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Abstract

Today, we have access to a vast amount of data in the forms of images,
speech signals, structured and unstructured texts, and sensor-based signals.
Our digital universe is growing quickly. Statistics indicate that 500 million
tweets are posted every day. 65 billion messages are transferred on Whats-
App per day. 294 billion emails are sent daily via different platforms. Each
self-driving car creates 4 terabytes of data per day. According to a study
by Digital Universe, the amount of data produced by humans and machines
will exceed 44 billion terabytes by 2020. This means that there will be 5,200
gigabyte of data for every person on earth. It is estimated that by 2025, the
created data will increase to 463 million terabytes per day. Processing and
leveraging knowledge from these sources of data requires proper infrastruc-
ture and efficient methods to analyze them in real-time. Data stream mining
is the field of propounding such scalable and efficient methods, which can
process data incrementally.

Incremental induction from a limited set of observations of an unknown
distribution has been the topic of many studies for a long time. Depending
on the application, the target class can be only one or many labels among
which some unknown dependencies exist. Although this problem is chal-
lenging enough, in many of the stream mining applications, the statistical
properties of the input and target variable(s) may change over time in un-
foreseen ways. This phenomena is called concept drift. If not considered
and captured properly, the trained online models quickly become obsolete
over time. However, these drifts are not well-defined and could contain any
change in the statistical properties of data, adding more difficulty to the
prediction problem.

In this thesis, our overall focus is to model one type of drifts which is
called recurrent concepts. Recurrent concepts are important to be captured in-
dependently, as most of stream mining methods employ a forgetting mecha-
nism in the learning process and forget their outdated extracted knowledge.
To this end, we propose the GraphPool and multi-label GraphPool frameworks
for both single-label and multi-label data streams. These frameworks keep a
pool of concepts and their transitions in a first-order Markov chain to quickly
recover from drifts in the streams with periodic behavior. In the course of
designing such a framework for multi-label streams, we develop an efficient
algorithm for classifying stationary multi-label streams. To show the effec-
tiveness of our methods, we conduct an extensive set of experiments with
both synthetic and real-world data.
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Zusammenfassung

Heutzutage haben wir Zugang zu einer riesigen Menge an Daten in Form
von Bildern, Sprachsignalen, strukturierten und unstrukturierten Texten,
sowie sensorbasierten Signalen. Unser digitales Universum wächst rasant.
Aus Statistiken geht hervor, dass 500 Millionen Tweets täglich hochgeladen
werden. 65 Milliarden Nachrichten werden jeden Tag über Whatsapp
versandt. 294 Milliarden Emails werden täglich über verschiedene Platt-
formen verschickt. Jedes selbstfahrende Auto erzeugt täglich 4 Terabyte
an Daten. Laut einer Studie von Digital Universe wird die Menge an von
Menschen und Maschinen produzierten Daten 44 Milliarden Terabytes bis
2020 übersteigen. Das bedeutet, zu jedem Menschen auf der Erde wird es
5,200 Gigabyte an Daten geben. Es gibt Schätzungen, dass sich die täglich
generierte Datenmenge bis 2025 auf 463 Millionen Terabyte erhöht. Um
diese Datenmengen zu verarbeiten und aus den Datenquellen Wissen
herzuleiten, werden geeignete Infrastrukturen und effiziente Methoden
benötigt, die in der Lage sind, die Daten zur Laufzeit zu analysieren.
Data-Stream-Mining ist das Gebiet, das solche skalierbaren und effizienten
Methoden bereitstellt, welche Daten inkrementell verarbeiten können.

Die inkrementelle Induktion einer beschränkten Menge an Beobachtun-
gen einer unbekannten Verteilung ist seit langer Zeit Gegenstand vieler
Studien. Abhängig von der Anwendung kann die Zielklasse nur ein oder
viele Label haben, zwischen denen unbekannte Abhängigkeiten existieren
können. Obwohl dieses Problem bereits eine Herausforderung darstellt,
können sich zusätzlich in vielen Stream-Mining-Anwendungen die statis-
tischen Eigenschaften des Inputs und der Zielvariable(n) unvorhergesehen
über die Zeit ändern. Dieses Phänomen wird als Concept Drift bezeichnet.
Wenn dies nicht berücksichtigt und ordentlich gehandhabt wird, werden
trainierte Online-Modelle schnell obsolet. Außerdem sind diese Drifts nicht
wohldefiniert und können jegliche Änderungen in den statistischen Eigen-
schaften der Daten enthalten, was das Prognoseproblem noch schwieriger
gestaltet.

Der Hauptfokus dieser Arbeit ist die Modellierung eines Typs von
Drifts, welcher als Recurrent Concepts bezeichnet wird. Es ist wichtig, dass
Recurrent Concepts unabhängig voneinander abgefangen werden, da die
meisten Stream-Mining-Methoden einen Vergessen-Mechanismus in den
Lernprozess einbauen und ihr veraltetes extrahiertes Wissen vergessen.
Wir schlagen die GraphPool und Multi-Label GraphPool-Umgebungen für
Single-Label und Multi-Label-Datenströme vor. Diese Umgebungen behal-
ten einen Pool von Konzepten und ihrer Überführung in eine Markovkette
erster Ordnung, um sich schnell an periodische Drifts in den Strömen
anzupassen. Im Zusammenhang mit der Konzipierung einer solchen
Umgebung für Multi-Label-Ströme, entwickeln wir einen effizienten
Algorithmus für die Klassifizierung von stationären Multi-Label-Strömen.
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Um die Effektivität unserer Methoden zu demonstrieren, führen wir eine
umfangreiche Menge von Experimenten anhand von synthetischen und
realen Daten durch.
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Notation Meaning
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X,Y, L depending on the context, random variables related
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class values, and label sets
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D distance function
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Chapter 1

Introduction

We are now in the era of accessing tremendous amounts of data. Millions
of text data, including news articles, companies’ reports, scientific pub-
lications, tweets, and blogs, are published every day. In the biomedical
field alone, more than one million papers pour into the PubMed database
each year – about two papers per minute [105]. Every second, on average,
around 6, 000 tweets are tweeted on Twitter, which means more than 500
million tweets per day1. Over 100 million photos and videos are uploaded
every day on Instagram2. Billions of different types of sensors frequently
report their measurements. Processing such data and extracting knowledge
from these streams require efficient methods that can act in real time. The
field of stream mining has emerged to focus on developing such methods
for different types of data.

A stream of data is a timely ordered sequence of instances that in many
cases can be read only once or be available only for a limited period. Thus,
the proposed knowledge extraction methods dealing with streaming data
should possess some unique features. From their nature, stream mining
methods should be incrementally updateable and anytime. Anytime refers
to the fact that the learner is capable of returning imperfect results at any
point in time, which allows it to remain functional even if a perfect solution
could not be found within the necessary time frame. In terms of complex-
ity, the methods should be simple and ideally sublinear in time and space
with respect to the data size because of our limited computational resources.
Such properties allow the learner to be employed in real-time decisions. In
this thesis, we focus on the supervised approaches, where an expert provides
the correct labels of each instance and the goal of the learner is to correctly
predict the class of new instances based on the extracted knowledge from
previous data. An instance can belong to only one true class or many of
them. For example, in one application, one may be interested in classifying

1https://www.internetlivestats.com/twitter-statistics/ (access date: 1.3.2019)
2https://www.omnicoreagency.com/instagram-statistics/ (access date: 1.3.2019)

1
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2 CHAPTER 1. INTRODUCTION

news texts into either fake or real news. This is a single-label problem with
two classes. However, the goal of another application could be to find dif-
ferent possible categories that the news texts belong to, e.g., international,
social, politics, election, sports, to name a few. In this case, one instance can
belong to more than one possible class, and there may be some unknown
correlations among different classes. This problem is called multi-label learn-
ing.

It has been now over two decades that researchers have developed var-
ious supervised methods based on possibly different assumptions for a va-
riety of real-world streaming problems. Although there have been exten-
sive studies on data with a single target class, not many studies focused on
multi-label stream mining, perhaps due to the only recent emergence.

Another critical challenge of processing streaming data is the possibility
of change in the underlying distribution of data. In a classic learning prob-
lem, our goal is to find the best approximation for the function that separates
classes well, and for that, we assume that the training instances are consis-
tent with that target, or in other words, training data is stationary. However,
when the data is received incrementally, this assumption is most likely not
valid. Remember our news categorization problem: Depending on the pe-
riod of time, news in each category may vary. For example, in politics, the
texts may vary from the Iran nuclear deal to tapping German Chancellery
to parliament election. Such drift in the learning function poses more chal-
lenge to the problem of stream mining, especially for the multi-label setting.
We can imagine that many of this news will show up again some possibly
long time later, e.g., the elections will frequently repeat every few years and
each party will represent similar or almost the same discussions and plans.
While considering to handle different types of drifts, our main focus in this
thesis is to learn these recurring concepts.

1.1 Thesis contributions and structure

The main contribution of this thesis lies in modeling recurrent concepts for
streaming data, no matter whether the data has a single target class or mul-
tiple labels. We achieve our goal by developing a pool based method that
is actively updated and manages its size by frequently checking the simi-
larity of existing concepts and merging them when necessary. Concepts are
identified as similar by applying a similarity measure, as in PASC, or more
generally by applying a statistical likelihood test, as in GraphPool. To ex-
tend the recurring framework to the multi-label setting, we also developed
a novel efficient scalable multi-label streaming method based on a random
projection of the label space and later integrated that model into the pool-
based framework. Table 1.1 presents an overview of the methods proposed
in each chapter of this thesis. The individual contributions are given at the
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Table 1.1: Overview of methods introduced in this thesis. Chapter 3 studies
deep neural networks as an offline learner for single- and multi-label text
data. Chapter 4 proposes a new multi-label stream mining method. Chap-
ters 5 and 6 propose two novel recurrent concept methods for single-label
streams. Chapter 7 combines the proposed methods from Chapter 4 and 6
to achieve the first multi-label recurrent model.

Learner
Offline Online

Non-recurrent Recurrent

Data
Single-label

Chapter 3
– PASC (Chapter 5)

GraphPool (Chapter 6)
Multi-label RACE (Chapter 4) multi-label GraphPool (Chapter 7)

beginning of each chapter. Here, we review them as they appear in the the-
sis:

• A great portion of our massive sources of data is text data. Hence, un-
derstanding complex documents is an essential task. Recently, deep
neural networks have shown promising results in image and speech
processing. Their application to many different natural language pro-
cessing tasks, such as sentiment analysis, has shown a considerable
performance improvement. Recursive Neural Tensor Networks (RNTNs)
are a well-known successful approach that integrates semantic con-
tent of a sentence (i.e., its parse tree information) with a recursive
neural network architecture. Another successful deep network ar-
chitecture, especially on image data, is Convolutional Neural Networks
(CNNs). Chapter 3 investigates an in-depth study of these two pop-
ular deep neural network architectures for several text categorization
data. It also proposes two different ways of automatic labeling to re-
duce the need for intensive manual labeling in RNTNs.
Published as: Zahra Ahmadi, Marcin Skowron, Aleksandrs Stier, Ste-
fan Kramer. “An In-Depth Experimental Comparison of RNTNs and
CNNs for Sentence Modeling”. In: Proceedings of International Con-
ference on Discovery Science (2017), pp. 144 – 152.

• Chapter 4 focuses on a stationary stream of multi-label data. We con-
sider the sparsity of label sets in most of the multi-label datasets beside
their unknown dependencies among labels. As a result, we propose
an efficient multi-label learning method that reduces the space of la-
bels by applying random projections, Random Compression (RACE).
Different from deep neural network architectures, it finds the map-
ping function analytically based on the least squares solution.
Published as: Zahra Ahmadi and Stefan Kramer. “A label compres-
sion method for online multi-label classification”. In: Pattern Recog-
nition Letters 111 (2018), pp. 64 – 71.
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• Chapter 5 focuses on the problem of recurring concepts for single-
label streams. It builds a new framework, Pool and Accuracy based
Stream Classification (PASC), by extending one of the successful exist-
ing frameworks for handling recurrent concepts, Conceptual Cluster-
ing and Prediction (CCP). In this chapter, we try to address the limits
of the CCP framework and improve the similarity measure in such a
way that it is less domain-specific. We also study the effect of different
prediction strategies.
Published as: Mohammad Javad Hosseini, Zahra Ahmadi, Hamid
Beigy. “Using a classifier pool in accuracy based tracking of recur-
ring concepts in data stream classification”. In: Evolving Systems 4.1
(2013), pp. 43 – 60.

• Chapter 6 continues the problem of recurrent concepts for single-label
streams and proposes a new first-order Markov chain framework for
connecting concepts in the pool. Using this directed graph-based
modeling of the concepts, we are able to capture the periodic behavior
of the data. To remove the domain dependency of the similarity
measure, we apply a likelihood statistical test. This approach is called
GraphPool, and it also benefits from an effective merging strategy to
manage the pool size.
Published as: Zahra Ahmadi and Stefan Kramer. “Modeling recur-
ring concepts in data streams: A graph-based framework”. In: Knowl-
edge and Information Systems 55.1 (2018), pp. 15 – 44.

• Finally, chapter 7 addresses the problem of recurrent concepts in
multi-label streams. For that, we benefit from our efficient multi-label
stream classifier (RACE) and integrate it into the successful GraphPool
framework. However, this combination is not trivial. We needed
to come up with new ways of concept representations and concept
comparisons for multi-label data, which all are discussed in this
chapter.
To be appeared in: Zahra Ahmadi and Stefan Kramer. “Modeling
Multi-Label Recurrence in Data Streams”. International Conference
on Big Knowledge (2019).

Before investigating on our contributions, we review the literature and
problem definitions in Chapter 2.



Chapter 2

Background

The background chapter will introduce concepts and algorithms from ma-
chine learning and data mining that are related to the proposed methods
in this thesis. We focus on the classification problem, where the learner is
provided a set of training instances and supposed to predict unseen test
instances. Section 2.1 explains the problem of multi-label classification, its
challenges, its most common evaluation measures, and a review of litera-
ture on the topic. In Section 2.2, we introduce the problem of stream classi-
fication and concept drifts, and review the literature. Finally, in Section 2.3,
we provide an overview of deep learning methods and their application to
multi-label problems.

2.1 Multi-label classification

Standard classification is the task of assigning the correct class to previously
unknown test instances based on training instances. Training data are most
commonly described by features and an associated target class or class label.
Many modern data mining applications, however, need to deal with more
than one label per instance. This problem is called multi-label learning. As a
formal definition, we define multi-label data and the concept of a multi-label
classifier as follows:

Definition 1. Let x ∈ X ⊆ Rm and l = (l1, l2, . . . , ll) ∈ {0, 1}l = L denote
an instance of anm-dimensional feature space and the relevant binary label
set of size l, respectively. We assume that instances are generated indepen-
dently from a joint distribution P(X ,L) over X × L.

The goal of a multi-label classifier C : X → L is to learn a prediction
function C from a given set of training instances that minimizes the risk, ξ,
with respect to a label-wise decomposable loss function (f(.)). This risk
function is defined as the expected loss over the joint distribution P(X ,L):

ξ = EX,Lf(L, C(X)). (2.1)

5
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Multi-label classification can be viewed as a generalization of multi-class
classification where labels do not exclude each other and may have un-
known dependencies among each other as well as with the features.

2.1.1 Properties of multi-label datasets

Not all multi-label datasets are equal even with the same number of labels
and instances. The number of labels for each instance can vary among dif-
ferent datasets, and this will influence the performance of a multi-label clas-
sifier. Hence, it is important to notice the properties of a multi-label dataset
while comparing different multi-label learning algorithms.

Label cardinality (LC) indicates the average number of labels per instance
and, if normalized by the number of labels, it is called label density (LD):

LC =
1

n

n∑
i=1

| li |, LD =
LC

l
. (2.2)

Unique label set (UL) indicates the total number of distinct label combina-
tions observed in the dataset and, if normalized by the number of instances,
it is called proportion of unique label set (PUL):

UL =| {l|∃x : (x, l) ∈ S} |, PUL =
UL

n
. (2.3)

2.1.2 Evaluation measures

Let T = (xi, li) |ni=1 be a multi-label test set with n instances and l labels,
and let li and C(xi) be the sets of true and predicted labels for instance i. To
assess the performance of multi-label models, we should consider all labels
and the output of a model for each label. Therefore, we need specific mea-
sures to evaluate multi-label models. Gibaja and Ventura [61] summarize
well-known performance measures into two categories: measures to evaluate
bipartitions, and measures to evaluate rankings. In the following, we will ex-
plain both categories briefly. TP , FP , TN , and FN are the number of true
positives, false positives, true negatives, and false negatives, respectively.

Bipartition-based measures: These measures can be either measured
label-based or example-based. Label-based measures are calculated for each
label and then averaged across all labels, while example-based measures
evaluate the performance of the multi-label model on each test instance
separately and return the mean value across the test set. Here, we introduce
the most common example-based and label-based measures:



2.1. MULTI-LABEL CLASSIFICATION 7

• 0/1 subset accuracy or exact match ratio computes the percentage of test
instances whose predicted label set is exactly the same as their corre-
sponding ground-truth:

0/1 subset accuracy =
1

n

n∑
i=1

Jli = C(xi)K. (2.4)

Subset accuracy can intuitively be regarded as a multi-label counter-
part of accuracy in single-label problems. However, it is rather a very
strict measure, especially when the label space is large and even more
challenging in the data stream setting.

• Hamming loss evaluates the fraction of misclassified instance-label
pairs. That means it takes into account misclassification of both
relevant labels and irrelevant predictions:

Hamming Loss =
1

nl

n∑
i=1

| li ∆ C(xi) |=
1

nl

n∑
i=1

(FPi + FNi), (2.5)

where ∆ stands for the symmetric distance between two sets. Again,
Hamming loss can be interpreted as a generalization of the misclas-
sification rate in single-label problems. Studies show that classifiers
aiming at optimizing subset accuracy will perform rather poorly when
evaluated in terms of Hamming loss, and vice versa [42].

• Information retrieval based measures: We can use a multi-label ver-
sion of precision, recall, F-measure, and accuracy measures to evaluate
a multi-label model. Example-based accuracy is the proportion of
correctly classified labels out of the total number of labels, whereas
example-based precision and example-based recall are the fraction of
correctly classified labels out of the predicted positive labels and
the actual labels, respectively. F1-measure is the harmonic mean
of precision and recall. The following equations indicate their
definitions:

Example− based precision =
1

n

n∑
i=1

| li ∩ C(xi) |
| C(xi) |

=
1

n

n∑
i=1

TPi

TPi + FPi
, (2.6)

Example− based recall =
1

n

n∑
i=1

| li ∩ C(xi) |
| li |

=
1

n

n∑
i=1

TPi

TPi + FNi
,

Example− based F1 =
1

n

n∑
i=1

2 | li ∩ C(xi) |
| li | + | C(xi) |

=
1

n

n∑
i=1

2TPi

2TPi + FPi + FNi
,

Example− based accuracy =
1

n

n∑
i=1

| li ∩ C(xi) |
| li ∪ C(xi) |

=
1

n

n∑
i=1

TPi

TPi + FPi + FNi
.

Label-based measures can be any binary evaluation measure (e.g., accuracy,
precision, recall, and F-measure) applied to the prediction results of each
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label and obtaining an average value across all labels. Averaging can be
done in two ways: macro and micro. In micro averaging, we first aggregate
the values of all the contingency tables for all instances together and then
calculate the measure across all labels:

Mmicro = M
( l∑
i=1

TPi,

l∑
i=1

FPi,

l∑
i=1

TNi,

l∑
i=1

FNi

)
, (2.7)

where M is a binary evaluation measure. By contrast, in macro averaging,
we compute one measure for each label and then average over all the labels:

Mmacro =
1

l

l∑
i=1

M(TPi, FPi, TNi, FNi). (2.8)

For example, micro-averaged precision and macro-averaged precision are calcu-
lated as follows:

Micro− averaged precision =

∑l
i=1 TPi∑l

i=1 TPi +
∑l

i=1 FPi
,

Macro− averaged precision =
1

l

l∑
i=1

TPi
TPi + FPi

, (2.9)

Conceptually speaking, macro-averaged measures give an equal weight to
each label, regardless of its frequency, while micro-averaged measures give
an equal weight to each instance and tend to be dominated by the perfor-
mance in the most common labels. Therefore, macro-averaged measures
are better to be used in the problems with skewed training data across dif-
ferent categories, whereas the micro-averaged measures are better for the
applications where the density of the class is important.

Ranking-based measures: If a multi-label learner is able to provide a
ranking of the predicted labels, the following measures can also evaluate
the performance of the learner:

• One-error measures the probability of not getting even one of true la-
bels by counting how many times the top ranked predicted label is not
in the set of true labels:

One− error =
1

n

n∑
i=1

Jarg min
l∈L

τ (xi, l) /∈ liK, (2.10)

where τ is a rank function. Obviously, this measure is not a good
measure in multi-label problems, as it only considers the top-ranked
label.
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• Coverage measures the average needed depth in the ranking to cover
all the labels associated with an instance:

Coverage =
1

n

n∑
i=1

max
l∈L

τ (xi, l)− 1. (2.11)

This measure is especially used in applications where predicting all
true labels are important even with a few extra false positives. It is
possible to have a good coverage while having high one-error.

• Macro-averaged AUC and Micro-averaged AUC indicate the averaged
rankings of all instances per label over labels and the averaged
rankings of correct and incorrect labels over all instances and labels,
respectively:

Macro AUC =
1

l

l∑
i=1

| {(x′,x′′) ∈ Xj × X̄j |τ (x′, li) ≥ τ (x′′, li)} |
| Xj || X̄j |

, (2.12)

Micro AUC =
| {(x′,x′′, l′, l′′)|τ (x′, l′) ≥ τ (x′′, l′′), (x′, l′) ∈ S+, (x′′, l′′) ∈ S−} |

| S+ || S− | ,

where Xj = {xi|lj ∈ li} and X̄j = {xi|lj /∈ li} correspond to the set
of test instances with and without label lj , and S+ = {(xi, l)|l ∈ li}
and S− = {(xi, l)|l /∈ li} represent the set or relevant and irrelevant
instance-label pairs.

2.1.3 Multi-label learning methods

Very early multi-label studies focused on multi-label text categoriza-
tion [120], and gradually the topic attracted attention from different
communities, such as bioinformatics [36] and image labeling [24]. Along
these years, several single-label classification algorithms have been adapted
to the multi-label scenario (e.g., ML-kNN [206]). In contrast, some other
methods are algorithm-independent and convert the original multi-label
problem into one or several single-label problems, and apply one of the
existing single-label learning methods to the transformed data. Thus,
Tsoumakas et al. [178] categorize the multi-label classification approaches
into two general groups: algorithm adaptation and problem transforma-
tion methods. In the following, we briefly review the literature of both
approaches:

Agorithm adaptation methods

Many of the classical single-label classification methods have been adapted
to the multi-label schema. ML-C4.5 [36] is a multi-label adaptation of the
popular C4.5 decision tree learner, where leaves can contain multiple labels
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and the entropy definition is adapted to consider how much information is
needed to describe to what labels a certain pattern belongs:

entropy(S) =

l∑
i=1

(
P (li) logP (li) + (1− P (li)) log(1− P (li))

)
. (2.13)

A multi-label adaptation of the famous SVM was proposed in Rank-
SVM [46]. The approach aims to optimize l linear classifier to minimize the
empirical ranking loss with quadratic programming in its dual form and
the kernel trick to manage nonlinearity. The multi-label margin is defined
as:

min
(xi,li)∈S

min
(lj ,lk)∈li×l̄i

< wj − wk,xi > +bj − bk
||wj − wk||

, (2.14)

where S is the training set, and w and b are weight vector and bias of linear
classifiers. The boundary for each pair of relevant-irrelevant labels corre-
sponds to the hyperplane < wj − wk,xi > +bj − bk.

Multi-Label k-Nearest Neighbor (ML-kNN) [206] was the first multi-label
version from lazy learning family of algorithms. ML-kNN finds the k near-
est instances to the test instance, and stores for each label the number of
instances, which belong to that label (ci, 1 ≤ i ≤ l). Then it uses the Maxi-
mum A Posteriori (MAP) principle to identify the labels:

li =

{
1 if P (ci|li = 1)P (li = 1) ≥ P (ci|li = 0)P (li = 0)

0 otherwise
(2.15)

Later, Cheng and Hüllermeier combined instance-based learning and lo-
gistic regression to capture interdependencies between labels [34]. The key
idea is to consider labels of neighboring instances as features of unseen ex-
amples.

AdaBoost.MH is a multi-label adaptation of AdaBoost proposed for
text categorization [156]. It minimizes Hamming loss and maintains a
set of weights not only over the training set but also over labels. Ad-
aBoost.MR [156] is another multi-label variation of the AdaBoost algorithm,
which aims to minimize the ranking loss. For that, it has to take into
account all labels misorderings. Therefore, it maintains the set of weights
for each instance and a pair of labels.

There are many other single-label approaches, from associative classi-
fication [143], generative models [184], neural networks (e.g., Backprop-
agation for Multi-Label Learning (BP-MLL) [207] and Multi-Label Radial
Basis Function (ML-RBF) [205]), to evolutionary algorithms (e.g., Multi-
Label Ant-Miner (MuLAM) [30]) that have been adapted to the multi-label
scenario.
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Figure 2.1: Comparison of Binary Relevance (BR) and Classifier Chains
(CC) classifier training.

Problem transformation methods

The most popular method from this category is called Binary Relevance (BR),
which is similar to the one-versus-all approach for multi-class classification.
BR assumes the labels are independent and trains a separate model for each
label. BR is a simple method that has low computational complexity com-
pared to many other multi-label methods. Its label independence assump-
tion also makes it applicable for adding/removing labels without affecting
the rest of the model, suitable for evolving multi-label data, and possible
for parallel implementation. On the other hand, BR suffers from ignoring
label correlations, sample imbalance, and an increasing number of classi-
fiers for high dimensional labels. Later, to alleviate the label independence
problem, Classifier Chains (CC) [149] were proposed. CC adds links to the
classifiers in BR in such a way that the feature space of each link in the chain
is extended with the label associations of all previous links. Figure 2.1 illus-
trates the difference in training data for BR and CC.

As the order of the chain can influence the performance, an Ensemble of
Classifier Chains (ECC) was proposed. ECC trains a set of CC classifiers with
a random chain order and a random subset of training data. A threshold is
applied to the normalized sum of votes for each label to produce the out-
put. Instead of random order, a Bayes optimal way of forming chains based
on probabilistic integration of links was proposed in Probabilistic Classifier
Chains (PCC) [41]. It tests all possible combination of chain orders and se-
lects the best one based on the likelihood of correct prediction for instances.
Although the model achieves better accuracy than CC, its time complexity
is exponential in terms of label set size and only recommended for small
label sets.

Another way to address the label independence assumption of BR is to
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use two layers of BR as in Meta-BR (MBR) [149]. MBR learns a binary meta-
learner for each label, which is fed by the output of BR classifiers in the first
layer. A pruning strategy is applied to the output of the first layer and only
the predictions on those labels whose absolute value of the φ coefficient is
greater than a pre-defined threshold is considered in the meta-learning:

φ =
ad− bc√

(a+ b)(c+ d)(a+ c)(b+ d)
, (2.16)

where a is the frequency of co-occurrence of label i and j, b is the frequency
of occurrence of i but not j, c is the frequency of occurrence of j but not i,
and d is the frequency of instances where i and j do not occur. Experimental
results showed that pruning improves the computational cost substantially
while maintaining or improving predictive performance [176].

Ranking and Threshold [177] uses, for each label, a single-label classifier
that can produce a score. All labels associated with a confidence greater
than a threshold form the set of prediction. To build the training data, a
straightforward approach copies one multi-label instance for all its label set
(and possibly weigh them). However, this approach increases the number
of patterns and makes modeling more complicated. To simplify the proce-
dure, one may select the multi-label instance for a subset of labels. Depend-
ing on the selection method, the most frequent, the less common or even
random subset could be chosen.

The Label Powerset (LP) method generates a new class for each possible
combination of labels and solves the resulting multi-class problem. This ap-
proach is simple, and it considers label correlations. However, the training
data could be limited due to a large number of possible classes, and the clas-
sifier cannot predict unseen label sets. The complexity of LP is exponential
with the number of labels. Random k-labelsets (RAkEL) constructs an en-
semble of LP classifiers, each with a random subset of k labels. It aims to
reduce the computational complexity and class imbalance of LP when the
number of labels is large. Moreover, the method averages over the predic-
tion of the ensemble per label and applies a threshold to assign the label set.
In this way, RAkEL overcomes the limitation of LP in dealing with unseen
label sets. Experimental results show that employing LP instead of BR or
ML-kNN in RAkEL improves the results, and as a single-label classifier, us-
ing C4.5 and Support Vector Machines (SVMs) leads to better performance
than Naı̈ve Bayes [180].

An approach considering the trade-off approach between the simplic-
ity of BR and the complexity of LP is called LPBR [174]. It is an iterative
approach that, in each round, trains an LP on already grouped dependent
labels and a BR on independent labels. First, all labels are sorted using the
χ2 score:

χ2 =
(ad− bc)2(a+ b+ c+ d)

(a+ b)(c+ d)(b+ d)(a+ c)
. (2.17)
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Moreover, the most dependent label pair is chosen. Depending on whether
the labels of the pair belong to other previous groups of labels, either a
new group with the new pair is formed, or they can be joined to a previ-
ous group, or two previous groups can be joined together to include this
pair. Predictive performance of LPBR is higher than LP and BR; however,
training time is relatively long and comparable to RAkEL and MBR.

Pruned Sets (PS) [150] also tries to address the limits of LP by pruning in-
stances with less frequent label sets. To compensate for the information loss,
PS reintroduces pruned instances with their disjoint subsets of the pruned
label sets that occur more frequently than a threshold in the training set.
Ensemble of Pruned Sets (EPS) follows the same strategy as RAkEL in classi-
fying instances with new label sets. Experimental results showed that EPS
outperformed LP and RAkEL [150].

Another method, Ranking by Pairwise Comparison (RPC) [82], follows a
similar approach to pairwise classification in multi-class learning by trans-
forming an l label problem into l(l− 1)/2 binary datasets, each for one pair
of labels, and builds a binary classifier on each dataset. Each dataset con-
tains instances which belong only to one of the labels, and it considers one
of them as class 0 and the other as class 1. This approach has quadratic
complexity in terms of space and time, and thus is prohibitive especially for
problems with a large number of labels. Fürnkranz et al. extend the RPC
approach by a calibration label that can be interpreted as a split for relevant
and nonrelevant labels [51]. This way, the complexity of queries is even
more (l2 + l).

Label space reduction methods

With an increase in the number of labels, many of the standard multi-label
classification methods that work in the original label space (e.g., BR and
ECC) become computationally infeasible. Hence, new strategies for reduc-
ing the label space have been presented, which are called Label Space Dimen-
sion Reduction (LSDR) methods [80, 172, 193, 212]. These methods acceler-
ate the learning process by training fewer binary classifiers on compressed
label sets. The reduction on the label space and the number of classifiers
to be learned makes such methods suitable for multi-label stream classifi-
cation problems where the time complexity of methods matters.

Random Projection (RP) is a simple and computationally efficient linear
dimensionality reduction technique that is data oblivious. The key idea be-
hind that stems from the Johnson-Lindenstrauss lemma [89], which states that
a set of points in a high-dimensional space can be embedded into a lower-
dimensional space, with distances between these points preserved up to a
certain multiplicative factor:
Definition 2 (JL-lemma). Let ε ∈ (0, 1) and A be a set of n points in Rd, and
k = O(ε−2 log n) be an integer. There exists a mapping f : Rd → Rk such
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that for any a,b ∈ A:

(1− ε)||a− b||2 ≤ ||f (a)− f (b)||2 ≤ (1 + ε)||a− b||2. (2.18)

Johnson-Lindenstrauss lemma indicates that any dataset with n
instances, regardless of its dimensionality, can be represented in
k = O(ε−2 log n) dimensions such that pairwise distances between
any two instances is preserved up to a multiplicative factor of 1 ± ε, where
ε is the distortion.

JL-lemma is an optimal estimation in terms of n and ε, which means
that without prior knowledge of the dataset, no linear dimensionality re-
duction technique can improve the guarantee on k. However, the lemma
does not specify how to create the mapping f . In their proof, Johnson and
Lindenstrauss chose f as a properly scaled dense orthogonal transforma-
tion projection matrix, which is neither easy nor efficient for practical ap-
plications. Later studies showed the unnecessity of the orthogonality con-
straint [84]. This observation led to a simple random projection matrix con-
struction that initializes the projection matrix with random numbers drawn
from a normal distribution. An orthogonalization algorithm can be applied
to the matrix later. One example of such an orthogonalization method is the
Gram-Schmidt method, which runs inO(dk2). We later use this approach in
Chapter 4 as an initialization of the proposed RACE method. However, one
may leave the random matrix without any orthogonalization step, as stud-
ies showed the probability of random vectors being orthogonal or almost
orthogonal increases with the vector dimensionality [74].

Gaussian random projection is an easy-to-implement algorithm that
produces a high-quality sketch of the original data matrix; however,
compared to more recent random projection methods, it needs more
computations. Several different projection methods with good embedding
quality have been proposed in the literature: Some focus on the fast
embedding of potentially dense data [6], while some others concentrate on
embedding highly sparse data [39, 129].

Applying random projection methods to multi-label data, an early work
in label space reduction family of algorithms used Compressed Sensing (CS)
approach for multi-label prediction [80]. Compressed sensing is a random
projection technique based on the assumption of the sparsity in the signal
and the incoherence, which is applied through the isometric property. Hsu
et al. assumed sparsity in the label set and encoded labels using a small
number of linear random projectors. Although the encoding function is lin-
ear, the decoder is based on the Orthogonal Matching Pursuit (OMP) [117],
which is a nonlinear iterative and greedy reconstruction algorithm. For each
test instance, CS needs to solve an optimization problem related to its spar-
sity assumption. Hence, CS can be time-consuming during prediction.

Unlike CS, the projection matrix in Principle Label Space Transformation
(PLST) [172] captures the correlations between labels using Singular Value
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Decomposition (SVD) of the label matrix:

min
o,P

1

n

n∑
i=1

||li − o−PTP(li − o)||2 such that PPT = I, (2.19)

where o ∈ Rl is a reference point and P is an k × l matrix where k << l.
This approach guarantees the minimum encoding error on the training set.
Both encoding and decoding functions are computed from the SVD, and
thus, both are linear. PLST outperforms CS in terms of prediction accuracy
and time complexity.

Zhang and Schneider employed Canonical Correlation Analysis (CCA) in
the multi-label setting [211]. CCA is a classical tool for modeling linear
associations between two sets of variables. In the multi-label setting, they
consider the feature set as the first variable and the label set as the second.
Canonical correlation analysis finds a pair of projection directions u ∈ Rm
and v ∈ Rl such that the correlation between the pair of projected variables
uTx and vT l is maximized:

arg max
u,v

uTXTLv√
(uTXTXu)(vTLTLv)

, (2.20)

where (X,L) indicates the matrix of training instances. Label dependency is
characterized as the most predictable directions in the label space, extracted
as canonical output variates and encoded into the codeword. Predictions
for the codeword define a graphical model of labels with both Bernoulli po-
tentials (from classifiers on the labels) and Gaussian potentials (from a re-
gression on the canonical variates). For a test instance, the exact solution of
the decoding function has exponential complexity. Hence, a mean-field ap-
proximation is performed on the joint probability to reduce the complexity,
which offers a tractable predictive distribution on labels [211]. They further
proposed a maximum margin formulation to learn the output coding that
is both predictive and discriminative [210]. However, its optimization relies
on the cutting plane algorithm, which may not be efficient when there are
many labels.

Linear Gaussian random projection is another form of transforming la-
bels, which was used in Compressed Labeling (CL) [212]. CL compresses
the original label set to improve balance and independence by preserving
the signs of its Gaussian random projections. In the decoding phase, the
method uses a series of Kullback-Leibler divergence based hypothesis tests
on the distilled label sets (DLs). DLs are the frequent label subsets extracted
from the original labels by performing a recursive clustering algorithm and
subtraction on the label vectors. Although the decoding phase is composed
of a series of hypothesis tests and is linear in time, extracting distilled label
sets through a recursive clustering method is empirically expensive.
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MLC-BMaD [193] is another label compression method that uses
Boolean Matrix Decomposition (BMaD) to factorize the label matrix into
the product of a Boolean code matrix and a Boolean decoding matrix. The
technique needs all the training data at once to extract the compressed label
set. Another study employs Bloom filters, a space-efficient randomized
data structure initially designed for approximate membership testing, for
multi-label classification [35].

Instead of transforming label sets to a much smaller space, which may
make the problem more difficult to learn, one approach selects a small sub-
set of labels that can approximately span the original space [11, 14]. These
methods are based on the assumption that all the output labels can be cov-
ered by a small subset (L ' LW):

min
W
||L− LW||2F + λ1||W||1,2 + λ2||W||1, (2.21)

where W ∈ Rl×l is the coefficient matrix with only a few nonzero rows,
λ1, λ2 are regularization parameters, ||W||1,2 =

∑l
i=1

√∑l
j=1W

2
ij is the

l1,2 group-sparsity regularizer that encourages the row sparsity of W, and
||W||1 =

∑l
i=1 |Wij | is the traditional l1 regularizer that encourages sparsity

over the whole W. While multiple output landmark selection [11] requires an
expensive optimization problem to select the best labels (columns), a more
efficient randomized sampling method based on the Column Subset Selection
Problem (CSSP) was proposed by Bi and Kwok [14]. Instead of using a pre-
determined number of sampling trials, the number of trials is adaptive and
based on performing partial SVD.

All the previous methods compress the label set regardless of the cor-
responding feature set. This approach can be considered as an unsuper-
vised manner by not considering the input feature information. Recently,
some feature-aware methods have been proposed that find the optimized
compression function considering both feature and label sets. Conditional
Principal Label Space Transformation (CPLST) is a feature-aware variation of
PLST that minimizes both the encoding error and the training error in the re-
duced space [33]. Another feature-aware method (FaIE) [113] learns both
the encoding and the linear decoding matrices by jointly maximizing the re-
coverability of the original space from the latent space and the predictabil-
ity of the latent space from the feature space. FaIE can be considered as a
generalization of PLST and CPLST. Cao and Xu use the Hilbert-Schmidt inde-
pendence criterion to maximize the dependency between features and labels
via solving an eigenvalue problem [26]. Their method uses the same de-
coding matrix as in PLST and CPLST, but the eigenvalues decrease more
quickly than in PLST and CPLST, and therefore, their method results in
shorter codewords. A more recent study extends CCA to the Kernel Canoni-
cal Correlation Analysis (KCCA) to reduce labels in a nonlinear feature-aware
scheme [111]. Their goal is to capture different types of label correlation



2.2. STREAM MINING 17

patterns in the original label space and increase the label information pre-
served in the reduced space. As a decoding phase, a sparsity regularized
least squares loss minimization problem is solved, and a projected gradient
descent algorithm is developed to solve the minimization problem.

2.2 Stream mining

Due to the ever-increasing volumes of data generated today, processing
data and extracting meaningful knowledge has become a challenge in many
problem domains. In many cases, the complete dataset cannot be saved and
processed offline anymore in a way classical data mining methods assume.
Consequently, there is a great need for algorithms that can process a
continuous and unlimited stream of data. Data stream classification has been
considered as a challenging problem in many real-world applications such
as intrusion detection, user interest, and climate forecast, among others.
A stream of data can be viewed as a stochastic process of continuous and
independent data/events where data stream algorithms are required to
possess some properties [171, 52]:

• Not all the training data is available at once, and thus the algorithms
need to operate incrementally.

• The algorithms need to process an unlimited stream of data, which
cannot be stored completely. Therefore, they need a forgetting mech-
anism to keep the most relevant subset of data.

• Because of the scale of data, the algorithms should process instances
online and in one pass. Hence, the processing algorithm needs to be
simple.

• The most important feature of a data stream classification algorithm
is the ability to cope with drifts in the underlying distribution of data.
We define concept drift as:

Definition 3 (Concept drift). Let an instance (x1, . . . , xm, y) be drawn from
a feature space X = X1 × · · · × Xm ⊆ Rm, where xi ∈ Xi is the ith feature
from the corresponding space and y ∈ Y is its class label, each drawn from
a distribution, which may change over the time. The joint probability of
random variables over feature space X and/or target space Y , P (X,Y ), is
considered as concept, and the change of the joint probability distribution
through time is called concept drift, where Pti(X,Y ) 6= Ptj (X,Y ) [58]. The
joint probability can be written as:

P(X ,Y ) = P (Y |X)P (X), (2.22)
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where the change in the feature variable distribution, P (X), is called vir-
tual concept drift or covariate drift, and it may occur when the training in-
stances are skewed. On the other hand, the change in the target variable
distribution, P (Y |X), is called real concept drift or class shift [183, 192]. Any
of these two changes may or may not lead to a change in posterior distri-
bution, P (Y |X). If the posterior distribution stays the same, the drifts are
called pure class shift and pure covariate shift, respectively.

The ability to distinguish between virtual and real drifts and their pure
forms helps to decide if the model has to relearn or revise. Hence, it leads
to a more robust model. To this end, there has been much work on identify-
ing types of concept drift [214, 79, 58]. In general, we can categorize a drift
according to the way changes happen in time into the following groups:

• Abrupt/Sudden: When the distribution of instances changes instanta-
neously or near instantaneously. A real-world example of such change
happens in a stock market crash, where stock values change almost
instantly and follow a new pattern. Many algorithms in the literature
investigated to detect sudden drift [195, 57, 29, 53, 16, 130]. They usu-
ally track the performance of the algorithm on a buffer/window of
recent instances and when there is a significant degradation on the
performance from one time slice to the other, the occurrence of drift
is indicated.

• Gradual: In case there is a non-deterministic stage and transition time
before completing the distribution change, and data may be drawn
from both distributions, a gradual drift is occurring. Gradual changes
may or may not be a steady progression from one concept towards
another, where the probability of old distribution decreases and
the probability of new distribution increases during the time. This
progression can consist of small changes or involve major sudden
changes. If the change is a steady progression from ci toward concept
ci+1 and the distance from ci increases and the distance from ci+1

decreases in each time step, incremental drift is occurring. Thus,
incremental drift can be seen as a generalized form of gradual drift
in which during the non-deterministic period of distribution change,
there are several distributions to draw data from, and the difference
between the distributions are small. Probabilistic drift is another type
of drift where it can be gradual or incremental. Probabilistic drift is
when two alternating concepts exist, and one initially predominates,
but over time the other comes to predominate. Gradual drifts are
usually learned implicitly by updating a single learner [98, 106, 96,
83, 45] or an ensemble of classifiers [114, 115, 196, 49, 171, 170, 188,
106, 99, 159, 60, 199].
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• Recurring: If the distribution of data reoccurs after some time, the
drift is called recurrent drift. If the repetition of the concept(s) occurs
in a specific way, a cyclical form of drift is emerging. A good example
of such case is the weather patterns in one specific location. The focus
of our thesis is to detect and learn recurrence of concepts in single-
label and multi-label problem setting.

Nonetheless, we should keep in mind that these categories and their
definition are rather qualitative and informal. Recently, some studies pro-
vided quantitative measures on drifts and tried to establish a formal def-
inition of drifts and how to address the problem of drift detection [123,
192, 62]. Minku et al. proposed the severity of drift as the proportion of
the instance space for which the class labels change between successive sta-
ble concepts [123]. Magnitude of drift is another measure, which finds the
distance between the distribution of concepts at the start and end of the pe-
riod of drift [192]. Although this measure is simple, the proper function for
measuring distribution distance varies from domain to domain and impacts
how a learner should respond to the drift. Goldenberg and Webb provided
an in-depth survey of different distance measures with respect to their suit-
ability for quantifying and estimating drift magnitude between samples of
numeric data [62]. Likewise, Webb et al. propose drift duration and drift rate
as two measures, which quantify the elapsed time over a period of drift and
how fast the distribution changes in a more formal fashion [192].

An ideal concept drift learning algorithm should support different types
of drift, i.e., sudden, gradual and recurring, and at the same time be robust
to noise. One challenge in learning from drifting data streams is to distin-
guish drift from noise. As data is not stationary and drift may occur over
time, noise may be recognized as drift and vice versa. Moreover, in the clas-
sification of streaming data, there could be cases where a new previously
unseen class emerges in time. This problem is called novel class detection,
and it adds more challenge to the problem of noise detection [119]. How-
ever, novel class detection is beyond the scope of this thesis, and we only
focus on the problems where all classes are known beforehand.

The validation process of algorithms in conventional data mining with
a limited amount of data focuses on maximizing the use of data. Hold-out,
cross-validation, and leave-one-out are standard validation methods in those
kinds of problems. The hold-out method randomly divides the dataset
into two subsets, one for training and one for testing. The k−fold cross-
validation segments the data into k independent and equally sized sub-
samples. One sub-sample is used for testing, and the rest of k − 1 sub-
samples are used for training, and the process is repeated k times so that
each sub-sample is used exactly once as test data. The leave-one-out method
is a variant of the cross-validation method where the number of folds k is
equal to the data size. However, in a data stream environment where data
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Figure 2.2: A generic four-module schema of an online learning algorithm.

arrives in time and potentially with infinite size, these approaches are not
applicable anymore.

A well-known approach is to focus on evaluating the model at various
stages by plotting the model’s performance over time. This will show how
much the model improves with more training data and how well it adapts
to drifts. Well-known evaluation measures (i.e., accuracy, misclassification
rate, precision, recall, and F-measure) from conventional data classification
is applicable here as well. A standard procedure for validation of streaming
models is called prequential or Interleaved Test-Then-Train: Each instance is
first treated as a test example, and the current model predicts its class. After
receiving its true class, we estimate the loss of our model and incrementally
update the model. In fact, the training and the test phases are mixed as
opposed to the conventional classification procedure.

Instances arrive in a batch/window or individually at each time slice.
Processing data instance by instance releases the need of choosing the win-
dow size; however, it obscures the algorithm’s performance at a particular
time since the model’s early mistakes will quickly diminish over time. Pro-
cessing data in batch allows the model to adapt to the latest changes in the
data and is preferred in scenarios with drifts. As a remark, we should con-
sider that the i.i.d (independent identically distribution) assumption is not
always valid due to the non-stationary nature of the data stream. However,
it is reasonable to assume that the i.i.d assumption holds in small sized win-
dows of data.

2.2.1 Stream mining methods

Gama et al. modularize any online adaptive learning algorithm into a four-
module schema [58]:

1. Memory component: Learning from non-stationary streaming data
requires not only to update the predictive model, but also forget the
outdated old data. We refer to the memory needed by the model as
a long-term memory and to the memory needed for data as a short-
term one. Some of the methods in the literature store and process
only one instance at a time, while others save multiple instances in
a batch and process them once. WINNOW [114] is one of the early-
proposed well-known examples of the former approach, which is a
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robust linear classifier using a multiplicative weight update scheme.
STAGGER [157], DWM [98], and GT2FC [22] are other examples of
single instance models. FLORA [195] is an example of the latter ap-
proach, which uses the first-in-first-out data structure to store the most
recent data and builds a new model on them.

The key challenge in window based methods is the size of the
window: a small window of data ensures the data to be stationary,
while larger windows get better performance results in stable pe-
riods. To benefit from data most, some approaches use a variable
window depending on the indications of a change detector (e.g.,
FLORA2 [195] and others [56, 96, 16]). One study presented a
theoretically supported method for finding an appropriate window
size for Support Vector Machines based on the estimate of the
generalization error [97]. Also, Kuncheva and Zliobate provide a
stepping stone towards a theoretical basis of choosing the window
size for streams with abrupt drifts and Gaussian classes [104]. In
all these approaches, the most recent data is assumed to contain the
most relevant and the most important information. However, this
assumption is not always correct, especially when the data is noisy or
a concept is recurring. Some approaches store the instances not based
on their age but based on their distribution usage [154]. Some others
do not entirely discard instances but assign weights based on their
importance [96]. Single instance algorithms like WINNOW [114]
and VFDT [45] do not contain any explicit forgetting mechanism and
adapt to the new concept slowly over time by visiting new instances
of the new concept.

2. Change detection component: Some adaptive learning approaches
use an explicit drift detection method, which helps them with pro-
viding information about the dynamics of the data process. A typical
strategy is to monitor the performance indicators or statistics of data
and compare them to a fixed baseline [195, 92]. In general, the meth-
ods can be categorized according the following groups:

• Sequential analysis: The Sequential Probability Ratio Test
(SPRT) [186] is the basis of several drift detection meth-
ods. Assume a sequence of instances where a subset of them is
generated from an unknown distribution P0 and the other subset
is generated from another unknown distribution P1. When the
distribution changes from P0 to P1 at point t1, the probability
of observing certain subsequences under P1 is expected to be
significantly higher than that under P0. Having independent
observations Xi, the null hypothesis for change occurrence is
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tested by:

Tnt1 = log
P (xt1 . . .xn|P1)

P (xt1 . . .xn|P0)
=

n∑
i=t1

log
P1[xi]

P0[xi]
= Tn−1

t1
+ log

P1[xn]

P0[xn]
,

(2.23)
where a change is detected if Tnt1 > θ and θ is a user-defined
threshold. The Cumulative sum (CUSUM) [136] is a memoryless
test that uses SPRT to detect changes. The test outputs an alarm
when the mean of the current data significantly deviates from
zero. The Page-Hinkley (PH) test [136] is a variant of CUSUM for
a Gaussian signal. The test variable is the cumulative difference
between the observed values and their mean until the current
time.
• Statistical process control (SPC): SPC methods are the standard

statistical techniques that monitor the evolution of the learning
process. The error for each instance is a random variable from
Bernoulli trials. For each instance i, the error rate is the proba-
bility pi of observing an error with the standard deviation δi =√

pi(1−pi)
i . For a sufficiently large number of instances, the Bino-

mial distribution can be approximated by the Normal distribu-
tion with the same mean and standard deviation. The 1 − δ/2
confidence interval for pi will be pi ± α × δi. Keeping two pa-
rameters pmin and δmin, a common threshold for warning is 95%
with the threshold pi + δi ≥ pmin + 2δmin, and for out of control
is 99% with the threshold pi + δi ≥ pmin + 3δmin. We can use
the rate of change by measuring the time between warning and out
of control. One widely used SPC method is called Drift Detection
Method (DDM) [56]. Other examples of drift detection meth-
ods based on SPC can be found in [65, 22]. Early Drift Detection
Method (EDDM) [10] improves DDM in better detecting gradual
drifts by considering the distance between classification error in-
stead of classification errors. This way, EDDM detects change
faster, without increasing the rate of false positives.
• Distribution differences: These methods use two windows of

data, one a reference window as a summarization of previous
information, and a sliding window over the most recent data. A
null hypothesis of equality of distributions is applied to compare
these two windows. If the null hypothesis is rejected, a drift
is signaled at the start of the current sliding window. These
two windows are conceptually different from training windows,
and they can be of equal size or progressive sizes, and different
window positioning strategies can be employed [1]. In some
studies, a statistical test based on the Chernoff bound is used
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to compare two distributions [93, 53]. Some other methods
use entropy-based metrics [185] or the Kullback-Leibler (KL)
divergence [40]. In some methods, the accuracies of the win-
dows are monitored [131] and in some, the summarization of
data [16]. The main advantage of this group of drift detection is
their more precise localization of the change point compared to
the previous approaches, although they need more memory to
store instances in two windows.
• Contextual: Splice [72] employs a meta-learning technique,

which aims to identify stable intervals and induce local concepts
associated with these intervals. Some other methods maintain
a set of prototypes, which is to represent a class with several
clusters [22, 160].

3. Learning component: Early learning models emulated incremental
learning with batch learning algorithms by discarding the current
model and retraining a new model from scratch using buffered
data [97, 171]. Following methods attempted to incrementally
update the current model using the most recent data. Based on the
memory component, the model may be updated by one instance or a
buffer of instances. The former is called online learning and the latter
is known as incremental learning. WINNOW [114] and MBW [28] are
examples of online learning, and SEA [171] and Learn++.NSE [47]
are examples of incremental learning. The ability to continuously
learn from a stream of data while preserving previously learned
knowledge is known as the stability-plasticity dilemma: The model
should be on the one hand stable to handle noise and on the other
hand being able to learn new knowledge and patterns [27].
Learning methods follow different adaptation strategies toward
drifts. Some methods make a proactive blind adaptation by updating
the model based on the loss function [195, 97]. VFDT [45] is also
an example of such approaches: new examples update statistics in
the leaves of the current model; and as the tree grows, the leaves
reflect the most recent concepts. The major limitation of this group of
methods is their slow reaction to concept drift. Hence, some methods
use reactive informed strategies based on the triggers from a change
detector [83, 15], or data discreptors [195, 92] as in recurring concept
methods (cf. Section 2.2.2). The reaction to the drift signal may
apply to the whole model or only some regions of the generalization
of examples. Most of the existing methods reconstruct the whole
model from scratch after detecting a drift [171, 10]. However, some
granular methods have the possibility of decomposing the data space
and change only the specific affected sections. CVFDT [83] is an
example of such methods where with the detection of a change, it
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starts growing an alternate decision tree in parallel with the root of
the newly-invalidated node. When the alternate tree is more accurate
than the original tree, it replaces the latter in the main model. Nodes
of a Hoeffding tree capture statistics from a data window. The root
and the nodes closer to the root are generated by the older instances,
while the leaf nodes are generated by the recent instances. By
comparing the distribution of the errors at leaves to the distribution
of errors at upper nodes, drift is detected. The reaction is to push
up all the information of the descending leaves to the corresponding
subroot.
From the perspective of the number of learners, some methods train
an ensemble of classifiers to obtain a weighted combination of distri-
butions [159, 47]. The weights reflect the performance of individual
models on the most recent data. Ensemble updates can be done in
three ways [103]:

(a) Dynamic combination, where base learners are trained once and
only their combination rule changes over time [114, 115, 195]. It
is clear that fixing the classifiers to the ones trained on a limited
data may lead to inaccurate prediction in the long run.

(b) Continuous update of the learners, where the learners are ei-
ther retrained in a batch mode or updated online [171, 134, 59].
This group of methods can be assumed as a variation of the next
group.

(c) Structural update or replacement of the poorly performed meth-
ods, where new learners are added, and the inefficient ones are
removed/deactivated [99, 106].

Studies show that before the occurrence of drift, ensembles with less
diversity obtain lower test error, but shortly after drift, highly diverse
ensembles reach better performance [123].

4. Loss estimation: As discussed before in the validation process of data
streams, methods may use different performance measures for mea-
suring the loss (e.g., the leave-one-out error [97]). Many of the meth-
ods also use two windows of data, one from the most recent data and
one as a reference, to monitor the performance of the algorithm based
on their difference [131].

2.2.2 Recurrent concept methods

As training and test phases are mixed in stream mining and the learner
is updated iteratively, the old unused concepts learned by the learner are
likely to be forgotten, and new concepts are learned as they emerge. After
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a sufficiently long time, when the old concept reappears, the learner treats
it as a new concept and may mislabel most of its instances. This makes the
learner inefficient in those real-world problems with such potential. If the
learner could avoid forgetting the previously learned knowledge in the clas-
sification algorithm, this issue can be resolved appropriately. The methods
supporting recurring concepts, try to extract concepts from instances and
maintain them in a pool of concepts [55, 65, 92, 106, 125]. When a new in-
stance is received, its similarity to the concepts in the pool is measured, and
one or some of the available concepts are selected to predict its class.

Early work on handling recurrent concepts in data streams goes back to
FLORA3 [195], which deals with categorical attributes and uses a disjunc-
tive normal form (DNF) language to represent a concept and to train the
rule-based algorithm. Ramamurthy and Raj proposed an ensemble model
where each classifier was built on a window [145]. Once a classifier is cre-
ated, it never gets deleted. Instead, at each point, the algorithm chooses
relevant classifiers for the ensemble. To filter the classifiers from the global
list, the classification error of the classifier on the immediately preceding
window is taken into account. All the classifiers which perform better than
a random classifier are included in the ensemble set. A classifier is random
if the probability of classifying an instance depends solely on the class dis-
tribution in the current window. As no classifier is deleted, the algorithm
supports recurring concepts.

Inspired by the context space model [135], Gomes et al. extract concepts
for each classifier [65]. N−tuple of form R = (aR1 , a

R
2 , . . . , a

R
N ) is called a

context space, where aRi is the acceptable regions of feature ai. The classifier
and its corresponding context space are maintained in the pool, and an ex-
plicit drift detection method is used to detect stable concepts. This approach
is similar to our approach proposed in Chapter 6, as it extracts the context
of a batch of data and trains a classifier on it; however, the representation of
context is different from our concept representation.

Later, Lazarescu proposed a method supporting continuous fea-
tures [106]. The technique keeps an ensemble of classifiers and assigns
a concept representation to each classifier. The representation consists
of the average of attributes, and any distance measure can measure the
similarity. Morshedlou and Barforoush propose to employ the information
of mean and standard deviation used in the conceptual features of numeric
attributes [125]. The approach uses a pro-active behavior, which means
that the next concept’s probability is calculated conditional to the current
concept. If the concept is likely to occur (its occurrence probability is
greater than a threshold), it will be added to a buffer. If a drift is detected
and the algorithm decides to behave proactively, the first concept from
the buffer is selected. If the chosen concept matches the recent batch, it
is updated by batch instances. Otherwise, the algorithm selects the next
concept in the buffer, or if it decides to behave reactively, a new classifier is
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created on the recent batch. A decision on acting reactively or proactively
is pursued by a heuristic method. Selecting a suitable probability threshold
and proactive or reactive behavior are very time-consuming. Meanwhile,
this algorithm supports only the datasets with numeric features; not
nominal ones.

A similar approach to Lazarescu’s was followed in the Conceptual Cluster-
ing and Prediction (CCP) framework with some modifications [92]. The CCP
framework describes continuous attributes by their means and standard de-
viations, and nominal features with the probability of attribute values given
the class, instead of keeping only the average of attributes. This summary
of data is called conceptual vector Z = (z1, z2, ..., zm) and is extracted from
each batch of data, where zi is a conceptual feature and is calculated from:

zi =

{
P (fi = v|yj) : i = 1..m, j = 1..k, v ∈ Vi if fi is nominal
(µi,j , σi,j) : j = 1..k if fi is continuous,

(2.24)
wherem is the number of features, k the number of classes, fi the ith feature
and Vi the set of possible values for the nominal feature fi. µi,j and σi,j are
mean and standard deviation of the jth class of feature i. By receiving a new
batch of data, the method decides whether to update one existing classifier
or add a new classifier to the pool. In the CCP framework, the Euclidean dis-
tance is used as a similarity measure for conceptual vector comparisons. If
the similarity of recent conceptual vector to a concept available in the pool
is higher than a predefined threshold, its corresponding classifier will be
updated by instances of the recent window. Otherwise, a new classifier and
concept is added. As the threshold parameter is problem specific, one ma-
jor shortcoming of the CCP framework is how to determine the threshold.
In some problems, features are not independent of each other, in which case
CCP’s conceptual vectors fail to extract this information from data. Includ-
ing feature correlations can help in a more accurate approximation of the
data distribution and better drift detection in case of drifts in feature corre-
lations. We have extended the idea of representing dependencies between
the features in conceptual vectors in Chapter 6. Furthermore, instead of us-
ing the Euclidean distance, we first present a heuristic method in Chapter 5,
and then we propose a multivariate statistical test to check if two conceptual
vectors are drawn from different distributions in Chapter 6.

Another approach keeps only a pool of classifiers, but no concept rep-
resentation [201]. Instead of comparing representations, RePro [201] takes
the number of similar predictions of the classifiers on the current batch as
the similarity measure. This method uses a Markov chain to learn concept
transition patterns. In contrast to our proposed method in Chapter 6, this
method follows a proactive approach and updates the transitions in the
Markov chain whenever drift has been detected; then it moves to the next
state. Data is predicted using a proactive-reactive method: If the accuracy
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of the next classifier is better than a threshold, it will be used as the next
state; otherwise, a new classifier will be trained on the current batch. Our
experimental results showed that RePro takes more time in finding similar
classifiers on each new batch of data than methods using concept represen-
tations.

A recent framework called Recurring Concept Drift (RCD) [66] creates a
new classifier for any new concept and keeps a fixed size buffer for data sam-
ples used to build the classifier. If a drift is detected, the method calculates
a non-parametric multivariate statistical test to compare the similarity of a
new concept with all the previous concepts in the pool. If the new data is
similar to one of the earlier concepts, it is counted as a concept recurrence,
and the old classifier is reused. If not, a new classifier and its buffer are
added to the pool. This approach is different from our approach in Chap-
ter 6 in several aspects: Besides the different statistical test used in finding
similar concepts, this method keeps a fixed size FIFO buffer instead of the
conceptual vectors in our approach. We do not use any separate drift detec-
tion method in a way RCD does. Moreover, RCD does not extract transitions
between the concepts of the pool; it just keeps a list of classifiers and their
sample buffers.

Gama and Kosina presented a meta-learning approach that meta-
classifiers select which base classifier is used when a drift is detected [55].
If the output of the meta-learner is greater than a predefined threshold,
the base learner will be used to label the instance; otherwise, it is excluded.
Here also a pool is used to keep all base and meta-learners. There also
have been other frameworks that add a meta-learning layer to the pool
of classifiers to characterize the domain of applicability of the learned
models [54, 9]. The meta-layer is a control layer that monitors the evolution
of learning algorithms. MM-PRec [9] uses a Hidden Markov Model (HMM)
as a meta-model to predict if a drift will happen as well as to choose
the best concept if there is a recurrence. The framework uses an explicit
drift detection module: In the case of a warning, the current classifier
is compared to the classifiers in the repository using a fuzzy similarity
function. If the current classifier or a similar one is not available in the
repository, it is added to the repository as a new concept. In order to get the
prediction of the meta-model, MM-PRec keeps a buffer of multi-instance
data and will send it to the HMM whenever the buffer gets full. This
may delay the training process of HMM, and it is considered as the main
drawback of MM-PRec. When drift is signaled, a model is trained on a
stable sub-window of instances, and it is compared to the models in the
repository. In case the newly trained model is detected as a recurrent
model, the one existing in the repository is used in the future, and the new
model is discarded. Moreover, the recurrent models are not incrementally
trained with the new data anymore.
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2.2.3 Multi-label stream learning methods

Although multi-label classification has received a lot of attention, classify-
ing multi-label data streams is relatively new and not very well investigated.
A multi-label data stream is defined as:

Definition 4 (Multi-label data stream). Let x ∈ X ⊆ Rm and
l = (l1, l2, . . . , ll) ∈ {0, 1}l = L denote an instance of an m-dimensional
feature space and the relevant binary label set of size l, respectively. At each
time stamp, a new batch of multi-labeled instances of size n is received:
(X(t), L(t)) = {(xt1, lt1), (xt2, l

t
2), . . . , (xtn, l

t
n)}, where (xti, l

t
i) indicates

the ith multi-labeled instance in batch t. We assume that instances are
generated independently from a joint distribution P(X ,L) over X × L.

We can extend the definition of concept drift to the multi-label scenario,
considering:

P(X ,L) = P (L|X)P (X) = P (X|L)P (L). (2.25)

The change in the joint probability distribution can be derived from the
change in the prior feature distribution P (X), or the change in the likeli-
hood label distribution given the feature set, P (L|X), or the change in the
posterior distribution over the feature set given the label set, P (X|L), or the
change of distribution among class labelsP (L), or any combination of them.
The general categorizations of drift in single-label streams (such as abrupt,
gradual, recurrent, etc.) are still applicable here [192].

As instances in data streams are available only for a short period, and
their underlying distribution may vary over time, special algorithms are de-
veloped to deal with their features as explained in Section 2.2.2. However, in
the multi-label context, apart from some well-known multi-label methods
like Binary Relevance (BR) and Classifier Chains (CC) that can easily be
upgraded to the online scenario by using an updateable classifier as their
base learner, there are limited studies that address the problem of multi-
label stream classification.

Early work provides a stacking modification of the BR algorithm (MBR)
to learn the dependencies among the labels by adding each classified label
as a new feature [141]. To cope with drifts, an implicit strategy is followed
by taking the weighted majority vote of a dynamic classifier ensemble. Mul-
tiple Windows Classifier (MWC) is a modified version of k-Nearest Neighbor
and considers the class imbalance problem by maintaining two fixed-sized
windows per label, one for positive and one for negative examples [168].
This method also has an implicit strategy for dealing with drifts. The same
implicit strategy is used in other work [191, 190].

Later, Read et al. proposed a multi-label version of Hoeffding trees
(MLHT) by modifying the definition of entropy and training multi-
label prune sets at the leaf nodes [147]. MLHT uses the definition of
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multi-label entropy proposed by Clare and King [36] in adapting C4.5
to the multi-label setting (equation (2.13)). MLHT also benefits from
the ADWIN bagging method [18] as an implicit change detector, thus,
upon the occurrence of a drift, the worst performing classifier of the
ensemble is replaced by a new one. Experimental results show that the
MLHT method outperforms MBR and MWC [147]. Shi et al. [161] also
presented a multi-label version of entropy as a simple drift control strategy
to monitor the change of distribution between features and labels. In their
work, they capture the label correlation and interdependence based on
two different approaches: the Apriori association rule mining algorithm
and the Expectation-Maximization clustering method. Then each instance
is annotated with some subsets of the class label as the new class labels.
There may exist overlapping or non-overlapping subsets. The experimental
results demonstrated the advantage of the method based on label grouping
and entropy over the method only based on entropy. This indicates that
considering label dependence is effective in detecting concept drift for
multi-label data streams.

Multi-Label Dynamic Ensemble (MLDE) integrates an ensemble of
Multi-Label Cluster-based Classifiers (MLCCs) and measures the appro-
priateness of them for classifying a new concept by the subset accuracy
weight [166]. This approach uses a sophisticated and time-consuming
multi-label cluster-based classifier, which makes it impractical for larger
datasets. A recent method monitors the average local log-likelihood of
nodes in a multi-dimensional Bayesian network classifier (MBC) using the
Page-Hinkley test [20]. However, none of these studies consider recurrent
concepts in multi-label streams.

2.3 Deep neural networks

Neural networks have received so much attention from researchers recently
mainly because they do not require handcrafted features, and can discover
the features during the learning process. Nevertheless, for a long time,
training networks with a larger number of layers was not successful, and
methods like Support Vector Machines were more useful in practical appli-
cations. Last decade witnessed impressive progress with Deep Neural Net-
works (DNN), and the proposed approaches significantly pushed the state
of the art on many difficult problems such as image recognition [162] and
speech recognition [76]. The network architectures vary from feedforward
neural networks to radial basis networks, to recursive and recurrent neural
networks, and to convolutional neural networks, or a combination of them.

Deep feedforward networks are the backbone of modern deep learning
methods. One important architecture in this category is the multi-layer per-
ceptron (MLP). The goal here, the same as in other classification problems,
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is to find the best approximation of a function f that maps the input to the
desired output. The mapping is implemented by multiple layers of neurons.
A neuron is a simple computation unit that makes a weighted connection
to the neurons of a subsequent layer:

y = φ(
∑
i

wixi + b), (2.26)

where xi is the ith input, wi is its corresponding weight, b is the bias, φ is
the activation function, and y is the output of the neuron. Historically, com-
mon activation functions were the logistic sigmoid function (φ(x) = 1

1+e−x )
or the hyperbolic tangent function (φ(x) = ex−e−x

ex+e−x ). An output unit deter-
mines the type of loss function. The most popular choices for classification
purposes are sigmoid and softmax units. Sigmoid units are suitable for bi-
nary classification since the result of a sigmoid function can be interpreted
as class probability. In this case, an appropriate cost function is the cross
entrpy loss:

Ji(xi, yi; θ) = −
(
y′i ln yi + (1− y′i) ln(1− y′i)

)
, (2.27)

where yi, y′i are the desired output and the sigmoid output, respectively.
For multi-class problems, however, the softmax function is a perfect choice:

y(xi) =
exi∑n
j=1 e

xj
, (2.28)

where x = (x1, . . . , xn) is the input vector to the softmax layer. The cross
entropy loss function can be easily extended to c classes:

Ji(xi, yi; θ) = −
c∑
j=1

y′
j
i ln yji . (2.29)

To find an accurate mapping function f , the parameters should be adjusted.
For that, the objective function, i.e. the average loss over training instances,
is to be minimized. The procedure starts from the output layer, and by ap-
plying the chain rule to derivatives, it propagates the error to the previous
layers. The method is called backpropagation [152]. When the gradients are
known, a gradient-based optimization algorithm can find the best param-
eter for the objective function. In practice, the Stochastic Gradient Descent
(SGD), a stochastic approximation of the gradient optimization method
over training instances, is calculated. However, updating the parameters
with every single instance is an extremely inefficient method, therefore,
many methods use a mini-batch update approach. In addition, the num-
ber of parameters in a neural network can be very high, which makes the
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training prone to overfitting. One way to avoid such issue is to apply reg-
ularization. One simple regularization method is to add a penalty on the
magnitudes of the parameters:

J̄(X,y; θ) = J(X,y; θ) + λw(θ), (2.30)

where λ is the regularization hyperparameter controling. The most com-
mon penalty norms are the L2 regularization (w(θ) = 1

2 ||w||
2
2) and the L1

regularization (w(θ) = ||w||1). Parameter norm penalty regularization is
not a specific method for neural networks. Recently, dropout regularization
has been proposed specifically for reducing overfitting in deep neural net-
works [169]. It randomly disables a subset of neurons each time a mini-
batch is processed. The probability of keeping a hidden neuron is usually
set to 0.5, and the input neuron is preserved with 0.8. In the test phase, all
the neurons are involved. MLP is a feedforward network because there are
no backward connections and the flow of computations is only from input
towards the output. In this aspect, the feedforward network differs from
recurrent neural networks. In this section, we briefly review three other fa-
mous categories of neural networks: convolutional neural networks, recursive
neural networks, and autoencoders.

2.3.1 Convolutional neural networks

A Convolutional Neural Network (CNN) [108] can be thought of a multi-
layer perceptron for processing spatially structured data (e.g., image). As-
suming that the data is organized in a grid-like structure, CNNs can greatly
reduce the number of parameters, and hence, speed up training. Apart from
the classical fully-connected layers, CNNs use two other types of layers:
convolutional layers and pooling layers. Neurons in convolutional layers
are grouped in feature maps to detect local features in the input data. Thus,
instead of being connected to all the units from the previous layer, each neu-
ron is connected only to a small region of its input, called the receptive field.
Weights of these connections form a filter, which is convolved with the in-
put to produce the activation map. A well-known activation function is the
rectifier linear function:

φ = max{0,
∑
i

wixi + b}, (2.31)

where xi is the ith feature of input instance, wi is its corresponding weight,
and b is the bias. Neurons with this activation function are commonly called
Rectifier Linear Units (ReLUs). Convolution layers are interleaved with pool-
ing layers to reduce the computation burden for subsequent layers and con-
trol overfitting. A pooling layer downsamples the data representation by
combining the output of the previous feature map into non-overlapping
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clusters. The most common pooling method is max pooling, which then re-
turns the maximum value of each cluster. A CNN could be a repeat of one
or several layers convolutional layers followed by a pooling layer, before
employing one or many fully-connected layers. A CNN can be trained with
the Stochastic Gradient Descent (SGD) and backpropagation, as all the opera-
tions performed by the layers and neurons are differentiable. Convolutional
neural networks existed long before the advent of deep learning; however,
their popularity escalated after the domination of deep CNNs in the Ima-
geNet Large Scale Visual Recognition Challenge (ILSVRC) competition in
2012 [102].

2.3.2 Recursive neural networks

An MLP can only map from input to output vectors, whereas a recursive
neural network (RecNN) in principle can map from the entire history of
previous inputs to each output. A recursive neural network applies the
same set of weights recursively over a structured input [164]. In its basic
architecture, nodes are combined into parents using a shared weight ma-
trix, and a non-linear activation function:

p(i, j) = φ(W[ci; cj] + b), (2.32)

where ci and cj are the n−dimensional vector representation of nodes i
and j, and p(i, j) is their parent’s vector representation with the same di-
mensions. W is the learned n×2nweight matrix, b is the bias, and a typical
example for φ is tanh. With this representation, we can compute a local
score using an inner product with a row vector Wscore ∈ R1×n:

a(i, j) = Wscorep(i, j). (2.33)

This type of network is useful when dealing with variable-size inputs and
when the topological structure of the input is important.

Recurrent Neural Networks (RNNs) [78] are a type of recursive networks
with a linear chain structure. While a recursive neural network operates
on any hierarchical structure, recurrent neural networks combine the previ-
ous time step and a hidden representation into the current representation,
hence, operate on a linear progression of time. The forward pass of RNNs
is the same as an MLP with a single hidden layer, except that a hidden layer
receives input from both the current external input and the hidden layer of
one step back in time:

ath =
I∑
i=1

wihx
t
i +

H∑
j=1

wjhφh(at−1
h ), (2.34)

where I and H are the number of input and hidden units of the RNN, xti
is the ith input value at time t, atj is the input to unit j at time t, and φ is
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a non-linear activation function. The complete sequence of activations can
be computed by starting at t = 1 and recursively applying equation (2.34).
For the backward pass, we can apply backpropagation through time [198].

2.3.3 Autoencoder

The autoencoder is an MLP whose goal is to reconstruct the input at the out-
put. Therefore, it has the same number of input and output neurons. Mid-
dle layers have a smaller number of neurons, and the smallest layer stands
exactly in the middle of the architecture. The autoencoder consists of two
parts, the encoder, and the decoder. The first part of the network tries to
compress the input to an encoded representation c = e(x), and the second
half calculates the reconstruction d(c). The objective function is to minimize
the dissimilarity between x and d(c). One may add additional regulariza-
tion terms to include various desired properties, such as sparsity [146] or
robustness to minor changes [151].

Autoencoders were developed long before the advent of deep net-
works [23]; however, the discovery of generative pretraining [77] opened the
possibility of training much deeper models.

2.3.4 Multi-label deep learning methods

Deep neural network architectures have opened their way into multi-label
learning in recent years. Read and Perez-Cruz showed that employing Deep
Belief Networks (DBNs) [77] yields a better feature space representation and
hence, better performance [148]. Wicker et al. apply autoencoders as a la-
bel space dimension reduction approach to extract non-linear dependen-
cies among the labels [194]. Canonical-Correlated Autoencoder (C2AE) [203]
is another deep method that combines deep canonical correlation analysis
(DCCA) and autoencoders to learn a feature-aware latent subspace for la-
bel embedding. It also enhances the loss function at the decoding output to
be label-correlation aware, and hence, better exploit cross-label dependen-
cies. However, the training of such networks is intensely time-consuming,
and thus only applicable to very small datasets with not many labels.

Recently, some methods combine the approach in Classifier Chains with
recurrent neural networks. CNN-RNN [189] replaces the memory mecha-
nism in Classifier Chains with an RNN-based approach. It learns a linear
joint image-label embedding to characterize both the semantic label depen-
dency and image-label relevance. To better extract hidden correlations, Re-
thinkNet [200] modifies Classifier Chains by forming a chain of multi-label
classifiers. It adopts RNN for making memory-based predictions by fully
memorizing the temporary predictions from all classifiers. Nam et al. [128]
present an alternative formulation of Probabilistic Classifier Chains using
recurrent neural networks by only focusing on the positive labels. Lately, an
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order-free visually attended RNN method (Att-RNN) [32] is proposed to
solve the problem of pre-determining the label order in CC and CNN-RNN.
It furthermore improves the performance on image classification by intro-
ducing a confidence-ranked Long Short-Term Memory (LSTM) network.
Att-RNN approximates the optimal order of labels with a time-consuming
beam search.



Chapter 3

Deep Learning for Text
Classification

The advent of social media such as Twitter, blogs, ratings, and reviews has
created a surge of research on analyzing text data for different purposes
such as sentiment analysis. Much of this data is in the form of short texts
such as sentences. Training a well-performing classifier for a specific task on
a single sentence that has a limited amount of contextual data is a challeng-
ing task. To effectively solve this problem, one may model sentences to an-
alyze and represent their semantic content. The goal of modeling sentences
is to accurately represent their meaning and semantic content for different
tasks including classification. Recent years have seen a variety of different
deep learning architectures considered especially to model sentences [121,
165, 90]. Their significant advantages lie on the removed requirements for
feature engineering, and preservation of the order of words and syntactic
structures, in contrast to the traditional bag-of-words model, where sen-
tences are encoded as unordered collections of words. The success of such
neural network-based methods is also based on the progress in learning dis-
tributed word representations in semantic vector spaces [122, 138], where
a real-valued word embedding represents each word. Word embeddings
are learned by projecting words onto a low-dimensional vector space that
encodes both semantic and syntactic features of words. Given word em-
beddings, different methods have been proposed to learn word composi-
tions and to model sentences. These neural network approaches range from
basic Neural Bag-of-Words (NBoW), which ignores word orderings to more
representative compositional approaches such as Recursive Neural Networks
(RecNNs) [163, 85], Convolutional Neural Networks (CNNs) [94, 90], and Re-
current Neural Networks (RNNs) [110, 213] or a combination of them (e.g.
CNN and RNN [116, 126], or RecNN and RNN [173, 25]).

Recursive neural networks are a generalization of classic sequence mod-
eling neural networks to tree structures and have shown excellent abilities

35
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to model word combinations in a sentence [140, 63, 75]. They work by feed-
ing a parse tree to the network. At every node in the tree, the composition
is done in a bottom-up fashion by a weight matrix shared over all nodes of
the tree. However, they depend on well-performing parsers to provide the
topological structure. These are not available for many languages and do
not perform well in noisy domains. Further, they often require labeling of all
phrases in sentences to reduce the so-called vanishing gradient problem [86].
Recurrent neural networks are a special case of recursive networks where
their structure is linear instead of a tree [78, 121]. An in-depth comparison
of RecNN and RNN showed that when long-distance semantic dependen-
cies play a role, recursive models offer useful power [110]. Although Re-
cursive neural networks implicitly model the interaction among input vec-
tors, Recursive Neural Tensor Networks (RNTNs) have been proposed to allow
more explicit interactions [165].

On the other hand, convolutional neural networks models, as the alter-
native models for sentence modeling, apply one-dimensional convolution
kernels sequentially on word vectors using sliding windows to extract lo-
cal features. Each sentence is treated individually as a bag of n-grams, and
long-range dependency information spanning multiple sliding windows is
therefore lost [208]. Recently, new architectures have been proposed to
resolve the limitation of CNNs in losing long-range dependency informa-
tion [116, 208], or to overcome the fixed structure of CNNs for one input
length [90]. A recent comparison of CNNs and RNNs has shown that in
those tasks where recognizing a keyphrase is essential (e.g., sentiment anal-
ysis or question-answer matching), CNNs perform better [204]. Another
limitation of CNN models is their requirement for the exact specification of
their architecture and hyperparameters [209].

Although there are few studies on comparing different deep network ar-
chitectures, little is known about the comparative performance of recursive
neural networks and convolutional neural networks on a common ground,
across a variety of datasets, and on the same level of optimization. In this
chapter, we compare convolutional neural networks to a well-performing
variation of recursive neural networks called recursive Neural Tensor Net-
works (RNTNs). Although RNTNs have shown to work well in many cases,
they still suffer from the need for intensive manual labeling to overcome the
vanishing gradient problem. In this chapter, we conduct extensive experi-
ments over a range of benchmark datasets to compare the two network ar-
chitectures. Our goal is to provide an in-depth analysis of how these models
perform across different settings. Such a comparison is missing in the litera-
ture, likely because recursive networks often require labor-intensive manual
labeling of phrases. Such annotations are unavailable for many benchmark
datasets. We employ two methods to automatically label the internal nodes:
a rule-based method and (this time as part of the RNTN method) a convo-
lutional neural network. This enables us to compare these RNTN models to
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Figure 3.1: An example of an RNTN architecture with word vector dimen-
sion of size 4 for sentiment classification of a given input sequence, which
is parsed by a constituency parser. V and W are the tensor matrix and the
recursive weight matrix, respectively.

a relatively simple CNN architecture. We also investigate whether there is
an effect of using constituency parsing instead of dependency parsing in the
RNTN model. In this way, we aim to contribute to a better understanding
of the limitations of the two network models and provide a foundation for
their further improvement.

In this following sections, we first explain our approach to the auto-
matic labeling of RNTNs and then explain our proposed architecture for
the CNN. The presented architectures are then evaluated on a set of bench-
mark datasets, described in Section 3.3.

3.1 Recursive neural tensor network architecture

RNTNs [165] are a generalization of RecNNs where the interactions among
input vectors are encoded in a single composition function (Figure 3.1).
Here, we propose two methods for the automatic labelling of the phrases
for RNTNs:

- Rule-based method: The RNTN model was first proposed for senti-
ment analysis purposes. Hence, our first approach uses a rule-based
method to determine the valence of a phrase. We use four types of dic-
tionaries: A dictionary of sentiments carrying terms (from unigrams
to phrases consisting of n-gram words) with a corresponding senti-
ment score in the range of [−k,+k], a negation dictionary, a dictionary
of intensifier terms with a weight range of [1,+k], and a dictionary of
diminishers with a weight range of [−k,−1].

The analysis of a phrase is conducted from the end, backward to the
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ALGORITHM 1: Rule-based labeling method
Input: a sequence of < w1w2 . . . wn > words;

dictionary of sentiment with [−k,+k] range,
dictionary of intensifiers with [+1,+k] range,
dictionary of diminishers with [−k,−1] range,
and dictionary of negation

Output: sentiment of the input sequence
1 sentiment := 0 ; i := n
2 while i > 1 do
3 if wi is a term in the dictionary of sentiments then
4 sentiment := sentiment value of wi
5 i := i− 1 ; flag := false
6 if wi is a term in the dictionary of intensifiers then
7 |sentiment| := min(|sentiment|+ ki, k)
8 i := i− 1 ; flag := true

9 else if wi is a term in the dictionary of diminishers then
10 |sentiment| := max(1, |sentiment| − ki)
11 i := i− 1 ; flag := true

12 if wi is a term in the dictionary of negations then
13 if ∼ flag then
14 sentiment := −sentiment

else
15 sentiment := −1

else
16 continue the search for < w1 . . . wi−1 >

beginning (Algorithm 1)1 : If any sentiment term is found (line 3),
we update the sentiment of the phrase from neutral to the value of
the sentiment term in the dictionary (line 4). Then we search back-
ward for an intensifier or diminisher term, which may also consist of
more than one word. We increase or decrease the absolute value of the
sentiment based on the weight of the intensifier/diminisher term, and
if required, we adjust the score to a pre-defined range (line 6– 11). In
the next step, we adjust the score for a negation term. If one is found
and there is no intensifier/diminisher before the sentiment term, the
sentiment is reversed (lines 13– 14); otherwise, if the phrase includes
both the negation term and an intensifier/diminisher, the sentiment
is set to weak negative (line 15). As an example, consider both “not
very good” and “not very bad” terms, where both sentiments are weak
negative.

- CNN-based method: An alternative approach to labeling the phrases

1This algorithm was developed as a collaboration with the NLP team in the company
PRIME Research International AG & Co. KG.
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is to use a pre-trained CNN model. We use the architecture proposed
here (see below for the description) to train a model on the sentence
level and use the resulting model to label the internal phrases for the
RNTN. In this way, the RNTN can be applied to domains other than
sentiment classification as well. The CNN model receives the com-
plete sentences and their label as training data and will label the in-
ternal phrases in the test phase.

3.2 Convolutional neural network architecture

Deep convolutional neural networks have led to a series of breakthrough
results in image classification. Although recent evidence shows that net-
work depth is of crucial importance to obtain better results [73, 37], most of
the models in the sentiment analysis and sentence modeling literature use
a more shallow architecture, e.g., Kim uses a one-layer CNN [94]. Inspired
by the success of CNNs in image classification, our goal is to expand the
convolution and Max-Pooling layers in order to achieve better performance
by deepening the models and adding higher non-linearity to the structure.
However, deeper models are also more difficult to train [73]. To reduce the
computational complexity, we choose small filter sizes. In our experiments,
we use a simple CNN model that consists of six layers (Figure 3.2): The first
layer applies 1× d filters to the word vectors, where d is the word vector di-
mension. The essence of adding such a layer to the network is to derive
more meaningful features from word vectors for every single word before
feeding them to the rest of the network. This helps us achieve better per-
formance since the original word vectors capture only sparse information
about the words’ labels. In contrast to our proposed layer, a related ap-
proach [94] uses a so-called non-static approach, which modifies the word
vectors through the training phase.

The second layer of our CNN model is again a convolution layer with the
filters of size 2 × d. The output of this layer is fed into a Max-Pooling layer
with pooling size and stride 2. The reason for applying such a Max-Pooling
layer in the middle layers of the network is to reduce the dimensionality and
to speed up the training phase. This layer does not have a notable effect on
the accuracy of the resulting model. Next, on the fourth layer, convolving
filters of size 2× d with a padding size of 1 are again applied to the output
of the previous layer. Padding preserves the original input size. The next
layer applies Max-Pooling to the whole input at once. Using bigger pooling
sizes leads to better results [209]. Finally, the last layer is a fully connected
SoftMax layer, which outputs the probability distribution over the labels.
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Figure 3.2: Our proposed 6-layered CNN architecture. d is the dimension
of the word vector.

3.3 Experimental results

In this section, we first introduce the experimental settings, then we investi-
gate the variants of RNTNs and compare their performance to the proposed
CNN architecture on different tasks.

3.3.1 Experimental settings

In our experiments, we use the pre-trained Glove [138] word vector mod-
els2: On the SemEval-2016 dataset, we use Twitter specific word vectors that
were trained on 2 billion tweets. On other datasets, we use the model trained
on the web data from Common Crawl, which contains a case-sensitive vo-
cabulary of size 2.2 million. Experiments show that RNTNs work best when
the word vector dimension is set between 25 and 35 [165]. Hence, in all the
experiments, the size of the word vector, the minibatch, and the epochs was
set to 25, 20 and 100, respectively. We use f = tanh and a learning rate of
0.01 in all the RNTN models. In CNN models, the number of filters in the
convolutional layers are set to 100, 200 and 300, respectively; and the maxi-
mum length of the sentences is 32. For shorter sentences, they are padded

2http://nlp.stanford.edu/projects/glove/

http://nlp.stanford.edu/projects/glove/
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Table 3.1: Summary statistics for the sentiment datasets. c, Ntr, Ntu and
Nts indicate the number of labels, number of training sentences, number of
tuning sentences and the number of test sentences, respectively.

Dataset c Ntr/Ntu Nts
MR 2 10662 CV
SemEval-2016 3 12644/3001 20632
SST-5 5 8544/1101 2210

with zero vectors. In RNTN models which use constituency parsers, we use
the Stanford parser [95]. For those models which use dependency parsers,
we use the Tweebo parser [100] – a dependency parser specifically devel-
oped for Twitter data – for the SemEval-2016 dataset and on the rest of the
datasets, we use the Stanford neural network dependency parser [31]. In
rule-based methods, we use a dictionary of sentiments consisting of 6, 360
entries with a maximum 2-grams words and a sentiment range of [−3,+3], a
negation dictionary consisting of 28 entries, a dictionary of intensifier terms
consisting of 47 words with a weight range of [1, 3], and a dictionary of di-
minishers consisting of 26 entries with a weight range of [−3,−1].

3.3.2 Task 1: sentiment analysis

In this section, we present the results of automatic labeling of phrases, the
effect of the selected parser type, and describe the overall evaluation re-
sults for the presented RNTN and CNN models. Next, we discuss the effect
of automatic labeling on the performance of the RNTN. We compare the
models on a set of commonly used sentiment analysis benchmark datasets
(Table 3.1): The Movie Review (MR) dataset3 was extracted from Rotten
Tomato reviews [137], where the reviews can be positive or negative. As the
MR dataset does not have a separate test set, we use 10-fold cross-validation
in the experiments. An extended version of the MR dataset relabeled by
Socher et al. [165] in the Stanford Sentiment Treebank (SST-5)4 has five
fine-grained labels: negative, somewhat negative, neutral, somewhat pos-
itive and positive. The SemEval-20165 dataset is a set of tweets labeled as
either of the three negative, neutral and positive labels.

- Comparison of automatic labeling methods: We first use the man-
ually labeled SST-5 dataset to test the effectiveness of our automatic
labeling methods. We extract all the possible phrases of the whole
dataset with respect to their parse trees and use our rule-based
method to label them. In the next step, we train the CNN model

3https://www.cs.cornell.edu/people/pabo/movie-review-data/
4http://nlp.stanford.edu/sentiment/Data
5http://alt.qcri.org/semeval2016/task4/

https://www.cs.cornell.edu/people/pabo/movie-review-data/
http://nlp.stanford.edu/sentiment/Data
http://alt.qcri.org/semeval2016/task4/
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Figure 3.3: Heatmap of difference of rule-based RNTN and CNN-based
RNTN confusion matrices on the SST-5 phrase set. The numbers are the
percentage of normalized differences based on the total number of phrases
for each label.

on the set of training instances and use the resulting model to label
the phrases. The accuracy of the rule-based method and the CNN
model labeling are 69% and 40%, respectively. As we see, the overall
accuracy of the CNN-based model is significantly lower than that
of the rule-based method. To have a better understanding of the
classification performance on each type of label, we look into their
confusion matrices. We subtract the corresponding elements of the
CNN-based confusion matrix from that of the rule-based variant and
normalize them by dividing by the total number of phrases for each
label (i.e., conf

i,j
rule−conf

i,j
cnn

totali
where i and j are the actual and predicted

labels, respectively). Figure 3.3 shows the resulting heatmap. Red
color indicates cases where more phrases are predicted by the rule-
based method than by the CNN-based method, while the blue color
indicates the opposite case. We observe that CNN is a better model
to correctly classify somewhat positive (1) and somewhat negative
(−1) classes than the rule-based method. In turn, the rule-based
method is superior in the classification of the neutral (0) and negative
(−2) classes. To have a better interpretation of the numbers in the
heatmap, it is beneficial to look at the distribution of labels in the
whole population: 2.6%, 11.3%, 67, 7%, 14.3% and 4.1% for −2 to +2
labels.

- Constituency parser vs. dependency parser: The output of a depen-
dency parser is a Directed Acyclic Graph (DAG). However, RNTNs
accept a binary-branching parse tree as input. Therefore, we have bi-
narized the output of dependency parsers by using the method pre-
sented in Algorithm 2. We start from a word which does not point to
any other word as its parent, and recursively binarize its children list
by adding empty nodes when necessary.
When analyzing the effect of using a dependency parser instead of
a constituency parser in RNTNs (Table 3.2), for some datasets (e.g.,
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ALGORITHM 2: Binarize dependency DAG method
Function(binarizeTree)
Input: dependency graph with root node

1 if root has no children then
2 return root
3 else if root has one child then
4 BinarizeTree(root.child)
5 return root with binarized sub-tree
6 else if root has two children then
7 make tempRoot node with root data
8 tempRoot.leftChild := BinarizeTree(root.child(0))
9 tempRoot.rightChild := BinarizeTree(root.child(1))

10 return tempRoot
11 else if root has more than two children then
12 make tempRoot node with root data
13 if tempRoot.data = empty then
14 tempRoot := binarizeSubTree(root.children)

else
15 tempRoot.leftChild := binarizeSubTree(root.children)

Function(binarizeSubTree)
Input: list of children nodes

16 if children.size = 1 then
17 return binarizeTree(children.remove(0))
18 make tempRoot node
19 tempRoot.leftChild := children.remove(0)
20 tempRoot.rightChild := binarizeSubTree(children)
21 return tempRoot

MR) a significant loss of performance is visible. This is particularly
noticeable when the labeling method is CNN (e.g., 70% to 49% in
MR). The reason for this could be the difference of the word order
resulting from a dependency parser compared to the n-gram features
extracted by the CNN.

- RNTN vs. CNN: Table 3.2 shows a detailed comparison of the RNTN
automatic labeled variants to the CNN model and the rule-based
method. We have reported the average accuracy and F-measure
over all classes. With the same settings of parameters, we see a
better performance of the CNN model on the MR and SemEval-2016
datasets. The most noteworthy performance (in terms of F-measure)
improvement can be observed on the SemEval-2016 dataset, 0.51
to 0.56, for the best performing RNTN and CNN approaches. The
possible reasons may be related to the enormously large number of
parameters that have to be optimized in the tensor and the effects
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Figure 3.4: Heatmap of difference of the manually labeled RNTN and the
CNN model confusion matrices on the SST-5 test set. The numbers in each
cell indicate the percentage of normalized differences based on the total
number of sentences for each label.

of the applied automatic labeling of phrases used on the RNTN.
Therefore, a future research direction could try to reduce this space
and find a better initialization.

- Effect of automatic labeling on RNTN performance: Table 3.2 also
presents the performance of the manually labeled RNTN on the SST-
5 dataset. As we can see, automatic labeling results in significant
degradation of performance on SST-5. Comparing the results with
the CNN model shows that the manually labeled RNTN outperforms
the CNN architecture in terms of overall accuracy and F-measure.
To have a closer look into the confusion matrix of both methods, we
generate a heatmap similar to Figure 3.3, this time subtracting the
CNN confusion matrix elements from that of the RNTN method (i.e.
conf i,jrntn−conf

i,j
cnn

totali
). Blue color indicates more prediction of sentences by

the CNN model than by the RNTN, while the red color indicates the
reverse case. Figure 3.4 indicates that the RNTN has a tendency to
classify more instances into neutral (0) and positive (2) labels and
it is better at correct prediction of somewhat negative (−1), neutral
and positive labels, while the CNN is better at classifying negative
(−2) and somewhat positive (1) labels. Here, the distribution of sen-
tences over labels is closer to the uniform distribution: 12.6%, 28.6%,
17.6%, 23.1% and 18.1% for −2 to +2 labels. Unfortunately, currently,
no other dataset is manually labeled at the phrase level. A future di-
rection includes further evaluation of the impact of the phrase labeling
accuracy on various datasets.

3.3.3 Task 2: sentence categorization

We test this task on two datasets: (1) the TREC question dataset6, where the
goal is to classify a question into six coarse-grained question types (whether

6http://cogcomp.cs.illinois.edu/Data/QA/QC/

http://cogcomp.cs.illinois.edu/Data/QA/QC/
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a question is about an entity, a person, a location, numeric information, ab-
stract concepts or an abbreviation); (2) the Subj dataset7, where the goal is
to classify a sentence as being objective or subjective. The TREC dataset has
5452 training instances and 500 test sentences. The Subj dataset contains
10, 000 sentences in total, but it does not have a separate test set. There-
fore we use 10-fold cross-validation. The results are reported in the bottom
section of Table 3.2. In these experiments only CNN-based methods are
applicable. We observe that the CNN model outperforms RNTN versions,
and dependency parsing drastically reduces the performance of the RNTN.

3.3.4 Comparison of CNN architectures

In the next experiment, we compare our proposed deep CNN architecture
to a one layer CNN to find out the cases where the deep structure is benefi-
cial. The one layer CNN architecture [94] has several parallel filters of dif-
ferent sizes and a max-pooling layer. In our experiments, we have used 100
filters of size 3, 4, and 5. Classification results (see next to the last column
of Table 3.2) indicate that the performance of the one layer architecture is
comparable to the proposed deep architecture on the MR dataset and that
it performs better on the rest of sentiment datasets. The performance of
Kim’s architecture on the SST-5 dataset is comparable to the RNTN based
on manual labeling. These results highlight the importance of keyphrase
recognition in sentiment tasks, where applying larger filters is more bene-
ficial than having several layers of small filters. However, on the other sen-
tence categorization datasets, i.e., TREC and Subj, the proposed deep CNN
outperforms the flat architecture.

3.4 Conclusion

In this chapter, we studied two well-known deep architectures, CNNs and
RNTNs, in the context of sentence modeling. To avoid the labor-intensive
task of manually labeling the internal phrases for recursive networks, we
proposed two methods to automatically label them for training and tuning
phases: a rule-based method, which is specifically used for sentiment pre-
diction and a CNN based method for general purposes. Considering this
part of the study, the evaluation results on the SST-5 dataset indicate that the
CNN method tends to assign a positive or negative polarity to the phrases,
while the rule-based method classifies many of them as neutral.

Based on the presented two methods for automatic labeling of internal
nodes, we conducted a novel in-depth study of the RNTN model and com-
pared the model to a relatively simple deep CNN architecture. Experimen-
tal results conducted on an extensive set of standard benchmark datasets

7https://www.cs.cornell.edu/people/pabo/movie-review-data/

https://www.cs.cornell.edu/people/pabo/movie-review-data/
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demonstrate that the proposed CNN model outperforms the RNTN vari-
ants with automatic phrase labeling, whereas the RNTN with manual label-
ing (if available) outperforms the CNN. However, in that case, a one layer
CNN with several filters of different sizes is comparable to the manually
labeled RNTN. These results demonstrate that the syntactic structure of a
sentence will help in the classification performance when it is possible to
label the internal nodes of a parse tree accurately, otherwise, CNN is more
successful at representing the meaning of the sentence with respect to the
task. The findings show that there is still room for improvement of RNTN
variants in terms of determining tensor functions in a more informed man-
ner.

Despite the progress of deep covolutional neural networks in several
fields, its extension for solving multi-label classification problems is still a
direction to explore, especially in the streaming scenario where the models
need to be simple and anytime. Section 2.3.4 reviewed recent advances of
CNNs in multi-label streams. One possible future work is to extend our
proposed CNN architecture to the multi-label setting. However, for the rest
of this thesis, we focus on proposing a faster algorithm, thus, we develop
an analytical approach.
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Chapter 4

Multi-label Stream
Classification

Many modern applications deal with multi-label data such as functional
categorizations of genes, image labeling, and text categorization. Classifi-
cation of such data with a large number of labels and latent dependencies
among them is a challenging task, and it becomes even more challenging
when the data is received online and in chunks. Multi-label classification
can be viewed as a generalization of multi-class classification where labels
do not exclude each other and may have unknown dependencies among
each other as well as with the features. One goal of multi-label classifica-
tion is thus to take advantage of hidden label correlations to improve classi-
fication performance. Besides multiple interdependent class labels, we are
facing a massive increase in the size of data becoming available. In many
cases, this data is received as a stream, e.g., a stream of sensor data or an
email text stream. Because of the evolving nature of data streams, we can-
not record all the instances and cannot assume previous data can be scanned
an arbitrary number of times. This makes multi-label classification on data
streams even more challenging. Most of the current multi-label classifica-
tion methods require a lot of time and memory, which make them infeasible
for practical real-world applications. Hence, there is an increasing need for
efficient multi-label methods in terms of time and space complexity.

As mentioned in Chapter 2, a common approach to multi-label clas-
sification is to transform the problem into one or more single-label prob-
lems. The important advantage of problem transformation methods is the
possibility of using any available single-label base classifier. This makes
these approaches more flexible and generally applicable. However, they
may suffer from high computational complexity (as in the Label Power-
set method [182]) or ignore the label dependencies (as in the Binary Rel-
evance method [177]); both are important features in the classification of
multi-label streams. One successful type of transformation methods was

49
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input labels

A

pseudo labels

β

output labels

Figure 4.1: General framework of the RACE approach.

introduced that compresses the original label space to a compressed repre-
sentation. These methods accelerate the learning process by training fewer
binary classifiers on compressed label sets, which makes them suitable for
multi-label stream classification. However, all the existing methods need to
access the whole training data at once.

Although multi-label classification has received much attention, classi-
fying multi-label data streams is relatively new and not very well investi-
gated. Only some well-known methods like Binary Relevance (BR) and
Classifier Chains (CC) and a variation of them [141, 168] have been up-
graded to the online scenario by using an updateable classifier as their base
learner. A multi-label version of Hoeffding Trees, a popular decision tree
classifier in single-label stream mining, was also presented [147]. How-
ever, none of the available label space reduction methods in the literature
on multi-label classification has been adapted for the streaming scenario yet.
Most of them are computationally expensive, which makes them infeasible
for streaming data.

In this chapter, we propose a novel online linear label compression ap-
proach, called RACE (Random Compression), that transforms the labels
into a reduced encoded space and trains classifiers on the obtained pseudo
labels. Additionally, it provides an analytical method to update the decod-
ing matrix, which maps the labels into the original space and is used during
the test phase. For each new batch of data, we (1) compress the label space
into a smaller random space, then (2) update the single-label online classi-
fiers or regressors on this compressed label set (we call them pseudo labels),
and in the end (3) update the existing decompressing function analytically
with the recent data batch. Figure 4.1 represents the general framework of
RACE. The main feature of this approach is to process each data batch once
and analytically; hence it is not iterative in finding encoding/decoding func-
tions, which leads to a faster method compared to other offline label space
compression methods in the literature. To make our method efficient, we
select the encoding matrix randomly. Choosing random features or pro-
jections has been an active topic in machine learning. Random features
have been reasonably successful in scaling kernel methods when dealing
with large data sets [142, 107, 38]. Training neural networks with random
weights has also been elaborated in the literature [158, 197]. Studies show
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that there is significant redundancy in the parametrization of several deep
learning methods and many of them even need not be learned at all [43].
Subsequent studies propose using random features to reduce the number
of parameters for deep convolutional neural networks without sacrificing
predictive performance [202]. Another study shows that features from a
one-layer convolutional pooling architecture with completely random fil-
ters could achieve an average recognition rate that is just slightly worse than
unsupervised pre-trained and fine-tuned filters [88]. Further investigations
show that a surprising fraction of the performance can be attributed to the
architecture alone [155]. In addition to the fast random encoding function,
our proposed method does not have many control parameters to be set; the
only parameter is the dimension of the compressed space.

4.1 Online label compression method

The key idea of our method is to compress labels into a smaller random
space. As mentioned earlier in this chapter, it has been shown that using
random features or weights has been a successful component of many ex-
isting methods. Using a fixed random encoder will help in accelerating the
method and make it scalable for streaming data. However, it may be too
restrictive for multi-label stream classification. Therefore, we propose two
variants of the compression function: one fixed and one adaptive encoder.
After receiving the first batch of data, we first map the label space to the re-
duced space. As the encoding is a real-valued mapping, the reduced labels
will be real-valued. One may then use an updateable regressor or binarize
the labels and train one updateable classifier for each pseudo label. The de-
coding function is calculated as a least squares solution and can be updated
incrementally. The next batch of data is first used as test data: We obtain
the prediction by the classifiers/regressors and use the decoding function
to obtain predicted labels in the original space. After receiving the actual
labels of the batch, the batch is used as training data to update the models
and the decoding function accordingly. The remainder of this section will
explain the algorithm in detail.

Recall from Section 2.1 that the target of multi-label classification is to
minimize the risk function as in equation (2.1). In this chapter, we propose
a multi-label stream classifier C : X → {0, 1}l that minimizes a label-wise
decomposable loss function. To do so, we decompress the reduced label set
by a decoding matrix (β), which minimizes the least squares error in each
batch:

argmin
βt

n∑
i=1

e2
t (i), (4.1)

where et(i) is the error of predicted labels for the ith instance of batch t
based on the decoding matrix βt. Linear models obtained by least squares,
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equation (4.1), are the same as those obtained by optimizing the Hamming
loss, equation (4.2), and can be interchangeably used [42]:

f(l, C(x)) =
1

l

l∑
k=1

Jlk 6= Ck(x)K. (4.2)

4.1.1 Label compression with least squares solution

Compressing the label space to a fixed random space was inspired by the
idea of Extreme Learning Machines (ELMs) [81, 112]. Let q = t.n be the
total number of instances up to time t and L(q) denote the original label set,
which is encoded into a smaller random space by Hq = L(q)A, where A is
an l× k fixed encoder andHq is the q× k resulting pseudo label matrix and
k is the reduced label space size. To decode the reduced label predictions
to the original label space, we have:

Hqβq = Y (q), (4.3)

where βq is a k × l decoding matrix after observing q instances. In order to
find βq in equation (4.3), we use the least squares approach to make it faster
than iterative optimization methods (such as stochastic gradient descent).
Let E(q) = [e(1)e(2) . . . e(q)]T = L(q) − Y (q) be the error of predicted la-
bels for all instances up to time t according to the parameters at time t. By
rewriting equation (4.1), we obtain:

ξ = ET (q)E(q)

= (LT (q)− Y T (q))(L(q)− Y (q))

= (LT (q)− βTq HT
q )(L(q)−Hqβq)

= LT (q)L(q)− 2(HT
q L(q))Tβq + βTq H

T
q Hqβq.

Setting the gradient of ξ with respect to βq equal to zero, we obtain:

(HT
q Hq)β̂q = HT

q L(q),

β̂q = (HT
q Hq)

−1HT
q L(q). (4.4)

Consequently, the resulting decoder matrix (β̂q) is the least squares solution
of equation (4.3). Experimental results show that this approach has better
generalization performance at higher learning speed on both classification
and regression problems [81, 48].

4.1.2 Random compression of multi-label streams

The least squares solution provided by equation (4.4) is of little interest in
mining a stream of data, as it requires all the past samples at each iteration.
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We need to transform the solution in equation (4.4) into an incremental
form. Hence, for the first batch of data, we calculate the decoding matrix
as:

β0 = (HT
0 H0)−1HT

0 L(0). (4.5)

Suppose we are at step t + 1 and receive a new batch of data. The new
decoding matrix will be obtained by:

βt+1 =

([
Ht

Ht+1

]T [
Ht

Ht+1

])−1 [
Ht

Ht+1

]T [
L(t)

L(t+ 1)

]
=
(
HT
t Ht +HT

t+1Ht+1

)−1 (
HT
t L(t) +HT

t+1L(t+ 1)
)
.

(4.6)

To simplify equation (4.6), we estimate L(t) with Htβt, where βt is the de-
coding matrix at time t. The second part of the right-hand side of equa-
tion (4.6) becomes:(
HT
t L(t) +HT

t+1L(t+ 1)
)

= HT
t Htβt +HT

t+1L(t+ 1)

= (HT
t Ht +HT

t+1Ht+1 −HT
t+1Ht+1)βt +HT

t+1L(t+ 1)

= (HT
t Ht +HT

t+1Ht+1)βt −HT
t+1Ht+1βt +HT

t+1L(t+ 1).

(4.7)

Substituting equation (4.7) in (4.6), βt+1 can be written as:

βt+1 =
(
HT
t Ht +HT

t+1Ht+1

)−1 (
HT
t L(t) +HT

t+1L(t+ 1)
)

=
(
HT
t Ht +HT

t+1Ht+1

)−1
( (
HT
t Ht +HT

t+1Ht+1

)
βt −HT

t+1Ht+1βt +HT
t+1L(t+ 1)

)
=

(
HT
t Ht +HT

t+1Ht+1

)−1
( (
HT
t Ht +HT

t+1Ht+1

)
βt +HT

t+1(L(t+ 1)−Ht+1βt)
)

= βt +
(
HT
t Ht +HT

t+1Ht+1

)−1
HT
t+1 (L(t+ 1)−Ht+1βt) .

(4.8)

In order to avoid multiple calculations of matrix inversions in equa-
tion (4.8), we use the Sherman-Morrison-Woodbury formula, where rather
than keeping Mt = HT

t Ht, we keep Kt = M−1
t . We can rewrite βt+1 as the

following:

M−1
t+1 = (Mt +HT

t+1Ht+1)−1

= M−1
t −M

−1
t HT

t+1(I +Ht+1M
−1
t HT

t+1)−1Ht+1M
−1
t

Kt+1 = Kt −KtH
T
t+1(I +Ht+1KtH

T
t+1)−1Ht+1Kt

βt+1 = βt +Kt+1H
T
t+1 (L(t+ 1)−Ht+1βt) .

(4.9)

The recursive method for updating the least squares solution of βt+1 is sim-
ilar to the Recursive Least Squares (RLS) algorithm [48]. Algorithm 3 in-
dicates the main steps of our proposed online label compression (RACE)
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method. The first step is to generate the encoding matrix (line 1). We gen-
erate k uniformly distributed random hyperplanes in the space of labels,
where k is the dimension of the reduced label space. In order to have more
informative pseudo labels, we use the Gram-Schmidt algorithm [175] to ro-
tate the k hyperplanes orthogonally. The Gram-Schmidt algorithm (line 2–
6) subtracts from vector ai its components along previously determined or-
thonormal directions a1, ...,a(i−1) to obtain the new orthogonal direction
v = ai −

∑i−1
j=1 (aj × ai)aj. Then, scale v to obtain a unit norm vector:

ai = v/||v||. These orthonormal hyperplanes are kept as the encoding ma-
trix or as an initialization of the adaptive variant.

For the first batch of instances, the RACE algorithm finds the pseudo
labels by multiplying the label matrix with the encoding matrix (line 7),
and if the binary relevance models are chosen to be classifiers, the resulting
real-valued pseudo labels are converted to binary values (line 8– 9). It then
trains a binary relevance model, either a regressor or a classifier, on the en-
coded data (line 10). Finally, the decoding matrix β is initialized based on
equation (4.5). Lines 12– 21 repeat this procedure for the following batches
of data. Before updating the models and the decoding matrix, we use the
current model and β to predict the labels of the newly arrived batch: The
model predicts the labels in the reduced space (line 13), and the decoding
matrix of the previous step (βt) transfers pseudo labels to the original space
(line 14). To update the model with the new batch, we first update the en-
coding matrix to the transpose of the decoding matrix from the previous
step for the adaptive encoding variants (line 15– 16). The pseudo labels of
the new batch are extracted from its true labels (line 17– 19) and used to
update the learning model (line 20). In the end, β is incrementally updated
by equation (4.9).

4.2 Experimental results

Experiments1 were performed in a prequential manner, where each data
batch is first treated as test data and then as training data. All methods
were developed within the Mulan framework [181], the experiments were
repeated ten times to reduce the effect of random parameters (e.g., A in
RACE or the number of chains in OECC), and the average values are re-
ported.

4.2.1 Experimental setting

Benchmark datasets. We evaluate our proposed method on several multi-
label dataset benchmarks (Table 4.1). We have chosen these datasets in or-
der to cover different types of multi-label datasets: datasets with high la-

1The RACE source code is available at https://github.com/kramerlab/RACE

https://github.com/kramerlab/RACE
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ALGORITHM 3: RACE algorithm
Input: B(t) = (X(t), L(t)) is the tth batch of data,

l and k are the size of original and reduced label space respectively
Output: encoder matrix Al×k, decoder matrix βk×l, and trained model

1 Generate a random matrix A0 = (a1,a2, ...,ak) of size l × k, where ai is a
vector of length l

// Gram-Schmidt orthogonalization

2 for i = 1 to k do
3 v = ai

4 for j = 1 to i− 1 do
5 v = v − (aj · v) · aj

6 ai = v/||v||
// Initialization step

7 H0 = L(0)A0

8 if Method = classification then

9 Hi,j
0 =

{
1 if Hi,j

0 ≥ 0

0 otherwise

10 Train a Binary Relevance updateable model on (X(0), H0)
11 Initialize label decoders:
K0 = (H0

TH0)−1 , β0 = K0H
T
0 L(0)

// Sequential step

12 while more batches of data do
// test new batch

13 get Pt+1 the prediction of model on X(t+ 1)

14 Y (t+ 1) = Pt+1βt =

{
1 if Y i,j(t+ 1) ≥ 0

0 otherwise
// Update with new batch

15 if Encoding = adaptive then
16 At+1 = βt

T

17 Get pseudo labels by Ht+1 = L(t+ 1)At+1

18 if Method = classification then

19 Hi,j
t+1 =

{
1 if Hi,j

t+1 ≥ 0

0 otherwise

20 Update Binary Relevance model with batch (B(t+ 1), Ht+1)
21 Update Kt+1 and βt+1 using equation (4.9)
22 t := t+ 1

bel density (e.g., CAL500), datasets with a lot of labels (e.g., delicious),
datasets with a large feature space (e.g., rcv1v2), and datasets with a large
sample size (e.g., mediamill and NUS-WIDE). We report the measurements
of Example-based accuracy, the Example-based F-measure, Hamming loss,
the Micro-averaged and Macro-averaged F-measure, and the running time
for all methods.
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Table 4.1: Multi-label benchmark datasets used in experiments. |D|, |X|, |L|,
LC, LD and UL indicate number of instances, number of features, number
of labels, label cardinality, label density, and unique label sets respectively.

Name |D| |X| |L| LC LD UL
CAL500 502 68 174 26.044 0.150 502
delicious 16105 500 983 19.020 0.019 15806
enron 1702 1001 53 3.378 0.064 753
mediamill 43907 120 101 4.376 0.043 6555
NUS-WIDE 269648 500 81 1.869 0.023 18430
rcv1v2(subset1) 6000 47236 101 2.880 0.029 1028

Baseline and comparison methods. We evaluate four variants of RACE,
where the encoding may be fixed or adaptive, and the learning method
may be regression or classification. We have developed an online version of
Binary Relevance (OBR) and Ensemble of Classifier Chains (OECC), two
well-known multi-label methods, to compare with RACE. ECCs are an ex-
tension of CCs that reduce the chance of poorly ordered chains and create
more scalable classifiers for batch learning [149]. Our experimental results
in the online setting are in line with previous findings in the batch setting
so that only OECC results are reported in our experiments. As many multi-
label datasets have a very sparse label space, we implemented an always
negative classifier (Negative) to see how well the classifier learns the avail-
able labels. Besides, we implemented the majority prediction (Majority)
baseline method that takes the cardinality of the current data batch as a
threshold for the classification of the following batch. Hence, if the cardi-
nality of the current batch is c, the top bcc labels are predicted as positive,
and the rest is predicted as negative.

Parameter Settings. Naı̈ve Bayes Updateable is used as a simple gener-
ative updateable base classifier for OBR, OECC, and RACE (classification
variants). For PLST and regression variants of RACE, we used stochastic
gradient descent with the squared loss function and a learning rate of 10−4.
The size of the ensemble in OECC is set to 5, and the size of the reduced
label space in RACE to k = dlog2 le, where l is the size of the original label
space. The window size is set to 50 instances for CAL500, 100 for enron, and
500 for the rest.

4.2.2 Comparison of RACE variants

We first compare the four variants of RACE, where the encoding matrix can
be fixed or adaptive, and the learning method is either regression or classifi-
cation. The results are reported in Table 4.2. The worst performance belongs
to the classification variant with fixed encoding. This can be due to the very
confined structure of the model. On the other hand, the regression variant
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Figure 4.2: Runtime comparison of different algorithms to RACE (cls-adap),
results shown as log ratio.

with adaptive encoding does not perform well, possibly due to the overfit-
ting of so many real-valued parameters. The average ranks over all datasets
indicate that the classification variant with adaptive encoding exhibits the
best performance in terms of Example-based accuracy and Example-based
F-measure and nearly the best in terms of Micro-averaged F-measure. Con-
versely, the regression variant with fixed encoding achieves the best results
in terms of Hamming loss and Macro-averaged F-measure. However, its
Example-based measures and Micro-averaged F-measure on some datasets
(i.e., delicious and rcv1v2) are poor. Concerning running time, the classi-
fication variants are faster than their regression counterparts as their base
learners are Naive Bayes Updateable, which is faster than the stochastic gra-
dient descent regression model.

4.2.3 Comparison to online baseline methods

In Table 4.3 we compare two variants of RACE, the classification method
with adaptive encoding (cls-adap) and the regression method with fixed
encoding (reg-fixed), to other online baseline methods and report the aver-
age values for different measures over all batches and runs. We left out the
standard deviation of different runs in this table as the corresponding values
for OECC were negligible, and the ones for the RACE variants were reported
in Table 4.2. Again, the average ranks over all datasets indicate that RACE
(cls-adap) achieves the best Example-based accuracy and Example-based
F-measure and nearly the best Micro-averaged F-measure; and hence, with
the average rank of 2.73 over all measures, it stands on the second place,
after RACE (reg-fixed). RACE (reg-fixed) achieves the best results in terms
of Hamming loss and Macro-averaged F-measure. It gives the best perfor-
mance across all evaluated measures on enron and mediamill. However, its
poor behavior in terms of Example-based measures and the Micro-averaged
F-measure on delicious and rcv1v2 is quite similar to the Negative baseline.

The last column of Table 4.3 presents the running time of all algorithms.
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Table 4.3: Comparison of RACE to OBR, OECC, and the Negative and Ma-
jority baseline methods across different measures per dataset (rank).

D
ataset

M
ethod

Ex.-based
accuracy

Ex.-based
F-m

easure

H
am

m
ing

loss

M
acro-avg.F-m

easure

M
icro-avg.F-m

easure

A
verage

rank

Running
tim

e
(s)

CAL500

RACE (cls-adap) 0.21 (2) 0.33 (2) 0.24 (3) 0.19 (3) 0.33 (3) 2.6 2.57
RACE (reg-fixed) 0.20 (4) 0.33 (2) 0.15 (1) 0.17 (4) 0.32 (4) 3 4.29
Majority 0.03 (5) 0.06 (5) 0.28 (5) 0.11 (6) 0.06 (5) 5.2 9.79
Negative 0.00 (6) 0.00 (6) 0.15 (1) 0.12 (5) 0.00 (6) 4.8 9.64
OBR 0.22 (1) 0.35 (1) 0.27 (4) 0.25 (1) 0.35 (1) 1.6 17.14
OECC 0.21 (2) 0.33 (2) 0.31 (6) 0.24 (2) 0.34 (2) 2.8 46.84

delicious

RACE (cls-adap) 0.10 (1) 0.16 (2) 0.05 (4) 0.05 (5) 0.11 (2) 2.8 278.17
RACE (reg-fixed) 0.01 (4) 0.02 (4) 0.02 (1) 0.08 (1) 0.02 (4) 2.8 2343.54
Majority 0.01 (4) 0.01 (5) 0.04 (3) 0.08 (1) 0.01 (5) 3.6 11760.25
Negative 0.00 (6) 0.00 (6) 0.02 (1) 0.08 (1) 0.00 (6) 4 11324.38
OBR 0.10 (1) 0.17 (1) 0.16 (5) 0.07 (4) 0.13 (1) 2.4 22117.97
OECC 0.04 (3) 0.07 (3) 0.61 (6) 0.04 (6) 0.04 (3) 4.2 46525.20

enron

RACE (cls-adap) 0.26 (1) 0.35 (2) 0.09 (3) 0.21 (4) 0.35 (2) 2.4 20.39
RACE (reg-fixed) 0.26 (1) 0.36 (1) 0.06 (1) 0.33 (1) 0.38 (1) 1 96.58
Majority 0.07 (5) 0.11 (5) 0.11 (4) 0.27 (3) 0.12 (5) 4.4 56.52
Negative 0.00 (6) 0.00 (6) 0.07 (2) 0.29 (2) 0.00 (6) 4.4 57.51
OBR 0.23 (3) 0.33 (4) 0.18 (5) 0.14 (5) 0.29 (3) 4 108.12
OECC 0.23 (3) 0.34 (3) 0.18 (5) 0.13 (6) 0.29 (3) 4 275.51

mediamill

RACE (cls-adap) 0.25 (2) 0.34 (2) 0.16 (4) 0.32 (4) 0.22 (2) 2.8 298.44
RACE (reg-fixed) 0.34 (1) 0.45 (1) 0.03 (1) 0.45 (1) 0.45 (1) 1 504.65
Majority 0.07 (5) 0.13 (5) 0.07 (3) 0.42 (3) 0.13 (5) 4.2 450.23
Negative 0.04 (6) 0.04 (6) 0.04 (2) 0.43 (2) 0.00 (6) 4.4 444.24
OBR 0.10 (3) 0.17 (3) 0.30 (5) 0.15 (5) 0.17 (3) 3.8 1258.34
OECC 0.08 (4) 0.15 (4) 0.35 (6) 0.15 (5) 0.15 (4) 4.6 3295.56

NUS-WIDE

RACE (cls-adap) 0.23 (1) 0.26 (1) 0.03 (3) 0.40 (4) 0.23 (1) 2 2629.84
RACE (reg-fixed) 0.23 (1) 0.23 (2) 0.02 (1) 0.42 (1) 0.02 (4) 1.8 2699.95
Majority 0.02 (6) 0.02 (6) 0.04 (4) 0.41 (3) 0.01 (5) 4.8 5338.37
Negative 0.22 (3) 0.22 (3) 0.02 (1) 0.42 (1) 0.00 (6) 2.8 6506.92
OBR 0.06 (4) 0.10 (5) 0.26 (6) 0.08 (5) 0.11 (2) 4.4 11481.38
OECC 0.06 (4) 0.11 (4) 0.24 (5) 0.08 (5) 0.11 (2) 4 34511.24

rcv1v2

RACE (cls-adap) 0.08 (3) 0.12 (3) 0.18 (4) 0.04 (6) 0.07 (3) 3.8 22723.76
RACE (reg-fixed) 0.01 (4) 0.02 (4) 0.03 (1) 0.19 (1) 0.03 (4) 2.8 59603.26
Majority 0.00 (5) 0.00 (5) 0.05 (3) 0.18 (3) 0.00 (5) 4.2 24487.15
Negative 0.00 (5) 0.00 (5) 0.03 (1) 0.19 (1) 0.00 (5) 3.4 19761.63
OBR 0.13 (1) 0.20 (1) 0.43 (5) 0.13 (4) 0.12 (1) 2.4 234679.01
OECC 0.13 (1) 0.19 (2) 0.46 (6) 0.13 (4) 0.12 (1) 2.8 154585.83

Average rank

RACE (cls-adap) 1.67 2 3.5 4.33 2.17 2.73
RACE (reg-fixed) 2.5 2.33 1 1.5 3 2.07
Majority 5 5.17 3.67 3.17 5 4.4
Negative 5.33 5.33 1.33 2 5.83 3.96
OBR 2.17 2.5 5 4 1.83 3.1
OECC 2.83 3 5.67 4.67 2.5 3.73

For a better visualization of time complexity, we plotted a heat map that
represents the log ratio of each method’s time, i.e. log10

tmethod
tRACE(cls−adap)

(Fig-
ure 4.2). The heat map illustrates the difference in the order of the time
needed to finish for each method in comparison to RACE (cls-adap) on each
dataset. We observe that the space reduction method is efficient and the
running time of RACE (cls-adap) is orders of magnitude smaller than the
one of other ensemble methods, especially when the original label space is
very large (see the results for delicious).
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4.2.4 Comparison to offline label compression methods

In this section we compare RACE (cls-adap) to PLST2 [172], a popular of-
fline label compression method, which uses a projection method based on
singular value decomposition. Here, we used hold-out evaluation, i.e., 33%
of each dataset was chosen randomly as the test set and the rest as the train-
ing set. RACE (cls-adap) received training data in batches, and after updat-
ing for each batch, the test was performed on the test data, and the average
values of Example-based accuracy and Hamming loss are reported. In ad-
dition to present each batch once to RACE, we repeated the experiment by
showing every batch several times consecutively. Table 4.4 presents the re-
sults for different measures and datasets, and reports the iterative results for
3 iterations. We observe that while RACE has an adaptive nature, Example-
based accuracy and Hamming loss are comparable to PLST and on some
datasets (CAL500 and delicious) RACE reaches an even higher accuracy.
Moreover, on all datasets, due to its random compression nature, RACE has
an order of magnitude smaller running times, and when the dataset is large
(e.g., rcv1v2 and NUS-WIDE), PLST does not even finish within reasonable
time3. Looking into iterative RACE, we observe that this method achieves
more stable results over time, however, on some datasets it leads to better
accuracy (CAL500 and delicious), while on some others the accuracy is re-
duced (mediamill, NUS-WIDE, and rcv1v2).

4.2.5 Impact of pseudo label set size

RACE has one parameter to set: the size of the reduced label space. We
have changed the number of pseudo labels from dlog2 le to dlog2 le

2, where
l is the size of the original label space. Figure 4.3 shows the impact of this
parameter on the performance of RACE (cls-adap) and RACE (reg-fixed)
for the CAL500 and the enron datasets. As we can see in both datasets,
while increasing the number of pseudo labels in RACE (cls-adap) does
not change Example-based accuracy and Hamming loss notably, the Micro-
averaged and Macro-averaged F-measure are improved up to some point
(at 30 pseudo labels in enron and at 40 pseudo labels in CAL500), but then
they drop again. This is the case for RACE (reg-fixed) for Example-based
accuracy and the Micro-averaged F-measure in the enron dataset, however,
in the CAL500 dataset, different measures do not change notably for RACE
(reg-fixed). Comparing these improvements to the average ranks from Ta-
ble 4.3, we can see that each of these variants can be improved by choosing
a properly fine-tuned reduced label space size.

2We have used the implementation provided by the Meka framework at
https://github.com/Waikato/meka/tree/master/src/main/java/meka/classifiers/

multilabel.
3The experiment was not finished after 120 hours on the same system.

https://github.com/Waikato/meka/tree/master/src/main/java/meka/classifiers/multilabel
https://github.com/Waikato/meka/tree/master/src/main/java/meka/classifiers/multilabel
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(a) RACE(cls-adap) on CAL500
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(b) RACE(reg-fixed) on CAL500
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(c) RACE(cls-adap) on enron
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Figure 4.3: Effect of different numbers of pseudo labels on the performance
of RACE variants on the CAL500 and enron datasets.

4.3 Conclusion

This chapter addressed the problem of online label compression for multi-
label data stream classification. The main contribution of the proposed al-
gorithm is to encode the original label space by a random projection method
to a much smaller space and decode the output of models by an incremental
analytical approach inspired by Extreme Learning Machines. Different vari-
ants of the proposed method, RACE, were tested. The experimental evalu-
ations showed that the approach works well on different datasets across a
variety of measures, and outperforms other existing online multi-label base-
lines in terms of accuracy, F-measure, Hamming loss and notably running
time. However, there is still room for further improvement. We can extend
the current framework to cover various types of concept drift. An ensemble
of RACE models also can be used to reduce the variance due to its random
initialization.



Chapter 5

Pool-based Stream
Classification

Classifying a stream of non-stationary data with recurrent drift is a chal-
lenging task and has been considered as an interesting problem in recent
years. Early work on stream classification goes back to the 1990s and the
FLORA framework [195]. Since then, there have been extensive studies on
learning algorithms that can handle data streams [52, 58, 2, 101, 215, 21].
Most of the work in the literature focuses on handling gradual and sud-
den drift. That is, they are trying to adapt to a new concept and forget the
previous, outdated ones [83]. Such a case cause problems, especially in ad-
versarial systems (e.g., spam filtering and intrusion detection), where the
adversary might take advantage of the forgetting mechanism and beats the
learner by presenting new instances from a previously seen concept that be-
longs to a long time ago, which the learner has already forgotten. In some
other problems, e.g., weather forecast, remembering the previously seen
concepts will help in future predictions. In these cases, the drift can imply
the recurrence of previously seen concepts. The recurrent concepts chal-
lenge has been faced only quite recently [54, 64, 66, 145, 153]. As reviewed in
Chapter 2, all of the existing approaches handling recurrent concepts main-
tain a pool of concepts/classifiers and use that pool for future classifications
to reduce the error on classifying the instances from a recurring concept.

In this chapter, we extend the idea of exploiting recurring concepts using
a pool of classifiers, in which each classifier represents a concept. We call the
learning framework Pool and Accuracy based Stream Classification (PASC). The
pool is updated iteratively after receiving new batches of data. If the similar-
ity of the recent batch and one of the classifiers of the pool is high enough,
the corresponding similar classifier is updated. If not, a new classifier is
added to the pool. In the predecessor approach, the CCP framework [92],
the pool size is fixed, and after reaching the limit, the most similar classifier
is updated regardless of its level of similarity. This can cause the classifier

63
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to represent multiple concepts. To solve the problem, we present a merg-
ing procedure that finds the most similar concepts in the pool and merge
them. The benefit of a merging procedure becomes clear once we notice the
small size of data batches and the fact that one concept may appear in sev-
eral batches of instances. At this stage, the value of the similarity threshold
becomes critical, and it may lead to several classifiers in the pool that rep-
resent one concept. Once the pool reaches its maximum size, we can search
the pool and merge these classifiers to release space for a new classifier.
Merging can also improve the generalization performance of a classifier. In
case there are not such classifiers in the pool, the most similar classifier to
the current batch will be updated. We propose novel methods to update the
pool and merge classifiers: exact Bayesian, Bayesian and Heuristic methods.
Our proposed framework improves the CCP framework in several ways:

1. CCP uses a pure Euclidean distance as a distance measure. However,
in cases where the range of features is not similar, some features im-
pact more than others. PASC solves this issue by using a normalized
distance measure.

2. To classify a new batch of instances, PASC uses a weighted majority
approach and compares it to the so-called active classifier method in
CCP.

3. PASC proposes three new batch assignment methods and a merging
process to manage the pool.

5.1 Pool and accuracy based stream classification

As explained above, the proposed PASC framework is a generalization of
the CCP framework [92]. The algorithm keeps a pool of classifiers, where
each classifier corresponds to a concept. When a batch of instances is re-
ceived, the algorithm first predicts the corresponding class of the instances.
After receiving the true class of new instances, the algorithm either chooses
the most appropriate classifier and updates it, or creates a new classifier and
adds it to the pool. Usually, there is a finite number of possible concepts in
a dataset. Hence, in order to avoid redundancies and an ever-growing pool
size, we set a maximum size for the number of classifiers in the pool. Algo-
rithm 4 presents the general steps of the PASC framework.

Let X(t) = (xt1,x
t
2, . . . ,x

t
n) and Y(t) = (yt1, y

t
2, . . . , y

t
n) be instances of

batch t and their corresponding true class, where xti and yti indicate the ith
instance of batch t and its true class respectively. Lines 9-12 are the main
steps of Algorithm 4. This loop iteratively classifies a batch and updates the
pool. The algorithm has three main phases that are shown in lines 10-12
and will be explained in the following subsections. Lines 1–8 are the initial-
ization parts of the method: classifier C is built on the first batch of data and
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ALGORITHM 4: PASC main framework
Input: B(t) = (X(t), Y (t)): instances of data batch t,

instance xti to be classified
Output: Predicted class of instance xti

1 Pool = ∅
2 Initialize the RDC classifier
3 Train a classifier C on (X(0), Y (0))
4 Pool = Pool ∪ {C}
5 w0 = 1
6 cactive = 1
7 XRDC = sum data(X(0))
8 Update RDC with (XRDC , 0)
9 for j ≥ 1 do

10 Classify X(t)
11 Update Pool with B(t)
12 Update the active classifier or classifier weights

its weight is set to 1. cactive indicates the index of the active classifier for the
variants of the framework that use the so-called active classifier. Raw Data
Classifier (RDC) is a classifier that aims to predict the concept, from which
X(t) is drawn. It makes the prediction only based on the instance features
and not the true class of data. Training input of the RDC classifier, XRDC ,
is a summarization of each data batch and the index of its corresponding
concept in the pool.

5.1.1 Classify new data

As explained in the CCP framework [92], we can classify the instances by
the current active classifier. However, there may be more than one classi-
fier in the pool, which represents the current concept. Hence, we propose a
weighted classification method. Both methods are described in the follow-
ing:

Active classifier: The active classifier is a classifier which was updated by
the previous batch of instances. If the data is stationary and there is no con-
cept drift between the last consecutive batches, this classifier is a reasonable
choice. The variable pc in line 3 of Algorithm 5 stores the predicted class by
the active classifier cactive.

Weighted classifiers: We use an adaptive method to choose a combination
of classifiers from the pool. At the beginning of the iteration, we initialize
the weight of each classifier according to the current state of the pool and
the last batch of data. After predicting the class ofxti, we update the weights
of classifiers using yti :

w′j = wjβ
M(j,i), (5.1)
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ALGORITHM 5: Classify new data
Input: X(t): instances of data batch t with size n
Output: Predicted class of X(t)

1 if mode = active classifier then
2 for i=1 to n do
3 pc[xti] = classify xti with cactive

else if mode = weighted classifiers then
// makes a subsample of size m

4 St = sub sample(X(t),m)
5 for i=1 to m do

// Uses the highest weighted classifier

6 pc[xti] = weighted classify(Pool, w, St,i)
7 for j=1 to Pool.size do

// error is a binary function

8 wj = wjβ
Pool[j].error(St,i,y

t
i)

where wj and w′(j) are the current and the new weight of the jth classifier,
respectively, and β ∈ [0, 1) is a penalty parameter. M(j, i) is 0 if the jth
classifier predicts the class correctly and 1 otherwise. Equation (5.1) is in-
spired from an online prediction modeling of a two-player repeated game
problem [50]. The first player, here the pool of classifiers, is the learner.
The actions of the first player include choosing a classifier among the pool
of classifiers. A mixed strategy P is used by the first player to choose its
actions. P is a probability distribution function on each possible action to
be selected. The learner computes a mixed strategy P by normalizing the
weights, which are assigned to the classifiers. This is equivalent to use a
majority vote among the classifiers of the pool according to their weights.
The second player, here the source of producing the batches, is the envi-
ronment. The actions of the second player include choosing the instances,
which are given to the learner for classification. The second player uses the
mixed strategyQ to choose its actions. The strategies P andQ change them-
selves as the game proceeds. P is updated according to the loss of the last
iteration by updating the classifiers’ weights, and Q can be updated by the
environment arbitrarily. If the number of instances is sufficiently large and
the learner uses equation (5.1) to update the weights of classifiers, the pre-
diction error converges to the best classifier’s error on the last batch [50].
Considering this, if the size of the input batch is large enough, the accuracy
of our ensemble classifier on the last batch of instances is as good as using
the best classifier in the pool. However, in the context of concept drift, the
size of the batch should not grow arbitrarily since the i.i.d assumption can
quickly be violated.

For the sake of efficiency, our classification algorithm is slightly different
from [50]: First, instead of getting a majority vote, we classify the instance
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ALGORITHM 6: Update the classifier pool
Input: A Pool of classifiers,

Cbest: Best concept describing batch B(t) = (X(t), Y (t)),
Smax: The similarity value of Cbest and X(t),
θ: Threshold parameter

1 (Smax, Cbest) = batch assignment(Pool, B(t))
2 if Smax > θ then
3 Pool[Cbest].update(B(t))

else if Pool.size < Cmax or merge procedure(Pool, Cbest, B(t)) then
4 Train C on B(t)
5 Pool = Pool ∪ {C}
6 Cbest = Pool.size

else
7 Pool[Cbest].update(B(t))

// only in (exact) Bayesian

8 RDC.update(X(t), Cbest)

with the classifier that has the highest weight. Second, we do not update
our classifiers for every instance; instead, we use a subsample of the batch.
In our experiments, we chose the square root of the batch size as the number
of elements for updating the classifiers. In line 4 of Algorithm 5, we make
a subsample of instances and make sure to update the weights only for the
members of the subsample St (line 6).

5.1.2 Update the classifier pool

Given X(t) and Y (t), our goal is to find the most likely concept for the cur-
rent batch (line 1 of Algorithm 6). For this purpose, we propose three differ-
ent batch assignment methods: Exact Bayes that uses the Bayes theorem to
find the probabilities, the Bayes method, which is similar to the Exact Bayes
method but makes some simplifying assumptions to decrease the time com-
plexity, and the Heuristic method. These methods find the most similar con-
cept/classifier of the pool to the labeled batch (Cbest) and the similarity be-
tween them (Smax). If the similarity is greater than a predefined threshold
(θ1, θ2 or θ3 for exact Bayesian, Bayesian and Heuristic methods, respec-
tively), the Cbest classifier is updated with the batch (line 3). Once there
is free space in the pool or the merge procedure can create a free space, a
new classifier is trained on the new batch (line 4– 6). If the pool is full and
there are no similar concepts to be merged, the best classifier is updated
(line 7). Finally, RDC is updated according to X(t) and Cbest (line 8). We
explain the merge procedure and various batch assignment methods in the
following:
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Merge procedure Assume the concept nC refers to the nearest concept to
Cbest. If the distance between nC and Cbest is less than the distance between
Cbest and the new batch (B(t)), a merging procedure will merge Cbest and
nC together. Merging of Cbest and nC should be possible even in the ab-
sence of their training data. In this framework, we use Naı̈ve Bayes, a simple
generative classifier, as the base classifier and implement a simple method
to merge two Naı̈ve Bayes classifiers by combining the probability density
functions (pdf ) of each attribute. For each nominal attribute fi and class
yj , a probability P (fi = v|yj) is maintained for each possible value v of
fi. The corresponding probability of the merged classifier is the weighted
average of the two probabilities with respect to the number of instances.
For each numeric attribute fi and class yj , a normal distribution P (fi|yj) is
maintained. The mean value of one of the two normal distributions is used
to update the mean value and the standard deviation of the other normal
distribution according to its number of instances. The result distribution is
then used as the corresponding distribution of the merged classifier. The
pdfs maintained for the class distributions are merged similarly. Moreover,
in the Bayesian or exact Bayesian batch assignment methods, theRDC clas-
sifier must be updated, which will be discussed later.

The distance measure used here is a normalized version of distance mea-
sure used in CCP and we name it as Dnorm. It compares the concept repre-
sentative vectors of the instance batches or the ones of a classifier, Z and Z ′,
as follows:

Dnorm(Z,Z ′) =
√
D(z1, z′1) + · · ·+D(zm, z′m) (5.2)

If fi is numeric, D(zi, z
′
i) is defined as:

D(zi, z
′
i) =

k∑
j=1

min
(
(
µij − µ′ij
σij + σ′ij

)2, 1
)
, (5.3)

where k is the number of classes, and µij and σij indicate the mean and stan-
dard deviation of the ith feature for the instances of class j. If fi is nominal,
D(zi, z

′
i) can be written as:

D(zi, z
′
i) =

size(zi)∑
j=1

D(zij , z
′
ij)

2, (5.4)

where zij(X) is the jth element of zi(X) and D(zij , z
′
ij) is simply the differ-

ence of the nominal values. In the following, we explain the batch assign-
ment methods in detail:

Exact Bayesian batch assignment method: One way to find the most sim-
ilar classifier of the pool to a batch of data, B(t) = (X(t), Y (t)), is to com-
pute the likelihood of the batch and the concept described by the classifier
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Ci from Bayes rule:

P (Ci|B(t)) =
P (B(t)|Ci)P (Ci)

P (B(t))
. (5.5)

To derive the best concept using equation (5.5) we should find:

arg max
i
P (Ci|B(t)) = arg max

i
P (B(t)|Ci)P (Ci), (5.6)

where the best Ci is assumed to be independent of the occurence probability
ofB(t). In fact, P (Ci) can depend on the previous concepts and the underly-
ing distribution of data. The former can vary in the context of concept drift
and cannot be modeled appropriately without making any specific assump-
tions. Moreover, considering the first kind of dependencies in calculating
P (Ci) will lead to a late detection of concept drifts, since the concepts which
appeared in the previous batches can get higher probabilities. The second
kind of dependencies (the underlying distribution of data) is unknown. If
for some datasets, we have domain knowledge related to these dependen-
cies, we can include them in equation (5.6). Thus, we assume the termP (Ci)
to be identical for all concepts and discard it in our calculations:

arg max
i
P (Ci|B(t)) = arg max

i
P (B(t)|Ci). (5.7)

We can expand equation (5.7) with respect to the elements of B(t):

= arg max
i
P ((xt1, y

t
1), (xt2, y

t
2), . . . , (xtn, y

t
n)|Ci)

= arg max
i
P ((xt1, y

t
1)|Ci)P ((xt2, y

t
2)|Ci, (xt1, yt1)) . . .

P ((xtn, y
t
n)|Ci, (xt1, yt1), . . . , (xtn−1, y

t
n−1)).

(5.8)

Suppose we define Ci,j as the hypothesis Ci, which is updated by the first j
labeled instances of the batch:

Ci,j = Ci, (xt1, yt1), . . . , (xtj , y
t
j)

P (xtj+1, y
t
j+1|Ci,j), 0 ≤ j ≤ n− 1 (5.9)

Now the task is transformed to the estimation of likelihoods of the form:

P (xtj+1, y
t
j+1|Ci,j) = P (ytj+1|Ci,j ,xtj+1)P (xtj+1|Ci,j), 1 ≤ j ≤ n. (5.10)

The term P (ytj+1|Ci,j ,xtj+1) can be estimated by classifier Ci. Note that this
term equals to the probability that the label ofxtj+1 is predicted as ytj+1 given
that true concept Ci and the j labeled instances of equation (5.11) are visited.
Hence, it is sufficient to update the ith classifier with the j labeled instances
mentioned above and then output the posterior probability for the instance
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xtj+1. To estimate the second term of the right hand side of equation (5.10),
we assume:

P (xtj+1|Ci,j) = P (xtj+1|Ci,xt1, . . . ,xtj), 0 ≤ j ≤ n− 1. (5.11)

This assumption can be valid as we already know that j labeled instances
have been drawn from Ci, and therefore, we can use it to estimate instances
independent of their labels. The probabilities can be estimated as follows:
We initialize a classifier for this purpose namely raw data classifier (RDC).
It gets one instance as an input and predicts its corresponding classifier in
the pool. We train RDC after receiving the true labels of each batch X(t)
and determining the concept of the labeled instances of this batch. The in-
stances, and not their class values, and their corresponding concept ID are
fed to the RDC to update itself. Since the prior probability of the concept,
P (Ci), is assumed to be identical for all concepts, to calculate P (xtj+1|Ci), we
can compute only the posterior probability ofRDC on xtj+1, P (Ci|xtj+1). To
estimate P (xtj+1|Ci,xt1, . . . ,xtj), it is more convenient to updateRDC with j
instances xt1, . . . ,xtj and the concept ID i as the class label and then output
the posterior probability. Finally, the most relevant concept to the newly
arrived batch, B(t), can be determined:

arg max
i
P (yt1|Ci,xt1)P (yt2|Ci,1,xt2) . . . P (ytn|Ci,n−1,x

t
n)

P (xt1|Ci)P (xt2|Ci,xt1) . . . P (xtn|Ci,xt1, . . . ,xtn−1).
(5.12)

To prevent underflow, we use the logarithmic version of equation (5.12):

arg max
i

n∑
j=1

(
logP (ytj |Ci,xtj) + logP (xtj |Ci,xt1, . . . ,xtj−1)

)
. (5.13)

Calculating equation (5.13) for all instances is very time-consuming, there-
fore, we randomly choose a subsample of the square root size of the batch
to make the computations. Lines 2–3 of Algorithm 7 summarizes the ex-
plained procedure.

Bayesian batch assignment method: This method is similar to the exact
Bayesian method in the sense of estimating the expression in the right hand
side of equation (5.7). However, in the Bayesian method, we make a sim-
plifying assumption and estimate the equation as:

arg max
i
P (Ci|B(t)) = arg max

i
P (B(t)|Ci)

= arg max
i
P (X(t)|Ci)P (Y (t)|X(t), Ci). (5.14)

P (Y (t)|X(t), Ci) is the conditional probability that the predicted labels of
(xt1,x

t
2, . . . ,x

t
n) be (yt1, y

t
2, . . . , y

t
n) using classifier Ci. P (X(t)|Ci) is the likeli-

hood of the batchX(t) belonging to the ith concept/classifier. As mentioned
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ALGORITHM 7: Update the classifier pool with batch assignment methods
Input: B(t) = (X(t), Y (t)): instances of data batch t with size n,

A Pool of classifiers,
RDC: the Raw Data Classifier

1 if mode = exact Bayesian then
2 (Sx,t, Sy,t) = sub sample((X(t), Y (t)), r)

// store the labels of Sx,t
3 (Smax, Cbest) =

(max, arg max)c:1..Pool.sizeExactBayesian(Pool, RDC, c, (Sx,t, Sy,t))
from equation (5.13)

4 else if mode = Bayesian then
5 XRDC = sum data(X(t))
6 (Sx,t, Sy,t) = sub sample((X(t), Y (t)), r)

// stores the labels of Sx,t
7 (Smax, Cbest) =

(max, arg max)c:1..Pool.sizeBayesian(Pool, RDC, c, (Sx,t, Sy,t), XRDC)
from equation (5.18)

8 else if mode = Heuristic then
9 (Sx,t, Sy,t) = sub sample((X(t), Y (t)), r)

// stores the labels of Sx,t
10 (Smax, Cbest) = (max, arg max)c:1. . . Pool.sizePool[c].accuracy(Sx,t, Sy,t)

earlier, if there is a concept drift, the i.i.d assumption will not hold anymore.
To assure the i.i.d assumption holds between the instances of a batch, its size
should be small enough. In this approach, we make the i.i.d assumption:

P (Y (t)|X(t), Ci) =

n∏
j=1

P (ytj |xtj , Ci),

P (X(t)|Ci) =

n∏
j=1

P (xtj |Ci). (5.15)

The P (ytj |xtj , Ci) term can be calculated directly from the ith classifier. To
calculate P (xtj |Ci), we create an RDC classifier similar to the one used in
the exact Bayesian method. It gets one instance as input and predicts the
corresponding concept/classifier ID in the pool. The training procedure is
the same as that described in the exact Bayesian section. To reduce the time
complexity of RDC training, instead of individual instance update, we use
Xt =

∑
xtj , i.e. sum of all elements of batch t. Assume that RDC predicts

the instances of batch t in concept i with the probability pi:

P (X(t)|Ci) ∝ pni . (5.16)

To determine the best classifier, equation (5.14) turns into:

arg max
i
P (Ci|B(t)) = arg max

i
pni

n∏
j=1

P (ytj |xtj , Ci). (5.17)
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ALGORITHM 8: Determine classifier weights
Input: B(t) = (X(t), Y (t)): instances of data batch t with size n,

A Pool of classifiers,
β: penalty parameter

1 (Sx,t, Sy,t) = sub sample((X(t), Y (t)), r)
2 for j=1 to Pool.size do
3 ec = Pool[j].error(Sx,t, Sy,t)

4 wj = β2ec

To prevent underflow of the products, we use the following equation to find
the best concept:

arg max
i
P (Ci|B(t)) = arg max

i
n log pi +

n∑
j=1

logP (ytj |xtj , Ci). (5.18)

Still this equation leads to an inefficient approach as calculating the poste-
rior for allxtj is time-consuming. Assuming the i.i.d condition, we again can
use a subsample of the batch. Lines 5–7 of Algorithm 7 presents the Bayes
batch assignment method.

Heuristic batch assignment method: The heuristic approach follows a
simple idea, and that is to calculate the accuracy of all classifiers on X(t)
and update the most accurate one. Hence, the similarity measure is the
accuracy of the classifiers on X(t). Line 10 of Algorithm 7 finds the best
classifier according to this approach.

5.1.3 Update parameters for the next iteration

In the last step, we should update some parameters for the following
batches. If we use the so-called active classifier, we should keep the
classifer that is updated in the current iteration (i.e. Cbest in Algorithm 4).
If we use the weighted classifier method, the weights of the classifiers are
updated by:

w0(i) = β2e(i) , (5.19)

where e(i) is the error of the ith classifier. The more erroneous classifier,
the less initial weight it has for the next iteration. Some locality assumption
is used in equation (5.19) for setting the initial weights, which do not work
properly when a sudden concept drift occurs. As mentioned in Section 5.1.1,
that drift is handled by updating the weights during batch processing (Al-
gorithm 8).
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5.2 Experiments

In order to evaluate the performance of the proposed framework, exper-
iments on some standard datasets are conducted. We first introduce the
datasets in Section 5.2.1. These datasets contain recurring drifts. Then in
Section 5.2.2, we discuss the parameter setting of PASC and other methods
of comparison. Extensive experiments are explained in Section 5.2.3. The
experiments show the effectiveness of the proposed framework. It can
be seen that the weighted classification method outperforms the active
classifier in datasets that contain sudden concept drifts. The proposed
batch assignment methods outperform the CCP batch assignment method
in datasets with arbitrary features. Moreover, the effectiveness of the
merging procedure is shown for large datasets, and a sensitivity analysis
of the algorithm to its parameters is carried out.

5.2.1 Datasets

We employ three real-world and one synthetic datasets in our experiments.
The synthetic dataset is the moving hyperplanes that contains sudden con-
cept drift. Emailing list, spam filtering, and sensor data are the real-world
datasets used in our experiments. The emailing list and the spam filtering
datasets are counted as high dimensional datasets, and the sensor dataset
has a large number of instances. Emailing list and hyperplane datasets
contain sudden concept drift, while spam filtering and sensor data contain
gradual drift.

• Emailing List [92, 47]: In this dataset, a stream of email from differ-
ent topics were collected and labeled as interesting or junk with re-
spect to the user’s interest [92]. Usenet posts data1, which contains 20
newsgroups collection is used to construct this dataset, and three of
its topics are selected. In each time interval (concept), the user is in-
terested in one or two topics and labels the emails according to his/her
interest. User interests may vary from time to time, so the dataset con-
tains recurring concepts and sudden drifts. The labels and the exist-
ing drifts of this dataset are artificial. So elist is not a pure real-world
dataset, but its instances are derived from a real-world application.
The dataset has 1500 instances and 913 attributes and is divided into
five time-intervals of equal width (Table 5.1).

• Spam Filtering [47]: The spam filtering dataset is extracted from the
Spam Assassin2 collection. It contains 9324 email messages with 500
attributes and two possible labels. This dataset consists of gradual
concept drift.

1http://archive.ics.uci.edu/ml
2The Apache SpamAssassin Project http://spamassassin.apache.org/

http://archive.ics.uci.edu/ml
http://spamassassin.apache.org/
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Table 5.1: Emailing List Dataset (Elist) [92]
1-300 300-600 600-900 900-1200 1200-1500

Medicine + - + - +
Space - + - + -
Baseball - + - + -

• Hyperplane: This dataset aims to predict the class of a rotating hy-
perplane. A hyperplane decision surface is represented by equation
g(x) = w · x = 0, where w is an n-dimensional vector showing the
orientation of the surface and x is the instance. If for an instance we
have g(x) > 0, we classify it as 1, otherwise it is classified as 0. The hy-
perplane is moving over time and simulates sudden concept drift. We
generated 8000 instances with 30 numeric attributes. After receiving
2000 instances, concept drift occurs suddenly. There is a reappearance
of concepts after the first 4000 instances to simulate the recurring con-
cept problem.

• Sensor: This dataset is a real-world dataset, which consists of the infor-
mation collected from 54 sensors deployed in Intel Berkeley Research
laboratory over two months3. The class label is the sensor ID with
54 possible values. The dataset has five attributes, and 2,219,803 in-
stances. The type and place of concept drift are not specified in the
dataset, but it is evident that there are some drifts. For example, light-
ing or the temperature of some specific sensors during the working
hours are much stronger than during nights or weekends.

5.2.2 Parameter setting

The proposed learning algorithm is designed in such a way that most of
its parameters can be set according to the general properties of the datasets.
This is not the case in the CCP framework, where setting θ inaccurately leads
to significant degradation of the performance. For example, θ should be set
to 4 for elist and 2 for hyperplane datasets. However, if we set θ to 4 instead
of 2 for hyperplane, its accuracy will decrease by 10% (from 78% to 68%).
Besides, there is no knowledge for the proper range of this parameter in the
CCP framework, and small or large values of this parameter will lead to
poor performance. Similar to the θ parameter in the CCP framework, our
proposed framework has three parameters θ1, θ2 and θ3, but their selection
is straightforward. We set the θi parameters of the proposed methods for
all four datasets equally, and obtain acceptable results.

The parameters of the performed experiments are set as what follows,
except in the specified cases: If we use the weighted classifiers method, a

3http://www.cse.fau.edu/~xqzhu/stream.html

http://www.cse.fau.edu/~xqzhu/stream.html


5.2. EXPERIMENTS 75

penalty parameter, β ∈ (0, 1), should be set. The smaller the parameter β is,
the faster the updating of the weights of the classifiers is done in response
to the potential concept drift. Hence, if the dataset contains sudden concept
drift, this parameter should be small. Larger values lead to more robust-
ness to noise. In our experiments, we set this parameter to 0.1. Cmax is
another parameter that indicates the maximum number of classifiers in the
pool. Setting this parameter to a proper number needs either some domain
knowledge or a trial and error technique. In the following experiments, we
set Cmax to 10 for all datasets. The accuracy threshold parameter, θ3, in the
Heuristic batch assignment method is set to 0.95 for the first three datasets
and 0.8 for the sensor dataset. The values are chosen by trial and error so
that the overall accuracy of the method will nearly be best. θ1 and θ2, the
thresholds of the Bayesian and exact Bayesian methods, are set to 2r log 0.75
and 2r log 0.65, respectively, where r is the number of subsampled instances.
Thus, if none of the probabilities in the relevancy equations is less than 0.75
for the Bayesian method and 0.65 for the exact Bayesian method, the con-
cept with this property is relevant to the new batch. Note that by changing
the values inside the logarithms (0.75 and 0.65) to unusually large or small
values, the algorithm will not deliver good results. The batch size is set to
500 for hyperplane and 50 for the other datasets. These batch sizes do not
violate the stationary property of the data.

The CCP framework has two parameters, namely Cmax and θ. In order
to provide a fair comparison between the proposed method and the CCP
framework, we set Cmax to 10 for all datasets as in PASC, and the parameter
θ is chosen by trial and error so that the best accuracy is obtained. θ is set to 4,
2.5, 0.1 and 2 for the elist, spam filtering, hyperplane, and sensor datasets,
respectively. As a result, the parameter setting of the PASC framework is
more straightforward than the CCP framework, as the parameters can be
set according to general properties of the datasets. Moreover, almost the
same parameter values are shown to work well on various datasets. These
datasets are different in their features and nature, but the applied methods
only care about the correctness of the classifiers of the pool and do not de-
pend on the inherent features of the datasets. Therefore, parameters are less
dependent on the datasets.

5.2.3 Results and discussion

We perform three experiments in order to evaluate the PASC method. First,
we compare the performance of different variations of PASC with each other
and with the CCP framework. Then, we study the effect of the merging pro-
cedure and the sensitivity of the method to the threshold parameters. Fi-
nally, we evaluate the effect of the parameter β in the performance of PASC.
The two following subsections discuss the results obtained from the first
experiment and the two last subsections discuss the second and third ex-
periments.



76 CHAPTER 5. POOL-BASED STREAM CLASSIFICATION

(a) elist dataset
(b) spam dataset

(c) hyperplane dataset (d) sensor dataset

Figure 5.1: Results of the active classifier method on all datasets.

Performance comparison of methods

We compare different variations of the PASC framework with the CCP
framework in terms of accuracy, precision, recall, F-measure and running
time. The average accuracy values of the methods on the consecutive
batches (except for the first batch, which is ignored in all methods) of elist,
spam filtering, hyperplane, and sensor are shown in Figure 5.1 and 5.2.
The figures consist of four parts each showing the plot of the accuracy of
using the four batch assignment methods and the active classifier or the
weighted classifiers methods on a given dataset. Hence, for each dataset,
two plots are shown for the two classification methods. In addition, the
accuracy, precision, recall and runtime of the different methods are shown
in Table 5.2. Minor differences in the accuracy can be seen in this table. We
can see that the precision and recall of different methods are proportional
to their accuracy in most cases. Thus, instead of comparing the F-measure
of different methods, their accuracy is enough.

Parts (a)–(c) of Figure 5.1 and 5.2 show that the four batch assignment
methods are almost similar in the performance on the first three datasets.
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(a) elist dataset (b) spam dataset

(c) hyperplane dataset (d) sensor dataset

Figure 5.2: Results of weighted classifiers on all datasets.

However, in part (d), where the results on sensor dataset are illustrated,
the CCP and the Bayesian batch assignment methods show worse perfor-
mance (between 9% and 15% of accuracy) than the Heuristic and the exact
Bayesian methods. This means that the CCP framework and the Bayesian
methods have some problems in determining the true concept of a batch in
the sensor dataset. One problem with the CCP framework is the use of the
Euclidean distance as a measure of similarity. The distance measure in CCP
is dependent on the magnitude of the attribute values, and an attribute with
large values can reduce the effects of the other attributes in the distance cal-
culation. The issue with the Bayesian method could be possibly related to
its i.i.d assumption, since the exact Bayesian method does not suffer from
this problem. Nonetheless, the Bayesian method still outperforms the CCP
framework (about 3%). Considering the plots in Figure 5.1 and 5.2, we ob-
serve that regardless of minor differences in the accuracy of the different
batch assignment methods, all batch assignment methods are affected by
the drifts in the datasets in the same way. Furthermore, we observe that the
weighted classifiers outperform the active classifier approach in datasets
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Table 5.2: Results of all methods on different datasets.
dataset batch assignment classification method Accuracy Precision Recall F-measure Runtime

el
is

t
CCP Active 0.77 0.73 0.81 0.77 1004

Weighted 0.82 0.79 0.83 0.81 1274

Heuristic Active 0.75 0.71 0.77 0.74 1816
Weighted 0.82 0.80 0.83 0.81 1843

Bayes Active 0.75 0.71 0.80 0.75 2089
Weighted 0.82 0.80 0.84 0.82 2462

Exact Bayes Active 0.74 0.73 0.71 0.72 32039
Weighted 0.78 0.78 0.76 0.77 32339

sp
am

CCP Active 0.91 0.91 0.84 0.94 2217
Weighted 0.89 0.92 0.87 0.93 2820

Heuristic Active 0.89 0.91 0.84 0.93 3942
Weighted 0.89 0.92 0.89 0.93 4112

Bayes Active 0.89 0.90 0.86 0.93 4537
Weighted 0.88 0.91 0.91 0.92 5405

Exact Bayes Active 0.91 0.92 0.86 0.94 109857
Weighted 0.89 0.91 0.91 0.92 112266

hy
pe

rp
la

ne

CCP Active 0.76 0.72 0.84 0.78 868
Weighted 0.83 0.81 0.87 0.84 947

Heuristic Active 0.76 0.73 0.84 0.78 974
Weighted 0.84 0.81 0.89 0.85 970

Bayes Active 0.78 0.75 0.86 0.80 876
Weighted 0.86 0.83 0.91 0.87 899

Exact Bayes Active 0.78 0.75 0.86 0.80 1135
Weighted 0.86 0.83 0.91 0.87 1178

se
ns

or

CCP Active 0.71 0.78 0.72 0.75 370560
Weighted 0.71 0.77 0.73 0.75 813398

Heuristic Active 0.87 0.91 0.89 0.90 929289
Weighted 0.86 0.91 0.89 0.90 846226

Bayes Active 0.74 0.78 0.75 0.76 883682
Weighted 0.74 0.79 0.75 0.77 1299652

Exact Bayes Active 0.84 0.85 0.88 0.86 1596031
Weighted 0.83 0.84 0.87 0.85 2184393

with sudden drift (5% to 8% difference is observable in part (a) and (c) of
Figure 5.1 and 5.2). However, when the concept drift is gradual, the two
classification methods work almost the same. This is intuitive, because as
of occurrence of a sudden concept drift while processing a batch (especially
in the beginning of a batch), the weighted classifiers method quickly adapts
the weights according to the drift and therefore the performance does not
degrade substantially.

Runtime comparison of methods

The runtime of different methods is listed in the last column of Table 5.2.
Apart from expensive training and testing parts of the algorithms, CCP has
to construct conceptual vectors and cluster them. The time complexity for
updating the most similar classifier by the current batch is linear in the num-
ber of instances, and it is the same for all methods. Also, in the classification
task of all batch assignment methods, each data is classified once. However,
the complexity of the posterior probability calculations and updates for an
instance is different for batch assignment methods.

Four terms can express the running time of the methods: T0, T1, T2,
and TRDC , where T0 is the time required to classify an instance, T1 is the
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necessary time to find the posterior probabilities, T2 is the needed time
to update a classifier and TRDC is the necessary time to use and update
the raw data classifier (RDC) in the Bayesian method. To find the most
similar classifier to the current batch, a subsample of size r from data in
the recent window is used in our three batch assignment methods. Using
all of the classifiers in the pool, each of the r instances are classified once
in the Heuristic method, and its posterior probabilities estimation is mea-
sured in the Bayesian method. TRDC , the computation time in updating and
using RDC in Bayesian method, is constant for each batch. This term in-
cludes the time to constructXRDC for the batchX(t) and find the posterior
probabilities for XRDC using RDC, and also to update the RDC classifier
with X(t) and the corresponding classifier ID. The exact Bayesian method
needs an update between each two posterior probability distribution com-
putations in addition to the computation of the posterior probabilities in
the Bayesian method. Besides, the same computation time for updating
and posterior probabilities distribution computations are needed for RDC.
Hence, the most required time for the Heuristic method is rCmaxT0, for the
Bayesian method is rCmaxT1 + TRDC and for the exact Bayesian method is
2(rCmaxT1 + (r − 1)CmaxT2), where Cmax is the maximum number of clas-
sifiers of the pool.

As expected, the exact Bayesian method takes the most time among all.
It is clear from the definition that T1 and T0 are almost the same for the
Naı̈ve Bayes classifier. Consequently, the Bayesian method is expected to
take more time than the Heuristic method. Results in Table 5.2 uphold this
fact; however, there are some minor inconsistencies for this rule in some
of the methods and datasets. The reason for these inconsistencies could be
due to parameter settings and the number of classifiers. In addition, it is im-
portant to note that the above expressions are written using the maximum
number of classifiers and in fact, they only determine the upper bounds. It is
notable to mention that the CCP framework takes the least runtime among
all batch assignment methods, but the time complexity of the Heuristic and
weighted classifiers methods is not much more than the running time of the
CCP framework and weighted classifiers methods. As the weighted classi-
fiers method needs updating the classifiers’ weights, which in turn requires
classification of some instances, it is expected to take more time than the
active classifier approach. This can be seen for all batch assignment meth-
ods, except for the Heuristic method, because to obtain time-saving in the
Heuristic and the weighted methods, we used the same subsample for both
tasks of updating the classifiers and determining their weights. By this op-
timization task, the running time of the Heuristic method is not much more
than the CCP framework for the weighted classifiers method. Finally, in the
weighted classifiers method, the exact Bayesian and Bayesian methods take
the most time. The Heuristic and the CCP framework are almost the same
for some datasets, but Heuristic takes more time for the others. However,
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the overall results of the Heuristic method are much better than those of the
CCP framework.

Impact of the merging process and the threshold parameters

To evaluate the impact of the merging process, we use the sensor dataset,
as it is large enough to clearly show the impact of the different parameters.
Larger datasets are more likely to assign more than one classifier to one con-
cept, because this possibility can be more expected for the larger number of
batches of instances. Parts (a) through (d) of Figure 5.3 show the accuracy
of the four batch assignment methods for different values of the threshold
parameters. In each part, the accuracy of the corresponding method in con-
junction with the merging process is compared with the accuracy obtained
when the merging process is not used. The parameters used in these exper-
iments are the same as those used in the previous sections for the sensor
dataset, except that parameter Cmax is set to 40 instead of 10. By reducing
the Cmax parameter, it is more likely to assign more than one classifier to
a concept, and there are more available classifiers that should be reduced.
Therefore, the impact of the merging process is more visible.

We used a wide range of values for the threshold parameters, and ob-
served a relatively low dependency of the methods to the threshold. This is
the case with and without using the merging process. However, this does
not imply that the correct setting for these parameters is not crucial. In fact,
using very large or small values for the threshold parameters is not recom-
mended. For example, part (a) of Figure 5.3, which shows the accuracy for
the CCP framework batch assignment, illustrates that the method does not
work well when the threshold parameter θ is very large. It is naturally ex-
pected because all the batches of instances will be assigned to one classifier
in this case and no use of recurring concepts is made. Only incremental
learning will be done, which is not expected to perform well on the concept
drifting datasets. Although the CCP batch assignment has low dependency
on the threshold parameter, its performance (accuracy) degrades consider-
ably without using the merging process. Figure 5.3 indicates that the merg-
ing process improves the accuracy substantially for the sensor dataset. We
claim that the merging process can be effective for other large datasets, too.
This result can be obtained by comparing the two curves of the parts (a)
through (d) of Figure 5.3. The accuracy of the methods with the merging
process is more than about 60% - 70% better in comparison with the meth-
ods without the merging process. For reasonable threshold parameters (not
very small or large), no value of the threshold parameters leads to a compet-
itive accuracy to the ones with the merging process. This means that using
the merging process is crucial even if the parameters are tuned very well.

The sensitivity of the threshold parameters for the other datasets can be
seen in Figure 5.4. Parts (a) through (d) of Figure 5.4 shows the accuracy
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(a) CCP (b) Exact Bayesian

(c) Bayesian (d) Heuristic

Figure 5.3: Effect of the merging process on sensor dataset for all batch as-
signment methods.

of the different batch assignment methods in conjunction with the merging
process and the weighted classifiers method for classification. For the exact
Bayesian and the Bayesian methods, θ′1 and θ′2 are included instead of θ1 and
θ2, where θi = 2r log(θ′i) and r is the batch size. The sensitivity is more than
that of the sensor dataset. The parameters should not be set to very large
or small values. However, the parameters of the proposed method can be
chosen from a specified range of values.

Sensitivity of the weighted classifiers method to parameter β

Figure 5.5 (a) and (b) show the accuracy of the weighted classifiers method
for different values of the parameter β and on the elist and spam filtering
datasets. Because of the similarity of their trends, we do not include the
other two datasets plots. The results are shown for the four batch assign-
ment methods. As can be seen, the sensitivity of the weighted classifiers
method to β is very low for both datasets. Only when this parameter is
set to 1, the accuracy will be different, but the interval consists of the val-
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(a) CCP (b) Exact Bayesian

(c) Bayesian (d) Heuristic

Figure 5.4: Sensitivity of the different methods to the threshold parame-
ters. (a) Pure CCP, (b) – (d) The proposed batch assignment methods in
conjunction with the merging process and the weighted classifiers method.

ues in (0, 1). The results of the weighted classifiers method for the elist
dataset, which contains sudden concept drift, outperform the active clas-
sifier method, for all values of β. When β is less than 1, the results are even
better. For the spam filtering dataset, which contains gradual concept drift,
the results of the weighted classifiers method for all values of β and the
active classifier method are almost the same.

5.3 Conclusion

In this chapter, we proposed the PASC framework that aims to classify data
streams in the presence of recurring concepts. A pool of classifiers is up-
dated according to consecutive batches of instances. Each classifier in the
pool is a representative of a concept. One new classification method and
three batch assignment methods were introduced and compared with the
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(a) elist dataset (b) spam dataset

Figure 5.5: Accuracies of weighted classifiers for different values of β for the
(a) elist and (b) spam datasets.

existing approaches in the CCP framework. Also, a merging process was in-
troduced. Experimental results showed that our batch assignment, classifi-
cation and merging methods improve the results on datasets with arbitrary
attributes, large size, and containing sudden concept drift. In addition, the
parameter setting of our method was shown to be simple according to the
general properties of the datasets or a specified range of values. We used
almost the same parameters for all different datasets. We can still improve
the proposed framework by introducing more automatic parameter selec-
tion approaches, and more dynamic pool management operations rather
than just a simple merging procedure. One may think of other similarity
measures with less time complexity or better performance for the batch as-
signment or in the merging process.
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Chapter 6

Graphical Modeling of
Recurrent Concept Streams

As explained in the previous chapter, all of the existing approaches han-
dling recurrent concepts maintain a pool of concepts/classifiers and use that
pool for future classifications to reduce the error on classifying the instances
from a recurring concept. While this approach is useful, it does not keep the
knowledge of transitions between the concepts. Keeping the transitions be-
tween the concepts can help us in a faster and more accurate prediction, as
well as in extracting patterns of behavior in a given application domain. To
make it more clear, we give an example of concept transition in an online
store: Most of the users tend to buy specific items on Valentine’s day, and
probably they come back in a few weeks to buy other items for Mother’s day.
Once the learner has detected these concepts and trained on some users,
it can predict their behavior and suggest relevant items for Mother’s day
whenever Valentine’s day occurs in the following years.

On the other hand, the number of classifiers in the pool usually grows
very fast as the accurate detection of an underlying concept is a challeng-
ing task in itself. Current recurring concept methods manage the memory
by taking a fixed size classifier pool. Many of the methods create a new
classifier for each data batch, which leads to a filled pool already at very
early stages. Thus, they need to deal with removing one or several of clas-
sifiers in the pool once new data batches arrive. As the data is provided
in small chunks, there may be many concepts in the pool representing the
same underlying concept. There has been several studies in the literature on
managing the size of classifier ensembles [98, 99, 124, 87]; however, none
of them consider merging the concepts instead of removing the least effec-
tive classifiers. This is where our proposed merge method comes into play.
The intuition behind merging concepts is that, as each classifier is initially
based on a small set of instances, there may be several classifiers in the pool
distinguished as separate concepts, but all belong to one stable concept af-

85
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ter receiving enough data. Also, one larger concept may be seen in several
smaller subconcepts, and by receiving more data, the subconcepts can be
merged together.

This chapter proposes a new classification framework to deal with the
recurrent concepts challenge and to refine the pool of concepts by applying
a merging mechanism whenever necessary. GraphPool not only keeps the
concepts but also maintains the transition among concepts via a first-order
Markov chain. Keeping these transitions helps to quickly recover from drifts
in some real-world problems with periodic behavior. The proposed frame-
work consists of several steps:

1. A conceptual representation is used to extract a comparable summa-
rization of concepts. This representation is a generalization of the con-
ceptual vectors proposed in the CCP framework [92]. In contrast to
the CCP framework, it takes into account the correlations in feature
space. Unlike the CCP framework that uses the Euclidean distance
and a user-defined domain-specific similarity threshold, we use a like-
lihood multivariate statistical test to check the similarity of the new
batch and the existing conceptual representations. The proposed sta-
tistical test measures whether the entropy of the combined concepts
is different from the entropy of each concept alone.

2. All the conceptual vectors and their corresponding classifiers are
stored in a first-order Markov chain graph. Keeping these transitions
will help in classifying recurrent concepts correctly. The weights of
links are computed based on the frequency of traversing from one
concept to another, adjacent one. Thus, the graphical model keeps
some extra information about the drifts in addition to the concepts.
We use the resulting graphical pool to classify the test data by taking
the most likely concept or the majority vote of all adjacent concepts
to the current state.

3. To manage the pool size and also to enhance the generalization of the
concepts, a merging method is proposed. Merging concepts aims to
increase the efficiency of the proposed method while generalizing the
concepts that are detected to be similar to each other by the similarity
measure. To the best of our knowledge, this is the first work that,
instead of adding and removing concepts, actively uses a merger to
control the pool size.

There is another closely related task, the so-called sequential supervised
learning, that one may find some similarities with our problem, but it is
still different in nature. Sequential classification methods also consider
non-stationary data with discrete transitions among distributions with the
Markov property [44]. However, in sequential supervised learning, the
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entire sequence is available before we make any predictions of the class.
That is totally different from data stream mining, where we only have
seen instances up to the current point in time. One successful method
in sequence classification is called Input-Output Hidden Markov Models
(IOHMM) [13]. IOHMMs are non-homogeneous Markov chains, i.e., the
emission and transition probabilities depend on time and input. Unlike
traditional HMMs that represent only the distribution of output sequences,
IOHMMs use a supervised discriminative training algorithm to represent
the conditional sequence of output sequences given corresponding input
sequences. IOHMMs typically use complex nonlinear emission and
transition distributions based on neural networks and apply Expectation-
Maximization (EM) to train all the hidden variables; therefore, the method
suffers from high computational complexity. Also, the topological struc-
ture of an IOHMM, i.e., the number of states and admissible transitions
between different states, needs to be determined prior to its training, which
is not possible in our problem setting as we are not aware of the number of
concepts in advance.

6.1 Graphical representation of classifier pool

As introduced above, the basic idea of our method is to keep track of con-
cepts and their transitions by graphical modeling. Graphical modeling of
concepts is one way of modeling the behavior of an environment and should
help to detect recurring concepts quickly. It could also be beneficial for
extracting patterns in some applications, e.g., the weather forecast or the
stock market. Each concept in the model is represented by a concept rep-
resentative vector extracted from the data and a corresponding classifier.
We assume that the batch size is small enough to contain only stationary
instances. Then we find the best normal distribution approximation on the
data batch; hence, the concept representative vector keeps the mean and co-
variance matrix of the data for each class. We extract the conceptual vector
for each batch of data and compare it to the other concepts in the pool. The
comparison is made by a multivariate statistical test. If the test indicates
high statistical significance, a new concept is added to the pool. Otherwise,
if the current batch is similar to only one concept in the pool, the correspond-
ing concept will be updated. There may be some cases that the new batch
is similar to more than one concept in the pool. In these cases our method
benefits of a merge procedure. The merge procedure helps to generalize the
concepts and combine those concepts which in the first attempt were mis-
detected as different concepts due to the lack of sufficient data. This may
happen because data batches should be stationary and contain only one con-
cept, and thus, the batch size is chosen to be small. Therefore, it is very likely
to encounter a concept in several batches, but each time some different part
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of the concept. This leads to detect each batch as a new concept in the early
stages. However, after some time, by receiving more and more data, the
batch may contain some instances, which connect these separated parts. At
this point, there may be two or more concepts in the pool, which are similar
to the current batch. When this happens, we will merge all those concepts
and update the graphical representation by reducing vertices, updating the
conceptual vector, the classifier, and merging their edges and edge weights.
In the following subsections, we will explain our conceptual representation
and graphical pool modeling. Then the statistical test that checks the sim-
ilarity of conceptual vectors will be explained. Finally, we show how the
merging procedure works.

6.1.1 Conceptual representation

The idea of extracting a conceptual vector from each batch of data was
first presented in the Conceptual Clustering and Prediction (CCP) frame-
work [92]. CCP makes two main assumptions on extracting conceptual
vectors: (1) attributes are independent, (2) continuous features are drawn
from the normal distribution. In this chapter, we release the first assump-
tion as it is not valid in many real-world data. To overcome this limitation,
we calculate the mean vector and covariance matrix of attributes for each
class, instead of just extracting their mean and variance. In this way, we
keep the dependencies among the attributes and consider them while
checking for the similarity of two concepts. Considering the correlation
between attributes will help us in a more accurate estimation of the data
and also in the correct detection of those drifts which happen in feature
dependencies.

6.1.2 Pool representation

The classifier pool is represented by a first-order Markov chain. The states
contain a conceptual representation and their corresponding classifier. State
i (Si) is connected to state j (Sj), if concept j occurs exactly after concept
i. The transition weight of Si to Sj is the probability of the transition from
concept i to concept j when we are at Si, which is P (Sj |Si). Keeping these
state adjacencies and transition weights will help us in classifying test data.

6.1.3 Similarity measure

Let xti denote the ith instance of batch t. Due to the central limit theorem,
we can approximate the distribution of instances as a normal distribution
from N (µtc,Σ

t
c) for each class c, if the number of instances is large enough.

Making this assumption, we use the likelihood ratio as a testing criterion to
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check whether two batches (concepts) are significantly different. The like-
lihood ratio compares the within-covariance of the population (Σ̂Ω) with
its between-covariance

(∑
Nt(x̄

t − x̄)(x̄t − x̄)
T ). x̄t is the mean of popu-

lation t and is calculated by x̄t = 1
Nt

∑
i x

t
i and x̄ = 1

N

∑
t,i x

t
i is the total

mean of all instances to be compared. Nt is the number of instances in the
population t and N is the total population. Consequently, the likelihood
ratio λ is calculated as [7]:

λ =
| NΣ̂Ω |
| NΣ̂ω |

, where (6.1)
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ALGORITHM 9: Merging algorithm
Input: a set of similar concepts, current graph, current data batch

1 initialize MergedV ertex to the first concept of similar concepts set
2 for each remaining vertex v in similar concepts set do
3 for each vertex u in which v is in its neighborhood do
4 if MergedV ertex is in u’s neighborhood then
5 update and normalize corresponding Transitionweight
6 remove v from u’s neighborhood

else
7 add MergedV ertex instead of v to neighbors of u
8 add u to neighbor set of MergedV ertex

9 for each w in v neighborhood do
10 if w is in MergedV ertex’s neighborhood then
11 update corresponding Transisionweight from MergedV ertex to

w;
else

12 add w to MergedV ertex neighborhood with its corresponding
weight

13 remove v from w neighborhood

14 normalize transition weights from MergedV ertex
15 update MergedV ertex with all similar concepts (due to corresponding

Conceptual Vector and Learner)
16 update MergedV ertex with current batch
17 remove all vertices of similar concept set from pool

Now, by these simplifications in the within-covariance and between-
covariance, it is straightforward to calculate λ from our conceptual repre-
sentation vectors. When the null hypothesis is true

(
µ(1) = µ(2)

)
, λ from

equation (6.1) is distributed as Wilk’s lambda distribution: Um,q−1,n,where
n = N − q and m is the number of attributes and q is the number of pop-
ulations (here 2) [127]. Wilk’s lambda distribution is a multivariate gen-
eralization of the F-distribution. It is the ratio of two independent Wishart
distributed variables, the underlying distribution of the determinant of the
covariance matrix. If the number of instances, n, is large enough, we may
assume −(n − 1) log λ is distributed as χ2 distribution with m(q − 1) de-
grees of freedom (this estimation is valid when the number of observations
is greater than 20 [7]). This test is done for each possible class value, and if
there is a significant difference in one of them, we decide that the new batch
contains a new concept.

6.1.4 Merge concepts

If the statistical similarity test detects two concepts are not significantly dif-
ferent, we take them to be similar with respect to current knowledge and the
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c1 c2

c3

c4

c5

c6 c7

c8

concept Neighbors InNeighborsOf
1 {2} {}
2 {3,4,5,8} {1,3,4}
3 {2} {2}
4 {2,4,5,7} {2,4,7}
5 {6} {2,4}
6 {7} {5}
7 {4} {4,6}
8 {} {2}

c1 cM

c3 c5

c6 c7

c8

concept Neighbors InNeighborsOf
1 {M} {}
3 {M} {M}
5 {6} {M}
6 {7} {5}
7 {M} {M,6}
8 {} {M}
M {M,3,5,7,8} {M,1,3,7}

Figure 6.1: Example illustrating the merging process in the graphical con-
cept pool. The first graph shows the concept pool before merging and the
second one after. c2 and c4 are merged to give cM .

next step is to merge them. Merging consists of several steps (Algorithm 9).
First, the two conceptual representations should be merged. The proposed
conceptual representation model facilitates the merge. We can substitute
the new conceptual representation by the linearity feature of mean and co-
variance. The new mean is calculated from µi×Ni+µj×Nj

Ni+Nj
, and the new co-

variance is obtained from (Ni−1)×Cov(Xi,Y i)+(Nj−1)×Cov(Xj ,Y j)
(Ni+Nj−2) . In case of in-

terest, the linearity feature can facilitate weighing more on the most recent
concept than the older ones by adding a decay factor.

The next step is to merge the classifiers. Any classifier that can be
merged in the absence of training data can be used. Here, we use the Naı̈ve
Bayes Updateable classification algorithm. As Naı̈ve Bayes keeps posterior
statistics of feature occurrence for each class, we can easily merge them in
the absence of data batches.

The last step in the merge procedure is to merge the transition links of
these two concepts in the Markov graphical model. To illustrate this, we
give an example (Figure 6.1). Assume the current snapshot of the concept
graph is the first graph in Figure 6.1, and the statistical similarity test has
indicated that c2 and c4 are similar to the newly arriving batch of data. Now,
these two vertices should be merged according to our approach. Assume
the merged concept is called cM . For each concept in the pool, we keep
two arrays: the array of Neighbors, which contains the outward links of the
concept, and the array of InNeighborsOf, which consists of inward links to
the concept. First, the links in Neighbors list of those concepts which have
the transition link to c2 and c4 are replaced by cM . Then the Neighbors list of
the new concept is updated. In the updating process, we distinguish three
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different cases:
1) The concept is only in the neighborhood of one of the concepts to be

merged (e.g., c7 and c8). This is an easy case, as we transfer this concept to
the new Neighbors list, keeping its weight.

2) The concept is in the neighborhood of both concepts (e.g., c5). Again,
this concept is transferred to the Neighbors list of the new concept; however,
its transition weights are summed up.

3) The other concept which should be merged with is in the Neighbors list
(e.g., c4 is in the list of c2 and vice versa). This makes a loop case. Therefore,
in the current example, the weight of the loop over cM is the summation of
weights of the c2 to c4 link, the c4 loop, and the c4 to c2 link.

One should consider that to make the summation meaningful, and we
sum up the number of times the transition is traversed, not the probabil-
ity. In the previous example, assume the probability of the link between c4

and c5 is 0.1 and number of traversals is 100, and the probability of the link
between c2 and c5 is 0.2, and the number of traversals is 20. It is clear that
taking the average of the probability while ignoring the number of traver-
sals would give the wrong results.

Relatively close to our merging mechanism, some researches keep track
of cluster evolution in the context of spatio-temporal clustering [91, 167,
132, 133, 68]. These approaches trace changes in clusters and evaluate
whether a cluster has been disappeared, or its members have been migrat-
ing to other clusters; or whether a new emerging cluster reflects a new
group or it rather consists of existing clusters. MONIC [167] is one of the
first frameworks, which models and tracks those cluster transitions. Its
transition tracking mechanism is independent of any clustering algorithm
and is based on the content of the underlying data stream. However,
its need for post-processing clustering results at each time slot makes it
infeasible for real-time problems. TRACDS [68] enhances MONIC by in-
crementally constructing a transition-count matrix whenever an instance is
assigned to a specified cluster. The MEC [133] framework uses a transition
detection algorithm and a tracking mechanism and keeps a taxonomy
of various types of clusters’ transitions. However, these methods are
unsupervised and fundamentally different than our method. In the context
of data stream classification, some methods combine micro-clustering and
classification algorithms [3, 119]. In order to cover concept evolution, these
methods benefit from a simple merging mechanism of micro-clusters.

6.1.5 Classifying a new batch of data

Let CurrentState denote the current state at time twhen data batchX(t) is
received to be classified. There could be two approaches for the classifica-
tion of instances: using a single classifier or using a weighted majority vote
(Algorithm 10). In the single classifier prediction method, we choose the
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ALGORITHM 10: Classify new data batch
Input: X(t): instances of batch i, CurrentState of the Pool

1 if There is no concept in the neighborhood of CurrentState then
2 Test X(t) on CurrentState’s classifier

else
3 switch classification method do
4 case single classifier do
5 Find the concept with the highest link’s weight in the

neighborhood of CurrentState
6 Test X(t) on its corresponding classifier
7 case voted majority do
8 for All concepts in the neighborhood of CurrentState do
9 Get the weighted vote of their corresponding classifier based

on the link’s weight

most probable concept in the neighborhood of theCurrentState and use its
corresponding classifier to predict the label of the new batch. In contrast,
in the weighted majority vote method, we take the vote of all the classifiers
of the concepts in the neighborhood of CurrentState with respect to their
transition weights. If there is no classifier in the neighborhood, we take
CurrentState as the potential concept for the following batch.

6.1.6 GraphPool algorithm

In this section, we explain Algorithm 11 and put together all the parts ex-
plained so far. In the beginning, the pool is empty, and the current state is
null (line 1– 2). So, for the first batch of data, a new concept is added to the
pool and the current state points to that (lines 5– 8). For the next batches of
data, we first look at the current state’s links and based on whether the clas-
sification method is single classifier or majority vote, we choose the most
likely concept or a weighted vote of all concepts in the neighborhood to
predict the label of the new batch (Algorithm 10). If there is no classifier in
the neighborhood, we take the current state as the potential concept for the
following batch.

After receiving labels of the new batch, the conceptual vector is calcu-
lated and compared to the concepts available in the pool (lines 3– 4):

1) If there is no similar concept to this batch in the pool, it should be
added as a new concept to the pool and connected as a neighbor to the cur-
rent state. Then the transition link weights of the current state are normal-
ized (lines 9– 13).

2) If there is only one concept similar to the current batch (Vj), its con-
ceptual representation and classifier are updated in a straightforward way;
and the transition link between the current state and Vj is created, if it does



94 CHAPTER 6. GRAPHICAL MODELING OF RECURRENT STREAMS

ALGORITHM 11: GraphPool algorithm
Input: B(t) = (X(t), Y (t)): labeled instances of batch i

1 Pool = φ
2 CurrentState = φ
3 make Conceptual Vector on B(t)
4 Compare the current Conceptual Vector with the concepts in the pool
5 if Pool is empty then
6 train a classifier on B(t)
7 add a new vertex (j) to the Pool
8 update CurrentState to j

else
9 if number of similar concepts = 0 then

10 train a classifier on B(t)
11 add a new vertex (j) to the Pool
12 add j to the neighbors of CurrentState and adjust their weights
13 update CurrentState to j
14 else if number of similar concepts = 1 then
15 update Conceptual Vector and classifier of the similar concept (Vertex

j)
16 if Vertex j is in the neighborhood of CurrentState then
17 update the weight of link between CurrentState and j

else
18 add j vertex to CurrentState neighborhood
19 adjust weights of link from CurrentState to its neighbors
20 update CurrentState to j
21 else if number of similar concepts > 1 then
22 execute the merging method (Algorithm 9)
23 update CurrentState to MergedV ertex

not exist yet; or only its weight is updated, if it already exists (lines 14– 20).
3) There is more than one concept similar to the current batch. As de-

scribed in Section 6.1.4, we merge all these concepts into one concept, in-
cluding the new batch (Algorithm 9). The graph transition update pro-
cess is done as explained in the example of the previous section: For each
concept to be merged, first substitute it for the merged concept in all other
vertices. Then, update the neighborhood list of the merged concept.

6.1.7 Details of the GraphPool implementation

In the implementation of the GraphPool method, we faced some exceptional
cases that led to adding some details to the implemented method:

• Remove noise in covariance matrix: In some real-world datasets, there
were batches for which the magnitude of the covariance of the fea-
tures was very small. To remove the noise in the corresponding batch
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Table 6.1: Characteristics of tested datasets.
Dataset #Instances #Attributes #Classes
Hyperplane 1,000,000 2 2
Waveform 1,000,000 21 3
Gaussian 6,000 2 4
Electricity 45,312 8 2
Sensor 847,923 6 3
Weather 10,414,909 10 2

and avoid the potential underflow in calculations, we have set a noise
threshold and discarded covariance values below the threshold.

• Ignore unchanging features in the determinant calculation: There
may be a case where one feature is fixed in a data batch and hence
its variance is zero. This will make the determinant of the covariance
matrix become zero. To avoid such cases, we ignore that feature only
in the calculation of lambda in the statistical test.

• If |NΣ̂Ω| = |NΣ̂ω| = 0, we set the λ to 1. This case may happen as we
remove small covariances as noise.

• Merge of two classifiers in the absence of instances: When it is time
for the merging of concepts, we need to merge the classifiers in the ab-
sence of data. The Naı̈ve Bayes classifier has a straightforward merg-
ing approach of distribution estimators, and that is the reason we have
used it here.

6.2 Experimental results

In this section, we present the results of the proposed method (GraphPool)
on synthetic and real-world datasets1. Experiments are done in a prequen-
tial way, which means each batch of data is first taken as test data and la-
beled by the current model; in the next time slice, the batch and its real labels
are used to update the model. All the algorithms are implemented in the
WEKA [70] or MOA [17] workbench and the average of accuracy, precision,
recall and F-measure over all the batches are reported for each method in
Table 6.2.

6.2.1 Datasets

We run the experiments on both synthetic and real-world datasets. Syn-
thetic datasets are generated to cover different types of drifts. Three real-
world datasets have been used in the experiments: Electricity, Sensor data,

1The GraphPool source code is available at https://github.com/kramerlab/

GraphPool.

https://github.com/kramerlab/GraphPool
https://github.com/kramerlab/GraphPool
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and US weather. Characteristics of the datasets are shown in Table 6.1. In
the following we introduce each dataset:

• Moving hyperplane: One common synthetic dataset is based on a
moving hyperplane [83]. A moving hyperplane in d-dimensional
space is denoted by

∑d
i=1 aixi = a0. We label examples satisfying∑d

i=1 aixi ≥ a0 as positive, and the rest as negative. In order to have
the possibility of data visualization, we generated hyperplanes in
2-dimensional space, consisting of one million uniformly distributed
random instances. There is 5% uniformly distributed noise in the
dataset. Figure 6.2 visualizes the sudden drifting dataset. It consists
of 3 concept drifts that occur at points 250, 000, 500, 000 and 750, 000.
The concept from T1 to T250 is fixed; then at T251 a new concept oc-
curs, which lasts until T500. At T501 and T751 the first and the second
concepts reoccur respectively. On the other hand, the second dataset
(Figure 6.3) contains both gradual and sudden drifts. Gradual drift
occurs after each instance. Figure 6.3 represents how the hyperplane
moves over the batches of data; from the first instance to 125, 000
(T125) there are slight changes in the concept after receiving each
instance; then, there is a sudden drift to a previously seen concept at
T126. Again, slight gradual changes move the hyperplane until we
receive the batch T250. At T251, the concept is exactly the inverse of
the concept in the first batch. We repeat this pattern three more times
to obtain one million instances.

• Waveform: Another synthetic dataset is a stream of three waveform
types with 21 attributes. We have used the MOA framework [17]
to generate this dataset. First, we generated 200, 000 instances us-
ing MOA; then, we permuted the labels in the following order: c1 →
c2, c2 → c3, c3 → c1 to generate the next 200, 000 drifted instances. For
the next 200, 000 instances, another permutation was done on the la-
bels of the original data with the order of c1 → c3, c2 → c1, c3 → c2.
Finally, the first 400, 000 instances were repeated to cover recurrent
concepts.

• Gaussian2: This dataset was first proposed and used by Elwell and Po-
likar [47]. It has four classes, and each class is drawn from a Gaussian
distribution and has gradual but independent drifts over time. The
dataset includes class addition and removal as well; class c4 appears
at instance 2387 for the first time, and class c1 appears at instance 3580
for the last time.

• Electricity [71]: The data was collected from the Australian New
South Wales Electricity Market from 1996 to 1998 at 30-minute

2http://users.rowan.edu/~polikar/research/NSE/

http://users.rowan.edu/~polikar/research/NSE/
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(f) T750
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(g) T751
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(h) T1000
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Figure 6.2: Snapshots of sudden drifting Hyperplane, illustrating concept
mean vectors and the evolution of concept transition graphs. Red and green
dots are data of the two classes and blue star and purple square points are
mean vectors of concepts currently in the pool. Each time step represents
1000 instances.
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(b) T50
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(c) T125
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(d) T126
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(e) T250
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(f) T251
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Figure 6.3: Evolution of classifier pool on Hyperplane dataset (with grad-
ual and sudden drift). This snapshot contains gradual drift from the first
batch (T1) until the sudden drift at T251. Data points are shown as red and
green dots. Blue stars and purple squares indicate the mean vector of cur-
rent concepts in the pool. Each time step represents 1000 instances.
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intervals. The purpose is to predict if the price goes up or down
regarding the last 24 hours. We have used the normalized version of
dataset3.

• Sensor: This dataset contains the temperature, humidity, light, sen-
sor voltage and sensor location of 54 sensors in the Intel Berkeley Re-
search Lab in March 20044. There should be a report every 31 seconds;
however, there are several missing epochs in the report. The purpose
is to predict if the temperature increases until the next measurement
(in less than 60 seconds) or stays the same or goes down. If the next
epoch is missing, the class is set to equal. Note that the variations in
the sensor voltage are highly correlated with the temperature. Also,
the change in the light or temperature of a sensor during day and night
causes some drifts.

• Weather: The U.S. National Oceanic Atmospheric Administration
(NOAA) has reported weather measurements on a daily basis since
the 1930s5. We have chosen all the stations in the U.S., which have
available reports for more than 40 years. We follow the procedure
used by Elwell and Polikar [47] to prepare the dataset. Seven
measurements were selected based on their availability, eliminating
those with a missing rate above 10%. Missing values were replaced
by the mean of features. The features of the dataset are latitude,
longitude, and elevation of the station, and seven measurements
(e.g., temperature, pressure, wind speed, etc.). The target is a binary
indicator of rain: 28.53% positive and 71.47% negative in this dataset.

6.2.2 Methods of comparison and parameter setting

We compare the performance of the proposed method to the most well-
known data stream classification approaches in the literature. In all experi-
ments, the base classifier of all methods is Naı̈ve Bayes, and in our method,
the updateable version was used. Another parameter is the batch size: On
real-world datasets and Gaussian, the batch size is set to 100 instances, and
on the other synthetic datasets, it is set to 1000. GraphPool has a p-value
parameter, which is set to 0.01 for synthetic datasets and to make the al-
gorithm more confident about the dissimilarities and reduce potential false
alarms, it is set to 0.001 for real-world datasets. Also, the epsilon for noise
removal is 0.001 in all experiments. In the following, we explain the chosen

3http://sourceforge.net/projects/moa-datastream/files/Datasets/

Classification/
4Raw data was extracted from http://db.csail.mit.edu/labdata/labdata.html
5Raw data was extracted from ftp://ftp.ncdc.noaa.gov/pub/data/gsod/

http://sourceforge.net/projects/moa-datastream/files/Datasets/Classification/
http://sourceforge.net/projects/moa-datastream/files/Datasets/Classification/
http://db.csail.mit.edu/labdata/labdata.html
ftp://ftp.ncdc.noaa.gov/pub/data/gsod/
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parameters of each method6:

• Recurring Concept Drift framework (RCD)7 [66]: The buffer size is
set to the window size. The maximum size of the ensemble is set to
100. EDDM [10] is used as the drift detection method, as previous ex-
periments have shown that it produces better results [66]. The mul-
tivariate non-parametric test is KNN with K = 7, and the p-value is
0.01, which are the default values in MOA. We tested if on real-world
datasets decreasing the p-value to 0.001 would help the algorithm.
The results on the tested datasets were slightly worse (except for Sen-
sor, on which the results were slightly better). So, we report the results
for 0.01.

• Pool and Accuracy based Stream Classification (PASC): We choose the
CCP batch assignment, as the experiments show it has better accuracy
in general on different types of datasets and is the fastest method. To
classify the new batch, we use the so-called active classifier method
that is to use the current single classifier. The maximum number of
classifiers in all experiments is set to 100. The method has a θ parame-
ter in the batch assignment, which is used in measuring the similarity
of conceptual vectors. Finding the best θ for each dataset is challeng-
ing, as it can take any positive number; and this choice has a substan-
tial effect on the accuracy of the method. For example, if on the Hy-
perplane dataset we choose 2.5 instead of 0.1, the accuracy degrades
by about 20%. In our experiments, we tested several values and got
the best results with θ = 0.1 on Hyperplane (both sudden drifting
dataset and the gradual-sudden drifting one) and θ = 2.5 for the rest
of the datasets.

• Learn++.NSE7 [47]: We use the error-based forgetting mechanism.
The maximum ensemble size is set to 100 in all experiments (reducing
the ensemble size to 10 on synthetic datasets did not help in the per-
formance). There are two more parameters in weighting, for which
we use the values suggested in the paper: sigmoid slope is 0.5, and
the sigmoid crossing point is set to 10.

• OzaBagAdwin8 [18]: This algorithm is not specifically designed for
recurring concepts, but it has been used widely in data stream classi-

6We tried to compare our method to the method presented by Yang et al. [201], as it has
been proposed to handle recurrent concepts and has a close, yet different, approach from
GraphPool. Unfortunately, we could not reach the corresponding author; and there were
some unclear parts in the explanation of the method that prevents reimplementation. We
have compared the concept similarity algorithm proposed by Yang et al. to our statistical
similarity test in the following subsections.

7We use the implementation provided at https://sites.google.com/site/

moaextensions/ for RCD, Learn++.NSE and DWM.
8We used the code provided in the MOA framework.

https://sites.google.com/site/moaextensions/
https://sites.google.com/site/moaextensions/
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fication. The only parameter we have to set is the ensemble size. In
the first experiments, we set the parameter to 100 for all datasets, but
experiments showed that on synthetic datasets it has much higher ac-
curacy when the ensemble size is reduced to 10.

• Dynamic Weighted Majority (DWM)7 [98]: We set the punishment
factor to 0.1; the minimum fraction weight of each model to 0.01; the
maximum size of the ensemble is set to 100, and the period between
classifier creation/removal is set to the window size. The batch-wise
accuracy of DWM fluctuates a lot even on simple synthetic datasets.
Decreasing the ensemble size did not have any visible effect. When
we increased the period between the creation/removal of classifiers,
the fluctuations were reduced. However, it is a trade-off with perfor-
mance. Finally, we decided to report better performance, which was
when the period was set to the window size.

6.2.3 Proof of concept

We start the evaluation of the GraphPool algorithm with experiments on
the moving hyperplane data. The first experiment tests the effectiveness of
the statistical similarity measure. Figure 6.2 shows the steps of expanding
the classifier pool over time on the sudden drifting dataset. The red and
green dots in the plots show the data at the corresponding time slice. The
means of conceptual vectors are indicated by blue and purple points on
the data representation. As it can be seen, at T1 the first concept is added
to the pool with no link. Up to batch T250, the similarity measure finds
concepts similar to the available concept; therefore, only a link to the current
concept is created. At T251, the similarity test detects a sudden drift. The
new concept is added to the pool and, the weights of links are also updated.
Up toT500, there is no drift and a self-loop is added to the second concept. At
T501 and T751, these concepts reoccur suddenly, and the algorithm handles
them properly and updates the graphical pool links accordingly.

In Figure 6.3, the experiment is repeated on the Hyperplane dataset with
both gradual and sudden drift. This experiment tests the effectiveness of
the merging method as well as the statistical similarity test. Again, the first
snapshot is taken at T1 with the only concept in the pool. The gradual drift
moves the hyperplane slowly up to T125, and the similarity test detects 7
different concepts until then. By the recurrence of one previous concept
at T126 (almost the same as the concept at T50), a new concept is added
temporarily, however, vanishes and is merged in the next steps (look at the
backward link between concept 6 and 5 in T250). The gradual movement of
the hyperplane continues, and the graphical model of the pool is updated
until T250, when it reaches the inverse concept from the beginning. At T251, a
sudden drift causes a return to the first concept, and we see from the graph
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Figure 6.4: The upper plot represents the concepts’ life cycles on the Hy-
perPlane data with gradual and sudden drifts. The X-axis indicates data
batches of size 1000, and the Y -axis is the unique concept ID. Red dots show
the creation or reappearance or the merge point of another concept with the
corresponding concept. The black cross denotes the disappearance of a con-
cept by merging with another concept. The lower plot shows the histogram
of pool sizes at each data batch.
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of the pool that the algorithm finds the correct concept and links the last
one to the first concept. The top plot in Figure 6.4 shows the life cycle of
each concept. The Y -axis indicates the unique ID of a concept and the first
red dot for each value in Y -axis shows the times the concept was created
first. The other red dots show the times another concept was merged with
this concept or the concept has reappeared. The black cross shows the time
a concept vanishes, if ever. Apart from the short-term concepts, we can see
that a pattern in the concept usage is repeated for every 250 batches. These
short-term concepts can be viewed as a short-term memory to recognize a
concept more precisely. The second plot in Figure 6.4 shows the number
of concepts in the pool at each time slice. This shows that the number of
short-term concepts does not grow arbitrarily.

On the next experiment, we evaluate the effectiveness of using the co-
variance representation versus variance (Figure 6.5). To test the impact of
using covariance, we generated a two-class random multivariate normal
distribution with three features. To have control over the covariance matrix
values, we used the vine method [109] to generate a random correlation
matrix in a specified interval. By generating random feature variances in a
definite interval, we can convert the random correlation matrix to a covari-
ance one. To include concept drifts, we rotate the covariance matrix by a
random angle and shift the mean vector by a small vector. In the following
experiment, we have generated 10 concepts and for each 10, 000 instances.
In total, we have generated 1, 000, 000 instances from these concepts. The
experiment is repeated for three different correlation intervals: low correla-
tion ([0, 0.2]), medium correlation ([0.4, 0.6]) and high correlation ([0.8, 1]).
Figure 6.5 illustrates the life cycle of concepts that appear in the pool with
the batch size of 1000. As we can see, the stronger the correlation between
features are, the more short-term concepts appear in the pool if we ignore
the covariance modeling and only consider the variance of features. This is
evidence for the benefit of covariance in better-approximating data.

6.2.4 Performance analysis

In this section, we compare GraphPool to the other methods in the literature
in terms of classification performance as well as time and resource complex-
ity.

Classification results analysis

Figure 6.6 shows the accuracy of all the comparison methods on datasets.
On synthetic datasets, plots illustrate batch-wise accuracy, but due to many
drifts in real-world datasets, the batch-wise accuracy fluctuates a lot. Thus,
we have plotted the accumulative accuracy for real-world datasets. We have
also excluded DWM from the batch-wise accuracy plots, because of too
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Figure 6.5: Concepts’ life cycles of GraphPool variations: Left column illus-
trates variance representation life cycles and right column belongs to the
covariance representation on the same dataset. Correlation between fea-
tures differs in each row from [0, 0.2], [0.4, 0.6], and [0.8, 1] (top to bottom),
respectively. The batch size is 1000.



6.2. EXPERIMENTAL RESULTS 105

 50

 60

 70

 80

 90

 100

 0

 1
0

0

 2
0

0

 3
0

0

 4
0

0

 5
0

0

 6
0

0

 7
0

0

 8
0

0

 9
0

0

 1
0

0
0

A
c
c
u

ra
c
y

data batch

(a) HyperPlane(Sudden Drift)
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(b) HyperPlane(Gradual and Sudden Drift)
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(c) Waveforms
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(d) Gaussian
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(a) Electricity

 15

 20

 25

 30

 35

 40

 45

 50

 0

 1
0

0
0

 2
0

0
0

 3
0

0
0

 4
0

0
0

 5
0

0
0

 6
0

0
0

 7
0

0
0

 8
0

0
0

A
c
c
u

ra
c
y

data batch

(b) Sensor
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Figure 6.6: Accuracy of different algorithms on synthetic and real-world
datasets. Synthetic dataset plots show batch-wise accuracy, while Electric-
ity, Sensor and Weather plots illustrate accumulative accuracy over seen
batches. Each batch size is set to 100, except for HyperPlane and Waveform,
where the batch size is set to 1000.
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many fluctuations which made the plots unreadable, but the results are re-
ported in Table 6.2. As we can see, GraphPool has the best or nearly the
best accuracy on all tested datasets, synthetic and real-world. On synthetic
datasets, one can clearly notice that GraphPool recovers very quickly after
each sudden drift. This is not the case for RCD and OzaBagAdwin. Meth-
ods with a fixed-size ensemble of classifiers, e.g., OzaBagAdwin, need more
time to forget the previous concepts and converge to the new one.

Although Learn++.NSE performs quite similar to GraphPool on syn-
thetic datasets, on real-world datasets its performance is much worse, and
it does not even finish the experiment successfully on the Weather dataset9.
Our method performs better than PASC on many of the datasets, however,
on some real-world datasets, it performs slightly worse in terms of accuracy.
Looking at the other performance measures, one can see even if the accu-
racy is slightly worse, the recall or F-measure is still better (e.g., on Weather
in Table 6.2) and the method is still comparable. We need to recall that
PASC faces the challenge of setting a domain-specific parameter, which has
a substantial effect on the performance, but this issue is resolved in Graph-
Pool. Also, PASC does not extract the concepts’ connections, and finding
repetitive patterns in drifts is not possible.

Table 6.2 reports the average accuracy, precision, recall, F-measure, and
the running time of all methods. The average of precision and recall is cal-
culated over all batches of data and for all the classes, and the average F-
measure is computed as 2PavgRavg

Pavg+Ravg
.

We should remark that the Electricity dataset has been used as a pop-
ular benchmark in testing many of adaptive classifiers, but a recent study
shows that there is a strong temporal dependency in this dataset [19]: If we
use a naı̈ve baseline that ignores all the features and predicts the next class
label only based on the current label, the accuracy on Electricity dataset will
reach to 85.3% (Table 6.3). However, we can see that on synthetic datasets
where there is no temporal dependency, the accuracy of the so-called no-
change classifier is the same as a random classifier. None of the methods of
comparison in our previous experiments as well as our proposed method
consider temporal dependencies, that is, they all assume instances are in-
dependent. If one is interested to include temporal dependencies, a simple
wrapper method (SWT) has been proposed in the literature [19] and it still
is an open problem.

Time and resource complexity

The last column in the table shows the pool size in GraphPool after process-
ing all the batches. For a better visualization of time complexity, we have
plotted a heat map, which represents the log ratio of each method’s time,

9The experiment was finished for only 10% of the data after 72 hours.



6.2. EXPERIMENTAL RESULTS 107

Table 6.2: Performance Comparison of GraphPool to other methods over
synthetic and real datasets. Accuracy (Acc), Precision (P), Recall (R) are
averaged over all the batches of data. F -measure is calculated based on
average P and R. The pool size is the final number of concepts in the pool
after processing the whole data.

Dataset Methods Acc. P R F1 Time(s) Pool size
Hyperplane
Sudden drift

GraphPool
RCD
OzaBagAdwin
L++.NSE
DWM
PASC

94.52
76.37
84.44
92.33
91.47
94.36

94.51
76.36
84.45
92.38
90.15
94.36

94.52
76.37
84.44
92.33
91.47
94.36

94.51
76.36
84.45
92.35
90.81
94.36

2.93
54.82
15.67
757.49
64.30
3.72

2

Hyperplane
Gradual &
Sudden drift

GraphPool
RCD
OzaBagAdwin
L++.NSE
DWM
PASC

90.06
80.02
86.18
90.03
89.29
89.83

90.08
80.03
86.19
90.04
83.81
89.83

90.07
80.02
86.18
90.03
86.25
89.82

90.07
80.01
86.17
90.02
85.01
89.83

2.91
61.06
139.30
740.10
63.76
3.69

9

Waveform GraphPool
RCD
OzaBagAdwin
L++.NSE
DWM
PASC

80.11
43.22
66.62
80.06
69.68
80.00

83.45
44.54
68.55
83.33
67.36
83.39

80.16
43.23
66.64
80.10
69.72
80.05

81.77
43.87
67.58
81.68
68.52
81.69

13.69
221.46
99.13
6469.55
789.21
25.85

3

Gaussian GraphPool
RCD
OzaBagAdwin
L++.NSE
DWM
PASC

85.93
66.96
80.51
86.98
76.81
86.86

69.27
55.11
65.02
69.94
61.50
69.88

68.87
54.54
64.16
69.71
61.32
69.66

69.07
54.82
64.59
69.82
61.41
69.77

0.17
0.48
1.29
0.75
0.17
0.15

17

Electricity GraphPool
RCD
OzaBagAdwin
L++.NSE
DWM
PASC

75.23
70.42
74.63
67.83
69.94
73.02

77.15
73.84
75.00
72.63
67.31
72.95

72.35
71.22
71.11
72.78
68.91
68.53

74.67
72.51
73.00
72.70
68.10
70.67

0.64
5.48
12.25
54.08
5.35
0.56

8

Sensor GraphPool
RCD
OzaBagAdwin
L++.NSE
DWM
PASC

45.93
43.90
46.54
27.64
34.29
43.58

35.01
28.77
31.24
22.26
21.47
36.07

36.79
34.33
35.61
22.46
35.01
36.69

35.88
31.31
32.28
22.36
26.61
36.38

35.40
25.22
247.07
12573.0
159.88
6.47

268

Weather GraphPool
RCD
OzaBagAdwin
L++.NSE
DWM
PASC

70.38
62.32
71.04
-
71.42
70.85

65.14
60.28
65.49
-
56.76
65.09

66.63
61.60
65.21
-
61.82
66.26

65.88
60.93
65.34
-
59.18
65.67

103.87
595.86
3429.68
-
2362.72
165.94

53
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Figure 6.7: Runtime comparison of different algorithms to GraphPool in
terms of log ratio.

Table 6.3: Accuracy of no-change naive baseline classifier.
Hyperplane(S) Hyperplane(GS) Waveform Gaussian Electricity Sensor Weather

Accuracy 49.9 49.9 33.3 38.9 85.3 39.5 67.9

i.e. log10
tmethod

tGraphPool
(Figure 6.7). This heat map illustrates the difference in

the order of time needed to finish each method in comparison to Graph-
Pool for each dataset. We observe that except PASC, all the methods need
much more time than GraphPool. That means the cost of removing use-
less concepts in methods like Learn++.NSE and DWM is high, whereas the
merging of concepts in GraphPool is not that costly. PASC performs slightly
slower on most of the datasets. However, on Sensor, where our method de-
tects many concepts, it performs faster because of the limit on the number
of classifiers.

To study the pool’s expansion in more detail, we have plotted the con-
cepts’ life cycles and the pool size for Electricity in the same way as for Hy-
perplane (Figure 6.8). The left plots illustrate the results for one repeat of
the dataset and the right plots belong to two repeats of the same data. We
can see that the pattern for the short-term concepts is almost the same on the
repeat of data, except that the first building steps (on the first 100 batches)
are not needed when repeating (Figure 6.8(b) batch 500 to 600). Nonethe-
less, the pool size never goes beyond 20 at any time slice. We expect by
receiving enough instances from each concept, the learners and the con-
ceptual vectors converge. Thus, if no drifts occur, the number of concepts
in the pool should stay the same, and there will be no short-term concepts
anymore.
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Figure 6.8: (a) Electricity data, (b) two repeats of Electricity data. The
upper plots represent the concepts’ life cycles. The X-axis indicates data
batches of size 100, and the Y -axis is the unique concept ID. Red dots show
the creation point or when the concept has reappeared or when another
concept is merged with the concept. A black cross denotes the disappear-
ance of a concept by merging with another concept. The lower plots show
the histogram of the pool size at each data batch.

6.2.5 Comparisons of different variations of the GraphPool ap-
proach

GraphPool consists of different components: the conceptual representation,
the statistical similarity measure, and the graphical model of the pool. In
this section, we go through more experiments on each part and test some
possible alternatives and their impact on the performance of the framework.

Label prediction: single classifier vs. majority vote

As discussed above, GraphPool classifies test data using one state or all the
states in the neighborhood of the current state. In the first comparison, we
test the effect of labeling an instance by the weighted majority vote instead of
a single classifier. Table 6.4 indicates that using the weighted majority vote
in most cases degrades the performance. On some datasets (e.g., Waveform
and Weather), the self-loop to a concept has much larger weight, such that
the other concepts will not have any effect in the decisions. Only on Elec-
tricity, the weighted majority improves performance.
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Table 6.4: Comparison of GraphPool variations on different datasets: single
classifier (SC) vs. majority vote (MV).

Acc. P R F1

Dataset SC MV SC MV SC MV SC MV
Hyperplane(S) 94.52 94.48 94.51 94.49 94.52 94.49 94.51 94.49
Hyperplane(GS) 90.06 90.00 90.08 90.01 90.07 90.00 90.07 90.01
Waveform 80.11 80.11 83.45 83.45 80.16 80.16 81.77 81.77
Gaussian 85.93 85.93 69.27 69.26 68.87 68.86 69.07 69.06
Electricity 75.23 75.25 77.15 77.25 72.35 72.37 74.67 74.73
Sensor 45.93 45.92 35.01 35.02 36.79 36.79 35.87 35.88
Weather 70.38 70.38 65.14 65.14 66.63 66.63 65.88 65.88

Table 6.5: Comparison of GraphPool variations on different datasets: statis-
tical likelihood test (SL) vs. classifier similarity (CS).

Acc. P R F1 Time (s) Pool size
Dataset SL CS SL CS SL CS SL CS SL CS SL CS
Hyperplane(S) 94.52 94.59 94.51 94.59 94.52 94.60 94.51 94.59 2.93 3.73 2 2
Hyperplane(GS) 90.06 88.44 90.08 88.45 90.07 88.43 90.07 88.44 2.91 6.69 9 5
Waveform 80.11 80.01 83.45 83.40 80.16 80.06 81.77 81.69 13.69 48.88 3 3
Gaussian 85.93 85.22 69.27 68.74 68.87 68.36 69.07 68.54 0.17 0.32 17 16
Electricity 75.23 74.13 77.15 76.49 72.35 72.17 74.67 74.26 0.64 1.47 8 5
Sensor 45.93 42.59 35.01 35.90 36.79 36.54 35.88 36.22 35.40 987.5 268 387
Weather 70.38 70.19 65.14 64.52 66.63 65.30 65.88 64.90 103.9 2132.3 53 36

Conceptual equivalence: statistical likelihood test vs. classifier similarity

Yang et al. used another approach to measure the concept similarity [201].
Instead of applying a test on data summaries, they use a score on how two
classifiers share the same “opinion”. Thus, for every batch, a new classifier
is trained and compared to all the classifiers in the pool. If they (the new
classifier and the one in the pool) classify an instance in the same class,
whether correct or incorrect, the score is increased by 1; otherwise it is de-
creased by 1. The final score is in the [−1, 1] interval since we compute the to-
tal score on the new batch and divide it by the batch size. Table 6.5 compares
this approach to GraphPool’s approach. A similarity threshold needs to be
set for the classifier similarity approach. We have set it to 0.8 on synthetic
datasets. On real-world datasets, there is more noise; therefore, the thresh-
old is set to 0.6. Experimental results show that on most of the datasets the
statistical test outperforms the classifiers’ similarity. Furthermore, the sta-
tistical test takes much less time than checking all the classifiers for each
batch of data.

6.2.6 Sensitivity analysis

Besides the batch size and the base classifier, which are the general param-
eters of any learning framework, our method has another parameter to be
set: the confidence level of the similarity test. In this section, we test the
effect of different p-values as well as the batch size on the performance and
pool size of GraphPool.
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Figure 6.9: Sensitivity analysis on Hyperplane with gradual and sudden
drifts: effect of batch size on the average accuracy and pool size.
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Figure 6.10: Sensitivity analysis on Hyperplane with gradual and sudden
drifts: effect of p-value on the accuracy and pool size.

Change of batch size

Figure 6.9 shows the effect of different batch sizes on the average accuracy
and the pool size of Hyperplane with gradual and sudden drifts. We have
repeated the experiment for batches of size 50, 100, 500, 1000, 5000 and
10,000. TheX-axis is on a logarithmic scale. The accuracy plot indicates that
by increasing the batch size up to 1000, the accuracy improves. However,
larger batches will not help. This was predictable, as the fewer instances we
provide to a classifier, the weaker it performs. On the other hand, enlarging
the batch size may violate the stationarity assumption of data batches and
harm performance. This is also shown on the pool size plot: the larger the
batch is, the more concepts are added to the pool.

Change of confidence level in statistical test

To test the effect of the confidence level, we have repeated the experiment for
different p-values: 0.0001, 0.001, 0.01, 0.05, 0.1 and 0.2. Figure 6.10 shows the
accuracy and the pool size for each of the values on the Hyperplane dataset
with gradual and sudden drifts. The X-axis is again on the logarithmic
scale. We observe that the change in the p-value does not have a remarkable
effect on the accuracy, however, the number of concepts in the pool increases
for larger p-values. This is the result of accepting new concepts even when
the test is not certain, which results in a larger pool of classifiers.
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Figure 6.11: Batch-wise accuracy comparison of Hoeffding tree(HT) and
Naı̈ve Bayes(NB) in the RCD framework on Waveform. X-axis indicates
data batches of size 1000.

6.2.7 Future directions

Merging classifiers might be an easy task for generative classifiers where the
underlying distributions are kept (e.g., Naı̈ve Bayes), however, it is more
complicated for discriminative classifiers that learn a direct map from in-
put space to the class labels (e.g., Hoeffding tree). In this chapter, we used
a simple generative classifier, Naı̈ve Bayes, in our experiments. While com-
paring GraphPool to the literature in Section 6.2.4, we observed that RCD
does not recover from sudden drifts too well. We tried to change different
parameters and noticed that if the base learner is exchanged by a stronger
classifier, e.g., a Hoeffding tree in this case, the performance of the method
improves a lot. An extreme case can be seen in Figure 6.11, where a compar-
ison of the batch-wise accuracy of RCD variations, one with Hoeffding tree
and the other one with Naı̈ve Bayes as base classifiers, is shown. Although
this is an extreme case and the performance change is not always like that,
this can open a new direction of research to work on merging methods for
discriminative classifiers, like Hoeffding trees, as well as other generative
classifiers. An alternative approach to the merging of classifiers is to main-
tain an ensemble of trees for each concept. However, this again requires
some forgetting mechanism whenever the number of classifiers in the en-
semble reaches the maximum limit.

The framework proposed in this chapter only contains merging con-
cepts, however, there may be some cases where an existing concept starts
to become heterogeneous gradually or even all of a sudden. In these cases,
having a mechanism to check whether a concept should be split and how the
splitting should be done would be beneficial. Therefore, a possible future
direction could be developing methods for splitting concepts.
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6.3 Conclusions

In this chapter, we introduced a new classification framework called Graph-
Pool, which deals with recurrent concepts using graphical models. Recur-
ring concepts add even more complexity to the problem of classifying con-
cept drifting data streams. While existing approaches dealing with recur-
ring concepts focus on only learning a pool of classifiers, GraphPool aims
to solve their limitation by keeping the transition probabilities among the
concepts in a graphical model. This graphical modeling gives the oppor-
tunity to model the behavior of an environment, useful, for instance, in
recommender systems or forecasting systems. In addition, to enhance the
generalization of concepts and classifiers, GraphPool benefits from a merg-
ing procedure. The merging procedure helps to combine concepts even in
the absence of the original data. Concepts which are statistically similar to
each other and were yet distinguished as different concepts due to the lack
of enough data are merged together. GraphPool also expands the idea of
conceptual representations by considering the correlations in feature space.
Experimental evaluations show that this extension improves performance,
particularly on real-world datasets.

In comprehensive experiments, GraphPool has shown to perform well
in terms of accuracy and running times compared to other approaches in
the literature. However, there is still room for improvement. One direction
concerns the merging of classifiers. In this chapter, we used Naı̈ve Bayes
because of its ability to easily merge two learners in the absence of their
training data. One promising research direction would be to work on the
merging of stronger classifiers online, for instance, of Hoeffding trees.
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Chapter 7

Modeling Multi-Label
Recurrence of Data Streams

Most of the existing data stream algorithms assume a single label as the
target variable. However, large-scale multi-label classification has become
an essential problem with the emergence of real-world applications such as
image annotation [187], query recommendation [4], and credit assignment
for social bookmarking [144]. For example, in processing massive social
media corpora, each news article may belong to several topics/categories.
These topics may change, evolve, or even reoccur over time. Our study on
German media shows how highlighted topics evolve or reoccur based on
the upcoming political events [5]. Classification of multi-label data can be
viewed as a generalization of multi-class classification where labels do not
exclude each other, and they may have unknown dependencies among each
other as well as with the features, which may change over time. Making ac-
curate predictions for such non-stationary multi-label streaming data with
the consideration of dependencies among labels and potential drifts is a
challenging task. The few existing studies mostly cope with drifts implic-
itly, and all learn models on the original label space, which requires a lot
of time and memory. In this chapter, we propose a graph-based framework
that maintains a pool of multi-label concepts with transitions among them
and the corresponding multi-label classifiers. As a base classifier, we benefit
from our previously developed fast linear label space dimension reduction
method, RACE, that transforms the labels into a random encoded space and
trains models in the reduced space.

Discovering recurrent concepts in streaming data is a challenge that has
been faced only quite recently [66]. Although keeping a pool of classifiers
is a common way of dealing with recurrent concepts in single-label data
streams, no such study exists for multi-label streams. In this chapter, our
goal is to propose, for the first time, a multi-label framework for coping with
recurrent drifts in multi-label streams, and at the same time, taking advan-
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tage of hidden label correlations to improve multi-label classification per-
formance. We follow and extend the idea of modeling recurrent concepts
via graphical models to the multi-label setting. GraphPool, as discussed in
Chapter 6, is a successful framework for accurately modeling single-label
recurrent concepts by keeping the transitions between the concepts and
employing a concept merging mechanism when necessary. Experiments
confirm that keeping the transitions between the concepts helps to quickly
recover from drifts with periodic behavior. Since each concept is initially
based on a small batch of instances, merging the existing concepts of the
pool is another effective feature of GraphPool in combining several similar
concepts into one more general concept or building a larger concept from its
smaller subconcepts. However, to generalize the framework for multi-label
streams, we need to address several challenges:

1. Many of the well-established multi-label classifiers scan the training
data an arbitrary number of times, and hence, are not efficient for
large-scale problems. Processing multi-label streams needs efficient
methods in terms of time and space complexity. To solve the issue,
we use a fast label space dimension reduction method, RACE, as a
multi-label classifier. RACE applies a random compression encoding
matrix to the original label set to transform the original label set into
a much smaller random space. It then trains single-label classifiers
on the compressed space. The least squares solution gives a decoding
matrix to map the compressed labels to the original space.

2. GraphPool extracts concept representatives directly from training
data. It makes a simplifying assumption on data batches and es-
timates instances of each class value with a multivariate Gaussian
distribution. It then keeps the mean and covariance matrices of the
feature space as concept representatives. However, in the multi-label
stream setting, this information will be rather sparse due to the
large label space. To resolve the issue, instead of extracting concept
representatives from data, we represent a multi-label concept with
RACE’s decoding matrix. Consequently, a comparison of the concept
representatives is not possible with a multivariate likelihood test
(as it was proposed in the original version of GraphPool) anymore.
Therefore, we use a matrix distance measure (e.g., the average
Euclidean distance of matrix elements) and apply a user-defined
threshold to check if two multi-label concepts are similar.

3. Comparison of large decoding matrices may result in various false
positive alarms for drifts, due to the very large space and high data
sparsity in a small batch of data. In our multi-label GraphPool frame-
work, we propose an extra module to monitor the performance of the
current concept and run the previous step only when there is a notable
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stream of multi-label data
B1 B2 B3 ... Bt

...

pool of multi-label concepts

...
p11

...
p22p12

p21

...
p23p31

Figure 7.1: A sample snapshot of the proposed framework. Each concept is
represented by an ensemble of RACE classifiers

drop in performance. This way, we benefit from a two-stage drift de-
tection module and add more robustness to the signals.

Figure 7.1 represents a sample snapshot of our multi-label GraphPool
framework. For a new batch of multi-label data Bt, we check its similarity
to the existing concepts in the pool. Therefore, we train a RACE classifier on
the data and use its decoding matrix as a concept representative. To have a
valid comparison, we initialize the random encoding matrices to the same
value for every batch. Furthermore, to reduce the effect of randomness in
the encoding matrix of RACE, we train an ensemble of RACE classifiers with
different initialization matrices.

7.1 Multi-label GraphPool: A multi-label recurrence
framework

Inspired by the idea of modeling recurrent concepts via graphical models
in single-label streaming data, we propose a novel framework that models
recurrent concepts in a multi-label scenario. Graphical modeling of con-
cepts has shown promising results in quickly detecting recurring concepts
and patterns in single-label streams. However, detecting recurrent concepts
in the context of multi-label stream processing is much more challenging,
and methods like GraphPool, in their current form, are not applicable to the
multi-label setting. The first issue is to choose an efficient multi-label up-
dateable classifier as a base classifier for stationary data batches. Very few
existing multi-label stream frameworks work in the original label space, and
therefore, lack efficiency when the label space is large. To handle this issue,
we benefit from RACE as the base multi-label learner. We use a variation of
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ALGORITHM 12: Adaptive variation of RACE algorithm
Input: B(t) = (X(t), L(t)) is the tth batch of data,

l: the original label space size,
k: the reduced label space size

Output: trained model and decoding matrix βk×l
1 Generate an orthonormal random matrix A0 of size l × k
// Initialization step

2 H0 = L(0)A0

3 Hr,c
0 =

{
1 if Hr,c

0 ≥ 0

0 otherwise
4 Train a Binary Relevance updateable model on (X(0), H0)

5 Initialize label decoders: K0 = (H0
TH0)−1 , β0 = K0H

T
0 L(0)

// Sequential step

6 while more batches of data do
7 At+1 = βt

T

8 Get pseudo labels by Ht+1 = L(t+ 1)At+1

9 Hr,c
t+1 =

{
1 if Hr,c

t+1 ≥ 0

0 otherwise
10 Update Binary Relevance model with (B(t+ 1), Ht+1)
11 Update Kt+1 and βt+1 using equation (4.9)
12 t := t+ 1

RACE that employs an adaptive random compression encoding matrix to
compress labels into a much smaller random space and then trains single-
label classifiers on the compressed space (Algorithm 12). Using a random
encoder will accelerate the method considerably compared to the methods
which optimize the encoding matrix [193]; and will help in the efficiency of
the multi-label classifier especially in the streaming context. A least squares
solution maps the encoded labels to the original space and is updated in-
crementally. Although choosing a random encoding matrix is an effective
approach, it adds variance to the resulting models. To reduce such effect
of the randomness, we train an ensemble of RACE classifiers for each batch
and concept in the model.

Representation of concepts and drift detection are the other challenges
in processing multi-label streams. To the best of our knowledge, there is
no study on multi-label concept representation. GraphPool extracts repre-
sentatives directly from data by interpolating instances of each class with
a multivariate Gaussian distribution, however, such concept representation
in a multi-label scenario adds the assumption of label independence. It may
also result in very sparse information when the number of labels increases.
Different from GraphPool, we represent multi-label concepts with the de-
coding matrix of RACE classifiers. This way, we can represent a concept
more compactly and still keep the latent information among the labels in
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the representatives. We then compare the concept representative matrices
by the element-wise absolute distance of representatives and apply a pre-
defined threshold to find potential drifts. This approach is more efficient
than comparing the performance of all existing classifiers in the pool for
each batch of data, as proposed in the literature [201]. Element-wise com-
parison of potentially huge decoding matrices may cause false alarms in
detecting drifts as the possible space is massive and the batch sizes are cho-
sen to be small to contain only stationary instances. Hence, we augment our
drift detection module by also monitoring the performance of the current
state: For each new batch of data, we first train an ensemble of RACE classi-
fiers temporarily. If the performance of the current concept of the pool de-
grades drastically, we compare the concept representative of the new batch
to the other concepts in the pool. If no similarity is found, a new multi-label
concept is added to the pool. In case more than one concept is found as
similar to the new one, we merge all of them to generalize the multi-label
concept. This may happen since the concepts are built on a very reduced
number of instances. In the following subsections, we explain the details of
our novel multi-label recurrence framework.

The idea of extracting a representative of a concept was first proposed
in the Conceptual Clustering and Prediction (CCP) framework [92] by esti-
mating the posterior distribution of each feature given the single-label target
class with a normal distribution in every batch of data. However, extracting
such information from multi-label batches of data does not give a good es-
timation, as the number of labels is large, and the data in each label or label
combination is very sparse in every batch. Hence, instead of extracting a
representative from data, we use the decoding matrix of the RACE classi-
fier as a representative of a multi-label concept. To have a valid comparison
among different RACE decoders, we initialize the same encoding matrixA0

for every new batch. In this way, we can compare the k×l decoding matrices
element-wise by any similarity measure (e.g., absolute difference value).
We represent all the concepts in a pool of concepts by a first-order Markov
chain. The states contain a concept representative and their corresponding
ensemble of RACE classifiers. State Si is connected to state Sj , if concept j
occurs exactly after concept i. The transition weight is the probability of the
transition from concept i to concept j when we are at Si. Keeping a pool of
concepts with these state adjacencies and transition weights will help us in
a better classification of multi-label recurrent patterns.

The Multi-label GraphPool algorithm (Algorithm 13) starts with an
empty pool and a null current state. After receiving the first batch of data,
we add the trained ensemble of RACE classifiers as a new multi-label
concept to the pool and use it as the current concept for future predictions
(line 3– 5). For the next batches of data, we first look at the current state’s
links and choose the most likely concept in the neighborhood to predict the
label of the new batch. When the labels are received, we first observe the
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ALGORITHM 13: Multi-label GraphPool algorithm
Input: B(t) = (X(t), L(t)): instances of tth batch of data,

A0,i: a set of random initialization of encoding matrices where
i ∈ {1, . . . , s},
s is the ensemble size

1 Train an ensemble of s RACE classifiers on B(t) with A0,i

2 CRt,i = βt,i
3 if Pool is empty then
4 Add a new vertex j to the Pool
5 Update CurrentState to j

else
6 if accuracy of CurrentState < θ then
7 Find similar concepts in the pool to the CRt by taking the majority

vote over CRt,i (equation (7.1))
8 if number of similar concepts = 0 then
9 Add a new vertex j to the Pool

10 Add j to the neighbors of CurrentState and adjust their weights
11 Update CurrentState to j
12 else if number of similar concepts = 1 then
13 Update the existing concept j with B(t)
14 if Vertex j is in the neighborhood of CurrentState then
15 Update the weight of link between CurrentState and j

else
16 Add j vertex to CurrentState neighborhood
17 Adjust weights of link from CurrentState to its neighbors
18 Update CurrentState to j
19 else if number of similar concepts > 1 then
20 Execute the concept merge algorithm (Algorithm 14)
21 Update CurrentState to CM

else
22 Update CurrentState with B(t)

level of performance change. If there is a notable drop in the prediction of
the new batch, a drift may happen, and the second stage of our multi-label
drift detector is activated. For that, we compare the decoding matrix of
the trained ensemble of RACE classifiers on the new batch (with the same
initialization points as in previous batches) to the existing concepts in the
pool (line 6– 7). One straightforward approach may detect a drift if at
least one element-wise absolute difference is greater than an acceptable
threshold. However, such a method is highly sensitive to small changes
and the value of the distance threshold. In our method, we calculate the
average distance of a pseudo label, and if it is greater than the threshold, a
drift is triggered. Then, we get a majority vote over the ensemble of RACE
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classifiers:

s∑
i=1

J
k∑
x=1

J
1

l

l∑
y=1

| β(x,y)
t,i − β′(x,y)

j,i | > θK > 0K ≥ s

2
, (7.1)

where J.K is the indicator function, and θ, l, k, and s are the distance thresh-
old, the label space size, the reduced label space size, and the ensemble size,
respectively. Experiments have shown the performance improvement and
consistent behavior when RACE is updated by a new data batch more than
one iteration. As training and updating RACE is not costly, in our work, we
also show each data batch more than once to the learner. Comparing the
new concept to the old ones: (1) If no concept in the pool is similar to the
new concept, the new concept is added to the pool. The state transition to
the current state is created, and the transition link weights of the current
state are normalized (line 8– 11). (2) If one concept is similar to the new
one, the classifiers and the corresponding concept representative of the ex-
isting concept, Vj , are updated. The transition link between the current state
and Vj either does not exist yet and we create a new link, or it exists and we
only need to update its weight (line 12– 18). (3) More than one concept is
similar to the new one (line 19– 21). Following Algorithm 14, we merge all
these concepts, including the new batch, into one concept and update the
current state to the merged concept.

Merge concepts

If the similarity of the two concepts is greater than a predefined threshold,
we apply a merging mechanism. Concept merging consists of several steps
(Algorithm 14). First, we merge the transition links of the similar concepts
in the Markov model. We update the links in the neighbor list of those con-
cepts which have the transition link to the concepts to be merged (lines 4– 9).
Then, the neighbors list of the new concept is updated (lines 10– 14). Subse-
quently, we normalize the transition weights of all the concepts involved in
this step.

In the next step, we merge the classifiers. As the initial encoding matrix
of the ensemble of RACE classifiers for each concept is the same, we will
merge the RACE classifiers with the same initialization correspondingly.
For that, we first update the base classifiers of RACE. Any classifier that can
be merged in the absence of training data can be used. Here, we use a sim-
ple generative classifier, the Naı̈ve Bayes Updateable classifier. By keeping
posterior statistics of feature occurrence for each label, we can easily up-
date them in the absence of training data. We do not update the decoding
matrices, as the similarity measure has detected them to be similar.



122 CHAPTER 7. MODELING MULTI-LABEL RECURRENCE

ALGORITHM 14: Concept merge algorithm
Input: Cs: a set of similar concepts in the current Pool,

B(t): current data batch
1 Initialize CM to the first concept in Cs
2 Cs = Cs − {CM}
3 for each vertex v ∈ Cs do
4 for each vertex u in which v is in its neighborhood do
5 if CM is in u’s neighborhood then
6 Update and normalize corresponding Transition weight
7 Remove v from u’s neighborhood

else
8 Add CM instead of v to neighbors of u
9 Add u to neighbor set of CM

10 for each w in v’s neighborhood do
11 if w is in CM ’s neighborhood then
12 Update corresponding Transition weight from CM to w;

else
13 Add w to CM neighborhood with its corresponding weight
14 Remove v from w neighborhood

15 Normalize transition weights from CM
16 Update CM ’s learners with all elements of Cs and B(t)
17 Remove all vertices of similar concept set from pool

Classifying a new batch of data

Let a new batch of data at time t, X(t), be received for classification
and CurrentState denote the current state of the pool. To classify the
batch, if no concept is in the neighborhood of the CurrentState, we take
the CurrentState itself as a potential concept for the following batch.
Otherwise, if the current concept has connections to the other concepts, we
benefit from our previous knowledge and choose the most likely concept
for the prediction of the new batch. Each concept is associated with an
ensemble of RACE classifiers; hence, we obtain the majority vote of every
single RACE prediction on each label.

7.2 Experimental evaluation

Multi-label GraphPool is the first framework for detecting and tracking
multi-label recurring concepts. As multi-label stream classification is in
its early stages, there are no well-established public datasets to evaluate
various multi-label concept drifts. In the following, we first explain a new
recurrent multi-label data generator and then report the experimental
setting and results on both synthetic and real-world datasets.
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ALGORITHM 15: Synthetic multi-label drifting data generator
Input: nl: total number of labels,

nf : number of boolean features,
ni: number of instances in each concept,
A: set of Dirichlet parameter for each concept

1 for α ∈ A do
2 Φ ∼ Dir(αnl×nf

)

3 for every concept with α ∈ A do
4 globall = Ø, globall,c = Ø
5 for i ∈ {1, . . . , ni} do

// generate random labels

6 locall = Ø, locall,c = Ø
7 li = [0]1×nl

8 for l ∈ {1, . . . ,maxl} do
9 table = Sample from pl ∼ PY (d, γ, locall,c)

10 if table is new then
11 tableg = Sample from pg ∼ PY (d, α, globall,c)
12 Update globall and globall,c with respect to tableg
13 Update locall and locall,c with respect to globall
14 li,t = 1

else
15 Choose a label from locall that is assigned to table and update

its entry in locall,c
16 li,t = 1

// generate random features

17 for w ∈ {1, . . . ,maxf} do
18 lw = Choose a label from li
19 fw = Sample from distribution Φα[lw]
20 Add < fw, lw > to instance i of concept α

7.2.1 Multi-label concept drifting data generator

Inspired by one standard application of multi-label streaming data, text cat-
egorization, we develop a synthetic multi-label document generator (Algo-
rithm 15). We assume that each generated document consists of at most
maxw words and belongs to at most maxl categories as its labels. Docu-
ments of each concept are drawn from a Dirichlet distribution with ran-
domly chosen parameters (line 1– 2). For each multi-label concept, we
choose the global variables (line 4), and for each new sample, we create the
local distribution, locall, over labels with the global distribution as a prior
(line 6). We sample a label from a Pitman-Yor process with respect to the lo-
cal distribution of labels, locall (line 9 and 15– 16); moreover, we assume a
global Pitman-Yor distribution of labels over words, PY (d, α,Gt), to draw a
label when local sampling chooses a new table (line 10– 14). Then, we sam-
ple the maxw words of the document from the Dirichlet distribution of the
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Figure 7.2: Evolution of multi-label classifier pool on the synthetic dataset.
The purple line illustrates the batch-wise example-base accuracy, and pink
bars show the pool size at each time stamp. Red dashed nodes indicate the
current state of the algorithm.

corresponding concept and add both randomly chosen features and labels
to the current instance (line 17– 20). We can generate abrupt and recurrent
multi-label streams with the proposed generator1.

7.2.2 Experimental setting

We generate two synthetic datasets with the proposed multi-label recur-
rent concept generator. Synthetic 1 consists of two concepts with an α equal
to 0.2 and 0.8 and d = 0.75. We generate 500 documents from each con-
cept over 100 possible labels and 100 possible words, and resample another
500 documents from each of them respectively to model the recurrence of
concepts. We set maxw = 20 and maxl = 20 for each document. The sec-
ond synthetic dataset (Synthetic 2) is generated from three concepts with
α = {0.2, 0.8, 0.5} and the concept order of {c1, c2, c3, c2, c1, c3, c1, c3, c2},
each 1000 documents. The other parameters are set as before. In addition
to synthetic datasets, we evaluate our framework on two widely used text
benchmarks in multi-label evaluations: Enron (with 1001 features, 53 la-
bels, and 1702 samples) and rcv1v2-subset1 (with 47236 features, 101 la-
bels, and 6000 samples) [179]. Experiments are run in a prequential order.
The window size is set to 100, the ensemble size of RACE is 5, each batch is
shown to RACE three consecutive times, the performance drop threshold is
0.8, and the dissimilarity threshold of decoding matrices is 0.05. Because of
the random selection of the encoding matrix in RACE, the experiments are
repeated 10 times and average values are reported.

1The source code is available at https://github.com/kramerlab/

Multi-LabelGraphPool.

https://github.com/kramerlab/Multi-LabelGraphPool
https://github.com/kramerlab/Multi-LabelGraphPool
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Table 7.1: Performance comparison of Multi-label GraphPool, RACE and
OBR on different datasets.

Dataset Method Ex.-based Acc. Hamming loss Macro-avg. F-measure Micro-avg. F-measure Pool size

Synthetic 1
Multi-label GraphPool 0.32 0.07 0.14 0.44 2
RACE (adaptive classifier) 0.30 0.07 0.14 0.44
OBR 0.31 0.08 0.15 0.46

Synthetic 2
Multi-label GraphPool 0.31 0.07 0.16 0.44 3
RACE (adaptive classifier) 0.25 0.08 0.15 0.37
OBR 0.28 0.09 0.16 0.42

enron
Multi-label GraphPool 0.29 0.09 0.23 0.36 2
RACE (adaptive classifier) 0.26 0.09 0.21 0.35
OBR 0.23 0.18 0.14 0.29

rcv1v2
Multi-label GraphPool 0.11 0.17 0.09 0.10 2
RACE (adaptive classifier) 0.08 0.18 0.04 0.07
OBR 0.13 0.43 0.13 0.12

7.2.3 Experimental results

We start our experiments with a proof-of-concept experiment on Synthetic
1. Figure 7.2 illustrates how the pool evolves by receiving more batches
of multi-label data. At each time step, the CurrentState is represented by
a red dashed node. We observe that monitoring the performance of the
CurrentState is an effective approach when the data is stationary. Upon
occurrence of a sudden drift, however, the performance drops, and this
time our effective concept representative comparison method finds the sim-
ilar/dissimilar multi-label concepts in the pool. If we only monitor the per-
formance, the model is not capable of finding recurrent concepts. If we only
check the similarity of concept representatives, we may see extra concepts in
the pool as false positives, which are later caught by our merge mechanism.
In this experiment, we monitor the example-based accuracy. However, the
behavior of other multi-label evaluation measures is almost the same.

In the next step, we extend our experiments to other datasets. We com-
pare our proposed multi-label GraphPool framework to its baseline, RACE,
which was developed for stationary multi-label problems and ignores
any concept drift/recurrence, and the online version of the well-known
Binary Relevance classifier (OBR). Previous studies show that although
OBR makes simplifying assumptions on data labels, it still performs better
than many other multi-label streaming baselines (e.g., Online Ensemble
of Classifier Chains (OECC) or the majority label classifier) and can be
used as a strong baseline for comparisons. Table 7.1 presents a perfor-
mance comparison of these algorithms for different datasets. As stated
before, RACE’s objective function is to optimize the Hamming loss. Our
experiments show that RACE and its successor, multi-label GraphPool,
outperform OBR in this regard. On larger datasets with more concepts
and drifts (i.e., Synthetic 2 and rcv1v2), Multi-label GraphPool shows
its advantage over RACE in terms of all measures (i.e., Hamming loss,
Example-based accuracy, and Micro/Macro F-measure). On the other
hand, multi-label GraphPool shows its clear effectiveness when there are
many drifts and recurrences in the data (i.e., Synthetic 2). RACE and
multi-label GraphPool compress the label space by a logarithmic factor,



126 CHAPTER 7. MODELING MULTI-LABEL RECURRENCE

and hence, are less computationally complex than methods dealing with
the original label space (e.g., OBR), especially when the label set is large.

7.3 Conclusions

This chapter studied the problem of multi-label recurrence for the first time,
and proposed a novel graph-based framework with a two stage drift de-
tection method to handle the challenging problem of multi-label recurring
concepts. In order to test our framework under controlled conditions, we
proposed a new concept drifting multi-label data generator based on the
Pitman-Yor process. Our experimental results show the success of the pro-
posed framework in detecting multi-label drifts and concept recurrences on
both synthetic and real-world benchmarks. In the future, we will elaborate
on the impact of different types of multi-label drifts by expanding our data
generator to a multi-label stream generator with different levels of gradual
drifts and broaden our experiments to various domains. Parallelization of
our proposed framework is straightforward, hence, we can easily extend
our experiments with streams of larger size on a distributed cluster. So far,
RACE and multi-label GraphPool compress the label space independent of
the feature space. However, feature-aware label space reduction methods
can embed more information of the data and possibly become more success-
ful in detecting multi-label drifts. Therefore, we plan to extend our frame-
work to become feature-aware. In our current framework, we assumed all
the labels are available for the training data. However, annotating such a
large label set is a tedious task. Hence, one could think of ways of han-
dling missing labels in multi-label GraphPool as another possible research
direction.
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Conclusion

More than two decades of studying different real-world data streaming
problems have yielded a variety of learning solutions. Although there have
been extensive studies on single-target class data, not many studies have
focused on multi-label stream mining, perhaps due to the recent emergence
of their applications. This thesis studied the problem of recurrent concepts
in supervised learning for both single-label and multi-label streams. We
proposed solutions and frameworks with domain-independent parameters
that have the possibility of extracting patterns in periodic environments.
In the remainder of this chapter, we review our findings from previous
chapters.

8.1 Deep learning for text classification

A large portion of today’s data sources is text. The first step to understand-
ing complex documents is modeling sentences and their semantic content.
The core of a sentence model is a feature function that captures features
for different text units and performs compositions over variable-length se-
quences. Training a well-performing classifier for a specific task on a single
sentence that has a limited amount of contextual data is a challenging task.
The recent success of deep neural networks in other domains such as im-
age and speech processing brought enough motivation for their application
in natural language processing tasks. In contrast to the traditional bag-of-
words model, deep neural networks can preserve the order of words and
syntactic structures. Moreover, their significant advantage lies in the re-
moved requirements for feature engineering. In Chapter 3, we investigated
an in-depth study of two well-known deep neural network architectures
for different text classification problems. Recursive neural tensor networks
are a generalization of classic sequence modeling neural networks to tree
structures. They integrate semantic content of a sentence (i.e., its parse tree
information) to the recursive network architecture with a bottom-up com-
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position strategy. Convolutional neural networks models are another alter-
native to model sentences. They treat each sentence individually as a bag
of n-grams and apply one-dimensional convolution kernels sequentially on
word vectors using sliding windows to extract local features. Although re-
cursive neural tensor networks have shown to work well in many cases,
they still suffer from the need of intensive manual labeling to overcome
the vanishing gradient problem. To avoid that, we proposed two meth-
ods to automatically label internal phrases: a rule-based method, which
can only be used for sentiment analysis and a convolutional neural network
based method for general purposes. Our evaluation results indicated that
the CNN based labeling tends to assign a positive or negative polarity to
the phrases while the rule-based method classifies many of the phrases as
neutral. Our next experiments on an extensive set of standard benchmark
datasets by employing automatic labeling demonstrated that the proposed
convolutional neural network model outperforms recursive neural tensor
network. However, if the manual labeling is available for recursive neural
tensor networks, they outperform convolutional neural networks.

8.2 Multi-label stream classification

Chapter 4 studied the problem of multi-label stream classification in sta-
tionary environments. Multi-label classification can be viewed as a general-
ization of multi-class classification where labels do not exclude each other
and may have unknown dependencies among each other as well as with the
features. Most of the previous multi-label classification methods require a
lot of time and memory, which make them infeasible for data stream setting.
In Chapter 4, we took the sparsity of label sets and their unknown interde-
pendencies into consideration and proposed RACE, an efficient multi-label
learning method that reduces the label space by applying random projec-
tion. Instead of using iterative numeric solutions like deep neural networks
to find a mapping between the original label space and the compressed one,
RACE finds the mapping function analytically based on the least squares so-
lution. This way, besides providing a fast approach for compression, it does
not have many control parameters to be set. Extensive experiments showed
its advantage over existing methods in terms of time complexity and accu-
racy, F-measure, and the Hamming loss.

8.3 Modeling of recurrent single-label streams

From Chapter 5 to 7, we focused on the problem of recurrent concepts.
Instead of incrementally updating a classifier, existing approaches, which
handle recurrent concepts, maintain a pool of concepts/classifiers and use
that pool for future classifications to reduce the error. Chapter 5 focused on
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single-label streams. It proposed the PASC framework by extending CCP,
one of the successful existing frameworks for recurrent concepts. CCP uses
domain-specific parameters whose correct choice affects its performance
considerably. The pool size is fixed, and after reaching the limit, the most
similar classifier is updated regardless of its level of similarity. This can
distract a classifier from learning only one concept. In PASC, we present
a merging procedure that finds the most similar concepts in the pool and
merges them. It also improves the similarity measure in such a way that it is
less domain-specific. Experiments showed the effectiveness of the proposed
modifications, especially on larger datasets with more classes. Studies on
the effect of different prediction strategies showed better results in favor of
weighted classifier predictions.

Chapter 6 continued the problem of recurrent concepts for single-label
streams, but this time by proposing a new first-order Markov chain frame-
work to model the connection of concepts in the pool, called GraphPool.
GraphPool, like its successors PASC and CCP, makes a simplifying assump-
tion on data batches and estimates instances of each class value with a Gaus-
sian distribution but this time a multivariate Gaussian distribution. To re-
move the domain dependency of the similarity measure, GraphPool applies
a likelihood statistical test. It also benefits from an effective merging strat-
egy to manage the pool size. The merging procedure helps to combine
concepts even in the absence of the original data. Comprehensive exper-
iments showed that GraphPool performs well in terms of accuracy and run-
ning times compared to other approaches in the literature. Experiments on
synthetic data indicated its perfect ability of modeling concepts and transi-
tions.

8.4 Modeling of recurrent multi-label streams

Although keeping a pool of classifiers is a common way of dealing with
recurrent concepts in single-label data streams, no such study exists for
multi-label streams. Hence, Chapter 7 extended the GraphPool framework to
multi-label stream setting. For that, we integrated our efficient multi-label
stream classifier, RACE, into the successful GraphPool framework. However,
this combination was by no means trivial. We needed to come up with new
ways of concept representation and concept comparisons for multi-label
data. GraphPool extracts concept representatives directly from training data,
however, this information will be rather sparse in multi-label streams due to
the large label space. Therefore, Multi-label GraphPool uses RACE’s decod-
ing matrix as a concept representative and a matrix distance measure (e.g.,
the average Euclidean distance of matrix elements) to find the similarity
of concepts. To reduce false positive alarms for multi-label drifts, resulting
from the very large label space, Multi-label GraphPool benefits from a sepa-
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rate performance monitoring module as a second stage of the drift detection
module. Experiments on multi-label text data represented promising re-
sults of the proposed framework in detecting multi-label drifts and concept
recurrences.

8.5 Outlook

This thesis proposed methods to merge classifiers for simple generative clas-
sifiers. This can be an easy task as estimations of the underlying distribu-
tions are kept in generative models. However, there are well-established
discriminative classifiers, which perform well on streaming data (e.g., Ho-
effding trees), and merging them is not straightforward. Previous studies
approached the problem for decision trees by either using simple cases of
only one variable [12], or converting decision trees to a set of rules [69, 8], or
approximating data with histograms [67]. These solutions are not optimal
yet. They either suffer from high computational complexity or inadequate
performance. Hence, one future research direction could be proposing new
efficient ways to combine discriminative classifiers, especially for Hoeffding
trees.

GraphPool and Multi-label GraphPool frameworks only consider merging
concepts, however, there may be some cases where an existing concept starts
to become heterogeneous gradually or even all of a sudden. In these cases,
having a mechanism to check whether a concept is diverging and how to
split it is beneficial. Therefore, another possible future research can focus
on developing methods for splitting concepts in the absence of their training
data.

So far, RACE and multi-label GraphPool compress the label space inde-
pendent of the feature space. Although feature-aware methods are more
computationally complex, feature-aware variations of other label space re-
duction methods have improved the performance of their predecessors [33,
113, 111]. Extending RACE to become feature-aware may lead to embed-
ding more information of the data and possibly helps in better detection of
multi-label drifts. Moreover, in our current framework, we assumed that all
the labels are available for the training data. Nevertheless, annotating such
a large label set is a tedious task. Hence, one could think of ways of han-
dling missing labels in RACE and multi-label GraphPool as another possible
research direction.

Finally, this thesis focused on extracting concept representations and
classifiers for every single batch of data. However, these summaries are not
always the best summaries of data. For some batches, keeping outliers or
density estimations would be more adequate. Inspired by recent advances
in deep reinforcement learning in AI problems [118, 139], one can view this
problem as that of intelligent resource allocation from experience.
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Bifet, Ricard Gavalda, and Rafael Morales-Bueno. “Early drift de-
tection method”. In: Proceedings of the 4th International Workshop on
Knowledge Discovery from Data Streams. Vol. 6. 2006, pp. 77–86.

[11] Krishnakumar Balasubramanian and Guy Lebanon. “The landmark
selection method for multiple output prediction”. In: Proceedings of
the 29th International Conference on Machine Learning (ICML). 2012,
pp. 283–290.

[12] Yael Ben-Haim and Elad Tom-Tov. “A streaming parallel decision
tree algorithm”. In: Journal of Machine Learning Research 11.Feb
(2010), pp. 849–872.

[13] Yoshua Bengio and Paolo Frasconi. “Input-output HMMs for
sequence processing”. In: IEEE Transactions on Neural Networks 7.5
(1996), pp. 1231–1249.

[14] Wei Bi and James Tin-Yau Kwok. “Efficient multi-label classification
with many labels”. In: Proceedings of the 30th International Conference
on Machine Learning (ICML). Vol. 28. 2013, pp. 405–413.

[15] Albert Bifet and Ricard Gavalda. “Kalman filters and adaptive win-
dows for learning in data streams”. In: Proceedings of the International
Conference on Discovery Science (DS). 2006, pp. 29–40.

[16] Albert Bifet and Ricard Gavalda. “Learning from time-Changing
data with adaptive windowing”. In: Proceedings of the SIAM Inter-
national Conference on Data Mining (SDM). Vol. 7. 2007, pp. 443–448.

[17] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard
Pfahringer. “Moa: Massive online analysis”. In: The Journal of
Machine Learning Research 11 (2010), pp. 1601–1604.

[18] Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Richard Kirkby,
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