)
Si(41)	7580(5)	5501(3)	301(2)	57(7)	Si(41)	66(13)	31(10)	73(16)	-7(11)	1(12)	-9(9)
C(412)	8658(6)	5215(7)	442(6)	70(20)							
C(411)	7756(14)	6059(5)	-67(4)	67(17)							
C(413)	6731(11)	4926(7)	104(7)	170(50)							
Si(42)	5587(5)	6237(3)	704(2)	47(6)	Si(42)	26(10)	56(12)	60(11)	5(10)	-18(8)	-1(9)
C(421)	4892(8)	5706(5)	467(5)	27(10)							
C(422)	5045(10)	6472(8)	1171(4)	100(30)							
C(423)	5905(16)	6852(6)	326(6)	210(60)							
Si(43)	6780(4)	5200(3)	1366(3)	54(6)	Si(43)	87(15)	31(9)	44(10)	-15(9)	-16(10)	-5(9)
C(431)	7444(12)	5411(8)	1805(4)	42(13)							

Atom	X	v	Z	U(ea)	U11	U22	U33	U23	U13	U12	
C(432)	5619(7)	5158(9)	1520(6)	50(14)							
C(433)	7218(16)	4506(7)	1103(8)	150(40)							
Si(5)	10874(4)	5846(2)	1634(2)	36(5)	Si(5)	32(8)	37(9)	39(9)	9(8)	-6(7)	1(7)
Si(51)	10616(4)	4975(3)	1425(2)	150(15)	Si(51)	92(16)	30(9)	330(40)	16(16)	40(20)	4(10)
C(513)	11038(12)	4942(7)	891(3)	81(18)	~-()	/ = (- 0)					.()
C(511)	9558(6)	4714(6)	1473(7)	140(30)							
C(512)	11248(10)	4461(5)	1752(5)	56(14)							
Si(52)	10686(5)	5893(3)	2311(2)	194(14)	Si(52)	180(20)	190(20)	210(30)	70(20)	-50(20)	141(17)
C(521)	10690(13)	6537(4)	2541(4)	54(13)	~-(= _)		-> = (-= =)	(= =)	()		()
C(522)	11658(7)	5560(7)	2586(4)	110(20)							
C(523)	9660(7)	5491(7)	2422(5)	290(80)							
Si(53)	12290(4)	6049(3)	1486(2)	124(11)	Si(53)	67(13)	121(17)	190(30)	52(18)	-28(15)	29(12)
C(532)	12597(11)	6071(9)	979(3)	320(90)				(/	- (-)	- (- /	
C(533)	13055(8)	5480(5)	1675(7)	420(130)							
C(531)	12543(11)	6704(5)	1762(6)	90(20)							
Si(6)	10923(2)	9151(1)	1618(1)	56(7)	Si(6)	51(12)	36(10)	81(16)	-8(11)	-25(11)	-17(9)
Si(61)	11650(3)	8703(2)	2119(1)	60(7)	Si(61)	61(10)	61(10)	59(10)	-2(8)	-9(7)	1(7)
C(611)	12099(7)	9255(3)	2459(3)	81(8)		- (- /	- (- /		(-)		
C(613)	12430(5)	8215(4)	1985(4)	81(8)							
C(612)	10852(6)	8255(4)	2421(3)	81(8)							
Si(62)	10171(3)	9850(2)	1907(1)	36(6)	Si(62)	32(9)	37(9)	39(9)	-10(7)	-3(7)	-9(7)
C(621)	9348(4)	10171(4)	1629(3)	81(8)		- (-)				- (-)	- (-)
C(622)	10931(5)	10462(3)	2007(4)	81(8)							
C(623)	9766(8)	9575(5)	2405(2)	81(8)							
Si(63)	11920(3)	9504(2)	1183(1)	62(8)	Si(63)	60(10)	68(10)	58(10)	3(8)	4(7)	-9(7)
C(631)	12967(4)	9650(5)	1366(3)	81(8)	~ /	~ /				~ /	~ /
C(632)	11573(8)	10221(3)	1008(4)	81(8)							
C(633)	11933(10)	9027(4)	736(2)	81(8)							
Si(64)	10706(4)	10021(2)	1391(2)	24(5)	Si(64)	23(8)	18(8)	30(8)	7(6)	-11(6)	-9(6)
C(641)	9517(5)	10177(6)	1490(6)	81(8)	~ /			~ /		~ /	~ /
C(642)	11412(9)	10534(4)	1558(5)	81(8)							
C(643)	10917(15)	10056(7)	820(3)	81(8)							
Si(65)	12337(4)	8933(3)	1477(2)	61(8)	Si(65)	59(10)	59(10)	65(11)	5(8)	1(7)	-8(7)
C(651)	12820(8)	8389(5)	1735(5)	81(8)	. ,		. ,				
C(652)	13105(7)	9519(5)	1631(6)	81(8)							
C(653)	12381(11)	8846(10)	912(3)	81(8)							
Si(66)	10731(4)	9138(3)	2296(2)	36(5)	Si(66)	44(8)	36(8)	28(8)	4(7)	0(7)	-7(7)
C(661)	11374(9)	9575(6)	2589(4)	81(8)							
C(662)	9586(6)	9402(8)	2436(5)	81(8)							
C(663)	10830(16)	8398(4)	2451(4)	81(8)							
C(07)	5095(5)	3228(2)	1015(2)	180(20)							
C(08)	5187(5)	3607(2)	709(2)	180(20)							
C(09)	4692(5)	4079(3)	711(2)	180(20)							
C(010)	4110(6)	4176(3)	1022(3)	180(20)							
C(011)	4013(6)	3796(3)	1326(3)	180(20)							
C(012)	4505(7)	3322(3)	1323(3)	180(20)							
C(06)	4805(4)	11465(3)	1367(2)	163(17)							
C(05)	4157(4)	11071(3)	1363(2)	163(17)							
C(04)	4039(5)	10748(3)	1025(2)	163(17)							
C(03)	4571(5)	10819(4)	693(2)	163(17)							
C(02)	5215(6)	11215(4)	697(2)	163(17)							
C(01)	5333(6)	11538(5)	1034(2)	163(17)							

7.16.3 Bond lengths [Å].

Atoms	Bond length	Atoms	Bond length	Atoms	Bond length
Pb(1)-Si(1)	2.768(7)	Si(2)-Si(21)	2.331(7)	Si(52)-C(523)	1.926(8)
Pb(1)-Pb(3)	3.139(4)	Si(21)-C(211)	1.775(13)	Si(52)-C(522)	1.963(8)

Atoms	Bond length	Atoms	Bond length	Atoms	Bond length
Pb(1)-Pb(4)	3.145(4)	Si(21)-C(213)	1.845(16)	Si(53)-C(532)	1.783(8)
Pb(1)-Pb(9)	3.181(3)	Si(21)-C(212)	1.926(13)	Si(53)-C(531)	1.924(8)
Pb(1)-Pb(10)	3.185(4)	Si(22)-C(221)	1.775(13)	Si(53)-C(533)	1.961(8)
Pb(2)-Si(2)	2.670(7)	Si(22)-C(223)	1.844(16)	Si(6)-Si(66)	2.316(5)
Pb(2)-Pb(7)	2.9933(16)	Si(22)-C(222)	1.927(13)	Si(6)-Si(63)	2.317(4)
Pb(2)-Pb(8)	3.1220(18)	Si(23)-C(231)	1.776(14)	Si(6)-Si(62)	2.319(4)
Pb(2)-Pb(5)	3.134(5)	Si(23)-C(233)	1.845(17)	Si(6)-Si(65)	2.321(5)
Pb(2)-Pb(6)	3.143(5)	Si(23)-C(232)	1.928(14)	Si(6)-Si(61)	2.325(4)
Pb(3)-Si(3)	2.694(7)	Si(3)-Si(32)	2.325(7)	Si(6)-Si(64)	2.327(5)
Pb(3)-Pb(7)	2.983(4)	Si(3)-Si(31)	2.329(7)	Si(61)-C(613)	1.780(7)
Pb(3)-Pb(9)	3.103(3)	Si(3)-Si(33)	2.330(8)	Si(61)-C(611)	1.925(7)
Pb(3)-Pb(6)	3.141(3)	Si(31)-C(312)	1.752(14)	Si(61)-C(612)	1.962(7)
Pb(4)-Si(4)	2.657(7)	Si(31)-C(311)	1.796(13)	Si(62)-C(621)	1.782(7)
Pb(4)-Pb(7)	2.986(4)	Si(31)-C(313)	1.856(15)	Si(62)-C(623)	1.927(7)
Pb(4)-Pb(10)	3.108(4)	Si(32)-C(322)	1.750(15)	Si(62)-C(622)	1.961(7)
Pb(4)-Pb(5)	3.143(3)	Si(32)-C(321)	1.798(14)	Si(63)-C(631)	1.783(6)
Pb(5)-Si(5)	2.752(7)	Si(32)-C(323)	1.856(15)	Si(63)-C(633)	1.925(7)
Pb(5)-Pb(10)	3.180(3)	Si(33)-C(332)	1.750(15)	Si(63)-C(632)	1.962(7)
Pb(5)-Pb(8)	3.186(5)	Si(33)-C(331)	1.795(14)	Si(64)-C(642)	1.779(8)
Pb(6)-Si(6)	2.759(4)	Si(33)-C(333)	1.857(15)	Si(64)-C(641)	1.924(8)
Pb(6)-Pb(9)	3.179(3)	Si(4)-Si(42)	2.348(7)	Si(64)-C(643)	1.962(8)
Pb(6)-Pb(8)	3.193(5)	Si(4)-Si(41)	2.349(7)	Si(65)-C(651)	1.781(8)
Pb(8)-Pb(10)	3.182(4)	Si(4)-Si(43)	2.350(8)	Si(65)-C(653)	1.927(8)
Pb(8)-Pb(9)	3.190(4)	Si(41)-C(412)	1.888(10)	Si(65)-C(652)	1.961(8)
Pb(9)-Pb(10)	3.1984(17)	Si(41)-C(411)	1.888(10)	Si(66)-C(661)	1.784(8)
Si(1)-Si(13)	2.321(8)	Si(41)-C(413)	2.063(16)	Si(66)-C(663)	1.925(8)
Si(1)-Si(12)	2.322(7)	Si(42)-C(422)	1.888(10)	Si(66)-C(662)	1.962(8)
Si(1)-Si(11)	2.323(7)	Si(42)-C(421)	1.890(10)	C(07)-C(012)	1.410(5)
Si(11)-C(111)	1.927(8)	Si(42)-C(423)	2.060(16)	C(07)-C(08)	1.410(4)
Si(11)-C(113)	1.927(8)	Si(43)-C(431)	1.887(10)	C(08)-C(09)	1.410(4)
Si(11)-C(112)	1.929(8)	Si(43)-C(432)	1.888(10)	C(09)-C(010)	1.410(4)
Si(12)-C(122)	1.926(8)	Si(43)-C(433)	2.062(16)	C(010)-C(011)	1.410(4)
Si(12)-C(121)	1.929(8)	Si(5)-Si(52)	2.316(6)	C(011)-C(012)	1.410(5)
Si(12)-C(123)	1.929(9)	Si(5)-Si(51)	2.320(6)	C(06)-C(05)	1.410(4)
Si(13)-C(132)	1.927(8)	Si(5)-Si(53)	2.321(6)	C(06)-C(01)	1.410(4)
Si(13)-C(131)	1.928(8)	Si(51)-C(511)	1.782(8)	C(05)-C(04)	1.410(4)
Si(13)-C(133)	1.930(8)	Si(51)-C(513)	1.927(8)	C(04)-C(03)	1.410(4)
Si(2)-Si(23)	2.329(7)	Si(51)-C(512)	1.960(8)	C(03)-C(02)	1.410(5)
Si(2)-Si(22)	2.330(7)	Si(52)-C(521)	1.784(8)	C(02)-C(01)	1.409(5)

7.16.4 Bond angles [deg].

Atoms	Angle	Atoms	Angle
(1) DL(1) DL(2)	125 1(2)	G'(22) G'(2) G'(21)	110 5(2)
SI(1)-PD(1)-PD(3)	135.1(2)	S1(32)-S1(3)-S1(31)	110.5(3)
$S_1(1)-Pb(1)-Pb(4)$	135.2(2)	$S_1(32)-S_1(3)-S_1(33)$	111.8(3)
Pb(3)-Pb(1)-Pb(4)	81.15(4)	Si(31)-Si(3)-Si(33)	111.5(4)
Si(1)-Pb(1)-Pb(9)	86.39(12)	Si(32)-Si(3)-Pb(3)	103.6(3)
Pb(3)-Pb(1)-Pb(9)	58.80(8)	Si(31)-Si(3)-Pb(3)	102.7(3)
Pb(4)-Pb(1)-Pb(9)	97.81(7)	Si(33)-Si(3)-Pb(3)	116.2(3)
Si(1)-Pb(1)-Pb(10)	86.44(12)	C(312)-Si(31)-C(311)	106.2(10)
Pb(3)-Pb(1)-Pb(10)	97.79(7)	C(312)-Si(31)-C(313)	104.9(9)
Pb(4)-Pb(1)-Pb(10)	58.82(9)	C(311)-Si(31)-C(313)	105.9(9)
Pb(9)-Pb(1)-Pb(10)	60.32(4)	C(312)-Si(31)-Si(3)	114.6(7)
Si(2)-Pb(2)-Pb(7)	114.03(13)	C(311)-Si(31)-Si(3)	113.0(7)
Si(2)-Pb(2)-Pb(8)	128.61(13)	C(313)-Si(31)-Si(3)	111.5(7)
Pb(7)-Pb(2)-Pb(8)	117.36(5)	C(322)-Si(32)-C(321)	106.3(10)
Si(2)-Pb(2)-Pb(5)	116.11(19)	C(322)-Si(32)-C(323)	105.0(9)
Pb(7)-Pb(2)-Pb(5)	93.54(13)	C(321)-Si(32)-C(323)	105.8(9)

Atoms	Angle	Atoms	Angle
$\frac{P_{1}(2)}{P_{2}(2)} \frac{P_{1}(5)}{P_{2}(5)}$		$\frac{C(222)}{C(222)} \frac{C(222)}{C(222)} \frac{C(222)}{$	Aligie
$PD(\delta) - PD(2) - PD(3)$	01.23(12)	C(322)-SI(32)-SI(3)	113.0(7)
S1(2)-PD(2)-PD(6)	116.4/(19)	C(321)-S1(32)-S1(3)	112.5(6)
Pb(7)-Pb(2)-Pb(6)	93.19(13)	C(323)-Si(32)-Si(3)	111.5(8)
Pb(8)-Pb(2)-Pb(6)	61.28(12)	C(332)-S1(33)-C(331)	106.7(11)
Pb(5)-Pb(2)-Pb(6)	118.07(5)	C(332)-Si(33)-C(333)	104.6(10)
Si(3)-Pb(3)-Pb(7)	116.33(15)	C(331)-Si(33)-C(333)	105.9(10)
Si(3)-Pb(3)-Pb(9)	125.73(14)	C(332)-Si(33)-Si(3)	114.6(8)
Pb(7)-Pb(3)-Pb(9)	117.93(9)	C(331)-Si(33)-Si(3)	113.0(8)
Si(3)-Pb(3)-Pb(1)	115.23(14)	C(333)-Si(33)-Si(3)	111.3(8)
Pb(7)-Pb(3)-Pb(1)	94.26(11)	Si(42)-Si(4)-Si(41)	110.6(3)
Pb(9)-Pb(3)-Pb(1)	61.28(6)	Si(42)-Si(4)-Si(43)	112.0(3)
Si(3)-Pb(3)-Pb(6)	115.26(14)	Si(41)-Si(4)-Si(43)	111.8(3)
Pb(7)-Pb(3)-Pb(6)	93.42(8)	Si(42)-Si(4)-Pb(4)	104.0(3)
Pb(9)-Pb(3)-Pb(6)	61.21(7)	Si(41)-Si(4)-Pb(4)	103.4(3)
Pb(1)-Pb(3)-Pb(6)	118.22(8)	Si(43)-Si(4)-Pb(4)	114.5(3)
Si(4)-Pb(4)-Pb(7)	116.04(15)	C(412)-Si(41)-C(411)	108.5(8)
Si(4)-Pb(4)-Pb(10)	126.15(15)	C(412)-Si(41)-C(413)	113.0(7)
Pb(7)-Pb(4)-Pb(10)	117.80(10)	C(411)-Si(41)-C(413)	113.2(7)
Si(4)-Pb(4)-Pb(5)	114.68(14)	C(412)-Si(41)-Si(4)	109.1(6)
Ph(7) - Ph(4) - Ph(5)	93 51(8)	C(411)-Si(41)-Si(4)	109 3(5)
Pb(10)-Pb(4)-Pb(5)	61 14(7)	C(A13)-Si(A1)-Si(A)	103.6(6)
Si(A) - Pb(A) - Pb(1)	$116\ 10(15)$	$C(422)_{Si}(42)_{C(421)}$	103.0(0) 108.4(8)
Ph(7) Ph(4) Ph(1)	$94 \ 10(12)$	C(422) - Si(42) - C(421) C(422) - Si(42) - C(423)	100.4(0) 113 $A(7)$
$D_{h}(10) D_{h}(4) D_{h}(1)$	54.10(12) 61.24(7)	C(422)- $Si(42)$ - $C(423)$	113.4(7) 112.2(7)
P(10)-P(4)-P(1) P(5) P(4) P(1)	01.24(7) 118 12(0)	C(421)- $SI(42)$ - $C(423)C(422)$ $Si(42)$ $Si(4)$	113.3(7) 100.1(6)
$\Gamma U(3) - \Gamma U(4) - \Gamma U(1)$	116.13(9)	C(422)-SI(42)-SI(4) C(421) S:(42) S:(4)	109.1(0) 109.4(5)
SI(3)-PU(3)-PU(2)	130.08(13)	C(421)-SI(42)-SI(4)	108.4(3)
SI(5)-PD(5)-PD(4)	135.40(14)	C(423)-SI(42)-SI(4)	103.9(7)
PD(2)-PD(5)-PD(4)	81.85(7)	C(431)- $SI(43)$ - $C(432)$	108.8(8)
SI(5)-PD(5)-PD(10)	88./1(13)	C(431)-S1(43)- $C(433)$	113.1(8)
Pb(2)-Pb(5)-Pb(10)	98.26(8)	C(432)-S1(43)-C(433)	113.0(8)
Pb(4)-Pb(5)-Pb(10)	58.90(7)	C(431)-S1(43)-S1(4)	109.1(6)
Si(5)-Pb(5)-Pb(8)	89.37(14)	C(432)-S1(43)-S1(4)	108.8(6)
Pb(2)-Pb(5)-Pb(8)	59.19(8)	C(433)-Si(43)-Si(4)	103.8(7)
Pb(4)-Pb(5)-Pb(8)	97.91(8)	Si(52)-Si(5)-Si(51)	109.2(3)
Pb(10)-Pb(5)-Pb(8)	59.99(6)	Si(52)-Si(5)-Si(53)	109.0(3)
Si(6)-Pb(6)-Pb(3)	137.40(11)	Si(51)-Si(5)-Si(53)	107.7(3)
Si(6)-Pb(6)-Pb(2)	135.16(10)	Si(52)-Si(5)-Pb(5)	121.6(3)
Pb(3)-Pb(6)-Pb(2)	81.90(7)	Si(51)-Si(5)-Pb(5)	101.3(3)
Si(6)-Pb(6)-Pb(9)	90.46(10)	Si(53)-Si(5)-Pb(5)	107.2(3)
Pb(3)-Pb(6)-Pb(9)	58.79(7)	C(511)-Si(51)-C(513)	112.8(7)
Pb(2)-Pb(6)-Pb(9)	98.21(9)	C(511)-Si(51)-C(512)	100.1(7)
Si(6)-Pb(6)-Pb(8)	89.31(10)	C(513)-Si(51)-C(512)	109.4(7)
Pb(3)-Pb(6)-Pb(8)	97.86(8)	C(511)-Si(51)-Si(5)	118.4(6)
Pb(2)-Pb(6)-Pb(8)	59.03(8)	C(513)-Si(51)-Si(5)	105.5(6)
Pb(9)-Pb(6)-Pb(8)	60.07(6)	C(512)-Si(51)-Si(5)	110.6(5)
Pb(3)-Pb(7)-Pb(4)	86.43(5)	C(521)-Si(52)-C(523)	112.8(7)
Pb(3)-Pb(7)-Pb(2)	87.14(10)	C(521)-Si(52)-C(522)	99.9(7)
Pb(4)-Pb(7)-Pb(2)	86.90(11)	C(523)-Si(52)-C(522)	109.1(7)
Pb(2)-Pb(8)-Pb(10)	98.45(9)	C(521)-Si(52)-Si(5)	118.5(6)
Pb(2)-Pb(8)-Pb(5)	59.57(12)	C(523)-Si(52)-Si(5)	105.8(6)
Pb(10)-Pb(8)-Pb(5)	59.90(9)	C(522)-Si(52)-Si(5)	110.5(5)
Pb(2)-Pb(8)-Pb(9)	98.43(9)	C(532)-Si(53)-C(531)	112.8(7)
Pb(10)-Pb(8)-Pb(9)	60.26(4)	C(532)-Si(53)-C(533)	100.0(7)
Pb(5)-Pb(8)-Pb(9)	110.19(8)	C(531)-Si(53)-C(533)	109.3(7)
Pb(2)-Pb(8)-Pb(6)	59.69(12)	C(532)-Si(53)-Si(5)	118.1(6)
Pb(10)-Pb(8)-Pb(6)	110.11(8)	C(531)-Si(53)-Si(5)	105.9(6)
Pb(5)-Pb(8)-Pb(6)	115.10(5)	C(533)-Si(53)-Si(5)	110.5(5)
Pb(9)-Pb(8)-Pb(6)	59.74(9)	Si(66)-Si(6)-Si(63)	136.4(3)
Pb(3)-Pb(9)-Pb(6)	60.00(7)	Si(66)-Si(6)-Si(62)	61.7(2)
Ph(3)-Ph(9)-Ph(1)	59 93(7)	Si(63)-Si(6)-Si(62)	108 87(18)
Ph(6)-Ph(9)-Ph(1)	115 87(9)	Si(66) - Si(6) - Si(65)	108 9(2)

Atoms	Angle	Atoms	Angle
Ph(3)-Ph(9)-Ph(8)	98 75(8)	Si(63)-Si(6)-Si(65)	47 2(2)
Pb(6)-Pb(9)-Pb(8)	60 18(9)	Si(62) - Si(6) - Si(65)	138 1(3)
Pb(1)-Pb(9)-Pb(8)	$110\ 30(11)$	Si(62) Si(6) Si(61)	48.2(2)
Pb(3)-Pb(9)-Pb(10)	98 26(10)	Si(63)-Si(6)-Si(61)	10864(18)
Ph(6)-Ph(9)-Ph(10)	110.06(10)	Si(62)-Si(6)-Si(61)	107.46(17)
Pb(1)-Pb(9)-Pb(10)	59 90(10)	Si(62) Si(6) Si(61)	64.8(2)
Pb(8)-Pb(9)-Pb(10)	59.76(10)	Si(66)-Si(6)-Si(64)	108.9(2)
Pb(4)-Pb(10)-Pb(5)	59.96(7)	Si(63)-Si(6)-Si(64)	62 1(2)
Pb(4)-Pb(10)-Pb(8)	98 70(9)	Si(62) - Si(6) - Si(64)	50.6(2)
Pb(5)-Pb(10)-Pb(8)	60 11(9)	Si(62) - Si(6) - Si(64)	106 8(2)
Pb(4)-Pb(10)-Pb(1)	59 94(8)	Si(61)-Si(6)-Si(64)	139 5(2)
Pb(5)-Pb(10)-Pb(1)	115 85(9)	Si(66)-Si(6)-Pb(6)	1212(2)
Pb(8)-Pb(10)-Pb(1)	110.38(12)	Si(63)-Si(6)-Pb(6)	102.30(15)
Pb(4)-Pb(10)-Pb(9)	98.19(10)	Si(62)-Si(6)-Pb(6)	109.93(15)
Pb(5)-Pb(10)-Pb(9)	110.13(11)	Si(65)-Si(6)-Pb(6)	109.0(2)
Pb(8)-Pb(10)-Pb(9)	59.98(10)	Si(61)-Si(6)-Pb(6)	119.25(16)
Pb(1)-Pb(10)-Pb(9)	59.78(10)	Si(64)-Si(6)-Pb(6)	101.10(19)
Si(13)-Si(1)-Si(12)	107.1(3)	C(613)-Si(61)-C(611)	113.2(5)
Si(13)-Si(1)-Si(11)	107.6(3)	C(613)-Si(61)-C(612)	100.2(4)
Si(12)-Si(1)-Si(11)	107.5(3)	C(611)-Si(61)-C(612)	109.0(5)
Si(13)-Si(1)-Pb(1)	107.3(3)	C(613)-Si(61)-Si(6)	118.4(4)
Si(12)-Si(1)-Pb(1)	102.2(3)	C(611)-Si(61)-Si(6)	105.6(3)
Si(11)-Si(1)-Pb(1)	124.0(3)	C(612)-Si(61)-Si(6)	110.2(4)
C(111)-Si(11)-C(113)	114.0(7)	C(621)-Si(62)-C(623)	112.7(5)
C(111)-Si(11)-C(112)	113.9(6)	C(621)-Si(62)-C(622)	100.2(4)
C(113)-Si(11)-C(112)	113.9(7)	C(623)-Si(62)-C(622)	109.0(5)
C(111)-Si(11)-Si(1)	105.0(5)	C(621)-Si(62)-Si(6)	118.6(4)
C(113)-Si(11)-Si(1)	104.6(6)	C(623)-Si(62)-Si(6)	105.5(4)
C(112)-Si(11)-Si(1)	103.9(5)	C(622)-Si(62)-Si(6)	110.6(3)
C(122)-Si(12)-C(121)	113.7(6)	C(631)-Si(63)-C(633)	112.9(5)
C(122)-Si(12)-C(123)	114.0(7)	C(631)-Si(63)-C(632)	99.9(5)
C(121)-Si(12)-C(123)	113.8(7)	C(633)-Si(63)-C(632)	109.2(5)
C(122)-Si(12)-Si(1)	105.1(5)	C(631)-Si(63)-Si(6)	118.1(4)
C(121)-Si(12)-Si(1)	104.5(6)	C(633)-Si(63)-Si(6)	105.9(4)
C(123)-Si(12)-Si(1)	104.4(5)	C(632)-Si(63)-Si(6)	110.7(4)
C(132)-Si(13)-C(131)	114.1(6)	C(642)-Si(64)-C(641)	113.3(6)
C(132)-Si(13)-C(133)	113.7(7)	C(642)-Si(64)-C(643)	100.3(6)
C(131)-Si(13)-C(133)	113.5(6)	C(641)-Si(64)-C(643)	109.0(6)
C(132)-Si(13)-Si(1)	104.6(5)	C(642)-Si(64)-Si(6)	118.3(5)
C(131)-Si(13)-Si(1)	104.8(6)	C(641)-Si(64)-Si(6)	105.7(5)
C(133)-Si(13)-Si(1)	104.7(6)	C(643)-Si(64)-Si(6)	110.1(5)
Si(23)-Si(2)-Si(22)	110.7(4)	C(651)-Si(65)-C(653)	112.7(7)
Si(23)-Si(2)-Si(21)	110.9(4)	C(651)-Si(65)-C(652)	100.3(6)
Si(22)-Si(2)-Si(21)	109.6(4)	C(653)-Si(65)-C(652)	109.0(7)
Si(23)-Si(2)-Pb(2)	118.7(4)	C(651)-Si(65)-Si(6)	118.7(5)
Si(22)-Si(2)-Pb(2)	102.2(3)	C(653)-Si(65)-Si(6)	105.4(5)
Si(21)-Si(2)-Pb(2)	104.1(3)	C(652)-Si(65)-Si(6)	110.5(4)
C(211)-Si(21)-C(213)	115.5(10)	C(661)-Si(66)-C(663)	112.9(7)
C(211)-Si(21)-C(212)	103.0(10)	C(661)-Si(66)-C(662)	99.8(6)
C(213)-Si(21)-C(212)	103.5(9)	C(663)-Si(66)-C(662)	109.2(6)
C(211)-Si(21)-Si(2)	111.4(6)	C(661)-Si(66)-Si(6)	118.0(5)
C(213)-Si(21)-Si(2)	113.5(8)	C(663)-Si(66)-Si(6)	105.9(5)
C(212)-Si(21)-Si(2)	109.0(8)	C(662)-Si(66)-Si(6)	110.7(5)
C(221)-Si(22)-C(223)	115.7(10)	C(012)-C(07)-C(08)	120.0(4)
C(221)-Si(22)-C(222)	102.9(11)	C(07)-C(08)-C(09)	120.0(4)
C(223)-Si(22)-C(222)	103.5(10)	C(010)-C(09)-C(08)	120.0(4)
C(221)-Si(22)-Si(2)	111.2(7)	C(09)-C(010)-C(011)	120.0(4)
C(223)-Si(22)-Si(2)	113.6(8)	C(010)-C(011)-C(012)	120.0(4)
C(222)-Si(22)-Si(2)	108.9(8)	C(07)-C(012)-C(011)	120.0(4)
C(231)-Si(23)-C(233)	115.4(11)	C(05)-C(06)-C(01)	120.0(4)
C(231)-Si(23)-C(232)	102.8(11)	C(06)-C(05)-C(04)	120.0(4)

Atoms	Angle	Atoms	Angle
C(233)-Si(23)-C(232)	103.3(10)	C(05)-C(04)-C(03)	120.0(4)
C(231)-Si(23)-Si(2)	111.6(8)	C(04)-C(03)-C(02)	120.0(4)
C(233)-Si(23)-Si(2)	113.7(9)	C(01)-C(02)-C(03)	120.0(4)
C(232)-Si(23)-Si(2)	108.8(8)	C(02)-C(01)-C(06)	120.0(4)

8 List of Abbreviations

av.	averrage
<i>i-</i> B <i>u</i>	<i>iso</i> -butyl
<i>t–</i> Bu	<i>tert</i> -butyl
δ	chemical shift
calc.	calculated
d	doublet
dec.	decompose
DME	1,2-dimethoxyethane
e.g.	<i>exempli grati</i> a/ for example
EI	electron impact ionization
Et	ethyl
Et2O	diethyl ether
Eq.	equation
Fig.	figure
GooF	goodness-of-fit
η	hapto
h	hour(s)
Нур	hypersilyl, -tris(trimethylsilyl)silyl
IR	infrared
Me	methyl
min	minute
MS	mass spectrometry
μ	bridging
m/z	mass/charge
mbar	millibar
NMR	nuclear magnetic resonance
ppm	parts per million
r.t.	room temperature
<i>ter</i> t	t tertiary
TMS	trimethylsilane
THF	tetrahydrofuran
Triazine	hxahydro-1,3,5-trimethyl-S-triazine
TMEDA	tetramethylethelenediamine
VS	versus
Ζ	number of molecules in the unit cell

9 Numbering List of the New Compounds

$$[((MeNCH_2)_3)_3K][(Hyp_2Pb)_2P(H)_2]$$
 20a

$$\mathsf{K}\left[\left(\begin{array}{c}(\mathsf{Me}_{3}\mathsf{Si})_{3}\mathsf{Si}\\(\mathsf{Me}_{3}\mathsf{Si})_{3}\mathsf{Si}\end{array}\right)_{2}\mathsf{Pb}_{2}\mathsf{PH}_{2}\right]$$
20

$$\mathsf{K}\begin{bmatrix} (\mathsf{Me}_{3}\mathsf{Si})_{3}\mathsf{Si} \\ (\mathsf{Me}_{3}\mathsf{Si})_{3}\mathsf{Si} \end{bmatrix} \overset{\mathsf{Pb} \longleftarrow \mathsf{PH}_{2}}{\mathbf{18}}$$

Li
$$\begin{bmatrix} (Me_3Si)_3Si \\ Pb - P(H)Si(SiMe_3)_3 \end{bmatrix}$$

$$Li[Hyp_2Pb P(H)_2] \cdot Et_2O \cdot DME$$
15a

$$Li \begin{bmatrix} (Me_{3}Si)_{3}Si \\ (Me_{3}Si)_{3}Si \end{bmatrix} Pb - PH_{2}$$

$$(Me_3Si)_3Si_P = P_Si(SiMe_3)_3$$

13

$$(Me_{3}Si)_{3}Si - Pb - Si(SiMe_{3})_{3}$$

$$(Me_{3}Si)_{3}Si - Pb - Si(SiMe_{3})_{3}$$

$$(Me_{3}Si)_{3}Si - Pb - H$$

$$(Me_{3}Si)_{3}Si \xrightarrow{P} Sn \xrightarrow{Si} Si(SiMe_{3})_{3}$$

$$Sn \xrightarrow{P} Sn \xrightarrow{Si} Si(SiMe_{3})_{3}$$

$$Sn \xrightarrow{P} Sn \xrightarrow{Si} Si(SiMe_{3})_{3}$$

$$(Me_{3}Si)_{3}Si \xrightarrow{P} 14$$

$$(Me_{3}Si)_{3}Si \xrightarrow{Pb}_{Pb} Si(SiMe_{3})_{3}$$

$$(Me_{3}Si)_{3}Si \xrightarrow{Pb}_{Pb} Pb$$

$$(Me_{3}Si)_{3}Si \xrightarrow{Pb}_{Pb} Pb$$

10 References

- ¹ P. J. Dacidson, M. F. Lappert, R. Pearce, *Chem. Rev.* **1976**, 76, 219.
- ² T. Tsmumuraya, S. A. Batcheller, S. Masamune, *Angew. Chem, Int. Ed. Engl.* **1991**, 30, 902.
- ³ W. Uhl. Angew. Chem. Int. Ed. Engl. **1993**, 32, 1386.
- ⁴ A. Sekiguchi, H. Sakurai, Adv. Organomet. Chem. 1994, 37, 1.
- ⁵ M. Driess, H. Grützmacher, Angew. Chem. Int. Ed. Engl. 1996, 35, 827.
- ⁶ N. Wiberg, Coord. *Chem. Rev.* 163(**1997**)217.
- ⁷ Hypersilane and supersilane were proposed as trivial names for trivial names for tris(trimethylsilyl)silane and tri-tert-butylsilane, respectively, by N. Wiberg dring the Xth International Symposium on Organosilicon Chemistry in Poznan (Poland).
- ⁸ J. Frey, E. Schottland, Z. Rappopot, D. Bravo-Zhivotovskii, M. Nakash, M. Botoshansky, M. Kaftory, Y. Apeloig, J. Chem. Soc. Perkin Trans, 2 1994, 2555.
- ⁹ H. Bock, J. Meuret, K. Ruppert, J. Organomet. Chem. 1993, 446, 113.
- ¹⁰ H. Bock, J. Meuret, K. Ruppert. Angew. Chem. Int. Ed. Engl. 1993, 32, 414.
- ¹¹ Y. Apeloig, G. Korogodsky, D. Bravo-Zhivotovskii, D. Bläser, R. Boese, *Eur, J, Inorg. Chem.* **2000**, 1091.
- ¹² K. W. Klinkhammer, W. Schwarz, Angew. Chem. 1995, 107, 1448; Angew. Chem. INt. Ed. Engl. 1995. 34. 1334.
- ¹³ A. M. Arif, A. H. Cowley, T. M. Elkins, R. A. Jones, J. Chem. Soc. Chem. Commun. 1986, 1776.
- ¹⁴ A. M. Arif, A. H. Cowley, T. M. Eklins, J. Organomet. Chem. 1987, 325, C11.
- ¹⁵ S. P. Mallela, R. A. Genanagel, *Inorg. Chem.* **1990**, 29, 3525.
- ¹⁶ H. Piana, H. Wagner, U. Schubert, *Chem. Ber.* **1991**, 124, 63.
- ¹⁷ J. Arnold, T. D. Tilley, A. L. Rheingold, S. Geib, *J. Inorg. Chem.* **1987**, 26, 2106.....
- ¹⁸ J. Meyer, J. Willnecker, U. Schbert, *Chem. Ber.* **1989**, 122, 223.
- ¹⁹ Gilman, H.; Smith, C.L. J. Organomet. Chem. 1967, 8, 245
- ²⁰ H. Gilman, C. L. Smith, J. Organomet. Chem. 1968, 14, 91
- ²¹ A. Heine, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, *Inorg. Chem.* 1993, 32, 2694.
- ²² H. Dias, M. Olmstead, K. Ruhlandt-Senge, P. Power, J. Organomet. Chem. 1993, 462, 1.
- ²³ A. Heine, L. Lameyer, D. Stalke in *Organosilicon Chemistry* III (Eds.: N. Auner, J. Weis),
 VCH, Weinheim, **1996**: P162.
- ²⁴ G. Becker, H. Hartmann, A. Münch, H. Riffel, Z. Anorg. Allg. Chem. 1985, 530,29.
- ²⁵ H.-M. Hartmann, *Dissertation*, University of Stuttgart, **1988**.

- ²⁶ E. N. Gladyshev, E. A. Feodorova, L. O. Yuntila, G. A. Razuvaev, N. S. Vyazankin, J. Organomet. Chem. 1975, 96, 169.
- ²⁷ A. H. Cowley, T. M. Elkins, R. A. Jones, J. Chem. Soc. Chem. Commun. 1986, 1777.
- ²⁸ A. M. Arif, A. H. Cowley, T. M. Elkins, J. Organomet. Chem. **1987**. 325. C11.
- ²⁹ K. W. Klinkhammer, W. Scharz. Z. Anorg. Allg. Chem. **1993**, 619,177
- ³⁰ K. W. Klinkhammer, G. Becker, W. Scharz in *Organosilicon Chemistry* II (Eds. : N. Auner, J. Weis), VCH, Weinheim 1996.
- ³¹ K. W. Klinkhammer, *Chem. Eur. J.* **1997**, 3, 1418.
- ³² F. Schaller, W. Schwarz, H. D. Hausen, K. W. Klinkhammer, J. Weidlein, Z. Anorg. Allg. Chem. 1997, 623, 1455.
- ³³ R. E. Wochele, *Dissertation*, **2001**, P13.
- ³⁴ C. Marschner, Eur. J. Inorg. Chem. , 1998, 221
- ³⁵ R. E. Benkeser, R. J. Severson, J. Am. Chem. Soc. **1951**, 73, 1424.
- ³⁶ H. Gilman, T. C. Wu, J. Org. Chem. **1953**, 18, 753.
- ³⁷ E. Wiberg, O. Stecher, H. J. Andrascheck, L. Kreuzbichler, E. Staude, *Angew. Chem.* 1963, 75, 516. *Angew. Chem. Int. Ed. Engl.* 1963, 2, 507.
- ³⁸ H. Sakurai, A. Okada, M. Kira, K. Yonezawa, *Tetrahedron Lett.* **1977**, 1511.
- ³⁹ H. Sakurai, M. Kira, H. Umino, *Chem. Lett.* **1977**, 1265.
- ⁴⁰ E. N. Gladyshev, E. A. Feodorova, L. O. Yuntila, G. A. Razuvaev, N. S. Vyazankin, J. Organomet. Chem. 1975, 96, 169.
- ⁴¹ R. Wochele, W. Schwarz, K. W. Klinkhammer, K. Locke, J. Weidlein, Z. Anorg. Allg. Chem.
 2000, 626, 1963.
- ⁴² R. Wochele, K. W. Klinkhammer, J. Weidlein, Z. Anorg. Allg. Chem. 2001, 627, 1420.
- ⁴³ R. Wochele, W. Schwarz, K. W. Klinkhammer, J. Weidlein, Z. Anorg. Allg. Chem. 2000, 626, 833.
- ⁴⁴ S.P. Mallela, I. Bernal, R.A. Geanangel, *Inorg. Chem.* **1992**, 31, 1626.
- ⁴⁵ S. Henkel, K. W. Klinkhammer, W. Schwarz, *Angew. Chem.* 1994, 106, 721; *Angew. Chem. Int. Ed. Engl.* 1994, 33, 681.
- ⁴⁶ J. Klett, K. W. Klinkhammer, M. Niemeyer, *Chem. Eur. J.* **1999**, 5, 2531.
- ⁴⁷ K. W. Klinkhammer, Z. Anorg. Allg. Chem. 2000, 626, 1217.
- ⁴⁸ K. W. Klinkhammer, J. Klett, Y. Xiong, S. Yao, *Eur. J. Inorg. Chem.* 2003, 3417.
- ⁴⁹ C. Kayser, R. Fischer, J. Baumgartner, C. Marschner, *Organometallics*, **2002**, 21, 1023.
- ⁵⁰ C. Kayser, G. Kickelbick, C. Marschner, Angew. Chem. Int. Ed. Engl. 2002, 41,989.
- ⁵¹ Y. Xiong, *Dessertation*, University of Johnanes Gutenberg Mainz, **2004**.

- ⁵² P. J. Davidson, M. F. Lappert, J. Chem. Soc. Chem. Commun. 1973, 317.
- ⁵³ M. Kira, R. Yauchibara, R. Hurano, C. Kabuto, H. Sakurai, *J. Am. Chem. Soc.* 113(**1991**)7785.
- ⁵⁴ M. Kira, S. Ishida, T. Iwamoto, R. Yauchibara, H. Sakurai, J. Organomet. Chem. 2001,636, 144.
- ⁵⁵ R.S. Simons, L. Pu, M.M. Olmstead, P.P. Power, Organometallics, 1997, 16, 1920.
- ⁵⁶ M. Stürmann, M. Weidenbruch, K.W. Klinkhammer, F. Lissner, H. Marsmann, *Organometallics*, **1998**, 17, 4425.
- ⁵⁷ N. Tokitoh, R. Okazaki, Coord. *Chem. Rev.* **2000**, 210, 251.
- ⁵⁸ Y. Apeloig, in *The chemistry of Organic Silicon Compounds*, Part I(Eds, S. Patai, Z. Rappoport), Wiley, Chichester, U. K., **1989**, p. 57-225.
- ⁵⁹ H. Jacobsen, T. Ziegler, J. Am. Chem. Soc. **1994**, 116, 3667.
- ⁶⁰ W. Kutzelnigg, Angew. Chem. Int. Ed. Engl. 1984, 23, 272.
- ⁶¹ G. Trinquier, J. P. Malrieu, J. Am. Chem. Soc. 1990, 112, 2130.
- ⁶² T. L. Windus, M. S. Grordon, J. Am. Chem. Soc. 1992, 114, 9559.
- ⁶³ M. Driess, H. Grützmacher, Angew. Chem. Int. Ed. Engl. 1996, 35, 827.
- ⁶⁴ K. W. Klinkhammer, Angew. Chem. Int. Ed. Engl. 1997, 36, 2320.
- ⁶⁵ P. P. Power, *Chem. Rev.* **1999**, 99, 3463.
- ⁶⁶ H. Grützmacher, T. F. Fässler, *Chem. Eur. J.* **2000**, 6, 2317.
- ⁶⁷ E. A. Carter, W. A. Goddard, J. Phys. Chem. 1986, 90, 998.
- ⁶⁸ G. Trinquier, J. P. Malrieu, J. Am. Chem. Soc. 1987, 109, 5303.
- ⁶⁹ G. Trinquier, J. P. Malrieu, J. Am. Chem. Soc. **1989**, 111, 5916.
- ⁷⁰ G. Trinquier, J. –P. Malrieu, in *The Chemistry of Double Bonded Functional Groups*(Ed: S. Patai), vol. 2, Wiley, Chichester, **1989**, p. 1 Part 1.
- ⁷¹ Y. Apeloig, M. Karni, J. Chem. Soc., Chem. Commun. **1985**, 1048.
- ⁷² S. G. Bott, P. Marshall, P. E. Wagenseller, Y. Wong, R. T. Conlin, J. Organomet. Chem. 1995, 499, 11.
- ⁷³ K. Klinkhammer, *Polyhedron*, **2002**, 21, 587.
- ⁷⁴ C. J. Cardin, D. J. Cardin, S.P. Constantine, A.K. Todd, S.J. Teat, S. Coles, Organometallics, 1988, 17, 2144.
- ⁷⁵ K.W. Klinkhammer, T.F. Fässler, H. Grützmacher, Angew. Chem., Int. Ed. Engl. 1998, 37, 124.
- ⁷⁶ S. Benet, C.J. Cardin, D.J. Cardin, S.P. Constantine, P. Heath, H. Rashid, S. Teixeira, J.H. Thorpe, A.K. Todd, *Organometallics*, **1999**, 18, 389.

- ⁷⁷ M. Stürmann, W. Saak, K.W. Klinkhammer, M. Weidenbruch, Z. Anorg. Allg. Chem. 1999, 625, 1955.
- ⁷⁸ M. Stürmann, W. Saak, M. Weidenbruch, K.W. Klinkhammer, *Eur. J. Inorg. Chem.* 1999, 579.
- ⁷⁹ C. Drost, B. Gehrhus, P.B. Hitchcock, M.F. Lappert, *Chem. Commun.* 1997, 1845.
- ⁸⁰ J.J. Schneider, N. Czap, D. Bläser, R. Boese, J. Am. Chem. Soc. 1999, 121, 1409.
- ⁸¹ J.J. Schnerder, N. Czap, J. Organomet. Chem. 1999, 584, 338.
- ⁸² J.J. Schnerder, J. Hagen, D. Bläser, R. Boese, F.F. Biani, P. Zanello, C. Krüger, *Eur. J. Inorg. Chem.* 1999, 1987.
- ⁸³ J.J. Schnerder, N. Czap, D. Bläser, R. Boese, J. Ensling, P. Gütlich, C. Janiak, *Chem. Eur. J.* **2000**, 6, No. 3, 469.
- ⁸⁴ K.W. Klinkhammer, in: Silylderivate der schweren Alkalimetalle in der Synthese niedervalenter Hauptgruppenelementverbindungen (Habilitation Thesis in German, U. Grauer, Stuttgart, 1998.)
- ⁸⁵ M. Haag, K.W. Klinkhammer N. Schöne, unpublished results.
- ⁸⁶ H. Grützmacher, S. Freitag, R. Herbst-Irmer, G.S. Sheldrick, *Angew. Chem. Int. Ed. Engl.* 1992, 31, 437.
- ⁸⁷ K. Klinkhammer, unpublished results.
- ⁸⁸ a) H.-P. Abicht, W. Hönle, H.G. v. Schnering, Z. Anorg. Allg. Chem. 1984, 519,7; b) W. Schmettow, A. Lipka, H.G. v. Schnering, Angew. Chem. Int. Ed. Engl. 1974, 13, 345;c) H.G. v. Schnering, T. Meyer, W. Hönle, W. Schmettow, U. Hinze, Z. Anorg. Allg. Chem. 1987, 553, 261.
- ⁸⁹ a) T. Meyer, W. Hönle, H.G.v. Schnering, Z. Anorg. Allg. Chem. 1987, 552, 69. b) H.G.v. Schnering, W. Hönle, *Chem. Rev.* **1988**, 243.
- ⁹⁰ See for example: a) R.A. Bartlett, M.M. Olmstead, P.P. Power, G.A. Sigel, *Inorg. Chem.* 1987, 26, 1941; b) E. Hey-Hawkins, E. Sattler, *J. Chem. Soc. Chem. Commun.* 1992, 775; c) M. Drieß, G. Huttner, N. Knopf, H. Pritzkow, L Zsolnai, *Angew. Chem. Int. Ed. Engl.* 1995, 34, 316; d) G. Becker, B. Eschbach, O. Mundt, N. Seidler, *Z. Anorg. Allg. Chem.* 1994, 620,1381; R.E. Mulvey, *Chem. Soc. Rev.* 1991, 20, 167.
- ⁹¹ Holleman-Wiberg, *Lehrbuch der Anorganischen Chemie*, 101 Aufl., Verlag DeGruyter, Berlin, **1995**.
- ⁹² M. Baudler, K. Glinka, *Chem, Rev.* **1993**, 93, 1623.
- ⁹³ M. Baudler, K. Glinka, *Chem, Rev.* **1994**, 94, 1273.
- ⁹⁴ P. Jutzi, U. Meyer. *Phosphorus and sulfur*, **1988**, 40,275

- ⁹⁵ V. Thelen, D. Schmidt, M. Nieger, E. Nieche, W. W. Schoeller, Angew. Chem. **1996**,108, 354; Angew. Chem. Int. Ed. Engl. **1996**, 35, 313.
- ⁹⁶ M. Baudler, J. Hahn, Z. Naturforsch. **1990**, 45b, 1139.
- ⁹⁷ G. Fritz, E. Layher, H. Krautscheid, B. Mayer, E. Matern, Z. anorg. Allg. Chem. 1992,611, 56.
- ⁹⁸ N. Wiberg, A. Wörner, H. Nöth, K. Karaghiosoff, in: N. Auner, J. Weis(Eds), Organosilicon Chemistry II, VCH, Weinheim, **1996**, S. 195.
- ⁹⁹ I. Kovács, G. Baum, G. Fritz, D. Fenske, N. Wiberg, H. Schuster, K. Karaghiosoff, Z. Anorg. Allg. Chem. 1993, 619, 453.
- ¹⁰⁰ N. Wiberg, A. Woerner, H.-W. Lerner, K. Karaghiosoff, D. Fenske, *Eur, J. Inorg. Chem.* 1998, 833.
- ¹⁰¹ N. Wiberg, A. Woener, K. Karaghiosoff, D. Fenske, *Chem. Ber.* /Recueil **1997**, 130, 125.
- ¹⁰² N. Wiberg. A. Wörner, H. –W. Lerner, K. Karaghiosoff and H. Nöth, Z. Naturforschung, 1998, 53B, 1004.
- ¹⁰³ H. –W. Lerner, M. Wagner, M. Bolte, Chem. Commun. 2003, 990.
- ¹⁰⁴ Joachim Dautel, *Dissertation*, University Stuttgart, **1992**.
- ¹⁰⁵ H. Siegl, W. KrumLacher, K. Hassler, *Monatshefte für Chemie*, **1999**, 130, 139.
- ¹⁰⁶ M. Baudler, Angew. Chem. **1987**, 99, 429.
- ¹⁰⁷ M. Baudler, K. Glinka, *Chem. Rev.* **1993**,93, 1623.
- ¹⁰⁸ M.J. Gallagher in *Handbook of Phosphorus-31 Nuclear Magnetic Resonance Data* (Ed. J.C. Tebby), CRC Press, **1991**, S.45.
- ¹⁰⁹ K. Karaghiosoff in *Multiple Bonds and low coordination in Phosphorus Chemistry* (Eds. M. Regitz, O.J. Scherer), Thieme, **1990**, S.463.
- ¹¹⁰ Peter H.M. Budzelaar, *gNMR* V4.1.2.
- ¹¹¹ J. Geier, J. Harmer, H. Grützmacher, Angew. Chem. 2004, 116, 4185.
- ¹¹² G. W. Rabe, G. P. A. Yap and A. L. Rheigold, *Inorg. Chem.*, **1997**, 36, 1990.
- ¹¹³ Harald Siegl, Werner Krumlacher, and Karl Hassler, *Monatshefte für Chemie* 130(**1999**)139-145
- ¹¹⁴ J. Hahn, M. Baudler, C. Krüger, Y. –H. Tsay, Z. Naturforsch. 37b, 797(1982); M. Baudler, J. Pure Appl. Chem. 52, 755(1980).
- ¹¹⁵ Y. Leroux, R. Burgada, S. G. Kleemann, E. Fluck in *Handbook of Phosphorus-31 Nuclear Magnetic Resonance Data*, (Ed. J. C. Tebby), CRC-press, Boca Raton, Chap. 5 (1998).
- ¹¹⁶ K. Karaghiosoff in *Encyclopedia of Nuclear Magnetic Resonance* (Hrsg. D. M. Grant, R. K. Harris), Wiley, Chichester, 3612 (**1996**).

- ¹¹⁷ R. J. Abraham, Analysis of High Resolution NMR Spectra, Elsevier, Amsterdam (1971).
- ¹¹⁸ M. Andrianarison, D. Stalke, U. Klingebiel, *Chem. Ber.* 1990, 123, 71.
- ¹¹⁹ G.W. Rabe, G.P.A. Yap, A.L. Rheingold, *Inorg. Chem*, **1997**, 36, 1990.
- ¹²⁰ C. Frenzel, P, Joechel, E. Hey-Hawkins, *Chem, Commun.* 1998, 1363.
- ¹²¹ K. Karaghiosoff in *Multiple Bonds and Low Coordination in Phosphorus Chemistry*(Eds.: M. Regitz, O. J. Scherer), Thieme, Stuttgart, **1990**, p.463.
- ¹²² M. Baudler, J. Hahn, Z. Naturforsch. **1990**, 45b, 1139.
- ¹²³ N. Maigrot, M. Sierra, C. Charrier, F. Mathey, Bull. Soc. Chim. Fr. 1994, 131, 397.
- ¹²⁴ P. Jutzi, U. Meyer. *Phosphorus and sulfur*, **1988**, 40,275.
- ¹²⁵ E. Hey, P. B. Hitchcock, M. F. Lappert, A. K. Rai, J. Organomet. Chem., 1987, 325, 1.
- ¹²⁶ M. Yoshifuji, I. Shima, N. Inamoto, J. Am. Chem. Soc. 103(1981)4587.
- ¹²⁷ M. Baudler, K. Glinka, *Chem. Rev.* **1994**, 94, 1273.
- ¹²⁸ W. Uhl, F. Hannemann, W. Saak, R. Wartchow Eur. J. Inorg. Chem. 1998, 921-926.
- ¹²⁹ K. Karaghiosoff in *Encyclopedia of Nuclear Magnetic Resonance* (Hrsg. D. M. Grant, R. K. Harris), Wiley, Chichester, 3612 (**1996**).
- ¹³⁰ U. Englich, K. Hassler, K. Ruhlandt-Senge, F. Uhlig, *Inorg. Chem.* **1998**, 37, 3532-3537.
- ¹³¹ W.-W. du Mont, H.-J. Kroth, Angew. Chem. **1977**, 89, 832.
- ¹³² A.H. Cowley, D.M. Giolando, R.A. Jones, C.M. Nunn, J.M. Power, *Polyhedron*, **1988**, 7, 1909.
- ¹³³ S.C. Goel, M.Y. Chiang, D.J. Raushcer, W.E. Buhro, J. Am. Chem. Soc. 1993, 115, 160.
- ¹³⁴ M. Driess, R. Janoschek, H. Pritzkow, S. Rell, U. Winkler, *Angew. Chem.* 1995, 107, 1746;
 Angew. Chem. Int. Ed. Engl. 1995, 34, 1614.
- ¹³⁵ M. Driess, S. Martin, K. Merz, V. Pintchouk, H. Pritzkow, H. Grützmacher, M. Kaupp, Angew. Chem. 1997, 109,1982; Angew. Chem. Int. Ed. Engl. 1997, 36, 1894.
- ¹³⁶ Matthias Westerhausen, Mathias Krofta, Nils Wiberg, Jörg Knizek, Heinrich Nöth, Arno Pfitzner, Z. Naturforsch. 1998, 53b,1489.
- ¹³⁷ C. von Hänisch D. Nikolova, Z. Anorg. All. Chem. 2004, 630, 345.
- ¹³⁸ A. L. Balch, D. E. Oram, *Inorg. Chem.*, **1987**, 26, 1906
- ¹³⁹ A.L. Seligson, J. Arnold, J. Am. Chem. Soc. 1993, 115, 8214.
- ¹⁴⁰ G. Trinquier, J. Am. Chem. Soc. **1990**, 112, 2130.
- ¹⁴¹ J.D. Corbett, *Bonding*, **1997**, 87, 157.
- ¹⁴² T.F. Fässler, In *Metal Cluster in Chemistry*, (Eds. P. Braunstein, L.A. Oro, P.R. Raithby), Wiley-VCH Verlag: Weiheim, **1998**.
- ¹⁴³ J.D. Corbett, Angew. Chem. Int. Ed. Engl. 2000, 39, 670.

- ¹⁴⁴ C.R. Joannis, *Hebd. Sceances Acad. Sci.* **1891**, 113, 795.
- ¹⁴⁵ C.R. Joannis, *Hebd. Sceances Acad. Sci.* **1892**, 114, 587.
- ¹⁴⁶ C.A. Kraus, J. Am. Chem. Soc. **1907**, 29, 1571.
- ¹⁴⁷ E. Zintl, J. Goubeau, W.Z. Dullenkopf, *Phys. Chem.* Abt. B **1932**, 16, 183.
- ¹⁴⁸ D. Kummer, L. Diehl, Angew. Chem. Int. Ed. Engl. 1970, 9, 895.
- ¹⁴⁹ P.A. Edwards, J.D. Corbett, *Inorg. Chem.* **1976**, 16, 903.
- ¹⁵⁰ L. Pu, B. Twanley, P.P. Power, J. Am. Chem. Soc. 2000, 122, 3524.
- ¹⁵¹ M. Stürmann, W. Saak, H. Marsmann, M. Weidenbruch. Angew. Chem. **1999**, 111, 145. Angew. Chem. Int. Ed. Engl. **1999**, 38, 187.
- ¹⁵² F. Stabenow, W. Saak, H. Marsmann, M. Weidenbruch, J. Am. Soc. 2003, 125, 10172.
- ¹⁵³ B.W. Eichhorn, R.C. Haushalter, J. Chem. Soc., Chem. Commun. 1990, 937.
- ¹⁵⁴ B.E. Eichler, P.P. Power, Angew. Chem. Int. Ed. Engl. 2001. 40. 796.
- ¹⁵⁵ N. Wieberg, H.-W. Lerner, S. Wagner, H. Nöth, T. Seifert, Z. Naturforsch. B 1999, 877.
- ¹⁵⁶ A. Schnepf, Angew. Chem. Int. Ed. Engl. 2003, 42, 2624.
- ¹⁵⁷ A. Schnepf, R. Köppe, Angew. Chem, Int. Ed. Engl. 2003, 42, 911.
- ¹⁵⁸ J. Campbell, D.A. Dixon, H.P.A. Mercier, G.J. Scrobilgen, *Inorg. Chem.* 1995, 34, 5798.
- ¹⁵⁹ T.F. Fässler, R. Hoffmann, J. Chem. Soc., Dalton Trans., 1999, 3339.
- ¹⁶⁰ S. Bobev, S.C. Sevov, *Polyhedron*, **2002**, 21, 641
- ¹⁶¹ M. Schütze, Angew. Chem. **1958**, 70, 697.
- ¹⁶² K.J.L.Paciorek, J.H.Nakahara, L.Hoferkamp, C.George, J.L.Flippenanderson, R.Gilardi,
 W.R.Schmidt, *Chem Mater.* 1991, 3, 82
- ¹⁶³ H. Hope, Progr. *Inorg. Chem.* **1995**, 41, 1.
- ¹⁶⁴ SHELXLTL PC 5.03; Siemens Analytical X-Ray Instruments Inc.: Madison, WI, **1994**.
- ¹⁶⁵ G. M. Sheldrick, *SHELXLTL-97*, Program for Crystal Structure Solution and Refinement; University of Göttingen, German, **1997**.
- ¹⁶⁶ T. Fjeldberg, H. Hope, M.F. Lappert, P.P. Power, A.J. Thorne, J. Chem. Soc., Chem. Commun. **1983**, 639.
- ¹⁶⁷ M.J.S. Gyname, D.H. Harris, M.F. Lappert, P.P. Power, P. Rivière, M. Rivière-Baudet, J. Chem. Soc. Dalton. 1977, 2004.
- ¹⁶⁸ R.A. Kva, J.O. Calaway, C.H. van Dyke, N.D. Miro, *Inorg. Synth.* **1975**, 17, 6.
- ¹⁶⁹ Herrmann/Brauer, *Synthetic Methods of Organometallic and Inorganic Chemistry*,Ed.by W.A.Herrmann,Vol.2, N.Auner,U.Klingbiel, Groups 1,2,13 and 14.pp.186-193.
- ¹⁷⁰ R. E. Wochele, *Dissertation*, Universität Stuttgart, **2001**.