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Abstract

Coarse graining is a popular technique used in physics to speed up the computer simula-
tion of molecular fluids. An essential part of this technique is a method that solves the
inverse problem of determining the interaction potential or its parameters from the given
structural data [PK-2010]. Due to discrepancies between model and reality, the potential
is not unique, such that stability of such method and its convergence to a meaningful
solution are issues.

In this work, we investigate empirically whether coarse graining can be improved by
applying the theory of inverse problems from applied mathematics. In particular, we
use the singular value analysis to reveal the weak interaction parameters, that have a
negligible influence on the structure of the fluid and which cause non-uniqueness of the
solution. Further, we apply a regularizing Levenberg-Marquardt method, which is stable
against the mentioned discrepancies [Hanke-1997]. Then, we compare it to the existing
physical methods – the Iterative Boltzmann Inversion [Soper-1996] and the Inverse Monte
Carlo method [LL-1995], which are fast and well adapted to the problem, but sometimes
have convergence problems [RJLKA-2009], [MFKV-2007].

From analysis of the Iterative Boltzmann Inversion, we elaborate a meaningful appro-
ximation of the structure and use it to derive a modification of the Levenberg-Marquardt
method. We engage the latter for reconstruction of the interaction parameters from
experimental data for liquid argon and nitrogen. We show that the modified method is
stable, convergent and fast. Further, the singular value analysis of the structure and its
approximation allows to determine the crucial interaction parameters, that is, to simplify
the modeling of interactions. Therefore, our results build a rigorous bridge between the
inverse problem from physics and the powerful solution tools from mathematics.

i



ii



Acknowledgment

In the first place, I want to thank my advisors for the highly interesting topic and the
guidance during all these years of work.

Further, I thank the numerical and functional analysis groups for a friendly environ-
ment in both cooperative and social aspects. I am also very grateful to my colleagues for
many fruitful discussions and for improving my english writing skills.

Finally, I acknowledge the “Computational Science Mainz” for funding the first year
of my promotion and offering the opportunity to meet other PhD-students in various
interdisciplinary workshops. I also want to give a credit to The Mathworks, Inc., whose
product MATLAB R© was used for implementation of the algorithms and for creation of
all pictures in this work.

iii



iv



Preface

For the beginning, we want to highlight the interdisciplinary character of this work moti-
vated by coarse graining. Two completely different sciences, the statistical physics and the
applied mathematics, contribute equally to the topic. While the motivation of the topic
lies in the advanced levels of modern physics, we treat the problem arising there from a
viewpoint of equally modern mathematical theory. Even if we can apply the mathema-
tical solution methods without studying the entire physical background of the problem,
we need a basic physical understanding for interpretation of the results. Since each of
the two sciences requires an appropriate introduction, we shield in Chapter 1 only the
terms, which are necessary for weaving the sciences together. We sketch many ambient
concepts, like interactions and structure, just to return to them later in the work, when
we elaborate more rigorous definitions. Amongst other things, we introduce the inverse
problem of determining the interaction potential from the structural data given by the
radial distribution function (RDF).

In Chapter 2, we explain the mathematical concept of an ill-posed inverse problem and
discuss the solution theory. We stress that an ill-posed problem describes a model with
instable relation between input and output, such that a regularization is required. We
show how the singular value decomposition can be used to reveal the instabilities of the
model. Finally, we present the regularizing Levenberg-Marquardt method (LM), solving
such problems iteratively, and a condition for its convergence.

We start Chapter 3 with a rigorous derivation of the functional spaces for potentials
and RDFs, in order to apply the theory to the particular inverse problem. We motivate
why the problem is ill-posed and adapt the LM to the previously derived spaces. We also
keep in mind the physical background of the problem by discussing the direct problem,
where the RDF is computed from the given potential by molecular simulation. We test
the LM in a well-posed, two-dimensional setting and then successfully apply the method
on realistic problems where the experimentally measured RDFs are given as data.

In order to improve our method, we turn in Chapter 4 to the existing, physically moti-
vated methods, the Iterative Boltzmann Inversion and the Inverse Monte Carlo method.
We show that the reason for their success is a clever approximation of the RDF, and
modify the LM in a similar way. Then, we prove the convergence condition for the LM
in the framework of this approximation and apply the modified method to the realistic
inverse problems we studied earlier. Further, we discuss a suitable approximation of the
underlying potential and its parameters. We conclude the work by illustrating our results
in Chapter 5.

We supply this work with two appendices. Appendix A introduces the basics of sta-
tistical physics needed for understanding the concept of the RDF. We follow the classical
terminology and do not pretend to cover a complete state of art, but we define a simple
rigorous framework sufficient for showing some useful theorems. Appendix B focuses of
the crucial points of molecular simulation, which play an important role in our discussion.
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A Word about Notation

In fact, notation deserves a separate section in this work, because every science has its
own preferences about notations, and conflicts cannot be avoided where two sciences come
together. For instance, σ is a parameter in physics, a singular value in analysis and a
standard deviation in statistics. Therefore, we make many subjective conventions and
shield them here.

We denote with d the dimension of the Euclidean space, that is, for the most part, it
equals three, with exception of some theoretical considerations, where the dimension can
be general, and some illustrative special cases, where the lower dimensions become interes-
ting. Throughout the work, the letterD denotes the derivative operator and 1 the identity
operator, where the relevant variables and their number are clear from the context. We
also use the notation of the gradient operator ~∇, if the derivative is taken in Rd. Further,
we write ∂

∂v
for the partial derivative with respect to variable v, such that lower indices

never mean derivatives and always mean indices, components and labels. We supply
the vectors from Rd with arrows, and, in order to distinguish between vector’s index and
component, we put the index in parentheses above the vector, for instance, {~e(i)|1 ≤ i ≤ d}
is the standard base of the Euclidean space. B(r) denotes the open ball of the radius r
around origin in Rd. ∂Ω designates the boundary of a domain Ω, that is, ∂B(r) is the
sphere of the radius r around origin. We want to be able to distinguish between the same
variable/space/map in the continuous and the discrete formulations, x,X, F and x,X,F,
respectively. However, since the discretization is always straight-forward, one can also
ignore the differences of the formulations and typefonts, if not specified otherwise. For a
function f of variables s1, . . . , sJ and parameters x1, . . . , xI , we write

f(s1, . . . , sJ ; x1, . . . , xI)

or
f [x1, . . . , xI ](s1, . . . , sJ)

and omit some of the letters, if they do not matter in the current consideration. Further,
we label the analytical theorems with A1, A2, etc. and the physical theorems with P1,
P2, etc. Both kinds are proven, but the mathematical ones are bound to our model, while
the physical theorems refer to different models used in physics simultaneously.

Due to an immense number of variables in the appendices devoted to statistical physics,
we deviate from the above notations in the following cases. Since the components of
vectors are never mentioned, we put the vector indices below the vectors. For vector
families { ~Xi}1≤i≤N ⊂ Rd, we consequently use the notations

X :=





~X1

. . .
~XN



 ,

~Xij := ~Xi − ~Xj.
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We omit multiple integrals and integrate over the usual domain, if not specified otherwise.
In other words, for variables ~X, ~Y ∈ Ω ⊆ Rd, we define

∫

. . . d ~Xd~Y :=

∫

Ω

∫

Ω

. . . d ~Xd~Y .

For an even better readability, we supply this work with lists of all symbols (see p. 149)
and abbreviations (see p. 153), as well as with an index where every namebearing concept
appears.
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Chapter 1

Introduction

1.1 Coarse Graining

The motivation for this work comes from the coarse graining – a popular technique, de-
signed to reduce the number of the degrees of freedom in a soft matter system like fluid
[Schmid-2006], mixture [MVYPBMM-2009] or polymer melt [PDK-2008]. The mentioned
reduction appears particularly useful in a computer simulation, where one considers pro-
cesses on very different time and length scales [PK-2009]. For example, the dynamics of
a polymer chain, like the polystyrene (see Figure 1.1), is a slow process (long time scale),
compared with the vibration of atoms (short time scale). If one would simulate a melt of
several polymer chains over a long time by taking the interactions of every single atom
into account, this would claim a large amount of expensive CPU time. But, if one studies
only the coarse dynamics of the melt, it should suffice to consider effective interactions
between certain atom groups, which respresent the shape of the polymer well enough (see
Figure 1.2). One applies coarse graining by replacing the polymer parts by effective par-
ticles, such that the simulation of the simplified melt involves fewer degrees of freedom
and requires significantly less resources.

Regarding the length scales, the coarse graining can be explained as zooming out of
the detailed model. The change of the length of a vibrating bond can be only seen on

Figure 1.1: Sketch of the atomistic model for a polystyrene chain. Red and blue circles
represent carbon and hydrogen atoms, respectively. Black lines represent the bonds.
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CHAPTER 1. INTRODUCTION

Figure 1.2: Sketch of the bead-spring model for a polystyrene chain. Purple and green
circles represent effective particles (beads), substituted for phenyl ring and backbone part,
respectively. Black lines represent the effective bonds (springs).

the finest (or microscopic) length scale (see Figure 1.1). During one looks at the polymer
chain and zooms out, more and more details become lost. On some intermediate (or
mesoscopic) scale, one cannot see the bond vibrations anymore, but still can recognize
whether two neighbouring phenyl rings take the same or the opposite sides:

≈

Finally, on the coarsest (or macroscopic) scale, one can only observe the overall chain
conformation (see Figure 1.3) – stretched, bent, knotted etc. Clearly, the definitions
of the length scales depend on the relevant (or available) assortment of models. For
example, the conformational description of single polymer chains is coarse in the context
of the statistical mechanics, but too detailed from the viewpoint of the hydrodynamics
studying the flow properties of a melt.

The length and time scales are naturally coupled:

• On a coarser length scale one should consider larger effective particles.

• A larger effective particle has a higher mass.

• A particle with a higher mass moves slower.

• One should consider the motion of slower particles on a longer time scale.

That is, the transition to a mesoscopic time scale allows one to simulate the soft matter
over a longer time interval and observe the relevant processes without wasting CPU time
for the microscopic dynamics. However, it is only possible with a clever choice of the
effective interactions, which must be consistent with experimental data.

Figure 1.3: Sketch of the swollen chain model for a polymer chain. Black lines represent
segments of the polymer, containing many repeating units.

2



1.2. INTERACTIONS AND STRUCTURE

In this work, we analyze various models for interactions in a fluid by employing the
theory of inverse problems from the applied mathematics. We base our analysis on the
same data from experiment/simulation, which is used to derive the effective interactions.
Therefore, our results help to improve the coarse graining procedure. In the following, we
motivate briefly our models for interactions and data, which provide a basis for mathe-
matical analysis and help us to tackle the subtleties of the coarse graining.

1.2 Interactions and Structure

We model a fluid as a system of particles (atoms) in d ∈ N dimensions, whose motion
is totally determined by pair interactions of two kinds (see Figure 1.4) – one between
particles belonging to different molecules (non-bonded interactions), and one between
constituents of the same molecule (bonded interactions).

We use the simplest model for the bonded interaction – a potential of the form

vℓ(ℓ) =
1

2
kℓ(ℓ− ℓ0)2

describes a spring with certain stiffness kℓ > 0 and length ℓ0 > 0, and ensures that the
energy vℓ(ℓ) changes, when the bond length ℓ for atom pairs deviates from ℓ0. In a nutshell,
atoms move into configuration with minimal energy, therefore, on the interval (0, ℓ0),
where the function vℓ decays, a repulsion (repulsive interaction) between the atoms takes
place. Vice versa, there is an attraction (attractive interaction) on (ℓ0,∞), because vℓ
grows there. In a similar way, potentials of the form

vθ(θ) =
1

2
kθ(θ − θ0)2,

vφ(φ) =
1

2
kφ(φ− φ0)

2

allow us to control the bending angle θ for triplets and the torsion angle φ for quartets
of atoms, respectively (see Figure 1.5).

a

b

c

a

b

Figure 1.4: Interactions between atoms of fictive molecules ab and abc (solid lines for
bonded and dashed lines for non-bonded interactions, respectively).
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a

b

ℓ

a

b

cθ

a

b c

d

φ

Figure 1.5: Bonded interactions between atoms of fictive molecules ab, abc and abcd.

The non-bonded interaction potential is usually (see Appendices A.2 and B.2 for de-
tails) described by some smooth function u : (0,∞)→ R of the distance between two
particles:

(U1) the interaction is strongly repulsive at short distances:

lim
r→0

u(r) =∞,

(U2) the interaction is weak at long distances:

lim
r→∞

u(r) = 0,

(U3) the interaction allows particles to have a preferred distance rmin ∈ (0,∞):

min
r∈(0,∞)

u(r) = u(rmin) < 0.

A popular representative is the Lennard-Jones potential

uLJ(r) = 4ε

((σ

r

)12

−
(σ

r

)6
)

,

whose shape is governed by parameters ε > 0 and σ > 0 (see Figure 1.6).
For the sake of simplicity, we consider in the following a simple fluid, where only one

type of particles is present and there are no bonded interactions, in contrast to a mole-
cular fluid. In this case, the non-bonded interactions completely determine the motion of
particles in the fluid. Considering the time-dependent coordinate vectors (trajectories)

~ri : [0,∞) → Rd,

t 7→ ~ri(t)

of the particles, we can determine the force

~Fij(t) = −
∂u(|~s|)
∂~s

∣
∣
∣
∣
~s=~ri(t)−~rj (t)

4



1.2. INTERACTIONS AND STRUCTURE

u (r)LJ

0

−ε

rσ

Figure 1.6: The Lennard-Jones potential.

acting on the i-th particle at time t due to interaction with the j-th particle. Theoretically,
for any given initial positions (~ri(0))

N
i=1 of the particles, we can obtain their trajectories

from the Newton equations

mi
d2

dt2
~ri(t) =

∑

j 6=i

~Fij(t), 1 ≤ i ≤ N.

A computer simulation method called molecular dynamics solves numerically the above
system of ordinary differential equations. In principle, the method works in a very in-
tuitive way by moving the particles in small timesteps along their force vectors (see
Appendix B.1). One can show that the corresponding solution is unstable, because a
small uncertainty in the initial positions of the particles leads to a completely different
trajectory. However, the computational scientists believe that the collective dynamics of
the particles is physically meaningful and can be used to calculate statistical properties
of the fluid with a quality of a real experiment [FS-2002].

One of these reliably computable properties is the radial distribution function (RDF),
representing the distribution of the distance in each particle pair (see Appendix A for
details). The reason, why we choose the RDF from all available statistical properties,
is the prominent Henderson theorem [Henderson-1974], which is applicable (only) to the
simple fluids and states that two interaction potentials yielding the same RDF cannot
differ by more than an additive constant C ∈ R. Due to (U2), all potentials converge to
zero, so that C = 0 and the statement of the theorem becomes: for each RDF, there is a
unique potential. In other words, the interaction potential and the RDF are equivalent
descriptions of the fluid.

We postpone the rigorous discussion of the relation between the potential and the
corresponding RDF to Section 4.1.1, because it is not very valuable at this point. Here we
prefer to give an intuitive illustration of the RDF and describe its numerical computation.
In a computer simulation, one takes from time to time a snapshot of actual particle
positions. In each snapshot, the procedure considers concentric spheres around a fixed
particle and counts the neighbouring particles in the layers between the spheres (see
Figure 1.7). Afterwards, the neighbour counts are divided by the corresponding layer
volumes and the resulting ratios form a histogram. The average of such histograms,
which runs over all snapshots and fixed particles, gives the discretized approximation of
the RDF (see Figure 1.8). The figure suggests that a typical RDF of a fluid is a smooth
function y : (0,∞)→ (0,∞) with the following properties:

5



CHAPTER 1. INTRODUCTION

Figure 1.7: Spherical layers (gray areas) around a fixed particle and neighbouring particles
(green circles).

(Y1) no particle pair holds a short distance (due to the repulsive nature of interaction):

lim
r→0

y(r) = 0,

(Y2) there is no correlation at long distances (due to the vanishing interaction):

lim
r→∞

y(r) = 1,

(Y3) the function shows a noticeable correlation at some distance (because the particles
have a preferred distance):

max
r∈(0,∞)

y(r) > 1.

The above properties underline how close is the correspondence between potentials
and RDFs. Moreover, the numerical procedure described above can be interpreted as a
map G, which assigns a unique RDF y to each interaction potential u, and, according to
the Henderson theorem, there is no other potential with the same RDF. In other words, G
is injective and one can (theoretically) invert the procedure, that is, for each y ∈ ran(G),
one can find the solution u ∈ dom(G) of the equation

y = G[u].

r0

1

Figure 1.8: One histogram (gray area) and a typical RDF, averaged from many histograms
(blue line). r denotes the distance between two particles.
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1.3. SUBTLETIES OF THE COARSE GRAINING

A task of this form is called an inverse problem in the applied mathematics. The simplest
way to solve it, is to discretize the problem: according to a certain parameterization H ,
one represents the potential u = H [x] as a vector x ∈ Rn of few parameters, in order to
fit these afterwards to the available data y by solving the equation

y = (G ◦H)[x],

typically with some numerical iterative method. For example, the Lennard-Jones potential
has only two parameters, x = (ε, σ)T , which are physically uncorrelated and they can be
adjusted (even manually) to fit the experimental RDF. A similar fitting procedure is
an essential part of the structure-based coarse graining, where the close relation of the
interaction potential and the RDF (structure) is used.

1.3 Subtleties of the Coarse Graining

We finish this introduction with a more detailed discussion of the coarse graining and line
out the crucial points, which could benefit from a mathematical analysis of the map G.
We split the whole technique in few steps and visualize them by using the motivation
example with polystyrene [C6H5-CH-CH2]k from the beginning of the chapter.

In the first step, one chooses the mapping scheme replacing the atoms (~r(1), . . . , ~r(n)) of
the repeating unit of the polymer by effective particles (~R(1), . . . , ~R(N)). In other words,
one looks for a matrix Λ ∈ RN×n with

Λ





~r(1)

. . .
~r(n)



 =





~R(1)

. . .
~R(N)



 ,

that reduces the number of degrees of freedom to N ≪ n. Clearly, a mapping scheme
performs a model reduction and should find a balance between the most simple and
the most informative models. Since the information carried by the model as well as the
underlying polymer can vary in applications, there is no general choice strategy. Therefore,
the mapping scheme is often restricted to a particular polymer, and the concrete choice
is reserved for experts in the computer simulation of soft matter.

A natural approach is to choose the effective particles to represent the geometric struc-
ture and physical properties of the polymer. For example, the chain-like geometry of the
polystyrene molecule suggests to replace the whole repeating unit by one effective particle
in its center of mass. One recognizes soon that the masses of hydrogen atoms make a
nearly negligible contribution to the positions of the effective particles. If one fades out
these light atoms, the polymer chain appears as a kind of backbone made of carbon atoms
and supplied with phenyl rings (see Figure 1.1). Considering that physical properties of
polystyrene depend on the orientations of the phenyl rings with respect to the backbone,
the mapping scheme suggested above appears rather naive. The resulting model looses
control about flips of the phenyl rings from one side to the other, because both the rings
and the backbone are hidden in spherical effective particles. Thus, one needs one effective
particle to represent the building block of the backbone and one to represent the ring,
but there are many different possibilities, even if the centers of mass are chosen again as
a reference point. For instance, one could split the repeating unit, according to

C6H5-CH-CH2 = C6H5-CH - CH2,

7



CHAPTER 1. INTRODUCTION

→ a

→ b

Figure 1.9: Sketch of the chosen mapping scheme for polystyrene.

which would be a reasonable model [HAVK-2006]. However, it can be shown that the
splitting

C6H5-CH-CH2 = C6H5 - CH-CH2

provides a better model in the sense of representation of chain conformations [HRVK-2007].
The corresponding mapping scheme is sketched in Figure 1.9. The same scheme was used
to obtain the bead-spring model in Figure 1.2 from the atomistic model in Figure 1.1.

In the second step of the coarse graining, one calculates the effective interaction poten-
tials, which determine the general behaviour of the effective particles. Indeed, a mapping
scheme suggests a transition from the microscopic to a mesoscopic scale, but yields only
the initial positions of the effective particles in the coarse grained polymer. In order
to ensure the consistency of the effective interactions U(~R(1), . . . , ~R(N)) with the scale
transition, these have to describe the fluid nearly equally well as the atomistic inter-
actions u(~r(1), . . . , ~r(n)). As we mentioned before, the concrete dynamics of particles is
irrelevant and the fluid is well-described by rather statistical properties. The latter can
be derived from the partition functions

z :=

∫

exp

(

− 1

kBT
u(~r(1), . . . , ~r(n))

)

d~r(1) . . . d~r(n),

Z :=

∫

exp

(

− 1

kBT
U(~R(1), . . . , ~R(N))

)

d~R(1) . . . d ~R(N),

where kB denotes the Boltzmann constant. z and Z characterize the fluid at temperature
T on the microscopic and the mesoscopic scales, respectively (see Appendix A). Therefore,

we demand z
!
= Z and obtain the following expression for the effective interactions,

U(~R(1), . . . , ~R(N)) = −kBT ln

(∫

exp

(

− 1

kBT
u(~r(1), . . . , ~r(n))

)

×

×
N∏

I=1

δ(ΛI(~r
(1), . . . , ~r(n))− ~R(I))d~r(1) . . . d~r(n)

)

+ const,

which is per definition consistent with the given mapping scheme Λ [NCAKIVDA-2008].
Although this explicit formula shows the existence of the effective description for the given
fluid, its direct evaluation is impossible for relevant n. Therefore, instead of matching the
partition function itself, one aims some property of the fluid, which can be derived from

8



1.3. SUBTLETIES OF THE COARSE GRAINING

the partition function. According to the aimed property, one can distinguish the following
kinds of the coarse graining:

• energy-based, where the energy arising from the effective potentials reproduces the
energy of the atomistic fluid;

• structure-based, where the effective potentials lead to an RDF matching the ato-
mistic RDF;

• force-matching , where the effective force field (derivatives of the effective potentials)
fits the atomistic force field.

Since we discuss in this work the dependence of the RDF from the underlying interac-
tions, we present here the details of the structure-based approach. For each type of the
effective particle, one simulates the fluid consisting of the corresponding polymer parts on
the microscopic scale. The simulations are relatively short, because the unchained parts
of the polymer can move freely, and yield the center-of-mass RDFs y(1), . . . , y(N). If some
(non-bonded) interaction potentials u(1), . . . , u(N) fit these RDFs on the mesoscopic scale,
that is, if they solve the equations

y(I) = G[u(I)], 1 ≤ I ≤ N,

(approximately), then these potentials are unique due to the Henderson theorem. From
this point of view, the structure-based coarse graining uses the RDF as a bridge between
the different scales (see Figure 1.10). The solution methods for the above equations vary

Figure 1.10: A visualization of the difference between the microscopic (bottom row) and
the mesoscopic (upper row) scales. The left four pictures show atoms and potentials
for hydrogen (blue), carbon (red) and effective (magenta) particles. The corresponding
interactions on the right are represented by energy values in the vicinity of the molecule
(red scale, the lower the value, the lighter the color). The right two pictures show the
corresponding, approximately equal RDFs (blue).
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from iterative methods, which provide tabulated potentials, to the simple fitting of the
parameters of the preferred model for interactions (see Section 4.1.2 for details). In the
polystyrene example, one can assume that the effective non-bonded interaction has a form
of the generalized Lennard-Jones potential, in particular,

ua,a(r) = 4εa,a

((σa,a
r

)µa,a
−
(σa,a
r

)νa,a)

.

Then, one simulates the fluid of a-particles and fits the parameters to the simulated RDF,
that is, one demands

yC6H5,C6H5
!≈ ya,a = G[ua,a],

in order to obtain a potential mirroring the size σa,a and the attractiveness εa,a of the
effective particle a (see Figure 1.11).

Further, one derives the effective bonded interactions from the conformational statistics
of the polymer. More precisely, one simulates a single polymer chain on the microscopic
scale and samples the probability densities Pℓ(ℓ), Pθ(θ) and Pφ(φ) of the bond length,
bending angle and torsion angle, respectively. Then, the corresponding potentials of mean
force,

vℓ(ℓ) = −kBT ln

(Pℓ(ℓ)
ℓ2

)

+ const,

vθ(θ) = −kBT ln

(Pθ(θ)
sin θ

)

+ const,

vφ(φ) = −kBT lnPφ(φ) + const,

can eventually be used as the bonded interaction potentials in the coarse grained chain.
In the next step, one can simulate the system of simplified chains [-ab-]k much faster

(compared to the detailed system). As we mentioned before, such a simulation runs on
the mesoscopic scale and allows to investigate the slow processes in a polymer melt by
taking snapshots of the trajectory on a coarser time grid. However, the snapshots are also
coarse with respect to the length scale.

In the final step, one reinserts the atoms into the final configuration or into all coarse
snapshots. Since an effective particle is typically softer than a real atom, a mesoscopic

 

 

0
r

uC,C
ua,a
ub,b

Figure 1.11: Sketch of the effective non-bonded interaction potentials.
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configuration of the polymer chain tolerates overlaps between the substituted groups of
atoms. In order to get rid of these overlaps, one uses some gradient method for the
geometric optimization of the reconstructed chains and a short simulation of the detailed
system for the energetic optimization. The procedure of reinsertion, or backmapping , is
established by now and its fundamentals can be found in [TKHBB-1998].

In [PK-2010], the authors review the typical challenges in the coarse graining. In
particular, they state a difficulty to derive representative effective interactions in the case
of strong model reduction. Further, they emphasize the need for a systematic choice of
a physically meaningful mapping scheme. We want to contribute to these two, evidently
interrelated topics, by studying the inverse problem in the second step of the coarse
graining. There, an effective interaction potential, consistent with the mapping scheme, is
derived from the given RDF. However, disregarding this consistency, the mapping scheme
replaces a non-spherical molecule (polymer part) by a spherical effective particle, such
that the inversion procedure yields a mesoscopic interaction potential, which is only valid
for spherical particles (see Figure 1.10). That is, some important microscopic details of the
original molecule could be lost and the effective interactions do not necessarily represent
the fluids properties, which depend on that details. The natural questions arising here
are fully in line with the challenges in the mentioned review paper.
Question I: Can we develop a better inversion method?

Question II: Can we measure/lower/minimize the loss of microscopic details owing to
inversion?
In order to answer these questions, we have to deal with the theory of inverse problems.

11
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Chapter 2

Theory of Inverse Problems

2.1 Ill-posed Problems

In the introduction, we already used the term inverse problem to describe an equation of
the form

y = F [x], (2.1)

where the map F : X → Y between Hilbert spaces (X, 〈·|·〉X) and (Y, 〈·|·〉Y ) is not linear
in the general case. We call elements x ∈ X and y ∈ Y parameter and data, respectively.
The word “inverse” comes from the assumption that for historical or technical reasons, the
problem of evaluation of the map F is well-studied and can be considered as the original
or the direct problem. For example, it is much easier to obtain the value y = p(x) of a
polynomial p for the given variable value x (direct problem), than to find the vanishing
points of p, that is, all variable values x, for which 0 = p(x) (inverse problem). This
chapter provides a short overview of the modern theory of inverse problems, as it can be
found in [EHN-1996].

In principle, equation (2.1) is the question: given the data, what is the parame-
ter? However, mathematical questions, just as questions in the real life, can be good
(well-posed) or bad (ill-posed). An inverse problem is called well-posed (in the sense of
Hadamard), if all following conditions are fulfilled:

(H1) a solution x ∈ X exists,

(H2) the solution x ∈ X is unique,

(H3) the solution x ∈ X depends continuously on the data y ∈ Y .

If one of the conditions is not satisfied, the problem is referred to as ill-posed.
In the general case, the exact data y is unknown – we have only the noisy measured

data y(δ) and an estimate of the noise level δ > 0, such that

‖y(δ) − y‖Y ≤ δ ≪ ‖y(δ)‖Y . (2.2)

It can make the inverse problem (2.1) ill-posed – if the noisy data is not in the range
of F , the equation has no solution and (H1) is not met. Especially, we cannot retrieve
the exact parameter x from y(δ). Resigned to this fact, we replace equation (2.1) by the
minimization problem

min
x∈X
‖y(δ) − F [x]‖Y , (2.3)
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which has at least one solution. Even if we obtain a set of solutions, we can reduce it to
a unique solution by imposing additional requirements, such that (H2) is also met. Of
course, we have to be careful, but, roughly speaking, the first two Hadamard conditions
are harmless, in contrast to the third one.

In order to discuss the dependence between solution and data in accordance with (H3),
we look first at the actual solution method. If there is no noise in the data (δ = 0), one
can solve a nonlinear minimization problem of the form (2.3) with a Newton-type method.
One assumes that F is Fréchet-differentiable and its derivative

A(k) := DF [x(k)]

as operator (linear map) from X to Y is continuous. Then, one chooses an initial
guess x(0) ∈ X and improves it in the k-th step via

x(k+1) = x(k) + h(k),

where the update h(k) should ideally have the value h
(k)

:= x− x(k+1). Since x is unknown,
one can only obtain an approximate h(k), for instance, from the Taylor expansion

y = F [x]
!
= F [x(k) + h(k)] = F [x(k)] +DF [x(k)]h(k) + Ξ(x; x(k)). (2.4)

This is a local linearization of the map F , where the actual iterate x(k) should be close
enough to the solution x, such that the (unknown) Taylor remainder Ξ(x; x(k)) is small
and can be omitted in the corresponding linear equation

y − F [x(k)]−✘✘✘✘✘
Ξ(x; x(k)) =: b(k) = A(k)h(k). (2.5)

In presence of noise, one does not posess the exact data, such that one solves rather

y(δ) − F [x(k)]−✘✘✘✘✘
Ξ(x; x(k)) =: b(k,δ) = A(k)h(k). (2.6)

The left hand side of this equation is noisy due to

‖b(k,δ) − b(k)‖Y = ‖y(δ) − y‖Y ≤ δ,

that is, its solution is different from that of (2.5). One can hope that the difference is
small for small δ, however, if condition (H3) is not met, already small uncertainties in the
data can cause a large error in the solution. We show how it happens in the following
sections where we consider a general framework for solution of linear inverse problems,
that is, problems of the form (2.1) with linear F . At the end of the chapter, we return
to the original nonlinear setting and discuss a Newton-type method, which determines an
approximate solution iteratively by solving linear problems (2.6).

2.2 Moore-Penrose Inverse

We consider the linear inverse problem

y(δ) = Ax, (2.7)

where the operator A ∈ B(X, Y ) and the noisy data y(δ) ∈ Y are given and x ∈ X is the
unknown solution. If the problem is well-posed for δ = 0, then A is bijective, A−1 exists
and the solution of the above problem is given by

x := A−1y(δ), (2.8)
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for all attainable data y(δ), that is, for y(δ) ∈ ran(A). Since A−1 is continuous, this solution
is stable to the noise in the data, as long as the noisy data is attainable. Otherwise, there
are many difficulties on the same way. For instance, if the data y(δ) is not attainable,
then y(δ) 6∈ dom(A−1) and A−1y(δ) is not even defined. Thus, we generalize the definition
of “solution”, in order to have any solution. We call an x ∈ X a least-squares solution
of (2.7), if

‖y(δ) − Ax‖Y = inf
z∈X
‖y(δ) − Az‖Y . (2.9)

There is at least one such x, that is, the Hadamard condition (H1) is met. In the well-posed
case where the data is attainable, the unique solution (2.8) would also be a least-squares
solution. However, if A is not injective, that is, if ker(A) 6= {0}, we obtain suddenly a
whole solution set x+ ker(A). In order to repair the lack of uniqueness, we impose con-
straints on the generalized solution. We call x ∈ X a best-approximate solution of (2.7),
if x is a least-squares solution of (2.7) and

‖x‖X = inf{‖z‖X |z is a least-squares solution of (2.7)}. (2.10)

One can show that such x is unique, that is, condition (H2) is also fulfilled.
The best-approximate solution can also be obtained by the generalization of the term

“inverse” for an operator. The Moore-Penrose inverse A† of A ∈ B(X, Y ) is defined as the
unique linear extension of (A|ker(A)⊥)−1 to

dom(A†) := ran(A)⊕ ran(A)⊥

with
ker(A†) = ran(A)⊥.

If the inverse A−1 exists, we have

A−1A = AA−1 = 1.

Similarly, the Moore-Penrose inverse fulfills the generalized equations

AA†A = A,

A†AA† = A†.

Further, one can show that for all y(δ) ∈ dom(A†), the problem (2.7) has the unique best-
approximate solution

x(δ) := A†y(δ) (2.11)

and for x ∈ X, the following statements are equivalent:

• x is a least-squares solution of (2.7),

• x ∈ x(δ) + ker(A),

• x solves the normal equation
A∗y(δ) = A∗Ax. (2.12)

This result promises a unique solution for all attainable data. Indeed, the domain of
the Moore-Penrose inverse is dense in Y . That is, if ran(A) is closed, then the best-
approximate solution is obtainable for any data in Y . Moreover, the continuous depen-
dence of the solution (2.11) from the data is equivalent to the boundedness of A† and one
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can show that A† is bounded, if and only if ran(A) is closed. In summary, if this range is
closed, everything is fine.

From now on we assume that the operator A is compact, that is, the sequence (Axn)n∈N
in Y has a convergent subsequence in Y , for each bounded sequence (xn)n∈N in X. In
this case, which is common for inverse problems, one can show that the range ran(A)
is closed, if and only if dim(ran(A)) <∞. That is, in the general case where the range
is of infinite dimension, the Moore-Penrose inverse A† is unbounded and the Hadamard
condition (H3) is not fulfilled. Even worse, the range of A is “small”, because a compact
operator maps bounded sets (there are “many” bounded sets) to compact sets (there are
“few” compact sets). Therefore, the “most” data from Y are not attainable.

The compactness of A allows us to use the singular value decomposition (SVD) –
a powerful tool from functional analysis, which provides us an insight into the nature
of A† and its domain. Indeed, let (ψ(j), σj, ϕ

(j))j∈N be the SVD of a compact operator A,
where σj are the singular values, while ψ(j) and ϕ(j) denote the left and the right singular
vectors, respectively. Since (ϕ(j))j∈N is an orthonormal basis of X, any x ∈ X is given by

x =

∞∑

j=1

〈ϕ(j)|x〉Xϕ(j). (2.13)

Further, (ψ(j))j∈N provides an orthonormal basis of ran(A), so that we can write any y in
this range as

y =

∞∑

j=1

〈ψ(j)|y〉Yψ(j).

On the other hand, the singular value expansion of A yields

y = Ax =
∞∑

j=1

σj〈ϕ(j)|x〉Xψ(j).

Comparing the coefficients of the two series, we see that

〈ψ(j)|y〉Y = σj〈ϕ(j)|x〉X

and

x =
∞∑

j=1

〈ψ(j)|y〉Y
σj

ϕ(j)

is a solution to the equation y = Ax. One can show that

x = A†y,

if y ∈ dom(A†), and this is the case, if and only if

∞∑

j=1

|〈ψ(j)|y〉Y |2
σ2
j

<∞. (2.14)

The latter condition is called the Picard criterion. It says that the best-approximate
solution A†y exists, if and only if the projections 〈ψ(j)|y〉Y of the data decay faster than the
singular values σj . However, the SVD characterizes only A, so, if we have noisy data y(δ),
the error projections 〈ψ(j)|y − y(δ)〉Y do not have to decay in the general case. That is,
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due to the form of the terms |〈ψ(j)|y(δ)〉Y |2
σ2j

, the large singular values damp the propagated

noise in x(δ) = A†y(δ), while the small ones amplify it. This allows us to classify inverse
problems – from modestly ill-posed, where the singular values decay polynomially, to the
severely ill-posed, where the decay is exponential.

A similar characterization exists for the case of a finite-dimensional range ran(A).
Such inverse problems are evidently well-posed from the theoretical point of view, but in
applications, we observe a behaviour similar to ill-posedness. Consider a linear equation

y(δ) = Ax,

where x ∈ X ≃ Rn, y(δ) ∈ Y ≃ Rm, and A ∈ B(X,Y) ≃ Rm×n is a matrix with rank
n < m, that is, A is a compact operator. Theoretically, we can determine the best-
approximate solution from the corresponding normal equation

A∗y(δ) = A∗Ax,

because the matrix M := A∗A is invertible due to the full rank of A. But practically, the
solution x(δ) can be meaningless, if the matrix is ill-conditioned, that is, if the condition
number

cond(M) := ‖M‖2‖M−1‖2 =
σ1
σn

is too large. The reason for this are the singular values again – even though they do not
converge to zero, their decay still can be very fast, such that the condition number, as
the ratio between the largest and the smallest singular value, can be very large. From the
practical viewpoint, the Hadamard condition (H3) is not satisfied for such ill-conditioned
problem – the operator A† = M−1A is bounded, but the bound (the norm of the operator)
is too large for a meaningful numerical treatment of the above equations. We illustrate
this issue on a small linear system.

Example 2.1. “(3× 2)-system”:
Let us consider

A =





1 102
1 101
1 100



 , x =

(
1
1

)

, y = Ax =





103
102
101





and relatively small noise

e =





1
1
1



 ⇒ y(δ) = y + e =





104
103
102



 .

The solution

x(δ) =

(
2
1

)

to the corresponding normal equation is quite wrong, while the residual y(δ) − Ax(δ) is
exactly zero. We should not be surprised, because the matrix M = A∗A is ill-conditio-
ned – the condition number

cond(M) ≈ 2 · 108
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as well as the norm of A† = M−1A∗ are quite large. In a nutshell, due to machine
arithmetic, the matrix

M =

(
3 303
303 30605

)

≈
(

3 300
300 30000

)

is almost singular, the norm ‖A†‖2 is almost infinite and the error

x− x(δ) = M−1A∗e = A†e

arises from the noise amplification due to inversion of M. ✸

The decay of the singular values σj and the corresponding projections 〈ψ(j)|y(δ)〉Y can
be easily compared in a Picard plot. [Hansen-2010] uses this plot in order to deduce a kind
of Picard criterion for the finite-dimensional case. Figure 2.1 shows an example of a Picard
plot for a certain ill-posed inverse problem. First, one determines the level τ , at which the
singular values level off due to machine arithmetic (see the gap at j ≈ 10). Then, one says
that the discrete Picard criterion is satisfied, if the ratios |〈ψ(j)|y(δ)〉Y |

σj
are (approximately)

non-increasing for all σj > τ . Obviously, this is an analogue of the necessary condition
for the series in (2.14) to converge. In the Picard plot, we observe that the terms of the
series rather increase for j & 5. That is, the best-approximate solution

x(δ) =
16∑

j=1

〈ψ(j)|y(δ)〉Y
σj

ϕ(j) (2.15)

is wrong in the last twelve terms. In contrast to (2.14), the discrete Picard criterion carries
a heuristical character and should be used only for sufficiently large n. The length n of the
solution vector can be easily justified in the inverse problems arising from discretization
of an infinite-dimensional problems, as in the following example from [Varah-1983].

0 5 10 15 20
10

−30
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−20
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−10

10
0
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j

 

 

Singular Values
Projections
Ratios

Figure 2.1: An example of the Picard plot. Circles represent the singular values σj ,

crosses – the projections |〈ψ(j)|y(δ)〉Y| and diamonds – their ratios |〈ψ(j)|y(δ)〉Y|
σj

.
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Figure 2.2: The exact solution (red curve) and the best-approximate solution (blue curve)
from Example 2.2.

Example 2.2. “Inverse Laplace transformation”:
We consider the linear equation y = Ax, where

(Ax)(s) =

∫ ∞

0

e−stx(t)dt, 0 ≤ s <∞,

describes the Laplace transformation of a function x ∈ L2([0,∞)). The operator
A : L2([0,∞))→ L2([0,∞)) is compact, because its kernel e−st belongs to L2([0,∞)2)
(see, for example, [Cheney-2001]). For the fixed exact parameter x(t) := e−t/2, one obtains
the corresponding exact data

y(s) =
1

s+ 1
2

.

In order to invert the transformation, one solves the above equation numerically by
discretizing it by means of the Gauss-Laguerre quadrature with certain knots (ti)

n
i=1

[Hansen-1994]. After discretization of A and y, the equation turns to an (n× n)-system
y = Ax, where the left hand side differs from Ax. The best-approximate solution is
wrong – it has negative values, while the exact solution is strictly positive. In Figure 2.2,
we compare the absolute values of the two solutions on the relevant interval. They agree
in the vicinity of zero, but their disagreement grows exponentially with t. The reason for
this tremendous discrepancy is the compactness of the operator A. We already studied
the Picard plot for this inverse problem in Figure 2.1, and this example demonstrates the
usefulness of such study. We could foresee that only few terms of the series expansion
(2.15) of the solution are trustworthy. Moreover, the rapid decay of the singular values
classifies the inverse problem as severely ill-posed and points out that the underlying
operator is probably compact. ✸

In the above examples, we sketched situations where the Moore-Penrose inverse of a
compact operator A is continuous, but the best-approximate solution is worthless. Also
in the general case, we have Aϕ ≈ 0 for any singular vector ϕ corresponding to a very
small singular value. That is, instead of the best-approximate solution x(δ), the normal
equation yields just a least-squares solution from x(δ) + span(ϕ). It means also that a
small residual norm ‖y(δ) − Ax‖Y does not necessarily imply that x is a good solution
approximation. This effect can obviously ruin any classical solution method based on
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the minimization of the residual norm. Therefore, a least squares solution should not
be considered as a proper solution of an ill-posed inverse problem. We should rather
use a more modern approach, the regularization methods, which denoise (regularize) the
Moore-Penrose inverse, so that a meaningful solution can be achieved.

2.3 Regularization

We visualize the regularization of an inverse problem by the diagram in Figure 2.3, where
we consider the same problem in both ideal and noisy settings. That is, the ideal equation
with exact data does not describe properly the real world, where the data contains noise
and we can only obtain an approximate (and noisy) solution x(δ). The “regularization” is a
parametric modification of the noisy equation, which allows to find a unique solution x(λ,δ),
which is “near” to x for a proper choice

λ = λ(δ, y(δ)).

Clearly, the regularization can also be applied to the ideal equation, and it is natural to
demand a kind of “stability”, in the sense that the regularization of the ideal equation
yields a similar solution x(λ), that is,

x(λ,δ) → x(λ), δ → 0.

After coupling these assumptions via

λ(δ)→ 0, δ → 0,

one can expect a kind of “convergence” described by

x(λ,δ) → x, δ → 0.

N
o
is
y

Id
ea
l

y(δ) ≈ Ax(δ) y(δ) = A(λ)x(λ,δ)

y = Ax y = A(λ)x(λ)

“regularization”

“regularization”

n
o
is
e

“
st
a
b
il
it
y
”

“convergence”

Figure 2.3: Modifications of an inverse problem and the roles of the noise, stability,
regularization and convergence.
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This “convergence” does not mean that one can obtain the exact solution x from the
noisy data. The term means that the approximate solution x(λ,δ), no matter how good it
is, becomes better as soon as the precision of the data measurement gets better. In the
following, we provide mathematical definitions of the concepts we just introduced.

A family (R(λ))λ>0 of operators is called a regularization (of the Moore-Penrose in-
verse A†), if

(R1) R(λ) are continuous for all λ > 0,

(R2) R(λ) → A† for λ→ 0 pointwise on dom(A†).

If A is compact, then one can show that ‖R(λ)‖ λ→0−−→∞. Further, if

‖AR(λ)‖ ≤ C, ∀λ > 0, (2.16)

then ‖R(λ)y‖ λ→0−−→∞ for all y 6∈ dom(A†).

Example 2.3. “Truncated SVD”:
In the previous section, we motivated that the Moore-Penrose inverse A† cannot handle
the noisy data y(δ) due to the terms in the expansion

A†y(δ) =

∞∑

j=1

〈ψ(j)|y(δ)〉Y
σj

ϕ(j), (2.17)

that correspond to the small singular values σj . The simplest way to regularize A† is
to truncate the SVD, such that the bad terms do not appear in the series (2.17). More
precisely, we define the operator family (R(λ))λ>0 with

R(λ)y(δ) :=

k(λ)
∑

j=1

〈ψ(j)|y(δ)〉Y
σj

ϕ(j), (2.18)

k(λ) := max

{

j ∈ N

∣
∣
∣
∣
j ≤ 1

λ

}

.

Evidently, for λ > 1, R(λ) ≡ 0 is continuous, and otherwise, we have

‖R(λ)‖ = 1

σk(λ)
<∞, (2.19)

therefore (R1) is fulfilled. Further, according to the Picard criterion, the partial sums of
the series (2.14) converge for all y ∈ dom(A†), that is,

R(λ)y(δ)
λ→0−−→

∞∑

j=1

〈ψ(j)|y(δ)〉Y
σj

ϕ(j) = A†y(δ).

Thus, (R2) is satisfied and we conclude that (2.18), called the truncated SVD (TSVD),
is a regularization. Moreover, condition (2.16) is fulfilled, because

‖AR(λ)‖ = sup
‖y‖Y =1

∥
∥
∥
∥
∥
∥

k(λ)
∑

j=1

〈ψ(j)|y〉Y
σj

Aϕ(j)

∥
∥
∥
∥
∥
∥
Y

= sup
‖y‖Y =1

∥
∥
∥
∥
∥
∥

k(λ)
∑

j=1

〈ψ(j)|y〉Yψ(j)

∥
∥
∥
∥
∥
∥
Y

≤ sup
‖y‖Y =1

‖y‖Y = 1.

That is, the series expansion of A† diverges outside of the domain. ✸
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Surely, for a fixed λ > 0, the regularized solution x(λ) := R(λ)y depends continuously
on the data. However, it may happen that the operator R(λ) has not much to do with
the original problem. If we compare the exact solution x = A†y with the more realistic
solution x(λ,δ) = R(λ)y(δ), we can write the total error

x(λ,δ) − x = R(λ)y(δ) − A†y = (R(λ)y − A†y) +R(λ)(y(δ) − y)

as a sum of the regularization error and the propagated noise, respectively. Due to (R2),

‖R(λ)y −A†y‖X → 0, λ→ 0,

that is, we can keep the first term under control by setting the regularization parameter λ
very small. Even though R(λ) is bounded, the bound ‖R(λ)‖ may become very large. In
the general case, the noise y(δ) − y 6∈ dom(A†) and hence, R(λ) amplifies the noise in the
second term, such that the propagated noise becomes very large,

‖R(λ)(y(δ) − y)‖X →∞, λ→ 0.

For these reasons, we should choose a regularization parameter λ > 0, for that the two
error terms are in balance (see Figure 2.4).

A function

λ : (0,∞)× Y → (0,∞),

(δ, y(δ)) 7→ λ(δ, y(δ))

is called a parameter choice strategy . A combination ((R(λ))λ>0, λ(δ, y
(δ))) of a regulari-

zation with a parameter choice strategy is called a regularization method, if

Rλ(δ,y(δ))y(δ)
δ→0−−→ A†y

for all y(δ) with ‖y(δ) − y‖ ≤ δ. In the general case, a parameter choice strategy takes
both the noise level δ and the noisy data y(δ) into account. It can be shown that there is
no regularization method where λ depends only on y(δ). The knowledge about the noise
level δ is so important, that we can provide an example with λ = λ(δ).

10
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10
010

−4

10
−2

10
0

10
2

λ

Figure 2.4: The regularization error (red curve) and the propagated noise (blue curve)
for the problem from Example 2.2 “Inverse Laplace transformation”. The curves are in
balance (white circle) for a certain value of the regularization parameter λ.
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Example 2.4. “TSVD”:
The parameter choice strategy λ(δ) := min{µ|σk(µ) ≥

√
δ} yields that for δ → 0,

λ(δ)→ 0 and ‖R(λ(δ))‖δ (2.19)
=

δ

σk(λ(δ))
≤
√
δ → 0.

Then, the second term on the right of

‖R(λ(δ))y(δ) − A†y‖X ≤ ‖R(λ(δ))y −A†y‖X + ‖R(λ(δ))‖ · ‖y(δ) − y‖Y

vanishes for δ → 0. The first term also tends to zero due to the property (R2) of the
regularization, that is, we have a regularization method. ✸

2.4 Tikhonov Regularization

In this section, we present an intuitive derivation of the Tikhonov regularization. We
remind that in the general case, we solve the linear equation (2.7), where A is a compact
operator with infinite-dimensional range. We already motivated that such an operator
is almost singular, in the sense that the inverses of the operators A and M := A∗A are
not continuous. However, M is a positive semidefinite operator. The basic idea of the
Tikhonov regularization is to add to M a positively scaled identity, such that the sum

M (λ) :=M + λ21

is far from singular (more regular). More precisely, the operator M (λ) is invertible with a
continuous inverse, that is,

‖(M (λ))−1‖ = 1

λ2

for every value of the regularization parameter λ > 0. This technique is equivalent to
replacing the normal equation (2.12) by

A∗y(δ) =
(
A∗A + λ21

)
x. (2.20)

In order to derive the solutions to the normal equation (2.20), we use the SVD
(ψ(j), σj , ϕ

(j))j∈N of the compact operator A. The singular value expansion of
A∗ ∈ B(Y,X) yields

A∗y =
∞∑

j=1

σj〈ψ(j)|y〉Yϕ(j),

and

A∗y = (A∗A + λ21)x
(2.13)
=

∞∑

j=1

(σ2
j + λ2)〈ϕ(j)|x〉Xϕ(j)

suggests that the series have equal coefficients. This leads to

σj〈ψ(j)|y〉Y = (σ2
j + λ2)〈ϕ(j)|x〉X

and we see that

x =

∞∑

j=1

σ2
j

σ2
j + λ2

〈ψ(j)|y〉Y
σj

ϕ(j)
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is a solution to the normal equation A∗y = (A∗A+ λ21)x. From this point of view, the
Tikhonov regularization yields a filtered solution

x(λ,δ) =

∞∑

j=1

χj(λ)
〈ψ(j)|y(δ)〉Y

σj
ϕ(j), (2.21)

where the functions given by

χj(λ) :=
σ2
j

σ2
j + λ2

∈ [0, 1]

ensure that the coefficients of the above series decay properly with respect to the Picard
criterion. At this place, the SVD helps us to interpret the regularization as filtering out
the noisy coefficients, such that an alternative choice of the functions (χj)j∈N also makes
sense.

Example 2.5. “TSVD”:
By setting the filter functions

χj(λ) :=

{
1, 1 ≤ j ≤ k(λ),
0, j > k(λ),

in the regularized solution (2.21), we can derive the TSVD regularization as a special case
of the Tikhonov regularization. ✸

Similar to the TSVD, we can show that the family of operators

R(λ) :=
(
A∗A+ λ21

)−1
A∗ (2.22)

is a regularization of A† and every parameter choice strategy λ(δ) with

λ(δ)→ 0 and
δ

λ
→ 0, δ → 0

in combination with the Tikhonov regularization (2.22) yields a regularization method.
Indeed, since

(A∗A+ λ21)−1A∗ = A∗(AA∗ + λ21)−1,

we obtain

‖R(λ)‖2 = sup
‖y‖Y =1

‖(A∗A+ λ21)−1A∗y‖2X

= sup
‖y‖Y =1

〈(A∗A + λ21)−1A∗y|(A∗A+ λ21)−1A∗y〉X

= sup
‖y‖Y =1

〈A∗(AA∗ + λ21)−1y|A∗(AA∗ + λ21)−1y〉X

≤ sup
‖y‖Y =1

(
〈(AA∗ + λ21)−1y|AA∗(AA∗ + λ21)−1y〉Y

+ λ2〈(AA∗ + λ21)−1y|(AA∗ + λ21)−1y〉Y
)

= sup
‖y‖Y =1

〈(AA∗ + λ21)−1y|(AA∗ + λ21)(AA∗ + λ21)−1y〉Y
CSI
≤ sup

‖y‖Y =1

‖(AA∗ + λ21)−1y‖Y · ‖y‖Y

= ‖(AA∗ + λ21)−1‖ = 1

λ2
,
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that is, R(λ) is continuous for any λ > 0. Further, for any y ∈ dom(A†) and λ > 0,

‖R(λ)y‖X ≤ ‖R(λ)‖ · ‖y‖Y ≤
const
λ

is bounded and for λ→ 0, we have

R(λ)y =
∞∑

j=1

σ2
j

σ2
j + λ2

〈ψ(j)|y〉Y
σj

ϕ(j) →
∞∑

j=1

〈ψ(j)|y〉Y
σj

ϕ(j) = A†y,

such that all prerequisites of a regularization are fulfilled. Finally, we estimate the error
via

‖R(λ(δ))y(δ) −A†y‖X ≤ ‖R(λ(δ))y − A†y‖X + ‖R(λ(δ))‖ · ‖y(δ) − y‖Y ,
and let δ → 0. The first term on the right tends to zero due to the above consideration,
if λ(δ)→ 0. The second term is bounded,

‖R(λ(δ))‖ · ‖y(δ) − y‖Y ≤
1

λ
δ,

and vanishes, if δ
λ
→ 0. That is, ((R(λ))λ>0, λ(δ, y

(δ))) is a regularization method.

2.5 Parameter Choice Strategies

According to the Tikhonov regularization (or any other regularization), we obtain a whole
family of possible solutions

x(λ,δ) = R(λ)y(δ), λ > 0.

Intuitively, the regularization parameter should not be too small, otherwise we face the
inverted noise again. In the contrary, if we choose a too large λ, then we solve a min-
imization problem that has nothing to do with the original one. Let us illustrate these
two extreme cases on a familiar finite-dimensional problem.

Example 2.6. “(3× 2)-system”:
We resume the simple problem from Example 2.1 and write down the regularized solution
explicitly,

x(λ,δ) =

(
309λ4 + 939λ2 + 36

(3 + λ2)(λ4 + 30608λ2 + 6)
,

31211λ2 + 6

λ4 + 30608λ2 + 6

)T

.

We see that it vanishes for λ→∞ and tends to x(δ) = (2, 1)T for λ→ 0. Since the exact
solution x = (1, 1)T is given, we can implement a test of all values of λ ∈ [10−10, 105]
on a logarithmically equidistant grid. Then, we can find the one optimal λopt, such
that the distance between x(λopt,δ) and x is minimal (see Figure 2.5). The family of
all regularized solutions defines a curve in R2, and the optimal solution should be the
orthogonal projection of the exact solution on this curve. Indeed, for a certain choice of
the regularization parameter, we reach

x(λopt,δ) ≈ (1, 1)T = x.

Further, we can see that the noise affects primarily the first component of the solution,
while a too agressive regularization is able to ruin also the second component. ✸
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In the general case, it is not clear how to choose the regularization parameter λ, and any
concrete parameter choice strategy depends on the nature of the actual inverse problem.
However, there are some common approaches, from simple and purely heuristic to rigorous
and sophisticated. In order to motivate some of them, we consider the normal equation
(2.20) in the equivalent formulation as the minimization problem

min
x∈X

T (λ,δ)(x), (2.23)

where
T (λ,δ)(x) := ‖y(δ) − Ax‖2Y + λ2‖x‖2X (2.24)

is called the Tikhonov functional. The term ‖x‖2X plays the role of a penalty function,
which prevents the noisy components of the solution from growing uncontrollably. In this
regard, the factor λ2 corresponds to the weight of the penalty. If the noise is small, we
trust more in the residual and set λ small (almost no penalty). If the noise is large, we
set λ large – the minimization will force the solution x(λ,δ) to be small (damped noisy
components).

More rigorously, we can show that

d

dλ

(∥
∥x(λ,δ)

∥
∥
2

X

)
(2.21)
=

∞∑

j=1

d

dλ

(∣
∣
∣
∣
χj(λ)

〈ψ(j)|y(δ)〉Y
σj

∣
∣
∣
∣

2
)

= −
∞∑

j=1

σ2
j |〈ψ(j)|y(δ)〉Y |2

4λ

(σ2
j + λ2)3

< 0.

Therefore, the solution norm is a monotonically decreasing function of λ. Before we
analyze in a similar way the distance between Ax(λ,δ) and the noisy data y(δ) ∈ Y , we
note that the latter is generally not in the range of A. However, Y = ran(A)⊕ ran(A)⊥,
such that we can split the data in two parts

y(δ) = y(δ,‖) ∔ y(δ,⊥),

where

y(δ,‖) :=
∞∑

j=1

〈ψ(j)|y(δ)〉Y ψ(j)

is the projection of the data on ran(A) and y(δ,⊥) is the part, orthogonal to this projection,
that is, 〈y(δ,‖)|y(δ,⊥)〉Y = 0. Then, we can derive that

d

dλ

(∥
∥y(δ) − Ax(λ,δ)

∥
∥
2

Y

)

=
d

dλ





∥
∥
∥
∥
∥
y(δ,‖) + y(δ,⊥) −

∞∑

j=1

χj(λ)〈ψ(j)|y(δ)〉Y ψ(j)

∥
∥
∥
∥
∥

2

Y





Pythagoras
=

d

dλ

( ∞∑

j=1

∣
∣(1− χj(λ))〈ψ(j)|y(δ)〉Y

∣
∣
2
+
∥
∥y(δ,⊥)

∥
∥
2

Y

)

=

∞∑

j=1

|〈ψ(j)|y(δ)〉Y |2
4σ2

jλ
3

(σ2
j + λ2)3

> 0.

It proves the residual norm to grow monotonically with λ.
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Figure 2.5: An illustration to Example 2.6. Black dots represent the regularized solutions
x(λ,δ) for all test values of λ. The red circle is the exact solution x. The blue circle is
the noisy solution x(δ) of the normal equation. The green circle is the optimal solution
x(λopt,δ).

The latter result is used in the Morozov discrepancy principle – a parameter choice
strategy, where the regularization parameter is the solution λ = λMDP of the equation

‖y(δ) − Ax(λ,δ)‖Y = δ. (2.25)

On the one hand, for λ→∞, we have ‖x(λ,δ)‖X → 0 due to (2.21), such that

‖Ax(λ,δ)‖Y ≤ ‖A‖ · ‖x(λ,δ)‖X → 0

and thus

‖y(δ) − Ax(λ,δ)‖Y ≥
∣
∣‖y(δ)‖Y − ‖Ax(λ,δ)‖Y

∣
∣→ ‖y(δ)‖Y

(2.2)
≫ δ.

On the other hand, for λ→ 0, we have

x(λ,δ) = R(λ)y(δ) → A†y(δ) = x(δ)

and, since x = x(δ) is a minimizer of the functional ‖y(δ) −Ax‖Y , we obtain

‖y(δ) −Ax(λ,δ)‖Y → ‖y(δ) −Ax(δ)‖Y ≤ ‖y(δ) −Ax‖Y = ‖y(δ) − y‖Y
(2.2)

≤ δ.

This functional is continuous, such that the two estimates imply the existence of a solution
of (2.25) and, since the norm grows strictly monotonically with λ, the solution is unique.
One can show that the Tikhonov regularization combined with the Morozov discrepancy
principle yields a regularization method [Groetsch-1993].
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Figure 2.6: An illustration of the L-Curve criterion.

We can also use the monotonicity of the single terms of the Tikhonov functional, in
order to reason that the curve

c(λ) :=

(
ln ‖y(δ) − Ax(λ)‖Y

ln ‖x(λ)‖X

)

is the graph of a monotonically decreasing function, which has often a shape of the letter
L (see Figure 2.6). Any point on the curve is characterized by the residual and solution
norms and yields a unique value of the regularization parameter. We already stressed,
from the intuitive point of view, how important it is to hit a moderate value λ, which
is not too large and not too small. The L-Curve criterion is a heuristical parameter
choice strategy that sets the regularization parameter λ to the value corresponding to the
“corner” of the L-Curve c = c(λ). In terms of the analytical geometry, the corner is the
point with maximal curvature, that is, the regularization parameter is given by

λLCC := argmax
λ

κ(λ),

κ(λ) :=
det(Dc(λ), D2c(λ))

|c(λ)|3 .

Let us show how this simple criterion solves an ill-posed problem we considered earlier.

Example 2.7. “Inverse Laplace transformation”:
The heuristical idea of the L-Curve criterion presented in Figure 2.6 is usually not met
in practice. Considering the L-Curve for the inverse problem from Example 2.2 (see Fi-
gure 2.7), we recognize a “corner”, which corresponds to the choice λLCC ≈ 2 · 10−3. We
observe also that it is quite close to the optimal value λopt ≈ 4 · 10−2 of the regularization
parameter. The comparison

‖x(δ) − x‖X ≈ 7 · 1016,
‖x(λLCC,δ) − x‖X ≈ 1 · 10−1,

‖x(λopt,δ) − x‖X ≈ 6 · 10−3,
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Figure 2.7: The discrete L-Curve (black dots) and the optimal choice (green circle) from
Example 2.7.

shows that the regularized solution is much better than the best-approximate solution.
Still, the heuristic of the criterion is coarse and far from optimal with regard to this
problem. ✸

2.6 Nonlinear Problems

Let us now come back to the nonlinear minimization problem (2.3). Summarizing the
considerations of the last few sections, a numerical solution method can have the following
form

b(k,δ) := y(δ) − F [x(k)],
A(k) := DF [x(k)],

h(k,λ) :=
(
A(k)∗A(k) + λ21

)−1
A(k)∗b(k,δ),

x(k+1) := x(k) + h(k,λ), k ≥ 0, (2.26)

where the regularization parameter λ can be obtained from some parameter choice stra-
tegy. This method has a noticeable similarity with the Levenberg-Marquardt method –
another Newton-type method, developed for solution of well-posed problems, where δ = 0
and y(δ) = y(0) = y actually, but the derivative DF [x(k)] may be an ill-conditioned matrix.
If this is the case, one can “trust” in the linearization

min
h∈X
‖y(0) − F [x(k)]−DF [x(k)]h‖Y

of the problem (2.3) only in a small ball around the iterate x(k). Therefore, one supplies
the norm to be minimized with a constraint, in order to stay in this ball called the
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trust region. In other words, one computes the update as a solution h = h(k,λ) of the
minimization problem

min
h∈X
‖y(0) − F [x(k)]−DF [x(k)]h‖2Y + λ2‖h‖2X ,

where the parameter λ justifies the update with respect to the given radius ρ of the trust
region. For instance, the larger the value of λ, the smaller must be the norm ‖h‖2X to
ensure the minimization of the whole expression above. More precisely,

‖h(k,λ)‖2X = ρ2

must hold. Knowing the corresponding update h(k,λ), one should be able to decide whether
the next iterate x(k+1) := x(k) + h(k,λ) can be trusted or not. The Armijo-Goldstein crite-
rion uses the quotient

µ :=
‖b(k,0)‖2Y − ‖y(0) − F [x(k+1)]‖2Y

2〈A(k)h(k,λ)|b(k,0)〉Y
(2.27)

to measure the quality of the linearization for the actual iterate. One must provide just
two parameters 0 < µ1 < µ2 < 1 that describe personal expectations respective linearity.
If the function is “not linear enough” (µ < µ1) in the current trust region, one repeats
the previous step with a smaller radius (a larger λ). Eventually, one can also increase the
radius ρ, if the iterate reaches the area, where the function is “pretty linear” (µ > µ2).

While the radius adjustment reminds us on a parameter choice strategy, the above mi-
nimization problem is exactly the one we considered for the Tikhonov functional (2.24).
Indeed, our regularization method (2.26) can be interpreted as an adaptation of the
Levenberg-Marquardt method for ill-posed problems. The choice of the trust region radius
takes place in the Morozov discrepancy principle by choosing λ, such that

‖b(k,δ) − A(k)h(k,λ)‖Y = µ‖y(δ) − F [x(k)]‖Y , (2.28)

where the number 0 < µ . 1 remains constant. The norm on the left is an estimate of
the residual norm of the next iterate,

‖y(δ) − F [x(k+1)]‖Y ≈ ‖y(δ) − F [x(k)]−DF [x(k)]h(k,λ)‖Y = ‖b(k,δ) − A(k)h(k,λ)‖Y .

Via the parameter µ, we control the reduction rate of the residual norm: for µ near one,
we obtain a larger value of λ and correspondingly, a smaller update.

The intuition from the classical Newton-type methods, that the residual norm con-
verges monotonically to zero, is not appropriate for an ill-posed problem, where the so-
lution does not need to exist, such that a method eventually cannot converge. We could
try to stop, when the residual norm begins to grow, in which case we risk to experience
the semiconvergence – the iterates x(k) move towards the exact solution for 0 ≤ k ≤ kstop

and then, for k > kstop, they drift away again (see Figure 2.8). Since we do not know the
exact solution, we need a smart stopping rule – a kind of parameter choice strategy that
analyzes the behaviour of the residuals and decides when the iteration should be stopped.
From this point of view, the step number kstop can be seen as a regularization parameter.
The residual of our iterative method contains noise of the magnitude δ, that is, intuitively,
the method should not minimize the residual norm below that value. We choose kstop as
the minimal k, such that

‖y(δ) − F [x(k)]‖Y ≤ τδ (2.29)
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Figure 2.8: Crossing the noise level (dashed line) at kstop = 4, the residual norm (blue
line) decays further, but the solution (red line) drifts away.

is fulfilled, where τ ≥ 1 is a safety factor for the case that our noise model is too optimistic.
Naturally, we should approach the noise level δ (that is, τ ≈ 1) only with small updates.
Thus, by a rule of thumb, we can set the safety factor τ := 1/µ.

The numerical treatment of a nonlinear problem has also a positive effect. We remind
that the map F : X → Y yields data y = F [x] ∈ Y in dependence of the given parame-
ter x ∈ X, where x and y are generally elements of some functional spaces X and Y .
In practice, all spaces must be reduced to finite dimensions, such that in principle, the
data is a vector y ∈ Rm depending on a finite family of parameters x = (x1, . . . , xn)T .
Consequently, the operator DF [x] becomes a matrix A ∈ Rm×n with rank n < m, which
can be explored by using its SVD (ψ(j), σj , ϕ

(j))nj=1. The right singular vectors (ϕ(j))nj=1

yield an orthonormal basis of Rn, and the singular values (σj)
n
j=1 give an impression of

the importance of the single basis vectors. The larger the singular value σj , the more
important is the corresponding singular vector ϕ(j), the larger is the impact of a variation
of the parameter vector x in the direction ϕ(j) on the map value F[x]. In this way, we can
sneak into the nature of the (nonlinear) map F in the vicinity of x – the closer is the ℓ-th
component of ϕ(j) to one, the easier we can deduce the importance of the parameter xℓ
from the magnitude of the singular value σj . In the general case, the components of a
singular vector are mixed and far from one, but if there is 1 ≤ j ≤ n with

σj
σ1
≈ 1,

|ϕ(j)
s |2

‖ϕ(j)‖22
≈ 1, (2.30)

we can call the parameter xs strong . Similarly, if there is 1 ≤ j ≤ n with

σj
σ1
≈ 0,

|ϕ(j)
w |2

‖ϕ(j)‖22
≈ 1, (2.31)

we can call the parameter xw weak. Further, the matrix Φ = (ϕ(1), . . . , ϕ(n)) ∈ Rn×n

reveals correlations between the parameters (xℓ)nℓ=1. Typically, we are not interested in
the concrete values of the entries (especially for large n), but in their relative magnitudes.
Since

|ϕ(j)
1 |2 + . . .+ |ϕ(j)

n |2 = 1 ⇒
|ϕ(j)

1 |2, . . . , |ϕ(j)
n |2 ≤ 1,
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we prefer to consider the componentwise squared matrix Φ.^2 and represent it as a pic-
togram. The entries correspond to blocks in grayscale colors, for instance,

Φ =





1 0 0

0 1/2
√
3/2

0 −
√
3/2 1/2



 ⇒ Φ.^2 =





1 0 0
0 1/4 3/4
0 3/4 1/4



 =

( )

.

We show in the following example how such pictogram should be interpreted with respect
to the definitions (2.30) and (2.31).

Example 2.8. “Singular Value Analysis”:

We consider the matrix

Φ.^2 =













x1
x2
x3
x4
x5
x6
x7













∈ R7×7

of the componentwise squared singular vectors corresponding to an ill-conditioned mat-
rix A ∈ R20×7, which arises from discretization of a certain operator DF [x]. For the sake
of simplicity, the parameter of the underlying map F has originally a finite length, that
is, x ∈ R7. The columns of the above pictogram visualize the singular vectors and, for a
better readability, we fade in an additional (zeroth) column with parameters corresponding
to the rows. The first column is the most important, its last component is black, thus we
conclude that x7 is the strongest parameter in the map F . The second column reveals
that x6 is somewhat weaker than x7. The next two columns show that x4 and x5 are
weaker and correlated with each other – a repeated study of these parameters could
improve the model. The last three columns represent the weakest parameters x1, x2, x3,
which are highly correlated – in this case, one can think about excluding these unimportant
parameters from the model. ✸

Through the chapter, we explained why only regularization methods can deliver a
meaningful solution of an ill-posed problem. Until now we did not discuss under which
conditions they do deliver such solution. The classical Newton-type methods require that
the derivative DF [x] is Lipschitz continuous (see, for example, [Hanke-Bourgeois-2006]),
that is, the Taylor remainder of the linearization (2.4) can be estimated by

‖Ξ(x; x)‖Y ≤ C‖x− x‖2X ,

where C > 0 is constant and x ∈ dom(F ). However, for the ill-posed problem, even though
the right-hand side is small (near the solution), the left-hand side can be considerably
smaller, such that the above condition does not describe the local behaviour of the map
properly and the error of the linearization can go out of control. The usual practice is to
replace the parameter distance by the data distance, that is, to demand

‖Ξ(x; x)‖Y ≤ C‖F [x]− F [x]‖Y
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or
‖Ξ(x; x)‖Y ≤ C‖x− x‖X‖F [x]− F [x]‖Y . (2.32)

Under the latter condition, one can show that the Levenberg-Marquardt method (2.26),
combined with the parameter choice strategy (2.28) and the stopping rule (2.29), converges
monotonically [Hanke-1997].

2.7 Summary

So far we made progress only in the mathematical specification of the terms appearing
in the key questions of this work. We understand now that an “inversion method” is
typically an iterative method for numerical solution of the given inverse problem. In the
following, we want to measure the quality of such a method according to its theoretical
and practical properties. Therefore, we formulate these properties as subquestions of the
Question I (see p. 11), more precisely, from the purely theoretical viewpoint, we can ask
two questions:
Question I.1: Does the inversion method contain regularization?

Question I.2: Does the inversion method converge?
We already answered the first one for the Levenberg-Marquardt method (2.26), by demon-
strating how it is derived by the Tikhonov regularization of the classical Newton method.
Moreover, inequality (2.32) is a rigorous condition for the method to converge. Unfortu-
nately, we cannot just check this condition for the particular inverse problem presented
in Chapter 1. As we saw, the problem has a complex physical background, such that we
cannot treat the corresponding mathematical definition of the map F explicitly. But we
can test our method on some well-studied cases where the solution is already obtained by
other means.
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Chapter 3

Application of the Theory

3.1 The Particular Inverse Problem

3.1.1 Functional Spaces

In Chapter 1, we discussed briefly the direct problem of interest and the associated map G,
which yields for each interaction potential u the corresponding radial distribution function
(RDF). In other words, the particular inverse problem is to solve the equation

y = G[u]

for the given RDF y. Sometimes, the unknown potential u is parameterized via u = H [x],
where x is an unknown parameter, and the equation takes the form

y = F [x]

with F := G ◦H. In this chapter, we want to apply the (general) theory of inverse
problems to this particular problem. Even though we never discussed the mathematical
structure of the sets dom(G) and ran(G), we identified their elements with potentials
and RDFs, respectively, and specified some typical features. That is, a potential was any
smooth function u : (0,∞)→ R that posesses the properties

(U1) lim
r→0

u(r) =∞,
(U2) lim

r→∞
u(r) = 0,

(U3) min
r∈(0,∞)

u(r) < 0.

We called an RDF any smooth function y : (0,∞)→ (0,∞) with

(Y1) lim
r→0

y(r) = 0,

(Y2) lim
r→∞

y(r) = 1,

(Y3) max
r∈(0,∞)

y(r) > 1.

However, the preliminary description of the potentials and RDFs by properties (U1-3)
and (Y1-3), respectively, lacks rigorosity from the viewpoints of computer simulation and
mathematics. In the following, we discuss the mentioned lack and revise the properties,
in order to elaborate more rigorous definitions, which cover our needs.
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Figure 3.1: A typical RDF.

Figure 3.1 shows a typical RDF y obtained by computer simulation. We see that the
property (Y1) holds and even more, the number

rcore := max{r > 0|y(s) = 0, ∀s ∈ (0, r]}

exists. The reason for this is the strongly repulsive interaction between particles at short
distances, which is stated by the property (U1) of the underlying potential u. Due to
repulsion, each particle has a “core” region (0, rcore], which is rarely entered by other
particles. Thus, the sampling procedure for the RDF never finds a particle pair at this
short distance and we observe in simulations, that

y(r) = 0, ∀r ∈ (0, rcore]. (3.1)

In other words, the actual behaviour of the potential in the core region does not matter
as long as the repulsion energy is high enough. In principle, this indefiniteness allows us
to claim that the singularity of a potential at zero has a polynomial character, that is,
1. property of potentials:
There exist Ainf

0 , A
sup
0 ∈ (0,∞), α0 ∈ [0,∞), ∆α0 ∈ [0, α0] and rcore ∈ (0,∞), such that

Ainf
0 r

−α0+∆α0 ≤ u(r) ≤ Asup
0 r−α0−∆α0 , ∀r ∈ (0, rcore].

This property is particularly useful in the computer simulation, where the values of the
potential cannot be infinite. In the core region, which is a priori never visited by particles,
we can replace the potential values by a (very large) constant Ainf

0 = Asup
0 while choosing

α0 = ∆α0 = 0. However theoretically, the probability for a short distance between the
particles is not zero, it rather decays exponentially with growing repulsion energy (see
Figure 3.2). Thus, we claim

1. property of RDFs:
There exist Binf

0 , Bsup
0 ∈ (0,∞), β0 ∈ [0,∞), ∆β0 ∈ [0, β0] and rcore ∈ (0,∞), such that

exp
(
−Binf

0 r−β0−∆β0
)
≤ y(r) ≤ exp

(
−Bsup

0 r−β0+∆β0
)
, ∀r ∈ (0, rcore].

According to this statement, we observe (3.1) in simulation due to rounding errors in the
sampling procedure.
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Figure 3.2: A logarithmic plot of the typical RDF (blue dots) near the core region, that
is, for r → rcore + 0. The black line represents the corresponding linear fit of the points.

Figure 3.3 shows a typical potential u used to describe the nonbonded interactions in
a fluid. We confirm the property (U2) and even more, we see that u(r) ≈ 0 for finitely
large distances. This approximation is used in the computer simulation, in order to reduce
the computational effort in a large system. Cutting off the potential at some appropriate
distance rcut <∞ and continuating it with zero allows to consider only interactions in
small subregions of the system. However, the resulting uncertainties in the energy and
the pressure can only be estimated and corrected, if the convergence of the potential to
zero is fast enough (see Appendix B). Such potentials are called short-ranged and the
Lennard-Jones potential is one of them. In this work, we do not consider electrostatic
interactions between particles, because they are modeled by the Coulomb potential, which
is long-ranged. Therefore, we claim that our potentials are short-ranged:
2. property of potentials:
There exist A∞ ∈ (0,∞), α∞ ∈ (d,∞) and rcut ∈ (rcore,∞), such that

|u(r)| ≤ A∞r
−α∞ , ∀r ∈ (rcut,∞).

This model also covers the case where the potential is cut off.
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Figure 3.3: A typical nonbonded interaction potential.
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As the property (Y2) states, the RDF has a similar asymptotic behaviour – it converges
to one for large distances. We see in Figure 3.1 that the deviations of the function’s
extremal values from the limit decay very fast and become vague due to the statistical
noise as the distance grows. We can model the decay on the interval (rcut,∞) polynomially

|y(r)− 1| ≤ r−β
poly
∞

or exponentially
|y(r)− 1| ≤ exp

(

−rβexp
∞

)

.

Obviously, the first version is a safer estimate, no matter how large the power is. Regarding
the good correspondence between RDF and potential promised by Henderson theorem, we
expect that the power of the polynomial estimate is comparable with the number d = 3
of dimensions, like in the 2. property of potentials. We plot the power as a function of
the distance

βpoly
∞ (r) ≈ − ln(|y(r)− 1|)

ln(r)

and observe that the mentioned decay becomes faster with growing r (see Figure 3.4).
Even more, for large r, the power reaches the desired level near d. Probably, we cannot
observe βpoly

∞ > d just because the data has finite length and becomes noisy in the last
components. The best polynomial fit confirms our hypothesis. Therefore, we claim that
in the absence of noise, the convergence has the polynomial behaviour:
2. property of RDFs:
There exist B∞ ∈ (0,∞), β∞ ∈ (d,∞) and rcut ∈ (rcore,∞), such that

|y(r)− 1| ≤ B∞r
−β∞, ∀r ∈ (rcut,∞).

Finally, we discuss the shape of the potential well, which is essential for attraction
between particles in a fluid. The term “fluid” covers both liquids (high density) and gases
(low density). At high density, the particles are kept together by pressure, such that
interactions are mainly repulsive. However, if we simulate a liquid at moderate density

0 2 4 6 8 10
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r

Figure 3.4: The power βpoly
∞ (r) (blue dots) and the best polynomial fit (black line).
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and without attractive forces, the particles could diffuse to the whole container (like a
gas), which would be unusual for a liquid. Roughly speaking, the particles try to minimize
the energy, such that the potential should have a well, which defines a preferred distance,
as we indicated in the property (U3) and specify now:

3. property of potentials:
There exists a unique rmin ∈ (rcore, rcut], such that

−∞ < u(rmin) = min
r∈(0,∞)

u(r) < 0.

Due to this attractive feature of the interaction, the sampling procedure for the RDF
counts very many neighbours in a relatively small layer around a reference particle. The
consequence is, as the property (Y3) states, that a noticeable peak emerges in the his-
togram:
3. property of RDFs:
There exists a unique rpeak ∈ (rcore,∞), such that

1 < y(rpeak) = max
r∈(0,∞)

y(r) <∞.

In the above discussion, we developed new formal properties describing the sets of
potentials and RDFs. While some old properties remained, other were generalized or
specified, but both the old and the new descriptions have a nearly equivalent physical
interpretation. However, the corresponding mathematical statements are not equivalent,
especially, the constants α0 and β0 establish the accurate behaviour of the functions near
zero. We summarize the results of our study in the following definitions.
Definition:
For any α0 ∈ [0,∞) and ∆α0 ∈ [0, α0], let the set SU(α0,∆α0) contain all piecewise
smooth functions u : (0,∞)→ R with the following properties:

(SU1) there exist Ainf
0 , A

sup
0 ∈ (0,∞) and rcore ∈ (0,∞), such that

Ainf
0 r

−α0+∆α0 ≤ u(r) ≤ Asup
0 r−α0−∆α0, ∀r ∈ (0, rcore], (3.2)

(SU2) there exist A∞ ∈ (0,∞), α∞ ∈ (d,∞) and rcut ∈ (rcore,∞), such that

|u(r)| ≤ A∞r
−α∞ , ∀r ∈ (rcut,∞), (3.3)

(SU3) there exists a unique rmin ∈ (rcore, rcut], such that

−∞ < u(rmin) = min
r∈(0,∞)

u(r) < 0. (3.4)

We call an element of the set

SU :=
⋃

α0≥0

⋃

∆α0≤α0

SU(α0,∆α0) =
⋃

α0≥0

SU(α0, α0)

a potential.

39



CHAPTER 3. APPLICATION OF THE THEORY

Definition:
For any β0 ∈ [0,∞) and ∆β0 ∈ [0, β0], let the set SY (β0,∆β0) contain all piecewise
smooth functions y : (0,∞)→ (0,∞) with the following properties:

(SY1) there exist Binf
0 , Bsup

0 ∈ (0,∞) and rcore ∈ (0,∞), such that

exp
(
−Binf

0 r−β0−∆β0
)
≤ y(r) ≤ exp

(
−Bsup

0 r−β0+∆β0
)
, ∀r ∈ (0, rcore], (3.5)

(SY2) there exist B∞ ∈ (0,∞), β∞ ∈ (d,∞) and rcut ∈ (rcore,∞), such that

|y(r)− 1| ≤ B∞r
−β∞, ∀r ∈ (rcut,∞). (3.6)

(SY3) there exists a unique rpeak ∈ (rcore, rcut], such that

1 < y(rpeak) = max
r∈(0,∞)

y(r) <∞. (3.7)

We call an element of the set

SY :=
⋃

β0≥0

⋃

∆β0≤β0

SY (β0,∆β0) =
⋃

β0≥0

SY (β0, β0)

a radial distribution function (RDF).

Even though the definitions are strictly derived from their physical motivation, the
sets SU and SY do not suffice for a mathematically rigorous discussion of the problem.
For instance, if we intend to solve the problem by the Levenberg-Marquardt method pre-
sented in the previous chapter, then each set should be embedded in a Hilbert space, say,
SU →֒ U and SY →֒ Y . Especially, the method makes use of the derivative DG ∈ L(U, Y )
of G : U → Y , but its definition via

DG[u] := lim
t→0

1

t

(

G[u+ tv]−G[u]
)

, u, v ∈ U,

makes sense only for linear spaces U and Y . Each of the sets {SU(α0,∆α0)} of potentials
already posesses some structure, namely

u, υ ∈ SU(α0,∆α0), c > 0 ⇒ u+ υ, cu ∈ SU(α0,∆α0),

but none of them is a linear space. Likewise, none of the sets {SY (β0,∆β0)} is a linear
space, because all RDFs converge to one at infinity. Further, we have to supply each
space with an appropriate norm ‖ · ‖, in order to justify the common definition of the
term “limit” via

a = lim
k→∞

a(k) :⇔ lim
k→∞
‖a− a(k)‖ = 0,

and to measure the quality of the iterates and of the approximate solution. A popular
norm in the physical literature is the root mean square distance given by

RMSD(f) :=

(∫

|f(r)|2dr
)1/2

for a function f . However, the integral diverges for y ∈ SY (β0,∆β0) due to (3.6) and
for u ∈ SU(α0,∆α0), 0 < ∆α0 < α0, due to (3.2). Even for u ∈ SU(0, 0), the most part
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of RMSD(u) <∞ comes from the integration over the core region where the potential
values are apparently unimportant. In other words, the norms for potentials and RDFs
need at least a fair reweighting. A popular approach in functional analysis is to embed
a set into a weighted Lebesgue space L2((0,∞), w), where w ∈ C∞(0,∞) is a bounded
weight function. This space is a Hilbert space of all measurable functions f : (0,∞)→ R

that are square-integrable with the weight w, that is, ‖f‖ <∞. The norm is induced by
the weighted inner product

〈f |g〉 :=
∫ ∞

0

f(r)g(r)w(r)dr

defined for any functions f and g from the Hilbert space.

Theorem A1:
SU is a subset of the weighted Lebesgue space U := L2((0,∞), wU), if wU ∈ C∞((0,∞))
is a bounded weight function, such that

lim
r→0

u(r)2wU(r) = 0, (3.8)

lim
r→∞

wU(r) = 1, (3.9)

for any u ∈ SU .

Proof: Let u ∈ SU(α0,∆α0) be arbitrary. According to (3.8), there exists r0 ∈ (0, rcore]
with

|u(r)2wU(r)| ≤ 1, ∀r ∈ (0, r0),

because u, wU ∈ C∞(0, rcore). Then, we have
∣
∣
∣
∣

∫ r0

0

u(r)2wU(r)dr

∣
∣
∣
∣
≤
∫ r0

0

|u(r)2wU(r)|dr ≤ r0 ≤ rcore <∞.

Further, due to (3.3), there exist A∞ ∈ (0,∞), α∞ ∈ (d,∞) and rcut ∈ (rcore,∞) with

|u(r)| ≤ A∞r
−α∞ , ∀r ∈ (rcut,∞).

Moreover, according to (3.9), we can assume that r1 ∈ (rcut,∞) exists with

|wU(r)| ≤ 2, ∀r ∈ (r1,∞).

Thus, we have
∣
∣
∣
∣

∫ ∞

r1

u(r)2wU(r)dr

∣
∣
∣
∣
≤

∫ ∞

r1

|u(r)2wU(r)|dr

≤ 2A∞

∫ ∞

r1

r−2α∞dr

= 2A∞
1

−2α∞ + 1
r−2α∞+1

∣
∣
∣
∣

∞

r1

= 2A∞
1

2α∞ − 1
r−2α∞+1
1 <∞.
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Finally, since u and wU are bounded on the interval (r0, r1), we have

|u(r)2wU(r)| ≤ C, ∀r ∈ (r0, r1)

for a constant C <∞, that is,
∣
∣
∣
∣

∫ r1

r0

u(r)2wU(r)dr

∣
∣
∣
∣
≤ C(r1 − r0) <∞.

Summarizing the above estimates, we obtain

‖u‖2U =

∣
∣
∣
∣

∫ ∞

0

u(r)2wU(r)dr

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ r0

0

u(r)2wU(r)dr

∣
∣
∣
∣
+

∣
∣
∣
∣

∫ r1

r0

u(r)2wU(r)dr

∣
∣
∣
∣
+

∣
∣
∣
∣

∫ ∞

r1

u(r)2wU(r)dr

∣
∣
∣
∣
<∞,

that is, u ∈ U . ✷

Theorem A2:
SY is a subset of the weighted Lebesgue space Y := L2((0,∞), wY ), if wY ∈ C∞((0,∞))
is a bounded weight function, such that

|wY (r)| ≤ C1r
−β, ∀r > r∞, (3.10)

for certain C1 ∈ (0,∞), β ∈ (1,∞) and r∞ ∈ (0,∞).

Proof: Let y ∈ SY (β0,∆β0) be arbitrary. According to (3.6), we can assume

|y(r)| ≤ 2, ∀r > r∞,

without loss of generality. Then, we have
∣
∣
∣
∣

∫ ∞

r∞

y(r)2wY (r)dr

∣
∣
∣
∣
≤ 4

∫ ∞

r∞

|wY (r)|dr
(3.10)

≤ 4C1

∫ ∞

r∞

r−βdr

= 4C1
1

−β + 1
r1−β

∣
∣
∣
∣

∞

r∞

= 4C1
1

β − 1
r1−β∞ <∞.

Finally, since y and wY are bounded on the interval (0, r∞), there exists a constant
C2 ∈ (0,∞) with

|y(r)2wY (r)| ≤ C2, ∀r ∈ (0, r∞),

that is ∣
∣
∣
∣

∫ r∞

0

y(r)2wY (r)dr

∣
∣
∣
∣
≤ C2r∞ <∞.

Summarizing the above estimates, we obtain

‖y‖2Y =

∣
∣
∣
∣

∫ ∞

0

y(r)2wY (r)dr

∣
∣
∣
∣
≤
∣
∣
∣
∣

∫ r∞

0

y(r)2wY (r)dr

∣
∣
∣
∣
+

∣
∣
∣
∣

∫ ∞

r∞

y(r)2wY (r)dr

∣
∣
∣
∣
<∞,
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that is, y ∈ Y . ✷

In this work, we use the weight functions

wU(r) := exp

(

−1
r

)

, (3.11)

wY (r) := exp(−r), (3.12)

which satisfy the requirements of the theorems A1 and A2, respectively. These functions
establish norms and limits on the spaces U and Y . It remains to discuss the structure
of the set SX of possible interaction parameters. Disregarding the concrete parameteri-
zation H , there are typically only few parameters, which are positive, such that we can
embed SX := (0,∞)n into the Euclidean space X := Rn for some finite n ∈ N. X is a
Hilbert space with the standard inner product

〈x|ξ〉X := 〈x|ξ〉2 =
n∑

j=1

xjξj , ∀x, ξ ∈ X.

Following the above considerations, we work with the map

F : X
H−→ U

G−→ Y

and write the particular inverse problem in the usual form as equation

y = F [x], (3.13)

where x ∈ X is the unknown exact parameter vector and y ∈ Y is the given exact data
(RDF). In the future discussions, we will occassionally consider the inverse problem

y = G[u], (3.14)

where the unknown exact potential u ∈ U appears without being parameterized.

3.1.2 Inversion Method

We explained earlier why an inverse problem of the form (3.13) is ill-posed in practice,
for instance, if we do not know the exact data y. This is the case for our problem – we
have only the noisy RDF y(κ) measured experimentally with a certain noise level κ > 0,
that is,

‖y(κ) − y‖Y ≤ κ.

Further, there are always model errors, for example, G does not perfectly describe the
RDF as a physical quantity, and the parameterization H or the space U are not good
enough to represent an interaction potential. In other words, it may happen that there
is no x ∈ X with u = H [x] or no u ∈ U with y = G[u]. Finally, the exact maps G and F
are not available – we have only the approximate computational implementations G(ν)

and F (ν) := G(ν) ◦H , such that

‖G(ν)[u]−G[u]‖Y ≤ ν (3.15)

holds for a certain ν > 0. Therefore, our inverse problems become

y(δ) = F (ν)[x], (3.16)

y(δ) = G(ν)[u], (3.17)
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where we assume that the noise level δ takes into account all uncertainties of our model,
that is, δ := κ + ν and y(δ) := y(κ).

We already discussed in Chapter 2 ill-posed problems of the above form and presented
the Levenberg-Marquardt method (2.26) as a good numerical solution approach. However,
due to the chosen functional spaces U and Y , we have to take a closer look on the normal
equation corresponding to the inverse problem (3.17). Simplifying our usual notations
to b := y(δ) −G[u] and A := DG[u] in this paragraph, we see that the update h to the
actual approximate potential u fulfills

(A∗A + λ21)h = A∗b

for some λ > 0. Here, A∗ : Y → U is the adjoint operator to A : U → Y with respect to
the inner products of the weighted Lebesgue spaces U and Y , and it is defined by

〈Au|y〉Y = 〈u|A∗y〉U .

The resulting operator differs from the usual L2((0,∞))-adjoint operator A∗2 , which is an
infinite-dimensional analogon of a transposed matrix. For A∗2 , it rather holds

〈Au|y〉L2((0,∞)) = 〈u|A∗2y〉L2((0,∞)),

but its relation to A∗ can be derived. Introducing the multiplication operators

WU : L2((0,∞))→ L2((0,∞)), u 7→ wUu,

WY : L2((0,∞))→ L2((0,∞)), y 7→ wY y,

we obtain on the one hand,

〈AWUu|y〉Y = 〈AWUu|WY y〉L2((0,∞)) = 〈WUu|A∗2WY y〉L2((0,∞)) = 〈u|A∗2WY y〉U ,

that is, (AWU)
∗ = A∗2WY . On the other hand, the equality

〈AWUu|y〉Y = 〈WUu|A∗y〉U = 〈WUu|WUA
∗y〉L2((0,∞)) = 〈u|WUA

∗y〉U

reveals that (AWU)
∗ = WUA

∗. Due to the uniqueness of the adjoint operator, we have

WUA
∗ = A∗2WY

and by multiplying the normal equation with WU from the left, we obtain

(A∗2WYA+ λ2WU1)h = A∗2WY b,

what is more suitable for further discretization and implementation. This modified equa-
tion can also be used for problem (3.16). WU then corresponds to the (non-present)
weighting of the space X and can be omitted.

In order to implement the Levenberg-Marquardt method on the computer, we write
it for finite-dimensional spaces, that is, we discretize the participating functions. Dis-
cretization is quite natural for our inverse problem, because experiments usually provide
the data y(δ) on some equidistant grid

ri := i∆r, 1 ≤ i ≤ m,
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with a grid step ∆r > 0. Thus, any data is actually a vector from the set

SY := {y ∈ Rm| yi = y(ri), y ∈ SY , 1 ≤ i ≤ m}
embedded in the space Y := Rm with the inner product

〈
y(1)|y(2)

〉

Y
:= ∆r

m∑

i=1

y(1)
i y(2)

i wY (ri) = ∆r
〈
y(1)|WY y(2)

〉

2
,

WY := diag(wY (r1), . . . , wY (rm)).

Conveniently, we use the same grid for the underlying potential by writing it as a vector
from the set

SU := {u ∈ Rm| ui = u(ri), u ∈ SU , 1 ≤ i ≤ m}
embedded in the space U := Rm with the inner product

〈
u(1)|u(2)

〉

U
:= ∆r

m∑

i=1

u(1)
i u(2)

i wU(ri) = ∆r
〈
u(1)|WUu(2)

〉

2
,

WU := diag(wU(r1), . . . , wU(rm)).

The space of parameters is already finite-dimensional and we define

SX := SX = (0,∞)n →֒ X := X = Rn, 〈·|·〉X := 〈·|·〉X = 〈·|·〉2.
The discretization of the maps between these spaces is obvious and leads to the discrete
inverse problems

y(δ) = F(ν)[x], (3.18)

y(δ) = G(ν)[u]. (3.19)

The Levenberg-Marquardt method solves (3.18) by linearization, which requires dis-
cretization of the operator A(k) that represents the derivative of the RDF with respect to
the parameter. In Chapter 1, we mentioned the complexity of the formal expression for
the RDF and naturally, its derivative shows even more complexity. That is, while every
serious software package (GROMACS, ESPResSo++, NAMD etc.) can run a molecular
simulation and obtain the corresponding RDF from the snapshots of the systems tra-
jectory, a computational procedure for the derivative is not included there by default.
Therefore, we prefer to use a solution algorithm with a lower requirement – the ability to
solve the direct problem, that is, to compute an RDF for the given interaction potential.
Consequently, in our method, we discretize the operator D itself by approximating the
derivative DF (ν) by finite differences

DjF
(ν)
i [x] :=

F(ν)
i [x +∆xje(j)]− F(ν)

i [x]
∆xj

, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

where the components of the variation vector ∆x ∈ Rn should be justified according to
the following consideration. On the one hand, the map F(ν) is still noisy:

‖F(ν)[x]− F(ν)[ξ]‖Y = ‖F(ν)[x]− F(ν)[ξ] + F[x]− F[x]

+F[ξ]− F[ξ]‖Y
≤ ‖F[x]− F[ξ]‖Y + ‖F(ν)[x]− F[x]‖Y

+‖F[ξ]− F(ν)[ξ]‖Y
(3.15)

≤ ‖F[x]− F[ξ]‖Y + 2ν,
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so we have to choose ∆xi large enough to guarantee that the actually important informa-
tion, F[x]− F[ξ], does not disappear in the noise of magnitude 2ν. On the other hand, the
variations should be small enough to take the local behaviour of F(ν) into account. In these
circumstances, we make a compromise by imposing the following variation condition,

2ν < ‖F(ν)[x +∆xje(j)]− F(ν)[x]‖Y < 4ν, (3.20)

which should provide a reasonable choice of the variation vector ∆x. In our iterative
regularization method, we ignore small perturbations in the operator A(k), consider the
difference between discretizations of DF and DF (ν) as negligible and take

A(k) := DF(ν)[x(k)].

Since the number ν is an important part of the variation condition, we have to model
the noise in the map F(ν) in a way, which allows us to estimate the noise level. We
assume that each component F(ν)

i of the noisy map is normally distributed with mean Fi
and standard deviation η2i . The mean RDF F is unknown, but we can estimate the
vector η ∈ Rm of standard deviations in each step from ten samples of the map F(ν) via
the sample variance

η2i = Var[F(ν)
i ], 1 ≤ i ≤ m.

Then, the noise level ν can be estimated by using the properties of the sample mean via

ν2 ≈ E
[

‖F(ν)[x]− F[x]‖2
Y

]

=
m∑

i=1

E
[

|F(ν)
i [x]− Fi[x]|2

]

wY (ri)∆r

=
m∑

i=1

Var[F(ν)
i ]wY (ri)∆r

= ‖η‖2
Y
. (3.21)

According to the above discussion, the Levenberg-Marquardt method takes the form

b(k,δ) := y(δ) − F(ν)[x(k)],

A(k) := DF(ν)[x(k)],

h(k,λ) :=
(

A(k)∗2WY A(k) + λ21
)−1

A(k)∗2WY b(k,δ),

x(k+1) := x(k) + h(k,λ), k ≥ 0, (3.22)

for the inverse problem (3.18), and

b(k,δ) := y(δ) −G(ν)[u(k)],

A(k) := DG(ν)[u(k)],

h(k,λ) :=
(

A(k)∗2WY A(k) + λ2WU

)−1

A(k)∗2WY b(k,δ),

u(k+1) := u(k) + h(k,λ), k ≥ 0, (3.23)

for the inverse problem (3.19). In this chapter, we always assume that x(0), u(0), y(δ), ν
and δ are given or can be estimated, such that the regularization parameter λ can be
chosen via the Morozov discrepancy principle (2.28) and the iteration can be terminated
due to the stopping rule (2.29).
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3.1.3 Direct Problem

Since our inversion method’s primary requirement is the ability to solve the direct prob-
lem, we briefly address the subtleties of the computer simulation, where the RDF is
computed from the underlying potential or its parameters. For instance, in Chapter 1,
we explained that it is done by molecular dynamics, which moves the particles of a fluid
in accordance with the Newton equations. The corresponding solution method must be
energy-conserving, otherwise the particles are either accelerated until the system blows
up (due to energy gain), or slowed down until the system freezes (due to energy loss).
But, in an experiment, where a total energy conservation is nearly impossible, the RDF
is usually measured rather at constant temperature than at constant energy. Therefore,
all our simulations are performed in the canonical ensemble (also called NV T -ensemble),
that is, for fixed number N of particles, volume V and temperature T of the system. The
source term of the Newton equations can be extended with a thermostat – a friction force,
which speeds up or slows down the particles, such that the temperature remains constant
(see Appendix B.1).

On the other hand, the parameters N , V and T allow a completely statistical descrip-
tion of the system by a distribution of particles, where their actual trajectories do not
matter. This distribution is based exclusively on these three parameters and the inter-
action potential, and totally determines the fluid’s statistical properties, including the
RDF. Therefore, disregarding the popularity of the molecular dynamics in the physical
community, a computer simulation can also be performed via the Monte Carlo method,
which describes the fluid directly from the statistical viewpoint (see Appendix B.1). In a
nutshell, the method picks out in each step a random particle, moves it slightly along a
random vector, determines the change in the energy and depending on the temperature,
decides whether this change is compatible with the canonical distribution (step accepted)
or not (particle is moved back). Evidently, one can implement this procedure much easier
than the molecular dynamics, therefore we use the Monte Carlo method in our preliminary
tests in the next section.

A further subtlety we want to discuss here are the units used in a computer simulation.
In the literature, one can find the tabulated RDF accompanied by all necessary experi-
mental settings, including the temperature T in [K] and the density ρ := N

V
in [Å

−3
].

Considering that, in SI units, we have

1 [Å] = 10−10 [m],

it is clear that no numerical method should work with numbers of that order. One usually
introduces the reduced units by setting a unit mass Munit, a unit length σunit and a unit
energy εunit. Then, the computer simulation works with the more suitable quantities

T ∗ =
kBT

εunit
,

ρ∗ = ρ
(
σunit

)3
,

ε∗ =
ε

εunit
,

σ∗ =
σ

σunit
,

which are all of the same order and nearly equal to one. We often omit the stars, because
we always mean the reduced units, unless we specify other units.
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Figure 3.5: Phase diagram of a simple fluid.

Finally, let us take a look inside the physics of the simulation, in order to understand
how the parameters T and ρ are to set up. We explained in Chapter 1, that a fluid is a
system of particles, which are moved according to the given interactions. Even though
the particles of a solid also interact, moving particles would be quite unusual – intuitively,
a solid system is either too cold or too dense to flow. Indeed, solid and fluid are different
phase states of matter, where fluid is a generic term for liquid and gas. Figure 3.5
shows the phase diagram, which helps to distinguish between different phase states. In
such diagram, the temperature T and the density ρ of the system determine the state of
matter (G stands for gas, L for liquid, S for solid, F for fluid). The solid lines represent
the coexistence lines, where two phase states are present simultaneously. The green circle
at (ρt, T t) designates the triple point, where all three states are present. The red circle
at (ρc, T c) stands for the critical point, where a part of the matter is in the gaseous
state and another part in the liquid state. The dashed line just separates visually the
supercritical fluid from the other fluid states. We use the phase diagram as a guide for
setting up a simulation in the NV T -ensemble. While we can carefree simulate a gas or
a liquid, we avoid the solid state as well as the coexistence lines by choosing appropriate
temperature and density. The safest for simulation is the supercritical fluid, therefore we
prefer this phase state in the following section.

3.2 Simulated Data for Two-dimensional Fluids

Before we apply our regularization method on a real-world (ill-posed) inverse problem, we
want to test it first under better conditions. We wrote our own code for two-dimensional
molecular simulations, in order to quickly obtain insight into the dependence between the
RDF and the underlying interaction potentials. We combined the programming languages
C++ and Perl to implement the Monte Carlo and the Levenberg-Marquardt methods,
which solve the direct and the inverse problems, respectively. For each inverse problem,
we choose a certain exact solution x and use y(ν) := F(ν)[x] as the given data. Since the
measurements become preciser (ν smaller) for a larger number N of particles, we find
that N = 128 is an acceptable value. Surely, a simulated RDF contains some statistical
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noise, as modeled by the noisy map F(ν), but its magnitude is so small that we can consider
the data y(ν) as nearly exact and the inverse problem as well-posed. We remind that such
problem still can be ill-conditioned, as we demonstrated earlier in Chapter 2.

The preliminary formulation of the inverse problem was to obtain the Lennard-Jones
parameters (ε and σ) as well as the temperature T and the density ρ for a simple fluid of
monatomic molecules. However, after we test few possible norms for the data (Lebesgue,
Sobolev, eventually weighted with characteristic functions), the derivative DF(ν)[x] reveals
a correlation between the parameters. Indeed, it is one aspect of the direct problem – ε
and σ can be chosen as the energy/temperature scale and the length/density scale, respec-
tively. It is intuitively clear because of the reduced units, where we can choose εunit := ε
and σunit := σ, such that ε∗ = σ∗ = 1. We show this more rigorously in Theorem P7 in
Appendix A.4. For this reason, we prefer to set ε = σ = 1 at this stage of testing and
consider x = (ρ,T)T as the basic parameters of the fluid.

In the first test, we want to know whether the parameters can also be obtained from
the RDF, if the method starts with a very bad initial guess x(0) far from the exact solu-
tion x = (ρ,T)T . We choose x from an equidistant grid on the area [0.2, 0.9]× [0.8, 2] and
always use x(0) := (0.55, 1)T as the initial value. Since

(ρc,Tc) ≈ (0.35, 0.5),

(ρt,Tt) ≈ (0.8, 0.4),

for the two-dimensional Lennard-Jones fluid [CM-1992], the test area corresponds to the
(supercritical) fluid state, including the vicinity of the fluid-solid coexistence line (see again
Figure 3.5). In order to solve the inverse problem, we combine the Levenberg-Marquardt
method and the “pure” (and fast) Newton method where the regularization parameter is
zero. We observe that the noise has no significant influence on the iterates x(k) as long as

‖y(ν) − F(ν)[x(k)]‖Y ≫ ν

holds. For these iterates, there is no need for regularization, until they reach the area
where the residual norm is of nearly the same order as ν and the (slower) Levenberg-
Marquardt method finds a better application. In few steps, we obtain the parameters
from the test area with relative errors

( |ρ− ρ|
|ρ| ,

|T− T|
|T|

)T

≈ (2.3 · 10−3, 8.1 · 10−3)T ,

what is a nearly perfect reconstruction.
Already during these first numerical solutions of the inverse problem, we observe some

useful facts, which allow to simplify the application of the Levenberg-Marquardt method
in the following:

• The variations ∆x, which are necessary for the numerical differentiation and must
fulfill the condition (3.20), can be chosen constant.

• The noise in the map F(ν) is nearly constant in the whole test area, such that we
can choose a uniform bound ν for the noise there.

• For any initial guess, the Newton method is able to move the iterates close enough
to the exact solution, such that the Levenberg-Marquardt method can take over.
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Further, investigating the impact of the parameter variations on the RDF, we discover
that for x near the fluid-solid coexistence line, it holds that

∥
∥
∥F(ν)

[
x + |∆ρ|e(1)

]
− F(ν)[x]

∥
∥
∥
Y

≫
∥
∥
∥F(ν)

[
x− |∆ρ|e(1)

]
− F(ν)[x]

∥
∥
∥
Y

.

In other words, the RDF is sensitive to the fluid-solid phase transition. For this reason,
we keep the temperature and the density as parameters of the RDF in the following tests.
In experiments, the data is usually measured near the triple point, thus we set the density
near the mentioned coexistence line, but definitely in the fluid state. In this fashion, we
hope to obtain representative results even in this very simple, preliminary setting.

The second test concerns a fluid of diatomic homonuclear molecules with the bond
length ℓ. For the sake of simplicity, we assume that the bond is rigid and obtain the
parameter x = (T, ρ, ℓ)T with relative errors near

(1.5 · 10−4, 4.1 · 10−3, 9.3 · 10−4)T .

Inspired by the high quality of this reconstruction, we decide to extend the model to
x = (T, ρ, ℓ, kℓ)T by considering the bond as a flexible spring with stiffness kℓ. However,
we observe that ∥

∥
∥F(ν)

[
x +∆kℓe(4)

]
− F(ν)[x]

∥
∥
∥
Y

. 2ν

for any variation ∆kℓ, such that we cannot determine the corresponding derivative of F(ν)

reliably. We discussed this situation more generally in Chapter 2, where we stressed that
even in a well-posed, finite-dimensional problem, an ill-conditioned matrix can occur. If
the influence of a parameter on the map is so small, that the variation condition is fulfilled
only for very large variation, if ever, then the matrix DF(ν) is close to singular, as we can
see in this concrete example,

‖D4F(ν)[x]‖Y =
‖F(ν)[x +∆kℓe(4)]− F(ν)[x]‖Y

|∆kℓ|
.

2ν

|∆kℓ|
|∆kℓ|→∞−−−−−→ 0.

Obviously, the bond stiffness kℓ is a very weak parameter and should be excluded from
the model, otherwise the problem is severely ill-conditioned.

In the third test, we consider a diatomic molecule with a rigid bond, a bigger atom a

and a smaller atom b, that is, σa,a > σb,b. We use the parameters of the atom a as scales,
such that εa,a = σa,a = 1, and set the exact parameters of the atom b to εb,b = σb,b = 0.5.
The mixed parameters εa,b and σa,b are obtained for each iterate via the Lorentz-Berthelot
rules (see Appendix B.2). That is, the parameter in this case is x = (T, ρ, ℓa,b, εb,b, σb,b)T ,
and our method leads to a good solution with the relative errors

(1.7 · 10−3, 1.5 · 10−2, 1.5 · 10−2, 5.9 · 10−3, 2.7 · 10−2)T .

We notice that the quality of the reconstructions drops with growing number of para-
meters and suffers even from the low noise in the data y(ν). Since we cope with the
(truly) noisy data from experiments in the next sections, we make no further tests of the
Levenberg-Marquardt method.

In all above reconstructions, the singular value analysis highlights ρ as the strongest
parameter and also shows the correlations between the other parameters. Since the previ-
ous fluids are quite simple, for a better visualization, we determine the singular values in
the case of a more complex fluid, with respect to all (also very weak) parameters. For this
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Figure 3.6: Singular values for the two-dimensional carbon dioxide model.

purpose, we consider a fluid of flexible molecules with three atoms arranged linearly, as in
a molecule of carbon dioxide (bending angle θO,C,O = π). Such molecules can be bended,
while the bonds OC and CO can be stretched independently. We set the Lennard-Jones pa-
rameters close to a common molecular model [HY-1995] for CO2, in particular, the oxygen
atom O is bigger than the carbon atom C:

εO,O = 1.00, εO,C = 0.60, εC,C = 0.35,

σO,O = 1.00, σO,C = 0.97, σC,C = 0.90.

We use short (ℓO,C = ℓC,O = 0.035) and stiff (kO,C = kC,O ≈ 104, kO,C,O ≈ 105) bonds in order
to prevent the high density from disrupting the molecules. During simulations, we observe
that the bending stiffness kO,C,O turns out to be a very weak parameter. Apparently, the
bonds OC and OC hold the atoms close together, such that repulsive forces between the
two oxygen atoms prevail over the nonbonded interactions of the smaller carbon atom
and prevent the molecule from bending. For the rest of parameters, we find the variations
and approximate the derivative of the RDF in a dense fluid. The singular values of the
derivative reveal how ill-posed the problem is and that the last two values are extremely
small (see Figure 3.6). As usual, we represent the singular vectors as a pictogram

Φ.^2 =

























T
ρ
εO,O
εO,C
εC,C
σO,O
σO,C
σC,C
kO,C
kC,O
ℓO,C
ℓC,O
θO,C,O

























,

where the first column shows the thirteen parameters of the model. Again, we see that
the density ρ is the strongest parameter. Then, the strong parameters σO,O, σO,C and σC,C
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follow, where we can clearly see that the first one, which describes the nonbonded in-
teractions between oxygen atoms, is leading. The parameters ℓO,C, ℓC,O and θO,C,O, which
determine the overall shape of the molecule, are somewhat weaker and conclude the group
of the parameters corresponding to the length (size of system, atoms and bonds). Indeed,
all remaining (and rather weak) parameters T, ε..., kO,C and kC,O describe the energy (of
the system, atoms and bonds). This separation in two groups mirrors the clearly inferior
contribution of the attractive forces to the structure of a dense fluid, where the molecules
are kept together by pressure and where the repulsive forces overwhelm the thermal fluc-
tuations. Further, we see that the two stiffness coefficients kO,C and kC,O are the weakest
parameters, because they correspond to the lowest singular values in Figure 3.6. Remo-
ving these two parameters from the model would decrease the condition number of the
derivative matrix and improve the quality of the reconstructions.

3.3 Experimental Data for Liquid Argon

Now we apply the Levenberg-Marquardt method on the particular inverse problem un-
der realistic conditions where the fluid is three-dimensional and the noisy data is mea-
sured not by simulation, but by an experiment. First, we have to update our solver
of the direct problem, in order to obtain RDFs with acceptable quality. While a hun-
dred of molecules suffice to represent a two-dimensional fluid, this is not the case for a
three-dimensional fluid. Therefore, we consider in the following simulations large sys-
tems with N = 8192 atoms (in the canonical ensemble). Further, we engage an estab-
lished software package for molecular dynamics – GROMACS [BSD-1995], [LHS-2001],
[SLHGMB-2005], [HKSL-2008]. Second, the noise in the experimental data y(δ) comes
not only from the noisy map F(ν), but also from the discrepancy between the physical
model of the RDF and the reality. The magnitude κ of this discrepancy is much larger
than ν, such that the overall noise level δ := κ+ ν cannot be ignored and the solver of
the inverse problem needs regularization.

In [YKWK-1973], we find an experimentally measured RDF of liquid argon Ar together
with the physical setting of the system,

T = 85 [K] (temperature),
ρ = 0.02125 [Å

−3
] (density),

M = 39.948 · 10−3 ·N−1
A [kg] (atom mass).

For the sake of simplicity, we choose the unit mass Munit := M and use the standard values
of the Lennard-Jones parameters as the other units,

εunit := ε = 119.8 · kB [J],
σunit := σ = 3.405 [Å].

Then, we can derive the setting of the system in the reduced units,

T ≈ 0.71, ρ ≈ 0.84, ε = 1, σ = 1,

what is very close to the triple point

(ρt,Tt) ≈ (0.85, 0.68)

of the three-dimensional Lennard-Jones fluid [HV-1969]. The measured data y(δ) ∈ Y is
given by m = 400 values on the grid with step ∆r = 0.02 (see Figure 3.7). In the following,
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Figure 3.7: The RDF of the liquid argon.

we focus on the reconstructions of the interaction potentials and their parameters, while
we consider the temperature and the density as fixed parameters of the system. We discuss
the Lennard-Jones potential alongside more general models for interactions between argon
atoms and devote a separate section to each model.

3.3.1 Lennard-Jones Model

In the Lennard-Jones model, the interaction potential is obtained via

HLJ
i [x] := 4ε

((
σ

ri

)12

−
(
σ

ri

)6
)

, 1 ≤ i ≤ m, (3.24)

from n = 2 parameters, that is x = (ε, σ)T . According to the chosen reduced units, the
exact parameter vector is x = (1, 1)T . Since the preliminary tests in the previous section
show that the Newton method can move the iterates close enough to the exact solution,
it would suffice to test the Levenberg-Marquardt method in the vicinity of x. Therefore,
we choose x(0) randomly from the sphere

‖x− x(0)‖X = 0.015‖x‖X. (3.25)

Further, we estimate the noise level in F(ν)[x(0)] and consider it as constant ν := 10−3

during the iteration. Since we assume that the noise level δ is given by experiment, but
the above mentioned paper yields only an RMSD-estimate, we use x once, in order to
estimate the noise level with respect to our norm,

δ := ‖y(δ) − F(ν)[x]‖Y ≈ 1.5 · 10−2.

Now we improve the initial vector via the Levenberg-Marquardt method (3.22) and the
Morozov discrepancy principle with µ = 0.9, until the residual norm ‖y(δ) − F(ν)[x(k)]‖Y
crosses the level τδ, τ := 1/µ. We run the reconstruction multiple times, in order to test
different x(0) and to determine the approximate solution by averaging the single results.
In each run, both the residual norm and the parameter error decay monotonically (see
Figure 3.8 for an example).
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Figure 3.8: Relative errors of the iterates (red line) and of the data (blue line) for argon.
The blue and black dashed lines represent the noise levels δ and τδ, respectively.

In average, the iteration terminates after kstop = 7 steps with a relative error near

(0.0156, 0.0017)T .

We observe that the second parameter is almost perfectly reconstructed, while the first
parameter is more or less ignored by the method (see the initial condition (3.25)). This
imbalance could be expected – if we look at the condition numbers, we see that

cond(DF(ν)) ≡ σ1
σ2

& 25, k ≥ 1,

that is, in the vicinity of the exact solution, we can consider the stronger parameter
(probably σ) to be at least 25 times stronger than the other one. The SVD of the
derivative DF(ν) = ΨΣΦ∗ reveals that the parameters are perfectly uncorrelated, because

Φ.^2 ≈
( )

, k ≥ 1,

and confirms that σ is a stronger parameter than ε. A similar statement can be derived
in the following, statistical way. For each approximate solution x(kstop), we can estimate
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Figure 3.9: The blue bars represent the solution candidates. The red line designates the
exact solution. The green lines represent the mean and the standard deviation.
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the absolute errors by

x− x(kstop) ≈ ǫ :=
(

A(kstop∗2)A(kstop)
)−1

A(kstop∗2)(y(δ) − F(ν)[x(kstop)]),

and consider all parameter vectors x from x(kstop) + [−|ǫ1|, |ǫ1|]× [−|ǫ2|, |ǫ2|] as solution
candidates. Averaging the latter over all x(kstop), we obtain

E [x] ≈ (0.994, 0.999)T

with standard deviations near (0.0317, 0.0027)T . In other words, σ is about 12 times
preciser than ε. Moreover, the average solution is quite close to the exact solution (see
Figure 3.9).

3.3.2 Power Series Model

The Lennard-Jones potential does not properly describe the interactions between argon
atoms (see, for instance, [HM-2006]). Moreover, while the attractive term − 1

r6
is crucial,

the repulsive term 1
r12

is empirical and is sometimes replaced by an exponential repulsion
(see Appendix A.2). Therefore, we want to consider a more detailed parameterization by
the power series

HSeries
i [x] := 4x1

(
24∑

p=7

xp−2

(
x2

ri

)p

−
(

x2

ri

)6

+ x4

(
x2

ri

)5

+ x3

(
x2

ri

)4
)

, 1 ≤ i ≤ m,

with n = 22 parameters. Obviously, x1 and x2 have the same meaning as ε and σ in the
Lennard-Jones model (3.24), respectively. The new model contains the terms of lower
orders 5 and 4, which are admissible due to the property (3.3) of potentials, and further
terms of higher and intermediate orders, which meet the property (3.2). The exact solution
is unknown, thus we just consider the SVD near the guess

x(0) := (1, 1, 0, . . . , 0)T ,
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Figure 3.10: Picard plot for the power series model.
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which corresponds to the exact solution for the Lennard-Jones model. The singular vectors

Φ.^2 =
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x3, . . . , x12

x13, . . . , x22































,

of the derivative DF[x(0)] show that the parameter x2 is leading. The rest of the parameters
can be approximately divided in two groups describing the high-order and the low-order
terms. Similar to the Lennard-Jones model, they must describe the repulsion and the
attraction of the fluid’s particles, respectively. From this viewpoint, the parameter x1,
corresponding to the depth of the potential well (where repulsive and attractive terms are
in balance) must indeed separate the two groups we mentioned above. Finally, from the
Picard plot (Figure 3.10), we conclude that the inverse problem is not ill-posed, because
the singular values decay slowly.

3.3.3 Spline Model

Here we pursue another approach where the discretized interaction potential u ∈ Rm is
represented directly by its n = 77 values uj on the subgrid

sj = 0.5 + 0.04(j − 1), 1 ≤ j ≤ n.

Let the parameterization HSpline yield the natural cubic spline interpolant u corresponding
to the given parameters xj := uj. The resulting map FSpline := G ◦ HSpline approximately
covers also the Lennard-Jones case, such that we can use

x(0)
j := HLJ

j [(1, 1)]

as a guess. Even though the exact solution is unknown, we expect that the SVD reveals, at
which grid points the Lennard-Jones-like potential u(0) := HSpline[x(0)] must be improved
to describe the interactions between argon atoms better. As usual, we put the singular
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vectors of the derivative DF[x(0)] into the matrix

Φ.^2 =





























I II III IV





























.

Since the parameters are nothing but the values of the potential function, we put the
potential u(0) sideways into the first column for the sake of a better view. We see imme-
diately that in principle, the matrix can be separated in four parts arranged by the order
of columns, where each part corresponds to a group of parameters with a clear physical
interpretation:

(I. group) A couple of parameters with indices j between sj ≈ σ and u(0)
j ≈ −ε, de-

scribe the repulsive part of the potential well and are decisive in our genera-
lized model. In this context, the Lennard-Jones model with parameters (ε, σ)
is an example of appropriate model reduction.

(II. group) A handful of parameters describe the attractive tail (1.5σ . sj < 3.5σ) of
the potential and play a major role in the model. From this point of view,
cutting off the potential in a computer simulation, typically at sj ≈ 2.5σ, is
a further model reduction and should be used with caution.

(III. group) A few parameters with indices, corresponding to the attractive part of the
potential well, appear less important. This is interesting, because it suggests
that a particular behaviour of the potential function between the minimum
of the well and the tail does not really matter.

(IV. group) A handful of parameters, describing the repulsive part of the potential, are
rather irrelevant. Of course, the repulsion keeps the particles of a fluid
apart from each other, such that shorter distances are hardly reached and
the potential is never evaluated on the corresponding interval (0 < sj . σ).

Moreover, the Picard plot (see Figure 3.11) shows that the inverse problem is not ill-
posed for the first three parameter groups. In contrast, the singular values corresponding
to the IV. group decay very fast, such that the discrete Picard criterion is not met.
Considering the above analysis, a reconstruction of the core part of the potential from
RDF is meaningless.

We conclude the discussion of models for liquid argon with an overall comparison of
the two generalized models. Their singular value analysis shows that the Lennard-Jones
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Figure 3.11: Picard plot for the spline model.

potential provides a quite simple, but good representation of the interaction potential.
The spline model is better coupled to the desired object – the potential function on a grid
– and appears to be more informative. In turn, a parametric approach of the power series
model is better conditioned than a total discretization of the potential. In order to derive
a better generalized model, one has to join the advantages of the single models by using
the similarities in their characterizations. Indeed, according to the power series model,
the high-order repulsion terms play an important role in the modeling of interactions.
The spline model points that it is due to their contribution to the potential well and
classifies the actual values of the potential in the core part as irrelevant. Further, each
model indicates that the attractive tail of the potential does not really need a detailed
parameterization. In summary, a better model should use only few parameters to fit
the exact shape of the potential well and obtain both the core and the tail part by
extrapolation.

3.4 Experimental Data for Liquid Nitrogen

In [NJH-1980], the RDF of liquid nitrogen N2 is measured by an experiment with settings
near to the triple point,

T = 65 [K] (temperature),
ρ = 0.01851 [Å

−3
] (density),

M = 2mN = 28.014 · 10−3 ·N−1
A [kg] (molecule mass).

Further literature provides the standard values of the bonded and nonbonded interaction
parameters,

εN,N = 37.3 · kB [J],
σN,N = 3.310 [Å] [CP-1975],
ℓN,N ≈ 1.090 [Å] [BLQ-1973],
kN,N ≈ 37.3 · ℓ−5.71

N,N [mdyn · Å−1
] [TLJOT-1969].
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Figure 3.12: The RDF of the liquid nitrogen.

We choose εunit := εN,N, σunit := σN,N, and define the unit mass as the mass of a nitrogen
molecule (two nitrogen atoms),

Munit := 2mN = 28.014 · 10−3 ·N−1
A [kg].

That is, in the reduced units, we have

T ≈ 1.74, ρ ≈ 0.67, εN,N = 1, σN,N = 1, ℓN,N ≈ 0.33, kN,N ≈ 5 · 105.

The measured data y(δ) ∈ Y is given by m = 160 values on the grid with step ∆r ≈ 0.035
(see Figure 3.12).

The above parameters provide a model of the nitrogen molecule, where the Lennard-
Jones potential

uN,N(r) = 4εN,N

((
σN,N
r

)12

−
(
σN,N
r

)6
)

describes the nonbonded interactions, and the bonded atoms interact via harmonic po-
tential

vN,N(ℓ) =
1

2
kN,N(ℓ− ℓN,N)2.

We consider the weak parameter kN,N as fixed and work with n = 3 parameters, that
is, x = (εN,N, σN,N, ℓN,N)

T . Exactly as for the liquid argon, we estimate the noise levels
δ ≈ 2.4 · 10−2 and ν, where the latter can be regarded as constant, ν := 10−3. We choose
a start vector x(0) randomly from the sphere

‖x− x(0)‖X = 0.035‖x‖X (3.26)

and update it iteratively via Levenberg-Marquardt method with µ = 0.9. We test diffe-
rent x(0) and determine the approximate solution by averaging the single results. Figu-
re 3.13 shows an example of the monotone decay of the relative errors, as we observe it
in each test.

In average, the iteration terminates after kstop = 5 steps with a relative error near

(0.032, 0.007, 0.073)T . (3.27)
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Figure 3.13: Relative errors of the iterates (red line) and of the data (blue line) for
nitrogen. The blue and black dashed lines represent the noise levels δ and τδ, respectively.

We see that the reconstruction of the second parameter is nearly perfect. In contrast, the
first and the third parameters are in principle ignored by the method – the initial guess
has a comparable quality due to the initial condition (3.26). The singular vectors

Φ.^2 ≈
( )

, k ≥ 1,

of the derivative DF(ν) reveal that the parameters are uncorrelated. Further, a look at
the condition numbers shows that

cond(DF(ν)) ≡ σ1
σ3

& 20, k ≥ 1,

that is, in the vicinity of the exact solution, σ is at least 20 times stronger than ε. Again,
we derive a similar statement in the statistical way, by estimating the absolute errors ǫ
and by averaging all solution candidates

x ∈ x(kstop) +
n×
j=1

[−|ǫj |, |ǫj|]
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Figure 3.14: The blue bars represent the solution candidates. The red line designates the
exact solution. The green lines represent the mean and the standard deviation.
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over all approximate solutions x(kstop). The average solution is given by

E [x] ≈ (1.017, 1.00065, 0.3298)T

with standard deviations near (0.228, 0.020, 0.029)T . We see that σ is about 11 times
preciser than ε. Moreover, we repeatedly observe that the quality of the solution rises
through averaging significantly, such that even the weak parameters are very close to the
exact solution (see Figure 3.14). Especially, the relative error of the average solution is
much smaller than the average relative error (3.27).

We note that the resulting approximate solution, even for the good parameter σN,N, is
not as good as for the argon parameter σ. We believe that the reason is the particular
physical setting of the system (near the triple point), such that it becomes difficult to
simulate the “true” nitrogen (large noise level δ). However, we do not intend to present
the “best” parameter vector. We rather look forward a regularization method, which is
able to yield a better parameter vector, everytime the measurements (in experiment or
simulation) become more precise and we deal with a lower the noise level δ.

3.5 Summary

In the above tests, we observe a good correspondence between reconstructions from si-
mulated and experimental data. The most effects are common for the two- and three-
dimensional, well- and ill-posed formulations of the inverse problem. For instance, the
singular value analysis of the models reaches a level, where a physical interpretation
of the results takes place. In a simple fluid, we see that weak parameters (describing
energies, like temperature, energy of bonded/nonbonded interactions) can be recognized
on the smallest singular values. In contrast, the parameters describing the lengths, that
is, length of the bond, atom size or density, correspond to the largest singular values
and can be called strong. In a molecular fluid, we observe that including too many weak
parameters into the model severely increases the condition number of the problem, such
that the potentially high precision of the strong parameters can be lost. That is, we are
able to answer the Question II (see p. 11), because the condition number, or the singular
values, can be used as a measure of the loss of the microscopic details. This loss can be
lowered by excluding some weak parameters from the model or minimized by reducing
the model to the minimal set of the most relevant parameters.

It is important to see that the Levenberg-Marquardt method converges in many prac-
tical cases and yields meaningful approximate solutions, although our approach is purely
mathematical. An even more important result of this chapter is that the theory of in-
verse problems is applicable to the particular problem. We want to use this theory in the
following, in order to analyze some established inversion methods derived from a deep
understanding of the physical background of the problem and properties of the data. We
hope this insight helps us to improve the Levenberg-Marquardt method, and in particular,
to answer the question:
Question I.3: Is there a systematic way to derive an appropriate initial guess for the
inversion method?
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Chapter 4

Physical Approximations

In the previous chapters, we worked with the abstract map G : U → Y yielding an RDF
y = G[u] for a given potential u. Even though we motivated the models for u and y almost
purely mathematically, they were enough for the application of our inversion method. For
this reason, we did not provide a concrete expression for the RDF by arguing that G is
not suitable for a theoretical convergence analysis of the method. In this chapter, we
look deeper into the physical background of the map in order to develop a reasonable
approximate description, which could be easier to analyze. Nonetheless, we do not intend
to bore the reader with all physics related with the particular inverse problem. Therefore,
we mainly pay attention to simple heuristics, which can be briefly sketched and understood
on intuitive level. Their details and backgrounds can be looked up in Appendix A.

4.1 Insight into the Physics

4.1.1 Radial Distribution Function

We remind that an RDF y and an interaction potential u are functions of the distance r be-
tween two atoms in the system of N atoms with coordinates (~r(i))Ni=1 ⊂ Rd. The value u(r)
represents the potential energy of the atom pair,

E(~r(i), ~r(j)) = u(|~r(i) − ~r(j)|).

The potential energy of the whole system is the sum of these values over all atom pairs,

E(~r1, . . . , ~rN) =

N∑

i=1

N∑

j>i

E(~r(i), ~r(j)) =

N∑

i=1

N∑

j>i

u(|~r(i) − ~r(j)|). (4.1)

In the NV T -ensemble, any state of the system is given by atom coordinates distributed
according to the probability density

P(~r(1), . . . , ~r(N)) =
1

Z(N)
exp

(

−E(~r
(1), . . . , ~r(N))

kBT

)

, (4.2)

where Z(N) is a normalization constant. That is, integration of P over a region in RdN

gives us the probability to find N atoms in this region. The RDF y represents the
part of this probability density concerning the atom pairs, where the rest of the system
is integrated out. One of the atoms can be considered as fixed ~r(1) := 0 (a reference
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atom) and another one is picked out randomly from the rest of the system, such that
the distance equals r. Without loss of generality, we can choose ~r(2) := r~e(1). For a fixed
number density ρ, the value

y(r) = G[u](r) =
N(N − 1)

ρ2

∫

P(0, r~e(1), ~r(3), . . . , ~r(N))d~r(3) . . . d~r(N) (4.3)

corresponds in principle to the number of atoms, which can be found at the distance r from
the reference atom. This interpretation is in full accordance with the intuitive definition
of the RDF via counting neighbour atoms in Chapter 1.

Inserting the definitions of the distribution (4.2) and energy (4.1) in (4.3) and using the
properties of the exponential function, we find out that RDF is a combination of products
and convolutions,

y[N ](r) = Cγ(r)

∫ N−2∏

i=1

γ(|~r(i+2)|)γ(|~r(i+2) − r~e(1)|)

×
N−2∏

j>i

γ(|~r(i+2) − ~r(j+2)|)d(~r(3), . . . , ~r(N)), (4.4)

where only the function

γ(r) := exp

(

−E(0, r~e
(1))

kBT

)

= exp

(

−u(r)
kBT

)

(4.5)

participates. The scaling constant C ensures

lim
r→∞

y[N ](r) = 1,

which is an indispensable part of the RDF property (SY2) in our definition (3.6). Com-
paring (4.5) with the expression for P, we conclude that γ is also a kind of distribution
function reduced to the pairs of atoms. We purposely supplied the function y in (4.4)
with the parameter N – it is easily seen that

y[2](r) = γ(r) (4.6)

and for this reason, we call γ the two-atom RDF in the following. In the coarse-graining
papers, γ is called exclusively the low-density limit of the RDF, because

lim
ρ→0

y(r) = γ(r) (4.7)

(see Theorem P7 in Appendix A). In combination with (4.6), this property suggests that
at low densities, two atoms can represent all pairs. However, we prefer to consider (4.7) as
an extra, escorting the other properties we derive in this chapter for the two-atom RDF.

4.1.2 Inversion Methods

The expression in (4.5), which serves us as a definition of the two-atom RDF, is used in
the actually best inversion methods for the particular problem, the Iterative Boltzmann
Inversion (IBI) and the Inverse Monte Carlo (IMC). They are extensively applied in
the coarse graining for last 25 years. In this section, we summarize the observations

64



4.1. INSIGHT INTO THE PHYSICS

collected by other scientists during their application. At the same time, we begin with
their mathematical interpretation, such that we can use the theory of inverse problems
for analysis.

The Iterative Boltzmann Inversion (IBI) is an iterative method, broadly used to ob-
tain an interaction potential from the given RDF without any parameterization (see, for
example, [RPM-2003]). In our terms, the method is designed to solve the discretized
problem (3.14), namely,

y = G[u],

via the fixed-point iteration

u(0)
i := −kBT ln yi, (4.8)

h(k)
i := kBT ln

Gi[u(k)]

yi
, (4.9)

u(k+1)
i := u(k)

i + h(k)
i , k ≥ 0, 1 ≤ i ≤ m. (4.10)

The initial guess u(0) has a very intuitive and physically meaningful motivation in view of
the two-atom RDF (4.5). Indeed, for fluids with a very low density, an RDF y = G[u] is
well approximated by

γ = exp

(

− u
kBT

)

,

therefore, for the given RDF y, one can approximate the potential via inversion of the
exponential function, as it is done in (4.8). The resulting potential u(0) is referred to as the
potential of mean force. The quality of this approximation may be questioned for fluids
with high density, but it is used only for initialization of the method. Not to mention that
the potential of mean force is more realistic than, for example, u(0) := 0, which corresponds
to absence of any interactions in the fluid. A more appropriate model of interactions is
easier to refine – one updates the initial guess iteratively, until the update h(k) vanishes,
which is equivalent to G[u(k)] = y. According to the Henderson theorem, the last iterate
is the sought interaction potential.

The clear advantage of the IBI is the speed – the method needs one evaluation of the
map G per step, while a Newton-type method would need m = dim(U) partial derivatives
of the map, which could be very time consuming. However, one should not be deceived
by the seemingly straightforward appearance of the method, because the practical im-
plementation of the IBI requires a couple of improvements [RJLKA-2009]. Particularly,
one should forbid the division by zero in the expression for the update – component h(k)

i ,
corresponding to yi = 0, is usually set to zero. In order to stabilize the method, the
iterates u(k) should be smoothed and extrapolated. Further stabilization can be reached
through multiplication of the update h(k) with a damping prefactor λ ∈ (0, 1). Apparent-
ly, there is also an attemt to prevent the semiconvergence – the method terminates in
the k-th step, if

(∫ rb

ra

exp(−r)(y −G[u(k)](r))2dr ≈
)

∆r
b∑

i=a

exp(−ri)(yi −Gi[u(k)])2 < ǫ (4.11)

for some fixed a, b and ǫ [RMM-2002]. The term on left hand side represents a norm
on the space Y, and the exponential function plays the role of a weight function, which
emphasizes the higher importance of the data at small distances. It is interesting that
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we derived the same weight function wY in (3.12) from a completely different and purely
mathematical viewpoint.

In [Soper-1996], one can find reasons why the IBI should converge (in the absence of
the noise), provided the existence of a solution. The reasoning follows a rather physi-
cal argumentation and avoids the functional space notation by referring instead to the
observed behaviour of the method in practice. There is no rigorous convergence proof,
at least not for noisy data, and indeed, the iteration has sometimes convergence prob-
lems. For instance, this is the case, if the method is applied to molecular fluids, where
one computes the mixed potential ua,b just from the mixed RDF y

a,b, without respecting
the evident correlation with other RDFs, y

a,a and y
b,b [RJLKA-2009]. Further, in the

presence of the noise, one can question whether the actual stabilization of the method
is a regularization in the sense of Chapter 2. A regularization affects the update rather
implicitly by modification of the inversion than by direct damping. Finally, it is not clear
how to choose the damping prefactor or how the stopping rule (4.11) is coupled to the
noise in the data.

The Inverse Monte Carlo (IMC) is another iterative method of the Newton-type, using
the derivatives of the map G to update the iterates. Therefore, the method is slower, if
compared with the IBI, but it is also more precise and can even work with parameteri-
zed interaction potentials. For convenience, we present here the description without the
parameterization, as it can be found in the original paper [LL-1995]. In the IMC, one
modifies the RDFs y ∈ Y via

y 7→ J [y] := (r 7→ Cy(r)r2)

and solves the corresponding discrete inverse problem

s = K[u], (4.12)

where

s := J[y],

K := J ◦G

and C > 0 is a certain constant. In accordance with the IBI, the method can be initialized
via approximation

u(0)
i := −kBT ln y = −kBT ln

si
Cr2i

, 1 ≤ i ≤ m.

Eventually, some iterations of the IBI are applied on u(0), in order to get a better initial
guess. Then, the IMC updates such a guess via

u(k+1) := u(k) + h(k),

where the update h(k) is a solution of the linear system

s−K[u(k)] = A(k)h(k). (4.13)

The computation of the system matrix A(k) ∈ Rm×m is the key feature of the IMC. The
modified target allows one to simplify analytically the derivative of K := J ◦G (see Theo-
rem P6 in Appendix A.3), such that one can develope a computational procedure for A(k),
similar to that for sampling of the RDF.
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The decisive advantage of the IMC is the rigorosity. First, the system matrix A(k) is
a pure discretization of the derivative DK[u(k)]. In contrast to the Levenberg-Marquardt
method, there is no need to approximate DK via finite differences. Second, the linear
system (4.13) enables the method to regard all data correlations, in contrast to the IBI.
The procedure for computation of the system matrix is implemented in the software
package VOTCA [RJLKA-2009], but the developers confess that it requires much more
snapshots of the trajectory. That is, much longer computer simulations are needed to
reach an accuracy comparable with that of the IBI update. Despite the rigorous derivation
of the updates, the convergence of the IMC remains an issue. In practice, the method
experiences convergence problems, if the initial guess is too rough [MFKV-2007].

The modified map K = J ◦G has the same problem as the original map G – the
resulting system matrix in (4.13) is ill-conditioned due to some almost vanishing columns,
what leads to instability of the method. Usually, such stability issues are solved ad hoc
via removing the problematic columns and/or smoothing/damping of the update h(k)

[RJLKA-2009]. In [MFKV-2007], however, the authors prefer a Tikhonov regularization
approach, where the corresponding minimization problem takes the form

min
h∈X
‖s−K[u(k)]− A(k)h(k)‖2

S
+ λ2‖Wh(k)‖2

X
,

such that the penalty term is controlled by the parameter λ > 0. Here, ‖ · ‖S denotes
a suitable norm for some (not further specified) space S ⊇ ran(K) of discretized and
modified RDFs. The matrix W ∈ Rm×m has the diagonal shape or represents the second
derivative operator in order to force the update to be smooth. However, a systematic
choice strategy for λ and W is not provided, by arguing that trial and error would suffice.
Later, in [MBVDK-2009], the authors comment that the SVD of the matrix A(k) allows
one to identify, which changes in the potential lead to negligible changes in the data.
Seemingly, they make decisions solely on the size of the singular values without taking a
Picard plot into account.

We conclude this review of the physically motivated inversion methods with a short
summary of their features. The most pleasing feature of the two methods is their successful
applicability in practice. Further, we see that these are iterative methods for solution of
the particular nonlinear inverse problem and they have one common aspect with regard
to the Question I.3 (see p. 61). Namely, the actually existing methods posess a systematic
way to derive an appropriate initial guess. In other aspects, the methods are completely
different. The design of the IMC drags our attention to the procedure for computation of
the derivative.
Question I.4: How much time does a method spend to compute the derivative?
However, even if the IMC obtains the derivative faster than the usual approach over finite
differences, the IBI do not need any differentiation at all. This feature makes the IBI to
the fastest actually known solution method for the particular inverse problem. On the
other hand, the simple design of the IBI allows only ad hoc stabilization by damping the
updates, what is a weak point of the method with regard to the Question I.1 (see p. 33).
In contrast, the IMC, as a Newton-type method, can be easily regularized and extended
with some well-studied parameter choice strategy. Finally, the IBI appears to be suitable
only for simple fluids, what poses an additional criterion for a serious inversion method,
which should also be applicable to realistic fluids.
Question I.5: Can we extend the application area of a method to molecular fluids?
These experiences motivate us to investigate the two new questions in the following.
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4.2 Approximation of the RDF

4.2.1 Role in the Iterative Boltzmann Inversion

At the first sight, the Iterative Boltzmann Inversion (IBI) is not a Newton-type method,
because it does not need any differentiation, but we still can discuss it as an iterative
method. Using

ln
Gi[u(k)]

yi
= lnGi[u(k)]− ln yi

and the physical fact G[0] = 1 (see Appendix A.2), we can see the method (4.8)-(4.10) as
the fixed-point iteration

u(k+1) := f [u(k)], k ≥ −1,
with the start vector u(−1) := 0 and the iteration function

f [u] := (ui + kBT lnGi[u]− kBT ln yi)
m
i=1.

In order to analyze the convergence of the method, as it is convenient in the applied
mathematics, we consider the derivative

(Df [u])i,j =
∂fi[u]
∂uj

= δi,j + kBT
1

Gi[u]
∂Gi[u]
∂uj

,

and notice that it does not depend on the given RDF y. The IBI never determines the
“direction” towards the target RDF (no need for derivative) and it is surprising, because
a method should actually “know” where to go. It appears that only the iteration function
is responsible for convergence. Indeed, the function

f [u] = u + Γ−1[y]− Γ−1[G[u]] (4.14)

is based on the map

Γ[u] := exp

(

− u
kBT

)

, (4.15)

which serves originally as a source of the initial guess. Also [Soper-1996] mentions this fact.
In other words, the built-in approximation of the RDF G[u] by the two-atom RDF Γ[u] is
the workhorse of the IBI and might be also used in a more general context. For instance,
we can more easily study the properties of G by considering Γ, which is a much simpler
link between potentials from U and RDFs from Y .

Theorem A3:
For any α0 ≥ 0 and ∆α0 ≥ 0, the map Γ : SU(α0,∆α0)→ SY (α0,∆α0) is bijective.

Proof: It is obvious that Γ is injective, therefore it remains to show that
Γ(SU(α0,∆α0)) = SY (α0,∆α0). Indeed, for any potential u ∈ SU(α0,∆α0), the corre-
sponding two-atom RDF γ := Γ[u] is in SY (α0,∆α0):

(SY1) Due to the property (SU1) of u, there exist Ainf
0 , A

sup
0 ∈ (0,∞) and rcore ∈ (0,∞),

such that
Ainf

0 r
−α0+∆α0 ≤ u(r) ≤ Asup

0 r−α0−∆α0, ∀r ∈ (0, rcore].
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Since a 7→ exp(−a) is a monotonically falling function, we obtain

exp







− 1

kBT
Asup

0

︸ ︷︷ ︸

=:Binf
0

r−α0−∆α0







≤ γ(r) ≤ exp







− 1

kBT
Ainf

0

︸ ︷︷ ︸

=:Bsup
0

r−α0+∆α0







.

(SY2) Due to the property (SU2) of u, there exist A∞ ∈ (0,∞), α∞ ∈ (d,∞) and
rcut ∈ (rcore,∞), such that

|u(r)| ≤ A∞r
−α∞ , ∀r ∈ (rcut,∞).

Since | exp(a)− 1| ≤ C|a| for small a and a constant C ∈ (0,∞), we have then

|γ(r)− 1| ≤ 1

kBT
A∞C

︸ ︷︷ ︸

=:B∞

r−
=:β∞
︷︸︸︷
α∞ , ∀r ∈ (rcut,∞).

(SY3) Due to the property (SU3) of u, there exists a unique rmin ∈ (rcore, rcut], such that

−∞ < u(rmin) = min
r∈(0,∞)

u(r) < 0.

We set rpeak := rmin. Then,

γ(rpeak) = exp

(

− 1

kBT
u(rmin)

)

> e0 = 1,

and the monotonicity of the exponential function yields

max
r∈(0,∞)

γ(r) = exp

(

− 1

kBT
min

r∈(0,∞)
u(r)

)

= exp

(

− 1

kBT
u(rmin)

)

= γ(rpeak).

Conversely, for any RDF y ∈ SY (α0,∆α0), the corresponding potential of mean force

υ := Γ−1[y] = −kBT ln(y)

is in SU(α0,∆α0):

(SU1) Due to the property (SY1) of y, there exist Binf
0 , Bsup

0 ∈ (0,∞) and rcore ∈ (0,∞),
such that

exp
(
−Binf

0 r−α0−∆α0
)
≤ y(r) ≤ exp

(
−Bsup

0 r−α0+∆α0
)
, ∀r ∈ (0, rcore].

Since b 7→ − ln(b) is a monotonically falling function, we obtain

kBTB
sup
0

︸ ︷︷ ︸

=:Ainf
0

r−α0+∆α0 ≤ υ(r) ≤ kBTB
inf
0

︸ ︷︷ ︸

=:Asup
0

r−α0−∆α0, ∀r ∈ (0, rcore].
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(SU2) Due to the property (SY2) of y, there exist B∞ ∈ (0,∞), β∞ ∈ (d,∞) and
rcut ∈ (rcore,∞), such that

|y(r)− 1| ≤ B∞r
−β∞, ∀r ∈ (rcut,∞).

Since | ln(1 + b)| ≤ C|b| for small b and a constant 0 < C <∞, we have then

|υ(r)| ≤ kBTB∞C
︸ ︷︷ ︸

=:A∞

r−

=:α∞

︷︸︸︷

β∞ , ∀r ∈ (rcut,∞).

(SU3) Due to the property (SY3) of y, there exists a unique rpeak ∈ (rcore, rcut], such that

1 < y(rpeak) = max
r∈(0,∞)

y(r) <∞.

We set rmin := rpeak. Then, the monotonicity of the logarithm yields

υ(rmin) = −kBT ln(y(rpeak)) < −kBT ln(1) = 0

and

min
r∈(0,∞)

υ(r) = −kBT ln

(

max
r∈(0,∞)

y(r)

)

= −kBT ln(y(rpeak))

= υ(rmin).

From the above considerations, it follows that the sets Γ(SU(α0,∆α0)) and SY (α0,∆α0)
are included in each other, such that they must be equal. ✷

The above theorem is a simplified version of the Henderson theorem. It shows that the
map Γ yields a one-to-one correspondence between potentials and RDFs. The IBI could
benefit from this correspondence, because the set SU has some linear structure (sum of
potentials is a potential), in contrast to SY . For any u, u ∈ SU , the value of the iteration
function

f [u] = u
︸︷︷︸

∈SU

+Γ−1[G[u]]
︸ ︷︷ ︸

∈SU

−Γ−1[G[u]]
︸ ︷︷ ︸

∈SU

is at least in U . We can expect that the third term is nearly as large as the second
term, such that the actual update of the potential u is rather small. Further, we remind
that f defines the next iterate u(k+1) = f [u(k)], which is usually smoothed, extrapolated
and stabilized by damping the changes in the potential. Taking these refinements into
account, it is plausible that in practice, the refined value f [u] is again in SU . In other
words, the map f : U → U may never leave the set SU of potentials.

Further, Theorem A3 motivates us to regard the approximation Γ ≈ G as good enough
to assume also DΓ ≈ DG. Then, the derivative DG can be approximately expressed in
terms of G,

DG[u](v) ≈ DΓ[u](v) = − 1

kBT
Γ[u]v ≈ − 1

kBT
G[u]v, ∀v ∈ U, (4.16)

without any kind of numerical differentiation. This could be an explanation why the IBI
does not need this derivative. Finally, we summarize all previous findings respective the
two-atom RDF.
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Two-atom approximation:
The two-atom RDF, as a map Γ : U → Y ,

• approximates the RDF, that is,
Γ ≈ G, (4.17)

• approximates the derivative of the RDF, that is,

DΓ ≈ DG, (4.18)

• yields a one-to-one correspondence between RDFs and potentials, that is,

SU
Γ←→ SY . (4.19)

Now we improve the classical solution approach for the well-posed problem

y = G[u]

by applying this two-atom approximation, which appears to be useful for an iterative
method. Especially, we ensure that the numerical method works only in the space U of
potentials by considering the equation

v = I[u],

where

I := Γ−1 ◦G : U → U,

v := Γ−1[y] ∈ U.

Then, we can solve the modified problem via the Newton method, which is nothing else
than a fixed-point iteration with the iteration function

fNewton[u] := u+DI[u]−1(v − I[u]).

We can simplify the derivative via

DI[u]
def
= D

[
Γ−1[G[u]]

]

(4.15)
= −kBTD [lnG[u]]

= −kBT
1

G[u]
DG[u]

(4.16)≈ −kBT
(

− 1

kBT

)

· 1
= 1,

such that our iteration function

fNewton[u] ≈ u+ v − I[u]
def
= u+ Γ−1[y]− Γ−1[G[u]]

(4.14)
= f [u]

becomes identical with that of the IBI.
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We just derived the IBI from the classical theory of the inverse problems by using only
the insight in the physical background of the problem, provided to us by the two-atom
RDF. We conclude that the nature of the map Γ itself plays the decisive role in the success
of the method. In other words, the approximation of the RDF via two-atom RDF is used
throughout the iteration. Since the practitioners observe that the IBI succeeds for quite
dense fluids (ρ≫ 0), we feel confirmed in our discomfort to call Γ the “low-density limit”.
It remains to find out why the two-atom RDF is still a good approximation of the RDF
in the case of high density.

4.2.2 First Coordination Shell

We want to understand the meaning of the two-atom RDF as a function in Y and as an
approximation of the RDF. We learned that the two-atom RDF gives a good representa-
tion for the RDF of a very dilute system (ρ low), which corresponds to the gaseous state
of matter. But we also saw that the application area of the two-atom RDF is broader
than just the case of low density. In the following, we consider the extreme case of the
crystalline argon, where the density ρ is so high, that the matter becomes solid. Fur-
ther, we study again the RDF of a dense system (ρ high) on example of liquid argon and
compare the quality of our approximation for different phase states.

From the theory of the solid state [AM-2007], we know that atoms of the argon crystal
sit on the face-centered cubic (fcc) Bravais lattice (see Figure 4.1)

1

2
a(n1(e

(2) + e(3)) + n2(e
(3) + e(1)) + n3(e

(1) + e(2))), n ∈ Z3,

where
a ≈ 5.26 [Å].

Since the atoms of the solid argon are attached to the lattice, they cannot move as freely
as they would do in the liquid state. That is, for each fixed atom, its nearest neighbours
are found at the distance s1 = a√

2
. These neighbours build the first coordination shell and

their number
N solid

1 = 12

is called the first coordination number. Similarly, the k-th coordination shell and the k-th
coordination number can be defined for k ≥ 2.

Further, we consider the liquid argon near the fluid-solid coexistence line, that is, where
the atoms can theoretically move freely, but due to the high density, still remember their

Figure 4.1: Atoms of the fcc Bravais lattice on the smallest cube.
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positions in the crystal. We measure the RDF y and observe that we can define the k-th
coordination shell by [ℓk−1, ℓk], where ℓ0 = 0 and (ℓk)k≥1 are the positions of the local
minima of the RDF, sorted in the ascending order. These shells describe approximately
the deviations of the argon atoms from their crystalline positions. Then, we can define
the analogon of the coordination numbers for the liquid state via

N liquid
k := ρ

∫ ℓk

ℓk−1

y(r)|∂B(r)|dr, (4.20)

where ∂B(r) denotes the sphere of the radius r around origin. In simple words, the integral
over the k-th peak of the RDF gives the number of the atoms in the k-th coordination
shell (see Theorem P4 in Appendix A.3). The same experimental RDF of the liquid argon,
which we used for parameter reconstructions, yields

N liquid
1 ≈ 12.

We are not surprised, because the RDF is measured near the triple point, where argon is
simultaneously in the solid, liquid and the gaseous state.

Now we take a look at the corresponding two-atom RDF. Since the standard Lennard-
Jones parameters x := (ε, σ)T for argon are known, we can easily compute

γLJ := Γ[HLJ[x]].

Comparing it with the experimental RDF (see Figure 4.2), we see that γLJ resembles well
the overall shape of the function, but looses the information about all coordination shells,
except the first one. We do not know where the first coordination shell ends – the upper
bound ℓ1 is smeared out to a long tail. Even if we borrow this information from above
consideration, expression (4.20) counts 23 neighbours. It seems to be contraintuitive,
because a two-atom RDF corresponds rather to a dilute gas, where few atoms try to fill
a large container. This should lead to larger distances between atoms than in a liquid,
but we count more atoms in the volume of interest, because the peak is obviously too
high. The reason is the presence of the density prefactor in formula (4.20), while the
two-atom RDF is independent from the density. As for counting the atoms, γLJ fails on
its low-density property. However, the first part of the experimentally measured peak,
from the core region to the maximum, appears to be properly modeled by the two-atom
RDF (see Figure 4.2). It remains to show that this information suffices for our purposes.

We have a good reason to expect the redundancy of the lost coordination shells in
the two-atom RDF. Let us visualize the idea on the discrete formulation of our inverse
problem,

y = G[u].

According to the Henderson theorem we discussed in Chapter 1, for constant N , V and T ,
there is a one-to-one correspondence between the sets of potentials and RDFs, which are
embedded in the discrete setting into spaces of equal dimension m. As a bijective trans-
formation between these sets, Γ is a simplified version of that correspondence. Its repre-
sentation is so simple, that we can see which value of the potential u corresponds to which
value of the two-atom RDF γ := Γ[u]. In the case where the potential is parameterized,
that is, u = H[x] for some x ∈ Rn and n≪ m, we can expect a one-to-one correspondence
between n components of x and n components of γ = Γ[H[x]]. In other words, we suppose
that most of the components of γ (and y due to (4.4)) contain redundant information.
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We test our hypothesis analytically on the Lennard-Jones potential with parame-
ters x = (ε, σ)T ,

uLJ(r) = HLJ[x](r) = 4ε(σ12r−12 − σ6r−6), r ∈ (0,∞).

From a short analysis

uLJ(r) = 0 ⇔ r = σ,

DuLJ(r) = 0 ⇔ r =
6
√
2σ,

uLJ
(

6
√
2σ
)

= −ε,

D2uLJ
(

6
√
2σ
)

> 0,

we conclude that

ε = − min
r∈(0,∞)

uLJ(r),

σ = min{r ∈ (0,∞)|uLJ(r) = 0}.

In other words, the parameterization map

HLJ : SX → HLJ(SX)

is bijective. Further, according to definition (4.15) of the two-atom RDF,

min
r∈(0,∞)

u(r) = −kBT ln max
r∈(0,∞)

Γ[u](r),

u(r) = 0 ⇔ Γ[u](r) = 1.

That is, the inverse problem
γLJ = ΓLJ[x]

with the bijective map

ΓLJ := Γ ◦HLJ : SX
HLJ

−→ HLJ(SX)
︸ ︷︷ ︸

⊆SU

Γ−→ Γ(HLJ(SX))
︸ ︷︷ ︸

⊆SY

(4.21)

has a unique solution given by

x =

(

kBT ln

(

max
r∈(0,∞)

γLJ(r)

)

,min
{
r ∈ (0,∞)|γLJ(r) = 1

}
)T

. (4.22)

According to this formula, in order to obtain the two Lennard-Jones parameters, we need
only two characteristics of the data – the height and the position of the first peak.

Since our hypothesis is confirmed in the framework of the two-atom approximation,
we can expect a similar redundancy in the data for the more general problem

yLJ = F LJ[x],

where the map

F LJ := G ◦HLJ : SX
HLJ

−→ HLJ(SX)
︸ ︷︷ ︸

⊆SU

G−→ G(HLJ(SX))
︸ ︷︷ ︸

⊆SY
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Figure 4.2: The RDF of the liquid argon (black dots) and the corresponding two-atom
RDF (blue solid line). The black dashed line at r = ℓ1 separates the first coordination
shell.

is bijective due to the Henderson theorem. Indeed, in order to apply the solution for-
mula (4.22), we need just the part of the data from the first coordination shell, which is
present in both γLJ ∈ ran(ΓLJ) and yLJ ∈ ran(F LJ). Disregarding the two-atom approxi-
mation,

ran(ΓLJ)✚✚≈ ran(F LJ),

but we can assume that
ran(P ◦ ΓLJ) ≈ ran(P ◦ F LJ), (4.23)

where the map P : SY → SY truncates the RDF at the first peak,

P [y](r) :=

{
y(r), 0 < r ≤ argmaxs∈(0,∞) y(s),
1, otherwise.

(4.24)

In accordance with our redundancy assumption, a Lennard-Jones fluid cannot have two
different RDFs, that are equal after truncation, because the relevant data is not truncated.
In other words, we assume that P |ran(ΓLJ) is injective. Altogether, formula (4.22) defines
the bijective solution map

ΛLJ := (P ◦ ΓLJ)−1 : ran(P ◦ ΓLJ)→ SX . (4.25)

Due to (4.23), we can apply this map, at least formally, to the truncated data

P
[
yLJ
]
∈ ran(P ◦ F LJ).

We understand that this would yield rather approximate results, because the two necessary
characteristics of the data are hidden in the RDF due to the many convolutions of the
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two-atom RDF (see equation (4.4)). However, we apply ΛLJ ◦P to the experimental RDF
of liquid argon and obtain the following approximate Lennard-Jones parameters

ε ≈ 94.9 · kB [J],
σ ≈ 3.370 [Å],

(4.26)

which are in good agreement with the standard values

ε = 119.8 · kB [J],
σ = 3.405 [Å].

Moreover, in accordance with the tests in Chapter 3, we have a better reconstruction for
the parameter σ than for ε.

Finally, we return to the crystalline argon, where a reference atom also has the first
coordination shell filled with nearest atoms at the distance s1 = a√

2
. In order to calculate

the density of the crystal, we build a large cube from n× n× n smallest argon cubes (see
Figure 4.1). We determine the volume of the cube and the number of contained atoms,

V (n) = n3a3,

N(n) = (n+ 1)3 + 3n2(n+ 1),

in dependence of n and obtain the density in the limit

ρsolid = lim
n→∞

N(n)

V (n)
=

4

a3
=

√
2

s31
. (4.27)

Considering the parameter σ as unknown, we take advantage of the good correspondence
between concepts of the first coordination shell for the solid and liquid argon. As we
learned above, the distance between nearest neighbours in the argon crystal is given by s1.
Then, we saw that an atom in the liquid argon has a preferred distance rmin = 6

√
2σ to the

nearest atoms, because the energy of an atom pair is minimal at this distance. However,
we cannot demand

s1
!
= rmin

due to different densities of the solid and the liquid. For instance, the experimental RDF
of the liquid argon is measured at the density ρliquid = 0.02125 [Å

−3
]. Therefore, we have

to “liquify” the crystal by rescaling the distance s1, such that ρsolid(s1) = ρliquid. According
to (4.27), we obtain that the correct value of s1 is rather

scorrect
1 =

3

√ √
2

ρliquid
,

what leads to

σ =
rmin

6
√
2
≈ scorrect

1
6
√
2

=
1

3
√

ρliquid
≈ 3.610 [Å].

The value of the parameter σ is overestimated. We note that the estimated σ depends only
on the density of the liquid. Since this dependence does not require any data from solid
state, we can expect that the above formula can be applied also to other materials, which
crystallize into the fcc lattice. Evidently, σ grows as the density drops, but a particular
liquid can have a very low density. Therefore, we fix the density to its most meaningful
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value ρt at the triple point, such that we can write the above formula in the more general
form

σ ≈ 1
3
√
ρt
.

Especially for the Lennard-Jones model of argon, we have

ρt =
ρt*

σ3 ≈ 0.02138 [Å
−3
],

what leads to a bit better estimate σ ≈ 3.603 [Å].
However, such overestimate cannot be used as a safe initial guess for σ in a molecular

dynamics simulation. Indeed, assuming larger atoms at the experimental density is equi-
valent to exact atoms at larger density (see Theorem P7 in Appendix A.4). Near the fluid-
solid coexistence line, this will result in a “frozen” start configuration. In the contrary,
the two-atom approximation underestimates the Lennard-Jones parameters (see (4.26)),
such that a stable initial guess for an iterative inversion method is guaranteed. In this
regard, we remind on the Question I.3 (see p. 61), which can be answered positively for
all discussed inversion methods, at least in the case of a simple fluid.

4.2.3 Derivatives of the RDF

Now we drag our attention to the two-atom approximation (4.18), which copes with the
derivative of the RDF. We expect that the Levenberg-Marquardt method can benefit from
this approximation as the Iterative Boltzmann Inversion (IBI) does, for instance, if we
could speed up (or bypass) the numerical differentiation via finite differences. For the
sake of simplicity, we consider a fluid with Lennard-Jones interactions. In this special
case, the two-atom approximation takes the form

ΓLJ[x]
(4.17)≈ F LJ[x], (4.28)

DΓLJ[x]
(4.18)≈ DF LJ[x], (4.29)

what leads to

∂F LJ[x](r)

∂ε

(4.29)≈ ∂ΓLJ[x](r)

∂ε

= −4 1

kBT
σ6r−6(σ6r−6 − 1)ΓLJ[x](r)

(4.28)≈ −4 1

kBT
σ6r−6(σ6r−6 − 1)F LJ[x](r), (4.30)

∂F LJ[x](r)

∂σ

(4.29)≈ ∂ΓLJ[x](r)

∂σ

= −24 1

kBT
εσ5r−6(2σ6r−6 − 1)ΓLJ[x](r)

(4.28)≈ −24 1

kBT
εσ5r−6(2σ6r−6 − 1)F LJ[x](r). (4.31)

These expressions represent the derivatives as rescaled RDFs and they are very similar to
expression (4.16), that we obtained for the IBI. It remains to show that these approxi-
mations have a similar quality, then we can completely remove the finite differences from
our inversion method.
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Figure 4.3: Comparison of the discrete (black dots) and approximated derivatives (blue
solid lines) of the RDF.

We consider again the example of liquid argon, in order to visualize the effect of the
approximations (4.30) and (4.31). Even though the argon RDF F LJ[x] is given on a grid,
the plot of the data has a rather smooth shape (see Figure 4.2). However, the partial
derivatives (black dots in Figure 4.3), obtained from the finite differences, are far from
smoothness. The reason is condition (3.20) for estimation of the variations, which aims
the best precision of the derivative at risk of noisy components. In particular, while we
would expect

lim
r→∞

DF LJ[x](r) ≈ lim
r→∞

DΓLJ[x](r) = − 1

kBT
lim
r→∞

DuLJ(r)
︸ ︷︷ ︸

→0

ΓLJ[x](r)
︸ ︷︷ ︸

→1

= 0, (4.32)

the noise conceals this asymptotic behaviour. In contrast, our two-atom approximations
(blue lines in Figure 4.3) provide a smooth version of the derivatives at cost of precision,
that is, they do not match the height of the peaks. Such smoothing can have a regularizing
effect, because the statistical noise is replaced by deterministic uncertainty, which respects
all common properties of F and Γ, for instance, (4.32). We emphasize that the most
information (see the strong negative peak in Figure 4.3) is stored in the derivative ∂ΓLJ

∂σ

near the core region, on the interval corresponding to the first coordination shell. In other
words, the derivative of the map representing the two-atom RDF, confirms its quality by
recognizing σ as the strongest parameter of the model.

Similarly, we can use the two-atom approximation to derive from a Newton-type
method a simplified, derivative-free method for any interaction parameter or even for
the temperature of the system. We demonstrate the derivation of such numerical method
for the temperature reconstruction. In the above problem settings, we looked for a po-
tential or its parameters, matching the given RDF measured at given temperature and
density. Here we want to find the inverse temperature β := 1

kBT
∈ SX with

y = F [β]

for the given RDF y ∈ SY , potential u ∈ SU and density. Also in this formulation, the
map F yields an RDF for each value of β via (long) computer simulation, while the
two-atom RDF is obtained (very fast) via the map

Γ[β](r) = e−βu(r),
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which can be used again as a correspondence between SX and SY . On the first sight, Γ
is not bijective in this context, because

1 = dim(SX) < dim(SY ).

But we can force bijectivity by choosing an appropriate evaluation point reval. Evidently,
the point should be far from the regions, where y(r) or u(r) vanish, otherwise Γ cannot
be inverted safely. We choose

reval := argmax
r
y(r), (4.33)

which corresponds to the potential value ueval = minr u(r) =: −ε. This choice is motivated
by our observation in Chapter 3 that ε and the temperature T are equivalent energetic
parameters of the RDF. We emphasize that reval is bound to the potential value via the
two-atom approximation (4.17),

max
r
y(r) ≈ max e−βu(r) = e−βminr u(r) = eβε.

In comparison, we could bind the evaluation point directly to the potential via

reval := argmin
r
u(r),

but it is a worse idea, because the potentials contain (in our model) no information about
temperature and will be not updated during the iteration. Once reval is chosen, our inverse
problem takes the form

yeval = F [β](reval),

such that we have in principle

dim(SX) = dim(SU) = dim(SY ) = 1.

The map Γ[β] = eβε, adapted to this new formulation, has the inverse

Γ−1[yeval] =
1

ε
ln yeval.

This explicit expression allows us to proceed the same way we derived the IBI from the
Newton method. We ensure that the iteration works only in SX by overcoming to the
equation

z = K[β], (4.34)

where

K := Γ−1 ◦ F,
z := Γ−1[yeval].

The iteration function of the corresponding Newton method is

Ψ[β] = β +DK[β]−1(z −K[β])

= β +

(
1

εF [β]
DF [β]

)−1(
ln yeval

ε
− lnF [β]

ε

)

.
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Applying the two-atom approximation (4.18), we obtain

DF [β](x) ≈ DΓ[β](x) = εΓ[β]x ≈ εF [β]x, ∀x ∈ SX ,

and the iteration function gets rid of the derivative,

Ψ[β] = β − 1

ε
ln
F [β]

yeval
.

For infinite temperature, RDF has the value 1 at the evaluation point, therefore we can
set β(−1) := 0, and the iteration takes finally the desired form,

β(0) :=
1

ε
ln yeval,

β(k+1) := β(k) − 1

ε
ln
F [β(k)]

yeval
. (4.35)

In the above realizations of the two-atom approximation in iterative inversion methods,
we get rid of the derivatives in the sense that there is no need for finite differences or
additional simulations to compute varied RDFs. Especially, modified with the new way
to compute the derivatives from the actual RDF, the Levenberg-Marquardt method needs
just one evaluation of the map F per step. With regard to the Question I.4 (see p. 67),
the modified method is as fast as the IBI.

4.2.4 Role in the Levenberg-Marquardt Method

In this section, we look back to the Levenberg-Marquardt method we presented in Chap-
ter 2. During the application of the method to the particular inverse problem in Chap-
ter 3 and the approximation of the underlying model with the simple map Γ, we elabo-
rated enough understanding to discuss the convergence. We remind that the Levenberg-
Marquardt method converges, if condition (2.32) is fulfilled, what is much easier to check
for the two-atom RDF. This will ensure the convergence for the fluids with low density
and, according to the considerations of the previous sections, we can expect a transfer of
this result to the dense fluids.

Since we are primarily interested in applicability of the method, we use our obser-
vations from Chapter 3, in order to constrain the interaction potentials to a suitable
subset TU ⊆ SU . As we have seen in the applications, the change of the potential du-
ring the iteration is controllable, such that we can demand the set TU to be bounded.
Especially, the singular value analysis of the interactions in the liquid argon shows that
the behaviour of the potential in the core region is rather unimportant, such that we
can restrict our consideration to TU ⊆ SU(0, 0). According to the definition, a potential
from this set is given on a certain interval (0, rcore] by an energy value A0 ∈ (0,∞) (see
property (SU1)). Further, due to property (SU3), the minimal interaction energy is finite,

u(rmin) > −∞.

Regarding the desired boundedness of the set TU , it becomes natural to assume the
existence of

Emax := max
u∈TU

max
r
u(r) <∞,

Emin := min
u∈TU

min
r
u(r) > −∞.
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Summarizing the above requirements, we conclude that for fixed Emax ∈ (0,∞) and
Emin ∈ (−∞, 0), the set

TU := {u ∈ SU(0, 0)|Emin < u < Emax} (4.36)

is bounded and contains all potentials of interest.

Theorem A4:
There exists a constant C > 0, such that

‖Γ[u1]−Γ[u0]−DΓ[u0](u1−u0)‖Y ≤ C‖u1−u0‖C((0,∞))‖Γ[u1]−Γ[u0]‖Y , ∀u0, u1 ∈ TU .

Proof: For all k ∈ N, we have

DkΓ[u] =

(

− 1

kBT

)k

exp

(

− 1

kBT
u

)

=

(

− 1

kBT

)k

Γ[u].

Then, for all r ∈ (0,∞), we obtain the estimate

|Γ[u1](r)− Γ[u0](r)−DΓ[u0](r) · (u1(r)− u0(r))|

≤ 1

2
max
u∈TU

max
s
|D2Γ[u](s)| · |u1(r)− u0(r)|2

=
1

2

(
1

kBT

)2

max
u∈TU

max
s

exp

(

− 1

kBT
u(s)

)

· |u1(r)− u0(r)|2

=
1

2k2BT
2
exp

(

− 1

kBT
Emin

)

· |u1(r)− u0(r)|2.

Further, we introduce γi := Γ[ui] for i ∈ {0, 1} and

Λ : Γ[TU ] → TU ,

γ 7→ −kBT ln γ.

Then, we see that

ΛΓ[u] = u,

DΛ[γ] = −kBT
γ

and for all r ∈ (0,∞), we estimate

|u1(r)− u0(r)| = |Λ[γ1](r)− Λ[γ0](r)|
≤ max

γ∈Γ[TU ]
max
s
|DΛ[γ](s)| · |γ1(r)− γ0(r)|

= max
u∈TU

max
s

kBT

exp
(

− 1
kBT

u(s)
) · |γ1(r)− γ0(r)|

= kBT exp

(
1

kBT
Emax

)

· |Γ[u1](r)− Γ[u0](r)|.

Finally, we combine the two estimates,
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‖Γ[u1]− Γ[u0]−DΓ[u0](u1 − u0)‖2Y

=

∫ ∞

0

|Γ[u1](r)− Γ[u0](r)−DΓ[u0](r) · (u1(r)− u0(r))|2wY (r)dr

≤ C

∫ ∞

0

|u1(r)− u0(r)|4wY (r)dr

≤ C

∫ ∞

0

|u1(r)− u0(r)|2|Γ[u1](r)− Γ[u0](r)|2wY (r)dr

≤ C‖u1 − u0‖2C((0,∞))

∫ ∞

0

|Γ[u1](r)− Γ[u0](r)|2wY (r)dr

= C‖u1 − u0‖2C((0,∞))‖Γ[u1]− Γ[u0]‖2Y . ✷

The above theorem answers the Question I.2 (see p. 33) concerning the convergence of the
Levenberg-Marquardt method, at least in the framework of the two-atom approximation
and for potentials from (4.36).

4.2.5 Application to Argon

We saw in Section 3.3 that the Levenberg-Marquardt method converges in the case of
the liquid argon. Later we discussed the Iterative Boltzmann Inversion – the fastest
known method, which requires a minimum of evaluations. This method is motivated by
the two-atom approximation and we derived in the similar way a couple of improving
modifications for the Levenberg-Marquardt method. First, the maps (4.25) and (4.24)
provide (approximate) Lennard-Jones parameters

ΛLJ ◦ Py(δ) =: (ε(0), σ(0))T ≈ (94.9 · kB, 3.370)T [(J,Å)].
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Figure 4.4: Relative errors of the iterates (red line) and of the data (blue line) from the
reconstruction of the Lennard-Jones parameters of argon. The blue and black dashed
lines represent the noise levels δ and τδ, respectively.
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for the liquid argon by using the given RDF y(δ) ∈ Y. We use these approximates to
define εunit := ε(0) and σunit := σ(0), and obtain

T ≈ 0.90, ρ ≈ 0.81, x ≈ (1.262, 1.010)T , x(0) = (1, 1)T

in the reduced units. Second, (4.30) and (4.31) approximate the partial derivatives of F,
what allows us to avoid the finite differences and the associated evaluations of the map.
These modifications make the Levenberg-Marquardt method as fast as the Iterative Boltz-
mann Inversion. It remains to test whether the two-atom approximation affects the con-
vergence of the method.

In the following, we always assume that argon atoms interact via Lennard-Jones poten-
tial. As before, we assume that the noise level δ = 1.5 · 10−2 is given or can be estimated.
We update the initial guess x(0) by using the modified Levenberg-Marquardt method and
Morozov discrepancy principle with µ = 0.9, and stop when the residual norm crosses the
level τδ, τ = 1/µ. Both the residual norm and the relative parameter error fall monoto-
nically (see Figure 4.4), such that the iteration terminates after kstop = 9 steps with the
approximate solution

x(9) ≈ (1.021, 1.016)T

and relative errors
(1.9 · 10−1, 5.6 · 10−3)T .

We state that the initial guess is safe, because the method remains stable. Moreover,
Figure 4.4 shows that the convergence rate gets higher as the iterates approach the exact
solution. We can explain this effect by considering the regularization parameters (see Fi-
gure 4.5), which are chosen in each step of the iteration in order to damp the noise. Earlier,
deriving the two-atom approximations (4.30) and (4.31), we suspected that these smooth
versions of the derivatives can have a regularizing effect. Now we observe indeed that λ(k)

as a function of k is rather smooth and decays monotonically, what never happened in
the reconstructions involving finite differences. The regularization parameters loose an
order in magnitude during this short iteration, where practically only the second decimal
place of the leading parameter is polisched. In other words, the closer the method is to
the solution, the less regularization it needs. Since the exact solution x lies near the triple
point of argon, where a part of the system behaves like a gas, it is only natural that

0 2 4 6 8
0
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40
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80
Regularization Parameter λ

Iteration step

Figure 4.5: The regularization parameters λ(k) in the application of the modified
Levenberg-Marquardt method to argon.
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Figure 4.6: Relative errors of the iterates (red line) and of the data (blue line) from
the reconstruction of the temperature in the given argon system. The black dashed line
represents the noise level τδ = δ.

the quality of the two-atom approximation grows in its vicinity due to the low-density
property (4.7).

In Section 4.2.3, we developed another “derivative-free” method (4.35) for reconstruc-
tion of the (inverse) temperature of a Lennard-Jones fluid. The method has a visual
(and conceptual) similarity with the Iterative Boltzmann Inversion and obtains a proper
update without any regularization, that is, it is not a Levenberg-Marquardt method any-
more. However, we use further the stopping rule with τ = 1 in order to prevent semi-
convergence due to the noise (δ = 1.5 · 10−2). We note again that the Lennard-Jones
parameters ε and σ are given here and the exact temperature of the considered argon
system is T = 85 [K]. By choosing

εunit := ε, σunit := σ, Munit := M,

we obtain the setting of the system in the reduced units,

ρ ≈ 0.84, ε = 1, σ = 1, T ≈ 0.71 (or β ≈ 1.41).

According to our method, the iteration starts with the initial value

T (0) ≈ 0.90 (or β(0) ≈ 1.12)

and terminates after kstop = 5 steps with the approximate solution

T (5) ≈ 0.77 (or β(5) ≈ 1.30).

This is a good reconstruction of the exact temperature value, especially, if we remember
that temperature is a weak parameter of the model (an energy parameter, equivalent
to ε). Moreover, the monotone decay of the error curves in Figure 4.6 shows that we can
expect better solutions for better estimates of the noise level δ.
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4.2.6 More Coordination Shells

According to (4.4), any RDF y = y[N ](r) can be written in terms of the two-atom RDF,
which appears to approximate the RDF very well. In the hope of finding an even better
approximation (for instance, one respecting the density of the fluid), we discuss the role of
the number N of atoms as a parameter of the RDF. From a certain physical viewpoint, N
as well as the volume V of the system must be very large, or even infinite in some theo-
retical considerations, while the density ρ = N/V always remains finite. In a simulation,
where an RDF y is computed on some interval (0, L/2), the number N must be finite
– small enough to run the simulation sufficiently fast and large enough to guarantee a
sufficiently large system size

L = d

√

N

ρ
,

such that y(r)→ 1 for r → L/2. This choice provides us all “visible” peaks of the RDF,
while the other peaks, which are probably present on (L/2,∞), are neglected, because
they are “invisible” due to uncertainties of the measurement in the simulation/experiment.
From the mathematical viewpoint, we choose a finite N∞, such that

y[N ](r) ≈ y[N∞](r) =: y(r), ∀r ∈ (0, L/2), ∀N ≥ N∞,

is a valid approximation. Even more, we believe that ignoring of the infinitely many
“invisible” peaks has a negligible impact on the “visible” peaks. Then, the following
questions appear natural:

• Is there a small N , such that y[N ] describes the first one, two, three peaks of the
RDF well enough for a matching procedure?

• Is this N small enough to compute the integrals in (4.4) numerically faster than to
determine the RDF by computer simulation?

We already know one answer for these questions, because the two-atom RDF corre-
sponds to N = 2, that is, γ ≡ y[2]. Due to the simplicity of γ, where no integration at all
is needed, we could show by practically playing with the function, how good the approx-
imation of the first peak can be. Therefore, we are encouraged to test, which quality the
other “toy” RDFs y[3] and y[4] show. We notice that we need to integrate d(N − 2) times
and decide to compute the functions in d = 1 dimension. As we can see in Figure 4.7,
extra atoms fill the first coordination shell better. Even more, they also visit the second
one, so that the second peak arises in the RDF and the two peaks grow as we add atoms.
In contrast to a computer simulation, we obtain an information about two coordination
shells, without averaging over very many (due to the low density) snapshots. The quali-
ty of this information must be higher than for two-atom RDF, because the first peak is
reproduced better, such that its height and width can be fitted to the experimental data.
Even though we cannot invert the map Γ(3) : u 7→ y[3] directly, we would need only few
iterations of the Levenberg-Marquardt method with just d integrals, in order to obtain an
initial guess for the interaction potential fitting approximately the structure of the fluid
with a density, which is never zero. [Ben-Naim-2006] also uses the RDF y[3] to visualize
the structure of a slightly dense gas in Section 2.5.3. Considering the need of all iterative
methods for a proper start vector, the three-particle RDF may have a future as a source
of a more stable initial guess, which takes the density of the fluid into account.
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Figure 4.7: The RDFs y[2](r), y[3](r) and y[4](r) in red, green and blue, respectively. The
dashed line indicates the level y = 1. The left plot shows an overall comparison, while
the right one shows the asymptotic behaviour. The parameters of the fluid are T = 2,
ρ = 0.3, ε = 1, σ = 1.

We regard the three-atom RDF y[3] as an intermediate approximate between y[2]
and y. For instance, we can use it to test the Iterative Boltzmann Inversion (IBI). Indeed,
a method, working for any general RDF y, should also work for the low-density cases y[2]
and y[3]. As we explained above, the two-atom RDF y[2] is already incorporated in the
initial guess, such that the IBI would succeed per definition. It makes y[3] to the simplest
test case for the following comparison of the method with the classical Newton method.

We consider N = 3 atoms at temperature T = 2 and set the system size small enough,
such that ρ = 0.5. We use the Lennard-Jones potential with parameters ε = 1 and σ = 1,
determine the corresponding three-atom RDF and add to it some artificial Gaussian noise
with standard deviation η. For the sake of comparability, we supply each method with the
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Figure 4.8: Newton method (dots) versus IBI (circles). Dashed line represents the noise
level.
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Figure 4.9: Newton method (dots) versus IBI (circles). Dashed line represents the noise
level.

same initial guess, even though the Newton method works with just the parameters of the
potential, while the IBI handles the complete potential tabulated on an equidistant grid
with step ∆r = 0.02. Further, we do not smooth the iterates and use the same stopping
rule preventing optimization below the noise level. Figure 4.8 shows that, for low noise
(η = 10−8) or even without noise, the IBI converges to a rather suboptimal potential.
In contrast, the Newton method unfolds its whole efficiency due to a small number of
parameters.

We remind on the previous analysis where the iteration function suggested that the
IBI just “knows” the direction towards the target RDF. In this theoretical and quite ideal
setting, the Henderson theorem promises that the resulting potential is unique. Now,
in practice, the iteration function can have another fixed point far from solution (see
Figure 4.8). If the other fixed point does not fulfill our expectations about a physical
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Figure 4.10: Semiconvergence of the IBI. Dashed line represents the noise level.
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potential, a smart smoothing strategy can prevent that the iterates converge to it. Other-
wise, the method does not really control the updates, what becomes more clear at a
higher noise level (η = 10−5). In this case, the IBI reveals an unpleasant behaviour –
while the residual norm decreases monotonically, the potential error shows oscillations
(see Figure 4.9). Finally, if we set η = 10−4 and remove the stopping rule, we can observe
the semiconvergence (see Figure 4.10). Indeed, the residual norm decreases, but the
potential error begins to grow earlier, such that the potential becomes worse with further
iteration steps. The Newton method, however, prevents such development by calculating
the derivative in each step. Summarizing the above tests, we conclude that the two-atom
approximation should be used with caution in an inversion method. It is advantageous
for the initialization, but without proper stabilization and stopping rule, it can lead to
unwanted effects already for a three-atom system.

4.2.7 Molecular Fluid

Regarding the quality of the two-atom approximation for a simple fluid, we question
whether it can also be extended to a molecular fluid. Such an extension is desired for any
realistic inversion method, as we stated earlier in Question 1.5. The Iterative Boltzmann
Inversion (IBI) was already applied to the molecular case by fitting the RDFs separately for
each type of interaction. However, this strategy does not respect the correlations between
the targets, what leads to convergence problems [RJLKA-2009]. In our interpretation,
the IBI is a direct consequence of the two-atom approximation, that is, our task reduces
to the derivation of a “two-molecule” RDF.

We introduced the RDF in Chapter 1 as a distribution of the distance in each particle
pair of the fluid. In principle, this concept is general enough to work for a molecular fluid
as well as for a simple fluid. The only difference is that the term “particle” denotes now
molecules, such that the term “distance” becomes ambiguous. While a distance between
two atoms is a clear thing, a distance between two molecules can be defined in different
manner. The most popular definitions of the molecular RDFs, namely the center-of-mass
RDF and the atom-atom RDFs, consider the distance between the centers of mass and
the distances between constituent atoms, respectively. Fortunately, the low-density limit
of these RDFs can also be obtained [GG-1984] and it is obvious that the limit corresponds
to an RDF for two molecules (see Appendix A.5 for details). Due to the total similarity
and redundancy in the actual context, we omit the general definitions here and provide a
detailed definition of the two-molecule RDFs in a relevant special case.

We shield the concept of the two-molecule RDF on the simplest diatomic molecule.
We consider a fictive molecule ab consisting of a (heavier) atom a and a (lighter) atom b

with masses ma ≥ mb > 0. The two atoms are held together by a rigid bond of length ℓa,b.
In order to compute the two-molecule approximation of the center-of-mass RDF yab,ab(r)
or the atom-atom RDF ya,b(r), we need two such molecules at distance r. In d = 3

dimensions, these are well-described by their centers of mass ~R1, ~R2 ∈ R3 and spatial
orientations ~z1, ~z2 ∈ S2. Since |~R1 − ~R2| = r, the centers can be fixed to

~R1 = 0,
~R2 = r~e(1),
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without loss of generality. Then, we can write the coordinates of the atoms as

~r1 = ~R1 +Mbℓa,b~z1 (atom a of the 1. molecule),

~r2 = ~R1 −Maℓa,b~z1 (atom b of the 1. molecule),

~r3 = ~R2 +Mbℓa,b~z2 (atom a of the 2. molecule),

~r4 = ~R2 −Maℓa,b~z2 (atom b of the 2. molecule),

where
Ma :=

ma

ma +mb

, Mb :=
mb

ma +mb

are their reduced masses. The molecular pair interaction potential

U (2)(~R1, ~R2, ~z1, ~z2) = ua,a(|~r1 − ~r3|) + ua,b(|~r1 − ~r4|) + ua,b(|~r2 − ~r3|) + ub,b(|~r2 − ~r4|)

is the sum of the interactions between atoms. Then, the two-molecule (atom-atom) RDF
is defined by

ya,b[2](r) :=
1

16π2

∫

S2×S2

exp

(

− 1

kBT
U (2)(0, r~e1 + ~v1,a − ~v2,b, ~z1, ~z2)

)

d~z1d~z2, (4.37)

where

~v1,a := ~r1 − ~R1 =Mbℓa,b~z1,

~v2,b := ~r4 − ~R2 = −Maℓa,b~z2

are the relative coordinates of atoms a and b in their molecules (see Appendix A.5 for
general definitions).

In the following, we want to approximate the RDF of a molecular fluid with the two-
molecule RDF (4.37). The computation of the latter requires integration over multiple
dimensions, which must be carried out numerically and is clearly not so precise and fast
as a simple evaluation of a function in the two-atom approximation. However, we saw
earlier that incorporation of such approximation in an inversion method happens only at
places where the importance of high precision is secondary. The first place is the initial
guess, which must primarily be appropriate for the simulation of the fluid of interest. The
second place is the computation of the derivative, which, especially in a regularization
method, defines primarily a coarse direction for a small and controllable step towards
the next iterate. We remind that the method would still evaluate the quality of the next
iterate via the simulated RDF, such that the actual quality of the update would inevitably
reveal a possibly too coarse approximation of the derivative. Further, with regard to
the speed of the evaluating the approximate expression, a finite-differences derivative is
obtained faster than for the RDF from a molecular simulation. From the viewpoint of the
implementation, the integration in (4.37) requires three loops (over r, ~z1 and ~z2), where
the loops over orientations may indeed appear time consumable. However, already first
tests with the standard parameters for liquid nitrogen reveal that 450 points per variable
yield a good approximation (see Figure 4.11) within few minutes on a desktop machine.

The first sight on Figure 4.11 may suggest that the two-molecule RDF yields only
a coarse approximation of the first peak of the RDF, whose height is totally wrong.
However, the position of the peak is quite precise and corresponds to the Lennard-Jones
parameter σ, which is the strongest parameter of the model, as we observed in Section 3.4
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Figure 4.11: The RDF of the liquid nitrogen (black dots) and the corresponding two-
molecule RDF (blue solid line). The black dashed line separates the first coordination
shell.

for a simple fluid. The height of the peak is controlled by the rather weak Lennard-
Jones parameter ε. In principle, we can expect that fitting of the two-molecule RDF
to the first peak of the RDF yields a good initial guess for an inversion method. The
fitting procedure would work with just the two-molecule RDF and a start vector with
minimal requirements. As we saw in Chapter 3, a bit unlucky initialization can lead to an
unwanted phase transition in the simulation. In the contrary, the explicit formula (4.37)
is not sensitive to any phase-specific pecularities, such that we can initialize the fitting
procedure with any meaningful guess. We develope in the next section an approach how
to obtain such a guess by studying the geometry of the molecule.

4.3 Approximation of Molecular Parameters

4.3.1 Derivation of a Reconstruction Algorithm

We learned in the previos sections that the most relevant parameter of an atom is the
Lennard-Jones parameter σ describing the size of the atom. This parameter, as the
distance to the next neighbours of the atom, can be reliably obtained from the RDF
of the fluid via map (4.25). There is a similar concept of the van der Waals radius –
the radius of a sphere, which restricts the space occupied by an atom. The volume of
the sphere interior is called the excluded volume, and the radius can be obtained from
thermodynamical data. Since we work only with structural data (RDF), we adapt the
above concept to our purposes and consider an atom as a sphere with diameter σ and
volume V (σ) = 1

6
πσ3. In contrast to atoms, molecules are rarely spherical, such that

we have many possibilities to find an appropriate term for size. One of the simplest
non-spherical models of a molecule would be the smallest ellipsoid around its center of
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mass, which contains all atoms of the molecule. However, such model requires three size
parameters (the lengths of the ellipsoid’s axes) to describe the molecule, therefore we
prefer to discuss a special case where an ellipsoid becomes a sphere and the size of the
molecule is just the diameter of this sphere. Considering the molecule as a spherical,
effective particle interacting via Lennard-Jones potential, we can regard the molecular
fluid as simple and use the solution map (4.25) to obtain the size of the molecule from
the molecular RDF.

In the following, we want to reconstruct, at least approximately, all molecular para-
meters (atom sizes and bond lengths) from the given molecular RDF of the fluid. We
know how to obtain the overall, effective size of the molecule, but due to our simple,
spherical model, we loose the correspondence between the molecule and constituent atoms.
Obviously, at most one parameter can be uniquely defined by the molecule size, therefore
we need to couple the atom sizes and bond lengths by additional conditions. We do not
aim the best numerical accuracy, thus we derive these coupling conditions approximately
by following only the physical intuition about sizes. For instance, if the atomic number
of atom b is significantly larger than that of the atom a, then we can demand a relation

V (σb,b) ≈ 2 · V (σa,a), (4.38)

or we can set the atom sizes equal, if their atomic numbers are nearly equal. Further,
the spherical model has the advantage that the size σa,a is at the same time the distance
to the next neighbour of type a. This allows to define the next-neighbour-distance to an
atom of type b via one of the Lorentz-Berthelot rules,

σa,b ≈
1

2
(σa,a + σb,b) (4.39)

(see Appendix B.2). For the estimation of the bond lengths, we can use the following
heuristic. Choosing a bond length ℓa,b near zero would be too small due to nonbonded
repulsion, while setting it near the minimum 6

√
2σa,b of the nonbonded potential would be

redundant or, in other words, too large. Therefore, the mean value

ℓa,b ≈
6
√
2

2
σa,b (4.40)

is a coarse, but meaningful estimate. Finally, according to the coupling conditions (4.38),
(4.39) and (4.40), there is a single relevant parameter, for example, σa,a. Provided that
the geometry of the molecule is given, there is a unique value of σa,a, such that the proper
constellation of spherical atoms fits into the spherical molecule of the given size.

According to the above discussion, we have now an approach for estimation of molecular
parameters. We line it out by using the polystyrene example from Chapter 1 as a guide.
We start in the left bottom corner of Figure 4.12, where a molecule (phenyl ring C6H5) is
represented by the constituent atoms arranged in the correct geometrical constellation.
We consider the size σC6H5,C6H5 of our molecule as unknown, while the density ρ, the
temperature T and the center-of-mass RDF yC6H5,C6H5 of the fluid are given. In the coarse
graining, the mapping scheme would replace the molecule by the effective particle a, in
accordance with the geometry of the molecule, such that only the center of mass matters
and all atom coordinates become lost. An inversion procedure would set ya,a := yC6H5,C6H5
and yield the parameters of the corresponding Lennard-Jones potential, εa,a and σa,a, as
if the fluid was simple. These numbers describe the relevant energy and the size of the
spherical particle a in the right bottom corner of the figure. As we discussed in Chapter 1,
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effective particles are averages of molecules, such that they are typically softer and smaller
than the underlying molecules, that is,

σa,a . σC6H5,C6H5.

We can use this observation for our needs, even though we do not intend to coarse-grain
the fluid practically. Indeed, we learned in Section 4.2.2 that the parameters of the
underlying potential can be easily estimated via (4.25) from the center-of-mass RDF,

(ε̃a,a, σ̃a,a)
T := ΛLJ ◦ P

[

y
(δ)
C6H5,C6H5

]

, (4.41)

such that the (unknown) effective size parameter is underestimated,

σ̃a,a . σa,a.

We let σ̃a,a describe the size of the spherical particle in the right upper corner of the figure,
which is our approximation of the particle a and of the original molecule C6H5. Clearly,
the original atom sizes and bond lengths are lost, but we still know the geometry of the
molecule and only need to decrease its size to the known value

σ̃C6H5,C6H5 := σ̃a,a . σa,a . σC6H5,C6H5 .

Using the coupling conditions (4.38), (4.39) and (4.40), we can reduce the unknown pa-
rameters σ̃C,C, σ̃C,H, σ̃H,H, ℓ̃C,C and ℓ̃C,H to a single relevant parameter, for example, σ̃C,C.
It remains to fit this parameter to the given size σ̃C6H5,C6H5 (see the left upper corner in
Figure 4.12), what leads in principle to a linear equation with one unknown, which defines
nearly all molecular parameters. Finally, due to small influence of energy parameters on
the fluid’s structure, we can set the remaining parameters to

ε̃C,C := ε̃C,H := ε̃H,H := ε̃a,a. (4.42)

Per construction, this strategy yields a unique and meaningful approximation of molecular
parameters.

We can use the approximation derived above as a guess

x̃(0) := (ε̃C,C, ε̃C,H, ε̃H,H, σ̃C,C, σ̃C,H, σ̃H,H, ℓ̃C,C, ℓ̃C,H)
T

for molecular parameters, which should be appropriate for a simulation due to smaller
atom sizes. Similarly to the simple fluid, we describe the computation of the corresponding
RDF as the nonlinear map

FC6H5,C6H5 : SX → SY , x 7→ yC6H5,C6H5 ,

whose evaluation can be time consuming and instable, if x̃(0) is unlucky. Therefore, we
want to refine our guess by involving the two-molecule approximation

FC6H5,C6H5 ≈ ΓC6H5,C6H5,

where the map

ΓC6H5,C6H5 : SX → SY ,

x 7→ yC6H5,C6H5 [2],
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Figure 4.12: Visualization of the fitting of the atom sizes to the molecule size.

provides the two-molecule RDF for the given fluid and can be evaluated for any x̃ ∈ SX
without any phase-specific complications. We hope that this refinement helps us to obtain
molecular parameters, which are appropriate for simulation and initialization of inversion
methods, as it was the case for the two-atom approximation. Although ΓC6H5,C6H5 cannot
be inverted directly like Γ, we can fit its values to the entries of the given molecular
RDF y

(δ)
C6H5,C6H5, that correspond to the first coordination shell. That is, for a certain map

PC6H5,C6H5 truncating the molecular RDF at the end of the first peak, we solve the inverse
problem

PC6H5,C6H5

[

y
(δ)
C6H5,C6H5

]

= PC6H5,C6H5 ◦ ΓC6H5,C6H5 [x]

with an inversion method of our choice and obtain an approximate solution x̃(k̃
stop). That

is, the given molecular RDF y
(δ)
C6H5,C6H5 ∈ Y provides us the inital guess x(0) := x̃(k̃

stop) for
the parameter vector x as well as the energy and the length units

εunit := ε̃a,a,

σunit := σ̃a,a.

In other words, we can apply now an inversion method also to the detailed inverse problem

y
(δ)
C6H5,C6H5 = FC6H5,C6H5 [x].

Summarizing the above discussion, we can write down the final algorithm for recon-
struction of the molecular parameters:
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Reconstruction algorithm. Requirements and goals:
Requirements:

(a) the center-of-mass RDF y
(δ)
a,a ∈ SY of a molecule a consisting of atoms a1, . . . , aN

sorted by their atomic number;

(b) the geometry of the molecule, that is, a vector ω ∈ [0,∞)n with ‖ω‖2 6= 0, such that
for each molecule size σa,a ∈ (0,∞), there exists x ∈ SX with

σa,a = 〈ω|x〉2. (4.43)

Goal:
Determine the vector x ∈ SX of molecular parameters, such that

y(δ)
a,a ≈ Fa,a[x]. (4.44)

Reconstruction algorithm. Stage I:
Estimate the parameters of the effective particle via two-atom approximation

(ε̃a,a, σ̃a,a)
T := ΛLJ ◦ P

[
y(δ)
a,a

]
. (4.45)

Set ε̃ai,aj := ε̃a,a. Then, by using the coupling conditions

σ̃ai,ai =

{
3
√
2 · σ̃aj ,aj , i≫ j,
σ̃aj ,aj , i ≈ j,

(4.46)

σ̃ai,aj =
1

2
(σ̃ai,ai + σ̃aj ,aj ), (4.47)

ℓ̃ai,aj =
6
√
2

2
σ̃ai,aj , (4.48)

determine the unique solution x̃ := (ε̃..., σ̃..., ℓ̃...)
T of (4.43) for σa,a = σ̃a,a.

Reconstruction algorithm. Stage II:
Define a proper truncation map Pa,a by localizing the first peak of the RDF visually.
Then, by starting with x̃(0) := x̃, obtain the approximate solution x̃(k̃

stop) of

Pa,a

[
y(δ)
a,a

]
= Pa,a ◦ Γa,a[x] (4.49)

via k̃stop steps of the Levenberg-Marquardt method.

Reconstruction algorithm. Stage III:
Starting with x(0) := x̃(k̃

stop), obtain the approximate solution x(k
stop) of

y(δ)
a,a = Fa,a[x] (4.50)

via kstop steps of the Levenberg-Marquardt method.
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4.3.2 Application to Nitrogen

We demonstrate the workflow of our reconstruction algorithm on the example of liquid
nitrogen from Section 3.4. Provided a center-of mass RDF y

(δ)
N2,N2 , we can assume that the

fluid consists of spherical molecules N2 interacting via the Lennard-Jones potential and
estimate the parameter σ̃N2,N2 via (4.45). Then, according to our definition of the molecule
size, the following relation to atom size and bond length must hold,

σ̃N2,N2
!
=

1

2
σ̃N,N + ℓ̃N,N +

1

2
σ̃N,N = ℓ̃N,N + σ̃N,N

(see Figure 4.13). But sometimes, we have not a center-of-mass RDF, but an atom-
atom RDF y

(δ)
N,N, which describes rather the distribution of the distance between all ni-

trogen atoms in the reference molecule to a single atom of the next-neighbour molecule.
Therefore, we do as if the fluid would consist of spherical molecules N2 and free atoms N

interacting via Lennard-Jones potential with parameters nearly given by

(ε̃N2,N, σ̃N2,N) := ΛLJ ◦ P
[

y
(δ)
N,N

]

≈ (40 · kB, 3.261) [(J,Å)].

Then, we obtain the size of the atoms via rule (4.39),

σ̃N2,N ≈
1

2
(σ̃N2,N2 + σ̃N,N) ≈

1

2
ℓ̃N,N + σ̃N,N.

In other words, we can consider the requirements of the reconstruction algorithm as
fulfilled. The first stage yields

ε̃N,N := ε̃N2,N2 ≈ 40 · kB [J],

σ̃N,N :=
4

4 + 6
√
2
σ̃N2,N ≈ 2.546 [Å],

ℓ̃N,N :=
2 6
√
2

4 + 6
√
2
σ̃N2,N ≈ 1.429 [Å].

We compare our estimates with the known standard parameter values,

εN,N = 37.3 · kB [J],
σN,N = 3.310 [Å],

ℓN,N = 1.090 [Å],

and observe that the atom size is underestimated (as expected) and the other parameters
are meaningful approximations.

N N

Figure 4.13: The spherical model of the nitrogen molecule.

95



CHAPTER 4. PHYSICAL APPROXIMATIONS

In the second stage, we inspect the atom-atom RDF (see Figure 4.14) and introduce
the map

PN,N[y](r) :=

{

y(r), 0 < r ≤ argmins∈(0,∞)
∂y(s)
∂s

,
1, otherwise,

(4.51)

truncating the RDF at the small shoulder after the first peak. Then we solve the inverse
problem (4.49) iteratively, by starting with the guess x̃(0) := (ε̃N,N, σ̃N,N, ℓ̃N,N)

T . As the fitting
procedure, we engage the Levenberg-Marquardt method with µ = 0.9 and the following
stopping rule. As soon as the reduction of the residual is not visible due to the map noise,
that is,

(1− µ)
∥
∥
∥PN,N

[

y
(δ)
N,N

]

− PN,N ◦ ΓN,N[x̃
(k)]
∥
∥
∥
Y
≈ 2ν,

the choice of the regularization parameter becomes ambiguous, such that it makes sense
to stop. With these settings, the method terminates after kstop = 34 steps and we obtain

ε̃
(34)
N,N ≈ 40.9 · kB [J],
σ̃
(34)
N,N ≈ 3.239 [Å],

ℓ̃
(34)
N,N ≈ 3.5 [Å].

We emphasize that the second stage of our algorithm yields a much better reconstruction
than the first stage by working exclusively with the two-molecule RDF. Even though the
parameters εN,N and ℓN,N drift away, we obtain a nearly perfect underestimate of the leading
parameter σN,N.

Earlier in this chapter, we discussed critically the actual inversion methods, the Ite-
rative Boltzmann Inversion (IBI) and the Inverse Monte Carlo, which are initialized or
based entirely on the low-density approximation of the RDF. Particularly, [MFKV-2007]
reported that the quality of such initialization drops for more complex molecular fluids,

0 5 10 15 20
0

0.5

1

1.5

2

r [Å]

Figure 4.14: The first peak with shoulder (black dots) and the rest (dashed line) of the
atom-atom RDF of the liquid nitrogen.
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Figure 4.15: Relative errors of the iterates (red line) and of the data (blue line) for
nitrogen. The blue and black dashed lines represent the noise levels δ and τδ, respectively.

but remains crucial for the convergence of the inversion methods. Since we saw that the
low-density RDF used there means just a two-atom RDF (not two-molecule RDF), we
can easily explain the dropping quality by a fundamental inability of an atom (effective
particle) to represent a non-spherical molecule. This can be visualized on the above re-
construction where the two-atom approximation extracts from the molecular RDF the
approximate particle size 3.261 [Å]. This number might be a safe underestimate of size of
the nitrogen atom, 3.310 [Å], but in fact it is an approximation of the molecule size. Ac-
cidentally, the bond is rather small, such that the size of the single atoms is quite near to
the size of the molecule, but our reconstruction suggests a slightly lower value, 3.239 [Å].
For a more complex molecule, the difference of the two estimates would be more evi-
dent. While the two-atom RDF describes in the best case an averaged molecule (effective
particle), the two-molecule RDF carries the information about the real geometry of the
molecule. Therefore, we believe that the two-molecule RDF is a more suitable approxi-
mation of the RDF for molecular fluids and can improve the convergence of an inversion
method. In this sense, we consider the two-molecule approximation as an answer to the
Question I.5 (see p. 67).

Even though the above reconstruction shows that the strongest parameter σN,N is well
approximated, this is evidently not the case for the bond length ℓN,N. There is a need for
discussion, because the small shoulder directly after the first peak of the given RDF (see
Figure 4.14) arises due to the given molecule geometry (see, for instance, [HM-2006]).
Indeed, while in one nitrogen molecule, the first atom has a preferred distance (near σN,N)
to the other nitrogen molecule, the second atom is always at the distance ℓN,N from the
first one due to the bond. That is, the first coordination shell has a “second preferred
distance” near σN,N + ℓN,N. The simulations during the iteration show that the two-molecule
RDF also posesses this shoulder, until the method “decides” to optimize the first peak
primarily. Due to the chosen weighted Lebesgue-norm ‖ · ‖Y, the variation of the peak
(parameter σN,N) has much more impact on the RDF than the variation of the shoulder
(parameter ℓN,N). In other words, this norm is not able to recognize what one can easily
see with the naked eye and therefore, it is at least contraintuitive.

Until we find a better data norm, we can keep in mind that the two-molecule ap-
proximation provides a meaningless guess for the bond length and estimate it by the
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geometrically motivated formula (4.40), which yields

ℓN,N ≈
6
√
2

2
σN,N ≈ 1.818 [Å].

Then, we have a complete initial guess for the final stage of our reconstruction algorithm,
where we work with molecular RDFs obtained by computer simulations. According to the
above discussion, the given atom-atom RDF y

(δ)
N,N provides us the energy and the length

units
εunit := εN2,N ≈ 40 · kB [J],
σunit := σN2,N ≈ 3.261 [Å],

and the inital guess x(0) := (ε̃
(34)
N,N , σ̃

(34)
N,N , ℓ̃

(34)
N,N )T . In the reduced units, we have then

T ≈ 1.62, ρ ≈ 0.64, kN,N ≈ 4 · 105 (4.52)

and

x ≈ (0.931, 1.015, 0.334)T ,

x(0) ≈ (1.020, 0.993, 0.558)T .

The Levenberg-Marquardt method with µ = 0.9 terminates in the step kstop = 14 with
the approximate solution

x(14) ≈ (1.016, 1.017, 0.399)T .

The error curves in Figure 4.15 attest that the iterates converge monotonically, such that
we can consider the inital guess derived above as stable. The relative errors

(9.1 · 10−2, 1.7 · 10−3, 1.9 · 10−1)T

of the last iterate show that the second parameter, the atom size σN,N, is reconstructed
very precisely. In contrast, the first and the third parameter are just acceptable, if we
consider that the method did a good work on improving the start vector x(0) towards the
exact solution x. We observe here the same problem as before, namely that the method
does not really optimize the bond length, because ℓN,N > 0 leads just to some shoulders in
the RDF, which are nearly ignored by the method due to the chosen norm.

4.4 Approximation of the Lennard-Jones Potential

The singular value analysis of the RDF in Chapter 3 revealed the most important para-
meters of the interactions in a fluid. These are the “attraction energy” and the “repulsion
distance”, which allow to reduce the underlying potential to the simple Lennard-Jones
model with parameters ε and σ, respectively. Disregarding the apparent simplicity, ana-
lytical discussion of the the two-parametric interaction potential

uLJ(r) = 4ε

((σ

r

)12

−
(σ

r

)6
)

soon becomes difficult. For instance, the singular value analysis of the corresponding
two-atom RDF is impossible, as we see later in this section.

Fortunately, the Lennard-Jones model yields such a handy and successful potential for
computer simulations, that a further simplification may be indeed brought into discussion.
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The idea to simplify the interaction potential for a pen-and-paper analysis already came
up earlier in the perturbation theory [Zwanzig-1954]. There, one uses the observation
that the structure of a fluid at high density is mainly defined by the repulsive part of the
potential, such that the attractive part can be considered as a (small) perturbation. In
this context, the soft-sphere potential

uSS(r) = 4ε
(σ

r

)α

, α > 6, (4.53)

emerges, that is nothing but the first term in the Lennard-Jones potential for α = 12. Its
primary properties are the fast growth towards infinity for small distances and the fast
decay to zero for large distances, such that an even coarser model with the same properties
becomes possible. The hard-sphere potential has an extraordinarily simple form

uHS(r) =

{
A0, 0 < r < σ,
0, σ ≤ r <∞, (4.54)

where the constant A0 > 0 is very large and is often considered as infinite in theoretical
discussions. At this level of simplicity, one can easily extend the interaction model with
attractive forces by considering the square-well potential

uSW(r) =







A0, 0 < r < σ,
−ε, σ ≤ r < γσ,
0, γσ ≤ r <∞.

(4.55)

Usually, γ = 1.5 and the parameters ε and σ play the same roles as in the Lennard-Jones
potential. This is probably the simplest adequate interaction potential for a fluid, because
it fulfills property (SU3), in contrast to the soft- and hard-sphere potentials. For a detailed
discussion of appropriate interaction potentials, we refer to Appendix A.2.

In this section, we combine the two-atom approximation Γ ≈ G with the above poten-
tials. Our aim is to find out which properties of a Lennard-Jones fluid can be recognized
in this extremely simple framework. In other words, we consider each of the above pa-
rameterizations H of interactions as an approximation of HLJ and discuss whether

Γ ◦H ≈ G ◦HLJ

holds in the sense of the singular values. We cut off the Lennard-Jones potential at the
usual distance rcut = 2.5σ for the sake of comparability with other potentials, which have
a finite support. For a two-parametric model, we can write down the singular values and
vectors explicitly, that is, we consider the two-atom RDF as a function Γ[x] ∈ L2((0, rcut)),
parameterized with vector x ∈ R2. Then, we can investigate the behaviour of such func-
tion via the singular value decomposition of the operator

A := DΓ[x] =

(
∂Γ[x]

∂x1
,
∂Γ[x]

∂x2

)

= ΨΣΦ∗ := (ψ(1), ψ(2), ...)









σ1 0
0 σ2
0 0
0 0
. . . . . .









(ϕ(1), ϕ(2))T ,
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where σ1 ≥ σ2 ≥ 0. In order to obtain the operators Σ and Φ, we look for the eigenvalues
of the operator

M := A∗A =

(
ξ ζ
ζ η

)

,

where

ξ := 〈D1Γ[x]|D1Γ[x]〉L2((0,rcut)),

η := 〈D2Γ[x]|D2Γ[x]〉L2((0,rcut)),

ζ := 〈D1Γ[x]|D2Γ[x]〉L2((0,rcut)).

These are the solutions of the quadratic equation

0
!
= det(M − λ1) ≡ λ2 − (ξ + η)λ+ (ξη − ζ2),

and more precisely,

λ(±) =
1

2

(

ξ + η ±
√

(ξ − η)2 + 4ζ2
)

.

Evidently, λ(+) ≥ λ(−) and due to the Cauchy-Schwarz inequality, λ(−) ≥ 0. Further,
for ζ 6= 0, we obtain the corresponding eigenvectors ϕ(±) from the equation

0
!
= (M − λ(±)1)ϕ(±)

=

(
ξ − λ(±) ζ

ζ η − λ(±)

)

ϕ(±)

=

(
0 ζ − 1

ζ
(ξ − λ(±))(η − λ(±))

ζ η − λ(±)

)

ϕ(±)

=

(
0 −1

ζ
det(M − λ1)

ζ η − λ(±)

)

ϕ(±)

=

(
0 0
ζ η − λ(±)

)

ϕ(±),

that is,

ϕ(±) =
1

√

(η − λ(±))2 + ζ2

(
η − λ(±)

−ζ

)

.

In the following subsections, we study the quantities

σ1 =
√
λ(+), σ2 =

√
λ(−), ϕ(1) = ϕ(+), ϕ(2) = ϕ(−),

for the parameter x := (ε, σ)T near the typical value (1, 1)T .
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If the interactions are given by the Lennard-Jones potential, we obtain

HLJ[ε, σ](r) = 4ε(σ12r−12 − σ6r−6),

ΓLJ[ε, σ](r) = exp(−4βε(σ12r−12 − σ6r−6)),

∂ΓLJ[ε, σ](r)

∂ε
= −4βσ6r−6(σ6r−6 − 1)ΓLJ[ε, σ](r),

∂ΓLJ[ε, σ](r)

∂σ
= −24βεσ5r−6(2σ6r−6 − 1)ΓLJ[ε, σ](r),

ξ = 42β2

∫ rcut

0

(
σ6r−6(σ6r−6 − 1)

)2 (
ΓLJ[ε, σ](r)

)2
dr,

η = 242β2 ε
2

σ2

∫ rcut

0

(
σ6r−6(2σ6r−6 − 1)

)2 (
ΓLJ[ε, σ](r)

)2
dr,

ζ = 4 · 24β2 ε

σ

∫ rcut

0

(
σ6r−6

)2
(σ6r−6 − 1)(2σ6r−6 − 1)

(
ΓLJ[ε, σ](r)

)2
dr,

where the parameter β = 1
kBT

denotes the inverse temperature again. Even though the
map ΓLJ is quite simple, we cannot obtain the above integrals analytically and have to
make use of numerical integration. In order to compute the integrals fast and with an
appropriate precision, we apply the rectangle quadrature with adaptive gridsteps on each
subinterval, where the integrands have a constant sign. Figure 4.16 shows the ratio σ1

σ2
of

the resulting singular values as a function of the inverse temperature on the equidistant
grid β ∈ {0.1, 0.2, . . . , 70}. It is interesting that this function shows a clear minimum
at βmin ≈ 36. This could mean that the roles of the two singular values are switching
there, therefore we want to know which one corresponds to which parameter. Since the
entries of the singular vectors not always allow to determine the leading parameter with
respect to the definitions (2.30) and (2.31), and since we have only two parameters, we
define that ε is leading, if

|ϕ(1)
1 | > |ϕ(1)

2 |,
and σ is leading, if the inequality is reversed. The singular vectors indicate that the two
Lennard-Jones parameters are differently important for different temperatures – while σ
is leading for β < βmin, ε is leading for β > βmin. We are curious whether the other
interaction models will resemble this switch.

If the interactions are given by the soft-sphere potential, we obtain

HSS[ε, σ](r) = 4ε
(σ

r

)α

, α > 6,

ΓSS[ε, σ](r) = exp
(

−4βε
(σ

r

)α)

,

∂ΓSS[ε, σ](r)

∂ε
= −4βσ

α

rα
ΓSS[ε, σ](r),

∂ΓSS[ε, σ](r)

∂σ
= −4αβεσ

α−1

rα
ΓSS[ε, σ](r),

ξ = 16β2σ2αI,

η = 16α2β2ε2σ2α−2I,

ζ = 16αβ2εσ2α−1I,

where the integral

I :=

∫ rcut

0

1

r2α
exp

(

−8βε
(σ

r

)α)

dr
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Figure 4.16: The ratio of the singular values for the Lennard-Jones potential. σ is leading
in the blue part of the curve, ε – in the red one.

is obviously finite, such that we can divide the entries of the matrix M by 16β2σ2α−2I
without influence on its SVD. We obtain the eigenvalues of the rescaled matrix from the
equation

0
!
= det

(
σ2 − λ αεσ
αεσ α2ε2 − λ

)

= (σ2 − λ)(α2ε2 − λ)− (αεσ)2 = λ(λ− (σ2 + α2ε2)),

that is, the singular values are

σ1 =
√
σ2 + α2ε2, σ2 = 0

and the columns of the matrix

Φ =

(
σ −αε
αε σ

)

show the corresponding singular vectors. Typically σ = ε = 1, but α is large, espe-
cially, if we consider the potential as the repulsive part of the Lennard-Jones potential,
where α = 12. That is, numerically

Φ.^2 ≈
( )

,

as we already saw in Section 3.3.1. In other words, the parameter σ is much stronger than
the parameter ε. However, their singular values are independent from the inverse tempera-
ture β, the ratio σ1

σ2
is infinite and cannot be compared with results for the Lennard-Jones

potential. It is not really surprising, because the soft-sphere potential is not really a
two-parametric model. Indeed, since ε does not describe the depth the potential well, the
purely repulsive potential uSS posesses rather only one parameter εσα.
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If the interactions are described by the square-well potential, we have

HSW[ε, σ](r) =







A0, 0 < r < σ,
−ε, σ ≤ r < γσ,
0, γσ ≤ r <∞,

ΓSW[ε, σ](r) =







e−βA0 , 0 < r < σ,
eβε, σ ≤ r < γσ,
1, γσ ≤ r <∞,

∂ΓSW

∂ε
=







0, 0 < r < σ,
βeβε, σ ≤ r < γσ,

0, γσ ≤ r <∞,
ξ = β2e2βε(γ − 1)σ.

The derivative with respect to σ requires a more sophisticated treatment – we use the
equality

ΓSW[ε, σ](r) = ΓSW[ε, 1](r/σ)

and by introducing s := r/σ, we obtain

∂ΓSW[ε, σ](r)

∂σ
=

∂

∂σ

(

ΓSW[ε, 1](s)

)

=
∂ΓSW[ε, 1](s)

∂s

∂s

∂σ

= − r

σ2

∂

∂s







e−βA0, 0 < s < 1,
eβε, 1 ≤ s < γ,
1, γ ≤ s <∞

= − r

σ2
((eβε − e−βA0) · δ(s− 1) + (1− eβε) · δ(s− γ))

= − r
σ
((eβε − e−βA0) · δ(r − σ) + (1− eβε) · δ(r − γσ)).

We see that discontinuous HSW leads to discontinuous ΓSW, such that the two Dirac-δ
functions appear, what makes our study impossible. Moreover, our attemts to work with
appropriate continuous sequences HSW

k → HSW and ΓSW
k → ΓSW yield infinite values of the

integral η in the limit k →∞, A0 →∞. Therefore, we conclude that an approximation of
the Lennard-Jones potential in the sense of singular values should be at least differentiable.
However, we do not intend to derive a new model for interactions, so we put aside the
analytical consideration and discuss the problem in its natural, discretized form, which is
not so precise but more practicable.

For each parameterization H ∈ {HLJ,HSW} of the interactions, we differentiate the
discretized two-atom map Γ via the finite difference operator

DjΓi[x] :=
Γi[x +∆xje(j)]− Γi[x]

∆xj
, 1 ≤ i ≤ m, 1 ≤ j ≤ 2,

where ∆x = ∆r(1, 1)T and ∆r is the gridstep of the discretization. Then, we consider the
curve corresponding to the singular values/vectors of the matrix A = DΓ in comparison
with the curve from Figure 4.16. Each of the new curves shows the same switch of the
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Figure 4.17: The ratio of singular values obtained by finite differences for the Lennard-
Jones potential (solid line) and the square-well potential (dashed line). The curve from
Figure 4.16 is plotted as the reference (black dots). σ is leading in the blue part of the
curve, ε – in the red one.

leading parameter, and the Lennard-Jones data fits the reference curve almost perfectly
for a sufficiently small gridstep ∆r (see Figure 4.17). The curve corresponding to the
square-well model reveals a similar behaviour at β → 0 and β →∞. Moreover, this curve
reaches its minimum near βmin.

Singular values characterize the derivatives and therefore, the behaviour of the maps ΓLJ

and ΓSW. Thus, we conclude that in practice, we can claim

ΓSW ≈ ΓLJ,

DΓSW ≈ DΓLJ,

or simply

HSW ≈ HLJ (4.56)

in the sense of resembling the behaviour of the two-atom RDF. In other words, within
the framework of the two-atom approximation Γ ≈ G, the square-well and the Lennard-
Jones potentials are nearly equivalent, two-parametric models for interactions in a simple
fluid. We expect that approximation (4.56) also holds for molecular fluids and can be
used for further numerical analysis of the RDF. Indeed, we used the bijectivity of HLJ

in Section 4.3, in order to estimate the Lennard-Jones parameters εLJ and σLJ. For a
molecular fluid, however, such estimation appears impossible and our inversion method
fails to reconstruct the bond length due to the Lebesgue-norm suited to simple fluids. In
contrast, the simple form of the bijective map HSW makes possible to estimate the ne-
cessary parameters εSW, σSW etc. from the molecular RDF analytically. Finally, analysis
of the molecular RDF in dependence on the square-well parameters can yield indications
for a better norm, more appropriate for molecular fluids.
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4.5 Summary

In this chapter, we derived the two-atom approximation as the essential feature of the
physically motivated inversion methods, the Iterative Boltzmann Inversion (IBI) and the
Inverse Monte Carlo (IMC). Then, in the framework of this approximation, we proved the
convergence of the purely mathematical, regularizing Levenberg-Marquardt (LM) method
and derived a significantly improved modification. Finally, we provided theoretical and
empirical statements, which confirm that the modified LM method incorporates all ad-
vantages of the physical and mathematical derivations. Summarizing our observations in
the following table,

Question\Method LM IBI IMC Modified LM
I.1. Regularization? Yes Maybe Yes Yes
I.2. Convergence? Yes Maybe Maybe Yes
I.3. Initial guess? No Yes Yes Yes
I.4. Derivative-free? No Yes No Yes
I.5. Molecular fluid? Yes Yes Yes Yes

we see that, step by step, we answered the Question I we posed in Chapter 1 for the
particular inverse problem (see p. 11).
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Chapter 5

Conclusion

5.1 Results

In this work, we successfully applied a mathematical theory to the inverse problem

y = G[u],

where one looks for a potential u corresponding to the given radial distribution function
(RDF) y. We motivated in Chapter 1 that this problem arises in the coarse graining, when
one looks for a mesoscopic potential, whose (mesoscopic) RDF fits the given microscopic
RDF. Coarse graining is a physical approach taking advantage of the mapping from the
microscopic to the mesoscopic scale, in order to speed up the simulation of soft matter.
An inversion method solving the above equation is an essential part of the approach, and
the quality of the approximate solutions is responsible for preservation of the microscopic
details. In order to improve the quality of coarse graining, we determined the guideline
for our investigations by posing two questions, which appear natural for the particular
inverse problem:
Question I: Can we develop a better inversion method?
Question II: Can we measure/lower/minimize the loss of microscopic details owing to
inversion?

In order to answer the first question, we discussed its components. First, in Chap-
ter 2, we reviewed the theory of inverse problems, where we motivated that an “inversion
method” should be stable against moderate discrepancies between the measured data and
the underlying model. This stability can be reached by regularization:
Question I.1: Does the inversion method contain regularization?
Since regularization modifies the original inverse problem, it is important that the method
converges:
Question I.2: Does the inversion method converge?
Then, we presented the regularizing Levenberg-Marquardt (LM) method as an example
of the Newton-type methods from the applied mathematics. This method is also proved
to converge under a certain condition.

Further, in Chapter 3, we applied the LM to the particular inverse problem. We
reconstructed the parameters x ∈ SX of various parameterizations u := H [x] ∈ SU from
the given data y := G[u] ∈ SY . During adaptation of the method to the problem, we
derived rigorous definitions for sets/spaces SX →֒ X, SU →֒ U and SY →֒ Y of parameters,
potentials and RDFs, respectively. Although the term “data” has a very general meaning
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in the theory, its application to the structural data (RDF) yields good reconstructions
in many examples: Since we solve the nonlinear inverse problem iteratively, a “good”
inversion method requires a “good” initial guess:

Question I.3: Is there a systematic way to derive an appropriate initial guess for the
inversion method?

Then, we analyzed in Chapter 4 the actually existing inversion methods with the
same theoretical criteria, for the sake of fair comparison. These methods, called the
Iterative Boltzmann Inversion (IBI) and the Inverse Monte Carlo (IMC), are broadly and
successfully applied in the coarse graining for solving the particular inverse problem. The
developers of the methods are aware of the discrepancies in the data and created a number
of stabilizing modifications, including the regularization of the IMC. Even though the
convergence of the two methods is an issue, they reveal an intuitive physical understanding
of the structural data, which allows an admissible approximation of the complex physical
model G with a handy map Γ:

Two-atom approximation:
The two-atom RDF, as a map Γ : U → Y ,

• approximates the RDF, that is,
Γ ≈ G,

• approximates the derivative of the RDF, that is,

DΓ ≈ DG,

• yields a one-to-one correspondence between RDFs and potentials, that is,

SU
Γ←→ SY .

Obviously, this approximation supplies the actual methods with a good initial guess by
applying the inverse of Γ to the given microscopic RDF. Another advantage of the ap-
proximation became clear first after we saw that the actual inversion methods can be
interpreted as Newton-type methods. Such method computes the derivative of the RDF
in each iteration, what is typically a time consuming procedure, such that a runtime
analysis makes sense:

Question I.4: How much time does a method spend to compute the derivative?

While the LM engages finite differences, the IMC contains an alternative procedure with
physical motivation and eventually better performance. However, the effort for computing
the two-atom RDF is negligible, such that the usage of the approximation in the IBI
increases the convergence speed of the method significantly. But for molecular fluids, the
IBI becomes unstable and the initial guess looses its quality. We believe that the reason
is the high discrepancy between the molecular data (microscopic RDF) and the simple
model of the fluid:

Question I.5: Can we extend the application area of a method to molecular fluids?

Finally, we used the quality of the physical two-atom approximation as a link between
the functional spaces for potentials and RDFs, in order to modify the purely mathematical
LM. In this fashion, we derived a novel, stable inversion method with appropriate initial
guess and the convergence speed of the IBI. Further, in this approximate framework,
we proved the convergence condition for the LM on a meaningful subset TU ⊆ SU of
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potentials. Then, we applied the modified LM and observed a good quality of the initial
guess and a convergence speed, equal to that of the IBI. Inspired by the above insight
from the physical theory of simple fluids, we found a generalization of the two-atom
RDF in the theory of molecular fluids – the two-molecule RDF. Moreover, we provided a
reconstruction algorithm using the two-molecule RDF and the geometry of the underlying
molecule to derive an appropriate initial guess for an inversion method also in the case
of molecular fluids. As a substantial part of this algorithm, the LM finds a successful
application to the liquid nitrogen and answers the Question I.

During the application of the LM in Chapter 3, we answered also the Question II
concerning the microscopic details, that is, molecular parameters. In the case where the
interaction potential is parameterized, singular value analysis reveals the weak parame-
ters, whose influence on the RDF is nearly negligible. Moreover, the condition number
measures the “badness” of the problem, such that we can raise or optimize the quality
of the solution by excluding the weak parameters from consideration. According to our
results in Chapter 4, we can even improve the applicability of such numerical analysis by
approximating the Lennard-Jones potential by the square-well potential.

5.2 Impact on the Coarse Graining

Let us look back on the particular inverse problem

y = F [x]

from Chapter 1, where
F : X

H−→ U
G−→ Y,

maps the parameters x ∈ X of a potential u ∈ U to the corresponding RDF y ∈ Y . Solving
of this problem is an essential part of the coarse graining and now, at the end of our work,
we recognize that it requires a much more complex description, including appropriate
functional spaces as well as simplified representatives of the maps between them. We
visualize the state of our development in Figure 5.1 and discuss its content in the following.

First, we pay attention to the three-dimensional character of the mentioned figure.
On the red axis, the spaces X, U and Y represent the parameters, potentials and RDFs,
respectively. We used these spaces throughout our work to model a simple fluid, which
is a coarser (mesoscopic) description, if compared to the modeling of a molecular fluid.
The latter contains atoms of many types, such that a fine (microscopic) description via
cartesian product X q is required, where a parameter vector from X , in contrast to X,
contains not only the properties of atoms, but also the bond parameters, like lengths and
angles. As a direct consequence, U q and Yq represent the variety of potentials and RDFs
on the microscopic scale, respectively. The two different scales are marked on the green
axis. The blue axis allows us to distinguish these (actually unknown) exact spaces from
the approximate sets, which are described rigorously. For instance, the set SY is defined
by properties (SY1)-(SY3), which yield an approximate model of the RDF by declaring
its core region, first peak and tail. Even though this set is embedded in the space Y , the
latter might take also the other peaks of the RDF into account. The same separation
in exact and approximate descriptions also takes place on the microscopic scale, such
that, for instance, the set SQX emerges with Q ≤ q. The case Q < q covers the eventual
reduction of the model, which has nothing to do with leaving the microscopic scale and
describes a molecule approximately by a selection of molecular parameters.
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Second, we discuss closer the connections between the different spaces, which are
sketched in Figure 5.2. We consider the familiar example with coarse graining of the
polystyrene in two dimensions, where the 11-atomic molecule C6H5 (with parameters
from X q) is replaced by one spherical atom (with parameters from X). We assume
that the bonds are rigid and the single atoms interact via the Lennard-Jones potential.
The resulting interaction potentials from U q and U reveal that in principle, we replace an
n-polygon by a sphere, what appears as a good approximation for the present case n = 6.
However, the corresponding center-of-mass RDFs from Yq and Y differ already in the
first peak. While the molecular RDF has a double peak due to polygonal geometry of the
molecule, the atomistic RDF can have only one peak due to pure Lennard-Jones inter-
actions. We motivate in our work that this discrepancy should not be ignored. Similar
to the simple fluid, whose interactions can be obtained via the two-atom RDF from SY ,
we compute the molecular interactions via the two-molecule RDF from SQY . The latter is
able to fit the double peak, and the corresponding potential from SQU reveals a penta- or
hexagonal geometry of the approximate molecule (with parameters from SQX ). In other
words, the two-molecule approximation (TMA) proposes to replace the six C-atoms by
a spherical atom, but keep the five H-atoms in order to save the polygonal geometry of
the molecule and remain on the microscopic scale. We see now that the two-atom ap-
proximation (TAA) suggests a more aggressive averaging of the interactions, such that
all but mesoscopic parameters of the original molecule are lost. Since the coarse grain-
ing benefits from reduced number of atoms and suffers from loss of microscopic details,
it remains to decide between efficient TAA (11 7→ 1 atom(s)) and precise TMA (11 7→ 7
atoms). At this place, we remind on the square-well approximation from Section 4.4.
Evindently, the above analysis is much easier to do for the square-well potential than for
the Lennard-Jones potential. For a bunch of eligible mapping schemes, we can quickly
determine how large the condition number is, how strong the single interaction param-
eters are, and choose the “best” mapping scheme. Further, we can use the square-well
approximation as a source of automatic initial guess or as a “real-time” guide during a
full-blooded analysis of the dependence of the RDF on molecular parameters.

Third, we use Figure 5.1 to explain how the inversion methods of our interest work.
Many actions in the figure are explicitly invertible:

(I) The mapping of the molecules to the mesoscopic atoms can be inverted by backmap-
ping – reinsertion of the molecules on the given atom positions, even though it is a
quite advanced procedure (see Section 1.3).

(II) Parameterization is usually bijective, such that the parameters of the given potential
can be easily obtained by fitting (see Section 4.2.2).

(III) The two-particle approximations (TAA and TMA) provide simple maps between
our models for RDFs and potentials, where the atomistic map is bijective (see
Section 4.2.1) and we can expect the same for the molecular one.

(IV) Truncation of the redundant peaks from the RDF leads to a subset embedded in a
space where the original RDF comes from (see Section 4.2.2).

(V) Reduction is per se not bijective, but a proper coupling of the molecular parameters
allows to reconstruct the original molecule from its size partially (see Section 4.3).

However, one cannot invert the simulation in a similar explicit way – no one generates a fi-
nal particle configuration from the given RDF and runs the molecular dynamics backwards
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Figure 5.1: A visualization of the relations between considered spaces.

to restore the initial configuration. The iteration function of the Iterative Boltzmann In-
version (IBI) suggests that the method restores the underlying potential from U by fitting
the given center-of-mass RDF from Y . In our terms, however, the IBI makes the following
detour

Y −→ [Y −→ SY −→ SU →֒ U −→] ,

where the brackets denote the loop. In the coarse graining, one assumes implicitly
that Y ⊆ Y , in other words, for each center-of-mass RDF, there is a potential, such that
the corresponding simple fluid has the same RDF. The other inclusion, Y ⊆ Y is evident,
such that one regards the two spaces as identical. The modified Levenberg-Marquardt
method avoids the scale transition arising through this identification and provides two
alternatives:

[Y −→ SY −→ SU −→ SX →֒ X −→ U −→]

for simple fluids and
[

Yq −→ SQY −→ SQU −→ SQX −→ X q −→ U q −→
]

for molecular fluids. One can still use the method for coarse graining by supplying the
first version with assumption Y = Y , what would lead to a novel, parameterized and
regularized version of the IBI

Y −→ [Y −→ SY −→ SU −→ SX →֒ X −→ U −→] .
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Another possibility is to consider the mesoscopic potential from U as an average of the
microscopic interactions described by potentials from U q. Then, provided a proper ave-
raging U q → U , one can derive an inversion method searching for microscopic poten-
tials/parameters, such that the corresponding molecular RDF and the atomistic RDF
corresponding to the averaged potential fit the given molecular RDF simultaneously. In
this fashion, the molecular parameters match the structure of the fluid on both micro-
scopic and mesoscopic scales. Moreover, one computes a mesoscopic (averaged) potential
together with the underlying geometry of the molecule, which differs from the original
molecule and can serve as a quality estimate and a further measure for loss of microscopic
details.

Finally, this work proposes a new kind of the structure-based coarse graining, that
puts accent on an accurate resembling of the microscopic structure by using only the
Lennard-Jones potentials. Indeed, our study of a tabulated potential shows how ill-posed
the inversion is already for the simple argon fluid. As a consequence, whole regions of the
potential have nearly no impact on the structure of the fluid. That is, even if we obtain
a sophisticated mesoscopic potential that resembles the given microscopic RDF, many
features of the potential, for instance, a second attractive well, might play a negligible
role in the transfer of the microscopic features to the mesoscopic scale. The accuracy
of the new approach lies in a refined structure of the mesoscopic particles, which are
now non-spherical molecules consisting of atoms with intuitively clear features – size σ
and attractiveness ε – parameters of the Lennard-Jones (or square-well) potential. The
price for this is a lower mapping ratio, as in the above example of polystyrene, where the
structure suggests to map eleven atoms to seven instead of one effective particle. This
causes a higher computational effort, but the advantage of a parameterized model for
effective interactions is evident.

5.3 Outlook

We finish this conclusion by discussing the limitations of our approach and by providing
a small outlook on promising ways to circumvent them. Particularly, the two-atom RDF,
which becomes to a fruit fly for our research, is only an approximation of the experi-
mentally measured RDF and resembles only a part of the first peak. An approximate
framework is certainly not wrong in a topic with physical background, but its capabilities
are limited, as we saw in the study of the liquid nitrogen. At this place, the three-atom
RDF opens a perspective for a more rigorous (numerical) analysis, because it is able to
model the whole first peak of the RDF. The effort due to growing number of atoms can be
cancelled out by considering the square-well interactions, whose singular values resemble
that of the Lennard-Jones potential.

A possible topic for future discussion is the usage of the finite differences

F [·+∆x]− F [·]
∆x

in the inversion method, where F computes the RDF or its atomistic/molecular approxi-
mation. The derivative of the two-atom RDF suggests that an ad hoc strategy for choice
of the variation ∆x can lead to a noisy approximation of DF , what impairs the conver-
gence behaviour of the method. Therefore, it makes sense to use the two-particle RDFs,
in order to find an optimal variation. Such search is a classical problem in the numerical
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Figure 5.2: A visualization of the elements from considered spaces.

differentiation, and the theory of inverse problems provides some fundamental solution
approaches based on regularization [EHN-1996].

Another open problem is a further specification of the set SY ⊆ Y of molecular RDFs, as
it was derived for the atomistic RDFs. On the one hand, the two-particle approximations
confirm that the properties of the RDFs from SY ⊆ Y are meaningful and general enough
for inclusion SY ⊆ SY . On the other hand, we saw that our inversion method using the
two-molecule approximation cannot distinguish between simple and molecular fluid, what
leads to a loss of microscopic information (the bond length in the nitrogen molecule).
In the end, it is because of the Lebesque-norm on Y , which is not able to recognize the
shoulder in the first peak of the molecular RDF. However, we believe that the poor norm
arises from the poor description of molecular RDFs by assuming SY = SY . In order to
derive further properties of the RDF, we can study the composition of the coordination
shells, because they directly affect the specific shape of the peaks in a molecular RDF.
Since the underlying physics is quite general, we can analyze simple or molecular Lennard-
Jones fluids in two, three and four dimensions. We emphasize that the question here is
not, whether the Lennard-Jones potential is a correct potential in other dimensions, but
what the map G : U → Y does with the potential to compute the RDF, in dependence
of the dimension. The Monte Carlo method allows us to simulate easily molecules with
rigid bonds, such that we can focus on the link between the molecular geometry and
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the coordination shells. This approach may appear as troublesome, but, considering the
redundancy in the RDF, a good description of the first coordination shell should suffice.
Further, due to the good correspondence between a dense liquid and a solid, there is
not much puzzling possible, because the next-neighbour-molecules cannot be too far from
their positions on the crystal lattice.

In order to circumvent the direct analysis of the space Y , we can also take an established
mathematical path. Namely, we had a similar problem with modeling the interactions via
discretized potential in Chapter 3 and saw that a suitable parameterization H : X → U of
the potential renders the problem well-posed. Therefore, instead of looking for a sophis-
ticated definition/norm for RDFs, we can consider first a parameterization I : Z → Y ,
where dim(Z) < ∞. For instance, we could follow the idea from [MGM-2005], where
the distributions of the bond length and angles in a polymer are represented as a linear
combination of Gaussian distributions. The adaptation for our case would be to consider
a parameterization of the potential of mean force. It is interesting that the latter can be
obtained from the molecular RDF with help of the two-atom approximation and is there-
fore a potential from U . Evidently, we could not exhaust the properties of the two-particle
approximations in every sense, such that room for future work is available.
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Radial Distribution Function

In this appendix, we give a comprehensive introduction to the concept of the radial
distribution function. This function has the ability to describe the structure of the given
system of particles and can be derived from the dynamic equations of the system. However,
the physical behaviour of the particles as well as the mathematical formulation of the
equations depend strongly on the system size. While the system can be considered as
infinitely large in theoretical discussions, we can simulate only few thousands of particles in
practice. Therefore, we consider the theory for these two cases as a preliminary knowledge
and provide a short overview before we start with the subject.

A.1 Introduction to Statistical Physics

For the sake of simplicity, we do not consider any quantum effects, such that we can
start with the classical mechanics, as it can be found, for instance, in [LAL-1970]. In
the mechanics, we discuss the motion (time evolution) of physical bodies. A body, whose
shape (color, size, orientation) may be neglected in the given problem setting, is called a
particle. We consider a system of N ∈ N identical particles with mass M ∈ (0,∞). Let

R :≡ (R1, . . . , RN)
T , P :≡ (P1, . . . , PN)

T : [0,∞)→ RdN , 1 ≤ I ≤ N,

describe the time-dependent coordinates and momenta of the particles, respectively. In
the Hamilton formalism, we assume that the total energy of the system can be expressed
as the Hamiltonian – a function

H : RdN ×RdN → R

of the instantaneous particle coordinates R := (~R1, . . . , ~RN)
T and momenta

P := (~P1, . . . , ~PN)
T , which does not depend on time explicitly. The time evolution of the

system is then given by the Hamilton equations

Ṙ(t) =
∂H(R(t), P )

∂P

∣
∣
∣
∣
P=P (t)

,

Ṗ (t) = − ∂H(R,P (t))

∂R

∣
∣
∣
∣
R=R(t)

. (A.1)

In principle, provided an initial state (R(0), P (0))T ∈ R2dN of the system, we can deter-
mine the trajectory ((R(t), P (t))T )t≥0 ⊂ R2dN of the system. The Hamilton equations
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imply a conservation law – the total time derivative vanishes,

Ḣ(R(t), P (t)) =
∂H(R,P (t))

∂R

∣
∣
∣
∣
R=R(t)

Ṙ(t) +
∂H(R(t), P )

∂P

∣
∣
∣
∣
P=P (t)

Ṗ (t) = 0, (A.2)

that is, the total energy of the system remains constant (conserved) during the motion of
constituent particles.

In the most popular special case, the total energy can be separated, with respect to
coordinates and momenta, in the sum

H(R,P ) = Ekin(P ) + Epot(R) (A.3)

of the kinetic energy

Ekin(P ) :=
1

2M
|P |2 (A.4)

and the potential energy Epot(R). Then, the Hamilton equations imply that coordinates
and momenta are coupled via

MṘ(t)
(A.1)
= M

∂H(R(t), P )

∂P

∣
∣
∣
∣
P=P (t)

(A.3)
= M

∂Ekin(P )

∂P

∣
∣
∣
∣
P=P (t)

(A.4)
= P (t). (A.5)

Further,

MR̈(t)
(A.5)
= Ṗ (t)

(A.1)
= − ∂H(R,P (t))

∂R

∣
∣
∣
∣
R=R(t)

(A.3)
= −∇Epot(R(t))

yields the Newton equations

MR̈(t) = F (R(t)), (A.6)

where the function
F (R) := −∇Epot(R) (A.7)

describes forces acting on the particles due to their coordinates. Now the trajectory can
be determined from the initial state (R(0), Ṙ(0))T ∈ R2dN .

In the statistical mechanics, we consider the evolution of very large systems where the
number N of particles reaches realistic, proportional to the Avogadro number, values of
order 1023. The number of the corresponding Hamilton equations becomes overwhelming,
but such a system still obeys the laws of mechanics. This allows us to derive a suitable
evolution equation for the distribution of the particles, as it was done in [Español-2004].
Let us denote the trajectory of the system withX(t) := (R(t), P (t))T and an instantaneous
state with X := (R,P )T . Then, we can summarize the Hamilton equations to

Ẋ(t) = L · ∇H(X(t)), (A.8)
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where

L :=

(
0 1

−1 0

)

.

If we know the initial state X(0), then formally,

X(t) =: ΓtX(0)

defines the time evolution operator Γt with natural properties

Γ0 ≡ 1, ΓtΓs ≡ Γt+s, ∀t, s,

and a kind of volume-conserving property,

| det(Γt)| = 1, ∀t. (A.9)

In a large system, we consider the evolution of the time-dependent probability density
P : R2dN×[0,∞)→ R of states. Instead of an initial state, we know a certain distribution
of the initial state, given by the probability density P init : R2dN → R, such that

P(X, 0) = P init(X)

holds for all states X in an arbitrary set Ω ⊂ R2dN with |Ω| > 0. Since the evolution is
deterministic, the probabilities

P [X(0) ∈ Ω] = P [X(t) ∈ ΓtΩ]

are equal and we can write this equality in terms of the probability density,
∫

Ω

P(X, 0)dX =

∫

ΓtΩ

P(X, t)dX.

Then, using the Jacobi transformation formula and (A.9), we obtain
∫

Ω

P(X, 0)dX =

∫

Ω

P(ΓtX, t)dX.

Since Ω was arbitrary, the equality holds also for the integrands, especially for X = X(0),
what yields the Liouville theorem

P(X(0), 0) = P(X(t), t), (A.10)

that is, the probability density remains constant along the trajectory. The total time
derivative

0 =
dP(X(t), t)

dt

=
∂P(X(t), t)

∂t
+
∂P(X, t)
∂X

∣
∣
∣
∣
X=X(t)

· Ẋ(t)

=
∂P(X(t), t)

∂t
+
∂P(X, t)
∂X

∣
∣
∣
∣
X=X(t)

· L · ∇H(X(t))

D=∇T

=
∂P(X(t), t)

∂t
+DH(X(t)) · LT · ∇P(X(t), t)

=
∂P(X(t), t)

∂t
−DH(X(t)) · L · ∇P(X(t), t)
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leads to the Liouville equation

∂P(X, t)
∂t

= −LP(X, t), (A.11)

where

L :≡ −DH · L · ∇ (A.12)

is the Liouville operator.
Now we let the time go to infinity in order to see the state into which our large system

evolves. Considering the complexity of the interactions in such a system, we can assume
that the evolution is unstable/chaotic. That is, the system visits all possible states, such
that any initial state/distribution appears meaningless. We say that after sufficiently
long relaxation time, the system reaches the equilibrium – there is the stationary (or
equilibrium) probability density

Peq(X) := lim
t→∞
P(X, t), ∀X ∈ R2dN . (A.13)

For any observable A = A(X), we can consider its time average

A := lim
Θ→∞

1

Θ

∫ Θ

0

A(X(t))dt (A.14)

or its ensemble average

〈A〉 :=
∫

A(X)Peq(X)dX. (A.15)

In practice, we often assume the Ergodic hypothesis,

〈A〉 = A. (A.16)

For instance, we shall need it in Appendix B dedicated to computer simulation.
The above formulation mirrors the fact that we actually consider not one system cor-

responding to a certain initial state, but a whole family (ensemble) of systems completely
determined by a small set of dynamical invariants. The latter are the components of the
vector-valued function J = J(X) with the total time derivative

J̇(X(t)) = 0. (A.17)

In other words, we assume that there is a function f with

Peq(X) = f(J(X)) (A.18)

and derive it in the following. Clearly, for any given value J̃ of J at equilibrium, there is
a set

Ωeq(J̃) := {X|J(X) = J̃}
of compatible states with the volume

Qeq(J̃) := |Ωeq(J̃)|.

118



A.1. INTRODUCTION TO STATISTICAL PHYSICS

Therefore, we can write the distribution f eq = f eq(J̃) of all possible values of the dy-
namical invariants at equilibrium in terms of the equilibrium probability density, that
is,

f eq(J̃) =

∫

Peq(X)δ(J(X)− J̃)dX
(A.18)
=

∫

f(J(X))δ(J(X)− J̃)dX

Dirac-δ
=

∫

f(J̃)δ(J(X)− J̃)dX

= f(J̃)Qeq(J̃).

Inserting this into (A.18), we obtain the probability density

Peq(X) =
1

Qeq(J(X))
f eq(J(X)) (A.19)

governed exclusively by the dynamical invariants.
For instance, the Hamiltonian H is a dynamical invariant due to (A.2), and we can

define an ensemble of closed systems of N particles in a container of volume V with
energy E = H(X(0)), which is called the microcanonical ensemble. At equilibrium, the
distribution f eq of the energy E is time-independent and must be consistent with the
given initial value, that is,

f eq(E) = δ(H(X)− E).
Using (A.19), we can derive the microcanonical probability density

Pmc(X) =
1

Qmc(E)
δ(H(X)−E), (A.20)

where the volume
Qmc(E) :=

∫

δ(H(X)− E)dX (A.21)

is called the microcanonical partition function.
There are also other ensembles and we can derive them from the microcanonical en-

semble. Following [LL-1980], we split a large closed system in two subsystems, such that
they can exchange the energy. We let one system, described by tuple (N, V, E), be signifi-
cantly smaller than the other one, descibed by tuple (N∞, V∞, E∞). The larger system is
called the heat bath – it will determine the evolution of the smaller subsystem by giving
energy, if the system is ′′colder′′, and by taking energy, if the system is ′′warmer′′. The
temperature is given by

T :=
1

∂S(E)
∂E

, (A.22)

where
S(E) := kB ln(Qmc(E)) (A.23)

is the entropy and kB is the Boltzmann constant. If the exchange of energy stops, that
is, if

T = T∞,

the subsystems are in the thermal equilibrium with each other. Clearly, the heat bath
plays the decisive role in the value of the equilibrium temperature, therefore it is also called
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the thermostat. The ensemble governed by invariants (N, V, T ) is called the canonical
ensemble. The canonical probability density and partition function are

Pc(X) =
1

(2π~)dNN !Qc
exp(−βH(X)), (A.24)

Qc :=
1

(2π~)dNN !

∫

exp(−βH(X))dX, (A.25)

respectively, where

β :=
1

kBT
(A.26)

is called the inverse temperature.
The function Pc is often separated into the distribution of the particle coordinates and

momenta. The first part of the distribution,

Pc(R) =

∫

Pc(R,P )dP

=

∫
exp(−βH(R,P ))dP

∫
exp(−βH(R,P ))dRdP

=

∫
exp(−βEkin(P ))dP

∫
exp(−βEkin(P ))dP

· exp(−βEpot(R))
∫
exp(−βEpot(R))dR

=
1

Zc
exp(−βEpot(R)), (A.27)

plays an important role in the theory of equilibrium fluids and will be considered later in
this appendix. The normalization integral over the coordinates (configurations)

Zc :=

∫

exp(−βEpot(R))dR (A.28)

is called the configuration integral and can only be obtained in simplified circumstances.
The second part of the distribution concerning the momenta,

Pc(P ) =

∫

Pc(R,P )dR

=

∫
exp(−βH(R,P ))dR

∫
exp(−βH(R,P ))dRdP

=

∫
exp(−βEpot(R))dR

∫
exp(−βEpot(R))dR

· exp(−βEkin(P ))
∫
exp(−βEkin(P ))dP

=
1

∫
exp(−βEkin(P ))dP

exp(−βEkin(P )). (A.29)

is the Maxwell-Boltzmann velocity distribution. Its normalization integral can be obtained
explicitly

∫

exp(−βEkin(P ))dP =

(∫ ∞

−∞
exp

(

−βp
2

2M

)

dp

)dN

=

(√

2M

β

∫ ∞

−∞
exp

(
−q2

)
dq

)dN

=

(
2πM

β

)dN/2

=

(
2π~

Λ

)dN

, (A.30)
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where

Λ :=

√

2πβ~2

M
(A.31)

is the de Broglie thermal wavelength and ~ is the Planck constant.
We emphasize that different ensembles are just different descriptions of systems in the

equilibrium. For example, in the thermal equilibrium, the total energy is conserved (no
exchange) and the microcanonical ensemble can be used to describe the subsystems. We
defined the temperature by considering the special splitting of a large closed system, but
it is also defined for all other ensembles. Additionally, we can consider the exchange of
volume and particles between subsystems, in order to define the pressure

P := −∂E(V )

∂V
(A.32)

and the chemical potential

µ :=
∂E(N)

∂N
. (A.33)

The ensemble governed by invariants (µ, V, T ) is called the grand canonical ensemble.
One can show that the probability density of dynamical states in the grand canonical
ensemble is

Pgc(X ;N) =
1

(2π~)dNN !Qgc
exp(−β(H(X)− µN)), (A.34)

where

Qgc :=

∞∑

N=0

eβµN

(2π~)dNN !

∫

exp(−βH(X))dX (A.35)

is the grand canonical partition function. It is convenient to introduce the activity

a :=
eβµ

Λd
, (A.36)

and use the (intuitively clear) relation to the canonical probability density,

Pgc(X; Ñ) = P
[

N = Ñ
]

· Pc(X)|N=Ñ , (A.37)

where

P
[

N = Ñ
]

=

∫

Pgc(X; Ñ)dX

=
1

(2π~)dÑÑ !Qgc

∫

exp(−β(H(X)− µÑ))dX

=
eβµÑ

(2π~)dÑÑ !Qgc

∫

exp(−βH(X))|N=Ñ dX

=
eβµÑ

(2π~)dÑÑ !Qgc

(
2π~

Λ

)dÑ

Zc|N=Ñ

=
aÑ

Ñ !Qgc
Zc|N=Ñ (A.38)

121



APPENDIX A. RADIAL DISTRIBUTION FUNCTION

is the probability that the system contains precisely Ñ particles. A similar relation can
be derived for the partition functions,

Qgc =

∞∑

N=0

aN

N !
Zc. (A.39)

In the statistical thermodynamics, we leave the probability densities and describe dif-
ferent ensembles exclusively through the dynamical invariants, which are called in the
new context the thermodynamic quantities. It is usual to separate the quantities in the
extensive (additive), like

N = N1 +N2,

V = V1 + V2,

E = E1 + E2,

S = S1 + S2,

and intensive (non-additive), like

T = T1 = T2,

P = P1 = P2,

µ = µ1 = µ2.

Further, the extensive quantities N, V, S are seen as conjugated to the intensive quantities
µ, P, T , respectively. The corner stones of the thermodynamics are the thermodynamic
potentials – functions, which allow to derive the quantities from their conjugated coun-
terparts. For instance,

F := E − TS = −kBT lnQc, (A.40)

Φ := F − µN = −PV = −kBT lnQgc (A.41)

are the thermodynamic potentials of the canonical and grand canonical ensembles, respec-
tively. Conveniently, the entropy S(E) can be also seen as the thermodynamic potential
of the microcanonical ensemble (see (A.23)), but often, the energy E(S) is preferred. Any
thermodynamic quantity can be obtained from the total differentials

dE = TdS − PdV + µdN, (A.42)

dF = −SdT − PdV + µdN, (A.43)

dΦ = −SdT − PdV −Ndµ. (A.44)

Equation (A.42) is often referred to as the first law of thermodynamics. One of the most
important tasks of thermodynamics is to find the equation of state for the given system,
that is, an equation of the form

f(T, P, ρ) = 0,

coupling the temperature T , pressure P and the (number) density

ρ :=
N

V
. (A.45)
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Example “Ideal Gas”:
Ideal gas is the system of particles without interactions, that is, where the potential
energy Epot ≡ 0 and from the mechanical point of view, only the momenta of particles
can be considered. From the thermodynamic viewpoint, due to missing interactions, many
integrals become trivially obtainable, for instance,

Zc = V N ,

Qc =
V N

ΛdNN !
,

Qgc =
∞∑

N=0

aN

N !
V N = eaV ,

F = −kBT ln

(
V N

ΛdNN !

)

Stirling≈ −kBT (N lnV − dN ln Λ−N lnN +N),

Φ = −kBT ln eaV = −kBTaV.

Then, the first law of thermodynamics yields the equation of state for the ideal gas,

P
(A.43)
= − ∂F

∂V

∣
∣
∣
∣
N,T≡const

= ρkBT. (A.46)

Even more, we have

P
(A.41)
= − 1

V
Φ = akBT

and by comparing to (A.46), we state that the ideal gas activity a = ρ. ✸

We can see in the above example that, disregarding the different abstraction levels,
the classical dynamics and the statistical thermodynamics do not loose the link to each
other. Using this link, one can show a more exact equation of state,

P = ρkBT −
1

V d

〈
N∑

I=1

~RI · ~∇IE
pot(R)

〉

, (A.47)

known as the virial equation. Setting Epot ≡ 0, we see that it is consistent with our
example.

A.2 Definition of the RDF for a Simple Fluid

Now, when we understand the dynamics of a large system towards the equilibrium state,
we can start with the subject of this appendix. We want to describe the structure of
liquids and gases, which are systems of many moving particles. Liquid, gas and solid are
the three classical states of matter (phases). Liquid and gas are also called fluid for their
ability to flow and take the shape of a container. However, while a gas tries to fill the
whole container at cost of the density, a liquid keeps its density nearly constant. The
densities of both a liquid and a solid are of the same order and much higher than in a
gas. Since the particles of a solid do not move almost (|Ekin| ≪ |Epot|), we consider only
fluid phase in the following. For the sake of simplicity, we restrict our consideration to
the simple fluids, where the particles are spherical.
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Following [HM-2006], we model a simple fluid as a large system of N ∈ N identical
particles with mass M ∈ (0,∞) and the Hamiltonian of the form (A.3), so that we can
forget their momenta and just work with their coordinates R ∈ RdN and the potential
energy. The latter is nothing else than N -body interaction potential, thus we approximate
it via the sum

Epot(R) :=
1

2

N∑

I=1

N∑

J 6=I
U (2)(~RI , ~RJ) (A.48)

of the pair interactions given by potentials U (2) : Rd × Rd → R. In the following, we
assume that the interaction potential is translationally invariant, that is,

U (2)( ~X, ~Y ) = U (2)( ~X + ~Z, ~Y + ~Z), ∀~Z ∈ Rd, (A.49)

and rotationally invariant, that is,

U (2)( ~X, ~Y ) = U (2)(A ~X,A~Y ), ∀A ∈ SO(d). (A.50)

In this case, we obtain

U (2)( ~X, ~Y )
(A.49)
= U (2)(0, ~Y − ~X)

(A.50)
= U (2)(0, |~Y − ~X|~e1),

that is, via
U(r) := U (2)(0, r~e1), (A.51)

we define a radial potential U : (0,∞)→ R with

U (2)( ~X, ~Y ) = U(| ~X − ~Y |), ∀ ~X, ~Y ∈ Rd.

The physics has a collection of common interaction potentials, but not all of them are
proper for modeling of the liquid state. Such potential U must at least reflect the Pauli
exclusion principle, that is,

lim
r→0

U(r) =∞,

and vanish, if two particles are too far from each other, that is,

lim
r→∞

U(r) = 0.

For example, the hard-sphere potential

UHS(r) :=

{
∞, 0 < r < σ,
0, σ ≤ r,

(A.52)

is often used for fluid phase simulations. The parameter σ > 0 represents the size of the
particles, such that two particles cannot be closer than their sizes allow. However, fluid is
quite not a liquid, until the potential has an attractive part keeping the particles together
and forming a stable liquid phase. In contrast, the square-well potential

USW(r) :=







∞, 0 < r < σ,
−ε, σ ≤ r < γσ,
0, γσ ≤ r,

(A.53)
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Figure A.1: A radial distribution function of liquid argon, obtained in a neutron scattering
experiment [YKWK-1973].

has an attractive well with depth ε > 0 and width σ(γ − 1) > 0. Another appropriate
choice for liquid simulations is the hard-core Yukawa potential

UY(r) :=

{
∞, 0 < r < σ,

−εσ
r
exp

(
−λ
(
r
σ
− 1
))
, σ ≤ r,

(A.54)

with λ > 0. Due to quantum-mechanical reasons, the leading term in the series expansion
of the attractive interaction between neutral particles is of order O(r−6) for large r, what
suggests the Buckingham potential

UB(r) := Ae−Br − C

r6
(A.55)

and the famous Lennard-Jones potential

ULJ(r) := 4ε

((σ

r

)12

−
(σ

r

)6
)

. (A.56)

We notice that all potentials are piecewise smooth, real-valued functions on (0,∞) with
negative, but finite minimal values.

Even though the interaction potential allows us to derive the equations of motion for the
particles, we are not interested in the exact dynamics and rather look at the system from
the statistical viewpoint. We assume the fluid to be at equilibrium, where the dynamical
states obey a certain probability density Peq. Similar to the interaction potential, which
specifies the energy for the given particle coordinates and takes a radially symmetric form
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in our model, the distribution can posess some symmetries, which allow us to reduce the
distribution to a function, which is translationally and rotationally invariant. The latter
is called the radial distribution function (RDF). This function describes the distribution
of the distance between pairs of particles and can be determined experimentally for a
concrete matter by neutron or x-ray scattering (see Figure A.1).

In order to give an explicit definition of the RDF, we have to choose one of the ensembles
from the framework of statistical mechanics. Therefore, the “definitions” may be also read
as derivations. We present the definition of the RDF in the grand canonical ensemble (or
µV T -ensemble, after governing invariants), where

I) the chemical potential µ is constant,

II) the fluid is contained in a region Ω ⊆ Rd of constant volume V , e.g.

{~RI}1≤I≤N ⊂ Ω :=

[

−L
2
,
L

2

]d

, V = Ld, L > 0,

III) the temperature T is constant,

and in the canonical ensemble (or NV T -ensemble), where

I) the particle number N is constant

and the properties II) and III) are inherited from the grand canonical ensemble. Clearly,
different ensembles provide different models (expressions), but in the thermodynamic
limit, that is, when N → ∞ and V → ∞ with the constant density ρ, the two descrip-
tions become identical and agree with experimental data. We note that V → ∞ leads
to L → ∞ and Ω → Rd, that is, Ω becomes translationally and rotationally invariant.
However, the infinity is unreachable in practice, so that the experimental RDF is given on
a finite interval – we can see this in Figure A.1, where the interparticle distances hardly
reach 30 [Å]. Thus, in our theoretical considerations, we often work with finite N and V ,
mostly assuming them large enough and occasionally infinite. Further, we shall switch be-
tween the ensembles in order to use their specific advantages. For these reasons, we prove
the following theorems not in the mathematically rigorous manner, but in the framework
of the convenient calculus that is often used in the physical literature for argumentation.

The simplest derivation of the RDF can be made in the canonical ensemble. From
the statistical mechanics, we know the equilibrium probability density Pc as a function of
particle coordinates R ∈ RdN . The function contains redundant information – since the
particles of considered fluid are identical, we can interchange any I-th particle and any
J-th particle, that is,

Pc(~R1, . . . , ~RI , . . . , ~RJ , . . . , ~RN) = Pc(~R1, . . . , ~RJ , . . . , ~RI , . . . , ~RN ). (A.57)

Further, we are not always interested in all details of the distribution, therefore we de-
fine simplified probability densities, where the unnecessary information is removed by
integration. For each 1 ≤ n ≤ N , the (reduced) n-particle density is

ρ(n)(~R1, . . . , ~Rn) :=
N !

(N − n)!

∫

Pc(R)d~Rn+1 . . . d ~RN (A.58)

and the n-particle distribution function is

g(n)(~R1, . . . , ~Rn) :=
ρ(n)(~R1, . . . , ~Rn)

ρ(1)(~R1) . . . ρ(1)(~Rn)
. (A.59)
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The following results deal with the properties of the reduced distributions, which describe
the properties of the fluid. In this regard, we remind on our assumption that the inter-
action potential U as well as the region Ω are translationally and rotationally invariant.
However, it can still happen that under these symmetric conditions, the symmetry brea-
king takes place, that is, configurations of the particles and related properties of the fluid
are not symmetric. For instance, at the liquid-solid phase transition, the particles of the
system form a lattice, which preserves partially the translational symmetry, while the
rotational symmetry is completely out. Therefore, we assume in the following that no
such phenomenon occurs.

Theorem P1:
The n-particle density is translationally and rotationally invariant.
Proof: Any rotation and any translation in Rd can be described as the transformation

Φ : Rd → Rd,
~X 7→ A ~X + ~Z (A.60)

with A ∈ SO(d) and ~Z ∈ Rd. Then,

Epot(Φ(~R1), . . . ,Φ(~RN))
(A.48)
=

1

2

N∑

i=1

N∑

j 6=i
U(|Φ(~Ri)− Φ(~Rj)|)

(A.60)
=

1

2

N∑

i=1

N∑

j 6=i
U(|A~Ri + ~Z −A~Rj − ~Z|)

A∈SO(d)
=

1

2

N∑

i=1

N∑

j 6=i
U(|~Ri − ~Rj |)

(A.48)
= Epot(R), (A.61)

that is, the potential energy is translationally and rotationally invariant. Similarly,

ρ(n)(~R1, . . . , ~Rn)
(A.58)
=

1

Zc

N !

(N − n)!

∫

exp
(
−βEpot(R)

)
d~Rn+1 . . . d ~RN

(A.61)
=

1

Zc

N !

(N − n)!

∫

exp
(

−βEpot(Φ(~R1), . . . ,Φ(~RN ))
)

d~Rn+1 . . . d ~RN

Substitution(s):
~Si := Φ(~Ri),

d~Si = d~Ri, n+ 1 ≤ i ≤ N

JTF
=

1

Zc

N !

(N − n)!
·
∫

exp
(

−βEpot(Φ(~R1), . . . ,Φ(~Rn), ~Sn+1, . . . , ~SN)
)

·d~Sn+1 . . . d~SN
(A.58)
= ρ(n)(Φ(~R1), . . . ,Φ(~Rn)). ✷
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Corollary:
For all ~R ∈ Rd, we have

ρ(1)(~R) =
N

V
= ρ, (A.62)

that is, the one-particle density is just the density of the fluid.
Proof:

ρ(1)(~R)
P1
= ρ(1)(0)

=
1

V

∫

Ω

ρ(1)(0)d~R1

P1
=

1

V

∫

Ω

ρ(1)(~R1)d~R1

(A.58)
=

1

V

∫

Ω

(

N

∫

Pc(R)d~R2 . . . d ~RN

)

d~R1

(A.27)
=

N

V
= ρ. ✷

Theorem P2:
ρ(n) is a function of n(n−1)

2
scalar arguments.

Proof: Per definition, ρ(n) is a function of n vectors ~R1, . . . , ~Rn, where the latter can be
freely rotated and shifted in space, without changing the value of the function (according
to Theorem P1). We take these n vectors as vertices of an (n−1)-simplex. This geometric
figure is fully determined by the lengths of its edges |~RJ− ~RI |, 1 ≤ I ≤ n, I+1 ≤ J ≤ n.
✷

According to Theorem P1, we have

ρ(2)(~R1, ~R2) = ρ(2)(0, |~R1 − ~R2|~e(1)), ∀~R1, ~R2 ∈ Rd. (A.63)

Further, Theorem P2 implies directly that the pair distribution function

g(2)
(A.62)≡ 1

ρ2
ρ(2)

depends on only one scalar argument. In other words, there is the radial distribution
function (RDF) g : (0,∞)→ R with

g(2)(~R1, ~R2) = g(|~R1 − ~R2|), ∀~R1, ~R2 ∈ Rd.

Respective (A.63), the RDF is given by

g(r) := g(2)(0, r~e(1)). (A.64)

We caution that this definition only makes sense under the above assumption of symmetry.
The definition of the RDF in the grand canonical ensemble can be obtained in the

similar way. While in the canonical ensemble, the number of particles is an implicit
parameter of all distributions and quantities, in the grand canonical ensemble, where the
chemical potential µ and not N is constant, the number of particles is an explicit variable
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of the distribution. Relation (A.37) between the two ensembles suggests to define the
(reduced) n-particle density for each 1 ≤ n ≤ N via

ρgc,(n)(~R1, . . . , ~Rn) :=

∞∑

Ñ=n

P
[

N = Ñ
]

· ρ(n)(~R1, . . . , ~Rn)
∣
∣
∣
N=Ñ

. (A.65)

Then, we can adopt the expressions (A.59) for the n-particle distribution function and
(A.64) for the RDF.

Example “Ideal Gas”:
Since the potential energy Epot ≡ 0, we obtain

Zc =

∫

exp(−βEpot(R))dR = V N ,

P c(R) =
1

Zc
exp(−βEpot(R)) =

1

V N
,

ρ(2)(~R1, ~R1) = N(N − 1)

∫

P c(R)d~R3 . . . d ~RN

=
N(N − 1)V N−2

V N
=
N(N − 1)

V 2
,

g(r) =
1

ρ2
ρ(2)(0, r~e(1)) = 1− 1

N
.

that is, in the thermodynamic limit,

g(r) = 1 (A.66)

for the ideal gas. ✸

A.3 General Properties of the RDF

The two ensembles provide us a powerful calculus, which can be applied to derive some
general properties of the RDF. Due to equivalence of the two descriptions, we can switch
between the ensembles, in order to use their specific advantages for the particular deriva-
tion.

Theorem P3:
We can write the pair distribution function g(2) and the RDF in terms of ensemble averages
of Dirac δ-functions,

g(2)( ~X, ~Y ) =
1

ρ2

N∑

I=1

N∑

J 6=I

〈

δ( ~X − ~RI)δ(~Y − ~RJ)

〉

, (A.67)

g(r) =
V

N2

N∑

I=1

N∑

J 6=I

〈

δ(r~e(1) − ~RJ + ~RI)

〉

. (A.68)

129



APPENDIX A. RADIAL DISTRIBUTION FUNCTION

Proof:

g(2)( ~X, ~Y )
(A.59)
=

ρ(2)( ~X, ~Y )

ρ(1)( ~X)ρ(1)(~Y )

(A.62)
=

1

ρ2
ρ(2)( ~X, ~Y )

(A.58)
=

1

ρ2
N(N − 1)

∫

Pc( ~X, ~Y , ~R3, . . . , ~RN)d~R3 . . . d ~RN

Dirac-δ
=

1

ρ2
N(N − 1)

∫

δ( ~X − ~R1)δ(~Y − ~R2)Pc(R)dR

(A.57)
=

1

ρ2

N∑

I=1

N∑

J 6=I

∫

δ( ~X − ~RI)δ(~Y − ~RJ)Pc(R)dR

(A.15)
=

1

ρ2

N∑

I=1

N∑

J 6=I

〈

δ( ~X − ~RI)δ(~Y − ~RJ)

〉

,

g(r)
(A.64)
= g(2)(0, r~e(1))

P1
=

1

V

∫

g(2)( ~W, r~e(1) + ~W )d ~W

(A.67)
=

1

V

∫
1

ρ2

N∑

I=1

N∑

J 6=I

〈

δ( ~W − ~RI)δ(r~e
(1) + ~W − ~RJ)

〉

d ~W

Dirac-δ
=

V

N2

N∑

I=1

N∑

J 6=I

〈

δ(r~e(1) − ~RJ + ~RI)

〉

. ✷

The above theorem shows that g(r) tests for each particle pair, if they are at distance r
in average. Further, the next theorem reveals that the RDF also counts the particles dur-
ing testing.

Theorem P4:

ρ

∫

g(r)|∂B(r)|dr = N − 1.

Proof:
∫

g(r)|∂B(r)|dr =
N(N − 1)

ρ2

∫

Pc(0, r~e1, ~R3, . . . , ~RN)|∂B(r)|drd~R3 . . . d ~RN

JTF
=

N(N − 1)

ρ2

∫

Pc(0, ~R2, . . . , ~RN)d~R2 . . . d ~RN

JTF
=

N(N − 1)

V ρ2

∫

Pc(~R1, . . . , ~RN)d~R1 . . . d ~RN

(A.27)
=

N − 1

ρ
. ✷

Further, we can obtain the pressure P and the potential energy Epot from the given
RDF.
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Theorem P5:

P = ρkBT −
ρ2

2d

∫ ∞

0

DU(r)g(r)|∂B(r)|rdr, (A.69)

〈
Epot

〉
=

N2

2V

∫ ∞

0

U(r)g(r)|∂B(r)|dr. (A.70)

Proof: We use the virial equation to write the pressure P in the form

P
(A.47)
= ρkBT −

1

V d

〈

1

2

N∑

I=1

N∑

J 6=I
DU(|~RIJ |)|~RIJ |

〉

(A.15)
= ρkBT −

1

2V d

N∑

I=1

N∑

J 6=I

∫

DU(|~RIJ |)|~RIJ |Pc(R)dR

(A.57)
= ρkBT −

N(N − 1)

2V d

∫

DU(|~R21|)|~R21|Pc(R)dR

(A.59)
= ρkBT −

N(N − 1)

2V d

ρ2

N(N − 1)

∫

DU(|~R21|)|~R21|g(2)(~R1, ~R2)d~R1d~R2

P1
= ρkBT −

ρ2

2V d

∫

DU(|~R21|)|~R21|g(2)(0, |~R21|~e1)d~R1d~R2

JTF
= ρkBT −

ρ2

2d

∫

DU(|~R|)|~R|g(2)(0, |~R|~e1)d~R

JTF
= ρkBT −

ρ2

2d

∫ ∞

0

DU(r)g(r)|∂B(r)|rdr.

Similarly, we obtain

〈
Epot

〉 (A.48)
=

〈

1

2

N∑

I=1

N∑

J 6=I
U(|~RIJ |)

〉

(A.15)
=

1

2

N∑

I=1

N∑

J 6=I

∫

U(|~RIJ |)Pc(R)dR

(A.57)
=

N(N − 1)

2

∫

U(|~R21|)Pc(R)dR

=
N(N − 1)

2

∫

U(|~R21|)
(∫

Pc(R)d~R3 . . . d ~RN

)

d~R1d~R2

(A.59)
=

N(N − 1)

2

ρ2

N(N − 1)

∫

U(|~R21|)g(2)(~R1, ~R2)d~R1d~R2

P1
=

ρ2

2

∫

U(|~R21|)g(2)(0, |~R21|~e1)d~R1d~R2

JTF
=

ρ2V

2

∫

U(|~R|)g(2)(0, |~R|~e1)d~R

JTF
=

N2

2V

∫ ∞

0

U(r)g(r)|∂B(r)|dr. ✷

In a similar way, we can derive another important relation between the RDF and the
underlying interaction potential.
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Theorem P6:
The RDF can be written as a rescaled ensemble average of the function

S(r;R) :=
1

2

N∑

I=1

N∑

J 6=I
δ(r − |~RIJ |),

more precisely,

〈S(r;R)〉 = 2πr2N2

V
g(r).

The advantage of this respresentation is that we can determine the functional derivative
of the latter average with respect to the potential U , that is,

∂〈S(r;R)〉
∂U(s)

= −β(〈S(r;R)S(s;R)〉 − 〈S(r;R)〉〈S(s;R)〉). (A.71)

Proof: Evidently, the function S(r;R) is nothing else than the instantaneous system
configuration in terms of Dirac δ-functions. Indeed, similar to Theorem P5, we can write
the instantaneous potential energy via

Epot(R)
(A.48)
=

1

2

N∑

I=1

N∑

J 6=I
U(|~RIJ |)

Dirac-δ
=

1

2

N∑

I=1

N∑

J 6=I

∫ ∞

0

U(r)δ(r − |~RIJ |)dr

=

∫ ∞

0

U(r)S(r;R)dr.

Moreover, the ensemble average over the instantaneous configurations yields a rescaled
RDF, more precisely,

〈S(r;R)〉 =
1

2

N∑

I=1

N∑

J 6=I

〈

δ(r − |~RIJ |)
〉

(A.15)
=

1

2

N∑

I=1

N∑

J 6=I

∫

δ(r − |~RIJ |)Pc(R)dR

(A.57)
=

N(N − 1)

2

∫

δ(r − |~R21|)Pc(R)dR

JTF
=

V N(N − 1)

2

∫

δ(r − |~R2|)Pc(0, ~R2, . . . , d ~RN)d~R2 . . . d ~RN

JTF
=

V N(N − 1)

2

∫

δ(r − s)4πs2Pc(0, s~e1, ~R3, . . . , d ~RN)dsd~R3 . . . d ~RN

Dirac-δ
=

4πr2V N(N − 1)

2

∫

Pc(0, r~e1, ~R3, . . . , d ~RN)d~R3 . . . d ~RN

=
4πr2V N(N − 1)

2

ρ2

N(N − 1)
g(r)

=
2πr2N2

V
g(r).
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Then, the derivative of the ensemble average is given by

∂〈S(r;R)〉
∂U(s)

=
∂

∂U(s)

∫

S(r;R)Pc(R)dR

=
∂

∂U(s)

(∫
S(r;R) exp(−βEpot(R))dR

Zc

)

=
∂

∂U(s)

(∫
S(r;R) exp

(
−β
∫∞
0
U(r)S(r;R)dr

)
dR

∫
exp

(
−β
∫∞
0
U(r)S(r;R)dr

)
dR

)

= −β(〈S(r;R)S(s;R)〉 − 〈S(r;R)〉〈S(s;R)〉). ✷

The above results are obtained in the simple formalism of the canonical ensemble and
provide nice tools for computer simulation of the fluid or for analysis of experimental
data. However, using the rather complicated model of the grand canonical ensemble, we
can derive even more powerful statement.

Theorem P7:
If we assume, that the activity a = ρ for ρ→ 0, then

lim
ρ→0

ggc,(n)(~R1, . . . , ~Rn) = exp(−βEpot(~R1, . . . , ~Rn)).

Proof: We write the distribution function as the series

ggc,(n)(~R1, . . . , ~Rn)
P1
=

1

ρn
ρgc,(n)(~R1, . . . , ~Rn)

(A.65)
=

1

ρn

∞∑

Ñ=n

P
[

N = Ñ
]

· ρ(n)(~R1, . . . , ~Rn)
∣
∣
∣
N=Ñ

(A.38)
=

1

ρn

∞∑

Ñ=n

aÑ

Ñ !Qgc
Zc|N=Ñ ρ(n)(~R1, . . . , ~Rn)

∣
∣
∣
N=Ñ

(A.58)
=

1

ρn

∞∑

Ñ=n

aÑ

Ñ !Qgc
Zc|N=Ñ

· Ñ !

(Ñ − n)! Zc|N=Ñ

∫

exp(−βEpot(~R1, . . . , ~RÑ ))d
~Rn+1 . . . d ~RÑ

(A.58)
=

1

ρn
1

Qgc

∞∑

Ñ=n

aÑ

(Ñ − n)!

∫

exp(−βEpot(~R1, . . . , ~RÑ))d
~Rn+1 . . . d ~RÑ .

Under the assumption a = ρ, the density disappears from the first term of the series.
That is, if we let the density ρ go to zero, the remaining terms vanish. Similarly, for
ρ→ 0, only the first term of the series

Qgc (A.39)
=

∞∑

N=0

aN

N !
Zc

(A.28)
=

∞∑

N=0

aN

N !

∫

exp(−βEpot(~R1, . . . , ~RN))d~R1 . . . d ~RN

remains and equals 1, because the potential energy of an empty system is zero. ✷
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We remark that a = ρ for the ideal gas, as we have shown in Section A.1. In the case,
where the density goes to zero, the interactions between particles are very rare, so that
the system behaves nearly like the ideal gas and the assumption of Theorem P7 can be
considered as given. The direct consequence of the above theorem is the equation

lim
ρ→0

g(r) = lim
ρ→0

g(2)(0, r~e(1))

= exp(−βEpot(0, r~e(1)))

= exp(−βU(r)), (A.72)

called the low-density limit of the RDF.

A.4 Special Case of the Lennard-Jones Potential

While the previous results are valid for the general interaction potential and show how
much information can be retrieved from the RDF, we also test a special case of the
Lennard-Jones potential (A.56), in order to obtain a deeper insight into the nature of the
distribution. To do so, we use the formalism of the canonical ensemble and assume that
our system has a large, but finite size

L =
d
√
V = d

√

N

ρ
.

We consider the RDF

g(r) =
N(N − 1)

ρ2

∫

Pc(0, r~e1, ~R3, . . . , ~RN)d~R3 . . . d ~RN , r ∈
[

0,
L

2

]

,

as a function of the distance, parameterized with T , L and the parameters ε, σ of the
Lennard-Jones potential

U(r; ε, σ) = 4ε

((σ

r

)12

−
(σ

r

)6
)

.

The following properties of the potential attract our attention:

U(r; aε, σ) = 4aε

((σ

r

)12

−
(σ

r

)6
)

= aU(r; ε, σ),

U(r; ε, bσ) = 4ε

((
bσ

r

)12

−
(
bσ

r

)6
)

= U
(r

b
; ε, σ

)

.

Then, the potential energy takes the form

Epot(R; ε, σ) =
1

2

N∑

I=1

N∑

J 6=I
U(|~RI − ~RJ |; ε, σ)
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and satisfies the relations

Epot(R; aε, σ) = aEpot(R; ε, σ), (A.73)

Epot(R; ε, bσ) = Epot

(
1

b
R; ε, σ

)

. (A.74)

This motivates us to rewrite the RDF of the Lennard-Jones fluid in the parameterized
form,

g(s;T, L, ε, σ) =
N(N − 1)

ρ2

∫

ΩN−2

Pc(0, Ls~e1, ~R3, . . . , ~RN ;T, L, ε, σ)d~R3 . . . d ~RN

=
(N − 1)L2d

N

∫

ΩN−2

Pc(0, Ls~e1, ~R3, . . . , ~RN ;T, L, ε, σ)d~R3 . . . d ~RN

JTF
=

(N − 1)LNd

N

∫

ΩN−2/L

Pc(0, Ls~e1, L~S3, . . . , L~SN ;T, L, ε, σ)d~S3 . . . d~SN

for all s ∈
[
0, 1

2

]
.

Theorem P8:
The RDF of the Lennard-Jones fluid (as a function of s) depends on only two parame-
ters – the first one is either T or ε, the second one is either L or σ.
Proof: Let us also parameterize the probability density of the canonical ensemble and the
configuration integral,

Pc(R;T, L, ε, σ) =
1

Zc(T, L, ε, σ)
exp(−βEpot(R; ε, σ)),

Zc(T, L, ε, σ) =

∫

ΩN

exp(−βEpot(R; ε, σ))dR

JTF
= LNd

∫

ΩN/L

exp(−βEpot(LS; ε, σ))dS. (A.75)

Then, we see that

Zc(T, L, aε, bσ)
(A.75)
= LNd

∫

ΩN/L

exp(−βEpot(LS; aε, bσ))dS

(A.73),
(A.74)
= LNd

∫

ΩN/L

exp

(

−aβEpot

(
L

b
S; ε, σ

))

dS

= bNd
(
L

b

)Nd ∫

ΩN/L

exp

(

−aβEpot

(
L

b
S; ε, σ

))

dS

(A.75)
= bNdZc

(
T

a
,
L

b
, ε, σ

)

(A.76)
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and

g(s;T, L, aε, bσ) =
(N − 1)LNd

NZc(T, L, aε, bσ)

·
∫

Ω(N−2)/L

exp(−βEpot(0, Ls, LS3, . . . , LSN ; aε, bσ))

·dS3 . . . dSN

(A.76)
=

(N − 1)
(
L
b

)Nd

NZc
(
T
a
, L
b
, ε, σ

)

·
∫

Ω(N−2)/L

exp(−βEpot(0, Ls, LS3, . . . , LSN ; aε, bσ))

·dS3 . . . dSN

(A.73),
(A.74)
=

(N − 1)
(
L
b

)Nd

NZc
(
T
a
, L
b
, ε, σ

)

·
∫

Ω(N−2)/L

exp

(

−aβEpot

(

0,
L

b
s,
L

b
S3, . . . ,

L

b
SN ; ε, σ

))

·dS3 . . . dSN

= g

(

s;
T

a
,
L

b
, ε, σ

)

for all s ∈
[
0, 1

2

]
. In particular,

g(s;T, L, ε, σ) = g

(

s;
T

ε
,
L

σ
, 1, 1

)

,

g(s;T, L, ε, σ) = g
(

s; 1, 1,
ε

T
,
σ

L

)

. ✷

A.5 Definition of the RDF for a Molecular Fluid

The definition of the RDF can be extended also to the case of the molecular fluid whose
particles are identical but should not be considered as spherical, for example, the rod-
shaped molecules of nitrogen N2 and carbon dioxide CO2, or the bended molecule of water
H2O. In this case, we have to model also the bonded interactions inside the molecules, for
instance, by potentials of the form

vbond
i (ℓ) =

1

2
kbond
i (ℓ− ℓi)2,

vbend
i (θ) =

1

2
kbend
i (θ − θi)2,

vtors
i (φ) =

1

2
ktors
i (φ− φi)2.

In other words, we model a molecule as a composition of diverse spherical particles ar-
ranged by constants

{ℓi : 1 ≤ i ≤ Nbond} ⊂ R,

{θi : 1 ≤ i ≤ Nbend} ⊂ R,

{φi : 1 ≤ i ≤ N tors} ⊂ R,
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called bond lengths, bending angles and torsion angles, respectively. We call the con-
stituent particles atoms and label them with numbers {1, . . . , Natom}. The following
theory is not affected by the chosen labeling, because we shall work with the maps

τ : {1, . . . , Natom} → {1, . . . , N type},
ν : {1, . . . , Natom} → {1, . . . , N},

assigning the given atom label to one of N type types and one of N molecules. For example,
two water molecules would be represented by

Label i Type τ(i) Atom Molecule ν(i)
1 1 H 1
2 2 O 1
3 1 H 1
4 1 H 2
5 2 O 2
6 1 H 2

Surely, similar to the simple fluid, we could also describe the system through the atom
coordinates

{~ri : 1 ≤ i ≤ Natom} ⊂ Rd,

masses (ma)
Ntype

a=1 and the interaction potential

u
(2)
a,b : R

d ×Rd → R

for each pair of atoms of a-th and b-th types, 1 ≤ a, b ≤ N type. However, this description
would contain many redundant degrees of freedom – the shape of the molecules can be
often considered as rigid, that is, the changes of the shape due to the bonded interactions
are negligible, when averaged over all molecules of the fluid. On the other hand, the bond
lengths, bending angles and torsion angles would not suffice for a good description – they
do not specify the “positions” of the molecules. The latter, following [GG-1984], can be
defined by the coordinates of molecular centers of mass

~RI :=
1

M

∑

i:ν(i)=I

mτ(i)~ri ∈ Rd, 1 ≤ I ≤ N,

and by the molecular orientations

WI ∈ Q ⊂ Rq, 1 ≤ I ≤ N,

where
M :=

∑

i:ν(i)=1

mτ(i)

is the total mass of the first molecule (molecules are identical). It is easily seen that for a
suitable Q ⊂ Rq, the set of variables allows to determine the positions {~ri} of the atoms.
In d = 3 dimensions, the orientation of a rigid body (molecule) is given by Euler angles

(ψ, ϕ, γ) ∈ (0, π)× (−π, π)× (0, 2π),
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that is, Q ≃ S2 × S1 and |Q| = 8π2. If the molecule has symmetries, the degrees of
freedom reduce – for a rod-shaped molecule, the spherical coordinates

(ψ, ϕ) ∈ (0, π)× (−π, π)

will suffice, that is, Q ≃ S2 and |Q| = 4π. Finally, the potential energy for a pair of
molecules is the sum of potential energies between building atoms, so that we can define
the molecular pair interaction potential as

U (2) : Rd ×Rd ×Rq ×Rq → R,

(~RI , ~RJ ,WI ,WJ) 7→
∑

i:ν(i)=I

∑

j:ν(j)=J

u
(2)
τ(i),τ(j)(~ri, ~rj).

Summarizing the above definitions in other words, we just carried out a scale transi-
tion. We could model the molecular fluid on the microscopic scale – we would cope with
the bonded interactions vbond

i , vbend
i , vtors

i and non-bonded interactions u(2)a,b of single atoms
(microscopic particles) {~ri} with masses {ma}. But in this case, we could not assume
translationally and rotationally invariant interactions in the sense of definitions (A.49)
and (A.50), which hold on the microscopic scale and implicitly require a single potential
for all interactions. We remind that the concept of the RDF holds only under this as-
sumption. Therefore, we prefer to consider the molecular fluid on a mesoscopic scale, as
a family of N ∈ N identical molecules (mesoscopic particles) {(~RI ,WI)} with mass M
and interaction potential U (2). Indeed, a non-spherical molecule, “averaged” over all ori-
entations, has a nearly spherical shape. For fixed molecular orientations {WI}, we obtain
the relations

U (2)(~RI , ~RJ ,WI ,WJ) = U (2)(~RI + ~Z, ~RJ + ~Z,WI ,WJ), ∀~Z ∈ Rd,

U (2)(~RI , ~RJ ,WI ,WJ) = U (2)(A~RI , A~RJ ,WI ,WJ), ∀A ∈ SO(d),

which could serve as the mesoscopic equivalents of the translational and rotational invari-
ance of the interaction potential, respectively. Evidently, there is no corresponding radial
potential due to the presence of the molecular orientations, but now we can follow the
way the RDF was derived for simple fluids. We generalize the probability density of the
canonical ensemble to the “angular” version

Pang(R,W ) :=
1

Zang
exp(−βEpot(R,W )), (A.77)

where R are the coordinates, W orientations (“angles”) of molecules and

Zang :=

∫

exp(−βEpot(R,W ))dRdW. (A.78)

is the configuration integral. Then, for each 1 ≤ n ≤ N , we can define in the common
way the angular n-particle distribution function

ρang,(n)(~R1, . . . , ~Rn,W1, . . . ,Wn) :=
N !

(N − n)!

∫

Pang(R,W )

N∏

i=n+1

d~RidWi, (A.79)

the angular n-particle distribution function

gang,(n)(~R1, . . . , ~Rn,W1, . . . ,Wn) :=
ρang,(n)(~R1, . . . , ~Rn,W1, . . . ,Wn)

ρang,(1)(~R1,W1) . . . ρang,(1)(~Rn,Wn)
, (A.80)
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and average the latter over all orientations, in order to obtain the n-particle distribution
function in the form

g(n)(~R1, . . . , ~Rn) :=
1

|Q|n
∫

gang,(n)(~R1, . . . , ~Rn,W1, . . . ,Wn)

n∏

i=1

dWi. (A.81)

The complex constitution of the molecules allows to define different kinds of the RDF.
For example, in the liquid CO2, we can measure the distribution gO,O between oxygen atoms,
gC,C between carbon atoms, gC,O between different kinds of atoms, or we can measure the
distribution between centers of mass of the CO2 molecules. The center-of-mass radial
distribution function is

g(r) := g(2)(0, r~e(1)) (A.82)

and the atom-atom radial distribution function for atoms of types a and b is

ga,b(r) :=
1

N (a)(N (a)− 1)

∑

i∈T (a)

∑

j∈T (b)\{i}
g(2)(0, r~e(1) + ~vi − ~vj), (A.83)

where
~vi := ~ri − ~Rν(i), 1 ≤ i ≤ Natom,

are the relative coordinates of atoms and

N (a) := |T (a)|,
T (a) := {i : τ(i) = a}.

In principle, by using the grand canonical formalism, one can derive the low-density limit
for the molecular RDF,

lim
ρ→0

gang,(2)(~R1, ~R2,W1,W2) = exp(−βU (2)(~R1, ~R2,W1,W2)). (A.84)

The derivation is analogous to the case of the simple fluid.

A.6 Theory of Coarse Graining

In the previous section, we saw how important it can be to find a small set of meaningful
variables describing the given fluid. We also demonstrated this in the preliminary sec-
tion, where we derived some different levels of description of a fluid system. But that
derivation carried rather explanatory and therefore, intuitive character. In this section,
we present the general approach from the theory of coarse graining, as it can be found
by [Español-2009]. We let the probability density ρeq = ρeq(x) describe the equilibrium
distribution at the microscopic level. Each mesoscopic variable (XI)

N
I=1 is expressed as a

function of the microscopic variables (xi)
n
i=1, that is, at a mesoscopic level, the system is

described by a downscaling map

V : Rn → RN ,

x 7→ X.

Our goal is to derive a dynamic equation for the probability density P(X, t) of mesoscopic
states.
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For each mesoscopic stateX, there is a whole submanifold of all compatible microscopic
states, which has the volume

Q(X) :=

∫

ρeq(x)δ(V (x)−X)dx.

We introduce the constrained average

EX [a] :=
1

Q(X)

∫

a(x)ρeq(x)δ(V (x)−X)dx

of a phase function a over the relevant submanifold corresponding to the given mesoscopic
state X. In a nutshell, this average maps a = a(x) on its mesoscopic version A = A(X).
The volume Q(X) can be seen as the mesoscopic partition function, such that

S(X) = kB lnQ(X)

can be interpreted as the mesoscopic entropy. Further, following [Zwanzig-1960], we define
the projection operators

Pa(x) := EV (x) [a] ,

Qa(x) := (1− P)a(x) = a(x)−EV (x) [a] ,

which split any phase function
a = Pa+Qa,

in the relevant and the irrelevant part, respectively. Of course,

P2 ≡ P, Q2 ≡ Q, PQ ≡ 0,

such that P and Q are true projection operators. According to [Zwanzig-1961], we can
derive the Fokker-Planck equation for the set of relevant variables and, due to above
definitions, write it in the form

∂P(X, t)
∂t

= − ∂

∂X

((

K(X) +M(X)
∂S(X)

∂X

)

P(X, t)
)

+ kB
∂

∂X

(

M(X)
∂P(X, t)
∂X

)

,

where
K(X) := EX [LV ]

is the (reversible) drift term,

M(X) :=
1

kB

∫ ∞

0

EX

[
(LV −EX [LV ]) exp(iQLt̃) (LV − EX [LV ])

]
dt̃

is the (irreversible) friction term (a symmetric and positive definite operator) and L is
the Liouville operator (A.12). The Fokker-Planck equation can be transformed into the
following stochastic differential equation

dX =

(

K(X ) +M(X )∂S(X )
∂X + kB

∂M(X )
∂X

)

dt+B(X )dWt,

where Wt is the multicomponent Wiener process and the covariance term B fulfills the
fluctuation-dissipation theorem

B(X )B(X )T = 2kBM(X ).
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Now, eliminating the fluctuations (which are of order kB) in the formal limit kB → 0, one
obtains a deterministic dynamic equation of the form

dX

dt
= K(X) +M(X)

∂S(X)

∂X
.

Futher simplifications become possible, if the microscopic dynamical invariants j(x) can
be expressed in terms of the relevant (coarse grained) variables X = V (x), that is,

j(x) = J(V (x)).

For example, if the total energy of the system is e(x) = E(V (x)), then the mesoscopic dy-
namics can be written if the form, known as the General Equation for the Non-Equilibrium
Reversible-Irreversible Coupling (GENERIC),

dX

dt
= L(X)

∂E(X)

∂X
+M(X)

∂S(X)

∂X
,

which is indeed, as the name suggests, a generalization of the reversible Hamilton equa-
tions (A.8).

In this section, we derived a dynamic equation for the probability density P(X, t) of
mesoscopic variables X for the given set of microscopic variables and downscaling map.
The presented framework especially yields a theoretical justification of the structure-based
coarse graining, which is outlined in Chapter 1 in a more practical form, suitable for com-
puter simulations. There, atom groups are coarse grained to certain effective particles,
that is, the coordinates of atoms are the microscopic variables and the coordinates of
the effective particles are the mesoscopic ones. The above theory guarantees the exis-
tence of the corresponding effective dynamic equation. Although the downscaling map
is given, one skips the derivation of the GENERIC and assumes that the effective inter-
actions, determined from various atomistic RDFs, represent the mesoscopic Hamiltonian
(the reversible part of the dynamics) in the right way. Moreover, since the dynamics of
particles in the simulation cannot be purely Hamiltonian (see the next appendix), there
are always certain friction terms, so that one can assume a correct irreversible part of the
dynamics. The mentioned assumptions can be tested for a small representative example
– if the results of the coarse grained simulation show the quality of the detailed atomistic
simulation, one can state that the underlying GENERIC was matched.
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Appendix B

Molecular Simulation

Although the results of simulations are often as good as the experimental measurements,
there are some differences in the accompanying theory from the mathematical viewpoint.
Therefore, we decided to supply our work with the short appendix about molecular simu-
lation, composed from the selected topics of [FS-2002].

B.1 Simulation Methods

In the Monte Carlo (MC) method, the dynamics of the molecules is given by the canonical
probability density (A.27). According to the distribution, the “probability” to find the
system in a configuration R(i) is given by

P[R(i)] :=
1

Zc
exp(−βEpot(R(i))).

Let P[R(i) → R(j)] denote the probability of the transition from the i-th state to the j-th
state. For the sake of simplicity, we consider a system with a finite number of states. At
the equilibrium, each state is equiprobable, so that the master equation

∑

j 6=i
P[R(i)]P[R(i) → R(j)]

!
=
∑

j 6=i
P[R(j)]P[R(j) → R(i)], ∀i,

can be imposed. In a nutshell, the left hand side summarizes, for the system in the i-th
state, the probability to leave this state (“outcoming flow”). The right hand side is the
probability for a transition from any other state to the i-th state (“incoming flow”). The
equation holds especially, if we have the detailed balance

P[R(i)]P[R(i) → R(j)] = P[R(j)]P[R(j) → R(i)], ∀i, j,
that is, if every transition, happened with a certain probability, can be unmade by the
next transition, which has the same probability. In order to fulfill the above condition, we
can choose the transition probabilities, for instance, according to the Metropolis criterion

P[R(i) → R(j)] := min{1, exp(−β(Epot(R(j))−Epot(R(i))))}.
Indeed, for Epot(R(j)) ≤ Epot(R(i)), we have

P[R(i)]P[R(i) → R(j)] =
1

Zc
exp(−βEpot(R(i))) · 1

=
1

Zc
exp(−βEpot(R(j))) · exp(−β(Epot(R(i))− Epot(R(j))))

= P[R(j)]P[R(j) → R(i)]
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and the opposite case is analogous. In simple words, the criterion allows all transitions,
which lower the energy, while the states with higher energy can be only reached with
a smaller probability decreasing exponentially with respect to the growing energy. In
practice, the method chooses randomly a particle from the system, moves it slightly in a
random direction, measures the change in the potential energy and decides whether the
move should be accepted or rejected (undone).

In the molecular dynamics (MD) method, the molecules are moved along their trajec-
tories ((R(t), P (t))T )t≥0 ⊂ R2dN , according to the Newton equation (A.6). We write here
the latter for convenience in the form

MṘ(t) = P (t),

Ṗ (t) = F (R(t)).

In order to derive a numerical solution scheme (an integrator), one describes the time evo-
lution of any phase function A = A(R(t), P (t)) in terms of the Liouville operator (A.12),
that is,

Ȧ = Ṙ
∂A

∂R
+ Ṗ

∂A

∂P
= LA. (B.1)

This is an ordinary differential equation with the formal solution

A(R(t), P (t)) = eLtA(R(0), P (0)).

Then, one splits the Liouville operator in two parts,

L = Ṙ
∂

∂R
︸ ︷︷ ︸

=:LR

+ Ṗ
∂

∂P
︸ ︷︷ ︸

=:LP

,

and, using the Taylor expansion, shows that eLRt and eLP t correspond to a shift of coor-
dinates and momenta, respectively, that is,

eLRtA(R(0), P (0)) = A(R(0) + tṘ(0), P (0)),

eLP tA(R(0), P (0)) = A(R(0), P (0) + tṖ (0)).

Thank Trotter identity , one can split the operator eLt in these two parts, more precisely,

eLt ≈
(

eL
mom 1

2
τeL

coordτeL
mom 1

2
τ
)k

,

where τ = t
k

and k sufficiently large. Then, step by step, one can determine the action of
the decomposed operator,

eL
mom 1

2
τ

(
R(0)
P (0)

)

=

(
R(0)

P (0) + 1
2
τṖ (0)

)

=

(
R(0)

P (0) + 1
2
τF (R(0))

)

,

eL
coordτ

(
R(0)

P (0) + 1
2
τF (R(0))

)

=

(
R(0) + τṘ(1

2
τ)

P (0) + 1
2
τF (R(0))

)

=

(
R(0) + τ 1

M
P (1

2
τ)

P (0) + 1
2
τF (R(0))

)

=

(
R(0) + τ 1

M
P (0) + τ 2 1

2M
F (R(0))

P (0) + 1
2
τF (R(0))

)

,
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eL
mom 1

2
τ

(
R(0) + τ 1

M
P (0) + τ 2 1

2M
F (R(0))

P (0) + 1
2
τF (R(0))

)

=

(
R(0) + τ 1

M
P (0) + τ 2 1

2M
F (R(0))

P (0) + 1
2
τF (R(0)) + 1

2
τṖ (τ)

)

=

(
R(0) + τ 1

M
P (0) + τ 2 1

2M
F (R(0))

P (0) + 1
2
τF (R(0)) + 1

2
τF (R(τ))

)

.

Summarizing the above results, one obtains the Velocity-Verlet integrator, which com-
putes, for the given (~R

(0)
I , ~P

(0)
I )NI=1, the trajectory of the particles via

~R
(k+1)
I = ~R

(k)
I +

1

M
τ ~P

(k)
I +

1

2M
τ 2 ~F

(k)
I ,

~P
(k+1)
I = ~P

(k)
I +

1

2
τ
(

~F
(k+1)
I + ~F

(k)
I

)

,

where the time step τ is sufficiently small.
Obviously, the integrator does not affect the number N of particles and the volume V

of the system. Further, the dynamics driven by the operator L conserves the Hamiltonian,
it is easily shown by inserting equation (A.2) into (B.1). For these reasons, the Velocity-
Verlet integrator, derived from the energy-conserving Liouville operator, is a standard
numerical scheme for molecular simulations in the microcanonical (N, V, E)-ensemble.
Although all ensembles are equivalent at equilibrium, a microcanonical simulation will
yield a trajectory with a (nearly) constant, but unpredictable temperature T̃ . Since one
usually wants to determine the RDF of the fluid for the given temperature T and cannot
leave it to the chance, that T̃ = T , one introduces a thermostat – an additional virtual
system, which enforces the given temperature by exchanging the energy with the fluid.
In practice, the dynamic equations are modified according to the concrete needs, because
there is no universal thermostat. For instance, the DPD-thermostat (for Dissipative
Particle Dynamics) models the force term as the sum

F = F C + F D + F R,

where the usual conservative forces

F C = −∇Epot

are upgraded with two virtual terms, F D and F R, representing the dissipative and the
random forces, respectively. We decided to present this thermostat, because it really
appears to model the dynamics of a fluid in the canonical ensemble. In [EW-1995], the
authors show that the probability density P of a system with the DPD-thermostat obeys
the following Fokker-Planck equation

∂P(R,P , t)
∂t

= −LP(R,P , t) +MP(R,P , t),

where L is the Liouville operator (with resprect to the conservative forces) and the ope-
rator M describes the action of dissipative and random forces. Further, they find the
relation between the dissipative and random forces, for which the above equation has a
stationary solution – the probability density Pc(R,P ) of the canonical ensemble.
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B.2 Interaction Potentials

In a computer simulation, for efficiency reasons, only next-neighbour interactions can be
considered, that is, the interaction potential is cut off at certain distance r = rcut and
continuated with zero. Typically rcut ≈ 2.5σ, sometimes greater values are taken. Thus,
the attractive part of the potential should converge to zero fast enough, say O(r−α).
From (A.69) and (A.70), we can estimate the amounts of pressure and energy, which
are lost through the cut off, and demand them to be finite. Since the RDF is typically
bounded, we obtain that

|P cut| ≤
∫ ∞

rcut

|Du(r)y(r)||∂B(r)|rdr

≤
∫ ∞

rcut

C

rα+1
rddr

= C

∫ ∞

rcut

1

rα+1−ddr

= C

[
1

rα−d

]∞

rcut

< ∞
and

|Ecut| ≤
∫ ∞

rcut

|u(r)y(r)||∂B(r)|dr

≤
∫ ∞

rcut

C

rα
rd−1dr

= C

∫ ∞

rcut

1

rα−d+1
dr

= C

[
1

rα−d

]∞

rcut

< ∞
for a certain constant C > 0, if and only if α > d. In other words, the interaction potential
used in a simulation must be short-ranged – tend to zero fast enough at large distances.

In a simulation with Lennard-Jones potential, one describes the interactions for the
a-th atom type by “pure” parameters εa,a and σa,a. However, if the atoms of different
types a and b interact, the “mixed” parameters εa,b and σa,b are needed. In order to keep
the number of input parameters low, one can estimate them via the Lorentz-Berthelot
rules:

σa,b =
1

2

(

σa,a + σb,b

)

,

εa,b =
√
εa,a · εb,b.

The first estimate is an arithmetic mean, which is rigorous for hard-sphere interactions.
The second one appears to mimic the first one by using the geometric mean.

B.3 Radial Distribution Function

In Appendix A, we defined the RDF via (A.64) and stressed that the definition holds actu-
ally for a translationally and rotationally invariant (symmetric) potential. In a molecular
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simulation, however, even a simple fluid may loose the underlying symmetry due to various
approximations, for example, the one-particle density ρ(1) is not constant and not equal
to ρ anymore. We observed in Appendix A.5 a far worse situation in the molecular fluid,
whose interactions are per se not symmetric due to the presence of spatial orientations
of molecules. There, in order to define the center-of-mass RDF, we cured the problem
with an averaging over the orientations. We apply the same idea here, for example, the
one-particle density yields the density, after averaging over the spatial translations,

1

V

∫

Ω

ρ(1)( ~W )d ~W
(A.58)
=

1

V
N

∫

Pc(R)dR

(A.27)
=

N

V
= ρ.

Similarly, we average the RDF over both the translations and the rotations,

g(r) =
1

|∂B(r)|

∫

∂B(r)

1

V

∫

Ω

g(2)( ~W, ~Z + ~W )d ~Wd~Z. (B.2)

Since we are primarily interested in the computation of

g(2)(~R1, ~R2)
(A.59)
=

ρ(2)(~R1, ~R2)

ρ(1)(~R1)ρ(1)(~R2)

or, more precisely, of ρ(2), which obviously contains more information than ρ(1), we ap-
proximate in the following

ρ(1) ≈ ρ. (B.3)

Then, we can write

g(2)( ~X, ~Y )
(B.3)≈ 1

ρ2
ρ(2)( ~X, ~Y )

(A.58)
=

1

ρ2
N(N − 1)

∫

Pc( ~X, ~Y , ~R3, . . . , ~RN)d~R3 . . . d ~RN

Dirac-δ
=

1

ρ2
N(N − 1)

∫

δ( ~X − ~R1)δ(~Y − ~R2)Pc(R)dR

(A.57)
=

1

ρ2

N∑

i=1

N∑

j 6=i

∫

δ( ~X − ~Ri)δ(~Y − ~Rj)Pc(R)dR

(A.15)
=

1

ρ2

N∑

i=1

N∑

j 6=i

〈

δ( ~X − ~Ri)δ(~Y − ~Rj)

〉

. (B.4)

It is impossible to retrieve the ensemble average, because we do not know the complete
probability density Pc. Therefore, we use relation (A.16) and obtain

〈A〉 = lim
Θ→∞

1

Θ

∫ Θ

0

A(R(t))dt

for any observable A : RNd → R. In practice, Θ is the finite simulation time needed
for sampling of the RDF from n snapshots of the trajectory. In other words, Θ := nτ ,
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where τ is the time separating uncorrelated snapshots. Thus, we choose n large enough
and approximate

lim
Θ→∞

1

Θ

∫ Θ

0

≈ 1

nτ

∫ nτ

0

. (B.5)

It means also that the trajectory is discretized on the equidistant time grid

tℓ = ℓτ, 0 ≤ ℓ ≤ n− 1.

Further, we are only capable to sample the RDF (B.2) on the equidistant space grid

rk = k∆r, 0 ≤ k ≤ m− 1

with an arbitrary ∆r and m := L
2∆r

. Especially, we have to approximate

∂B(rk) ≈ Sk := B(rk+1) \B(rk). (B.6)

Finally, we insert the above considerations in (B.2) and obtain

g(rk)
(B.6)≈ 1

|Sk|

∫

Sk

1

V

∫

Ω

g(2)( ~W, ~Z + ~W )d ~Wd~Z

(B.4)≈ 1

|Sk|

∫

Sk

1

V

∫

Ω

1

ρ2

N∑

i=1

N∑

j 6=i

〈

δ( ~W − ~Ri)δ(~Z + ~W − ~Rj)

〉

d ~Wd~Z

Fubini
=

1

|Sk|
V

N2

N∑

i=1

N∑

j 6=i

∫

Sk

〈∫

Ω

δ( ~W − ~Ri)δ(~Z + ~W − ~Rj)d ~W

〉

d~Z

Dirac-δ
=

1

|Sk|
V

N2

N∑

i=1

N∑

j 6=i

∫

Sk

〈

δ(~Z + ~Ri − ~Rj)

〉

d~Z

(A.16)
=

1

|Sk|
V

N2

N∑

i=1

N∑

j 6=i
lim
Θ→∞

1

Θ

∫ Θ

0

∫

Sk

δ(~Z + ~Ri(t)− ~Rj(t))d~Zdt

Dirac-δ
=

1

|Sk|
V

N2

N∑

i=1

N∑

j 6=i
lim
Θ→∞

1

Θ

∫ Θ

0

1Sk
(~Rj(t)− ~Ri(t))dt

=
1

|Sk|
V

N2

N∑

i=1

N∑

j 6=i
lim
Θ→∞

1

Θ

∫ Θ

0

1[rk,rk+1)(|~Ri(t)− ~Rj(t)|)dt

(B.5)≈ 1

|Sk|
V

N2

N∑

i=1

N∑

j 6=i

1

nτ

∫ nτ

0

1[rk,rk+1)(|~Ri(t)− ~Rj(t)|)dt

quadrature≈ 1

|Sk|
V

N2

N∑

i=1

N∑

j 6=i

1

n

n−1∑

ℓ=0

1[rk,rk+1)(|~Ri(tℓ)− ~Rj(tℓ)|)

=
1

|Sk|
V

N2

1

n

n−1∑

ℓ=0

N∑

i=1

N∑

j>i

2 · 1[rk,rk+1)(|~Ri(tℓ)− ~Rj(tℓ)|)

for 0 ≤ k ≤ m − 1. Although the expression looks complicated, it suggests a handy
numerical algorithm for calculation of the RDF. For large number N of particles, the
translational and rotational averages damp the approximation errors, such that the RDF
from a simulation has a quality comparable to the experimental data.
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List of Symbols

1 identity operator/matrix
α0 behaviour of potentials in the core region
Å Angstrøm, 1 · 10−10 [m]
A† Moore-Penrose inverse of operator A
A(k) derivative for the actual iterate
a, b, . . . fictive/effective particles
β inverse temperature of the system
β0 behaviour of RDFs in the core region
B(r) open ball of the radius r around origin
B(X, Y ) space of bounded operators from X to Y
b(k) right hand side of the actual linearization
b(k,δ) noisy right hand side of the actual linearization
C(Ω) space of continuous functions on Ω
χ1, χ2, . . . filter functions
cond(M) condition number of matrix M
D derivative operator
D finite difference
∆r grid step for distances
∆x variation vector
d dimension of the Euclidean space
∂B(r) sphere of the radius r around origin
δ (overall) noise level
δ(·) Dirac-δ function
diag(v) diagonal matrix with elements of vector v on the main diagonal
dim(X) dimension of space X
dom(F ) domain of map F
E sample mean
ε energy parameter of the Lennard-Jones potential
εunit unit energy
~e(1), . . . ,~e(d) standard base of the Euclidean space
F map from parameters to RDFs
~F force
G map from potentials to RDFs
Γ map from potentials to two-atom RDFs
γ two-atom RDF
H parameterization
h(k) update for the actual iterate
h(k,λ) regularized update for the actual iterate
κ noise level of experimental measurement
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kℓ, kθ, kφ stiffnesses for bond length, bending and torsion
kB Boltzmann constant, 1.3806505 · 10−23 [J ·K−1]
ker(F ) kernel of map F
kstop step number, according to the stopping rule
L system size
Λ mapping scheme
λ regularization parameter
λ(·, ·) parameter choice strategy
L(X, Y ) space of operators from X to Y
L2(Ω) Lebesgue space of square-integrable functions on Ω
L2(Ω, w) Lebesgue space of square-integrable with weight w functions on Ω
ℓ, ℓa,b, . . . bond lengths
µ reduction rate of the Morozov discrepancy principle
Munit unit mass
m length of data vector
mi, ma masses of particles
N number of particles
NA Avogadro number, 6.0221415 · 1023 [mol−1]
n length of solution vector, number of parameters
ν noise level of computational implementation
P truncation map for data
P probability density
Φ matrix with right singular vectors as columns
φ torsion angle
ϕ(1), ϕ(2), . . . right singular vectors
ψ(1), ψ(2), . . . left singular vectors
R real numbers and {±∞}
~Ri, ~ri coordinates of particles
R(λ) regularization
r distance between particles
rcore core distance
rcut cut off distance
ρ density of the system/fluid
ρc critical point density
ρt triple point density
r1, . . . , rm grid corresponding to data vector
rmin preferred distance between two particles
rpeak position of the highest peak in the RDF
ran(F ) range of map F
σ1, σ2, . . . singular values
σ, σa,a, . . . length parameters of the Lennard-Jones potential
σunit unit length
SU set of potentials
SX set of parameters
SY set of RDFs
T temperature of the system
T c critical (point) temperature
T t triple point temperature
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B.3. RADIAL DISTRIBUTION FUNCTION

τ safety factor in the stopping rule
T (λ,δ) Tikhonov functional
t time
θ bending angle
U Hilbert space of potentials
u non-bonded potential
umin preferred energy between two particles
V volume of the system
Var sample variance
vℓ, vθ, vφ potentials for bond length, bending and torsion
wU , wY weight functions for potentials and RDFs
Ξ Taylor remainder of the linearization
X Hilbert space of parameters
x parameter
x exact parameter/solution
x(δ) best-approximate solution
x(λ,δ) regularized solution
x(k) actual iterate
Y Hilbert space of data
y data (RDF)
y exact data (RDF)
ya,b atom-atom RDF
yab,ab center-of-mass RDF
y(δ) noisy data (RDF)
y[N ] N -atom RDF
ypeak height of the highest peak in the RDF

151



APPENDIX B. MOLECULAR SIMULATION

152



List of Abbreviations

CPU central processing unit
CSI Cauchy-Schwarz inequality
fcc face-centered cubic
HS hard-sphere
IBI Iterative Boltzmann Inversion
IMC Inverse Monte Carlo method
JTF Jacobi transformation formula
LJ Lennard-Jones
LM Levenberg-Marquardt method
RDF radial distribution function
RMSD root mean square distance
SS soft-sphere
SVD singular value decomposition
SW square-well
TAA two-atom approximation
TMA two-molecule approximation
TSVD truncated SVD
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activity, 121
Armijo-Goldstein criterion, 30
atom, 3, 137
attraction, 3
average

ensemble, 118
time, 118

backmapping, 11
bead, 2
bending angle, 3, 137
Boltzmann constant, 8, 119
bond length, 3, 137
Bravais lattice, 72

chemical potential, 121
coarse graining, 1

energy-based, 9
force-matching, 9
structure-based, 7, 9

coexistence line, 48
condition number, 17
configuration integral, 120
coordination

number, 72
shell, 72

critical point, 48
curvature, 28

data, 13
attainable, 15
exact, 13

de Broglie wavelength, 121
density, 122

n-particle, 126, 129
detailed balance, 143
distribution function

n-particle, 126
radial, 126, 128

dynamical invariant, 118

effective

interaction, 1, 8
particle, 1, 7

energy
kinetic, 116
potential, 116

ensemble, 118
NV T -, 47, 126
µV T -, 126
canonical, 47, 120
grand canonical, 121
microcanonical, 119

entropy, 119
equation of state, 122
equilibrium, 118

thermal, 119
Ergodic hypothesis, 118
excluded volume, 90

fcc lattice, 72
finite difference, 45
first law of thermodynamics, 122
fluid, 3

molecular, 4, 136
simple, 4, 124

force, 4, 116
conservative, 145
dissipative, 145
random, 145

H1, H2, H3, 13
Hamilton equations, 115
Hamiltonian, 115
heat bath, 119
Henderson theorem, 5

ideal gas, 123
ill-conditioned

matrix, 17
problem, 17

integrator, 144
Velocity-Verlet, 145

interaction
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bonded, 3, 136
effective, 1, 8
non-bonded, 3

Inverse Monte Carlo, 66
Iterative Boltzmann Inversion, 65

kernel, 19

L-Curve, 28
criterion, 28

Laplace transformation, 19
Levenberg-Marquardt method, 29
Liouville

equation, 118
operator, 118
theorem, 117

Lorentz-Berthelot rules, 91, 146
low-density limit, 64, 134, 139

macroscopic scale, 2
mapping scheme, 7
master equation, 143
Maxwell-Boltzmann distribution, 120
mesoscopic

particle, 138
scale, 2, 138

Metropolis criterion, 143
microscopic

particle, 138
scale, 2, 138

molecular
dynamics, 5, 47, 144
fluid, 4
parameter, 91

molecule, 136
rigid, 137

Monte Carlo, 47, 143
Moore-Penrose inverse, 15
Morozov discrepancy principle, 27

Newton equations, 5, 116
Newton-type method, 14
noise, 13

level, 13
propagated, 22

normal equation, 15

operator, 14
compact, 16

parameter, 13

exact, 13
strong, 31
weak, 31

parameter choice strategy, 22
parameterization, 7
particle, 115

effective, 1, 7
partition function, 8

canonical, 120
grand canonical, 121
microcanonical, 119

Pauli exclusion principle, 124
phase, 123

diagram, 48
state, 48

Picard
criterion, 16

discrete, 18
plot, 18

Planck constant, 121
polymer

bead-spring model, 2
swollen chain model, 2

polystyrene, 1, 7, 91, 110
potential, 4, 39

Buckingham, 125
Coulomb, 37
hard-core Yukawa, 125
hard-sphere, 99, 124
Lennard-Jones, 4, 125
long-ranged, 37
of mean force, 10, 65
radial, 124
short-ranged, 37, 146
soft-sphere, 99
square-well, 99, 124

pressure, 121
problem

direct, 13
ill-conditioned, 17
ill-posed, 13

modestly, 17
severely, 17

inverse, 7, 13
well-posed, 13

Question
I, 11, 107
I.1, 33, 107
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I.2, 33, 107
I.3, 61, 108
I.4, 67, 108
I.5, 67, 108
II, 11, 107

R1, R2, 21
radial distribution function, 5, 40

atom-atom, 88
center-of-mass, 88
two-atom, 64

reconstruction
algorithm, 94

reduced units, 47
regularization, 21

error, 22
method, 22
parameter, 22

relaxation time, 118
repulsion, 3

sample
mean, 46
variance, 46

scale
macroscopic, 2
mesoscopic, 2, 138
microscopic, 2, 138
transition, 2, 8, 138

semiconvergence, 30
singular value decomposition, 16

truncated, 21
soft matter, 1
solution

best-approximate, 15
least-squares, 15

spring, 2
square-integrable function, 41
structure, 7
SU1, SU2, SU3, 39
SY1, SY2, SY3, 40
symmetry breaking, 127

temperature, 119
inverse, 78, 120

theorem
A1, 41
A2, 42
A3, 68

A4, 81
P1, 127
P2, 128
P3, 129
P4, 130
P5, 131
P6, 132
P7, 133
P8, 135

thermodynamic
limit, 126
potential, 122
quantity, 122

conjugated, 122
extensive, 122
intensive, 122

thermostat, 47, 120, 145
DPD-, 145

Tikhonov
functional, 26
regularization, 23

torsion angle, 3, 137
trajectory, 4, 115
triple point, 48
Trotter identity, 144
trust region, 30
two-atom

approximation, 71
RDF, 64

U1, U2, U3, 4
update, 14

van der Waals radius, 90
variation condition, 46
virial equation, 123

Y1, Y2, Y3, 5
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