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Zusammenfassung
Das Standardmodell (SM) der Teilchenphysik beschreibt erfolgreich die Eigenschaften von Teilchen
und deren Wechselwirkung miteinander. Allerdings ist das SM nicht vollständig, da es zum Beispiel
nur drei der vier fundamentalen Kräfte beinhaltet. Auch die Frage, warum für die starke Wechsel-
wirkung aufgrund seiner nicht trivialen Vakuumstruktur eine Verletzung der CP Symmetrie1 erwartet
wird (Θ-Term), aber experimentell nicht nachweisbar ist, kann im Rahmen des SM nicht erklärt wer-
den. Dieses Problem wird als das starke CP-Problem der Quantenchromodynamik bezeichnet und
durch die Peccei-Quinn-Weinberg-Wilczek Theorie gelöst. Danach wird ein neues, fast masseloses
Boson postuliert, welches man als Axion bezeichnet. Das Axion wechselwirkt nur sehr schwach mit
Materie und ist daher auch ein guter Kandidat für die kalte dunkle Materie. Axionen entstehen durch
den Primakoff-Effekt, also durch Umwandlung gestreuter Photonen in elektromagnetischen Feldern,
z.B. von Atomkernen. Der inverse Primakoff-Effekt, welcher ein Axion wieder in ein Photon umwan-
delt, kann zum direkten Nachweis von Haloaxionen, solaren Axionen und Labor-Axionen ausgenutzt
werden. Kosmologische und astrophysikalische Beobachtungen führten zur Einschränkung der Masse
des Axions auf einen Bereich von einigen µeV bis meV (“axion mass window ”).
Wenn das Axion existiert, dann vermittelt es eine CP verletzende, kurzreichweitige und spinab-
hängige Wechselwirkung zwischen einem Fermion und dem Spin eines anderen Fermions. Durch
Nachweis dieser Wechselwirkung kann das Axion indirekt nachgewiesen werden. Im Rahmen der vor-
liegenden Doktorarbeit wurde ein Experiment zur Suche dieser kurzreichweitigen, spinabhängigen
Wechselwirkung mit einem ultra-sensitiven Komagnetometer realisiert, welches auf dem Nachweis
von frei präzedierenden 3He und 129Xe Kernspins basiert. Das Experiment wurde im magnetisch
abgeschirmten Raum BMSR-2 an der Physikalisch-Technische Bundesanstalt Berlin durchgeführt.
Die beiden polarisierten Gase befinden sich in einer Glaszelle, welche sich in einem niedrigen Mag-
netfeld von etwa B0 = 0.35 µT mit absoluten Feldgradienten im Bereich von pT/cm befindet. Die
Spinpräzession von 3He und 129Xe mit den Präzessionsfrequenzen ωHe = γHe · B0 = 11.4 Hz und
ωXe = γXe · B0 = 4.7 Hz wird mit SQUID Detektoren mit einem niedrigen Rauschen nachgewiesen.
Durch Betrachtung der gewichteten Frequenzdifferenz ∆ω = ωHe − (γHe/γXe) · ωXe können Mag-
netfelddriften beseitigt werden (Zeeman-Term), so dass das Komagnetometer nur noch auf nicht-
magnetische Wechselwirkungen empfindlich ist. Aufgrund der erreichten Spinkohärenzzeiten von
mehreren Stunden können Frequenzverschiebungen durch nicht-magnetische Wechselwirkungen im
Bereich von einigen nHz gemessen werden.
Die Grundidee des durchgeführten Experimentes bestand darin, eine unpolarisierte Masse in die
Nähe der polarisierten Gase zu bringen und nach einer bestimmten Zeit wieder zu entfernen oder
umgekehrt. Falls die kurzreichweitige, spinabhängige Wechselwirkung existiert, dann sollte es, wenn
die unpolarisierte Masse in der Nähe des Komagnetometers ist, zu einer Verschiebung der Präzes-
sionsfrequenzen von 3He und 129Xe kommen. Diese Frequenzverschiebung wird sowohl für 3He als
auch für 129Xe im wesentlichen durch Kopplung des Axions an den Spin des Valenzneutrons her-
vorgerufen. Sie ist somit für beide Gase in etwa gleich groß und fällt daher in der gewichteten
Frequenzdifferenz nicht raus. Aufgrund der sehr hohen Empfindlichkeit des entwickelten Komagne-
tometers konnte im Experiment die Obergrenze für diese Frequenzverschiebung zu 7.1 nHz bestimmt
werden. Mit diesem Wert konnten nun auch innerhalb des “axion mass window” Obergrenzen für
die skalare-pseudoskalare Kopplung des Axions an den Spin eines gebundenen Neutrons berechnet
werden. Für Massen des Axions zwischen 2µeV und 500µeV wurden die bisherigen Obergrenzen für
Laborexperimente bis zu 4 Größenordnungen verbessert.

1C =̂ Ladungsumkehr, P =̂ Raumspiegelung





Abstract
The standard model (SM) of particle physics describes all known particles and their interactions.
However, the SM leaves many issues unresolved. For example, it only includes three of the four
fundamental forces and does not clarify the question why in the strong interaction CP symmetry2

is violated due to its non-trivial vacuum structure is predicted (Θ-term), but experimentally un-
verifiable. The latter one is known as the strong CP-problem of quantum chromodynamics (QCD)
and is solved by the Peccei-Quinn-Weinberg-Wilczek theory. This theory predicts a new and almost
massless boson which is known as the axion. The axion feebly interacts with matter and therefore
it is a good candidate for cold dark matter, too. Axions are produced by the Primakoff-effect, i.e.
by conversion of photons which are scatterd in the electromagentic field, e.g. of atoms. The inverse
Primakoff-effect, which converts axions to photons again, can be used for direct detection of galactic,
solar, or laboratory axions. Cosmological and astrophysical observations constrain the mass of the
axion from a few µeV to some meV (“axion mass window ”).
If the axion exists, then it mediates a CP violating, spin-dependent, short-range interaction between
a fermion and the spin of another fermion. By verification of this interaction, the axion can be
detected indirectly. In the framework of the present thesis an experiment to search for this spin-
dependent short-range interaction was performed in the magnetically shielded room BMSR-2 of
the Physikalisch-Technische Bundesanstalt Berlin. An ultra-sensitive low-field co-magnetometer was
employed which is based on the detection of free precession of 3He and 129Xe nuclear spins using
SQUIDs as low-noise magnetic flux detectors. The two nuclear spin polarized gases are filled into
a glass cell which is immersed in a low magnetic field of about B0 = 0.35 µT with absolute field
gradients in the order of pT/cm. The spin precession frequencies of 3He and 129Xe then correspond
to ωHe = γHe · B0 = 11.4 Hz and ωXe = γXe · B0 = 4.7 Hz. By means of the weighted frequency
difference ∆ω = ωHe− (γHe/γXe) ·ωXe, magnetic field drifts can be eliminated (Zeeman-term). Thus,
the co-magnetometer is only sensitive to non-magnetic interactions. Based on the long spin coherence
times of several hours, frequency shifts due to non-magnetic interactions in the order of a few nHz
can be measured.
The general idea of this experiment was to place an unpolarized matter close to the spin polarized
samples, which is then removed to a distant position or vice versa. If the spin-dependent short-range
interaction exists, the unpolarized matter causes a shift in the spin precession frequencies of 3He
and 129Xe for the unpolarized matter close to the polarized gases. For 3He as well as for 129Xe this
frequency shift essentially is stemming from the coupling of the axion to the spin of the valence
neutron. Hence it is approximately equal for 3He and 129Xe and therefore does not drop out in the
weighted frequency difference. Due to the high sensitivity of the co-magnetometer, the upper limit
of this frequency shift could be determined to be 7.1 nHz. With this value, an upper limit of the
scalar-pseudoscalar coupling of the axion to the spin of a bound neutron could be deduced within
the axion mass window. For axion masses between 2 µeV and 500 µeV, the laboratory upper bounds
were improved by up to 4 orders of magnitude.

2C =̂ charge conjugation and P =̂ parity





1 Introduction

The search of a spin-dependent short-range force, which is mediated by an axion or an
axion-like particle, is closely linked to the examination of the discrete symmetries charge
C (interchange of particle and antiparticle), parity P (space inversion) and time T (time
inversion). The combination of all three symmetries, i.e. the CPT symmetry, is a fundamental
symmetry on which the Standard Model (SM) of particle physics is based on. Each symmetry
can be individually broken, whereas strong arguments predict that the CPT symmetry
is a conserved quantity. That means, violation of T symmetry leads to violation of CP
symmetry. Indeed, CP violation is included in the SM, e.g. in weak interactions it is a
natural consequence, which leads to a complex phase in the CKM matrix1. CP violation in
the context of the CKM matrix was investigated in the decay of mesons [1, 2, 3, 4]. In these
experiments no deviations from the predictions of the SM were observed.
CP violation also plays an important role in the explanation of the baryon asymmetry,
which corresponds to the imbalance of matter over antimatter in the universe. In the Big
Bang scenario, matter and antimatter were produced in equal shares. Due to annihilation it
is expected that there is no matter and antimatter left at all, resulting in

η =
ηb − ηb
ηγ

= 0 , (1.1)

where ηb and ηb are the number of baryons and antibaryons respectively and ηγ is the number
of photons from the annihilation process. However, from today’s point of view the whole
observable universe is entirely made up of matter. There is no experimental evidence that
the observable universe contains any significant concentrations of antimatter. Hence the ratio
of visible matter and the observable radiation is unequal to zero, i.e. η 6= 0. Via Planck’s law
the photon density ηγ of the universe can be calculated by considering the cosmic microwave
background which results in ηγ ≈ 420 photons per cm3. The visible matter of the universe
is given by ηb ≈ 1 proton per cm3. Thus, the ratio of the visible matter and the observable
radiation results in [5]

η =
ηb − ηb
ηγ

=
ηb
ηγ

= (6.1± 0.3) · 10−10 . (1.2)

A possible explanation of the baryon asymmetry is given by the three Sakharov conditions
[6]. These conditions state that matter and antimatter could be produced at different rates
after the Big Bang if there was thermal disequilibrium, the baryon number was violated and
the C and CP symmetries were violated. The baryon asymmetry which results from CP
violating effects of the SM can be calculated to be [7]:

η =
ηb − ηb
ηγ

=
ηb
ηγ
≈ 10−18 . (1.3)

1The Cabbibo-Kobayashi-Maskawa (CKM) matrix describes the mixing of quark masses.
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1 Introduction

This value is 8 orders smaller than the observed one (Eq. 1.2). Hence, the SM does not
contain enough CP violating effects to explain the present imbalance of matter over
antimatter in the universe. That means, new sources of CP violation are needed. A possible
source for CP violation may be the spin-dependent short-range force mediated by the scalar
and pseudoscalar coupling of the axion.

In general, our experimental approach to test fundamental symmetries in nature is to use
an ultra-sensitive 3He/129Xe co-magnetometer that is based on clock-comparison, i.e. the
comparison of the transition frequencies of two co-located spin systems, which radiate on
their Zeeman or hyperfine transitions. In our case co-located nuclear polarized 3He and 129Xe

spin samples are used, which precess in a magnetic guiding field ~B with the so-called Larmor
frequency ωL = γ · | ~B|, where γ is the gyromagnetic ratio of the respective spin sample.
Non-magnetic spin interactions can be described in general by an additional potential of
type

VPM = ~a · ~σ ≡ −~µPM · ~BPM , (1.4)

where ~a is an anomalous field and ~σ the spin vector. This potential VPM describes a pseudo-
magnetic interaction and thus can also be written as the scalar product of a pseudomagnetic
moment ~µPM and the corresponding pseudomagnetic field ~BPM. Assuming that the anoma-
lous field ~a does not couple to magnetic moment but directly to the sample spin ~σ, the use
of two spin systems allows to distinguish between a normal magnetic field (Zeeman-term)
and an anomalous field coupling. This means that, similar to the linear Zeeman-effect the
potential VPM leads to a shift in the precession frequency given by ωPM = VPM/~. Vio-
lation of fundamental symmetries of nature, which cause a non-magnetic shift ωPM in the
precession frequency of polarized spin samples, then can be studied with the 3He/129Xe
co-magnetometer, such as:

a) Search for spin-dependent short-range interaction induced by light, pseudoscalar bosons
(CP violation) [8]:

ωsp = Vsp(r)/~ = c · ~σ · r̂/~ . (1.5)

b) Search for Lorentz-violating signatures by monitoring the relative Larmor frequencies
or phases of the co-located 3He and 129Xe spin samples as the laboratory reference
frame rotates with respect to distant stars [9]:

ωLV = VLV(r)/~ =
〈
b̃
〉
ε̂ · ~σ/~ . (1.6)

c) Search for the electric dipole moment of 129Xe (CP violation) [10]:

ωXeEDM = VXeEDM(r)/~ = − |dXe| · ~σ · ~E/~ . (1.7)

The observable to trace these obvious tiny frequency shifts ωPM is the weighted frequency
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difference which is given by

∆ω(t) = ωHe(t)−
γHe

γXe
· ωXe(t)

=

(
γHe −

γHe

γXe
γXe

)
︸ ︷︷ ︸

=0

·B(t) +

(
1− γHe

γXe

)
· ωPM(t) + · · · . (1.8)

By that measure, any dependence on magnetic field fluctuations and drifts should be
eliminated. Within the frame of the nuclear shell model of Th. Schmidt [11], both the spin
of the 3He and the 129Xe nucleus is carried by the valence neutron (bound neutron). Hence,
within the Schmidt model all couplings mentioned above (a-c) are roughly the same for
3He and 129Xe, i.e. ωPM(t) = ωPM,He(t) ≈ ωPM,Xe(t), so that the pseudomagnetic frequency
shift ωPM(t) does not drop out in the weighted frequency difference. That means that
the weighted frequency difference ∆ω(t), or its equivalent, the weighted phase difference
∆Φ(t) = ΦHe(t) − γHe

γXe
ΦXe(t), is the relevant quantity to be further analyzed in order to

trace tiny symmetry violations of the type mentioned above (a-c).

In the framework of this thesis the 3He/129Xe co-magnetometer is used to search for the
spin-dependent short-range force (case a) which is mediated by an axion between a fermion
and the spin of another fermion. The axion is one of the favourite solution to the strong CP -
problem of quantum chromodynamics (QCD): The non-trivial vacuum structure of strong
interaction leads to the so-called Θ-term to the QCD Lagrangian, which violates CP sym-
metry. However CP violation in strong interaction has never been observed in nature. In
1977 Peccei and Quinn introduced a new global, chiral symmetry to the QCD Lagrangian.
This symmetry is referred to as the Peccei-Quinn-symmetry (PQ-symmetry) which is spon-
tanously broken at an unknown energy fa. Due to non-exact breaking of the PQ-symmetry,
a pseudo Nambu-Goldstone boson is expected. This boson has to be a light and electrically
neutral pseudoscalar particle, which was named by Wilczek as axion. The dynamical field
of the axion leads to an additional term to the QCD Lagrangian. At the minimum of this
axion field the Θ-term is absorbed. Thus, no CP violation in strong interaction occurs and
the strong CP -problem is solved.
There exist different axion models which differ in the order of the symmetry breaking scale
fa. In the last decades the visible axion models could be precluded by some experiments,
i.e. axions which occur at an energy fa in the order of the electroweak energy scale (≈
250 GeV). However, the invisible axion models, i.e. axions with a high symmetry breaking
scale and a rest mass below 1 eV, are still of high interest. Due to their weak coupling
with fundamental particles, these axions are extremely difficult to detect. Hence, beside the
WIMP’s2, the axion can contribute significantly to the cold dark matter3 of the universe.
Based on astrophysical and cosmological considerations it was possible to constrain the

2WIMP = weakly interacting massive particle
3About 4% of the mass of the universe consists of hadronic matter and about 23% consists of dark matter
which is non illuminating matter whereby the composition is unknown. The remaining mass of the universe
is given by dark energy.
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1 Introduction

mass of the axion (ma) from a few µeV to some meV. This mass range is also referred to as
the axion mass window. Several experiments have been searching for this elusive particle in
and close to the axion mass window. All experiments that try a direct detection of the axion
use the so-called Primakoff effect which allows conversion of axions into photons and vice
versa in the presence of strong electromagnetic fields. On the contrary, the axion mediates
a CP violating spin-dependent short-range interaction with range λ = ~/(mac) between a
fermion and the spin of another fermion. This interaction can be described by a pseudoscalar
potential and leads to an additonal frequency shift in the weighted frequency difference
measured with the 3He/129Xe co-magnetometer (see Eq. 1.5). Thus, if this frequency shift
can be measured, the axion can be detected indirectly.

The topic of this thesis is the analysis of the data measured in September 2010 at the
Physikalisch-Technische Bundesanstalt (PTB) in Berlin. Here the precession frequencies of
co-located spin polarized 3He and 129Xe with and without an unpolarized mass was measured.
If the spin-dependent short-range interaction exists, there should be a constant shift ωwsp in
the weighted frequency difference ∆ω(t) when the unpolarized mass is moved. From this the
coupling of pseudoscalar particles, such as the axion, to the sample spins can be determined.
In Chap. 2, the theoretical background on axion physics is given as well as methods of direct
and indirect detection of the axion are presented. Since in the experiment, which is described
in this thesis, free spin precession of polarized 3He and 129Xe is measured, details of the
optical pumping process of these noble gases and diverse relaxation mechanisms are given
in Chap. 3. In Chap. 4 the measurement principle and the experimental setup are explained.
The properties of the 3He/129Xe co-magnetometer, i.e. its sensitivity as well as its inherent
noise, are demonstrated in Chap. 5. Finally, in Chap. 6 the data analysis as well as systematic
effects are discussed.
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2 Axion Physics

The axion is a favourite solution of the strong CP -problem which occurs due to the non-
trivial vacuum structure of quantum chromodynamics (QCD). It is a hypothetical neutral
pseudoscalar boson, i.e. a particle with spin-0, which feebly couples to ordinary particles
like photons and quarks. Therefore it is a good candidate to explain a part of the cold dark
matter in the universe.
This chapter summarizes information on the axion, starting with the Lagrangian density of
QCD and the U(1)A problem. The strong CP -problem is described in Sec. 2.3. Section 2.4,
deals with the solution of Peccei and Quinn to the strong CP -problem which bears the axion.
In section 2.5 the properties of the axion and in Sec. 2.6 the different axion models are
outlined. Cosmological and astrophysical constraints, as well as some experimental results,
which confine the axion mass to a range from µeV to 1eV (axion mass window) are discussed
in Sec. 2.7 and 2.8. In Sec. 2.8 beside the direct detection of the axion the indirect detection
of the axion via a CP violating force, which is mediated by the axion between a fermion and
the spin of another fermion, is discussed.

2.1 Lagrangian Density of QCD

QCD is the theory of the strong interaction. In comparison to quantum electrodynamics
(QED), which describes the electromagnetic interaction, QCD is a non-Abelian gauge the-
ory, i.e it is non-commutative. This can be explained as followed: The gauge boson of the
electromagnetic interaction, the photon, does not carry electric charge. But the gauge bosons
of strong interaction, the gluons, carry color charge. Thus they can interact among them-
selves. Due to this fact the symmetry group of QCD (SU(3)) has a more complicated form
than the symmetry group of QED (U(1)).
The Lagrangian density of QED is given by

LQED = ψ(γµiDµ −m)ψ − 1

4
FµνF

µν , (2.1)

where ψ is the wave function of the electric charged particle, m is the mass of the particle,
γµ are the Dirac matrices, Dµ = ∂µ−ieAµ is the covariant derivative and Fµν are the tensors
of the electromagnetic field. The coupling constant is the elementary charge e and Aµ is the
covariant four-potential of the electromagnetic field. Thereby the field tensor is specified by

Fµν = ∂µAν − ∂νAµ . (2.2)
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2 Axion Physics

For QCD, the Lagrangian density is given by

LQCD =
∑
f

ψf (iγµDµ −mf )ψf −
1

4
GbµνG

µν
b , (2.3)

where ψf and mf are the wave function and the mass of the quarks respectively. f indicates
the quark flavor, γµ are the Dirac matrices, Dµ = ∂µ− igAµ is the covariant derivative with
the coupling constant g and Aµ =

∑8
a=1

λa
2 Aµa is the covariant four-potential where λa are

the Gell-Mann matrices. The index b indicates the color of the gluon and therefore can be
b = 1, . . . , 8. Gµν are the tensors of the gluon field which are specified by

Gµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ] . (2.4)

By comparison of Eq. 2.4 and Eq. 2.2, one can see that there is an additional term in the field
tensor of QCD. This term is non-commutative and describes the interaction of the gluons
among themselves.

2.2 The U(1)A Problem

In the chiral limit, i.e. in case the mass of the quarks goes to zero (mf → 0), the QCD
Lagrangian LQCD for N different quarks given by Eq. 2.3 has a large global symmetry [12]:
U(N)V×U(N)A. Since the masses of the u quark and the d quark are small compared to the
scale of QCD, i.e. mu,md � ΛQCD, at least for these quarks the chiral limit is valid. Thus,
the strong interaction is expected to be approximately invariant under a U(2)V × U(2)A

transformation. Indeed, for mu 6= md, the vector symmetry U(2)V = SU(2)V × U(1)V is
approximately an exact symmetry and therefore it is a good symmetry of nature. That means,
that under a U(1)V transformation the baryon number is conserved and under a SU(2)V

transformation the isospin is invariant, which leads to nucleon (p, n) and pion multiplets
(π+, π0, π−) in the spectrum of hadrons. On the contrary the axial symmetry U(2)A =

SU(2)A×U(1)A is not an exact symmetry. Nonvanishing quark condensates 〈uu〉 = 〈dd〉 6= 0

lead to a spontaneous breakdown of the SU(2)A symmetry. Hence, the SU(2)A symmetry
is not preserved for the vacuum state of the system. According to the Goldstone theorem,
whenever a continuous global symmetry is spontaneoulsy broken, the spectrum will have a
massless, spin-0 boson (Nambu-Goldstone boson). If the symmetry is not exact though, the
associated particle has a small mass, and is called a “pseudo Nambu-Goldstone boson”. Since
the SU(2)A is not an exact symmetry, the spontaneous symmetry breaking of SU(2)A results
in three massless pseudoscalar Nambu-Goldstone bosons which correspond to the pion triplet.
If strong interaction is invariant under a U(1)A transformation, for each particle a mirror
particle with opposite parity is expected. However such parity multiplets are not observable
in the hadron spectrum. Thus, similar to the SU(2)A symmetry it is assumed that the U(1)A

symmetry is spontaneously broken. Since the U(1)A symmetry is not exact, according to the
Goldstone theorem a single pseudoscalar Nambu-Goldstone boson η1 is expected, which has
to match the quantum numbers JP = 0− and should be a light partner to the pion. By using
chiral perturbation theory, the mass of η1 is expected to be m(η1) ≤ m(π)

√
3 [13, 14]. Such
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2.2 The U(1)A Problem

a pseudoscalar boson could not be proved so far. The only candidate available is the η′ which
has the right quantum numbers but is too heavy (mη′ = 957.78 MeV and mπ = 135 MeV
[15]). Thus the QCD Lagrangian given by Eq. 2.3 only provides an approximate description
of the strong interaction. Steven Weinberg named this problem the η′-mass problem or the
U(1)A problem. This problem was solved by G.’t Hooft [16, 17]. He showed that the U(1)A

symmetry has an axial anomaly. That means that the U(1)A symmetry is broken at the
quantum level but not classically. This results in an additional term Lθ to the Lagrangian,
which will be derived in the following: Since QCD is a non-Abelian gauge theory, the QCD
vacuum is non-trivial. In fact, it has many degenerate vacua characterized by a topological
winding number n. These vacua |n〉 are not invariant under all possible gauge transformations
and thus they are not the real vacuum. The real ground state, which is often referred to as
the θ-vacuum, is the superposition of the various vacua and is gauge invariant

|θ〉 =
∑

e−inθ|n〉 (2.5)

with 0 ≤ θ ≤ 2π [18, 19, 20]. The transition from one θ-vacuum to another θ′-vacuum is
classically forbidden, but due to quantum tunneling, this transition has a non-zero amplitude
which is given by

〈θ′ |e−Ht|θ〉 =
∑∑

ei(n
′θ′−nθ)〈n′|e−Ht|n〉 . (2.6)

This causes an additional term Lθ to the Lagrangian, so that the effective Lagrangian of
QCD is given by

Leff
QCD = LQCD + Lθ (2.7)

= LQCD + θ
g2

32π2
GbµνG̃

µν
b , (2.8)

when G̃µνb is the so-called dual field strength tensor. Including the electroweak interaction,
one has to substitute θ in Eq. 2.8 by

θ = θ + θweak = θ + arg(det M) . (2.9)

Thereby M denotes the quark mass matrix since quarks acquire their effective masses through
the breakdown of the electroweak symmetry. Thus the effective Lagrangian of the Standard
Model becomes

Leff
SM = LSM + Lθ

= LSM + θ
g2

32π2
GbµνG̃

µν
b , (2.10)

In summary, the U(1)A symmetry is not a quantum symmetry of QCD but an axial anomaly.
Thus, there is no spontaneous breakdown of the U(1)A symmetry and hence no pseudo
Nambu-Goldstone boson is expected. This means η′ does not need to be lighter than it is.
However the solution of the η′-mass problem, respectiveley the U(1)A problem, bears a new
problem: The new term Lθ in the Lagrangian of QCD is not invariant under CP transfor-
mation. But since violation of CP symmetry is not observable in the strong interaction, this
problem is called the “strong CP-problem” which will be explained in the following section.
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2 Axion Physics

2.3 The Strong CP-Problem

The new term Lθ in the Lagrangian violates the symmetries parity P and time reversal
T but conserves charge conjugation C. Thus, Lθ violates CP symmetry. In principle CP
violating effects resulting from the term Lθ in Eq. 2.10 can be large, unless θ is very small.
Basically there is no obvious reason why the two terms of θ in Eq. 2.9 should be very small
or of opposite sign, such that they cancel.
The new term Lθ induces a neutron electric dipole moment dn (nEDM) [20]. The relation
between θ and dn is predicted by the MIT bag model to be [21]

dn = 8.2 · 10−16 · θ ecm . (2.11)

The upper limit of the electric dipole moment of the neutron dn could be determined exper-
imentally to [22, 23]

|dn| < 3 · 10−26 ecm (90% CL) . (2.12)

Hence, the combination of Eq. 2.11 and 2.12 results in θ ≤ 10−10. The smallness of θ and
the non-existance of CP violation in the strong interaction is referred to as the “strong
CP -problem”.

2.4 Solution to the Strong CP -Problem

The most popular and promising solution of the strong CP -problem was provided by Peccei
and Quinn in 1977 [24, 25]. They introduced a new global, chiral symmetry U(1)PQ, the
so-called Peccei-Quinn symmetry (PQ-Symmetry), which replaces the static CP violating
parameter θ of Eq. 2.9 with a dynamical CP conserving field. This CP conserving field results
from the necessary spontaneous breakdown of the U(1)PQ symmetry and corresponds to a
pseudoscalar Nambu-Goldstone boson, which is called axion [26, 27]. The CP conserving
field of the axion can be described by a = a(x) which gives rise to an additional term Laxion

to the Lagrangian of the Standard Model

Ltotal
SM = LSM + Lθ + Laxion (2.13)

= LSM + θ
g2

32π2
GbµνG̃

µν
b + Laxion , (2.14)

where the new term is given by

Laxion = Lkin + Lint + Veff . (2.15)

Lkin represents the kinetic energy of the axion which is given by Lkin = 1
2(∂µa)(∂µa), Lint

describes further interactions of the axion and the effective potential of the axion field Veff,
which describes interactions of the axion with gluons, can be expressed by

Veff(a) = −ζ a
fa

g2

32π2
GbµνG̃

µν
b . (2.16)
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Here ζ is a parameter that depends on the model, g is the strong coupling constant and fa

is the scale of the spontaneous symmetry breaking of the U(1)PQ-Symmetry. The vacuum
expectation value of the axion field 〈a〉 can be calculated by considering the minimum of the
effective potential, i.e. [24]〈

∂Veff(a)

∂a

〉
= − ζ

fa

g2

32π2
〈GbµνG̃

µν
b 〉|〈a〉 = 0 . (2.17)

The vacuum expectation value of the axion field 〈a〉 then results in

〈θ|a|θ〉 = −θ1

ζ
fa . (2.18)

Combination of Eqs. 2.14-2.18 shows that at the minimum the θ-term is absorbed by the
axion field. Thus, no CP violation in the strong interaction occurs [26, 27] and the strong
CP-problem is solved theoretically. So, to show that the introduction of the PQ-symmetry
is justified, the existence of the axion has to be proven experimentally.

2.5 Properties of Axions

In the following the most important properties of the axion are summarized. All properties
of the axion are determined by the symmetry breaking scale fa of the PQ-symmetry since
the mass of the axion and the coupling constants are inversely proportional to it, i.e.

gai ∝
1

fa
, (2.19)

ma ∝
1

fa
, (2.20)

where i indicates the particle the axion couples to.
Axions couple to fundamental bosons and fermions, so that the interaction term Lint of
Eq. 2.15 can be written as

Lint = Laγ + Laf . (2.21)

Here, Laf describes the interaction of axions with fermions and Laγ the interaction of axions
with photons. According to [28] these terms can be written as

Laγ = gaγa ~E · ~B, (2.22)

Laf = i
gaN
2mN

∂µa
(
ψNγ

µγ5ψN
)

+ i
gae
2me

∂µa
(
ψeγ

µγ5ψe
)
, (2.23)

where N indicates the nucleons and e the electrons.

2.5.1 Couplings of the Axion

Coupling to Gluons: The axion field couples via a triangle loop to gluons which is a
consequence of the axial anomaly of the U(1)A symmetry. The Lagragian describing the
axion-gluon coupling is given by

LaG =
αs

8πfa
aGµνb G̃bµν , (2.24)
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2 Axion Physics

where αs is the strong fine-structure constant. The coupling to gluons implies the coupling
to pions so that the axion needs a mass which can be described by [29, 30]

ma =
mπfπ
fa

(
z

(1 + z + w)(1 + z)

)1/2

' 6.0eV
106GeV
fa

, (2.25)

where fπ = 93 MeV and mπ = 135 MeV are the decay constant and the mass of the pion,
respectively, and the quark mass ratios, z and w, are given by [31, 32, 33]

z = mu/md ≈ 0.553 , (2.26)

w = mu/ms ≈ 0.029 . (2.27)

Coupling to Photons Since pions decay into photons, the mixing of axions with pions
results in coupling of axions to photons. This coupling produces an additional term in the
Lagragian, which can be described by [34]

Laγ =
gaγ
4
FµνF̃

µνa = −gaγ ~E · ~Ba . (2.28)

Fµν is the electromagnetic field strength tensor, F̃µν its dual, a is the axion field and ~E and
~B describe the electric and the magnetic field, respectively.
However, there exist another contribution to the axion-photon coupling: In some axion mod-
els standard fermions carry Peccei Quinn-charges (PQ-charges) in addition to the electric
charges. Thus, if the photon carries PQ-charge, the axion couples to the photon via a trian-
gle loop analog to the axion-gluon coupling. The coupling constant of axions to photons gaγ
then is given by

gaγ =
α

2πfa

(
E

N
− 2

3

4 + z

1 + z

)
=

α

2π

(
E

N
− 2

3

4 + z

1 + z

)
1 + z

z1/2

ma

mπfπ

, (2.29)

with the fine structure constant α and the quark mass ratios, z and w, which are defined
in Eq. 2.26 and Eq. 2.27. E/N is a model dependent paramter which is the ratio of the
elcromagnetic anomaly E and the color anomaly N [35, 36].

Coupling to Fermions If fermions, i.e. electrons and quarks, carry PQ-charge, they
can couple to axions. The contribution of this interaction to the Lagragian can be described
by a Yukawa potential [28]

Laf =
gaf
2mf

(
ψ̃fγ

µγ5ψf

)
∂µa , (2.30)

with f indicating the fermion, mf is the mass of the fermion and gaf is the coupling constant
of the axion-fermion interaction, which is given by

gaf =
Cf mf

fa
. (2.31)

Thereby Cf is the effective model dependent PQ-charge. Since in QCD there are no free
quarks, only the effective coupling of axions to nucleons can be considered. So, the coupling
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of the axion to an electron and to a nucleon is different. That is why in the following the
coupling of the axion to a nucleon is considered in more detail.

Coupling to Nucleons The effective coupling of axions to nucleons consists of two
approximately equal contributions: on the one hand axions couple to light quarks at
tree-level and on the other hand the mixing of axions with pions cause axion-nucleon
coupling. The axion-nucleon coupling constant is given by [29, 28, 35, 34, 37, 38]

gaN =
CNmN

fa
, (2.32)

where mN is the mass of the nucleon. CN is the effective PQ-charge of the nucleon, which is
a combination of the masses of the quarks. For protons and neutrons CN is given by

Cp = (Cu − η)∆u+ (Cd − ηz)∆d+ (Cs − ηw)∆s , (2.33)

Cn = (Cu − η)∆d+ (Cd − ηz)∆u+ (Cd − ηw)∆s . (2.34)

Here z and w are the quark mass ratios from Eq. 2.27. η is given by η = 1/(1 + z + w) and
∆u is the fraction of the spin of the nucleon which is carried by the u quark (the same holds
for the d and s quarks).

2.6 Axion Models

As already mentioned in Sec. 2.5, the properties of the axion are defined by its mass ma and
the coupling constant gai to other particles i. Both of them are inversely proportional to the
symmetry breaking scale fa of the PQ-symmetry (see Eq. 2.19 and Eq. 2.20). So the larger
the symmetry breaking scale fa, the more weakly the axion couples to other particles and
the smaller is the mass of the axion. In the previous considerations the symmetry breaking
scale fa of the PQ-symmetry was not yet fixed. However, according to its range there are
two different axion models which will be explained in the following.

2.6.1 Visible Axions

For the original axion, which was proposed by Peccei, Quinn, Weinberg and Wilczek [24,
25, 26, 27], a weak interaction model was adopted. In this model the coupling of axions to
leptons and quarks was included. The strength of the interaction of axions with fermions
could be calculated by introducing two Higgs-doublets so that the Lagragian of the Standard
Model LSM is invariant under the chiral symmetry. Thereby it was assumed that these Higgs
doublets have non-vanishing vacuum expectation values λ1 and λ2. The symmetry breaking
scale then results in

fa =
√
λ2

1 + λ2
2 =

(√
2GF

)1/2
≡ fweak ≈ 250 GeV , (2.35)
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2 Axion Physics

where GF is the Fermi coupling constant and fweak is the electroweak scale. The mass of the
axion could be calculated to

ma = N

(
x+

1

x

) √
z

z

fπmπ

fa
= 25N

(
x+

1

x

)
keV , (2.36)

where N is the number of quark generations, z is given by Eq. 2.26 and mπ and fπ are the
mass and the decay constant of the pion, respectively. x is the ratio of the vacuum expec-
tation values, λ1 and λ2, which is chosen to be x > 1. Using all known relations the mass
of the axion results in ma ≈ 150 keV. These axions are called visible axions. The lifetime of
such an axion, which decays in two photons, was calculated in [30] to be τa→γγ ≈ 0.1 s.
By combination of astrophysical arguments and the results of several experiments the ex-
istence of the visible axion could be excluded: For instance, axions with a mass of about
150 keV would be expected in the Kaon decay

K+ → a+ π+ . (2.37)

In the KEK experiment [39] the upper bound of this branching ratio was determined to be

BR(K+ → π+ +X) ≤ 3.8 · 10−8 (90% CL) . (2.38)

Here X stays for a particle that was not detected in this process and therefore can be
interpreted as a long-lived axion. From this branching ratio upper limits on the symmetry
breaking scale fa and the mass of the axion ma can be calculated to be

fa & 103 GeV (2.39)

ma . 6 keV . (2.40)

Thus the visible axion could be precluded.

2.6.2 Invisible Axions

The main problem of the visible axion is the relation between the symmetry breaking
scale of the PQ-symmetry and the electorweak scale, i.e. fa = fweak. However the strong
CP -problem can also be solved by introducing a complex scalar field σ (Higgs field),
which carries PQ-charge and has a large expectation value of 〈σ〉 = fa/

√
2 � fweak. For

fa � fweak a light and weak interacting axion is expected, which can have eluded all
previous searches so far. This very light axion is called invisible axion. The visible and the
invisible axions conclude in different couplings of the axion to quarks and leptons. For the
invisible axion there exist two different models which will be explained briefly in the following.

The KSVZ Model
In the model proposed by Kim, Shifman, Vainshtein and Zakharov [40, 41] (KSVZ) a new
heavy quark is introduced which carries PQ-charge. Due to the PQ-charge the heavy quark
is able to couple to the scalar field σ and thus it can couple to the axion. In this model usual
leptons and quarks do not carry PQ-charge, i.e. Ce = Cu = Cd = Cs = 0. Since the KSVZ
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axion cannot couple to electrons in the tree-level as described in Sec. 2.5.1 it is called the
“hadronic” axion. However with one-loop calculations it can be shown that there still is a
small contribution to the axion-electron coupling [36].
Although KSVZ axions do not couple to normal quarks, they do couple with nucleons
(Eq. 2.32) whereby the effective PQ-charge can be obtained by evaluating Eq. 2.33 and
Eq. 2.34

Cp = −0.39 ,

Cn = −0.04 . (2.41)

The Yukawa coupling of axions to neutrons and protons then are given by

gKSVZ
ap =

Cpmp

fa
= −6.01 · 10−8ma eV−1 , (2.42)

gKSVZ
an =

Cnmn

fa
= −0.69 · 10−8ma eV−1 . (2.43)

The KSVZ model solves the strong CP -problem but a possible disadvantage might be that
there is no distinct physical motivation of the introduction of a heavy quark. In addition, it
might be difficult to detect this KSVZ axion since due to the strongly suppressed coupling
to photons the KSVZ axion interacts weakly.

The DFSZ Model
In the model proposed by Dine, Fischler, Srednicki and Zhitnitskii [42, 43] (DFSZ) the
quarks and the leptons carry PQ-charge, i.e. they have the same properties as visible axions
according to the Peccei-Quinn symmetry. Here the Higgs field σ is replaced by two Higgs
fields, Φ1 and Φ2, with respective expectation values f1 and f2. With these Higgs field the
coupling of the axions to quarks and leptons can be described [44].
For all Grand Unified Theories (GUT) for a given family of quarks and fermions, the ratio
E/N is equal to 8/3. Thus, according to Eq. 2.29 the coupling constant gaγ between axions
and photons is given by

gDFSZ
aγ ≈ −0.74

α

2πfa
. (2.44)

The PQ-charges for the fermions for Nf number of families are given by

Ce = Cs = Cd =
cos2 β

Nf
,

Cu =
sin2 β

Nf
. (2.45)

Thereby x = f1/f2 is the ratio of the vacuum expectation values and β is defined as cos2 β =

x2(x2 + 1). With Nf = 3 the PQ-charges of the proton and the neutron given in Eq. 2.33
and Eq. 2.34 emerge to

Cp = −0.08− 0.46 cos2 β ,

Cn = −0.14 + 0.38 cos2 β . (2.46)
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2.7 Cosmological and Astrophysical Constraints

The detection of axions is extremely difficult due to its weak coupling with fundamental
particles. That is why beside the WIMP’s1, the axion can contribute significantly to the
cold dark matter2 of the universe. This section gives a short overview of the limitations to
the properties of the axion which result from cosmological and astrophysical considerations.
Detailed description can be found in [34, 45, 46, 47, 48].

2.7.1 Cosmological Constraints

To derive information on the lower limit of the mass of the axion ma one has to consider the
evolution of the vacuum expectation value of the axion field, i.e. 〈a〉, through the life of the
universe [49, 50, 51].
The spontaneous symmetry breaking of the PQ-symmetry happened at a temperature
T ≈ fa � ΛQCD, where ΛQCD is the QCD energy scale. At that time the axion still was
massless and the vacuum expectation value of the axion field was not yet fixed and had an ar-
bitrary value, i.e. 〈a〉 = θi. When the universe cooled down to T ∼ ΛQCD, the PQ-symmetry
was explicitly broken, which led to the mass of the axion and to a dynamic axion field. That
means the vacuum expectation value of the axion field went to zero, i.e. 〈a〉 → 0, whereby
this phenomena did not happen instantly but 〈a〉 oscillated into its final state. Such coher-
ent oscillations of axions would contribute to the energy density of our universe (vacuum
realignment), where the energy density of the oscillations is proportional to the symmetry
breaking scale fa of the PQ-symmetry. So the axions would be a good candidate for cold
dark matter. Estimations of the contribution of cold dark matter to the overall matter in
the universe allow to constrict fa. The contribution of the axions to the energy density of
the universe is given by [52]

Ωah
2 = 0.5

(
fa

1012 GeV

)7/6 [
θ2

i + σ2
i

]
γ, (2.47)

where h2 is the Hubble constant (in units of 100 kms−1Mpc−1), θi describes the misalignment
of 〈a〉 /fa, σi is the average of the strength of the fluctuations and γ is the damping constant.
The data of the experiment with the Wilkinson Microwave Anisotropy Probe (WMAP) gives
a lower limit on the matter energy density of Ωmh

2 < 0.12 [7]. Assuming that the amount of
axions is of the same order, i.e. they would dominate the cold dark matter of the universe,
and that there are no losses of the energy density due to the axion oscillations, i.e. γ = 1,
and θi = π2/3 [53], the symmetry breaking scale fa, respectively the mass of the axion ma,
result in [34]:

fa < 3 · 1011 GeV−1 (2.48)

ma > 2 · 10−5 eV . (2.49)
1WIMP = weakly interacting massive particle
2About 4% of the mass of the universe consists of hadronic matter and about 23% constists of dark matter
which is non illuminating matter whereby the composition is unknown. The remaining mass of the universe
is given by dark energy.
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Figure 2.1: The Primakoff Effect describes the conversion of a photon (γ) in a strong mag-
netic field (γvirtual) to a hypothetical particle such as the axion (a).

2.7.2 Astrophysical Considerations

The coupling of axions to photons allows the conversion a↔ γ in external electric or magnetic
fields. This phenomena is called the “Primakoff effect” (Fig. 2.1). So, in principle it is possible
that axions are produced in stellar plasma and are emitted by stars. This means that axions
modify the energy loss rate of stars and therefore have influence on the lifetime of stars:
Due to the emission of axions, stars should have a higher amount of fuel in their core to
compensate the energy loss. The increased amount of fuel causes a faster burning of the star
so that its lifetime is shortend [54].
A restricted limit on the coupling constant gaγ of axions to photons (DFSZ axions) can
be deduced by estimation of the energy loss due to emission of axions in stars of globular
clusters. A globular cluster is a star system that is bounded by gravitational force. All stars
of this system were produced at the same time so that they just differ in their masses (with
masses smaller than the mass of the sun). In the stars of the horizontal branch (HB) helium
atoms fusion to carbonate and oxygen. In this process the core (≈ 0.5 mass of the sun)
evaporates energy. Emission of axions then would lead to a higher consumption of helium
and therefore to a shorter lifetime of the HB stars. The lifetime of the HB stars can be
calculated by comparing the number of HB stars to the number of the stars of the Red
Giant Branch (RGB) which are brighter than the HB stars. From this the axion to photon
coupling can be estimated to be [54]

gDFSZ
aγ . 1 · 10−10 GeV−1 , (2.50)

and the mass of the axion to

mDFSZ
a . 0.3

(
E

N
− 1.93± 0.08

)
. (2.51)

The RGB stars have a degenerate helium core and the helium discharges explosively when
a critical combination of density and temperature is reached. The bremsstrahlung of this
process

e− + (A,Z)→ e− + (A,Z) + a (2.52)
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Figure 2.2: Summary of astrophysical and cosmological regions that can be excluded for
the axion mass ma, respectively for the symmetry breaking scale fa of the PQ-
symmetry. The SN 1987A limit applies for the axions of the KSVZ model, but
approximately also covers the axions of the DFSZ model. The bars with open
ends show a rough estimate, for instance the one for the globular cluster stars
that is given for the DFSZ model. The regions with the dots indicate the regions
where the axion can be the dark matter and the regions with the stripes indicate
the sensitivity of the search experiments for galactic and solar dark matter axions.
This graph was taken from [55].

decelerates the accumulation of helium due to the cooling by the axions. Observations restrict
the axion to electron coupling to (DFSZ axions) [56]

gDFSZ
ae . 2.5 · 1013 GeV−1 . (2.53)

The strongest constraints for axions, which are produced by nucleon-nucleon-axion
bremsstrahlung

N +N → N +N + a , (2.54)

are made by the observation of the Supernova SN 1987A [57]. The energy loss of this Super-
nova due to the axion emission would result in a shorter duration of the observed neutrino
burst. The measurements of Kamiokande II and the Irvine-Michigan-Brookhaven (IBM) de-
tectors exclude a range for the coupling of axions to nucleons, which is given by [55]

3 · 10−10 GeV−1 . gKSVZ
aN . 3 · 10−

7
GeV−1 . (2.55)

This corresponds to a range for the mass of

0.01 eV . mKSVZ
a . 10 eV , (2.56)

which can be precluded. Another mass range can be excluded, if heavy hadronic axions
could induce nuclear excitations which deexcite by emitting γ-rays. This should increase the
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number of counts in the neutrino Cerenkov detectors [58, 59]. Due to this measurements the
mass range

20 eV . mKSVZ
a . 20 keV (2.57)

can be excluded.

Considering the precluded mass ranges of all astrophysical and cosmological constraints, the
mass of the axion is restricted to a range from µeV to meV, which is also referred as the
“axion mass window ”. In Fig. 2.2 all bounds and the axion mass window are shown. Since
some of the astrophysical and cosmological considerations are based on rather uncertain
models and assumptions, still there exist searches for the axion in regions that were already
precluded.

2.8 Detection of the Axion

Since the axion is a good candidate for cold dark matter, researchers are highly interested
to prove the existance of the axion. In the last century many experimental methods were
developed for the search of the axion. Here it is necessary to distinguish between two different
types of detection: the direct and the indirect detection of the axion. Experiments, in which
galactic, solar or laboratory origin axions are tried to be detected directly, are based on the
Primakoff effect, i.e. the conversion of a photon via an external static magnetic field to an
axion (Fig. 2.1). On the other hand, there are several experiments which try to detect the
axion indirectly due to the CP violating interaction it mediates between a fermion and a spin
of another fermion. Such interaction can be described by a Yukawa type potential, which,
for instance, produces a frequency shift in the Larmor frequency of precessing spins. In the
following briefly some of those experiments with their constraints on the mass of the axion
are explained.

2.8.1 Direct Detection of the Axion

• Galactic Axions

– Microwave Cavity Experiments:
These experiments are looking for galactic halo axions by using electromagnetic
cavities. Here it is assumed that galactic halo axions are converted into photons
in the strong static magnetic field of the cavity [60]. The converted photons are
monochromatic with a relative width of 10−6. The frequency of the cavity is ad-
justable so that galactic axions with different masses can be detected. At the very
beginning, experiments at the Rochester-BNL-Fermilab [61, 62] and the univer-
sity of Florida [63], which used cavities with a sensitive volume of about 1 litre,
were able to preclude masses of the axion in the range of

4.5 µeV < ma < 16.3 µeV. (2.58)
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Experiments of second generation used cavities with higher sensitive volume of
about 200 litre and higher magnetic fields. For example, the ADMX3 experiment
could exclude the mass range [64, 65]

1.9 µeV < ma < 3.3 µeV. (2.59)

This experiment is continuously data taking and it is planned to improve its
sensitivity by using a new technology based on Superconducting Quantum Inter-
ference Device (dc SQUID) [66]. The CARRACK24 experiment uses a Rydberg
atom single-quantum detector that covers a large scale for the mass of the axion
[67, 68]. This large scale-detector is searching for axions in the region

2 µeV < ma < 30 µeV. (2.60)

– Optical and Radio Telescope Searches:
Optical searches for thermal axions, which were produced in the early universe,
by looking for a monochromatic photon decay line in galaxy cluster, cover the so
called “multi-eV” mass range which goes from 3 eV to 8 eV. The Kitt Peak national
Observatory (KPNO) studied three cluster (Abell 1413, 2218 and 2256) [69, 70]
but could not find a signal. Thus the range

3 eV < ma < 8 eV (2.61)

could be excluded.

In experiments, which use a radio telescope, it is assumed that, if axions had been
present in dwarf galaxies, they would decay into photons. These photons would
be detected as narrow lines in radio telescope power sprectra. With the radio
telescope of the Haystack Observatory the mass range

298 µeV < ma < 363 µeV (2.62)

could be precluded [71].

• Laboratory Axions

– “Light Shinning through a Wall” Experiments:
Since axions couple to photons it is assumed that they are produced by radiating
a light beam (usually laser) through a transverse magnetic field, i.e. the photons
of the laser beam interact with the virtual photons of the magnetic field so that a
pseudoscalar axion is produced. If the laser beam is blocked behind the magnetic
field by a “wall”, only the axions go through the wall since they are weak interacting
particles. Behind the wall there is a second transverse magnetic field in which the

3Axion Dark Matter eXperiment
4Cosmic Axion Research using Rydberg Atoms in a resonant Cavity in Koyoto
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axions are reconverted to photons [72]. These regenerated photons can be detected
with a photomultiplier. With this kind of experiment an upper limit of

gaγ < 6.7 · 10−7 GeV−1 (2.63)

for the axion-photon coupling constant could be determined [73, 74]. This leads
to an upper limit of

ma < 10−3 eV (2.64)

for the mass of the axion.

– Polarization Experiments:
With the experiment described before another limit on the axion mass and the
coupling of axions to photons can be estimated by assuming that the produced
axions change the polarization state of the photons of the laser beam. There are
two observable effects [75]:
Dichroism: By radiating the laser beam through the transverse magnetic field,
the produced axions reduce the component of the electric field parallel to the
magnetic field, i.e. ~E‖, which results in a rotation of the polarization vector. This
effect is called dichroism.
Vacuum Birefringence: In the second transverse magnetic field behind the wall
the axions are reconverted into photons. The initially linearly polarized photon
beam will become elliptically polarized since the axions will mix again with ~E‖.
Such experiments restrict the axion to photon coupling to [76]

gaγ < 3.6 · 10−7 GeV−1 (2.65)

in a mass range of
ma < 5 · 10−4 eV. (2.66)

• Solar Axions
The search for axions that were produced in the plasma of stars give answers to many
open questions, for instance, the cooling of stars can be explained. The closest and best
known star that can be used for observation is the sun. In the last years two different
kind of helioscopes have been built which search for solar axions. Both of them are
based on the inverse Primakoff effect.
a.) Axions which pass a crystal can interact with the electric field of atomic nuclei. For
an axion to photo conversion the Bragg condition has to be fulfilled [77]. That is why
Germanium crystal detectors are used. The experiments COSME [78] and SOLAX [79]
could determine an upper limit for the coupling constant of gaγ < 2.7·10−9GeV−1 (SO-
LAX) and gaγ < 2.8·10−9GeV−1 (COSME) in a mass range ofma ≤ 1keV. The DAMA
[80] experiment is using NaI(Tl) crystals and result in a limit of gaγ < 1.7 ·10−9GeV−1

[DAMA].
b.) In a helioscope solar axions, which propagate to Earth, can be converted to pho-
tons by passing a transverse magnetic field. These photons can be detected by x -ray
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detectors. The first kind of this helioscope could obtain an upper limit for the axion
to photon coupling constant of [81]

gaγ < 3.6 · 10−9 GeV−1 (ma < 0.03 eV) (2.67)

as well as [82]
gaγ < 7.7 · 10−9 GeV−1 (0.03 eV< ma < 0.11 eV). (2.68)

A more sensitive experiment is using the Tokyo helioscope [83] which gives an upper
limit of

gaγ < 6.0 · 10−10GeV−1 (ma < 0.03 eV) . (2.69)

The CAST experiment at CERN that is also based on a helioscope could improve the
upper limit of the axion to photon coupling to

gaγ < 1.16 · 10−10 GeV−1 (2.70)

in a range ma ≤ 0.02 eV [84].

2.8.2 Indirect Detection of the Axion

The experiments, which were explained before, are based on the Primakoff effect, and there-
fore are searching for a coupling of the axion to a photon. But as already mentioned in
chapter 2.5.1, the coupling of axions to fermions is also possible.
In [8] a P - and T -violating macroscopic force was proposed which is mediated between un-
polarized fermions f and polarized fermions fσ by exchanging an axion or axion-like particle
(ALP). This force can be parameterized by a Yukawa-type potential with a monopole-dipole
coupling [8]

Vsp(~r) =
~2gfs g

fσ
p

8πmfσ

(~σ · r̂)
(

1

λr
+

1

r2

)
e−r/λ . (2.71)

Here λ is the range of the Yukawa-force with λ= ~/(mac), ma is the mass of the axion
or axion-like particle, mfσ is the mass of the polarized fermion, r̂ is the unit distance
vector from the polarized to the unpolarized fermion, ~ is the reduced Planck constant,
and gfs and gfσp are dimensionless scalar and pseudoscalar coupling constants. The search
for this spin-dependent short-range interaction between either nucleons or a nucleon
and an electron is realized by many experiments which use different techniques, such
as sensitive torsion pendula [85, 86], clock comparison between two different polarized
spin samples [87, 88, 89], measurements of the spin precession signal of pure spin polar-
ized 3He [90] and measurements of the neutron flux between a scatterer and a mirror
where the neutrons are bound in quantum states of the gravitational field [91]. The de-
tection of such a spin-dependent short-range interaction is an indirect detection of the axion.

In this work, we present a clock comparison experiment to search for the spin-dependent
short-range interaction between bound nucleons and polarized bound neutrons (with gfs = gNs
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and gfσp = gnp ). Therefore an ultra-sensitive low-field magnetometer is used which is based
on the detection of free precession of co-located 3He and 129Xe nuclear spins using SQUIDs
as low-noise magnetic flux detectors (3He/129Xe co-magnetometer). An unpolarized mass
sample which is close to the spin samples and moved far away from it or vice versa, may cause
a shift ωwsp in the weighted difference of the precession frequencies of 3He and 129Xe (Eq. 1.8).
This frequency shift ωwsp was measured to determine the coupling of pseudoscalar particles to
the spin of the bound neutron (gNs gnp ). Our result will be presented in Chap. 6.8 together with
the results that were provided by other experiments, which measure the coupling between
(bound) nucleons and (bound) neutrons.
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Since our experiment is based on precessing nuclear spins in a homogenous magnetic field
this chapter deals with the theory of spin precession.

3.1 Spins in a Magnetic Field

An atom with a nuclear spin ~I is associated with a magnetic moment

~µ = γ · ~ · ~I = g · µN · ~I , (3.1)

where γ = g µK
~ is the gyromagnetic ratio with the nuclear g-factor g, µN = e~

2mp
=

5.05078324(13) · 10−27 J
T is the nuclear magneton and ~ = 1.054571628(53) · 10−34 Js is the

reduced Planck constant. The absolute value of the nuclear spin is given by |~I| =
√
I(I + 1)~

with the nuclear spin quantum number I which can take integral or half-integral values. If
the spin quantization axis is given by the x-axis, the x-component of the magnetic moment
is defined as

µx = γ · ~ ·mI , (3.2)

where mI = −I,−I + 1, · · · , I − 1, I is the projection of the nuclear spin on the x-axis.
An applied magnetic field ~B = B0 · êx interacts with the magnetic moment which leads to a
splitting in the energy levels, the so-called Zeeman effect:

EZeeman = −~µ · ~B = −µx ·B0 = −γ · ~ ·mI ·B0 . (3.3)

In our experiment the noble gases 3He and 129Xe are used. Both have an electron spin of
J = 0 and a nuclear spin of I = 1

2 . The projection of the nuclear spinmI then can have values
+1

2 (“spin-up”) and −1
2 (“spin-down”), i.e. the x-component of the nuclear spin is directed

parallel or antiparallel to the applied magnetic field. The g-factors1 of helium and xenon are
given by [92]

gHe = −4.254995436(50) , (3.4)

gXe = −1.544978008(100) (3.5)

and the gyromagnetic ratios are given by [92]

γHe = −20.37894730(56) · 107 1

Ts
, (3.6)

γXe = − 7.39954378(50) · 107 1

Ts
. (3.7)

1The g-factor and the gyromagnetic ratio of xenon were recalculated with the value of the magnetic moment
of the proton µp [92].
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Since the g-factors of both, 3He and 129Xe, are negative, the state with mI = −1
2 is ener-

getically more favorable. The energy difference ∆E of the two Zeeman levels, spin-up and
spin-down, is given by

∆E = g · µN ·B0 = ~ · γ ·B0 . (3.8)

The corresponding transition frequency, the so-called Larmor frequency ωL, is defined as

ωL = γ ·B0 . (3.9)

3.2 Polarization and Optical Pumping

In general polarization is defined as an unequal population of different Zeeman levels

P :=
1

F

∑
mF

mF ·N(mF)∑
mF

N(mF)
, (3.10)

where F = I +J is the total atomic angular momentum and N(mF) the population number
of the Zeeman level with the magnetic quantum number mF. Since for 3He and 129Xe the
total atomic angular momentum is equal to the nuclear spin, i.e. F = I = 1/2, in the
following only nuclear spins are considered.
In thermal equilibrium, for a two-level system with spin–up and spin–down state, such as 3He
and 129Xe, the population numbers are distributed according to the Boltzmann statistics.
This means that for a given temperature T in a magnetic field B0, the fraction of population
numbers is given by

N−
N+

= exp

(
−E+ − E−

kT

)
= exp

(
−∆E

kT

)
. (3.11)

Here ∆E is the energy difference of the two Zeeman levels (Eq. 3.8), k the Boltzmann con-
stant andN+(−) the population numbers of the spin–up and the spin–down state respectively.
The nuclear spin polarization then is given by

P (I =
1

2
) =

N+ −N−
N+ +N−

. (3.12)

At a magnetic field of about 1 T and a temperature of about 300 K, the so-called thermal or
Boltzmann polarization PB for 3He and 129Xe is in the order of 10−6. Much higher degrees
of polarization, the so-called hyperpolarization, can be achieved by using the technique of
optical pumping, where momentum is transferred to the atom from a resonant light source
(usually a laser). In our working group 3He is polarized by metastability exchange optical
pumping (MEOP), where polarization degrees up to 90% can be reached. On the contrary,
129Xe is polarized by spin exchange optical pumping (SEOP). In this method first 87Rb atoms
are polarized by MEOP which then transfer their momentum to the 129Xe atoms via spin
exchange collisions. In the following sections both methods will be explained briefly. More
detailed descriptions can be found in [93], [94] and [95].
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Figure 3.1: Metastability exchange optical pumping (MEOP) of 3He: The ground state 11S0

is excited by a gas discharge into the metastable 23S1 state. From this metastable
state the atoms are pumped to the 23P0 state by means of resonant σ+ light. Col-
lisional mixing leads to isotropic reemission into the metastable state 23S1. The
population numbers of this state are redistributed towards increasing mF due to
repeated absorption and isotropic reemission. The electronic polarization then is
transferred to the nucleus via the hyperfine interaction. Due to exchange colli-
sions between polarized metastable and unpolarized ground state atoms, atoms
with nuclear spin polarization in the ground state arise. This graph was taken
from [96].

3.2.1 Metastability Exchange Optical Pumping

In Mainz several polarizers for 3He were developed. All of them use the method of metastabil-
ity exchange optical pumping (MEOP). Therefore a quantity of 3He with a low gas pressure
of about 1 mbar is placed in a weak and homogenous magnetic field of roughly 10 G. A
weak gas discharge excites the atoms from the ground state 11S0 into the 23S1 state. Due to
angular momentum conservation and the forbidden transition between triplet and singulet
system, this state is metastable. Its lifetime is limited to 1 ms due to collisions of the 3He
atoms with the wall of the pumping cell. Atoms in the metastable state 23S1 are pumped into
the 23P0,1,2 states by resonant laser light. Between these levels exist 9 hyperfine structure
lines that are named C1 to C9 in the order of increasing energies [97]. For optical pumping
the lines C8 and C9, which correspond to transitions from the 23S1 into the 23P0 state,
are the preferred transitions. In the following, the pumping process on the C9 line will be
explained (see Fig. 3.1).
The homogenous magnetic field leads to a splitting of the hyperfine levels into the Zeeman
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sub–levels with quantum number mF . If the pumping light is right-circularly polarized (σ+

light) with λ = 1083.03nm, only transitions with ∆mF =+1 are induced. During the lifetime
of the 23P0 state of τ ≈ 10−7 s [98] collisions lead to radiationless transitions into the
other 23P levels. This process is called collisional mixing. Since the 23P levels are almost
equally occupied, deexcitation happens almost isotropically into the Zeeman levels of the
23S1 state. By repeated absorption and spontaneous reemission the population numbers are
redistributed towards increasing quantum number mF , which leads to a polarization of the
electronic spin of the 23S1 state. Due to the hyperfine interaction between the electronic spin
and the nuclear spin, the nuclear spin is also polarized. The characteristic time constant of
this interaction is τHF ≈ 2.23 · 10−10 s [99], which is much shorter than the lifetime of the
23S1 state. For the time being, the nuclear polarized atom is still in the metastable state
23S1. However, due to its long lifetime the nuclear polarized atom collides with unpolarized
atoms in the ground state 11S0. Some of these collisions lead to an exchange of the excitation
energy between the colliding atoms, while the nuclear spins stay unchanged. These collisions
can be described by

3He∗(A,mF) +3 He(B,mI = −1/2) 
 3He(A,mI = +1/2) +3 He∗(B,mF − 1) , (3.13)

where A and B define the nuclei of the atoms and 3He∗ is the excited atom. As a result of the
pumping process there are more atoms in the states with highermF, i.e.N(mF) > N(mF−1).
Hence the reaction predominantly happens from the left to the right side and the ground
state atoms go from mF = −1/2 to mF = +1/2, i.e. the polarization according to Eq. 3.12
is positive.

3.2.2 Spin Exchange Optical Pumping

To polarize 129Xe the method of spin exchange optical pumping (SEOP) is used. In this
method first the electron shell of an alkali atom is polarized via MEOP. Then the polarization
is tranferred from the atomic shell of the alkali atom to the 129Xe nucleus. This transfer can
happen either during binary collisions or during the lifetime of a weak bounded van der
Waals molecule. In both cases the relevant interaction is the nuclear–electron spin–exchange
interaction which couples the nuclear spin ~I of the 129Xe atom to the electron spin ~S of the
alkali atom

VIS = α ~I · ~S . (3.14)

Here α is a coupling constant that depends on the internuclear separation between the alkali
and the 129Xe atom.

As we will see later on, the wall relaxation time T1,wall of 129Xe is much smaller than for 3He,
so that 129Xe has to be polarized next to the experiment. That is why the 129Xe polarizer
of the PTB in Berlin [95] was used for our experiment. In the following the method of
spin exchange optical pumping (SEOP) will be explained using the example of the PTB
polarizer. A scheme of this polarizer is shown in Fig 3.2. The gas mixture, that is filled into
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Figure 3.2: Scheme of the PTB 129Xe polarizer: The gases N2, 129Xe and 4He are directed
through filters to mass flow controllers (MFC) that provide the desired mixing
ratios. Then the gas mixture is flowing through the pumping cell, which contains
a droplet of Rb metal and is heated to about 150◦C. Two circularly polarized
laser beams that are on resonance with the D1 transition of Rb hit the pumping
cell from both sides (not shown in the figure) to optically pump the Rb atoms.
Via spin exchange collisions the polarization of the electron spins of the Rb atoms
is transferred to the nuclear spins of the 129Xe atoms. Then the gas mixture flows
through a second cell which is placed in a liquid-nitrogen (LN) dewar. Here the
polarized 129Xe atoms are frozen out and thus separated from the buffer gases
(N2 and 4He). After thawing of the nuclear spin polarized 129Xe it can be filled
into the storage vessel. This figure was taken from the dissertation of W. Kilian
[95].
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3 Theory of Spin Precession

the polarizer, first is cleaned from oxygen and water through filters2. It typically contains
100 mbar of isotopically enriched xenon (91.2 % 129Xe), 200 mbar of N2 and 4.7 bar of 4He
(the latter ones are used as buffer gases). The polarizer works in a continuous-flow-mode,
i.e. the gases are pumped through the system continuously, controlled by digital mass flow
controllers (MFC). After mixing, the gases flow through the pumping cell, where the spin
exchange optical pumping takes place. The pumping cell is a cylindrical Duran glass cell
of volume V = 30 cm3, that contains a droplet of Rb metal. The cell is heated to about
150◦C to reach a sufficiently Rb vapor pressure such that the Rb can be regarded as optically
thick. For optical pumping of Rb two high-power semiconducter lasers (FAB-systems, Fibre-
Array-Packaged) are needed. By combination of a beam splitter cube and a λ/4-plate the
laser light is circularly polarized, so that the D1 transition (λ = 794.8 nm) of Rb is excited.
To reduce the depolarization of Rb due to Rb-Xe collisions a low xenon pressure is needed.
On the contrary, a higher total pressure is needed to achieve a pressure broadening of the
Rb absorption line, so that it fits better to the spectral linewidth of the laser. That is why
4He is used as buffer gas. Additionally, nitrogen (N2) is used as quenching gas: The excited
Rb atoms deexcite by radiating unpolarized fluorescence light, which work to decrease the
degree of polarization of the electron spins of the Rb atoms. By adding N2 this effect is
suppressed since due to collisions with the N2 molecules the excited Rb atoms can deexcite
non-radiatively. But this advantage has to be weighted against the fact that N2 breaks up
the Rb-Xe van der Waals molecules and therefore is slowing down the spin transfer.
After optical pumping of 129Xe, the gas mixture flows through a second cell, which is placed
in a liquid-nitrogen dewar so that the heavier 129Xe atoms are frozen out while the other gases
are released into the ambient air. Then the nuclear spin polarized 129Xe can be thawed and
filled into the storage vessel. To achieve a pressure of about 1 bar in the storage vessel (V≈
270ml), the flowing gas mixture approximately has to freeze out one hour. After the thawing
procedure, in which about half of the polarization is lost, polarizations up to (15± 2)% can
be achieved.

3.3 Spin Precession and Bloch Equations

Each atom of a nuclear spin polarized gas is characterized by a nuclear magnetic moment
~µ = γ · ~ · ~I, which follows the rules of quantum mechanics. If the motion of ~µ in a magnetic
field ~B is considered, the Schroedinger equation of the Hamiltonian H = −~µ · ~B has to be
solved. In [100] it was shown that the equations of motion for a nuclear magnetic moment
~µ and a classical magnetic moment ~mclass are equal. These equations are called the Bloch
equations which are given by

d

dt
~m∗(t) = γ ~m∗(t)× ~B(t) . (3.15)

Here γ is the gyromagnetic ratio and ~m∗ stands either for the classical magnetic moment
~mclass or for the expectation value 〈~µ〉 of the nuclear magnetic moment. If we assume that
2OxiSorb from the company MESSER
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3.3 Spin Precession and Bloch Equations

the single spins of a nuclear spin polarized gas do not interact with each other, Eq. 3.15 even
is valid for the expectation value of the total nuclear magnetic moment of the spin polarized
gas, which is given by

~m =
∑
〈~µ〉 . (3.16)

The absolute value of the total nuclear magnetic moment is given by

m = N P µ = N P γ I ~ , (3.17)

with the number of atoms N = pV
kT (with pressure p, volume V , temperature T and Boltz-

mann constant k), the dregree of polarization P , the gyromagnetic ratio γ, the nuclear spin
I and the reduced Planck constant ~. In addition the nuclear spin polarized gas can be de-
scribed by a macroscopic quantity, the so–called magnetization ~M , which is defined as the
resulting magnetic moment ~m per unit volume V :

~M =
1

V
~m =

1

V

∑
〈~µ〉 . (3.18)

With reference to a homogenous magnetic guiding field ~B0, the magnetic moment ~m can be
split in two components: the longitudinal component ~m||, which is parallel to the direction of
the magnetic guiding field ~B0, and the transversal component ~m⊥, that is perpendicular to
~B0. If the homogenous magnetic guiding field is constant in time and pointing in x-direction3,
i.e. ~B0 = B0 · êx, the magnetic moment is also aligned in x-direction, i.e. ~m = m · êx. By
applying an additional alternating magnetic field (RF pulse)

~B1(t) = B1(êy cosωrt+ êz sinωrt) , (3.19)

which rotates in the plane perpendicular to the static, homogenous magnetic guiding field
~B0 with angular frequency ωr, for a duration of tirr, the magnetic moment ~m can be tilted by
an angle α. But tilting of the magnetic moment only takes place if the RF pulse is resonant,
i.e. ωr = ωL, where ωL = |γ ·B0| is the so-called Larmor frequency. After irradiation of a
resonant RF pulse the magnetic moment ~m then is given by

~m =

 m cosα

m sinα cosϕ

m sinα sinϕ

 . (3.20)

Here ϕ is an arbitrary angle in the yz–plane and α is the tilting angle, which is given by

α = γ B1 tirr . (3.21)

For our experiment at the PTB in Berlin another method was used to reach tilting of the
magnetic moment: A homogenous magnetic field was aligned in y–direction, i.e. ~B1 = B1 · êy.

3In our experiment the coordinate system of the magnetically shielded room as shown in Fig. 4.5 was used.
The magnetic guiding field was pointing in x–direction. So, to be constistent with the coordinate system
of the magnetically shielded room in the following the x–direction is used as the direction of the magnetic
guiding field, i.e. ~B0 = B0 · êx.
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3 Theory of Spin Precession

Figure 3.3: Schematic Free induction decay (FID) signal, which is induced in a pickup coil
pair by the transversal component ~m⊥ of the magnetic moment that precesses
freely around a magnetic gudiding field ~B0. The envelope of the signal decreases
exponentially with the characteristic decay time T ∗2 (see Sec. 3.5).

During a period of tswitch the magnetic field ~B1 was switched off while another homogenous
field ~B0 = −B0 · êx, that is perpendicular to ~B1, was switched on. Thereby the magnitude of
both fields is equal, i.e. B0 = B1. If the switching operation happens too slowly (adiabatic
field change), i.e.

tswitch �
2π

ωL
, (3.22)

the magnetic moment ~m follows the actual field direction and hence is aligned along the new
field axis given by ~B0. But if the switching operation happens fairly fast (non-adiabatic field
change), i.e.

tswitch �
2π

ωL
, (3.23)

the magnetic moment cannot follow the new field axis given by ~B0 and hence is tilted by
an angle α = 90◦ relative to ~B0. The advantage of this method is that the same flip angle is
guarenteed at all times.

In general, tilting of the magnetic moment ~m relative to the magnetic guiding field ~B0 is
called spin flip. Regardless of which method is used for a spin flip, after tilting the magnetic
moment ~m starts to precess freely around the axis of the magnetic guiding field ~B0 with the
angular velocity ωL = |γ ·B0|. This rotation is called Larmor precession or spin precession
and the corresponding frequency is the Larmor frequency. For an atom with a nuclear spin
of I = 1/2 the precession energy ∆E = ~ωL corresponds to the energy difference between
the two Zeeman levels according to Eq. 3.8.
Due to different relaxation processes that are described in Sec. 3.5, the transverse component
of the magnetic moment ~m⊥ decays with a characteristic time constant T ∗2 , while its longi-
tudinal component ~m|| tends to reach its thermal equilibrium value mth with a characteristic
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3.4 Magnetic Field Produced by Spin Polarized Atoms

time constant T1. Thus, the Bloch equations (Eq. 3.15) have to be extended by relaxation
terms

d

dt
mx = γ (~m× ~B)x +

mth −mx

T1
, (3.24)

d

dt
my = γ (~m× ~B)y −

my

T ∗2
, (3.25)

d

dt
mz = γ (~m× ~B)z −

mz

T ∗2
. (3.26)

In case of hyperpolarized gases with mth � mx, the thermal equilibrium value mth can be
neglected, i.e. mth ≈ 0.
The spin precession signal can be detected with a so-called pickup coil pair with its axis
perpendicular to the ~B0 axis. Then the precessing transversal component of the magnetic
moment induces a periodically varying current in the pickup coil pair. The detected signal
is referred to as Free-Induction-Decay (FID) and is shown in Fig. 3.3. In our experiment
instead of pickup coils SQUID detectors were used (see Sec. 4.2.3).

3.4 Magnetic Field Produced by Spin Polarized Atoms

For a nuclear spin polarized gas the total magnetic moment ~m is aligned parallel to the
magnetic guiding field ~B0. If the gas is filled into a spherical glass cell, an ideal magnetic
dipole field is produced outside the sphere which is given by [101]

~B(~r) =
µ0

4π

3r̂(r̂ · ~m)− ~m

r3
. (3.27)

If the magnetic guiding field ~B0 is directed in x-direction, the x-component of the magnetic
dipole field is given by

Bx(r) =
µ0

4π

m
(
3 cos2 Θ− 1

)
r3

for r > RC . (3.28)

Here it is assumed that the magnetic moment ~m of the polarized gas is concentrated in the
center of the spherical glass cell and r describes the distance of ~m to a measurement point
outside the sphere. RC is the radius of the cell, µ0 the vacuum permeability andm = NPγI~
(Eq. 3.17) the magnitude of the magnetic moment of the nuclear spin polarized gas, such
as 3He or 129Xe. Θ is the angle between the x-axis and the connection line of the center of
the glass cell and the measurement point. Considering a point on the x-axis, i.e. Θ = 0, and
using the ideal gas law, one can write the above equation as

Bx(r) =
pV

kT

2µ0PγI~
4πr3

, (3.29)

where p is the pressure in the cell, V the volume of the cell, k the Boltzmann constant,
T the temperature, P the degree of polarization, γ the gyromagnetic ratio and I = 1

2 the
nuclear spin of the gas atoms. So, the magnetic field produced by a nuclear spin polarized
gas, which is filled into a spherical glass cell, decreases with the distance r according to 1

r3

and is proportional to the polarization P .
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3 Theory of Spin Precession

3.5 Relaxation

By means of optical pumping high degrees of polarization P can be achieved. However, nature
strives for thermal equilibrium, so that the polarization is destructed by different effects. That
means the polarization P , respectively the magnetic moment ~m, is not constant in time, but
decays exponentially until the Boltzmann polarization PB is reached. This process is called
relaxation. Here it is necessary to distinguish between the relaxation of the longitudinal
component of the magnetic moment, which is parallel to the magnetic guiding field, and
the transverse component of the magnetic moment, which is perpendicular to the magnetic
guiding field. The decay of the longitudinal component is similar to the decay of the the
polarization P , which can be described by

P (t) = (P0 − PB) · e−t/T1 + PB . (3.30)

In case of hyperpolarized gases (P0 � PB) the Boltzmann polarization can be neglected.
Equation 3.30 then simplifies to

P (t) ≈ P0 · e−t/T1 . (3.31)

T1 is the characterstic decay time and is called longitudinal relaxation time which will be
discussed in the following section. Section 3.5.2 will deal with the decay of the transverse
component of the magnetic moment, which decays with a characteristic time constant that
is called transverse relaxation time T ∗2 .

3.5.1 Longitudinal Relaxation

Different mechanisms destruct the longitudinal component of the magnetic moment ~m. The
ones that are relevant for our experiment are the gradient relaxation (T1,grad), as well as the
relaxation due to collisons of the polarized atoms with the wall of the gas container (T1,wall)
and the binary or van der Walls collisions of the atoms with each other (T1,bin and T1,vdW).
The total longitudinal relaxation rate then is given by

1

T1
=

1

T1,grad
+

1

T1,wall
+

1

T1,bin
+

1

T1,vdW
. (3.32)

The individual effects will be explained in the following.

Wall Relaxation

The polarized gases are filled into cells that are made of glass which may contain small para-
or ferromagnetic impurities. During collisons of the polarized noble gas atoms with the wall
of the glass cell the dipolar coupling as well as the Fermi-contact interaction with those
impurities can lead to spin relaxation. In those collisions the atoms can be adsorbed at the
wall or they can diffuse into the glass matrix. The latter one can be strongly suppressed by
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3.5 Relaxation

using quasi impermeable aluminosilicate glass, such as the GE-180 glass4, that was used for
our measurement cells.
The wall relaxation rate 1/T1,wall is proportional to the surface-to-volume ratio of the cell

1

T1,wall
=

1

η
· S
V
, (3.33)

where η is the relaxation coefficient of the wall of the glass cell. Even if the same type of
glass is used for all measurement cells, the value of η may vary more than a factor of 10
from one cell to another. Equation 3.33 shows that the smaller the surface-to-volume ratio,
the smaller is the wall relaxation rate 1/T1,wall. For spherical glass cells the wall relaxation
rate is given by 1/T1,wall ∝ 1/R. Thus, the use of big spherical glass cells with radius R can
reduce wall relaxation. But the radius R cannot be arbitrary since the gradient relaxation
rate 1/T1,grad, which will be explained in the next section, is limited by the radius R, i.e.
1/T1,grad ∝ R4 (Eq. 3.39). So, the choice of the radius R has to compromise wall and gradient
relaxation rate. Optimal conditions for both are given for a spherical cell with a radius of
R = 3 cm.
However, due to geometric reasons cylindrical cells were used in our experiment (see
Sec. 4.2.1). The diameter �L and length L of those cells were chosen to be L/2 = �L/2 = R

such that the cylindrical cell approximately has the same shape as a spherical cell with radius
R = 3 cm. That is why in the following section the cylindrical cells can be approximated
by spherical cells. For our experiment in total 4 cylindrical cells with identical measure-
ments were produced, but only two of them had satisfying wall relaxation times for 3He with
T1,wall > 100 h. The measurement of the wall relaxation times for 129Xe were not possible,
but in some tests it was discovered that long wall relaxation times measured with 3He result
in long wall relaxation times of 129Xe as well.
A detailed description of the wall relaxation of hyperpolarized 3He in spherical glass cells
can be found in [102], [103] and [104].

Gradient Relaxation

To maintain the polarization of noble gases a homogeneous magnetic guiding field ~B0 is
needed. In reality this field is not ideally homogeneous, but has some finite field gradients.
Then in the rest frame of a polarized noble gas atom, which diffuses through the glass
cell, field gradients generate a temporally fluctuating magnetic field. This can cause spin
flips if the Fourier spectrum contains frequency components near the Larmor frequency
ωL = |γ ·B0|. According to [105] for a magnetic guiding field that is aligned in x–direction5 the
longitudinal relaxation rate due to transverse field gradients, ~∇B1,y = (

∂B1,y

∂x ,
∂B1,y

∂y ,
∂B1,y

∂z )

4GE-180 is produced by “General Electric” and mainly consists of SiO2 (60%), BaO (18%), Al2O3 (14%)
and CaO (7%).

5As customary, in [105] it is assumed that the magnetic guiding field is pointing in z–direction. In our
experiment the coordinate system of the magnetically shielded room as shown in Fig. 4.5 was used. So,
to be constistent with the coordinate system of the magnetically shielded room in the following the
x–direction is used as the direction of the magnetic guiding field, i.e. ~B0 = B0 · êx.
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3 Theory of Spin Precession

Diff. coeff. Value ( cm2

s ) Ref. Temperature (K)

DHe ≈ 1.880 [106] 293
DHe in Xe ≈ 0.600 [107] 300
DHe in N2 ≈ 0.770 [107] 300
DXe ≈ 0.580 [108] 300
DXe in He ≈ 0.790 [108] 300
DXe in N2 ≈ 0.210 [108] 353

Table 3.1: Diffusion coefficients for 3He and 129Xe at a pressure of 1 bar.

and ~∇B1,z = (
∂B1,z

∂x ,
∂B1,z

∂y ,
∂B1,z

∂z ), is given by

1

T1,grad
= 2D

|~∇B1,y|2 + |~∇B1,z|2

B2
0

×
∑

n

1

(x2
1n − 2)(1 +D2x4

1n(γB0)−2R−4)
. (3.34)

This equation was derived for a spherical volume. As already mentioned in the former section,
our cylindrical measurement cells can be approximated by spherical cells so that Eq. 3.34 is
valid for our cylindrical measurement cells, too. D is the diffusion coefficient, γ the gyromag-
netic ratio, R the radius of the cell and x1n (n = 1, 2, 3, ...) are the zeros of the derivative
of the spherical Bessel function ( ddxj1(x1n) = 0). ~B0 = B0 · êx is the average homogenous
field in x–direction and ~B1(~r) describes the deviation of the local field from the average
homogeneous field ~B0. The mean value of ~B1(~r) is assumed to be zero.
In our experiment we use a gas mixture of 3He, 129Xe and N2. Nitrogen is used as buffer gas
to suppress the van der Waals relaxation, which will be described in the next section. The
diffusion coefficients for 3He and 129Xe in this gas mixture are given by [106]:

1

DGM
He

=

(
pHe

DHe
+

pXe

DHe in Xe
+

pN2

DHe in N2

)
1

p0

T
3/2
0

T 3/2
, (3.35)

(3.36)

1

DGM
Xe

=

(
pXe

DXe
+

pHe

DXe in He
+

pN2

DXe in N2

)
1

p0

T
3/2
0

T 3/2
. (3.37)

Here pHe, pXe and pN2 are the partial pressures of 3He, 129Xe and N2, which are given in
units of bar. DHe/Xe are the respective diffusion coefficients of pure 3He and 129Xe gas at
standard condition (p0 = 1.013 bar, T0 = 273.15 K), and DX in Y is the diffusion coefficient
of species X in species Y (with pX → 0). The different coefficients are listed in Tab. 3.1. Here
it should be noted that the coefficients are given for gas pressures of 1 bar.
The expression of the gradient relaxation rate in a spherical cell of radius R (≈ cylindrical
cell with L/2 = �L/2 = R) given in Eq. 3.34 can be simplified by introducing the diffusion
time τd = R2/D and the characteristic precession time τp = 1/ωL. The ratio of both is given
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by
τd

τp
=
R2ωL

D
∝ pB0 . (3.38)

For low pressures and low magnetic fields the precession time is long compared to the diffusion
time, i.e. τd/τp � 1. This region is called the low pressure regime or the regime of motional
narrowing for which the gradient relaxation rate given in Eq. 3.34 simplifies to

1

T1,grad
≈ 8R4

175D
γ2 (|~∇B1,y|2 + |~∇B1,z|2) . (3.39)

On the contrary for high pressures and high magnetic fields the precession time is short
compared to the diffusion time, i.e. τd/τp � 1. In this so-called high pressure regime the
gradient relaxation rate given in Eq. 3.34 can be approximated by

1

T1,grad
≈ D |

~∇B1,y|2 + |~∇B1,z|2

B2
0

. (3.40)

So, the longitudinal gradient relaxation rate in the low pressure regime is proportional to
the pressure p (with D ∝ 1

p) and to the absolute field gradients whereas in the high pressure
regime it is inversely proportional to the pressure p and proportional to the relative field
gradients.
For a given relative field gradient the absolute field gradient decreases with decreasing mag-
netic field B0. Thus, in the low pressure regime (motional narrowing regime) longer gradient
relaxation times can be achieved than in the high pressure regime. That is why in our ex-
periment we worked in the low pressure regime. Consequently Eq. 3.39 describes the correct
gradient relaxation rate. Optimal gradient relaxation times can be achieved for a magnetic
guiding field in the order of µT, field gradients in the order of pT/cm and low pressures in
the order of mbar.

Binary and Van der Waals Relaxation

In 3He-3He or 129Xe-129Xe collisions short-duration molecules can be formed. The nuclear
spins of the atoms that form those molecules couple due to magnetic dipole–dipole interac-
tion. Such molecules have additional rotational and vibrational degrees of freedom. Nuclear
spin polarization then is lost due to coupling of the nuclear spin to the rotational angular
momentum, which transfers part of the nuclear spin polarization to orbital angular momen-
tum. This relaxation mechanism is proportional to the pressure of the gas. According to
[109] the relaxation time due to binary collisions at pressure p and temperature T for 3He is
given by

THe
1,bin ≈ (754 h)

p0

pHe

T

T0
, (3.41)

whereas for 129Xe it is given by [110]

TXe
1,bin ≈ (56 h)

p0

pXe

T

T0
. (3.42)
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Here p0 and T0 are the standard pressure and temperature (p0 = 1.013 bar, T0 = 273.15 K)
and the partial pressures of 3He and 129Xe are given in units of bar. For the motional
narrowing regime, i.e. at low pressures in the order of mbar, the binary relaxation time can
be calculated for room temperature (T ≈ 293.15 K). Since THe,Xe

1,bin > 7000 h, the binary
relaxation time can be neglected in our experiments.
For heavy polar atoms, such as the 129Xe atoms, additionally van der Waals molecules can
be formed. The lifetime of such molecules is larger than the lifetime of the molecules that
are formed in binary 129Xe-129Xe collisions. Hence, the loss of nuclear spin polarization in
van der Waals molecules is more likely. In [111] the van der Waals relaxation rate for 129Xe

was measured. For pure 129Xe the maximum relaxation time is given by

TXe
1,vdW = 4.1 h . (3.43)

By adding buffer gases the van der Waals molecules can be breaked open by the buffer gas
molecules, so that the van der Waals relaxation time is increased and given by [111]

TXe in B
1,vdW = TXe

1,vdW (1 + r[B]/[Xe]) , (3.44)

where r is the breakup rate coefficient and [B]/[Xe] is the ratio of the partial pressures of
the buffer gas B and 129Xe. Equation 3.44 shows that in the limit [B]/[Xe] → ∞, van der
Waals relaxation can be neglected. In order to suppress the van der Waals relaxation, in our
experiment N2 was used as buffergas. For N2, the breakup rate coefficient was measured to
be r = 1.05(8). Typically, we used pressure ratios of [N2]/[Xe] ≈ 4 : 1. Further increase of
the buffergas pressure causes considerable losses due to the gradient relaxation rate which
scales with the total pressure ptot of the gas mixture (see Eq. 3.39). A discussion about the
optimum 3He, 129Xe and N2 pressures is given in Sec. 4.2.4.

In addition another relaxation mechanism due to collisions of the polarized noble gas atoms
can be considered: Oxygen molecules (O2) have a molecular spin of J = 1 and thus a
magnetic moment which causes strong spin relaxation due to the dipole-dipole interaction
in a collision between a polarized noble gas atom and a O2 molecule. The relaxation due to
O2 molecules for 3He at temperature T = 299 K was measured to be [112]

TO2
1 (3He) =

bar
pO2

2.5 s (3.45)

and for 129Xe at temperature T = 300 K [113] to

TO2
1 (3Xe) =

bar
pO2

2.1 s , (3.46)

where pO2 is the partial pressure of O2 in units of bar. Equation 3.45 and 3.46 show that
the relaxation time TO2

1 increases for decreasing partial pressure of O2. So, to supress this
relaxation mechanism the partial pressure of O2 has to be smaller than 10−3mbar to achieve
TO2

1 > 580 h. This means that the measurement cells as well as the device to mix the gases
(filling system) have to be evacuated thoroughly before the gases 3He, 129Xe and N2 are filled
in. The relaxation due to oxygen then can be neglected compared to the other relaxation
mechanisms.
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3.5.2 Transverse Relaxation

If the transverse component of the magnetic moment is precessing around the magnetic
guiding field (Sec. 3.3) the amplitude of the precession signal decays exponentially with
a characteristic time constant, the so-called effective transverse relaxation time T ∗2 . The
effective transverse relaxation rate is given by

1

T ∗2
=

1

T1,wall
+

1

T1,vdW
+

1

T2,grad
, (3.47)

where T1,wall and T1,vdW are the longitudinal relaxation times, which were discussed in the
previous section. 1/T2,grad is the total transverse gradient relaxation rate which can be split
in two terms

1

T2,grad
=

1

T1,grad
+

1

T
′
2,grad

, (3.48)

where T1,grad is the longitudinal gradient relaxation time discussed in the previous section,
which is given by Eq. 3.39. T ′2,grad describes the relaxation of the transverse component of
the magnetic moment due to the loss of phase coherence of the single magnetic moments.
This dephasing can be caused by collisions of the atoms with each other and with the wall
of the measurement cell and by field gradients of the magnetic guiding field. Due to field
gradients the single polarized noble gas atoms see different magnetic fields and thus precess
with different Larmor frequencies ωL = |γ · B|. That means that some atoms precess faster
than others which causes dephasing of the single magnetic moments. According to [105] the
total transverse gradient relaxation rate 1/T2,grad for spherical sample cells (≈ cylindrical
sample cells) in a field ~B0 that is oriented in x-direction can be expressed by

1

T2,grad
=

8R4γ2|~∇B1,x|2

175D
+D
|~∇B1,y|2 + |~∇B1,z|2

B2
0

×
∑

n

1

(x2
1n − 2)(1 +D2x4

1n(γB0)−2R−4)
. (3.49)

Here D is again the diffusion coefficient according to Eq. 3.35 and Eq. 3.37, ~B0 = B0 · êx is
the average homogeneous field in x–direction, ~B1(~r) the deviation of the local field from ~B0,
γ the gyromagnetic ratio, R the radius of the cell and x1n (n = 1, 2, 3, ...) are the zeros of
the derivative of the spherical Bessel function ( ddxj1(x1n) = 0).

For the low pressure regime the total transverse gradient relaxation rate simplifies to

1

T2,grad
≈ 4R4γ2

175D
·
(
|~∇B1,y|2 + |~∇B1,z|2 + 2|~∇B1,x|2

)
. (3.50)

Thus, the total transverse relaxation rate is proportional to p (with D ∝ 1
p) and it depends

on the square of the absolute field gradients.
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4 Experimental Technique and Setup

4.1 Experimental Technique

As already mentioned in Chap. 2 the axion or axion-like particles mediate a P - and
T -violating macroscopic force between unpolarized fermions f and polarized fermions
fσ which can be described by a Yukawa-type potential Vsp (~r) given by Eq. 2.71. This
potential effectively acts near the surface of a massive unpolarized sample as a pseudo-
magnetic field and gives rise to a shift ∆νsp = 2 · VΣ/h, e.g. in the precession frequency
of nuclear spin polarized gases, such as 3He and 129Xe. The potential VΣ is obtained by
integration of the spin-dependent short-range potential Vsp (~r) over the volume of the
massive unpolarized sample averaged over the volume of the polarized spin sample (see
App. F). According to the Schmidt model [11] the nuclear spin of the 3He and 129Xe

atoms is carried by a neutron only. Thus both polarized nuclei can be regarded as an
effective probe of a spin polarized bound neutron. The mass of the polarized fermion in
Eq. 2.71 then corresponds to the mass of a bound neutron, i.e. mfσ = mn. In [89], refined
theoretical calculations of the neutron spin contribution to the nuclear angular momentum
in 3He and 129Xe nuclei are discussed and result in approximately 87% for 3He and
75% for 129Xe (refined nuclear shell model). The mass of the polarized fermion in Eq. 2.71
then is slightly different for 3He and 129Xe:mfσ(3He) = 0.87·mn andmfσ(129Xe) = 0.75·mn.

For a start, the determination of the frequency shift ∆νsp due to the spin-dependent short-
range interaction, will be illustrated by considering only polarized 3He. Cylindrically shaped
spin and unpolarized matter samples are used with a finite gap ∆x between them. The axes
of the cylinders were aligned along the direction of the magnetic guiding field ~B0 = −B0 · êx
(Fig. 4.1). The unpolarized matter sample can be moved along the axis of the magnetic field
~B0 (x-axis) from “close” position (∆xc = 2.2 mm)1 to “distant” position (∆xd = 170 mm)
and vice versa. By inducing a spin flip, the polarized nuclear spins of 3He start to precess
around the direction of the magnetic guiding field ~B0 with the Larmor precession frequency
ωL = |γHe ·B0|. If the unpolarized matter sample is in close position the precession frequency
of the polarized 3He atoms is shifted due to the spin-dependent short-range interaction. The
precession frequency of 3He then is given by

ωHe,c = γHe ·B0 + 2π ·∆νsp . (4.1)

After several hours the unpolarized matter sample is moved to distant position, where the
1In “close” position the gap ∆x between the polarized 3He atoms and the unpolarized matter sample is
given by the thickness of the glass of the spin sample cell only.
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4 Experimental Technique and Setup

Figure 4.1: Scheme of experimental setup to determine tiny frequency shifts ∆νsp due to the
spin-dependent short-range interaction. (a) The cylindrically shaped unpolarized
mass (gray square) is placed in close position, i.e. ∆xc = 2.2mm, to the cylindrical
spin sample cell. The cylinder axes are aligned along the direction of the magnetic
guiding field ~B0 (x-axis). The force ~Fsp = −~∇Vsp(~r), which is caused by the spin-
dependent short-range interaction between the polarized bound neutrons of the
3He atoms and the nucleons of the unpolarized sample, is indicated by the red
arrows. (b) The cylindrically shaped unpolarized mass (gray square) is placed
in distant position, i.e. ∆xd = 170 mm, so that the spin-dependent short-range
interaction can be considered to be negligible small.

Figure 4.2: Drift of magnetic guiding field | ~B0| during measurement run C68. A linear drift
of about 1pT/h is visible that corresponds to a linear drift in frequency of about
10−5 Hz/h.
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additional frequency shift ∆νsp disappears. Then the spin precession frequency of 3He is
given by

ωHe,d = γHe ·B0 . (4.2)

Provided that the magnetic guiding field ~B0 is constant in time, the frequency shift ∆νsp

due to the spin-dependent short-range interaction can be calculated by the difference of the
two measured spin precession frequencies of 3He

∆νsp =
1

2π
(ωHe,c − ωHe,d) =

2VΣ,He

h
. (4.3)

But as shown in Fig. 4.2 the magnetic guiding field shows a linear drift of about 1 pT/h
which corresponds to a linear drift in frequency of about 10−5 Hz/h. To get rid of these
magnetic field drifts we use the 3He/129Xe co-magnetometer, i.e. the cylindrical cell is filled
with polarized 3He and polarized 129Xe. Then the influence of the magnetic guiding field ~B0

(Zeeman-term with ωL,i = |γi · B0| (i = He, Xe)) and its temporal fluctuations drop out in
the weighted difference of the measured spin precession frequencies

∆ω(t) = ωHe(t)−
γHe

γXe
· ωXe(t) . (4.4)

So, the weighted frequency difference ∆ω(t) or its equivalent, the weighted phase difference
∆Φ(t) = ΦHe(t)− γHe

γXe
·ΦXe(t), is sensitive to the pseudomagnetic frequency shift ∆νsp due to

the spin-dependent short-range interaction. The frequency shift ∆νsp then can be extracted
from respective frequency measurements in close and distant position by

∆νwsp =
1

2π

(
ωHe,c − ωHe,d −

γHe

γXe
(ωXe,c − ωXe,d)

)
=

2VΣ

h
·
(

1− γHe

γXe

)
= ∆νsp ·

(
1− γHe

γXe

)
, (4.5)

where VΣ,He = VΣ,Xe = VΣ,n ≡ VΣ according to the Schmidt model [11]. If the refined nuclear
shell model [89] is considered, Eq. 4.5 changes over to

∆νwsp∗ =
1

2π

(
ωHe,c − ωHe,d −

γHe

γXe
(ωXe,c − ωXe,d)

)
=

2

h
·
(
VΣ,He −

γHe

γXe
VΣ,Xe

)
=

2

h
·
(

1

0.87
VΣ −

γHe

γXe

1

0.75
VΣ

)
=

2VΣ

h
·
(

1

0.87
VΣ −

γHe

γXe

1

0.75
VΣ

)
= ∆νsp ·

(
1

0.87
VΣ −

γHe

γXe

1

0.75
VΣ

)
. (4.6)

Since γHe/γXe = 2.75408159(20) [114, 115], the two nuclear shell models differ by a factor
of 1.4, i.e. ∆νwsp∗ = 1.4 ·∆νwsp.
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For the determination of ∆νsp, a high sensitivity σν regarding the spin precession frequency
of the polarized gas is needed. As will be described in Chap. 5, this can be achieved by spin
precession signals with a high signal-to-noise ratio (SNR) and a long transverse relaxation
time T ∗2 : σν ∝ 1/(SNR · (T ∗2 )3/2) (Eq. 5.3). In the motional narrowing regime, long T ∗2
times can be achieved for a low magnetic guiding field | ~B0| with low absolute field gradients
(Eq. 3.47 and Eq. 3.50). For absolute field gradients in the order of pT/cm, T ∗2 times of several
hours can be achieved. On the contrary, a high SNR, which is given by SNR = Ā/Nα, can
be obtained for a high signal amplitude Ā and a low signal noise Nα. For signal amplitudes
of about 10 pT, a SNR larger than 1000 : 1 can be realized with a signal noise in the order
of fT/

√
Hz. To meet both conditions, i.e. field gradients in the order of pT/cm and a signal

noise in the order of fT/
√

Hz, the experiments with the 3He/129Xe co-magnetometer have to
be performed in a magnetic shielding. The individual components of the experimental setup
have to be optimized to obtain best possible sensitivity σν , which will be explained in detail
in the following sections.

4.2 Experimental Realization

4.2.1 Measurement Cells

The preparation of the measurement cells is of high importance in order to get long T1 and
therewith long T ∗2 relaxation times (see Eq. 3.47). For our measurement cells we used GE-180
glass that in previous experiments showed the lowest wall relaxation rates [102, 103, 104].
The cells are cylindrical and have a length of L = 6 cm and a diameter of �L = 6 cm (see
Fig. 4.3). Both end planes of the cells were polished with diamond abrasive paper to keep
the distance ∆x between the polarized gas and the unpolarized matter sample small. After
polishing the thickness d of the glass was measured with an ultra sonic distance sensor.
The maximum value was d = 2.2 mm. To get rid of ferromagnetic contaminations, the cells
were cleaned with a two percent solution of Mucasol2 and afterwards with distilled water.
Then a stopcock was glued to the stem of the cell (see Fig. 4.3) so that the cell as a whole
could be connected to a vacuum pumping station until the vacuum pressure reached less
than 10−7 mbar. After the cleaning and pumping process the cells were demagnetized. For
this purpose, the cells were put into a strong oscillating magnetic field (ν ≈ 3 Hz) with
initial strength of about 0.2 T. The field amplitude was decreased linearly to zero which
took about 20 minutes. This procedure demagnetizes possible ferromagnetic particles (e.g.
magnetite particles of µm sizes) sitting on the inner surfaces of the glass cells which are in
direct contact with the hyperploarized noble gases [116].
Finally, the T1 relaxation times of the cells were measured. The measurements of the T1 times
were made with polarized 3He only, since at that time the 129Xe polarizer was not yet ready
at Mainz. Later it was figured out that long T1 times measured with 3He result in long T1

times of 129Xe as well. For the measurement of the T1 times we used an existing NMR setup
[117]. The cells were filled with about 200 mbar of polarized 3He and kept in a magnetic

2Mucasol is a cleaning agent of the company Merz that contains surfactats and phosphates.
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4.2 Experimental Realization

Figure 4.3: Cylindrical measurement cell made out of GE-180 glass.

guiding field of about 8 G. Every 15 minutes the spins were flipped by a small angle (α < 3◦)
and the respective FID signal of the transverse magnetization was recorded. The amplitude of
the FID signal, which is proportional to the polarization, was determined via a Fast Fourier
Transform. By plotting the recorded data points one gets an amplitude-time diagram that
shows exponential decay of the sample magnetization with the characteristic time constant
T1. By fitting an exponential function to the data, the T1 time could be determined. One
measurement typically took some days, depending on the T1 time. If the measured relaxation
times were too low, the cells were cleaned and demagnetized again, which then in some cases,
led to a significant improvement of T1. In total 4 cylindrical cells were measured that gave
T1 times for 3He between 47 and 110 hours.

4.2.2 Magnetically Shielded Room

The experiments with the 3He/129Xe co-magnetometer were performed at the Physikalisch-
Technische Bundesanstalt (PTB) in the Berlin magnetically shielded room (BMSR-2, [118]).
In Fig. 4.4 a horizontal sectional view of the BMSR-2 is shown. It consists of a highly con-
ductive eddy current cage made out of 10 mm aluminium. In the center of this cage there is a
cubic room, the so-called measuring cabin, with an inner edge length of 2.9 m. This room is
shielded by 7 layers of µ-metal3. Additionaly there are some coils between the µ-metal shield
and the aluminium cage with which Earth’s field can be compensated. The passive shielding
factor of this system exceeds 108 above 6 Hz. With additional active shielding the shielding
factor is more than 7 · 106 down to 0.01 Hz. The complete system sits in a building with 15
m cubic outer dimension and a two-story outbuilding with rooms for data acquisition and
measurement preparation.
A sophisticated demagnetization procedure in BMSR-2 preserves a low residual magnetic
field of | ~Bres| < 1 nT in the center of the innermost shield (0, 0, 0) and field gradients
around the center of the measurement cell (0, 0, -6.6 cm) below 3.1 pT/cm. This residual

3µ-metal is a nickel-iron alloy with very high magnetic permeability.
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4 Experimental Technique and Setup

Figure 4.4: Horizontal cut view through building, shielded room and outbuilding where the
data acquisition chamber and the filling station for the hyperpolarized gases is
placed. The highly conductive eddy current cage (RF-shield) made out of 10 mm
aluminium is indicated by the black solid square. The compensation coils are
indicated by the black dashed square and the 7 layers of µ-metal of the shielded
room are colored in red.

field ~Bres is superimposed by a magnetic guiding field ~B0 = B0 · êx, which serves as the
quantization axis of the nuclear spins. The magnitude B0 of this magnetic guiding field has
to compromise a good SNR as well as a long transverse relaxation time T ∗2 to get a high
sensitivity regarding the spin precession frequency: According to Eq. 3.47 and Eq. 3.50, the
transverse relaxation time T ∗2 depends on the square of the absolute field gradients. Hence,
the smaller the magnetic guiding field, the smaller the absolute field gradients and thus
a long T ∗2 time can be achieved. On the contrary, the SNR depends on the white system
noise of the BMSR-2, which is remarkable low and about 3 fT/

√
Hz. In the low-frequency

region, i.e. for spin precession frequencies ν = ω/2π = γB0/2π < 10 Hz, the signal noise is
elevated, whereby the 1/f limit is at 2 Hz [119] (see Fig. 6.1). That means, if the frequency
ν, respectively the magnetic guiding field B0, decrease, the signal noise increases and hence
the SNR is reduced. Thus, to meet a long transverse relaxation time T ∗2 as well as a high
SNR, optimum conditions for the magnitude of the magnetic guiding field are given for a
magnetic field of about 1 µT (νHe,Xe ≈ 10 Hz).

4.2.3 SQUID System and Magnetic Field

For the detection of the spin precession signals a SQUID4 vector magnetometer system was
used (Fig. 4.5). The SQUID sensors measure the change of a magnetic field perpendicular to
their flat pickup loop and have an unknown DC offset in their output signal. The SQUID

4A SQUID (Superconducting Quantum Interference Device) is a highly-sensitive magnetic flux detector
based on superconducting loops containing Josephson junctions. A more detailed description of these
particular SQUIDs can be found in [96].
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vector magnetometer system consists of 304 SQUIDs which are housed in a liquid-helium
dewar that is permanently attached to the ceiling of the BMSR-2. The dewar has a flat
bottom and an inner diameter of 250 mm. The SQUIDs are divided up into 19 identical
modules and arranged in such a way that x-, y- and z-components of the magnetic field can
be measured.

Inside the shielded room two square coil pairs (Bx- and By-coil) of edge length 180 cm and
175 cm respectively and distance 97 cm and 94 cm respectively, were mounted perpendicular
to each other (see Fig. 4.5). Each coil pair (with 20 windings per coil) provides a homogeneous
magnetic field of around 0.35 µT at a current of 17.5 mA, which was provided by a low noise
current source5. The use of two coil pairs was chosen in order to manipulate the sample
spins. For example, a “π/2-pulse” of the magnetic moment of a nuclear spin polarized gas
can be realized by non-adiabatic change of the magnetic field, i.e. Ωrot/ωL � 1 (see Chap.
3.3). This way, nuclear spin precession in the yz–plane (changing from ~By to ~Bx) could be
monitored.

To achieve a good homogeneity of the magnetic guiding field a simulation of the magnetic
field was done by C. Gemmel [96]. For this simulation, only the inner µ-metal layer of the
shielded room was considered. The center of the spin sample cell was positioned at (0, 0,
-6.6 cm), where the coordinate origin (0, 0, 0) corresponds to the center of the shielding. For
symmetry reasons it would have been better to center the cell in the z–direction, but this
was not possible in the experiment due to the dimesions of the dewar which was already
shifted up to its highest position. The tensor components ∂Bx,y,z/∂(x, y, z) of the gradients
of the simulated magnetic field (Bsim ≈ 0.35 µT) were calculated within a cubic volume of
(10×10×10) cm3 around the center of the spin sample cell. Here the z-position of the center
of the Bx-coils was varried to find best field homogeneity. For the position (0, 0, -2 cm) of
the center of the Bx-coils all components ∂Bx,y,z/∂(x, y, z) of the gradients of the simulated
magnetic field were below 4 pT/cm.

The measurement of the tensor components of the gradients ∂Bx,y,z/∂(x, y, z) with and
without the magnetic guiding field in the vicinity of the spin sample cell were operated by
means of the SQUID magnetometer system. Thus, at least three SQUIDs with orthogonal
pickup loops are needed to evaluate the nine tensor components of the magnetic field gradient.
The SQUID magnetometer system and thus the dewar as a whole had to be moved to preset
positions forming a grid in 3D-space around the sample position. The gradient was calculated
from the measured relative field difference of every single SQUID. The main uncertainty in
the determination of the gradient components is the incorrect alignment of the dewar and
the fact that in presence of a magnetic guiding field (| ~Bx| 6= 0) this misalignment has a
strong influence mainly on the extraction of the transverse components of the field gradient.
Furthermore, former measurements showed that the dewar can be slightly magnetized and
thus produces additional magnetic field gradients. Since the SQUID magnetometer system
is moved together with the dewar, these gradients are not included in the measurements
of the tensor components of the field gradient. Hence, before the measuring period started

5The current source was produced by “Magnicon” as part ot the “SEL-1 SQUID Electronics”.
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Figure 4.5: (a) Vertical cut view through innermost shield of the BMSR-2 seen from the door
opening. The outer rectangle shows the inner shielding layer. The striped area
on the bottom shows the flooring, which enables walking within the shielded
room without damaging the µ-metal. The smaller black squares and the two
thick black lines indicate the Bx- and By-coil pairs. The pneumatically driven
sliding doors are indicated by dashed lines. The light gray area is the dewar
and the dark gray bars indicate the individual moduls housing the low-Tc DC-
SQUID magnetometers in different orientations and positions. The cylindrical
spin sample cell (D = 60 mm, �D = 58 mm) is denoted by the orange square.
Its center has an average distance of z̄ = 66 mm to the sensors. The fixation of
the spin sample cell is not shown. (b) Horizontal cut view through the dewar.
The 304 SQUID sensors are divided up into 19 identical modules (A-U). The
lower plane SQUIDs in module D, E, and I marked as (•) are used to detect
the free 3He/129Xe spin precession. SQUIDs in module S marked as (�) are used
for the gradiometric sensor arrangements. The photograph in the right corner
shows a low-Tc DC-SQUID magnetometer which is operated inside the BMSR-2
(photograph taken from [119]). The relative position of the spin sample cell in
xy-plane projection again is indicated by an orange square.
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Measured field gradients without magnetic guiding field
∂B1,x

∂x
∂B1,x

∂y
∂B1,x

∂z
∂B1,y

∂x
∂B1,y

∂y
∂B1,y

∂z
∂B1,z

∂x
∂B1,z

∂y
∂B1,z

∂z

-0.6 pT
cm -2.5 pT

cm -1.2 pT
cm -1.5 pT

cm -2.6 pT
cm 0.6 pT

cm -1.2 pT
cm 0.3 pT

cm 2.2 pT
cm∣∣∣~∇B1,x

∣∣∣ = (2.8± 1.0) pT
cm

∣∣∣~∇B1,y

∣∣∣ = (3.1± 1.6) pT
cm

∣∣∣~∇B1,z

∣∣∣ = (2.5± 1.7) pT
cm

Measured field gradients with magnetic guiding field
∂B1,x

∂x
∂B1,x

∂y
∂B1,x

∂z
∂B1,y

∂x
∂B1,y

∂y
∂B1,y

∂z
∂B1,z

∂x
∂B1,z

∂y
∂B1,z

∂z

-0.5 pT
cm -0.8 pT

cm -8.0 pT
cm -7.3 pT

cm -10.3 pT
cm 16.8 pT

cm 27.0 pT
cm 2.5 pT

cm 2.5 pT
cm∣∣∣~∇B1,x

∣∣∣ = (8.1± 3.8) pT
cm

∣∣∣~∇B1,y

∣∣∣ = (21.0± 33.2) pT
cm

∣∣∣~∇B1,z

∣∣∣ = (27.2± 2.9) pT
cm

Table 4.1: Measured field gradients with and without the magnetic guiding field (| ~Bx| =

0.35 µT) inside BMSR-2. The errors of the measured values are not known.

several positions in the xy-plane were tested on T ∗2 . The position with highest T ∗2 was chosen
as measurement position. In addition, to minimize the gradients of the residual field the
shielded room as a whole was degaussed before the measuring period started.
The measured absolute values of the gradient components with and without magnetic guiding
fieldB0 =0.35 µT are summarized in Tab. 4.1. The measured gradients with magnetic guiding
field are much higher than the simulated ones. This can have different reasons:

a. An incorrect alingment and spacing of the coils can lead to additional field gradients.

b. Deviations of the wire windings of the Bx-coils from the exact quadratic course, for
example as a result of deflection of the coil frame, can cause additional field gradients.

c. In z-direction the field gradients are bigger than in x- and y-direction. This may be
related with the special suspension of the dewar which might produce additional field
gradients in z-direction.

d. Experience of former measurements showed that the real magnetic field gradients do
not correspond to the simulated ones. That is why for symmetry reasons the center of
the Bx-coils was placed in the center of the shielding (0, 0, 0). So, the center of the
Bx-coils in the simulation and in the experimental setup is shifted by 2 cm and thus
the simulated and real field gradients may differ.

e. The field gradients measured by the SQUID magnetometer system can be split in two
fractions: the field gradients of the residual field of the BMSR-2 and the field gradients
of the magnetic guiding field B0 = 0.35 µT. Since the simulated field gradients do not
include the gradients of the residual field, simulated and measured field gradients may
differ.
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4.2.4 Filling System

The measurement cells have to be filled with nuclear spin polarized 3He and 129Xe, where the
pressures pHe,Xe have to compromise a good SNR as well as a long transverse relaxation time
T ∗2 to obtain a high sensitivity regarding the spin precession frequency: According to Eq. 3.47
and Eq. 3.50, the transverse relaxation time T ∗2 is indirect proportional to the pressure p of
the polarized gas. Consequently, the pressure p should be as low as possible to achieve a
long T ∗2 time. On the contrary, the SNR is proportional to the pressure p (SNR = Ā/Nα ∝ p
(Eq. 3.29)). That means, if the pressure p decreases, the signal amplitude decreases and hence
the SNR is reduced. Thus, to meet a long transverse relaxation time T ∗2 as well as a high
SNR, optimum conditions are given for pressures of the polarized gases, 3He and 129Xe, in
the order of mbar. Additionaly N2, with pN2 � pXe, was needed as buffer gas to suppress the
van-der-Waals relaxation of 129Xe (see Chap. 3.5). An in situ polarization of the gases was
not possible. Hence, as a first step 3He and 129Xe have to be polarized separately and then
they are mixed together with N2 in a specially designed filling station (Fig. 4.4 and Fig. 4.6).

The 3He gas was polarized at the Mainz polarizer. From there it was transported to the
PTB in Berlin in low-relaxation storage vessels. Due to the long wall relaxation times T1,stor

of typically 200 hours and the use of magnetized transportation boxes, which provided a
homogeneous field during transport [120], the loss of polarization from Mainz to the PTB
was small. After arrival the storage vessel was transferred to the homogenous magnetic field
of the filling station. The polarized 3He was delivered at pressures of about 2 bar in a volume
of about 1200 cm3 and could be used over a period of about three days. The 129Xe gas was
polarized at the PTB polarizer, since short transfer distances were needed due to the shorter
total longitudinal relaxation time T1 of the 129Xe gas compared to the 3He gas. Hence,
the polarized 129Xe could be used only for one measurement run and had to be polarized
directly before each measurement run. The transport coil, which will be explained in the
next section, was used to bring the 129Xe storage vessel to the experiment. The polarized
129Xe was delivered at pressures of about 1 bar in a volume of about 270 cm3.

The filling of the gases 3He, 129Xe and N2 into the measurement cell was done within the
filling station which is shown in Fig. 4.6: By means of a pair of Helmholtz coils with a
diameter of 140 cm and a field strength of B0 ≈ 8.5 G at 5 A a homogenous magnetic field
was produced to maintain the polarization of 3He and 129Xe. The relative field gradient
components dB0/dx

B0
= dB0/dy

B0
and dB0/dz

B0
have been measured to be ≈ 10−4 1

cm [117]. With
these values and the typical storage vessel pressures of pHe

stor ≈ 2 bar and pXe
stor ≈ 1 bar the

gradient relaxation times T1,grad for 3He and 129Xe can be calculated by using Eq. 3.34.
This results in THe

1,grad = 5609 h and TXe
1,grad = 80120 h. Hence the gradient relaxation of the

gases within the filling station can be neglected. The mixing of the gases was realized with
a specially designed filling system which was made out of glass. It was described in detail
in [121] and is shown in Fig. 4.6. The measurement cell is connected by flange F1 to the
filling system and the three storage vessels respectively filled with polarized 3He, polarized
129Xe and N2 are connected by the flanges F2-F4 to the filling system. Flange F5 on the
upper right side in Fig. 4.6 is connected to a vacuum pumping system. For evacuation of
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Figure 4.6: Scheme of the gas filling station (not true to scale): 3He is polarized in Mainz and
then filled into a storage vessel that is transported with magnetized transport
boxes to the PTB in Berlin. 129Xe is polarized at the PTB polarizer and filled
into a storage vessel that is carried with the transport coil to the experiment.
Both storage vessels have to be placed in the filling station. The filling system
made out off glass has three sluice valves in the middle (SV1, SV2 and SV3) with
which different gas quantities can be filled into the measurement cell. Additionaly
N2 is used as buffer gas to suppress van der Waals relaxation. The whole filling
system sits in a homogeneous magnetic guiding field ~B0 that is produced by two
Helmholtz coils.
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Figure 4.7: Calculated transverse spin relaxation times T2 =
(

1
T2,grad

+ 1
T1,vdW

)−1
for 3He

and 129Xe due to diffusion in magnetic field gradients and due to van der Waals
relaxation as a function of the buffer gas pressure pN2 in a gas mixture of 3He,
129Xe and N2. Here the measured field gradients given in Tab. 4.1 and the pres-
sures pHe = 2.5 mbar (solid line) and pXe = 5.0 mbar (dashed line) were used.

the whole gas manipulation system, the valves V1 and V2 have to be opened. During the
filling process these valves are closed. The valves in the middle (SV1-SV3) serve to fill small
amounts of gas from the storage vessel to the measurement cell. These valves are also called
sluice valves since they work similar to a sluice, i.e. gas from the storage vessel is absorbed
in the small volume of the sluice (VSV < 1 cm3) and after rotation of the valve by 180◦,
the gas in the volume of the sluice is expanded into the measurement cell. For example, for
filling of 5 mbar 129Xe from the storage vessel (pXe ≈ 1 bar) to the measurement cell, valve
SV2 has to be turned five times. The volume of the sluice differs from valve to valve so that
the desired gas quantity of either 3He, 129Xe or N2 can be filled into the measurement cell.
With the pressure sensor the total pressure in the measurement cell can be determined.

In the experiments with the 3He/129Xe co-magnetometer the measurement sensitivity is
derived from the weighted frequency difference (Eq. 4.4). Consequently an optimum of the
pressures of 3He as well as for 129Xe and N2 is needed. 129Xe has the drawback to have a
smaller polarization plus a smaller gyromagnetic ratio (γHe/γXe ≈ 2.75) than 3He. Hence, the
signal of 129Xe is smaller compared to the 3He signal. So, to obtain comparable signals the
pressure of 129Xe has to be higher than the pressure of 3He. If the buffer gas N2 is included,
the total pressure of the gas mixture increases. For the measured field gradients given in
Tab. 4.1 optimal conditions are given for pressures of pHe = 2.5 mbar and pXe = 5.0 mbar.
In Fig. 4.7 the resulting theoretical dependence of T2 with 1

T2
= 1

T2,grad
+ 1

T1,vdW
is plotted as
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Figure 4.8: Transport coil for the transfer of polarized gas from the filling station into the µ-
metal shielded room (BMSR-2). left: Photograph of the double solenoid transport
coil without switch. right: Measured development of the magnetic field Bres along
the axis of the two solenoids. Thereby z = 0 cm corresponds to the fringe of the
solenoids.

a function of the N2 buffer gas pressure in a gas mixture at fixed 3He and 129Xe pressures.
For 3He, the formation of van der Waals molecules can be neglected, i.e. 1/THe

1,vdW = 0. Then
T2,He of helium is equal to the gradient relaxation time THe

2,grad which decreases with increasing
N2 pressure. In case of 129Xe, for small N2 pressures the van der Waals relaxation and for
high N2 pressures the gradient relaxation is dominant. Hence, T2,Xe features a maximum for
N2 pressures between 80 and 110 mbar.
According to the previous considerations, for the long-term measurements with the
3He/129Xe co-magnetometer pressures of about 2.5 mbar for 3He, 5.0 mbar for 129Xe and
about 25 mbar for N2 were used. If the relaxation due to binary collisions T1,bin and the
wall relaxation T1,wall (see Chap. 3.5) are included, the transverse relaxation time for 3He

and 129Xe for cylindrical cells then can be estimated to be T ∗2,He ≈ 54 h and T ∗2,Xe ≈ 6 h
respectively. For the wall relaxation T1,wall, the measured values of 100 h for helium and 8 h
for xenon6 were used.

4.2.5 Transport Coil

For transport of the measurement cell from the filling system to the shielded room as well as
for the transport of the 129Xe storage vessel from the polarizer lab of the PTB to the filling
system, a specially designed transport coil was used (see Fig. 4.8). It consists of two nested
solenoids of lengths L = 60 cm. The magnetic moments of the inner (i) and the outer (o)
solenoid have the same absolut values, i.e. Mo = no IoAo = ni IiAi = −Mi. Thereby n is the

6The wall relaxation time T1,wall of the cylincrical measurement cells could not be measured for 129Xe. Hence,
for estimation of the transverse relaxation time T ∗2 the wall relaxation time of spherical measurement cells
with a diameter of 6 cm was used. The wall relaxation time of the spherical cells was measured to be
T1,wall = 8 h. These spherical cells were used in some former measurements to search for a sidereal
modulation in the weighted frequency difference of 3He and 129Xe, which violates Lorentz symmetry
[122].
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4 Experimental Technique and Setup

number of windings, I is the current and A the cross-sectional area of the coils. With the
chosen values no = ni/2, Io = −Ii and Ao = 2Ai, the resulting homogenous field inside the
coil has a field strength of Bres = Bi + Bo = µ0 (ni/2) Ii/L. The voltage is provided by two
6 V batteries connected in series, leading to a homogenous magnetic field of about 3 G along
the coil axis. The axial stray field at the fringe of the transport coil drops proportional to
1/z5. Thus, the fringe field reaches the 350 nT level already at a distance of about 30 cm from
the solenoid (Fig. 4.8). This avoids magnetization of the inner µ-metal walls while entering
the shielded room so that the field gradients do not change too much from one measurement
run to another.
The transport coil has a specially designed switch for turning on and off, which slowly ramp
down, respectively, up the current in the coil, so that the field change happens adiabatically
according to Eq. 3.22. Hence the spins follow the direction of the magnetic field, so that spin
flips during the switching process are avoided. The up- and down-ramping of the current
happens with the same time constant of about 7 s. As magnetic field zero crossings may also
cause spin flips, it is very important that the transport coil is inserted into the coils of the
filling station, respectively into the coils inside the shielded room,s in such a way that the
magnetic field lines always point into the same direction.
At the ends of the transport coil high field inhomogeneities and thus high field gradients
occur. To prevent polarization losses due to this additional field gradients, it is preferable to
put the measurement cell filled with the gas mixture of polarized 3He, 129Xe and N2 into or
out of the transport coil when the magnetic field of the coils is switched off. For the transfer
of the measurement cell from the filling station into the transport coil, the transport coil
is held into the Helmholtz coils of the filling station, where both coils overlap in a region
of about 24 cm. Thus, the magnetic guiding field for the polarized gases is provided by the
Helmholtz coils of the filling station. Then the measurement cell is placed into the transport
coil about 17 cm away from the edge of the Helmholtz coils, thus in a region where the
field of the Helmholtz coils is still quite homogeneous. Following, the magnetic field of the
transport coil is switched on and after about 10 seconds, when the magnetic field is ramped
up to its maximum, the transport coil is carried into the shielded room, where the By-field
(≈ 0.35µT) is switched on (see Fig. 4.5). In the shielded room the transport coil is put onto a
wooden support. Then the magnetic field of the transport coil is switched off. After about 10
seconds, when the magnetic field of the transport coil is ramped down, the measurement cell
can be taken out. Here the position of the transport coil, respectively of the measurement
cell, is in a region where the homogeneity of the By-field is still quite good. That means,
after the magnetic field of the transport coil is switched off, the magnetic guiding field for
the polarized gases is provided by the By-field.

4.2.6 BGO Crystal and Suspension Mechanism

As unpolarized matter we used a cylindrical BGO crystal (Bi4Ge3O12) that has a length of
7 cm and a diameter of 6 cm. It is characterized by a density of ρ = 7.13g/cm3 and therefore
has a high nucleon number density. It is a non-conductive material that shows low electronic
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4.2 Experimental Realization

Figure 4.9: Suspension of BGO crystal. (1) Glass tube with glass disc acting as partition wall
for the movement in forward direction, i.e. towards close position of the BGO
crystal. (2) Wooden plate with V-shaped profiles in which the glass tube can slide
forth and back. (3) Tension ring acting as mechanical stopper which prevents that
the glass tube slides out of the V-profiles and guarantees a movement of 17 cm
which corresponds to the distance of the two front V-profiles. (4) Holder of BGO
crystal. (5) Piston with bore along its axis which can be either connected to
a vacuum pump (backward movement) or to a compressed air system (forward
movement).

noise (Johnson-Nyquist noise) and is said to have an unusual magnetism-related behaviour in
weak constant magnetic fields (χmag ≈ 0 ppm) as direct and indirect measurements suggest
[123, 124, 125]. Thus only a small influence of its residual magnetic susceptibility on the
3He and 129Xe spin precession is expected when the BGO crystal is in close position to the
measurement cell. In close position the distance ∆xc between the polarized gases and the
front side of the BGO crystal is essentially given by the thickness d of the glass window of
the measurement cell, i.e. ∆xc = d = 2.2 mm (see Sec. 4.2.1).
For moving the BGO crystal from close to distant position, or vice versa, a specially designed
suspension mechanism was build (Fig. 4.9). It consists of a cylindrical glass tube of 60 cm
length which can be moved horizontally along a holder made of V-shaped profiles which are
fixed on a massive wooden plate. By means of a tension ring around the glass tube, which
works as a stopper, a movement of 17 cm (back and forth) was possible.
The BGO crystal is put in a special holder which is installed at one open end of the glass
tube. At the other end of the glass tube a piston with bore along its axis was installed. This
piston can be connected via a tube with a vacuum pump or a compressed air system, which
are outside of the shielded room. Hence, the forward (compressed air system) and backward
(vacuum pump) movement of the BGO crystal to close and distant position can be performed
without opening the doors of the BMSR-2. To prevent that the BGO crystal pops out of the
glass tube when compressed air is applied for forward motion (close position), the used glass
tube had two equal volumes that are separated by a glass disc. The whole construction is
placed on a heavy and stable table made out of wood to prevent that mechanical vibrations
occur when the BGO crystal is moved.
The spin-dependent short-range potential is given by Vsp (~r) ∝ ~σ · ~r ∝ ~B0 · ~r. Thus, in
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order to measure a maximum frequency shift ∆νsp, the cylinder axes of the measurement
cell and of the BGO crystal have to be aligned along the direction of the magnetic guiding
field ~B0 (x-direction). If the cylinder axes of the measurement cell and of the BGO crystal
are aligned perpendicular to the magnetic guiding field, the frequency shift ∆νsp due to the
spin-dependent short-range interaction would vanish.

4.2.7 Measurement Procedure

First of all the cylindrical measurement cell is filled with a gas mixture of polarized 3He,
129Xe and N2 within the filling station. The transfer procedure of the measurement cell from
the filling station into the shielded room was already described before. After switching off the
magnetic field of the transport coil the measurement cell is taken out and placed in a special
holder below the dewar. Then the BGO crystal is positioned close to the cell (∆xc = 2.2 cm)
or distant from the cell (∆xd = 17 cm). Afterwards the door of the shielded room is closed.
The spin precession of the polarized 3He and 129Xe is actuated by a non-adiabatic change
of the magnetic field as described in Chap. 3.3. The spin precession signals were measured
by three different SQUID gradiometers (see Fig. 4.5). For each measurement run the BGO
crystal was moved after t0 ≈ 3 h from close to distant position (c→d) or vice versa (d→c).
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4.2 Experimental Realization

Figure 4.10: Experimental Setup. Top: Sketch of experimental setup. The unpolarized mass
(cylindrical BGO crystal: d = 70 mm, �d = 60 mm) can be moved along the
x-axis ( ~B0-field axis) to close (∆xc = 2.2mm) and distant (∆xd = d = 170mm)
position and vice versa. This is accomplished by a piston driven glass tube with
the BGO fixed at its cell facing side. The two arrangements right (<) and left
(L) of the BGO crystal were used. Bottom: Real experimental setup. (1) Dewar.
(2) Cylindrical measurement cell. (3) Holder and suspension mechanism of the
BGO crystal. (4) Suspension mechanism of the BGO crystal in case that the
BGO crystal is installed to the left side of the measurement cell. (5) Holder of
the measurement cell.
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5 3He/129Xe Co-Magnetometer

In this chapter our very sensitive low-field co-magnetometer, which is based on the detection
of free spin precession of gaseous, nuclear polarized 3He and 129Xe samples with a SQUID as
magnetic flux detector, is characterized. In order to provide a more thorough understanding
of the advantages of this 3He/129Xe co-magnetometer, first of all a magnetometer based on
the spin precession of pure nuclear spin polarized 3He is considered.
For the first time in 1969 Cohen-Tannoudji et al. [126] build up a 3He-magnetometer based
on the detection of spin precession of gaseous, nuclear spin polarized 3He. For non-destructive
detection of the 3He spin precession in a low magnetic guiding field, an optically pumped
87Rb-magnetometer was used. Here a sensitivity of about 100 fT/

√
Hz and a transverse relax-

ation time T ∗2,He of 140 min were reached. In the meantime a lot of improvements have been
made on the parameters which determine the measurement sensitivity of such a free spin pre-
cession 3He-magnetometer: First of all, by using lasers instead of discharge lamps for optical
pumping of 3He [127, 128], the sample polarization could be increased from 5%, typically,
up to 90% [93]. Secondly, for the signal detection, low-Tc DC-SQUID magnetometers can
be used as magnetic flux detectors with a white magnetic noise level of ρSQUID ≈ 2 fT/

√
Hz

[129, 119, 130, 131]. Thirdly, the transverse relaxation time T ∗2 could be increased by more
than an order of magnitude using low-relaxation glass container for the polarized 3He sam-
ple, placed in a homogeneous magnetic guiding field of about 0.35 µT inside the magnetically
shielded room BMSR-2.

5.1 Estimation of Sensitivity Level

The overall sensitivity of atomic magnetometers, such as the 3He-SQUID magnetomter, can
be estimated using the statistical signal processing theory [132]. Since the magnetic field B
is proportional to the precession frequency ω = 2πν = |γ ·B|, the sensitivity of the magnetic
field measurement can be deduced from the Cramer-Rao lower bound (CRLB), which sets
the lower limit on the variance of any frequency estimator. The signal S from the precessing
spins recorded at a sampling rate fs with fs/2 ≥ ν can be written as

S [n] = A · cos(π(ν/fs)n+ φ) + w [n]

with n = 0, 1, · · · , N − 1 . (5.1)

Here φ is the initial phase, A the signal amplitude and w [n] the white Gaussian noise. For
detection times T � T ∗2 , where the exponential damping of the signal amplitude A does
not affect the sensitivity of the magnetometer too much, the average value of the signal
amplitude Ā can be used to determine the signal-to-noise ratio: SNR = Ā/Nα. The noise Nα
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5 3He/129Xe Co-Magnetometer

is defined as the square root of the integrated power spectral density ρα of the corresponding
signal fluctuations

Nα =

(∫ fBW

0
ρ2
αdν

)1/2

, (5.2)

where fBW = fs/2 is the sampling rate limited bandwidth (Nyquist frequency). If the noise is
white, i.e. ρα = const, the noise level is given by Nα = ρα

√
fBW. Then according to [132], the

lower limit on the sensitivity regarding the frequency can be estimated by the Cramer-Rao
lower bound (CRLB)

σν ≥
√

12

2π SNR
√
fBW T 3/2

, (5.3)

where T is the observation time respectively the spin-coherence time of the signal. From
this inequation and with the relation ω = 2πν = γ · B, the sensitivity δB on the respective
magnetic field B seen by the sample spins can be derived

δB ≥
√

12

SNR T 3/2 γ
. (5.4)

In summary, Eq. 5.3 and Eq. 5.4 are valid for a sinussoidal spin precession signal with white
gaussian distributed noise, constant amplitude and frequency (respectively magnetic field:
B = 2πν/γ). In the appendix of [133], an improvement to the sensitivity estimate is given
that takes the exponential damping of the spin precession signal into account. The sensitiv-
ities, given in Eq. 5.3 and Eq. 5.4, then have to be multiplied with a factor

√
C(T ∗2 , T ).

Examination of Eq. 5.4 suggests the use of magnetometers based on the spin precession of
electrons rather than on the spin precession of nuclei due to their three orders of magnitude
higher gyromagnetic ratio γ. Indeed, the atomic magnetometer with the best short-term
sensitivity is the spin-exchange-relaxation-free (SERF) magnetometer, whose sensitivity
surpasses fT/

√
Hz in practice [134]. However, for long-term magnetic field measurements,

the power law δB ∝ T 3/2 can be exploited if the coherent spin-precession can be observed
with a long observation time T respectively with a long transverse relaxation time T ∗2 . Here
T ∗2 has to fulfill T ∗2 & T . Thus, the total observation time T is set by the respective T ∗2
time, i.e. T ∗2 ∼ T . Usually, the transverse relaxation time T ∗2 of electron spins is short, while
nuclei, such as 3He, display a much longer T ∗2 time. This may make them competitive or
even superior to electron spin magnetometers.

In general, long and short oberservation times, i.e. TL and TS respectively, lead to different
measurement sensitivities, which will be illustrated in the following: The sensitivity of the
measurements with the long and the short observation times are given by σν,L = V · T−3/2

L

and σν,S = V · T−3/2
S , respectively (see Eq. 5.3). Here it is assumed that the SNR and the

bandwidth fBW, and therewith the prefactors V , for both type of measurements are equal.
To obtain comparable sensitivities for both measurements, the total observation time is given
by T = TL. Thus, the measurement with the short observation time TS has to be repeated
n times, i.e. T = TL = n · TS. The sensitivity of an individual measurement σν,S then is
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Figure 5.1: Free spin precession signal of pure polarized 3He. left : Cutout of 0.5 s of the free
spin-precession signal of a polarized 3He sample cell, recorded by means of a low-
Tc SQUID with a sampling rate of fs = 250 Hz. right : Envelope of the decaying
signal amplitude. From an exponental fit to the data, a transverse relaxation
time of T ∗2 = (111.0± 0.3) h can be deduced.

improved by a statistical factor
√
n, i.e. σν,S,n = σν,S/

√
n. Hence, the relation between the

measurement sensitivities of the two different measurements then is given by

σν,S,n =
1√
n

V

T
3/2
S

=

√
TS

TL

V

T
3/2
S

=
1√
TL

V

TS
=

TL√
TS

V

T
3/2
L

=
TL√
TS
σν,L . (5.5)

Considering the relations TL ∼ T ∗2,L and TS ∼ T ∗2,S, the measurement sensitivities differ by a

factor of T ∗2,L/
√
T ∗2,S. For example, measurements with a Hg-magnetometer result in a short

transverse relaxation time of T ∗2,S ≈ 180 s [135]. Compared to measurements with a long
transverse relaxation time of T ∗2,L ≈ 5 h the measurements with the Hg-magnetometer have
to be repeated 100 times to get comparable sensitivities assuming that the SNR and the
bandwidth fBW are equal for both type of measurements. The tremendous gain in sensi-
tivity then is given by a factor of T ∗2,L/

√
T ∗2,S ≈ 1300 for the measurements with the long

transverse relaxation time. In summary this means, that a high sensitivity on frequency can
be achieved by measurements with a high SNR and a long observation time T , respectively
a long transverse relaxation time T ∗2 .

First, so to say as proof of principle, one has to show that long spin-coherence times T can be
achieved with our 3He-SQUID magnetometer. For that, a spherical measurement cell with
a radius of 5 cm was filled with polarized 3He at a pressure of about 2.7 mbar. This cell
was placed directly below a SQUID sensor. The distance d from the center of the cell to the
center of the SQUID was d ≈ 10.5 cm. As already mentioned in Sec. 4.2.1, the measurement
cell was made from low-relaxation GE-180 glass and the longitudinal relaxation time was
measured to be T1 = (176 ± 11) h. After a π/2 spin-flip, the 3He spins start to precess in
the yz–plane around the direction of the magnetic guiding field ~B0 (x-direction). The plot
on the left hand side of Fig. 5.1 shows the recorded gradiometer signal over a time interval
of 0.5 s at the beginning of the precession cycle (sampling rate fs = 250 Hz). The signal
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5 3He/129Xe Co-Magnetometer

Figure 5.2: Estimated sensitivity (CRLB) of the 3He magnetometer in tracing tiny magnetic
field fluctuations as a function of the observation time T with T ∗2 = 111 h for the
transverse spin relaxation time (solid line). An improvement in sensitivity, for
an observation time of one day, is only 18% of an undamped free spin-precession
signal (T ∗2 →∞) (dashed line).

amplitude reaches AHe = 2.7 pT 1 and the precession frequency is ν ≈ 13 Hz. In the plot on
the right hand side of Fig. 5.1, the exponential decay of the gradiometer signal amplitude
(envelope) over a period of about 25 h is shown. From that the transverse relaxation time
could be determined by an exponential fit to the amplitude to be T ∗2 = (111.0± 0.3) h. This
is the longest spin-coherent relaxation time T ∗2 of a macroscopic spin sample measured so
far and it is indeed a world record.
Assuming that the requirements of CRLB are fulfilled, i.e. the 3He spin precession signal is
characterized by a white gaussian distributed noise and a constant frequency, according to
Eq. 5.4 the measurement sensitivity of the magnetic field as a function of the observation
time T can be estimated by

δB ≈ 12591 fT s3/2
√
C(T ∗2 , T )

T 3/2
, (5.6)

where the measured value of the signal-to-noise ratio of SNR = 2.7 pT : 2.0 fT ≈ 1350 at
t ≈ 0 s in a bandwidth of fBW = 1 Hz and the gyromagnetic ratio of helium with γHe =

20.37894730 · 107 Ts−1 [92] were used. Here the effect of exponential damping (
√
C(T ∗2 , T ))

of the free spin precession signal was taken into account. Figure 5.2 then shows the increase
of the estimated measurement sensitivity δB as a function of the observation time T using
T ∗2 = 111 h for the transverse spin relaxation time. The level of δB ≈ 3.7 fT is reached after
an integration time of T ≈ 544 s and a measurement sensitivity of δB ≈ 5.5 · 10−4 fT can

1Due to low polarization of the 3He gas, the amplitude of the 3He spin precession signal is about 6 times
smaller compared to the measurements of the main experiment to search for a spin-dependent short-range
interaction.
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Figure 5.3: Estimated measurement sensitivity regarding the frequency of the 3He/129Xe co-
magnetometer in tracing small frequency shifts as a function of the observation
time T for 3He (black) and 129Xe (red) with T ∗2,He = 52.6 h and T ∗2,Xe = 4.9 h.

be reached after one day. To check whether or not the conditions of CRLB are fulfilled, a
co-magnetometer, such as the 3He/129Xe co-magnetometer, is needed. Since the magnetic
field dependence drops out in the weighted frequency difference (Eq. 4.4), the statistical
behavior of the magnetic noise of the magnetometer and therewith the validity of CRLB can
be checked by calculating the Allan standard deviation. These relations will be explained in
more detail in the sub-section 5.2.

For the 3He/129Xe co-magnetometer the sensitivity regarding the spin precession frequency
given by Eq. 5.3 is limited by 129Xe. This can be explained by the smaller gyromagnetic ratio
(γHe/γXe ≈ 2.75), the smaller polarization (and therefore smaller SNR) and the smaller trans-
verse relaxation time T ∗2 (see Sec. 3.5.1) of 129Xe compared to 3He. For the measurements to
search for a spin-dependent short-range interaction, which are analyzed within this thesis,
typical transverse relaxation times of T ∗2,He = 52.6h and T ∗2,Xe = 4.9h and typical values of the
signal-to-noise ratio of SNRHe = 15.0pT : 2.0 fT ≈ 7500 and SNRXe = 4.5pT : 2.0 fT ≈ 2250

at t ≈ 0 s in a bandwidth of fBW = 1 Hz were achieved. Assuming that the conditions of
CRLB are fulfilled, these values can be used for estimation of the sensitivity regarding the
frequency

σν,He ≈ 73510 nHz s3/2
√
C(T ∗2 , T )

T 3/2
, (5.7)

σν,Xe ≈ 245035 nHz s3/2
√
C(T ∗2 , T )

T 3/2
. (5.8)

Here the effect of exponential damping (
√
C(T ∗2 , T )) has already been taken into account. In

Fig 5.3 the increase of the estimated measurement sensitivity σν for 3He (black) and 129Xe

(red) according to Eq. 5.7 and Eq. 5.8 as a function of the observation time T are shown. Since
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5 3He/129Xe Co-Magnetometer

Figure 5.4: Phase residuals and root mean square (RMS). left : Phase residuals of measure-
ment C92 (Sept. 2009) of the weighted phase difference ∆Φ. right : Root mean
square (RMS) of the phase noise of measurement C92 (Sept. 2009) which in-
creases in time with H · exp(t/Tx).

the observation time of the measurements was typically 10 h, theoretically a measurement
sensitivity of σν ≈ 10−10 Hz can be reached with the 3He/129Xe co-magnetometer.

5.2 Inherent Noise of Magnetometer

The Allan standard deviation [136] is the most convenient measure to study temporal char-
acteristics of magnetometers. As in the very high sensitivity range, external field fluctuations
are the dominant sources of magnetic noise, deviations from the CRLB power law due to
noise sources inherent in the magnetometer itself are difficult to determine. So, to be able to
study the remaining noise sources inherent in the magnetometer, the external field fluctua-
tions have to be eliminated by a 3He/129Xe clock comparison experiment.
For demonstration of the determination of the inherent noise of the magnetometer, measure-
ment runs of the measuring period in 2009 were used. These measurements were performed
to search for a sidereal modulation in the spin precession frequency of 3He and 129Xe which
violate Lorentz symmetry [122]. For these measurements spherical glass cells with a radius
of R = 3 cm were used. Since nothing was changed during one measurement run, these
measurements are more eligible for the determination of inherent noise sources than the
measurements, which are analyzed in this thesis (here during one measurement run a mass
sample was moved close or distant to the measurement cell).
First of all, the phases of 3He and 129Xe were determined. Then the accumulated weighted
phase difference ∆Φ(t) was calculated (see Chap. 6). After subtraction of the linear phase
shift due to Earth’s rotation, i.e ΦE(t), the remaining phase Φrem(t) was fitted with the
fit function Φfit(t) of Eq. 6.17. The phase noise then can be determined by composing the
difference of the weighted phase difference ∆Φ(t) and the fit function Φfit(t). The evolution
of the phase noise of measurement C92 (Sept. 2009) is shown in Fig. 5.4 (left). Due to
the exponential decrease of the 3He and 129Xe signal amplitudes (in particular the 129Xe

amplitude, which decays with a measured transverse relaxation time of T ∗2 = 4.40(1) h), the
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Figure 5.5: Allan standard deviation (ASD) of the phase residuals measured in run C92
(Sept. 2009) using nuclear spin precession of co-located 3He and 129Xe gas. The
total observation time was T = 52000 s. For integration times τ beyond 4 s and
up to 20000 s (fBW = 125 Hz) the observed fluctuations decrease as ∝ τ−1/2

indicating the presence of white phase noise.

residual phase noise rises in time. By calculating the root mean square (RMS) of the phase
residuals for intervals of 1000 s, which is shown in Fig. 5.4 (right), the time evolution of the
residual phase noise can be expressed by

σΦres [mrad] = H · et/Tx . (5.9)

The data are best described by H = 1.01(40) mrad and Tx = 4.15(19) h. The fact, that
we almost exactly observe Tx ≈ T ∗2,Xe (within the 2σ error) can be explained by use of
Eq. 5.3 and the statistical error propagation law, showing that the phase noise scales like
(see App. A)

σΦres ∝ e
t/T ∗2,Xe

(
e
−2t

(
1

T∗
2,Xe
− 1
T∗

2,He

)
+

(
γHe

γXe

)2(AHe

AXe

)2

t=0

)
. (5.10)

Here the ratio of the measured signal amplitudes at t = 0 s is given by (AHe/AXe)t=0 = 1.66.
Since the transverse relaxation time of 3He was determined to be T ∗2,He = 14.16(1) h,
the time dependence of Eq. 5.10 is almost entirely determined by its second term, i.e.
σφres ∝ exp(t/T ∗2,Xe).

For charaterization of the phase noise, the Allan standard deviation (ASD) can be calculated,
which depends on the integration time τ . This means, that the measurement run of duration
T is separated in N smaller data sets of length τ with N · τ ≤ T . Then for each data set
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(i = 1, 2, 3, · · · , N − 1) the mean phase noise Φi (τ) can be determined. The ASD then is
given by

σASD (τ) =

√
1

2

∑N−1
i=1

(
Φi+1 (τ)− Φi (τ)

)2
N − 1

, (5.11)

where in the analysis the uncertainty due to the finite number of measurements N = T/τ

as discussed in [137] was taken into account.
For white noise, σASD coincides with the classical standard deviation. Then a σASD ∝ τ−1/2

dependence on the integration time τ is expected. Figure 5.5 shows the ASD plot of the
residual phase noise for run C92 which indeed decreases as ∝ τ−1/2 and therewith the phase
noise of the 3He/129Xe co-magentometer corresponds to white noise. Hence, the ASD plot
shows that the elimination of the magnetic field fluctuations works efficiently, i.e. no noise due
to the magnetic field is left. Additionally, the σASD ∝ τ−1/2 dependence shows that no noise
sources inherent to the 3He/129Xe co-magnetometer exist and thus there is no limitation of
the measured sensitivity (CRLB) as shown in Fig. 5.5, at least for integration times up to
τ ≈ 20000 s.
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6 Analysis

For one week in september 2010 we performed altogether 10 measurement runs lasting ap-
proximately 10 hours each. For each measurement run the BGO crystal was moved after
t0 ≈ 3 h from close to distant position (c→d) or vice versa (d→c). The asymmetric tim-
ing takes account for the smaller signal-to-noise ratio (SNR) in the second measurement
phase due to the exponential damping of the signal amplitudes. By this measure, compara-
ble statistics were obtained for both positions. Additionally, for systematic checks the BGO
crystal was placed to the left side (L) or to the right side (<) of the 3He/129Xe sample cell
(see Fig. 4.10). The parameters (pressures and amplitudes) and the configuration of these
measurement runs are listed in Tab. 6.1. With the pressure of the 3He and 129Xe gas and
the initial amplitudes of the 3He and 129Xe spin precession signals the polarization of 3He

and 129Xe can be estimated by using Eq. 3.29 (cylindrical cell ≈ spherical cell)1. For 3He,
we had polarizations between 19% and 46%, for 129Xe between 8% and 11%.

The magnetic flux density spectra2 (in units fT/
√

Hz) of a spin precession signal recorded
by a single SQUID detector (sensor Z2E) in the lower plane close to the measurement cell
is shown in Fig. 6.1 by the red curve. The two peaks of the 3He and 129Xe spin precession
signals occur at νHe = γHe

2π B0 ≈ 11.4 Hz and νXe = γXe
2π B0 ≈ 4.1 Hz, which correspond to a

magnetic guiding field B0 of about 0.35 µT. Additionally there is a sharp peak at 50 Hz, that
corresponds to the supply frequency, and there are some vibrational frequency components.
The latter ones occur due to mechanical vibrations of the dewar, i.e. the SQUIDs slightly
oscillate within the magnetic guiding field. Due to field gradients the SQUIDs detect changes
of the magnetic field which lead to the peaks of the vibrational frequency components.
These frequency components partly overlap with the 3He and 129Xe peaks and thus cause an
increased noise around the signal peaks. To avoid additional noise the vibrational frequencies
have to be suppressed.
For this purpose there are two possiblities: a.) By supporting the dewar with respect to the
walls and the ceiling of the BMSR-2 mechanical vibrations can be reduced. b.) Instead of a
single SQUID signal a gradiometer signal can be used, which is the difference of the signals
of two SQUIDs, one in the lower plane close to the measurement cell (SQc) and one in a
lower/upper plane far away from the measurement cell (SQd). The SQUID SQc sees the

1For gradiometer Z2E-Z5S the distance between the center of the cell and the SQUID sensors was z = 5.8cm.
2The density spectra were determined as follows: The first n = 152 · 214 data points of measurement run
C68 were used. These amount of data is divided into 152 data sets with nset = 214 data points each.
Then for each data set the density spectra were determined via a Fast Fourier transform and by using
a Blackman-Nutall window [138]. For correct calculation of the Fast Fourier transform, nset have to be
powers of 2. At the end, an averaging with the Welch method [139] was done over the 152 data sets.
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T A0,He A0,Xe pHe pXe pN2 ptot

(h) (fT) (fT) (mbar) (mbar) (mbar) (mbar)
C54 dc-< 6.9 15280 5922 2.8 5.2 23.4 31.4
C55 cd-L 10.9 12677 5198 2.7 5.7 28.3 36.7
C60 dc-L 13.6 9469 4241 2.6 5.5 27.6 35.7
C63 dc-L 8.7 17904 4927 2.7 4.9 25.7 33.3
C65 cd-L 8.6 12116 3995 2.7 5.0 25.7 33.4
C67 cd-< 8.7 13876 4066 2.5 5.0 25.5 33.0
C68 dc-< 8.8 9186 4945 2.6 4.8 27.2 34.6
C71 cd-< 8.6 11211 5307 2.5 5.0 27.2 34.7
C80 dc-L 8.7 10990 5642 3.6 5.7 26.6 35.9
C82 cd-L 8.8 9770 4208 3.6 5.3 26.3 35.2

Table 6.1: Parameters of the 10 main measurements: measurement configuration (d = dis-
tant, c = close, < = right, L = left), observation times T , initial amplitudes of
the precession signals A0,He/Xe (gradiometer sensors Z2E and Z5S) and partial
pressures p of 3He, 129Xe, N2 and the total pressure ptot in the measurement cell.

spin precession signals and the vibrational frequency components, whereas the SQUID SQd

sees a small part of the spin precession signal or no spin precession signal and the same
vibrational frequency components as SQUID SQc. Consequently, in the difference of the
SQUID signals, i.e. SQc − SQd, only the vibrational frequency modes drop out and even
a part of the 1/f -noise is reduced. The magnetic flux density spectra of the gradiometer
signal (sensors Z2E and Z5S) is shown in Fig. 6.1 by the blue curve. One can see that
the vibrational frequencies are quite suppressed and only very small peaks at the main
vibrational mode of about 6 Hz and 8 Hz remain. The white system noise for both spectra is
given by ρsystem ≈ 2.4 fT/

√
Hz. The sampling rate used for the detection of the signals was

fs = 250 Hz. Thus fBW = fs/2 = 125 Hz is the sampling rate limited bandwidth (Nyquist
frequency). But at about 100 Hz the spectra falls down due to internal filters which are used
in the SQUID electronics.

The gradiometer signal of measurement run C68 recorded over a time interval of 1 s is
shown on the left side of Fig. 6.2. This signal is a superposition of the 3He and 129Xe spin
precession at the Larmor frequencies ωHe ≈ 2π · 11.4 Hz and ωXe ≈ 2π · 4.1 Hz. With our
analysis method, which will be explained in detail in the following sections, the signals of both
gases can be separated as shown on the right side of Fig. 6.2. The amplitudes at the beginning
of measurement run C68 were determined to be A0,He = 9186 fT and A0,Xe = 4945 fT. With
a white system noise level of about 2.4 fT/

√
Hz (see Fig. 6.1) the signal-to-noise ratio (SNR)

at the beginning of measurement run C68 is given by SNRXe ≈ 4945 fT
2.4 fT = 2060 for xenon and

SNRHe ≈ 9186 fT
2.4 fT = 3828 for helium in a bandwidth of 1 Hz.
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Figure 6.1: Magnetic flux density spectrum of the 3He and 129Xe precession signals of mea-
surement run C68, detected with a single SQUID (sensor Z2E in red) and with
a gradiometer (sensors Z2E and Z5S in blue). In both spectra the lines at about
4.1 Hz and 11.4 Hz correspond to the spin precession frequencies of the co-located
129Xe and 3He spins in a sample cell at a magnetic guiding field of about 0.35µT.
The line at 50 Hz corresponds to the supply frequency. For frequencies ν > 10Hz
the white system noise is given by ρsystem ≈ 2.4 fT/

√
Hz. Due to a sampling rate

of fs = 250Hz, the cut-off frequency is at 125 Hz. In the spectrum detected with a
single SQUID (red) disturbances occur due to mechanical vibrations of the dewar
respectively of the SQUIDs. By using a gradiometer (blue) these disturbances can
be suppressed and even the 1/f -noise is reduced.

6.1 Piecewise Fitting of Raw Data

For extraction of the time dependence of the 3He and 129Xe amplitudes, phases and
frequencies the method of piecewise fitting of raw data was used. The piecewise fitting of
raw data was done with a Mathematica package named “DatFit” which was developed by
our collaborator Ulrich Schmidt from University of Heidelberg/GER. The fitting routine is
based on the standard Least-Squares method up to n dimensions, i.e. n discrete pseudo-
dimensions are used to allow the fitting of several data sets simultaneously, while common fit
parameters for all data sets and specific fit parameters for each data set can be implemented.

For the piecewise fitting of raw data the gradiometer signals of each run (j = 1, · · · , 10

corresponding to C54, C55, C60, C63, C65, C67, C68, C71, C80, C82) are divided up into
Nj sub-data sets. The length of one sub-data set has to be chosen such that on the one
hand the number of data points provide enough statistics for the fit and on the other hand
the 3He and 129Xe frequencies can be regarded as constant. To fulfill these conditions sub-
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Figure 6.2: Gradiometer signals. Left : Cutout of gradiometer signal of measurement run C68.
Right : Cutout of spin precession signals of 3He (above) and 129Xe (below). In all
plots the uncertainty at each data point is ±27 fT and therefore the error bars
are too small to be visible in the plot.

data sets of 800 data points were used. With a sampling rate of fs = 250 Hz the sub-
data sets have a length of τ = 3.2 s. The number of obtained sub-data sets laid between
7760 < Nj < 15300 corresponding to the observation times Tj of coherent spin precession in
the range of 6.9 h < Tj < 13.6 h.

For each sub-data set i, with i = 1, · · · , Nj , the gradiometer signal can be described by

Ai(t) = CiHe sin(ωiHet+ ϕiHe) + CiXe sin(ωiXet+ ϕiXe) + (ci0 + cilint) . (6.1)

The term (ci0 + cilint) characterizes the gradiometer offset which slightly drifts due to the
elevated 1/f -noise at low frequencies (< 2Hz) [96]. This drift is assumed to be linear within
the relatively short sub-data set of length τ = 3.2 s. The two sine terms describe the spin
precession of 3He and 129Xe with the Larmor frequencies ωiHe = 2πνiHe and ωiXe = 2πνiXe

and the phases ϕiHe and ϕiXe. The amplitudes CiHe/Xe are linear fit parameters3, while the
frequencies ωiHe,Xe and the phases ϕiHe/Xe are nonlinear fit parameters, which can lead to
problems during the fitting, because nonlinear fit parameters are very sensitive on the initial
values used for the fit. That is why it is better to transform the two sine terms via the sine

3In statistics, a linear fit function is a linear combination of the fit parameters, e.g. f(x) = a · x+ b · x2 is
linear in the fit parameters a and b. On the contrary, a nonlinear fit function is a nonlinear combination
of the fit parameters, e.g. f(x) = xa + cos(x+ b) is nonlinear in the fitparameters a and b.
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Figure 6.3: Typical sub-data set of 3.2 s length used for fitting. The zero-point of the time
lies in the middle of the sub-data set which is done to achieve low correlation
between the fit parameters ci0 and cilin. The uncertainty at each data point is
±27 fT and therefore the error bars are too small to be visible in the plot.

addition theorem into a sum of sine and cosine terms

CiHe/Xe sin(ωiHe/Xet+ ϕiHe/Xe) = CiHe/Xe sin(ωiHe/Xet) cos(ϕiHe/Xe)

+CiHe/Xe cos(ωiHe/Xet) sin(ϕiHe/Xe)

= ais,He/Xe sin(ωiHe/Xet) + aic,He/Xe cos(ωiHe/Xet) , (6.2)

where ais,He/Xe = CiHe/Xe cos(ϕiHe/Xe) and aic,He/Xe = CiHe/Xe sin(ϕiHe/Xe) are termed the
quadrature amplitudes of the oscillation.

Hence, for each sub-data set a χ2 minimization was performed, using the following fit function
with a total of 8 fit parameters

Bi
fit(t) = aic,He cos(ωiHet)+a

i
s,He sin(ωiHet)+a

i
c,Xe cos(ωiXet)+a

i
s,Xe sin(ωiXet)+(ci0+cilint). (6.3)

In Fig. 6.3 a typical sub-data set is shown. The time values for each sub-data set are always
shifted in such a way that the zero-point lies in the middle of the sub-data set. This is done
to get less correlation between the fit parameters ci0 and cilin. The error for each data point
corresponds to the typical noise in the sampling rate limited bandwidth fBW = fs/2 =

125 Hz. For example, if we consider the magnetic flux density spectrum of measurement run
C68 (see Fig. 6.1), the white system noise is approximately 2.4 fT/

√
Hz at the 3He and 129Xe

frequencies. The total noise then is 2.4 fT/
√

Hz ·
√

125 Hz ≈ 27 fT which is assigned as error
to each data point.
Since the fit model (Eq. 6.3) is nonlinear in the frequencies ωiHe and ωiXe, it is necessary
to have good start values for the frequencies. In order to avoid problems with the fitting
procedure, the start values of the frequencies are estimated by means of the magnetic flux
density spectrum. Then these values of the frequencies are kept fixed so that the fit model
given in Eq. 6.3 only contains linear fit parameters. The start values of the other parameters
are not critical and the fit converges easily. The best fit parameters of this linear fit are
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chosen as start values for a second fit. Now the frequencies are variable parameters as
well. This method makes sure that the absolute minimum of χ2/dof is reached with the
nonlinear fit. For each sub-data set the second fit provides the 8 best fit parameters for
the frequencies ωiHe/Xe, the sine and cosine amplitudes, i.e. ais,He/Xe and aic,He/Xe, and the
gradiometer drift parameters ci0 and cilin. The fit-routine calculates both the correlated and
uncorrelated error for each parameter, which correspond to the 1σ errors, i.e. the interval
that contains 68.3% of normally distributed data. The correlated error considers correlations
between the fit parameters whereas the uncorrelated error corresponds to the uncertainty
of the fit parameter if there would be no correlations. By comparing the correlated and the
uncorrelated errors one gets a hint on how strong the fit parameters are correlated: If both
errors are roughly equal, one can neglect the correlations. If they differ too much, one has
to consider the correlations in the error propagation, i.e. the Gaussian error propagation
law cannot be used for the calculation of the errors. For the sub-data sets, which consist
of 800 data points each, the correlations between the fit parameters are always small (the
correlated and uncorrelated errors differ by less than 10%), so that Gaussian error prop-
agation can be used for determination of the errors of the phases and the amplitudes later on.

Additionally, the fit-routine also calculates two quantities which define the quality of the
fit: the reduced χ2 value, i.e. χ2/dof , and the probability Q that this or a higher value for
χ2/dof may arise. Here, χ2/dof is the χ2 value divided by the degrees of freedom (dof ).
The degrees of freedom for each sub-data set correspond to the difference of the number of
data points and the number of fit parameters, i.e. dof = 800− 8 = 792. If the raw data fit of
Eq. 6.3 results in a χ2/dof value of χ2

meas/dof the probability Q is given by

Q =

∫ ∞
χ2

meas/dof
PDF(x;

〈
χ2/dof

〉
, σ)dx , (6.4)

where PDF is the probability density function of the χ2/dof distribution.
〈
χ2/dof

〉
is the

mean value of all χ2/dof values of one measurement run and σ is the standard deviation,
which defines the width of the χ2/dof distribution. For each measurement run with up
to 15300 sub-data sets, the probability density function (PDF) of the χ2/dof distribution
approaches a normal distribution with a maximum at

〈
χ2/dof

〉
≈ 1. As example the χ2/dof

distribution of measurement run C68 is shown in Fig. 6.4. The hatched area below the PDF
curve indicates the probability Q for a sub-data set which results in a χ2/dof value of
χ2

meas/dof . If Q is smaller than 5%, i.e. for values χ2
meas/dof that are too high, the fit

routine automatically re-scales the error of the raw data (±27 fT), and therewith the errors
of the best fit parameters, with the factor S =

√
χ2/dof . That means, if the raw data fit

of Eq. 6.3 again is applied to the raw data, where now the errors are re-scaled with the
factor S, the fit results in a χ2/dof value of χ2/dof = 1. This is a standard method often
used in error determination, especially when the errors of the primary data are not known
or not known accurately (see for example [140], Chap. 15.1). For most of the raw data fits
this re-scaling was not needed since the values of Q were > 5%. However there were some
sub-data sets with χ2/dof ≥ 2 (not shown in Fig. 6.4), which result in Q < 5%. But for those
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Figure 6.4: χ2/dof distribution of the raw data fits of measurement run C68. The mean value
is
〈
χ2/dof

〉
≈ 1. The hatched area corresponds to the probability Q (Eq. 6.4) of

a raw data fit with χ2/dof = χ2
meas/dof .

sub-data sets a re-scaling of the errors of the raw data did not lead to χ2/dof = 1. This
can be explained by jumps in the gradiometer amplitude in the order of 1 pT, which are not
visible in the sub-data set of the raw data, but in the residuals of the raw data fits, i.e. by
subtracting the fit function given by Eq. 6.3 from the raw data. These sub-data sets as well as
sub-data sets with ωHe/Xe >

(
ωHe/Xe + 3 ·∆ωHe/Xe

)
or ωHe/Xe <

(
ωHe/Xe − 3 ·∆ωHe/Xe

)
are

discarded. Here ωHe/Xe is the average frequency of helium and xenon of all Nj sub-data sets
of one measurement run and ∆ωHe/Xe is the corresponding standard deviation. So, for further
analysis only sub-data sets without any disturbances are used. For all 10 measurement runs
less than 7% of sub-data sets were discarded.

6.2 Phase Determination

For the co-magnetometer the quantity of interest is the time dependence of the phases of
3He and 129Xe. For each sub-data set i the phase can be determined from the fit parameters,
ais,He/Xe and aic,He/Xe, of the raw data fit of Eq. 6.3 with the arctangent (atan2) function
which is defined as

atan2(y, x) =


arctan( yx) x > 0,

π + arctan( yx) y ≥ 0, x < 0 ,

−π + arctan( yx) y < 0, x < 0 .

(6.5)

The atan2 function takes values in the interval from −π to π, where the value of atan2
depends on the quadrant of the x– and y–phase vectors in the unit circle. The phases ϕiHe/Xe

of 3He and 129Xe then are given by

ϕiHe/Xe = atan2

(
ais,He/Xe

aic,He/Xe

)
+ π , (6.6)
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Here the value π was added to avoid phase jumps of 2π later on, which can occur when
the phases take negative values. Hence, the phases ϕiHe/Xe take values between 0 and 2π

and correspond to the respective phases of the i-th sub-data set. For determination of the
accumulated phases of 3He and 129Xe, the knowlegde of the number of periods niHe/Xe since
the beginning of the measurement run is needed. The accumulated phases of 3He and 129Xe

of the i-th sub-data set then are given by

Φi
He/Xe(ti) = niHe/Xe · 2π + ϕiHe/Xe , (6.7)

where ti = (i− 1) · τ is the time of the i-th sub-data set and τ is the length of each sub-data
set. The number of periods niHe/Xe can be determined indirectly, which will be explained in
the following: First of all, the phase of the i-th sub-data set can be estimated by

Φest,i
He/Xe(ti) = Φi−1

He/Xe(ti) + ωHe/Xe · τ . (6.8)

Φi−1
He/Xe(ti) is the accumulated phase of the preceding sub-data set, where the phase of the

first sub-data set is given by Φ1
He/Xe(t1 = 0 s) = ϕ1

He/Xe, and ωHe/Xe is the mean frequency
of the corresponding measurement run, which consists of N sub-data sets, i.e.

ωHe/Xe =
1

N

N∑
i=1

ωiHe/Xe . (6.9)

The term ωHe/Xe · τ in Eq. 6.8 then estimates the accumulated phase between sub-data set
(i − 1) and sub-data set i, if the frequency deviations ∆ωiHe/Xe = ωiHe/Xe − ωHe/Xe of all
sub-data sets fulfill ∆ωiHe/Xe · τ � 2π. If the latter condition is not conformed, then the
number of periods is not enumerated correctly. Since the maximum frequency deviation
∆ωmax

He/Xe for helium and xenon is smaller than 3 · 10−3 Hz for all 10 measurement runs, i.e.
∆ωmax

He/Xe · τ ≈ 0.01 rad � 2π, it is guaranteed that the number of periods is enumerated
correctly. Thus no error of 2π in the accumulated phase of Eq. 6.8 occurs.
For sub-data sets with ωiHe/Xe 6= ωHe/Xe the estimated phase Φest,i

He/Xe(ti) is not correct. Thus
a correction phase has to be introduced

∆Φcorr,i
He/Xe = ϕiHe/Xe − β

i
He/Xe

= ϕiHe/Xe −mod

(
Φest,i

He/Xe

2π

)
. (6.10)

In case of ωiHe/Xe = ωHe/Xe the estimated phase Φest,i
He/Xe is correct and thus the correction

phase is given by ∆Φcorr,i
He/Xe = 0. The expression βiHe/Xe contains the modulo operation which

gives the remainder of Φest,i
He/Xe of a division by 2π, i.e. βiHe/Xe < 2π. The correction phase

∆Φcorr,i
He/Xe can show positive values, if ωiHe/Xe > ωHe/Xe, as well as negative values, if ωiHe/Xe <

ωHe/Xe. Including the correction phase, the real accumulated phase Φi
He/Xe(ti) of the i-th

sub-data set then is given by

Φi
He/Xe(ti) = Φest,i

He/Xe + ∆Φcorr,i
He/Xe

= Φi−1
He/Xe + ωHe/Xe · τ + ϕiHe/Xe −mod

(
Φi−1

He/Xe + ωHe/Xe · τ
2π

)
. (6.11)
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Figure 6.5: Illustration of over- and underestimation of the number of periods niHe/Xe. In
both plots the green arrow shows the real phase (ϕ) of the i-th sub-data set
and the red arrow shows the modulo of the estimated phase (β) of the i-th sub-
data set, i.e. β = mod

(
Φest/2π

)
. (a) If ϕ is close to zero and β close to 2π, the

correction phase should be given by ∆Φcorr,i
He/Xe = αiHe/Xe + ϕiHe/Xe. But Eq. 6.10

results in ∆Φcorr,i
He/Xe = αiHe/Xe + ϕiHe/Xe − 2π. Hence the correction phase ∆Φcorr

has an additional term of −2π, i.e. the number of periods is underestimated by
one. (b) If ϕ is close to 2π and β close to zero, the correction phase should be
given by ∆Φcorr,i

He/Xe = −αiHe/Xe − ϕ
i
He/Xe. However Eq. 6.10 results in ∆Φcorr,i

He/Xe =

−αiHe/Xe − ϕiHe/Xe + 2π. Hence the correction phase ∆Φcorr has an additional

term of +2π, i.e. the number of periods is overestimated by one.

Comparing Eq. 6.7 and Eq. 6.11 shows that the number of periods niHe/Xe is given by

niHe/Xe =
1

2π

(
Φi−1

He/Xe + ωHe/Xe · τ −mod

(
Φi−1

He/Xe + ωHe/Xe · τ
2π

))
. (6.12)

But in the determination of the number of periods niHe/Xe an overestimation or an un-
derestimation by one may occur, if the phases ϕiHe/Xe takes values close to 0 or close to
2π. For example, if the phase ϕiHe/Xe is close to 0 and the real frequency ωiHe/Xe of the
sub-data set i is bigger than the mean frequency ωHe/Xe, it may be possible that βiHe/Xe

is close to 2π, i.e. βiHe/Xe = 2π − αiHe/Xe. This relation is illustrated in Fig. 6.5a. Here

it is visible with the naked eye, that the correction phase ∆Φcorr,i
He/Xe should be given by

∆Φcorr,i
He/Xe = αiHe/Xe + ϕiHe/Xe. But the calculation of the correction phase ∆Φcorr,i

He/Xe accord-

ing to Eq. 6.10 results in ∆Φcorr,i
He/Xe = αiHe/Xe + ϕiHe/Xe − 2π. Hence, the number of periods

niHe/Xe is underestimated by one. On the contrary, if the phase ϕiHe/Xe is close to 2π, i.e.
ϕiHe/Xe = 2π−αiHe/Xe, and the real frequency ωiHe/Xe of the sub-data set i is smaller than the
mean frequency ωHe/Xe, then the modulo of the estimated phase βiHe/Xe may be close to 0.

This relation is shown in Fig. 6.5b. Here it is observable, that the correction phase ∆Φcorr,i
He/Xe

should be given by ∆Φcorr,i
He/Xe = −αiHe/Xe − ϕiHe/Xe. But the calculation of the correction

phase ∆Φcorr,i
He/Xe according to Eq. 6.10 results in ∆Φcorr,i

He/Xe = −αiHe/Xe − ϕ
i
He/Xe + 2π. Hence,

the number of periods niHe/Xe is overestimated by one. So, to avoid an overestimation or an
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underestimation of the number of periods by one, the correction phase has to be tested with
an if statement:

If |∆Φcorr,i
He/Xe| > +φtest ⇒ Φi

He/Xe(ti)− 2π (6.13)

If |∆Φcorr,i
He/Xe| < −φtest ⇒ Φi

He/Xe(ti) + 2π . (6.14)

Since the maximum value of the correction phase for all 10 measurement runs is
∆Φcorr,i

He/Xe = ∆ωmax
He/Xe · τ ≈ 0.01 rad, the test phase φtest can take any value between 0.01 rad

and 2π. In our case we choose φtest = 4 rad.

Since there is no error in the determination of the number of periods (Eq. 6.12), the error of
the accumulated phase Φi

He/Xe(ti) given in Eq. 6.7 is only influenced by the phases ϕiHe/Xe

and their errors. Thus, according to Eq. 6.6, the error of the accumulated phase Φi
He/Xe(ti)

depends on the values ais,He/Xe and aic,He/Xe and their errors, δaic,He/Xe and δaic,He/Xe, which
are determined by the raw data fit of the sub-data sets using Eq. 6.3. These two parameters
are not much correlated (the correlated and uncorrelated errors differ by less than 6%), so
that the Gaussian error propagation law can be used to determine the errors

δΦi
He/Xe(ti) =

√(
aic,He/Xe

)2
·
(
δais,He/Xe

)2
+
(
ais,He/Xe

)2
·
(
δaic,He/Xe

)2

(
ais,He/Xe

)2
+
(
aic,He/Xe

)2 , (6.15)

where the derivative of the arctangent function, d
dxarctan(x) = 1

1+x2 , was used.

6.3 Weighted Phase Difference and Phase Shifts

With the accumulated phases of 3He and 129Xe (Eq. 6.11) the weighted phase difference
∆Φ(ti) can be determined

∆Φ(ti) = ΦHe(ti)−
γHe

γXe
ΦXe(ti) . (6.16)

In the weighted phase difference the Zeeman term, i.e. Φi
L,He/Xe(ti) = ωiL,He/Xe · ti = γHe/Xe ·

B0(ti) · ti, is eliminated and thus any dependence on fluctuations and drifts of the magnetic
guiding field ~B0. Hence, the weighted phase difference is expected to be constant in time.
However, as shown in Fig. 6.6, where the weighted phase difference ∆Φ(ti) of measurement
C68 is shown (upper curve), the weighted phase difference mainly increases linearly. Thus,
there still exist contributions to the weighted phase difference that are not eliminated by the
3He/129Xe co-magnetometer. The time dependence of the weighted phase difference can be
best described by

∆Φfit(t) = Φ0 + ∆ωlin · t− εHe ·A0,He · T ∗2,He · e
−t/T ∗2,He + εXe ·A0,Xe · T ∗2,Xe · e

−t/T ∗2,Xe . (6.17)

Beside a constant phase offset we have a dominant linear term, that arises due to chemical
shift and mainly due to Earth’s rotation. The latter one can be calculated theoretically (see
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6.3 Weighted Phase Difference and Phase Shifts

Figure 6.6: Weighted phase difference for measurement run C68 before (∆Φ(t)) and after
(∆Φrem(t)) the subtraction of the linear phase shift ΦE(t) due to Earth’s rotation
(Eq. 6.22). One data point comprises 50 sub-data sets, which corresponds to a
time interval of 160 s. The error bars are too small to be visible in the plot.

Sec. 6.3.1) and subtracted from the weighted phase difference ∆Φ(t) to get the remaining
phase difference ∆Φrem(t) (lower curve in Fig. 6.6). Furthermore, there are two exponential
terms, which depend on the transverse relaxation times of helium and xenon and correspond
to the Ramsey-Bloch-Siegert self-shifts. All these phase shifts will be explained in detail in
the following.

6.3.1 Linear Phase Shifts

The linear term of the fit-model given in Eq. 6.17 is the sum of several linear phase shifts
that are caused by different effects. The individual linear phase shifts will be explained in
the following.

Contribution of the Earth’s Rotation
The dominant term in the weighted phase difference has a linear time dependence and
mainly can be explained by the Earth’s rotation (ΩE = 7.2921150(1) · 10−5 rad/s [141]), i.e.
the rotation of the SQUID detectors (ωdet) with respect to the precessing spins. Since the
magnetic moments of 3He and 129Xe as well as the SQUID detectors are rotating in the same
sense with respect to the magnetic guiding field4, a reduced Larmor precession frequency is

4The sense of Earth’s rotation is right-handed with respect to the Earth’s rotation axis. Since the gyro-
magnetic ratios γ of both, 3He and 129Xe, are negative (Eq. 3.6 and Eq. 3.7), the total nuclear magnetic
moments (Eq. 3.16) are negative as well. According to the Bloch equations given in Eq. 3.15, for a mag-
netic guiding field ~B0 = −B0 · êx (coordinate system of BMSR-2) the sense of rotation of the total nuclear
magnetic moments is right-handed with respect to the field direction and to the Earth’s rotation axis.
Hence, the Earth and the magnetic moments of 3He and 129Xe rotate in the same sense.
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measured in the laboratory system, which is given by ωHe/Xe = ωL,He/Xe−ωdet. The frequency
shift caused by the rotating detector can be calculated by a coordinate transformation from
the laboratory system (X,Y,Z) to the Earth system (X’,Y’,Z’). The unit vector in field
direction, i.e the axis of precession ω̂L, in the laboratory system is given by (see Fig. 6.7,
right side)

ω̂L =
~ωL

ωL
=

− cos(−ρ)

sin(−ρ)

0

 =

− cos ρ

− sin ρ

0

 . (6.18)

Here ρ = 28◦ is the angle between the magnetic field direction and the north direction.
Since the latitude Θ = 52.5164◦, where the PTB Berlin is located [142], is known, ω̂L can
be transformed into the rotating Earth system (X’,Y’,Z’):

ω̂′L =

 sin Θ 0 cos Θ

0 0 1

− cos Θ 0 sin Θ

 ·
− cos ρ

− sin ρ

0

 =

− sin Θ cos ρ

− sin ρ

cos Θ cos ρ

 . (6.19)

By composing the scalar product Ω̂E · ω̂′L, the angle χ between the Earth’s rotation axis and
the axis of spin precession can be determined

cosχ = Ω̂E · ω̂′L =

0

0

1

 ·
− sin Θ cos ρ

− sin ρ

cos Θ cos ρ

 = cos Θ cos ρ . (6.20)

In our case the angle χ results in 57.33◦. The frequency shift of the 3He and 129Xe Larmor
frequencies caused by the rotating detector can be calculated to be

ωdet = |ΩE| cosχ . (6.21)

The contribution of Earth’s rotation to the weighted phase difference then is given by

ΦE(t) = ∆ωE · t = −(1− γHe

γXe
) ωdet · t

= 6.87263 · 10−5 rad
s
· t . (6.22)

This linear phase shift ΦE(t) can be subtracted from the weighted phase difference ∆Φ(t).
The temporal dependence of the remaining phase difference ∆Φrem(t) = ∆Φ(t) − ΦE(t)

is shown in Fig. 6.6 (lower curve). It is clearly visible that ∆Φrem(t) still contains phase
shifts. A part of the remaining linear phase shift can be explained due to the uncertainty in
determination of the angle ρ between the magnetic guiding field and the north direction. The
uncertainty in the angle ρ is assumed to be below 1◦ which leads to a maximum frequency
uncertainty of δ(∆ωE) = 6.3·10−7 rad/s and hence to a linear phase shift in the the remaining
phase difference ∆Φrem(t) of

|δΦE(t)| ≤ 6.3 · 10−7 rad
s
· t . (6.23)
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6.3 Weighted Phase Difference and Phase Shifts

Figure 6.7: The Earth’s rotating coordinate system and direction of the magnetic guiding
field inside BMSR-2. Left : The Earth’s rotating coordinate system (X’,Y’,Z’) is
defined such that the Z’-axis is parallel to the Earth’s rotation axis (ΩE). The
laboratory system (X,Y,Z) is located at Berlin where the angle Θ corresponds
to the latitude. The Y- and Y’-axis of the two different coordinate systems are
parallel. Right : The X-axis of the laboratory system points to the southern and
the Y-axis to the eastern direction. The magnetic guiding field inside BMSR-
2 points to the north-eastern direction (-x-direction in the BMSR-2 coordinate
system) and the angle between the direction of the magnetic guiding field and
the north direction is given by ρ = 28◦.

Here the uncertainties of ΩE and Θ were neglected, since they are known with high precision.
However the uncertainty |δΦE(t)| does not bother us, since the temporal dependence of the
remaining phase difference ∆Φrem(t) = ∆Φ(t)−ΦE(t) still can be described by the fit-model
given in Eq. 6.17. Hence the uncertainty of the determination of the linear term due to
Earth’s rotation is included in the linear term of the remaining phase ∆Φrem(t).

Gyromagnetic Ratios and Chemical Shift
Another part of the linear shift in the remaining phase ∆Φrem(t) can be explained by devi-
ations of the gyromagnetic ratios of 3He and 129Xe from their literature values5, which are
given by γHe = 20.37894730(56) · 107 rad

Ts and γXe = 7.39954378(50) · 107 rad
Ts [92]. These

values are valid for the naked nuclei of 3He and 129Xe. The ratio of the gyromagnetic ratios
γHe
γXe

used in the weighted phase difference (6.16) then becomes

γHe

γXe
= 2.75408159(20) . (6.24)

However, within the 3He and 129Xe atoms, the nuclei are shielded by the electrons of the
atomic shell against an external field ~B0 (diamagnetic shielding). Hence, the nuclei see a
slightly different external field, which leads to a constant shift in the Larmor frequency,

5The gyromagnetic ratio of xenon was recalculated with the value of the magnetic moment of the proton
µp [92].
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∆ωL,CS, which is called chemical shift (CS). Since for our measurements, a gas mixture of
3He, 129Xe and N2 is filled into a cylindrical measurement cell, the interactions of the noble
gas atoms with the wall of the measurement cell [143] as well as the interactions with each
other [144] and with the buffer gas N2 [145] lead to an increase of the chemical shift. This
can be explained by a shift of the electrons of the atomic shell of the 3He and 129Xe atoms
due to the collisions of the gas atoms. Thus the diamagnetic shielding against an external
field ~B0 is changed.
Since the pressure p and the temperature T can be assumed to be constant during one
measurement run, as well as the magnetic guiding field (except for small linear changes (see
Fig. 4.2)), the total chemical shift is constant to leading order, which leads to a linear term
in the weighted phase difference

∆ΦCS =

(
∆ωL,He,CS −

γHe

γXe
∆ωL,Xe,CS

)
· t . (6.25)

Field gradient induced shifts
Cates et al. showed in [146], that for a spin polarized gas in a spherical volume of radius R,
static and oscillating magnetic field gradients produce shifts in the spin precession frequency.
The total magnetic guiding field then is given by

~B(~r, t) = ~Bstat(~r) + ~Bosc(~r) , (6.26)

where the static magnetic field ~Bstat(~r) is the sum of a static mean field ~B0, that is oriented
in x-direction, and a static inhomogeneous field ~B1(~r), and the oscillating magnetic field
is given by ~Bosc(~r) = ~B′2(~r) cos(ωt) + ~B′′2 (~r) sin(ωt). For the total magnetic field ~B(~r, t) the
frequency shift was calculated to be

∆ωgrad = ωgrad,stat + ωgrad,osc

= R2 γB0

∑
n

γ2(|~∇B1,y|2 + |~∇B1,z|2)

x21n(x21n − 2)(D2 x41n R
−4 + γ2B2

0)
(6.27)

+
∑
n

R2 γ2

x21n(x21n − 2)

(
|~∇B2−|2(ω0 − ω)

D2 x41n R
−4 + (ω0 − ω)2

+
|~∇B2+|2(ω0 + ω)

D2 x41n R
−4 + (ω0 + ω)2

)
,

with the gyromagnetic ratio γ, the diffusion constant D and the mean Larmor frequency
ω0 = γ · | ~B0|. x1n (n = 1, 2, 3, ...) are the zeros of the derivative of the spherical Bessel
function ( ddxj1(x1n) = 0) and B2± = B2x ± iB2y.

The first term ∆ωgrad,stat of Eq. (6.27) describes the frequency shift due to the static, trans-
verse field gradients and the second term ∆ωgrad,osc arises due to the gradients of the oscil-
lating field. Assuming that both type of gradients are constant during the measurement run,
the field gradient induced frequency shifts are also constant and yield to a linear shift in the
weighted phase difference

∆Φgrad =

(
∆ωHe

grad −
γHe

γXe
∆ωXe

grad

)
· t . (6.28)
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In our experiment cylindrical measurement cells with length L and diameter �L were used.
As already mentioned before, these cells can be approximated by spherical cells with radius
R = L/2 = �L/2. Hence, the frequency shifts ∆ω

He/Xe
grad of helium and xenon due to field

gradients can be described by Eq. 6.27. The frequency shift ∆ωgrad,stat then occurs due to
small field gradients of the magnetic guiding field ~B0. However the frequency shift ∆ωgrad,osc

may occur, too: The total nuclear magnetic moments of the polarized atoms of 3He and 129Xe

precess around the direction of the magnetic guiding field ~B0. Hence, the precessing 3He and
129Xe atoms produce magnetic fields ~Bspin,G (with G = He, Xe), which precess around the
direction of the magnetic guiding field. These magnetic fields are characterized by small
field gradients. If the polarized spins see the magnetic field gradients of the oscillating field
~Bspin,G of the own gas species (gradient self-shift) or the one of the other gas species (gradient
cross-shift), the spin precession frequency of 3He and 129Xe is shifted by ∆ωgrad,osc.

Gravitational shift
Due to gravity the difference in the molar masses of 3He and 129Xe (M3He = 3.016 g

mol and
M129Xe = 128.955 g

mol) leads to a shift in the center of masses of the 3He and the 129Xe gas,
where the center of mass of 129Xe lies deeper than the one of 3He. Due to this spatial shift
and due to gradients of the magnetic guiding field, on average 3He and 129Xe do not see
the same magnetic field. That means, that in the weighted frequency difference the Zeeman
term is not canceled out completely, but a constant frequency shift

∆ωgrav = ωHe −
γHe

γXe
ωXe = γHe · (BXe + ∆B)− γHe ·BXe = γHe ·∆B (6.29)

remains, which is called gravitational shift.
For calculation of the gravitational shift ∆ωgrav the difference ∆z of the center of masses of
the two gas species has to be calculated: The two gases are filled into a cylindrical measure-
ment cell with diameter �L = 6cm and length L = 6cm. In the interest of simplification, the
center of mass in z-direction is only calculated for the projection of the cell in the zx-plane,
which corresponds to a circle with radius R (see Fig. 6.8). The mean value of all possible
z-coordinates can be calculated by

z =
1

A

∫
z · dA . (6.30)

Here A = πR2 is the area of the circle and dA = dz · dx the element of area. The coordinate
z can take values between −R and R, whereas x can take values between −

√
R2 − z2 and√

R2 − z2 (see Fig. 6.8). Hence, the expression of z merges into

z =
1

πR2

∫ R

−R
dz z

∫ √R2−z2

−
√
R2−z2

dx

=
2

πR2

∫ R

−R
dz z

∫ √R2−z2

0
dx

=
2

πR2

∫ R

−R
dz z

√
R2 − z2 . (6.31)
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Figure 6.8: Illustration of calculation of the center of mass in z-direction. Left : Cylindrical
measurement cell in the coordinate system of the BMSR-2. Due to symmetry
reasons, the center of the cell was placed in the point of origin. Right : For calcu-
lation of the center of mass in z-direction, only the projection of the cylindrical
measurement cell into the zx-plane is considered. The projection conforms to a
circle with radius R =

√
x2 + z2. Hence, for a given value of the coordinate z,

the coordinate x can take only values between −
√
R2 − z2 and

√
R2 − z2.

Using the barometric formula

p(z) = p0 exp

(
−Mg0

RGT
z

)
, (6.32)

which gives the gas pressure p(z) at height z for each gas species – where p0 is the pressure
at the bottom of the measurement cell, i.e. p0 = p(z = −R), RG is the molar gas constant
(RG = 8.413 J

mol K), T the temperature,M the molar mass and g0 = 9.81 m
s2 the gravitational

acceleration – the center of mass in z-direction of each gas species can be calculated by the
weighted mean value of all possible z-coordinates

CM =
2

πR2

∫ R
−R dz z

√
R2 − z2 p(z)

2
πR2

∫ R
−R dz

√
R2 − z2 p(z)

. (6.33)

The difference in the center of masses (CM) for our cylindrical measurement cells then results
in

∆z = CMHe − CMXe ≈ 1.2 · 10−7 m. (6.34)

If a constant field gradient in z-direction of G = ∆B
∆z ≈ 27.2 pT

cm (see Tab. 4.1) is assumed,
the field difference amounts to ∆B = G ·∆z = 0.2 fT. According to Eq. 6.29, this leads to a
linear phase shift of

|∆Φgrav| = γHe ·∆B · t = 4.1 · 10−8 rad

s
· t . (6.35)

This gravitational phase shift is only caused by gradients of the magnetic guiding field.
However, in Sec. 6.7 it will be demonstrated that if the BGO crystal produce magnetic field
gradients, the movement of the BGO crystal changes the field gradients in the vicinity of
the measurement cell. Hence, the movement of the BGO crystal may mimic a pseudoscalar
frequency shift or even compensate the effect we are looking for.
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6.3 Weighted Phase Difference and Phase Shifts

Figure 6.9: Ramsey-Bloch-Siegert shift δωRBS, which is caused by a magnetic field ~Byz that
rotates perpendicular to the magnetic guiding field ~B0 = B0 · êx. In the graph
δωRBS is plotted against the angular frequency ωr of the rotating magnetic field
~Byz. Thereby δωRBS is normalized to the frequency ωyz = γ · Byz and ωr is
normalized to the frequency ω0 = γ ·B0. If the rotating magnetic field ~Byz is on
resonance with the magnetic guiding field, i.e. ωr = ω0, the RBS-shift δωRBS has
peak values of ±ωyz and thus the RBS-shift vanishes.

6.3.2 Exponential Phase Shifts

According to Ramsey [147], Bloch and Siegert [148], the spin precession frequency ωL = ω0 =

γ ·B0 of a neutral particle in a magnetic guiding field ~B0 = B0 · êx is shifted by irradiating
a magnetic field ~Byz that oscillates at angular velocity ωr in a plane perpendicular to the
magnetic guiding field. The Larmor frequency then is given by ωL = ω0 + δωRBS. The
frequency shift δωRBS is called Ramsey-Bloch-Siegert shift (RBS-shift) and is defined as

δωRBS =


+
√

∆ω2 + ω2
yz −∆ω for ωr/ω0 < 1

−
√

∆ω2 + ω2
yz + ∆ω for ωr/ω0 > 1

(6.36)

where ωyz = γ ·Byz and ∆ω = |ω0 − ωr|. In Fig. 6.9 the RBS-shift δωRBS is plotted against
the angular frequency ωr of the rotating magnetic field ~Byz. If ~Byz is on resonance with the
magnetic guiding field, i.e. ωr = ω0, the RBS-shift δωRBS takes the values ±ωyz. Hence, in
case of resonance the RBS-shift δωRBS vanishes. For ~Byz outside of resonance, i.e. |ωr/ω0| < 1

or |ωr/ω0| > 1, the absolute value of the RBS-shift δωRBS decreases. Depending on the
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relative sizes of ∆ω and ωyz two different approximations of δωRBS can be derived

1. δωRBS = ±∆ω

√
1 +

(ωyz
∆ω

)2
∓∆ω

≈ ±∆ω

(
1 +

1

2

(ωyz
∆ω

)2
)
∓∆ω (∆ω � ωyz)

= ±∆ω
1

2

(ωyz
∆ω

)2

= ±
γ2B2

yz

2∆ω
(6.37)

2. δωRBS = ±ωyz

√
1 +

(
∆ω

ωyz

)2

∓∆ω

≈ ±ωyz

(
1 +

1

2

(
∆ω

ωyz

)2

− · · ·

)
∓∆ω (∆ω � ωyz)

≈ ±ωyz . (6.38)

In our experiment nuclear spin polarized 3He and 129Xe atoms precess with the respective
Larmor frequencies ω0,He ≈ 2π ·11.4Hz and ω0,Xe ≈ 2π ·4.1Hz in a magnetic guiding field of
~B0 = 0.35 µT · êx. The precessing spins produce magnetic fields ~Bspin,G (with G = He, Xe)
which oscillate at an angular frequency ω0,G perpendicular to the magnetic guiding field ~B0.
These magnetic fields are proportional to the magnetization respectively to the amplitude
AG (t) of the precessing spins. Hence the magnetic fields ~Bspin,G decrease exponentially with
the transverse relaxation times T ∗2,G:

~Bspin,G = Byz,G(t) (êz cos(ω0,Gt) + êy sin(ω0,Gt))

= ξG ·A0,G · e
− t
T∗2,G · (êz cos(ω0,Gt) + êy sin(ω0,Gt)) . (6.39)

A0,G = AG(t = 0 s) is the initial amplitude of the spin precession signal and ξG is a propor-
tionality factor. Now, the nuclear spin polarized 3He and 129Xe atoms see these oscillating
magnetic fields ~Bspin,G, which cause a RBS-shift in their spin precession frequencies, i.e.
ωL,G = ω0,G + δωRBS,G. Here it is necessary to distinguish between the RBS cross-shift and
the RBS self-shift, which will be explained in detail in the following.

RBS cross-shift
In our experiment the spin precession frequency of gas species G1 may be shifted by the
oscillating magnetic field ~Bspin,G2 produced by the other gas species G2. This shift is called
RBS cross-shift with ω0 = ω0,G1, ωr = ω0,G2 and ωyz = ωyz,G1 = γG1 · Byz,G2. The field
~Bspin,G2 is off-resonant, i.e. ωr/ω0 = ω0,He/ω0,Xe = 2.75 or ωr/ω0 = ω0,Xe/ω0,He = 1/2.75. In
both cases the expected RBS cross-shift is small compared to ωyz as shown in Fig. 6.9.
For both gas species, the frequency difference ∆ω is given by ∆ω = |ω0,Xe − ω0,He| =

|ω0,He − ω0,Xe| ≈ 2π · 7.3 Hz. The frequency ωyz for 3He and 129Xe can be estimated as
follows: The mean values of the initial amplitudes of the 3He and 129Xe spin precession
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signals are given by A0,He = 12.2 pT and A0,Xe = 4.8 pT, respectively (see Tab. 6.1). These
values were measured at a distance of z = 5.8 cm from the center of the measurement cell. It
is assumed, that the amplitude of the oscillating field Byz,G2 approximately is given by the
dipole field of 3He, respectively of 129Xe, at a distance of z = 3 cm from the center of the
measurement cell. Thus, according to Eq. 3.29 the amplitudes of the oscillating fields can be
calculated to be Byz,He ≈ A0,He ·

(
5.8 cm
3.0 cm

)3
= 128 pT and Byz,Xe ≈ A0,Xe ·

(
5.8 cm
3.0 cm

)3
= 53 pT,

respectively. With these values the frequency ωyz results in ωyz,He ≈ 2π · 108 mHz for 3He

and in ωyz,Xe ≈ 2π · 9 mHz for 129Xe. From this it follows, that ∆ω � ωyz. Thus according
to Eq. 6.37 and Eq. 6.39 the RBS cross-shift is given by

δωcross
RBS,G1(t) = ±

γ2
G1 ·Byz,G2(t)2

2∆ω
= ±

γ2
G1 · ξ2

G2 ·A2
0,G2

2∆ω
· e
− 2t
T∗2,G2 , (6.40)

where the negative sign holds for the change of the 129Xe spin precession frequency and the
positive sign for the change of the 3He spin precession frequency.
By integration of the RBS cross-shift over time the accumulated phase can be calculated to

δΦcross
RBS,G1(t) =

∫ t

0
δωcross

RBS,G1(t′) dt′

= constG1 ∓
γ2
G1 · ξ2

G2 ·A2
0,G2

2∆ω
·
T ∗2,G2

2
· e
− 2t
T∗2,G2 , (6.41)

where the positive sign corresponds to the phase shift of 129Xe and the negative sign to the
phase shift of 3He. The total contribution of the RBS cross-shifts of 3He and 129Xe to the
weighted phase difference then is given by

∆Φcross
RBS (t) = δΦcross

RBS,He(t)−
γHe

γXe
· δΦcross

RBS,Xe(t)

= −
γ2

He · ξ2
Xe ·A2

0,Xe

2∆ω
·
T ∗2,Xe

2
· e
− 2t
T∗2,Xe + constHe

−
γXeγHe · ξ2

He ·A2
0,He

2∆ω
·
T ∗2,He

2
· e
− 2t
T∗2,He +

γHe

γXe
· constXe . (6.42)

Hence, in the weighted phase difference the RBS cross-shifts of 3He and 129Xe add with the
same sign. Since the RBS cross-shifts are small compared to the other phase shifts, the RBS
cross-shifts were not included in the fit model given by Eq. 6.17. If the RBS cross-shifts
were implemented to the fit model, the χ2/dof value of the fit of the weighted phase
difference would be upgraded nonessential. Hence, it was decided that the RBS cross-shifts
are negligible. This has the advantage that in the fit model of the weighted phase difference
less fit parameters occur. However, more recent measurements that were performed in
march 2012 to search for a Lorentz-violating frequency shift, achieved a higher measurement
sensitivity regarding the spin precession frequency due to both a higher signal-to-noise
ratio and longer T ∗2 times for 3He as well as for 129Xe. In view of the higher measurement
sensitivity of these measurements, the RBS cross-shifts cannot be neglected anymore.
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RBS self-shift

If the magnetic guiding field ~B0 is absolutely homogeneous, the spin precession frequency of
the gas speciesG is not influenced by the rotating magnetic field ~Bspin,G, which is produced by
the own gas species G. Here it is of no consequence whether the measurement cell is an ideal
sphere or has any other shape. However, if the magnetic guiding field ~B0 is not absolutely
homogeneous but characterized by finite field gradients, the spin precession frequency of
the gas species G is shifted by its own rotating magnetic field ~Bspin,G. This effect will be
explained in detail in the following: For a start, the measurement cell is assumed to be an
ideal sphere and is placed in a magnetic guiding field ~B0 with field gradients. If the field
gradients are non-linear, the field gradients in a small volume VB of the measurement cell may
differ from the ones in the remaining volume VA = Vtot − VB, where Vtot is the total volume
of the measurement cell and VA > VB (see Fig. 6.10a). Now if the measurement cell is not an
ideal sphere but, for example, has a small stem, similar considerations as for the spherical
measurement cell can be applied. That means, that the main part of the measurement cell can
be approximated by an ideal sphere with volume VA, and the stem as a second small sphere
with volume VB, where VA > VB (see Fig. 6.10b). In both cases the single spins of gas species
G in volume VA and volume VB see different magnetic fields and thus precess with different
Larmor frequencies, i.e. ω0,G,A = γG ·B0 6= ω0,G,B = γG · (B0 −∆B), where ∆B corresponds
to the change of the magnetic guiding field ~B0 due to field gradients. Furthermore, the spins
of the polarized gas in volume VA and VB produce magnetic fields, ~Bspin,G,A and ~Bspin,G,B,
which rotate with respective frequencies, ωr,G,A = ω0,G,A and ωr,G,B = ω0,G,B, around the
direction of the magnetic guiding field ~B0. Thus, the rotating magnetic field ~Bspin,G,B of
volume VB leads to a shift δωRBS,A in the spin precession frequency of volume VA and vice
versa. The total frequency shift is called RBS self-shift and is given by

δωself
RBS = δωRBS,A + δωRBS,B . (6.43)

The frequencies δωRBS,A and δωRBS,B are defined as (see Eq. 6.36)

δωRBS,A = ±
√

∆ω2 + ω2
yz,G,B ∓∆ω (6.44)

δωRBS,B = ∓
√

∆ω2 + ω2
yz,G,A ±∆ω , (6.45)

with ωyz,G,A = γG ·Byz,G,A, ωyz,G,B = γG ·Byz,G,B and ∆ω = |ω0,G,A − ω0,G,B| = γG · |∆B|.
The upper signs hold for ∆B > 0, i.e. ω0,G,A/ω0,G,B > 1, and the lower signs hold for
∆B < 0, i.e. ω0,G,A/ω0,G,B < 1.
In our experiment the field gradients are in the order of pT/cm. Thus the change of the
magnetic field ∆B, respectively the frequency difference ∆ω, are so small, i.e. |ω0,G,A| ≈
|ω0,G,B|, that the rotating magnetic fields, ~Bspin,G,A and ~Bspin,G,B, are expected to be close
to resonance.
Although the RBS shifts, δωRBS,A and δωRBS,B, do have opposite sign the sum of both
(Eq. 6.43) is not equal to zero. This is because the strength of the rotating magnetic fields
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Figure 6.10: Illustration of RBS self-shift. It is assumed that the measurement cell is only
filled with one gas species G. (a) Spherical measurement cell in a magnetic
guiding field with non-linear field gradients. (b) Non-spherical measurement cell
in a magnetic field with field gradients. In both cases due to field gradients the
spins in volume VA and VB (with VA > VB) see different magnetic guiding fields
and thus precess with different frequencies, i.e. ω0,G,A = γG ·B0 6= ω0,G,B = γG ·
(B0 −∆B). Here ∆B is the change of the magnetic field due to field gradients.
Besides, the spins in volume VA and VB produce magnetic fields, ~Bspin,G,A and
~Bspin,G,B, which rotate with respective frequencies, ω0,G,A and ω0,G,B, around
the direction of the magnetic guiding field ~B0. These fields are indicated by
the blue and red arrow. Now the rotating magnetic field ~Bspin,G,B of volume
VB leads to a shift δωRBS,A in the spin precession frequency of volume VA and
vice versa. Thereby the frequencies, δωRBS,A and δωRBS,B, do have opposite
sign. However, since the amplitudes of the rotating magnetic fields (indicated
by different lengths of the blue and red arrow) are not equal, the total RBS
self-shift is unequal to zero.

of volume VA and VB are not equal but given by

Byz,G,A = (VA/Vtot) ·Byz,G,tot , (6.46)

Byz,G,B = (VB/Vtot) ·Byz,G,tot , (6.47)

where Byz,G,tot is the magnetic field produced by the spins of gas species G in the total
volume Vtot of the measurement cell. Due to the small field gradients in the order of pT/cm,
it can be assumed that ∆ω � ωyz. Hence, according to Eq. 6.38 the RBS shifts of volume
VA and VB can be approximated by

δωRBS,A ≈ ±ωyz,G,B (t) (6.48)

δωRBS,B ≈ ∓ωyz,G,B (t) . (6.49)
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With Eq. 6.39 and Eqs. 6.43-6.49 the RBS self-shift transforms to

δωself
RBS,G (t) ≈ ±ωyz,G,B (t)∓ ωyz,G,A (t)

= ±γG ·Byz,G,B(t)∓ γG ·Byz,G,A(t)

= ± γG
Vtot
· ξG · (VB ·A0,G,B − VA ·A0,G,A) · e

− t
T∗2,G

= ±ξG ·A0,G · e
− t
T∗2,G , (6.50)

with A0,G = γG
Vtot
· (VB ·A0,G,B − VA ·A0,G,A). The negative sign holds for ω0,G,A/ω0,G,B > 1

and the positive sign for ω0,G,A/ω0,G,B < 1. Depending on the change of the the magnetic
field, i.e. ∆B > 0 or ∆B < 0, the RBS self-shift of one gas species G can take negative and
positive values. By integration of Eq. 6.50 over time the RBS phase shift can be calculated
to

δΦself
RBS,G(t) =

∫ t

0
δωself

RBS,G
(
t′
)
· dt′

= ±
∫ t

0
ξG ·A0,G · e

− t′
T∗2,G · dt′

= ±constG ∓ ξG ·A0,G · T ∗2,G · e
− t
T∗2,G (6.51)

Hence, the phases caused by the RBS self-shifts decay exponentially with the transverse
relaxation time T ∗2 . In the following the constant constG can be neglected, since this value
will be included in the constant term of the fit model given by Eq. 6.17. The RBS self-shifts
of 3He and 129Xe then lead to a shift in the weighted phase difference, which is given by

∆Φself
RBS(t) = δΦself

RBS,He(t)−
γHe

γXe
δΦself

RBS,Xe(t)

= −ξHe ·A0,He · T ∗2,He · e
−t/T ∗2,He

+
γHe

γXe
· ξXe ·A0,Xe · T ∗2,Xe · e

−t/T ∗2,Xe

= −εHe ·A0,He · T ∗2,He · e
−t/T ∗2,He + εXe ·A0,Xe · T ∗2,Xe · e

−t/T ∗2,Xe , (6.52)

with εHe = ξHe and εXe = γHe
γXe
·ξXe. Here it was assumed that ∆B > 0, i.e. ω0,G,A/ω0,G,B > 1.

Hence the upper signs of Eq. 6.51 are valid. But since εHe and εXe are not known, all prefactors
in Eq. 6.52 are summarized to EHe(Xe) = εHe(Xe) · A0,He(Xe) · T ∗2,He(Xe), which then are the
fitparameters of the fit model given in Eq. 6.17. EHe(Xe) can take positive and negative values
and thus both cases, i.e. ∆B > 0 and ∆B < 0, are described by the fit model of Eq. 6.52. For
the measurements that are discussed in this thesis instead of spherical glass cells, cylindrical
glass cells were used. Beside a small stem these cells feature some additional deviations from
a spherical measurement cell, so that the effect of the rotating magnetic fields, ~Bspin,G,A and
~Bspin,G,B, will be much stronger as for the spherical cells.
Futhermore it should be noted, that the expression given in Eq. 6.52 is an estimation of the
RBS self-shift. Normally, in addition to the field gradients across the measurement cell, the
RBS self-shift also depends on the diffusion time τD of the gases. Taking into account the
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6.3 Weighted Phase Difference and Phase Shifts

effect of diffusion of the gases, the expression of the RBS self-shift in Eq. 6.52 would be much
more complicated. Nevertheless, the expression given in Eq. 6.52 is a good approximation of
the RBS self-shift.

6.3.3 Other Phase Shifts

Beside the effects which were explained in the former sections, there are some other effects
that can also shift the phase. But these phase shifts are quite small compared to the ones
discussed before. However for the sake of completeness these effects will be explained in the
following.

Flip angle 6= 90◦

At the beginning of each measurement run the magnetic field is produced by the By-coils,
i.e. ~B1 = B0 · êy. In order to induce a spin flip the By-coils are switched off whereas the
Bx-coils are switched on. The switching operation then leads to a non-adiabatic change of
the magnetic guiding field from ~B1 = B0 · êy to ~B0 = B0 · êx. A spin flip of 90◦ can be realized,
if the Bx- and By-coils are arranged perpendicular to each other. In this case the magnetic
fields produced by the polarized gases, 3He and 129Xe, only have an oscillating transversal
component. But, if the coils are not arranged perpendicular, then the spins are flipped by
an angle α < 90◦ relative to the magnetic guiding field ~B0. Hence, the magnetic fields of
the polarized gases, 3He and 129Xe, have a static longitudinal component in addition to the
oscillating transversal component. The longitudinal component of the magnetic field of gas
species G1 then leads to a shift in the Larmor frequency of gas species G2 and vice versa:

ωL,G2 = γG2 ·B

= γG2 ·
√
B2

0 + (BG1 · cosα)2

≈ γG2 ·B0

(
1 +

1

2

(
BG1 · cosα

B0

)2
)

⇒ ∆ωL,G2 ≈ 1

2
· γG2 ·B0

(
BG1 · cosα

B0

)2

. (6.53)

Since the longitudinal magnetic field BG1 decays exponentially with the longitudinal relax-
ation time T1,G1, i.e. BG1 = B0,G1 · e−t/T1,G1 , the frequency shift ∆ωL,G2 should decrease
exponentially with T1,G1/2, i.e. ∆ωL,G2 ∝ e−2t/T1,G1 . For example, if the magnetic guiding
field is B0 = 0.35 µT and B0,Xe ≈ 53 pT and α ≈ 89◦ then the maximum change in the
Larmor frequency of 3He is given by ∆ωL,He ≈ 2 · 10−10 Hz. Since this frequency shift is
small and not influenced by the movement of the BGO crystal, it will not cause a simillar
signature in the weighted phase difference we are looking for. Hence, the frequency shift
∆ωL,G2 is negligible.
However the longitudinal components of the magnetic fields of 3He and 129Xe produce addi-
tional magnetic field gradients, which may reduce the T ∗2 relaxation times of 3He and 129Xe.
These gradients can be roughly estimated: If B0,Xe · cos(89◦) ≈ 53 pT · 0.02 = 1 pT, the
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Figure 6.11: Phase residuals of measurement run C68 after subtraction of the fitted function
of Eq. 6.16 from ∆Φrem(t). One data point comprises 10 sub-data sets, which
corresponds to a time interval of 32 s.

gradients in a cylindrical cell (�L = L = 6 cm) produced by the magnetic fields of 3He and
129Xe are smaller than 1 pT/6 cm = 0.2 pT/cm. These gradients are much smaller than the
measured field gradients (see Tab. 4.1) and hence they are negligible.

Interaction between precessing spins and SQUID detectors
Since the SQUID sensors are superconducting, dissipation should not happen, i.e. the
SQUIDs should not withdraw energy from the precessing spin system. If dissipation oc-
cured, the T ∗2 relaxation time of the precession signal would depend, for example, on the
distance d between the sensor and the measurement cell. However, since this effect is not
influenced by the movement of the BGO crystal, it cannot lead to a similar signature in the
weighted phase difference we are looking for. Hence, this effect can be neglected.

6.4 Phaseresiduals

Assuming that no mass was moved during a measurement run, the temporal dependence
of the remaining weighted phase difference ∆Φrem(t) can be described by Eq. 6.17. Thereby
the T ∗2 times were no fit parameters, but fixed, since they could be determined separately
by a fit of the decay of the helium and xenon signal amplitudes (see Sec. 6.5). Hence, the fit
model of Eq. 6.17 is a linear function in the fit parameters.
After fitting of the remaining weighted phase difference, the phase residuals can be deter-
mined by subtracting the fitted function ∆Φfit(t) of Eq. 6.17 from the data ∆Φrem(t). The
phase residuals of measurement C68 are shown in Fig. 6.11. The phase noise is statistically
distributed, whereby it increases exponentially with the characteristic time constant T ∗2,Xe,
i.e. σφ,res ∝ exp(t/T ∗2,Xe) (see Chap. 5.2). This can be explained by the exponential decay of
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the signal amplitudes, mainly that of 129Xe with the shorter T ∗2 time which was about 5.3 h
for measurement run C68.

6.5 Determination of Transverse Relaxation Times

Since the transverse relaxation times T ∗2 of 3He and 129Xe are fixed in the fit of the remaining
weighted phase difference ∆Φrem(t) (see Eq. 6.17), they have to be determined independently.
By considering the decay of the signal amplitudes the T ∗2 times of 3He and 129Xe can be
calculated: The signal amplitudes of 3He and 129Xe of each sub-data set i can be evaluated
with the fit parameters of the raw data fit given in Eq. 6.3 as

AHe/Xe(ti) =

√(
aic,He/Xe

)2
+
(
ais,He/Xe

)2
, (6.54)

where ti = (i−1)·τ is the time of the i-th sub-data set and τ = 3.2s is the length of each sub-
data set. Since the amplitudes, aic,He/Xe and ais,He/Xe, of one sub-data set are less correlated,
the amplitude errors ∆AHe/Xe(ti) can be determined using the Gaussian error propagation
law. Figure 6.12 shows the time developing of the helium (black) and xenon (red) amplitudes
of measurement run C68 for three different and independent gradiometers (Z2E-Z5S, Z3D-
Z2S, Z3I-Z1S). The amplitudes decay exponentially with the transverse relaxation time T ∗2 ,
i.e.

Afit(t) = Ag
0 · e

−t/T ∗2 , (6.55)

where g = 1, 2, 3 corresponds to the gradiometers Z2E-Z5S, Z3D-Z2S and Z3I-Z1S, respec-
tively. The function Afit(t) is used for a common fit of the signal amplitudes. That means,
that the data points

(
ti, AHe/Xe(ti),∆(AHe/Xe(ti))

)
of all three gradiometers were joined to

one big data set. In doing so, an additional dimension was added to each data point so
that the data points of the different SQUID gradiometers can be distinguished later on.
The data points of the big data set then are given by

(
{ti, g}, AHe/Xe(ti),∆(AHe/Xe(ti))

)
.

The fit function according to Eq. 6.55 then is applied to the big data set, i.e. to the signal
amplitudes of all three gradiometers simultanously. Here the initial amplitudes Ag

0 can be
different but the T ∗2 time is equal for all three gradiometers. For measurement run C68, the
fit parameters for helium result in A1

0,He = (9186.37± 0.03) fT, A2
0,He = (4456.42± 0.03) fT,

A3
0,He = (6879.08 ± 0.04) fT and T ∗2,He = (212019 ± 9) s with χ2/dof = 1.65 and the fit

parameters for xenon result in A1
0,Xe = (4945.31 ± 0.16) fT, A2

0,Xe = (2399.66 ± 0.13) fT,
A3

0,Xe = (3704.47 ± 0.22) fT and T ∗2,Xe = (19049 ± 1) s with χ2/dof = 17.50. To check
the quality of the fit function, the amplitude residuals Res(A(ti)) have to be considered,
which are the difference between the real amplitudes AHe/Xe(ti) and the fit function Afit(t).
In Fig. 6.13 the amplitude residuals of helium and xenon of measurement run C68 for the
three different gradiometers are shown. Each data point comprises 50 sub-data sets which
corresponds to a time interval of 160 s. Thus the error bar of each data point is smaller by
a factor of ≈

√
50 compared to the error of the amplitude of a single sub-data set. Ob-

viously, the amplitude residuals of helium and xenon do not have the expected statistical
distribution around zero, but show a characteristic structure instead, which is more distinct
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Figure 6.12: Decay of the 3He (black) and 129Xe (red) amplitudes of measurement run C68
for three different gradiometers (left: Z2E-Z5E, middle: Z3D-Z2S, right: Z3I-
Z1S). Each data point comprises 50 sub-data sets which corresponds to a time
interval of 160 s. Thus the error bar of each data point is smaller by a factor of
≈
√

50 compared to the error of the amplitude of a single sub-data set. Hence,
the error bars are too small to be visible in the plot.

Figure 6.13: Amplitude residuals of 3He (black) and 129Xe (red) of measurement run C68
for three different gradiometers (left: Z2E-Z5E, middle: Z3D-Z2S, right: Z3I-
Z1S) resulting from an exponential fit according to Eq. 6.55. Each data point
comprises 50 sub-data sets which corresponds to a time interval of 160 s. Thus
the error bar of each data point is smaller by a factor of ≈

√
50 compared to

the error of the amplitude of a single sub-data set. Hence, the error bars are too
small to be visible in the plot.

for xenon than for helium. This also applies for the other measurement runs (see App. B).
The structure in the amplitude residuals shows that there is another effect which causes
a non-exponential decay of the signal amplitudes. Thus, we make the following ansatz to
describe the real temporal development of the signal amplitudes

A(t) = Ag
0 · e

−t/T ∗2 · (1 + gF(t)) . (6.56)

For exact determination of the T ∗2 times, the structure in the amplitude residuals has to be
parameterized. The whole procedure of the exact T ∗2 determination is summarized in App. B.
At the end, the structure in the amplitude residuals, i.e. the function gF(t), was determined
via spline–interpolation. Then this function was used to apply the fit function of Eq. 6.56 to
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T ∗2,He (s) δT ∗2,He (s) T ∗2,Xe (s) δT ∗2,Xe (s)
C54 111443 18 14742.6 0.4
C55 132567 3 14853.2 0.2
C60 176152 11 15395.9 0.3
C63 190472 7 18021.4 0.3
C65 217520 8 18773.9 0.4
C67 209171 9 18657.6 0.4
C68 212055 9 19049.7 0.3
C71 204661 7 18791.6 0.3
C80 229407 19 19165.1 0.4
C82 211347 32 18889.1 0.4

Table 6.2: Transverse relaxation times of 3He and 129Xe of measurement runs C54-C82 which
were determined by using a spline-interpolation (Eq. 6.56).

the big data set, i.e. to the signal amplitudes of all three gradiometers simultanously. The
initial amplitudes Ag

0 can be different but the T ∗2 time is equal for all three gradiometers.
The resulting transverse relaxation times T ∗2 of helium and xenon of all 10 measurement runs
are summarized in Tab. 6.2. The determination of the T ∗2 time of helium for measurement
run C60 was more complicated than for the other measurement runs since the structure
in the amplitude residuals differed from the characteristic structure which appeared in the
amplitude residuals of all other measurement runs.

6.6 Limit on Spin-Dependent Short-Range Force

A possible spin-dependent short-range interaction, which is mediated by axions or axion-like
particles leads to a constant shift ∆ωwsp = 2π∆νsp · (1 − γHe/γXe) (see Eq. 4.5) in the
weighted frequency difference ∆ω(t) (Eq. 4.4), or to a corresponding linear shift in the
weighted phase difference ∆Φ(t), if the BGO crystal is close to the spin polarized samples.
This frequency shift vanishes, if the BGO crystal is moved far away from the spin polarized
samples (see Chap. 4).

To extract the frequency shift ∆νsp due to the spin-dependent short-range interaction, the
weighted phase difference of three different and independent SQUID gradiometers were con-
sidered (Z2E-Z5S, Z3D-Z2S, Z3I-Z1S) for each measurement run (j = 1, · · · , 10). Since the
frequency shift ∆νsp is independent of the distance between the SQUID sensors and the
polarized spin samples, it should be equal for all three gradiometers. That is why for each
measurement run a common fit of the weighted phase difference of all three gradiometers was
applied, i.e. similar to the fit of the signal amplitudes, the data points (ti,∆Φ(ti), δ(∆Φ)(ti))

of all three gradiometers were joined to one big data set. An additional dimension was added
to the data points of the big data set, so that the data points of the different SQUID gra-
diometers can be distinguished later on. The data points of the big data set then are given
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by ({ti, g},∆Φ(ti), δ(∆Φ)(ti)), where g = 1, 2, 3 again is the number of the corresponding
SQUID gradiometer (g = 1 for Z2E-Z5S, g = 2 for Z3D-Z2S, g = 3 for Z3I-Z1S). Including
the effect due to the spin-dependent short-range interaction, the fit model of the weighted
phase difference given by Eq.6.17 transforms to

∆Φfit (t) = Φ0,g +
(
∆ωlin + ∆ωwsp(t)

)
· t

−εHe ·A0,He · T ∗2,He · e
−t/T ∗2,He + εXe ·A0,Xe · T ∗2,Xe · e

−t/T ∗2,Xe

= Φ0,g +
(
∆ωlin + ∆ωwsp(t)

)
· t− EHe · e−t/T

∗
2,He + EXe · e−t/T

∗
2,Xe . (6.57)

Here the abbreviation EHe(Xe) = εHe(Xe)·A0,He(Xe)·T ∗2,He(Xe) was used. Φ0,g is a constant phase
offset which differs from one gradiometer to another. The two exponential terms correspond
to the RBS self-shift and

∆ωwsp(t) = ∆ωwsp ·Θ(±(t− t0))

= 2π

(
1− γHe

γXe

)
·∆νsp ·Θ(±(t− t0)) (6.58)

is stemming from the frequency shift ∆νsp due to the spin-dependent short-range interaction.
Here t0 is the time when the BGO-crystal was moved and Θ(±(t− t0)) is the Heaviside step
function6, which indicates that an additional linear phase shift only occurs, if the BGO
crystal is close to the polarized spin samples. So, the (±) in its argument has to be set
(–) for the sequence c→d and (+) for the reverse one, i.e. d→c. For reduction of the high
correlation among the fit parameters of the linear term and the exponential terms, the time
scale was shifted for fitting, i.e. t→ t′ = t− t0. The fit model of Eq. 6.57 then transforms to

∆Φfit
(
t′
)

= (Φ0,g + ∆ωlin · t0) +
(
∆ωlin + ∆ωsp(t′)

)
· t′

− εHe ·A0,He · T ∗2,He · e
−t0/T ∗2,He · e−t

′/T ∗2,He

+ εXe ·A0,Xe · T ∗2,Xe · e
−t0/T ∗2,Xe · e−t

′/T ∗2,Xe

= Φ′0,g +
(
∆ωlin + ∆ωsp(t′)

)
· t′ − E′He · e

−t′/T ∗2,He + E′Xe · e
−t′/T ∗2,Xe ,(6.59)

with

E′He(Xe) = εHe(Xe) ·A0,He(Xe) · T ∗2,He(Xe) · e
−t0/T ∗2,He(Xe) (6.60)

Φ′0,g = Φ0,g + ∆ωlin · t0 (6.61)

∆ωsp(t′) = ∆ωsp(t) . (6.62)

Since the T ∗2 times of helium and xenon were determined independently by the decay of the
signal amplitudes (see Sec. 6.5 and App. B), they were fixed in the fit. Hence the fit is linear
in all fit paramters. The T ∗2 times for the measurements C54-C82, that were used for fitting,
are summarized in Tab. 6.2. Beside the constant phase offset Φ′0,g, all fit parameters for the
three different gradiometers are equal, so that for each measurement run seven fit parameters
are left. For all 10 measurement runs, a χ2 minimization, as described in Sec. 6.1, using the

6Heaviside step function: Θ(t) = 1 for t ≥ 0 and Θ(t) = 0 for t < 0.
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χ2/dof Φ′0,1 Φ′0,2 Φ′0,3 ∆ωlin ∆ωsp E′He E′Xe

(rad) (rad/s) (rad/s) (rad/s) (rad/s) (rad) (rad)
C54 1.780 value -5.084 -1.989 -4.452 2.347E-4 1.054E-7 -5.697 -0.151

δc 0.123 0.293 0.218 1.653E-8 9.592E-8 0.217 0.005
C55 1.795 value -1.984 -1.937 -2.022 -2.304E-4 -1.961E-8 -3.690 0.026

δc 0.087 0.208 0.170 9.800E-7 9.942E-8 0.159 0.004
C60 1.851 value 11.185 11.344 11.955 8.514E-5 -2.170E-7 10.339 0.064

δc 0.015 0.333 0.422 1.379E-6 1.312 E-7 0.306 0.005
C63 1.821 value 27.781 26.484 27.049 6.547E-5 -7.519E-9 25.385 0.251

δc 0.207 0.457 0.531 1.877E-6 8.325E-8 0.402 0.004
C65 1.816 value 21.867 23.582 20.915 6.478E-5 -5.533E-8 20.792 0.231

δc 0.351 0.737 0.867 2.714E-6 1.016E-7 0.657 0.006
C67 1.839 value 20.552 20.993 17.187 6.630E-5 1.902E-7 18.144 0.139

δc 0.300 0.650 0.995 2.814 E-6 1.081E-7 0.654 0.006
C68 1.836 value 13.348 13.728 13.023 7.500E-5 4.382E-6 -12.043 0.063

δc 0.269 0.560 0.645 2.082E-6 7.995E-8 0.496 0.005
C71 1.867 value 8.619 8.682 9.360 -1.141E-4 -3.612E- 7.702 0.260

δc 0.224 0.465 0.562 1.838E-6 7.387E-8 0.421 0.004
C80 1.695 value 16.498 15.331 16.887 6.935E-5 -1.607E7 14.576 -0.131

δc 0.358 0.639 0.905 2.521E-6 8.003e-8 0.645 0.006
C82 1.803 value 16.902 17.600 15.155 4.218E-5 3.032E-7 -15.840 0.292

δc 0.310 0.495 0.731 2.192E-6 8.497E-8 0.517 0.005

Table 6.3: Best fit parameters of the fit model according to Eq. 6.59 with correlated 1σ error
of the measurement runs C54-C82.

fit model of Eq. 6.59 was performed. The fit parameters are summarized in Tab. 6.3. Due to
the long T ∗2 times (T ∗2,He = 52.6 h, T ∗2,Xe = 4.9 h), the parameters of the linear terms, i.e.
∆ωlin and ∆ωsp, and the amplitudes E′He(Xe) of the exponential terms are highly correlated.
The correlations between these parameters were up to 99.9%. From this it follows that the
values of ∆νwsp, which can be calculated out of the fit parameter ∆ωsp using Eq. 6.58, are
not really meaningful. To extract significant values of ∆νsp, high correlations between the
linear and exponential fit parameters have to be avoided. That is why a Taylor expansion
of the two exponential terms around the time t0 was done, so that Eq. 6.59 merges into a
polynomial of 5th order7:

∆Φfit
(
t′
)

= ag + b(t′) · t′ + c · t′2 + d · t′3 + e · t′4 + f · t′5 . (6.63)

7With increasing order n of the polynomial expansion the reduced χ2/dof decreases. Since for polynomial
expansions with n > 5 the reduced χ2/dof of the fit did not decrease anymore, a polyomial expansion up
to the 5th order is sufficient.
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The parameters ag, c, d, e and f are given by

ag = Φ′0,g − E′He + E′Xe , (6.64)

c = −
E′He

2(T ∗2,He)
2

+
E′Xe

2(T ∗2,Xe)
2
, (6.65)

d = +
E′He

6(T ∗2,He)
3
−

E′Xe
6(T ∗2,Xe)

3
, (6.66)

e = −
E′He

24(T ∗2,He)
4

+
E′Xe

24(T ∗2,Xe)
4
, (6.67)

f = +
E′He

120(T ∗2,He)
5
−

E′Xe
120(T ∗2,Xe)

5
. (6.68)

By use of Eq. 6.57 and Eq. 6.58 the linear term b(t′) is given by

b(t′) = ∆ωlin + ∆ωwsp(t′) +
E′He
T ∗2,He

−
E′Xe
T ∗2,Xe

= ∆ωlin + εHe ·A0,He · e−t0/T
∗
2,He − εXe ·A0,Xe · e−t0/T

∗
2,Xe

+2π ·
(

1− γHe

γXe

)
·∆νsp ·Θ(±(t′)) . (6.69)

Again the Heaviside step function states, that the linear term b(t′) differs at close (bc) and
distant (bd) position of the BGO crystal due to the spin-dependent short-range interaction,
whereas the other fit parameters, i.e. ag, c, d, e and f , do not. Instead of using the Heaviside
step function in our fit model, two fit functions for close and distant position of the BGO
crystal were used for each measurement run, i.e.

∆Φfit,c/d
(
t′
)

= ag + bc/d · t′ + c · t′2 + d · t′3 + e · t′4 + f · t′5 . (6.70)

This fit model is used for a common fit where the fit parameters ag, bc, bd, c, d, e and f are
free fit parameters. That means for each measurement run the fit according to Eq. 6.70
was applied to the weighted phase difference of all three gradiometers simultanously. The
resulting fit parameters ag, bc, bd, c, . . . are summarized in Tab. 6.4. By use of Eq. 6.69, the
frequency shift ∆νsp due to the spin-dependent short-range interaction then can be extracted
from

∆νsp =
bc − bd

2π · (1− γHe
γXe

)
. (6.71)

For systematic checks, the BGO crystal was positioned to the left side of the measurement
cell (L) in the measurement runs C55, C60, C63, C65, C80, C82 and to the right side of
the measurement cell (<) in the measurement runs C53, C54, C67, C68. Since the sign of
the frequency shift ∆νsp ∝ ~σ · r̂ (see Eq. 4.5 and Eq. 2.71) depends on the alignment of the
quantization axis of the spins ~σ relative to the unit distance vector r̂, which points from
the polarized to the unpolarized sample, the frequency shift ∆νsp,L has opposite sign to the
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6 Analysis

Figure 6.14: (a) Extracted frequency shifts ∆νsp (with correlated 1σ error) of the 10 mea-
surement runs. The triangles specify the < and the circles the L arrangement
of the BGO crystal. Full symbols indicate the c→d sequence of the BGO crys-
tal and hollow symbols the opposite case, i.e. d→c. (b) Results of ∆νLV (with
correlated 1σ error) obtained from the LV 2009 data using the same fit model
(Eq. 6.70). Since no mass was moved, we expect no shift in the spin precession
frequency. The rightmost symbols in both plots (stars) indicate the respective
weighted means with their correlated 1σ error.

frequency shift ∆νsp,<. For comparison of the frequency shifts of the different measurement
runs, the results of all L runs are multiplied by (-1), whereas the results of the < runs
are not modified, i.e. ∆νsp = (−1) · ∆νsp,L and ∆νsp = ∆νsp,<. In Tab. 6.5 the values
∆νsp for the individual measurement runs are summarized and in Fig. 6.14a they are shown
together with their correlated 1σ errors8. In the phase residuals of the gradiometer Z3D-Z2S
of measurement run C54 and the gradiometer Z3I-Z1S of measurement run C67 a jump at
the time t0, at which the BGO crystal was moved, occured. Consequently, the data of these
two gradiometers were skipped in the further analysis. In calculating the weighted mean,
we get ∆νsp = (−2.9± 2.3± 0.2) nHz with χ2/dof = 2.29. The second and the third value
correspond to the correlated and uncorrelated 1σ error, respectively.
As consistency check, we re-analysed our data of 2009, where we looked for a possible
Lorentz-violating sidereal frequency modulation (LV 2009) [96]. That means, that the fit
model of Eq. 6.70 was applied to the weighted phase difference of each measurement run of
the LV 2009 data (7 measurement runs in total). The time t0 was chosen to be t0 = 10800 s.
From the fit parameters bc and bd, the frequency shift ∆νLV according to Eq. 6.71 can be
calculated. Since no mass was moved during those measurement runs, the frequency shift
∆νLV is expected to be zero. In Tab. 6.5 the values ∆νLV for the 7 measurement runs are
summarized and they are shown together with their correlated 1σ errors in Fig. 6.14b. The

8The correlated errors are calculated as square root of the diagonal elements of the covariance matrix of
the least χ2 fit-model of Eq. 6.63 with the proper statistical weights. The uncorrelated errors are about
a factor of 15 smaller and not included in the error bars shown in Fig. 6.14.
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6.6 Limit on Spin-Dependent Short-Range Force

∆νsp δc(∆νsp) δuc(∆νsp) χ2/ ∆νLV δc(∆νLV) δuc(∆νLV) χ2/

(nHz) (nHz) (nHz) dof (nHz) (nHz) (nHz) dof

C54 dc-< 2.00 9.77 0.59 1.97 C92 -0.41 7.18 0.64 1.71
C55 cd-L 6.25 5.50 0.47 1.82 C94 -39.15 11.96 0.95 2.01
C60 dc-L -10.68 5.71 0.55 1.79 C95 -5.73 9.25 0.86 2.06
C63 dc-L -1.12 7.67 0.44 1.85 C99 13.43 15.20 1.07 1.75
C65 cd-L -11.27 9.42 0.53 1.82 C01 8.59 9.95 0.90 2.21
C67 cd-< -25.67 9.48 0.54 1.81 C02 -5.95 8.63 0.85 1.86
C68 dc-< 15.4 7.50 0.42 1.84 C03 8.22 7.05 0.70 1.50
C71 cd-< 3.23 6.95 0.39 1.87
C80 dc-L -13.96 7.50 0.44 1.71
C82 cd-L -6.39 8.37 0.47 1.82

Table 6.5: Results of ∆νsp and ∆νLV with correlated (δc(∆νsp), δc(∆νLV)) and uncorre-
lated (δuc(∆νsp), δuc(∆νLV)) 1σ-errors determined by a χ2 minimization using
the model given by Eq. 6.70. For the measurement runs C54-C60, the time t0 of
the movement of the BGO crystal was at 8700 s and for the other measurement
runs C63-C82 at 10800 s. In the second row, the measurement configuration is
listed. For example, dc-< means that the BGO crystal was installed to the right
side of the measurement cell (see Fig. 4.10) and the BGO crystal was in distant
position (d) relative to the measurement cell at the beginning of the measurement
run. At the time t0 the BGO crystal was moved close (c) to the measurement
cell. For the LV data of 2009 it was assumed that for each measurement run the
measurement configuration was cd-<, where the time for the fictitious movement
of the BGO crystal was set to t0 = 10800 s for each measurement run.

weighted mean of the LV 2009 data gives ∆νLV = (−1.4±3.4±0.3)nHz with χ2/dof = 2.38.
Again the second and the third value correspond to the correlated and uncorrelated 1σ
error, respectively.

The χ2/dof values of the weighted mean values, ∆νsp and ∆νLV, indicate that the errors
of the measured frequency shifts (Tab. 6.5) are somewhat underestimated. In order to take
this into account, the errors were multiplied by

√
χ2/dof in order to obtain a χ2/dof of one,

as recommended, e.g. by [149, 150]. Then our results for the measured frequency shifts are
given by

∆νsp = (−2.9± 3.5± 0.3) nHz , (6.72)

∆νLV = (−1.4± 5.2± 0.5) nHz . (6.73)

These results indicate that i.) we find no evidence for a pseudoscalar spin-dependent short-
range interaction mediated by axions or axion-like particles and ii.) as expected, the cross
check analysis of our LV 2009 data is also compatible with zero (within the error bars).
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6 Analysis

Figure 6.15: Illustration of the change of the magnetic guiding field ~B0 due to the non-zero
magnetic susceptiblity of the BGO crystal. In close position (left) the additional
field gradients produced by the BGO crystal change the magnetic field across
the measurement cell. In distant position (right) these additional field gradients
vanish.

6.7 Discussion of Systematic Uncertainties

The BGO crystal was used as unpolarized matter sample since it is said to have an unusual
magnetism-related behavior in weak constant magnetic fields (χ = 0 ppm) [123, 124, 125].
But in the high field limit (B > 1 T) the BGO crystal shows a magnetic susceptibility
of χ ≈ −19 · 10−6 [124]. For conservative estimation of the systematic errors we used the
magnetic susceptibility of the BGO crystal in the high field limit. As illustrated in Fig. 6.15,
the magnetic susceptibility of the BGO crystal leads to additional field gradients across the
measurement cell if the BGO crystal is at close position. However, these additonal field
gradients disappear if the BGO crystal is in distant position. Hence, the movement of the
BGO crystal can produce correlated effects that may mimic a pseudoscalar frequency shift
or even compensate the effect we are looking for. Before these effects can be explained in
detail the field gradients that are produced by the BGO crystal have to be estimated: The
distribution of the total magnetic field | ~Bcal| arcross the measurement cell with the BGO
crystal in close position immersed in a homogeneous magnetic guiding field of | ~B0| = 0.35µT
pointing in x-direction (see Fig. 4.10) was simulated with COMSOL Multiphysics, a finite
element analysis software. In Fig. 6.16 (left side) the change of the magnetic guiding field
BBGO = | ~Bcal| − | ~B0| along the x–direction (y=0 and z=0), i.e. along the cylinder axis of
the BGO crystal and the measurement cell, is shown. The center of the BGO crystal is at
x = 0 cm, where the change of the magnetic guiding field is maximal. The curve profile of
BBGO(x) can be described by a Gauss function which is given by

BBGO(x) = 5 pT · e−x2/16 . (6.74)

Calculating the derivative leads to

∂

∂x
BBGO(x) =

5

8

pT
cm
· x · e−x2/16 . (6.75)

In Fig. 6.16 (right side) the derivative ∂
∂xBBGO(x) for x > 0 cm is shown. The mean value of
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6.7 Discussion of Systematic Uncertainties

Figure 6.16: Left : Simulated change of the magnetic guiding field BBGO = | ~Bcal|−| ~B0| along
the x–direction (y=0 and z=0) due to the non-zero magnetic susceptiblity of the
BGO crystal. Right : Derivative ∂

∂xBBGO(x) for x > 0 cm from which the mean
value across the measurement cell can be calculated. In both plots the position
of the BGO crystal and the position of the measurement cell are indicated by
the blue and orange area, respectively.

Figure 6.17: Left : Simulated change of magnetic guiding field BBGO = | ~Bcal| − | ~B0| along
the y–direction (x=6.7 cm and z=0) due to the non-zero magnetic susceptiblity
of the BGO crystal. Right : Derivative ∂

∂yBBGO(y) for y > 0 cm from which the
mean value across the measurement cell can be calculated. In both plots the
position of the measurement cell is indicated by the orange area.
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the derivative across the measurement cell (3.7 cm ≤ x ≤ 9.5 cm) then can be calculated to

∂

∂x
BBGO(x) ≈ 0.47

pT
cm

. (6.76)

For a given x, the same calculations can be done for the transversal directions, i.e. the y–
and z–direction (y, z : [−3 cm, +3 cm]). For x=6.7 cm and z=0, the change of the magnetic
guiding field along the y–direction, i.e.BBGO(y), is shown in Fig. 6.17 (left side).BBGO(y) can
be described by BBGO(y) ≈ a ·y2 +b and hence the derivative is given by ∂

∂yBBGO(y) ≈ 2a ·y
(Fig. 6.17 right side). For different x–positions the derivative results in

∂

∂y
BBGO(y) =



0.044 pT
cm · y for x = 4.2 cm ,

0.028 pT
cm · y for x = 6.7 cm ,

0.007 pT
cm · y for x = 9.7 cm .

(6.77)

Due to symmetry reasons, the same relations hold for the z–direction. A rough estimate of
the mean value of the transverse field gradients across the measurement cell can be calculated
by averaging the transverse field gradients at y = 3 cm for all x-positions. Hence, the mean
values of the transverse field gradients across the measurement cell result in

∂

∂y
BBGO(y),

∂

∂z
BBGO(z) ≤ 0.08

pT
cm

. (6.78)

The transverse as well as the longitudinal field gradients produced by the BGO crystal can
cause systematic effects which will be discussed in the following.

Effect of transverse field gradients
The BGO crystal at close position slightly changes the magnetic field across the volume of
the 3He/129Xe sample cell (see Fig. 6.15). This effect drops out to first order due to co–
magnetometry. However, to second order, this effect does not drop out: According to the
barometric formula the center of masses (CM) of helium and xenon are slightly shifted by
∆s = 1.2 · 10−7 m in the gravitational field of the Earth due to their different molar masses
(see gravitational shift in Sec. 6.3.1). The vertical field gradient due to the BGO crystal is
∂
∂zBBGO(z) ≤ 0.08 pT/cm. In accordance with Eq. 6.29 these vertical field gradients lead to
a frequency shift of

∆νCMsys = ∆z · ∂
∂z
BBGO(z) · γHe

2π
≤ 0.03 nHz . (6.79)

Compared to the measured frequency shift (Eq. 6.72), this systematic effect is negligible.

Effect of longitudinal field gradients
In our analysis we assumed that the T ∗2 times of 3He and 129Xe are constant over the whole
measurement run. But according to Eq. 3.50 the transverse relaxation rate in the motional
narrowing regime is proportional to the magnetic field gradients, so that the additional
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6.7 Discussion of Systematic Uncertainties

gradients produced by the BGO crystal lead to different T ∗2 times for the close and distant
position of the BGO crystal, i.e. T ∗2,c 6= T ∗2,d. Since the RBS self-shift of the weighted phase
difference (Eq. 6.52) depends on the T ∗2 times of 3He and 129Xe, a change in the T ∗2 times leads
to an additional shift in the weighted phase difference and hence gives rise to a systematic
frequency shift which has the same signature as the linear phase shift due to the spin-
dependent short-range interaction. The systematic frequency shift is derived in App. D and
is given by

∣∣∣∆νT ∗2sys∣∣∣ ≤
∣∣∣∣∣∣∣

∆T ∗2,He

(T ∗2,He)2

2π · (1− γHe
γXe

)
·

(
E′He(Xe)

T ∗2,He + ∆T ∗2,He

− 1

2
·

E′He(Xe)

T ∗2,Xe + ∆T ∗2,Xe

)
· t0

2

∣∣∣∣∣∣∣ (6.80)

Again t0 is the time of the movement of the BGO crystal. Values for the respective phase
amplitudes E′He(Xe) were extracted from the fit given by Eq. 6.59 and are summarized in
Tab. 6.3. For the determination of the systematic error, the change in the T ∗2 times of helium
and xenon have to be known, i.e. ∆T ∗2,He and ∆T ∗2,Xe.

The easiest method to determine ∆T ∗2 is to measure the T ∗2 times directly, both for the BGO
crystal in close and distant position. Therefore a modified fit model for the amplitudes is
defined:

Ag
He(Xe),fit(t) = Ag

0,He(Xe) · e
−t/(T ∗

2,He(Xe)
+∆T ∗

2,He(Xe)
) · (1 + g

He(Xe)
F (t)) ·Θ(∓(t− t0))

+Ag
0,He(Xe) · e

−t/T ∗
2,He(Xe) · (1 + g

He(Xe)
F (t)) ·Θ(±(t− t0)) . (6.81)

The function gHe(Xe)
F (t) is equal for all three gradiometers (g= 1, 2, 3). It is determined via

spline–interpolation as described in App. B. ∆T ∗2 is defined as ∆T ∗2 = T ∗2,c − T ∗2,d and T ∗2 is
given by T ∗2 = T2,d. The (∓) and the (±) in the argument of the Heaviside step function of
the first term and the second term, respectively, occur due to the close to distant (cd ∧= +, –)
sequence of the BGO crystal and the distant to close (dc ∧= –, +) sequence. The fit model
of Eq. 6.81 again is used for a common fit, i.e. it is applied to the signal amplitudes of all
three gradiometers simultanously, where the initial amplitudes Ag

0,He(Xe) can be different, but
T ∗2,He(Xe) and ∆T ∗2,He(Xe) are equal for all three gradiometers. The resulting values of ∆T ∗2
are summarized in Tab. 6.6. For measurement run C60 the determination of the T ∗2 times
was difficult (see Sec. 6.5). Thus, this measurement run will be neglected in the following.
For ∆T ∗2,He values up to 4500 s and for ∆T ∗2,Xe values up to 200 s appear, whereas the values

of ∆T ∗2,He and ∆T ∗2,Xe vary up to one order of magnitude. The function g
He(Xe)
F (t), which

describes the non-exponential decay of the signal amplitudes, make problems in the deter-
mination of ∆T ∗2,He(Xe). Thus the values of T ∗2,He(Xe) and ∆T ∗2,He(Xe) are highly correlated, so
that the values summarized in Tab. 6.6 are not significant. Hence, another method is needed
to determine or estimate the difference in the T ∗2 times due to the field gradients produced by
the BGO crystal: The movement of the BGO crystal at the time t0 leads to a discontinuity
in the amplitude signals at the time t0. Via this discontinuity the change in the T ∗2 times
can be determined. This new ansatz will be explained in the following.
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∆T ∗2,He (s) δ(∆T ∗2,He) (s) ∆T ∗2,Xe (s) δ(∆T ∗2,Xe) (s)
C54 -2482 114 +4 2
C55 -376 42 +32 2
C60 -53001 1512 -24 2
C63 -4438 78 -147 4
C65 +288 53 +150 3
C67 +3864 58 +181 3
C68 +357 60 -188 4
C71 +624 70 +197 4
C80 -1363 132 -83 3
C82 +2381 222 +182 4

Table 6.6: Change of transverse relaxation times of 3He and 129Xe due to the magnetic field
gradients produced by the BGO crystal for the measurement runs C54-C82. ∆T ∗2
was determined by using the fit model according to Eq. B.24.

Determination of ∆T ∗2 :
If there is a change in the T ∗2 times due to additional field gradients produced by the BGO
crystal, there should be a discontinuity in the amplitudes at the time t0 when the BGO
crystal was moved, i.e. at the time t0 a kink in the temporal development of the amplitudes
should appear, which is illustrated in Fig. 6.18. Consequently, at the time t0 two different
values of the slope of the signal amplitudes should arise. The difference of the slopes ∆s

at the time t0 then contains the change of the T ∗2 times. Assuming that ∆T ∗2 � T ∗2 , the
dependence of ∆s on ∆T ∗2 can be estimated:

Ad(t) = A0 · e
− t
T∗2 , Ac(t) = A0 · e

− t
T∗2 +∆T∗2

⇒ d

dt
Ad(t = t0) = −A0

T ∗2
· e
− t0
T∗2 ,

d

dt
Ac(t = t0) ≈ − A0

T ∗2 + ∆T ∗2
· e
− t0
T∗2

⇒ ∆s =
d

dt
Ac(t = t0)− d

dt
Ad(t = t0)

≈ − A0

T ∗2 + ∆T ∗2
· e
− t0
T∗2 +

A0

T ∗2
· e
− t0
T∗2

= A0 · e
− t0
T∗2

(
1

T ∗2
− 1

T ∗2 + ∆T ∗2

)
≈ A0

T ∗2
· e
− t0
T∗2

(
1− 1 +

∆T ∗2
T ∗2

)

⇒ ∆T ∗2 ≈ ∆s · (T ∗2 )2

A0
· et0/T ∗2 . (6.82)

Here the relation 1
1+β ≈ 1 − β for β � 1 was used. Considering the real amplitudes, the

change in the slope at the time t0 has to be small, since a discontinuity is not visible with the
naked eye (see Fig. 6.12). But with a new fit model it can be tested if there is a discontinuity
at the time t0. Since the amplitude ratio is less marked by disturbances (e.g. drift due to
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6.7 Discussion of Systematic Uncertainties

Figure 6.18: Illustration of the determination of ∆T ∗2 via the difference ∆s of the slopes of
the signal amplitude A(t) at the time t0.

the movement of the SQUID detectors within the magnetic guiding field (see Chap. B))
compared to the amplitudes of helium and xenon (see Fig. B.2, Fig. B.4 and Fig. B.5), the
amplitude ratio is used to define a new fit model. The derivation of the new fit model will
be explained in the following: In case that the effective relaxation time Teff , which is given
by

1

Teff
=

1

T ∗2,Xe

− 1

T ∗2,He

, (6.83)

changes at the time t0, due to the field gradients produced by the BGO crystal, the temporal
dependence of the amplitude ratio is given by (see App. E)

Rcd/dc(t) =
AXe(t)

AHe(t)
= R′0 · e

− (t−t0)
Teff

(
1 +Gcd/dc(t)

)
, (6.84)

with R′0 = R0 · e−t0/Teff . The function Gcd/dc(t) can be separated in two parts (see App. E)

Gcd/dc(t) = gF(t) + f
cd/dc
BGO (t)

= gF(t) +
∆Teff

T 2
eff

· (t− t0) ·Θ(±(t− t0)) . (6.85)

The first term gF(t) corresponds to a continuous function of order 10−3 and reflects the
deviation from the pure exponential decay essentially caused by magnetic relaxation of the
residual field inside the innermost shield after opening and closing the sliding door of the
BMSR-2 (see App. B). The Heaviside step function Θ(±(t− t0)) of the second term f

cd/dc
BGO (t)

indicates a discontinuity at t = t0, i.e. a change in the slope of the amplitude ratio due to
the change of the T ∗2 times of helium and xenon. The (±) in the argument of the Heaviside
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step function has to be set (−) for the sequence c→d and (+) for the reverse one, i.e. d→c.
The factor ∆Teff

T 2
eff

can be expressed by the T ∗2 times of helium and xenon, i.e.

1

Teff
=

1

T ∗2,Xe

− 1

T ∗2,He

⇒ ∆Teff

T 2
eff

=
∆T ∗2,Xe

(T ∗2,Xe)
2
−

∆T ∗2,Xe

(T ∗2,Xe)
2
. (6.86)

By considering the transverse relaxation rate of the motional narrowing regime (Eq. 3.50),
the expression of the T ∗2 times, i.e. ∆T ∗2 /(T

∗
2 )2, can be calculated as follows

1

T ∗2,d
=

1

T1
+

4R4γ2

175D
·
(
|~∇B1,y|2 + |~∇B1,z|2 + 2|~∇B1,x|2

)
︸ ︷︷ ︸

Grad

(6.87)

1

T ∗2,c
=

1

T1
+

4R4γ2

175D
·
(
|~∇B1,y|2 + |~∇B1,z|2 + 2|~∇B1,x,BGO|2

)
︸ ︷︷ ︸

GradBGO

(6.88)

⇒ 1

T ∗2,d
− 1

T ∗2,c
≈ ∆T ∗2

(T ∗2 )2 =
4R4γ2

175D
· {GradBGO −Grad} , (6.89)

where the squares of the absolute field gradients are given by

|~∇B1,i|2 =

(
∂B1,i

∂x

)2

+

(
∂B1,i

∂y

)2

+

(
∂B1,i

∂z

)2

(6.90)

|~∇B1,x,BGO|2 =

(
∂B1,x

∂x
± ∂BBGO

∂x

)2

+

(
∂B1,x

∂y

)2

+

(
∂B1,x

∂z

)2

(6.91)

with i= x, y, z. The (±) in Eq. 6.91 indicates that the field gradients produced by the BGO
crystal can add or subduct to the field gradients of the magnetic guiding field. According
to Eq. 6.89 the expressions ∆T ∗2 /(T

∗
2 )2 for the helium and xenon relaxation times then are

given by
∆T ∗2,He

(T ∗2,He)
2

=
γ2

He

DGM
He

· C and
∆T ∗2,Xe

(T ∗2,Xe)
2

=
γ2

Xe

DGM
Xe

· C . (6.92)

The factor C contains the prefactors which are the same for helium and xenon. The gyromag-
netic ratios of helium and xenon are known (Eq. 3.6 and Eq. 3.7). The diffusion coefficients of
helium and xenon can be calculated with Eq. 3.35 and Eq. 3.37 by using the partial pressures
of the gas mixtures that were used for our measurement runs (see Tab. 6.1). The mean values
of the diffusion coefficients then result in DGM

He ≈ 17.0 cm2/s and DGM
Xe ≈ 4.7 cm2/s. With

these values the ratio of the two terms given in Eq. 6.92 can be calculated to be

∆T ∗2,He

(T ∗2,He)
2
/

∆T ∗2,Xe

(T ∗2,Xe)
2

=
γ2

He

DGM
He

/
γ2

Xe

DGM
Xe

=
γ2

He

DGM
He

·
DGM

Xe

γ2
Xe

≈ 2 . (6.93)

With Eq. 6.86 and Eq. 6.93, the function Gcd/dc(t) given in Eq. 6.85 then results in

Gcd/dc(t) = gF(t) +
1

2
·

∆T ∗2,He

(T ∗2,He)
2
· (t− t0) ·Θ(±(t− t0)) . (6.94)
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6.7 Discussion of Systematic Uncertainties

Figure 6.19: Illustration of the determination of the fit model Fcd/dc(t). Left : In case that
the BGO crystal is at distant position during the whole measurement run, the
temporal dependence of the residuals of the amplitude ratio is given by the
blue curve. On the contrary, if the BGO crystal is at close position during
the whole measurement run, the temporal dependence of the residuals of the
amplitude ratio is given by the red curve. Right : For a measurement run where
the BGO crystal was moved from c→d at the time t0, the expected residuals
Res(Rcd(t)) are described by the orange curve, which is composed of the red
curve for t ≤ t0 and the blue curve for t > t0. On the other hand, for a
measurement run where the BGO crystal was moved from d→c, the temporal
development of the residuals of the amplitude ratio Res(Rdc(t)) is given by the
green curve, which is composed of the blue curve (t ≤ t0) and the red curve
(t > t0). The average of the green and the orange curve is given by the black
curve Res(R(t)) = (Res(Rcd(t)) + Res(Rdc(t)))/2. The function Res(R(t)) can
be determined by applying a spline–interpolation simultanously to the residuals
of the two considered measurement runs.

Thus, the temporal development of the amplitude ratio can be expressed by

Rcd/dc(t) = R′0 · e
− (t−t0)

Teff

(
1 + gF(t) +

1

2
·

∆T ∗2,He

(T ∗2,He)
2
· (t− t0) ·Θ(±(t− t0))

)
. (6.95)

With this expression the change in the T ∗2 times can be determined as follows: From a
pure exponential fit to the amplitude ratio Rcd/dc(t) (Eq. B.15) the effective relaxation time
Teff and the residuals Res(Rcd/dc(t)) can be extracted. If the BGO is at distant position
during the whole measurement, i.e. no effect on magnetic field gradients with ∆Teff = 0, the
expected temporal development of the residuals is given by (see Fig. ?? left side: blue curve)

fres(t) = R′0 · e
− (t−t0)

Teff · gF(t) . (6.96)

This expression corresponds to the second term of Eq. 6.95. On the contrary, if the BGO
crystal is close to the measurement cell during the whole measurement run, the expected
temporal development of the residuals is changed by a linear term due to the change of the
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T ∗2 times of helium and xenon (see Fig. ?? left hand side: red curve)

fres,BGO(t) = R′0 · e
− (t−t0)

Teff ·

(
gF(t) +

1

2
·

∆T ∗2,He

(T ∗2,He)
2
· (t− t0)

)
. (6.97)

This expression corresponds to the second and third term of Eq. 6.95 without the Heaviside
step function. As shown in Fig. ?? the function fres,BGO(t) (red curve) has the same form
as the function fres(t) (blue curve). However, compared to fres(t) the function fres,BGO(t) is
slightly tilted at the time t− t0 = 0h. Looking at two measurement runs with different mea-
surement sequence, i.e. c→d and d→c, the residuals Res(Rcd/dc(t)) are roughly congruent,
if the data points of one measurement run are multiplied with a factor S. In both measure-
ment runs the BGO crystal was either arranged to the right side (<) or to the left side (L)
of the measurement cell. For the measurement run where the BGO crystal was moved from
c→d at the time t0, the expected temporal dependence of the residuals Res(Rcd(t)) can be
described by the orange curve of Fig. ?? (right side), which is composed of the red curve for
t ≤ t0 and the blue curve for t > t0 of Fig. ?? (left side). On the contrary, for the measure-
ment run where the BGO crystal was moved from d→c, the residuals of the amplitude ratio
Res(Rdc(t)) are given by the green curve, which is composed of the blue curve for t ≤ t0 and
the red curve for t > t0. The average of the residuals Res(Rcd/dc(t)) then is given by

Res(R(t)) = R′0 · e
− (t−t0)

Teff ·

(
gF(t) +

1

2
·

(
1

2
·

∆T ∗2,He

(T ∗2,He)
2
· (t− t0)

))
. (6.98)

In Fig. ??, Res(R(t)) is indicated by the black curve. By applying a spline–interpolation
simultanously to the residuals Res(Rcd/dc(t)) of the two measurement runs, the function
Res(R(t)) can be determined. Then Res(R(t)) can be used to extract ∆T ∗2,He by applying
the fit function

Fcd/dc(t) = Res(R(t))± 1

2
·

(
1

2
·

∆T ∗2,He

(T ∗2,He)
2
· (t− t0)

)
(6.99)

to the residuals Res(Rcd/dc(t)) for t ≥ t0. Here the (+) is used for the d→c measurement
run and the (–) is used for the c→d measurement run. In total, 6 measurement runs were
used for this fitting procedure, which could be combined as follows:

A: C63 (dc) and C65 (cd)→ L
B: C63 (dc) and C82 (cd)→ L
C: C67 (cd) and C68 (dc)→ <
D: C68 (dc) and C71 (cd)→ <

The values for ∆T ∗2,He are summarized in Tab. 6.7. From these values a possible T ∗2 change

of
∣∣∣∆T ∗2,He

∣∣∣ < 170 s can be inferred. According to Eq. 6.93, for xenon a possible T ∗2 change

then is given by
∣∣∣∆T ∗2,Xe

∣∣∣ < 1 s. Using these upper limits for ∆T ∗2,He(Xe), the systematic error

given in Eq. 6.80 can be calculated to
∣∣∣∆νT ∗2sys∣∣∣ = 0.1 nHz. Here, for T ∗2,He(Xe) the mean values
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∆T ∗2,He (s) δ(∆T ∗2,He) (s)
A C63 dc-L -52.7 47.3
A C65 cd-L -127.5 67.8
B C63 dc-L -66.1 47.6
B C82 cd-L -115.1 52.6
C C67 cd-< 97.5 50.2
C C68 dc-< 167.2 64.4
D C68 dc-< 59.8 59.9
D C71 cd-< 44.5 51.5

Table 6.7: Change of the transverse relaxation times of 3He (∆T ∗2,He) resulting from the fit
function given by Eq. 6.99 which is applied to the residuals of the amplitude ratio
of two measurement runs with the same position of the BGO crystal relative to
the measurement cell, but different measurement configurations.

T ∗2,He = 52.6 h and T ∗2,Xe = 4.9 h were used and for the phase amplitudes E′He(Xe) the mean
values 〈E′He〉 ≈ 11.5 and 〈E′Xe〉 ≈ 0.1 with 〈E′Xe〉 � 〈E′He〉 (see Tab. 6.3). The final result of
the frequency shift ∆νsp (Eq. 6.72) due to the spin-dependent short range interaction then
is given by

∆νsp = (−2.9± 3.7± 0.4) nHz . (6.100)

The second and the third value correspond to the correlated and uncorrelated 1σ error,
respectively.

6.8 Bounds on gsgp

The resulting value of the frequency shift ∆νsp (Eq. 6.100) is compatible with zero within the
error bars and hence there is no evidence for a spin-dependent short-range interaction medi-
ated by axions or axion-like particles. The upper bound of the frequency shift ∆νsp, which
corresponds to the 95% CL, can be calculated by assuming that the probability function of
the measured pseudoscalar frequency shift is given by a Gauss function

P (x, µ, σ) =
1

σ ·
√

2π
· Exp

[
−(x− µ)2

2 · σ2

]
(6.101)

with µ = 0 nHz and σ = 3.7 nHz, which corresponds to the correlated 1σ error. The upper
bound δ(∆νsp) on the pseudoscalar frequency shift then can be determined via the following
integral ∫ +δ(∆νsp)

−δ(∆νsp)
P (x, µ, σ)dx = 0.95 . (6.102)

This integral results in δ(∆νsp) = 7.1nHz. With this value exclusion bounds for the product∣∣gNs gnp ∣∣, which are the coupling constants between the axion and the (bound) nucleon, can be
derived. For this purpose the average of the potential V c

Σ of the spin-dependent short-range
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interaction on each polarized atom has to be calculated: V c
Σ can be obtained by integration

of Vsp(~r) from Eq. 2.71 over the volume of the unpolarized matter sample (BGO crystal) and
over the volume of the polarized spin samples. Based on the analytical derivation of VΣ,∞ for
disc-shaped samples which are infinite in transverse direction (yz–plane) [151], the following
expression for V c

Σ can be derived (see App. F)

V c
Σ = VΣ,∞ · ηfit(λ)

= 2πNκ
λ2

D
· e−∆x/λ ·

(
1− e−D/λ

)
·
(

1− e−d/λ
)
· ηfit(λ) , (6.103)

where ∆x represents the distance between the surfaces of the unpolarized and the polarized
sample (∆xmax = 2.2 mm), D is the length of the measurement cell, d is the length of the
BGO crystal, N is the nucleon number density of the BGO crystal and κ is given by κ =

~2gNs g
n
p /(8π ·mfσ), where mfσ = mn is the mass of the bound neutron (Schmidt model [11]).

ηfit(λ) takes account for the finite size of the cylindrically spin sample in transverse direction
(yz–plane) and can be expressed reasonably well by ηfit(λ) = (1+27.8 ·λ1.31)/(1+234 ·λ1.31)

(see App. F). Using the relation |δ(∆νsp)| ≥ 2 · V c
Σ/h and the expression of V c

Σ given in
Eq. 6.103 the exclusion bounds for

∣∣gNs gnp ∣∣ can be derived from

∣∣gNs gnp ∣∣ ≤ 1

ηfit(λ)

2πDmfσ |δ(∆νsp)|
N~λ2

· e∆x/λ ·
(

1− e−D/λ
)−1
·
(

1− e−d/λ
)−1

. (6.104)

The upper limit on
∣∣gNs gnp ∣∣ is shown in Fig. ?? together with the results of some other

measurements which search for scalar-pseudoscalar coupling between nucleons and axions.
Till this day these experiments provided the best constraints on axions or axion-like particles.
In the experiment of Youdin et al. [87], the spin precession frequencies of 199Hg and Cs
magnetometers were measured as a function of the position of two lead masses with respect
to an applied magnetic field to determine the bound on

∣∣gNs gnp ∣∣ (Fig. ?? (2)). Similar to
our experiment, Bulatowicz et al. [153] used a magnetically shielded co-magnetometer cell
containing spin-polarized 129Xe and 131Xe. For the determination of the bound on

∣∣gNs gnp ∣∣,
the frequency ratio of the two xenon species were measured by recording their FID (Fig. ??
(3)). In the experiment of Jenke et al. [152] gravity resonance spectroscopy of polarized
ultracold neutrons was used to determine the bound on

∣∣gNs gnp ∣∣ (Fig. ?? (1)). It is impressive
how our result improved the bounds on a spin-dependent short-range interaction between
polarized (bound) neutrons and unpolarized (bound) nucleons over most of the axion window,
tightening existing constraints on axions or axion-like particles heavier than 20µeV by up to
four orders of magnitude. However, it should be mentioned that if the refined nuclear shell
model (see Chap. 4.1) is considered, which goes beyond the Schmidt model, the mass of the
polarized fermion in Eq. 6.104 is slightly different for 3He and 129Xe: mfσ(3He) = 0.87 ·mn

and mfσ(129Xe) = 0.75 ·mn. This refined nuclear shell model was used by Youdin et al. and
increases our upper bounds by a factor of 1.4 (see Chap. 4.1), which will not be visible with
the naked eye in Fig. ??.
For the sake of completeness, it should be mentioned that there exist a lot of experiments that
search for a spin-dependent short-range force between polarized electrons and unpolarized
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Figure 6.20: Experimental 95% confidence upper limit on
∣∣gNs gnp ∣∣ plotted versus λ, the range

of the Yukawa-force with λ = ~/(mac). The axion window is indicated by the
light gray area. The dark gray area indicates the excluded region. (1): result of
[152], (2): result of [87], (3): result of [153], (4): this experiment. Curve (5) shows
the expected results for our experiment if ∆x≈ 0 mm, whereby the same data
set was used. This curve demonstrates the gain in measurement sensitivity for
λ < 10−3 m by reducing the gap between the polarized and unpolarized matter
sample.

nucleons. The results of the experiments which provide the best constraints on axions or
axion-like particles are shown in Fig. 6.21. Since the coupling between electrons and axions
and the coupling between nucleons and axions are different (see Chap. 2.5.1), the results
are shown in two different plots. In the experiment of Hoedel et al. [154] an unshielded,
highly non-magnetic torsion pendulum was used, which was suspended by a tungsten fiber
between two halves of a stationary split toroidal electromagnet. The bound on

∣∣gNs gep∣∣ could
be determined via the measurement of the magnetic-field-dependent torque of the pendulum,
which is generated by the spin-dependent short-range force between the polarized electrons
in the electromagnet and the unpolarized silicon atoms in the pendulum (Fig. 6.21 (1)). In
the experiment of Hammond et al. [85] a spherical superconducting torsion balance was used.
Here the bound on

∣∣gNs gep∣∣ was determined by measuring the oscillation of the torsion balance
(Fig. 6.21 (2)). In the experiment of Ni et al. [155] the interaction of a rotating copper mass
with paramagnetic salt TbF3 was measured. A low noise DC-SQUID system was connected
to a superconducting pickup loop which was coupled to the salt, i.e. any changes of the
magnetization of the salt couls be detected. From the change of the magnetization the bound
on
∣∣gNs gep∣∣ was extracted (Fig. 6.21 (3)).
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6 Analysis

Figure 6.21: Experimental 95% confidence upper limit on
∣∣gNs gep∣∣ plotted versus λ, the range

of the Yukawa-force with λ = ~/(mac). The axion window is indicated by the
light gray area and the excluded region by the dark gray area. (1): result of
[154], (2): result of [85], (3): result of [155].
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7 Conclusion and Outlook

The axion is a light and weak interacting particle and thus it is difficult to detect. Since
it neither absorbs nor emits electromagnetic radiation it is a good candidate for cold
dark matter and hence it is a particle of high interest in modern physics. The axion is a
spin-0 particle which mediates a spin-dependent short-range force between polarized and
unpolarized fermions. This interaction leads to a shift, e.g. in the precession frequency of
nuclear spin polarized gases.

In this thesis the ultra–sensitive low-field 3He/129Xe co-magnetometer was used to search
for non-magnetic, spin-dependent short-range interaction between polarized bound neutrons
and unpolarized bound nucleons. As unpolarized matter sample a BGO crystal was used. The
influence of the ambient magnetic field and its temporal fluctuations cancels in the weighted
difference of the measured Larmor frequencies of the co-located spin samples. A shift in the
weighted frequency difference could be extracted from respective frequency measurements in
close and distant position of the BGO crystal relative to the spin samples. Our measurements
result in

∆νsp = (−2.9± 3.7) nHz , (7.1)

where the second value corresponds to the correlated 1σ error. This result could be used to
calculate an upper bound of δ(∆νsp) = 7.1nHz (95% CL). With this value exclusion bounds
for the dimensionless product

∣∣gNs gnp ∣∣ (λ) of the coupling constants between the nucleons
and the axions or axion–like particles could be derived. Within the axion mass window
we have substantially improved the bounds, tightening existing constraints on axion-like
particles heavier than 20 µeV by up to four orders of magnitude.

For future measurements there are clear strategies on how to improve our experimental
sensitivity:

• If the spin/unpolarized sample is moved more frequently between its set positions (c↔d
and/or L ↔ <), a different time structure for the linear term in the fit model of Eq.
6.63 occurs such that the correlated error should approach the uncorrelated one. This
was demonstrated in [122, 96], already.

• Magnetic susceptibility related artefacts have to be eliminated by taking zero-
susceptibility matched unpolarized samples (χmag ≈ 0 ppm) as it is common practice
in high resolution NMR spectroscopy [156].

• By reducing the distance ∆x between the end faces of the unpolarized sample and the
volume of the spin samples to ∆x ≈ 0 mm the sensitivity on

∣∣gNs gnp ∣∣ can be improved.
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7 Conclusion and Outlook

For example, having the same sensitivity of δ(∆νsp) = 7.1 nHz (95% CL), the present
sensitivity on

∣∣gNs gnp ∣∣ will significantly increase for λ < 10−3 m (see Fig. ??, green
dashed curve (5)). Reduction of the gap ∆x can be realized by cutting one of the end
faces of the cylindrical measurement cell. The measurement cell then is closed again by
gluing the BGO crystal to the open end face. For this special cell-BGO assembley it has
to be tested if transverse relaxation times T ∗2 of about 53 h and 5 h for 3He and 129Xe

respectively, can be achieved. Since the BGO crystal is fixed to the measurement cell,
it is not possible to move the BGO crystal during one measurement run from close
to distant position or vice versa. But by rotation of the cell-BGO assembley, it is
possible to extract the frequency shift ∆νsp = 2VΣ/h ∝ ~σ · r̂ due to the spin-dependent
short-range interaction. That means, first the precession frequency of 3He and 129Xe

has to be recorded for several hours for the 0◦ position, i.e. the magnetic guiding field
~B0 ∝ ~σ and the unit distance vector r̂, which points from the polarized sample to the
unpolarized sample, are aligned parallel. Then the cell-BGO assembley is rotated by
180◦ degrees, i.e. the magnetic guiding field ~B0 ∝ ~σ and the unit distance vector r̂ are
alinged antiparallel. Since the frequency shift due to the spin-dependent short-range
interaction is proportional to ~σ · r̂, the sign of ∆νsp will change after rotation of the
cell-BGO assembley. Hence, ∆νsp can be extracted by composing the difference of the
measured weighted spin precession frequencies of the 0◦ and the 180◦ orientation:

∆ω0◦ = ωHe,L −
γHe

γXe
ωXe,L︸ ︷︷ ︸

0

+

(
1− γHe

γXe

)
2π∆νsp (7.2)

∆ω180◦ = ωHe,L −
γHe

γXe
ωXe,L︸ ︷︷ ︸

0

−
(

1− γHe

γXe

)
2π∆νsp (7.3)

⇒ ∆νsp =
∆ω0◦ −∆ω180◦

4π
(

1− γHe
γXe

) . (7.4)

However the extraction of the frequency shift ∆νsp will be difficult since the rotation
of the cell-BGO assembley can lead to different magnetic field gradients across the
measurement cell. For instance, this can be explained by the actual geometry of the
spin-sample cell or by the accuracy of the rotation of the cell complex. Furthermore,
due to the rotation the position of the BGO crystal within the magnetic guiding field is
changed. Hence, the magnetic susceptibility of the BGO crystal has a different impact
on the resulting gradients of the magnetic field within the spin sample cell. Differ-
ent field gradients will lead to different T ∗2 times for the 0◦ and the 180◦ positions.
As already mentioned in Chap. 6.6 the change in T ∗2 leads to a similar effect as the
spin–dependent short–range interaction, i.e. a constant frequency shift which is given
by ∆ωT ∗2 = 2πνT ∗2 Θ(t − t0), where t0 is the time when the cell-BGO assembley is ro-
tated. Thus, this frequency shift will not vanish in the difference of the two measured
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frequencies, i.e. ∆νsp given in Eq. 7.4 will transform to

∆νsp =
∆ω0◦ −∆ω180◦ − 2πνT ∗2

4π
(

1− γHe
γXe

) . (7.5)

That means, for correct extraction of ∆νsp the effect of the change of the T ∗2 times has
to be estimated and elliminated.
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A. Calculation of the Standard Deviation
of the Weighted Phase Difference

In general, according to the Gaussian error propagation, the error of a quantity C = C(A,B),
which is a function of the defective quantities A and B, is given by

δC =

√(
∂C(A,B)

∂A
· δA

)2

+

(
∂C(A,B)

∂B
· δB

)2

. (A.1)

Thereby δA and δB are the errors of the quantities A and B respectively and ∂C
∂A and ∂C

∂B are
the respective partial derivatives of the quantity C to A and B. The error of the weighted
phase difference, which is given by

∆Φ(t) = ΦHe(t)−
γHe

γXe
· ΦXe(t) , (A.2)

then results in

δ (∆Φ) =

√(
∂(∆Φ)

∂ΦHe
· δΦHe

)2

+

(
∂(∆Φ)

∂ΦXe
· δΦXe

)2

=

√
δΦ2

He +

(
γHe

γXe
· δΦXe

)2

. (A.3)

In [132] the sensitivity regarding the phase was deduced from the Cramer-Rao lower bound
(CRLB). The error of the phases of helium and xenon, i.e. δΦHe and δΦXe, then are given
by:

δφHe = σφHe
=

4

SNRHe · T
, (A.4)

δφXe = σφXe
=

4

SNRXe · T
. (A.5)

Since the signals of helium and xenon, i.e. AHe(t) and AXe(t), decay exponentially with the
transverse relaxation times T ∗2,He and T ∗2,Xe respectively, the SNR is given by

SNRHe =
AHe(t)

NHe(t)
∝ At=0,He · e

− t
T∗

2,He (A.6)

SNRXe =
AXe(t)

NXe(t)
∝ At=0,Xe · e

− t
T∗

2,Xe . (A.7)

At=0,He and At=0,Xe are the inital amplitudes of the helium and the xenon signals, respec-
tively. The noise of helium and xenon, i.e. NHe(t) and NXe(t), approximatively is assumed to
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A. Calculation of the Standard Deviation of the Weighted Phase Difference

be constant. By inserting Eqs. A.4–A.7 in Eq. A.3, the error of the weighted phase difference
results in

δ (∆φ) ∝

√(
1

SNRHe

)2

+

(
γHe

γXe
· 1

SNRXe

)2

∝

√√√√ e
2t

T∗
2,He

(At=0,He)
2 +

(
γHe

γXe

)2

· e
2t

T∗
2,Xe

(At=0,Xe)
2 . (A.8)

By extracting the first term of the square root function, the error of the weighted phase
difference transforms to

δ (∆φ) ∝ e
t

T∗
2,He

AHe,t=0
·

√√√√√1 +

(
γHe

γXe

)2(AHe

AXe

)2

t=0

e
2t

T∗
2,Xe

e
2t

T∗
2,He

. (A.9)

Extraction of the exponential functions of the second term of the square root function leads
to

δ (∆φ) ∝ e
t

T∗
2,Xe ·

√√√√
e
−2t

(
1

T∗
2,Xe
− 1
T∗

2,He

)
+

(
γHe

γXe

)2

·
(
AHe

AXe

)2

t=0

. (A.10)
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B. Exact Determination of T ∗2

The signal amplitudes of 3He and 129Xe of each sub-data set i can be calculated with the fit
parameters of Eq. 6.3 as

AHe/Xe(ti) =

√(
aic,He/Xe

)2
+
(
ais,He/Xe

)2
, (B.1)

where ti = (i− 1) · τ is the time of the i-th sub-data set and τ = 3.2 s is the length of each
sub-data set. Since the amplitudes aic,He/Xe and a

i
s,He/Xe of the raw data fit are less correlated,

the amplitude errors ∆AHe/Xe(ti) can be determined by the Gaussian error propagation law.
Figure B.1 shows the time developing of the helium (black) and xenon (red) amplitudes of
measurement run C68 for three different and independent gradiometers (Z2E-Z5S, Z3D-Z2S,
Z3I-Z1S). The amplitudes decay exponentially with the transverse relaxation time T ∗2 , i.e.

Afit(t) = Ag
0 · e

−t/T ∗2 , (B.2)

where g = 1, 2, 3 corresponds to the gradiometers Z2E-Z5S, Z3D-Z2S and Z3I-Z1S, respec-
tively. The function Afit(t) is used for a common fit of the amplitudes, i.e. the data points(
ti, AHe/Xe(ti),∆(AHe/Xe(ti))

)
of all three gradiometers were joined to one big data set. In

doing so, an additional dimension was added to each data point so that the data points of
the different SQUID gradiometers can be distinguished later on. The data points of the big
data set then are given by

(
{ti, g}, AHe/Xe(ti),∆(AHe/Xe(ti))

)
. The fit function according to

Eq. B.2 then is applied to the big data set, i.e. to the signal amplitudes of all three gradiome-
ters simultanously. Here the initial amplitudes Ag

0 can be different but the T ∗2 time is equal
for all three gradiometers. For measurement run C68, the fit parameters for helium result
in A1

0,He = (9186.37 ± 0.03) fT, A2
0,He = (4456.42 ± 0.03) fT, A3

0,He = (6879.08 ± 0.04) fT
and T ∗2,He = (212019 ± 9) s with χ2/dof = 1.65 and the fit parameters for xenon result in
A1

0,Xe = (4945.31 ± 0.16) fT, A2
0,Xe = (2399.66 ± 0.13) fT, A3

0,Xe = (3704.47 ± 0.22) fT and
T ∗2,Xe = (19049 ± 1) s with χ2/dof = 17.50. To check the quality of the fit function the
amplitude residuals Res(A(ti)) have to be considered, which are the difference between the
real signal amplitudes A(ti) and the fit function Afit(t). In Fig. B.2 the amplitude residuals
of helium and xenon of measurement run C68 for the three different gradiometers are shown.
Each data point comprises 50 sub-data sets which corresponds to a time interval of 160 s.
Thus the error bar of each data point is smaller by a factor of ≈

√
50 compared to the error

of the amplitude of a single sub-data set. It stands out that the amplitude residuals of helium
and xenon do not have the expected statistical distribution around zero but show a charac-
teristic structure instead which is more distinct for xenon than for helium. This also applies
for the other measurement runs. In the first instance we assumed that this structure occurs
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B. Exact Determination of T ∗2

Figure B.1: Decay of the 3He (black) and 129Xe (red) amplitudes of measurement run C68 for
three different gradiometers (left: Z2E-Z5E, middle: Z3D-Z2S, right: Z3I-Z1S).
Each data point comprises 50 sub-data sets which corresponds to a time interval
of 160 s. Thus the error bar of each data point is smaller by a factor of ≈

√
50

compared to the error of the amplitude of a single sub-data set. Hence, the error
bars are too small to be visible in the plot.

Figure B.2: Amplitude residuals of 3He (black) and 129Xe (red) of measurement run C68 for
three different gradiometers (left: Z2E-Z5E, middle: Z3D-Z2S, right: Z3I-Z1S)
resulting from a common exponential fit according to Eq. B.2. Each data point
comprises 50 sub-data sets which corresponds to a time interval of 160 s. Thus
the error bar of each data point is smaller by a factor of ≈

√
50 compared to

the error of the amplitude of a single sub-data set. Hence, the error bars are too
small to be visible in the plot.

due to the movement of the BGO crystal. However, consideration of the amplitude residuals
of the measurement runs that were performed in 2009 to search for a sidereal modulation
in the spin precession frequency, which violates Lorentz symmetry (LV 2009) [96, 122], the
same characteristic structure occurs. Since no mass was moved during those measurement
runs, the structure in the amplitude residuals cannot be caused by the BGO crystal. As
example the amplitude residuals of measurement run C92 (LV 2009) is shown in Fig. B.3 on
the left.

Comparing the amplitude residuals of the measurement runs of 2009 and 2010 it emerges
that the structure in the amplitude residuals of xenon is similar for all measurement runs
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Figure B.3: Left : Amplitude residuals of 3He (black) and 129Xe (red) of measurement run
C92 (LV 2009) for one gradiometer (Z2E-Z9E) resulting from an exponential
fit according to Eq. B.2. Right : Residuals of the amplitude ratio Res(R(t)) of
measurement run C92 (LV 2009) for one gradiometer (Z2E-Z9E) resulting from
an exponential fit according to Eq. B.5. In both plots each data point comprises
50 sub-data sets which corresponds to a time intervall of 160 s. Thus the error
bar of each data point is smaller by a factor of ≈

√
50 compared to the error of

the amplitude of a single sub-data set.

with a minimum between 1 and 3 hours.
From the amplitude residuals it is possible to infer that the decay of the signal amplitudes
is not purely exponential. Possible reasons can be:

a) Drift due to the motion of the SQUID detectors within the magnetic guiding field.

b) Change of the magnetic field gradients in time (see Sec. B.1).

These effects can be parameterized by fa(t) and fb(t) respectively, so that the temporal
development of the helium and xenon signal amplitudes can be described by

AHe/Xe(t) = fa(t) · fb(t) ·A0 · e−t/T
∗
2,He/Xe . (B.3)

For a single gradiometer the function fa(t), that describes the drift due to the motion of the
SQUID detectors within the magnetic guiding field, should be equal for helium and xenon,
i.e. fa,He(t) = fa,Xe(t). So, by considering the ratio R(t) of the xenon and helium signal
amplitudes this effect should drop out. The temporal development of the ratio R(t) then can
be described by

R(t) =
AXe(t)

AHe(t)
=

fc,Xe(t)

fc,He(t)
·
A0,Xe

A0,He
· e−

t
Teff

= f(t) ·R0 · e−t/Teff , (B.4)

where Teff is an effective relaxation time given by 1
Teff

= 1
T ∗2,Xe

− 1
T ∗2,He

. By applying only an
exponential fit, i.e.

Rfit(t) = R0 · e
− t
Teff , (B.5)
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B. Exact Determination of T ∗2

Figure B.4: Residuals of the amplitude ratio Res(R(ti)) for all three gradiometers (green:
Z2E-Z5S, red: Z3D-Z2S, black: Z3I-Z1S) of measurement run C68 (left) and C65
(right) resulting from a common exponential fit according to Eq. B.5. Each data
point comprises 50 sub-data sets which corresponds to a time interval of 160 s.
Thus the error bar of each data point is smaller by a factor of ≈

√
50 compared

to the error of the amplitude ratio of a single sub-data set. Hence, the error bars
are too small to be visible in the plot. Via spline–interpolation the structure in
the residuals can be described by a function fres(t) (orange line).

Figure B.5: Amplitude residuals of 3He (black) and 129Xe (red) of measurement run C65 for
three different gradiometers (left: Z2E-Z5E, middle: Z3D-Z2S, right: Z3I-Z1S)
resulting from a common exponential fit according to Eq. B.2. Each data point
comprises 50 sub-data sets which corresponds to a time interval of 160 s. Thus
the error bar of each data point is smaller by a factor of ≈

√
50 compared to

the error of the amplitude of a single sub-data set. Hence, the error bars are too
small to be visible in the plot. At the time t0 when the BGO crystal was moved
a jump occurs in the residuals.

to the amplitude ratio R(t) and afterwards calculating the residuals, a structure remains,
which is equal for all three gradiometers (see Fig. B.4 left). The same structure remains if the
amplitude ratios of the measurement runs of 2009 are considered. As example the residuals
of the amplitude ratio of measurement run C92 are shown in Fig. B.3 on the right. For some
measurement runs of 2010 a small jump in the amplitude residuals of helium and xenon
occured at the time t0 when the BGO crystal was moved (see Fig. B.5). For instance, this
jump can be caused by a change of the distance between the SQUID gradiometer and the

120



B.1 Possible Reason for the Structure in the Amplitude Residuals

spin sample due to the movement of the BGO crystal. However, this jump disappears by
considering the residuals of the amplitude ratio (see Fig. B.4 right).

B.1 Possible Reason for the Structure in the Amplitude
Residuals

Before each measurement run, the measurement cell has to be filled with a new gas mixture
of polarized 3He, polarized 129Xe and N2 within the filling station. Then the measurement
cell is transferred to the measurement setup in the BMSR-2. For this purpose, the doors
of the BMSR-2 have to be opened. While the doors are open, the Earth’s magnetic field
partly enters the shielded room and thus the residual field inside the BMSR-2 is changed.
After closing the doors of the BMSR-2 the Earth’s magnetic field disappears. Then the
innermost µ-metal shield causes magnetic relaxation, i.e. the residual field relaxes to its
inital state. Hence, at the beginning of each measurement run the magnetic guiding field
~B0 is superposed by a residual field ~B1 which decays exponentially with a time constant
α. The amplitude as well as the relaxation time of this residual field ~B1 strongly depends
on the time for which the doors of the BMSR-2 were open. Without loss of generality it is
assumed that the magentic guiding field and the residual field are given by ~B0 = (B0,x, 0, 0)

and ~B1 = (0, B1,y, B1,z) · e−t/α. Then the total vector of the magnetic guiding field seen by
the precessing spins is given by

~Btot(t) =

 B0,x

B1,y · e−t/α

B1,z · e−t/α

 , (B.6)

with an absolute value of

| ~Btot(t)| =

√
B2

0,x +
(
B1,y · e−t/α

)2
+
(
B1,z · e−t/α

)2
. (B.7)

Assuming that B1,y, B1,z � B0,x, the relation
√

1 + x2 ≈ 1 + 1
2x

2 can be used, so that
| ~Btot(t)| simplifies to

| ~Btot(t)| = B0,x +B1 · e−t/β , (B.8)

with β = α/2 and B1 = (B1,y +B1,z)
2 /
(
2B2

0,x

)
.

Additionally, the magnetic guiding field slightly drifts linear in time since the current source
slightly drifts linear in time (I ∝ | ~B0|). The total temporal development of the magnetic
guiding field approximately then can be described by

| ~Btot(t)| ≈ B0,x +B1 · e−t/β +B2 · t . (B.9)

The real temporal development of the absolute value of the total magnetic guiding field
| ~Btot(t)| can be calculated directly from the measured precession frequencies, e.g. of the
3He spins, for each sub-data set i, by using the relation ωHe/Xe(ti) = γHe/Xe · | ~Btot(ti)|. In
Fig. 4.2 | ~Btot(t)| of measurement run C68 is shown. Fitting the data | ~Btot(ti)| by using
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B. Exact Determination of T ∗2

β (s) ∆β (s) B0,x (nT) B1 (nT) B2 (nT/s)
C54 8519 296 353.2 -4.1 ·10−3 3.3·10−7

C55 3385 68 353.2 -4.7 ·10−3 3.1·10−7

C60 3098 187 353.2 -3.1 ·10−3 1.8·10−7

C63 4766 78 353.2 -7.6 ·10−3 1.9·10−7

C65 4041 78 353.2 -8.3 ·10−3 1.5·10−7

C67 4023 211 353.2 -2.6 ·10−3 2.0·10−7

C68 4101 129 353.2 -5.0 ·10−3 0.9·10−7

C71 5267 157 353.2 -5.2 ·10−3 2.7·10−7

C80 1955 29 353.2 -8.2 ·10−3 3.6·10−7

C82 164 11 353.2 -4.9 ·10−3 4.7·10−7

Table B.1: Fit parameters of the temporal development of the absolute total magnetic guid-
ing field | ~Btot(t)| using Eq. B.9. Since the errors of the fit parameters B0,x, B1

and B2 are three orders of magnitude smaller than the corresponding values, the
errors of these fit parameters are not listed in the table. B2, which corresponds
to the linear drift of the magnetic field due to the drift of the current source, is
much smaller than the exponential drift B1. The relaxation time β for the runs
C80 and C82 are much shorter than the ones for the other measurement runs.
This can be explained by the fact that at the end of the measuring period of 2010
it was noted that the longer the doors of the BMSR-2 were open, the longer is
the relaxation of the innermost µ-metal shield, i.e. the longer is the relaxation
time β.

Eq. B.9 the unknown parameters B0,x, B1, B2 and β can be determined. The fit results for
all 10 measurement runs are summarized in Tab. B.1. The linear drift of the magnetic field
(B2), due to the drift of the current source, is much smaller than the exponential drift of
the magnetic field (B1). At the end of the measuring period of 2010 it was noted that the
longer the doors of the BMSR-2 were open, the longer is the relaxation of the innermost
µ-metal shield, i.e. the longer is the relaxation time β. Thus for the last two measurement
runs (C80 and C82) the doors of the BMSR-2 were opened only for a short while.

The temporal change of the total magnetic field can lead to a temporal change in the trans-
verse relaxation time T ∗2 and thus to a temporal change of the signal amplitudes. This rela-
tion will be explained in more detail in the following: According to Eq. 3.50 the transverse
relaxation rate in the motional narrowing regime is given by

1

T ∗2
∝ 4R4γ2

175D
·
(
|~∇B1,y|2 + |~∇B1,z|2 + 2|~∇B1,x|2

)
. (B.10)

The relative gradients of the magnetic field are constant in time. But as shown in Fig. 4.2
the total magnetic guiding field is not constant in time and hence the absolute gradients
of the magnetic field slightly changes in time, too. From that it follows, that the transverse
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B.2 Method of Exact T ∗2 Determination

relaxation time depends on time: T ∗2 (t). Assuming that the expression in brackets of Eq. B.10
is proportional to | ~Btot(t)|2 =

(
B0,x +B1 · e−t/β +B2,x · t

)2 (Eq. B.9) the time dependent
transverse relaxation rate then is given by

1

T ∗2 (t)
∝ k ·

(
B0,x +B1 · e−t/β +B2 · t

)2
, (B.11)

where k is a proportionality constant. Since B0,x � B1, B2 (see Tab. B.1), those terms, which
do not contain a factor of B0,x, are small compared to the other terms and hence they can
be neglected. The expression of Eq. B.11 then can be simplified to

1

T ∗2 (t)
∝ 1

T ∗2

(
1 +

2B1

B0,x
· e−t/β +

2B2

B0,x
· t
)

. (B.12)

Here T ∗2 = 1/(k · B2
0,x) is an effective transverse relaxation time, which is constant in time

and reflects the purely exponential decay of the signal amplitudes. For the time dependent
transverse relaxation rate T ∗2 (t), the temporal development of the amplitude of the spin
precession signal can be calculated to (see App. C)

Afit(t) = Ag
0 · e

−t/T ∗2
(

1− m

T ∗2

(
2B1β

B0,x

(
1− e−t/β

)
+

B2

B0,x
· t2
))

, (B.13)

where m is a proportionality factor and g= 1, 2, 3 again corresponds to the three different
gradiometers Z2E-Z5S, Z3D-Z2S and Z3I-Z1S, respectively. This fit function can be used for
a common fit of the amplitudes of all three gradiometers simultanously. Here the amplitudes
Ag

0 can differ from one gradiometer to another, while all the other fit parameters are equal
for all three gradiometers.

B.2 Method of Exact T ∗2 Determination

The fit function given in Eq. B.13 was applied to the amplitudes AHe/Xe(ti) of the three
different gradiometers of each measurement run. For measurement run C68 the fit of Eq. B.13
results in

χ2/dof = 1.58, T ∗2,He = (211548.0± 15.6) s ,

A1
0,He = (9186.17± 0.03) fT, A2

0,He = (4456.32± 0.03) fT, A3
0,He = (6878.92± 0.04) fT ,

χ2/dof = 2.02, T ∗2,Xe = (18972.5± 0.4) s ,

A1
0,Xe = (4924.28± 0.07) fT, A2

0,Xe = (2389.22± 0.05) fT, A3
0,Xe = (3688.28± 0.08) fT .

The amplitude residuals are shown in Fig. B.6. Compared to the amplitude residuals which
result from a purely exponential fit (see Fig. B.2), the structure in the residuals could be re-
duced from about 35 fT to about 6 fT. However the residuals are not statistically distributed
and show that the temporal dependence of the signal amplitudes is not described properly
by Eq. B.13. From that it follows, that it is not possible to parameterize the temporal de-
pendence of the signal amplitudes completely. However, without knowing the exact phyisical
model which causes the non-exponential decay of the signal amplitudes, the structure in
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B. Exact Determination of T ∗2

Figure B.6: Amplitude residuals of 3He (black) and 129Xe (red) of measurement run C68 for
three different gradiometers (left: Z2E-Z5S, middle: Z3D-Z2S, right: Z3I-Z1S),
which result from the fit given by Eq. B.13. Each data point comprises 50 sub-
data sets which corresponds to a time interval of 160 s. Thus the error bar of
each data point is smaller by a factor of ≈

√
50 compared to the error of the

amplitude ratio of a single sub-data set.

the amplitude residuals can be determined sufficiently by using a spline–interpolation. The
principle of the spline–interpolation and the whole procedure to determine the transverse
relaxation times T ∗2 will be explained in the following on the example of measurement run
C68.

Spline–Interpolation
In general, the development of a data set of form (x, f(x)), which consists of N data points,
can be described by a function F (x). This function F (x) can be determined via spline–
interpolation (Fig. B.7). For this purpose some points of the data set are selected as so-
called knots. Taking into acount the data points between the knots, the region between two
neighboring knots can be interpolated by a polynom, which is also called spline. In our case
we used the cubic spline–interpolation, i.e. the region between two knots is interpolated by
a polynom of third order. The resulting function F (x) is a continuous function which is two
times continuously differentiable in each point.

Residuals of the Amplitude Ratio
First of all the residuals of the amplitude ratio R(t) = AXe(t)/AHe(t) are considered, since the
structure in the residuals is equal for all three gradiometers (Fig. B.4). Thus the explanation
of the determination of Teff via spline–interpolation is simpler than for the determination of
the T ∗2 times of helium and xenon as we will see in the following sections. After selecting ap-
propriate knots from the data of the residuals of the amplitude ratio, the spline–interpolation
is applied to the residuals of all three gradiometers simultanously. Then the resulting func-
tion fres(t) describes the temporal development of the structure in the residuals of all three
gradiometers and is related to the real amplitude ratio R(t) via the following expression

fres(t) = R(t)−R0 · e−t/Teff = R0 · e−t/Teff · g∗F(t) . (B.14)

Here the term R0 · e−t/Teff is the fit function, which was used to determine the residuals of
the amplitude ratio, and the function g∗F(t) is given by g∗F(t) = fres(t)/(R0 · e−t/Teff ). For
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B.2 Method of Exact T ∗2 Determination

Figure B.7: Illustration of the spline–interpolation. (a) For a given data set of form (x, f(x)),
which consists of N data points (gray dots), the dependence of f(x) on x can be
determined by a spline–interpolation. Therefore some appropriate knots (blue
dots) have to be selected. (b) By considering the data points between two knots,
the region between the knots can be interpolated by piecewise polynoms. The
resulting function F (x), which is given by the red line, is two times continuously
differentiable in each point.

exact determination of the function g∗F(t) again a spline–interpolation is used. Therefore
some data points of the function g∗F(t) = (R(t)/(R0 · e−t/Teff )− 1) have to calculated. These
data points are used as knots for the spline–interpolation with which the function gF(t) can
be determined. This function then can be used to define a new fit function for the amplitude
ratio given by

Rfit(t) = R0 · e−t/Teff · (1 + gF(t)) . (B.15)

Since the function gF(t) was determined by spline–interpolation, the fit function Rfit(t) can
be used for a common fit to determine R0 and Teff . The fit function Rfit(t) then is applied to
the data points of the amplitude ratio R(t) of all three gradiometers simultanously, where
R0, Teff and the function gF(t) are equal for all three gradiometers. The fit parameters for
measurement run C68 result in R0 = (0.473181 ± 0.000004) and Teff = (20712.5 ± 0.4) s
with χ2/dof = 1.88. Calculating the residuals of the amplitude ratio for the new fit function
(Eq. B.15) the structure in the residuals disappear and the data points are statistically dis-
tributed (Fig. B.8). This shows that the new fit function describes the temporal dependence
of the amplitude ratio quite well.

Residuals of the Xenon Amplitudes
As shown in Fig. B.9, the structure in the amplitude residuals of the xenon amplitudes of the
three different gradiometers look similar but are not congruent with each other. However, a
closer look suggests that the structure in the amplitude residuals of all three gradiometers
can be described by one function fres(t) which is stretched or distorted depending on the
gradiometer. To check this, for measurement run C68 the residuals of the xenon amplitude of
the gradiometer Z2E-Z5S were chosen as reference. Then some suitable knots were selected
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B. Exact Determination of T ∗2

Figure B.8: Residuals of the amplitude ratio R(t) for all three gradiometers of measurement
run C68 (green: Z2E-Z5S, red: Z3D-Z2S, black: Z3I-Z1S) which were determined
using the fit function according to Eq. B.15. Each data point comprises 50 sub-
data sets which corresponds to a time interval of 160 s. Thus the error bar of
each data point is smaller by a factor of ≈

√
50 compared to the error of the

amplitude ratio of a single sub-data set.

Figure B.9: Residuals of the xenon amplitudes AXe(ti) for all three gradiometers of measure-
ment run C68 (green: Z2E-Z5S, red: Z3D-Z2S, black: Z3I-Z1S). Each data point
comprises 50 sub-data sets which corresponds to a time intervall of 160 s. Thus
the error bar of each data point is smaller by a factor of ≈

√
50 compared to the

error of the amplitude ratio of a single sub-data set. Hence, the error bars are
too small to be visible in the plot.

and afterwards a spline–interpolation was applied to the residuals of the xenon amplitude
of the gradiometer Z2E-Z5S which results in a function fres(t). By multiplying this function
with a factor cg (g=1 for gradiometer Z2E-Z5S, i.e. c1 = 1, g=2 for gradiometer Z3D-Z2S and
g=3 for gradiometer Z3I-Z1S) it is possible to describe the structure in the xenon amplitude
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B.2 Method of Exact T ∗2 Determination

residuals of the other two gradiometers, too. The factors c2 and c3 result in

c2 = 0.507 =
A2

0,Xe

A1
0,Xe

, (B.16)

c3 = 0.752 =
A3

0,Xe

A1
0,Xe

. (B.17)

This values conform to the ratio of the initial amplitude of the corresponding gradiometer
Ag

0,Xe (with g= 2, 3) to the initial amplitude of the reference gradiometer A1
0,Xe. This relation

will be explained in the following: As already mentioned before the time dependence of the
amplitude is given by (Eq. B.3), i.e.

Ag
Xe(t) = f(t) ·Ag

0,Xe · e
−t/T ∗2,Xe . (B.18)

But the fit function, which was used to determine the amplitude residuals, is a pure expo-
nential function, i.e.

Ag
Xe,fit(t) = Ag

0,Xe · e
−t/T ∗2,Xe . (B.19)

For convenience it is assumed that the correct T ∗2,Xe time for xenon was determined by the
fit. The residuals of the xenon amplitudes then are given by

Res
(
Ag

Xe(t)
)

= Ag
Xe(t)−A

g
Xe,fit(t) = Ag

0,Xe · e
−t/T ∗2,Xe(f(t)− 1) . (B.20)

T ∗2,Xe and the function f(t) should be equal for all three gradiometers but the initial amplitude
Ag

0,Xe is different from one gradiometer to another. Hence, the form of the structure in the
amplitude residuals depends on the intitial amplitude Ag

0,Xe. Consequently, the structure in
the amplitude residuals of all three gradiometers can be described by one function, i.e.

Res
(
Ag

Xe(t)
)

= cg · fres(t) = Ag
0,Xe · e

−t/T ∗2,Xe(f(t)− 1) . (B.21)

For correct determination of the function fres(t), a spline–interpolation is applied to the
amplitude residuals of xenon of all three gradiometers. The knots are selected from the
reference gradiometer Z2E-Z5S. Then the resulting function fres(t) describes the structure
in the amplitude residuals of the reference gradiometer, c2 · fres(t) the amplitude residuals
of the gradiometer Z3D-Z2S and c3 · fres(t) the amplitude residuals of the gradiometer Z3I-
Z1S (Fig. B.10). Here the factors cg were no fit parameters, but calculated from the initial
amplitudes which were determined with the exponential fit according to Eq. B.2. Then the
function fres(t) can be used to determine the functions gXe

F,g(t) (similar to the amplitude
ratio):

gXe
F,1(t) = c1 · fres(t)/

(
A1

0,Xe · e
−t/T ∗2,Xe

)
,

gXe
F,2(t) = c2 · fres(t)/

(
A2

0,Xe · e
−t/T ∗2,Xe

)
,

gXe
F,3(t) = c3 · fres(t)/

(
A3

0,Xe · e
−t/T ∗2,Xe

)
.

With Eq. B.16 and Eq. B.17 it follows that

gXe
F (t) = gXe

F,1(t) = gXe
F,2(t) = gXe

F,3(t) = fres(t)/
(
A1

0,Xe · e
−t/T ∗2,Xe

)
. (B.22)
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B. Exact Determination of T ∗2

Figure B.10: Illustration of the determination of the function fres(t) via spline–interpolation.
The residuals of the xenon amplitudes AXe(t) for all three gradiometers of
measurement run C68 are shown (left: Z2E-Z5S, middle: Z3D-Z2S, right: Z3I-
Z1S). The residuals of gradiometer Z2E-Z5S are used as reference, i.e. the knots
for the spline–interpolation are selected from the data of the amplitude residuals
of gradiometer Z2E-Z5S. The spline–interpolation is applied to the residuals of
all three gradiometers simultanously so that the function fres(t) (green curve in
all plots) describes the structure in the residuals of the reference gradiometer,
c2 · fres(t) (yellow curve in the middle plot) the residuals of the gradiometer
Z3D-Z2S and c3 · fres(t) (yellow curve in the right plot) the residuals of the
gradiometer Z3I-Z1S.

Since the function gXe
F (t) is equal for all three gradiometers, Eq. B.21 transforms to

Res
(
Ag

Xe(t)
)

= cg · fres(t) = Ag
0,Xe · e

−t/T ∗2,Xe(f(t)− 1) = Ag
0,Xe · e

−t/T ∗2,Xe · gXe
F (t) . (B.23)

With the function fres(t) some knots of the function gXe
F (t) can be calculated and afterwards

a spline–interpolation can be applied. With the resulting function gXe
F (t) a new fit function

for the amplitudes of xenon can be defined

Ag
Xe,fit(t) = Ag

0,Xe · e
−t/T ∗2,Xe · (1 + gXe

F (t)) . (B.24)

This fit function is used for a common fit, i.e. it is applied to the xenon amplitudes of
all three gradiometers simultanously, whereby T ∗2,Xe and the function gXe

F (t) are equal for
all three gradiometers, but the inital amplitudes Ag

0,Xe are different. The fit parameters for
measurement run C68 then result in A1

0,Xe = (5307.55±0.05) fT, A2
0,Xe = (3988.39±0.07) fT,

A3
0,Xe = (2688.40 ± 0.04) fT and T ∗2,Xe = (18792.3 ± 0.3) s with χ2/dof = 1.93. Calculating

the residuals of the xenon amplitude for the new fit function according to Eq. B.24, the main
structure in the residuals disappear (Fig. B.11 left). Some small oscillations remain which
can be attributed to the drift of the SQUIDs and/or the movement of the measurement cell
relative to the SQUIDs. In addition, the comparison of the χ2/dof values of measurement
run C68 resulting from the fits according to Eq. B.24 and Eq. B.2 demonstrate, that by using
the method of the spline–interpolation a huge improvement of the χ2/dof values could be
achieved. That shows that the new fit function describes the temporal dependence of the
xenon amplitudes quite well.
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B.2 Method of Exact T ∗2 Determination

Figure B.11: Residuals of the xenon amplitudes AXe(t) (left) and helium signal amplitudes
AHe(t) (right) for all three gradiometers of measurement run C68 (green: Z2E-
Z5S, red: Z3D-Z2S, black: Z3I-Z1S) which were determined with a direct fit
of the signal amplitudes using Eq. B.24. Each data point comprises 50 sub-
data sets which corresponds to a time intervall of 160 s. Thus the error bar of
each data point is smaller by a factor of ≈

√
50 compared to the error of the

amplitude of a single sub-data set.

Residuals of the Helium Amplitudes
For the signal amplitudes of helium the same procedure as for the xenon signal amplitudes
can be used. The fit parameters according to Eq. B.24 results in A1

0,He = (11217.20±0.03)fT,
A2

0,He = (8427.23± 0.04) fT, A3
0,He = (5681.11± 0.03) fT and T ∗2,He = (202706.0± 6.7) s with

χ2/dof = 1.49. The residuals of the helium signal amplitude resulting from the new fit model
(Eq. B.24) are shown in Fig. B.11. Some small linear structures remain in the amplitude
residuals, but similar to the xenon amplitudes this structures can be attributed to the drift
of the SQUIDs and/or the movement of the measurement cell relative to the SQUIDs.
In Fig. B.12 the residuals of helium and xenon of measurement run C68, which result from
the new fit model (Eq. B.24), are shown together. In Tab. B.2 the transverse relaxation
times T ∗2 of helium and xenon, which were determined by using a spline–interpolation, of
all 10 measurement runs are summarized. The determination of the T ∗2 time of helium for
measurement run C60 was more complicated than for the other measurement runs. Here the
structure in the amplitude residuals differed from the characteristic structure which occured
in the amplitude residuals of all the other measurement runs.
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Figure B.12: Amplitude residuals of 3He (black) and 129Xe (red) of measurement run C68 for
three different gradiometers (left: Z2E-Z5E, middle: Z3D-Z2S, right: Z3I-Z1S)
which were determined with a direct fit (Eq. B.24) of the amplitudes of helium
and xenon. Each data point comprises 50 sub-data sets which corresponds to
a time interval of 160 s. Thus the error bar of each data point is smaller by a
factor of ≈

√
50 compared to the error of the amplitude of a single sub-data

set.

T ∗2,He (s) δT ∗2,He (s) T ∗2,Xe (s) δT ∗2,Xe (s)
C54 111443 18 14742.6 0.4
C55 132567 3 14853.2 0.2
C60 176152 11 15395.9 0.3
C63 190472 7 18021.4 0.3
C65 217520 8 18773.9 0.4
C67 209171 9 18657.6 0.4
C68 212055 9 19049.7 0.3
C71 204661 7 18791.6 0.3
C80 229407 19 19165.1 0.4
C82 211347 32 18889.1 0.4

Table B.2: Transverse relaxation times of 3He and 129Xe of measurement runs C54-C82 which
were determined by using a spline-interpolation (Eq. B.24).
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C. Derivation of the Amplitude in Case of
a Time Dependent T ∗2 time

The time dependent transverse relaxation rate approximately is given by (Eq. B.12)

1

T ∗2 (t)
≈ m

T ∗2

(
1 +

2B1

B0,x
· e−t/β +

2B2

B0,x
· t
)
, (C.1)

where m is a proportionality factor. With

r(t) =
2B1

B0,x
· e−t/β +

2B2

B0,x
· t (C.2)

the time dependent transverse relaxation rate transforms to

1

T ∗2 (t)
=

m

T ∗2
(1 + r(t)) , (C.3)

Since the signal amplitude decays with a characteristic time T ∗2 (t), the temporal dependence
of the signal amplitude can be derived by

dA′

dt′
= − A′

T ∗2 (t′)

⇒ dA′

dt′
= −mA′

T ∗2

(
1 + r(t′)

)
⇒ dA′

A′
= −m

T ∗2

(
1 + r(t′)

)
dt′

⇒
∫ A

A0

dA′

A′
= −m

T ∗2

∫ t

0
dt′ − m

T ∗2

∫ t

0
r(t′)dt′

⇒ A(t) = A0 · e−t/T
∗
2 · e

− m
T∗2

∫ t
0 r(t

′)dt′

. (C.4)

Assuming that the expression in the exponent is small, an expansion of the exponential
function leads to

A(t) ≈ A0 · e−t/T
∗
2

(
1− m

T ∗2

∫ t

0
r(t′)dt′

)
. (C.5)

The integral can be calculated by using the expression of Eq. C.2∫ t

0
r(t′)dt′ =

∫ t

0

(
2B1

Bx,0
· e−t′/β +

2B2

Bx,0
· t′
)
dt′

=
2B1β

Bx,0

(
1− e−t/β

)
+

B2

Bx,0
· t2 . (C.6)
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The temporal dependence of the amplitude in case that the magnetic field gradients change
in time then is given by

A(t) ≈ A0 · e−t/T
∗
2

(
1− m

T ∗2

(
2B1β

Bx,0

(
1− e−t/β

)
+

B2

Bx,0
· t2
))

. (C.7)
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D. Derivation of Systematic Error ∆ν
T ∗2
sys

According to Eq. 3.50, the transverse relaxation time is changed if the BGO crystal produces
field gradients. In this case the transverse relaxation time for the BGO in close and in distant
position is not equal, i.e. T ∗2,c 6= T ∗2,d. The RBS frequency shifts (Eq. 6.52) of the weighted
frequency difference for the BGO in close and distant position then are given by

ωRBS,d(t) = ξHe ·A′0,He · e
− t−t0
T∗

2,He − γHe

γXe
· ξXe ·A′0,Xe · e

− t−t0
T∗

2,Xe , (D.1)

ωRBS,c(t) = ξHe ·A′0,He · e
− t−t0
T∗

2,He
+∆T∗

2,He − γHe

γXe
· ξXe ·A′0,Xe · e

− t−t0
T∗

2,Xe
+∆T∗

2,Xe . (D.2)

The amplitudes are given by

A′0,He/Xe ≈ A0,He/Xe · e
− t0
T∗

2,He(Xe) (D.3)

and the expression ∆T ∗2 is given by ∆T ∗2 = T ∗2,c − T ∗2,d, whereas T ∗2 is defined as T ∗2 = T ∗2,d.
Using εHe = ξHe and εXe = γHe

γXe
ξXe the RBS frequency shifts simplifies to

ωRBS,d(t) = εHe ·A′0,He · e
− t−t0
T∗

2,He − εXe ·A′0,Xe · e
− t−t0
T∗

2,Xe , (D.4)

ωRBS,c(t) = εHe ·A′0,He · e
− t−t0
T∗

2,He
+∆T∗

2,He − εXe ·A′0,Xe · e
− t−t0
T∗

2,Xe
+∆T∗

2,Xe . (D.5)

The total weighted frequency difference for the BGO crystal in close and distant position
then is given by

∆ωd(t) = εHe ·A′0,He · e
− t−t0
T∗

2,He − εXe ·A′0,Xe · e
− t−t0
T∗

2,Xe + ∆ωlin , (D.6)

∆ωc(t) = εHe ·A′0,He · e
− t−t0
T∗

2,He
+∆T∗

2,He − εXe ·A′0,Xe · e
− t−t0
T∗

2,Xe
+∆T∗

2,Xe + ∆ωlin + ∆ωsp .

(D.7)

By integration over time one gets the weighted phase difference

∆Φd(t) = ∆ωlin · t

+ εHe ·A′0,He · T ∗2,He · e
t0

T∗
2,He ·

(
1− e

− t
T∗

2,He

)
− εXe ·A′0,Xe · T ∗2,Xe · e

t0
T∗

2,Xe ·
(

1− e
− t
T∗

2,Xe

)
, (D.8)

∆Φc(t) = (∆ωsp + ∆ωlin) · t

+ εHe ·A′0,He · (T ∗2,He + ∆T ∗2,He) · e
−t+t0

T∗
2,He

+∆T∗
2,He ·

(
e

t
T∗

2,He
+∆T∗

2,He − 1

)
− εXe ·A′0,Xe · (T ∗2,Xe + ∆T ∗2,Xe) · e

−t+t0
T∗

2,Xe
+∆T∗

2,Xe ·
(
e

t
T∗

2,Xe
+∆T∗

2,Xe − 1

)
. (D.9)
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A Taylor expansion of the exponential functions around t = t0 up to second order then leads
to

∆Φd(t) = (− εHe ·A′0,He · T ∗2,He + εHe ·A′0,He · T ∗2,He · e
t0

T∗
2,He

+ εXe ·A′0,Xe · T ∗2,Xe − εXe ·A′0,Xe · T ∗2,Xe · e
t0

T∗
2,Xe + ∆ωlin · t0)

+
(
εHe ·A′0,He − εXe ·A′0,Xe + ∆ωlin

)
· (t− t0)

(
−
εHe ·A′0,He

2 · T ∗2,He

+
εXe ·A′0,Xe

2 · T ∗2,Xe

)
· (t− t0)2 +O [(t− t0)]3 (D.10)

∆Φc(t) = (∆ωlin + ∆ωsp) · t0

+ εHe ·A′0,He · (T ∗2,He + ∆T ∗2,He) ·
(
e

t0
T∗

2,He
+∆T∗

2,He − 1

)

− εXe ·A′0,Xe · (T ∗2,Xe + ∆T ∗2,Xe) ·
(
e

t0
T∗

2,Xe
+∆T∗

2,Xe − 1

)

+
(
εHe ·A′0,He − εXe ·A′0,Xe + ∆ωlin + ∆ωsp

)
· (t− t0)

+

(
−

εHe ·A′0,He

2(T ∗2,He + ∆T ∗2,He)
+

εXe ·A′0,Xe

2(T ∗2,Xe + ∆T ∗2,Xe)

)
· (t− t0)2

+O [(t− t0)]3 . (D.11)

The difference of ∆Φc(t) and ∆Φd(t) then is given by

∆Φc(t)−∆Φd(t) = ∆Φcd,const + ∆Φcd,lin + ∆Φcd,quad + O [(t− t0)]3 , (D.12)

with

∆Φcd,const = εHe ·A′0,He · T ∗2,He − εHe ·A′0,He · T ∗2,He · e
t0

T∗
2,He

+εHe ·A′0,He · (T ∗2,He + ∆T ∗2,He) ·
(
e

t0
T∗

2,He
+∆T∗

2,He − 1

)

−εXe ·A′0,Xe · T ∗2,Xe + εXe ·A′0,Xe · T ∗2,Xe · e
t0

T∗
2,Xe

−εXe ·A′0,Xe · (T ∗2,Xe + ∆T ∗2,Xe) ·
(
e

t0
T∗

2,Xe
+∆T∗

2,Xe − 1

)
+ ∆ωsp · t0

(D.13)
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∆Φcd,lin = ∆ωsp · (t− t0) (D.14)

∆Φcd,quad =

(
εHe ·A′0,He ·∆T ∗2,He

2T ∗2,He(T
∗
2,He + ∆T ∗2,He)

−
εXe ·A′0,Xe ·∆T ∗2,Xe

2T ∗2,Xe(T
∗
2,Xe + ∆T ∗2,Xe)

)
· (t− t0)2

(D.15)

The constant term ∆Φcd,const depends on ∆T ∗2,He/Xe. However, this term has no influence
on the frequency shift ∆νsp due the spin-dependent short-range interaction, since by con-
sideration of the frequency, i.e. ∆ω(t) = d∆Φ(t)

dt , the constant term drops out. The linear
term ∆Φcd,lin is independent of ∆T ∗2,He/Xe. But the quadratic term ∆Φcd,quad depends on
∆T ∗2,He/Xe, which leads to a systematic effect on the frequency shift ∆νsp. By considering
Eq. 6.71, i.e.

∆νsp =
bc − bd

2π · (1− γHe
γXe

)
, (D.16)

the systematic effect can be calculated by replacing bc − bd 1 by the temporal mean of the
derivative of the quadratic term, i.e.

〈
d∆Φcd,quad

d(t−t0)

〉
t−t0

. The systematic error then is given by

∣∣∣∆νT ∗2sys∣∣∣ =

∣∣∣∣∣∣∣
〈
d∆Φcd,quad

d(t−t0)

〉
t−t0

2π · (1− γHe
γXe

)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
εHe·A′0,He·∆T

∗
2,He

T ∗2,He(T ∗2,He+ ∆T ∗2,He) −
εXe·A′0,Xe·∆T

∗
2,Xe

T ∗2,Xe(T ∗2,Xe+∆T ∗2,Xe)

2π · (1− γHe
γXe

)
· 〈t− t0〉t−t0

∣∣∣∣∣∣∣ . (D.17)

The temporal mean 〈t− t0〉t−t0 for c→d as well as for d→c measurements is given by
〈t− t0〉t−t0 ≈ t0/2. With E′He/Xe = εHe/Xe · A′0,He/Xe · T

∗
2,He/Xe (Eq. 6.60 and Eq. D.3) the

systematic error then results in

∣∣∣∆νT ∗2sys∣∣∣ =

∣∣∣∣∣∣∣
E′He·∆T

∗
2,He

(T ∗2,He)2(T ∗2,He+∆T ∗2,He)
− E′Xe·∆T

∗
2,Xe

(T ∗2,Xe)2(T ∗2,Xe+∆T ∗2,Xe)

2π · (1− γHe
γXe

)
· t0

2

∣∣∣∣∣∣∣ (D.18)

Using the relation given in Eq. 6.93, i.e.

∆T ∗2,He

(T ∗2,He)
2
/

∆T ∗2,Xe

(T ∗2,Xe)
2

=
γ2

He

DGM
He

/
γ2

Xe

DGM
Xe

=
γ2

He

DGM
He

·
DGM

Xe

γ2
Xe

≈ 2 , (D.19)

the systematic error transforms to

∣∣∣∆νT ∗2sys∣∣∣ ≤
∣∣∣∣∣∣∣

∆T ∗2,He

(T ∗2,He)2

2π · (1− γHe
γXe

)
·

(
E′He(Xe)

T ∗2,He + ∆T ∗2,He

− 1

2
·

E′He(Xe)

T ∗2,Xe + ∆T ∗2,Xe

)
· t0

2

∣∣∣∣∣∣∣ (D.20)

1bc and bd correspond to the fit paramters of the linear term of the weighted phase difference for the BGO
crystal in close and in distant position.
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E. Derivation of the function f±BGO(t)

The temporal development of the ratio R(t) of the xenon and helium amplitudes can be
described by (Eq. B.15)

R(t) =
AXe(t)

AHe(t)
= R0 · e

− t
Teff (1 + gF(t)) , (E.1)

where Teff is an effective relaxation time given by 1
Teff

= 1
T ∗2,Xe

− 1
T ∗2,He

.

If the T ∗2 times of helium and xenon are changed due to the field gradients produced by the
BGO crystal, the temporal development of the ratio R(t) then is given by

R(t) = R0 · e
− t
Teff (1 + gF(t)) ·Θ(±(t0 − t))

+R0 · e
− t
Teff+∆Teff︸ ︷︷ ︸
Fexp(t)

(1 + gF(t)) ·Θ(±(t− t0)) . (E.2)

∆Teff describes the change of the effective relaxation time. The (±) in the argument of the
Heaviside step function has to be set (–) for the measurement sequence c→d of the BGO
crystal and (+) for the reverse one, i.e. d→c. The exponential function Fexp(t) of the second
term can be converted as follows

Fexp(t) = exp

(
− t

Teff + ∆Teff

)

= exp

− t

Teff

(
1 + ∆Teff

Teff

)
 . (E.3)

Assuming that β = ∆Teff
Teff

� 1, the relation 1
(1+β) ≈ 1 − β can be used, so that Fexp(t)

transforms to

Fexp(t) = exp

(
− t

Teff
·
(

1− ∆Teff

Teff

))
= exp

(
− t

Teff
+

∆Teff

T 2
eff

· t
)

= exp

(
− t

Teff

)
· exp

(
∆Teff

T 2
eff

· t
)
. (E.4)
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E. Derivation of the function f±BGO(t)

Inserting the expression of Fexp(t) in Eq. E.2 leads to

R(t) = R0 · e
− t
Teff · e

∆Teff
T2

eff

·t
(1 + gF(t)) ·Θ(±(t− t0))

+R0 · e
− t
Teff (1 + gF(t)) ·Θ(±(t0 − t))

= R0 · e
− t
Teff (1 + gF(t)) ·

(
e

∆Teff
T2

eff

·t
Θ(±(t− t0)) + Θ(±(t0 − t))

)
. (E.5)

Since we assumed that ∆Teff
Teff
� 1, the exponential function in brackets can be expanded in

a polynomial around t0:

e
∆Teff
T2

eff

·t
≈ 1 +

∆Teff

T 2
eff

(t− t0) . (E.6)

With this relation the amplitude ratio R(t) merges to

R(t) ≈ R0 · e
− t
Teff (1 + gF(t)) ·

((
1 +

∆Teff

T 2
eff

(t− t0)

)
Θ(±(t− t0)) + Θ(±(t0 − t))

)
= R0 · e

− t
Teff (1 + gF(t)) ·

(
∆Teff

T 2
eff

(t− t0) ·Θ(±(t− t0)) + 1

)
≈ R0 · e

− t
Teff

(
1 + gF(t) +

∆Teff

T 2
eff

(t− t0) ·Θ(±(t− t0))

)
. (E.7)

With

f±BGO(t) =
∆Teff

T 2
eff

(t− t0) ·Θ(±(t− t0)) , (E.8)

G(t) = gF(t) + f±BGO(t) (E.9)

the amplitude ratio R(t) then results in

R(t) = R0 · e
− t
Teff (1 +G(t)) . (E.10)
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F. Calculation of V c
Σ

The average potential of the spin-dependent short-range interaction V c
Σ on each 3He and

129Xe atom can be obtained by integration of (Eq. 2.71)

Vsp(~r) =
~2gNs g

n
p

8π ·mfσ

(~σ · r̂)
(

1

λr
+

1

r2

)
e−r/λ (F.1)

over the volume of the BGO crystal (unpolarized sample) and over the volume of the polarized
spin sample, i.e.

〈Vsp(~r)〉 = V c
Σ =

~2gNs g
n
p

8π ·mfσ

·
(

1

Vcell

∫
Vcell

dVcell

(
N ·

∫
VBGO

dVBGO
x

r

(
1

λr
+

1

r2

)
e−r/λ

))
.

(F.2)
Here gNs and gnp are the coupling constants between the nucleons and the axions or axion like
particles, λ is the range of the spin-dependent short-range force, N is the nucleon number
density of the BGO crystal, Vcell is the volume of the polarized spin sample and ~ is the
reduced Planck constant. According to the Schmidt model [11], in 3He and 129Xe atoms the
nuclear spin is carried by a neutron only. Thus mfσ corresponds to the mass of the bound
neutron, i.e. mfσ = mn.1 Besides it was assumed that the unit distance vector r̂, which
points from the polarized to the unpolarized sample, and the spin vector ~σ are aligned in x–
direction, so that the scalar product of both vectors is given by: ~σ · r̂ = ~σ ·~r/r = x/r. The two
integrals in Eq. F.2 can be solved by numerical integration over the volume of our cylindrical
spin sample cell (D = 6 cm, rD = 2.9 cm) and the cylindrical BGO crystal (d = 7 cm,
rd = 3 cm)

〈V ∗(λ)〉 =

∫
Vcell

dVcell

(∫
VBGO

dVBGO
x

r

(
1

λr
+

1

r2

)
e−r/λ

)

⇒ 〈Vsp(~r)〉 = V c
Σ =

~2gNs g
n
p ·N · 〈V ∗(λ)〉

8π ·mn · Vcell
. (F.3)

In summary, for different values of the range λ, a numerical expression was calculated for
〈V ∗(λ)〉 respectively for V c

Σ. However, for the purpose of illustration, an analytical expression
for V c

Σ can be calculated as well. This will be explained in the following: For a start a
cylindrical cell with infinite geometry in transversal direction of the magnetic guiding field
~B0 (x–direction) is considered. The effective spin-dependent short-range potential of such a

1In case that the refined nuclear shell model (see Chap 4.1) is used, the mass mfσ in Eq. 2.71 is slightly
different for 3He and 129Xe: mfσ (3He) = 0.87 · mn and mfσ (129Xe) = 0.75 · mn.
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F. Calculation of V c
Σ

Figure F.1: (a) Illustration of the relation between Cartesian and cylinder coordinates. The
x-component of the position vector ~r within the measurement cell (external di-
mensions) is denoted by x and the one within the BGO crystal is denoted by
x′. (b) Illustration of the arrangement of the BGO crystal and the spin samples
(internal dimensions of the measurement cell). The length of the BGO crystal
is given by d and its radius is given by rd. On the contrary, the length of the
spin sample is given by D and its radius is given by rD. The finite thickness
of the wall of the measurement cell is given by ∆x. Since the calculations are
independent of the transversal directions (i.e. y– and z–direction) the thickness
of the wall of the measurement cell in transversal direction is neglected in the
sketch.

cylindrical cell was calculated in [151] and will be devolved to our special case. The integration
of Vsp (~r) (Eq. F.2) over the volume of the unpolarized sample, i.e.

V (x) = N ·
∫
VBGO

dVBGO Vsp (~r) , (F.4)

was solved analytically by using cylinder coordinates (see Fig. F.1a). V (x) then is given by

V (x) = κ ·N ·
∫ rd

0

∫ 2π

0

∫ d

0

x+ x′

r

(
1

λr
+

1

r2

)
· e−r/λ · ρ dρ dφ dx′ (F.5)

with

κ =
~2gNs g

n
p

8π ·mn
. (F.6)

By introducing the angle θ (see Fig. F.1a), which lies between the x–axis and the position
vector ~r, the relations

r =
x+ x′

cos θ
, ρ = (x+ x′) · tan θ ⇒ dρ

dθ
=
x+ x′

cos2 θ
(F.7)

can be used so that the potential V (x) transforms to

V (x) = κ ·N ·
∫ 2π

0
dφ

∫ d

0

∫ π/2

0

(
tan θ · (x+ x′)

λ
+ sin θ

)
· e−(x+x′)/(λ·cos θ) dθ dx′ . (F.8)

With X = 1/ cos θ and dX/dθ = sin θ/ cos2 θ one gets

V (x) = κ ·N · 2π ·
∫ d

0

∫ ∞
1

(
x+ x′

λ ·X
+

1

X2

)
· e−(x+x′)·X/λ dX dx′ . (F.9)
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Partial integration over X gives

V (x) = κ ·N · 2π
∫ d

0
e−(x+x′)/λ dx′ (F.10)

and partial integration over x′ gives

V (x) = κ ·N · 2π · λ · e−x/λ ·
(

1− e−d/λ
)
. (F.11)

In our experimental setup we have a finite gap ∆x between the spin samples and the unpo-
larized matter2. Hence, x has to be replaced by x+ ∆x (see Fig. F.1b), so that V (x) results
in

V (x) = κ ·N · 2π · λ · e−x/λ · e−∆x/λ ·
(

1− e−d/λ
)
. (F.12)

Finally, to get the average of the spin-dependent short-range potential of the cylindrical cell
with infinite geometry in transversal direction, i.e. 〈Vsp(~r)〉 = V c

Σ,∞, the expression V (x) has
to be averaged over the volume of the spin sample:

〈Vsp(~r)〉 = V c
Σ,∞ =

1

D

∫ D

0
V (x)dx

= 2π · κ ·N · λ
2

D
e−∆x/λ ·

(
1− e−D/λ

)
·
(

1− e−d/λ
)
. (F.13)

The analytical expression of the average of the spin-dependent short-range potential of the
cylindrical spin sample with finite geometry in all directions, i.e. 〈Vsp(~r)〉 = V c

Σ, then can be
expressed by

V c
Σ = V c

Σ,∞ · η (λ,D, d,∆x) . (F.14)

Comparing Eq. F.13 and Eq. F.3 leads to

η (λ,D, d,∆x) =
D · 〈V ∗(λ)〉

2π · Vcell · e−∆x/λ · λ2 ·
(
1− e−D/λ

)
·
(
1− e−d/λ

) . (F.15)

The function η (λ,D, d,∆x) takes account for the finite size in transverse direction (y– and
z–direction) of the cylindrical samples. This function can be determined numerically for our
cylindrically shaped spin sample (D = 6 cm, rD = 2.9 cm) and matter sample (d = 7 cm,
rd = 3 cm) at close position (∆x = 2.2 mm). The resulting function η (λ) for our cylindrical
samples is shown in Fig. F.2 and can be parameterized by

ηfit(λ) =
1 + 27.8 · λ1.34

1 + 234 · λ1.31
. (F.16)

Here λ� (rD, rd, D, d) and η → 1 for rD, rd →∞ applies. Hence the analytical expression
for V c

Σ for our cylindrical measurement cells is given by

V c
Σ = V c

Σ,∞ · ηfit (λ) = V c
Σ,∞ ·

1 + 27.8 · λ1.34

1 + 234 · λ1.31
. (F.17)

2In close position of the BGO crystal its end face had direct contact to the end face of the spin sample cell.
Hence, the gap between the end face of the BGO crystal and the spin samples is given by the thickness
of the glass of the spin sample cell. The maximal gap is given by ∆x = 2.2 mm.
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F. Calculation of V c
Σ

Figure F.2: Devolution of η(λ) for our cylindrical measurement cells. The black curve shows
the function η(λ) which was determined numerically for our cylindrically shaped
spin sample (D = 6 cm, rD = 2.9 cm) and matter sample (d = 7 cm, rd = 3 cm)
with the matter sample, i.e. the BGO crystal, in close positon. Hence the distance
between the polarized gases and the end face of the BGO crystal is given by
∆x = 2.2 mm. The red curve shows the fit function ηfit(λ). If λ → 0, then
ηfit(λ) → 1 and thus V c

Σ = V c
Σ,∞ (Eq. F.17). That means for λ → 0 the spin-

dependent short-range interaction only appears in the volume elements of the
spin sample which are closest to the BGO crystal. The transversal dimensions
of the measurement cell then can be considered as infinitely large.
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Constraints on Spin-Dependent Short-Range Interaction between Nucleons
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We search for a spin-dependent P- and T-violating nucleon-nucleon interaction mediated by light

pseudoscalar bosons such as axions or axionlike particles. We employ an ultrasensitive low-field

magnetometer based on the detection of free precession of colocated 3He and 129Xe nuclear spins using

SQUIDs as low-noise magnetic flux detectors. The precession frequency shift in the presence of an

unpolarized mass was measured to determine the coupling of pseudoscalar particles to the spin of the

bound neutron. For boson masses between 2 and 500 �eV (force ranges between 3� 10�4 m and

10�1 m) we improved the laboratory upper bounds by up to 4 orders of magnitude.

DOI: 10.1103/PhysRevLett.111.100801 PACS numbers: 06.30.Ft, 07.55.Ge, 11.30.Er, 14.80.Va

Axions are light, pseudoscalar particles that arise in
theories in which the Peccei-Quinn Uð1Þ symmetry has
been introduced to solve the strong CP problem [1]. They
could have been created in early stages of the Universe
being attractive candidates to the cold dark matter that
could compose up to �1=3 of the ingredients of the
Universe [2]. Several constraints from astrophysics,
cosmology, and laboratory experiments have been applied
in order to prove or rule out the existence of the axion,
i.e., constrain the axion’s mass ma and/or its couplings.
The mass range, in which axions are still likely to exist,
could thus be narrowed down to a window reaching from
�eV [3] up to some meV [4] (axion window).

Most axion searches look for the conversion of an axion
of galactic [5], solar [6], or laboratory [7] origin into a
photon in the presence of a static magnetic field. However,
any axion or axionlike particle that couples with both
scalar and pseudoscalar vertices to fundamental fermions
would also mediate a parity and time-reversal symmetry-
violating force between a fermion f and the spin of another
fermion f�, which is parametrized by a Yukawa-type
potential with range � and a monopole-dipole coupling
given by [8]

Vspð~rÞ ¼ @
2gfsg

f�
p

8�mf�

ð ~� � r̂Þ
�
1

�r
þ 1

r2

�
e�r=�; (1)

where ~� is the spin vector and � is the range of the Yukawa
force with � ¼ @=ðmacÞ. Thus, the entire axion window
can be probed by searching for spin-dependent short-range

forces in the range between 20 �m and 0.2 m. gfs and gf�p
are dimensionless scalar and pseudoscalar coupling
constants which in our case correspond to the scalar cou-

pling of an axionlike particle to a nucleon (gfs ¼ gNs ) and
its pseudoscalar coupling to a polarized bound neutron

(gf�p ¼ gnp). Accordingly, we have mf� ¼ mn. r̂ is the

unit distance vector from the bound neutron to the nucleon.
The potential given by Eq. (1) effectively acts near the
surface of a massive unpolarized sample as a pseudomag-
netic field and gives rise to a shift ��sp ¼ 2V�=h, e.g., in

the precession frequency of nuclear spin-polarized gases
(3He and 129Xe), which according to the Schmidt model [9]
can be regarded as an effective probe of spin-polarized
bound neutrons. The potential V� is obtained by integra-
tion of VspðrÞ from Eq. (1) over the volume of the massive

unpolarized sample averaged over the volume of the pola-
rized spin sample, each having a cylindrical shape. Based
on the analytical derivation of V�;1 for disk-shaped spin

and matter samples with respective thicknesses D and d
[10], we obtain

V� ¼ V�;1�ð�Þ

¼ 2�N�
�2

D
e��x=�ð1� e�D=�Þð1� e�d=�Þ�ð�Þ: (2)

�ð�Þ takes account for the finite size in transverse direction
of our cylindrical samples and �x represents the finite gap
between them. Furthermore, � ¼ @

2gNs g
n
p=ð8�mnÞ and N

is the nucleon number density of the unpolarized matter
sample. �ð�Þ is determined numerically for our cylindri-
cally shaped spin and matter samples at ‘‘close’’ position
(see Fig. 1). [�ð�Þ can be expressed reasonably well by the
fit function �fitð�Þ ¼ ð1þ 27:8�1:34Þ=ð1þ 234�1:31Þ.]
Our experimental approach to search for nonmagnetic,

spin-dependent interactions is to use an ultrasensitive
low-field comagnetometer based on detection of free spin
precession of gaseous, nuclear polarized samples [11].
The Larmor frequencies of 3He and 129Xe in a guiding
magnetic field B are given by !L;HeðXeÞ ¼ �HeðXeÞB, with
�HeðXeÞ being the gyromagnetic ratios of the respective gas

species [12,13], with �He=�Xe ¼ 2:754 081 59ð20Þ. The
influence of the ambient magnetic field and its temporal
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fluctuations cancels in the difference of measured Larmor
frequencies of the colocated spin samples

�! ¼ !He � �He

�Xe

!Xe: (3)

On closer inspection, a resulting constant frequency shift
�!lin, e.g., due to Earth’s rotation, is not compensated by
comagnetometry. That is discussed in [14], together with
frequency shifts due to the generalized Ramsey-Bloch-
Siegert shift. The latter ones are directly proportional to

the particular net magnetization AHeðXeÞe
�t=T�

2;HeðXeÞ and also

are included in the weighted frequency difference �!ðtÞ:
�!ðtÞ ¼ �!lin þ 	HeAHee

�t=T�
2;He � 	XeAXe � e�t=T�

2;Xe :

(4)

Accordingly, its equivalent, the weighted phase difference
��ðtÞ ¼ �HeðtÞ � ð�He=�XeÞ�XeðtÞ, is sensitive to a
phase drift given by

��ðtÞ ¼ �0 þ�!lint� 	HeT
�
2;HeAHee

�t=T�
2;He

þ 	XeT
�
2;XeAXee

�t=T�
2;Xe : (5)

Because of the knowledge of these side effects, any anoma-
lous frequency shifts generated by nonmagnetic spin inter-
actions, such as the quested short-range interaction, can
be analyzed by looking at �!ðtÞ and ��ðtÞ, respectively.
A sudden frequency change �!sp stemming from the

pseudoscalar Yukawa potential VspðrÞ would occur at an

instant t ¼ t0, e.g., by moving a massive matter sample
close to the precessing nuclei. This would lead to an addi-
tional linear phase drift �!spt in Eq. (5) for t > t0. For

further analysis, it is useful to develop Eq. (5) in a Taylor
expansion of 5th order around t0 (the criterion to use a
Taylor expansion up to the 5th order was that the reduced

2=d:o:f: of the fit equals 1). The weighted phase differ-
ence ��ðtÞ can then be described by

��ðt0Þ ¼ aþ bðt0Þt0 þ ct02 þ dt03 þ et04 þ ft05; (6)

with t0 ¼ t� t0. The coefficient of the linear term now
reads

bðt0Þ ¼ �!lin þ�!w
spðt0Þ þ 	HeA

0
He � 	XeA

0
Xe: (7)

Note that �!w
spðt0Þ ¼ 2���w

sp�ð�t0Þ is the only time-

dependent term in Eq. (7), so that a change �b ¼ bc �
bd ¼ 2���w

sp of bðt0Þ at t ¼ t0 would directly indicate the

existence of the short-range interaction. [(� ) in the argu-
ment of the Heaviside step function has to be set (� ) for
the sequence c ! d and (þ ) for the reverse one, d ! c.
Furthermore, for runs j ¼ 1, 2, 3 the BGO was moved at
t0 ¼ 8700 s, otherwise at t0 ¼ 10 800 s.] With our special
choice of t0 ¼ t� t0, the linear coefficient of the Taylor
expansion does not depend on T�

2 and thus is insensitive
to possible changes in T�

2 . The impact of the T�
2 depen-

dence of higher order terms on the determination of bðt0Þ
is discussed in detail in the section on systematic
uncertainties.
The experiments were performed inside themagnetically

shielded room BMSR-2 at the Physikalisch-Technische
Bundesanstalt Berlin (PTB) [15]. A homogeneous guiding
magnetic field of about 350 nT was provided inside the
shielded room by means of a square coil pair (Bx coils) of
edge length 1800 mm. A second square coil pair (By coils)

arranged perpendicular to the Bx coils was used to manipu-
late the sample spins, e.g., �=2 spin flip by nonadiabatic
switching [11]. The major components of the experimental
setup within BMSR-2 are shown in Fig. 1. For the detection
of spin precession we used a multichannel low-Tc dc-
SQUID device [16,17]. The 3He=129Xe nuclear spins were
polarized outside the shielding by means of optical pump-
ing. Low-relaxation cylindrical glass cells (GE180) were
filled with the polarized gases and placed directly beneath
the Dewar as close as possible to the SQUID sensors.
The SQUID sensors detect a sinusoidal change in magnetic
flux due to the nuclear spin precession of the gas atoms.
In order to obtain a high common mode rejection ratio,
three first order gradiometric sensor combinations were
used in order to suppress environmental disturbance fields
such as vibrational modes. Figure 1 shows their positions
with respect to each other andwith respect to the 3He=129Xe
sample cell. The system noise of the SQUID gradiometer

configurations was between 3 and 10 fT=
ffiffiffiffiffiffi
Hz

p
in the

range of the 3He=129Xe spin-precession frequencies, i.e.,
4< �L < 12 Hz, while typical signal amplitudes reached

FIG. 1. Sketch of experimental setup. The lower plane
SQUIDs in module D, E, and I marked as (d) are used to detect
the 3He=129Xe free spin precession. The center of the cylindrical
spin sample cell (D ¼ 60 mm, �D ¼ 58 mm) has an average
distance of �z ¼ 66 mm to the sensors. The relative position of
the cell in the projection onto the (x, y) plane is indicated by the
gray square. SQUIDs in module Smarked as (j) are used for the
gradiometric sensor arrangements. The unpolarized mass (cylin-
drical BGO crystal: d ¼ 70 mm, �d ¼ 60 mm) can be moved
along the x axis (B-field axis) to ‘‘close’’ (�xc ¼ 2:2 mm) and
‘‘distant’’ (�xd ¼ 170 mm) positions and vice versa (see text).
This is accomplished by a piston driven glass tube with the BGO
fixed at its cell-facing side. The two measuring arrangements
‘‘left’’ (L) and ‘‘right’’ (<) are shown.
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10 pT for helium and 3 pT for xenon at the beginning of the
spin-precession cycle.

Typically, the optimum conditions in terms of long
transverse relaxation times (T�

2) and high SNR
were met at a gas mixture with pressures of
3He:Xeð91%129XeÞ:N2�ð2:8:35Þmbar. Nitrogen was
added to suppress spin-rotation coupling in bound Xe-Xe
van der Waals molecules [18,19]. As unpolarized matter
sample we used a cylindrical BGO crystal (Bi4Ge3O12,
� ¼ 7:13 g=cm3). BGO has a high nucleon number
density, is a nonconductive material that shows low
Johnson-Nyquist noise, and is said to have an unusual
magnetism-related behavior in weak constant magnetic
fields (
mag�0ppm) [20–22]. For systematic checks, the

BGO crystal could be placed left (L) and right (<) with
respect to the 3He=129Xe sample cell (see Fig. 1). Since
Vspð~rÞ / ~� � r̂,��sp changes its sign in going fromL to<.

This has to be considered by averaging the L and <
results. On the other hand, ��sp drops out averaging L
and < without sign change. In case of a nonzero spin-
dependent axion fermion interaction, a shift ��w

sp in the

weighted frequency difference [Eq. (3)] can be extracted
from respective frequency measurements in ‘‘close’’ and
‘‘distant’’ positions given by

��w
sp ¼

2Vc
�

h

�
1� �He

�Xe

�
; (8)

assuming V�;He ¼ V�;Xe ¼ V�;n 	 V� (Schmidt model)

and Vd
�

 Vc

�.

We performed 10 measurement runs lasting approxi-
mately 9 h each. For each measurement run, the BGO
crystal was moved after t0 � 3 h from close to distant
position (c ! d) or vice versa (d ! c). The asymmetric
timing takes account for the smaller SNR in the second
measurement block due to the exponential damping (T�

2) of
the signal amplitude which was T�

2;He�53h and T�
2;Xe�5h,

typically. By this measure, comparable statistics were
obtained for both BGO positions.

As discussed in detail in [14], the data from each run
were divided into sequential time intervals of 
 ¼ 3:2 s.
For each obtained subdata set, a 
2 minimization was
performed using an appropriate fit function to extract the
phases �He, �Xe and the frequencies !He, !Xe with the
corresponding errors. In a further step, the accumulated
phase �HeðXeÞðt0Þ was determined for each run in order to

derive the weighted phase difference ��ðt0Þ. Then, Eq. (6)
was fitted simultaneously to the data set ��ðt0Þ that was
determined for the three gradiometers of each measure-
ment run. From the resulting fit parameters �a, �bc, �bd, �c, �d,

�e, �f and by use of Eqs. (7) and (8), the frequency shift��sp

is then extracted from

�� sp ¼
�bc � �bd

2�
�
1� �He

�Xe

� : (9)

For six runs (2, 3, 4, 5, 9, 10), the BGO crystal was
positioned at L, otherwise at<. For all L runs, the results

were multiplied by (�1): ��sp ¼ ���sp;L. In Fig. 2(a),

values��sp for the individual runs are shown together with

their correlated 1� errors. [The correlated errors are calcu-
lated as the square root of the diagonal elements of the
covariance matrix of the least 
2 fit model of Eq. (6) with
the proper statistical weights. The uncorrelated errors are
about a factor of 30 smaller and not included in the error
bars shown in Fig. 2.] From the calculation of the weighted

mean, one gets ��sp ¼ ð�2:9� 2:3Þ nHz. As a consis-

tency check, we reanalyzed our 2009 data, where we
looked for a possible Lorentz-violating (LV) sidereal
frequency modulation [14]. Since no mass was moved,
�bc ¼ �bd should hold, using the fit function of Eq. (6) and
a hypothetical time t0 ¼ 10 800 s. Figure 2(b) shows the

results ��check for all 7 measurement runs together with
their correlated 1� errors. The weighted mean of the LV

data gives ��check ¼ ð�1:4� 3:4Þ nHz. The 
2=d:o:f: of

the data to their respective weighted means (��sp,��check)

gives 2.29 and 2.38, indicating that the errors on the
measured frequency shifts (Fig. 2) are somewhat under-
estimated. In order to take this into account, the errors
are scaled to obtain a 
2=d:o:f: of one, as recommended,
e.g., by [23,24].
At the 95% C.L., our results for the measured frequency

shifts are

�� sp ¼ ð�2:9� 6:9Þ nHz; (10)

�� check ¼ ð�1:4� 10:5Þ nHz; (11)

indicating that (i) we find no evidence for a pseudoscalar
short-range interaction mediated by axionlike particles and

FIG. 2. (a) Extracted frequency shifts ��sp (with correlated 1�
error) of the 10 measurement runs. The triangles specify the <,
the circles the L arrangement of the BGO crystal. Full symbols
indicate the c ! d sequence, hollow symbols the opposite case
(d ! c). (b) Results ��check obtained from the LV data using the
same fit model [Eq. (6)]. Since no mass was moved, we expect
no shift in the spin precession frequency. The rightmost symbols
in both plots (stars) indicate the respective weighted means
(1� error).
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(ii) the cross-check analysis of our LV data is compatible
with zero within the error bars, as expected.

Discussion of systematic uncertainties.—The movement
of the BGO crystal can produce correlated effects that may
mimic a pseudoscalar frequency shift or even compensate
the effect we are looking for. Two effects caused by a
nonzero magnetic susceptibility of the BGO have to be
considered, by taking
mag ¼ �19 ppm, which is the high-

field limit (B> 0:1 T) [21]. (a) The BGO at the close
position slightly changes the magnetic field across the
volume of the 3He=129Xe sample cell. This effect drops
out to first order due to comagnetometry. To second order,
however, the difference in their molar masses leads to a
difference (�z) in their center of masses (barometric for-
mula), which is �z ¼ 1:2� 10�7 m for our cylindrical
sample cell. This results in a frequency shift of ��sys ¼
�zjh@B=@zijind�He=2� � 0:03 nHz for induced field
gradients in the vertical direction of jh@B=@zijind �
0:08 pT=cm. The field gradients were calculated using
COMSOL MULTIPHYSICS, a finite element analysis software.

Compared to the measured frequency shift [Eq. (10)], this
systematic effect is negligible. (b) More serious is the fact
that a change of the magnetic field gradient by the BGO
also influences the T�

2 times of 3He and 129Xe. The direct
approach is to extract T�

2 and thus �T�
2 via the exponential

decay of the signal amplitudes with the BGO in close and
distant positions. The most accurate distinction between
ðT�

2Þc and ðT�
2Þd was obtained through a fit to the amplitude

ratio AXeðt0Þ=AHeðt0Þ given by ffitðt0Þ ¼ We�t0=T�
eff with

T�
eff¼T�

2;HeT
�
2;He=ðT�

2;He�T�
2;HeÞ. According to [11,25,26],

a relation between �T�
2;He, �T�

2;Xe, and �T�
eff can be

derived

�T�
eff

ðT�
effÞ2

¼ � �T�
2;He

ðT�
2;HeÞ2

þ �T�
2;He

ðT�
2;XeÞ2

� �0:5
�T�

2;He

ðT�
2;HeÞ2

(12)

by taking the respective diffusion coefficients of 3He and
129Xe in the gas mixture and using the approximation
�D=2 ¼ D=2 � R ¼ 30 mm for our cylindrically shaped
cell. We obtain an upper limit of j�T�

2;Hej< 160 s for a

possible T�
2 change. From that the systematic frequency

shift ��
T�
2

sys on bðt0Þ due to the higher order terms of Eq. (6)

can be estimated to be

�������T�
2

sys

������
�����������

�T�
2;He

ðT�
2;He

Þ2
�
E0
He

T�
2;He

� 1
2

E0
Xe

T�
2;Xe

�
t0
2

2�ð1� �He=�XeÞ

������������ 0:1 nHz: (13)

Here we used Eq. (9), replacing bc and �bd by the
temporal means 2�ccht0it0 and 2�cdht0it0 of the quadratic
term in Eq. (6) with �ccðdÞ ¼ f�ðE0

He=2Þ=ðT�
2;HeÞ2 þ

ðE0
Xe=2Þ=ðT�

2;XeÞ2gcðdÞ and E0
HeðXeÞ ¼	HeðXeÞA0

HeðXeÞT
�
2;HeðXeÞ.

Values for the respective E0
HeðXeÞ phase amplitudes were

extracted from the fit function [Eq. (6)] applied to the data

and result to be hE0
Hei ¼ 11:5 rad and hE0

Xei ¼ 0:1 rad.
Finally, ht0it0 was taken to be ht0it0 � t0=2.
From Eq. (13) a conservative estimate of the systematic

error can be made with j��T�
2

sysj ¼ �0:2 nHz (95% C.L.),

which brings us to the final result

�� sp ¼ ð�2:9� 6:9� 0:2Þ nHz ð95% C:L:Þ (14)

for the measured pseudoscalar frequency shift.

From the total error �ð��spÞ ¼ �7:1 nHz, we can then

derive exclusion bounds for jgNs gnpj using Eq. (2) and

j�ð��spÞj � 2Vc
�=h, which are shown in Fig. 3.

We have substantially improved the bounds on a spin-
dependent short-range interaction between polarized
(bound) neutrons and unpolarized nucleons over most of
the axion window, tightening existing constrains on axion-
like particles heavier than 20 �eV by up to 4 orders of
magnitudes.
And there are clear strategies on how to improve our

experimental sensitivity. (i) Close contact of the spin system
with the matter sample. For �x � 0 mm, our present
measurement sensitivity will significantly increase for
� < 10�3 m (see Fig. 3). (ii) Moving the spin-matter sam-
ple more frequently between its set positions (c $ d and/or
L $ <). This results in a different time structure for the
linear term in the fit model of Eq. (6) such that the correlated
error approaches the uncorrelated one. This was already
demonstrated in [14]. (iii) Magnetic susceptibility related

FIG. 3. The experimental 95% confidence upper limit on
jgNs gnpj plotted versus �, the range of the Yukawa force with

� ¼ @=ðmacÞ. The axion window is indicated by the light gray
area. (1) result of [28], (2) result of [29], (3) result of [30],
(4) result of [31], (5) result of [32], (6) result of [33], (7) result of
[34], (8) this experiment (�x ¼ 2:2 mm) [35], (9) expected
results for �x � 0 mm using the same data set demonstrates
the gain in measurement sensitivity for � < 10�3 m. See [36] for
bounds on the pseudoscalar short-range force between polarized
electrons and unpolarized nucleons. Raffelt [37] points out that
much tighter constraints on jgNs gnpj can be inferred by combining

constraints on gs from stellar energy-loss arguments and gp from

searches for anomalous monopole-monopole forces.

PRL 111, 100801 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

6 SEPTEMBER 2013

100801-4



artifacts have to be eliminated by taking zero-susceptibility
matched matter samples (
mag � 0 ppm) as it is common

practice in high resolution NMR spectroscopy [27].
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