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Chapter 1

Introduction

Calculating Feynman integrals is a problem that is originally known in physics. In perturbative
quantum field theory one considers sums of Feynman integrals indexed by graphs that belong to
the physical theory. This set of graphs is ordered by their number of loops (independent cycles).
In any physical application this series, which is generally believed to be only an asymptotic series,
is truncated at a certain loop order and then the coefficients are computed order by order. The
difficulty of evaluating such a coefficient increases rapidly with the loop order. This is due to two
facts. Firstly, the number of Feynman integrals that need to be evaluated increase rapidly with
the given loop order and secondly, the Feynman integrals themselves become more complicated as
the loop order grows. One, therefore, uses relations between the Feynman integrals to reduce the
number of integrals involved in such a calculation. These are the integration by parts identities.
A smaller number of non–reducible integrals remain, which may then be evaluated individually.
It is this second step that we are interested in – evaluating a single Feynman integral.
The subject has been drawing intensive attention of mathematicians since the discovery of a
systematic appearance of zeta and multi zeta values in the calculation of Feynman integrals,
made by Broadhurst and Kreimer ([BK95], [BK97]). A Feynman integral can be written as a
projective integral via the Feynman (or alternatively Schwinger) trick. With this Feynman (or
Schwinger) parameter description of a Feynman integral, the number theoretic content of such
an integral is captured by two homogeneous polynomials and their projective hypersurfaces. A
Feynman integral may depend on additional parameters, such as masses and momenta. Only one
of the two polynomials, called the second graph polynomial (or second Symanzik polynomial),
depends on these parameters. Also the Feynman integral depends on the space–time dimension,
which is usually four in a physical application.
A major complication in calculating Feynman integrals arises from the fact, that for some com-
binations of parameters, including the dimension, a Feynman integral may be divergent. If the
Feynman integral is (absolutely) convergent and, moreover, all parameters are chosen to be ra-
tional numbers, the Feynman integral is a period.
A divergent Feynman integral is treated by various procedures, such as regularization and renor-
malization. We consider dimensional regularization replacing a divergent Feynman integral by a
Laurent series in a regularization parameter. The coefficients in this series are then the objects
of interest. It is known, that for rational parameters all coefficients in such a Laurent series are
periods. We will be mainly interested in computing the terms of negative order, as well as the
zero order term in such a Laurent series. Poles in the regularization parameter are caused by
the singularities of the integrand. In a second step one removes the singularities from the final
result. One distinguishes between ultraviolet and infrared singularities and usually handles them
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6 CHAPTER 1. INTRODUCTION

separately. Working in dimensional regularization one may perform a renormalization procedure
such as minimal subtraction or modified minimal subtraction to handle ultraviolet singularities.
To remove infrared singularities there are various tools. Let us emphasize at this point, that we
will not discuss this second step – the removal of singularities – in this dissertation. In particular,
we will not discuss renormalization. Instead we will be interested in properties of the coefficients
of a Laurent series of a Feynman integral and how these may be computed. For the topic of
renormalization we have to refer to the literature (e.g. [IZ87]).
A particularly nice class of Feynman graphs has been studied extensively by mathematicians in
the past decade. These are the so–called primitive (massless) graphs of φ4 theory. In dimen-
sion four they give rise to an absolutely convergent integral. Therefore, the step of dimensional
regularization can be omitted – the zero order term in the Laurent series in the regularization
parameter is just the Feynman integral, while the polar part is absent. The property of being
primitive ensures that, putting all external momenta to zero, in Feynman parameters we obtain
a simplified formula:

I =

∫

σ

1

U2
Ω,

where the integration is over some semi–algebraic set and Ω is the standard n–form in the n–
dimensional projective space. Here, only the simpler one of the two graph polynomials U appears.
Therefore, the polynomial U and its projective hypersurface XU has been the object of study.
As the above integrals do not depend on any parameters, they are complex numbers. Inspired
by the above–mentioned discovery of Broadhurst and Kreimer, Kontsevich speculated that the
periods of XU as above are multiple zeta values stemming from a mixed Tate motive. He conjec-
tured that all such hypersurfaces XU have polynomial point count functions. This was, however,
disproven by Belkale and Brosnan ([BB03a]). They showed that the first graph hypersurfaces
UΓ of all graphs are sufficiently general to generate the Grothendieck ring K0,mot. The question
arose under what conditions would the (first) graph motive be mixed Tate. For two infinite
families of graphs a positive answer was found [BEK06, Dor08]. Only recently the exact formula
for the Feynman integrals of one of these families, the so–called zig–zag graphs, was proven by
Brown and Schnetz [BS12]. They evaluate to single zeta values (up to rational numbers).
In this dissertation we are, complementary to that, interested in Feynman integrals that de-
pend on momenta and masses. We, therefore, interpret Feynman integrals as functions in some
parameters and we are interested in the functions that occur when evaluating Feynman inte-
grals. The latter problem is, however, very difficult. A more humble goal is to ask for differential
equations that Feynman integrals satisfy when varying parameters. The functions appearing
in evaluating Feynman integrals as well as the differential equations satisfied by Feynman inte-
grals, are the main focus of this dissertation. In particular, we would like to study variations
of such objects over a one–dimensional base, which arise when we vary one parameter and fix
the others. The variational parameter will always be a squared momentum or a mass (hence a
scalar) in this dissertation. We chose to vary only one parameter for simplicity – we will obtain
ordinary differential equations in this parameter. What we do can be generalized to variations
with respect to more than one parameter, which will result in partial differential equations. As
only the second graph polynomial depends on the parameters, it is apparent, that studying such
a variation amounts to studying the second graph polynomial and its projective hypersurface.
Therefore, these will be the main objects of interest in this dissertation. To be more precise, let
us give an overview of the individual chapters.

The first chapter is this introduction.
In the second chapter we introduce Feynman graphs and Feynman integrals associated with
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such a graph. We will discuss a procedure called dimensional regularization and reduction
methods to reduce large sets of integrals to a few basic ones which are commonly called master
integrals. A major complication arises from the fact that these can be divergent. This issue
is resolved within dimensional regularization by replacing the ill–defined quantity by a Laurent
series in a regularization parameter. The coefficients of this series are periods and the objects
of interest in this dissertation. Convergent Feynman integrals can be interpreted as projective
integrals using the Feynman parameter technique, which is also covered in this chapter. We would
like to obtain information about the periods appearing as coefficients in the above–mentioned
Laurent series by studying convergent Feynman integrals and applying Tarasov’s generalized
dimensional recurrence relations. We will therefore take a close look at these relations between
Feynman integrals with shifted space–time dimensions.
The third chapter covers blowups of linear spaces associated with the two graph hypersurfaces
entering the Feynman parameter description of a Feynman integral. These are needed to separate
the polar locus of the projective form and the domain of integration. Divergencies can be detected
by this method. These divergencies are avoided by shifting dimensions. We will discuss how this
leads to an inhomogeneous Picard–Fuchs equation whose inhomogeneous part can be related to
Feynman integrals associated with minors of the graph. Also main results from the theory of
Picard–Fuchs equations and ways to compute these in the projective setting are recalled.
In the fourth chapter, we introduce a more formal approach to obtain differential equations
directly for arbitrary dimension without first shifting dimensions and shifting back via Tarasov’s
recurrence relations. It is more flexible than our approach in chapter three, but it produces larger
systems of linear equations.
Finally, in the fifth chapter, we will carry through our program for a finite family of two–
loop graphs. Our procedure leads to new equations that have previously not been obtained by
the usual method of integration by parts. Furthermore, by a result of Tarasov, the two–loop
graphs considered here are sufficient to describe all two–loop two–point functions. We also give
a three–loop example.





Chapter 2

Feynman Integrals

Feynman integrals arise in perturbative calculations in quantum field theories. In such a theory
Feynman graphs are constructed according to Feynman rules and one formally assigns integrals
to these graphs. These may depend on parameters, such as masses or momenta and a major
complication arises from the fact, that these integrals often are divergent. These ill–defined
quantities need to be replaced by finite values. We will discuss dimensional regularization, which
is a successful and widely used regularization procedure. This leads to a Laurent series in a
regularization parameter, whose polar part as well as zero order term will be the main interest
in later chapters.

We discuss the Feynman parametrization, which is the bridge to the algebraic world. It allows
us to assign periods to the Feynman integrals. If a Feynman integral is convergent, it is itself a
period and the Feynman parametrization conveniently gives us a representation of the integral as
a projective integral. The number theoretic content is governed by two homogeneous polynomials,
that appear in the Feynman parametrization. Here, these will be called the first and the second
graph polynomial. In the divergent case, the coefficients in their Laurent series are periods,
but we have to work a little harder to detect their origin. We discuss Tarasov’s dimensional
recurrence relations which are helpful in this context. Finally, we introduce integration by parts
identitites, which connect Feynman integrals of a graph to those of the minors of the graph and
which, therefore, provide a useful mechanism of reduction.

2.1 Feynman Graphs

A Feynman graph is a pictorial representation of a physical process involving elementary particles
moving in space–time. Particles can be created and deleted, represented by vertices of the graph
joining a certain number of lines. We will assume an intuitive understanding of what is meant by
graph, let us, however, briefly explain what we mean, when we say ”graph”. A Feynman graph
differs a little from the notion of a graph in algebraic graph theory – it is a multigraph which
may have external half–edges.
To be more precise, a (Feynman) graph Γ consists of a finite set VΓ = {v1, . . . , vk} of vertices, a
finite set of edges EΓ = {e1, . . . , eN} (also called lines), and a finite set of half–edges. Formally,
EΓ is a finite set of oriented pairs (vi, vj) of vertices which may have a multiplicity, i.e. more
than one edge may join the same two vertices. An edge of the form (vi, vi) is called a tadpole
(which would be called self–loop in algebraic graph theory). A half–edge is an edge of the form
(vi) and will be called external edge henceforth. The edges of the graph will sometimes be called
internal edges to distinguish them from the external ones, but we will usually drop the word
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10 CHAPTER 2. FEYNMAN INTEGRALS

Figure 2.1: A Feynman graph.

”internal”.
The interior of a graph is obtained from a graph by removing the external edges. A subgraph is
obtained by removing internal edges. There are a lot of operations on graphs that can be useful
for Feynman integral computations (see e.g. [Bro09b]). For our purposes the most important
operation is the contraction of an edge, which means to delete the edge and identify its endpoints.
A graph γ, that is obtained from another graph Γ by an iterated application of the deletion
operation (remove an edge) or the contraction operation, we just described, is called a minor of
the graph Γ.
Whenever we are interested in a graph, we are also interested in its minors. Later, we will be
interested in differential equations of integrals that are associated with Feynman graphs. These
will be inhomogeneous and we will see, that information about the inhomogeneous term of the
differential equation of a Feynman integral associated with Γ will be contained in the minors of
that graph.
A graph is called connected, if its interior is connected. The interior of a graph is naturally a
simplicial complex. We define the loop number ℓ of a graph to be the number of edges minus
the number of vertices plus one. For a connected graph this equals the first Betti number of its
interior, which is just the formula for the Euler characteristic of the (interior of) the graph.
A connected graph is called one–particle irreducible (1PI), if it cannot be rendered disconnected
by removing a single edge. We will restrict to graphs that are connected and 1PI. In the case
when the graph is connected, the property of being one–particle irreducible is equivalent to the
property of being core. A graph is called core, if for any edge e we have h1(Γ\e) < h1(Γ).
Sometimes the notion of being core is prefered (see e.g. [BK08]), we will, however, use the notion
of one–particle–irreducibility, which is standard in physics literature.
The motivation to restrict to graphs, that are connected and 1PI, comes from physics (see e.g.
[IZ87]). Starting from a graph, we will be interested in the graph itself, as well as in its minors,
that are obtained by allowing the contraction operation only. Note that the contraction operation
respects these two properties, so we will never leave the class of connected 1PI graphs. Therefore,
let us assume throughout this dissertation, that every graph is connected and 1PI. The Feynman
graphs needed in a calculation are constructed from so–called Feynman rules, which depend on
the physical theory. In this dissertation we will not discuss Feynman rules of different physical
theories, we will instead start with a graph and its Feynman integrals, which we will define in
the present chapter.
The reader interested in the physical background and how graphs are constructed from Feynman
rules, is invited to consider one of the many textbooks on the subject [IZ87, PS95] or the lecture
notes [Wei10].
Let us conclude this section with one final remark. In the physics literature one often encounters
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Figure 2.2: A graph with one type of vertex and two types of edges. It represents a process that
can be described by Quantum Electrodynamics (QED), which is not a scalar theory.

Feynman graphs with more than one type of vertex or edge. One example is depicted in figure 2.2.
Here, we will not consider such graphs, for us, there is always only one type of vertex and one
type of edge. This is always the case in a so–called scalar theory, so let us for the moment restrict
to such a theory. In section 2.8 we will discuss a reduction due to Tarasov, that will allow more
flexibility.
We have mentioned, that a graph is constructed from Feynman rules, so not every graph one may
draw necessarily belongs to the given theory. One may ask which graphs are interesting. From
our perspective the answer is simple, every graph is interesting. In general, we will work bottom–
up, whenever we encounter a graph, we will first try to understand the minors of the graph in
question. In [Bro09b], F. Brown discusses a special class of graphs occuring in a scalar theory
called (massless) φ4 theory. These are the so–called primitive–divergent graphs of (massless)
φ4 theory, and Brown shows that every graph occurs as a minor of such a graph. This means,
that in the sense of minors there is no unphysical graph. In conclusion, for us, every graph is
interesting, but we have a useful ordering principle and that is by loop order. In the physics
literature all one–loop graphs (resp. their Feynman integrals) are known analytically. On the
other hand, even at the two–loop level, there are still open questions. Less is known, the higher
the loop order of the graph. Therefore, a natural starting point for us will be two–loop graphs.

2.2 The Momentum Space Representation of a Feynman

Integral

In a quantum field theory inD dimensions, space–time points x and momenta p areD–dimensional
vectors, denoted by x = (x0, x1, . . . , xD−1) and p = (p0, p1, . . . , pD−1) respectively. Here D can
be any positive integer. In a physical application the dimension usually equals four. A Feynman
integral can be represented in position space, using the variables x above, or in momentum space,
using the variables p (we will also use the letter k). Each representation has its own advantages.
In this dissertation we choose to work with momentum space. There are two metrics on D–
dimensional momentum space that are used, the Minkowski metric and the Euclidean metric.
The Minkowski metric is given by the D by D diagonal matrix

diag(1,−1, . . . ,−1),

the Euclidean metric is given by the D by D unit matrix. When we write p2 (or k2), we mean
the scalar product with respect to one of these metrics. When not explicitly stated otherwise we
will work with the Minkowski metric.
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Let us now define the Feynman integral associated with a graph Γ in its momentum space
representation. Starting from a graph, we do the following:

• To each external edge, assign an (external) momentum pi.

• To each internal edge, assign a momentum ki and a mass mi.

• Orient all external edges inwards.1

Note, that all masses are scalars (real numbers), whereas all momenta are D–vectors (with real
entries).
A Feynman integral in its momentum space representation associated to a graph Γ with ℓ loops
and N edges is of the form

IMS(D,Λ) = C ·

∫

RD·ℓ

dDk1 . . . d
Dkℓ∏N

j=1 Pj

. (2.1)

Here, the Pj are quadrics and C is a prefactor that we will discuss later. The Feynman quadrics
Pj are obtained by setting

Pj = k2j −m2
j + iδ,

and applying momentum conservation to all vertices, which means at each vertex of the graph
to put to zero the sum of the ingoing momenta minus the sum of the outgoing momenta. These
terms are called propagators in physics literature and we will adopt this terminology. Applying
momentum conservation we can eliminate all but ℓ of the momenta ki. To see this, recall, that
we have defined

ℓ = N − V + 1,

where V is the number of vertices of the graph. Clearly N is the total number of internal
momenta and V − 1 the number of conditions on the internal momenta implied by momentum
conservation. The last condition assures conservation of the external momenta and with our
convention to orient the external edges inwards, reads

∑

external momenta

pi = 0.

Therefore, momentum conservation also fixes the kinematical invariants stemming from the ex-
ternal edges of the graph.2 Finally, the vector Λ contains all the masses assigned to the edges
of the graph and all the independend kinematical invariants. The extra term iδ is thought of
as small and is added to avoid the pole on the real axis. We will usually omit this term in our
notation.

Example Let us consider as an example the graph given in fig. 2.3. We have assigned momenta
to the edges of the graph. Applying momentum conservation to the vertex on the left gives

k1 − k4 − p1 = 0,

and we can eliminate k4. Continuing with the vertex at the top, we obtain

−k1 + k2 + k5 = 0,

1We choose this convention here, but other conventions are also possible. We need to orient the external edges
in order to apply momentum conservation.

2For a graph with E external edges and external momenta p1, . . . , pE we can use momentum conservation to
eliminate pE and use the variables sjk = (pj + pk)

2 for 1 ≤ j, k ≤ E − 1 as kinematical invariants.
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p1 p2
k5,m5

k1,m1

k3,m3

k2,m2

k4,m4

Figure 2.3: The master two–loop two–point graph. We have decorated the edges and external
edges, but we have not yet applied momentum conservation.

eliminating k5. The vertex at the bottom gives

−k3 + k4 − k5 = 0,

which allows us to eliminate k3. Finally the vertex on the right gives

−k2 + k3 − p2 = 0.

Putting everything together, we obtain

k4 = k1 − p1,

k5 = k1 − k2,

k3 = k2 − p1,

p2 = −p1.

Denoting p = p1 we obtain the Feynman integral
∫

dDk1d
Dk2

(k21 −m2
1) (k

2
2 −m2

2) [(k2 − p)2 −m2
3] [(k1 − p)2 −m2

4] [(k1 − k2)2 −m2
5]
.

Furthermore, we have seen that momentum conversation at each vertex implies overall momen-
tum conservation. A graph with only two external edges, therefore, only depends on a single
kinematical invariant.

Let us now introduce a procedure called Wick rotation. In the definition of the propagators
we had to include a term iδ to shift the domain of integration away from the real axis, where we
could have poles, due to the fact, that we have worked with the Minkowski metric. Recall, that
in Minkowski space, any squared momentum is of the form

k2 = (k0)2 − (k1)2 − · · · − (kD−1)2.

We want to consider functions that depend only on the square of momenta. Let f be a function,
that depends on a single squared momentum k2. The idea is to rotate from the real axis to the
imaginary axis in the complex k0 plane. We can find a closed contour in the complex k0–plane,
that includes the real axis (shifted by iδ to avoid the poles) and the imaginary axis and does not
contain poles. Therefore, the integration over the whole contour is zero. If the arcs at infinity
give a vanishing contribution, we obtain

∞∫

−∞

dk0f(k0) = −

−i∞∫

i∞

dk0f(k0).
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Let us now perform the simple change of variables

k0 = iK0

kj = Kj , for 1 ≤ j ≤ D − 1.

This implies

k2 = −K2,

and

dDk = i dDK.

Together, we obtain

∫
dDkf(−k2) = i

∫
dDKf(K2). (2.2)

Here, the right hand side is an integral over Euclidean space. Using rotational invariance, we
can express our integral as the volume of the unit sphere times a one–dimensional integral. The
volume of the (D − 1)–dimensional unit sphere is given by

vol
(
SD−1

)
=

2πD/2

Γ(D/2)
,

and the expression for our integral becomes

∫
dDKf(K2) =

2πD/2

Γ(D/2)

∞∫

0

dKf(K2)KD−1. (2.3)

Here Γ denotes the gamma function, which for ℜ(z) > 0 is defined by

Γ(z) =

∞∫

0

e−ttz−1dt.

It satisfies the functional equation

Γ(z + 1) = z Γ(z),

and, for any positive integer n, the equation

Γ(n+ 1) = n! .

The gamma function can be extended meromorphically to the complex plane. It has simple poles
at zero and all negative integers.
Note, that the right hand side of equation (2.3) makes sense for complex values of D. This leads
to the idea of dimensional regularization, that we will discuss in section 2.4.
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2.3 Divergencies and Power Counting

In the preceeding we have taken a graph and formally assigned an integral to it. The procedure
is not sensitive to the matter of convergence and the integral we obtain may converge or diverge
depending on the values of the masses and the kinematical invariants, as well as the dimension D.
In this chapter we will take a close look under what circumstances we find a convergent integral.
To this end we will define the superficial degree of divergence and introduce the method of power
counting. How to replace a divergent Feynman integral by a meaningful quantity will then be
the subject of the next section.

Let us begin with an example.

Example The Feynman integral corresponding to the one–loop graph depicted in fig. 2.4 reads

∫
dDk

(k2 −m2
1)((k − p)2 −m2

2)
.

Let us put the external momentum p to zero (which amounts to removing the external edges,
such that we have a graph without external edges) and the space–time dimension equal to four.
In the case m1 = m2 = 0 we can apply Wick rotation and rotational invariance and formally
write

∫
d4k

(k2)2
= i

∫
d4K

(K2)2
= i (2π2)

∞∫

0

dK

K
,

which has a divergency as K goes to infinity and a divergency as K goes to zero. The first kind
of divergency, coming from a large momentum region is called an ultraviolet divergency (UV–
divergency). The second kind of divergency, stemming from a small momentum region is called
an infrared divergency (IR–divergency). Let us further observe, that for m1 > 0 and m2 > 0 we
do not obtain a divergency from the lower boundary K = 0.
Let us now write the same integral in dimension two. We have

∫
d2k

(k2)2
= i

∫
d2K

(K2)2
= i (2π)

∞∫

0

dK

K3
,

and we do not obtain an ultraviolet divergency. Furthermore, if the masses are positive, we have
a convergent integral.
Everything we have seen in this example remains true for general values of p, we have chosen
p = 0 just for convenience.

We have seen, that Feynman integrals may acquire singularities from regions of large and small
momenta, depending on how the parameters, including the dimension, are chosen. Fortunately,
there is a simple method to determine whether a Feynmal integral with given parameters Λ andD
is (absolutely) convergent3 or not. Let us treat UV– and IR–divergencies separately. Beginning
with UV–divergencies, we define for a Feynman integral as in equation (2.1) the superficial degree
of divergence

sdd(I) = Dℓ− 2N,

3A physisist would say finite instead of absolutely convergent, we will just say convergent. If a Feynman
integral is convergent, it is automatically absolutely convergent in the Euclidean region by a simple positivity
argument. This will be obvious once we introduce Feynman parameters and define the Euclidean region, which
will be the region we are interested in.
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p

m1, k

m2, k − p

Figure 2.4: A one–loop self–energy graph. We have applied momentum conservation and omitted
the orientation.

which counts the powers in the numerator and the denominator of equation (2.1). The semi–
algebraic set, given by the inequations

mi ≥ 0,

q2i ≤ 0

for all masses mi and all kinematical invariants q2i , is called the Euclidean region. We have

Theorem 2.3.1 (i) If all masses assigned to the edges of Γ are strictly positive, the corre-
sponding Feynman integral has no infrared divergencies in the Euclidean region.

(ii) Assume, that there are no IR–divergencies. If sdd(Iγ) < 0 for all connected and one–
particle irreducible subdiagrams of Γ (including Γ itself), that consist of some vertices as
well as all edges joining these vertices in Γ, then the Feynman integral corresponding to Γ
is absolutely convergent in the Euclidean region.

(iii) Conversely, if at least one subdiagram as in (ii) has a non–negative superficial degree of
divergence, the corresponding Feynman integral is divergent.

The above Theorem is a collection of well–known results. A proof of part (ii) and (iii) can
be found in chapter 8 of [IZ87]. Part (ii) is general, while part (iii) is true, because we have
restricted ourselves to a scalar theory. Finally part (i) follows from the discussion in chapter 3.
Similarly to what we have done for UV–divergencies, we can define a superficial degree of diver-
gence for the IR–divergencies. We have, however, seen that IR–divergencies are absent, if the
corresponding graph has no massless edges (i.e. no mass is zero). In the following we will handle
UV–divergencies by shifting the space–time dimension, while we avoid IR–divergencies by either
restricting to graphs with no massless edges or by putting a small mass on the massless edges.
The convergent integral can then be evaluated as a function in the masses.

2.4 Dimensional Regularization

Let us assume in this chapter, that we are given a Feynman integral without IR–divergencies.
Then we see by power counting that for some values of D the integral is convergent, while for
others it is (UV–) divergent. The idea of dimensional regularization is to add to D a (complex)
regularization parameter ε, such that for ε = 0 we have the original divergent integral. The
Feynman integral is then interpreted as a function in ε, which extends meromorphically to the
complex plane and the ill–defined quantity is replaced by a Laurent series in ε. One is then
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usually mostly interested in the polar part of this series as well as the zero order term. From
a mathematician’s point of view these coefficients are very interesting – they are periods in the
sense of Kontsevitch and Zagier [KZ01].

The idea to replace the dimension by a complex variable was introduced to quantum field
theory by ’t Hooft and Veltman [HV72], Bollini and Giambiagi [BG72], Ashmore [Ash72], and
Cicuta and Montaldi [CM72]. The method was also discovered by Speer and Westwater [SW71]
in a more abstract setting. In this section we follow [Col84].

We would like to construct a function of a complex variable D, that coincides with the usual
integration for positive integer values ofD. We have to show the existence of such a function. This
will be done by constructing an explicit definition. We furthermore have to show its uniqueness
and in order for the definiton to be useful, we have to demonstrate, that the function constructed
still has properties associated with ordinary integration.
Let there be given a finite set of vectors {k, q1, . . . , qr} and let f(k, q1, . . . , qr) be a scalar function,
which means, that it only depends on scalar products of the given vectors. Here the vectors qj
can be thought of as momenta of external particles (associated with the external edges of the
Feynman graph). For complex D we would like to define an operation

∫
dDkf(k, q1, . . . , qr),

that can be regarded as integration over a D–dimensional space. Since the dimension of a vector
space is either a positive integer or infinity, this cannot be taken completely literally. We work in
an infinite–dimensional Euclidean vector space E. Let us assume, that k and all qj are elements
of this vector space. We can find a finite–dimensional subspace of E, that contains all the qj .
This subspace will be denoted E|| and its orthogonal complement will be denoted E⊥. We can
now decompose

k = k|| + k⊥

=

J∑

j=1

kjej + k⊥,

where k|| ∈ E|| and k⊥ ∈ E⊥, and {e1, . . . , eJ} is an orthonormal basis of E||.
We now define ∫

dDkf(k, q1, . . . , qr) =

∫
dk1 . . . dkJ

∫
dD−Jk⊥f(k, q1, . . . , qr), (2.4)

and

∫
dD−Jk⊥f(k, q1, . . . , qr) =

2π(D−J)/2

Γ((D − J)/2)

∞∫

0

dk⊥k
D−J−1
⊥ f(k, q1, . . . , qr), (2.5)

and call
∫
dDkf(k, q1, . . . , qr) a D–dimensional integral. If all qj are zero, this is nothing but

equation (2.3). Definition (2.5) is motivated by the fact that f depends only on scalar products
of the vectors, but not on the direction of k⊥. We have mimicked the procedure of integrating
over a sphere.
It remains to show, that our definition is independend of the choice of the subspace E||. Also one
has to be careful at the lower boundary k⊥ = 0 if D is small. For a discussion of these issues, as
well as a proof of the uniqueness of the definition, we refer to [Col84].
Let us now come to the properties of the D–dimensional integral. We have
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• Linearity : For any complex numbers a and b
∫

dDk[a f(k) + b g(k)] = a

∫
dDkf(k) + b

∫
dDkg(k).

• Scaling : For any complex number s
∫

dDkf(sk) = s−D

∫
dDkf(k).

• Translation invariance: For any vector q
∫

dDkf(k + q) =

∫
dDkf(k).

• Fubini : ∫
dDk1

∫
dDk2f(k1, k2) =

∫
dDk2

∫
dDk1f(k1, k2).

This can be used to define
∫

dDk1d
Dk2f(k1, k2; q1, . . . , qr) =

∫
dDk1

∫
dDk2f(k1, k2; q1, . . . , qr)

=

∫
dDk2

∫
dDk1f(k1, k2; q1, . . . , qr).

• Commutativity of integration and differentiation:

∂

∂q

∫
dDkf(k, q, . . . ) =

∫
dDk

∂

∂q
f(k, q, . . . ).

• Integration by parts : For any vector q
∫

dDk
∂

∂kµ
qµf(k) = 0.

• Analyticity and recovery of ordinary integration: Consider an integral
∫

dDkf(k, q1, . . . , qr),

which is convergent at D = 4. Then the integral is analytic in D and the parameters qj ,
when D is close to four, if the integrand is analytic. If the qj lie in the first four dimensions,
then the integral at D = 4 has the same value as the ordinary four–dimensional integral of
f . The same is true for convergent multiple integrals

∫
dDk1 . . . d

Dkℓf(k1, . . . , kℓ, q1, . . . , qr),

which might represent Feynman integrals of graphs with ℓ loops and r external edges.

• Beta function formula: For k–independent terms u and v, we have

∫
dDk

(k2)a

(uk2 + v)b
=

πD/2

Γ(D/2)

u−a−D/2

vb−a−D/2

Γ(a+D/2) Γ(b− a−D/2)

Γ(b)
.
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Again, proofs for all these properties can be found in [Col84]. Let us comment on the name of
the last property. Euler’s beta function can be defined as

B(x, y) =

∞∫

0

dt
tx−1

(t+ 1)x+y

for ℜ(x) > 0 and ℜ(y) > 0, and satisfies

B(x, y) =
Γ(x) Γ(y)

Γ(x+ y)
.

For u, v 6= 0, we obtain the identity

∞∫

0

dt
ta

(ut+ v)b
=

u−a−1

vb−a−1

Γ(a+ 1)Γ(b− a− 1)

Γ(b)
, (2.6)

which was used in the reduction algorithm of [Bro09a].
For any positive integer D, we have

Γ(D/2)

πD/2

∫
dDK

(K2)a

(uK2 + v)b
=

∞∫

0

dK
Ka+D/2−1

(uK + v)b
,

and the right hand side is just a beta function via equation (2.6). Furthermore, we see, that the
beta function formula contains equation (2.6) as a special case.

In this section we have described the D–dimensional integral of a scalar function f . We have
denoted the momenta kj and qj and worked in an Euclidean space. Making the transition to
Feynman integrals, let us remind the reader, that we have denoted Euclidean momenta by capital
letters and that we will usually denote external momenta by pj .

In [Eti00] and also in [Mey02] a different approach is proposed. There, an operator (the
D–dimensional integral) is defined on a space of Schwartz functions. This may be applied to
Feynman integrals with parameters. The essence of this approach is the following

Theorem 2.4.1 A Feynman integral I(D,Λ, ν) in its momentum space representation as in
equation (2.1) extends meromorphically to the whole complex plane. At any integer D we have
a Laurent series

I(D − 2ε,Λ, ν) =

∞∑

j=−2ℓ

cj ε
j .

The fact that we acquire at most poles of order 2ℓ is well known and becomes evident when
analyzing the sequence of blowups we discuss in chapter 3.

2.5 Integration by Parts Identities

One of the most powerful tools for evaluating Feynman integrals are the integration by parts
identities (IBP–identities), that we will now introduce. In a physical application typically not
only a single Feynman integral has to be computed. Instead one has to consider sums of Feynman
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integrals. The number of integrals involved in such a computation increases rapidly with the
desired loop–order. On the other hand the evaluation of a single two or three–loop integral is
already very difficult. Therefore, efficient reduction procedures are essential and the method of
IBP–identities provides such a procedure.

2.5.1 Integrals with Irreducible Numerator

Let S = {k1, . . . , kℓ, p1, . . . , pr} be a set of momenta. We have called a function f(S), that de-
pends on these momenta only through their scalar products, scalar. The integrand of a Feynman
integral as in equation (2.1) is a scalar function. We will now define Feynman integrals with
irreducible numerators and arbitrary powers of the propagators associated to a Feynman graph,
where until now we have spoken of the unique Feynman integral assigned to a Feynman graph.
These more general objects will appear naturally in the reduction algorithm we will discuss in
the next section.

Let us assign to a graph Γ with N internal edges, E external edges, dimension D and param-
eters Λ the following integrals

I(D,Λ, ν) =

∫
dDk1 . . . d

Dkℓ

∏B
i=1 S

νN+i

i∏N
j=1 P

νj

j

. (2.7)

Here Si can be a product of loop momenta or the product of a loop momentum with an external
momentum. The exponents νi of the propagators are arbitrary non–negative integers4. Due to
momentum conservation, (for E ≥ 1) we have E − 1 independent external momenta, hence we
obtain

B = ℓ(E − 1) +
1

2
ℓ(ℓ+ 1).

This set of integrals can be reduced to a set of integrals where the product in the numerator runs
only from one to B −N . This is achieved by completing squares and we will give an example in
a moment. In this way, for a given graph, the integrals of equation (2.7) reduce to integrals

∫
dDk1 . . . d

Dkℓ
1

∏N
j=1(Pj)νj

, (2.8)

for B ≤ N , and to

∫
dDk1 . . . d

Dkℓ

∏B−N
i=1 (Si)

νN+i

∏N
j=1(Pj)νj

, (2.9)

for B > N .
We call integrals as in (2.8) scalar Feynman integrals. If for an integral as in (2.9) at least one
of the exponents in the numerator is positive, we call it a Feynman integral with irreducible
numerator.

If an exponent in the denominator of an integral as in (2.9) is zero, the integral is considered
simpler. In such a situation, it in fact belongs to a minor of the graph5 Γ, namely the one
with the corresponding edge contracted. Typically, we will work bottom–up, i.e. we consider all

4In some applications propagators with complex exponents are considered. We will, however, not consider this
situation in this dissertation.

5In the literature one finds the terms Feynman graph or diagram. These are in principle used as synonyms.
One also frequently finds the term Feynman amplitude instead of Feynman integral. We will consequently use
the terms graph and integral.
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p

m1

m2

m3

Figure 2.5: The two-loop sunrise graph. We will usually draw Feynman graphs in this way, omit-
ting everything, that is not strictly necessary. While the propagators depend on the orientation
of the graph, the Feynman integrals do not. This can be seen in the Feynman parameter de-
scription which we will discuss in section 2.6. The missing label for the external edge is obtained
by momentum conservation.

integrals that belong to minors of Γ known and then gather information about the integrals of
Γ by these known simpler integrals and additional information, that later will be provided by
the second graph hypersurface, which we will define in section 2.6. Relations between integrals
with shifted exponents are available from two sources, firstly, the IBP–identities, to be discussed
in the following section and secondly, we have generalized dimensional recurrence relations, that
will be discussed in section 2.8. In this sense, as we mentioned earlier, every graph becomes
interesting, not only those of a certain theory.

Example Consider the graph depicted in fig. 2.5. According to the discussion in this chapter,
it has associated the Feynman integrals

I(D,Λ, ν) =

∫
dDk1d

Dk2
(k1 · p)

ν4(k2 · p)
ν5(k1 · k2)

ν6

(k21 −m2
1)

ν1(k22 −m2
2)

ν2 [(p− k1 − k2)2 −m2
3]

ν3
, (2.10)

where the entries of ν = (ν1, ν2, ν3, ν4, ν5, ν6) are non–negative integers. We have N = 3 and
B = 5, such that we can eliminate one term in the numerator. For notational convenience, let
us denote the propagator, that is raised to the power νi in equation (2.10), by Pi. We would like
to eliminate P6 = k1k2. We have

k1k2 =
1

2

[
2k1p+ 2k2p− p2 − k21 − k22 + (p− k1 − k2)

2
]
,
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and therefore

I(D,Λ, ν) =

∫
dDk1d

Dk2
P ν4+1
4 P ν5

5 P ν6−1
6

P ν1

1 P ν2

2 P ν3

3

+

∫
dDk1d

Dk2
P ν4

4 P ν5+1
5 P ν6−1

6

P ν1

1 P ν2

2 P ν3

3

−
1

2

∫
dDk1d

Dk2
P ν4

4 P ν5

5 P ν6−1
6

(
p2 + k21 + k22 − (p− k1 − k2)

2
)

P ν1

1 P ν2

2 P ν3

3

=

∫
dDk1d

Dk2
P ν4+1
4 P ν5

5 P ν6−1
6

P ν1

1 P ν2

2 P ν3

3

+

∫
dDk1d

Dk2
P ν4

4 P ν5+1
5 P ν6−1

6

P ν1

1 P ν2

2 P ν3

3

−
1

2

(
p2 +m2

1 +m2
2 −m2

3

) ∫
dDk1d

Dk2
P ν4

4 P ν5

5 P ν6−1
6

P ν1

1 P ν2

2 P ν3

3

−
1

2

∫
dDk1d

Dk2
P ν4

4 P ν5

5 P ν6−1
6

P ν1−1
1 P ν2

2 P ν3

3

−
1

2

∫
dDk1d

Dk2
P ν4

4 P ν5

5 P ν6−1
6

P ν1

1 P ν2−1
2 P ν3

3

+
1

2

∫
dDk1d

Dk2
P ν4

4 P ν5

5 P ν6−1
6

P ν1

1 P ν2

2 P ν3−1
3

.

On the right–hand side of this equation, the power of the propagator P6 is reduced. Iterating
this procedure, we can express I(D,Λ, ν) as a sum of integrals, that do not depend on P6. It is
therefore enough to consider integrals

I(D,Λ, ν) =

∫
dDk1d

Dk2
(k1 · p)

ν4(k2 · p)
ν5

(k21 −m2
1)

ν1(k22 −m2
2)

ν2 [(p− k1 − k2)2 −m2
3]

ν3
,

where the entries of ν = (ν1, ν2, ν3, ν4, ν5) are non–negative integers.

Note, that power counting as discussed earlier still works for integrals as in equation (2.8). For
such an integral, we define

sdd(I) = ℓD − 2ν,

where ν = ν1 + · · ·+ νN .

2.5.2 Reduction via IBP–Identities

The reduction procedure, we would like to introduce in this section is based on the property of
the D–dimensional integral, that we have called integration by parts. For a scalar function f , a
momentum k and any D–vector q we have

∫
dDk

∂

∂kµ
qµf(k) = 0.

For Feynman integrals as in equation (2.9) we obtain the relations

∫
dDk1 . . . d

Dkℓ
∂

∂kµh
qµl

∏B−N
i=1 (Si)

νN+i

∏N
j=1(Pj)νj

= 0,

where kh can be any internal momentum and ql can be any internal or external momentum. This
gives ℓ(ℓ+E−1) identities, that we call basic IBP–identities. From these, all IBP–identities can
be obtained by linearity. They were introduced in [CT81, Tka81]. Evaluating the differentiation
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leads to a sum of integrals with exponents, that are shifted by integers. To simplify our notation,
let us introduce the operators

i+I(D,Λ, ν1, . . . , νB) = I(D,Λ, ν1, . . . , νi + 1, . . . , νB),

i−I(D,Λ, ν1, . . . , νB) = I(D,Λ, ν1, . . . , νi − 1, . . . , νB),

which shift one exponent by one. Applying a single IBP–identity leads to an equation where
integrals with at most two shifts appear. This can be seen easily using the chain rule. The
initial differentiation may increase an exponent in the denominator or reduce an exponent in
the numerator by one. The inner derivative may then increase an exponent in the numerator,
decrease an exponent in the denominator, or leave all exponents unchanged. Therefore an IBP–
identity is of the form

c+

N∑

i=1

c+i i
+ +

B∑

i=N+1

c−i i
− +

∑

i6=j

c±iji
+j− +

∑

0≤i≤N
N<j≤B

c+iji
+j+ +

∑

0≤i≤N
N<j≤B

c−iji
−j−


 I(D,Λ, ν) = 0,

with coefficients, that are rational functions.
We have associated with a graph an infinite number of integrals and the IBP–identities provide
an infinite number of relations among them. One can choose an ordering on the integrals and
try to reduce them according to this ordering. The integrals that cannot be reduced are called
master integrals.
Let us be more precise. The Feynman integrals of a graph can be considered as elements of
the field of functions F of B integer arguments ν1, . . . , νB . A basis of this infinite–dimensional
vector space is

Hν1,...,νB
(ν̃1, . . . , ν̃B) = δν1,ν̃1

. . . δνB ,ν̃B
.

A Feynman integral as a function in ν represents a point in F and an IBP–identity can be
interpreted as a linear functional on this vector space. The set of relations is fixed by considering
all IBP–identities with all possible values of ν substituted. Each such relation defines an element
in F ∗ and all relations generate an infinite–dimensional vector subspaceR ⊂ F ∗. Let us consider
the vector subspace of F given by

S = {f ∈ F | 〈r, f〉 = 0 ∀ r ∈ R}.

Then the Feynman integral F (ν) is an element of S. Now, fix an ordering on the Feynman
integrals (i.e. an ordering on ZB). A master integral F (ν1, . . . , νB) is an integral, such that there
is no element r ∈ R acting on F , such that all the points (ν̃1, . . . , ν̃B) are lower than (ν1, . . . , νB)
with respect to the ordering. The set of master integrals depends on the chosen ordering.
We see, that the number of master integrals is finite, if and only if, the vector space S is finite–
dimensional. In this way, the following is shown in [SP10].

Theorem 2.5.1 For a given graph Γ the number of master integrals is finite.

This means, that the Feynman integrals associated with a graph can be reduced to a finite
number of integrals using IBP–identities. To obtain these, an automated procedure is desireable.
The widely used Laporta algorithm [Lap00] is such a procedure. It imposes an ordering on the
Feynman integrals and uses Gauß–elimination to obtain a set of master integrals for the graph.
Let us mention, that there are publicly available implementations of the Laporta algorithm, such
as AIR [AL04], FIRE [Smi08] and Reduze [Stu10]. To summarize, we have seen in this section,
that IBP–identities provide an efficient and successful reduction procedure to express (sums of)



24 CHAPTER 2. FEYNMAN INTEGRALS

complicated integrals in terms of simpler ones. To any given graph we only have to consider
finitely many master integrals.

Let us conclude this section with an example.

Example Let us derive the basic IBP–identities for the two–loop sunrise graph of fig. 2.5. We
have ℓ (ℓ+ E − 1) = 6 such identities. The Feynman integrals of the sunrise graph are

I(D,Λ, ν) =

∫
dDk1d

Dk2
(k1 · p)

ν4(k2 · p)
ν5

(k21 −m2
1)

ν1(k22 −m2
2)

ν2 [(p− k1 − k2)2 −m2
3]

ν3
. (2.11)

Let us denote the integrand of the right–hand side of equation (2.11) by f . We have

∂

∂kµ1
kµ1 f = Df + kµ1

∂

∂kµ1
f

=
(
D + ν4 − 2ν1 − 2ν1m

2
11

+ − 2ν3(k
2
1 + k1k2 − k1p)3

+
)
f.

At this point the product k1k2 appears and we can complete the square as in the previous
example to obtain

2ν3(k
2
1 + k1k2 − k1p)3

+f = ν3
(
2k2p− p2 + k21 − k22 + (p− k1 − k2)

2
)
3+f

= ν3
(
1− (p2 −m2

1 +m2
2 −m2

3)3
+ + 1−3+ − 2−3+ + 2 · 3+5+

)
f.

In the same way, we obtain all six basic IBP–identities. They read

∂

∂kµ1
kµ1 I(D,Λ, ν) =

(
D − ν3 + ν4 − 2ν1 − 2ν1m

2
11

+ + ν3(p
2 −m2

1 +m2
2 −m2

3)3
+

−ν31
−3+ + ν32

−3+ − 2ν33
+5+

)
I(D,Λ, ν) = 0,

∂

∂kµ2
kµ2 I(D,Λ, ν) =

(
D − ν3 + ν5 − 2ν2 − 2ν2m

2
22

+ + ν3(p
2 +m2

1 −m2
2 −m2

3)3
+

+ν31
−3+ − ν32

−3+ − 2ν33
+4+

)
I(D,Λ, ν) = 0,

∂

∂kµ1
kµ2 I(D,Λ, ν) =

(
ν1 − ν3 + ν1(p

2 +m2
1 +m2

2 −m2
3)1

+ + ν3(p
2 +m2

1 −m2
2 −m2

3)3
+

+ ν11
+2− + ν31

−3+ − ν11
+3− − ν32

−3+ − 2ν11
+4+

−2ν11
+5+ − 2ν33

+4+ + ν44
−5+

)
I(D,Λ, ν) = 0,

∂

∂kµ2
kµ1 I(D,Λ, ν) =

(
ν2 − ν3 + ν2(p

2 +m2
1 +m2

2 −m2
3)2

+ + ν3(p
2 −m2

1 +m2
2 −m2

3)3
+

+ ν21
−2+ + ν32

−3+ − ν22
+3− − ν31

−3+ − 2ν22
+5+

−2ν22
+4+ − 2ν33

+5+ + ν54
+5−

)
I(D,Λ, ν) = 0,

∂

∂kµ1
pµI(D,Λ, ν) =

(
ν4p

24− − 2ν11
+4+ − 2ν33

+4+ − 2ν33
+5+ + 2ν3p

23+
)
I(D,Λ, ν) = 0,

∂

∂kµ2
pµI(D,Λ, ν) =

(
ν5p

25− − 2ν22
+5+ − 2ν33

+4+ − 2ν33
+5+ + 2ν3p

23+
)
I(D,Λ, ν) = 0.

Now let us assume we would like to evaluate the integral I = I(4; p2,m1,m2, 0; 2, 1, 1, 1, 0) as a
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function in p2, where we view the two masses as arbitrary, but fixed. Define the integrals

I0 = I(D, p2,m2
1,m

2
2, 0; 1, 1, 1, 0, 0),

I1 = I(D, p2,m2
1,m

2
2, 0; 2, 1, 1, 0, 0),

I2 = I(D, p2,m2
1,m

2
2, 0; 1, 2, 1, 0, 0).

We know by power counting, that these integrals are divergent in dimension four. We are
therefore not interested in the integrals themselves, but in the coefficients of their ε–expansions
around D = 4, viewed as functions in p2. It is known, that these evaluate to polylogarithms (as
functions in p2). Let us now come to I in general dimension D. We apply the IBP–identity

(
∂

∂kµ1
kµ1 +

∂

∂kµ2
kµ2 −

∂

∂kµ1
pµ
)
I0 = 2(D − 3)I0 − 2m2

1I1 − 2m2
2I2 + 2I = 0,

to express I as a combination of I0, I1 and I2. Indeed, the integrals I0, I1, I2 are master integrals
for the two–loop sunrise graph when m3 = 0. Therefore, in this case, everything evaluates to
polylogarithms. This fails to be true, when all masses are non–zero. The general case of arbitrary
masses will be of interest in later chapters.

2.6 Feynman Parameters

The Feynman parameters are the bridge to the world of (complex) algebraic geometry. They
allow it to write a Feynman integral as a projective integral. The Feynman parameter technique
is widely known and can be found in many places in the literature (see e.g. [Kak93, IZ87]). In
this chapter we will discuss the Feynman parameter prescription of a scalar Feynman integral.
The restriction to scalar integrals will be justified in section 2.8, where we introduce a reduction
procedure to scalar integrals.

2.6.1 The Feynman Trick

The Feynman trick in its simplest form is the equality

1

P1P2
=

1∫

0

dx
1

(xP1 + (1− x)P2)2
,

eliminating a product at the cost of introducing an integration. Equivalently, we may use the
Schwinger trick which, in its simplest form, reads

1

P
=

∞∫

0

dx exp(−xP ).

We decide to use the Feynman trick in the following. In its most general form the Feynman trick
becomes

N∏

i=1

1

P νi

i

=
Γ(ν)

N∏
i=1

Γ(νi)

∫

xi≥0

dNx δ

(
1−

N∑

i=1

xi

)(
N∏

i=1

xνi−1
i

)(
N∑

i=1

xiPi

)−ν

, (2.12)
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with ν =
∑N

i=1 νi. The newly introduced integration variables xi are called Feynman parameters.
Let us use this equality to re–express scalar Feynman integrals. Starting from the momentum
space representation of a scalar Feynman integral as in equation (2.8), we apply Wick rotation
and the Feynman trick of equation (2.12). Then we may use translational invariance of the D–
dimensional integral to complete the square, such that the integral depends only on the square
of a momentum ki. At this point we can use the beta function formula to integrate over the
momenta ki:

∫
dDk

(k2)a

(uk2 + v)b
=

πD/2

Γ(D/2)

u−a−D/2

vb−a−D/2

Γ(a+D/2) Γ(b− a−D/2)

Γ(b)
.

Iterating this procedure we can evaluate the integration over the momenta ki, such that only
the integration over the Feynman parameters xi remains. For a scalar Feynman integral this
procedure leads to the formula

I(D,Λ) = (−1)νiℓπℓD/2Γ(ν − ℓD/2)
N∏
i=1

Γ(νi)

∫

xi≥0

dNx δ

(
1−

N∑

i=1

xi

)(
N∏

i=1

xνi−1
i

)
Uν−(ℓ+1)D/2

Fν−ℓD/2
. (2.13)

Here, U and F are polynomials in the Feynman parameters. The polynomial F depends further-
more on the kinematical invariants and the masses. To obtain equation (2.13) one does not have
to perform all the steps we have just described, the polynomials U and F can be read off the
underlying Feynman graph. This will be the subject of the next subsection. Let us, however,
already mention, that both polynomials U and F are homogeneous in the Feynman parameters
(of degree ℓ and ℓ+ 1 respectively).

The domain of integration is the real simplex given by the equation
∑N

i=1 xi = 1 and inequa-
tions xi ≥ 0. In the literature the Feynman parameter description usually includes this choice of
an affine open. On the other hand, we usually prefer affine opens of the kind xi = 1 for a single
variable xi. We can choose any such open because the integral of equation (2.13) is a projective
integral. In physics literature this is refered to as the Cheng–Wu Theorem (see e.g. [Smi04]).

We would like to alter equation (2.13) a little more. The integral of equation (2.13) comes
with prefactors that do not affect the integration and we would like to drop these terms. There
is, however, one subtlety. Within dimensional regularization, the term Γ(ν− ℓD/2) can lead to a
single pole in ε. If a pole occurs, this is called an overall UV–divergence. We can, nevertheless,
treat the gamma function and the remaining integral separately. The Laurent series of the
gamma function is well known and the integral as well as the gamma function can be expanded
as a Laurent series separately.

So dropping the prefactors including the gamma functions and defining

Ω =
N∑

i=1

(−1)i−1
xi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxN ,

where the hat means that the corresponding term is omitted and defining

σ =
{
x = (x1 : · · · : xN ) ∈ PN−1 | xi ∈ R, xi ≥ 0

}
,

we refer to

I(D,Λ, ν) =

∫

σ

(
N∏

i=1

xνi−1
i

)
Uν−(ℓ+1)D/2

Fν−ℓD/2
Ω (2.14)
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as the Feynman parameter description of I(D,Λ, ν), bearing in mind that when integrating we
have to choose an affine open.
Let us now define the prefactor C entering in the momentum space representation of a Feynman
integral. Everything we have stated so far remains correct, if we choose

C = (−1)ν
1

iℓπℓD/2
.

This simplifies equation (2.13) but leaves the gamma factors. To obtain equation (2.14) we have
to choose

C̃ = (−1)ν
1

iℓπℓD/2

N∏
i=1

Γ(νi)

Γ(ν − ℓD/2)
.

Each choice of the constant has advantages. In this chapter we use C. Later we will use C̃ and
only deal with the projective integral as in equation (2.14). It is of course straightforeward to
change from one convention to the other. For a discussion on how our definitions are related
to the usual definition of a Feynman integral in the physics literature, we invite the reader to
have a look at appendix B of [BW09]. Especially one will find a physical constant µ entering the
definition of a Feynman integral. For us it is of no relevance and we have set it equal to one.

2.6.2 Graph Polynomials

The two homogenous polynomials entering in the Feynman parameter description can be read
off the underlying Feynman graph. They do not depend on the orientation of the graph, so we
can drop it in the following. Let us begin with some auxiliary definitions. A tree is a connected
and simply connected graph, i.e. a connected graph without loops. A disjoint union of k trees is
called a k–forest, such that a tree is a 1–forest. Now let Γ be a connected one–particle irreducible
graph. A spanning tree of Γ is a connected subgraph of Γ which is a tree and which contains
all vertices of Γ. The set of all spanning trees of Γ is denoted by TΓ. With any edge ei, we
have associated a mass mi, and from now on we would like to associate in addition the Feynman
parameter xi to ei.

With the terminology just introduced define the polynomial

U =
∑

T∈TΓ

∏

ei /∈T

xi. (2.15)

Observe that this definition is independent of the orientation of the graph and its external edges,
also it depends neither on masses nor on kinematical invariants. Furthermore, a spanning tree
T has h0(T ) = 0, h1(T ) = 1 and contains all vertices of the graph, so every spanning tree
has exactly N − ℓ edges. This means that U is homogeneous of degree ℓ. It is a classic result
that this polynomial is exactly the polynomial U in equation (2.14). It is called the first graph
polynomial of the underlying graph, its zero set in PN−1 is called the first graph hypersurface
of the graph. The second polynomial entering in the Feynman parameter description is a little
more complicated. A spanning 2–forest of a graph Γ is a subgraph G which is a 2–forest that
contains all vertices of Γ. It can be obtained from a spanning tree by removing exactly one edge.
Let T2 denote the set of all spanning 2–forests of a graph and let us write an element of T2 in
the form {T1, T2}, where each Ti denotes one tree of the 2–forest. We define

F0 =
∑

{T1,T2}∈T2


 ∏

ei /∈{T1,T2}

xi




 ∑

pj∈PT1

∑

pk∈PT2

pj · pk


 , (2.16)
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where PT is the set of external momenta attached to a tree T , and

F(Λ) = F0 +

(
N∑

i=1

m2
ixi

)
U . (2.17)

It follows that F is homogeneous of degree ℓ+1. Again it is a classic result that this polynomial
is the polynomial F in equation (2.14). We call F the second graph polynomial of the graph
Γ. Let us at this point emphasize, that we do not call F0 the second graph polynomial, both
are only equal, if all masses are zero. The polynomials U and F0 are frequently called first and
second Symanzik polynomial in literature. The polynomial F0, however, is of no relevance to us
except when it coincides with F .
The second graph polynomial depends on additional (complex) parameters given by the vector
Λ. For general (but fixed) values of these parameters we call the hypersurface in PN−1 defined by
the vanishing of F the second graph hypersurface of the graph. We will ultimately be interested
in a variation of this hypersurface as one of the parameters varies.
Let us take a closer look at the kinematical invariants. We have agreed to orient external edges
inwards, such that overall momentum conservation gives

E∑

i=1

pi = 0.

Each spanning 2–tree {T1, T2} gives a partition PT1
∪̇PT2

= {p1, . . . , pE} of the set of all external
momenta, and we can write

∑

pj∈PT1

∑

pk∈PT2

pj · pk =


 ∑

pj∈PT1

pj




 ∑

pk∈PT2

pk


 = −


 ∑

pj∈PT1

pj




2

.

The expressions on the right hand side of this equation are called the kinematical invariants of
the graph. These, together with the masses define the set of parameters Λ. We see that F has
positive coefficients as a polynomial in the Feynman parameters, if the entries of Λ are fixed in
the Euclidean region.
The graph polynomials have many remarkable properties. Obviously U and F0 are linear in
each variable. The second graph polynomial is linear in the variable xi if, and only if, mi = 0.
Otherwise it is quadratic in xi. Furthermore, every coefficient of the polynomial U equals +1.
Both graph polynomials can be related to graph polynomials of subgraphs and minors of the
graph. For a graph Γ let us define

Φi = ΦΓ/ei ,

and

Φ(i) = ΦΓ\ei ,

where Φ can be any of the polynomials U , F0 or F . For any such choice of Φ, the polynomials
Φi and Φ(i) are independent of the variable xi. Immediately from the definitions we obtain

U = Ui + xi U
(i), (2.18)

F0 = (F0)i + xiF
(i)
0 . (2.19)
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p2

p1 p4

p3

x1

x2

x3

x4

Figure 2.6: An example of a Feynman graph together with its spanning 2-forests.

This is called the deletion–contraction property and it is at the heart of many calculations
involving Feynman integrals. For the second graph polynomial we obtain

F = Fi + xi F
(i) +m2

ixi U . (2.20)

It follows, that

Φ |xi=0 = Φi = ΦΓ/ei (2.21)

where Φ can be any of the polynomials U , F0 or F .
We will exploit these properties of the graph polynomials in chapter 3, where we investigate
intersections of graph hypersurfaces with the coordinate divisor of the ambient projective space.

Example Let us consider the graph depicted in figure 2.6. It has four spanning trees and we
immediately obtain

UΓ = x1 + x2 + x3 + x4.

The six spanning 2–trees of the graph are depicted in figure 2.6. Defining

t1 = p21, t2 = p22, t3 = p23, t4 = p24,

and

t5 = (p1 + p2)
2
, t6 = (p2 + p3)

2
,

we obtain

(F0)Γ = −t1x1x4 − t2x1x2 − t3x2x3 − t4x3x4 − t5x2x4 − t6x1x3.

Let us remark, that in literature one may find other equivalent definitions of the graph polyno-
mials. For a more detailed survey on graph polynomials one may consider [BW10].
Finally, in the remainder of this section, let us discuss the tadpole integrals that appear frequently
as minors of graphs. The one–loop tadpole graph consists of one vertex and one self–looping
edge that we assign a mass m. It has associated the integrals

T (D,m2, ν1) = CT

∫
dDk

(k2 −m2)ν1
.
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For ν1 = 1, we have

T (D,m2, 1) = −
1

iπD/2

∫
dDk

(k2 −m2)
=

1

πD/2

∫
dDk

(K2 +m2)

=
(
m2
)D/2−1

Γ(1−D/2).

Here we have applied Wick rotation and evaluated the Euclidean integral using the beta function
formula.
The two–loop tadpole graph consists of one vertex and two self–looping edges that we assign
the masses m1 and m2, respectively. We evaluate the corresponding integrals using Feynman
parameters and obtain for unit exponents

T2(D,m2
1,m

2
2, 1, 1) = Γ(2−D)

∞∫

0

U2−3D/2

F2−D
Ω = Γ(2−D)

∞∫

0

x
−D/2
1

(x1m2
1 +m2

2)
2−D

dx1

=
(
m2

1

)D/2−1 (
m2

2

)D/2−1
Γ(1−D/2)2.

Here we have applied equation (2.6), which is a variant of the beta function formula. We see,
that the double tadpole integral is a product of two tadpole integrals. If we repeat the same
calculation with the constant C̃T , we find that this is no longer true. T2 will differ from the
product of two one–loop tadpole integrals by a gamma factor. When dealing with graphs that
are one–vertex joins6 of smaller graphs one might, therefore, want to use CT . We are, however,
most interested in the projective integral and do not make use of product structures.

2.7 Periods

Periods, as defined in [KZ01], are complex numbers, whose real and imaginary part are absolutely
convergent integrals of rational forms with rational coefficients over domains in Rn given by
polynomial equations and inequations. The set P of periods is countable and forms an algebra

Q ⊂ Q ⊂ P ⊂ C.

It contains many interesting numbers, such as π, logarithms at rational arguments, and multi
zeta values. Let us give a more formal definition of a period. Let X be a smooth variety over Q
of dimension d, D ⊂ X a normal crossing divisor, ω ∈ Ωd(x) an algebraic differential form on X
of top degree, and γ ∈ Hd(X(C), D(C);Q) a relative cycle. This data defines a complex number∫
γ
ω, the period of (X,D, ω, γ). Kontsevich defines in [Kon99]

Definition 2.7.1 The space of effective periods P+ is defined as the vector space over Q gener-
ated by symbols [(X,D, ω, γ)] as above, and subject to the relations

(i) Linearity: [(X,D, ω, γ)] is linear in ω and γ.

(ii) Substitution law: If f : (X1, D1) −→ (X2, D2) is a morphism of pairs defined over Q,
γ ∈ Hd(X1(C), D1(C);Q), and ω ∈ Ωd(X2), then

[(X1, D1, f
∗ω, γ)] = [(X2, D2, ω, f∗γ)].

6A one–vertex join of two graphs G1 and G2 is obtained by identifying one vertex of G1 with one vertex of
G2.
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(iii) Stokes formula: Let D̃ denote the normalization of D, containing a normal crossing divisor

D̃1 coming from double points of D. If β ∈ Ωd−1(X) and γ ∈ Hd(X(C), D(C);Q), then

[(X,D, dβ, γ)] = [(X̃, D̃, ω |D̃1
, ∂γ)],

where ∂ : Hd(X(C), D(C);Q) −→ Hd−1(D̃(C), D̃1(C);Q) is the boundary operator.

It is conjectured that the evaluation map P+ −→ C is injective.
Clearly, 2πi is a period. It is presently, however, not know whether π−1 is a period. One,
therefore, defines the algebra P of periods to be P = P+[(2πi)

−1]. Instead of considering forms
of top degree one could also consider cohomology classes as in [HM12].

Example Let us consider the relative homology group

H1(C
∗, {1, r}),

where r is some rational number 6= 0, 1. It is generated by a small circle around zero and a
suitable path from one to r (e.g. an arc from one to r). Integrating against the differential form
dx
x , we obtain the periods 2πi and log(r). We see that logarithms at rational arguments are
periods.

Let us now discuss how periods appear in the context of Feynman integrals. The following The-
orem (Theorem 2.8 in [BB03b]) allows for a lot of flexibility regarding the domain of integration,
but is restrictive with respect to the integrand.

Theorem 2.7.2 (Belkale, Brosnan) Let P be a smooth variety defined over k ⊂ R ∩ Q and
let f ∈ O(P ) be a function. Let C be a compact preoriented semiarithmetic subset of Xf≥0(R)
defined over k. Then, if ω ∈ Ωn(P ) is a differential form, the function

I(s) =

∫

C

fsω

extends meromorphically to all of C with poles occurring only at negative integers. Moreover, for
any s0 ∈ Z, the coefficients ai in the Laurent expansion

I(s) =
∑

i≥n

ai(s− s0)
i

are periods.

Let us give some examples where this Theorem can be applied in our context. An interesting
class of graphs are the primitive graphs of massless (four dimensional) ϕ4 theory. Mathematicians
became interested in these graphs, because of a systematic appearance of multi zeta values, that
were discovered by Broadhurst and Kreimer in evaluating the Feynman integrals of these graphs
[BK95, BK97]. They were further investigated in various papers (see e.g. [BEK06, Bro09a,
Bro09b]).
A (connected) graph is called primitive (divergent), if it has N = 2ℓ edges and, furthermore, the
number of edges of every proper subgraph is strictly greater than twice its number of loops. This
last condition assures that every proper subgraph is convergent. If the powers of all exponets
equal one and all external momenta are zero, the Feynman parametric representation reads

∫

σ

1

U2
Γ

Ω.
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Figure 2.7: The zig–zag graph with five loops. All external momenta have been put to zero,
therefore we do not draw external edges. Zig–zag graphs of higher loop order are obtained by
adding more triangles.

Here, the Theorem can be applied with s = −2. Such an integral is convergent in dimension
four (compare Proposion 5.2 in [BEK06]), hence its Laurent series at D = 4 has no polar part.
Furthermore, the zero order term is just the integral itself. This period in this special situation
is often a multi zeta value or a rational combination of multi zeta values.
Prominent examples are the graph of figure 2.3, which is known to evaluate to multi zeta values to
all orders ([BW03]), the wheel and spokes graphs considered in [BEK06] and the zig–zag graphs.
A zig–zag graph is depicted in figure 2.7. Recently an exact formula, previously conjectured
by Broadhurst and Kreimer, has been proven for the zig–zag graphs by Brown and Schnetz
[BS12]. Denoting by IZℓ

the Feynman integral with unit exponents, zero masses and zero external
momenta, associated with the zig–zag graph with ℓ loops, it reads

Theorem 2.7.3 (Brown, Schnetz) The Feynman integral of the graph Zℓ at zero momenta
and masses, in dimension four, is given by

IZℓ
= 4

(2ℓ− 2)!

ℓ!(ℓ− 1)!

(
1−

1− (−1)ℓ

22ℓ−3

)
ζ(2ℓ− 3).

Another example, that we will discuss later are the banana–graphs. These consist of two vertices
connected by N edges. For N = 2, 3 they are depicted in figure 5.3 in chapter 5. In dimension
two, putting all exponents equal to one, we obtain

∫

σ

1

FΓ(Λ)
Ω.

Again, these integrals are convergent, hence periods. We will be interested in a variation of these
periods with respect to a kinematical invariant or a mass.

While multi zeta values are ubiquitous in the world of Feynman integrals, Belkale and Brosnan
showed in [BB03a], that the graph hypersurfaces of graphs of massless four–dimensional φ4

theory are general enough to generate the Grothendieck ring K0. From that one expects to find
Feynman integrals that do not evaluate to multi zeta values even in the rather simple massless
four–dimensional φ4 theory. Still, every number that will appear is a period. We have the
following generalization of the above Theorem of Belkale and Brosnan ([BW09])

Theorem 2.7.4 (Bogner, Weinzierl) Let I(D,Λ, ν) be a Feynman integral as in equation
(2.9). In the case where



2.8. DIMENSIONAL RECURRENCE RELATIONS 33

(i) all kinematical invariants are negative or zero,

(ii) all masses mi are positive or zero,

(iii) all ratios of invariants and masses are rational,

the coefficients cj of the Laurent expansion

I(D − 2ε,Λ, ν) =

∞∑

j=−2ℓ

cj ε
j

are periods.

The first two conditions define the Euclidean region. This assures that the second graph poly-
nomial has positive coefficients, which will be important later. In a stronger version, also proven
in [BW09], even complex exponents are allowed. For us, however, the above is sufficient.

In this chapter, we have fixed all parameters and regarded a Feynman integral as a complex
number. One can also vary some of the parameters. In this case one interprets a Feynman
integral as a function in these parameters. It is then an interesting question which functions will
appear. Following this viewpoint one discovers that (multiple) polylogarithms are omnipresent
in the world of Feynman integrals. There are, however, also examples of graphs where multiple
polylogarithms are not sufficient. The functions that appear when evaluating Feynman integrals
as well as their differential equations will be the main focus of this dissertation.

2.8 Dimensional Recurrence Relations

In a physical theory that is not scalar, so–called tensor integrals may appear. These differ from
scalar integrals by tensor structures that may appear in the numerator of the integrand. A
dimensionally regularized tensor integral can be reduced to sums of scalar integrals.
In [Tar96], Tarasov defines an operator

T

(
{qi},

{
∂

∂m2
i

}
,D+

)
,

that depends on kinematical invariants, and that may contain mass derivatives as well as the
operator D+, that is defined to increase the dimension by two. The operator T gives a reduction

Itensor(D,Λ, ν) = T

(
{qi},

{
∂

∂m2
i

}
,D+

)
Iscalar(D,Λ, ν),

of dimensionally regularized tensor integrals of arbitrary loop order to sums of scalar integrals.
For one–loop integrals a reduction method had already been established in [PV79].
We will not make explicit use of such a reduction and refer to [Tar96, Tar97] for a precise def-
inition of the operator T and detailed examples. We would, however, like to mention, that the
operator T comes with two complications. Firstly, as the notation suggests, we apply mass
derivatives to Feynman integrals. This may shift some of the exponents. Secondly, we shift the
dimension by an integer. Therefore, the most complicated integrals we want to consider (and
in principle need to consider) are scalar integrals with arbitrary integer exponents and dimension.
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Sometimes it may be necessary to shift the dimension of a Feynman integral by an integer.
This problem may arise when we cannot compute a Feynman integral directly and want to do
manipulations in a dimension that is not the correct one (as given by the physical theory). It
would then be important to shift back the dimension. Furthermore, integer shifts in dimension
arise naturally in the reduction procedure we just described.
By [Tar96], for a scalar Feynman integral I(D,Λ, ν) as in equation (2.8), we have the relation

I(D,Λ, ν) = UΓ(νi i
+) I(D + 2,Λ, ν). (2.22)

Here UΓ is the first graph polynomial of the graph Γ. The argument means that we have to
replace the variable xi by the operator νi i

+. The left–hand side of equation (2.22) contains
a Feynman integral in dimension D, whereas the right–hand side contains sums of Feynman
integrals in dimension D+2 (with increased powers of the propagators). It is, therefore, natural
to call this relation a raising one.
For a similar relation lowering the dimension, let us introduce the auxiliary function

V (q1, . . . , qr) =

∣∣∣∣∣∣∣

q21 . . . q1 · qr
...

. . .
...

q1 · qr . . . q2r

∣∣∣∣∣∣∣
(2.23)

which assigns to a set of vectors q1, . . . , qr the above determinant. Now let

I(D,Λ, ν) =

∫
dDk1 . . . d

Dkℓ
1

P ν1

1 . . . P νN

N

be a scalar Feynman integral depending on independent loop momenta k1, . . . , kℓ and external
momenta p1, . . . , pE−1. The lowering relation works, if the momenta form a complete basis in
the sense that all products of an internal momentum with an internal or external momentum
can be expressed uniquely in terms of the propagators Pj . According to the discussion in sec-
tion 2.5, this is (for non–zero external momenta) the case, when B ≤ N . In this situation
V (k1, . . . , kℓ, p1, . . . , pE−1) can be written as a polynomial Q in the propagators

V (k1, . . . , kℓ, p1, . . . , pE−1) = Q(P1, . . . , PN )

of degree ℓ+ E − 1. The relation lowering the dimension then reads ([Lee10])

I(D,Λ, ν) =
2ℓ [V (p1, . . . , pE−1)]

−1

(D − E − ℓ)ℓ
Q
(
1−, . . . ,N−

)
I(D − 2,Λ, ν), (2.24)

where we have used the Pochhammer symbol

(α)n = α (α+ 1) . . . (α+ n− 1).

Let us observe that when expanding equation (2.24) in ε, on the right–hand side a pole in ε
may appear. In dimensional regularization this poses no problems, in fact, it allows to connect
convergent and divergent Feynman integrals. For graphs where the propagators do not form a
complete basis in the above sense, we cannot apply the lowering relation. In this situation one
may instead invert equation (2.22). An example will be given in chapter 5.

Finally, let us remark, that integrals with irreducible numerators can be reduced to scalar
ones as described above. Depending on the situation it may, however, be convenient to keep
the integrals with irreducible numerators instead of shifting the dimension via the operator T .
Therefore, we will sometimes consider integrals with irreducible numerators as in equation (2.9),
keeping in mind, that these can be reduced to scalar ones.
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Example Let us reconsider the sunrise graph of figure (2.5) and put m1 = m2 = 1 and m3 = m.
Let us assume we are intersted in the special value at p = 0 of the associated integral where all
exponents are equal to one. We have

I(D,m2) = CI

∫
dDk1d

Dk2
1

(k21 − 1)(k22 − 1) [(k1 − k2)2 −m2]

=

∫
dDK1d

DK2
1

πD(K2
1 + 1)(K2

2 + 1) [(K1 −K2)2 +m2]
.

In dimension two this integral is convergent by power counting, hence a period by our previous
discussion. Let us assume, that by some method we have obtained this value and we were
interested in the Laurent expansion atD = 4. Even though the graph does not fulfill the condition
B ≤ N , the propagators form a complete basis, because we have put p = 0. We can apply the
dimensional raising relation. Denoting P1 = K1 + 1, P2 = K2 + 1, and P3 = (K1 −K2) +m2,
we have

V (K1,K2) =

∣∣∣∣
K2

1 K1 ·K2

K1 ·K2 K2
2

∣∣∣∣ = (P1 − 1)
2
(P2 − 1)

2 −
1

4

(
P3 − P1 − P2 + 2−m2

)2
.

We have to compute

[(
1− − 1

)2 (
2− − 1

)2
−

1

4

(
3− − 1− − 2− + 2−m2

)2
]
I(D,m2).

If one of the exponents of I(D,m2) drops to zero we have a double tadpole integral. We have
computed these in a previous section. Putting everything together, we obtain

I(D,m2) =
m2(4−m2)

(D − 3)(D − 2)
I(D − 2,m2) +

m2 − 2− 2mD−2

(D − 3)(D − 2)
Γ2(2−D/2).





Chapter 3

Picard–Fuchs Equations of

Feynman Integrals in Integer

Dimensions

The goal of this section is to interpret a Feynman integral I =
∫
σ
ωΓ as a period of a (mixed)

Hodge structure. If I is divergent in dimension D, this cannot be achieved directly. Our strat-
egy is then to shift the dimension to a positive even integer D̃, such that I converges in this
dimension, evaluate the integral there and shift back to dimension D using Tarasov’s generalized
dimensional recurrence relations.
We have divided the singularities of I into two classes, the UV and the IR singularities1. We
think of the UV singularities as those caused by the vanishing of U and the IR singularities as
those caused by the vanishing of F . In chapter 2 we have discussed a criterion for UV–finiteness
and this will dictate how to choose the dimension D̃. Before we can proceed we have to solve
a related problem – in any dimension the polar locus of the Feynman form will intersect the
domain of integration. It is clear by resolution of singularities in characteristic zero [Hir64], that
the polar locus of ωΓ and the domain of integration can be separated by blowups, except in
the rare case when the intersection of the polar locus and the domain of integration contains a
divisor in PN−1 (we will exclude such cases). The procedure of separating the polar locus and the
domain of integration is commonly referred to as sector decomposition in physics literature. A
sector decomposition algorithm for Feynman integrals of arbitrary graphs has been proposed by
Binoth and Heinrich [BH00, BH04] and a termination problem of the algorithm has been solved
by Bogner and Weinzierl [BW08]. In [BEK06], Bloch, Esnault and Kreimer construct an explicit
sequence of blowups that can be read off the graph and that is valid whenever the second graph
polynomial is not present in the denominator of the Feynman form. It is minimal in the sense
that only the intersection of the domain of integration and the polar locus gets blown up, but no
additional blowups on the exceptional divisors are required. As we have mentioned an algorithm
for the blowup that terminates after finitely many steps is known, it is, however, not clear how
to construct a minimal sequence of blowups and how to relate it to the graph and its subgraphs.
Problems are caused by massless edges, if the second graph polynomial is contained in the denom-
inator of the Feynman form. The massless edges may lead to more complicated combinatorics of

1Recall that we have agreed to ignore the gamma function which may occur in equation 2.13. If this term
leads to a pole it is called an overall UV–divergence. Furthermore, we generally restrict to the Euclidean region,
which affects the presence of IR–singularities.
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the blowups and even to IR–singularities. The latter have to be avoided within our method. We
regularize by adding small masses to massless edges and we will see, that the blowup constructed
by Bloch, Esnault and Kreimer is sufficient, if we add enough masses.
Once this is achieved we briefly recall the notion of a Picard–Fuchs equation and how it can be
computed in the projective setting. We will then see how a convergent Feynman integral that
depends on additonal parameters such as masses and kinematical invariants leads to an inhomo-
geneous Picard–Fuchs equation, where the homogeneous part is determined by the second graph
hypersurface of the graph itself and the inhomogeneous term can be related to the minors of the
graph and their second graph hypersurfaces.

3.1 The Domain of Integration

The domain of integration σ of a Feynman integral depends solely on the number of edges of
the corresponding graph. For a graph with N edges and any associated Feynman integral the
domain of integration is the semi–algebraic set given by the equations and inequations

xi ≥ 0, for 1 ≤ i ≤ N,

N∑

i=1

xi = 1

and can be described equivalently as the set
{
x = (x1 : · · · : xN ) ∈ PN−1 | xi ∈ R, xi ≥ 0

}

in projective space.
It is apparent that σ has a boundary that is contained in the coordinate divisor

B0 :=

{
N∏

i=1

xi = 0

}
.

Therefore, it represents a relative cycle with respect to B0. Before we can pass to relative
homology there is an additional problem, that has to be solved. The polar locus of the Feynman
form ω intersects the domain of integration. Luckily, as long as we stay in the Euclidean region,
this intersection is well behaved, as we are going to see.
Let us first observe that in the Euclidean region both graph polynomials have positive coefficients.
In this case it is, therefore, clear that a Feynman form as in equation 2.14 cannot acquire poles
at inner points of σ, but only on its boundary. Moreover, the polar locus along the boundary of
σ can be located easily. It is given by a union of coordinate linear spaces, that can be read off the
graph. Here, by linear coordinate space we mean a subspace of PN−1 given by the vanishing of
a set of variables. To the i–th edge ei of a graph Γ we have assigned the variable xi. Identifying
a graph with its set of edges and this set of edges with a subset SΓ of {1, . . . , N}, there is a 1–1
correspondance between the subgraphs of Γ and the linear coordinate spaces of PN−1, given by

Subgraphs G ⊂ Γ←→ linear coordinate spaces L ⊂ PN−1

G 7→ L(G) =
{
x = (x1 : · · · : xN ) ∈ PN−1 | xi = 0 for i ∈ SG

}

L =
{
x ∈ PN−1 | xi = 0 for i ∈ S

}
7→ G(L) =

⋃

i∈S

ei ⊂ Γ.

If a coordinate linear space corresponds to a graph with set of edges S = {i, j, k} we will simply
write Lijk instead of L({i, j, k}).
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Lemma 3.1.1 Let Γ be a graph and let X be either the zero set of its first graph polynomial U
or the zero set of its second graph polynomial F . In the latter case we assume that all masses
and kinematical invariants have been fixed somewhere in the Euclidean region, such that F is
a polynomial in Q[x1, . . . , xN ] with positive coefficients. In any case, X is a (possibly singular)
hypersurface in PN−1. Then

X(C) ∩ σ(R) =
⋃

L⊂X

L(R≥0),

where the union is over all linear coordinate spaces L ⊂ X.

This is clear for any polynomial with positive coefficients. The next Lemma establishes the link
with the subgraphs of Γ. First let us introduce some terminology.

Definition 3.1.2 Let Γ be a graph. A subgraph G is called core, if removing any edge lowers
h1(G). A core subgraph is called a cycle, if it has h1(G) = 1. For a graph with at least two
external edges, N edges and ℓ loops define new graphs by glueing two external edges without
introducing a new vertex and dropping the other external edges. Each graph obtained in this way
has N + 1 edges and ℓ + 1 loops. These are called the closures of Γ. There is a unique closure
when Γ has two external edges. In this case it is denoted Γ. The graph obtained by contracting the
new edge in Γ is called residue of Γ and is denoted Γ•. A subgraph (or minor) G of Γ naturally
gives rise to a subgraph (or minor) in Γ• which is denoted G•.

Obviously, core equals 1PI. In the rest of the chapter we make the general assumption that Γ
has two external edges.

Lemma 3.1.3 (i) Let XU be the zero set of the first graph polynomial U of Γ. A linear
coordinate space L is contained in XU if, and only if, its corresponding subgraph has at
least one loop. The union of these spaces is stratified by the linear coordinate spaces that
belong to core subgraphs of X.

(ii) Fix all parameters in the Euclidean region, such that the unique kinematical invariant is
negative and at least one mass is positive. Let XF be the zero set of the second graph
polynomial F of Γ. A linear coordinate space L is contained in XF if, and only if, at least
one of the following two conditions are met

(a) the subgraph that corresponds to L has at least one loop

(b) the subgraph that corresponds to L has at least one loop after passing to Γ• and contains
all massive edges of Γ.

Proof Let us begin with the case that X is the zero set of U . In this case a proof can be found
in [BEK06]. We sketch the proof. A coordinate linear space LS is contained in X, if, and only
if, every monomial of U contains at least one variable which belongs to S, which is the case if,
and only if, no spanning tree of Γ contains the graph G(L). If G(L) has at least one loop the
latter is the case. It is left to prove, that if G(L) has no loop it is contained in a spanning tree
of Γ. This is Lemma 3.2 in [BEK06]. Now the maximal linear coordinate spaces contained in X
belong to cycles of Γ, their intersections correspond to unions of these. Hence we obtain a natural
stratification on the union of linear coordinate spaces contained in X by the core subgraphs of
Γ.
Let us now prove (ii). First observe that a linear coordinate space L that is contained in XU is
automatically contained in XF . Let now L be a linear coordinate space that is not contained in
XU . It is contained in XF if, and only if, both F0 and

∑N
i=1 m

2
ixi vanish on L. Therefore, G(L)

must contain all massive edges of Γ and furthermore F0 must vanish on L. Now observe that
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the intersection behavior of F0 does only depend on its monomials, but not on their coefficients.
We, therefore, set all coefficients of F0 equal to one. With this normalization it is the first graph
polynomial of the graph Γ•. This follows from the identity UΓ = xN+1UΓ+UΓ• and the definition
of F0. Now the statement follows from (i). 2

To describe the procedure of blowing up these linear spaces let us begin with an important special
case. The following is Proposition 7.3 in [BEK06]. We have slightly modified it by adding an
argument made in [BEK06] in the proof of the Proposition (see also the discussion in [BK08],
chapter 3 and 5). In case D = 4 a graph without external edges is called primitive, if it has
N = 2ℓ edges and every proper subgraph G has NG > 2ℓG.

Proposition 3.1.4 (Bloch, Esnault, Kreimer) Let D = 4 and Γ be a primitive graph. The
integrand of the Feynman integral of this graph reads

ω =
Ω

U2
.

There exists a tower

P = Pr
πr,r−1

−→ Pr−1
πr−1,r−2

−→ · · ·
π2,1

−→ P1
π1,0

−→ PN−1

π = π1,0 ◦ · · · ◦ πr,r−1

where Pi is obtained from Pi−1 by blowing up disjoint unions of strict transforms of coordinate
linear spaces Li ⊂ XΓ and such that

(i) π∗ω has no poles along the exceptional divisors associated to the blowups.

(ii) let B ⊂ P be the total transform in P of B0 ⊂ PN . Then B is a normal crossings divisor
in P . No face of B is contained in the strict transform Y of X in P .

(iii) the strict transform of σ in P does not meet Y .

Such a tower is explicitly given by collecting all linear coordinate spaces that correspond to cycles
of Γ

C = {L ⊂ X | G(L) is a cycle},

and forming the set

F = {L ⊂ X | L =
⋂

L(i), L(i) ∈ C}.

The blowup is then given step by step by blowing up at once all linear spaces in F with the same
dimension in increasing order, beginning with these of minimal dimension. In this way in every
step disjoint unions of linear coordinate spaces (resp. their strict transforms) are blown up.

Remark 3.1.5 (i) A full proof of this Proposition can be found in [BEK06]. The fact that it
is sufficient to blow up core subgraphs is explained in detail in chapters 3 and 5 of [BK08].
The set of linear coordinate spaces is semi–ordered by inclusion. We have chosen to blow
up by dimension in every step which bounds the length of the tower by N − 2 = 2ℓ − 2.
Instead, like in [BEK06], one can choose to blow up flags of core subgraphs of Γ, which
possibly shortens the length of the tower. It is then bounded by ℓ− 1. Of course, the same
linear coordinate spaces get blown up, but in the latter case all disjoint coordinate spaces
(regardless of dimension) are blown up at the same time.
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Figure 3.1: The wheel and spokes graph with four loops.

(ii) The form π∗ω vanishes on many of the exceptional divisors. If LS is blown up the zero
order of π∗ω on the exceptional divisor of LS is |S| − 1, the pole order on the other hand
is clearly even. It follows from the Proposition that whenever |S| is even the form π∗ω
vanishes along LS. In general, we expect the vanishing of π∗ω on many of the exceptional
divisors.

Example Consider the wheel and spokes graph with four loops depicted in fig. 3.1. It has the
following linear coordinate spaces associated to cycles

C = {L123, L345, L567, L782,

L1468, L1378, L1452, L3467, L5682,

L14578, L12764, L23468, L13568}.

The set F which contains all possible intersections of these linear spaces has 41 elements. We
see, however, that π∗ω vanishes on all exceptional divisors of linear spaces that correspond to
core subgraphs, except

L123, L345, L567, L782.

One easily verifies that π∗ω vanishes on all exceptional divisors of the blowup constructed in
Proposition 3.1.4, except the ones that correspond to linear spaces contained in

L = {L123, L345, L567, L782, L12345, L12378, L34567, L25678,

L1234567, L1234568, L1234578, L1234678, L1235678, L1245678, L1345678, L2345678}.

These are only 16 of the 41 exceptional divisors.

In light of Lemma 3.1.1 and 3.1.3 one expects that one has to at least blow up as in Proposition
3.1.4. One of the achievements of Proposition 3.1.4 is, that this blowup is indeed sufficient and
no further blowups are required. This is far from general, simply blowing up the intersection
as given by the above Lemmas is, in general, not sufficient to separate the strict transform of a
divisor from the real non–negative points, even if the polynomial is at most quadratic in each
variable.

Example Consider the polynomial f = x1x2 + x2
3. It is homogeneous and at most quadratic in

each variable. Let us denote its zero set in P2 by X and the real non–negative points in P2 as
usual by σ. The intersection of X and σ are the two points L13, L23. We blow up the point L13,
which in the affine open x2 = 1 is the origin. The blowup is given by the equation

x1z3 = x3z1,
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Figure 3.2: left : σ intersects X in the two marked points, the i–th line represents xi = 0, middle:
σ after blowing up the intersection points with X, σ still intersects X in two points, right : polar
locus and domain of integration are separated after an additional blowup of two points.

where the exceptional divisor is a P1 in the variables z1 and z3. In the affine open z3 = 1 we
have

f = x3z1 + x2
3 = x3(z1 + x3). (3.1)

We see that the strict transform of f meets the strict transform of σ in the point (z1 : z3) = (0 : 1)
on the exceptional divisor of the blowup of (x1 : x2 : x3) = (0 : 1 : 0). To separate X and σ we,
therefore, have to blow up this point. In the other affine open z1 = 1 we obtain

f = x1 + (x1z3)
2 = x1(1 + x1z

2
3), (3.2)

and we see that the strict transform does not intersect σ. Blowing up the other point L23 leads
to the same result, the strict transform intersects σ in one point on the exceptional divisor. The
procedure is depicted in fig. 3.2. The point is that the strict transform of X which can be read
off equations 3.1 and 3.2, did not contain all variables (the variable z3 is missing) and, therefore,
could vanish on the boundary of σ (even though it is linear).

It is all the more remarkable that in the situation of Feynman integrals it is in many interesting
special cases indeed sufficient to blow up the intersection of the polar locus and the domain
of integration as in Proposition 3.1.4. If the second graph polynomial is not present in the
denominator this is the case. If the second graph polynomial is present in the denominator of
the Feynman form the blowup may need to be modified. Cases with no masses are of no interest
to us, the massless integrals depend on a single scale – the momentum – and we observe that it
factors out of the integrand. Let us mention for completeness that, if there are no masses, one
can proceed as in Proposition 3.1.4 with Γ replaced by Γ•. However, if Γ• has a tadpole the
second graph polynomial contains a coordinate divisor and if this term is not canceled by the
numerator the domain of integration and the polar locus cannot be separated by blowups.
Let us reconsider Proposition 3.1.4. Here primitive graphs in dimension four are considered. The
gamma function contributes an overall UV–divergence which can be handled separately and is
ignored here. Furthermore, ω does not contain F , so IR–singularities are automatically avoided.
Properties (ii) and (iii) of the blowup constructed there can always be achieved by resolution
of singularities over a field with characteristic zero. Property (i) shows that there is no UV–
divergence for this class of graphs in dimension four. What is remarkable is the fact that the
blowup can be related to the graph and its core subgraphs.
We do not restrict to primitive graphs, instead our strategy will be the following. Given any



3.1. THE DOMAIN OF INTEGRATION 43

Feynman integral associated to a graph and a dimension D. If the integral I(D) is not UV–

convergent, change the dimension by an integer, such that the shifted dimension D̃ is still positive
and even and in addition, I(D̃) converges2. The denominator of the latter integrand can either be
a power of U or a power of F or a product of both. In any case we have to check convergence by
counting zero order and pole order of ω along the exceptional divisors of the blowup constructed
above.

Lemma 3.1.6 Let Γ be a graph and G a subgraph with connected components G = G1∪· · ·∪Gk.
Then

UΓ = UΓ/G

k∏

i=1

UGi
+R,

where R is a polynomial of degree at least h1(G)+ 1 in the variables belonging to the edges of G.

The above Lemma is well–known and the proof is not repeated here. The following is well–known
in physics literature.

Proposition 3.1.7 Let Γ be a graph without tadpoles and D̃ a dimension, such that NΓ ≥ ℓ D̃2
and every proper subgraph G satisfies NG > ℓG

D̃
2 . Then the associated scalar Feynman integral

is UV–finite. Furthermore, it can be made finite by adding masses to massless lines.

Proof Let us begin with the case NΓ = ℓ D̃2 . We obtain

ωΓ =
1

U
D̃
2

Ω.

Now the blowup of Proposition 3.1.4 is sufficient and we count pole order and zero order along
the exceptional divisors. It is enough to consider the blowup of a single coordinate linear space

L(G) associated to a core subgraph G. According to Lemma 3.1.6 ω has pole order ℓG
D̃
2 along

the exceptional divisor. The zero order along the exceptional divisor clearly is NG − 1. By

assumption we have NG − 1 ≥ ℓG
D̃
2 . We do not have to add masses in this case. Next assume

NΓ > ℓ D̃2 . Let L be a coordinate linear space and assume U vanishes on L. Then clearly also F
vanishes on L. If we add masses to all massless lines U and F vanish on the exact same linear
spaces and to the same order. Again the blowup as above is sufficient. We write

ω =
UN−(ℓ+1)D̃/2

FN−ℓD̃/2
Ω =

(
U

F

)N−ℓD̃/2
1

U
D̃
2

Ω

and conclude as above. 2

Remark 3.1.8 In the previous Proposition D̃ = 2 can be chosen for any graph without tadpole.
If a graph has a tadpole the Feynman integral is a product and it is enough to consider only the
graph which arises when removing all tadpoles. We have already discussed the tadpole integrals
in chapter 2.

In this chapter we have restricted to the Euclidean region to ensure that the second graph
polynomial has positive coefficients. This bound on the kinematical invariants of the graph can

2As we mentioned earlier such a dimension might not exist, if the graph has many massless lines. In this case
we can at least put small masses on some of the lines to obtain a convergent integral. In a physical application
we would then be interested in the limit, as these masses go to zero. This limit would be taken as the last step.
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sometimes be improved. For an example see Lemma 5.2.1.
We have constructed an explicit blowup π : P −→ PN−1 such, that the strict transform Y of the
polar locus X of ω does not intersect the strict transform of σ (which we denote again by σ). If
π∗ω does not acquire poles along the exceptional divisors of the blowup, the Feynman integral
is a period. This is controlled by Proposition 3.1.7. In this situation we interpret σ as a cycle in

HN−1(P\Y,B\Y )

and ω as a form in
HN−1(P\Y,B\Y ).

3.2 Picard–Fuchs Equations

The rest of this chapter is devoted to Picard–Fuchs equations and how to compute them in
the projective setting. Our standard reference is [Del70]. Further useful literature on the topic
of Picard–Fuchs equations includes [Hae87, Mal87, BP02, PS03, PS08]. In the section on the
Griffiths–Dwork reduction procedure we follow [Gri69, CK00].
Let us recall some basics about differential operators and differential modules.
Let R be a commutative ring containing Q. A derivation on R is an additive map ∂ : R −→ R,
that satisfies the Leibniz rule

∂ (ab) = ∂(a)b+ a∂(b),

for all a, b ∈ R. A ring equipped with a derivation is called a differential ring, a field equipped
with a derivation is called a differential field. Usually we will denote the derivation of a differential
ring by a −→ a′ and the k–fold application of the derivation by ( · )(k).

Definition 3.2.1 Let R be a differential ring with derivation ( · )′, R{∂} be the free R–algebra
generated by ∂, and J ⊂ R{∂} be the ideal generated by the elements {a∂−∂a− a′ | a ∈ R}. We
call

R[∂] = R{∂}/J

the ring of differential operators over R.

An element L ∈ R[∂] is of the form L =
∑n

i=0 ai∂
i. The largest natural number, such that ak is

non–zero is called the degree of L.
Differential operators are closely related to differential modules.

Definition 3.2.2 A differential module (M,∂) is a finite–dimensional k–vector space together
with an additive map ∂ : M −→M that satisfies

∂(fm) = f ′m+ f∂m

for all f ∈ k and m ∈M .

Instead of differential module we will usually write D–module. For a differential operator L ∈
k[∂], the quotient M := k[∂]/k[∂]L is a D–module. Conversely, we can assign a differential
operator to a given D–module. An element e ∈ M is called a cyclic vector, if the elements
e, ∂e, ∂2e, . . . generate M as a k–vector space. The proof of the following can be found in many
places in the literature (see e.g. Proposition 2.9 in [PS03] and the references given there)

Proposition 3.2.3 Every D–module M has a cyclic vector. In particular, there is a differential
operator L ∈ k[∂], such that M ∼= k[∂]/k[∂]L.
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The next Proposition shows when two D–modules are isomorphic. Let us denote the greatest
common right divisor of two elements L1, L2 ∈ k[∂] by GCRD(L1, L2). We have

Proposition 3.2.4 For L1, L2 ∈ k[∂], the D–modules k[∂]/k[∂]L1 and k[∂]/k[∂]L2 are isomor-
phic, if, and only if, L1 and L2 have the same degree and there exist elements P,Q ∈ k[∂] of
smaller degree, such that L1P = QL2 and GCRD(P,L2) = 1.

One of the key features of Picard–Fuchs differential operators is that the singularities of Picard–
Fuchs operators are very mild. Let us introduce the notion of a Fuchsian differential operator.

Definition 3.2.5 A point s ∈ C is called a regular singular point of the linear differential
operator L =

∑n
i=0 ai∂

i, if the pole order of an−j(s)/an(s) is at most j for j = 1, . . . , n. A
point s ∈ C is called regular, if none of the coefficients aj/an(s) has a pole in s. The point at
infinity is defined to be regular or regular singular if the point 0 is a regular or a regular singular
point, respectively, after applying the transformation z 7→ 1/z. L is called Fuchsian if all points
are regular or regular singular points of L.

There are many equivalent formulations of a Fuchsian differential operator. According to a
Theorem of Fuchs, the condition on the pole order of the coefficients of a Fuchsian differential
operator L is equivalent to a growth condition on the solutions u of the differential equation
Lu = 0. For a discussion of the Theorem and other equivalent reformulations of the property
Fuchsian, see e.g. [Hae87, PS03].
By Lemma 6.11 in [PS03] we have a useful description of the coefficients of a Fuchsian differential
operator.

Lemma 3.2.6 Let L =
∑n

i=0 ai∂
i with ∂ = d

dz , aj ∈ C(z), an = 1 and such that the only poles
of the coefficients aj are in a finite set S = {s1, . . . , sm−1,∞} ⊂ P1. L is Fuchsian with singular
locus in S if, and only if, the aj have the form

an−j =
bj

(z − s1)j . . . (z − sm−1)j

with bj polynomials of degrees less or equal to j(m− 1)− j.

For differential modules the property of being Fuchsian usually is defined in a more complicated
way. For our purposes it is convenient to use Proposition 3.16 in [PS03] as a definition.

Definition 3.2.7 Let M be a differential C(z)–module with cyclic vector e and let L be the
minimal monic polynomial with Le = 0. M is called Fuchsian if L is Fuchsian.

Let us now turn to Picard–Fuchs differential operators. We consider the following geometric
situation. Suppose that we have a one–parameter family of smooth projective hypersurfaces
given by a smooth projective morphism π : X −→ S, where S is P1 minus finitely many points.
The middle cohomology Hk(Xt;C) of a fibre Xt carries a pure Hodge structure. Moreover,
the C–vector spaces Hk(Xt;C) fit together to form a local system (which we define to be a
locally constant sheaf of C–vector spaces) on S. To be more precise, the sheaf V = Rkπ∗C is
a local system on S which satisfies Vt = Hk(Xt;C). Local systems on S are closely related to
holomorphic connections on S.
We define

Definition 3.2.8 A holomorphic connection (V,∇) on S is a holomorphic vector bundle V
equipped with an additive CS–linear map

∇ : V −→ Ω1
S ⊗OS

V
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satisfying the Leibniz rule

∇(f ⊗ v) = df ⊗ v + f∇(v)

for f a local section of OS and v a local section of V. A local section v of V is called flat (or
horizontal) if ∇(v) = 0. The system of flat sections is denoted V∇ = Ker(∇).

A connection extends for all p ≥ 1 to a unique map

∇ : Ωp
S ⊗ V −→ Ωp+1

S ⊗ V

satisfying

∇(f ⊗ v) = df ⊗ v + (−1)pf ∧∇(v).

The curvature of ∇ is the OS–linear map

∇2 : V −→ Ω2
S ⊗ V.

A connection is called flat (or integrable) if its curvature vanishes. By [Del70] we have

Theorem 3.2.9 The functor

(V,∇) 7→ V∇

is an equivalence between flat connections on S and local systems on S.

A quasi–inverse is given by

V 7→ (V⊗OS , 1⊗ d).

Returning to our geometric situation, it follows that there is a unique flat connection
(Rkπ∗C ⊗ OS ,∇GM) on S which has Rkπ∗C as its local system of flat sections. It is called
Gauß–Manin connection.
Locally, choosing an open set U ⊂ S and a coordinate t on U we have the covariant derivative
in the direction d

dt

∇ d
dt

: V(U) −→ V(U),

∇ d
dt

=

(
d

dt
⊗ id

)
◦ ∇GM

which gives V(U) the structure of a differential OS(U)–module.
Let us now write S = P1\D, where D is a finite set of points. We study connections which may
acquire poles of order one on D. The sheaf of one–forms on P1 which admit logarithmic poles at
the points of D is denoted Ω1

P1(logD).

Definition 3.2.10 A regular singular connection (V,∇) on P1 with singular locus in D is a pair
consisting of a holomorphic vector bundle V on P1 together with a morphism

∇ : V −→ Ω1
P1(logD)⊗ V

of sheaves of groups which satisfies for every open set U , f ∈ OP1(U) and v ∈ V(U) the Leibniz
rule

∇(f ⊗ v) = df ⊗ v + f∇(v).
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Holomorphic vector bundles on P1 (with the usual analytic topology) can be compared to alge-
braic vector bundles on P1 (with the Zariski topology) using the GAGA principle ([Ser56]). A
regular singular connection on P1 (Zariski topology) is defined as above, replacing holomorphic
vector bundles by algebraic vector bundles. Then the GAGA principle assures that the categories
of regular singular connections in the algebraic setting and in the analytic setting are equivalent.
In the algebraic setting we have a natural link to (i.e. a functor to the category of) Fuchsian dif-
ferential C(t)–modules. This can be seen as follows. Let (M,∇) be a regular singular connection
on P1 with singular locus in D. The fibre Mη of M at the generic point η is a finite–dimensional
C(t)–vector space and ΩP1(logD)η can be identified with the universal differential C(t)dt on C(t)
over C. The induced map ∇η : Mη −→ C(t)dt ⊗Mη determines a regular singular connection
(Mη,∇η) which can be identified with a Fuchsian differential C(t)–module (Mη, ∂) by setting
∂ = (∇η) d

dt
. For more details on the functor form the algebraic to the analytic setting and the

second functor we just described see chapter 6 of [PS03].
Returning to the geometric situation, the Gauß–Manin connection (V,∇) can be extended to
a regular singular connection (V ,∇) on P1 with singular locus in D (this follows from Theo-
rem II.7.9 in [Del70]). By our previous discussion this gives a Fuchsian differential C(t)–module
(Mη, ∂). Choosing a cyclic vector we obtain a Fuchsian differential operator. Such an operator
will be called Picard–Fuchs operator.
Classically, a Picard–Fuchs operator arises as follows. The middle cohomoloy groups Hk(Xt) we
have considered in this section underlie Poincaré duality. The Poincaré pairing can be extended
to V on all of P1 such that

d

dt
〈v, w〉 =

〈
∇ d

dt
v, w

〉
+
〈
v,∇ d

dt
w
〉

for a local coordinate t and sections v, w of V. In particular for a flat section v and an operator
L which annihilates w we find that 〈v, w〉 is a solution of L. In this situation the pairing 〈·, ·〉 is
given by integrating a k–form w against a locally constant k–cycle. In conclusion, the periods of
Hk(Xt) are the solutions of the Picard–Fuchs operator L.
What we have discussed so far is the prototypical example of a variation of Hodge structure. In
[SZ85] (see also [BZ97]), variations of mixed Hodge structure are defined. These covers families
with open or singular fibres.
Let us make the transition to Feynman integrals. We fix a dimension D and consider a conver-
gent Feynman integral (in dimension D), where we fix all parameters but one, which we consider
variable. Let us assume, furthermore, that the second graph polynomial is present in the de-
nominator of the Feynman form. Then the Feynman integral gives rise to a variation of (mixed)
Hodge structure. From the Feynman form we obtain a (homogeneous) Picard–Fuchs operator.
The boundary of the domain of integration then contributes an inhomogeneous term. Due to
the deletion–contraction properties of the graph polynomials the inhomogeneous term is a sum
of simpler Feynman integrals corresponding to minors of the graph.
In chapter 4 we will investigate the inhomogeneous Picard–Fuchs equation in dimensional regu-
larization and in chapter 5 we will compute examples of the situation described presently in a
suitably chosen fixed dimension D.

3.3 Griffiths–Dwork Reduction

In this section we discuss a method for calculating the Picard–Fuchs equation due to Griffiths
and Dwork. Let V ⊂ PN−1 be a smooth projective hypersurface of degree d. By Griffiths [Gri69],
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elements of HN−1(PN−1\V ) can be represented by forms

P

fk
Ω,

where f is the homogeneous polynomial defining V and P is homogeneous of degree kd−N . To
analyze the middle cohomology of the complement PN−1\V , we consider the residue map

Res : HN−1(PN−1\V ) −→ HN−2(V ).

To define it we need the tube–over–cycle map. For any topological (N − 2)–cycle γ in V , let
T (γ) be the tube over γ, which is a circle bundle over γ contained in PN−1\V . The residue is
defined by

∫

γ

Res
P

fk
Ω =

∫

T (γ)

P

fk
Ω.

Clearly, Res is well–defined on cohomology classes. Let now H be the hyperplane class. The
primitive cohomology can be defined as

Hn
prim(V ) = {η ∈ Hn(V ) | η ·H = 0}.

We have dH ∼ V and, therefore, Res(PΩ/fk) · H = 0. It follows, that the image of Res is
contained in the primitive cohomology of V . Furthermore, the map Res : HN−1(PN−1\V ) −→
Hn

prim(V ) is surjective. By Griffiths [Gri69], PΩ/fk lies in FN−k−1HN−2
prim (V ). For a family

induced by f(t), where f now depends also on the parameter t, we therefore find

∇ d
dt

(
PΩ

fk

)
=

(−kPf ′ + fP ′)Ω

fk+1
∈ FN−k−2,

where the prime denotes differentiation with respect to t. This shows Griffiths transversality for
smooth projective hypersurfaces.

To find the Picard–Fuchs equation we have to calculate modulo exact forms. An effective
way to do this was developed in [Gri69]. It is called Griffiths–Dwork reduction. Let Aj be
homogeneous polynomials of degree (k − 1)d− (N − 1). A projective (N − 2)–form on PN−1\V
can be written

η =
1

fk−1

∑

j1<j2

[xj1Aj2 − xj2Aj1 ] dx1 ∧ ... ∧ d̂xj1 ∧ ... ∧ d̂xj2 ∧ ... ∧ dxN .

We have

dη =
[(k − 1)

∑
j Aj∂jf ]Ω

fk
−

(
∑

j ∂jAj)Ω

fk−1
. (3.3)

It follows, that any form PΩ/fk where P lies in the Jacobian ideal J of f can be reduced modulo
an exact form to a form with a lower pole order. Conversely, if PΩ/fk reduces modulo exact
forms to an element of FN−k−2, then P lies in the Jacobian ideal of f . Therefore, the map
P 7−→ PΩ/fk defines an isomorphism

(R/J)kd−N
∼= HN−k−1,k−1

prim (V ),
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where R = C[x1, . . . , xN ] and the subscript denotes graded pieces. To illustrate the method
we now assume that V is a Calabi–Yau hypersurface in PN−1, such that we have a unique
holomorphic (N−2)–form ω = Res(Ω/f) on V . We assume that V is defined by a single equation
f depending on a parameter t ∈ S, where S is one–dimensional. Then ω is a holomorphic (N−2)–
form on the family of hypersurfaces V defined by f as t varies. We assume that f is a polynomial
in t. To find the Picard–Fuchs equation of ω the Griffiths–Dwork method proceeds as follows:

• Choose a basis of the primitive cohomology of V represented by a collection of forms
ωi = PiΩ/f

ki for 1 ≤ i ≤ r.

• Repeatedly differentiate ω with respect to t to get sections

ω,∇d/dt(ω), . . . ,∇
r
d/dt(ω)

of F0. Each of these can be expressed in terms of the basis modulo exact forms. Starting
from the highest pole order, we can express any ∇i

d/dt(ω) in terms of the basis modulo

J , most conveniently using Gröbner basis techniques in the ring C(t)[x1, . . . , xN ]. Then
we use equation (3.3) to express ∇i

d/dt(ω) modulo an exakt form as a linear combination
of basis elements and a form η of strictly lower pole order. The coefficients in the linear
combination will be rational functions of t. This process can be repeated until all forms
are expressed in terms of the basis modulo exact forms.

• Since we have r + 1 sections and F0 has rank r, there has to be a relation between
ω,∇d/dt(ω), . . . ,∇

r
d/dt(ω) with coefficients in C(s), the Picard–Fuchs equation.

If the hypersurface V is singular, not everything we have stated in this section remains true but
the basic procedure we just described can still be used. We will carry this through more generally
in dimensional regularization in chapter 4.





Chapter 4

Picard–Fuchs Equations of

Feynman Integrals in Complex

Dimension

In this chapter we present a method to compute differential equations for Feynman integrals
within dimensional regularization where the dimension D is left as a parameter. The differential
equation is obtained by solving (possibly large) systems of linear equations. We follow closely
[MWZ13] where the results have been presented for the first time.
Let us recall our notation. To a graph Γ with ℓ loops, E external edges and N (internal) edges,
we have assigned loop momenta k1, . . . , kℓ, external momenta p1, . . . , pE and masses m1, . . . ,mN .
The momenta flowing through the internal lines of the graph are

qi =

ℓ∑

j=1

ρijkj +

E∑

j=1

σijpj , ρij , σij ∈ {−1, 0, 1}.

This representation is obtained by using momentum conservation. The kinematical invariants
are

sjk = (pj + pk)
2
, 1 ≤ j, k ≤ E,

such that the Feynman integrals depend on the parameters

Λ = (sjk,m1, . . . ,mN ) .

In momentum space a Feynman integral of Γ is given by

IMS(D,Λ, ν) = C ·

∫

RD·ℓ

dDk1 . . . d
Dkℓ∏N

j=1

(
q2j −m2

j

)νj
, (4.1)

and we now fix

C = (−1)ν
(

1

iπD/2

) ∏N
j=1 Γ(νj)

Γ(ν − ℓD/2)
,

according to our previous discussion, such that the Feynman parameter prescription reads

I(D,Λ, ν) =

∫

σ




N∏

j=1

x
νj−1
j


 U

ν−(ℓ+1)D/2

F(Λ)ν−ℓD/2
Ω,

51
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where ν = ν1+ · · ·+νN . In this chapter we allow integer powers of the propagators and arbitrary
parameters. We fix all but one parameter and consider the remaining parameter, as well as the
dimension D variable.
Denoting the variable parameter by t, let us define

f =




N∏

j=1

x
νj−1
j


 U

ν−(ℓ+1)D/2

F(Λ)ν−ℓD/2
,

and
ωt = f Ω.

As before we would like to find a differential equation of the form

L(r)(ωt) = dβ, (4.2)

where r denotes the order of the differential operator and β is a (N − 2)–form on projective
space. Both r and β, as well as the coefficients of L are considered unknown. The results from
previous sections suggest to look for a differential operator

L(r) =
r∑

i=0

ci

(
d

dt

)i

,

where the coefficients ci are rational functions in the kinematical invariants, the powers of the
propagators and here also the dimension. They are not allowed to contain the Feynman parame-
ters xi and we would like to normalize the operator by demanding cr = 1.
If we find an equation of the form (4.2), integration gives

L(r) (IΓ(D)) =

∫

σ

dβ.

Within dimensional regularization there are no obstructions in using Stokes’ Theorem (see e.g.
[Eti00]) and we obtain

L(r) (IΓ(D)) =

∫

∂σ

β. (4.3)

This is the sought–after differential equation for IΓ(D) within dimensional regularization. The
right–hand side of equation (4.3) is a sum of Feynman integrals in one less Feynman parameter
(corresponding to minos of the graph). It can therefore be regarded as a sum of simpler integrals.
This is a similar situation as in chapter 3. Here, however, the sum of integrals need not be con-
vergent. Instead we regard the individual pieces as dimensionally regularized Feynman integrals.
Before treating an integral IΓ(D) one should therefore obtain analytical solutions for the simpler
integrals first. If one is interested in a solution to the differential equation, one additionally needs
a boundary value. Here the value of IΓ(D) at t = 0 can often be obtained. Then equation (4.3)
can be used to obtain IΓ(D). We will not address this different problem in this dissertation.
Instead we will focus on obtaining the desired differential equation.

Let us take a closer look at β. Differentiating ωt with respect to a kinematical invariant or
a squared mass increases the power of the second graph polynomial in the denominator by one.
In order to find a differential operator of order r we therefore make the ansatz

β =
f

Fr−1
α (4.4)
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for the (N − 2)–form β of equation (4.2). Here α is an (N − 2)–form without singularities. As in
chapter 3, we try to find a form α whose coefficients are homogeneous of degree (r−1)(ℓ+1)+2,
such that the coefficients of β are of degree −(N − 2). As before we make the ansatz

α =
∑

j1<j2

(−1)j1+j2 [−xj1aj2 + xj2aj1 ] dx1 ∧ ... ∧ d̂xj1 ∧ ... ∧ d̂xj2 ∧ ... ∧ dxN ,

where the ai are homogeneous polynomials of degree h = [(r − 1)(l + 1) + 1] in the variables xi.
For the polynomials ai we assume the most general form. For example, if N = 3 and h = 2 we
have

ai = a
(i)
200x

2
1 + a

(i)
020x

2
2 + a

(i)
002x

2
3 + a

(i)
110x1x2 + a

(i)
011x2x3 + a

(i)
101x1x3.

The variables a
(i)
jkl are independent of the Feynman parameters. The most general homogeneous

polynomial of degree h in N variables has

(
N + h− 1

h

)

monomials. This is the number of possibilities to pick h elements out of a set of N elements by
not taking the order into account and with repetitions. For a given r we therefore have within
our ansatz as unknown variables the variables c0, c1, . . . , cr−1, which appear in the Picard-Fuchs
operator, as well as all coefficients appearing in the expansion into monomials of the polynomials
ai. This gives

Nunknowns = r +N

(
(r − 1)(ℓ+ 1) +N
(r − 1)(ℓ+ 1) + 1

)
(4.5)

unknown variables.
Our ansatz gives

dβ =

N∑

j=1

(−1)j−1
N∑

i=1

∂i

[
f

Fr−1
(−xiaj + xjai)

]
dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxN .

Plugging this expression into equation (4.2) and comparing the coefficients of dx1 ∧ · · · ∧ d̂xj ∧
· · · ∧ dxN we obtain for each j

xjL
(r)f =

n∑

i=1

∂i

[
f

Fr−1
(−xiaj + xjai)

]
. (4.6)

To obtain a polynomial equation we need to clear the denominator. Therefore, we multiply both
sides of equation (4.6) by

Fν−lD/2+rU−ν+(ℓ+1)D/2+1




N∏

j=1

x
−νj+2
j


 .
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We obtain

0 = xj

(
N∏

k=1

xk

)
U

r∑

s=0

cs

(
ℓ
D

2
− ν − s+ 1

)

s

Fr−sḞs

−
N∑

i=1





(
N∏

k=1

xk

)
UF∂i (−xiaj + xjai) + (νi − 1)




N∏

k=1,k 6=i

xk


UF (−xiaj + xjai)

+

(
ν − (ℓ+ 1)

D

2

)( N∏

k=1

xk

)
(∂iU)F (−xiaj + xjai)

+

(
ℓ
D

2
− ν − r + 1

)( N∏

k=1

xk

)
U (∂iF) (−xiaj + xjai)

}
. (4.7)

Here we have denoted the derivative with respect to t by

Ḟ =
d

dt
F .

Equation (4.7) is our master equation and we should pause a moment to contemplate the main
features of this equation. First of all, each term of this equation is of degree one or zero in
the unknown variables (the coefficients cj and the coefficients appearing in the expansion of the
polynomials ai into monomials). Secondly, equation (4.7) is homogeneous of degree [N + (ℓ +
1)(r + 1)] in the variables xi. Since equation (4.7) has to hold for all values of the variables xi,
the coefficient c of each monomial in the variables xi has to vanish. But each coefficient c of a
monomial in the variables xi yields a linear equation c = 0 in the unknown variables. We thus
obtain a (possibly large) system of linear equations for the unknown variables. In total we obtain
by this method

Nequations = N

(
(ℓ+ 1)(r + 1) + 2N − 1

(ℓ+ 1)(r + 1) +N

)
(4.8)

equations for Nunknowns. The number Nunknowns has been given in equation (4.5). Of course,
not all equations will be independent. With methods from linear algebra we may attempt to
solve this system. If the system admits a solution, we have found a differential equation for
the Feynman integral under consideration. In the case where a solution exists, there will be in
general more than one solution. This is related to the fact that one can always add a closed
(N − 2)-form to β in equation (4.2). This does not affect our method. In order to find the
differential equation one can pick any solution.
If the system does not admit a solution, we repeat the procedure by increasing the order r of
the differential operator L(r) by one. In general this will result in a linear system with more
unknowns and more equations. The practical limitation of this method is the ability to solve
large systems of linear equations.

Let us now have a closer look at the inhomogeneous term
∫

∂σ

β

in equation (4.3). Within dimensional regularisation the integration is over the N faces of the
simplex σ. Let us consider one particular face. Without loss of generality we can consider the
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N -th face. We consider the restriction of β to xN = 0. If νN > 1 we have

β|xN=0 = 0.

Otherwise, if νN = 1 we find

β|xN=0 = (−1)N aN

(
N−1∏

i=1

xνi−1
i

)
Uν−(ℓ+1)D/2

Fν−ℓD/2+r−1

∣∣∣∣
xN=0

×
N−1∑

j=1

(−1)j−1 xj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxN−1.

Now let
aN =

∑

m1≥0,...,mN≥0
m1+···+mN=(r−1)(ℓ+1)+1

a(N)
m1...mN

xm1 . . . xmN

be the expansion of the polynomial aN into monomials. We recall that aN is homogeneous of
degree (r − 1)(ℓ+ 1) + 1. On the N -th face only the monomials with mN = 0 are relevant. We
thus have

β|xN=0 = (−1)N
∑

m1≥0,...,mN−1≥0
m1+···+mN−1=(r−1)(ℓ+1)+1

a
(N)
m1...mN−10

(
f (N)
m1...mN−1

ω(N)
)
,

with

f (N)
m1...mN−1

=

(
N−1∏

i=1

xνi+mi−1
i

)
Uν−(ℓ+1)D/2

Fν−ℓD/2+r−1

∣∣∣∣
xN=0

,

ω(N) =
N−1∑

j=1

(−1)j−1 xj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxN−1.

As we have seen in chapter 2, the polynomials

U|xN=0 and F|xN=0

are the graph polynomials of a graph, obtained from the original one by contracting the edge
eN . Therefore

f (N)
m1...mN−1

ω(N)

is the integrand of a Feynman integral in (D + 2r − 2) space-time dimensions, where the edge
eN has been contracted. Thus the inhomogeneous term in equation (4.3) is given as a linear
combination of Feynman integrals in (D + 2r − 2) space–time dimensions, where one of the N
edges of the original integral has been contracted. We remark that the representation of the
inhomogeneous term as a linear combination of Feynman integrals is not necessarily unique. As
previously already mentioned, we can always add a linear combination of Feynman integrals
corresponding to a closed form γ.





Chapter 5

Differential Equations of Some

Graphs of Small Loop Order

In the present chapter, we will discuss Feynman integrals of two and three–loop graphs with
two external edges and arbitrary masses. Due to momentum conservation these depend on one
momentum only, and we will derive ordinary differential equations for the corresponding Feynman
Integrals with respect to the momentum parameter. New equations are derived in sections 5.2
through 5.4. These will be obtained by use of the methods introduced in chapters 3 and 4. The
Feynman integrals will be interpreted as periods of variations of Hodge Structures (VHS).
Integrals corresponding to graphs with two loops and two external edges will be called two–loop
two–point functions. To describe these, according to a result of Tarasov that we recall in section
5.1, it is enough to know three integrals. One will then know all two–loop two–point functions
by use of IBP–Identities, differentiation and permutation of masses. The corresponding graphs
are shown in figures 5.1 and 5.2.
In section 5.2 we will follow joint work with Stefan Müller–Stach and Stefan Weinzierl [MWZ12],
where the new equation was first presented. We consider the simplest of the three aforementioned
integrals, the so-called two–loop sunrise graph, which we have already encountered in chapter 2.
In the literature it is sometimes called London transport or two–loop banana graph. It is the
simplest non–trivial member in an infinite family of banana graphs. The ℓ-loop banana graph
consists of two vertices, connected by ℓ+1 edges. We will consider the three–loop banana graph
in section 5.6. The first three banana graphs are depicted in fig. 5.3. In section 5.2 we will recall
known facts about the two–loop sunrise graph and derive a new differential equation in dimension
two for one of its master integrals. This is precisely the integral needed by the aforementioned
result of Tarasov. One distinguished fact about the sunrise integral is that the generic fibre,
when viewing it as a VHS, is smooth. In fact it is a smooth elliptic curve.
In sections 5.3 and 5.4 we discuss the remaining two two–loop graphs and compute differential
equations in an integer dimension for their master integrals. Here the generic fibre will be
singular. The most complicated one, the master two–loop two–point function is considered in
section 5.4.
In section 5.5 we discuss the relations between the sunrise integrals in dimensions D = 2 and
D = 4 − 2ε. In particular we will explain why knowing the differential equation in dimension
two is enough to compute the desired coefficients in the Laurent expansion around D = 4. We
use the dimensional shift operators we have discussed in chapter 2. In section 5.6 we treat the
three–loop banana graph. Finally in section 5.7 we will reconsider the two–loop sunrise graph,
but this time we will derive an equation in general dimension D using the methods of chapter 4.
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pm3

m1

m2

m5

m4

Figure 5.1: The master two–loop two–point graph.

p

m2m4

m3

m1

p

m1

m3

m2

Figure 5.2: left : An intermediate graph. It is obtained from the master two–loop two–point
graph by contracting edge e5 which we have assigned the mass m5 in fig. 5.1, right : The two–
loop sunrise graph. It is obtained from the graph on the left by contracting edge e4 which we
have assigned the mass m4.

5.1 A Basis for Two–Loop Two–Point Functions

In [Tar97], Tarasov finds a set of 30 integrals, from which all two–loop integrals can be obtained by
generalized recurrence relations [Tar96]. Furthermore, he explains that these integrals are either
trivial (reduce to one–loop integrals) or can be obtained by differentiation or by permutation of
masses from only three integrals. For this reason we call the set of these three integrals a basis
for all two–loop two–point functions. The integrals are:

M11111(D,Λ) = CM ·

∫
dDk1d

Dk2
(k21 −m2

1)(k
2
2 −m2

5)((k1 − p)2 −m2
4)((k2 − p)2 −m2

2)((k1 − k2)2 −m2
3)
,

H1111(D,Λ) = CH ·

∫
dDk1d

Dk2
(k21 −m2

1)(k
2
2 −m2

2)((k1 − p)2 −m2
3)((k1 + k2 − p)2 −m2

4)
,

S111(D,Λ) = CS ·

∫
dDk1d

Dk2
(k21 −m2

1)(k
2
2 −m2

2)((k1 + k2 − p)2 −m2
3)
.

Here we have changed the notation from [Tar97] a little. The i-th subscript represents the power
of the i-th propagator. We can see by power counting, assuming that all masses are positive, that
all three integrals are convergent in dimension two. The first integral M11111 is also convergent
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p p p

Figure 5.3: left : the one–loop banana (or self–energy) graph is completely known and not con-
sidered interesting in this context, middle: the two–loop sunrise graph which is gouverned by a
family of elliptic curves, right : the three–loop banana graph which is gouverned by a family of
K3–surfaces.

in dimension four. The corresponding Feynman graphs are shown in figures 5.1 and 5.2. To
interpret the integrals as periods we switch to their representations in Feynman parameters,
which are given by

M(4,Λ) =

∫

σ

1

UMFM
· Ω,

M(2,Λ) =

∫

σ

U2
M

F3
M

· Ω,

H(2,Λ) =

∫

σ

UH
F2

H

· Ω,

S(2,Λ) =

∫

σ

1

FS
· Ω,

with

UM = (x1 + x4)(x2 + x5) + (x1 + x2 + x4 + x5)x3,

FM = −t ((x1 + x5)(x2 + x4)x3 + x1x4(x2 + x5) + x2x5(x1 + x4))

+ (m2
1x1 +m2

2x2 +m2
3x3 +m2

4x4 +m2
5x5) · UM ,

UH = (UM )5,

FH = (FM )5,

US = (UH)4,

FS = (FH)4.

Here we have dropped the subscript to distinguish between the two representations. We have
also adopted the notation t := p2, which we will use throughout this chapter. In the subsequent
sections we will find differential equations of Picard–Fuchs type for these integrals.
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5.2 The Two–Loop Sunrise Integral

In the present section we will deal with the two–loop sunrise integral, which we called S in the
previous section. It has received significant attention in the literature. Despite this effort, an
analytical answer in the general case of unequal masses could not be achieved before.
The two–loop sunrise graph is known to have four master integrals and in the general situation
of unequal masses the IBP–approach finds only a coupled system of four first–order differential
equations for the master integrals. We will recall from [CCLR98], how these are obtained. We
will then see that in the special case of equal masses the IBP–approach leads to a second–order
differential equation for the master integral we call S. This equation appeared first in literature
in [BFT93].
In the case of equal masses by solving this differential equation, an analytical solution has been
found for S in [LR04]. Following joint work with Stefan Müller–Stach and Stefan Weinzierl
[MWZ12], we will show that also in the general case of unequal masses the integral S has to
solve a second–order differential equation. To achieve this we will not use IBP–identities. Instead
we interpret S as a period of a VHS and derive its Picard–Fuchs equation.

5.2.1 The Master Differential Equations for the Two–Loop Sunrise

Graph

The master integrals of the two–loop sunrise graph are

S0(D,Λ) := S(D,Λ),

S1(D,Λ) := −
∂

∂m2
1

S(D,Λ),

S2(D,Λ) := −
∂

∂m2
2

S(D,Λ), and

S3(D,Λ) := −
∂

∂m2
3

S(D,Λ).

By direct computation one finds the equations

(
t
∂

∂t
+m2

1

∂

∂m2
1

+m2
2

∂

∂m2
2

+m2
3

∂

∂m2
3

− (D − 3)

)
S0 = 0,

(
t
∂

∂t
+m2

1

∂

∂m2
1

+m2
2

∂

∂m2
2

+m2
3

∂

∂m2
3

− (D − 4)

)
Si = 0, for i = 1, 2, 3.

Here new integrals appear – the mass derivatives of the Si – which can be expressed in terms
of the four master integrals using integration–by–parts identities. One thus obtains a system of
first–order differential equations. It reads [CCLR98]

t
d

dt
y = Ay + c,
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where

A =




D − 3 m2
1 m2

2 m2
3

(D−3)(3D−8)
2·L · P1,0

D−3
L · P1,1 +

D−4
2

D−3
L · P1,2

D−3
L · P1,3

(D−3)(3D−8)
2·L · P2,0

D−3
L · P2,1

D−3
L · P2,2 +

D−4
2

D−3
L · P2,3

(D−3)(3D−8)
2·L · P3,0

D−3
L · P3,1

D−3
L · P3,2

D−3
L · P3,3 +

D−4
2




,

y =




S0

S1

S2

S3


 , c =




0
c1
c2
c3


 .

Here we have

L
(
t,m2

1,m
2
2,m

2
3,
)
=
(
t− (m1 +m2 +m3)

2
)(

t− (m1 +m2 −m3)
2
)

(
t− (m1 −m2 +m3)

2
)(

t− (−m1 +m2 +m3)
2
)
.

Although we have written L in a factorised form, it is actually a polynomial in the variables t,
m2

1, m
2
2 and m2

3. The functions Pi,j are polynomials in t, m2
1, m

2
2 and m2

3 and can be obtained
from the expressions given in [CCLR98] by setting p2 = −t. The sign accounts for the change
from the Euclidean to the Minkowski case. The ci are combinations of tadpole integrals. Their
coefficients, again, can be obtained from [CCLR98] by setting p2 = −t.
In the general case of arbitrary masses this system is irreducible. In the case of equal masses
m1 = m2 = m3 = m, however, we find the relation

S1 = S2 = S3

and the system reduces to a system of two first–order differential equations for the two remaining
master integrals. One can extract from that a single second–order equation for S = S0. With
the conventions and the notation adopted here and setting m = 1, it reads (compare [LR04])

(
∂2
t +

(12− 3D)t2 + 10(D − 6)t+ 9D

2t(t− 1)(t− 9)
∂t +

(D − 3)((D − 4)t+D + 4)

2t(t− 1)(t− 9)

)
S(D, t, 1, 1, 1)

= −
24

t(t− 1)(t− 9)

1

(D − 4)2
. (5.1)

Setting D = 2 this reduces to

(
∂2
t +

3t2 − 20t+ 9

t(t− 1)(t− 9)
∂t +

t− 3

t(t− 1)(t− 9)

)
S(2, t, 1, 1, 1) = −

6

t(t− 1)(t− 9)
. (5.2)

This is an inhomogeneous Picard–Fuchs equation of a familiy of elliptic curves.
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5.2.2 The Picard–Fuchs Equation for the Sunrise Integral with Arbi-

trary Masses

In this section we derive the Picard–Fuchs equation for the integral

S (2,Λ) =

∫

σ

1

F
Ω.

Here
F = −tx1x2x3 + (m2

1x1 +m2
2x2 +m2

3x3) · (x1x2 + x1x3 + x2x3)

like in the previous sections. We keep the masses fixed and denote by X the set of points
([x1 : x2 : x3], t) ∈ P2 × S, for which F = 0. Here S is a Zariski open subset of P1. We have the
natural projection map p : X → P2 and we denote the fibre over t by Xt. This defines a family of
elliptic curves. The generic fibre is smooth if all masses are positive, it is singular if at least one
mass is zero. The most interesting case, that we will discuss first, is the one of positive masses.
According to the results in section 3 we have to blow up the linear spaces L12, L13 and L23. Now
let P

π
−→ P2 be the blowup of P2 in the three points L12, L13 and L23. We use the notation from

chapter 3, denoting the strict transform of Xt by Yt and the strict transform of σ again by σ.
Here Xt is a smooth elliptic curve, so in this particular case Xt is isomorphic to Yt for generic
t. Furthermore, in P we have σ ∩ Yt = ∅. Now let B0 := {x1x2x3 = 0} ⊂ P2 and B its total
transform. Clearly, the boundary of σ is contained in B. Define

Ht := H2 (P \ Yt, B \ B ∩ Yt) .

The convergent Feynman–Integral S(2,Λ) is a period of Ht and we compute its Picard–Fuchs
equation.
In the part of the Euclidean region given by the inequality t < 0, we have

ωt ∈ H2(P \ Yt, B \ B ∩ Yt), and

σ ∈ H2(P \ Yt, B \ B ∩ Yt).

In this example the bound on the kinematical invariant can be improved.

Lemma 5.2.1 Let t0 := (m1 + m2 + m3)
2 and C<t0 be the complex numbers with the line

{x ∈ R | x ≥ t0} removed. For any t ∈ C<t0 the chain of integration σ intersects the graph
hypersurface Xt precisely in the three points (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1).

Proof We have F(t) = −t x1x2x3 + (m2
1x1 +m2

2x2 +m2
3x3)(x1x2 + x1x3 + x2x3). First observe

that the boundary of σ intersects Xt precisely in the three points stated. We have to show that
the intersection of Xt with the inner points of σ is the empty set for t ∈ C<t0 . This is obvious
for t ∈ C\ R. Now let t̃0 = (m1 +m2 +m3)

2 − ǫ, with ǫ ∈ R>0. We restrict to the affine open
x1 = 1 and obtain the function

F = −((m1 +m2 +m3)
2 − ǫ)x2x3 + (m2

1 +m2
2x2 +m2

3x3)(x2 + x3 + x2x3).

We have to show that the equation

(m1 +m2 +m3)
2 − ǫ = (m2

1 +m2
2x2 +m2

3x3)

(
1

x2
+

1

x3
+ 1

)

has no positive real solution. Now ϕ(x2, x3) := (m2
1+m2

2x2+m2
3x3)(

1
x2

+ 1
x3

+1) is a continuous
function from U := R>0 × R>0 to R>0 which tends to infinity, when x2 or x3 tend to zero or



5.2. THE TWO–LOOP SUNRISE INTEGRAL 63

infinity. Hence the set {x ∈ U | ϕ(x) ≤ C} =: K ⊂ U is compact and ϕ has its global minimum
on K. We easily find the global minimum to be unique, namely the point (x2, x3) = (m1

m2
, m1

m3
).

Now we find ϕ(m1

m2
, m1

m3
) = (m1 +m2 +m3)

2 which proves the Lemma. �

In the following we will assume t ∈ C<t0 . The differential equation which we derive will be valid
in the region C<t0 . Note that p

2 = t0 = (m1+m2+m3)
2 is the physical threshold. The two–loop

sunrise integral for values of p2 above the threshold can then be obtained from the solution of
the differential equation by analytic continuation.
In the following we will denote a generic fibre by X, resp. Y , dropping the subscript t. For any
closed cycle ξ, that spans a cohomology class in H2(P \ Y ), the integral

∫

ξ

ωt

has a homogeneous Picard–Fuchs equation, that can be computed using the Griffiths–Dwork
reduction.

We find the Picard Fuchs operator

L(2) =
d2

dt2
+ a(t)

d

dt
+ b(t), (5.3)

where

a(t) =
p1(t)

p0(t)
,

b(t) =
p2(t)

p0(t)
,

with

p1(t) = 9t6 − 32M100t
5 + (37M200 + 70M110) t

4 − (8M300 + 56M210 + 144M111) t
3

− (13M400 − 36M310 + 46M220 − 124M211) t
2

− (−8M500 + 24M410 − 16M320 − 96M311 + 144M221) t

− (M600 − 6M510 + 15M420 − 20M330 + 18M411 − 12M321 − 6M222) ,

p2(t) = 3t5 − 7M100t
4 + (2M200 + 16M110) t

3 + (6M300 − 14M210) t
2

− (5M400 − 8M310 + 6M220 − 8M211) t+ (M500 − 3M410 + 2M320 + 8M311 − 10M221) ,

p0(t) = t L(t,m2
1,m

2
2,m

2
3)
(
3t2 − 2M100t−M200 + 2M110

)
.

Here L is the polynomial introduced in section 5.2.1. In order to present the result in a compact
form we have introduced the monomial symmetric polynomials Mλ1λ2λ3

in the variables m2
1, m

2
2

and m2
3. These are defined by

Mλ1λ2λ3
=
∑

σ

(
m2

1

)σ(λ1) (
m2

2

)σ(λ2) (
m2

3

)σ(λ3)
,

where the sum is over all distinct permutations of (λ1, λ2, λ3). A few examples are

M100 = m2
1 +m2

2 +m2
3,

M111 = m2
1m

2
2m

2
3,

M210 = m4
1m

2
2 +m4

2m
2
3 +m4

3m
2
1 +m4

2m
2
1 +m4

3m
2
2 +m4

1m
2
3.
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So, for any cycle ξ in H2(P \ Y ) we have

L(2)



∫

ξ

ωt


 = 0.

Since the domain of integration σ is not a cycle we instead obtain

L(2)



∫

σ

ωt


 =

∫

σ

dβt =

∫

∂σ

βt =: g(t). (5.4)

The integral over the boundary of σ corresponds to Feynman integrals of minors of the sunrise
graph, so the function g(t) can be considered simpler. We compute it explicitely and find

g(t) =
p3(t)

p0(t)
,

with

p3(t) = −18t
4 + 24M100t

3 + (4M200 − 40M110) t
2 + (−8M300 + 8M210 + 48M111) t

+ (−2M400 + 8M310 − 12M220 − 8M211) + 2c (t,m1,m2,m3) ln
m2

1

µ2

+ 2c (t,m2,m3,m1) ln
m2

2

µ2
+ 2c (t,m3,m1,m2) ln

m2
3

µ2

and

c (t,m1,m2,m3) =(
−2m2

1 +m2
2 +m2

3

)
t3 +

(
6m4

1 − 3m4
2 − 3m4

3 − 7m2
1m

2
2 − 7m2

1m
2
3 + 14m2

2m
2
3

)
t2

+
(
−6m6

1 + 3m6
2 + 3m6

3 + 11m4
1m

2
2 + 11m4

1m
2
3 − 8m2

1m
4
2 − 8m2

1m
4
3 − 3m4

2m
2
3 − 3m2

2m
4
3

)
t

+
(
2m8

1 −m8
2 −m8

3 − 5m6
1m

2
2 − 5m6

1m
2
3 +m2

1m
6
2 +m2

1m
6
3 + 4m6

2m
2
3 + 4m2

2m
6
3

+3m4
1m

4
2 + 3m4

1m
4
3 − 6m4

2m
4
3 + 2m4

1m
2
2m

2
3 −m2

1m
4
2m

2
3 −m2

1m
2
2m

4
3

)
.

The coefficients c(t,mi,mj ,mk) of the logarithms of the masses vanish for equal masses. At this
point one might wonder why the logarithms of the masses appear in the inhomogeneous term.
Let us indicate where these come from.
As we have explained, the inhomogeneous term of the differential equation is a sum of Feynman
integrals of minors of the graph. The double tadpole integral, that is associated with the graph
that is obtained by contracting one of the edges of the sunrise graph, reads

T2(D,m1,m2, ν1, ν2) =

∫

σ

xν1−1
1 xν2−1

2

(x1x2)
ν1+ν2−3/2D

(m2
1x1 +m2

2x2) (x1x2)ν1+ν2−D
Ω.

Especially, we have

T2(4,m1,m2, 3, 3) =

∫

σ

1

(m2
1x1 +m2

2x2)
Ω =

∞∫

0

1

m2
1x1 +m2

2

dx1.
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The integrand on the right–hand side of the above equation is a logarithmic divergent function,
which is holomorphic on the strip (0,∞).
For a class of functions f(z), called hyperlogarithms, that are holomorphic on the real interval
(0,∞) and have at most logarithmic singularities at z = 0,∞, Brown defines in [Bro09a] the
regularized integral of f(z)dz along (0,∞) as

∞∫

0

f(z)dz = Regz=∞ F (z)− Regz=0 F (z),

where F (z) is a primitive of f(z), and the regularized values Regz=∞ F (z) and Regz=0 F (z) are
obtained in the following way. Hyperlogarithms can be uniquely written in the form

F (z) =

m∑

i=0

Fi(z) log
i(z),

where Fi(z) is holomorphic at z =∞, for 0 ≤ i ≤ m. Define

Regz=∞ F (z) = F0(∞).

The regularized value at zero is defined analogously. The point now is, that in computing a
convergent Feynman integral (like the inhomogenous part of our differential equation) one is
allowed to break it into logarithmically divergent components, compute the regularized integral
of each piece and add the contributions together. Again, we refer the reader to chapter 5 of
[Bro09a] and the references given there for details. This can be applied to the above tadpole
integral, so for a convergent integral I, that can be broken into a sum of the form

I = T2(4,m1,m2, 3, 3) + Ĩ ,

we obtain
I = ln(m2

1)− ln(m2
2) + Ĩ .

In this way logarithms of masses appear.
Another way to see this is by analyzing the Gysin sequence together with the long exact sequence
of relative cohomology. The latter reads

0 −→ H1(B\B ∩ Y ) −→ H2(P\Y, B\B ∩ Y ) −→ H2(P\Y ) −→ H2(B\B ∩ Y ),

where we have used H1(P\Y ) = 0. We find

B ∩ Y =

{[
0 : −

m3

m2
: 1

]
,

[
−
m3

m1
: 0 : 1

]
,

[
1 : −

m1

m2
: 0

]}
∪ {p1, p2, p3},

where pi is a point on the exceptional divisor Ei. For B\B ∩ Y we get the picture of figure 5.4.
To analyze Hk (B\B ∩ Y ) there is the spectral sequence of Hodge structures

Ep,q
1 = Hq

(
Bp+1\Bp+1 ∩ Y

)
⇒ Hp+q (B\B ∩ Y ) ,

where we take the obvious cover B =
⋃
Bi and write Bk =

∐
Bi1 ∩ · · · ∩Bik .

We obtain

H0(B\B ∩ Y ) = Z,

H1(B\B ∩ Y ) = Z, and

Hk(B\B ∩ Y ) = 0, for k 6= 0, 1.
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Figure 5.4: B\ B ∩ Y . A closed chain of six copies of P1 with a point removed.

Summarizing, we get the short exact sequence

0 −−−−→ Z −−−−→ H2(P\Y, B\B ∩ Y ) −−−−→ H2(P\Y ) −−−−→ 0 (5.5)

of mixed Hodge structures. For a smooth hypersurface inside some projective manifold such as
the curve Y →֒ P we have the Gysin sequence to analyze the complement P\Y . It is an exact
sequence of mixed Hodge structures and in our case reads

0 −→ H2(P ) −→ H2(P\Y ) −→ H1(Y )(−1) −→ 0.

We see that Ht has weights zero, two and three. In the case of equal masses the Gysin sequence
can be shown to split and one finds, that the period S(2,Λ) is supported on a subquotient of Ht

which is an extension of H1(Y )(−1) by Q(0). From this one can predict a constant inhomoge-
neous term (the numerator of the inhomogenous term in equation 5.2). In the case of general
masses we cannot split the weight two part of Ht and we must deal with more complicated
extensions. Therefore, we can no longer deduce that the inhomogenous term will be constant.

In principle, equation (5.4) is the inhomogeneous differential equation we have been searching
for. It can be written in a homogeneous form

(
∂t −

g′(t)

g(t)

)
L(2) (S(2,Λ)) = 0, (5.6)

where the prime denotes differentiation with respect to t. This equation annihilates the Feynman
integral and has regular singular points. It is, however, not defined over the differential field Q(t)
but only over k(t) with k = Q(lnm1, lnm2, lnm3). To obtain an operator that is defined over
Q(t), we can find a differential operator that is defined over Q(t) and annihilates the inhomoge-
nous part of the differential equation.
As an example, let us discuss the case m1 = 2 and m2 = m3 = 1. In this case our differential
equation reads

L(2) (S(2, t)) =
−6t− 8 ln(2)

t2(t− 4)(t− 16)
=: g(t).

Define

Lg := ∂t −
g′(t)

g(t)
.

The operator Lg · L
(2) has regular singular points and annihilates S(2, t) but its coefficients are

not in Q(t).



5.2. THE TWO–LOOP SUNRISE INTEGRAL 67

We look for a second order differential operator with coefficients in Q(t) that kills g(t) and find

L̃ =

(
∂t +

(
2

t
+

1

t− 4
+

1

t− 16

))2

.

Now observe

Lg = ∂t +

(
2

t
+

1

t− 4
+

1

t− 16
−

1

t+ 4
3 ln(2)

)
,

and define

Lg = ∂t +

(
2

t
+

1

t− 4
+

1

t− 16
+

1

t+ 4
3 ln(2)

)
.

We have
Lg · Lg = L̃,

which is just the identity

(∂t + b)
2
=

(
∂t + b+

1

t+ a

)
·

(
∂t + b−

1

t+ a

)
,

for ∂ta = 0 and b ∈ Q(t).
Now the Picard–Fuchs operator

L̃ · L(2)

is of order four and the relation to the operator Lg · L
(2) is illustrated above.

Recall that the ring of differential operators over R, denoted R[∂], is defined as the free R–algebra
generated by ∂, modulo the ideal J generated by elements a∂ − ∂a− a′ for a ∈ R. So in conclu-
sion we have taken an element in Q(t)[∂] and found a different factorization in Q(ln(2))(t)[∂]. It
turned out that the smaller operator Lg · L

(2) already killed the period.

Remark 5.2.2 Note that in this way we cannot find a differential operator in dimension four
without shifting dimensions. For D = 4 the Feynman form becomes ω = F

U3 where U is a smooth
quadric. Its first cohomology group is thus trivial and without applying any differential operator
we can find a form β, such that ω = dβ. To separate its polar locus from σ we still have to
blow up the same three points. Now property (i) in Proposition (3.1.4) fails, because the integral
diverges in dimension four. We have thus obtained a useless equation, namely S(4, z) =∞.

So far, we have discussed the sunrise integral in the most interesting case of positive masses. In
the remainder of this section we will complete the discussion on the two–loop sunrise graph by
covering the remaining cases shortly. This means that at least one mass has to be zero. Let us
begin with the case of a single zero mass and two positive masses. According to the results of
chapter 3 we still only have to blow up the three points L12, L13, L23. Let m3 = 0. Now we see
that ωt vanishes along L12 to order two, but the blowup of L12 only reduces the pole order by
one. Therefore we hit an IR–singularity.
The integral is not a period and we cannot assign a Picard–Fuchs operator. We can, however,
compute the homogeneous Picard–Fuchs operator L of the Feynman form and formally assign
the equation

L



∫

σ

ωt


 =

∫

σ

dβt =

∫

∂σ

βt =∞. (5.7)
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This might appear to be of little use, we can, however, use it to compare results with a more formal
computation we do in chapter 5.7. There, we will compute an equation valid in general dimension
D. It should then specialize to the equation computed here and thus the inhomogeneous part
should have a pole as D approaches two.
To compute the differential operator L in equation (5.7), observe that in cases with a massless
line Xt is a singular cubic. From that we expect a linear differential operator. More precisely,
when mi is zero, the point Ljk with i 6= j 6= k 6= i is a singular point of Xt and these are
the only singular points of Xt. Its strict transform Yt will then be smooth in the blowup P we
considered earlier. We can then, as before, apply the Gysin sequence. This time we obtain a
trivial sequence.
With that in mind let us look at our formula for the homogeneous term of the Picard–Fuchs
equation (eq. 5.3). Setting one mass equal to zero and naming the others m and n, we obtain

L(2) = ∂2
t +

p4(t)

p7(t)
∂t +

p5(t)

p7(t) (t− (m+ n)2) (t− (m− n)2)

= L2 · L1,

with

L1 =

(
∂t +

t−m2 − n2

(t− (m+ n)2) (t− (m− n)2)

)
,

L2 =

(
∂t +

p6(t)

p7(t)

)
,

and

p4(t) = 9t4 − 14(m2 + n2)t3 + 32m2n2t2 + 6(m6 + n6 −m4n2 −m2n4)t

−m8 − n8 + 4m6n2 + 4m2n6 − 6m4n4,

p5(t) = 3t5 − 7(m2 + n2)t4 + 2(m4 + n4 + 8m2n2)t3 + 2(3m6 + 3n6 − 7m4n2 − 7m2n4)t2

− (5m8 + 5n8 − 8m6n2 − 6m2n6 + 6m4n4)t

+m10 + n10 − 3m8n2 − 3m2n8 + 2m6n4 + 2m4n6,

p6(t) = 6t4 − 9(m2 + n2)t3 − (m4 + n4 − 26m2n2)t2 + 5(m6 + n6 −m4n2 −m2n4)t

−m8 − n8 + 4m6n2 + 4m2n6 − 6m4n4,

p7(t) = t
[
3t2 − 2(m2 + n2)t− (m2 − n2)2

]
(t− (m+ n)2) (t− (m− n)2).

Indeed one easily verifies that the second operator L1 is the sought–after homogeneous Picard–
Fuchs operator of equation (5.7). We have found a linear operator as expected.
The case with two massless lines is also IR–singular and can be treated as above. We obtain

L1 = ∂t +
1

t−m2
.

Remark 5.2.3 We have seen that our method works best if all internal lines are massive. This
is motivically and physically the most interesting case. If there is a single massless line the
integral can be reduced to a one–loop Feynman integral and can therefore be considered known
(see e.g. [Smi04]).

This concludes our discussion of the differential equation of the sunrise integral in dimension
two. We will treat the relation between dimension D = 2 and D = 4− 2ε in section 5.5.
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5.3 An Intermediate Graph

The integral

H(2,Λ) =

∫

σ

UH
F2

H

· Ω,

of the graph on the left–hand side of figure 5.2 is convergent in dimension two, if all masses
are positive. The middle cohomology of the desingularization of its second graph hypersurface
Xt ⊂ P3 is

H2(Xt) =
7⊕

Z(−1).

To separate the polar locus from the domain of integration we have to blow up the linear spaces
L23, L124, and L134. We find the differential equation

L(1) (H(2,Λ)) = g(t),

with

L(1) =
d

dt
+

t− (m2
1 +m2

4)

(t− (m1 +m4)2)(t− (m1 −m4)2)
,

g(t) =
1

(t− (m1 +m4)2)(t− (m1 −m4)2)
Ĩ ,

Ĩ =

∫

σ

(t+ 3m2
1 −m2

4)x1x2x3 +m2
2x

2
2(2x1 + 4x3)− 2m2

1x
2
1x3 − 2m2

3x
2
3(x1 − x2)

(FH)24
Ω.

Here we see, that only the massive sunrise graph gives a contribution to the inhomogeneous term
of the differential equation. The other minors of the graph give vanishing contributions. Further-
more, also the integrals over the exceptional divisors give vanishing contributions. The remaining
integral Ĩ can be expressed in terms of the two sunrise integrals S(2,Λ) = S(2, t,m1,m2,m3)
and S

′

(2,Λ) = ∂t S(2, t,m1,m2,m3) because their integrands span the cohomology group

H2(P2\XS),

where XS denotes the second graph hypersurface of the sunrise graph. We obtain

Ĩ =
a(t)

N(t)
S

′

(2,Λ) +
b(t)

N(t)
S(2,Λ)

a(t) = −5t3 + (6m2
2 − 5m2

1 + 6m2
3 + 3m2

4)t
2

+ (−m4
2 −m4

3 + 9m4
1 + 2m2

1m
2
2 − 4m2

2m
2
3 − 4m2

1m
2
3 − 2m2

2m
2
4 − 2m2

1m
2
4 − 2m2

3m
2
4)t

+ (m3 −m4)(m3 +m4) ·R

b(t) = −2(t2 − t(m2
2 +m2

3) +m2
1(−m

2
1 +m2

2 +m2
3))

N(t) = 3t2 − 2(m2
1 +m2

2 +m2
3)t+R,

R = (m1 +m2 +m3)(m1 +m2 −m3)(m1 −m2 +m3)(−m1 +m2 +m3).

In the case m1 = m2 = m3 = m4 = 1 this simplifies to

L(1) =
d

dt
+

t− 2

t(t− 4)
,

g(t) = −
1

t(t− 4)

(
5

3
t S

′

(2, t, 1, 1, 1)−
2

3
S(2, t, 1, 1, 1)

)
.
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The inhomogeneous Picard–Fuchs operator of H(2,Λ) now reads

(
∂t −

g
′

(t)

g(t)

)
L(1).

In order to obtain an operator with coefficients in Q(t) one can simply multiply the Picard–Fuchs
operator of the sunrise integral g(t) to L(1) from the left.

5.4 The Two–Loop Master Graph

The two–loop master graph has very good convergence properties. It is UV–finite in dimension
less or equal to four. Therefore, if we consider a four–dimensional theory we do not have to
shift dimensions within our method. Let us check for IR–singularities. The Feynman form in
dimension four is

ω =
1

UF
,

so IR–singularities could be possible. From counting pole and zero order on the exceptional
divisors, we see that the only critical linear coordinate spaces for F0 are L12 and L34. The
polynomial U does, however, not vanish on these, so regardless of the masses we never have
IR–singularites in dimension four.
Our method therefore applies to all possible combinations of masses. The period is most inter-
esting when the graph contains a massive sunrise diagram as a minor, i.e. if masses m1,m2,m3

or m3,m4,m5 are positive. Let us discuss these cases, beginning with the homogeneous part of
the differential equation. Observe that

∂tM(4, t) = −

∫

σ

∂tF

UF2
Ω,

where ∂tF = 1
tF0. It follows that

∂tM(4, t) +
1

t
M(4, t) =

1

t

∫

σ

∑5
i=1 m

2
ixi

F2
Ω. (5.8)

If all masses are zero we have already found the differential equation, it is however not very
helpful. From it we get a solution M(4, t) = c

t involving a constant c. Is is known in the
literature and given by c = 6 ζ(3).
In all other cases equation (5.8) is not homogeneous and more useful. The right–hand side of
equation (5.8) is again a period and has a Picard–Fuchs equation. We find that without regard
to the masses the numerator of the right–hand side of (5.8) is contained in the Jacobian ideal of
F . This leads to the following equation

(
∂t +

1

t

)
M(4, t) =

1

t

∫

σ

∑5
i=1 m

2
ixi

F2
Ω =

∫

σ

dβ =

∫

∂σ

β. (5.9)

The right hand side of the above equation can be expressed in terms of minors of the graph,
i.e. in terms of the double tadpole integrals and the integrals of the graph we have discussed in
the previous section. Putting everything together, we find, that the Feynman integrals of the
two–loop master graph reduce to sunrise integrals after applying two linear differential operators.
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5.5 From D = 2 to D = 4− 2ε

In the preceeding chapters we have obtained differential equations for Feynman integrals in
dimension two and four. We have seen, that the sunrise integral is of particular importance and
we only have an equation in dimension two available. We want to obtain from that information
about the sunrise integral in dimension four. It is convergent in dimension two and UV–divergent
in dimension four. It also has an overall UV–divergence in dimension four which we will not drop
in this chapter. We can write

S(2− 2ε,Λ) =

∞∑

i=0

S(i)(2,Λ)εi,

and

S(4− 2ε,Λ) =

∞∑

i=−2

S(i)(4,Λ)εi.

Our ultimate goal is to compute the polar part of the latter series and its zero–order term. What
we have is a differential equation for S(2,Λ) = S(0)(2,Λ). From that an analytic solution for
S(0)(2,Λ) has been obtained in the recent paper [ABW13]. Let us recall that we have assigned
to a graph a family of integrals by allowing integer exponents of the propagators. The scalar
integrals assigned to the sunrise graph are of the form

S(D,Λ, ν) =

∫

σ

xν1−1
1 xν2−1

2 xν3−1
3 Uν−(ℓ+1)D

2

Fν−ℓD
2

Ω,

where Λ = (t,m2
1,m

2
2,m

2
3), ν = (ν1, ν2, ν3) and ν = ν1 + ν2 + ν3.

Recall that the two–loop sunrise graph has four master integrals, which can be chosen

S(D) = S(D,Λ, 1, 1, 1),

S1(D) = S(D,Λ, 2, 1, 1),

S2(D) = S(D,Λ, 1, 2, 1),

S3(D) = S(D,Λ, 1, 1, 2).

Observe that the latter three integrals are just mass derivatives of S, we have for i = 1, 2, 3

Si(D) = i+S(D,Λ, 1, 1, 1) = −
∂

∂m2
i

S(D,Λ, 1, 1, 1).

In conclusion, we know all the master integrals analytically in dimension two. They all converge,
such that for i = 1, 2, 3, we have

Si(2) = S
(0)
i (2,Λ).

From that we would like to know S(0)(4,Λ) and the polar part of S(4,Λ) analytically.
In chapter 2 we have discussed two types of dimensional recurrence relations. The type of
relation, that shifts the dimension down by two cannot be applied here. We have to use the type
of relation, that shifts the dimension up by two. These read

S(D − 2,Λ, ν) = U(ν11
+, ν22

+, ν33
+)S(D,Λ, ν). (5.10)

When applying this to the master integrals, the integrals on the right–hand side can be expressed
in terms of the four master integrals and simpler integrals which correspond to minors of the



72 CHAPTER 5. SOME GRAPHS OF SMALL LOOP ORDER

graph. From the six basic IBP–identities we have discussed in chapter 2, Tarasov derives in
[Tar97] the following relations

2ν1ν2P 1+2+S(D,Λ, ν) =
[
2ν1h1231

+ + 2ν2h2132
+ + 4ν3m

2
3σ1233

+

+ ν2ν3m
2
3φ21

−2+3+ + ν1ν3m
2
3φ11

+2−3+ − 2ν1ν2ρ1
+2+3−

+
1

2
(3D − 2ν1 − 2ν2 − 2ν3 − 2)(D − ν1 − ν2 − ν3)φ3

]
S(D,Λ, ν), (5.11)

where

P = (t− (m1 +m2 +m3)
2)(t− (m1 +m2 −m3)

2)(t− (m1 −m2 +m3)
2)(t− (m1 −m2 −m3)

2),

ρ = −
1

4

∂P

∂t
,

φi =
1

2

∂

∂m2
i

(
∂

∂m2
1

+
∂

∂m2
2

+
∂

∂m2
3

+
∂

∂t

)
P,

σijk = −
1

4
(D − νi − 2νj)φi −

1

4
(D − 2νi − νj)φj −

1

4
(2D − 2νi − 2νj − νk − 1)φk,

hijk = −
1

2
(D − 2νj − νk)m

2
kφi −

1

2
(2D − νi − 2νj − 2νk − 1)m2

iφk + (D − νj − 2νk)ρ.

Two additional relations follow from (5.11) by the interchanges

1+3+S(D,Λ, ν) : 2,2± ←→ 3,3±,

2+3+S(D,Λ, ν) : 1,1± ←→ 3,3±. (5.12)

These relations cannot be applied when two edges have an exponent equal to one (i.e. two entries
of ν are equal to one). In order to give a complete reduction Tarasov gives

2ν1(ν1 + 1)m2
1P 1+1+S(D,Λ, ν) =

[
−(3D − 2ν1 − 2ν2 − 2ν3 − 2)(D − ν1 − ν2 − ν3)ρ

+ ν2ν3m
2
2m

2
3φ11

−2+3+ + ν1ν3m
2
1m

2
3φ21

+2−3+ + ν1ν2m
2
1m

2
2φ31

+2+3−

+ ν1(D − 2− 2ν1)P 1+ + ν1m
2
1S1231

+ + ν2m
2
2S2132

+ + ν3m
2
3S3123

+
]
S(D,Λ, ν) (5.13)

with

Sijk = −(D − 2νj − νk)m
2
kφj − (D − νj − 2νk)m

2
jφk + 2(2D − νi − 2νj − 2νk − 1)ρ.

Again, we have the two variants

2+2+S(D,Λ, ν) : 1,1± ←→ 2,2±,

3+3+S(D,Λ, ν) : 1,1± ←→ 3,3±. (5.14)

Note, that the relations (5.11),(5.12),(5.13) and (5.14) show, that every S(D,Λ, ν) can indeed
be reduced to combinations of the integrals S(D), S1(D), S2(D), S3(D) and simpler integrals.

With our choice of master integrals we obtain the linear system of equations

A




S(D)
S1(D)
S2(D)
S3(D)


+R =




S(D − 2)
S1(D − 2)
S2(D − 2)
S3(D − 2)


 , (5.15)
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where A is a matrix with entries that are rational functions in D, t and the masses, and R is a
vector that contains rational combinations of simpler integrals. Inverting A we obtain the desired
equation. This has been done in [Tar97] and the equation reads

S(D) =
1

3t(D − 3)(D − 4)(3D − 8)(3D − 10)

[
c0S(D − 2)

+ f(m2
1,m

2
2,m

2
3)S1(D − 2) + f(m2

2,m
2
1,m

2
3)S2(D − 2) + f(m2

3,m
2
2,m

2
1)S3(D − 2)

+ g(m2
1,m

2
2,m

2
3)S(D − 2,Λ, 2, 2, 0) + g(m2

1,m
2
3,m

2
2)S(D − 2,Λ, 2, 0, 2)

+ g(m2
2,m

2
3,m

2
1)S(D − 2,Λ, 0, 2, 2)

]
, (5.16)

with

c0 = (D − 4)2t3 − 2u1(D − 4)(6D − 23)t2

+ (5u2
1(15D

2 − 117D + 224)− u2(42D
2 − 331D + 640))t

−
1

4
(D − 5)(u3(27D − 90)− u1u2(3D − 2)− 2u3

1(5D − 26)),

u1 = m2
1 +m2

2 +m2
3

u2 = 3(m4
1 +m4

2 +m4
3) + 2(m2

1m
2
2 +m2

1m
2
3 +m2

2m
2
3)

u3 = m2
1(m

4
1 −m4

2 −m4
3) +m2

2(m
4
2 −m4

1 −m4
3) +m2

3(m
4
3 −m4

1 −m4
2) + 10m2

1m
2
2m

2
3

and

f(m2
1,m

2
2,m

2
3) = m2

1(t−m2
1)[−2(D − 4)t2 + (4u1(5D − 18)− 24m2

1(2D − 7))t

− 2(4D − 13)u2
1 + 2(9D − 31)u2 − 24m2

2m
2
3(4D − 13)− 24m4

1(2D − 7)]

g(m2
1,m

2
2,m

2
3) =

m2
1m

2
2

(D − 4)
(4(D − 4)t2 − 4(7D − 24)(3m2

3 − 2u1)t

− u2
1(23D − 80) + u2(9D − 32)− 12m4

3(D − 4) + 12m2
1m

2
2(7D − 24)).

The simpler integrals occuring on the right–hand side of equation (5.16) are know to all orders.
Furthermore, we know the zero–order term of the master integrals in dimension two. Now the
prefactor on the right–hand side contains a term (D − 4)−1 and therefore contributes a simple
pole at D = 4. This is called a spurious pole. It causes us to lose information about the zero
order term of S(4,Λ). Therefore, equation (5.16) is not quite what we want. The occurrent
phenomenon can be explained by looking at the Feynman forms involved in equation (5.15),
setting D = 4. On the right–hand side we find

S0(2) =

∫

σ

1

F
Ω

S1(2) =

∫

σ

x1U

F2
Ω

S2(2) =

∫

σ

x2U

F2
Ω

S3(2) =

∫

σ

x3U

F2
Ω.
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The four Feynman forms lie in H1(XF ) and generate it. From equation (5.10) we see that in
order to describe S(0)(4,Λ) we additionally need forms that lie in the bigger cohomology group
H1(XUF ) but not in H1(XF ). Let us replace S2(D − 2) and S3(D − 2) by

S̃2(D) = S(D,Λ, 2, 1, 2)

and

S̃3(D) = S(D,Λ, 1, 2, 2).

We have

S̃2(4) =

∫

σ

x2x3

UF
Ω

and

S̃3(4) =

∫

σ

x1x3

UF
Ω.

Instead of the system (5.15) we compute the system

Ã




S(D)
S1(D)
S2(D)
S3(D)


+ R̃ =




S(D − 2)
S1(D − 2)

S̃2(D)

S̃3(D)


 , (5.17)

using relations (5.11) and (5.13) and their variants (5.12) and (5.14). Let us simplify the notation
a little. Firstly, observe that σijk and Sijk are symmetric in two of their indices, so that we may
drop these. Secondly, in the definition of hijk, σijk and Sijk the values of the exponents are not
visible. We only need two cases. In the case ν = (1, 1, 1) let us write abusively for the rest of
the chapter

hijk = −
1

2
(D − 3)m2

kφi − (D − 3)m2
iφk + (D − 3)ρ

σk = −
1

4
(D − 3)φi −

1

4
(D − 3)φj −

1

2
(D − 3)φk

Si = −(D − 3)m2
kφj − (D − 3)m2

jφk + 4(D − 3)ρ

and in the case ν = (2, 1, 1) let us use the notation h̃ijk and σ̃k.
We obtain

Ã =
1

P




1
4 (D − 3)(3D − 8)(φ1 + φ2 + φ3) τ1 τ2 τ3

a2,1 a2,2 a2,3 a2,4
1
4 (D − 3)(3D − 8)φ2 h132 2m2

2σ2 h312

1
4 (D − 3)(3D − 8)φ1 2m2

1σ1 h231 h321


 ,
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where

τi = hijk + hikj + 2m2
iσi

τ̃i = h̃ijk + h̃ikj + 2m2
i σ̃i

∂iP =
∂

∂m2
i

P

a2,1 =
(D − 3)(3D − 8)

4P

(
−

2

m2
1

τ̃1ρ+ τ̃2φ3 + τ̃3φ2 −
1

4
(∂1P )φ1

)

a2,2 =
1

2P

(
(D − 3)

m2
1

τ̃1P + τ̃1S1 + 2τ̃2h123 + τ̃3h132 −m2
1σ1(∂1P )

)

+
1

4
(D − 4)(3D − 10)(φ1 + φ2 + φ3)

a2,3 =
1

4P

(
2
m2

2

m2
1

τ̃1S2 + 4τ̃2h213 + 8m2
2τ̃3σ2 − (∂1P )h231

)

a2,4 =
1

4P

(
2
m2

3

m2
1

τ̃1S3 + 4τ̃3h312 + 8m2
3τ̃2σ3 − (∂1P )h321

)

and

R̃ =
1

2P




R1

R2

R3

R4




where

R1 = −
1

2

(
(∂1P )S(D, 0, 2, 2) + (∂2P )S(D, 2, 0, 2) + (∂3P )S(D, 2, 2, 0)

)
,

R2 =
1

P

(
m2

2m
2
3

m2
1

τ̃1φ1 +m2
3τ̃2φ2 +m2

2τ̃3φ3 +
1

2
(∂1P )ρ

)
S(D, 0, 2, 2)

+
1

P

(
m2

3τ̃1φ2 +m2
3τ̃2φ1 −

m2
1

4
(∂1P )φ3 − 2τ̃3ρ

)
S(D, 2, 0, 2)

+
1

P

(
m2

2τ̃1φ3 − 2ρτ̃2 +m2
2τ̃3φ1 −

m2
1

4
(∂1P )φ2

)
S(D, 2, 2, 0)

− (∂2P )S(D, 3, 0, 2)− (∂3P )S(D, 3, 2, 0),

R3 = m2
2φ3 S(D, 0, 2, 2)− 2ρS(D, 2, 0, 2) +m2φ1 S(D, 2, 2, 0),

R4 = −2ρS(D, 0, 2, 2) +m2
1φ3 S(D, 2, 0, 2) +m1φ2 S(D, 2, 2, 0).

Inverting the matrix Ã, we obtain the desired equation for S(D,Λ). The explicit expressions
are rather lenghty and not given here. Setting D = 4, we have expressed S(4,Λ) as a rational
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combination of the integrals S(2,Λ), S1(2,Λ), S̃2(4,Λ) and S̃3(4,Λ) and simpler integrals. One
checks, that here no spurious poles appear. The simpler integrals are known to all orders. An
analytic solution for S(2,Λ) (the zero–order term in the Laurent expansion around two) has
been obtained in [ABW13] by solving the differential equation we have discussed in the previous
section and which was first published in [MWZ12]. Therefore, also its mass derivative S1(2,Λ) is

known. To obtain a complete answer we need in addition S̃2(4,Λ) analytically. The last integral

S̃3(4,Λ) can then be obtained by interchanging masses. To fill this last gap one simply has to

compute the differential equation of the convergent integral S̃2(4,Λ) with the methods described
in the previous sections and solve this equation like in [ABW13]. From that S(4− 2ε,Λ) would
be known up to and including the zero–order term in the Laurent expansion.

5.6 A Three–Loop Example

The method we presented in the previous sections is not restricted to loop–order two. In principle
it can be used in any loop–order. Let us give a three–loop example and discuss the three–loop
banana graph depicted in fig. 5.3. We assume as before that all masses are positive so that we
do not have to deal with IR–singularites.
In Feynman parameters the integrals associated to the three–loop banana graph read

B(D,Λ, ν) =

∫

σ

xν1−1
1 xν2−1

2 xν3−1
3 U

ν−(ℓ+1)D
2

B

F
ν−ℓD

2

B

Ω,

with

U = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4,

F = −tx1x2x3x4 + (m2
1x1 +m2

2x2 +m2
3x3 +m2

4x4)U .

We derive a differential equation for B(D,Λ) := B(D,Λ, 1, 1, 1, 1). We see from power counting,
that it is divergent in dimension four and convergent in dimension two. We have

B(2,Λ) =

∫

σ

1

FB
Ω.

For simplicity let us assume that all masses are equal to one. We have given by FB a family of
K3–surfaces and we compute its homogeneous Picard–Fuchs equation. We obtain the differential
operator

L = ∂3 +

(
6(t2 − 15t+ 32)

t(t− 4)(t− 16)

)
∂2 +

(
7t2 − 68t+ 64

t2(t− 4)(t− 16)

)
∂ +

1

t2(t− 16)

and a differential form β, such that

L(B(2,Λ)) =

∫

σ

dβ =

∫

∂σ

β.

It is straightforward to integrate the right–hand side. Calling the result g(t) one obtains as before
the inhomogeneous equation

(
∂ −

g′(t)

g(t)

)
L(B(2,Λ)) = 0.

At this point one can repeat the procedure we have carried out for the two–loop sunrise graph
in the previous sections.
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5.7 The Sunrise Integral in General Dimension

In this section we reconsider the sunrise graph in general dimension D. Here, we can no longer
expect a homogeneous differential equation of order two. This is due to the fact, that both graph
hypersurfaces play a role in general dimension. Carrying out the procedure we have described
in chapter 4, we observe something interesting. For general masses and dimension we find an
operator L(4) of order four, such that

L(4) (S(D,Λ, ν)) = I,

where I is a sum of simpler integrals. Setting D = 4− 2ε, we find a decomposition

L(4) = L(2)

(
∂t +

2

t

)
∂t + εL(3)

ε , (5.18)

where L(2) is a differential operator of order two that is independent of ε and L
(3)
ε is a differential

operator of order three. The coefficients of the operators L(2) and L
(3)
ε are rather long and not

given here explicitly.

Let us conclude this section by pointing out that the decomposition given by equation (5.18) is

very useful for solving the differential equation. The operator L
(3)
ε appears with an extra factor

of ε in equation (5.18). When solving the equation order by order in ε one can regard εL
(3)
ε as

part of the inhomogeneous term and one is reduced to solving a second order differential equation
and two additional integrations coming from the linear differential operators.
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(1956), 1-42

[Smi04] V. A. Smirnov, Evaluating Feynman Integrals, (Springer Tracts Mod. Phys. 211)
Springer, Berlin, Heidelberg, 2004.



82 BIBLIOGRAPHY

[Smi08] A. V. Smirnov, Algorithm FIRE – Feynman integral reduction, JHEP, 2008(10), 107.

[SP10] A. V. Smirnov and A. V. Petukhov, The number of master integrals is finite, Letters
in Math. Phys. 97.1, (2011), 37-44

[Stu10] C. Studerus, Reduze - Feynman integral reduction in C++, Computer Phys. Comm.
181.7, (2010), 1293-1300

[SW71] E.R. Speer and M.J. Westwater, Generic Feynman amplitudes, Ann. Inst. Henri
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Abstract

This thesis is devoted to studying differential equations of Feynman integrals. A Feynman integral
depends on a dimension D. For integer values of D it can be written as a projective integral,
which is called the Feynman parameter prescription. A major complication arises from the fact
that for some values of D the integral can diverge. This problem is solved within dimensional
regularization by continuing the integral as a meromorphic function on the complex plane and
replacing the ill–defined quantity by a Laurent series in a dimensional regularization parameter.
All terms in such a Laurent expansion are periods in the sense of Kontsevich and Zagier.
We describe a new method to compute differential equations of Feynman integrals. So far, the
standard has been to use integration–by–parts (IBP) identities to obtain coupled systems of
linear differential equations for the master integrals. Our method is based on the theory of
Picard–Fuchs equations. In the case we are interested in, that of projective and quasiprojective
families, a Picard–Fuchs equation can be computed by means of the Griffiths–Dwork reduction.
We describe a method that is designed for fixed integer dimension. After a suitable integer shift
of dimension we obtain a period of a family of hypersurfaces, hence a Picard–Fuchs equation.
This equation is inhomogeneous because the domain of integration has a boundary and we only
obtain a relative cycle. As a second step we shift back the dimension using Tarasov’s generalized
dimensional recurrence relations.
Furthermore, we describe a method to directly compute the differential equation for general D
without shifting the dimension. This is based on the Griffiths–Dwork reduction. The success of
this method depends on the ability to solve large systems of linear equations.
We give examples of two and three–loop graphs. Tarasov classifies two–loop two–point functions
and we give differential equations for these. For us the most interesting example is the two–loop
sunrise integral with arbitrary fixed masses and varying momentum. It was previously known
not to evaluate to multiple polylogarithms, but an analytic answer could not be obtained. Its
geometric and number theoretic content is governed by a family of elliptic curves. We provide an
inhomogeneous Picard–Fuchs equation which in the meantime lead to an analytic answer of the
two–loop sunrise integral. We give a three–loop example where we find a family of K3–surfaces.





Zusammenfassung

In der vorliegenden Arbeit beschäftige ich mich mit Differentialgleichungen von Feynman–
Integralen. Ein Feynman–Integral hängt von einem Dimensionsparameter D ab und kann für
ganzzahlige Dimension als projektives Integral dargestellt werden. Dies ist die sogenannte
Feynman–Parameter Darstellung. In Abhängigkeit der Dimension kann ein solches Integral di-
vergieren. Als Funktion in D erhält man eine meromorphe Funktion auf ganz C. Ein divergentes
Integral kann also durch eine Laurent–Reihe ersetzt werden und dessen Koeffizienten rücken in
das Zentrum des Interesses. Diese Vorgehensweise wird als dimensionale Regularisierung be-
zeichnet. Alle Terme einer solchen Laurent–Reihe eines Feynman–Integrals sind Perioden im
Sinne von Kontsevich und Zagier.
Ich beschreibe eine neue Methode zur Berechnung von Differentialgleichungen von Feynman–
Integralen. Üblicherweise verwendet man hierzu die sogenannten ”integration by parts” (IBP)–
Identitäten. Die neue Methode verwendet die Theorie der Picard–Fuchs–Differentialgleichungen.
Im Falle projektiver oder quasi–projektiver Varietäten basiert die Berechnung einer solchen Dif-
ferentialgleichung auf der sogenannten Griffiths–Dwork–Reduktion.
Zunächst beschreibe ich die Methode für feste, ganzzahlige Dimension. Nach geeigneter Ver-
schiebung der Dimension erhält man direkt eine Periode und somit eine Picard–Fuchs–Diffe-
rentialgleichung. Diese ist inhomogen, da das Integrationsgebiet einen Rand besitzt und daher
nur einen relativen Zykel darstellt. Mit Hilfe von dimensionalen Rekurrenzrelationen, die auf
Tarasov zurückgehen, kann in einem zweiten Schritt die Lösung in der ursprünglichen Dimension
bestimmt werden.
Ich beschreibe außerdem eine Methode, die auf der Griffiths–Dwork–Reduktion basiert, um die
Differentialgleichung direkt für beliebige Dimension zu berechnen. Diese Methode ist allgemein
gültig und erspart Dimensionswechsel. Ein Erfolg der Methode hängt von der Möglichkeit ab,
große Systeme von linearen Gleichungen zu lösen.
Ich gebe Beispiele von Integralen von Graphen mit zwei und drei Schleifen. Tarasov gibt eine Ba-
sis von Integralen an, die Graphen mit zwei Schleifen und zwei externen Kanten bestimmen. Ich
bestimme Differentialgleichungen der Integrale dieser Basis. Als wichtigstes Beispiel berechne ich
die Differentialgleichung des sogenannten Sunrise–Graphen mit zwei Schleifen im allgemeinen Fall
beliebiger Massen. Diese ist für spezielle Werte von D eine inhomogene Picard–Fuchs–Gleichung
einer Familie elliptischer Kurven. Der Sunrise–Graph ist besonders interessant, weil eine ana-
lytische Lösung erst mit dieser Methode gefunden werden konnte, und weil dies der einfachste
Graph ist, dessen Master–Integrale nicht durch Polylogarithmen gegeben sind. Ich gebe außer-
dem ein Beispiel eines Graphen mit drei Schleifen. Hier taucht die Picard–Fuchs–Gleichung einer
Familie von K3–Flächen auf.




