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Abstract

We consider stochastic individual-based models for social behavior of groups
of N animals. In these models the trajectory of each animal is given by
a stochastic differential equation with interaction. The social interaction is
contained in the drift term of the SDE. We consider a global aggregation
force and a short-range repulsion force. The repulsion range and strength
gets rescaled with the number of animals N . We show that for N tend-
ing to infinity stochastic fluctuations disappear and a smoothed version of
the empirical process converges uniformly in L2(Rd) towards the solution
of a nonlinear, nonlocal partial differential equation of advection-reaction-
diffusion type. The rescaling of the repulsion in the individual-based model
implies that the corresponding term in the limit equation is local while the
aggregation term is non-local. Moreover, we discuss the effect of a predator
on the system and derive an analogous convergence result. The predator acts
as an repulsive force. Different laws of motion for the predator are consid-
ered. Finally, some simulations of individual-based systems with predator
are shown.

Zusammenfassung

Wir betrachten stochastische Modelle für das Sozialverhalten von Gruppen
von N Tieren, die auf einzelnen Individuen basieren. Die Trajektorie jedes
einzelnen Tieres wird durch eine stochastische Differentialgleichung mit In-
teraktion beschrieben. Die soziale Interaktion ist im Driftterm der SDGL
enthalten. Wir betrachten eine globale Aggregationskraft und eine Repul-
sionskraft mit kurzer Reichweite. Die Stärke und die Reichweite der Repul-
sion werden mit der Anzahl N der Tiere in der Gruppe reskaliert. Wir zeigen,
dass für N gegen unendlich die stochastischen Fluktuationen verschwinden
und eine geglättete Version des empirischen Prozesses gleichmäßig in L2(Rd)
gegen die Lösung einer nicht-linearen, nicht-lokalen partiellen Differentialgle-
ichung vom Typ einer Advektions-Reaktions-Diffusionsgleichung konvergiert.
Wegen der Reskalierung der Repulsion im individuenbasierenden Modell ist
der entsprechende Term in der Differentialgleichung für das Kontinuummod-
ell lokal, während der Aggregationsterm nicht lokal bleibt. Darüber hinaus
untersuchen wir den Effekt eines Räubers auf das System und leiten ein
entsprechendes Konvergenzresultat her. Der Räuber wirkt als abstoßende
Kraft. Wir betrachten verschiedene Bewegungsgesetze für den Räuber. Zum
Schluss zeigen wir einige Simulationsergebnisse für die individuenbasierenden
Modelle mit Räuber.
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Introduction

In the present thesis we discuss an individual-based (Lagrangian) model for
social behavior of groups of animals. In [18] and [19] Oelschläger, Morale and
Capasso proposed such an individual-based model describing the movement
of animals in a social group. The movement of the animals is given by a
family of stochastic differential equations with interaction. The equations
are driven by independent Brownian motions. On the one hand, animals in
a group tend to aggregate. On the other hand, there is a local repulsion
between animals when they get too close. The drift term of the equations
is used to model social behavior in the group such as these aggregation and
repulsion effects. Aggregation is given by an interaction kernel G of McKean-
Vlasov-Type and repulsion is given by some rescaled kernel function. The
range of the repulsion kernel VN decreases by a factor Nβ/d as the number
of animals N in the group increases. Here, d denotes the dimension of the
underlying space and β ∈ (0, 1) is a suitable constant.

Due to large computational demands individual-based models are not
very useful to study the behavior of the system for large numbers of animals
N . Therefore, our interest is to show that for N tending to infinity the
stochastic fluctuations disappear and the particle density converges towards
the solution ρ of a non-linear and non-local partial differential equation of
advection-reaction-diffusion type

∂tρ(x, t) =
σ2
∞
2
∆ρ(x, t) +∇ · (ρ(x, t)∇ρ(x, t))

−∇ · (ρ(x, t)(∇G ∗ ρ(·, t))(x)),
ρ(x, 0) = ρ0(x).

(1)

As a result of the rescaling of the repulsion kernel the coefficient correspond-
ing to the repulsive force is local while the coefficient corresponding to the
aggregation force remains non-local in the limit. Continuous models of non-
linear and non-local advection-reaction-diffusion type for social groups of
animals are considered in mathematics and biology by various authors, see
for example Grünbaum [9], chapter 7 of Okubo and Levin [24], Mogilner and

v



vi INTRODUCTION

Edelstein-Keshet [17] and the references specified on p.311 of [10].
In this thesis we give a L2-convergence result for a smoothed version hN

of the empirical process of the individual-based system. To be more precise,
we will show that under certain technical assumptions, see chapter 1.5, the
following theorem holds.

Main theorem.

lim
N→∞

E sup
t≤T

∥hN(·, t)− ρ(·, t)∥2L2 = 0. (2)

The precise statement of our main result can be found in theorem 2.1.7.
This result is obtained by applying Gronwall’s lemma to the time evolution
of ∥hN(t) − ρ(t)∥2. This method was already used by Oelschläger et al in
[18], see also [22], [21], [23]. In [18] the existence of a sufficiently regular
solution of (1) was posed as an assumption. Using weaker assumptions on
our model, we give, in chapter 2, a proof of our main theorem. Furthermore,
in case a diffusion remains in the limit (σ∞ > 0), we give a rigorous proof for
the existence of the suitable solution ρ of the continuum model. Convergence
results of individual-based models towards continuummodels forN to infinity
can also be obtained by different means. For another approach for limit
results of individual-based models see Sznitman [28] or Benachour, Roynette,
Talay and Vallois [2].

As further generalization the influence of a predator on the animal swarm
is discussed in this thesis. The predator acts as repulsive non-local force on
all other animals in the group. The effect of this repulsion is that the animals
try to get to a safe distance from the predator. We consider deterministic
and stochastic laws of motion for the predator, see chapter 2.2. Analogous
convergence results (see theorem 2.2.5 and 2.2.9) are derived in these cases.

As already mentioned, in case σ∞ > 0 we prove the existence of a solution
of (1). The existence proof is based on a classical semigroup approach and
a fixed point iteration, see Kato [16]. The major mathematical difficulty in
this framework is to show the stability of the corresponding evolution system.
This method can easily be generalized and applied to the predator system,
see chapter 3.4.

In chapter 1 we give a detailed discussion of our individual-based model
and its continuum limit equation. Furthermore, we discuss the influence of
a predator on the behavior of the system. In 1.3 a short heuristic deriva-
tion of the limit equation (1) is given (cf. Morale, Capasso and Oelschläger
[19]). Moreover, we present some elementary results and lemmas used in the
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subsequent chapters. The proofs of our convergence results can be found
in chapter 2. In chapter 3 we give the existence proofs for the solutions of
the continuum advection-reaction-diffusion equations for the model with and
without predator. Finally, in chapter 4 we discuss some simulation results
for individual-based models with predator.
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Chapter 1

A detailed description of the
model

1.1 Lagrangian and Eulerian models for ani-

mal swarming

There are two essentially different approaches to modeling social groups of
animals. One class of models is individual-based. The movement of every
animal is calculated separately, according to a stochastic differential equation

dXk
N = F [X1

N , . . . , X
N
N ]dt+ σkdWt, k = 1, . . . , N,

where the function F [X1
N , . . . , X

N
N ] may contain social behavior and envi-

ronmental constraints. Models of this type are called Lagrangian models,
individual-based models or stochastic models.

A different approach is to describe the density distribution of animals
using a partial differential equation. This type of model is called Eulerian
model or continuum model. A typical partial differential equation for mod-
eling social behavior is the advection-reaction-diffusion equation:

∂tρ =
∂

∂x

(
D
∂

∂x
ρ

)
− ∂

∂x
(uρ) +R, (1.1)

where D is a diffusivity tensor, u is the advection velocity and R is a vector
which is used to model local effects on the particle density (see [10, p. 311]).
The terms D, u and R may depend on ρ and thus equation (1.1) may be
non-linear and non-local. In fact, non-linear terms are essential for modeling
reasonable social behavior.

Lagrangian models are well-suited to describe small groups of animals
over short periods of time. Due to computational requirements these models

1



2 CHAPTER 1. A DETAILED DESCRIPTION OF THE MODEL

are not useful for larger groups. However, Eulerian models can effectively
be applied to large groups of animals, but it is not possible to keep track of
the movement of individual animals. A detailed discussion of Eulerian and
Lagrangian models can be found in [10].

In this chapter we give an introduction to an individual-based model for
animal swarming and all technical assumptions required to derive an Eulerian
limit equation. This Eulerian model fits into the class (1.1). Furthermore,
in chapter 2.2 we discuss the influence of a predator on the individual-based
system and its continuum limit equation.

1.2 Particle Model

We give a short introduction to a slightly generalized version of the individual
based model that was proposed and discussed in [18] and [19].

In this model we observe the spatial movement of a system of N particles
(animals) in the space Rd, d ∈ N. Let Xk

N(t), k = 1, . . . , N, denote the
position of the k-th particle at time t. The particles are subject to a stochastic
movement and a drift that is caused by mutual interaction (social behavior).
Thus every Xk

N defines a Rd-valued stochastic process.

1.2.1 Definition. The measure valued process XN given by

XN : t 7→ 1

N

N∑
k=1

δXk
N (t) (1.2)

is called the empirical process of the N -particle system (Xk
N)k=1,...,N .

The movement of the individual particles is given via the following stochas-
tic differential equations

dXk
N(t) = FN [XN(t)](X

k
N(t))dt+ σNdWk(t), k = 1, . . . N. (1.3)

Here, Wk, k ∈ N, is a family of independent standard Brownian motions and
σN is a non-negative sequence of constants depending only on the number of
particles N such that

lim
N→∞

σN = σ∞. (1.4)

The cases σ∞ > 0 and σ∞ = 0 lead to essentially different behavior in the
limit N to ∞. If σ∞ = 0, there is no diffusion term in the corresponding
continuum model of the animal swarm.

The mutual interaction of the animals in the swarm is completely con-
tained in the drift part FN . The drift FN [XN(t)](x) acting on a particle at
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position x ∈ Rd and time t is a function of the empirical process XN(t), i.e.
the drift depends on the position of all particles in the system at time t. It
can be splitted into multiple components. In the simplest case of interest we
have a decomposition into two parts

FN = FA + FR
N . (1.5)

The first one FA denotes the aggregation part and the second one denotes
the repulsion part FR

N . As the notation indicates only the repulsion part
depends directly on the number of particles N . The aggregation depends
only through the empirical process XN on N . The aggregation is given by a
function

G : Rd −→ R. (1.6)

The function G is called the potential of the aggregation force. Later on, we
will make some additional technical assumptions on G, see assumption (A6)
in section 1.5. FA can now be defined by

FA[XN(t)](X
k
N(t)) = (∇G ∗XN(t))(X

k
N(t))

=
1

N

N∑
j=1

∇G(· −Xj
N(t))(X

k
N(t))

=
1

N

N∑
j=1

∇G(Xk
N(t)−Xj

N(t)), k = 1, . . . , N.

(1.7)

In a very similar fashion the repulsion force is given by a kernel function

VN : Rd −→ [0,∞). (1.8)

The difference here is that the potential of the repulsion force VN gets rescaled
in the following way

VN(x) = χdNV1(χNx) (1.9)

with a scaling parameter

χN = Nβ/d, N ∈ N, (1.10)

for fixed β ∈ (0, 1) and V1 is a probability density. Again, later on, we will
require some additional assumptions on the function V1 and the rescaling
parameter β, see (A2), (A4) and (A5).

1.2.2 Remark. Observe that for every N ∈ N the rescaled density VN is
still a probability density. This is a direct consequence of the substitution
rule ∫

Rd

χdNV1(χNx) dx =

∫
Rd

V1(y) dy = 1.
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Now, we can define the repulsion term

FR
N [XN(t)](X

k
N(t)) = −(∇VN ∗XN(t))(X

k
N(t)). (1.11)

The rescaling of the potential implies that the range of the repulsive force gets
smaller as the number of particles N grows. Thus in the limit N to infinity
there remains only a local repulsion force, while the aggregation force is a
non-local term.

The names aggregation and repulsion are purely motivated by the bio-
logical interpretation of the model. In fact, the aggregation potential G may
act repulsive and the repulsion potential may act aggregative on animals in
the group.

In the next chapter we give an exact statement and a proof for our main
convergence result, see theorem 2.1.7.

Observe that the solution of the limit partial differential equation (1) does
not depend on the explicit choice of the function V1. The limit equation (1)
describes a multidimensional continuum model for animal swarming of type

(1.1) with D = σ2
∞
2

+ ρ and u = ∇G ∗ ρ. Furthermore, in the diffusion case
(σ∞ ̸= 0) we can give a sufficient condition for the the existence of a solution
of this cauchy problem (1). This is done in chapter 3 using a fixed point
iteration and general semigroup theory.

In the case σ∞ = 0 the same convergence theorem holds. Since we have
no diffusion part in the Eulerian limit equation, equation (1) reads

∂tρ(x, t) = ∇ · (ρ(x, t)∇ρ(x, t))−∇ · (ρ(x, t)(∇G ∗ ρ(·, t))(x))
ρ(x, 0) = ρ0(x).

(1.12)

All other parts of the main theorem remain unchanged. In (1.12) we have
no uniform ellipticity. Since ρ is in L2(Rd) and nonnegative the equation is
degenerated elliptic. Therefore, we can not apply our proof from chapter 3
to show the existence of a solution in this case.

A further extension of these results will be presented in section 2.2 where
we add a predator who acts as an additional repulsive force on all other
animals in the swarm, i.e., we add a repulsive potential H to the interaction
FN . We consider different laws of motion for the predator particle. The
existence result for the solution of the continuum partial differential equation
can easily be generalized to this setting.

The following table summarizes the parts in the particle equation and
the corresponding parts in the limit equations for the various parts of the
particle model.
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particle equation limit equation

local repulsion −(∇VN ∗XN(t))(X
k
N(t)) ∇ · (ρ(t)∇ρ(t))

global aggregation (∇G ∗XN(t))(X
k
N(t)) −∇ · (ρ(t)(∇G ∗ ρ(t)))

predator action −(∇H ∗ δPN (t)) (∇H ∗ δP∞(t))

diffusion σ∞ ̸= 0 σ∞
2
∆ρ(t)

1.3 A heuristic derivation of the

continuum limit

Let us consider a system without a predator and derive the continuum limit
equation in a heuristic way. This heuristic derivation of the limit was given
by Morale, Capasso and Oelschläger in [19]. In chapter 2 we give a rigorous
proof for the convergence of the empirical process against this limit and thus,
legitimize this calculation.

Let f ∈ C2
b (Rd × R). Using Itô’s formula, equation (1.3) and the inde-

pendence of the components of the Brownian motions Wk, k ∈ N, we get

f(Xk
N(t), t) = f(Xk

N(0), 0) +

∫ t

0

FN [XN(s)](X
k
N(s)) · ∇f(Xk

N(s), s) ds

+

∫ t

0

(∂sf)(X
k
N(s), s) ds

+

∫ t

0

σ2
N

2
∆f(Xk

N(s), s) ds

+ σN

∫ t

0

(∇f)(Xk
N(s), s) dWk(s).

Therefore, taking the sum over k and dividing by N gives us

⟨XN(t), f⟩ = ⟨XN(0), f(·, 0)⟩+
∫ t

0

⟨XN(s), FN [XN(s)](·) · ∇f(·, s)⟩ ds

+

∫ t

0

⟨XN(s), (∂sf)(·, s)⟩ ds

+

∫ t

0

σ2
N

2
⟨XN(s),∆f(·, s)⟩ ds

+

∫ t

0

σN
N

N∑
k=1

(∇f)(Xk
N(s), s) dWk(s).

(1.13)
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Now, let us for the moment assume that the martingale part∫ t

0

σN
N

N∑
k=1

(∇f)(Xk
N(s), s) dWk(s)

vanishes for N to infinity. A rigorous argument using Burkholder-Davis-
Gundy inequality is given in lemma 2.1.4 (e). Furthermore, we assume that
the empirical process XN converges to a process, whose distribution has
density ρ with respect to the Lebesgue measure such that

lim
N→∞

⟨XN(t), f(·, t)⟩ =
∫
Rd

ρ(x, t)f(x, t) dx.

Because of VN(x) = χdNV1(χNx) we formally have VN → δ0. This formally
implies

lim
N→∞

(∇VN ∗XN(t))(x) = ∇ρ(x, t),

lim
N→∞

(∇G ∗XN(t))(x) = ∇G ∗ ρ(x, t).

Since we consider the case without predator, we have

FN [XN(s)](·) = ∇G ∗XN(s)−∇VN ∗XN(s)

and this formally converges against ∇G ∗ ρ(·, s) − ∇ρ(·, s). Thus, letting
N → ∞ in equation (1.13), we obtain

⟨ρ(·, t), f(·, t)⟩ = ⟨ρ0, f(·, 0)⟩

+

∫ t

0

⟨ρ(·, s), (∇G ∗ ρ(·, s)−∇ρ(·, s)) · ∇f(·, s)⟩ ds

+

∫ t

0

⟨ρ(·, s), (∂sf)(·, s)⟩ ds

+

∫ t

0

σ2
∞
2
⟨ρ(·, s),∆f(·, s)⟩ ds.

(1.14)

Partial integration gives us∫ t

0

⟨ρ(·, s), (∂sf)(·, s)⟩ ds = ⟨ρ(·, t), f(·, t)⟩ − ⟨ρ0, f(·, 0)⟩

−
∫ t

0

⟨∂sρ(·, s), f(·, s)⟩ ds.
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Therefore, we get from (1.14)∫ t

0

⟨∂sρ(·, s), f(·, s)⟩ ds =
∫ t

0

⟨∇ · (ρ(·, s)(∇ρ(·, s)−∇G ∗ ρ(·, s)), f(·, s)⟩ ds

+

∫ t

0

σ2
∞
2
⟨∆ρ(·, s), f(·, s)⟩ ds.

This a weak version of the continuum limit equation (1).

1.4 Notations and results from

Fourier-Analysis

During this section, we introduce our notations and present a few elementary
results from basic fourier analysis. Proofs can be found in most standard
textbooks on partial differential equations.

1.4.1 Definition. For all functions f ∈ L1(Rd) we define the Fourier trans-
form of f by

f̂(ξ) := (2π)−d/2
∫
Rd

f(x)e−ix·ξ dx. (1.15)

1.4.2 Remark. As usually, using Parseval’s identity, the Fourier transform
can be extended to a linear isomorphism on L2(Rd) and on the space S(Rd)
of rapidly decreasing functions.

During this thesis, we make frequently use of this and many other prop-
erties of the Fourier transform.

1.4.3 Definition. For m ∈ R the space

Hm(Rd) := {f ∈ L2(Rd) | ∥(1 + |ξ|2)m/2f̂(ξ)∥L2(Rd) <∞}

is called (classical) sobolev space of order m. Hm(Rd) is a banach space with
norm

∥f∥Hm := ∥f∥Hm(Rd) := ∥(1 + |ξ|2)m/2f̂(ξ)∥L2(Rd).

1.4.4 Proposition. (a) We have ̂[(−i∂j)f ](ξ) = ξj f̂(ξ) and ̂[ξjf ](ξ) =

i∂j f̂(ξ) for all f ∈ S(Rd) and all ξ ∈ Rd.

(b) The partial derivatives

∂k : H
n+1(Rd) → Hn(Rd), k = 1, . . . , d; n ∈ N,

are bounded operators ∥∂kf∥Hn ≤ ∥f∥Hn+1 , f ∈ Hn+1(Rd).
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(c) Pointwise multiplication almost everywhere induces a continuous map-
ping

Hn(Rd)×Hn(Rd) → Hn(Rd), n >
d

2
.

1.4.5 Definition. For a multiindex α = (α1, . . . , αd) ∈ Nd one defines:

(a) xα := xα1
1 x

α2
2 . . . xαd

d , x ∈ Rd

(b) ∂α := ∂α1
1 ∂α2

2 . . . ∂αd
d

1.4.6 Remark. Let f ∈ Hn+1(Rd). Then ∥∇f∥Hn ≤ ∥f∥Hn+1 , where

∥∇f∥Hn := max
i=1,...,d

∥∂if∥Hn .

During this chapter and chapter 3 we make frequently use of the following
well-known lemma, for a proof see for example [13, Satz 42.9].

1.4.7 Lemma (Sobolev Embedding Theorem). Let m > d
2
+ k and f ∈

Hm(Rd) then f ∈ Ck
b (Rd) and there exists a constant Ck,m > 0, depending

only on k and m, such that for all multiindices α ∈ Nd with |α| ≤ k we have
∥∂αf∥∞ ≤ Ck,m∥f∥Hm.

1.4.8 Definition. For all f ∈ H2(Rd) we define ∥∇2 · f∥L2(Rd) by:

∥∇2 · f∥L2(Rd) :=

(∑
|α|=2

∥∂αf∥2L2(Rd)

)1/2

.

1.5 Assumptions

In this section we present and discuss all technical assumptions (A1)-(A6)
required to give a proof of the convergence of the particle model to its limit
equation in theorem 2.1.7.

(A1) For some fixed T > 0 and some fixed constant L ∈ N, L > d
2
+ 2,

the cauchy problem (1) has a nonnegative solution

ρ ∈ C([0, T ], HL+1+ d
2 (Rd)).

in the sense that ∂tρ(t) exists for almost every t and equation (1)
holds for almost every t.
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1.5.1 Remark. (a) During this thesis we frequently consider ρ as a func-
tion on Rd × [0, T ] and write ρ(x, t) instead of [ρ(t)](x).

(b) Sobolev’s Lemma 1.4.7 implies that ρ(t) ∈ CL+1
b (Rd) for all t ∈ [0, T ].

(c) The continuity of ρ implies the existence of R > 0 such that for all
t ∈ [0, T ]

ρ(t) ∈ B
HL+1+ d

2 (Rd)
(ρ0, R),

where B
HL+1+ d

2 (Rd)
(ρ0, R) denotes the ball with radius R and center ρ0

in the sobolev space HL+1+ d
2 (Rd).

(d) Uniqueness of the solution ρ is a simple consequence of our main result,
theorem 2.1.7.

(A2) The repulsion potential satisfies

V1 = W1 ∗W1 (1.16)

for a symmetric probability density function W1 ∈ H1(Rd) such
that

∫
Rd |z|W1(z)dz <∞ holds.

As in equation (1.9) we can define a rescaled density WN by

WN(x) = χdNW1(χNx), N ∈ N. (1.17)

And, exactly as in remark 1.2.2, we see that the rescaled repulsion kernels
WN are still probability density functions on Rd.

1.5.2 Definition. Let

hN(x, t) := (XN(t) ∗WN)(x) (1.18)

define a smoothed version of the empirical process.

For notational simplicity we occasionally use another smoothed version of
the empirical process gN that is defined by replacingWN with VN in equation
(1.18), i.e., we have

gN(x, t) := (XN(t) ∗ VN)(x) = (hN(t) ∗WN)(x).
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1.5.3 Remark. Please observe that the densities VN are used in two dif-
ferent ways. First, they are used to define the repulsive force between the
particles of the system. And second, the functions VN and its convolution
roots WN are used as mollifiers for the empirical process of the N -particle
system (Xk

N)k=1,...,N .

(A3) We have
lim
N→∞

E∥hN(·, 0)− ρ0(·)∥2L2 = 0. (1.19)

(A4) For all k = 1, . . . , d, the partial derivatives ∂kŴ1 are bounded and
the equations

| ̂[yα∂kWN ](ξ)| ≤ C|ŴN(ξ)|, 0 < |α| ≤ L, ξ ∈ Rd (1.20)

∥yα∂kW1∥L2 ≤ C, |α| = L+ 1 (1.21)

hold for all N ∈ N and all k = 1, . . . , d. Here, L ∈ N is the same
constant as in assumption (A1).

(A5) The rescaling factor β ∈ (0, 1) satisfies the following condition:

lim
N→∞

σ2
NN

(d+2)β/d−1 = 0. (1.22)

(A6) The aggregation potential satisfies ∇G ∈ CL
b (Rd).

1.5.4 Remarks. (a) Clearly, in case β < d
d+2

condition (A5) is always

fulfilled. If β ≥ d
d+2

, this condition implies σ∞ = 0.

(b) The assumptions on the densities V1 are very restrictive. For example,

the standard normal density f(s) = (2π)−d/2e−
1
2
x2 does not satisfy

the conditions from assumption (A4). In 1.5.5 and 1.5.6 we give two
examples of suitable probability density functions W1.

(c) If ρ0 is a probability density function we can construct a sequence of
iid random variables Xk

N(0) such that (A2) holds, see lemma 1.6.7.

(d) Please observe that the aggregation potential G may be unbounded.
Assumption (A6) is condition on ∇G.
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1.5.5 Example. Let d ≥ 1 arbitrary and r > d
2
+ 1

2
, b > 0 then

Ŵ1(ξ) := (2π)−d/2

(
1 +

∣∣∣∣ξb
∣∣∣∣2
)−r

(1.23)

is the Fourier transform of a probability density function satisfying the con-
ditions in assumption (A2) and assumption (A4).

In fact, in dimension d = 1 the density W1 defined by equation (1.23)
is the r-fold convolution of a bilateral exponential distribution (see [7, p.
503]). I.e., let X denote a random variable with X = Y + ∗ (−Y −), where
Y +, Y − are iid Γ(r, b)-distributed random variables. Then Ŵ1 is the Fourier
transform of the density of X.

Proof. We prove that Ŵ1 satisfies (A2) and (A4). In example A.7 it is shown
that W1 is the Fourier transform of a probability density function. r > d

2
+ 1

2

implies that Ŵ1(ξ) and (1 + (|ξ|/b)2)1/2Ŵ1(ξ), j = 1, . . . , d, are in L2(Rd).
Hence, W1 is in H1(Rd). Moreover, since Ŵ1 is a smooth function, the
integral

∫
Rd |z|W1(z) dz is finite. Using the chain rule, we obtain for the

derivative

∂kŴ1(ξ) = −2r(2π)−d/2ξk(1 + (|ξ|/b)2)−r−1, k = 1, . . . , d.

This shows the boundedness of all first order partial derivatives of Ŵ1(ξ).
Clearly, ξjW1(ξ), j = 1, . . . , d, are smooth functions. Therefore, using stan-
dard properties of the Fourier transform, we see that W1 satisfies equation
(1.21) from assumption (A4). It remains to show that

|∂ξξŴN(ξ)| ≤ C|ŴN(ξ)| (1.24)

which is an equivalent condition to (1.20). Using ŴN(ξ) = Ŵ1(χ
−1
N ξ) and

the product rule, one can easily verify that all partial derivatives of ξkŴ1(ξ)
can be written in the form

∂αξkŴN(ξ) =

|α|∑
j=1

Pj(χ
−1
N ξ)(1 + |χ−1

N ξb−1|)2)−jŴN(ξ), 0 < |α| ≤ L,

where Pj is a polynomial of degree less or equal 2j. Hence, there exists a
constant C > 0 such that for all j = 1, . . . , |α|

Pj(χ
−1
N ξ)(1 + |χ−1

N ξb−1|)2)−j ≤ C.

This yields equation (1.24).
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1.5.6 Example. In the case d = 1 (L = 1) we consider the density function

W1(y) :=
br

2Γ(r)
|y|r−1 exp(−b|y|). (1.25)

W1 satisfies for r ≥ 1, b > 0 the conditions from (A2) and (A4). And thus,
VN := WN ∗WN , N ∈ N, with WN(x) := χNW1(χNx) is a valid family of
repulsion kernels.

W1 is a symmetrized gamma density function. Observe that in case r > 1
this is not the same example as 1.5.5. This can easily be seen by comparing
the Fourier transforms in equations (1.23) and (1.29).

Proof. Clearly, W1 is smooth and symmetric function on R \ {0}. Further-
more, W1, ∂yW1(y) and ∂2yW1(y) are of exponential decay. Thus, we have
W1 ∈ H2(R),

∫
R |z|W1(z) dz < ∞ and there exists a constant C > 0 such

that ∥yα∂yW1(y)∥L2 ≤ C holds for α = L+1 = 2. Hence, it remains to show

that ∂ξŴ1(ξ) is bounded and that

| ̂[y∂yWN(y)](ξ)| ≤ C|ŴN(ξ)|.

Using the properties form proposition 1.4.4, we see that this condition is
equivalent to

|∂ξξŴN(ξ)| ≤ C|ŴN(ξ)|. (1.26)

Let us compute the Fourier transform Ŵ1. Applying the substitution z =
(b+ iξ)y and the defintion of the gamma function, we obtain∫ ∞

0

br

2Γ(r)
yr−1 exp(−by) exp(−iξy) dy

=

∫ ∞

0

br

2Γ(r)
yr−1 exp(−(b+ iξ)y) dy

=
br

2Γ(r)
(b+ iξ)−r

∫ ∞

0

zr−1 exp(−z) dz

=
1

2

(
1 + i

ξ

b

)−r

.

(1.27)

And analogously for negative y, we get∫ 0

−∞

br

2Γ(r)
(−y)r−1 exp(by) exp(−iξy) dy =

1

2

(
1− i

ξ

b

)−r

. (1.28)
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Thus, it follows that the Fourier transform Ŵ1 of W1 is given by

Ŵ1(ξ) =
1

2
(2π)−1/2

[(
1 + i

ξ

b

)−r

+

(
1− i

ξ

b

)−r
]

=
1

2
(2π)−1/2

(
1 + i ξ

b

)r
+
(
1− i ξ

b

)r(
1 + ξ2

b2

)r .

(1.29)

Note that ŴN(ξ) = Ŵ1(χ
−1
N ξ). Therefore, the remaining condition (1.26) is

fulfilled.

1.6 Lemmas

We close this chapter with a collection of elementary lemmas that are used in
the second and third chapter. In all equations during this chapter C denotes
a non-negative constant that may vary from line to line. The constant C
may depend on the solution ρ, the aggregation and repulsion potentials, G
and V1 (and thus on W1), and the terminal time T but C does not depend
on the number of particles N nor on the time t.

The following lemma is a simple consequence of assumption (A4) and
the rescaling of the probability density functions WN , N ∈ N (see equation
(1.17)).

1.6.1 Lemma. There exists a constant C > 0 such that for all α ∈ Nd with
|α| = L+ 1, L as in (A1), and all k = 1, . . . , d we have

∥yα∂kWN(y)∥L2 ≤ Cχ−1
N −→

N→∞
0. (1.30)

Proof. Using the substitution z = χNy, we get

∥yα∂kWN(y)∥L2 =

[∫
Rd

∣∣yαχd+1
N (∂kW1)(χNy)

∣∣2 dy]1/2
= χ

d
2
+1−|α|

N

[∫
Rd

|zα(∂kW1)(z)|2 dz
]1/2

≤ Cχ−1
N ,

where the constant C is given by

C := max{∥zα(∂kW1)(z)∥L2(Rd) | k = 1, . . . , d; |α| = L+ 1}. (1.31)
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The following lemma lists a few elementary results, that will be used
frequently during the calculations in the next section.

1.6.2 Lemma. For all N ∈ N we have:

(a) VN is a symmetric probability density function on Rd such that

VN = WN ∗WN . (1.32)

(b) WN ,∇WN ∈ L2(Rd) and

∥WN∥L2 = χ
d/2
N ∥W1∥L2 , (1.33)

∥∇WN∥L2 = χ
(d+2)/2
N ∥∇W1∥L2 . (1.34)

(c) ∥hN(s)∥L2 ≤ Cχ
d/2
N and ∥∇hN(s)∥L2 ≤ Cχ

(d+2)/2
N for all s ∈ [0, T ].

(d) For any function f ∈ L2(Rd) we have

⟨XN(t), f ∗WN⟩ = ⟨XN ∗WN , f⟩, (1.35)

⟨XN(t), f ∗ ∂iWN⟩ = −⟨XN ∗ ∂iWN , f⟩, i = 1, . . . , d, (1.36)

⟨XN(t), f ∗ ∇WN⟩ = −⟨XN ∗ ∇WN , f⟩. (1.37)

Clearly, the same equations with ρ(·, t) instead of XN(t) hold.

Proof. (a) In remark 1.2.2 we have already seen that the rescaled functions
VN are probability density functions. Substituting y = χNz we get

VN(x) = χdNV1(χNx)

= χdN(W1 ∗W1)(χNx)

= χdN

∫
Rd

W1(χNx− y)W1(y) dy

= χ2d
N

∫
Rd

W1(χN(x− z))W1(χNz) dz

= (WN ∗WN)(x).

(1.38)

The symmetry of the repulsion potentials VN , N ∈ N, follows easily from the
symmetry of WN and the substitution z = −y:

VN(−x) =
∫
Rd

WN(−x− y)WN(y)dy

=

∫
Rd

WN(−(x− z))WN(−z)dz

=

∫
Rd

WN(x− z)WN(z)dz

= VN(x).

(1.39)
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(b) The substitution y = χNx gives

∥WN∥2L2 = χ2d
N

∫
Rd

|W1(χNx)|2 dx = χdN

∫
Rd

|W1(y)|2 dy.

SinceW1 ∈ L2(Rd) due to assumption (A2), the claimed result follows. Anal-
ogously, we get

∥∇WN∥2L2 = χ2d+2
N

∫
Rd

|(∇W1)(χNx)|2 dx = χd+2
N ∥∇W1∥2L2 .

(c) Using Jensen’s inequality, we obtain

∥hN(·, s)∥2L2 =

∫
Rd

|(XN(s) ∗WN)(x)|2 dx

=

∫
Rd

∣∣∣ 1
N

N∑
k=1

WN(x−Xk
N(s))

∣∣∣2 dx
≤ 1

N

N∑
k=1

∫
Rd

|WN(x−Xk
N(s))|2 dx

= ∥WN(x)∥2L2 .

Thus, part (b) gives us the claimed result ∥hN(·, s)∥L2 ≤ CχdN . The second

inequality ∥∇hN(·, s)∥L2 ≤ Cχ
(d+2)/2
N follows exactly the same way.

(d) A straight forward calculation using the symmetry of the probability
density functions WN , gives

⟨XN , f ∗WN⟩ =
1

N

d∑
k=1

(f ∗WN)(X
k
N)

=
1

N

d∑
k=1

∫
Rd

f(y)WN(X
k
N − y)dy

=

∫
Rd

f(y)
1

N

d∑
k=1

WN(y −Xk
N)dy

=

∫
Rd

f(y)(XN ∗WN)(y)dy

= ⟨XN ∗WN , f⟩.

(1.40)

The same calculation with ∂iWN instead of WN shows

⟨XN , f ∗ ∂iWN⟩ = −⟨XN ∗ ∂iWN , f⟩. (1.41)

The minus sign here is due to the antisymmetry of the functions ∂iWN , i =
1, . . . , d. Finally, equation (1.37) follows directly from equation (1.36).
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1.6.3 Lemma. For any s ∈ [0, T ] and N ∈ N we have

⟨XN(s),∆VN ∗XN(s)⟩ = −∥∇hN(·, s)∥2L2 . (1.42)

Proof. A direct calculation shows

⟨XN(s),∆VN ∗XN(s)⟩ =
d∑
i=1

⟨XN(s), ∂i∂i(WN ∗WN ∗XN(s))⟩

=
d∑
i=1

⟨XN(s), (∂iWN ∗ ∂iWN ∗XN(s))⟩.

Now, we can apply lemma 1.6.2 (d). This gives us

⟨XN(s),∆VN ∗XN(s)⟩ = −
d∑
i=1

⟨XN(s) ∗ ∂iWN , XN(s) ∗ ∂iWN⟩

= −⟨XN(s) ∗ ∇WN , XN(s) ∗ ∇WN⟩
= −∥∇hN(·, s)∥2L2 .

For the definition of ∥∇ · f∥L2 see 1.4.8.

1.6.4 Lemma. There exists a constant C > 0 such that

∥∇2 · ρ(t)∇ρ(t)∥L2 ≤ C (1.43)

∥∇2 · ρ(t)(ρ(t) ∗ ∇G)(·)∥L2 ≤ C (1.44)

∥∆ρ(·, s)∥L2 ≤ C (1.45)

hold for all t ∈ [0, T ].

Proof. The inequalities are direct consequences of assumption (A1) and the
properties of the Sobolev spaces. From proposition 1.4.4 (b) we get that

t 7→ ∇ρ(t) is continuous as a map from [0, T ] to HL+ d
2 (Rd;Rd). Furthermore,

since L > 1 it follows from 1.4.4 (c) that t 7→ ρ(t)∇ρ(t) is continuous as a

map from [0, T ] to HL+ d
2 (Rd;Rd). And finally, again by part (b) of remark

1.4.4, we obtain

ϕ : [0, T ] → HL+ d
2
−2(Rd;Rd); t 7→ ∇2 · ρ(t)∇ρ(t)
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is continuous. Because of L+ d
2
−2 > 0 the embeddingHL+ d

2
−2(Rd) ↪→ L2(Rd)

is continuous. Hence, ϕ induces a continuous map

ϕ̃ : [0, T ] → L2(Rd;Rd); t 7→ ∇2 · ρ(t)∇ρ(t).

And now the compactness of the interval [0, T ] implies the existence of a
constant C > 0 such that equation (1.43) holds.

Clearly, we have for all n ≤ L+ d
2
+ 1

∥ρ(t) ∗ ∇G∥Hn(Rd) ≤ ∥∇G∥∞∥ρ(t)∥Hn(Rd), (1.46)

i.e. t 7→ ρ(t) ∗ ∇G is continuous from [0, T ] to HL+ d
2
+1(Rd;Rd). And it

follows as in the proof of the first inequality that

ψ̃ : [0, T ] → L2(Rd;Rd); t 7→ ∇2 · ρ(t)(ρ(t) ∗ ∇G)

is continuous. Again, the compactness of the interval [0, T ] implies the exis-
tence of a constant C > 0 such that equation (1.44) holds.

Finally, inequality (1.45) follows directly from proposition 1.4.4 (b).

In the next two lemmas we give several estimates for the error that is
caused by convolution with WN , resp. ∇WN . This lemmas are used in
chapter two to give an upper bound for ∥hN(t)− ρ(t)∥2L2 . The first lemma is
from [23].

1.6.5 Lemma. (a) Let f ∈ C1
b (Rd) then for all x ∈ R

|f(x)− (f ∗WN)(x)| ≤ Cχ−1
N ∥∇f∥∞.

(b) Let f ∈ H1(Rd) then

∥f − f ∗WN∥2L2 ≤ Cχ−2
N ∥∇f∥2L2 .

Proof. (a) Since WN is a probability density, we have for all x ∈ Rd

f(x) =

∫
Rd

f(x)WN(y) dy.

Now, using the substitution z = χny and the mean value inequality, we
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obtain

|f(x)− (f ∗WN)(x)|

=

∣∣∣∣∫
Rd

(f(x)− f(x− y))WN(y) dy

∣∣∣∣
≤ ∥∇f∥∞

∫
Rd

|y|WN(y) dy

= χ−1
N ∥∇f∥∞

∫
Rd

χN |y|W1(χNy)χ
d
N dy

= χ−1
N ∥∇f∥∞

∫
Rd

|z|W1(z) dz.

Since the integral
∫
Rd |z|W1(z) dz is finite due to assumption (A2), the result

follows immediately.
(b) By Taylor’s Theorem we have

Ŵ1(χ
−1
N ξ) = Ŵ1(0) +

1

χN

d∑
i=1

ξi∂iŴ1(θiχ
−1
N ξ) (1.47)

for some θi ∈ [0, 1], i = 1, . . . , d. Since W1 is a probability density function
we have Ŵ1(0) = (2π)−d/2. Furthermore, by (A4) the functions ∂iŴ1 are
bounded. This yields

|1− (2π)d/2Ŵ1(χ
−1
N ξ)|2 ≤ C|ξ|2χ−2

N . (1.48)

Using Parseval’s identity and the well-known fourier multiplication formula

f̂ ∗WN(ξ) = (2π)d/2f̂(ξ)ŴN(ξ), we can now compute

∥f − f ∗WN∥2L2

=

∫
Rd

|f̂(ξ)|2|1− (2π)d/2ŴN(ξ)|2 dξ

=

∫
Rd

|f̂(ξ)|2|1− (2π)d/2Ŵ1(χ
−1
N ξ)|2 dξ

≤ Cχ−2
N

∫
Rd

|f̂(ξ)|2|ξ|2 dξ

= Cχ−2
N ∥∇f∥2L2 .

Here, we used ŴN(ξ) = Ŵ1(χ
−1
N ξ).
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The following lemma is crucial for the second step of the convergence
proof in chapter 2.

1.6.6 Lemma. Let v ∈ CL+1
b (Rd,Rd), f ∈ CL+1

b (Rd) where L is as in as-
sumption (A1), then:

(a) For all t ∈ [0, T ] we have

|⟨XN(t)− ρ(t)), (∇[hN(t)− ρ(t)] ∗WN) · v⟩|
≤ C(∥hN(t)− ρ(t)∥2L2 + χ−2

N ). (1.49)

(b) For F ∈ Cb(Rd) and all t ∈ [0, T ] we have

|⟨(XN(t)− ρ(t)) ∗ F, (∇[hN(t)− ρ(t)] ∗WN) · v⟩|
≤ C(∥hN(t)− ρ(t)∥2L2 + χ−2

N ). (1.50)

(c) For U ∈ Cb(Rd,Rd) and all t ∈ [0, T ] we have

|⟨(XN(t)− ρ(t)) ∗ U, (∇[hN(t)− ρ(t)] ∗WN)f⟩|
≤ C(∥hN(t)− ρ(t)∥2L2 + χ−2

N ). (1.51)

Proof. Let vk, k = 1, . . . , d, denote the k-th component of the function v.
Taylor’s theorem gives

vk(z) =
∑
|α|≤L

yα

α!
∂αvk(z − y) +

∑
|α|=L+1

yα

α!
∂αvk(z − θk,α(y, z)y) (1.52)

with θk,α(y, z) ∈ [0, 1] for z, y ∈ Rd. To keep the notation short we write XN

for XN(t), ρ for ρ(·, t) and hN for hN(·, t) during the following calculation.
This should cause no confusion since all functions are evaluated at time t.
Because of

|⟨XN −ρ,∇(hN −ρ)∗WN ·v⟩| ≤
d∑

k=1

|⟨XN −ρ, [(hN −ρ)∗∂kWN ] vk⟩| (1.53)

it is sufficient to give a proof for fixed k = 1, . . . , d. Using equation (1.52),
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we get

|⟨XN − ρ, [(hN − ρ) ∗ ∂kWN ] vk⟩|

=

∣∣∣∣⟨(XN − ρ)(dz),∫
Rd

(hN − ρ)(z − y)∂kWN(y)
∑
|α|≤L

yα

α!
∂αvk(z − y) dy

+

∫
Rd

(hN − ρ)(z − y)∂kWN(y)∑
|α|=L+1

yα

α!
∂αvk(z − θk,α(y, z)y)dy

⟩∣∣∣∣
≤
∑
|α|≤L

1

α!
|⟨XN − ρ, [(hN − ρ)∂αvk] ∗ [yα∂kWN(y)]⟩|

+
∑

|α|=L+1

1

α!

∣∣∣∣⟨(XN − ρ)(dz),

∫
Rd

(hN − ρ)(z − y)yα∂kWN(y) ∂
αvk(z − θk,α(y, z)y) dy

⟩∣∣∣∣
=
∑
|α|≤L

1

α!
|⟨(XN − ρ) ∗ [yα∂kWN(y)], (hN − ρ)∂αvk⟩|

+
∑

|α|=L+1

1

α!

∣∣∣∣⟨(XN − ρ)(dz),

∫
Rd

(hN − ρ)(z − y)yα∂kWN(y) ∂
αvk(z − θk,α(y, z)y) dy

⟩∣∣∣∣
=:

∑
|α|≤L+1

1

α!
Hα.

(1.54)

Let us start estimating the summand α = 0:

H0 = |⟨(XN − ρ) ∗ ∂kWN , (hN − ρ)vk⟩|
= |⟨(XN − ρ) ∗WN , ∂k[(hN − ρ)vk]⟩|
≤ |⟨hN − ρ, ∂k[(hN − ρ)vk]⟩|+ |⟨ρ− ρ ∗WN , ∂k[(hN − ρ)vk]⟩|.

(1.55)

For the first summand in the last line of this inequality we get by partial
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integration and the boundedness of vk and ∂kvk

|⟨hN − ρ, ∂k[(hN − ρ)vk]⟩| =
1

2
|⟨∂k(hN − ρ)2, vk⟩|

=
1

2
|⟨(hN − ρ)2, ∂kvk⟩|

≤ C∥hN − ρ∥2.

(1.56)

Using partial integration, Schwarz inequality and lemma 1.6.5 (b) with f =
∂kρ, we obtain for the second summand of (1.55)

|⟨ρ− ρ ∗WN , ∂k[(hN − ρ)vk]⟩| = |⟨∂kρ− ∂kρ ∗WN , (hN − ρ)vk⟩|
≤ Cχ−1

N ∥hN − ρ∥
(1.57)

where we used that ∥∂kρ∥L2 is bounded due to assumption (A3). Summariz-
ing the inequalities (1.55), (1.56) and (1.57) we obtain

H0 ≤ C(∥hN − ρ∥2 + χ−2
N ). (1.58)

Now, we consider the summands with 0 < |α| ≤ L. First, note that equation
(1.20) from assumption (A4) implies

∥(XN − ρ) ∗ [yα∂kWN ]∥2L2

=

∫
Rd

|X̂N − ρ|2(ξ)| ̂yα∂kWN |2(ξ)dξ

≤
∫
Rd

|X̂N − ρ|2(ξ)|ŴN |2(ξ)dξ

= ∥(XN − ρ) ∗WN∥2L2 , 0 < |α| ≤ L.

(1.59)

Due to lemma 1.6.5 (b) with f = ρ we get

∥(XN − ρ) ∗WN∥L2 ≤ ∥hn − ρ∥L2 + ∥ρ− ρ ∗WN∥L2

≤ ∥hn − ρ∥L2 + Cχ−1
N .

This together with equation 1.59 shows

∥(XN − ρ) ∗ [yα∂kWN ]∥L2 ≤ ∥hn − ρ∥L2 + Cχ−1
N , 0 < |α| ≤ L. (1.60)

Taking again the boundedness of the derivatives ∂αvk into account this gives
us

Hα = |⟨(XN − ρ) ∗ [yα∂kWN ], [(hN − ρ)∂αvk]⟩|
≤ C∥(XN − ρ) ∗WN∥L2 ∥hN − ρ∥L2

≤ C∥hN − ρ∥2L2 + χ−2
N , 0 < |α| ≤ L.

(1.61)
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In a similar way, one obtains the inequalities for |α| = L+ 1:

Hα = |⟨XN − ρ,

∫
Rd

(hN − ρ)(· − y)yα∂kWN(y)∂
αvk(· − y + θk,α(y, ·)) dy⟩|

≤ C⟨|XN − ρ|,
∫
Rd

|hN − ρ|(· − y)|yα| |∂kWN(y)| dy⟩

≤ C⟨|XN − ρ| ∗
[
|yα| |∂kWN(y)|

]
, |hN − ρ|⟩

≤ C⟨XN ∗
[
|yα| |∂kWN(y)|

]
, |hN − ρ|⟩

+ C⟨ρ ∗
[
|yα||∂kWN(y)|

]
, |hN − ρ|⟩.

(1.62)

The last inequality follows from the fact that ρ and XN are nonnegative.
Now, Schwarz inequality and lemma 1.6.1 imply

|⟨ρ ∗
[
|yα| |∂kWN(y)|

]
, |hN − ρ|⟩| ≤ ∥ρ∥∞∥yα∂kWN(y)∥L2∥hN − ρ∥L2

≤ Cχ−1
N ∥hN − ρ∥L2 .

(1.63)

On the other hand, Jensen’s inequality gives us

∥XN ∗ [|yα| |∂kWN(y)|]∥L2 ≤ ∥yα∂kWN(y)∥L2

(cf. proof of lemma 1.6.2 (b)). And it follows that

|⟨XN ∗
[
|yα| |∂kWN(y)|

]
, |hN − ρ|⟩| ≤ ∥yα∂kWN(y)∥L2∥hN − ρ∥L2

≤ Cχ−1
N ∥hN − ρ∥L2 .

(1.64)

Hence, for all |α| = L+ 1 we have

|Hα| ≤ C∥hN − ρ∥L2 + χ−2
N .

This completes the proof of (a).
Part (b) of this lemma is shown in a similar way. Using Taylor’s formula,

as in equation (1.54), we obtain

|⟨(XN − ρ) ∗ U, [(hN − ρ) ∗ ∂kWN ] vk⟩|

=
∑
|α|≤L

1

α!
|⟨(XN − ρ) ∗ U ∗ [yα∂kWN ], [(hN − ρ)∂αvk]⟩|

+
∑

|α|=L+1

1

α!

∣∣∣∣⟨[(XN − ρ) ∗ U ](·),

∫
Rd

(hN − ρ)(· − y)∂kWN(y) y
α∂αvk(· − θk,α(y, ·)y) dy

⟩∣∣∣∣
=:

∑
|α|≤L+1

1

α!
H̃α.

(1.65)
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For |α| ≤ L:

|H̃α| ≤ C∥U∥∞∥(XN − ρ) ∗ [yα∂kWN ]∥L2∥hN − ρ∥L2

≤ C∥(XN − ρ) ∗WN∥L2∥hN − ρ∥L2

≤ C∥hN − ρ∥2L2 + χ−2
N .

For |α| = L+ 1:

|H̃α| ≤ C|⟨XN ∗ |U | ∗
[
|yα| |∂kWN(y)|

]
, |hN − ρ|⟩|

+ C|⟨ρ ∗ |U | ∗
[
|yα| |∂kWN(y)|

]
, |hN − ρ|⟩|.

Direct calculation shows

|⟨ρ∗|U | ∗
[
|yα| |∂kWN(y)||

]
, |hN − ρ|⟩|

≤ ∥U∥∞∥ρ∥∞∥yα∂kWN(y)∥L2∥hN − ρ∥L2

≤ Cχ−1
N ∥hN − ρ∥L2 .

(1.66)

Using again Jensen’s inequality (as in the proof of (a)), we obtain

|⟨XN∗|U | ∗
[
|yα| |∂kWN(y)|

]
, |hN − ρ|⟩|

≤ ∥U∥∞∥yα∂kWN(y)∥L2∥hN − ρ∥L2

≤ Cχ−1
N ∥hN − ρ∥L2 .

(1.67)

Therefore, we get |H̃α| ≤ C∥hN − ρ∥L2 . This completes the proof of (b).
Part (c) follows easily from part (b).

1.6.7 Lemma. Assume ρ0 is a probability density function. Let Xk
N(0), k =

1, . . . , N, be families of iid random variables, whose distribution has density
ρ0. Then assumption (A2) is satisfied.

Proof. For the sake of completeness we give the short proof from [23]. We
have

E∥hN(0)− ρ0∥2L2 = E∥hN(0)∥2L2 − 2E⟨hN(0), ρ0⟩+ ∥ρ0∥2L2 .
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Using VN = WN ∗WN and lemma 1.6.2 (d), we obtain

E∥hN(0)∥2L2 =
1

N2

N∑
k,l=1

E[VN(Xk
N(0)−X l

N(0))]

=
1

N2

N∑
k,l=1

k ̸=l

∫
Rd×Rd

VN(x− y)ρ0(x)ρ0(y) dxdy +
1

N
VN(0)

=
1

N2
(N2 −N)⟨ρ0 ∗ VN , ρ0⟩+

1

N
VN(0)

= ∥ρ0 ∗WN∥2L2 −
1

N
∥ρ0 ∗WN∥2L2 +

1

N
VN(0).

A similar calculation for the second summand shows

E⟨hN(0), ρ0⟩ =
1

N

N∑
k=1

∫
Rd

(ρ0 ∗WN)(x)ρ0(x) dx

= ⟨ρ0 ∗WN , ρ0⟩.

Using ∥ρ0 − ρ0 ∗WN∥2L2 = ∥ρ0∥2L2 − ∥ρ0 ∗WN∥2L2 − 2⟨ρ0 ∗WN , ρ0⟩, we finally
arrive at

E∥hN(0)− ρ0∥2L2 = ∥ρ0 − ρ0 ∗WN∥2L2 −
1

N
∥ρ0 ∗WN∥2L2 +

1

N
VN(0).

Applying lemma 1.6.5 (b), ∥ρ0 ∗ WN∥L2 ≤ ∥ρ0∥L2 and VN(0) ≤ CχdN , we
obtain

E∥hN(0)− ρ0∥2L2 −→
N→∞

0.



Chapter 2

Proof of the convergence

2.1 A Convergence Result

In this section we give a proof of our main convergence result, theorem 2.1.7.
We show that the smoothed version of the empirical process (hN(t))t con-
verges to a deterministic family of densities (ρ(·, t))t that is given as a solu-
tion of the nonlinear partial differential equation (1) of advection-reaction-
diffusion type. If assumption (A1) holds, i.e., we assume the existence of a
sufficiently regular solution of equation (1), this proof works in both cases
σ∞ > 0 and σ∞ = 0. We start by giving a short outline of the proof of the
convergence of (hN(t))t to its deterministic limit. The proof consists of two
major steps.

• First, we write down the expression ∥hN(t) − ρ(t)∥2L2 as integrals and
stochastic integrals from 0 to t using Ito’s formula and the dynamics
of the solution ρ given by equation (1). This expansion is derived in
theorem 2.1.3.

• In the second step, we give upper bounds for all the terms occurring
during the first step such that we are able to apply Gronwall’s lemma,
see lemma 2.1.4.

In the next section we present and prove a generalization of this result
for a model with a predator. Two different laws of motion for the predator
are considered. The proof uses the results from this section.

In the following lemma we separately compute the time evolution of the
terms on the right-hand side of

∥hN(t)− ρ(t)∥2L2 = ∥hN(t)∥2L2 − 2⟨hN(t), ρ(t)⟩+ ∥ρ(t)∥2L2 . (2.1)

25
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2.1.1 Lemma. For all t ∈ [0, T ] we have:

(a) ∥ρ(t)∥2L2 = ∥ρ(0)∥2L2 − 2

∫ t

0

⟨ρ(s), |∇ρ(s)|2⟩L2 ds

+ 2

∫ t

0

⟨ρ(s), (∇G ∗ ρ(s))(·) · ∇ρ(s)⟩L2 ds

− σ2
∞

∫ t

0

∥∇ρ(s)∥2L2 ds.

(b) ∥hN(t)∥2L2 = ∥hN(0)∥2L2 + 2

∫ t

0

⟨XN(s),∇gN(s) · (∇G ∗XN(s))⟩ ds

− 2

∫ t

0

⟨XN(s), |∇gN(s)|2⟩ ds

+
2

N
σN

N∑
k=1

∫ t

0

∇gN(Xk
N(s)) · dWk(s)

− σ2
N

∫ t

0

∥∇hN(s)∥2L2 ds− σ2
N

1

N
t∆VN(0)

(c) ⟨hN(t), ρ(t)⟩ = ⟨hN(0), ρ(0)⟩

+

∫ t

0

⟨XN(s), (∇G ∗XN(s)−∇gN(s)) · (∇ρ(s) ∗WN)(·)⟩ ds

+

∫ t

0

⟨ρ(s), (ρ(s) ∗ ∇G−∇ρ(s)) · ∇hN(s)⟩ds

+
1

N
σN
∑
k

∫ t

0

∇(ρ(s) ∗WN)(X
k
N(s))dWk(s)

− 1

2

(
σ2
N + σ2

∞
) ∫ t

0

⟨∇hN(s),∇ρ(s)⟩ ds.

Proof. (a) Using the partial differential equation (1) and partial integration
for the last equality, we obtain

∥ρ(t)∥2L2 = ∥ρ(0)∥2L2 +

∫ t

0

d

ds
∥ρ(s)∥2L2 ds

= ∥ρ(0)∥2L2 + 2

∫ t

0

⟨ρ(s), d
ds
ρ(s)⟩L2 ds
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= ∥ρ(0)∥2L2 + σ2
∞

∫ t

0

⟨ρ(s),∆ρ(s)⟩ ds

+ 2

∫ t

0

⟨ρ(s),∇ · (ρ(s)∇ρ(s))⟩L2 ds

− 2

∫ t

0

⟨ρ(s),∇ · (ρ(s)(∇G ∗ ρ(s))(·))⟩L2 ds

= ∥ρ(0)∥2L2 − σ2
∞

∫ t

0

∥∇ρ(s)∥2L2 ds

− 2

∫ t

0

⟨ρ(s), |∇ρ(s)|2⟩L2 ds

+ 2

∫ t

0

⟨ρ(s), (∇G ∗ ρ(s))(·) · ∇ρ(s)⟩L2 ds.

(b) Applying lemma 1.6.2 (a) and (d), we get

∥hN(t)∥2L2 = ⟨XN(t) ∗WN , XN(t) ∗WN⟩
= ⟨XN(t), XN(t) ∗ VN⟩

=
1

N2

N∑
k,l=1

VN(X
k
N(t)−X l

N(t)).

(2.2)

Let us write X
k,(i)
N for the i-th component of the d-dimensional stochastic

process Xk
N . Now, applying Itô’s formula to the expression VN(X

k
N(t) −

X l
N(t)), we obtain

∥hN(t)∥2L2 =
1

N2

N∑
k,l=1

VN(X
k
N(0)−X l

N(0))

+
1

N2

N∑
k,l=1

∫ t

0

∇VN(Xk
N(s)−X l

N(s)) · d(Xk
N −X l

N)(s)

+
1

2N2

N∑
k,l=1

∫ t

0

d∑
i,j=1

∂i∂jVN(X
k
N(s)−X l

N(s))

× d⟨Xk,(i)
N −X

l,(i)
N , X

k,(j)
N −X

l,(j)
N ⟩(s)

=: T1 + T2 + T3.
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Here, we used

d∑
i=1

∫ t

0

∂iVN(X
k,(i)
N (s)−X

l,(i)
N (s)) · d(Xk

N −X l
N)(s)

=

∫ t

0

∇VN(Xk
N(s)−X l

N(s)) · d(Xk
N −X l

N)(s).

For the first term T1 we get (cf. equation (2.2))

T1 =
1

N2

N∑
k,l=1

VN(X
k
N(0)−X l

N(0)) = ∥hN(0)∥2L2 .

Note that for any bounded antisymmetric measurable function f from Rd to
Rd we have

N∑
k,l=1

∫ t

0

f(Xk
N(s)−X l

N(s)) · d(Xk
N −X l

N)(s)

= 2
N∑

k,l=1

∫ t

0

f(Xk
N(s)−X l

N(s)) · dXk
N(s).

This and the stochastic differential equation (1.3) give us

T2 =
2

N2

N∑
k,l=1

∫ t

0

∇VN(Xk
N(s)−X l

N(s)) · dXk
N(s)

=
2

N2

N∑
k,l=1

∫ t

0

∇VN(Xk
N(s)−X l

N(s)) · (∇G ∗XN(s))(X
k
N(s)) ds

− 2

N2

N∑
k,l=1

∫ t

0

∇VN(Xk
N(s)−X l

N(s)) · (∇VN ∗XN(s))(X
k
N(s)) ds

+
2

N2
σN

N∑
k,l=1

∫ t

0

∇VN(Xk
N(s)−X l

N(s)) · dWk(s)

= 2

∫ t

0

⟨XN(s), (∇VN ∗XN(s)) · (∇G ∗XN(s))⟩ ds

− 2

∫ t

0

⟨XN(s), (∇VN ∗XN(s)) · (∇VN ∗XN(s))⟩ ds

+
2

N
σN

N∑
k=1

∫ t

0

(∇VN ∗XN(s))(X
k
N(s)) · dWk(s).
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Let us consider T3. Please observe that the stochastic differential equation
(1.3) directly implies that for k, l ∈ {1, . . . , N} and i, j ∈ {1, . . . , d} we have

d⟨Xk,(i)
N −X

l,(i)
N , X

k,(j)
N −X

l,(j)
N ⟩(s) =

{
2σ2

Nds for k ̸= l, i = j,

0 otherwise.
(2.3)

Thus, we obtain

T3 =
σ2
N

N2

N∑
k,l=1

k ̸=l

∫ t

0

∆VN(X
k
N(s)−X l

N(s))ds

=
σ2
N

N2

N∑
k,l=1

∫ t

0

∆VN(X
k
N(s)−X l

N(s))ds−
σ2
N

N
t∆VN(0)

= −σ2
N

∫ t

0

∥hN(s)∥2L2 ds−
σ2
N

N
t∆VN(0).

For the last equation we used lemma 1.6.3. This completes the proof of part
(b).

(c) Since the mixed term ⟨hN(·, t), ρ(·, t)⟩ contains both the deterministic
density ρ and the stochastic smoothed version of the empirical process hN
we have to use equation (1) and Itô’s formula to derive the claimed result.
First, note that

d⟨Xk,(i)
N , X

k,(j)
N ⟩(s) = δijσ

2
Nds (2.4)

holds for any k ∈ {1, . . . , N} and any i, j ∈ {1, . . . , d}. Now, we apply Itô’s
formula to the function ρ ∗WN and obtain

⟨hN(t), ρ(t)⟩
= ⟨XN(t), ρ(t) ∗WN⟩

=
1

N

N∑
k=1

(ρ(t) ∗WN)(X
k
N(t))

= ⟨XN(0), ρ(0) ∗WN⟩+
1

N

N∑
k=1

∫ t

0

(∇ρ(s) ∗WN)(X
k
N(s)) dX

k
N(s)

+
1

N

N∑
k=1

∫ t

0

(∂sρ(s) ∗WN)(X
k
N(s))ds

+
1

2N

N∑
k=1

d∑
i,j=1

∫ t

0

(∂i∂jρ(s) ∗WN)(X
k
N(s)) d⟨X

k,(i)
N , X

k,(j)
N ⟩(s)
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= ⟨hN(0), ρ(0)⟩+
N∑
k=1

∫ t

0

(∇ρ(s) ∗WN)(X
k
N(s)) dX

k
N(s)

+

∫ t

0

⟨XN(s), ∂sρ(s) ∗WN⟩ds.

+
1

2
σ2
N

∫ t

0

⟨XN(s), (∆ρ(s) ∗WN)(·)⟩ ds

=: ⟨hN(0), ρ(0)⟩+ U1 + U2 + U3.

Taking the stochastic differential equation (1.3) into account, we get for the
first term

U1 =

∫ t

0

⟨XN(s), (∇G ∗XN(s)−∇gN(s)) · (∇ρ(s) ∗WN)(·)⟩ ds

+
σN
N

N∑
k=1

∫ t

0

∇(ρ(s) ∗WN)(X
k
N(s))dWk(s).

Using Lemma 1.6.2 (d), the differential equation (1) and partial integration
in the last step, we obtain

U2 =

∫ t

0

⟨XN(s), ∂sρ(s) ∗WN⟩ ds

=

∫ t

0

⟨hN(s), ∂sρ(s)⟩ ds

=

∫ t

0

⟨hN(s),
σ2
∞
2
∆ρ(s)⟩ ds

+

∫ t

0

⟨hN(s),∇ · (ρ(s)∇ρ(·, s))−∇ · (ρ(s)(ρ(s) ∗ ∇G)(·))⟩ds

= −σ
2
∞
2

∫ t

0

⟨∇hN(s),∇ρ(s)⟩ ds

+

∫ t

0

⟨ρ(s), (ρ(s) ∗ ∇G−∇ρ(s)) · ∇hN(s)⟩ds.

Again, by lemma 1.6.2 (d) we get

U3 =
σ2
N

2

∫ t

0

⟨XN(s),∆ρ(s) ∗WN⟩ ds

= −σ
2
N

2

∫ t

0

⟨∇hN(s),∇ρ(s)⟩ ds.

This completes the proof of part (c).
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The following theorem gives a decomposition of the expression ∥hN(·, t)−
ρ(·, t)∥2L2 into an aggregation part, a repulsion part, a diffusion part, a mar-
tingale part and a minor term. Let us introduce the following abbreviations
to keep the notation short. We define

R(s) := −⟨XN(s),∇gN(s) · (∇gN(s)−∇ρ(s) ∗WN)⟩
− ⟨ρ(s),∇ρ(s) · (∇ρ(s)−∇hN(s))⟩ ,

(2.5)

A(s) := ⟨XN(s), (XN(s) ∗ ∇G) · (∇gN(s)−∇ρ(s) ∗WN)⟩
+ ⟨ρ(s), (ρ(s) ∗ ∇G) · (∇ρ(s)−∇hN(s))⟩

(2.6)

and

D(s) := −σ2
N

[
∥∇hN(s)∥2L2 − ⟨∇hN(s),∇ρ(s)⟩

]
− σ2

∞
[
∥∇ρ(s)∥2L2 − ⟨∇hN(s),∇ρ(s)⟩

]
.

(2.7)

Finally, let MN denote the stochastic integral part of equation (2.9), i.e.

MN(t) :=
2σN
N

∫ t

0

∑
k

(∇gN(·, s)−∇ρ(·, s) ∗WN) (X
k
N(s)) dWk(s). (2.8)

2.1.2 Remark. Because of lemma 1.6.2 (b), we have ∇WN ,WN ∈ L2(R).
Therefore, ∇VN =WN ∗∇WN is a bounded and continuous function. Hence,
(∇gN(·, s)−∇ρ(·, s) ∗WN) (X

k
N(s)) is a bounded progressively measurable

process and MN is a martingale.

Observe that A(s) contains the terms corresponding to the aggregation
forces between the particles, R(s) contains the terms corresponding to the
repulsion forces and D(s) the terms corresponding to the diffusion part. Us-
ing the notation from (2.5)-(2.8), we can state the main result of the first
step.

2.1.3 Theorem. We have

∥hN(t)− ρ(t)∥2L2 = ∥hN(0)− ρ(0)∥2L2 + 2

∫ t

0

R(s) ds+ 2

∫ t

0

A(s) ds

+ 2

∫ t

0

D(s) ds− tσ2
N

1

N
∆VN(0) +MN(t), t ∈ [0, T ].

(2.9)

Proof. Combining equation (2.1) with lemma 2.1.1 and sorting the terms on
the right hand side we get equation (2.9).
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Our main task now is to find suitable estimates for all terms of this
decomposition. In order to give a proof for these inequalities we will make
frequently use of the lemmas 1.6.5 and 1.6.6.

2.1.4 Lemma. For all s ∈ [0, T ] and all N ∈ N we have:

(a) R(s) ≤ C∥hN(s)− ρ(s)∥2L2 + Cχ−2
N ,

(b) A(s) ≤ C∥hN(s)− ρ(s)∥2L2 + Cχ−2
N ,

(c) |∆VN(0)| ≤ Cχd+2
N ,

(d) −σ2
N

[
∥∇hN(s)∥2L2 − ⟨∇hN(s),∇ρ(s)⟩

]
≤ Cσ2

N ,

(e) E supt≤T |MN(t)| ≤
CTσ2

N

N
χd+2
N + E supt≤T ∥hN(t)− ρ(t)∥2L2,

(f) D(s) ≤ C|σ2
∞ − σ2

N |∥hN(s)− ρ(s)∥L2.

Proof. We start with the proof of part (a). Observe that

R(s) = −⟨XN(s),∇gN(s) (∇gN(s)−∇ρ(s) ∗WN)⟩
− ⟨ρ(s),∇ρ(s) · (∇ρ(s)−∇hN(s))⟩

= −
⟨
XN(s), |∇gN(s)−∇ρ(s) ∗WN |2

⟩
− ⟨XN(s), (∇gN(s)−∇ρ(s) ∗WN) · (∇ρ(s) ∗WN)⟩
− ⟨ρ(s),∇ρ(s) · (∇ρ(s)−∇hN(s))⟩ .

Since the first term on the right hand side of this equation is non-positive, it
is sufficient to show that

R̃(s) := −⟨XN(s), (∇gN(s)−∇ρ(s) ∗WN) · (∇ρ(s) ∗WN)⟩
− ⟨ρ(s),∇ρ(s) · (∇ρ(s)−∇hN(s))⟩

≤ C∥hN(s)− ρ(s)∥2L2 + χ−2
N .

(2.10)

An elementary calculation gives us

R̃(s) = −⟨XN(s)− ρ(s), (∇gN(s)−∇ρ(s) ∗WN) · (∇ρ(s) ∗WN)⟩
− ⟨ρ(s), (∇gN(s)−∇ρ(s) ∗WN) · (∇ρ(s) ∗WN)⟩
− ⟨ρ(s),∇ρ(s) · (∇ρ(s)−∇hN(s))⟩

= −⟨XN(s)− ρ(s), (∇gN(s)−∇ρ(s) ∗WN) · (∇ρ(s) ∗WN)⟩
− ⟨ρ(s)∇ρ(s) ∗WN ,∇gN(s)−∇ρ(s) ∗WN⟩
− ⟨ρ(s)∇ρ(s),∇ρ(s)−∇hN(s)⟩ .
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Using partial integration for the last two summands, we obtain

R̃(s) = −⟨XN(s)− ρ(s), (∇gN(s)−∇ρ(s) ∗WN) · (∇ρ(s) ∗WN)⟩
+ ⟨∇ · ρ(s)∇ρ(s) ∗WN , gN(s)− ρ(s) ∗WN⟩
+ ⟨∇ · ρ(s)∇ρ(s), ρ(s)− hN(s)⟩

= −⟨XN(s)− ρ(s), (∇gN(s)−∇ρ(s) ∗WN) · ∇ρ(s) ∗WN⟩
+ ⟨hN(s)− ρ(s),

(∇ · ρ(s)∇ρ(s) ∗WN) ∗WN −∇ · ρ(s)∇ρ(s)⟩
=: R̃1(s) + R̃2(s).

From lemma 1.6.6 with v = ∇ρ ∗WN = ρ ∗∇WN ∈ CL+1
b (Rd) it follows that

|R̃1(s)| ≤ C∥hN(s)− ρ(s)∥2L2 + χ−2
N (2.11)

and for R̃2 Schwarz inequality gives

|R̃2(s)| = |⟨hN(s)− ρ(s),

(∇ · ρ(s)∇ρ(s) ∗WN) ∗WN −∇ · ρ(s)∇ρ(s)⟩|
≤ ∥hN(s)− ρ(s)∥L2 ×

∥(∇ · ρ(s)∇ρ(s) ∗WN) ∗WN −∇ · ρ(s)∇ρ(s)∥L2 .

Using lemma 1.6.5 and equation (1.43) twice, we obtain for the second term

∥(∇ · ρ(s)∇ρ(s) ∗WN) ∗WN −∇ · ρ(s)∇ρ(s)∥L2

≤ ∥(∇ · ρ(s)∇ρ(s) ∗WN) ∗WN − [∇ · ρ(s)∇ρ(s)] ∗WN∥L2

+ ∥[∇ · ρ(s)∇ρ(s)] ∗WN −∇ · ρ(s)∇ρ(s)∥L2

≤ Cχ−1
N ∥[∇ · ρ(s)∇ρ(s)] ∗WN −∇ · ρ(s)∇ρ(s)∥L2

+ ∥[∇ · ρ(s)∇ρ(s)] ∗WN −∇ · ρ(s)∇ρ(s)∥L2

≤ C(χ−2
N + χ−1

N ) ≤ Cχ−1
N .

Applying the elementary ab ≤ a2 + b2, we get R̃2(s) ≤ C∥hN(s)− ρ(s)∥2L2 +

χ−2
N . Together with (2.11) this shows R̃(s) ≤ C∥hN(s) − ρ(s)∥2L2 + χ−2

N and
(a) follows. Next, we consider the aggregation term A(s)

A(s) = ⟨XN(s), (XN(s) ∗ ∇G) (∇gN(s)−∇ρ(s) ∗WN)⟩
+ ⟨ρ(s), (ρ(s) ∗ ∇G) (∇ρ(s)−∇hN(s))⟩

= ⟨XN(s)− ρ(s), (XN(s) ∗ ∇G) (∇gN(s)−∇ρ(s) ∗WN)⟩
+ ⟨ρ(s), (XN(s) ∗ ∇G) (∇hN(s)−∇ρ(s)) ∗WN⟩
− ⟨ρ(s), (ρ(s) ∗ ∇G) (∇hN(s)−∇ρ(s))⟩

=: A1(s) + A2(s) + A3(s).

(2.12)
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For A1 we get by lemma 1.6.6 (a) with v = XN(s) ∗ ∇G

|A1(s)| ≤ C∥hN(s)− ρ(s)∥2L2 + χ−2
N . (2.13)

Let us consider the terms A2 and A3:

A2(s) + A3(s) = ⟨[ρ(s)(XN(s) ∗ ∇G)] ∗WN ,∇hN(s)−∇ρ(s)⟩
− ⟨ρ(s)(ρ(s) ∗ ∇G),∇hN(s)−∇ρ(s)⟩

= ⟨[ρ(s)(XN(s) ∗ ∇G)] ∗WN − [ρ(s)(ρ(s) ∗ ∇G)] ∗WN ,

∇hN(s)−∇ρ(s)⟩
+ ⟨[ρ(s)(ρ(s) ∗ ∇G)] ∗WN − ρ(s)(ρ(s) ∗ ∇G),

∇hN(s)−∇ρ(s)⟩
=: Ã2(s) + Ã3(s).

(2.14)

Using lemma 1.6.6 (c) with U = ∇G, f = ρ again, we obtain

|Ã2(s)| = |⟨(XN(s)− ρ(s)) ∗ ∇G,∇(hN(s)− ρ(s))ρ(s)⟩|
≤ C∥hN(s)− ρ(s)∥2L2 + χ−2

N .
(2.15)

Finally, lemma 1.6.5 together with equation (1.44) gives

|Ã3(s)| = ⟨∇ · ρ(s)(ρ(s) ∗ ∇G)−∇ · ρ(s)(ρ(s) ∗ ∇G) ∗WN ,

hN(s)− ρ(s)⟩
≤ Cχ−1

N ∥hN(s)− ρ(s)∥L2

≤ Cχ−2
N + C∥hN(s)− ρ(s)∥2L2 .

(2.16)

Summarizing inequalities (2.14) - (2.16) we get

A(s) = A1(s) + Ã2(s) + Ã3(s) ≤ Cχ−2
N + C∥hN(s)− ρ(s)∥2L2 . (2.17)

This shows (b).
(c) follows immediately from∣∣∆VN(0)∣∣ = ∣∣χdN(∆V1)(χNx)∣∣x=0

∣∣ ≤ Cχd+2
N (2.18)

with the constant C := ∆V1(0) and part (d) is implied by

−σ2
N

[
∥∇hN(s)∥2L2 − ⟨∇hN(s),∇ρ(s)⟩

]
≤ −σ

2
N

2

[
∥∇hN(s)∥2L2 − 2 ⟨∇hN(s),∇ρ(s)⟩

]
=
σ2
N

2
∥∇ρ(s)∥2L2 −

σ2
N

2
∥∇(hN(s)− ρ(s))∥2L2

(2.19)



2.1. A CONVERGENCE RESULT 35

since ∥∇ρ(s)∥2L2 ≤ C, s ∈ [0, T ], by assumption (A3) and −σ2N
2
∥∇(hN(s) −

ρ(s))∥2L2 is negative.
(e) For any T ∈ R we have by Burkholder-Davis-Gundy inequality (see

[14, chapter 3, thm 3.28])

E sup
t≤T

|MN(t)| ≤ C E⟨MN(t)⟩1/2T

=
2σNC

N1/2
E
[∫ T

0

⟨XN(s), |∇(hN(s)− ρ(s)) ∗WN |2⟩ ds
]1/2

.

(2.20)

Furthermore, using Jensen inequality and Schwarz inequality in the last line,
we obtain

⟨XN(s),|∇(hN(·, s)− ρ(·, s)) ∗WN |2⟩
≤ |∇(hN(·, s)− ρ(·, s)) ∗WN |2∞

=

∣∣∣∣∫
Rd

(hN − ρ)(· − y, s)∇WN(y) dy

∣∣∣∣2
∞

≤ ∥hN(·, s)− ρ(·, s)∥2L2∥∇WN∥2L2 .

(2.21)

In lemma 1.6.2 (b) we have already seen that ∥∇WN∥2L2 ≤ Cχd+2
N holds.

Thus, we obtain∫ T

0

⟨XN(s), |∇(hN(s)− ρ(s)) ∗WN |2⟩ ds

≤ CTχd+2
N sup

t≤T
∥hN(t)− ρ(t)∥2L2 .

Therefore, we get from (2.20)

E sup
t≤T

|MN(t)| ≤
CTσ2

N

N
χd+2
N + E sup

t≤T
∥hN(t)− ρ(t)∥2L2 . (2.22)

The last inequality here was derived using the elementary ab ≤ a2 + b2 and
Jensen’s inequality. This completes the proof of (e). Finally, regrouping the
terms on the right hand side of equation (2.7), we get

D(s) = σ2
∞⟨∇ρ(s),∇(hN(s)− ρ(s))⟩

− σ2
N⟨∇hN(s),∇(hN(s)− ρ(s))⟩

= (σ2
∞ − σ2

N)⟨∇ρ(s),∇(hN(s)− ρ(s))⟩
− σ2

N∥∇(hN(s)− ρ(s))∥2L2 .
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Since −σ2
N∥∇hN(s) − ∇ρ(s)∥2L2 is non-positive we can omit this term and

obtain by partial integration

D(s) ≤ (σ2
∞ − σ2

N)⟨∇ρ(s),∇hN(s)−∇ρ(s)⟩
≤ |σ2

∞ − σ2
N |∥∆ρ(s)∥L2 · ∥hN(s)− ρ(s)∥L2 .

Observe that ∥∆ρ(s)∥L2 is bounded on the interval [0, T ] due to equation
(1.45).

2.1.5 Corollary. For any N ∈ N we have

E sup
t≤T

∥hN(t)− ρ(t)∥2L2 ≤ E∥hN(0)− ρ(0)∥2L2 + CTγN

+ C

∫ T

0

E∥hN(s)− ρ(s)∥2L2 ds
(2.23)

where γN is given by

γN := χ−2
N + |σ2

∞ − σ2
N |+

σ2
N

N
χd+2
N . (2.24)

Proof. Applying the estimates from lemma 2.1.4 (a)-(d) and (f) to the terms
on the right hand side of equation (2.9), gives

∥hN(t)− ρ(t)∥2L2 ≤∥hN(0)− ρ(0)∥2L2

+ Ct

(
χ−2
N + |σ2

∞ − σ2
N |+

σ2
N

N
χd+2
N

)
+ C

∫ t

0

∥hN(s)− ρ(s)∥2L2 ds

+ |MN(t)|.

(2.25)

Taking supremum over the time interval [0, T ] and expectation we arrive at

E sup
t≤T

∥hN(t)− ρ(t)∥2L2 ≤ E sup
t≤T

∥hN(0)− ρ(0)∥2L2

+ CT

(
χ−2
N + |σ2

∞ − σ2
N |+

σ2
N

N
χd+2
N

)
+ C

∫ T

0

E∥hN(s)− ρ(s)∥2L2 ds

+ E sup
t≤T

|MN(t)|.

(2.26)

Now, by taking lemma 2.1.4 (e) into account we get (2.23).
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Next, we need the following well-known lemma.

2.1.6 Lemma. (Gronwall’s Lemma) Let u, α : [0, T ] → R be continuous
functions with

u(s) ≤ α(s) +K

∫ s

0

u(t)dt, s ∈ [0, T ], (2.27)

for a constant K ≥ 0. Then

u(s) ≤ α(s) +K

∫ s

0

α(t)eK(s−t)dt (2.28)

for all s ∈ [0, T ].

Proof. For the sake of completeness, we give the short proof. Let

f(t) := e−Kt
∫ t

0

u(r) dr.

Using the product rule and the assumed integral inequality (2.27), we obtain
for the derivative

f ′(t) = e−Kt
(
u(t)−K

∫ t

0

u(r) dr

)
≤ e−Ktα(t).

Now, integrating f ′ from 0 to s gives

f(s) ≤
∫ s

0

e−Ktα(t) dt.

Using this inequality and the definition of f , we obtain∫ s

0

u(r) dr ≤
∫ s

0

α(t)eK(s−t) dt.

Substituting this into inequality (2.27) completes the proof of Gronwall’s
Lemma.

Now, we can give a proof of our main theorem.

2.1.7 Theorem. Suppose assumptions (A1) to (A6) hold. Then

lim
N→∞

E sup
t≤T

∥hN(t)− ρ(t)∥2L2 = 0. (2.29)
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Proof. Let

uN(s) := E sup
t≤s

∥hN(t)− ρ(t)∥2L2 , s ∈ [0, T ].

Then it follows from equation (2.23) that

uN(T ) ≤ E∥hN(0)− ρ(0)∥2L2 + CTγN + C

∫ T

0

uN(s) ds (2.30)

where γN is given by equation (2.24). Using Gronwall’s Inequality 2.1.6, we
obtain:

uN(T ) ≤
[
E∥hN(0)− ρ(0)∥2L2 + CTγN

](
1 + C

∫ T

0

exp(C(T − s) ds

)
=
[
E∥hN(0)− ρ(0)∥2L2 + CTγN

]
exp(CT ).

(2.31)

Thus, in the limit N → ∞ we get uN(T ) → 0 since equation (1.22) from
assumption (A5) gives us γN → 0.

2.1.8 Corollary. In the situation of theorem 2.1.7, let f ∈ C1
b (Rd)∩L2(Rd).

Then

lim
N→∞

⟨XN(t), f⟩ = ⟨ρ(t), f⟩ (2.32)

uniformly in t ∈ [0, T ]. The limit in equation (2.32) is with respect to con-
vergence in probability.

Proof. First note that lemma 1.6.5 (a) gives us for any t ∈ [0, T ]

|⟨XN(t)− hN(t), f⟩| = |⟨XN(t), f − f ∗WN⟩|
≤ |f − f ∗WN |∞
≤ Cχ−1

N .

This yields

|⟨XN(t)− ρ(t), f⟩| ≤ |⟨XN(t)− hN(t), f⟩|+ |⟨hN(t)− ρ(t), f⟩|
≤ |⟨XN(t), f − f ∗WN⟩|+ C∥hN(t)− ρ(t)∥L2

≤ Cχ−1
N + C sup

t≤T
∥hN(t)− ρ(t)∥L2 .

(2.33)

And now Theorem 2.1.7 implies the uniform convergence in probability.
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2.2 Model with Predator

In this section we observe the influence of a predator on the behavior of
the animals in the swarm. The predator in the individual-based system is
modeled as an additional particle that acts repulsive on all other particles
in the system. In section 2.2.1 we consider a deterministic law of motion
for the predator. Clearly, this is not a realistic model for the behavior of a
predator. However, we can already see some of the essential features of a
predator model. A predator who is attracted by the other particles in the
swarm leads to a much more interesting model. A Lagrangian model of this
type will be discussed in section 2.2.2.

Let PN(t) denote location of the predator in the space Rd at time t for
the N -particle system. The predator acts in a way that adds an repulsive
force on all other particles in the system. This is modeled by adding a force
F P to the drift term FN in equation (1.5). This force is given by

F P [PN(t)](X
k
N(t)) = −(∇H ∗ δPN (t))(X

k
N(t))

= −(∇H)(Xk
N(t)− PN(t))

where
H : Rd −→ R (2.34)

is a sufficiently smooth function. More precisely, in addition to the assump-
tions from chapter 1 we require:

(AP) ∇H ∈ HL+1+ d
2 (Rd) where the constant L is as in assumption (A1),

i.e., we have L ∈ N, L > d
2
+ 2.

The function H is called the predator potential. Clearly, Sobolev’s Lemma
gives us ∇H ∈ CL+1

b (Rd). The repulsion given by H works in a very similar
fashion as the aggregation potential G, i.e., there is no rescaling of the kernel.

In the limit N to infinity we derive the following deterministic limit equa-
tion

∂tρ(x, t) =
σ2
∞
2
∆ρ(x, t) +∇ · (ρ(x, t)∇ρ(x, t))

−∇ · (ρ(x, t)(∇G ∗ ρ(·, t))(x))
+∇ · (ρ(x, t)(∇H ∗ δP∞(t))(x))

(2.35)

ρ(x, 0) = ρ0(x). (2.36)
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for some continuous function P∞ : [0, T ] → Rd, depending on the law of
motion of the predator particle.

2.2.1 Lemma. There exists a constant C > 0 such that for all t ∈ [0, T ]

∥∇2 · [ρ(t)(∇H ∗ δP∞(t))]∥L2 ≤ C. (2.37)

Proof. From assumption (AP) it follows that ∇H ∗ δP∞(t) is in Hs(Rd) for

some s > d
2
+ 2. This together with ρ ∈ C([0, T ], HL+1+ d

2 (Rd)) and proposi-
tion 1.4.4 (b) and (c) implies ∇2 · ρ(t)(∇H ∗ δP∞(t)) ∈ L2(Rd). Furthermore,
the function

t 7→ ∥∇2 · [ρ(t)(∇H ∗ δP∞(t))]∥L2

is continuous. This completes the proof.

We proceed now as in the previous section by splitting the expression
∥hN − ρ∥2L2 into its parts. Let us define

RT (s) := ⟨ρ(s), (∇H ∗ δP∞(s)) · (∇hN(s)−∇ρ(s))⟩
− ⟨XN , (∇H ∗ δPN (s)) · (∇gN(s)−∇ρ(s) ∗WN)⟩ (2.38)

We have to repeat the calculations from lemma 2.1.1 and theorem 2.1.3.
Let ∥ρ̃(t)∥2L2 , ∥h̃N(t)∥2L2 , ⟨h̃N(t), ρ̃(t)⟩ and ∥h̃N(t) − ρ̃(t)∥2L2 be given by the
right-hand sides of the equations in lemma 2.1.1, resp., the right-hand side
of equation (2.9).

2.2.2 Theorem. For all N ∈ N we have

∥hN(t)− ρ(t)∥2L2 = ∥h̃N(t)− ρ̃(t)∥2L2 + 2

∫ t

0

RT (s)ds (2.39)

Proof. The same computation as in lemma 2.1.1 gives us

∥ρ(t)∥2L2 = ∥ρ̃(t)∥2L2 + 2

∫ t

0

⟨ρ(s),∇ · (ρ(s)(∇H ∗ δP∞(s))(·))⟩ ds

= ∥ρ̃(t)∥2L2 − 2

∫ t

0

⟨ρ(s), (∇ρ(s)) · (∇H ∗ δP∞(s))(·)⟩ ds

and

∥hN(t)∥2L2 = ∥h̃N(t)∥2L2 −
2

N2

N∑
k,l=1

∫ t

0

(∇VN)(Xk
N(s)−X l

N(s))

· (∇H ∗ δPN (s))(X
k
N(s)) ds

= ∥h̃N(t)∥2L2 − 2

∫ t

0

⟨XN(s), (∇gN)(s) · (∇H ∗ δPN (s))⟩ ds.
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Furthermore, we have

⟨hN(t), ρ(t)⟩L2 = ⟨h̃N(t), ρ̃(t)⟩L2

−
∫ t

0

⟨XN(s), (∇H ∗ δPN (s)) · (∇ρ(s) ∗WN)(·)⟩ ds

+

∫ t

0

⟨hN(s),∇(ρ(s)(∇H ∗ δP∞(s)))⟩ ds

= ⟨h̃N(t), ρ̃(t)⟩L2

−
∫ t

0

⟨XN(s), (∇H ∗ δPN (s)) · (∇ρ(s) ∗WN)(·)⟩ ds

+

∫ t

0

⟨ρ(s),∇hN(s) · (∇H ∗ δP∞(s)))⟩ ds.

Applying equations (2.1) and (2.38), one obtains (2.39).

2.2.1 Deterministic Predator

In this chapter we consider PN(t) := P∞(t) := P (t) for some deterministic
function

P : [0, T ] → Rd. (2.40)

This implies

RT (s) = ⟨ρ(s), (∇H ∗ δP (s)) · (∇hN(s)−∇ρ(s))⟩
− ⟨XN , (∇H ∗ δP (s)) · (∇gN(s)−∇ρ(s) ∗WN)⟩. (2.41)

The following condition replaces assumption (A1) from section 1.5.

(Ã1) For some fixed T > 0 and L as in (A1) the cauchy problem (2.35)
has a nonnegative solution

ρ ∈ C([0, T ], HL+1+ d
2 (Rd)).

in the sense that ∂tρ(t) exists for almost every t and equation (2.35)
holds for almost every t.

It remains to find an estimate for RT (s) in terms of ∥hN(s)− ρ(s)∥2L2 .
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2.2.3 Lemma. For all N ∈ N we have

RT (s) ≤ C∥hN(s)− ρ(s)∥2L2 + Cχ−2
N , s ∈ [0, T ]. (2.42)

Proof. We start by splitting RT (s) into two parts

RT (s) = ⟨XN(s)− ρ(s), (∇H ∗ δP (s)) · (∇hN(s)−∇ρ(s)) ∗WN⟩
+ ⟨ρ(s), (∇H ∗ δP (s))

· [(∇hN(s)−∇ρ(s)) ∗WN − (∇hN(s)−∇ρ(s))]⟩
=: RT1(s) +RT2(s).

For the RT1 lemma 1.6.6 (a) with v = ∇G ∗ δP (s) ∈ CL+1
b (Rd) gives

RT1(s) ≤ ∥hN(s)− ρ(s)∥2L2 + Cχ−2
N (2.43)

and for second term RT2(s) we get by lemma 1.6.2 (d) and partial integration

RT2(s) = ⟨(∇H ∗ δP (s))ρ(s), (∇hN(s)−∇ρ(s)) ∗WN −∇hN(s)−∇ρ(s)⟩
= ⟨∇ · [ρ(s)(∇H ∗ δP (s))] ∗WN

−∇ · [ρ(s)(∇H ∗ δP (s))], hN(s)− ρ(s)⟩.

Using lemma (2.2.1), Cauchy’s inequality and lemma 1.6.5 (b), we get

RT2(s) ≤ Cχ−1
N ∥hN(s)− ρ(s)∥2L2 ≤ C∥hN(s)− ρ(s)∥2L2 + Cχ−2

N . (2.44)

This completes the proof of this lemma.

Now, we get exactly as in the previous section.

2.2.4 Corollary. For any N ∈ N we have

E sup
t≤T

∥hN(t)− ρ(t)∥2L2 ≤ E∥hN(0)− ρ(0)∥2L2 + CTγN

+ C

∫ T

0

E∥hN(s)− ρ(s)∥2L2 ds
(2.45)

where

γN := χ−2
N + |σ2

∞ − σ2
N |+

σ2
N

N
χd+2
N (2.46)

2.2.5 Theorem. Suppose assumptions (Ã1), (A2) to (A6) and (AP) hold.
Then

lim
N→∞

E sup
t≤T

∥hN(t)− ρ(t)∥2L2 = 0. (2.47)
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2.2.2 Stochastic Predator

Let us consider a predator whose movement is determined by a stochastic
differential equation instead of a deterministic movement.

dPN(t) =

∫
Rd

hN(x, t)w(x− PN(t))dxdt+ σP,NdWP (t), (2.48)

PN(0) = 0, (2.49)

where WP is a Brownian Motion independent of Wk, k ∈ N, and σP,N >
0, N ∈ N, is a sequence with

lim
N→∞

σP,N = 0, (2.50)

This condition assures that the movement of the predator is completely de-
terministic in the limit N to ∞. w is a weight function such that:

(AW) w ∈ L2(Rd) and

∥w(· − x)− w(· − y)∥L2 ≤ C|x− y| for all x, y ∈ Rd (2.51)

2.2.6 Remark. (Interpretation of equation (2.48))
If we take a weight functions of the form w(x) = xw̃(x) with w̃ ≥ 0. Then
equation (2.48) reads

dPN(t) =

∫
Rd

(x− PN(t))hN(x, t)w̃(x− PN(t))dxdt+ σP,NdWP (t), (2.52)

PN(0) = 0, (2.53)

Note that
∫
Rd(x−PN(t))hN(x, t)w̃(x−PN(t))dx is a smoothed version of the

barycenter of the particles XN , N ∈ N relative to the position of the predator
PN(t) at time t with some weight function w̃. Therefore, the term

∫
Rd(x −

PN(t))hN(x, t)w(x−PN(t))dx implies that the predator is attracted (for w >
0) by the barycenter. Clearly, for w ≤ 0 this would define a repulsive force.
The function w̃ may be asymmetric and thus contain preferred directions of
the predator.

Again, we can guess the limit of this system. The equation for the den-
sity of the swarming animals remains unchanged. But the movement of the
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predator now depends on ρ, which gives much more realistic ways for mod-
eling animal behavior. For N to infinity we derive the following system of
non-linear limit equations

∂tρ(x, t) = ∇ · (ρ(x, t)∇ρ(x, t))−∇ · (ρ(x, t)(∇G ∗ ρ(·, t))(x))
+∇ · (ρ(x, t)(∇H ∗ δP∞(t))(x)), x ∈ Rd,

ρ(x, 0) = ρ0(x), x ∈ Rd,

∂tP∞(t) =

∫
Rd

ρ(x, t)w(x− P∞(t)) dx

P∞(0) = 0.

(2.54)

A sufficient condition for the existence of a solution of this system will be
given later on in chapter 3. For the moment, let us assume:

(AS) For some fixed T > 0 and L as in (A1) the cauchy problem (2.35)
has a solution (ρ, P∞) such that

ρ ∈ C([0, T ], HL+1+ d
2 (Rd)), P∞ ∈ C([0, T ],Rd),

with non-negative ρ and ∂tρ(t) exists for almost every t and equa-
tion (2.35) holds for almost every t.

This assumption replaces assumption (A1) in chapter 2.1, resp., assump-
tion (Ã1) from chapter 2.2.1.

2.2.7 Lemma. We have

|RT (s)| ≤ C(|PN(s)− P∞(s)|2 + ∥hN(·, s)− ρ(·, s)∥2L2 + χ−2
N ). (2.55)

Proof. We start by splitting the interaction term corresponding to the preda-
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tor action RT (s) such that we can apply lemma 1.6.6.

RT (s) = ⟨XN(s)− ρ(s), (∇H ∗ δPN (s)) · (∇gN(s)−∇ρ(s) ∗WN)⟩
+ ⟨ρ(s), (∇H ∗ δPN (s)) · (∇hN(s)−∇ρ(s)) ∗WN⟩
− ⟨ρ(s), (∇H ∗ δP∞(s)) · (∇hN(s)−∇ρ(s))⟩

= ⟨XN(s)− ρ(s), (∇H ∗ δPN (s)) · (∇gN(s)−∇ρ(s) ∗WN)⟩
+ ⟨[ρ(s)(∇H ∗ δPN (s))] ∗WN ,∇hN(s)−∇ρ(s)⟩
− ⟨ρ(s)(∇H ∗ δP∞(s)),∇hN(s)−∇ρ(s)⟩

= ⟨XN(s)− ρ(s), (∇H ∗ δPN (s)) · (∇gN(s)−∇ρ(s) ∗WN)⟩
+ ⟨[ρ(s)(∇H ∗ δPN (s))] ∗WN − [ρ(s)(∇H ∗ δP∞(s))] ∗WN ,

∇hN(s)−∇ρ(s)⟩
+ ⟨[ρ(s)(∇H ∗ δP∞(s))] ∗WN − [ρ(s)(∇H ∗ δP∞(s))],

∇hN(s)−∇ρ(s)⟩
=: RT1(s) +RT2(s) +RT3(s)

(2.56)

For RT1 we obtain by lemma 1.6.6

|RT1(s)| ≤ C(∥hN(s)− ρ(s)∥L2 + χ−2
N ). (2.57)

Using partial integration, lemma 2.2.1 and lemma 1.6.5, we obtain

|RT3(s)| ≤ C(∥hN(s)− ρ(s)∥L2 + χ−2
N ) (2.58)

It remains to find an estimate for RT2. Since assumption (AP) together with
Sobolev’s Imbedding Theorem 1.4.7 implies ∇H ∈ C3

b (Rd). the mean value
inequality gives

|∆H(x− PN(s))−∆H(x− P∞(s))| ≤ C|PN(s)− P∞(s)|, (2.59)

|∇H(x− PN(s))−∇H(x− P∞(s))| ≤ C|PN(s)− P∞(s)| (2.60)

for all x ∈ Rd. Hence, it follows that

∥ρ(s)(∆H ∗ (δPN (s) − δP∞(s)))∥2L2

=

∫
Rd

|ρ(x, s)|2|∆H(x− PN(s))−∆H(x− P∞(s))|2 dx

≤ C∥ρ(s)∥2L2 |PN(s)− P∞(s)|2 ≤ C|PN(s)− P∞(s)|2
(2.61)

and

∥∇ρ(s)·(∇H ∗ (δPN (s) − δP∞(s)))∥2L2

≤
∫
Rd

|∇ρ(x, s)|2|∇H(x− PN(s))−∇H(x− P∞(s))|2 dx

≤ C∥∇ρ(s)∥2L2 |PN(s)− P∞(s)|2 ≤ C|PN(s)− P∞(s)|2.

(2.62)
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Therefore, we get

RT2(s) ≤ ∥∇ · [ρ(s)∇H ∗ (δPN (s) − δP∞(s))] ∗WN∥L2∥hN(s)− ρ(s)∥L2

≤ ∥WN∥L1∥∇ · [ρ(s)∇H ∗ (δPN (s) − δP∞(s))]∥L2∥hN(s)− ρ(s)∥L2

≤ C|PN(s)− P∞(s)|∥hN(s)− ρ(s)∥L2

≤ C(|PN(s)− P∞(s)|2 + ∥hN(s)− ρ(s)∥2L2).

(2.63)

Now we have shown (see equations (2.56), (2.57), (2.58) and (2.63))

|RT (s)| ≤ C(|PN(s)− P∞(s)|2 + ∥hN(·, s)− ρ(·, s)∥2L2 + χ−2
N ). (2.64)

2.2.8 Lemma. We have

|PN(t)− P∞(t)|2 ≤ C|PN(0)− P∞(0)|2

+ C

∫ t

0

(∥hN(s)− ρ(s)∥2L2 + |PN(s)− P∞(s)|2) ds

+ Cσ2
P,N |WP (t)|2.

Proof. For |PN(t)−P∞(t)| we get the following estimate from equation (2.48)
and (2.54)

|PN(t)− P∞(t)| ≤ |PN(0)− P∞(0)|+
∣∣∣∣∫ t

0

dPN −
∫ t

0

d

ds
P∞(s) ds

∣∣∣∣
≤ |PN(0)− P∞(0)|

+

∫ t

0

∣∣∣∣ ∫
Rd

hN(x, s)w(x− PN(t)) dx

−
∫
Rd

ρ(x, s)w(x− P∞(t))dx

∣∣∣∣ds
+ σP,N |WP (t)|
≤ |PN(0)− P∞(0)|

+

∫ t

0

∣∣∣∣∫
Rd

[hN(x, s)− ρ(x, s)]w(x− PN(t)) dx

∣∣∣∣ ds
+

∫ t

0

∣∣∣∣∫
Rd

ρ(x, s)[w(x− PN(t))− w(x− P∞(t))]dx

∣∣∣∣ ds
+ σP,N |WP (t)|.
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Taking the square of this inequality and estimating the mixed terms on the
right hand side with ab ≤ a2 + b2, we get

|PN(t)− P∞(t)|2

≤ C|PN(0)− P∞(0)|2

+ C

(∫ t

0

∣∣∣∣∫
Rd

[hN(x, s)− ρ(x, s)]w(x− PN(t)) dx

∣∣∣∣ ds)2

+ C

(∫ t

0

∣∣∣∣∫
Rd

ρ(x, s)[w(x− PN(t))− w(x− P∞(t))]dx

∣∣∣∣ ds)2

+ Cσ2
P,N |WP (t)|2.

(2.65)

Jensen’s inequality gives us

(∫ t

0

∣∣∣∣∫
Rd

[hN(x, s)− ρ(x, s)]w(x− PN(t)) dx

∣∣∣∣ ds)2

≤ T

∫ t

0

∣∣∣∣∫
Rd

[hN(x, s)− ρ(x, s)]w(x− PN(t)) dx

∣∣∣∣2 ds (2.66)

and(∫ t

0

∣∣∣∣∫
Rd

ρ(x, s)[w(x− PN(t))− w(x− P∞(t))]dx

∣∣∣∣ ds)2

≤ T

∫ t

0

∣∣∣∣∫
Rd

ρ(x, s)[w(x− PN(t))− w(x− P∞(t))]dx

∣∣∣∣2 ds. (2.67)

Using Schwarz inequality, we obtain∣∣∣∣∫
Rd

[hN(x, s)− ρ(x, s)]w(x− PN(s)) dx

∣∣∣∣ ≤ ∥w∥L2∥hN(s)− ρ(s)∥L2

≤ C∥hN(s)− ρ(s)∥L2

for all N ∈ N since w ∈ L2(Rd). For the inner integral in inequality (2.67)
we get from assumption (AW)∣∣∣∣∫

Rd

ρ(x, s)[w(x− PN(s)− w(x− P∞(t))] dx

∣∣∣∣ ≤ C∥ρ(s)∥L2 |PN(s)− P∞(s)|.

Since ∥ρ(s)∥L2 is bounded and T is constant, the claimed result follows.



48 CHAPTER 2. PROOF OF THE CONVERGENCE

Taking supremum and expectation, we get

E sup
t≤T

∥hN(t)− ρ(t)∥2L2 + E sup
t≤T

|PN(t)− P∞(t)|2

≤ E sup
t≤T

∥h̃N(s)− ρ̃(s)∥L2 + 2

∫ t

0

E sup
t≤T

|RT (s)| ds

+ E sup
t≤T

|PN(t)− P∞(t)|2

≤ E∥hN(0)− ρ(s)∥2L2 + CE|PN(0)− P∞(0)|2

+ CT

(
χ−2
N + σ2

N +
σ2
N

N
χd+2
N

)
+ C

∫ T

0

[
sup
t≤T

E∥hN(s)− ρ(s)∥2L2 + sup
t≤T

E|PN(t)− P∞(t)|2
]
ds

+ Cσ2
P,N sup

t≤T
E|WP (t)|2.

(2.68)

2.2.9 Theorem. Suppose assumptions (AS),(AW),(A3)-(A6) and (AP) hold.
Furthermore, suppose that

lim
N→∞

E∥hN(0)− ρ0∥2L2 = 0, (2.69)

lim
N→∞

E|PN(0)− P∞(0)|2 = 0. (2.70)

Then

lim
N→∞

E sup
t≤T

[
∥hN(t)− ρ(t)∥2L2 + |PN(t)− P∞(t)|2

]
= 0 (2.71)

Proof. This is the analogous result to theorem 2.1.7. Applying Gronwall’s
lemma 2.1.6 to equation (2.68) and letting N → ∞, the result follows. Ob-
serve that supt≤T E|WP (t)|2 ≤ E supt≤T |WP (t)|2 is finite due to Doob’s Lp-
inequality.



Chapter 3

Existence of Solutions for the
Limit PDE

In this chapter we give a for the existence of a local solution ρ(x, t) of the
nonlinear Cauchy problem:

∂tρ(x, t) = ∇ · [(σ
2
∞
2

+ ρ(x, t))∇ρ(x, t)]−∇ · ((∇G ∗ ρ)ρ(x, t)), t ∈ [0, T ]

ρ(x, 0) = ρ0(x)

(3.1)

This is the divergence form of the partial differential equation describing
the Eulerian limit of the particle system in the diffusion case (σ∞ > 0). In
assumption (A1) the existence of this solution was posed as an assumption.
We now give a sufficient condition for (A1). Furthermore, we show that the
solution ρ(·, t) satisfies some regularity properties required in order to prove
the convergence of the particle system to its limit equation, see theorem
2.1.7. For all s let Hs

+(Rd) := {v ∈ Hs(Rd) | v ≥ 0} be the set of all positive
Hs functions on Rd. For all v ∈ H2n+3

+ (Rd) we consider the linear operator
A(v) : H2n(Rd) ⊇ D(A) → H2n(Rd) given by D(A) := H2n+2(Rd) and

A(v)ρ := ∇ · [(σ
2
∞
2

+ v)∇ρ]−∇ · ((∇G ∗ v)ρ)

for all functions ρ ∈ D(A). Then the Cauchy problem (3.1) can be restated
in the following form:

∂tρ(x, t) = A(ρ(·, t))ρ(x, t), t ∈ [0, T ]

ρ(x, 0) = ρ0(x)

49
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To show the existence of a solution we first consider a linearized version
of the initial nonlinear Cauchy problem (3.1). We choose a fixed function
u1 ∈ C([0, T ], H2n

+ (Rd)) and replace the operator A(ρ(·, t)) by A(J1u(t)),
where (Jj)j is a sequence of mollifiers such that Jju(t) ∈ H2n+3(Rd) for all
u ∈ H2n:

∂tρ(x, t) = A(J1u1(t))ρ(x, t), t ∈ [0, T ],

ρ(x, 0) = ρ0(x).

The operator A(J1u1(t)) is uniformly elliptic. Thus this Cauchy problem
has a unique positive solution u2 which is again in H2n

+ (Rd). This solution
can be constructed by semigroup methods. Therefore, we can inductively
define a sequence (uj)j such that uj+1 is the solution of

∂tρ(x, t) = A(Jjuj(t))ρ(x, t), t ∈ [0, T ],

ρ(x, 0) = ρ0(x).

It remains to show that (uj)j converges against a solution of the nonlinear
Cauchy problem (3.1). This method is described in [16],[5] and [25]. Our
main results are summarized in theorem 3.3.7. In section 3.4 we apply this
iteration method to obtain a solution of the Eulerian stochastic predator
system which was introduced in section 2.2.2 of the previous chapter.

Throughout this chapter we consider only the case σ∞ > 0 (model with
diffusion). In case σ∞ = 0 the operator A(v) is not uniformly elliptic and
this method can not be applied.

3.1 C0-semigroups and elliptic operators

In this section we fix our notation and collect some general results about
C0-semigroups and elliptic operators. A more detailed discussion of these
topics can be found in [11], [12], [25] and [6].

3.1.1 Notation. During this chapter X denotes an arbitrary Banach space
and A is always a linear operator A : X ⊇ D(A) → X on X with domain
D(A).

3.1.2 Definition. We say a linear operator A : X ⊇ D(A) → X is dissipative
on X if

∥(λ− A)u∥X ≥ λ∥u∥X
holds for all u ∈ D(A) and all λ > 0.
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3.1.3 Lemma. Let A be a densely defined linear dissipative operator on X.
Then A is closable.

Proof. We take a sequence (xn)n∈N ⊂ X such that limn→∞ xn = 0 and
limn→∞Axn = y in X. In order to prove the stated result, it is sufficient to
show that y = 0. Choose a second sequence (yn)n∈N with (yn)n∈N ⊂ D(A)
such that limn→∞ yn = y. Using the dissipativity of A, we obtain for all
λ > 0 and all n ∈ N:

λ∥yn∥X = lim
m→∞

λ∥yn − λxm∥X

≤ lim
m→∞

∥(λ− A)(yn − λxm)∥X

= ∥(λ− A)yn − λy∥X .

This implies

∥yn∥X ≤ ∥1
λ
(λ− A)yn − y∥X

= ∥yn −
1

λ
Ayn − y∥X −→

λ→∞
∥yn − y∥X .

Letting n→ ∞, we get y = 0.

3.1.4 Definition. Let L(x) be a second order differential operator given by

L(x) =
d∑

k,l=1

akl(x)∂k∂l +
d∑
j=1

bj(x)∂j + c(x) (3.2)

with coefficients akl, bj, c ∈ Cb(Rd,R). We say the operator L(x) is uniformly
elliptic if there exists a constant C0 > 0 such that

d∑
k,l=1

akl(x)ξkξl ≥ C0|ξ|2

holds for all ξ ∈ Rd and all x ∈ Rd. The constant C0 is called constant of
ellipticity.

For a proof of the following theorem see theorem 2.1.42 in the book of
Jacob [12].

3.1.5 Theorem. Let L(x) be a uniformly elliptic second order differential
operator as in (3.2) with coefficients akl = alk ∈ C2

b (Rd), bj ∈ C1
b (Rd) and c ∈

Cb(Rd,R). Further, let λ ≥ λ0 sufficiently large. Then the operator L(x,D)−
λ is a bounded bijective operator from H2(Rd) to L2(Rd) with bounded inverse.
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3.1.6 Definition. Let X be a subspace of the space of all measurable func-
tions on Rd and let A : X ⊇ D(A) → X be a linear operator. We say
that A satisfies the positive maximum principle if C∞

c (Rd) ⊆ D(A) and for
any f ∈ C∞

c (Rd) and x0 ∈ Rd with f(x0) = supx∈Rd f(x) ≥ 0 we have
Af(x0) ≤ 0.

3.1.7 Definition. The set ρ(A) of all λ ∈ C for which λ − A is invertible,
i.e.,

ρ(A) := {λ ∈ C | (λ− A)−1 ∈ L(X)},
is called the resolvent set of A. The family of operators

RA
λ := (λ− A)−1, λ ∈ ρ(A)

is called the resolvent of A.

3.1.8 Definition. A C0-semigroup (T (t))t≥0 on a space of functions X with
C∞
c (Rd) ⊆ X dense is called positivity preserving if T (t)f ≥ 0 holds for every

t ≥ 0 and every positive continuous function f ∈ C∞
c (Rd) ⊆ D(A) where A

is the generator of the semigroup (T (t))t≥0.

Next, we state the well-known Lumer-Phillips-Theorem. For a proof see,
for example, Theorem 4.3 in Pazy [25].

3.1.9 Theorem. (Lumer-Phillips) Let A be a densely defined linear operator
on X. If A is dissipative and there exists a λ > 0 such that

R(λ− A) = X,

where R(λ− A) is the range of λ− A, then A is the infinitesimal generator
of a C0-semigroup of contractions on X.

3.1.10 Definition. The bounded operator Aλ := λ2RA
λ−λ id is called Yosida

approximation of A

3.1.11 Lemma. Let (A,D(A)) be the generator of a C0-semigroup (T (t))t≥0

of contractions on X and Aλ its Yosida approximation. Then

lim
λ→∞

etAλu = T (t)u for all u ∈ X.

3.1.12 Lemma. Let (A,D(A)) be the generator of a C0-semigroup (T (t))t≥0

of contractions on X. Further, let M ⊂ X and assume that

λRA
λ :M →M

for all λ > 0. Then for every t ≥ 0 the operator T (t) leaves M invariant.
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Proof. For λ > 0 let Aλ denote the Yosida approximation (see definition
3.1.10) of A. Furthermore, we have for all t > 0

etAλ = e−tλ etλ
2RA

λ = e−tλ
∞∑
j=0

(tλ)j

j!
(λRA

λ )
j. (3.3)

This implies that exp(tAλ) leaves M invariant. From lemma 3.1.11 we get

lim
λ→∞

etAλu = T (t)u.

Therefore, T (t) leaves M invariant.

3.1.13 Lemma. Let A : D(A) → X be a linear operator satisfying the
positive maximum principle. Furthermore let A be the generator of a C0-
semigroup (T (t))t≥0. Then the semigroup (T (t))t≥0 is positivity preserving.

Proof. Let λ > 0 and f ∈ C∞
c (X). Assume f is not a non-negative func-

tion, i.e., we have infx∈Rd f(x) < 0. Choose x0 ∈ Rd such that f(x0) =
infx∈Rd f(x). The positive maximum principle implies

−[Af ](x0) = [A(−f)](x0) ≤ 0.

Therefore, we have

inf
x∈Rd

[(λ− A)f ](x) ≤ [(λ− A)f ](x0) ≤ λf(x0) < 0.

This shows that (λ − A)f ≥ 0 implies f ≥ 0. Hence, the set M := {f ∈
C∞
c (X) | f ≥ 0} is invariant under λRA

λ for all λ > 0. Now, lemma 3.1.12
implies the semigroup (T (t))t≥0 is positivity preserving.

The following result is a special case of Browder [4], p.44.

3.1.14 Theorem. Let A(x) be a uniformly elliptic second order differential
operator on L2(Rd) as in equation (3.2) with D(A) = H2(Rd) and such that

(i) aij, bj, c are bounded by a constant M > 0;

(ii) aij, bj, c are Lipschitz continuous with constant L > 0;

(iii) the constant of ellipticity is C0 > 0.

Then there exists a constant K > 0 such that for all u ∈ D(A) = H2(Rd)

∥u∥2H2 ≤ K
(
∥Au∥2L2 + ∥u∥2L2

)
(3.4)

Moreover, the constant K can be chosen such that it depends only on the
constants M,L and C0.
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3.1.15 Definition. A family A(t), t ∈ [0, T ], of generators of C0-semigroups
on X is called stable if there are constants M ≥ 1 and ω such that for all
t ∈ [0, T ] the resolvent set of A(t) satisfies

ρ(A(t)) ⊃ (ω,∞)

and for every finite sequence 0 ≤ t1 ≤ · · · ≤ tm ≤ T,m ∈ N and all λ > ω∥∥∥∥∥
m∏
i=1

R
A(ti)
λ

∥∥∥∥∥
L(X)

≤M(λ− ω)−m.

The product here is time-ordered, i.e. a factor with a larger ti stands to the
left of ones with smaller ti. The constants M and ω are called constants of
stability.

3.1.16 Remarks. (a) The stability of a family of generators on X is pre-
served when the norm in X is replaced by an equivalent norm. But the
constants of stability may depend on the choice of the norm.

(b) It is clear from the definition of stability that a family of generators of
contractions is stable.

To show the stability of a given family of operators directly is usually a
difficult task. The next proposition gives a useful criterion for stability.

3.1.17 Proposition. Let ∥ · ∥t, t ∈ [0, T ], be a continuous family of norms
on X, in the sense that

∥x∥t
∥x∥s

≤ eC|t−s|, x ∈ X \ {0},

holds for all t, s ∈ [0, T ]. Furthermore let A(t), t ∈ [0, T ], be a family of
operators such that every A(t) is the generator of a contraction semigroup
with respect to the norm ∥ · ∥t. Then A(t), t ∈ [0, T ], is stable with respect to
∥ · ∥t for all t ∈ [0, T ].

Proof. See proposition 3.4 of [15].

3.1.18 Definition. A family of bounded operators U(t, s), 0 ≤ s ≤ t ≤ T,
on the Banach space X is called an evolution system if:

(a) U(s, s) = id for all 0 ≤ s ≤ T .

(b) U(t, r)U(r, s) = U(t, s) for all 0 ≤ s ≤ r ≤ t ≤ T .
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(c) The mapping (t, s) 7→ U(t, s) is strongly continuous for all 0 ≤ s ≤ t ≤
T .

Part (a) of the following theorem adopts theorem 5.3.1 in the book of
A.Pazy [25] to our setting.

3.1.19 Theorem. Let {A(t), t ∈ [0, T ]} be a family of operators on a Banach
space X and Y ⊂ X densely and continuously embedded subspace satisfying
the conditions

(i) {A(t), t ∈ [0, T ]} is a stable family of generators of C0-semigroups with
constants of stability ω,M .

(ii) For all t ∈ [0, T ] the subspace Y ⊆ X is A(t)-admissible.

(iii) The family of parts Ã(t) of A(t) in Y is a stable family of generators
of C0-semigroups in Y with constants of stability ω̃, M̃ .

(iv) For all t ∈ [0, T ] the domain D(A) of A contains Y and A(t) is a
bounded operator from Y to X, i.e., A(t) ∈ L(Y,X). Furthermore,
t 7→ A(t) is continuous with respect to ∥ · ∥L(Y,X).

Then

(a) There exists a unique evolution system {U(t, s), 0 ≤ s ≤ t ≤ T} in X
satisfying

∥U(t, s)∥L(X) ≤Meω(t−s)

∂+t U(t, s)y
∣∣
t=s

= A(s)y

∂sU(t, s)y = −U(t, s)A(s)y

for all 0 ≤ s ≤ t ≤ T and all y ∈ Y . Furthermore, U(t, s) is positivity
preserving if all semigroups generated by the operators A(t) are posi-
tivity preserving. The derivatives ∂+t and ∂s are taken with respect to
X.

Suppose X and Y are reflexive Banach spaces, then:

(b) U(t, s)Y ⊆ Y and ∥U(t, s)∥Y ≤ M̃eβ̃(t−s) for some constants M̃ ≥
1, β̃ ≥ 0. Furthermore, U(t, s) is weakly continuous in t, s with respect
to Y .

(c) ∂+t U(t, s)y = A(s)U(t, s)y for y ∈ Y and t ≥ s.
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(d) ∂tU(t, s)y exists for almost every t and

∂tU(t, s)y = A(t)U(t, s)y, y ∈ Y,

holds for almost every t.

Proof. All statements of (a) except the last one are shown in theorem 5.3.1
in [25]. If all A(t) are generators of positivity preserving C0-semigroups then
the families Un(t, s) in the proof theorem 5.3.1 in [25] are clearly positivity
preserving. Hence, we get U(t, s) is positivity preserving.

Parts (b),(c) and (d) are shown in theorem 5.1 of [15].

The following result is used during the proof of our main result 3.3.7.

3.1.20 Lemma. Let q ∈ [0, 1) and let (αn)n∈N, (βn)n∈N ⊆ [0,∞) be non-
negative sequences such that

αn+1 ≤ qαn + βn for all n ∈ N and
∞∑
n=1

βn <∞.

Then
∞∑
n=1

αn <∞.

Proof. We have

∞∑
n=1

αn = α1 +
∞∑
n=1

αn+1 ≤ α1 + q
∞∑
n=1

αn +
∞∑
n=1

βn.

Therefore,
∞∑
n=1

αn ≤ 1

1− q

(
α1 +

∞∑
n=1

βn

)
<∞.

3.2 C0-semigroups generated by A(v)

To give a proof for the existence of a solution of the Eulerian limit par-
tial differential equation (1) we require the following additional convexity
assumption on the aggregation potential G:
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(AG) ∆G ≥ 0.

3.2.1 Definition. Let L ∈ N, L > d
2
+ 2. For any function v ∈ HL

+(Rd) we
define the operator A(v) : L2(Rd) ⊇ D(A(v)) → L2(Rd) by

A(v)ρ := ∇ · [(σ
2
∞
2

+ v)∇ρ]−∇ · ((∇G ∗ v)ρ) (3.5)

for all functions ρ in the domain D(A(v)) := H2(Rd) ⊆ L2(Rd) of A(v).

3.2.2 Remark. Using Sobolev’s Lemma 1.4.7, we get v ∈ C2
b (Rd). There-

fore, the operator A(v) is well-defined. Replacing v by ρ(t), we see that
A(ρ(t)) is the divergence form of the operator on the right hand side of the
partial differential equation describing the continuum limit system (1).

3.2.3 Lemma. For all v ∈ HL
+(Rd), u ∈ H2(Rd) we have∫
Rd

uA(v)u dx ≤ 0.

Proof. Partial integration and u(x)∇u(x) = 1
2
∇u2(x) imply∫

Rd

u(∇G ∗ v) · ∇u dx =
1

2

∫
Rd

(∇G ∗ v) · ∇u2 dx

= −1

2

∫
Rd

(∆G ∗ v)u2 dx.

Note that
(
σ∞
2

+ v
)
≥ 0 due to σ∞ > 0 and the positivity of v. Furthermore,

assumption (AG) implies (∆G ∗ v) ≥ 0. Hence, using partial integration, we
get ∫

Rd

uA(v)u dx = −
∫
Rd

(σ∞
2

+ v
)
(∇u)2 dx+

∫
Rd

u (∇G ∗ v) · ∇u dx

≤ −1

2

∫
Rd

(∆G ∗ v)u2 dx ≤ 0.

3.2.4 Lemma. For all v ∈ HL
+(Rd) the linear operator A(v) is dissipative

on L2(Rd).
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Proof. For u ∈ H2(Rd), v ∈ HL
+(Rd) and λ > 0 it follows from lemma 3.2.3

and Schwarz inequality that

λ∥u∥2L2(Rd) ≤ λ

∫
Rd

u2 dx−
∫
Rd

u A(v)u dx

=

∫
Rd

u (λ− A(v))u dx

≤ ∥(λ− A(v))u∥L2(Rd)∥u∥L2(Rd).

Therefore, we have

λ∥u∥L2(Rd) ≤ ∥(λ− A(v))u∥L2(Rd)

for all λ > 0. This yields A(v) is a dissipative operator.

3.2.5 Corollary. For all v ∈ HL
+(Rd) the linear operator A(v) is closable.

Proof. This follows immediately from lemma 3.2.4 and lemma 3.1.3.

In fact, in Corollary 3.2.9 we will see that for all non-negative functions
v ∈ HL

+(Rd) the linear operator A(v) is already a closed operator.

3.2.6 Lemma. For all v ∈ HL(Rd) there exists a λ > 0 such that the range,
R(λ− A(v)), of λ− A(v) is L2(Rd).

Proof. Writing the operator A(v) in the form (3.2) we get

akl = δkl

(
σ2
∞
2

+ v

)
∈ C2

b (Rd),

bj = ∂jv + (∂jG ∗ v) ∈ C1
b (Rd),

c = ∆G ∗ v ∈ C2
b (Rd).

Therefore, the positivity of v gives

d∑
k,l=1

akl(x)ξkξl =
d∑

k=1

(
σ2
∞
2

+ v

)
|ξk|2 ≥

σ2
∞
2
|ξ|2.

Because of σ∞ > 0, we see that A(v) is a uniformly elliptic second order
differential operator and the result follows directly from Theorem 3.1.5.

3.2.7 Lemma. For all v ∈ HL
+(Rd) the operator A(v) satisfies the positive

maximum principle.
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Proof. Choose ρ ∈ C∞
c (Rd) and x0 ∈ Rd such that ρ(x0) = supx∈Rd ρ(x) ≥ 0.

We write A(v)ρ(x0) in the form

A(v)ρ(x0) =

(
σ2
∞
2

+ v

)
∆ρ(x0) + [(∇v) · (∇ρ)] (x0)

− [(∇G ∗ v) · (∇ρ)] (x0)− (∆G ∗ v)ρ(x0)
(3.6)

and show that all terms on the right hand side of this equation are less or
equal zero. Assumption (AG) directly implies −(∆G ∗ v)ρ(x0) ≤ 0. Since
ρ(x0) is an extremum of ρ we have ∇ρ(x0) = 0 and therefore we get for the
second and third part of equation (3.6):

[(∇G ∗ v) · (∇ρ)] (x0) = 0 and

[(∇v) · (∇ρ)] (x0) = 0.

Furthermore, the fact that ρ attains its maximum at x0 implies that the
Hessian Hρ(x0) of ρ in x0 is negative semidefinite. Thus, we have

∆ρ(x0) = traceHρ(x0) ≤ 0.

This completes the proof since σ∞ > 0 and v is a non-negative function.

3.2.8 Theorem. For all v ∈ HL
+(Rd) the operator A(v) generates a positivity

preserving C0-semigroup of contractions on L2(Rd).

Proof. In lemma 3.2.4 we have shown that A(v) is a dissipative linear oper-
ator on L2(Rd). Furthermore, lemma 3.2.6 says that A(v) satisfies the range
condition of the Lumer-Phillips-Theorem 3.1.9. Hence, A(v) is the generator
of a C0-semigroup of contractions on L2(Rd). From lemma 3.2.7 together
with lemma 3.1.13 it follows that this semigroup is positivity preserving.

3.2.9 Corollary. For all v ∈ HL
+(Rd) the linear operator A(v) is closed.

Proof. Theorem 3.2.8 implies that the operator A(v) is the generator of a
C0-semigroup. Hence, A(v) is a closed operator.

3.2.10 Definition. Let m ∈ N with L ≤ 2m. For every v ∈ H2m
+ (Rd) we

inductively define a scale of abstract Sobolev spaces (Hn
A(v), ∥·∥n), n ∈ N, n ≤

m, associated to the linear operator A(v) by H1
A(v) := H2(Rd) and

Hn
A(v) := D((A(v))n) := {f ∈ D((A(v))n−1)|A(v)f ∈ D((A(v))n−1)}.

The family of norms is given by

∥ · ∥0,v := ∥ · ∥L2 and ∥ · ∥n,v := ∥ · ∥n−1,v + ∥A(v) · ∥n−1,v
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Our aim now is to show that the space Hn
A(v) equals the classical Sobolev

space of order 2n and thus is independent of the choice of the function v.
But the norms ∥ · ∥n clearly depend on v.

3.2.11 Corollary. For L ≤ 2n ≤ 2m and all R > 0 we have H2n(Rd) =
Hn
A(v) and there exist constants C1;n, C2;n > 0 such that for all v ∈ H2m+1

+ (Rd)

with ∥v∥H2m+1 ≤ R we have

C1;n∥ · ∥H2n ≤ ∥ · ∥n,v ≤ C2;n∥ · ∥H2n (3.7)

Proof. We first show that H2n(Rd) = Hn
A(v). For n = 1 this is clear from the

definition of the space H1
A(v). Now, assume we have already shown that the

equality holds for n − 1. Let u ∈ Hn
A(v), this is, by definition, equivalent to

u ∈ Hn−1
A(v) and A(v)u ∈ Hn−1

A(v). Furthermore, due to our induction assumption

this is equivalent to u ∈ H2(n−1)(Rd) and A(v)u ∈ H2(n−1)(Rd). For any
λ ∈ R this gives λu−A(v)u ∈ H2(n−1)(Rd). Choosing λ large enough we get
from 3.1.5 that u ∈ H2n(Rd). This shows Hn

A(v) ⊆ H2n(Rd).

On the other hand, u ∈ H2n(Rd) clearly implies u ∈ H2(n−1)(Rd) and
A(v)u ∈ H2(n−1)(Rd) and thus we obtain u ∈ Hn−1

A(v) and A(v)u ∈ Hn−1
A(v). This

yields u ∈ Hn
A(v) and completes the proof of Hn

A(v) = H2n(Rd)
We prove the result in case n = 1. If n > 1 the result follows by induction.

Writing the linear differential operator A(v) in the form (3.2) we get

akl = δkl

(
σ2
∞
2

+ v

)
bj = ∂jv − (∂jG ∗ v)
c = −∆G ∗ v.

Therefore, we have

∥akl∥H2n ≤ σ2
∞
2

+R (3.8)

∥bj∥H2n ≤ R(1 + ∥∂jG∥L1) (3.9)

∥c∥H2n ≤ R∥∆G∥L1 . (3.10)

Exactly the same way, we can show that all derivatives of the coefficients
akl, bj and c are bounded by a constant independent of v (depending only
on R). This implies the Lipschitz continuity of all this coefficients for some
constant L̃ > 0. Now, with theorem 3.1.14 we get

∥u∥2H2 ≤ K
(
∥A(v)u∥2L2 + ∥u∥2L2

)
≤ K∥u∥21,v (3.11)
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for all functions u ∈ H2(Rd), where the constant K is independent of v since
the constants M, L̃, C0 do not depend on the choice of the function v as long
as ∥v∥H2m+1 ≤ R.

The second inequality in equation (3.7) follows from

∥u∥1,v = ∥u∥L2 + ∥A(v)u∥L2

≤ ∥u∥L2 +

∥∥∥∥∥
d∑
j=1

(σ∞
2

+ v
)
∂jju

∥∥∥∥∥
L2

+

∥∥∥∥∥
d∑
j=1

(∂jv − (∂jG ∗ v)) ∂ju

∥∥∥∥∥
L2

+ ∥(∆G ∗ v)u∥L2

≤ ∥u∥L2 +
d∑
j=1

∥ajj∥∞∥∂jju∥L2 +
d∑
j=1

∥bj∥∞∥∂ju∥L2 + ∥c∥∞∥u∥L2

Using again the inequalities (3.8)-(3.10), we obtain

∥u∥1,v ≤ C∥u∥H2

with a constant C > 0 that depends only on σ∞, R and the aggregation
potential G.

3.2.12 Remark. Corollary 3.2.11 shows that the spaces Hn
A(v) are indepen-

dent of the choice of the function v ∈ H2m+1
+ (Rd) as long as ∥v∥H2m+1 ≤ R.

And all the norms ∥ · ∥n,v are uniformly equivalent for all ∥v∥H2m+1 ≤ R.
Thus, we occasionally write ∥ · ∥n instead of ∥ · ∥n,v.
3.2.13 Definition. Let An(v) denote the part of A(v) in H

n
A(v), i.e. we have

An(v)f := A(v)f for all f ∈ D(An(v)) := {f ∈ Hn
A(v)|A(v)f ∈ Hn

A(v)} =

Hn+1
A(v).

3.2.14 Lemma. Let v ∈ H2m+1(Rd), L ≤ 2n ≤ 2m. Then the linear opera-
tors An(v), n ∈ N, are generators of C0-semigroups (Tn(t))t≥0 of contractions
on Hn

A(v) with Tn(t) = T (t)|Hn
A(v)

.

Proof. Let f ∈ Hn+1
A(v). We first show that (Tn(t))t≥0 forms a C0-semigroup

of contractions on Hn
A(v). Note that by general semigroup theory (see for

example [25, p.5]) f ∈ D(A(v)) implies T (t)f ∈ D(A(v)), therefore f ∈ Hn+1
A(v)

implies T (t)f ∈ Hn+1
A(v) and T (t)A(v)f ∈ Hn

A(v). Theorem 3.2.8 gives the result
in case n = 1. Thus, we get by induction

∥Tn+1(t)f∥n+1 = ∥Tn(t)f∥n + ∥Tn(t)A(v)f∥n
≤ ∥Tn(t)∥L(Hn

A(v)
)∥f∥n + ∥Tn(t)∥L(Hn

A(v)
)∥A(v)f∥n

≤ ∥f∥n + ∥A(v)f∥n = ∥f∥n+1.



62 CHAPTER 3. EXISTENCE OF SOLUTIONS FOR THE LIMIT PDE

And the strong continuity follows inductively from

∥Tn+1(t)f − f∥n+1 = ∥Tn(t)f − f∥n + ∥Tn(t)A(v)f − A(v)f∥n −→
t→0

0

This shows (Tn(t))t≥0 is a C0-semigroup. Let Cn denote the generator of
(Tn(t))t≥0, n ∈ N. Since the space Hn

A(v) is continuously embedded in L2(Rd)
we get

D(Cn) :=

{
u ∈ Hn

A(v)

∣∣∣∣ Hn
A(v)- lim

h→0

Tn(h)u− u

h
exists

}
⊆
{
u ∈ Hn

A(v)

∣∣∣∣ L2(Rd)- lim
h→0

Tn(h)u− u

h
exists

}
⊆ D(An(v))

and

Cnu = Hn
A(v)- lim

h→0

Tn(h)u− u

h

= L2(Rd)- lim
h→0

Tn(h)u− u

h
= An(v), u ∈ D(Cn).

Therefore Cn is a restriction of An(v) and thus it remains only to show
D(An(v)) ⊆ D(Cn). Choose λ > 0 large enough such that λ ∈ ρ(Cn) ∩
ρ(An(v)) and the resolvent RCn

λ , R
An(v)
λ is given by (see [25, p.8])

RCn
λ u =

∫
s≥0

e−λsT (s)u ds = R
An(v)
λ u

for all u ∈ Hn
A(v). Now we get for any ũ ∈ D(An(v))

ũ = R
An(v)
λ (λ− A(v))ũ = RCn

λ (λ− A(v))ũ

and since the resolvent RCn
λ maps into D(Cn) we have ũ ∈ D(Cn). This

completes the proof of D(An(v)) ⊆ D(Cn).

Combining all results of this section we arrive at:

3.2.15 Corollary. For all v ∈ H2m+1
+ (Rd) the operator An(v), L ≤ 2n ≤ 2m,

generates a positivity preserving C0-semigroup of contractions on the Sobolev
space H2n(Rd).

Proof. Lemma 3.2.14 shows that An(v) generates C0-semigroup of contrac-
tions on the Sobolev space Hn

A(v). Changing to the equivalent norm on

H2n(Rd) preserves the contraction property. Due to theorem 3.2.8 the semi-
groups are positivity preserving.



3.3. MODEL WITH DIFFUSION 63

3.3 Model with diffusion

3.3.1 Lemma. Let L ≤ 2n ≤ 2m. For all v ∈ H2m+1
+ (Rd) the operator

An(v) : H
2n+2(Rd) → H2n(Rd)

is bounded. Furthermore, the operator norm ∥An(v)∥L(H2n+2,H2n) is bounded
by a constant that depends only on σ∞, G and ∥v∥H2m+1.

Proof. Let ρ ∈ H2n+2 and v ∈ H2m+1
+ (Rd). Taking Proposition 1.4.4 (c) into

account, we obtain

∥A(v)ρ∥H2n ≤ ∥∇ · (σ
2
∞
2

+ v)∇ρ∥H2n + ∥∇ · (∇G ∗ v)ρ∥H2n

≤ ∥(∇v) · (∇ρ)∥H2n + ∥(σ
2
∞
2

+ v)∆ρ∥H2n

+ ∥(∆G ∗ v)ρ∥H2n + ∥(∇G ∗ v) · (∇ρ)∥H2n

≤ ∥∇v∥H2n∥∇ρ∥H2n + ∥σ
2
∞
2

+ v∥H2n∥∆ρ∥H2n

+ ∥(∆G ∗ v)∥H2n∥ρ∥H2n + ∥∇G ∗ v∥H2n∥∇ρ∥H2n

≤ C∥ρ∥H2n+2 .

Therefore, we see A(v) ∈ L(H2n+2(Rd), H2n(Rd)). Moreover, because of
∥∇v∥H2n ≤ ∥v∥H2m+1 and ∥v∥H2n ≤ ∥v∥H2m+1 , the constant C depends only
on σ∞, G and ∥v∥H2m+1 .

3.3.2 Lemma. There exists a constant C > 0 such that for all u, v ∈
H2m+1

+ (Rd), we have

∥A(v)− A(u)∥L(H2n+2,H2n) ≤ C∥v − u∥H2n+1 , L ≤ 2n ≤ 2m.

Proof. Let ρ ∈ H2n+2(Rd), then we get as in the proof of lemma 3.3.1

∥A(v)ρ− A(u)ρ∥H2n ≤ ∥∇ · (v − u)∇ρ∥H2n + ∥∇ · (∇G ∗ (v − u))ρ∥H2n

≤ ∥∇(v − u)∥H2n∥∇ρ∥H2n + ∥v − u∥∞∥∆ρ∥H2n

+ ∥(∆G ∗ (v − u))∥H2n∥ρ∥H2n

+ ∥∇G ∗ (v − u)∥H2n∥∇ρ∥H2n

≤ C∥v − u∥H2n+1∥∇ρ∥H2n + C∥v − u∥H2n+1∥∆ρ∥H2n

+ C∥v − u∥H2n+1∥ρ∥H2n

+ C∥v − u∥H2n+1∥∇ρ∥H2n

≤ C∥v − u∥H2n+1∥ρ∥H2n+2 .

Therefore, ∥A(v)− A(u)∥L(H2n+2,H2n) ≤ C∥v − u∥H2n+1 .
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3.3.3 Lemma. For all v ∈ C([0, T ], H2m
+ (Rd)), L ≤ 2m, the family of linear

operators A(v(t)), t ∈ [0, T ], is stable in L2(Rd).

Proof. By theorem 3.2.8 A(v(t)), t ∈ [0, T ], is a family of generators of con-
traction semigroups and therefore clearly stable.

3.3.4 Lemma. For all v ∈ C([0, T ], H2m+1
+ (Rd)), L ≤ 2m, satisfying

∥v(t)− v(s)∥H2m+1 ≤ eC|t−s| − 1 (3.12)

the family An(v(t)), t ∈ [0, T ], is a stable family of generators of C0-semi-
groups on H2n(Rd) for all L ≤ 2n ≤ 2m.

Proof. By corollary 3.2.15 every An(v(t)), t ∈ [0, T ], is a generator of a con-
traction semigroup on H2n(Rd) with respect to the norm ∥ · ∥n,v(t). To apply
proposition 3.1.17 we have to show that

∥ρ∥n,v(t) ≤ ∥ρ∥n,v(s)eCm|t−s| (3.13)

holds for all t, s ∈ [0, T ] and all ρ ∈ H2n(Rd). Using corollary 3.2.11 and
lemma 3.3.2, we obtain for all L ≤ 2n ≤ 2m

∥An−1(v(t))− An−1(v(s))∥L(Hn
A(v(s))

,Hn−1
A(v(s))

) ≤ C∥v(t)− v(s)∥H2n−1

≤ C∥v(t)− v(s)∥H2m+1

≤ C(eC|t−s| − 1)

≤ eC|t−s| − 1

This gives

∥[A(v(t))− A(v(s))]ρ∥n−1,v ≤ (eC|t−s| − 1)∥ρ∥n,v (3.14)

Now, in case n = 1, equation (3.13) follows from

∥ρ∥1,v(t) = ∥ρ∥L2 + ∥A(v(t))ρ∥L2

≤ ∥ρ∥L2 + ∥A(v(s))ρ∥L2 + ∥[A(v(t))− A(v(s))]ρ∥L2

≤ ∥ρ∥1,v(s)(1 + eC|t−s| − 1)

≤ ∥ρ∥1,v(s)eC|t−s|, ρ ∈ H2(Rd).

In case n > 1, suppose that we have already shown that there exists a
constant Cn−1 > 0 such that

∥ρ̃∥n−1,v(t) ≤ ∥ρ̃∥n−1,v(s)e
Cn−1|t−s|.
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holds for all t, s ∈ [0, T ] and all ρ̃ ∈ H2(n−1)(Rd). Since the operator A(v(t))
maps H2n(Rd) into H2(n−1)(Rd), we get for any ρ ∈ H2n(Rd)

∥A(v(t))ρ∥n−1,v(t) ≤ ∥A(v(t))ρ∥n−1,v(s)e
Cn−1|t−s|.

This together with equation (3.14) implies

∥ρ∥n,v(t) = ∥ρ∥n−1,v(t) + ∥A(v(t))ρ∥n−1,v(t)

≤
(
∥ρ∥n−1,v(s) + ∥A(v(t))ρ∥n−1,v(s)

)
eCn−1|t−s|

≤
(
∥ρ∥n−1,v(s) + ∥A(v(s))ρ∥n−1,v(s)

+ ∥[A(v(t))− A(v(s))]ρ∥n−1,v(s)

)
eCn−1|t−s|

=
(
∥ρ∥n,v(s) + ∥[A(v(t))− A(v(s))]ρ∥n−1,v(s)

)
eCn−1|t−s|

≤
(
∥ρ∥n,v(s) + (eC|t−s| − 1)∥ρ∥n,v(s)

)
eCn−1|t−s|

≤ ∥ρ∥n,v(s)(1 + eC|t−s| − 1)eCn−1|t−s| ≤ ∥ρ∥n,v(s)eCn|t−s|

Note that the constants Cn, n ∈ N, can be chosen such that they are inde-
pendent of t and s since the continuity of v implies that ∥v(t)∥H2m+1 ≤ R
for some R ≥ 0. Thus, we can apply corollary 3.2.11. This gives us stability
with respect to the norm ∥ · ∥n,v(T ). Changing to the equivalent norm ∥ · ∥H2n

preserves the stability.

3.3.5 Corollary. Let m,n ∈ N0 such that L ≤ 2n ≤ 2n+ 2 ≤ 2m. Then:

(a) Let ρ ∈ C([0, T ], H2m+1
+ (Rd)) be a function with values in a bounded set

B such that equation (3.12) holds. Then there exists a unique evolution
system {Uρ(t, s), 0 ≤ s ≤ t ≤ T} in H2n(Rd) and constants ω,M such
that

∥Uρ(t, s)∥L(H2n(Rd)) ≤Meω(t−s) (3.15)

∂+t Uρ(t, s)y
∣∣
t=s

= A(ρ(s))y (3.16)

∂sUρ(t, s)y = −Uρ(t, s)A(ρ(s))y (3.17)

for all 0 ≤ s ≤ t ≤ T and all y ∈ H2n+2(Rd).

(b) Uρ(t, s)H
2n+2(Rd) ⊆ H2n+2(Rd) and ∥Uρ(t, s)∥H2n+2 ≤ M̃eβ̃(t−s) for

some constants M̃ ≥ 1, β̃ ≥ 0. Furthermore, Uρ(t, s) is weakly contin-
uous in t, s with respect to H2n+2(Rd).

(c) ∂+t Uρ(t, s)y = A(ρ(s))Uρ(t, s)y for y ∈ H2n+2(Rd) and s ≤ t.
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(d) ∂tUρ(t, s)y exists for almost every t and

∂tUρ(t, s)y = A(ρ(t))Uρ(t, s)y, y ∈ H2n+2(Rd)

holds for almost every t.

(e) Furthermore, there exists a constant K > 0 such that for all ρ1, ρ2 ∈
C([0, T ], H2m+1

+ (Rd)) with values in B and satisfying (3.12) and all
y ∈ H2n+2(Rd) we have

∥Uρ1(t, s)y − Uρ2(t, s)y∥H2n ≤ K∥y∥H2n+2

∫ t

s

∥ρ1(r)− ρ2(r)∥H2n dr

(3.18)

Proof. In lemma 3.3.4 it is shown that (An(ρ(t)))t∈[0,T ] is a stable family
of generators of C0-semigroups on H2n(Rd). Since 2n + 2 ≤ 2m, corollary
3.2.15 gives us H2n+2(Rd) is A(ρ(t))-admissible, t ∈ [0, T ], and the family
of parts in H2n+2(Rd) is given by linear operators (An+1(ρ(t)))t∈[0,T ] which
is again by lemma 3.3.4 a stable family of generators of C0-semigroups on
H2n+2(Rd). Lemma 3.3.1 implies A(ρ(t)) ∈ L(H2n+2(Rd), H2n(Rd)). Now let
t1, t2 ∈ [0, T ]. From lemma 3.3.2 we obtain

∥A(ρ(t1))− A(ρ(t2))∥L(H2n+2,H2n) ≤ C∥ρ(t1)− ρ(t2)∥H2n+1 −→
t1→t2

0.

It follows that t 7→ A(ρ(t)) is continuous with respect to ∥ · ∥L(H2n+2,H2n).
Hence conditions (i)-(iv) from theorem 3.1.19 are fulfilled.

It remains to show that equation (3.18) holds. This is proved in [25,
lemma 4.4, p.202].

3.3.6 Definition. Let m,n ∈ N with 2n + 2 ≤ 2m. A familiy of operators
(Jj)j∈N such that

(a) Jj : H
2n(Rd) → H2m+1(Rd) is bounded for all j ∈ N,

(b) ∥Jj∥L(H2n) ≤ C1 for all j ∈ N,

(c) ∥Jj+1 − Jj∥L(H2n+2,H2n) ≤ C
j2

for all j ∈ N,

(d) f ≥ 0 implies Jjf ≥ 0 for all j ∈ N,

(e) Jj −→
j→∞

id strongly in L(H2n)

is called a positive mollifier

In the following theorem we use 2m = 2n+ 2 and a positive mollifier (Jj)j.



3.3. MODEL WITH DIFFUSION 67

3.3.7 Theorem. Let L ≤ 2n, ρ0 ∈ H2n+2
+ (Rd) and let B := B(ρ0, r) be a

ball in the hilbert space H2n(Rd) around ρ0 with radius r > 0. Then there
exists a T̃ > 0 such that the Cauchy problem

∂tρ(x, t) = A(ρ(·, t))ρ(x, t), t ∈ [0, T̃ ]

ρ(x, 0) = ρ0(x)
(3.19)

has a unique solution ρ ∈ C([0, T̃ ], H2n(Rd)) with ρ(t) ∈ B for all t ∈ [0, T̃ ]
in the sense that ∂tρ(·, t) exists for almost every t and (3.19) holds for almost
every t.

Proof. (Step 0) For all x ∈ C([0, T ], H2n
+ (Rd)) with x([0, T ]) ⊆ B and such

that equation (3.12) holds. let UJjx denote the unique evolution system
associated to the operator family (A(Jjx(t))), t ∈ [0, T ] that is given by
theorem 3.3.5. Due to (a) of 3.3.6 UJjx(t, s), 0 ≤ s ≤ t ≤ T is well-defined.

(Step 1) Choose T̃ ≤ T such that

(i) max0≤t≤T̃ ∥Uρ0(t, 0)ρ0 − ρ0∥H2n ≤ r
3
;

(ii) T̃ ≤ 1
3
(K(C1 + 1)∥ρ0∥H2n+2)−1 if ∥ρ0∥H2n+2 > 0.

Here, the constant K in (ii) is the same as in equation (3.18) and C1 is the
constant from (b) of 3.3.6.

Choose j0 such that

∥Jjρ0 − ρ0∥H2n ≤ C1r, for all j ≥ j0. (3.20)

Let A denote the set of all functions ρ ∈ C([0, T̃ ], H2n(Rd)) such that

(a) ρ(0) = ρ0;

(b) ρ([0, T ]) ⊆ B;

(c) ρ(t) is non-negative, t ∈ [0, T̃ ];

(d) there exists a C > 0 such that ∥ρ(t) − ρ(s)∥H2n(Rd) ≤ C|t − s|, t, s ∈
[0, T̃ ].

We define a family of mappings

Φj : A → C([0, T̃ ], H2n(Rd)); (Φjρ)(t) := UJjρ(t, 0)ρ0, j ∈ N. (3.21)

Because of property (d) and 3.3.6 (a), we can apply corollary 3.3.5. Hence,
Φj is well-defined.
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(Step 2) Next, we want to show that Φj maps A into A for all j ≥ j0.
Clearly, from property 3.1.18 (a) we get Φjρ(0) = UJjρ(0, 0)ρ0 = ρ0. The
fact that UJjρ is positivity preserving, see theorem 3.1.19 and (d) of 3.3.6,
directly implies Φjρ(t) is non-negative for all t.

Furthermore, we have for all j ≥ j0

∥Jjρ(τ)− ρ0(τ)∥H2n ≤ ∥Jjρ(τ)− Jjρ0(τ)∥H2n + ∥Jjρ0(τ)− ρ0(τ)∥H2n

≤ C1r + C1r

This implies

∥(Φjρ)(t)− ρ0∥H2n = ∥UJjρ(t, 0)ρ0 − ρ0∥H2n

≤ ∥UJjρ(t, 0)ρ0 − Uρ0(t, 0)ρ0∥H2n + ∥Uρ0(t, 0)ρ0 − ρ0∥H2n

≤ K∥ρ0∥H2n+2

∫ t

0

∥Jjρ(τ)− ρ0(τ)∥H2n dτ +
r

3

≤ T̃K∥ρ0∥H2n+22C1r +
r

3

≤ 2r

3
+
r

3
= r,

i.e., we have shown that (Φjρ)([0, T ]) ⊆ B.
To see that Φj(A) ⊂ A holds it remains to show

∥(Φjρ)(t)− (Φjρ)(s)∥H2n ≤ C|t− s|.

Using equation (3.17), we get (s < t)

(Φjρ)(t)− (Φjρ)(s) = UJjρ(t, 0)ρ0 − UJjρ(s, 0)ρ0

= UJjρ(t, s)UJjρ(s, 0)ρ0 − UJjρ(s, 0)ρ0

= −
∫ t

s

UJjρ(t, τ)A(Jjρ(τ))UJjρ(s, 0)ρ0dτ.

(3.22)

From equation (3.15) we obtain

∥UJjρ(t, τ)∥L(H2n(Rd)) ≤Meω|t−τ | ≤MeωT̃ .

And from proposition 3.3.5 (b) and ∥ρ0∥H2n+2 <∞, we get

∥UJjρ(s, 0)ρ0∥H2n+2(Rd) ≤ C.

Using the last two inequalities and lemma 3.3.1, we can estimate equation
(3.22) in H2n(Rd):

∥(Φjρ)(t)− (Φjρ)(s)∥H2n =

∥∥∥∥∫ t

s

UJjρ(t, τ)A(Jjρ(τ))UJjρ(s, 0)ρ0dτ

∥∥∥∥
H2n

≤ |t− s|CMeωT̃ ≤ C|t− s|
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This completes the proof of Φj(A) ⊂ A.
(Step 3) Let ∥·∥∞ denote the usual supremum norm on the Banach space

C([0, T̃ ], H2n(Rd)), i.e.

∥ρ∥∞ := sup
t∈[0,T̃ ]

∥ρ(t)∥H2n(Rd), ρ ∈ C([0, T̃ ], H2n(Rd)).

Define x0 ∈ A by x0(t) := ρ0 for all t and

xj+1 := Φj(xj) ∈ A for all j ∈ N0

Using equation (3.18), we obtain

∥xj+1(t)− xj(t)∥H2n = ∥Φjxj(t)− Φj−1xj−1(t)∥H2n

= ∥UJjxj(t, 0)ρ0 − UJj−1xj−1
(t, 0)ρ0∥H2n

≤ K∥ρ0∥H2n+2

∫ t̃

0

∥Jjxj(τ)− Jj−1xj−1(τ)∥H2n dτ

≤ KT̃∥ρ0∥H2n+2(∥Jj − Jj−1∥L(H2n)∥xj∥∞
+ ∥Jj−1∥L(H2n)∥xj − xj−1∥∞)

Taking the supremum and using property (c) of definition 3.3.6, property (ii)
from the definition of T̃ and ∥xj∥∞ ≤ r, we get

∥xj+1 − xj∥∞ ≤ C

j2
+

1

3
∥xj − xj−1∥∞. (3.23)

Applying lemma 3.1.20, we obtain

∞∑
j=0

∥xj+1 − xj∥∞ <∞. (3.24)

Thus, (xj)j converges towards a function ρ ∈ C([0, T̃ ], H2n(Rd)). Moreover,
ρ satisfies (a)-(c) from the definition of A. Using corollary 3.3.5 (b) and (d),
we get ρ(t), xj(t) ∈ H2n+2(Rd) and for almost every t ∈ [0, T̃ ] uniformly

∥∂txj(t)− A(ρ(t))ρ(t)∥H2n

≤ ∥[A(Jj−1xj−1(t))− A(ρ(t))]xj(t)∥H2n

+ ∥A(ρ(t))[xj(t)− ρ(t)]∥H2n

≤ rC∥Jj−1xj−1(t)− ρ(t)∥H2n+1 + C∥xj(t)− ρ(t)∥H2n

−→
j→∞

0.

Using corollary 3.3.5 (d) one can conclude that equation (3.19) holds for
almost every t.
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3.3.8 Corollary. Suppose assumption (AG) holds. Then ρ0 ∈ H2n+2(Rd)
with 2n > L+ 1 + d

2
is a sufficient condition for (A1).

Proof. This is a direct consequence of theorem 3.3.7.

3.4 Predator system

In this section we examine the Eulerian limit partial differential equation
for a system of particles with diffusion and a stochastic predator. Particle
systems of this type were described in section 2.2. Most of the proofs in this
section are very similar to the corresponding ones in case without a predator.
The operator A(v) from the previous sections gets replaced by A(v, p) which
is given by

A(v, p)ρ := ∇ · [(σ
2
∞
2

+ v)∇]ρ−∇ · ((∇G ∗ v)ρ)

+∇ · ((∇H ∗ δp)ρ), ρ ∈ D(A(v, p)), p ∈ Rd, v ∈ H1
+(Rd).

with D(A(v, p)) := D(A(v)) = H2(Rd). We show the existence of a solution
of the Eulerian limit system

∂tρ(x, t) = ∇ · [(σ
2
∞
2

+ ρ(x, t))∇]ρ(x, t)−∇ · ((∇G ∗ ρ)ρ(x, t))

+∇ · ((∇H ∗ δP∞(t))ρ(x, t)), t ∈ [0,∞)

ρ(x, 0) = ρ0(x)

∂tP∞(t) =

∫
Rd

ρ(x, t)w(x− P∞(t)) dx

P∞(0) = p0.

(3.25)

3.4.1 Definition. Let m ∈ N. We say a pair (ρ(t), P∞(t)), t ∈ [0, T ], of
functions is a H2m(Rd)−valued solution of the system (3.25) if the following
two conditions are satisfied.

(i) ρ(t) ∈ C([0, T ], H2m(Rd)) and P∞ ∈ C1([0, T ],Rd) and ∂tρ(t) exists for
almost every t ∈ [0, T ].

(ii) Equation (3.25) holds for the pair (ρ(t), P∞(t)) and almost every t ∈
[0, T ].

The following additional assumption on the repulsion potential H of the
predator is required:
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(AH) ∆H ≤ 0,∇H ∈ H2m+1(Rd) and

∥∇H(· − x)−∇H(· − y)∥H2m+1 ≤ C|x− y| for all x, y ∈ Rd.

We decompose the operator A(v, p) into

A(v, p) = A(v) + L(p).

with
L(p)ρ := ∇ · ((∇H ∗ δp)ρ), ρ ∈ D(L) (3.26)

and D(L) = D(A(v)) = D(A(v, p)) = H2(Rd). The operator A(v) was
already studied in detail in the previos sections.

3.4.2 Lemma. For all v ∈ HL
+(Rd), u ∈ H2(Rd) and all p ∈ Rd we have∫

Rd

uA(v, p)u dx ≤ 0.

Proof. Taking lemma 3.2.3 into account, it only remains to show that∫
Rd

uL(p)u dx ≤ 0.

Using partial integration and the identity u(x)∇u(x) = 1
2
∇u2(x), we obtain

as in the proof of lemma 3.2.3∫
Rd

u [∇ · (∇H ∗ δp)u] dx = −
∫
Rd

(∇u) · [(∇H ∗ δp)u] dx

= −1

2

∫
Rd

(∇H ∗ δp) · ∇u2 dx

=
1

2

∫
Rd

(∆H ∗ δp)u2 dx.

Assumption (AH) implies (∆H ∗ δp) ≤ 0. Hence,
∫
Rd uL(p)u dx ≤ 0.

3.4.3 Lemma. For all v ∈ HL
+(Rd) and all p ∈ Rd the linear operator A(v, p)

is dissipative on L2(Rd).

Proof. Using lemma 3.4.2 and replacing A(v) by A(v, p) in the proof of lemma
3.2.4, we obtain that A(v, p) is a dissipative operator.
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3.4.4 Lemma. For all v ∈ HL
+(Rd) and all p ∈ Rd the operator A(v, p)

satisfies the positive maximum principle.

Proof. Choose ρ ∈ C∞
c (Rd) and x0 ∈ Rd such that ρ(x0) = supx∈Rd ρ(x) ≥

0. Because of lemma 3.2.7, it is again sufficient to give a proof for L(p).
Assumption (AH) implies (∆H ∗ δp)(x0) ≤ 0. Using this and (∇ρ)(x0), we
obtain

(L(p)ρ)(x0) = ((∆H ∗ δp)ρ)(x0) + ((∇H ∗ δp) · ∇ρ)(x0) ≤ 0.

3.4.5 Lemma. For all v ∈ HL
+(Rd) and all p ∈ Rd there exists a λ > 0 such

that the range, R(λ− A(v, p)), of λ− A(v, p) is L2(Rd).

Proof. Writing the linear operator A(v, p) in the form (3.2) we get akl =

δkl

(
σ2
∞
2

+ v
)
. Using the positivity of v, we can conclude exactly as in lemma

3.2.6
d∑

k,l=1

akl(x)ξkξl =
d∑

k=1

(
σ2
∞
2

+ v

)
|ξk|2 ≥

σ2
∞
2
|ξ|2.

Since σ∞ > 0, we obtain that A(v, p) is a uniformly elliptic second order
differential operator and the result follows from Theorem 3.1.5.

3.4.6 Theorem. For all v ∈ HL
+(Rd) and all p ∈ Rd the operator A(v, p)

generates a positivity preserving C0-semigroup of contractions on L2(Rd).

Proof. In lemma 3.4.3 we have shown that A(v, p) is a dissipative linear
operator on L2(Rd). Furthermore lemma 3.4.5 says that A(v, p) satisfies
the range condition of the Lumer-Phillips-Theorem 3.1.9. Hence, A(v, p) is
the generator of a C0-semigroup of contractions on L2(Rd). From lemma
3.4.4 together with lemma 3.1.13 follows that this semigroup is positivity
preserving.

3.4.7 Definition. Let m ∈ N with L ≤ 2m. For every v ∈ H2m
+ (Rd)

and every point p ∈ Rd we inductively define a scale of abstract Sobolev
spaces (Hn

A(v,p), ∥ · ∥n), n ≤ m, associated to the linear operator A(v, p) by

H1
A(v,p) := H2(Rd) and

Hn
A(v,p) := D((A(v, p))n)

:= {f ∈ D((A(v, p))n−1)|A(v, p)f ∈ D((A(v, p))n−1)}.

The family of norms is given by

∥ · ∥0,v,p := ∥ · ∥L2 and ∥ · ∥n,v,p := ∥ · ∥n−1,v,p + ∥A(v, p) · ∥n−1,v,p
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Since A(v, p) is a uniformly elliptic second order differential operator, we
can show the following analogous result to corollary 3.2.11.

3.4.8 Corollary. Let L ≤ 2n ≤ 2m and all R > 0 we have H2n(Rd) =
Hn
A(v,p) and there exist constants C1;n, C2;n > 0 such that for all v ∈ H2m+1

+ (Rd)

with ∥v∥H2m+1 ≤ R and all p ≤ R, we have

C1;n∥ · ∥H2n ≤ ∥ · ∥n,v,p ≤ C2;n∥ · ∥H2n (3.27)

3.4.9 Definition. Let An(v, p) denote the part of A(v, p) in Hn
A(v,p), i.e. we

have An(v, p)f := A(v, p)f for all

f ∈ D(An(v, p)) := {f ∈ Hn
A(v,p)|A(v, p)f ∈ Hn

A(v,p)} = Hn+1
A(v,p).

3.4.10 Corollary. For all v ∈ H2m+1
+ (Rd) and all p ∈ Rd the operator

An(v, p) generates a positivity preserving C0-semigroup of contractions on
the Sobolev space H2n(Rd).

Proof. Replacing A(v) by A(v, p) in the proof of 3.2.14 and of corollary 3.2.15,
we obtain the result.

3.4.11 Lemma. Let L ≤ 2n ≤ 2m. For all v ∈ H2m+1
+ (Rd), p ∈ Rd the

operator
An(v, p) : H

2n+2(Rd) → H2n(Rd)

is bounded. Moreover, the operator norm ∥An(v, p)∥L(H2n+2,H2n) is bounded
by a constant that depends only on σ∞, G,H and ∥v∥H2m+1.

Proof. Let ρ ∈ H2n+2(Rd) and v ∈ H2m+1(Rd). Taking lemma 3.3.1 into
account it is sufficient to show ∥L(p)ρ∥H2n ≤ C∥ρ∥H2n+2 . This follows from

∥L(p)ρ∥H2n ≤ ∥∇ · (∇H ∗ v)ρ∥H2n

≤ ∥(∆H ∗ δp)ρ∥H2n + ∥(∇H ∗ δp) · (∇ρ)∥H2n

≤ ∥(∆H ∗ δp)∥H2n∥ρ∥H2n + ∥∇H ∗ δp∥H2n∥∇ρ∥H2n

≤ C∥ρ∥H2n+2 .

with
C := max{∥(∆H ∗ δp)∥H2n , ∥∇H ∗ δp∥H2n} ≤ ∥∇H∥H2n+1 .

Therefore, we see that L(p) ∈ L(H2n+2(Rd), H2n(Rd)).

3.4.12 Lemma. There exists a constant C > 0 such that for all u, v ∈
H2m+1

+ (Rd), L ≤ 2m and all p, q ∈ Rd we have

∥A(v, p)− A(u, q)∥L(H2n+2,H2n) ≤ C(∥v − u∥H2n+1 + |p− q|)), L ≤ 2n ≤ 2m.
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Proof. Let ρ ∈ H2n+2(Rd). Then using assumption (AH), we obtain

∥L(p)ρ− L(q)ρ∥H2n ≤ ∥∇ · (∇H ∗ δp −∇H ∗ δq)ρ∥H2n

≤ ∥(∆H ∗ δp −∆H ∗ δq)ρ∥H2n

+ ∥(∇H ∗ δp −∇H ∗ δq) · ∇ρ∥H2n

≤ ∥∆H ∗ δp −∆H ∗ δq∥H2n∥ρ∥H2n

∥∇H ∗ δp −∇H ∗ δq∥H2n∥∇ρ∥H2n

≤ C|p− q|∥ρ∥H2n+2 .

(3.28)

We get from equation (3.28) and lemma 3.3.2

∥A(v, p)ρ− A(v, p)ρ∥H2n ≤ ∥A(v)ρ− A(v)ρ∥H2n + ∥L(p)ρ− L(p)ρ∥H2n

≤ C(∥v − u∥H2n+1 + |p− q|).

3.4.13 Lemma. For all functions x ∈ C([0, T ], H2m+1
+ (Rd)), L ≤ 2m and all

p ∈ C([0, T ],Rd) satisfying

∥x(t)− x(s)∥H2m+1 + |p(t)− p(s)| ≤ eC|t−s| − 1 (3.29)

the family An(x(t), p(t)), t ∈ [0, T ], is a stable family of generators of C0-
semigroups on H2n(Rd) for all L ≤ 2n ≤ 2m.

Proof. One can conclude the result as in the proof of lemma 3.3.4.

3.4.14 Corollary. Let m,n ∈ N such that L ≤ 2n ≤ 2n+ 2 ≤ 2m. Then:

(a) Let ρ ∈ C([0, T ], H2m+1
+ (Rd)) be a function with values in a bounded

set B and let p ∈ C([0, T ],Rd) such that equation (3.29) holds. Define
ψ := (ρ, p). Then there exists a unique evolution system {Uψ(t, s), 0 ≤
s ≤ t ≤ T} in H2n(Rd) and constants ω,M such that

∥Uψ(t, s)∥L(H2n(Rd)) ≤Meω(t−s) (3.30)

∂+t Uψ(t, s)y
∣∣
t=s

= A(ρ(s), p(s))y (3.31)

∂sUψ(t, s)y = −Uψ(t, s)A(ρ(s), p(s))y (3.32)

for all 0 ≤ s ≤ t ≤ T and all y ∈ H2n+2(Rd).

(b) Uψ(t, s)H
2n+2(Rd) ⊆ H2n+2(Rd) and ∥Uψ(t, s)∥H2n+2 ≤ M̃eβ̃(t−s) for

some constants M̃ ≥ 1, β̃ ≥ 0. Furthermore, Uψ(t, s) is weakly contin-
uous in t, s with respect to H2n+2(Rd).
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(c) ∂+t Uψ(t, s)y = A(ρ(s), p(t))Uψ(t, s)y for y ∈ H2n+2(Rd) and s ≤ t.

(d) ∂tUψ(t, s)y exists for almost every t and

∂tUψ(t, s)y = A(ρ(t), p(t))Uψ(t, s)y, y ∈ H2n+2(Rd)

holds for almost every t.

(e) Furthermore, there exists a constant K > 0 such that for all ψ1, ψ2 ∈
C([0, T ], H2n+1

+ (Rd)×Rd) such that ψi = (ρi, pi) and ρi([0, t]) ⊆ B, i =
1, 2 and ρi satisfying (3.29) and all y ∈ H2n+2)(Rd) we have

∥Uψ1(t, s)y − Uψ2(t, s)y∥H2n

≤ K∥y∥H2n+2

∫ t

s

(∥ρ1(τ)− ρ2(τ)∥H2n + |p1(τ)− p2(τ)|) dr (3.33)

Proof. In lemma 3.4.13 it is shown that (An(ρ(t), p(t)))t∈[0,T ] is a stable family
of generators of C0-semigroups on H2n(Rd). Furthermore, in 3.4.10 we have
seen that H2n+2(Rd) is A(ρ(t), p(t))-admissible, t ∈ [0, T ], and the family of
parts in H2n+2(Rd) is given by linear operators (An+1(ρ(t), p(t)))t∈[0,T ] which
is again by lemma 3.4.13 a stable family of generators of C0-semigroups on
H2n+2(Rd). Lemma 3.4.11 implies

A(ρ(t), p(t)) ∈ L(H2n+2(Rd), H2n(Rd)).

Now let t1, t2 ∈ [0, T ]. From lemma 3.4.12 we obtain

∥A(ρ(t1), p(t1)))− A(ρ(t2), p(t2))∥L(H2n+2,H2n)

≤ C∥ρ(t1)− ρ(t2)∥H2n+1 + |p(t1)− p(t2)| −→
t1→t2

0.

It follows that t 7→ A(ρ(t), p(t)) is continuous with respect to ∥·∥L(H2n+2,H2n).
Hence conditions (i)-(iv) from theorem 3.1.19 are fulfilled.

Applying lemma 3.4.11 to [25, equation (4.14), p.202] gives (3.33).

3.4.15 Theorem. Let L ≤ 2n, ρ0 ∈ H2n+2(Rd), p0 ∈ Rd and let B :=
B(ρ0, r) a ball in H2n(Rd) around ρ0 with radius r > 0. Then there exists
T̃ > 0 such that the system

∂tρ(x, t) = A(ρ(·, t), P∞(t))ρ(x, t), t ∈ [0, T̃ ],

ρ(x, 0) = ρ0(x),

∂tP∞(t) =

∫
Rd

ρ(x, t)w(x− P∞(t)) dx,

P∞(t) = p0,

(3.34)

has a unique solution on [0, T̃ ] in the sense of definition 3.4.1 with ρ([0, T̃ ]) ⊆
B.



76 CHAPTER 3. EXISTENCE OF SOLUTIONS FOR THE LIMIT PDE

Proof. This proof is closely related to the proof of the existence theorem in
the case without a predator 3.3.7. The position of the predator P∞ adds a
dimension to the original Cauchy problem 3.1 that was considered in the pre-
vious section. Since the law of motion of the predator is different compared
to the laws motion of the ordinary particles Xk

N , k = 1, . . . , N, we have to
treat this additional dimension separately during this proof.

(Step 0) For all ψ = (x, p) ∈ C([0, T ], H2n
+ (Rd) × Rd) with x([0, T ]) ⊆ B

and such that equation (3.29) holds, let Uj,ψ denote the unique evolution
system associated to the operator family (A(Jjx(t), p(t))), t ∈ [0, T ] that is
given by theorem 3.4.14. Moreover, let Uψ0 denote the unique evolution
system associated to the operator A(ρ0, p0).

(Step 1) Choose T̃ ≤ T such that

(i) max0≤t≤T̃ ∥Uψ0(t, 0)ρ0 − ρ0∥H2n ≤ r
3
;

(ii) T̃ ≤ 1
4
(K(C1 + 1)∥ρ0∥H2n+2)−1 if ∥ρ0∥H2n+2 > 0;

(iii) T̃ ≤ 1
8
(rℓ)−1;

(iv) T̃ ≤ 1
8
∥w∥−1

L2 .

Here, the constant K in (ii) is the same as in equation (3.18), C1 si from (b)
of 3.3.6 and the constant ℓ in (iii) is given by the constant on the right-hand
side of equation (2.51).

Choose j0 such that

∥Jjρ0 − ρ0∥H2n ≤ C1r, for all j ≥ j0. (3.35)

Let A denote the set of all functions

ψ = (ρ, g) ∈ C([0, T̃ ], H2n
+ (Rd)× Rd)

such that

(a) ρ(0) = ρ0;

(b) ρ([0, T ]) ⊆ B;

(c) ρ(t) is non-negative for all t ∈ [0, T̃ ];

(d) There exists a C > 0 such that ∥ρ(t) − ρ(s)∥H2n ≤ C|t − s| for all
t, s ∈ [0, T̃ ];

(e) There exists a C > 0 such that |g(t)−g(s)| ≤ C|t−s| for all t, s ∈ [0, T̃ ].
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We define a family of mappings

Φj : A → C([0, T̃ ], H2n(Rd)× Rd), j ∈ N;
(Φjψ)(t) := (Uj,ψ(t, 0)ρ0, g̃) for all ψ = (ρ, g)

where g̃ is the solution of

∂tg̃(t) =

∫
Rd

w(x− g(t))ρ(x, t) dx.

P∞(0) = p0.

Due to property (d) and (e) and 3.3.6 (a), (Jjρ, g) satisfies equation (3.29).
Hence, Uj,ψ is well-defined.

(Step 2) One can conclude exactly as in Step 3 of the proof of theorem
3.3.7 that all points in the range of Φj, j ≥ j0 satisty (a)-(d).

Moreover, we have (t > s)

|g̃(t)− g̃(s)| =
∫ t

s

∫
RRd

w(x− g(τ))ρ(x, τ) dxdτ

≤ (t− s) sup
τ≤T̃

∫
RRd

w(x− g(τ))ρ(x, τ) dx

≤ (t− s) sup
τ≤T̃

∥w∥1/2L2 ∥ρ(·, τ)∥1/2L2

≤ C(t− s)

Thus, (e) holds. This completes the proof of Φj(A) ⊆ A, j ≥ j0.

(Step 3) Now, consider the space H2n(Rd)× Rd equipped with the norm

∥ψ∥H2n×Rd = ∥ρ∥H2n(Rd) + |x|, for all ψ = (ρ, x) ∈ H2n(Rd)× Rd. (3.36)

Furthermore, let ∥ · ∥∞ denotes the supremum norm on the corresponding
space of continuous functions. Obviously, (C([0, T̃ ], H2n(Rd)×Rd), ∥ · ∥∞) is
Banach space.

Define ψ0 ∈ A by ψ0(t) := (ρ0, p0) for all t. and

ψj+1 := (xj, g) := Φj(ψj) ∈ A for all t
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Using equation (3.33), we obtain

∥xj+1(t)− xj(t)∥H2n = ∥Uj,ψj
(t, 0)ρ0 − Uj−1,ψj−1

(t, 0)ρ0∥H2n

≤ K∥ρ0∥H2n+2

∫ t̃

0

(
∥Jjxj(τ)− Jj−1xj−1(τ)∥H2n

+ |gj(τ)− gj−1(τ)|
)
dτ

≤ KT̃∥ρ0∥H2n+2

(
∥Jj − Jj−1∥L(H2n)∥xj∥∞

+ ∥Jj−1∥L(H2n)∥xj − xj−1∥∞

+ ∥gj − gj−1∥∞
)

Taking the supremum and using property (c) of definition 3.3.6, property (ii)
from the definition of T̃ and ∥xj∥∞ ≤ r, we get

∥xj+1 − xj∥∞ ≤ C

j2
+

1

4
∥xj − xj−1∥∞ +

1

4
∥gj − gj−1∥∞

≤ C

j2
+

1

2
∥ψj − ψj−1∥∞.

(3.37)

We have

|g̃j+1(t)− g̃j(t)| =
∣∣∣∣∫ t

0

∂tg̃j+1(s) ds−
∫ t

0

∂tg̃j(s) ds

∣∣∣∣
≤
∣∣∣∣ ∫ t

0

[ ∫
Rd

xj(x, s)w(x− gj(s)) dx

−
∫
Rd

xj−1(x, s)w(x− gj−1(s)) dx

]
ds

∣∣∣∣
≤ I1 + I2

(3.38)

with

I1 :=

∣∣∣∣ ∫ t

0

[ ∫
Rd

xj(x, s)w(x− gj(s)) dx

−
∫
Rd

xj−1(x, s)w(x− gj(s)) dx

]
ds

∣∣∣∣
and

I2 :=

∣∣∣∣ ∫ t

0

[ ∫
Rd

xj−1(x, s)w(x− gj(s)) dx

−
∫
Rd

xj−1(x, s)w(x− gj−1(s)) dx

]
ds

∣∣∣∣.
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Using Schwarz inequality, we obtain for I1

I1 ≤ T̃ sup
s≤T̃

∥xj(s)− xj−1(s)∥L2 sup
s≤T̃

∥w(·)∥L2

≤ 1

8
∥xj − xj−1∥∞.

And for the second part I2 we obtain

I2 ≤ T̃ sup
s≤T̃

∥xj−1(s)∥L2 sup
s≤T̃

∥w(· − gj(s))− w(· − gj−1(s))∥L2

≤ T̃ rℓ∥gj − gj−1∥∞

≤ 1

8
∥ψ1 − ψ2∥∞.

For the last inequality we used property (iii) of T̃ . Therefore

|g1(t)− g2(t)| ≤
1

4
∥ψ1 − ψ2∥∞. (3.39)

Combining the equations (3.37), (3.39), we get

∥ψj+1 − ψj∥∞ ≤ C

j2
+

3

4
∥ψj − ψj−1∥∞.

Applying lemma 3.1.20, we obtain

∞∑
j=0

∥ψj+1 − ψj∥∞ <∞. (3.40)

Thus, (ψj)j converges towards a pair of functions ψ. Moreover, (a)-(c) from
the definition of A hold for ψ. One can conclude that equation (3.34) holds
for almost every t.

3.4.16 Corollary. Suppose assumption (AG) and (AH) with 2m := 2n + 2
hold. Then ρ0 ∈ H2n+2(Rd) with 2n > L+ 1+ d

2
is a sufficient condition for

(AS) from chapter 2.2.2.

Proof. This is a direct consequence of theorem 3.4.15.
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Chapter 4

Simulation

In this chapter we discuss some simulation results of our individual-based
models with a repulsive predator in dimension d = 2. The programming
language R [26] was used for the computations. The simulated systems were
of the type

dXk
N(t) = FN [XN(t)](X

k
N(t))dt+ σNdWk(t), k = 1, . . . N. (4.1)

with

FN [XN(t)](X
k
N(t)) = FA[XN(t)](X

k
N(t)) + FR

N [XN(t)](X
k
N(t)) (4.2)

+ F P [PN(t)](X
k
N(t)) + F 0(Xk

N(t)) (4.3)

where FA and FR
N model the aggregation and repulsion effects between dif-

ferent particles as described in chapter 1 and F P is a repulsive force resulting
from the presence of a predator in point PN(t). In addition to these terms
we have F 0(Xk

N(t)) := −αXN(t) for some constant α > 0. This adds an
attractive force of Ornstein–Uhlenbeck type towards 0. In our discussion of
deterministic predators we made no assumptions on the sign of the resulting
force, thus F 0 can be seen as a “predator” in 0 with an attraction potential.
However, since x 7→ −αx is an unbounded function, our convergence results
can not be directly applied. The law of motion of the predator was stochastic
as in chapter 2.2.2.

We simulated for a fixed number of particles N = 50. Due to very high
computational demands we could not observe the behavior of system for large
N . Instead we focused on stability effects for large time T . In fact, one can
observe that after a short period of time the particle densities vary very little.
Depending on the strength of all forces and the diffusion coefficients various
interesting effects could be observed.
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We used the following radial kernel functions:

∇G =

{
cG

x
∥x∥ , ∥x∥ ≤ R,

0, otherwise,

∇V = cV
x

∥x∥
Γs,r(∥x∥),

∇H = cH
x

∥x∥
Γs,r(∥x∥).

Rescaling of the repulsion kernel was mimicked by the choice of parameters
and constants. Here Γs,r denotes a gamma density with shape parameter s
and scale parameter r, i.e.

Γs,r(x) =
1

rsΓ(s)
xs−1 exp(−x

r
).

The movement of the predator was given by

dP = cP

N∑
k=1

(Xk
N(t)− P (t))dt+ σPdWP

During our simulations we used the constants α = 0.1,s = 1
2
, σN =

30, R = 50 and r = 100.
Please observe that these kernel functions do not satisfy the technical

assumptions from chapter 1 and 2.
A very strong aggregation force (cG = 5, cV = 5, cH = 50, σP = 2, cP =

0.01) leads to strong concentration of all animals in one single group. This
group and the predator move around the center on nearly circular trajecto-
ries, see figure 4.1 and 4.2.

If the aggregation force is very low (cG = 0.5, cV = 5, cH = 50, σP =
2, cP = 0.01), the animals remain on circle around the predator in a nearly
uniform distribution, figure 4.3. No grouping can be seen.

Values in between these extreme settings lead to clustering in small groups
of different size and different spatial distributions, see figures 4.4, 4.5 (both
with cG = 3, cV = 5, cH = 20, σP = 5, cP = 1), 4.6 and 4.7 (both with
cG = 2, cV = 5, cH = 20, σP = 5, cP = 1).
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Figure 4.1

Figure 4.2
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Figure 4.3

Figure 4.4
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Figure 4.5

Figure 4.6
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Figure 4.7



Appendix A

Completely monotone functions
and positve definite functions

A.1 Definition. A function φ ∈ C([0,∞)) ∩ C∞((0,∞)) such that for all
k ∈ N0

(−1)kφ(l)(x) ≥ 0, x > 0, (A.1)

is called completely monotone on [0,∞).

A.2 Definition. A function f : Rd → R sucht that there exists a function
ϕ : [0,∞) → R with f(x) = ϕ(|x|) is called a radial function.

A.3 Example. The function φ(x) := (1 + x)−r, r ≥ 0 is completely mono-
tone on [0,∞).

Proof. For all k ∈ N0 we have

(−1)kφ(k)(x) = (−1)2kr · · · · · (r + k − 1)(1 + x)−r−k ≥ 0. (A.2)

A.4 Definition. A function f : Rd → C is called a positive definite function
if for all u1, . . . , ud ∈ Rd the matrix (f(ui − uj))(i,j) is positive definite, i.e.
we have

d∑
i,j=1

cicjf(ui − uj) ≥ 0 (A.3)

for all c1, . . . cd ∈ Rd.

A.5 Theorem. A function φ is completely monotone on [0,∞) if and only
if φ(| · |2) is positive definite and radial on Rd for all d ∈ N.

Proof. Theorem 3 of [27]

87



88 APPENDIX A. COMPLETELY MONOTONE FUNCTIONS

A.6 Theorem (Bochner’s Theorem). A function f : Rd → C is the Fourier
transform of a probability distribution if and only if the following three prop-
erties hold:

(i) f is a positive definite function.

(ii) f is continuous at the origin.

(iii) f(0) = (2π)−d/2.

A.7 Example. Let r > d
2
and f(x) := (2π)−d/2(1 + |x|2)−r. Then f is the

Fourier transform of a probability density function.

Proof. Example A.3 together with theorem A.5 shows that f is a positive
definite function. Clearly, f is continuous in 0 and we have f(0) = (2π)−d/2.
Thus, by Bochner’s Theorem A.6 f is the fourier transform of a probability
distribution. Finally, r > 0 implies f ∈ L2(Rd). Therefore, there exists a
probability density function g with ĝ = f .
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