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Introduction

Motivation As one of the steps towards an universal "motivic" cohomology theory, in 1985
Beilinson [2] defined rational motivic cohomology Hi

M(U,Q(p)) of an algebraic manifold U/C
and defined the regulator map into the weight p Deligne-Beilinson cohomology of U ,

reg : Hi
M(U,Q(p)) −→ Hi

D(U,Q(p)).

The terms occurring on either side of this map arise as the cohomology of certain complexes.
It was suggested by Goncharov in [24] and [25] that the regulator map should be induced by
an explicitly defined map between these complexes. A cycle complex that computes motivic
cohomology and even allows integral coefficients was already proposed 1986 by Bloch in [6]. He
also constructed a map from the cohomology of this complex, the higher Chow groups, to the
integral Deligne-Beilinson cohomology. His construction however was not very explicit.
Kerr, Lewis and Müller-Stach [39] gave the definition of a regulator map on complexes, using
a variation of Bloch’s cycle complex to compute motivic, and Jannsen’s 3-term-complex [37] to
compute Deligne-Beilinson cohomology.
Both motivic cohomology and Deligne-Beilinson cohomology carry the structure of a graded-
commutative associative Q-algebra. Their products can be partially defined on the underlying
complexes – partially in the sense of "not everywhere defined". Although the regulator map
of Kerr/Lewis/Müller-Stach induces a morphism of graded-commutative algebras on total co-
homology (i.e., on the direct sum over i, p ∈ Z), this map is not a strict homomorphism of
algebras. That means, it is not compatible with the products on the underlying complexes.
This is due to the fact that the product on the cycle complexes can be chosen to be associative
and graded-commutative, while the (rather any) product on the 3-term complex lacks at least
one of these properties.
The goal of this thesis is to describe a map of partially defined graded-commutative differential
graded algebras (dg algebras) that on cohomology induces the same regulator as the one of [39].

Short sketch of the content We start by reviewing some complexes that compute motivic
cohomology and Deligne-Beilinson cohomology. On the motivic side, we work with Bloch’s
cycle complexes and in particular with their refinement zpR(U, •) of higher Chow chains that
have proper intersection with respect to some "real faces". On the analytic side, we use (a
variant of) Jannsen’s 3-term complex CD which comes with a whole family of products – but
none of them is both associative and graded-commutative. Following an advice of Levine, we
replace the 3-term complex by another complex PD that actually has a graded-commutative
product and is related to the complex CD by means of the evaluation map ev, which turns out
to be a quasi-isomorphism after extending coefficients to Q.
These complexes actually depend not only on U , but on a choice of a good compactification
(X,D) of U . Therefore, we put ourselves in a general setting and define an abstract (partially
defined) regulator map from the complex of higher Chow chains to any family of complexes
indexed by triples (X,D, p) that satisfies a list of properties. We verify these properties for



the complexes CD and PD, thus obtaining two specialization of the abstract regulator map, the
former of whom coincides with the regulator map in [39].

The diagram formed by these two regulators and ev,

P 2p−•
D (X,D,Z(p))

ev

��
zpR(U, •)

regP
55

regC
// C2p−•
D (X,D,Z(p)),

although not commutative in general, commutes after passing to rational cohomology.

We equip the above complexes with partially defined intersection products, and it will turn out
that the regulator maps are compatible with these products.

The product on the complex of higher chains is in general not graded-commutative. For
rational coefficients however there exist subcomplexes zpR(U, •)Alt

Q of alternating chains that
also compute motivic cohomology and that are endowed with a partially defined – this time
graded-commutative – intersection product. It is convenient to regrade this complex and write
N 2p−•(U, p)Alt

Q := zpR(U, •)Alt
Q , with the effect that the (Q-linear extension of the) regulator

maps become morphisms of cochain complexes.

The total complex ⊕N •(U, p)Alt
Q is an associative graded-commutative partially defined dg

algebra and the same holds for the total path complex, so that the restriction of the regulator
regP to rational alternating chains is a map of associative graded-commutative partially defined
dg algebras ⊕

p

N •(U, p)Alt
Q −→

⊕
p

P •D(X,D,Q(p)).

This is the searched-for map. On cohomology, ev induces an isomorphism of algebras, so that
this map is indeed equivalent to the regulator regC (and thus reg) on cohomology.

The passage from higher Chow chains to alternating Chow chains is realized by the alternating
projection Alt. The regulator regP is invariant under alternation and even can be seen as an
alternating version of regC . All this is formalized in the commutativity of the diagram below.

zpR(U, n)

Alt
��

regP // P 2p−n
D (X,D,Z(p))

ev

��
zpR(U, n)Alt

Q

regP

66

regC // C2p−n
D (X,D,Q(p))

One advantage of the regulator map between complexes is that one has explicit formulas for it.
To illustrate that point, we give formulas for the regulator into PD for small cubical degree and
for a special class of cycles – namely the graph cycles. To see a concrete example, we apply the
regulator map to a generalization of Totaro’s cycle, which leads to dilogarithms.

Building on the construction of the higher Abel-Jacobi map in [39], we associate to both reg-
ulator maps an Abel-Jacobi map from higher Chow chains that are homologous to zero to a
generalized Jacobian. It turns out that the Abel-Jacobi map for regP is a symmetrization of
the Abel-Jacobi map for regC .

We also study the behaviour of the Abel-Jacobi map under exterior products and pullbacks
along higher correspondences and provide explicit formulas.
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Conventions While in section 1 the higher Chow groups are defined over any field, outside of
this section we mostly stick to the field C or R. In this case, we work in the (complex) analytic
setting, i.e., all spaces/sheaves are with respect to the analytic topology.
A complex algebraic manifold denotes a smooth quasi-projective algebraic variety over C to-
gether with the complex topology. In particular, it is hausdorff and second countable.
Usually, the notion of a "regulator" is reserved for mappings that are defined on higher K-theory
and take values in some cohomology theory (here Deligne-Beilinson cohomology). We rather
use "regulator" as a synonym for "higher cycle map", which is justified by Bloch’s work [5],
where he showed that – after tensoring with Q – higher Chow groups are isomorphic to higher
K-theory.
A bullet • indicates that the object is a complex. By convention, complexes with lower indices
have decreasing differential, while complexes with upper indices have increasing differential
(degree +1). We omit the •, if it is not necessary.
The notion of a partially defined product will be used in an informal way, meaning a product
which is defined only on a certain (not further specified) subset.





1 Higher Chow groups

Higher Chow groups have been introduced by Spencer Bloch [5] in 1986 as a cycle-theoretic
description of rational higher K-theory. They can be thought of as an algebraic version of sin-
gular (Borel-Moore) homology theory. In fact, they are known to compute motivic cohomology
with integral coefficients. The name "higher Chow groups" is due to the fact that they contain
the usual Chow groups as a special case.
We introduce a complex of cubical higher Chow chains whose cohomology groups are the higher
Chow groups and describe their functoriality and their exterior and interior products. The pas-
sage to alternating chains allows to define a graded-commutative inner (intersection) product,
with the drawback of needing rational coefficients. With view to the construction in 4.1, we
also define higher Chow chains with good intersection with respect to some real faces and show
in an appendix that they also compute the higher Chow groups.

1.1 Bloch’s cycle complex

Following Totaro [62, p. 180], we define the cubical higher Chow groups for quasi-projective
varieties over a field k. They can be seen as an algebraic analogon of the cubical singular
homology groups. Define the (algebraic) n-cube as

�n := (P1(k) \ {1})n .

The codimension 1 faces of the n-cube are defined to be the hyperplanes obtained by setting
one of the coordinates zi to be equal zi = 0 or zi = ∞. So for each i there are two i-th faces
which can be identified with the images of the maps

∂i,ε : �n−1 → �n, ε = 0,∞

that insert ε at place i. Codimension r faces are intersections of r different 1 faces, i.e., obtained
by setting r of the n coordinates to be 0 or ∞. The union of all codimension r faces is thus

∂r �n = {(z1, . . . , zn) | r different zi ∈ {0,∞}} .

One also has degeneracy maps πi : �n → �n−1 which omit the i-th coordinate and act as the
identity on the other coordinates. The collection of all the cubes together with the various maps
∂i,ε, πj form a cubical object (in the sense of [9]) in the category of smooth quasi-projective
varieties.
Now let U be a (smooth) quasi-projective variety over k. To mimic the construction of (cubical)
singular homology one needs a replacement for the continuous maps �n → U . Since there are
too few algebraic maps from the n-cube to U , one instead considers algebraic cycles in U ×�n

(the fibre product over Spec k). In general, the group of codimension p algebraic cycles in
a quasi-projective variety V (over a field) is the free abelian group generated by the set of
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irreducible closed subvarieties of V , that is,

zp(V ) =
{∑

finite
niZi | ni ∈ Z, Zi closed irreducible subvariety of V

}
.

The faces of �n extend to U × �n as U × face. To have a good notion of restriction to those
faces, one works with a smaller set of cycles. Namely, an algebraic cycle is called admissible, if
it intersects all faces properly, i.e., in the correct codimension1. The group generated by those
algebraic cycles is

cp(U, n) := 〈Z ∈ zp(U ×�n) admissible 〉

whose members are the admissible (higher Chow) chains. The pullbacks of admissible chains
along the face maps ∂i,ε exist and give rise to a differential

∂ :=
n∑
i=1

(−1)i+1(∂∗i,0 − ∂∗i,∞) : cp(U, n)→ cp(U, n− 1).

The group of degenerate cycles dp(U, n) is the subgroup of all those algebraic cycles that are
obtained as the pullback of admissible chains along some projection map πj . This is a subgroup
of admissible chains and one defines the group of higher Chow chains as the quotient

zp(U, n) := cp(U, n)/dp(U, n).

This becomes a chain complex with the differential ∂, i.e., ∂ ◦ ∂ = 0.
The higher Chow groups can be defined as the homology groups of zp(U, •), or, cohomologically
written,

CHp(U, n) := Hn(zp(U, •)).

If A is a coefficient ring, then the higher Chow groups with coefficients in A are by definition
the homology groups of zp(U, •) ⊗Z A. For A = Q, this is the same as CHp(U, •) ⊗Z Q by the
universal coefficient theorem.

Remark. The original definition of Bloch’s higher Chow groups uses simplicial chains instead
of cubical ones. The corresponding homology groups however are the same [45, 4.7].

Higher Chow groups and motivic cohomology The "modern" approach to motivic cohomol-
ogy of smooth schemes over a field k is to define somehow a triangulated category DM(k) with
special "Tate objects" Z(n) in it, and then define the motivic cohomology of U as

Hi
M(U,Z(p)) = HomDM(k)

(
Z(0),ZU (p)[i]

)
,

where ZU (p) is the "motive associated to U". All these categories have in common that (actually,
it is a requirement for a good category DM) there is a functorial isomorphism for smooth U ,

Hi
M(U,Z(j)) ∼= CHj(U, 2j − i).

1Two algebraic cycles A,B are said to intersect properly if their intersection A ∩ B is either empty or lives in
the right codimension, that is,

codim(A ∩B) = codimA+ codimB.
In this case, the intersection of A and B is a formal linear combination of the irreducible components of
A ∩B with suitable multiplicities. We again denote this intersection with A ∩B.

2



The maybe most prominent definition of DM(k) comes from Voevodsky [64] (there are others
by Levine, Hanamura,...) as a derived category of some category of motivic sheaves. In [63]
Voevodsky verified that for U smooth over a field k his definition of motivic cohomology is the
same thing as simplicial higher Chow groups, or which is the same, cubical higher Chow groups.

1.2 Properties of higher Chow chains

Functoriality

Let U be a quasi-projective variety over k that is equi-dimensional of (complex) dimension d.
Then the abbreviation zk(U, n) := zd−k(U, n) is well defined. Any map f : U → V extends to
a map f × id : U ×�n → V ×�n, which will also be denoted by f (for any n).

Proposition 1. The proper pushforward resp. flat pullback of algebraic cycles [20, 3.3] induce
morphisms of higher Chow chains such that

• zp(U, •) is covariant functorial wrt. proper morphisms,

• zq(U, •) is contravariant functorial wrt. flat morphisms.

Sketch. The proof is given in [5, Prop. 1.3] (for simplicial chains), where it is shown that the
usual pullback/pushforward of algebraic cycles respects proper intersection with boundaries.
It also preserves degenerate chains and thus induces a morphism between higher Chow chains.
Finally, the induced maps on higher Chow chains are compatible with the differential.

The contravariant functoriality can be extended to morphisms between quasi-projective varieties
by means of the formula

f∗Z :=(prU×�n)∗
(

(U ×�n×Z) ∩ Γf×id�n

)
=(prU×�n)∗

(
(U × Z) ∩ Γf

)
,

where Γf and Γf×id�n
are the graphs of f and f× id�n . But then not every cycle can be pulled

back – one has to restrict to those cycles whose intersection with Γf exists.
For any finite set S of closed algebraic subsets of V , denote by

zS(V, •) ⊂ z(V, •)

the subcomplex of higher Chow chains that is obtained by imposing the additional condition
that all cycles S × F are intersected properly for all S ∈ S and all faces F .

Lemma 2. Let f : U → V be a morphism between smooth algebraic varieties. Then there
exists a finite set S of closed algebraic subsets of V such that the pullback of cycles induces a
morphism of complexes

zS(V, •)→ z(U, •).

Proof. Let S be the union of the sets Si, i ≥ 0, where Si is the set of points v ∈ V such that
dim f−1(v) ≥ i. At least for i > dimV the sets Si are empty and so S is finite. The proper
intersection with all the Si is enough to ensure proper intersection with the graph of f . See
also [5] or [45, Cor. 4.9]. Indeed: Let Z ∈ zpS(V, •) and consider an irreducible component

3



Z ′ ⊂ (U × Z) ∩ (Γf × F ). Because the Si, i = 0, 1, . . . form a filtration of V , there exists an i
such that Z ′ ⊂ U × Si × F and Z ′ * U × Si+1 × F . It follows that

dimZ ′ ≤ dim
(
(U × Z) ∩ (f−1(Si)× Si × F )

)
≤ dim

(
Z ∩ (Si × F )

)
+ i.

Using this and the proper intersection of Z with the Si × F ,

codimΓf×FZ
′ ≥ dim(Γf × F )− dim(Z ∩ (Si × F ))− i

= dim(Γf × F )− dim(Si × F ) + codimSi×F (Z ∩ (Si × F ))− i

= dim(U)− dimSi + p− i.

The claim follows because dimSi + i ≤ dimU .

The pullback on chain level is only partially defined. The following "moving lemma" says that
it is everywhere defined at least after passing to rational cohomology groups.

Proposition 3 (Moving lemma). Let U be a smooth quasi-projective variety over k. For any
collection of finitely many closed subsets S1, . . . Sl of U , every cohomology class in CHp(U, n)Q
has a representative that intersects all Si properly.
If U is projective or affine, this holds even for integral coefficients.

Proof. This is corollary 3.2 in [45] and theorem 14 in [46].

The product of higher Chow chains

One advantage of the cubical version of higher Chow groups (and the reason for their invention,
see Totaro [62]) is, that the product of two cubes again is a cube. This allows an easy definition
of an external product for higher Chow chains.
For two varieties U, V consider the isomorphism τ : U ×�n×V ×�m → U × V ×�n×�m =
U×V ×�n+m that exchanges the two middle factors. Together with the usual exterior product
of algebraic cycles, this induces a morphism

zp(U ×�n)⊗ zq(V ×�m)→ zp+q(U × V ×�n+m).

The external product of two admissible cycles is again admissible (because faces on the product
are just exterior products of faces in the respective factors) and the product of an admissible
and a degenerate cycles is always a degenerate cycle. Consequently, one obtains an external
product for higher Chow chains,

zp(U, n)⊗ zq(V,m)→ zp+q(U × V,m+ n).

Taking the sum over the cubical indices gives rise to an exterior product on the complexes of
higher Chow chains, i.e., the exterior product is compatible with Bloch’s differential:

zp(U, •)⊗ zq(V, •)→ zp+q(U × V, •).

This product is associative but not graded-commutative (in the sense of exterior products). For
example, the exterior product of two graph cycles Γf ,Γg (which are assumed to intersect the
boundaries properly) is equal to Γf×g 6= Γg×f .

4



Now specialize to U = V and consider the diagonal embedding ∆ : U → U×U . The composition
of the external product with the pullback along ∆ is not everywhere defined. It however gives
rise to a partially defined map

(∆n,m
U )∗ : zp(U, n)⊗ zq(U,m) 99K zp+q(U, n+m).

The intersection of higher Chow chains induces a well-defined product on higher Chow groups
by defining the intersection of two higher cycle classes Z,Z ′ with representing higher Chow
cycles Z,Z ′ to be the unique class such that

Z ∩ Z ′ := (∆n,m
U )∗

(
Z × Z ′ + ∂B

)
+ boundaries

for a higher Chow chain B for whom the pullback on the right hand side exists. If it exists,
the product is well-defined on cohomology classes and is independent of the choice of B: This
is a consequence of the identity (∆n,m

U )∗∂ = ∂(∆n,m
U )∗. Working with rational coefficients, the

moving lemma implies that such a B always exists. In particular, the intersection product is
everywhere defined on ⊕p,n CHp(U, n)Q.
Marc Levine proved the following properties of this product in [45, Theorem 5.2].

Proposition 4. For U smooth and quasi-projective over k, these products give
⊕

p,n CHp(U, n)Q
the structure of a bi-graded ring, which is graded-commutative with respect to n and commuta-
tive with respect to p. The restriction to

⊕
p CHp(U, 0)Q is the usual product structure on the

rational Chow ring of U .

That is, one has an associative, graded-commutative (with respect to n and m) product on the
rational higher Chow groups (but not on the underlying complex, since one needs the moving
lemma).

1.3 Alternating chains
The exterior product (and thus also the intersection product) of higher Chow chains is not
graded-commutative – but becomes graded-commutative on rational cohomology. The alter-
nating cycles were introduced to remedy this defect. They furthermore have the advantage that
a degenerate alternating cycle is zero and thus the higher Chow groups can be defined without
using a normalization (see [45, p. 36], [8]). They are defined as a subgroup of admissible chains
that behave good with respect to some action on the coordinates.
Denote by Gn the subgroup of automorphisms of �n generated by

σ : (z1, . . . , zn) 7→ (zσ1, . . . , zσn), σ ∈ Sn
τi : (z1, . . . , zn) 7→ (z1, . . . ,

1
zi
, . . . , zn).

Then Gn is just the group of automorphisms of the pair (P1, 1)n that map faces onto faces2.
Acting identically on U , this gives rise to a group action of Gn on U ×�n, and hence an action
on the algebraic cycles in U × �n via pullback. This action respects proper intersection with

2To see this, let ϕ be an automorphism of P×n1 that leaves 1 and {0,∞}n invariant. Restrict it to some
P1 ⊂ P×n1 and compose it with the projection to the k-th component. The resulting map P1 → P1 is either
constant or a Möbius transformation. There must exist a k such that this map is non-trivial and thus gives
an automorphism of (P1, {1}). The assumption that it preserves {0,∞} leaves as the only possibilities the
identity and z 7→ 1/z.

5



faces and thus restricts to an action on admissible chains.
An admissible chain is called alternating, if Gn acts on it via the Sign representation, where
Sign : Gn → {±1} denotes the unique homomorphism that extends the signum map on the
symmetric group and maps τi 7→ −1 for all i. In other words, the set of alternating higher
Chow chains is the subspace spanned by Sign-equivariant admissible algebraic cycles,

zp(U, n)Alt := cp(U, n)Sign.

The differential ∂ restricts to these subspaces and makes them into a chain complex with respect
to the variable n.

The alternating projection The action of Gn comes with an associated projector

Alt : cp(U, n)→ Q⊗ cp(U, n)

Z 7→ 1
|Gn|

∑
g∈Gn

Sign(g) · g∗Z,

whose image is the space of Gn-alternating chains with rational coefficients. Bloch [8, 1.1]
showed that Alt is compatible3 with the differential ∂. After extension of scalars to the rationals,
this yields an endomorphism of the space of rational admissible chains cp(U, •)Q, which turns
out to be projector (i.e., Alt ◦Alt = Alt) onto the subspace of alternating chains zp(U, •)Alt

Q .
The alternation of a degenerate chain is zero and thus Alt descends to a well-defined map on
higher Chow chains

Alt : zp(U, •)→ zp(U, •)Alt
Q .

With rational coefficients, this becomes a quasi-isomorphism that is quasi-inverse to the inclu-
sion zp(U, •)Alt

Q ⊂ zp(U, •)Q. The proof uses an extended cubical structure on zp(U, •), see the
references in the proof of proposition 7.

Product for alternating chains The exterior product of admissible chains induces a product
of alternating chains by composing it with the alternating projection,

zp(U, n)Alt
Q ⊗ zq(V,m)Alt

Q → zp+q(U × V, n+m)Alt
Q .

This gives a graded-commutative associative exterior product, compatible with the differential
on the complex of alternating higher Chow chains. Pullback along the diagonal yields a par-
tially defined intersection product on the alternating chains with rational coefficients, which is
associative and graded-commutative (with respect to the cubical degree n):

Z ∩ Z ′ := Alt ◦∆∗ (Z × Z ′) .

3To be honest, Bloch merely showed the compatibility of ∂ with the projector associated to the action of
Sn ⊂ Gn. To see that it extends to Gn, it is to show that ∂ commutes with the projector associated to
the (Z/2)n action generated by the τi, i.e., 1

2n
∑

τ∈(Z/2)n (−1)|τ |τ∗∂∗ = 1
2n+1

∑
τ∈(Z/2)n+1 (−1)|τ |∂∗τ∗.

Because τj interchanges 0 and ∞ in the j-th cube, one has ∂iτj =
{
τj∂i j < i,

τj−1∂i j > i,
and ∂jτj = −∂j . Using

this, a computation gives that
∑

i=1...n+1
J⊂(Z/2)n+1

(−1)|J|+i+1∂∗i τ
∗
J = 2

∑
i=1...n+1
J⊂(Z/2)n

(−1)|J|+i+1τ∗J∂
∗
i , from which the

result follows.
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With this product, the direct sum ⊕
p,n

zp(U, n)Alt
Q

becomes a partially defined, associative and graded-commutative dg algebra. By definition, the
quasi-isomorphism Alt induces a morphism of partially defined algebras⊕

p,n

zp(U, n)Q →
⊕
p,n

zp(U, n)Alt
Q .

Remark. Alternating higher Chow chains can (and in fact this has been done in the preprint [67])
also be defined as higher Chow chains that alternate with respect to the action of the symmetric
group (that is, without Z/2-action, but modulo degenerates). In my opinion, this definition as
a sub-quotient of a complex is undesirable. Thus here the alternating higher Chow chains are
defined as admissible chains that are alternating with respect to the full automorphism group
of the cube. To my knowledge, this approach is due to Hanamura.

1.4 Examples

• CHp(U, 0) is by definition the group of algebraic cycles on U modulo cycles of the form
∂∗0Z − ∂∗∞Z, for Z running through admissible cycles in U ×�. This is just the rational
equivalence relation of algebraic cycles, and thus CHp(U, 0) = CHp(U) are the ordinary
Chow groups. See also [21, Prop. 1.6 and the remark following].

• CHp(U, n), n = 0, 1, 2, is generated by graph cycles of functions that meet the faces in the
correct codimension (the inverse image has the correct codimension), see 1.5. This means
that while a general higher Chow chain corresponds to a multi-valued function, for n ≤ 2
they can actually be represented by single-valued functions only.

More precisely, for n = 1, any higher Chow cycle can be written as a finite sum
∑
i(Vi, fi)

where Vi ⊂ U is an irreducible algebraic cycle of codimension p−1, fi a non-zero rational
function on Vi and

∑
i div(fi) = 0 as a cycle of codimension p on U . The last condition

just means that the multiplicities at 0 and ∞ cancel out [65].

• CH0(U, n). The admissible chains here are generated by Ui ×�n where Ui runs through
the irreducible components of U . Since they are degenerate for n > 0, one gets

CH0(U, n) =

Z#{irred. comp.}, n = 0

0, n > 0.

• CH1(U, n). Spencer Bloch [5] showed that in codimension 1,

CH1(U, n) =


Pic(U), n = 0

Γ(U,O∗U ), n = 1

0, n ≥ 2.

• Vanishing: One has the trivial vanishing

CHp(U, n) = 0 for p > n+ dimU.
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As an extension of the vanishing in codimension p = 0 and p = 1, the conjectural
Beilinson-Soulé vanishing says that

CHp(U, n) = 0 if either (np ≥ 2, p > 0) or (n > 0, p = 0).

This is known to be true for rational coefficients and U the spectrum of a number field by
Borel’s computation of K-groups [11] and the comparison between rational higher Chow
groups and rational K-theory [5].

• U = Spec k = pt. CHp(pt, n) is generated by codimension p algebraic cycles in �n

meeting all faces in the right dimension. By the work of Nesterenko/Suslin [54] and
Totaro [62], CHn(pt, n) = KM

n (k) are the Milnor K-groups. Together with the trivial
vanishing, CHp(pt, n) = 0 for p > n, the higher Chow groups are

p

...
...

...
...

...
3 0 0 0 KM

3 ? ? . . .

2 0 0 KM
2 ? ? ? . . .

1 0 k∗ 0 0 0 0 . . .

0 Z 0 0 0 0 0 . . .

0 1 2 3 4 5 . . . n

For k a number field, Borel’s computation [11] explicitly determines the rank of the higher
Chow groups in terms of the number of real and complex embeddings of k. Thus the higher
Chow groups are determined up to torsion.

1.5 Higher Chow chains as graphs

For small n (in fact n = 0, 1, 2) the higher Chow groups admit an alternative description via
graph cycles.

Indeed, we sketch how the Gersten resolution for higher Chow groups [5, §10], the degeneration
of the local to global spectral sequence for higher Chow groups [52, §5], and the Milnor-Chow
homomorphism [62] imply that every class in CHp(U, n), n = 0, 1, 2, can be represented by a
sum of graph cycles.

Gersten resolution for higher Chow groups Let U be a smooth quasi-projective variety over
k and denote by CHpU (n) the Zariski-sheafification of the functor V 7→ CHp(V, n). There is a
local-to-global spectral sequence relating the cohomology of CH with the higher Chow groups.
One can show that this spectral sequence partially degenerates and that this leads to

CHp(U, n) ∼= Hp−n(U, CHpU (p)), n = 0, 1, 2.
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Furthermore, one has the Gersten resolution for higher Chow groups, which is a flasque resolu-
tion of sheaves (ix denoting the skyscraper functor)

0→ CHpU (n)→
⊕
x∈U(0)

ix CHp(Spec k(x), n)→
⊕
x∈U(1)

ix CHp−1(Spec k(x), n− 1)→ . . .

→
⊕

x∈U(p−1)

ix CH1(Spec k(x), n− p+ 1)→
⊕

x∈U(p)

ix CH0(Spec k(x), n− p)→ 0.

Consequently, an element in Bloch’s higher Chow group CHp(U, n), for n = 0, 1, 2, can be
represented by an element in ⊕

x∈U(p−n)

ix CHn(Spec k(x), n).

Milnor K-Theory For k a field, the Milnor k-groupKM (k) is the quotient of the tensor algebra
over k∗,

Z⊕ k∗ ⊕ (k∗ ⊗ k∗)⊕ (k∗ ⊗ k∗ ⊗ k∗)⊕ . . .

by the so-called Steinberg relations, that is, the two-sided ideal generated by a⊗ (1− a), where
a 6= 0, 1. Note that the tensor algebra is N0-graded with Z in degree 0 and (k∗)⊗i in degree
i. The Steinberg relations are compatible with the grading and one obtains a N0-graded ring
KM
• (k). Totaro [62] showed that there is a ring isomorphism

KM
• (k) ∼= CH•(k, •).

To describe the homomorphism KM
n (k) → CHn(k, n), observe that an element in CHn(k, n)

is just a finite linear combination of points in (P1(k) \ {0, 1,∞})n. The map sends a tuple
a = (a1, . . . an) to the intersection a∩�n. For example if n = 1, then the map sends a ∈ k∗\{1}
to a and 1 to 0 (the empty sum).
Putting all these things together, an element in Bloch’s higher Chow group CHp(U, n), for
n = 0, 1, 2, can be represented by elements in⊕

x∈U(p−n)

KM
n (k(x))

that is, by a formal sum of symbols (V, f1 ⊗ · · · ⊗ fn) with V an algebraic subvariety of codi-
mension p− n and fi ∈ k∗(V ) a non-zero rational function.

1.6 Higher Chow chains with good real intersection

In the definition of the regulator map in 4.2, 4.3, we will have to restrict to higher Chow chains
that are in good position with respect to the branch locus of the complex logarithm, which we
choose to be R- := [−∞, 0] ⊂ �. We will see that every class in CHp(U, n)Q is represented by
a higher Chow cycle that intersects RI- ⊂ �

n properly for all I ⊂ {0, 1}n.
A real face of � is one of the subsets {0}, {∞},R-,� and a real face of �n is an n-fold exterior
product of real faces of �. For U a smooth quasi-projective variety over C, define

cpR(U, n) :=
〈irreducible Z ∈ zp(U × �n) such that Z and ∂Z
intersect all real faces U × F properly

〉
.
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Here proper intersection with a real face means that Z intersects all real strata of the face
properly as real analytic varieties. For example, proper intersection with R- means proper
intersection with (−∞, 0), ∞ and 0.
Denote by dpR(U, n) ⊂ cpR(U, n) the subgroup generated by those algebraic cycles with one factor
being = � and define

zpR(U, •) := cpR(U, •)
dpR(U, •)

with boundary map ∂ as before.
In the same way, for S = {S1, . . . , Sl} any finite collection of closed subvarieties of U , define

cpS,R(U, n) =
〈
Z ∈ zp(U ×�n) such that Z and ∂Z intersect Si×F properly
as real analytic varieties, for all real faces F and all i

〉
and the quotient complex zpS,R(U, •).

Theorem 5 (Moving Lemmas).

• The inclusions give rise to quasi-isomorphisms

zpS,R(U, •)Q ↪→ zpR(U, •)Q ↪→ zp(U, •)Q.

• For D ⊂ X any closed subvariety of pure codimension q in a smooth projective variety
X, the restriction to X \D induces a quasi-isomorphism

zpR(X,•)Q
zp−qR (D,•)Q

// zpR(X \D, •)Q.

Proof. Originally, the moving lemma for higher Chow groups without subscript R has been
proven by Bloch and Levine. For X projective, this is the collection of moving lemmas from
[38, 8.14-8.16]. The proof of the first statement also works for quasi-projective X.

The "alternating" version is

zpR(U, n)Alt :=
〈
Z ∈ zp(U, n)Alt

∣∣∣∣Z and ∂Z intersect all real faces
properly as real analytic varieties

〉
.

Proposition 6. The diagram below formed by the alternating projection (horizontal) and in-
clusion (vertical) is a commutative diagram of partially defined dg algebras and each arrow is a
quasi-isomorphism. ⊕

p,n
zp(U, n)Q //⊕

p,n
zp(U, n)Alt

Q

⊕
p,n

zpR(U, n)Q

OO

//⊕
p,n

zpR(U, n)Alt
Q

OO

Proof. Commutativity of the diagram is obvious. That the maps in the diagram are compatible
with the products is clear for the inclusions. For the alternating projections, this is equivalent
to Alt(Alt(Z) ∩Alt(Z ′)) = Alt(Z ∩ Z ′), which can be verified by hand.
That the horizontal arrows are quasi-isomorphisms follows from general theory of (extended)
cubical objects as in [47, Proposition 1.6], see also the appendix to this section. For the
upper arrow this statement is also in [46, Lemma 29]. That the left vertical arrow is a quasi-
isomorphism is content of the moving lemma 5. The quasi-isomorphicity of the right vertical
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arrow finally follows from the commutativity of the diagram and the quasi-isomorphicity of the
other three arrows.

1.7 Appendix: Around cubical objects

In this appendix, the formalism of extended cubical objects [47] is applied to prove that the
vertical maps in proposition 6 are quasi-isomorphisms.
Define the category of "abstract cubes" Cube to be the category with objects n := {0, 1}n,
n = 0, 1, . . . and morphisms given by

• Aut({0, 1}n) = Gn, generated by the symmetric group in n variables and the maps
{0, 1} → {0, 1}, i 7→ 1− i.

• The other morphisms are generated by the inclusion of faces (the face maps) and linear
projections (the degenerations).

Denote by Cubeop the category with the same objects as Cube, but all arrows reversed. A cubical
object in a category A is a functor Cubeop → A. In the following, A will always stand for an
abelian category.
cp(U, ∗) and cpR(U, ∗) are examples of cubical abelian groups. In the previous subsections, there
have been two fundamental constructions of complexes of abelian groups out of a cubical object.
The first one (normalized chain complex) divides the chains by degenerate elements, while the
second one passes to the subgroup of alternating elements.
These two procedures can be defined and compared in an abstract setting.

Construction 1 If c is a cubical object and if cdeg denotes its degenerate elements, then the
associated (normalized) complex is by definition the complex which in degree n is c(n)

cdeg(n) and
whose differential is given by the alternating sum over the face maps.

Construction 2 By functoriality, any cubical object c comes with an action of Gn. Denote by
Sign the sign representation of Gn and by c(n)Sign the largest subobject of c(n) on which Gn
acts via the sign representation. This object always exists in an abelian category, and applying
the above degree-wise, gives rise to a complex cAlt whose differential is the same alternating
sum as above.

In order to compare the two fundamental constructions above, define the category of extended
cubes ECube to be the category Cube with additional morphisms generated by the map µ :
{0, 1}2 → {0, 1}, (i, j) 7→ i · j. A cubical object in A is called an extended cubical object, if
it extends to a functor ECubeop → A. The mere existence of an extended cubical structure
suffices to ensure the (quasi-)equivalence of the two constructions above:

Proposition 7. For any extended cubical object c : ECube → A with values in a Q-linear
abelian category A, the composition of the inclusion and the canonical map to the quotient

cAlt → c→ c/cdeg

induces a quasi-isomorphism of complexes. A quasi-inverse is given by the alternating projection
Alt = 1

|Gn|
∑
g∈Gn(−1)Sign(g)g∗.
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Proof. The first statement is a combination of [47, Lemma 1.5] and [47, Prop 1.7]. For the
second, note that Alt descends to a map c/cdeg → cAlt that is split by the map in the statement.
Thus Alt is necessarily a quasi-inverse.

Lemma 8. The functors n 7→ cp(U, n) and n 7→ cpR(U, n) are extended cubical objects for any
smooth quasi-projective U .

Proof. We only prove the statement for cpR(U, ∗); the other follows analogously. We will show
that it has an extended cubical structure induced by µ : �2 → �, (z, z′) 7→ z+z′−zz′, which is
agreed to be µ =∞ if either z =∞ or z′ =∞. For this, it is to show that the proper intersection
with real boundaries is preserved by the extended structure. It even suffices to check this for µ
alone. Utilizing the isomorphism (�,∞, 0) ∼= (A1, 0, 1) given by z 7→ 1/(1− z), allows to work
with cycles Z ⊂ U ×A×2

1 . In these coordinates, the map µ is just the multiplication of the two
components of A×2

1 . It is to show that whenever Z intersects all real faces properly, then the
same holds for

µ−1(Z) = {(u, x, y) : (u, x · y) ∈ Z}.

This is done by showing that the various intersections of µ−1(Z) with each of the real subvari-
eties in U × {0, 1, (0, 1),A1}×2 is either empty or has the correct real codimension.

• First consider the intersection with faces that contain the divisor {0}. For example,
µ−1(Z) ∩ (x = 0) = {(u, 0, y) | (u, 0) ∈ Z} = (Z ∩ (x = 0)) × A1. Because Z intersects
(x = 0) properly, it follows that the real codimension is codimU×�2

R µ−1(Z) ∩ (x = 0) =
codimU×�

R (Z∩ (x = 0)) ≥ codimU×�
R (Z)+2, as expected. Similarly, the intersection with

(y = 0) and all combinations of these two with other faces (e.g 0× (0, 1)) is treated.

• Next consider faces containing the divisor 1. For example, µ−1(Z)∩ (x = 1) = {(u, 1, y) |
(u, y) ∈ Z} ∼= Z. In particular, its codimension in X × A2

1 is equal to the codimension
of Z plus one. Because Z intersects the real boundaries properly, an analogous argument
shows that µ−1(Z) intersects 1× F and F × 1 properly for all real faces F .

• Now consider the face U × A1 × (0, 1). The intersection with this face is

µ−1(Z) ∩ (U × A1 × (0, 1)) = {(u, x, y) | (u, xy) ∈ Z, y ∈ (0, 1)}

≈ Z × (0, 1),

where ≈ denotes the analytic isomorphism (u, x, y) 7→ (u, xy, y). Since the latter has
real codimension at least p+ 1, so does the intersection above. In exactly the same way,
proceed with U × (0, 1)× A1.

• A similar reasoning can be done for the face U × (0, 1)× (0, 1):

µ−1(Z) ∩ (U × (0, 1)× (0, 1)) = {(u, x, y) | (u, xy) ∈ Z, x, y ∈ (0, 1)}

= {(u, z, y) | (u, z) ∈ Z, y ∈ (0, 1), z/y ∈ (0, 1)}

⊂ {(u, z, y) | (u, z) ∈ Z, z, y ∈ (0, 1)}

= (Z ∩ (U × (0, 1)))× (0, 1).

From the proper intersection of Z with the real faces, it follows that the right-hand side
has real codimension at least p+ 2, hence so does the left-hand side.
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2 Currents

This section shall introduce to the basic theory of currents on manifolds. Currents are important
for us, because they unify both the concepts of singular chains and differential forms. They
have good covariant functorial properties, an associative external product (in contrast to the
exterior product of singular chains) and contain appropriate subspaces which compute the
integral and real (complex) cohomology of a manifold. Furthermore, there exists a partially
defined intersection product that generalizes both the wedge product of differential forms and
the intersection product of singular chains and that induces a well defined, everywhere defined
product on cohomology.
Currents can be seen as either differential forms with distribution coefficients or as duals of
differential forms. We adopt the second point of view, which emphasizes the homological
character of currents, and we may think of them as "generalized manifolds with densities".
While currents are considered in huge generality in geometric measure theory, we restrict our-
selves to currents on (real or complex) analytic manifolds. Excellent introductions into this
area are the texts by Gillet/Soulé [23, §1], Demailly [12], Harvey [30], Jannsen [37] and, for the
general notions of geometric measure theory, the fundamental works of Herbert Federer [17],
[18] and the more recent reference work of Giaquinta/Modica/Soucek [22].
We start investigating currents on manifolds and afterwards turn to currents on pairs of spaces.
Intersection theory for currents is the one introduced by Federer (Federer/Fleming [18]) and
axiomatized by Hardt [28].

2.1 Currents on (complex) manifolds

Let M be a real analytic manifold and denote by Ak(M) the vector space of complex valued
smooth differential k-forms on M . The subspace of compactly supported forms Akc (M) comes
with the direct limit topology induced by the topology of uniform convergence (of all partial
derivatives) on Ak(K) for all compact K ⊂ M . This is the uniquely defined topology in
which a sequence ωn → ω converges if and only if there is a compact subset K such that
sptωn, sptω ⊂ K for all n and the sequence of partial derivativesDαωn(x)→ Dαω(x) converges
uniformly in x for each multi index α. The currents of dimension k on M by definition are the
distributions on Akc (M), that is,

Dk(M) = C-linear continuous functionals on Akc (M).

In other words, a current is a linear form on Ac(M) whose restriction to any A(K), K ⊂ M

compact, is a continuous functional. The space of currents on M ,

D(M) = ⊕kDk(M),

is a graded C-vector space concentrated in dimensions [0,dimM ].
Let X be a complex analytic manifold of (complex) dimension m. Then there is an additional
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decomposition of differential forms Akc (X) = ⊕p+q=kAp,qc (X), where Ap,qc (X) is the vector
space of complex valued smooth differential (p, q)-forms on X with compact support. The
distributions on these subspaces with the inherited topology are the currents of bidimension
(p, q) on X,

Dp,q(X) = distributions on Ap,qc (X).

Under the inclusion Dp,q(X) ↪→ Dp+q(X) (extension by zero), the currents of bidimension (p, q)
are identified with those currents that pair to zero with all test form of bidegree 6= (p, q). One
obtains a decomposition

Dk(X) =
⊕
p+q=k

Dp,q(X).

It is common to raise the indices by writing Dr = D2d−r and similarly Dp,q := Dm−p,m−q. The
so obtained grading/bigrading is called the degree/bidegree. The degree of a current T will be
denoted by |T | = deg(T ) and the dimension by dim(T ).

Examples of currents

The main examples of currents, considered more detailed in 2.7, are the following.

• If ω is a locally integrable differential r-form on an oriented manifold M (that is, a
form whose integral over each compact set exists), then the integration gives a current
[ω] ∈ Dr(M) by setting

[ω](η) =
∫
M

ω ∧ η.

If M = X is a complex manifold and ω is of bidegree (p, q), then [ω] ∈ Dp,q(X).

• A singular k-chain γ =
∑
aiγi ofM is called (piecewise) smooth if each γi can be extended

to a smooth map from a neighborhood of the k-simplex ∆k ⊂ Rk+1 into M . The chain is
oriented, if a orientation of ∆k has been fixed. Differential forms on M can be integrated
over piecewise smooth oriented chains by pullback∫

γ

η =
∑
i

ai

∫
∆k

γ∗i η.

This leads to a map from the group C∞k (M) of smooth oriented k-chains on M into k-
dimensional currents on M which assigns to a smooth singular chain γ the integration
current [γ], defined by

[γ](η) =
∫
γ

η.

This even makes sense for locally finite smooth oriented chains (smooth Borel-Moore
chains) and, in particular, for any smooth oriented real (sub)manifold (and in this case it
recovers the integration current over this submanifold, see 2.7).

• 1 For a k-dimensional complex subvariety Z of a complex manifold X, the set Zreg of
manifold points is a smooth oriented real 2k-dimensional manifold and thus induces a
current of bidimension (k, k) by

[Z](η) =
∫
Zreg

η.

1See [31, Prop. 1.6] or [40, Thm 3.1.1]
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On the space of currents there are two differentials of degree +1,

∂T (η) := T (dη) and dT (η) := (−1)deg(T )+1T (dη)

that make D• into a complex, i.e. ∂2 = d2 = 0, concentrated in degrees [0, 2m]. With the
differential d, the inclusion of smooth forms into currents A•(M) → D•(M) becomes a mor-
phism of complexes. The differential ∂ on the other hand makes the map C∞• (M)→ D•(M) a
morphism of complexes. Unless otherwise stated, we endow D• with the differential d.
Note that the formula d[ω] = [dω] usually fails for non-smooth forms ω, since in this case one
additionally has to restrict the domain of integration. The log and dlog function for example
are locally integrable on P1(C) and give rise to currents

[log z](η) =
∫
P1(C)\R-

log z · η

[dlog z](η) =
∫
P1(C)\{0,∞}

dlog z ∧ η

where one naturally has to remove the poles and, in order to make log single valued, the negative
real line R- = [−∞, 0]. Give R- the orientation such that ∂R- = [0]− [∞]. Then an application
of Stokes theorem [39, Lemma 4.1], shows that one has equations of currents,

d[R-] = (z) = [0]− [∞],

d[log z] = [dlog z]− 2πi[R-],

d[dlog] = 2πi[(z)],

where (z) = {0} − {∞} is the divisor of the coordinate function. More general for f : P1 → P1

meromorphic, one has that d[log f ] = [dlog f ]− 2πi[f−1[−∞, 0]] and d[d log f ] is the divisor of
f , i.e., the sum of zeroes minus the sum of poles of f (counted with multiplicities).

A-module structure The wedge product of a current T with a smooth form ω is the current
T ∧ ω given by

(T ∧ ω)η = T (ω ∧ η).

This is a current of degree deg T + degω. The so defined map (T, ω) 7→ T ∧ ω satisfies the
Leibniz rule with respect to d and thus gives a map of complexes,

D(M)r ⊗A(M)s → D(M)r+s

i.e., a right A(M)-module structure. The associated left A(M)-module structure is obtained by
forcing graded commutativity, that is, by the formula ω ∧ T := (−1)degω·degTT ∧ ω. The sign
conventions again are adopted to the case of currents represented by differential forms, so that
[ω1]∧ω2 = [ω1 ∧ω2]. All this is compatible with the bidegree if M = X is a complex manifold.

Exterior products of currents Given two currents S ∈ Dr(M), T ∈ Ds(N) of degree r resp. s,
there exist two slightly different notions of an outer product corresponding to the two different
ways of looking at currents as homological or cohomological objects. Both products yield
currents of degree r + s on M × N (differing only by a sign). Such a current is uniquely
determined by its values on test forms which are exterior products η1 � η2 = pr∗M η1 ∧ pr∗N η2
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of forms on M and N respectively. Indeed, the set of all forms η1 � η2 is a dense sub vector
space in A(M ×N), see Federer [18, 4.1.8].
The (homological) cartesian product is the current defined by

(S × T )(η1 � η2) = S(η1) · T (η2)

and the (cohomological) exterior product is2

(S � T )(η1 � η2) = (−1)deg(T ) deg(η1)S(η1) · T (η2).

Proposition 9. Both products are associative and bilinear. The exterior product satisfies the
Leibniz rule with respect to the differential d,

d(S � T ) = dS � T + (−1)degSS � dT

and similarly, the cartesian product S×T satisfies the Leibniz rule with respect to the boundary
map ∂.
Furthermore, both products are graded-commutative in the sense of exterior products. That is,
if τ denotes the map that exchanges the two factors in M ×N , then one has

τ∗(S � T ) = (−1)degS degT+mnT � S

τ∗(S × T ) = (−1)dimS dimTT × S.

Especially for M and N complex manifolds, both products are graded commutative with respect
to degree in the sense of exterior products. In this case, they are also additive with respect to
bidegree.

Proof. This follows straight-forward from the definitions and the properties of the wedge prod-
uct of forms. In case of the cartesian product this is done by Federer in [18, 4.1.8]. The
statements for the tensor product can easily be derived from this.

As a consequence, the exterior product of two closed currents is again closed and, if either S or
T are exact, their exterior product is exact, too.

Examples.

• If S and T are represented by differential forms ωi, then

[ω1]� [ω2] = [ω1 � ω2].

Here ω1 � ω2 = pr∗1 ω ∧ pr∗2 ω is the exterior product of forms.

• For 1-forms ωi, one has [ω1]× . . .× [ωn] = (−1)(
n
2)[ω1 � . . .� ωn] by induction.

• If S and T are given by integration over submanifolds Y1 and Y2 respectively, then

S × T =
∫
Y1×Y2

,

2References are Demailly [12, §2.D.1] (for �) and Federer [18, 4.1.8] (for ×). Demailly denotes the exterior
product by the symbol ⊗.
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that is, [Y1]× [Y2] = [Y1 × Y2].

Thus � is an extension of the exterior product of forms to currents, while × extends the exterior
product of manifolds/chains.
The compatibility of � and the wedge product is expressed by the

Lemma 10. For currents T1, T2 and smooth forms ω1, ω2 on M ,

(T1 ∧ ω1)� (T2 ∧ ω2) = (−1)|ω1||T2|(T1 � T2) ∧ (ω1 � ω2).

An analogue formula holds for the exterior product:

(T1 ∧ ω1)× (T2 ∧ ω2) = (−1)|T1∧ω1||ω2|(T1 × T2) ∧ (ω1 � ω2).

Note the various special cases obtained through [M ] ∧ ω = [ω] and [Y ] ∧ 1 = [Y ].
For example,

[ω]× [Y ] = [M × Y ] ∧ pr∗ ω.

Proof. We give only the proof of the first formula. The second follows formally from the equality
T1 � T2 = (−1)degT2 dimT1T1 × T2. Let η = η1 � η2 be a test form. Then

(S � T ) ∧ (ω1 � ω2)(η1 � η2) = (−1)|ω2||η1|(S � T )(ω1 ∧ η1 � ω2 ∧ η2)

= (−1)|ω2||η1|+|T ||ω1∧η1|S(ω1 ∧ η1) · T (ω2 ∧ η2)

= (−1)|ω2||η1|+|T ||ω1∧η1|S ∧ ω1(η1) · T ∧ ω2(η2)

= (−1)|ω2||η1|+|T ||ω1∧η1|+|T∧ω2||η1|(S ∧ ω1)� (T ∧ ω2)(η1 � η2)

= (−1)|T ||ω1|(S ∧ ω1)� (T ∧ ω2)(η1 � η2).

2.2 Functorialities

Support of a current The support sptT of a current is the smallest closed subset C such that
T (w) = 0 for all w with spt(w) ⊂ M \ C. That is, it is the intersection of all closed subsets C
such that T |M\C = 0.

Pushforward of currents Let f : M → N be a smooth map between two manifolds. The
pushforward along f of a current T ∈ D(M) is the current given by the formula

(f∗T )(η) = T (f∗η).

The pushforward need not exist, because the pullback of a differential form with compact
support in general is no longer compactly supported. However, it is well defined if f is proper.
It even suffices that the restriction of f to the support of T is proper (i.e., sptT ∩ f−1(K) is
compact for all K ⊂ N compact). Then f∗η is compactly supported in sptT and the formula
above defines a current on N with the same dimension as T , i.e., f∗T ∈ Dk(N) whenever
T ∈ Dk(M).
The following basic properties of the pushforward of currents are immediately obtained from
the definition:

• spt f∗T ⊂ f(sptT ).
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• The pushforward is compatible with composition of functions, that is, (g ◦ f)∗T = g∗f∗T

if all occuring pushforwards exist.

• If f is a smooth map such that f |sptT is proper, then (f∗T ) ∧ ω = f∗(T ∧ f∗ω).

• The pushforward is compatible with the boundary map, so that ∂f∗T = f∗∂T . Thus,
with the same notations as above, f∗dT = (−1)dimR(M)+dimR(N)d(f∗T ). Especially for M
and N even dimensional, the pushforward is compatible with the differential, provided
that all pushforwards exist.

• If f is a holomorphic map between complex manifolds, then f∗ preserves the bidimension,
i.e., f∗Dp,q(M) ⊂ Dp,q(N).

Moreover, one has

• If γ is a smooth oriented chain, then f∗[γ] = [f ◦ γ].

• If i : M ⊂ N is a closed embedding of a submanifold (i.e., the image of the embedding
is a closed submanifold) then the map i∗ : D(M) → D(N) is injective. Indeed: A closed
embedding is proper, hence the pushforward is defined. The injectivity of the push forward
follows because the induced map on tangent spaces is injective.

Pushforward of forms The pushforward of currents can be used to define a pushforward for
differential forms with compact support. Assume that T = [ω] is represented by a compactly
supported differential form of degree q and that f : M → N is a smooth submersion (i.e.,
surjective and df is surjective at each point) between oriented manifolds. Then f |sptω is always
proper and the pushforward f∗[ω] exists as a current. By the proper submersion theorem,
locally over N one has a product situation, the fibers being compact manifolds. Splitting up
the integration and using Fubini’s theorem, the current f∗[ω] can be written as

f∗[ω](η) =
∫
N

(
∫
f−1(y)

ω) ∧ η(y), η ∈ AdimM−q
c (N).

This expression has to be interpreted as zero whenever the degree of the vertical part of ω does
not match the fiber dimension. As a consequence, f∗[ω] can be thought of as being represented
by the differential form of degree q − (dimRM − dimRN) that is given by integrating ω along
fibers of f . This form is also denoted by f∗ω:

f∗ω(y) =
∫
f−1(y)

ω.

A very clear account on the so defined form can be found in the article of Stoll [60] and, more
detailed, in the appendix of [59] of the same author. We merely state some of its properties.

• If ω is of class Ck, then so is f∗ω.

• If ω has L1
loc coefficients, then so does f∗ω.

• ω 7→ f∗ω is continuous in the Cs topology [12].
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Pullback of currents For a submersion f : M → N and a current T ∈ Dp(N) the pullback of
T by f is defined via

(f∗T )(η) = T (f∗η).

Here f∗η is the pushforward of a differential form as above. f∗η is a smooth form with compact
support because the same holds for η and so the expression is well defined. One has the following
properties.

1. d(f∗T ) = f∗(dT )

2. If Z is a submanifold, then f∗[Z] = [f−1(Z)].

3. f∗(T ∧ ω) = f∗T ∧ f∗ω

4. If ω is a r-form with locally integrable coefficients, then f∗[ω] = [f∗ω].

5. If f is holomorphic, then the pushforward along f preserves the bidimension, and so f∗T
has the same bidegree as T .

Proof. The first three statements can be found in Demailly, [12, 2.14 ff]. The fourth follows
from the third by choosing T = [N ]. Note that the fourth property also follows directly from
Fubini’s theorem for manifolds (as stated in [22, 3.2 Prop. 3]):

f∗[ω](η) =
∫
N

ω ∧ f∗η =
∫
M

f∗ω ∧ η = [f∗ω](η).

Push ’n’ Pull For later use, we state a result that follows from [60] and relates pushforward
and pullback of forms: If there is a commutative diagram of smooth maps

M

f

��

ϕ // M ′

f ′

��
N

ψ // N ′

such that f and f ′ are submersions and ϕ is fiberwise an orientation preserving diffeomorphism
(i.e., ϕ|f−1(n) is a differomorphism onto g−1(ψ(n)), then for each form η such that f ′∗η exists,
f∗ϕ

∗η also exists and f∗ϕ∗η = ψ∗f ′∗η. Dually, this shows that

ϕ∗f
∗ = f ′∗ψ∗ : D•(N)→ D•−δ(M),

where δ is the real fiber dimension of f .

Exterior products of currents and maps

Lemma 11. Let f : M → N and g : M ′ → N ′ be two smooth maps between manifolds. If f, g
are proper then one has the equality of currents on N ×N ′,

(f × g)∗(S × T ) = f∗S × g∗T.

If f, g are submersions then

(f × g)∗(S × T ) = f∗S × g∗T

as currents on M ×M ′.

19



Proof. Note that the product of two submersions/proper maps is again a submersion/proper
(the latter is by no means obvious, see [61, Satz 19.8]). Let η = η1 � η2 be an appropriate test
form.

(f × g)∗(S × T )(η) = (S × T )(f∗η1 � g
∗η2)

= S(f∗η1)T (g∗η2)

= f∗S(η1)g∗T (η2)

= (f∗S × g∗T )(η1 � η2).

For the second statement let η = η1 � η2 be a test form on M ×M ′.

(f × g)∗(S × T )(η) = (S × T )((f × g)∗η)

= (S × T )(f∗η1 � g∗η2)

= S(f∗η1)T (g∗η2)

= (f∗S × g∗T )(η1 � η2).

Similar formulas hold for the exterior product of currents: If f, g are smooth proper, then

(f × g)∗(S � T ) = (−1)dimS(dimRN
′−dimRM

′)f∗S � g∗T,

and, if f, g are smooth submersions,

(f × g)∗(S � T ) = (−1)(dimRN−dimRM) degT f∗S � g∗T.

Again the signs vanish in the complex setting.

2.3 Cohomology of currents

Fix a real analytic manifold M . Every open U ⊂M has an induced manifold structure and the
inclusion gives rise to restriction maps ("pullback")

resU,M : D(M)→ D(U), resU,M (T )(η) = T (i∗η)

where i∗η is the compactly supported form on M obtained as the extension by zero. The
collection of all D(U) together with these restriction maps form a presheaf of AM -modules.
This is actually a sheaf, denoted by DM , so that the sections in Γ(U,DM ) = DM (U) are again
the continuous linear functional on Γc(U,AM ).

Remark. Note that Γc(U,AM ) consists of all those sections of A with compact support in U .
This should not be mixed up with Γ(U,AM,c), which are the sections over M with locally
compact support in U .

Theorem 12. The inclusion of locally constant functions gives rise to a quasi-isomorphism

CM → D•M .
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In particular (D is fine), there is an isomorphism for any integer n

Hn(M,C)→ Hn(D•(M), d).

Sketch of proof. A proof is given in [27, p 382ff], and proceeds in two steps.

1. Establish an analogon of the Poincaré lemma for currents.

2. Use the AM -module structure to see that the sheaves Dk are fine.

The first step shows that the complex of sheaves of currents D•M forms a resolution of the sheaf
of locally constant functions C on M . By the second step, this resolution is acyclic and hence
its global sections compute the (hyper-)cohomology of C.
While the second part is obvious, the first part involves some work. One way to prove it is
by approximating the currents by smooth forms and using the Poincaré lemma for forms, see
Demailly [12].

On a complex manifold X, there exists an additional structure on forms and currents coming
from the bigraduation on differential forms. It is convenient to state this in terms of a descending
filtration on currents, the (putative) Hodge filtration

F pDr(X) = ⊕s≥pDs,r−s(X).

Analogously, one defines a filtration for differential forms.
A more refined version of the previous theorem that includes the Hodge filtration is the following

Theorem 13. The inclusions of forms into currents

Ω•X → A•X → D•X

are filtered quasi-isomorphisms. If X is projective, then the induced filtration on cohomology

F pHn(X,C) = im
(
HnF pD•(X) ↪→ HnD•(X)

)
agrees with the classical Hodge filtration on cohomology3. Similarly for holomorphic resp.
smooth differential forms (possibly with cohomology replaced by hypercohomology).

Sketch of proof. The two morphisms are both filtered morphisms and it is to show that the
associated graded pieces with respect to the Hodge filtration are all quasi-isomorphisms. The
p-th graded piece is Ωp → Ap,• → Dp,•. That these maps are quasi-isomorphisms is the content
of the ∂-lemma for forms and currents (also called Grothendieck-Dolbeault lemma since it has
been proven independently by each of them, see [13], [57, pp. 3-4]).
If X is projective (or compact Kähler), then the spectral sequence associated to the filtration F
(called the Fröhlicher spectral sequence) degenerates at E1, and the putative filtration coincides
with the filtration on the de Rham cohomology of X, which is the classical Hodge filtration (see
also [55, Proposition 2.22]).

3The Hodge filtration on the cohomology of X is the descending filtration on cohomology F pH(X,C) that is
spanned by those classes that can be represented by harmonic differential forms of bidegree (r, s), with r ≥ p.
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2.4 Normal currents

The (real or complex valued) cohomology of a manifold can be computed by more geometrical
currents – the locally normal currents. These are the currents that together with their differ-
entials are representable by integration or, have finite mass in every compact subset. See also
King [40] and Federer [18, 4.1.7].

Currents representable by integration and normal currents Denote by CAM the sheaf of
complex valued forms on M whose coefficients are continuous functions. Its space of sections
carries a topology by declaring a sequence of forms ωn → ω to converge, if for each coordinate
neighbourhood and each compact subset K of this neighbourhood the coefficient functions
fI,n → fI converge uniformly on K.
Let CAM,c be the subsheaf of complex valued continuous forms with locally compact support.
Give it the topology where a sequence ω1, ω2, . . . of forms is convergent whenever the sequence
converges in the topology on CAM and there exists a compact subset K ⊂M with sptωj ⊂ K
for all j.
A current is called representable by integration, if it can be extended to a continuous linear
functional on CAM,c.
A locally normal current is a current T such that T and dT are both representable by integration.
They form the subcomplex of sheaves NM ⊂ DM . A locally normal current is a normal current
if its support is compact.

Examples

• [ω] for a locally integrable form ω is representable by integration.

• An arbitrary form with L1
loc-coefficients need not to be normal. For example, the current

[ 1
z ] on C is not locally normal since d[ 1

z ] = δ0 + [ 1
zdz] is not representable by integration.

Currents of the form [ω] for ω a log form however are locally normal currents [41, p. 43].
They are normal if in addition sptω is compact.

• [Z] for Z an oriented real subvariety is a locally normal current.

• [γ] for γ a oriented singular chain is a locally normal current.

The mass norm Let X be a complex manifold4 and denote by < −,− > the associated
Riemannian metric, that is, the metric that is locally given as the real part of the fundamental
2-form

∑
j dzj∧dzj . This metric on the tangent space extends to a metric on the space of multi

tangent vectors by defining the norm of a simple r-vector as |v1 ∧ . . . ∧ vr|2 = det(< vi, vj >).
Recall that a multi vector is called simple, if it can be written as an exterior product of 1-vectors.
Using this norm, one defines the co-mass of a differential r-form ω to be

‖ω‖ := sup{|ωx(v)| : x ∈ X, v is a simple r-vector at x and |v|x ≤ 1}.

If the vi form an orthonormal basis and ω is expanded in the dual basis dvi1 ∧ . . . ∧ dvir , then
‖ω‖ is just the maximum of the absolut values of the coefficient functions.

4The following can be done more general for any Riemannian manifold.
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Dually, the mass of a current T of dimension r is defined as

M(T ) = sup{T (η) : η ∈ Arc(X) and ‖η‖ ≤ 1}.

If T is representable by integration, then the multiplication of T with the characteristic function
of a Borel set B makes sense (e.g. as a limit limU⊃B 1U · T ) and the mass of T in B is defined
as

MB(T ) = sup{|T (1Bη)| : ‖η‖ ≤ 1}

where ‖η‖ is the co-mass from above. For example, if T = [Z] is given by integration over a
locally closed oriented submanifold, then MK [Z] = vol(Z ∩K) [30].
The locally normal currents are exactly those currents T such that the mass of T and dT in
every compact subset is finite.

Cohomology of normal currents On a complex manifold X, the Hodge filtration on D•X
induces a Hodge filtration on the subcomplex N •X ⊂ D•X by

F pNX := NX ∩ F pDX .

The C-valued cohomology of X can also be computed by locally normal currents.

Theorem 14. The following inclusions

C→ Ω•X → A•X → N •X → D•X

are all filtered quasi-isomorphisms of sheaves on X.

Proof. This is [41, 4.1.1]. All maps are morphisms of filtered complexes of sheaves on X. For
currents of order ≥ 1, the Dolbeault-Grothendieck lemma shows that the first two arrows and
the map AX → DX are filtered quasi-isomorphisms. That the last inclusion is a filtered quasi-
isomorphism is due to King, [41, 4.1.1]. More precisely, he showed in [41, 4.3 (for W = ∅)] that
Ω → N is a filtered quasi-isomorphism, by proving a Poincaré lemma for d that preserves the
Hodge filtration.

Remark.

• NX is not a bigraded subcomplex of D, because the differential of the components can
not be controlled. For example [41, p. 43], even if T = T 1,0 +T 0,1 has differential dT = 0,
one only knows that dT 1,0 = −dT 0,1 which is not necessarily representable by integration.

• Locally normal currents compute the C-valued cohomology of a much larger class of
manifolds (but then there is no longer a Hodge filtration), see also [19, 5.11].

2.5 Integral currents

We interpret singular chains as currents to get a complex that calculates integral cohomology
and has a graded commutative (external) product. The latter property is not true for singular
chains (but for singular chains up to subdivision).
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C1 chains A continuous differentiable (or C1) k-chain is a current γ =
∑
ni · (γi)∗[∆k] where

all γi are continuous differentiable maps defined on some open neighborhood of ∆k. Note that
the pushforward (γi)∗[∆k] is well defined because [∆k] is representable by integration. If all
coefficients ni occur to be integers, γ is called an integral chain. The chain is finite if ni = 0
for almost all i.

Rectifiable currents For a compact subset K ⊂ M , the class Rk,K(M) of k-dimensional
rectifiable currents in K consists of continuous linear functionals T on the space A(M) (of not
necessarily compactly supported smooth forms) such that for each ε > 0 there is a finite integral
C1 chain γ with support in K that satisfies M(T − γ) < ε.
A k-dimensional rectifiable current in M is an element in the union

⋃
K Rk,K(M), the index

running over all compact K ⊂ M . A current T is called locally rectifiable if for each point x
there exists a rectifiable current S such that x /∈ spt(S − T ).

Remark. Originally, Federer used Lipschitz chains instead of C1 chains to define rectifiable
currents. The here used definition is equivalent to Federer’s, see [31, p.557].

For any Borel set B, the product T ·1B of a rectifiable current with the characteristic function
of B is again a rectifiable current (see [31, p. 558]). If B is an open subset, this is proven in
[19, Remark 3.8 (3)].

Integral currents Rectifiable currents are not closed under the differential – a problem that
is solved by introducing integral currents.
A locally integral current is a current T such that both T and dT are locally rectifiable. If
moreover its support is compact, T is called an integral current.
For example, the current of integration over a subset E that has a locally finite C1 triangulation
(i.e., there is a locally finite representation E =

∑
niγ(∆ki), ni ∈ Z) is a locally integral current.

It is an integral current if the representation can chosen to be finite.
Any rectifiable current is representable by integration and thus any integral current is normal.

Cohomology of locally integral currents Denote by IpM the sheaf of locally integral currents
of degree p on M . By definition, they form a subcomplex I•M ⊂ D•M , and even of the locally
normal currents. I0

M contains the sheaf of locally constant, integer valued functions ZM and the
inclusion ZM → I•M is a quasi-isomorphism of sheaves. Furthermore, the IpM are soft sheaves5

and thus each IpM is acyclic ([41, 2.2]). I•M then is an acyclic resolution of the constant sheaf
and thus

Hr(M,Z) ∼= Hr(Γ(M, I•M )).

If more general I(M,Z(p)) denotes the global sections of IM⊗Z(p), then this complex calculates
the singular cohomology of M with values in Z(p).

Functoriality for integral currents By [19, Rmk 3.8], the pushforward along a smooth function
f : M → N preserves integral currents, that is, f∗Ik(M) ⊂ Ik(N). Moreover, the product S×T

5Proof: Let C ⊂ M be a closed subset and T ∈ Ip(U) for some open U ⊃ C. Choose V open such that
C ⊂ V ⊂ V ⊂ U . The current 1

V
· T is again locally rectifiable and has support in V (hence does not meet

the boundary of U). In particular, its pushforward along the inclusion of the closed subset V → M gives a
locally rectifiable current on M . Its boundary d(1

V
·T ) = 1

∂V
·T +1

V
·dT is again locally rectifiable, hence

the current is actually locally integral. Rmk: Maybe it is not true that d1
V

= 1
V \V but then one can move

V a little bit so that d1
V
· T is defined and locally rectifiable.
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of two rectifiable currents is again rectifiable. In particular, pushforward and exterior products
preserve integral currents.
This is enough to show that integral currents are preserved under pullbacks:

Lemma 15. If f : M → N is a smooth submersion and f is locally integral, then f∗T is locally
integral.

Proof. Since f∗ commutes with the differential (up to a sign), it suffices to show that f∗T
is locally rectifiable whenever T is locally rectifiable. This can be checked locally. As f is a
smooth submersion, it can locally (in M) be written as a projection. That is, for a sufficiently
small open U ⊂ M there is an open V ⊂ N and coordinates around U and V such that f is a
projection with respect to these coordinates. So we may assume that f is the restriction of a
projection pr : W ×F →W to some open subset U ⊂W ×F , where the fibre F is an euclidean
space. But in this case, f∗T = pr |∗UT = (T × [F ])|U is rectifiable.

2.6 Flat currents

A current T of degree p is called6 locally flat if and only if for each smooth function ϕ the
current ϕT (defined by the module structure) can be expressed as S + dR where S and R are
currents represented by differential forms with locally integrable coefficients.
The locally flat currents form a sheaf on M , denoted by FM .

Examples.

• Ip ⊂ N p ⊂ Fp.

• dF ⊂ F .

Locally flat currents can also characterized as limits of locally normal currents (see [31, p. 316]):
A locally flat current is a current T such that for all cut off functions ϕ there exists a compact
set K ⊃ sptϕ such that the current ϕT is a limit of locally normal currents supported on K
with respect to the flat norm on K.
Here the flat norm on K of a current T is defined as

FK(T ) := sup
{
|T (η)| : ‖η‖K ≤ 1, ‖dη‖K ≤ 1

}
.

The importance of flat currents stems from the following proposition due to Federer (see also
[40, 2.1.8, 2.4.2]). Denote by Hk the k-dimensional Hausdorff measure.

Proposition 16 (Support theorems). Let T ∈ Fk(M) be a locally flat current.

• If Hk(sptT ) = 0 then T = 0. (measure support theorem)

• Assume that f, g : M → N are smooth maps.
If f |sptT = g|sptT then f∗T = g∗T . (support theorem)

• In particular, if M i
↪−→ N is an embedded submanifold,

then i∗F(M) = {T ∈ F(N) | sptT ⊂M}. (flatness theorem)
6This definition is from [31].
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Remark. The exterior product of (locally) normal currents is again (locally) normal, hence
(locally) flat, see [19, 2.6]. This is no longer true for locally flat currents. That is, S × T need
not be a locally flat current if S, T are merely locally flat. However, if S or T is normal and the
other is flat, then S × T is flat [22, 5.1.3 Rmk 2.v)].

2.7 Integration currents

We now recall the constructions of the current of integration over a semianalytic set, mainly
following [34]. This uses the simple extension of currents which has been introduced by Lelong
[43] in order to show that the current of integration over a complex analytic set of codimension
p is a closed locally integral (p, p) current.
We are interested in two applications of this theory. First, it follows that any algebraic cycle
in a smooth complex algebraic manifold U gives rise to a current on a compactification X of
U . Second, the integration over semianalytic sets allows to define the current represented by a
semimeromorphic differential form.

Integration over manifolds

LetM be a connected oriented real analytic manifold. Choose a family of orientation preserving
coordinate maps ψα : Uα → Vα ⊂ Rn such that the sets Uα form a locally finite covering of M .
Let τα be a differentiable partition of unity subordinate to the Uα.
For any compactly supported smooth differential form η on M , the integral of η over M is∫

M

η :=
∑
α

∫
Rn

(ψα)∗(ταη).

Note that (ψα)∗ = (ψ−1
α )∗. This definition is independent of the choice of the chart and the

chosen partition of unity.
For a not necessarily connected manifold M = tMα, the integral is extended linearly by∫

M

η =
∑
α

∫
Mα

η|Mα
.

This gives rise to a dim(M)-dimensional current on M , the current of integration over M ,

[M ] : η 7→
∫
M

η.

If M is not orientable, by convention [M ] = 0 is the zero current.

Integration over semianalytic subsets

LetM be a real analytic manifold. Let OM (U) be the ring of real analytic functions on U ⊂M ,
that is, the ring of functions on U that locally near each point can be represented by a convergent
power series with real coefficients.

Definition ([4]). Define S(U) to be the smallest family of subsets of U that contains all sets
{f(x) > 0}, f ∈ OM (U), and is stable under finite intersection, finite7 union and complement.

7To define semianalytic sets, one can even allow locally finite union.
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Every element in S(U) can be written in the form
⋃p
i=1
⋂q
j=1 Sij with basic semianalytic sets

Sij that are either equal to {fij(x) > 0} or {fij(x) = 0} for fij ∈ OM (U).

Definition. A subset S of M is semianalytic if each x ∈ M has a neighborhood U such that
S ∩ U ∈ S(U).

For example, every real analytic subvariety of a manifold is semianalytic.
The closure, interior and the boundary of a semianalytic set are semianalytic [4, Corollary 2.8].

Definition. Let S be a semianalytic set in M . x ∈ M is a regular point of S if there exists
a neighborhood U of x such that U ∩ S is a connected real analytic submanifold of M . At
each regular point there exists a tangent space and the dimension8 of the semianalytic set S is
defined as

dimS := sup{dimTxS : x is a regular point}.

The regular points of a semianalytic set form a dense subset Sreg ⊂ S. The set Sreg,d of regular
points of dimension d (points that locally look like a d-manifold) form a d-dimensional real
analytic submanifold of M .
Integration over the top-dimensional piece of the regular part Sreg,d, d = dim(S) defines a
current [S] ∈ D(Sreg,d) of dimension d, the current of integration over S.

Remark. Herrera constructed more general currents I(S, c) for each cohomology class c ∈
Hp(S,R). Here we always set c to be the fundamental class of S (which always exists by
Łojasiewicz’ work on triangulations of semianalytic sets [49]).

Simple extension of currents

Let M be an oriented real analytic manifold of dimension m. If S is any semianalytic set in M ,
then from now one we write just Sreg := Sreg,d for the set of regular points of highest dimension
d = dimS. The inclusion

Sreg ↪→M \ (S \ Sreg).

realizes Sreg as a closed submanifold of M \ (S \ Sreg) (It is closed, because we removed the
closure of S from M). Thus the inclusion is a proper map and the proper pushforward of the
integration current of Sreg gives a current on M \ (S \ Sreg) by the usual formula

[S](η) =
∫
Sreg

η|Sreg .

The question whether this expression is well-defined for test forms on M instead of forms on
M \ (S \ Sreg) was studied by Lelong [43] (complex case) and Herrera [34] (semianalytic case).
They start with a current T defined on an open set U ⊂M . A current T̃ ∈ D(M) is called an
extension of T , if its restriction to U is T , i.e., if T̃ (η) = T (η) for all test forms η with compact
support in U . In general, extensions need not exist nor need they be unique.
The obvious – or: most simple – extension would be to define

T̃ (η) = T (η|U ).

To make sense of this expression (η|U is not necessary compactly supported), Lelong [43, §1]
approximated U by a limit of compact subsets. He introduced

8For equivalent characterizations of the dimension of a semianalytic set, see also Hardt [28, p. 79].
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Definition. The simple extension of a current T of order zero (i.e., representable by integation)
is the current T̃ with

T̃ (η) = lim
ε→0

T (αεη)

where αε is a familiy of functions of a real parameter ε > 0 such that

• each αε is a smooth function on M and 0 ≤ αε(x) ≤ 1.

• there exist open sets ω′ε ⊂ ωε of M containing D := M \ U such that αε ≡ 0 on ω′ε and
αε ≡ 1 on the complement of ωε.

• αε is monotonically increasing with ε→ 0 and converges to 1U for ε→ 0.

The simple extension need not exist, but if it exists, it is again representable by integration and
extends T . In this case, it does not depend on the actual choice of the functions αε [43, 1.(6)].

Proposition 17 ([34, II.A.2.1]). The simple extension of locally closed semianalytic sets exists.

The cycle map into currents

Let U be a complex algebraic manifold and X ⊃ U be a compactification, that is, a compact
complex algebraic manifold such that D = X \ U is a divisor.
The simple extension of the integration current over the regular part of a complex analytic
(here algebraic) set in U has some remarkable properties, as shown by Lelong.

Proposition 18. Let Z ⊂ U be a codimension p irreducible algebraic subvariety. Then the
simple extension [Z] to X exists and is a d-closed integral (p, p)-current on X. It is equal to
the current of integration over the closure Z ⊂ X.

Proof. The first statement is due to Lelong [43, Théorème 7]. The main point is the existence
of the simple extension. Then it is clear that it is locally integral and of bidegree (p, p), because
the integration is over a complex manifold. The current [Z] has compact support in X, hence
is integral. That the current is d-closed relies on the fact that the real codimension at the
boundary Z \ Z drops by 2. Since the boundary of [Z] is supported on Z \ Z, it must by zero
by the support theorem. Note that this last argument can be replaced by Stoke’s formula for
complex analytic sets, stating that

∫
Z
dη =

∫
Z\Z η for any test form η.

Finally, because Z \Z consists only of components of codimension > p, the set of regular points
of highest dimension in Z and in Z are the same. Thus [Z] = [Z].

This extends linearly to algebraic cycles, that is, to finite linear combinations
∑
niZi where

Zi ⊂ X \ D are closed algebraic subvarieties. The resulting integration current,
∑
ni[Zi],

is a d-closed integral current on X (also called holomorphic chain). If the algebraic cycle is
homogeneous of codimension p, then the associated holomorphic chain is of bidegree (p, p).
The cycle map into currents is the map

cl : zp(U)→ I2p(X,Z(p))

which is defined as cl(Z) := (2πi)p[Z].

Remark. • Instead of using the regular part Zreg to define the integration current, [Z] could
equivalently be defined as the proper pushforward [Z] = π∗[Z̃] along a proper desingular-
ization π : Z̃ → Z. Up to a subset of measure 0 the map π is locally biholomorphic and
thus the two definitions indeed agree.
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• Proposition 18 implies that the diagram below commutes, so that one may think of cl as
"taking the closure in X".

zp(U) cl //

closure
��

I2p(X,Z(p))

zp(X)
cl

88

Consider now another pair U ′ ⊂ X ′ of algebraic manifolds.

Lemma 19 (cl and �). For any two algebraic cycles Z,Z ′ on U ⊂ X and U ′ ⊂ X ′,

cl(Z × Z ′) = cl(Z)� cl(Z ′).

Proof. It suffices to show that [(Z×Z ′)reg] = [Zreg]� [Z ′reg] as currents on X×X ′. By Fubini’s
theorem, the right hand side is equal to [Zreg × Z ′reg], and it is enough to show the equality of
sets (Z × Z ′)reg = Zreg × Z ′reg.
Since the cartesian product of manifolds is a manifold, ⊃ holds. Conversely, any regular point
(z, z′) in Z × Z ′ has a neighborhood in X ×X ′ whose intersection with Z × Z ′ is isomorphic
to a real analytic manifold. Shrinking this neighborhood if necessary, one can assume that it
has the form U × U ′. The restriction of the isomorphism to U ∼= U × {z′} and U ′ ∼= {z} × U ′

shows that (U ∩Z) ∼= (U ∩Z)×{z′} and U ′ ∩Z ′ ∼= {z}× (U ′ ∩Z ′) are isomorphic real analytic
manifolds, and so z, z′ are regular points.

Lemma 20 (cl and pushforward). Let f : X → X ′ be a smooth algebraic map that restricts to
a proper map f : U → U ′. Then

cl(f∗Z) = f∗cl(Z)

for all algebraic cycles Z ⊂ U . More precisely, there is a commutative diagram

zp(U)

(f |U )∗
��

cl // I2p(X,Z(p))

f∗
��

zp+δ(U ′) cl // I2p+2δ(X ′,Z(p+ δ))

where δ = dimX ′ − dimX.

Proof. Let Z be a closed irreducible subvariety of codimension p in U . Because f |U is proper,
the same holds for the restriction f : Z → f(Z). The 2πi-twists are the same so that it is to
show that

[f∗Z] = f∗[Z].

Note that f∗Z is defined as d · f(Z), where d is the degree of f . The dimension of f(Z) is
always less or equal than the dimension of Z. If the dimension of f(Z) is strictly less than the
dimension of Z, then d = 0 by definition, so that the left hand side vanishes. The right hand
side is supported on f(Z) and thus also vanishes by the support theorem.
So assume that f preserves the dimension. Then there exists an open subset W ′ ⊂ f(Z) such
that the restriction of f to f−1W ′ ∩Z →W ′ is a locally biholomorphic cover and d is just the
number of sheets of this cover.
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Then for any test form η on W ′ one finds that

d

∫
W ′

η =
∫
f−1W ′∩Z

f∗η.

Note that f−1W ′ ∩Z ⊂ Zreg and W ′ ⊂ f(Z)reg consist of regular points, and that the two sets
are actually dense, that is, their complement is negligible for the integration. It follows that∫

f∗Z

η = d

∫
f(Z)reg

η = d

∫
W ′

η =
∫
f−1W ′∩Z

f∗η =
∫
Z

f∗η.

The open W ′ can be chosen such that the complement f(Z) \W ′ has measure zero by Sard’s
theorem (in our case, it consists of finitely many points). In particular, the statement is even
true for test forms on f(Z)reg and, since the simple extension of both sides exist, also for test
forms on X ′.

Lemma 21 (cl and pullback). Let f : X → X ′ be a smooth algebraic map such that the
restriction f |U : U → U ′ is flat. Then the pullback along f (which exists, because smooth
algebraic maps are submersions) satisfies

cl(f∗Z) = f∗cl(Z).

In other words, the diagram below commutes

zp(U ′)

(f |U )∗

��

cl // I2p(X ′,Z(p))

f∗

��
zp(U) cl // I2p(X,Z(p))

Proof. By linearity of f∗ and cl, it is enough to show the statement for Z closed irreducible.
Since f∗ preserves codimension, it is to show that

f∗[Z] = [f |∗UZ].

Now, use two things: First, f∗[Zreg] = [f−1(Zreg)]. Second, f |∗UZ = f−1(Z) by definition. This
reduces the statement to ∫

f−1(Zreg)
η =

∫
f−1(Z)reg

η

for any test form η. But this is true because both integration domains differ only by a set of
codimension +1. More precisely,

f−1(Zreg) ⊂ f−1(Z)reg ⊂ f−1(Z)

and f−1(Z) \ f−1(Zreg) = f−1(Zsing) has codimension +1.

Remark. The lemmata 19, 20 and 21 can also be formulated in the complex analytic setting
by replacing everywhere the word "algebraic" by "holomorphic". If X is projective, there is no
difference since in this case every holomorphic function is algebraic and every analytic cycle is
an algebraic cycle by Chow’s lemma.
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Semimeromorphic forms

Let X be a complex manifold and D ⊂ X a divisor that is assumed to be defined locally by
a single equation (h = 0). A semimeromorphic form with polar set D is a differential form ω

on X which can locally at each point be expressed as ω = ω̃
hq , for ω̃ smooth and q ≥ 0. To be

more precise, ω is a smooth differential form on X \D in such a way that each point of X has
a neighbourhood U where U ∩ D = (h = 0) for some holomorphic function h on U and hqω

extends as a smooth differential form to U for some integer q.
A particular class of semimeromorphic forms are the differential forms with logarithmic pole
along D, A(X, logD). These are the forms ω such that locally for a reduced h (that is, h has
no multiple factors) the forms hω and hdω extend even holomorphically to U .
To a semimeromorphic form ω one associates a current, the principal value [ω]. This current is
locally (in the above situation) defined by

[ω](η) = lim
ε↘0

∫
|h|>ε

ω ∧ η

where the integration is over the semianalytic set |h| > ε. It is shown by Herrera/Lieberman
[33] that the integral converges and defines a current on X independent of the chosen local
representation of D and ω. A similar result has been obtained by Dolbeault [14]. The principal
value of ω is just the simple extension of the current [ω] ∈ D(X \ D) to X. From this point
of view, Herrera/Lieberman showed that the simple extension of semimeromorphic differential
forms exist.
We define the wedge product of a locally normal current with a semimeromorphic form as the
simple extension

T ∧ ω := lim
ε→0

T ∧ (αεω)

whenever it exists.
The weak limit exists for example if sptT ∩ D = ∅. If ω is a smooth form, then the wedge
product also exists and is equal to the usual wedge product. This needs that T is locally normal
to ensure that T (1X\Dω) = T (ω).
If ω, ω′ are semimeromorphic differential forms with polar set D resp. D′, then ω � ω′ is
semimeromorphic with polar set D�D′. Similarly, the wedge product of two semimeromorphic
forms and the pullback of a semimeromorphic form along holomorphic functions are again
semimeromorphic.
The restriction of a semimeromorphic form to a closed subset in general need not be a current.
For log forms in good position however, this is true.

Lemma 22. Let D ⊂ X be a normal crossing divisor and ω a log-D form on X. For any
algebraic cycle Z ⊂ X that intersects D properly, the wedge product [Z] ∧ ω exists and is
normal.

Proof. The differential of the above functional will be of the same form, so that it suffices to
show that the current exists and is representable by integration. Roughly, this means that the
restriction of ω ∧ η to Zreg is locally integrable for any continuous test form η. More precisely,
it is to show that for any compact K (which can arranged to be contained in a coordinate chart
of X) there exists a constant C such that for any continuous test form η with support in K one
has ∣∣ ∫

Z\D
ω ∧ η

∣∣ < C · ‖η‖∞.
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Because Z and D intersect properly, one can choose coordinates z1, z2, . . . zn in such a way
that Z = (z1 = . . . = zp = 0) and such that the normal crossing divisor D has the form
D = (zp+1 · · · zp+r = 0). With respect to these coordinates, the integral becomes

∣∣ ∫
0p×(C∗)r×Cn−p−r

ω ∧ η
∣∣

for some continuous form η compactly supported in the above mentioned coordinate chart. The
integral vanishes if ω ∧ η|X\D is not a multiple of the volume form of X \ D. Otherwise, it
is a rational multiple of the volume form with denominator equal to the denominator of ω.
Bounding the numerator of ω by a constant C > 0 from above, we get the upper bound∫

(C∗)r×Cn−p−r

∣∣ 1K

zp+1 · · · zp+r
· dzp+1 ∧ dzp+1 ∧ . . . ∧ dzn ∧ dzn

∣∣ · C · ‖η‖∞.
A calculation in polar coordinates shows that the inner integrand is locally integrable: The
main point in using polar coordinates z = ρeiϕ is that one obtains dz ∧ dz = 2ρidϕ ∧ dρ and
therefore each factor of the form dlog z ∧ dz has locally bounded coefficients. Because K is
compact, the integral is also bounded by a constant independent of η and thus the lemma is
proved.

2.8 Intersection of currents

Slicing flat currents

Here we want to intersect a current T with the level set of a smooth function f : M → Rn. We
follow [31] closely. Let a ∈ Rn and fix an "approximation of δa" as follows: Denote by Ω the
volume form of Rn and choose a smooth function ψ : Rn → R≥0 with compact support such
that

∫
Rn ψ · Ω = 1. For any ρ > 0 define a smooth form on Rn by

Ωa,ρ(x) := 1
ρn
ψ
(
x−a
ρ

)
Ω(x).

These forms approximate the delta distribution δa in the sense that for any locally integrable
function g one has limρ→0

∫
gΩa,ρ = g(a) for Lebesgue-almost all a (this essentially is Lebesgue’s

differentiation theorem).
For a current T ∈ Fp(M) the current T ∧ f∗Ωa,ρ is locally flat of degree p + n. If the (weak)
limit for ρ→ 0 exists, one writes

< T, f, a >= lim
ρ→0

T ∧ f∗Ωa,ρ

and calls this the slice of T along f at a. In fact, up to a set of Lebesgue measure zero, the
slice at a exists and is independent of the choice of the approximation ψ, see [31, p. 565f].

Proposition 23 (Slicing theorem). Let f : M → Rn be a smooth map. If T is locally flat
(locally normal, locally integral) then for Lebesgue almost all a the slice <T, f, a> exists and is
again locally flat (locally normal, locally integral).

Proof. See [40, 2.3.4], or Federer [18, 4.3.2] for the local case.
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The next proposition gathers some properties of the slice of a current.

Proposition 24. Assume that the slice <T, f, a> exist. Then

• spt<T, f, a> ⊂ sptT ∩ f−1(a).

• d<T, f, a> = <dT, f, a> if |T | < dimRM .

• g∗<T, f ◦ g, a> = <g∗T, f, a> whenever the left-hand side exists.

• <T,−f, 0> = (−1)n<T, f, 0>.

Proof. The first statement is trivial. Two and three are in Harvey-Shiffman [31, 1.3.9] and [31,
Lemma 1.19]. For the fourth, choose ψ such that ψ(−x) = ψ(x) and remark that for the volume
form Ω on Rn one has (−f)∗Ω = (−1)nf∗Ω.

Intersection in Rn

Consider currents S, T of degree r resp. s on some open U ⊂ Rn with r + s ≤ n. Assume
that the slice current <S × T, ξ, 0> along the difference map ξ(x, y) = x− y exists and defines
a locally flat current of degree r + s on U × U . Then the slice is supported on the diagonal
∆U ⊂ R2n and hence, by the flatness theorem, there exists an unique current, the intersection
current S ∩ T , on U of degree r + s such that

∆∗(S ∩ T ) = (−1)r(n−s)<S × T, f, 0>,

where ∆ : U → R2n is the diagonal embedding with image ∆U .
The following properties are from [22, 5.3.4, prop 1].

Proposition 25.

i) If S ∩ T exists, then spt(S ∩ T ) ⊂ sptS ∩ sptT .

ii) S ∩ T exists ⇐⇒ T ∩ S exists, and in this case S ∩ T = (−1)degS degTT ∩ S.

iii) Compatibility with differentials: If S ∩ T and either dS ∩ T or S ∩ dT exist, then

d(S ∩ T ) = dS ∩ T + (−1)degSS ∩ dT.

iv) For ϕ : U → U ′ an orientation preserving diffeomorphism, ϕ∗S ∩ ϕ∗T = ϕ∗(S ∩ T ).

Intersection on manifolds

Let M be an oriented manifold and S, T be locally flat currents on M of degree r and s

respectively. The intersection current of S, T on M is defined by localization, that is, by locally
transferring the two currents into some Rn and intersecting them there.

Definition. The intersection current S ∩ T (if it exists) is a current on M such that for each
orientation preserving coordinate chart h : U → Ω ⊂ Rn one has h∗(S ∩ T ) = h∗S ∩ h∗T .
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The intersection current in this definition is well defined. Indeed, if h′ is another orientation
preserving chart, then the coordinate change ϕ = h′ ◦ h−1 is an orientation preserving diffeo-
morphism, hence h′∗S ∩ h′∗T = ϕ∗(h∗S ∩ h∗T ) by 25 iv). In particular, it suffices to test the
condition for one specific atlas only.
Note that, due to the existence of a partition of unity for test forms, it suffices to construct
S ∩ T locally. In particular, the intersection current is necessarily unique if it exists.
The relative notion of slicing allows to rewrite the definition as follows. This characterization
has been taken as the definition of intersection in [28].

Lemma 26. The intersection current S ∩ T (if it exists) is the locally flat current on M such
that for each orientation preserving coordinate chart h : U → Ω ⊂ Rn one has

∆∗(S ∩ T |U ) = (−1)degS dimT < (S × T )|U×U , ξ ◦ (h× h), 0 > .

Here the map ξ sends (u, v) to u− v.

Note that the right-hand side, if it exists, is supported on the diagonal of U and by the flatness
theorem arises as the pushforward of a flat current on U .

Proof. We may assume that S, T are supported in some coordinate domain U . The intersection
h∗S ∩ h∗T exists if and only if <h∗S × h∗T, ξ, 0> exists. Now apply proposition 24 to see that
the existence of the latter is equivalent to the existence of <S × T, ξ ◦ (h× h), 0> (note that h
is invertible).

Particular cases of intersections

The intersection product of currents extends both the wedge product of differential forms and
the intersection of subvarieties. This is content of the following proposition.

Proposition 27.

• For a locally normal current T and a smooth form ω the intersection current T ∩ [ω] exists
and T ∩ [ω] = T ∧ ω.

• For ω1, ω2 smooth differential forms of degree r and s with r+s ≤ n, one has [ω1]∩ [ω2] =
[ω1 ∧ ω2].

• ForM,N submanifolds of an oriented manifold that meet transversal, one has [M ]∩[N ] =
[M ∩N ].

• If A,B are two complex analytic sets in a complex manifold X such that codim(A∩B) =
codimA+ codimB, then [A] ∩ [B] exists and equals [A ∩B].

Proof. The first two claims can be found in Federer, p. 461 (and also in [22, 5.3.4 Prop. 3]).
Note that the second is a consequence from the first one. The last two statements are from
[58].

In particular, the intersection of currents extends the intersection of algebraic varieties (i.e.
computes the correct multiplicities).
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Intersection of algebraic varieties with log forms

The intersection of a normal current with a non-smooth form in general does not exist. For
algebraic chains in sufficiently good position and logarithmic forms however, it exists.
Recall that a form with logarithmic poles along a normal crossing divisor D ⊂ X is a smooth
differential form ω on X \D such that for a reduced local defining equation D = (h = 0) the
forms hω and hdω extend to smooth forms on X.

Lemma 28. For any complex subvariety Z ⊂ X that intersects D properly and any log-D-form
ω, the intersection [Z] ∩ [ω] exists and [Z] ∩ [ω] = [Z] ∧ ω.

Proof. The statement can be checked locally, so that we may assume that X = Cn. We show
that on Cn × Cn (with coordinates (x, y))

<[Z]� [ω], ξ, 0> = ∆∗([Z] ∧ ω)

for the difference function ξ(x, y) = x − y. This is exactly the condition that [Z] ∧ ω is the
intersection current of [Z] and [ω].
For almost every x ∈ Zreg, the current∫

y∈X\D
ω(y) ∧ ξ∗Ω0,ρ(x, y)

converges weakly to 1Z\Dω(x). Indeed, this is a smoothing of ω, and since ω is smooth outside
D, every point in Z \D is a Lebesgue-point and hence the smoothing at this point converges
to ω(x). Since Z ∩D has positive codimension in Z (by the proper intersection condition), the
convergence takes place almost everywhere on Z.
Because log forms are locally integrable, Lebesgue’s majorized convergence theorem implies
that

lim
ρ→0

∫
Zreg

∫
X\D

ω(y) ∧ ξ∗Ω0,ρ(x, y) =
∫
Zreg

1Z\D(x)ω(x) =
∫
Z\D

ω(x)

weakly on continuous test forms on X ×X.

Intersection of real analytic chains

The last two points in proposition 27 have been generalized by Robert Hardt [28], who consid-
ered the intersection of real analytic chains. A real analytic chain of dimension t on M is a
locally flat current T of dimension t such that dim(sptT ) ≤ t and dim(spt ∂T ) ≤ t− 1.
Here the real analytic dimension of a non-empty subset ∅ 6= E ⊂M of an oriented real analytic
manifold M is defined as

sup
x∈M

inf{dimα : α is the germ of an analytic variety at x and α contains the germ of E at x}.

The empty set has dimension dim ∅ = −1. If E is a (real) analytic variety, or even a semianalytic
set, then this definition coincides with the analytic or measure theoretic definitions. That is,
in this case dimE = supx∈Ereg dimTxE and dimE = sup{r : Hr(E) > 0}, see [28, 2.2].
In particular, every real analytic submanifold (even with boundary) and every semianalytic set
is a real analytic chain.
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Two analytic chains {S, T} of degree r and s are said to intersect suitably, if

r + s ≤ dimM,

codim(sptS ∩ sptT ) ≥ r + s,

codim [(spt ∂S ∩ sptT ) ∪ (sptS ∩ spt ∂T )] ≥ r + s+ 1.

Hardt proves that if {S, T} intersect suitably, then the intersection S ∩T of S and T exists and
again is an analytic chain of degree r + s. Furthermore the following axioms are satisfied and
they uniquely determine the intersection theory.

• (iS) ∩ T = i(S ∩ T ) for any integer i.

• S ∩ T = (−1)rsT ∩ S.

• (S ∩ T )|U = S|U ∩ T |U for every open subset U .

• ϕ∗(S ∩ T ) = ϕ∗S ∩ ϕ∗T for every orientation-preserving analytic isomorphism between
analytic manifolds.

• ∆∗(S ∩ T ) = (−1)degS dimT (S × T ) ∩∆∗[X].

• If R,S, T are analytic chains such that {R,S}, {S, T} and {R,S, T} intersect suitably,
then (R ∩ S) ∩ T = R ∩ (S ∩ T ).

• If N is another oriented real analytic manifold, L an analytic chain in M ×N and R an
analytic chain in M such that prM |sptL is proper and {L,R × [N ]} intersect suitably.
Then pr∗ L is an analytic chain on M , the intersection with R exists and pr∗ L ∩ R =
pr∗(L ∩R× [N ]).

• [0] ∩ [0] = [0] in R0 = {0}.

To explain the statement about the associativity, more general a finite set of analytic chains
{Ti}i∈I is said to intersect suitably, if∑

deg Ti ≤ dimM,

codim(∩I sptTi) ≥
∑

deg(Ti),

codim(∪i
(

spt ∂Ti ∩
⋂
j 6=i

sptTj
)

) ≥
∑

deg(Ti) + 1.

General pullback of currents

The intersection product allows to (partially) define a general notion of a pullback along a
smooth map f : M → N of oriented real analytic manifolds.
In fact, denote by [Γf ] = (id, f)∗[M ] the graph current of f . If T ∈ D(N) is a current such that
the intersection ([M ]× T ) ∩ cl(Γf ) exists, then the pullback of T along f is the current

f∗T := (prM )∗
(

([M ]× T ) ∩ [Γf ]
)

Note that the projection prM restricts to a proper map on Γf , and so the pushforward is defined.
If f is a submersion, then this pullback is the same as the one defined in the previous subsection
2.2. If f is a morphism of algebraic manifolds, this extends the general pullback of algebraic
cycles.
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Inverse mapping formula

Hardt proved further properties of his intersection theory, for example the inverse mapping
formula, which states that if f : M → N is an analytic mapping of oriented real analytic
manifolds and T is an analytic chain on N such that f−1(sptT ) and f−1(spt ∂T ) have the
expected codimensions, then the general pullback f∗T exists and is an analytic chain on M . If
moreover S is an analytic chain on M such that f |sptS is proper and f−1(sptT ) ∩ sptS and
(f−1(sptT )∩ spt ∂S)∪ (f−1 spt(∂T )∩ sptS) have the correct codimensions, then T ∩f∗S exists
and

T ∩ f∗S = f∗((f∗T ) ∩ S).

If f is a projection, this formula is also called the projection formula.

Properties of intersection currents

Lemma 29 (� and ∩). Let M , N be oriented real analytic manifolds, S, P locally normal
currents on M and T , Q locally normal currents on N . If the intersections S ∩ P and T ∩Q
exist, then (S � T ) ∩ (P �Q) also exists and

(S � T ) ∩ (P �Q) = (−1)|T ||P |(S ∩ P )� (T ∩Q).

Proof. For real analytic chains, such a formula was proven by Hardt [28]. Let m,n be the
dimension of M ,N and denote by s, p, t, q the degrees of S, P, T,Q respectively. Note that
∆M×N = τ ◦ (∆M ×∆N ), where τ is the isomorphismM×M×N×N →M×N×M×N that
exchanges the middle factors. It is to show that the local slices defining the left hand side exist
and are equal to the pushforward of the right hand side along the diagonal. Since M × N is
covered by product charts, it is enough to consider a coordinate chart (h, k) and the difference
of the coordinates, ξ(h,k) = ξ ◦ (h, k). It is related to the difference functions of the factors
by ξ(h,k) ◦ τ = (ξh × ξk). The function ψ that defines the slices can be chosen in such a way
that Ω(0,0),ρ = Ω0,ρ � Ω0,ρ. One then finds that ξ∗(h,k)Ω(0,0),ρ = ξ∗hΩ0,ρ � ξ∗kΩ0,ρ. Using this,
the graded-commutativity of the exterior product (Prop. 9), the compatibility of slices under
pushforward (Prop. 24), the definition of the slice, and the compatibility of exterior products
under pullbacks (Lemma 11), one finds that

<S � T � P �Q, ξ(h,k), (0, 0)> = <τ∗(S � P � T �Q), ξ(h,k), (0, 0)> · (−1)|P ||T |

= τ∗<S � P � T �Q, ξh × ξk, (0, 0)> · (−1)|P ||T |

= τ∗ lim
ρ→0

(S � P � T �Q) ∧ (ξ∗h × ξ∗k)Ω(0,0),ρ · (−1)|P ||T |

= τ∗ lim
ρ→0

(S � P � T �Q) ∧ (ξ∗hΩ0,ρ � ξ
∗
kΩ0,ρ) · (−1)|P ||T |+mn

= τ∗ lim
ρ→0

(
(S � T ) ∧ ξ∗hΩ0,ρ � (P �Q) ∧ ξ∗kΩ0,ρ

)
· (−1)c,

where the last equality is compatibility of exterior product and wedge product (Lemma 10),
and c = |P ||T |+mn+ |T �Q|m).

Under the given assumptions, the two slices in the last row exist. By the continuity of �, the
slice in the first row (and thus the intersection current) also exists. It is left to show that the
intersections is indeed the claimed one.
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By definition of the intersection,

<S � P, ξh, 0> = (−1)|S| dimP+dimS|P |∆∗(S ∩ P ),

<T �Q, ξk, 0> = (−1)|T | dimQ+dimT |Q|∆∗(T ∩Q)

and we find with c′ = |S|dimP + dimS|P |+ |T |dimQ+ dimT |Q|, and using lemma 11, that

<S � T � P �Q, ξ(h,k), (0, 0)> = τ∗

(
<S � P, ξh, 0>�<T �Q, ξk, 0>

)
· (−1)c

= τ∗

(
∆∗(S ∩ P )�∆∗(T ∩Q)

)
· (−1)c+c

′

= τ∗(∆×∆)∗
(

(S ∩ P )� (T ∩Q)
)
· (−1)c+c

′+dim(S∩P )n

= ∆M,N∗

(
(S ∩ P )� (T ∩Q)

)
· (−1)c+c

′+dim(S∩P )n.

Finally, one checks that c + c′ + dimS ∩ P + n ≡ |S � T |dim(P � Q) + dim(S � T )|P � Q|
modulo 2, as required.

For practical computations, the following extension of proposition 27 is very helpful.

Lemma 30 (∩ and ∧). Let T, T̃ be locally flat currents on a manifold M such that T ∩ T̃ exists.
Let ω, ω̃ be two smooth differential forms on M . Then (T ∧ ω) ∩ (T̃ ∧ ω̃) also exists and

(T ∧ ω) ∩ (T̃ ∧ ω̃) = (−1)|T̃ ||ω| · (T ∩ T̃ ) ∧ (ω ∧ ω̃).

Proof. We may assume that T, T̃ are defined in some n-dimensional euclidean space. Denote
by ξ the usual difference map. By lemma 10,

<(T ∧ ω)� (T̃ ∧ ω̃), ξ, 0> = lim
ρ→0

[
((T ∧ ω)� (T̃ ∧ ω̃)) ∧ ξ∗Ω0,ρ

]
= lim
ρ→0

[
(T � T̃ ) ∧ (ω � ω̃) ∧ ξ∗Ω0,ρ

]
· (−1)|T̃ ||ω|

= lim
ρ→0

[
(T � T̃ ) ∧ ξ∗Ω0,ρ

]
∧ (ω ∧ ω̃) · (−1)|T̃ ||ω|+n|ω∧ω̃|

= <T � T̃ , ξ, 0> ∧ (ω ∧ ω̃) · (−1)|T̃ ||ω|+n|ω∧ω̃|.

Since the last term exists, so does the first term. Therefore, (T ∧ω)∩(T̃ ∧ ω̃) also exists and one
verifies that it indeed is equal to (T ∩ T̃ ) ∧ (ω ∧ ω̃) · (−1)|T̃ ||ω|, i.e., the signs that are obtained
by replacing � by × and plugging in the definition of ∩ are the same on both sides.

If T = [Z] and T̃ = [Z̃] are integration over algebraic cycles that intersect properly and ω, ω̃

are semimeromorphic forms on Zreg resp. Z̃reg such that ω ∧ ω̃ is semimeromorphic of Z ∩ Z̃,
then the above statement still holds true.

Lemma 31. On a complex manifold X, the intersection product is compatible with the Hodge
filtration, i.e., if the intersection of S ∈ F pD(X) and T ∈ F qD(X) exists, then it lies in
F p+qD(X).

Proof. A current lies in F pD(X) if and only if it vanishes on all test forms of type (r, s), where
r + p ≥ dimCX. This can be verified locally. Since the exterior product is bi-additive in the
degree, S × T ∈ F p+qD(X ×X). Whenever the slice along the difference map

<S × T, ξ, 0> = lim
ρ→0

(S × T ) ∧ ξ∗Ω0,ρ
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exists, then it lies in F p+q+dimCXD(X ×X), because ξ∗Ω0,ρ is of pure type (dimCX,dimCX)
in the coordinates of the two factors. For the intersection then

(S ∩ T )(η) = <S × T, ξ, 0>(pr∗1 η) = 0

whenever η is of type (r, s) and r satisfies r + p+ q + dimC(X) ≥ dimC(X ×X) = 2 dimC(X).
Thus S ∩ T ∈ F p+qD(X).

Lemma 32 (cl and ∩). If Z,Z ′ are two algebraic cycles on U such that Z ∩ Z ′ exists, then
cl(Z) ∩ cl(Z ′) also exists and equals cl(Z ∩ Z ′).

Proof. Consider the closures Z,Z ′ ⊂ X. Their intersection exists for example by using Serre’s
Tor formula to associate multiplicities to all components of the intersection. Because the fun-
damental class is given by integration over the closure, it suffices to show that [Z ∩ Z ′] is an
intersection current for the pair [Z], [Z ′]. But this follows because the intersection of currents
extends the intersection of algebraic cycles.

Intersection on cohomology

We show (roughly following [22]) that the partially defined intersection product of currents
induces an intersection product on cohomology that is everywhere well defined. The same holds
for integral currents: While in general the intersection of integral currents is not neccessarily
defined, and even if it is, the intersection need not be integral again (in fact it is not even
rectifiable, see [22, p. 601]), cohomologically the intersection is well defined for integral currents
as well.
We are going to show that any two currents on a compact complex manifold X can be brought
into good position to each other by adding boundaries. We begin with the "local case" (compare
[22, 5.4.2]).

Lemma 33. Let S, T be flat currents on X such that T is d-closed and has support in the
domain of some chart h : U → Rn. Then there exists a current T̃ such that T̃ = T + dR

and S ∩ T̃ exist. If T is integral/normal, then T̃ can be chosen such that T̃ , R and S ∩ T̃ are
integral/normal as well.

Proof. Without loss of generality, we may replace S by S|U . Denote by τa : Rn → Rn the
translation by a ∈ Rn and define Ta := (h−1 ◦ τa ◦ h)∗T . This is well defined for all a ≈ 0
sufficiently small and is again normal (resp. integral) if T is. The intersection h∗S ∩ h∗Ta =
h∗S ∩ (τa ◦ h)∗T exists for almost all a ≈ 0, because

<h∗S × (τa ◦ h)∗T, ξ, 0> = (id×τa)∗<h∗S × h∗T, ξ ◦ (id×τ−a), 0>

= (id×τa)∗<h∗S × h∗T, τa ◦ ξ, 0>

= (id×τa)∗<h∗S × h∗T, ξ,−a>

exists for almost all a ≈ 0 by Federer’s slicing theorem 23, and is integral/normal for almost
all a ≈ 0 if S and T are integral/normal. In particular, the intersection h∗S ∩ h∗Ta exists for
almost all a ≈ 0 and can chosen to be integral/normal, if S, T are integral/normal. Finally,
since h∗T and h∗Ta are homotopic, one has Ta = T + dRa in U . Indeed, if H : [0, 1]×X → X

is a smooth homotopy from H(0, x) = h(x) to H(1, x) = τa ◦ h(x), then

dRa := dH∗
(
[0, 1]� T

)
= (τa ◦ h)∗T − h∗T −H∗

(
[0, 1]� dT

)
= h∗Ta − h∗T.
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The current Ra is also integral/normal, if T is. The result follows with T̃ = Ta and R = Ra for
some good a (both extended to currents on X by zero).

Theorem 34. Let S, T be two normal currents on X where T is d-closed. Then there exist
normal currents T̃ , R such that

• T = T̃ + dR.

• The intersection S ∩ T̃ exists and is normal.

• If S, T are integral, then T̃ can be chosen such that T̃ , R and S ∩ T̃ are also integral.

Proof. Choose a (finite) covering U = {Ui} of sptT by coordinate charts. Choose a subordinate
partition of unity χi by characteristic functions of Borel sets9. The χi can be chosen so that the
Ti := χi ·T are normal (integral). This gives a decomposition T =

∑
Ti into currents supported

in the coordinate charts Ui.
Now use lemma 33 to get normal (resp. integral) currents T̃i such that T̃i = Ti + dRi and
such that the intersection S ∩ T̃i exists and is normal (integral) as well. For T̃ =

∑
T̃i the

intersection S ∩ T̃ =
∑
S ∩ T̃i exists and furthermore T̃ =

∑
T̃i =

∑
Ti + dRi = T + d(

∑
Ri).

The statement follows with R =
∑
Ri, which is normal (integral).

Given two cohomology classes S, T , there always exist normal (integral, if S, T are integral)
currents S, T representing these classes such that S ∩ T exists. The intersection S ∩ T then is
defined as the class represented by S ∩ T , that is,

S ∩ T = S ∩ T mod boundaries.

This definition is independent of the choice of S and T . Indeed, assume that S = S′ + dR and
T = T ′ + dQ for some normal (integral) currents S′, R, T ′, Q such that S′ ∩ T ′ exists. Using
theorem 34, one finds Q′ = Q+ boundary and R′ = R + boundary such that the intersections
S′ ∩Q′, R′ ∩ T ′, R′ ∩ dQ all exist. Then, by proposition 25,

d
(
(−1)|S

′|S′ ∩Q′ +R′ ∩ T ′ +R′ ∩ dQ
)

= S′ ∩ dQ′ + dR ∩ T ′ + dR ∩ dQ

= S′ ∩ (T − T ′) + (S − S′) ∩ T ′ + (S − S′) ∩ (T − T ′)

= S ∩ T − S′ ∩ T ′.

Remarks.

• It follows from lemma 30 (or 27) that the quasi-isomorphism A(X) → D(X) is a homo-
morphism of algebras. If one were interested only in the intersection on complex valued
cohomology, one could use the induced isomorphism to define a product on H•D. The
here used definition also applies to integral currents.

• The local moving lemma 33 and thus also theorem 34 extend to intersections with a
countable family of flat currents S1, S2, . . ..

• It is ∆∗(S ∩ T ) = S � T ∩ [∆] =
(
(S � T ) + dR

)
∩ [∆] modulo boundaries, for repre-

sentatives S, T and some current P . Conversely, the intersection can be defined by this
last expression (there exist S, T, P such that the intersection exists). For currents, this

9See the proof of theorem A.9 in [32].
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definition is equivalent to the definition given above. Because of a much weaker moving
lemma, the cohomological intersection of higher Chow cycles has been defined by the
second condition.

2.9 Log currents

Following King [41], we extend the notion of currents on manifolds to pairs (X,D) where X is
a compact complex manifold and D is a normal crossing divisor on X. This is done in such a
way that there is a quasi-isomorphism AX(logD)→ DX(logD).

Null-D forms and on-D currents

For D ⊂ X a complex subvariety, denote by j : Dreg → X the inclusion of its manifold points.
The sheaf of smooth null-D-forms is the subsheaf AX(nullD) ⊂ AX consisting of those smooth
forms on X that vanish on Dreg. More precisely, its sections are

AX(nullD)(U) = {ω ∈ AX(U) : j∗ω = 0 on Dreg ∩ U} .

This indeed is a subsheaf and even a bigraded subcomplex of sheaves in AX . The usual wedge
product of forms gives AX(nullD) the structure of an AX -module. In particular, it is a fine
sheaf.
The sheaf of on-D currents is defined as the subsheaf of DX(onD) ⊂ DX that is obtained by
imposing the condition that T ∈ D(onD)x ⇐⇒ T ∧ ω = 0 for all ω ∈ A(nullD)x. Its sections
over some open U will be denoted by D(U, onD). Then a current T lies in D(U, onD) if and
only if T ∧ ω = 0 for all ω ∈ Γc(U,A(nullD)). From this description it follows easily that the
on-D currents actually form a bigraded subcomplex of D.

Remarks.

• The inclusion induces D(Dreg) i∗−→ D(X, onD), since (i∗T )(η) = T (i∗η) = T (0) = 0.

• Every on-D current has support in D, but the converse in general is not true (see [41,
remark after 1.3.9]). It is true however when restricted to rectifiable currents (e.g. integral
currents). This is an instance of a flatness theorem, see [40, Thm 2.1.8].

Log currents

Let X be a compact complex manifold and D ⊂ X be a (reduced) normal crossing boundary
divisor. The sheaf of log-D currents of bidegree (p, q) is the quotient sheaf

Dp,qX (logD) = Dp,qX /Dp,qX (onD).

The total grading is obtained by summation over all possible bidegrees. Since the on-D currents
form a subcomplex, the differential descends and one ends up with the complex of log currents

D•X(logD) =
⊕
p+q=•

Dp,qX (logD).

Thus two currents agree as log currents if and only if they take the same value on all null-D test
forms. The principal value associates to every differential form with logarithmic poles along
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D a current on X. This assignment in general is not compatible with the differential. After
projection to log currents however, it yields a map of complexes of sheaves

AX(logD)→ DX(logD).

After localization (partition of unity), the divisor D can assumed to be of the form (h = 0) for
a holomorphic function h. Then the current represented by a log form ω is

[ω](η) = lim
ε↘0

∫
|h|>ε

ω ∧ η.

Wedge product

For an on-D current T , the wedge product with a smooth differential form ω is again an on-D
current. Indeed, (T ∧ ω)η = T (ω ∧ η) = 0, since the wedge product of a smooth form with a
null-D test form η is again a null-D form. In particular, the AX -module structure descends to
a module structure on logD currents. More general, King showed that the logarithmic currents
carry a module structure for the logD forms, that is, there is a morphism of complexes of
sheaves compatible with the bigrading,

DX(logD)⊗A0
X
AX(logD)→ DX(logD).

The construction can be given locally, so that one can assume D = (h = 0) and ω = h−1ω′

with a smooth form ω′. Let the log current be represented by the current T . By the work of
Schwartz10 [56], there exists a current S such that T = S ∧ h. Then one sets

T ∧ ω := S ∧ ω′.

The current S above is not unique, but the ambiguity vanishes modulo on-D currents. If T is
an on-D current, then the result is again an on-D current and therefore the wedge product well
defined as a log current (for details, see King, Thm 1.3.11).
If ω is smooth, this wedge product is equal to the usual module structure.
For an arbitrary log form, the wedge product can be represented by the simple extension of the
wedge product with the smooth part of ω:

Claim. As a log current,
T ∧ ω = lim

ε↘0
T ∧ ωαε

where αε is any sequence of smooth functions on X taking values in [0, 1], such that

• each αε vanishes on Dreg,

• αε is an increasing sequence for ε→ 0, converging to 1X\Dreg for ε→ 0.

Proof. Indeed, the statement can be proven in the local situation. So let h be a local equation
for D, choose S such that T = Sh and let η be a null-D test form. Then one has T ∧ωαε(η) =
S(hαεω ∧ η). For ε → 0, the argument converges to the (since η is null-D) smooth form
1X\Dreghωη = hωη. This convergence takes place in the topology of the space of smooth test
forms and, because S is continuous, the limit is S(hωη) = T ∧ ω(η).
10While Schwartz proved this statement for h holomorphic, this has been extended by Hörmander [36] (to h

polynomial) and Lojasiewicz [48] (to h real analytic)
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An important special case is that where T is the current of integration over a real analytic
chain Z. In this case the functions αε does not even need to be smooth and can chosen to be
characteristic functions. Thus the wedge product with a log form is represented by the weak
limit

[Z] ∧ ω = lim
ε↘0

∫
Zε

ω,

where the semianalytic set Zε is the intersection of Z with the set |h| > ε. This can also be
shortly expressed as

[Z] ∧ ω =
∫
Z\D

ω,

where the integral has to be computed as the limit over the regular part of an exhaustion.

Cohomology of log currents

The cohomology of log currents has been considered by King [41]. The key to its computation
is the following proposition.

Proposition 35 ([41, 1.3.11]). The wedge product induces a canonical isomorphism of sheaves
ΩpX(logD)⊗OX D

0,q
X → Dp,qX (logD).

Proposition 36 (Cohomology of log currents). If D is a normal crossing divisor, then all
vertical maps in the following commutative diagram of filtered complexes of sheaves are filtered
quasi-isomorphisms.

ΩX �
� //

��

AX

��

� � // DX

��
ΩX(logD) �

� // AX(logD) �
� // DX(logD)

Proving the proposition boils down to showing that the morphisms between the associated
graded, Ωp(logD) → Ap,•(logD) → Dp,•(logD) are quasi-isomorphisms. Using proposition
35, this sequence can be obtained by tensoring the sequence C → A0,• → D0,• with the sheaf
of holomorphic log forms Ωp(logD) (which is locally free). This latter sequence consists of
quasi-isomorphisms by the ∂-lemma for forms and currents. A detailed proof can be found in
[41, Thm 2.1.2].

Cohomology of normal log currents

The complex of normal log D currents NX(logD) is the filtered complex defined as the image
of NX under the projection to DX(logD):

F pNX(logD) := image
(
F pNX → DX(logD)

)
.

In analogy to relative singular chains, we denote its space of sections over some open U by
F pN (U,D) and call its members relative normal currents (for the pair (X,D)).
Already Federer/Fleming [19] showed that the complex N (X,D) can be used to compute the
C-valued relative singular homology groups of the pair (X,D). The above defined filtration
corresponds to the Holdge filtration. Indeed, log forms are locally normal by [41, p. 43], so
that the map A(logD)→ D(logD) factors over N (logD). We have
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Claim. For D a simple normal crossing divisor, the inclusions

A•X(logD)→ N •X(logD)→ D•X(logD)

are all filtered quasi-isomorphisms.

Proof. For D smooth, this is proven by King in [41, 4.4.8] by comparing two long exact se-
quences. We reduce to this case. Both arrows are morphisms of filtered complexes. It suffices
to show that the first arrow is a quasi-isomorphism. For D =

∑
Di with Di smooth, set

DI := ∩i∈IDi and consider

A(logD) // N (logD)

∏
A(logDi) //

OO

∏
N (logDi)

OO

∏
A(logDij) //

OO

∏
N (logDij)

OO

...

OO

...

OO

All DI are smooth (D is simple). The vertical arrows are the alternating inclusions. They form
a resolution of A(logD): The top one is obviously surjective, and for the others note that, for a
sequence of differential log forms (ωI)I that lies in the kernel, the dlog terms must cancel. But
the I are all pairwise distinct, hence not all possible dlog occur in ωI . Thus they have poles
along some DJ with J ⊃ I. Consequently,

H Tot
(
A(logD)←

∏
A(logDi)← . . .

)
= HA(logD).

The same holds with currents instead of differential forms, because normal currents are just
differential forms with measure coefficients. Formally, use proposition 35 to get the result for
log currents and note that the exactness descends to the subcomplex of normal currents.

Cohomology of integral log currents

Define the complex of relative integral currents I•(X,D) to be the quotient of all integral
currents on X modulo those currents which have support on D. By the flatness theorem, the
integral currents with support in D are just the integral currents on D pushed forward along
the inclusion. Hence the inclusion of integral currents into currents induces an inclusion of
complexes

I(X,D) ↪→ D(X, logD).

If A denotes a coefficient ring, the relative integral currents with coefficients in A are obtained
by linear extension, that is,

I(X,D,A) :=I(X,D)⊗Z A

=I(X)/I(D)⊗Z A.

The most important examples of relative integral currents are currents of integration over
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relative singular chains. In fact, every relative integral current is homologous to a relativ
singular cycle. This is a consequence of the following proposition.

Proposition 37 ([19, Thm 5.11], [18, 4.4.5]). If A and B are compact local Lipschitz neigh-
borhood retracts in Rn with A ⊃ B, then the inclusion of singular chains into integral currents
induces an isomorphism from the singular homology groups of (A,B) with integer coefficients
to the homology groups of the chain complex (I•(A,B), ∂).

Corollary 38. For X a compact complex manifold and D a real analytic subvariety, the sin-
gular homology of (X,D) with values in A can be computed as the cohomology of the com-
plex I(X,D,A). That is, Hsing

n (X,D,A) = HnI•(X,D,A) and, by duality, Hn(X \ D,A) =
HnI•(X,D,A).

Proof. By Whitney’s embedding theorem (see [42]), X can be embedded as a smooth submani-
fold in some Rn. By assumption, X and hence D are compact. Because every submanifold and
every real analytic subvariety of a manifold are local Lipschitz neighborhood retracts [18, 3.1.20],
the proposition 37 is applicable and says that the integral singular homology of (X,D) is com-
puted by I(X,D). Passing to arbitrary coefficients A in both theories (singular chains/currents)
is declared by tensoring the Z-complexes with A, and so the quasi-isomorphism holds for any
coefficient ring.

Functoriality of log currents

The functoriality of currents descends to the relative situation if it can be ensured that on-D
currents are preserved.

Lemma 39 (Pushforward). Let f : X → X ′ be a holomorphic map between compact complex
manifolds and D ⊂ X, D′ ⊂ X ′ divisors. If f(D) ⊂ D′, then the push-forward, defined by the
usual formula, induces a morphism of complexes

f∗ : D(X, logD)→ D(X ′, logD′).

It preserves relative normal (resp. relative integral) log currents and is functorial in the sense
that g∗ ◦ f∗ = (g ◦ f)∗.

Proof. Because X is compact, the proper pushforward of currents on X exists and the only
thing to show is that the pushforward descends to log currents, i.e., maps on-D currents to
on-D′ currents. This is essentially proven in [41, 1.1.10 c)] as follows. It is to show that the
pullback of a null-D′ form ω along f is a null-D form. Since ω is a null-D′ form, the pullback
f∗ω restricts to zero on f−1(D′reg) ∩Dreg. That it vanishes also on f−1(D′sing) ∩Dreg follows
from the fact that tangent vectors on D′sing are limits of tangent vectors of D′reg.

Lemma 40 (Pullback). Let f : X → X ′ be a surjective submersion between compact complex
manifolds and D′ ⊂ X ′ a divisor. Define D := f−1D′. Then the pullback of currents induces
a morphism of complexes

f∗ : D(X ′, logD′)→ D(X, logD).

The pullback preserves relative integral currents and is functorial in the sense that g∗ ◦ f∗ =
(f ◦ g)∗.
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Proof. It is to show that on-D′ currents are mapped to on-D currents. Since f is locally a
projection, one has Dreg = f−1(D′reg). If η is any null-D test form on X, then η vanishes
on the fibers over all regular points of D′ and therefore the pushforward f∗η is a null-D′

test form on X ′ (with compact support). In particular, for a given on-D′ current T one has
f∗T (η) = T (f∗η) = 0. Hence, f∗T is an on-D current.
If T is integral, then f∗T is known to be locally integral. Since X is compact, f∗T has compact
support, hence is integral.

Lemma 41 (Exterior product of log currents). Let (X,D) and (X ′, D′) be two pairs consisting
of a compact complex manifold and a normal crossing divisor on it. The exterior product for
currents induces an exterior product of log currents

� : D(X, logD)⊗C D(X ′, logD′)→ D(X ×X ′, log(D �D′)).

Here D�D′ = X×D′+D×X ′ denotes the exterior product of the two divisors. This association
is compatible with bidegree and the differential d.

Proof. It suffices to show that the exterior product is well defined. Then the assertions about the
bidegree and the differential are clear. Thus it is to show that if S is an on-D current or if T is
an on-D′ current, then the exterior product S�T is an on-D�D′ current. To check this, assume
there is given a null-(D�D′) form on X×X ′, which can be chosen to be of the form η�η′. This
form vanishes when restricted to (D�D′)reg = (Dreg×X ′)∪(X×D′reg). Thus η must be a null-
D form and η′ must be a null-D′ form. Consequently, (S�T )∧(η�η′) = ±(S∧η)�(T ∧η′) = 0
whenever S or T is a null form.

Since the exterior product of two locally integral currents is again a locally integral current, we
get immediately

Corollary 42. The exterior product of log currents restricts to relative integral currents and
gives

I(X,D,A(p))⊗A I(X ′, D′, A(q))→ I(X ×X ′, D �D′, A(p+ q)).

The lemma 10 also carries over to log currents without problems.

Lemma 43 (� and ∧). For T, T ′ log currents and ω, ω′ log forms, one has

(T ∧ ω)� (T ′ ∧ ω′) = (−1)|T
′||ω|(T � T ′) ∧ (ω � ω′).

Intersection of log currents

It follows from lemma 30 that if the intersection S ∩ T exists, then so does (ω ∧ S)∩ T for any
smooth form ω, and one has

ω ∧ (S ∩ T ) = (ω ∧ S) ∩ T.

In particular, this implies that whenever the intersection of a current with an on-D-current
is defined, it is again an on-D-current. Thus, the intersection descends to a partially defined
C-linear map

D(X, logD)⊗C D(X, logD) 99K D(X, logD).

That means that the intersection of two log currents exists if and only if they can be represented
by currents whose intersection exists.
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The intersection also restricts to a partially defined Z-linear map of relative integral currents.
Again, the intersection is everywhere well-defined on cohomology, as follows from the compat-
ibility of the intersection product with the differential. To see that it is everywhere defined,
choose two representatives S, T which are normal/integral. By the very theorem for usual cur-
rents, there exists T̃ = T + dR such that the intersection of S, T̃ exist. Considered as a log
current, T̃ lies in the same cohomology class as T and so the intersection exists.
From this, all the properties of the intersection of currents carry over to the intersection of
log currents. For example, the inverse mapping formula, the reduction to the diagonal, or the
compatibility with �.
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3 Deligne-Beilinson cohomology

Deligne cohomology and Deligne-Beilinson cohomology are two bi-graded cohomology theories
for algebraic varieties over C (or R). Deligne cohomology was first introduced by Deligne as a
cohomology theory that contains information about both the Hodge filtration and the integral
structure of the cohomology of an algebraic manifold. An account on that theory can be found
in [15] (Deligne did not publish anything himself).
For non-compact manifolds, Deligne cohomology does not give the "correct" cohomology groups.
Beilinson [2] solved this issue by imposing growth conditions at the boundaries. This version is
usually called Deligne-Beilinson cohomology. Beilinson also defined the dual theory – Deligne-
Beilinson homology – and showed that the two are isomorphic to each other (Poincaré duality
for smooth varieties). Details can be found in Jannsen’s article [37].
Here we consider only smooth algebraic varieties, and indeed use the homological version to de-
fine Deligne(-Beilinson) cohomology. This has two advantages: First, the homology theory can
be computed by very concrete complexes (of currents), while the cohomology theory is defined
by complexes of sheaves. Second, the homological complexes have good covariant functorial
properties (the same as higher Chow groups).
We start with the sheaf theoretic definition of Deligne cohomology and motivate the homological
definition in term of currents. After that, we define Deligne-Beilinson cohomology using currents
in the spirit of Jannsen [37], but use relative integral currents instead of relative singular chains
(and with a cohomological Tate twist). Then we introduce the path complex and show that it
can be used to compute rational Deligne-Beilinson cohomology. We explain the functoriality,
the cycle maps, and the products on these two kinds of complexes.
In view of the to-be-defined regulator map, we summarize the properties of these complexes
that are needed for the construction later in 4.1.
We close with a short appendix on total complexes.

3.1 Deligne cohomology

Let X be an m-dimensional compact complex manifold, and A ⊂ R be a coefficient ring. For
any p ∈ Z, denote by A(p) := (2πi)pA the p-th twist. Then the weight p Deligne cohomology
of X with coefficients in A(p) was originally defined (see [16]) as the hypercohomology of the
complex of sheaves

AX(p) ι−→ OX → Ω1
X → . . .→ Ωp−1

X

with ΩX the sheaf of holomorphic differential forms on X and the unlabelled arrows being the
usual differential. Equivalently, Deligne cohomology can be defined as the hypercohomology of
the total complex of sheaves on X

Tot
(
AX(p)⊕ F pΩ•X → Ω•X

)
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where the unlabelled morphism is the difference of the two canonical inclusions. A quasi-
isomorphism from this complex to the original complex is given by dividing out the inclusion
F pΩ• → Ω•. This total complex (sometimes written as Cone(...)[−1]) is the starting point for
other definitions of Deligne cohomology. Namely, one knows that the inclusions of holomorphic
forms into smooth forms and of smooth forms into currents are filtered quasi-isomorphisms (see
theorem 13)

(Ω•X , F p)→ (A•X , F p)→ (D•X , F p).

Consequently, the (complex of) sheaves Ω in the total complex can be replaced by A or D.
Because the latter complexes are big enough to admit partitions of unity, they are acyclic with
respect to the global sections functor and hence taking hypercohomology is reduced to taking
cohomology of their global sections. When using currents, one moreover has a replacement for
the constant sheaf AX(p): The sheaf of (locally) integral currents with coefficients in A(p) is a
soft sheaf and thus for X compact Γ-acyclic.1 The inclusion of locally constant functions into
integral currents is a quasi-isomorphism and hence gives rise to a Γ-acyclic resolution

AX(p)→ IX ⊗Z A(p).

Replacing forms by currents is compatible with the defining map AX(p)⊕F pΩ→ Ω of Deligne
cohomology in the sense that it gives a compatible resolution of the total complex of sheaves
above. Taking global sections, one obtains the complex of A-modules

C•D(X,A(p)) := Tot
{
I•(X,A(p))⊕ F pD•(X) −δ+ι↪−−−→ D•(X)

}
=I•(X,A(p))⊕ F pD•(X)⊕D•−1(X)

(3.1)

with differential
(a, b, c) 7→ (da, db, b− a− dc).

So the Deligne cohomology groups can equivalently be defined as

H l
D(X,A(p)) := H l(C•D(X,A(p))).

Remark. Some people use A(p −m) as coefficient ring for the integral currents instead A(p),
thereby underlining the fact that the Deligne 3-term complex actually computes Deligne ho-
mology, and so is dual to the cohomological complex. We however stick to this notation and
indeed think of p as something that keeps track of the complex codimension.

3.2 Deligne-Beilinson cohomology

Consider now a complex algebraic manifold U . By the works of Nagata and Hironaka, one
can always find a good compactification X ⊃ U . That is, X is a compact algebraic manifold
containing U such that D = X \ U is a normal crossing divisor, i.e., at each point exist local
coordinates h1, . . . , hm such that D is given by an equation h1 · · ·hk = 0 (for some 1 < k < m).
Thus one can equivalently study pairs (X,D) where X is a compact algebraic manifold and
D ⊂ X is a normal crossing divisor.
Beilinson [2] extended Deligne cohomology to such cases by replacing the complexes in definition

1See the section about integral currents 2.5.
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(3.1) by their log versions. More precisely, the Deligne-Beilinson complex of (X,D) is defined
to be the complex of A-modules

C•D(X,D,A(p)) := Tot
(
I•(X,D,A(p))⊕ F pD•(X, logD)→ D•(X, logD)

)
.

This definition does not depend on the choice of the compactification, as will follow from the long
exact sequence for Deligne-Beilinson cohomology (see paragraph below, or [37, 1.13]). For this
reason, the compactification is sometimes omitted from the notation of the Deligne-Beilinson
cohomology:

H l
D(U,A(p)) := H l

D(X,D,A(p))

:= H l(C•D(X,D,A(p))).

If U = X is compact, one can choose D = ∅ and Deligne-Beilinson cohomology and Deligne
cohomology agree. Even more, the complexes CD(X,A(p)) = CD(X, ∅, A(p)) are the same for
X compact.
Note that, as a consequence of the fact that the inclusion of relative normal currents into log
currents is a quasi-isomorphism, the Deligne-Beilinson cohomology can also be computed by
the complex Tot

(
I(X,D,A(p)) ⊕ F pN (X,D) → N (X,D)

)
. In other words, any cohomology

class can be represented by triples (a, b, c) with a relative integral and b, c relative normal.

Remark 1. The definition of Deligne cohomology also makes sense for non-compact complex
manifolds and then the restriction gives a natural map CD(X,D,A(p)) → CD(U,A(p)). This
map is a quasi-isomorphism whenever U = X is compact, but in general not for D 6= ∅. In order
to avoid notational confusion, here we consider Deligne cohomology for compact manifolds only.

The long exact sequence for Deligne-Beilinson cohomology

The most important property of Deligne-Beilinson cohomology is the existence of a long exact
sequence that relates Deligne-Beilinson cohomology to singular resp. de Rham cohomology.
The desire for such a long exact sequence also explains why the Deligne-Beilinson complex is
defined as a total complex. In fact, total complexes are tools to generate long exact sequences
on cohomology. So the complexes CD give rise to long (not exact) sequences of complexes

. . .→ CD → I(X,D,A(p))⊕ F pD(X, logD)→ D(X, logD)→ CD[1]→ . . .

which become exact when passing to cohomology groups. Note that by proposition 36 the
cohomology groups of the relative (integral) currents compute the Hodge structure on the
cohomology of the pair (X,D) and thus the Hodge structure on U . That is, the induced long
exact sequence on cohomology groups can be written as

. . .→ H•D(X,D,A(p))→ H•(U,A(p))⊕ F pH•(U,C)→ H•(U,C)→ H•D(X,D,A(p))[1]→ . . .

(3.2)

Thus the long exact sequence relates Deligne-Beilinson cohomology with singular cohomology
(Borel-Moore homology) and de Rham cohomology – and this even on the level of complexes.
Compare also Jannsen [37, Cor. 1.13 b)].
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Deligne-Beilinson cohomology and Jacobians

The long exact sequence (3.2) splits into short exact sequences, thereby revealing the Deligne-
Beilinson cohomology groups as extensions of the integral classes of F p-type,

0→ Jp,n(U)→ H2p−n
D (X,D,Z(p))→ H2p−n(U,Z(p)) ∩ F p → 0.

Here the leftmost term in the sequence is the p-th intermediate Jacobian of the mixed Hodge
structure on H2p−n−1(U,C),

Jp,n(U) := H2p−n−1(U,C)
F pH2p−n−1(U,C) +H2p−n−1(U,Z(p)) .

If U = X is projective, then this is a generalized complex torus, that is, a complex vector space
modulo an R-linearly independent discrete subgroup.
Indeed, consider the composition of the canonical inclusion with the projection,

H2p−n−1(X,R(p))→ H2p−n−1(X,C)
F pH2p−n−1(X,C) .

The image of any class v under this map (also denoted by v) satisfies either v = v or v = −v,
depending on p. Thus any element in the kernel lies also F p ∩ F p = 0, so that the map
is an injective map of real vector spaces. Because the Z(p)-valued classes span a lattice in
H2p−n−1(X,R(p)), they also form an R-linear independent discrete subgroup in the right hand
side and thus the quotient Jp,n(X) is a generalized complex torus.
For n = 0, the Hodge decomposition implies that the subspace spanned by the integral classes
has maximal rank in H2p−1(X,C)/F pH2p−1(X,C) and hence the Jacobian Jp,0 is a complex
torus.

3.3 The path complex for Deligne-Beilinson cohomology

We now define complexes PD(X,D,A(p)) that are built up from paths in D(X, logD) and that
for Q ⊂ A compute the Deligne-Beilinson cohomology of the pair (X,D).
Denote by ΛA(x) := A[x, dx] the differential graded algebra of A-valued polynomial forms on
the 1-simplex, that is, the free differential graded algebra over A generated by the variable
x (in degree 0). The path complex for Deligne-Beilinson cohomology is the subcomplex of
ΛA(x)⊗A D(X, logD) defined by

PD(X,D,A(p)) :=
{
P ∈ ΛA(x)⊗A D(X, logD) such that P0 ∈ I(X,D,A(p)),

P1 ∈ F pD(X, logD)

}
.

Here P0, P1 denote the images of P under the evaluation maps at 0 and 1 respectively. The
evaluation at ε is the unique map that sends dx to zero and x to ε. For example, if ω(x) =
a(x) + b(x)dx is an element in ΛA(x), then the evaluation at ε of an element P = ω(x) ⊗ T is
just Pε = ω(ε)T = a(ε)T .
It follows from (dP )ε = d(Pε) that PD is indeed a subcomplex, that is, closed under the
differential d of the tensor product. It moreover has an obvious A-module structure and we will
see that it inherits a partially defined intersection product from ΛA(x)⊗D(X, logD).

Remark 2. This complex can be obtained by applying the general procedure of Hinich/Schecht-
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man [35, Theorem 4.1] of Thom-Sullivan cochains to the diagram I(X,D,A(p))⊕F pD(X, logD)→
D(X, logD) (considered as a simplicial object). The quasi-isomorphism stated therein special-
izes to the comparison-isomorphism ev below.

Comparison to the 3-term-complex

The relation between the complexes PD and the total complex CD is given by means of the
morphisms of A-modules

ev : PnD(X,D,A(p))→ CnD(X,D,A(p))

ω ⊗ T 7→
(
ω(0)T , ω(1)T ,

∫ 1

0
ωT

)
.

These maps are compatible with the differential and hence give rise to a morphism ev of
complexes.

Lemma 44. If Q ⊂ A, then the morphism ev is a quasi-isomorphism. A quasi-inverse is
induced by the maps

s : CnD(X,D,A(p))→ PnD(X,D,A(p))

(a, b, c) 7→ (1− x)⊗ a+ x⊗ b+ dx⊗ c.

Proof. s is indeed compatible with differentials, i.e., gives a map of complexes. It is obvious
that s splits the map ev, that is, ev◦s = id. It suffices to show that the map s◦ev : PD → PD is
homotopic to the identity. Such a homotopy was given by Burgos Gil during a summer school
in Freiburg 2013. Define the homotopy h : PD → PD[−1] by

h(ω ⊗ T ) = x

∫
[0,1]

ω ⊗ T −
∫

[0,x]
ω ⊗ T.

This map is well defined because of Q ⊂ A. One checks that dh+hd = s◦ev− id. In particular,
s ◦ ev = id on cohomology and so ev is a quasi-isomorphism.

3.4 Examples

• If X is a point, then the complexes for the Deligne (=Deligne-Beilinson) cohomology
become relatively simple. Since the space of currents over a point is isomorphic to C (and
a number λ ∈ C is identified with the integration current λ[pt]), one obtains that the path
complex is

PD(pt, A(p)) =
{
ω ∈ ΛC(x) : ω(0) ∈ A(p) and, if p > 0, ω(1) = 0

}
.

This complex is concentrated in degree 0 and 1, as is the 3-term complex, which is

CD(pt, A(p)) = Tot
(
A(p)⊕ F pC −δ+ι−−−→ C

)
=
(
A(p)⊕ F pC (a,z) 7→z−a−−−−−−−→ C

)
.

Note that F 0C = C and F pC = 0 for p > 0.
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The evaluation map PD → CD sends an element ω = f(x) + g(x)dx to the triple(
f(0), f(1),

∫ 1
0 g(x)dx

)
.

The Deligne cohomology can now easily seen to be

H l
D(pt, A(p)) =


A, p = 0, l = 0

C/A(p), p > 0, l = 1

0, else,

as follows also from the sheaf-theoretic description of Deligne cohomology.

To conclude, there exists a sequence of quasi-isomorphisms

PD(pt, A(p)) ev−→ CD(pt, A(p))→

(A→ 0), p = 0

(0→ C/A(p)), p > 0

where the second arrow is induced by the projection to the first component resp. the
third component (in the second case composed with the quotient map).

• For p = 0, Deligne- and Deligne-Beilinson cohomology are both equal to the Borel-Moore
homology of U , that is, the singular cohomology of U .

• For p = 1, the Deligne complex of X is quasi-isomorphic to O∗X [−1] by means of the
short exact sequence 0→ ZX(1)→ OX → O∗X → 0. The Deligne-Beilinson complex of U
(or, (X,D)) however is quasi-isomorphic to O∗U,alg[−1], where O∗U,alg denotes the sheaf of
invertible regular functions on U [16, 2.12 iii)].

• For p = 2, the Deligne complex of X is quasi-isomorphic to (O∗X
dlog−−→ Ω1

X)[−1] by means
of the commuting diagram

Z(2) �� // OX
d //

exp((2πi)−1z)
��

Ω1
X

(2πi)−1z

��
O∗X

dlog // Ω1
X

that gives rise to a quasi-isomorphism between its rows.

• Because An has the same cohomology groups as a point, the long exact sequence of
Deligne-Beilinson cohomology shows that HD(Pn,Pn \An,Z(p)) = HD(pt,Z(p)) for all p.
In fact, this is an instance of the homotopy invariance of Deligne-Beilinson cohomology.

The second example states that Deligne-Beilinson cohomology is an enhancement of singular
cohomology, whereas the first example shows that it carries strictly more information than
singular cohomology. The third example indicates that the Deligne and the Deligne-Beilinson
cohomology for non-compact manifolds in general are not the same.

3.5 Functoriality

One reason for using currents to define Deligne-Beilinson cohomology lies in their better functo-
riality under pushforwards. While the pushforward of forms is only defined along submersions
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(which have to be proper when restricted to the support of the considered form), the pushfor-
ward of currents is defined for any proper morphism. The functoriality of Deligne-Beilinson
cohomology is summarized in

Proposition 45. Let f : U → U ′ be a holomorphic map between complex manifolds.

• If f is proper, then the pushforward of currents induces a map

f∗ : H l
D(U,A(p))→ H l+2δ

D (U ′, A(p+ δ))

where δ = dimC U
′ − dimC U .

• If f is a submersion, then the pullback of currents induces a map

f∗ : H l
D(U ′, A(p))→ H l

D(U,A(p)).

We show more general that these statements hold for the two complexes PD and CD. Since
they are defined for pairs of spaces, we consider only maps of pairs, that is, mappings that
restrict to a map between the distinguished subsets.

Theorem 46 (Pushforward). Let f : (X,D)→ (X ′, D′) be a holomorphic map of pairs. Then
there is a commutative diagram of complexes

f∗ := (2πi)δ · id⊗f∗ : P •D(X,D,A(p))

ev

��

// P •+2δ
D (X ′, D′, A(p+ δ))

ev

��
f∗ := (2πi)δ · (f∗, f∗, f∗) : C•D(X,D,A(p)) // C•+2δ

D (X ′, D′, A(p+ δ))

where δ = dimCX
′ − dimCX. The pushforward is compatible with composition of functions in

the sense that g∗ ◦ f∗ = (g ◦ f)∗.

Proof. The pushforward of currents (defined, because X is compact) maps I• to I•+2δ and F p

to F p+δ. The multiplication with (2πi)δ ensures that the image has the correct twist. Thus
the two vertical maps are well defined. Commutativity of the diagram follows because the
pushforward acts on the underlying currents, while the evaluation map acts on the coefficient
forms:

ω ⊗ T � id⊗f∗ //
_

ev
��

ω ⊗ f∗T_

ev
��

(ω0T, ω1T,
∫ 1

0 ωT ) � (f∗,f∗,f∗) // (ω0f∗T, ω1f∗T,
∫ 1

0 ωf∗T )

Compatibility with composition of functions follows from the respective property of the push-
forward between currents. To see that the pushforward is compatible with the differential d on
PD, let ω be homogeneous of dx-degree |ω| and ± = (−1)|ω|. Then

f∗d(ω ⊗ T ) = f∗(dω ⊗ T ± ω ⊗ dT )

= (2πi)δ ·
(
dω ⊗ f∗T ± ω ⊗ f∗dT

)
= (2πi)δ ·

(
dω ⊗ f∗T ± ω ⊗ df∗T

)
= d(ω ⊗ f∗T ),
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where in the third equality it is used that f∗ and d commute on complex manifolds (see 2.2).
The proof that pushforward is compatible with the differential in CD is similar, but easier and
omitted.

Theorem 47 (Pullback). Let f : (X ′, f∗D)→ (X,D) be a holomorphic submersion. Then the
pullback of currents induces a commutative diagram of complexes

f∗ = id⊗f∗ : P •D(X,D,A(p))

ev

��

// P •D(X ′, f∗D,A(p))

ev

��
f∗ = (f∗, f∗, f∗) : C•D(X,D,A(p)) // C•D(X ′, f∗D,A(p)).

The pullback along submersions is compatible with composition in the sense that f∗◦g∗ = (g◦f)∗.

Proof. The proof is similar to the proof of theorem 46 and follows from the properties of the
pullback for log currents in lemma 40.

Remark 3. Rephrasing the two theorems, one could say that ev is a natural transformation
PD → CD of functors with values in A-complexes when considered on both the category with
morphisms the smooth submersions and the proper maps. In more fancy words one might say
that ev is a natural transformation of twisted Poincaré duality complexes.

3.6 Cycle maps

One central aspect of Deligne-Beilinson cohomology is the existence of a cycle class map for all
smooth algebraic manifolds. The cycle class in Deligne-Beilinson cohomology can be constructed
by means of the long exact sequence of Deligne-Beilinson cohomology and the cycle class map
in singular and de Rham cohomology, see [15, 2.2], [16, §7]. This construction can be made on
the level of complexes and produces concrete fundamental cycles (and not only cycle classes).

Deligne-Beilinson fundamental cycle

Let (X,D) be a pair of a compact complex algebraic manifold X and a normal crossing divisor
D. Write U := X \D.
If Z is an algebraic cycle in U of codimension p, then denote by [Z] (the simple extension of)
the integration current associated to Z. That is, [Z] is given by integration over the manifold
points Zreg. The support of [Z] is the closure of Z in X, hence compact. Thus the current [Z]
is a d-closed integral current of codimension (p, p) on X.
The Deligne-Belinson fundamental cycle in PD associated to Z is the element

(2πi)p[Z] ∈ P 2p
D (X,Z(p))

which is just the fundamental current cl(Z) associated to Z with constant coefficient 1.
The cycle map in PD induces a cycle map in the complex CD by composing it with the evaluation
map. The resulting Deligne-Beilinson fundamental cycle in CD associated to Z is then

(2πi)p ([Z], [Z], 0) ∈ C2p
D (X,Z(p)).
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Both fundamental cycles will be denoted by cl(Z). Note that it follows from d[Z] = 0 that the
two fundamental cycles are indeed cycles, that is, have vanishing (total) differential.
If D′ ⊂ X is a normal crossing divisor, then we define the Deligne-Beilinson fundamental cycle
relative to D′ to be the image of the above defined fundamental cycle under the projection
PD(X,Z(p))→ PD(X,D′,Z(p)), and similarly for CD. In other words, we consider cl(Z) up to
on-D′ currents.

Lemma 48. The cycle maps in PD and CD are related by the commutative diagrams

P 2p
D (X,Z(p))

ev

��

zp(U)

cl
55

cl ))
C2p
D (X,Z(p)).

They are functorial in X with respect to proper pushforward and pullback along submersions
in the following sence: If f : X → X ′ is a smooth algebraic map such that f |U is a (flat resp.
proper) map U → U ′, then

cl ◦ f |∗U = f∗ ◦ cl resp cl ◦ (f |U )∗ = f∗ ◦ cl.

Proof. Commutativity of the diagram is obvious (by definition). It suffices to prove the functori-
alities for the complexes PD only – the result for CD then follows from this and the functoriality
of ev. So it is to show that under the respective conditions on f , the corresponding diagram
below commutes.

zp(U ′) cl //

f∗

��

P 2p
D (X ′,Z(p))

f∗

��
zp(U) cl // P 2p

D (X,Z(p))

resp

zp(U) cl //

f∗

��

P 2p
D (X,Z(p))

f∗
��

zp+δ(U ′) cl // P 2p+2δ
D (X ′,Z(p+ δ))

This follows from the compatility of the cycle map into currents with pushforward (lemma 20)
and pullback (lemma 21).

Remark 4.

• The composition of the cycle map on X with the projection to the Deligne-Beilinson
complex of (X,D) induces a map

zp(X)/i∗zp−1(D)→ P 2p
D (X,D,Z(p)).

This is well defined because every algebraic cycle on D (that is, any cycle in i∗zp−1(D),
i the inclusion of D) under the cycle map is send to an on-D current.

This map extends the cycle map on U in the sense that the diagram below commutes.

zp(U) cl //

closure
��

P 2p
D (X,Z(p))

��
zp(X)/i∗zp−1(D)

cl
// P 2p
D (X,D,Z(p))
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• Note that if the compactness assumption of X is dropped, the definition of the Deligne-
Beilinson cycle still makes sense as a locally integral cycle. This yields the Deligne fun-
damental cycle.

3.7 Exterior products
The cohomological exterior product � of currents induces exterior products on the two Deligne
complexes, and in particular on Deligne-Beilinson cohomology.

The exterior products on CD

Alexander Beilinson introduced in his notes on absolute Hodge cohomology [3, 1.11] a whole
family of products, depending on a real parameter α ∈ R. They are denoted by

�α : CrD(X,D,A(p))⊗A CsD(X ′, D′, A(q))→ Cr+sD (X ×X ′, D �D′, A(p+ q)),

and defined by the formula

(a, b, c)⊗ (ã, b̃, c̃) 7→
(
a� ã, b� b̃, αc� ã+ (−1)r(1− α)a� c̃+ (1− α)c� b̃+ (−1)rαb� c̃

)
.

A common way to write the product is in the form of a table. If r denotes the total degree of
the triple (a, b, c), then the product with (ã, b̃, c̃) is expressed by

ã b̃ c̃

a a� ã 0 (−1)r(1− α) · a� c̃
b 0 b� b̃ (−1)rα · b� c̃
c α · c� ã (1− α) · c� b̃ 0

where one has to take care of the spaces the elements live in.

Proposition 49. The products �α are compatible with the differential. For α = 0 and α = 1
it is associative, for α = 1

2 graded commutative. All products are homotopic to each other and,
in particular, induce the same product on cohomology.

Proof. See Beilinson, [3, Lemma 1.11].

The exterior product on PD

For the complex PD there is a canonical choice of an exterior product coming from the product
structures on the underlying tensor factors. It is given by

� : P rD(X,D,A(p))⊗A P sD(X ′, D′, A(q))→ P r+sD (X ×X ′, D �D′, A(p+ q))

(ω ⊗ S)⊗ (η ⊗ T ) 7→ (−1)|η||S|ω ∧ η ⊗ (S � T ).

Proposition 50. The exterior product on PD is associative, graded-commutative and compat-
ible with the differential d.

Proof. This is a straight-forward computation using the definition and the respective prop-
erties of the products on ΛA(x) and D(X, logD). We omit the proof of the A-linearity and
associativity, but show graded-commutativity.
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If τ denotes the map that exchanges the factors in X × Y , and if ω ⊗ S, η ⊗ T are elements in
PD(X,D,A(p)) and PD(X ′, D′, A(q)) respectively, then

(ω ⊗ S)� (η ⊗ T ) = (−1)|η||S|(ω ∧ η)⊗ (S � T )

= (−1)|η||S|+|η||ω|+|S||T |(η ∧ ω)⊗ τ∗(T � S)

= (−1)|η||S|+|η||ω|+|S||T |τ∗
(

(η ∧ ω)⊗ (T � S)
)

= (−1)(|η|+|T |)(|ω|+|S|)τ∗

(
(η ⊗ T )� (ω ⊗ S)

)
.

The compatibility with the differential follows from the Leibniz rule for ∧, ⊗ and �:

d((ω ⊗ S)� (η ⊗ T )) = (−1)|η||S|d(ω ∧ η ⊗ (S � T ))

= (−1)|η||S|d(ω ∧ η)⊗ (S � T ) + (−1)|η||S|+|ω||η|ω ∧ η ⊗ d(S � T )

= d(ω ⊗ S)� (η ⊗ T ) + (−1)|ω|+|S|(ω ⊗ S)� d(η ⊗ T ).

Note that the exterior products on both complexes are compatible with pushforward and pull-
back (whenever defined).
The products of CD and PD however are not compatible with each other in the sense that the
evaluation map ev induces a map of algebras on the direct sum over p. In fact, the product on
PD is graded-commutative and associative (at the same time), while the products on CD are
not. See also lemma 58

Remark 5. In contrast to the formulas in the standard reference [16], we have an additional
sign before a� c̃. This is due to the fact that [16] considers a constant sheaf in degree 0, while
we work with arbitrary complexes. Our formulas are consistent with the original ones in [3].

Exterior products and fundamental cycles

The exterior product with fundamental cycles is commutative for both CD and PD.

Lemma 51. If Z is an algebraic cycle on U and (a, b, c) ∈ CD(X ′, D′, A), then for any α ∈ R,

cl(Z)�α (a, b, c) = τ∗

(
(a, b, c)�α cl(Z)

)
where τ : X ′ ×X → X ×X ′ exchanges the coordinates. The same holds for the complex PD.

Proof. The integration current over Z is of even degree and thus by the graded-commutativity
of the exterior product of currents,

cl(Z)�α (a, b, c) =
(
cl(Z), cl(Z), 0

)
�α (a, b, c)

=
(
cl(Z)� a, cl(Z)� b, cl(Z)� c

)
= τ∗

(
a� cl(Z), b� cl(Z), c� cl(Z)

)
= τ∗

(
(a, b, c)�α cl(Z)

)
.

Similarly for ω ⊗ S ∈ PD(X ′, D′, A):

cl(Z)� (ω ⊗ S) = ω ⊗
(
cl(Z)� S

)
= ω ⊗ τ∗

(
S � cl(Z)

)
= τ∗

(
(ω ⊗ S)� cl(Z)

)
.

The cycle maps into CD and PD are compatible with the exterior products:
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Lemma 52 (cl and ×). The �α-product of fundamental cycles is independent of α and com-
patible with the exterior product of algebraic cycles, that is, cl ◦ × = �α ◦ (cl × cl) for all α.
Moreover, the fundamental cycle cl(pt) ∈ C0

D(pt, A(0)) is an identity element for all �α.
The same holds for the exterior product and the fundamental cycle in PD.

Proof. Let Z ∈ zp(U) and Z ′ ∈ zq(U ′) be two algebraic cycles. Note that for the exterior
product of currents of even degree, × and �, agree. First CD:

cl(Z × Z ′) = (2πi)p+q
(
[Z × Z ′], [Z × Z ′], 0

)
= (2πi)p+q

(
[Z]× [Z ′], [Z]× [Z ′], 0

)
= (2πi)p+q

(
[Z]� [Z ′], [Z]� [Z ′], 0

)
= (2πi)p+q

(
[Z], [Z], 0

)
�α
(
[Z ′], [Z ′], 0

)
= cl(Z)�α cl(Z ′)

for all α ∈ R.
For PD:

cl(Z × Z ′) = (2πi)p+q[Z × Z ′] = (2πi)p+q([Z]� [Z ′]) = cl(Z)� cl(Z ′).

For the last statement, we tacitly identify currents on X × pt with currents on X. Under this
identification, T � [pt] = T ∈ D(X × pt) ∼= D(X), that is, [pt] ∈ D(pt) is an identity element
for the exterior product of currents.
Now note that if e is an identity element for �, then (e, e, 0) is an identity for �α for all α.
Indeed, the product of an arbitrary triple with e := cl(pt) in CD is

(a, b, c)�α e = (a, b, c)�α (e, e, 0) = (a� e, b� e, c� e) ∼= (a, b, c).

The same holds for the product on PD, since under the above mentioned identification,

(ω ⊗ S)� cl(pt) = ω ⊗ (S � [pt]) = ω ⊗ S.

Aside: Interpretation of Beilinson’s product

The quasi-isomorphism ev between PD and CD leads to a geometric interpretation of Beilinson’s
products on the latter.
Think of an element (a, b, c) in CD as the startpoint a and endpoint b of a path with c the line
segment connecting a and b (oriented from a → b). Given two such triples, one can form the
exterior product of the two paths, getting a square as drawn below

b

b̃ã
a

c̃

c

b� c̃

c� b̃

a� c̃

c� ã

a� ã

b� b̃

Now there are two possible ways to extract a path from the new startpoint a � ã to the new
endpoint b � b̃ out of this diagram. Each is as good as the other and one has the freedom to
combine them as one wishes using a parameter α.
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For example, give the left upper path the weight α and the right lower path weight 1−α. Then
the combined path is

α · [c� ã± b� c̃] + (1− α) ·
[
±a� c̃+ c� b̃

]
where we decorate each horizontal line segment with a sign ± = (−1)r. This in turn corresponds
to a triple which is exactly the �α product of (a, b, c) with (ã, b̃, c̃).

Remark 6.

• With this geometric construction in mind, the associativity and graded-commutativity
properties of Beilinson’s products are verified easily (e.g. by looking at a cube).

• There is no satisfying geometric explanation for this sign (−1)r. This sign occurs when
the endpoints a, b of the vertical path are passing c̃. Note that r = deg a = deg b is the
degree of these points.

3.8 Intersection products

Analogous to the exterior product, the intersection product of currents gives rise to intersection
products ∩α on CD and ∩ on PD.
These products are defined in exactly the same way as the exterior products, with � replaced
by ∩. That is, the product ∩α on the 3-term complex, α ∈ R, sends (a, b, c) ⊗ (ã, b̃, c̃) (where
the first tuple has total degree r) to(

a ∩ ã, b ∩ b̃, αc ∩ ã+ (−1)r(1− α)a ∩ c̃+ (1− α)c ∩ b̃+ (−1)rαb ∩ c̃
)

whenever all intersections are defined. Similarly, the intersection product on PD is the one with

(ω ⊗ S) ∩ (η ⊗ T ) = (−1)|η||S|(ω ∧ η)⊗ (S ∩ T ),

whenever the right hand side defines a valid element in PD.

Theorem 53. The intersection induces partially defined maps of complexes

∩ : PD(X,D,A(p))⊗A PD(X,D,A(q)) 99K PD(X,D,A(p+ q))

and

∩α : CD(X,D,A(p))⊗A CD(X,D,A(q)) 99K CD(X,D,A(p+ q)).

The intersection with fundamental cycles is commutative and cl(U) is an identity element. The
intersections are preserved by pushforward along biholomorphic maps of pairs.

Proof. If the underlying intersections exist, then both ∩ and ∩α have the correct form (i.e.,
are additive in the (total) degree and the weight) and are A-bilinear. As for the exterior
product, one sees that both types of intersection are compatible with the differential whenever
all occurring intersections exist.
The commutativity of the intersection with fundamental cycles follows as in lemma 51 from
the special form of this intersection together with the fact that the intersection with algebraic
cycles is commutative.
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The proof that cl(U) is the identity element for ∩ and ∩α is again a straight forward calculation,
based on the fact that the fundamental current cl(U) = [X] is an identity element for ∩. For
PD for example, cl(U) ∩ (ω ⊗ T ) = ω ⊗ ([X] ∩ T ) = ω ⊗ T .

Let ϕ : (X,D) → (X ′, D′) be a biholomorphic map of pairs. The pushforward on Deligne-
Beilinson complexes is defined by applying the pushforward to all the currents involved (and
taking care of the twists). Since the intersection of log currents is compatible with biholomorphic
maps of pairs and because the intersection on Deligne-Beilinson complexes is built from the
intersection of log currents, the last statement follows.

The evaluation map and ∩

Lemma 54. The evaluation ev : PD(X,D,A(p)) → CD(X,D,A(p)) is not an algebra homo-
morphism. For rational coefficients however, it induces an isomorphism of algebras on total
cohomology.

Proof. To see that the evaluation map is never a homomorphism of algebras, choose an integral
current T and an arbitrary current S such that the intersection S ∩ T exists. For any integer
n > 0 then

ev
(
dxS ∩ (1− x)nT

)
= ev

(
(1− x)ndxS ∩ T

)
=
(
0, 0, −1

n+1S ∩ T
)
.

If the evaluation were a homomorphism of algebras, this would be equal to

ev
(
dxS

)
∩α ev

(
(1− x)nT

)
=
(
0, 0, S

)
∩α
(
T, 0, 0

)
=
(
0, 0, αS ∩ T

)
,

which can not be true for arbitrary n > 0 (and a fixed α).

Now we show that ev is an isomorphism of algebras on rational cohomology that is, if Q ⊂ A.
In this case, ev induces an isomorphism on cohomology so that it suffices to show that this
isomorphism is compatible with the intersection products on both complexes. Since all products
∩α give rise to the same products on HCD, we may assume that α = 1

2 .

It is enough to show that the pushforward of the product on PD to CD is equal to ∩ 1
2
, that is,

∩ 1
2

= ev ◦ ∩ ◦ (s× s). Indeed, because of s ◦ ev ∼ idP , this implies that

s ◦ ∩ 1
2

= s ◦ ev ◦ ∩ ◦ (s× s) ∼ ∩ ◦ (s× s).

In other words, s induces an algebra isomorphism on the cohomology. ev is the inverse of s and
hence the same holds for ev.

To finish the proof of the lemma, let A = (S0, S1, S) and B = (T0, T1, T ) be two elements in
CD whose intersection exists. Then
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ev ◦ ∩ ◦ (s× s)(A,B) = ev
((

(1− x)S0 + xS1 + dxS
)
∩
(
(1− x)T0 + xT1 + dxT

))
=
(
S0 ∩ T0, S1 ∩ T1,

∫ 1

0
(1− x)dx

(
S ∩ T0 + (−1)|A|S0 ∩ T

)
+
∫ 1

0
xdx

(
S ∩ T1 + (−1)|A|S1 ∩ T

))
=
(
S0 ∩ T0, S1 ∩ T1,

1
2
(
S ∩ T0 + (−1)|A|S0 ∩ T + S ∩ T1 + (−1)|A|S1 ∩ T

))
= A ∩ 1

2
B.

Compatibility of ∩ and cl

The intersection products on the Deligne complexes are compatible with the cycle maps, as
follows from the respective property for log currents.

Lemma 55. For two algebraic cycles Z ∈ zp(U), Z ′ ∈ zq(U) that intersect properly, one has

cl(Z ∩ Z ′) = cl(Z) ∩ cl(Z ′)

in PD(X,D,Z(p+ q)) and, for any α ∈ R,

cl(Z ∩ Z ′) = cl(Z) ∩α cl(Z ′)

in CD(X,D,Z(p+ q)).

Proof. For PD:

cl(Z ∩ Z ′) = (2πi)p+q[Z ∩ Z ′] = (2πi)p+q[Z] ∩ [Z ′] = cl(Z) ∩ cl(Z ′).

For CD:

cl(Z ∩ Z ′) = (2πi)p+q(Z ∩ Z ′, Z ∩ Z ′, 0) = (2πi)p+q(Z,Z, 0) ∩α (Z ′, Z ′, 0) = cl(Z) ∩α cl(Z ′).

Any holomorphic map of pairs f : X → X ′ induces a general pullback on the Deligne complexes
by means of the formula f∗T := (prX)∗

((
cl(X \D)�T

)
∩cl
(
Γf
))

, where Γf denotes the graph
of f . The general pullback is partially defined and extends the pullback along a submersion.

Lemma 56 (cl and general pullback). Let f : X → X ′ be a holomorphic map of compact
complex algebraic manifolds that restricts to a map f |U : U → U ′. Then the cycle map cl is
compatible with general pullback. That is, if f |∗UZ exists, then f∗cl(Z) also exists and equals
cl(f |∗UZ).

Note that this includes the case where f is a submersion.

Proof. The general pullback of algebraic cycles is defined by essentially the same formula. Use
that cl is compatible with pushforward, intersection of algebraic cycles and the exterior product,
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to conclude that

cl(f |∗UZ) = cl
(

(prU )∗
(
(U × Z) ∩ Γf |U

))
= (prX)∗cl

(
(U × Z) ∩ Γf |U

)
= (prX)∗

(
cl(U × Z) ∩ cl(Γf |U )

)
= (prX)∗

((
cl(U)� cl(Z)

)
∩ cl(Γf |U )

)
.

Since cl(Γf |U ) = cl(Γf ), the lemma follows.

Compatibility of � and ∩

On the complex PD, the two products � and ∩ are compatible in the sense that for any
P,Q, P ′, Q′ ∈ PD such that the intersections P ∩Q and P ′ ∩Q′ exist, one has

(P ∩Q)� (P ′ ∩Q′) = (−1)|P
′||Q|(P � P ′) ∩ (Q�Q′).

The analogous claim for the complex CD and the products �α, ∩α is false in general – even for
α = 0. It is true however, if one restricts to intersections with geometric currents, that is, to
intersections with fundamental cycles.

Lemma 57. Let P ∈ CD(X,D,A(p)), P ′ ∈ CD(X ′, D′, A(p′)) and Z ∈ zq(U), Z ′ ∈ zq
′(U ′).

For any α ∈ R such that P ∩α cl(Z) and P ′ ∩α cl(Z ′) exist (the cycle map relative to D resp.
D′) one has

(
P �α P

′) ∩α (cl(Z)�α cl(Z ′)
)

=
(
P ∩α cl(Z)

)
�α
(
P ′ ∩α cl(Z ′)

)
.

Proof. Write P = (T0, T1, T ), P ′ = (T ′0, T ′1, T ′).
The ∩α-product with cl(Z)�α cl(Z ′) = cl(Z × Z ′) has a very simple form:

(P �α P ′) ∩α (cl(Z)� cl(Z ′)) =

 (T0 � T ′0) ∩ cl(Z × Z ′)
(T1 � T ′1) ∩ cl(Z × Z ′)

(P �α P ′)3 ∩ cl(Z × Z ′)


where (P � P ′)3 = T �

(
αT ′0 + (1− α)T ′1

)
+ (−1)|T0|

(
(1− α)T0 + αT1

)
� T ′.

On the other hand,

(P ∩α cl(Z))�α (P ′ ∩α cl(Z ′)) =

(T0 ∩ cl(Z))� (T ′0 ∩ cl(Z ′))
(T1 ∩ cl(Z))� (T ′1 ∩ cl(Z ′))

(∗)


where

(∗) =
(
T ∩ cl(Z)

)
�
(
αT ′0 ∩ cl(Z ′) + (1− α)T ′1 ∩ cl(Z ′)

)
+ (−1)|T0∩Z|

(
(1− α)T0 ∩ cl(Z) + αT1 ∩ cl(Z)

)
�
(
T ′ ∩ cl(Z ′)

)
.

We now use the compatibility of � and ∩ for currents from lemma 29. Then the upper two
components of the triples are obviously equal. One verifies that the lowest component in both
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cases are also equal. In fact, they are equal to

(∗) = α(T � T ′0) ∩ cl(Z × Z ′)

+ (1− α)(T � T ′1) ∩ cl(Z × Z ′)

+ (−1)|T0|(1− α)(T0 � T
′) ∩ cl(Z × Z ′)

+ (−1)|T0|α(T1 � T
′) ∩ cl(Z × Z ′).

ev, s and products with algebraic cycles

The proof of lemma 57 is by a brute force computation. The result for α = 1
2 can more elegantly

be deduced from the result for PD using the evaluation and the splitting map. This follows
from the important fact that, although the evaluation map in general is not compatible with
the intersection or the exterior product, for the special case of cycles coming from geometry, it
is:

Lemma 58. The evaluation map is compatible with the (partially defined) intersection and
the exterior product with algebraic cycles. For example, for any P ∈ PD, any codimension p

algebraic cycle Z and α ∈ R one has

ev(P ∩ cl(Z)) = ev(P ) ∩α cl(Z)

whenever all intersections exist. Similarly, the splitting map is compatible with intersection and
exterior product with cycles:

s
(
(a, b, c)�α cl(Z)

)
= s(a, b, c)� cl(Z)

and the same with ∩α, if all intersections exist.

Note the different meanings of the relative cycle class cl(Z).

Proof. We only show the statements that concern the intersection products, starting with the
one for the evaluation map. Let P = ω ⊗ T such that T ∩ [Z] =: S exists. Then

ev
(
P ∩ cl(Z)

)
= ev

(
(2πi)pω ⊗ (T ∩ [Z])

)
= (2πi)p(ω0S, ω1S,

∫ 1

0
ωS).

On the other hand, the intersection with cl(Z) in CD is, independent of α, given by

ev(P ) ∩α cl(Z) = (2πi)p
(
ω0T, ω1T,

∫ 1

0
ωT
)
∩α
(
[Z], [Z], 0

)
= (2πi)p

(
ω0T ∩ [Z], ω1T ∩ [Z],

∫ 1

0
ωT ∩ [Z]

)
.

For the statement about the splitting map, let T = (T1, T2, T3) be in CD such that T ∩α cl(Z)
exists. This intersection is (T1 ∩ cl(Z), T2 ∩ cl(Z), T3 ∩ cl(Z)), independent of α. Thus we can
conclude that

s(T ∩α cl(Z)) = (1− x)T1 ∩ cl(Z) + xT2 ∩ cl(Z) + dxT3 ∩ cl(Z)

= s(T ) ∩ cl(Z).
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Reduction to the diagonal

Denote by ∆ : X → X ×X the diagonal mapping and cl(∆) := cl(∆(X)).

Lemma 59. Reduction to the diagonal holds, that is, S∩T exists if and only if (S�T )∩ cl(∆)
exists. In this case, ∆∗(S ∩ T ) = (S � T ) ∩ cl(∆).

Note that although stated merely in the absolute situation (X, ∅), by the very definition of the
intersection of relative currents, reduction to the diagonal also holds in the relative case.

Proof. For CD: Let A = (a, b, c) and Ã = (ã, b̃, c̃) consist of locally flat currents. Let r = |a| be
the total degree of A. If the ∩α-intersection of the two triples exist, then, with β = 1− α,

∆∗(A ∩α Ã) =
(

∆∗(a ∩ ã),∆∗(b ∩ b̃),∆∗
(
c ∩ (αã+ βb̃) + (−1)r(βa+ αb) ∩ c̃

))
· (2πi)dimX

=
(

(a� ã) ∩ cl(∆), (b� b̃) ∩ cl(∆),(
c� (αã+ βb̃)

)
∩ cl(∆) + (−1)r

(
(βa+ αb)� c̃

)
∩ cl(∆)

)
=
(
a� ã, b� b̃, c� (αã+ βb̃) + (−1)r(βa+ αb)� c̃

)
∩ cl(∆)

= (A� Ã) ∩α cl(∆).

Conversely, if the last intersection exists, then it is supported on the diagonal and hence by the
flatness theorem lies in the image of ∆∗.
For PD the proof is again simpler:

∆∗
(

(ω ⊗ T ) ∩ (ω′ ⊗ T ′)
)

= (−1)|ω
′||T | ·∆∗

(
ω ∧ ω′ ⊗ (T ∩ T ′)

)
= (−1)|ω

′||T |(2πi)dimX · (ω ∧ ω′)⊗∆∗(T ∩ T ′)

= (−1)|ω
′||T | · (ω ∧ ω′)⊗

(
(T � T ′) ∩ cl(∆)

)
= (−1)|ω

′||T | ·
(

(ω ∧ ω′)⊗ (T � T ′)
)
∩ cl(∆)

=
(

(ω ⊗ T )� (ω′ ⊗ T ′)
)
∩ cl(∆).

By the reduction to the diagonal of usual currents, one side of the equation exists if and only
if the other also exists.

Intersection on cohomology

By the moving lemma for currents 34, any two normal currents can be moved in their cohomol-
ogy class in such a way that their intersection exists. This is not true for cohomology classes of
the Deligne complexes CD and PD. They however can be brought in good position with respect
to fundamental cycles.

Lemma 60. Assume D = ∅. Given a fundamental cycle cl(Z), then any cohomology class in
HCD has a representative whose intersection with cl(Z) exists. This representative can chosen
to be normal, that is, consist of normal currents only. For rational coefficients, the same is
true for cohomology classes in HPD.

Proof. Given a class in HCD, we can choose a representative (T0, T1, T ) whose components
are all normal currents (and T0 is integral). The moving lemma gives a representation T0 =
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T̃0 + dR0 in such a way that T̃0 ∩ [Z] exists. Moreover, there exists a smooth p-form ω such
that T1 = [ω] + dR1 for some R1 ∈ F pD(X). Then

(T0, T1, T ) = (T̃0, [ω], T −R1 +R0) + d(R0, R1, 0).

Now choose a current T̃ such that T̃ ∩ [Z] exists and T − R1 + R0 = T̃ − dR. Consequently,
the class of

(T0, T1, T ) = (T̃0, [ω], T̃ ) + d(R0, R1, R)

can as well be represented by (T̃0, [ω], T̃ ) whose intersection with cl(Z) exists. Indeed, the
intersection with a smooth differential form always exists and so

(
T̃0, [ω], T̃

)
∩ cl(Z) =

(
T̃0 ∩ cl(Z), [ω] ∩ cl(Z), T̃ ∩ cl(Z)

)
exists.
With rational coefficients, the evaluation induces a ring isomorphism on cohomology by lemma
54. This implies the statement for PD.

The intersection of two cohomology classes A,B in HCD or HPD is said to exist, if there exist
two normal representatives A,B together with some normal current R such that (A�B+dR)∩
cl(∆) exists. Then the intersection class is the unique cohomology class such that

∆∗(A ∩B) = (A�B + dR) ∩ cl(∆) + boundaries.

This definition is independent of the choice of the A,B,R: Whenever Ã, B̃ are other represen-
tatives of A,B and R̃ is such that (Ã � B̃ + dR̃) ∩ cl(∆) exists, then the difference of these
expressions is equal to d ˜̃R ∩ cl(∆) for some ˜̃R. It is to show that this current arises as the
pushforward of a boundary along ∆. By the moving lemma 60, ˜̃R = Q + boundary such that
Q ∩ cl(∆) exists and – by the flatness theorem – is equal to ∆∗Q̃. Hence ∆∗dQ̃ = d∆∗Q̃ =
d(Q ∩ cl(∆)) = dQ ∩ cl(∆) = d ˜̃R ∩ cl(∆) as required.
Note that lemma 60 assures that the intersection of any two cohomology classes always exists.

3.9 Requirements for the Deligne complexes

Denote by (X,D) a pair consisting of a smooth projective variety and a normal crossing divisor
D ⊂ X. Assume that to every such pair, every coefficient ring A ⊂ R and every integer p (the
weight) there is associated a complex of A-modules C•D(X,D,A(p)). We summarize all the
properties of these complexes that are needed to apply the general construction of the regulator
in 4.1.

(Coefficients) C•D(X,D,A(p)) = C•D(X,D,Z(p))⊗Z A.

(Cycle map) There exist maps cl : zp(X \D)→ C2p
D (X, ∅,Z(p)) such that d ◦ cl = 0.

(Flat pullback) For any holomorphic submersion Y f−→ X one has a morphism of complexes

f∗ : C•D(X,D,A(p))→ C•D(Y, f−1D,A(p)).

(Proper pushforward) For any holomorphic map of pairs (X,D) f−→ (X ′, D′) one has a
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morphism of complexes

f∗ : C•D(X,D,A(p))→ C•−2δ
D (X ′, D′, A(p− δ))

where δ = dimCX − dimCX
′ is the relative dimension. In particular, df∗ = f∗d.

(Exterior products) There exist external products

C•D(X,D,A(p))⊗ C•D(X ′, D′, A(q)) �−−→ C•D(X ×X ′, D �D′, A(p+ q))

in the category of complexes. Here D �D′ = X ×D′ +D ×X ′ denotes the exterior product
of the divisors.

The above structures should satisfy the compatibility conditions listed below:

• cl is compatible with flat pullback and proper pushforward, that is,

cl ◦ f |∗X\D = f∗ ◦ cl resp. cl ◦ (f |X\D)∗ = f∗ ◦ cl

whenever f |X\D is flat resp. proper.

• For Z,Z ′ two algebraic cycles, cl(Z × Z ′) = cl(Z)� cl(Z ′).

• � is commutative if one factor is an algebraic cycle, i.e. cl(Z)� T = τ∗(T � cl(Z)) where
τ is the map that interchanges the two factors.

• Pushforward preserves �.

• If ϕ is a biholomorphic map of pairs, then ϕ∗ = (ϕ−1)∗.

• � is associative and cl(pt) is an identity element for �.

(Intersection products) There exists a partially defined (internal) product

C•D(X,D,A(p))⊗ C•D(X,D,A(q)) ∩
999K C•D(X,D,A(p+ q))

such that

• If S ∩ T and either dS ∩ T or S ∩ dT exist, then d(S ∩ T ) = dS ∩ T + (−1)|S|S ∩ dT .

• Intersection with algebraic cycles is commutative, that is, T ∩ cl(Z) = cl(Z)∩T whenever
one of the intersections exist.

• The intersection product is compatible with the intersection product of algebraic cycles.
That is, whenever Z ∩ Z ′ exists, then so does cl(Z) ∩ cl(Z ′) and is equal to cl(Z ∩ Z ′).
In particular, the cycle map is compatible with general pullback, partially defined for
f : X → X ′ by f∗T := (prX)∗

(
(cl(X \D)� T ) ∩ cl(Γf )

)
.

• Reduction to the diagonal: If ∆ : X → X ×X denotes the diagonal embedding and ∆U

the image of U , then
∆∗(S ∩ T ) = (S � T ) ∩ cl(∆U ).

• cl(X \D) is an identity element for ∩.
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• Compatibility of � and ∩ for cycles coming from geometry (i.e., of type cl(Z) for an
algebraic cycle Z): If the intersections on the right-hand side exist, there is an equality

(S1 � S2) ∩ (cl(Z1)� cl(Z2)) = (S1 ∩ cl(Z1))� (S2 ∩ cl(Z2)).

• ∩ is preserved by pushforward along biholomorphic maps of pairs and the trivial maps
(X,D)→ (X,D′) for D ⊂ D′, that is, ϕ∗(S ∩ T ) = ϕ∗S ∩ ϕ∗T .

Theorem 61. The 3-term complex CD (with �0,∩0 or �1, ∩1) and the path complex PD (with
�, ∩) as defined in this section satisfy all of the axioms above.

Proof. This was done before: The cycle map is 3.6. Functoriality is subsection 3.5. The exterior
and the intersection products are considered in 3.7 and 3.8.

3.10 Regulator-specific properties

For the study of the regulator maps, we will need more precise information about the intersection
theory of the class of Deligne-Beilinson chains formed by higher Chow cycles and some special
elements. Endow the Deligne complexes CD and PD with their associative products and consider
the special elements

R =
(
2πi[R-], [dlog z], [log z]

)
∈ C1

D(�, ∅,Z(1))

R = (1− x)⊗ 2πi[R-] + x⊗ [dlog z] + dx⊗ [log z] ∈ P 1
D(�, ∅,Z(1))

and their exterior products Rn in the respective complexes. We are interested in the validity
of associativity and inverse mapping formulas.

An inverse mapping formula for CD and PD

The following lemma shows that the Deligne complexes (with any product) have no structural
obstruction to an inverse mapping formula.

Lemma 62 (Formal inverse mapping formula). Let f : X → X ′ be a holomorphic map of pairs.
Let A, Ã be two chains in one of the Deligne complexes such that f∗Ã and A∩f∗Ã exist. If the
inverse mapping formula holds for all involved currents, then it also holds for A and Ã, that is,
f∗A ∩ Ã exists and f∗(A ∩ f∗Ã) = f∗A ∩ Ã.

Proof. Assume that f∗(ã, b̃, c̃) and (a, b, c) ∩ f∗(ã, b̃, c̃) both exist. Denote by δ := dimCX
′ −

dimCX the relative codimension of f . If the inverse mapping formula holds for all occuring
currents, then, with β := 1− α,

f∗
(
(a, b, c) ∩α f∗(ã, b̃, c̃)

)
= f∗

(
a ∩ f∗ã, b ∩ f∗b̃, c ∩ (αf∗ã+ βf∗b̃) + (−1)|a|(βa+ αb) ∩ f∗c̃

)
=
(
f∗a ∩ ã, f∗b ∩ b̃, f∗c ∩ (αã+ βb̃) + (−1)|a|(βf∗a+ αf∗b) ∩ c̃

)
· (2πi)δ

= (f∗a, f∗b, f∗c) ∩α (ã, b̃, c̃) · (2πi)δ

= f∗(a, b, c) ∩α (ã, b̃, c̃)

also exists.
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Similarly for PD: Assume that for two current S on X and T on Y both f∗T and S∩f∗T exist.
Then

f∗
(
(η ⊗ S) ∩ f∗(ω ⊗ T )

)
= f∗

(
(η ⊗ S) ∩ (ω ⊗ f∗T )

)
= f∗

(
(η ∧ ω)⊗ (S ∩ f∗T )

)
· (−1)|ω||S|

= (η ∧ ω)⊗ f∗(S ∩ f∗T )
)
· (−1)|ω||S|(2πi)δ

= (η ∧ ω)⊗ (f∗S ∩ T )
)
· (−1)|ω||S|(2πi)δ

= (η ⊗ f∗S) ∩ (ω ⊗ T ) · (2πi)δ

= f∗(η ⊗ S) ∩ (ω ⊗ T ).

We are interested in the following application:

Lemma 63. Let f : U → V be an algebraic map that extends to a holomorphic map X → Y

and consider Z ∈ zR(U, n) and Z ′ ∈ zR(V, n). For two disjoint tuples I, J ⊂ {0, 1}n (i.e.,
their componentwise addition satisfies I + J ≤ 1n) write RI = Ri1 � Ri2 � . . . � Rin and
ZI := cl(Z) ∩ (cl(U) � RI), and similarly for Z ′. If both f∗Z ′ and f∗Z ′ ∩ Z exist and lie in
zR(U, n), then

(f × id)∗
(

(f × id)∗Z ′J ∩ ZI
)

= Z ′J ∩ (f × id)∗ZI .

Proof. For clarity, we omit the notation of cl. By the formal inverse mapping formula above, it
suffices to show the statement for currents. After a permutation of the coordinates, it suffices
to show the equality for currents on U × �n, n = k + l + r + s with ZI and Z ′J replaced by
Z ∩ (U � Rk- � [ω] � �r+s) and Z ′ ∩ (U � �k+l�Rr- � [ω′]) respectively, where ω and ω′ are
holomorphic log forms on �l resp �s with poles along the real faces of the cube. Similar to
the proof of lemma 28 one shows that these two intersection currents exist and are equal to
the wedge products Z ∩ (U � Rk- � �

l+r+s) ∧ pr∗ ω and Z ′ ∩ (U � �k+l�Rr- � �
s) ∧ pr∗ ω′

respectively. Note that the wedge product with these forms commutes with pushforward and
pullback along f × id. In particular, this reduces the statement to the case of real analytic
chains. Because f∗Z ′∩Z intersects the real faces properly, (f × id)∗(Z ′∩ (U ��k+l�Rr- ��

s))
and Z∩ (U�Rk- ��

l+r+s) also intersect properly. Thus the projection formula for real analytic
chains applies and finishes the proof.

Associativity statements

That a partially defined intersection product is associative does not imply that associativity
holds for any triple whose intersection exists. We exhibit associativity in some particular cases.

Lemma 64. Let Z,Z ′ be two properly intersecting algebraic cycles in zR(U, n) such that Z ∩Z ′

is again in zR(U, n). Then(
(cl(U)�Rn) ∩ cl(Z)

)
∩ cl(Z ′) = (cl(U)�Rn) ∩ cl(Z ∩ Z ′).

Moreover, if n = k + l, then

cl(Z ∩Z ′)∩ (cl(U)�Rk+l) =
(

cl(Z)∩ (cl(U)�Rk� cl(�l))
)
∩
(

cl(Z ′)∩ (cl(U)� cl(�k)�Rl)
)
.

Proof. Show the first equality for the 3-term complex: The intersection with fundamental cycles
is nothing but componentwise intersection with the fundamental cycle in currents. This has the
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effect that the equality can be checked for currents, with Rn replaced by any possible exterior
product of R-, log(z) and dlog(z). Thus, after a permutation, the left hand side is an expression
of the form ((Rk- � [ω])∩ cl(Z))∩ cl(Z ′) for k ≤ n and a log form ω with poles along the faces of
the cube. Assume that ω is smooth and thus is irrelevant for the associativity question. That
Z,Z ′ are properly intersecting higher Chow chains which (together with their intersection) are
in good position with respect to the real faces is exactly the condition that {pr∗ Rk- , Z}, {Z,Z

′}
and {pr∗ Rk- , Z, Z

′} intersect suitably and thus their intersection is associative. That this, the
expression is equal to (Rk- � [ω]) ∩ (cl(Z) ∩ cl(Z ′)), as was to be shown. If ω is a log form that
is locally integrable on the given cycles (which again is ensured by the condition of good real
intersection), then the statement extends by approximating ω by smooth forms.
Similarly the second equality can be handled. Considering the components of the triples trans-
lates the problem into currents, with each R? replaced by the exterior product of a real face
and a log form. After approximating all log forms by smooth ones, the statement is again
reduced to an associativity property for algebraic cycles and real faces. This is implied by the
fact that (Z ∩ (U × F1 × �l)) ∩ (Z ′ ∩ (U × �k ×F2)) for any two real faces F1, F2 is equal to
(Z ∩ Z ′) ∩ (U × F1 × F2).
To prove the statement for PD, observe that the equalities there reduce to the same equalities
of currents as in the case of CD.
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3.11 Appendix: Total complexes
For a given morphism u : A• → B• of complexes, the total complex of u is defined to be the
complex

Tot(A• u−→ B•) := A• ⊕B[−1]•,

with the convention that the differential of the shifted complex is multiplied by −1. That is,
the total complex has differential

Aq ⊕Bq−1 → Aq+1 ⊕Bq

(a, b) 7→ (da, u(a)− db).

The total complex has a homological pendant, the mapping cone, to whom it is related by the
formula

Cone(A u−→ B)[−1] = Tot(A −u−−→ B).

The following lemma summarizes some properties of the total complex.

Lemma 65.

i) Any commutative diagram
A

u // B

A′

OO

u′ // B′

OO

induces a morphism of complexes Tot(u′)→ Tot(u) (in the obvious way).

ii) The inclusion resp. projection B[−1] → Tot(u) → A are morphisms of complexes and
give rise to a long exact sequence of cohomology groups

. . .→ Hn−1B → Hn Tot(u)→ HnA
u−→ HnB → . . .

iii) The total complex Tot(u) is acyclic if and only if u is a quasi-isomorphism.

As a consequence of this lemma, replacing the map u by something "quasi-isomorphic" yields
isomorphic total complexes.
Indeed, any commutative diagram as described in point i) of the lemma gives rise to a morphism
between the long exact sequences from ii) for u′ and u. If the vertical maps A′ → A and B′ → B

are quasi-isomophisms, then the five-lemma implies that the induced map Tot(u′)→ Tot(u) is
also a quasi-isomorphism.
For another example, assume that A′ and B′ are subcomplexes. Then Tot(u′) is a subcomplex
of Tot(u) and the corresponding quotient complex is just the total complex of the quotient
map Tot(A/A′ u−→ B/B′). If moreover u′ is a quasi-isomorphism (that is, Tot(u′) is acyclic),
then the long exact sequence associated to the short exact sequence of the quotient shows that
Tot(u)→ Tot(u) is a quasi-isomorphism.
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4 Regulator maps for higher Chow chains

We give a definition of a regulator map from higher Chow chains to any family of complexes
CD that satisfies the conditions in 3.9. We first investigate the properties of such an abstract
regulator in some detail, before we become concrete and define regulators for the complexes CD
and PD introduced in 3. We compare the two regulator maps and close with a discussion on
the definition of the regulator map.

4.1 An abstract regulator

Assume that for each weight p there is given a functorial collection of complexes of abelian
groups C•D(X,D,Z(p)) for each pair of a projective algebraic manifold X and a normal crossing
divisor D ⊂ X. Think of these complexes as "Deligne complexes", whose cohomology calculate
the Deligne-Beilinson cohomology of U := X \D. This collection should be covariant functorial
for proper morphisms. Assume that there exist cycle maps cl, which to a codimension p algebraic
cycle in U associate an element in C2p

D (X,Z(p)) := C2p
D (X, ∅,Z(p)). We want to define higher

cycle maps, or regulator maps, from higher Chow chains to these Deligne complexes,

regD : zp(U, n) 99K C2p−n
D (X,D,Z(p)).

These maps should have some good properties. First of all, for n = 0 they should recover
the relative cycle maps, that is, be equal to the composition of cl with the pushforward along
X → (X,D). The regulators for varying n should be compatible, i.e., they should give rise to
a morphism of complexes (suitably shifted). We are (in fact this was the starting point of this
construction) interested in the multiplicative behavior of this map. Therefore we assume that on
⊕pCD(X,D,Z(p)) there exists an exterior product � which is additive in both the weight p and
the degree, and which furthermore is unitary and associative in the sense of exterior products.
Furthermore we assume that there exists a reasonable intersection product on these complexes.
All these structures should be compatible in a sense which is made precise in subsection 3.9.
To define the regulator map regD, one may proceed as follows. First, compactify the cube to
� = P1 with marked point {1} as boundary divisor. The cycle map gives for each higher chain
Z of codimension p an element

cl(Z) ∈ C2p
D (X ×�n,Z(p)).

Then choose an element R ∈ C1
D(�,Z(1)) and form the exterior products Rn ∈ CnD(�n,Z(n)).

Note that R0 ∈ C0
D(pt,Z) is just the identity element for the external product. Finally define

the value of a higher Chow chain Z under the map regD to be

regD(Z) := pr(X,D)∗

(
(cl(U)�Rn) ∩ cl(Z)

)
whenever the intersection exists.
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Remark that the pushforward is always defined since the projection pr(X,D) : (X × �n, ∅) →
(X,D) has compact fibres, hence is proper. Thus the only obstruction for the regulator map
being defined is the non-existence of the intersection of cl(U)�Rn with cl(Z).
In order to check that the construction is well-defined on higher Chow chains, let Z = omit∗j Z̃ be
a degenerate cycle, obtained as the pullback of an admissible chain along the map that forgets
the j-th cube. It is to show that the regulator regD(Z) is zero. By the compatibility of � and
intersection, (cl(U) � Rn) ∩ cl(Z) is an exterior product with R in the j-th component. It is
therefore enough to show that (prpt)∗R vanishes. This pushforward however has real dimension
−1, hence must be zero. Consequently, the regulator map descends to a partially defined map
on higher Chow chains.
The "abstract regulator map" serves as the prototype of a regulator. It becomes concrete after
fixing a choice of the required data (the complexes CD(X,D,Z(p)) together with products
and the element R). This is done in later sections. First, some compatibility conditions are
exhibited.

Remarks.

• By the moving lemma for higher Chow groups, the restriction induces a quasi-isomorphism
of complexes zp(X,D, •) := zp(X,•)

i∗zp−1(D,•) → zp(U, •), and similar with subscript R (see [39,
5.9]). Thus our construction can be given completely in the ”framework of pairs”.

• Notice that the definition of the regulator map can be rewritten as

regD(Z) = pr(X,D)∗

((
prX×�

n

�
n

)∗
(Rn) ∩ cl(Z)

)
.

In this form, the regulator value of Z can be seen as the inverse image of the current Rn

under the (analytic) correspondence given by cl(Z).

• The regulator is determined by R. Conversely, the image R ∈ C1
D(�, 1,Z(1)) of R can be

recovered from the regulator on U = � as the value of the diagonal ∆ ∈ z1(�, 1),

R = regD(∆).

Domains of definition

In order to prove properties of the regulator map, we will need more specific properties of the
intersection product of algebraic cycles subject to the defining element R of the regulator.
A domain of definition for regD is a collection of subcomplexes zpR(U, •) ⊂ zp(U, •) for all p
such that

• If Z ∈ zpR(U, n), then (cl(U)�Rn) ∩ cl(Z) exists (that is, regD(Z) is defined).

• It is closed under the exterior product of higher Chow chains.

• Let f : X → Y be a holomorphic map of pairs, Z ∈ zR(U, n) and Z ′ ∈ zR(V, n). For two
disjoint tuples I, J ⊂ {0, 1}n (i.e., their componentwise addition satisfies I + J ≤ 1n),
write RI = Ri1 �Ri2 � . . .�Rin and ZI := cl(Z) ∩ (cl(U)�RI), and similarly for Z ′. If
both f∗Z ′ and f∗Z ′ ∩ Z exist and lie in zR(U, n), then

(f × id)∗
(

(f × id)∗Z ′J ∩ ZI
)

= Z ′J ∩ (f × id)∗ZI .
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• For Z,Z ′ ∈ zR(U, n) that intersect properly, the expression (cl(U)�Rn) ∩ cl(Z) ∩ cl(Z ′)
is well defined (associative).

• For Z,Z ′ ∈ zR(U, n + m) whose intersection exists and lies in the domain of definition,
cl(Z ∩ Z ′) ∩ (cl(U)�Rn+m) = (cl(Z) ∩ pr∗Rn) ∩ (cl(Z ′) ∩ pr∗Rm).

For a coefficient ring A, the A-modules zpR(U, n)A are defined by linearity. They give rise to
subcomplexes zpR(U, •)A ⊂ zp(U, •)A and to a regulator map with values in CD(X,D,A(p)).

For the following, we assume that a domain of definition has been fixed.

In the case of the particular examples in 4.2 and 4.3, zR = zR is the group of higher Chow
chains which are in good position to the real faces. That these complexes form a valid domain
of definition (for the respective defining elements) is verified in 3.10.

Remark. The third condition of a domain of the regulator implies in particular that

(f × id)∗
(

(cl(Z)�Rn) ∩ (f × id)∗cl(Z ′)
)

= (f × id)∗(cl(Z)�Rn) ∩ cl(Z ′),

(f × id)∗
(

(f × id)∗(cl(Z ′)�Rn) ∩ cl(Z)
)

= (cl(Z ′)�Rn) ∩ (f × id)∗cl(Z).

Compatibility with differential

Whether the regulator is compatible with the differential or not depends crucially on the defining
element R.

Lemma 66. If the boundary of the defining element dR = cl((z)) is the cycle associated to
the divisor (z) = 0−∞, then the abstract regulator transforms the Bloch differential on higher
Chow groups into the differential in CD. That is, d ◦ reg(Z) = reg ◦ ∂(Z) holds for any higher
Chow chain Z ⊂ U ×�n in the domain of the regulator.

Proof. After plugging in the definition of the regulator and abbreviating pr = pr(X,D) for any
projection X ×�? → (X,D), we have to show that

dpr∗
(

(cl(U)�Rn) ∩ cl(Z)
)

= pr∗
(

(cl(U)�Rn−1) ∩ cl(∂Z)
)
.

Since the differential commutes with pushforward, and using the product rule for � and ∩
(together with dcl(Z) = 0), one gets

dpr∗
(
(cl(U)�Rn) ∩ cl(Z)

)
= pr∗

(
(cl(U)� dRn) ∩ cl(Z)

)
= pr∗

n∑
i=1

(−1)i+1 (cl(U)�Ri−1 � dR�Rn−i
)
∩ cl(Z).

Note that by assumption dR = cl((z)) is the difference of the cycles associated to the two points
0 and ∞. Thus it can be interpreted as the pushforward of these points under the inclusion
into �. Then using the projection formula one gets
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= pr∗
n∑
i=1

(−1)i+1(∂i,0 − ∂i,∞)∗
(
cl(U)�Rn−1) ∩ cl (Z)

= pr∗
n∑
i=1

(−1)i+1(cl(U)�Rn−1) ∩ (∂∗i,0 − ∂∗i,∞)cl (Z)

= pr∗
n∑
i=1

(−1)i+1(cl(U)�Rn−1) ∩ cl
(
(∂∗i,0 − ∂∗i,∞)Z

)
= pr∗

(
(cl(U)�Rn−1) ∩ cl(∂Z)

)
by definition of the differential on Bloch’s complex.

We remark that by additivity of the intersection product, the first equality in the preceding
calculation shows that changing Rn by a boundary changes the resulting regulator only by a
boundary.

Compatibility with intersection products

Next we show compatibility of the abstract regulator map with the product structures on higher
Chow chains and on the complexes CD. It suffices to consider integral coefficients; The result
for arbitrary coefficients and alternating chains then follows from the linearity of the regulator.

Lemma 67. Let Z ∈ zpR(U, n) and Z ′ ∈ zqR(U,m) be two properly intersecting higher Chow
chains such that Z ∩ Z ′ also lies in the domain of the regulator. Then the intersection of their
regulator values exists and

regD(Z ∩ Z ′) = regD(Z) ∩ regD(Z ′).

Proof. Using reduction to the diagonal, the statement in question is transferred to the product
space (X × X,D � D), where D � D := D × X + X × D is the exterior self-product of the
divisor D on X. In fact, it is to show that the intersection of regD(Z) � regD(Z ′) with the
relative fundamental cycle cl∆(X,D) := pr(X×X,D�D)∗ cl(∆U ), ∆U the diagonal in U ×U , exists
and that

∆(X,D)∗regD(Z ∩ Z ′) =
(
regD(Z)� regD(Z ′)

)
∩ cl∆(X,D).

Write ∆n,m
U for the map U ×�n+m → U ×�n×U ×�m induced by the diagonal, and likewise

∆n,m
X for the map on the compactifications. Then the intersection product of the two higher

Chow chains is given by the pullback Z ∩ Z ′ = (∆n,m
U )∗(Z × Z ′).

Plug this into the definition of the regulator map and abbreviate pr := pr(X×X,D�D). Applying
the compatibility of the cycle map with pullback and the projection formula then yields that

∆(X,D)∗regD(Z ∩ Z ′) = ∆(X,D)∗ pr(X,D)∗

(
(cl(U)�Rn+m) ∩ cl(Z ∩ Z ′)

)
= pr∗∆n,m

X∗

(
(cl(U)�Rn+m) ∩ cl(Z ∩ Z ′)

)
= pr∗∆n,m

X∗

(
(cl(U)�Rn+m) ∩ (∆n,m

X )∗ [cl(Z)× cl(Z ′)]
)

= pr∗
(

∆n,m
X∗ (cl(U)�Rn+m) ∩ cl(Z × Z ′)

)
.

In order to rewrite this expression, denote by τ the map that exchanges the two middle factors
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and by ∆U the diagonal in U ×U . Use that the fundamental cycle cl(U ×U) is the identity ele-
ment for the intersection product, the compatibility of ∩,�, and that intersection is compatible
with biholomorphisms to obtain

(∆n,m
X )∗

(
cl(U)�Rn+m) = τ∗

[
cl(∆U )�Rn �Rm

]
= τ∗

[(
cl(U)� cl(U)�Rn �Rm

)
∩
(

cl(∆U )� cl(�n+m)
)]

=
(

cl(U)�Rn � cl(U)�Rm
)
∩ τ∗

(
cl(∆U )� cl(�n+m)

)
=
(

cl(U)�Rn � cl(U)�Rm
)
∩ (prX×X)∗cl(∆U ).

Apply this formula to the previous expression and use the commutativity and the associativity
of the intersection with fundamental cycles. Then use the projection formula, the compatibility
of ×, cl, the distributivity of ∩,� and the compatibility of � with pushforward, to get

pr∗
(

∆n,m
X∗ (cl(U)�Rn+m) ∩ cl(Z × Z ′)

)
= pr∗

[
(cl(U)�Rn � cl(U)�Rm) ∩ cl(Z × Z ′) ∩ (prX×X)∗cl(∆U )

]
= pr∗

[
(cl(U)�Rn � cl(U)�Rm) ∩ (cl(Z)� cl(Z ′))

]
∩ cl(∆U )

= pr∗
[(

(cl(U)�Rn) ∩ cl(Z)
)
�
(
(cl(U)�Rm) ∩ cl(Z ′)

)]
∩ cl(∆U )

=
[
regD(Z)� regD(Z ′)

]
∩ pr(X×X,D�D)∗ cl(∆U ).

Another way to phrase the above compatibilities of the regulator map is by saying that the
regulator induces a morphism between (suitable re-graded), partially defined differential graded
algebras. Indeed, setting N r(U, p) := zp(U, 2p− r), the regulator becomes a (partially defined)
degree preserving map of complexes

regD :
⊕
p

N •(U, p) 99K
⊕
p

C•D(X,D,Z(p)).

Compatibility with products implies that this is a map of partially defined dg algebras.

It restricts to an everywhere defined map on N r
R(U, p) := zpR(U, 2p− r), with the partial inter-

section product defined for those pairs of chains whose intersection exists and lies again in the
domain of the regulator.

Functoriality

Assume there is given a smooth morphism f : U → U ′ of algebraic manifolds that is induced
by a smooth morphism of pairs f : (X,D) → (X ′, D′) of relative dimension δ. The map
f × id : X ×�n → X ′ ×�n is proper, hence induces a pushforward on the Deligne complexes
(by functoriality). If moreover the restriction f |U is proper, then there is also a pushforward
on higher Chow chains and one may ask whether these two operations commute.
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Lemma 68. For f |U proper, the regulator map is compatible with these pushforwards, i.e.,

zp(U, n)
(f |U )∗ //

regD
��

zp−δ(U ′, n)

regD
��

C2p−n
D (X,D,Z(p)) f∗ // C2p−2δ−n

D (X ′, D′,Z(p− δ))

commutes, where δ = dimX − dimX ′.

Proof. Let Z ∈ cp(U, n) such that regD(Z) is defined. Then

f∗regD(Z) = f∗ ◦ pr(X,D)∗

(
(cl(U)�Rn) ∩ cl(Z)

)
= pr(X′,D′)∗ ◦(f × id�

n)∗
(

(cl(U)�Rn) ∩ cl(Z)
)
.

Noting that cl(U)�Rn = (f × id�
n)∗(cl(U ′)�Rn), the projection formula yields

= pr(X′,D′)∗

(
(cl(U ′)�Rn) ∩ (f × id�

n)∗cl(Z)
)

= pr(X′,D′)∗

(
(cl(U ′)�Rn) ∩ cl((f |U )∗Z)

)
= regD((f |U )∗Z).

The last equality holds because cl is compatible with pushforward.

The functoriality of the regulator can be used to get rid of the dependence of the good compact-
ification by taking the limit over all good compactifications of U . In fact, if regD,(X,D) denotes
the regulator map with respect to the compactification (X,D), then the regulator of U can be
defined as the inverse limit

regD,U (Z) := lim
←−

(X,D)
regD,(X,D)(Z),

where the limit is taken over the inverse system formed by proper morphisms (X,D)→ (X ′, D′)
between good compactifications of U such that D → D′ and X \D → X ′ \D′. However, for
the remaining part of this work, the regulator will always be considered relative to a fixed
compactification.

Compatibility with Gn-action

The construction so far gives a map defined on higher Chow chains with Z-coefficients and, by
linearity, for coefficients in arbitrary rings.
Since one usually is more interested in alternating chains, one may want to compute the regu-
lator of a chain that is given as the alternation of some chain Z. The following lemma gives an
answer to this problem, stating that the regulator regD(Alt(Z)) = regD(Z) does not change at
all (under some minor conditions that are satisfied e.g. for the regulator in PD – but not CD).
In particular, it says that the regulator value of such a chain has integral coefficients.
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Lemma 69. If the exterior product on CD is graded-commutative and if R is mapped to −R
under z 7→ 1/z, then the diagram below commutes.

N •(U, p)A

Alt
��

regD // C•D(X,D,A(p))� _

��
N •(U, p)Alt

AQ

regD // C•D(X,D,AQ(p))

Proof. The automorphism group Gn of the n-cube acts on X ×�n and, by functorial pullback,
also on the complexes CD(X × �n, A(q)). The cycle map is compatible with the action of
Gn on higher Chow chains and the Deligne-Beilinson complex. Because Gn is generated by
permutations and inversions of the coordinates, the assumptions guarantee that Rn is (−1)Sign-
equivariant under Gn, and so

g∗(cl(U)�Rn) = (−1)Sign(g) · cl(U)�Rn

for all g ∈ Gn. As a consequence, for any g ∈ Gn and any Z ∈ zp(U, n) that lies in the domain
of the regulator,

regD(g∗Z) = pr∗
(

(cl(U)�Rn) ∩ cl(g∗Z)
)

= pr∗
(

(cl(U)�Rn) ∩ g∗cl(Z)
)

= pr∗
(
g∗(cl(U)�Rn ∩ cl(Z))

)
· (−1)Sign(g)

= pr∗
(

cl(U)�Rn ∩ cl(Z)
)
· (−1)Sign(g)

= regD(Z) · (−1)Sign(g),

where the second-last equality is due to the fact that (prX)∗ ◦g∗ = (prX ◦g−1)∗ = (prX)∗. This
implies regD ◦Alt = regD and thus proves the lemma.

As another consequence of the above lemma, the regulator is (under the conditions stated in the
lemma) also compatible with the product on the alternating complexes. That is, the restriction
of the regulator map to alternating chains gives a partially defined map of (partially defined)
graded-commutative algebras⊕

p

N •(U, p)Alt
Q 99K

⊕
p

C•D(X,D,Q(p)).

The same of course is also true for alternating chains in the domain of the regulator: That is, for
alternating chains in N r

R(U, p)Q where the product is the usual one on alternating higher Chow
chains (restricted to those pairs whose intersection lies again in the domain of the regulator).
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Compatibility with exterior products

Lemma 70. For any two quasi-projective manifolds U,U ′ with good compactifications (X,D)
and (X ′, D′), the following diagram commutes

⊕
r+s=p
k+l=n

zr(U, k)⊗Z z
s(U ′, l)

regD //

×

��

⊕
r+s=p
k+l=n

C2r−k(X,D,Z(r))⊗Z C
2s−l
D (X ′, D′,Z(s))

�

��
zp(U × U ′, n)

regD // C2p−n
D (X ×X ′, D �D′,Z(p)).

In other words, regC ◦ × = � ◦ regC , that is, the regulator is compatible with external products.

Proof. Let Z ∈ zr(U, k) and Z ′ ∈ zs(U ′, l) higher Chow chains that lie in the domain of the
regulator map. In order to simplify the notation, write X = cl(U), X ′ = cl(U ′),� = cl(�) etc.
The cycle class of the exterior product of the higher Chow chains is τ∗(Z�Z ′), where τ denotes
the obvious map X × �k ×X ′ × �l → X × X ′ × �k+l. The definition of the regulator map,
the compatibility of the intersection with bihomolorphic maps and the commutativity of the
exterior product with algebraic cycles shows that

regD(Z × Z ′) = pr(X×X′,D�D′)∗

(
(X �X ′ �Rk+l) ∩ τ∗(Z � Z ′)

)
= pr(X×X′,D�D′)∗

(
(X �Rk �X ′ �Rl) ∩ (Z � Z ′)

)
= pr(X×X′,D�D′)∗

([
(X �Rk) ∩ Z

]
�
[
(X ′ �Rl) ∩ Z ′

])
= regD(Z)� regD(Z ′),

where in the last equality it is used that pr(X×X′,D�D′)∗ = pr(X,D)∗× pr(X′,D′)∗.

Compatibility with higher correspondences

Let X,Y be two smooth projective varieties. A higher Chow chain C ∈ zp(X × Y, l) is called
a higher correspondence, if one is not as much interested in the chain itself, but on its action
on other higher Chow chains. For example, the pullback along the higher correspondence C is
defined by

C∗ : zq(Y, n) 99K zp+q−dim(X)(X, l + n)

Z 7→
(

prX×Y×�
l×�n

X×�l+n

)
∗

(
(prX×Y×�

l×�n

X×Y×�l )∗C ∩ (prX×Y×�
l×�n

Y×�n )∗Z
)
.

In the case of Chow chains (n = 0), this is the usual pullback along a correspondence (see
Fulton [21, Chapter 16]). The pullback along C can be extended to a pullback of alternating
chains by composing C∗ with the alternating projection.

Lemma 71. The abstract regulator map is compatible with pullback along higher correspon-
dences. That is, if C ∈ zp(X × Y, l) and Z ∈ zq(Y, n) lie in the domain of the regulator and if
the pullback C∗Z exists, then

regD(C∗Z) = regD(C)∗regD(Z).
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The expression on the right-hand side is pullback along the analytic correspondence regD(C)
(defined in the obvious sense).

Proof. In order to simplify the notation, we abbreviate L = �l and N = �n and use the
"Fulton-way" of writing a pullback/pushforward. For the same reason, we write C instead of
cl(C) and Z instead of cl(Z).

First, write down the definition of C∗ and the regulator and use that the cycle class is compatible
with pullback, pushforward and intersection. Then apply the projection formula to obtain
elements living on X × Y × L × N and regroup the intersections (which is possible for cycles
coming from geometry), to get that

regD(C∗Z) = prX∗
(

cl(C∗Z) ∩ prXLN∗LN Rl+n
)

= prX∗
(

prXY LNXLN∗

(
prXY LN∗XY L C ∩ prXY LN∗Y N Z

)
∩ prXLN∗LN Rl+n

)
= prX∗

((
prXY LN∗XY L C ∩ prXY LN∗Y N Z

)
∩ prXY LN∗LN Rl+n

)
= prX∗

((
prXY LN∗XY L C ∩ prXY LN∗L Rl

)
∩
(

prXY LN∗Y N Z ∩ prXY LN∗N Rn
))
.

Now use that intersection is compatible with pullback along projections (that is, with exterior
products) and apply the projection formula several times to conclude

= prX∗
(

prXY LN∗XY L

(
C ∩ prXY L∗L Rl

)
∩ prXY LN∗Y N

(
Z ∩ prY N∗N Rn

))
= prX∗

((
C ∩ prXY L∗L Rl

)
∩ prXY LNXY L∗ prXY LN∗Y N

(
Z ∩ prY N∗N Rn

))
= prX∗

(
prXY LXY ∗

(
C ∩ prXY L∗L Rl

)
∩ prXY ∗Y prY NY ∗

(
Z ∩ prY N∗N Rn

))
= prX∗

(
regD(C) ∩ prXY ∗Y regD(Z)

)
= regD(C)∗regD(Z).

More conceptually, define the pullback along the correspondence induced from a Deligne-
Beilinson chain E ∈ CkD(X × Y,Z(p)) to be the partially defined map

E∗ : CjD(Y,Z(q)) 99K Cj+k−2m
D (X,Z(p+ q −m)),

m = dimCX, that is given by the usual formula

E∗T := (prX)∗
(
E ∩ (cl(X)� T )

)
.

The order of the integration in chosen in such a way that the Leibniz rule holds. Indeed, a
simple calculation shows that for C,Z,E, T as above,

d(E∗T ) = (dE)∗T + (−1)kE∗dT,

∂(C∗Z) = (∂C)∗Z + (−1)lC∗∂Z.

In particular, if C is ∂-closed (and so is a higher Chow cycle), then the pullbacks along C and
E = reg(C) are compatible with respect to regulator map. That is, the commutative diagram
deduced from lemma 71 is actually a commuting diagram of complexes,
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zq(Y, •) C∗ //

regD
��

zp+q−m(X, l + •)

regD
��

C2q−•
D (Y,Z(q))

regD(C)∗ // C2p+2q−2m−l−•
D (X,Z(p+ q −m)).

The abstract regulator on cohomology

In order to extend regD to the whole cohomology, the following condition on R is crucial.

M: The inclusion zpR(U, •)A ⊂ zp(U, •)A is a quasi-isomorphism.

For the two instances of the regulator map we are going to consider, zpR(U, n) = zpR(U, n) is the
group of higher Chow chains which are in good position with respect to the real faces. In this
case, the moving lemma of Levine (adapted to the real analytic setting by Kerr/Lewis) states
that M holds for A ⊃ Q.

Lemma 72. If dR = cl((z)) and M holds, then regD extends to an everywhere defined map on
cohomology classes.

Proof. Because the inclusion considered in M is quasi-surjective, any class Z ∈ CHp(U, n) is
represented by some Z ∈ zpR(U, n) and we define

regD(Z) := regD(Z).

This definition does not depend on the choice of Z. Indeed, if Z̃ is another representative,
then Z − Z̃ is the boundary of an element which, by M (quasi-injectivity), can chosen to be in
zpR(U, n + 1). By the assumption on the defining element R, the regulator regD is compatible
with differentials, so that regD(Z)− regD(Z̃) = regD(Z − Z̃) is a boundary.

Recall that the intersection product of two higher cycle classes Z,Z ′ with representing higher
Chow cycles Z,Z ′ is defined to be the unique cohomology class

Z ∩ Z ′ := (∆n,m
U )∗(Z × Z ′ + ∂B) mod boundaries,

whenever there is a higher Chow chain B such that the pullback on the right hand side exists.
We need a condition to ensure that B can be chosen in such a way that the representative on
the right hand side lies in the domain of definition of the regulator. Therefore consider, for any
finite set S of closed subsets of U ,

zpS,R(U, n) :=
{
Z ∈ zpR(U, n)

∣∣∣Z intersects S × F properly ∀S ∈ S and all faces F ⊂ �n
}
.

The associated complex zpS,R(U, •) is a subcomplex of zpR(U, •) and gives rise to a partially
defined algebra ⊕pzpS,R(U, •), where the intersection of two higher Chow chains is said to exist
if and only if the intersection exists as higher Chow chains and lies again in ⊕pzpS,R(U, •). This
definition extends linearly to arbitrary coefficient rings A.
Consider the following strengthened form of condition M.

M+: The inclusion zpS,R(U, •)A ⊂ zp(U, •)A is a quasi-isomorphism for any finite set S.
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If M+ holds, every cycle in zpR(U, n)A can be changed by a boundary in zp(U, n)A such that
the general pullback along a fixed map exists.
In the case of the regulators considered later, this condition will be satisfied for A ⊃ Q.

Lemma 73. If dR = cl((z)) and M+ holds, then regD is compatible with the intersection on
cohomology classes, that is,

reg(Z ∩ Z ′) = reg(Z) ∩ reg(Z ′).

Proof. Choose representatives Z ∈ zR(U, n), Z ′ ∈ zR(U,m) of the given higher cycle classes
and an admissible chain B such that (Z × Z ′) + ∂B can be pulled back along ∆n,m

U . Choose
B′ such that ∆n,m∗

U (Z ×Z ′ + ∂B) + ∂B′ lies in the domain of the regulator. After replacing B
by B + ∆n,m

U∗ B
′, we can assume that B′ = 0 and that the pullback of Z ×Z ′ + ∂B along ∆n,m

U

lies in the domain of the regulator.
We again identify Z,Z ′ with the fundamental cycles they represent in CD and write X instead
of cl(U). Then, similar to lemma 67,

∆∗regD
(

∆n,m∗
U (Z × Z ′ + ∂B)

)
= pr(X×X,D�D)∗∆n,m

X∗

(
(X �Rn+m) ∩∆n,m∗((Z � Z ′) + ∂B

))
= pr(X×X,D�D)∗

(
∆n,m
X∗ (X �Rn+m) ∩

(
(Z � Z ′) + ∂B

))
.

After writing the generalized diagonal as an intersection and noting the associativity of the
intersection with algebraic cycles, this becomes

= pr(X×X,D�D)∗

(
τ∗
(
∆(X)��n+m ) ∩ (X �Rn �X �Rm) ∩ ((Z � Z ′) + ∂B

))
and, using the projection formula, the compatibility of ∩ with projection to (X,D) and the
definition,

= pr(X×X,D�D)∗

(
∆(X) ∩ pr(X�X)∗

(
(X �Rn �X �Rm) ∩ ((Z � Z ′) + ∂B)

)
= ∆(X,D) ∩ pr(X×X,D�D)∗

(
(X �Rn �X �Rm) ∩ ((Z � Z ′) + ∂B)

)
= ∆(X,D) ∩ regD(Z � Z ′ + ∂B).

Since Z,Z ′ (hence Z ×Z ′) are in the domain of the regulator, it follows from the compatibility
of regD with products and differentials that

= ∆(X,D) ∩
(
regD(Z)� regD(Z ′) + boundary

)
.

This implies that indeed regD(Z∩Z ′) is the cohomological intersection of regD(Z) and regD(Z ′).
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4.2 Regulator into the 3-term complex

We now apply the previous construction to the 3-term complex of currents from section 3. For
U a quasi-projective manifold with smooth compactification X and normal crossing boundary
divisor D, this is the complex

CD(X,D,A(p)) = Tot
(
I(X,D,A(p))⊕ F pD(X, logD) −δ+ι−−−→ D(X, logD)

)
.

These complexes inherit the required functoriality properties from the functoriality of the un-
derlying currents (componentwise applied). The pushforward along a morphism f : X → Y

of relative dimension ρ = dimC Y − dimCX has an additional twist, so that f∗(a, b, c) =
(2πi)ρ(f∗a, f∗b, f∗c).

For an algebraic cycle Z of codimension p its associated Deligne-Beilinson fundamental cycle in
the 3-term complex is given by the tuple cl(Z) = (2πi)p([Z], [Z], 0), with [Z] being the integral
(p, p)-current of integration over the non-singular part Zreg.

The exterior and the intersection product on the 3-term complex, �α and ∩α, has to be one of
the associative ones (to make the construction well-defined), that is, only α = 0 and α = 1 are
possible. We choose the parameter α = 0 and so the product is given by Beilinson’s formula

(a, b, c) �0 (ã, b̃, c̃) =
(
a� ã , b� b̃ , c� b̃+ (−1)ra� c̃

)
.

The intersection product is (partially) defined by the same formula with � replaced by ∩ (and
exists if and only if the right hand side exists).

In order to apply the construction from the preceding section, we need to define a "base" element
in C1

D(�,Z(1)). For that, we copy from [39, 5.3]. Choose the logarithm on P1 branched over
R- = [−∞, 0], with R- oriented in such a way that its boundary ∂R- = 0 − ∞ = (z) is the
divisor of the coordinate function. Then define

R := (2πi[R-], [dlog z], [log z]) .

From the formula of currents d[log z] = [dlog z] − 2πi[R-], as proved for example in [39], one
obtains that the above element has differential dR = 2πi·((z), (z), 0), that is, the cycle associated
to the divisor of the coordinate z.

The n-th exterior power of R is an element in the Deligne-Beilinson complex Cn(�n,Z(n)). Its
components Rn = (Tn,Ωn, Ln) can be computed to be (with signs coming from the comparison
of the "homological" (×) and the "cohomological" (�) exterior product)

Tn = (−1)(
n
2)(2πi)n[(R-)

×n]

Ωn = Ω(z1, . . . , zn) = [dlog z1 ∧ . . . ∧ dlog zn]

Ln = L(z1, . . . , zn) = [log z1]� Ω(z2, . . . zn)− 2πi[R-]� L(z2, . . . , zn)

=
n−1∑
k=0

(−2πi)k[R-]
�k � [log zk+1]� [dlog zk+2 ∧ . . . ∧ dlog zn]

=
n−1∑
k=0

(−1)(
k
2)(−2πi)k[R- × . . .× R-︸ ︷︷ ︸

k times

]� [log zk+1 dlog zk+2 ∧ . . . ∧ dlog zn].
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For example, the first exterior powers of R are

R2 =
(
− (2πi)2[R- × R-], [dlog z1 ∧ dlog z2], [log z1 dlog z2]− 2πi[R-]� [log z2]

)
R3 =

(
− (2πi)3[R- × R- × R-], [dlog z1 ∧ dlog z2 ∧ dlog z3],

[log z1 dlog z2 ∧ dlog z3]− 2πi[R-]� [log z2 dlog z3]− (2πi)2[R- × R-]� [log z3]
)
.

Let Z ∈ zp(U, n) be a higher Chow chain that lies in the domain of the regulator map. Be-
cause ∩0-multiplication with ([Z], [Z], 0) is just componentwise intersection with the current
represented by Zreg, the regulator of Z is

regC(Z) = (2πi)p−n · (TZ ,ΩZ , LZ)

where

TZ = (2πi)n pr(X,D)∗

(
([X]� Tn) ∩ [Z]

)
,

ΩZ = pr(X,D)∗

(
([X]� Ωn) ∩ [Z]

)
,

LZ = pr(X,D)∗

(
([X]� Ln) ∩ [Z]

)
.

The resulting map agrees (up to 2πi-factors and signs) with the map given in [39].
Note the the above expressions are well-defined for all Z that intersect the real faces (and thus
the R- components) properly. Thus the restriction to chains in zpR(U, n) is everywhere defined
and, with N 2p−n

R (U, p) := zp(U, n), gives rise to a map of partially defined dg algebras

regC :
⊕
p

NR(U, p)→
⊕
p

CD(X,D,Z(p)).

Because the product
⋂

0 is graded-commutative only up to homotopy, this regulator map how-
ever does not restrict to alternating chains (and thus is not a map of graded-commutative dg
algebras).
Remark 7. • More correctly one should replace the Z in the above formula by Zreg. We

make the convention that, before actually performing any integration, 1) the domain of
undefinedness of the integrand should be removed from the integration domain, 2) the
integration domain should be replaced by its manifold points.

• One could similarly proceed with an arbitrary parameter α, but since in this case the
exterior product need not be associative, one has to choose explicitly how to evaluate the
iterated products. Different choices give rise to different (though homological equivalent)
regulators.

For α = 1, one obtains "reversed formulas", as follows from t ∩α t′ = (−1)|t||t′|t′ ∩1−α t.

Regulator into the 2-term-complex

The weight p Deligne-Beilinson cohomology can alternatively be computed by a slightly smaller
(quotient) complex of currents. Indeed, dividing the 3-term complex by the total complex over
idFpD•(X,D) one obtains the 2-term complex

CD(X,D,A(p)) := Tot
(
I•(X,D,A(p)) −δ−−→ σpD•(X,D)

)
.
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with quotient complex σpD• = D•/F pD•. The regulator map can now be defined by the same
formula as in the previous section, with defining element

R := (2πi[R-], [log z]).

But there exist no new interesting products on the 2-term complex (it is a total complex of
the same form as the 3-term complex), so that one won’t get anything interesting/new. All
formulas are obtained from the ones in the 3-term complex by passing to the quotient.

4.3 The regulator into PD

In order to get a regulator map between (partially defined) graded-commutative differential
graded algebras, we will now apply the construction of 4.1 to the complexes PD(X,D,A(p)).
Recall that for (X,D) a good compactification of U , they have been defined as

PD(X,D,A(p)) :=
{
ω ⊗ T ∈ ΛA(x)⊗A D(X, logD) such that ω(0)T ∈ I(X,D,A(p)),

ω(1)T ∈ F pD(X, logD)

}
.

These complexes inherit all the functorial properties from the complex of currents by letting a
morphism act trivially on ΛA(x). To get the correct coefficients, the pushforward is twisted in
exactly the same way as the pushforward for CD. A codimension p cycle Z in X is represented
by the constant path cl(Z) = (2πi)p[Z].
They are equipped with an A-linear exterior product coming from the wedge product on ΛA(x)
and the exterior product of currents. Explicitly, (ω⊗ T )� (η⊗S) := (−1)|S||η|ω ∧ η⊗ (S � T ).
Similarly, the intersection product is defined by replacing the exterior product in the above
formula with the ∩ product. It is defined whenever the intersection of the underlying currents
is defined and has the correct type (lies in PD). The two products are both graded-commutative
in their sense.
For the underlying element of the regulator we choose the element in P 1

D(�,Z(1)) defined as

R := (1− x)(2πi)[R-] + x[dlog z] + dx[log z].

Its relation to the element that defines the regulator for the 3-term complex is described in 4.4.
Exterior multiplication yields Rn = R� . . .�R, which for small values of n is (with 2πi-factors
before R- omitted) given by the currents on �n:

R2 =(1− x)2R- � R- + x2 dlog�dlog +x(1− x)[R- � dlog + dlog�R-]

+ xdx[log�dlog−dlog� log] + (1− x)dx[log�R- − R- � log]

R3 =(1− x)3R- � R- � R- + (1− x)2x[R- � R- � dlog +R- � dlog�R- + dlog�R- � R-]

+ (1− x)x2[R- � dlog�dlog + dlog�R- � dlog + dlog�dlog�R-] + x3 dlog�dlog�dlog

+ x2dx[log�dlog�dlog− dlog� log�dlog + dlog�dlog� log]

+ (1− x)xdx[log�R- � dlog−R- � log�dlog +R- � dlog� log]

+ (1− x)xdx[log�dlog�R- − dlog� log�R- + dlog�R- � log]

+ (1− x)2dx[log�R- � R- − R- � log�R- + R- � R- � log].
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In general, Rn = Rn0 + Rn1 where Rni consists of those summands of Rn whose dx-degree is i.
They satisfy

Rn+1
0 = (1− x)2πiRn0 � R- + xRn0 � dlog

Rn+1
1 = (−1)ndxRn0 � log +(1− x)2πiRn1 � R- + xRn1 � dlog .

Thus Rn0 consists of 2n summands: all possible combinations built from dlog and R-. The
degree one part Rn1 grows faster: It consists of n2n−1 summands, 2n−1 for each position where
the log term can be placed.
The intersection with Rn is well-defined for all higher Chow chains that properly intersect the
real faces and so the regulator is the map zpR(U, n)→ P 2p−n

D (X,D,Z(p)), defined by

regP (Z) = (2πi)p pr(X,D)∗
(
([X]�Rn) ∩ [Z]

)
.

Again using d[log z] = [dlog z] − 2πi[R-], one verifies that dR = 2πi · [0 −∞] = cl((z)). This
guaranties that regP induces a map of complexes. The inversion map τ : z 7→ 1

z is an automor-
phism of � that preserves the chosen branch � \R- of the logarithm and reverses the orientation
of R-. One finds that τ∗[log z] = −[R-] and τ∗[dlog z] = −[dlog z], so that τ∗R = −R. As a
consequence, the sequence of lemmata in 4.1 implies that this indeed gives rise to a morphism
of partially defined graded-commutative differential graded algebras

regP :
⊕
p

N •R(U, p)Alt
Q →

⊕
p

P •D(X,D,Q(p)).

4.4 Comparison
We now compare the two regulator maps with values in PD resp. CD. Recall from 3.3 that
these two complexes are related by the evaluation homomorphism

ev : P •D(X,D,A(p))→ C•D(X,D,A(p))

ω ⊗ T 7→

(
ω(0)T, ω(1)T,

∫
[0,1]

ω · T

)
.

(4.1)

which turned out to be a quasi-isomorphism whenever Q ⊂ A, a quasi-inverse being

s : C•D(X,D,A(p))→ P •D(X,D,A(p))

(a, b, c) 7→ (1− x)⊗ a+ x⊗ b+ dx⊗ c.

Note that the underlying elements of the two regulators (R1
P and R1

C , say) can be obtained
from each other by applying the map ev resp. its splitting.
Recall moreover that although ev is just a map of vector spaces (not of algebras), transporting
the intersection product from PD to CD using the splitting gives the product

⋂
1/2. Thus on

homology classes the product on PD is equal to
⋂

1/2 and hence to
⋂

0, since the two products
are homotopic. This showed that ev induces an isomorphism of algebras on homology.
For the construction of the two regulators, this means that the elements RnC , RnP in the definition
of the two regulators differ only by a boundary. That is, ev(RnP ) equals RnC up to boundaries,
and s(RnP ) equals RnP up to boundaries. Using this, we can show that the two regulator maps
are isomorphic on cohomology:
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Lemma 74. For Q ⊂ A, the non-commutative diagram of complexes

zpR(U, •)A
regC //

regP
��

C2p−•
D (X,D,A(p))
55

qIsouu
P 2p−•
D (X,D,A(p))

commutes after passage to (co-)homology.

Proof. ev is compatible with pushforward and, by lemma 58, ev is also compatible with the
intersection/exterior product with cycle classes. For example, ev(W ∩ cl(Z)) = ev(W )∩α cl(Z)
for all W ∈ PD, α ∈ R and all higher Chow chains Z. Note that the first cl(Z) denotes the
fundamental cycle in PD whereas the second denotes the fundamental cycle in CD. Using this,

ev ◦ pr∗
(

(cl(U)�RnP ) ∩ cl(Z)
)

= pr∗
(
ev(cl(U)�RnP ) ∩0 cl(Z)

)
= pr∗

(
(cl(U)�0 ev(RnP )) ∩0 cl(Z)

)
= pr∗

(
(cl(U)�0 (RnC + boundary)) ∩0 cl(Z)

)
= pr∗

(
(cl(U)�0 R

n
C) ∩0 cl(Z)

)
+ boundary.

Thus one obtains ev(regP (Z)) ≡ regC(Z) on cohomology.

The above proof can be refined to give a result for chains instead of mere cycle classes. The
key observation is the following.

Lemma 75.
ev(RnP ) = Alt∗(RnC).

Proof. Note that each generator of (Z/2)n ⊂ Gn acts on RnC by a minus sign and thus Alt∗RnC =
alt∗RnC , where alt denotes the alternation with respect to the action of the symmetric group
Sn. Hence it suffices to show that ev(RnP ) = alt∗(RnC). In order to do this, compare the first
two and the last component of the two triples separately:

• Evaluating x = 0 in RnP makes all summands to zero except (2πi)n[R-]�n, which is just
the first component of RnC . Since this is symmetric, it is also equal to the first component
of alt∗RnC . Similar for the second component.

• Both alt∗(RnC)3 and the dx-degree-1-part of RnP are spanned by monomials of the form
g∗M where g ∈ Sn and (we omit the (2πi)k factor)

M = (R-)
�k � log�dlog�(n−k−1) .

In the former case the coefficients are rational numbers and in the latter case the coef-
ficients are 1-forms ωM . We have to compare the coefficients before g∗M that occur in
(the 3rd components of) ev(RnP ) and alt∗(RnC).

On the one hand, the coefficient in ev(RnP )3 is
∫ 1

0 ωg∗M , that is,

∫ 1

0
(1− x)kxn−k−1dx = k!(n− k − 1)!

n!

as follows from induction – or using properties of the beta function.
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On the other hand, the coefficient before g∗M in alt∗(RnC)3 is just the coefficient before
g∗M in alt∗g∗M for type reasons. This is equal to the coefficient of M in alt∗M , which is

|stabilizer of M |
|Sn|

= k!(n− k − 1)!
n! .

Lemma 76. If Q ⊂ A, one has

ev ◦ regP = regC ◦Alt.

Moreover, for any A, the first two components of ev ◦ rP and rC are equal, that is,

ev ◦ regP (Z) =
(
regC(Z)0, regC(Z)1, rest

)
for any Z ∈ zpR(U, n)A.

Proof. The second statement follows immediately, as indicated in the proof of lemma 75, from
the definitions and is omitted. Using lemma 75, the first statement can be proven as follows.
Starting similar to the proof of lemma 74, compute

ev ◦ rP (Z) = pr∗
(
ev(cl(U)�RnP ) ∩0 cl(Z)

)
= pr∗

(
(cl(U)�0 ev(RnP )) ∩0 cl(Z)

)
= pr∗

(
(cl(U)�0 Alt∗(RnC)) ∩0 cl(Z)

)
= pr∗Alt∗

(
(cl(U)�0 R

n
C) ∩0 Alt∗(cl(Z))

)
.

Observing that pr ◦Alt = pr and Alt∗cl(Z) = cl(AltZ) finishes the proof.

Remark 8. Lemma 75 can be sharpened such that ev(RnP ) = (id, id, alt)∗(RnC) even with integral
coefficients. Similarly, lemma 76 has a refined version for integral coefficients saying that
ev ◦ regP (Z) = (2πi)p pr∗

(
(id, id, alt)∗(cl(U)�RnC) ∩0 cl(Z)

)
.

4.5 On the defining element of the regulator

A fundamental ingredient in the definition of the regulator map is – when the complexes CD
and products on them are already chosen – the choice of the defining element R ∈ C1

D(�,Z(1)).
This choice of course is not unique. If R̃ is another element such that dR̃ = cl((z)), then
R1 − R̃1 is d-closed. Because H1

D(�,Z(1)) = H0(P1,O∗) = C∗, there is a whole C∗-family of
such elements. Since it can be seen from the construction of the regulator that any cohomological
equivalent choice leads to a cohomological equivalent regulator map, this is essentially all the
ambiguity that can happen.
We want to motivate the choice of R made in 4.2 and for that consider R as a triple in the
relative complex C1

D(�, 1,Z(1)). Having found a description of the latter, any two lifts to
C1
D(�,Z(1)) will differ only by an element "on-1" and which – under the assumption that we

are working with more geometric (that is, normal) currents – will arise as the pushforward of
an element in CD(1,Z). Because R consists of currents of dimension ≥ 1, this pushforward has
to be zero and thus the lift is unique.
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Recall that R ∈ C1
D(�, 1,Z(1)) can be recovered from the regulator map on complexes, and

even from it’s restriction to z1
R(�, 1) → C1

D(�, 1,Z(1)) as the image of the diagonal ∆ ⊂ �2.
As the diagonal is just the graph over the identity map on �, giving the defining element, and
thus the regulator, is the same as giving a map

OR(�)→ C1
D(�, 1,Z(1))

from the set of those holomorphic functions on � whose graphs in �2 intersect the real faces
properly.
In order to define such a map, start with the exponential sequence on �,

0→ Z(1)→ O exp−−→ O∗ → 1.

This sequence can be seen as a quasi-isomorphism (Z(1) → O) → O∗[−1] from the sheaf-
theoretic Deligne complex on � to the sheaf of non-vanishing holomorphic functions (shifted
by −1). The left-hand side can be resolved by currents, by means of the quasi-isomorphisms

Z(1) ∼−→ I�,Z(1) and O ∼−→ Tot
(
F 1D� → D�

)
[1]

where the first quasi-isomorphism is induced by the inclusion of locally constant functions into
locally integral currents, and the second one by the map f 7→ (df, f). Together, they induce a
quasi-isomorphism of sheaves on �,

(Z(1)→ O) ∼−→ CD,�,Z(1),

between the sheaf-theoretic Deligne complex and the sheafified 3-term complex.
The passage to sheaves on � is accomplished by pushing these complexes forward along the
inclusion j : �→ � = �∪{1}. This results in the diagram

j∗
(
Z(1)→ O

)
++tt

j∗O∗�[−1] 3 exp(f) (n,f)

∈

�oo � // (n,[df ],[f ]) ∈ j∗CD,�,Z(1)

CD,(�,1),Z(1)

OO

where the right lower map is the restriction map from the sheafified Deligne-Beilinson complex
on (�, 1) to the pushforward of the sheafified Deligne complex on �.
After passing to degree 1 and global sections, this gives a relation between elements in O∗(�)
and elements in C1

D(�, 1,Z(1)). In order to make this into a map from invertible holomorphic
functions on � to C1

D(�, 1,Z(1)), one has to make a choice of a logarithm, that is, one has to
specify a branch locus (here R-) and a branch (here log(1) = 0). Then the logarithm function is
well-defined for any function f whose image set does not meet the branch locus (i.e., f−1R- = ∅),
and in this case f corresponds to the triple (0, [dlog f ], [log f ]).
Since we are working with currents, the expression [log f ] even makes sense for holomorphic
functions that meet the branch locus properly, that is, f−1R- has the correct (real) codimension
(or, no top-dimensional piece is mapped into R-). These are just the functions in OR(�). Since
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for such an f the resulting triple need no longer be d-closed, one has – in order to get a
homomorphism of complexes – to correct it by the residue current in the first component. This
yields the map

OR(�)→ C1
D(�, 1,Z(1)), f 7→

(
[f−1(R-), [d log f ], [log f ]

)
.

The image of the identity id ∈ OR(�) under this map gives exactly the formula for the element
R ∈ C1(�,Z(1)) used in 4.2.
As a final remark, we come back to the ambiguities mentioned in the first two paragraphs
of this section. The C∗-action on cohomology occurring there comes from the C∗-action on
O∗ so that, tracing the previous diagram, λ ∈ C∗ acts on the 3-term complex by (γ, ω, f) 7→
(γ, ω, f + log(λ)). In particular, essentially all the other choices for R (for a fixed choice of
logarithm) are (

[R-], [dlog z], [log(z) + log(λ)]
)

where λ ∈ C∗.
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5 Examples

In this section, we compute some explicit formulas for the regulator map regP . First, we consider
the (important) special case where U is a point. Then we give formulas for the regulator values
of higher Chow chains in small cubical degree n ≤ 3. One such chain is Totaro’s cycle in �3,
which we consider in more detail. After that, we consider the regulator values of graph cycles
and give simple computable formulas for them.

5.1 Regulator of a point

Consider the special case of U = X = SpecC being a point and coefficients A = Z. Recall from
section 3.4 that the space of currents over SpecC identifies with the field of complex numbers
C, and that under this identification the complex PD(pt,Z(p)) becomes the subset of complex
valued polynomial forms ΛC(x) = C[x, dx],

PD(pt,Z(p)) =
{
ω ∈ C[x, dx]

∣∣∣∣ ω(0) ∈ Z(p) and
ω(1) = 0 if p > 0

}
.

The regulator into PD is given by maps zpR(pt, n) → C[x, dx]2p−n for n, p ≥ 0. In particular,
there are only two non-trivial cases to consider: n = 2p and n = 2p− 1. In each other case, the
regulator value of a higher Chow chain Z is zero, because the intersection of [Z] with Rn will
have a degree which is too high or low to survive the integration step underlying the pushforward
to the point. The two cases n = 2p and n = 2p − 1 correspond to the two summands in the
decomposition Rn = Rn0 +Rn1 : the regulator

regP (Z) = (2πi)p pr∗ (Rn ∩ [Z])

in the first case is computed by the summand Rn0 of Rn and in the second case by Rn1 . In both
cases the intersection is seen to be zero dimensional, i.e., a sum of points (in the second case
tensored with dx). Thus the pushforward is just the sum of the coefficients of these points,
multiplied with the relative dimension (2πi)−n.
In the first case only two kinds of currents occur. One can use shuffles to sort them and write

Rn0 ∩ [Z] =
∑
i

∑
σ∈Sh(i,n−i)

(−1)|σ|(2πi)i(1− x)ixn−iσ∗
(
R-

�i � dlog�n−i
)
∩ [Z].

Note that the summation index starts at i = p since otherwise the resulting current lies in the
n− i+ p > n-th part of the Hodge filtration and thus is zero.
In the second case, an additional log term shows up. Thinking of this log term as belonging
to the set of dlogs, we can again use shuffles to sort the terms in Rn1 . In fact, Rn1 can be

written as the sum over all currents of the form σ∗

(
R- � . . .� R- � dlog� . . . log

j
. . .� dlog

)
(with suitable coefficients), with σ shuffling the forms and the R- together. Becoming explicit,
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Rn1 ∩ [Z] is the current∑
i=0...n−1,
j=i...n−1

∑
σ∈Sh(i,n−i)

(−1)|σ|+j(2πi)i(1−x)ixn−i−1dx⊗σ∗
(
R�i
- � dlog�j−i� log�dlog�n−j−1

)
∩[Z].

Recall – again from section 3.4 – that the Deligne cohomology of SpecC can be computed by
a very simple complex concentrated in a single degree. Indeed, the projection to resp. quotient
by Z(p) give quasi-isomorphisms

CD(pt,Z(p)) =
(
Z(p)⊕ F pC→ C

)
qIso−−−→

Z p = 0,

C/Z(p)[−1] p > 0.

Denote by ẽv the composition of the evaluation map with the above quasi-isomorphism. Then
the regulator map into this complex is the composition

N •R(pt, p) = zpR(pt, 2p− •) regP−−−→ P •D (pt,Z(p)) ẽv−→

Z p = 0,

C/Z(p)[−1] p > 0.

This is the unique map that for p = • = 0 sends an element k · [pt] to k ∈ Z, and for p > 0
sends a cycle Z ∈ zp(pt, 2p − 1) to

∫ 1
0 regP (Z). In each other case, the map is zero. After

passing to cohomology groups and taking into account that N •R computes motivic cohomology,
one obtains that the induced regulator

regP : H l
M(pt,Z(p)) −→


Z p = 0, l = 0,

C/Z(p) p > 0, l = 1,

0 else.

is given by
k · pt 7→ k p = 0, l = 0,
Z 7→

∫ 1
0 regP (Z) p > 0, l = 1.

For n = p = 1 one obtains (see the formula in the next subsection) the logarithm map

regP = log : H1
M(pt,Z(1)) = C∗ → C/2πiZ.

Formulas for p > 0 can be obtained by evaluating (integrating over the formal variable x) the
formula for Rn1 ∩ [Z] and pushing the result down to a point.

5.2 Formulas for n ≤ 3
We now calculate some low-dimensional examples of the regulator map regP and their images in
the 3-term-complex under the evaluation map ev. They are easily read off from the computation
of Rn in section 4.3.

• First of all, consider the case where n = 0. Here regP is just the (relative) cycle map from
the usual Chow chains on U to the Deligne-Beilinson complex PD on (X,D). Composition
with ev gives the cycle map into CD.
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• For n = 1 the regulator regP (Z) is the push-forward to (X,D) of

(1− x)(2πi)p+1[U × R-] ∩ [Z] + x(2πi)p[dlog z] ∩ [Z] + dx(2πi)p[log z] ∩ [Z].

After writing the pushforward as a fiber integral over X twisted by (2πi)−1, this becomes
(with z the coordinate in �)

(1− x)(2πi)p
∫

(X×R-)∩Z
+x(2πi)p−1

∫
Z

dlog z + dx(2πi)p−1
∫
Z

log z.

In all these formulas one has to exclude the poles of the integrand from the integration
domain, that is, the two last integrals are over Zreg \ (U×{0,∞}) and Zreg \ (U×R-)
respectively.

In particular, the regulator into PD contains for n = 1 no new information compared to
the regulator in the 3-term complex, which is given by the triple of log currents on X

(2πi)p−1

(
2πi

∫
(X×R-)∩Z

,

∫
Z

dlog z,
∫
Z

log z
)
.

• For n = 2 the regulator value of Z ∈ zpR(U, 2) in the complex PD is:

− (2πi)p(1− x)2
∫
Z∩(X×R-×R-)

+(2πi)p−2x2
∫
Z

dlog z1 ∧ dlog z2

+ (2πi)p−1x(1− x)
(∫

Z∩(X×R-×�)
dlog z2 −

∫
Z∩(X×�×R-)

dlog z1

)

+ (2πi)p−2xdx

(∫
Z

log z1 dlog z2 −
∫
Z

log z2 dlog z1

)
+ (2πi)p−1(1− x)dx

(∫
Z∩(X×�×R-)

log z1 −
∫
Z∩(X×R-×�)

log z2

)
.

In the 3-term complex, its first two components are the currents

−(2πi)p
∫

(X×R-×R-)∩Z
, (2πi)p−2

∫
Z

dlog z1 ∧ dlog z2

and its third component is

(2πi)p−2

2

(∫
Z

log z1 dlog z2 − log z2 dlog z1 + 2πi
∫
Z∩{z2∈R-}

log z1 − 2πi
∫
Z∩{z1∈R-}

log z2

)
.

This is a symmetrization of (a C version of) a formula found by Beilinson in [1].

On the other hand, the regulator value regC,∩0(Z) of Z in the 3-term complex is

(2πi)p−2
(
−(2πi)2

∫
Z∩{z1,z2∈R-}

,

∫
Z

dlog z1∧dlog z2,

∫
Z

log z1 dlog z2−2πi
∫
Z∩{z1∈R-}

log z2

)
.

• Examining the case n = 3, we consider only the evaluation of the regulator value in the
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3-term complex. The resulting triple has as first components

−(2πi)p
∫
Z∩(X×(R-)3)

, (2πi)p−3
∫
Z

dlog z1 ∧ dlog z2 ∧ dlog z3,

and the third component
∫
regP (C(1)) is given by

1
3

∫
Z

log z1 dlog z2 dlog z3 − log z2 dlog z1 dlog z3 + log z3 dlog z1 dlog z2

+ 2πi
6

∫
Z∩{z1∈R-}

log z3 dlog z2 − log z2 dlog z3

+ 2πi
6

∫
Z∩{z2∈R-}

log z1 dlog z3 − log z3 dlog z1

+ 2πi
6

∫
Z∩{z3∈R-}

log z2 dlog z1 − log z1 dlog z2

− (2πi)2

3

[ ∫
Z∩{z1,z2∈R-}

log(z3)−
∫
Z∩{z1,z3∈R-}

log(z2) +
∫
Z∩{z2,z3∈R-}

log(z1)
]
.

To make this more concrete, we apply this formula to the cycle C(1) considered by Burt
Totaro in [62, §2], which by definition is the algebraic cycle in �3 parametrized by

ϕ(t) = (t, 1− 1
t , 1− t), t ∈ P1 \ {0, 1,∞}.

The first and the last row vanishes, and each other term becomes π2/6, so that∫
regP (C(1)) = π2

6 = Li2(1)

is a special value of the dilogarithm function.

Remark. The importance of C(1) lies in the fact that its regulator value π2

6 is an element of order
24 in C/Z(2) = C/4π2Z and hence C(1) is an element of order at least 24 in CH2(Q, 3). On the
other hand, it has been shown by Bloch-Lichtenbaum [10, Thm 7.2] that CH2(Q, 3) is isomorphic
to the indecomposable part of theK3-group, that is, to the quotientK ind

3 (Q) := K3(Q)/KM
3 (Q)

of the Quillen-K3 by the (image of) Milnor-K3. This group has been computed by [51] to be
Z/24, so that CH2(Q, 3) ∼= K ind

3 (Q) ∼= Z/24Z. In particular, the order of C(1) is at most 24
and consequently must be a generator of CH2(Q, 3).

5.3 The general Totaro cycle in �3

We continue the above example of the Totaro cycle and consider, following [39], more general
for a parameter a ∈ P1(C) \ (R≤0 ∪ R≥1) the parametrized subvarietiy

C(a) =
{

(z, 1− a
z , 1− z) : z ∈ P1(C)

}
∩�3 .

It has Bloch boundary ∂C(a) = −(a, 1 − a) and thus is a higher Chow cycle if and only if
a ∈ {0, 1}. Nevertheless, for a as above, C(a) intersects the real boundaries properly and we
can calculate the regulator for such a. Using the formula from above (for n = 3) and noting
that the first (by dimensionality) and the last (by the choice of a) row vanish, the computation
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of the regulator boils down to the computation of the integrals

A =
∫ 0

−∞
log(1− z) dlog(1− a/z)−

∫ 0

−∞
log(1− a/z) dlog(1− z)

B =
∫ a

0
log z dlog(1− z)−

∫ a

0
log(1− z) dlog z

C =
∫ 1

∞
log(1− a/z) dlog z −

∫ 1

∞
log z dlog(1− a/z).

Integration by parts reduces each of the above pairs of integrals to a single integral and a limit.
Evaluation with mathematica gives

A = 2
∫ 0

−∞
log(1− z) dlog(1− a

z )− lim
h↗0

[
log(1− a

h ) log(1− h)− log(1− ah) log(1− 1
h )
]

= 2 Li2(a) + 2 log(a) log(1− a).

Similarly for B, C:

B = −2
∫ a

0
log(1− z) dlog z + lim

h↗1

[
log(ah) log(1− ah))

]
− lim
h↘0

[
log(h) log(1− h)

]
= 2 Li2(a) + log(a) log(1− a)

C = 2
∫ 1

∞
log(1− a/z) dlog z − lim

h↗∞

[
log(1− a

1− 1
h

) log(1− 1
h )− log(1− a

h ) log(h)
]

= 2 Li2(a).

Thus the regulator in this case is

regP (C(a)) = (2πi)2−3 · (2πi)(1− x)xdx(A+B + C)

= (1− x)xdx
(
6 Li2(a) + 3 log(a) log(1− a)

)
.

In the 3-term complex, this becomes
(
0, 0,Li2(a) + 1

2 log(a) log(1− a)
)
. For a→ 1 this reduces

to the value already computed. The KLM regulator on the other hand can easily computed to
be

regC,∩0(C(a)) =
(
0, 0,Li2(a) + log(a) log(1− a)

)
.

In particular, the two regulators are not equal.

Remark. Following KLM [39], one can also consider the curve D(b) := {(1−z, 1−b/z, z)}∩�3.
Then C(a)−D(1− a) is a higher Chow cycle. Since D(b) is obtained from C(b) by exchanging
the first two components, the resulting regulator is regP (D(b)) = −regP (C(b)). Using this
together with the transformation rules for the dilogarithm [50, (3.3)], shows that

regP (C(a)−D(1− a)) = regP (C(a)) + regP (C(1− a))

= 6x(1− x)dxLi2(1),

independent of a. The same happens with the regulator into the 3-term complex and in fact,
one finds that ev ◦ regP (C(a)−D(1− a)) = regC,∩0(C(a)−D(1− a)).
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5.4 Regulator formulas for graph cycles

In this subsection, we consider higher Chow chains that arise as the graphs of rational functions
and give formulas for their regulator values. Denote by reg either the regulator in 4.2, or 4.3.
In the following, we fix a good compactification (X,D) of U .

Graph cycles over U Consider a non-zero rational function f = (f1, . . . fn) : U → �n on U
that intersects the real faces properly (i.e., the inverse image of any real face under f exists and
has the correct codimension). Then the graph Γf is a real higher Chow chain on U .

Lemma 77. The regulator of the graph Γf ∈ zpR(U, n) is

reg(Γf ) = pr(X,D)∗(f∗Rn).

Proof. Recall that a rational function f : U → V induces a general pullback of currents on
good compactifications by f∗T = prX∗(pr∗Y T ∩ cl(Γf )). The lemma now follows immediately
from the definitions:

reg(Γf ) = pr(X,D)∗

(
(cl(U)�Rn) ∩ cl(Γf )

)
= pr(X,D)∗

(
pr∗

�
n Rn ∩ cl(Γf )

)
= pr(X,D)∗(f∗Rn).

If f is defined on a closed subvariety V ⊂ U of codimension p, then the graph of f gives a
higher Chow chain on U by pushforward along the inclusion i : V → U . The regulator of such a
graph is reg(i∗Γf ) = i∗reg(Γf ), with i considered as a map (V,D∩V )→ (X,D). In particular,
one gets a similar fomula as above. Indeed, if prV(X,D) denotes the composition of the inclusion
i with the projection, then

reg(i∗Γf ) = prV(X,D)∗(f∗Rn).

Note that from a computational point of view the only difference to the previous formula is
an additional restriction to Vreg and the multiplication with the factor (2πi)p coming from the
pushforward along i.

More general: Let V ⊂ U be a codimension p algebraic subvariety and f : V × �n → �m a
non-zero rational function such that its graph Γf ⊂ U × �n+m intersects all the real faces of
�n+m properly. Then the graph can be considered as an element in zp+mR (U, n + m), and the
notation Γf/U will be used in order to emphasize that point.

Lemma 78. For such functions f and prV×�
n

(X,D)∗ the composition of the inclusion to X × �n

with the projection, one has

reg(Γf/U) = prV×�
n

(X,D)∗

(
([X]�Rn) ∩ f∗Rm

)
.

Proof. The compatibility with pushforward allows to consider the case V = U only. Write [X]
instead of cl(X) and [�] instead of cl(�) (think of reg = regP ). Now use the definition of reg,
compatibility of � and ∩ for geometric cycles, the associativity of ∩, the projection formula
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and the definition of the general pullback, to obtain

reg(Γf/U) = pr(X,D)∗

(
([X]�Rn+m) ∩ cl(Γf )

)
= pr(X,D)∗

((
([X]�Rn � [�]m) ∩ ([X]� [�]n �Rm)

)
∩ cl(Γf )

)
= pr(X,D)∗

(
([X]�Rn � [�]m) ∩

(
([X]� [�]n �Rm) ∩ cl(Γf )

))
= pr(X,D)∗

(
([X]�Rn) ∩ (pr

X×[�]n)∗
(
([X]� [�]n �Rm) ∩ cl(Γf )

))
= pr(X,D)∗

(
([X]�Rn) ∩ f∗Rm

)
.

Examples:

a) If f : �n → �m is a rational function with components f = (f1, . . . , fm), we obtain a
very simple formula for the regulator:

reg(Γf/�n) = pr(�n,1n)∗

(
Rn ∩ f∗1R ∩ . . . ∩ f∗mR

)
.

Consider now reg = regP and recall that for a rational function f with values in �

f∗R = (1− x)Tf + x[dlog f ] + dx[log f ],

where Tf = 2πi[f−1R-].

b) Important cycles in zp(U, 1) are the cycles represented by graphs Γf , where f is a non-zero
rational function defined on a codimension p − 1 algebraic subvariety i : V ⊂ U . The
regulator of such an element is

reg(Γf/U) = i∗reg(Γf/V )

= (2πi)p−1

(
2πi(1− x)

∫
f−1R-

+x
∫
V

dlog f + dx

∫
V

log f
)
.

c) For a pair of rational functions (f, g) : U → �2, the regulator is

reg(Γ(f,g)) = pr(X,D)∗
(
f∗R ∩ g∗R

)
=(1− x)2Tf ∩ Tg + x2[dlog f ∧ dlog g]

+ x(1− x)
(
Tf ∧ dlog g − Tg ∧ dlog f

)
+ (1− x)dx

(
Tg ∧ log f − Tf ∧ log g

)
+ xdx

(
[log f dlog g]− [log g dlog f ]

)
.

d) Using lemma 78, one easily recovers the formula for the regulator of the Totaro cycle
C(1). It can also be used to determine the regulator values of the higher dimensional
"polylog cycles" Cn(1), n ≥ 1, that will be introduced in 5.6 and that generalize C(1) to
higher dimensions. A tedious calculation (carried out in the appendix) shows that

regP (C2(1)) = (1− x)3x2 Li2(1) + 30(1− x)2x2dxLi3(1)− (1− x)2x2dx2πiLi2(1).

In particular, its evaluation in CD is =
(
0, 0,Li3(1)− 2πi

30 Li2(1)
)
.
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5.5 The relative Totaro cycle C1

We now consider the general Totaro cycle C1(a) not for a fixed value of a, but let a vary in the
real analytic variety U := P1(C) \ (R≤0 ∪R≥1), the space of parameters where C1(a) intersects
the real faces properly. Formally, we consider the parametrized cycle

C1 = [a, z, 1− z, 1− a

1− z ] ⊂ U ×�3

as a higher Chow chain over U . Note that C1 is the nothing but the relative graph cycle
Γ(f,g)/U with respect to the pair of functions

(f, g) : U ×�→ �2, (a, z) 7→
(
1− z , 1− a

1− z
)
.

Although U is not a valid (complex) algebraic variety, we nevertheless are going to compute
the regulator map. Choose as a compactification of U the pair (X,D) = (P1,R≤0∪R≥0). That
is, even though we only considered complex subvarieties D in section 3, we here work with real
analytic divisors. In other words, we consider currents on P1 up to currents on D.

To compute the regulator of C1, observe that

f∗R = 2πi(1− x)P1 � [∞, 1] + x dlog(1− z) + dx log(1− z)

g∗R = 2πi(1− x)P1 � (1− a · [0, 1]) + xdlog(1− a

1− z ) + dx log(1− a

1− z ),

thereby using that ( a
1−z ∈ [∞, 1]) = P1 � (1− a · [0, 1]).

Now substitute these expressions in the formula of lemma 78. Since currents supported on
(R≤0 ∪ R≥1) × � are pushed down to on-D currents, they are treated as zero. Then the
regulator becomes

regP (C1) = pr(P1,D)∗

[
(P1 �R) ∩ (f, g)∗R2

]
= pr(P1,D)∗

[
(P1 �R) ∩

(
x2 dlog(1− z) ∧ dlog(1− a

1− z )

+ 2πi(1− x)x[P1 � [∞, 1] dlog(1− a

1− z )− P1 � (1− a · [0, 1]) dlog(1− z)]

+ 2πi(1− x)dx[P1 � (1− a · [0, 1]) log(1− z)− P1 � [∞, 1] log(1− a

1− z )]

+ xdx[log(1− z) dlog(1− a

1− z )− log(1− a

1− z ) dlog(1− z)]
)]
.

Now substitute R in this formula and expand. Again some terms vanish for degree reasons
or because "dx2 = 0". The intersection (P1 � [−∞, 0]) ∩ ( a

1−z ∈ [∞, 1]) = −[∞, 1] � [1 − a, 0]
vanishes as a log current after projection to the first component, and thus

regP (C1) = pr(P1,D)∗

(
2πi(1− x)x2P1 � [−∞, 0] dlog(1− z) ∧ dlog(1− a

1− z )

− 2πi(1− x)xdxP1 � [−∞, 0] log(1− z) dlog(1− a

1− z )

+ 2πi(1− x)xdxP1 � [−∞, 0] log(1− a

1− z ) dlog(1− z)
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+ 2πi(1− x)x2P1 � [∞, 1] dlog(1− a

1− z ) ∧ dlog(z)

+ 2πi(1− x)xdxP1 � (1− a · [0, 1]) log(1− z) dlog(z)

− 2πi(1− x)xdxP1 � [∞, 1] log(1− a

1− z ) dlog(z)

+ x2dx log(1− z) dlog(1− a

1− z ) ∧ dlog(z)

+ x2dx log(z) dlog(1− z) ∧ dlog(1− a

1− z )

+ 2πi(1− x)xdxP1 � [∞, 1] log(z) dlog(1− a

1− z )

− 2πi(1− x)xdxP1 � (1− a[0, 1]) log(z) dlog(1− z)
)
.

Finally, note that dlog(1− a
1−z ) = da

z−1+a + adz
(z−1+a)(1−z) and that there is a Tate twist included

in the pushforward to obtain

regP (C1) =(1− x)x2[
∫ 0

−∞

1
z−1+a dlog(1− z)da−

∫ 1

∞

1
z−1+a dlog(z)da]

+ (1− x)xdx
∫ 0

−∞

[
log(1− a

1− z ) dlog(1− z)− log(1− z) dlog(1− a

1− z )
]

+ (1− x)xdx
∫ 1−a

1

[
log(1− z) dlog(z)− log(z) dlog(1− z)

]
− (1− x)xdx

∫ 1

∞

[
log(1− a

1− z ) dlog(z)− log(z) dlog(1− a

1− z )
]
.

The integrals in the last three rows have already been computed (do a substitution z 7→ 1− z
first) during the investigation of the Totaro cycle C1(a). The integrals in the first row evaluate
to logarithm functions so that

regP (C1) = (1− x)x2[ log(a) dlog(1− a)− log(1− a) dlog(a)
]

+ (1− x)xdx
[
6 Li2(a) + 3 log(1− a) log(a)

]
.

As a test, one may compute the differential of regP (C1) (as it is an element in the Deligne-
Beilinson complex on U) and compare it with the regulator value of ∂C1 = [a, 1 − a, a]. We
anticipate the result, which will be

dregP (C1) = xdx
[

log(1− a) dlog(a)− log(a) dlog(1− a)
]

= regP (∂C1).

5.6 Higher Totaro cycles

The general Totaro cycle in �3 (5.3) has been extended by Bloch [7], [8] to higher dimensions.
We will state them in a relative form, and for that make the convention that – in a parametrized
notation – the variables in the base are separated from the variables in the fibres by a semicolon.
For example, the general Totaro cycle over U will be written as C1 = [b; a, 1− b/a, 1− a].
The following definition of the higher Totaro cycle in �2n+1 is a slightly permutated (but
equivalent as an alternating chain) representation of the cycle given by Bloch:

Cn :=
[
a; zn, 1− a

zn
, zn−1, 1− zn

zn−1
, zn−2, . . . , z1, 1− z2

z1
, 1− z1

]
.
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This indeed is an admissible higher Chow chain over U .
Using lemma 78 and the graded-commutativity of ∩, the regulator of the general higher Totaro
cycle can simply be written as

regP (Cn) = pr(P1,D)∗

(
Rz1 ∩ . . . ∩Rzn ∩R1− a

zn
∩R1− zn

zn−1
· · ·R1− z2

z1
∩R1−z1

)
,

with the notation Rf := f∗R = d[x log(f)] + Tf for a rational function f : �n → P1. This is a
Deligne-Beilinson chain over (P1, D), for D as in 5.5.

A recursion for reg(Cn)

We make the observation that the higher Totaro cycles Cn can also be obtained as iterated
pullbacks along the higher correspondence C := [µ, λ;λ, 1− µ

λ ], that is,

Cn+1 = C∗Cn.

Indeed, starting with C0 = [a; 1 − a] and writing ∗ to denote a free parameter, we obtain
recursively

C1 = pr1

(
[b, a; a, 1− b/a, ∗] ∩ [b, a; ∗, ∗, 1− a]

)
= [b; a, 1− b/a, 1− a]

C2 = pr1

(
[c, b; b, 1− c/b, ∗, ∗, ∗] ∩ [c, b; ∗, ∗, a, 1− b/a, 1− a]

)
= [c; b, 1− c/b, a, 1− b/a, 1− a]

C3 = pr1

(
[d, c; c, 1− d/c, ∗, ∗, ∗, ∗, ∗] ∩ [d, c; ∗, ∗, b, 1− c/b, a, a− b/a, 1− a]

)
= [d; c, 1− d/c, b, 1− c/b, a, 1− b/a, 1− a]

etc.

It is easy to verify that the recursion indeed gives the cycles Cn stated above.
This observation, together with the compatibility of the regulator map into PD with pullback
along higher correspondences, gives an alternative way to compute the regulator value of the
Cn, n ≥ 0.

Negligible summands

In order to compute the regulator values of the higher Totaro chains, we have to compute

Rn ∩ f∗a,znR ∩ f
∗
zn,zn−1

R ∩ . . . ∩ f∗z2,z1
R ∩ f∗z1,1R (5.1)

where fg,h(z) = 1 − g(z)
h(z) as a map �n 99K � (defined outside the loci h = ∞ and g = 0). For

such functions,

Tfg,h = 2πi[g(z) ∈ R≥1 · h(z)],

dlog(fg,h) = gdh− hdg
h(h− g) .
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The expression (5.1) expands into various summands, some of whom may be zero for some
reasons and thus are negligible. For example, consider for a given summand the number of
occurrences (i.e., the exponents) of (1−x), x and dx (or, equivalently, the number of occurences
of R-, dlog and log in the summand). These numbers are denoted by k, l,m. Obviously,
m ∈ {0, 1}. Since the Totaro cycle has complex dimension n, the wedge product of more than n
dlogs is zero, so that we may assume l ≤ n. Together with k+ l+m = 2n+ 1, these conditions
are summarized in the table below

factor R- log dlog Σ
# ≥ n ≤ 1 ≤ n 2n+ 1

Claim 1. We may also assume that k < 2n, because the intersection of the Totaro cycle with
at least 2n copies of [R-] is empty.

Proof. Fix a summand and note that each factor R- in it corresponds to one of the following
conditions on the coordinates.

(I) zi ∈ [−∞, 0], i = 1, . . . , n

(II) zi+1 ∈ zi · [1,∞], i = 1, . . . , n− 1

(III) zn ∈ [0, a]

(IV) z1 ∈ [1,∞]

We can visualize the situation as a graph with n+3 nodes: For each of the n variables z1, . . . , zn

of the n-cube introduce a node with label "zi". Also, add 3 nodes labelled with "in [−∞, 0]", "in
[1,∞]" and "in [0, a]". Connect two nodes, if there is a factor that gives the respective condition.
That is, (I) corresponds to the edge between "zi" and "in [−∞, 0]", (II) corresponds to the edge
between "zi+1" and "zi" etc. The following graphic shows all the possible edges.

z1 z2 z3 zn

in [−∞, 0]

in [1,∞] in [0, a]

It is clear that the summand is negligible, if the resulting graph contains a path connecting two
of the outer nodes. Obviously, one needs to remove at least two edges to get a non-negligible
summand.

Remark 9. The proof above indicates how to identify the summands in (5.1) with (sub-)graphs:
For a given summand, connect two nodes by a black edge, if there is a "R-", with a red edge,
if there is a "dlog", and with a yellow edge, if there is a "log" on the respective position in the
summand. Conversely, any such colored graph uniquely determines a summand. The summand
is negligible, if in the corresponding graph two of the outer nodes can be connected by a sequence
of only black edges or a sequence of only red edges. The second condition relies on the fact
that dlog(f) ∧ dlog(g) = 0, if f and g depend on the same (single) variable.
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This gives a way to list all the non-negligible summands (the list may contain some negligible
summands also).
In pseudo-code:

L = { }.

For all subgraphs G’ of G do

Color all edges of G’ red.

Color all edges of G \ G’ black.

If two different outer nodes are connected by a sequence of black edges,

break.

If two outer nodes are connected by a sequence of red edges,

break.

Add a new summand to L.

For any edge e in G’:

Color e yellow.

If no two outer nodes are connected by a sequence of red edges,

add a new summand to L.

Color e red.

5.7 Appendix: Blochs generalized Totaro cycle of dimension
two

This appendix is devoted to the calculation of the regulator value of the two-dimensional Totaro
cycle C2(1). This boils down to the computation of the expression (5.1) in the case where n = 2
and a = 1. Thus it is to compute R2 ∩ f∗1,z2

R ∩ f∗z1,z2
R ∩ f∗z1,1R.

For this, note that

f∗1,z2
R = (1− x)T1− 1

z2
+ xdlog(1− 1

z2
) + dx log(1− 1

z2
)

f∗z2,z1
R = (1− x)T1− z1

z2
+ xdlog(1− z1

z2
) + dx log(1− z1

z2
)

f∗z1,1R = (1− x)T1−z1 + x dlog(1− z1) + dx log(1− z1)

and

R2 = (1− x)2Tz1 � Tz2 + (1− x)x[Tz1 ∧ dlog z2 − Tz2 ∧ dlog z1] + x2[dlog z1 ∧ dlog z2]

+ (1− x)dx[Tz2 ∧ log z1 − Tz1 ∧ log z2] + xdx[log z1 dlog z2 − log z2 dlog z1].

Using the preceding discussion, many of the terms in (5.1) vanish, and what remains after
pushforward is
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regP (C2(1)) = (1− x)3x2 pr∗A+ (1− x)3xdx pr∗B + (1− x)2x2dx pr∗ C,

where A,B,C are the currents on �2 given by

A = Tz1 ∩ Tz2 ∩ dlog(1− 1
z2

) ∩ T1− z2
z1
∩ dlog(1− z1),

B = Tz1 ∩ Tz2 ∩ dlog(1− 1
z2

) ∩ T1− z2
z1
∩ log(1− z1)

+ Tz1 ∩ Tz2 ∩ log(1− 1
z2

) ∩ T1− z2
z1
∩ dlog(1− z1),

and

C = log(z1) ∩ Tz2 ∩ dlog(1− 1
z2

) ∩ dlog(1− z2

z1
) ∩ T1−z1

+ log(z1) ∩ Tz2 ∩ dlog(1− 1
z2

) ∩ T1− z2
z1
∩ dlog(1− z1)

+ log(z1) ∩ dlog(z2) ∩ T1− 1
z2
∩ dlog(1− z2

z1
) ∩ T1−z1

+ log(z1) ∩ dlog(z2) ∩ T1− 1
z2
∩ T1− z2

z1
∩ dlog(1− z1)

− Tz1 ∩ log(z2) ∩ dlog(1− 1
z2

) ∩ T1− z2
z1
∩ dlog(1− z1)

− Tz1 ∩ log(z2) ∩ T1− 1
z2
∩ dlog(1− z2

z1
) ∩ dlog(1− z1)

− dlog(z1) ∩ log(z2) ∩ dlog(1− 1
z2

) ∩ T1− z2
z1
∩ T1−z1

− dlog(z1) ∩ log(z2) ∩ T1− 1
z2
∩ dlog(1− z2

z1
) ∩ T1−z1

+ Tz1 ∩ Tz2 ∩ dlog(1− 1
z2

) ∩ dlog(1− z2

z1
) ∩ log(1− z1)

+ Tz1 ∩ dlog(z2) ∩ T1− 1
z2
∩ dlog(1− z2

z1
) ∩ log(1− z1)

+ dlog(z1) ∩ Tz2 ∩ dlog(1− 1
z2

) ∩ T1− z2
z1
∩ log(1− z1)

+ dlog(z1) ∩ dlog(z2) ∩ T1− 1
z2
∩ T1− z2

z1
∩ log(1− z1)

− dlog(z1) ∩ dlog(z2) ∩ T1− 1
z2
∩ log(1− z2

z1
) ∩ T1−z1

− Tz1 ∩ dlog(z2) ∩ T1− 1
z2
∩ log(1− z2

z1
) ∩ dlog(1− z1)

− Tz1 ∩ Tz2 ∩ dlog(1− 1
z2

) ∩ log(1− z2

z1
) ∩ dlog(1− z1)

− dlog(z1) ∩ Tz2 ∩ dlog(1− 1
z2

) ∩ log(1− z2

z1
) ∩ T1−z1

+ dlog(z1) ∩ dlog(z2) ∩ log(1− 1
z2

) ∩ T1− z2
z1
∩ T1−z1

+ Tz1 ∩ dlog(z2) ∩ log(1− 1
z2

) ∩ T1− z2
z1
∩ dlog(1− z1)

+ dlog(z1) ∩ Tz2 ∩ log(1− 1
z2

) ∩ dlog(1− z2

z1
) ∩ T1−z1

+ Tz1 ∩ Tz2 ∩ log(1− 1
z2

) ∩ dlog(1− z2

z1
) ∩ dlog(1− z1).
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One finds that (prpt)∗A = −π
2

6 , and that (prpt)∗B = 0 for dimension reasons.

In order to use the computer, we write the integrand explicitly, using that

dlog(1− z2

z1
) = z2dz1 − z1dz2

z1(z1 − z2) , dlog(1− 1
z2

) = dz2

z2(z2 − 1) , dlog(1− z1) = dz1

z1 − 1

and obtain for C the representation

−Ty ∩ T1−x log(x) dx ∧ dy
x(x− y)(y − 1)

+Ty ∩ T1− yx log(x) dx ∧ dy
y(x− 1)(y − 1)

+T1−x ∩ T1− 1
y

log(x) dy ∧ dx
x(x− y)

−T1− yx ∩ T1− 1
y

log(x) dy ∧ dx
y(x− 1)

−Tx ∩ T1− yx log(y) dx ∧ dy
y(x− 1)(y − 1)

+Tx ∩ T1− 1
y

log(y) dx ∧ dy
(x− 1)(y − x)

+T1−x ∩ T1− yx log(y) dx ∧ dy
xy(y − 1)

−T1−x ∩ T1− 1
y

log(y) dx ∧ dy
x(y − x)

−Tx ∩ Ty log(1− x) dx ∧ dy
x(x− y)(y − 1)

−Tx ∩ T1− 1
y

log(1− x) dy ∧ dx
x(x− y)

−Ty ∩ T1− yx log(1− x) dx ∧ dy
xy(y − 1)

−T1− yx ∩ T1− 1
y

log(1− x)dx ∧ dy
yx

+T1−x ∩ T1− 1
y

log(1− y

x
)dx ∧ dy

xy

+Tx ∩ T1− 1
y

log(1− y

x
) dy ∧ dx
y(x− 1)

+Tx ∩ Ty log(1− y

x
) dx ∧ dy
y(x− 1)(y − 1)

+Ty ∩ T1−x log(1− y

x
) dx ∧ dy
xy(y − 1)

−T1−x ∩ T1− yx log(1− 1
y

)dx ∧ dy
xy

−Tx ∩ T1− yx log(1− 1
y

) dy ∧ dx
y(x− 1)

−Ty ∩ T1−x log(1− 1
y

) dx ∧ dy
x(y − x)

−Tx ∩ Ty log(1− 1
y

) dx ∧ dy
(x− 1)(y − x) .
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Now we plug in that

Tx ∩ Ty = [−∞, 0]� [−∞, 0] = −[−∞, 0]× [−∞, 0]

Ty ∩ T1−x = −[∞, 1]� [−∞, 0] = [∞, 1]× [−∞, 0]

Ty ∩ T1− yx = −[0, y]� [−∞, 0] = [0, y]× [−∞, 0]

T1−x ∩ T1− 1
y

= −[∞, 1]× [0, 1]

T1− yx ∩ T1− 1
y

= [0, y]� [0, 1] = −[0, y]× [0, 1]

Tx ∩ T1− yx = −[−∞, 0]× [−∞, x]

T1−x ∩ T1− yx = −[∞, 1]× [∞, x],

and use this to write C as a sum of iterated integrals.

Pushing the resulting currents down to the point yield the following integrals (in the left column)
whose sum is the regulator value of C2(1). These integrals can be evaluated using Mathematica
and the result is shown in the right column.

∫ 1

∞

∫ 0

−∞
log(x) dy dx

x(x− y)(y − 1) 2ζ(3)

−
∫ 0

−∞

∫ y

0
log(x) dx dy

y(x− 1)(y − 1) ζ(3)− iπ3

6

−
∫ 1

∞

∫ 1

0
log(x) dy dx

x(x− y) ζ(3)∫ 1

0

∫ y

0
log(x) dx dy

y(x− 1) 2ζ(3)

−
∫ 0

−∞

∫ x

−∞
log(y) dy dx

y(x− 1)(y − 1) ζ(3) + iπ3

6∫ 0

−∞

∫ 1

0
log(y) dy dx

(x− 1)(y − x) 2ζ(3)∫ 1

∞

∫ x

∞
log(y) dy dx

xy(y − 1) 2ζ(3)

−
∫ 1

∞

∫ 1

0
log(y) dy dx

x(y − x) ζ(3)

−
∫ 0

−∞

∫ 0

−∞
log(1− x) dy dx

x(x− y)(y − 1) ζ(3)∫ 0

−∞

∫ 1

0
log(1− x) dy dx

x(x− y) 2ζ(3)∫ 0

−∞

∫ y

0
log(1− x) dx dy

xy(y − 1) 2ζ(3)

−
∫ 1

0

∫ y

0
log(1− x)dx dy

yx
ζ(3)
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∫ 1

∞

∫ 1

0
log(1− y

x
)dy dx
xy

ζ(3)

−
∫ 0

−∞

∫ 1

0
log(1− y

x
) dy dx

y(x− 1) 2ζ(3)∫ 0

−∞

∫ 0

−∞
log(1− y

x
) dy dx

y(x− 1)(y − 1) ζ(3)− iπ3

6

−
∫ 1

∞

∫ 0

−∞
log(1− y

x
) dy dx

xy(y − 1) 2ζ(3)

−
∫ 1

∞

∫ x

∞
log(1− 1

y
)dy dx
xy

ζ(3)∫ 0

−∞

∫ x

−∞
log(1− 1

y
) dy dx

y(x− 1) 2ζ(3)∫ 1

∞

∫ 0

−∞
log(1− 1

y
) dy dx

x(y − x) 2ζ(3)

−
∫ 0

−∞

∫ 0

−∞
log(1− 1

y
) dy dx

(x− 1)(y − x) ζ(3)− iπ3

6

We sum up all these numbers and obtain in the end that the regulator is

regP (C2(1)) = (1− x)3x2ζ(2) + (1− x)2x2dx
(

30ζ(3)− iπ3

3

)
.
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6 The Abel-Jacobi map

This section shows how the regulators regC and regP give rise to Abel-Jacobi maps from higher
Chow cycles homologous to zero to an intermediate Jacobian. This is done by reducing to the
construction of the Abel-Jacobi map in [39] for the regulator regC .
In this section we assume that U = X is a smooth projective complex manifold, that is, D = 0.
For simplicity, we omit D from the notation and write PD(X,Z(p)) for PD(X,D,Z(p)) etc.

6.1 The Abel-Jacobi map for (higher) Chow groups

The classical Abel-Jacobi map As a tool to distinguish algebraic cycles on X, one has the
cycle class map that assigns to each p-codimensional algebraic cycle its integral fundamental
cycle in H2p(X,Z(p)). Because cycles algebraic equivalent to zero are mapped to zero in
cohomology [66, Lemma 9.18], this descends to a cycle class map

CHp(X)→ H2p(X,Z(p)).

This map is in general1 not injective, with examples given by each Griffith and Harris [29].
Its kernel, the set of equivalence classes of algebraic cycles which are homological equivalent to
zero, is denoted by CHp

hom(X). The Abel-Jacobi map can be thought of as a refined invariant
that tries to distinguish such cycles. If m = dimX, it is the map

AJ : CHp
hom(X)→

Fm−p+1H2m−2p+1
dR (X)∨

H2p−1(X,Z(p))

that sends a cycle Z to the functional given by integration over γ, where γ ⊂ X is any singular
chain with boundary ∂γ = Z. The restriction to test forms in Fm−p+1 is necessary to make
the integration well defined on cohomology classes (and not only forms), and the quotient by
H2p−1(X,Z(p)) is needed to be independent of the choice of γ.
The right-hand side is isomorphic to the p-th intermediate Jacobian Jp(X) via Poincaré duality
and the Abel-Jacobi map becomes a map

AJ : CHp
hom(X)→ Jp(X) = H2p−1(X,C)

F pH2p−1(X,C) +H2p−1(X,Z(p)) .

It is in this form that the map allows a generalization to higher Chow groups

The Abel-Jacobi map for higher Chow groups Kerr/Lewis/Müller-Stach [39] extended the
definition of the Abel-Jacobi map to higher Chow groups. Starting with the higher cycle class
map (the regulator) to Deligne cohomology,

CHp(X,n)→ H2p−n
D (X,Z(p))

1For a survey on "algebraic vs. homological equivalence", see Murre’s lectures on algebraic cycles and Chow
groups [53, 9.4].
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they use the long exact sequence for Deligne cohomology to define the notion of being homol-
ogous to zero for higher Chow cycles and also a map from those cycles to an intermediate
Jacobian Jp,n(X).
In short, their Abel-Jacobi map fits into a commutative diagram with exact rows

0 // CHp
hom(X,n) //

AJ

��

CHp(X,n) //

reg
��

coker

��

// 0

0 // Jp,n(X) ι // H2p−n
D (X,Z(p)) proj // H2p−n(X,Z(p)) ∩ F p // 0

such that reg(Z) = ι ◦AJ(Z) for Z ∈ CHp
hom(X,n).

In other words, the Abel-Jacobi map contains at least as much information as the regulator
map. Actually, both maps contain the same information, but Jp,n is easier to understand than
HD in the sense that is has less relations: is a generalized complex torus.
For n = 0, this is just the classical Abel-Jacobi map on CHp(X, 0)hom = CHp

hom(X) and the
above diagram can already be found in Fouad el Zein/Steven Zucker’s text [15, Proposition 1].

6.2 Higher Chow chains homologous to zero

Chains homologous to zero Following [39], a higher Chow chain Z ∈ zpR(X,n) is called homol-
ogous to zero, if proj ◦ regC(Z) is a boundary in I2p−n(X,Z(p))⊕ F pD2p−n(X,C), where proj
denotes the projection from the 3-term complex CD onto it’s first two components. Equivalently,
(by lemma 76) the composition proj ◦ ev ◦ regP (Z) is a boundary.
Written as a diagram, the chains homologous to zero are exactly those chains that become
boundaries in the rightmost term of the diagram below

P 2p−n
D (X,Z(p))

ev

��
zpR(X,n)

regC //

regP
77

C2p−n
D (X,Z(p)) proj // I2p−n(X,Z(p))⊕ F pD2p−n(X,C).

The set of all higher Chow chains homologous to zero form a subgroup of the higher Chow
chains, denoted by

zpR,hom(X,n).

If Z is a boundary for Bloch’s differential, then Z is automatically homologous to zero. Hence
this notion makes sense on cohomology classes and we define CHp

hom(X,n) to be the cohomology
classes represented by cycles homologous to zero. This is the kernel of the composition

CHp(X,n)→ H2p−n
D (X,Z(p))→ H2p−n(X,Z(p))⊕ F pH2p−n(X,C)

that is induced by the regulator into the 3-term complex followed by the projection onto the
first two components.

Alternative definitions of "homologous to zero" The notion of being "homologous to zero"
depends on the regulator map. Even more, it depends only on the regulator into CD. One
may wonder if the definition can be refined by working with the regulator to the complex PD
instead of passing to CD. For this, notice that the regulator regP (Z) of a higher Chow chain
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Z ∈ zpR(X,n) can be written in the form

regP (Z) =
∑
i=0...n

xi(1− x)n−i ⊗ Ti +
∑

i=0...n−1
xi(1− x)n−i−1dx⊗Ri

where by construction T0 ∈ I2p−n(X,Z(p)), Ti ∈ F p+i−nD(X) and Ri ∈ F p+i−nD(X) (same
filtration, but different degree). Then Z is homologous to zero if and only if T0 and Tn are
boundaries. (Note the special case n = 0). One may also think of the seemingly stronger
condition that all Ti have to be boundaries (in the respective spaces they live in).
The following lemma shows that (for ∂-closed cycles) this is equivalent to the definition of
homologous to zero defined above. Even more, it says that being homologous to zero is already
determined by T0 alone (and so can be defined without mentioning the regulator map at all).

Lemma 79. Let Z ∈ zpR(X,n) be a higher Chow cycle. Then the following statements are all
equivalent:

1. Z is homologous to zero.

2. T0 is a boundary in I2p−n(X,Z(p)).

3. (T0, Tn) is a boundary in I2p−n(X,Z(p))⊕ F pD2p−n(X).

4. (T0, T1, . . . , Tn) is a boundary in I2p−n(X,Z(p))⊕
n⊕
k=1

F p+k−nD2p−n(X).

Proof. We first consider the case n = 0. In this case, T0 = cl(Z) and the theorem is equivalent
to the statement that, whenever T0 = 0 in integral cohomology, then T0 vanishes also in
F pH2p(X,C). Assuming the former, then T0 represents the zero class in C-valued cohomology.
Since T0 is of (p, p)-type and by the injectivity of the map F pH2p(X,C)→ H2p(X,C) (this is
the d′d′′-lemma [23, 1.2.1] for currents!) it is also zero in F pH2p(X,C).
For n > 0:
1. ⇐⇒ 3. holds by definition, since proj ◦ regC = proj ◦ ev ◦ regP .
Furthermore, the implications 4. ⇒ 3. ⇒ 2. are obvious. We use the assumption that Z is
∂-closed to show the converse implications. By this condition, the differential d regP (Z) and
hence all of its components vanish. This implies that all the Ti are d-closed and, looking at the
components "with dx":

0 =
∑

d
(
xi(1− x)n−i

)
⊗ Ti −

∑
xi(1− x)n−i−1dx⊗ dRi

=
∑

ixi−1(1− x)n−idx⊗ Ti −
∑

(n− i)xi(1− x)n−i−1dx⊗ Ti −
∑

xi(1− x)n−i−1dx⊗ dRi.

Comparing the coefficients of xi(1− x)n−i−1dx gives that for all i = 0 . . . n− 1,

0 = (i+ 1)Ti+1 − (n− i)Ti − dRi. (6.1)

In C-valued cohomology, the above equations become

(i+ 1)Ti+1 = (n− i)Ti in H2p−n(X,C).

If T0 is a boundary in Z(p)-valued cohomology, then also with C coefficients. It follows that
all Ti are boundaries and vanish in cohomology with C coefficients. But the Ti, i > 0, lie in
the image of F p+i−nH(X,C) → H(X,C) and by injectivity (the d′d′′-lemma again) they also
vanish in F p+i−nH2p−n(X,C).
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Denote by ev(k) the unique mapping from PD to currents that sends xj(1−x)n−j to 1, if j = k,
and to zero, if j 6= k. Then, by the above lemma, the higher Chow cycles cohomologous to
zero can be defined as those higher Chow cycles that become zero in one (then all) of the three
groups of the right-hand side in the diagram below

H2p−nPD(X,Z(p))
⊕ev(k)

//

ev

��

H2p−n(X,Z(p))⊕
n−1⊕
k=1

H2p−n(X)⊕ F pH2p−n(X)

projection

��

CHp(X,n)

regP

77

regC ((
H2p−nCD(X,Z(p)) projection //

projection ++

H2p−n(X,Z(p))⊕ F pH2p−n(X)

projection
��

H2p−n(X,Z(p)).

Remark 10.

• Although the triangle on the left does not commute, the maps from the first to the third
column do commute.

• It is possible to get explicit formulas for the higher evaluation maps ev(k) on PnD(X, p).
In fact, they can be constructed recursively as ev(0)(ω(x)⊗ T ) = ω(0)T and

ev(k)(f) = 1
k!

(
d

dx

)k ∣∣∣
x=0

(
f(x)−

k−1∑
i=0

xi(1− x)n−iev(i)(f)
)
.

These intermediate evaluations are chosen in such a way that the k-th evaluation map
of an element

∑n
i=0 x

i(1 − x)n−i ⊗ Ti is just Tk. In particular, they extend the usual
evaluation maps in the sense that ev(0) = ev0 and ev(n) = ev1. They are compatible with
the differential, but not with the multiplicative structure.

6.3 Construction of the Abel-Jacobi map

The Abel-Jacobi map on cohomology Every total complex gives rise to a long exact sequence
on cohomology. In particular, there is a long exact sequence associated to the total complex
CD(X,Z(p)). From this long exact sequence one can extract the exact sequence

0→ Jp,n(X)→ H2p−nC•D(X,Z(p)) proj−−→ H2p−n(X,Z(p))⊕ F pH2p−n(X,C),

where
Jp,n(X) := H2p−n−1(X,C)

H2p−n−1(X,Z(p)) + F pH2p−n−1(X,C)

and the map from this Jacobian into the 3-term complex is induced by T 7→ (0, 0, T ). For any
cycle homologous to zero, the regulator values regC(Z) and ev◦regP (Z) both lie in the kernel of
the projection, hence come from an element in Jp,n(X). This uniquely defines the Abel-Jacobi
maps with respect to the regulators regP and regC . The construction is summarized by the
diagram
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CHp
hom(X,n) �

� //

AJP

��

AJC

��

CHp(X,n)

regC

��

regP

))
H2p−nPD(X,Z(p))

ev

uu
Jp,n(X) �

� // H2p−nCD(X,Z(p))

Note that although their projections onto the first two components proj ◦ regC(Z) = proj ◦
regP (Z) are equal, the values of regC(Z) and ev ◦ regP (Z) in general are different, hence give
rise to different Abel-Jacobi maps.

Explicit formulas The Abel-Jacobi maps can be made explicit by observing that the image of
Jp,n(X) in HD is spanned by those triples where at most the third component is 6= 0.

Thus the general procedure to construct formulas for the Abel-Jacobi map from a regulator value
in the 3-term complex is to: First use that Z is homologous to zero to move all information into
the third component by adding a boundary. Then project to the third component and finally
pass to a quotient in order to be independent of the choices made for the boundary.

In case of the regulator regC , write the regulator value of a higher Chow chain Z as

regC(Z) = (T0, T1, regC(Z)3).

If Z is homologous to zero, T0 = dS0 and T1 = dS1 for some S0 ∈ I2p−n−1(X,Z(p)) and
S1 ∈ F pD2p−n−1(X). Now the regulator value is equivalent to

regC(Z) ≡ (T0, T1, rC(Z)3)− d(S0, S1, 0)

= (0, 0, regC(Z)3 − S1 + S0)

and the resulting Abel-Jacobi map is given by

AJC(Z) = regC(Z)3 + S0 − S1.

Similarly, write

ev ◦ regP (Z) = (T0, T1,

∫ 1

0
regP (Z)).

Note that by lemma 76, T0, T1 are exactly the equally named currents as above. Thus we can
choose the same boundaries S0, S1 as before and obtain that the Abel-Jacobi map with respect
to the regulator regP can be described by the formula

AJP (Z) =
∫ 1

0
regP (Z) + S0 − S1. (6.2)

Note that by lemma 76, one has

AJP (Z) = regC(AltZ)3 + S0 − S1,
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which could somewhat sloppy be reformulated by writing

AJP = AJC ◦Alt

with the observation that the equality holds integrally as maps

CHp
hom(X,n) −→ H2p−n−1(X,C)

H2p−n−1(X,Z(p)) + F pH2p−n−1(X,C)

and not modulo Q(p) valued cohomology, as the alternation suggests.

Remark 11. For n ≥ p one has F pD2p−n−1(X) = 0 for (bi-)degree reasons. Hence the Abel-
Jacobi map lands in H2p−n−1(X,C)

H2p−n−1(X,Z(p)) , computed by the formula (6.2) with Sn set to zero.

Remark 12. The Abel-Jacobi maps can also be defined on quasi-projective varieties U , with the
(absolute) cohomology of X replaced by the relative cohomology of (X,D). Note that lemma
79 does not hold in this case due to the failure of the d′d′′-lemma, and that the statement in
section 6.6 also breaks down.

6.4 Examples

• For n = 0 the regulator is just the cycle map and the cycles homologous to zero are

CHp
hom(X, 0) =

{
Z ∈ CHp(X) : cl(Z) = 0 in H2p(X,Z(p))

}
.

The Abel-Jacobi map is AJ(Z) = S0−S1, where S0, S1 are currents bounding cl(Z) such
that S0 is integral with coefficients in Z(p) and S1 lies in F pD2p−1(X).

Note that Poincaré duality induces an isomorphism Jp,0(X) ∼= Fm−p+1H2m−2p+1(X,C)∨
H2m−2p+1(X,Z(p))∨ and

that the image of AJ(Z) under this isomorphism is given by S0 only (On the left-hand
side of the isomorphism, S1 was necessary to make AJ(Z) d-closed. On the test forms on
the right-hand side S1 acts trivial). Finally, writing S0 = [γ] as the current of integration
over a singular chain γ, one reobtains the classical Abel-Jacobi map of Griffiths.

• For n = 1 and any Z ∈ zpR(X, 1) homologous to zero, its Abel-Jacobi value is the current
on X

AJ(Z) = (2πi)p−1(
∫
Z

log(z) + 2πiS0 − S1).

The currents Si satisfy dS0 = [Z ∩X×R-] and dS1 = [Z] ∧ dlog(z).

• In particular, if Z =
∑

Γα is the sum of graphs of meromorphic functions fα : Vα → P1,
this recovers a version of Levine’s formula ([44, p. 458] and [39, 4.5]): By remark 11, S1

acts trivially in this case and thus, for γ any cycle with boundary Z ∩ (X×R-),

AJ(Z) = (2πi)p−1(
∑
α

∫
Vα\f−1

α R-
log fα + 2πi

∫
γ

).

• Totaro’s cycle C(1) is homologous to zero: T0, T1 are actually zero (not only boundaries)
so that one can choose S0 = S1 = 0. It’s Abel-Jacobi image is thus

AJP (C(1)) =
∫

regP (Z) = Li2(1).
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6.5 The Abel-Jacobi map and the exterior product

Let Z,Z ′ be two higher Chow cycles (on different spaces). Assume that Z is homologous to
zero. Then lemma 70 assures that the exterior product Z × Z ′ is again homologous to zero.
The lemma below gives a formula for the Abel-Jacobi value associated to this product. The
result holds for both AJP and AJC so that we omit the subscript and write just AJ .

Lemma 80. Let Z and Z ′ be higher Chow cycles on X and X ′ respectively such that Z is
homologous to zero. Then

AJ(Z × Z ′) = AJ(Z)� T ′1,

where � denotes the exterior product of currents and T ′1 denotes the second component of
regC(Z ′).

Proof. After eventually replacing reg by ev◦reg, we may assume that the regulator takes values
in the 3-term complex. Write regC(Z ′) = (T ′0, T ′1, T ′), regC(Z) = (T0, T1, T ) and t = |T0|. Since
Z is homologous to zero, Ti = dSi, i = 0, 1.
From the compatibility of the regulator with exterior products, one finds that the first two
components of regC(Z ×Z ′) are Ti�T ′i = d(Si�T ′i ), i = 0, 1, and that the third component is

regC(Z × Z ′)3 = T � T ′1 + (−1)tT0 � T
′.

By definition of the Abel-Jacobi map,

AJ(Z) = T + S0 − S1

and for the product,

AJ(Z × Z ′) = reg(Z × Z ′)3 + S0 � T
′
0 − S1 � T

′
1

= T � T ′1 + (−1)tT0 � T
′ + S0 � T

′
0 − S1 � T

′
1

= AJ(Z)� T ′1 − S0 � T
′
1 + (−1)tT0 � T

′ + S0 � T
′
0

= AJ(Z)� T ′1 − S0 � dT
′ + (−1)tT0 � T

′,

using that dT ′ = T ′1 − T ′0 in the last equality. By the Leibniz rule, this is

= AJ(Z)� T ′1 + (−1)td(S0 � T
′),

and so, modulo boundaries, the result follows.

Remark 13.

• As a consequence of the lemma, the Abel-Jacobi image of Z × Z ′ vanishes if both Z and
Z ′ are homologous to zero.

• Using dT ′ = T ′1−T ′0 and dAJ(Z) = 0, the lemma can equivalently stated as AJ(Z×Z ′) =
AJ(Z) � T ′0, that is, with the second component replaced by the first component. The
same is achieved by working with the product �1 on the 3-term complex instead of �0.

• If Z ′ is homologous to zero and T0 denotes the first component of the regulator regC(Z),
then an analogous reasoning shows that AJ(Z × Z ′) = (−1)|T0|T0 �AJ(Z ′).
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6.6 The Abel-Jacobi map and higher correspondences

In this last section, we examine in which sense the Abel-Jacobi mappings AJC and AJP are
compatible with higher correspondences.2 Since AJP = AJC ◦ Alt, it suffices to consider
reg = regC and the corresponding Abel-Jacobi map AJ = AJC .

Recall from subsection 4.1 that the pullback along a ∂-closed higher correspondence C ∈ zpR(X×
Y, l) gives rise to a commutative diagram

CHq(Y, n) C∗ //

reg
��

CHp+q−m(X, l + n)

reg
��

H2q−n
D (Y,Z(q))

reg(C)∗ // H2p+2q−2m−l−n
D (X,Z(p+ q −m)).

We will see that the pullback along reg(C) restricts to a map between intermediate Jacobians.
Indeed, note that the Jacobian can be identified with the set of those cohomology classes that are
represented by triples of the form (0, 0, A). The pullback of such a triple along (E0, E1, E) is (we
use the ∩0 product on the Deligne complexes) just (E0, E1, E)∗(0, 0, A) = (0, 0, (−1)|E0|E∗0A).
This shows that reg(C)∗ restricts to a map

Jq,n(Y )
reg(C)∗ // Jp+q−m,l+n(X)

and suggests that, for reg(C) = (E0, E1, E), we should have AJ(C∗Z) = ±E∗0AJ(Z). We
confirm this by calculating AJ(C∗Z) using the explicit definition of the Abel-Jacobi map.

Theorem 81. Let C ∈ zpR(X × Y, l) be a ∂-closed higher correspondence and denote by E0 the
first component of regC(C) and by e = |E0| its degree. If then Z is any higher Chow chain
homologous to zero such that C∗Z exists and intersects the real boundaries properly, then C∗Z
is homologous to zero and

AJ(C∗Z) = (−1)eE∗0AJ(Z).

Proof. Write reg(Z) = (T0, T1, T ) and reg(C) = (E0, E1, E). Then, using the compatibility of
the regulator map with pullback along higher correspondences,

reg(C∗Z) = reg(C)∗reg(Z)

= prX∗
(

(E0, E1, E) ∩0 prXY ∗Y (T0, T1, T )
)

=
(
E∗0T0, E

∗
1T1, E

∗T1 + (−1)eE∗0T
)
.

For Z homologous to zero, we find T0 = dS0 and T1 = dS1. Since dreg(C) = 0, this shows
(−1)ed(E∗i Si) = E∗i Ti for i = 0, 1, so that C∗Z is homologous to zero. Moreover,

AJ(C∗Z) = E∗T1 + (−1)eE∗0T + (−1)eE∗0S0 − (−1)eE∗1S1.

Now, using that AJ(Z) = T + S0 − S1, and that dE = E1 − E0 (because reg(C) is d-closed),

2As usual, m = dimCX.
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we obtain

AJ(C∗Z) = E∗T1 + (−1)eE∗0AJ(Z) + (−1)eE∗0S1 − (−1)eE∗1S1

= E∗T1 + (−1)eE∗0AJ(Z)− (−1)e(dE)∗S1

= (−1)eE∗0AJ(Z)

by the Leibniz rule.

Remarks.

• The formula in the theorem could equivalently be stated as AJ(C∗Z) = (−1)eE∗1AJ(Z).
Indeed, this follows either from dE = E1 − E0 (use that regC(C) is d-closed) together
with the Leibniz rule, or from the above proof with ∩1 instead of ∩0.

• The statement of the theorem is also true with AJ = AJP . When stated in terms of the
regulator regP , it reads AJP (C∗Z) = (−1)eregP (C)∗0AJP (Z), where regP (C)0 denotes
the evaluation at 0 and e the degree thereof.

• If C is a usual correspondence of (higher) Chow groups, then e = 2p is even and the
formula reads AJ(C∗Z) = cl(C)∗AJ(Z).

• Theorem 81 may be useful for the construction of non-trivial elements in the kernel of the
higher Abel-Jacobi map. Indeed, if C is also homologous to zero, then the Abel-Jacobi
image AJ(C∗Z) is a boundary and so represents the zero class. Thus one only needs a
criteria for the pullback C∗Z to be non-trivial. In the case of usual Chow groups such a
procedure was carried out in [26].
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