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Chapter 1

Basic concepts

of superconductivity

Perfect conductivity, i.e. the complete disappearance of the electrical resistance of

a material below a critical temperature Tc, which is characteristic of the material,

was first observed in 1911 by H. Kamerlingh Onnes when measuring the resistivity

of a Hg sample at low temperatures [1].

Another fundamental characteristic of a superconductor is perfect diamag-

netism in weak magnetic fields. Experimentally it was first found in 1933 by

W. Meissner and R. Ochsenfeld [2]. The magnetic field is not only excluded from

the interior of a superconductor cooled below Tc and then brought in magnetic

field, which can be explained by perfect conductivity alone. The field is also ac-

tively expelled as the superconductive sample with T > Tc is cooled below Tc in

magnetic field; a perfect conductor would tend to trap the magnetic field in the

sample in this case. This effect is called the Meissner-Ochsenfeld effect.

The superconductive state is destroyed at high temperature and magnetic

field, however. The thermodynamic critical magnetic field Hc ≡ Bc/µ0 is deter-

mined by the free-energy density difference between the normal and the super-

conductive states in zero field, the so called condensation energy of the supercon-

1
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0 T

Normal phase

Meissner phase

H (T)
c

Tc

Figure 1.1: H-T phase diagram of a superconductor.

ductor:
B2

c (T )

2µ0

= fn(T ) − fs(T )

The curve Hc(T ) (see Fig. 1) separates the superconducting and normal states of

the superconductor.

The electrodynamic properties of superconductors were described at first in

1935 by the brothers F. and H. London [3].

E =
∂

∂t
(ΛJs) (1.1)

B = −∇× ΛJs (1.2)

where E is an electrical field vector, Js is a superconducting current, Λ = µ0λ
2 =

ms

nsq2
s
, where ms, ns and qs denote the mass, number density and charge of the

superconducting charge carriers, respectively. Using the equations 1.1 in conjunc-

tion with Maxwell’s equations one can obtain a solution for the magnetic field

B ∝ exp(−x/λ). This corresponds to the existence of a screening supercurrent
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within a characteristic penetration depth λ near the surface of the superconduc-

tor.

V. L. Ginzburg and L. D. Landau in 1950 proposed a new theoretical ap-

proach to the problem [4]. They introduced a complex pseudo-wave function ψ

as an order parameter on the basis of Landau’s general theory of second-order

phase transitions. Function ψ describes the local density of the superconducting

electrons: |ψ(x)|2 = ns. Using a series expansion of the free energy in powers of

ψ and ∇ψ they derived the following differential equation for ψ

1

2m∗ (
h̄

i
∇− e∗A)2ψ + β|ψ|2ψ = −α(T )ψ

where α and β are the expansion coefficients. This theory introduces a new

important quantity which is a characteristic length, usually called the Ginzburg-

Landau coherence length, over which ψ(x) can vary without undue energy increase

ξ(T ) =
h̄

|2m∗α(T )|1/2
.

A further characteristic quantity of a superconductor is the Ginzburg-Landau

parameter

k =
λ

ξ
.

Because both ξ and λ diverge as (Tc − T )−1/2 near Tc this dimensionless ratio is

approximately independent of temperature. The Ginzburg-Landau parameter k is

related to the surface energy associated with a domain wall between normal and

superconducting regions of the material. For typical classical superconductors

k 	 1.

1.1 Type II superconductors, vortices

A. A. Abrikosov showed in 1957 that the energy associated with a domain wall

between normal and superconducting regions in a homogeneus material will turn

negative for k >
√

1/2 [5]. In this case a system will favor an arrangement with
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0 T

Normal phase

Shubnikov phase

Meissner phase

H (T)
c2

Tc

H (T)
c2

Figure 1.2: H-T phase diagram of the type II superconductor.

many separate superconductive and normal domains maximizing the area of the

phase boundary. Such behaviour is radically different from the classical supercon-

ductors. Abrikosov called superconductors with k >
√

1/2 type II superconduc-

tors, whereas the ones with k <
√

1/2 are of type I. For type II superconductors

there is no discontinuous breakdown of the superconductivity in a phase transi-

tion at Hc. Instead, the magnetic flux penetrates the material, starting at a lower

critical field Hc1(T ) and reaching B = µ0H at an upper critical field Hc2(T ).

Between these two fields, Hc1 and Hc2, a type II superconductor is in the

so called mixed state or Shubnikov phase (see phase diagram in the Fig. 1.2).

Abrikosov showed that in this state the magnetic flux penetrates the material

not in the form of laminar domains but as a regular array of flux tubes, each

carrying an elementary quantum of flux, given by

Φ0 =
h

2e
≈ 2.07 · 10−15Vs (1.3)
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r0

h(r)

�

j (r)

�

��� (r)
2

Figure 1.3: Spatial distribution of the local magnetic field h, squared absolute

value of the order parameter ψ and superconducting current density j across the

magnetic flux tube.

Each flux tube is surrounded by a circular supercurrent which shields the super-

conducting domain outside from the normal core inside the flux line as schemat-

ically shown in Fig. 1.3. Therefore the term vortex is usually used to refer to the

whole arrangement associated with a flux line. According to Abrikosov vortices

will form a triangular vortex lattice in a type II superconductor.

In the presence of a superimposed transport current with current density j

vortices experience a Lorentz force

FL = j×Φ0 (1.4)

per unit length. The Lorentz force induces a movement of the vortices perpen-
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dicular to the transport current and this movement produces an electric field

E = B× v. (1.5)

J. Bardeen and M. J. Stephen [6] showed that in an ideal homogeneous material

such a vortex motion is damped only by a viscous (drag) force F = −ηv where

v is the steady state velocity of the vortex system, η is a friction coefficient, η ≈
µ2

0HHc2/ρn, here ρn is the normal-state resistivity. Since j and E are parallel to

each other, a longitudinal resistive voltage E results in power dissipation and type

II superconductors should show a resistance reduced only by a factor ∼ H/Hc2

as compared with the normal state resistivity.

1.2 Flux pinning and creep

In real materials in some T-H regions a mechanism exists that prevents vortex

motion and thus allows to obtain a dissipation free transport current flow in a

type II superconductor. The vortices can be pinned by secondary phases inclu-

sions or spatial inhomogeneities of the crystal lattice, such a quenched disorder

as, for example, cavities, impurities, secondary phases inclusions, grain bound-

aries [7, 8], dislocations [9, 10, 11], and twin planes [12, 13, 14]. All of these

defects usually suppress the order parameter ψ in their vicinity [15]. This means

they present energetically favored locations for a vortex, because on these defects

less condensation energy is required for the reduction of the order parameter in

the vortex core. The driving Lorentz force FL is now counteracted by the pinning

force Fp and the vortex velocity v stays equal to zero as long as the transport cur-

rent density does not exceed the critical depinning current density jdp = Fp/Φ0

(assuming j ⊥ B). If jc is the critical current density which destroys the su-

perconductivity, the dimensionless parameter jdp/jc is a measure of the pinning

strength in the superconductor [15].

The dynamics of the vortex system in type-II superconductors is strongly de-
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pendent on the kind of disorder. Disorder affects the properties of the vortex

state, it destroys the triangular vortex lattice and thus changes the H-T phase di-

agram of the vortex matter. One can distinguish between, randomly distributed

defects, such as structural point defects, oxygen vacancies in high temperature

superconductors, grain boundaries, and defects with a correlated spatial distri-

bution, for example, parallel pinning planes or artificially formed defects caused

by heavy ions radiation. Another kind of disorder is introduced into the vortex

system by thermal fluctuations. The vortex lines can perform thermally acti-

vated motion which leads to the creep phenomenon in type II superconductors.

Creep is a small directed motion of the vortex lines which entails dissipation in

the system. Very similar to thermal fluctuations are quantum fluctuations. They

affect the superconductivity via fluctuations of the order parameter and induce

a quantum motion of vortices (quantum creep) [15].

The classical creep theory developed in 1960-1962 by Anderson and Kim [16,

17] suggests that the thermal fluctuations induce jumps of vortex bundles and

vortex segments between pinning sites. If there exists a current density in the

system the whole vortex system moves with a finite average creep velocity. At

small current densities j → 0 this velocity is proportional to the current density

and the system shows an Ohmic behavior with a resistance ρ ∝ ρn exp(−U0/kBT ),

where kB is Boltzmann constant, U0 is the height of the pinning barrier, ρn is

the normal-state resistivity. If the pinning barrier becomes small as compared to

the temperature U0 	 kBT , the vortex motion is essentially unaffected by the

pinning and the external driving force can lead to the free flow of the vortices

producing the so called flux flow (FF) regime. The resistivity in this case is given

by the flux flow resistivity

ρf ≈ ρn
H

Hc2
(1.6)

In the case of large pinning barriers U0 � kBT the resistivity becomes exponen-
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tially small,

ρ(T ) ≈ ρf

A
exp(

−U0

kBT
), A	 1

and shows an activated behavior. This regime is called the thermally-assisted

flux flow (TAFF) regime [18].

1.3 High-temperature superconductors

The discovery of high-temperature superconductivity in 1986 by G. Bendorz and

K.A. Müller [19] opened a new chapter in the field of superconductor physics.

High-temperature superconductors (HTSC) are layered materials dominated by

copper oxide planes. Because of their layered structure they are very anisotropic.

The anisotropy parameter is defined as ε = (mab/mc)
1/2 	 1, where mab and mc

are the effective electron masses in the ab-plane and along the c axis, respectively.

The critical temperatures for high-temperature superconductors are about 100 K.

HTSCs have a small coherence length, ξab(T = 0) ∼ 15 Å, ξc(T = 0) ∼ 1.5 Å

and a large penetration depth λab(T = 0) ∼ 1400 Å, λc(T = 0) ∼ 7000 Å [20].

Critical fields for these materials are of the order of Hc1(T = 0) ∼ 0.01 T, and

Hc2(T = 0) ∼ 100 T. Any operation at comparatively high temperatures makes

the influence of thermal fluctuations on the vortex system essential. These fluc-

tuations strongly affect the static and dynamic properties of the vortex system.

The interplay between the vortex interaction energy, the vortex thermal energy

and pinning energy give rise to many different phases of the vortex matter which

posses different static and dynamic properties. The phase diagram of such a su-

perconductor is much more complicated. In Fig. 1.4a the phenomenological phase

diagram for the anisotropic HTSCs is schematically shown. Due to thermal fluc-

tuations the vortex lattice phase is melted over a substantial part of the phase

diagram. The reentrant behavior of the melting line Hm(T ) can be explained with

the melting of the vortex phase with decreasing field because of the exponentially

vanishing shear modulus with a decreasing of the intervortex distances and the
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Figure 1.4: Phenomenological phase diagram (after [15]) for the anisotropic

HTSC, including the effects of thermal fluctuations (a), thermal fluctuations and

pinning (b).

melting with increasing temperature because of thermal fluctuations.

If the interaction between thermal fluctuations and pinning is taken into ac-

count, the phase diagram changes as schematically shown in Fig. 1.4b. Disorder

is relevant for the vortex lattice with its finite shear modulus, it turns the lattice

into a vortex glass phase. The vortex liquid is insensitive to the disorder and it

remains a liquid. The unpinned liquid corresponds to the FF regime where the

barriers do not affect the motion. For larger pinning barriers in the regions of a

pinned liquid a TAFF regime is established.
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Chapter 2

Guided vortex motion,

theoretical description

2.1 Introduction

As it was shown in the previous chapter the mixed state properties of super-

conductors are largely dominated by the dynamics of the flux-line array. The

influence of pinning on the vortex dynamics becomes even more relevant in the

presence of anisotropic pinning. In the presence of parallel planar defects the

pinning force in a superconductor is anisotropic: it is much stronger in the trans-

verse direction with respect to the pinning plane than in the parallel direction.

The most specific manifestation of such a pinning anisotropy are effects associ-

ated with the directed motion of vortices along the planar pinning defects, the

so-called guided vortex motion or guiding, when the vortices tend to move along

the pinning planes even if the external force acting on them is not aligned parallel

to this planes. Another important feature of pinning anisotropy is that the longi-

tudinal and transverse magnetoresistivity of the sample depend substantially on

the angle α with which the vector j intersects the pinning planes.

The first experimental observation of the guided vortex motion in the flux-

11
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flow regime was made by A. K. Niessen and C. H. Weijsenfeld in 1969 [21]. They

studied guided motion by measuring transverse voltages of cold-rolled sheets of

a Nb-Ta alloy for various magnetic fields, transport currents, temperatures, and

different angles α between the rolling and current direction. Field and temper-

ature dependences of the cotangent of the angle β between the average vortex

velocity and the transport current direction1 were presented. For the discussion,

a simple phenomenological model was suggested, based on the assumption that

pinning and guiding can be described in terms of an isotropic pinning force plus

a pinning force with a fixed direction, for example, perpendicular to the rolling

direction. This theoretical model could not describe the nonlinear temperature

and current dependencies of the sample’s magnetoresistivities. Nevertherless the

experimentally observed dependence of the transverse and longitudinal voltages

on the magnetic field in the FF regime as function of the rolling direction was in

agreement with this model.

Following the discovery of the high temperature superconductors the inter-

est for the influence of anisotropic pinning on the vortex dynamics was renewed.

This is connected with two circumstances. First, in many of the currently known

high temperature superconductors during crystal growth crystalographic twins

are formed with twin planes oriented parallel to the c axis. It was proven that a

twin boundary forms an anisotropic pinning site for the vortices. The strength

of this pinning was shown to be significantly larger for the vortices moving per-

pendicular to the twin direction than for the vortices moving parallel to the

twin boundaries [13, 14]. Second, in layered anisotropic high temperature super-

conductors the system of parallel ab planes itself can be considered as a set of

unidirectional planar defects, which are a source of the so-called intrinsic pinning

for the vortices located parallel to the ab planes when subjected to the Lorentz

force directed along the c axis [15].

The first observation of an odd – with respect to the magnetic field reversal

1This angle is caled the guiding angle.
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– component of the longitudinal magnetoresistivity ρ−‖ , which is one characteris-

tic feature of the pinning anisotropy was made by A. A. Prodan et al [22] and

V. V. Chabanenko et al. [23] on a YBa2Cu3O7−δ single crystal. The dependen-

cies ρ−‖ (H) and cot β(H) were measured for H||c with the angle between the

twins direction and the transport current fixed at 45◦. These dependencies were

explained based on a phenomenologic model of anisotropic pinning [24, 25].

Another experimental setup was used by H. Pastoriza et al. [26] and V. Berseth

et al. [27, 28]. They measured the anisotropy of the longitudinal magnetoresistiv-

ity with regard to the transport current and studied the guided vortex motion and

the influence of the planar pinning on the Hall effect in twinned YBa2Cu3O7−δ

single crystal using a “orientable-current-source” setup for their measurements.

The sample was patterned in such a way as to allow the simultaneous application

of two transport currents in mutually perpendicular planar directions simultane-

ously. As a consequence, the direction of the resulting current could be easily

controlled. Four voltage contacts situated in the middle of the sample were used

to measure an electric field induced by the vortex motion. Such experiments give

the angular dependence of the sample resistivity in the most simple way.

Some theoretical studies to describe the magneto-resistive response of a system

of vortices in the presence of anisotropic pinning were published within the last

years. In Sonin’s phenomenological model [29, 30] Ohm’s law was assumed to be

applicable for an anisotropic conductor with current flowing in the xy plane and in

a magnetic field H‖z. This model predicts a resistive response of the sample at an

arbitrary angle α between the transport current j and the pinning plane direction

using the components of the magnetoresistivity tensor with components ρl, ρHl,

ρt, ρHt. The components ρl, ρHl are the longitudinal and transversal (with regard

to the transport current direction) magnetoresistivities of the sample in the case

of α = 90◦. The components ρt, ρHt are the analogous magnetoresistivities in the

case of α = 0◦.

A generalization of this phemomenological model for the nonlinear case which
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leads to the deduction of interrelationships between the phenomenological mag-

netoresistivity components and linear electronic and nonlinear vortex-velocity-

dependent pinning viscosities was made later by V. A. Shklovskij in [24, 25]. It

was shown, still based on a phenomenological description [24, 25, 30], that for

α �= 0◦, 90◦ there are additional magnetoresistivity components induced solely by

the pinning anisotropy. These are the longitudinal odd component ρ−‖ and the

transversal even component ρ+
⊥ (even and odd again with respect to the magnetic

field sign reversal). The origin of the component ρ+
⊥ is due to the anisotropy of

the pinning viscosity, i.e. the difference in ρl and ρt, and is connected with the

guiding of the vortices. The appearance of ρ−‖ is explained within this model by

the influence of pinning planes on the Hall resistivity and the resulting anisopropy

ρHl �= ρHt.

Another theoretical approach is based on a two-dimensional stochastic model

for the vortex dynamics introduced by Y. Mawatari [31, 32]. This model is

based on the Fokker-Plank equation for the probability density of the vortex

position and probability flux density of the vortex position. In general form

Fokker-Plank equation describes a Brownian motion; it is a partial differential

equation for the probability density function of a position of a particle [33, 34].

This approach takes into account stochastic properties of thermal fluctuations

in vortex position and allows the deduction of the temperature dependence of

the magnetoresistive response of the system in the whole temperature range 0 <

T < Tc. This stochastic model was developed further by V. A. Shklovskij et.al

in [35, 36, 37, 38].

Vortex dynamics in the presence of anisotropic pinning forces was also stud-

ied using numerical simulations [39, 40, 41]. Two of these studies made by

G. W. Crabtree et. al [39] and J. Groth et. al [40] examined the interaction

of moving vortices with an isolated twin boundary and investigated a number of

interesting dynamical peculiarities of this interaction. However, in actual trans-

port experiments the self averaged dynamics of vortices is studied, which is a
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consequence of the interaction of the vortices with many twin boundaries. This

self-averaging apparently smears out some of the fine features of the interaction

of the vortices with an isolated twin boundary.

A different model was investigated by B. U. Zhu et. al [41]. In this work, the

equation of motion of a vortex was derived that takes into account the interaction

of the vortices with each other, and also with point defects and planar defects in

the presence of thermal fluctuations. However, the large number of independent

physical parameters in the investigated problem greatly hinders a proper choice

of their values, whose variation leads to nontrivial physical results.

In the following emphasis is laid on the stochastic model for the vortex dy-

namics [35, 36, 37, 38].

2.2 The Fokker-Planck method in the anisotropic

pinning model

Let us assume that a flat sample with a set of parallel pinning planes is in a

magnetic field directed parallel to the pinning planes as shown in Fig. 2.1. Trans-

port current of the density J flows directed at the angle α to the pinning planes.

Longitudinal and transverse resistivities with regard to the current direction are

measured for two oppositely directed magnetic fields.

For the theoretical description the model described in [31, 35, 36] is considered

here. The Langevin equation for a vortex moving with velocity v in a magnetic

field B = nB (B ≡ |B|, n = nz, z is the unit vector in the z direction, and

n = ±1) has the form

η̂v + nαH [v × z] = FL + Fp + Fth (2.1)

where FL = nΦ0J × z is the Lorentz force per unit length of the vortex, Φ0 is

the magnetic flux quantum, c is the speed of light, and J is the current density.

Fp = −∇Up is the pinning force (Up is the pinning potential created by the
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Figure 2.1: Sample with unidirected pinning planes in magnetic field H.

pinning planes), Fth is the thermal fluctuation force, η̂ is the electronic viscosity

tensor, and αH is the effective Hall coefficient. If x and y are the coordinates

parallel and transverse to the anisotropy axis (see Fig. 2.2), then the tensor η̂

is diagonal in the xy representation, and it is convenient to define η0 and γ by

means of the formulas

η0 =
√
ηxxηyy, γ =

√
ηxx/ηyy,

ηxx = γη0, ηyy = η0/γ.
(2.2)

Here γ is the anisotropy parameter and η0 is the averaged viscous friction co-

efficient. The fluctuational force Fth(t) is represented by Gaussian white noise,

whose stochastic properties are defined by the relations

< Fth,i(t) >= 0, < Fth,i(t)Fth,j(t
′) >= 2kBTηijδ(t− t′) (2.3)

where T is the temperature. Employing relations 2.3, one can reduce Eq. 2.1 to

a system of Fokker-Plank equations:

∂P

∂t
= −∇ · S (2.4)
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Figure 2.2: System of coordinates xy associated with the pinning planes. The

anisotropy vector m points along the x axis. α is the angle between the pinning

plane and the dimensionless transport current density vector j (see text), β is the

angle between the average velocity vector of the vortices v and the dimensionless

current density vector j; FL is the Lorentz force.
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η̂S + nαHS× z = (FL + Fp)P − kBT∇P, (2.5)

Equation 2.4 reflects continuity of the probability density P (r, t) associated with

finding the vortex at the point r = (x, y) at the time t. Equation 2.5 specifies

the probability flux density of the vortex S(r, t) ≡ P (r, t)v(r, t). The definition

of the mean vortex velocity is as following

< v >=

∫ ∫
Sd2r∫ ∫
Pd2r

(2.6)

Since the anisotropic pinning potential is assumed to depend only on the x co-

ordinate and is assumed to be periodic (Up ≡ Up(x) = Up(x + a), where a is the

period), the pinning force is always directed along the anisotropy axis x (with

unit anisotropy vector m, see Fig. 2.2) so that it has no component along the

y axis (Fpy = −dUp/dy = 0). This then implies that P and S are only func-

tions of x and Eq. 2.5 in the stationary case for the functions P = P (x) and

S = (Sx(x), Sy(x)) reduces to the equations

γη0Sx + nαHSy = (FLx − dUp

dx
)P − kBT

dP

dx
, (2.7)

−nαHSx +
η0

γ
Sy = FLyP. (2.8)

Eliminating Sy from Eqs. 2.7 and 2.8, one obtains

kBT
dP

dx
+ (−F +

dUp

dx
)P = −γη0(1 + ε2)Sx. (2.9)

where ε ≡ αH/η0 is a dimensionless Hall coefficient, and F ≡ FLx − nγεFLy.

From the mathematical point of view, Eq. 2.9 is the Fokker-Planck equation of

one-dimensional vortex dynamics [43, 44]. Thus, the problem of two-dimensional

vortex motion reduces to a one-dimentional problem, where a combination of x

and y components of the Lorentz force enters as the external force:

F = nΦ0(Jy + nγεJx) = nΦ0(cosα+ nγε sinα)J (2.10)

Here α is the angle between the direction of the current and the vector m‖ di-

rected perpendicular to the anisotropy axis (Fig. 2.2). In the stationary case from
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continuity equation 2.4 follows that dSx/dx = 0 and thus Sx is independent on

x. By direct integration the solution of Eq. 2.9 for periodic boundary conditions

P (0) = P (a) and pinning potential of general form is

P (x) =
γη0(1 + ε2)Sx

kBT

f(a)f(x)

f(a) − f(0)

∫ x+a

x

dξ

f(ξ)
(2.11)

where f(x) = exp[(Fx − Up(x))/kBT ]. Hence one obtains an expression for the

x component of the vortex mean velocity:

< vx >=
Fνa(F )

γη0(1 + ε2)
, (2.12)

where

1

νa(F )
≡ F

kBTa(1 − exp(−Fa/kBT ))

∫ a

0
dx
∫ a

0
dx′exp(− Fx

kBT
)exp(

Up(x + x′) − Up(x′)
kBT

).

(2.13)

The dimensionless function νa(F ) in the limit F → 0 coincides with the analogous

quantity introduced in Ref. [31]. It has the physical meaning of the probability

of the vortex sitting on the pinning plane to overcome the potential barrier, the

characteristic value of which is denoted as U0. This can be seen by considering

the limiting cases of high (kBT � U0) and low (kBT 	 U0) temperatures. In the

case of high temperatures νa ≈ 1, and expression 2.12 corresponds to the flux-

flow regime. Indeed, in this case the influence of pinning can be neglected. In

the case of low temperatures νa is a function of the current. For strong currents

(Fa� U0) the potential barrier disappears leading to νa ≈ 1, and the FF regime

is realized. For small currents (Fa 	 U0) function νa ∼ exp(−U0/kBT ), which

corresponds to the regime of thermally activated flux flow (TAFF) [15]. The

transition from the TAFF regime to the FF regime is associated with a lowering

of the potential barrier with increase of the current.



20 CHAPTER 2. GUIDED VORTEX MOTION, THEORY

2.3 The nonlinear conductivity

and resistivity tensors

The electric field field induced by a moving vortex system is

E = B× < v >= nB(− < vy > m+ < vx >m‖). (2.14)

This can be also written in form

Ex = −nB < vy >,

Ey = nB < vx > .
(2.15)

Since the mean velocity of a vortex is equal to

< v >=

∫ ∫
Sd2r∫ ∫
Pd2r

=

∫ a
0 S(x)dx∫ a
0 P (x)dx

(2.16)

and taking into account Eq. 2.15, integration of Eq. 2.8 leads to the following sim-

ple linear relation between the electric field components Ex, Ey and the transport

current density Jx:

(1/γ)Ex + nεEy = ρfJx, (2.17)

where ρf ≡ Φ0B/η0 is the average (see Eq. 2.2) resistivity to flux flow. Be-

cause Jx = σxxEx + σxyEy, it follows from Eq. 2.17 that the components of the

conductivity tensor are σxx = (γρf )−1 and σxy = nε/ρf , and they obey linear

scaling

σxy/σxx = ρyx/ρyy = nγε.

Below we will see that such simple scaling does not exist for the components σyy

and σyx of the conductivity tensor.

From formulas 2.12, 2.15, and 2.17 one obtains the current-voltage character-

istics in the xy coordinate system:

ex = γjx − ενa(f)f

1 + ε2
(2.18)

ey =
nνa(f)f

γ(1 + ε2)
(2.19)
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Here the dimensionless components of the electric field are measured in units

of E0 =
√

4πε0BU0/(aη0) and of the current in units of J0 = U0/(Φ0a); and

f = Fa/U0 = nj(cosα+nγε sinα) = njy + γεjx. From expressions 2.18 and 2.19

on can find the conductivity tensor whose components are measured in units of

1/ρf for the nonlinear law j = σ̂(E)E:

σ̂ =


 σxx σxy

σyx σyy


 =


 1/γ nε

−nε σyy(Ey)


 , (2.20)

where the only component depending on the electric field (or current), σyy, is

given by

σyy(ey) =
n

ey
ν̃a

−1(nγ(1 + ε2)ey) − γε2, (2.21)

ν̃a
−1 is the inverse function of ν̃a(f) ≡ νa(f)f . From physical arguments it fol-

lows that the function νa(f) is monotonically increasing with f and, consequently,

ν̃a(f) is also monotonic and its inverse function ν̃a(f)−1 is unique. From the def-

inition 2.13 it can be shown that for a periodic potential possessing even parity,

Up(−x) = Up(x), the function νa(f) is even in f , i.e., νa(−f) = νa(f). Corre-

spondingly, ν̃a(f) is odd in f . The resistivity tensor ρ̂ whose components are

measured in units of ρf , which is the inverse tensor to σ̂, has the form

ρ̂ =


 ρxx ρxy

ρyx ρyy


 =


 γ[1 − ε2νa(f)/(1 + ε2)] −nενa(f)/(1 + ε2)

nενa(f)/(1 + ε2) νa(f)/[γ(1 + ε2)]


 . (2.22)

It is evident from Eq. 2.22 that all components of the tensor ρ̂ (in contrast to

the tensor σ̂) are functions of the current density j and the angle α between the

direction of the current and the vector m||.

One can introduce the L and T geometries in which j ||m and j⊥m, respec-

tively. In other words, in the L geometry vortex motion is longitudinal, in the T

geometry vortex motion is transversal with respect to the pinning planes. If one

neglects the Hall terms in Eq. 2.22 (i.e. ε → 0), then in the L geometry vortex

motion takes place along the pinning planes, and in the T geometry transverse to

the pinning planes. In the L geometry the critical current is equal to zero since
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the flux-flow regime is realized for guided vortex motion along pinning planes1.

In the T geometry, a pronounced nonlinear regime is realized for kBT 	 U0, the

onset of which corresponds to the crossover point j = jcr, and for T = 0 one has

jcr = jc, where jc is the critical current.

The experimentally measured quantities are referenced with regard to the

coordinate system associated with the current (see Fig. 2.2). The longitudinal

and transverse components of the electric field relative to the direction of the

current, e|| and e⊥, respectively, are related in a simple way to ex and ey:

e|| = ex sinα + ey cosα, (2.23)

e⊥ = −ex cosα + ey sinα, (2.24)

The field e||(j, α) as a function of j for α = const is monotonically increasing and

reduces to e‖ = ex(j) for α = π/2 (the L geometry) and e‖ = ey(j) for α = 0

(the T geometry). The field e⊥(j, α) as a function of j for α = const exhibits a

pronounced nonlinearity and has an extremum associated with the guiding effect.

2.4 Model potential and calculation

of the magnetoresistivities

The nonlinear properties of the resistivity tensor ρ̂ are completely determined

by the behavior of the function νa(F, T ) which has the physical meaning of the

probability of a vortex overcoming the potential barrier created by the pinning

sites. In turn, the function νa(F, T ), according to formula 2.13, depends on the

form of the pinning potential. Here this potential is specified.

Pinning planes are the regions of lowered value of the order parameter; an

example is the twins in HTSC [13, 14, 15]. Therefore it is energetically favorable

1Isotropic pinning which is usually present in real system and leads to the existence of a

nonzero critical current in this geometry is not taken into account in this model.
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for vortices to localize in the vicinity of a pinning plane. The resistive properties

will be analyzed here on the basis of a pinning potential of the form (Fig. 2.3)

Up =




−Fpx, 0 ≤ x ≤ b

Fp(x− 2b), b ≤ x ≤ 2b

0, 2b ≤ x ≤ a

, (2.25)

where Fp = U0/b is the pinning force. Wells of width 2b given by the potential 2.25

correspond to regions of pinning. As the parameter characterizing the defect

density the parameter q = 2b/a is used.

Substituting the potential 2.25 into formula 2.13 for the probability function

νa gives the following expression:

νa(f, t, q) =
2f(f 2 − 1)2

2f(f 2 − 1)(f 2 − 1 + q) − qtG
(2.26)

with

G =

[
(3f 2 + 1) cosh

(
f

tq

)
+ (f 2 − 1) cosh

(
f(1 − 2q)

tq

)

−2f(f − 1) cosh

(
f(1 − q)

tq
− 1

t

)

−2f(f + 1) cosh

(
f(1 − q)

tq
+

1

t

)]/
sinh

(
f

tq

)

In formula 2.26 the effective external force F acting on the vortices in the

direction perpendicular to the pinning planes and causing them to move in this

direction is characterized by the parameter f , which gives ratio of this force to the

pinning force Fp = U0/b on the plane defects. The temperature is characterized

by the parameter t, which gives the ratio of the energy of the thermal fluctuations

of the vortices to the depth of the potential wells U0 created by the planar defects,

t = kBT/U0. The influence of the external force F acting on the vortices is that

it lowers the height of the potential barrier for vortices localized on the pinning

planes and, consequently, increases the probability to escape from them. Raising

the temperature also increases the probability that a vortex will escape from a
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Figure 2.3: Model pinning potential Up(x). The period of the potential is a, the

width of the potential well is equal to 2b , U0 is the depth of the potential well,

q = 2b/a characterizes density of the pinning planes. In all of the following

dependencies q = 0.001.
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pinning plane because of the increase in the energy of the thermal fluctuations

of the vortices on the pinning planes. Thus, the pinning potential, tending to

localize the vortices, can be suppressed both by an external force and by an

increase in temperature.

The function νa0(f, q) (see the case t = 0 in Fig. 2.4)

νa0(f) =




0, 0 ≤ t ≤ 1,

(f 2 − 1)/(f 2 − 1 + q) f > 1,
(2.27)

corresponds to the zero-temperature limit. In the zero temperature limit, for

F < Fp , the vortices are trapped in the potential wells of the planar defects

and cannot move, while for F > Fp the potential barrier disappears and they

begin to move. The value of the current at which F = Fp corresponds to the

critical current at zero temperature. Let us consider in turn the dependence of

the probability function νa(f, t, q) on each of the quantities f , t for the remaining

quantities held fixed (denoted by the subscript “0”).

The dependence νa(f) = νa(f, t0, q0) characterizing νa as a function of the

external force acting on a vortex at constant temperature for constant pinning

plane density is monotonically increasing from the value νa(0, t0, q0) to its limiting

value of 1 as f → ∞ (see Fig. 2.4). For f � 1 the function νa(f) has an expansion

νa(f) ≈ 1 − q0f
−2. This corresponds to the physical meaning νa as a probability

to overcome the potential barrier, νa → 1 if f → ∞. The qualitative form of

the dependence νa(f) is determined by the value of the dimensionless parameter

t0 characterizing the temperature. At low temperatures kBT 	 U0 a nonlinear

transition takes place from the TAFF regime of vortex motion perpendicular to

the pinning planes to the FF regime when the external force is increasing. In this

transition region the function νa(f) has a characteristic nonlinear shape (Fig. 2.4).

At high temperatures (kBT ≥ U0) the FF regime is realized over the entire range

of variation of the external force.

The dependence νa(t) = νa(f0, t, q0), characterizing νa as a function of tem-

perature for the external force and pinning plane density fixed, is also a mono-
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Figure 2.4: The dependence of the probability function νa on the dimensionless

parameter f (see text) for different values of the parameter t0 as indicated.
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Figure 2.5: The temperature dependence of the probability function νa for different

values of the parameter f0 as indicated (t = kBT/U0).

tonically increasing function, and its qualitative form is determined by the value

of the parameter f0. For t ≥ 1 the expansion of νa(t) in a power series in t has a

form νa(f0, t, q0) ≈ 1 − q0t
−2. Thus, the temperature dependence νa(t) (Fig. 2.5)

depicts the nonlinear transition from the TAFF regime of vortex motion perpen-

dicular to the pinning planes to the FF regime as the temperature is raised. It

also follows from the above said that the width of the transition from the TAFF

to the FF regime, depending on t or f , decreases as q is reduced (see also equation

2.27).

The dynamics of a vortex system with the Hall effect taken into account

depends substantially on the direction of the magnetic field. According to equa-

tion 2.10, an effective external force F perpendicular to the pinning planes is

created by a uniform transport current flowing through the sample. Such a force

contains two components – the Lorentz force nΦ0jy and the Hall force φ0γεjx,

acting on the vortex along the x axis. Depending on the direction of the magnetic

field indicated by the factor n = ±1, these two components can be identically or
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oppositely directed, and the resulting force will be different in these two cases. In

what follows the current density is expressed in unites of jc = U0/(Φ0b) so that

for the dimensionless parameter f , characterizing the external force, one obtains

f = njφ(α), φ(α) = cosα + nγε sinα.

Thus, the value of the external force F = Fp at which the height of the potential

barrier vanishes corresponds to the dimensionless current j = 1/φ(α), which is

equal to the critical current at T = 0. In the case 0 < kBT 	 U0 it corresponds

to the crossover current jcr. In the function νa(jφ(α), t) = νa(f, t, q0) the even

component ν+
a = (νa(+n) + νa(−n))/2 and the odd component ν−a = (νa(+n) −

νa(−n))/2 in the magnetic field can be separated. These components determine

the observed resistive characteristics - the even and odd components (with respect

to magnetic field) of the longitudinal and transverse resistivity ρ±||,⊥. From the

definition of ν±a it follows that their possible values for any values of j, t, α, ε, and

q, in according with the values of the function νa, always lie between zero and

one. It is easy to see that the component ν+
a is even in ε, i.e., ν+

a (−ε) = ν+
a (ε),

and the component ν−a is odd, i.e., (ν−a (−ε) = −ν−a (ε)). Therefore, for ε = 0 the

even component ν+
a ≡ νa(jy, t), and the odd component ν−a ≡ 0. The qualitative

behavior and the limits of the component ν+
a (j) as j → 0 or j → ∞ coincide with

the corresponding limits of νa(f). The component ν−a (j) tends to zero in the

linear regimes (as j → 0 or j → ∞) and is nonzero in the region of nonlinearity

of νa, forming a characteristic peak (see Fig.2.6). The limits of the components

ν+
a (t) and ν−a (t) as t → ∞ are the same as for j → ∞, and for t → 0 they are

equal to the corresponding components ν±a0
of the function νa0(jφ(α)).

One can obtain expressions from formulas 2.22, 2.23, 2.24 for the experi-

mentally observed longitudinal ρ‖ = e‖/j and transverse ρ⊥ = e⊥/j resistivities

(relative to the current direction) with the Hall effect taken into account. Their

even ρ+ = (ρ(n) +ρ(−n))/2 and odd ρ+ = (ρ(n)−ρ(−n))/2 components relative
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Figure 2.6: The temperature dependence of the odd component ν−a of the probabil-

ity function for the different values of parameter j0 as indicated, α = 45◦, γ = 1,

ε = 0.1

to the magnetic field inversion are as following:

ρ±‖ =
1

1 + ε2

(
1

γ
cos2 α− γε2 sin2 α

)
ν±a +

γ

2
(1 ± 1) sin2 α, (2.28)

ρ±⊥ =
1

1 + ε2

(
nεν∓a + (

1

γ
+ γε2)ν±a sinα cosα

)
− γ

2
(1 ± 1) sinα cosα, (2.29)

where ν±a are the above-defined even and odd components, relative to the mag-

netic field direction, of the function νa(jφ(α), t). In equations 2.28 and 2.29 the

nonlinear and linear (nonzero only for ρ±‖,⊥) terms separate out in a natural way.

The physical reason for the appearance of linear terms is that in the model under

consideration for α �= 0 there is always FF regime of vortex motion along the

pinning planes.
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2.5 Probability function and the average

pinning force

The physical meaning of the introduced νa-function is a probability of the vortex

to jump over the pinning barrier. There exists an another physical interpretation

and it is shown below that νa-function has a close relationship to the average

pinning force acting on the vortex.

Neglecting a Hall-effect, i.e. ε 	 1, and taking anisotropy parameter γ = 1

one can average Eq. 2.1 as follows:

η0 < v >=< FL > + < Fp > (2.30)

Because the pinning potential U is a function of only coordinate x, the pinning

force Fp has only an x-component and



η0 < vx >= FLx+ < Fp >

η0 < vy >= FLy.
(2.31)

On the other hand for ε	 1 and γ = 1

η0 < vx >= FLxνa(FLx)

η0 < vy >= FLy,
(2.32)

where the first equation follows directly from Eq. 2.12 and the second is obtained

by integration of Eq. 2.8, taking into account the definition of the average velocity

(Eq. 2.6).

Comparing Eqs. 2.31 and 2.32 it is evident that the average pinning force

acting on the vortex is connected with νa-function in an easy way

< Fp >= −FLx(1 − νa). (2.33)

The νa-function is a probability function so it always fulfills the condition

0 ≤ νa ≤ 1. There are two limiting cases for this function. The condition νa = 1

corresponds to the case when the probability of the vortex to jump across the
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pinning barrier is equal to 1 and the pinning barriers do not affect the vortex

motion any more. According to Eq. 2.33 the average pinning force is equal to

zero in this case which is quite consistent with a qualitatively expected physical

picture.

If νa = 0, i.e. the probability of the vortex to jump across the pinning barrier

is zero. The average pinning force acting on the vortex is maximal and equal to

−FLx according to Eq. 2.33.

The dependence of the guiding angle β on νa-function is also clear from

Eq. 2.32. The magnitude of this angle is defined by the ratio vx/vy. It is easy to

see, that with growth of νa-function vx component increases and thus the guiding

angle increases. If ν = 0 than the guiding angle is equal to the angle α between

the transport current direction and the pinning planes.

2.6 Influence of additional point-like pinning on

the guided vortex motion

In the model described up to now only anisotropic pinning produced by the

parallel pinning planes is taken into account. The absence of isotropic pinning

leads to the absence of a critical current for all current directions with respect

to the pinning planes, except for α = 0. To remedy this obvious discrepancy

with regard to the experimental observations, an isotropic pinning caused by

uncorrelated point-like defects must also be considered. In this chapter a short

summary of an extension of the described theoretical model on anisotropic pinning

is given.

In the presence of uncorrelated point-like defects each vortex moving with

velocity v is subject of an isotropic pinning force Fi
p which can be formulated as

Fi
p = −ηi(v)v, (2.34)

where ηi(v) is a velocity-dependent viscosity and v = |v|. The Langevin equation
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for vortex motion (Eq. 2.1) must be modified in this case as follows

η0v + nαH [v × z] = FL + Fa
p + Fi

p + Fth. (2.35)

For purely isotropic pinning, Fa
p = 0, and for Fth = 0 solution of Eq. 2.35 was

obtained in [88]. One can show that this solution can be presented in general

case in terms of the probability function of overcoming the effective current- and

temperature-dependent potential barrier of isotropic pinning, νi(FL), which is

simply related to ηi as νi(FL) = η0/ηi(v) [45].

Using the ansatz 2.34 one can reduce Eq. 2.35 to the form

ηv + nαH [v × z] = FL + Fa
p + Fth (2.36)

where η = η(v) ≡ η0 + ηi(v). It was shown in [45] that using the results from the

previous section the solution of Eq. 2.36 can be written in the form

η0 < v >= νi(FH)FH (2.37)

where the vector FH has the following components:

FHx = (Fxνa(Fx))/(1 + ε̃ 2),

FHy = FLy + (nε̃Fxνa(Fx))/(1 + ε̃ 2).
(2.38)

Here Fx ≡ FLx − nε̃FLy. F =
√
F 2

Hx + F 2
Hy, FLx and FLy are the x− and y−

components of the Lorentz force, respectively and ε̃ ≡ ενi(FH). The functions

νi and νa have the physical meaning of the probability to overcome the isotropic

and anisotropic pinning barrier, respectively. Both, νi and νa can be calculated

using a simple model potential as described earlier (see Eq. 2.25 and Fig. 2.3)

with different potential depths U0, period a, and the characteristic dimension of

the potential well b for isotropic and anisotropic pinning.

In the limit of a small Hall constant, ε̃ is simplified to ε	 1, ε̃ = ενi(FH0),

where FH0 ≡ FH(ε = 0) and the right-hand part of Eq. 2.37 becomes v-independent.

All the subsequent results will be discussed in this limit.
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Analogous to the previous section the even and odd components of the longi-

tudinal and transverse magnetoresistivities, defined by the relations ρ± = (ρ(n)±
ρ(−n))/2, were calculated in [45, 46]:

ρ+
‖ = (sin2 α + νa(FLx) cos2 α)νi(FH0),

ρ−‖ = (sin2 α + νa(FLx) cos2 α)ν−i (FH) + νi(FH0)ν
−
a (Fx) cos2 α.

(2.39)

ρ+
⊥ = −νi(FH0)(1 − νa(FLx)) sinα cosα,

ρ−⊥ = nενa(FLx)ν2
i (FH0) +

(
ν−a (Fx)νi(FH0) − ν−i (FH)(1 − νa(FLx))

)
sinα cosα.

(2.40)

Here ν−i and ν−a are the odd components of the probability functions νi(FH)

and νa(Fx), respectively. The dependence of function ν−i on the parameters j and

t are analogous to those of the function ν−a as described in the previous section.

In the isotropic case νa = 1 and from Eqs. 2.39, 2.40 follows that

ρ+
‖ = ρ‖i = νi(Fi), ρ−⊥ = ρ⊥i = nεν2

i (Fi), (2.41)

where Fi = FH0(νa = 1) = |F|. The well-known scaling relation ρ‖i ∝ ρ2
⊥i, derived

in [88], follows from Eqs. 2.41. Note also that in the isotropic case ρ−‖i = ρ+
⊥i = 0.

For convenience equations 2.39, 2.40 can be represented in the form

ρ+
‖ = ρ̃‖i · ρ+

‖a, ρ+
⊥ = ρ̃‖i · ρ+

⊥a, (2.42)

ρ−‖ = ν−i ρ
+
‖a + ρ̃‖i 2 · ρ−‖a, ρ−⊥ = ν̃ 2

‖i · ρ−⊥a −
1

2
ν−i (1 − νa) sin 2α. (2.43)

Here ρ̃‖i ≡ νi(FH0) is the probability function νi of the anisotropic argument

FH0 =
√
F 2

Lxν
2
a(FLx) + F 2

Ly. The magnetoresistivities ρ±‖a, ρ±⊥a and the νa ≡
νa(FLx) function are the same as ρ±‖ , ρ±⊥ and νa presented in section 2.4, re-

spectively. Furthermore, ν−i = ν−i (FH(n)) and FH(n) = [F 2
Ly + F 2

Lxν
2
a(Fx) +

2nενi(FH0)FLxFLyνa(1 − νa)]1/2.

It is clear from Eqs. 2.42 and 2.43 that the current and temperature depen-

dencies of the magnetoresistance components ρ±‖,⊥ is governed only by the depen-

dencies on the current and temperature of the odd and even components of the
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probability functions νi and νa. It can also be shown that for the case of a small

Hall effect, ε 	 1, terms proportional to ε are absent in the even components

of the longitudinal and transversal resistivity and only contributions describing

the competition between isotropic pinning and nonlinear guiding at the pinning

planes in terms of the ν±i and ν±a functions are present [45, 46].

In order to describe the guided vortex motion along the pinning planes, the

angle β between the transport current direction and vortex velocity can be used

(see Fig. 2.2). It can be shown that cotβ = −ρ+
⊥/ρ

+
‖ [35]. On the other hand,

in the case of a small Hall effect (ε	 1) and for a small normal-state anisotropy

(γ = 1) from Eqs. 2.42 and 2.28, 2.29 it follows that

cot β = −ρ
+
⊥
ρ+
‖

=
1 − νa

tanα + νa cotα
(2.44)

From this relation it is easy to see that the guiding angle β is not influenced by the

isotropic disorder because it does not depend on νi. Isotropic pinning therefore

influences only the magnitude of the vortex velocity but not the direction of

it [46].

2.7 Conclusions

As was briefly shown, it is possible to describe analytically the vortex dynamics

in a superconductor with correlated pinning planes and uncorrelated point like

defects using a simple potential form (Eq. 2.25 and Fig. 2.3) based on a model of

pinnig developed in [24, 31, 35, 37, 38, 45, 46]. This model gives relations between

the experimentally observed nonlinear resistivities ρ±‖,⊥ in external magnetic field

and the functions νa and νi which are the probabilities of a vortex to overcome the

anisotropic and isotropic pinning barrier, respectively. The nonlinear dependence

of these probability functions on current and temperature leads to nonlinearities

in the magnetoresistive response of the superconductor in the mixed state. The

appearence of two new resistivity components, namely ρ−‖ and ρ+
⊥ due only to
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the pinning anisotropy, is predicted. The anisotropy in this theoretical model is

produced solely by planar defects, the randomly distributed point like pinning

centers have an effect only on the absolute value of the vortex velocity but they

do not affect its direction. The additional isotropic point-like pinning results

furthermore in an appearance of a critical current jc for all transport current

orientations, whereas in the previous model, with only anisotropic pinning taken

into account (see section 2.2), a critical current exists only for the current oriented

at an angle α = 0 with regard to the planar defects.
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Chapter 3

Guided vortex motion in

unidirectionally twinned

YBa2Cu3O7−δ films

3.1 Twin formation in YBa2Cu3O7−δ

The crystal structure of YBa2Cu3O7−δ depends on the value of the parameter δ.

YBa2Cu3O6 has a tetragonal symmetry (space group P4/mmm), corresponding to

a unit cell as is schematically shown in Fig. 3.1(a). The (001) plane of YBa2Cu3O6

(the base plane of the cell shown in the picture) contains only Cu atoms. The

cell parameters are a = b = at = 0.3865 nm, c = 1.1825 nm (see Table 3.1).

With increasing δ a transition into orthorhombic symmetry (space group Pmmm)

occurs. Additional oxygen atom occupy the sites between the Cu atoms along

the b axis as illustrated in Fig. 3.1(b). The orthorhombic state of YBa2Cu3O7−δ

is the stable phase at room temperature.

The transition from the tetragonal to the orthorhombic modification, which

is a phase with lower symmetry, leads to the formation of a twinned structure of

YBa2Cu3O7−δ due to the strain release during the transition. In order to achieve

37
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a) b)

Figure 3.1: Unit cell of Y Ba2Cu3O7−δ, a) thetragonal, b) orthorhombic.

a good strain compatibility the orthorhombic phase must adopt those orientations

for which the area of contact of its unit cell with that of the tetragonal phase

is conserved at the interface. To a first approximation this requires that the

diagonals of the ab−planes of the unit cells of the two phases be superimposed

at the interface [47].

In Fig. 3.2 the epitaxial relations between the tetragonal and the orthorhombic

phases are shown schematically. The dashed square is a projection of the original

tetragonal structure onto the ab-plane. There are two possible orientations of

the orthorhombic cell: S1 and S2 if the sides of the orthorhombic and tetrago-

nal cells stay parallel to each other. Because the diagonal chosen for epitaxial

matching with the tetragonal cell can be either [110] or [11̄0], each state S1 and

S2 can adopt two suborientations, denoted by superscripts “+” (an anticlockwise

suborientation) and “−” (a clockwise suborientation). For the diagonal [110] two

orientations of the orthorhombic structure are possible: S−
1 and S+

2 (notation is
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a) b)

Figure 3.2: Epitaxial relationship between the tetragonal phase (solid rectangles)

and the orthorhombic phase of Y Ba2Cu3O6 (dashed squares). The figure is drown

not to scale, to emphasize an orthorhombic distortion of Y Ba2Cu3O7−δ.

according to Wadhawan [48]). For the [11̄0] diagonal the directions are accord-

ingly S+
1 and S−

2 . Twin walls are called coherent if only the sub-orientation states

S−
1 and S+

2 or only S+
1 and S−

2 are contiguous in the crystal, otherwise they are

incoherent. Fig. 3.3 illustrates a projection of a crystal structure containing a

(110) twin wall on the ab-plane.

Usually coherent and incoherent twins coexist in YBa2Cu3O7−δ single crys-

tals, whereas the twinning in thin films depends strongly on the structure of the

underlying substrate. The most often used substrates for YBa2Cu3O7−δ thin film

deposition are SrTiO3, NdGaO3, MgO, and LaAlO3.

SrTiO3 has a cubic structure with lattice parameter a = 0.3905 nm and is

widely used for YBa2Cu3O7−δ thin film deposition because of the good lattice

fit with the YBa2Cu3O7−δ crystal structure.NdGaO3, on the other hand, has an

orthorhombic crystal structure with lattice constants a=0.5428 nm, b=0.5493 nm,

c=0.7729 nm [49]. The crystal structure of NdGaO3 can be also described by a

pseudocubic perovskite lattice with unit vectors ac = 1
2
(a, b, 0), bc = 1

2
(−a, b, 0),
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a

b

(110)

a

b

Figure 3.3: Twinning with (110)-plane as a twin wall. Axis ratio b : a = 4 : 3.
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Figure 3.4: Temperature dependences of lattice parameters for substrate materials

having a perovskite-like structure and Y Ba2Cu3O7−δ (after [53]) 1: SrT iO3; 2:

pseudocubic NdGaO3 with lattice constant ap; 3: pseudocubic NdGaO3 with lat-

tice constant cp; 4: LaAlO3; at: Y Ba2Cu3O7−δ tetragonal; a, b: Y Ba2Cu3O7−δ

orthorhombic.

and cc = 1
2
(0, 0, c). The angle between the ac and bc axis in the (001) plane is

γ = arccos[(b2 − a2)/(b2 + a2)] = 89.3◦, which deviates only slightly from a right

angle by 0.7◦. From Fig. 3.4 is clear that the parameter at of YBa2Cu3O7−δ fits

perfect the pseudocubic cell of the NdGaO3 for temperatures T > 700◦C. The

other commonly used substrates have a larger lattice mismatch at the interface to

a c-oriented YBa2Cu3O7−δ film which often leads to the formation of incoherent

twins. On NdGaO3 substrates even almost twin free YBa2Cu3O7−δ films with

c-axis orientation can be grown [50].

The unit cell diagonal of the ab-plane of the orthorhombic YBa2Cu3O7−δ is d =
√
a2 + b2 = 0.5449 nm. The pseudocubic cell of NdGaO3 has two slightly different
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YBa2Cu3O7−δ YBa2Cu3O7−δ SrTiO3 NdGaO3 NdGaO3

tetragonal orthorhombic cubic orthorhombic pseudocubic

a, nm 0.3865 0.3821 0.3901 0.5428 0.3861

εa – – 2.1% – 1.0%

b, nm 0.3865 0.3885 0.3901 0.5493 0.3861

εb – – 0.41% – -1.0%

c 1.1825 1.1676 0.3901 0.7729 0.3865

Table 3.1: Lattice parameters a, b, c and lattice mismatch εx = (xsub/xY BCO tetr)−
1, x = a, b between different substrates and Y Ba2Cu3O7−δ at room temperature

(for tetragonal Y Ba2Cu3O7−δ at 818 ◦C).

diagonals in the ab-plane: d1 = 0.5428 nm and d2 = 0.5493 nm. The mismatch ε

defined analogously to εx in Table 3.1 for the diagonal d1 is εd1 = −0.39%, and

for the other diagonal εd2 = 0.80%. Accordingly, there is a prefereable direction

for the YBa2Cu3O7−δ diagonal alignment when growing on the (001) NdGaO3

substrate, which can lead to the formation of unidirected twins.

T. Steinborn et al. studied the growth of YBa2Cu3O7−δ thin films on different

substrates [51, 54]. It was found that c-axis oriented YBa2Cu3O7−δ films grown

onto (001) SrTiO3 show the same twin structure as a bulk single crystals, i.e.

both, (110) and (11̄0) twin walls are present in the films. The films grown on

NdGaO3 substrates also showed twinning in two directions, but the slight or-

thorhombicity of the substrate leads to different volume fractions occupied with

the two different twin directions.

3.2 Film preparation and X-ray analysis

YBa2Cu3O7−δ films on SrTiO3 and NdGaO3 substrate were prepared using the

standard sputter technique. This method is based on a discharge between an

anode (substrate) and a cathode, representing a target of the material to be
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sputtered, under a DC bias of approximately 300 V. A mixture of argon gas and

oxygen with a ratio 4:1 at a pressure of approximately 3 hPa was used. The

ions and electrons created and accelerated by the discharge strike the cathode

and produce sputtered atoms and secondary electrons which in turn produce

additional ionization [52]. After deposition the films were annealed in oxygen

atmosphare at 550◦ C during 30 min.

The crystal quality of the prepared films was analyzed by X-ray diffractometry.

The diffractograms measured in Bragg-Bretano geometry show c-axis growth,

and the rocking curves of the (005) reflex of YBa2Cu3O7−δ have full width at

half maximum of about 0.2◦ indicating good epitaxial growth on both types of

substrates. Twin orientation were explored using a four circle diffractometer with

Euler cradle and graphite-monochromatized Cu Kα radiation (λ = 1.540Å). The

diameter of the irradiated area on the sample was about 1.2 mm.

To analyze the twins orientation, a series of q-scans for the different (hkl)

reflections in the (hk2)-plane of the orthorhombic YBa2Cu3O7−δ structure were

performed. For a better understanding of the obtained results the reciprocal

lattice of YBa2Cu3O7−δ is considered. The reciprocal unit cell is defined by the

unit vectors

a∗ =
[b× c]

V
, b∗ =

[c× a]

V
, c∗ =

[a× b]

V
,

where a, b, c are the unit cell vectors in direct space and V is the volume

of the unit cell. In the case of orthogonal crystal systems in reciprocal space

only the lengths of the axes change but not the directions when compared with

direct space. The angles remain also unchanged. Thus the four possible twin

orientations of an orthogonal crystal system showed in Fig. 3.5 are the same for

both direct and reciprocal space, except the length of the axis.

Fig. 3.6 shows a scan of the (hk2) plane of a YBa2Cu3O7−δ film deposited on a

NdGaO3 substrate. This is a scan with steps of the width ∆h, ∆k in the vicinity

of an chosen point hkl in reciprocal space. This technique gives a possibility

to analyze a crystal structure of thin films. Twofold splitting of reflections in
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Figure 3.5: Splitting of the reflections for the four possible twin orientations of

Y Ba2Cu3O7−δ. The axis ratio is a/b=1.1. The notation is given according to

Wadhawan [48] (see also [54]). S−
1 , S−

2 – big circles, S+
1 , S+

2 – small circles.
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Fig. 3.6 indicates the existence of twins in the film. A closer look of some of

these reflections is shown in Fig. 3.7. A twofold splitting of the reflections (302),

(032), (2̄22), (3̄02), (03̄2), (22̄2) is consistent with the existence of only two twin

orientations of the crystal structure, namely S+
1 and S−

2 . From this it can be

concluded that there exist twins aligned only along the (110) plane in the film.

For comparison the same (hkl)-scan of a YBa2Cu3O7−δ film grown on a (100)

SrTiO3 substrate is shown in Fig. 3.8. The peaks (032), (302), (03̄2), (3̄02) show

a fourfold splitting, whereas (222), (2̄22), (2̄2̄2), and (22̄2) are three times split.

This can be explained by the existence of four different crystal orientations, i.e.

all the orientations S+
1 , S+

2 , S−
1 , S−

2 are present in the film (compare with Fig. 3.5).

The reported X-ray measurements prove the existence of correlated twin

planes in the YBa2Cu3O7−δ films grown on (001)-oriented NdGaO3 substrate.

The films grown on (100)-oriented SrTiO3 substrates displays uncorrelated twins

with twin walls (110) and (11̄0) of YBa2Cu3O7−δ.
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Figure 3.6: A scan of the (hk2)-plane of Y Ba2Cu3O7−δ film grown on NdGaO3.
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Figure 3.7: Splitting of the reflections on the scan of the (hk2)-plane of

Y Ba2Cu3O7−δ film grown on NdGaO3.
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Figure 3.8: Splitting of the reflections on the scan of the (hk2)-plane of

Y Ba2Cu3O7−δ film grown on SrT iO3.



3.3. MAGNETORESISTIVITY MEASUREMENTS 49

3.3 Magnetoresistivity measurements

For all the resistivity measurements on the unidirectionally twinned YBa2Cu3O7−δ

films the standard four-probe technique was used. Well-defined geometries were

required for the measurements of the longitudinal and transversal magnetoresis-

tivities of the samples. Sputtered films were structured into suitable geometry by

photolitography and ion-beam etching. A structure as was used for the sample

preparation is shown in Fig. 3.9. It consists of seven micro-bridges with a width

of 100 µm and a length of 800 µm. This mask configuration allows to measure

the longitudinal and transversal voltages for different transport current directions

with respect to the twinning planes: α = 0◦, 10◦, 30◦, 45◦, 60◦, 80◦, and 90◦ on

the one film.

The patterned samples were mounted on a suitable sample holder and con-

tacted using a wire bonder. All the magnetoresistivity measurements were per-

formed in external magnetic fields perpendicular to the film surface, and the even

and the odd longitudinal and transversal magnetoresistivity components were

Figure 3.9: Structure as used for the magnetoresistivity measurements.
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calculated according to the following simple relations:

ρ±‖,⊥ = (ρ‖,⊥(+H) ± ρ‖,⊥(−H))/2 (3.1)

The resistively measured superconductive transitions of the samples ak69 and

ak81 are shown in Fig. 3.11 and 3.12. The critical temperature in zero magnetic

field is for both samples 90.5 ±0.1 K, with a transition width of about 1 K. The

resistivity variations induced by the twins are very small for sample ak81 but is

noticeably larger for the other sample. However, there is no well-defined system-

atics in the behaviour of the curves when compared with the results obtained on

the Nb-samples (see Chapt. 4).

Figure 3.10: Sample mounted on the sample holder.



3.3. MAGNETORESISTIVITY MEASUREMENTS 51

�� �� �� �� �� �� �� ��

�

�

�

�

�

�

�

�

 

 

B=0 T,

j=2,5 kA/cm2

ρ 
/ m

Ω
 c

m

T / K

���

���

���

���

���

��

Figure 3.11: Resistive superconductive transition of sample ak69.
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Figure 3.12: Resistive superconductive transition for sample ak81.
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Fig. 3.13 and 3.14 show magnetic field dependence of the longitudinal even

resistivity ρ+
‖ (B) calculated from the experimental data according to relation 3.10

for the samples ak69 and ak81, respectively. The curves do not show a good

systematic behaviour so the anisotropy induced by the unidirected twin walls is

weak in both samples.

Theory predicts guided vortex motion in this system because of the pinning

anisotropy induced by the unidirected twins. One of the consequences of this is

the appearance of new components in the magnetoresistivity of the samples, which

would be absent in the case of pure isotropic pinning. These components are the

odd longitudinal and even perpendicular (odd and even with regard to the mag-

netic field direction) magnetoresistivity components. Magnetic field dependencies

of the odd longitudinal components ρ−‖ , calculated according to relation 3.10, for

the samples ak69 and ak81 are shown in Fig. 3.15 and Fig. 3.16. The resistivity

response is not zero (which would correspond to isotropic pinning), but all the

curves for both, ak69 and ak81, samples are very similar. This is in contrast to

theory which predicts the odd longitudinal components to be dependent on the

angle α between the transport current and the twins direction.

The magnetoresistivity measurements on the unidirectionally twinned

YBa2Cu3O7−δ films did not provide evidence for a pronounced guided motion of

vortices. A clear anisotropy of the pinning force induced by the twins was not

observed.

As a possible explanation of this observation the strong influence of isotropic

pinning must be taken into account. Possibly, pinning caused by point-like defects

dominates over the plane pinning caused by the unidirected twins. This leads to

a suppression of the effects caused by the pinning anisotropy and to a marked

isotropization of the vortex pinning. From X-ray analysis, as made for the film

characterization, the homogeneity of the twin boundaries in the measured films

cannot be proved, i.e. there can be regions in the film where twins are completely

absent, which would lead again to the isotropization of the pinning force and
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thus to the reduction of the effects connected with the pinning anisotropy in the

samples.
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Figure 3.13: Magnetic field dependence of the even longitudinal component of the

magnetoresistivity for the different transport current orientations with respect to

the twins as indicated for sample ak69.
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the magnetoresistivity for the different transport current orientations with respect

to the twins as indicated for the sample ak81.
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the magnetoresistivity for the sample ak69.
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Chapter 4

Guided vortex motion in

Nb films grown on faceted

substrates

4.1 Faceting of the Al2O3 {101̄0} surface

It is known that the surfaces of metals, semiconductors, and ceramics change un-

der certain conditions from flat ones into such of a faceted hill-and-valley struc-

ture [55, 56, 57, 58]. This can result from external perturbations, such as chemical

adsorption, or as the result of the surface being thermodynamically unstable. The

classical explanation for the driving force of this process was developed by Her-

ring [59]. According to this approach the surfaces other than those found on the

equilibrium crystal shape will decompose into a hill-and-valley structure to re-

duce the overall surface free energy. The type of the developed structure depends

on the material and the orientation of the surface.

(101̄0)-cut (m-plane) α-Al2O3 develops a semi periodic faceted surface when

annealed at high temperatures in air [60]. This is, driven by the large surface

energy of the (101̄0) surface, occurs into a hill-and-valley structure consisting of

55
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�

17.6°

32.4°

Figure 4.1: Faceted surface of the (101̄0)-Al2O3 substrate.

the (101̄1) and (1̄012) planes of the Al2O3 substrate [61, 62]. The faceted substrate

surface is schematically shown in Fig. 4.1. The surfaces (101̄1) and (1̄012) form

the angles of 17.6◦ and 32.4◦ with the (101̄0) plane of Al2O3, respectively [63].

It was shown that the facets form with an average periodicity of 350 to 420 nm

with aspect ratios (height-to-period length) of about 1:8 [64]. Al2O3 is known

to be an excellent substrate for the body centered cubic metals [65]. In the

experiments reported in this thesis such a faceted surface serves as a template for

coherent epitaxial overgrowth of Nb layer. It is known that pure Nb is a type II

superconductor [66]. The Nb films grown on this substrates using molecular beam

epitaxy technique replicate the faceted substrate surface, and the facet ridges in

the such films act as pinning planes [64].

4.2 Sample preparation

Nb-films with different thickness were grown on the faceted α-Al2O3 substrates

using molecular beam epitaxy techniques1 [64]. The films grow epitaxially and

1Author thanks J. Oster for the help in the film deposition. Details about the deposition

procedure and substrate treatment can be found elsewhere [67].
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Figure 4.2: STM image of Nb-film deposited on the faceted Al2O3 substrate surface

replicate the faceted substrate surface as shown in Fig. 4.2. For all resistivity

measurements the standard four-probe technique was used. Well defined ge-

ometries were required for the measurements of the longitudinal and transversal

magnetoresistivities of the samples. For the experiments two different types of

micro-structures were used. The first structure used is shown in Fig. 4.3(a). It

consists of one micro-bridge with a width of 50 µm and a length of 380 µm.

This structure allows to measure the longitudinal and transversal voltages for

one transport current direction on the same sample. To remedy this restriction

to only one current direction another structure has been developed. It consists

of five equal micro-bridges oriented at the different angles α, as shown in the

Fig. 4.3(b). The micro-bridges have a width of 25 µm and a length of 510 µm.

This structure allows to measure the longitudinal and transversal voltages for

the different transport current directions with respect to the facet ridges at the

angles α = 0◦, 30◦, 45◦, 60◦, and 90◦ on the same sample.

The films were patterned by photolithography and ion-beam etching using
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a) b)

Figure 4.3: Hall structures as used for the magnetoresistivity measurements: (a)

Simple geometry for one current direction. The structure (b) allows to send a

transport current at the angles 0◦, 30◦, 45◦, 60◦, 90◦ with respect to a pre-defined

direction.
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the masks with structures as shown in Fig. 4.3. The patterned samples were

mounted on a suitable sample holder and contacted using a wire bonder. All the

magnetoresistivity measurements were performed in an external magnetic field

+H and −H directed perpendicular to the film surface, and the even and odd

magnetoresistivity components were calculated according to the following simple

relation:

ρ± = (ρ(+H) ± ρ(−H))/2 (4.1)

4.3 Magnetoresistivity data of the first

sample set

For the first experiment three Nb films with a thickness of 390 Å were grown

during one deposition process on faceted α-Al2O3 substrates. As substrates for

the film deposition three pieces cut from the same faceted α-Al2O3 wafer were

used. The micro-bridges were patterned having different orientations to the facet

ridges: three samples were prepared by photolithography and ion etching using

the mask shown in Fig. 4.3(a) allowing measurements with the transport current

directed at the angles α = 0◦, 45◦ and 90◦ with regard to the facet ridges.

Fig. 4.4 shows the superconductive transitions for all three samples, i.e. the

ρ(T ) dependences in zero magnetic field. The transition width is about 0.05 K

for all samples, but the sample with α = 45◦ shows a shift of the transition and

reduction of the critical temperature by about 0.05 K. The normal resistivity

of the film with α = 0◦ orientation, i.e. when the transport current is directed

parallel to the facets, is larger than for α = 90◦, whereas one would expect the

larger value for the α = 90◦ orientation because of the faceted film geometry.1

The shift of the superconductive transition and the unexpected behaviour of the

resisitivity of the films for the different current orientations can be explained by

1Detailed explanation of this is given on page 67.



60 CHAPTER 4. GUIDING IN FACETED NB-FILMS

8,80 8,85 8,90 8,95 9,00 9,05 9,10
-0,1

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

j=51 kA/cm2
B =0 T

 

 

ρ || /
 µ

Ω
 c

m

T / K

  0°
 45°
 90°

Figure 4.4: Superconductive transition in zero magnetic field of the three samples

with different transport current orientation with respect to the facets, as indicated,

in zero magnetic field.

inhomogeneities created during the film preparation process. Though all films

were deposited on the different pieces of the same substrate and in the same

deposition process, one cannot exclude a possible non-homogenious temperature

distribution in the sample holder and thus slightly different preparation conditions

for the three films.

The dependences of the even longitudinal resistivity ρ+
‖ on the temperature

and the magnetic field are shown in Fig. 4.5. In the temperature dependence

shown in Fig 4.5(a), the curve for the α = 45◦ sample is shifted to lower temper-

atures by about 0.05 K, which corresponds to the shift of this curve in zero field

(see Fig. 4.4). Also the magnetic field dependence of this component shows a shift

of the transition toward smaller fields as can be expected (see Fig. 4.5(b)). The

curves for α = 0◦, 90◦ show almost the same superconductive transition except

of the different values of the resistivity in the normal state.

In Fig. 4.6 the temperature and magnetic field dependences of the odd longi-
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Figure 4.5: Temperature (a) and magnetic field (b) dependences of the even lon-

gitudinal magnetoresistivity component ρ+
‖ for the different transport current ori-

entations with respect to the facet ridges, as indicated.
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tudinal resisitivity components ρ−‖ are shown. The curves for α = 45◦ are shifted

into the lower temperature and field regions by approximately the same values as

in Fig. 4.5, respectively. As was shown in Chapt. 2, the appearance of this com-

ponent is a characteristic feature of the guided vortex motion, and is caused by a

pinning anisotropy. In an isotropic superconductor this component must be zero.

The first experimental observation of this component was made by A. A. Pro-

dan, V. V. Chabanenko et. al in an unidirectionally twinned YBa2Cu3O7−δ single

crystal [22], [23]. They measured an odd longitudinal magnetoresistivity of the

sample for the transport current directed at an angle of 0◦ and 45◦ with respect

to the twins as a function of the magnetic field and found, qualitatively, the

same behaviour as shown in Fig 4.6(b) for the 45◦ orientation. The amplitude

of the peak was about 3% from the resistivity of the sample in the normal state,

whereas an amplitude about 20% of the normal state resistivity was observed

in the reported measurements. The response for 0◦-oriented current was almost

zero in [22], but in Fig. 4.6(b) one can see almost the same behaviour for all three

current orientations.

The temperature and magnetic field dependences of the even transversal

components of the magnetoresistivity (even Hall components) ρ+
⊥ are shown in

Fig. 4.7. From the theoretical viewpoint the appearance of this component is

caused by the presence of a pinning anisotropy in the superconductor. For the

temperature dependences shown in Fig. 4.7(a) the theoretical model described in

this thesis predicts ρ+
⊥ to be maximal for the α = 45◦ transport current orien-

tation, see Eq. 2.40, and zero for α = 0◦, 90◦, if one neglects the Hall constant.

The observed response is indeed maximal for the α = 45◦ orientation and is rel-

atively small for α = 0 (see Fig 4.7). In the magnetic field dependences of the

even transversal components ρ+
⊥ (Fig. 4.7(b)) a sign change of the curve for the

α = 0◦ transport current orientation is observed, whereas the two other curves

have almost the same shape of the temperature and magnetic field dependences.
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Figure 4.6: Temperature (a) and magnetic field (b) dependences of the odd lon-

gitudinal magnetoresistivity component ρ−‖ for the different transport current ori-

entations with respect to the facet ridges, as indicated.
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Figure 4.7: Temperature (a) and magnetic field (b) dependences of the even

transversal magnetoresistivity component ρ+
⊥ for the different transport current

orientations with respect to the facet ridges, as indicated.
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Dependences of the odd transversal component of the magnetoresistivity (odd

Hall components) ρ−⊥ on the temperature and magnetic field are shown in Fig. 4.8.

This is a conventional Hall resistivity, because this component is odd with respect

to the magnetic field direction reversal. Qualitatively the temperature depen-

dences are very similar to the magnetic field dependences; the maximal response

shows the sample with α = 45◦ orientation. An anomalous Hall effect is observed,

the Hall resistivity changes its sign with increasing temperature or magnetic field.

Such an anomalous behaviour of the Hall resistivity has been observed widely in

ceramics, single crystals as well as in epitaxial thin films of high temperature

superconductors [68, 69, 70, 71, 72, 73] and in some conventional superconduc-

tors [74, 75, 76, 77]. An interesting question is, how the pinning anisotropy affects

the Hall behaviour, i.e., whether an anomalous Hall effect is an intrinsic property

of the material or whether it can also be caused by the presence of a pinning

anisotropy. The theoretical model described in Chapt. 2 allows for such a change

of the Hall resistivity sign, even if the Hall coefficient ε is constant, only due to

the pinning anisotropy in the sample. However, it was found that flat Nb films

show a sign change of the Hall coefficient ε [68, 77]. Thus, in order to use the

theoretical model proposed in Chapt. 2 for the description of the behaviour of

the Hall components, one must know the behaviour of the Hall coefficient ε in a

flat Nb film.
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Figure 4.8: Temperature (a) and magnetic field (b) dependence of the odd

transversal magnetoresistivity component ρ−⊥ for the different transport current

orientations with respect to the facet ridges, as indicated.
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4.4 Magnetoresistivity data of the second

sample set

For the second type of experiment a Nb films with a thickness of 250 Å were

grown on a faceted α-Al2O3 substrates. For the magnetoresistive measurements

the structure shown in Fig. 4.3(b) was patterned using photolithography which

allowed to measure the longitudinal and transversal magnetoresistivities for the

different transport current orientations with respect to the facets on one film

in contrast to the experiment described before. Two samples were prepared for

the magnetoresistive measurements in this way but, unfortunately, it was not

possible to obtain all desired data with the first sample. Contacting a such

patterned sample on a sample holder is a quite complicated procedure and it did

not work well with the first sample, not all contacts could be successfully put. For

this sample only the measurements of the longitudinal resisitivities as a function

of temperature in fields 0 and 15 mT were made. All results reported below

were obtained from the second sample. All observed effects for the longitudinal

resistivity components are in a good agreement with the data collected from the

first film.

The superconductive transition of this sample for the different current ori-

entations is shown in Fig. 4.9. The critical temperature for this sample in zero

magnetic field is Tc = 8.46 K, the width of the superconductive transition is

about 0.04 K. Because the film surface is not flat but faceted (see Figs. 4.1, 4.2),

different normal state resistances for the micro-bridges oriented at different an-

gles to the facets can be expected. Indeed, for α = 0◦ transport current flows

parallel to the facet ridges so the effective width of the bridge is larger as com-

pared with a bridge patterned on a flat film. For α = 90◦ orientation current

flows perpendicular to the facets so the effective length of the bridge is larger in

this case. From this it is clear that the normal state resistivity must be larger

for α = 90◦ which agrees with experimental data shown in Fig. 4.9. However,
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Figure 4.9: Superconductive transition in zero magnetic field for the different

transport current orientations with respect to the facet ridges, as indicated.

such a simple calculation gives a resisitance difference about 20% for this two

orientations for this film whereas the measured difference is about 7%. The most

probable explanation for this is that the each facet rigde does not extend throuth

the whole bridge as it was assumed for the calculation above. There exist defects

in facet structure where the convex and concave facet ridges change place and

the facets are not perfect periodic [64]. It is evident fom this argumentation that

such defects will make a resisitance difference lower as calculated using the easy

ideas about the film geometry.

The temperature dependence of the even component of the longitudinal resis-

tivity ρ+
‖ in magnetic field of µ0H = 15 mT is shown in Fig. 4.10. The spacing

between vortices at this field is approximately 400 nm, assuming an equilibrium

hexagonal flux-line lattice structure, which corresponds to the averaged facet

periods in the films. The curves show very good systematic behaviour. The de-

pendence of the normal state resistivity on the angle α can be given with the
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Figure 4.10: Temperature dependence of the even longitudinal magnetoresistivity

component ρ+
‖ for the different transport current orientations with respect to the

facet ridges as indicated.

following relations which can be derived within the described theoretical model:

ρ‖N(α) = ρN (1 − ∆ cos 2α), (4.2)

ρ⊥N(α) = −∆ρN sin 2α, (4.3)

where ρN = ρ‖N (45◦) is the longitudinal magnetoresistivity in the normal state

for the α = 45◦ transport current orientation with regard to the facet ridges;

∆ = −ρ⊥ N (45◦)
ρ‖ N (45◦)

= γ − 1, γ is the anisotropy parameter defined in chapter 2;

ρ⊥(45◦) is the transversal magnetoresistivity for the transport current directed at

an angle α = 45◦ with respect to the facet ridges. This two equations (4.2 and

4.3) reflect the tensorial behaviour of the resistivity components. The measured

values of the longitudinal resistivities differ from the calculated ones according

to Eq. 4.2, by about 0.4% for all measured angles except α = 0◦, for which this

difference is 2.5%. From Figs. 4.9 and 4.10 one can see that the normal state

curves almost coincide for α = 0◦ and 30◦, which could be due to a small angle
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Figure 4.11: Temperature dependence of the odd longitudinal magnetoresistivity

component ρ−‖ for the different transport current orientations with respect to the

facet ridges, as indicated.

misalignmet of the measuring structure with regard to the exact direction of the

facet ridge lines.

In Fig. 4.11 the temperature dependence of the longitudinal odd component

ρ−‖ for the different angles α is shown. The peak magnitude is maximal for

α = 0◦. The same measurements in magnetic fields µ0H = 0.003, 0.007, 0.030,

0.060, 0.090 T show that with increasing magnetic field all peaks become broader

and the peaks for α = 0◦, 30◦, 45◦ reduce their amplitude. The appearance of

this component is a characteristic feature of the guided vortex motion [35].

The dependence of the even transversal magnetoresisitivity component ρ+
⊥ on

the temperature shown in Fig. 4.12, demonstrates a maximal magnitude for α =

45◦ and almost zero response for α = 0◦, 90◦. The behaviour of all these curves

does not qualitatively change while changing the magnetic field. The appearance

of this component in the superconductive state is caused by the guided vortex

motion. It is again possible to describe the anisotropy of this magnetoresistivity
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Figure 4.12: Temperature dependence of the even transversal magnetoresistivity

component ρ+
⊥ for the different transport current orientations with respect to the

facet ridges, as indicated.

in the normal state using relation 4.3. In particular, according to this relation

the transversal resistivities for the currents oriented at the angles α and (90◦−α)

must coincide and indeed, the curves for α = 30◦ and α = 60◦ in Fig. 4.12 are

the same in the normal state (T>8.4 K) within the experimental resolution. The

measured normal resisitivities are also in good agreement with the resisitivities

as calculated using relation 4.3.

The dependence of the odd transversal magnetoresistivity ρ−⊥ on temperature,

see Fig. 4.13, shows the so-called anomalous Hall behaviour: ρ−⊥ changes its sign

from negative to positive with increasing temperature. With increasing mag-

netic field the amplitude of the negative peak increases whereas the height of the

positive peak decreases.
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Figure 4.13: Temperature dependence of the odd transversal magnetoresistivity

component ρ−⊥ for the different transport current orientations with respect to the

facet ridges, as indicated.

4.5 Discussion of the experimental data

4.5.1 Guiding in Nb films

An important characteristic of guided vortex motion along the the pinning planes

is the angle β between the average vortex velocity vector and pinning planes. This

quantity can be easily calculated from the experimental data (see also Eq. 2.44):

cot β = −ρ
+
⊥
ρ+
‖
. (4.4)

The guided angle β was calculated for both sample sets. The dependence

of the guiding angle β on the temperature is shown in Figs. 4.14. In the first

experiment, with three different Nb films, the angle β is always larger than the

angle between the facet ridges and the transport current. Consequently, there

is no pronounced guided motion of vortices. However, in the second experiment

an evidence for perfect guiding is found. The guiding angle β is almost equal to
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Figure 4.14: The dependence of the guiding angle β on temperature: a) for three

films with different current orientations, as indicated; b) for one film with different

current orientations, as indicated.
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the angle α as seen from Fig. 4.14(b). At temperatures near Tc isotropization of

the pinning is observed. In this region pinning planes do not affect the vortex

motion any more and the vortex velocity becomes parallel to the Lorentz force, i.e.

perpendicular to the transport current direction. The guiding angle β becomes

equal to 90◦ in this case.

It can be concluded, that the Nb films used in the second type of experiment

show much better guided vortex motion, which means that the anisotropic pinning

prevails over the isotropic pinning much more than in the first experiment with

three Nb films. In general, the Nb films offer a good possibility to study vortex

dynamics in the presence of anisotropic pinning, since the effects caused by it

are not masked by point-like pinning as is the case in the explored YBa2Cu3O7−δ

films (see Chapter 3).

4.5.2 Arrhenius analysis of the even longitudinal

resistivity component

To estimate the activation energy for the vortex motion produced by the pinning

barriers, an Arrhenius analysis of the temperature dependence of the longitudinal

magnetoresistivity was performed for the different magnetic fields µ0H = 0.007,

0.015, 0.030 T for the second sample set. The vortex motion is supposed to be

thermally activated and thus the resistivity of the sample can be described by

the Arrhenius law.

ρ = ρ0 exp
−Ueff

kBT
(4.5)

where kB is the Boltzmann constant, ρ0 is a constant, and Ueff is an effective

activation energy. If one plots ln ρ vs. the inverse temperature T−1, the slope of

the curve gives directly the activation energy Ueff in units of T . The result of this

analysis is shown in Figs. 4.15, 4.16, 4.17. The thus obtained activation energies

for the different transport current orientations calculated from the linear parts

of the plot for µ0H = 0.015 T (Fig. 4.16) are given in Table 4.5.2. It should be
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Figure 4.15: Arrhenius plot of the even longitudinal magnetoresistivity in a mag-

netic field of µ0H = 0.007 T for the different transport current orientations with

respect to the facet ridges, as indicated.

mentioned for comparison that typical values for the activation energy in high

temperature superconductors are about 200 – 3000 K [78, 79].

From the represented Arrhenius plots one can see, that in the superconductive

state the pinning anisotropy plays a more important role than the anisotropy of

the film in the normal state. The curves practically coincide in the left part

of the Arrenius plots which corresponds to the normal state, whereas in the

superconductive state their behaviour is strongly dependent on the transport

current orientation with regard to the facet ridges.

Within the theory, as described earlier, the even longitudinal magnetoresis-

tivity component can be given by the following relation1

ρ‖ = νiρ‖a, (4.6)

1The superscript “+” is left out here and in all the following formulas for the even longitu-

dinal component ρ+
‖ to simplify the notation.
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Figure 4.16: Arrhenius plot of the even longitudinal magnetoresistivity in a mag-

netic field of µ0H = 0.015 T for the different transport current orientations with

respect to the facet ridges, as indicated.
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Figure 4.17: Arrhenius plot of the even longitudinal magnetoresistivity in a mag-

netic field of µ0H = 0.030 T for the different transport current orientations with

respect to the facet ridges, as indicated.
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Current orientation Activation energy Temperature range

α Ueff , K T, K

90◦ 949 8.08 – 8.32

60◦ 1032 8.08 – 8.32

45◦ 1237 8.08 – 8.32

30◦ 1655 8.12 – 8.32

0◦ 5599 8.26 – 8.32

Table 4.1: Activation energies calculated from the linear parts of the Arrhenius

plots of the even longitudinal magnetoresistivity in a magnetic field of µ0H =

0.015 T (Fig. 4.16) for the different transport current orientations with respect

to the facet ridges.

where ρ‖a = ρf (sin2 α + νa cos2 α), ρf is the flux flow resistivity, νi, νa are the

probability functions for a vortex to overcome the isotropic and anisotropic pin-

ning barrier, respectively. Taking logarithm of this expression one obtains for

α �= 90◦

ln ρ‖ = ln νi + ln(tan2 α + νa) + ln(ρf cos2 α). (4.7)

The last term in this expression is almost independent of temperature. So, to

understand the dependence of ln ρ+
‖ on temperature only the temperature depen-

dences of the first two terms in Eq. 4.7 need to be taken into account.

It was shown in Chapt. 2 that the probability function ν is proportional to

exp(−U0/kBT ) in the weak current limit Fb 	 U , where the length b charac-

terizes the dimension of the potential well. To analyze the behaviour of ln ρ‖ vs.

1/T one can use the following model function for the representation of νi and νa:

ν(T, F ) = exp(−θ Ueff

kBT
), (4.8)

where θ = 1 − T/Tc, Tc is a critical temperature, the effective potential Ueff =

U0−Fb, U0 is the depth of the pinning potential well, F is the external force acting
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on the vortex, b is a length characterizing the pinning potential. In general, both

probability functions νi and νa can be represented by relation 4.8 with different

parameters U0i, U0a, bi, ba, and variables Fi, Fa, where the subscripts i and a

denote the quantity related to isotropic and anisotropic pinning, respectively.

Let us consider the curves for the α = 0◦, α = 90◦ transport current orienta-

tion in Arrhenius represintation for the magnetic field µ0H = 0.015 T as shown in

Fig. 4.16. The Arrhenius plot for α = 90◦ can be well fitted by a straight line AB

with a slope of 949 K. The curve for α = 0◦ has two linear parts: AC with a slope

of 5599 K and CD which is parallel to AB (compare also with Figs. 4.15, 4.17).

As seen from Eq. 4.6 the longitudinal resisitivity for α = 90◦ is ρ‖(90◦) = ρfνi,

and

ln ρ‖(90◦) = ln ρf + ln νi

. So the slope of Arrhenius plot is defined only by the probability function νi.

For the α = 0◦ transport current orientation from Eq. 4.7 follows

ln ρ‖(0◦) ≈ ln νi + ln νa

and thus a slope of Arrhenius plot is defined by both probability functions, νi and

νa. However, in a real experiment one usually has a small misalignment of the

measuring structure with respect to the facet ridges, and thus the angle α differs

by a small amount δα, caused by this misalignment, from the nominal value. So,

to describe the case α = 0 one has to use Eq. 4.7. Let us take a closer look on

its second term ln(tan2 α+ νa). With decreasing temperature (increasing 1/T in

Arrhenius presentation) the probability function νa → 0 (see Chap. 2, [35]); so

there exists a temperature region where even for small α, tan2 α > νa, and one

can neglect νa in this term when considering the temperature dependence. This

means that at low enough temperatures the temperature dependence of ln ρ‖ will

be defined only by the probability function νi,

ln ρ‖(0◦) ≈ ln νi at low temperatures.
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One can see that the slope of the Arrhenius plot at low enough temperatures

will be the same for the α = 0◦ and α = 90◦ orientations if a small deviation of

the transport current orientation is present in the measurements. The described

effect is easily visible in the plots 4.15, 4.16, 4.17.

As was shown in theory ([46, 45], see also Chapt. 2), the forces Fa and Fi

which are the arguments of the probability functions νa and νi, respectively, in

the case of a small Hall effect can be given by the expressions

Fa = F cosα,

Fi = F cosα
√

tan2 α + ν2
a(T, Fa, α),

(4.9)

where F = FL · l is the Lorentz force acting on the vortex, FL is the Lorentz force

acting on a unit length of the vortex (see Eq. 2.1), l is the vortex length. From

this follows that the behaviour of the probability function νa, and thus also ρ‖, a,

is anisotropic and dependent only on the variables T , F , and α. The behaviour

of νi, on the other hand, is more complicated and depends additionally on the

nonlinear νa(T, F ) function besides the already mentioned parameters.

Using these ideas about the probability functions behaviour, one can concern

the dependence of ln ρ‖ on the temperature. The ν-functions are probability

functions and always fulfill the condition 0 ≤ νa ≤ 1. Taking into account that

tan2 α competes with νa in ρ‖a (Eq. 4.6) and with ν2
a in the Fi(α) dependence

(Eq. 4.9), one can distinguish three different limiting cases using the form for the

probability functions νa and νi proposed in Eq. 4.8, and simplify Eq. 4.7 in these

cases to

ln ρ‖ ≈




−(θ/kBT ){(U0i + U0a) − [biνa(F cosα) − ba]F cosα} + ln(ρN cos2 α),

tan2 α	 ν2
a

−(θ/kBT ){(U0i + U0a) − (bi sinα + ba cosα)F}, ν2
a 	 tan2 α	 νa

−(θ/kBT )(U0i − Fbi sinα) + cot2 α · νa(F cosα) + ln(ρN sin2 α),

νa 	 tan2 α <∞
(4.10)
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The first limiting case is νa 	 tan2 α < ∞. Because of νa ≤ 1 always, this

relation is realized for large enough angles α in whole temperature range. This

condition is also fulfilled for smaller angles at low temperatures and currents

where the probability function νa → 0. It follows that

ln ρ‖(T ) ≈ (−θ/kBT )(U0i − Fbi sinα) + ln(ρN sin2 α), (4.11)

if one neglects the second term in the corresponding case in Eq. 4.10. Conse-

quently, the Arrhenius plot will show a linear behaviour for large enough angles

over the whole temperature range. Indeed, the Arrhenius plot for α = 90◦ and

60◦ can be very well fitted with a straight line over the whole temperature range

for a magnetic field of µ0H = 0.015 T (Fig. 4.16) and is also linear in the low

temperature region (i.e. the right part of the Arrhenius plot) for magnetic fields

of µ0H = 0.007 and 0.030 T (Figs. 4.15, 4.17).

The next limiting case is ν2
a 	 tan2 α 	 νa. This condition is more compli-

cated: it corresponds to moderate temperatures and low angles. Though νa 	 1

and thus νa � ν2
a at low enough temperatures, in addition the angle α must

be small enough and the probability function νa must be large enough to satisfy

the condition ν2
a 	 tan2 α 	 νa. As can bee seen from Eq. 4.10, the Arrhenius

plot of ln ρ‖ is also linear in this case but the slope differs from the value of

(U0a − Fba cosα) as was obtained in the previous case.

In the last case the condition tan2 α	 ν2
a holds. This case can be realized at

small angles and high temperatures (νa → 1 for T → Tc). From Eq. 4.10 follows

that ln ρ‖(T ) ≈ −(θ/kBT ){(U0i+U0a)−[biνa(F cosα)−ba]F cosα}+ln(ρN cos2 α).

This dependence contains the term (θ/kBT )[biνa(F cosα)− ba]F cosα which will

cause a nonlinearity of the Arrhenius plot in the temperature and angle region

corresponding to its validity range. The nonlinearity is caused by the nonlinear

dependence of the probability function νa on the temperature. This nonlinear de-

pendence of ln ρ‖ is observed in the Arrhenius plot of the longitudinal magnetore-

sistivity near Tc for small values of the angle α as seen from Fig. 4.15, 4.16, 4.17.
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Figure 4.18: Arrhenius plot of the even longitudinal magnetoresistivity for the

temperature range of 8.39 K > T > 8.29 K. The dependences for α = 90◦, 60◦

are linear for 1/T > 0.1197 (T < 8.36 K) whereas for α = 0◦, 30◦ the linear part

exists for 1/T > 0.1200 (T < 8.33 K).
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For clarity, the Arrhenius plot of the longitudinal magnetoresistivity in a mag-

netic field of µ0H = 0.015 T for the temperature range of 8.39 K > T > 8.29 K

is shown in Fig. 4.18.

For the following analysis the data from the Arrhenius plot in a magnetic

field of µ0H = 0.015 T will be considered. Using Eq. 4.11 for two different trans-

port current orientations for large enough α and low temperatures (the condition

tan2 α � νa must be satisfied) one can estimate the value of the term Fbi and

the depth of the pinning potential well U0i. It is easy to see, that for two different

angles α1 and α2

Fbi = (Ueff(α1) − Ueff(α2))/(sinα2 − sinα1),

U0i = (Ueff(α1) sinα2 + Ueff(α2) sinα1)/(sinα2 − sinα1),
(4.12)

where Ueff = U0i −Fb sinα is the activation energy measured from the Arrhenius

plot. If one takes the angles α1 = 90◦ and α2 = 60◦ and the corresponding Ueff

from Table 4.5.2, the following estimation is obtained:

Fbi = 619 K,

U0i = 1568 K.
(4.13)

Note that for this estimation the term depending on the νa function is neglected

in Eq. 4.10 .

If the transport current flows perpendicular to the magnetic field, the Lorenz

force F acting on the vortex can be estimated using the formula F = l(j · Φ0),

where l is the vortex length, j is the density of the transport current, and

Φ0 = 2, 07 · 10−15 T m2 is the magnetic flux quantum. Taking l = 250 Å which

corresponds to the thickness of the used Nb film, and j = 8 kA/cm2, one obtains

F = 0.3 K/nm = 4, 14 · 10−15N. Taking into account the estimation 4.13, the fol-

lowing value for the period of the isotropic potential is obtained: bi ≈ 2000 nm.

To estimate the parameters of the anisotropic pinning potential it is sup-

posed that the period ba of this potential corresponds to the period of the facets

ridges, which is about 400 nm [64]. Thus the value of Fba can be estimated
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as Fba ≈ 120K, which is much smaller than the measured activation energies

Ueff (see Table 4.5.2). For the estimation of the depth of the potential well U0a

the Arrhenius plot for the α = 0◦ transport current orientation is considered.

The relation tan2 α 	 ν2
a can be satisfied at temperatures near Tc and one can

use the corresponding expression for ln ρ‖ from Eq. 4.10. Because of the argu-

ments stated above the term [biνa(F cosα) − ba]F cosα can be neglected, and

ln ρ‖ ≈ −(θ/kBT )(U0a + U0i), and thus Ueff ≈ (U0a + U0i) for this geometry. The

thus obtained estimation gives the value of the depth of the potential well for the

anisotropic pinning U0a = 4031K.

From the estimations above the temperature dependence of the longitudinal

magnetoresistivity can now be calculated and its Arrhenius plot was generated,

using as probability functions νa and νi the function obtained for the washboard

model potential (Eq. 2.26) with q = 1 and the corresponding parameters U0, b

for the isotropic and anisotropic pinning potential as estimated. These νa and νi

functions were additionally normalized so that νa,i(Tc) = 1 for the calculations.1

The best fit of the experimental data was obtained for bi/ba = 15 and an assumed

misalignment of α of about −3◦ (see Fig. 4.19). The program used for the calcu-

lations of the temperature dependence of the longitudinal resistivity is given in

the Appendix.

One can see that the experimental data are in good agreement with the theo-

retical model described in Chapt. 2. The measured temperature dependences of

the longitudinal magnetoresistivity can be fitted using the probability functions

νa and νi in the form proposed in [35]. The observed anisotropy of the normal

state does not significantly affect the superconducting properties of the films be-

cause of the large pinning anisotropy present which suppresses all effects caused

by the normal state anisotropy in the superconductive state.

1This turned out to be necessary because the studied system has a large activation energy and

in the proposed theoretical model the critical temperature is defined via the pinning potential:

kBTc = U0; a definition that cannot be realized at all in the experiment.
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Figure 4.19: Calculated (line) and measured (data points) dependences of the even

longitudinal magnetoresistivity on the temperature (a) and its Arrhenius plot (b).

The parameters for the calculated dependences are as following: U0a = 4031 K,

U0i = 1568 K, bi/ba = 15, δα = −3◦.
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4.5.3 Nature of the pinning in faceted Nb films

As was shown in the previous section, Nb films deposited on faceted substrates

show a pronounced anisotropy of the pinning force, which leads to guided vortex

motion in such films. The described theoretical model used for the interpreta-

tion of the experimental data makes the assumption for the anisotropic pinning

potential to have a washboard form (see Eq. 2.25 and Fig. 2.3) for the numeri-

cal calculations. An interesting question is the origin of the anisotropic pinning

potential in the Nb films deposited on the faceted Al2O3 substrates.

The film used in the experiments had thicknesses of 39 nm and 25 nm, respec-

tively. The value for the London penetration depth in Nb films is λL ≈ 39 nm

[80]. Because the penetration depth defines the dimension of the vortex and thus

the lateral extent of the screening superconductive current around the vortex

core, and it has a value about of the thickness of the films, the screening currents

must flow parallel to the film surface. This means that the magnetic field of each

vortex core is perpendicular to the film surface. Since the surface of the employed

Nb films is faceted, the magnetic field must enter the film perpendicularly to the

facet planes. In this way one obtains a nonhomogeneous magnetic field distri-

bution in the film as one schematically shown in Fig. 4.20. The local magnetic

field density is periodically modulated. The density of the vortices is defined by

the local magnetic field, so the equilibrium density of the vortices will also be

periodically modulated, which leads to periodic modulations of the mean vortex

energy.

From Fig. 4.20 it is clear that there is a maximum of the field density dis-

tribution on each surface of the facets. So over one facet period length one has

two wells and thus the period of the magnetic field density distribution can be

assumed to be equal to T/2, where T is the facet period. At this point it must be

stressed that the described picture gives only a very rough qualitative idea about

the possible origin of the pinning in such films.
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Figure 4.20: Distribution of the magnetic field density. Dashed lines represent

the magnetic field lines. For simplicity, only two levels of the magnetic field

density B are supposed: B1, corresponding to the facet hill or facet valley, and

B2 corresponding to the facet slope.
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From the numerical calculations within the theory described in this thesis,

the best fit of the experimental data is obtained for a ratio between the isotropic

and anisotropic pinning potential periods bi/ba = 15 nm. The estimated value

for the period of the isotropic pinning potential is given on page 82 and is about

bi = 2000 nm, and the period of the faceted structure is about ba = 400 nm [64],

which gives the ratio of bi/ba = 5. Supposing that the period of the magnetic field

distribution is, as was argued before, T/2 = 200 nm, one gets bi/ba = 10, which

is reasonably close to the ratio obtained by the numerical fit of the experimental

data.

The problem of calculating the pinning potential in such a faceted film is

rather complicated. But already from the simple arguments given above it is

clear that a faceted surface of a superconductive film can generate a pinning

potential merely due to the geometry of its surface.



88 CHAPTER 4. GUIDING IN FACETED NB-FILMS



Chapter 5

Conclusions

In the present thesis the vortex dynamics in two different material classes of

superconductors with anisotropic unidirected pinning sites was experimentally

investigated by way of magnetoresistivity measurements. The reported experi-

ments were carried out on unidirectionally twinned YBa2Cu3O7−δ films and Nb

films deposited on faceted Al2O3 substrate surfaces. A suitable Hall structure was

designed to measure the longitudinal and transversal components of the sample

magnetoresisitivity for different transport current orientations with respect to

the unidirected pinning sites on the same film. For the interpretation of the

experimentally obtained results a theoretical model based on the Fokker-Planck

equation was used.

It was proved by means of X-ray diffraction measurements that YBa2Cu3O7−δ

films prepared on (001) NdGaO3 substrates exhibit only one twin orientation in

contrast to YBa2Cu3O7−δ films grown on (100) SrTiO3 substrates. The mag-

netoresistivity measurements of the YBa2Cu3O7−δ films with unidirected twin

boundaries showed a guided vortex motion along the twin planes. The appear-

ance of two new magnetoresistivity components, which is a characteristic feature

of a guided motion, could be demonstrated: an odd longitudinal component

with respect to the magnetic field sign reversal and an even transversal com-

ponent. However, due to the small coherence length in YBa2Cu3O7−δ and the

89
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larger amount of point-like defects as compared to high-quality YBa2Cu3O7−δ

single crystals, the strength of the isotropic pinning was comparable with the

strength of the pinning produced by twins in these films. This smeared out all

effects caused by the pinning anisotropy in the YBa2Cu3O7−δ films. For example,

the behaviour of the odd longitudinal component was found to be independent

of the transport current direction with respect to the twin planes.

The magnetoresistivity measurements of Nb films deposited on faceted Al2O3

substrates showed that a perfect guided vortex motion along the facets can be

observed in such films. The appearance of an odd longitudinal and even transver-

sal component of the magnetoresistivity in these samples could be demonstrated.

The temperature and magnetic field dependences of the all relevant magnetoresis-

tivity components were measured for these films. The angles between the mean

vortex velocity vector and the transport current direction calculated from the

experimental data for the different transport current orientations with respect

to the facet ridges showed that the vortices move indeed along the facet ridges.

Because the coherence length in Nb is much larger than in YBa2Cu3O7−δ, point

like defects did not play such a crucial role in this experiment, in contrast to the

experiment with YBa2Cu3O7−δ films. Due to this fact all the effects caused by

the pinning anisotropy and the guided vortex motion were clearly visible, which

gave the possibility to compare the obtained results with the reported theoretical

approach.

The theory used for the explanation of the experimental data has shown very

good agreement with the experiment. The temperature dependence of the even

longitudinal magnetoresistivity component of the samples could be very well fit-

ted within considered theoretical approach, using for the isotropic and anisotropic

pinning potential, a simple one dimensional potential with a symmetric trian-

gular potential wells. The isotropic and anisotropic potentials, used to fit the

experimental results, had a triangle form with q = 1, the anisotropy parameter

characterizing the electronic viscosity anisotropy was taken γ = 1 and the periods
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and the depths of the potential wells were estimated from the experimental data.

An anomalous Hall effect, i.e. a sign change of the odd transversal magne-

toresistivity component, has been found in the temperature and magnetic field

dependences of the Hall resisitivity of the samples. The reported theoretical ap-

proach allows for such a sign change; it is further known that even flat Nb films

display anomalous behaviour of the Hall coefficient ε. Consequently, in order to

describe the observed dependencies of the Hall resistivity using the considered

theoretical approach, one has to know the dependence of the Hall coefficient on

temperature and magnetic field for a flat Nb film.

It can be concluded that Nb films deposited on the faceted α-Al2O3 (101̄0)

surface can serve as a model system for experimentally studying guided vortex

motion and the effects caused by it. Relevant parameters, such as the film thick-

ness and facet period (to some extent), can be varied when the films are prepared.

The described theoretical approach showed to be in good agreement with

the experimental data. Nevertheless, for the explanation of the experiment it

was necessary to consider point-like pinning in conjunction with the dominating

anisotropic pinning also in the theoretical model. However, to describe theoret-

ically the Hall components dependences, one has to know the behaviour of the

Hall coefficient in an analogous Nb film deposited on the flat substrate.
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Appendix A

The following program developed with the Mathematica 4 software was used to

fit the experimentally measured dependence of the even longitudinal magnetore-

sistivity components on temperature (see chapter 4).

<<Graphics‘Colors‘

(* defining the constants: *)

Ua=4031; (* depth of the anisotr. potential *)

Ui=1568; (* depth of the isotr. potential *)

t1=7.9;

t2=8.37; (* temperature interval t1-t2 *)

ta1:=t1/Ua;

ta2:=t2/Ua;

ti1:=t1/Ui;

ti2:=t2/Ui; (* dimensionless temperatures *)

d=-5; (* misalignment of the structure *)

rN=0.0000056; (* normal-state resistivity *)

(* dimensionless temperatures, forces *)

ta[T_] = T/Ua;

ti[T_] = T/Ui;

faAlpha[fax_, Alphax_] := fax * Cos[((Alphax + d)/180)\[Pi]];

fiAlpha[fix_, Alphax_, fax_, tax_] :=

fix*(Sin[((Alphax + d)/180)\[Pi]]^2 +

93
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(Cos[((Alphax + d)/180)\[Pi]]^2) Nua[tax, fax, Alphax])^(1/2);

Nu0[f_] := 1 - 1/f^2;

Nu[t_, f_] := Nu0[f]/(1 - (f/(Tanh[f/t]*(f^2*(f^2 - 1))))*

2*t*(1 - Cosh[1/t]/Cosh[f/t]));

(* definition of the Nu-anisotr. function *)

Nua[tax_, fax_, Alphax_] := Nu[tax, faAlpha[fax, Alphax]];

(* normalization *)

Nuap[tax_, fax_, Alphax_] := Nua[tax, fax, Alphax]/

Nua[ta2, fax, Alphax];

(* definition of the Nu-isotr. function*)

Nui[tix_, fix_, tax_, fax_, Alphax_] :=

Nu[tix, fiAlpha[fix, Alphax, fax, tax]];

(* normalization *)

Nuip[tix_, fix_, tax_, fax_, Alphax_] :=

Nui[tix, fix, tax, fax, Alphax]/Nui[ti2, fix, tax, fax, Alphax];

(* definition of the longit. even resist. component *)

r[tix_, fix_, tax_, fax_, Alphax_] :=

rN * Nuip[tix, fix, tax, fax, Alphax]*

(Sin[((Alphax + d)/180)\[Pi]]^2 +

Cos[((Alphax + d)/180)\[Pi]]^2 * Nuap[tax, fax, Alphax]);

(* relation between dimensionless forces *)

fir[fax_] := (Ua/Ui)*k*fax;

(* this plots the dependencies ln(r(t)) *)

faa = 0.01;

k = 14;

d = -3;

t1=7.9;

t2=8.37;

ParametricPlot[{{1/x, Log[r[x/Ui, fir[faa], x/Ua, faa, 0]]},

{1/x, Log[r[x/Ui, fir[faa], x/Ua, faa, 30]]},

{1/x, Log[r[x/Ui, fir[faa], x/Ua, faa, 45]]},

{1/x, Log[r[x/Ui, fir[faa], x/Ua, faa, 60]]},

{1/x, Log[r[x/Ui, fir[faa], x/Ua, faa, 90]]}},

{x, t1, t2},

PlotStyle -> {Cyan, Blue, Green, Red, Black},

GridLines -> Automatic,
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Frame -> True, PlotRange -> All];

(*

The following creates a file with the data :

<1/t> <delimiter> <ln(r90)> <delimiter> <ln(r60)>...<ln(r0)>

x1, x2 are the limits of T.

*)

(* output options *)

dir = "d:/work/mathematica/output";

SetDirectory[dir]

x1 = 7.9;

x2 = 8.37;

step = 0.01;

fileName = "ln79b837new";

delim = " ";

outFile = OpenWrite[fileName];

For[x = x1, x <= x2,

x = x + step, {

WriteString[outFile, N[1/x], delim,

Log[r[x/Ui, fir[faa], x/Ua, faa, 90]], delim,

Log[r[x/Ui, fir[faa], x/Ua, faa, 60]], delim,

Log[r[x/Ui, fir[faa], x/Ua, faa, 45]], delim,

Log[r[x/Ui, fir[faa], x/Ua, faa, 30]], delim,

Log[r[x/Ui, fir[faa], x/Ua, faa, 0]], "\n"]}]

Close[outFile];
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