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Abstract

We investigate the Shimura subvarieties in the locus of abelian and cyclic
covers of P1. In particular show that for s = 4, 5, the family of abelian
covers branched along s points and satisfying an irreducibility condition is
Shimura if and only if it is equal to the largest irreducible subvariety of Ag

over which the action of abelian group extends to the whole universal abelian
scheme. For s = 5 there are exceptional cases that we study in some detail.
We also show that for s large enough, there is no Shimura subvariety in the
locus of abelian covers of P1 with G = Z/nZ× Z/mZ. We achieve these by
using an obstruction of Dwork and Ogus and also by studying the generic
Mumford-Tate and monodromy group of such families.

Zusammenfassung

Wir untersuchen Ag, den Modulraum der abelschen Varietäten auf Exis-
tenz der Shimura Untervarietäten und insbesondere den Locus der abelschen
und zyklischen Überlagernugen von P1. Wir betrachten alle solche Familien
die eine Irreduzibilität Bedingung erfüllen. Für s = 4, 5 zeigen wir -bis auf
zwei Ausnahmefälle für s = 5- dass die Familie ist genau dann eine Shimura
Familie, wenn die Wirkung der abelschen Gruppe auf das ganze universelle
abelsche Schema erweitert werden kann und es gibt keine größere Unter-
varietät mit dieser Eigenschaft. Wir beweisen auch, dass für s genügend
groß, es gibt keine Shimura Varietät die sich aus einer Familie der abelschen
Überlagerungen von P1 mit G = Z/nZ × Z/mZ ergibt. Wir erreichen
das, durch verwendung einer Obstruktion von Dwork und Ogus sowie durch
Berechnung der generischen Mumford-Tate Gruppe dieser Familien.
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Introduction

In this thesis we deal with the occurrence of Shimura varieties in the
locus of Jacobians of abelian (and cyclic) covers of P1, occasionally we also
deal with totally geodesic subvarieties. Roughly speaking, we are going to
show that under some conditions there is no Shimura subvarieties with in
this locus for suitable genera.

Let f : Y → T be a family of abelian covers of P1. We will explicitly
construct and describe such families and show the important features of their
structures. By varying the brnch points, this family gives rise naturally to a
subvariety Z of Ag. There exists a Shimura subvariety of PEL type which we
denote by S(µG). This Shimura subvariety is constructed using the Hodge
classes which are endomorphisms coming from the group action of the abelian
Galois group G. Therefore S(µG) contains Z and if these two are equal, then
the family is a Shimura family, i.e. a family which gives rise to a Shimura
subvariety of Ag. Using this and a simple computer program, we can check
for which families this equality holds. In this way, we obtain a table (table
1) which appears also in [MO]. We show that this table is exhaustive for
s = 4 and that there are no more examples satisfying the above equality for
approximately big monodromy data. But if Z 6= S(µG), it does not mean
that Z is not a Shimura subvariety as there might be Hodge classes in our
family that are not endomorphisms coming from the linear group action. In
the case where G is cyclic, however it is shown by Moonen that Z is not
actually a Shimura subvariety in this case. When G is abelian (and non-
cyclic) this is more complicated to achieve. Let s be the number of branch
points of the family. When s = 4 and the family satisfies an irreducibility
condition, we show the following:

Theorem. If s = 4, then Z is Shimura if and only if Z = S(µG).

For s = 5, the above theorem also holds, with only two exceptions. We
will show that these two families are totally geodesic families. Therefore by
a result of Moonen, the investigation of whether or not these families are
Shimura boils down to verify whether they have a CM point, i.e. there exists
a fiber whose Jacobian is a CM abelian variety.

For s > 5, the problem is more complicated because of some technical
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difficulties which we will make clear in section 3.10. In particular, we can
not use the Dwork-Ogus obstruction to get a contradiction. We will instead
study the (generic) monodromy group and the generic Mumford-Tate group
of the families and make use of a result of André that shows that for most
cases the generic Mumford-Tate group can not be that of a Shimura family.
These computations show that for s large enough there does not exist any
Shimura subvariety in the locus of abelian covers provided that the Galois
group is G = Z/nZ× Z/mZ and there exists an element n ∈ G with dn ≥ 2
and d−n ≥ 2. Where dn is the dimension of the eigenspace of the action
of G on the variation of Hodge structures of the family. We also give some
examples of families of cyclic coverings of P1 that are not Shimura families
but they do contain a positive dimensional Shimura subvariety. This answers
a question of Oort which asks if such cases exist at all.
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Chapter 1. Hodge structures and their

variations

1.1. Hodge structures

In this chapter we present the basic results and notions from Hodge theory
that we will need in the later chapters.

Definition 1.1.1. Let R be any ring such that Z ⊆ R ⊆ R. Let V
be an R-module. An R-Hodge structure of weight k on V is given by a
decomposition

V ⊗R C =
⊕

p+q=k V p,q

such that V q,p = V p,q

Example 1.1.2. Let X be a compact Kähler manifold. Then the Z-
module Hk(X,Z) carries a Hodge structure. Indeed, we have:

Hk(X,C) = Hk(X,Z)⊗C =
⊕

p+q=k Hp,q(X) where Hp,q(X) = Hq(X, Ωp
X)

One can define the Hodge structures in terms of Hodge filtration. A
Hodge filtration is a decreasing filtration of V by complex subspaces F pV
that satisfy:

F pV ∩ F qV = 0 for p + q = k + 1

One can recover the Hodge structure from the Hodge filtration and vice
versa:

V p,q = F p ∩ F qV

F pV =
⊕

i≥p V i,k−i
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Definition 1.1.3. Let R be a ring with Z ⊆ R ⊂ R. A polarized R-
Hodge structure on an of weight k on an R-module V is an R-Hodge structure
on V together with a bilinear form Q : V ×V → R which is symmetric if k is
even and antisymmetric otherwise, and whose extension to V ⊗R C satisfies:

i) The Hodge decomposition is orthogonal for Q, i.e. Q(v, v′) = 0 for
v ∈ V p,q, v′ ∈ V p′,q′ with p 6= q′.

ii) ip−qQ(v, v) > 0 for v ∈ V p,q \ {0}.

Example 1.1.4. Let X be a compact Kähler manifold. The Hodge
structure on Hk(X,Z)prim is polarized. In fact a polarization Q is given by

Q(α, β) =
∫

X
∧n−k(ω) ∧ α ∧ β

Here ω is the Kähler form of X.

Let S = ResC/RGm,C. A Hodge structure on V according to Deligne can
be understood as a certain homomorphism from S to GL(V ):

Proposition 1.1.5. Let V be an R-vector space. A real Hodge structure
on V defines an action of S on V ⊗ C by

z.vp,q = zpzqvp,q for every vp,q ∈ V p,q and z ∈ S(R)

In this way one gets a homomorphism h : S → GL(V ). Conversely, any
such representation corresponds to a Hodge structure on V .

Proof. See [D1], 1.1.1.

Example 1.1.6. Let V be an R-vector space. A complex structure on V
is a linear morphism J : V → V such that J2 = −1. Any complex structure
on V gives a Hodge structure of type (−1, 0) + (0,−1) by:

h : C× → GL(VR)
a + bi 7→ a + bJ
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Conversely, any such Hodge structure of the above type defines a complex
structure on V by proposition 1.1.5.

Hodge structures of the above type are the main Hodge structures that
we encounter in this thesis and in fact we have the following key theorem.

Theorem 1.1.7. There is a correspondence between the set of polarized
abelian varieties of dimension g and polarized Hodge structures (L, h,Q) of
type (−1, 0) + (0,−1) on a torsion-free lattice L of rank 2g. This correspon-
dence gives a bijection between sets of polarized abelian varieties A = V/L
and polarized Hodge structures on L⊗ R of the above type.

Proof. Let us sketch a proof of this important statement. if (L, h, Q)
carries a Hodge structure of the above type, then by example, the Hodge
structure gives a complex structure on LR and makes it to a C-vector space.
On the other hand, we have an isomorphism

L⊗ R ↪→ L⊗ C→ V 0,−1,

Therefore, we can consider Q as an alternating form on V 0,−1. Since
Q(iv, v) < 0 for v ∈ V 0,−1, we can set E = −Q and it will be a positive
definite Hermitian form making the complex torus V 0,−1/L an abelian variety.

Conversely, if (A, E) is an abelian variety with A = V/L, set Q = −E.
according to example we have a Hodge structure of type (−1, 0)+ (0,−1) on
L corresponding to J = −i. ¤

Let us note that if A is an abelian variety over C, then by the above
theorem H1(A,Q) carries a Hodge structure of type (−1, 0) + (0,−1), see
[Mi].

Let V be a Q-vector space equipped with a Hodge structure of weight k.
This Hodge structure by proposition 1.1.5 corresponds to a representation

h : S→ GL(VR)

The following definition is very important for us in these notes:
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Definition 1.1.8. The Mumford-Tate group of a Q-Hodge structure
(V, h) is the smallest Q-algebraic subgroup of GL(V ) that contains the image
of h. That is, the smallest subgroup G such that

h(S) ⊆ G×Q R.

We denote the Mumford-Tate group of the hodge structure (V, h) by
MT (V, h) or simply MT (V ).

1.2. Variations of Hodge structures

Let f : X → Y be a smooth family of algebraic manifolds. In this section
we are going to study the behavior of Hodge structures in such families. We
will use these results in the subsequent chapters.

Definition 1.2.1. Let X be a topological space. By a local system on X
we mean a locally constant sheaf with stalk G, where G is an abelian group.

Let V be a local system on X and let γ : [0, 1] → X be an arc in X.
The pull-back γ∗V is a local system on [0, 1]. In particular, (γ∗V)0 = Vγ(0)

and (γ∗V)1 = Vγ(1). Consider a point x0 in X as a base point. The above
observation shows that the local system gives rise to a representation

ρ : π1(X, x0) → Aut(Vx0)

We call the image of ρ, the monodromy group of the local system.

Example 1.2.2. Let f : X → Y be a smooth map of complex manifolds.
Then the sheaf Rkf∗C is a local system on Y for k ∈ N.

Let V = Rkf∗C ⊗ OX . Let U be a simply connected open subset of Y .
Over U , V is a constant sheaf. Now set:
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σ =
∑

αi ⊗ σi ∈ V(U),

Where αi ∈ Rkf∗C(U) and σi ∈ O(U). We define a connection

∇ : V → V ⊗ Ω1
Y by:

σ =
∑

αi ⊗ σi 7→
∑

αi ⊗ dσi.

The above connection is called the Gauss-Manin connection.

Proposition 1.2.3. Let f : X → Y be a smooth morphism of algebraic
manifolds and consider V = Rkf∗C⊗OX . Then V admits a filtration F • by
holomorphic subbundles such that F pHk(Xy,C) = F p

y V .

Proof. See for example [Vo].

The Gauss-Manin connection satisfies a very important property:

∇(F pV) ⊆ F p−1V ⊗ Ω1 for every p.

We call this property the Griffiths transversality.

We are now ready to define the main object of this chapter:

Definition 1.2.4. Let X be complex manifold and R be a ring such
that Z ⊆ R ⊂ R. A variation of R-Hodge structures of weight k, is a local
system VR of R-modules of finite rank and a filtration F• of V = V⊗OX by
holomorphic subbundles such that:

i) Griffiths transversality holds

ii) For every x ∈ X, (Vx,F•
x) is a Hodge structure of weight k.

A variation V of Hodge structures is called polarized, if there exists a
locally constant bilinear form Q on V such that (Vx,F•

x , Qx) is a polarized
Hodge structure of weight k for all x ∈ X
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1.3. The generic Mumford-Tate group

A smooth family of algebraic manifolds gives rise to a family of Hodge
structures. The notion of Mumford-Tate groups also can be generalized to
families:

Proposition 1.3.1. Let S be a connected complex manifold. Let V be
a variation of Q-Hodge structures of weight k over S. Then there exists a
countable union Σ ⊂ S of submanifolds such that all MT (Vs) coincide for
s ∈ S \ Σ. For all s′ ∈ S and s ∈ S \ Σ it holds that MT (Vs′) ⊂ MT (Vs).

Proof. This was originally proved in [CDK]. See also [M2].

The group M = MT (Vs) for s ∈ S \Σ is called the generic Mumford-Tate
group.

Like the Mumford-Tate group, the monodromy group can also be defined
for a variation of Hodge structures.

Definition 1.3.2. Let (V ,F•, Q) be a polarized variation of Hodge struc-
tures over a connected complex manifold S. For s ∈ S, we define Mon0(Vs)
to be the identity component of the Zariski closure of the monodromy group
in GL(Vs).

There is a close relation between the monodromy group and the Mumford-
Tate group of a variation of Hodge structures. We will describe this relation
below and will use it in the next chapters extensively:

Proposition 1.3.3. With the assumptions and notations as in the pre-
vious definition and proposition 1.3.1, Mon0(Vs) is a normal subgroup of
MT der(Vs) for all s ∈ S \ Σ. If there exists a point s ∈ S such that MT (Vs)
is abelian (hence a torus), then we have :
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Mon0(Vs) = MT der(Vs).

for all s ∈ S \ Σ.

Proof. The first statement is proved by Deligne in [D2]. The second one
even holds in a more general setting of mixed Hodge structures and is proved
by André in [A].

According to the last proposition, the groups Mon0(Vs) coincide for all
s ∈ S \Σ. We therefore omit s and simply write Mon0(V) as the monodromy
group of the variation of Hodge structures.

Recall that a point that satisfies the last condition of the above propo-
sition, namely a point s with MT (Vs) abelian, is called a CM point. The
study of CM points is one of our main goals in these notes and we will come
back to them in chapter 3.
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Chapter 2. Shimura Varieties

2.1. Premilinaries

In this chapter we are going to review the basic concepts and constructions
of Shimura varieties. In the future chapters we will be working with these
constructions and their applications. Since one of the main objects in the
definition of a Shimura variety is a reductive algebraic group, we first recall
some definitions and well-known properties of algebraic groups.

Definition 2.1.1. Let G be a Q-algebraic group. Let R(G) be the radical
of G. That is, R(G) is the maximal connected normal solvable algebraic
subgroup of G. Let Ru(G) be the set of unipotent elements inside R(G). We
say that:

• G is reductive if Ru(G) = {1}.

• G is semisimple if R(G) = {1}

• G is simple is {1} and {G} are the only connected normal algebraic
subgroups of G.

By [D3], 1.1, there exists exact sequences

1 → Gder → G → T → 1

1 → Z(G) → G → Gad → 1

1 → Z(Gder) → Z(G) → T → 1

Where T is the maximal commutative quotient of G and Gder is the
derived group of G i.e. the group generated by the commutators of G.

For our future use, the following proposition is of key importance:
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Proposition 2.1.2. Let G be a reductive Q-algebraic group. Then Gad

is a semisimple group with trivial center.

Proof. By [D3] 1.1, the above exact sequences induce an isogeny Gder →
Gad with kernel Z(Gder). The proposition then follows from a more general
fact that if G is a connected algebraic group, then Z(G)0 and Gder are respec-
tively a torus and a semisimple group and moreover G is the almost direct
product of these two subgroups.

The next important notion for the definition of a Shimura variety is the
notion of Cartan involution which we define here:

Definition 2.1.3. Let G be a connected R-algebraic group and θ be an
involution of G. We say that θ is a Cartan involution if the following Lie
group:

Gθ(R) = {g ∈ G(C)|g = θ(g)}

is a compact subgroup of G(C).

The following theorem reveals the importance of Cartan involutions in
characterising the reductive groups.

Theorem 2.1.4. An R-algebraic group G is a reductive group if and
only if it has a Cartan involution in which case any two Cartan involutions
are conjugate to each other by an inner automorphism.

Proof. See [S].

Remark 2.1.5. Let G be a connected algebraic group over R such that
G(R) is compact. Then it follows from the definition that the identity map id
is a Cartan involution because Gid(R) = G(R) and this Lie group is compact
by assumption. It follows from the previous theorem that G is a reductive
algebraic group. Moreover, this argument shows that any compact linear
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R-algebraic group is a reductive group having the identity map as a Cartan
involution. Since by theorem 2.1.4, any two Cartan involutions are conjugate,
this shows that id is the unique Cartan involution of G.

Now we are going to define the Shimura datum which is a buliding block
of Shimura varieties.

Definition 2.1.6. A Shimura datum is a pair (G,X) where G is a re-
ductive Q-algebraic group and X is a conjugacy class of homomorphisms
h : S→ GR satisfying the following conditions:

1) The morphism induced by h on the Lie group Lie(G)C acts only by
the characters z

z
, 1 and z

z
.

2) The map adoh(i) is a Cartan involution on Gad
C .

3) Gad has no Q-factor H such that H(R) is compact.

Remark 2.1.7. The above conditions for a Shimura datum can be
rephrased as follows:

1′) The representation induced by h on Lie(G)C corresponds to a Hodge
structure of type (1,−1)⊕ (0, 0)⊕ (−1, 1)

2′) The restriction of the inner automorphism of h(i) is a Cartan involu-
tion on Gder. This is because of the fact that Gder and Gad are isogenous and
hence their compact subgroups correspond.

3′) Gad has no Q-factor H to which ad(h(i)) projects trivially. The equiv-
alence of this and 3) above is just the content of remark 2.1.5.

2.1.8. Examples

• The simplest example of a Shimura datum is given by a torus. Let T
be a torus over Q. Consider a homomorphism h : C× → T (R). As T is a
commutative algebraic group, h is fixed by the conjugation action and hence
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it makes sense to consider the class {h} consisting only of h. All of the above
conditions are then trivially satisfied and hence we get a Shimura datum by
definition. This example, although simple, turns out to be very useful for
our study of CM abelian varieties and special points.

• Set G = GL2,Q and consider the set X of conjugacy classes of homo-

morphisms h0 : S → GL2,R, h0(a + bi) =

(
a b
−b a

)
. Then (G, X) has the

structure of a Shimura datum and there is a bijection X ∼= C \ R given by
h0 7→ i.

Definition 2.1.9. Let (G,X) and (M, Y ) be two Shimura data. A
morphism of Shimura data between (M, Y ) and (G,X) is a morphism f :
M → G of algebraic groups that respects the classes X and Y . In other
words, if y : S → MR is in Y , then x = f ◦ y : S → GR lies in X. f will be
called a closed immersion of Shimura data, if map f : M → G is a closed
immersion of algebraic varieties.

Hermitian symmetric domains

One of the most important properties of Shimura data is that they give
rise to Hermitian symmetric domains. These will be used also in the con-
struction of Shimura varieties which are the main ingredients of this chapter.
Regarding this, we will first need to define the Hermitian symmetric domains
and recall their basic properties. Throughout this section, M will always be
a C∞ manifold.

Definition 2.1.10. An almost complex structure on a C∞ manifold M is
a smooth family (Jp)p∈M : TpM → TpM of automorphisms of tangent spaces
TpM , such that J2

p = −1 for every p ∈ M .

From the definition, it follows that each Jp induces a complex structure
on each TpM . We call such a pair (M,J) an almost complex manifold.
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Definition 2.1.11. A smooth 2-tensor field on M is a family of bilinear
maps gp : TpM × TpM such that for all smooth vector fields X and Y the
map p → gp(X, Y ) is smooth. If in addition, each gp is a is symmetric and
positive-definite for p ∈ M , then the 2-tensor field g is called a Riemannian
metric on M.

Definition 2.1.12. If (M,J) is a connected almost complex manifold,
a Hermitian metric on M is a Riemannian metric g such that g(JX, JY ) =
g(X,Y ) for every vector field X and Y . M equipped with such a Hermitian
metric is called a Hermitian manifold.

From this definition it follows that each gp is the real part of a unique
Hermitian form hp on each TpM .

We are now ready to define the Hermitian symmetric spaces:

Definition 2.1.13. A Hermitian symmetric space is a Hermitian man-
ifold such that for each p ∈ M , there is an involution sp such that p is an
isolated fixed point of sp.

The relation between Hermitian symmetric spaces and Shimura data is
given as follows: for h : S → GR a Shimura datum, let Kh be the stabilizer
of h under conjugation. Then the space D = G(R)/Kh(R) parametrizes
the elements of the conjugacy classes of h. It turns out ([H], II. §4) that
D is a C∞ manifold and the elements of G(R) are diffeomorphisms of D.
Now from condition 1 of the definition of a Shimura datum, it follows that
the action of h(S) on Lie(G)C gives a decomposition into eigenspaces of
the types (−1, 1) ⊕ (0, 0) ⊕ (1,−1). The intersection of the (0, 0)-piece
with Lie(GR) coincides with Lie(Kh(R)). Therefore the real vector space
Th(D) = Lie(G(R))/Lie(Kh(R)) inherits a complex structure Jh. Now the
relation between Shimura data and Hermitian symmetric spaces is stated in
the following proposition:

Proposition 2.1.14. Each connected component of D is a Hermitian
symmetric space.
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Proof. [R], proposition 1.4.8.

2.2. Shimura varieties

Let (G, X) be a Shimura datum and let Af be the ring of finite adeles. If
K is a compact open subgroup of G(Af ), consider the double coset:

ShK(G,X) = G(Q) \X × (G(Af )/K)

Where the action is given by q(x, a)k = (qx, qak).

To understand the structure of ShK(G,X) better, we need the following
definition:

Definition 2.2.1. Let G be a Q-algebraic group. A subgroup Γ of G(Q)
is called arithmetic, if Γ is commensurable with G(Z). That is, if Γ ∩ G(Z)
is of finite index in both Γ and G(Z).

Lemma 2.2.2. Let K ⊆ G(Af ) be a compact open subgroup. Then
Γ = K ∩G(Q) is an arithmetic subgroup.

Proof. See [Mi] Proposition 4.1.

Proposition 2.2.3. Let K ⊆ G(Af ) be a compact open subgroup and
C = G(Q) \G(Af )/K. Set Γ[g] := gKg−1 ∩G(Q)+ for [g] ∈ C. Then:

ShK(G,X) = t[g]∈CΓ[g] \D+.

Proof. [Mi], Lemma 5.13.
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Now if K ′ ⊆ K are compact open subgroups, there is a natural morphism
ShK′(G,X) → ShK(G,X).

Definition 2.2.4. The Shimura variety Sh(G,X) associated to the
Shimura datum (G,X) is defined to be the limit:

Sh(G,X) = lim←−KShK(G,X).

Where the limit is taken over all compact open subgroups K of G(Af ).

In order to determine the algebraicity of ShK(G,X) (and hence Sh(G,X))
we need the following famous theorem due to Baily and Borel :

Theorem 2.2.5. Let D be a bounded symmetric domain and Γ an
arithmetic subgroup of Aut(D)+. The quotient Γ \ D has the structure of
a complex quasi-projective algebraic variety. If Γ is moreover torsion-free,
then this structure is unique.

Proof. [BB].

Corollary 2.2.6. The Shimura variety ShK(G,X) as constructed above
has the structure of a complex algebraic variety.

Proof. Combine proposition 2.2.3 with the Baily-Borel theorem above.

Remark 2.2.7. Note that a morphism f : (M, Y ) → (G, X) of Shimura
data as defined in 2.1.9 gives rise naturally to a morphism Sh(f) : Sh(M, Y ) →
Sh(G,X) of Shimura varieties. Also, if K ′ ⊆ K are compact open sub-
groups, then by definition of a Shimura variety, there is a natural morphism
ShK′,K : ShK′(G,X) → ShK(G,X).

Let γ ∈ G(Af ). Given compact open subgroups K, K ′ with K ′ ⊆ γKγ−1,
we define another important morphism of Shimura varieties as follows:
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Definition 2.2.8. Let Tγ = [.γ] : ShK′(G,X) → ShK(G,X) be given on
C-vlaued points by Tγ[x, aK ′] = [x, aγK]. We call Tγ, the Hecke correspon-
dence associated with γ.

2.3. Shimura subvarieties of Ag

Let Ag be the moduli stack of complex principally polarized abelian va-
rieties. In this section we are going to show that Ag has the structure of a
Shimura variety. At least in this thesis, this Shimura variety is the most im-
portant one as we will be mainly working with this Shimura variety and it’s
Shimura subvarieties. We will see that Shimura subvarieties of this Shimura
variety have imoprtant and rich arithmetic and geometric peoperties. Let us
first prove the following theorem:

Theorem 2.3.1. Ag has the structure of a Shimura variety.

Proof. The proof will be sketchy. For more details see [MO] or [Mi].
We have seen in chapter 1 that every polarized Hodge structure on a Q-
vector space of dimension 2g, gives rise to a homomorphism h : S→ Gsp2g,R.
The space of conjugacy classes of h, can be identified with Hg , the Siegel
upper half space. The pair (Gsp2g,Q,Hg) is a Shimura datum. Indeed, for
G = Gsp2g,Q, Gad is Q-simple and Gad(R) is not compact so condition 3 of
definition 2.1.6 is satisfied. To see that adJ induces a Cartan involution on
Gad, note that J2 = −1 lies in the center of Sp2g(R) and ψ is a J-polarization
for Sp2g,R. Then [Mi], proposition 1.20 shows that adJ is a Cartan involution,
which is condition 2 of definition 2.1.6 . Finally, the Lie algebra of G is as
follows:

Lie(G) = {f ∈ End(V )|ψ(f(u), v) + ψ(u, f(v)) = 0}

The decomposition of V (C) = V −1,0 + V 0,−1 gives a corresponding de-
composition on End(V ) on which the action of f satisfies condition 1 of
definition. These observations show that in fact (G,X) is a Shimura datum.
We show that Ag is the associated Shimura variety. To this end, define a
compact open subgroup Km ⊆ G(Af ) as:
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Km = {γ ∈ G(V ⊗ Ẑ, φ)|γ ≡ 1(modm)}

Denoting by Ag,m,Q as the moduli of abelian varieties equipped with a
level m ≥ 3 structure, we get as isomorphism β : Ag,m,Q → ShKm(G2g,Q,Hg)
as follows:

If (A, λ, α) is a C-valued point of Ag,m,Q corresponding to an abelian
variety A with peincipal polarization λ and level structure α, the polarization
λ gives a polarization ψ : H × H → Z(1) for H = H1(A,Z). The Hodge
structure on H, corresponds to a point x ∈ Hg. A level structure corresponds
to an isomorphism A[m] ∼= H/mH commuting with the Weil pairing (i.e.

such that eλ(P,Q) = exp(ψ(y,z)
m

) where y, z ∈ H/mH are representatives of
P, Q ∈ A[m](C)). The level structure α then corresponds to an element

γKm ∈ G(V ⊗ Z/mZ, ψ) = G(V ⊗ Ẑ, ψ)/Km. The isormophism β send
(A, λ, α) to [x, γKm] ∈ ShKm(G2g,Q,Hg).

Note that the above proof shows that not only Ag, but also Ag is a
Shimura variety.

We have seen that Ag can be realized as a Shimura subvariety. It therefore
makes sense to define the Shimura subvarieties of Ag. Although as already
mentioned, we will be mainly working with this Shimura variety and it’s
subvarieties, we will define the notion of a Shimura subvariety in the general
setting.

Definition 2.3.2. A closed subvariety Z ⊆ ShK(G,X) is called a
Shimura subvariety (or special subvariety), if there exist a Shimura datum
(M, Y ) and a morphism of Shimura data f : (M,Y ) → (G,X) and an ele-
ment γ ∈ G(Af ), such that Z is an irreducible component of the image of
the map:

Sh(M,Y )
Sh(f)−−−→ Sh(G,X)

Tγ−→ Sh(G,X) → ShK(G,X)

Where Tγ is the Hecke transform associated with γ defined in definition
2.2.8.
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An alternative definition of a Shimura subvariety is as follows: Let M be
a subgroup of G. Define YM ⊆ X as:

YM = {x : S→ GR|x ∈ X, x(S) ⊆ MR}

Definition 2.3.3. A closed subvariety Z ⊆ ShK(G,X) is called a
Shimura subvariety if there exist a subgroup M of G, an irreducible com-
ponent Y + of YM and an element γ ∈ G(Af ), such that Z is the image of
Y + × {γK} in ShK(G,X).

For the equivalence of the above two definitions, see [M2], remark 2.6.

Example 2.3.4. Let G = Gsp2g(Q). As we have seen in 2.3.1, the
Shimura variety associated to G isAg. Let (A, λ, α) be a principally polarized
abelian variety with level m ≥ 3 structure. Set D = End0(A). Using the
definitions above we get a Shimura subvariety of Ag as follows: There is a
Hodge structure on H = H1(A,Z). This Hodge structure corresponds to a
point h0 in Hg. Let M = Gsp2g,Q ∩ GLD(HQ) and define YM as in 2.3.3.
Of course the homomorphism h0 : S → GR factors through MR. Now there
is a connected component Y + of Hg containing h0. As explained earlier,
the level structure on A corresponds to a class γKm ∈ G(V ⊗ Z/mZ, ψ) =

G(V ⊗ Ẑ, ψ)/Km. Define the subvariety S as the image of Y + × {γKm}
in ShKm(Gsp2g,Q, ψ). By definition, this subvariety is a Shimura subvariety.
It is in fact the largest irreducible subvariety in Ag which contains A and
over which the action of D extends to the whole universal family of abelian
varieties. See [MO], Example 3.12.
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2.4. Totally geodesic subvarieties

In this section we define the totally geodesic subvarieties of Shimura sub-
varieties. We will see some examples of them arising from families of abelian
covers of P1 later. We will also see that there is a close relation between
totally geodesic and Shimura subvarieties.

Definition 2.4.1. Let Z ⊆ ShK(G,X) be an irreducible subvariety.
There is a connected component X+ of X and an element γK such that Z
is contained in the image of X+ × {γK} in ShK(G,X). Z is called a totally
geodesic subvariety if there exists a totally geodesic subvariety Y ⊆ X+ (as
defined in [H], 1 §14) such that Z is the image of Y × {γK} in ShK(G,X).

To understand the relation between Shimura subvarieties and totally
geodesic subvarieties we first need the notion of a CM abelian variety. This
is defined as:

Definition 2.4.2. An abelian variety A of dimension d is called a CM
abelian variety or an abelian variety of CM type if there are number fields
Ki with ⊕Ki ⊆ End0(A) such that [Ki : Q] = 2d.

Let x ∈ Ag. The point x corresponds to a Hodge structure of type
(−1, 0) ⊕ (0,−1) and hence to a point of Hg given by a homomorphism
h : S→ Gsp2g,R which gives the Hodge structure. Let MTx be the Mumford-
Tate group of this Hodge structure (definition 1.1.8).

Proposition 2.4.3. An abelian variety A corresponding to x ∈ Ag is a
CM abelian variety if and only if x is an irreducible Shimura subvariety of
dimension zero.

Proof. It is shown in [Mu] that a CM abelian variety corresponds to
a point x as above such that MTx is a torus. On the other hand, we have
already seen (2.1.8) that a torus gives rise naturally to a Shimura datum (and
hence to a Shimura variety of dimension zero). Conversely, if x is a Shimura
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subvariety of dimension zero then M = MTx where M is a subgroup in
definition 2.3.3 and there exists a zero-dimensional irreducible component
Y + ⊆ YM (i.e. a point) such that x is the image of Y + in Ag. Since Y + is
zero dimensional, it follows that the homomorphism x : S→ MR is fixed by
conjugation. Now let C be the centralizer of x(S) which is connected and
reductive, see [Sp], lemma 15.3.2. If T is a maximal torus of C, we have that
x(S) ⊆ T . Since any other Torus containing T will also centralize x(S), it
follows that T is actually a maximal torus of GR. By a general fact from
group theory, there is an element g ∈ G(R) and a maximal torus S over Q
such that gTg−1 = SR. But then x = g.x : S→ GR factors through SR which
shows that x is a CM point.

The following theorem due to Moonen explains the relation between
Shimura and totally geodesic subvarieties.

Theorem 2.4.4. A totally geodesic subvariety of Ag is a Shimura sub-
variety if and only if it contains a CM point.

Proof. See [M2], theorem 4.3.

Remark 2.4.5. The above theorem shows that if a totally geodesic
subvariety contains a CM point, then it is algebraic and hence a Shimura
variety. If Z ⊆ Ag is a Shimura subvariety and if M is the group in definition
2.3.3, then the set of CM points in YM are stable under the action of M(R),
as M is an abelian subgroup. Since M(Q) is dense in M(R), the Shimura
subvariety Z will not just contain one, but a dense subset of CM points.
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Chapter 3. Shimura subvarieties in the Torelli

locus

3.1. Preliminaries

Let Mg be the coarse moduli scheme of smooth complex curves of genus
g and let Ag be the moduli space of principally polarized complex abelian
varieties of dimension g. There exists a well-known morphism, the so called
Torelli morphism j : Mg → Ag which assigns to a curve C, it’s Jacobian
(J(C), λ) as a principally polarized abelian variety (ppav) with polarization
λ. As we will be always working with Ag and abelin varieties with principal
polarization, we omit the polarization λ and only write J(C) as the Jacobian
of C. Torelli’s theorem asserts that this morphism is injective, see [We]. It
is shown (see [OS]) that the Torelli morphism is in fact an immersion. Note
that instead of Ag and Mg we could have worked with moduli stacks Mg and
Ag and we again have a Torelli morphism j : Mg → Ag. In this case, it is no
longer true that j is an immersion as it is ramified over the hyperelliptic locus.
However, away from the hyperelliptic locus and restricted to the hyperelliptic
locus again the Torelli morphism is an immersion. We call the image of the
Torelli map j(Mg), the open Torelli locus and denote it by T ◦

g . By it’s
definition, it consists of the Jacobians of smooth curves of genus g. The
closure of the open Torelli locus inside Ag is called the closed Torelli locus,
which we denote by Tg. It can be precisely shown what the boundary of Tg\T ◦

g

is. Before showing this we show how the Torelli morphism can be extended
to the locus of singular curves. The Deligne-Mumford compactification Mg

of Mg parametrizes stable curves of genus g. The boundary ∆ = Mg \Mg

is a normal crossing divisor with components ∆i for 0 ≤ i ≤ bg
2
c. ∆ is

the locus of stable curves with exactly one node (and in fact the locus of
curves with δ nodes is of pure codimension δ in Mg). The components of ∆
parametrize certain curves as follows (see [HM], §2): ∆0 is the closure of the
locus of irreducible curves with a single node. For i 6= 0, ∆i is the closure
of the locus of curves that have exactly two connected components of genera
i and g − i meeting at an ordinary double point. The complement of the
locus ∆0 corresponds to the locus Mct

g of curves of compact type. That is,
the locus of curves whose connected components of Picard scheme are proper
which is equivalent (over C) to say that the irreducible components of the
curve are non-singular, the graph of components is a tree and the sum of the
genera is equal to g. Now, if C is a curve of compact type in the above sense,
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the identity component J(C) = Pic0(C) is an abelian variety and hence the
Torelli morphism can be extended to a morphism

j : Mct
g → Ag

Note that similarly we have a Torelli morphism j : M ct
g → Ag on the level

of coarse moduli schemes and by the above description, in fact Tg = j(M ct
g ).

Now, we have the following theorem:

Theorem 3.1.1. The boundary Tg \ T ◦
g consists precisely of the locus of

decomposable Jacobians. That is, the locus of Jacobians that are isomorphic
to a product of lower dimensional abelian varieties as ppav.

Proof. In fact by the above discussion, a point lies in Tg\T ◦
g if and only if

the corresponding abelian variety is that of a reducible curve of compact type.
i.e. curves C with two connected components meeting in one ordinary double
point. In this case, J(C) is isomorphic to the product of Jacobians of the
connected components. Conversely, if the Jacobian of a curve C decomposes
as a product of ppav, then it’s theta divisor is reducible and hence it can not
be the Jacobian of a non-singular irreducible curve.

The main purpose of these notes is to investigate the existence of Shimura
subvarieties that are contained in the Torelli locus in the sense that will be
made precise below:

Definition 3.1.2. Let Z be a Shimura subvariety of Ag. We say that Z
lies in the Torelli locus, if Z ⊂ Tg and Z ∩ T ◦

g 6= ∅.

So in particular, the Shimura subvariety should not lie entirely in the
boundary of the Torelli locus. This condition is crucial, because one can
easily construct a lot of Shimura subvarieties lying entirely in the boundary
for every g ≥ 2 (see [MO], remark 4.3).

The quest of Shimura subvarieties (or special subvarieties or subvarieties
of Hodge type) contained generically in the Torelli locus Tg and not fully
contained in the boundary, is a longstanding problem which can be traced
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back at least to Shimura (see [Sh]). Although not realized then, more than
two decades later, Coleman formulated his famous conjecture suggesting that
for g ≥ 4, there are only finitely many curves C of genus g over the complex
numbers whose Jacobian J(C) is an abelian variety of CM type. See [C].
Shortly after that, de Jong and Noot disproved that conjecture by finding
examples of families of curves which give rise to Shimura subvarieties in
Ag lying generically in the (open) Torelli locus and intersecting the (closed)
Torelli locus non-trivially. The families that they found -which were also
found in the aforementioned article of Shimura- were all families of cyclic
coverings of P1. Their examples were of fiber genus 4 and 6 and they did
explain the relation between their examples and the Coleman conjecture.
Later, examples of higher genera (g = 5 and g = 7), again for families of
cyclic coverings of P1, were found by Rohde [R]. Note that there are also
several other results in this direction. Viehweg and Zuo for example studied
in [VZ1] the occurrence of Shimura curves in the moduli stack of principally
polarized abelian varieties relating it to Areklov equalities. See also [MVZ1]
and [MVZ2]. Moonen completed the list of Shimura varieties arising from
families of cyclic coverings of P1 in [M1]. Note that in [M1] Moonen did
not find any new example of Shimura families and all of the examples there
were already found by Rohde in [R]. But Moonen Showed that there are no
further examples in the locus of cyclic covers of P1. The fiber genus of these
examples are also bounded by 8. This suggests a correction of the Coleman
conjecture in the following way:

The (corrected) Coleman conjecture. For g ≥ 8, there are only
finitely many smooth projective curves C over C of genus g such that J(C)
is an abelian variety of CM type.

Note that according to remark 2.4.5, every Shimura subvariety of Ag

contains a dense subset of CM points. So we see that the Coleman conjecture
is related to the following conjecture and in fact disproving this conjecture
will disprove the Coleman conjecture:

Conjecture (C). For g ≥ 8, there is no positive-dimensional Shimrua
subvariety contained in Tg such that Z ∩ T ◦

g is nonempty.
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Another famous conjecture which links the above conjectures is the André-
Oort conjecture:

André-Oort conjecture. Let Z ⊆ Ag be a closed irreducible algebraic
subvariety. If the set of CM points on Z is dense (in the Zariski topology),
then Z is a Shimura subvariety.

We remark that if one assumes the André-Oort conjecture to be true,
then the Coleman conjecture is even equivalent to conjecture (C). This can
be shown easily: if there are infinitely many CM points in T ◦

g for some g ≥ 8,

consider the closure CM(T ◦
g ) in Tg of the infinite set of CM points on T ◦

g .
Since CM(T ◦

g ) is infinite by assumption, it’s closure contains a subvariety
of positive dimension, which by Anré-Oort should be a Shimura subvariety,
contradicting conjecture (C).

3.2. Families of cyclic coverings of P1 and some examples

In this section we will explain shortly the results of [M1] about Shimura
subvarieties in Ag arising from families of cyclic covers of P1 and construct
some examples of them which contain Shimura subvarieties of positive di-
mension . In the next section, we describe more generally the construction
of abelian coverings of P1 and their families in detail, see section 3.3. For
the moment, we remark that a cyclic cover of P1 of degree N is given by an
(affine) equation :

wN =
∏s

j=1(z − zj)
rj

The rj give the monodromy data of the cover arounf the branch point zj.

By varying the branch points in (P1)s \ ∆̃ = {(z1, ..., zs) ∈ (P1)s|zi 6= zj, i 6=
j}, we obtain a smooth family of cyclic covers of P1. We will refer to the
pair (N, (r1, ..., rs)) as the ramification data of the family or to the family as
being given by this ramification data. Such a family gives rise to a subvariety
Z = Z(N, s, r) of Ag such that dimZ = s − 3. The cases where Z is a
Shimura subvariety of Ag are completely classified in [M1]. His classification
however, does not rule out that the variety Z contains a Shimura subvariety.
In fact, in [O], Oort asks the following question:
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Question (Question 7.8 in [O]). Let the situation be as above such
that Z = Z(N, s, r) is not a special (Shimura) subvariety. Can we find a
situation where Z contains a positive dimensional Shimura subvariety?

In this section we will give some examples of non-Shimura varieties Z
containing positive dimensional Shimura subvarieties, so we are going to give
some answers to the above question.

Example 3.2.1. Consider the family f : C → T of cyclic covers of
P1 given by the ramification data (12, (4, 6, 7, 7)). This family is a Shimura
family as is shown in the paper of Moonen [M1]. Take a t ∈ T . The fiber Ct

is a cyclic Galois cover of P1. The Galois group of Ct → P1 is Z/12Z which
contains a normal subgroup H ∼= Z/6Z. Now this cover factors as

Ct → Xt → P1

The quotient cover Ct → Xt is a Galois cover with Galois group H ∼=
Z/6Z. We have Xt

∼= P1 as the quotient is corresponding to the equation
y2 = (x − x1)(x − x2). The cover Xt → P1 has Galois group Z/2Z and so
has degree 2 and is branched above 2 points.

The cover Ct → Xt(∼= P1) is ramified at 6 points with ramification in-
dices 1, 1, 2, 2, 3, 3,. This shows that our original family f : C → T is a
1-dimensional subfamily of the 3-dimensional family of cyclic covers given
by the ramification data (6, (1, 1, 2, 2, 3, 3)). It is quite easy to see from the
Moonen’s list that this family is not a Shimura family. Indeed, for this family
dimS(µm) = 5 6= 3, so by the results of Moonen, this family is not Shimura.

Note that the subfamily here is given over the closed subset (of (P1)6 \ ∆̃)
given by a set Γ of orbits of the Z/2Z-action on P1.

Therefore we have found a 3-dimensional non-Shimura family of cyclic
covers which contains a 1-dimensional Shimura subvariety.

Similarly one finds out that:
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• The family given by the ramification data (2, (1, 1, 1, 1, 1, 1, 1, 1)) (the
universal family of hyperelliptic curves of genus g = 3) which is not a Shimura
family (cf. [M1]) has a subfamily isomorphic to the family (4, (1, 1, 2, 2, 2)).
So in this example Z contains a shimura surface.

• The family (4, (1, 1, 1, 1, 2, 2)) (a family of cyclic covers of fiber genus
g = 5) has a subfamily isomorphic to the family (8, (5, 5, 4, 2)). In this case
dimZ = 3 and Z contains a Shimura curve.
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3.3. Families of abelian coverings of P1

As explained earlier, Moonen gave a full classification of Shimura subvari-
eties arising from families of cyclic coverings of P1 in [M1]. In [MO] Oort and
Moonen asked whether one can obtain further Shimura subvarieties in the
Torelli locus by taking families of abelian coverings of P1 with a non-cyclic
Galois group. They also gave some examples of families of abelian covers of
P1 which give rise to Shimura subvarieties in Tg. In this article we try to
generalize their methods and classify Shimura subvarieties arising from fam-
ilies of abelian covers of the projective line. We fix integers N ≥ 2 and s ≥ 4
and an s-tuple (z1, ..., zs) and consider a family of abelian covers Yt → P1

with an abelian Galois group G which is isomorphic to the column span of
the matrix A and hence is a subgroup of the group (Z/NZ)m. By varying
the branch points we obtain a subvariety whose closure Z (inside Ag) lies in
Tg. Of course Z will be of dimension s− 3 where s is the number of branch
points of the covering and it lies in the Torelli locus cutting the open Torelli
locus non-trivially. We then try to classify the cases where Z is a Shimura
subvariety. Our method here is a generalization of that of Moonen-Oort [MO]
and Moonen [M1]. Let us first recall the basic notions and constructions of
abelian coverings of P1 and their families.

Construction of abelian covers of P1 and their families

An abelian cover is determined by a collection of equations in the following
way: Consider an m× s matrix A = (rij) whose entries rij are in Z/NZ for
some N ≥ 2. Set

wN
i =

∏s
j=1(z − zj)

r̃ij for i = 1, · · · ,m

Where r̃ij is a lift of rij to Z∩ [0, N). Denote by Ã = (r̃ij) and call it the
lifted matrix of A. We impose the condition that the sum of the columns are
zero. This implies that the cover is not ramified over infinity. The matrix A
will be called the matrix of the covering. Note that our notations here are
mostly that of [W]. Also we consider the row and column spans of the matrix
A as modules over the ring Z/NZ and so all of the operations with rows and
columns will be carried out in the ring Z/NZ, i.e. it will be considered modulo
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N . By the way, sometimes for preventing confusions we use the symbol []N
to show in which ring we are working and for example write [rij]N instead of

rij. For each 1 ≤ i ≤ m, the function wi is an element of C(z). The abelian
cover, is then the Riemann surface with function field C(z)[w1, ..., wm]. It
can easily be seen that any Galois cover of P1 with abelian Galois (or deck)
group is obtained in this way from a certain matrix A. The local monodromy
at the branch point zj is given by the column vector (r1j, ...., rmj)

t and thus
the order of ramification at zj is N

gcd(N,r̃1j ,..,r̃mj)
. Using this and the Riemann-

Hurwitz formula, the genus g of the cover is then given by:

g = 1 + d( s−2
2
− 1

2N

∑s
j=1 gcd(N, r̃1j, ..., r̃mj))

Where d is the degree of the covering. Note that the degree d of the
covering (or equivalently the order of the Galois group) can be realized as
the size of the row span (equivalently column span) of the matrix A, see [W].

Next we turn to define families of curves which are abelian coverings of
the projective line.

Let U ⊂ (A1)s be the complement of the big diagonals. i.e. U = Ps =
{(z1, ...., zs) ∈ (A1)s | zi 6= zj∀i 6= j}. Over this open affine set, we define a
family of abelian covers of P1 to have the equation:

wN
i =

∏s
j=1(z − zj)

r̃ij for i = 1, · · · ,m.

Where the tuple (z1, ..., zs) varies in U defined above and r̃ij is a lift of
rij to Z ∩ [0, N) as before. In this way each wi defines a cyclic cover of P1.
If X is the total space of the above family of abelian covers and Xt is a
fiber of this family, there exists an open subset T ⊂ U and a smooth proper
curve f : C → T with an action of the Galois group G and a G-equivariant
morphism g : C → XT such that for every t ∈ T , the morphism on fibers
gt : Ct → Xt is a normalization.

If f : C → T is a family of abelian covers constructed as above, we write
J → T for the relative Jacobian of C over T . This family gives a natural map
φ : T → Ag. Let Z = Z(N, s, r) be the closure φ(T ) in Ag. Such a family
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therefore gives rise to a closed subvariety Z = Z(N, s, r) in the moduli space
Ag and we have dimZ = s − 3. This is because any three points on P1 can
be moved to the points 0, 1,∞. We call the subvariety Z, the moduli variety
associated to the family f : C → T .

If f1 : C1 → P1 and f2 : C2 → P1 are two abelian coverings of P1, we
say that they are equivalent if there exists an isomorphism g : C1 → C2

respecting the coverings i.e. f1 = f2 ◦ g. Two abelian covers (with the same
N) are equivalent if and only if A and A′ have the same row span. Based
on the notion of equivalence we can state the following description of abelian
Galois covers of P1:

Remark 3.3.1. There is a correspondence between the equivalence
classes of non-ramified Galois coverings f : R → P1 \ S with S = {z1, ..., zs}
and normal subgroups of π1(P1 \ S) with quotient isomorphic to G, See [V],
Theorem 5.14. In particular a Galois cover f : C → P1 branched above the
points S = {z1, ..., zs} corresponds to a surjection φ : π1(P1 \ S) ³ G. The
fundamental group π1(P1 \ S) is generated by the loops γj around zj with
only the condition that γ1...γs = 1 and the local monodromy around zj is
given by φ(γj).

3.4. The local system associated to an abelian cover

In this section we are going to represent an alternative construction of
abelian coverings using line bundles and local systems. This construction
resembles that of [EV] in the case of cyclic coverings of algebraic varieties.
Let G be a finite abelian group. We denote by µG the group of the characters
of G. i.e. µG = Hom(G,C∗). Consider a Galois covering π : X → P1 with
Galois group G. The group G acts naturally on the sheaves π∗(O) and
π∗(C) vis it’s characters i.e. f(gx) = χ(g)f(x) for χ ∈ µG. Under this
action the sheaf decomposes as direct sum of the eigensheaves corresponding
to the characters of G. Let L−1

χ = π∗(OX)χ and Cχ = π∗(C)χ denote the
eigensheaves corresponding to the character χ. Lχ is a line bundle and outside
of the branch locus of π, Cχ is a local system of rank 1. We will look more
closely on these sheaves and describe them in detail. Consider an abelian
cover given by the equation above which is branched along s points. For
j = 1, 2, .., s, let Gj be the corresponding inertia subgroup of zj. It is the
subgroup of G consisting of elements that pointwise fix the elements of the
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inverse image π−1(zj). It is a cyclic subgroup of G and it’s order is equal to
the ramification order of zj which we have seen is equal to N/gcd(r̃1j, .., r̃mj).
Let gj be the generator of Gj. If we identify G with µG, we can consider each
element of G as a root of unity and therefore we get that gj can be identified

with αj = e2πiµj where µj =
gcd(r̃1j ,..,r̃mj)

N
. We call the αj the local monodromy

data around zj. Now we can describe the eigensheaves Cχ and Lχ. Consider
a character χ of G. If χ(gj) = 1, then Cχ is a trivial local system at s.
Otherwise the fiber of Cχ is zero at s and the monodromy around s is given
by the root of unity χ(gj). Note that the fundamental group π1(P1\S) of the
punctured Riemann sphere is generated by loops γk around each zk satisfying
the relation γ1...γs = 1. This gives us the following description of the local
system Cχ:

Theorem 3.4.1. The monodromy representation of the local system
π∗C|P1\S is given by :

ρ : π1(P1 \ S) → GLN(C)
γk 7→ diag(e2πijµk |j = 0, 1, ..., N − 1).

Following [P1], we call the bundles Lχ and zj, j = 1, .., s considered as
divisors in P1 the building data of the cover. The reason is that these data
determine the cover completely. Let us now give a more explicit description
of the line bundles Lχ for an abelian cover given by the equations above.

Lemma 3.4.2. Let Ã = (r̃ij) be the lifted matrix of A. Let a =

(a1, ..., am) ∈ G ⊆ Zm
N and consider a.Ã = (α1, .., αs). The sheaf π∗(ω)

also decomposes with respect to the Galois group action. For the line bun-
dles Lχ corresponding to the character χ associated to the element a ∈ G
and π∗(ω)χ we have:

Lχ = OP1(
∑s

1 < αi

N
>), Where < x > denotes the fractional part of the

real number x.

and π∗(ω)χ = ωP1 ⊗ Lχ−1 = OP1(−2 +
∑s

1 < −αi

N
>)

Proof. Note that since the sum of the columns of the matrix A is zero,
the above sum is an integer. One can easily see that each section of the line
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bundle OP1(
∑s

1 < αi

N
>) is a function on which the Galois group acts as χ

and conversely any such section must be a function of the above form. The
rest of the lemma is [P2], Propostion 1.2.

Remark 3.4.3. Note that in the case of a cyclic cover of P1, the bundles
Lχ and local systems Cχ coincide with the bundles L(j) and the local systems
Lj of [R], as one expects naturally.

3.5. Shimura subvarieties of PEL type

One of the main kind of Shimura subvarieties that we encounter in our
investigation of families of abelian coverings of P1, are Shmura subvarieties
of PEL type. The name is an abbreviation of polarization, endomosphims
and level strcuture. This is justified by the fact that they are constructed
with the aid of certain endomorphisms of abelian varieties and in fact they
are moduli spaces of abelian varieties together with level structure and these
endomorphisms.

Let (B, ∗) be a semisimple Q-algebra with an involution ∗ and let (V, ψ)
be a symplectic (B, ∗)-module. That is, a B-module V with an alternating
Q-bilinear form ψ : V × V → Q such that:

ψ(bu, v) = ψ(u, b∗v) for all b ∈ B and u, v ∈ V .

Let G = Gsp(V, ψ) and set M = G ∩ GLD(V ). So M is the group of
B-linear symplectic similitudes of V . Consider the set Y of M(R)-conjugacy
classes of homomorphisms h : S → MR defining a Hodge structure of type
(−1, 0) ⊕ (0,−1) on V . This gives a Shimura datum (M, Y ). The inclusion
M ↪→ G, gives rise to a morphism (M, Y ) → (G,Hg) of Shimura data and
hence a morphism Sh(M, Y ) → ShKm(G,Hg) = Ag,m of Shimura varieties,
defining a Shimura subvariety S ⊆ Ag.

We will then see that there is a Shimura subvariety of PEL type that
contains our moduli subvariety Z of a family of abelian covers of P1.

3.6. Two Shimura subvarieties containing Z
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In this section we describe two naturally constructed Shimura subvarieties
of Ag associated to a family f : C → T of abelian covers that contain the
moduli variety Z.

Let µG be the group of characters of the abelian group G. The Jacobians
in the family J → T admit naturally an action of the group ring Z[µG]. This
action defines a Shimura subvariety of PEL type S(µG) in Ag that contains
Z. More precisely, by fixing a base point t ∈ T , there is a Hodge structure on
V = H1(Ct,Z) which correspondes to a point y ∈ Hg in the Siegel space. On
the vectore space VQ there is a natural action of F = Q[µG] and so VQ has
also the structure of an F -module. F is equipped with a natural involution
∗. The polarization φ on VQ satisfies.

φ(bu, v) = φ(u, b∗v) for all b ∈ F and u, v ∈ V .

Define the subgroup M as in 2.3.3:

M = Gsp(VQ, φ) ∩GLF (VQ)

If h0 : S→ Gsp2g,R is the Hodge structure on V = H1(Ct,Z) correspond-
ing to the point y ∈ Hg, then by the above F -action, this homomorphism
factors through the subvariety MR. Define

YM = {x : S→ GspR|x factores through MR}

Where each homomorphism x : S → GspR is in the conjugacy class of
the homomorphism h0. By the above, the point y lies in YM and there is
a connected component Y + ⊆ YM containing y and S(µG) is equal to the
image of the quotient map Hg → Gsp(V, φ)\Hg

∼= Ag.

Since Z ⊆ S(µG), we have that s−3 ≤ dimS(µG). Therefore if dimS(µG) =
s − 3, it follows that Z = S(µG) and hence Z will be a Shimura subvariety
of Ag. We can find the dimension of the variety S(µG) by finding the tan-
gent space to it at an arbitrary point. To do this we have to consider the
eigenspaces of the action of the group G on cohomology. The group G acts
naturally on the cohomology H1(Ct,C). There is also a natural action on
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H1,0 = H0(Ct, ΩCt). By the action of G, for every n ∈ G, there is an
eigenspace H0(Ct, ΩCt)(n). Put dn = dimCH

0(Ct, ΩCt)(n). We have:

Lemma 3.6.1. dimS(µG) =
∑

2n6=0 dnd−n + 1
2

∑
2n=0 dn(dn + 1).

Note that 2.0 = 0 in G and d0 = 0, so in fact the second sum in the right
hand side of the above equality is always meaningful and if |G| is an odd
number it will be zero.

Proof. We calculate dimTy(YM) at the point y ∈ Hg. The dimension
of tangent space of S(µG) at the point y will be equal to this number. to
compute dimTy(Hg), we note that:

Ty(Hg) = Homsym(F 1,0, VC/F
1,0) :=

{β : F 1,0 → VC/F
1,0 | φ(v, β(v′)) = φ(v′, β(v))∀v, v′ ∈ F 1,0}

i.e. the elements of Ty(Hg) are given by the symmetric homomorphisms
with respect to β from F 1,0 to VC/F

1,0, which means that each β is it’s own
dual via the isomorphisms induced by φ. The subspace Ty(YM) ⊂ Ty(Hg)
is therefore given by the elements β ∈ Homsym(F 1,0, VC/F

1,0), that respect
the F -action on V , that is, are FC-linear. Any such β can be written as the
sum

∑
βn, where βn : F 1,0

C,n → F 0,1
C,n is the induced action on the eigenspaces.

These βn should satisfy the relation

φn(v, β−n(v′)) = φ−n(v′, βn(v)).

Note that the map φn induced by the polarization φ, gives a duality
between F 1,0

C,n and F 0,1
C,(−n). So we have a duality between βn and β−n if

n 6= −n in G. If n = −n in G, i.e. if 2n = 0 in G, this gives a self duality
for βk. Therefore dimTy(YM) is equal to:

∑
2n 6=0 dnd−n + 1

2

∑
2n=0 dn(dn + 1) ¤

Construction 3.6.2. The construction of the second Shimura subvariety
that contains Z, is in fact Mumford’s construction of ”variety of Hodge type ”.
Namely, let M be the generic Mumford-Tate group of the family f : C → T .
For the definition and construction of generic Mumford-Tate group, look at
[M2] or [R]. Note that M is a reductive Q-algebraic group and let Sf be the
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natural Shimura variety associated to M . Sf is in fact the smallest Shimura
subvariety that contains Z and it’s dimension depends on the real adjoint
group Mad

R . Namely, if Mad
R = Q1 × ...×Qr is the decomposition of Mad

R to
R-simple groups, then dimSf =

∑
δ(Qi). Where δ(Qi) is the dimension of

the real group Qi which can be read from from table V of [H]. We just remark

that for Q = PSU(p, q), δ(Q) = pq and for Q = Psp2p, δ(Q) = p(p+1)
2

. In
particular, Z is a Shimura subvariety if and only if

∑
δ(Qi) = s − 3, i.e. if

and only if dimZ = dimSf = s− 3.

Computation of dn. We have seen that the dimension of the Shimura
variety S(µG) can be expressed in terms of the dimension of the eigensapaces
of Galois action on the cohomology of the fibers. We will now try to compute
these dimensions. Let n = (a1, .., am) ∈ G be an element. Since G is a finite
abelian group, the groups G and µG are isomorphic and hence their elements
correspond. Let χ ∈ µG be the character corresponding to n and Ã be the
lifted matrix of A, the matrix of the abelian cover, and the αi as in lemma
3.4.2 We have the following lemma:

Proposition 3.6.3. For an abelian cover C, we have:

dn = h1,0
χ (C) = −1 +

∑s
1 < −αj

N
>

Proof. By Proposition 1.3, we have that:

π∗(ω)χ = ωP1 ⊗ Lχ−1 = OP1(−2 +
∑s

1 <
αj

N
>)

It follows that:

h1,0
χ (C) = h0(π∗(ω)χ) = −1 +

∑s
1 <

αj

N
>. ¤

Note that it naturally follows that

d−n = h1,0
χ−1(C) = h0,1

χ (C) = −1 +
∑s

1 < −αj

N
>.
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Remark 3.6.4. There are other methods to compute the dimension of
the eigenspaces dn. Note that the abelian Galois group G of the covering is
a (possibly proper) subgroup of Zm

N and therefore we can show an element of
G as an m-tuple n = (a1, ..., am). The space of differential forms with respect
to the character n, is generated over C(z) by the form

∏
(z − zj)

−tj(−n)dz,

where tj(n) =<
∑m

i=1 air̃ij

N
> and < . > denotes the fractional part of a

real number. It is then straightforward to check that a meromorphic form
p(z)

∏
(z − zj)

−tj(−n)dz is holomorphic if and only if p(z) is a polynomial of
degree at most t(n) =

∑
tj(−n) − 1. So that the dimension of H1

n is equal
to t(n)(see [W], Lemma 2.6). Alternatively, one can use the Chevalley-Weil
fromula to compute the the dimension of the eigenspaces. See [CW].

3.7. Examples of Shimura varieties arising from abelian covers

In [M1], Moonen completed the list of Shimura subvarieties generated by
families of cyclic covers of P1 and proved that in the locus of cyclic covers
of P1, there is no more Shimura varieties. The fiber genus of the families
that he constructs is bounded by 8, confirming the bound given by the cor-
rected version of Coleman conjecture, see section 3.1 . In [MO], Oort and
Moonen give a table of 7 examples of abelian non-cylic Galois covers of P1,
that generate Shimura subvarieties in Ag. All of these examples satisfy the
equality dimS(µG) = s − 3. Instead of computing the dimension of S(µG)
with the formula above, their method to obtain these examples is based on
analyzing the decomposition of Jacobians up to the isogeny under the action
of group ring Q[µG]. Our argument here is more systematic and has the ad-
vantage that can be checked numerically on a computer. Checking whether
this equality holds is something that can be checked by a computer and by
using a computer program we have checked the examples which satisfy this
equality. However, our computer search for did not provide a further example
satisfying dimS(µG) = s− 3. We are able, however to prove that for s = 4,
the table contains all examples with dimS(µG) = s − 3 = 1 (see theorem
3.7.1 below). We moreover study the families that do not appear in the ta-
ble above i.e. those that do not satisfy the equality dimS(µG) = s−3. In this
case, Z 6= S(µG) but it does not imply that Z is not a Shimura subvariety: it
could still be a smaller Shimura subvariety (inside S(µG)) or in other words,
there might be Hodge classes, that are not given by the action of Z[µG]. We
are able to show that some large classes of families, including all families
with s = 4, do not give rise to Shimura subvarieties in Ag provided that the

42



Table 1: Monodromy data of families of abelian coverings that generate
Shimura subvarieties.

genus Galois group N monodromy data
1 Z/2Z× Z/2Z 2 {(1, 0)(1, 0)(0, 1)(0, 1)}
2 Z/2Z× Z/2Z 2 {(1, 0)(1, 0)(1, 0)(1, 1)(0, 1)}
3 Z/2Z× Z/4Z 4 {(2,0)(2,1)(0,1)(0,2)}
3 Z/2Z× Z/4Z 4 {(2,0)(2,2)(0,1)(0,1)}
3 Z/2Z× Z/2Z 2 {(1,0)(1,0)(1,1)(1,1)(0,1)(0,1)}
4 Z/2Z× Z/6Z 6 {(3,0)(3,1)(0,2)(0,3)}
4 Z/3Z× Z/3Z 3 {(1,0)(1,0)(1,2)(0,1)}

family satisfies an irreducibility condition.

Theorem 3.7.1. The families in table 1, give rise to Shimura subavari-
eties in Ag. For s=4 this table contains all examples for which dimS(µG) =
s − 3(= 1) and contains all such examples for 4 ≤ s ≤ 7, 2 ≤ m ≤ 5 and
N ≤ 20.

Proof. One can compute the dimensions dn of eigenspaces with the aid
of the formula in proposition 3.6.3. It is straightforward to check that in
all of these cases dimS(µG) = dimZ = s − 3 and therefore Z = S(µG) is
a Shimura subvariety of Ag. For s = 4, Note that if dimS(µG) = 1, then
the family satisfies the equality of lemma 1.3 and in fact the is a unique
a ∈ G, such that da = d−a = 1 and for all other n ∈ G, dnd−n = 0. We may
therefore assume that the first row of the matrix A satisfies this equality. By
results of [R] we know that there are only finitely many of these with N ≤ 12
and by the aforementioned computer program we may check that the above
examples are the only ones which satisfy dimS(µG) = 1 and N ≤ 12. This
means that table 1 contains all examples with dimS(µG) = 1. By using the
same computer program we see that this table contains all examples with
dimS(µG) = s− 3 and with conditions as above. ¤
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3.8. The Dwork-Ogus obstruction

As we remarked earlier, we are going to exclude further examples of
Shimura subvarieties arising from families of abelian covers. To do this we
will need an obstruction introduced by Dwrok and Ogus in [DO]. Although
we will encounter cases that we can not use this obstruction, This obstruc-
tion remains crucial tool in proving that a certain variety is not a Shimura
subvariety. The construction of the obstruction is as follows:

Let the f : C → T be a family of smooth projective curves with an
irreducible base scheme T . We denote the sheaf of relative differentials with
ωC/T and the Hodge bundle E = E(C/T ) = f∗ωC/T . Consider the Kodaira-
Spencer map κ : Sym2(E) → Ω1

T (usually the dual of this map is defined to be
the Kodaira-spencer map, but as we will mainly work with this map, rather
than the original Kodaira-Spencer, we name it as such). The multiplication
map mult : Sym2(E) → f∗(ω⊗2

C/T ) induces the following sheaves:

K = Ker(mult) = Ker(Sym2(E) → f∗(ω⊗2
C/T ))

L = Coker(mult∨) = Coker((f∗ω⊗2
C/T )∨ → Sym2(E)∨),

If the fibers are not hyperelliptic, by a famous result of Max Noether (see
[OS]), mult is surjective and K is dual to L.

The Dwork-Ogus obstruction can be constructed only for families of
curves which satisfy a further condition that we define explicitly below:

Definition 3.8.1. An abelian variety A of dimension g over an alge-
braically closed field k of characteristic p > 0 is said to be ordinary if it
satisfies one of the following equivalent conditions:

i) The p-rank of A is equal to g, i.e. Ap(k) ∼= (Z/pZ)g.

ii) The p-linear endomorphism on H1(A,OA) induced by the absolute
Frobenius endomorphism FA of A is isomorphism.
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iii) The crystalline cohomology H1
cris(A/W ) splits into a direct sum de-

composition H1
cris(A/W ) = U⊕T invariant under the map F ∗

A and such that
F ∗

A |U : U → U is isomorphism and F ∗
A |T : T → T is p times an isomorphism.

A smooth projective curve C over k is said to be ordinary if it’s Jacobian
J(C) is an ordinary abelian variety.

In the definition above, W = W (k) is the Witt ring of the field k and
H1

cris(A/W ) can be realized as a lift of the de Rham cohomology H1
dR(A/k)

over W . This means that H1
cris(A/W )⊗ k ∼= H1

dR(A/k). The decomposition
in condition iii) above is a lift of the Hodge decomposition H1

dR(A/k) =
F 1

Hodge ⊕ F 1
con. In particular U is a lift of conjugate fitration F 1

con and T is
a lift of the Hodge filtration F 1

Hodge. Condition iii) above means that U is
stable under the action of the absolute Frobenius FA on the cohomology.

Now, if C is an ordinary smooth projective curve over a field k of positive
characteristic and a principal polarization λ, Serre-Tate theory (see [K1] or
[DO]) guaranties that there exists a canonical lifting J can of J to the Witt
ring W (k). The question of whether the canonical lifting of a Jacobian J is
again a Jacobian has been of main interest and Dwok and Ogus have shown
in [DO] that even over the Witt ring of length 2, this is a very restrictive
condition and in general is not true. Their method consists of constructing
an obstruction β, such that β = 0 if and only if the canonical lifting J can is a
Jacobian. They then show that this obstruction is generically non-zero. We
recall the construction of β in short. The curve C is called pre-W2−canonical
if the canonical lifting (J can, λcan) over W2(k) is isomorphic to the Jacobian
of a smooth projective curve Y as a principally polarized abelian variety.
According to Dwork-Ogus theory, the obstruction βC to the existence of
such Y , is the restriction of an element βC ∈ Sym2(F 1,0)∨ to the kernel
ker(µC) of the multiplication map. This obstruction can be generalized to an
obstruction for families f : C → T of ordinary curves to give an obstruction
β̃C/T which is a global section of F ∗

TL(C/T ) where FT : T → T denotes the

absolute Frobenius map and the value of β̃C/T at t ∈ T is equal to F ∗
k (βCt/k).

Note that since the family is assumed to have ordinary fibers, the inverse
Cartier operator γ : F ∗

TE → E is an OT -linear map and in fact it is the
inverse transpose of the Frobenius action on R1f∗OC . By a result of Katz in
[K2], the pull-back F ∗

TL(C/T ) comes equipped with a natural flat connection:

∇ : F ∗
TL → F ∗

TL ⊗ Ω1
T/k.
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For the Dwork-Ogus obstruction β̃C/T , it holds that −∇β̃C/T : F ∗
TK →

Ω1
T/k is equal to the composition

F ∗
TK ↪→ F ∗

T Sym2(E)
S2(γ)−−−→ Sym2(E)

κ−→ Ω1
T/k (*)

In the above sequence γ : F ∗
TE→ E is the inverse Cartier operator i.e. the

inverse transpose of the Frobenius action on R1f∗OC . The matrix of this map
will be called the Hasse-Witt matrix of the family. The map κ : Sym2(E) →
Ω1

T/k is the Kodaira-Spencer map associated to the family f : C → T .

Using the above description of∇β̃C/T , this gives us something computable
which we will use later to show that the obstruction is not zero for our
families.

Let f : C → T be as usual a family of abelian covers as in section 3.3.
We can choose a prime number p ≡ 1 (mod N) and an open subset U of
T ⊗Fp such that for all t ∈ U , the fibers are ordinary curves in characteristic
p. This is possible for example by results of [B]. For such p and U , consider
the restricted family CU → U . The abelian group G also acts on the sheaves
L(CU/U) and gives the eigensheaf decomposition L(CU/U) = ⊕n∈GL(n). The
same is true for EU = E(CU/U) and KU = K(CU/U). This in turn, gives

us the decomposition β̃CU/U =
∑

n β̃n. Here β̃n is considered as a section of
F ∗

ULn.

The main observation here is that if the family gives rise to a Shimura
subavariety in Ag, then the Dwrok-Ogus obstruction vanishes:

Lemma 3.8.2. For prime number p and open subset U as above, if the
family gives rise to a Shimura subvariety Z ⊆ Ag, then for any t ∈ U we

have that the Jacobian Jt is pre-W2-canonical and in particular β̃CU/U = 0.

Proof. This follows from [M3] or [N]. In fact if the moduli variety Z is a
Shimura subvariety, and t ∈ T is an ordinary point (i.e. it’s pre-image is an
ordinary curve), then the canonical lifting J can

t of Jt is a W (k)-valued point
of Z. This means in particular that it is a Jacobian and hence Jt is pre-W2-
canonical. By Dwork-Ogus theory, this forces β̃CU/U to be zero. ¤
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Now assuming that the fibers of the family are ordinary over U and the
family gives rise to a Shimura subvariety in Ag, it follows from the lemma

that β̃CU/U = 0 and hence ∇β̃CU/U = 0. This shows that the composition
map (*) should vanish identically.

From now on we just work with the restricted family CU/U whose fibers
are all ordinary instead of C/T and denote it simply as C/U . Next we remark
that the sequence (*) factors through the map

Sym2(E) → Sym2(E)(0)

mult(0)−−−−→ f∗(ω⊗2
C/U)(0)

Where by the index (0) we mean the subspace of invariant elements under
the action of G, i.e. the subspace on which G acts with the trivial character.
This factorization follows from the general fact that the fiber of Sym2(E)(0)

at t can be identified with (dual of) the space of G-equivariant deformations
of Ct, i.e. the deformations for which the G-action also deforms along. Since
there is a G-action on our whole family, the Kodaira-Spencer map should
factor through the above map. The last map in the above sequence is just
multiplication of forms.

Proposition 3.8.3. With notations as above, the map

F ∗
UK(0) ↪→ F ∗

USym2(EU)(0)
S2(γ)−−−→ Sym2(EU)(0)

mult(0)−−−−→ f∗(ω⊗2
C/U)(0)

vanishes identically, provided that the family gives rise to a Shimura
subvariety in Ag.

Proof. Let us first note that the induced Kodaira-Spencer map κ(0) :
f∗(ω⊗2

C/T )(0) → Ω1
T is injective. We remark that this map is in fact the dual

of the usual Kodaira-Spencer map κ : ΘT → H1(ΘC/T ). Therefore it’s injec-
tivity means the surjectivity of the Kodaira-Spencer map i.e. the versality
(or completeness)of our family. Now if D/k[ε] is a G-equivariant first order
deformation of the fiber Ct, the versality means that D/k[ε] can be obtained
by pull-back from our family. But this is true, because in this case D/G is
isomorphic to P1

k[ε] and so as an abelian cover of P1, it can be obtained by
pull-back from our family. If the fibers are non-hyperelliptic, the vanishing of
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the above map follows directly from the theory of Dwork-Ogus, see [DO], to-
gether with the injectvity of κ(0) discussed above. In fact, according to [DO],

the exact sequence (*) being equal to −∇β̃C/U vanishes identically (lemma
3.1 above). Injectivity of κ(0) then gives the vanishing of the claimed map.
So we may assume that the fibers are hyperelliptic curves. From this point
on, everything goes like [M1], proposition 5.8. Namely, with ι ∈ Aut(C/U)
being the hyperelliptic isomorphism we conclude from results of [OS] that
although the multiplication map Sym2(EU) → f∗(ω⊗2) is no longer surjec-
tive, the induced map multι : Sym2(EU)ι → f∗(ω⊗2)ι on the the sheaves
of invariants of ι is again surjective. Since our family is contained in the
hyperelliptic locus, this implies that the map mult(0) is also surjective and

this forces β̃(0) to be an OU -linear map. If β̃(0) is zero, of course ∇β̃(0) will be
also zero. To complete the proof one can check that 0-component analogue
of the exact sequence (*) also holds true for ∇β̃(0) . ¤

3.9. The generalization of a lemma

For our classification purposes, we will need the generalization to the
abelian case of a lemma in [B] that concerns only with cyclic coverings, see
[B], lemma 5.1.i. This lemma allows us to compute explicitly the Hasse-Witt
matrix of an abelian covering which considering the above constructions will
be needed to compute the obstruction β̃C/U . Let a = (a1, ..., am) ∈ G ⊆ Zm

N

be an element in the Galois group of the abelian covering. Let Ã = (r̃ij) be
the matrix whose entries r̃ij are lifts of rij to Z ∩ [0, N) of the covering. So

the entries of Ã are lifts of the entries of A, the matrix of the covering, to
Z∩ [0, N) and these two matrices determine each other uniquely. We denote

by a.Ã the product of these as the product of 1 × m and m × s matrices,
thereby obtaining a 1× s matrix. Therefore we have that :

a.Ã = (
∑m

1 aj r̃j1, ....,
∑m

1 aj r̃js) = (α1, ..., αs)

Next take a prime number p such that p ≡ 1 (mod N) and let q = p−1
N

.

Lemma 3.9.1. With the notations as above, the (hνι) entry of the Hasse-
Witt matrix of the abelian covering Y is given by the formula:
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∑∑
li=Σ

(
q.[−α1]N

l1

)
...

(
q.[−αs]N

ls

)
zl1
1 ...zls

s

Where Σ = (dn − ι)(p − 1) + (ν − ι) and
(

a
b

)
= a!

b!(a−b)!
and [α]N denotes

the representative of the integer α modulo N in {0, 1, .., N − 1}.

Proof. Like in [B] take U1 = P1−{∞} and U2 = P1−{0} and Vi = π−1Ui

for i = 1, 2. Let

va = wa1
1 ...wam

m (z − z1)
−[α1]...(z − zs)

−[αs]

Then we have:

Γ(V1,OV1) =
⊕

a∈G k[z]va

Γ(V2,OV2) =
⊕

a∈G k[z−1]z−|a|−1va

Γ(V1 ∩ V2) =
⊕

a∈G k[z, z−1]va

Defining ξj = z−jva for j = 1, ..., |a|, with |a| = dimH1(Y,OY )a, we see

that the ξj form a basis for H1(Y,OY )a = Γ(V1∩V2)a

Γ(V1)a+Γ(V2)a
.

If Ba is the matrix of the Hasse-Witt map F : H1
a → H1

a , then the (i, j)
entry of Ba is given by the coefficient of ξi in ξp

j . This follows from the fact
that ξj ⊗ 1 determines a local basis for the bundle F ∗

T (R1f∗OC)a and the
Hasse-Witt operator γ : F ∗

T (R1f∗OC)a → (R1f∗OC)a with respect to these
bases is given by the p-th power endomorphism of OC . This is because of
the fact that the p-linear composite map

R1f∗OC → F ∗
T (R1f∗OC) → (R1f∗OC)

is induced by the p-th power endomorphism of OC (cf.[K], 2.3.4.1.4). Now
one sees that the coefficient of ξi in this polynomial is as claimed above:
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∑∑
li=Σ

(
q.[−α1]N

l1

)
...

(
q.[−αs]N

ls

)
zl1
1 ...zls

s .

Where
(

a
b

)
= a!

b!(a−b)!
and where [α]N denotes the residue of an integer α

modulo N . Occasionally, we just drop []N and write only α. ¤

3.10. Excluding non-Shimura examples

At this point we are going to exculde the families of abelian covers of the
projective line that do not give rise to Shimura subvarieties in Ag. For some
technical reasons, working with families with 4 branch points is different
from families with more branch points and it should be noted that this is
in some sense the most important case, as most of the examples of Shimura
families that have been found in [M1] or [MO] are obtained from families
with 4 branch points. We therefore distinguish between this case and other
cases. Before we state our results, we give an ”irreducibility condition” that
we assume all of the families till end of these notes satisfy:

Condition (*). We say that the family satisfies the condition (*) if
the rows of the associated matrix are linearly independent over Z/NZ. For
families of cyclic covers, this implies that the family is irreducible. For fam-
ilies of abelian covers it implies that all of the intermediate cyclic covers are
irreducible.

The case of four branch points

Proposition 3.10.1. Let Y → T be a family of abelian covers with
s = 4, i.e. with 4 branch points. Then the associated subvariety Z ⊆ Ag is
a Shimura subvariety if and only if Z = S(µG). i.e. if and only if it appears
in table 1.

Proof. Clearly the statement holds if Z = S(µG) as S(µG) is a Shimura
variety of PEL type. Now assume on the contrary that Z 6= S(µG) but Z
is a Shimura subvariety and we will derive a contradiction. The assumption
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Z 6= S(µG) implies that dimS(µG) > 1. Note that we have already classified
all cases where dimZ = dimS(µG) = 1, i.e. the cases for which Z = S(µG).
The fact that dimS(µG) > 1 shows that there are pairs a, a′ ∈ G with
a′ 6= ±a such that da = d−a = 1 and da′ = d−a′ = 1. Therefore for every
l ∈ {±a,±a′}, the Hasse-witt matrix Al is a polynomial in Fp[z1, .., z4]. Note
that according to the discussion just before lemma 3.8.2, there is an open
subset U of T and a suitable prime number p, such that all fibers above U
are ordinary after reduction mod p. Now since the fibers are all ordinary
curves in U , we conclude that the Hasse-Witt operator is an isomorphism
and so Al is invertible as a section of OU . Note that ωa.ω−a = ωa′ .ω−a′ is a
non-zero section of the bundle f∗(ω⊗2) and so we must have :

Aa.A−a = Aa′ .A−a′

as polynomials.

We will show that this identity can not happen with the above conditions.
The polynomials Al are given by the above lemma and we could set Bl =
Al |z1=0. It means that we have :

Bl =
∑

j1+j2+j3=N−1 C(q.[−α2]N , j2)C(q.[−α3]N , j3)C(q.[−α4]N , j4)z
j2
2 zj3

3 zj4
4 .

Let ra(l) be the largest integer r such that Bl is divisible by trl . We have
that

ra(l) = max{0, q.α1 + q.α2 − (N − 1)}.

Similarly let r±a(l) be the largest integer r such that Ba.B−a is divisible
by trl . We have :

r±a(l) = q.max{α1 + αl, αk + αλ} − (N − 1).

Now the equality Aa.A−a = Aa′ .A−a′ implies that r±a(l) = r±a′ and so we
get the following equality:

{α1 + αl, αk + αλ} = {α′1 + α′l, α
′
k + α′λ}.
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By an easy lemma in [M1] (lemma 6.3) we conclude that there exists an
even permutation σ ∈ A4 of order 2, such that αi = α′σ(i). We first claim

that σ 6= 1. This in fact follows from the above technical condition (*)
which ensures that σ is not trivial i.e. that αi and α′i are not all the same.
Furthermore, without loss of generality we can assume that αi = r1i for all
i = 1, .., 4. That is, we may consider (α1, ..., α4) as the first row of the matrix
A of the abelian covering . We set ai = αi instead of r1i for simplicity. Now
since αi and α′i are different by the above argument, we may again without
loss of generality suppose that:

α′1 = a2, α′2 = a1

α′3 = a4, α′4 = a3

by our assumptions on ai and a′i, we have that

∑
[ai]N =

∑
[a′i]N = 2N

Suppose that [a1]N + [a2]N = [a3]N + [a4]N = N , or in other words,
[a2]N = −[a1]N and [a4]N = −[a3]N in Z/NZ. This means that the two rows
n = (a1, .., a4) and n′ = (a′1, .., a

′
4) are linearly dependent and this contradicts

condition (*). So the above equality does not hold and we may assume that
a1 + a2 < N and a3 + a4 > N . Now consider the row vector

n + n′ = (a1, .., a4) + (a′1, .., a
′
4) = (a1 + a2, a1 + a2, a3 + a4, a3 + a4)

Note that condition (*) assures that n + n′ 6= ±n and one can easily
verify that this row vector also satisfies the conditions for ai and a′i (in fact
2([a1 + a2] + [a3 + a4]) = 2([(N − 1)(a1 + a2)] + [(N − 1)(a3 + a4)]) = 2N)
and so we may replace the second row (a′1, .., a

′
4) = (a2, a1, a4, a3) by this

row vector and the equality An.A−n = An′ .A−n′ should hold for this row
vector as n′ and (a1, .., a4) as n. We show that this is impossible. In fact,
if this equality holds, it is easy to see that the left hand side must contain
a monomial of the form zα

2 zβ
3 and also a monomial of the form zγ

1zδ
4. This

means that a2 +a3 = a1 +a4 = a1 +a3 = a2 +a4 = N which is exactly to say
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that n = n′ = (a1, a1,−a1,−a1). This is against our assumptions and this
contradiction completes the proof. ¤

The cases where s ≥ 5

As the families giving rise to Shimura subvarieties in table 1 all have the
Galois group Z/nZ × Z/mZ, this is in a sense the most important case of
the families. We therefore restrict our attention to families with such Galois
groups and form now on we assume that the family has Galois group of the
form Z/nZ× Z/mZ i.e. that the matrix A is a 2× s matrix.

In [M1] Moonen uses the Dwork-Ogus obstruction also in order to prove
that further examples of Shimura families of cyclic covers of P1 do not exist
for s > 4. The core observation in his proof is then that for a minimal
Shimura family not existing in his table, there exists two integers n and n′,
such that dn = d−n′ = 1 and d−n = d−n′ = s − 3. To deduce the existence
of these two elements, he argues that for n ∈ (Z/mZ)∗, dn + d−n = s − 2.
This point, as we will see explicitly later, does not remain necessarily true
for families of abelian coverings. It could very well be that for all n ∈ G,
dn + d−n < s − 2. Example III∗ below (see theorem 3.10.6) is the simplest
example of such a family. In fact by what we have seen so far, if this equality
holds and the family is Shimura, then N = 2, 3, 4, 5, 6 and s ≤ 6. So in order
to exclude further examples first we will use another method based on the
monodromy of a family of curves. We first need a definition :

Definition 3.10.2. Let f : Y → T be a family of abelian Galois covers
of P1 as constructed in section 1. Then L = R1f∗C is a polarized variation
of Hodge structures (PVHS) of weight 1. This PVHS decomposes according
to the action of the abelian Galois group G and the eigenspaces Li (or Lχ

where i ∈ G corresponds to character χ ∈ µG ) are again variations of Hodge
structures and we are mainly interested in these. Take a t ∈ T and assume
that h1,0((Li)t) = a and h0,1((Li)t) = b. Then the polarization equips (Li)t

with a Hermitian form with singature (a, b) (see [DM], 2.21 and 2.23). This
implies that Mon0(Li) ⊆ U(a, b). In this case, we say that Li is of type (a, b).
The above observations are key to our further analysis. Let us first prove a
lemma:
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Lemma 3.10.3. Let Li be an eigenspace as discussed above of type (a, b)
with ab 6= 0. Then Mon0(Li) = SU(a, b), unless when |G| = 2l is even and
i is of order 2 in G, in which case there is a surjection from Mon0(Li) to
SU(n, n) = Sp2n. Where n = di.

Proof. Let t ∈ T and let χ ∈ Hom(G,C∗) be the character corresponding
to i. Consider the cover fχ,t : Yχ,t → P1 with group χ(G) branched only
above the points zj with local monodromy χ(φ(γj)) about zj. Where φ is the
surjection in remark 3.3.1. Note that χ(G) is a cyclic group and so fχ,t is in
fact a cyclic cover with group χ(G). Varying t ∈ T , we get a family of cyclic
covers of P1. The eigenspace Li is exactly the eigenspace corresponding to
this family (or in other words, it is the L1 of this family of cyclic covers).
Unless when |G| = 2l is even and i is of order 2 in G, theorem 5.1.1 of [R]
applies and we get that Mon0(Li) = SU(a, b). If |G| = 2l is even and i is
of order 2 in G by taking quotient of the family fχ,t, we obtain a family of
hyperelliptic curves of the form w2 = (z− z1)...(z− z2n+2). Note that in this
case it follows from the formulas of proposition 3.6.3 that there are 2n + 2
odd powers in the equation of fχ,t for n = di. Now it is well-known that
Mon0 of a family of hyperelliptic curves is the full symplectic group and so
the proof is completed.

Remark 3.10.4. Assume that Y → T is a family of curves and let M
be the generic Mumford-Tate group of this family. Recall from construction
3.6.2, that there is a natural Shimura variety Sf = Sh(M,Y ) associated to
M ( which is a reductive group) and the dimension of Sf only depends on
Mad
R . The Shimura datum comes from the Hodge structures of the fibers in

the family. This Shimura variety is the smallest Shimura subvariety in Ag

which contains Z. Our purpose is to show that for families of abelian covers
with a big s, Mad

R =
∏

Qi such that
∑

δ(Qi) > s−3 and therefore the family
is not a Shimura family. Here δ(Qi) is as in construction 3.6.2. The following
remark is well-knownn but very important for our goals:

Remark 3.10.5. If the family f : Y → T gives rise to a Shimura
subvariety in Ag, then the connected monodromy group Mon0 is a normal
subgroup of the generic Mumford-Tate group M (in fact in this case, Mon0 =
Mder, as we have seen in section 1.3). Cosequently, if Mad

R =
∏l

1 Qi as a
product of simple Lie groups, then then exists a subset K ⊆ {1, ..., l}, such
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that Mon0,ad
R =

∏
i∈K Qi.

Our strategy is to show that for large s, there are eigenspaces Li of types
(ai, bi) with {ai, bi} 6= {aj, bj} for i 6= j and such that

∑
δ(Li) > s − 3.

Then by the above remark , we conclude that dimSf > s − 3. Note that
this property is far from being true for the families of cyclic covers of P1.
For those families it can happen that all of the eigenspaces are either uni-
tary (i.e. ai = 0 or bi = 0) or of the same type. Take for example the
family (11, (1, 1, 1, 1, 7)). In this case all of eigenspaces are either of type
(3, 0) (or (0, 3)) and hence unitary, or of type (1, 2). Another important ob-
servation is that if in the family, one row, say the first row, does not have
any 0 entry, then cyclic covering arising from this row is either a Shimura
family (of cyclic covers) or the whole family will not be a Shimura family.
This is true because if this family is not a Shimura family then by the above
notations and observations, there are R-simple factors Qi, in the decompo-
sition of Mad

1,R such that
∑

δ(Qi) > s − 3. Where M1 is the Mumford-Tate
group associated to this family of cyclic covers. As this is a sub-Hodge struc-
ture, we know from [VZ2], that M1 is a quotient of M and therefore the
factors Qi also occur in decomposition of Mad (note that Mad is semi-simple
group with trivial center) and so dimSf > s − 3 i.e. the family is not a
Shimura family. On the other hand, if this cyclic family is a Shimura fam-
ily it must be one of the families in [R] (or [M1]) and therefore, N is one
the 10 numbers in table 1 of [M1] or [R]. Of course this leaves only finitely
many possibilities to investigate. So, if in one of the rows all of the entries
are non-zero, according to the table in [M1], N = 3, 4, 5, 6 and we will ex-
clude these in what follows, but if there are 0 entries in the rows, there are

only three possibilities: I)

(
a1 a2 a3 0 0
0 0 0 b2 b3

)
, II)

(
a1 a2 a3 0 0
0 0 b1 b2 b3

)
,

III)

(
a1 a2 a3 a4 0
0 0 b1 b2 b3

)
or IV )

(
a1 a2 a3 a4 0
0 0 0 b1 b2

)
.

Also consider the families III∗)
(

2 1 2 1 0
0 0 1 1 1

)
with N = 3 and

III∗∗)
(

2 2 3 1 0
0 0 1 1 2

)
with N = 4, which are special cases respectively

of families III. Then the following theorem holds:

The following theorem serves as an example for the methods and argu-
ments based on the above remark which we will use later in the proof of
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proposition :

Theorem 3.10.6. A family Y → T of abelian covers of P1 with s = 5
branch points does not give rise to a Shimura variety in Ag except possibly
the families III∗ and III∗∗.

Proof. Following the discussions after remark 3.10.5, we see that the

families

(
a1 a2 a3 0 0
0 0 0 b2 b3

)
are either not Shimura or can only have N =

3, 4, 5, 6 because for these families the eigenspace L(1,1) is that of a Shimura
family of cyclic covers with 5 branch points which according to [M1] (or
[R]), table 1 leaves only these 4 possibilities for N . An argument similar
to the argument below shows that none of these families can give rise to a
Shimura subvariety. Therefore we need only to consider families of the form(

a1 a2 a3 0 0
0 0 b1 b2 b3

)
or

(
a1 a2 a3 a4 0
0 0 b1 b2 b3

)
or

(
a1 a2 a3 a4 0
0 0 0 b1 b2

)
. We

first exclude the first family which is easier and our method can more easily
be elucidated with this example. In this case, the eigenspace associated to
the element (1, 1) is given by (a1, a2, a3+b1, b2, b3) so we must have a3+b1 = 0,
otherwise N = 3, 4, 5, 6, which can be excluded in each case using the same
argument as follows: Likewise a3 − b1 = 0 and so we have that a3 = b1 = N

2
.

Consider the eigenspace associated to the element (2, 1) given by the cyclic
cover (2a1, 2a2,

N
2
, b2, b3) since non of a1 and a2 is zero, we have also that

2a1 6= 0 and 2a2 6= 0 (note that we assume that
∑

ai = N , otherwise we
can replace ai with −ai and we get an isomorphic cover for which

∑
ai =

N). By what we said earlier, this implies that N = 4, 6 which we have to

exclude now. For N = 4, the only possible families are

(
1 1 2 0 0
0 0 2 1 1

)
and

(
2 1 1 0 0
0 0 1 1 2

)
and

(
1 1 2 0 0
0 0 1 1 2

)
. All of the 3 families are not Shimura

as we will show here. Take for example the first family. The eigenspace L(1,2)

has type (1, 2) and the eigenspace L(1,3) has type (1, 1). This shows by the
above remarks that dimSf =

∑
δ(Qi) ≥ 3 Therefore Z 6= Sf and the family

is not Shimura. In the same way one sees easily that the other two families
are not Shimura too. Also by the same method one can conclude that for
N = 6, there does not exist any Shimura family. For N = 3 there is only

one family, namely the family

(
1 1 1 0 0
0 0 1 1 1

)
which is not Shimura again

because there is an eigenspace of type (1, 2) and another one of type (1, 1)
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which forces dimSf ≥ 3. Now the only exceptions that do not follow the
regulation above are families III∗, III∗∗.¤

At this point, we don’t know whether the families III∗ and III∗∗ give
rise to Shimura subvarieties or not.

As we explained earlier, if one row of the family has no non-zero entries,
then N can be one of the numbers 3, 4, 5, 6. Therefore if we have a family
with N other than the numbers above, the rows must always contain zero.
Let the number of these zeros in the first row be l, i.e. the family has the form(

a11 · · · a1l a1l+1 · · · a1r 0 · · · 0
0 · · · 0 b1l+1 · · · b1r b1r+1 · · · bs

)
. Furthermore suppose that

∑
ai > 2N and

∑
(−ai) = (

∑
[−ai]N) > 2N . For s > 19, we prove that:

Proposition 3.10.7. With the above condition and if s > 19, then the
family

(
a11 · · · a1l a1l+1 · · · a1r 0 · · · 0
0 · · · 0 b1l+1 · · · b1r b1r+1 · · · bs

)

does not give rise to a Shimura subvariety in Ag.

Proof. Assume that the associated eigenspaces are of types (k1, r−k1−2)
and (k2, s− l − k2 − 2). If these two types are different, we will have:

dimSf ≥ k1(r − k1 − 2) + k2(s− l − k2 − 2) ≥ 2(r − 4) + 2(s− l − 4)

Now for s ≥ 19, one sees that 2(r − 4) + 2(s − l − 4) > s− 3 and hence
dimSf > s−3. It remains to treat the case where the two types are the same
which implies that s = r + l. We have:

dimSf ≥ k2(s− l − k2 − 2) ≥ 2(s− l − 4)
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The right hand side is strictly greater than s− 3 if and only if r − l > 5.
We may therefore assume that r − l ≤ 5. We have

t(−1, 1) =
∑l

1(−ai) +
∑r

l+1(bj − aj) +
∑s

r bk ≥ (l − 1)N .

That is, for the eigenspace associated to the element (−1, 1), we have that
t(−1, 1) ≥ (l − 1) and consequently d(−1,1) ≥ l − 2. Similarly one sees that
d(1,−1) ≥ l− 2. Note that this eigenspace (i.e. the eigenspace associated with
the element (−1, 1)) can not be of the type (k2, s− l − k2 − 2) (equivalently
of the type (k1, r − k1 − 2)). For otherwise we will have k2 ≥ l − 2 and
s− l − k2 − 2 ≥ l − 2. The first inequality says that k2 > 5 (because s > 19
and hence l > 7) and the second one implies that k2 ≤ s − 2l ≤ 5. This
contradiction shows that we have a new eigenspace. Since d(−1,1)d(1,−1) ≥
(l − 2)2 > l, we conclude that:

dimSf > s− 3

and the claim follows. ¤
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