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Chapter 1

Introduction

Starting from the mid 20th century polymers have become more important in in-

dustry and everyday life. For example in 1999, 190 million tons of polymers were

produced worldwide [Distler 99]. Polymers are so important due to their large va-

riety of properties, e.g. lightness, rigidity, poor conductivity, flexibility, mechanical

properties, and price. In many cases, polymers are inserted as auxiliary additives,

e.g. polymer dispersions. These polymer dispersions are used for protection, bind-

ing, adhesives and grafting. This diversity illustrates the technological importance

of dispersions such as drilling muds, food additives, pharmaceuticals, ointments

and cremes, wall paints, abrasive cleansers. They are also precursors for compos-

ite materials etc. [Larson 99]. Dispersions amount to 7 % of the produced poly-

mers, which equals about 10 million tons of aqueous dispersions per year. The

commercially most important products polystyrene-butadiene, polyvinyl-acetate,

polyacrylates, and polyvinyl-ester dispersions, together make up more than 90 %

of the produced dispersions. The control of the structure and flow properties of

such dispersions are vital for the manufacturing process or the commercial success

of the product. For example, the rheological properties of food products can often

determine consumer satisfaction. In ceramic processing, dense dispersions are

sometimes molded [Lange 89] and succeedingly ennobled [Rice 90, Simon 93],

with the dispersions of high solid content pumped through pipes for transporta-

tion and processing. In general processes, e.g. paper coating, the dispersions can

be exposed to extremely high shear rates.

The most prominent production technique for dispersions is the emulsion poly-

merisation [Piirma 82, El-Aasser 97], accounting for 90 % of all polymer disper-
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2 CHAPTER 1. INTRODUCTION

sions [Distler 99]. An emulsion of monomers in water, stabilised by a surfactant,

polymerises when the temperature is increased in the presence of an initiator. The

energy released by the synthesis is transferred to the water bath. One of the most

important properties of dispersions is the tendency to coagulate, like in the case

of wall paint phase separating before use. Preventing this unintended separation

by stabilisation of the particles is an important research objective. In this context

the early work of Derjaguin, Landau, Vervey, and Overbeek, which resulted in the

DLVO-theory, has to be mentioned. Such dispersions of small particles are often

also called colloids, a term which is derived from the Greek word for glue: κωλλα.

This term was introduced by Thomas Graham (1805 − 1869), defining colloids as

substances that can not diffuse through a membrane. In the nineteenth century,

rubber was produced from the milky sap of special trees, called latex [Larson 99].

The term latex is nowadays used for stable dispersions of polymeric particles. For

”colloids” many definitions can be found. Two of the most appropriate ones will

be given here. Colloids are objects of a size between atoms or molecules and

macroscopic particles. Their size can range from about 1 nm over 200 nm up to

1, 000 nm. A more precise definition might be: The free enthalpy and state of

particles is governed by the size of the interface. The number of molecules is

not negligible compared to the number of molecules inside the particles. Colloids

can be divided, according to Staudinger, in disperse colloids, molecular colloids,

associated or micellar colloids, and macromolecular associates [Regitz 99].

The mechanical analysis of complex fluids via rheology is in the focus of

this thesis, like the above mentioned colloidal polymer dispersions. For rheo-

logical analysis several methods are available. These range from steady state

over transient to dynamic measurements, which can analyse the linear and the

non-linear regime. Especially the non-linear regime can give a lot of informa-

tion about the structures in the examined samples. The mechanical analysis

can easily enter the non-linear regime with the application of a large ampli-

tude oscillatory shear strain (LAOS) [Collyer 98]. In the non-linear regime the

mechanical response of rheological experiments looses the simple proportional-

ity between the amplitude of the deformation and the amplitude of the stress.

Therefore, a suitable simple non-linear method is needed to measure and to anal-

yse the non-linear regime. By using LAOS conditions, the strain amplitude and

the timescale, which induce the non-linear behaviour, can be varied indepen-
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dently, thus the macroscopic and also microscopic sample behaviour can be influ-

enced and detected. By using Fourier Transformation (FT) of the stress response

in combination with LAOS excitation (so-called FT-rheology) has recently raised

interest, as a promising technique to describe non-linear phenomena of poly-

meric materials and dispersions [Craciun 03, Giacomin 98, Kallus 01, Krieger 73,

Neidhöfer 01, Wilhelm 98, Wilhelm 00, Wilhelm 02]. The idea to analyse the

mechanical non-linear regime with LAOS experiments, which then could be anal-

ysed with the Fourier-Transformation analysis was known in literature for some

time [Onogi 70, Dodge 71, Krieger 73, Matsumoto 73, Davis 78, Pearson 82].

The main reasons why this technique could not be used properly before, were

technical and especially computational limits. With the increase of computa-

tional power in recent years, this method is now easily available. The groups

of Dealy and Giacomin used this technique within sliding-plate rheometer studies

[Giacomin 98, Reimers 96, Reimers 98, Tariq 98]. By using a very sensitive detec-

tion system on commercially available rheometers, a special Fourier transforma-

tion technique and modifications on the set-up the group of Wilhelm was able to

improve the signal to noise ratio by 2 to 3 decades [Wilhelm 02, Dusschoten 01].

Due to the great importance of high solid content dispersions for industry and

the exposure to high shear rates in the processing, this thesis aims at the examina-

tion of water-based model systems such as colloidal dispersions under non-linear

mechanical conditions. FT-rheology is a powerful method to analyse mechani-

cal behaviour in the non-linear regime and therefore has been used as the prime

method for analysis within this thesis. Preliminary examinations by Kallus et al.

[Kallus 01] showed that commercially available dispersions containing spherical

particles behaved highly non-linear at high solid contents. A decrease of the third

harmonic intensity with increasing salt content was also found. Further investi-

gations of polymer dispersions under LAOS conditions, performed by Carreau et

al. [Craciun 03], confirmed the observation of decreasing intensities of the higher

harmonics with increasing salt content. Additionally, the strain dependence of the

intensity on the higher harmonics showed a maximum.

As an extension to water-based model system dispersions, aqueous disper-

sions of the rod-shaped particle FD-virus were also tested within this thesis. Due

to its biological origin, this system is highly monodisperse and therefore a per-

fect model system for rod-like particles. Due to the optical transparency of the
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FD-virus dispersions and the anisotropy of its refractive index, an analysis via

rheo-optical techniques was possible. Therefore, a commercially available rheo-

optical set-up was modified and extended towards FT-rheology. Tests on the FD-

virus dispersions were performed on this newly developed set-up. Additionally,

a theory developed by Dhont et al. [Dhont 03] to describe the linear and non-

linear behaviour of rod-like particles was experimentally applied to the FD-virus

dispersions.

Another subject was the examination of the influence of a defined shear field

on the mineralisation process of zinc oxide from a aqueous solution was exam-

ined.

Another important topic of this thesis was the development of an easy-to-use

method to characterise the magnitudes and phases of the higher harmonics via

known rheological phenomena. Here, not only the third and the fifth harmonic

should be explained but also the multitude of higher harmonics that can be de-

tected in e.g. polystyrene dispersions and FD-virus dispersions. This aim was

achieved by describing the response in the time domain via a set of characteristic

functions, that correspond to the linear response, the strain softening response,

the strain hardening response and the effect of shear bands or wall slip.

In the analysis of the dispersions, special emphasis was put on the differences

of the systems synthesised via mini-emulsion polymerisation and semi-continuous

emulsion polymerisation. Here, the main focus was on the different develop-

ments of the higher harmonics magnitudes and phases of the mechanical excita-

tion frequency. Furthermore, calculations to predict the higher harmonics were

performed.

In Chapter 2, basic rheological principles, including simple viscous and elastic

models, are reviewed. In addition, the mathematical and experimental principles

of the FT-rheology are established see Chapter 3. The emulsion polymerisation in

general and the two different reaction pathways in particular, used to synthesise

the polymer dispersions within this thesis, are introduced in Chapter 4. An intro-

duction to the characterisation techniques of the polymer dispersions is given in

Chapter 4.2. The development of the FT-rheo-optical software and the improve-

ments on the set-up are described in Chapter 6. The influence of polymers under

a defined shear field on the mineralisation process of ZnO is presented in Chapter

7. The experimental rheological results of dispersions are presented in Chapter
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8. The development of the analysis of the time domain data via a separation in

characteristic functions is shown in chapter 9. In chapter 10 the FT-rheological

analysis and the analysis via the method according to Dhont of FD-virus disper-

sion was performed. In the last chapter, the most significant results of this thesis

are summarised and an outlook for future research is given.
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Chapter 2

Theory

In this chapter an introduction into rheology in general and about the mechanical

properties of viscoelastic fluids in detail is given. Therefore, some phenomeno-

logical models for viscous and elastic behaviour will be presented. Additionally,

the reader is familiarised to the FT-rheology technique. First, the mathematical

background of the Fourier transformation is given. Later the application of FT on

rheology is discussed, including the quantification of the non-linearity. Further

more a short overview about the theory of non-spherical particles is established.

2.1 Basic principles in Rheology

Mechanical properties like viscosity and elasticity are known for a long time. First

experiments and examinations have been conducted by Newton (viscosity) and

Hook (elasticity). For the purposes of this work the overview is started with New-

tons equation (2.1) which is valid for steady laminar flow in a purely viscous

medium:
F

A
= σ = η(

v

d
) = ηγ̇, (2.1)

with the force F , the area A, the shear stress σ, the viscosity η, velocity v, distance

d and shear rate γ̇. The case that the viscosity is independent on the shear rate is

called the linear regime. When η becomes a function of γ̇ the behaviour is called

non-linear.

Two rheological measurement methods are introduced in the following, steady

and dynamic shear. In steady shear a shear rate is applied and the measurement

takes place under steady state conditions. In oscillatory shear, not only the applied

7
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strain respectively the shear rate but also the direction of shear changes perma-

nently in a sinusoidal manner. These oscillatory measurements are called dynamic

measurements due to the continuously changing shear rate. In dynamic measure-

ments the strain amplitude γ0 follows a sinusoidal excitation and the torque is

measured. The sinusoidal movement is given by the following equation (2.2):

γ(t) = γ0sin(ω1t). (2.2)

Here γ is the deformation, γ0 the amplitude, ω1 the excitation frequency and t

the time. When this deformation is forced on a sample, the stress will follow the

excitation with a phase lag δ after a few oscillations. The resulting stress, with a

phase shift δ, is given by equation (2.3):

σ(t) = σ0sin(ωt + δ). (2.3)

The shear stress can be separated into two contributions, representing an in-phase

and an 90 ◦ out-of-phase part, with respect to the excitation:

σ(t) = σ′(t) + σ′′(t) = σ
′

0 sin(ω1t)
︸ ︷︷ ︸

in−phase

+σ
′′

0 cos(ω1t)
︸ ︷︷ ︸

out−of−phase

. (2.4)

The complex modulus equation (2.5), with the help of the Euler-relation equa-

tion (2.50), can be split up into the storage G
′

(ω) equation (2.6) and loss G
′′

(ω)

modulus equation (2.7):

G∗(ω1) =
σ∗

γ∗
= G′ + i ·G′′, (2.5)

G
′

(ω) =
σ
′

0

γ0

=
σ0

γ0

cosδ, (2.6)

G
′′

(ω) =
σ
′′

0

γ0

=
σ0

γ0

sinδ, (2.7)

here the real part G
′

(ω) reflects the elastic and the imaginary part G
′′

(ω) the vis-

cous part of the complex modulus G∗(ω). Using the relation between the complex

modulus G∗(ω) and the complex viscosity η∗(ω),

G∗(ω) = iωη∗, (2.8)

and

η∗(ω1) = η′ + i · η′′, (2.9)
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and with equation (2.5) the absolute value of the complex viscosity η∗ is given

by:

|η∗(ω)| = |G
∗|

ω
=

√
G′2 + G′′2

ω
. (2.10)

Here the viscous part η
′

(ω) and the elastic contribution η
′′

(ω) follow the relations:

η
′

(ω) =
G

′′

ω
, (2.11)

η
′′

(ω) =
G

′

ω
. (2.12)

The ratio of G
′′

G′ or η
′

η′′
defines the angle between the excitation and response is

accessible and is known as the loss tangents or plainly tanδ:

tanδ =
G

′′

(ω)

G′(ω)
=

η
′

(ω)

η′′(ω)
. (2.13)

2.1.1 Phenomenological models based on spring and dashpot

For a better understanding of the viscoelastic properties some basic phenomeno-

logical models will be introduced here. Due to the importance of oscillatory shear

in this work, the focus is on the application of a periodical sinusoidal excitation.

The time dependent shear strain is given by:

γ = γ0sin(ω1t). (2.14)

In the following the buildup blocks of phenomenological models to represent elas-

ticity and viscosity, the Hookeian spring and the Newtonian dashpot will be ex-

plained. To describe more complex behaviour than just pure elastic or pure vis-

cous, these two elements can be combined in several ways. The combination is

done in such a way that the newly created models describe the behaviour in better

agreement with the experimental data. Within this chapter only the simple paral-

lel and the simple serial contribution will be discussed. Much more complicated

combinations are available. The spring, based on the Hookeian law, has an ideal

elastic response. With the stress σ = F
A

the linear dependence on the deformation

γ is:

σ = G · γ, (2.15)

with the force F and the area A. The shear modulus G is the proportionality

constant. As visible in Fig. 2.1, the stress response is in phase with the excitation,
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FIG. 2.1: The spring element with the excitation γ and its ideal elastic or Hookeian re-

sponse σ.

meaning the phase shift δ is 0 ◦. The time dependent strain depends on the strain

amplitude γ0 and the angular velocity ω equation (2.2) and the shear stress is

given by equation (2.3). The next simple element, corresponding to the ideal

viscous Newtonian behaviour equation (2.1) is the dashpot. By exchanging the

spring in Fig. 2.1 with a dashpot in Fig. 2.2 the phase difference between the

excitation and the response is given by δ. This model is visualised by a piston

moving in a cylinder surrounded by a lubricant. The linear dependence between

stress and shear rate is called Newtonian viscosity according to Newtons law with

the dynamic viscosity η as proportionality constant. The shear rate dependence is

now given by:

γ̇ = γ0ω1cos(ω1t). (2.16)

Including the equation (2.16) in equation (2.1) leads to:

σ = ηγ0ω1cos(ω1t). (2.17)

The phase difference of π
2

or 90 ◦ between the shear strain and the shear stress

can be illustrated to using the relation cos(ωt) = sin(ωt + π
2
):

σ = ηγ̇0ω1sin(ω1t +
π

2
). (2.18)
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FIG. 2.2: The dashpot element with the excitation γ and its ideal viscous or Newtonian

response σ.

From these results it is easy to see that in a purely viscous response strain and

stress are out of phase (δ = 90 ◦), and in a purely elastic response strain and

stress are in phase (δ = 0 ◦). It should be stated that the term linear for the

shear modulus G and the dynamic viscosity η means that the stress dependence

has no terms of higher order in γ, respectively in γ̇. More complex systems, which

denote systems where the phase can range from 0 ◦ ¡ δ ¡ 90 ◦, are called viscoelastic

materials. The viscoelastic behaviour of these systems is described in a model by

combining the two basis elements spring and dashpot. The simplest combinations

of the spring and the dashpot are the Kelvin-Voigt and the Maxwell model. By

arranging one dashpot and one spring parallel the resulting model, the Kelvin-

Voigt model (see Fig. 2.3), describes a solid with additional viscous properties.

The two different stresses, σd from the dashpot and σs from the spring, are just

summed up. With the same strain for dashpot and spring γ = γd = γs the overall

stress is given by:

σKelvin−V oigt = σd + σs = η · γ̇ + G · γ. (2.19)
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FIG. 2.3: The Kelvin-Voigt element with mainly elastic response including some viscous

properties.

For γ and γ̇ the above mentioned relations equation (2.14) and equation (2.16)

are inserted, giving the time dependent stress of the Kelvin-Voigt model to:

σKelvin−V oigt(t) = η · γ0ω1cos(ω1t) + G · γ0sin(ω1t). (2.20)

The connection of the dashpot and the spring in series gives the description of a

viscoelastic fluid. This model is called the Maxwell model (Fig. 2.4). Here the

overall stress equals the stresses of the dashpot or of the spring σMaxwell = σd =

σs. The overall shear rate can be calculated by rearranging equation (2.15) and

equation (2.1) as follows:

γ =
σ

G
, (2.21)

γ̇ =
dγ

dt
=

σ

η
, (2.22)

dγ

dt
=

1

G
· dσ

dt
+

σ

η
. (2.23)

Including equation (2.16) in equation (2.21) give an differential equation with a

solution for σ:
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FIG. 2.4: The Maxwell element with mainly viscous response including some elastic prop-

erties.

σ =

[
G · τ 2 · ω2

1

1 + τ 2 · ω2
1

]

· sin(ω1t) +

[
G · τ · ω1

1 + τ 2 · ω2
1

]

· cos(ω1t), (2.24)

σ = G′ · sin(ω1t) + G′′ · cos(ω1t). (2.25)

The relaxation time of the system τ is defined as : τ = η
G

. The first term in

equation (2.24) describes the elastic part G′ and the second term the viscous part

G′′. The frequency dependence of G′ ∝ ω2 and G′′ ∝ ω1 can be used to describe

the overall behaviour of a viscoelastic fluid. The behaviour of G′ and G′′ can be

described by multiple modes for different relaxation times (see Fig. 2.5). These

modes are given:

G′(ω1) =
n∑

n=1

Gn
ω2

1τ
2
n

1 + ω2
1τ

2
n

, (2.26)

G′′(ω1) =

n∑

n=1

Gn
ω1τn

1 + ω2
1τ

2
n

. (2.27)

In this model the overall deformation amplitude γ is equal to the deformation of

the individual modes. The overall shear stress σmultimode is given by σmultimode =
∑N

k=1 σn. The overall stress results then in:
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FIG. 2.5: The Maxwell multimode model consisting of several Maxwell models in parallel

arrangement.

σ =

∫ t

−∞

n∑

n=1

Gne
−t
τn γ̇t′dt′. (2.28)

For the description more complex experimental data of the Maxwell and the

Kelvin-Voigt model is not sufficient enough to describe more complex models

have been developed. The last one to mention here is the Burger model, where a

Kelvin-Voigt and a Maxwell model are arranged in series. The differential equa-

tion for the stress, with the spring moduli G1, G2 and the dashpot viscosities η1

and η2, is given by:

σ = G2 · γ + η2 ·
dγ

dt
− η2 ·

[
1

G1

· dσ

dt
+

σ

η1

]

. (2.29)

A solution of equation (2.29) for the time dependent strain with the delay time

τ2 = η2

G2
is shown here:

γ = t · σ0

η1

+
σ0

G1

+
σ0

G2

[

1− e
−

t
τ2

]

. (2.30)

For more complex sample behaviour linear or parallel combinations of several

Kelvin-Voigt or Maxwell models are used, e.g. the Burger model.
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2.1.2 The Péclet number

The phenomenon of shear thinning, defined as an decrease of the viscosity de-

pending on an increase of the shear rate, often occurs in the cases where a disper-

sion has a sample loading higher than 30 vol.%. At small enough shear rates, the

rate of regaining the equilibrium of the particles which is controlled by diffusion

of the particles, is faster than the applied shear. In dilute solutions the particle

diffusivity is given by:

D0 =
kBT

6πηsa
, (2.31)

with ηs the solvents viscosity and a the radius of the particle. The time td, the

particle needs to diffuse the distance of its own radius is given by:

td ≈
a2

D0
=

6πηsa
3

kBT
. (2.32)

A dimensionless quantity can consequently be defined as:

Pe = γ̇td =
6πηsγ̇a3

kBT
, (2.33)

and is known as the Péclet number Pe. Another definition takes the above men-

tioned value divided by 6π resulting in:

Pe = tdγ̇ =
ηsγ̇a3

kBT
γ̇. (2.34)

2.1.3 Pipkin diagram

In this chapter the Pipkin diagram is introduced [Pipkin 72]. Therefore the Deb-

orah number De [Macosko 94] has to be introduced first. This number charac-

terises a material in the broad range of purely viscous behaviour of Newtonian

fluids, over viscoelastic behaviour to the purely elastic behaviour of rubber-like

materials. It is defined as the ratio of the characteristic relaxation time λ and the

characteristic flow time tf of the material, when shear is applied. The dimension-

less number is presented in equation (2.35):

De =
λ

tf
. (2.35)

Under oscillatory shear it is assumed that the characteristic flow time is the in-

verse of the angular velocity ω. Therefore De = τ
ω

is independent of the strain
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FIG. 2.6: The Pipkin diagram presenting the amount of viscoelastic behaviour of materials

as a function of the strain amplitude γ0 and the Deborah number De [Macosko 94].

amplitude. For the different types of polymers, their behaviour can be read from

the Pipkin diagram depending on De. Three different characteristic types are to

be mentioned:

For small Deborah numbers (De � 1) viscous response,

for medium sized Deborah numbers (De ≈ 1) viscoelastic response,

for big Deborah numbers (De � 1) elastic response.

In the Pipkin diagram Fig. 2.6 the influence of the strain amplitude γ0 and the

Deborah number on the mechanical behaviour of materials under shear is vi-

sualised [Pipkin 72]. The Deborah number is plotted on the abscissa, whereas

the strain amplitude is plotted on the ordinate. When the relaxation times are

small compared to the flow time (De � 1), the polymers show a behaviour like a

Newtonian liquid. In this case intermolecular processes are fast compared to the

deformation time, that the energy is directly dissipated leading to a viscous be-

haviour. Networks are disengaged due to the high speed of the disentanglement.

Furthermore the size of the strain amplitude does not influence this viscous be-

haviour. In the second case where the relaxation and deformation times are of the
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same order of magnitude the polymers show viscoelastic behaviour. The processes

of building up entanglements and the disengagement of entanglements coexist.

Finally, when the relaxation times are much longer than the external deformation

(De � 1), the sample behaves like a Hookeian elastic solid. In this case the net-

work relaxation is so slow that no entanglements are dissolved. For most samples

however, like polymers, metals, and colloidal dispersion, this behaviour changes

when a yield strain is reached. If the strain amplitude gets bigger than the yield

strain the sample starts to flow. A further important effect is the dependence on

the strain amplitude γ0. At small γ0 a linear viscoelastic behaviour is assumed,

whereas at big γ0 the samples show increasingly non-linear effects. Under these

conditions shear strain and shear stress lose their linear dependence. Many in-

dustrial processes are conducted in this non-linear regime. Therefore methods,

which are able to analyse this regime, have been developed. In the step-shear ex-

periments the measurements are conducted parallel to the ordinate of the Pipkin

diagram at constant De, where the characteristic time is observed by measuring

the ramp time of the step. The most important experiment from our point of view

is the application of a pure sinusoidal excitation with constant strain amplitude

γ0 while the frequency ω1

2π
is varied. Both experiments can be used together with

the FT-rheology, especially the latter one was used for the experiments presented

within this thesis.
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2.2 Electrostatic interactions in colloidal systems

In colloidal systems, electrostatic interactions play an important role in the sta-

bilisation processes of these systems. Therefore the Debye-length describing the

screening effect of ions in the system, and the basics of the DLVO-theory will be

introduced here.

2.2.1 Debye-length

The Debye-length gives information about the decay of the electrostatic potential,

which is created by ions in e.g. a polymer dispersions. A charge in a electrolyte

will exert attractive and repulsive interactions towards the surrounding ions and

counter ions. These surrounding charges screen the electrostatic potential of the

central-ion. The Debye-length is the characteristic length scale, that describes the

screening distance of the central ions potential by the surrounding. The higher

the concentration of ions in the dispersion is, the stronger is the screening effect

of the ions, and therefore the shorter is the Debye-length. The Debye-length can

be calculated by [Larson 99]:

1

λD
= k =

(∑

i ρi∞e2z2
i

εε0kT

) 1
2

m−1, (2.36)

with ρi∞ ionic concentration in the bulk, e the elementary charge, zi the number

of charges per ion, ε0 the dielectric permittivity of vacuum, εr relative dielectric

permittivity, kB the Boltzmann constant, and T the absolute temperature in K.
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2.2.2 The DLVO-theory

A short introduction to the DLVO-theory is given here. The DLVO theory describes

the interactions between the particles in a typical dispersion and can therefore

make predictions on the stability of the dispersions. The theory is a mathemati-

cal description for the stability of lyophobic colloids, developed by Derjagin and

Landau [Derjaguin 41] and Verwey and Overbeek [Verwey 48]. Positively or neg-

atively charged ions attach themselves to colloids and create a partly fixed and

partly diffuse double layer around the particles. The centrosymmetric potential

around the particles is responsible for the repulsive properties of colloids. The

total particle interaction can be seen as a sum of attractive and repulsive forces.

Repulsive forces have a negative sign and attractive ones have a positive sign.

Both forces dependent on the radius. The energy according to the DLVO-theory is

given by the sum of the potentials:

Ecolloids = Eattractive + Erepulsive. (2.37)

The attractive potential is based on the London attractive potential between two

polarisable atoms:

Eattractive = −3α2hν0

4d6
p

, (2.38)

with dp the distance of the particles, α the polarisability, h the Planck’s constant

and ν0 the limiting frequency of the excitation in the UV-spectra of the atom. This

potential is then adapted to extended material objects like two parallel plates at

a distance of dA. Under the assumption, that the thickness of the plates is bigger

than the distance dA, it results in:

Eattractive = − AH

48πd2
A

, (2.39)

where AH , the Hamaker constant = 3
4
π2q2α2hν0, is summing up several prefactors.

Here q is the number of surface atoms per cm2. For the attraction of two spheres

the following expression is calculated [Dörfler 02]:

Eattractive = −AH

6

[
2r2

R2 − 4r2
+

2r2

R2
+ ln

R2 − 4r2

R2

]

, (2.40)

with R the distance between the middle points of the spheres. The distance of

the particles and the distance of the middle points of the spheres follow: dA =
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(R− 2r). For small distances (R− 2r) equation (2.40) simplifies to:

Eattractive = − AHr

12(R− 2r)
. (2.41)

For big distances (R− 2r) equation (2.40) simplifies to:

Eattractive = −2r2AH

3R2
. (2.42)

Note that Eattractive depends only on R−2 in equation (2.42). The calculation for

the electrostatic repulsion of two colloidal particles can either use the energy or

the force as a function of the distance. The difficulty is that the double layers are

diffuse and therefore an overlay occurs in some areas of the double layer. Particles

can attract each other only when they come close to the diffuse double layer. For

larger distances the particle charge is completely compensated.

The repulsive potential is defined as the difference of the free enthalpy at the

distance of the particles R− 2r and the free enthalpy at∞:

Erepulsive(R− 2r) = (G−G∞). (2.43)

The free enthalpy of the double layers can be calculated via [Dörfler 02]:

G = −
∫ Φ0

0

QdΦ, (2.44)

with the charge Q, and the potential Φ. To get a relation between the charge Q,

the potential Φ, and the distance (R− 2r) the Poisson equation is used:

∆Φ =
∂2Φ

∂x2
=

4πq̄i

εdoublelayer

=

4πe

εdoublelayer

[n−z−e
z
−

eΦ

kT − n+z+e
z+eΦ

kT ]

. (2.45)

The two double layers are seen as a capacitor and two integrations of the Poisson

equation in the distance (R − 2r) are done. In the next step the geometry is

changed from the two parallel capacitors to a spherical one. This is achieved by

splitting up the spheres into rings. Afterwards the overall repulsion is gained by

the integration over all rings resulting in:

Erepulsive(R− 2r) =
εrΦ0

2
ln
(
1 + e−κ(R−2r)

)
, (2.46)

with κ the inverse of the thickness of the double layer given by κ = 8πnz2e2

(εkBT )
1
2
.

Here ε is the electric constant of the double layer, z the ion charge, e the ele-

mentary charge, and kB the Boltzmann constant. The resulting energy of the
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repulsion and attraction is calculated by: Ecolloids = Eattractive + Erepulsive. The

parameters AH (Hamaker constant), Φ0 (the potential of the double layer), Q

(the overall charge), and κ = 8πnz2e2

(εkT )
1
2

are the so-called barrier factors for stability

[Derjaguin 41, Verwey 48].
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2.3 Theory and practical aspects of FT-rheology

2.3.1 Fourier Transformation

Due to the general content of the Fourier transformation the following theory

was rephrased from the literature [Wilhelm 02]. The data acquired in the experi-

ments are analysed with Fourier Transformation (FT) [Bracewell 86, Ramirez 85,

Wilhelm 99]. Due to the fact that the constitution of the analysed material is not

changed during the experiment it is not necessary to apply more complicated anal-

ysis methods, such like the wavelet transformations [Fearn 99, Honerkamp 94].

The acquired time dependent signal is described as continually integratable func-

tion that contains periodic contributions. The FT is able to unravel these pe-

riodic contributions and assigns each of them an amplitude and phase which

are frequency dependent. Instead of amplitude and phase the result can al-

ternatively be displayed as real and imaginary part. For the analysis of the

experimental data a half sided, discrete, and complex, FT was chosen. In

the following, the basic mathematical principles behind the FT are introduced

[Bracewell 86, Ramirez 85, Wilhelm 99]. The FT of a time domain signal s(t) or

the frequency domain spectrum S(ω) is defined as:

S(ω) =

∫
∞

−∞

s(t)e−iωtdt, (2.47)

s(t) =
1

2π

∫
∞

−∞

S(ω)e+iωtdω, (2.48)

where the prefactors may vary due to the applied convention. Generally the FT

is invertible, linear, and complex over the infinite integral from −∞ to +∞. The

basic mathematical idea behind equation (2.47) is as follows: a set of functions,

e.g. polynomial, Hermite-, Laguerre- and Legendre-polynomial or harmonic func-

tions can span, in close similarity to vectors, a space where the different functions

act basically as orthogonal vectors [Wilhelm 99]. The class of oscillating func-

tions is orthogonal with respect to all different frequencies. This space therefore

has an innumerable, infinite dimension, when the infinite interval is considered.

Any function (vector) s(t) can now be analysed (projected) towards the specific

harmonic content via the systematic projection of the different frequencies. The

time dependent signal s(t) is sorted by the FT with respect to frequencies ω
2π

with

their corresponding amplitudes and phases in a spectrum S(ω). Furthermore, it
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is important that any superposition of different signals in the time domain will

also be a superposition in the frequency domain. The Fourier transformation is a

linear transformation:

s(t) + g(t)
FT←→ S(ω) + G(ω). (2.49)

Due to the fact that the FT is inherently complex, even a real time-domain data

set will become a complex frequency-domain data set with a real part <(ω) and

an imaginary part =(ω). This spectra alternatively can be presented in magnitude

m(ω) and phase Φ(ω) with the relations tanδ = =

<
and m = (<2 + =2)

1
2 . The

FT results can also be displayed by a cosine and sine notation due to the Euler

relation:

eiω = cosω + isinω. (2.50)

When the integral in equation (2.48) is calculated from t = 0 to + ∞ it is called

a half sided integral. This half-sided Fourier transformation is mostly used for

experimental data analysis. In that case the Fourier transformation is very similar

to a complex Laplace transformation. The time signal is not acquired continu-

ously but in discrete time steps N and afterwards digitised. Every data point is

acquired over a fixed increment tdw also known as dwell time or inverse sam-

pling rate. The overall acquisition time is given by taq = tdw ·N . In Fig. 2.7 the

time- and frequency-domain data, the dwell-time tdw, and the acquisition-time

taq of an experiment are presented. The frequency spectrum is now calculated

via the Fourier transformation with N complex data points. The spectral width,

also called the Nyquist frequency, is the maximum detectable frequency ν (Note,

that ν has a different meaning than in chapter 2.2.2). It is given by the sampling

rate ωmax

2π
= νmax = 1

2tdw
. The spectral resolution is the difference between two

consecutive data points ∆ν = 1
taq

. Depending on the highest frequency one wants

to detect in FT-rheology [Wilhelm 99], the sampling rate should be adjusted. To

be able to measure at an excitation frequency of 1 Hz up to 50 Hz a sampling

rate of 2 · 50 1
s

respectively 10 ms is required. When considering the sampling

rate one should bear in mind that this is calculated after the oversampling is

applied see 3.1. By definition peaks in a Fourier analysis are infinitely narrow.

In real measurements they have a certain width, caused by experimental inade-

quacies from the transducer and the motor and by the acquisition time taq. By

increasing the acquisition time the actual line width is decreased and the signal
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FIG. 2.7: In this schematic picture the time domain signal and its corresponding frequency

domain signal are shown. The FT is done via a FFT-algorithm. Due to the discretisation of

the signal and the incremental dwell time tdw the detectable frequencies are ambiguous,

resulting in a specific spectral width νmax, which is the biggest unambiguously detectable

frequency. The maximal data acquisition time (taq) limits the minimum resolution ∆ν in

the spectrum [Wilhelm 02].
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to noise ratio ( S
N

) increased. More detailed information can be found in the lit-

erature [Bracewell 86, Claridge 99, Ramirez 85, Schmidt-Rohr 94]. In our case

the signal to noise ratio is defined as the ratio of the peak-magnitude of the most

intensive peak (normally at the excitation frequency, because the DC-component

is ignored) divided by the standard deviation of the noise level (measured in a

part of the spectra without any peak signals). To get a sufficient S
N

ratio for each

measurement about 20 to 50 cycles [Wilhelm 99] are recorded leading to an over-

all size of 1, 000 up to 10, 000 data points N . By comparing the integral over S(ω)

with s(t) at t = 0 in equation (2.48), it is clear that s(0) cannot change as a func-

tion of taq and therefore the integral over the spectrum cannot either, since the

exponential term equals one for t = 0:

s(0) =
1

2π

∫
∞

−∞

S(ω) e+iω0
︸ ︷︷ ︸

1

dω =
1

2π

∫
∞

−∞

S(ω)dω. (2.51)

The advantage of the forced oscillation is, that it can last as it is necessary. There-

fore it is not of primary interest to increase the spectral resolution by zero filling

or decrease the actual line width (respectively increase the S
N

ratio) by increasing

the taq. In experiments there are two possibilities to increase the S
N

ratio. First

like in other FT-techniques averaging of multiple spectra can be applied and sec-

ond oversampling of data points. With these methods principally an unlimited S
N

ratio can be achieved. The S
N

ratio of the averaged spectra are proportional to the

square root of n spectra averaged, i. e., S
N
∝ √n. This method is able to reduce

the statistical noise. The precision of the relative intensity is increased by this

method, but the phase angle information of the harmonic contributions is lost.

The time domain data is shifted with respect to the excitation, so that the phase

behaviour can be analysed after the FT.

The calculation of a FT used to be very computer-time consuming. The non op-

timised standard routine is the brute force discrete FT. It requires N 2 calculations.

Therefore, several algorithms have been developed to fasten this procedure. The

very common and particularly fast algorithm for discrete Fourier transformations

is the FFT butterfly algorithm which only needs N log2N calculations. A draw-

back of the simplest and most common FFT is its requirement of N = 2n data

points and not arbitrary numbers like in the discrete FT [Cooley 65, Higgins 76].

This results in fixed values for the acquisition time taq and respectively for the

spectral resolution ∆ν = 1
taq

. Furthermore it rarely leads, for the frequencies at
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νn = n ·ω1

2π
, to be located exclusively at data points with the precise frequency

or multiples of the excitation frequency in the frequency domain. The use of the

butterfly FFT can result in incorrect values for the spectral intensities, because the

read out cannot be done at exactly the expected frequency value. All experiments,

presented in this work, are performed with more sophisticated algorithms to pre-

vent the problems of the simple butterfly FFT-algorithm. However it is important

that the applied FFT algorithm does no automatically fill data points with zeroes

[Bracewell 86, Ramirez 85] to reach the required amount of 2n points before per-

forming the FFT.
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2.3.2 Application of Fourier transformation on the stress sig-

nal

Materials can be analysed mechanically by a huge amount of analysis methods

[Wilhelm 02]. One of those methods is shear rheology, which can examine the

mechanical behaviour under shear stress. Elasticity and viscosity are the prop-

erties that are measured with rheology. Elasticity is accessible via Hooke’s law

equation (2.15). The viscosity can very easily be described by Newtons equa-

tion (2.1):
F

A
= σ = η(

v

d
) = ηγ̇.

Here in an ideal case the force F is acting on two parallel and planar plates

with an area A separated by a distance d. The intermediate space is filled with

the sample. The stress σ applied is proportional to the shear rate γ̇. Under steady

conditions the polymer has a constant proportionality factor called viscosity η. For

a Newtonian fluid it is independent of the applied shear rate γ̇. In the opposite

case, when the viscosity changes as a function of the shear rate η(γ̇), it is called

non-Newtonian or non-linear behaviour. We now focus on the simple case, where

a single harmonic excitation is applied by a sinusoidal strain. If this sinusoidal

excitation is applied with a frequency ω1 in a symmetric system the mathematical

description gets quite simple. The mathematical description is expressed in terms

of a differential equation, based on the force balance of kinetic, frictional, poten-

tial and the applied force for a controlled stress rheometer [Wilhelm 99]. The

mathematical solution of this differential equation is given by a single harmonic

function with the excitation frequency ω1:

γ(t) = γ0e
(i(ω1t+δ)). (2.52)

In the linear regime see chapter 2.1, the response has an amplitude γ0 and the

phase is shifted by δ. Equation (2.52) can be expressed in terms of its real (G’)

and imaginary (G”) part. In that form physical properties like relaxation times

and phase transitions can be extracted due to the dependence of the moduli G’

and G” on the frequency, and the temperature of the sample. In the case that

the viscosity becomes a function of the applied shear rate η(γ̇), or the elastic

modulus a function of the elongation, the solution equation (2.52) is no longer

valid. This happens in the non-linear regime. Under the assumption that under
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periodic conditions instantaneous adjustment of the viscosity towards the applied

shear rate occurs, the viscosity is due to the symmetry independent of the shear

direction and therefore only a function of the absolute shear rate [Wilhelm 99]:

η = η(γ̇) = η(−γ̇) = η(|γ̇|). (2.53)

The viscosity can be expanded via a Taylor series with respect to the shear rate,

when under oscillatory shear only small non-linear effects are detected. The Tay-

lor expansion for the viscosity at small shear rates is given in equation (2.54)

with the complex coefficients η0, a and b under oscillatory shear. These com-

plex coefficients can induce phase shifts with respect to the applied frequency

[Wilhelm 99].

η = η0 + a |γ̇|+ b |γ̇|2 + ... (2.54)

If the applied movement is a harmonic oscillation, strain and strain rate are de-

scribed as the following:

γ = A0sinω1t, (2.55)

|γ̇| = |ω1A0cosω1t| = ω1A0 |cosω1t| . (2.56)

In the next step the absolute value of shear rate signal is treated by Fourier anal-

ysis (see chapter 2.3.1) leading to a time dependence of γ̇ as a sum of different

harmonics [Ramirez 85]:

|γ̇| = ω1A0

(
2

π
+

4

π

(
cos2ω1t

1 · 3 − cos4ω1t

3 · 5 +
cos6ω1t

5 · 7 − ...

))

(2.57)

|γ̇| ∝ a′ + b′cos2ω1t + c′cos4ω1t + ... (2.58)

In equation (2.57) and also in its simplified version equation (2.58) the depen-

dence of the absolute shear rate respectively the viscosity (see equation (2.54))

towards even respectively the odd higher harmonics becomes visible. The inser-

tion of equation (2.57) and equation (2.54) into Newtons equation (2.59) leads

to equation (2.61) [Wilhelm 99]:

σ ∝ ηγ̇, (2.59)

σ ∝
(
η0 + a |γ̇|+ b |γ̇|2 ...

)
cosω1t, (2.60)

σ ∝[η0 + a(a′ + b′cos2ω1t + c′cos4ω1...)

+ b(a′ + b′cos2ω1t + c′cos4ω1...)
2...]cosω1t

. (2.61)
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By using addition theorems for trigonometric functions equation (2.61) is simpli-

fied and resultantly written as a sum of even harmonics:

σ ∝ [a′′ + b′′cos2ω1t + c′′cos4ω1t + ...] cosω1t. (2.62)

By multiplying the term in the brackets of equation (2.62) with the term cosωt

the force finally depends exclusively on a sum of odd harmonics:

σ ∝ Acosω1t + Bcos3ω1t + Ccos5ω1t + ... (2.63)

with A, B and C being complex numbers. In a last step the non-linear torque

signal is analysed towards frequency components by Fourier transformation

[Bracewell 86, Ramirez 85, Wilhelm 99]. The different frequencies, now pre-

sented in a frequency spectra, show peaks at exact the excitation frequency of

the fundamental or the higher harmonics of ω1. Each peak consists of two parts

of information, first the intensity of the peak In (magnitude), and secondly its

corresponding phase Φn see chapter 2.3.3.2. The parameter n (n = 1, 3, 5, 7, 9...)

denotes the odd multiple of the excitation frequency.
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2.3.3 Methods to measure and quantify non-linearity

After introducing the basic principles of the FT-rheology two ways to measure

or quantify the non-linearity are described. One is the magnitude of the higher

harmonics, especially the intensity of the third harmonic, and the other is the

phase of the higher harmonics. In the following both quantities are presented.

These considerations are rephrased from the literature due to their general con-

tent [Neidhöfer 03a, Wilhelm 02]

2.3.3.1 Magnitude In

I1
to quantify non-linearity

One way to quantify the amount of non-linearity is the ratio of intensities of the

nth-harmonic (Inω1) to the 1st-harmonic (I1ω1) of the magnitude spectra after the

FT [Wilhelm 02]:
In

I1
=

Inω1

I1ω1

, (2.64)

here the number n = 2, 3, 4, 5... gives the order of the higher harmonics. In

the non-linear regime strong strain softening behaviour can be found. The step

function represents the case of the maximal reachable non-linearity [Wilhelm 02]

respective maximal strain softening behaviour. Based on a Carreau or an Ostwald-

de-Waele model,

η = η0 [β |γ̇|]−α =
η0

[β |γ̇|]α , (2.65)

and under the assumption that α can reach up to 1 for maximum shear thinning

this results into:

σ = ηγ̇ = η0
γ̇

β |γ̇| =
η0γ0ω1cos(ω1t)

βγ0ω1 |cos(ω1t)|
=

η0cos(ω1t)

β |cos(ω1t)|
. (2.66)

By describing the step function with a Fourier series, the maximum values of the

intensities for the different amplitudes are extracted from the following equation:

I(ω1) ∝
4

π

[

sinω1t +
1

3
sin3ω1t +

1

5
sin5ω1t

]

. (2.67)

The maximum intensity of the harmonics is then given by:

I∞nω1

Iω1

= I∞n
1

=
1

n
. (2.68)

The maximum value for the intensity of the 3rd harmonic is calculated to be 33

% for the presented assumption. This step function has a periodicity of T = 2π
ω1

.
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Often the assumption that α = 1 is not correct. Experimentally α ranges from 0.7

up to 1. Therefore the here predicted maximum value for the intensity of the 3rd

harmonic is not always achieved.

To visualise the intensities of the higher harmonics, the ratio of I3
I1

is plotted as

a function of the strain amplitude γ0 [Wilhelm 98, Wilhelm 00]. To describe this

behaviour a function was developed by Wilhelm et al. [Wilhelm 02]. The inten-

sity of the 3rd harmonic has a maximum value, and even at small strain amplitudes

a minor non-linear response occurs. An increase of the intensity of the 1st the 3rd

harmonic at small shear rates according to γ1
0 and γ3

0 [Helfand 82, Pearson 82] re-

sults in an increase of the relation
Iω3

Iω1
∝ γ2

0 . At large strain amplitudes a crossover

to a plateau behaviour of I3
I1

is found. This behaviour can be described by the

following equation:
I3

I1

(γ0) = A

[

1− 1

1 + (Bγ0)C

]

, (2.69)

with the parameter A standing for the maximum of the intensity of I3
I1

, and B

which is the pivot point of the power law dependency, given by the parameter C.

2.3.3.2 The phase Φn to quantify non-linearity

The second parameter giving information about the non-linearity is the phase

Φn. The phases of the 3rd or of the higher harmonics have a great influence

on the symmetry of the resulting time domain signal. Depending on the value

of the phase a symmetry loss, visible in the shift of the maxima and minima, is

observed. One way to visualise and quantify this symmetry loss is by plotting the

shear strain versus the shear stress in so-called Lissajou figures [Giacomin 98].

In the linear regime the shape of the Lissajou figures only depends on the phase

shift δ between the strain and stress signal. In the case of δ = 0◦ the Lissajou

figure shows a diagonal line, whereas in the case of δ = 90 ◦ a perfect circle is

achieved. For all other values of δ the Lissajou figures result in an elliptical shape.

The difficulty of this method is the influence of higher harmonics on these figures.

The higher harmonics change the shape of the ellipses. It is therefore very difficult

to quantify the contributions of the phase difference from those of the intensity

higher harmonics. As a consequence the phase from the FT spectra is used as

a quantification method. To get a comparable rheological information a linear

phase correction of the phases of the higher harmonics (Φ3, Φ5, Φ7, Φ9) with
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respect to the first phase Φ1 [Neidhöfer 03a] is done. Therefore equation (2.63)

has to be rewritten to include the different phases:

σ(t) = I1cos(ω1t + ϕ1) + I3cos(ω3t + ϕ3)+

I5cos(ω5t + ϕ5) + I7cos(ω7t + ϕ7) + ...
(2.70)

The time shift, that is done in the next step, would be equal to a specific trigger

signal on the original mechanical data in the time domain. A substitution of t

with t′ − ϕ1

ω1
is done to receive equation (2.71):

σ

(

t′ − ϕ1

ω1

)

= I1cos

(

ω1

(

t′ − ϕ1

ω1

)

+ ϕ1

)

+ I3cos

(

ω3

(

t′ − ϕ1

ω1

)

+ ϕ3

)

+ . . .

= I1 cos (ω1t
′) + I3 cos (3ω1t

′ + (ϕ3 − 3ϕ1)) + . . .

(2.71)

with the shift factor −ϕ1

ω1
. Now a relation between the higher harmonics phases to

the first phase is extracted, that leads to [Neidhöfer 03a]:

Φn = ϕn − n · ϕ1. (2.72)

The phase Φn can vary from 0 ◦ to 360 ◦ (Φn ∈ [0◦, 360◦]). After introducing

the phase analysis as a tool for quantification of the non-linear behaviour a vi-

sualisation for this tool is shown to deepen the understanding of this method

[Neidhöfer 03b]. In Fig. 2.8 the dependence of the time domain data on the

relative phase of the 3rd harmonic is shown. Mathematically two pure cosine

functions are added with the frequencies ω1 and 3ω1. In Fig. 2.8 the amplitudes

have a ratio of A1

A3
= 1

0.1
and the phase of the 1st harmonic stays constant whereas

the phase of the 3rd harmonic ϕ3 differs in the range from ϕ3 = 0 over ϕ3 = π
2

to

ϕ3 = π. In Fig. 2.8 plot A the strain softening case is visible. Here the phase of the

3rd harmonic is out-of-phase at an exact phase shift of ϕ3 = π corresponding to

180 ◦. In case B both the phases, ϕ1 and the ϕ3, are in-phase, namely 360 ◦ or 2π.

In all other cases the maxima and minima of the resulting time domain signal are

either shifted to the left or to the right. In case that the phase is smaller than 180 ◦

the shift is to the left (see Fig. 2.8 plot C) and to the right if it is bigger than 180 ◦.

The trigonometric function sine or cosine used to shift the higher phases relative

to the first of the time domain signal is furthermore responsible for the absolute

value of the higher phases. Another solution for this problem was described else-

where [Giacomin 98]. Here the phase difference of the response ϕn is related to
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the phase of the excitation δγ resulting in:

∆n = ϕn − nδγ . (2.73)

In this case the phase difference, quantifying the thinning and thickening be-

haviour, is not independent of the tanδ, representing relation of the viscous to the

elastic contribution of the viscosity.
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FIG. 2.8: The influence of the phase on the shape of the time domain signal is presented

here. Two cosine terms for the fundamental and the third harmonic are added with three

different phases at t = 0 of the 3rd phase: in-phase (0 ◦), out-of-phase (180 ◦) and with a

phase of 90 ◦. In plot A a strain softening, in plot B a strain hardening behaviour is found.

In plot C the maxima and minima are shifted to the left [Neidhöfer 03b].
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2.4 Dilute dispersions of nonspherical Particles

Non-spherical particles can produce much stronger elastic effects (also larger nor-

mal forces) under a flow field, than solutions with spherical particles with similar

volume fractions [Larson 99]. The particles, with the simplest non-spherical ge-

ometry, have a rotational symmetry axis and are therefore called axisymmetric

particles such as rods, disks. An axisymmetric ellipsoid has two principal axes

of equal length. Such objects are added in applications to solutions due to their

ability of increasing the viscosity or due to the addition of strength to solids such

as fiber-reinforced concrete or fiber-reinforced molded plastic parts.

2.4.1 Semi-dilute dispersions of Brownian rods

In this chapter theories for the concentration and for the mechanical behaviour

under shear of dispersions of Brownian rods are introduced. A solution of long

axisymmetric particles with an aspect ratio of more than 50 are experimentally

found as dilute, only if the concentration is below 1 % by volume [Mori 82]. A

requirement for diluteness is the possibility for the rods to rotate freely without

being impeded by neighbouring rods. Therefore each rod has to have a free vol-

ume of about L3 with L the length of the rod. Thus rod-rod interactions should

be expected when the number concentration of rods c reaches a value equal to

L−3. Experiments found the dilute to semi-dilute transition to occur at 30 times

this value [Mori 82]. Apparently rods are able to evade other rods that enter their

sphere of rotation. Therefore the transition from dilute to semi-dilute behaviour

is found at c∗ = 30
L3 . Here c∗ is the number concentration at the transition from

the dilute to the semi-dilute regime. The volume fraction of the rods ϕrod is given

by:

ϕrod = πd2L
c

4
, (2.74)

with d the diameter, L the length of a rod, and c the number concentration of

rods. Using equation (2.74) with the relation c∗ = 30
L3 , the cross-over from dilute

to semi-dilute occurs in terms of volume fraction at:

c∗ =
30πd2

4L2
≈ 24

(
d

L

)2

. (2.75)

For an aspect ratio of L
d

= 50 this cross-over occurs at a volume concentration

of c∗ = 1 vol.%. For particles like the FD-virus (see chapter 5) (aspect ratio L
d

=
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100) this occurs already at a concentration of c∗ = 0.24 vol.%. At concentrations

of shortly above c∗ the static properties are almost unchanged compared to the

dilute regime. A newly added rod will have a negligible probability of intersecting

with other rods. The cross-over from the semi-dilute to the concentrated isotropic

regime is reached, when rods start to have difficulty in packing isotropically due

to excluded volume interactions. The cross-over from semi-dilute to concentrated

isotropic occurs at the number concentration c∗∗ or the volume fraction ϕ∗∗ that

are given by [Doi 86]:

c∗∗ ≈ 1

dL2
or ϕ∗∗ ≈ πd

4L
. (2.76)

At higher concentrations the excluded volume interactions lead to the formation

of a nematic liquid crystalline state. Due to the excluded volume theory of On-

sager, the highest concentration, where there is still an isotropic phase, is at ϕ1

≈ 3.3 d
L

. For an aspect ratio of L
d

= 100 this results in a volume fraction of ϕ1 =

3.1 %. In cases where the rod length is longer than the persistence length equa-

tion (2.76) changes to ϕ1 ∝ d
λp

. At higher concentrations, transitions to positional

ordered liquid crystalline phases (e.g. smectic) are observed. The rotational dif-

fusion coefficient for these rods can be derived from Doi-Edwards theory. For rods

the basic idea of the theory is based on a cage acting like a cylinder corresponding

to the tube in the polymer model. The radius of the cage is given by a ∼ 1
νL2 . The

difference to ’the tube in the polymer’ model is, that the rod must remain com-

pletely oriented as long as a part is still inside the cage, whereas a polymer chain

can change its orientation as soon as it is only partly outside the tube. The rod

can change its orientation only by a small angle ε (in rad) ≈ a
L
≈ 1

νL3 [Doi 86].

The time the rod needs to get totally disoriented is given by:

τD

ε2
≈ τDL2

a2
≈ τD

(
νL3

)2
. (2.77)

The rotational diffusion coefficient Dr, being the inverse of the relaxation time, is

given by [Doi 86]:

Dr = βDr0(νL3)−2, (2.78)

with Dr0 as the dilution state rotational diffusion coefficient. The dimension-

less constant β is quite large (around 1, 350) for perfectly rigid rods [Teraoka 89,

Bitsanis 90]. Under flow the orientation distribution of the rods becomes
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anisotropic and the radius of the cage increases to a ∝ 1
sinθ

with θ the orienta-

tion angle of a caged rod with respect to the trapped test rod.

A theory for the description of the mechanical behaviour under shear is intro-

duced here. The results from this theory will later be compared with experimental

results. The basic ideas of a model newly developed by Dhont et al. [Dhont 03]

for long rods is presented here. This model is an extension of the theory from Doi,

Edwards and Kuzuu [Doi 78, Doi 86, Doi 81, Kuzuu 83]. This theory includes two

very important quantities for very long and thin rods: The concentration of the

rods, and the orientational order parameter tensor S = (ûû), measuring the ori-

entational order. Here û is the unit vector along the long axis of the uniaxial rod.

An equation of motion for the tensor S will be derived and solved. Using this

result the stress tensor is calculated. In order to obtain an analytical result for

the leading term of the shear rate dependence of the zero shear viscosity and nor-

mal stress differences, the orientational order parameter tensor is expanded up

to the third power in the shear rate. For details concerning the calculations the

interested reader is referred to the literature [Dhont 03]. The extra stress tensor

is then given by:

σ = 2ηeff γ̇E + η0
1

120
× γ̇2

Deff
r

αϕ







19 0 0

0 −11 0

0 0 −8







, (2.79)

α is defined as:

α =
8

45

(L
d
)2

ln(L
d
)
. (2.80)

Note, that Deff
r is a collective (effective) diffusion coefficient, which describes

the decay (or initial growth) of a very small perturbation of an initially isotropic

state:

Deff
r = Dr

[

1− 1

5

L

d
ϕ

]

, (2.81)

and Ê = 1
2
[Γ̂ + Γ̂T ] the symmetric part of the velocity gradient tensor. The ratio of

γ̇ and Deff
r is called the dressed rotational Péclet number. For low shear rates the

suspension shear viscosity ηeff is given by [Dhont 03]:

ηeff = η0

[

1 +

(

1− 1

50

(
γ̇

Deff
r

)2
)

αϕ +
1

1500
× γ̇2Dr

(Deff
r )3

α
L

d
ϕ2

]

. (2.82)
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In the case of higher shear rates it is given by:

ηeff = η0

[

1 +

(

1− 1

50

(
γ̇

Dr

)2
)

αϕ− 11

1500
×
(

γ̇

Dr

)2

α
L

d
ϕ2

]

, (2.83)

with the concentration:
L

d
ϕ. (2.84)

For shear rate γ̇ = 0 equation (2.83) is simplified to see [Dhont 03]:

ηeff = η0(1 + αϕ). (2.85)

This equation is the analogue of Einstein’s equation for the viscosity of dilute

dispersions of spheres:

ηeff = η0(1 +
5

2
ϕ). (2.86)

Furthermore the viscoelastic behaviour, visualised by the viscosity at higher strain

amplitudes, is of interest. To be able to plot the in-phase and the out-of-phase

part of the viscosity as a function of the dimensionless Deborah number Ω equa-

tion (2.87) is derived:

σ = 2γ̇0Ê[η′cosωt + η′′sinωt], (2.87)

with the dimensionless Deborah number:

Ω =
ω

Dr
. (2.88)

For more details the reader is referred to the literature [Dhont 03].

The dissipative η′ and the storage shear viscosity η′′ are given by:

η′ = η0

[

1 +

(

1

4
+

9

2

F Ωeff

6

Ωeff

)

αϕ

]

, (2.89)

η′′ = η0
3

4
F

(
Ωeff

6

)

αϕ, (2.90)

with the substitution function F :

F (Ωeff ) =
Ωeff

1 + (Ωeff)2
, (2.91)

and Ωeff the dimensionless concentration dependent rotational Deborah num-

ber:

Ωeff =
ω

Deff
r

. (2.92)
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For higher shear rates, when the behaviour reaches the non-linear regime, the

stress can be calculated via equation (2.87):

σ = 2γ̇0Ê
∞∑

n=0

[η′ncosnωt + η′′nsinnωt]. (2.93)

The bare rotational Péclet number is defined by:

Per =
γ̇

Dr
(2.94)
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Chapter 3

Experimental Issues

In this section experimental issues like the FT-rheological set-up, some informa-

tion about Couette cells, and the zero shear viscosity η0 are addressed.

3.1 Experimental set-up of the FT-rheology

The FT-rheology set-up consists of a Rheometrics Scientific Advanced Rheometer

Expansion System (ARES) and two computers. This rheometer is a strain con-

trolled rheometer. In this context an information about rheological techniques

should be given. These two different shear methods, steady and dynamic, are

performed on a rotational rheometer within this work. There are two different

possibilities of how these rheometers are controlled. In our case a deformation

is applied on the sample and a torque is measured. Given the deformation and

therefore the shear rate, the rheometer is called a CR-rheometer, controlled rate.

In the other case a defined shear stress is applied to the sample. The measured

property here is either the deformation or the shear rate. This method is called CS-

controlled rheometer, which means controlled stress [Gedde 95, Schramm 95].

The rheometer is equipped with a dual range Force Rebalance Transducer (100

FRTN1) and is capable of measuring torques ranging from 0.004 mNm to 10

mNm. It is furthermore equipped with a high resolution (HR) motor. This motor

can apply frequencies ranging from 10−5 to 500 rad
s

and a deformation amplitude

ranging from 0.005 to 500 mrad. The oscillation frequency can be varied from

0.001 up to 100 rad
s

. It is furthermore equipped with a water bath, which has a

temperature range from −20 ◦C up to 95 ◦C. On the backside of the machine

41
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it is connected with a serial cable to a PC, which controls the rheometer. Addi-

tionally three BNC cables are connected to a second computer where the data

for the FT-rheology is acquired and analysed (see Fig. 3.1). For the further data

treatment the raw signals are read out and the analog rheological signals are

then digitised with a 16-bit ADC (the dynamic range is 1 : 65, 536). A PCI-MIO-

16XE-10 card from National Instruments, USA is used, which has a maximum

sampling rate of 100 kHz and is capable of multiplexing up to 16 channels. It can

simultaneously acquire and transfer the data to the PC memory by data-buffering

techniques. Therefore the rheological data is intrinsically synchronised. The 40

µs interchannel delay (time between consecutive data points) between the four

channels is relatively insignificant compared to the timescale of rheological ex-

periments. The three channels are namely strain, torque and normal force. In

the experiments performed in this thesis an increase of the S
N

ratio by a fac-

tor of 3 to 5 was achieved. These values are smaller than the theoretical S
N
∝

√
n, due to practical reasons based on the set-up. The ADC-card acquires the

time data at the highest possible sampling rate, and the data is then on-the-fly

preaveraged to reduce random noise. The method is described in more detail in

[Dusschoten 01]. In the experiment the data is acquired via a k-bit analog-to-

digital converter card (ADC-Card). The ADC-card has a sampling rate of 100, 000
1
s
. This means that the analog time data s(t) is measured discretely in 100, 000

time steps and is then converted to digital data. In our case a 16-bit ADC-card is

used. The ”16-bit” give an information of the ability of the card to discriminate

the intensity of the signal. It can discriminate 216 − 1 steps in intensity. Further-

more the 16-bit is, in connection with the measurable voltage range, a measure

for the minimum detectable intensity of weak signals. The bigger the bit num-

ber, the smaller the minimal detectable intensity. If the bit number is to small,

the ADC-card is the limiting factor towards a small S
N

ratio. For more details

the reader is referred to [Claridge 99, Homans 89, Skoog 92]. After acquisition

the time data is averaged using of a home-written LabVIEW software program

[Dusschoten 01, Neidhöfer 03a]. The FT-Analysis is then performed with a dif-

ferent home-written LabVIEW program the analyser software see Appendix B.1.

For the stress and strain signals a simple averaging is conducted on-the-fly in the

time domain [Dusschoten 01]. The rheological data is then averaged. The small-

est time steps are 50 ms equaling 1/50, 000 1
s
. For information about any used
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LabVIEW software programs see Appendix B.

For watery solutions three different types of Couette-cells are used: a) Couette

cell with a bob diameter of 32 mm and a cup diameter of 34 mm, b) Couette

cell with a bob diameter of 16 mm and a cup diameter of 18 mm, and c) double

wall Couette Cell. The cup has a slit of the radius between 27 mm and 34 mm.

The corresponding bob has a thickness of 3 mm in the radii between 29 mm

and 32 mm. The normal force is not used in my experiments due to the fact

that in Couette geometries the normal force measurement does not make sense.

In Couette Cells the sample will just push up to the samples surface which it

restricted by the surrounding but not by the geometry.

For the measurements an appropriate amount of the sample is filled into the

selected Couette cell. A major problem is the evaporation of the water. A solvent

trap is used for this purpose. This trap is equipped with a sponge drawn with

water. Additionally dodecane C12H26 covers the solution to prevent an exchange

with the atmosphere above. Dodecane is non-polar and has, with a viscosity of

1.383 mPas [Lide 96], a lower viscosity than the samples with a high particle

loading. Typically 40 cycles have been acquired, while a scanning rate of 50, 000 1
s

for each channel and an oversampling of 1, 000 are typically selected. This results
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FIG. 3.1: The experimental set-up of the FT-rheology. The normal ARES-Rheometer plus

the addition with a computer including the LabVIEW software.
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in 50 data points per second (respectively for a sine wave with a frequency of

1Hz), which is enough for the purposes of my measurement.
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3.2 Couette Cell

The use of the correct geometry of the rheometer is of great interest for the mea-

surement within this Ph.D. thesis. Here, several geometries should be mentioned

such as plate-plate, cone-plate, and concentric cylinders. Except for the plate-

plate geometry the sample has a spatially homogeneous shear rate. For samples

with a lower viscosity the concentric cylinders are used, because they have a big-

ger contact surface which is useful for liquid samples. They are the choice for

the samples investigated within this dissertation. Concentric cylinders were first

used by Maurice Couette [Couette 90] in the nineteenth century. These concen-

tric cylinders always consist of an outer cup connected to the bottom and an inner

bob connected to the top. At this point two different experimental set-ups are in-

troduced (see Fig. 3.2). The torque signal is measured in both cases at the top,

whereas the rotation is done differently. In the first set-up the inner bob rotates

and the cup is fixed. This set-up, named after Searle, has the disadvantage to

create larger secondary flows like the Taylor vortices Fig. 3.2. These are small

axisymmetric cellular motions that dissipate energy and therefore increase the

measured torque. A criterion for the occurrence of Taylor vortices [Taylor 23] is

the Taylor number defined as:

Ta =
ρ2ω2

1(R0 − Ri)
3Ri

η(γ̇)2
, (3.1)

 

l e s s  s e n s i t i v e  
t o  T a y l o r  v o r t i c e s  

m o r e  s e n s i t i v e  
t o  T a y l o r  v o r t i c e s  

s e c o n d a r y  f l o w  
c a u s e d  b y  i n e r t i a  
g e n e r a t e s  v o r t i c e s  
i n  a d d i t i o n  t o  s h e a r  

R i  

R o  

FIG. 3.2: A visualisation of Taylor vortices in parallel cylinders. Also shown is the Couette

design, which is less sensitive to evoke Taylor vortices.
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with the outer radius R0, and the inner radius Ri. When the Taylor number ex-

ceeds 3, 400 instabilities occur. In the second set-up the outer bob rotates and

Taylor vortices are highly suppressed. In this case the flow is stable until tur-

bulences occur at high Reynold’s numbers NRe exceeding 50, 000 [vanWazer 63],

where the Reynold’s number is given for a Couette set-up as:

NRe =
ρω1R0(R0 −Ri)

ηs
. (3.2)

In a Couette cell the rotation frequency ω1 is zero at the inner radius Ri whereas

at the outer radius Ro it has its maximal value for ω1. The shear stress is given

by:

σ = f(r) =
Mt

2πR2
0h

. (3.3)

Here h is the height of the cell and Mt the measured torque, which can be

calculated under Newtonian flow as:

Mt =
4πR2

i ·R2
0 · h

R2
0 − R2

i

· η · ω1 = Kcηω, (3.4)

where Kc is a constant of the geometry. By inserting equation (3.4) in equa-

tion (3.3) the shear stress is given by:

σ12 =
Mt

2π ·Ri ·R0 · h
. (3.5)

FIG. 3.3: Three different designs of Couette cells: Mooney-Ewart on the left, Double Wall

Couette in the middle and the Haake design Couette on the right with the low friction air

reservoir at the bottom.
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The shear rate and the viscosity are as follows:

γ̇ =
2Ri ·R0

R2
0 −R2

i

· ω1, (3.6)

η =
(R2

0 −R2
i )

4π · hR2
0 ·R2

i

· Mt

ω1
. (3.7)

The influence, which the bottom of the bob and the bottom of the cup have on

the torque, must be corrected, since at the bottom of the cylinder there is also

shear flow. Three different basic designs of Couette-bobs have been developed to

counter the end effects (see Fig. 3.3). One features a conical bottom. With proper

choice of the cone and angle, the shear rate at the bottom agree with that in the

narrow gap on the sides. The next design has a thin rotating inverted cup and is

called double wall Couette (see Fig. 3.4). In general it allows a better temperature

control, due to the large contact surface and a small sample volume. A specific

feature of the double wall Couette is that, except for small gaps, the shear rates on

the inside and outside of the rotating cup are not equal. The greatest advantage

FIG. 3.4: This picture shows a double wall Couette.
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of the double wall Couette, is the small amount of sample needed for its use and

the use of twice the contact area to increase sensitivity, for low viscous systems.

The third design, the so-called Haake-design, has a recessed bottom, trapping air,

which essentially transfers no torque to the fluid. Haake design and double wall

Couette have both been used within this Ph.D.
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3.3 Zero-shear viscosity η0

The viscosity as a function of the solid content for a the limiting case of zero

shear is called zero-shear viscosity η0. The simplest dispersions are composed

of so-called hard spheres in a solvent of viscosity ηs in which the only interaction

between particles are rigid repulsions that occur when particles come into contact.

These simple dispersions can already show a complex rheological behaviour. The

zero-shear viscosity, the viscosity of a solution extrapolated to no shear, of hard

spheres solutions can be calculated at very low volume fractions ϕ to:

η0 = ηs(1 + 2.5ϕ). (3.8)

This equation is a result of calculations from the viscous dissipation produced by

the flow around a single sphere. This calculation was first conducted by Einstein

[Einstein 06, Einstein 11] and is experimentally only valid for low volume frac-

tions ϕ ≤ 0.03, so that the flow field around the sphere is not influenced by the

presence of neighbouring spheres. If, at higher particle loadings, two spheres are

close enough that the shear field on one sphere is influenced by a second sphere.

This gives rise to a proportionality for the viscosity η of ϕ2. In the case that three

particles interact, this relation changes to ϕ3. The effect for two particle inter-

actions was first calculated by Batchelor [Batchelor 71]. When combining the

results from Einstein and from Batchelor [Larson 99] a new relation is given that

is valid for a volume fraction ϕ ≤ 0.1:

ηr =
η

ηs

= 1 + 2.5ϕ + 6.2ϕ2. (3.9)

The expansion of equation (3.9) was extended to higher order in ϕ by a simple

effective medium argument of Arrhenius [Arrhenius 17]. The increase in viscosity

η can be calculated by adding particles dϕ to a suspension, treated like a homo-

geneous medium with the viscosity η(ϕ) and can therefore be extended to higher

orders in ϕ. The viscosity in Einstein’s equation (3.8) is incrementally increased

to:

dη = 2.5η(ϕ)dϕ. (3.10)

After integration the following equation is reached:

η = ηse
( 5ϕ

2
). (3.11)
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A similar argument can be made for arbitrarily shaped particles leading to equa-

tion (3.12) where [η] is the dimensionless intrinsic viscosity, which is the dilute

limit of the viscosity increment per unit particle volume fraction, divided by the

solvent viscosity:

η = ηse
([η]ϕ), (3.12)

ηintrinsic =
η − ηs

ϕηs
, (3.13)

[η] = lim
ϕ→0

η − ηs

ϕηs
. (3.14)

Equation (3.14) is known as the Staudinger index. Equation (3.12) leads to equa-

tion (3.11) if for spheres [η] has the value of 2.5 [Amelar 91]. At high sample

loading this relation fails due to ’crowding’. ’Crowding’ means that there is a

correlation for a particle being at a specific position because of the influence of

another particle. This problem is circumvented by replacing [Ball 80] the viscosity

increment by:

dη =
[η]ηsdϕ

1− ϕ
ϕm

. (3.15)

The viscosity diverges when ϕ approaches the maximum-packing volume fraction

ϕm. Note, that ϕmfor ordered dense packing of monodisperse spheres has the

value of 0.74, whereas here the value for the disordered case is used. For hard

spheres this is known from crystallography [Bernal 60], to be ϕm ≈ 0.63 to 0.64.

The integration of equation (3.15) leads to equation (3.16) that is known as the

Krieger-Dougherty equation:

η = ηs

(

1− ϕ

ϕm

)−[η]ϕm

. (3.16)

Empirically the theoretical results could be confirmed for dispersions of particles

or other shape in 1959 [Krieger 59, Krieger 63]. For non-spherical particle so-

lutions the value of [η] increases whereas the value of ϕm decreases when the

particle aspect ratio increases [Meeker 97]. In particle solutions, with sterically

stabilised particles at volume fractions far from close dense packing (≈ 71 vol.%),

the thickness of the sterically layer ∆ has an additional influence on the volume

fraction [Mewis 89] resulting to:

ϕ = ϕ0

(

1 +
∆

a

)3

, (3.17)
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with a the radius of the particle and ϕ0 the volume fraction of the uncoated par-

ticles. Another equation describing the zero-shear viscosity, as a function of the

volume fraction is from Quemada [Quemada 78]:

η0 = ηs

[

1− ϕ

ϕmax

]−2

, (3.18)

with ϕmax = 0.63 meaning the volume fraction for the disordered packing of

spheres [Rueb 98]. For the high shear viscosity a different value for ϕm = 0.72 was

found [deKruif 85]. The theoretical predictions of Einstein, Krieger-Dougherty

and Quemada are plotted in Fig. 3.5. Interesting effects of the viscosity can be ob-

served at very a high loading of bimodal distributions of particle size [Dames 01].

Mainly, the viscosity is higher for mono-modal dispersions. A strong drop in vis-

cosity (more than a decade) can be observed in bimodal solutions with a size ratio

5 : 1 at a volume fraction above 0.6. At this volume fraction the small particles

go into the interstice of the lager ones. This effect is referred to the ’Farris ef-

FIG. 3.5: Zero-shear viscosity as a function of volume fraction as described by different

models: Einstein and Krieger-Dougherty, and Quemada for a water suspension.
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fect’ [Larson 99]. This observation has industrial relevance, because dispersions

can be produced that have higher sample loading, but less water, and can still be

treated like a low solid content dispersion. Stokesian dynamics computer simula-

tions of hard-sphere dispersions give insight into their shear-thinning behaviour

[Bossis 89, Phung 96]. At high shear stresses, the contribution of the Brownian

motion disappears and leaves only the hydrodynamic contribution. Other simula-

tions [Visscher 94, Phung 96] for volume fractions of ϕ = 0.30 and ϕ = 0.45 show

formations of lines of particles, co-called strings, parallel to the shear flow. Their

appearance correlates with the onset of shear thinning and vanishes with the start

of shear thickening. These strings, forming superstructures perpendicular to the

flow direction in a hexagonal pattern [Laun 92] can be verified by light scatter-

ing [Ackerson 88]. In liquids consisting of small molecules, which show shear

thinning at high shear rates, these structures can also be found. An even higher

drop in viscosity is found in dispersions showing a three-dimensional order like

close-packing in face centered cubic (fcc) and / or hexagonal close packing (hcp)

with a volume fraction of ϕ ≈ 0.5. Under shear stress these samples lose their

3D structure and form layers that make a flow easier possible. But before losing

their order a yield stress has to be applied. Furthermore similar effects have been

found in ’soft’ particles or particles that have a grafted surface layer [Mewis 89].



Chapter 4

Dispersions and Synthesis

In this chapter dispersions, their definition, their importance and their synthesis

within this dissertation is presented. The definition of a dispersion is a solid dis-

persed in a fluid, where the solid is not dissolved [Macosko 94]. An emulsion is, in

contrast to the dispersion, a liquid dispersed in a liquid. The emulsion polymerisa-

tion is based on emulsions. The synthesis leads then to a dispersion. An example

for an dispersion is lime milk, where calcium hydroxide is dispersed in water. In

contrast to normal milk, which contains fat and protein droplets, where fluid is

dispersed in water and therefore called an emulsion. In the fields of polymers the

definitions are more complicated. A polymer dispersion could contain polymers

that have a more glassy character or viscous fluid character. Furthermore, if a

watery dispersion is synthesised via emulsion polymerisation, it is called latex. A

typical diameter of the particles for polymer dispersions are in the range of 50 nm

− 500 nm. Latices with particles size in the range of 50 nm − 500 nm are called

colloids [Xia 00, Li 00]. The systems used in this dissertation were synthesised

via emulsion polymerisation. This method was first patented in 1909 in Germany

[Hofmann 09]. The breakthrough for this method came many years later during

the second world war, when the import of natural rubber to Germany and to the

USA was stopped. As an alternative styrene-butadiene-latices were then produced

in Germany and the USA. Today latices are widely used in industry for a multi-

tude of applications like textiles, leather, wall paints, paper coatings, as a binding

agent in construction industry and also in recently developed research fields like

immuno assays [Distler 99]. The emulsion polymerisation is based on a radical

polymerisation. It has several advantages compared to bulk or solvent polymeri-

53
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sation. One advantage is that the reaction enthalpy is directly transferred into

the reaction medium water and no uncontrolled polymerisation takes place. This

heat transfer is highly efficient due to the big interface between the particles and

the surrounding water. Due to the high heat capacity of the water no uncontrolled

polymerisation can take place. A typical reactor is shown in Fig. 4.1. Normally

the reaction temperature lies between 70 ◦C and 85 ◦C. The ability of stirring the

dispersion, even at high solid content is due to the low viscosity. The cause for it

is that the viscosity of the dispersion does not depend on the molecular weight of

the polymer but on the medium and the particle interactions. A 30 wt.% watery

dispersion has a viscosity of 1 − 2 mPas which is in the range of the viscosity

of water, whereas a 8 wt.% polystyrene in dioctyl phthalate (Mn = 200, 000 g
mol

)

solution is already a highly viscous medium η(γ̇ = 0.01) = 700 Pas.

In recent years production techniques that allow a synthesis without organic

solvents are promoted due to environmental reasons. Water based latex wall paint

is dominantly used for indoor applications. In chapter 4.1 synthetic aspects of the

FIG. 4.1: Typical reactor used for synthesising a dispersion.
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emulsion polymerisation will be described in a more detail, and characterisation

techniques are covered in chapter 4.2. For further information see e.g. [Piirma 82,

Gilbert 95, El-Aasser 97].

4.1 Emulsion polymerisation

In the typical emulsion polymerisation the reactive solution is a mixture of sur-

factant, initiator monomer dissolved in water. A more newly developed method is

the ’surfactant free’ emulsion polymerisation, where the surfactant is replaced by

an ionic monomer like sodium styrene sulfonate. A latex is synthesised according

to each different purpose so different additives like rheological modifiers or fungi-

cides are added. The monomers vinyl acetate, acrylates, styrene and butadiene

are the basis of the most commonly produced dispersions in industry. In con-

trast to the main monomer, which is responsible for glass transition temperature,

swelling ability and elasticity, the so-called helping co-monomers often play the

role of stabilising the dispersion. Mostly their amount does not exceed 5 wt.%.

Typical examples for helping monomers are acrylic- or methacrylic acid, creat-

ing surface charges on the particles, or bifunctional acrylates and divinylbenzene

used as cross-linkers.

Commonly used surfactants are sodium dodecyl sulfate Fig. 4.2 or sodium

styrene sulfonate Fig. 4.3. These surfactants create negatively charged particles

due to their anionic end groups. For positively charged particles cationic am-

phiphiles are used, whose hydrophilic part is often quaternary ammonia. A third

possibility are non-ionic surfactants, which contain polyethylene oxide units. The

polymerisation is started by initiators (e.g. ammonium peroxodiusulfate (APS),

potassium peroxodiusulfate (KPS), and azo-bis-isobutyrylnitrile (AIBN)) forming

radicals while heated up in the range of between 60 ◦C and 100 ◦C. The cre-

Na C12H25OS

O

O

O

FIG. 4.2: The surfactant sodium dodecyl sulfate, that is frequently used in this work.
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S

O

O

O

Na

FIG. 4.3: The surfactant sodium styrene sulfonate is used for surfactant-free emulsion

polymerisation.

ation of radicals will be described in a more detailed way in chapter 4.1.1. Most

significant for the emulsion polymerisation is the creation of micells see Fig. 4.4.

These micells are small droplets of monomer (immiscible with water), stabilised

by surfactants. The radicals diffuse from the place of their formation in the solu-

tion into the micells where the polymerisation reaction takes place. In the course

of the reaction the micelle contains more and more polymer and finally it is a

polymer sphere dispersed in water. There are different possibilities to perform

such a synthesis. One possibility is the batch process, where all ingredients are

mixed together and secondly a semi-continuous method where a nucleation phase

is followed by a growth phase. In the batch process the whole reactive medium is

mixed and then the reaction is accomplished under permanent stirring and heat-

ing. It is frequently used to synthesise homo polymeric particles. A drawback

is the poor possibility to control the reaction of this exothermal reaction. If the

reaction heat is not dissipated, inhomogeneity of the temperature can be found.

This becomes a problem when synthesising dispersions with a high solid content,

due to the reduced amount of water. Therefore, it is often only used as a first

M i c e l l e

H 2 O - p h i l i c

H 2 O - p h o b i c

M i c e l l e

H 2 O - p h i l i c

H 2 O - p h o b i c

FIG. 4.4: The micelle, a monomer droplet emulsified in water, is stabilised by a surfac-

tant layer. The surfactant arranges itself in such a way that the hydrophobic part points

towards the monomer droplet, and the hydrophilic part points towards the water.
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step of the semi-continuous method 4.1.2. In the first step of the semi-continuous

method seed particles are created. In the second step, the continuous step, the

monomer and the other reactive agents are slowly added. So the reactive media is

under ’starved-feed’ conditions. As a result a better control of the reaction speed,

the temperature, the particles size and the particle size distribution is given.

The mechanism of the emulsion polymerisation itself consists of three steps:

the nucleation phase, the particle growth and the end of the reaction. The

nucleation phase is defined by the formation of seed particles. Two different

nucleation mechanisms, which depend on the hydrophobicity of the monomer,

are discussed. If the surfactant concentration is above the critical micellar

concentration (cmc) or the hydrophobic monomer is used it is called hetero-

geneous nucleation [Vanderhoff 85, Song 89]. In a mechanism proposed by

Harkins [Harkins 47, Harkins 50] and Smith-Ewart [Smith 48] spherical micells

and monomer droplets co-exist. The micellar size depends on the amount of sur-

factant and can range between 2 nm up to 30 nm. Inside they contain monomer

whereas outside there is a layer of surfactant. Some monomers can even be dis-

solved in water if it is not too hydrophobic. The dissolved monomer reacts with

the added radical initiator to oligomer radicals. The longer the chains grow, the

easier they move into micells where the polymerisation is continued. A perma-

nent flow of monomer from the monomer droplets guaranties a further poly-

merisation. But also radicals can migrate from micells and start new chains

[Casey 94, Morrison 94] outside. The chains, growing into spheres, also need

surfactant molecules to stabilise their surface. When no free surfactant is left,

the nucleation phase is finished. In case the amount of surfactant falls below

the cmc or a hydrophilic monomer is used, the nucleation is called homogeneous

[Hansen 78]. Oligomer radicals form a primary nucleus after reaching a critical

molecular weight. The further growth of the particles, by monomer or oligomer,

is then called precursor particle growth. Finally, several precursor particles com-

bine to the final particles. The end of the nucleation phase is achieved when there

are no surface active oligomers left [Janssen 93]. In the second phase, the par-

ticle growth, monomer molecules diffuse from monomer droplets in the solution

through the water phase into particles. In the end of this phase no monomer

droplets are left in the water, but the only non-reacted monomer is inside the par-

ticles. The particles have now reached their final size. The polymerisation speed
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NH4 + NH4
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O

FIG. 4.5: The startreaction of the radical polymerisation is shown here.

is approximately constant during this phase. Finally, at the end of the reaction the

surviving monomer inside the particles is polymerised.

4.1.1 Mechanism of the radical polymerisation

A radical polymerisation is a chain reaction which consists of 3 characteristic steps

(see above). First the start reaction (formation of the radicals), second the chain

growth reaction and finally the termination reaction [Lechner 96]. The start is

the formation of a radical. This radical is generated by temperature increase or

by UV-light (see Fig. 4.5).

Normally two radicals are created by a symmetrical break of a bond, or the

disappearance of nitrogen. Typical radical starters are peroxides (see Fig. 4.6),

azo compounds (see Fig. 4.7), hydroperoxides, or organo metal compounds. The

radicals are normally created in-situ, meaning the radical concentration is equally

spread in the reactive medium. Otherwise the reaction would not be started, due

to the recombination of the radicals with the non-reactive surroundings. With the

creation of the radical the next step, the startreaction is initiated (see Fig. 4.5).

Here the radical covalently binds to the monomer molecule. A new bond between

the radical and the monomer is made. The radical electron is now at the end of

the newly created molecule. This second step, where the newly formed radical

attacks further monomers, is called chain growth reaction (see Fig. 4.8).

O O SS

O

O

O

O

O

ONH4 NH4
∆ T hνoder

NH4 S

O

O

O O+2*

FIG. 4.6: The initiator molecule ammonium peroxodiusulfate, (NH4)2S2O8.
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FIG. 4.7: The initiator molecule azo-bis-isobutyrylnitrile, AIBN.

R

+ n

R

n

FIG. 4.8: The chain growth reaction is named the polymerisation reaction.

This chain growth is the radical polymerisation process. Finally the reaction

stops. Several possibilities can induce the end of the reaction. One possibility

is the use of inhibitors or retarders. With the addition of these molecules the

reaction is stopped. The reactions conducted within this thesis are stopped via

recombination and disproportionation. In the case of the recombination two rad-

icals react, and build one chain of double length (see Fig. 4.9). For reactions

with a need for a narrow molecular weight distribution, this kind of stop reaction

is undesired. This aspect is generally of less importance in case of the emulsion

polymerisation because the created spherical particles have the same diameter. As

the sphere diameter does not depend on the chain length a double chain length

of two combined radical chains does frequently not matter for the size of the par-

ticles. A second termination reaction is the disproportionation. Here two radicals

react with each other, in such a way that an electron and a hydrogen are ex-

changed. The result (see Fig. 4.10) is a creation of a double bond in one molecule

CH2R RH2C

+

R
R

FIG. 4.9: The combination of two radicals terminates the polymerisation and creates a

chain of twice the length.
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CH2R RH2C

+

CH2R RH3C

+

FIG. 4.10: The termination reaction is achieved by disproportionation of two radicals.

and a saturated monomer for the other molecule.
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4.1.2 Semi-continuous emulsion polymerisation

An alternative reaction path for a batch emulsion polymerisation is the semi-

continuous polymerisation [El-Aasser 90] ( see Fig. 4.12). After the initial step

of a nucleation phase, also known as seed, a second step is performed. In this sec-

ond step the reaction proceeds during a permanent inflow of the reactive medium

(see Fig. 4.13). The reactive medium is split up in two parts. One containing

monomer, SDS, acrylic acid and some water in a pre-emulsion. The second part

contains additional water and the initiator. The preparation recipes can be taken

from Appendix D. If the inflow of the monomer and initiator is slower than the

reaction speed, this process is called a monomer poor reaction. Furthermore, it

is possible to synthesise multilayered particles, like core shell systems. Here dif-

ferent monomer or monomer mixtures can be added at different times. This will

influence the properties of the particles in the end. Shells or cores with cross-

linkers or different Tg are accessible in this way. When the reaction mixture is

continuously changed during the reaction [Hoy 79, Lambla 85] particles contain-

ing a gradient can be created. This can result in properties which also show this

gradient.

FIG. 4.11: A SEM picture of particles synthesised via semi-continuous emulsion polymeri-

sation. Clearly visible are the small particles that are left over from the seed, whereas the

bigger particles are the final product particles.



62 CHAPTER 4. DISPERSIONS AND SYNTHESIS

n

n Surfactant: SDS
Acrylicacid (1% wt.)
starved feed conditions

80°C 4h (NH 4)2S2O8

FIG. 4.12: Typical reaction equation and conditions of a semi-continuous emulsion poly-

merisation.

P h a s e  1

P h a s e  2

       D T ,  t
p o l y m e r i s a t i o n
   h i g h  s h e a r  

s t a r v e d  f e e d
c o n d i t i o n s

       D T ,  t
p o l y m e r i s a t i o n
   l o w  s h e a r  

s e e d - c o r e  s y s t e m c o r e - s h e l l  s y s t e m

p r e e m u l s i o n

i n i t i a t o r  d i s s o l v e d  i n  w a t e r

FIG. 4.13: The three different steps of the semi-continuous emulsion polymerisation are

displayed. First a mixture of all ingredients is made to synthesise the seed. Then the seed

particles are formed. In a last step these particles grow to the final particles under starved

feed conditions. The syringes contain a) the pre-emulsion and b) the initiator dissolved

in water.
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n

n

72°C 12h AIBN 
+ Hexadecan

Surfactant: SDS
Acrylicacid (1% wt.)

FIG. 4.14: The reaction equation and conditions of the mini-emulsion polymerisation.

FIG. 4.15: A SEM picture of particles synthesised via mini-emulsion polymerisation. The

dynamic light scattering gives a polydispersity of 0.01.

4.1.3 Mini-emulsion polymerisation

A further possibility of conducting the emulsion polymerisation is the mini-

emulsion polymerisation. These mini-emulsions are stabilised oil droplets with

a size between 50 nm and 500 nm. They are prepared by high-shear respectively

ultra-sonication of a system containing monomer, water, a surfactant and a hy-

drophobe (see Fig. 4.14). Here the so-called ’nanoreactors’ are the centre of the

polymer reaction. These nanoreactors, separated from each other by the continu-

ous phase, contain the essential ingredients for the formation of the nanoparticles

(see Fig. 4.16). When carefully prepared, polymerisations in such mini-emulsions

lead to latex particles of about the same size as the initial droplets. This is due

to the fact that the droplets (nanoreactor) do not interact with each other. The
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P h a s e  1

P h a s e  2

p o l y m e r i s a t i o n
       D T ,  t  

u l t r a  s o n i f i c a t i o n
h i g h  s h e a r

FIG. 4.16: In this sketch the three states of the mini-emulsion polymerisation are visible.

In the first state the other reaction ingredients are dissolved in two phases, the organic

(phase 1) and the water phase (phase 2). In the second state one can see the micro-

compartements after ultra-sonication. The reaction takes place in these mini-emulsion

reactors. In the third state the completely polymerised particles are shown.

interaction is suppressed with the addition of a hydrophobe agent and a strong

surfactant. The hydrophobe agent stabilises the system against Ostwald ripen-

ing or coalescence. The droplets are the main place where the polymer reactions

happen. This means that the droplets have to become the primary place of the

initiation of the polymer reaction. Then polymerisation proceeds in the droplets,

where the water transports new reactive material and heat. Within these ’nanore-

actors’ the nanoparticles are synthesised. The polymerisation of mini-emulsions

extends the possibilities of the widely applied emulsion polymerisation and pro-

vides advantages with respect to copolymerisation reactions of monomers with

different polarity and incorporation of hydrophobic materials. For the synthe-

sis the emulsion droplets should have the same size (monodispers), and the size

should be adjusted. This is done via ultra-sonication, despite the stabilisation of

the emulsions by the hydrophobe agent. Then fusion and fission processes are in-

duced, and it can be seen that with increasing ultra-sonication time the size of the

droplets can be decreased in a controlled way [Landfester 03]. It is an advantage

of this method that in liquid/liquid synthesis, both the direct (aqueous solvent)

and inverse (organic or hydrocarbon solvent) situations are possible. Furthermore

it can be used to generate nanocomposites with high stability and processability,

by the encapsulation of nanoparticles into polymer shells.
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4.2 Characterisation methods for dispersions

After the synthesis the dispersions have been characterised. Several methods were

used to determine the particle size, the zeta-potential and the solid content. These

methods are introduced and presented in this chapter.

4.2.1 Particle size

When an electromagnetic wave travels through a medium, scattering or absorp-

tion can occur. The scattering can be elastic or inelastic. In the case of inelastic

scatter (e.g. Raman scattering) a shift of the wavelength of the scattered beam

is detected. A special case of the inelastic scattering is the quasielasic scattering,

where the frequency shift is small compared with inelastic scattering. It appears

when electro magnetic radiation interacts with molecules or particles under a

translational movement. This frequency shift is referred to as Doppler-effect. Dy-

namic light scattering (DLS) techniques permit particle size measurements from

5 nm up to 250 mm of particles dispersed in a solvent. Essential for this methods

is that the sample does not absorb light, and it has to be diluted that there is no

dominant particle interaction and that there is no multiple scattering. Using light

scattering, the average size and the size distribution can be determined. For a

better understanding of light scattering techniques the reader is referred to lit-

erature [Berne 76, Pecora 85, Schramm 90, Wiese 92, Brown 93]. Furthermore

some important guidelines have to be fulfilled for the measurements: The scatter

of the particles has to be higher than that of the medium. This can be achieved by

adjusting the concentration of the particles. On the other hand the concentration

should not be too high, because then multiple scattering occurs and the interac-

tions between particles cannot be disregarded. The optical interactions inside a

particle can only be neglected when the particle diameter is small compared with

the wavelength λ of the incident light beam.

The Brownian molecular motion of colloidal particles results in fluctuation

of the scattered intensity, which is acquired by the photo multiplier and then

correlated by the correlator. The diffusion constant of particles strongly depends

on their size. Smaller particles diffuse faster, thus resulting in a faster fluctuation

of intensity. Bigger particles diffuse slower thus resulting in slower fluctuation of

intensity. For short time intervals t1 = τ und t2 = τ + dτ the intensity fluctuations
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are small, respectively the positions of the particles are highly correlated with

their starting position, whereas in long intervals their positions are just at random.

The signal measured with the correlator is the normalised intensity correlation

function g(2)(τ) which is given by [Wiese 92]:

g(2)(τ) =
< Is(t) · Is(t + τ) >

< Is(t) >2
t

. (4.1)

Here IS is the scattering intensity, 〈...〉 the time average and τ the correlation

time. The spherical particles of the same diameter one can get the dependence of

g(2)(τ) on the diffusion coefficient D out of the equation (4.1) [Wiese 92]:

g(2)(τ) = 1 + β · e−2Dq2·τ . (4.2)

The experimental constant β can have values between 0 and 1. The absolute value

of the scattering vector q is given by:

q =
4πnD

λ
sin(

Θ

2
), (4.3)

here nD is the refractive index of the medium, λ the wavelength of the incident

beam and Θ the scattering angle. Polydisperse spherical particles under free diffu-

sion cannot be described with equation (4.2). The exponential function in equa-

tion (4.2) is tended by a sum of exponential functions with different relaxation

times Ξi = Diq
2 (Di = diffusion coefficient of particle fraction i) [Wiese 92]:

g(2)(τ) = 1 + β[
∑

GΞie
−Ξiτ ]2. (4.4)

The intensity of the different particle fractions weights the distribution of relax-

ation times G(Ξi). The simplest method of determining the particle size from the

correlation function is the cumulant analysis. The expansion of the auto correla-

tion function ln[g(2)(τ)− 1] is stopped after the third term:

1

2
ln[

g(2)(τ)− 1

β
] = −K1 · τ +

1

2
K2 · τ 2 − 1

6
K3 · τ 3. (4.5)

The coefficients K1, K2 und K3 are called cumulants. The intensity-weighted

averaged diffusion coefficient < D > can be calculated via:

< D >=
K1

q2
. (4.6)
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The hydrodynamic radius rH can afterwards be calculated via the Stokes-Einstein

equation (4.7) in case the diffusion coefficient is known:

D =
kBT

6πηrH
, (4.7)

here kB is the Boltzmann constant, T is the absolute temperature in K and η is

the viscosity of the dispersive medium. The width of the particle size distribution

index (PDI) is derived from the second and the third cumulant:

PDI =
K2

K2
1

. (4.8)

It is a disadvantage of the cumulants method that on cannot distinguish between

a broad or a bimodal distribution. Therefore, one gets only an average particle

diameter and a value of the width of the distribution. Alternatively the Contin

algorithm could be used to analyse g(2)(τ) [Provencher 82a, Provencher 82b]. The

Contin algorithm is able to distinguish between a broad or a bimodal distribution.

The hydrodynamic radius rH , and the polydispersity are then calculated via the

selected method.

For the determination of the particle size and the zeta-potential (see chapter

4.2.2) a Malvern Zetasizer 5000 is used. The incorporated Correlator is of a type

7132 with 62 correlation channel. The light source is a 5 mW HeNe-LASER at a

wave length of λ = 633 nm. In these machines photon correlation spectroscopy

(PCS) is used. In this particle sizer the scattered light is detected at an angle of

90 ◦. For the measurements the dispersion are diluted with ’Millipore water’. The

resulting solid content must not be bigger than 0.1 wt.%. This amount was filled

in the measurement cuvette and then analysed.

4.2.2 Zeta-potential

The stability of colloidal solutions strongly depends on the charges at the particle-

liquid interface [Dörfler 02, Hunter 88]. Because of net negative charges on the

particle surface, particles repel each other and flocculation does not occur. Most

important sources of charges are the ionisation of chemical groups at the particle

surface and the ability of the solution to absorb the differently charged ions. A net

charge at the particle surface results in an increased counter ion concentration.

The structure of a charged surface and surrounding counterion charges is called
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an electrical double layer. The outer layer consists of two different parts, an

inner one containing relatively strong bound charges and an outer diffuse layer

where the thermal motion and electronic forces balance each other. This electric

potential decreases and decays with the increasing distance to the particle surface.

In the bulk the potential is totally screened by the surrounding ions. The zeta-

potential occurs at the surface and is build of the particle and the inner electric

layer. Electrophoresis is one way to measure this potential. That means, the

movement of charged particles, which is induced by an electric field, is analysed

in a liquid. While applying an electric field, the charged particles are attracted

to the opposite charged electrode. This movement is opposed by the viscosity

of the surrounding media. After reaching an equilibrium the constant velocity

depends on the electric field strength E, the dielectric constant ε, the viscosity

of the medium η and the zeta-potential ζ. The electrophoretic mobility UE of a

particle is defined as the ratio of the measured velocity ν, and the applied electric

field E. UE is related to the zeta-potential by the Henry-equation [Hunter 88]:

ν

E
= UE =

2εζ

3η
f(κa). (4.9)

The term f(κa) is called the Henry-function:

f(κa) = 1.5− 9

2(κa)
+

75

2(κa)2
− 330

(κa)3
. (4.10)

This function depends on the shape of the particles. For a spherical particle and

a large κa it approaches a value of 1.5. This approximation is called the Smolu-

chowski limit, which is valid for particles of about 0.1 microns and an electrolyte

with more than 10−3 mol
l

of salt and results for equation (4.9) into:

UE =
εζ

η
. (4.11)

The mobility is measured via LASER Doppler velocimetry (LDV). Here two LASER-

beams are crossed. At the crossing an interference pattern is created. Due to

the electric field, particles are moving. The resulting intensity fluctuations are

digitised and correlated. With the analysis of the correlation spectra the mobility

of the particles and therefore the zeta-potential is determined.
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4.2.3 Scanning Electron Microscopy

Normal optical or ultra microscopy does not achieve the spatial resolution needed

for the imaging of the particles. Particles with a size down to 20 nm are visualised

with scanning electron microscopy. More detailed information can be found in the

literature [Bindell 92, Goldstein 92, Sawyer 96]. This method provides a good

possibility of visualising at these small structures in a relatively short time. The

SEM is based on an electron beam creating core, consisting of an electron gun and

magnetic lenses. The electrons, produced by the gun, have energies between 0.2

and 30 keV . The lenses reduce the electron beam in diameter and focus it on the

sample in a vacuum. Magnetic lenses move the electron beam over the surface of

the sample in a scanning pattern. The reflected electrons and the emitted photons

carry the information of the surface of the sample. Detectors for secondary (SE)

and backscattered electrons (BSE) collect the electrons. The high energetic BSE

(energy higher than 50 eV ) have their origin in the deeper layers of the sample.

Their contrast depends on the topography and the average atomic number of the

sample. The low energy electrons have their origin in the surface layers of the

sample and they transport mainly topographic information. If a modern SEM is

used, a small gold layer on the surface of the samples is not necessary, this is

due to small energy of the electrons. In older set-ups samples might be damaged

[Butler 95, Vezie 95, Jaksch 95, Joy 96] by the electron beam. If there is a need

to go to smaller a resolution than 10 nm with the low acceleration voltage, then

again a gold layer is necessary.

The measurements within this thesis have been performed on a low voltage-

SEM (LV-SEM) of the company LEO (Type Gemini 1530) with a SE-detector. The

acceleration voltage can be varied between 0.2 and 3 keV . It is primarily used for

the examination of the size of the particles and the particles size distribution. The

dispersion is dropped on a silicon wafer and then dried. The so prepared sample

is then directly examined in the SEM.

4.2.4 Experimental issues of the synthesis

In this chapter the experimental issues of the synthesis and the characterisation

are presented. Typical procedures for the synthesis can be taken from Appendix

D. First two mixtures in separate beakers are made. The first contains water,
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surfactant initiator, and the second containing monomer, hydrophobe, acrylic acid

and co-monomer. After mixing these two beakers and stirring it for one hour, the

solution is sonicated for 2 minutes. The reactive medium is cooled during the

sonication. The maximum elongation that is allowed for this sonifier tip was

used. In this case it has a value of 89 %. The used sonifier is a Branson Digital

Sonifier R©Model 250-D with a resonator 1
2
” (W-250) of 200 W . Afterwards the

mixture is taken to the reactor and the synthesis is performed. For getting the

temperature constant a Huber Ministat was used.

Directly after the synthesis the pH-value was set to 10, where the dispersion

are stable over a time span of at least 1 year. The pH-value of the dispersions was

set with a WTW pH 320 Set-2. This pH-meter was calibrated with buffers at a

pH-value of 2, 7 and 10.

The solid content of the dispersions is determined via gravimetric analysis.

Furthermore, the conversion of the synthesis can also be determined via this

method. The solid content is commonly defined as the mass of the dispersion

after drying. The solid content comprises the polymerised monomer, the surfac-

tant, and non-volatile components of the initiator. The mass of the initiator due

to its small amount is negligible. The initial mass is m1. The residual mass is m2.

The solid content is then calculated:

solid content =
m2

m1
. (4.12)

For the analysis of the solid content a small amount of the dispersion, normally

about 2 g, is put in a small aluminium jacket and the volatile parts are evaporated

under vacuum. The dispersion are heated for 12 hours at 60 ◦C in a vacuum of

below 100 mbar.



Chapter 5

Materials

5.1 Dispersions

The dispersions are synthesised via emulsion polymerisation. The two different

pathways of the synthesis are semi-continuous emulsion polymerisation and mini-

emulsion polymerisation. These two different methods are presented in chapter

4. Both are based on radical polymerisation, as described in chapter 4.1.1. The

Debye-length of the dispersions is calculated according to equation (2.2.1). The

Debye length of the dispersions synthesised via semi-continuous emulsion poly-

merisation is in the range of 0.3 nm − 0.4 nm, whereas the Debye-length of the

dispersions synthesised via mini-emulsion polymerisation is in the range of 1.7

nm − 1.8 nm.

5.2 FD-Virus

The rod shaped semi-flexible bacteriophage FD-virus [Fraden 95] is a polyelec-

trolyte that changes its state with increasing concentration from an isotropic solu-

tion to a cholesteric liquid crystal. The FD-virus has a contour length of 880 nm,

a bare diameter of 6.6 nm and a persistence length of 2, 200 nm. The rotational

diffusion coefficient Dr is 20.9 s−1 [Newman 77]. The overlap concentration c∗

is 0.04 mg
ml

. The stock solution of FD-virus (12 mg
ml

) used for these experiments

was kindly supplied by the group of Prof. J. Dhont from the Forschungszentrum

Jülich. The stock solution is prepared via the method described by Marvin et al.

[Marvin 75]. The different concentrations are obtained by diluting the stock so-

71
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FIG. 5.1: SEM picture of a FD-virus.

lution with a 20 mM tris(hydroxy methyl)-aminomethan chloride (Tris-Cl) buffer

solution. The effective diameter changes with the salt concentration of the stock

solution. In this case it is 20 nm. The precise concentration is determined by

ultraviolet spectroscopy (UV) absorption at a wavelength of 270 nm, using a spe-

cific absorption coefficient of 3, 84(1cm,269nm)
mg
ml

[Day 88]. Twelve microliter of the

virus stock solution are diluted with one milliliter of a 20 mM Tris-Cl buffer solu-

tion. A UV-spectra is then recorded. The concentration c was then calculated via

equation (5.1). The quality of the solution can also be determined via UV-spectra

(see equation (5.2)).

c =
OD270nm

3.84 l
mol

1ml

1.12ml
· 100, (5.1)

OD270nm

OD240nm
≈ 1, 4± 0, 1. (5.2)

The FD-Virus solution is stored at 4 ◦C to prevent growth of bacteria. For cleaning

the solution from bacteria after measurement the solution is centrifuged for 10

minutes at about 3, 000 g. For the reconcentration of the solution after use, an
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ultracentrifugation for 5 h at a temperature of 4 ◦C and 100, 000 g is necessary.

From this concentrated solution a new dilution series can be started. For centrifu-

gation a Heraeus Megafuge 1.0, and Beckman L8-M Ultracentrifuge with a SW28

rotor have been used.

5.3 Polystyrene in DOP

The high-molecular-weight PS sample is synthesised via anionic polymerisation

(Mn = 2.6 ∗ 10−6 g
mol

, Mw

Mn
= 1.3). The PS sample is dissolved in dioctyl phtha-

late (DOP) at a concentration of 8 wt.% using a co-solvent methylene chloride

[Neidhöfer 03a]. This concentration corresponds to an effective entanglement

molecular weight of 450, 000 g
mol

due to the Mn ∝ ϕ
3
4 dependence [Colby 90],

and equals an effective number of entanglements of 5.8. After loading the sample

into an optical Couette cell or optical parallel plates, it is left at rest for 20 min-

utes, to assure complete relaxation of the material. A similar system was already

investigated in rheo-optical studies [Hilliou 02] and used as a reference material.
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Chapter 6

Improvement of a rheo-optical

set-up

Optical methods are commonly used because of their sensitivity, dynamic range

and the micro structural information that they can provide. Rheo-optical mea-

surements as an in situ method are used to analyse the dynamic and struc-

tural properties in general and of colloidal and polymeric samples [Arendt 98,

Clasen 01, Fuller 90, Janeschitz-Kr 83, Kulicke 98, Kumaraswamy 99, Lodge 94,

Mewis 97, Peterlin 76, Ven 90, Linden 03, Wagner 98] specifically under an ex-

ternal mechanical field. By a simultaneous detection of mechanical and the opti-

cal signals birefringence and dichroism, it is possible to correlate the macroscopic

mechanical response and the microscopic induced changes in the material. Be-

cause the commercially available set-up, was not sensitive and fast enough the

improvements of the experimental set-up to enabled to measure with higher sen-

sitivity, time resolution and to use it also for dynamic measurements at higher

frequencies. Emphasise is placed on the hard and software related reduction of

the background birefringence present in the system. Finally several experimental

results will be presented to quantify the achieved several fold improvements.

6.1 Theory of birefringence and dichroism

In any rheo-optical set-up the polarisation and the amplitude of the electromag-

netic light is analysed. The dependence of the optical properties, e.g. of the

anisotropy of the refractive as induced via flow, stress or deformation is deter-
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mined. For understanding the principle of rheo-optics one has to be aware of the

nature of the light and of the refractive index. The oscillating electric field E of

the light equation (6.1) is influenced by the electrons and nuclei of the material

is passes through.

E = E0cos(
2πn

λ
z − ωt) (6.1)

The polarisability of this material causes the light beam to alter its velocity. This

effect is macroscopically known as the refractive index n. In anisotropic material

(e.g. as caused by flow, deformation or crystal structure) the polarisability and

therefore the refractive index (both anisotropic) are be represented by a complex

tensor equation (6.2).

n = n′ + in′′ (6.2)

In this representation the real part n′ describes the phase shift, and the imaginary

part n′′ describes the extinction (or attenuation) of the amplitude [Kerker 69].

The trace of the tensor n is reflected to as the refractive index. In the direction of

propagation of the light z, the component n′z,z of n′ and the component n′′z,z of n′′

are zero. The difference of the components n′x,x and n′y,y is called birefringence

∆n′ and the difference of the components n′′x,x and n′′y,y is called dichroism ∆n′′.

The components of the electric field vector in the two directions of the plane x, y

perpendicular to the direction of propagation of the light z can then be written as

the following:

E =

(
E0xcos(

2π∆n′x,xdz

λ
− ωt)

E0ycos(
2π∆n′y,ydz

λ
− ωt)

)

(6.3)

here

δ′ =
2π∆n′d

λ
(6.4)

is called the retardation δ′, d the optical path length, λ the wavelength of the light

source and ∆n′ = n′x,x − n′y,y the birefringence. The orientation angle θ is defined

by:

tan2θ =
∆n′

∆n′′
=

n′

n′′
(6.5)

The correlation between the applied mechanical field and its effect on the birefrin-

gence is given by equation (6.6). Here are the σ stress tensor and the C the stress

optical coefficient , which is unique for every material [Fuller 95, Larson 99].

n = Cσ (6.6)
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The equation (6.6) can be reduced to the following expression with shear stress

σ12 change in birefringence ∆n′ and orientation angle θ accessible via measure-

ments.

σ12 =
1

2C
∆n′sin2θ. (6.7)

In the following section the determination of these quantities will be described in

detail.

6.2 Rheo-Optical set-up

6.2.1 Experimental set-up

All experiments were performed on two dif-
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FIG. 6.1: Schematic descriptions of

the rheo-optical set-up, including

optical train and data analysis in the

attached PC.

ferent ARES rheometer (Rheometrics Scien-

tific) both equipped with a commercial Opti-

cal Analysis Module OAM supplied by Rheo-

metrics Scientific. The ARES instrument is a

strain-controlled rheometer. Both instruments

were equipped with the standard motor and

with a dual range Force Rebalance Transducer

(2K FRTN1) ranging from 2 ∗ 10−6 Nm to

2 ∗ 10−1 Nm. All experiments were carried

out using a commercial and a home-built op-

tical Couette flow cell. In case of the home

built unit the static inner bob (built of brass)

has a diameter of 30 mm, whereas the rotating

outer cup has an inner diameter of 33.8 mm

and is equipped with a quartz bottom plate.

The optical unit consists of a solid-state laser

(670 nm, 5 mW ), a polariser cube, a half-wave

plate spinning around at approximately ω1

2π
=

400 Hz and a beam splitter (Fig. 6.1). As a re-

sult of the rotating half-wave plate the resulting signal is modulated at 1, 600 Hz

± 5 Hz. The variation of ± 5 Hz is due to mechanical and electronic instabilities.

The LASER beam is split and one beam is directed through a linear polariser to
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a photo diode generating the reference signal. The other part of the beam is di-

rected through the sample to a second photodiode. In case dichroism is negligible

a circular polariser is placed in front of the sample photo diode. A circular po-

lariser consists of a linear polariser at 0 ◦ glued together with a half-wave plate at

+45 ◦. This way it is possible to measure directly the birefringence. The relevant

equations for the measured intensity signal of the sample equation (6.8) and the

reference equation (6.9) can be derived via the Mueller matrices formalism (see

also Appendix A.1 on page 181 and [Fuller 95]):

IS = I0,S(1 + sinδ′cos(4ω1t(θ −
π

4
))) (6.8)

IR = I0,R(1 + cos(4ω1t)) (6.9)

with

4ω1/2π = 1, 600Hz (6.10)

where:

IS: Signal intensity at the sample detector,

IR: Signal intensity at the reference detector,

I0,S: DC signal intensity at the sample detector,

I0,R: DC signal intensity at the reference detector.

Here the retardation δ′ (see also equation (6.4)) is the retardation of the light

after traveling through the sample, including the two parallel quartz plates. By

analysing the intensity of the detected light of the reference and the sample beam

at a frequency of 1, 600 Hz the value of δ’ and orientation angle θ can be deter-

mined (note: δ” is called extinction in the case of dichroism). The birefringence

∆n’ can be calculated from the retardation by using equation (6.4).

6.2.2 Commercial set-up

In the commercial set-up a lock-in amplifier analyses the optical signals. A 12-bit

ADC is used to digitise the signal of the lock-in amplifier. This ADC limits the dy-

namic range of the set-up to 1 : 4, 096. Subsequently a separate software module

calculates the dichroism and/or the birefringence together with the orientation
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angle. The software additionally limits the fastest sampling rate for these observ-

ables to be 10 s−1. Furthermore the set-up does not provide a triggering signal

to facilitate simultaneous dynamic measurements of the rheological and optical

signals. In addition to these problems the optical unit is triggered by the rheome-

ter for step rate and step shear experiments only. Using a lock-in amplifier has

the disadvantage that it is fixed on a specific frequency, and therefore it does not

follow the fluctuations of ± 5 Hz. A new solution for this problem is described in

the next chapter.

6.2.3 Modified set-up

The here presented set-up improved the original hardware, respectively the origi-

nal optical train but includes several modifications. For the further data treatment

the raw signals were read out on the BNC connections at the back of the Optical

Analysis Module (see Fig. 6.1). The analog optical signals where digitised by

a 16-bit ADC (the dynamic range is increased to 1 : 65, 536), using a PCI-MIO-

16XE-10 (National Instruments, USA), which has a maximum sampling rate of

100 kHz and is capable of multiplexing up to 16 channels. The used ADC’s can

simultaneously acquire and transfer the data to the PC memory by data-buffering

techniques. As a consequence the optical and rheological data is intrinsically syn-

chronised. The 40 µs interchannel delay (time between consecutive data points)

between the four channels is relatively insignificant compared to the timescale of

rheological experiments. For the stress and strain signals a simple averaging is

conducted in the time domain on-the-fly [Dusschoten 01]. To be able to measure

a high resolution in the time domain, especially to detect frequencies up to 12

Hz in dynamic measurements, one needs to sample at least at 24 Hz according

to the Nyquist theorem. Since it is possible to acquire 25 blocks of 1, 000 data

points per second (25, 000 data points per second and channel) a discrete Fourier

transformation after several minutes of acquisition would require too much time

for the computer to keep up with the ADC. Therefore the signal is divided into

blocks of 1, 024 points and a Fast Fourier Transformation (FFT) is done. To form

this specific FFT algorithm one needs 2n points for calculation. The optical and

rheological data is then averaged over about 40 ms (1/24, 576 s−1). As has been

explained by Wilhelm et al. [Wilhelm 98, Wilhelm 99, Wilhelm 02] this means
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that Fourier peaks will arise exactly at the frequency of which the shear oscilla-

tions is conducted due to the δ-peak character in frequency space of the mechan-

ical excitation. The ADC’s sampling rate to four times 24, 576 Hz, which means

each channel is effectively scanned by 24 Hz after taking the average of 1, 024

data points. By reducing the data blocks to 512 data points the maximum overall

scanning rate is about 48 Hz. This gives an increase in the signal to noise ratio

of the phase angle determination of the optical signal (see 6.2). A comparison of

the different noise level depending on the number of points for the FFT is shown

in Fig. 6.2.

The time dependent data was collected and further processed via a home writ-

ten LabVIEW program see chapter A. In this application 4 channels (strain, torque,

reference, sample) are used, each at a sampling rate of 24, 576 Hz. A descrip-

tion on the handling of the rheological signals (strain and torque) is found in

[Dusschoten 01] and limit ourselves to the treatment of the two optical signals.

The optical data is collected by 2 of the 4 ADC channels in blocks of 2n points

and subsequently an on the fly a Fast-Fourier Transformation (FFT) is performed.

Using the oversampling technique a several fold-improved sensitivity is achieved

FIG. 6.2: Comparing noise levels of the acquired optical signals in the modified set-up

with a sampling rate of 1/24, 576 s−1, but different numbers of oversampling data points.

Clearly the increase from 128 to 1, 024 reduces drastically the noise level.
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and a variable lock-in amplifier is emulated by calculating the Fourier spectrum

and follow online the fluctuations of ± 5 Hz. Using the FFT a frequency spectrum

for both reference and sample signal are generated online. The peaks of interest

are the one around 1, 600 Hz and the 0 Hz peak, the last one corresponding to

the DC component, which is equivalent to the offset. Since the angular speed

of the half-wave plate is not constant (1, 600 Hz ± 5 Hz) the modulation fre-

quency is fluctuating over time and is constantly monitored. The reference beam

is analysed typically 24 times per second to determine the momentary modula-

tion frequency and is therefore leading to improved performance as compared to

the standard set-up using to a fixed lock-in amplifier at a constant frequency. At

the online detected modulation frequency the data is taken from the sample fre-

quency spectrum. In this way it is assumed that the actual modulation frequency

is measured. To probe 1, 600 Hz the sampling has to be done with at least twice

the frequency (3, 200 Hz) to comply with the Nyquist theorem. Using a tunable

hardware active low pass filter, the absence of aliasing from higher frequencies is

checked. Typically blocks of 1, 024 (210) points are used prior to the FFT. In this

way about 60 periods with 15 points per period are sampled prior to the FT cal-

culation. This oversampling increases the S/N ratio of stochastic noise by up to a

factor of 601/2 (= 7.71) relative to the situation without having analysed a single

period of the time signal. Furthermore by increasing the number of periods the

spectral resolution in the frequency spectrum is increased. This procedure results

in an effective sampling rate of the birefringence/dichroism of 24 Hz. The further

data treatment of the individual data points of the optical data, originating from

the reference and sample channels, require a significant amount of processing in

order to obtain the birefringence ∆n’ and orientation angle θ. The following steps

have to be performed:

1. Calculation of the phase of the birefringence from the sample signal relative

to the reference signal.

2. Normalisation of the peak at 4ω1t :
I(S,4ω1)/I(S,DC)

I(R,4ω1)/I(R,DC)
.

3. Calculation of ∆n’ and θ, see equation (6.8).

4. Finally the time dependent birefringent data is then plotted.
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6.2.4 Homebuilt bob for the optical Couette cell

In the commercial set-up the bob has a small

b o p

c u p

g l a s s  p l a t e

g l a s s  b o t t o m

l a s e r  b e a m

FIG. 6.3: Homebuilt bob with glass

plate to avoid overflow, cup with

glass bottom.

quartz glass plate window at the point where

the LASER beam enters the sample from the

top. This glass plate window has a diame-

ter of only 1 cm and a ring of stainless steel

surrounds it. This set-up is useful for samples

with low viscosity, but in samples with higher

viscosity, respective normal forces, secondary

flows are present and the sample may run over

the glass plate. These inhomogeneities have

obviously negative effects on both the rheolog-

ical and optical measurements. To prevent this

overflow via secondary flows a new unique

bob-design was invented (see Fig. 6.3). On top

of the inner shear cylinder a quartz glass circu-

lar plate was placed, so that the whole surface

of the sample above the gap is covered. On the

shaft of the inner bob the glass plate is placed

to assure a flat surface of the sample at the

point where the laser beam enters the mate-

rial. For the alignment of the optical cell prior

gluing, inserted a close fitting cylindrical core between the bob and cup and con-

centrically fixed the whole set-up in the rheometer while the glue was curing. This

minimised changes in the gap size during the experiment. By imposing a normal

force and probing time dependence during the curing of the glue a good connec-

tion between glass plate and cup was ensured. It was checked that the quartz

glass had no influence on the optical signal by rotating the empty cup. Conse-

quently it was assumed that the flow cell did not dominantly cause the detected

overall birefringence of the background signal.
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6.2.5 Background subtraction by hard and software measures,

ambiguity of the orientation angle and calibration

Due to residual birefringence within the optical train (i.e. caused by the prisms

and misalignments within the optical train) the background birefringence is a

non-zero vectorial quantity. This vectorial quantity will add to the measured op-

tical signal and especially in the situation where the sample signal is of the order

of the background signal, large deviations will occur between the measured bire-

fringence signal and the birefringence signal as caused by the sample (see Fig. 6.4

in case of clockwise and Fig. 6.5 in case of counterclockwise rotation). These de-

viations occur most pronounced in the measurements of the orientation angle at

small shear rates (see Fig. 6.6). Since one can assign a magnitude (the retar-

dation) as well as a direction (the orientation angle) to a birefringence signal it

is possible to represent the birefringence as a vector. First using a variable re-

tarder in front of the sample detector minimised by hardware the background

birefringence. Here two birefringent objects with different orientations were put

at a certain angle relative to each other and they intercept at 180 ◦ relative to the

instrumental birefringent vector. Consequently a vectorial compensation of the

background birefringence is achieved (see Fig. 6.7).

Although this reduced the background retardation to typically less than 1 % of

the original signal, still the presence of this small leftover background will remain

and cause interference at small enough shear rates. Especially the measurements

of the orientation angle are sensitive towards small background signals (as shown

in Fig. 6.6) because the orientation of the resulting vector still strongly depends

on the direction of the background birefringence. In order to compensate the

influence of the background signal, two retarding elements were considered in

series, the first (corresponding to the measured signal) with retardation o and

orientation angle ε and the second (corresponding to the background signal) with

retardation p and orientation angle γ. As shown in Appendix A.1 on page 181 us-

ing the Mueller matrix formalism in cases where the retardation is small enough

(so that may be used sinδ′ ≈ δ′) the following relation holds for the resulting

signal (corresponds to the true birefringence signal) with retardation q and ori-

entation angle ϕ:

q(i2ϕ) = o(i2ε) + p(i2γ) (6.11)
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FIG. 6.4: Vector diagram in case of clockwise rotation. The bolt drawn vector 3 should

represent the measured birefringence including the background vectorial birefringence.

The short vector 1 represents the background. The third vector 2 shows the sample’s bire-

fringence and is calculated via subtracting the background vector 1 from the measured

vector 3. Vector diagram in case of counterclockwise rotation.

FIG. 6.5: Vector diagram in case of counterclockwise rotation. The bolt drawn vector 3

is the measured birefringence including background. The short vector 1 represents the

background mirrored at the y-axis. The third vector 2 shows the sample’s birefringence

and is calculated via subtracting the background vector 1 and the measured vector 3.
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FIG. 6.6: Typical set of measured vectors for a counterclockwise rotation. Vector α repre-

sents the minimum of the measured birefringence value see Fig. 6.14. ∆n′(γ̇) represents

the measured birefringence for an oscillating shear rate.

FIG. 6.7: Vectorial representation of the compensation of the birefringence background.

Vector a is the original background. Vectors b and c represent the birefringence of the two

λ
4 -plates of the variable retarder. Vector d is the resulting birefringence of the variable

retarder that counteracts the background birefringence.
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With this numerical calculation the leftover residual birefringence, done by using

the variable retarder, will be compensated. The overall birefringence of several

materials adds like vectors in the complex plane with a magnitude equal to the

retardation and angles orientation doubled. Using this relation one can counter-

act using the two retarding elements the background from the measured signal

(for a more generalised expression for the reduction of the background reduction

see Appendix A.2 on page 182 ). Since the orientation angles are always only

uniquely mapped in the range between −π
4

and π
4
, the background signal is, how-

ever, ambiguous. If the measured angle of the background is e.g. θbackground due

to the ambiguity the angle could also be θbackground + k π
2

with k an integer. When

subtracting the background from the measured signal one can do it either taking

the background with angle θbackground or the background with θbackground + k π
2
.

This ambiguity can be removed by calibrating the angle θ symmetrical around the

direction of flow during clockwise and counter-clockwise rotation of the cup. This

calibration of the orientation angle is done by placing a quarter-wave plate with

the so-called fast axis (optical axis with low refractive index, perpendicular to the

slow axis with a higher index of refraction) in the direction of flow. Alternatively,

a sheet polariser with the main axis at + 45 ◦ relative to the flow direction could

be used. This follows from the general expression for the intensity as a function of

reorientation at the sample detector (see Appendix A.3 on page 183). For any ex-

periment the following calibration procedure, including hardware compensation

of the birefringence and definition of the zero angle θ along the tangential of the

Couette cell is suggested. This calibration procedure consists of the 4 following

steps:

1. Minimising the residual background using a variable retarder made of two

birefringent objects, so that sinδ′ ≈ δ′ is fulfilled (e.g. δ << 20 ◦).

2. Calibration of the zero orientation angle by using a polariser (positioned at

45 ◦) or a quarter-wave plate (at 0 ◦).

3. Determination of the magnitude of the residual background of the system

under zero shear conditions.

4. Checking the efficiency of the hardware birefringence compensation of the

background by turning the sample clockwise and counter clockwise. If no
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difference in the measured signal the background signal was detected a suf-

ficient compensation was achieved.

Note, that once the background has been measured, minimised, and again quanti-

fied the ambiguity of the background signal has been removed. For successive ex-

periments one only needs to perform steps 3 + 4 as long as the condition sinδ ′ ≈ δ′

is fulfilled at zero shear.

6.3 Background birefringence and experiments

In the experiments the samples polystyrene solutions (PS) and FD-virus disper-

sions were investigated. In an ideal case for the retardation δ ′ the relation sinδ′

= 1, δ′ = 90 ◦ applies irrespective of the orientation of the polariser. For a ro-

tating quarter-wave plate without a background signal sinδ ′ = 1 is expected, see

Fig. 6.8, Fig. 6.10 and Fig. 6.12. After minimising the background signal using

two λ
4
-plates, see Fig. 6.7, a linear polariser was placed on top of the cup and

rotated at the position of the sample to calibrate the angle θ and validate the

accuracy of this birefringence measurement. In addition the signal of a rotat-

ing quarter-wave plate is measured, see Fig. 6.8, Fig. 6.10 and Fig. 6.12, which

showed to be quantitatively the same behaviour as in the simulation in Fig. 6.11.

As already mentioned, the background birefringence has a large influence on the

birefringence measurements. To illustrate this influence the behaviour of a turn-

ing birefringent object (quarter wave plate) with a small and large background

was simulated see Fig. 6.9, Fig. 6.11 and Fig. 6.13. The simulation is visualised as

a vector diagram in Fig. 6.9. The length of the vectors represents the sinδ ′ (retar-

dation), which is the relative change of the magnitudes of sample and reference

signal. The angle between the x-axis and the vector gives the orientation angle.

For measurements at higher shear rates, longer optical path lengths or with

highly birefringent materials, ∆n′ might deviate from the linear dependence see

equation (6.7) of the stress optical coefficient as a function of shear rate. This

non-linear dependence can be followed in the shear rate dependent ∆n′ signal

(see Fig. 6.14). One can find the maximum detectable ∆n′ during the calibration

process, when a quarter-wave plate is inserted into the beam. The maximum

value for sinδ′ = 1 is then detected and one can easily calculate via equation (6.3)
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the corresponding maximum birefringence. For the described set-up and the FD-

virus ∆n′max is approximately of 8 ∗ 10−6. With a highly concentrated (c = 8
mg
ml

) sample of FD-virus it was possible to monitor several orders of birefringence

(Fig. 6.14 and Fig. 6.15). To circumvent this problem one could use either smaller

shear rates, lower concentration or short optical path length. In Fig. 6.16 and

Fig. 6.17 one can see results of a sweep in shear rates starting from γ̇ = 1 s−1

and up to γ̇ = 250 s−1 for FD-virus at a concentration of 40 c∗. Measuring for 20 s

at the steady shear and then averaging the birefringence data acquired a precise

value for ∆n′ for every applied shear rate could be detected. The slope of the

shear rate dependent birefringence in Fig. 6.18 is due to equation (6.7) expected

to be 1. A value of m = 0.83 is found. This might be explained that the function

σ ∝ ∆n′ is not anymore valid due to optical non-linearities. In Fig. 6.17 one can

see the data of the corresponding orientation angle. The two branches derive

from clockwise and counterclockwise measurements. To validate the accuracy

of the measurements for both shear directions the data with a positive sign was

multiplied with minus one and then plotted as a line. The line and the data

points from the other measurement overlay very well. For a diluted FD-virus

sample, with a concentration of 0.06 mg
ml

, ∆n′min of 1 ∗ 10−8 could be achieved (see

Fig. 6.18).

In Fig. 6.20 and Fig. 6.19 the measured birefringence and orientation angle

values acquired by the home written LabVIEW software (see Appendix B.3) are

compared with the original Rheometrics software. To compare the two set-up’s,

measurements were performed on standard system [Hilliou 02]. An 8 wt. %

polystyrene (Mn = 2.6 ∗ 10−6 g
mol

) solution is used for these experiments. Ex-

periments in steady shear with start and cessation of flow were performed. The

applied shear rate is 20 s−1. The time resolution of the LabVIEW data is signifi-

cantly improved by the factor of 24 and the sign of the orientation angle is correct,

see Fig. 6.19 and Fig. 6.20 [Hilliou 02]. The Rheometrics Software determines a

positive birefringence for PS-DOP while it is known that a negative sign is cor-

rect. Compared to the literature values the birefringence values as computed by

the Rheometrics Software are at least 10 times too big [Hilliou 02]. While using

this modified set-up an overshoot in the optical signal is monitored (see Fig. 6.20

and Fig. 6.19), whereas it is not visible using the commercial software. Further-

more the correct [Hilliou 02] stress optical coefficient for a 8 wt.% PS in DOP
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solution (C = 4 ∗ 10−9 m2

N
compared to the literature values C = 5 ∗ 10−9 m2

N
)

is computed. Until now the focus was on steady shear measurements only. In

dynamic measurements the background birefringence has obviously a similar in-

fluence. In addition clockwise and counterclockwise movements are conducted in

quick succession. As a consequence the correction has to be done alternating for

every shear direction. Due to the LASER drift in λ, it is necessary to check and

recalibrate the background compensation after every measurement. The back-

ground birefringence will modulate via the applied oscillatory shear ∆n′ and can

therefore strongly influence the results.
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FIG. 6.8: Vectorial representation of the birefringence signal of a turning polariser without

any background birefringence.

FIG. 6.9: Vectorial representation of the birefringence signal of a turning polariser with

background birefringence.



6.3. BACKGROUND BIREFRINGENCE AND EXPERIMENTS 91

FIG. 6.10: Resulting plot from Fig. 6.8. The length of the vector representing the birefrin-

gence ∆n′ and the angle corresponds to the orientation angle θ.

FIG. 6.11: Resulting plot from Fig. 6.9. The length of the vector representing the birefrin-

gence ∆n′ and the angle corresponds to the orientation angle θ.
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FIG. 6.12: Birefringence ∆n′ and orientation angle θ of a rotating λ
4 -plate with back-

ground correction. The frequency is ω1
2π = 0.16 Hz.

FIG. 6.13: Birefringence ∆n′ and orientation angle θ of a rotating λ
4 -plate without back-

ground correction. The frequency is ω1
2π = 0.16 Hz.
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FIG. 6.14: Birefringence data of a FD-virus dispersion at a concentration of 230 c∗. Ap-

plied shear rate range from γ̇ = 1 s−1 and up to γ̇ = 250 s−1. Up to the third order of

birefringence are visible. The alternating steps are due to shear in clockwise and counter-

clockwise.

FIG. 6.15: Shear rate dependent birefringence extracted from Fig. 6.14.
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FIG. 6.16: Birefringence data of a FD-virus dispersion at a concentration of 40 c∗. Applied

shear rate from γ̇ = 1 s−1 and up to γ̇ = 250 s−1. Detected birefringence maximum value

was ∆n′ = 7.5 ∗ 10−8.

FIG. 6.17: The orientation angle data θ of a FD-virus dispersion at concentration of 40

c∗. The applied shear rates correspond to those used in Fig. 6.16. Note, stars and squares

represent the two different angles from clockwise and counterclockwise measurements.

The deviations in the values of the clockwise and counterclockwise measurements are

below ± 2◦ − 3◦ for γ̇ = 25 s−1 (the star values are multiplied with −1).
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FIG. 6.18: The shear rate dependent birefringence ∆n′ measurement of a FD-virus dis-

persion at a concentration of 1.5 c∗. The shear rates γ̇ range from 1 s−1 up to 250 s−1.

The smallest detected birefringence is around ∆′
min = 10−8. The stress optical coefficient

for FD-virus was determine at this concentration to C = 5.07 ∗ 10−10 m2

N .
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FIG. 6.19: Comparison of the birefringence ∆n′ data measured with the commercial

Rheometrics Software (lines with empty circles) and with the home written LabVIEW

program (lines with filled squares). The differences are: 1st Overshoot during the start of

shear is detectable, 2nd the factor of 10 times smaller signal, 3rd a faster data acquisition

of the factor of 24, and 4th less fluctuations.

FIG. 6.20: Comparison of the orientation angle θ data measured with the commercial

Rheometrics software (lines with open circles) and with the home written LabVIEW pro-

gram (lines with filled squares). The differences are: 1st Overshoot during the start of

shear is detectable, 2nd the factor of 10 times smaller signal, 3rd a faster data acquisition

of the factor of 24, and 4th less fluctuations.
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6.4 Conclusion of the chapter improvements in a

rheo-optical set-up

The quality of the raw rheo-optical signal is strongly influenced by the background

birefringence. The self-developed LabVIEW software, uses an on-the-fly FFT to

determine the oscillation frequency of the spinner motor, circumvents problems

of the commercial set-up and enables us to simultaneously acquire optical and

mechanical data with higher a resolution. Using a variable retarder to compen-

sate the background birefringence it is possible to reduce the negative effect of

the background birefringence, by the factor of 20. It was also possible to increase

the resolution in the time domain by the factor of 24. Furthermore it is possible to

explain and simulate the effect of a background signal via a vectorial depiction.

Analysing the signals of a rotating birefringent object then verified this effect and

birefringence down to δ′min = 10−8 could be detected. These experimental im-

provements were validated on two different set-ups measuring equivalent results.

It should be possible to use this method on other commercial Optical Analysis

Module hardware set-up’s provided from Rheometrics or TA Instruments, if the

here presented software would be incorporated.
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Chapter 7

Mineralisation under shear

In the literature the influence of polymers on the mineralisation process of in-

organic crystals is well described [Böhnlein-Ma 92, Liu 75, Öner 98]. Generally

polymer is added in small amounts, with respect to the amount of the inorganic

substance. During the mineralisation process the polymer influences the crystal

growth. Polymers of different molecular weight and structure [Öner 98] are used

to change the shape, size and aspect ratio of the growing crystallites. The idea

within this chapter is to investigate the process of crystal growth under a defined

shear field, with a focus on the resulting crystal habitus, e.g. size and aspect ratio.

7.1 Materials

The investigated mineralisation is the formation of zinc oxide (ZnO). The ZnO

will crystallise homogeneously from an aqueous solution. Polycrystalline zinc ox-

ide is widely used in vulcanisation processes, as UV-absorber, and fluorescent

pigment in varistor ceramics, surface wave filters, gas sensors, and it doped

with copper as catalyst for partial oxidations [Pearl 92, Solomon 93]. Its phys-

ical properties strongly depend on the grain size, on the dispersity, and on the

contacts among grain boundaries of the crystallites. The polymers examined

in this project are diblock-co-polymers of the structure polyethylene oxide-b-

polymethacrylicacid (PEO-b-MA) see tab 7.1 and structure 7.1, and a statistical

copolymer poly(ethyleneoxide-co-acrylicacid) P(EO-co-AA), see tab 7.2 and struc-

ture 7.2.

99
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total molar mass Mw PEO Mw MA Mw concentration

3700 g
mol

3000 g
mol

700 g
mol

5 ∗ 10−4 mg
ml

, 2 ∗ 10−3 mg
ml

Table 7.1: Properties of polymer PEO-b-MA.
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FIG. 7.1: Structure of the polymer PEO-b-MA.

total molar mass Mw molar measure concentration

78800 g
mol

PEO : AA = 2 : 1 2 ∗ 10−3 mg
ml

Table 7.2: Properties of polymer P(EO-co-AA).
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FIG. 7.2: Structure of the statistical copolymer P(EO-co-AA). The parameter x and y give

the ratio of monomers within the polymer chain to be: PEO : AA = 2 : 1.
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7.2 Experiments

The experiments are performed in a watery solution. The overall amount of the

solution is about 5 ml. The Zinc nitrate (Zn(NO3)2), Urotropin (hexamethylenete-

tramine (HMT) C6H12N4), and the polymer are mixed at room temperature to

achieve a homogeneous mixture. While heating up the Urotropin disintegrates in

formaldehyde H2CO and ammonia NH3.

(H2C)6N4 + 6H2O −→ 4NH3 + 6H2CO (7.1)

The ammonia is responsible for a homogeneous change of the pH-value simulta-

neously all over the solution. After the start of the applied shear the solution is

heated for 60 minutes at 90 ◦C. No Zinc oxide is formed before the heating. Due

to HMT the Zinc oxide is equally distributed over the whole sample (see Fig. 7.1).

The concentrations used in the experiments are: Zinc nitrate 0.015 M , HMT 0.015

M , polymer PEO-b-MA 5 ∗ 10−4 mg
ml

, 2 ∗ 10−3 mg
ml

and polymer P(EO-co-AA) 2 ∗ 10−3

mg
ml

. In these experiments a four times higher concentration of all ingredients is

used and then compared with the normal experiments in the beaker. This is nec-

essary due to the small sample volume (≈ 5 ml compared with a beaker of ≈ 300

ml) in the Couette that results in a very small amount of material after the ex-

periment. These experiments are performed at different shear rates, using shear

rates of 300 s−1, 500 s−1, 1000 s−1, and 3000 s−1. Additionally the reaction is also

performed without shear and without any polymer and second without shear and

with polymer as a reference. After initial tests with a water-bath and a solvent

trap the set-up was changed because the evaporation could not be prevented for

the 60 minutes time span needed for the experiment. Finally a Couette cell with-

out solvent trap is used and water is continuously added with a syringe. In this

way permanently a constant water level could be maintained. After the experi-

ment the solution is extracted from the Couette cell with a syringe, to separate

the solution in the gap from the one under the bob. This is done to check, if there

are differences between these two solutions. In Fig. 7.3 one can see the area of

the vertical gap where a defined shear field is applied (gap solution) and the area

below the bob which is not sheared due to the air cushion between bob and cup.

To reduce the amount of the non-sheared solution the vertical distance between

bob and cup is minimised as much as possible to typically 100 µm. With this gap
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b o p

c u p

g a p  s o l u t i o n

b o t t o m  s o l u t i o n

a i r  c u s h i o n

FIG. 7.3: Here a Couette Cell is shown, consisting of two parts, the upper bob and the

lower cup. In the vertical gap the defined shear field is applied (gap solution). The non

sheared solution is below the bob (bottom solution).

the volume of the unsheared solution can be neglected. The resulting solutions

are first cooled with ice and then centrifuged. The crystallites are finally analysed

via SEM.
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7.3 Results and Discussion

The effect of shear on the crystallisation process is analysed by comparing the size,

the shape and the aspect ratio of the particles. In the case of the low molecular

weight polymer PEO-b-MA no influence is found see Fig. 7.4. Several concen-

trations combined with different shear rates are examined. The examined shear

rates are: 100 s−1, 300 s−1, 500 s−1, 1000 s−1 and 3000 s−1. The examined con-

centrations are: 5 ∗ 10−4 mg
ml

and 2 ∗ 10−3 mg
ml

. At every applied shear rate about

30 crystallites were measured in length l, and diameter d. The average was taken

to get representative numbers of the size of the crystallites. The principal effects

of the addition of a polymer could only be seen in the change of the aspect ra-

tio. Furthermore abrasive effects on the crystallites are found especially at higher

shear rates. The results are presented in Fig. 7.4.

The influence of the high molecular weight polymer P(EO-co-AA) on the crys-

tallisation process without any shear, results in a change of the size and of the

aspect ratio. The length of the prolate like crystals is reduced by the factor of 1.9,

whereas the diameter is not reduced. Therefore the aspect ratio is changed by the

factor of 1.9 [Öner 98]. If one compares now the effect of shear on the crystalli-

sation process the sample with polymer at no shear Fig. 7.5 (B) is the standard.

Comparing graph (B) with (C) and (D) where shear rates of 300 s−1 and 500 s−1

are applied, a significant reduction by the factor 2 in both diameter and length is

observed (see also table 7.3). If the shear rate is increased to values of 1000 s−1

or 3000 s−1 no change in size is found compared with the shear rates of 300 s−1

and 500 s−1. Only abrasive effects can be detected. The edges are less sharp and

fewer twin crystals are found. One conclusion is that shear has an effect on the

crystallisation process. In the examined case a reduction in size is detected. This

is in contrast to experiments where no shear is applied and a change of the aspect

ratio is found. This opens a pathway to easily modify crystals by the addition of

polymer and / or by the application of shear. Changes in size and aspect ratio are

the results. Due to the presented results, it does seem to be important to state that

noticeable effects are only visible when the polymer has a high molecular weight.

Therefore one can assume that the shear only has an effect on the polymer when

the molecular weight is big enough. Under that condition the polymer chains,

that are attached to the surface of the polymer, are long enough to be affected
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shear rate 0 s−1

without polymer l = 1066 nm, d = 200 nm, a.r. = 5.3

P(EO-co-AA) l = 567 nm, d = 200 nm, a.r. = 2.8

shear rate 300, 500 s−1

without polymer -

P(EO-co-AA) l = 293 nm, d = 93 nm, a.r. = 3.1

shear rate 1000, 3000 s−1

without polymer -

P(EO-co-AA) like in 300, 500 s−1

Table 7.3: Analysis of the length l, diameter d, and the aspect ratio a.r. of the crystallites

without polymer and with P(EO-co-AA)

by the applied shear field, and the crystallisation process is influenced. It can be

assumed, that due to the shear the polymer which is attached to the crystallites

will align itself parallel with the flow. This alignment is expected to influence the

crystal growth and may therefore result in a different crystal habitus.
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A B

C D

E F

FIG. 7.4: SEM pictures of ZnO: (A) without shear and without polymer. (B)-(F) ZnO plus

polymer PEO-b-MA at shear rate: 0 s−1, 300 s−1, 300 s−1 (bottom solution), 1000 s−1,

3000 s−1. The total scale over the three black and two white bars are 500 nm.
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A B

C D

E F

FIG. 7.5: SEM pictures of ZnO: (A) without shear and polymer. (B)-(F) ZnO including

polymer P(EO-co-AA) at shear rate: 0 s−1, 300 s−1, 500 s−1, 1000 s−1, 3000 s−1. The total

scale over the three black and two white bars are 200 nm.



Chapter 8

Rheological behaviour of highly

filled dispersions under steady shear

and LAOS conditions

Complex fluids show a great variety of rheological properties [Macosko 94,

Larson 99]. In this chapter the rheological analysis of dispersions, and specifically

their behaviour under large oscillatory shear (LAOS) are presented and analysed.

The rheological experiments cover the range from the linear to the non-linear

regime. The conducted measurements are sweeps in the shear rate, sweeps in the

frequency at constant strain amplitude and the sweeps in the strain at a constant

frequency. Measurements of the viscosity, where a constant shear rate is applied,

are steady state measurements, whereas the frequency and the strain sweeps are

dynamic measurements. In the frequency sweep the strain amplitude is a param-

eter and the frequency the variable. In the strain sweep it is just the opposite,

the frequency is the parameter and the strain amplitude the variable. Especially

in the non-linear regime measurements at a constant frequency and a constant

strain were used. Here frequency and strain amplitude are both parameters and

are changed after each experiment to cover a broad range of frequencies com-

bined with strain amplitudes. The standard analysis of the non-linear oscillatory

data via FT-rheology is conducted in section 8.2.2, whereas a new analysis method

of FT-rheological data is presented in chapter 9.

The samples examined in this chapter were synthesised via emulsion poly-

merisation. The instructions for the synthesis can be found in Appendix D. The

107
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samples name contains the shortening CKA or CKB hinting on the lab journal A

or B, where the synthesis instructions were written down. The number gives the

consecutive numbers of experiments of synthesis performed in this work.

8.1 Linear rheology

The linear regime can be determined via a strain sweep, see Fig. 8.1, or a shear

rate sweep, see Fig. 8.2. A typical behaviour is the independence of the viscosity

(η, |η∗|) at small values of the shear rate or strain amplitude and then at higher

values the decrease of the viscosity with the increase of the shear rate or respec-

tively with the strain amplitude. The cross-over from the Newtonian behaviour

to the shear thinning or strain softening behaviour is the begin of the non-linear

behaviour, or non-linear regime. This cross-over can be detected earlier by FT-

rheology than with the standard method, see Fig. 8.3. Characteristically in fre-

quency sweeps dispersions show the change from an elastic response at small

FIG. 8.1: G’ and G” data of sample ckb117 determined via a strain sweep at a temperature

of 293 K: ω1
2π = 1 Hz, γ0 = 0.0005 − 3.



8.1. LINEAR RHEOLOGY 109

FIG. 8.2: Shear rate dependent viscosity η of the sample ckb117 at a temperature of 293

K: γ̇ = 0.025 s−1 to 400 s−1.

FIG. 8.3: η data of ckb103 determined via a shear rate sweep at a temperature of 293 K:

γ̇ = 0.025 s−1 to 400 s−1.
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FIG. 8.4: G′ and G′′ data of ckb117 determined via a frequency sweep at a temperature

of 293 K: 0.02 Hz − 11 Hz, for γ0 = 0.01 and γ0 = 1.

strain amplitudes to an viscous response at larger strain amplitudes. Internal

structures, like electrostatic repulsion or packing of the particles, result in a dom-

inantly elastic response (see Fig. 8.4). Only after the application of a sufficient

strain amplitude in dynamic experiments this elastic behaviour is overcome, re-

sulting in a dominantly viscous response of the material. This was only observed

in samples with a high solid content [Dames 01]. After dilution this effect is not

observed anymore.
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8.2 Non-linear rheology

In steady experiments dispersions typically show shear thinning behaviour. For

the description of the shear thinning behaviour several descriptive models like

Ostwald-de-Waele, Carreau or Cross are used. The Ostwald-de-Waele model equa-

tion (8.1) is used in the case where directly shear-thinning is observed, meaning

no cross-over from the first Newtonian plateau can be detected:

η = b · γ̇−a, (8.1)

here a is the scaling parameter or shear thinning exponent, which can take values

between 0 and 1. In the case of 0 the dispersion is Newtonian, whereas in the

case of limiting value 1 the maximum shear thinning is found. As shown by

equation (8.2) when a = 1 the force becomes independent of the shear rate and

therefore constant:

σ = η(γ̇) · γ̇ = b · γ̇−1γ̇ = b. (8.2)

If additionally to the shear thinning the first Newtonian plateau is observed, the

Carreau-model can describe the Newtonian and the shear thinning regime:

η(γ̇) =
η0

1 + (β |γ̇|)c
, (8.3)

with η0 (zero shear viscosity) the plateau value of the viscosity to the zero

shear, c the scaling parameter with a value between 0 and 1, and with the inverse

of β the pivot point (knee) of the curve. At this position of the pivot point the zero

shear viscosity has dropped from the initial value in the Newtonian regime to η0

2
.

Sometimes three parameter models can not describe the slope correctly. This is

a problem of the fitting process, when at the cross-over from the first Newtonian

plateau to the shear thinning regime a very sharp knee is found. Variations of

the Carreau model with 4 parameters, like the Cross model are then used. The

product of the exponents c ∗ d, which is always smaller or equal to 1, describes

the width of the knee, which means the transition from the slope 0 to the final

slope:

η(γ̇) =
η0

[1 + (β |γ̇|)c]d
. (8.4)

These models work well for the samples examined within this thesis. Examples

can be seen in the following chapters.
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8.2.1 Non-linear behaviour under strain dependent LAOS con-

ditions

Complex fluids, such as the dispersions examined within this work, show a great

variety of rheological properties. Ahn et al. have conducted strain sweep tests

on several different materials. They found four different classes of behaviour in

strain sweep tests ([Hyun 02, Sim 03] visualised in Fig. 8.5. Type I is named

strain thinning, when both G′ and G′′ show, after an initial Newtonian plateau

a purely strain softening behaviour. Type II, called strain hardening, shows an

increase in both moduli. Type III and type IV have both an overshoot in G′′ at

increasing strain amplitudes in common. Type III shows the overshoot in G′′ only,

whereas type IV shows a overshoot in G′ too. Type I and type III were found in

the experiments within this work. Strain softening behaviour, named type I, is

believed to be caused by similar effects like the shear thinning. When applying

a constant shear rate an alignment of microstructures with the flow reduces the

I I I

I I I I V

FIG. 8.5: The four different types of LAOS behaviour according to Ahn [Hyun 02], I)

strain thinning, II) strain hardening, III) weak strain overshoot, and IV) strong strain

overshoot.
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local drag. The increasing alignment reduces the viscosity. The interparticular

interactions are reduced due to the microstructural anisotropy coming from the

applied strain. The particles in the dispersion interact in the Newtonian regime

and rebuild their local structure faster than it is affected by the shear. With in-

creasing applied strain the sum of the interactions are decreased and an alignment

of the structures with the flow occurs [Hyun 02]. The moduli G′ and G′′ decrease

further, the system becomes anisotropic. The type II behaviour was not found

within this thesis, therefore it will not be treated here any further. The type III

is characterised by a strain overshoot in G′′. It is assumed to appear in systems

with a weak network-like structure. Due to the electrostatic interactions and the

higher mono dispersity of the particles in the highly concentrated dispersions a

weak interaction is evoked.

During the application of an shear field this highly ordered structure resists its

FIG. 8.6: Strain sweep plots from dispersion CKB171 (see Appendix D) synthesised via

semi-continuous emulsion polymerisation, showing no overshoot in G’ and therefore be-

longing to Ahn type I. The applied frequency was ω1
2π = 1 Hz at a temperature of 293 K.

For γ0 < 2% the sample responds linearly. At higher strain amplitudes the sample shows

strain softening.
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FIG. 8.7: Strain sweep plot at a frequency ω1
2π = 1 Hz and a temperature of 293 K for

dispersion CKB235, synthesised via mini-emulsion polymerisation. No overshoot in G’

but in G′′ is found and therefore this sample belongs to Ahn type III. For γ0 < 2% the

sample responds linearly. At higher strain amplitudes the sample shows strain softening.

deformation up to a certain strain. As a result the modulus G′′ increases. This

structure is destroyed by a large, critical deformation after which both moduli de-

crease. Note, as soon as there is a change in one of the moduli in samples showing

Ahn type I or Ahn type III the loss tangents changes also. The type IV behaviour

was not found either, and is therefore not treated here any further. In dispersions

with high solid content, synthesised via semi-continuous emulsion polymerisa-

tion, see chapter 4.1, type I was exclusively found (see Fig. 8.6). In those sam-

ples no network-like structure is build up, due to the shorter Debye-length, that

could resist the external flow field. In contrast to the dispersion synthesised via

semi-continuous polymerisation, those synthesised via mini-emulsion polymeri-

sation show the behaviour of type III. A weak network-like structure should be

the reason according to Ahn. Here a typical example is given with the dispersion

CKB 235 (see Fig. 8.7). In case of these dispersions, this could be explained by

crystal-like structures established due to the higher mono dispersity of the parti-
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cles. Additionally a far ranging electrostatic interaction potential, which is evoked

by the longer Debye-length, adds to the network-like structure. These structures

oppose the applied strain up to certain degree, after which they are overcome and

destroyed.
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8.2.2 Prediction and comparison of non-linearities under

LAOS conditions

Analysing high solid content dispersions via FT-rheology was first introduced by

Kallus et al. [Kallus 01]. In these studies on commercially available dispersions

high non-linearities, respectively higher harmonics magnitudes, were found in

samples with a high solid content. A measure for the non-linearity is the inten-

sity of the third harmonic. In further experiments a decrease of the intensity of

the third harmonic with an increasing salt content was found. Further examina-

tions of polymer dispersions under LAOS conditions, performed by Carreau et al.

[Craciun 03], confirmed the observation of decreasing intensities of the higher

harmonics with increasing salt content. Additionally the strain dependence of the

intensity on the higher harmonics showed a maximum. In the following the re-

sults from this analysis method will be shown. Due to the fact that this method

considers the third and the fifth only, in some cases additionally the seventh and

the ninth harmonic, a new analysis method was developed, see chapter 9. In the

samples examined within the thesis many more higher harmonics were found. For

compatibility with the analysis of others [Neidhöfer 03a], first the known analysis

results will be shown, followed by the new method.

After the quantification of the non-linearities, a model is needed to predict the

non-linear mechanical properties. As can be seen from oscillatory frequency data,

G’ and G” are dominantly viscous in the strain softening regime. In the Newto-

nian regime a dominantly viscous response could be found, in general at strain

amplitudes larger than γ0 = 0.05. Under the assumptions of an instantaneous ad-

justment to the applied shear and dominantly viscous response, a way to predict

the non-linearities via the Carreau model should be possible. Starting from New-

tons equation (8.5) to describe the viscous behaviour, the data of the viscosity η

was emulated. The shear rate γ̇ in Newtons equation, but also in the Carreau

model (equation (8.3)), is given by equation (8.7):

σ = η(γ̇) · γ̇, (8.5)

η =
η0

1 + (β |γ̇|)c
, (8.6)

γ̇(t) = γ0ω1cosω1t. (8.7)



8.2. NON-LINEAR RHEOLOGY 117

FIG. 8.8: Behaviour of the third harmonic magnitude depending on the strain amplitude

γ0. The parameters β ranging from 0.1 − 10 and the parameter c, here set to 1, are from

equation (8.6) and the excitation frequency ω1
2π = 1 Hz is taken from equation (8.7).

The parameters η0, β and c needed for the Carreau model were extracted from

the steady shear viscosity. The emulated data is Fourier transformed and the

results are compared with the measured non-linearities. For a set of parameters

these calculations have been done to give a broad set of simulations. Based on

these simulations an evaluation of the non-linearities depending on η, β or c is

possible. Note, the shape and the relative intensities of the higher harmonics do

not depend on the zero shear viscosity η0. The behaviour of the predicted relative

third and fifth harmonic in amplitude depending from β is shown in the plots

Fig. 8.8, and Fig. 8.9, whereas the dependence on the parameter c is shown in

Fig. 8.10, and Fig. 8.11. It can be stated that for all sets of parameters a strictly

monotonic increasing function for increasing strain amplitudes is found. A higher

β results in higher intensities of the harmonics, at a constant value for c, until a

maximum is reached. A value of 33 %, which is the maximum for the intensity

of the 3rd-harmonic, is already reached at strain amplitudes of about 0.3 for a
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FIG. 8.9: Behaviour of the fifth harmonic magnitude depending on the strain amplitude

γ0. The parameters β ranging from 0.1 − 10 and the parameter c, here set to 1, are from

equation (8.6) and the excitation frequency ω1
2π = 1 Hz is taken from equation (8.7).

value of β = 10s. The intensities of the 3rd-harmonic are always larger than the

intensities of the 5th-harmonic, with a maximum value of 20 %. For a constant

value of β the variation of c results in a change of the slope of the intensities of

the higher harmonics. With an increasing value for c an increase of the slope is

found. For all values of c the value of the intensities of the 3rd-harmonic are larger

than the intensities of the 5th-harmonic. The relative behaviour of the phases of

the odd harmonics can be extracted from the shear stress σ based on Newton.

In Newtons equation, the viscosity is described by Carreau, and the shear rate is

given by γ̇ = γ0ω1cos (ω1t) .

σ = η × γ̇ =
η0γ0ω1cos (ω1t)

(β |γ0ω1cos (ω1t)|)c
. (8.8)

This results, with the parameter c = 1 to:

σ =
η0

β

cos (ω1t)

|cos (ω1t)|
. (8.9)
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FIG. 8.10: Behaviour of the third harmonic magnitude depending on the strain amplitude

γ0. The parameters c ranging from 0.1 − 1 and the parameter β, here set to 1 s, are from

equation (8.6) and the excitation frequency ω1
2π = 1 Hz is taken from equation (8.7).

The fraction of the cosine and the absolute cosine function can be described via

the rectangle function, expanded here as a Fourier series:

cos (ω1t)

|cos (ω1t)|
=

4

π

(

sin [ω1t] +
1

3
sin [3(ω1t)] +

1

5
sin [5(ω1t)] + ...

)

, (8.10)

σ =
η0

β

4

π

(

sin [ω1t] +
1

3
sin [3(ω1t)] +

1

5
sin [5(ω1t)] + ...

)

. (8.11)

Under the assumption of a purely viscous response a shift in the time of 90 ◦,

corresponding to π
2
, is applied:

ω1t− > ω1t +
π

2
, (8.12)

σ =
η0

β
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π

(

sin
[

ω1t +
π

2

]
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1
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π

2
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5
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2
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]

+ ...

)

,

(8.13)

where z is:

σ =
η0

β

4

π
(z), (8.14)
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FIG. 8.11: Behaviour of the magnitude of the fifth harmonic depending on the strain

amplitude γ0. The parameters c ranging from 0.1 − 1 and the parameter β, here set

to 1 s, are from equation (8.6) and the excitation frequency ω1
2π = 1 Hz is taken from

equation (8.7).
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z ∝ cos [ω1t] +
1

3
cos [3ω1t + π] +

1

5
cos [5ω1t + 2π] + ... (8.19)

In the final equation (8.20) the relative phase shift between the fundamental and
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FIG. 8.12: Strain sweep of sample CKB171 for the determination of G’ and G” at a fre-

quency of ω1
2π = 1 Hz, and a temperature of 293 K.

the phases of the higher harmonics are given by:

σ ∝ η0

β

4

π

(

cos

[

ω1t + 0π
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0◦

]

+
1

3
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]

+
1

5
cos

[
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360◦

]

+ ...

)

(8.20)

For the third harmonic the calculated relative phase results in 180 ◦. For the

fifth harmonic the phase is given by 360 ◦, corresponding to 0 ◦. For the seventh

harmonic a value of 540 ◦ is found, that corresponds to 180 ◦. The maximum

values of the higher harmonics intensities were not reached in the experiments,

because the simplification of using c = 1 is not always valid and because a possible

elastic contribution is not considered. These facts should be considered while in-

terpretation of the behaviour of the dispersions, e.g. the value of c could be in the

range of 0.8 − 1. The non-linear regime, and the dominantly viscous response

is determined via a strain sweep (see Fig. 8.12). At strain amplitudes larger

than γ0 = 0.1 the behaviour is dominantly viscous. Afterwards the FT-rheology

was applied. The time domain and magnitude spectra of the sample ckb171 are

representative for the results acquired via the FT-rheology (see Fig. 8.13). First
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FIG. 8.13: Time domain data (inset) and frequency domain data of sample CKB171 at a

frequency of ω1
2π = 1 Hz, a strain amplitude γ0 = 1.6, and a temperature of 293 K.

the results from the dispersions synthesised via semi-continuous emulsion poly-

merisation are analysed. Typical plots of the magnitude and phase spectra are

presented. The predictions of the magnitudes, either created in experiments at

a constant frequency and changing strain amplitude or the other way round, are

in good quantitative and qualitative agreement as can be seen in Fig. 8.14 and

Fig. 8.15. The phases and their predictions overlay very well, resulting in 0 ◦ for

the third and seventh, and 180 ◦ for the fifth and the ninth harmonic (see Fig. 8.16

and Fig. 8.17). The phase behaviour, with a value of 180 ◦ for Φ3, is, according

to the phase analysis of Neidhöfer [Neidhöfer 03a], defined as strain softening.

For the increase of the higher harmonic phases the value for the strain softening

behaviour changes by 180 ◦ giving for the fifth harmonic 0 ◦ and for the seventh

again 180 ◦. As mentioned above exactly these results were found. With the above

shown results it can be stated that the approach for the emulation of the data is

applicable. The assumption, of an instantaneous adjustment, and that the sample

shows no memory, is within the investigated dispersions correct.
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FIG. 8.14: Comparison of the prediction of higher harmonics, extracted via the Carreau

model (see equation (8.6)), with the measured higher harmonics magnitudes, acquired

via the FT-rheology. The frequency dependence of the sample CKB171, measured at a

strain amplitude of γ0 = 0.1, and a temperature of 293 K. The values from the Carreau

fit are for η0 = 3.11 Pas, for β = 9.23 s, and for c = 0.58.

FIG. 8.15: Comparison of the prediction of higher harmonics, extracted via the Carreau

model (see equation (8.6)), with the measured higher harmonics magnitudes, acquired

via the FT-rheology. The strain dependence of the sample CKB171, measured at a fre-

quency of ω1
2π = 1 Hz, and a temperature of 293 K. The values from the Carreau fit are

for η0 = 3.11 Pas, for β = 9.23 s, and for c = 0.58.
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FIG. 8.16: Predicted and measured values for the phases of the 3rd and 5th harmonic.

Predictions overlay well, especially at higher strain amplitudes. The sample CKB171 was

measured at a frequency of ω1
2π = 1 Hz, and a temperature of 293 K.

FIG. 8.17: Predicted and measured values for the phases of the 7rd and 9th harmonic.

Predictions overlay well, especially at higher strain amplitudes. The sample CKB171 was

measured at a frequency of ω1
2π = 1 Hz, and a temperature of 293 K.
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FIG. 8.18: Strain sweep of sample CKB235 for the determination of the linear regime and

of G’ and G” at a frequency of ω1
2π = 1 Hz was applied at a temperature of 293 K.

The non-linear regime of dispersions, synthesised via mini-emulsion polymeri-

sation, were determined via a strain sweep see Fig. 8.18. The typical strain am-

plitude dependence of magnitudes of the higher harmonics in dispersions synthe-

sised via mini-emulsion polymerisation, see Fig. 8.19. The measured magnitude

and the prediction of the higher harmonics magnitudes overlay well, like in the

case of the dispersions synthesised differently (see Fig. 8.15). Differences were

found in the phase Φn (see Fig. 8.20). At large strain amplitudes the values of

the phases are above 220 ◦ for the 3rd phase, and above 50 ◦ for the 5th phase,

where phase values of 180 ◦ and 0 ◦ were expected. The complex viscosity | η∗ |
shows at the same deformation strain softening behaviour, suggesting a phase Φn

of 180 ◦ or 0 ◦. These samples show a different phase behaviour, than is expected

by the description of Neidhöfer, where for a strain softening behaviour a phase

value of 180 ◦ for the 3rd harmonic is predicted. The offset of approximately 40 ◦

− 50 ◦ for Φ3 and Φ5 is not properly understood. A possible explanation could be,
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FIG. 8.19: The strain dependence of the magnitudes of the dispersion CKB235, which is

typical for dispersions synthesised via mini-emulsion polymerisation. The magnitudes of

the 3rd and the 5th harmonics are shown here. The error bars indicate the reproducibility

after 3 measurements. The lines show the predicted behaviour of the higher harmonics.

A frequency of ω1
2π = 1 Hz was applied at a temperature of 293 K. The values from the

Carreau fit are for η0 = 3000 Pas, for β = 200 s, and for c = 0.94.

that the assumption of a purely viscous response is not valid, meaning also elastic

contributions are found. Another reason could be that the parameter c is assumed

to be always 1. Additionally to these deviations in the values of the phases Φn a

2nd harmonic is found (see Fig. 8.21 for the magnitude plot and see 8.22 for the

phase plot) that cannot be neglected since the values of the magnitude are larger

than 3 %. It is not clear, what influence the appearance of the 2nd harmonic has

on the 3rd and 5th phase to give an offset of 50 ◦. Furthermore the reason for

the appearance of the 2nd harmonic could only be found in the different method

of synthesising, which results in different properties of the dispersions e.g. the

higher mono dispersity, the longer Debye-length (The Debye-length is in the range

of 1.7 nm − 1.8 nm for dispersions synthesised via mini-emulsion-polymerisation

compared with 0.3 nm − 0.4 nm for the dispersions for those synthesised via
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FIG. 8.20: The phases of the 3rd and the 5th harmonic of the dispersion CKB235 un-

der application of the same experimental conditions and simultaneously detected like in

Fig. 8.19.

semi-continuous emulsion-polymerisation) and the higher zero shear viscosity η0

at the same volume fraction. The effective radius of the particle is larger due to

the longer Debye-length 1.7 nm − 1.8 nm. Under quiescent conditions the parti-

cles will pack, due to the high mono dispersity, in a more regular way. When a

strain is applied the bulk set of particles will break up. At this point one could

imagine a break up into layers, with the solvent flowing in between. The larger

hydrodynamic radius, originating from the longer Debye-length, could play an

important role. The potential is more far ranging than in the dispersions synthe-

sised otherwise, resulting in a higher viscosity. The particles can break up into

layers by the applied shear and leave an intermediate free place for the solvent.

This solvent layer will then reduce the viscosity. An explanation for the appear-

ance of the 2nd harmonic could be shear bands. In simulations and measurements

[Graham 95, Heymann 01, Keunings 04, Sagis 01, Sim 03] second harmonics oc-

curred, in e.g. polymer solutions, due to wall slip. The second harmonic can then

result in a response signal such as a saw tooth. Simulations still have to prove
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FIG. 8.21: The strain dependence of the magnitudes of the dispersion CKB235 synthesised

via mini-emulsion polymerisation. Here the 2nd harmonic is shown. A frequency of ω1
2π =

1 Hz was applied at a temperature of 293 K.

FIG. 8.22: Corresponding 2nd phase to Fig. 8.21.
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that shear bands in dispersions show even higher harmonics.
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8.3 Conclusion of the chapter rheological

behaviour of highly filled dispersions under

steady and LAOS conditions

The analysis of the rheological behaviour of polymer dispersions under linear and

non-linear shear conditions, with an emphasis on FT-rheology on model systems,

was conducted. Two different kinds of polystyrene dispersions, stabilised with

acrylic acid, were examined. The differences result from two synthesis methods

of the emulsion polymerisation. One method performs this radical reaction in

one step, whereas the other method uses two steps, where in the second step the

reactive ingredients are permanently added. With both methods dispersions with

a very high solid content (ϕ < 0.3) were synthesised. The particle size is within

the same range of 85 nm − 170 nm. Deviations in the polydispersity (0.3 for semi-

continuous, and 0.01 mini-emulsion polymerisation) and the Debye length (0.3

nm for semi-continuous synthesis and 1.8 nm for mini-emulsion polymerisation)

are the major differences. In the non-linear regime the samples are analysed via

LAOS experiments. In the strain dependence of G′ and G′′, an overshoot in G′′

could be observed in the samples synthesised via mini-emulsion polymerisation.

This could be explained by the larger Debye-length, that leads to far ranging

forces, which induce an order in these systems. Therefore dispersions, synthesised

via semi-continuous emulsion polymerisation, with a shorter Debye-length, do not

show this overshoot.

Differences between the two model systems could also be found analysing

the mechanical higher harmonics (FT-rheology). In both model systems higher

harmonics could be detected. Assuming an instantaneous adjustment and a

dominantly viscous response, these higher harmonics could be predicted via the

method explained in detail in chapter 8.2.2. In the dispersions synthesised via

mini-emulsion polymerisation additionally a second harmonic was detected. Fur-

thermore the phases of the third and fifth harmonic were not at expected val-

ues of 180 ◦ and 0 ◦, which are assigned to strain softening behaviour, but a

deviation of about 20 ◦ − 50 ◦ is experimentally detected. In recent litera-

ture [Graham 95, Heymann 01, Keunings 04, Sagis 01, Sim 03] the appearance

of even harmonics is either detected or explained by shear bands. Wall slip is
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additionally known to produce second harmonics.
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Chapter 9

Separation of LAOS-response into

characteristic response functions

The analysis of non-linear oscillatory mechanical data with respect to the ampli-

tudes and the phases of the higher harmonics, does not always result in a simple

physical interpretation. In the standard analysis of non-linear oscillatory data

used so far, the focus is on the phase and the magnitude of the third harmonic.

In many cases this analysis method is justified due to the fact that only the inten-

sity of the third harmonic is large enough to be analysed. On the other side in

samples like the polystyrene dispersions examined here, a large number of higher

harmonics of the excitation frequency with high intense harmonics are detected.

In such samples not only odd harmonics are observed, but also even harmonics.

These even harmonics are not negligible because their intensities are larger than

1 %, see Fig. 9.1. If one focusses on the third harmonic only, a lot of informa-

tion is not considered in these polystyrene dispersions. Therefore a method is

required that considers the whole overtone spectra. This is done by considering

the spectrum as a superposition of different overtone spectra of typical non-linear

rheological effects, like strain hardening, strain softening and shear bands or wall

slip. The functions used to describe known rheological phenomena will be called

characteristic functions, see chapter 9.1.

133
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FIG. 9.1: FT magnitude spectra of the sample ckb222 at an excitation frequency of ω1
2π =

1 Hz and a temperature of 293 K.

9.1 Introduction of an analysis method for

LAOS-response based on characteristic

response functions

The quantification of the non-linear response with respect to these characteristic

functions, e.g. strain hardening, strain softening under LAOS via FT-rheology,

is based on the determination of the magnitude of the higher harmonics ( In

I1
),

relative to the fundamental and the determination of the corresponding phases

Φn.

The measured signal will be split up into four fundamental contributions, see

equation (9.1) to equation (9.4) and Fig. 9.2. These contributions are a sinusoidal

functions, see equation (9.1), describing the linear contribution. A rectangle func-

tion, see equation (9.2), describing the strain softening contribution. A triangular

function, see equation (9.3), describing the strain hardening. Finally a sawtooth

function, see equation (9.4), describing shear bands or wall slip. These func-

tions can each be varied via both the amplitude and the time-lag respective to
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the others. The time domain data and the magnitude spectra of these character-

istic functions: the linear response, the rectangular wave, the triangular, and the

sawtooth wave are shown in Fig. 9.2. In the following the Fourier-series of these

characteristic functions are introduced.

The linear response is given by:

σl(t) = Alsin(ωt + δl) (9.1)

The periodic rectangle function is given by:

σr(t) = As
4

π

(

sin(ωt + δr) +
sin3(ωt + δr)

3
+

sin5(ωt + δr)

5
+ ...

)

(9.2)

The periodic triangle is given by:

σt(t) = At
4

π

(

sin(ωt + δt)−
sin3(ωt + δt)

32
+

sin5(ωt + δt)

52
− ...

)

(9.3)

The periodic sawtooth is given by:

σst(t) = Ast2

(

sin(ωt + δst)−
sin2(ωt + δst)

2
+

sin3(ωt + δst)

3
− ...

)

(9.4)

σ(t) = σl(t) + σr(t) + σt(t) + σst(t) (9.5)

By superimposing these different contributions (equation (9.5)) the measured

time domain signal is then reconstructed. Additionally the measured oscillatory

signal is analysed with respect to the higher harmonics intensities In and phases

Φn. Both the reconstructed time data and the FT analysis of the experimental and

reconstructed signal are used to determine the different contributions of strain

softening and hardening. In case where even harmonics are found a sawtooth

function is used to describe the even harmonics. These even harmonics might

be caused by shear bands or wall slip. The superposition of these four functions

results in a time response that should mimic the measured time domain signal.

The different amplitudes and phases of the functions are manually optimised.

Since the time signal is often twisted, the reconstructed signal has to be adapted

by changing the relative phases of the overlaying functions (sine, sawtooth...)

with respect to each other. After the Fourier transformation the magnitudes and

the phases of the simulated and of the measured signal should be identical and

the time response should perfectly overlay.
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FIG. 9.2: Plots showing the four characteristic functions, the time domain signals of a sine,

a rectangular, a triangular and a sawtooth shaped wave, as the characteristic response

function of linear response, strain softening, strain hardening, and shear bands on the

left and their corresponding FT magnitude spectra on the right.



9.1. INTRODUCTION OF AN ANALYSIS METHOD FOR LAOS-RESPONSE

BASED ON CHARACTERISTIC RESPONSE FUNCTIONS 137

phase lag I3/I1 [%] ϕ3 [◦]

0 ◦ 33.3 180

110 ◦ 51 82

140 ◦ 63 116

Table 9.1: Superposition of a simulated rectangle function and a simulated sawtooth

function. The resulting intensities and phases of the third harmonic, depending on the

phase lag between the rectangle function and the sawtooth function are presented. The

amplitude is 1 for both the rectangle and the sawtooth function.

For a better understanding the Fourier spectra of the characteristic functions

are now introduced. The linear contribution, a sine wave, shows in the Fourier

spectra one peak at the excitation frequency only. The strain softening contri-

bution, a rectangle function, and the strain hardening wave, a triangle function,

show only peaks at odd higher harmonics of the excitation frequency. Their main

difference is the decrease of the intensity of the higher harmonics with increasing

frequencies. The intensities of the higher harmonics decrease in the case of strain

softening with 1
n

(n = 1, 3, 5,...), and in the case of strain hardening with 1
n2 (n

= 1, 3, 5,...). The last characteristic function introduced here is used to mimic

the shear band or wall slip contribution, a sawtooth wave. This contribution has

higher harmonics at even and odd multiples of the excitation frequency. The in-

tensity decreases with a factor of 1
n

(n = 1, 2, 3,...). The interaction of the different

contributions can result in an increase or a decrease of the intensity of harmonics

depending on the phase lag between the different contributions. This phase lag

between the contributions can also affect the phase of the higher harmonics. As

an example the behaviour of the phase and the magnitude of the third harmonics

originating from a superposition of a rectangle function and a sawtooth function

is simulated. The values for the intensity of the third harmonic and phase of the

third harmonic are listed depending on the phase lag between the rectangle func-

tion and the sawtooth wave, see tab 9.1. It can clearly be seen that the phase lag

can have a pronounced influence on the values of the intensities and phases.

To illustrate this method the samples ckb222 and ckb229 have been analysed

according to this separation method. The time domain signal and the magnitude

spectra of these two different samples are plotted in Fig. 9.3. The different con-
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FIG. 9.3: The time domain signals of the samples ckb222 and ckb229 on the left, and the

FT magnitude spectra are shown on the right. The time domain signals were recorded at

298 K with ω1
2π = 1 Hz and for ckb222 γ0 = 1 and for ckb229 γ0 = 6.

tributions and the resulting data from the sample ckb222 according to tab 9.3 is

presented in Fig. 9.4. In Fig. 9.5 and Fig. 9.6 the overlay of the measured data and

the reconstructed data is presented. As can be seen the curves overlay well in the

maxima but the deviations between measured and reconstructed data increases

around the turning point. In tables 9.3 and 9.2 the different contributions of

the reconstruction, their amplitudes, their phase, and the time-lag, are presented.

The time-lag is derived from the phase shift between the linear contribution and

the strain softening or shear band contribution.

For a better comparison the frequency domain data of the measured and re-

constructed higher harmonics magnitudes and phases of the samples ckb222 and

ckb229 are given in table 9.4 and table 9.5. Good agreement, typically within

less than 1% relative deviation can be found for I2
I1

, I3
I1

, and I5
I1

in the magnitude

spectra. For I2
I1

, I3
I1

, and I5
I1

the values for the phase give also very reasonable re-

sults, generally within less than 10 ◦. The higher order harmonics are in a less
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frequency [Hz] amplitude [a.u.] phase [◦] time-lag [ms]

sinusoidal 1 1 0 0

rectangle 1 1.47 35 97

sawtooth 1 0.0025 76 211

Table 9.2: Frequency, intensity and phase of the reconstructed response of sample ckb229,

see Fig. 9.6.

frequency [Hz] amplitude [a.u.] phase [◦] time-lag [ms]

sinusoidal 1 1 0 0

rectangle 1 0.85 43 119

sawtooth 1 0.2 22 61

Table 9.3: Frequency, intensity and phase of the reconstructed response of sample ckb222,

see Fig. 9.5.

good agreement for the intensities. One reason for this effect is the rectangular

wave used for the simplification. This function has a very steep slope (infin-

ity) that results in very sharp flanks in the resulting reconstructed signal. Here

a trapezoidal function could help to reduce the deviations. Similarly the sharp

cut-off in the saw-tooth function should be smoothed. An other problem is that

the intensities of the reconstruction result generally in higher intensities than the

measured ones. This is a consequence of the simplification (sinusoidal, rectan-

gular, triangular, and sawtooth shape) and the related maximum possible non-

linearities. Obviously these maximum possible non-linearities are rarely reached

within real materials. Simple multiplication with e.g. a Gaussian function in the

reconstructed FT-spectra might therefore be used to get a better agreement for

the higher harmonics intensities.

Irrespective of the minor problems related to the higher order intensities the

phase of a third harmonic not being either 0 ◦ or 180 ◦ can now be seen as a

superposition of different contributions. This phase can then be analysed by a

superposition of a third harmonic originating from a strain softening process and a

shear banding process in the sample. These different processes have furthermore

a phase related to the time-lag of these different contributions, see tab 9.3, and

tab 9.2.
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FIG. 9.4: In these plots the three different contributions and their sum for the reconstruc-

tion of the time domain signal of the sample ckb222 are shown. The sine-function has an

amplitude of 1 and a phase angle 0 ◦, the rectangle function has an amplitude of 0.85 and

a phase angle of 43 ◦, and the sawtooth has an amplitude of 0.2 and a phase of 22 ◦, see

tab 9.3.

harmonics 2. 3. 4. 5. 6. 7.

measured magnitude [%] 4.7 19.4 4.7 9.7 3.2 4.9

reconstructed magnitude [%] 4.0 19.4 2.0 12.3 1.3 10.3

measured phase [◦] 214 236 76 92 305 305

reconstructed phase [◦] 213 236 87 108 101 325

Table 9.4: The values for the magnitudes and the phases from the measurements and the

reconstruction of the sample ckb222.

In a following rectangle this analysis was then applied to a whole data set of

oscillatory response signals. These data sets originate from non-linear measure-
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FIG. 9.5: Overlay of the torque response data and the corresponding reconstruction for

the sample ckb222.

FIG. 9.6: Overlay of the torque response data and the corresponding reconstruction for

the sample ckb229.
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harmonics 2. 3. 4. 5. 6. 7.

measured magnitude [%] 0.2 21.8 0.1 11.3 0.1 7.2

reconstructed magnitude [%] 0.0 21.7 0.0 13.0 0.0 9.3

measured phase [◦] 64 177 266 351 141 163

reconstructed phase [◦] 76 177 27 356 41 175

Table 9.5: The values for the magnitudes and the phases from the measurements and the

reconstruction of the sample ckb229.

ments at increasing strain amplitudes. In a strain sweep these samples show the

Ahn III behaviour, see Fig. 9.7 and Fig. 9.8. In Fig. 9.9 and Fig. 9.11 the strain

amplitude dependence of the amplitudes of the samples ckb222 and ckb229 are

plotted, whereas in Fig. 9.10 and Fig. 9.12 the strain amplitude dependence of

the phases are presented. In tab 9.6, and tab 9.7 the values for the amplitudes

and phases of the rectangle function and the sawtooth function of the samples

ckb229 and ckb222 are given. For both samples the characteristic functions for

the linear response, strain softening, and wall slip or shear bands are found. The

triangle function, describing the strain hardening behaviour was not needed in

the reconstruction. The rectangle function has at small values for γ0 a small am-

plitude and with increasing γ0 the amplitude increases until a maximum value

is reached. This course of the amplitude resembles the typical behaviour of the

intensity of the third harmonic depending on γ0. The amplitude of the sawtooth

function stays always on a very low level compared with the rectangle function,

note the logarithmic scale. The phases of the two functions show a small tendency

to increase with increasing γ0, but the distance between both is almost constant.

The phase of the rectangle function is in the range of 360 ◦, meaning in-phase

with the sine function, the linear contribution. After the examination of several

samples this behaviour is typically found in PS-dispersions.

In contrast to this is the behaviour of the sample ckb222, that already shows

an earlier onset of the non-linearities, see Fig. 9.8. At small γ0 values the saw-

tooth function has a larger amplitude than the rectangle function. At a value of

0.06 for γ0 both contributions show a strong increase. After this strong increase

the amplitude of the rectangle function is at least a factor of 1.5 larger than the

amplitude of the sawtooth function. A large change was also found in the phase
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strain rectangle rectangle time-lag sawtooth sawtooth time-lag

amplitude amplitude phase amplitude phase

γ0 [a.u.] [◦] [ms] [a.u.] [◦] [ms]

0.05 0.1 337 936 0.016 239 663

0.1 0.39 338 938 0.014 217 603

0.5 1.54 341 947 0.004 206 572

1 1.74 346 961 0.004 242 672

1.5 1.72 348 967 0.01 225 625

2 1.66 361 1003 0.28 261 725

2.5 1.65 353 981 0.01 228 633

3 1.62 354 983 0.009 240 667

4 1.61 355 986 0.005 288 800

Table 9.6: The tabular shows the amplitude and the phase values of the rectangle function

and of the sawtooth function. Additionally the phase lag between the linear response and

the rectangle or sawtooth contribution is translated in to a time in ms. The data sets were

acquired by LAOS experiments at 1 Hz from the sample ckb229. The sinusoidal response

was used as reference with an amplitude of 1 and a phase angle zero.

γ0 strain rectangle rectangle time-lag sawtooth sawtooth time-lag

amplitude amplitude phase [◦] [ms] amplitude phase [◦] [ms]

0.01 0.34 139 386 0.55 319 886

0.025 0.312 141 391 0.55 329 913

0.05 0.312 138 383 0.42 331 919

0.075 1.11 -4 988 1.16 311 863

0.1 1.3 1 3 1.06 317 880

0.25 1.92 21 58 0.78 336 933

0.5 1.7 39 108 0.53 350 972

0.75 1.58 48 133 0.47 359 997

1 1.4 51 141 0.36 362 6

Table 9.7: The tabular shows the amplitude and the phase values of the rectangle function

and of the sawtooth function. Additionally the phase lag between the linear response and

the rectangle or sawtooth contribution is translated in to a time in ms. The data sets were

acquired by LAOS experiments at 1 Hz from the sample ckb222.
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of both functions at the same value for γ0. Before this value the sawtooth func-

tion is approximately in-phase with the linear contribution, whereas the rectangle

function is approximately out-of-phase (180 ◦). At γ0 = 0.06 the phase of the rect-

angle function shows a jump, and is then approximately in-phase with the linear

contribution. An interesting fact is that at this γ0-value an overshoot can be de-

tected in a strain sweep like in Fig. 8.7, named the Ahn type III behaviour. For a

deeper insight the time domain data sets at γ0 = 0.01, 0.1, and 1 were added to

the γ0 dependence of the amplitude, see Fig. 9.13.

With the ability to split up the time domain signal into different contributions,

the possibility to separate the linear contribution and the strain softening contri-

bution from the contribution of shear bands or wall slip should be possible. To

reach the aim of separating the time domain signal into different contributions,

first a reconstruction of the time domain signal was done. Then the determined

contributions from the linear response and from the strain softening response,

are superimposed. This superposition is based on the use of the amplitudes and

phases resulting from the analysis. This reconstructed signal is then analysed with

respect to the higher harmonics intensities and phases. These higher harmon-

ics were then compared with the higher harmonics determined via the standard

analysis. In the following this analysis was performed on the samples ckb229 and

ckb222. The comparison of the magnitudes of the higher harmonics is shown

in Fig. 9.14 and in Fig. 9.16, and the phases of the higher harmonics are shown

in Fig. 9.15 and Fig. 9.17. The values of the third harmonic of the magnitudes

and of the phases of the sample ckb229 can be reproduced with this new anal-

ysis. Only at small γ0-values small deviations can be detected. After analysing

several datasets of different samples this behaviour was found to be typical for

PS-dispersions.

In the case of the sample ckb222 large deviations could be found in the in-

tensity of the magnitudes of the third harmonic, see Fig. 9.16. With the stan-

dard analysis method at small γ0-values much lower intensities for the third har-

monic were found than with the analysis via the characteristic functions. As al-

ready discussed before, the rectangle function is out-of-phase at small strain am-

plitudes, and in-phase at larger strain amplitudes. The lower intensities of the

third harmonic at small strain amplitudes, can therefore be explained by super-

imposing the Fourier contributions of the third harmonic originating from the
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FIG. 9.7: Strain sweep plot at a frequency ω1
2π = 1 Hz and a temperature of 293 K for

dispersion CKB229. No overshoot in G’ but in G′′ is found and therefore this sample

belongs to Ahn type III. For γ0 < 0.01% the sample responds linearly. At higher strain

amplitudes the sample shows strain softening.

FIG. 9.8: Strain sweep plot at a frequency ω1
2π = 1 Hz and a temperature of 293 K for

dispersion CKB222. No overshoot in G’ but in G′′ is found and therefore this sample

belongs to Ahn type III. For γ0 < 0.006% the sample responds linearly. At higher strain

amplitudes the sample shows strain softening.
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FIG. 9.9: Dependence of the amplitude on the strain amplitude of the characteristic func-

tions of the sample ckb229. The characteristic functions are strain softening and wall slip

or shear bands. Ckb229 is a typical example for the polystyrene examples.

FIG. 9.10: Dependence of phase on the strain amplitude of the characteristic functions

of the sample ckb229. The characteristic functions are strain softening and wall slip or

shear bands. Ckb229 is a typical example for the polystyrene examples.
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FIG. 9.11: Dependence of the amplitude on the strain amplitude of the characteristic

functions of the sample ckb222. The characteristic functions are strain softening and wall

slip or shear bands.

FIG. 9.12: Dependence of phase on the strain amplitude of the characteristic functions

of the sample ckb222. The characteristic functions are strain softening and wall slip or

shear bands.
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FIG. 9.13: Magnitude of the characteristic functions, rectangle function and sawtooth

function depending on the strain amplitude of the sample ckb222. The plots of the time

domain data at the strain amplitudes of γ0 = 0.01, 0.1, and 1 are added.

sawtooth function and of the out-of-phase contribution of the rectangle function,

see Fig. 9.18. In this plot the time domain contributions and the real part after

the Fourier Transformation of the sine function, of the in-phase rectangle func-

tion, of the out-of-phase rectangle function, and the in-phase sawtooth function

are shown. The sine function, and the in-phase rectangle function show only pos-

itive contributions for the harmonics, whereas the out-of-phase rectangle function

shows only negative values the harmonics. The in-phase sawtooth function shows

positive values for the odd harmonics and negative values for the even harmonics.

In experiments the measured intensity of the third harmonic could therefore be

smaller than the real existing intensity of the third harmonic, due to the reduction

by the out-of-phase appearing odd harmonics in the experiment. With a different

phase shift an increase of the intensity of the third harmonic, even larger than the

individual contributions, could also be achieved. For a better understanding the

contributions of the third harmonic from the rectangle function and the sawtooth
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wave originating from the equations equation (9.2) and equation (9.4) are shown

in the following:

3rdintensity =
sin3[ωt + δr]

3
+

sin3[ωt + δst]

3
. (9.6)

The phase of the rectangle function is put to δr = 180 ◦, whereas the phase of the

sawtooth function is out-of-phase, meaning δst = 0 ◦. This results in:

3rdintensity =
sin3[ωt + 180◦]

3
+

sin3ωt

3
, (9.7)

leading to a disappearing intensity of a third harmonic:

3rdintensity = −sin3ωt

3
+

sin3ωt

3
= 0 (9.8)

In the phase plots, see Fig. 9.17 differences where negligible, except for the

value of the fifth harmonic at the strain amplitude of γ0 = 0.01. This value needs

further examinations. More important is the strong shift in the phases at a strain

amplitude of 0.1, correlating with the strain overshoot in G′ in a strain sweep.

The high non-linearities found with the new analysis method correspond to the

shear thinning behaviour under steady conditions. With this method it is possible

and necessary to separate the different contributions of a rheological time domain

signal.

With this analysis and the ability to separate the different contributions, the

time-lag (phase) between the contributions is accessible. This time-lag could be

a possible access to intrinsic times. Further examination should focus on the

analysis of time domain data at different frequencies.

After this method was first applied on a model system, an extension to more

complex systems like polymer solutions, melts, or other rheological complex sys-

tems is desired. Possible aims are if this method can separate the non-linear

response into simple, adapted functions, where the relative contributions can be

used as a measure for the specific systems, and furthermore an analysis of the

time-lag (phase).

For the analysis after this method a software for the reconstruction of the time

domain signal was developed, based on the LabVIEW environment see Appendix

B.2.

This reconstruction method was also performed on samples containing the

FD-virus in chapter (10). The FD-virus is a rod-like polyelectrolyte water system,
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FIG. 9.14: Dependence of the intensity of the third and the fifth harmonic on the strain

amplitude of the sample ckb229. The filled symbols show the results from the standard

analysis, and the open symbols show the results corrected for shear band, utilising the

sawtooth function

FIG. 9.15: Dependence of the phase of the third and the fifth harmonic on the strain

amplitude of the sample ckb229. The filled symbols show the results from the standard

analysis, and the open symbols show the results corrected for shear band, respectively the

sawtooth function.
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FIG. 9.16: Dependence of the intensity of the measured second, the measured third and

the measured fifth harmonic on the strain amplitude of the sample ckb222 on the left

side. On the right side the different contributions of the separated second, third, and fifth

harmonic are shown.

FIG. 9.17: Dependence of the phase of the third and the fifth harmonic on the strain

amplitude of the sample ckb222. The filled symbols show the results from the standard

analysis, and the open symbols show the results corrected for shear band, respectively the

sawtooth function.
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FIG. 9.18: Plots showing from the top to the bottom the time domain contributions

and the real part after the Fourier Transformation of the sine function, of the in-phase

rectangle function, of the out-of-phase rectangle function, and of the in-phase sawtooth

function. It is clearly visible that the out-of-phase rectangle function has a negative con-

tribution of the third harmonic, whereas the in-phase sawtooth function has a positive

contribution of the third harmonic.
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see chapter 5. Similar agreement between measured and reconstructed data was

achieved as for the polystyrene dispersions see chapter 10.2.
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9.2 Conclusion of the chapter separation of

LAOS-response into characteristic response

functions

In this chapter, a superposition method to analyse the frequency domain and the

time domain signal for LAOS type stress responses was developed. Based on the

superposition of typical non-linear response functions, like a sinusoidal, a rectan-

gular, a triangular, and a sawtooth wave, corresponding to a linear contribution,

a strain softening contribution, a strain hardening contribution and wall slip or

shear bands, the time domain signal is reconstructed. Agreement with the mea-

sured time and the frequency domain data was optimised. The advantage of this

approach is, that the characteristic basic functions represent known rheological

phenomena. As a result, the measured signals can be described via the relative

intensities and the relative phase (respective time-lag) to each other. This new

approach was tested for the two model dispersions as very accurate and promis-

ing. In a next step this analysis was then applied to a set of time domain signals

with increasing strain amplitudes. Here a typical behaviour for the polystyrene

dispersions was found to be that the phase of the rectangle function is in-phase

with the linear contribution, and that the magnitude shows a behaviour similar

to the third harmonic in the standard analysis.

In the standard analysis the time domain signal is Fourier transformed and

afterwards the relative intensity I3
I1

and the phase of the third harmonic Φ is anal-

ysed. In cases, where the Fourier spectrum exhibits a significant number of higher

harmonics, as well as even harmonics in addition to the odd ones normally ob-

served, this analysis is not adequate. Considering the whole spectrum as resulting

from a separation of characteristic responses a separation of the sine function

contribution and rectangle function contribution from the sawtooth function con-

tribution is more adequate and was applied to a sample with a large amplitude

in the sawtooth function. After the separation the analysis showed much larger

values for the intensity of the third harmonic at small strain amplitudes, whereas

the values of the phase were like in the standard analysis. The reason therefore

is the appearing out-of-phase rectangle function with negative values of the third

harmonic intensity, and the positive values of the third harmonics intensity of the
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sawtooth function. So smaller intensities of the third harmonic are actually mea-

sured, than that are in the sample due to interfering intensities of the rectangle

function and the sawtooth function. Thus, this method is indeed able to separate

the different contributions, and is recommended to analyse samples where a large

second harmonic is found.
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Chapter 10

Rheological behaviour of rod-like

particles

This chapter focusses on the mechanical analysis of samples containing the FD-

virus. The FD-virus is a monodisperse biological system with a length of ≈ 880

nm, a diameter of 20 nm, and a persistence length of 2, 200 nm. Several con-

centrations of the FD-virus dispersions have been analysed. These concentrations

range from the overlap concentration c∗ up to 300 c∗. The concentration is de-

termined according to the procedure mentioned in chapter 5.2, with the overlap

concentration for the FD-virus of 0.04 mg
ml

. Typical results for the measurements

will be presented in the following.

10.1 Non-linear rheological properties of the

FD-virus

10.1.1 Non-linear behaviour of FD-virus dispersions under

strain dependent LAOS conditions

Complex fluids, like watery dispersions containing the FD-virus, show a great va-

riety of rheological properties. Under oscillatory shear several different types of

behaviour are known. Ahn et al. have conducted oscillatory strain sweep tests on

several different materials. They found four different classes of behaviour under

strain sweep tests [Hyun 02, Sim 03] in their experiments (see Fig. 8.5), which

157
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FIG. 10.1: The strain dependence of the storage G′ and loss G′′ modulus of a sample

containing the FD-virus at a frequency of ω1
2π = 1 Hz and at a temperature of 298 K. At a

concentrations of 300 c∗ = 12 mg
ml a behaviour of type III according to Ahn is found.

were introduced and described in chapter 8.2.1. Only type III will be treated here,

because no other type was found in samples containing the FD-virus. This type

III is characterised by a strain overshoot in G′′ [Hyun 02]. Ahn concluded this

response for systems with a weak network-like structure. During the application

of a shear field this network-like structure resists first the deformation up to a

certain strain. As a result the modulus G′′ increases. After reaching a critical de-

formation these network-like structures are destroyed, and both moduli decrease.

A typical example is given by a water-based dispersions containing the FD-virus at

a concentration of 300 c∗ (1 c∗ = 0.04 mg
ml

) (see Fig. 10.1). A type III was found, but

with a very small overshoot, when comparing to the dispersions synthesised via

mini-emulsion polymerisation. This can be explained by the interactions between

the viruses due to its rod-like structure. Therefore the resistance of the structure

against deformation seems to be much smaller than in the case of the dispersions,

and therefore leads to a smaller overshoot.
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10.1.2 Mechanical analysis of the FD-virus via FT-rheology

Due to its relative simple and defined shape and the water solubility the FD-virus

is a very interesting model system for the FT-rheology. The FT-rheological mea-

surements are performed and analysed like the once described in chapter 8.2.2.

Oscillatory measurements at a constant frequency and succeeding change in strain

amplitudes were performed. Additionally the shear rate dependent viscosity η

was determined (see Fig. 10.2). For a concentration of 300 c∗ the non-linear mea-

surements are performed and analysed with respect to the appearance of higher

harmonics, and for the prediction of the higher harmonics the Carreau parame-

ter were determined from the shear rate dependent viscosity η. Afterwards the

prediction of the higher harmonics, based on the Carreau parameters, was con-

ducted.

In the analysis of the magnitudes of I3
I1

, I5
I1

... (see Fig. 10.3), it is clearly visi-

ble that the predictions at large strain amplitudes overlay well with the measured

values, but are less intense at smaller strain amplitudes. This is a striking dif-

ference compared to the results known from the dispersions, where the predic-

FIG. 10.2: The shear rate dependent viscosity η of a sample containing FD-virus at a

concentration of 300 c∗ and at a temperature of 298 K. The parameters extracted via the

Carreau model are defined as: η0 = 6.02 Pas, β = 0.22 s, c = 0.8.
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FIG. 10.3: Comparison of measured and predicted higher harmonics magnitudes for FD-

virus at a concentration of 300 c∗. The applied frequency was ω1
2π = 1 Hz at a temperature

of 293 K. The Carreau parameters extracted from Fig. 10.2 are: η0 = 6.02 Pas, β = 0.22

s, c = 0.8. The lines are the predicted values.

tions are normally larger at small strain amplitudes, and the fit is quite good for

larger strain amplitudes (see Fig. 8.15 in chapter 8.2.2). The phases of the 3rd

and 5th harmonics are constant around the values of 195 − 205 ◦ and 27 − 33 ◦

(see Fig. 10.4). In shear rate dependent viscosity measurements shear thinning

behaviour was found (see Fig. 10.2). According to Neidhöfer [Neidhöfer 03a],

values of 180 ◦ an 0 ◦ for the higher harmonics phases were expected for strain

softening under oscillatory shear, which is the equivalent effect to shear thinning

under steady shear. A larger offset of 10 ◦ up to 50 ◦ seen in the 3rd and 5th phase

is observed in dispersions synthesised via mini-emulsion polymerisation also.

Furthermore the intensity of the 2nd harmonic is larger than 3 % (see Fig. 10.5)

over the observed span of strain amplitudes, and can therefore not be neglected.

The appearing phases of the 2nd-harmonics are stable and reproducible (see

Fig. 10.6).

The appearance of the second harmonic might be explained on the appearance

of shear bands or breaking up of aggregates. In the work of Graham, Heymann

and Ahn [Graham 95, Heymann 01, Sim 03] wall slip or breaking up of aggre-
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FIG. 10.4: Comparison of measured and predicted odd higher harmonics magnitudes for

FD-virus at a concentration of 300 c∗, corresponding to Fig. 10.3.

gates does generate even harmonics. The difference between the calculations and

the dramatic increase of the intensity of the 3rd and 5th at very small strain am-

plitudes, could be based on the fact, that the assumptions done for the prediction

based on the Carreau model are not correct. The assumption of a purely viscous

response can be proved to correct by the frequency dependence (see Fig. 10.7)

of G′ and G′′. It may not be correct to assume an instantaneous adjustment at

small strain amplitude, which would hint on internal forces like weak networks.

Results showing a weak network were already found in the strain dependence

of G′′ (see Fig. 10.1). The internal processes like aligning and tumbling of the

rod-like FD-virus under the change of shear direction could be the reason for the

phase lag. Additionally the ’bulk’ liquid crystal could break up into layers, which

might glide along each other. This breakup should occur along the director of

the particles in the nematic liquid crystal. This gliding could be interpreted as

shear bands. But likewise in the case of the dispersions no theory is available

yet, that could explain the appearance of the second harmonic in combination
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FIG. 10.5: Magnitude of the second harmonic measured at a concentration 300 c∗, corre-

sponding to Fig. 10.3.

FIG. 10.6: Measured phase of the second harmonic for a FD-virus dispersion of a concen-

tration of 300 c∗ = 12 mg
ml , corresponding to Fig. 10.3.
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FIG. 10.7: The frequency dependence of the storage G′ and loss G′′ modulus of a sample

containing the FD-virus of a concentration of 300 c∗ = 12 mg
ml and at a strain amplitude of

γ0 = 0.01. A dominantly viscous response is found for low frequencies.

with the offset found in the odd phases. Only a similar result is known for wall

slip [Graham 95, Sim 03, Heymann 01], which would be a reasonable model for

shear bands, that are based on the same effect, that two objects glide along each

other.
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10.1.3 Prediction of non-linear rheological properties accord-

ing to Dhont

In chapter 2.4.1 a theory to predict the non-linear rheological behaviour of rod-

like particles is presented. This theory developed by Dhont et al. [Dhont 03]

was applied on FD-virus dispersions. Non-linear dynamic measurements were

performed on the samples containing FD-virus to check the validity of this theory.

In Fig. 10.8 the theoretical concentration (L
d
ϕ) dependence of the ηeff/η0 is

plotted for several rotational Péclet-numbers (Per = γ0

Dr
), given by the equa-

tion (2.83). The ηeff/η0 shows a strong increase with a maximum in the concen-

tration dependence. This increase is larger for smaller Péclet-numbers, and they

also have higher absolute values. For higher concentrations these curves then

reach a constant value. In Fig. 10.9 the analysis of the performed measurements

FIG. 10.8: Calculation based on the theory of Dhont [Dhont 03] of the concentration

dependence of ηeff/η0 given at different shear rates for Per-number values from 0 up to

8.
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FIG. 10.9: Analysis of the concentration dependence of ηeff/η0 given at different Per-

number values from 0.002 up to 10. The two plots show the same data, but the lower one

just shows the part of small values for ηeff to show the strong increase, for small Péclet

numbers of 0.002 and 0.02.
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FIG. 10.10: Theoretical suspension viscosity ηeff normalised with the solvent shear vis-

cosity η0 as function of squared Péclet number (Pe2
r) for several concentrations L

d ϕ.

Whereas the graph a) shows the isotropic and b) the nematic state [Dhont 03]. Note,

the concentration in the plot is given by L
d ϕ.

show the same trends in the behaviour as given by the theoretical predictions, but

the increase is stronger in the measurements than in the predictions. Additionally

much larger values for ηeff/η0 are found, but the same trends can be seen, in

particular, if the lower plot from Fig. 10.9 is compared with Fig. 10.8.

In Fig. 10.10 the prediction for the suspension viscosity ηeff/η0 is plotted

as a function of the squared Péclet number (Pe2
r) for several concentrations

L
d
ϕ ranging from 0.5 up to 3 in the isotropic state and ranging from 5 to 8 in

the nematic state. The dotted lines correspond to the low shear-rate expansion

equation (2.82). These theoretical calculations are done on the basis of equa-

tion (2.82) [Dhont 03]. The ηeff/η0-values are higher the higher the concentra-

tion of the examined dispersions become. For small values of Pe2
r approximat-

ing 0 an increase is found. The higher the concentration the higher is also the

slope. For increasing Pe2
r-numbers the different concentrations show a asymp-

totic behaviour. Analysis of rheological measurements on FD-virus dispersions at

concentrations ranging from 0.1 c∗ up to 300 c∗ are given in Fig. 10.11. Similar

trends are found for the measured and the predicted data, but ηeff/η0-values of

the measurements are about 10 times higher than the predicted values.

It may be concluded that the theory of Dhont et al. results in calculations of
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FIG. 10.11: Suspension viscosity ηeff normalised with the solvent shear viscosity η0 as a

function of the squared rotational Péclet number for several concentrations L
d ϕ (40, 3.2,

0.8, 0.64, 0.43, 0.011) at a frequency ω1
2π = 1 Hz.

the FD-virus dispersions, that can reproduce the same trends in the prediction

compared with the actual behaviour, but with deviations in the absolute values.
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10.1.4 Non-linear dissipative and elastic contribution of the

viscosity

In the theory developed by Dhont et al. [Dhont 03] equations for the calculation

of the non-linear behaviour of the higher harmonics were derived. Based on the

equations for the viscous contribution (equation (2.89)) and for the elastic contri-

bution (equation (2.90)), introduced earlier (see chapter 2.4.1), the magnitudes

and phases of the third and the fifth harmonic have been calculated and are pre-

sented in Fig. 10.12. The intensities and phases are valid for a frequency of 3.3

Hz at a concentration of c = 25.5 c∗ in the upper part, and a concentration at c =

76.6 c∗ in the lower part of the Fig. 10.12. These data sets were kindly provided

by Dr. P. Lettinga in the group of Prof. J. Dhont.

The magnitudes of the third and fifth harmonic show larger non-linearities for

higher concentrated samples. The maximum non-linearity is 8 % intensity for the

third harmonic, at a concentration of c = 25.5 c∗ and 10 % at a concentration of

c = 76.6 c∗. The phases of the third and the fifth harmonic approximate values

of 320 ◦ respective 280 ◦ for the lower concentrated sample and values of 280 ◦

respectively 220 ◦ for the higher concentrated sample.

In Fig. 10.13 the results of the measurements of the higher harmonics mag-

nitudes and phases of a sample containing FD-virus are shown. The frequency is

2.5 Hz. The measurements are performed at concentrations of c = 25 c∗ in the

upper part, and c = 60 c∗ in the lower part and a temperature of 25 ◦C. For both

frequencies very high non-linearities are found with magnitudes of above 25 % at

strain amplitudes of above γ0 = 0.5. For increasing strain amplitudes the inten-

sities level off. The magnitudes at a frequency of 2.5 Hz have higher intensities

than those at frequencies of 6 Hz. The phases of the measurements at 2.5 Hz

reach the expected values of 0 ◦ for the third harmonic and 180 ◦ for the fifth

harmonic already at smaller strain amplitudes γ0.

The calculations show, like the measurements, an increase of the magnitudes

of the higher harmonics, but these magnitudes have a three times lower intensity.

Additionally the intensity is predicted to have a larger value for the higher con-

centration, but the opposite is found in the measurements. Second harmonics,

that were found in the measurements see Fig. 10.5 and Fig. 10.6, were not pre-

dicted by the calculations based on the theory of Dhont. The phases of the third
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FIG. 10.12: Theoretical predictions of the non-linear mechanical behaviour of a sample

containing FD-virus, based on the theory of Dhont (see chapter 2.4.1) are shown here.

The magnitudes and phases of the third and the fifth harmonic are plotted for a frequency

of 3.3 Hz at the concentrations of c = 25.5 c∗ in the upper part, and c = 76.6 c∗ in the

lower part.
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FIG. 10.13: Results of the non-linear rheological measurements of a sample containing

FD-virus. The magnitudes and phases of the third and the fifth harmonics are shown

here. The frequency was 2.5 Hz and the measurements were done at concentration of c

= 25 c∗ in the upper part, and a concentration of c = 60 c∗ in the lower part.
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and the fifth harmonic approximate limit values for larger strain amplitudes γ0,

both in measurements and calculations, but these limit values are different. In the

case of the measurements the limiting value for the third harmonic is 180 ◦ in the

experiments compared with 320 ◦ and 220 ◦ resulting for the different concentra-

tions from the calculations. For the fifth harmonic similar results are found. The

limiting value in the experiments was found to be 0 ◦ and 280 ◦ or 220 ◦ originating

from the calculations. The calculations are able to predict the same trends in the

behaviour of the higher harmonics magnitudes and phases, but show large devia-

tions in the absolute numbers. An explanation for the lower measured intensities

at a concentration of c = 60 c∗ than the predicted ones, might be the cross-over

from the isotropic to the nematic regime which is close to this concentration.

Another hint on the ability to predict the same trends between the predictions

and the measured behaviour of the magnitude of the third harmonic is also found

while fitting the data with equation (2.69). This function, developed by Wilhelm

[Wilhelm 02] to describe the strain dependence of the magnitude of the third

harmonic, describes the predicted values and overlays with them qualitatively

and quantitatively, see Fig. 10.14. This is only a proof for a qualitative agreement

of the theory and the measurements because the parameter A which describes

the maximal reachable intensity of the third harmonic is a free parameter and

therefore the quantitative agreement is not proofed via this method.
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FIG. 10.14: Theoretical predictions of the non-linear mechanical behaviour of a sample

containing FD-virus, based on the theory of Dhont (see chapter 2.4.1) are shown here.

The magnitudes and phases of the third and the fifth harmonic are plotted for a frequency

of 3.3 Hz at the concentration of c = 76.6 c∗. This data is fitted with equation (2.69) that

describes the strain amplitude dependence of the 3rd-harmonic.
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10.2 Separation of LAOS-response into

characteristic response functions applied on a

FD-virus dispersion

After introducing the new analysis method of the non-linear oscillatory rheolog-

ical data in chapter 9, this analysis was also applied to samples containing the

FD-virus. In the following the results are presented.

The reconstruction of the time domain data was performed at different strain

amplitudes ranging from γ0 = 0.1 up to 2. The reconstruction could be achieved,

as introduced in chapter 9. The characteristic functions needed for the recon-

struction were sine (linear contribution), rectangle wave (strain softening con-

tribution), and sawtooth wave (shear band or wall slip contribution). As can be

seen in Fig. 10.15 the amplitude of the rectangle wave is normally at least double

the amount of the amplitude of the sawtooth wave. The shear bands or the wall

slip should therefore show almost no influence on the values of the higher har-

monics intensities. The phases of the rectangle wave, and the sawtooth wave, see

Fig. 10.16, show both a value of about 30 ◦ to 50 ◦. The strain softening process is

therefore at the same time like the linear contribution of the response with respect

to the excitation. The further analysis of these data sets reveals that the intensi-

ties and the phases of the third harmonic originating from the standard analysis

and from the analysis with characteristic functions overlay well, see Fig. 10.17,

and Fig. 10.18. The differences found in the magnitude and phase of the fifth

harmonic at smaller strain amplitudes have their origin in the use of rectangle

wave, with different intensities in the fifth harmonic. The analysis should now be

applied to other concentrations to see if this analysis could be applied there too.
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FIG. 10.15: This plot shows the dependence of the amplitude on the strain amplitude of

the characteristic function of the sample FD-virus at a concentration of C = 0.1 c∗. The

characteristic functions are strain softening and wall slip or shear bands. It also includes

the intensity of the third harmonic depending on the strain amplitude.

FIG. 10.16: This plot shows the dependence of phase on the strain amplitude of the

characteristic function of the sample FD-virus at a concentration of C = 0.1 c∗. The

characteristic functions are strain softening and wall slip or shear bands.
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FIG. 10.17: This plot shows the dependence of the intensity of the third harmonic on

the strain amplitude of the sample ckb222. The filled symbols show the results from

the standard analysis, and the open symbols show the results corrected for shear band,

respectively the sawtooth function.

FIG. 10.18: This plot shows the dependence of the phase of the third harmonic on the

strain amplitude of the sample ckb222. The filled symbols show the results from the

standard analysis, and the open symbols show the results corrected for shear band, re-

spectively the sawtooth function.
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10.3 Conclusion of chapter the rheological

behaviour of rod-like particles

In this chapter the non-linear mechanical behaviour of dispersions containing the

FD-virus were examined. In general those samples show very high non-linearities

at already very low volume fractions, when compared to polystyrene dispersions.

Likewise, the polystyrene dispersions, calculations of the build-up of the higher

harmonics were conducted. These calculations cannot predict the experimentally

detected strong increase of the magnitudes I3
I1

, I5
I1

at small strain amplitudes, but

give reasonable results for larger strain amplitudes. Additionally the second har-

monics, found in the measurements, were not predicted by the calculations. A

possible explanation for the second harmonics are shear bands, or wall slip. Pre-

dictions for the phases Φn give an offset similar to the one found in dispersions

synthesised via mini-emulsion polymerisation. These phase values can originate

from shear bands, but this has to be proven by more demanding calculations.

Note, the volume fraction in the case of the FD-virus is below 3 vol.%.

Additionally comparisons of measurements with calculations based on the the-

ory developed by Dhont et al. [Dhont 03] revealed the same trends to be found

in ηeff/η0 as a function of the concentration (L
d
ϕ) at several Péclet-numbers (Per)

and the suspension viscosity ηeff/η0 as a function of the squared Péclet number

(Pe2
r). Furthermore calculations have been conducted to describe the non-linear

behaviour utilising I3/I1, I5/I1, Φ3, and Φ5. These calculations also showed the

same trends, but higher intensities are found in the measurements than in the

calculations. The calculation of the phases Φn of the higher harmonics shows

much lower values than those found in the measurements. Furthermore the even

harmonics were not predicted by the theory of Dhont.

The new analysis method for oscillatory rheological data was performed on a

FD-virus solution with a concentration of c = 1 c∗. It was possible to reconstruct

the time domain signal at different strain amplitudes with the help of the charac-

teristic functions sine, rectangle, and sawtooth. Furthermore the intensities and

the phases of the third harmonic originating from the standard analysis and from

the analysis via characteristic functions overlay well.



Chapter 11

Summary and Outlook

Within this thesis several aspects of non-linear mechanical shear on water-based

systems were investigated, mostly using FT-rheology. In the first step polystyrene

dispersions with a high solid content were synthesised by using the emulsion

polymerisation technique. Two different synthetic pathways were chosen, the

semi-continuous emulsion polymerisation and the mini-emulsion polymerisation.

The polystyrene dispersions were characterised with regard to their solid con-

tent, stability, particle size, and particle size distribution. Mechanical analysis

was conducted by using rheology in the linear and non-linear regime and es-

pecially FT-rheology. Additionally, a new method to analyse the measured time

domain signal and the frequency domain signal, via characteristic functions was

developed. Further complex fluids, such as the biological system FD-virus and a

concentrated polystyrene solution in di-sec-octyl phthalate (DOP), were mechan-

ically characterised and used to further develop the FT-rheo-optical technique.

The FT-rheology was extended to the area of rheo-optics. The last topic of the re-

sults concerns the mineralisation of ZnO under the influence of polymer addition

when a defined shear field is applied.

The rheo-optical set-up, especially the background correction of the birefrin-

gence, was improved within this research. The measured rheo-optical signal is

strongly influenced by the background birefringence. The negative influence of

the background birefringence is reduced by the factor of 20 via a variable retarder,

application of an oversampling technique and additional mathematical treatment.

The results obtained are confirmed via theoretical calculations based on a rotat-

ing birefringent object. It is now possible to explain and simulate the effect of
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a background birefringence vector. Additionally, these modifications increase the

resolution in the time domain by the factor of 24. With the improvements of the

rheo-optical set-up, a tool combining rheo-optic and FT-rheology is now available.

With this set-up, non-linearities can be examined simultaneously with rheology

and with birefringence on the one hand or with dichroism on the other.

The influence of polymers under a defined shear field on the mineralisation

process of inorganic ZnO was examined. The effect of shear on the crystallisation

process was analysed by comparing the size, the shape, and the aspect ratio of

the crystallites. The examination of different polymers at different shear rates

confirms the already known change in the aspect ratio. Additionally, a change

of the size of the particles is observed. The polymer with the structure P(EO-co-

AA) causes a significant reduction in both diameter and length by the factor of

2. At higher shear rates abrasive effects are detected. The edges are less sharp

and fewer twin crystals are found. The ability to reduce the crystal size by the

factor of 2, offers a pathway to easily modify crystals by the addition of polymer

in combination with a defined shear field. Noticeable effects are only visible when

a polymer with a high molecular weight is used. Therefore, it can be concluded

that the shear has only an effect on the polymers with a sufficiently high molecular

weight.

Two different types of polystyrene dispersions with very high solid content

(each ϕ > 0.3) were examined especially by using LAOS experiments. The differ-

ences in the synthesis of the dispersions cause variations in the amount of ions

in the solution, in the polydispersity and in the Debye-length. The mechanical

behaviour of these dispersions varies in the strain dependence of G′ and G′′ at

the onset of the non-linear regime. An overshoot in G′′ is detected only in disper-

sions synthesised via mini-emulsion polymerisation and not in those synthesised

via semi-continuous emulsion polymerisation, which is explained by the lower

ion loading and therefore higher Debye-length in the case of dispersions syn-

thesised via mini-emulsion polymerisation (1.8 nm in the case of mini-emulsion

polymerisation and 0.3 nm − 0.4 nm in the case of semi-continuous emulsion

polymerisation) and lower polydispersity (0.01 in the case of mini-emulsion poly-

merisation and 0.3 in the case of semi-continuous polymerisation). This effect is

also observed in the FD-virus dispersions, a biological model system, but with a

less intense overshoot.
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Differences between the two differently synthesised dispersions are also ob-

served via the FT-rheological analysis. For both types of polystyrene dispersions

mechanical higher odd harmonics can be detected and predicted via a simplified

model. In this model, instantaneous adjustment to the applied shear, and no

memory in the observed time span are assumed. In dispersions, synthesised via

mini-emulsion polymerisation, second harmonics were additionally found. These

even harmonics are not predicted by the above mentioned model. A possible

explanation for even harmonics are shear bands.

Furthermore, a method was developed to reconstruct the measured time do-

main signal via four different basic functions, that correspond to rheological phe-

nomena. The reconstructed time domain data overlays well with the measured

time domain data for the here examined polystyrene dispersions. In a next step

this analysis was then applied to a set of time domain signals with increasing

strain amplitudes. Here a typical behaviour for the PS-dispersions was found to

be that the rectangle wave is in phase with the applied sine wave, and that the

magnitudes show a behaviour similar to that of the third harmonic in the standard

analysis. Additionally a separation of the signal in a sine wave, and a rectangle

wave from the sawtooth wave was achieved. The FT-analysis of the resulting data

showed similar results for the intensity of the third harmonic in the both methods

of analysis, but a change in the regime where the sawtooth wave was dominat-

ing the rectangle wave. A separation of the time domain signal could thus be

achieved. It was found that the Fourier contributions from the in-phase sawtooth

function and the out-of-phase rectangle function have different signs and there-

fore reduce the intensity of the measured odd harmonics.

Samples containing FD-virus mechanically respond with very high non-

linearities at a very low volume fraction (1 < % wt.). Calculations of the build-up

of the higher harmonics were conducted. These results agree with the experi-

ments at higher strain amplitudes. These calculations cannot predict the strong

increase of the higher harmonics at very low shear rates. Comparing the ex-

periments with the prediction based on the theory developed by Dhont et al.

[Dhont 03] the same trends for the suspension viscosity ηeff/η0 as a function of

the concentration ( L
D

ϕ) at several Péclet-numbers (Per) and the suspension vis-

cosity as a function of the Péclet number were found. Furthermore, calculations

were conducted to describe the non-linear behaviour with the help of magnitudes
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and phases of the third harmonic and the fifth harmonic. These calculations show

the same trends in the behaviour, but higher intensities are found in the mea-

surements. In the phases of the higher harmonics much lower values are found

in the measurements. The new analysis method via characteristic functions was

applied to a FD-virus dispersion. The time domain data could be reconstructed

and a separation of a sawtooth contribution was successful.

The detection of even harmonics in the non-linear rheological analysis of dis-

persions demands the development of a suitable theory in the standard analysis.

Future research might be concentrated on the examination of the reconstruction

of the measured signal, with a special focus on a better understanding of the in-

fluence of shear bands on the shear thinning process. In general, this method

should be applied to samples like polymer melts and polymer solutions with an

additional focus on the behaviour of the magnitudes and phases of the higher har-

monics. A special focus should be on the phase (time lag) between the different

characteristic functions, especially under a change of the excitation frequencies.

These could represent intrinsic (relaxation) processes. After the improvement

of the Rheo-optical set-up, an extension of the non-linear mechanical analysis to

birefringence and dichroism, and a further extension of the non-linear mechanical

analysis to the low torque regime seems to be possible and is desired.



Appendix A

Rheo-Optics

A.1 Background compensation for small angles

Two birefringent elements with retardation o and p, at angles ε and ι are equiv-

alent to a single birefringent element with combined retardation q at an angle ϕ

equation (A.1) where:

q(i2ϕ) = o(i2ε) + p(i2ι). (A.1)

This can be shown by using a retardation o, p that are so small that we only

have to retain terms of first order in o, p in the Mueller matrices [Fuller 95]. From

the Mueller matrices using the notation s2ε = sin2ε, c2ε = cos2ε follows:

M(p, ε) =









1 0 0 0

0 1 0 −os2ε

0 0 1 os2ε

0 os2ε −oc2ε 1









, (A.2)

M(p, θ) =









1 0 0 0

0 1 0 −ps2θ

0 0 1 ps2θ

0 ps2θ −pc2θ 1









, (A.3)

and:

M(q, ϕ) = M(p, ε)M(p, θ) =
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M(q, ϕ) =









1 0 0 0

0 1 0 −os2ε + ps2θ

0 0 1 os2ε + ps2θ

0 os2ε + ps2θ −(oc2ε + pc2θ) 1









. (A.4)

From this we find the already presented identities:

qs2ϕ = os2ε + ps2ι, (A.5)

qc2ϕ = oc2ε + pc2ι, (A.6)

i.e.

q(i2ϕ) = o(i2ε) + p(i2ι).

A.2 General background compensation

The result of A.1 is only valid if both retardations are small. In general only the

background birefringence is only small after pre-compensation using a variable

retarder (see section 6.2.5 on page 83 and Fig. 6.7). We represent the back-

ground birefringence as a virtual birefringence element in front on the sample.

The following matrix equation (A.1) shall represent this background birefringent

element [Fuller 95]:

M(p, θ) =









1 0 0 0

0 1 0 −ps2θ

0 0 1 ps2θ

0 ps2θ −pc2θ 1









. (A.7)

We used that the retardation p of the background is assumed to be so small by the

variable retarder that sinθ ≈ θ. Incorporating this virtual birefringent element

in the optical train we find after using the Mueller matrices and equating the

complex and real parts:

sinδ′tsin(2θt) = sinδ′msin(2θm)± pcosδ′tsin(2θ), (A.8)

sinδ′tcos(2θt) = sinδ′mcos(2θm)± pcosδ′tcos(2θ). (A.9)

The index t indicates the true signal, the index m the measured signal and p and

θ the background retardation and angle. The uncertainty of the prefactor (±) is

caused by the ambiguity with respect to the orientation of the birefringence of the

background signal. For small retardation this results reduces to the result in A.1.
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A.3 Calibration

A explanation on the calibration of the orientation angle θ is given in this chapter.

A linear polariser oriented at 45 ◦ degrees gives an equivalent signal to a quarter-

wave plate at zero degrees. The orientation angle may be set at zero and sinδ

= 1 with a linear polariser at 45 ◦. Here it is important to note that both, the

linear polarised and the quarter-wave plate have different Mueller matrices, but

the detected signal is the same [Fuller 95], since:

I = I0[1+(c2θtanhδ′′+s2θsinδ′)cos(4ω1t)−(s2θtanhδ′′+c2θsinδ′)sin(4ω1t)], (A.10)

for our set-up with an optical element having the complex retardation δ = δ ′+ iδ′′

at angle θ. For a quarter-wave plate, using δ ′ = π
2

and δ′′ = 0 equation (A.10) can

be simplified to:

I = I0[1 + s2θ,quarter−waveplatecos(4ω1t)− c2θ,quarter−waveplatesin(4ω1t)]. (A.11)

For a linear polariser, using δ′ = 0 and δ′ = ∞, equation (A.10) can be simplified

to:

I = I0[1 + c2θ,polarisercos(4ω1t)− s2θ,polarisersin(4ω1t)]. (A.12)

So, for θquarter−waveplate = 0 we have to choose θpolariser = π
4

+ nπ to get an equiva-

lent signal.
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Appendix B

LabVIEW

The LabVIEWTM VI FT-Measurement [LabVIEW 98](VI means virtual instrument)

and the VI basic-analyser, used for the Fourier transformation of the acquired

data, are already described elsewhere [Neidhöfer 03a]. In this Appendix the VI

basic-analyser, see chapter B.1, with the extended window function and the Rheo-

Optic software (VI Birefringence-Dichroism see chapter B.3) are presented and

described.

B.1 VI Analyser with extended window function

The VI Analyser Fourier transforms the data acquired by the VI FT-Measurement

[Neidhöfer 03a]. This special version presented here (see Fig. B.1) has as an add-

on the possibility to select only a part from the acquired data-set. The software is

started by pressing the arrow below the menu line. By pressing the ’open new file’

button the file for analysis is selected. In this mode one can change the window

size or the channel and the graphs will automatically adjust. The saving of the

results is done with the use of the button ’SAVE’. By pressing the ’STOP’ button

the analysis is stopped. Now a new file is selected by pressing the ’open new file’

button. With the ’CLOSE’ button the program is stopped. In the upper right corner

the complete data-set of the imported file is visible. Directly beneath the window

the selected part of the data-set is shown. The size of this window is selected

via the two controls on the left side in the control panel box called: ’Window

begin’ and ’Window end’. The default value is zero in both controls, which means

that automatically the complete data file is used. By insertion of the number of
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the data points, taken from the upper right graph, just the selected part is visible

in the lower right graph and is then analysed. The two big graphs on the left

side show the analysis results. The upper graph shows the magnitude spectra

and the lower graph shows the phase spectra of the Fourier transformed data set.

The values of the harmonic magnitudes and phases are shown in the indication

panel on the lower right. Furthermore the used data file, the array length of the

selected window, the file length, the Nyquist frequency and the sampling rate of

the recording are also indicated here. Additionally δ and tanδ are also shown.

In the case that several recorded channels are required, they are selected via the

channel control in the control panel. In Fig. B.2 the structure of the software is

shown.

FIG. B.1: Front panel of the virtual instrument ’basic-analyser’ with window function.
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FIG. B.2: Diagram of the virtual instrument ’basic-analyser’ with window function.
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B.2 VI Reconstruct time signal

With the VI Reconstruct signal, the analysis of the time domain signal is done

with respect to the characteristic functions: sinusoidal, rectangular, triangular,

and sawtooth. This software has two different modes, an simulation and an over-

lay mode. In the simulation mode an addition of the different contributions can

be simulated. Free parameters are the number of points and the sampling rate in

[1/s]. In the overlay mode an measured data set can be read from a file and then

overlayed with the reconstructed signal. The channel from the file can be freely

selected. The data from the file and the simulated or reconstructed data is Fourier

analysed and the magnitudes and the phases of the higher harmonics are sepa-

rately presented. The amplitude, the phase, and the frequency of the different

contributions are selected via the controls. There are sets of controls for six sine

functions, plus the additional controls for the three characteristic functions: rect-

angle (strain softening), triangle (strain hardening), and sawtooth (shear bands).

On the upper right is the window where the time domain data of either the simu-

lation or the measured and the reconstructed signal is published. In the window

below the subtraction of the two signals, the measured and the reconstructed

signal, is shown. With the help of the controls, ’Overall Offset’, ’Overall Phase’,

and ’Overall Amplitude’ this deviation can be reduced. This will not influence

the Fourier components of the reconstructed signal, and will just move the re-

constructed signal on top of the measured signal for a better comparison. The

indicator ’Sum’ is a help to reduce the difference of the two signals. It is the

sum of the absolute values of all data points, that are created by the subtraction

of the measured and the reconstructed signal. For an optimal overlay this value

has to be minimised. In the two windows below the frequency domain signal,

the magnitude and the phase spectra, is shown. The resulting data can be saved

via pressing the ’SAVE’ button and an file can be selected after pressing ’OPEN

NEW FILE’. The data that is saved to the file is the time domain data of the recon-

structed or simulated signal plus the time domain signal after the Fourier-analysis

in one file, and the values for the magnitudes and phases of the higher harmonics

in the other file.
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FIG. B.3: Panel of the virtual instrument ’Reconstruct Time Signal’. This is the interface for

the analysis of time domain data with respect to the superposition of four characteristic

functions: sinusoidal, rectangular, triangular and a sawtooth response.
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B.3 VI Birefringence-Dichroism

The measurement software for the Rheo-optics is presented within this appendix.

With this software the optical data is acquired from the two analog inputs, then

treated to extract the optical observables of birefringence ∆n′, dichroism ∆n′′ and

the orientation angle θ. The data is then plotted together with the mechanical

data and finally stored in data files.

B.3.1 VI Birefringence-Dichroism Main

The VI Birefringence-Dichroism is written to measure the birefringence or the

dichroism and the orientation angle with the optical analysis module (OAM) from

Rheometrics Scientific. At the left side of the front panel are the buttons, controls

FIG. B.4: Panel of the virtual instrument ’BirefringenceDichroism’. This is the main inter-

face for the rheo-optical measurement.
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FIG. B.5: Diagram of the virtual instrument ’BirefringenceDichroism’.

and indicators. On the right side three displays, the upper most showing the

mechanical data (strain and torque), the second showing the sinδ or the bire-

fringence/dichroism and the bottom one shows the orientation angle θ. A forth

display on the left bottom side shows the actual birefringence/dichroism vectors.

Prior any calibration or measurement the ’path length’ of the sample beam, the

’laser wavelength’, and the ’number of averages oversampling/points for FT’ are

selected. Furthermore one has to switch the ’Biref. ↔ Dichroism’ button to the

desired quantity. Note, that birefringence is only measurable when dichroism is

negligible. First the calibration procedure is started with the preselected ’calibrate

↔ measure’ button. At this point it can be selected, if the initialisation procedure

is performed automatically or not. If ’calibration by routine’ is selected the initial-

isation window opens (see chapter B.3.2). After the initialisation the calibration

values are visible in the corresponding ’init’-displays (’init strain’, ’init torque’, ’init

Biref. Dic. calibrate’, ’init Biref. Dic. measure’ and ’init phase’). While making
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the calibration manually one has to put these values to zero with the above men-

tioned controls. After the transfer of the latter three values to the init-controls

the calibration is checked. For the phase a linear polariser is placed in the sample

beam and the value displayed in the graph should be at ± 45 ◦, which is equal

to the maximum reachable signal. If not they can be readjusted with the ’init

phase’-control. The sinδ value is checked via placing a 4
λ

- plate in the beam. In

our case the value should be 0.94 which is calculated from the thickness of the 4
λ

- plate used here. The thickness of a 4
λ

- plate depends on the wave length of the

light λ for that is was designed. If this value does not fit a fine tuning is possible

by using the ’set 〈sind− n′n′′〉 to one’-control. Whenever it is necessary or desired

it is possible to clear the graph windows by pressing the ’CLEAR GRAPH’ button.

After calibration the button ’calibrate ↔ measure’ is switched to measurement

and by pressing the ’Start’ button the measurement is started. The measurement

runs until the ’STOP’ button is pressed. The data is automatically saved to a file.

By pressing the ’CLOSE’ button the software is stopped.

B.3.2 VI Birefringence-Dichroism Initialisation

After the start of the calibration routine within ’Birefringence-Dichroism’ software,

the initialisation routine is called. The focus of the window automatically shifts

to the ’Initialisation Panel’. Here the averaged values of strain, torque, birefrin-

gence/dichroism, and orientation angle are taken over a specific time span. The

duration of the averaging in this procedure is chosen by the user in the ’init panel’

by the time control Fig. B.6. The default value is 20 s. By pressing the button ’De-

termine Initialisation Values’ the averages are taken Fig. B.4 and after the given

time the window will close and the focus of the window goes to the main panel

B.3.1.

B.3.3 VI Birefringence-Dichroism Core

In the VI Birefringence-Dichroism Core (see Fig. B.8) the calculation, and the im-

portant correction of the input signal of birefringence/dichroism and orientation

angle are computed. Figure B.7 displays the diagram of this program. On the

left side of the diagram the data of the four channels is entered into a loop. The

two upper channels (strain, torque) are averaged, while the signals of the other
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FIG. B.6: Initialisation Panel with the time control.

two channels (reference and sample) are on-the-fly Fourier transformed. The FFT

performed here works with 2n data points. Doing so the fluctuation of the spinner

signal is online monitored. Then the corrections from the initialisation and cali-

bration routine are implemented and finally the birefringence/dichroism and the

orientation angle values are calculated by the following equations:

IS = I0,S(1 + sinδ′cos(4ω1t(θ −
π

4
))), (B.1)

IR = I0,R(1 + cos(4ω1t)), (B.2)

with

4ω1/2π = 1600Hz, (B.3)

where:

IS: Signal intensity at the sample detector,

IR: Signal intensity at the reference detector,

I0,S: DC signal intensity at the sample detector,

I0,R: DC signal intensity at the reference detector.

The birefringence is given by:

δ′ =
2π∆n′d

λ
=

π

2
, (B.4)

is called the retardation δ′, d the optical path length, λ the wavelength of the light

source and ∆n′ = n′x − n′y the birefringence. The orientation angle is calculated

by:

tan2θ =
∆n′

∆n′′
=

n′

n′′
. (B.5)
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FIG. B.7: The Diagram of the VI ’BirefringenceDichroismCore’. Here the correction and

the calculation of birefringence ∆n′, dichroism ∆n′′ and orientation angle θ is performed.
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FIG. B.8: The panel of the Sub-VI ’BirefringenceDichroismCore’. Input and Output Con-

trols are visible.
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Appendix C

Chemicals

CHEMICAL ABBREVIATION ORIGIN PURITY [%]

water H2O Milli-Q R = 18, 2MΩ
cm

n-butyl methacrylate BMA Fluka ≥ 99

acrylic acid AA Fluka ≥ 99

methyl methacrylate MMA Fluka ≥ 99

allyl methacrylate AMA Fluka ≥ 99

styrene S Fluka ≥ 99,5

sodium styrene sulfonate NaSS Aldrich ≥ 99,5

sodium dodecyl sulfate SDS Fluka ≥ 99

ammonium peroxodisulfate APS Fluka ≥ 99

potassium peroxodisulfate KPS Aldrich ≥ 99,99

azo-bis-isobutyrylnitrile AIBN Fluka ≥ 99

hexadecane HD Fluka ≥ 99

tris (hydroxy methyl)-amino methane

chloride TRIS-Cl Fluka ≥ 99

di-sec-octyl phthalate DOP Fluka ≥ 99,5

Table C.1: origin and purity of the used chemicals
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Appendix D

Synthesis

In this appendix the synthesis for the two basic routes, used for the synthesis of

the polymer dispersions are presented. The first one is a semi-continuous emul-

sion polymerisation synthesis in two steps, consisting of a step for the synthesis

of the seed and a second step that is characterised by a permanent inflow of

reaction ingredients under starved feed conditions. After the initial step of a nu-

cleation phase, also known as seed, a second step is performed. In this second

step the reaction continuous during a permanent flow of the reactive medium.

This inflow is realised via two motor driven syringes, which contain the reactive

media. The first syringe contains monomer, SDS, acrylic acid and some water in

a pre-emulsion. The second syringe contains additional water and the initiator.

The second type of synthesis is done in one step. Here small droplets containing

all necessary chemical are formed in which the reaction takes place. This method

is called mini-emulsion polymerisation. First two mixtures are made in separate

beakers. The first contains water, surfactant initiator, and the second contain-

ing monomer, hydrophobe, acrylic acid and co-monomer. After mixing these two

beakers and stirring it for one hour, the solution is spiffed for 2 minutes at an

amplitude of 89 %, which is the maximal usable amplitude for this sonifier tip.

The reactive medium is cooled during the sonication. Afterwards the mixture is

taken to the reactor and the synthesis is performed. The names of the samples

are made up of two parts. The first, like CKA or CKB, denotes the first or the

second lab journal and a second part denotes the number of the synthesis. Only

the synthesis of the dispersions examined in this work are presented here.
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D.1 Synthesis of semi-continuous emulsion

polymerisation

POLYMER DISPERSION CKB109 CKB117

operation mode batch seed semi-continuously

temperature [◦ C] 85 80

stirrer speed [rpm] 450 140

operating time [h] 7 5 for feed 1, 2

polymerisation time after reaction [h] 5 3

amount H2O [g] 160 11

amount of seed [g] - 16

amount monomer [g] 10 S 37 S

amount co-monomer [g] - 0.7 AA

surfactant [g] 1 SDS 3.5 SDS

initiator [g] 0.3 KPS 0.1 KPS

prime [g] 160 H2O 10 H2O

feed 1 - H2O + SDS + S

feed 2 - H2O + KPS

solid content [%] - 56.5

pH 3 8

particle diameter [nm] 55.2 99.7

polydispersity index 0.01 0.07

Table D.1: Dispersion CKB109 (seed), CKB117 (semi-continuous polymerisation).
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POLYMER DISPERSION CKB99 CKB103

operation mode batch seed semi-continuously

temperature [◦ C] 85 85

stirrer speed [rpm] 400 150

operating time [h] 7 5 for feed 1, 2

polymerisation time after reaction [h] 5 3

amount H2O [g] 160 13

amount of seed [g] - 16

amount monomer [g] 10 S 37 S

amount co-monomer [g] - 0.7 AA

surfactant [g] 1 SDS 5.8 SDS

initiator [g] 0.3 KPS 0.1 KPS

prime [g] 160 H2O 10 H2O

feed 1 - H2O + SDS + S

feed 2 - H2O + KPS

solid content [%] 13 62.5

pH - 10

particle diameter [nm] - 80

polydispersity index - 0.25

Table D.2: Dispersion CKB99 (seed), CKB103 (semi-continuous polymerisation).
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POLYMER DISPERSION CKB169 CKB171

operation mode batch seed semi-continuously

temperature [◦ C] 70 80

stirrer speed [rpm] 350 140

operating time [h] 0 5 for feed 1, 2

polymerisation time after reaction [h] 5 3

amount of seed [g] - 20

amount H2O [g] 200 15

amount monomer [g] 18.3 35 S

amount co-monomer [g] 0.6 MMA 0.7 AA

surfactant [g] 0.5 NaSS 4 SDS

initiator [g] 0.2 KPS 0.2 KPS

prime [g] 200 H2O 20 seed

feed 1 - H2O + SDS + S

feed 2 - H2O + KPS

solid content [%] - 55

pH - 8

particle diameter [nm] - 150

polydispersity index - 0.3

Table D.3: Dispersion CKB169 (seed), CKB171 (semi-continuous polymerisation).
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D.2 Synthesis of mini-emulsion polymerisation

POLYMER DISPERSION CKB222 CKB232

operation mode batch batch

temperature [◦ C] 72 72

stirrer speed [rpm] 360 360

polymerisation time [h] 12 12

amount H2O [g] 50 50

amount monomer [g] 15 S + 15 BMA 15 S + 15 BMA

surfactant [g] 0.4 SDS 0.3 SDS

initiator [g] 0.1 AIBN 0.1 AIBN

organic stabiliser [g] 0.5 HD 0.5 HD

prime H2O, SDS, AIBN see CKB222

prime monomer S + BMA S + BMA

solid content [%] 32.7 35.3

yield [%] 96.7 99.1

pH 8 8

particle diameter [nm] 133.2 137

polydispersity index 0.01 0.02

Table D.4: Dispersion CKB222 and CKB232 (mini-emulsion polymerisation).
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POLYMER DISPERSION CKB235 CKB229

operation mode batch batch

temperature [◦ C] 72 72

stirrer speed [rpm] 360 360

polymerisation time [h] 12 12

amount H2O [g] 50 50

amount monomer [g] 15 S + 15 BMA 30 S

co-monomer [g] 0.4 AA 0.4 AA

surfactant [g] 0.4 SDS 5.4 SDS

initiator [g] 0.1 V59 0.1 AIBN

organic stabiliser [g] 0.5 HD 0.5 HD

prime H2O, SDS, KPS H2O, SDS, KPS

prime monomer S + BMA S

solid content [%] 36.8 35.4

pH 8 8

particle diameter [nm] 68.3 69.7

polydispersity index 0.06 0.04

Table D.5: Dispersion CKB235 and CKB229 (mini-emulsion polymerisation).
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R. Hingmann, F. Schmidt, P. Lindner. J. Rheol. 36, 743 (1992).

[Lechner 96] M.D. Lechner, K. Gehrke, E.H. Nordmeier. Makromolekulare Chemie.
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[Neidhöfer 03a] T. Neidhöfer. Fourier-transform rheology on anionically synthesised

polymer melts and solutions of various topology. Ph.d. thesis, Johannes-

Gutenberg-Universität, Mainz, Germany (2003).
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