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Abstract

In this thesis I present a new coarse-grained model suitable to investigate the phase
behavior of rod-coil block copolymers on mesoscopic length scales. In this model
the rods are represented by hard spherocylinders, whereas the coil block consists of
interconnected beads. The interactions between the constituents are based on local
densities. This facilitates an efficient Monte-Carlo sampling of the phase space. I verify
the applicability of the model and the simulation approach by means of several examples.
I treat pure rod systems and mixtures of rod and coil polymers. Then I append coils to
the rods and investigate the role of the different model parameters. Furthermore, I
compare different implementations of the model. I prove the capability of the rod-coil
block copolymers in our model to exhibit typical micro-phase separated configurations
as well as extraordinary phases, such as the wavy lamellar state, percolating structures
and clusters. Additionally, I demonstrate the metastability of the observed zigzag phase
in our model. A central point of this thesis is the examination of the phase behavior of
the rod-coil block copolymers in dependence of different chain lengths and interaction
strengths between rods and coil. The observations of these studies are summarized in a
phase diagram for rod-coil block copolymers. Furthermore, I validate a stabilization of
the smectic phase with increasing coil fraction.

In the second part of this work I present a side project in which I derive a model
permitting the simulation of tetrapods with and without grafted semiconducting block
copolymers. The effect of these polymers is added in an implicit manner by effective
interactions between the tetrapods. While the depletion interaction is described in an
approximate manner within the Asakura-Oosawa model, the free energy penalty for
the brush compression is calculated within the Alexander-de Gennes model. Recent
experiments with CdSe tetrapods show that grafted tetrapods are clearly much better
dispersed in the polymer matrix than bare tetrapods. My simulations confirm that
bare tetrapods tend to aggregate in the matrix of excess polymers, while clustering is
significantly reduced after grafting polymer chains to the tetrapods. Finally, I propose
a possible extension enabling the simulation of a system with fluctuating volume and
demonstrate its basic functionality. This study is originated in a cooperation with an
experimental group with the goal to analyze the morphology of these systems in order
to find the ideal morphology for hybrid solar cells.



Zusammenfassung

In dieser Arbeit präsentiere ich ein neues vergröbertes Modell, das geeignet ist das
Phasenverhalten von Rod-Coil-Blockcopolymeren auf mesoskopischen Längenskalen zu
untersuchen. In diesem Modell werden die Rods durch harte Spherozylinder dargestellt,
während der Coilblock aus miteinander verbundenen Perlen besteht. Die Wechsel-
wirkungen zwischen den Bestandteilen basiert auf lokalen Dichten. Dies ermöglicht ein
effizientes Monte-Carlo-Sampling des Phasenraumes. Ich überprüfe die Anwendbarkeit
des Modells und des Simulationsansatzes anhand mehrerer Beispiele. Ich behandle
reine Rodsystemen und Mischungen von Rod und Coil Polymeren. Dann füge ich Coils
an die Rods an und untersuche die Rolle der verschiedenen Modellparameter. Des
Weiteren vergleiche ich verschiedene Umsetzungen des Modells. Ich belege die Fähigkeit
der Rod-Coil-Blockcopolymere in unserem Modell typische mikrophasenseparierte
Konfigurationen, sowie außergewöhnliche Phasen wie den wellenförmig lamellären
Zustand, perkoliernde Strukturen und Cluster aufzuweisen. Darüber hinaus zeige ich die
Metastabilität der beobachteten Zickzack-Phase in unserem Modell. Ein zentraler Punkt
dieser Arbeit ist die Untersuchung des Phasenverhaltens der Rod-Coil-Blockcopolymere
in Abhängigkeit unterschiedlicher Kettenlängen und Wechselwirkungsstärken zwischen
Rods und Coils. Die Beobachtungen dieser Studien sind in einem Phasendiagramm
für Rod-Coil-Blockcopolymere zusammengefasst. Darüber hinaus bestätige ich eine
Stabilisierung der smektischen Phase mit zunehmendem Coil Anteil.

Im zweiten Teil dieser Arbeit präsentiere ich ein Nebenprojekt, in dem ich ein Modell
herleite, das die Simulation von Tetrapoden mit und ohne aufgepfropfte halbleitende
Blockcopolymere ermöglicht. Die Wirkung dieser Polymere wird auf implizite Weise
durch effektive Wechselwirkungen zwischen den Tetrapoden hinzugefügt. Während die
Verarmungs-Wechselwirkung näherungsweise im Asakura-Oosawa Modell beschrieben
wird, errechnet sich die freie Energie Strafe für die Kompression der Bürsten innerhalb
des Alexander-de Gennes Modells. Jüngste Experimente mit CdSe Tetrapoden zeigen,
dass gepfropfte Tetrapoden eindeutig viel besser in der Polymermatrix dispergiert sind
als blanke Tetrapoden. Meine Simulationen bestätigen, dass blanke Tetrapoden dazu
neigen in der Matrix überschüssiger Polymere zu aggregieren, während die Cluster-
bildung deutlich reduziert wird, wenn Polymerketten auf die Tetrapoden gepfropft
werden. Schließlich schlage ich eine mögliche Erweiterung vor, welche die Simulation von
Systemen mit schwankendem Volumen ermöglicht und demonstriere ihre grundlegende
Funktionalität. Diese Studie ist in Kooperation mit einer experimentellen Arbeitsgruppe
mit dem Ziel entstanden, die Morphologie dieser Systeme zu analysieren, um die ideale
Morphologie für Hybrid-Solarzellen zu finden.



국국국문문문초초초록록록

본 논문에서는 로드-코일 블록 공중합체의 상거동을 연구하는데 적절한 대단위 모형
을 개발한다. 이 모형에서 로드는 강체 구원기둥으로 표현하고, 코일은 서로 연결된
구들로 나타내며, 구성요소 사이의 상호작용은 국소 밀도에 의해 결정된다. 이러한
모형을 이용하면 위상 공간상의 몬테카를로 샘플링을 효율적으로 할 수 있다. 본 연
구에서는 위와 같은 시뮬레이션 방법을 여러가지 계에 적용하였다. 로드로만 이루어
진 계와 로드-코일의 혼합물로 이루어진 계 뿐만이 아니라, 로드에 코일을 붙여서 여
러가지 모형 매개변수의 역할에 대해 연구한다. 이 모형을 구현하여 로드-코일 블록
공중합체의 전형적인 상 분리 현상 뿐 아니라 물결무늬 라멜라 상태, 퍼콜레이팅 구조
와 클러스터 등의 새로운 상도 보일 수 있다. 또한 지그재그 상의 준안정성도 보일 수
가 있다. 이 논문에서 가장 중점적인 내용은 사슬의 길이, 로드와 코일 사이의 상호작
용 세기에 따른 로드-코일 블록 공중합체의 상분리 현상 변화를 관찰하는 것이다. 그
결과는 본문의 상평형도에 요약되어 있다. 코일의 분율이 증가함에 따라 스멕틱 상의
안정성이 높아지는 현상 역시 설명할 수 있다.

본논문의두번째부분에서는반도전성접목블록공중합체의유무에따른네발입

자의 시뮬레이션 방법을 설명한다. 이들 고분자의 효과는 네발입자 사이의 상호작용
에 의해 간접적인 방법으로 결정된다. 아사쿠라-오사와(Asakura-Oosawa) 모형에서 비
움 상호작용이 근사적 방법에 의해 표현되지만, 알렉산더 드장(Alexander-de Gennes)
모형을 이용하면 브러쉬 압축에 따른 자유에너지 페널티를 계산할 수 있다. CdSe 네
발입자를 사용한 최근의 실험에 따르면 고분자 기질에 접목된 네발입자의 순수한 네

발입자에 비해 잘 퍼지는 것으로 나타났다. 따라서 본 연구에서는 고분자 기질 내에
서 네발입자가 서로 뭉쳐 있다가 고분자에 접목되면서 뭉치는 현상이 줄어듦을 확인

한다. 위와 같은 연구는 부피가 변화하는 계에 대한 시뮬레이션으로 확장할 수 있고,
또한 그 기본 기능들을 보일 수 있다. 본 연구는 복합태양전지를 위한 이상적인 구조
를 갖는 물질을 찾기 위한 실험 그룹과의 협력으로 이루어졌다.
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In this introductory chapter we first give the motivation for this thesis.
Then we present a general introduction to polymers before we introduce
basic polymer models. Afterwards, we discuss the phases different
polymer systems may exhibit. Finally, we introduce basic concepts of
computer simulations before we emphasize the role of rod-coil block
copolymers for photovoltaic devices.



1 Introduction

1.1 Motivation

In this thesis we present a model to study the self-assembly of rod-coil block copolymers
using Monte-Carlo simulations. Such systems have a much higher phase diversity than
conventional flexible diblock copolymers. Although, they are extensively studied they
are by far less well understood [141, 191]. So far, not all of the large number of self-
assembled structures produced in experiments [141, 157] are specified in theoretical
studies [141, 191, 243, 280]. There are still very few computer simulations on this
topic [11, 12, 42, 50, 59, 103, 110, 115, 124, 156, 208]. With our study we want to
contribute to a deeper understanding of the phase behavior of rod-coil block copolymer
systems.

The investigation of conjugated rod-coil block copolymers forming structures on
a nanometer scale with optimized domain sizes and large interface areas is not only
of academic interest, but highly relevant from a technological point of view. Former
studies show that the existence of domains with a size comparable to the exciton
diffusion length is highly beneficial for the efficiency of light-emitting or photovoltaic
devices [98, 188, 222, 296]. Conventionally, techniques such as spin coating are used
to deposit the most commonly used thin multilayer films on substrates. A major
disadvantage of such deposition methods is that they are highly non-equilibrium processes.
Drawbacks of these non-equilibrium states are that their structures have a limited lifetime
due to interdiffusion at higher temperatures and are hard to control, since they depend
critically on details of the fabrication process [108, 258]. That motivates the research on
alternative systems that spontaneously form the desired nanostructures as equilibrium
states.

Promising candidates are block copolymers with two covalently linked compo-
nents [63, 108, 141, 157, 188, 189, 222, 231, 253, 254, 258]. These π-conjugated polymers
are often rigid and can add various functionalities, like photophysical properties, to the
supramolecular materials. The stiffness asymmetry between rigid rod and flexible coil
blocks influences the details of molecular packing and so imparts a microphase separation
into a variety of nanostructures with tunable morphologies already at relatively low
molecular weight [141]. The much richer phase behavior of rod-coil block copolymers
can be exploited to design functional materials with adjustable properties and, thus, to
achieve low-cost, large-area electronic devices [62]. Former works demonstrate that a
variation of the rod to coil volume ratio allows a precisely controllable manipulation of
the supramolecular structures desired for such devices [141]. Therefore, this ratio is an
important parameter for our simulations.

This thesis is structured as follows. After a short introduction to polymers, their
general phase behavior and examples for their application in this chapter we give a short
overview over research on polymers done so far in the next chapter. In Chapter 3 we
introduce the model we use to represent the rod-coil block copolymers in our simulations.
In Chapter 4 we investigate the role and interplay of the model parameters before we
present the phase diagram and some further results in Chapter 5.

In the second part of this work we simulate tetrapod/polymer mixtures. After
reviewing some selected work in Chapter 6 we explain the used model in Chapter 7. In
Chapter 8 we present the results of our simulations. Finally, we summarize our results
in Chapter 9 and give an outlook on future work.

4



1.2 Introduction to polymers

1.2 Introduction to polymers

In this section we present general properties of polymers. Polymers are large molecules
or macromolecules for their part consisting of multiples of repeated, simpler units called
monomers. The process of monomer molecules forming polymer chains in a chemical
reaction is called polymerization. The usually very long chains of polymers often mainly
consist of carbon atoms. Polymers containing only one type of monomer are called
homopolymers. If the chains consist of different types of monomer units they are denoted
as copolymers. A series of identical monomers is called a block. Copolymers with two or
three distinct blocks are denoted as diblock or triblock copolymers, respectively. If the
number of blocks is unambiguous they are usually only called block copolymers. Very
short polymers are referred to as oligomers. Translated literally from the ancient Greek
polymer means “many parts”, whereas oligomer would translate to “a few parts”.

A distinction is made between natural and synthetic polymers. While natural
polymers, such as nucleic acids, DNA and proteins play a crucial role in living things,
synthetic polymers like plastics and rubbers are of high importance for our everyday life.
Beside linear chains there are several other architectures, such as star polymers, brush
polymers, cyclic polymers or other branched structures. In most syntheses a lot of effort
is put into the control of branching during the polymerization, which may otherwise
occur randomly. In copolymers the monomers may arrange in different structures, for
example, as alternating, grafted, statistical, periodic or block copolymer. A selection of
polymer architectures is displayed in Figure (1.1).

Polymers differ greatly in their properties. A main point of distinction is the
stiffness of a polymer, which has a strong influence on the phase behavior of the system.
The stiffness of a polymer chain is characterized by its persistence length. Flexible
homopolymers commonly have a persistence length of around one nanometer, while it is
about ten to hundred nanometers for rod-like polymers [45]. The combination to rod-coil
block copolymers is found to be very beneficial and, thus, of great interest. Figure (1.2a)
summarizes a number of exemplary structures for rigid and flexible polymers, which may
be combined to conjugated rod-coil block copolymers in various combinations. The two
major synthesis methods, grafting-from and grafting-onto, some possible morphologies
and potential applications of rod-coil diblock copolymers are illustrated in Figure (1.2b).

There are several length scales in a polymeric system. The smallest length scale is
the microscopic length scale. It reaches from the bond length between the atoms of one
Angstrom to the persistence length of a single chain, which is around one nanometer.
The mesoscopic length scale starts at a few nanometers and ends at several hundred
nanometers. The extension of a single polymer and the average distance between
polymers falls in this range. The macroscopic length scale is of the size of the sample. In
most cases this are several centimeters. Macroscopic objects are visible with the naked
eye.

The size of materials like biomolecules, colloids, liquid crystals and polymers approx-
imately ranges from a few nanometers to a micron. The predominant physical behaviors
occur at an energy scale comparable with room temperature thermal energy. Therefore,
the macroscopic behavior of these materials may be determined by the properties and
interactions of their mesoscopic structures.

5



1 Introduction

Figure 1.1 Polymer architectures. Homopolymers consist of only one monomer type A.
Diblock and triblock copolymers have a second and third monomer type labeled as B
and C. Here all blocks are drawn as flexible coil blocks. But either block may also be a
rigid rod block. Other structures like brush, star and cyclic polymers or combined and
more complex structures are possible.

Homopolymer A−A−A− · · · −A−A−A

Diblock copolymer

Triblock copolymer

A−A−A− · · · −B −B −B

A−A−A− · · · −B −B −B − · · · − C − C − C

Brush polymer

Star polymer

Cyclic polymer

6



1.2 Introduction to polymers

Figure 1.2 (a) A small selection of numerous polymers used for conjugated rod-coil
block copolymers. (b) Synthesis methods, morphologies and applications of conjugated
rod-coil block copolymers. Both from [157].

(a)

(b)

7



1 Introduction

1.3 Polymer models

Since polymers are very large molecules and a system often contains a huge amount of
polymers the properties of such systems can not be determined deterministically. Hence,
a statistical approach is needed. A lot of different models have been developed to study
the characteristics of polymers. In this section we introduce a few basic concepts used in
these models and some theories for coil-like polymers and polymer solutions. Theories
for rod-like polymers and rod-coil block copolymers are described in Chapter 2.

Coil-like polymers are usually modeled as continuous flexible chains, connected
spheres or monomers with no volume. Depending on the polymer composition systems
with coil-like polymers show a versatile phase behavior. It is obvious that homopolymers
behave differently than complex polymer brushes or star polymers. In this work we
only treat diblock copolymers with two incompatible blocks. The phases these coil-coil
diblock copolymers may exhibit are described in the following section. More information
can be found in the relevant literature [65, 72, 217].

A polymer chain may be modeled as ideal or real chain. In real chain models
monomers avoid each other reducing the conformational possibilities of the chain. This
effect is often modeled using an excluded volume interaction. Especially for lattice
models this is implemented as a self-avoiding random walk.

Models using ideal chains assume that the monomers have no interaction and may,
therefore, overlap. The most prominent ideal chain models are the Gaussian chain
model, the freely-jointed, freely-rotating and the worm-like chain model. In the freely-
jointed chain model a polymer consists of a given number of linearly connected fixed
length segments. All of these segments are freely movable and the polymer can be
described by a simple random walk. These ideal chains are often referred to as Gaussian
chains. The freely-rotating chain model additionally takes into account that adjacent
polymer segments prefer a fixed bond angle. In further improved models the angles are
characterized by rotational energy potentials. The worm-like chain model is a continuous
model describing the behavior of semi-flexible polymers. The model is based on the idea
that bending a polymer requires energy. An important parameter for this model is the
persistence length, which is a measure for the stiffness of a polymer. At a length scale
below the persistence length the polymer is almost rigid.

A concentrated solution that contains no more solvent and is composed solely of
polymer chains is called a polymer melt. A particular feature of such polymer chains
is that their confirmation on large scales can approximately be described by an ideal
Gaussian chain [65]. For other polymer solutions its behavior often strongly depends on
the solvent, at which one mainly distinguishes between good, poor and Θ-solvent. A
coil-like polymer will contract in a poor solvent, while it will expand in a good solvent.
In a Θ-solvent, or more precisely at the Θ-point, excluded volume interactions are
neutralized and polymer coils act like ideal chains.

There are plenty of studies on coil-like copolymers [26, 33, 94, 95, 106, 146, 162,
173, 194, 223, 258]. A good review is for example given by Tseng and Darling [260].
Here, we mention some prominent theories and models for such polymers. The different
approaches differ hugely in their complexity. Some models are only suitable for very
coarse models, while others are very detailed and complex representations of the polymer
systems.
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1.3 Polymer models

Self-consistent field theories are closely related to the mean field approach [74, 82,
146, 170, 171, 173, 183, 227, 243, 299]. The basic idea is that the distribution of the
monomers is determined by a potential which itself depends self-consistently on the
positions of the particles. The equations of this theory can usually only be solved
numerically and become exact in the limit N → ∞ [228]. There are also lattice-based
self-consistent field theories [224, 225]. But it is known that they are not well suited
for the nonlamellar structures exhibited by block copolymers due to the geometric
constraints associated with a lattice [173].

A prominent approach to describe polymer solutions is the Flory–Huggins theory [78,
118]. Originally it is derived for a lattice model but there are numerous improved versions
for off-lattice models [77, 82, 156, 228] and extended approaches describing rod-coil
block copolymers [101, 172, 184, 208].

An important formula in this model is the change of the Gibbs free energy ∆G
which is of high importance for thermodynamic effects. Its final form reads

∆G = RT

(

φA

NA

ln (φA) +
φB

NB

ln (φB) + χφAφB

)

(1.1)

where R is the gas constant, T the temperature, Nα and φα are the number and the
volume fraction of the components α = A or B and χ is the Flory-Huggins parameter.
This parameter takes the enthalpic incompatibility of the two components into account.
It is given by

χ =
z

kBT

(

ǫAB − 1
2

(ǫAA + ǫBB)
)

(1.2)

with z being a characteristic of the lattice, kB the Boltzmann constant and the ǫαβ

correspond to the interaction energies between neighboring monomers on the lattice. The
Flory-Huggins χ-parameter for polymer solutions is temperature dependent following
the formula

χ =
a

kBT
+ b (1.3)

where a and b are numerical values which differ for each system. The Flory-Huggins
interaction can be measured from experiments, as for example done by Olsen et al.
[191], for a given rod-coil block copolymer system. A positive value of χ indicates an
unfavorable interaction between the different polymer segments, whereas the mixing is
favorable for negative χ values [20].

The Edwards model [72] is used as basis for the interactions with coils in this thesis.
We describe the model in more detail in Section 3.4.2 on page 58. Here, we just give a
brief overview. In the Edwards model the polymer coil is represented as elastic string
with Gaussian statistics. Especially in coarse-grained models in the majority of cases
a discretized chain model is used. This way the volume interaction can be related to
local number densities of the chain monomers. Thus, a fast sampling is possible while
preserving the feature of the chains that they are self-repelling, but not self-avoiding.
This is characteristic for ideal chains without excluded volume. The model is widely
used to study block copolymers and polymer brushes [24, 25, 75, 137, 210, 238, 284].

There are a lot of different models which are capable to represent rod-like polymers
in theories and simulations. Basic theories profit from the ease of a simple representation
allowing an analytically closed or otherwise beneficial description of rods and their
behavior. Models with a more realistic representation and behavior are often much
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harder to compute. On the side of simulations computer power has always been a
limiting factor, therefore, often only very simple systems can be computed. A lot of
studies concentrate on small and mostly two-dimensional systems [21, 53, 101, 235]
often combined with oversimplifications such as the restriction to parallel orientated
rods [54, 239, 255, 271] or lattice models [1, 79, 138, 139, 233, 283]. A lot differently
shaped prolate and oblate particles are used to simulate anisotropic particles. Starting
with simple rods [86, 200, 207] more complex shapes like ellipsoids [6, 35, 36, 47, 89,
202, 219, 229], discs [40, 185], dumbells [219], cylinders [270] and, as in this work,
spherocylinders are used to represent stiff polymers. For each of these particle shapes
a variety of different interaction and simulation models can be used. Some models for
rod-like polymers are mentioned in the following chapter.

1.4 Polymer phases

In this work we investigate the phase behavior of different polymers. Most of these
polymers consist of different components with unequal properties. Isolated each of
these components would show a more or less wide variety of diverse phases. If one
combines these polymers single phases may be suppressed, strengthened or new phases
may develop. In this section we introduce some of the most prominent polymer phases.

1.4.1 Coil-coil copolymer phases

At first we discuss phases of block copolymers consisting of two flexible, immiscible
blocks. To characterize the copolymers we first introduce some parameters. If we assume
that our diblock copolymers consists of two dissimilar blocks labeled A and B the volume
fraction of polymer A is usually denoted by

fA = φA =
VA

VA − VB

(1.4)

and the volume fraction of polymer B by

fB = φB = 1 − φA. (1.5)

In most cases the incompatibility between these two blocks is characterized by
the Flory-Huggins parameter χ. Due to the incompatibility between the blocks these
copolymers can microphase separate to form periodic structures. The morphology
depends on both the volume fraction f and the interaction strength. Figure (1.3) shows
typical phases and a phase diagram for block copolymers. Note that the phase diagram
is symmetric around a fraction f of 0.5. For very low interaction strength only the
disordered phase exists. For higher χ values more phases appear. An exemplary order of
occupied phases is illustrated in Figure (1.3b). These phase occur in a range of around
twenty to forty for χN in the phase diagram imaged in Figure (1.3a). Starting from
a spherical phase with increasing volume fraction at first a cylindrical, then a gyroid
and finally a lamellar phase can be found. If the volume fraction increases further the
phases recur in a symmetric manner.
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1.4 Polymer phases

Figure 1.3 (a) Mean-field phase diagram. Here f denotes the fraction of the A block
and χN is the product of the Flory-Huggins parameter χ and the number of segments N .
The shown phases are disordered (DIS), close-packed spheres (CPS), bicontinuous Ia3̄d
cubic (QIa3̄d), lamellar (L), hexagonal cylinders (H) and bcc spheres (QIm3̄m). From [173].
(b) Some phases of a coil-coil diblock copolymer as formed by self-assembly in the bulk
with increasing volume fraction fA of the A block. From [33].

(a) (b)

1.4.2 Phases of rod-like polymers

Polymers with a high inherent chain stiffness show a completely different phase behavior.
Stiff polymers are most commonly represented by hard, elongated particles of different
shape. Their shape anisotropy, density, interactions and other properties cause them to
form liquid crystal phases in solution. These phases are located between the solid and
the fluid state and are neither liquid nor crystalline. For this reason they are called liquid
crystal phases or mesophases. The simplest example are hard spheres. Distributing them
randomly at different densities they may end up in a fluid or a crystalline state. For
anisotropic particles on the other side several additional phases may exist at intermediate
densities.

Liquid crystals can be classified into two main categories: thermotropic and lyotropic
liquid crystals. The phase transitions of thermotropic liquid crystals are primary induced
by temperature. The molecules in lyotropic liquid crystals consist of two distinct
parts, which in most cases are a nonpolar tail and a polar head group. The phase
transitions depend on both temperature and solvent concentration, where the latter is
the predominant parameter.

In the following, we describe some phases of thermotropic liquid crystals, which are
sketched in Figure (1.4). In the liquid or isotropic phase (I) there is neither a positional
nor an orientational order. Because of its lack of long-range order the isotropic phase
is said to have zero-dimensional order. At lower temperatures the nematic phase (N)
with one-dimensional order appears. This means that a nematic has a high long-range
orientational order, but no positional order. In other words, while the long axes of the
nonspherical component particles are oriented around a preferred axis the center of
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mass positions are randomly distributed as in a liquid. This preferred axis is called
the director and indicated by the vector n. The smectic phases are found at lower
temperature and form well-defined layers which are characterized by the layer normal
vector k. The molecular packing within the layers is liquid-like and has no long range
positional order. Similar to the behavior of a soap the layers can slide over one another.
The layered structure and the parallel orientation of the molecular axes leads to a
two-dimensional order. There are different smectic phases of which we will only mention
two. In the smectic A phase (SmA) the molecules are on average oriented along the
layer normal k, while the director n is tilted by an angle θ relative to the layer normal k
in the smectic C phase (SmC). The solid or crystalline phase (C) is characterized by a
periodic positional and orientational long-range order of the constituents. This phase is
stable for low temperatures and there are only thermal vibrations about the equilibrium
positions. The solid phase has a three-dimensional order. Further phases exist, but
will not be described within this work. We just note that the formation of curved
interfaces is strongly hindered because of the preferred parallel arrangement of the rigid
rods [141]. Studies show that the nematic, smectic A and smectic C phases do not need
any attractive interactions, but can be obtained from purely packing effects [239].

Figure 1.4 Liquid crystal phases in dependence of the temperature. At high tempera-
tures the system is isotropic. With decreasing temperature the system first becomes
nematic, then smectic and finally crystalline. The vector n denotes the director of the
system and the layer normal is represented by the vector k. In the smectic C phase the
director is tilted by an angle θ relative to the layer normal.

Isotropic Nematic Smectic A Smectic C Crystalline

Temperature

k nk n θn

The phase behavior of lyotropic liquid crystals is more diversified, which comes
not solely from the fact that the solvent concentration introduces an additional degree
of freedom. Lyotropic liquid crystals are often composed of amphiphilic molecules
with a hydrophilic head-group attached to a hydrophobic group. An exemplary phase
diagram of an amphiphilic system imaging higher-ordered phases in dependence of
the temperature and the amphiphile concentration is illustrated in Figure (1.5). The
phases are similar to the phases observed for immiscible diblock copolymers displayed
in Figure (1.3).
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1.4 Polymer phases

Figure 1.5 Schematic of lyotropic phases as a function of amphiphile concentration and
of temperature. Starting from micelles an increase in amphiphile concentration leads to
a micellar cubic phase (I1). For even higher concentrations the hexagonal phase (HI),
the bicontinuous cubic phase (VI) and the lamellar phase (Lα) can be found. From [285]

1.4.3 Rod-coil block copolymer phases

In contrast to flexible coil-coil block copolymers rod-coil block copolymers have substan-
tial packing problems in the microphase-separated state [45]. As we have seen rod-like
and coil-like polymers show a different phase behavior. As rod-coil block copolymers
both components are chemically bound to each other and, therefore, can not segregate
anymore. Hence, a macroscopic phase separation is inhibited [227]. Nevertheless, the
local packing effects of the rods enforce the formation of liquid crystalline or even
semi-crystalline order in the rod domains. Simultaneously, the incompatibility between
the chemically different monomers results in a conformational entropy of the coils. The
interplay between these two effects can lead to morphologies that are distinctly different
from those exhibited by coil-coil diblock copolymers [131]. Thus, the observed phase
behavior is much richer than that of pure rod polymer and coil-coil diblock copolymer
systems, but it is far less understood.

Figure (1.6) shows the molecular packing of possible rod-coil block copolymer
microphases. The isotropic and nematic phases do not differ much from the corresponding
liquid crystal phases. For a very high coil fraction a hockey puck phase is predicted [286].
The smectic phases may occur in monolayers or bilayers. The arrowhead, zigzag and a
wavy lamellar phase, which is not illustrated here, are found by several groups [44, 45,
156, 226]. The zigzag phase is also called chevron phase, whereas the arrowhead phase
is sometimes referred to as smectic O phase.
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Figure 1.6 Illustration of some rod-coil block copolymer microphases. For low densities
or high temperatures we have an isotropic phase. The nematic phase has a slightly
higher degree of order. For very high coil fraction a hockey puck phase may be observed.
In the arrowhead or smectic O phase the layers are tilted contrariwise. The smectic
phases can be found in monolayer or bilayer structures. The zigzag phase is sometimes
also referred to as chevron phase.

Isotropic Nematic Hockey puck

Monolayer SmC Monolayer SmA Bilayer SmA

Arrowhead

Zigzag

More phases, including transmission electron microscopy images, and a phase dia-
gram for self-assembled rod-coil block copolymers are illustrated in Figure (1.7). Note
that the phase diagram is not symmetric, as it is for coil-coil block copolymers (see Fig-
ure (1.3)). In addition to the already mentioned phases, we see a spherical and a
hexagonal columnar phase for high coil fraction.

1.4.4 Measuring methods

There are plenty of techniques to characterize polymers, identify their morphology
or determine other properties of interest. We only mention a couple of them here.
The transmission electron microscopy (TEM) creates an image from the interaction of
electrons, which are transmitted through the sample. Atomic force microscopy (AFM)
images are generated by measuring the deflection of a sharp tip, which is at the end
of a cantilever, with the sample surface. X-ray scattering is a non-destructive method
gaining structural informations by observing the scattered intensity of a X-ray beam in
dependence of, for example, the scattering angle or energy. One distinguishes between
small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). A similar
technique is the neutron scattering, where neutrons are used instead of X-rays. Typically,
small-angle neutron scattering (SANS) is used. In a lot of cases several methods have to
be combined to gather all informations needed to fully characterize a polymer.
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1.5 Computer simulations

Figure 1.7 Phase diagram for self-assembled rod-coil block copolymers. Each phase is
displayed schematically and with a transmission electron microscopy image. The rod
volume fraction is plotted against the Flory-Huggins χ-parameter times the number of
segments N . From [220].

1.5 Computer simulations

In this section we give an overview over different computer simulation methods. The
importance of computer simulations increased significantly during the last years. In
the past, theories tried to describe experimental results and make predictions, which
were tested by further experiments. The investigation of systems too complicated to
calculate analytically, too hard to realize in experimental setups or too expensive were
beyond reach. With the availability of computers and the accompanying development
of new methods such systems became accessible. Due to the fast increase in computer
power more complicated, detailed and bigger systems can be computed. Therefore,
the implementation of such calculations rapidly gains importance in science. While
comparisons with experimental results are still of paramount importance, computer
simulations can help to encourage an intelligent and efficient selection of interesting
systems to investigate in detail.

As computational power is still limited, it is often necessary to use advanced
methods and it is not yet practicable to simulate systems efficiently on all length and
time scales. Commonly methods such as Molecular Dynamics (MD), Dissipative Particle
Dynamics (DPD), the Lattice-Boltzmann method and Monte-Carlo simulations (MC)
are used [9, 10, 85, 135]. These methods are usually combined with highly developed
algorithms [90, 273, 281] and approaches such as the so-called coarse-graining [36, 83,
130, 166, 227].

The basic idea behind coarse-graining is to concentrate on the important parameters
of the system. This is done by combining different parameters to reduce the number
of degrees of freedom in the system. Depending on the goal of the study this can be
done on different levels. For a realistic model on the atomistic level all atoms and
molecules have to be taken into account. Models on the microscopic and mesoscopic
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level simplify the structure of molecules and combine several atoms to one particle.
On the macroscopic scale single particles are not considered anymore, but the systems
are described by continuum models. Figure (1.8) shows a schematic of a complicated
polypeptide, which is replaced by a hard spherocylinder in the coarse-grained model.

Figure 1.8 Example of a coarse-grained polymer. The relatively rigid polypeptide
poly(γ-benzyl-L-glutamate) is represented by a hard spherocylinder of length L and
diameter D. From [292].

In this work we investigate the self-assembly of rod-coil block copolymers. Our
model has to account for the possibility of local orientational and crystalline order of the
rigid domains, as well as for the conformational degrees of freedom of the coil domains.
To ensure that we capture the relevant physics we treat both domains at different
coarse-graining levels. The rods are modeled as hard spherocylinders and their extended
size is explicitly taken into account. The coils are represented by monomers connected
via flexible chains. Their interactions are implemented via an Edwards Hamiltonian,
which depends on local densities [72, 82, 228]. The interactions between rods and coils
are defined in terms of a density functional. This way an efficient Monte-Carlo sampling
of the configurations is feasible.

1.6 Photovoltaics

In this section we highlight possible applications of the systems studied in this thesis.
One application for conjugated rod-coil block copolymers are optoelectronic devices.
Compared to inorganic solar cells the advantages of these devices are their mechanical
flexibility, the light weight, the feasibility of chemical modifications and their easy and
cheap processing. Their properties are especially advantageous for the use in organic
photovoltaic devices. Such devices convert light into direct current. The four steps
involved in the fundamental mechanism converting photons to electrons in an organic
solar cell are displayed in Figure (1.9).

The illustrated device consists of two regions. Both regions have a highest occupied
molecular orbital (HOMO) and a lowest unoccupied molecular orbital (LUMO). The
material with the energetically lower LUMO level is called electron acceptor, while the
material with the higher LUMO level is the electron donor. Donor materials are often
conjugated polymers.
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Figure 1.9 Illustration of the four steps of photon to electron conversion in an organic
solar cell. (i) Photon absorption. (ii) Exciton diffusion. (iii) Charge separation.
(iv) Charge collection. The single steps and meanings of the efficiencies η are explained
in detail in the text. From [247].

At first, the absorption of a photon creates an excited state. The photon en-
ergy Ephoton has to be high enough to excite an electron from the HOMO to the LUMO
of the active layer

Ephoton =
ch

λphoton

≥ Eg = ELUMO − EHOMO (1.6)

where c is the speed of light, h the Planck constant and λphoton the wavelength of the light.
The band gap energy Eg is defined as the difference between the LUMO and HOMO
energies. In most organic photovoltaic devices the band gap energy is between one and
four electronvolts. The resulting excited state is a coulombically bound electron-hole
pair, a so-called exciton, or more precisely, a Frenkel exciton [111]. Here, we assume
that the excitons are generated in the donor phase, which is usually the case.

But not all photons are absorbed in the material. In order to be absorbed photons
have to traverse a certain thickness of active layer. Therefore, a thickness on the order
of 100 nm and above is needed. Above the LUMO there is a continuum of states. If the
energy of the photon is higher than the band gap energy Eg the excited electron will
undergo thermal relaxation until the LUMO level is reached. The energy difference is
lost as heat. Choosing appropriate materials may reduce this loss. The ratio of absorbed
photons to the total incident photons is characterized by the absorption efficiency ηA.

In the second step this exciton must diffuse to the interface between electron donor
and acceptor, where a charge separation occurs. Since the exciton only has a limited
lifetime this interface must be reached before the exciton can recombine to the ground
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state. This happens after a diffusion length LD, which usually is around 10 nm in
organic materials [296]. From experience it is known that domain sizes should be slightly
greater than the exciton diffusion length. Therefore, small domain sizes below 20 nm are
preferable. The ratio of the excitons that reach the interface to the number of generated
excitons is defined as exciton diffusion efficiency ηED.

In the third step the exciton at the donor-acceptor interface gets into a charge-
transfer state. In this state there is still a chance that the electron and the hole can
recombine. The charge separation efficiency ηCS describes the ratio of the number of
excitons that have undergone the charge-transfer process to the number of excitons that
have reached the donor-acceptor interface. The charge-transfer state is an intermediate
state just before the electron and the hole are separated [201]. The process of charge
separation is called exciton dissociation [18]. The energy difference between the LUMO
levels must be greater than the exciton binding energy Eexciton

binding to ensure the built-in
internal field is strong enough to break up the exciton into free carriers

Edonor
LUMO − Eacceptor

LUMO ≥ Eexciton
binding . (1.7)

The selection of proper materials influences the binding energy of excitons. It is
known that π-conjugated materials have large binding energies. In organic materials it
is typically about one electronvolt [111], which is much lower than the thermal energy
at room temperature being approximately 25 meV. This is a principal difference to
inorganic photovoltaic devices, which have a much lower exciton binding energy so a
spontaneous charge separation may already be achieved at room temperature [33].

In the last step the free electrons and holes are transported to their respective
electrodes through the acceptor and donor phases, respectively. This is only possible if
there is a pathway from the interface to the corresponding electrode. Therefore, the
formation of continuous morphologies is inevitable. The ratio of carriers that reach the
electrodes to the number of excitons that have undergone the charge-transfer process is
defined as charge collection efficiency ηCC.

In summary, we can conclude that the choice of suitable materials is of crucial
importance when engineering efficient photovoltaic devices. Not only the energy levels
have to fulfill the requirements, but also the phase behavior must be readily controllable,
since the most important parameter remains the size of the domains. The film must be
thick enough to absorb a proper amount of photons and at the same time thin enough so
the excitons can reach the interface before they recombine. For an efficient dissociation
large donor-acceptor interfaces are needed. For this purpose the size of the domains
has to be minimized. On the other hand percolating, ideally bicontinuous structures
are required to efficiently transport holes and electrons from the interfaces to their
appropriate electrodes [13]. The formation of isolated donor or acceptor domains, where
charges can be trapped, should be avoided. But morphologies with all these properties
are very difficult to realize.

Not only the fabrication and the processes during the synthesis [91, 117, 157, 193,
221, 279, 293, 302] have to be optimized, but also new techniques like nanopatterning [43,
215, 251], templating [32][295], ink jet printing [41, 107, 196], screen printing [198, 209]
or micromoulding [99, 214] have to be developed. Several approaches to engineer better
devices, such as organometallic photovoltaics [290] or nanocrystal solar cells [17, 49, 97,
98, 249] and the use of triblock copolymers [4, 59, 141, 157, 187, 246] or tetrapods [61,
81, 149, 151, 197] have been made. Among them rod-coil block copolymers are very
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promising materials forming tunable morphologies with the desired characteristics.
The use of backbone conjugated polymers is favorable as they have appropriate charge
mobilities [254] and large exciton binding energies. Because of their delocalized electronic
structures these polymers often exhibit a high stiffness. In addition, the aggregation
arising from interchain π-π-orbital interactions leads to a low solubility in organic
media [63] and unique morphologies on the nanometer scale. In the following, we
compare different morphologies and their influence on the efficiency of photovoltaic
devices.

Figure (1.10) summarizes some possible morphologies of block copolymers for photo-
voltaic devices. The bilayer morphology (a) comprises a very small interfacial area, but
provides a direct pathway between the anode and the cathode. The disordered struc-
ture (c) has the highest interfacial area of all shown morphologies, but an uninterrupted
pathway to the electrodes is very unlikely. The same drawback applies to the slightly
higher ordered morphology displayed in (d), where holes or electrons are trapped in the
isolated regions. A very common structure is illustrated in (b). The bulk heterojunction
morphology arises from the microphase separation due to the incompatibility of the
polymer blocks. It combines a big interfacial area and large structures allowing an
efficient charge separation and transport. A shortcoming of this morphology is that the
formation of the supramolecular structures is hard to control. Hence, rod-coil block
copolymers are a promising alternative to the commonly used polymer blends. They
are believed to self assemble into highly ordered structures as presented in (e) featuring
the desired properties.
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Figure 1.10 Different morphologies of block copolymers. (a) The bilayer morphology
has the smallest interfacial area, but the most direct pathways to the electrodes. (b) Bulk
heterojunctions combine a large interfacial area and large structures, but the morphology
is hard to control. (c) The disordered structure has the largest interfacial area, but it
is very unlikely that there is a pathway to the electrodes for the electrons and holes.
(d) This slightly higher ordered structure still has a big interfacial area, but most electrons
and holes will be trapped in isolated areas. (e) Block copolymer self-assembled structures
are tunable, provide a large interfacial area and continuous pathways. From [254].

The influence of the chosen polymers on the morphology and, therefore, the efficiency
of solar cells is summarized in Figure (1.11). Figure (1.11a) shows an optoelectronic
device build with coil-coil block copolymers developing a bulk heterojunction morphology.
The highly ordered morphology gained by using rod-coil block copolymers, displayed
in Figure (1.11b), would yield a much higher photocurrent. Since the domain size of
the morphology is on the nanometer scale the amount of excitons that collapse before
they can reach an interface is reduced to a minimum. Additionally, the morphology
guarantees an efficient charge transport to the electrodes.

The efficiency of photovoltaic devices can be determined from current versus voltage
curves. A typical plot including some critical values is shown in Figure (1.12). In an
ideal device the maximum power Pmax obtainable is the product of the short-circuit
photocurrent Jsc and the open-circuit voltage Voc. However, in real devices less power is
generated. The power PMPP

at the maximum power point MPP is defined, where the
product of the real current JMPP

and voltage VMPP
values reaches its maximum value.

The ratio of the real maximum power PMPP
to the theoretical maximum value Pmax is

denoted as fill factor FF. The product of FF and Pmax divided by the total power of the
incident light is the device efficiency ηeff.
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Figure 1.11 Schematics of solar cells with different morphologies. (a) Bulk heterojunc-
tion morphology as typical for coil-coil block copolymers. From [63]. (b) Rod-coil block
copolymers form a highly ordered morphology. From [231].

(a) (b)

Figure 1.12 Typical curve for the current density J plotted against the voltage V of
an organic solar cell. Critical values determining device efficiency are marked. This
includes the short-circuit current Jsc, open-circuit voltage Voc and the current JMPP

and
voltage VMPP

for the maximum power point MPP. The ratio of the outlined area defined
by the maximum power points and the product of Jsc and Voc is the fill factor FF. The
device efficiency ηeff is the product of Jsc, Voc and FF divided by the total power of the
incident light. From [231].

In this thesis we investigate the phase behavior of rod-coil block copolymers and
tetrapod/polymer mixtures. Both are potential candidates for fine-tunable systems
self-assembling into morphologies beneficial for efficient photovoltaic devices. Therefore,
we hope that the results of this work are helpful to design more efficient photovoltaic
devices such as solar cells.
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In this chapter we give a brief overview over the research related to our
work. After a brief introduction to a few models and theories which
describe rod-like polymers we concentrate on research results of pure
rod systems and rod/coil polymer mixtures. Afterwards, we review
results for rod-coil diblock copolymers. In the final section we show
some exemplary applications.
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2.1 Models and theories

In this section we present some models and theories for systems containing rod-like
particles. The interactions between rods may be modeled with soft or hard core
interactions. A prominent soft particle model is the Gay-Berne model [88]. A related
model is the hard Gaussian overlap model [36, 195]. One approach to improve these
models is to use Lennard-Jones sticks [275] to represent the linear molecules. But there
are many more models, for example, for soft spherocylinders [7, 119, 277, 301]. Hard
particle models, as used in this thesis, are also prevalent [29, 30, 147, 158, 235, 255, 266,
274, 292].

Not all studies are restricted to unary systems composed of monodisperse particles.
Some studies include polydisperse particles [19, 53] or binary [2, 19, 70, 71, 270] and
ternary [75, 216] mixtures. In other works the influence of external fields [92], such as
magnetic fields [253], is investigated. In their Monte-Carlo study Vácha and Frenkel
[265], for example, add an attractive, hydrophobic stripe at the side of their rod-like
particles. De Michele et al. [68] build chains of hard quasi-cylinders with two reactive
sides as model for DNA, which form a nematic phase for high densities. An overview over
the phase behavior of rod-like viruses, virus-sphere mixtures, charged rods, semi-flexible
rods and binary mixtures is given by Dogic and Fraden [71].

At first, we introduce some theories predicting and describing phase transitions
for systems composed of rod-like particles. Based on the used model and theory phase
transitions are found to be of first or second order. For some phase transitions it has
been ambiguous if they are of first or second order for a long time.

In his pioneering work in 1949 Onsager [192] predicts an entropy driven isotropic-
nematic phase transition for fluids of hard nonspherical particles. He introduces a now
well-accepted free-energy functional for the nematic state and is the first to propose that
orientational ordering in an athermal molecular fluid may be explained as an excluded
volume effect. The entropy of a three-dimensional gas of hard rods has two contributions:
one due to orientation ∆Sor and one due to translation ∆Str. While the first has a
very low entropy for a parallel orientation of the rods the latter one favors such an
aligned configuration since it reduces the excluded volume Vexcl to zero. The two entropy
contributions are

∆Sor = kB ln
(

ΩN

ΩI

)

∼ kB (2.1)

∆Str = −kB ln
(

1 − Vexcl

V

)

∼ kBρL
2D (2.2)

where kB is the Boltzmann constant, ΩI and ΩN give the number of orientational states
in the isotropic or nematic phase and ρ = N/V is the density of the rods with length L
and diameter D. For very low densities the orientational term wins and the system
is isotropic. At very high densities a nematic system with perfect alignment is most
favorable. Therefore, there has to be a transition between these two phases at any
point. At the isotropic-nematic transition point the two contributions of the entropy
compensate each other

∆Str +∆Sor = 0 (2.3)

and one obtains a critical density

ρc ∼ 1
L2D

(2.4)
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and volume fraction

Φc =
Vrods

V
∼ D

L
. (2.5)

Onsager thus shows that a system of infinitely long rods exhibits an isotropic to nematic
transition at a vanishingly low density.

The Onsager theory is developed at the level of the second virial coefficient, which
is directly related to the excluded volume [278]. Onsager demonstrates that the excess
free energy can be truncated at the second virial coefficient level for a fluid of rods
with large, actually infinite, length-to-width ratio. For hard spherocylinders the virial
coefficients are analytically only known up to the second order [92], but are determined
up to fifth order by several groups [34, 52, 182, 278].

In the Landau theory [93, 136, 244] of phase transitions the free energy F is expanded
as a power series in an order parameter S. Landau suggests that the free energy should be
analytic and comply to the symmetry of the Hamiltonian. For reasons of thermodynamic
stability terms of odd order in the order parameter are neglected. Since the first terms
dominate the power series, higher contributions can be truncated and, thus, it may be
written as

F = Fi +
1
2
AS2 +

1
4
BS4 (2.6)

where Fi is the free energy of the isotropic phase and A and B are coefficients which
may depend on temperature and pressure. In order to find the transition points one has
to minimize the derivative of this equation

0 = AS +BS3 (2.7)

and obtains the solutions

S = 0 (2.8)

S2 = −A

B
(2.9)

whereas the first solution corresponds to the isotropic phase while the others correspond
to the nematic phase.

Another important theory is developed by Maier and Saupe [163, 164, 165] and
widely used [36, 50, 114, 116, 160, 179, 207, 208, 213, 294]. It describes rod-like, nonpolar
molecules interacting via attractive van der Waals interactions. The anisotropy stabilizes
parallel alignment of neighboring rods. Using the mean field approximation and solving
the theory self-consistently it predicts a first-order nematic-isotropic phase transition at
a given temperature. The Maier-Saupe interaction is characterized by an interaction
parameter which is most commonly labeled µ or ω and represents the steric repulsion
between rods. The potential energy Ui of the i-th molecule in dependence of the global
order parameter S is given by

Ui(θi, S) = −AS

V 2

(

3
2

cos2 θi − 1
2

)

(2.10)

where θi is the angle between the director and the molecular axis and A is a constant.
With this the Helmholtz free energy F for N molecules can be computed as

F = U − TΣ = N 〈Ui〉 − TN

〈

Ui

T
+ kB lnZ

〉

= N

(

AS2

2V 2
− kBT lnZ

)

(2.11)
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where Σ is the entropy and Z the partition function. In the isotropic phase S is zero
and Z = 4π and hence Fiso = −NkBT ln 4π. It can be shown that for values of S greater
than 0.43 the free energy of the nematic phase is smaller than Fiso and, therefore, only
stable in this regime. The predicted phase transition at Sc = 0.43 is of first order.

Another prominent theory is the scaled particle theory [55, 56, 71, 142, 264, 278].
The basic idea is to calculate the work required to insert an additional particle at a
fixed position and so obtain the excess part of the chemical potential. This is done
by expanding, or scaling, the particle from zero to its final size. In contrast to the
Onsager approach this theory for hard rods takes the virial coefficients of third and
higher order into account in an approximate way. The scaled particle theory may also
be incorporated with other methods like Monte Carlo simulations resulting in a hybrid
method [125]. The scaled particle theory predicts a first order nematic-isotropic transition
for hard spherocylinders if L/D is smaller than 5.44 and a continuous nematic-isotropic
transition for L/D greater than 5.44 [21]. Based on this theory more sophisticated
theories like the extended scaled particle theory [121] and an extension to flexible,
worm-like chains [127, 128, 129] are developed.

Density functional theories [76, 112, 199, 291] are another type of theories. There
are several density functional theories for hard body particles [51, 92, 206, 207]. Density
functional theories exploit the fact that the Helmholtz free energy of a system can be
expressed as a functional of the density. Minimizing this free energy functional by a
variational principle an equilibrium density profile can be derived [82]. The basis for a
density field theory may for instance be a self-consistent field theory or a mean field
theory.

2.2 Pure rod systems

In this section we summarize several studies of systems only containing rod-like particles.
The group of rigid, rod-like polymers includes simple rods, cylinders, ellipsoids, sphero-
cylinders and other elongated particles. The basic phases exhibited by such particles
are introduced in Section 1.4 and summarized in Figure (1.4).

In this thesis the rods are represented by hard spherocylinders. Therefore, we put a
focus on hard spherocylinder models in this review as well. The hard spherocylinder
model consists of an impenetrable cylinder of length L, which is capped at both ends by
hemispheres. Their diameters D are the same as the diameter of the cylinder. Hard
spherocylinders combine a simple and parameter-lean interaction and a rich phase
behavior, as they are known to form nematic, smectic and crystalline phases. Another
advantage of this model is that it leads to the well-known hard-sphere model for the
isotropic limit L to zero.

Given that hard rods have a sufficient length they show liquid crystalline phase
behavior. There are several studies focusing on the nematic phase [200, 241, 282]. Using
Monte-Carlo simulations Bates and Frenkel [21] demonstrate that in a two-dimensional
hard rod fluid the length-to-diameter ratio L/D has to be at least seven to exhibit a
nematic phase. As they mention this limit is higher than in the three-dimensional case,
where the nematic phase is observed for a length-to-diameter ratio around four [29]. In
later works Frenkel et al. [84, 86] show that spherocylinders of finite length-to-width
ratio L/D may also form a smectic phase. A lot of different works demonstrate that
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hard rod systems interacting through excluded volume interactions alone can exhibit a
smectic phase [21, 54, 84, 86, 206]. Simulation results also demonstrate the existence of a
rotator or plastic phase for short spherocylinders [29, 274]. The Monte-Carlo simulations
of Casey and Harrowell [39] outline which cluster size of hard spherocylinders is sufficient
to exhibit a stable nematic or smectic phase.

One of the first studies of hard spherocylinders is done by Cotter and Martire
[57] using the scaled particle theory in 1970. They find a transition from a perfectly
aligned to a completely isotropic system resulting from packing effects alone. This
indicates that repulsive forces alone are sufficient to produce a stable aligned phase and
a first-order aligned-isotropic transition at ordinary liquid densities. Figure (2.1a) shows
the dependence of the transition free volume fractions v0 on the length-to-width ratio x.
One year later McMillan [179] propose a new model extending the Maier-Saupe model.
Within the mean field approximation this model exhibits the isotropic, nematic and
smectic A phase. The resulting phase diagram is illustrated in Figure (2.1b) where α is
a dimensionless parameter representing the interaction strength of the smectic A phase.

Figure 2.1 (a) Dependence of the transition free volume fractions v0 on the length-
to-breadth ratio x. From [57]. (b) Phase diagram for rods with a theoretical model
parameter α. On the left axis the transition temperature is plotted while the right axis
shows the transition entropy. From [179].

(a) (b)

One of the first simulations performed to study the isotropic-nematic transition
for hard spherocylinders by Vieillard-Baron [276] unfortunately failed due to lack of
computer power at this time. In his Monte-Carlo simulations of systems containing 616
hard spherocylinders with an shape anisotropy L/D equal to two and up to solid-like
densities, he does not observe any ordered liquid crystalline phases. In retrospect, this
is not surprising for such a short aspect ratio. As Bolhuis and Frenkel [29] find much
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later the smectic and nematic phases do not become stable until a shape anisotropy
of 3.1 and 3.7, respectively. Hence, Vieillard-Baron falsely concludes that the hard
spherocylinder model, in spite of its apparent simplicity, is hardly an useful reference
system for the study of the nematic phase. The attempt to study a system of 2392
molecules with a shape anisotropy of five has to be abandoned due to the inadequate
computational requirements. In a later work Frenkel [84] remark that the simulations of
Vieillard-Baron may be plagued by critical slowing-down effects due to the vicinity of
both, the isotropic-nematic and the nematic-smectic phase transitions. This may explain
the extremely long preparatory runs mentioned by Vieillard-Baron which are required
to generate an equilibrated fluid configuration when starting from the crystalline solid.

One way to circumvent the problem of limited computational power is to use
simplified models. One of these simplifications is the use of parallel hard spherocylinders.
In this model the polymers are represented by hard spherocylinders which are not
allowed to rotate. A theory of ordered phases for these systems is developed by Taylor
et al. [255] while Somoza and Tarazona [240] use a density functional approximation
to investigate a phase diagram which is illustrated in Figure (2.2a). The Molecular
Dynamics simulations of Veerman and Frenkel [271] concentrate on the nucleation
process of the parallel hard spherocylinder system. In a later simulational study Costa
et al. [54] take a deeper look at the nematic-smectic phase transition of parallel hard
spherocylinders.

With increasing computer power and the investigation of more sophisticated models
the former restrictions may be bypassed. Frenkel [84] is the first to use freely rotating
hard spherocylinders in simulations and to find ordered, liquid crystalline phases in those
systems. A few years earlier Shashidhar et al. [237] experimentally observe a N-SmA-
SmC multicritical point in a single component liquid-crystal system. Several groups
investigate the phase transitions [158, 205, 232] and provide phase diagrams [241, 272]
for the hard spherocylinder model. Figure (2.2) shows four phase diagrams for hard
spherocylinders. Somoza and Tarazona [239] investigate the nematic-smectic A-smectic C
phase transitions in systems of parallel hard spherocylinders. The nematic-smectic A
transition is illustrated in Figure (2.2a). The same transition is displayed in Figure (2.2b)
as studied by Hołyst and Poniewierski [113] for perfectly aligned hard spherocylinders.
Figure (2.2c) shows a more detailed phase diagram for hard rods with full translational
and orientational freedom as obtained from a density functional theory [206, 207]. In
Figure (2.2d) the isotropic-nematic transition lines for different approaches are compared
at which the computer simulation data are obtained by a density functional theory [51].

In the simulational study Bolhuis and Frenkel [29] obtain a very detailed phase
diagram for hard spherocylinders with variable length-to-width ratios L/D. Two phase
diagrams for different ranges of length-to-width ratios are displayed in Figures (2.3a) and
(2.3b). Note that the smectic phase is not stable for length-to-width ratios below 3.1 and
the nematic phase does not become stable until a value of 3.7 is reached. Figure (2.3c)
compares these results with the density field theory study of Graf and Löwen [92].
Finally, Figure (2.3d) shows a phase diagram obtained from Monte-Carlo simulations
by McGrother et al. [177] for shape anisotropies between three and five.

Close to the melting point of the smectic A phase transverse interlayer particles are
predicted for hard rods in a theoretical and numerical study with fixed box shape [269].
These particles are located between the two layers and roughly perpendicular to the
director. Transverse interlayer particles are also observed in simulations of hard sphero-
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cylinders without [267] and with [266, 268] flexible end groups. In these simulations a
variable box shape with constant volume is used. A significant amount of transverse
interlayer particles is only expected for short rods, that is, L/D < 5.

In recent years, more complex models have been explored. In their Dissipative
Particle Dynamics simulations of lyotropic rigid polymers Zhao and Wang [298] find
smectic A, smectic B, nematic and isotropic phases. The attractive, hard spherocylinders
studied by Wu et al. [292] using perturbation theory exhibit isotropic and nematic phases.
They summarize that the incorporation of an attractive potential leads to an increased
orientational order at high densities compared to an athermal system and, thus, to a
stabilization of the nematic state.
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Figure 2.2 Different phase diagrams for hard spherocylinder models. For all diagrams
the x-axis is characterized by the length L and the diameter D of the spherocylinder.
The y-axis is always the density of the system, which may be rescaled by a given factor.
ρcp is the density of close packing. (a) Nematic-smectic A transition in a system of
parallel hard spherocylinders. The upper part of the plot shows the critical wavelength,
while the lower part displays the critical density ρ∗ = ρ/ρcp. From [239]. (b) The solid
line shows the N-SmA transition for the theory presented in the paper. The dashed
line is a comparison to another study. From [113]. (c) Phase diagram including the
isotropic, nematic and smectic phase. The shaded area corresponds to the N-I two-phase
region. There is a tricritical point at L/D = 2.99 and v0 is the volume of the hard
rod. From [207]. (d) Comparison of the isotropic-nematic transition line for different
approaches. The reduced density ρ∗ is ρ/ρcp. From [51].

(a) (b)

(c) (d)
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Figure 2.3 Detailed phase diagrams for hard spherocylinders. L and D are the length
and the diameter of the spherocylinder, respectively. The reduced density ρ∗ = ρ/ρcp is
related to the density of close packing ρcp. (a) Phase diagram for the range 0 < L/D < 5
including the isotropic (I), nematic (N), smectic (Sm) , plastic (P) and solid (S) phase.
(b) Phase diagram for a L/D ratio of up to 100. AAA and ABC represent different
stackings of the solid phase. Both from [29]. (c) Comparison with results of a Density
Field Theory study (dark gray area) with p = L/D. From [92]. (d) In this phase
diagram the packing fraction is labeled η and the solid phase K. From [177].

(a) (b)

(c) (d)
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2.3 Rod/coil mixtures

Finally, we briefly mention some results for mixtures of rod and coil polymers. Mixtures
of coil and rod homopolymers behave differently than systems with only one of the
components or with rod-coil diblock copolymers. The addition of coils to a rod polymer
system dramatically changes the phase behavior. But since the two components are not
connected to each other they may still separate at a macroscopic scale.

The most prominent theory explaining the phenomenon that the addition of non-
adsorbing polymers to a suspension of colloidal particles may induce a phase separation
into a colloid-poor and colloid-rich phase is developed by Asakura and Oosawa [14, 15].
If the distance between two colloidal particles becomes smaller than the diameter of
the polymers an excluded volume not accessible to the polymers arises. The resulting
depletion interaction leads to an attractive force between the colloidal particles. Along
with the Alexander-de Gennes model for polymer brushes (see page 123) we use the
Asakura-Oosawa model to derive the interactions between tetrapods and excess polymer
in the second part of this thesis.

The phase separation of mixtures containing rod-like and coil-like polymers is closely
related to the model described by Asakura and Oosawa [142]. An isotropic-nematic phase
transition for an athermal system due to an entropy effect is theoretically predicted by
Flory [80]. With their simulations Bolhuis et al. [30] examine the influence of attractive
interactions on the phase behavior of their hard spherocylinder model mentioned earlier
in this chapter. The attraction is introduced by the addition of non-adsorbing polymers
causing a depletion force. The computed phase diagrams are displayed in Figure (2.4) for
different diameter ratios q between spherocylinders and polymers. The phase diagrams
comprise isotropic, nematic, smectic and solid phases. The fugacity z in Figure (2.4a)
is related to the osmotic pressure which causes the depletion force. The polymer
concentration in Figure (2.4b) is expressed by the parameter ε. They argue that the
hard spherocylinder model is the simplest realistic reference model available for many
lyotropic liquid crystalline materials.
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Figure 2.4 Phase diagrams for a system of spherocylinders with L/D = 5 mixed with
polymers. The parameter q is the diameter ratio of these polymers, proportional to
the radius of gyration Rg and a measure for the interaction range. ρ∗ is the reduced
density of the spherocylinders. (a) As predicted by thermodynamic perturbation theory.
Here z is the fugacity which is related to the osmotic pressure. (b) Simulated with an
attractive generalized square-well potential. The parameter ε is proportional to the
polymer concentration. Both from [30].

(a) (b)

2.4 Rod-coil block copolymers

In this section we introduce significant results from the field of rod-coil block copolymers.
We also refer to a few results of more complex systems such as triblock copolymers.
There are some helpful reviews on rod-coil block copolymers [131, 141, 157, 190]. Beside
the studies mentioned in this section, there are further theoretical [3, 74, 83, 110, 124,
130, 132, 172, 191, 208, 213, 248, 256], experimental [123, 154, 189, 256, 262, 263] and
some simulational works [11, 12, 50, 58, 59, 103, 115, 116, 119, 156, 180, 288].

Some exemplary phases for rod-coil block copolymers are illustrated in Figure (1.6)
on page 14. An exemplary phase diagram is shown in Figure (1.7) on page 15. A
theoretical description of the nematic and smectic A phases is firstly proposed by
Semenov and Vasilenko [233] in 1986. Williams and Fredrickson [286] predict the so-
called hockey puck phase for high coil volume fraction in 1992. To our knowledge this
phase has not been observed in experiments so far. But self-consistent field theory
calculations [294] and Brownian Molecular Dynamics simulations [153] validate the
existence of this phase. Figure (2.5) displays four snapshots of the simulated rod-coil
copolymers, consisting of six rod and nine coil beads. The bonds between rod beads are
rigid, but flexible between coil beads. Lin et al. label the phases disc and string phase.
They may be associated with the hockey puck phase and the needle phase predicted
by Raphael and de Gennes [212]. In another study, which is based on the Maier-Saupe
wormlike chain model, Williams and Halperin [287] also find lamellar, cylindrical and
spherical structures.
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Figure 2.5 Snapshots of rod-coil copolymers (R6C9) with different rod interaction
parameters ǫRR. (a) Disc or hockey puck phase (b) String phase. From [153].

Beside the wavy lamellar phase displayed in Figure (2.6b,A) Chen et al. [44, 45]
observe zigzag and arrowhead phases (see Figure (1.6) on page 14) for rod-coil block
copolymers. In their experimental study they also include a theoretical explanation
for the formation of the zigzag morphology. They emphasize the role of the solvent
and distinguish three different types of the zigzag morphology. The morphologies range
from well ordered zigzags to highly fragmented zigzags which are randomly oriented
in the plane of the film. The transmission electron microscopy images in Figure (2.6a)
show fragmented and short zigzags, whereas the zigzags in Figure (2.6b,B and C) are
well ordered. In the zigzag phase the rods are oriented parallel to each other along
the director n but the layer normals, indicated by the vectors p, have an angle of
approximately 88° towards each other. As marked in Figure (2.6a, D and E) the layer
normal p points in the same direction for all layers in the arrowhead phase. The
directors n of the layers have the eponymous shape of an arrowhead.

The zigzag phase is also observed in experiments with polydisperse α-helical polypep-
tides which act as rod-like mesogens [226]. In their coarse-grained simulations of rod-coil
multiblock copolymers Lintuvuori and Wilson [156] find evidence for metastable chevron-
like structures. Self-consistent field theory calculations [208, 294] confirm that the zigzag
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Figure 2.6 TEM images of the zigzag phase. The dark parts represent the rods and the
light domains the coil part of the polymer. (a) Fragmented zigzag phase (top) and short
zigzags (bottom). From [44]. (b) Wavy lamellar (A), zigzag lamellar (B and C) and
arrowhead (D and E) phase. n is the rod chain axis and p the layer normal. From [45]

(a) (b)

phase has a higher free energy than the smectic C phase and is, therefore, metastable
with respect to a defect free smectic C structure.

Among other phases the tethered nanorods simulated by Horsch et al. [115] using
Brownian Dynamics form a tetragonally perforated lamellar and the honeycomb phase.
Both structures are not predicted by any available theory but have been found in
experiments [62, 140, 187, 218, 256]. They further predict a new phase comprised of
chiral cylinders. The polymers are modeled as a series of beads which are connected
rigidly if they represent rods or by a flexible spring potential for coils. In this study
both components consist of five beads. The resulting phase diagram and snapshots
of the observed phases for tethered rods are illustrated in Figures (2.7a) and (2.7c).
For comparison Figure (2.7b) displays a phase diagram of flexible block copolymers. It
demonstrates that the phase behavior for tethered rods is much richer. In both phase
diagrams the inverse temperature 1/T ∗ is plotted against the volume fraction of the
tethered rods φ. Optical transmission, atomic force microscopy (AFM), fluorescence and
scanning electron microscopy (SEM) images of a honeycomb structured film observed
by de Boer et al. [62] are shown in Figure (2.7d). The inset in the SEM images
demonstrates the open surface structure of the polymer film with hole diameters between
two and three microns and spherical cavities with a diameter of three to five microns.
Recent studies reveal that condensation of small water droplets on the surface of the
polymer solution is driving the formation mechanism of the honeycomb structures [126,
203, 204].

In a further study Horsch et al. [116] focus on the role of rod aspect ratio and tether
length on the self-assembly of end-tethered nanorods in solution. They distinguish
between moderate and low aspect ratio rods, with aspect ratios greater or less than five
to one, respectively. The distinction is made at this aspect ratio since former works
have shown that only hard rod systems with an aspect ratio greater than five form a
nematic phase [29]. They find that the simulated tethered rods with low aspect ratios
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Figure 2.7 (a) Phase diagram plotting the inverse temperature 1/T ∗ versus the vol-
ume fraction φ of tethered rods. The cubic micelle (C), long micelle (LM), hexagonal
cylinder (H), tetragonally perforated lamellar (TPL), honeycomb (HC) and lamellar (L)
morphologies are indicated.(b) Phase diagram of flexible block copolymers for compar-
ison. The region between H and L is expected to be the gyroid phase. (c) Predicted
morphologies for the tethered rods. The labels are the same as in (a). (L) is a smectic C
phase and (HI) the hexagonal chiral cylinder phase while (HII) shows individual chiral
cylinders from the hexagonal cylinder phase. All three images are from [115]. (d) Optical
transmission and AFM (top), fluorescence and SEM (bottom) images of a honeycomb
structured film. From [62].

(a) (b)

(c) (d)
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show a less extensive phase behavior. Another focus of this second study is on the
influence of tether length on the final structure and especially on its curvature. So they
demonstrate that it becomes increasingly more difficult for rods to pack parallel to each
other as the tether length increases. This results in an increase in interfacial curvature
with increasing tether length. The formation of structures with less and less curvature
with decreasing tether length provides further evidence that the rod-rod interactions
and their desire to form flat interfaces dominates for short tether lengths. Hence, they
conclude that the tethers are driving the observed curvature effects.

Several groups observe a stabilization of the smectic phase at expense of the nematic
phase with increasing coil fraction for rod-coil block copolymers [11, 12, 156, 176, 243].
In their theoretical and simulational study of polymer tethered rods Wilson et al. [288]
show that the stability of the nematic phase first increases and then decreases with
increasing chain length until the nematic phase is suppressed altogether. Jiang and
Wu [125] investigate the influence of coil fraction in an athermal solution of rod-coil
copolymers on the isotropic-nematic transition. For this purpose, they propose a hybrid
model that combines the scaled particle theory with Monte-Carlo simulations. They
emphasize that a formation of the nematic phase is hindered by the addition of coils.
The polymers consist of mr rigidly and mf flexibly connected hard spheres with a bond
of length L∗ between each sphere. Two phase diagrams which show the isotropic-nematic
phase transition in dependence of the coil fraction are plotted in Figure (2.8). The
plots point out that the nematic phase vanishes for mr smaller than eight at constant
m = mr +mf = 15 (Figure 2.8a) and for mf ≥ 35 with fixed mr = 30 (Figure 2.8b).

Figure 2.8 Phase diagrams for rod-coil block copolymers showing the isotropic-nematic
phase transition demonstrating that an increase in coil fraction destabilizes the nematic
phase. η is the packing fraction, L∗ the bond length. Each copolymer consists of
m = mr +mf hard spheres where mr spheres build the rigid block and mf spheres the
flexible block. (a) For constant m = 15. The nematic phase does not emerge for mr < 8.
(b) The length of the rigid block mr is fixed to 30. The nematic phase ceases at mf = 35.
Both from [125].

(a) (b)
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Figure (2.9) shows two phase diagrams for rod-coil diblock copolymers obtained by
self-consistent field theory. In both cases the rod polymers fraction f is plotted against
a parameter C = G = L2Dρ, which is proportional to the average number density of
copolymers ρ. Here, L and D are the total contour length and diameter characterizing
the polymers in the worm-like models. Both studies demonstrate that the addition
of coil polymers to rod-like polymers stabilizes the smectic phase with respect to the
nematic phase. The phase diagram in Figure 2.9a comprises an isotropic, nematic and
smectic phase. Using a self-consistent field theory approach Düchs and Sullivan [74]
determine that the nematic phase is not entirely suppressed with respect to the isotropic
and smectic phases. This result is in contradiction with other studies [5, 12, 175, 268].
The phase diagram in Figure 2.9b from Song et al. [242] shows comparable results but
additionally distinguishes between the smectic A and the smectic C phase. For their
study they use a more sophisticated implementation of the self-consistent field theory.
They summarize that the nematic phase disappears for high coil fraction after a triple
point is reached.

Figure 2.9 Phase diagrams for rod-coil diblock copolymers. C and G are proportional
to the average polymer number density ρ and f is the rod fraction. (a) The nematic
phase is not entirely suppressed. From [74]. (b) The smectic A and C phases are
differentiated and the nematic phase vanishes for high coil fraction. From [242].

(a) (b)

Similar results are found in Monte-Carlo simulations of systems containing hard
spherocylinders with flexible tails attached to each end and without coils [266]. Fig-
ure (2.10) illustrates the nematic order parameter S of the studied systems with and
without tails using filled and open symbols, respectively. One can see that the addition of
coils stabilizes the smectic A phase at a lower pressure and the nematic phase disappears.
Furthermore, they determine that the layers in the smectic A and crystal phase are
further apart when tails are added, whereas the ordering of the rods within the layers
does not change much.
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2.4 Rod-coil block copolymers

Figure 2.10 Nematic order parameter S for hard spherocylinders without coils (open
symbols) and with two coil chains (filled symbols). Circles represent the isotropic,
triangles the nematic, squares the smectic A and diamonds the crystal phase. It is
visible that the addition of coils suppresses the nematic phase and stabilizes the smectic
phase at a lower pressure P ∗. From [266].

Reenders and ten Brinke [213] investigate the phase behavior of monodisperse
rod-coil diblocks with an attractive Maier-Saupe attraction between the rod blocks and
a Flory-Huggins interaction to model the incompatibility of rod and coil blocks. They
observe isotropic, nematic and smectic C phases for high rod fraction and spherical,
hexagonal and lamellar phases for low rod fraction. Phase diagrams for different
interaction parameters are shown in Figure (2.11). Note that in contrast to the phase
diagram of coil-coil diblock copolymers (see Figure (1.3) on page 11) the resulting phase
diagram, displayed in Figure (2.11a), is asymmetric. In this figure the Maier-Saupe
interaction parameter ω is zero. The phase diagram in Figure (2.11b), where ω is eight
times the Flory-Huggings parameter χ, looks very different. As in Figure (2.9a) the
nematic phase is not suppressed completely for high coil fractions.

Lin et al. [155] study polymersomes formed by rod-coil diblock copolymers in
selective solvents with the Dissipative Particle Dynamics method. The morphological
phase diagram in dependence of rod and coil length is displayed in Figure (2.12a). Here,
x and y are the number of spheres representing the rod and coil block, respectively. In
their experimental study Olsen and Segalman [188] observe a series of transitions from
lamellar to nematic and finally to isotropic upon heating symmetric diblock copolymers.
As they note, the nematic-isotropic transition temperature decreases with increasing
coil fraction. For high coil fractions the system only exhibits an isotropic phase. The
experimental phase diagram is shown in Figure (2.12b). They also mention that the
lamellar region in their phase diagram may potentially contain smectic-like regions
not investigated further in their study. Finally, Figure (2.12c) shows four more phase
diagrams for rod-coil block copolymers obtained by different models.
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Figure 2.11 Phase diagrams for rod-coil diblocks with N = 40 each. (a) Phase diagram
with Maier-Saupe interaction parameter ω = 0. There is a critical point at frod ≈ 0.73
and a triple point at frod ≈ 0.42. (b) Phase diagram with Maier-Saupe interaction
parameter ω = 8χ. There are no triple points. Both from [213].

(a) (b)

In their Dissipative Particle Dynamics simulations He et al. [105] compare the phase
behavior of linear and cyclic rod-coil block copolymers. Beside different morphologies
the cyclic polymers have a higher order-disorder transition point and a more symmetric
phase diagram than linear polymers. The resulting phase diagrams for cyclic and linear
rod-coil block copolymers are displayed in Figure (2.13).

Beside cyclic rod-coil block copolymers there are also a lot of other interesting,
slightly more complex systems. The Monte-Carlo simulations of McGrother et al. [178]
demonstrate that the range of stability of the nematic phase is increased at the expense
of the smectic A phase when a terminal dipole is added to a hard spherocylinder. On the
other hand, it is well known that the smectic A phase is little affected by the addition
of flexible coils to hard spherocylinders, while the nematic phase is suppressed. The
interplay of these two effects is investigated by van Duijneveldt et al. [268]. They propose
a simple model to simulate hard spherocylinders with an attached coil and an optional
terminal dipole. They not only observe that the nematic phase is suppressed when coils
are attached and that the transitions from disordered to ordered states and finally to
crystalline states occur at lower densities. They also find that all four phases survive
if a terminal dipole is added. Using self-consistent field theory Song et al. [243] study
binary mixtures of rod-coil block copolymer systems with rod or coil-homopolymers and
find that the addition of coil-homopolymers stabilizes the smectic phases. Additionally,
an enhancement in stability of ordered phases is observed when rods are added as they
strongly affect the orientation ordering of the system.
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Figure 2.12 (a) Morphological phase diagram of RxCy rod-coil copolymers. From [155].
(b) Phase diagram for rod-coil diblock copolymers plotting temperature against coil
fraction as achieved from experiments. From [188]. (c) Phase diagrams from (A) mean
field predictions [208], (B) Landau predictions [114] and (C,D) a weakly segregated
PPV-b-PI system in term of the Flory-Huggins interaction χN (C) and the Maier-Saupe
interaction µN (D) [191]. From [296].

(a) (b)

(c)
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Figure 2.13 Phases diagrams for cyclic and linear rod-coil block copolymers. The Flory-
Huggins parameter χN is plotted against the rod fraction frod. The shown morphologies
are micelles (△,N), hexagonal cylinders (◦,•), gyroid (✩,★), perforated lamellae (⊟),
lamellae (�) and liquid-crystalline lamellar (�) phases. From [105]

2.5 Photovoltaic applications

In this section we present some applications of rod-coil block copolymer systems with a
focus on optoelectronics. There are a number of good reviews [96, 122, 231, 258, 296]
dealing with conjugated block copolymers and their use for organic optoelectronic
devices.

In a combined experimental and simulational investigation Chang et al. [42] study
surface morphologies of π-conjugated rod-coil block copolymers films. Depending on
temperature and grafting density they find small, hemispherical domains, transforming
to isolated islands and finally wormlike structures or even networklike morphologies. As
they emphasize the photophysical properties of the polymers is highly correlated to the
surface morphologies.

In a comprehensive study Shah and Ganesan [236] investigate the correlations
between morphologies and photovoltaic properties of rod-coil block copolymers. For
this purpose, they use a self-consistent field theory to generate structures in confined
situations, which are used as input for a drift-diffusion model. This way they analyze
different morphologies and the effect of domain orientation on the current-voltage (J-V )
response curves. The resulting curves and corresponding density profiles for donor and
acceptor phases are summarized in Figure (2.14). In all schematics the rods make up
the donor phase which is colored in blue. The acceptor phase is colored in red and
represents the coil polymers. In Figure (2.14a) parallel and perpendicular bilayer phases
are compared. It is obvious that the efficiency is higher for bilayers perpendicular to the
electrode surfaces. The examination of electron densities shows that the short-circuit
current is higher due to the fact that electrons and holes are generated continuously
throughout the device with perpendicular domain orientation but not for devices with
parallel domain orientation. The difference is even stronger for lamellae domains as
illustrated in Figure (2.14b). The efficiency of the parallel lamellae morphology does
not differ much from the parallel bilayer structure. Smaller domain areas and a larger
donor-acceptor interface of the perpendicular lamellae morphology on the contrary result
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in a much higher efficiency. Figure (2.14c) shows puck morphology and its J-V curve
compared to the curves of the parallel and perpendicular lamellae phases. One may
expect a higher efficiency because of the much larger interfacial area leading to a higher
production of free charges. Unfortunately, the absence of continuous pathways for
holes to reach the anodes results in a merely moderate performance. As the highest
efficiency is found for the perpendicular lamellae phase further optimizations are tested
for this phase. The effect of domain spacing on the short-circuit current density for
different exciton lifetimes is printed in Figure (2.14d). Note that the exciton diffusion
length is proportional to the square root of the diffusion time. From the results one can
conclude that the optimal domain size is of the order of the exciton diffusion length.
In summary, they find that a perpendicularly orientated lamellar morphology with an
optimal domain spacing around the exciton diffusion length is most desirable to obtain
high photocurrents and efficiencies.

It is not only important to receive such structures for an arbitrary rod-block
copolymer in a controllable manner. The single polymers also need to comply with
the requirements of an optoelectronic device. For this purpose, several new production
techniques are continuously developed. One way to achieve such morphologies for
the desired polymers is to pattern active material into ordered nanostructures. An
example for this method is displayed in Figure (2.15). In their study Botiz and Darling
[32] use block copolymers consisting of P3HT and biodegradable PLLA blocks which
form the desired lamellae morphology oriented perpendicular to the substrate. After
removing the PLLA blocks C60 molecules are added as acceptor material. The result
is a highly ordered morphology with P3HT donor domains and C60 acceptor domains
which have the desirable properties for efficient photovoltaic devices. Simply blending
P3HT donor homopolymers and C60 acceptors leads to less ordered morphologies which
are additionally harder to control.

In the last few years the use of more complex polymers, such as CdSe tetrapods, led
to a further improvement in the transport of electrons perpendicular to the plane of the
film and hence to higher efficiencies [250]. The application of tetrapods in optoelectronic
devices is discussed in detail in Chapter 6.
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Figure 2.14 Schematics for different morphologies and corresponding J-V curves. The
current density J is in units of Am−2 and the voltage V in volts. The donorphase (rods)
is colored in blue and the acceptor layer (coils) in red. (a) Parallel and perpendicular
bilayer morphology. (b) Parallel lamellae and perpendicular lamellae. (c) Puck phase.
(d) Perpendicular multilayer morphology and the effect of domain spacing D on the
short-circuit current density |Jsc| for different exciton lifetimes. From [236].

(a) (b)

(c) (d)
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Figure 2.15 (a) Chemical structure of P3HT-b-PLLA and its schematic representation.
(b) Ordered nanoscale morphology composed of lamellae oriented perpendicular to the
substrate. (c) Ordered P3HT donor domains of molecular dimension after removal
of biodegradable PLLA block. (d) Ordered nanoscale morphology with P3HT donor
domains separated by C60 acceptor domains. (e) Less ordered morphology obtained
when simply blending P3HT donor homopolymer and C60 acceptors as comparison to
(d). From [32].
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In this chapter we introduce our polymer model and some simulation
details. In the first section we introduce our model for the polymers.
After presenting the properties of the simulation box in the second
section we give a brief introduction to Monte-Carlo simulations in the
third section. In the fourth section we discuss how the polymers interact
with each other. In the last section we introduce the observables we
have used to analyze our simulations.



3 Description of the Model

3.1 Polymers

The goal of this work is to simulate rod-coil block copolymers. In this section we show
how these polymers are represented in our model. First, we mention the properties
of hard spherocylinders which are used to model the stiff rod polymers. The flexible
coil polymers are simulated using a bead-spring model. Then we show how these two
polymers are combined to rod-coil block copolymers.

3.1.1 Rod polymers

The rigid rod polymers in our model are represented by hard spherocylinders. They
consist of a cylinder of length L and diameter D capped on both sides with hemispheres
with the same diameter as the cylinder. The orientation is given by an unit vector û
whose origin is placed at the rods center of mass. A sketch of a spherocylinder is drawn
in Figure (3.1).

For the limiting case L equals zero we obtain hard spheres. Because of its simplicity
the hard-sphere model is a very well studied model and, therefore, often used as reference.
The limit D = 0 results in line segments. This model is often referred to as hard rod
model. Other well studied models are the parallel hard spherocylinder model in which
all unit vectors û show in the same direction and the parallel rod model for which,
additionally, D is zero. For the extreme case L/D → ∞ we recover the Onsager
limit [192] of infinitely long rods, which are known to exhibit a nematic phase.

Figure 3.1 Spherocylinder of length L and diameter D and an unit vector û.

D

L

û

The total length λ of a spherocylinder is defined as

λ = L+D. (3.1)

In most simulations in this work the diameter D is set to one. Consequently, the
radius r = D/2 is equal to 0.5 in these cases. With this restriction the often used
spherocylinder shape anisotropy or nonsphericity

p =
L

D
(3.2)

becomes L and the length-to-width ratio

q =
λ

D
=
L+D

D
=
L

D
+ 1 = p+ 1 (3.3)

reduces to L+ 1. For a sphere with L = 0 the shape anisotropy p becomes zero and the
length-to-width ratio q reaches its minimal value of one.
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For most simulations in this work we use a shape anisotropy of L/D = 5. Prior
studies [29, 30, 84, 115, 158, 177, 207, 268, 272, 288] have shown that a pure sphero-
cylinder system should exhibit an isotropic, nematic, smectic and solid phase for this
value (see Figure (2.3)) and it is known that p is between 3 and 5 for most thermotropic
liquid crystals [84].

The rod number density

ρRods =
NRods

VBox

(3.4)

is given by the ratio of the number of rods NRods in the system and the systems volume
VBox, which will be introduced in the next section. Here the volume of the rods and their
packing fraction is not taken into account. With the density of regular close packing for
spherocylinders

ρcp =
2√

2 +
√

3p
(3.5)

we define the reduced density
ρ∗ =

ρRods

ρcp

. (3.6)

The volume of a single rod is given by

VRod =
4π
3
r3 + πr2L (3.7)

=
π

4
D3

(

2
3

+ p

)

. (3.8)

With this we can define a fill factor for the rods

FRods = ρRods ·VRod. (3.9)

The excluded volume of two spherocylinders [51, 113, 192, 276, 278], which have an
angle θ with respect to each other, is

Vexcl =
4π
3
D3 + 2πD2L+ 2DL2 sin(θ). (3.10)

The sine term may be treated in different ways. Onsager [192] computes the average
over all directions and gets

∫

dΩ
4π

sin(θ) =
π

4
(3.11)

which results in an excluded volume

Vexcl = 2B2 =
4π
3
D3 + 2πD2L+

π

2
DL2 (3.12)

where B2 is the second virial coefficient. Some works which focus on highly ordered
phases take advantage of the fact that the angles between the spherocylinders are
very small for these phases. Hence, also the sine term becomes very small and can be
neglected so one gets

Vexcl =
4π
3
D3 + 2πD2L. (3.13)

Our rods are monodisperse, so all spherocylinders in a simulation run have equal
size parameters L and D and, therefore, equal volume and shape anisotropy p. Finally,
we introduce a formula to compute the surface of a spherocylinder

SRod = 2πr (2r + L) = πD2 (1 + p) . (3.14)
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3.1.2 Coils

The coil polymers are linear chains modeled by a bead-spring model. Each polymer chain
consists of m point-like monomers connected by m− 1 Gaussian springs. Therefore, the
coils have no real volume. We treat them as ideal chains. So the monomers may overlap
and the chains have crossable bonds, hence, there are no entanglements. The number
of coil beads is NCoils. For the simulations of rod-coil block copolymers each rod is
connected to one chain, therefore, the number of coil beads NCoils is equal to the number
of rods NRods. In these cases we will simply label them as N(= NRods = NCoils) and only
differentiate between NCoils and NRods when needed. The total number of monomers in
the system is given by

M = m·NCoils. (3.15)

In analogy to the rod number density, we define the coil number density as

ρCoils =
NCoils

VBox

. (3.16)

Figure (3.2) shows a sketch of a coil chain with m beads and m− 1 Gaussian chains.
For Gaussian chains the probability P (r) to have a distance r between the ends of a
chain obeys the distribution

P (r) =
4πr2

(2/3 π〈R2
e 〉)3/2

e
− 3r2

2〈R2
e 〉 (3.17)

where
√

〈R2
e 〉 is the average end-to-end distance of the chain. The value of

√

〈R2
e 〉, and

therefore the expansion of the coil chain, depends on the interaction parameters, which
are introduced in Section 3.4.

Figure 3.2 Bead-spring model of a single coil polymer consisting of m monomers
connected by m− 1 Gaussian springs.
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3.1.3 Rod-coil block copolymers

For the simulation of rod-coil diblock copolymers we combine the rod and coil homopoly-
mers described above. Therefore, we always attach exactly one coil to each rod. The
first coil bead is connected to the bottom position of its dedicated spherocylinder by
a Gaussian spring. This spring has the same characteristics as those connecting the
monomers of the coils. Since no monomer is added at the connection point the number of
monomers per coil m stays constant, while the number of springs per polymer increases
from m − 1 to m. The additional bead with index 0 in Figure (3.3) is just a ’virtual’
monomer and not treated as a monomer for the interactions in Section 3.4.
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3.2 Simulation box and system

Figure 3.3 Cartoon of a rod-coil block copolymer in our system. The first bead of the
coil polymer with m monomers is attached to the bottom position of a rod-like polymer
of length L, diameter D and unit vector û.
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Rod and coil blocks must share an interfacial area. Their size mismatch leads to a
packing frustration which is parametrized by the geometrical asymmetry ν [231]. This
parameter is defined as the ratio between the coil radius of gyration Rg (see Section 3.5)
and the rod length L

ν =
Rg

L
. (3.18)

3.2 Simulation box and system

In this section we present the parameters which define the simulation box. We simulate
different types of polymers in this work. In most cases this are rod-coil block copolymers.
For some comparisons we also simulate systems containing only rod or coil polymers.
For other tests we use non-connected rod and coil polymers in a mixture. But we always
use the same simulation box and methods. This is also true for the tetrapod/polymer
mixtures simulated in the second part of this thesis. In all of our models we use the
Monte-Carlo method to simulate the system of interest. During each simulation run the
number of particles as well as shape and volume of the simulation box is kept constant.

In general, a simulation box contains NRods rod polymers and NCoils coil chains. In
most simulations we have rod-coil block copolymers. For these polymers each rod has a
coil chain attached to its end and the number of coil chains is equal to the number of
rods. Therefore, we will usually just mention the total number of polymers

N = NCoils = NRods. (3.19)

All simulations are performed in a rectangular box with periodic boundary conditions
in all three directions. The box sizes in the three directions are given by Lx, Ly and Lz,
which are constant but may differ from each other. Thus, the volume can be calculated
as

VBox = Lx ·Ly ·Lz. (3.20)

The developed model is an off-lattice model. This means the polymers can move
through the simulation box in a continuous way. Nevertheless, we introduce a grid to
subdivide our simulation box. As we will see in Section 3.4 some of the interactions in
our model are based on local densities. To calculate these densities we have to subdivide
our simulation box into small cubical boxes of size δi with δx = δy = δz := δ. The
cells have to be cubic to guarantee that the interactions are isotropic. The volume of
each cell is given by

VCell = δx ·δy ·δz = δ 3. (3.21)
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3 Description of the Model

Hence, the simulation box can take any rectangular shape composable from cubical
cells. This also introduces a restriction to the lengths of the simulation box, since each
length Li has to be the ni-th multiple of the associated cell size δi. With this the box
volume may also be expressed as

VBox = nxδx ·nyδy ·nzδz = nx ·ny ·nz ·δ 3 = NCells ·VCell (3.22)

where NCells is the total number of cells.
A sketch of a simulation box with 4 × 3 × 3 cells is shown in Figure (3.4). One of

the 36 cells with volume δ 3 is highlighted. Just like for the simulation box the shape
and the size of all cells are kept constant during the simulation. The cell size δ has to be
chosen very carefully. As we will see later in Section 3.4 the cell size δ determines the
interaction range of most interactions in our model. Therefore, the cell size must not be
smaller than the mean distance between the monomers, otherwise the polymers would
barely interact. On the other hand, the cell size should not be too large, since in this
case the ability to resolve an inhomogeneous density distribution will be lost [69]. In
most runs we have chosen a cell size of δ equal to 1.5. The motivation for the selection
of this cell size will be discussed in Section 4.1.

Figure 3.4 Simulation box with a volume Lx ·Ly ·Lz. The box is divided into 4 × 3 × 3
cells. The yellow highlighted cell has a volume of δ 3.
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We use periodic boundary conditions in all three dimensions. This means each
particle leaving the simulation box reenters the box on the opposite site of the box.
A sketch of a two-dimensional system with periodic boundary conditions is shown in
Figure (3.5). The central gray box and the polymers in intense color represent the
main simulation box and the central images of the polymers. For simplicity we only
show eight neighboring boxes. The phantom images of the polymers are displayed in
lighter color. The central image of a polymer can interact with the phantom image of a
polymer. To prevent an interaction of an particle with its own image directly or via only
one bridging polymer the box size is chosen to be a least three times the total length λ
of a rod in all three directions.
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Figure 3.5 Cartoon of the periodic boundary conditions in our system. The images
shows a projection onto the two-dimensional plane. The central gray box is the simulation
box containing rod-coil block copolymers. The surrounding lighter boxes and polymers
are periodic images of the system.

Whenever we do not start our simulation from a prior configuration we have to
set up our system artificially. To this end, we have several options. There are no
constraints for the placement of the monomers since they have no volume, are allowed
to penetrate the rod polymers and the chains are crossable. The hard spherocylinders
representing the rod polymers have a volume and are impenetrable. Hence, especially
for high densities, primarily the placement of the rods is critical and, therefore, done
before the coil chains are attached to the bottoms of the spherocylinders.

The first possibility to set up the rods is in a completely ordered manner. Depending
on the box size and the length L and the diameter D of the spherocylinders we place
the rods on a simple orthorhombic lattice in several layers. The layers are filled row by
row. The rods are either all aligned along the positive z-axis or, with a tunable ratio,
randomly along the positive and negative z-axis. The second way is very similar. Instead
of placing the spherocylinders next to each other in a fixed sequence, we calculate all
possible positions in advance and then place them randomly at a free position. For these
two methods it is possible to move all rods randomly for several thousand steps with
hard-body interactions only, before the coil beads are added.
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Alternatively, we may set up the system completely random. Here, all sphero-
cylinders are placed randomly in the simulation box with a random orientation. For
dense systems it takes a very long time to set up a random configuration. For these
systems we increase the size of the simulation box and place all rods in the box randomly.
Afterwards, we reduce the size of the box in small steps. After each step we check if the
new size is compatible with the periodic boundary conditions. If there is an overlap of
the rods the old box size is restored. After randomly moving all rods several times a
new attempt to reduce the box size is started. This is repeated until the desired box
size is reached.

Before the main simulation is started we perform a prerun. During the prerun the
move ranges of the polymers are adapted every few steps until an average acceptance
rate of about 33% is reached. These move ranges are used as starting values for the
main simulation. Based on the measured acceptance rates the move ranges may also be
changed during the simulation run. This is usually done after an adjustable number of
simulation sweeps.

3.3 Monte-Carlo simulations

In this section we briefly describe the Monte-Carlo method [9, 10, 85, 135] used for
all simulations in this work. The basic idea of Monte-Carlo simulations is to make
trial moves for the particles and accept or reject them depending on a given criterion.
This criterion is related to the energy change of the system during the trial move. The
concrete energies for our system of rod-coil block copolymers will be introduced in the
following section. For now we will use a general energy βH, which is replaced later by
the expression in Equation (3.25).

At the beginning of each Monte-Carlo step the total energy of the current system is
calculated and saved as βHold. Then a random particle is chosen and moved. Depending
on the move range κ associated with the type of movement the monomer or rod is
translated or the rod is rotated by a random amount. After the move the new energy
βHnew is computed. The move will be accepted with a probability

acc(old→new) = min (1, exp(−{βHnew − βHold]}) . (3.23)

This means, if the new configuration has a lower energy the move is always accepted.
In case the total energy increases the acceptance rate diminishes with increasing energy
difference. If a move is rejected the old configuration is restored. For coil moves this
algorithm is repeated M times and for both possible rod moves NRods times. So on
average every monomer is moved and every rod is translated and rotated once per
Monte-Carlo step.

The Monte-Carlo method is unsuitable to investigate dynamic properties of a system,
as time is not an involved variable [2]. In order to achieve correct results the simulations
must be ergodic. This means that all possible configurations in phase space should be
attainable if the algorithm would run for an infinite amount of time. As it is unfeasible
to run a simulation infinitely long, it is not possible to prove that an algorithm is ergodic.
Usually, a system is assumed to be ergodic, if it fulfills detailed balance. The detailed
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balance condition states that for each transition between two states there has to be a
reverse transition with a non-zero probability. It is given by

PiWij = PjWji (3.24)

where Pα is the probability of the system being in state α and Wαβ is the transition
rate from state α to β. A process satisfying the detailed balance condition is called a
reversible Markov chain. A Markov chain is a stochastic, memoryless process. This
means that a future state of the system solely depends on the current state and not on
previous states.

To avoid systematic errors it is essential to use good random number generators with
a high periodicity in computer simulations [135]. Therefore, to provide a fast generation
of high-quality pseudo-random numbers, we use the C++11 uniform real distribution
class template with the 64-bit implementation mt19937_64 of the Mersenne twister
engine [174, 186].

3.4 Interactions

In this section we describe how the polymers, we introduced in Section 3.1, interact
with each other. First we give a general overview of all interactions in our system. Then
we discuss each single contribution. For some interactions we first introduce a general
expression and then show how they are calculated in the different models we use.

To decide if a Monte-Carlo move is accepted or rejected we have to calculate the
energy difference between the old and the new configuration. Therefore, we need an
expression for the total energy of the system. The total Hamiltonian H comprises four
different contributions

βH = βHRR + βHG + βHCC + βHCR (3.25)

where β denotes the inverse temperature, that is, β = 1/kBT with kB being the
Boltzmann constant. βHRR is the rod-rod interaction and βHG the interaction energy of
the Gaussian polymer chains. The interaction between monomers βHCC and the rod-coil
interaction βHCR are both based on local densities. The particular contributions are
described in detail in the following sections.

For the temperature range of interest the chemical bonds, which provide the con-
nectivity, are basically unbreakable. The interaction strengths of the terms βHCC and
βHCR dependent on effective parameters χCC and χCR, respectively. These χ-parameters
stem from integrating out microscopic degrees of freedom. We assume that their tem-
perature dependence is weak in the range of interest. Consequently, we investigate the
phase behavior in dependence of these χ-parameters instead of looking explicitly at the
temperature.

3.4.1 Rod-rod interaction

As described in Section 3.1.1 we use impenetrable spherocylinders to model the rod
polymers. They are characterized by their orientation, which is described by the unit
vector û and the two parameters length L and diameter D or, alternatively, their aspect
ratio p. The interaction between the rods is a pure hard-body interaction preventing an
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overlap of the rods. For a system with NRods rods in a volume VBox this interaction can
be written as

βHRR(d) =

{

∞ : rods overlap
0 : otherwise

(3.26)

where the scalar parameter d is the shortest distance between two rods. Figure (3.6)
shows a system with four rods. Note that the drawn cells are nonessential since βHRR is
only related to the distance between the rods and in no way to the cells. To check if two
rods overlap we need to calculate the shortest distance between the two spherocylinders.
As long as this distance is bigger than the diameter D of the spherocylinders the potential
is zero. For smaller distances the potential is infinite, prohibiting an overlap of the rods.

Figure 3.6 Two-dimensional sketch of a system with 5 × 4 cubic cells and four rods.

The overlap detection between spherocylinders is much more complicated than for
spheres. A fast algorithm to evaluate the shortest distance between rods is published
by Vega and Lago [273]. This algorithm is used and improved by several other groups [2,
19, 39, 166]. We also use a revised version of the original algorithm. This algorithm can
further be optimized and used for the distance calculation between spherocylinders and
spheres, which are spherocylinders with L = 0, or monomers, which are spheres with a
radius of zero, that is, L = D = 0.

In this algorithm we treat the spherocylinders as finite line segments of length L.
Any point on the line segments can be described parametrically by

ti = ri + µiûi (3.27)

where ri and ûi are the position and unit vector of the i-th rod, respectively, and µi

is a parameter in the interval [−L/2, L/2]. If rij is the distance vector connecting the
centers of two rods i and j

rij = rj − ri (3.28)

the distance vector dij between two points on the line segments reads

dij(µi, µj) = rij + µjûj − µiûi. (3.29)
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Figure (3.7) illustrates the calculation of the shortest distance between two sphero-
cylinders. The basic idea is to adapt both µ-parameters, by which the parametrized
points t1 and t2 move along the line segments, until the distance between these two
points is minimized. Instead of actually varying the µ-parameters we can compute them
and, thus, the shortest distance between the rods.

Figure 3.7 Calculation of the shortest distance d12 (red) between two rods 1 and 2,
with unit vectors û1 and û2. The two line segments of length L are highlighted in blue
and green. The shortest distance is achieved by varying the parameters µ1 and µ2, thus
shifting the points t1 and t2 along the line segments until the distance between these
points is minimized.

û1

û
2

r12

µ1

µ
2

d12

t1

t2

In computer simulations it is more convenient to deal with squared distances to
avoid the expensive calculation of square roots. Hence, we use the squared distance

d2
ij = r2

ij + 2µjûj ·rij − 2µiûi ·rij − 2µiµjûi ·ûj + µ2
i + µ2

j . (3.30)

To obtain the shortest distance we have to minimize this equation with respect to
both µi and µj . This way we get the primed µ-parameters

µ′
i =

ûi ·rij − (ûi ·ûj)(ûj ·rij)

1 − (ûi ·ûj)2
(3.31)

µ′
j =

(ûi ·ûj)(ûi ·rij) − ûj ·rij

1 − (ûi ·ûj)2
(3.32)

which minimize Equation (3.30). If they exceed the interval [−L/2, L/2] the parameters
are set to −L/2 or L/2 depending on whether the negative or positive bound is exceeded.
As they only depend on known or easily computable parameters, they can be calculated
directly. Substituting these values into Equation (3.30) gives the shortest squared
distance between the line segments. If this squared distance is smaller than D2 the
spherocylinders are overlapping.

To speed up the overlap detection special cases like parallel or perpendicular rods
are treated separately. Additionally, it is useful to calculate the distance between the
centers of the rods r2

ij beforehand, as it is needed anyway to receive the shortest distance
in Equation (3.30). If the centers have a larger distance than the total length of a
spherocylinder λ = L+D, these rods can not overlap. Therefore, we can skip the rest
of the computation, as our interactions do not depend on the numerical value of the
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distance. For these calculations it is important to apply periodic boundary conditions
correctly, since the distance between a central image and a periodic image may be
shorter than the distance between the central images of both rods. Another approach we
tried to speed up the computation is to implement lists which save if a spherocylinder
overlaps with a cell. Then we only have to check the rods for overlap if they have a
common cell in their lists.

3.4.2 Coil-coil interactions

Beside the interaction with the rods, the coils have two different types of interactions.
The first contribution is a pure intrachain interaction describing a Gaussian chain
and provides the connectivity [72, 82]. In the continuous version of the Edwards
model [25, 72, 75, 210] the conformational properties of a polymer chain with three-
dimensional position vector R(i) in a good solvent are determined by the Hamiltonian

βHG =
3

2b2

m
∫

0

di
(

dR(i)
di

)2

(3.33)

where b is the average bond length. Since we do not use continuous but discrete chains
the integral can be written as a sum. To get the full interaction we accumulate the
contributions over all NCoils chains and get

βHG =
k

2

NCoils
∑

α=1

m
∑

i=1

(Rα,i−1 − Rα,i)
2 (3.34)

where Rα,i is the monomer position of i-th monomer in the α-th chain. The strength
of the Gaussian bond energy is given by the spring constant k which is related to the
average bond length b by

k =
3
b2

(3.35)

in three space dimensions. In our simulations we mainly use the values k = 3, 12 or 27
resulting in average bond lengths b of 1.0, 0.5 or 0.3.

The monomers at Rα,0 have a special role. They are virtual monomers, which
are fixed to one end of the associated spherocylinder. As shown in Figure (3.3) these
monomers are used to connect the polymeric chains to the rods. Therefore, merely
adding a spring between monomers 0 and 1, these monomers only contribute to βHG

in Equation (3.25) but not to the monomer density ρC, which determines βHCC (see
Equation (3.36) below) and βHCR (see Equation (3.40) in Section 3.4.3). These monomers
are not moved during the monomer trial moves but during the Monte-Carlo moves of
the dedicated rods. Hence, the coil related interaction βHG may also change during the
rod moves.

The second contribution to Equation (3.25) models the excluded volume interactions
of the monomers. It is given by the first term in the corresponding virial expansion

βHCC =
χCC

2

∫

V

dr (ρC(r))2. (3.36)

This contribution is based on the continuous monomer density field ρC(r) related to
a given configuration [72, 82]. In order to have a stable polymer configuration the
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parameter χCC needs to be positive what makes βHCC a purely repulsive interaction.
In our discrete model the continuous monomer density field ρC(r) is replaced by local
densities

ρC,I = ρC,I{Rα,i} =
1
VI

∫

Cells I

dr
∑

α,i

δ(r − Rα,i) (3.37)

where VI is the volume accessible to the monomers in the I-th cell [25, 210]. Note that
the accessible volume VI of a cell is not necessarily equal to the cell volume VCell. In
Section 3.4.4 we distinguish different models and their influence on the accessible volume.
If we assume that there are CI monomers in cell I the discrete densities ρC,I can be
expressed as

ρC,I =
CI

VI
. (3.38)

Finally, Equation (3.36) can be written as

βHCC =
χCC

2

∑

I

VCell

(

CI

VI

)2

. (3.39)

Allowing us to test and compare our results to former works [25, 137, 238] we, too,
set the interaction strength χCC to 0.5 in nearly all our simulations.

This interaction does not distinguish whether the beads are from the same or
a different chain and affects only monomers in the same cell. Hence, the cell size
δ corresponds to an effective monomer size and introduces an interaction range for
this interaction. As mentioned before the virtual 0-th monomers at the end of the
spherocylinders do not contribute to this interaction. Since we use an off-lattice model
the monomer positions can take any value in the three-dimensional volume VBox. If they
are beyond the simulation box periodic boundary conditions are applied.

Figure (3.8) shows a sample configuration of four coil chains with ten monomers
each. The term βHCC will try to spread the monomers as uniformly over all cells as
possible. At the same time βHG will attempt to keep the monomers of one chain at
an average distance b. The incompatibility of these two effects depends on the given
system parameters.
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Figure 3.8 Two-dimensional sketch of a system with 5 × 4 cubic cells and four coil
chains with m = 10 monomers.

3.4.3 Rod-coil interaction

The last contribution to the total energy βH describes the interaction between rods and
coils. Its general form is

βHCR = χCR

∫

V

dr ρC(r)ρR(r) (3.40)

where the strength of the monomer-rod interaction χCR is a non negative number. As in
Equation (3.36) ρC(r) is the monomer density. ρR(r) denotes the rod density. Similar to
the coil density it may be written in a discretized form ρR,I , which can be interpreted as
the volume fraction of the rods in cell I. For the sake of simplicity we will abbreviate
the rod volume fraction as

ρR,I = ϕI . (3.41)

Thus, Equation (3.40), expressed as discretized monomer-rod interaction, reads

βHCR = χCR

∑

I

VCell

CI

VI
ϕI . (3.42)

Please note that there is no attractive interaction in our system as this interaction is
also purely repulsive. The contribution from the I-th cell is proportional to the product
of the volume fraction of rods in this cell and the number of included monomers. Thus,
the interaction may be reduced if fewer cells include a huge amount of monomers while
having a big overlap with rods. So this repulsive interaction can be seen as a separation
strength trying to push rods and monomers into unequal cells. The interaction range is
again limited by the cell size δ. The local rod density ρR,I , or rather the volume fraction
ϕI , are difficult to access. Therefore, we develop several models to obtain these values.
These models are described in the following section.

If χCR is equal to zero there is no interaction between rods and coils. At first glance,
there is no difference for the rods to a system without coils. But since the coils stay
attached to the rods and still interact with each other they can not move entirely free.
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So this may not be directly comparable with a system without coils. In Figure (3.9) a
system with four rod-coil block copolymers in a simulation box of five times four cubic
cells is illustrated.

Figure 3.9 Two-dimensional sketch of a system with 5 × 4 cubic cells and four rod-coil
block copolymers with m = 10 monomers.

3.4.4 Different models

Monte-Carlo integration

In our first approach we model the rod-coil interaction by hard-body constraints. This
means a monomer may not enter a spherocylinder. Additionally, we have a density-
dependent interaction which describes soft interactions of longer range.

βHCR =







∞ : monomers enter rods
χCR

∫

V
dr ρC(r)ρR(r) : otherwise (3.43)

So, whenever a trial move would end in a situation in which a monomer is inside
a rod this move is rejected. Otherwise we get the contribution already known from
Equation (3.40). To check if a monomers is inside a spherocylinder we use the same
shortest distance algorithm as for the rods. Since a monomer can be expressed as a
spherocylinder of length and diameter equal to zero this algorithm can be simplified
dramatically and is much faster.

As the monomers are not allowed to enter the spherocylinders the volume VI

accessible to the monomers in a cell I is reduced by the space occupied by the rods and
may, therefore, be smaller than the volume VCell of the cells. For a given rod volume
fraction ϕI the reduced volume can be calculated as

VI = (1 − ϕI)VCell. (3.44)
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Using this relation Equation (3.39) and Equation (3.42) become

βHCC =
χCC

2

∑

I

1
VCell

(

CI

1 − ϕI

)2

(3.45)

βHCR = χCR

∑

I

CI

1 − ϕI
ϕI . (3.46)

The rod volume fraction ϕI is determined in means of a Monte-Carlo integration
scheme. To this end a fixed number of Ω random positions are generated in cell I.
Then we count the number ωI of positions which are inside of rods. The rod volume
fraction ϕI can then be approximated as

ϕI = ρR,I =
VR,I

VCell

≈ ωI

Ω
(3.47)

where VR,I is the total volume occupied by rods in cell I. With this the reduced volume
accessible to the monomers and the contributions βHCC and βHCR can be expressed as

VI =
(

1 − ωI

Ω

)

VCell (3.48)

βHCC =
χCC

2

∑

I

1
VCell

(

CI

1 − ωI
Ω

)2

(3.49)

βHCR = χCR

∑

I

CI

1 − ωI
Ω

ωI

Ω
. (3.50)

For a sufficient accuracy a lot of random positions are needed. As the same positions
have to be used for the calculation of the old and the new energy during a Monte-Carlo
step, all positions must be saved. This may become very memory consuming. There is
no need to generate a new distribution of random positions for each Monte-Carlo step.
However, it has to be regenerated regularly to avoid artifacts. Results obtained with
this model are published in reference [73].

Monte-Carlo integration using a pool of random number cells

The random numbers for the positions, needed to calculate the rod densities, have to be
reshuffled from time to time of course. Saving all the random numbers does not only
consume a lot of memory but the generation also takes a lot of time.

Hence, we improve the model by using a pool of cells filled with random numbers.
Figure (3.10) shows a pool of p cubic cells filled with ω random positions. For each
cell only the relative positions to the center position rc of the ω random numbers are
saved. As we save the central positions of all I cells this allows us to easily place each
of the p cells at any cell I of the simulation box and calculate the random positions.
For each cell of our simulation box one of these p cells is randomly chosen. After a give
number of steps the cells are redistributed randomly. This way we need to save much
less random numbers, which have to be generated only once.

This model needs less memory and is much faster but the performance is still not
satisfying. In addition, the rods are nearly immobile at higher monomer concentrations
because of the hard core interaction between monomers and spherocylinders. Thus we
develop a completely different approach.
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Figure 3.10 Pool of p cells filled with ω random positions, denoted by red points,
relative to the center position rc of the cell.

1 2 p. . .

. . .rc

Surface approximation method

The calculation of the rod densities takes a lot of time. Since the monomers are not
allowed to penetrate the rods we have to check if the rods and monomers overlap after
each rod and monomer Monte-Carlo step. After each of both possible rod moves the rod
volume fractions ϕI for all cells I which are in contact with the moved rod have to be
recomputed. As the accessible volume VI depends on ϕI these values also change and
the coil-coil interactions βHCC in all affected cells have to be recalculated, too. This
huge amount of computations dramatically slows down the simulation.

Therefore, we now allow the monomers to enter the spherocylinders. In addition,
we change the way how the rod densities are approximated. In this model we place
virtual dots on the surface of the spherocylinders, which are used to approximate the
rods densities. Figure (3.11a) shows a rod-coil block copolymer with these points added
to the surface. We add a point at the top and bottom of each spherocylinder and rings
of six points each. The point at the bottom position is the same point as the 0-th virtual
monomer. The first ring is placed at the center of the spherocylinder. Then rings at
distances of half the rod diameter are added along the cylindrical core. Figure (3.11b)
illustrates a rendered image of a rod-coil block copolymer with 56 surface points.

For convenience, we use spherocylinders with a diameter equal to one. This way
we can do all the expensive sine and cosine calculations needed to place the points on
the rings beforehand. Additionally, by using six points per ring, we can ensure that the
distance between each neighboring point is half the rod diameter and, thus, the same
value as the distance between the rings. This is important to assess the accuracy of this
approximation and to decide how big the cell size should be. Later we will show that
the cell size δ should not be smaller than the distance between the points. The total
number of surface points for each rod only depends on the length and can be calculated
as

γ = 6(2L+ 1) + 2. (3.51)

It is pretty easy and fast to determine the number ΦI of surface points in cell I.
With this we can define the rod density in the I-th cell as

ϕI = ρR,I =
VRod ΦI/γ

VCell

≈ VR,I

VCell

(3.52)
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Figure 3.11 (a) Rod-coil block copolymer with surface points. Each circle consists of
six points resulting in an angle of 60° between each point. The first circle is centered at
the origin of the unit vector û. The distance between the circles is D/2. Additionally,
there is a point at the top and bottom positions of the rods. The latter one is used as
connection point to the coil chain. (b) A rendered image of a rod-coil block copolymer
with L = 4, D = 1, m = 24 monomers and γ = 56 surface points.
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where VRod is the volume of a spherocylinder and VR,I is the rod volume fraction in cell I.
This allows us to express the rod-coil interaction from Equation (3.42) as

βHCR = χCR

∑

I

VCell

CI

VI

VRod ΦI/γ

VCell

= χ∗
CR

∑

I

CI ΦI (3.53)

where all constant values are condensed in χ∗
CR. As the monomers are allowed to

penetrate the rods the volume accessible to the monomers and the cell volume do
not differ anymore and Equation (3.39) can also be simplified. Again summarizing all
constant values to an interaction parameter χ∗

CC we get

βHCC =
χCC

2

∑

I

VCell

(

CI

VI

)2

= χ∗
CC

∑

I

C2
I . (3.54)

In this model we do not have to distinguish different accessible volumes anymore
and an increase or decrease in density always adds or removes the same contribution.
Thus, we do not only save time to calculate the reduced volume for each cell but we
also need less memory and can benefit from fewer memory accesses. To calculate the
interactions βHCC and βHCR we only have to determine CI and ΦI . Both values can
be implemented as integer values, which need less memory and can benefit from the
much faster prefix increment and decrement operators. This way the densities and
interactions can be computed very efficiently. A further benefit may be that instead of
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using neighbor lists, we can swiftly check if the surface points of a spherocylinder are in
a cell and only check spherocylinders for overlap if they have common cells.

3.5 Observables

In this section we introduce the observables and methods we use to analyze our simula-
tions and characterize the phases.

A very common way to describe the dimension of a polymer chain is its radius
of gyration Rg. Experimentally it is accessible via static light, small-angle neutron
and x-ray scattering. Therefore, the radius of gyration is frequently used to compare
theoretical results with measurements. It is defined as the root mean square distance of
the collection of monomers from their common center of mass. Thus, the mean square
radius of gyration [72] for a chain of m monomers is given by

R2
g =

1
m

m
∑

i=1

〈

(Ri − RCM)2
〉

(3.55)

where RCM is the the center-of-mass vector

RCM =
1
m

m
∑

i′=1

Ri′ . (3.56)

Given a number of beads per coil m with an average distance b between each bead
the average squared radius of gyration of a Gaussian chain fulfills the relation

〈

R2
g

〉

=
1
6
mb2 =

m

2k
. (3.57)

Another length characterizing a polymer chain is the end-to-end distance

Re = (RLast − RFirst) (3.58)

The end-to-end distance is simply calculated as the difference vector between the last and
the first bead of a polymer chain. It is prevalent to use the average squared end-to-end
distance. For a Gaussian chain it follows the relation

〈

R2
e

〉

= mb2 =
3m
k

(3.59)

The value mb is often denoted as contour length, which is the maximal chain length
for fully stretched or stiff connections. The ratio between the average squared values of
the radius of gyration and the end-to-end distance for Gaussian chains is

〈

R2
e

〉

〈

R2
g

〉 = 6. (3.60)

With the mean end-to-end distance we may define the invariant degree of polymer-
ization

Ñ =

(

ρ0
R3

e

M

)2

(3.61)
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where ρ0 is the monomer density. The square root of this quantity provides an estimate
for the number of molecules inside the volume of a reference chain and, thus, the
degree of interdigitation of the molecules [183]. In a dense three-dimensional melt it is
proportional to the molecular weight [69].

The alignment is an important measure to characterize a phase. Spherocylinders
have a shape anisotropy p which is only zero for spheres. For all other cases the rods
have an elongated shape and, therefore, an orientation. This allows us to calculate order
parameters depending on the orientations of the spherocylinders.

The nematic order parameter is a simple and widely used way to define such an
order parameter. A general definition is

S = 〈P2(cos θ)〉 =

〈

3 cos2 θ − 1
2

〉

(3.62)

where the brackets denote the average over the complete ensemble, P2 is the second
Legendre polynomial and θ is the angle between the axis of a rod and the director n.
The director n describes the preferred direction of the elongated polymers in the system.

In the isotropic phase S is zero and in the nematic phase S is greater than zero but
smaller than one. Experimental values of S in nematics are typically in the range from
0.4 to 0.7 [22, 23, 109, 134, 144]. The Maier-Saupe theory predicts a phase transition at
a value of 0.43 for the order parameter S [163, 164, 165].

Instead of calculating the director every time it is often sufficient to specify one
axis as director. So we get three order parameters Sx, Sy and Sz, which measure the
alignment of the rods with the given axis. Hence, averaging over all i polymers using
the α-th component of the unit vectors ûi with α = x, y, z, we can define the order
parameter

Sα =
〈

3
2
uα

i u
α
i − 1

2

〉

. (3.63)

These values can be combined to a further order parameter

S̃ = S4
x + S4

y + S4
z − 3

5
. (3.64)

If there is no alignment all three cubed Sα values cancel out and the minimal value
of −0.6 is reached. For complete alignment along one axis the associated Sα value will
become one and the two other values will equal zero. So S̃ will sum up to its maximal
value of 0.4.

For a more accurate calculation of the nematic order parameter, including the
director n, we have to use the nematic order tensor denoted as

Sαβ =
1
N

N
∑

i=1

〈

3
2
uα

i u
β
i − 1

2
δαβ

〉

(3.65)

with α and β taking the values x, y or z. The tensor Sαβ is a symmetric and traceless
second order tensor. Hence, it has three real eigenvalues and corresponding orthogonal
eigenvectors. After diagonalizing Sαβ we get three eigenvalues λ+, λ0 and λ− with
λ+ > λ0 ≥ λ− and λ+ + λ0 + λ− = 0. The eigenvector of the biggest eigenvalue λ+,
which is commonly used as order parameter, is the systems director n.
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In general, these eigenvalues also contain a biaxiality η and can be written as 2
3
S,

−1
3
S+η and −1

3
S−η [27, 159]. Here S is the order parameter defined in Equation (3.62)

and 0 ≤ η ≤ S. This way the nematic order tensor can be expresses as

S =







−1
3
S − η 0 0
0 −1

3
S + η 0

0 0 2
3
S






=







λ− 0 0
0 λ0 0
0 0 λ+






. (3.66)

With this the order parameter S and the biaxiality of the molecular distribution η
can be calculated as

S = λ+ − 1
2

(λ0 + λ−) (3.67)

η = −1
2

(λ− − λ0) . (3.68)

For unaxial phases η equals zero and, thus, λ0 equals λ−. Figure (3.12) shows
several liquid-crystalline phases including exemplary uniaxial and biaxial nematic order
tensors for the smectic C, smectic A and nematic phases.

Figure 3.12 Liquid-crystalline phases in dependence on the temperature T . For the
smectic phases and the nematic phase the nematic order tensor Sαβ is specified. Here
the eigenvalues are labeled ε. The layer normal and director are denoted by k and n,
respectively. From [134]
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Other important observables are the pair correlation function g(r) and the orienta-
tional correlation function g2(r). The pair correlation function g(r) gives a probability
to find a particle in a volume element dr located at position r if another particle is
at r = 0. For a system of N particles and a number density ρ0 the radial correlation
function can be defined as

g(r) =
1

4πNr2ρ0

N
∑

j=1

N
∑

i=1

i6=j

δ (r − rij) =
1

2πNr2ρ0

N
∑

j=1

N
∑

i>j

δ (r − rij) (3.69)

where δ (r − rij) is the delta distribution, which becomes one if the distance rij = ri − rj

between two particles i and j equals r and is zero otherwise. Correlation functions can
be calculated up to a distance rmax that should not be larger than half the size of the
simulation box.

Another common version, using the radial correlation function g(r), is the radial
distribution function, which reads

R(r) = 4πr2ρ0 g(r). (3.70)

The pair correlation function g(r) can be obtained by Fourier transformation of the
structure factor, which can be measures in neutron and x-ray scattering experiments.

Depending on the order of the system the correlation function decays with increasing
distance. The decay for various types of order are illustrated in Figure (3.13). For true
long-range order there is no decay. For systems with quasi-long-range order, such as
smectic liquid crystals, the decay of the correlation function follows a power law which is
characterized by a positive and often small constant η. The value of η also depends on
the exhibited phase. For nematic liquid crystals or fluids, which only have short-range
order, g(r) decays exponentially. The constant ξ is the so-called correlation length.

For anisotropic particles an orientational correlation function can be defined. It is a
measure for the correlation of the rod orientations and is given by

g2(r) = 〈P2(û(0)û(r))〉 (3.71)

where the brackets indicate ensemble averaging, P2 is the second Legendre polynomial
(see Equation (3.62)) and the unit vectors û characterize the orientation of particles at
the origin and r, respectively. Sometimes also correlation functions based on Legendre
polynomials of higher order, for example, P4 or P6, are used.
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Figure 3.13 Decay of the correlation function g(r). Here, a is the monomer size. For a
system with long-range order g(r) remains constant, while its decay is described by a
power law for systems with quasi-long-range order. The positive constant η varies for
different systems. For systems with short-range order g(r) shows an exponential decay,
where ξ is the correlation length.
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Before we can investigate the phase behavior of rod-coil block copoly-
mers in our model we have to understand the influence and interplay of
the model parameters. In Appendix A we show some preparatory work
reflecting the single steps in the development of the program. In Ap-
pendix A.1 we investigate a basic phase diagram for pure rod systems
while Appendix A.2 summarizes our findings for rod/coil mixtures. In
this chapter we present several results which demonstrate the influence
of the model parameters. At first we investigate the role of the cell
size in systems of rod-coil block copolymers. Then we compare the
three different methods we use to compute the interactions between
rods and coils. Afterwards, we study the influence of the number of
monomers per coil and, finally, the spring constant k on the phase
behavior.



4 Influence of model parameters

4.1 Choosing the correct cell size

After we have tested the implementation of pure rod systems in Appendix A.1 and
rod/coil mixtures in Appendix A.2 we connect the coils and rods to form rod-coil block
copolymers. With the introduction of the coils and their interactions we also add a
discretization of the simulation box into multiple, cubical cells. Therefore, we have to
set a cell size at the beginning of each simulation. We have already mentioned that
the choice of the correct cell size is crucial. A wrong choice may lead to undesirable
behavior. In this section we discuss one of these unwanted effects and motivate our
choice of the cell size.

As a first attempt we simply set the cell size δ to one and, therefore, equal to the
diameter D of the spherocylinders in the simulations. For this case, especially in dilute
systems, we observe an alignment of the spherocylinders along the cell structure. To
investigate the influence of the cell size on the arrangement of the rods we start several
test simulations. To get comparable results the diameter of the spherocylinders is chosen
to be equal to one while their length equals five in all simulations discussed in this
section.

Our first attempt to solve the problem that the rods align along the cell structure
is to change the cell size. In a first test we investigate systems with five different cell
sizes δ equal to 0.1, 0.5, 1.0, 1.5 and 2.0. We only use thirty spherocylinders with
extremely long coil chains consisting of 500 monomers each. This way we can very likely
prevent empty cells. Thus, there should always be an interaction between a rod and
the surrounding coils while the order effect of the spherocylinders among each other is
reduced. The interaction parameters are set to χCR = χCC = 0.5 and k = 27. The cubic
simulation box has a side length of sixteen for a cell size of two and fifteen for all other
cell sizes, which results in a reduced density ρ∗ around 0.04 for the runs.

Snapshots of the final configurations for all five systems are displayed in Figure (4.1).
It is clearly visible that orientations along the axes are preferred if the cell size δ equals
the rod diameter D as illustrated in Figure (4.1c). If the cell size is reduced to a
value smaller than the diameter of the spherocylinders the alignment along the cell
structure vanishes. This is noticeable in Figures (4.1a) and (4.1b) for cell sizes 0.1 and
0.5, respectively. If the cell size is increased to 1.5 or 2.0 the alignment is not reduced
distinctly. Another effect is that the rods affiliate to small clusters of three and two or
even four adjacent, parallel rods to match the cell structure. Figure (4.1d) shows the
final configuration for a system with a cell size of 1.5 and illustrates that the rods try to
pack in triplets. The snapshot in Figure (4.1e) indicates that an arrangement in pairs
of two or four spherocylinders is favorable for a cell size of two.

As a first result we can conclude that the cell size should not be equal to the
spherocylinder diameter. Systems with smaller cell sizes show the expected phase
behavior but have the drawback that they may not fit our model. As already mentioned
the cell size must not be smaller than the mean distance between the monomers. In
case we use the surface approximation method to estimate the rod densities the cell
size is additionally limited by the distance between the points on the surface of the
spherocylinders. Bigger cell sizes should be treated with caution as well. Especially, if
they are multiples of the diameter as they may not sufficiently reduce the alignment along
the cell structure without further adjustments. Furthermore, if the cell size becomes
to large the ability to resolve an inhomogeneous density distribution of the monomers
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4.1 Choosing the correct cell size

will be lost [69]. Although it is not prohibited it is cumbersome to choose odd cell sizes
such as 1/3 or 1.6. In order to choose a suitable cell size we have to compare further
properties of our simulations.

Figure 4.1 Snapshots of a dilute system with different cell sizes δ demonstrating the
alignment of the spherocylinders along the cell structure for improper parameters. The
spherocylinders have a length of five and a diameter D equal to one.The interaction
parameters χCR and χCC are both equal to 0.5. For cell sizes below D no alignment is
visible ((a) δ = 0.1 and (b) δ = 0.5). If the cell size equals the rods diameter ((c) δ =
1.0 = D) an alignment along the cell structure is clearly visible. For systems with
bigger cell sizes than the diameter we also observe a high alignment. In addition, several
spherocylinders (three for (d) δ = 1.5 and two or even four for (e) δ = 2.0) affiliate to fit
the cell structure. All images are cropped to facilitate a focus on the essential region.

(a) (b) (c)

(d) (e)

For this purpose, we start two more simulations with the same parameters as before
but with a smaller rod-coil interaction parameter χCR equal to 0.2. Figure (4.2) shows
two plots for the five different cell sizes and all three different simulation runs. The
simulations discussed above are displayed by the blue line while the two simulations
with smaller χCR values are illustrated by the red and orange colored lines. The first plot
in Figure (4.2a) displays the biggest eigenvalue of the nematic order tensor λ+, which
is used as order parameter. We see that all configurations are isotropic, that is, λ+ is
smaller than 0.4, for small cell sizes of 0.1 and 0.5. For a cell size of δ = D = 1 the order
significantly increases for all three systems. The rods align along the cell structure. For
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4 Influence of model parameters

bigger cell sizes the results differ. As we have seen in the snapshots in Figure (4.1) the
spherocylinders in a system with a big rod-coil interaction parameter align along the cell
structure. In this case, illustrated by the blue line, the order parameter λ+ increases.
The red and orange line for the new simulations demonstrate that the alignment is
reduced if the rod-coil interaction parameter χCR has a smaller value. This further
demonstrates that the formation of different phases can be controlled by altering the
rod-coil interaction parameter for these cell sizes. This is of great importance as we aim
to investigate the phase behavior of the rod-coil block copolymers in dependence of the
interaction strength between rods and coils.

The second plot in Figure (4.2b) shows the average time the program needs for
100000 steps in seconds. As expected systems with more cells need more time. Remember,
that the box size for the runs with δ equal to two is increased from fifteen to sixteen.
This may lead to a small slowdown of the simulations. Nevertheless, the values for δ
equal to 1, 1.5 and 2 do not differ much. The simulations with smaller cell sizes need
perceptibly longer. For the two smallest cell sizes we see that the runs with a cell size of
0.1 are much slower than those with a cell size of 0.5. As one of our goals is to achieve
an efficient program the cell size should not become to small.

Figure 4.2 Plots of average values for five different cell sizes δ. (a) The biggest
eigenvalue λ+ is used as order parameter. The blue line indicates a simulation with
χCR = 0.5. The red and orange lines simulations with a smaller value of 0.2. In both
cases χCC equals 0.5. (b) Average time of the three simulations for 100000 steps in
seconds.
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Another possibility to avoid an alignment along the cell structure may be to reduce
the rod-coil interaction. In the following, we want to further examine the relation of the
rod-coil interaction parameter on the observed effect. For this purpose, we simulate fifty
rods with a length of L = 5 in a simulation box of size 15 × 15 × 15. The cell size is
chosen to be equal to the diameter of the spherocylinders δ = D = 1.0. We attach a coil
with 400 monomers each to one end of each rod. We start from an ordered configuration
and after 200000 steps the simulations are stopped. The coil-coil interaction parameter
χCC is set to 0.5 and the spring constant k equals 27. Each of the four runs has another
value for the rod-coil interaction parameter χCR. Snapshots of the final configurations
for values 0.05, 0.1, 0.2 and 0.3 for χCR are displayed in Figure (4.3). From previous
runs we already know that the system exhibits an isotropic phase at this density if the
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4.1 Choosing the correct cell size

interactions between rods and coils are turned off. As demonstrated at the beginning
of this section we further know that the spherocylinders strongly align along the cell
structure for an interaction parameter of χCR equal to 0.5 in a comparable system.

Figure 4.3 Snapshots of the final configurations with a cell size of δ = 1.0 = D and
χCC = 0.5. For small coil-rod interaction parameters ((a) χCR = 0.05 and (b) χCR = 0.1)
the systems are isotropic. For higher interaction parameters ((c) χCR = 0.2 and
(d) χCR = 0.3) the alignment increases.

(a) (b)

(c) (d)

We clearly see that there is no alignment of the spherocylinders in Figures (4.3a) and
(4.3b) with very small rod-coil interaction parameters χCR of 0.05 and 0.1, respectively.
If we increase the interaction parameter to 0.2 the rods have a clear tendency to align
along the cell structure, as displayed in Figure (4.3c). For even higher values of χCR

this effect becomes stronger as Figure (4.3d) demonstrates for a χCR value of 0.3. Thus,
we can affirm that the minimization of the repulsive interaction between rods and coils
causes the arrangement of the spherocylinders along the cell structure. The use of a
smaller interaction parameter reduces the alignment of the rods along the cell structure,

75



4 Influence of model parameters

even if the cell size is equal to the diameter of the spherocylinders. Choosing a too low
interaction parameter for the rod-coil interaction may be problematic as this interaction
is essential for the stabilization of higher ordered phases.

To conclude we find that the cell size should under no circumstances be equal to the
diameter of the rods as this strengthens the alignment of the spherocylinders along the
cell structure. In our case this is a cell size equal to one. For this cell size the rod-coil
interaction parameter would have to be set to a very small value to avoid an alignment
at all. Simulations with a very small cell size of 0.1 are far too slow and do not fulfill the
requirements of our model. A cell size of δ equal to 0.5 also results in long simulation
times and may still conflict with our model. For a cell size of two we find that two or
four spherocylinders may affiliate in order to fit the cell structure. Such a big cell size
may already be too large to allow an sufficient inhomogeneous density distribution of
the monomers. As the alignment along the cell structure can not be prevented this cell
size and other multiples of the diameter D should be avoided, too.

Hence, we set the cell size δ to 1.5 for nearly all simulations as this value is easy to
handle, not an integral multiple of the diameter and guarantees adequate simulation
times. Further, we can finely tune the phase behavior by changing the rod-coil interaction
parameter χCR for this cell size.

The solution to adapt the cell size is suitable for the calculation of the interactions
in all three models introduced in Section 3.4.4. We have already mentioned that the
cell size should not be smaller than the distance between the monomers in a coil and
the surface points if we use the surface approximation method. For all simulations in
this thesis the value of the spring constant k is chosen to result in an average distance b
between the monomers smaller than the chosen cell size of 1.5. For the chosen number
of surface points in this thesis the distance between neighboring points equals 0.5 and,
therefore, is the lower limit of the cell size for this method. Accordingly, the chosen cell
size of 1.5 is compatible with the requirements for our model.

If we use the surface approximation method to estimate the rod densities there are
further solutions to reduce the alignment along the cell structure. It is possible to rear-
range the surface points from time to time, for example, by rotating the spherocylinder
along its unit vector. In this case we either have to save all surface point positions for
all rods or a rotation angle or rotation vector for each spherocylinder and recompute all
points every time they are needed. The implemented algorithm, therefore, needs more
memory and is much slower. Nevertheless, for a cell size equal to one we find that the
rods are not oriented along the axes anymore if we rearrange the surface points every
100th step. A further disadvantage of this method is that we have to recalculate the
rod-coil interaction energy every time we rearrange the points. This does not only slow
down the simulations but there are also undesired jumps in the energy. One method
to control these energy jumps is to implement the rearrangement as a Monte-Carlo
move. This method is not implemented and tested as other solutions are much easier
and faster.

4.2 Comparison of the three different models

During the development of the program we regularly profile the code in order to find
bottlenecks and provide efficient code. On this occasion we find that the speed of the
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4.2 Comparison of the three different models

program drastically depends on the chosen underlying model. In this section we compare
the three different models we have introduced in Section 3.4.4.

As far as we can say from the examined runs the three models give comparable
results. The first and second model are closely related to each other and should give
very similar results anyway. The third model uses a different approach. In order to
get the desired behavior we have to adjust the interaction parameters. This makes a
direct comparison between the models difficult. Results obtained with the first model
are published in reference [73]. The findings in this publication are in accordance with
the results we obtain with the second and third model. The most remarkable difference
between the three models is the CPU time needed for a given number of steps.

To test the speed of the models we set up 10 different systems with 50 to 250 rods
and 3 to 162 monomers per rod for all three models. The size of the simulation box is
15 × 15 × 19 for all simulations with a cell size δ equal to one. We let the simulations
run for 10000 steps and then compare the simulation times.

The first model uses a simple Monte-Carlo integration scheme to determine the rod
densities. In this model the monomers are not allowed to penetrate the rods. Therefore,
the accessible volume for the monomers in each cell has to be calculated repeatedly after
each Monte-Carlo move of a spherocylinder. To approximate the rod volume fraction in
a cell and, thus, the rod densities we draw a given number of random numbers per cell
and count the amount of points inside and outside of spherocylinders in each cell. Even
though this model is giving reasonable results it is pretty slow.

A first improvement is to implement a Monte-Carlo integration method that uses a
pool of random number cells. Each of these cells contains a fixed quantity of random
numbers and is associated with one cell of the simulation box. After several steps the
random number cells are rearranged. This way we have to generate much less random
numbers and need less memory. In a few tests we find that this method is 5 to 10 times
faster than the simple Monte-Carlo integration method.

Even with this improvment the method is still not efficient enough. Another big
drawback is the excluded volume interaction between rods and coils as it results in very
immobile rods. This can be bypassed by using soft interactions. For this reason we
introduce the much more efficient surface approximation method. In this model the
monomers may penetrate the spherocylinders. But the sharing of a common cell for
monomers and rod surface points is penalized. This way we can skip the expensive
overlap detection between monomers and rods and, furthermore, we do not have to
calculate the accessible volume for the monomers after every rod move. Thus, this
method is significantly faster. In the test runs we find that the simulations are between
400 to 16000 times faster than the second model.

We may also calculate the average time each method needs for one step per sphero-
cylinder and per monomer. On average the first method needs around 36 · 10−5 seconds
per rod and monomer for one step. The second model still requires approximately
6 · 10−5 seconds per step, whereas the surface approximation method on average merely
needs about 13 · 10−9 seconds.

Thus, most results in this thesis are obtained with the surface approximation method
as the two other methods would be much to slow to achieve meaningful results in a
reasonable time.
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4 Influence of model parameters

4.3 Influence of the coil length

After combining the coils and rods to rod-coil block copolymers we start to add some
further features to the program. In this section we present one of these features. It
allows us to alter the length of the coils when starting from another configuration. If
the new coil chains are shorter than the old ones we remove the rearmost monomers
until the new length is reached. In case the new chains are longer than before we add
monomers at random positions close to the endmost monomer position of the current
chain until the desired length is achieved.

We use this algorithm to demonstrate the metastability of the zigzag phase in
the following chapter. Here we discuss the results of a system for which we decrease
the number of monomers from 162 to 3 in four steps. We start from an old, highly
ordered configuration at which each coil consists of 162 monomers. To show that this
configuration is fully equilibrated we do not change the number of monomers for the
first 500000 steps. Then we gradually decrease the number of monomers every 500000
steps to 108, 54, 18 and finally 3 monomers. Note that we do not wait for the systems
to equilibrate completely in this case as we only want to demonstrate the applicability
of the algorithm and show the basic behavior of the systems with changing coil length.

The size of the simulation box for all simulations is 48 × 30 × 36 with a cell size
of 1.5. The spherocylinders have a length L of five and a diameter D of one. The
interaction parameters for all runs are χCC = 0.5, χCR = 0.5 and k = 12. The simulations
are performed at five different densities ρ∗ = 0.1, 0.15, 0.2, 0.25 and 0.3, whereas the
densities are adjusted by using different numbers of rod-coil block copolymers.

In Figure (4.4) we see the development of the order parameter Sz along the z
direction for different densities. In the first and second region the number of monomers
per coil is 162 and 108, respectively. All systems are highly ordered. In the third region
the number of monomers is reduced to 54. For the lowest density, represented by the
red line, we observe a phase transition to an isotropic phase at this point, while the
values for the other systems merely change insignificantly. In the fourth region each
coil only consists of 18 monomers and the order decreases even for systems with higher
densities. In the last region the number of monomers per coil is reduced to 3 and all
systems converge to an isotropic state.

We can conclude that the order decreases with shrinking coil length. With these
simulations we also demonstrate that a phase transition can be driven by changing the
number of monomers per coil. This effect is studied in the following chapter in more
detail where it is used to investigate a phase diagram for rod-coil block copolymers in
dependence of the number of monomers per coil.
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4.4 Influence of the spring constant

Figure 4.4 Order parameter Sz for different reduced densities ρ∗ = 0.1 (red),
0.15 (green), 0.2 (blue), 0.25 (magenta) and 0.3 (orange). Every 500000 steps the
number of monomers per coil m is reduced. Starting from an ordered state with 162
monomers per coil all systems converge to an isotropic state if m is reduced to 3. In all
simulations χCC and χCR are equal to 0.5 and k is 12.
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4.4 Influence of the spring constant

Beside the number of monomers per coil the spring constant k is another parameter
affecting the length of the coils in our systems. This value controls the intrachain
interaction of the coils. As it is related to the average distance b between the monomers
it is especially a measure for the total length of the coils. Remember that k equals 3/b2

for a Gaussian chain and the total contour length of a coil with m monomers is given
by bm.

In this section we check the influence of k on some sample systems. For this purpose,
we set up a system with 300 rods with a length-to-width ratio L/D of 5/1. Choosing a
simulation box of size 15 × 15 × 19 results in a reduced density of ρ∗ around 0.353. The
cell size δ is equal to one in all runs. The rod-coil interaction parameter χCR is chosen
to be 0.2 and each coil consists of 50 monomers. The values of the coil-coil interchain
interaction parameter χCC can take the values 0.1, 0.2, 0.5, 1.0, 2.0, 4.5 and 10.0. For
the intrachain interaction parameter k we use the values 3, 12 and 27 leading to average
monomer distances of 1, 1/2 and 1/3, respectively.

Figure (4.5) demonstrates how both parameters, namely χCC and k, influence the
phase behavior. The plot shows the order parameter Sz along the z-axis against k for
different values of χCC. It illustrates that the order slightly decreases with increasing
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k value if the coil-coil interaction is small. Snapshots of the final configuration for
χCC = 0.1 are displayed in Figure (4.6). For moderate χCC equal to 0.5 the order is
hardly influenced by k. An increase in k leads to a higher order for higher χCC values.
For a value of χCC of one this effect is almost sufficient to drive a transition from an
isotropic phase, for values of k equal to 3 and 12, to a nematic phase, for a value of 27
for k. This is also visible in the snapshots of the simulations in Figure (4.7).

Figure 4.5 Order parameter Sz along the z-axis for different values of k and χCC.
The value of χCR is 0.2 for all simulation runs. For small values of χCC (0.1 (red) and
0.2 (green)) the order decreases with increasing k. For a moderate χCC value of 0.5 (blue)
the order only changes insignificantly. For high χCC values (1.0 (magenta), 2.0 (orange),
4.5 (grey) and 10.0 (purple)) the order increases for larger k values.
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For small values of χCC the repulsion between the monomers is low. Thus, they
have a lower tendency to spread equally over the whole box as the energy penalty for
regions with a high local monomer density is small. Further, when χCC is smaller than
χCR, the repulsion between the monomers and the spherocylinders is more dominant. A
penetration of the monomers into rod-rich regions is, therefore, hindered.

For small values of k the coils are longer, occupy more cells and, thus, make a mixing
of rod and coil-rich regions more difficult. With increasing k the chains are getting
shorter and occupy less space. Because of this the number of influenced cells decreases
and there are more cells with a low coil density. This allows the spherocylinders to move
more freely and, thus, the order is reduced. Hence, an increase in k decreases the order
for small χCC values.
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Figure 4.6 Snapshots of the final configurations for three runs with χCR = 0.2, χCC = 0.1
and different k values. The order decreases with increasing k. (a) k = 3. (b) k = 12.
(c) k = 27.

(a) (b) (c)

For high coil-coil interaction parameters χCC the systems behave contrariwise. Here
the rod-coil interaction is less dominant and the monomers are hardly expelled from
rod-rich regions. As the energy penalty for a high local monomer density is much higher
in this case the monomers try to distribute evenly and occupy more cells.

For small k values this is not hindered and the chains are widely spread. Therefore,
there is a more or less equal monomer density in all cells. This leads to a mostly uniform
coil-coil and rod-coil interaction in all cells. The resulting systems are in an isotropic
state.

For a high value of k the chains are much shorter and the probability to have more
monomers is one cell is much higher. This leads to higher local monomer densities and,
thus, the repulsion between rods and coils is increased. The resulting formation of coil
and rod-rich regions leads to a stabilization of ordered phases. Hence, an increase in k
increases the order for big χCC values.
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Figure 4.7 Snapshots of the final configurations for three runs with χCR = 0.2, χCC = 1.0
and different k values. An increase in k leads to higher order. For small values of k
((a) k = 3 and (b) k = 12) the system exhibits an isotropic phase. (c) For a higher value
of k = 27 the system is at the transition point to the nematic phase.

(a) (b) (c)
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In this chapter we show the results of a detailed series of simulations
and the resulting phase diagram for rod-coil block copolymers in our
model. Then we emphasize the stabilization of the smectic phase in our
systems of rod-coil block copolymers compared to pure rod systems.
Additionally, we present some outstanding phases and demonstrate
the metastability of the zigzag phase in our model.



5 Phases in dilute systems

5.1 Phase diagram

A main goal of this thesis is to study the phase behavior of rod-coil block copolymers. In
this section we present the main results of a detailed series of simulation runs including
a phase diagram characterizing the phase behavior of rod-coil block copolymers in
our model in dependence of the number of monomers per coil m and the interaction
parameter χCR between rods and coils.

In order to identify the phase transition points for the rod-coil block copolymers we
investigate a lot of different systems. For all systems in this section the spherocylinders
have a length L of five and a diameter D of one. The size of the simulation box is set to
48 × 30 × 36. This is eight, five and six times the total length λ of a spherocylinder in x,
y and z-direction, respectively. The cell size δ is fixed to 1.5 to reduce an alignment of
the rods along the cell structure as discussed in Section 4.1. The coil-coil interaction
parameter χCC is set to 0.5 and the spring constant k equals 12, thus, the average
distance b between the monomers is 0.5. The simulations are set up to run for 7000000
steps.

The systems contain 100 to 6000 spherocylinders in increments of 100. This corre-
sponds to a range of 0.0097 to 0.5830 for the reduced density of the spherocylinders ρ∗ in
steps of 0.0097. We simulate all of these systems with five different numbers of monomers
per coil m. This way we can determine the dependence of the phase transition on the
coil length. The shortest chains contain 3 monomers per coil. For the next longer chains
m equals 18 and 54. The longest coils consist of 108 and 162 monomers per chain.

All runs are started twice. Once they start from an ordered system and once
from a random configuration. For each number of monomers per coil up to five runs
with different rod-coil interaction parameters are started. For all sets interaction
parameters χCR equal to 0, 0.5 and 1.0 are investigated. For the systems which start
from an ordered configuration additional runs with values of 0.1 and 0.25 for χCR are
examined.

Figure (5.1) illustrates several plots of the average values over the last 100000 steps for
the biggest eigenvalue λ+ of the nematic order tensor, which is used as order parameter,
against the reduced density ρ∗. Remember, that the order parameter varies between
zero for an isotropic phase and one for a perfectly aligned crystal phase. While some
groups use a value of 0.4 [29], a phase transition from the isotropic to the nematic phase
is predicted for a value of 0.43 by the Maier-Saupe theory [163, 164, 165]. Experimental
values for nematics are normally in the range from 0.4 to 0.7 [22, 23, 109, 134, 144]. For
bigger values higher ordered phases such as the smectic phases are found. For a smectic
the value of the order parameter is usually between 0.8 and 0.9 [102, 211].

The first plot in Figure (5.1a) shows the results of randomly set up systems with
three monomers per coil and rod-coil interaction parameters with values equal to 0.0,
0.5 and 1.0. All other plots show results for systems that are initiated in an ordered
manner and include plots for additional rod-coil interaction parameters with values
of 0.1 and 0.25. The comparison of the results for m = 3 for the two different setup
methods demonstrates that the results are in good agreement. Thus, we only show the
graphs for the systems we set up in an ordered manner for all other values of m as they
also contain the results of the additional rod-coil interaction parameters.

The only mentionable difference between the graphs for three monomers per coil is
the dip at densities around 0.39 in Figure (5.1a) for a value of χCR equal to one. This
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5.1 Phase diagram

dip neither occurs for an rod-coil interaction parameter equal to 0.5 nor if we start
from an ordered configuration as Figure (5.1b) illustrates. The reason for this dip is
a somewhat random effect displayed in the snapshot of the two affected systems in
Figure (5.2). When we start from a random configuration it may happen during the
order process that the final, ordered layer structures are perpendicular to each other.
This reduces the value of the order parameter. Nevertheless, both regions are highly
ordered. For other densities and interaction parameters this seems to be unfavorable or
is at least not observed in our simulations.

In Figure (5.1b) we clearly see that the phase transition point does not only depend
on the length of the coils but also on the interaction parameter between rods and coils.
In comparison to all other graphs in Figure (5.1) this dependence is most visible in this
plot. Whereas the transition points for χCR equal to zero and 0.1 do not differ it is
distinctly visible that the phase transition is shifted to lower reduced densities if the
rod-coil interaction parameter is increased.

For the simulations containing 18 monomers per coil there are strong fluctuations for
reduced densities approximately between 0.29 and 0.39 as can be seen in Figure (5.1c).
In this region we observe the wavy lamellar state which we will discuss in Section 5.3.
The layers in this phase have a moderate to high curvature. In some cases the curvature
becomes so high that the layers break. From this several ordered regions, which are
perpendicular to each other, may emerge. This process is shown in Figure (5.3) for a
rod-coil interaction parameter χCR equal to 0.25. For a reduced density of 0.292 we
observe a wavy lamellar state as illustrated in Figure (5.3a). As Figure (5.3b) shows
the curved layers start to twist against each other for a slightly higher reduced density
of 0.311. If we further increase the density the single layers start to overlap as displayed
in Figure (5.3c). From the tearing apart the perpendicular, ordered regions shown in
Figure (5.3d) arise at a reduced density of 0.340. Depending on how disintegrated the
layers are the order parameter may vary in a wide range in this region.

In Figures (5.1d) to (5.1f) we display the results for m equal to 54, 108 and 162,
respectively. We clearly see that the order increases with growing coil length and the
phase transition points are shifted towards lower densities. Further, we determine that
the distance between the phase transition points shrinks with increasing coil length. For
m equal to 54 we still can clearly distinguish between the phase transition point for
χCR = 0.25 and the indistinguishable points for 0.5 and 1. For 162 monomers per coil
the phase transition is hardly dependent on the value of χCR anymore.

From the results of our simulations plotted in Figure (5.1) we can obtain a phase
diagram for rod-coil block copolymers in our model. If we assume that a phase transition
between a disordered and an ordered state occurs if λ+ exceeds a value of 0.43 [163, 164,
165] we can plot the number of monomers per coil m against the reduced densities ρ∗ of
the phase transition points. The resulting phase diagram for all five rod-coil interaction
parameters is displayed in Figure (5.4) whereas we use the same colors to distinguish
the interaction parameters as in Figure (5.1). The turquoise colored shapes indicate the
location of special phases we discuss in the following sections. Figure (5.4a) shows the
phase diagram in linear scaling while the plot in Figure (5.4b) uses a logarithmic scale
on the y-axis for the number of monomers per coil m. We clearly see that the transition
lines for interaction parameters equal to 0 and 0.1 are not distinguishable. The phase
transition for these interaction parameters is located at a reduced density around 0.466
for all values of m. This is the same reduced density where we find the isotropic to
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5 Phases in dilute systems

Figure 5.1 Plots of the biggest eigenvalue λ+ of the nematic order tensor against the
reduced density ρ∗. The differently colored lines represent different rod-coil interaction
parameters χCR with the values 0.0 (red), 0.1 (orange), 0.25 (green), 0.5 (blue) and
1.0 (magenta). (a) 3 monomers per coil. Random setup. (b) 3 monomers per coil.
(c) 18 monomers per coil. (d) 54 monomers per coil. (e) 108 monomers per coil. (f) 162
monomers per coil.
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5.1 Phase diagram

Figure 5.2 Snapshots of the final configurations of two systems which start from a
random setup. The value of χCR is one and χCR equals 0.5. (a) and (b) show the top
and side view of the system with 4000 spherocylinders at a reduced density of 0.389.
The systems in (c) and (d) contain 4100 rods which corresponds to a reduced density of
0.398.

(a) (b)

(c) (d)

nematic phase transition for a pure rod system (see Appendix A.1). This shows that
the additional coils only have a stabilizing effect on the rod-coil block copolymers if the
rod-coil interaction parameter exceeds a certain threshold. In these simulations this
limit lies between 0.1 and 0.25.

For χCR equal to 0.25 we find the phase transition to occur at perceptibly higher
densities than for the two highest interaction parameters. The lines for the two highest
rod-coil interaction parameters run close to each other. For most values of m the
transition points are located at a higher density for the smaller value of 0.5. For 54 and
108 monomers per coil the transition points are found at the same reduced densities.
We also see that the transition points for different interaction parameters move closer
together with increasing number of monomers per coil.
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5 Phases in dilute systems

Figure 5.3 Snapshots of the wavy lamellar phase for rod-coil block copolymer systems
with 18 monomers per coil and a rod-coil interaction parameter χCR = 0.25. The value
of χCC is 0.5. (a) ρ∗ = 0.292. The layers have a strong curvature. (b) ρ∗ = 0.311.
The single layers are twisted against each other. (c) ρ∗ = 0.321. The curvature is too
high and the layers start to overlap. (d) ρ∗ = 0.340. The layer structure breaks and
perpendicular, ordered regions occur.

(a) (b)

(c) (d)

The logarithmic plot in Figure (5.4b) suggests that there is a logarithmic relation
for the phase transition line. If we perform a linear regression we get the three equations

ln(m) ≈ −10.9ρ∗ + 5.9 for χCR = 0.25 (5.1)

ln(m) ≈ −13.7ρ∗ + 5.9 for χCR = 0.5 (5.2)

ln(m) ≈ −16.1ρ∗ + 6.1 for χCR = 1.0. (5.3)
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5.1 Phase diagram

Figure 5.4 Final phase diagram plotting the number of monomers per coil m against the
reduced density of rods ρ∗, that is, the rod number density ρRods divided by the density
of regular close packing for spherocylinder ρcp. The coil-coil interaction parameter χCC

is set to 0.5. The differently colored lines are only added to guide the eye and represent
different rod-coil interaction parameters χCR with the values 0.0 (red), 0.1 (orange,
dashed), 0.25 (green), 0.5 (blue) and 1.0 (magenta). All systems to the left of these
lines are in a disordered state while systems on the right side of a line are in an ordered
state. The turquoise shapes indicate special points in the phase diagram we refer to
in the following sections. The circle indicates a wavy lamellar state (see Section 5.3)
with χCR = 0.5, the diamond clusters (see Section 5.4) with χCR = 1 and the square
percolating structures (see Section 5.5) with χCR = 1. (a) Linear scale on both axes. (b)
Logarithmic scale on the y-axis.
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5 Phases in dilute systems

These equations also reflect the finding that for a given number of monomers per
coil a lower reduced density is needed for a phase transition if the rod-coil interaction
parameter increases.

Remember that the monomers of the coils have no volume. Nevertheless, the
number of monomers per coil can be associated with the expansion of the coils in
three-dimensional space. At sufficient high values of χCR the monomers repel the rods.
This may be represented by an effective volume fraction φ, which scales with m. This
way we can connect the effective volume fraction φ of the coils with the free energy F
via the relation

F ∼ ln(φ) ∼ ln(m). (5.4)

For a system with fixed reduced density the free energy of the coils would, thus,
decrease with increasing rod-coil interaction. To see how the free energy of a coil
depends on its expansion we calculate the free energy of an ideal chain. The free
energy Fic(r) of an ideal chain with a distance r between its ends is related to the
Gaussian distribution P (r) via

Fic(r) = −kBT lnP (r). (5.5)

Using the probability function P (r) as given in Equation (3.17) and the relation for
the end-to-end distance Re from Equation (3.59) we can compute the free energy of an
ideal chain as

Fic(r) =
3kBT

2mb2
r2 + F0 (5.6)

where F0 is a constant. To minimize its free energy a coil needs to reduce the distance r
between its ends.

In summary, we find that the free energy decreases with increasing interaction
parameter χCR. This decrease is related to a shorter distance between the ends of the
coils and, thus, a smaller effective volume fraction, which scales with the number of
monomers per coil. If m decreases the free energy also decreases and a higher reduced
density or a higher rod-coil interaction is needed for the phase transition.

90



5.2 Stabilization of the smectic phase

5.2 Stabilization of the smectic phase

As discussed in Section 2.4 several groups observe a stabilization of the smectic phase at
expense of the nematic phase with increasing coil fraction for rod-coil block copolymers.
In our simulations we have strong first-order phase transitions, that is, there are coexisting
states [46]. For pure rods with a shape anisotropy L/D = 5 (see Appendix A.1) and
rod-coil block copolymers with rod-coil interaction parameters χCR equal to 0 and 0.1
we find nematic phases. For higher rod-coil interaction parameters χCR we observe
first-order transitions directly into a smectic state, omitting the nematic phase. With
increasing coil length a further stabilization of the smectic phase can be ascertained.
In this section we illustrate this effect by comparing the biaxiality η for different coil
lengths and rod-coil interaction parameters.

The prior results show that the ordered phases occur at a significantly lower density
when coils with a sufficient rod-coil interaction are present. It is also obvious that the
order increases with growing coil length. To demonstrate the stabilization of the smectic
phase we need some further observables. Using Equations (3.67) and (3.68) we calculate
the order parameter S and the biaxiality η from the three eigenvalues λ−, λ0 and λ+

of the nematic order tensor, which we compute during the simulations. The plots in
this section are generated from the simulation runs presented in the last section which
started from an ordered state.

The resulting plots of the biaxiality η against the order parameter S for different
values of m are illustrated in Figures (5.5) to (5.9) at which we only show the relevant
range of 0.4 to one for the order parameter S. For the biaxiality on the y-axis we use a
logarithmic scale.

In all figures we clearly see that only very few systems have an order parameter
greater than 0.4 for rod-coil interaction parameters equal to zero and 0.1. In most cases
the biaxiality shows strong fluctuations for these interaction parameters. For these
parameters we also find the systems with the highest values for η. For higher rod-coil
interaction parameters the biaxiality does not exceed a value of 0.1.

As Figure (5.5) demonstrates the addition of coils with three monomers leads to
a stabilization for sufficiently high rod-coil interaction. We see that the number of
systems in the range of 0.4 to one for S increases with increasing value of χCR. Further,
we find that the fluctuations in most systems are reduced and the biaxiality exhibits
smaller values. The same observations can be made in Figure (5.6) for systems with 18
monomers per coil.

For values of m equal to 54 and higher the effect becomes much more distinct. In
Figure (5.7), (5.8) and (5.9) for 54, 108 and 162 monomers per coil, respectively, we
clearly see that much more systems have a higher order parameter S if χCR increases.
Furthermore, we find that the biaxiality is reduced for these systems and decreases with
increasing values of S.

In summary we find that we only observe a nematic phase for pure rod systems and
rod-coil block copolymers with rod-coil interaction parameters equal to and below 0.1.
For higher values of χCR we observe a first-order transition into a smectic phase. The
stabilization of the smectic phase further increases if more monomers are added to the
coils.
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5 Phases in dilute systems

Figure 5.5 Plots of the biaxiality η in a logarithmic scale against the order parameter S
for rod-coil block copolymers with 3 monomers per coil. The rod-coil interaction
parameter has the values (a) χCR = 0, (b) χCR = 0.1, (c) χCR = 0.25, (d) χCR = 0.5 and
(e) χCR = 1.
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5.2 Stabilization of the smectic phase

Figure 5.6 Plots of the biaxiality η in a logarithmic scale against the order parameter S
for rod-coil block copolymers with 18 monomers per coil. The rod-coil interaction
parameter has the values (a) χCR = 0, (b) χCR = 0.1, (c) χCR = 0.25, (d) χCR = 0.5 and
(e) χCR = 1.
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5 Phases in dilute systems

Figure 5.7 Plots of the biaxiality η in a logarithmic scale against the order parameter S
for rod-coil block copolymers with 54 monomers per coil. The rod-coil interaction
parameter has the values (a) χCR = 0, (b) χCR = 0.1, (c) χCR = 0.25, (d) χCR = 0.5 and
(e) χCR = 1.
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5.2 Stabilization of the smectic phase

Figure 5.8 Plots of the biaxiality η in a logarithmic scale against the order parameter S
for rod-coil block copolymers with 108 monomers per coil. The rod-coil interaction
parameter has the values (a) χCR = 0, (b) χCR = 0.1, (c) χCR = 0.25, (d) χCR = 0.5 and
(e) χCR = 1.
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5 Phases in dilute systems

Figure 5.9 Plots of the biaxiality η in a logarithmic scale against the order parameter S
for rod-coil block copolymers with 162 monomers per coil. The rod-coil interaction
parameter has the values (a) χCR = 0, (b) χCR = 0.1, (c) χCR = 0.25, (d) χCR = 0.5 and
(e) χCR = 1.
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5.3 Wavy lamellar state

5.3 Wavy lamellar state

In Figure (5.3) we have already illustrated how the wavy lamellar state leads to big
fluctuations in the order parameter λ+ in Figure (5.1c). Figure (5.10) shows two more
snapshots of systems that exhibit a wavy lamellar state. Both snapshots are taken from
simulations performed to obtain the phase diagram presented in Section 5.1 with 18
monomers per coil. The first configuration in Figure (5.10a) has a very low curvature.
Its reduced density is approximately 0.282 and the rod-coil interaction parameter χCR

is set to one. For a slightly lower value of ρ∗ around 0.262 and χCR equal to 0.5 the
curvature is much higher as Figure (5.10b) demonstrates. The second configuration is
indicated by the turquoise circle in the phase diagram in Figure (5.4).

Figure 5.10 Wavy lamellar state for two different reduced densities and rod-coil
interaction parameters. (a) The system with χCR equal to one and a reduced density ρ∗ ≈
0.282 has a low curvature. (b) The system with a slightly lower reduced density around
0.262 and a lower rod-coil interaction parameter of χCR = 0.5 shows a high curvature.
In both cases χCC equals 0.5.

(a) (b)

5.4 Cluster

For systems with a very low reduced density ρ∗ for the spherocylinders and a high
volume fraction of coils we observe clusters. Figure (5.11) shows a sample configuration
for a system at a reduced density around 0.049 and 162 monomers per coil and χCR

equal to one. The parameter χCC is equal to 0.5. This configuration is marked by the
turquoise diamond in Figure (5.4). Even though we do not observe a hockey puck phase
explicitly we presume that it, if at all, may occur in this region. In tests with much
higher rod-coil interaction parameters χCR equal to two, five and ten clusters are also
observed for systems at the same density and 162 monomers per coil.
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5 Phases in dilute systems

Figure 5.11 Cluster phase for a system with very low reduced density ρ∗ around 0.049
and high coil volume fraction. Each coil consists of 162 monomers. χCC is set to 0.5
while χCR equals one.

5.5 Percolating structures

Another class of interesting structures we find in our simulations are percolating struc-
tures. Beside highly ordered structures these structures may be of interest for the
development of highly efficient organic solar cells. We observe percolating structures
for slightly higher reduced densities and shorter coils than the clusters described in the
previous section.

The snapshot shown in Figure (5.12) is taken from a simulation used to investigate
the phase diagram in Section 5.1. The coils in the illustrated run consist of 54 monomers
and have an interaction parameter χCC equal to 0.5. The reduced density for the rods is
around 0.097. The rod-coil interaction parameter χCR is equal to one. This configuration
is marked by the turquoise square in Figure (5.4).
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5.6 Zigzag phase

Figure 5.12 Snapshot of a configuration that exhibits a percolating structure. The
reduced density ρ∗ is about 0.097 and m equals 54. The interaction parameters χCC and
χCR are set to 0.5 and one, respectively.

5.6 Zigzag phase

In a few simulations we observe a zigzag phase. As already mentioned in Chapter 2 this
phase is believed to be metastable. In this section we check if the zigzag phase is also
metastable in our model.

Figure (5.13) illustrates two snapshots of simulations that end in a zigzag phase.
Both runs start from an ordered configuration in a cubic simulation box that has a
length of 26 in all three directions and a cell size of one. The spherocylinders have a
length L of five, a diameter D equal to one and the attached coils consist of 50 monomers.
The spring constant k is set to 27 and the interaction parameters χCC and χCR are both
equal to 0.1. Note that the values of the interaction parameters differ from the ones we
have used for the simulations in order to obtain the phase diagram in Section 5.1. The
configuration in Figure (5.13a) contains 1790 spherocylinders which results in a reduced
density of 0.513. The configuration in Figure (5.13b), with 1752 rods and a reduced
density around 0.502, is used as initial configuration for the test runs in this section.
Based on our findings so far we would expect a smectic phase in this region. As the
snapshots demonstrate the layers are deformed into a zigzag structure.

The zigzag phase may be metastable. It may, for example, only occur due to the
misfit of the sizes of the simulation box and the block copolymers. One possibility to
check if the zigzag phase is metastable would be to vary the size of the simulation box.
We choose a different approach and change the length of the coils, or more precisely the
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5 Phases in dilute systems

Figure 5.13 Snapshots of two final configurations that exhibit a zigzag phase. The
two systems only differ in the number of rods. For both configurations χCC and χCR are
equal to 0.1. (a) N = 1790 and ρ∗ ≈ 0.513. (b) N = 1752 and ρ∗ ≈ 0.502.

(a) (b)

number of monomers per coil m, using the algorithm introduced in Section 4.3, thereby
modifying the freedom of movement for the rods. For this purpose, we use the final
configuration of a prior simulation that exhibits a zigzag phase as initial configuration for
new simulations. Then we extend or shorten the coil length and restart the simulations.
After these systems are equilibrated we take the final configurations and reset the
number of monomers to the old value before the simulations are started again. All other
parameters are the same as in the initial simulation.

The snapshots in Figure (5.14) show the final configurations for the simulations with
modified coil lengths. The configuration shown in Figure (5.14a) merely contains ten
monomers per coil. It can be clearly seen that the three layer zigzag structure vanishes
and four ordered layers form. The tilt of these layers is an indicator that there is a
mismatch between the simulation box size and the expansion of the block copolymers.
For slightly longer coils, consisting of 25 monomers, we also observe ordered layers.
However, this configuration does not tilt and only three layers occur as Figure (5.14b)
demonstrates. The shorter coil length just lead to a smoothing out of the zigzag
structure but do not allow a rearrangement of the rod-coil block copolymers. The
configuration with m equal to 40 behaves similar. With the exception that the layers
run obliquely as illustrated in Figure (5.14c). The snapshot in Figure (5.14d) shows
the final configuration of the simulation for which the old value of 50 for m is retained.
We see that the zigzag structure remains for this coil length. In Figure (5.14e) we see
the final configuration for coils with 75 monomers. The zigzag structure is still clearly
visible and only marginally smoothed out. For the longest coils with 100 monomers the
zigzag structure vanishes completely and three ordered layers that run obliquely form as
Figure (5.14f) illustrates.
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5.6 Zigzag phase

Figure 5.14 Snapshots of final configurations for systems starting from a zigzag
structure with altered coil lengths. The coils in the former configuration consist of 50
monomers and χCC = χCR = 0.1. (a) m = 10. Four layers form and the system rotates.
(b) m = 25. Ordered layers. (c) m = 40. Ordered layers that run obliquely. (d) m = 50.
For an unchanged coil length the zigzag structures remains stable. (e) m = 75. The
zigzag structure is slightly smoothed out. (f) m = 100. Ordered layers that run obliquely
form.

(a) (b)

(c) (d)

(e) (f)

101



After the evaluation of the systems with altered coil lengths we reset the number
of monomers to 50 for all runs and restart the simulations using the configurations
from Figure (5.14) as initial configurations. If the zigzag phase is not metastable the
simulations should end in a zigzag structure again. But this is not the case as the
snapshots of the final configurations in Figure (5.15) demonstrate. The system whose
coils consisted of ten monomers in the prior runs the distance between the layers increases
as Figure (5.15a) illustrates. For the configuration which had 25 monomers per coil in
the previous runs shown in Figure (5.15b) alternately tilted layers form. As the size
of the simulation box does not allow the formation of four layers in y-direction this is
not a real arrowhead phase. We presume that such a phase may occur for a different
box size. The system with m equal to 40 exhibited layers that run obliquely. The final
configuration after reseting the coil length is displayed in Figure (5.15c). We see that all
layers are now at the same level and slightly tilted. For the two configurations shown in
Figures (5.15d) and (5.15e) the zigzag structure is indeed more clearly visible for the
unmodified run but still recognizable for the run with 75 monomers in the previous
simulation. As Figure (5.15f) demonstrates the obliquely running layer structure remains
for the run that was altered to 100 monomers per coil before.

From these results we can conclude that the zigzag phase is metastable in our model.



Figure 5.15 Final configurations of the simualtions starting from the configurations
in Figure (5.14) after the number of monomers per coil is reset to 50 monomers. The
interaction parameters χCC and χCR are set to 0.1. (a) Reset from m = 10. Three
ordered layers form. (b) Reset from m = 25. Alternately tilted layers. (c) Reset from
m = 40. Layers are tilted in the same direction. (d) Reset from m = 50. The initial
zigzag structure remains. (e) Reset from m = 75. The zigzag structure is still identifiable.
(f) Reset from m = 100. Obliquely running, ordered layers.

(a) (b)

(c) (d)

(e) (f)
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In this chapter we give a brief introduction to tetrapods and an overview
over research on tetrapods so far. Then we give a motivation outlining
why we study these systems and mention some further works which
are related to the derivation of our simulation model in the following
chapter.



6 Tetrapods

6.1 Introduction

The research of tetrapods is of great interest as their three-dimensional character may
potentially pave the way for interesting optical, electrical and mechanical properties.
Tetrapods consist of four arms branching out from the core at tetrahedral angles of 109.5°.
Their branched shape prevents a dense packing as it is observed for other anisotropic
particles, such as spherocylinders. Additionally, unlike rods, their structure prohibits
them to lie flat on the plane. This may improve the electron transport perpendicular to
the plane. The three-dimensional shape of tetrapods also facilitates charge transport in
all spatial directions independent of their orientation. Furthermore, the porous structure
of tetrapods provides large interfacial areas and percolating pathways for electrons.
Thus, a higher fraction of excitons are able to diffuse to the interface and the charges
can be transported efficiently to the electrodes. For these reasons they are considered as
a promising candidate to achieve more efficient, stable and inexpensive solar cells.

A lot of effort is put into the examination of better methods to control and optimize
the morphology in order to achieve efficient devices. There are many parameters that
may influence the aggregation of tetrapods. Not only the way of device fabrication,
the used materials for the tetrapods and the solvent are of great importance for the
morphology. Also a highly controllable growth of the tetrapods is indispensable. A
recent work demonstrates that tetrapods with grafted polymers have a significantly
better film quality than bare tetrapods [151].

6.2 Research review

In this section we present some assorted results with a focus on tetrapods and the
advantage of their use for hybrid organic-inorganic photovoltaic devices. A good review
on recent developments in synthesis and controlled assembly of colloidal branched
nanocrystals is given by Li et al. [145].

Already in 1987 Hasegawa et al. [104] observe highly ordered three-dimensional
networks of structural units for polystyrene-polyisoprene diblock copolymers, which
they identify as tetrapods via electron microscopy. They emphasize that there are only
three three-dimensional continuous structures possible for these structural units. This
are the wurtzite, the single-diamond and the double-diamond structure, whereas they
suggest that the last one is the most probable one. These three structures are shown
in Figure (6.1) each one viewed from four different directions. They also mention that
the tetrapod-network structure can be changed into lamellar, cylindrical and spherical
microdomain morphologies by using another casting solvent.

If the tetrapods are molecular units, instead of structural units in a morphology,
more phases are possible. In their theoretical study Blaak et al. [28] predict an uniaxial
nematic and a cubatic phase, which is a special case of the biaxial nematic phase and
has not yet been observed in experiments, for a system of tetrapods. But these results
are solely correct in the Onsager limit of infinite aspect ratios only taking hard-core
interactions into account.
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6.2 Research review

Figure 6.1 Characteristic views of different lattice models for the tetrapod units
from different directions. (a) Wurtzite lattice model. (b) Single-diamond lattice
model.(c) Double-diamond lattice model. From [104]

(a) (b) (c)

The optical and electrical properties of a system strongly depend on the shape and
size of the polymers. Therefore, a well controlled synthesis [161] is a crucial factor allowing
to tune the properties of the device. Nowadays it is possible to synthesize polymers with
extreme properties. For example, Manna et al. [167] obtain CdSe nanorods exceeding
100 nm in length and aspect ratios of over 30:1, as well as arrow-, teardrop-, tetrapod
and branched tetrapod-shaped nanocrystals. In a later work [168] they concentrate on
the independent control of the width and length of the four arms of CdTe tetrapods.
They also mention a higher degree of solubility for tetrapod nanocrystals compared to
separate rods of the same length and diameter as the tetrapod arms. The reason is that
it is easier for two rods to achieve a large contact area with each other what may lead
to aggregation.

Likewise Choi et al. [49] investigate the properties of CdSe/CdS core/shell tetrapods
with different arm lengths. But also more complex structures are feasible and show very
interesting properties. Milliron et al. [180] fabricate anisotropic colloidal nanocrystal
heterostructures with linear and branched topology as illustrated in Figure (6.2). They
couple colloidal quantum dots and rods while still being able to control branching and
composition. Thus, it is possible to tune the nature of the interactions and the properties
of each component independently. One example are branched tetrapods with CdSe
central tetrapods and terminal CdTe branches (d in Figure (6.2)) which have unusual
charge-separating properties making them attractive for photovoltaic energy conversion.

Further, the internal structure of tetrapods is investigated. The high-resolution
transmission electron microscopy analysis of tetrapod-shaped CdSe nanocrystals by
Pang et al. [197] demonstrates that the core of these tetrapods has a zinc blende crystal
structure while the four arms have a wurtzite crystal structure. This is also discussed in
the study of Asokan et al. [16] which reveals that the usage of quaternary ammonium
surfactant ligands results in CdSe tetrapods with high shape and dimensional uniformity.
But this is only true for CdSe, CdS, CdTe and ZnO tetrapods and not for ZnS tetrapods.
Zhu et al. [300] find that the branches of their ZnS tetrapods exhibit a zinc blende phase
and not a wurtzite phase like the aforementioned tetrapods.

109



6 Tetrapods

Figure 6.2 Colloidal nanocrystal heterostructures with linear and branched topology.
(a and b) Back branching. (c) Extended tetrapods. (d) Structural isomers in branched
tetrapods. From [180].

Tetrapods can form various networks which influence the systems properties. For
instance, Franchini et al. [81] investigate the phototransport in tip-to-tip networks of
CdSe/CdTe tetrapods. Zanella et al. [297] present various types of superlattices of
nanorods and three-dimensional networks of octapod/tetrapod-shaped nanocrystals
fabricated by depletion attraction. Figure (6.3) shows transmission electron microscopy
images and sketches of three aggregation patterns for ZnTe/CdTe tetrapods. The images
show fragments of treeing and interlacing and honeycomb-like two-dimensional networks.
They also emphasize that the network of interlaced polymers could be beneficial for
photovoltaic devices, if the used polymers are semiconducting.

Due to their geometry tetrapods and octapods tend to self-align on a substrate mak-
ing them interesting for solar cells [145]. The importance of tetrapods for optoelectronic
devices is underlined by several studies. Sun et al. [250] show that their devices based on
CdSe tetrapods have high efficiencies due to the good electron transport perpendicular
to the plane of the film. They demonstrate that device performance of branched particles
like tetrapods is better than for both nanorods and quantum dots when blended with
polymers. Based on a low band gap conjugated polymer and CdSe tetrapods Dayal et al.
[61] fabricate a highly efficient bulk heterojunction solar cell. In most devices tetrapods
with a CdSe core and CdTe arms act as electron-acceptors. Li et al. [149] introduce
a new hybrid heterostructure with improved photovoltaic performance using electron-
conducting fullerene (C60) as interlayer material, making the CdSe/CdTe tetrapods act
as electron-donor.
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6.2 Research review

Figure 6.3 Three different aggregation patterns observed for ZnTe/CdTe tetrapods.
(a,d-a) Treeing. (b,d-b) Honeycomb-like networks. (c,d-c) Interlacing. From [297]

Finally, we would like to put a special focus on the work of Lim, zur Borg, Char
and Zentel [151]. The model we introduce in the next chapter is designed to fit to their
inorganic/organic hybrid systems. In cooperation with both experimental groups we
have been able to reproduce the key results of their experiments.

In a first paper Lim et al. [150] explain their method for a controlled synthesis of
highly uniform CdSe tetrapods. A schematic illustration of their continuous precursor
injection approach and transmission electron microscopy images at different time steps
are shown in Figure (6.4).

They also demonstrate the capability of this method to produce tetrapods in a
controllable manner. The transmission electron microscopy images in Figure (6.5) show
arm-length and diameter-controlled tetrapods as well as tetrapods with stepwise-varying
diameter.
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Figure 6.4 The continuous precursor injection (CPI) approach. (a) Schematic illustra-
tion of the CGI approach. (b-g) Transmission electron microscopy images after (b) 0
(c) 10 (d) 20 (e) 30 (f) 40 (g) 50 minutes. Reproduced from [150]

In a later paper of the group they demonstrate that grafted tetrapods show much
better film qualities [151]. The systems consists of monodisperse CdSe tetrapods
dispersed in a polymer matrix. We label these homopolymer-tetrapod mixtures “blends”.
Additionally, it is possible to graft semiconducting block copolymers of the same type
as the excess polymers to the surface of the tetrapods. These block copolymer-tetrapod
mixtures are referred to as “hybrids”. Figure (6.6) shows a detailed overview over the
system. The basic finding of the experiments is that the blends tend to form clusters
in the matrix of excess polymers. For the hybrid systems the clustering is significantly
reduced as the transmission electron microscopy images in Figure (6.7) show.
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6.2 Research review

Figure 6.5 Transmission electron microscopy images showing (a) arm-length controlled
and (b) diameter-controlled tetrapods. (c) Stepwise-varying diameter. From [150]

Figure 6.6 CdSe tetrapods (yellow) and excess polymer poly(TPDF-b-SSMe) (green
with anchor group in red). Using the “Grafting-to” method one gets the “hybrid” model.
The tetrapods are dispersed in a polymer matrix.
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Figure 6.7 Transmission electron microscopy images of a blend and a hybrid system.
It is clearly recognizable that the clustering is reduced in the hybrid system.

The measurements are performed for different tetrapod arm length and amounts
of polymer loading to find the ideal morphology for hybrid solar cells. Figures (6.8),
(6.9) and (6.10) show transmission electron microscopy images with arm length of 40,
70 and 100 nanometers, respectively. The top rows (a, c, e) are the hybrid samples
and the bottom rows (b, d, f) the blend samples. The columns represent different
polymer/tetrapod ratios (wt%). In the first column (a, b) this ratio is 50:50 and in the
last one (e, f) 90:10. The middle column (c, d), with a wt% of 70:30, also includes an
inset showing a magnified view. It is obvious that the film quality for the hybrids is
much better, while the blends have a strong tendency to form clusters. This can already
be observed for tetrapods with short arms. With increasing arm length the clustering
becomes predominant. For tetrapods with moderate arm length the hybrid system is
still relatively homogeneous. In the samples with the longest arms the effect of the
attached polymers is still conspicuous, but, especially for a polymer/tetrapod ratio of
50:50, the hybrid sample shows inhomogeneities. Here a limit of this approach seems to
be reached.

Figure 6.8 Transmission electron microscopy images of tetrapods dispersed in a polymer
matrix at different ratios. The tetrapod arm length is 40 nm. The top row shows the
hybrid samples and the bottom row the blend samples. The polymer/tetrapod ratio
(wt%) is 50:50 for a and b, 70:30 for c and d (insets show magnified view) and 90:10 for
e and f. Scale bars represent 0.5µm and 100 nm in the insets. From [151].
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Figure 6.9 Transmission electron microscopy images of tetrapods dispersed in a polymer
matrix at different ratios. The tetrapod arm length is 70 nm. The top row shows the
hybrid samples and the bottom row the blend samples. The polymer/tetrapod ratio
(wt%) is 50:50 for a and b, 70:30 for c and d (insets show magnified view) and 90:10 for
e and f. Scale bars represent 0.5µm and 100 nm in the insets. From [151].

Figure 6.10 Transmission electron microscopy images of tetrapods dispersed in a
polymer matrix at different ratios. The tetrapod arm length is 100 nm. The top row
shows the hybrid samples and the bottom row the blend samples. The polymer/tetrapod
ratio (wt%) is 50:50 for a and b, 70:30 for c and d (insets show magnified view) and
90:10 for e and f. Scale bars represent 0.5µm and 100 nm in the insets. From [151].
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6.3 Further related work

In the next chapter we develop a model to simulate these polymer grafted tetrapods.
Therefore, we derive a potential which represents the interaction induced by the polymer
brushes attached to the surface of the tetrapods. Here, we present some related works. A
comparison of several models for colloid-polymer mixtures can be found in reference [252].

At first, we take a look at bottlebrush polymers. This are macromolecules with
polymeric side chains. For bottlebrush polymers with high backbone stiffness lyotropic
liquid crystal phases are observed [148, 245, 261, 289]. Besides this fact, there are
numerous studies on bottlebrush polymers with a flexible backbone [37, 38, 87, 137, 238,
257, 259, 283].

An even closer related system are hairy rod polymers. They consist of flexible side
chains grafted onto a stiff macromolecular backbone. These side chains may have a
crucial effect on the solubility of the polymers.

While Subbotin et al. [248] only find a lamellar and two hexagonal microphases
in their theoretically study, Knaapila et al. [132] observe isotropic, nematic, lamellar,
square and oblique lattice structures, but no simple hexagonal phase. Beside Molecular
Dynamics simulations [152] there are also Dissipative Dynamics simulations [48] to study
the phase behavior of hairy-rod polymers. In the latter study the polymers exhibit a
lamellar phase for dense side chains which becomes an inverted cylindrical phase for
lower side chain densities. But the experimentally observed nematic phase is not found.
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In this chapter we introduce the model used for the simulation of the
tetrapod polymers. We give a short introduction to quaternions which
are used to rotate the tetrapods. Then we derive the potential which
represents the interactions for the tetrapods and the additional polymer
brushes grafted onto their surface. Further, we introduce an algorithm
which allows the simulation of systems with fluctuating volume. A test
of this algorithm can be found in Appendix B.1. Finally, we present
some model parameters and observables.



7 Model

7.1 Model

In this chapter we mainly concentrate on the examination of the inorganic/organic
hybrid system studied by Lim, zur Borg, Char and Zentel. Their experimental findings
and our simulation results are published in a joint paper [151].

The program we use for the simulation of rod-coil block copolymers may easily be
modified to simulate tetrapods. For this purpose four spherocylinders are arranged
around a common center with an tetrahedral angle of 109.5 degree between each other.
The coil chains are removed and all density based interactions are replaced by effective
potentials. Therefore, there is no need to subdivide the system into cells anymore.

In principle it would have been possible to use the density based interactions
introduced in the rod-coil copolymer model in Part I of this work. Then the coils
could be used as not connected polymer chains to simulate the excess polymer and
we could connect coils to the surface points of the spherocylinders to represent the
brushes. In practice this system would not have been tractable because of the size
ratios in the experiments. The excess and brush polymers are much smaller than the
tetrapod diameter. Therefore, we would need a very fine grid which is computationally
expensive. Additionally, we would need a huge amount of surface points to graft the
brushes densely to the surface of the tetrapods and to satisfy the prerequisite that
the cell size has to be bigger than the distance of the surface points in order to get
a reasonable approximation for the rod density. With each rotation all these points
would have to be recomputed, what would slow down the simulations dramatically.
Furthermore, the dissimilar sizes would result in move ranges of very unequal order for
the brush polymers and the tetrapods. Since the brush polymers are much shorter than
the diameter of the tetrapods, the explicit structure of the brush polymers is not of
interest anyway and can be replaced by an effective potential.

For these reasons we develop a coarse-grained model including the effects of polymers
in an implicit manner by effective interactions. For ease rotations are done using
quaternions. In the following we will explain the model used for the tetrapod simulations
in detail.

7.2 Tetrapods

In this section we describe how a tetrapod is characterized and motivate the choice of
our model. A tetrapod is made out of four arms which have a common central point. For
our model we assume that all of these arms are of equal length L and have a constant
diameter D. This is reasonable as the group of Lim et al. [150] demonstrates that they
can fabricate tetrapods with highly uniform arm length and diameter (see Figure (6.5)).
The central angle between all four arms is identical and known as the tetrahedral angle

θT = arccos
(

−1
3

)

= 2 arctan(
√

2) ≈ 109.47°. (7.1)

In our model each arm is represented by a hard spherocylinder of length L and
diameter D. A snapshot of a tetrapod is displayed in Figure (7.1). For the rod-coil block
copolymers in Part I we place the unit vectors û of the spherocylinders at their center
of mass. For the tetrapods we locate the origin of the unit vectors ûT at the common
central point. If the unit vector û at the center of mass is needed for an algorithm, for
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example, the shortest distance algorithm for spherocylinders introduced in Section 3.4.1,
it can easily be calculated by shifting the tetrapod unit vectors ûT by L/2 +D along its
direction. The advantage of this method is that it is much easier to rotate the tetrapods
this way using quaternions.

Figure 7.1 Snapshot of a tetrapod as used in our simulations. The four unit vectors ûT,i

are located at the central point of the tetrapod. The angel θT between the arms is the
tetrahedral angle.

θT

ûT,1

ûT,2

ûT,3

ûT,4

7.3 Rotations using quaternions

For the rotation of the tetrapods we use quaternions. Compared to the use of rotation
matrices this parameterization has some advantages. Quaternions are numerically more
stable than Euler angles, less susceptible to round-off errors, need less memory and are
often computationally faster than rotation matrices.

There are numerous ways to express a rotation. When rotating a rigid body in
three dimensions rotation matrices are most commonly used. Any rotation can be
achieved by composing three sequential rotations by the Euler angles ϕ, ϑ and ψ. Since
matrix multiplication is noncommutative the order in which multiple rotations are
performed is crucial. Additionally, with each rotation the coordinate system is rotated.
Hence each following rotation is done in the rotated coordinate system. This is not
only counterintuitive but also a possible source of errors. Euler angles also have the
disadvantage that singularities may occur. When the middle rotation aligns the axes
of the first and last rotation a singular alignment, also known as gimbal lock, occurs.
These singularities are characteristic of Euler angles but not rotation matrices as such.
They can be avoided by choosing other representations for the rotation.

Another common representation is to use an angle and an axis. In a three-dimensional
space a rotation matrix has three degrees of freedom. Instead of using three Euler angles
to represent these degrees of freedom one may also use one angle θ and a fixed axis a to

119



7 Model

characterize a rotation. For the simple case that this axis is described by an unit vector,

that is, a = û =
[

ux uy uz

]T
, the rotation matrix R(θ, û) can be written as

R(θ, û) =







1 + Φ(θ)
(

u2
x − 1

)

uxuyΦ(θ) − uz sin θ uxuzΦ(θ) + uy sin θ

uyuxΦ(θ) + uz sin θ 1 + Φ(θ)
(

u2
y − 1

)

uyuzΦ(θ) − ux sin θ

uzuxΦ(θ) − uy sin θ uzuyΦ(θ) + ux sin θ 1 + Φ(θ)
(

u2
z − 1

)






(7.2)

with Φ(θ) = 1 − cos θ. The matrix R(θ, û) rotates a vector p by an angle θ towards an
unit vector û. The rotated vector p′ can be expressed as

p′ = R(θ, û)p (7.3)

But using this representation is very inefficient since a lot of expensive calculations
have to be performed. To overcome this drawback and the singularities of Euler angles
we decide to use quaternions in our simulations.

Quaternions are first described by William Rowan Hamilton [100] in 1847. They
form a four-dimensional vector-space over the real numbers commonly named H for
Hamilton. A quaternion q is fully characterized by four real numbers a, b, c and d or a
real scalar s and a purely imaginary vector v

q = a1 + bi+ cj + dk = s+ v = (s,v). (7.4)

Here we use the most common basis 1, i, j and k where 1 is the identity element of
H and i, j and k are hypercomplex numbers with

i2 = j2 = k2 = ijk = −1. (7.5)

By multiplying hypercomplex numbers from the left or right further relations, such
as ij = k and ji = −k, can be derived. The hypercomplex numbers i, j and k are
imaginary basis vectors of H as well as a basis for R3. So any vector p may be represented
by a quaternion p = (0,p). The conjugate q∗ of a quaternion q is given by

q∗ = −1
2

(q + iqi+ jqj + kqk) (7.6)

= a1 − bi− cj − dk = s− v = (s,−v) (7.7)

and its reciprocal q−1 by

q−1 =
q∗

‖q‖2
(7.8)

where
‖q‖ =

√

qq∗ =
√

q∗q =
√

a2 + b2 + c2 + d2 (7.9)

is the quaternion norm. The multiplication of two quaternions g and h is noncommutative
and given by

g · h = (s1,v1) · (s2,v2) (7.10)

= (s1s2 − v1 · v2, s1v2 + s2v1 + v1 × v2). (7.11)

Conventionally, normalized quaternions, that is, ‖q‖ = 1, are used to represent
rotations in three dimensions. Those unit quaternions are called versors. It is easy to

120



7.4 Interactions

see that in this case the reciprocal q−1 is equal to the conjugate q∗. With the Euler axis
â and the angle θ a quaternion q and its inverse q−1 can be written as

q = exp
(

θ

2
â

)

= cos
θ

2
+ â sin

θ

2
= s+ v (7.12)

q−1 = exp
(

−θ

2
â

)

= cos
θ

2
− â sin

θ

2
= s− v. (7.13)

With these equations the rotation of a vector p, represented by the quaternion
p = (0,p), about an axis â by an angle θ can be expressed as

p′ = qpq−1 = qpq∗ (7.14)

=
(

cos
θ

2
+ â sin

θ

2

)

p

(

cos
θ

2
− â sin

θ

2

)

(7.15)

where the quaternion p′ is equal to (0,p′) at which p′ is the position of the vector p after
the rotation. As q is a versor it is easily possible to calculate the orthogonal rotation
matrix Q(q) if desired.

Q(q) =







1 − 2(c2 + d2) 2(bc− ad) 2(bd+ ac)
2(bc+ ad) 1 − 2(b2 + d2) 2(cd− ab)
2(bd− ac) 2(cd+ ab) 1 − 2(b2 + c2)






(7.16)

7.4 Interactions

In this section we derive the potentials used in our simulations and motivate their choice.
Before we begin with the derivation of the potentials we have to make some assumptions.
For a more realistic model these effects should be taken into account.

For the derivation of the interactions we use a coarse-grained model for the polymer
brushes. The coarse-graining is done by replacing the polymer chains by a series of
blobs containing a given number of monomers. To this end, our first assumption is that
the investigated polymer brushes can be described with this model at all.

In the used model each blob has a diameter ξ. For a curved surface one would
observe a swelling of the blob diameter ξ(r) with increasing distance r to the center of
the spherocylinder. The effect of distance dependent swelling is illustrated in Figure (7.2)
and, for example, evaluated in detail for different solvent qualities by Daoud and Cotton
[60].

In our second assumption we presume that the diameter of the blobs is constant.
In other words, the diameter ξ(r) does not depend on the distance r and can simply
be written as ξ. This assumption is reasonable if the length of the brush polymers is
much shorter than the diameter of the spherocylinders. This is true in our system as
we know from the experimental values. As a further consequence of this assumption
we find that the local curvature of the surface can be neglected and, therefore, we can
treat the curved surfaces as planar walls locally. Figure (7.3) shows the cross-section of
a tetrapod arm with short, attached brush polymers which are represented by blobs
with constant diameter ξ. The enlarged region demonstrates that the local curvature is
negligibly low, as the diameter of the tetrapod arms is much bigger than the length of
the polymer brushes. The bending of a polymer brush depending on the curvature for
the blob model is, for example, examined by Sevick and Williams [234].
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Figure 7.2 Top view on a spherocylinder with diameter D representing one arm of a
tetrapod. The brush polymers are enclosed in blobs of diameter ξ(r) depending on the
distance r to the center of the spherocylinder. For brushes much shorter than D the
dependence on the distance r can be neglected and ξ is constant.

ξ(r)

r
D

r1

r2

r3

Figure 7.3 Cross-section of a spherocylinder of diameter D with grafted brush polymers.
The blobs have a constant diameter ξ. The right side shows a magnification of the
dashed lined area. For very short brushes the local curvature can be neglected.

ξ
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In the last step of the derivation we include the excess polymer. The use of a
compressible polymer is possible but much more complicated and more assumptions and
approximations are needed. Therefore, mainly to simplify the calculation, one assumption
is that excess polymers between two brushes are not compressed but expelled. The
excess polymers can then be characterized by their radius of gyration Rg. Another
important assumption is that the excess polymer can be treated as dilute polymer
solution. Otherwise, the used radius of gyration Rg would have to be replaced by the
correlation length ξcorr in the polymer system.

7.4.1 Alexander-de Gennes model

In the first step we describe the properties of two brushes attached to opposite, plane
walls. In the Alexander-de Gennes [8, 64, 65, 66, 67] model for polymer brushes the
chains of the brushes are represented by a series of blobs. To calculate the interaction
between two tetrapod arms with grafted semiconducting block copolymers we first look
at a system of two hard walls separated by a distance D. The polymers are grafted
to the walls. The grafting points have a distance d which is related to the grafting
density σ = 1/d2. The distance d between the grafting points is much smaller than the
radius of gyration of the polymers so all chains are completely stretched. Each brush
polymer in total consists of N monomers and has a height h0 which is a multiple of the
constant blob diameter ξ. Figure (7.4) shows a sketch of the system. Here the thickly
drawn walls represent the surfaces of the tetrapod arms.

The number of blobs in one row is given by

n = D/ξ. (7.17)

Each blob contains m monomers and the blob diameter ξ scales as

ξ = mν (7.18)

where the exponent ν equals 3/5, 1/2 or 1/3 for good, Θ and poor solvent, respectively.

The number of monomers per area can, thus, be expressed in two different ways.
Firstly, it can be written as the total number of monomers of two chains 2N divided by
the squared distance between two grafting points d2 = 1/σ. Secondly, it is equal to the
number of blobs n times the number of monomers in a blob m over the squared blob
diameter ξ2. These two equations have to be equal

2N
d2

= 2Nσ !=
nm

ξ2
. (7.19)

With Equations (7.17) and (7.18) we get

2Nσ =
nm

ξ2
=

D

mν

m

m2ν
= Dm1−3ν . (7.20)
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Figure 7.4 System of polymer brushes attached to two plane walls. The walls are
separated by a distance D. The polymers are characterized by their height h0, the
constant blob diameter ξ and the grafting density σ.

h0

ξ

d = 1√
σ

D

With this the number of monomers per blob m, the blob size ξ and the number of
blobs n may be written as

m =
(

2Nσ
D

)
1

1−3ν

(7.21)

ξ =
(

2Nσ
D

)
ν

1−3ν

(7.22)

n = D

(

2Nσ
D

)
−ν

1−3ν

. (7.23)

The free energy per blob is given by 1/β where β = 1/kBT is the inverse temperature
and kB the Boltzmann constant. The free energy of the system of two brushes per area
A = ξ2 can then be calculated as

βFBrush

A
=

n

ξ2
(7.24)

= D

(

2Nσ
D

)
−3ν

1−3ν

. (7.25)
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For a Θ-solvent ν is 1
2

and we get

βFBrush

A
= D

(

2Nσ
D

)3

(7.26)

= (2Nσ)3 1
D2

. (7.27)

With the definition that the force F is the negative derivation of the free energy by
the distance, one may compute the pressure P as the force per area as

P =
F

A
= − ∂

∂D

(FBrush

A

)

=
2 (2Nσ)3

β

1
D3

. (7.28)

For free, uncompressed brushes we can use that the distance D between the walls
is equal to the height of the two brushes 2h0. Additionally, we can assume that the
distance d between the densely grafted chains determines the dimension of the blobs via
σ = d−2 = ξ−2. So we can compute

σ =
1
ξ2

=
(

2Nσ
2h0

)
−2ν

1−3ν

=
(

Nσ

h0

)2

(7.29)

which gives

h0 = Nσ
1
2 . (7.30)

This relation is in accordance with the predictions of Moh et al. [181] who investigate
the scaling law for brushes experimentally. They find that the brush height scales as
σn where n is 1/3 for good solvent, 1/2 for Θ-solvent and 4/5 for poor solvent. The
proportionality of the height h0 to the number of monomers N validates that the brushes
are stretched. Otherwise, the height would scale with Nν as its radius of gyration Rg.

Inserting (7.30) in (7.27) we get the free energy per area

βFBrush

A
=
(

2h0σ
1
2

)3 1
D2

. (7.31)

In this case the pressure is

P =
F

A
= − ∂

∂D

(FBrush

A

)

=
2
β

(

2h0

√
σ

D

)3

. (7.32)

7.4.2 Asakura-Oosawa potential for parallel walls

In the second step we take the excluded volume effect and the resulting depletion
interaction into account. The depletion force is described for the first time in 1954 by
Asakura and Oosawa [14, 15]. Assume a system that contains particles of different sizes.
If the distance between the larger particles becomes smaller than the size of the smaller
particles there is an excluded volume which is not accessible to the smaller particles
anymore. Thus, for entropic reasons, the larger particles tend to reduce their distance
to each other. This effect can be expressed by an effective attractive force, the depletion
force.
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Figure 7.5 The walls representing the tetrapod surfaces are separated by a distance D.
The brushes have a height h0.

h0

D/2

Following our assumptions we treat the surfaces of the spherocylinders as planar
walls at a distance D. The brush polymers are fully stretched and have a height h0 as
displayed in Figure (7.5).

At first, we have to calculate the excluded volume for the polymer brushes. If the
distance D is infinite the excluded volume per area is simply

Vexcl

A
= 2h0 for D → ∞. (7.33)

For a finite distance D we get

Vexcl

A
= 2h0 − 2(h0 −D/2) = D for D > 2h0. (7.34)

The free energy is defined as

FAO = −kBT lnZ = − 1
β

lnZ (7.35)

where β is the inverse temperature and Z is the partition function. It is given by

Z =
V NP

A

NP!Λ3NP
(7.36)

in which VA is the volume accessible to the polymers, NP is the number of free polymers
and Λ is the thermal de Broglie wavelength

Λ =
h√

2πmkBT
(7.37)
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where h is the Planck constant. The volume accessible to the polymers VA is the
difference of the systems volume V and the excluded volume Vexcl. So we can calculate
the free energy as

βFAO = − ln

(

(V − Vexcl)NP

NP!Λ3NP

)

(7.38)

= −NP ln
(

V − Vexcl

V

)

− ln

(

V NP

NP!Λ3NP

)

(7.39)

whereas the last term is the free energy of an ideal gas for NP particles

Fideal = − 1
β

ln

(

V NP

NP!Λ3NP

)

. (7.40)

In our case this contribution is constant and in particular, it does not depend on
the distance D between the walls. So we can write

βFAO = −NP ln
(

1 − Vexcl

V

)

+ βFideal. (7.41)

Using the relation

− ln(1 − x) =
∞
∑

k=1

xk

k
= x+

x2

2
+
x3

3
+
x4

4
+ . . . (7.42)

this can be transformed to

βFAO = NP

∞
∑

k=1

1
k

(

Vexcl

V

)k

+ βFideal. (7.43)

Finally, we can approximate the free energy as

βFAO ≈ NP

V
Vexcl + βFideal (7.44)

= ρPVexcl + βFideal (7.45)

where we define the number density ρP for the free polymers as

ρP =
NP

V
. (7.46)

Since we are only interested in the effective energy we can omit the constant
contribution for the ideal gas and, with Equations (7.33) and (7.34), we get the effective
free energy per area

βFAO

A
=

{

ρPD for finite D > 2h0

ρP2h0 for D → ∞
(7.47)

and the pressure

P =
F

A
=

{

−ρP

β for finite D > 2h0

0 for D → ∞
. (7.48)
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Note that, during the calculation of the free energy we make an approximation in
Equation (7.44). Taking contributions of higher order of the series into account may
increase the accuracy of the model. There are several other models which are more
accurate than the Asakura-Oosawa model. For instance, Bolhuis et al. [31] specify
accurate effective pair potentials for polymer solutions and Li and Ma [147] calculate
the depletion interactions of two spherocylinders induced by a hard sphere fluid using
Monte-Carlo simulations with the so-called acceptance ratio method. Very detailed
information on the depletion interaction including the discussion of sophisticated method
such as the Derjaguin approximation are given by Lekkerkerker and Tuinier [143].

7.4.3 Compressed brush

In this final step of the derivation we investigate the effect of the excess polymer on the
polymer brush. Therefore, we allow a compression of the brush polymers but not of the
excess polymers. This means that the brush height, which had a constant value of h0

in the last two sections, now has a variable value labeled h. The excess polymers are
characterized by their radius of gyration Rg which is assumed to be constant. A sketch
of the system is shown in Figure (7.6).

Figure 7.6 System of polymer brushes grafted to walls at distance D and excess
polymer. The excess polymers are incompressible and have a diameter of two times
their radius of gyration Rg. The height h0 of the polymer brushes can now be reduced
to a lower height h.

2Rg

D

h
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The two new parameters have to be considered in the two free energy contributions
of our system. Hence, we replace D with 2h in Equation (7.31) and include the radius
of gyration Rg in Equation (7.47). So they become

βFBrush

A
= 2h0σ

3/2

(

(

h0

h

)2

− 1

)

for h < h0 (7.49)

which is adjusted to have a cutoff at h0 and

βFAO

A
=

{

ρPD for 2h < D < 2h+ 2Rg

ρP(2h+ 2Rg) for D > 2h+ 2Rg

. (7.50)

The total free energy Ftot is the sum of these two contributions. In the next step
we have to minimize the total free energy with respect to h

βFtot

A
=
βFBrush + βFAO

A

∣

∣

∣

∣

minimal for h=h′

. (7.51)

For this purpose, we derive the total free energy by h, set it to zero and evaluate it
at h = h′. This way we get

∂

∂h

(

βFtot

A

) ∣

∣

∣

∣

h=h′

= 0 = −4σ3/2

(

h0

h′

)3

+ 2ρP

{

0 if D < 2h′ + 2Rg

1 if D > 2h′ + 2Rg

, (7.52)

which can be transformed to

0 = −2σ3/2

(

h0

h′

)3

+ ρP

{

0 if h′ > D
2

−Rg and h′ < h0 (I)

1 if h′ < D
2

−Rg and h′ < h0 (II)
. (7.53)

If we want to solve this equation we have to distinguish between the two cases
labeled (I) and (II). In the first case (I) 2h < D < 2h + 2Rg, Equation (7.53) has no
solution and h′ = min(h0,

D
2

). So we have to tell apart two subcases. If D is smaller
than 2h0 then h equals D

2
otherwise h is equal to h0 and we get

βFtot

A
=











ρPD + 2h0σ
3/2

(

(

2h0

D

)2
− 1

)

for D < 2h0

ρPD for D > 2h0

(7.54)

In the second case (II) D is greater than 2h+ 2Rg. Solving Equation (7.53) for this
case results in

ρP = 2σ3/2

(

h0

h′

)3

(7.55)

which can be rewritten as
(

h′

h0

)3

=
2σ3/2

ρP

. (7.56)

We define this ratio of h′ over h0 as κ which is related to the compression of the
brush

κ :=
h′

h0
=

√
σ 3

√

2
ρP

. (7.57)
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Since Equation (7.53) is only valid for h′ < h0 this ratio is smaller than one. For
the case that h′ becomes bigger than h0 we set κ to one.

There are again two subcases. In the first case h′ is smaller than h0 and, therefore,
κ is smaller than 1. In this case h = min(h0, h

′) = min(h0, κh0) = κh0 = h′ and the free
energy reads

βFtot

A
= ρPh

′
(

3 −
(

h′

h0

)2
)

+ 2ρPRg (7.58)

= ρPκh0

(

3 − κ2
)

+ 2ρPRg. (7.59)

If h′ > h0 the value of κ would be bigger than one. In this case h′ = h0 and so κ is
equal to one and the free energy becomes

βFtot

A
= 2ρP (h0 +Rg) . (7.60)

With these results for different cases we can calculate the total free energy of our
system for all distances. If we want to write the free energy as a function of the distance
we have to distinguish between dense and dilute brushes.

For dilute brushes h′ is smaller than h0 or in other words κ is smaller than one. There
are two subcases we have to distinguish. In the first case h0 < h′ +Rg or 1 − κ < Rg/h0.
In this case the total free energy per area can be expressed as

βFtot

A
=































ρPD + 2h0σ
3/2

(

(

2h0

D

)2
− 1

)

for D < 2h0

ρPD for 2h0 < D < 2h′ + 2Rg

min

{

ρPD

ρPh
′ (3 − κ2

)

+ 2ρPRg

for D > 2h′ + 2Rg

. (7.61)

If h0 > h′ +Rg or 1 − κ > Rg/h0 the formula becomes slightly more complicated.
In this second case the total free energy per area is

βFtot

A
=















































ρPD + 2h0σ
3/2

(

(

2h0

D

)2
− 1

)

for D < 2h′ + 2Rg

min











ρPD + 2h0σ
3/2

(

(

2h0

D

)2
− 1

)

ρPh
′ (3 − κ2

)

+ 2ρPRg

for 2h′ + 2Rg < D < 2h0

min

{

ρPD

ρPh
′ (3 − κ2

)

+ 2ρPRg

for D > 2h0

. (7.62)

Following Equation (7.56) the condition h′ < h0 for dilute brushes is only possible if

σ− 3
2 = ξ3 &

1
ρP

. (7.63)

Hence, the volume of a blob in the brush is greater than the volume per polymer
in the bulk. In this case the polymers will start to penetrate the brushes and our
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assumptions are not valid anymore. Therefore, we can assume that the brushes are
dense, that is, h′ is greater than h0 so we get κ > 1. Setting κ to one gives

βFtot

A
=



















ρPD + 2h0σ
3/2

(

(

2h0

D

)2
− 1

)

for D < 2h0

ρPD for 2h0 < D < 2h0 + 2Rg

ρP(2h0 + 2Rg) for D > 2h0 + 2Rg

. (7.64)

With Equations (7.61), (7.62) or (7.64) we can compute the total free energy per
area for systems with different brush densities and system parameters. Since we assume
that the brushes are dense in the systems we investigate we use Equation (7.64) in
our simulations. Nevertheless, Equations (7.61) and (7.62) for dilute brushes are also
implemented. For simulations of tetrapods without polymer brushes we set the height of
the polymer brushes h0 to zero. Two sample effective free energies for interactions with
and without polymer brushes are plotted in Figure (7.7). The parameters are chosen
to be close to the values used in our simulations. Figure (7.7a) shows the free energy
from Equation (7.64) with polymer brushes of height h0 = 2 and a radius of gyration Rg

equal to two. The grafting density σ is set to 0.2 and ρP to 0.005. The first region
for D < 2h0 reflects the repulsive interaction due to the polymer brushes. The green
region ends at D = 2h0 + 2Rg and represents the attractive depletion interaction. For
greater distances the interaction is constant. All sections of the interaction are shifted
by this constant so the interaction becomes zero for great distances. The second plot in
Figure (7.7b) demonstrates the behavior for a system without polymer brushes, that
is, for h0 = 0. Therefore, the repulsive brush interaction, that is, the red part of the
first plot, vanishes. For distances smaller than 2Rg the energy increases constantly. For
bigger distances the energy is zero.

As mentioned before one of our assumptions is that the excess polymer is not
compressed. Nevertheless, one could calculate the free energy for a system with com-
pressible excess polymer. In this case we expect a free energy with a very similar
behavior. As the division into several regions can be omitted in this case the edges at
the transitions are rounded and the whole function will be much smoother. But there
are a few complications in that derivation which we will not mention here in detail.
Further, some more assumptions and approximations have to be made and it has to be
checked if they are applicable. Anyway, this is not within the scope of this thesis and it
is the task of future work to determine the behavior of a system containing compressible
excess polymer exactly. We will stick to the model derived for not compressible excess
polymer in this thesis.
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Figure 7.7 Plots of the total free energy per area as given in Equation (7.64). In both
cases Rg equals two, σ is 0.2, ρP is set to 0.005 and the functions are shifted by the
constant (blue) value so the energy becomes zero for big distances. (a) With polymer
brushes of height 2h0 = 4. The red part shows the repulsion of the brushes, the green
line the attractive depletion interaction. (b) Without brushes, that is, h0 = 0 only the
attractive depletion interaction is left.
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7.5 Fluctuating volume

So far the volume has been constant in all our systems. Now we introduce an algorithm
to allow a fluctuating box volume VBox and perform simulations in the NPT -Ensemble.

In order to adapt the volume of the simulation box we allow volume breath moves.
These volume moves are not performed at each Monte-Carlo step but only every k-th
step. In most cases k is set to fifty in order to prevent a slowdown of the simulation due
to the additional computing time this move needs.

During each volume step we rescale the simulation box by a factor γ which may be
positive or negative. The size of the simulation box is changed uniformly by the same
factor in all three spatial dimensions. The length L of each side of the simulation box is
rescaled to L′ according to the relation

L′ → L+ γ. (7.65)

Further, all i components of the particle positions x are recalculated using

x′
i → xi

L
L′ = xi

(

1 +
γ

L

)

. (7.66)

If we vary the volume the energy of the system changes, too. The energy change
with the fluctuating volume V is taken into account by the volume energy

HVolume = PVBox −NTT log(VBox). (7.67)

We calculate the energies of the whole system before and after each volume move.
Depending on the energy change the volume move is accepted or rejected. Whenever
the volume is changed we also check if the box still has its minimal size of three times
the size of a tetrapod.

A test of this algorithm can be found in Appendix B.1. Note that the volume moves
are not applicable to the system of rod-coil block copolymers introduced in Part I since
the size of the grid must stay constant for this model. If we change the volume we also
would have to rescale the grid and all related energies.

7.6 Parameters

Our main goal is to reproduce the results found by Lim et al. [151]. Therefore, we set the
parameters to the experimental values. In this section we introduce these parameters.

At first we show how the length and diameter are obtained. Therefore, the projection
length L∗ and the diameter D are measured from transmission electron microscopy
images as shown in Figure (7.8). Using simple trigonometry the arm length L and the
total height of the tetrapod L′ are calculated. The results are summarized in Table (7.1).

With the experimental values for the density and the specific volume of the CdSe
tetrapods ρCdSe = 5.82 g/ cm3 and vCdSe = 1/ρCdSe = 0.172 cm3/ g, respectively, and
ρPMMA = 1.190 g/ cm3 and vPMMA = 0.840 cm3/ g for the excess polymer, we can trans-
form the wt% values from the experiments to a volume ratio α. This ratio specifies
how much more volume the excess polymer occupies compared to the volume of the
tetrapods

VPolymer = αVCdSe. (7.68)
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Figure 7.8 Cartoon to show how the length and diameter for the simulations are
obtained from transmission electron microscopy images. The diameter D and the
projection length L∗ can be measured directly. With this we can calculate the total
height L′ and the arm length L.

L

L∗

L′

Table 7.1 Length L∗ and diameter D as measured from transmission electron microscopy
images. The arm length L and the total tetrapod height L′ are calculated values. All
lengths are given in nanometers.

L∗ D L L′

40.0 6.1 42.4 56.6
67.1 5.8 71.2 95.0

103.0 10.4 109.3 145.8

The computed values for α are listed in Table (7.2). With this we can easily calculate
the number density of the free polymers ρP.

The hydrodynamic radius RH, which is closely related to the radius of gyra-
tion Rg [133], is specified to lie between 2 and 2.5 nanometers. Since the same polymer
is used for the excess polymer and the brushes it is assumed that the brush height h0

has approximately the same value. The grafting density σ is estimated to be about
0.2 nm−2.

Table 7.2 Calculated volume ratio α of excess polymers to tetrapods for different
polymer to tetrapods ratios (wt%).

wt% 50:50 70:30 90:10
α 4.9 11.4 44.0
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7.7 Observables

As the tetrapods have no preferred orientation we have to use alternate observables.
To determine how strong the tetrapods cluster we mainly use the distances between
the tetrapods. The most important distance on this occasion is the average squared
minimum distance between the tetrapod arms

〈

D2
〉

. For this purpose, the arms of
the tetrapods are treated as spherocylinders and the individual shortest distances are
computed using the shortest distance algorithm for spherocylinders introduced in Part I.
The minimum distance between two arms may be small even though the centers of the
tetrapods have a much greater distance. Therefore, we introduce another parameter
which is the average squared minimum distance between the tetrapod centers

〈

C2
〉

.
This parameter may be related to the stacking of the tetrapods.

In order to compare systems with and without grafted brush polymers we need
further observables. Using the average squared minimum distances defined above we
can define two ratios between a hybrid and a blend system. The first one is the ratio
between the average squared minimum distances between the centers

µ =

〈

C2
hybrid

〉

〈C2
blend〉 (7.69)

which indicates how much further the centers are from each other for the hybrid model
compared to the blend model. The second ratio is

ν =

〈

D2
hybrid

〉

〈D2
blend〉 (7.70)

and reflects the growth of the average shortest distance between the tetrapod arms when
the polymer brushes are grafted onto the tetrapod surface. Thus, these two ratios can
also be used to determine the efficiency of the polymer brushes to reduce clustering.
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8 Results

8.1 First simulation results

In a first test of our model we simulate 200 tetrapods in a simulation box with a size of
189 × 379 × 379 nm3 with periodic boundary conditions. The size of the box is chosen
to be at least three times the total length of a tetrapod in all three spatial dimensions.
In these simulations the tetrapods have an arm length of 42 nm and a diameter of 5 nm.
The excess polymers have radius of gyration equal to two nanometers and a number
density ρP = 0.0018 nm−3. The brush height is set to two nanometers and the grafting
density of the brush polymers σ is 0.23 nm−2. These values are chosen in analogy to the
related experiments. The parameter α is set to 4.88 which is the equivalent to 50:50 wt%.
The initial configuration is set up in an aligned and ordered manner. Figure (8.1) shows
the result of two exemplary simulation runs. Figure (8.1a) displays the average squared
minimum distance

〈

D2
〉

for the first 10000 of one million steps. In the further course the
graph does not change anymore so the final steps are omitted. Starting from the same
configuration, we clearly see that the distance increases for hybrids while it decreases
for blends. The equilibrium distances are already reached after several hundred steps.
The decrease of

〈

D2
〉

for the uncoated tetrapods indicates a clustering of the tetrapods.
This is also clearly visible in the rendered image of the final configuration displayed in
Figure (8.1b). Whereas the distance

〈

D2
〉

increases for the coated tetrapods which are
much better dispersed as the final configuration shown in Figure (8.1c) demonstrates.
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Figure 8.1 (a) Average squared minimum distance between tetrapod arms. Only the
first 10000 steps are shown on a logarithmic scale. (b) Final configuration for the
uncoated system. Clusters are visible. (c) Final configuration for the coated system.
The tetrapods are spread more homogeneously. In both images the tetrapods in the
posterior half of the simulation box are displayed in light gray.
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8.2 Further results

In the following, we present some results for different systems containing tetra-
pod/polymer mixtures. For the simulations we use the parameters presented in Sec-
tion 7.6. All systems contain 300 tetrapods and are started once with and once without
grafted polymer brushes. This way we can compare blend and hybrid systems. The
initial configuration is set up in an ordered manner, that is, all tetrapods have the same
orientation but their positions are chosen randomly. The simulation boxes are cubic
and have side lengths between 363 and 1569.

At first we compare the ratios µ and ν for the investigated systems. Plots for both
ratios are illustrated in Figure (8.2). The differently colored lines represent simulations
with diverse volume ratios between excess polymers and tetrapods.

The plot of the ratio µ in Figure (8.2a) shows that the centers of the tetrapods
move further apart if polymer brushes are added to the surface of the tetrapod arms. It
is visible that this effect is stronger for more dilute systems. We can further observe
that the effect decreases if the arm length increases.

Both observations are even more obvious in Figure (8.2b) showing the plot of the
ratio ν of the average squared minimum distance between the tetrapod arms

〈

D2
〉

. We
clearly see that the tetrapods move further apart if brush polymers are coated. The
effect again decreases with tetrapod density and arm length. Figures (8.2c) and (8.2d)
show the results for two further systems with identical parameters but 200 and 400
tetrapods, respectively. We see that the effect is weaker in both cases but reflects the
same tendencies. In addition, the effect is not as dominant as in the simulation shown in
Figure (8.1) where slightly different parameters were used. Therefore, we may conclude
that there seems to be a preferable tetrapod density for which the effect of coating is
most dominant. The simulations with fluctuating volume in the following section may
help to find this density.

Figures (8.3) to (8.5) show rendered snapshots of the final configurations of the sim-
ulations with 300 tetrapods. These images may be compared to the experimental results
for comparable systems displayed in Figures (6.8) to (6.10). For better comparability
the images in the figures are arranged in the same pattern. Note that the transmission
electron microscopy images only show a thin layer of the system and our simulations
use a three-dimensional simulation box with periodic boundary conditions. In order to
emulate this effect without losing the additional information we get from the depth of
the representation we use an orthographic projection and depth cueing when we render
the images in VMD [120].
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8.2 Further results

Figure 8.2 Plots of the ratios µ and ν for systems with three different tetrapod arm
lengths and three volume ratios of excess polymers to tetrapods, which are represent by
the colored lines. (a) The ratio µ of the average squared minimum distances between
the centers of the tetrapods decreases with increasing arm length and density. (b) For
the ratio ν of the average squared minimum distances between the tetrapod arms this
trend is even more dominant. (c, d) ν for systems with the same parameters as (b) but
with (c) 200 and (d) 400 tetrapods.
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8 Results

Figure (8.3) illustrates the simulation results for tetrapods with an arm length equal
to 42.4 nanometers. The rendered images show hybrid and blend systems with volume
ratios between the excess polymer and the tetrapods of 50:50, 70:30 and 90:10 wt%.
As in the experimental images displayed in Figure (6.8) we see that the clustering is
reduced if polymer brushes are added to the surface of the tetrapod arms. As for
the experimental results the difference is hardly noticeable for dense systems as the
comparison of Figure (8.3a) and Figure (8.3d) demonstrates. For a volume ratio of
70:30 wt% we see that the tetrapods are more equally distributed in Figure (8.3b) than
in Figure (8.3e). While we see a strong clustering in Figure (8.3f) for the blend model,
the addition of polymer brushes to the surface of the tetrapods leads to a more uniform
distribution as illustrated in Figure (8.3c).

Figure 8.3 Snapshots for tetrapods with an arm length of 42.4 nm. (a)-(c) show
the results for the hybrid model and (d)-(f) for the blend model. The volume ratio
between excess polymer and tetrapods is 50:50 for (a) and (d), 70:30 for (b) and (e) and
90:10 wt% for (c) and (f). The final configurations of the simulations can be compared
to the experimentally obtained transmission electron microscopy images for matchable
systems in Figure (6.8).

(a) (b) (c)

(d) (e) (f)
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8.2 Further results

If we compare the experimental results in Figure (6.9) of tetrapods with arm lengths
of 71.2 nanometers with our simulation snapshots displayed in Figure (8.4) we already
notice that the clustering in our model is not as distinct as in the experimental system.
Nevertheless, we still see that the effect of coating is the least noticeable for systems
with a high tetrapod volume ratio as Figures (8.4a) and (8.4d) demonstrate. For a lower
tetrapod volume ratio we can identify regions in Figure (8.4e) for which the tetrapods
strongly interdigitate. As Figure (8.4b) illustrates this is reduced in the hybrid model.
A similar effect is visible in Figures (8.4c) and (8.4f) for systems with a 90:10 volume
ratio between excess polymer and tetrapods.

Figure 8.4 Snapshots for tetrapods with an arm length of 71.2 nm. (a)-(c) show
the results for the hybrid model and (d)-(f) for the blend model. The volume ratio
between excess polymer and tetrapods is 50:50 for (a) and (d), 70:30 for (b) and (e) and
90:10 wt% for (c) and (f). The final configurations of the simulations can be compared
to the experimentally obtained transmission electron microscopy images for matchable
systems in Figure (6.9).

(a) (b) (c)

(d) (e) (f)
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8 Results

In Figure (8.5) we observe clustering for all systems with arm lengths of 109.3 nanome-
ters. If we look at the experimental results displayed in Figure (6.10) we would expect a
much stronger clustering for this arm length. We still can see that the strong clustering
in Figure (8.5d) is slightly reduced in the hybrid model in Figure (8.5a) for a volume
ratio of 50:50. For a lower tetrapod volume ratio the effect is somewhat more dominant
as the comparison of Figures (8.5b) and (8.5e) demonstrates. While some tetrapods
strongly interdigitate in the blend model as Figure (8.5f) shows, the snapshot in Fig-
ure (8.5c) illustrates that the tetrapods are distributed more equally if they are coated
with polymers.

Figure 8.5 Snapshots for tetrapods with an arm length of 109.3 nm. (a)-(c) show
the results for the hybrid model and (d)-(f) for the blend model. The volume ratio
between excess polymer and tetrapods is 50:50 for (a) and (d), 70:30 for (b) and (e) and
90:10 wt% for (c) and (f). The final configurations of the simulations can be compared
to the experimentally obtained transmission electron microscopy images for matchable
systems in Figure (6.10).

(a) (b) (c)

(d) (e) (f)
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8.3 Simulations at constant pressure

In summary, we conclude that our current model is not suitable to describe all
features of the experimental system. Especially for blends a much stronger clustering
is expected. This is particularly apparent for systems with tetrapod arm lengths of
109.3 nanometers. Overall the distance between the tetrapods should decrease much
more with increasing arm length. We can, thus, conclude that the attraction of the
tetrapods is underestimated in our model. One reason may be that our model is designed
for polymer solutions and not for melts. To account for the situation in a melt more
sophisticated methods, such as a self-consistent field theory, should be used. Another
reason may be that there are direct attractions between the tetrapod surfaces, which are
not taken into consideration in our model. The addition of such an interaction would
lead to a stronger clustering and a stronger prevention, if the interaction is shielded by
the brushes. The derivation of a more realistic model will be the task of future work.
One step towards a more sophisticated simulation model is to allow a fluctuating box
volume. This approach is discussed in the following section.

8.3 Simulations at constant pressure

In Section 7.5 we have introduced an algorithm for simulations with fluctuating box
volume. A test of this algorithm can be found in Appendix B.1. For the simulations
in this section we set the temperature T to a fixed value of 1.0 and only change the
pressure P .

To test the volume move algorithm we start several simulations at different pressures.
For this first test we simulate systems containing 400 tetrapods with arm lengths equal to
42 and diameters equal to 6 nanometers. At the beginning of the simulations tetrapods
with identical orientation are added at random positions in the simulation box. In all
simulations in this section the volume ratio α of excess polymers to tetrapods is chosen
to correspond to a system with 90:10 wt%. Volume moves are performed every tenth
step. The pressure P is varied from 1 · 10−12 to 1.

Depending on the pressure we expect a different volume V of the simulation box
and, thus, a varying density ρP for the excess polymer. Ideally, it should be possible
to observe an order transition driven by the pressure. As we use a constant number of
tetrapods and a fixed volume ratio between tetrapods and excess polymer the density ρP

is proportional to the inverse of the box volume V .

In Figure (8.6) we show the dependence of the volume V divided by the number
of tetrapods N and the average squared minimum distances between the tetrapod
arms

〈

D2
〉

and centers
〈

C2
〉

on the pressure P . Figure (8.6a) illustrates the values of
the final volume divided by N over the whole pressure range. Blends are indicated by
blue lines and hybrids by red lines. In the logarithmic scaling of the plot the volume of
the blends only varies slightly. We clearly see that the hybrid systems are not stable for
pressures below 1 · 10−6. For lower pressures the tetrapods drift apart and the volume
drastically increases with decreasing pressure. In this region the system behaves roughly
like an ideal gas. For pressures above 1 · 10−6 the hybrids are in a liquid state. This
indicates that there is a liquid-gas phase transition for hybrids. The blends are in a
liquid state for all studied pressures. At this stage a phase coexistence can not be ruled
out.
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8 Results

Figure (8.6b) shows the plot of V/N for hybrids in the pressure range from 1 · 10−6

to one. Here the volume hardly decreases with increasing pressure. A clear drop of
the curve can only be observed at the two highest pressures. Figure (8.6c) displays the
volume for blends over the full pressure range. For blends V/N fluctuates around a
value of 3.5 · 105 for pressures up to 1 · 10−7. Then there is a steep leap to much lower
volumes for higher pressures. For higher pressures the systems tend to have a volume
per tetrapod around 2.1 · 105.

The instability of the hybrids for low pressures is also visible in the plots of the
average squared minimum distance between the tetrapod arms and their centers shown
in Figures (8.6d) and (8.6f). The comparison with Figure (8.6a) reaffirms the relation
between the volume and the distances between the tetrapods. Figure (8.6e) displays
the average squared minimum distance between the tetrapod arms
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〉

in the pressure
range from 1 ·10−6 to one. For hybrids, just as the volume, the average squared minimum
distance between the tetrapod arms only changes for high pressures.

Figure (8.7) shows snapshots of the final configurations of hybrids and blends for
different pressures. For a pressure equal to 1 · 10−7 we clearly see that the hybrid (Fig-
ure (8.7b)) is in a gaseous state while the blend (Figure (8.7a)) is in a liquid state. For
a higher pressure of P = 1 · 10−6 both systems are in a liquid state, as Figures (8.7c)
and (8.7d) demonstrate. If the pressure is increased to one the blend hardly changes
as Figure (8.7e) illustrates. In Figure (8.7f) we can observe the slight decrease of the
volume for hybrids, which is visible in Figure (8.6b).

From these first results we can learn that the hybrid systems are only stable for
sufficient high pressures. We further find that the systems equilibrate much faster if we
allow a fluctuating volume.

In the simulations in Section 8.1 the ratio V/N is approximately 1.4 · 105 at an
excess polymer to tetrapod ratio of 50:50 wt%. If we compare this with the results of
this section we may conclude that the studied system is in a liquid phase. The same
may apply to the simulations in Section 8.2. Deep in the liquid phase the formation of
clusters is not expected. The experimental results with arm lengths of 100 nanometers
(see Figure (6.10) b,d) indicate that there may possibly be an additional transition at
high densities which is not taken into account by our model.

Nevertheless, more tests are needed until further predictions can be made. The
investigation of a possible phase coexistence and the development of a more appropriate
model will be the task of future work.
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8.3 Simulations at constant pressure

Figure 8.6 Plots for systems of hybrids (red) and blends (blue) for different pressures P
allowing a fluctuation of the simulation box volume V . The x-axis is scaled logarithmi-
cally in all plots. (a) Plot of the volume V divided by the number of tetrapods N over
the whole pressure range. (b) V/N for hybrids in the pressure range from 1 · 10−6 to
1. (c) V/N for blends over the whole pressure range. (d) Average squared minimum
distance
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for blends and hybrids. (e)
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in the pressure range from 1 · 10−6 to 1.
(f) Average squared minimum distance between the tetrapod centers
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8 Results

Figure 8.7 Snapshots of the final configurations for different pressures P . The con-
figurations on the left side ((a), (c), (e)) represent blends, while the systems on the
right ((b), (d), (f)) are hybrids. For (a) and (b) the pressure is 1 · 10−7, for (c) and (d)
P = 1 · 10−6 and for (e) and (f) P equals one.
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Conclusions and Outlook
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9 Conclusions and Outlook

9.1 Conclusion Part I

In summary, we have introduced a new and efficient coarse-grained model system which
is designed to investigate the phase behavior of rod-coil block copolymer systems on
mesoscopic length scales. The interactions of the coil monomers as well as the interactions
between rods and coils in this model are based on local densities whereas the packing of
the rods is provided by hard core interactions. This way the conformational freedom of
the flexible coils is taken into account as well as an energetic repulsion between rods
and coils. In combination with the efficient numerical treatment within a Monte-Carlo
simulation this model is particularly suited to study how order effects of rods for different
packing fractions are altered by energetic and entropic contributions of the coils.

Based on the introduced model we have demonstrated its applicability on pure rod
systems, rod/coil mixtures and systems consisting of rod-coil block copolymers. We
have studied the dependence of rod-coil block copolymer systems on the different model
parameters. Among them are the coil length and the interaction strength between rods
and coils.

We have investigated a phase diagram for rod-coil block copolymers in our model in
dependence of the number of monomers per coil and the rod-coil interaction parameter.
In this connection we have found a stabilization of the smectic phase. Furthermore, we
have demonstrated the capability of our model to exhibit remarkable phases such as the
wavy lamellar phase, clusters and percolating structures. In addition, we have observed
a zigzag phase which is found to be metastable in our model.

We hope that the results of this thesis may be helpful to understand and further
examine the behavior of rod-coil block copolymers. The findings can be useful to
fabricate more efficient organic solar cells or other optoelectronic devices. For this
purpose, the observed highly ordered phases and percolating structures could be used
to provide possible pathways for the electron transport in such devices.

In the future the program may be expanded to simulate rod-coil block copolymers
with spherocylinders of unequal length and diameter. Further studies on rod/coil
mixtures as well as an expansion to charged polymers or triblock copolymers may also
be of interest for future projects.
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9.2 Conclusion Part II

9.2 Conclusion Part II

Motivated by an experimental study we have developed a model to simulate tetrapods in
excess polymer. In addition, short polymer brushes may be added to the surface of the
tetrapod arms. The interactions are represented by a potential which accounts for the
repulsion of these polymer brushes as well as for the attractive depletion force due to the
excess polymer. As in the associated experimental work we have found that the addition
of polymer brushes to the surface of the tetrapods significantly reduces the clustering of
the tetrapods. Thus, these hybrids show much better film qualities. Furthermore, we
have introduced an algorithm to allow a fluctuating volume of the simulation box. This
way the simulated systems equilibrate much faster and more realistic systems can be
studied.

While demonstrating the applicability of the developed model we have found that it
does not capture all observed features of the experimental system. In particular, our
model predicts that the effect of coating goes down with increased arm length. In the
experimental study the opposite is observed. Furthermore, the clustering in uncoated
systems is much stronger than in our model. This suggests that the attraction of the
tetrapods is underestimated. Reasons may be that our model is designed for polymer
solutions, not melts. More sophisticated methods should be used to account for the
situation in melts. Possibly, there is a direct attraction between the tetrapod surfaces,
which are shielded by the brushes, which is not taken into account by our model.

In the future the model may be adapted to simulate more complex systems. For
example, tetrapods with dissimilar arm lengths or tetrapods with charged tips. As the
simulations for tetrapods use the same layout for the configuration and coordinate files as
the model for rod-coil block copolymers it is also possible to use the final configurations
of tetrapod simulations as initial configuration for simulations with pure rods or rod-coil
block copolymers if coils are added to one end of the spherocylinders. So one could
simulate the behavior of tetrapods whose central connection is chemically dissolved.

As recent results emphasize tetrapods may play an important role in the development
of efficient organic solar cells. With the model illustrated in this thesis and the proposed
improvements this progress may be supported.
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Appendix A

Appendix to Part I

A.1 Pure rod systems

The program we use to simulate the introduced model is implemented from scratch. The
development is done in several steps so every part of the code can be tested before the
program is extended and new features are added. As a first step we implement a pure
rod system. The results of these simulations can be compared to the findings mentioned
in Section 2.2.

Remember that the spherocylinders, representing the rod-like polymers, only com-
prise a hard body interaction in our model. The observed phase-transitions are, therefore,
purely entropy-driven. The reduced densities ρ∗ of pure rod systems can be adjusted by
adapting the size of the simulation box, the number of spherocylinders and their size.
This way comparable densities may be simulated using different system parameters.

In the simulations we present in this section the length-to-width ratio L/D is varied
between 0 and 30, of which we only discuss the results up to a value of five. Note that it
is not the goal of this work to study this system in detail. Hence, we only investigate the
order-disorder transition in a rough manner. This means that we only inspect the order
parameter Sz for an order-disorder transition but do not check for smectic, nematic let
alone plastic phases explicitly.

Figure (A.1) shows the order-disorder transition for three sets of independent runs.
The red and blue data points represent simulation runs with 10 to 9987 spherocylinders
and box sizes that range from 5×5×5 to 93×93×93. These rods are set up in an ordered
manner. The size of the simulation boxes for the green data points lies between 9 × 9 × 9
and 53 × 53 × 53. These systems contain 22 to 7020 rods which are arranged randomly
at the beginning. In a further, more detailed test for 100 to 6800 spherocylinders with
a fixed length-to-with ratio of five we use a box size of 48 × 30 × 36. The rods are
initiated in an ordered manner and we find a transition between the isotropic and the
nematic phase at a reduced density ρ∗ around 0.466. This transition point is marked by
a magenta colored star. In the background the phase diagram for hard spherocylinders
obtained by Bolhuis and Frenkel [29] already shown in Figure (2.3) in Section 2.2 is
added for comparison. We see that the obtained results of our simulations are compatible
with the specified results.
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We are, therefore, convinced that the chosen model and the implementation of the
spherocylinders and their interaction is appropriate and we can extend the program.
Further, we remark that we observe an isotropic, nematic, smectic and solid phase for a
length-to-width ratio L/D equal to five. For this reason we choose this length-to-width
ratio for most of our simulations, especially for the investigation of the phase diagram
in Section 5.1.

Figure A.1 Order-disorder transition for pure rod systems. The red, blue and green
lines with squares, circles and triangles, respectively, represent three different simulation
setups. The lines between the data points are only added to guide the eye. The magenta
colored star indicates the observed phase transition between the isotropic and the
nematic phase. As comparison the phase diagram obtained by Bolhuis and Frenkel [29]
is added in the background.
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A.2 Rod/coil mixtures

A.2 Rod/coil mixtures

After demonstrating that the behavior of the spherocylinders is compatible with former
results of pure rod systems we add coils with all associated interactions to the system.
At this point the chains are not connected to the rods, yet. Thus, we have a mixture of
spherocylinders and coils with all interactions mentioned in Chapter 3. Remember, that
there are no attractive interactions in our model. The strength of the repulsion between
the monomers and the rods and coils is controlled via the χ interaction parameters. For
the runs discussed in this section we use the surface approximation method introduced in
Section 3.4.4. In this model the monomers are allowed to penetrate the spherocylinders.
But due to their repulsive interaction the rods and the coil monomers try to avoid
sharing common cells. As the rods and coils are not connected we expect a phase
separation at a macroscopic scale as already mentioned in Section 2.3.

In this section we show some exemplary structures we observe in a few test runs.
Again, the investigation of this model is not a main goal of this thesis. For this reason,
we solely present some exemplary results to demonstrate the basic capability of our
program to simulate rod/coil mixtures. For further results more detailed and systematic
studies are needed. This may be the topic of future work.

For the presented runs the size of the simulation box is set to 36 × 36 × 36 and the
rods, which have a length L equal to five and a diameter D of one, are added randomly
at the beginning. The number of rods NRods, as well as the number of chains NCoils and
the number of monomers per chain m is different for each run. The values of the systems
presented in this section are summarized in Table (A.1). The table also shows the total
number of monomers M , the reduced density ρ∗ of the spherocylinders and the coil
number density ρC = M/VBox. The interaction parameters are set to χCC = χCR = 0.5
and k = 12 for all runs.

Table A.1 Overview over the number of rods, coils, monomers per coil and total number
of monomers and the densities of the systems presented in Figure (A.2).

NRods NCoils m M ρ∗ ρC

Figure (A.2a) 500 500 30 15000 0.0540 0.3215
Figure (A.2b) 100 1000 50 50000 0.0108 1.0717

Figure (A.2) shows two structures we observe for the simulated rod/coil mixtures.
If the concentration of both polymers is very low we observe a disordered system
as displayed in Figure (A.2a). For systems with a small rod density but a high coil
concentration we observe a microphase separation as shown in Figure (A.2b). The results
of the shown simulations for rod/coil mixtures complies with the expected behavior
of such a system. A more detailed investigation of this system and a more precise
determination of the different structures and their properties may be the task of future
work.

157



A Appendix to Part I

Figure A.2 Structures in rod/coil polymer mixtures with the parameters listed in Ta-
ble (A.1). The coils (blue) are only displayed in the simulation box, whereas the
rods (yellow) are periodically repeated in positive and negative x and y direction. The
exhibited structures include a disordered phase (a) and a macroscopic phase separa-
tion (b).

(a) (b)
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Appendix to Part II

B.1 Testing the volume moves

To check if the algorithm for the fluctuating volume is working correctly we test it,
trying to reproduce the ideal gas law. For this purpose we turn off all interactions
except for the volume energy introduced in Equation (7.67). Setting the Boltzmann
constant kB to one the ideal gas law reads

PV = NT (B.1)

and one can easily see that the volume is related to N times the ratio of the temperature
and the pressure

V = N
T

P
. (B.2)

From this equation we can calculate the expected volume for our tests. We test four
different temperature and pressure combinations which are summarized in Table (B.1).

Table B.1 Expected volume V of an ideal gas system with N particles for different
pressure and temperature values.

P T V = N T
P

1.0 1.0 N
1.0 2.0 2N
2.0 1.0 N

2

2.0 2.0 N

For each combination of pressure and temperature we start runs with 100, 200 and
300 tetrapods. Volume moves are performed every 50th step and each system is set
up twice, starting from a random configuration. The first system starts with a volume
smaller and the second with a volume bigger than the calculated volume. So we can
check if the system reaches its equilibrium value from both sides. Figure (B.1) shows
the development of the volume for all simulated systems. The horizontal lines represent
the expected values for the volume. The red lines are associated to systems with 100
tetrapods, the green lines to systems with 200 tetrapods and the blue lines to systems
with 300 tetrapods. The plots clearly show that the expected values are reached after
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several ten thousand steps and then fluctuate marginally around these values for all
four combinations of temperature and pressure. We are, therefore, convinced that the
volume moves are implemented correctly.

Figure B.1 Plots of the simulation box volume V versus the number of steps for the
ideal gas case. Volume moves are performed every 50th step. The horizontal lines show
the theoretical values the volume V should reach for an ideal gas (see Table (B.1)). Red
lines symbolize systems with 100, green lines systems with 200 and blue lines systems
with 300 particles. We always start from one system above and one below the theoretical
value. (a) P = T = 1. (b) P = 1 and T = 2. (c) P = 2 and T = 1. (d) P = T = 2.
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