Chemical characterization of organic aerosol from Chinese cities using high resolution mass spectrometry

Dissertation

for attaining the academic degree of "Doktor rerum naturalium"

(Dr. rer. nat.) of the Departments 08 – Physics, Mathematics and Computer Science, 09 – Chemistry, Pharmaceutics and Geosciences, 10 – Biology, and University Medicine of the Johannes Gutenberg University

by

Kai Wang

born in Xiaobai, Shengzhou, China

Max Planck Graduate Center mit der Johannes Gutenberg-Universität Mainz

Mainz, June 2018

Faculty director:

1st supervisor:

2nd supervisor:

Date of Examination: 20/09/2018

D77-Dissertation of the Johannes Gutenberg University, Mainz

I hereby declare that I wrote the dissertation submitted without any unauthorized external assistance and used only sources acknowledged in the work. All textual passages which are appropriated verbatim or paraphrased from published and unpublished texts as well as all information obtained from oral sources are duly indicated and listed in accordance with bibliographical rules. In carrying out this research, I complied with the rules of standard scientific practice as formulated in the statutes of Johannes Gutenberg-University Mainz to insure standard scientific practice.

Mainz, June 2018

"路漫漫其修远兮 吾将上下而求索"

"The way ahead is long, I shall search high and low"

屈原《离骚》

Qu Yuan, 《Li Sao》

Zusammenfassung

Atmosphärische Aerosole üben einen großen Einfluss auf die Luftqualität, das Klima und die Gesundheit des Menschen aus. Dabei können sie die Sonnenstrahlung direkt streuen oder absorbieren, oder indirekt als Nukleationskeime für Wolkentröpfchen zu einem erhöhten Reflektionsverhalten von Wolken beitragen. Darüber hinaus können sie negative Auswirkungen auf das menschliche Atmungs- und Herz-Kreislauf-System haben. In den letzten Jahrzehnten kam es in China zu schweren und andauernden Luftverschmutzungsperioden, wobei die Feinstaubpartikel (PM) in vielen Städten ein beispiellos hohes Niveau erreichten und damit die regionale Luftqualität und die Gesundheit von Millionen von Menschen beeinflusste. Daraus ergibt sich die Notwendigkeit die chemische Zusammensetzung und die Quellen der Aerosolpartikel während der Verschmutzungsperioden besser zu verstehen.

Das Ziel dieser Arbeit lag daher in einer Charakterisierung der chemischen Zusammensetzung von organischen Aerosolpartikeln (OA), und zwar konkret für Luftproben, die während Verschmutzungsperioden im Januar 2014 in verschiedenen chinesischen Städten gesammelt wurden. Dazu wurde die ultrahochauflösende Massenspektrometrie (UHRMS) eingesetzt. Der erste Teil dieser Studie beschäftigte sich mit der Entwicklung einer analytischen Methode zur Analyse von Aerosolproben mit Partikeldurchmessern kleiner als $2,5 \,\mu m$ (PM_{2.5}) und der Gegenüberstellung der Resultate aus Proben, die in einer chinesischen Stadt (Peking) und einer mitteleuropäischen Stadt (Mainz, Deutschland), gesammelt wurden. In Kombination mit der Ultrahochleistungs-Flüssigkeitschromatographie (UHPLC) und der Elektrospray-Ionisierung (ESI) ist die UHRMS (Orbitrap-MS) in der Lage Tausende organische Verbindungen auf molekularer Ebene zu identifizieren. Vergleicht man die chemische Zusammensetzung von OA in Peking und Mainz, wurde im Rahmen dieser Arbeit beobachtet, dass OA in Peking ungesättigter ist und deutlich mehr aromatische Verbindungen enthält als OA in Mainz, ein deutlicher Hinweis auf höhere Beiträge aus Verbrennungsprozessen (z. B. Autoabgasemissionen) in der chinesischen Megacity. Ein weiterer Schwerpunkt der vorgelegten Studie bestand in der Identifizierung und dem Vergleich von OA, die in drei repräsentativen chinesischen Städten beprobt wurden. Dabei kam die im ersten Teil der Arbeit entwickelte UHPLC-Orbitrap-MS-Methode zum Einsatz. Die drei chinesischen Städte Changchun (CC), Shanghai (SH) und Guangzhou (GZ) befinden sich jeweils in den nordöstlichen, zentralen und südöstlichen Regionen Chinas. Die Ergebnisse zeigen, dass die wichtigsten organischen Verbindungen mit hohen Konzentrationen in allen Städten eine ähnliche chemische Charakteristik zeigen und aromatische Verbindungen dominieren, während OA in SH und GZ generell eine recht hohe Ähnlichkeit aufweisen. Im Vergleich zu OA in SH und GZ, zeigt sich OA in CC weniger hoch oxidiert und höher konzentriert bzgl. polyzyklischen aromatischen Verbindungen, wahrscheinlich hervorgerufen durch höhere Beiträge aus der Kohleverbrennung im Winter in Nordost-China. Schließlich wurde eine wichtige atmosphärische Substanzgruppe (Organosulfate (OSs)) in OA-Proben aus Peking und Mainz mit der UHPLC-Orbitrap MS-Methode analysiert und charakterisiert. Gemäß den Ergebnissen zur chemischen Zusammensetzung aus existierenden Simulationskammerexperimenten wurde ein Diagramm zur Vorhersage der OSs-Vorläufer erstellt. Basierend auf diesem Vorläuferdiagramm wird im Rahmen dieser Arbeit vorgeschlagen, dass OSs in Mainz hauptsächlich aus Isopren oder anderen kleinen Moleküken mit

einer Kohlenstoffatomzahl von weniger als fünf gebildet werden, während OSs in Beijing sowohl aus Isopren als auch aus anthropogenen Vorläufern (z. B. langkettige Alkane sowie Aromaten) erzeugt werden.

Zusammenfassend konnte gezeigt werden, dass die in dieser Arbeit entwickelte UHPLC-Orbitrap-MS-Methode zur Analyse der komplexen chemischen Zusammensetzung von OA geeignet ist. Die vorgelegte Arbeit bietet einen umfassenden Überblick über OAs in verschiedenen chinesischen Städten und ermöglicht ein besseres Verständnis ihrer chemischen Eigenschaften und der zugrundeliegenden Quellen.

Abstract

Atmospheric aerosols are strongly related to air quality, global climate and human health. They influence the Earth's radiative balance directly by scatting and absorbing solar radiation and indirectly by nucleating cloud droplets. Aerosol particles can also have adverse effects to the human respiratory and cardiovascular systems. Within the last decades, China has experienced severe and persistent haze pollution with the fine particulate matter (PM) reaching unprecedentedly high levels across many cities, which is influencing the regional air quality and million people's health. Hence, understanding the chemical composition and sources of the PM during the haze events is essential for assessing the effects of polluted aerosols.

The aim of this work is to characterize the chemical composition of organic aerosol (OA) samples collected from different Chinese cities during the haze events in January 2014 based on ultrahigh resolution mass spectrometry (UHRMS) and to present a comprehensive overview of OA in Chinese urban regions. The first part of this study was the development of an analytical method to analyze the aerosol samples with diameters of PM $\leq 2.5 \,\mu$ m (PM_{2.5}) collected in a Chinese city (Beijing) and a central European city (Mainz, Germany). In combination with ultrahigh performance liquid chromatography (UHPLC), the UHRMS-Orbitrap technique coupled with electrospray ionization (ESI) was able to identify thousands of organic compounds at the molecular level. The comparison of the chemical composition of OA in Beijing and Mainz showed that OA in Beijing was more unsaturated and contained more aromatics than OA in Mainz, indicating that combustion emission (e.g., automotive exhaust emission) played a more important role in Beijing OA. The second part of this study focused on the identification and comparison of chemical components in OA collected from three representative Chinese cities using again the UHPLC-Orbitrap MS method. The three Chinese cities Changchun (CC), Shanghai (SH) and Guangzhou (GZ) locate, respectively, in the northeast, central east and southeast regions of China. The results showed that the major organic compounds with high concentrations in all cities had similar chemical composition and were dominant by aromatics, while OA in SH and GZ showed a higher similarity. Compared to the OA in SH and GZ, OA in CC obviously experienced less oxidation processes and contained more polycyclic aromatics, which were probably generated from the coal burning for the residential heating in winter in northeast China. Finally, an important organic species named organosulfates (OSs) in OA samples from Beijing and Mainz were characterized using the UHPLC-Orbitrap MS method. By summarizing the elemental composition information of OSs generated in previous OSs chamber simulation experiments, a diagram for the prediction of OSs precursors was created. Based on this OSs precursor diagram, OSs in Mainz OA is suggested to be mainly derived from isoprene or other small molecules with carbon atom number less than five, while OSs in Beijing OA was generated from both isoprene and anthropogenic precursors (e.g., long chain alkanes and aromatics).

In conclusion, the UHPLC-Orbitrap MS method developed in this work has been proved to be effective to identify the complex chemical composition in OA. This thesis offers a comprehensive overview about the molecular composition of OA in different Chinese cities, which helps to better understand their chemical characteristics and sources as well as provide the chemical database for haze control strategies in China.

Table of contents

Zι	isammen	fassung	I
Al	ostract		III
1	Introdu	ıction	1
	1.1	Atmospheric aerosol	1
	1.2	Secondary organic aerosol	4
	1.2	2.1 SOA formation	5
	1.3	Air pollution in China	6
	1.3	3.1 Persistent haze events in China	6
	1.3.2 Chemical composition of particulate matter during haze pollution		on in
	China_		8
	1.4	Mass spectrometry in aerosol research	10
	1.4	.1 Electrospray ionization	11
	1.4	.2 High resolution mass spectrometer	13
		1.4.2.1 Q-Exactive hybrid quadrupole-orbitrap mass spectrometer	14
	1.5	Thesis objectives and outline	16
2	Analyti	cal method development and chemical characterization of urbar	ı OA
	using u	ltrahigh resolution mass spectrometry	19
	2.1 In	troduction	20
	2.2 Methodology		22
	2.2	2.1 Sample Collection and Preparation	22
	2.2	2.2 UHRMS Analysis	23
	2.2	2.3 UHRMS Data Processing	23

	2.3 Result and discussion
	2.3.1 General Characteristics
	2.3.2 CHO Compounds
	2.3.3 CHON Compounds
	2.3.4 CHN Compounds
	2.3.5 Sulfur Compounds (CHOS and CHONS Subgroups)
	2.4 Conclusion and implication
	2.5 Additional information and results
	2.5.1 Difference of chemical composition between ACN/H2O and H2O
	extraction method40
3	Comparison of OA chemical composition from different Chinese cities 43
	3.1 Introduction
	3.2 Material and methods 46
	3.2.1 Collection of PM _{2.5} samples46
	3.2.2 Sample analysis47
	3.2.3 Data Processing
	3.3 Results and discussion
	3.3.1 General Characteristics
	3.3.2 CHO
	3.3.3 CHON
	3.3.4 CHN+60
	3.3.5 CHOS62
	3.3.6 CHONS64
	3.4 Conclusion
4	Molecular identification and source prediction of sulfur-containing
	compounds in urban OA67

	4.1 Introduction	68
	4.2 Material and methods	69
	4.2.1 Collection of PM2.5 samples	69
	4.2.2 Sample analysis	70
	4.2.3 Data processing	71
	4.3 Results and discussion	72
	4.3.1 Isomers	72
	4.3.2 OSs precursor map	74
	4.3.3 Comparison of CHOS in Mainz and Beijing samples	77
	4.3.4 Comparison of CHONS in Mainz and Beijing samples	80
	4.4 Conclusion	82
5	Conclusions and Outlook	85
6	References	87
7	Appendix	97

1.1 Atmospheric aerosol

Atmospheric aerosols are defined as a suspension system of solid or liquid particles in air, with particle diameters in the range of 10⁻⁹-10⁻⁴ m (Pöschl, 2005;Seinfeld and Pandis, 2006). They are ubiquitous throughout the atmosphere and play an important role in many environmental processes. Aerosol particles scatter and absorb solar and terrestrial radiation as well as serve as cloud condensation nuclei (CCN) and ice nuclei (IN) for could and precipitation formation, thereby directly or indirectly affecting the Earth's radiative balance (Pöschl, 2005;Hallquist et al., 2009a). As a result, atmospheric aerosols play a central role in Earth's climate and their contribution to the Earth's radiative budget is progressively taken into account in the model calculations of the Intergovernmental Panel for Climate Change (IPCC) (Noziere et al., 2015). In addition, ambient aerosol particles have adverse effects on human health through damaging the respiratory and cardiovascular system or causing infectious and allergic diseases (Pöschl, 2005;Brüggemann, 2015;Pöschl and Shiraiwa, 2015).

The size of particles in the aerosols mainly depend on their formation mechanisms. Particles with diameters larger than 1 μ m (coarse mode) are typically primarily generated in nature, which contribute largely to the mass of aerosol populations. Due to fast gravitational setting, their transport in the atmosphere is limited, resulting in short atmospheric lifetimes (Seinfeld and Pandis, 2006). However, these coarse particles are essentially important for the formation of clouds and precipitation due to the ability to act as IN (Cantrell and Heymsfield, 2005;Seinfeld and Pandis, 2006;Vogel, 2014;Brüggemann, 2015). Particles with diameters smaller than 1 μ m (fine mode) are usually secondary in nature and contribute largely to the number and surface area of particle populations. The fine mode can be further classified into three different submicron size modes: accumulation mode (0.1-1 μ m), Aitken mode (0.01-0.1 μ m) and nucleation mode (< 0.01 μ m) (Seinfeld and Pandis, 2006). It is noted that the nucleation and Aitken mode particles can grow fast through condensation or coagulation to the accumulation mode, which has the longest atmospheric lifetimes (Kulmala et al., 2016). Figure 1.1.1 shows an overview of the size range and composition of atmospheric particles and their corresponding source as well as the major types of multiphase chemical processes.

Figure 1.1.1: Overview of atmospheric particles: (a) Size range of aerosols, hydrometeors, cells and organelles. (b) Chemical reactions and mass transformation in the course of aerosol-cloud-precipitation interactions in the atmosphere (Pöschl and Shiraiwa, 2015).

According to the formation processes, atmospheric aerosols can be divided into two categories: primary aerosols are directly emitted into the atmosphere from natural or anthropogenic sources (e.g., sea spray, dust, biomass burning, volcanic eruption and fossil fuels combustion), whereas secondary aerosols are formed from precursor gases in the atmosphere through gas-to-particle conversion processes (e.g., nucleation, condensation and multiphase chemical reactions) (Seinfeld

and Pandis, 2006). Figure 1.1.2 represents the formation, growth, and processing of atmospheric aerosols. Due to a wide variety of natural and anthropogenic sources as well as the complex multiphase chemical reactions, atmospheric aerosols represent a huge temporal and spatial variability in terms of chemical composition and size distribution. Atmospheric aerosols consist of complex mixtures of inorganics and organics. The inorganic components include sulfate, nitrate and ammonium, generated mainly through the oxidation and neutralization of sulfur dioxide (SO_2) , nitrogen oxides (NO_x) and ammonia (NH₃) (Koo et al., 2003;Fu et al., 2016). Inorganic compounds in atmospheric aerosols have been fairly well understood and applied in different aerosol models, such as atmospheric chemistry global model (EMAC) (Aquila et al., 2011). However, the knowledge on the organic components is still very limited due to a variety of organic species in atmospheric aerosol, including hydrocarbons, alcohols, aldehydes, carboxylic acids, organosulfates and organonitrates (Jimenez et al., 2009; Rincón et al., 2012; Wang et al., 2018). The complexity of organic aerosol (OA) is compounded further by the fact that precursor gases or particles experience a series of atmospheric oxidation. Figure 1.1.3 shows an overview of the inorganic components and organic species in atmospheric aerosols in the Northern Hemisphere, observed using aerosol mass spectrometer (AMS) measurements.

Figure 1.1.2: Schematic representation of the formation, growth and processing of atmospheric aerosols (Zhang et al., 2015).

1 Introduction

Figure 1.1.3: Total mass concentration (µg/m³) and mass fractions of nonrefractory inorganic species and organic components in submicrometer aerosols at different surface locations on the Northern Hemisphere. Organic species are classified into hydrocarbon-like OA (HOA), semi-volatile oxygenated OA (SV-OOA) and low-volatile oxygenated OA (LV-OOA) (Jimenez et al., 2009).

1.2 Secondary organic aerosol

OA constitutes 20-90% of the total submicron aerosols and is typically dominated by secondary organic aerosol (SOA) (Kroll and Seinfeld, 2008;Hallquist et al., 2009b). SOA is formed from a variety of biogenic and anthropogenic precursors through a series of complex photochemical gas and aqueous reactions. Depending on different global aerosol models, the SOA annual production rates vary from 13-119 teragrams per year (Tg/yr) and its lifetime is in the range of 5-15 days (Hodzic et al., 2016). Despite the importance of SOA effect on climate and public health,

our knowledge about the chemical composition and formation mechanisms of SOA is still insufficient.

1.2.1 SOA formation

The emission of volatile organic compounds (VOCs) into the atmosphere is a precondition for the formation of SOA. VOCs are organic chemicals that have a high vapor pressure at ordinary room temperature, including saturated, unsaturated and other substituted hydrocarbons. VOCs in atmosphere arise from both biogenic and anthropogenic emissions. On a global scale, the estimated budget of VOCs from biogenic emissions is 1150 teragrams of carbon per year (Tg C/yr), while anthropogenic VOCs budget (142 Tg C/yr) is almost one order of magnitude smaller, however, they play a crucial role in urban atmospheric chemistry (Goldstein and Galbally, 2007). Among the biogenic VOCs, isoprene (C_5H_8), monoterpene ($C_{10}H_{16}$) and sesquiterpenes ($C_{15}H_{24}$) have the largest amount, which are naturally emitted from vegetation (Vogel, 2014;Brüggemann, 2015). The anthropogenic VOCs, such as alkanes and aromatic compounds, are mainly from fossil fuels combustion and biomass burning (IPCC report).

In general, SOA is formed when the VOCs in gas phase transforms to low-volatile organic compounds (LVOCs) in liquid or particle phase by the reaction with atmospheric oxidants, such as hydroxyl radical (OH), ozone (O₃) and nitrate radical (NO₃). Initially, an alkyl radical can be generated by the reaction of a VOC with OH/NO₃/O₃, which will be further oxidized with oxygen to produce an alkylperoxy radical After that, the alkylperoxy radical either reacts with organic peroxy and hydroperoxyl to produce alcohols and hydroperoxides, or with the presence of NO_x it reacts with NO forming organic nitrates or alkoxy radical. The alkoxy radical can either result again in alky radical by isomerization and dissociation or form carbonyl with oxygen (Kroll and Seinfeld, 2008). Additionally, recent studies show that extremely low-volatile organic compounds (ELVOCs) can be formed through the further oxidation of alkylperoxy radicals by intramolecular hydrogen shifts followed by a rapid reaction with oxygen (Brüggemann, 2015;Jokinen et al., 2015;Mentel et al., 2015). Figure 1.2.1 shows a simplified mechanism for the atmospheric oxidation of VOCs and ELVOCs.

Figure 1.2.1: Simplified atmospheric oxidation mechanisms of VOCs and LVOCs. The black arrows denote reactions that can lead to a volatility decrease, whereas the gray arrows denote reactions that can lead to volatility increase ((Brüggemann, 2015).

1.3 Air pollution in China

1.3.1 Persistent haze events in China

In recent years, China has experienced severe and persistent particulate air pollution accompanying with rapid industrialization and urbanization (Huang et al., 2014;Song et al., 2017). For example, the haze events happened in the first quarter of 2013 affecting around 1.3 million km² territories and 800 million people in China (Huang et al., 2014). The measurements of PM_{2.5} (particulate matter with an aerodynamic diameter less than 2.5 μ m) concentrations at 74 major Chinese cities in January 2013 showed that the daily average concentrations of PM_{2.5} exceeded the Chinese air quality standards of 75 μ g/m³ (around twice higher compared to the US EPA standards of 35 μ g/m³), with a record-breaking daily concentrations in eastern China in 2014. Such extremely acute air pollution is not only influencing the regional air quality and human health in China, but also leading to a global environment problem in some case by long-time and long-distance transport

of pollutants from China. In response to these severe air pollution events, several significant efforts have been implemented by the Chinese government to tackle the air pollution and protect the public health, such as upgrading the quality of gasoline and diesel for vehicles, reducing the production of steel and of coal-fired electricity, and encouraging the investments on environmentally-friendly energy (e.g., wind and solar power). On 10th September of 2013, the Chinese government promulgated the "Air Pollution Prevention and Control Action Plan" baked by US \$277 billion investments from the central government aiming to reduce the PM_{2.5} concentrations in the three key regions, namely, the Beijing-Tianjian-Hebei (BTH) region with around 110 million population, the Yangtze River Delta (YRD) region with 150 million population, and the Pearl River Delta (PRD) region with about 50 million residents, by 25%, 20% and 15% as compared to the 2012 level (Huang et al., 2014;Zheng et al., 2017).

Figure 1.3.1: Annual average PM_{2.5} concentrations in eastern China in 2014 measured by the Berkeley Earth based on ground-level measurements made at 27 monitoring stations in China (Bouarar et al., 2017).

1.3.2 Chemical composition of particulate matter during haze pollution in China

The chemical composition and sources of particulate matter (PM) in atmospheric aerosols in China are extremely complex and vary according to different locations resulting from the diverse human activities and inter-regional air pollutant transport. PM consists of a highly complex mixture of organic and inorganic components produced from both biogenic and anthropogenic sources, which has been outlined in section 1.1. Despite the relatively higher PM concentrations in China, numerous aerosol studies show that the PM compositions in Chinese cities are similar with those in urban areas of USA and European cities, which mainly consist of organic matter (OM) followed by secondary sulfate (SO_4^{2-}) , nitrate (NO_3^{-}) , ammonium (NH_4^{+}) , and elemental carbon (EC) (Zhang et al., 2015;Bouarar et al., 2017). Measurements of PM_{2.5} samples collected at 14 Chinese cities in January and June 2003 by Cao et al. show the following profile of chemical compositions (see Figure 1.3.2): OM (25-45%), SO₄²⁻ (12-24%), NO₃⁻ (2-14%), NH₄⁺ (6-11%) in wintertime; and OM (26-41%), SO₄²⁻ (14-22%), NO₃⁻ (3-8%), NH₄⁺ (1-7%) in summertime. These results also present the regional and seasonal variation in terms of PM concentration and relative contribution of individual species. Recently, Huang et al. investigated the chemical nature and sources of PM_{25} collected at urban regions in four Chinese cities during the severe haze pollution events of January 2013 (Huang et al., 2014). It shows that OM constitutes the major fraction (30-50%) of the total $PM_{2.5}$ in the four cities, followed by SO_4^{2-} (8-18%), NO_3^{-} (7-14%), NH_4^{+} (5-10%), EC (2-5%) and chloride (2-4%) (see Figure 1.3.3). This study also showed that the severe haze pollution events were driven to a large extent by secondary aerosol formation, contributing 30-77% and 44-71% of PM_{2.5} and organic aerosol, respectively. Compared to relatively comprehensive identification of inorganic compounds in atmospheric aerosols, OM is much more complex and only around 10-30% of particulate OM has been chemically specified so far (Hoffmann et al., 2011). Studies on OM in China mainly focus on the quantification of organic acids, carbonyls, anhydrosugars, polycyclic aromatic hydrocarbons (PAHs) and their derivatives (Bouarar et al., 2017). However, due to the important effect of OM on Earth climate and human health, more efforts need to be made to further identify the OM and clarify the OM profile of chemical composition.

Figure 1.3.2: Chemical composition of PM_{2.5} in wintertime and summertime in 14 Chinese cities (Cao et al., 2012).

Figure 1.3.3: Chemical composition and source apportionment of PM_{2.5} collected druring the high pollution events in January 2013 at the urban regions of four Chinese cities: Beijing, Shanghai, Guangzhou and Xi'an (Huang et al., 2014).

1.4 Mass spectrometry in aerosol research

Mass spectrometry (MS) is the most commonly applied technique for the chemical analysis of PM in atmospheric aerosols, providing high sensitivity and selectivity to individual chemical compounds (Farmer and Jimenez, 2010;Vogel, 2014;Brüggemann, 2015). Generally, the MS techniques can be classified into online and offline techniques: online techniques commonly operate in or near real time with a time resolution of 0.1 s to 1 h (Brüggemann, 2015), providing the ability to examine chemical changes during the process of aerosol formation on short timescales as well as avoid potential artifacts associated with offline analysis methods (Pratt and Prather, 2012). However, the information of chemical compositions observed by the online techniques is normally less specific compared to those obtained by offline techniques, which require sample collection but provide detailed molecular speciation (Pratt and Prather, 2012). In particular, offline mass spectrometry utilizing high resolution mass analyzers is recently used for aerosol research, which allows the characterization of complex organic mixtures at the molecular level (Nizkorodov et al.,

2011). In the following a brief introduction of the applied MS technique in this thesis is displayed. A more detailed description of the current status of MS techniques used for the chemical analysis of atmospheric aerosol can be found in the recently published reviews by Pratt and Prather (2012a, 2012b), Nizkorodov (2011) and Laskin (2018).

1.4.1 Electrospray ionization

Atmospheric pressure ionization (API) methods have become indispensable tools in analytical chemistry as well as in aerosol research (Müller-Tautges, 2014;Laskin et al., 2018). Compared to the "hard" techniques such as electron ionization (EI) and chemical ionization (CI), the API techniques are much softer and suitable for the analysis of non-volatile, medium to highly polar and thermally unstable compounds (Rosenberg, 2003). Based on the formation of ionization spray, API techniques can be classified into electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photoionization (APPI). Among the three API techniques, ESI is the most widely used for targeting both biomolecules and small molecules (see Figure 1.4.1). In last twenty decades, various MS techniques have been developed for aerosol measurements based on the ESI technique (Noziere et al., 2015;Laskin et al., 2018).

Figure 1.4.1: Application range of different ionization techniques as function of analyte polarity and molecular weight (Müller-Tautges, 2014).

ESI technique is based on the formation of gaseous ions from a mist of electrically charged droplets in an electric field (Müller-Tautges, 2014). In general, the ESI process involves the following three steps: (1) dispersal of a fine spray of electrically charged droplets, followed by (2) the evaporation of solvent and (3) the formation of gaseous ions (see Figure 1.4.2) (Ho et al., 2003). Within an ESI source, the analyte solution is pumped through a metal spray capillary (around 10 μ m in diameter) with a low flow rate of 0.1-10 μ L/min. A high voltage (2-5 kV) in negative or positive mode is applied on the tip of the spray capillary, which can provide the electric field

gradient to produce charge separation on the surface of the liquid droplets. As a result, the liquid protrudes from the tip of the capillary forming the "Taylor cone". Then, the charged droplets that comprise the Taylor cone can be accelerated towards or away from the counter electrode, according to their charge in the electric field. With the aid of a sheath gas stream (usually nitrogen gas) and an elevated ESI source temperature, the solvent in the charged droplets is continuously evaporated resulting in the decrease of the droplet size and increase of the surface charge density. When the Coulombic repulsion of the surface charge exceeds the surface tension of the charged droplets, they reach the Rayleigh limit and eject smaller droplets, which is called droplet jet fission process. Accompanying with the successive droplet jet fission process, the charged droplets are getting more and more smaller and finally converted to gaseous ions by two different models: (1) the ion emission model (IEM) assumes that the emission of ions from the highly charged droplet, which is commonly used for describing the ionization of small molecules. (2) the charge residue model (CRM) assumes that the increased charge density through desolvation causes the successive decrease of the droplet size and eventually a single ionized molecule is produced. This model is suited for describing the ionization of large molecules (Cech and Enke, 2001;Müller-Tautges, 2014). The typical ions generated in ESI source are deprotonated ions ($[M-H]^{-}$ with M = parent molecule) in negative mode and protonated ions $([M+H]^+ \text{ or adducts } ([M+Na]^+ \text{ and } [M+NH_4]^+))$ in positive mode.

Figure 1.4.2: Schematic illustration of electrospray ionization process with ion emission model (IEM) and charge residue model (CRM) (Müller-Tautges, 2014).

1.4.2 High resolution mass spectrometer

High resolution mass spectrometry (HRMS) or ultrahigh resolution mass spectrometry (UHRMS) is a powerful tool for molecular-level chemical analysis with two outstanding features of high resolution and high mass accuracy (Stock, 2017;Laskin et al., 2018). There are three major types high resolution analyzers: the high resolution quadrupole time-of-flight (HR-qTOF), the Orbitrap and the Fourier transform ion cyclotron (FTICR). HR-qTOF instruments have a relatively low resolving power of up to 40,000 at mass range of m/z 100-500. Orbitrap instruments have shown the resolving power in excess of 1,000,000 at m/z < 300-400 within a 3s detection time which makes it compatible with several types of chromatographic separations. FTICR represents the best resolution power with a record resolution of 40,000,000 at m/z 609 at a magnetic field of 7 T (Noziere et al., 2015). In last decade, UHRMS coupled with the soft ionization sources (e.g., ESI and APCI) has been applied for the identification of chemical composition in atmospheric aerosol (Nizkorodov et al., 2011;Lin et al., 2012a;Lin et al., 2012b;Rincón et al., 2012;Kourtchev et al., 2014;Noziere et al., 2015;Kourtchev et al., 2016;Wang et al., 2016;Wang et al., 2017;Laskin et al., 2018; Wang et al., 2018), which allows the unambiguous characterization of thousands of organic compounds by determination of the corresponding elemental compositions, as can be seen in Figure 1.4.3.. In this study, the Orbitrap instrument is used for the chemical analysis of OA and described in the following chapter.

Figure 1.4.3: (a) positive mode ion mode ESI-MS spectra for isoprene/ozone SOA. (b) zooms in on peaks near m/z 251 recorded at the Orbitrap resolving power of R = 100,000. (c) shows how the same mass range would loo like if recorded at a typical resolution power of reflection-TOF instrument with R = 5000 (Nizkorodov et al., 2011).

1.4.2.1 Q-Exactive hybrid quadrupole-orbitrap mass spectrometer

The Orbitrap MS is a modification of the Kingdon trap which was already developed in the early 1920s and debuted in mainstream MS as an accurate and compact mass detector in 2005 (Zubarev and Makarov, 2013). In this study, the Orbitrap instrument called Q-Exactive hybrid quadrupole-orbitrap mass spectrometer (built by Thermo Fisher Scientific in 2011) was applied, which has a maximum resolution of 140,000 at m/z 200 and a mass accuracy lower than 3 ppm (external calibration) or 1 ppm (internal calibration). Figure 1.4.4 shows the schematic of the Q-Exactive hybrid quadrupole-orbitrap mass spectrometer. The ions generated in the ionization source (1, ESI or APCI) are focused by a lens stack (2) and further transmitted by a bent flatapole (3) to a quadrupole (4) for optional parent ion selection. Subsequently, the ions enter a covered linear trap (C-trap, 5), where they are accumulated and loose their kinetic energy in collisions with nitrogen bath gas. After that, the ions either are directly injected into the Orbitrap analyzer (6) for detection or into the high energy collisional dissociation cell (HCD, 7) for fragmentation as MS²

analysis. The fragmented product ions are again collected in the C-trap and then injected into the Orbitrap analyzer (Scigelova and Makarov, 2006;Müller-Tautges, 2014).

The Orbitrap consists of a spindle-like central electrode and an outer barrel-shaped electrode, which is isolated into two halves by a ceramic ring (see Figure 1.4.4). The ions from the C-trap are injected into the Orbitrap essentially perpendicular to the z-axis and trapped the electrostatic field between the central and outer electrodes. The ions are forced to a rotational movement toward the central electrode while the tangential velocity creates an opposing centrifugal force, which is like the trajectory of a planet in the solar system. At the same time, the ions have an axial oscillation along the axis of the central electrode caused by the axial electrostatic field gradient due to the special shape of electrodes. The frequency (ω_{axial}) of the axial oscillation only depends on the m/z ratios of the ions and the instrumental constant k regardless of the tangential velocity as described by equation 1.4.1:

$$\boldsymbol{\omega}_{axial} = \sqrt{\boldsymbol{k}\left(\frac{\boldsymbol{z}}{\boldsymbol{m}_i}\right)} \tag{1.4.1}$$

The image current produced by the oscillating ions is detected and multiplied and finally converted to a mass spectrum by fast Fourier transformation (Scigelova and Makarov, 2006;Zubarev and Makarov, 2013).

Figure 1.4.4: Schematic view of the Q Exactive hybrid quadrupole-orbitrap mass spectrometer including the following components: (1) the ion source region (2) lens stack (3) bent flatapole, (4) quadrupole (5) C-trap (6) orbitrap and (7) HCD cell. The inset depicts the cross section of Orbitrap consisting of a spindle-shaped central electrode (a), a barrel-shaped outer electrode, composed of two parts (b) and a ceramic ring for segregation (c). The movement of the ions along the z-axis is highlighted with a red orbit (Scigelova and Makarov, 2006;Müller-Tautges, 2014).

1.5 Thesis objectives and outline

Ambient aerosols represent a highly complexity with thousands of different compounds due to various biogenic and anthropogenic sources as well as complex multiphase chemical reactions. In particular, organic compounds in OA cover a very large chemical space with respect to molecular mass, functional group distribution and polarity at a trace level concentration. Therefor, a comprehensive characterization of OA is a challenging analytical task. Over the past decade, China, the world's second largest economy with ~1/6 of the total world population, has experienced sever air pollution particularly in megacities and urban complexes. Since the OA has the profound impacts on human health and ecosystems, a better understanding of the chemical composition, sources and atmospheric processes of OA in Chinese urban regions is getting more and more

important.

The aim of this work is to identify the elemental compositions of organic compounds in $PM_{2.5}$ collected in Chinese cities using the UHPLC-Orbitrap technique. Based on the identified elemental compositions, the chemical properties (e.g., oxidation state, unsaturation degree and aromaticity index) and possible sources of $PM_{2.5}$ in different cities have been compared and discussed. This work can be described in three parts as follows:

1. The first part focuses on the analytical method development for OA measurement and the comparison of chemical composition of OA in a European city (Mainz, Germany) and a Chinese city (Beijing). A solvent mixture of acetonitrile and water was used for the OA extraction and Orbitrap coupled with ultra-high-performance liquid chromatography (UHPLC) was applied for detection, where UHPLC technique is efficient for isomer separation and reducing the ion suppression. Since the natural sources and human activities strongly influence the OA properties, PM_{2.5} samples collected from Mainz (a city within the Rhine-Main area, the third largest metropolitan region in Germany with more than 5.8 million population) and Beijing (the capital of China with more than 20 million residents) were analyzed and their chemical properties and related sources were compared.

2. In the second part, we characterized the chemical composition of organic compounds in PM_{2.5} samples from three Chinese cities using UHPLC-Orbitrap MS method developed in first part of the work. The three Chinese cities are Changchun (CC), Shanghai (SH) and Guangzhou (GZ), which are located, respectively, in the northeast, central east and southeast regions of China with around 50 million population in total. Characteristics of OA in these three Chinese megacities including the molecular weight, number of isomers, degrees of oxidation and unsaturation were analyzed and compared.

3. In the third part, we created a 'OSs precursor map' by summarizing the elemental composition of OSs generated in several smog chamber experiments. Then, according to this 'OSs precursor map', we estimated the possible sources and molecular structures of OSs in the ambient $PM_{2.5}$ samples, which were collected in Beijing and Mainz and analyzed by UHPLC-Orbitrap MS.

2 Analytical method development and chemical characterization of urban OA using ultrahigh resolution mass spectrometry

This chapter is a reprint of the article:

Kai Wang, Yun Zhang, Rujin Huang, Junji Cao, and Thorsten Hoffmann

UHPLC- Orbitrap mass spectrometric characterization of organic aerosol from a central European city (Mainz, Germany) and a Chinese megacity (Beijing)

> Atmospheric Environment, 2018, 189, pp 22-29, https://doi.org/10.1016/j.atmosenv.2018.06.036

Abstract. Fine urban aerosol particles with aerodynamic equivalent dimeter $\leq 2.5 \ \mu m (PM_{2.5})$ were collected in Mainz (a city within the Rhine-Main area, the third largest metropolitan region in Germany) and Beijing (Chinese megacity). A solvent mixture of acetonitrile-water was used to extract the organic aerosol fraction (OA) from the particle samples. The extracts were analyzed by an ultrahigh resolution mass spectrometer (UHRMS) Orbitrap coupled with ultra-high-performance liquid chromatography (UHPLC) both in the negative and positive ion mode. The number of compounds observed in Beijing is a factor of 2-10 higher compared to Mainz. The clear differences on chemical composition of OA in the two cities were observed. The majority of organics in Beijing OA is characterized by lower elemental H/C and O/C ratio but a higher degree of unsaturation and a larger aromaticity equivalent (X_C) compared to Mainz OA, suggesting that aromatics, which are related to direct combustion compounds (e.g., oxidized polycyclic aromatic hydrocarbon (PAH)), play an important role for OA in Beijing. A significant number of organosulfates (OSs) with long-carbon chain and low degree of unsaturation were observed in Beijing OA, indicating that long-chain alkanes emitted by vehicle might be their precursors.

Keywords: Organic aerosol, Orbitrap MS, UHPLC, Megacity, Molecular characterization

2.1 Introduction

Organic aerosol (OA) constitutes a substantial fraction (20-90%) of submicrometer aerosol mass (Jimenez et al., 2009;Kroll et al., 2011) and influences air quality, climate, and human health (Pöschl, 2005;Hallquist et al., 2009a). Previous studies have shown that OA contains a variety of organic species, including hydrocarbons, alcohols, aldehydes, carboxylic acids, organosulfates and organonitrates. However, only about 10-30% of OA has been chemically specified so far (Hoffmann et al., 2011). A better understanding of the chemical composition, properties and reactivity of OA are therefore important for assessing the effects of atmospheric aerosols. Since the thousands of compounds in OA covers a very large chemical space with respect to molecular mass, functional group distribution and polarity at trace level concentrations (Lin et al., 2012a;Noziere et al., 2015), characterization of OA is a challenging analytical task.

With the development of mass spectrometric techniques, considerable advances have been made over the past decade in terms of a better understanding of OA. The Aerodyne aerosol mass spectrometer (AMS) has been widely used to measure OA elemental composition and to study the

2 Analytical method development and chemical characterization of urban OA using ultrahigh resolution mass spectrometry

sources and atmospheric processes (e.g., oxidation state) of OA (Canagaratna et al., 2015;Dall'Osto et al., 2015;Lee et al., 2015). However, the use of 70 eV electron ionization of the AMS leads to a high degree of fragmentation of OA and therefore difficulties in the identification and quantification of individual organics. Several approaches have been developed recently to introduce soft ionization techniques for OA studies, including atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) (Hoffmann et al., 2011;Noziere et al., 2015). Especially ultrahigh resolution mass spectrometry (UHRMS) coupled with ESI allows the characterization of complex organic mixtures at the molecular level (Nizkorodov et al., 2011;Lin et al., 2012a;Rincón et al., 2012;Wang and Schrader, 2015). Fourier transform ion cyclotron (FTICR), Orbitrap and high-resolution quadrupole time-of-flight (HR-Q-TOF) are the three major high-resolution mass analyzers (Noziere et al., 2015). Due to the high mass resolving power (≥ 40000) and high mass accuracy (≤ 5 ppm), the UHRMS techniques can detect thousands of individual organic aerosol components and provide their accurate chemical composition for each analysis. A recent review by Nizkorodov et al. (Nizkorodov et al., 2011) shows that UHRMS analysis of secondary OA from smog chamber studies and aerosol samples collected from e.g., biomass burning, forest, rural and urban environment can provide improved understanding of the molecular composition and fundamental chemical transformations of OA. However, UHRMS analysis is instrumentally demanding and UHRMS studies of urban OA are still very scarce. Previous studies focused on the characterization of bulk OA or a group of specific compounds. For example, Lin et al.(Lin et al., 2012a) characterized the element composition of humic-like substances in the Pearl River Delta Region, China. Tao et al. (Tao et al., 2014) reported the analysis of organosulfates (OSs) in OA from Shanghai and Los Angeles. Wang et al. (Wang et al., 2016) studied the OSs in three Chinese cities. Wang et al. investigated the month and diurnal variation of the OA chemical composition in Shanghai. Rincon et al. (Rincón et al., 2012) characterized the chemical composition of OA collected in different seasons at Cambridge, UK. Reemtsma et al.(T. et al., 2006) and Roach et al. (Roach et al., 2010) studied the OA from Riverside, CA and Mexico city, respectively.

Over the past decade, particulate air pollution has become a serious environmental problem in China. Severe and persistent haze pollution occurred frequently in China in recent winters, particularly in megacities and urban complexes (Huang et al., 2014). Very recent studies show that outdoor air pollution, mostly by PM_{2.5}, leads to 3.3 million premature deaths per year worldwide, predominantly in Asia (Lelieveld et al., 2015). The yearly mass concentrations of PM_{2.5} often exceed the WHO guideline concentration of 10 μ g m⁻³, even in many European urban areas. Given that about 55-75% of population lives in urban areas in China and European countries, a better understanding of the chemical composition, sources and atmospheric processes of aerosol in urban areas is important. This is particularly true for the OA fraction as it is much more complex and uncertain than the inorganic aerosol fraction. In this study, PM_{2.5} samples were collected from Beijing (the capital of China with more than 20 million residents) and Mainz (a city within the Rhine-Main area, the third largest metropolitan region in Germany with more than 5.8 million population). However, the two urban regions experience very different natural and anthropogenic influences and it is worthwhile to investigate the similarities and differences in the OA composition in these two citie. Therefore, the organic fraction of the PM_{2.5} samples in Beijing and Mainz were analyzed using UHPLC-Orbitrap MS in both negative and positive polarity and the difference in OA chemical composition is discussed.

2.2 Methodology

2.2.1 Sample Collection and Preparation

24-h integrated urban $PM_{2.5}$ samples were collected in Beijing (6 samples) and Mainz (3 samples). For the six Beijing samples, three were collected from 7-12 January 2014, during a relatively clean period with $PM_{2.5}$ mass concentrations between 32 and 38 µg m⁻³ (sample ID: BJL (Beijing Low)). The other three samples were collected from 15-23 January 2014, during a severe haze pollution period with high $PM_{2.5}$ mass concentrations of 197-319 µg m⁻³ (sample ID: BJH (Beijing High)). The three Mainz samples were taken from 15-28 January 2015 with relatively low $PM_{2.5}$ concentrations of 20-28 µg m⁻³ (sample ID: MZL (Mainz Low)). The Beijing samples were collected on prebaked quartz-fiber filters (8×10 inch) using a high-volume sampler at a flow rate of 1.05 m³ min⁻¹, while the Mainz samples were collected on borosilicate glass fiber coated with fluorocarbon filters (Ø 70 mm, Pallflex T60A20, Pall Life Science, USA) using a low-volume sampler at a flow rate of 38.3 L min⁻¹. At each sampling site field blank samples were taken. The filter samples were stored at -20 °C until analysis. It should be noted that the $PM_{2.5}$ samples in Mainz and Beijing were collected in two consecutive years. An influence of year-to-year variability due to changing meteorological conditions cannot be excluded, however, both periods were wintertime periods with a similar regional scenario (Chang et al., 2017).

Portions of the filters (1.08-19.23 cm², corresponding to around 600 μ g particle mass in each extracted filter) were extracted with 1.5 mL acetonitrile-water (8/2, v/v) in an ultrasonic bath for 30 min. The extraction step was repeated twice with 1 mL of the extraction solution. Then the
combined extracts were filtered with a 0.2 μ m Teflon syringe filter to remove insoluble particulate matter. Afterwards the solvent mixture was evaporated to dryness under a gentle stream of nitrogen. The residual was dissolved in 500 μ L acetonitrile-water (1/9, v/v) for subsequent analysis.

2.2.2 UHRMS Analysis

The analysis of the filter extracts was carried out using an ultrahigh resolution mass spectrometer (Q-Exactive mass spectrometer; Thermo Scientific, Germany) coupled to an UHPLC system (Dionex UltiMate 3000, Thermo Scientific, Germany). A Hypersil Gold column (C18, 50 x 2.0 mm, 1.9 μ m particle size, Thermo Scientific, Germany) was used for separation. Eluent A (ultrapure water with 2% acetonitrile and 0.04% formic acid) and eluent B (acetonitrile with 2% ultrapure water) were used in a gradient mode with a flow rate of 500 μ L min⁻¹. The optimized gradient was as follows: 0-1.5 min 2% B, 1.5-2.5 min from 2% to 20% B, 2.5-5.5 min 20% B, 5.5-6.5 min from 20% to 30% B, 6.5-7.5 min from 30% to 50% B, 7.5-8.5 min from 50% to 98% B, 8.5-11.0 min 98% B, 11.0-11.05 min from 98% to 2% B, 11.05-11.1 min 2% B. Each sample extract was measured in triplicate with an injection volume of 20 μ L.

The Q Exactive mass spectrometer was equipped with a heated ESI source at 120 °C in the negative ion mode (ESI-) and 150 °C in the positive ion mode (ESI+). It was operated with 40 psi sheath gas, 20 psi auxillary gas, 320 °C capillary temperature and -3.3 kV spray voltage in the ESI-mode and 4.0 kV spray voltage in the ESI+ mode. The mass spectrometer was calibrated with standard solution for ESI- and ESI+, respectively (See supporting information, SI). Mass spectra of all samples were acquired in both ESI- and ESI+ in the mass range between m/z 80 and m/z 500 with a resolving power of 70,000 @ m/z 200. The field blank filters were analyzed to correct for the background spectra. The mass accuracy of the measurements was <3 ppm.

2.2.3 UHRMS Data Processing

Data were analyzed by a non-target screening approach using a commercially available software (SIEVE[®], Thermo Scientific, Germany). This software provides the core functionality of MS data processing: peak detection, background subtraction and molecular formula assignment. The processing steps and settings are described in the following. A threshold intensity value of 1×10^5 arbitrary units in the two-dimensional space of the retention time window from 0-11.05 min and m/z from 80-500 was applied to all measurements. The software automatically searched the

ions with their peak abundance above the threshold intensity value and only ions with peak abundance in the ambient samples 3 times greater than those in the blank samples were retained. After that, the molecular formulas of observed individual peaks were assigned by SIEVE with following constraints: #12C: 1 to 39, #1H: 1 to 72, #16O: 0 to 20, #14N: 0 to 7, #32S: 0 to 4 and #35Cl: 0 to 2 with mass tolerance of ± 2 ppm. In ESI+ mode, 0-1 of Na was also included in the formula calculation because of the high tendency of sodium to form adducts with polar organic molecules. In addition, the isotope signals and ion-adducts (e.g., M-H+ACN) were checked and removed. Furthermore, to eliminate the chemically unreasonable formulas, the identified formulas were constrained by setting H/C, O/C, N/C, S/C and Cl/C ratios in the ranges of 0.3-3, 0-3, 0-1.3, 0-0.8 and 0-0.8, respectively (Kind and Fiehn, 2007; Wozniak et al., 2008; Lin et al., 2012a). The resulting neutral formulas with a non-integer or negative double bond equivalent (DBE) or elemental composition which disobey the nitrogen rule for even electron ions were also removed. It should be noted that only molecular formulas observed in all three samples for each sample ID were considered for further calculation and discussion. The peak abundance of a compound in each sample ID corresponded to the average area of its chromatographic peak in the three filter samples and was blank-corrected. The DBE value was calculated by Eq. (1) for elemental composition $C_cH_hO_oN_nS_sCl_x$:

$$DBE = c - \frac{(h+x)}{2} + \frac{n}{2} + 1 \tag{1}$$

Additionally, the aromaticity equivalent (X_C) was used to improve the identification and characterization of aromatic and condensed aromatic compounds in OA, which was described in detail by Yassine et al. (Yassine et al., 2014). The X_C value can be calculated by Eq. (2):

$$X_{C} = \frac{3(\text{DBE} - (mN_{o} + nN_{s})) - 2}{\text{DBE} - (mN_{o} + nN_{s})}$$
(2)

where 'm' and 'n' correspond to a fraction of oxygen and sulfur atoms in π -bond structure of a compound, which varied depending on the compound. If DBE $\leq mN_0 + nN_s$ or $X_C \leq 0$, then X_C was defined as zero. Due to the extreme complexity of urban OA, we used m=n=1 for the conservative calculation of the X_C , which means every oxygen and sulfur atom was considered as π -bond structure (e.g. ketone and thioketone).

The assigned elemental formulas were classified into six species, including CHO, CHN, CHON, CHOS, CHONS and "other". CHONS referred to compounds containing carbon, hydrogen, oxygen, nitrogen and sulfur. The other species were defined analogously, while "other" includes CHS, CHNS and chlorine-containing compounds, which represented very low intensity and are not

discussed here.

Since the response of each organic species to the mass spectrometer varies greatly, the average molecular weight (MW), H/C, O/C and DBE values were number-weighted calculated by following equations (3-6) (Lin et al., 2012a):

$$MW = \sum MW_i / \sum N_i \tag{3}$$

$$H / C = \sum H / C_i / \sum N_i \tag{4}$$

$$O/C = \sum O/C_i / \sum N_i$$
⁽⁵⁾

$$DBE = \sum DBE_i / \sum N_i \tag{6}$$

, where $N_{i}\xspace$ is the number of individual molecular formula i.

2.3 Result and discussion

2.3.1 General Characteristics

As shown in Table 2.3.1, 1961-28696 mass peaks were detected in this study and the majority (57%-78%) of these detected peaks could be assigned with unambiguous formulas with mass tolerance less than 2 ppm, reflecting the high mass resolution power and high mass accuracy of the UHRMS technique. 1081-1955 molecular formulas of organic compounds with various numbers of isomers for each formula were detected in Mainz samples, while around 2-10 times more molecular formulas (2597-17596) were observed in Beijing samples, indicating the high complex of Beijing OA. The number of molecular formulas in this study is much higher compared to other UHRMS studies used direct infusion (Lin et al., 2012a;Lin et al., 2012b;Rincón et al., 2012;Kourtchev et al., 2016) and a previous UHPLC-Orbitrap MS study (Wang et al., 2017). This can be explained because UHPLC not only separates a large number of isomers, it also reduces ion suppression by coelution. In addition, the use of the mixture of ACN/H₂O is more efficient for OA extraction, especially for the less polar compounds (e.g., aromatics), compared to pure water or methanol used in previous studies. Moreover, the high organic carbon concentration (around 200

µg/cm² in BJH) can significantly result in more organic compounds observed in BJH in this study. It should be noted that the number of detected organic compounds is highly depending on the threshold intensity values applied for background subtraction, which always vary in different studies.61-92% of molecular formulas in this study contains isomers, indicating that UHPLC technique is very important tool for the characterization of complex ambient OA. And a representative UHPLC chromatogram for the UHPLC performance is shown in Figure S2.3.1 in the Supporting Information (SI).

 Table 2.3.1: The number of overall peaks observed in UHRMS, the number of assigned reasonable

 formulas and the relative abundance of each subgroup depending on their UHPLC chromatographic peaks

 (%), number-weighted average values of molecular weight, elemental ratios and DBE, and the isomer

 fraction in each subgroup.

Polarity and subgroup	Number of overall peak ^a	Number of formulas ^b	%	MW (Da)	H/C	O/C	DBE	Isomer fraction (%)
MZL								
total(-)	1961(70%)	1081(100%)	100	243	1.23	0.62	5.38	61
CHO-		347(32%)	23	206	1.05	0.44	6.13	70
CHON-		376(35%)	40	239	1.06	0.56	6.52	57
CHOS-		166(15%)	15	241	1.66	0.78	2.51	51
CHONS-		192(18%)	22	318	1.54	0.91	4.26	61
total(+)	5053(57%)	1955(100%)	100	225	1.34	0.27	5.76	61
CHO+		446(23%)	13	215	1.07	0.33	7.02	64
CHN+		302(15%)	11	177	1.33	0.00	5.93	79
CHON+		1103(56%)	74	236	1.42	0.28	5.34	60
CHONS+		104(6%)	2	292	1.65	0.68	4.29	11

total(-)	3950(78%)	2597(100%)	100	241	1.22	0.51	5.85	72
CHO-		937(36%)	24	217	0.98	0.34	7.29	81
CHON-		799(31%)	53	230	0.96	0.50	7.28	68
CHOS-		494(19%)	16	256	1.81	0.63	2.02	70
CHONS-		367(14%)	7	305	1.57	0.81	4.26	57
total(+)	13168(72%)	7473(100%)	100	229	1.26	0.19	6.73	80
CHO+		1705(23%)	22	238	1.11	0.24	7.33	80
CHN+		1298(17%)	35	199	1.12	0.00	8.01	92
CHON+		3848(52%)	40	225	1.24	0.19	6.71	82
CHONS+		622(8%)	3	292	2.10	0.42	2.52	41
BJH								
total(-)	6745(72%)	3941(100%)	100	244	1.19	0.45	6.07	78
CHO-		1718(44%)	35	223	0.93	0.34	7.76	89
CHON-		842(21%)	48	221	0.92	0.50	7.24	73
CHOS-		831(21%)	12	280	1.74	0.51	2.26	80
CHONS-		550(14%)	5	292	1.56	0.59	4.74	48
total(+)	28696(75%)	17596(100%)	100	235	1.28	0.21	6.75	89
CHO+		3990(23%)	21	226	1.08	0.22	7.27	91
CHN+		2831(16%)	39	210	1.14	0.00	8.16	96
CHON+		8400(48%)	36	229	1.20	0.21	7.15	90
CHONS+		2375(13%)	4	302	2.04	0.44	2.74	71

2 Analytical method development and chemical characterization of urban OA using ultrahigh resolution mass spectrometry

^aValues in the parentheses are the percentage of peaks that can be assigned with unambiguous fomulas.

^bValues in the parentheses are the percentage of different subgroups among the assigned reasonable formulas.

2 Analytical method development and chemical characterization of urban OA using ultrahigh resolution mass spectrometry

Figure 2.3.1: Mass spectra of detected organic compounds in ESI- and ESI+. The pie chats are proportional to the peak areas of an organic compound subgroup in each sample.

Mass spectra of observed organic compounds were reconstructed in both ESI- and ESI+ (see Figure 2.3.1). It should be noted that different organic species have different signal response in the mass spectrometer, so uncertainties exist when comparing the peak areas of organics in different subgroups. In this work, all species are assumed to have the same signal response when we compare peak areas of organics among different samples. A significant difference between ESI- and ESI+ is observed in terms of both the number and abundance of the detected compounds (Table 2.3.1 and Figure 2.3.1). Except CHOS compounds, all other subgroups have much more formulas in ESI+ mode compared to ESI- mode, indicating the less ionization suppression for these compounds

in ESI+. However, according to the peak abundance showed in Figure 2.3.1, the abundance fractions of CHO, CHOS and CHONS compounds in ESI- mode are higher than that in ESI+ mode, while CHN compounds have higher abundance fraction in ESI+ and the fractions for CHON compounds vary depending on different samples. This is due to the different mechanisms between negative and positive ionization mode in the electrospray, where ESI- is especially sensitive to deprotonatable compounds (e.g., organic acids) and ESI+ is prone to protonatable compounds (e.g., organic basic compounds). In both Mainz and Beijing samples, CHON compounds show the highest total peak abundance of the detected compounds, which is consistent with other urban OA studies (Lin et al., 2012a;Rincón et al., 2012;Wang et al., 2017), indicating the importance of CHON compounds to the urban atmosphere.

Table 2.3.1 shows that the number-weighted averaged molecular weight of the total detected compounds is similar between Mainz and Beijing samples (241-244 Da in ESI- and 225-229 in ESI+). However, the number-weighted averaged H/C and O/C ratios of total compounds in Beijing samples are significantly lower compared to Mainz samples and the number-weighted averaged DBE in Beijing samples is higher than that in Mainz samples. This observation suggests that organics in Beijing OA are more condensed and unsaturated compared to Mainz OA and aromatics (e.g., oxidized PAH) have an important impact on the Beijing atmosphere.

2.3.2 CHO Compounds

In this study, CHO compounds account for 23-35% of the peak abundance among the organic compounds detected in ESI-, while the fraction decreases to 13-22% in ESI+ mode (see Table 2.3.1), indicating CHO compound in this study are more sensitive in ESI- mode. This is consistent with a previous study from Lin et al. (Lin et al., 2012a), which shows that most CHO compounds in OA contain carboxylic groups and are prone to deprotonate in ESI- mode. To further characterize the CHO compounds, van Krevelen (VK) and carbon oxidation state (OS_c) diagrams are produced. The VK diagram is often utilized to describe the compositional characteristics of complex organic mixtures. It provides a broad overview on their average composition and can be used to qualitatively classify different composition domains (Hockaday et al., 2009;Lin et al., 2012a;Rincón et al., 2012). The VK diagram for CHO compounds observed in ESI- is shown in Figure 2.3.2, while the VK diagram for CHO compounds observed in ESI+ is showed in Figure S2.3.2. According to the H/C and O/C ratios, organic compounds can be divided into two different classes: aliphatic compounds with high H/C ratio (\geq 1.5) and low O/C ratios (\leq 0.5) (area A in Figure 2.3.2) and low-oxygen-containing aromatic hydrocarbons with low H/C ratio (\leq 1.0) and

low O/C ratio (≤ 0.5) (area B in Figure 2.3.2) (Kourtchev et al., 2014). As can be seen in Figure 2.3.2 (and Figure S2.3.2), the majority of CHO compounds are located in the region A and B, which agrees well with previous urban OA studies (Rincón et al., 2012;Kourtchev et al., 2014). However, much more CHO compounds detected in Beijing samples were plotted in the region B, indicating that Beijing OA contains more low-oxygen-containing aromatic hydrocarbons. The number weighted averaged H/C and O/C ratios of CHO compounds detected in ESI- are 1.05 and 0.44, respectively, in Mainz samples, while lower H/C and O/C ratios (0.98 and 0.34 in BJL; 0.93 and 0.34 in BJH) are observed in Beijing samples. This result is also consistent with previous studies, for example, the H/C and O/C ratios are lower in the samples from the Pearl River Delta region in Southern China compared to those from Cambridge in the UK (Lin et al., 2012a;Rincón et al., 2012). The low H/C and O/C ratios indicate the unsaturated characteristics of CHO in urban aerosol samples from China. This is further confirmed by the aromaticity equivalent (X_C) , which is a parameter determining the presence of aromatics ($X_C \ge 2.5$) and condensed aromatics ($X_C \ge 2.7$) (Yassine et al., 2014). As shown in the pie chart of Figure 2.3.2, the fractions of aromatics and condensed aromatics are about 2 times and 1.7 times higher, respectively, in Beijing than in Mainz. The large difference in chemical characteristics of CHO compounds in Beijing and Mainz is likely associated with the different emission sources and/or atmospheric processes.

2 Analytical method development and chemical characterization of urban OA using ultrahigh resolution mass spectrometry

Figure 2.3.2: The van Krevelen diagram for CHO compounds detected in ESI- mode. Areas 'A' and 'B' refer to aliphatic compounds and low-oxygen-containing aromatic hydrocarbons in organic aerosol, respectively. The colour bar denotes the aromaticity equivalent (gray with X_C < 2.50, purple with 2.50 ≤ X_C < 2.70 and red with X_C ≥ 2.70). The pie chat shows the percentage of the number of each color-coded compound in each sample.

The carbon oxidation state (OS_C) , introduced by Kroll et al. (Kroll et al., 2011) is another parameter used to describe the composition of a complex mixture of organics experiencing dynamic oxidation processes. OS_C can be calculated for each molecular formula of CHO compounds

identified in the mass spectra following Eq. (7).

$$OS_{C} \approx 2 O/C - H/C \tag{7}$$

Figure 2.3.3 shows the overlaid OS_C as a function of carbon number for samples from Beijing and Mainz. Consistent with previous studies (Kourtchev et al., 2015;Kourtchev et al., 2016;Wang et al., 2017), the majority of molecules in the CHO subgroup have OS_C between -1.5 and +1 with number of carbon atoms up to 30. The molecules with OS_C between -1 and -2 with 18 or more carbon atoms are suggested to be associated with hydrocarbon-like organic aerosol (HOA). The molecules with OS_{C} between -1.25 and -0.25 with 7-23 carbon atoms are associated with biomass burning organic aerosol (BBOA) directly emitted into the atmosphere. The molecules with OS_C between -0.5 and +0.25 with 5-18 carbon atoms are associated with semi-volatile oxygenated organic aerosol (SV-OOA), while the molecules with OS_C between +0.25 and +1.0 with 4-13 carbon atoms are associated with low-volatility oxygenated organic aerosol (LV-OOA) as defined by Kroll et al. (Kroll et al., 2011). As shown in Figure 2.3.3, a large majority of CHO molecules are attributed to SV-OOA for both Beijing and Mainz samples, indicating the importance of atmospheric oxidation and aging in OA production. Significantly more BBOA associated molecules are obtained in Beijing compared to Mainz, reflecting the enhanced biomass burning activities in Beijing and surrounding areas (Zhang et al., 2008;Cheng et al., 2013;Huang et al., 2014; Elser et al., 2016). It should be noted that coal combustion is also an important OA source (Zhang et al., 2013;Huang et al., 2014;Elser et al., 2016;Zhang et al., 2016), which is not discussed here due to the lack of source characterization with UHRMS study.

Figure 2.3.3: Carbon oxidation state plots for CHO compounds detected in ESI- mode. The black dash ovals area marked as HOA, BBOA, SV-OOA and LV-OOA correspond to hydrocarbon-like organic aerosol, biomass burning organic aerosol, semivolatile and low-volatility organic aerosol.

2.3.3 CHON Compounds

A large amount of organic nitrogen compounds has been observed in fog water, continental precipitation as well as aerosol samples (Altieri et al., 2009;Mazzoleni et al., 2010b;Lin et al., 2012a;Jiang et al., 2016). In this study, 376-842 of CHON- compounds (CHON compounds detected in ESI-) and 1103-8400 of CHON+ compounds (CHON compounds detected in ESI+) were determined. The peak area of CHON- accounts for 40% in Mainz samples and it increases to

74% for CHON+. On the contrary, the peak area fractions of CHON- in Beijing samples (53% in BJL and 48% in BJH) are higher compared to that for CHON+ (40% in BJL and 36% in BJH). This observation indicates that most CHON compounds in Mainz samples contain amino functional groups, which are prone to be protonated in ESI+ mode, while CHON compounds in Beijing samples contain more nitro groups, which are preferentially to be deprotonated in ESI- mode.

The CHON compounds are further classified into different subgroups based on the O/N ratios. Figure 2.3.4 shows the relative contribution of each subgroup to the sum of CHON peak intensities observed in ESI+ and ESI- mode. Compounds in the subgroups with O/N <3 are preferentially detected in ESI+ mode, again likely due to the presence of reduced nitrogen containing functional groups (e.g., amines). Interestingly, in ESI+ mode, a large fraction (~40%) of CHON+ compounds have O/N ratio of 2 for samples from Mainz, while compounds with O/N ratio of 1 dominate (~55%) for samples from Beijing regardless of the pollution level. This is an indication that CHON+ compounds in Beijing OA contain more reduced nitrogen atoms, which could be produced from a minor pyrolytic and oxidative processing (e.g., smoldering burning) of N-heterocycle compounds (e.g., imidazole) (Lin et al., 2012a). The number-weighted averaged DBE for CHON+ compounds is 5.34 in Mainz samples, while higher averaged DBEs (6.71 in BJL and 7.15 in BJH) are observed in Beijing samples, indicating CHON+ compounds in Beijing OA are more unsaturated. This is further confirmed by the VK diagram in Figure S2.3.3, which shows that much more CHON+ compounds in Beijing samples are suggested to be low-oxygen-containing aromatic hydrocarbons in area B. And, the pie chat in Figure S2.3.3 shows that the fractions of aromatics and condensed aromatics in Beijing samples are about 1.25 times and 6 times higher, respectively, compared to Mainz samples. It indicates that reduced nitrogen- containing aromatic precursors have more influence on CHON+ compounds in Beijing than in Mainz. Another interesting subgroup of CHON compounds are those compounds with $O/N \ge 3$, which are preferentially observed in ESI- mode, likely associated with the nitrooxy (-ONO₂) or oxygenated nitrooxy group (O/N \geq 4). The majority of CHON- compounds has O/N ratio of 3 or 4, indicating that besides the nitrooxy group most CHON- compounds contain additionally not more than one oxidized group. This observation is confirmed by the modified VK diagram for CHON- compounds in Figure S2.3.4 (in which the VK diagram was constructed by plotting the H/C ratio versus the (O-3N)/C ratio instead of O/C ratio), showing a large number of CHON- compounds are observed with low (O-3N)/C ratio between 0 and 0.2. However, compared to the CHON- compounds in MZL and BJL samples dominating with O/N ratio of 3, the CHON- compounds in BJH samples are dominated with O/N ratio of 4, suggesting CHON- compounds undergo relatively higher oxidized process in polluted air. Consistent with the CHON+ compounds, the number-weighted averaged DBE (see Table 2.3.1)

and the fraction of aromatics of CHON- compounds (see Figure S2.3.4) in Beijing samples are higher than those in Mainz samples, indicating that nitrogen containing aromatics are more important precursors in Beijing OA, which agrees well with Wang et al.'s study (Wang et al., 2017) showing many nitrooxy-aromatic compounds (e.g., nitrophenol) with high abundance observed in the OA of Shanghai. It should be noted that only a small fraction of CHON compounds is observed in both ESI+ and ESI- modes (see overlapped bar in Figure 2.3.4). Actually this fraction of CHNO compounds could consist of amino acids, which contain both acidic (-COOH) and basic (-NH₂) functional groups and which have been identified in biomass burning and fossil fuel combustion emissions (Mace, 2003;Barbaro et al., 2011).

Figure 2.3.4: Classification of CHON compounds into different subgroups according to O/N ratios in their molecules. The y-axis indicates the relative contribution of each subgroup to the sum of CHON compounds peak intentities observed in the ESI- and ESI+ modes, respectively.

2.3.4 CHN Compounds

The CHN compounds can be detected only in ESI, which are very likely associated with nitrile and amine species (Lin et al., 2012a). The number-weighted averaged molecular weight of CHN compounds is the smallest in all subgroups. However, the number-weighted averaged DBE (5.93-8.16) of CHN compounds is the highest, indicating that this group of molecules is highly unsaturated. CHN compounds accounts for around 11% of the total peak abundance in Mainz sample, while it is more than three times higher in Beijing samples (35% in BJL and 39% in BJL), suggesting that CHN compounds have more important impact on Beijing OA compared to Mainz OA.

Figure 2.3.5 shows the Kendrick mass defect (KMD) diagram for the CHN compounds observed in Mainz and Beijing samples. The KMD diagram is commonly used to investigate the relationship among a large set of molecular formulas in the UHRMS study (Kendrick, 1963;Hughey et al., 2001;Lin et al., 2012a;Rincón et al., 2012). Here, we set the molar mass of CH₂ to exactly 14 u as the reference mass for calculating the Kendrick mass (KM) following Eq. (8) and the KMD is defined as the difference between the nominal mass and the KM as shown in Eq. (9).

$$KM(CH_2) = mass \times [mass \ CH_2] / mass \ CH_2$$
(8)

$$KMD(CH_2) = [mass] - KM(CH_2)$$
⁽⁹⁾

where brackets refer to the nominal mass obtained by rounding the mass to the nearest integer. When the KMD of a compound is plotted *vs.* its neutral molecular weight, homologous series of compounds differing only by CH₂ fall on horizontal lines and are clearly distinguishable. As can be seen in Figure 2.3.5, the majority of CHN compounds belong to members of several different homologous series. However, compared to the homologous series of CHN compounds in Mainz samples, the homologous series in Beijing samples often have a higher number of members with larger molecular weights. This could be explained by more primary biological aerosol particles with long chain aromatic amines or N-heterocycle compounds in Beijing atmosphere (Rincón et al., 2012;Jiang et al., 2014). The X_C values suggest that most CHN compounds are condensed aromatics ($X_C \ge 2.7$) and aromatics ($X_C \ge 2.5$). To facilitate the imagination of possible chemical species within Figure 2.3.5, the elemental composition, the DBE and a potential chemical structure for the first compound of three homologous series are also illustrated in the figure, representing a condensed aromatic species, an aromatic compound and a non-aromatic species. In previous MS/MS studies of CHN compounds (Simoneit et al., 2003;Laskin et al., 2009;Lin et al., 2012a), these nitrogen containing aromatic compounds are suggested to be alkaloids with one or two

nitrogen atoms embedded into five-membered (e.g., pyrazole, imidazole, and their derivatives) or six-membered rings (e.g., pyridazine and their derivatives), which are likely formed during biomass burning from dialkanoic acids and ammonia. It is worth noting that a significant number of CHN compounds with 12-23 DBE and 15-29 carbon atoms (those above the dash line in Figure 2.3.5) are exclusively present in Beijing samples. These compounds are assigned to polycyclic aromatic N-heterocycle hydrocarbons (PANH) with four or more aromatic rings, which are strong mutagens and potential human carcinogens. This result is consistent with a previous study in which several PANH with 4-8 aromatic rings were observed in ambient organic aerosol from Beijing (Jiang et al., 2014).

Figure 2.3.5: Kendrick mass defect diagram of CHN compounds detected in ESI+ mode. The colour bar denotes the aromaticity equivalent (gray with $X_C < 2.50$, purple with $2.50 \le X_C < 2.70$ and red with $X_C \ge 2.70$). The element composition, DBE and a potential chemical structure for the first compound (the black asterisk) of three homologous series are illustrated in the figure.

2.3.5 Sulfur Compounds (CHOS and CHONS Subgroups)

A large number of S-containing organic compounds have been observed in urban and rural OA (Tao et al., 2014; Jiang et al., 2016; Wang et al., 2016; Wang et al., 2017). In this study, 166-831 CHOS formulas were determined in ESI- mode. 86-93% of CHOS formulas are assigned to possess a molecular composition with O/S ratio \geq 4, suggesting they represent organosulfates (OSs), which is consistent with previous studies (Tao et al., 2014; Wang et al., 2016). The number-weighted average molecular weight of CHOS compounds in Beijing samples (250 Da in BJL and 280 Da in BJH) is larger than that (241 Da) in Mainz samples. In contrast, the number-weighted average DBE in Beijing samples (2.02 in BJL and 2.26 in BJH) is lower than that (2.51) in Mainz samples. Moreover, the DBE vs. carbon number diagram in Figure S2.3.5 shows that more CHOS compounds with low DBE and high carbon numbers were observed in Beijing samples, indicating that CHOS compounds with longer carbon chain and lower degree of unsaturation make an important contribution to Beijing OSs. This result is similar to a previous study (Tao et al., 2014), which revealed that the OSs in Shanghai have longer aliphatic carbon chains and lower degree of unsaturation than the OSs in Los Angeles. As observed in smog chamber studies(Riva et al., 2016), the OSs with high molecular weight and low degree of unsaturation can be formed from long-chain alkanes (e.g., dodecane) emitted from combustion sources. Besides the CHOS compounds, the other S-containing organics are assigned to be CHONS compounds, which are also prone to be measured in ESI- mode. The CHONS compounds account for around 22% of the total peak abundance in ESI- mode in the Mainz samples, while the fraction decreases to 5-7% in the samples from Beijing. The compound with the formula $C_{10}H_{17}O_7NS$, which has been identified as an α pinene-derived nitrooxy-OSs, shows the highest concentration in Mainz (see Figure 2.3.1), while its concentration is much smaller in Beijing, indicating the important role of monoterpene precursor on CHONS compounds in Mainz OA. In Mainz and BJL samples, 61-65% of detected CHONSformulas have the O/(4S+3N) ratio ≥ 1 , allowing their assignment to nitrooxy-OSs with both – OSO₃H and –ONO₂ groups. However, in BJH samples, only 29% of the CHONS- formulas are suggested to be nitrooxy-Oss. To further understand the chemical properties of these CHONS compounds, MS/MS analysis should be performed in the future.

2.4 Conclusion and implication

In this study, we applied the UHPLC-Orbitrap MS for the analysis of the organic fraction of PM_{2.5} samples from one European city Mainz and one Chinese city Beijing. Roughly 18000organic

compounds were identified based on unambiguous elemental composition in the urban OA, while the number of organics in Beijing samples are around 2-10 times more than Mainz samples. The information of these organic compounds can enrich the database of the molecular composition of OA in urban regions. 61-92% of the detected organics have more than one isomer, indicating that the UHPLC separation is important for the OA characterization and suggested to be applied prior to the mass spectrometer for the identification or quantification of individual organic substances in the OA in future studies.

The chemical characteristics of OA in Mainz and Beijing shows clear differences. The organic species of CHO, CHON and CHN in Beijing OA have lower elemental H/C and O/C (except CHN) but higher DBE and Xc compared to Mainz OA, demonstrating that organics in Beijing OA are highly unsaturated. The Van Krevelen and KMD diagrams show that much more mono/poly aromatics were observed in Beijing OA, suggesting that they are combustion related compounds. The majority of CHOS compounds are suggested to be OSs, while OSs in the two cities have different molecular characteristics showing that many OS with low DBE and high carbon numbers were only detected in Beijing OA. Most CHONS compounds were observed in low concentrations in PM_{2.5} (MZL and BJL). These elemental compositions can be assigned to represent mostly nitrooxy-OS. Only 29% of CHONS compounds collected during high PM_{2.5} episodes (BJH) are suggested to be nitrooxy-OSs, point out the large differences in the chemical composition of CHONS compounds in the heavily and in the less polluted atmosphere. In future studies more detailed MS studies (e.g. MS/MS analysis) should be performed for a better understanding the molecular structures, sources or formation pathways of these compounds. As shown in this study, biogenic and anthropogenic precursors have a different influence on the Beijing OA and Mainz OA. Therefore, dedicated smog chamber experiments with mixtures of biogenic (e.g., α -pinene) and anthropogenic (e.g., naphthalene) precursors might be conducted to better understand their influence on OA formation in urban regions.

Supporting Information

The description of the calibration standard solution for mass spectrometer, five supporting figures (Figure S2.3.1-S2.3.5).

Acknowledgements

This study was supported by the National Natural Science Foundation of China (NSFC, Grant No. 41403110, No. 41673134, and No. 91644219) and the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) under Grant No. INST 247/664-1 FUGG. K. Wang acknowledges the scholarship from Chinese Scholarship Council (CSC) and Max Plank Graduate Center with Johannes Gutenberg University of Mainz (MPGC). We also thank Berthold Friederich (Institute of

Atmospheric Physics, Johannes Gutenberg University of Mainz) for his assistance in sample collection in Mainz.

2.5 Additional information and results

This following results and information are not part of the actual manuscript, however are supporting the results discussed above.

2.5.1 Difference of chemical composition between ACN/H2O and H2O extraction method

In previous studies, pure water (H₂O) were always used for the OA sample extraction with the following steps: Portions of OA filter samples were extracted using 2.5 mL pure water in an ultrasonic bath for 30 min two times, respectively. The extracts were filtered with a 0.2 μ m Teflon syringe filter and acidified to pH = 2 using HCl before performing a solid phase extraction (SPE) step. The filter extracts were then loaded on a SPE cartridge (Oasis HLB, 30 μ m, 60 mg per cartridge, Waters Corporation, Milford, MA) with the aim to remove inorganic ions, low molecular weight organic molecules and sugars. The loaded cartridge was subsequently rinsed two times with 1 mL pure water and then eluted with 1.5 mL of methanol containing 2% (w/w) ammonia. Immediately after eluting from the SPE column the extract was evaporated to dryness under a gentle stream of nitrogen. The residues were dissolved in 500 μ L acetonitrile and water (1/9, v/v) for LC-MS analysis.

Previous studies have shown the effect of the solvent on the characterization of OA (Bateman et al., 2008;Heaton et al., 2009;Tao et al., 2014). However, it is still not clear to what extent the extraction solvent affects the characterization of OA from different sources and mass loadings. Therefore, the PM2.5 samples from Beijing and Mainz, representing high and low mass loading and different pollution sources, were extracted with ACN/H2O (A/W) and H2O (W), respectively. Figure 2.5.1 shows the number of individually assigned molecular formulas in Mainz and Beijing samples. As can be seen in the figure the number of organic compounds observed in the Beijing samples are 2-10 times higher than in the Mainz samples. However, large solvent-dependent differences are observed for ESI+ and ESI-. While the number of compounds extracted with ACN/H2O (A/W-) is similar to those extracted with pure H2O (W-) for ESI- analysis, much more organic compounds are observed with ESI+ analysis when ACN/H2O (A/W+) is used for

extraction compared to pure H2O (W+). A plausible explanation for this observation is that most of organics detected in the ESI- contain carboxylic acid functional groups, which enhance the water solubility of the compounds. A more detailed analysis compares the overlapping percentage of number and intensity of compounds observed in ESI+ and ESI- using the two extraction methods (see Table 2.5.1). For example, in ESI- mode 72% of compounds observed in the H2O extracts are also observed in ACN/H2O extracts, while only 56% of compounds observed in the ACN/H2O extracts are obtained in H2O extracts. Meanwhile, 90% of the total peak intensity from the H2O extracts matches the peak intensity from the ACN/H2O extracts, while only 75% of the total peak intensity from the ACN/H2O extracts, an also be measured in the ACN/H2O extracts, in particular for those organics of high concentrations. More important, ACN/H2O can extract more organic compounds which are not found in the H2O extracts. In summary, the results demonstrate that ACN/H2O is superior to H2O for the extraction of organics in OA.

Figure 2.5.1: The number of individually assigned molecular formulas observed in ACN/H₂O and H₂O methods in Mainz and Beijing samples. Each subgroup is marked by the different colors.

Sample ID	Method	Number of the o molecular form	verlapped ulas (%)	Intensity of the overlapped formulas (%)			
		ESI-	ESI+	ESI-	ESI+		
	ACN-H ₂ O	56	20	75	32		
MZL	H2O	72	60	90	65		
	ACN-H ₂ O	70	46	92	78		
BJL	H2O	70	68	95	92		
BJH	ACN-H ₂ O	59	43	91	80		
	H2O	60	70	95	94		

Table 2.5.1: The overlapping percentage of number and intensity of compounds extracted in the two extraction methods

3 Comparison of OA chemical composition from different Chinese cities

This chapter is a reprint of the manuscript:

Kai Wang, Yun Zhang, Rujin Huang, Junji Cao, Christopher Kampf, Yafang Cheng, Ulrich Pöschl and Thorsten Hoffmann

Molecular characterization of organic aerosols in three cities at the northeast, central east and southeast of China using UHPLC-Orbitrap mass spectrometry

In preparation for Atmospheric Chemistry and physics

Abstract. Aerosol samples with the diameter of particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$ were collected in January 2014 in three Chinese cities located in northeast, centraleast and southeast of China: Changchun (CC), Shanghai (SH) and Guangzhou (GZ). The organic fraction of the PM_{2.5} samples were analyzed by ultrahigh performance liquid chromatography (UHPLC) coupled with Orbitrap mass spectrometry (MS). The formulas of the identified compounds were classified into five main subgroups: CHO, CHON, CHN, CHOS and CHONS. In total, 416-769 organic compounds in the negative electrospray ionization (ESI-) and 687-2943 in the positive electrospray ionization (ESI+), respectively, were determined. CHO, CHON and CHN compounds with high concentrations in the three urban samples share large similarity of chemical composition and the majority of them are assigned as mono or poly aromatics, suggesting that anthropogenic emission is an especially important source for the Chinese urban OA. Additionally, significantly more polyaromatics were observed in CC samples, which were probably generated from the coal burning for the residential heating in winter in northeast China. Moreover, higher H/C and O/C ratios of organic compounds in ESI- were observed in SH and GZ than those in CC, indicating that OA in low latitude regions of China experienced more intense photochemical oxidation processes. The majority of CHOS and CHONS compounds in all samples were identified as aliphatic compounds with low unsaturation and aromaticity, while CHOS and CHONS compounds between SH and GZ share higher similarity.

3.1 Introduction

In last decade, China has experienced severe and persistent particulate air pollution accompanying with rapid industrialization and urbanization (Huang et al., 2014;Song et al., 2017). Especially, in January 2013, the large-scare and severe particulate pollution affected around 1.3 million km² territories and 800 million inhabitants in China. Measurements of PM_{2.5} (particulate matter with an aerodynamic diameter less than 2.5 μ m) concentrations in 74 major Chinese cities in January 2013 showed that the daily average concentrations of PM_{2.5} exceeded the Chinese air quality standards of 75 μ g/m³, which were around twice higher compared to the US EPA standards of 35 μ g/m³ (Huang et al., 2014). Such extremely acute air pollution could not only influence the regional air quality and human health in China, but also lead to a global environment problem in some case by long-time and long-distance transport of pollutants from China. However, despite the important influence of particular aerosols on air quality, climate and human health (Pöschl,

2005;Pöschl and Shiraiwa, 2015), the chemical composition of particulate aerosol is still poorly understood due to a wide variety of natural and anthropogenic sources as well as the complex multiphase chemical reactions (Lin et al., 2012a;Noziere et al., 2015;Wang et al., 2017;Wang et al., 2018). In particular, compared to the fairly well understanding of inorganic fraction in particulate aerosol, the organic fraction, also named organic aerosol (OA), is considerably unclear in terms of chemical composition and precursors (Hallquist et al., 2009b).

OA accounts for a substantial fraction (20-90%) of submicrometer aerosol mass (Jimenez et al., 2009;Kroll et al., 2011;Wang et al., 2017) and contains thousands of organic compounds including alcohols, aldehydes, organic acids, organosulfates, organonitrates and polycyclic aromatic hydrocarbons (PAHs) (Lin et al., 2012a;Rincón et al., 2012;Kourtchev et al., 2014;Wang et al., 2018). However, only around 10-30% of OA has been identified as specific compounds (Hoffmann et al., 2011). Since compounds in OA cover a large chemical space with respect to molecular weight, functional groups and polarity (Rincón et al., 2012), chemical characterization of OA is vital but challenging analytical task(Wang et al., 2017;Laskin et al., 2018).

With the development of mass spectrometric techniques, recently, ultrahigh resolution mass spectrometry (UHRMS), such as Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and Orbitrap-MS, coupled with soft ionization sources (e.g., electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI)) have been introduced to elucidate the organic components in OA (Noziere et al., 2015;Laskin et al., 2018). Due to the two outstanding features of high resolution and high mass accuracy, UHRMS can give the information of precise elemental compositions of individual organic compounds. Previous UHRMS studies mainly focused on the chemical characterization of OA samples collected from laboratory simulations, forest, rain water, biomass burning and rural regions (Nizkorodov et al., 2011;Kourtchev et al., 2016; Tu et al., 2016). For example, Tu et al. (2016) identified the highly oxidized multifunctional molecules (HOMs) in fresh and aged secondary organic aerosol (SOA) generated from a flow tube reactor using Orbitrap-MS. Kourtchev et al. (2016) applied the Orbitrap-MS technique to analyze the organic fraction of PM_{2.5} aerosol samples collected during dry and wet seasons in central Amazonia and showed that OA in central Amazonia was influenced not only by biogenic emission but also anthropogenic emissions from near urban environment. However, less studies on urban OA have been conducted by UHRMS techniques. Rincon et al. (2012) compared the chemical composition of OA collected in summer and winter times at Cambridge, UK and showed that more organic compounds, especially the PAHs, were observed in summer OA samples probably due to more intense photo-chemical aging processes during summer time. Lin et al. (Lin et al., 2012b), Tao et al. (Tao et al., 2014) and Wang at al. (Wang et al., 2016) identified the organosulfates in OA

collected from seven rural and urban locations in East Asia, Shanghai and Los Angeles, and Shanghai, respectively. Very recently, Wang et al. (Wang et al., 2017) characterized the OA in Shanghai and showed the variations of chemical composition of OA among different months and between daytime and nighttime. Our recent study (Wang et al., 2018) analyzed the OA in a Chinese city (Beijing) and a German city (Mainz) and showed that the chemical composition of OA in Beijing and Mainz had a big difference. Since the severe particulate pollution in China happened in a large-scale with inter-regional air pollutant transport, more UHRMS studies need to be conducted to elucidate the chemical composition of OA from different Chinese cities.

In this study, $PM_{2.5}$ aerosol samples were collected from three Chinese cities: Changchun (CC), Shanghai (SH) and Guangzhou (GZ) and their organic fraction were detected using ultra-highperformance liquid chromatography (UHPLC) coupled with Orbitrap MS. The Chinese cities of CC, SH and GZ are located, respectively, in the northeast, central east and southeast regions of China with around 50 million population in total. The geographic positions of these three cities cover a large latitude span from 23.12°N to 43.53°N resulting in different meteorological conditions including insolation duration, average daily temperature and monsoon climate. In addition, the industrial structure, energy consumption and energy in these three cities are different, which can cause various anthropogenic emission influencing the chemical composition of OA. For example, OA in CC are strongly affected by the coal burning used for residential heating in winter in northeast China. Therefor, this study presents a comprehensive overview of chemical composition of OA in three representative Chinese cities, which can promote our understanding of OA effect on climate and public health as well as provide chemical database for the haze control strategies in China.

3.2 Material and methods

3.2.1 Collection of PM_{2.5} samples

Three 24-h integrated urban $PM_{2.5}$ samples were collected during the severe haze pollution events in each of the three Chinese cities: CC, (43.53°N, 125.19°E), SH (31.30°N, 121.50°E) and GZ (23.12°N, 113.36°E), which are located respectively in the northeast, central east and southeast regions of China (see Figure 3.2.1). Samples in CC were collected in 4, 24 and 29 of January 2014 with PM_{2.5} mass concentrations of 185-222 µg m⁻³, samples in SH were collected in 1, 19 and 20 of January 2014 with PM_{2.5} mass concentrations of 159-172 µg m⁻³ and samples in GZ were collected in 5, 6 and 11 of January 2014 with $PM_{2.5}$ mass concentrations of 138-152 µg m⁻³. All $PM_{2.5}$ samples were collected on the prebaked quartz-fiber filters (8×10 inch) using a high-volume sampler at a flow rate of 1.05 m³ min⁻¹ and at each sampling site field blank samples were taken. After sample collection, filters were stored at -20 °C until analysis.

Figure 3.2.1: Locations of Changchun (CC), Shanghai (SH) and Guangzhou (GZ) in China.

3.2.2 Sample analysis

Detailed description on the filter sample extraction and UHPLC-Orbitrap MS analysis can be found in our previous study (Wang et al., 2018). Briefly, a part of the filters (around 1.13 cm², corresponding to about 600 µg particle mass in each extracted filter) was extracted three times with 1.5 mL of acetonitrile-water (8/2, v/v) in an ultrasonic bath. The extracts were combined, filtered through a 0.2 µm Teflon syringe filter and evaporated to almost dryness under a gentle nitrogen stream. Finally, the residual was redissovled in 1000 µL acetonitrile-water (1/9, v/v) for subsequent analysis.

The analytes were separated using Hypersil Gold column (C18, 50 x 2.0 mm, 1.9 µm particle size) with mobile phases consisting of (A) 0.04% formic acid and 2% acetonitrile in water and (B) 2% water in acetonitrile. Gradient elution was applied with the A and B mixture at a flow rate of

 $500 \,\mu\text{L min}^{-1}$ as follows: 0-1.5 min 2% B, 1.5-2.5 min from 2% to 20% B (linear), 2.5-5.5 min 20% B, 5.5-6.5 min from 20% to 30% B (linear), 6.5-7.5 min from 30% to 50% B (linear), 7.5-8.5 min from 50% to 98% B (linear), 8.5-11.0 min 98% B, 11.0-11.05 min from 98% to 2% B (linear), 11.05-11.1 min 2% B. The Q Exactive Hybrid Quadrupole-Orbitrap MS was equipped with a heated ESI source at 120 °C, applying a spray voltage of -3.3 kV and 4.0 kV for negative ESI (ESI-) and positive ESI (ESI+), respectively. The mass scanning range was set between m/z 50 and m/z 500 with a resolving power of 70,000 @ m/z 200. The Orbitrap MS was externally calibrated before each measurement sequence using an Ultramark 1621 solution (Sigama-Aldrich, Germany) providing the mass accuracy of the instrument lower than 3 ppm. Each sample was measured in triplicate with an injection volume of 10 μ L.

3.2.3 Data Processing

Custom software (SIEVE[®], Thermo Fisher Scientific, Germany) was used to calculate all mathematically possible formulas for all detected ions with a sample-to-blank abundance ratio \geq 10 with a mass tolerance of ± 2 ppm. The permitted maximum elemental numbers of atoms were set as follows: ¹²C (39), ¹H (72), ¹⁶O (20), ¹⁴N (7), ³²S (4), ³⁵Cl (2) and ²³Na (1). The assigned formulas containing isotopes (e.g., ¹³C, ¹⁸O and ³⁴S) were not discussed in this study due to much less abundance of these formulas. To remove the chemically unreasonable formulas, further constraint was applied by setting H/C, O/C, N/C, S/C and Cl/C ratios in the ranges of 0.3-3, 0-3, 0-1.3, 0-0.8 and 0-0.8, respectively. For chemical formula $C_cH_hO_oN_nS_sCl_x$, the double bond equivalent (DBE) was calculated by the equation: DBE = (2c + 2 - h - x + n)/2, and the aromaticity equivalent (X_{C}) as a modified index for aromatic compounds was obtained using the equation: Xc $= [3(DBE - (p \times o + q \times n)) - 2] / [DBE - (p \times o + q \times n)],$ where p and q, respectively, refer to the fraction of oxygen and sulfur atoms involved in π -bond structure of a compound. Xc \geq 2.50 and Xc ≥ 2.71 are suggested to unambiguous minimum criteria for the presence of monoaromatics and polyaromatics, respectively (Yassine et al., 2014). Detailed data processing is presented in the Supporting Information (SI) and the molecular formulas assigned in each sample is also shown in Table S3.2.1-S3.2.6 in SI.

3.3 Results and discussion

3.3.1 General Characteristics

The main purpose of this study is to tentatively identify and compare the chemical composition of organic compounds in the PM_{2.5} samples collected from the three Chinese cities of CC, SH and GZ. The number of organic compounds detected in each city and the abundance-weighted average values of molecular weight (MW), elemental ratios, DBE and Xc for each subgroup are listed in Table 3.3.1. Overall, 416-769 and 687-2943 organic compounds were determined in ESI- and ESI+, respectively. The greatest number of organic compounds was observed in CC samples in both ESIand ESI+, indicating that OA collected in winter season in the northeast region of China were more complex compared to that in central east and southeast regions of China. It could be explained by the extensive use of coal burning for the residential heating in winter in northeast China, which can produce various numbers of organics. In addition, the temperatures (-10 °C to -6°C) during the sample collection dates in CC were lowest, which inhibited the diffusion of formed organics enhancing the air pollution. It should be noted that in this study we focused on the organic compounds with relatively high concentrations, so the compounds with low concentration were excluded through reducing the injection volume from 20 μ L in our previous study to 10 μ L and increasing the sample-to-blank ratio from 3 in our previous study to 10 in data process, which leaded to many fewer numbers of organic compounds detected in this study compared to our previous study (Wang et al., 2018).

As shown in Table 3.3.1, the abundance-weighted average values of MW, H/C and O/C ratio of the total assigned formulas in CC- are 169, 1.03 and 0.58, respectively, which are significantly lower compared to those in SH- (MW=176, H/C=1.05 and O/C=0.69) and in GZ- (MW=183, H/C=1.14 and O/C=0.74). On the contrary, the Xc (2.13) of the organics detected in CC- is relatively higher than that in SH- (Xc = 1.92) and GZ- (Xc = 1.65). These observations indicate that OA in northeast China features lower degree of oxidation but higher degree of aromaticity compared to those in central east and southeast China. It could be caused by that the low temperature and hydroxy radical concentration in winter time in northeast China suppressed the photooxidation process of OA, meanwhile, a large number of PAHs were emitted from coal burning (Huang et al., 2014). Figure 3.3.2 shows the reconstructed mass spectra of organic compounds detected in ESI- and ESI+. It should be noted that uncertainties always exist when comparing the peak abundance of organic compounds in different subgroups due to their different signal response in the mass spectrometer. In this study, we assume that all organic compounds have the same mass spectrum response and the peak abundance of organic compounds were compared among different samples. The major organic species detected in ESI- are attributed to CHO- and CHON-, accounting for 30-42% and 39-55% in terms of peak abundance, respectively, which is consistent with other OA studies by Lin et al. and Wang et al. (Lin et al., 2012a; Wang et al., 2017). Comparing

the organics detected in ESI- among the three samples, we find that 139 formulas were observed in all samples as common formulas (see Figure 3.3.3), which account for 35-51% and 78-87% of all assigned formulas in terms of peak numbers and peak abundance, respectively. It demonstrates that despite the different sampling locations a large number of common organic compounds exist in Chinese urban OAs, in particular for those organics with high abundances. Furthermore, the pie chat in Figure 3.3.3b shows that these common formulas are also dominated by CHON- and CHO-, respectively accounting for 59% and 33% of the total common formulas in terms of peak abundance.

As we know that ESI source has a different mechanism between negative and positive ionization mode, where ESI- is especially sensitive to deprotonatable compounds (e.g., organic acids) and ESI+ is prone to protonatable compounds (e.g., organic amines). Due to the different mechanism between ESI- and ESI, a remarkable difference of mass spectra (see Figure 3.3.2) and chemical characteristics (see Table 3.3.1) between ESI- and ESI+ was represented. For example, in this study, CHO compounds were preferentially detected in ESI- with relatively higher fraction (30-42%) compared to 4-13% in ESI+, while CHN compounds could only be observed in ESI+ with great peak abundance fraction of 40-71%. This observation indicates that most CHO compounds with high concentrations are probably organic acids and the major CHN compounds in this study are likely organic amines, which agrees well with previous studies (Lin et al., 2012a; Wang et al., 2017; Wang et al., 2018). Organic compounds in ESI+ are dominated by CHN+ and CHON+ compounds and these compounds are characterized with higher H/C ratio and lower O/C ratios (see Table 3.3.1), showing that they are less oxidized. The venn diagram in Figure 3.3.3a shows that 168 formulas were found in all samples as common formulas, which account for 25-44% and 65-90% of all assigned formulas in terms of peak numbers and peak abundance, respectively. Among these common formulas, CHN+ and CHON+ have the highest abundance fractions of 65% and 35% (see Figure 3.3.3b), respectively. In the following chapters, the chemical properties including oxidation, unsaturation and aromaticity degrees of each organic species (CHO, CHON, CHN, CHOS and CHONS) observed in the three samples were compared and discussed.

Table 3.3.1 Number of organic compounds in each subgroup and the abundance-weighted average values of molecular weight (MW), elemental ratios, double bond equivalent (DBE) and aromaticity equivalent (Xc) for detected organic compounds in ESI- and ESI+ in the three Chinese cities.

Sample ID	Subgroup	Number of compounds	Abundance (%)	MW	H/C	O/C	DBE	Xc	Isomer fraction (%)
CC-	total	769	100	169	1.03	0.58	5.02	2.13	64
	СНО	346	30	162	0.96	0.41	5.65	2.28	81
	CHON	180	55	163	0.94	0.51	5.24	2.44	66
	CHOS	155	10	198	1.56	1.17	2.55	0.50	51
	CHONS	88	5	214	1.35	1.07	3.75	1.06	18
SH-	total	416	100	176	1.05	0.69	4.99	1.92	55
	СНО	164	40	171	0.97	0.59	5.37	1.94	68
	CHON	135	44	169	0.86	0.56	5.67	2.47	59
	CHOS	75	12	190	1.85	1.41	1.79	0.34	29
	CHONS	42	4	266	1.56	1.00	3.30	0.44	36
GZ-	total	488	100	183	1.14	0.74	4.55	1.65	59
	СНО	196	42	172	1.10	0.65	4.68	1.57	68
	CHON	161	39	173	0.89	0.58	5.56	2.41	60
	CHOS	86	14	201	1.85	1.48	1.71	0.21	38
	CHONS	45	5	293	1.56	0.82	3.45	0.43	53
CC+	total	2943	100	160	1.21	0.13	5.58	2.36	90
	CHO	609	13	174	0.94	0.28	6.55	2.22	87
	CHN	696	40	154	1.22	0.00	5.84	2.60	96
	CHON	1594	46.5	161	1.27	0.19	5.11	2.22	90
	CHONS	44	5	196	1.91	0.70	2.64	0.09	23
SH+	total	704	100	162	1.37	0.09	4.91	2.32	63
	CHO	87	4	184	1.13	0.43	5.46	1.46	38
	CHN	253	71	159	1.38	0.00	5.08	2.55	85
	CHON	350	24.7	167	1.40	0.27	4.34	1.81	57
	CHONS	14	0.3	241	1.17	0.61	5.32	0.91	0
GZ+	total	687	100	161	1.41	0.17	4.58	2.07	58
	CHO	125	8	185	1.12	0.42	5.19	1.20	49
	CHN	205	62	156	1.42	0.00	4.80	2.47	82
	CHON	336	29	165	1.47	0.45	4.00	1.51	50
	CHONS	21	1	209	1.84	0.71	3.05	0.31	10

Figure 3.3.2: Mass spectra of detected organic compounds reconstructed from extracted ion chromatograms in ESI- and ESI+. X axis refers to the molecular mass (Da) of the identified species. Y axis refers to the relative peak abundance of each individual compound to the compound with the greatest peak abundance.

The sizes of pie chats are proportional to the abundances of a subgroup in all detected organics.

Figure 3.3.3: (a)Venn diagrams shows the number distribution of all molecular formulas detected in ESIand ESI+ in all samples. (b) Peak abundance contribution of each elemental formula category to the total common formulas.

3.3.2 CHO

CHO compounds have been widely observed in urban OA with a substantial fraction (13-41%) of OA (Mazzoleni et al., 2010a;Lin et al., 2012a;Rincón et al., 2012;Wang et al., 2017;Wang et al., 2018). Previous studies showed that the majority of CHO compounds in urban OA were identified as organic acids containing carboxyl functional groups, which are prone to be detected in the

negative mode in mass spectrometer. As shown in Table 3.3.1, a total of 346, 164, and 196 CHOcompounds were detected in ESI- in CC-, SH- and GZ- samples, which account for 30%, 40% and 42% of the overall peak abundance of compounds in each sample. The average H/C values (0.96-1.10) are similar among the three samples, while the average O/C values in SH- (O/C = 0.59) and GZ- (O/C = 0.65) are relatively higher than that (0.41) in CC-. Furthermore, the van Krevelen diagram in Figure S3.3.1 also shows that more CHO- compounds with high O/C ratio were found in SH- and GZ- compared to CC-. These results together indicate that CHO- compounds in the OA collected from central east and southeast China were generated after a more intensive oxidation process. 52 common CHO- formulas were obtained in all samples, accounting for 13-17% and 74-88% of all identified CHO- formulas in terms of numbers and abundance, respectively. It indicates that the chemical composition of CHO- compounds with high concentration among these three Chinese cities are similar.

Figure 3.3.4 shows the DBE against C number of CHO- compounds in the three samples. As shown in Figure 3.3.4, the abundance-weighted average molecular formulas for CHO- compounds in CC-, SH- and GZ- are $C_{8.58}H_{7.86}O_{3.22}$ (MW = 162), $C_8H_{7.27}O_{4.22}$ (MW = 171) and $C_{7.7}H_{8.04}O_{4.48}$ (MW = 172), respectively. It shows that CHO- compounds in SH- and GZ- have relatively higher abundance-weighted MW with greater content of O, whereas the CHO- compounds in CC- have lower abundance-weighted MW with less C content. In Figure 3.3.4, a wide range of DBE values (0-15) was obtained in the CHO- compounds, increasing with the increase of carbon content. The CHO- compounds with high peak abundance were mainly assigned as monoaromatics with $2.5 \leq$ Xc < 2.7 (purple circles in Figure 3.3.4) in the region of 7-12 C numbers and 5-7 DBE values, which have the highest fraction (49-67%) of the total CHO- compounds. In addition, 4-14% of CHO- compounds are identified as polyaromatics with $Xc \ge 2.7$ (red circles in Figure 3.3.4), which are suggested to be emitted from coal combustion (Song et al., 2018). These results are consistent with a previous study by Wang et al. (Wang et al., 2017) showing that aromatics account for 51% of total CHO- compounds in Shanghai OA. It indicates that aromatic compounds are an important fraction in Chinese urban OA, which are probably generated from combustion emission (e.g., biomass burning and fossil fuel fuel combustion) (Huang et al., 2014;Kourtchev et al., 2016; Fleming et al., 2018). Beside the monoaromatics and polyaromatics, the rest CHOcompounds are assigned as aliphatic compounds with Xc lower than 2.5 (grey circles in Figure 3.3.4), which are likely derived from biogenic precursors (Lin et al., 2012a;Rincón et al., 2012). Comparing with the high fraction (47%) of CHO aliphatic compounds in GZ-, they account for much lower fraction in CC- (19%) and SH- (28%), indicating that biogenic sources have more impact on GZ- OA than that in CC- and SH-.

In CC-, formulas of $C_8H_6O_4$, $C_7H_6O_2$, $C_7H_6O_3$, $C_8H_8O_2$, and $C_8H_8O_3$ with DBE values of 6, 5, 5, 5, and 5 are dominant. According to previous studies, $C_8H_6O_4$, $C_7H_6O_2$ and $C_7H_6O_3$ are suggested to phthalic acid, benzoic acid and monohydroxybenzoic acid, respectively, which are derived from naphthalene (Kautzman et al., 2010;Riva et al., 2015;Wang et al., 2017). $C_8H_8O_2$ and $C_8H_8O_3$ are likely hydroxyphenylacetaldehyde and 4-methoxybenzoic acid derived from estragole (Lee et al., 2006;Pereira et al., 2014). In SH-, besides $C_8H_6O_4$, $C_7H_6O_3$ and $C_7H_6O_2$, formulas of $C_6H_8O_7$ and $C_9H_8O_4$ with DBE values of 3 and 6 were observed with high peak abundance. $C_6H_8O_7$ was identified as citric acid in the pollen sample in previous study(Jung and Kawamura, 2011) and $C_9H_8O_4$ are probably homophthalic acid derived from estragole (Pereira et al., 2014). In GZ-, besides the formulas of $C_8H_6O_4$ and $C_6H_8O_7$ discussed above, $C_4H_6O_4$ and $C_4H_6O_5$ with low DBE values of 2 were also detected with high abundance and they are suggested to succinic acid and malic acid, respectively (Claeys et al., 2004;Wang et al., 2017).

Figure 3.3.4: Double bond equivalent (DBE) vs C number for all CHO- compounds of all samples. The molecular formula represents the abundance-weighted average CHO- formula and the size of circles is proportional to the fourth root of the peak abundance of a individual compound. The color bar denotes the aromaticity equivalent (gray with XC < 2.50, purple with $2.50 \le XC < 2.70$ and red with XC ≥ 2.70). The size of pie chats is proportional to the peak abundances of each color-coded compounds in each sample.

3.3.3 CHON

A large amount of organic nitrogen compounds was detected in CC, SH and GZ samples, accounting for 39-55% and 24.7-46.5% of total peak abundance detected in ESI- and ES+,

respectively. 51 common CHON- and 89 common CHON+ formulas were observed in all samples, taking up 90-96% and 61-75% fraction of all CHON compounds detected in ESI- and ESI+, respectively, in terms of peak abundance. It indicates that the chemical composition of CHON compounds with high concentrations are quite similar in the OA of these three Chinese cities.

According to the O/N ratios in CHON formulas, the CHON compounds were further classified into different subgroups in Figure 3.3.5 for CHON- and Figure S2 for CHON+. As shown in Figure 3.3.5, the majority (84-96%) of CHON- compounds have O/N ratios \geq 3, allowing the assignment of one nitro $(-NO_2)$ or nitrooxy $(-ONO_2)$ group in these formulas, which are preferentially ionized in ESI- (Lin et al., 2012b; Wang et al., 2017; Song et al., 2018; Wang et al., 2018). In addition, the excess of O atoms to the -ONO₂ functional group in the CHON- subgroups with O/N ratios ≥ 4 suggests these compounds also contain other oxygenated functional groups, such as hydroxy group (-OH). 59% of CHON- compounds were found with O/N ratios ≥ 4 in GZ-, which is significantly higher than 51% in CC- and 45% in SH-, indicating that CHON- compounds in southeast China present a higher degree of oxidation compared to those in northeast and central east of China. Not surprisingly, CHON+ compounds come with lower O/N ratios (see Figure S3.3.2), which probably contain reduced nitrogen functional group (e.g., amines) and are prone to be detected in ESI+. As shown in Figure S3.3.2, CHON+ compounds with O/N ratio of 1 are dominant in CC+, whereas CHON+ compounds in SH+ and GZ+ have a relatively wider ranges of O/N ratios from 1 to 3. Moreover, the average O/C ratios (0.27-0.45) in SH+ and GZ+ (see Table 3.3.1) are much greater than that (0.19) in CC+. These results together indicate that CHON+ compounds in the OA of central east and southeast China experienced more intensive oxidation process.

Figure 3.3.6 shows the DBE versus C number of CHON- compounds in the three samples. The majority of CHON- compounds are in the region with 5-15 C and 3-10 DBE values. 67% of CHON- compounds were assigned as mono or poly aromatics in SH-, which is significant higher than 52% in GZ- and 54.7% in CC-. Additionally, the average DBE value (5.67) in SH- is relatively greater compared to 5.24 in CC- and 5.56 in GZ-. It indicates that CHON- compounds are dominated with aromatic compounds in all samples, while they have higher degree of aromaticity and unsaturation in SH- compared with those in CC- and GZ-. The abundance-weighted average molecular formulas for CHON- compounds in CC-, SH- and GZ- are $C_{7.1}H_{6.76}O_{3.56}N_{1.03}$, $C_{7.07}H_{6.03}O_{3.8}N_{1.24}$ and $C_{7.12}H_{6.36}O_{3.99}N_{1.24}$, respectively showing that CHON- formulas in SH- and GZ- contain more O and N atoms than that in CC-. Formulas of $C_6H_5O_3N_1$, $C_6H_5O_4N_1$, $C_7H_7O_3N_1$, $C_7H_7O_4N_1$, $C_8H_9O_3N_1$, and $C_8H_9O_4N_1$ were detected in all samples with the highest abundance. These compounds are probably nitrophenol or nitrocatechol analogs, which have been identified in previous urban OA study (Wang et al., 2017). Furthermore, these nitrooxy-aromatic compounds are proved to be

responsible for the light absorption in OA (Laskin et al., 2015;Lin et al., 2015). In addition, it should be noted that the Xc values for $C_6H_5O_4N_1$, $C_7H_7O_4N_1$ and $C_8H_9O_4N_1$ were calculated lower than 2.5, suggesting that the fraction of aromatics in CHON- compounds has been underestimated.

In Figure S3.3.3, the DBE versus C diagram shows that the major CHON+ compounds have the similar C number range from 5 to 15 with CHON- compounds in Figure 3.3.6, whereas more CHON+ compounds with DBE values lower than 5 were observed. The average molecular formulas for CHON+ compounds in CC+, SH+ and GZ+ are $C_{8.73}H_{10.74}O_{1.52}N_{1.5}$, $C_{8.35}H_{11.56}O_{2.08}N_{1.54}$ and $C_{7.6}H_{10.75}O_{2.6}N_{1.56}$, respectively, showing that they contain lower O contents but higher H contents than in CHON- compounds due to the different mechanism between ESI+ and ESI-. As shown in Figure S3.3.3, the majority (61-85.8%) of CHON+ compounds in the three samples are assigned as aliphatic compounds, while aromatics accounts for 39%, 18% and 14.2% in CC+, SH+ and GZ+, respectively. In addition, Table 3.3.1 shows that the DBE and Xc values in CC+ are significantly greater than those in SH+ and GZ+, while the O/C ratio (0.19) in CC+ is relatively lower than that in SH+ (O/C = 0.27) and GZ+ (O/C = 0.45). These results together demonstrate that CHON+ compounds in CC+ contain more aromatics with low degree of oxidation, while most CHON+ compounds in SH+ and GZ+ are identified as aliphatic compounds with relatively higher degree of oxidation.

Figure 3.3.5: Classification of CHON- compounds into different subgroups according to O/N ratios in their formulas. The y-axis indicates the relative contribution of each subgroup to the sum of peak abundance of CHON- compounds.

Figure 3.3.6: Double bond equivalent (DBE) vs C number for all CHON- compounds of all samples. The molecular formula represents the abundance-weighted average CHON- formula and the size of circles is proportional to the fourth root of the peak abundance of a individual compound. The color bar denotes the aromaticity equivalent (gray with XC < 2.50, purple with $2.50 \le XC < 2.70$ and red with XC ≥ 2.70). The size of pie chats is proportional to the peak abundances of each color-coded compounds in each sample.

3.3.4 CHN+

205-696 CHN+ compounds were detected in ESI+, which are likely amines according to previous studies (Rincón et al., 2012;Wang et al., 2017;Wang et al., 2018). The number of CHN+ compounds accounts for 24%, 36% and 30% of the total organic compounds in CC+, SH+ and

GZ+, respectively, whereas the peak abundance of these compounds accounts for 40%, 71% and 62%, correspondingly. Comparing the CHN+ compounds in these three samples, we find that 58 common CHN+ formulas were observed in all samples, which contributes 83-98% fraction to the total abundance of CHN+ formulas. It indicates that CHN+ compounds with high concentrations in CC+, SH+ and GZ+ are characterized with similar chemical compositions.

A van Krevelen diagram of CHN+ compounds detected in the three samples is shown in Figure 3.3.7, where H/C ratio is plotted versus the N/C ratio. The major CHN+ compounds are found in the region with H/C ratios between 0.5 and 2 with N/C ratios lower than 0.5. The pie chats in Figure 3.3.7 show that the major (83-87%) CHN+ compounds are assigned as mono or poly-aromatics with $Xc \ge 2.5$. In addition, Table 3.3.1 shows that the average DBE and Xc values of CHN+ compounds are the highest among all organic species. These observations imply that CHN+ compounds are the most aromatic organics in the urban OAs, which is consistent with previous studies (Lin et al., 2012b;Rincón et al., 2012). Polyaromatics with $Xc \ge 2.7$ are obtained at the lower left corner of the van Krevelen diagram accounting for 41% of CHN+ compounds detected in CC+, while they have less fraction (9-10%) in SH+ and GZ+. Moreover, the average DBE and Xc values of CHN+ compounds in CC+ are significantly higher than those in SH+ and GZ+ indicating that CHN+ compounds in CC+ have higher degree of aromaticity, which can be caused by heavy coal burning emission in the winter time in CC (Huang et al., 2014). An interesting observation in Figure 3.3.7 is that the abundance of CHN+ compounds in CC+ distributes evenly among different individual CHN+ compounds, while in SH+ and GZ+ they are absolutely dominated by the formula of $C_{10}H_{14}N_2$ (the biggest purple circle in Figure 3.3.7) with DBE value of 5, which is suggested to nicotine generated from tobacco smoke (Wang et al., 2017). Formulas of $C_7H_{12}N_2$, $C_{11}H_{11}N_1$, $C_{10}H_9N_1$, and $C_{12}H_{13}N_1$ were detected with high abundance in CC+. $C_7H_{12}N_2$ is likely imidazoles, while the others are related to polyaromatics with a naphthalene core structure, such as 1-naphthalenemethylamine ($C_{11}H_{11}N_1$), 1-naphthalenelamine ($C_{10}H_9N_1$), and N-ethyl-1naphthylamine $(C_{12}H_{13}N_1)$ (Laskin et al., 2009; Wang et al., 2017). According to previous smog chamber studies (Laskin et al., 2010), most CHN+ aromatics are probably generated from biomass burning through the addition of reduced nitrogen (e.g., NH_3) to the organic molecules via imine formation reaction.

Figure 3.3.7: The van Krevelen diagram for CHN+ compounds in CC, SH and GZ samples. The size of circles is proportional to the fourth root of the peak abundance of a individual compound and the color bar denotes the aromaticity equivalent (gray with XC < 2.50, purple with $2.50 \le XC < 2.70$ and red with XC ≥ 2.70).

3.3.5 CHOS-

In this study, 75-155 CHOS- compounds were observed, accounting for 10%, 12% and 14% of the total peak abundance of all organics in CC-, SH- and GZ-, respectively. Around 89-96% of these CHOS- compounds were assigned to contain enough oxygen atoms to allow the assignment of -OSO₃H functional group, which are suggested to organosulfates (OSs) according to previous

studies (Lin et al., 2012a;Lin et al., 2012b;Tao et al., 2014;Wang et al., 2016;Wang et al., 2017). The OSs could affect the surface activity and hygroscopic properties of the aerosol particles, leading to potential impacts on climate (Hansen et al., 2015;Huang et al., 2018). 28 common CHOS- formulas were detected in the three samples, accounting for 39%, 68% and 65% of the CHOS- peak abundance in CC-, SH- and GZ-, respectively. It indicates that the chemical composition of the major CHOS- compounds in SH- and GZ- are similar, while they have a big chemical difference with the CHOS- compounds in CC-.

Figure 3.3.8 shows the DBE vs. C number for all CHOS- compounds detected in the three samples. The CHOS- compounds exhibit a DBE range from 0 to 10 and carbon number range from 2-15. However, the majority of CHOS- compounds with high abundance concentrate on the region with low DBE values of 0-5. The average H/C (1.56-1.85) and O/C (1.17-1.48) ratios of CHOScompounds are relatively higher than other organic species, while the average DBE values (1.71-2.55) of CHOS- compounds are the lowest. This result indicates that CHOS- compounds in the OA of the three Chinses cities are characterized with low degree of unsaturation and high degree of oxidation. Moreover, the pie chats in Figure 3.3.8 show that aliphatic compounds with $Xc \le 2.5$ are dominant in CHOS- compounds with a fraction of 96-99%, which is significantly higher than that in CHO, CHON and CHN species. The most CHOS- compounds were assigned with carbon number less than 10, which are probably formed from biogenic precursors (e.g., isoprene) or other small molecules (Lim et al., 2010;McNeill et al., 2012;Hansen et al., 2014). However, more CHOScompounds with C > 10 and with DBE lower than 1 are observed in CC-, such as $C_{14}H_{28}O_5S_1$, $C_{13}H_{26}O_5S_1$, $C_{12}H_{24}O_5S_1$, $C_{11}H_{22}O_5S_1$ and $C_{11}H_{20}O_6S_1$. These high-carbon-number-containing CHOS- compounds are likely formed from long-alkyl-chain compounds with less oxygenated functional groups and traffic emissions are suggested to the source of these long-chain alkanes (Tao et al., 2014). It indicates that anthropogenic emissions (e.g., fossil fuel burning) make more influence on the CHOS- formation in CC-. Comparing the average values of H/C, O/C and DBE of CHOS- in the three samples (see Table 3.3.1), we find that the H/C ratios (1.85) and O/C ratios (1.41-1.48) in SH- and GZ- are relatively higher than those (H/C = 1.56 and O/C = 1.17) in CC-, whereas the DBE values (1.71-1.79) in SH- and GZ- are relatively lower than that (2.55) in CC-. These observations indicate that CHOS- compounds in the OA from northeast China are less oxidized but more unsaturated compared to those in central east and southeast China.

Figure 3.3.8: Double bond equivalent (DBE) vs C number for all CHOS- compounds of all samples. The molecular formula represents the abundance-weighted average CHOS- formula and the size of circles is proportional to the fourth root of the peak abundance of a individual compound. The color bar denotes the aromaticity equivalent (gray with XC < 2.50, purple with $2.50 \le XC < 2.70$ and red with XC ≥ 2.70). The size of pie chats is proportional to the peak abundances of each color-coded compounds in each sample.

3.3.6 CHONS

4-5% of the total organics detected in ESI- were identified as CHONS- compounds, while it decreases to 0.3-1% in ESI+. The average MW of the CHONS- compounds are 214-293, showing greater masse than other organic species likely due to the presence of nitrate and sulfate functional

groups. Only 8 common CHOS- formulas were detected in all three samples, accounting for 8%, 58% and 56% of the CHONS- peak abundance in CC-, SH- anf GZ-, respectively. It implies that the CHONS- compounds in SH- and GZ are characterized with similar chemical composition, while they are significantly different with those in CC-.

In the OA samples of SH- and GZ-, 78-87% of CHONS- formulas have 7 or more O atoms, allowing the assignment of one -OSO₃H and one -NO₃ functional groups in the molecular structures and regarded as nitrooxy-OSs. However, in CC-, only 26% of CHONS- compounds were assigned as nitroooxy-OSs with more than 7 oxygen numbers, indicating that the most N atoms in the CHONS- compounds of CC- are presented in reduction state N, such as amine. The average DBE and Xc values of CHONS- compounds in SH- and GZ- are 3.3-3.45 and 0.43-0.44, respectively, while they are relatively higher in CC- with DBE of 3.75 and Xc of 1.06, indicating that CHONS- compounds in CC- have higher degree of unsaturation and aromaticity compared to SH- and GZ-. Interestingly, the compound with formula $C_{10}H_{17}O_7NS$ has the highest relatively abundance (32%) in SH- and GZ-, whereas in CC- the compound with formula $C_2H_3O_4NS$ is dominant. $C_{10}H_{17}O_7NS$ has been identified as pinanediol mononitrate generated from α -pinene (Surratt et al., 2008;Lin et al., 2012b;Wang et al., 2017), while $C_2H_3O_4NS$ are probably cyanomethyl hydrogen sulfate. It further illuminates that the precursors for CHONS- compounds in SH- and GZ- are different with those in CC-.

3.4 Conclusion

The molecular composition of the organic fraction of PM_{2.5} samples collected in three Chinese megacities (CC, SH and GZ) was investigated using a UHPLC-Orbitrap MS. In total, 416-769 (ESI-) and 687-2943 (ESI+) organic compounds were observed, including five subgroups: CHO, CHN, CHON, CHOS and CHONS. 139 common formulas in ESI- and 168 common formulas in ESI+ were detected in all samples, accounting for 78-87% and 65-90% in terms of peak abundance. It indicates that the major organic compounds with high concentrations in CC, SH and GZ are characterized with similar chemical composition.

The most organic species including CHO, CHN and CHON compounds are dominated with mono or poly-aromatics in all three OA samples, indicating that anthropogenic emissions are the leading sources for Chinese urban OA. In addition, more polyaromatics were observed in CC samples, suggesting that coal burning plays an important role in the OA formation in CC. Moreover, the abundance-weighted average DBE and Xc values of the total organic compounds in CC are relatively higher than those in SH and GZ, showing that organic compounds in CC have higher

degree of unsaturation and aromaticity. The average H/C and O/C ratios of compounds detected in ESI- in GZ is highest, followed by SH and GZ, indicating that OA collected in lower latitude regions of China experience more intense photochemical oxidation processes. The major CHOS-compounds are suggested to OSs, while OSs in SH and GZ share more similarity. The major CHONS- compounds in SH and GZ are assigned as nitrooxy-OSs and generated from biogenic precursor (e.g., α -pinene), whereas only 26% of CHONS- compounds are assigned to be nitrooxy-OSs, indicating that CHONS- compounds in SH and GZ are similar in terms of chemical composition, while they have big chemical difference with CHONS- in CC. This study gives a comprehensive overview of the chemical composition and possible sources of OA in three representative Chinese cities and in the future OA samples from more other Chinese cities could be analyzed by UHPLC-Orbitrap MS technique to better understand the formation mechanism of haze events in China.

Supporting Information

The detailed description of the data processing, six tables (Table S3.2.1-S3.2.6) and three supporting figures (Figure S3.3.1-S3.3.3).

Acknowledgements

This study was supported by the National Natural Science Foundation of China (NSFC, Grant No. 41403110, No. 41673134, and No. 91644219) and the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) under Grant No. INST 247/664-1 FUGG. K. Wang acknowledges the scholarship from Chinese Scholarship Council (CSC) and Max Plank Graduate Center with Johannes Gutenberg University of Mainz (MPGC).

4 Molecular identification and source prediction of sulfur-containing compounds in urban OA

This chapter is a reprint of the manuscript:

Kai Wang, Yun Zhang, Rujin Huang, Junji Cao, Christopher Kampf, Yafang Cheng, Ulrich Pöschl, Marianne Glasius and Thorsten Hoffmann

Molecular characterization and source prediction of atmospheric particulate organosulfates using ultrahigh resolution mass spectrometry

In preparation for Atmospheric Chemistry and physics

Abstract. Organosulfates (OSs) have been observed as substantial constituents of atmospheric organic aerosol (OA) in a wide range of environment, however, the chemical composition, sources and formation mechanism of OSs are still not yet well understood. In this study, we first created a 'OSs precursor map' based on the elemental composition information of previous OSs chamber experiments. Then according to this 'OSs precursor map', we estimated the possible sources and molecular structures of OSs in the ambient $PM_{2.5}$ (aerosol particles with aerodynamic equivalent diameter ≤ 2.5) samples, which were collected in the urban areas of Beijing (a Chinese city) and Mainz (a German city) and analyzed by an ultrahigh performance liquid chromatography (UHPLC) coupled with Orbitrap mass spectrometry (MS). As many as about 10 times more OSs species were observed in Beijing samples compared to Mainz samples. Based on the 'OSs precursor map', OSs in Mainz samples are suggested to be mainly derived from isoprene or other small polar organic compounds, while OSs in Beijing samples were generated from both isoprene and anthropogenic sources (e.g., long alkanes and aromatics). The nitrooxy-OSs in the aerosol samples collected in cleaner air in Mainz were mainly derived from monoterpenes, while much fewer monoterpenederived nitrooxy-OSs were obtained in the polluted aerosol samples, showing that nitrooxy-OS formation is affected by different precursors in clean air condition and polluted air condition.

4.1 Introduction

Organic aerosol (OA) accounts for an important fraction (20-90%) of submicron atmospheric particulate mass (Jimenez et al., 2009;Kroll et al., 2011) and influences global climate, air quality and human health (Pöschl, 2005;Hallquist et al., 2009a;Pöschl and Shiraiwa, 2015). Atmospheric OA can be divided into two categories, as primary organic aerosol (POA) is directly emitted into the atmosphere from biogenic or anthropogenic source, whereas secondary organic aerosol (SOA) is formed from the condensation of primary gas precursors (Seinfeld and Pankow, 2003). Due to a wide variety of natural and anthropogenic sources as well as the complex multiphase chemical reactions, organic compounds in OA present a large space of physicochemical properties, including hydrocarbons, alcohols, carboxylic acids, organosulfates (OSs) and organonitrates. Hence, characterizing the chemical composition of the organics in OA is a challenging but vital task (Glasius and Goldstein, 2016;Wang et al., 2016;Wang et al., 2017;Wang et al., 2018).

Recently, OSs have been observed as an important fraction in the ambient OA (Iiuma et al., 2007;Kristensen and Glasius, 2011;Lin et al., 2012b;Lin et al., 2014;Nguyen et al., 2014;Tao et al., 2014;Wang et al., 2017;Huang et al., 2018;Wang et al., 2018). Due to the presence of a

deprotonated functional group R-O-SO₃⁻, OSs are acidic and highly water soluble and therefore may affect the surface activity and hygroscopic properties of the atmospheric particles, leading to potential impacts on climate (Hansen et al., 2015). To understand the sources, formation process and chemical composition of OSs, a few laboratory smog chamber studies have been conducted. In the presence of acidified sulfate aerosol seed, OSs have been produced in the chamber studies from O₃, OH or NO₃ oxidation of (Surratt et al., 2008) biogenic volatile organic compounds, such as isoprene, monoterpenes, sesquiterpene and unsaturated aldehydes (Surratt et al., 2007;Ng et al., 2008;Surratt et al., 2008;Iinuma et al., 2009) Recently, OSs derived from aromatics and long-chain alkanes have been reported by Riva et al. (Riva et al., 2015;Riva et al., 2016) to understand the effect of anthropogenic sources on OSs formation. However, due to a lack of authentic standards, identification and quantification of OSs is still a challenging task (Huang et al., 2018).

Previous studies on OSs were conducted mainly in Europe and USA (Iiuma et al., 2007;Surratt et al., 2007;Surratt et al., 2008;Kristensen and Glasius, 2011;Worton et al., 2011;Nguyen et al., 2012; Nguyen et al., 2014; Shalamzari et al., 2016; Martinsson et al., 2017), and only a few in China (Lin et al., 2012b;He et al., 2014;Ma et al., 2014;Tao et al., 2014;Wang et al., 2016;Huang et al., 2018). Over the past decade, severe air pollution has occurred frequently in China, seriously affecting the human health (Huang et al., 2014; Jiang et al., 2016; Wang et al., 2017). Therefore, a better understanding of the chemical composition and reactivity of OA including the OSs in China is important. Since OSs in urban areas are highly related to the anthropogenic emission and human activities, OSs formed in different cities present different characteristics (Tao et al., 2014). In this study, we have created a 'OSs precursor map' based on the elemental composition information of previous chamber experiments and compared the chemical composition and possible sources of OSs in atmospheric PM_{2.5} samples (aerosol particles with aerodynamic equivalent diameter ≤ 2.5 µm) collected in two metropolises, Mainz (Germany) and Beijing (China), where the biogenic/anthropogenic emission and human activities present a large difference. Ultrahigh performance liquid chromatography (UHPLC) coupled to Orbitrap mass spectrometry was used for the detailed characterization of OS at a molecular level. Several synthesized/commercial OSs standards including isoprene/ β -pinene/benzene-derived OSs, octyl hydrogen sulfate and laurilsulfate were used as markers to better identify the OSs detected in the ambient samples.

4.2 Material and methods

4.2.1 Collection of PM2.5 samples

The 24-h integrated Chinese unban $PM_{2.5}$ samples were collected onto prebaked quartz-fiber filters (8×10 inch, Whatman, QM-A, USA) using a high-volume sampler at a flow rate of 1.05 m³ min⁻¹ from 7-23 January 2014. Similarly, the 24-h integrated German urban $PM_{2.5}$ samples were collected on borosilicate glass fiber coated with fluorocarbon filters (Ø 70 mm, Pallflex T60A20, Pall Life Science, USA) using a low-volume sampler at a flow rate of 38.3 L min⁻¹ from 15-28 January 2015. The sampling site for Chinese samples was located at the urban site of Beijing (39.99 °N, 116.39 °E) surrounded by residential areas, while the German sampling site was in the campus of Johannes Gutenberg University of Mainz (50 °N, 98 °E). According to the $PM_{2.5}$ mass concentration in the atmosphere during the sample collection, the $PM_{2.5}$ samples in Beijing were divided into two categories for further analysis: Beijing low air pollution level samples with $PM_{2.5}$ mass concentrations lower than 35 µg m⁻³ (sample ID: BJL); Beijing high air pollution samples with $PM_{2.5}$ mass concentrations higher than 150 µg m⁻³ (sample ID: BJH). Since the $PM_{2.5}$ mass concentrations in Mainz were all lower than 35 µg m⁻³ during sample collection, we regarded these samples as Mainz low level samples (sample ID: MZL). The field blank samples were collected at each site and all the filter samples were stored at -20 °C until analysis.

4.2.2 Sample analysis

A portion of the filters (1.05-19.23 cm², corresponding to about 600 μ g particle mass in each extracted filter) were ultrasonicated for 30 min with 1.5 mL acetonitrile/ultrapure water (ACN/H₂O) mixture (8/2, v/v). The extraction step was repeated twice with 1 mL of the ACN/H₂O solution. After that, the extracts were combined and filtered through a 0.2 μ m polytetrafluoroethylene (PTFE) membrane syringe filter to remove insoluble particulate matter. Then, the extracted solution was evaporated to dryness with a gentle stream of nitrogen at 20 °C. Afterwards, 1.0 mL ACN/H₂O (1/9, v/v) was used to redissolve the residue for subsequent analysis.

The chemical identification of OSs was conducted using an UHPLC system (Dionex UltiMate 3000, Thermo Scientific, Germany) coupled to an ultrahigh resolution mass spectrometer (UHRMS) _Orbitrap (Q-Exactive mass spectrometer, Thermo Scientific, Germany). Analytes were separated by a Hypersil Gold column (C18, 50 x 2.0 mm, 1.9 μ m particle size, Thermo Scientific, Germany). The mobile phase consisted of eluent A (ACN with 2% ultrapure H₂O) and eluent B (ultrapure H₂O with 2% ACN and 0.04% formic acid). Gradient elution was optimized at flow rate of 0.5 mL min⁻¹ as follows: 2% A for 1.5 min, a linear increase to 20% A in the next 1 min, 20% A for 3 min, another linear increase to 30% A in 1 min, 30% A for another 1 min, a linear gradient to 50% A in 1 min and immediate increase to 98% A in the next 1 min, 98% A for 2.5 min, back to 2% A in

0.05 min and then 2% A for 0.05 min. The Orbitrap MS was equipped with a heated electrospray ionization source (HESI). It was operated in both negative ion mode (ESI-) and positive mode (ESI+) with a -3.3 kV and + 4.0 kV spray voltage, respectively. A mass resolving power of 70,000 @ m/z 200 and a scanning range of 50-500 m/z were applied. The mass spectrometer was externally mass calibrated using commercial standard calibration solution Ultramark 1621 (Thermo Scientific, Germany) with mass range of 73-1921 m/z. Each sample extracted was analyzed in triplicate with an injection volume of 10.0 μ L.

4.2.3 Data processing

The obtained chromatograms and mass spectra were analyzed by a non-target screening approach using a commercially available software (SIEVE[®], Thermo Scientific, Germany). A threshold intensity value of 1×10^5 arbitrary units in the two-dimensional space of the retention time window from 0.0-11.05 min and m/z from 50-500 was applied to all measurements. The software automatically searched peaks above the threshold value which were significantly different from the background and assigned the molecular formulas with mass tolerance of ± 2 ppm. The molecular formulas were presented as C_cH_hO_oN_nS_s, where c was the number of carbon atoms in the range of 1-39, h was the number of hydrogen atoms in the range of 1-72, o was the number of oxygen atoms in the range of 0-20, n was the number of nitrogen atoms in the range of 0-7, and s was the number of sulfur atoms in the range of 0-4. To remove the chemically non-meaningful molecular formulas, formulas were further constrained by setting H/C, O/C, N/C and S/C ratios in the ranges of 0.3-3, 0-3, 0-1.3 and 0-0.8, respectively. Meanwhile, the resulting neutral formulas with a non-integer or negative double bond equivalent (DBE) or elemental composition which disobeyed the nitrogen rule for even electron ions were removed.

All molar ratios, DBE factors and molecular formulas presented in this paper refer to neutral molecules and only molecular formulas found in all PM_{2.5} samples for BJL, BJH and MZL samples, respectively, were considered. The abundance of a compound refers to its average chromatographic peak area and only compounds with a sample-to-blank abundance ratio ≥ 10 were retained. Subsequently, the abundance of the retained compounds in the samples was blank-subtracted.

The DBE value (number of rings plus double bonds) of a molecule reflects the degree of its unsaturation and was calculated by Eq. (1) for the elemental composition $C_cH_hO_oN_nS_s$:

$$DBE = c - \frac{h}{2} + \frac{n}{2} + 1 \tag{1}$$

It should be noted that the main purpose of this study is to compare the difference of chemical composition and sources of OSs in Mainz and Beijing, so we excluded the OSs with low concentrations through reducing the injection volume from 20.0 μ L in our previous study to 10 μ L in this study and increasing the sample-to-blank ratio from 3 in our previous study to 10 in this study for data processing, which lead to much fewer organic compounds obtained in this study compared to our previous UHRMS study (Wang et al., 2018).

4.3 Results and discussion

4.3.1 Isomers

The UHPLC system enables separation of potential isomers which could otherwise be hidden behind a given m/z value, as well as it provides additional information (e.g., retention time), which is helpful for elucidation of the molecular structures of organic compounds. In addition, hundreds of organic compounds can be separated using UHPLC before the ionization process, which can reduce the ion suppression in the ESI source, improving the sensitivity of detection.

Figure 4.3.1 shows the extracted ion chromatograms for the formula $C_{10}H_{17}O_7NS$, which has been identified as a nitrooxy-OSs derived from monoterpenes and presents relatively higher abundance compared to other S-containing compounds (Surratt et al., 2008; Lin et al., 2012; Wang et al., 2016; Brüggemann et al., 2016). As most of previous UHRMS studies on OSs mainly used direct infusion (Lin et al., 2012b;Tao et al., 2014;Kourtchev et al., 2016), no isomers with the formula $C_{10}H_{17}O_7NS$ were reported. Compared to three isomers of $C_{10}H_{17}O_7NS$ identified in α/β pinene-derived chamber experiment by Surratt et al. (Surratt et al., 2008), in our study, 6 isomers of $C_{10}H_{17}O_7NS$ were obtained in all samples with varying abundances of each isomer in different sample IDs (See Fig. 4.3.1), indicating that nitrooxy-OSs are more complex in ambient atmosphere than those in the smog chamber simulations. The abundance of each isomer varies from sample to sample, reflecting the concentrations of corresponding precursors in different samples.

Figure 4.3.2 shows the reconstructed mass spectra of CHOS and CHONS compounds observed in Mainz and Beijing samples, where the x-axis corresponds to the neutral molecular weight of detected organic compounds, the y axis represents their relative abundances, and the number of isomers per detected mass is color-coded. Fig. 4.3.2 clearly shows that many more molecular formulas related to CHOS and CHONS compounds were detected in Beijing samples than in Mainz samples, indicating the relatively high abundance of S-containing compounds in Beijing OA, which are suggested to be formed from the burning of coal and oil (Huang et al., 2014). In Beijing samples, 34-57% of CHOS and CHONS compounds contain more than one isomer, while significantly fewer isomers were observed in Mainz samples. This result indicates that organic isomers widely exist in aerosol samples, especially in the polluted OA samples, and S-containing compounds are more complex in Beijing than those in Mainz samples.

Figure 4.3.1: UHPLC chromatograms of tentatively determined $C_{10}H_{17}O_7NS$ (potentially derived from monoterpenes) in Mainz and Beijing samples.

Figure 4.3.2: ESI- orbitrap mass spectra of detected CHOS (a) and CHONS (b) reconstructed from extracted ion chromatograms. The x-axis corresponds to the molecular weight (Da) of the identified species. The number of isomers for an assigned formula is marked by colors.

4.3.2 OSs precursor map

In previous studies, several smog chamber experiments have been conducted to understand the formation and chemical composition of OSs and nitrooxy-OSs generated from different precursors (Surratt et al., 2007;Surratt et al., 2008;Chan et al., 2011;Riva et al., 2015;Riva et al., 2016). In this study, we summarized the information (e.g., elemental composition, molecular weight, elemental ratios and DBE) of the identified OSs and nitrooxy-OSs (see Table S4.3.1) and then created a 'OSs precursor map' (see Figure 4.3.3a-b), which can be used to estimate the precursors of OSs and nitrooxy-OSs from the complex ambient aerosols.

Figure 4.3.3a-b show the 'OSs precursor map' for the OSs and nitrooxy-OSs generated from oxidation of biogenic precursors including isoprene, monoterpene and sesquiterpene as well as anthropogenic sources, like long alkane, benzene and naphthalene. The color bar in Figure 4.3.3 indicates the oxidation state of OSs and nitrooxy-OSs by (o-3s)/c and (o-3s-2n)/c ratios, respectively. Since the sulfate group and nitrate group respectively contains three and two more

oxygen atoms compared to common oxygen-containing groups (e.g., hydroxyl and carbonyl), the use of (0-3s)/c and (0-3s-2n)/c ratios instead of traditional o/c ratio could better illustrate the number of additional oxidized groups per carbon atom. As shown in Figure 4.3.3a, the majority of OSs, except the benzene-derived OSs (solid star marks in Figure 4.3.3a), fall into a molecular corridor with upper and lower boundaries represented by linear alkane-derived OSs ($C_nH_{2n+1}SO_4$, red dashed line) and sugar alcohol-derived OSs ($C_nH_{2n+1}O_nSO_4$, black dashed line), respectively. Similarly, most nitroxy-OSs are plotted into a molecular corridor with upper and lower boundaries represented by linear alkane-derived nitrooxy-OSs ($C_nH_{2n}NO_3SO_4$, red dashed line) and sugar alcohol nitrooxy-OSs (CnH2nOnNO3SO4, black dashed line). It indicates that this 2-D space of molecular weight and carbon number can constrain most of the OSs and nitrooxy-OSs generated from different precursors. Most isoprene-derived OSs (asterisk marks in Figure 4.3.3a) are situated close to the sugar alcohol-derived OSs line in the range of 2-5 carbon numbers (region I in Figure 4.3.3a) with high (0-3s)/c ratios ($0.67 \le (0.3s)/c \le 1.5$), indicating that they are highly oxidized. And several OSs from isoprene dimers are also reported with carbon numbers exceeding 5 (region II in Figure 4.3.3a). The majority of OSs derived from monoterpenes (circle marks in Figure 4.3.3a), long alkanes (square marks in Figure 4.3.3a) and naphthalene (hollow star marks in Figure 4.3.3a) have a carbon number of 7-11 (region III in Figure 4.3.3a) with (0-3s)/c ratio between 0.12 and 0.57, while the sesquiterpene-derived OSs (triangle marks in Figure 4.3.3a) are in the range of 14-16 carbon atoms (region IV in Figure 4.3.3a) with (0-3s)/c ratio between 0.2 and 0.36. The OSs derived from benzene are located outside of the molecular corridor but close to the linear alkanederived OSs line in the range of 6-9 carbon numbers (region V in Figure 4.3.3a) with low (0-3s)/c ratio. Meanwhile, according to the precursors, three different source regions for nitrooxy-OSs were defined as follows: region A with carbon number of 5 is dominant with isoprene-derived nitrooxy-OSs; region B with carbon number of 9 and 10 is occupied by the nitrooxy-OSs derived from monoterpene and naphthalene; region C with carbon number of 14 and 15 represents the sesquiterpene-derived nitrooxy-OSs.

As the UHPLC technique was applied in this study, the retention time of the organic compounds could be used as an additional information to approach the chemical structure properties, such as the polarity. Figure 4.3.3c shows the retention time of two synthesized isoprenederived OSs (IEPOX OSs with formula $C_5H_{12}O_7S$ and hydroxyacetone OSs with formula $C_3H_6O_5S$), one β -pinene-derived OSs with formula $C_{10}H_{18}O_5S$, five benzene-derived OSs with formulas $C_6H_6O_4S$, $C_7H_8O_4S$, $C_8H_{10}O_4S$ (two isomers), and $C_9H_{12}O_4S$, and two commercial OSs standards (laurilsulfate with formula $C_{12}H_{26}O_4S$ and octyl hydrogen sulfate with formula $C_8H_{18}O_4S$). The synthetic procedures for these OSs standards have been previously described (Zhang et al., 2012;Huang et al., 2018). The retention time of the two synthesized isoprene-derived OSs is less than 1 minute. Such short retention time is caused by the polar functional groups of hydroxyl and carbonyl existing in the structures of isoprene-derived OSs, which are easily rinsed in the hydrophobic C18 column. The synthesized β -pinene-derived OSs and five benzene-derived OSs have the retention time between 1 and 4 minutes, indicating that less-polar functional groups exist in the chemical structures of OSs from monoterpene and aromatic precursors compared to isoprene-derived OSs. The two commercially available long alkane-derived OSs present the longest retention time (>4 minutes) compared to the other OSs, which is due to the strong bonding between the long alkane groups in OSs and the hydrophobic C18 column. Though the OSs and nitrooxy-OSs observed in the chamber simulations can not cover all the OSs and nitrooxy-OSs in the ambient organic aerosol, the 'OSs precursor map' and the retention time of OSs standards in Figure 4.3.3 can be used to estimate the precursors of OSs and nitrooxy-OSs generated in the ambient OA as well as better understand their molecular structures.

Figure 4.3.3: The OSs precursor map for OSs (a) and nitrooxy-OSs (b) represented by the molar mass and carbon number in the formulas. The dashed lines represent the molecular corridor by linear alkane OSs C_nH_{2n+1}SO₄ or nitrooxy-OSs C_nH_{2n}NO₃SO₄ (red dashed line) and sugar alcohol OSs C_nH_{2n+1}O_nSO₄ or nitrooxy-OSs C_nH_{2n}O_nNO₃SO₄ (black dashed line). The regions marked in roman numbers (I-V) in Fig. a represent OS derived from isoprene (I), isoprene dimers (II), monoterpenes/long alkene/naphthalene (III), sesquiterpene (IV) and benzene (V). The regions of A, B and C in Fig. b represent nitrooxy-OSs derived from isoprene, monoterpenes/naphthalene and sesquiterpenes, respectively. The chromatographic retention time of several standards of OSs together with their structures is shown in Fig. c. It should be noted that only one molecular structure of benzene-derived OSs. The color bar indicates the (o-3s)/c or (o-3s-2n)/c ratio

4.3.3 Comparison of CHOS in Mainz and Beijing samples

Table 4.3.1 summarizes the averaged characteristics (MW, elemental ratios, retention time and

DBE) of assigned CHOS and CHONS compounds. Compounds with a number of oxygen atoms greater that or equal to four were tentatively regarded as OSs (Lin et al., 2012b; Wang et al., 2016). However, tandem MS experiments were not conducted on the S-containing ions detected in these samples, and therefore, other S-containing compounds, such as sulfonates, may also assigned to this group. As many as 15-22% of organic compounds in Beijing samples were identified as CHOS compounds, while the fraction decreases to 11% in Mainz samples (Table 4.3.1). The majority (92-94%) of CHOS formulae were assigned with $o/4s \ge 1$, suggesting that these compounds are OSs, which is consistent with previous studies (Lin et al., 2012b; Tao et al., 2014; Wang et al., 2016). The averaged O/C of CHOS compounds in Mainz samples is 1.44, which is significantly higher than that in Beijing samples (0.84 in BJL and 0.88 in BJH), indicating the higher oxidation state of OSs in Mainz OA. To estimate the precursors of OSs observed in Mainz and Beijing samples, the 'OSs precursor map' was applied in Figure 4.3.4a-c. The majority of OSs in both Mainz and Beijing samples fall into the molecular corridor represented by linear alkane OSs and sugar alcohol OSs, indicating that the 2-D space of molar mass and carbon number can constrain not only the chamber OSs, but also the complex ambient aerosol OSs. As shown in Figure 4.3.4a, the most OSs in Mainz samples are plotted in the region I in a range of carbon number 2-5 with high (o-3s)/c ratio, indicating that OSs in Mainz were mainly derived from isoprene or other low carbon atom containing precursors. However, the OSs observed in Beijing samples covere almost all regions of I-V with the carbon number of 2-16, while OSs in region I (represented by isoprene-derived OSs) and region III (represented by monoterpene, long alkane and naphthalene derived OSs) are dominant. These observations together demonstrate that OSs in Mainz samples were mainly formed from biogenic source isoprene or other small molecules with carbon number ≤ 5 from anthropogenic emissions (Hansen et al., 2014), while OSs in Beijing samples are more complex and were generated from both biogenic and anthropogenic sources. Figure 4.3.4d-f show the retention time of OSs in the UHPLC system. The majority of OSs from Mainz samples have retention time below 1 minute with high (o-3s)/c ratio and 2-7 carbon numbers (see Figure 4.3.4d), further indicating that they are isoprene-derived. However, the OSs in Beijing samples showe a broad range of retention times between 0 and 9 minutes (see Figure 4.3.4e-f). As discussed above, OSs with a retention time of 0-1 minute are probably derived from isoprene or other small, polar molecules (Hansen et al., 2014), OSs with a retention time of 1-4 minutes are likely derived from monoterpenes, benzene and naphthalene, while OSs with a retention time of 4-9 minutes are probably derived from long alkane and sesquiterpenes, the broad rang of retention time additionally illuminates that OSs in Beijing aerosol were generated from both biogenic and anthropogenic precursors. Based on the carbon number, Figure 4.3.4g-i present the relative abundance of OSs

detected in Mainz and Beijing samples. It shows that C₃-OSs are dominant in Mainz samples, which is suggested to be hydroxyacetone sulfate originated from photochemical oxidation of isoprene or anthropogenic emissions (e.g., biomass burning and fossil fuel combustion) (Hansen et al., 2014;Huang et al., 2018). However, C₅-OSs (probably related to isoprene-derived OSs) and C₈-OSs (likely related to aromatic OSs) showe the maximum intensities in BJL and BJH samples, respectively. Moreover, OSs with high carbon number ($C \ge 10$) in BJH samples have significantly higher abundance compared to those in MZL and BJL samples. This indicates that more OSs in polluted air are generated from long carbon-chain alkanes, which is consistent with Tao et al.'s study showing that the molecular structures of OSs collected in Shanghai contain longer carbon chain than those collected in Los Angeles (Tao et al., 2014).

Table 4.3.1 Summary of formula number, molecular weight (MW), elemental ratios, double bond equivalents (DBE) and retention time (RT) of assigned CHOS and CHONS detected in ESI- and ESI+ mode.

Sample ID	Subgroup	Number of formulae ^a	Number of formulae with O/4S (or O/(4S+3N)) $\geq 1^{b}$	MW	H/C	O/C	DBE	RT (min)
MZL	CHOS-	16 (11%)	15 (94%)	212	1.57	1.44	2.81	1.29
	CHONS-	9 (6%)	6 (67%)	297	1.55	0.61	4.33	4.54
	CHONS+	11 (5%)	0 (0%)	247	1.27	0.44	5.55	3.48
BJL	CHOS-	114 (22%)	105 (92%)	212	1.89	0.84	1.46	2.73
	CHONS-	38 (7%)	22 (58%)	265	1.44	0.84	4.55	3.81
	CHONS+	12 (1.4%)	0 (0%)	240	1.28	0.95	4.17	1.57
BJH	CHOS-	86 (15%)	81 (94%)	216	1.57	0.88	2.79	2.40
	CHONS-	36 (6.4%)	14 (39%)	229	1.28	0.95	4.17	1.78
	CHONS+	18 (1.6%)	0 (0%)	235	1.62	0.82	3.50	1.84

^aValues in the parentheses are the percentages of CHOS formulae among the total number of assigned formulae. ^bValues in the parentheses are the percentages of CHOS formulae with o/4s ≥1 and CHONS formulae with o/(4s+3n) ≥1 among the total number of CHOS formulae and CHONS formulae,

respectively.

Figure 4.3.4: (a-c) the 'OSs precursor map' applied on the OSs detected in Mainz and Beijing samples. (df) the retention time of OSs in Mainz and Beijing samples. (g-i) the relative abundance distribution of OSs in Mainz and Beijing samples.

4.3.4 Comparison of CHONS in Mainz and Beijing samples

As shown in Table 4.3.1, 9-38 CHONS compounds were observed in Mainz and Beijing samples, which have higher averaged MW (235-297 Da) compared to CHOS compounds. In ESI-mode, 58-57% of CHONS- in Mainz and BJL samples containe enough oxygen atoms to allow

assignment of $-OSO_3H$ and $-ONO_2$ groups (o/(4s+3n) ≥ 1) in their formulas, indicating that they are nitrooxy-OSs (Lin et al., 2012b;Wang et al., 2016). However, only 39% of CHONScompounds were assigned as nitrooxy-OSs in BJH samples, showing the large difference in chemical composition of CHONS- compounds in clean and polluted atmosphere.

Figure 4.3.5 shows the application of 'OSs precursor map' on the CHONS- compounds observed in Mainz and Beijing samples. As shown in Figure 4.3.5a-c, no nitrooxy-OSs plots (circles in Figure 4.3.5) are observed in region A and C, indicating that no isoprene or sesquiterpene-derived nitrooxy OSs were detected in Mainz and Beijing samples. A few nitrooxy-OSs plots are located in the region B, suggesting that they were probably generated from monoterpene or naphthalene precursors. In Beijing samples, many nitrooxy-OSs compounds are found outside of the molecular corridor but close to the linear alkane-derived nitrooxy-OSs line (see Figure 4.3.5b-c), indicating that the precursors of these nitrooxy-OSs are similar with linear alkane but more unsaturated. Meanwhile, several non-nitrooxy-OSs CHONS- compounds (triangle plots in Figure 4.3.5) were also obtained in Mainz and Beijing samples.

The diagrams of retention time plotted by carbon number in Figure 4.3.5d-f show that CHONScompounds in both Mainz and Beijing samples have a broad retention time between 0 and 9 minutes. However, more CHONS- compounds with retention time less than four minutes were detected in Beijing samples, showing that more polar functional groups (e.g., hydroxy group) were formed in the Beijing CHONS- compounds. This observation is consistent with the results in Table 4.3.1 showing that higher O/C ratio of CHONS- are observed in Beijing samples compared to Mainz samples. The relative abundance of each subgroup of CHONS- compounds based on the carbon number is shown in Figure 4.3.5g-i. The CHONS compounds with carbon number of 10 (e.g., $C_{10}H_{17}O_7NS$) are dominant in Mainz and BJL samples, indicating that monoterpenes are the most important nitrooxy-OSs precursors in clean OA. However, in BJH samples, the CHONS compound with molecular formulae of $C_2H_2O_4NS$ shows the maximum abundance, which could be assigned as cyanogroup-containing OSs, indicating the different precursors for CHONS compounds between clean and polluted OA.

Figure 4.3.5: (a-c) the 'OSs precursor map' applied on the CHONS in Mainz and Beijing samples. (d-f) the retention time of CHONS in Mainz and Beijing samples. (g-i) the relative abundance distribution of CHONS in Mainz and Beijing samples.

4.4 Conclusion

In this study, PM_{2.5} samples in Mainz and Beijing were analyzed using a UHPLC-Orbitrap MS technique. Only 16 molecular formulas of CHOS and 9-11 formulas of CHONS were detected in Mainz samples, while a large number of molecular formulas of CHOS and CHONS (86-114 formulas of CHOS and 12-38 formulas of CHONS) with various numbers of isomers were

determined in Beijing samples. The majority (92-94%) of CHOS compounds were assigned as OSs, while 39-67% of CHONS compounds were identified as nitrooxy-OSs.

By summarizing the elemental composition information of OSs and nitrooxy-OSs observed in previous smog chamber studies, a 'OSs precursor map' with carbon number and molecular mass was established to constrain and estimate the precursors of OSs and nitrooxy-OSs obtained in ambient atmospheric OA. The majority of OSs in Mainz and Beijing samples can be constrained by the OSs molecular corridor from chamber studies in the 'OSs precursor map', while the molecular corridor of nitrooxy-OSs cannot constrain the ambient nitrooxy-OSs well due to the insufficient nitrooxy-OSs information from the chamber simulations. OSs derived from isoprene or other small molecules with less than five carbon atoms were dominant in Mainz samples, while in Beijing samples, OSs generated from anthropogenic sources (e.g., long alkane and aromatics) also showe a significant fraction. Nitrooxy-OSs generated from monoterpenes have the highest abundance in Mainz and BJL samples, while much fewer monoterpene-derived nitrooxy-OSs were observed in BJH samples, indicating that nitrooxy-OSs in clean OA have different chemical composition with those in polluted OA. The 'OSs precursor map' developed in this study for OSs and nitrooxy-OSs has been shown to provide important information on possible precursors and chemical properties of these compounds and will be useful in future studies of their formation and occurrence. Meanwhile, more information of elemental composition of OSs and nitrooxy-OSs identified in future chamber simulations can be used to perfect this 'OSs precursor map'.

Supporting Information

Table S4.3.1 the information of elemental composition of identified OSs and nitrooxy-OSs in smog chamber experiments.

Acknowledgements

This study was supported by the National Natural Science Foundation of China (NSFC, Grant No. 41403110, No. 41673134, and No. 91644219) and the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) under Grant No. INST 247/664-1 FUGG. K. Wang acknowledges the scholarship from Chinese Scholarship Council (CSC) and Max Plank Graduate Center with Johannes Gutenberg University of Mainz (MPGC). We also thank Berthold Friederich (Institute of Atmospheric Physics, Johannes Gutenberg University of Mainz) for his assistance in sample collection in Mainz.

4 Molecular identification and source prediction of sulfur-contaning compounds in urban OA

5 Conclusions and Outlook

The application of ultrahigh resolution mass spectrometry (UHRMS) to characterize the chemical composition of the urban organic aerosol (OA) at a molecular level was demonstrated within this thesis. Based on the solvent mixture of acetonitrile and water, a simple OA extraction method was developed and proved to be efficient for both polar compounds (e.g., organic acids) and non-polar compounds (e.g., PAHs). UHPLC technique was applied prior to UHRMS coupled with ESI source, which was able to separate the isomer compounds and reduce the ion suppression. Since a large number of isomer compounds were detected in this thesis, UHPLC technique is highly suggested to be applied prior to the UHRMS in the future atmospheric analytical chemistry research. According to the mass spectra data observed in UHRMS, a non-target screening method was developed based a commercial software and more than 17000 organic compounds were identified in this thesis, which were classified in to CHO, CHON, CHN, CHOS, and CHONS compounds. Based on the molecular formulas of there organic compounds, various indexes (e.g., DBE, carbon oxidation state, and aromaticity equivalent) and diagrams, i.e. van Krevelen and Kendrick mass defect, were applied to interpret the UHRMS data and describe the chemical properties and possible sources of OA.

Comparing the UHRMS data between Mainz OA samples and Beijing OA samples, we found that 2-10 times more organic compounds were observed in Beijing than Mainz, indicating the highly complexity of Beijing OA. The majority organic compounds in Beijing shows a higher degree of unsaturation and aromaticity and lower degree of oxidation sate compared to that in Mainz, indicating the important influence of combustion emission (e.g., fossil fuel burning) on Beijing OA. Furthermore, the OA chemical composition from three Chinese cities: Changchun (CC, northeast of China), Shanghai (SH, central east of China) and Guangzhou (GZ, northeast of China) were identified and compared. The majority of organic compounds in these three cities have similar chemical composition and were dominant by aromatic compounds, indicating that anthropogenic sources are the most important precursors for the Chinses urban OA. More polycyclic aromatics were detected in CC, which were related to coal burning for the residential heating in winter in northeast China. The oxidation state of organic compounds in GZ was highest, followed by SH and CC, indicating that OA collected in lower latitude regions of China experienced more intense photochemical oxidation processes. In addition, by summarizing the chemical composition data of previous organosulfates (OSs) chamber experiments, a 'OSs precursor map' was created to estimate the possible sources for OSs in ambient OA. According to the 'OSs precursor map', OSs in Mainz

is suggested to be mainly derived from biogenic sources (e.g., isoprene and monoterpene) or other small molecules, while OSs in Beijing were effected by both biogenic sources and anthropogenic sources (e.g., long alkane and aromatics).

The UHRMS technique presented in this thesis is allowed to give the molecular formula information of thousands of organic compounds from complex OA matrix. However, due to such high numbers of organic compounds, it is difficult to elucidate the molecular structures of these organic compounds. In the future, more detailed tandem MS (MSⁿ) studies should be performed for a better understanding of the molecular structures. Meanwhile, the interpretation method for UHRMS data should be further developed, like combining the information of molecular formulas and retention times in UHPLC to predict the volatilities of different compounds. Moreover, since the UHPLC-Orbitrap MS technique is unefficient for analyzing the high volatile compounds in aerosols as well as time limited, it is better to combine the UHPLC-Orbitrap MS technique with other MS techniques, such as gas chromatography (GC)-MS and online Aerosol Mass Spectrometer (AMS).

6 References

- Altieri, K. E., Turpin, B. J., and Seitzinger, S. P.: Composition of dissolved orgnic nitrogen in continental precipitation investigated by ultra-high resolution FT-ICR mass spectrometry, Environ. Sci. Technol., 43, 6, 2009.
- Aquila, V., Hendricks, J., Lauer, A., Riemer, N., Vogel, H., Baumgardner, D., Minikin, A., Petzold, A., Schwarz, J. P., Spackman, J. R., Weinzierl, B., Righi, M., and Dall'Amico, M.: MADE-in: a new aerosol microphysics submodel for global simulation of insoluble particles and their mixing state, Geosci. Model Dev., 4, 325-355, 10.5194/gmd-4-325-2011, 2011.
- Barbaro, E., Zangrando, R., Moret, I., Barbante, C., Cescon, P., and Gambaro, A.: Free amino acids in atmospheric particulate matter of Venice, Italy, Atmo. Environ., 45, 5050-5057, 10.1016/j.atmosenv.2011.01.068, 2011.
- Bateman, A. P., Walser, M. L., Desyaterik, Y., Laskin, J., Laskin, A., and Nizkorodov, S. A.: he effect of solvent on the analysis of secondary organic aerosol using electrospray ionization mass spectrometry, Environ. Sci. Technol., 42, 7341-7346, 2008.
- Bouarar, I., Wang, X. M., and Brasseur, G. P.: Air pollution in Eastern Asia: an integrated perspective, Springer, 2017.
- Brüggemann, M.: Development, Characterization, and Application of Flowing Atmospheric-Pressure Afterglow Ionization for Mass Spectrometric Analysis of Ambient Organic Aerosols, Ph. D. thesis, Max Planck Graduate Center, University of Mainz, Germany, 2015.
- Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli, P., Hildebrandt Ruiz, L., Fortner, E., Williams, L. R., Wilson, K. R., Surratt, J. D., Donahue, N. M., Jayne, J. T., and Worsnop, D. R.: Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications, Atmos. Chem. Phys., 15, 253-272, 10.5194/acp-15-253-2015, 2015.
- Cantrell, W., and Heymsfield, A.: Production of Ice in Tropospheric Clouds: A Review, Bulletin of the American Meteorological Society, 86, 795-808, 10.1175/bams-86-6-795, 2005.
- Cao, J.-J., Shen, Z.-X., Chow, J. C., Watson, J. G., Lee, S.-C., Tie, X.-X., Ho, K.-F., Wang, G.-H., and Han, Y.-M.: Winter and Summer PM2.5 Chemical Compositions in Fourteen Chinese Cities, Journal of the Air & Waste Management Association, 62, 1214-1226, 10.1080/10962247.2012.701193, 2012.
- Cech, N. B., and Enke, C. G.: Practical implications of some recent studies in electrospray ionization fundamentals, Mass Spectrometry Reviews, 20, 362-387, 10.1002/mas.10008, 2001.
- Chan, M. N., Surratt, J. D., Chan, A. W. H., Schilling, K., Offenberg, J. H., Lewandowski, M., Edney, E. O., Kleindienst, T. E., Jaoui, M., Edgerton, E. S., Tanner, R. L., Shaw, S. L., Zheng, M., Knipping, E. M., and Seinfeld, J. H.: Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene, Atmos. Chem. Phys., 11, 1735-1751, https://doi.org/10.5194/acp-11-1735-2011, 2011.
- Chang, Y., Deng, C., Cao, F., Cao, C., Zou, Z., Liu, S., Lee, X., Li, J., Zhang, G., and Zhang, Y.:

Assessment of carbonaceous aerosols in Shanghai, China – Part 1: long-term evolution, seasonal variations, and meteorological effects, Atmos. Chem. Phys., 17, 9945-9964, 10.5194/acp-17-9945-2017, 2017.

- Cheng, Y., Engling, G., He, K. B., Duan, F. K., Ma, Y. L., Du, Z. Y., Liu, J. M., Zheng, M., and Weber, R. J.: Biomass burning contribution to Beijing aerosol, Atmos. Chem. Phys., 13, 7765-7781, 10.5194/acp-13-7765-2013, 2013.
- Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V., Cafmeyer, J., Guyon, P., Andre, M., Artaxo, P., and Maenhaut, W.: Formation of secondary organic aerosol through photooxidation of isoprene, Science, 303, 1173-1175, 10.1126/science.1092805, 2004.
- Dall'Osto, M., Paglione, M., Decesari, S., Facchini, M. C., O'Dowd, C., Plass-Duellmer, C., and Harrison, R. M.: On the Origin of AMS "Cooking Organic Aerosol" at a Rural Site, Environ. Sci. Technol., 49, 13964-13972, 10.1021/acs.est.5b02922, 2015.
- Elser, M., Huang, R.-J., Wolf, R., Slowik, J. G., Wang, Q., Canonaco, F., Li, G., Bozzetti, C., Daellenbach, K. R., Huang, Y., Zhang, R., Li, Z., Cao, J., Baltensperger, U., El-Haddad, I., and Prévôt, A. S. H.: New insights into PM2.5 chemical composition and sources in two major cities in China during extreme haze events using aerosol mass spectrometry, Atmos. Chem. Phy., 16, 3207-3225, 10.5194/acp-16-3207-2016, 2016.
- Farmer, D. K., and Jimenez, J. L.: Real-time atmospheric chemistry field instrumentation, Anal.Chem., 82, 10.1021/ac1010603, 2010.
- Fleming, L. T., Lin, P., Laskin, A., Laskin, J., Weltman, R., Edwards, R. D., Arora, N. K., Yadav, A., Meinardi, S., Blake, D. R., Pillarisetti, A., Smith, K. R., and Nizkorodov, S. A.: Molecular composition of particulate matter emissions from dung and brushwood burning household cookstoves in Haryana, India, Atmos. Chem. Phy., 18, 2461-2480, 10.5194/acp-18-2461-2018, 2018.
- Fu, X., Wang, S., Chang, X., Cai, S., Xing, J., and Hao, J.: Modeling analysis of secondary inorganic aerosols over China: pollution characteristics, and meteorological and dust impacts, Scientific reports, 6, 35992, 10.1038/srep35992, 2016.
- Glasius, M., and Goldstein, A. H.: Recent Discoveries and Future Challenges in Atmospheric Organic Chemistry, Environ. Sci. Technol., 50, 2754-2764, doi:10.1021/acs.est.5b05105, 2016.
- Goldstein, A. H., and Galbally, I. E.: Known and unexplored organic constituents in the Earth's atmosphere, Environ. Sci. Technol., 41, 1514-1521, 2007.
- Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, T. F., Monod, A., Prevot, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155-5236, https://doi.org/10.5194/acp-9-5155-2009, 2009a.
- Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, T. F., Monod, A., Prevot, A. S. H., Seinfeld, J. H., Surratt, J. D.,

Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosols: current and emerging issues, Atmos. Chem. Phys., 82, 2009b.

- Hansen, A. M. K., Kristensen, K., Nguyen, Q. T., Zare, A., Cozzi, F., Noejgaard, J. K., Skov, H., Brandt, J., Christensen, J. H., Strom, J., Tunved, P., Krejci, R., and Glasius, M.: Organosulfates and organic acids in Arctic aerosols: speciation, annual variation and concentration levels, Atmos. Chem. Phys., 14, 7807-7823, https://doi.org/10.5194/acp-14-7807-2014, 2014.
- Hansen, A. M. K., Hong, J., Raatikainen, T., Kristensen, K., Ylisirniö, A., Virtanen, A., Petäjä, T., Glasius, M., and Prisle, N. L.: Hygroscopic properties and cloud condensation nuclei activation of limonene-derived organosulfates and their mixtures with ammonium sulfate, Atmos. Chem. Phys., 15, 14071-14089, https://doi.org/10.5194/acp-15-14071-2015, 2015.
- He, Q. F., Ding, X., Wang, X. M., Yu, J. Z., Fu, X. X., Liu, T. Y., Zhang, Z., Xue, J., Chen, D. H., Zhong, L. J., and Donahue, N. M.: Organosulfates from pinene and isoprene over the Pearl River Delta, South China: seasonal variation and implication in formation mechanisms, Environ. Sci. Technol., 48, 9236-9245, 10.1021/es501299v, 2014.
- Heaton, K. J., Sleighter, R. L., Hatcher, P. G., Halliv, W. A., and Johnston, M. V.: Composition domains in monoterpene secondary organic aerosol, Environ. Sci. Technol. , 43, 7797-7802, 2009.
- Ho, C. S., Lam, C. W. K., Chan, M. H. M., Cheung, R. C. K., Law, L. K., Suen, M. W. M., and Tai, H. L.: Electrospray ionisation mass spectrometry: principles and clinical application, Clin. Biochem. Rev., 24, 10, 2003.
- Hockaday, W. C., Purcell, J. M., Marshall, A. G., Baldock, J. A., and Hatcher, P. G.: Electrospray and photoionization mass spectrometry for the characterization of organic matter in natural waters: a qualitative assessment, Limnol. Oceanogr.: Methods, 7, 81-95, 2009.
- Hodzic, A., Kasibhatla, P. S., Jo, D. S., Cappa, C. D., Jimenez, J. L., Madronich, S., and Park, R. J.: Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal, shorter lifetime, Atmos. Chem. Phy., 16, 7917-7941, 10.5194/acp-16-7917-2016, 2016.
- Hoffmann, T., Huang, R. J., and Kalberer, M.: Atmospheric analytical chemistry, Anal. Chem., 83, 4649-4664, 10.1021/ac2010718, 2011.
- Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y., Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., El Haddad, I., and Prevot, A. S.: High secondary aerosol contribution to particulate pollution during haze events in China, Nature, 514, 218-222, 10.1038/nature13774, 2014.
- Huang, R. J., Cao, J., Chen, Y., Yang, L., Shen, J., You, Q., Wang, K., Lin, C., Xu, W., Gao, B., Li, Y., Chen, Q., Hoffmann, T., amp, apos, Dowd, C. D., Bilde, M., and Glasius, M.: Organosulfates in atmospheric aerosol: synthesis and quantitative analysis of PM2.5 from Xi'an, northwestern China, Atmos. Mea. Tech., 11, 3447-3456, https://doi.org/10.5194/amt-11-3447-2018, 2018.
- Hughey, C. A., Hendrickson, C. L., Rodgers, R. P., and Marshall, A. G.: Kendrick mass defect spectrum: A compact visual analysis for ultrahigh-resolution broadband mass spectra, Anal. Chem., 73, 4676-4681, 2001.
- Iinuma, Y., Böge, O., Kahnt, A., and Herrmann, H.: Laboratory chamber studies on the formation of

organosulfates from reactive uptake of monoterpene oxides, Phys. Chem. Chem. Phys., 11, 13, 10.1039/b916865f, 2009.

- Iiuma, Y., Müller, C., Berndt, T., Böge, O., Claeys, M., and Herrmann, H.: Evidence for the existence of organosulfates from β-pinene ozonolysis in ambient secondary organic aerosol, Environ. Sci. Technol., 41, 6678-6683, 10.1021/es070938t, 2007.
- Jiang, B., Liang, Y., Xu, C., Zhang, J., Hu, M., and Shi, Q.: Polycyclic aromatic hydrocarbons (PAHs) in ambient aerosols from Beijing: characterization of low volatile PAHs by positive-ion atmospheric pressure photoionization (APPI) coupled with Fourier transform ion cyclotron resonance, Environ. Sci. Technol., 48, 4716-4723, 10.1021/es405295p, 2014.
- Jiang, B., Kuang, B. Y., Liang, Y., Zhang, J., Huang, X. H. H., Xu, C., Yu, J. Z., and Shi, Q.: Molecular composition of urban organic aerosols on clear and hazy days in Beijing: a comparative study using FT-ICR MS, Environ. Chem., 13, 888, 10.1071/en15230, 2016.
- Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J., Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger, U., and Worsnop, D. R.: Evolution of Organic Aerosols in the Atmosphere, Science, 326, 1525-1529, 10.1126/science.1180353, 2009.
- Jokinen, T., Berndt, T., Makkonen, R., Kerminen, V. M., Junninen, H., Paasonen, P., Stratmann, F., Herrmann, H., Guenther, A. B., Worsnop, D. R., Kulmala, M., Ehn, M., and Sipila, M.: Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications, Proc Natl Acad Sci U S A, 112, 7123-7128, 10.1073/pnas.1423977112, 2015.
- Jung, J., and Kawamura, K.: Enhanced concentrations of citric acid in spring aerosols collected at the Gosan background site in East Asia, Atmos. Environ., 45, 5266-5272, 10.1016/j.atmosenv.2011.06.065, 2011.
- Kautzman, K. E., Surratt, J. D., Chan, M. N., Chan, A. W., Hersey, S. P., Chhabra, P. S., Dalleska, N. F., Wennberg, P. O., Flagan, R. C., and Seinfeld, J. H.: Chemical composition of gas- and aerosol-phase products from photooxidation of naphthalene, J. Phys. Chem. A, 114, 913-934, 10.1021/jp908530s, 2010.
- Kendrick, E.: A mass scale based on CH2=14.0000 for high resolution mass spectrometry of organic compounds, Anal. Chem., 35, 2146-2154, 1963.
- Kind, T., and Fiehn, O.: Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry, BMC Bioinformatics, 8, 10.1186/1471-2105-8-105, 2007.
- Koo, B., Ansari, A. S., and Pandis, S. N.: Integrated approaches to modeling the organic and inorganic atmospheric aerosol components, Atmos. Environ., 37, 4757-4768, 10.1016/j.atmosenv.2003.08.016, 2003.

- Kourtchev, I., O'Connor, I. P., Giorio, C., Fuller, S. J., Kristensen, K., Maenhaut, W., Wenger, J. C., Sodeau, J. R., Glasius, M., and Kalberer, M.: Effects of anthropogenic emissions on the molecular composition of urban organic aerosols: An ultrahigh resolution mass spectrometry study, Atmo. Environ., 89, 525-532, 10.1016/j.atmosenv.2014.02.051, 2014.
- Kourtchev, I., Doussin, J. F., Giorio, C., Mahon, B., Wilson, E. M., Maurin, N., Pangui, E., Venables, D. S., Wenger, J. C., and Kalberer, M.: Molecular composition of fresh and aged secondary organic aerosol from a mixture of biogenic volatile compounds: a high-resolution mass spectrometry study, Atmos. Chem. Phys., 15, 5683-5695, 10.5194/acp-15-5683-2015, 2015.
- Kourtchev, I., Godoi, R. H. M., Connors, S., Levine, J. G., Archibald, A. T., Godoi, A. F. L., Paralovo, S. L., Barbosa, C. G. G., Souza, R. A. F., Manzi, A. O., Seco, R., Sjostedt, S., Park, J.-H., Guenther, A., Kim, S., Smith, J., Martin, S. T., and Kalberer, M.: Molecular composition of organic aerosols in central Amazonia: an ultra-high-resolution mass spectrometry study, Atmos. Chem. Phys., 16, 11899-11913, https://doi.org/10.5194/acp-16-11899-2016, 2016.
- Kristensen, K., and Glasius, M.: Organosulfates and oxidation products from biogenic hydrocarbons in fine aerosols from a forest in North West Europe during spring, Atmos. Environ., 45, 4546-4556, 10.1016/j.atmosenv.2011.05.063, 2011.
- Kroll, J. H., and Seinfeld, J. H.: Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere, Atmos. Environ., 42, 3593-3624, 10.1016/j.atmosenv.2008.01.003, 2008.
- Kroll, J. H., Donahue, N. M., Jimenez, J. L., Kessler, S. H., Canagaratna, M. R., Wilson, K. R.,
 Altieri, K. E., Mazzoleni, L. R., Wozniak, A. S., Bluhm, H., Mysak, E. R., Smith, J. D., Kolb, C.
 E., and Worsnop, D. R.: Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol, Nat. Chem., 3, 133-139, 10.1038/nchem.948, 2011.
- Kulmala, M., Toivonen, A., Mäkelä, J. M., and Laaksonen, A.: Analysis of the growth of nucleation mode particles observed in Boreal forest, Tellus B: Chemical and Physical Meteorology, 50, 449-462, 10.3402/tellusb.v50i5.16229, 2016.
- Laskin, A., Smith, J. S., and Laskin, J.: Molecular Characterization of Nitrogen-Containing Organic Compounds in Biomass Burning Aerosols using High-Resolution Mass Spectrometry, Environ. Sci. Technol., 43, 3764-3771, 2009.
- Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of atmospheric brown carbon, Chem. Rev., 115, 4335-4382, 10.1021/cr5006167, 2015.
- Laskin, J., Laskin, A., Roach, P. J., Slysz, G. W., Anderson, G. A., Nizkorodov, S. A., Bones, D. L., and Nguyen, L. Q.: High-Resolution Desorption Electrospray Ionization Mass Spectrometry for Chemical Characterization of Organic Aerosols, Anal. Chem., 82, 2048-2058, 10.1021/ac902801f, 2010.
- Laskin, J., Laskin, A., and Nizkorodov, S. A.: Mass Spectrometry Analysis in Atmospheric Chemistry, Anal. Chem., 90, 166-189, 10.1021/acs.analchem.7b04249, 2018.
- Lee, A., Goldstein, A. H., Kroll, J. H., Ng, N. L., Varutbangkul, V., Flagan, R. C., and Seinfeld, J. H.: Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes, J. Geophy. Res., 111, 10.1029/2006jd007050, 2006.
- Lee, T., Choi, J., Lee, G., Ahn, J., Park, J. S., Atwood, S. A., Schurman, M., Choi, Y., Chung, Y., and Collett, J. L.: Characterization of aerosol composition, concentrations, and sources at

Baengnyeong Island, Korea using an aerosol mass spectrometer, Atmo. Environ., 120, 297-306, 10.1016/j.atmosenv.2015.08.038, 2015.

- Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The contribution of outdoor air pollution sources to premature mortality on a global scale, Nature, 525, 367-371, 10.1038/nature15371, 2015.
- Lim, Y. B., Tan, Y., Perri, M. J., Seitzinger, S. P., and Turpin, B. J.: Aqueous chemistry and its role in secondary organic aerosol (SOA) formation, Atmos. Chem. Phys., 10, 10521-10539, 10.5194/acp-10-10521-2010, 2010.
- Lin, P., Rincon, A. G., Kalberer, M., and Yu, J. Z.: Elemental composition of HULIS in the Pearl River Delta Region, China: results inferred from positive and negative electrospray high resolution mass spectrometric data, Environ. Sci. Technol., 46, 7454-7462, 10.1021/es300285d, 2012a.
- Lin, P., Yu, J. Z., Engling, G., and Kalberer, M.: Organosulfates in humic-like substance fraction isolated from aerosols at seven locations in East Asia: a study by ultra-high-resolution mass spectrometry, Environ. Sci. Technol., 46, 13118-13127, 10.1021/es303570v, 2012b.
- Lin, P., Laskin, J., Nizkorodov, S. A., and Laskin, A.: Revealing Brown Carbon Chromophores Produced in Reactions of Methylglyoxal with Ammonium Sulfate, Environ. Sci. Technol., 49, 14257-14266, 10.1021/acs.est.5b03608, 2015.
- Lin, Y. H., Budisulistiorini, S. H., Chu, K., Siejack, R. A., Zhang, H., Riva, M., Zhang, Z., Gold, A., Kautzman, K. E., and Surratt, J. D.: Light-absorbing oligomer formation in secondary organic aerosol from reactive uptake of isoprene epoxydiols, Environ. Sci. Technol., 48, 12012-12021, 10.1021/es503142b, 2014.
- Müller-Tautges, C.: Development and application of mass-spectrometric methods for the quantification and characterization of organic compounds in ice cores, Ph. D. thesis, University of Mainz, Germany, 2014.
- Ma, Y., Xu, X., Song, W., Geng, F., and Wang, L.: Seasonal and diurnal variations of particulate organosulfates in urban Shanghai, China, Atmos. Environ., 85, 152-160, 10.1016/j.atmosenv.2013.12.017, 2014.
- Mace, K. A.: Water-soluble organic nitrogen in Amazon Basin aerosols during the dry (biomass burning) and wet seasons, J. Geophys. Res., 108, 10.1029/2003jd003557, 2003.
- Martinsson, J., Monteil, G., Sporre, M. K., Kaldal Hansen, A. M., Kristensson, A., Eriksson Stenström, K., Swietlicki, E., and Glasius, M.: Exploring sources of biogenic secondary organic aerosol compounds using chemical analysis and the FLEXPART model, Atmos. Chem. Phys., 17, 11025-11040, https://doi.org/10.5194/acp-17-11025-2017, 2017.
- Mazzoleni, L. R., Ehrmann, B. M., Shen, X. H., Marshall, A. G., and Collett, J. L.: Water-soluble atmospheric organic matter in fog: exact masses and chemical formula identification by ultrahighresolution fourier transform ion cyclotron resonance mass spectrometry, Environ. Sci. Technol., 44, 3690-3697, 10.1021/es903409k, 2010a.
- Mazzoleni, L. R., Ehrmann, B. M., Sheng, X. H., Marshall, A. G., and Collett, J. L.: Water-soluble atmospheric organic matter in fog exact masses and chemical formula identification by ultrahighresolution fourier transform ion cyclotron resonance mass spectrometry, Environ. Sci. Technol., 44, 8, 2010b.

- McNeill, V. F., Woo, J. L., Kim, D. D., Schwier, A. N., Wannell, N. J., Sumner, A. J., and Barakat, J. M.: Aqueous-phase secondary organic aerosol and organosulfate formation in atmospheric aerosols: a modeling study, Environ Sci Technol, 46, 8075-8081, 10.1021/es3002986, 2012.
- Mentel, T. F., Springer, M., Ehn, M., Kleist, E., Pullinen, I., Kurtén, T., Rissanen, M., Wahner, A., and Wildt, J.: Formation of highly oxidized multifunctional compounds: autoxidation of peroxy radicals formed in the ozonolysis of alkenes deduced from structure–product relationships, Atmos. Chem. Phys., 15, 6745-6765, 10.5194/acp-15-6745-2015, 2015.
- Ng, N. L., Kwan, A. J., Surratt, J. D., Chan, A. W., Chhabra, P. S., Sorooshian, A., Pye, H. O. T., Crounse, J. D., Wennberg, P. O., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol (SOA) fromation from reaction of isoprene with nitrate radicals (NO3), Atmos. Chem. Phys., 8, 24, https://doi.org/10.5194/acp-8-4117-2008, 2008.
- Nguyen, Q. T., Christensen, M. K., Cozzi, F., Zare, A., Hansen, A. M. K., Kristensen, K., Tulinius, T. E., Madsen, H. H., Christensen, J. H., Brandt, J., Massling, A., Noejgaard, J. K., and Glasius, M.: Understanding the anthropogenic influence on formation of biogenic secondary organic aerosols in Denmark via analysis of organosulfates and related oxidation products, Atmos. Chem. Phys., 14, 8961-8981, 8921 pp., https://doi.org/10.5194/acp-14-8961-2014, 2014.
- Nguyen, T. B., Lee, P. B., Updyke, K. M., Bones, D. L., Laskin, J., Laskin, A., and Nizkorodov, S. A.: Formation of nitrogen- and sulfur-containing light-absorbing compounds accelerated by evaporation of water from secondary organic aerosols, Journal of Geophysical Research-Atmospheres, 117, 10.1029/2011jd016944, 2012.
- Nizkorodov, S. A., Laskin, J., and Laskin, A.: Molecular chemistry of organic aerosols through the application of high resolution mass spectrometry, Phys. Chem. Chem. Phys., 13, 3612-3629, 10.1039/c0cp02032j, 2011.
- Noziere, B., Kalberer, M., Claeys, M., Allan, J., D'Anna, B., Decesari, S., Finessi, E., Glasius, M., Grgic, I., Hamilton, J. F., Hoffmann, T., Iinuma, Y., Jaoui, M., Kahnt, A., Kampf, C. J., Kourtchev, I., Maenhaut, W., Marsden, N., Saarikoski, S., Schnelle-Kreis, J., Surratt, J. D., Szidat, S., Szmigielski, R., and Wisthaler, A.: The molecular identification of organic compounds in the atmosphere: state of the art and challenges, Chem. Rev., 115, 3919-3983, 10.1021/cr5003485, 2015.
- Pereira, K. L., Hamilton, J. F., Rickard, A. R., Bloss, W. J., Alam, M. S., Camredon, M., Muñoz, A., Vázquez, M., Borrás, E., and Ródenas, M.: Secondary organic aerosol formation and composition from the photo-oxidation of methyl chavicol (estragole), Atmos. Chem. Phys., 14, 5349-5368, 10.5194/acp-14-5349-2014, 2014.
- Pöschl, U.: Atmospheric aerosols: composition, transformation, climate and health effects, Angew. Chem. Int. Ed., 44, 7520-7540, 10.1002/anie.200501122, 2005.
- Pöschl, U., and Shiraiwa, M.: Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene, Chem. Rev., 115, 4440-4475, 10.1021/cr500487s, 2015.
- Pratt, K. A., and Prather, K. A.: Mass spectrometry of atmospheric aerosols--recent developments and applications. Part II: On-line mass spectrometry techniques, Mass Spectrom Rev, 31, 17-48, 10.1002/mas.20330, 2012.
- Rincón, A. G., Calvo, A. I., Dietzel, M., and Kalberer, M.: Seasonal differences of urban organic

aerosol composition - an ultra-high resolution mass spectrometry study, Environ. Chem., 9, 298, 10.1071/en12016, 2012.

- Riva, M., Tomaz, S., Cui, T., Lin, Y.-H., Perraudin, E., Gold, A., Stone, E. A., Villenave, E., and Surratt, J. D.: Evidence for an Unrecognized Secondary Anthropogenic Source of Organosulfates and Sulfonates: Gas-Phase Oxidation of Polycyclic Aromatic Hydrocarbons in the Presence of Sulfate Aerosol, Environ. Sci. Technol., 49, 6654-6664, 10.1021/acs.est.5b00836, 2015.
- Riva, M., Da Silva Barbosa, T., Lin, Y.-H., Stone, E. A., Gold, A., and Surratt, J. D.: Chemical characterization of organosulfates in secondary organic aerosol derived from the photooxidation of alkanes, Atmos. Chem. Phys., 16, 11001-11018, https://doi.org/10.5194/acp-16-11001-2016, 2016.
- Roach, P. J., Laskin, J., and Laskin, A.: Molecular Characterization of Organic Aerosols Using Nanospray-Desorption/Electrospray Ionization-Mass spectrometry, Anal. Chem., 82, 7979-7986, 10.1029/2007jd008683, 2010.
- Rosenberg, E.: The potential of organic (electrospray- and atmospheric pressure chemical ionisation) mass spectrometric techniques coupled to liquid-phase separation for speciation analysis, J. Chromatogr. A, 1000, 841-889, 10.1016/s0021-9673(03)00603-4, 2003.
- Scigelova, M., and Makarov, A.: Orbitrap mass analyzer--overview and applications in proteomics, Proteomics, 6 Suppl 2, 16-21, 10.1002/pmic.200600528, 2006.
- Seinfeld, J. H., and Pankow, J. F.: Organic atmospheric particulate material, Annual review of physical chemistry, 54, 121-140, 10.1146/annurev.physchem.54.011002.103756, 2003.
- Seinfeld, J. H., and Pandis, S. N.: Atmospheric chemistry and physics: From air pollution to climate change, 2nd., J. Wily, Hoboken, N.J, xxviii, 1203, 2006.
- Shalamzari, M. S., Vermeylen, R., Blockhuys, F., Kleindienst, T. E., Lewandowski, M., Szmigielski, R., Rudzinski, K. J., Spólnik, G., Danikiewicz, W., Maenhaut, W., and Claeys, M.: Characterization of polar organosulfates in secondary organic aerosol from the unsaturated aldehydes 2-E-pentenal, 2-E-hexenal, and 3-Z-hexenal, Atmos. Chem. Phys., 16, 7135-7148, https://doi.org/10.5194/acp-16-7135-2016, 2016.
- Simoneit, B. R. T., Rushdi, A. I., Bin Abas, M. R., and Didyk, B. M.: Alky Amides and Nitriles as Novel Traces for Biomass Burning, Environ. Sci. Technol., 37, 16-21, 2003.
- Song, C., Wu, L., Xie, Y., He, J., Chen, X., Wang, T., Lin, Y., Jin, T., Wang, A., Liu, Y., Dai, Q., Liu, B., Wang, Y.-n., and Mao, H.: Air pollution in China: Status and spatiotemporal variations, Environ. Pollut., 227, 334-347, https://doi.org/10.1016/j.envpol.2017.04.075, 2017.
- Song, J., Li, M., Jiang, B., Wei, S., Fan, X., and Peng, P.: Molecular Characterization of Water-Soluble Humic like Substances in Smoke Particles Emitted from Combustion of Biomass Materials and Coal Using Ultrahigh-Resolution Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Environ. Sci. Technol., 52, 2575-2585, 10.1021/acs.est.7b06126, 2018.
- Stock, N. L.: Introducing Graduate Students to High-Resolution Mass Spectrometry (HRMS) Using a Hands-On Approach, J. Chem. Educ., 94, 1978-1982, 10.1021/acs.jchemed.7b00569, 2017.
- Surratt, J. D., Gomez-Gonzalez, Y., Chan, A. W., Vermeylen, R., Shahgholl, M., Kleindienst, T. E., Jaoui, M., Maenhaut, W., Claeys, M., Flagan, R. C., and Seinfeld, J. H.: Evidence for
Organosulfate in Secondary Organic Aerosol, Environ. Sci. Technol., 41, 517-527, 10.1021/es062081q, 2007.

- Surratt, J. D., Gómez-González, Y., Chan, A. W., Vermeylen, R., Shahgholi, M., Kleindienst, T. E., Edney, E. O., Offenberg, J. H., Lewandowski, M., Jaoui, M., Maenhaut, W., Claeys, M., Flagan, R. C., and Seinfeld, J. H.: Organosulfate Formation in Biogenic Secondary Organic Aerosol, J. Phys. Chem. A, 112, 34, 2008.
- T., R., THESe, A., Venkatachari, P., Xia, X. Y., Hopke, P. K., Springer, A., and Linscheid, M.: Identification of Fulvic Acids and Sulfated and Nitrated Analogues in Atmospheric Aerosol by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Anal. Chem., 78, 8299-8304, 2006.
- Tao, S., Lu, X., Levac, N., Bateman, A. P., Nguyen, T. B., Bones, D. L., Nizkorodov, S. A., Laskin, J., Laskin, A., and Yang, X.: Molecular Characterization of Organosulfates in Organic Aerosols from Shanghai and Los Angeles Urban Areas by Nanospray-Desorption Electrospray Ionization High-Resolution Mass Spectrometry, Environ. Sci. Technol., 48, 10993-11001, 10.1021/es5024674, 2014.
- Tu, P., Hall, W. A. t., and Johnston, M. V.: Characterization of Highly Oxidized Molecules in Fresh and Aged Biogenic Secondary Organic Aerosol, Anal. Chem., 88, 4495-4501, 10.1021/acs.analchem.6b00378, 2016.
- Vogel, A.: Complementary mass spectrometric techniques for the characterization of the organic fraction in atmospheric aerosols, Ph. D. thesis, Max Planck Graduate Center, University of Mainz, Germany, 2014.
- Wang, K., Zhang, Y., Huang, R.-J., Cao, J., and Hoffmann, T.: UHPLC-Orbitrap mass spectrometric characterization of organic aerosol from a central European city (Mainz, Germany) and a Chinese megacity (Beijing), Atmos. Environ., 189, 22-29, 10.1016/j.atmosenv.2018.06.036, 2018.
- Wang, X., and Schrader, W.: Selective Analysis of Sulfur-Containing Species in a Heavy Crude Oil by Deuterium Labeling Reactions and Ultrahigh Resolution Mass Spectrometry, Int J Mol Sci, 16, 30133-30143, 10.3390/ijms161226205, 2015.
- Wang, X. K., Rossignol, S., Ma, Y., Yao, L., Wang, M. Y., Chen, J. M., George, C., and Wang, L.: Molecular characterization of atmospheric particulate organosulfates in three megacities at the middle and lower reaches of the Yangtze River, Atmos. Chem. Phys., 16, 2285-2298, https://doi.org/10.5194/acp-16-2285-2016, 2016.
- Wang, X. K., Hayeck, N., Brüggemann, M., Yao, L., Chen, H. F., Zhang, C., Emmelin, C., Chen, J. M., George, C., and Wang, L.: Chemical characterization of organic aerosol in: A study by Ultrahigh-Performance Liquid Chromatography Coupled with Orbitrap Mass Spectrometry, Journal of Geophysical Research-Atmospheres, https://doi.org/10.1002/2017JD026930, 2017.
- Worton, D. R., Goldstein, A. H., Farmer, D. K., Docherty, K. S., Jimenez, J. L., Gilman, J. B.,
 Kuster, W. C., de Gouw, J., Williams, B. J., Kreisberg, N. M., Hering, S. V., Bench, G., McKay,
 M., Kristensen, K., Glasius, M., Surratt, J. D., and Seinfeld, J. H.: Origins and composition of
 fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains, California, Atmos.
 Chem. Phys., 11, 10219-10241, https://doi.org/10.5194/acp-11-10219-2011, 2011.
- Wozniak, A. S., Bauer, J. E., Sleighter, R. L., Dickhut, R. M., and Hatcher, P. G.: Technical Note: Molecular characterization of aerosol-derived water soluble organic carbon using ultrahigh

resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, Atmos. Chem. Phys., 8, 5099-5111, 2008.

- Yassine, M. M., Harir, M., Dabek-Zlotorzynska, E., and Schmitt-Kopplin, P.: Structural characterization of organic aerosol using Fourier transform ion cyclotron resonance mass spectrometry: aromaticity equivalent approach, Rapid Commun. Mass Sp., 28, 2445-2454, 10.1002/rcm.7038, 2014.
- Zhang, J. K., Cheng, M. T., Ji, D. S., Liu, Z. R., Hu, B., Sun, Y., and Wang, Y. S.: Characterization of submicron particles during biomass burning and coal combustion periods in Beijing, China, Sci Total Environ, 562, 812-821, 10.1016/j.scitotenv.2016.04.015, 2016.
- Zhang, R., Jing, J., Tao, J., Hsu, S. C., Wang, G., Cao, J., Lee, C. S. L., Zhu, L., Chen, Z., Zhao, Y., and Shen, Z.: Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective, Atmos. Chem. Phys., 13, 7053-7074, 10.5194/acp-13-7053-2013, 2013.
- Zhang, R., Wang, G., Guo, S., Zamora, M. L., Ying, Q., Lin, Y., Wang, W., Hu, M., and Wang, Y.: Formation of urban fine particulate matter, Chem. Rev., 115, 3803-3855, 10.1021/acs.chemrev.5b00067, 2015.
- Zhang, T., Claeys, M., Cachier, H., Dong, S., Wang, W., Maenhaut, W., and Liu, X.: Identification and estimation of the biomass burning contribution to Beijing aerosol using levoglucosan as a molecular marker, Atmos. Environ., 42, 7013-7021, 10.1016/j.atmosenv.2008.04.050, 2008.
- Zhang, Z., Lin, Y. H., Zhang, H., Surratt, J. D., Ball, L. M., and Gold, A.: Technical Note: Synthesis of isoprene atmospheric oxidation products: isomeric epoxydiols and the rearrangement products cis- and trans-3-methyl-3,4-dihydroxytetrahydrofuran, Atmos. Chem. Phys., 12, 8529-8535, https://doi.org/10.5194/acp-12-8529-2012, 2012.
- Zheng, Y., Xue, T., Zhang, Q., Geng, G., Tong, D., Li, X., and He, K.: Air quality improvements and health benefits from China's clean air action since 2013, Environ. Res. Lett., 12, 114020, 10.1088/1748-9326/aa8a32, 2017.
- Zubarev, R. A., and Makarov, A.: Orbitrap Mass Spectrometry, Anal. Chem., 85, 5288-5296, 10.1021/ac4001223, 2013.

- **A.** Supplementary material to chapter 2
- **B.** Supplementary material to chapter 3
- C. Supplementary material to chapter 4
- **D.** List of related publications and presentations
- E. Acknowledgements
- **F.** Curriculum vitae

A. Supplementary material to chapter 2

"UHPLC-Orbitrap mass spectrometric characterization of organic aerosol from a central European city (Mainz, Germany) and a Chinese megacity (Beijing)"

This supplementary material contains one appendice and five figures (S2.3.1-S2.3.5).

The description of calibration standard solution for mass spectrometer.

Calibration standard solution were purchased from Sigama-Aldrich, Germany. For positive mode: caffeine (molecular weight 194 Da), MRFA (L-methionyl-arginyl-phenylalanyl-alanine, molecular weight 523 Da), Ultramark 1621 (a mixture of perfluorinated phosphazenes, molecular weight in the range of 1021-1921 Da) and n-butylamine (molecular weight 73 Da). For negative mode: sodium dodecyl sulfate (molecular weight 288 Da), sodium taurocholate hydrate (molecular weight 537 Da) and Ultramark 1621.

Figure S2.3.1: The UHPLC chromatograms of tentatively determined M/Z 161.02394 Da in Maniz and Beijing samples.

7 Appendix

Figure S2.3.2: The van Krevelen diagram for CHO compounds detected in ESI+ mode. Areas 'A' and 'B' refer to aliphatic compounds and oxidised aromatic hydrocarbons in organic aerosol, respectively. The colour bar denotes the aromaticity equivalent (gray ball with $X_C < 2.50$, purple ball with $2.50 \le X_C < 2.70$ and red ball with $X_C \ge 2.70$). The pie chat shows the percentage of the number of each color-coded compound in each sample.

Figure S2.3.3: The van Krevelen diagram of CHON compounds detected in ESI+ mode. Areas 'A' and 'B' refer to aliphatic compounds and oxidised aromatic hydrocarbons in organic aerosol, respectively. The colour bar denotes the aromaticity equivalent (gray ball with $X_C < 2.50$, purple ball with $2.50 \le X_C < 2.70$ and red ball with $X_C \ge 2.70$). The pie chat shows the percentage of the number of each color-coded compound in each sample.

Figure S2.3.4: The van Krevelen diagram constructed by plotting the H/C ratio agaist the (O-3N)/C ratio for CHON compounds detected in ESI- mode. Areas 'A' and 'B' refer to aliphatic compounds and oxidised aromatic hydrocarbons in organic aerosol, respectively. The colour bar denotes the aromaticity equivalent (gray ball with $X_C < 2.50$, purple ball with $2.50 \le X_C < 2.70$ and red ball with $X_C \ge 2.70$). The pie chat shows the percentage of the number of each color-coded compound in each sample.

7 Appendix

Figure S2.3.5: The DBE vs. carbon number diagram of CHOS compounds observed in MZL (circles), BJL (triangles) and BJH (dots). The stars in the figure indicate the averaged DBE and carbon number of CHOS compounds in MZL (red star), BJL (green star) and BJH (blue star).

B. Supplementary material to chapter 3

"Molecular characterization of organic aerosols in three cities at the northeast, central east and southeast of China using ultrahigh performance liquid chromatography coupled with Orbitrap mass spectrometry"

This supplementary material contains one appendice, six tables (S3.2.1-S3.2.6) and three figures (S3.3.1-S3.3.3).

Data processing for UHRMS:

The mass spectra were processed using a custom software named SIEVE, which was developed by Thermo Scientific in Germany. The detailed processing steps and settings in the software are showed as follows: A threshold peak abundance of 1×10^5 arbitrary units in the the two-dimensional space of the retention time window from 0-11.05 min and m/z window from 50-500 was applied to to all ions. The software automatically searched the ions with their peak abundance above the threshold and only ions with peak abundance in the ambient samples 10 times higher than those in the blank samples were retained. Subsequently, all mathematically possible formulas for these ions were calculated with a mass tolerance of ± 2 ppm with the elemental number ranges of 1-39 (¹²C), 1-72 (¹H), 0-20 (¹⁶O), 0-7 (¹⁴N), 0-4 (³²S) and 0-2 (³⁵Cl). In the positive mode (ESI+), 0-1 of Na was also included in the formula calculation because of the high tendency of sodium to form adducts with polar organic molecules. To remove the chemically unreasonable formulas, the identified formulas were further constraint by setting H/C, O/C, N/C, S/C and Cl/C ratios in the ranges of 0.3-3, 0-3, 0-1.3, 0-0.8 and 0-0.8, respectively. Meanwhile, the resulting neutral formulas with a non-integer or negative double bond equivalent (DBE) or elemental composition which disobey the nitrogen rule for even electron ions were also removed. It should be noted that only formulas detected in the three repetitions and observed in all three filter samples for each city were discussed in this study. The peak abundance of a compound in each city sample refers to the average area of its chromatographic peak in the three filter samples and was blankcorrected. After that, the arbitrary abundances of all isomers for a given formula were added up.

To reflect the degree of unsaturation of a compound, the double-boud equivalence (DBE) was calculated for chemical formula $C_cH_hO_oN_nS_sCl_x$:

DBE = (2c + 2 - h - x + n) / 2

Where c, h, x and n represent the numbers of atoms of carbon, hydrogen, chlorine and nitrogen, respectively.

Additionally, the aromaticity equivalent (Xc) was suggested to improve the identification and characterization of monoaromatic and polyaromatic compounds (Yassine et al., 2014;Kourtchev et al., 2016;Wang et al., 2017). Xc of the formula $C_cH_hO_oN_nS_sCl_x$ was calculated as follows:

 $Xc = [3(DBE - (p \times o + q \times n)) - 2] / [DBE - (p \times o + q \times n)]$

where p and q, respectively, refer to the fraction of oxygen and sulfur atoms involved in in π bond structure of a compound that varies based on the category of the compound. For example, carboxylic acids and esters are characterized using p = q = 0.5, while p = q = 1 and p = q = 0 are used for carbonyl and hydroxyl, respectively. Since it is impossible to identify the structurers of the hundreds of formulas observed in this study, we can not know the exact values of p and q in an individual compound. Therefor, in this study, p = q = 0.5 was applied for compounds detected in ESI- due to carboxylic compounds are prone to be ionized in negative mode. However, because of the high complexity of compounds detected in ESI+, p = q = 1 was used in ESI+ to avoid an overestimation of the amount of aromatics. Moreover, if DBE $\leq (p \times o + q \times n)$ or $X_C \leq 0$, then X_C was defined as zero. When using p = q = 0.5 and $(p \times o + q \times n)$ gave an odd number, the value of $(p \times o + q \times n)$ was rounded down to the lower integer (Yassine et al., 2014). Xc ≥ 2.50 and Xc \geq 2.71 are suggested to unambiguous minimum criteria for the presence of monoaromatics and polyaromatics, respectively (Yassine et al., 2014).

It is noted that different organic compounds have different signal response in the mass spectrometer, so uncertainties exist when comparing the peak areas of different. In this work, we assume that all organic compounds observed in this study have the same abundance response in the mass spectrometer when they are compared. And the abundance-weighted molecular weight, elemental ratios, DBE and Xc for formula $C_cH_hO_oN_nS_sCl_x$ were calculated using following equations:

$$\begin{split} MW_w &= \sum \left(MW_i \times A_i \right) / \sum A_i \\ O/C_w &= \sum \left(O/C_i \times A_i \right) / \sum A_i \\ H/C_w &= \sum \left(O/C_i \times A_i \right) / \sum A_i \\ DBE_w &= \sum \left(O/C_i \times A_i \right) / \sum A_i \\ Xc_w &= \sum \left(O/C_i \times A_i \right) / \sum A_i \end{split}$$

where A_i was the peak abundance for each individual formula i.

Figure S3.3.1. The van Krevelen diagram for CHO- compounds in CC, SH and GZ samples. The size of circles is proportional to the fourth root of the peak abundance of a individual compound and the color bar denotes the aromaticity equivalent (gray with XC < 2.50, purple with $2.50 \le XC < 2.70$ and red with XC ≥ 2.70).

Figure S3.3.2: Classification of CHON+ compounds into different subgroups according to O/N ratios in their formulas. The y-axis indicates the relative contribution of each subgroup to the sum of peak abundance of CHON+ compounds.

7 Appendix

Figure S3.3.3: Double bond equivalent (DBE) vs C number for all CHON+ compounds of all samples. The molecular formula represents the abundance-weighted average CHON+ formula and the size of circles is proportional to the fourth root of the peak abundance of a individual compound. The color bar denotes the aromaticity equivalent (gray with XC < 2.50, purple with $2.50 \le XC < 2.0$ and red with XC ≥ 2.70). The size of pie chats is proportional to the peak abundances of each color-coded compounds in each sample.

Formula [M-H]	Neutral mass (Da)	RT (min)	DRF	H/C	0/C
C3H5O6S1	160 0885	0.39	1	2.00	2.00
C3H3O4	107.7885	0.37	1	1.33	1.33
C6H6O1N1	104.0110	0.37	2 4	1.55	0.17
CGUSO2	110.0368	1.87	4	1.17	0.17
C0HJO2	110.0508	1.07	4	1.00	0.33
C/H901	148.0272	2.53	3	1.43	0.14
C5H/05	148.0372	0.38	2	1.00	1.00
C6H/O2	112.0524	1.02	3	1.33	0.33
C6H/O2	112.0524	3.25	3	1.33	0.33
C4H3O4	116.0110	0.39	3	1.00	1.00
C3H4O5N1	135.0168	0.39	2	1.6/	1.67
C8H501	118.0419	3.17	6	0.75	0.13
C7H4O1N1	119.0371	3.16	6	0.71	0.14
C/H4OINI	119.0371	3.36	6	0.71	0.14
C8H7O1	120.0575	3.09	5	1.00	0.13
C8H7O1	120.0575	3.37	5	1.00	0.13
C7H6O1N1	121.0528	3.20	5	1.00	0.14
C5H9O7S1	214.0147	0.38	1	2.00	1.40
C7H5O2	122.0368	2.77	5	0.86	0.29
C2H4O3N1S1	122.9990	0.29	1	2.50	1.50
C2H3O4S1	123.9830	0.71	1	2.00	2.00
C2H3O4S1	123.9830	1.66	1	2.00	2.00
C7H7O2	124.0524	3.07	4	1.14	0.29
C2H5O4S1	125.9987	0.38	0	3.00	2.00
C6H7O7S1	223.9991	0.38	3	1.33	1.17
C7H9O2	126.0681	2.05	3	1.43	0.29
C7H9O2	126.0681	2.54	3	1.43	0.29
C5H5O5	146.0215	0.38	3	1.20	1.00
C5H8O7N1S2	258.9820	0.29	2	1.80	1.40
C5H5O4	130.0266	0.60	3	1.20	0.80
C5H7O4	132.0423	0.77	2	1.60	0.80
C5H7O4	132.0423	1.11	2	1.60	0.80
C8H9O4N2S1	230.0361	3.12	5	1.25	0.50
C8H8O7N1S1	263.0100	3.61	5	1.13	0.88
C8H6O1N1	133.0528	4.04	6	0.88	0.13
C8H6O1N1	133.0528	4.50	6	0.88	0.13
C8H6O1N1	133.0528	4.83	6	0.88	0.13
C8H5O2	134.0368	1.80	6	0.75	0.25
C5H9O4	134.0579	0.39	1	2.00	0.80
C7H4O2N1	135.0320	2.71	6	0.71	0.29
C7H4O2N1	135.0320	2.92	6	0.71	0.29
C8H7O2	136.0524	3.02	5	1.00	0.25
C8H7O2	136.0524	3.19	5	1.00	0.25
C8H7O2	136.0524	3.36	5	1.00	0.25
C8H7O2	136.0524	3.55	5	1.00	0.25
C8H7O2	136.0524	3.75	5	1.00	0.25
C2H2O4N1S1	136.9783	0.38	2	1.50	2.00
C3H504S1	137.9987	0.35	- 1	2.00	1.33
C3H504S1	137.9987	1.60	1	2.00	1.33
C7H5O3	138,0317	2.14	5	0.86	0.43
C7H5O3	138 0317	2.29	5	0.86	0.43
0/11505	150.0517	2.29	5	0.00	0.73

Table S3.2.1 Molecular formulas of organic compounds detected in CC in ESI- mode.

C7H5O3	138.0317	2.80	5	0.86	0.43
C7H5O3	138.0317	3.59	5	0.86	0.43
C8H9O2	138.0681	2.94	4	1.25	0.25
C8H9O2	138.0681	4.12	4	1.25	0.25
C8H9O2	138.0681	4.22	4	1.25	0.25
C6H4O3N1	139.0269	3.79	5	0.83	0.50
C6H3O4	140.0110	0.39	5	0.67	0.67
C3H7O4S1	140.0143	0.50	0	2.67	1.33
C5H3O3N2	140 0222	2.42	5	0.80	0.60
C7H7O3	140.0473	0.79	4	1 14	0.00
C6H9O6N2S1	238 0260	0.37	3	1.67	1.00
C8H11O2	140 0837	2 79	3	1.50	0.25
C8H11O2	140.0837	2.19	3	1.50	0.25
C6H5O4	142 0266	0.40	3 4	1.00	0.25
C6H5O4	142.0200	0.40		1.00	0.67
C7H9O3	142.0200	2.85	4	1.00	0.07
C8H4O12N1	306 9812	0.36	7	0.63	1.50
C8H3O1N2	144 0324	3.47	2 2	0.05	0.13
C8H3O1N2	144.0324	3.47	8	0.50	0.13
C6H7O4	144.0324	0.70	3	1.33	0.13
C0H6O1N1	144.0423	2.28	3 7	0.78	0.07
C9H6O1N1	145.0528	2.20	7	0.78	0.11
COH6O1N1	145.0528	5.51 4.10	7	0.78	0.11
C9H0OINI	145.0528	4.19	7	0.78	0.11
C0H7O2	147.0320	2.08	6	0.03	0.23
C9H7O2	146.0524	2.90	5	0.89	0.22
C911903	148.0524	3.12	5	0.80	0.33
C8H2O8N5	206.0082	0.30	10	0.39	1.00
C8H6O2N1	290.9982	3 30	10	0.38	0.25
C8H5O2	149.0477	2.59	6	0.88	0.25
C8H5O2	150.0317	2.00	6	0.75	0.38
C5H0O5	150.0517	2.90	1	2.00	1.00
C011002	150.0528	0.35	1	2.00	1.00
C9H9O2	150.0081	3.71	5	1.11	0.22
C9H9O2	150.0081	5.90	5	1.11	0.22
C9H9O2	150.0681	4.34	5	1.11	0.22
C9H9O2	150.0681	5.08	5	1.11	0.22
C9H9O2	150.0681	5.23	5	1.11	0.22
C8H8O2N1	151.0633	1.78	5	1.13	0.25
C5H906S1	198.0198	0.38	1	2.00	1.20
C8H/03	152.0473	1.78	5	1.00	0.38
C8H/03	152.0473	2.67	5	1.00	0.38
C8H/O3	152.0473	3.08	5	1.00	0.38
C8H/O3	152.0473	3.26	5	1.00	0.38
C8H/O3	152.0473	3.40	5	1.00	0.38
C8H/O3	152.0473	3.55	5	1.00	0.38
C8H/O3	152.0473	3.67	5	1.00	0.38
C8H7O3	152.0473	3.82	5	1.00	0.38
C8H7O3	152.0473	4.40	5	1.00	0.38
C8H7O3	152.0473	5.42	5	1.00	0.38
C8H7O3	152.0473	5.58	5	1.00	0.38
C8H7O3	152.0473	6.30	5	1.00	0.38
C8H7O3	152.0473	3.77	5	1.00	0.38
C8H7O3	152.0473	4.65	5	1.00	0.38

C9H11O2	152.0837	6.11	4	1.33	0.22
C9H11O2	152.0837	6.63	4	1.33	0.22
C9H11O2	152.0837	7.16	4	1.33	0.22
C7H6O3N1	153.0426	5.28	5	1.00	0.43
C7H6O3N1	153.0426	6.13	5	1.00	0.43
C3H5O5S1	153.9936	0.37	1	2.00	1.67
C7H5O4	154.0266	1.32	5	0.86	0.57
C7H5O4	154.0266	2.27	5	0.86	0.57
C7H5O4	154.0266	2.71	5	0.86	0.57
C7H5O4	154.0266	2.96	5	0.86	0.57
C7H5O4	154.0266	3.34	5	0.86	0.57
C4H9O4S1	154.0300	0.94	0	2.50	1.00
C9H13O2	154.0994	3.27	3	1.56	0.22
C2H4O5N1S1	154.9888	0.32	1	2.50	2.50
C6H4O4N1	155.0219	0.48	5	0.83	0.67
C6H4O4N1	155.0219	3.11	5	0.83	0.67
C6H4O4N1	155.0219	3.83	5	0.83	0.67
C6H4O4N1	155.0219	4.21	5	0.83	0.67
C6H4O4N1	155 0219	4 28	5	0.83	0.67
C6H4O4N1	155 0219	3 55	5	0.83	0.67
C2H3O6S1	155 9729	0.33	1	2.00	3.00
C6H3O5	156 0059	0.55	5	2.00	0.83
C5H3O4N2	156 0171	1.27	5	0.80	0.80
C7H7O4	156.0423	1.27	1	1.14	0.57
C6H5O3S1	158 0038	0.74	4	1.14	0.57
C10H8O1N1	150.0684	0.74	4	0.00	0.50
C5U706S1	106.0042	2.00	2	0.90	1.20
C511206	190.0042	0.37	2 4	1.00	1.20
C10U7O2	160.0008	0.50	4	0.80	1.20
C10H7O2	160.0524	4.05	7	0.80	0.20
C10H/02	160.0324	4.41	7	0.80	0.20
C9H6O2N1	161.0477	2.83	7	0.78	0.22
C9H6O2N1	161.04//	2.89		0.78	0.22
C9H8O3N1	1/9.0582	3.40	6	1.00	0.33
C9H6O2N1	161.04//	3.04	/	0.78	0.22
C9H5O3	162.0317	2.81	/	0.67	0.33
C9H5O3	162.0317	2.99	7	0.67	0.33
C9H5O3	162.0317	3.17	7	0.67	0.33
C9H5O3	162.0317	3.31	7	0.67	0.33
C9H5O3	162.0317	4.00	7	0.67	0.33
C9H5O3	162.0317	4.12	7	0.67	0.33
C9H5O3	162.0317	4.65	7	0.67	0.33
C8H5O2N2	162.0429	6.18	7	0.75	0.25
C10H9O2	162.0681	3.40	6	1.00	0.20
C10H9O2	162.0681	3.54	6	1.00	0.20
C10H9O2	162.0681	3.65	6	1.00	0.20
C10H9O2	162.0681	3.83	6	1.00	0.20
C8H4O3N1	163.0269	2.69	7	0.63	0.38
C4H3O5S1	163.9779	0.38	3	1.00	1.25
C7H3O3N2	164.0222	4.27	7	0.57	0.43
C9H7O3	164.0473	2.51	6	0.89	0.33
C9H7O3	164.0473	2.77	6	0.89	0.33
C9H7O3	164.0473	3.09	6	0.89	0.33
C9H7O3	164.0473	3.33	6	0.89	0.33

C9H7O3	164.0473	3.39	6	0.89	0.33
C6H11O5	164.0685	0.36	1	2.00	0.83
C8H6O3N1	165.0426	1.50	6	0.88	0.38
C8H6O3N1	165.0426	3.22	6	0.88	0.38
C8H6O3N1	165.0426	5.14	6	0.88	0.38
C8H6O3N1	165.0426	6.80	6	0.88	0.38
C8H6O3N1	165.0426	7.40	6	0.88	0.38
C4H5O5S1	165.9936	0.37	2	1.50	1.25
C8H5O4	166.0266	1.35	6	0.75	0.50
C8H5O4	166.0266	2.69	6	0.75	0.50
C8H5O4	166 0266	2.85	6	0.75	0.50
C8H5O4	166 0266	2.96	6	0.75	0.50
C5H9O4S1	166.0300	3 40	1	2.00	0.80
C9H9O3	166.0630	2.90	5	1 11	0.33
C9H9O3	166.0630	3.26	5	1.11	0.33
C9H9O3	166.0630	3.59	5	1.11	0.33
C0H0O3	166.0630	3.81	5	1.11	0.33
C0H0O3	166.0630	J.81 4 36	5	1.11	0.33
C0H0O2	166.0620	4.30 5.20	5	1.11	0.33
C9H9O3	166.0620	J.29 7 22	5	1.11	0.33
C9H9O3	166.0630	1.22	5	1.11	0.33
C(1120251	100.0050	4.00	5	1.11	0.55
C10111202	166.0004	2.96	0	2.33	0.50
C10H13O2	166.0994	/.6/	4	1.40	0.20
C3H4O5NISI	166.9888	0.36	2	1.6/	1.67
C/H4O4NI	167.0219	3.80	6	0.71	0.57
C8H8O3N1	167.0582	7.17	5	1.13	0.38
C8H8O3N1	167.0582	7.29	5	1.13	0.38
C8H8O3N1	167.0582	7.59	5	1.13	0.38
C5H3O3N4	168.0283	0.38	6	0.80	0.60
C8H7O4	168.0423	1.12	5	1.00	0.50
C8H7O4	168.0423	2.92	5	1.00	0.50
C8H7O4	168.0423	3.09	5	1.00	0.50
C8H7O4	168.0423	3.29	5	1.00	0.50
C8H7O4	168.0423	3.34	5	1.00	0.50
C5H11O4S1	168.0456	2.23	0	2.40	0.80
C5H11O4S1	168.0456	2.84	0	2.40	0.80
C9H11O3	168.0786	2.56	4	1.33	0.33
C9H11O3	168.0786	2.78	4	1.33	0.33
C3H6O5N1S1	169.0045	0.34	1	2.33	1.67
C7H6O4N1	169.0375	3.06	5	1.00	0.57
C7H6O4N1	169.0375	3.70	5	1.00	0.57
C7H6O4N1	169.0375	3.86	5	1.00	0.57
C7H6O4N1	169.0375	4.20	5	1.00	0.57
C7H6O4N1	169.0375	4.72	5	1.00	0.57
C7H6O4N1	169.0375	6.38	5	1.00	0.57
C7H6O4N1	169.0375	6.74	5	1.00	0.57
C11H6O1N1	169.0528	7.44	9	0.64	0.09
C9H14O2N1	169.1103	4.47	3	1.67	0.22
C8H9O4	170.0579	2.54	4	1.25	0.50
C6H4O5N1	171.0168	2.33	5	0.83	0.83
C6H4O5N1	171.0168	3.01	5	0.83	0.83
C7H7O3S1	172.0194	1.34	4	1.14	0.43
C11H7O2	172.0524	3.89	8	0.73	0.18
-					

C11H7O2	172.0524	4.10	8	0.73	0.18
C11H7O2	172.0524	5.21	8	0.73	0.18
C11H7O2	172.0524	6.82	8	0.73	0.18
C11H7O2	172.0524	7.10	8	0.73	0.18
C11H7O2	172.0524	7.44	8	0.73	0.18
C5H5O3N2S1	174.0099	0.39	4	1.20	0.60
C7H9O5	174.0528	0.83	3	1.43	0.71
C11H9O2	174.0681	3.38	7	0.91	0.18
C11H9O2	174.0681	3.55	7	0.91	0.18
C11H9O2	174.0681	4.48	7	0.91	0.18
C11H9O2	174.0681	6.95	, 7	0.91	0.18
C11H9O2	174 0681	7 11	, 7	0.91	0.18
C11H9O2	174.0681	7.11	, 7	0.91	0.18
C10H8O2N1	175.0633	3 37	7	0.90	0.10
C6H7O4S1	175.0055	1.38	3	1.33	0.20
C6H7O4S1	176.0143	1.38	2	1.33	0.67
C10U7O2	176.0143	1.60	3 7	1.55	0.07
C10H7O3	176.0473	5.01	7	0.80	0.30
C10H/O3	176.0473	3.21	/	0.80	0.30
C10H/O3	176.0473	3.29	/	0.80	0.30
C10H7O3	176.0473	3.51	7	0.80	0.30
C10H7O3	176.0473	3.84	7	0.80	0.30
C10H7O3	176.0473	4.12	7	0.80	0.30
C10H7O3	176.0473	4.47	7	0.80	0.30
C8H13O7	222.0740	0.41	2	1.75	0.88
C7H11O5	176.0685	0.56	2	1.71	0.71
C7H11O5	176.0685	0.97	2	1.71	0.71
C7H11O5	176.0685	1.18	2	1.71	0.71
C11H11O2	176.0837	4.06	6	1.09	0.18
C11H11O2	176.0837	4.15	6	1.09	0.18
C11H11O2	176.0837	4.28	6	1.09	0.18
C11H11O2	176.0837	4.47	6	1.09	0.18
C11H11O2	176.0837	4.78	6	1.09	0.18
C11H11O2	176.0837	5.19	6	1.09	0.18
C9H6O3N1	177.0426	3.10	7	0.78	0.33
C9H6O3N1	177.0426	3.34	7	0.78	0.33
C9H6O3N1	177.0426	7.05	7	0.78	0.33
C9H5O4	178.0266	0.81	7	0.67	0.44
C9H5O4	178.0266	2.71	7	0.67	0.44
C10H7O6	224.0321	2.85	7	0.80	0.60
C9H5O4	178.0266	3.43	7	0.67	0.44
C9H5O4	178.0266	3.02	7	0.67	0.44
C10H9O3	178.0630	2.74	6	1.00	0.30
C10H9O3	178.0630	3.01	6	1.00	0.30
C10H9O3	178.0630	3.21	6	1.00	0.30
C10H9O3	178.0630	3.79	6	1.00	0.30
C10H9O3	178 0630	4 32	6	1.00	0.30
C10H9O3	178 0630	4 54	6	1.00	0.30
C10H9O3	178 0630		6	1.00	0.30
C10H003	178 0630	05 5 /17	6	1.00	0.30
C10119U3	224 0042	0.25	2	1.00	1.40
COLICINISI	224.7743 170.0210	4.09	כ ד	1.40	0.50
COLIAO ANI	179.0219	4.98	7	0.03	0.50
COLLOCANI	170.0592	5.40		0.03	0.50
C9H8U3NI	1/9.0582	5.30	6	1.00	0.33

C9H8O3N1 179.0582 7.04 6 1.00 0 C9H8O3N1 179.0582 7.30 6 1.00 0 C9H8O3N1 179.0582 7.30 6 1.00 0).33).33
C9H8O3N1 179.0582 7.30 6 1.00 0 C9H8O3N1 179.0582 7.30 6 1.00 0).33
C9H8U3N1 1/9.0582 /.4/ 6 1.00 ().33
C9H8O3N1 179.0582 7.66 6 1.00 ().33
C4H3O6S1 179.9729 0.40 3 1.00	.50
C9H7O4 180.0423 2.65 6 0.89 ().44
C9H7O4 180.0423 2.79 6 0.89 ().44
C9H7O4 180.0423 2.93 6 0.89 (.44
C9H7O4 180.0423 3.06 6 0.89 ().44
C9H7O4 180.0423 3.18 6 0.89 ().44
C9H7O4 180.0423 4.16 6 0.89 (.44
C6H1104S1 180.0456 2.57 1 2.00 (.67
C6H11O6 180 0634 0.34 1 2.00	00
C10H1103 180 0786 3 19 5 1 20 (30
C10H1103 180.0786 3.83 5 1.20 (0.30
C10H1103 180.0786 3.93 5 1.20 () 30
C10H1103 180.0786 4.53 5 1.20 () 30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$).30) 30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.50 0.50
Condutin 181.0375 2.04 0 0.88 (0.50 0.50
Condutini 101.0575 5.65 0 0.66 (0.50 0.50
C8H6O4N1 181.0375 5.95 0 0.88 (0.50 0.50
C8H604N1 181.0375 4.34 6 0.88 (0.50
C9H10O3N1 181.0739 2.18 5 1.22 (0.33
C9H10O3N1 181.0/39 7.78 5 1.22 (0.33
C9H10O3N1 181.0/39 7.89 5 1.22 (0.33
C9H10O3N1 181.0739 8.05 5 1.22 (0.33
C8H5O5 182.0215 1.08 6 0.75 (0.63
C8H5O5 182.0215 1.95 6 0.75 (0.63
C8H5O5 182.0215 2.48 6 0.75 (0.63
C5H9O5S1 182.0249 0.41 1 2.00	.00
C5H9O5S1 182.0249 0.50 1 2.00	.00
C7H5O4N2 182.0328 3.14 6 0.86 ().57
C9H9O4 182.0579 2.67 5 1.11 ().44
C9H9O4 182.0579 2.94 5 1.11 ().44
C9H9O4 182.0579 3.13 5 1.11 ().44
C6H13O4S1 182.0613 3.03 0 2.33 ().67
C5H7O8N6 280.0404 3.14 5 1.60	.60
C6H13O4S1 182.0613 3.54 0 2.33 ().67
C8H9O3N2 182.0691 0.72 5 1.25 (0.38
C7H4O5N1 183.0168 2.96 6 0.71 (0.71
C7H4O5N1 183.0168 3.28 6 0.71 ().71
C7H4O5N1 183.0168 3.40 6 0.71 ().71
C7H4O5N1 183.0168 3.63 6 0.71 ().71
C8H8O4N1 183.0532 3.39 5 1.13 (0.50
C8H8O4N1 183.0532 3.54 5 1.13 (0.50
C8H8O4N1 183.0532 4.22 5 1.13 (0.50
C8H8O4N1 183.0532 5.76 5 1.13 (0.50
C8H8O4N1 183.0532 6.03 5 1.13 (0.50
C8H8O4N1 183.0532 6.58 5 1.13 (0.50
C8H8O4N1 183.0532 7.09 5 1.13 ().50
C8H8O4N1 183.0532 7.64 5 1.13 ().50
C4H7O6S1 184.0042 0.73 1 2.00	.50
<u>C8H7O5</u> 184.0372 2.79 5 1.00 0).63

C5H1105S1 184.0405 0.81 0 2.40 C12H702 184.0524 5.25 9 0.67 C12H702 184.0524 5.25 9 0.67	1.00 0.17 0.17
C12H7O2 184.0524 5.25 9 0.67	0.17 0.17
01011700 194.0504 0.00 0.00 0.00	0.17
C12H/02 184.0524 8.09 9 0.67	0.17
C7H6O5N1 185.0324 2.63 5 1.00	0.71
C7H6O5N1 185.0324 3.32 5 1.00	0.71
C11H5O3 186.0317 6.67 9 0.55	0.27
C8H9O5 186.0528 1.26 4 1.25	0.63
C12H9O2 186.0681 7.18 8 0.83	0.17
C12H9O2 186.0681 7.30 8 0.83	0.17
C7H1106S1 224.0355 1.02 2 1.71	0.86
C7H7O4S1 188 0143 2 60 4 1 14	0.57
C7H7O6 188.0321 0.53 4 1.14	0.86
C11H7O3 188 0473 3 44 8 0 73	0.27
C11H7O3 188 0473 7 31 8 0.73	0.27
C11H7O3 188 0473 7 51 8 0.73	0.27
C11H7O3 188 0473 7 79 8 0 73	0.27
C8H11O5 188.0685 1.20 3 1.50	0.27
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.17
C12H1102 188.0857 4.50 7 1.00 C6116O4N181 180.0006 0.72 4 1.17	0.17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.07
C6H604NISI 189.0096 1.32 4 1.17	0.67
C10H60J3N1 189.0426 7.75 8 0.70	0.30
C6H5O5S1 189.9936 0.29 4 1.00	0.83
C6H5O5S1 189.9936 0.36 4 1.00	0.83
C6H9O/S1 226.0147 0.52 2 1.67	1.17
C6H5O5S1 189.9936 1.33 4 1.00	0.83
C5H5O4N2S1 190.0048 0.36 4 1.20	0.80
C5H5O4N2S1 190.0048 0.82 4 1.20	0.80
C10H5O4 190.0266 3.24 8 0.60	0.40
C9H5O3N2 190.0378 2.77 8 0.67	0.33
C6H9O3N2S1 190.0412 0.38 3 1.67	0.50
C11H9O3 190.0630 3.04 7 0.91	0.27
C11H9O3 190.0630 3.40 7 0.91	0.27
C11H9O3 190.0630 3.64 7 0.91	0.27
C11H9O3 190.0630 4.50 7 0.91	0.27
C11H9O3 190.0630 4.62 7 0.91	0.27
C12H13O2 190.0994 6.92 6 1.17	0.17
C5H4O5N1S1 190.9888 0.39 4 1.00	1.00
C10H8O3N1 191.0582 4.49 7 0.90	0.30
C6H7O5S1 192.0092 0.40 3 1.33	0.83
C6H7O5S1 192.0092 0.83 3 1.33	0.83
C6H7O7 192.0270 0.38 3 1.33	1.17
C10H7O4 192.0423 2.91 7 0.80	0.40
C10H7O4 192.0423 3.00 7 0.80	0.40
C10H7O4 192.0423 3.12 7 0.80	0.40
C10H7O4 192.0423 3.32 7 0.80	0.40
C10H7O4 192.0423 3.52 7 0.80	0.40
C10H7O4 192.0423 4.10 7 0.80	0.40
C10H7O4 192.0423 7.03 7 0.80	0.40
C7H11O6 192.0634 0.55 2 1.71	0.86
C11H11O3 192.0786 3.50 6 1.09	0.27
C11H11O3 192.0786 3.74 6 1.09	0.27

C11H11O3	192.0786	4.65	6	1.09	0.27
C9H6O4N1	193.0375	6.83	7	0.78	0.44
C9H6O4N1	193.0375	7.05	7	0.78	0.44
C9H6O4N1	193.0375	7.19	7	0.78	0.44
C10H10O3N1	193.0739	7.98	6	1.10	0.30
C5H5O6S1	193.9885	0.61	3	1.20	1.20
C5H5O6S1	193.9885	0.70	3	1.20	1.20
C9H5O5	194.0215	0.83	7	0.67	0.56
C9H5O5	194.0215	2.76	7	0.67	0.56
C9H5O5	194.0215	2.92	7	0.67	0.56
C10H9O4	194.0579	2.90	6	1.00	0.40
C10H9O4	194.0579	3.01	6	1.00	0.40
C10H9O4	194.0579	3.08	6	1.00	0.40
C10H9O4	194.0579	3.29	6	1.00	0.40
C10H9O4	194.0579	3.57	6	1.00	0.40
C10H9O4	194.0579	3.67	6	1.00	0.40
C10H9O4	194 0579	3.82	6	1.00	0.40
C10H9O4	194 0579	6.46	6	1.00	0.40
C14H9O1	194 0732	8.10	10	0.71	0.07
C8H17O3S1	194 0977	5.20	0	2.25	0.38
C8H4O3N1S1	194 9990	7 44	7	0.63	0.38
C8H4O5N1	195 0168	3 66	7	0.63	0.63
C9H8O4N1	195.0100	3 99	6	1.00	0.05
C9H8O4N1	195.0532	4 80	6	1.00	0.44
C9H8O4N1	195.0532	5.07	6	1.00	0.44
C9H8O4N1	195.0532	5.67	6	1.00	0.44
C9H8O4N1	195.0532	6 39	6	1.00	0.44
C9H8O4N1	195.0532	6.56	6	1.00	0.44
C9H7O5	196.0372	1.83	6	0.89	0.44
C9H7O5	196.0372	2.49	6	0.89	0.56
C9H7O5	196.0372	3.04	6	0.89	0.56
C9H7O5	196.0372	3.04	6	0.89	0.56
C9H7O5	196.0372	3.20	6	0.89	0.56
C9H7O5	196.0372	3.55	6	0.89	0.56
C9H7O5	190.0372	3.70	6	0.89	0.50
C6H1105S1	190.0372	1.08	1	2.00	0.50
C12U7O2	190.0403	1.08	10	2.00	0.85
C13H7O2	196.0524	4.62	10	0.62	0.15
C13H7O2	196.0524	4.07	10	0.62	0.15
C13H7O2	190.0524	7.20	10	0.02	0.15
C10U1104	190.0324	7.55	10	0.02	0.13
C10H1104	190.0730	2.75	5	1.20	0.40
C10H1104	190.0730	3.22	5	1.20	0.40
C10H1104	196.0736	3.34	5	1.20	0.40
C7H15O4S1	196.0769	3.72	0	2.29	0.57
C/H1504S1	196.0769	5.22	0	2.29	0.57
C8H6O5N1	197.0324	2.81	6	0.88	0.63
C8H6O5N1	197.0324	3.28	6	0.88	0.63
C8H6O5N1	197.0324	3.47	6	0.88	0.63
CONCOSNI	197.0324	3.70	6	0.88	0.63
CONCOST	197.0324	4.06	6	0.88	0.63
Concorni	197.0324	4.41	6	0.88	0.63
C8H6O5N1	197.0324	4.76	6	0.88	0.63
C8H6O5N1	197.0324	3.73	6	0.88	0.63

C9H10O4N1	197.0688	7.29	5	1.22	0.44
C9H10O4N1	197.0688	7.39	5	1.22	0.44
C9H10O4N1	197.0688	7.59	5	1.22	0.44
C9H10O4N1	197.0688	7.78	5	1.22	0.44
C13H10O1N1	197.0841	8.08	9	0.85	0.08
C8H5O6	198.0164	3.10	6	0.75	0.75
C5H9O6S1	198.0198	1.60	1	2.00	1.20
C5H9O6S1	198.0198	1.74	1	2.00	1.20
C5H9O6S1	198.0198	1.89	1	2.00	1.20
C7H5O5N2	198.0277	7.44	6	0.86	0.71
C6H13O5S1	198.0562	2.82	0	2.33	0.83
C13H9O2	198.0681	7.23	9	0.77	0.15
C13H9O2	198.0681	7.50	9	0.77	0.15
C13H9O2	198.0681	7.99	9	0.77	0.15
C13H9O2	198.0681	7 28	9	0.77	0.15
C7H4O6N1	199.0117	2.69	6	0.71	0.86
C7H4O6N1	199.0117	3 44	6	0.71	0.86
C8H8O5N1	199.0481	2.51	5	1.13	0.60
C8H8O5N1	199.0481	4 29	5	1.13	0.63
C6H3O6N2	200.0069	4.85	6	0.67	1.00
C12H7O1S1	200.0009	0.78	9	0.67	0.08
C12H7O3	200.0270	4 47	9	0.67	0.00
C12H7O3	200.0473	6.05	9	0.67	0.25
C12H7O3	200.0473	7.16	0	0.67	0.25
C12H7O3	200.0473	8.07	0	0.67	0.25
C13H1102	200.0475	7.80	8	0.07	0.25
C13H1102	200.0837	7.00	8	0.92	0.15
C13H1102	200.0837	7.50	8	0.92	0.15
C7H5O5S1	200.0837	0.63	5	0.92	0.15
C6H5O4N2S1	201.9930	0.05	5	1.00	0.71
C7H0O3N2S1	202.0048	1.10	1	1.00	0.07
C/H9O5N251	202.0412	1.10	4	0.82	0.43
C12H9O3	202.0030	3.40	0	0.83	0.23
C12H9O3	202.0030	4.54	0	0.83	0.23
C12H9O3	202.0030	7.74	0	0.83	0.25
C12H9U5	202.0050	7.82	0	0.85	0.25
C11U9O2N1	203.0232	0.49	4	0.82	0.37
C11H8O2N1	203.0382	7.98	0	0.82	0.27
C11005N1	203.0382	0.08	0	0.82	0.27
C7U7O581	203.9480	0.31	3	0.80	0.20
C7U7O5S1	204.0092	0.40	4	1.14	0.71
C7H7O5S1	204.0092	0.99	4	1.14	0.71
C7U7O5S1	204.0092	1.15	4	1.14	0.71
C7U7O5S1	204.0092	1.40	4	1.14	0.71
C7U7O5S1	204.0092	1.71	4	1.14	0.71
C7U7O5S1	204.0092	2.80	4	1.14	0.71
C/H/U551 C12U1102	204.0092	2.93	4	1.14	0.71
C12H1103	204.0786	3.35	7	1.00	0.25
CI2HIIU3	204.0780	1.03	/ A	1.00	0.25
CONTRACT	203.0045	0.00	4	1.17	0.85
	205.0045	1.03	4	1.1/	0.83
C10H0U4IN1	203.0373	3.13 7.71	8 7	0.70	0.40
CTIHI0U3NI	205.0739	/./1	/	1.00	0.27
C0H50051	205.9885	0.44	4	1.00	1.00

C10H5O5	206.0215	3.17	8	0.60	0.50
C11H9O4	206.0579	3.21	7	0.91	0.36
C11H9O4	206.0579	3.46	7	0.91	0.36
C11H9O4	206.0579	4.03	7	0.91	0.36
C11H9O4	206.0579	6.01	7	0.91	0.36
C8H13O6	206.0790	0.76	2	1.75	0.75
C9H4O5N1	207.0168	3.97	8	0.56	0.56
C10H8O4N1	207.0532	4.57	7	0.90	0.40
C10H8O4N1	207.0532	7.82	7	0.90	0.40
C11H12O3N1	207.0895	8.18	6	1 18	0.27
C10H7O5	208.0372	2.44	7	0.80	0.50
C10H7O5	208.0372	2.57	7	0.80	0.50
C11H1104	208.0736	2.91	6	1.09	0.36
C11H1104	208.0736	3.98	6	1.09	0.36
C11H1104	208.0736	5.07	6	1.09	0.36
C8H15O4S1	208.0750	4 92	1	2.00	0.50
C9H8O4N1S1	200.0702	2.24	6	1.00	0.30
C9H6O3N1S1	209.0147	7.02	7	0.78	0.33
C6H10O5N1S1	209.0147	0.39	2	1.83	0.33
C10H10O4N1	209.0558	7.21	6	1.05	0.05
C10H10O4N1	209.0688	7.21	6	1.10	0.40
C10H10O4N1	209.0688	7.52	6	1.10	0.40
C9H5O6	210.0164	1 11	0 7	0.67	0.40
C9H5O6	210.0164	1.11	, 7	0.67	0.67
C6H9O6S1	210.0104	0.48	2	1.67	1.00
C10H9O5	210.0198	3.03	6	1.07	0.50
C14H9O2	210.0520	7 52	10	0.71	0.50
C14H9O2	210.0001	7.52	10	0.71	0.14
C14H9O2	210.0681	7.07	10	0.71	0.14
C14H9O2	210.0681	7.90	10	0.71	0.14
C14H9O2	210.0681	8.08	10	0.71	0.14
C8H17O4S1	210.0001	7.18	0	2 25	0.50
C9H8O5N1	211.0481	4 30	6	1.00	0.56
C9H8O5N1	211.0481	4 57	6	1.00	0.56
C9H8O5N1	211.0481	4.97	6	1.00	0.56
C9H8O5N1	211.0481	7.08	6	1.00	0.56
C6H11O6S1	212.0355	2 57	1	2.00	1.00
C6H11O6S1	212.0355	2.76	1	2.00	1.00
C6H11O6S1	212.0355	2.84	1	2.00	1.00
C8H7O5N2	212.0333	7 70	6	1.00	0.63
C8H7O5N2	212.0433	7.83	6	1.00	0.63
C13H7O3	212.0473	4 30	10	0.62	0.03
C13H7O3	212.0473	6.45	10	0.62	0.23
C13H7O3	212.0473	6.60	10	0.62	0.23
C13H7O3	212.0473	7.03	10	0.62	0.23
C13H7O3	212.0473	7.03	10	0.62	0.23
C13H7O3	212.0473	7.22	10	0.62	0.23
C13H7O3	212.0473	7.51	10	0.62	0.23
C13H7O3	212.0473	7.78	10	0.62	0.23
C13H7O3	212.0473	8.00	10	0.62	0.23
C13H7O3	212.0473	7.55	10	0.62	0.23
C7H15O5S1	212.0718	3.09	0	2.29	0.71
C14H11O2	212.0837	7.68	9	0.86	0.14

C14H11O2	212.0837	7.91	9	0.86	0.14
C14H11O2	212.0837	8.21	9	0.86	0.14
C4H6O7N1S1	212.9943	0.31	2	1.75	1.75
C8H6O4N1S1	213.0096	1.10	6	0.88	0.50
C8H6O6N1	213.0273	3.45	6	0.88	0.75
C8H5O5S1	213.9936	1.61	6	0.75	0.63
C7H5O6N2	214.0226	7.15	6	0.86	0.86
C12H5O4	214.0266	5.56	10	0.50	0.33
C13H9O3	214.0630	7.67	9	0.77	0.23
C13H9O3	214.0630	7.86	9	0.77	0.23
C13H9O3	214.0630	7.96	9	0.77	0.23
C13H9O3	214.0630	8.04	9	0.77	0.23
C13H9O3	214.0630	8 27	9	0.77	0.23
C14H13O2	214.0090	8.14	8	1.00	0.14
C/H807N1S1	215.0100	1.50	1	2.25	1.75
C12H8O3N1	215.0100	7.87	0	0.75	0.25
C12H8O3N1	215.0582	7.87 9.11	9	0.75	0.25
C12H0O5N1	215.0582	0.11	9	1.00	0.23
C6H/0551	216.0092	0.81	5	1.00	0.03
CSHIIO/SI	216.0304	0.35	0	2.40	1.40
C12H/04	216.0423	3.14	9	0.67	0.33
C12H/O4	216.0423	3.40	9	0.67	0.33
C12H7O4	216.0423	3.89	9	0.67	0.33
C12H7O4	216.0423	4.10	9	0.67	0.33
C8H11O3N2S1	216.0569	2.43	4	1.50	0.38
C11H6O4N1	217.0375	7.03	9	0.64	0.36
C12H10O3N1	217.0739	8.22	8	0.92	0.25
C7H5O6S1	217.9885	1.20	5	0.86	0.86
C8H9O5S1	218.0249	0.53	4	1.25	0.63
C8H9O5S1	218.0249	1.44	4	1.25	0.63
C8H9O5S1	218.0249	2.52	4	1.25	0.63
C8H9O5S1	218.0249	2.69	4	1.25	0.63
C8H9O5S1	218.0249	2.78	4	1.25	0.63
C8H9O5S1	218.0249	3.67	4	1.25	0.63
C7H9O4N2S1	218.0361	0.39	4	1.43	0.57
C16H9O1	218.0732	8.36	12	0.63	0.06
C6H4O6N1S1	218.9838	2.95	5	0.83	1.00
C7H7O6S1	220.0042	0.42	4	1.14	0.86
C7H3O3N6	220.0345	3.69	9	0.57	0.43
C8H11O7	220.0583	0.39	3	1.50	0.88
C11H10O4N1	221.0688	8.10	7	1.00	0.36
C7H9O6S1	222.0198	0.78	3	1.43	0.86
C11H9O5	222.0528	2.72	7	0.91	0.45
C11H9O5	222.0528	2.89	7	0.91	0.45
C15H9O2	222.0681	8.09	11	0.67	0.13
C8H13O7	222.0740	0.49	2	1.75	0.88
C15H15O3	244,1099	7.59	8	1.07	0.20
C6H9O8S1	242.0096	0.38	2	1.67	1.33
C10H7O6	224.0321	3.16	-7	0.80	0.60
C7H1106S1	224.0355	0.66	, 2	1.71	0.86
C14H7O3	224 0473	7 58	11	0.57	0.21
C8H15O5S1	224.0473	2.69	1	2.00	0.63
C8H15O5S1	224.0718	2.09	1	2.00	0.63
C8H1505S1	224.0718	2.70	1	2.00	0.05
011130351	224.0710	2.11	1	2.00	0.05

C15H11O2	224.0837	7.94	10	0.80	0.13
C9H19O4S1	224.1082	7.65	0	2.22	0.44
C12H19O2N2	224.1525	2.90	4	1.67	0.17
C9H6O4N1S1	225.0096	3.05	7	0.78	0.44
C10H10O5N1	225.0637	5.23	6	1.10	0.50
C5H5O8S1	225.9783	0.30	3	1.20	1.60
C9H5O7	226.0114	0.82	7	0.67	0.78
C9H5O7	226.0114	1.08	7	0.67	0.78
C7H13O6S1	226.0511	2.56	1	2.00	0.86
C7H13O6S1	226.0511	3.28	1	2.00	0.86
C7H13O6S1	226.0511	3.40	1	2.00	0.86
C9H9O5N2	226.0590	3.05	6	1.11	0.56
C14H9O3	226.0630	7.28	10	0.71	0.21
C14H9O3	226.0630	7.68	10	0.71	0.21
C14H9O3	226.0630	7.89	10	0.71	0.21
C8H17O5S1	226.0030	2.97	0	2.25	0.63
C8H17O5S1	220.0875	2.77	0	2.25	0.63
C15U12O2	220.0875	3.70 8.27	0	0.03	0.03
C1JH1302	220.0994	0.37	9	0.93	0.13
COLLOCAL	227.0303	0.39	0	1.15	0.58
C9H8O6N1	227.0430	3.40	0	1.00	0.67
C9H9O6S1	246.0198	2.37	5	1.11	0.67
C9H7O5S1	228.0092	2.47	6	0.89	0.56
C9H7O5S1	228.0092	2.60	6	0.89	0.56
C9H7O5S1	228.0092	2.76	6	0.89	0.56
C9H7O5S1	228.0092	2.83	6	0.89	0.56
C8H7O6N2	228.0382	3.67	6	1.00	0.75
C13H7O4	228.0423	7.88	10	0.62	0.31
C13H7O4	228.0423	8.22	10	0.62	0.31
C7H15O6S1	228.0668	0.61	0	2.29	0.86
C14H11O3	228.0786	7.98	9	0.86	0.21
C4H6O6N1S2	228.9715	0.29	2	1.75	1.50
C4H6O8N1S1	228.9892	0.31	2	1.75	2.00
C5H10O7N1S1	229.0256	0.38	1	2.20	1.40
C12H6O4N1	229.0375	8.00	10	0.58	0.33
C12H6O4N1	229.0375	8.07	10	0.58	0.33
C13H10O3N1	229.0739	8.13	9	0.85	0.23
C13H10O3N1	229.0739	8.29	9	0.85	0.23
C8H5O6S1	229.9885	2.54	6	0.75	0.75
C8H9O2N2S2	230.0184	0.34	5	1.25	0.25
C9H9O5S1	230.0249	2.47	5	1.11	0.56
C7H4O2N1S3	230.9482	0.33	6	0.71	0.29
C8H8O5N1S1	231.0201	2.83	5	1.13	0.63
C12H8O4N1	231.0532	7.82	9	0.75	0.33
C8H7O6S1	232.0042	1.36	5	1.00	0.75
C8H7O6S1	232,0042	3 11	5	1.00	0.75
C8H7O6S1	232.0042	3 53	5	1.00	0.75
C9H1105S1	232.0012	3.01	4	1.00	0.56
C0H11O5S1	232.0405	3.01		1.33	0.56
C0H1105S1	232.0405	3.22	т Л	1.33	0.50
C0H1105S1	232.0405	5.5 4 2.76		1.33	0.50
C7H2O2N7	232.0403	2.70	+ 10	0.42	0.50
$C / \Pi 2 O S N I$	233.0297	3.22 7.24	10	0.43	0.45
COLLOCANICI	233.0324	1.24	У 4	1.29	0.43
CONTOUSNIST	233.0338	0.63	4	1.38	0.63

C8H906S1 234,0198 0.48 4 1.25 0.75 C10H5ONN21 234,0277 7.62 9 0.60 0.50 C7H905NS11 234,0310 0.37 4 1.43 0.71 C6H407N1S1 234,9787 0.36 5 0.83 1.17 C6H407N1S1 234,9787 2.86 5 0.83 1.17 C6H407N1S1 234,9787 2.86 5 0.83 1.17 C6H407N1S1 238,0630 7.99 11 0.67 0.20 0.40 C19H903 238,0630 7.99 11 0.67 0.220 0.40 C10H2104S1 238,1239 7.53 0 2.20 0.40 C10H2104S1 238,1239 7.52 11 0.57 0.29 C14H704 240.0423 7.31 11 0.57 0.29 C14H704 240.0423 7.31 11 0.57 0.29 C14H704 240.0423 7.52 10						
C10H50SN2 234,0277 7.62 9 0.60 0.50 C7H90SN2S1 234,0310 0.37 4 1.43 0.71 C6H407N1S1 234,9787 0.36 5 0.83 1.17 C6H407N1S1 234,9787 2.78 5 0.83 1.17 C6H407N1S1 234,9787 2.78 5 0.83 1.17 C6H407N1S1 234,9787 2.78 5 0.83 1.17 C7H707S1 235,9991 0.39 4 1.14 1.00 C12H1305 238,0643 3.05 0 2.20 0.40 C10H2104S1 238,1239 7.66 0 2.20 0.40 C10H1204S1 238,1239 7.52 11 0.57 0.29 C14H704 240,0423 7.52 11 0.57 0.29 C14H704 240,0423 7.52 11 0.57 0.29 C18H1506S1 240,0786 8.15 10 0.80 0.20 <td>C8H9O6S1</td> <td>234.0198</td> <td>0.48</td> <td>4</td> <td>1.25</td> <td>0.75</td>	C8H9O6S1	234.0198	0.48	4	1.25	0.75
C7H9OSN2S1 234.0310 0.37 4 1.43 0.71 C6H407N1S1 234.9787 0.36 5 0.83 1.17 C6H407N1S1 234.9787 2.78 5 0.83 1.17 C6H407N1S1 234.9787 2.86 5 0.83 1.17 C6H407N1S1 234.9787 2.86 5 0.83 1.17 C7H707S1 235.9991 0.39 4 1.14 1.00 C19H100S1 238.0630 7.99 11 0.67 0.20 C10H2104S1 238.1239 7.66 0 2.20 0.40 C10H2104S1 238.1239 7.94 0 2.20 0.40 C10H2104S1 238.0237 2.29 1 2.13 0.63 C14H704 240.0423 7.31 11 0.57 0.29 C8H160S11 240.0468 2.90 1 2.00 0.75 C15H1103 240.0786 8.15 10 0.80 0.20 </td <td>C10H5O5N2</td> <td>234.0277</td> <td>7.62</td> <td>9</td> <td>0.60</td> <td>0.50</td>	C10H5O5N2	234.0277	7.62	9	0.60	0.50
C6H407N1S1 234.9787 0.36 5 0.83 1.17 C6H407N1S1 234.9787 1.10 5 0.83 1.17 C6H407N1S1 234.9787 2.78 5 0.833 1.17 C6H407N1S1 234.9787 2.86 5 0.83 1.17 C7H707S1 235.9991 0.39 4 1.14 1.00 C15H903 238.0630 7.99 11 0.67 0.20 C10H2104S1 238.1239 7.53 0 2.20 0.40 C10H2104S1 238.1239 7.66 0 2.20 0.40 C10H2104S1 238.1239 7.94 0 2.20 0.40 C10H2104S1 239.0827 2.29 1 2.13 0.63 C14H704 240.0423 7.51 11 0.57 0.29 C4H4704 240.0468 7.72 10 0.80 0.20 C15H1103 240.0786 8.15 10 0.80 0.20 <td>C7H9O5N2S1</td> <td>234.0310</td> <td>0.37</td> <td>4</td> <td>1.43</td> <td>0.71</td>	C7H9O5N2S1	234.0310	0.37	4	1.43	0.71
C6H407N1S1 234.9787 1.10 5 0.83 1.17 C6H407N1S1 234.9787 2.78 5 0.83 1.17 C6H407N1S1 234.9787 2.86 5 0.83 1.17 C7H707S1 235.9991 0.39 4 1.14 1.00 C15H903 238.0630 7.99 11 0.67 0.20 C12H1305 238.0841 3.05 6 1.17 0.42 C10H2L04S1 238.1239 7.66 0 2.20 0.40 C10H2L04S1 238.1239 7.51 11 0.57 0.29 C14H704 240.0423 7.51 11 0.57 0.29 C4H16OSN1S1 230.0827 2.29 1 2.00 0.75 C15H1103 240.0786 7.72 10 0.80 0.20 C18H704 240.0468 2.90 1 2.00 0.75 C15H1103 240.0786 8.15 10 0.80 0.20	C6H4O7N1S1	234.9787	0.36	5	0.83	1.17
C6H407N1S1 234.9787 2.78 5 0.83 1.17 CHH07N1S1 234.9787 2.86 5 0.83 1.17 CH707S1 235.9991 0.39 4 1.14 1.00 C15H9O3 238.0630 7.99 11 0.67 0.20 C12H13O5 238.0841 3.05 6 1.17 0.42 C10H2104S1 238.1239 7.53 0 2.20 0.40 C10H2104S1 238.1239 7.94 0 2.20 0.40 C10H2104S1 238.0252 3.18 7 0.90 0.40 C1HR04N1S1 239.0827 2.29 1 2.13 0.63 C14H704 240.0423 7.31 11 0.57 0.29 C14H704 240.0786 7.72 10 0.80 0.20 C15H1103 240.0786 7.72 10 0.80 0.20 C14H704 242.04679 7.50 10 0.71 0.29	C6H4O7N1S1	234.9787	1.10	5	0.83	1.17
C6H407N1S1 234.9787 2.86 5 0.83 1.17 C7H707S1 235.9991 0.39 4 1.14 1.00 C15H903 238.0630 7.99 11 0.67 0.22 C10H2104S1 238.1239 7.53 0 2.20 0.40 C10H2104S1 238.1239 7.66 0 2.20 0.40 C10H2104S1 238.1239 7.94 0 2.20 0.40 C10H2104S1 238.1239 7.94 0 2.20 0.40 C10H2104S1 238.1239 7.94 0 2.20 0.40 C1H4T704 240.0423 7.31 11 0.57 0.29 C14H704 240.0423 7.52 11 0.57 0.29 C15H1103 240.0786 7.72 10 0.80 0.20 C15H103 240.0786 8.15 10 0.80 0.20 C14H904 242.0579 7.50 10 0.71 0.29	C6H4O7N1S1	234.9787	2.78	5	0.83	1.17
C7H707S1 235.9991 0.39 4 1.14 1.00 C15H903 238.0630 7.99 11 0.67 0.20 C12H1305 238.0841 3.05 6 1.17 0.42 C10H2104S1 238.1239 7.66 0 2.20 0.40 C10H2104S1 238.1239 7.66 0 2.20 0.40 C10H2104S1 238.1239 7.94 0 2.20 0.40 C10H204N1S1 239.0827 2.29 1 2.13 0.63 C14H704 240.0423 7.31 11 0.57 0.29 C14H704 240.0423 7.52 11 0.57 0.29 C15H103 240.0786 7.72 10 0.80 0.20 C15H1103 240.0786 7.72 10 0.80 0.20 C15H1006N1 241.0586 4.08 6 1.10 0.60 C15H1005N1 242.0460 0.68 1 2.00 1.00	C6H4O7N1S1	234.9787	2.86	5	0.83	1.17
CISTBPO3 238.0630 7.99 11 0.67 0.20 C12H13O5 238.0841 3.05 6 1.17 0.42 C10H21O4S1 238.1239 7.53 0 2.20 0.40 C10H21O4S1 238.1239 7.66 0 2.20 0.40 C10H21O4S1 238.1239 7.94 0 2.20 0.40 C10H21O4S1 238.1239 7.94 0 2.20 0.40 C10H21O4S1 238.0237 2.29 1 2.13 0.63 C14H7O4 240.0423 7.52 11 0.57 0.29 C14H7O4 240.0786 7.72 10 0.80 0.20 C15H1103 240.0786 8.15 10 0.80 0.20 C15H103 240.0786 4.08 6 1.10 0.60 C19H0OSN1 242.0249 3.28 6 1.00 0.50 C7H1307S1 242.0460 0.68 1.20 1.00 C	C7H7O7S1	235,9991	0.39	4	1.14	1.00
C12H1305 238.081 3.05 6 1.17 0.42 C10H2104S1 238.1239 7.53 0 2.20 0.40 C10H2104S1 238.1239 7.94 0 2.20 0.40 C10H2104S1 238.1239 7.94 0 2.20 0.40 C10H2104S1 238.0252 3.18 7 0.90 0.40 C1HTO4 240.0423 7.52 11 0.57 0.29 C14H704 240.0423 7.52 11 0.57 0.29 C18H1506S1 240.0786 8.15 10 0.80 0.20 C15H1103 240.0786 8.15 10 0.80 0.20 C18H807N1S1 263.0100 3.11 5 1.13 0.88 C10H1006N1 241.0586 4.08 6 1.00 0.50 C1H1904 242.0579 7.50 10 0.71 0.29 C14H904 242.0579 7.90 10 0.71 0.29	C15H9O3	238.0630	7.99	11	0.67	0.20
C10H2104S1 238.1239 7.53 0 2.20 0.40 C10H2104S1 238.1239 7.66 0 2.20 0.40 C10H2104S1 238.1239 7.66 0 2.20 0.40 C10H204N1S1 239.0252 3.18 7 0.90 0.40 C8H1605N1S1 239.0257 2.29 1 2.13 0.63 C14H704 240.0423 7.31 11 0.57 0.29 C18H1506S1 240.0786 7.72 10 0.80 0.20 C15H1103 240.0786 8.15 10 0.80 0.20 C18H807N1S1 263.0100 3.11 5 1.13 0.88 C10H1005N1 242.0249 3.28 6 1.00 0.50 C7H1307S1 242.0460 0.68 1 2.00 1.71 0.29 C14H904 242.0579 7.50 10 0.71 0.29 C14H904 242.0579 8.19 10 0.71 0.29	C12H13O5	238.0841	3.05	6	1.17	0.42
C10H2104S1 238.1239 7.66 0 2.20 0.40 C10H2104S1 238.1239 7.94 0 2.20 0.40 C10H2104S1 238.1239 7.94 0 2.20 0.40 CSH160SN1S1 239.0827 2.29 1 2.13 0.63 C14H704 240.0423 7.31 11 0.57 0.29 C8H1506S1 240.0668 2.90 1 2.00 0.75 C15H1103 240.0786 8.15 10 0.80 0.20 C15H1103 240.0786 8.15 10 0.80 0.20 C15H1103 240.0786 8.15 10 0.60 C10H1006N1 241.0586 4.08 6 1.00 0.50 C1H14904 242.0579 7.50 10 0.71 0.29 C14H904 242.0579 7.50 10 0.71 0.29 C14H904 242.0579 7.90 10 0.71 0.29 C14H904 242.0579 7.90 <td>C10H21O4S1</td> <td>238 1239</td> <td>7 53</td> <td>0</td> <td>2.20</td> <td>0.40</td>	C10H21O4S1	238 1239	7 53	0	2.20	0.40
C10H2104S1 238.1239 7.94 0 2.20 0.40 C10H804N1S1 239.0252 3.18 7 0.90 0.40 C8H160SN1S1 239.0252 3.18 7 0.90 0.40 C8H160SN1S1 239.0252 3.18 7 0.90 0.40 C1H704 240.0423 7.52 11 0.57 0.29 C14H704 240.0423 7.52 11 0.57 0.29 C15H1103 240.0786 8.15 10 0.80 0.20 C15H1103 240.0786 8.15 10 0.80 0.20 C8H807N1S1 263.010 3.11 5 1.13 0.88 C10H1006N1 241.0586 4.08 6 1.10 0.60 C1H4904 242.0579 5.13 10 0.71 0.29 C14H904 242.0579 7.50 10 0.71 0.29 C14H904 242.0579 8.19 10 0.71 0.29	C10H21O4S1	238 1239	7.66	ů 0	2.20	0.40
C10HR04N1S1 239.0252 3.18 7 0.90 0.40 C8H1605N1S1 239.0827 2.29 1 2.13 0.63 C14H704 240.0423 7.31 11 0.57 0.29 C14H704 240.0423 7.52 11 0.57 0.29 C8H150651 240.0423 7.52 11 0.57 0.29 C15H1103 240.0786 7.72 10 0.80 0.20 C15H1103 240.0786 8.15 10 0.80 0.20 C18H807N1S1 263.0100 3.11 5 1.13 0.88 C10H1006N1 241.0586 4.08 6 1.10 0.60 C1H904 242.0579 7.50 10 0.71 0.29 C14H904 242.0579 7.50 10 0.71 0.29 C14H904 242.0579 7.90 10 0.71 0.29 C14H904 242.0579 7.50 10 0.62 0.38	C10H21O4S1	238 1239	7.94	0	2.20	0.40
CSRIEGONISI 239.0827 2.29 1 2.13 0.63 C14H704 240.0423 7.31 11 0.57 0.29 C14H704 240.0423 7.52 11 0.57 0.29 CSH1506S1 240.0468 2.90 1 2.00 0.75 CI5H1103 240.0786 7.72 10 0.80 0.20 CSHRO7NIS1 263.0100 3.11 5 1.13 0.88 C10H1006N1 241.0586 4.08 6 1.00 0.50 C7H1307S1 242.0249 3.28 6 1.00 0.50 C14H904 242.0579 7.50 10 0.71 0.29 C14H904 242.0579 7.90 10 0.71 0.29 C14H904 242.0579 7.90 10 0.71 0.29 C14H904 242.0579 7.90 10 0.62 0.38 C13H705 244.0372 7.00 10 0.62 0.38 <t< td=""><td>C10H804N1S1</td><td>239 0252</td><td>3 18</td><td>7</td><td>0.90</td><td>0.40</td></t<>	C10H804N1S1	239 0252	3 18	7	0.90	0.40
Ci Hi TOM 240.0423 7.31 11 0.57 0.29 Ci HI TOM 240.0423 7.52 11 0.57 0.29 CSH150651 240.0668 2.90 1 2.00 0.75 C15H1103 240.0786 8.15 10 0.80 0.20 CSH807N1S1 263.0100 3.11 5 1.13 0.88 C10H1006N1 241.0586 4.08 6 1.10 0.60 C1H905S1 242.0249 3.28 6 1.00 0.50 C14H904 242.0579 5.13 10 0.71 0.29 C14H904 242.0579 7.50 10 0.71 0.29 C14H904 242.0579 7.90 10 0.71 0.29 C14H904 242.0579 8.19 10 0.71 0.29 C14H904 242.0579 8.19 10 0.71 0.29 C14H904 242.0572 7.00 10 0.62 0.38 <t< td=""><td>C8H16O5N1S1</td><td>239.0232</td><td>2 29</td><td>1</td><td>2.13</td><td>0.40</td></t<>	C8H16O5N1S1	239.0232	2 29	1	2.13	0.40
C14H7O4 240.0423 7.52 11 0.57 0.29 C8H15O6S1 240.0668 2.90 1 2.00 0.75 C15H11O3 240.0786 7.72 10 0.80 0.20 C15H11O3 240.0786 8.15 10 0.80 0.20 C15H11O3 240.0786 8.15 10 0.80 0.20 C8H807N1S1 263.0100 3.11 5 1.13 0.88 C10H1006N1 241.0586 4.08 6 1.00 0.50 C7H1307S1 242.0249 3.28 6 1.00 0.50 C14H904 242.0579 5.13 10 0.71 0.29 C14H904 242.0579 7.90 10 0.71 0.29 C6H1207N1S1 244.0372 7.00 10 0.62 0.38 C13H705 244.0372 7.00 10 0.62 0.38 C13H705 244.0372 7.00 10 0.62 0.38	C14H7O4	240 0423	7 31	11	0.57	0.05
CHINGY 240.042.5 1.52 11 0.25 0.25 CSH1506S1 240.0786 7.72 10 0.80 0.20 C15H1103 240.0786 8.15 10 0.80 0.20 CSH807N1S1 263.0100 3.11 5 1.13 0.88 C10H1006N1 241.0586 4.08 6 1.10 0.60 C10H905S1 242.0249 3.28 6 1.00 0.50 C7H1307S1 242.0460 0.68 1 2.00 1.00 C14H904 242.0579 7.50 10 0.71 0.29 C14H904 242.0579 7.90 10 0.71 0.29 C4H904 242.0579 7.90 10 0.71 0.29 C6H1207N1S1 243.0413 3.29 1 2.17 1.17 C13H705 244.0372 6.75 10 0.62 0.38 C13H705 244.0372 8.18 10 0.62 0.38 <	C14H7O4	240.0423	7.51	11	0.57	0.29
CiSHI103 240.003 2.50 1 2.00 0.13 CISHI103 240.0786 7.72 10 0.80 0.20 CISHI103 240.0786 8.15 10 0.80 0.20 CSH807NIS1 263.0100 3.11 5 1.13 0.88 C10H1006N1 241.0586 4.08 6 1.10 0.60 C10H905S1 242.0249 3.28 6 1.00 0.50 C7H1307S1 242.0460 0.68 1 2.00 1.00 C14H904 242.0579 7.50 10 0.71 0.29 C14H904 242.0579 7.90 10 0.71 0.29 C14H904 242.0579 8.19 10 0.71 0.29 C6H1207N1S1 244.0372 6.75 10 0.62 0.38 C13H705 244.0372 7.00 10 0.62 0.38 C19H10SS1 244.0405 3.14 5 1.20 0.50	C8H150681	240.0423	2.90	1	2.00	0.29
C15H1103 240.0786 8.15 10 0.80 0.20 C15H1103 240.0786 8.15 10 0.80 0.20 C8H807N1S1 263.0100 3.11 5 1.13 0.88 C10H1006N1 241.0586 4.08 6 1.10 0.60 C10H905S1 242.0249 3.28 6 1.00 0.50 C14H904 242.0579 5.13 10 0.71 0.29 C14H904 242.0579 7.50 10 0.71 0.29 C14H904 242.0579 7.90 10 0.71 0.29 C14H904 242.0579 7.90 10 0.71 0.29 C6H1207N1S1 243.0413 3.29 1 2.17 1.17 C13H705 244.0372 7.00 10 0.62 0.38 C13H705 244.0372 8.18 10 0.62 0.38 C13H705 244.0372 8.18 10 0.62 0.38 <t< td=""><td>C15U1102</td><td>240.0008</td><td>2.90</td><td>10</td><td>2.00</td><td>0.75</td></t<>	C15U1102	240.0008	2.90	10	2.00	0.75
C15H1103 240.0780 8.13 10 0.80 0.20 C8H807N1S1 263.0100 3.11 5 1.13 0.88 C10H1006N1 241.0586 4.08 6 1.10 0.60 C10H905S1 242.0249 3.28 6 1.00 0.50 C7H1307S1 242.0579 5.13 10 0.71 0.29 C14H904 242.0579 7.50 10 0.71 0.29 C14H904 242.0579 7.90 10 0.71 0.29 C14H904 242.0579 7.90 10 0.71 0.29 C6H1207N1S1 243.0413 3.29 1 2.17 1.17 C13H705 244.0372 6.75 10 0.62 0.38 C10H1105S1 244.0372 8.18 10 0.62 0.38 C10H1105S1 244.0405 3.14 5 1.20 0.50 C13H1503 244.0405 3.14 5 1.13 0.75	C15H1103	240.0786	7.72 9.15	10	0.80	0.20
C10H1006N1 241.0586 4.08 6 1.10 0.60 C10H1006N1 241.0586 4.08 6 1.00 0.50 C10H205S1 242.0249 3.28 6 1.00 0.50 C14H904 242.0579 5.13 10 0.71 0.29 C14H904 242.0579 7.50 10 0.71 0.29 C14H904 242.0579 7.90 10 0.71 0.29 C14H904 242.0579 8.19 10 0.71 0.29 C6H1207N1S1 243.0413 3.29 1 2.17 1.17 C13H705 244.0372 7.00 10 0.62 0.38 C13H705 244.0372 8.18 10 0.62 0.38 C10H1105S1 244.0405 3.14 5 1.20 0.50 C15H1503 244.0372 8.68 4 1.40 0.50 C19H906S1 246.0562 3.68 4 1.40 0.50 <		240.0780	8.13 2.11	10	0.80	0.20
C10H1005N1 241.0380 4.08 6 1.10 0.80 C10H905S1 242.0249 3.28 6 1.00 0.50 C7H130751 242.0460 0.68 1 2.00 1.00 C14H904 242.0579 5.13 10 0.71 0.29 C14H904 242.0579 7.50 10 0.71 0.29 C14H904 242.0579 8.19 10 0.71 0.29 C14H904 242.0579 8.19 10 0.71 0.29 C6H1207N1S1 244.0372 6.75 10 0.62 0.38 C13H705 244.0372 7.00 10 0.62 0.38 C13H705 244.0372 8.18 10 0.62 0.38 C10H1105S1 244.0405 3.14 5 1.20 0.50 C15H15O3 244.0199 7.84 8 1.07 0.20 C9H1005N1S1 246.0198 2.89 5 1.11 0.67	C0H0U/N151	205.0100	5.11	5	1.15	0.88
C10H9OS31 242.0249 3.28 6 1.00 0.30 C7H13O7S1 242.0460 0.68 1 2.00 1.00 C14H9O4 242.0579 5.13 10 0.71 0.29 C14H9O4 242.0579 7.50 10 0.71 0.29 C14H9O4 242.0579 7.90 10 0.71 0.29 C14H9O4 242.0579 8.19 10 0.71 0.29 C14H9O4 242.0579 8.19 10 0.71 0.29 C6H1207N1S1 243.0413 3.29 1 2.17 1.17 C13H7O5 244.0372 6.75 10 0.62 0.38 C10H1105S1 244.0405 3.14 5 1.20 0.50 C15H15O3 244.0405 3.14 5 1.20 0.50 C9H1005N1S1 245.0358 1.06 5 1.22 0.56 C9H906S1 246.0198 2.89 5 1.11 0.67 <t< td=""><td>C10H1000IN1</td><td>241.0380</td><td>4.08</td><td>0</td><td>1.10</td><td>0.60</td></t<>	C10H1000IN1	241.0380	4.08	0	1.10	0.60
C/H130/S1 242.0460 0.68 1 2.00 1.00 C14H9O4 242.0579 5.13 10 0.71 0.29 C14H9O4 242.0579 7.90 10 0.71 0.29 C14H9O4 242.0579 7.90 10 0.71 0.29 C14H9O4 242.0579 8.19 10 0.71 0.29 C14H9O4 242.0579 8.19 10 0.71 0.29 C6H1207N1S1 243.0413 3.29 1 2.17 1.17 C13H7O5 244.0372 6.75 10 0.62 0.38 C13H7O5 244.0372 8.18 10 0.62 0.38 C10H1105S1 244.0405 3.14 5 1.20 0.50 C15H15O3 244.0405 3.14 5 1.22 0.56 C9H906S1 246.0198 2.89 5 1.11 0.67 C10H1305S1 246.0562 3.68 4 1.40 0.50	C10H9O5S1	242.0249	3.28	0	1.00	0.50
C14H904 242.0579 5.13 10 0.71 0.29 C14H904 242.0579 7.50 10 0.71 0.29 C14H904 242.0579 8.19 10 0.71 0.29 C14H904 242.0579 8.19 10 0.71 0.29 C6H1207N1S1 243.0413 3.29 1 2.17 1.17 C13H705 244.0372 6.75 10 0.62 0.38 C13H705 244.0372 7.00 10 0.62 0.38 C13H705 244.0372 8.18 10 0.62 0.38 C13H705 244.0372 8.18 10 0.62 0.38 C19H105S1 244.0405 3.14 5 1.20 0.50 C19H1005N1S1 245.0358 1.06 5 1.22 0.56 C9H906S1 246.0198 2.89 5 1.11 0.67 C14H805N1 247.0151 1.44 5 1.13 0.75 0.42<	C/HI30/SI	242.0460	0.68	1	2.00	1.00
C14H904 242.0579 7.50 10 0.71 0.29 C14H904 242.0579 7.90 10 0.71 0.29 C14H904 242.0579 8.19 10 0.71 0.29 C6H1207N1S1 243.0413 3.29 1 2.17 1.17 C13H705 244.0372 6.75 10 0.62 0.38 C13H705 244.0372 8.18 10 0.62 0.38 C13H705 244.0372 8.18 10 0.62 0.38 C10H1105S1 244.0405 3.14 5 1.20 0.50 C15H1503 244.1099 7.84 8 1.07 0.20 C9H1005N1S1 245.0358 1.06 5 1.22 0.56 C9H906S1 246.0562 3.68 4 1.40 0.50 C8H806N1S1 247.0481 4.18 9 0.75 0.42 C8H707S1 247.0481 4.18 9 0.75 0.42 <t< td=""><td>C14H9O4</td><td>242.0579</td><td>5.13</td><td>10</td><td>0.71</td><td>0.29</td></t<>	C14H9O4	242.0579	5.13	10	0.71	0.29
C14H904 242.0579 7.90 10 0.71 0.29 C14H904 242.0579 8.19 10 0.71 0.29 C6H12O7N1S1 243.0413 3.29 1 2.17 1.17 C13H705 244.0372 6.75 10 0.62 0.38 C13H705 244.0372 7.00 10 0.62 0.38 C13H705 244.0372 8.18 10 0.62 0.38 C19H105S1 244.0405 3.14 5 1.20 0.50 C19H1005N1S1 245.0358 1.06 5 1.22 0.56 C9H906S1 246.0198 2.89 5 1.11 0.67 C10H1305S1 246.0562 3.68 4 1.40 0.50 C8H806N1S1 247.0151 1.44 5 1.13 0.75 C12H805N1 247.0481 4.18 9 0.75 0.42 C8H707S1 247.9991 2.83 5 1.00 0.88	C14H9O4	242.0579	7.50	10	0.71	0.29
C14H904 242.0579 8.19 10 0.71 0.29 C6H1207N1S1 243.0413 3.29 1 2.17 1.17 C13H705 244.0372 6.75 10 0.62 0.38 C13H705 244.0372 7.00 10 0.62 0.38 C13H705 244.0372 8.18 10 0.62 0.38 C10H1105S1 244.0405 3.14 5 1.20 0.50 C15H1503 244.1099 7.84 8 1.07 0.20 C9H1005N1S1 245.0358 1.06 5 1.22 0.56 C9H906S1 246.0198 2.89 5 1.11 0.67 C10H1305S1 246.0562 3.68 4 1.40 0.50 C8H806N1S1 247.0151 1.44 5 1.13 0.75 C12H805N1 244.0202 0.35 0 2.40 1.80 C8H707S1 247.0991 2.83 5 1.00 0.50	C14H9O4	242.0579	7.90	10	0.71	0.29
C6H12O/NIS1 243.0413 3.29 1 2.17 1.17 C13H7O5 244.0372 6.75 10 0.62 0.38 C13H7O5 244.0372 7.00 10 0.62 0.38 C13H7O5 244.0372 8.18 10 0.62 0.38 C10H1105S1 244.0405 3.14 5 1.20 0.50 C15H15O3 244.1099 7.84 8 1.07 0.20 C9H1005N1S1 245.0358 1.06 5 1.22 0.56 C9H906S1 246.0198 2.89 5 1.11 0.67 C10H1305S1 246.0562 3.68 4 1.40 0.50 C8H806N1S1 247.0151 1.44 5 1.13 0.75 C12H805N1 247.0481 4.18 9 0.75 0.42 C8H707S1 247.9991 2.83 5 1.00 0.88 C5H1109S1 248.0202 0.35 0 2.40 1.80	C14H9O4	242.0579	8.19	10	0.71	0.29
C13H705 244.0372 6.75 10 0.62 0.38 C13H705 244.0372 7.00 10 0.62 0.38 C13H705 244.0372 8.18 10 0.62 0.38 C10H1105S1 244.0405 3.14 5 1.20 0.50 C15H15O3 244.1099 7.84 8 1.07 0.20 C9H1005N1S1 245.0358 1.06 5 1.22 0.56 C9H906S1 246.0198 2.89 5 1.11 0.67 C10H1305S1 246.0562 3.68 4 1.40 0.50 C8H806N1S1 247.0151 1.44 5 1.13 0.75 C12H805N1 247.0481 4.18 9 0.75 0.42 C8H707S1 247.0991 2.83 5 1.00 0.88 C5H1109S1 248.0294 3.15 10 0.50 0.50 C8H304N6 248.0294 4.17 10 0.50 0.50	C6H12O/N1S1	243.0413	3.29	1	2.17	1.17
C13H705 244.0372 7.00 10 0.62 0.38 C13H705 244.0372 8.18 10 0.62 0.38 C10H1105S1 244.0405 3.14 5 1.20 0.50 C15H15O3 244.1099 7.84 8 1.07 0.20 C9H1005N1S1 245.0358 1.06 5 1.22 0.56 C9H906S1 246.0562 3.68 4 1.40 0.50 C8H806N1S1 247.0151 1.44 5 1.13 0.75 C12H805N1 247.0481 4.18 9 0.75 0.42 C8H707S1 247.0481 4.18 9 0.75 0.42 C8H707S1 247.9991 2.83 5 1.00 0.88 C5H1109S1 248.0202 0.35 0 2.40 1.80 C8H304N6 248.0294 3.15 10 0.50 0.50 C7H607N1S1 248.9943 2.50 5 1.00 1.00	C13H7O5	244.0372	6.75	10	0.62	0.38
C13H7O5 244.0372 8.18 10 0.62 0.38 C10H1105S1 244.0405 3.14 5 1.20 0.50 C15H15O3 244.1099 7.84 8 1.07 0.20 C9H1005N1S1 245.0358 1.06 5 1.22 0.56 C9H906S1 246.0198 2.89 5 1.11 0.67 C10H1305S1 246.0562 3.68 4 1.40 0.50 C8H806N1S1 247.0151 1.44 5 1.13 0.75 C12H805N1 247.0481 4.18 9 0.75 0.42 C8H707S1 247.9991 2.83 5 1.00 0.88 C5H1109S1 248.0202 0.35 0 2.40 1.80 C8H304N6 248.0294 3.15 10 0.50 0.50 C7H607N1S1 248.9943 2.50 5 1.00 1.00 C8H504N6 250.0451 2.94 9 0.75 0.50	C13H7O5	244.0372	7.00	10	0.62	0.38
C10H1105S1 244.0405 3.14 5 1.20 0.50 C15H15O3 244.1099 7.84 8 1.07 0.20 C9H1005N1S1 245.0358 1.06 5 1.22 0.56 C9H906S1 246.0198 2.89 5 1.11 0.67 C10H1305S1 246.0562 3.68 4 1.40 0.50 C8H806N1S1 247.0151 1.44 5 1.13 0.75 C12H805N1 247.0481 4.18 9 0.75 0.42 C8H707S1 247.9991 2.83 5 1.00 0.88 C5H1109S1 248.0202 0.35 0 2.40 1.80 C8H304N6 248.0294 3.15 10 0.50 0.50 C7H607N1S1 248.9943 2.50 5 1.00 1.00 C8H504N6 250.0451 2.94 9 0.75 0.50 C17H13O2 250.9770 0.35 0 3.00 2.67	C13H7O5	244.0372	8.18	10	0.62	0.38
C15H15O3 244.1099 7.84 8 1.07 0.20 C9H10O5N1S1 245.0358 1.06 5 1.22 0.56 C9H9O6S1 246.0198 2.89 5 1.11 0.67 C10H13O5S1 246.0562 3.68 4 1.40 0.50 C8H806N1S1 247.0151 1.44 5 1.13 0.75 C12H805N1 247.0481 4.18 9 0.75 0.42 C8H707S1 247.0991 2.83 5 1.00 0.88 C5H1109S1 248.0202 0.35 0 2.40 1.80 C8H304N6 248.0294 3.15 10 0.50 0.50 C7H607N1S1 248.9943 2.50 5 1.00 1.00 C8H504N6 250.0451 2.94 9 0.75 0.50 C17H13O2 250.09770 0.35 0 3.00 2.67 C8H1107S1 252.0304 0.64 3 1.50 0.88	C10H11O5S1	244.0405	3.14	5	1.20	0.50
C9H1005N1S1 245.0358 1.06 5 1.22 0.56 C9H906S1 246.0198 2.89 5 1.11 0.67 C10H1305S1 246.0562 3.68 4 1.40 0.50 C8H806N1S1 247.0151 1.44 5 1.13 0.75 C12H805N1 247.0481 4.18 9 0.75 0.42 C8H707S1 247.9991 2.83 5 1.00 0.88 C5H1109S1 248.0202 0.35 0 2.40 1.80 C8H304N6 248.0294 3.15 10 0.50 0.50 C8H304N6 248.0294 4.17 10 0.50 0.50 C7H607N1S1 248.9943 2.50 5 1.00 1.00 C8H504N6 250.0451 2.94 9 0.75 0.50 C17H1302 250.9770 0.35 0 3.00 2.67 C8H1107S1 252.0304 0.64 3 1.50 0.88	C15H15O3	244.1099	7.84	8	1.07	0.20
C9H906S1246.01982.8951.110.67C10H1305S1246.05623.6841.400.50C8H806N1S1247.01511.4451.130.75C12H805N1247.04814.1890.750.42C8H707S1247.99912.8351.000.88C5H1109S1248.02020.3502.401.80C8H304N6248.02943.15100.500.50C8H304N6248.02944.17100.500.50C7H607N1S1248.99432.5051.001.00C8H504N6250.04512.9490.750.50C17H1302250.09948.14110.820.12C3H808N1S2250.97700.3503.002.67C8H1107S1252.04165.3731.710.86C15H704252.04237.62120.530.27C11H2304S1252.13958.2002.180.36C9H1805N1S1253.09841.3312.110.56C10H2105S1254.11887.2602.200.50	C9H10O5N1S1	245.0358	1.06	5	1.22	0.56
C10H13O5S1246.05623.6841.400.50C8H806N1S1247.01511.4451.130.75C12H805N1247.04814.1890.750.42C8H707S1247.99912.8351.000.88C5H1109S1248.02020.3502.401.80C8H304N6248.02943.15100.500.50C8H304N6248.02944.17100.500.50C7H607N1S1248.99432.5051.001.00C8H504N6250.04512.9490.750.50C17H1302250.09948.14110.820.12C3H808N1S2250.97700.3503.002.67C8H1107S1252.03040.6431.500.88C7H1106N2S1252.04165.3731.710.86C15H704252.04237.62120.530.27C11H2304S1252.13958.2002.180.36C9H1805N1S1253.09841.3312.110.56C10H2105S1254.11887.2602.200.50	C9H9O6S1	246.0198	2.89	5	1.11	0.67
C8H806N1S1 247.0151 1.44 5 1.13 0.75 C12H805N1 247.0481 4.18 9 0.75 0.42 C8H707S1 247.9991 2.83 5 1.00 0.88 C5H1109S1 248.0202 0.35 0 2.40 1.80 C8H304N6 248.0294 3.15 10 0.50 0.50 C8H304N6 248.0294 4.17 10 0.50 0.50 C8H304N6 248.0294 4.17 10 0.50 0.50 C7H607N1S1 248.9943 2.50 5 1.00 1.00 C8H504N6 250.0451 2.94 9 0.75 0.50 C17H1302 250.0994 8.14 11 0.82 0.12 C3H808N1S2 250.9770 0.35 0 3.00 2.67 C8H1107S1 252.0416 5.37 3 1.71 0.86 C15H704 252.0423 7.62 12 0.53 0.27	C10H13O5S1	246.0562	3.68	4	1.40	0.50
C12H805N1247.04814.1890.750.42C8H707S1247.99912.8351.000.88C5H1109S1248.02020.3502.401.80C8H304N6248.02943.15100.500.50C8H304N6248.02944.17100.500.50C7H607N1S1248.99432.5051.001.00C8H504N6250.04512.9490.750.50C17H1302250.09948.14110.820.12C3H808N1S2250.97700.3503.002.67C8H1107S1252.03040.6431.500.88C7H1106N2S1252.04165.3731.710.86C15H7O4252.04237.62120.530.27C11H2304S1252.13958.2002.180.36C9H1805N1S1253.09841.3312.110.56C10H2105S1254.11887.2602.200.50	C8H8O6N1S1	247.0151	1.44	5	1.13	0.75
C8H707S1 247.9991 2.83 5 1.00 0.88 C5H1109S1 248.0202 0.35 0 2.40 1.80 C8H304N6 248.0294 3.15 10 0.50 0.50 C8H304N6 248.0294 4.17 10 0.50 0.50 C7H607N1S1 248.9943 2.50 5 1.00 1.00 C8H504N6 250.0451 2.94 9 0.75 0.50 C17H1302 250.0994 8.14 11 0.82 0.12 C3H808N1S2 250.9770 0.35 0 3.00 2.67 C8H1107S1 252.0304 0.64 3 1.50 0.88 C7H1106N2S1 252.0416 5.37 3 1.71 0.86 C15H7O4 252.0423 7.62 12 0.53 0.27 C1H2304S1 252.1395 8.20 0 2.18 0.36 C9H1805N1S1 253.0984 1.33 1 2.11 0.56	C12H8O5N1	247.0481	4.18	9	0.75	0.42
C5H1109S1 248.0202 0.35 0 2.40 1.80 C8H304N6 248.0294 3.15 10 0.50 0.50 C8H304N6 248.0294 4.17 10 0.50 0.50 C7H607N1S1 248.9943 2.50 5 1.00 1.00 C8H504N6 250.0451 2.94 9 0.75 0.50 C17H1302 250.0994 8.14 11 0.82 0.12 C3H808N1S2 250.9770 0.35 0 3.00 2.67 C8H1107S1 252.0304 0.64 3 1.50 0.88 C7H1106N2S1 252.0416 5.37 3 1.71 0.86 C15H7O4 252.0423 7.62 12 0.53 0.27 C1H23O4S1 252.1395 8.20 0 2.18 0.36 C9H1805N1S1 253.0984 1.33 1 2.11 0.56 C10H2105S1 254.1188 7.26 0 2.20 0.50 <td>C8H7O7S1</td> <td>247.9991</td> <td>2.83</td> <td>5</td> <td>1.00</td> <td>0.88</td>	C8H7O7S1	247.9991	2.83	5	1.00	0.88
C8H3O4N6 248.0294 3.15 10 0.50 0.50 C8H3O4N6 248.0294 4.17 10 0.50 0.50 C7H6O7N1S1 248.9943 2.50 5 1.00 1.00 C8H5O4N6 250.0451 2.94 9 0.75 0.50 C17H13O2 250.0994 8.14 11 0.82 0.12 C3H8O8N1S2 250.9770 0.35 0 3.00 2.67 C8H1107S1 252.0304 0.64 3 1.50 0.88 C7H1106N2S1 252.0416 5.37 3 1.71 0.86 C15H7O4 252.0423 7.62 12 0.53 0.27 C11H23O4S1 252.1395 8.20 0 2.18 0.36 C9H1805N1S1 253.0984 1.33 1 2.11 0.56 C10H2105S1 254.1188 7.26 0 2.20 0.50	C5H11O9S1	248.0202	0.35	0	2.40	1.80
C8H3O4N6 248.0294 4.17 10 0.50 0.50 C7H6O7N1S1 248.9943 2.50 5 1.00 1.00 C8H5O4N6 250.0451 2.94 9 0.75 0.50 C17H13O2 250.0994 8.14 11 0.82 0.12 C3H8O8N1S2 250.9770 0.35 0 3.00 2.67 C8H1107S1 252.0304 0.64 3 1.50 0.88 C7H1106N2S1 252.0416 5.37 3 1.71 0.86 C15H7O4 252.0423 7.62 12 0.53 0.27 C11H23O4S1 252.1395 8.20 0 2.18 0.36 C9H1805N1S1 253.0984 1.33 1 2.11 0.56 C10H2105S1 254.1188 7.26 0 2.20 0.50	C8H3O4N6	248.0294	3.15	10	0.50	0.50
C7H607N1S1248.99432.5051.001.00C8H504N6250.04512.9490.750.50C17H1302250.09948.14110.820.12C3H808N1S2250.97700.3503.002.67C8H1107S1252.03040.6431.500.88C7H1106N2S1252.04165.3731.710.86C15H704252.04237.62120.530.27C11H2304S1252.13958.2002.180.36C9H1805N1S1253.09841.3312.110.56C10H2105S1254.11887.2602.200.50	C8H3O4N6	248.0294	4.17	10	0.50	0.50
C8H504N6 250.0451 2.94 9 0.75 0.50 C17H1302 250.0994 8.14 11 0.82 0.12 C3H808N1S2 250.9770 0.35 0 3.00 2.67 C8H1107S1 252.0304 0.64 3 1.50 0.88 C7H1106N2S1 252.0416 5.37 3 1.71 0.86 C15H704 252.0423 7.62 12 0.53 0.27 C11H23O4S1 252.1395 8.20 0 2.18 0.36 C9H1805N1S1 253.0984 1.33 1 2.11 0.56 C10H2105S1 254.1188 7.26 0 2.20 0.50	C7H6O7N1S1	248.9943	2.50	5	1.00	1.00
C17H1302250.09948.14110.820.12C3H808N1S2250.97700.3503.002.67C8H1107S1252.03040.6431.500.88C7H1106N2S1252.04165.3731.710.86C15H704252.04237.62120.530.27C11H2304S1252.13958.2002.180.36C9H1805N1S1253.09841.3312.110.56C10H2105S1254.11887.2602.200.50	C8H5O4N6	250.0451	2.94	9	0.75	0.50
C3H808N1S2 250.9770 0.35 0 3.00 2.67 C8H1107S1 252.0304 0.64 3 1.50 0.88 C7H1106N2S1 252.0416 5.37 3 1.71 0.86 C15H7O4 252.0423 7.62 12 0.53 0.27 C11H2304S1 252.1395 8.20 0 2.18 0.36 C9H1805N1S1 253.0984 1.33 1 2.11 0.56 C10H2105S1 254.1188 7.26 0 2.20 0.50	C17H13O2	250.0994	8.14	11	0.82	0.12
C8H1107S1 252.0304 0.64 3 1.50 0.88 C7H1106N2S1 252.0416 5.37 3 1.71 0.86 C15H7O4 252.0423 7.62 12 0.53 0.27 C11H23O4S1 252.1395 8.20 0 2.18 0.36 C9H1805N1S1 253.0984 1.33 1 2.11 0.56 C10H2105S1 254.1188 7.26 0 2.20 0.50	C3H8O8N1S2	250.9770	0.35	0	3.00	2.67
C7H1106N2S1252.04165.3731.710.86C15H704252.04237.62120.530.27C11H2304S1252.13958.2002.180.36C9H1805N1S1253.09841.3312.110.56C10H2105S1254.11887.2602.200.50	C8H11O7S1	252.0304	0.64	3	1.50	0.88
C15H7O4252.04237.62120.530.27C11H23O4S1252.13958.2002.180.36C9H1805N1S1253.09841.3312.110.56C10H2105S1254.11887.2602.200.50	C7H11O6N2S1	252.0416	5.37	3	1.71	0.86
C11H23O4S1252.13958.2002.180.36C9H18O5N1S1253.09841.3312.110.56C10H21O5S1254.11887.2602.200.50	C15H7O4	252.0423	7.62	12	0.53	0.27
C9H18O5N1S1253.09841.3312.110.56C10H21O5S1254.11887.2602.200.50	C11H23O4S1	252.1395	8.20	0	2.18	0.36
<u>C10H21O5S1</u> 254.1188 7.26 0 2.20 0.50	C9H18O5N1S1	253.0984	1.33	1	2.11	0.56
	C10H21O5S1	254.1188	7.26	0	2.20	0.50

C10H21O5S1	254.1188	7.36	0	2.20	0.50
C14H7O5	256.0372	7.11	11	0.57	0.36
C9H6O6N1S1	256.9994	1.50	7	0.78	0.67
C9H5O7S1	257.9834	0.73	7	0.67	0.78
C10H9O6S1	258.0198	1.81	6	1.00	0.60
C10H9O6S1	258.0198	2.52	6	1.00	0.60
C14H9O5	258.0528	7.60	10	0.71	0.36
C11H1305S1	258.0520	3.68	5	1.27	0.45
C11H13O5S1	258.0562	4 10	5	1.27	0.45
C13H7O6	250.0302	7.60	10	0.62	0.45
C6H15O7N2S1	260.0521	7.00	0	0.02	1.17
C15H15O/	260.0078	7.07	Q Q	2.07	0.27
C0H10O6N1S1	261 0207	7.85	5	1.07	0.27
C9H10O0N151	261.0507	2.04	5	1.22	0.07
C10U120(S1	262.0260	0.58	5	1.23	0.73
C10H1506S1	262.0511	2.98	4	1.40	0.60
C4H8O8N1S2	262.9770	0.30	1	2.25	2.00
C8H8O/NISI	263.0100	0.91	5	1.13	0.88
C4H7O9S2	263.9610	0.34	1	2.00	2.25
C7H6O8N1S1	264.9892	3.04	5	1.00	1.14
C12H9O5S1	266.0249	3.35	8	0.83	0.42
C16H9O4	266.0579	7.40	12	0.63	0.25
C10H19O6S1	268.0981	3.00	1	2.00	0.60
C13H15O6	268.0947	3.13	6	1.23	0.46
C10H19O6S1	268.0981	7.57	1	2.00	0.60
C11H23O5S1	268.1344	7.67	0	2.18	0.45
C6H5O8S2	269.9504	0.39	4	1.00	1.33
C6H7O8S2	271.9661	0.30	3	1.33	1.33
C5H7O7N2S2	271.9773	0.35	3	1.60	1.40
C11H11O6S1	272.0355	2.74	6	1.09	0.55
C9H6O7N1S1	272.9943	2.31	7	0.78	0.78
C10H10O6N1S1	273.0307	3.41	6	1.10	0.60
C10H10O6N1S1	273.0307	2.86	6	1.10	0.60
C5H9O7N2S2	273.9929	0.36	2	2.00	1.40
C10H9O7S1	274.0147	1.02	6	1.00	0.70
C6H5O7N6	274.0298	7.12	7	1.00	1.17
C11H13O6S1	274.0511	3.30	5	1.27	0.55
C11H13O6S1	274.0511	3.63	5	1.27	0.55
C15H13O5	274.0841	6.82	9	0.93	0.33
C16H17O4	274 1205	7 94	8	1 13	0.25
C9H8O7N1S1	275.0100	4 26	6	1.00	0.23
C14H1104S1	276.0456	3 51	9	0.86	0.29
C6H12O10N1S2	322 9981	0.38	1	2.17	1.67
C0H10O7N1S1	277 0256	2.17	5	1.22	0.78
C13H005S1	278.0240	2.17	0	0.77	0.78
C01505N6	278.0249	2.02	9	0.77	0.38
C9H5U5N0	278.0400	5.05	10	0.67	0.36
C14H13U0	280.0947	4.10	/	1.14	1.00
CIGHIOOSNISI	281.0205	3.07	4	1.38	1.00
CIUHI806NISI	281.0933	2.19	2	1.90	0.60
CTTH22O5NIST	281.1297	2.91	1	2.09	0.45
C11H21O6S1	282.1137	7.90	1	2.00	0.55
C12H25O5S1	282.1501	7.97	0	2.17	0.42
C7H8O7N1S2	282.9820	0.36	4	1.29	1.00
C7H8O9N1S1	282.9998	3.23	4	1.29	1.29

C9H16O7N1S1	283.0726	6.64	2	1.89	0.78
C8H14O8N1S1	285.0518	3.01	2	1.88	1.00
C10H10O7N1S1	289.0256	2.57	6	1.10	0.70
C6H9O11S1	289.9944	0.39	2	1.67	1.83
C13H8O5N1S1	291.0201	3.58	10	0.69	0.38
C14H11O5S1	292.0405	3.61	9	0.86	0.36
C10H16O7N1S1	295.0726	7.26	3	1.70	0.70
C12H23O6S1	296.1294	8.15	1	2.00	0.50
C13H27O5S1	296.1657	7.56	0	2.15	0.38
C13H27O5S1	296.1657	8.20	0	2.15	0.38
C9H14O8N1S1	297.0518	3.30	3	1.67	0.89
C6H4O13N1	298.9761	0.32	5	0.83	2.17
C7H7O9S2	299.9610	0.38	4	1.14	1.29
C10H13O7N2S1	306.0522	0.39	5	1.40	0.70
C10H12O8N1S1	307.0362	2.56	5	1.30	0.80
C12H19O7S1	308.0930	3.45	3	1.67	0.58
C13H26O5N1S1	309.1610	3.73	1	2.08	0.38
C14H29O5S1	310.1814	7.84	0	2.14	0.36
C17H13O6	314.0790	7.97	11	0.82	0.35
C6H9O10N6	326.0458	2.84	5	1.67	1.67
C20H29O4	334.2144	8.14	6	1.50	0.20
C8H5O13S1	341.9529	0.28	6	0.75	1.63
C8H4O7N7S1	342.9971	4.26	10	0.63	0.88
C6H5O11S3	349.9072	0.30	4	1.00	1.83
C14H5O6N6	354.0349	2.68	15	0.43	0.43
C18H13O8	358.0689	7.45	12	0.78	0.44
C16H9O6N6	382.0662	7.97	15	0.63	0.38
C8H3O12S3	387.8865	0.28	7	0.50	1.50
C18H6O6N5	389.0396	2.89	18	0.39	0.33
C7H8O15N5	403.0095	4.29	6	1.29	2.14

Formula [M+H]/[M+Na]	Neutral mass (Da)	RT (min)	DBE	H/C	O/C
C6H6N3	119.0483	0.39	6	0.83	0.00
C7H10O1N1	123.0684	0.92	4	1.29	0.14
C6H11O2N2	142.0742	0.36	3	1.67	0.33
C5H7O2N2	126.0429	0.37	4	1.20	0.40
C7H7O1	106.0419	1.03	5	0.86	0.14
C7H10O1N1	123.0684	1.27	4	1.29	0.14
C7H11O1N2	138.0793	0.38	4	1.43	0.14
C6H11O1N2	126.0793	0.39	3	1.67	0.17
C12H15O2N2	218.1055	2.64	7	1.17	0.17
C6H11N2	110.0844	0.99	3	1.67	0.00
C5H9O2N2	128.0586	0.39	3	1.60	0.40
C5H10N3	111.0796	0.75	3	1.80	0.00
C7H12O1N3	153.0902	0.36	4	1.57	0.14
C5H9O1N2	112.0637	4.76	3	1.60	0.20
C7H13O5	176.0685	0.36	2	1.71	0.71
C7H16N1	113.1204	0.71	1	2.14	0.00
C6H15N2	114.1157	1.27	1	2.33	0.00
C5H9O3	116.0473	0.48	2	1.60	0.60
C5H5O1N1Na1	95.0371	0.60	4	1.00	0.20
C7H7N2	118.0531	0.39	6	0.86	0.00
C7H7N2	118.0531	0.46	6	0.86	0.00
C7H7N2	118.0531	0.56	6	0.86	0.00
C7H7N2	118.0531	0.77	6	0.86	0.00
C7H7N2	118.0531	1.03	6	0.86	0.00
C7H7N2	118.0531	1.08	6	0.86	0.00
C6H6N3	119.0483	0.39	6	0.83	0.00
C6H5O1N2	120.0324	0.74	6	0.67	0.17
C6H5O1N2	120.0324	1.95	6	0.67	0.17
C6H5O1N2	120.0324	2.35	6	0.67	0.17
C5H5N4	120.0436	0.52	6	0.80	0.00
C8H9O1	120.0575	2.52	5	1.00	0.13
C8H9O1	120.0575	2.56	5	1.00	0.13
C7H9N2	120.0687	0.39	5	1.14	0.00
C7H9N2	120.0687	0.46	5	1.14	0.00
C7H9N2	120.0687	0.53	5	1.14	0.00
C7H9N2	120.0687	0.81	5	1.14	0.00
C7H8O1N1	121.0528	0.39	5	1.00	0.14
C7H8O1N1	121.0528	0.61	5	1.00	0.14
C7H11O1N2	138.0793	1.11	4	1.43	0.14
C7H8O1N1	121.0528	2.31	5	1.00	0.14
C7H8O1N1	121.0528	2.38	5	1.00	0.14
C8H12O2N1	153.0790	2.63	4	1.38	0.25

Table S3.2.2 Molecular formulas of organic compounds detected in CC in ESI+ mode.

C8H15N2	138.1157	1.57	3	1.75	0.00
C7H7O2	122.0368	2.80	5	0.86	0.29
C7H11N2	122.0844	0.39	4	1.43	0.00
C7H11N2	122.0844	0.47	4	1.43	0.00
C7H11N2	122.0844	0.60	4	1.43	0.00
C7H11N2	122.0844	0.68	4	1.43	0.00
C7H11N2	122.0844	0.91	4	1.43	0.00
C7H11N2	122.0844	0.97	4	1.43	0.00
C7H11N2	122.0844	1.08	4	1.13	0.00
C7H11N2	122.0844	1.00	4	1.13	0.00
C7H11N2	122.0844	1.20	4	1.43	0.00
C7H11N2	122.0844	1.32	4	1.13	0.00
C7H11N2	122.0844	1.41	4	1.43	0.00
C7H11N2	122.0844	1.00		1.43	0.00
C7H11N2	122.0844	2.02	4	1.43	0.00
C7H11N2	122.0844	2.02	4	1.43	0.00
C7H11N2	122.0844	2.19	4	1.43	0.00
C/IIIIN2	122.0044	0.28	4 5	0.82	0.00
C0H0O2N1	123.0520	0.38	5	0.85	0.33
C7H10O1N1	123.0084	0.39	4	1.29	0.14
C7HI0OINI C7HI0OINI	123.0684	0.85	4	1.29	0.14
C/HI00INI	123.0084	1.54	4	1.29	0.14
C3H9O5	124.0372	0.28	0	2.67	1.67
C/H902	124.0524	2.48	4	1.14	0.29
C6H9OIN2	124.0637	0.48	4	1.33	0.17
C/H13N2	124.1000	0.61	3	1.71	0.00
C7H13N2	124.1000	0.71	3	1.71	0.00
C/H13N2	124.1000	0.94	3	1.71	0.00
C/H13N2	124.1000	1.08	3	1.71	0.00
C7H13N2	124.1000	1.20	3	1.71	0.00
C7H13N2	124.1000	1.30	3	1.71	0.00
C7H13N2	124.1000	1.87	3	1.71	0.00
C7H13N2	124.1000	2.00	3	1.71	0.00
C7H13N2	124.1000	2.11	3	1.71	0.00
C7H13N2	124.1000	2.25	3	1.71	0.00
C7H13N2	124.1000	2.40	3	1.71	0.00
C7H13N2	124.1000	2.64	3	1.71	0.00
C7H13N2	124.1000	1.47	3	1.71	0.00
C8H11O2N2	166.0742	0.37	5	1.25	0.25
C6H8O2N1	125.0477	0.50	4	1.17	0.33
C6H8O2N1	125.0477	1.18	4	1.17	0.33
C6H8O2N1	125.0477	1.27	4	1.17	0.33
C6H8O2N1	125.0477	1.37	4	1.17	0.33
C5H8O1N3	125.0589	0.39	4	1.40	0.20
C7H12O1N1	125.0841	2.88	3	1.57	0.14
C10H13O3N2	208.0848	0.98	6	1.20	0.30
C5H7O2N2	126.0429	0.60	4	1.20	0.40
C6H11O1N2	126.0793	0.51	3	1.67	0.17
C7H15N2	126.1157	0.70	2	2.00	0.00
C7H15N2	126.1157	0.93	2	2.00	0.00
C7H15N2	126.1157	1.74	2	2.00	0.00

C8H18N1 127.1361 1.16 1 2.13 0.00 C9H5O1 128.0262 0.61 8 0.44 0.11 C3H903N2S1 152.0256 0.28 1 2.67 1.00 C9H8N1 129.0578 0.26 7 0.78 0.00 C9H8N1 129.0578 1.22 7 0.78 0.00 C9H8N1 129.0578 1.33 7 0.78 0.00 C9H8N1 129.0578 1.33 7 0.78 0.00 C9H8N1 129.0578 1.40 7 0.78 0.00 C9H8N1 129.0578 2.00 7 0.78 0.00 C9H8N1 129.0578 2.00 7 0.78 0.00 C9H8N1 129.0578 2.30 7 0.78 0.00 C9H8N1 129.0578 2.30 7 0.78 0.00 C9H8N1 129.0578 2.30 7 0.75 0.00 C7H1601N1	C7H15N2	126.1157	1.89	2	2.00	0.00
C9H501 128,0950 0.33 2 2.00 0.17 C3H903N251 152,0256 0.28 1 2.67 1.00 C9H8N1 129,0578 0.96 7 0.78 0.00 C9H8N1 129,0578 1.22 7 0.78 0.00 C9H8N1 129,0578 1.33 7 0.78 0.00 C9H8N1 129,0578 1.33 7 0.78 0.00 C9H8N1 129,0578 1.40 7 0.78 0.00 C9H8N1 129,0578 2.00 7 0.78 0.00 C9H8N1 129,0578 2.00 7 0.78 0.00 C9H8N1 129,0578 2.30 7 0.78 0.00 C9H8N1 129,0578 2.30 7 0.78 0.00 C9H8N1 129,0578 2.30 7 0.78 0.00 C7H1601N1 129,1154 0.39 1 2.14 0.14 C7H1601N1	C8H18N1	127.1361	1.16	1	2.13	0.00
C6H1301N2 128.0950 0.33 2 2.00 0.17 C3H003N2S1 152.0256 0.28 1 2.67 1.00 C9H8N1 129.0578 0.96 7 0.78 0.00 C9H8N1 129.0578 1.29 7 0.78 0.00 C9H8N1 129.0578 1.33 7 0.78 0.00 C9H8N1 129.0578 1.40 7 0.78 0.00 C9H8N1 129.0578 1.61 7 0.78 0.00 C9H8N1 129.0578 2.00 7 0.78 0.00 C9H8N1 129.0578 2.30 7 0.78 0.00 C9H18N1	C9H5O1	128.0262	0.61	8	0.44	0.11
C3H903N2S1 152.0256 0.28 1 2.67 1.00 C9H8N1 129.0578 0.96 7 0.78 0.00 C9H8N1 129.0578 1.22 7 0.78 0.00 C9H8N1 129.0578 1.33 7 0.78 0.00 C9H8N1 129.0578 1.38 7 0.78 0.00 C9H8N1 129.0578 1.61 7 0.78 0.00 C9H8N1 129.0578 1.75 7 0.78 0.00 C9H8N1 129.0578 2.20 7 0.78 0.00 C9H8N1 129.0578 2.30 7 0.78 0.00 C9H8N1 129.0578 2.30 7 0.78 0.00 C9H8N1 129.0578 2.30 7 0.78 0.00 C7H1601N1 129.1154 2.47 1 2.14 0.14 C9H701 130.0419 3.10 7 0.67 0.11 C8H7N2	C6H13O1N2	128.0950	0.33	2	2.00	0.17
C9H8N1 129.0578 0.96 7 0.78 0.00 C9H8N1 129.0578 1.22 7 0.78 0.00 C9H8N1 129.0578 1.33 7 0.78 0.00 C9H8N1 129.0578 1.33 7 0.78 0.00 C9H8N1 129.0578 1.40 7 0.78 0.00 C9H8N1 129.0578 1.61 7 0.78 0.00 C9H8N1 129.0578 2.00 7 0.78 0.00 C9H8N1 129.0578 2.30 7 0.75 0.00 C9H101 <	C3H9O3N2S1	152.0256	0.28	1	2.67	1.00
C9H8N1 129.0578 1.22 7 0.78 0.00 C9H8N1 129.0578 1.29 7 0.78 0.00 C9H8N1 129.0578 1.33 7 0.78 0.00 C9H8N1 129.0578 1.40 7 0.78 0.00 C9H8N1 129.0578 1.40 7 0.78 0.00 C9H8N1 129.0578 2.00 7 0.78 0.00 C9H8N1 129.0578 2.20 7 0.78 0.00 C9H8N1 129.0578 2.30 7 0.78 0.00 C9H8N1 129.0578 2.30 7 0.78 0.00 C9H8N1 129.0578 2.30 7 0.78 0.00 C7H1601N1 129.1154 2.47 1 2.14 0.14 C7H1601N1 129.1154 2.47 1 2.14 0.14 C9H701 130.0419 3.10 7 0.67 0.11 C9H701	C9H8N1	129.0578	0.96	7	0.78	0.00
C9H8N1 129.0578 1.23 7 0.78 0.00 C9H8N1 129.0578 1.33 7 0.78 0.00 C9H8N1 129.0578 1.34 7 0.78 0.00 C9H8N1 129.0578 1.61 7 0.78 0.00 C9H8N1 129.0578 1.75 7 0.78 0.00 C9H8N1 129.0578 2.00 7 0.78 0.00 C9H8N1 129.0578 2.30 7 0.78 0.00 C7H1601N1 129.1154 2.47 1 2.14 0.14 C9H701 130.0419 3.10 7 0.67 0.11 C8H7N2 130.0531 0.75 0.00 C8H7N2 130.0531 1.14 7	C9H8N1	129.0578	1.22	7	0.78	0.00
C9H8N1 129.0578 1.33 7 0.78 0.00 C9H8N1 129.0578 1.40 7 0.78 0.00 C9H8N1 129.0578 1.61 7 0.78 0.00 C9H8N1 129.0578 1.61 7 0.78 0.00 C9H8N1 129.0578 2.00 7 0.78 0.00 C9H8N1 129.0578 2.30 7 0.78 0.00 C9H3N1 129.0578 2.30 7 0.78 0.00 C9H3N1 129.0573 1.01 7 0.75 0.00 C8H701 130.051 0.78 7 0.75 0.00 C8H7N2 <t< td=""><td>C9H8N1</td><td>129.0578</td><td>1.29</td><td>7</td><td>0.78</td><td>0.00</td></t<>	C9H8N1	129.0578	1.29	7	0.78	0.00
C9H8N1 129.0578 1.38 7 0.78 0.00 C9H8N1 129.0578 1.61 7 0.78 0.00 C9H8N1 129.0578 1.61 7 0.78 0.00 C9H8N1 129.0578 2.00 7 0.78 0.00 C9H8N1 129.0578 2.20 7 0.78 0.00 C9H8N1 129.0578 2.30 7 0.78 0.00 C9H8N1 129.0578 2.30 7 0.78 0.00 C7H1601N1 129.1154 2.47 1 2.14 0.14 C9H701 130.0419 3.10 7 0.67 0.11 C9H701 130.0451 0.63 7 0.75 0.00 C8H7N2 130.0531 0.97 7 0.75 0.00 C8H7N2 130.0531 1.14 7 0.75 0.00 C8H7N2 130.0531 1.20 7 0.75 0.00 C8H7N2	C9H8N1	129.0578	1.33	7	0.78	0.00
C9H8N1 129.0578 1.40 7 0.78 0.00 C9H8N1 129.0578 1.61 7 0.78 0.00 C9H8N1 129.0578 2.00 7 0.78 0.00 C9H8N1 129.0578 2.20 7 0.78 0.00 C9H8N1 129.0578 2.30 7 0.78 0.00 C9H8N1 129.0578 2.30 7 0.78 0.00 C7H1601N1 129.1154 0.39 1 2.14 0.14 C9H701 130.0419 3.10 7 0.67 0.11 C9H701 130.0531 0.78 7 0.75 0.00 C8H7N2 130.0531 0.78 7 0.75 0.00 C8H7N2 130.0531 1.14 7 0.75 0.00 C8H7N2 130.0531 1.14 7 0.75 0.00 C8H7N2 130.0531 1.20 7 0.75 0.00 C8H7N2	C9H8N1	129.0578	1.38	7	0.78	0.00
C9H8N1 129.0578 1.61 7 0.78 0.00 C9H8N1 129.0578 1.75 7 0.78 0.00 C9H8N1 129.0578 2.20 7 0.78 0.00 C9H8N1 129.0578 2.20 7 0.78 0.00 C9H8N1 129.0578 2.30 7 0.78 0.00 C9H8N1 129.0578 2.30 7 0.78 0.00 C9H8N1 129.0578 2.30 7 0.78 0.00 C9H1601N1 129.1154 2.47 1 2.14 0.14 C9H701 130.0419 3.10 7 0.67 0.11 C9H701 130.0531 0.63 7 0.75 0.00 C8H7N2 130.0531 0.78 7 0.75 0.00 C8H7N2 130.0531 1.12 7 0.75 0.00 C8H7N2 130.0531 1.20 7 0.75 0.00 C8H7N2	C9H8N1	129.0578	1.40	7	0.78	0.00
C9H8N1 129.0578 1.75 7 0.78 0.00 C9H8N1 129.0578 2.00 7 0.78 0.00 C9H8N1 129.0578 2.30 7 0.78 0.00 C9H8N1 129.0578 2.30 7 0.78 0.00 C7H1601N1 129.1154 0.39 1 2.14 0.14 C9H304N2 212.0797 0.63 5 1.33 0.44 C9H701 130.0419 3.52 7 0.67 0.11 C8H7N2 130.0531 0.63 7 0.75 0.00 C8H7N2 130.0531 0.97 7 0.75 0.00 C8H7N2 130.0531 1.12 7 0.75 0.00 C8H7N2 130.0531 1.12 7 0.75 0.00 C8H7N2 130.0531 1.12 7 0.75 0.00 C8H7N2 130.0531 1.20 7 0.75 0.00 C8H7N2	C9H8N1	129.0578	1.61	7	0.78	0.00
C9H8N1 129.0578 2.00 7 0.78 0.00 C9H8N1 129.0578 2.20 7 0.78 0.00 C7H1601N1 129.1154 0.39 1 2.14 0.14 C7H1601N1 129.1154 0.47 1 2.14 0.14 C9H304N2 212.0797 0.63 5 1.33 0.44 C9H701 130.0419 3.52 7 0.67 0.11 C8H7N2 130.0531 0.78 7 0.75 0.00 C8H7N2 130.0531 0.97 7 0.75 0.00 C8H7N2 130.0531 1.04 7 0.75 0.00 C8H7N2 130.0531 1.12 7 0.75 0.00 C8H7N2 130.0531 1.20 7 0.75 0.00 C8H7N2 130.0531 1.20 7 0.75 0.00 C8H7N2 130.0531 1.20 7 0.75 0.00 C8H1003N1 <td>C9H8N1</td> <td>129.0578</td> <td>1.75</td> <td>7</td> <td>0.78</td> <td>0.00</td>	C9H8N1	129.0578	1.75	7	0.78	0.00
C9H8N1 129.0578 2.20 7 0.78 0.00 C9H8N1 129.0578 2.30 7 0.78 0.00 C7H1601N1 129.1154 0.39 1 2.14 0.14 C7H1601N1 129.1154 2.47 1 2.14 0.14 C9H304N2 212.0797 0.63 5 1.33 0.44 C9H701 130.0419 3.52 7 0.67 0.11 C9H701 130.0531 0.63 7 0.75 0.00 C8H7N2 130.0531 0.97 7 0.75 0.00 C8H7N2 130.0531 1.04 7 0.75 0.00 C8H7N2 130.0531 1.12 7 0.75 0.00 C8H7N2 130.0531 1.14 7 0.75 0.00 C8H7N2 130.0531 1.20 7 0.75 0.00 C8H17N2 130.0531 1.20 7 0.75 0.00 C8H17N2	C9H8N1	129.0578	2.00	7	0.78	0.00
C9H8N1 129.0578 2.30 7 0.78 0.00 C7H1601N1 129.1154 0.39 1 2.14 0.14 C7H1601N1 129.1154 2.47 1 2.14 0.14 C9H1304N2 212.0797 0.63 5 1.33 0.44 C9H7O1 130.0419 3.52 7 0.67 0.11 C8H7N2 130.0531 0.78 7 0.75 0.00 C8H7N2 130.0531 0.97 7 0.75 0.00 C8H7N2 130.0531 1.12 7 0.75 0.00 C8H7N2 130.0531 1.12 7 0.75 0.00 C8H7N2 130.0531 1.14 7 0.75 0.00 C8H7N2 130.0531 1.20 7 0.75 0.00 C8H1003N1 131.0582 0.33 2 1.80 0.66 C9H10N1 131.0735 0.44 6 1.00 0.00 C8H9N2 </td <td>C9H8N1</td> <td>129.0578</td> <td>2.20</td> <td>7</td> <td>0.78</td> <td>0.00</td>	C9H8N1	129.0578	2.20	7	0.78	0.00
C7H1601N1 129.1154 0.39 1 2.14 0.14 C7H1601N1 129.1154 2.47 1 2.14 0.14 C9H1304N2 212.0797 0.63 5 1.33 0.44 C9H701 130.0419 3.52 7 0.67 0.11 C8H7N2 130.0531 0.63 7 0.75 0.00 C8H7N2 130.0531 0.78 7 0.75 0.00 C8H7N2 130.0531 1.04 7 0.75 0.00 C8H7N2 130.0531 1.14 7 0.75 0.00 C8H7N2 130.0531 1.14 7 0.75 0.00 C8H7N2 130.0531 1.20 7 0.75 0.00 C8H7N2 130.0531 1.20 7 0.75 0.00 C8H1003N1 131.0582 0.33 2 1.80 0.60 C9H10N1 131.0735 0.41 6 1.00 0.00 C8H502 </td <td>C9H8N1</td> <td>129.0578</td> <td>2.30</td> <td>7</td> <td>0.78</td> <td>0.00</td>	C9H8N1	129.0578	2.30	7	0.78	0.00
C7H1601N1 129.1154 2.47 1 2.14 0.14 C9H1304N2 212.0797 0.63 5 1.33 0.44 C9H701 130.0419 3.10 7 0.67 0.11 C9H701 130.0419 3.52 7 0.67 0.11 C8H7N2 130.0531 0.63 7 0.75 0.00 C8H7N2 130.0531 0.78 7 0.75 0.00 C8H7N2 130.0531 1.04 7 0.75 0.00 C8H7N2 130.0531 1.12 7 0.75 0.00 C8H7N2 130.0531 1.14 7 0.75 0.00 C8H7N2 130.0531 1.20 7 0.75 0.00 C8H7N2 130.0582 0.33 2 1.80 0.60 C9H10N1 131.0582 0.39 2 1.80 0.60 C9H10N1 132.0575 2.76 6 0.89 0.11 C8H9N2	C7H16O1N1	129.1154	0.39	1	2.14	0.14
C9H1304N2 212.0797 0.63 5 1.33 0.44 C9H701 130.0419 3.10 7 0.67 0.11 C9H701 130.0531 0.63 7 0.75 0.00 C8H7N2 130.0531 0.78 7 0.75 0.00 C8H7N2 130.0531 0.97 7 0.75 0.00 C8H7N2 130.0531 1.04 7 0.75 0.00 C8H7N2 130.0531 1.14 7 0.75 0.00 C8H7N2 130.0531 1.14 7 0.75 0.00 C8H7N2 130.0531 1.20 7 0.75 0.00 C8H7N2 130.0531 1.20 7 0.75 0.00 C8H1003N1 131.0582 0.33 2 1.80 0.60 C9H10N1 131.0755 0.76 6 0.89 0.11 C8H502 132.0211 2.66 7 0.50 0.25 C9H901	C7H16O1N1	129.1154	2.47	1	2.14	0.14
C9H701 130.0419 3.10 7 0.67 0.11 C9H701 130.0419 3.52 7 0.67 0.11 C8H7N2 130.0531 0.63 7 0.75 0.00 C8H7N2 130.0531 0.97 7 0.75 0.00 C8H7N2 130.0531 0.97 7 0.75 0.00 C8H7N2 130.0531 1.04 7 0.75 0.00 C8H7N2 130.0531 1.12 7 0.75 0.00 C8H7N2 130.0531 1.20 7 0.75 0.00 C8H7N2 132.0575 2.76 6 0.89 0.11 C8H502 <	C9H13O4N2	212.0797	0.63	5	1.33	0.44
C9H701 130.0419 3.52 7 0.67 0.11 C8H7N2 130.0531 0.63 7 0.75 0.00 C8H7N2 130.0531 0.78 7 0.75 0.00 C8H7N2 130.0531 0.97 7 0.75 0.00 C8H7N2 130.0531 1.04 7 0.75 0.00 C8H7N2 130.0531 1.12 7 0.75 0.00 C8H7N2 130.0531 1.14 7 0.75 0.00 C8H7N2 130.0531 1.20 7 0.75 0.00 C9H103N1 131.0582 0.33 2 1.80 0.60 C9H10N1 131.0582 0.39 2 1.80 0.60 C8H9N2	C9H7O1	130.0419	3.10	7	0.67	0.11
C8H7N2 130.0531 0.63 7 0.75 0.00 C8H7N2 130.0531 0.78 7 0.75 0.00 C8H7N2 130.0531 0.97 7 0.75 0.00 C8H7N2 130.0531 1.04 7 0.75 0.00 C8H7N2 130.0531 1.12 7 0.75 0.00 C8H7N2 130.0531 1.14 7 0.75 0.00 C8H7N2 130.0531 1.20 7 0.75 0.00 C5H1003N1 131.0582 0.33 2 1.80 0.60 C9H10N1 131.0735 0.41 6 1.00 0.00 C8H502 132.0687 0.64 6 1.00 0.00 C8H9N2	C9H7O1	130.0419	3.52	7	0.67	0.11
C8H7N2 130.0531 0.78 7 0.75 0.00 C8H7N2 130.0531 0.97 7 0.75 0.00 C8H7N2 130.0531 1.04 7 0.75 0.00 C8H7N2 130.0531 1.12 7 0.75 0.00 C8H7N2 130.0531 1.14 7 0.75 0.00 C8H7N2 130.0531 1.20 7 0.75 0.00 C8H7N2 130.0531 1.20 7 0.75 0.00 C8H7N2 130.0531 1.20 7 0.75 0.00 C5H1003N1 131.0582 0.33 2 1.80 0.60 C5H1003N1 131.0735 0.41 6 1.00 0.00 C8H502 132.0617 2.76 6 0.89 0.11 C8H9N2 132.0687 0.77 6 1.00 0.00 C8H9N2 132.0687 0.86 6 1.00 0.00 C8H9N2	C8H7N2	130.0531	0.63	7	0.75	0.00
C8H7N2 130.0531 0.97 7 0.75 0.00 C8H7N2 130.0531 1.04 7 0.75 0.00 C8H7N2 130.0531 1.12 7 0.75 0.00 C8H7N2 130.0531 1.14 7 0.75 0.00 C8H7N2 130.0531 1.20 7 0.75 0.00 C5H1003N1 131.0582 0.33 2 1.80 0.60 C9H10N1 131.0735 0.41 6 1.00 0.00 C8H9N2 132.0687 0.64 6 1.00 0.00 C8H9N2 132.0687 0.86 6 1.00 0.00 C8H9N2	C8H7N2	130.0531	0.78	7	0.75	0.00
C8H7N2 130.0531 1.04 7 0.75 0.00 C8H7N2 130.0531 1.12 7 0.75 0.00 C8H7N2 130.0531 1.14 7 0.75 0.00 C8H7N2 130.0531 1.20 7 0.75 0.00 CSH1003N1 131.0582 0.33 2 1.80 0.60 C9H10N1 131.0735 0.41 6 1.00 0.00 C8H502 132.0211 2.66 7 0.50 0.25 C9H901 132.0575 2.76 6 0.89 0.11 C8H9N2 132.0687 0.77 6 1.00 0.00 C8H9N2	C8H7N2	130.0531	0.97	7	0.75	0.00
C8H7N2 130.0531 1.12 7 0.75 0.00 C8H7N2 130.0531 1.14 7 0.75 0.00 C8H7N2 130.0531 1.20 7 0.75 0.00 C8H7N2 130.0531 1.20 7 0.75 0.00 C5H1003N1 131.0582 0.33 2 1.80 0.60 C9H10N1 131.0582 0.39 2 1.80 0.60 C9H10N1 131.0735 0.41 6 1.00 0.00 C8H502 132.0211 2.66 7 0.50 0.25 C9H901 132.0575 2.76 6 0.89 0.11 C8H9N2 132.0687 0.64 6 1.00 0.00 C8H9N2 132.0687 0.86 6 1.00 0.00 C8H9N2 132.0687 1.34 6 1.00 0.00 C8H9N2 132.0687 1.49 6 1.00 0.00 C8H9N2	C8H7N2	130.0531	1.04	7	0.75	0.00
C8H7N2 130.0531 1.14 7 0.75 0.00 C8H7N2 130.0531 1.20 7 0.75 0.00 C5H1003N1 131.0582 0.33 2 1.80 0.60 C5H1003N1 131.0582 0.39 2 1.80 0.60 C9H10N1 131.0735 0.41 6 1.00 0.00 C8H502 132.0211 2.66 7 0.50 0.25 C9H901 132.0575 2.76 6 0.89 0.11 C8H9N2 132.0687 0.64 6 1.00 0.00 C8H9N2 132.0687 0.77 6 1.00 0.00 C8H9N2 132.0687 0.94 6 1.00 0.00 C8H9N2 132.0687 1.34 6 1.00 0.00 C8H9N2 132.0687 1.63 6 1.00 0.00 C8H9N2 132.0687 1.63 6 1.00 0.00 C8H9N2	C8H7N2	130.0531	1.12	7	0.75	0.00
C8H7N2 130.0531 1.20 7 0.75 0.00 C5H1003N1 131.0582 0.33 2 1.80 0.60 C5H1003N1 131.0582 0.39 2 1.80 0.60 C9H10N1 131.0735 0.41 6 1.00 0.00 C8H502 132.0211 2.66 7 0.50 0.25 C9H901 132.0575 2.76 6 0.89 0.11 C8H9N2 132.0687 0.64 6 1.00 0.00 C8H9N2 132.0687 0.77 6 1.00 0.00 C8H9N2 132.0687 0.94 6 1.00 0.00 C8H9N2 132.0687 1.11 6 1.00 0.00 C8H9N2 132.0687 1.49 6 1.00 0.00 C8H9N2 132.0687 1.63 6 1.00 0.00 C8H9N2 132.0687 1.64 6 1.00 0.00 C8H9N2	C8H7N2	130.0531	1.14	7	0.75	0.00
C5H1003N1131.05820.3321.800.60C5H1003N1131.05820.3921.800.60C9H10N1131.07350.4161.000.00C8H502132.02112.6670.500.25C9H901132.05752.7660.890.11C8H9N2132.06870.6461.000.00C8H9N2132.06870.7761.000.00C8H9N2132.06870.8661.000.00C8H9N2132.06870.9461.000.00C8H9N2132.06871.1161.000.00C8H9N2132.06871.3461.000.00C8H9N2132.06871.6361.000.00C8H9N2132.06871.6361.000.00C8H9N2132.06871.6361.000.00C8H9N2132.06871.9761.000.00C8H9N2132.06872.1461.000.00C8H9N2132.06872.3261.000.00C8H8O1N1133.05280.5660.880.13C8H8O1N1133.05282.5660.880.13C7H8N3133.06400.5961.000.00C7H8N3133.06400.7861.000.00C7H8N3133.06400.7861.000.00	C8H7N2	130.0531	1.20	7	0.75	0.00
C5H10O3N1131.05820.3921.800.60C9H10N1131.07350.4161.000.00C8H5O2132.02112.6670.500.25C9H9O1132.05752.7660.890.11C8H9N2132.06870.6461.000.00C8H9N2132.06870.7761.000.00C8H9N2132.06870.8661.000.00C8H9N2132.06870.9461.000.00C8H9N2132.06871.1161.000.00C8H9N2132.06871.3461.000.00C8H9N2132.06871.3461.000.00C8H9N2132.06871.6361.000.00C8H9N2132.06871.6361.000.00C8H9N2132.06871.6361.000.00C8H9N2132.06871.6361.000.00C8H9N2132.06871.9761.000.00C8H9N2132.06872.3261.000.00C8H9N2132.06872.3261.000.00C8H8O1N1133.05282.5660.880.13C7H8N3133.06400.5961.000.00C7H8N3133.06400.7861.000.00C7H8N3133.06400.7861.000.00C7H8N3133.06400.78 <td< td=""><td>C5H10O3N1</td><td>131.0582</td><td>0.33</td><td>2</td><td>1.80</td><td>0.60</td></td<>	C5H10O3N1	131.0582	0.33	2	1.80	0.60
C9H10N1131.07350.4161.000.00C8H502132.02112.6670.500.25C9H901132.05752.7660.890.11C8H9N2132.06870.6461.000.00C8H9N2132.06870.7761.000.00C8H9N2132.06870.9461.000.00C8H9N2132.06870.9461.000.00C8H9N2132.06871.1161.000.00C8H9N2132.06871.3461.000.00C8H9N2132.06871.6361.000.00C8H9N2132.06871.6361.000.00C8H9N2132.06871.6361.000.00C8H9N2132.06871.6361.000.00C8H9N2132.06871.9761.000.00C8H9N2132.06872.1461.000.00C8H9N2132.06872.3261.000.00C8H9N2132.06872.3261.000.00C8H801N1133.05280.5660.880.13C7H8N3133.06400.5961.000.00C7H8N3133.06400.7861.000.00C7H8N3133.06400.7861.000.00	C5H10O3N1	131.0582	0.39	2	1.80	0.60
C8H502 132.0211 2.66 7 0.50 0.25 C9H901 132.0575 2.76 6 0.89 0.11 C8H9N2 132.0687 0.64 6 1.00 0.00 C8H9N2 132.0687 0.77 6 1.00 0.00 C8H9N2 132.0687 0.86 6 1.00 0.00 C8H9N2 132.0687 0.94 6 1.00 0.00 C8H9N2 132.0687 0.94 6 1.00 0.00 C8H9N2 132.0687 1.11 6 1.00 0.00 C8H9N2 132.0687 1.34 6 1.00 0.00 C8H9N2 132.0687 1.63 6 1.00 0.00 C8H9N2 132.0687 1.63 6 1.00 0.00 C8H9N2 132.0687 2.14 6 1.00 0.00 C8H9N2 132.0687 2.32 6 1.00 0.00 C8H9N2 <	C9H10N1	131.0735	0.41	6	1.00	0.00
C9H9O1132.05752.7660.890.11C8H9N2132.06870.6461.000.00C8H9N2132.06870.7761.000.00C8H9N2132.06870.8661.000.00C8H9N2132.06870.9461.000.00C8H9N2132.06871.1161.000.00C8H9N2132.06871.3461.000.00C8H9N2132.06871.3461.000.00C8H9N2132.06871.6361.000.00C8H9N2132.06871.6361.000.00C8H9N2132.06871.7661.000.00C8H9N2132.06871.9761.000.00C8H9N2132.06872.1461.000.00C8H9N2132.06872.5660.880.13C8H801N1133.05282.5660.880.13C7H8N3133.06400.5961.000.00C7H8N3133.06400.7861.000.00C7H8N3133.06400.7861.000.00C7H8N3133.06400.7861.000.00	C8H5O2	132.0211	2.66	7	0.50	0.25
C8H9N2132.06870.6461.000.00C8H9N2132.06870.7761.000.00C8H9N2132.06870.8661.000.00C8H9N2132.06870.9461.000.00C8H9N2132.06871.1161.000.00C8H9N2132.06871.3461.000.00C8H9N2132.06871.3461.000.00C8H9N2132.06871.6361.000.00C8H9N2132.06871.6361.000.00C8H9N2132.06871.7661.000.00C8H9N2132.06871.9761.000.00C8H9N2132.06872.1461.000.00C8H9N2132.06872.5660.880.13C8H801N1133.05282.5660.880.13C7H8N3133.06400.5961.000.00C7H8N3133.06400.7861.000.00C7H8N3133.06400.7861.000.00	C9H9O1	132.0575	2.76	6	0.89	0.11
C8H9N2 132.0687 0.77 6 1.00 0.00 C8H9N2 132.0687 0.86 6 1.00 0.00 C8H9N2 132.0687 0.94 6 1.00 0.00 C8H9N2 132.0687 1.11 6 1.00 0.00 C8H9N2 132.0687 1.34 6 1.00 0.00 C8H9N2 132.0687 1.34 6 1.00 0.00 C8H9N2 132.0687 1.49 6 1.00 0.00 C8H9N2 132.0687 1.63 6 1.00 0.00 C8H9N2 132.0687 1.76 6 1.00 0.00 C8H9N2 132.0687 1.97 6 1.00 0.00 C8H9N2 132.0687 2.14 6 1.00 0.00 C8H9N2 132.0687 2.32 6 1.00 0.00 C8H9N2 132.0687 2.32 6 1.00 0.00 C8H9N2 132.0687 2.32 6 1.00 0.00 C8H801N1 133	C8H9N2	132.0687	0.64	6	1.00	0.00
C8H9N2132.06870.8661.000.00C8H9N2132.06870.9461.000.00C8H9N2132.06871.1161.000.00C8H9N2132.06871.3461.000.00C8H9N2132.06871.4961.000.00C8H9N2132.06871.6361.000.00C8H9N2132.06871.6361.000.00C8H9N2132.06871.7661.000.00C8H9N2132.06871.9761.000.00C8H9N2132.06872.1461.000.00C8H9N2132.06872.3261.000.00C8H9N1133.05280.5660.880.13C8H801N1133.05282.5660.880.13C7H8N3133.06400.7861.000.00C7H8N3133.06400.7861.000.00C7H8N3133.06401.3661.000.00	C8H9N2	132.0687	0.77	6	1.00	0.00
C8H9N2132.06870.9461.000.00C8H9N2132.06871.1161.000.00C8H9N2132.06871.3461.000.00C8H9N2132.06871.4961.000.00C8H9N2132.06871.6361.000.00C8H9N2132.06871.7661.000.00C8H9N2132.06871.7661.000.00C8H9N2132.06871.9761.000.00C8H9N2132.06872.1461.000.00C8H9N2132.06872.3261.000.00C8H9N1133.05280.5660.880.13C8H801N1133.05282.5660.880.13C7H8N3133.06400.7861.000.00C7H8N3133.06401.3661.000.00	C8H9N2	132.0687	0.86	6	1.00	0.00
C8H9N2132.06871.1161.000.00C8H9N2132.06871.3461.000.00C8H9N2132.06871.4961.000.00C8H9N2132.06871.6361.000.00C8H9N2132.06871.7661.000.00C8H9N2132.06871.7661.000.00C8H9N2132.06872.1461.000.00C8H9N2132.06872.3261.000.00C8H9N1133.05280.5660.880.13C8H801N1133.05282.5660.880.13C7H8N3133.06400.7861.000.00C7H8N3133.06401.3661.000.00	C8H9N2	132.0687	0.94	6	1.00	0.00
C8H9N2132.06871.3461.000.00C8H9N2132.06871.4961.000.00C8H9N2132.06871.6361.000.00C8H9N2132.06871.7661.000.00C8H9N2132.06871.9761.000.00C8H9N2132.06872.1461.000.00C8H9N2132.06872.3261.000.00C8H9N1133.05280.5660.880.13C8H801N1133.05282.5660.880.13C7H8N3133.06400.7861.000.00C7H8N3133.06401.3661.000.00	C8H9N2	132.0687	1.11	6	1.00	0.00
C8H9N2132.06871.4961.000.00C8H9N2132.06871.6361.000.00C8H9N2132.06871.7661.000.00C8H9N2132.06871.9761.000.00C8H9N2132.06872.1461.000.00C8H9N2132.06872.3261.000.00C8H9N1133.05280.5660.880.13C8H801N1133.05282.5660.880.13C7H8N3133.06400.7861.000.00C7H8N3133.06401.3661.000.00	C8H9N2	132.0687	1.34	6	1.00	0.00
C8H9N2132.06871.6361.000.00C8H9N2132.06871.7661.000.00C8H9N2132.06871.9761.000.00C8H9N2132.06872.1461.000.00C8H9N2132.06872.3261.000.00C8H9N1133.05280.5660.880.13C8H801N1133.05282.5660.880.13C7H8N3133.06400.5961.000.00C7H8N3133.06400.7861.000.00C7H8N3133.06401.3661.000.00	C8H9N2	132.0687	1.49	6	1.00	0.00
C8H9N2132.06871.7661.000.00C8H9N2132.06871.9761.000.00C8H9N2132.06872.1461.000.00C8H9N2132.06872.3261.000.00C8H9N1133.05280.5660.880.13C8H801N1133.05282.5660.880.13C7H8N3133.06400.5961.000.00C7H8N3133.06400.7861.000.00C7H8N3133.06401.3661.000.00	C8H9N2	132.0687	1.63	6	1.00	0.00
C8H9N2132.06871.9761.000.00C8H9N2132.06872.1461.000.00C8H9N2132.06872.3261.000.00C8H801N1133.05280.5660.880.13C8H801N1133.05282.5660.880.13C7H8N3133.06400.5961.000.00C7H8N3133.06400.7861.000.00C7H8N3133.06401.3661.000.00	C8H9N2	132.0687	1.76	6	1.00	0.00
C8H9N2132.06872.1461.000.00C8H9N2132.06872.3261.000.00C8H801N1133.05280.5660.880.13C8H801N1133.05282.5660.880.13C7H8N3133.06400.5961.000.00C7H8N3133.06400.7861.000.00C7H8N3133.06401.3661.000.00	C8H9N2	132.0687	1.97	6	1.00	0.00
C8H9N2132.06872.3261.000.00C8H801N1133.05280.5660.880.13C8H801N1133.05282.5660.880.13C7H8N3133.06400.5961.000.00C7H8N3133.06400.7861.000.00C7H8N3133.06401.3661.000.00	C8H9N2	132.0687	2.14	6	1.00	0.00
C8H801N1133.05280.5660.880.13C8H801N1133.05282.5660.880.13C7H8N3133.06400.5961.000.00C7H8N3133.06400.7861.000.00C7H8N3133.06401.3661.000.00	C8H9N2	132.0687	2.32	6	1.00	0.00
C8H801N1133.05282.5660.880.13C7H8N3133.06400.5961.000.00C7H8N3133.06400.7861.000.00C7H8N3133.06401.3661.000.00	C8H8O1N1	133.0528	0.56	6	0.88	0.13
C7H8N3133.06400.5961.000.00C7H8N3133.06400.7861.000.00C7H8N3133.06401.3661.000.00	C8H8O1N1	133.0528	2.56	6	0.88	0.13
C7H8N3133.06400.7861.000.00C7H8N3133.06401.3661.000.00	C7H8N3	133.0640	0.59	6	1.00	0.00
C7H8N3 133.0640 1.36 6 1.00 0.00	C7H8N3	133.0640	0.78	6	1.00	0.00
	C7H8N3	133.0640	1.36	6	1.00	0.00

C7H8N3	133.0640	1.60	6	1.00	0.00
C7H8N3	133.0640	2.49	6	1.00	0.00
C7H8N3	133.0640	1.68	6	1.00	0.00
C9H12N1	133.0891	0.95	5	1.22	0.00
C9H12N1	133.0891	1.13	5	1.22	0.00
C9H12N1	133.0891	1.41	5	1.22	0.00
C9H12N1	133.0891	1.68	5	1.22	0.00
C9H12N1	133.0891	2.48	5	1.22	0.00
C7H7O1N2	134.0480	1.04	6	0.86	0.14
C7H7O1N2	134.0480	1.87	6	0.86	0.14
C7H7O1N2	134.0480	2.30	6	0.86	0.14
C7H7O1N2	134.0480	2.71	6	0.86	0.14
C7H7O1N2	134.0480	2.89	6	0.86	0.14
C6H7N4	134.0592	0.58	6	1.00	0.00
C6H7N4	134.0592	0.84	6	1.00	0.00
C11H14O1N1	175.0997	3.01	6	1.18	0.09
C8H11N2	134.0844	0.36	5	1.25	0.00
C8H11N2	134.0844	0.68	5	1.25	0.00
C8H11N2	134.0844	1.19	5	1.25	0.00
C7H6O2N1	135.0320	1.72	6	0.71	0.29
C7H6O2N1	135.0320	2.29	6	0.71	0.29
C6H6O1N3	135.0433	1.05	6	0.83	0.17
C8H10O1N1	135.0684	0.39	5	1.13	0.13
C8H10O1N1	135.0684	0.62	5	1.13	0.13
C8H10O1N1	135.0684	0.76	5	1.13	0.13
C8H10O1N1	135.0684	0.82	5	1.13	0.13
C8H10O1N1	135.0684	1.26	5	1.13	0.13
C8H10O1N1	135.0684	1.38	5	1.13	0.13
C8H10O1N1	135.0684	2.27	5	1.13	0.13
C8H10O1N1	135.0684	2.36	5	1.13	0.13
C8H10O1N1	135.0684	2.51	5	1.13	0.13
C8H10O1N1	135.0684	2.68	5	1.13	0.13
C8H10O1N1	135.0684	2.78	5	1.13	0.13
C8H10O1N1	135.0684	3.01	5	1.13	0.13
C8H10O1N1	135.0684	3.12	5	1.13	0.13
C8H10O1N1	135.0684	3.35	5	1.13	0.13
C8H10O1N1	135.0684	3.61	5	1.13	0.13
C9H14N1	135.1048	1.49	4	1.44	0.00
C9H14N1	135.1048	1.62	4	1.44	0.00
C9H14N1	135.1048	1.83	4	1.44	0.00
C9H14N1	135.1048	1.74	4	1.44	0.00
C7H5O3	136.0160	1.43	6	0.57	0.43
C5H5O1N4	136.0385	0.39	6	0.80	0.20
C8H9O2	136.0524	0.49	5	1.00	0.25
C8H9O2	136.0524	0.57	5	1.00	0.25
C8H9O2	136.0524	2.95	5	1.00	0.25
C8H9O2	136.0524	3.02	5	1.00	0.25
C8H9O2	136.0524	3.02	5	1.00	0.25
C8H9O2	136.0524	3 10	5	1.00	0.25
C8H9O2	136 0524	3.17	5	1.00	0.25
011/02	130.0324	5.50	5	1.00	0.20

C8H9O2	136.0524	3.53	5	1.00	0.25
C8H9O2	136.0524	3.57	5	1.00	0.25
C7H9O1N2	136.0637	0.39	5	1.14	0.14
C7H9O1N2	136.0637	0.43	5	1.14	0.14
C7H9O1N2	136.0637	0.47	5	1.14	0.14
C7H9O1N2	136.0637	0.49	5	1.14	0.14
C7H9O1N2	136.0637	0.55	5	1.14	0.14
C7H9O1N2	136.0637	1.52	5	1.14	0.14
C7H9O1N2	136.0637	2.38	5	1.14	0.14
C7H9O1N2	136.0637	2.63	5	1.14	0.14
C8H13N2	136.1000	0.77	4	1.50	0.00
C8H13N2	136.1000	0.92	4	1.50	0.00
C8H13N2	136.1000	1.12	4	1.50	0.00
C8H13N2	136.1000	1.25	4	1.50	0.00
C8H13N2	136.1000	1.36	4	1.50	0.00
C8H13N2	136,1000	1.55	4	1.50	0.00
C8H13N2	136.1000	1.69	4	1.50	0.00
C8H13N2	136,1000	1.78	4	1.50	0.00
C8H13N2	136.1000	1.90	4	1.50	0.00
C8H13N2	136,1000	1.95	4	1.50	0.00
C8H13N2	136.1000	2.12	4	1.50	0.00
C8H13N2	136 1000	2.32	4	1 50	0.00
C8H13N2	136,1000	2.40	4	1.50	0.00
C8H13N2	136 1000	2.51	4	1.50	0.00
C8H13N2	136 1000	2.68	4	1.50	0.00
C7H8O2N1	137 0477	0.39	5	1.00	0.29
C8H12O1N1	137.0841	0.39	4	1.38	0.13
C8H12O1N1	137 0841	0.44	4	1 38	0.13
C8H12O1N1	137 0841	0.50	4	1 38	0.13
C8H12O1N1	137.0841	0.56	4	1.38	0.13
C8H12O1N1	137 0841	0.79	4	1 38	0.13
C8H12O1N1	137 0841	0.89	4	1 38	0.13
C8H12O1N1	137.0841	0.97	4	1.38	0.13
C8H12O1N1	137.0841	1.12	4	1.38	0.13
C8H12O1N1	137.0841	1.12	4	1.38	0.13
C8H12O1N1	137.0841	1.22	4	1.30	0.13
C8H12O1N1	137.0841	1.30	4	1.38	0.13
C8H12O1N1	137.0841	1.44	4	1.30	0.13
C8H12O1N1	137.0841	1.60	4	1.30	0.13
C8H12O1N1	137.0841	1.07	4	1.30	0.13
C8H12O1N1	137.0841	1.88	4	1.30	0.13
C8H12O1N1	137.0841	1.00	4	1.30	0.13
C8H12O1N1	137.0841	2.09		1.30	0.13
C8H12O1N1	137.0841	2.0)	4	1.38	0.13
C8H12O1N1	137.0041	2.20	+ 1	1.30	0.13
C8H12O1N1	137.0041	2.30	+ 1	1.30	0.13
C8H12O1N1	137.0041	2.33	+ 1	1.30	0.13
COLIZOINI	137.0041	2.34	4	1.30	0.13
COLLIZOTINI	137.0041	2.02	4	1.30	0.13
COLLIZOINI	137.0841	2.03	4	1.38	0.13
Con1201NI	137.0841	2.87	4	1.58	0.13

C8H12O1N1	137.0841	3.00	4	1.38	0.13
C8H12O1N1	137.0841	3.10	4	1.38	0.13
C8H12O1N1	137.0841	3.25	4	1.38	0.13
C8H12O1N1	137.0841	3.38	4	1.38	0.13
C8H12O1N1	137.0841	3.56	4	1.38	0.13
C8H12O1N1	137.0841	3.68	4	1.38	0.13
C8H12O1N1	137.0841	3.79	4	1.38	0.13
C7H12N3	137.0953	0.56	4	1.57	0.00
C7H12N3	137.0953	1.05	4	1.57	0.00
C7H7O3	138.0317	2.13	5	0.86	0.43
C7H7O3	138.0317	2.28	5	0.86	0.43
C7H7O3	138.0317	2.38	5	0.86	0.43
C6H7O2N2	138.0429	0.95	5	1.00	0.33
C7H11O1N2	138.0793	0.48	4	1.43	0.14
C7H11O1N2	138.0793	0.64	4	1.43	0.14
C7H11O1N2	138.0793	0.72	4	1.43	0.14
C7H11O1N2	138.0793	1.03	4	1.43	0.14
C7H11O1N2	138.0793	1.22	4	1.43	0.14
C7H11O1N2	138.0793	1.32	4	1.43	0.14
C7H11O1N2	138.0793	1.50	4	1.43	0.14
C7H11O1N2	138.0793	1.67	4	1.43	0.14
C7H11O1N2	138 0793	1 77	4	1 43	0.14
C7H11O1N2	138.0793	1.85	4	1.13	0.14
C7H11O1N2	138.0793	1.03	4	1.13	0.14
C7H11O1N2	138.0793	2.01	4	1.43	0.14
C7H11O1N2	138.0793	2.01	-	1.43	0.14
C7H11O1N2	138.0793	2.03	4	1.43	0.14
C7H11O1N2	138.0793	2.33	4	1.43	0.14
C7H11O1N2	138.0793	2.41	4	1.43	0.14
C7H11O1N2	138.0793	2.44	4	1.43	0.14
C7H11OIN2	138.0793	2.71	4	1.43	0.14
C7H11O1N2	138.0793	2.89	4	1.45	0.14
C/HIIOIN2	138.0793	3.13	4	1.45	0.14
C8HI5N2	138.1157	0.87	3	1.75	0.00
C8H15N2	138.1157	0.90	3	1.75	0.00
C8H15N2	138.1157	0.96	3	1.75	0.00
C8H15N2	138.1157	1.26	3	1.75	0.00
C8H15N2	138.1157	1.40	3	1.75	0.00
C8H15N2	138.1157	1.48	3	1.75	0.00
C8H15N2	138.1157	1.59	3	1.75	0.00
C8H15N2	138.1157	1.65	3	1.75	0.00
C8H15N2	138.1157	1.83	3	1.75	0.00
C8H15N2	138.1157	1.89	3	1.75	0.00
C8H15N2	138.1157	2.07	3	1.75	0.00
C8H15N2	138.1157	2.21	3	1.75	0.00
C8H15N2	138.1157	2.27	3	1.75	0.00
C8H15N2	138.1157	2.40	3	1.75	0.00
C8H15N2	138.1157	2.54	3	1.75	0.00
C8H15N2	138.1157	2.68	3	1.75	0.00
C8H15N2	138.1157	2.80	3	1.75	0.00
C8H15N2	138.1157	2.88	3	1.75	0.00

C8H15N2	138.1157	2.95	3	1.75	0.00
C8H15N2	138.1157	3.03	3	1.75	0.00
C6H6O3N1	139.0269	0.38	5	0.83	0.50
C6H6O3N1	139.0269	0.43	5	0.83	0.50
C7H13O2N2	156.0899	0.39	3	1.71	0.29
C7H10O2N1	139.0633	0.51	4	1.29	0.29
C7H10O2N1	139.0633	0.73	4	1.29	0.29
C7H10O2N1	139.0633	0.95	4	1.29	0.29
C7H10O2N1	139.0633	1.30	4	1.29	0.29
C7H10O2N1	139.0633	2.49	4	1.29	0.29
C7H10O2N1	139.0633	2.62	4	1.29	0.29
C7H10O2N1	139.0633	2.80	4	1.29	0.29
C6H10O1N3	139.0000	0.64	4	1.50	0.17
C5H5O3N2	140 0222	2 65	5	0.80	0.60
C7H9O3	140.0222	1 39	4	1 14	0.00
C6H9O2N2	140.0586	0.68	4	1.14	0.33
C6H9O2N2	140.0586	1.07	4	1.33	0.33
C7H12O1N2	140.0050	0.50	2	1.55	0.33
C9H17N2	140.0950	0.30	2 2	2.00	0.14
	140.1313	1.35	2	2.00	0.00
C6H17N2	140.1515	2.45	2	2.00	0.00
C11H904	204.0425	5.04	0	0.75	0.30
C6H8O3N1	141.0426	0.35	4	1.17	0.50
C6H8O3N1	141.0426	0.39	4	1.17	0.50
C6H8O3N1	141.0426	0.41	4	1.17	0.50
C8H11O3N2	182.0691	0.65	5	1.25	0.38
C7H12O2N1	141.0790	0.37	3	1.57	0.29
C6H11O2N2	142.0742	0.53	3	1.67	0.33
C6H10O1N1S1	143.0405	0.89	3	1.50	0.17
C9H11O3	166.0630	3.25	5	1.11	0.33
C7H14O4N1	175.0845	0.39	2	1.86	0.57
C7H14O4N1	175.0845	0.39	2	1.86	0.57
C10H10N1	143.0735	0.67	7	0.90	0.00
C10H10N1	143.0735	1.32	7	0.90	0.00
C10H10N1	143.0735	1.50	7	0.90	0.00
C10H10N1	143.0735	1.56	7	0.90	0.00
C10H10N1	143.0735	1.60	7	0.90	0.00
C10H10N1	143.0735	1.67	7	0.90	0.00
C10H10N1	143.0735	1.77	7	0.90	0.00
C10H10N1	143.0735	1.89	7	0.90	0.00
C10H10N1	143.0735	2.01	7	0.90	0.00
C10H10N1	143.0735	2.19	7	0.90	0.00
C10H10N1	143.0735	2.34	7	0.90	0.00
C10H10N1	143.0735	2.60	7	0.90	0.00
C10H10N1	143.0735	2.65	7	0.90	0.00
C10H10N1	143.0735	2.66	7	0.90	0.00
C10H10N1	143.0735	2.68	7	0.90	0.00
C10H10N1	143.0735	2.68	7	0.90	0.00
C10H10N1	143.0735	2.71	7	0.90	0.00
C10H10N1	143.0735	2.73	7	0.90	0.00
C10H10N1	143 0735	2.89	7	0.90	0.00

C10H10N1	143.0735	2.90	7	0.90	0.00
C10H10N1	143.0735	2.96	7	0.90	0.00
C10H10N1	143.0735	3.08	7	0.90	0.00
C10H10N1	143.0735	3.17	7	0.90	0.00
C10H10N1	143.0735	3.51	7	0.90	0.00
C10H10N1	143.0735	3.61	7	0.90	0.00
C10H10N1	143.0735	3.86	7	0.90	0.00
C10H10N1	143.0735	4.01	7	0.90	0.00
C10H10N1	143.0735	4.52	7	0.90	0.00
C10H10N1	143.0735	5.09	7	0.90	0.00
C9H9N2	144.0687	0.78	7	0.89	0.00
C9H9N2	144.0687	0.90	7	0.89	0.00
C9H9N2	144.0687	1.09	7	0.89	0.00
C9H9N2	144.0687	1.19	7	0.89	0.00
C9H9N2	144.0687	1.30	7	0.89	0.00
C9H9N2	144.0687	1.46	7	0.89	0.00
C9H9N2	144.0687	1.74	7	0.89	0.00
C9H9N2	144.0687	2.41	7	0.89	0.00
C9H9N2	144.0687	2.49	7	0.89	0.00
C9H9N2	144.0687	2.56	7	0.89	0.00
C7H9O1N1Na1	123.0684	2.63	4	1.29	0.14
C9H8O1N1	145.0528	0.84	7	0.78	0.11
C9H8O1N1	145.0528	0.92	7	0.78	0.11
C9H8O1N1	145.0528	1.07	7	0.78	0.11
C9H8O1N1	145.0528	1.19	7	0.78	0.11
C9H8O1N1	145.0528	1.96	7	0.78	0.11
C9H8O1N1	145.0528	2.33	7	0.78	0.11
C9H8O1N1	145.0528	2.42	7	0.78	0.11
C9H8O1N1	145.0528	2.83	7	0.78	0.11
C9H8O1N1	145.0528	3.26	7	0.78	0.11
C9H8O1N1	145.0528	3.50	7	0.78	0.11
C8H8N3	145.0640	0.39	7	0.88	0.00
C8H8N3	145.0640	0.71	7	0.88	0.00
C6H12O3N1	145.0739	0.38	2	1.83	0.50
C6H12O3N1	145.0739	0.60	2	1.83	0.50
C10H12N1	145.0891	1.70	- 6	1.10	0.00
C10H12N1	145.0891	1.95	6	1.10	0.00
C10H12N1	145.0891	2.21	6	1.10	0.00
C10H12N1	145.0891	2.37	6	1.10	0.00
C10H12N1	145.0891	2.51	6	1.10	0.00
C10H12N1	145.0891	2.20	6	1.10	0.00
C7H16O2N1	145.1103	0.41	1	2.14	0.29
C7H16O2N1	145,1103	0.49	1	2.14	0.29
C9H7O2	146.0368	2.74	7	0.67	0.22
C10H11O3	178.0630	3.09	6	1.00	0.30
C9H7O2	146.0368	3.26	7	0.67	0.22
C9H7O2	146.0368	3 35	, 7	0.67	0.22
C9H7O2	146.0368	3 64	, 7	0.67	0.22
C8H7O1N2	146 0480	0 39	, 7	0.75	0.13
011701112	1 16.0 100	0.07	_	0.75	0.10
C8H7O1N2	146.0480	1.69	7	0.75	0.13
--------------------------	----------	------	---	------	------
C8H7O1N2	146.0480	2.31	7	0.75	0.13
C8H7O1N2	146.0480	2.62	7	0.75	0.13
C8H7O1N2	146.0480	2.65	7	0.75	0.13
C8H7O1N2	146.0480	2.77	7	0.75	0.13
C6H11O4	146.0579	0.37	2	1.67	0.67
C6H11O4	146.0579	0.45	2	1.67	0.67
C5H11O3N2	146.0691	0.33	2	2.00	0.60
C10H11O1	146.0732	3.11	6	1.00	0.10
C9H11N2	146.0844	0.39	6	1.11	0.00
C9H11N2	146.0844	0.50	6	1.11	0.00
C9H11N2	146.0844	0.91	6	1.11	0.00
C9H11N2	146.0844	1.02	6	1.11	0.00
C9H11N2	146.0844	1.15	6	1.11	0.00
C9H11N2	146.0844	1.22	6	1.11	0.00
C9H11N2	146.0844	1.31	6	1.11	0.00
C9H11N2	146.0844	1.44	6	1.11	0.00
C9H11N2	146.0844	1.51	6	1.11	0.00
C9H11N2	146.0844	1.63	6	1.11	0.00
C9H11N2	146.0844	1.76	6	1.11	0.00
C9H11N2	146.0844	1.91	6	1.11	0.00
C9H11N2	146.0844	1.98	6	1.11	0.00
C9H11N2	146.0844	2.09	6	1.11	0.00
C9H11N2	146 0844	2.18	6	1 11	0.00
C9H11N2	146 0844	2.10	6	1 11	0.00
C9H11N2	146 0844	2.27	6	1 11	0.00
C9H11N2	146.0844	2.57	6	1.11	0.00
C9H11N2	146 0844	2.51	6	1 11	0.00
C9H11N2	146.0844	2.01	6	1.11	0.00
C9H11N2	146.0844	2.71	6	1.11	0.00
C9H11N2	146.0844	2.88	6	1.11	0.00
C9H11N2	146.0844	3.19	6	1.11	0.00
C9H10O1N1	147.0684	0.93	6	1.00	0.11
C9H10O1N1	147.0684	1.07	6	1.00	0.11
C9H10O1N1	147.0684	1.07	6	1.00	0.11
C9H10O1N1	147.0684	1.17	6	1.00	0.11
C9H10O1N1	147.0684	1.50	6	1.00	0.11
C9H10O1N1	147.0684	1.48	6	1.00	0.11
C9H10O1N1	147.0684	1.05	6	1.00	0.11
C0H10O1N1	147.0684	1.75	6	1.00	0.11
C9H10O1N1	147.0084	1.90	6	1.00	0.11
C9111001N1	147.0004	2.16	6	1.00	0.11
C10H14O2N1	147.0084	2.10	5	1.00	0.11
CIUHI402NI COULIOO1NI	179.0940	2.03	5	1.30	0.20
COLLIDOINI	147.0084	2.77	0	1.00	0.11
COLIQUINI	147.0084	2.09	0	1.00	0.11
COLLOCINI	147.0684	3.08	0	1.00	0.11
COLLOCINI	147.0684	3.22	0	1.00	0.11
COLLOCINI	147.0684	5.54	0	1.00	0.11
C9H10OINI	147.0684	3.45	6	1.00	0.11
C9H10OINI	147.0684	3.56	6	1.00	0.11

C9H10O1N1	147.0684	3.79	6	1.00	0.11
C9H10O1N1	147.0684	3.89	6	1.00	0.11
C8H10N3	147.0796	0.48	6	1.13	0.00
C8H10N3	147.0796	0.57	6	1.13	0.00
C8H10N3	147.0796	0.73	6	1.13	0.00
C8H10N3	147.0796	0.87	6	1.13	0.00
C8H10N3	147.0796	0.94	6	1.13	0.00
C8H10N3	147.0796	1.04	6	1.13	0.00
C8H10N3	147.0796	1.27	6	1.13	0.00
C8H10N3	147.0796	1.37	6	1.13	0.00
C8H10N3	147.0796	1.42	6	1.13	0.00
C8H10N3	147 0796	1.66	6	1 13	0.00
C8H10N3	147.0796	2.27	6	1.13	0.00
C8H10N3	147 0796	2.27	6	1.13	0.00
C8H10N3	147.0796	2.78	6	1.13	0.00
C10H14N1	147 1048	2.76	5	1.19	0.00
C10H14N1	147.1048	2.24	5	1.30	0.00
C10H14N1	147.1048	2.59	5	1.30	0.00
C10H14N1	147.1048	2.58	5	1.30	0.00
C10H14N1	147.1048	2.75	5	1.30	0.00
C10H14N1	147.1048	2.04	5	1.30	0.00
C10H14N1	147.1048	2.04	5	1.30	0.00
C10H14N1	147.1048	2.98	5	1.30	0.00
	147.1040	2.55	5	0.80	0.00
C9H9O2	148.0524	3.02	6	0.89	0.22
C9H9O2	140.0524	3.40	6	0.89	0.22
C9H9O2	148.0524	3.35	6	0.89	0.22
C9H9O2	140.0324	3.01	0	1.00	0.22
C8H901N2	148.0037	0.45	0	1.00	0.13
C8H9OIN2	148.0637	0.48	0	1.00	0.13
C8H9OIN2	148.0637	0.73	6	1.00	0.13
C8H9OIN2	148.0637	1.05	6	1.00	0.13
C8H9OIN2	148.0637	1.17	6	1.00	0.13
C8H9O1N2	148.0637	1.27	6	1.00	0.13
C8H9O1N2	148.0637	2.39	6	1.00	0.13
C8H9O1N2	148.0637	2.52	6	1.00	0.13
C8H9O1N2	148.0637	2.72	6	1.00	0.13
C8H9O1N2	148.0637	2.93	6	1.00	0.13
C8H9O1N2	148.0637	3.01	6	1.00	0.13
C8H9O1N2	148.0637	3.04	6	1.00	0.13
C8H9O1N2	148.0637	3.12	6	1.00	0.13
C7H9N4	148.0749	0.91	6	1.14	0.00
C9H13N2	148.1000	1.26	5	1.33	0.00
C9H13N2	148.1000	1.43	5	1.33	0.00
C9H13N2	148.1000	2.47	5	1.33	0.00
C9H13N2	148.1000	2.78	5	1.33	0.00
C6H11O3N2S1	190.0412	0.37	3	1.67	0.50
C8H8O2N1	149.0477	0.38	6	0.88	0.25
C8H8O2N1	149.0477	0.70	6	0.88	0.25
C8H8O2N1	149.0477	0.71	6	0.88	0.25
C8H8O2N1	149.0477	0.96	6	0.88	0.25

C8H8O2N1	149.0477	1.17	6	0.88	0.25
C8H8O2N1	149.0477	2.39	6	0.88	0.25
C8H8O2N1	149.0477	2.75	6	0.88	0.25
C8H8O2N1	149.0477	2.85	6	0.88	0.25
C8H8O2N1	149.0477	3.10	6	0.88	0.25
C7H8O1N3	149.0589	0.40	6	1.00	0.14
C7H8O1N3	149.0589	2.37	6	1.00	0.14
C7H8O1N3	149.0589	2.46	6	1.00	0.14
C6H8N5	149.0701	0.42	6	1.17	0.00
C9H12O1N1	149.0841	0.51	5	1.22	0.11
C9H12O1N1	149.0841	0.89	5	1.22	0.11
C9H12O1N1	149.0841	1.11	5	1.22	0.11
C9H12O1N1	149.0841	1.26	5	1.22	0.11
C9H12O1N1	149.0841	1.45	5	1.22	0.11
C9H12O1N1	149.0841	1.58	5	1.22	0.11
C9H12O1N1	149 0841	1.88	5	1.22	0.11
C9H12O1N1	149 0841	2.40	5	1.22	0.11
C9H12O1N1	149 0841	2.13	5	1.22	0.11
C9H12O1N1	149 0841	2.47	5	1.22	0.11
C9H12O1N1	149.0041	2.82	5	1.22	0.11
C9H12O1N1	149.0841	2.85	5	1.22	0.11
C0H12O1N1	140.0841	2.75	5	1.22	0.11
C9H12O1N1	149.0641	3.10	5	1.22	0.11
C9H12O1N1	149.0641	3.45 2.56	5	1.22	0.11
C9H12O1N1	149.0841	3.30	5	1.22	0.11
C9HI2OINI	149.0841	3.03	5	1.22	0.11
C9HI2OINI	149.0841	3.76	5	1.22	0.11
C9HI2OINI	149.0841	3.87	5	1.22	0.11
C9HI2OINI	149.0841	4.31	5	1.22	0.11
C9H12O1N1	149.0841	0.66	5	1.22	0.11
C9H12O1N1	149.0841	3.96	5	1.22	0.11
C6H16O3N1	149.1052	0.62	0	2.50	0.50
C6H16O3N1	149.1052	0.64	0	2.50	0.50
C6H16O3N1	149.1052	0.84	0	2.50	0.50
C10H16N1	149.1204	2.20	4	1.50	0.00
C10H16N1	149.1204	2.53	4	1.50	0.00
C10H16N1	149.1204	2.60	4	1.50	0.00
C10H16N1	149.1204	2.64	4	1.50	0.00
C10H16N1	149.1204	2.71	4	1.50	0.00
C10H16N1	149.1204	2.81	4	1.50	0.00
C10H19N2	166.1470	2.95	3	1.80	0.00
C10H16N1	149.1204	2.98	4	1.50	0.00
C10H16N1	149.1204	3.07	4	1.50	0.00
C10H16N1	149.1204	3.18	4	1.50	0.00
C10H16N1	149.1204	3.39	4	1.50	0.00
C5H10O5N3	191.0542	0.28	3	1.80	1.00
C8H7O3	150.0317	2.64	6	0.75	0.38
C8H7O3	150.0317	2.73	6	0.75	0.38
C8H7O3	150.0317	2.77	6	0.75	0.38
C8H5O2	132.0211	2.79	7	0.50	0.25
C5H8O2N2Na1	128.0586	0.37	3	1.60	0.40

C6H7O1N4	150.0542	0.59	6	1.00	0.17
C6H7O1N4	150.0542	0.82	6	1.00	0.17
C9H11O2	150.0681	0.97	5	1.11	0.22
C11H12O1N1	173.0841	2.84	7	1.00	0.09
C9H11O2	150.0681	3.60	5	1.11	0.22
C9H11O2	150.0681	3.70	5	1.11	0.22
C9H11O2	150.0681	3.93	5	1.11	0.22
C9H11O2	150.0681	4.12	5	1.11	0.22
C9H11O2	150.0681	4.29	5	1.11	0.22
C9H11O2	150.0681	4.44	5	1.11	0.22
C9H11O2	150.0681	4.64	5	1.11	0.22
C9H11O2	150.0681	5.07	5	1.11	0.22
C8H11O1N2	150.0793	0.53	5	1.25	0.13
C8H11O1N2	150.0793	0.90	5	1.25	0.13
C8H11O1N2	150.0793	0.98	5	1.25	0.13
C8H11O1N2	150.0793	1.33	5	1.25	0.13
C8H11O1N2	150.0793	2.45	5	1.25	0.13
C8H11O1N2	150.0793	2.75	5	1.25	0.13
C8H11O1N2	150.0793	2.90	5	1.25	0.13
C8H11O1N2	150.0793	3.11	5	1.25	0.13
C8H11O1N2	150.0793	3.27	5	1.25	0.13
C9H15N2	150.1157	1.25	4	1.56	0.00
C9H15N2	150.1157	1.49	4	1.56	0.00
C9H15N2	150.1157	1.66	4	1.56	0.00
C9H15N2	150.1157	1.97	4	1.56	0.00
C9H15N2	150.1157	2.22	4	1.56	0.00
C9H15N2	150.1157	2.39	4	1.56	0.00
C9H15N2	150.1157	2.59	4	1.56	0.00
C9H15N2	150.1157	2.73	4	1.56	0.00
C9H15N2	150.1157	2.83	4	1.56	0.00
C9H15N2	150.1157	2.92	4	1.56	0.00
C9H15N2	150.1157	1.69	4	1.56	0.00
C9H15N2	150.1157	3.03	4	1.56	0.00
C12H10O1Na1	170.0732	0.28	8	0.83	0.08
C8H10O2N1	151.0633	0.38	5	1.13	0.25
C10H13O2N2	192.0899	0.59	6	1.20	0.20
C8H10O2N1	151.0633	1.08	5	1.13	0.25
C8H10O2N1	151.0633	1.36	5	1.13	0.25
C8H10O2N1	151.0633	1.37	5	1.13	0.25
C8H10O2N1	151.0633	1.74	5	1.13	0.25
C8H13O2N2	168.0899	2.11	4	1.50	0.25
C8H10O2N1	151.0633	2.39	5	1.13	0.25
C8H10O2N1	151.0633	2.44	5	1.13	0.25
C8H10O2N1	151.0633	2.61	5	1.13	0.25
C8H10O2N1	151.0633	2.77	5	1.13	0.25
C8H10O2N1	151.0633	2.82	5	1.13	0.25
C8H10O2N1	151.0633	3.05	5	1.13	0.25
C7H10O1N3	151.0746	0.53	5	1.29	0.14
C9H14O1N1	151.0997	0.59	4	1.44	0.11
C9H14O1N1	151.0997	0.73	4	1.44	0.11

C9H14O1N1	151.0997	1.00	4	1.44	0.11
C9H14O1N1	151.0997	1.12	4	1.44	0.11
C9H14O1N1	151.0997	1.32	4	1.44	0.11
C9H14O1N1	151.0997	1.46	4	1.44	0.11
C9H14O1N1	151.0997	1.63	4	1.44	0.11
C9H14O1N1	151.0997	1.93	4	1.44	0.11
C9H14O1N1	151.0997	2.10	4	1.44	0.11
C9H14O1N1	151.0997	2.25	4	1.44	0.11
C9H14O1N1	151.0997	2.39	4	1.44	0.11
C9H14O1N1	151.0997	2.54	4	1.44	0.11
C9H14O1N1	151.0997	2.64	4	1.44	0.11
C9H14O1N1	151.0997	3.37	4	1.44	0.11
C9H14O1N1	151.0997	3.53	4	1.44	0.11
C9H14O1N1	151.0997	3.61	4	1.44	0.11
C9H14O1N1	151.0997	3.74	4	1.44	0.11
C9H14O1N1	151.0997	3.83	4	1.44	0.11
C9H14O1N1	151.0997	4.06	4	1.44	0.11
C9H14O1N1	151.0997	2.00	4	1.44	0.11
C9H14O1N1	151.0997	3.00	4	1.44	0.11
C9H14O1N1	151.0997	2.71	4	1.44	0.11
C9H14O1N1	151.0997	2.46	4	1.44	0.11
C10H18N1	151,1361	2.85	3	1.70	0.00
C8H9O3	152.0473	2.67	5	1.00	0.38
C8H9O3	152.0473	2.94	5	1.00	0.38
C8H9O3	152.0473	3.00	5	1.00	0.38
C8H9O3	152.0473	3.25	5	1.00	0.38
C8H9O3	152.0473	3.56	5	1.00	0.38
C8H9O3	152.0473	3.64	5	1.00	0.38
C8H9O3	152.0473	3.72	5	1.00	0.38
C7H9O2N2	152.0586	0.53	5	1.14	0.29
C7H9O2N2	152.0586	0.76	5	1.14	0.29
C7H9O2N2	152.0586	0.94	5	1.14	0.29
C7H9O2N2	152.0586	1.36	5	1.14	0.29
C7H9O2N2	152.0586	1.80	5	1.14	0.29
C7H9O2N2	152.0586	2.67	5	1.14	0.29
C8H13O1N2	152.0950	0.85	4	1.50	0.13
C8H13O1N2	152.0950	0.89	4	1.50	0.13
C8H13O1N2	152.0950	0.97	4	1.50	0.13
C8H13O1N2	152.0950	1.14	4	1.50	0.13
C8H13O1N2	152.0950	1.19	4	1.50	0.13
C8H13O1N2	152.0950	1.36	4	1.50	0.13
C8H13O1N2	152.0950	1.71	4	1.50	0.13
C8H13O1N2	152.0950	2.21	4	1.50	0.13
C8H13O1N2	152.0950	2.30	4	1.50	0.13
C8H13O1N2	152.0950	2.73	4	1.50	0.13
C8H13O1N2	152.0950	2.83	4	1.50	0.13
C8H13O1N2	152.0950	3 56	4	1.50	0.13
C9H17N2	152.1313	2.34	3	1.50	0.00
C9H17N2	152.1313	2.55	3	1.70	0.00
C9H17N2	152.1313	2.33	3	1.70	0.00
C/111/1N2	152.1515	2.70	5	1./0	0.00

C9H17N2	152.1313	2.79	3	1.78	0.00
C9H17N2	152.1313	2.83	3	1.78	0.00
C7H11O3N2	170.0691	0.89	4	1.43	0.43
C7H8O3N1	153.0426	2.62	5	1.00	0.43
C8H12O2N1	153.0790	0.52	4	1.38	0.25
C8H12O2N1	153.0790	0.60	4	1.38	0.25
C8H12O2N1	153.0790	0.96	4	1.38	0.25
C8H12O2N1	153.0790	1.05	4	1.38	0.25
C8H12O2N1	153.0790	1.43	4	1.38	0.25
C8H12O2N1	153.0790	1.63	4	1.38	0.25
C8H12O2N1	153.0790	2.07	4	1.38	0.25
C8H12O2N1	153.0790	2.28	4	1.38	0.25
C8H12O2N1	153.0790	2.56	4	1.38	0.25
C8H12O2N1	153.0790	2.82	4	1.38	0.25
C8H12O2N1	153.0790	2.89	4	1.38	0.25
C8H12O2N1	153.0790	3.13	4	1.38	0.25
C8H12O2N1	153.0790	3.30	4	1.38	0.25
C7H12O1N3	153.0902	0.86	4	1.57	0.14
C6H7O3N2	154.0378	0.37	5	1.00	0.50
C10H7N2	154.0531	3.04	9	0.60	0.00
C10H7N2	154.0531	3.39	9	0.60	0.00
C7H11O2N2	154.0742	0.39	4	1.43	0.29
C7H11O2N2	154.0742	0.50	4	1.43	0.29
C7H11O2N2	154.0742	0.84	4	1.43	0.29
C7H11O2N2	154.0742	0.89	4	1.43	0.29
C7H8O2N1	137.0477	0.98	5	1.00	0.29
C7H11O2N2	154.0742	1.03	4	1.43	0.29
C7H11O2N2	154.0742	1.07	4	1.43	0.29
C7H11O2N2	154.0742	1.17	4	1.43	0.29
C7H11O2N2	154.0742	1.28	4	1.43	0.29
C7H11O2N2	154.0742	1.41	4	1.43	0.29
C7H11O2N2	154.0742	1.47	4	1.43	0.29
C7H11O2N2	154.0742	1.55	4	1.43	0.29
C7H11O2N2	154.0742	1.68	4	1.43	0.29
C7H11O2N2	154.0742	1.72	4	1.43	0.29
C7H11O2N2	154.0742	1.81	4	1.43	0.29
C7H11O2N2	154.0742	1.86	4	1.43	0.29
C7H11O2N2	154.0742	1.94	4	1.43	0.29
C7H11O2N2	154.0742	2.06	4	1.43	0.29
C7H11O2N2	154.0742	2.14	4	1.43	0.29
C7H11O2N2	154.0742	2.26	4	1.43	0.29
C7H11O2N2	154.0742	2.36	4	1.43	0.29
C7H11O2N2	154.0742	2.40	4	1.43	0.29
C7H11O2N2	154.0742	3.08	4	1.43	0.29
C7H11O2N2	154.0742	3.25	4	1.43	0.29
C7H11O2N2	154.0742	3.75	4	1.43	0.29
C7H11O2N2	154.0742	3.86	4	1.43	0.29
C7H11O2N2	154.0742	3.89	4	1.43	0.29
C7H11O2N2	154.0742	4.50	4	1.43	0.29
C7H11O2N2	154.0742	4.57	4	1.43	0.29

C5H11N6	154.0967	0.71	4	2.00	0.00
C7H10O3N1	155.0582	0.98	4	1.29	0.43
C7H10O3N1	155.0582	1.42	4	1.29	0.43
C7H10O3N1	155.0582	2.61	4	1.29	0.43
C11H10N1	155.0735	2.14	8	0.82	0.00
C11H10N1	155.0735	2.29	8	0.82	0.00
C11H10N1	155.0735	2.39	8	0.82	0.00
C11H10N1	155.0735	2.52	8	0.82	0.00
C11H10N1	155.0735	2.78	8	0.82	0.00
C11H10N1	155.0735	2.86	8	0.82	0.00
C11H10N1	155.0735	3.03	8	0.82	0.00
C8H14O2N1	155.0946	0.39	3	1.63	0.25
C7H14O1N3	155.1059	0.32	3	1.86	0.14
C7H9O4	156.0423	1.21	4	1.14	0.57
C6H9O3N2	156.0535	0.39	4	1.33	0.50
C13H12O1N1	197.0841	2.62	9	0.85	0.08
C13H10N1	179.0735	2.92	10	0.69	0.00
C10H9N2	156.0687	1.35	8	0.80	0.00
C10H9N2	156.0687	1.56	8	0.80	0.00
C10H9N2	156.0687	1.87	8	0.80	0.00
C10H9N2	156.0687	2.10	8	0.80	0.00
C7H13O2N2	156.0899	0.38	3	1.71	0.29
C7H13O2N2	156.0899	0.64	3	1.71	0.29
C7H13O2N2	156.0899	0.89	3	1.71	0.29
C10H8O1N1	157.0528	1.13	8	0.70	0.10
C9H8N3	157.0640	2.49	8	0.78	0.00
C9H8N3	157.0640	3.09	8	0.78	0.00
C7H12O3N1	157.0739	0.58	3	1.57	0.43
C11H12N1	157.0891	2.54	7	1.00	0.00
C11H12N1	157.0891	2.61	7	1.00	0.00
C11H12N1	157.0891	2.67	7	1.00	0.00
C11H12N1	157.0891	2.79	7	1.00	0.00
C11H12N1	157.0891	2.95	7	1.00	0.00
C11H12N1	157.0891	3.02	7	1.00	0.00
C13H15N2	198.1157	3.06	8	1.08	0.00
C10H7O2	158.0368	2.76	8	0.60	0.20
C10H7O2	158.0368	3.36	8	0.60	0.20
C11H11O1	158.0732	5.62	7	0.91	0.09
C10H11N2	158.0844	1.14	7	1.00	0.00
C10H11N2	158.0844	1.30	7	1.00	0.00
C10H11N2	158.0844	1.47	7	1.00	0.00
C10H11N2	158.0844	1.63	7	1.00	0.00
C10H11N2	158.0844	1.73	7	1.00	0.00
C10H11N2	158.0844	1.97	7	1.00	0.00
C10H11N2	158.0844	2.42	7	1.00	0.00
C10H11N2	158.0844	2.52	7	1.00	0.00
C10H11N2	158.0844	2.71	7	1.00	0.00
C10H11N2	158.0844	2.84	7	1.00	0.00
C10H11N2	158.0844	3.00	7	1.00	0.00
C10H11N2	158.0844	3.08	7	1.00	0.00

C6H10O4N1	159.0532	0.63	3	1.50	0.67
C10H10O1N1	159.0684	1.49	7	0.90	0.10
C10H10O1N1	159.0684	1.66	7	0.90	0.10
C10H10O1N1	159.0684	1.82	7	0.90	0.10
C10H10O1N1	159.0684	1.92	7	0.90	0.10
C10H10O1N1	159.0684	2.06	7	0.90	0.10
C10H10O1N1	159.0684	2.20	7	0.90	0.10
C10H10O1N1	159.0684	2.36	7	0.90	0.10
C10H10O1N1	159.0684	2.46	7	0.90	0.10
C10H10O1N1	159.0684	2.65	7	0.90	0.10
C10H10O1N1	159.0684	2.86	7	0.90	0.10
C10H10O1N1	159.0684	3.65	7	0.90	0.10
C10H10O1N1	159.0684	3.77	7	0.90	0.10
C10H10O1N1	159.0684	2.90	7	0.90	0.10
C9H10N3	159.0796	0.55	7	1.00	0.00
C9H10N3	159.0796	0.67	7	1.00	0.00
C9H10N3	159.0796	0.87	7	1.00	0.00
C9H10N3	159.0796	1.31	7	1.00	0.00
C9H10N3	159.0796	1.52	7	1.00	0.00
C9H10N3	159.0796	1.77	7	1.00	0.00
C7H14O3N1	159.0895	0.39	2	1.86	0.43
C11H14N1	159.1048	2.52	6	1.18	0.00
C11H14N1	159.1048	2.64	6	1.18	0.00
C11H14N1	159,1048	2.70	6	1.18	0.00
C11H14N1	159.1048	2.76	6	1.18	0.00
C11H14N1	159,1048	2.91	6	1.18	0.00
C11H14N1	159.1048	3.00	6	1.18	0.00
C10H9O2	160.0524	3.61	7	0.80	0.20
C10H9O2	160.0524	3.64	7	0.80	0.20
C10H9O2	160.0524	3.81	7	0.80	0.20
C10H9O2	160.0524	3.98	7	0.80	0.20
C10H9O2	160.0524	4.09	7	0.80	0.20
C10H9O2	160.0524	4.53	7	0.80	0.20
C12H10O1N1	183.0684	3.41	9	0.75	0.08
C10H9O2	160.0524	4.35	7	0.80	0.20
C10H9O2	160.0524	4 58	, 7	0.80	0.20
C9H9O1N2	160.0637	0.50	7	0.89	0.11
C9H9O1N2	160.0637	0.59	7	0.89	0.11
C9H9O1N2	160.0637	0.67	7	0.89	0.11
C9H9O1N2	160.0637	0.77	, 7	0.89	0.11
C9H9O1N2	160.0637	0.87	, 7	0.89	0.11
C9H9O1N2	160.0637	0.99	, 7	0.89	0.11
C9H9O1N2	160.0637	1.18	, 7	0.89	0.11
C9H9O1N2	160.0637	1.10	7	0.89	0.11
C9H9O1N2	160.0637	1.21	7	0.89	0.11
C0H0O1N2	160.0637	1.50	7	0.89	0.11
C9H9O1N2	160.0037	1.54	, 7	0.89	0.11
C9H9O1N2	160.0037	1.02	, 7	0.89	0.11
C9H0O1N2	160.0037	1.72	י ד	0.09	0.11
C0H001N2	160.0037	2.04	י ד	0.09	0.11
C7117U1112	100.0037	2.04	/	0.09	0.11

C9H9O1N2	160.0637	2.27	7	0.89	0.11
C9H9O1N2	160.0637	2.56	7	0.89	0.11
C9H9O1N2	160.0637	2.68	7	0.89	0.11
C9H9O1N2	160.0637	2.88	7	0.89	0.11
C9H9O1N2	160.0637	2.93	7	0.89	0.11
C9H9O1N2	160.0637	3.01	7	0.89	0.11
C9H9O1N2	160.0637	3.24	7	0.89	0.11
C6H13O3N2	160.0848	0.33	2	2.00	0.50
C10H13N2	160.1000	0.48	6	1.20	0.00
C10H13N2	160.1000	2.05	6	1.20	0.00
C10H13N2	160.1000	2.60	6	1.20	0.00
C10H13N2	160,1000	2.76	6	1.20	0.00
C10H13N2	160,1000	2.98	6	1.20	0.00
C10H13N2	160 1000	3 17	6	1 20	0.00
C10H13N2	160,1000	3.25	6	1.20	0.00
C10H13N2	160 1000	3 37	6	1.20	0.00
C9H8O2N1	161 0477	1 31	7	0.78	0.00
C9H8O2N1	161.0477	1.51	, 7	0.78	0.22
C9H8O2N1	161.0477	1.55	7	0.78	0.22
C0H8O2N1	161.0477	2.20	7	0.78	0.22
C9H8O2N1	161.0477	2.20	7	0.78	0.22
C0H8O2N1	161.0477	2.51	7	0.78	0.22
C9H8O2N1	161.0477	2.07	7	0.78	0.22
C9H8O2N1	161.0477	2.83	7	0.78	0.22
C9H8O2N1	161.0477	2.92	7	0.78	0.22
C9H6O2N1	161.0477	3.12	7	0.78	0.22
C9H8O2N1	161.0477	3.27	7	0.78	0.22
C9H8O2N1	161.0477	5.51	7	0.78	0.22
C9H8O2N1	161.0477	4.19	7	0.78	0.22
C6H12O4N1	161.0688	0.37	2	1.83	0.67
C6H12O4N1	161.0688	0.68	2	1.83	0.67
CIOHIZOINI	161.0841	0.59	6	1.10	0.10
CI0HI2OINI	161.0841	0.62	6	1.10	0.10
C10H12O1N1	161.0841	0.84	6	1.10	0.10
C10H12O1N1	161.0841	1.11	6	1.10	0.10
C10H12O1N1	161.0841	1.19	6	1.10	0.10
C10H12O1N1	161.0841	1.77	6	1.10	0.10
C10H12O1N1	161.0841	2.23	6	1.10	0.10
C10H12O1N1	161.0841	2.31	6	1.10	0.10
C10H12O1N1	161.0841	2.46	6	1.10	0.10
C10H12O1N1	161.0841	2.57	6	1.10	0.10
C10H12O1N1	161.0841	2.65	6	1.10	0.10
C10H12O1N1	161.0841	2.74	6	1.10	0.10
C10H12O1N1	161.0841	2.82	6	1.10	0.10
C10H12O1N1	161.0841	2.88	6	1.10	0.10
C10H12O1N1	161.0841	2.91	6	1.10	0.10
C10H12O1N1	161.0841	2.96	6	1.10	0.10
C10H12O1N1	161.0841	3.07	6	1.10	0.10
C10H12O1N1	161.0841	3.31	6	1.10	0.10
C10H12O1N1	161.0841	3.47	6	1.10	0.10
C10H12O1N1	161.0841	3.51	6	1.10	0.10

C10H12O1N1	161.0841	3.68	6	1.10	0.10
C10H12O1N1	161.0841	3.93	6	1.10	0.10
C10H12O1N1	161.0841	4.16	6	1.10	0.10
C10H12O1N1	161.0841	4.30	6	1.10	0.10
C10H12O1N1	161.0841	4.34	6	1.10	0.10
C10H12O1N1	161.0841	4.77	6	1.10	0.10
C10H12O1N1	161.0841	5.02	6	1.10	0.10
C10H12O1N1	161.0841	5.07	6	1.10	0.10
C10H12O1N1	161.0841	5.34	6	1.10	0.10
C10H12O1N1	161.0841	5.52	6	1.10	0.10
C9H12N3	161.0953	0.77	6	1.22	0.00
C9H12N3	161.0953	0.95	6	1.22	0.00
C9H12N3	161.0953	1.06	6	1.22	0.00
C9H12N3	161.0953	1.19	6	1.22	0.00
C9H12N3	161.0953	1.31	6	1.22	0.00
C9H12N3	161.0953	1.57	6	1.22	0.00
C9H12N3	161.0953	1.81	6	1.22	0.00
C9H12N3	161.0953	1.90	6	1.22	0.00
C9H12N3	161.0953	2.40	6	1.22	0.00
C9H12N3	161.0953	2.48	6	1.22	0.00
C9H12N3	161.0953	2.56	6	1.22	0.00
C9H12N3	161.0953	2.61	6	1.22	0.00
C9H12N3	161.0953	2.91	6	1.22	0.00
C9H12N3	161.0953	3.13	6	1.22	0.00
C11H16N1	161 1204	2 64	5	1.22	0.00
C11H16N1	161 1204	2.64	5	1.36	0.00
C11H16N1	161 1204	2.07	5	1.30	0.00
C11H16N1	161 1204	2.89	5	1.36	0.00
C11H16N1	161 1204	2.87	5	1.30	0.00
C11H16N1	161.1204	2.94	5	1.30	0.00
C11H16N1	161.1204	3.19	5	1.30	0.00
CITHIONI	161.1204	3.23	5	1.30	0.00
COU7O2	162 0217	5.58	3 7	0.67	0.00
C9117O3	162.0317	0.54	7	0.67	0.33
C9H7O3	162.0317	0.03	7	0.07	0.33
C9H7O3	162.0317	0.04	7	0.07	0.33
C9117O3	162.0317	2.02	7	0.67	0.33
C9H7O3	162.0317	2.78	7	0.07	0.33
C9H7O3	162.0317	2.90	7	0.07	0.33
C9H7O3	102.0317	2.90	ו ד	0.07	0.35
C9H7O2	102.0317	2.71	י ד	0.07	0.35
C9H7O2	102.0317	5.10 2.24	י ד	0.07	0.35
C9H7O3	102.0317	3.34 2.25	/ 7	0.07	0.33
$C9\Pi/U3$	102.0317	3.33	/ 7	0.07	0.55
CONTO2N2	162.0429	2.29	/ 7	0.75	0.25
COLLINOSN-1	102.0429	2.33	2	0.75	0.25
	102.0528	0.38	2	1.07	0.85
C10U1102	102.0041	0.33	2	2.00	0.80
C10H1102	102.0081	2.77	0	1.00	0.20
C10H1102	102.0081	2.91	0	1.00	0.20
C10H1102	162.0681	3.04	6	1.00	0.20

C10H11O2	162.0681	3.12	6	1.00	0.20
C10H11O2	162.0681	3.22	6	1.00	0.20
C10H11O2	162.0681	3.38	6	1.00	0.20
C10H11O2	162.0681	3.51	6	1.00	0.20
C10H11O2	162.0681	3.62	6	1.00	0.20
C10H11O2	162.0681	3.75	6	1.00	0.20
C10H11O2	162.0681	4.06	6	1.00	0.20
C10H11O2	162.0681	4.43	6	1.00	0.20
C10H11O2	162.0681	4.54	6	1.00	0.20
C10H11O2	162.0681	4.64	6	1.00	0.20
C10H11O2	162.0681	4.76	6	1.00	0.20
C9H11O1N2	162.0793	0.88	6	1.11	0.11
C9H11O1N2	162.0793	0.97	6	1.11	0.11
C9H11O1N2	162.0793	1.08	6	1.11	0.11
C9H11O1N2	162.0793	2.37	6	1.11	0.11
C9H11O1N2	162.0793	2.46	6	1.11	0.11
C9H11O1N2	162.0793	2.65	6	1.11	0.11
C9H11O1N2	162.0793	3.37	6	1.11	0.11
C9H11O1N2	162.0793	3.53	6	1.11	0.11
C8H11N4	162.0905	0.76	6	1.25	0.00
C10H15N2	162.1157	0.39	5	1.40	0.00
C10H15N2	162.1157	0.49	5	1.40	0.00
C5H10O5N1	163.0481	0.34	2	1.80	1.00
C9H10O2N1	163.0633	2.55	6	1.00	0.22
C9H10O2N1	163.0633	2.62	6	1.00	0.22
C9H10O2N1	163.0633	2.74	6	1.00	0.22
C9H10O2N1	163.0633	2.89	6	1.00	0.22
C9H10O2N1	163.0633	3.00	6	1.00	0.22
C9H10O2N1	163.0633	3.07	6	1.00	0.22
C9H10O2N1	163.0633	3.31	6	1.00	0.22
C9H10O2N1	163.0633	3.63	6	1.00	0.22
C9H10O2N1	163.0633	3.83	6	1.00	0.22
C8H10O1N3	163.0746	0.45	6	1.13	0.13
C8H10O1N3	163.0746	0.86	6	1.13	0.13
C8H10O1N3	163.0746	1 29	6	1.13	0.13
C8H10O1N3	163.0746	2 49	6	1.13	0.13
C8H10O1N3	163.0746	2.13	6	1.13	0.13
C8H10O1N3	163.0746	2.01	6	1.13	0.13
C8H10O1N3	163.0746	2.03	6	1.13	0.13
C10H14O1N1	163.0997	0.59	5	1.19	0.19
C10H14O1N1	163.0997	0.66	5	1.30	0.10
C10H14O1N1	163.0997	0.00	5	1.30	0.10
C10H14O1N1	163.0997	0.85	5	1.30	0.10
C10H14O1N1	163.0997	1.12	5	1.30	0.10
C10H14O1N1	163.0007	1.12	5	1.30	0.10
	163.0997	1.47 2.27	5	1.30	0.10
	163.0997	2.31	5 5	1.30	0.10
	162 0007	2.33 0 70	5	1.30	0.10
	163.0997	2.12	5 5	1.30	0.10
	162 0007	2.19	5 5	1.30	0.10
CIUNI4UINI	103.0997	2.19	3	1.30	0.10

C10H14O1N1	163.0997	2.88	5	1.30	0.10
C10H14O1N1	163.0997	2.96	5	1.30	0.10
C10H14O1N1	163.0997	3.06	5	1.30	0.10
C10H14O1N1	163.0997	3.09	5	1.30	0.10
C10H14O1N1	163.0997	3.17	5	1.30	0.10
C10H14O1N1	163.0997	3.36	5	1.30	0.10
C10H14O1N1	163.0997	3.44	5	1.30	0.10
C10H14O1N1	163.0997	3.51	5	1.30	0.10
C10H14O1N1	163.0997	3.58	5	1.30	0.10
C10H14O1N1	163.0997	3.64	5	1.30	0.10
C10H14O1N1	163.0997	3.78	5	1.30	0.10
C10H14O1N1	163.0997	3.83	5	1.30	0.10
C10H14O1N1	163.0997	3.94	5	1.30	0.10
C10H14O1N1	163.0997	4.11	5	1.30	0.10
C10H14O1N1	163.0997	4.18	5	1.30	0.10
C10H14O1N1	163.0997	4.24	5	1.30	0.10
C10H14O1N1	163.0997	4.35	5	1.30	0.10
C10H14O1N1	163.0997	4.46	5	1.30	0.10
C9H14N3	163.1109	0.81	5	1.44	0.00
C11H18N1	163.1361	2.90	4	1.55	0.00
C11H18N1	163.1361	3.00	4	1.55	0.00
C11H18N1	163.1361	3.12	4	1.55	0.00
C11H18N1	163.1361	3.31	4	1.55	0.00
C11H18N1	163.1361	3.31	4	1.55	0.00
C11H18N1	163.1361	3.61	4	1.55	0.00
C11H18N1	163.1361	3.22	4	1.55	0.00
C9H9O3	164.0473	2.48	6	0.89	0.33
C9H9O3	164.0473	2.62	6	0.89	0.33
C9H9O3	164.0473	2.70	6	0.89	0.33
C9H9O3	164.0473	2.86	6	0.89	0.33
C9H9O3	164.0473	2.96	6	0.89	0.33
C9H9O3	164.0473	3.02	6	0.89	0.33
C9H9O3	164.0473	3.30	6	0.89	0.33
C9H9O3	164.0473	3.30	6	0.89	0.33
C9H9O3	164.0473	3.31	6	0.89	0.33
C8H9O2N2	164.0586	0.29	6	1.00	0.25
C8H9O2N2	164.0586	0.48	6	1.00	0.25
C8H9O2N2	164.0586	0.61	6	1.00	0.25
C7H9O1N4	164.0698	0.88	6	1.14	0.14
C7H9O1N4	164.0698	1.06	6	1.14	0.14
C7H9O1N4	164.0698	1.34	6	1.14	0.14
C10H13O2	164.0837	3.12	5	1.20	0.20
C10H13O2	164.0837	4.50	5	1.20	0.20
C10H13O2	164.0837	4.74	5	1.20	0.20
C10H13O2	164.0837	5.29	5	1.20	0.20
C10H13O2	164.0837	5.59	5	1.20	0.20
C10H13O2	164.0837	6.04	5	1.20	0.20
C9H13O1N2	164.0950	0.44	5	1.33	0.11
C9H13O1N2	164.0950	0.57	5	1.33	0.11
C9H13O1N2	164.0950	1.07	5	1.33	0.11

C9H13O1N2	164.0950	2.62	5	1.33	0.11
C9H13O1N2	164.0950	2.70	5	1.33	0.11
C9H13O1N2	164.0950	2.79	5	1.33	0.11
C9H13O1N2	164.0950	3.09	5	1.33	0.11
C10H17N2	164.1313	2.49	4	1.60	0.00
C10H17N2	164.1313	2.89	4	1.60	0.00
C10H17N2	164.1313	2.98	4	1.60	0.00
C10H17N2	164.1313	3.12	4	1.60	0.00
C10H17N2	164.1313	3.22	4	1.60	0.00
C10H17N2	164.1313	2.62	4	1.60	0.00
C8H8O3N1	165.0426	3.21	6	0.88	0.38
C9H12O2N1	165.0790	0.38	5	1.22	0.22
C9H12O2N1	165.0790	0.45	5	1.22	0.22
C9H12O2N1	165.0790	0.53	5	1.22	0.22
C9H12O2N1	165.0790	0.56	5	1.22	0.22
C9H12O2N1	165.0790	0.65	5	1.22	0.22
C9H12O2N1	165.0790	1.11	5	1.22	0.22
C9H15O2N2	182.1055	1.42	4	1.56	0.22
C9H12O2N1	165.0790	1.98	5	1.22	0.22
C9H12O2N1	165.0790	2.88	5	1.22	0.22
C9H12O2N1	165.0790	2.97	5	1.22	0.22
C9H12O2N1	165.0790	3.01	5	1.22	0.22
C9H12O2N1	165.0790	3.11	5	1.22	0.22
C8H12O1N3	165.0902	0.39	5	1.38	0.13
C10H16O1N1	165.1154	0.52	4	1.50	0.10
C10H16O1N1	165.1154	0.95	4	1.50	0.10
C10H16O1N1	165.1154	2.66	4	1.50	0.10
C10H16O1N1	165.1154	2.76	4	1.50	0.10
C10H16O1N1	165.1154	2.91	4	1.50	0.10
C10H16O1N1	165.1154	3.03	4	1.50	0.10
C10H16O1N1	165.1154	3.15	4	1.50	0.10
C10H16O1N1	165.1154	3.19	4	1.50	0.10
C10H16O1N1	165.1154	3.36	4	1.50	0.10
C10H16O1N1	165.1154	2.83	4	1.50	0.10
C10H16O1N1	165.1154	5.15	4	1.50	0.10
C8H7O4	166.0266	2.58	6	0.75	0.50
C9H11O3	166.0630	3.12	5	1.11	0.33
C9H11O3	166.0630	3.19	5	1.11	0.33
C8H11O2N2	166.0742	0.48	5	1.25	0.25
C8H11O2N2	166.0742	0.67	5	1.25	0.25
C8H11O2N2	166.0742	0.77	5	1.25	0.25
C8H11O2N2	166.0742	0.98	5	1.25	0.25
C8H11O2N2	166.0742	2 53	5	1.25	0.25
C9H15O1N2	166 1106	0.72	4	1.25	0.11
C9H15O1N2	166 1106	0.96	4	1.56	0.11
C9H15O1N2	166 1106	1.07	4	1.50	0.11
C9H15O1N2	166 1106	1.07	-+ 	1.50	0.11
C9H15O1N2	166 1106	1.17		1.50	0.11
C0H15O1N2	166 1106	2 70	+ 1	1.50	0.11
C0H15O1N2	166 1106	2.70	+ 1	1.50	0.11
C9HIJUIN2	100.1100	∠.04	4	1.30	0.11

C9H1501N2 166.1106 2.96 4 1.56 0.11 C9H1501N2 166.1106 3.13 4 1.56 0.11 C9H1501N2 166.1106 3.08 4 1.56 0.11 C10H19N2 166.1470 2.78 3 1.80 0.00 C10H19N2 166.1470 2.95 3 1.80 0.00 C10H19N2 166.1470 2.95 3 1.80 0.00 C10H19N2 166.1470 2.95 3 1.80 0.00 C10H19N2 166.1470 2.07 5 1.13 0.38 C10H1303N1 167.0582 0.47 5 1.13 0.38 C8H1003N1 167.0582 0.47 5 1.13 0.38 C8H1003N1 167.0582 1.48 5 1.13 0.38 C8H1003N1 167.0582 2.45 5 1.13 0.38 C8H1003N1 167.0582 2.96 5 1.13 0.38 <tr< th=""><th></th><th></th><th></th><th></th><th></th><th></th></tr<>						
CSH1501N2 166.1106 3.13 4 1.56 0.11 CSH1501N2 166.1106 3.31 4 1.56 0.11 C10H19N2 166.1470 2.78 3 1.80 0.00 C10H19N2 166.1470 2.85 3 1.80 0.00 C10H19N2 166.1470 2.95 3 1.80 0.00 C10H19N2 166.1470 3.07 3 1.80 0.00 C10H19N2 166.1470 3.07 6 0.71 0.57 C8H1003N1 167.0582 0.67 5 1.13 0.38 C8H1003N1 167.0582 0.67 5 1.13 0.38 C8H1003N1 167.0582 1.12 5 1.13 0.38 C8H1003N1 167.0582 1.46 5 1.13 0.38 C8H1003N1 167.0582 2.45 5 1.13 0.38 C8H1003N1 167.0582 2.96 5 1.13 0.38	C9H15O1N2	166.1106	2.96	4	1.56	0.11
C9H15O1N2 166.1106 3.31 4 1.56 0.11 C9H15O1N2 166.1106 3.08 4 1.56 0.11 C10H19N2 166.1470 2.78 3 1.80 0.00 C10H19N2 166.1470 2.95 3 1.80 0.00 C10H19N2 166.1470 3.07 3 1.80 0.00 C10H19N2 166.1470 3.07 3 1.80 0.00 C7H604N1 167.0582 0.38 5 1.13 0.38 C8H1003N1 167.0582 0.67 5 1.13 0.38 C8H1003N1 167.0582 1.12 5 1.13 0.38 C8H1003N1 167.0582 1.48 5 1.13 0.38 C8H1003N1 167.0582 1.48 5 1.13 0.38 C8H1003N1 167.0582 2.45 5 1.13 0.38 C8H1003N1 167.0582 2.96 5 1.13 0.38	C9H15O1N2	166.1106	3.13	4	1.56	0.11
C9H15O1N2 166.1106 3.08 4 1.56 0.11 C10H19N2 166.1470 2.78 3 1.80 0.00 C10H19N2 166.1470 2.95 3 1.80 0.00 C10H19N2 166.1470 3.07 3 1.80 0.00 C10H19N2 166.1470 3.07 3 1.80 0.00 C1H04N1 167.0219 0.37 6 0.71 0.57 C8H1003N1 167.0582 0.67 5 1.13 0.38 C8H1003N1 167.0582 0.94 5 1.13 0.38 C8H1003N1 167.0582 1.48 5 1.13 0.38 C8H1003N1 167.0582 1.60 5 1.13 0.38 C8H1003N1 167.0582 2.45 5 1.13 0.38 C8H1003N1 167.0582 2.80 5 1.13 0.38 C8H1003N1 167.0582 2.96 5 1.13 0.38 C	C9H15O1N2	166.1106	3.31	4	1.56	0.11
C10H19N2 166.1470 2.78 3 1.80 0.00 C10H19N2 166.1470 2.85 3 1.80 0.00 C10H19N2 166.1470 2.95 3 1.80 0.00 C10H19N2 166.1470 3.07 3 1.80 0.00 C10H19N2 166.1470 3.07 3 1.80 0.00 CH103N1 167.0582 0.38 5 1.13 0.38 CSH1003N1 167.0582 0.67 5 1.13 0.38 CSH1003N1 167.0582 0.47 5 1.13 0.38 CSH1003N1 167.0582 1.36 5 1.13 0.38 CSH1003N1 167.0582 1.60 5 1.13 0.38 CSH1003N1 167.0582 2.45 5 1.13 0.38 CSH1003N1 167.0582 2.80 5 1.13 0.38 CSH1003N1 167.0582 2.96 5 1.13 0.38	C9H15O1N2	166.1106	3.08	4	1.56	0.11
C10H19N2 166.1470 2.85 3 1.80 0.00 C10H19N2 166.1470 2.95 3 1.80 0.00 C10H19N2 166.1470 3.07 3 1.80 0.00 C7H604N1 167.0219 0.37 6 0.71 0.57 C8H1003N1 167.0582 0.88 5 1.13 0.38 C10H1303N2 208.0848 0.51 6 1.20 0.30 C8H1003N1 167.0582 0.67 5 1.13 0.38 C8H1003N1 167.0582 1.36 5 1.13 0.38 C8H1003N1 167.0582 1.48 5 1.13 0.38 C8H1003N1 167.0582 2.45 5 1.13 0.38 C8H1003N1 167.0582 2.45 5 1.13 0.38 C8H1003N1 167.0582 2.96 5 1.13 0.38 C8H1003N1 167.0582 2.96 5 1.13 0.38 <t< td=""><td>C10H19N2</td><td>166.1470</td><td>2.78</td><td>3</td><td>1.80</td><td>0.00</td></t<>	C10H19N2	166.1470	2.78	3	1.80	0.00
C10H19N2 166.1470 2.95 3 1.80 0.00 C10H19N2 166.1470 3.07 3 1.80 0.00 C7H604N1 167.0219 0.37 6 0.71 0.57 C8H1003N1 167.0582 0.38 5 1.13 0.38 C10H1303N2 208.0848 0.51 6 1.20 0.30 C8H1003N1 167.0582 0.67 5 1.13 0.38 C8H1003N1 167.0582 0.77 5 1.13 0.38 C8H1003N1 167.0582 1.12 5 1.13 0.38 C8H1003N1 167.0582 1.48 5 1.13 0.38 C8H1003N1 167.0582 2.45 5 1.13 0.38 C8H1003N1 167.0582 2.96 5 1.13 0.38 C8H1003N1 167.0582 2.96 5 1.13 0.38 C8H1003N1 167.0582 2.96 5 1.13 0.38 <	C10H19N2	166.1470	2.85	3	1.80	0.00
C10H19N2 166.1470 3.07 3 1.80 0.00 CTH604N1 167.0219 0.37 6 0.71 0.57 C8H1003N1 167.0582 0.38 5 1.13 0.38 C10H1303N2 208.0848 0.51 6 1.20 0.30 C8H1003N1 167.0582 0.67 5 1.13 0.38 C8H1003N1 167.0582 0.94 5 1.13 0.38 C8H1003N1 167.0582 1.48 5 1.13 0.38 C8H1003N1 167.0582 1.48 5 1.13 0.38 C8H1003N1 167.0582 2.45 5 1.13 0.38 C8H1003N1 167.0582 2.80 5 1.13 0.38 C8H1003N1 167.0582 2.96 5 1.13 0.38 C8H1003N1 167.0582 2.96 5 1.13 0.38 C8H1003N1 167.0582 2.96 5 1.03 0.38	C10H19N2	166.1470	2.95	3	1.80	0.00
C7H604N1 167.0219 0.37 6 0.71 0.57 CSH1003N1 167.0582 0.38 5 1.13 0.38 CI0H1303N2 208.0848 0.51 6 1.20 0.30 CSH1003N1 167.0582 0.67 5 1.13 0.38 CSH1003N1 167.0582 0.94 5 1.13 0.38 CSH1003N1 167.0582 1.12 5 1.13 0.38 CSH1003N1 167.0582 1.60 5 1.13 0.38 CSH1003N1 167.0582 1.60 5 1.13 0.38 CSH1003N1 167.0582 2.55 5 1.13 0.38 CSH1003N1 167.0582 2.96 5 1.13 0.38 CSH1003N1 167.0582 2.96 5 1.13 0.38 CSH1003N1 167.0582 2.96 5 1.13 0.38 C12H10N1 167.0735 2.96 9 0.75 0.00	C10H19N2	166.1470	3.07	3	1.80	0.00
CSH1003N1 167.0582 0.38 5 1.13 0.38 C10H1303N2 208.0848 0.51 6 1.20 0.30 CSH1003N1 167.0582 0.67 5 1.13 0.38 CSH1003N1 167.0582 0.77 5 1.13 0.38 CSH1003N1 167.0582 1.12 5 1.13 0.38 CSH1003N1 167.0582 1.48 5 1.13 0.38 CSH1003N1 167.0582 1.48 5 1.13 0.38 CSH1003N1 167.0582 2.45 5 1.13 0.38 CSH1003N1 167.0582 2.80 5 1.13 0.38 CSH1003N1 167.0582 2.96 5 1.13 0.38 CSH1003N1 167.0755 2.79 9 0.75 0.00 C12H10N1 167.0735 2.79 9 0.75 0.00 C12H10N1 167.0946 2.44 1.44 0.22 C9H1402N1	C7H6O4N1	167.0219	0.37	6	0.71	0.57
C10H13O3N2 208.0848 0.51 6 1.20 0.30 CSH10O3N1 167.0582 0.67 5 1.13 0.38 CSH10O3N1 167.0582 0.77 5 1.13 0.38 CSH10O3N1 167.0582 0.94 5 1.13 0.38 CSH10O3N1 167.0582 1.36 5 1.13 0.38 CSH10O3N1 167.0582 1.48 5 1.13 0.38 CSH10O3N1 167.0582 2.45 5 1.13 0.38 CSH10O3N1 167.0582 2.45 5 1.13 0.38 CSH10O3N1 167.0582 2.80 5 1.13 0.38 CSH10O3N1 167.0582 3.07 5 1.00 0.00	C8H10O3N1	167.0582	0.38	5	1.13	0.38
C8H1003N1 167.0582 0.67 5 1.13 0.38 C8H1003N1 167.0582 0.77 5 1.13 0.38 C8H1003N1 167.0582 1.12 5 1.13 0.38 C8H1003N1 167.0582 1.12 5 1.13 0.38 C8H1003N1 167.0582 1.48 5 1.13 0.38 C8H1003N1 167.0582 2.45 5 1.13 0.38 C8H1003N1 167.0582 2.45 5 1.13 0.38 C8H1003N1 167.0582 2.96 5 1.13 0.38 C8H1003N1 167.0582 3.07 5 1.13 0.38 C8H1003N1 167.0735 2.79 9 0.75 0.00 C12H10N1 167.0735 2.96 9 0.75 0.00 C12H10N1 167.0735 2.96 9 0.75 0.00 C9H1402N1 167.0946 2.53 4 1.44 0.22 <	C10H13O3N2	208.0848	0.51	6	1.20	0.30
CSH1003N1 167.0582 0.77 5 1.13 0.38 CSH1003N1 167.0582 0.94 5 1.13 0.38 CSH1003N1 167.0582 1.12 5 1.13 0.38 CSH1003N1 167.0582 1.36 5 1.13 0.38 CSH1003N1 167.0582 1.48 5 1.13 0.38 CSH1003N1 167.0582 2.45 5 1.13 0.38 CSH1003N1 167.0582 2.80 5 1.13 0.38 CSH1003N1 167.0582 2.96 5 1.13 0.38 CSH1003N1 167.0582 2.96 5 1.13 0.38 CSH1003N1 167.0735 2.79 9 0.75 0.00 C12H10N1 167.0735 3.33 9 0.75 0.00 C12H10N1 167.0746 2.45 4 1.44 0.22 C9H1402N1 167.0946 2.71 4 1.44 0.22 <	C8H10O3N1	167.0582	0.67	5	1.13	0.38
C8H1003N1 167.0582 0.94 5 1.13 0.38 C8H1003N1 167.0582 1.12 5 1.13 0.38 C8H1003N1 167.0582 1.48 5 1.13 0.38 C8H1003N1 167.0582 1.60 5 1.13 0.38 C8H1003N1 167.0582 2.45 5 1.13 0.38 C8H1003N1 167.0582 2.80 5 1.13 0.38 C8H1003N1 167.0582 2.96 5 1.13 0.38 C8H1003N1 167.0582 3.07 5 1.13 0.38 C8H1003N1 167.0735 2.79 9 0.75 0.00 C12H10N1 167.0735 2.96 9 0.75 0.00 C12H10N1 167.0735 2.96 9 0.75 0.00 C9H1402N1 167.0946 2.53 4 1.44 0.22 C9H1402N1 167.0946 2.64 4 1.44 0.22 <	C8H10O3N1	167.0582	0.77	5	1.13	0.38
C8H1003N1 167.0582 1.12 5 1.13 0.38 C8H1003N1 167.0582 1.36 5 1.13 0.38 C8H1003N1 167.0582 1.48 5 1.13 0.38 C8H1003N1 167.0582 2.45 5 1.13 0.38 C8H1003N1 167.0582 2.45 5 1.13 0.38 C8H1003N1 167.0582 2.80 5 1.13 0.38 C8H1003N1 167.0582 2.96 5 1.13 0.38 C8H1003N1 167.0582 2.96 9 0.75 0.00 C12H10N1 167.0735 2.79 9 0.75 0.00 C12H10N1 167.0735 3.33 9 0.75 0.00 C12H10N1 167.0946 2.44 4 1.44 0.22 C9H1402N1 167.0946 2.71 4 1.44 0.22 C9H1402N1 167.059 0.44 4 1.63 0.13 <tr< td=""><td>C8H10O3N1</td><td>167.0582</td><td>0.94</td><td>5</td><td>1.13</td><td>0.38</td></tr<>	C8H10O3N1	167.0582	0.94	5	1.13	0.38
C8H1003N1 167.0582 1.36 5 1.13 0.38 C8H1003N1 167.0582 1.48 5 1.13 0.38 C8H1003N1 167.0582 1.60 5 1.13 0.38 C8H1003N1 167.0582 2.45 5 1.13 0.38 C8H1003N1 167.0582 2.55 5 1.13 0.38 C8H1003N1 167.0582 2.96 5 1.13 0.38 C8H1003N1 167.0582 3.07 5 1.13 0.38 C8H1003N1 167.0582 3.07 5 1.13 0.38 C12H10N1 167.0735 2.79 9 0.75 0.00 C12H10N1 167.0735 3.33 9 0.75 0.00 C12H10N1 167.0946 2.45 4 1.44 0.22 C9H1402N1 167.0946 2.71 4 1.44 0.22 C9H1402N1 167.0946 2.71 4 1.63 0.13 <t< td=""><td>C8H10O3N1</td><td>167.0582</td><td>1.12</td><td>5</td><td>1.13</td><td>0.38</td></t<>	C8H10O3N1	167.0582	1.12	5	1.13	0.38
C8H1003N1 167.0582 1.48 5 1.13 0.38 C8H1003N1 167.0582 1.60 5 1.13 0.38 C8H1003N1 167.0582 2.45 5 1.13 0.38 C8H1003N1 167.0582 2.80 5 1.13 0.38 C8H1003N1 167.0582 2.80 5 1.13 0.38 C8H1003N1 167.0582 2.96 5 1.13 0.38 C8H1003N1 167.0582 3.07 5 1.13 0.38 C12H10N1 167.0735 2.96 9 0.75 0.00 C12H10N1 167.0735 2.96 9 0.75 0.00 C12H10N1 167.0746 2.45 4 1.44 0.22 C9H1402N1 167.0946 2.53 4 1.44 0.22 C9H1402N1 167.0946 2.71 4 1.44 0.22 C9H1402N1 167.059 0.59 4 1.63 0.13 <tr< td=""><td>C8H10O3N1</td><td>167.0582</td><td>1.36</td><td>5</td><td>1.13</td><td>0.38</td></tr<>	C8H10O3N1	167.0582	1.36	5	1.13	0.38
C8H1003N1 167.0582 1.60 5 1.13 0.38 C8H1003N1 167.0582 2.45 5 1.13 0.38 C8H1003N1 167.0582 2.80 5 1.13 0.38 C8H1003N1 167.0582 2.80 5 1.13 0.38 C8H1003N1 167.0582 2.96 5 1.13 0.38 C8H1003N1 167.0582 3.07 5 1.13 0.38 C12H10N1 167.0735 2.79 9 0.75 0.00 C12H10N1 167.0735 3.33 9 0.75 0.00 C12H10N1 167.0946 2.45 4 1.44 0.22 C9H1402N1 167.0946 2.64 4 1.44 0.22 C9H1402N1 167.0946 2.71 4 1.44 0.22 C9H1402N1 167.0946 2.64 4 1.44 0.22 C9H1402N1 167.0946 2.64 1.63 0.13 C11H	C8H10O3N1	167.0582	1.48	5	1.13	0.38
C8H1003N1 167.0582 2.45 5 1.13 0.38 C8H1003N1 167.0582 2.55 5 1.13 0.38 C8H1003N1 167.0582 2.80 5 1.13 0.38 C8H1003N1 167.0582 2.96 5 1.13 0.38 C8H1003N1 167.0582 3.07 5 1.13 0.38 C12H10N1 167.0735 2.79 9 0.75 0.00 C12H10N1 167.0735 2.96 9 0.75 0.00 C12H10N1 167.0735 3.33 9 0.75 0.00 C12H10N1 167.0746 2.45 4 1.44 0.22 C9H1402N1 167.0946 2.64 4 1.44 0.22 C9H1402N1 167.059 0.59 4 1.63 0.13 C1H502 168.0211 3.86 10 0.36 0.18 C1H502 168.0213 2.65 1.00 0.50 C8H904	C8H10O3N1	167.0582	1.60	5	1.13	0.38
C8H1003N1 167.0582 2.55 5 1.13 0.38 C8H1003N1 167.0582 2.80 5 1.13 0.38 C8H1003N1 167.0582 2.96 5 1.13 0.38 C8H1003N1 167.0582 3.07 5 1.13 0.38 C12H10N1 167.0735 2.79 9 0.75 0.00 C12H10N1 167.0735 3.33 9 0.75 0.00 C12H10N1 167.0735 3.33 9 0.75 0.00 C12H10N1 167.0946 2.45 4 1.44 0.22 C9H1402N1 167.0946 2.64 4 1.44 0.22 C9H1402N1 167.0946 2.71 4 1.44 0.22 C9H1402N1 167.059 0.59 4 1.63 0.13 C1H502 168.0211 3.86 10 0.36 0.18 C1H502 168.0270 2.65 1 2.00 1.75	C8H10O3N1	167.0582	2.45	5	1.13	0.38
C8H1003N1 167.0582 2.80 5 1.13 0.38 C8H1003N1 167.0582 2.96 5 1.13 0.38 C8H1003N1 167.0582 3.07 5 1.13 0.38 C12H10N1 167.0735 2.79 9 0.75 0.00 C12H10N1 167.0735 2.96 9 0.75 0.00 C12H10N1 167.0735 3.33 9 0.75 0.00 C9H1402N1 167.0946 2.45 4 1.44 0.22 C9H1402N1 167.0946 2.64 4 1.44 0.22 C9H1402N1 167.0946 2.71 4 1.44 0.22 C9H1402N1 167.059 0.44 4 1.63 0.13 C1H502 168.0211 3.86 10 0.36 0.18 C1H502 168.0270 2.65 1 2.00 1.75 C8H904 168.0423 2.66 5 1.00 0.50	C8H10O3N1	167.0582	2.55	5	1.13	0.38
C8H1003N1 167.0582 2.96 5 1.13 0.38 C8H1003N1 167.0582 3.07 5 1.13 0.38 C12H10N1 167.0735 2.79 9 0.75 0.00 C12H10N1 167.0735 2.96 9 0.75 0.00 C12H10N1 167.0735 3.33 9 0.75 0.00 C9H1402N1 167.0946 2.45 4 1.44 0.22 C9H1402N1 167.0946 2.64 4 1.44 0.22 C9H1402N1 167.0946 2.71 4 1.44 0.22 C9H1402N1 167.0946 2.71 4 1.63 0.13 C8H1401N3 167.1059 0.59 4 1.63 0.13 C1H502 168.0211 3.86 10 0.36 0.18 C5H503N4 168.023 2.65 1 2.00 1.75 C8H904 168.0423 2.66 5 1.00 0.50	C8H10O3N1	167.0582	2.80	5	1.13	0.38
C8H1003N1 167.0582 3.07 5 1.13 0.38 C12H10N1 167.0735 2.79 9 0.75 0.00 C12H10N1 167.0735 2.96 9 0.75 0.00 C12H10N1 167.0735 3.33 9 0.75 0.00 C9H1402N1 167.0946 2.45 4 1.44 0.22 C9H1402N1 167.0946 2.64 4 1.44 0.22 C9H1402N1 167.0946 2.71 4 1.44 0.22 C9H1402N1 167.059 0.44 4 1.63 0.13 C8H1401N3 167.1059 0.59 4 1.63 0.13 C11H5O2 168.0211 3.86 10 0.36 0.18 C5H5O3N4 168.0283 0.38 6 0.80 0.60 C4H9O7 168.0270 2.65 1 2.00 1.75 C8H9O4 168.0423 2.60 5 1.00 0.50	C8H10O3N1	167.0582	2.96	5	1.13	0.38
C12H10N1 167.0735 2.79 9 0.75 0.00 C12H10N1 167.0735 2.96 9 0.75 0.00 C12H10N1 167.0735 3.33 9 0.75 0.00 C9H1402N1 167.0946 2.45 4 1.44 0.22 C9H1402N1 167.0946 2.64 4 1.44 0.22 C9H1402N1 167.0946 2.71 4 1.44 0.22 C9H1402N1 167.0946 2.71 4 1.44 0.22 C9H1402N1 167.059 0.44 4 1.63 0.13 C8H1401N3 167.1059 0.59 4 1.63 0.13 C11H5O2 168.0211 3.86 10 0.36 0.18 C5H5O3N4 168.0283 0.38 6 0.80 0.60 C4H9O7 168.0270 2.65 1 2.00 1.75 C8H904 168.0423 2.60 5 1.00 0.50	C8H10O3N1	167.0582	3.07	5	1.13	0.38
C12H10N1167.07352.9690.750.00C12H10N1167.07353.3390.750.00C9H1402N1167.09462.4541.440.22C9H1402N1167.09462.5341.440.22C9H1402N1167.09462.6441.440.22C9H1402N1167.09462.7141.440.22C9H1402N1167.09462.7141.440.22C9H1401N3167.10590.4441.630.13C8H1401N3167.10590.5941.630.13C1H5O2168.02113.86100.360.18C5H5O3N4168.02830.3860.800.60C4H9O7168.02702.6512.001.75C8H9O4168.04232.3651.000.50C8H9O4168.04232.6051.000.50C8H9O4168.04232.6851.000.50C8H9O4168.04233.0651.000.50C1H1201N1185.08413.9280.920.08C11H9N2168.06872.5590.730.00C11H9N2168.06872.5590.730.00C11H9N2168.06872.7890.730.00C11H9N2168.06872.7890.730.00C11H9N2168.06872.9390.730.00C11H9N2 <t< td=""><td>C12H10N1</td><td>167.0735</td><td>2.79</td><td>9</td><td>0.75</td><td>0.00</td></t<>	C12H10N1	167.0735	2.79	9	0.75	0.00
C12H10N1167.07353.3390.750.00C9H1402N1167.09462.4541.440.22C9H1402N1167.09462.5341.440.22C9H1402N1167.09462.6441.440.22C9H1402N1167.09462.7141.440.22C9H1402N1167.09462.7141.440.22C8H1401N3167.10590.4441.630.13C8H1401N3167.10590.5941.630.13C11H502168.02113.86100.360.18C5H503N4168.02830.3860.800.60C4H907168.02702.6512.001.75C8H904168.04232.3651.000.50C8H904168.04232.6051.000.50C8H904168.04232.6851.000.50C8H904168.04232.6851.000.50C8H904168.04233.0651.000.50C12H1201N1185.08413.9280.920.08C11H9N2168.06872.5590.730.00C11H9N2168.06872.5590.730.00C11H9N2168.06872.7890.730.00C11H9N2168.06872.7890.730.00C11H9N2168.06872.9390.730.00C11H9N2 <t< td=""><td>C12H10N1</td><td>167.0735</td><td>2.96</td><td>9</td><td>0.75</td><td>0.00</td></t<>	C12H10N1	167.0735	2.96	9	0.75	0.00
C9H1402N1167.09462.4541.440.22C9H1402N1167.09462.5341.440.22C9H1402N1167.09462.6441.440.22C9H1402N1167.09462.7141.440.22C8H1401N3167.10590.4441.630.13C8H1401N3167.10590.5941.630.13C11H502168.02113.86100.360.18C5H503N4168.02830.3860.800.60C4H907168.02702.6512.001.75C8H904168.04232.3651.000.50C8H904168.04232.6051.000.50C8H904168.04232.6851.000.50C8H904168.04233.0651.000.50C8H904168.04233.0651.000.50C11H9N2168.06872.1490.730.00C11H9N2168.06872.5590.730.00C11H9N2168.06872.7090.730.00C11H9N2168.06872.7890.730.00C11H9N2168.06872.7890.730.00C11H9N2168.06872.9390.730.00C11H9N2168.06872.9390.730.00C11H9N2168.06873.0490.730.00C11H9N2168.	C12H10N1	167.0735	3.33	9	0.75	0.00
C9H1402N1167.09462.5341.440.22C9H1402N1167.09462.6441.440.22C9H1402N1167.09462.7141.440.22C8H1401N3167.10590.4441.630.13C8H1401N3167.10590.5941.630.13C11H502168.02113.86100.360.18C5H503N4168.02830.3860.800.60C4H907168.02702.6512.001.75C8H904168.04232.3651.000.50C8H904168.04232.6051.000.50C8H904168.04232.6851.000.50C8H904168.04232.6851.000.50C8H904168.04233.0651.000.50C8H904168.04233.0651.000.50C8H904168.04233.0651.000.50C11H9N2168.06872.1490.730.00C11H9N2168.06872.5590.730.00C11H9N2168.06872.7090.730.00C11H9N2168.06872.7890.730.00C11H9N2168.06872.9390.730.00C11H9N2168.06872.9390.730.00C11H9N2168.06873.0490.730.00C11H9N2168.0687	C9H14O2N1	167.0946	2.45	4	1.44	0.22
C9H1402N1167.09462.6441.440.22C9H1402N1167.09462.7141.440.22C8H1401N3167.10590.4441.630.13C8H1401N3167.10590.5941.630.13C11H502168.02113.86100.360.18C5H503N4168.02830.3860.800.60C4H907168.02702.6512.001.75C8H904168.04232.3651.000.50C8H904168.04232.6051.000.50C8H904168.04232.6851.000.50C8H904168.04232.6851.000.50C8H904168.04232.6851.000.50C8H904168.04233.0651.000.50C8H904168.04233.0651.000.50C1H19N2168.06872.1490.730.00C11H9N2168.06872.5590.730.00C11H9N2168.06872.5990.730.00C11H9N2168.06872.7890.730.00C11H9N2168.06872.9390.730.00C11H9N2168.06872.9390.730.00C11H9N2168.06873.0490.730.00C11H9N2168.06873.0490.730.00C11H9N2168.0687 </td <td>C9H14O2N1</td> <td>167.0946</td> <td>2.53</td> <td>4</td> <td>1.44</td> <td>0.22</td>	C9H14O2N1	167.0946	2.53	4	1.44	0.22
C9H1402N1167.09462.7141.440.22C8H1401N3167.10590.4441.630.13C8H1401N3167.10590.5941.630.13C11H502168.02113.86100.360.18C5H503N4168.02830.3860.800.60C4H907168.02702.6512.001.75C8H904168.04232.3651.000.50C8H904168.04232.4551.000.50C8H904168.04232.6051.000.50C8H904168.04232.6851.000.50C8H904168.04233.0651.000.50C8H904168.04233.0651.000.50C12H1201N1185.08413.9280.920.08C11H9N2168.06872.1490.730.00C11H9N2168.06872.5590.730.00C11H9N2168.06872.7090.730.00C11H9N2168.06872.7890.730.00C11H9N2168.06872.7890.730.00C11H9N2168.06872.9390.730.00C11H9N2168.06872.9390.730.00C11H9N2168.06873.0490.730.00C11H9N2168.06873.0490.730.00C11H9N2168.0687	C9H14O2N1	167.0946	2.64	4	1.44	0.22
C8H1401N3167.10590.4441.630.13C8H1401N3167.10590.5941.630.13C11H502168.02113.86100.360.18C5H503N4168.02830.3860.800.60C4H907168.02702.6512.001.75C8H904168.04232.3651.000.50C8H904168.04232.4551.000.50C8H904168.04232.6051.000.50C8H904168.04232.6851.000.50C8H904168.04233.0651.000.50C8H904168.04233.0651.000.50C11H9N2168.06872.1490.730.00C11H9N2168.06872.5590.730.00C11H9N2168.06872.5990.730.00C11H9N2168.06872.7090.730.00C11H9N2168.06872.7890.730.00C11H9N2168.06872.9390.730.00C11H9N2168.06873.0490.730.00C11H9N2168.06873.0490.730.00C11H9N2168.06873.1490.730.00	C9H14O2N1	167.0946	2.71	4	1.44	0.22
C8H1401N3167.10590.5941.630.13C11H5O2168.02113.86100.360.18C5H5O3N4168.02830.3860.800.60C4H9O7168.02702.6512.001.75C8H9O4168.04232.3651.000.50C8H9O4168.04232.4551.000.50C8H9O4168.04232.6051.000.50C8H9O4168.04232.6851.000.50C8H9O4168.04232.6851.000.50C8H9O4168.04233.0651.000.50C12H12O1N1185.08413.9280.920.08C11H9N2168.06872.1490.730.00C11H9N2168.06872.5590.730.00C11H9N2168.06872.7090.730.00C11H9N2168.06872.7890.730.00C11H9N2168.06872.9390.730.00C11H9N2168.06873.0490.730.00C11H9N2168.06873.0490.730.00C11H9N2168.06873.1490.730.00	C8H14O1N3	167.1059	0.44	4	1.63	0.13
C11H502168.02113.86100.360.18C5H503N4168.02830.3860.800.60C4H907168.02702.6512.001.75C8H904168.04232.3651.000.50C8H904168.04232.4551.000.50C8H904168.04232.6051.000.50C8H904168.04232.6851.000.50C8H904168.04232.6851.000.50C8H904168.04233.0651.000.50C8H904168.04233.0651.000.50C12H1201N1185.08413.9280.920.08C11H9N2168.06872.1490.730.00C11H9N2168.06872.5590.730.00C11H9N2168.06872.5990.730.00C11H9N2168.06872.7090.730.00C11H9N2168.06872.9390.730.00C11H9N2168.06872.9390.730.00C11H9N2168.06873.0490.730.00C11H9N2168.06873.0490.730.00C11H9N2168.06873.1490.730.00	C8H14O1N3	167.1059	0.59	4	1.63	0.13
C5H5O3N4168.02830.3860.800.60C4H9O7168.02702.6512.001.75C8H9O4168.04232.3651.000.50C8H9O4168.04232.4551.000.50C8H9O4168.04232.6051.000.50C8H9O4168.04232.6851.000.50C8H9O4168.04232.6851.000.50C8H9O4168.04233.0651.000.50C8H9O4168.04233.0651.000.50C12H12O1N1185.08413.9280.920.08C11H9N2168.06872.1490.730.00C11H9N2168.06872.5590.730.00C11H9N2168.06872.5990.730.00C11H9N2168.06872.7090.730.00C11H9N2168.06872.7890.730.00C11H9N2168.06872.9390.730.00C11H9N2168.06873.0490.730.00C11H9N2168.06873.0490.730.00C11H9N2168.06873.1490.730.00	C11H5O2	168.0211	3.86	10	0.36	0.18
C4H907168.02702.6512.001.75C8H904168.04232.3651.000.50C8H904168.04232.4551.000.50C8H904168.04232.6051.000.50C8H904168.04232.6851.000.50C8H904168.04233.0651.000.50C8H904168.04233.0651.000.50C12H1201N1185.08413.9280.920.08C11H9N2168.06872.1490.730.00C11H9N2168.06872.5590.730.00C11H9N2168.06872.5990.730.00C11H9N2168.06872.7090.730.00C11H9N2168.06872.7890.730.00C11H9N2168.06873.0490.730.00C11H9N2168.06873.0490.730.00C11H9N2168.06873.1490.730.00	C5H5O3N4	168.0283	0.38	6	0.80	0.60
C8H9O4168.04232.3651.000.50C8H9O4168.04232.4551.000.50C8H9O4168.04232.6051.000.50C8H9O4168.04232.6851.000.50C8H9O4168.04233.0651.000.50C8H9O4168.04233.0651.000.50C12H12O1N1185.08413.9280.920.08C11H9N2168.06872.1490.730.00C11H9N2168.06872.5590.730.00C11H9N2168.06872.5990.730.00C11H9N2168.06872.7090.730.00C11H9N2168.06872.7890.730.00C11H9N2168.06872.9390.730.00C11H9N2168.06873.0490.730.00C11H9N2168.06873.1490.730.00	C4H9O7	168.0270	2.65	1	2.00	1.75
C8H9O4168.04232.4551.000.50C8H9O4168.04232.6051.000.50C8H9O4168.04232.6851.000.50C8H9O4168.04233.0651.000.50C12H12O1N1185.08413.9280.920.08C11H9N2168.06872.1490.730.00C11H9N2168.06872.5590.730.00C11H9N2168.06872.5590.730.00C11H9N2168.06872.7090.730.00C11H9N2168.06872.7890.730.00C11H9N2168.06872.9390.730.00C11H9N2168.06873.0490.730.00C11H9N2168.06873.1490.730.00	C8H9O4	168.0423	2.36	5	1.00	0.50
C8H9O4168.04232.6051.000.50C8H9O4168.04232.6851.000.50C8H9O4168.04233.0651.000.50C12H12O1N1185.08413.9280.920.08C11H9N2168.06872.1490.730.00C11H9N2168.06872.4190.730.00C11H9N2168.06872.5590.730.00C11H9N2168.06872.5990.730.00C11H9N2168.06872.7090.730.00C11H9N2168.06872.7890.730.00C11H9N2168.06872.9390.730.00C11H9N2168.06873.0490.730.00C11H9N2168.06873.1490.730.00	C8H9O4	168.0423	2.45	5	1.00	0.50
C8H9O4168.04232.6851.000.50C8H9O4168.04233.0651.000.50C12H12O1N1185.08413.9280.920.08C11H9N2168.06872.1490.730.00C11H9N2168.06872.4190.730.00C11H9N2168.06872.5590.730.00C11H9N2168.06872.5990.730.00C11H9N2168.06872.7090.730.00C11H9N2168.06872.7890.730.00C11H9N2168.06872.9390.730.00C11H9N2168.06873.0490.730.00C11H9N2168.06873.1490.730.00	C8H9O4	168.0423	2.60	5	1.00	0.50
C8H9O4168.04233.0651.000.50C12H12O1N1185.08413.9280.920.08C11H9N2168.06872.1490.730.00C11H9N2168.06872.4190.730.00C11H9N2168.06872.5590.730.00C11H9N2168.06872.5990.730.00C11H9N2168.06872.7090.730.00C11H9N2168.06872.7890.730.00C11H9N2168.06872.9390.730.00C11H9N2168.06873.0490.730.00C11H9N2168.06873.1490.730.00	C8H9O4	168.0423	2.68	5	1.00	0.50
C12H12O1N1185.08413.9280.920.08C11H9N2168.06872.1490.730.00C11H9N2168.06872.4190.730.00C11H9N2168.06872.5590.730.00C11H9N2168.06872.5990.730.00C11H9N2168.06872.7090.730.00C11H9N2168.06872.7890.730.00C11H9N2168.06872.9390.730.00C11H9N2168.06873.0490.730.00C11H9N2168.06873.1490.730.00	C8H9O4	168.0423	3.06	5	1.00	0.50
C11H9N2168.06872.1490.730.00C11H9N2168.06872.4190.730.00C11H9N2168.06872.5590.730.00C11H9N2168.06872.5990.730.00C11H9N2168.06872.7090.730.00C11H9N2168.06872.7890.730.00C11H9N2168.06872.9390.730.00C11H9N2168.06873.0490.730.00C11H9N2168.06873.1490.730.00	C12H12O1N1	185.0841	3.92	8	0.92	0.08
C11H9N2168.06872.4190.730.00C11H9N2168.06872.5590.730.00C11H9N2168.06872.5990.730.00C11H9N2168.06872.7090.730.00C11H9N2168.06872.7890.730.00C11H9N2168.06872.9390.730.00C11H9N2168.06873.0490.730.00C11H9N2168.06873.1490.730.00	C11H9N2	168.0687	2.14	9	0.73	0.00
C11H9N2168.06872.5590.730.00C11H9N2168.06872.5990.730.00C11H9N2168.06872.7090.730.00C11H9N2168.06872.7890.730.00C11H9N2168.06872.9390.730.00C11H9N2168.06873.0490.730.00C11H9N2168.06873.1490.730.00	C11H9N2	168.0687	2.41	9	0.73	0.00
C11H9N2168.06872.5990.730.00C11H9N2168.06872.7090.730.00C11H9N2168.06872.7890.730.00C11H9N2168.06872.9390.730.00C11H9N2168.06873.0490.730.00C11H9N2168.06873.1490.730.00	C11H9N2	168.0687	2.55	9	0.73	0.00
C11H9N2168.06872.7090.730.00C11H9N2168.06872.7890.730.00C11H9N2168.06872.9390.730.00C11H9N2168.06873.0490.730.00C11H9N2168.06873.1490.730.00	C11H9N2	168.0687	2.59	9	0.73	0.00
C11H9N2168.06872.7890.730.00C11H9N2168.06872.9390.730.00C11H9N2168.06873.0490.730.00C11H9N2168.06873.1490.730.00	C11H9N2	168.0687	2.70	9	0.73	0.00
C11H9N2168.06872.9390.730.00C11H9N2168.06873.0490.730.00C11H9N2168.06873.1490.730.00	C11H9N2	168.0687	2.78	9	0.73	0.00
C11H9N2168.06873.0490.730.00C11H9N2168.06873.1490.730.00	C11H9N2	168.0687	2.93	9	0.73	0.00
C11H9N2 168.0687 3.14 9 0.73 0.00	C11H9N2	168.0687	3.04	9	0.73	0.00
	C11H9N2	168.0687	3.14	9	0.73	0.00

C11H9N2	168 0687	3 35	9	0.73	0.00
C11H9N2	168.0687	3.97	9	0.73	0.00
C8H13O2N2	168.0899	0.39	4	1 50	0.00
C8H13O2N2	168 0899	0.59	4	1.50	0.25
C8H13O2N2	168 0899	0.50	4	1.50	0.25
C8H13O2N2	168 0899	0.67	4	1.50	0.25
C8H13O2N2	168.0899	0.83	4	1.50	0.25
C8H13O2N2	168 0899	0.93	4	1.50	0.25
C8H13O2N2	168 0899	1.04	4	1.50	0.25
C8H13O2N2	168 0899	1.01	4	1.50	0.25
C8H13O2N2	168 0899	1.17	4	1.50	0.25
C8H13O2N2	168 0899	1.33	4	1.50	0.25
C8H13O2N2	168.0899	1.47	4	1.50	0.25
C8H13O2N2	168 0899	1.50	4	1.50	0.25
C8H13O2N2	168.0899	1.89	4	1.50	0.25
C8H13O2N2	168 0899	2.13		1.50	0.25
C8H13O2N2	168.0899	2.13	4	1.50	0.25
C8H13O2N2	168.0899	2.51		1.50	0.25
C10H21N2	168 1626	2.09	4	2.00	0.23
C10H21N2	168 1626	2.74	2	2.00	0.00
C6H8O3N3	169.1020	2.80	2	2.00	0.00
C111801N1	160.0528	0.55	0	0.64	0.00
CI1H8OINI	169.0528	2.05	9	0.64	0.09
CI1U8OINI	169.0528	2.70	9	0.64	0.09
CITH80INI CITH80INI	169.0528	2.84	9	0.64	0.09
CI1U801N1	169.0528	2.91	9	0.64	0.09
CITH80INI CITH80INI	169.0528	3.04	9	0.64	0.09
CITH80INI CITH80INI	169.0528	3.12	9	0.64	0.09
CITH80INI	169.0528	3.29	9	0.64	0.09
CITH80INI	169.0528	5.00	9	0.64	0.09
CITH80INI	169.0528	5.71	9	0.64	0.09
C10H8N3	169.0640	1.42	9	0.70	0.00
C8H12O3N1	169.0739	0.75	4	1.38	0.38
C10H7O1N2	170.0480	2.56	9	0.60	0.10
C10H7O1N2	170.0480	3.35	9	0.60	0.10
C8H11O4	170.0579	1.13	4	1.25	0.50
C8H11O4	170.0579	1.86	4	1.25	0.50
C8H11O4	170.0579	2.31	4	1.25	0.50
C7H11O3N2	170.0691	0.37	4	1.43	0.43
C7H11O3N2	170.0691	0.62	4	1.43	0.43
C12H11O1	170.0732	3.25	8	0.83	0.08
C12H11O1	170.0732	3.28	8	0.83	0.08
C11H11N2	170.0844	2.28	8	0.91	0.00
C11H11N2	170.0844	2.54	8	0.91	0.00
C11H11N2	170.0844	2.68	8	0.91	0.00
C8H15O2N2	170.1055	0.36	3	1.75	0.25
C8H15O2N2	170.1055	0.39	3	1.75	0.25
C8H15O2N2	170.1055	0.78	3	1.75	0.25
C8H15O2N2	170.1055	0.84	3	1.75	0.25
C8H15O2N2	170.1055	1.13	3	1.75	0.25
C8H15O2N2	170.1055	1.83	3	1.75	0.25

C11H10O1N1	171.0684	1.72	8	0.82	0.09
C11H10O1N1	171.0684	1.93	8	0.82	0.09
C11H10O1N1	171.0684	2.05	8	0.82	0.09
C11H10O1N1	171.0684	2.17	8	0.82	0.09
C11H10O1N1	171.0684	2.45	8	0.82	0.09
C11H10O1N1	171.0684	2.53	8	0.82	0.09
C11H10O1N1	171.0684	2.64	8	0.82	0.09
C11H10O1N1	171.0684	2.77	8	0.82	0.09
C11H10O1N1	171.0684	2.88	8	0.82	0.09
C11H10O1N1	171.0684	3.03	8	0.82	0.09
C11H10O1N1	171.0684	3.64	8	0.82	0.09
C11H10O1N1	171.0684	3.89	8	0.82	0.09
C11H10O1N1	171.0684	4.02	8	0.82	0.09
C11H10O1N1	171.0684	4.50	8	0.82	0.09
C11H10O1N1	171.0684	5.11	8	0.82	0.09
C10H10N3	171.0796	2.50	8	0.90	0.00
C10H10N3	171.0796	2.78	8	0.90	0.00
C12H14N1	171.1048	2.77	7	1.08	0.00
C12H14N1	171.1048	2.83	7	1.08	0.00
C12H14N1	171.1048	2.96	7	1.08	0.00
C12H14N1	171.1048	3.01	7	1.08	0.00
C12H14N1	171.1048	3.08	7	1.08	0.00
C12H14N1	171.1048	3.23	7	1.08	0.00
C12H14N1	171.1048	3.29	7	1.08	0.00
C12H14N1	171.1048	3.42	7	1.08	0.00
C12H14N1	171.1048	3.50	7	1.08	0.00
C12H14N1	171.1048	3.58	7	1.08	0.00
C12H14N1	171.1048	3.65	7	1.08	0.00
C12H14N1	171.1048	3.69	7	1.08	0.00
C12H14N1	171.1048	3.76	7	1.08	0.00
C12H14N1	171.1048	4.12	7	1.08	0.00
C12H14N1	171.1048	5.03	7	1.08	0.00
C5H10O5Na1	150.0528	0.34	1	2.00	1.00
C11H9O2	172.0524	3.62	8	0.73	0.18
C13H10O1N1	195.0684	4.26	10	0.69	0.08
C11H9O2	172.0524	6.81	8	0.73	0.18
C10H9O1N2	172.0637	2.62	8	0.80	0.10
C10H9O1N2	172.0637	3.06	8	0.80	0.10
C10H9O1N2	172.0637	3.17	8	0.80	0.10
C10H9O1N2	172.0637	3.30	8	0.80	0.10
C8H13O4	172.0736	2.31	3	1.50	0.50
C7H13O3N2	172.0848	0.34	3	1.71	0.43
C12H13O1	172.0888	7.41	7	1.00	0.08
C11H13N2	172.1000	2.57	7	1.09	0.00
C11H13N2	172.1000	2.68	7	1.09	0.00
C11H13N2	172.1000	2.74	7	1.09	0.00
C11H13N2	172.1000	2.78	7	1.09	0.00
C11H13N2	172.1000	2.87	7	1.09	0.00
C11H13N2	172.1000	3.02	7	1.09	0.00
C11H13N2	172.1000	3.08	7	1.09	0.00

C11H13N2	172.1000	3.17	7	1.09	0.00
C10H11O2N2	190.0742	2.49	7	1.00	0.20
C10H8O2N1	173.0477	3.01	8	0.70	0.20
C7H12O4N1	173.0688	1.15	3	1.57	0.57
C11H12O1N1	173.0841	0.66	7	1.00	0.09
C11H12O1N1	173.0841	1.68	7	1.00	0.09
C11H12O1N1	173.0841	1.87	7	1.00	0.09
C11H12O1N1	173.0841	2.43	7	1.00	0.09
C11H12O1N1	173.0841	2.52	7	1.00	0.09
C11H12O1N1	173.0841	2.60	7	1.00	0.09
C11H12O1N1	173.0841	2.67	7	1.00	0.09
C11H12O1N1	173.0841	2.96	7	1.00	0.09
C11H12O1N1	173.0841	3.22	7	1.00	0.09
C11H12O1N1	173.0841	3.60	7	1.00	0.09
C11H12O1N1	173.0841	4.14	7	1.00	0.09
C11H12O1N1	173.0841	4.20	7	1.00	0.09
C11H12O1N1	173.0841	4.61	7	1.00	0.09
C11H12O1N1	173.0841	4.74	7	1.00	0.09
C11H12O1N1	173.0841	4.88	7	1.00	0.09
C11H12O1N1	173.0841	4.98	7	1.00	0.09
C11H12O1N1	173.0841	5.12	7	1.00	0.09
C11H12O1N1	173.0841	5.29	7	1.00	0.09
C11H12O1N1	173.0841	5.40	7	1.00	0.09
C11H12O1N1	173.0841	5.53	7	1.00	0.09
C11H12O1N1	173.0841	5.64	7	1.00	0.09
C11H12O1N1	173.0841	5.72	7	1.00	0.09
C11H12O1N1	173.0841	5.82	7	1.00	0.09
C11H12O1N1	173.0841	5.89	7	1.00	0.09
C11H12O1N1	173.0841	6.01	7	1.00	0.09
C11H12O1N1	173.0841	6.13	7	1.00	0.09
C11H12O1N1	173.0841	6.37	7	1.00	0.09
C11H12O1N1	173.0841	6.55	7	1.00	0.09
C11H12O1N1	173.0841	6.84	7	1.00	0.09
C11H12O1N1	173.0841	4.35	7	1.00	0.09
C10H12N3	173.0953	1.02	7	1.10	0.00
C10H12N3	173.0953	2.47	7	1.10	0.00
C12H16N1	173.1204	2.89	6	1.25	0.00
C12H16N1	173.1204	2.97	6	1.25	0.00
C12H16N1	173.1204	3.05	6	1.25	0.00
C10H24O1N1	173.1780	2.75	0	2.30	0.10
C7H11O5	174.0528	0.66	3	1.43	0.71
C11H11O2	174.0681	3.09	7	0.91	0.18
C11H1102	174.0681	3.37	7	0.91	0.18
C11H1102	174.0681	3 59	7	0.91	0.18
C11H1102	174.0681	4 14	7	0.91	0.18
C11H1102	174 0681	4 26	, 7	0.91	0.18
C11H1102	174 0681	4 47	, 7	0.91	0.18
C11H1102	174 0681	4 53	, 7	0.91	0.18
C11H1102	174 0681	4.55 4.67	7	0.91	0.18
C11H1102	174 0681	4.07 4.76	, 7	0.91	0.18
01111102	177.0001	7.70	1	0.71	0.10

C11H11O2	174.0681	5.10	7	0.91	0.18
C11H11O2	174.0681	5.17	7	0.91	0.18
C11H11O2	174.0681	5.32	7	0.91	0.18
C11H11O2	174.0681	5.56	7	0.91	0.18
C11H11O2	174.0681	6.21	7	0.91	0.18
C11H11O2	174.0681	6.40	7	0.91	0.18
C11H11O2	174.0681	6.76	7	0.91	0.18
C11H11O2	174.0681	6.91	7	0.91	0.18
C11H11O2	174.0681	7.40	7	0.91	0.18
C11H11O2	174.0681	6.87	7	0.91	0.18
C11H11O2	174.0681	7.25	7	0.91	0.18
C10H11O1N2	174.0793	0.55	7	1.00	0.10
C10H11O1N2	174.0793	0.98	7	1.00	0.10
C10H11O1N2	174.0793	1.25	7	1.00	0.10
C10H11O1N2	174.0793	1.36	7	1.00	0.10
C10H11O1N2	174.0793	1.62	7	1.00	0.10
C10H11O1N2	174.0793	1.93	7	1.00	0.10
C10H11O1N2	174,0793	1.98	7	1.00	0.10
C10H11O1N2	174.0793	2.19	7	1.00	0.10
C10H11O1N2	174 0793	2.42	, 7	1.00	0.10
C10H11O1N2	174 0793	2.59	, 7	1.00	0.10
C10H1101N2	174 0793	2 77	, 7	1.00	0.10
C10H11O1N2	174.0793	2.99	, 7	1.00	0.10
C10H11O1N2	174 0793	3 19	7	1.00	0.10
C10H1101N2	174.0793	3 30	7	1.00	0.10
C10H1101N2	174.0793	3 33	7	1.00	0.10
C10H1101N2	174.0793	3.41	7	1.00	0.10
C10H1101N2	174.0793	3.71	7	1.00	0.10
C11H15N2	174.0755	2.70	6	1.00	0.10
C11H15N2	174.1157	2.70	6	1.27	0.00
C11H15N2	174.1157	2.80	6	1.27	0.00
CITHI5N2	174.1157	2.92	6	1.27	0.00
CITHIJN2 CITHIPN2	174.1157	2.04	6	1.27	0.00
CITHI5N2	174.1157	3.28	0	1.27	0.00
CITHISN2	174.1157	5.58	0	1.27	0.00
CTIHI5N2	174.1157	3.01	0	1.27	0.00
C3H604N151	174.9939	0.43	4	1.00	0.80
C10U10O2N1	175.0528	2.98	3 7	2.25	0.25
C10H10O2N1	175.0633	1.50	7	0.90	0.20
C10H10O2N1	175.0633	1.72	7	0.90	0.20
C10H10O2N1	175.0633	2.00	/	0.90	0.20
C10H10O2N1	175.0633	2.30	/	0.90	0.20
C10H10O2N1	175.0633	2.36	/	0.90	0.20
CIUHI0O2NI	1/5.0633	2.48	/	0.90	0.20
CI0HI0O2NI	1/5.0633	2.59	/	0.90	0.20
C10H10O2N1	175.0633	2.79	-	0.90	0.20
C10H10O2N1	175.0633	2.88	-	0.90	0.20
C10H10O2N1	175.0633	2.98	-	0.90	0.20
C10H10O2N1	175.0633	3.07	7	0.90	0.20
C10H10O2N1	175.0633	3.16	7	0.90	0.20
C10H10O2N1	175.0633	3.27	7	0.90	0.20

C10H10O2N1	175.0633	3.41	7	0.90	0.20
C9H10O1N3	175.0746	2.67	7	1.00	0.11
C7H14O4N1	175.0845	0.37	2	1.86	0.57
C7H14O4N1	175.0845	1.16	2	1.86	0.57
C11H14O1N1	175.0997	1.02	6	1.18	0.09
C11H14O1N1	175.0997	1.20	6	1.18	0.09
C11H14O1N1	175.0997	1.39	6	1.18	0.09
C11H14O1N1	175.0997	1.71	6	1.18	0.09
C11H14O1N1	175.0997	1.92	6	1.18	0.09
C11H14O1N1	175.0997	2.30	6	1.18	0.09
C11H14O1N1	175.0997	2.72	6	1.18	0.09
C11H14O1N1	175 0997	2.89	6	1 18	0.09
C11H14O1N1	175.0997	3.14	6	1.18	0.09
C11H14O1N1	175.0997	3 34	6	1.18	0.09
C11H14O1N1	175.0997	4 09	6	1.10	0.09
C11H14O1N1	175.0997	4 20	6	1.18	0.09
C11H14O1N1	175.0997	4.20	6	1.10	0.09
C11H14O1N1	175.0997	4.51	6	1.10	0.09
C11H14O1N1	175.0997	4.44	6	1.18	0.09
C11H14O1N1	175.0007	4.55	6	1.10	0.09
C11H14O1N1	175.0997	4.05 5.01	6	1.10	0.09
C11H14O1N1	175.0007	5.01	6	1.10	0.09
C11H14O1N1	175.0997	5.41	6	1.10	0.09
CITHI40INI CITHI40INI	175.0007	5.54	6	1.18	0.09
CITHI40INI CITHI40INI	175.0997	6.03	6	1.10	0.09
CITHI40INI CITHI40INI	175.0997	0.38	6	1.10	0.09
CITHI40INI CITHI40INI	175.0997	6.03	0	1.18	0.09
CITHI40INI CITHI40INI	175.0997	0.90	0	1.10	0.09
CITHI40INI CITHI401NI	175.0997	7.00	0	1.18	0.09
CITHI40INI	175.0997	5.11	0	1.18	0.09
CITHI40INI	175.0997	5.68	6	1.18	0.09
C10H14N3	175.1109	1.01	6	1.30	0.00
C10H14N3	1/5.1109	1.16	6	1.30	0.00
C10H14N3	175.1109	1.35	6	1.30	0.00
C10H14N3	175.1109	2.12	6	1.30	0.00
C10H14N3	175.1109	2.30	6	1.30	0.00
C10H14N3	175.1109	2.52	6	1.30	0.00
C10H14N3	175.1109	2.69	6	1.30	0.00
C10H14N3	175.1109	2.78	6	1.30	0.00
C10H14N3	175.1109	2.93	6	1.30	0.00
C12H18N1	175.1361	2.89	5	1.42	0.00
C12H18N1	175.1361	3.01	5	1.42	0.00
C12H18N1	175.1361	3.11	5	1.42	0.00
C12H18N1	175.1361	3.41	5	1.42	0.00
C12H18N1	175.1361	3.44	5	1.42	0.00
C5H9O3N2S1	176.0256	0.36	3	1.60	0.60
C10H9O3	176.0473	3.11	7	0.80	0.30
C10H9O3	176.0473	3.19	7	0.80	0.30
C10H9O3	176.0473	3.27	7	0.80	0.30
C10H9O3	176.0473	3.51	7	0.80	0.30
C10H9O3	176.0473	3.77	7	0.80	0.30

C10H9O3	176.0473	4.03	7	0.80	0.30
C10H9O3	176.0473	4.38	7	0.80	0.30
C10H9O3	176.0473	4.44	7	0.80	0.30
C10H9O3	176.0473	4.49	7	0.80	0.30
C9H9O2N2	176.0586	0.78	7	0.89	0.22
C9H9O2N2	176.0586	1.01	7	0.89	0.22
C9H9O2N2	176.0586	2.43	7	0.89	0.22
C9H9O2N2	176.0586	3.01	7	0.89	0.22
C7H13O5	176.0685	0.40	2	1.71	0.71
C7H13O5	176.0685	0.84	2	1.71	0.71
C7H13O5	176.0685	0.87	2	1.71	0.71
C7H9N6	176.0810	2.92	7	1.14	0.00
C13H14O1N1	199.0997	2.89	8	1.00	0.08
C11H13O2	176.0837	2.91	6	1.09	0.18
C11H13O2	176.0837	3.19	6	1.09	0.18
C11H13O2	176.0837	3.43	6	1.09	0.18
C11H13O2	176.0837	3.47	6	1.09	0.18
C11H13O2	176.0837	3.55	6	1.09	0.18
C11H13O2	176.0837	3.60	6	1.09	0.18
C11H13O2	176.0837	3.67	6	1.09	0.18
C11H13O2	176.0837	3.76	6	1.09	0.18
C11H13O2	176.0837	3.83	6	1.09	0.18
C11H13O2	176.0837	4.14	6	1.09	0.18
C11H13O2	176.0837	4.19	6	1.09	0.18
C11H13O2	176.0837	4.47	6	1.09	0.18
C11H13O2	176.0837	4.56	6	1.09	0.18
C11H13O2	176.0837	4.63	6	1.09	0.18
C11H13O2	176.0837	4.71	6	1.09	0.18
C11H13O2	176.0837	4.78	6	1.09	0.18
C11H13O2	176.0837	4.88	6	1.09	0.18
C11H13O2	176.0837	4.92	6	1.09	0.18
C11H13O2	176.0837	5.07	6	1.09	0.18
C11H13O2	176.0837	5.12	6	1.09	0.18
C11H13O2	176.0837	5.16	6	1.09	0.18
C11H13O2	176.0837	5.19	6	1.09	0.18
C11H13O2	176.0837	5.23	6	1.09	0.18
C11H13O2	176.0837	5.28	6	1.09	0.18
C11H13O2	176.0837	5.43	6	1.09	0.18
C11H13O2	176.0837	5 49	6	1.09	0.18
C11H13O2	176.0837	5.66	6	1.09	0.18
C11H13O2	176.0837	6.03	6	1.09	0.18
C11H13O2	176.0837	6.09	6	1.09	0.18
C11H13O2	176.0837	6.20	6	1.09	0.18
C11H13O2	176.0837	6.44	6	1.09	0.18
C11H13O2	176.0837	6.49	6	1.09	0.18
C11H13O2	176.0837	6.74	6	1.09	0.18
C11H12O2	176.0037	686	6	1.09	0.10
C10H12O1N2	176.0050	1.02	6	1.09	0.10
C10H1301N2	176.0050	2.40	6	1.20	0.10
C10H12O1N2	176.0930	2.49	0 4	1.20	0.10
CIUHISUIN2	1/0.0930	2.05	0	1.20	0.10

C10H13O1N2	176.0950	2.74	6	1.20	0.10
C10H13O1N2	176.0950	2.93	6	1.20	0.10
C10H13O1N2	176.0950	3.01	6	1.20	0.10
C10H13O1N2	176.0950	5.77	6	1.20	0.10
C10H13O1N2	176.0950	1.14	6	1.20	0.10
C10H13O1N2	176.0950	3.08	6	1.20	0.10
C11H17N2	176.1313	2.85	5	1.45	0.00
C9H8O3N1	177.0426	2.34	7	0.78	0.33
C9H8O3N1	177.0426	2.78	7	0.78	0.33
C9H8O3N1	177.0426	3.10	7	0.78	0.33
C10H12O2N1	177.0790	2.39	6	1.10	0.20
C10H12O2N1	177.0790	2.53	6	1.10	0.20
C10H12O2N1	177.0790	2.72	6	1.10	0.20
C10H12O2N1	177.0790	2.80	6	1.10	0.20
C10H12O2N1	177.0790	2.88	6	1.10	0.20
C10H12O2N1	177.0790	2.89	6	1.10	0.20
C10H12O2N1	177.0790	3.02	6	1.10	0.20
C10H12O2N1	177.0790	3.04	6	1.10	0.20
C10H12O2N1	177.0790	3.38	6	1.10	0.20
C10H12O2N1	177.0790	3.46	6	1.10	0.20
C10H12O2N1	177.0790	3.53	6	1.10	0.20
C10H12O2N1	177.0790	3.67	6	1.10	0.20
C10H12O2N1	177.0790	3.72	6	1.10	0.20
C10H12O2N1	177.0790	4.00	6	1.10	0.20
C10H12O2N1	177.0790	4.38	6	1.10	0.20
C10H12O2N1	177.0790	5.11	6	1.10	0.20
C9H12O1N3	177.0902	0.67	6	1.22	0.11
C9H12O1N3	177.0902	0.89	6	1.22	0.11
C9H12O1N3	177.0902	1.10	6	1.22	0.11
C9H12O1N3	177.0902	2.51	6	1.22	0.11
C9H12O1N3	177.0902	3.13	6	1.22	0.11
C9H12O1N3	177.0902	3.18	6	1.22	0.11
C9H12O1N3	177.0902	1 21	6	1.22	0.11
C12H20N1	177 1517	3 19	4	1.58	0.00
C12H20N1	177 1517	3 32	4	1.50	0.00
C12H20N1	177 1517	3.48	4	1.58	0.00
C12H20N1	177 1517	3 58	4	1.50	0.00
C12H20N1	177 1517	3.69	4	1.58	0.00
C3H3O7N2	177 9862	0.29	4	0.67	2 33
C9H7O4	178.0266	1.87	7	0.67	0.44
C9H7O4	178.0266	2.25	7	0.67	0.44
C9H7O4	178.0266	3.43	7	0.67	0.44
C10H1103	178.0630	2 49	6	1.00	0.30
C10H11O3	178.0630	3.08	6	1.00	0.30
C10H11O3	178.0630	3.15	6	1.00	0.30
C10H11O3	178.0630	3.15	6	1.00	0.30
C10H11O3	178.0030	3.50	6	1.00	0.30
C10H11O2	178.0620	3.01 3.65	6	1.00	0.30
C10H11O2	178.0620	3.03 2.71	6	1.00	0.30
	170.0000	5./1 2.04	0 4	1.00	0.50
CIUHIIU3	1/8.0030	3.84	0	1.00	0.50

C10H1103 178.0630 3.99 6 1.00 0.30 C10H1103 178.0630 4.17 6 1.00 0.30 C10H1103 178.0630 4.41 6 1.00 0.30 C10H1103 178.0630 4.62 6 1.00 0.30 C10H1103 178.0630 5.41 6 1.00 0.30 C10H1103 178.0630 5.41 6 1.11 0.22 C9H1102N2 178.0742 2.46 6 1.11 0.22 C9H1102N2 178.0742 2.76 6 1.25 0.13 C10H1501N2 178.106 0.38 5 1.40 0.10 C10H1501N2 178.1106 1.09 5 1.40 0.10 C10H1501N2 178.1106 3.10 5 1.40 0.10 C10H1501N2 178.1106 3.16 4 1.64 0.00 C11H19N2 178.1470 3.29 4 1.64 0.00 <tr< th=""><th></th><th></th><th></th><th></th><th></th><th></th></tr<>						
C10H1103 178.0630 3.99 6 1.00 0.30 C10H1103 178.0630 4.17 6 1.00 0.30 C10H1103 178.0630 4.62 6 1.00 0.30 C10H1103 178.0630 4.74 6 1.00 0.30 C10H1103 178.0630 4.74 6 1.00 0.30 C10H1103 178.0630 5.41 6 1.11 0.22 C9H1102N2 178.0742 2.46 6 1.11 0.22 C9H1102N2 178.0742 2.46 6 1.25 0.13 C10H1501N2 178.106 0.38 5 1.40 0.10 C10H1501N2 178.1106 0.87 5 1.40 0.10 C10H1501N2 178.1106 2.76 5 1.40 0.10 C10H1501N2 178.1470 3.29 4 1.64 0.00 C11H19N2 178.1470 3.29 4 1.64 0.00 <tr< td=""><td>C10H11O3</td><td>178.0630</td><td>3.95</td><td>6</td><td>1.00</td><td>0.30</td></tr<>	C10H11O3	178.0630	3.95	6	1.00	0.30
C10H1103 178.0630 4.17 6 1.00 0.30 C10H1103 178.0630 4.62 6 1.00 0.30 C10H1103 178.0630 4.74 6 1.00 0.30 C10H1103 178.0630 5.41 6 1.10 0.22 C9H1102N2 178.0742 1.14 6 1.11 0.22 C9H1102N2 178.0742 2.76 6 1.11 0.22 C9H1102N2 178.0742 2.76 6 1.25 0.13 C10H1501N2 178.0855 0.96 6 1.25 0.13 C10H1501N2 178.1106 0.38 5 1.40 0.10 C10H1501N2 178.1106 3.10 5 1.40 0.10 C10H1501N2 178.1470 3.29 4 1.64 0.00 C11H19N2 178.1470 3.29 4 1.64 0.00 C11H19N2 178.1470 3.39 4 1.64 0.00 <	C10H11O3	178.0630	3.99	6	1.00	0.30
C10H1103 178.0630 4.41 6 1.00 0.30 C10H1103 178.0630 4.62 6 1.00 0.30 C10H1103 178.0630 5.41 6 1.00 0.30 C0H1102N2 178.0742 1.14 6 1.11 0.22 C9H1102N2 178.0742 2.76 6 1.11 0.22 C8H1101N4 178.0855 1.29 6 1.25 0.13 C10H1501N2 178.1106 0.88 5 1.40 0.10 C10H1501N2 178.1106 0.87 5 1.40 0.10 C10H1501N2 178.1106 3.10 5 1.40 0.10 C10H1501N2 178.1406 3.10 5 1.40 0.10 C10H1501N2 178.1470 3.96 4 1.64 0.00 C10H19N2 178.1470 3.29 4 1.64 0.00 C11H19N2 178.1470 3.39 4 1.64 0.00	C10H11O3	178.0630	4.17	6	1.00	0.30
C10H1103 178.0630 4.62 6 1.00 0.30 C10H1103 178.0630 4.74 6 1.00 0.30 C10H1103 178.0630 5.41 6 1.00 0.30 C9H1102N2 178.0742 1.14 6 1.11 0.22 C9H1102N2 178.0742 2.46 6 1.11 0.22 C9H1102N2 178.0742 2.76 6 1.25 0.13 C10H1501N2 178.106 0.38 5 1.40 0.10 C10H1501N2 178.1106 1.09 5 1.40 0.10 C10H1501N2 178.1106 2.76 5 1.40 0.10 C10H1501N2 178.1470 3.29 4 1.64 0.00 C11H19N2 178.1470 3.29 4 1.64 0.00 C11H19N2 178.1470 3.29 4 1.64 0.00 C1H1H9N2 178.1470 3.29 6 1.00 0.33 <t< td=""><td>C10H11O3</td><td>178.0630</td><td>4.41</td><td>6</td><td>1.00</td><td>0.30</td></t<>	C10H11O3	178.0630	4.41	6	1.00	0.30
C10H1103 178.0630 4.74 6 1.00 0.30 C10H1103 178.0630 5.41 6 1.00 0.30 C9H1102N2 178.0742 1.14 6 1.11 0.22 C9H1102N2 178.0742 2.76 6 1.11 0.22 C8H1101N4 178.0855 0.96 6 1.25 0.13 C10H1501N2 178.1106 0.38 5 1.40 0.10 C10H1501N2 178.1106 0.87 5 1.40 0.10 C10H1501N2 178.1106 3.10 5 1.40 0.10 C10H1501N2 178.1106 3.10 5 1.40 0.10 C10H1501N2 178.1470 2.96 4 1.64 0.00 C11H19N2 178.1470 3.29 4 1.64 0.00 C11H19N2 178.1470 3.46 4 1.64 0.00 C11H19N2 178.1470 3.46 1.64 0.00 C	C10H11O3	178.0630	4.62	6	1.00	0.30
C10H1103 178.0630 5.41 6 1.00 0.30 C9H1102N2 178.0742 1.14 6 1.11 0.22 C9H1102N2 178.0742 2.46 6 1.11 0.22 CSH1101N4 178.0742 2.76 6 1.11 0.22 CSH1101N4 178.0742 2.76 6 1.25 0.13 CBH1101N4 178.0855 1.29 6 1.25 0.13 C10H1501N2 178.1106 0.87 5 1.40 0.10 C10H1501N2 178.1106 3.10 5 1.40 0.10 C10H1501N2 178.1470 3.16 4 1.64 0.00 C11H19N2 178.1470 3.29 4 1.64 0.00 C11H19N2 178.1470 3.46 4 1.64 0.00 C1H19N2 178.1470 3.46 4 1.64 0.00 C1H19N2 178.1470 3.13 10 0.69 0.00 <t< td=""><td>C10H11O3</td><td>178.0630</td><td>4.74</td><td>6</td><td>1.00</td><td>0.30</td></t<>	C10H11O3	178.0630	4.74	6	1.00	0.30
C9H1102N2 178.0742 2.46 6 1.11 0.22 C9H1102N2 178.0742 2.76 6 1.11 0.22 C9H1102N2 178.0742 2.76 6 1.11 0.22 CSH1101N4 178.0855 1.29 6 1.25 0.13 C10H1501N2 178.1106 0.38 5 1.40 0.10 C10H1501N2 178.1106 1.08 5 1.40 0.10 C10H1501N2 178.1106 3.10 5 1.40 0.10 C10H1501N2 178.1470 3.16 4 1.64 0.00 C11H19N2 178.1470 3.29 4 1.64 0.00 C11H19N2 178.1470 3.29 4 1.64 0.00 C11H19N2 178.1470 3.46 4 1.64 0.00 C1H19N2 178.1470 3.46 4 1.64 0.00 C1H19N2 178.1470 3.46 4 1.64 0.00 <t< td=""><td>C10H11O3</td><td>178.0630</td><td>5.41</td><td>6</td><td>1.00</td><td>0.30</td></t<>	C10H11O3	178.0630	5.41	6	1.00	0.30
C9H1102N2 178.0742 2.76 6 1.11 0.22 CSH1101N4 178.0855 0.96 6 1.25 0.13 CSH1101N4 178.0855 0.96 6 1.25 0.13 CI0H1501N2 178.1106 0.38 5 1.40 0.10 C10H1501N2 178.1106 0.87 5 1.40 0.10 C10H1501N2 178.1106 3.10 5 1.40 0.10 C10H1501N2 178.1470 3.16 4 1.64 0.00 C11H19N2 178.1470 3.39 4 1.64 0.00 C11H19N2 178.1470 3.39 4 1.64 0.00 C11H19N2 178.1470 3.39 4 1.64 0.00 C9H1003N1 179.0582 2.59 6 1.00 0.33 C9H1003N1 179.0735 3.12 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00	C9H11O2N2	178.0742	1.14	6	1.11	0.22
C9H1102N2 178.0742 2.76 6 1.11 0.22 C8H1101N4 178.0855 0.96 6 1.25 0.13 C8H1101N4 178.0855 1.29 6 1.25 0.13 C10H1501N2 178.1106 0.87 5 1.40 0.10 C10H1501N2 178.1106 1.09 5 1.40 0.10 C10H1501N2 178.1106 3.10 5 1.40 0.10 C10H1501N2 178.1470 2.96 4 1.64 0.00 C11H19N2 178.1470 3.16 4 1.64 0.00 C11H19N2 178.1470 3.36 4 1.64 0.00 C11H19N2 178.1470 3.46 4 1.64 0.00 C1H19N2 178.1470 3.41 6 1.00 0.33 C9H1003N1 179.0582 2.59 6 1.00 0.33 C13H10N1 179.0735 3.22 10 0.69 0.00	C9H11O2N2	178.0742	2.46	6	1.11	0.22
C8H1101N4 178.0855 0.96 6 1.25 0.13 CNH1501N2 178.1106 0.38 5 1.40 0.10 C10H1501N2 178.1106 0.87 5 1.40 0.10 C10H1501N2 178.1106 1.09 5 1.40 0.10 C10H1501N2 178.1106 2.76 5 1.40 0.10 C10H1501N2 178.1470 2.96 4 1.64 0.00 C11H19N2 178.1470 3.16 4 1.64 0.00 C11H19N2 178.1470 3.29 4 1.64 0.00 C1H19N2 178.1470 3.46 4 1.64 0.00 C1H19N2 178.1470 3.46 4 1.64 0.00 C9H1003N1 179.0582 2.59 6 1.00 0.33 C9H1003N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00	C9H11O2N2	178.0742	2.76	6	1.11	0.22
C8H1101N4 178.0855 1.29 6 1.25 0.13 C10H1501N2 178.1106 0.38 5 1.40 0.10 C10H1501N2 178.1106 0.87 5 1.40 0.10 C10H1501N2 178.1106 2.76 5 1.40 0.10 C10H1501N2 178.1470 3.16 4 1.64 0.00 C11H19N2 178.1470 3.16 4 1.64 0.00 C11H19N2 178.1470 3.29 4 1.64 0.00 C11H19N2 178.1470 3.46 4 1.64 0.00 C1H19N2 178.1470 3.39 4 1.64 0.00 C9H1003N1 179.0582 2.59 6 1.00 0.33 C9H1003N1 179.0735 3.13 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00	C8H11O1N4	178.0855	0.96	6	1.25	0.13
C10H1501N2 178.1106 0.38 5 1.40 0.10 C10H1501N2 178.1106 0.87 5 1.40 0.10 C10H1501N2 178.1106 1.09 5 1.40 0.10 C10H1501N2 178.1106 3.76 5 1.40 0.10 C10H1501N2 178.1470 2.96 4 1.64 0.00 C11H19N2 178.1470 3.29 4 1.64 0.00 C11H19N2 178.1470 3.39 4 1.64 0.00 C1H19N2 178.1470 3.39 4 1.64 0.00 C1H19N2 178.1470 3.46 4 1.64 0.00 C1H10N1 179.0582 2.44 6 1.00 0.33 C13H10N1 179.0735 3.19 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.28 10 0.69 0.00 <t< td=""><td>C8H11O1N4</td><td>178.0855</td><td>1.29</td><td>6</td><td>1.25</td><td>0.13</td></t<>	C8H11O1N4	178.0855	1.29	6	1.25	0.13
C10H1501N2 178.1106 0.87 5 1.40 0.10 C10H1501N2 178.1106 1.09 5 1.40 0.10 C10H1501N2 178.1106 3.10 5 1.40 0.10 C10H1501N2 178.1470 2.96 4 1.64 0.00 C11H19N2 178.1470 3.29 4 1.64 0.00 C11H19N2 178.1470 3.46 4 1.64 0.00 C1H19N2 178.1470 3.46 4 1.64 0.00 C9H1003N1 179.0735 3.13 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00	C10H15O1N2	178.1106	0.38	5	1.40	0.10
C10H1501N2 178.1106 1.09 5 1.40 0.10 C10H1501N2 178.1106 2.76 5 1.40 0.10 C10H1501N2 178.1106 3.10 5 1.40 0.10 C11H19N2 178.1470 2.96 4 1.64 0.00 C11H19N2 178.1470 3.16 4 1.64 0.00 C11H19N2 178.1470 3.39 4 1.64 0.00 C11H19N2 178.1470 3.46 4 1.64 0.00 C9H1003N1 179.0582 2.59 6 1.00 0.33 C9H1003N1 179.0735 3.13 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.29 10 0.69 0.00 C13H10N1 179.0735 3.31 10 0.69 0.00 C13H10N1 179.0735 3.48 10 0.69 0.00	C10H15O1N2	178.1106	0.87	5	1.40	0.10
C10H1501N2 178.1106 2.76 5 1.40 0.10 C10H1501N2 178.1106 3.10 5 1.40 0.10 C11H19N2 178.1470 2.96 4 1.64 0.00 C11H19N2 178.1470 3.29 4 1.64 0.00 C11H19N2 178.1470 3.29 4 1.64 0.00 C11H19N2 178.1470 3.46 4 1.64 0.00 C1H19N2 178.1470 3.46 4 1.64 0.00 C9H1003N1 179.0582 2.59 6 1.00 0.33 C13H10N1 179.0735 3.19 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.24 10 0.69 0.00 C13H10N1 179.0735 3.56 10 0.69 0.00 <tr< td=""><td>C10H15O1N2</td><td>178.1106</td><td>1.09</td><td>5</td><td>1.40</td><td>0.10</td></tr<>	C10H15O1N2	178.1106	1.09	5	1.40	0.10
C10H1501N2 178.1106 3.10 5 1.40 0.10 C11H19N2 178.1470 2.96 4 1.64 0.00 C11H19N2 178.1470 3.16 4 1.64 0.00 C11H19N2 178.1470 3.29 4 1.64 0.00 C11H19N2 178.1470 3.36 4 1.64 0.00 C1H19N2 178.1470 3.46 4 1.64 0.00 C9H1003N1 179.0582 2.59 6 1.00 0.33 C9H1003N1 179.0735 3.13 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.48 10 0.69 0.00 C13H10N1 179.0735 3.56 10 0.69 0.00 <tr< td=""><td>C10H15O1N2</td><td>178.1106</td><td>2.76</td><td>5</td><td>1.40</td><td>0.10</td></tr<>	C10H15O1N2	178.1106	2.76	5	1.40	0.10
C11H19N2 178.1470 2.96 4 1.64 0.00 C11H19N2 178.1470 3.16 4 1.64 0.00 C11H19N2 178.1470 3.29 4 1.64 0.00 C11H19N2 178.1470 3.39 4 1.64 0.00 C11H19N2 178.1470 3.46 4 1.64 0.00 C9H1003N1 179.0582 2.44 6 1.00 0.33 C9H1003N1 179.0735 3.13 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.29 10 0.69 0.00 C13H10N1 179.0735 3.48 10 0.69 0.00 C13H10N1 179.0735 3.48 10 0.69 0.00 C13H10N1 179.0735 3.56 1.0 0.69 0.00 <t< td=""><td>C10H15O1N2</td><td>178.1106</td><td>3.10</td><td>5</td><td>1.40</td><td>0.10</td></t<>	C10H15O1N2	178.1106	3.10	5	1.40	0.10
C11H19N2 178.1470 3.16 4 1.64 0.00 C11H19N2 178.1470 3.29 4 1.64 0.00 C11H19N2 178.1470 3.39 4 1.64 0.00 C11H19N2 178.1470 3.46 4 1.64 0.00 C9H1003N1 179.0582 2.44 6 1.00 0.33 C9H1003N1 179.0582 2.59 6 1.00 0.33 C13H10N1 179.0735 3.13 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.29 10 0.69 0.00 C13H10N1 179.0735 3.48 10 0.69 0.00 C13H10N1 179.0735 3.48 10 0.69 0.00 C10H1402N1 179.0946 0.39 5 1.30 0.20 <t< td=""><td>C11H19N2</td><td>178.1470</td><td>2.96</td><td>4</td><td>1.64</td><td>0.00</td></t<>	C11H19N2	178.1470	2.96	4	1.64	0.00
C11H19N2 178.1470 3.29 4 1.64 0.00 C11H19N2 178.1470 3.39 4 1.64 0.00 C11H19N2 178.1470 3.46 4 1.64 0.00 C9H1003N1 179.0582 2.44 6 1.00 0.33 C9H1003N1 179.0582 2.59 6 1.00 0.33 C13H10N1 179.0735 3.13 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.29 10 0.69 0.00 C13H10N1 179.0735 3.48 10 0.69 0.00 C13H10N1 179.0735 6.83 10 0.69 0.00 C13H10N1 179.0735 6.83 10 0.69 0.00 <t< td=""><td>C11H19N2</td><td>178.1470</td><td>3.16</td><td>4</td><td>1.64</td><td>0.00</td></t<>	C11H19N2	178.1470	3.16	4	1.64	0.00
C11H19N2 178.1470 3.39 4 1.64 0.00 C11H19N2 178.1470 3.46 4 1.64 0.00 C9H1003N1 179.0582 2.44 6 1.00 0.33 C9H1003N1 179.0582 2.59 6 1.00 0.33 C13H10N1 179.0735 3.13 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.48 10 0.69 0.00 C13H10N1 179.0735 3.56 10 0.69 0.00 C10H1402N1 179.0946 0.39 5 1.30 0.20 C10H1402N1 179.0946 0.86 5 1.30 0.20	C11H19N2	178.1470	3.29	4	1.64	0.00
C11H19N2 178.1470 3.46 4 1.64 0.00 C9H10O3N1 179.0582 2.44 6 1.00 0.33 C9H10O3N1 179.0582 2.59 6 1.00 0.33 C13H10N1 179.0735 3.13 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.29 10 0.69 0.00 C13H10N1 179.0735 3.31 10 0.69 0.00 C13H10N1 179.0735 3.48 10 0.69 0.00 C13H10N1 179.0735 3.56 10 0.69 0.00 C10H1402N1 179.0946 0.39 5 1.30 0.20 C10H1402N1 179.0946 1.07 5 1.30 0.20	C11H19N2	178.1470	3.39	4	1.64	0.00
C9H1003N1 179.0582 2.44 6 1.00 0.33 C9H1003N1 179.0582 2.59 6 1.00 0.33 C13H10N1 179.0735 3.13 10 0.69 0.00 C13H10N1 179.0735 3.19 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.29 10 0.69 0.00 C13H10N1 179.0735 3.31 10 0.69 0.00 C13H10N1 179.0735 3.48 10 0.69 0.00 C13H10N1 179.0735 3.56 10 0.69 0.00 C13H10N1 179.0746 0.39 5 1.30 0.20 C10H1402N1 179.0946 0.86 5 1.30 0.20 C10H1402N1 179.0946 1.07 5 1.30 0.20	C11H19N2	178.1470	3.46	4	1.64	0.00
C9H1003N1 179.0582 2.59 6 1.00 0.33 C13H10N1 179.0735 3.13 10 0.69 0.00 C13H10N1 179.0735 3.19 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.29 10 0.69 0.00 C13H10N1 179.0735 3.48 10 0.69 0.00 C13H10N1 179.0735 3.56 10 0.69 0.00 C13H10N1 179.0735 3.56 10 0.69 0.00 C10H1402N1 179.0946 0.39 5 1.30 0.20 C10H1402N1 179.0946 0.93 5 1.30 0.20 C10H1402N1 179.0946 1.07 5 1.30 0.20	C9H10O3N1	179.0582	2.44	6	1.00	0.33
C13H10N1 179.0735 3.13 10 0.69 0.00 C13H10N1 179.0735 3.19 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.29 10 0.69 0.00 C13H10N1 179.0735 3.31 10 0.69 0.00 C13H10N1 179.0735 3.48 10 0.69 0.00 C13H10N1 179.0735 3.56 10 0.69 0.00 C13H10N1 179.0735 3.56 10 0.69 0.00 C13H10N1 179.0735 6.83 10 0.69 0.00 C10H1402N1 179.0946 0.39 5 1.30 0.20 C10H1402N1 179.0946 0.93 5 1.30 0.20 C10H1402N1 179.0946 1.07 5 1.30 0.20	C9H10O3N1	179.0582	2.59	6	1.00	0.33
C13H10N1 179.0735 3.19 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 3.29 10 0.69 0.00 C13H10N1 179.0735 3.31 10 0.69 0.00 C13H10N1 179.0735 3.48 10 0.69 0.00 C13H10N1 179.0735 3.56 10 0.69 0.00 C13H10N1 179.0735 6.83 10 0.69 0.00 C13H10N1 179.0735 6.83 10 0.69 0.00 C10H1402N1 179.0946 0.39 5 1.30 0.20 C10H1402N1 179.0946 0.86 5 1.30 0.20 C10H1402N1 179.0946 1.07 5 1.30 0.20 C10H1402N1 179.0946 1.56 5 1.30 0.20	C13H10N1	179.0735	3.13	10	0.69	0.00
C13H10N1179.07353.22100.690.00C13H10N1179.07353.22100.690.00C13H10N1179.07353.29100.690.00C13H10N1179.07353.31100.690.00C13H10N1179.07353.48100.690.00C13H10N1179.07353.56100.690.00C13H10N1179.07356.83100.690.00C13H10N1179.07356.83100.690.00C10H1402N1179.09460.3951.300.20C10H1402N1179.09460.8651.300.20C10H1402N1179.09460.9351.300.20C10H1402N1179.09461.0751.300.20C10H1402N1179.09461.5651.300.20C10H1402N1179.09461.5651.300.20C10H1402N1179.09461.9751.300.20C10H1402N1179.09462.4851.300.20C10H1402N1179.09462.4851.300.20C10H1402N1179.09462.7551.300.20C10H1402N1179.09462.7551.300.20C10H1402N1179.09462.8151.300.20C10H1402N1179.09462.8151.300.20C10H1402N1179.09462.9751.30<	C13H10N1	179.0735	3.19	10	0.69	0.00
C13H10N1179.07353.22100.690.00C13H10N1179.07353.29100.690.00C13H10N1179.07353.31100.690.00C13H10N1179.07353.48100.690.00C13H10N1179.07353.56100.690.00C13H10N1179.07356.83100.690.00C13H10N1179.07356.83100.690.00C10H1402N1179.09460.3951.300.20C10H1402N1179.09460.8651.300.20C10H1402N1179.09460.9351.300.20C10H1402N1179.09461.0751.300.20C10H1402N1179.09461.0751.300.20C10H1402N1179.09461.5651.300.20C10H1402N1179.09461.9751.300.20C10H1402N1179.09461.9751.300.20C10H1402N1179.09462.4851.300.20C10H1402N1179.09462.7551.300.20C10H1402N1179.09462.8151.300.20C10H1402N1179.09462.8151.300.20C10H1402N1179.09462.9751.300.20C10H1402N1179.09463.1951.300.20C10H1402N1179.09463.8051.30	C13H10N1	179.0735	3.22	10	0.69	0.00
C13H10N1179.07353.29100.690.00C13H10N1179.07353.31100.690.00C13H10N1179.07353.48100.690.00C13H10N1179.07353.56100.690.00C13H10N1179.07356.83100.690.00C10H1402N1179.09460.3951.300.20C10H1402N1179.09460.8051.300.20C10H1402N1179.09460.8651.300.20C10H1402N1179.09460.9351.300.20C10H1402N1179.09461.0751.300.20C10H1402N1179.09461.0751.300.20C10H1402N1179.09461.5651.300.20C10H1402N1179.09461.5651.300.20C10H1402N1179.09461.9751.300.20C10H1402N1179.09461.9751.300.20C10H1402N1179.09462.4851.300.20C10H1402N1179.09462.7551.300.20C10H1402N1179.09462.8151.300.20C10H1402N1179.09462.8151.300.20C10H1402N1179.09462.8151.300.20C10H1402N1179.09462.8151.300.20C10H1402N1179.09463.8051.	C13H10N1	179.0735	3.22	10	0.69	0.00
C13H10N1179.07353.31100.690.00C13H10N1179.07353.48100.690.00C13H10N1179.07353.56100.690.00C13H10N1179.07356.83100.690.00C10H1402N1179.09460.3951.300.20C10H1402N1179.09460.8051.300.20C10H1402N1179.09460.8651.300.20C10H1402N1179.09460.9351.300.20C10H1402N1179.09461.0751.300.20C10H1402N1179.09461.3851.300.20C10H1402N1179.09461.5651.300.20C10H1402N1179.09461.9751.300.20C10H1402N1179.09461.9751.300.20C10H1402N1179.09462.4851.300.20C10H1402N1179.09462.4851.300.20C10H1402N1179.09462.4851.300.20C10H1402N1179.09462.7551.300.20C10H1402N1179.09462.8151.300.20C10H1402N1179.09463.1951.300.20C10H1402N1179.09463.8051.300.20C10H1402N1179.09463.8051.300.20C10H1402N1179.09463.8051	C13H10N1	179.0735	3.29	10	0.69	0.00
C13H10N1179.07353.48100.690.00C13H10N1179.07353.56100.690.00C13H10N1179.07356.83100.690.00C10H1402N1179.09460.3951.300.20C10H1402N1179.09460.8051.300.20C10H1402N1179.09460.8651.300.20C10H1402N1179.09460.9351.300.20C10H1402N1179.09461.0751.300.20C10H1402N1179.09461.3851.300.20C10H1402N1179.09461.5651.300.20C10H1402N1179.09461.5651.300.20C10H1402N1179.09461.9751.300.20C10H1402N1179.09462.4851.300.20C10H1402N1179.09462.4851.300.20C10H1402N1179.09462.4851.300.20C10H1402N1179.09462.7551.300.20C10H1402N1179.09462.8151.300.20C10H1402N1179.09463.1951.300.20C10H1402N1179.09463.1951.300.20C10H1402N1179.09463.1951.300.20C10H1402N1179.09463.1951.300.20C10H1402N1179.09463.195	C13H10N1	179.0735	3.31	10	0.69	0.00
C13H10N1179.07353.56100.690.00C13H10N1179.07356.83100.690.00C10H1402N1179.09460.3951.300.20C10H1402N1179.09460.8051.300.20C10H1402N1179.09460.8651.300.20C10H1402N1179.09460.9351.300.20C10H1402N1179.09461.0751.300.20C10H1402N1179.09461.0751.300.20C10H1402N1179.09461.5651.300.20C10H1402N1179.09461.5651.300.20C10H1402N1179.09461.9751.300.20C10H1402N1179.09462.4851.300.20C10H1402N1179.09462.4851.300.20C10H1402N1179.09462.4851.300.20C10H1402N1179.09462.7551.300.20C10H1402N1179.09462.8151.300.20C10H1402N1179.09462.8151.300.20C10H1402N1179.09463.1951.300.20C10H1402N1179.09463.1951.300.20C10H1402N1179.09463.1951.300.20C10H1402N1179.09463.8051.300.20C10H1402N1179.09463.195 <td< td=""><td>C13H10N1</td><td>179.0735</td><td>3.48</td><td>10</td><td>0.69</td><td>0.00</td></td<>	C13H10N1	179.0735	3.48	10	0.69	0.00
C13H10N1179.07356.83100.690.00C10H14O2N1179.09460.3951.300.20C10H14O2N1179.09460.8051.300.20C10H14O2N1179.09460.8651.300.20C10H14O2N1179.09460.9351.300.20C10H14O2N1179.09461.0751.300.20C10H14O2N1179.09461.0751.300.20C10H14O2N1179.09461.5651.300.20C10H14O2N1179.09461.5651.300.20C10H14O2N1179.09461.9751.300.20C10H14O2N1179.09461.9751.300.20C10H14O2N1179.09462.4851.300.20C10H14O2N1179.09462.4851.300.20C10H14O2N1179.09462.7551.300.20C10H14O2N1179.09462.8151.300.20C10H14O2N1179.09462.9751.300.20C10H14O2N1179.09463.1951.300.20C10H14O2N1179.09463.1951.300.20C10H14O2N1179.09463.8051.300.20C10H14O2N1179.09463.8051.300.20C10H14O2N1179.09463.8050.99C10H14O2N1179.09463.8050.99 </td <td>C13H10N1</td> <td>179.0735</td> <td>3.56</td> <td>10</td> <td>0.69</td> <td>0.00</td>	C13H10N1	179.0735	3.56	10	0.69	0.00
C10H14O2N1179.09460.3951.300.20C10H14O2N1179.09460.8051.300.20C10H14O2N1179.09460.8651.300.20C10H14O2N1179.09460.9351.300.20C10H14O2N1179.09461.0751.300.20C10H14O2N1179.09461.0751.300.20C10H14O2N1179.09461.5651.300.20C10H14O2N1179.09461.5651.300.20C10H14O2N1179.09461.9751.300.20C10H14O2N1179.09462.4851.300.20C10H14O2N1179.09462.4851.300.20C10H14O2N1179.09462.4851.300.20C10H14O2N1179.09462.7551.300.20C10H14O2N1179.09462.8151.300.20C10H14O2N1179.09463.1951.300.20C10H14O2N1179.09463.8051.300.20C10H14O2N1179.09463.8051.300.20C10H14O2N1179.09463.8051.300.20C10H14O2N1179.09463.8051.300.20C10H14O2N1179.09463.8051.300.20C10H14O2N1179.09463.8050.99	C13H10N1	179.0735	6.83	10	0.69	0.00
C10H14O2N1179.09460.8051.300.20C10H14O2N1179.09460.8651.300.20C10H14O2N1179.09460.9351.300.20C10H14O2N1179.09461.0751.300.20C10H14O2N1179.09461.3851.300.20C10H14O2N1179.09461.5651.300.20C10H14O2N1179.09461.5651.300.20C10H14O2N1179.09461.9751.300.20C10H14O2N1179.09461.9751.300.20C10H14O2N1179.09462.4851.300.20C10H14O2N1179.09462.4851.300.20C10H14O2N1179.09462.7551.300.20C10H14O2N1179.09462.8151.300.20C10H14O2N1179.09463.1951.300.20C10H14O2N1179.09463.8051.300.20C10H14O2N1179.09463.8051.300.20C10H14O2N1179.09463.8051.300.20C10H14O2N1179.09463.8051.300.20C10H14O2N1179.09463.8051.300.20C10H14O2N1179.09463.8051.300.20C10H14O2N1179.09463.8051.300.20C10H14O2N1179.09463.805<	C10H14O2N1	179.0946	0.39	5	1.30	0.20
C10H14O2N1179.09460.8651.300.20C10H14O2N1179.09460.9351.300.20C10H14O2N1179.09461.0751.300.20C10H14O2N1179.09461.3851.300.20C10H14O2N1179.09461.5651.300.20C10H14O2N1179.09461.9751.300.20C10H14O2N1179.09461.9751.300.20C10H14O2N1179.09462.4851.300.20C10H14O2N1179.09462.4851.300.20C10H14O2N1179.09462.7551.300.20C10H14O2N1179.09462.7551.300.20C10H14O2N1179.09462.8151.300.20C10H14O2N1179.09463.1951.300.20C10H14O2N1179.09463.1951.300.20C10H14O2N1179.09463.8051.300.20C10H14O2N1179.09463.8050.99	C10H14O2N1	179.0946	0.80	5	1.30	0.20
C10H1402N1179.09460.9351.300.20C10H1402N1179.09461.0751.300.20C10H1402N1179.09461.3851.300.20C10H1402N1179.09461.5651.300.20C10H1402N1179.09461.9751.300.20C10H1402N1179.09461.9751.300.20C10H1402N1179.09462.4851.300.20C10H1402N1179.09462.4851.300.20C12H1202N1201.07902.6180.920.17C10H1402N1179.09462.7551.300.20C10H1402N1179.09462.8151.300.20C10H1402N1179.09463.1951.300.20C10H1402N1179.09463.1951.300.20C10H1402N1179.09463.8051.300.20C10H1402N1179.09463.8050.99	C10H14O2N1	179.0946	0.86	5	1.30	0.20
C10H1402N1179.09461.0751.300.20C10H1402N1179.09461.3851.300.20C10H1402N1179.09461.5651.300.20C10H1402N1179.09461.9751.300.20C10H1402N1179.09461.9751.300.20C10H1702N2196.12122.0541.600.20C10H1402N1179.09462.4851.300.20C12H1202N1201.07902.6180.920.17C10H1402N1179.09462.7551.300.20C10H1402N1179.09462.8151.300.20C10H1402N1179.09463.1951.300.20C10H1402N1179.09463.1951.300.20C10H1402N1179.09463.8051.300.20C10H1402N1179.09463.8050.99	C10H14O2N1	179.0946	0.93	5	1.30	0.20
C10H14O2N1179.09461.3851.300.20C10H14O2N1179.09461.5651.300.20C10H14O2N1179.09461.9751.300.20C10H17O2N2196.12122.0541.600.20C10H14O2N1179.09462.4851.300.20C10H14O2N1179.09462.4851.300.20C12H12O2N1201.07902.6180.920.17C10H14O2N1179.09462.7551.300.20C10H14O2N1179.09462.8151.300.20C10H14O2N1179.09463.1951.300.20C10H14O2N1179.09463.8051.300.20C10H14O2N1179.09463.8050.920.17C10H14O2N1179.09463.8050.920.92C10H14O2N1179.09463.8050.920.92C10H14O2N1179.09463.8050.920.92C10H14O2N1179.09463.8050.920.92C10H14O2N1179.09463.8050.920.92C10H14O2N1179.09463.8050.920.92C10H14O2N1179.09463.8050.920.92C10H14O2N1179.13102.5841.550.09	C10H14O2N1	179.0946	1.07	5	1.30	0.20
C10H14O2N1179.09461.5651.300.20C10H14O2N1179.09461.9751.300.20C10H17O2N2196.12122.0541.600.20C10H14O2N1179.09462.4851.300.20C12H12O2N1201.07902.6180.920.17C10H14O2N1179.09462.7551.300.20C10H14O2N1179.09462.8151.300.20C10H14O2N1179.09462.9751.300.20C10H14O2N1179.09463.1951.300.20C10H14O2N1179.09463.8051.300.20C10H14O2N1179.09463.8050.90	C10H14O2N1	179.0946	1.38	5	1.30	0.20
C10H14O2N1179.09461.9751.300.20C10H17O2N2196.12122.0541.600.20C10H14O2N1179.09462.4851.300.20C12H12O2N1201.07902.6180.920.17C10H14O2N1179.09462.7551.300.20C10H14O2N1179.09462.8151.300.20C10H14O2N1179.09462.9751.300.20C10H14O2N1179.09463.1951.300.20C10H14O2N1179.09463.8051.300.20C10H14O2N1179.09463.8050.90	C10H14O2N1	179.0946	1.56	5	1.30	0.20
C10H1702N2196.12122.0541.600.20C10H1402N1179.09462.4851.300.20C12H1202N1201.07902.6180.920.17C10H1402N1179.09462.7551.300.20C10H1402N1179.09462.8151.300.20C10H1402N1179.09462.9751.300.20C10H1402N1179.09463.1951.300.20C10H1402N1179.09463.8051.300.20C10H1402N1179.09463.8050.90	C10H14O2N1	179.0946	1.97	5	1.30	0.20
C10H14O2N1179.09462.4851.300.20C12H12O2N1201.07902.6180.920.17C10H14O2N1179.09462.7551.300.20C10H14O2N1179.09462.8151.300.20C10H14O2N1179.09462.9751.300.20C10H14O2N1179.09463.1951.300.20C10H14O2N1179.09463.8051.300.20C10H14O2N1179.09463.8050.90	C10H17O2N2	196.1212	2.05	4	1.60	0.20
C12H12O2N1201.07902.6180.920.17C10H14O2N1179.09462.7551.300.20C10H14O2N1179.09462.8151.300.20C10H14O2N1179.09462.9751.300.20C10H14O2N1179.09463.1951.300.20C10H14O2N1179.09463.8051.300.20C10H14O2N1179.09463.8050.20C10H14O2N1179.13102.5841.550.09	C10H14O2N1	179.0946	2.48	5	1.30	0.20
C10H14O2N1179.09462.7551.300.20C10H14O2N1179.09462.8151.300.20C10H14O2N1179.09462.9751.300.20C10H14O2N1179.09463.1951.300.20C10H14O2N1179.09463.8051.300.20C10H14O2N1179.09463.8050.20C10H14O2N1179.13102.5841.550.09	C12H12O2N1	201.0790	2.61	8	0.92	0.17
C10H14O2N1179.09462.8151.300.20C10H14O2N1179.09462.9751.300.20C10H14O2N1179.09463.1951.300.20C10H14O2N1179.09463.8051.300.20C10H14O2N1179.13102.5841.550.09	C10H14O2N1	179.0946	2.75	5	1.30	0.20
C10H14O2N1179.09462.9751.300.20C10H14O2N1179.09463.1951.300.20C10H14O2N1179.09463.8051.300.20C11H18O1N1179.13102.5841.550.09	C10H14O2N1	179.0946	2.81	5	1.30	0.20
C10H14O2N1179.09463.1951.300.20C10H14O2N1179.09463.8051.300.20C11H18O1N1179.13102.5841.550.09	C10H14O2N1	179.0946	2.97	5	1.30	0.20
C10H14O2N1179.09463.8051.300.20C11H18O1N1179.13102.5841.550.09	C10H14O2N1	179.0946	3.19	5	1.30	0.20
C11H18O1N1 179.1310 2.58 4 1.55 0.09	C10H14O2N1	179.0946	3.80	5	1.30	0.20
	C11H18O1N1	179.1310	2.58	4	1.55	0.09

C11H18O1N1	179.1310	2.76	4	1.55	0.09
C11H18O1N1	179.1310	2.96	4	1.55	0.09
C11H18O1N1	179.1310	3.08	4	1.55	0.09
C11H18O1N1	179.1310	3.12	4	1.55	0.09
C11H18O1N1	179.1310	3.35	4	1.55	0.09
C9H9O4	180.0423	2.74	6	0.89	0.44
C9H9O4	180.0423	3.10	6	0.89	0.44
C9H9O4	180.0423	3.18	6	0.89	0.44
C8H9O3N2	180.0535	0.38	6	1.00	0.38
C13H9O1	180.0575	7.21	10	0.62	0.08
C13H9O1	180.0575	7.68	10	0.62	0.08
C13H9O1	180.0575	8.22	10	0.62	0.08
C12H9N2	180.0687	3.10	10	0.67	0.00
C12H9N2	180.0687	4.15	10	0.67	0.00
C12H9N2	180.0687	4.41	10	0.67	0.00
C12H9N2	180.0687	3.35	10	0.67	0.00
C10H13O3	180.0786	0.96	5	1.20	0.30
C10H13O3	180.0786	1.48	5	1.20	0.30
C10H13O3	180.0786	2.49	5	1.20	0.30
C10H13O3	180.0786	2.55	5	1 20	0.30
C10H13O3	180.0786	2.82	5	1.20	0.30
C10H13O3	180.0786	2.91	5	1.20	0.30
C10H13O3	180.0786	3.05	5	1.20	0.30
C10H13O3	180.0786	3 23	5	1.20	0.30
C10H13O3	180.0786	3.34	5	1.20	0.30
C10H13O3	180.0786	3 70	5	1.20	0.30
C10H13O3	180.0786	4.22	5	1.20	0.30
C10H13O3	180.0786	4.45	5	1.20	0.30
C10H13O3	180.0786	1.60	5	1.20	0.30
C10H13O3	180.0786	3 20	5	1.20	0.30
C10H13O3	180.0786	4.51	5	1.20	0.30
C9H13O2N2	180.0899	0.45	5	1.33	0.22
C9H13O2N2	180.0899	0.58	5	1 33	0.22
C9H13O2N2	180.0899	0.84	5	1.33	0.22
C9H13O2N2	180.0899	0.88	5	1 33	0.22
C9H13O2N2	180.0899	1 29	5	1 33	0.22
C9H13O2N2	180.0899	1.75	5	1.33	0.22
C9H13O2N2	180.0899	1.98	5	1 33	0.22
C9H13O2N2	180.0899	2.43	5	1 33	0.22
C9H13O2N2	180.0899	2.45	5	1.33	0.22
C9H13O2N2	180.0899	2.50	5	1.33	0.22
C9H13O2N2	180.0899	2.03	5	1 33	0.22
C9H13O2N2	180.0899	2.74	5	1.33	0.22
C10H17O1N2	180 1263	0.90	4	1.60	0.10
C10H17O1N2	180 1263	1 49	4	1.60	0.10
C10H17O1N2	180,1263	1.68	4	1.60	0.10
C10H17O1N2	180 1263	2.48	4	1.60	0.10
C10H17O1N2	180 1263	2.74	4	1.60	0.10
C10H17O1N2	180 1263	2.90	- T 4	1.60	0.10
C10H17O1N2	180 1263	3 11	4	1.60	0.10
010111/01112	100.1200	2.11		1.00	0.10

C10H17O1N2	180.1263	3.20	4	1.60	0.10
C10H17O1N2	180.1263	3.29	4	1.60	0.10
C10H17O1N2	180.1263	3.78	4	1.60	0.10
C11H21N2	180.1626	3.10	3	1.82	0.00
C11H21N2	180.1626	3.23	3	1.82	0.00
C11H21N2	180.1626	3.33	3	1.82	0.00
C11H21N2	180.1626	3.40	3	1.82	0.00
C5H9O1N3Na1S1	159.0466	5.13	3	1.80	0.20
C12H8O1N1	181.0528	4.72	10	0.58	0.08
C12H8O1N1	181.0528	4.88	10	0.58	0.08
C5H12O6N1	181.0586	0.37	1	2.20	1.20
C9H12O3N1	181.0739	0.47	5	1.22	0.33
C9H12O3N1	181.0739	0.72	5	1.22	0.33
C9H12O3N1	181.0739	0.92	5	1.22	0.33
C9H12O3N1	181.0739	1.18	5	1.22	0.33
C9H12O3N1	181.0739	2.07	5	1.22	0.33
C9H12O3N1	181.0739	2.47	5	1.22	0.33
C11H13O2N2	204.0899	2.52	7	1.09	0.18
C9H12O3N1	181.0739	2.64	, 5	1.22	0.33
C13H12N1	181 0891	2.97	9	0.85	0.00
C13H12N1	181.0891	3.06	9	0.85	0.00
C13H12N1	181.0891	3.08	9	0.85	0.00
C13H12N1	181.0891	3.00	9	0.85	0.00
C13H12N1	181.0891	3 33	0	0.85	0.00
C13H12N1	181.0891	3 33	9	0.85	0.00
C13H12N1	181.0891	3.19	0	0.85	0.00
C13H12N1	181.0891	3.63	9	0.85	0.00
C10H16O2N1	181 1103	2.05	1	1.50	0.00
C11H20O1N1	181.1165	2.90 7.18		1.50	0.20
C12H24N1	181.1407	3 20	2	1.73	0.00
C8H7O5	182.0215	1.00	6	0.75	0.63
C12H7O2	102.0213	1.09	10	0.73	0.03
C12H7O2	182.0508	4.47	10	0.30	0.17
C9H1104	182.0379	0.28	5	1.11	0.44
C8H11O3N2	182.0091	0.38	5	1.25	0.38
C8H11O3N2	182.0691	0.05	5	1.25	0.38
C8H11O3N2	182.0691	1.23	5	1.25	0.38
C8H11O3N2	182.0691	2.46	5	1.25	0.38
CI3HIIOI	182.0732	7.68	9	0.77	0.08
CI2HIIN2	182.0844	2.68	9	0.83	0.00
CI2HIIN2	182.0844	2.75	9	0.83	0.00
CI2HIIN2	182.0844	2.86	9	0.83	0.00
CI2HIIN2	182.0844	2.91	9	0.83	0.00
C12H11N2	182.0844	3.10	9	0.83	0.00
C12H11N2	182.0844	3.13	9	0.83	0.00
C12H11N2	182.0844	3.15	9	0.83	0.00
C12H11N2	182.0844	3.32	9	0.83	0.00
C12H11N2	182.0844	3.46	9	0.83	0.00
C9H15O2N2	182.1055	0.58	4	1.56	0.22
C9H15O2N2	182.1055	0.82	4	1.56	0.22
C9H15O2N2	182.1055	0.97	4	1.56	0.22

C9H15O2N2	182.1055	1.13	4	1.56	0.22
C9H15O2N2	182.1055	1.38	4	1.56	0.22
C9H15O2N2	182.1055	1.69	4	1.56	0.22
C9H15O2N2	182.1055	1.92	4	1.56	0.22
C9H15O2N2	182.1055	2.22	4	1.56	0.22
C9H15O2N2	182.1055	2.39	4	1.56	0.22
C9H15O2N2	182.1055	2.53	4	1.56	0.22
C9H15O2N2	182.1055	2.70	4	1.56	0.22
C9H15O2N2	182.1055	2.82	4	1.56	0.22
C9H15O2N2	182.1055	2.87	4	1.56	0.22
C9H15O2N2	182.1055	1.13	4	1.56	0.22
C11H23N2	182.1783	3.16	2	2.00	0.00
C11H23N2	182.1783	3.28	2	2.00	0.00
C11H23N2	182 1783	3 37	2	2.00	0.00
C9H7O2N1Na1	161.0477	2.54	- 7	0.78	0.22
C7H10O3N3	183.0644	0.38	, 5	1 29	0.43
C7H10O3N3	183.0644	0.36	5	1.29	0.43
C12H10O1N1	183.0684	2 54	9	0.75	0.08
C12H10O1N1	183.0684	2.54	9	0.75	0.08
C12H10O1N1	183.0684	2.35	9	0.75	0.08
C12H10O1N1	183.0684	2.75	9	0.75	0.08
C12H10O1N1	183.0684	2.80	0	0.75	0.08
C12H10O1N1	183.0684	2.90	9	0.75	0.08
C12H10O1N1	183.0084	3.00	9	0.75	0.08
C12H10O1N1	103.0004	3.09	9	0.75	0.08
C12H10O1N1	103.0004	3.21	9	0.75	0.08
C12H10OINI	183.0684	3.30	9	0.75	0.08
CI2HI0OINI	183.0084	2.39	9	0.75	0.08
CI2HI0OINI	183.0684	3.87	9	0.75	0.08
CI2HI0OINI	183.0684	3.99	9	0.75	0.08
C12H10O1N1	183.0684	4.26	9	0.75	0.08
C12H10O1N1	183.0684	4.74	9	0.75	0.08
C12H10O1N1	183.0684	5.63	9	0.75	0.08
C12H10O1N1	183.0684	6.87	9	0.75	0.08
C12H10O1N1	183.0684	7.40	9	0.75	0.08
C12H10O1N1	183.0684	7.55	9	0.75	0.08
C12H10O1N1	183.0684	4.04	9	0.75	0.08
C11H10N3	183.0796	2.55	9	0.82	0.00
C13H14N1	183.1048	2.89	8	1.00	0.00
C13H14N1	183.1048	2.98	8	1.00	0.00
C13H14N1	183.1048	3.11	8	1.00	0.00
C13H14N1	183.1048	3.27	8	1.00	0.00
C13H14N1	183.1048	3.27	8	1.00	0.00
C13H14N1	183.1048	3.47	8	1.00	0.00
C13H14N1	183.1048	3.58	8	1.00	0.00
C13H14N1	183.1048	3.74	8	1.00	0.00
C13H14N1	183.1048	3.82	8	1.00	0.00
C13H14N1	183.1048	4.12	8	1.00	0.00
C11H22O1N1	183.1623	2.91	2	1.91	0.09
C12H9O2	184.0524	2.80	9	0.67	0.17
C12H9O2	184.0524	3.47	9	0.67	0.17

C12H9O2	184.0524	4.72	9	0.67	0.17
C12H9O2	184.0524	5.52	9	0.67	0.17
C11H9O1N2	184.0637	0.85	9	0.73	0.09
C11H9O1N2	184.0637	2.43	9	0.73	0.09
C11H9O1N2	184.0637	2.59	9	0.73	0.09
C11H9O1N2	184.0637	2.77	9	0.73	0.09
C11H9O1N2	184.0637	3.12	9	0.73	0.09
C11H9O1N2	184.0637	4.67	9	0.73	0.09
C8H13O3N2	184.0848	0.50	4	1.50	0.38
C8H13O3N2	184.0848	1.16	4	1.50	0.38
C12H13N2	184.1000	2.60	8	1.00	0.00
C12H13N2	184.1000	2.73	8	1.00	0.00
C12H13N2	184.1000	2.76	8	1.00	0.00
C12H13N2	184,1000	3.02	8	1.00	0.00
C12H13N2	184.1000	3.12	8	1.00	0.00
C12H13N2	184 1000	3.16	8	1.00	0.00
C9H17O2N2	184.1212	0.60	3	1.78	0.22
C9H17O2N2	184 1212	0.94	3	1.78	0.22
C9H17O2N2	184 1212	2.65	3	1.78	0.22
C9H17O2N2	184 1212	0.68	3	1.78	0.22
C9H17O2N2	184 1212	2.80	3	1.78	0.22
C5H9O5N1Na1	163 0481	3.01	2	1.70	1.00
C11H8O2N1	185 0477	2.28	9	0.64	0.18
C11H8O2N1	185.0477	3 20	0	0.64	0.18
C11H8O2N1	185.0477	3.40	0	0.64	0.18
C11H8O2N1	185.0477	J.40	0	0.64	0.18
C10H8O1N3	185.0477	4.16	9	0.04	0.18
C12H12O1N1	185.0941	1 22	0	0.70	0.10
C12H12O1N1	105.0041	1.55	0	0.92	0.08
C12H12O1N1	105.0041	1.95	0	0.92	0.08
C12H12O1N1	185.0841	2.19	0	0.92	0.08
CI2HI2OINI	185.0841	2.32	8	0.92	0.08
CI2HI2OINI	185.0841	2.42	8	0.92	0.08
CI2HI2OINI	185.0841	2.51	8	0.92	0.08
CI2HI2OINI	185.0841	2.63	8	0.92	0.08
CI2HI2OINI	185.0841	2.72	8	0.92	0.08
CI2HI2OINI	185.0841	2.80	8	0.92	0.08
CI2HI2OINI	185.0841	2.90	8	0.92	0.08
CI2HI2OINI	185.0841	2.92	8	0.92	0.08
CI2HI2OINI	185.0841	3.00	8	0.92	0.08
CI2HI2OINI	185.0841	3.11	8	0.92	0.08
CI2HI2OINI	185.0841	3.22	8	0.92	0.08
CI2HI2OINI	185.0841	3.41	8	0.92	0.08
CI2HI2OINI	185.0841	3.60	8	0.92	0.08
CI2HI2OINI	185.0841	3.93	8	0.92	0.08
CI2HI2OINI	185.0841	4.39	8	0.92	0.08
C12H12O1N1	185.0841	4.72	8	0.92	0.08
C12H12O1N1	185.0841	4.89	8	0.92	0.08
C12H12O1N1	185.0841	4.98	8	0.92	0.08
C11H12N3	185.0953	2.81	8	1.00	0.00
C13H16N1	185.1204	3.15	7	1.15	0.00

C13H16N1	185.1204	3.23	7	1.15	0.00
C13H16N1	185.1204	3.30	7	1.15	0.00
C13H16N1	185.1204	3.37	7	1.15	0.00
C13H16N1	185.1204	3.42	7	1.15	0.00
C13H16N1	185.1204	3.46	7	1.15	0.00
C13H16N1	185.1204	3.52	7	1.15	0.00
C13H16N1	185.1204	3.62	7	1.15	0.00
C13H16N1	185.1204	3.66	7	1.15	0.00
C13H16N1	185.1204	3.72	7	1.15	0.00
C13H16N1	185.1204	3.81	7	1.15	0.00
C13H16N1	185.1204	3.87	7	1.15	0.00
C13H16N1	185.1204	3.93	7	1.15	0.00
C13H16N1	185.1204	4.01	7	1.15	0.00
C13H16N1	185.1204	4.34	7	1.15	0.00
C12H28N1	185.2143	4.15	0	2.25	0.00
C10H7O2N2	186.0429	3.51	9	0.60	0.20
C6H12O5Na1	164.0685	0.36	1	2.00	0.83
C12H11O2	186.0681	3.60	8	0.83	0.17
C12H11O2	186.0681	7.15	8	0.83	0.17
C12H11O2	186.0681	7.25	8	0.83	0.17
C12H11O2	186.0681	7.43	8	0.83	0.17
C11H11O1N2	186.0793	2.43	8	0.91	0.09
C11H11O1N2	186.0793	2.55	8	0.91	0.09
C11H11O1N2	186.0793	2.73	8	0.91	0.09
C11H11O1N2	186.0793	2.80	8	0.91	0.09
C11H11O1N2	186.0793	2.96	8	0.91	0.09
C11H11O1N2	186.0793	3.06	8	0.91	0.09
C11H11O1N2	186.0793	3.15	8	0.91	0.09
C11H11O1N2	186.0793	3.26	8	0.91	0.09
C11H11O1N2	186.0793	3.38	8	0.91	0.09
C11H11O1N2	186.0793	3.66	8	0.91	0.09
C11H11O1N2	186.0793	3.96	8	0.91	0.09
C12H15N2	186.1157	2.78	7	1.17	0.00
C12H15N2	186.1157	2.89	7	1.17	0.00
C12H15N2	186.1157	2.99	7	1.17	0.00
C12H15N2	186.1157	3.31	7	1.17	0.00
C12H15N2	186.1157	3.37	7	1.17	0.00
C10H19O3	186.1256	5.05	2	1.80	0.30
C9H19O2N2	186.1368	2.51	- 2	2.00	0.22
C7H10O3N1S1	187 0303	0.37	4	1 29	0.43
C11H10O2N1	187.0533	0.61	8	0.82	0.18
C11H10O2N1	187.0633	1 11	8	0.82	0.18
C11H10O2N1	187.0633	2 44	8	0.82	0.18
C11H10O2N1	187.0633	2.44	8	0.82	0.18
C11H10O2N1	187.0633	2.45	8	0.82	0.18
C11H10O2N1	187.0633	2.01	8	0.82	0.18
C11H10O2N1	187 0622	2.02	o Q	0.82	0.10
C11H10O2N1	187.0033	2.03	o Q	0.82	0.10
C11H10O2N1	107.0033	3.05	0	0.82	0.10
	107.0000	2.10	0	0.82	0.10
CHIHI002NI	107.0033	3.12	0	0.82	0.16

C11H10O2N1	187.0633	3.34	8	0.82	0.18
C11H10O2N1	187.0633	3.34	8	0.82	0.18
C8H11O4	170.0579	0.91	4	1.25	0.50
C12H14O1N1	187.0997	2.71	7	1.08	0.08
C12H14O1N1	187.0997	2.82	7	1.08	0.08
C12H14O1N1	187.0997	2.87	7	1.08	0.08
C12H14O1N1	187.0997	2.95	7	1.08	0.08
C12H14O1N1	187.0997	3.03	7	1.08	0.08
C12H14O1N1	187.0997	3.07	7	1.08	0.08
C12H14O1N1	187.0997	3.16	7	1.08	0.08
C12H14O1N1	187.0997	3.33	7	1.08	0.08
C12H14O1N1	187.0997	3.32	7	1.08	0.08
C12H14O1N1	187.0997	3.43	7	1.08	0.08
C12H14O1N1	187.0997	3.49	7	1.08	0.08
C12H14O1N1	187.0997	6.75	7	1.08	0.08
C12H14O1N1	187.0997	7.09	7	1.08	0.08
C12H14O1N1	187.0997	7.11	7	1.08	0.08
C12H14O1N1	187.0997	7.25	7	1.08	0.08
C12H14O1N1	187.0997	7.31	7	1.08	0.08
C12H14O1N1	187.0997	7.49	7	1.08	0.08
C12H14O1N1	187.0997	7.52	7	1.08	0.08
C11H14N3	187.1109	2.61	7	1.18	0.00
C13H18N1	187.1361	3.22	6	1.31	0.00
C13H18N1	187 1361	3.41	6	1 31	0.00
C13H18N1	187 1361	3 46	6	1.31	0.00
C13H18N1	187 1361	3.65	6	1.31	0.00
C13H18N1	187.1361	3.63	6	1.31	0.00
C5H10O6Na1	166.0477	3.57	1	2.00	1.20
C12H13O4	220.0736	3.46	7	1.00	0.33
C11H9O3	188 0473	4 30	8	0.73	0.27
C11H9O3	188.0473	6 54	8	0.73	0.27
C10H9O2N2	188.0586	0.49	8	0.79	0.27
C8H13O5	188.0685	0.49	3	1.50	0.20
C8H13O5	188.0685	0.78	3	1.50	0.63
C8H13O5	188.0685	2.57	3	1.50	0.63
C12H13O2	188 0837	3.82	7	1.00	0.03
C12H13O2	188 0837	4.00	7	1.00	0.17
C12H13O2	188.0837	4.00	7	1.00	0.17
C12H13O2	188.0837	4.15	7	1.00	0.17
C12H13O2	188.0837	4.20	7	1.00	0.17
C12H13O2	188.0837	4.00	7	1.00	0.17
C12H13O2	199.0927	4.09	7	1.00	0.17
C12H13O2	100.0037	4.74	7	1.00	0.17
C12H13O2	100.0037	4.90 5.06	7	1.00	0.17
C12H13O2	100.0007	5.00	7	1.00	0.17
C12H13O2	100.0037	5.15	7	1.00	0.17
C12H13O2	100.0007	5.24 5.29	1	1.00	0.17
C12H13O2	100.003/	J.J8	1	1.00	0.17
C12H13O2	188.0837	5.84	/	1.00	0.17
C12H13O2	188.0837	6.46	/	1.00	0.17
C12H13O2	188.0837	6.69	/	1.00	0.17

C12H13O2	188.0837	6.84	7	1.00	0.17
C12H13O2	188.0837	7.09	7	1.00	0.17
C12H13O2	188.0837	7.33	7	1.00	0.17
C12H13O2	188.0837	7.49	7	1.00	0.17
C12H13O2	188.0837	7.62	7	1.00	0.17
C12H13O2	188.0837	7.79	7	1.00	0.17
C12H13O2	188.0837	7.88	7	1.00	0.17
C12H13O2	188.0837	8.03	7	1.00	0.17
C12H13O2	188.0837	8.11	7	1.00	0.17
C11H13O1N2	188.0950	0.88	7	1.09	0.09
C11H13O1N2	188.0950	1.15	7	1.09	0.09
C11H13O1N2	188.0950	1.25	7	1.09	0.09
C11H13O1N2	188.0950	1.37	7	1.09	0.09
C11H13O1N2	188.0950	1.54	7	1.09	0.09
C11H13O1N2	188.0950	1.59	7	1.09	0.09
C11H13O1N2	188.0950	1.68	7	1.09	0.09
C11H13O1N2	188.0950	2.39	7	1.09	0.09
C11H13O1N2	188.0950	2.45	7	1.09	0.09
C11H13O1N2	188.0950	2.77	7	1.09	0.09
C11H13O1N2	188.0950	2.80	7	1.09	0.09
C11H13O1N2	188.0950	3.10	7	1.09	0.09
C11H13O1N2	188,0950	3.37	7	1.09	0.09
C11H13O1N2	188.0950	3.88	7	1.09	0.09
C8H17O3N2	188 1161	0.33	2	2.00	0.38
C12H17N2	188,1313	3.05	- 6	1.33	0.00
C12H17N2	188 1313	3 31	6	1 33	0.00
C12H17N2	188,1313	3.39	6	1.33	0.00
C12H17N2	188,1313	3.46	6	1.33	0.00
C12H17N2	188,1313	3.63	6	1.33	0.00
C6H8O4N1S1	189,0096	0.74	4	1.17	0.67
C11H12O2N1	189.0790	0.56	7	1.00	0.18
C11H12O2N1	189.0790	2 52	, 7	1.00	0.18
C11H12O2N1	189.0790	2.52	, 7	1.00	0.18
C11H12O2N1	189.0790	2.50	7	1.00	0.18
C11H12O2N1	189.0790	2.37	7	1.00	0.18
C11H12O2N1	189.0790	2.05	7	1.00	0.18
C11H12O2N1	189.0790	3.24	7	1.00	0.18
C11H12O2N1	189.0790	3 35	7	1.00	0.18
C11H12O2N1	189.0790	3 38	7	1.00	0.18
C11H12O2N1	189.0790	3.30	7	1.00	0.18
C11H12O2N1	189.0790	3.45	7	1.00	0.18
C11H12O2N1	189.0790	3.01	7	1.00	0.18
C11H12O2N1	189.0790	3.72	7	1.00	0.18
C11H12O2N1	189.0790	7 22	7	1.00	0.18
CPH16O4N1	189.0790	0.38	2	1.00	0.18
C12U16O1N1	107.1001	0.30	۲ ۲	1.00	0.30
C12H16O1N1	107.1134	2.0/	0 E	1.23	0.08
C12H10UINI	189.1154	3.17 2.29	0	1.25	0.08
C12H10UINI	189.1154	3.38 2.55	0	1.25	0.08
CI2HIOUINI	189.1154	3.33	0	1.25	0.08
CI2HI6UINI	189.1154	6.56	6	1.25	0.08

C12H16O1N1	189.1154	7.33	6	1.25	0.08
C12H16O1N1	189.1154	7.44	6	1.25	0.08
C12H16O1N1	189.1154	7.51	6	1.25	0.08
C11H16N3	189.1266	2.50	6	1.36	0.00
C11H16N3	189.1266	2.57	6	1.36	0.00
C11H16N3	189.1266	2.66	6	1.36	0.00
C11H16N3	189.1266	2.74	6	1.36	0.00
C11H16N3	189.1266	2.83	6	1.36	0.00
C11H16N3	189.1266	2.95	6	1.36	0.00
C13H20N1	189.1517	3.38	5	1.46	0.00
C13H20N1	189.1517	3.50	5	1.46	0.00
C13H20N1	189.1517	3.64	5	1.46	0.00
C13H20N1	189.1517	3.82	5	1.46	0.00
C13H20N1	189.1517	4.09	5	1.46	0.00
C9H7O3N2	190.0378	2.77	8	0.67	0.33
C6H11O3N2S1	190.0412	0.39	3	1.67	0.50
C11H8N2Na1	168.0687	0.49	9	0.73	0.00
C7H7O1N6	190.0603	2.84	8	0.86	0.14
C11H11O3	190.0630	3.64	7	0.91	0.27
C11H11O3	190.0630	3.94	7	0.91	0.27
C11H11O3	190.0630	4.03	7	0.91	0.27
C11H11O3	190.0630	4.10	7	0.91	0.27
C11H11O3	190.0630	4.26	7	0.91	0.27
C11H11O3	190.0630	4.35	7	0.91	0.27
C11H11O3	190.0630	4.48	7	0.91	0.27
C11H11O3	190.0630	4.90	7	0.91	0.27
C11H11O3	190.0630	5.07	7	0.91	0.27
C11H11O3	190.0630	5.24	7	0.91	0.27
C11H11O3	190.0630	5.37	7	0.91	0.27
C11H11O3	190.0630	5.46	7	0.91	0.27
C11H11O3	190.0630	5.63	7	0.91	0.27
C11H11O3	190.0630	5.71	7	0.91	0.27
C11H1103	190.0630	6.15	7	0.91	0.27
C11H1103	190.0630	6 64	, 7	0.91	0.27
C11H15O3N2	222 1004	0.57	6	1.27	0.27
C10H11O2N2	190.0742	1 59	7	1.00	0.20
C10H11O2N2	190.0742	1.81	, 7	1.00	0.20
C10H11O2N2	190.0742	2.26	, 7	1.00	0.20
C10H11O2N2	190.0742	2.20	, 7	1.00	0.20
C10H11O2N2	190.0742	2.55	, 7	1.00	0.20
C10H11O2N2	190.0742	2.55	, 7	1.00	0.20
C10H11O2N2	190.0742	3.02	7	1.00	0.20
C10H11O2N2	190.0742	3.02	7	1.00	0.20
C12H15O2	190.094	3.14	6	1.00	0.17
C12H15O2	190.0994	3.14	6	1.17	0.17
C12H15O2	100.0004	5.82	6	1.17	0.17
C12H15O2	100.0224	5.02 6.04	6	1.17	0.17
C12H15O2	190.0994	6.62	6	1.17	0.17
C12H15O2	100.0004	6.74	U E	1.17	0.17
C12H15O2	190.0994	0./0	D C	1.17	0.17
C12H15O2	190.0994	0.80	b	1.1/	0.17

C12H15O2	190.0994	6.94	6	1.17	0.17
C12H15O2	190.0994	7.08	6	1.17	0.17
C12H15O2	190.0994	7.17	6	1.17	0.17
C12H15O2	190.0994	7.29	6	1.17	0.17
C12H15O2	190.0994	7.36	6	1.17	0.17
C11H15O1N2	190.1106	1.13	6	1.27	0.09
C11H13N2	172.1000	2.47	7	1.09	0.00
C11H15O1N2	190.1106	2.59	6	1.27	0.09
C11H15O1N2	190.1106	2.77	6	1.27	0.09
C11H15O1N2	190.1106	2.89	6	1.27	0.09
C11H15O1N2	190.1106	3.02	6	1.27	0.09
C11H15O1N2	190.1106	3.23	6	1.27	0.09
C12H19N2	190.1470	3.16	5	1.50	0.00
C12H19N2	190.1470	3.21	5	1.50	0.00
C10H10O3N1	191.0582	2.95	7	0.90	0.30
C11H14O2N1	191.0946	2.61	6	1.18	0.18
C11H14O2N1	191.0946	2.76	6	1.18	0.18
C11H14O2N1	191.0946	2.91	6	1.18	0.18
C11H14O2N1	191.0946	3.03	6	1.18	0.18
C11H12O1N1	173.0841	3.19	7	1.00	0.09
C11H14O2N1	191.0946	3.32	6	1.18	0.18
C11H14O2N1	191.0946	3.53	6	1.18	0.18
C10H14O1N3	191.1059	0.86	6	1.30	0.10
C10H14O1N3	191.1059	0.98	6	1.30	0.10
C10H14O1N3	191.1059	1.16	6	1.30	0.10
C10H14O1N3	191.1059	1.33	6	1.30	0.10
C10H14O1N3	191.1059	2.48	6	1.30	0.10
C12H18O1N1	191.1310	2.46	5	1.42	0.08
C12H18O1N1	191.1310	2.60	5	1.42	0.08
C12H18O1N1	191.1310	2.75	5	1.42	0.08
C12H18O1N1	191.1310	3.07	5	1.42	0.08
C12H18O1N1	191.1310	3.11	5	1.42	0.08
C12H18O1N1	191.1310	7.49	5	1.42	0.08
C12H18O1N1	191.1310	7.52	5	1.42	0.08
C13H22N1	191.1674	4.05	4	1.62	0.00
C13H22N1	191.1674	4.30	4	1.62	0.00
C10H9O4	192.0423	2.79	7	0.80	0.40
C10H9O4	192.0423	2.83	7	0.80	0.40
C10H9O4	192.0423	3.00	7	0.80	0.40
C10H9O4	192.0423	3.08	7	0.80	0.40
C10H9O4	192.0423	3.12	7	0.80	0.40
C10H9O4	192.0423	3.26	7	0.80	0.40
C10H9O4	192.0423	3.63	7	0.80	0.40
C10H9O4	192.0423	3.77	7	0.80	0.40
C10H9O4	192.0423	4.08	7	0.80	0.40
C13H9N2	192.0687	2.71	11	0.62	0.00
C13H9N2	192.0687	2.78	11	0.62	0.00
C13H9N2	192.0687	2.78	11	0.62	0.00
C11H13O3	192.0786	2.14	6	1.09	0.27
C13H14O2N1	215.0946	2.48	8	1.00	0.15

C11H1303 192.0786 3.44 6 1.09 0.27 C11H1303 192.0786 3.53 6 1.09 0.27 C11H1303 192.0786 3.53 6 1.09 0.27 C11H1303 192.0786 3.71 6 1.09 0.27 C11H1303 192.0786 3.79 6 1.09 0.27 C11H1303 192.0786 4.24 6 1.09 0.27 C11H1303 192.0786 4.63 6 1.09 0.27 C11H1303 192.0786 4.63 6 1.09 0.27 C11H1303 192.0786 4.85 6 1.09 0.27 C11H1303 192.0786 4.85 6 1.09 0.27 C11H1303 192.0786 4.85 6 1.09 0.27 C10H1302N2 192.0899 0.75 6 1.20 0.20 C10H1302N2 192.0899 2.51 6 1.20 0.20						
C11H13O3 192.0786 3.47 6 1.09 0.27 C11H13O3 192.0786 3.53 6 1.09 0.27 C11H13O3 192.0786 3.71 6 1.09 0.27 C11H13O3 192.0786 3.79 6 1.09 0.27 C11H13O3 192.0786 4.24 6 1.09 0.27 C11H13O3 192.0786 4.41 6 1.09 0.27 C11H13O3 192.0786 4.43 6 1.09 0.27 C11H13O3 192.0786 4.85 6 1.09 0.27 C11H13O3 192.0786 4.85 6 1.09 0.27 C1H13O3 192.0786 4.85 6 1.09 0.27 C1H13O3 192.0786 4.85 6 1.09 0.20 C10H13O2N2 192.0899 0.75 6 1.20 0.20 C10H13O2N2 192.0899 2.52 6 1.20 0.20	C11H13O3	192.0786	3.34	6	1.09	0.27
C11H1303 192.0786 3.53 6 1.09 0.27 C11H1303 192.0786 3.71 6 1.09 0.27 C11H1303 192.0786 3.79 6 1.09 0.27 C11H1303 192.0786 4.24 6 1.09 0.27 C11H1303 192.0786 4.24 6 1.09 0.27 C11H1303 192.0786 4.63 6 1.09 0.27 C11H1303 192.0786 4.79 6 1.09 0.27 C11H1303 192.0786 5.89 6 1.09 0.27 C11H1303 192.0786 5.89 6 1.09 0.27 C10H1302N2 192.0899 0.60 6 1.20 0.20 C10H1302N2 192.0899 2.52 6 1.20 0.20 C10H1302N2 192.0899 2.61 6 1.20 0.20 C10H1302N2 192.0899 2.79 6 1.20 0.20	C11H13O3	192.0786	3.47	6	1.09	0.27
C11H1303 192.0786 3.65 6 1.09 0.27 C11H1303 192.0786 3.71 6 1.09 0.27 C11H1303 192.0786 4.24 6 1.09 0.27 C11H1303 192.0786 4.29 6 1.09 0.27 C11H1303 192.0786 4.63 6 1.09 0.27 C11H1303 192.0786 4.63 6 1.09 0.27 C11H1303 192.0786 4.85 6 1.09 0.27 C11H1303 192.0786 4.85 6 1.09 0.27 C11H1303 192.0786 4.85 6 1.09 0.27 C10H1302N2 192.0899 0.75 6 1.20 0.20 C10H1302N2 192.0899 2.61 6 1.20 0.20 C10H1302N2 192.0899 2.61 6 1.20 0.20 C10H1302N2 192.0899 2.61 6 1.00 0.00	C11H13O3	192.0786	3.53	6	1.09	0.27
C11H1303 192.0786 3.71 6 1.09 0.27 C11H1303 192.0786 3.79 6 1.09 0.27 C11H1303 192.0786 4.24 6 1.09 0.27 C11H1303 192.0786 4.41 6 1.09 0.27 C11H1303 192.0786 4.63 6 1.09 0.27 C11H1303 192.0786 4.85 6 1.09 0.27 C11H1303 192.0786 4.85 6 1.09 0.27 C11H1303 192.0786 5.89 6 1.09 0.27 C10H1302N2 192.0899 0.75 6 1.20 0.20 C10H1302N2 192.0899 2.52 6 1.20 0.20 C10H1302N2 192.0899 2.79 6 1.20 0.20 C10H1302N2 192.1626 3.25 4 1.67 0.00 C12H21N2 192.1626 3.373 4 1.67 0.00 <tr< td=""><td>C11H13O3</td><td>192.0786</td><td>3.65</td><td>6</td><td>1.09</td><td>0.27</td></tr<>	C11H13O3	192.0786	3.65	6	1.09	0.27
C11H1303 192.0786 3.79 6 1.09 0.27 C11H1303 192.0786 4.24 6 1.09 0.27 C11H1303 192.0786 4.41 6 1.09 0.27 C11H1303 192.0786 4.63 6 1.09 0.27 C11H1303 192.0786 4.79 6 1.09 0.27 C11H1303 192.0786 4.88 6 1.09 0.27 C11H1303 192.0786 5.89 6 1.09 0.27 C10H1302N2 192.0899 0.60 6 1.20 0.20 C10H1302N2 192.0899 2.52 6 1.20 0.20 C10H1302N2 192.0899 2.51 6 1.20 0.20 C10H1302N2 192.0899 2.52 6 1.20 0.20 C10H1302N2 192.0899 2.51 6 1.20 0.20 C12H21N2 192.1626 3.33 4 1.67 0.00 <t< td=""><td>C11H13O3</td><td>192.0786</td><td>3.71</td><td>6</td><td>1.09</td><td>0.27</td></t<>	C11H13O3	192.0786	3.71	6	1.09	0.27
C11H13O3 192.0786 4.24 6 1.09 0.27 C11H13O3 192.0786 4.41 6 1.09 0.27 C11H13O3 192.0786 4.63 6 1.09 0.27 C11H13O3 192.0786 4.79 6 1.09 0.27 C11H13O3 192.0786 4.85 6 1.09 0.27 C11H13O3 192.0786 5.89 6 1.09 0.27 C10H13O2N2 192.0899 0.60 6 1.20 0.20 C10H13O2N2 192.0899 2.52 6 1.20 0.20 C10H13O2N2 192.0899 2.52 6 1.20 0.20 C10H13O2N2 192.0899 2.79 6 1.20 0.20 C12H21N2 192.1626 3.33 4 1.67 0.00 C12H21N2 192.1626 3.58 4 1.67 0.00 C12H21N2 192.1626 3.58 4 1.67 0.00	C11H13O3	192.0786	3.79	6	1.09	0.27
C11H13O3 192.0786 4.29 6 1.09 0.27 C11H13O3 192.0786 4.63 6 1.09 0.27 C11H13O3 192.0786 4.79 6 1.09 0.27 C11H13O3 192.0786 4.85 6 1.09 0.27 C11H13O3 192.0786 5.89 6 1.09 0.27 C10H13O2N2 192.0899 0.60 6 1.20 0.20 C10H13O2N2 192.0899 2.52 6 1.20 0.20 C10H13O2N2 192.0899 2.79 6 1.20 0.20 C10H13O2N2 192.0899 2.79 6 1.20 0.20 C10H13O2N2 192.1626 3.25 4 1.67 0.00 C12H21N2 192.1626 3.58 4 1.67 0.00 C12H21N2 192.1626 3.85 4 1.67 0.00 C12H21N2 192.1626 3.85 4 1.67 0.00 <t< td=""><td>C11H13O3</td><td>192.0786</td><td>4.24</td><td>6</td><td>1.09</td><td>0.27</td></t<>	C11H13O3	192.0786	4.24	6	1.09	0.27
C11H13O3 192.0786 4.41 6 1.09 0.27 C11H13O3 192.0786 4.63 6 1.09 0.27 C11H13O3 192.0786 4.85 6 1.09 0.27 C11H13O3 192.0786 5.89 6 1.09 0.27 C10H13O2N2 192.0899 0.60 6 1.20 0.20 C10H13O2N2 192.0899 0.75 6 1.20 0.20 C10H13O2N2 192.0899 2.52 6 1.20 0.20 C10H13O2N2 192.0899 2.61 6 1.20 0.20 C10H13O2N2 192.0899 2.61 6 1.20 0.20 C12H21N2 192.1626 3.33 4 1.67 0.00 C12H21N2 192.1626 3.73 4 1.67 0.00 C12H21N2 192.1626 3.73 4 1.67 0.00 C12H21N2 192.1626 3.78 4 1.67 0.00 <t< td=""><td>C11H13O3</td><td>192.0786</td><td>4.29</td><td>6</td><td>1.09</td><td>0.27</td></t<>	C11H13O3	192.0786	4.29	6	1.09	0.27
C11H13O3 192.0786 4.63 6 1.09 0.27 C11H13O3 192.0786 4.79 6 1.09 0.27 C11H13O3 192.0786 4.85 6 1.09 0.27 C11H13O3 192.0786 5.89 6 1.09 0.27 C10H13O2N2 192.0899 0.60 6 1.20 0.20 C10H13O2N2 192.0899 1.04 6 1.20 0.20 C10H13O2N2 192.0899 2.52 6 1.20 0.20 C10H13O2N2 192.0899 2.79 6 1.20 0.20 C12H21N2 192.1626 3.33 4 1.67 0.00 C12H21N2 192.1626 3.73 4 1.67 0.00 C12H21N2 192.1626 3.73 4 1.67 0.00 C12H21N2 192.1626 3.73 4 1.67 0.00 C12H21N2 192.1626 3.79 6 1.10 0.30	C11H13O3	192.0786	4.41	6	1.09	0.27
C11H13O3 192.0786 4.79 6 1.09 0.27 C11H13O3 192.0786 4.85 6 1.09 0.27 C11H13O2N2 192.0899 0.60 6 1.20 0.20 C10H13O2N2 192.0899 0.75 6 1.20 0.20 C10H13O2N2 192.0899 2.61 6 1.20 0.20 C10H13O2N2 192.0899 2.61 6 1.20 0.20 C10H13O2N2 192.0899 2.79 6 1.20 0.20 C12H21N2 192.1626 3.25 4 1.67 0.00 C12H21N2 192.1626 3.73 4 1.67 0.00 C12H21N2 192.1626 3.73 4 1.67 0.00 C12H21N2 192.1626 3.85 4 1.67 0.00 C10H12O3N1 193.0739 2.78 6 1.10 0.30 C10H12O3N1 193.0739 2.87 6 1.10 0.30	C11H13O3	192.0786	4.63	6	1.09	0.27
C11H13O3 192.0786 4.85 6 1.09 0.27 C10H13O2N2 192.0899 0.60 6 1.20 0.20 C10H13O2N2 192.0899 0.75 6 1.20 0.20 C10H13O2N2 192.0899 0.75 6 1.20 0.20 C10H13O2N2 192.0899 2.52 6 1.20 0.20 C10H13O2N2 192.0899 2.79 6 1.20 0.20 C10H13O2N2 192.1626 3.25 4 1.67 0.00 C12H21N2 192.1626 3.73 4 1.67 0.00 C12H21N2 192.1626 3.73 4 1.67 0.00 C12H21N2 192.1626 3.85 4 1.67 0.00 C10H12O3N1 193.0739 2.78 6 1.10 0.30 C10H12O3N1 193.0739 2.87 6 1.10 0.30 C14H12N1 193.0891 3.03 10 0.79 0.00	C11H13O3	192.0786	4.79	6	1.09	0.27
C11H13O3 192.0786 5.89 6 1.09 0.27 C10H13O2N2 192.0899 0.60 6 1.20 0.20 C10H13O2N2 192.0899 1.04 6 1.20 0.20 C10H13O2N2 192.0899 2.52 6 1.20 0.20 C10H13O2N2 192.0899 2.79 6 1.20 0.20 C10H13O2N2 192.1626 3.33 4 1.67 0.00 C12H21N2 192.1626 3.33 4 1.67 0.00 C12H21N2 192.1626 3.73 4 1.67 0.00 C12H21N2 192.1626 3.73 4 1.67 0.00 C12H21N2 192.1626 3.99 4 1.67 0.00 C10H12O3N1 193.0739 2.78 6 1.10 0.30 C10H12O3N1 193.0739 2.87 6 1.10 0.30 C10H12O3N1 193.0891 3.12 10 0.79 0.00	C11H13O3	192.0786	4.85	6	1.09	0.27
C10H1302N2 192.0899 0.60 6 1.20 0.20 C10H1302N2 192.0899 0.75 6 1.20 0.20 C10H1302N2 192.0899 2.52 6 1.20 0.20 C10H1302N2 192.0899 2.61 6 1.20 0.20 C10H1302N2 192.0899 2.61 6 1.20 0.20 C12H21N2 192.1626 3.25 4 1.67 0.00 C12H21N2 192.1626 3.73 4 1.67 0.00 C12H21N2 192.1626 3.73 4 1.67 0.00 C12H21N2 192.1626 3.73 4 1.67 0.00 C12H21N2 192.1626 3.85 4 1.67 0.00 C10H1203N1 193.0739 2.87 6 1.10 0.30 C10H1203N1 193.0739 2.87 6 1.10 0.30 C14H12N1 193.0891 3.03 10 0.79 0.00	C11H13O3	192.0786	5.89	6	1.09	0.27
C10H1302N2 192.0899 0.75 6 1.20 0.20 C10H1302N2 192.0899 1.04 6 1.20 0.20 C10H1302N2 192.0899 2.52 6 1.20 0.20 C10H1302N2 192.0899 2.79 6 1.20 0.20 C12H21N2 192.1626 3.25 4 1.67 0.00 C12H21N2 192.1626 3.33 4 1.67 0.00 C12H21N2 192.1626 3.73 4 1.67 0.00 C12H21N2 192.1626 3.85 4 1.67 0.00 C12H21N2 192.1626 3.85 4 1.67 0.00 C10H1203N1 193.0739 2.78 6 1.10 0.30 C10H1203N1 193.0739 2.87 6 1.10 0.30 C14H12N1 193.0891 3.12 10 0.79 0.00 C14H12N1 193.0891 3.52 10 0.79 0.00	C10H13O2N2	192.0899	0.60	6	1.20	0.20
C10H1302N2 192.0899 1.04 6 1.20 0.20 C10H1302N2 192.0899 2.52 6 1.20 0.20 C10H1302N2 192.0899 2.61 6 1.20 0.20 C10H1302N2 192.0899 2.79 6 1.20 0.20 C12H21N2 192.1626 3.25 4 1.67 0.00 C12H21N2 192.1626 3.58 4 1.67 0.00 C12H21N2 192.1626 3.73 4 1.67 0.00 C12H21N2 192.1626 3.85 4 1.67 0.00 C12H21N2 192.1626 3.85 4 1.67 0.00 C10H12O3N1 193.0739 0.39 6 1.10 0.30 C10H12O3N1 193.0739 2.87 6 1.10 0.30 C14H12N1 193.0891 3.12 10 0.79 0.00 C14H12N1 193.0891 3.32 10 0.79 0.00	C10H13O2N2	192.0899	0.75	6	1.20	0.20
C10H1302N2 192.0899 2.52 6 1.20 0.20 C10H1302N2 192.0899 2.61 6 1.20 0.20 C10H1302N2 192.0899 2.79 6 1.20 0.20 C12H21N2 192.1626 3.25 4 1.67 0.00 C12H21N2 192.1626 3.33 4 1.67 0.00 C12H21N2 192.1626 3.73 4 1.67 0.00 C12H21N2 192.1626 3.85 4 1.67 0.00 C10H1203N1 193.0739 0.39 6 1.10 0.30 C10H1203N1 193.0739 2.87 6 1.10 0.30 C10H1203N1 193.0739 2.87 6 1.10 0.30 C14H12N1 193.0891 3.03 10 0.79 0.00 C14H12N1 193.0891 3.25 10 0.79 0.00 C14H12N1 193.0891 3.53 10 0.79 0.00	C10H13O2N2	192.0899	1.04	6	1.20	0.20
C10H1302N2 192.0899 2.61 6 1.20 0.20 C10H1302N2 192.0899 2.79 6 1.20 0.20 C12H21N2 192.1626 3.25 4 1.67 0.00 C12H21N2 192.1626 3.58 4 1.67 0.00 C12H21N2 192.1626 3.73 4 1.67 0.00 C12H21N2 192.1626 3.73 4 1.67 0.00 C12H21N2 192.1626 3.85 4 1.67 0.00 C10H1203N1 193.0739 2.78 6 1.10 0.30 C10H1203N1 193.0739 2.87 6 1.10 0.30 C14H12N1 193.0891 3.03 10 0.79 0.00 C14H12N1 193.0891 3.25 10 0.79 0.00 C14H12N1 193.0891 3.53 10 0.79 0.00 C14H12N1 193.0891 3.50 10 0.79 0.00	C10H13O2N2	192.0899	2.52	6	1.20	0.20
C10H1302N2 192.0899 2.79 6 1.20 0.20 C12H21N2 192.1626 3.25 4 1.67 0.00 C12H21N2 192.1626 3.33 4 1.67 0.00 C12H21N2 192.1626 3.58 4 1.67 0.00 C12H21N2 192.1626 3.73 4 1.67 0.00 C12H21N2 192.1626 3.85 4 1.67 0.00 C10H12O3N1 193.0739 0.39 6 1.10 0.30 C10H12O3N1 193.0739 2.87 6 1.10 0.30 C10H12O3N1 193.0739 2.87 6 1.10 0.30 C14H12N1 193.0891 3.03 10 0.79 0.00 C14H12N1 193.0891 3.25 10 0.79 0.00 C14H12N1 193.0891 3.53 10 0.79 0.00 C14H12N1 193.0891 3.67 10 0.79 0.00	C10H13O2N2	192.0899	2.61	6	1.20	0.20
C12H21N2 192.1626 3.25 4 1.67 0.00 C12H21N2 192.1626 3.33 4 1.67 0.00 C12H21N2 192.1626 3.58 4 1.67 0.00 C12H21N2 192.1626 3.73 4 1.67 0.00 C12H21N2 192.1626 3.85 4 1.67 0.00 C12H21N2 192.1626 3.85 4 1.67 0.00 C10H1203N1 193.0739 0.39 6 1.10 0.30 C10H1203N1 193.0739 2.87 6 1.10 0.30 C14H12N1 193.0891 3.03 10 0.79 0.00 C14H12N1 193.0891 3.25 10 0.79 0.00 C14H12N1 193.0891 3.53 10 0.79 0.00 C14H12N1 193.0891 3.67 10 0.79 0.00 C14H12N1 193.0891 3.67 10 0.79 0.00 <tr< td=""><td>C10H13O2N2</td><td>192.0899</td><td>2.79</td><td>6</td><td>1.20</td><td>0.20</td></tr<>	C10H13O2N2	192.0899	2.79	6	1.20	0.20
C12H21N2 192.1626 3.33 4 1.67 0.00 C12H21N2 192.1626 3.58 4 1.67 0.00 C12H21N2 192.1626 3.73 4 1.67 0.00 C12H21N2 192.1626 3.85 4 1.67 0.00 C12H21N2 192.1626 3.99 4 1.67 0.00 C10H12O3N1 193.0739 0.39 6 1.10 0.30 C10H12O3N1 193.0739 2.78 6 1.10 0.30 C14H12N1 193.0891 3.03 10 0.79 0.00 C14H12N1 193.0891 3.12 10 0.79 0.00 C14H12N1 193.0891 3.25 10 0.79 0.00 C14H12N1 193.0891 3.53 10 0.79 0.00 C14H12N1 193.0891 3.67 10 0.79 0.00 C14H12N1 193.0891 3.67 10 0.79 0.00 <t< td=""><td>C12H21N2</td><td>192.1626</td><td>3.25</td><td>4</td><td>1.67</td><td>0.00</td></t<>	C12H21N2	192.1626	3.25	4	1.67	0.00
C12H21N2 192.1626 3.58 4 1.67 0.00 C12H21N2 192.1626 3.73 4 1.67 0.00 C12H21N2 192.1626 3.85 4 1.67 0.00 C12H21N2 192.1626 3.99 4 1.67 0.00 C10H12O3N1 193.0739 0.39 6 1.10 0.30 C10H12O3N1 193.0739 2.87 6 1.10 0.30 C14H12N1 193.0891 3.03 10 0.79 0.00 C14H12N1 193.0891 3.12 10 0.79 0.00 C14H12N1 193.0891 3.25 10 0.79 0.00 C14H12N1 193.0891 3.53 10 0.79 0.00 C14H12N1 193.0891 3.67 10 0.79 0.00 C14H12N1 193.0891 4.03 10 0.79 0.00 C14H12N1 193.0891 4.03 10 0.79 0.00 <	C12H21N2	192.1626	3.33	4	1.67	0.00
C12H21N2 192.1626 3.73 4 1.67 0.00 C12H21N2 192.1626 3.85 4 1.67 0.00 C12H21N2 192.1626 3.99 4 1.67 0.00 C10H12O3N1 193.0739 0.39 6 1.10 0.30 C10H12O3N1 193.0739 2.78 6 1.10 0.30 C10H12O3N1 193.0739 2.87 6 1.10 0.30 C14H12N1 193.0891 3.03 10 0.79 0.00 C14H12N1 193.0891 3.25 10 0.79 0.00 C14H12N1 193.0891 3.53 10 0.79 0.00 C14H12N1 193.0891 3.67 10 0.79 0.00 C14H12N1 193.0891 3.67 10 0.79 0.00 C14H12N1 193.0891 3.67 10 0.79 0.00 C14H12N1 193.0891 4.03 10 0.79 0.00	C12H21N2	192.1626	3.58	4	1.67	0.00
C12H21N2 192.1626 3.85 4 1.67 0.00 C12H21N2 192.1626 3.99 4 1.67 0.00 C10H12O3N1 193.0739 0.39 6 1.10 0.30 C10H12O3N1 193.0739 2.78 6 1.10 0.30 C10H12O3N1 193.0739 2.87 6 1.10 0.30 C14H12N1 193.0891 3.03 10 0.79 0.00 C14H12N1 193.0891 3.25 10 0.79 0.00 C14H12N1 193.0891 3.25 10 0.79 0.00 C14H12N1 193.0891 3.53 10 0.79 0.00 C14H12N1 193.0891 3.67 10 0.79 0.00 C14H12N1 193.0891 3.80 10 0.79 0.00 C14H12N1 193.0891 4.03 10 0.79 0.00 C14H12N1 193.0891 4.03 10 0.79 0.00	C12H21N2	192.1626	3.73	4	1.67	0.00
C12H21N2 192.1626 3.99 4 1.67 0.00 C10H12O3N1 193.0739 0.39 6 1.10 0.30 C10H12O3N1 193.0739 2.78 6 1.10 0.30 C10H12O3N1 193.0739 2.87 6 1.10 0.30 C10H12O3N1 193.0739 2.87 6 1.10 0.30 C14H12N1 193.0891 3.03 10 0.79 0.00 C14H12N1 193.0891 3.25 10 0.79 0.00 C14H12N1 193.0891 3.53 10 0.79 0.00 C14H12N1 193.0891 3.67 10 0.79 0.00 C14H12N1 193.0891 3.67 10 0.79 0.00 C14H12N1 193.0891 3.80 10 0.79 0.00 C14H12N1 193.0891 4.03 10 0.79 0.00 C14H12N1 193.0891 4.37 10 0.79 0.00	C12H21N2	192.1626	3.85	4	1.67	0.00
C10H12O3N1193.07390.3961.100.30C10H12O3N1193.07392.7861.100.30C10H12O3N1193.07392.8761.100.30C14H12N1193.08913.03100.790.00C14H12N1193.08913.12100.790.00C14H12N1193.08913.25100.790.00C14H12N1193.08913.32100.790.00C14H12N1193.08913.53100.790.00C14H12N1193.08913.67100.790.00C14H12N1193.08913.67100.790.00C14H12N1193.08913.67100.790.00C14H12N1193.08913.80100.790.00C14H12N1193.08913.90100.790.00C14H12N1193.08914.03100.790.00C14H12N1193.08914.21100.790.00C14H12N1193.08915.05100.790.00C14H12N1193.08915.05100.790.00C14H12N1193.08915.05100.790.00C14H12N1193.08916.13100.790.00C14H12N1193.08916.51100.790.00C14H12N1193.08916.51100.790.00C14H12N1193.08917.71100.790.0	C12H21N2	192.1626	3.99	4	1.67	0.00
C10H12O3N1193.07392.7861.100.30C10H12O3N1193.07392.8761.100.30C14H12N1193.08913.03100.790.00C14H12N1193.08913.12100.790.00C14H12N1193.08913.25100.790.00C14H12N1193.08913.32100.790.00C14H12N1193.08913.53100.790.00C14H12N1193.08913.67100.790.00C14H12N1193.08913.67100.790.00C14H12N1193.08913.80100.790.00C14H12N1193.08913.90100.790.00C14H12N1193.08914.03100.790.00C14H12N1193.08914.21100.790.00C14H12N1193.08914.37100.790.00C14H12N1193.08915.05100.790.00C14H12N1193.08915.05100.790.00C14H12N1193.08916.13100.790.00C14H12N1193.08916.51100.790.00C14H12N1193.08917.71100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00	C10H12O3N1	193.0739	0.39	6	1.10	0.30
C10H12O3N1193.07392.8761.100.30C14H12N1193.08913.03100.790.00C14H12N1193.08913.12100.790.00C14H12N1193.08913.25100.790.00C14H12N1193.08913.32100.790.00C14H12N1193.08913.53100.790.00C14H12N1193.08913.67100.790.00C14H12N1193.08913.67100.790.00C14H12N1193.08913.80100.790.00C14H12N1193.08913.90100.790.00C14H12N1193.08914.03100.790.00C14H12N1193.08914.03100.790.00C14H12N1193.08914.37100.790.00C14H12N1193.08915.02100.790.00C14H12N1193.08915.05100.790.00C14H12N1193.08915.05100.790.00C14H12N1193.08916.13100.790.00C14H12N1193.08916.51100.790.00C14H12N1193.08917.71100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00<	C10H12O3N1	193.0739	2.78	6	1.10	0.30
C14H12N1193.08913.03100.790.00C14H12N1193.08913.12100.790.00C14H12N1193.08913.25100.790.00C14H12N1193.08913.32100.790.00C14H12N1193.08913.53100.790.00C14H12N1193.08913.67100.790.00C14H12N1193.08913.67100.790.00C14H12N1193.08913.80100.790.00C14H12N1193.08913.90100.790.00C14H12N1193.08914.03100.790.00C14H12N1193.08914.21100.790.00C14H12N1193.08914.37100.790.00C14H12N1193.08915.02100.790.00C14H12N1193.08915.05100.790.00C14H12N1193.08915.05100.790.00C14H12N1193.08916.13100.790.00C14H12N1193.08916.51100.790.00C14H12N1193.08917.71100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00 </td <td>C10H12O3N1</td> <td>193.0739</td> <td>2.87</td> <td>6</td> <td>1.10</td> <td>0.30</td>	C10H12O3N1	193.0739	2.87	6	1.10	0.30
C14H12N1193.08913.12100.790.00C14H12N1193.08913.25100.790.00C14H12N1193.08913.32100.790.00C14H12N1193.08913.53100.790.00C14H12N1193.08913.67100.790.00C14H12N1193.08913.67100.790.00C14H12N1193.08913.80100.790.00C14H12N1193.08913.90100.790.00C14H12N1193.08914.03100.790.00C14H12N1193.08914.21100.790.00C14H12N1193.08914.37100.790.00C14H12N1193.08915.02100.790.00C14H12N1193.08915.05100.790.00C14H12N1193.08916.08100.790.00C14H12N1193.08916.13100.790.00C14H12N1193.08916.51100.790.00C14H12N1193.08917.71100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00 </td <td>C14H12N1</td> <td>193.0891</td> <td>3.03</td> <td>10</td> <td>0.79</td> <td>0.00</td>	C14H12N1	193.0891	3.03	10	0.79	0.00
C14H12N1193.08913.25100.790.00C14H12N1193.08913.32100.790.00C14H12N1193.08913.53100.790.00C14H12N1193.08913.67100.790.00C14H12N1193.08913.80100.790.00C14H12N1193.08913.80100.790.00C14H12N1193.08913.90100.790.00C14H12N1193.08914.03100.790.00C14H12N1193.08914.21100.790.00C14H12N1193.08914.37100.790.00C14H12N1193.08915.02100.790.00C14H12N1193.08915.05100.790.00C14H12N1193.08916.08100.790.00C14H12N1193.08916.51100.790.00C14H12N1193.08916.51100.790.00C14H12N1193.08917.71100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00 </td <td>C14H12N1</td> <td>193.0891</td> <td>3.12</td> <td>10</td> <td>0.79</td> <td>0.00</td>	C14H12N1	193.0891	3.12	10	0.79	0.00
C14H12N1193.08913.32100.790.00C14H12N1193.08913.53100.790.00C14H12N1193.08913.67100.790.00C14H12N1193.08913.80100.790.00C14H12N1193.08913.90100.790.00C14H12N1193.08914.03100.790.00C14H12N1193.08914.21100.790.00C14H12N1193.08914.37100.790.00C14H12N1193.08915.02100.790.00C14H12N1193.08915.05100.790.00C14H12N1193.08915.05100.790.00C14H12N1193.08916.13100.790.00C14H12N1193.08916.51100.790.00C14H12N1193.08917.71100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.810.00.40	C14H12N1	193.0891	3.25	10	0.79	0.00
C14H12N1193.08913.53100.790.00C14H12N1193.08913.67100.790.00C14H12N1193.08913.80100.790.00C14H12N1193.08913.90100.790.00C14H12N1193.08914.03100.790.00C14H12N1193.08914.21100.790.00C14H12N1193.08914.21100.790.00C14H12N1193.08914.37100.790.00C14H12N1193.08915.02100.790.00C14H12N1193.08915.05100.790.00C14H12N1193.08916.08100.790.00C14H12N1193.08916.13100.790.00C14H12N1193.08916.51100.790.00C14H12N1193.08917.71100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00 </td <td>C14H12N1</td> <td>193.0891</td> <td>3.32</td> <td>10</td> <td>0.79</td> <td>0.00</td>	C14H12N1	193.0891	3.32	10	0.79	0.00
C14H12N1193.08913.67100.790.00C14H12N1193.08913.80100.790.00C14H12N1193.08913.90100.790.00C14H12N1193.08914.03100.790.00C14H12N1193.08914.21100.790.00C14H12N1193.08914.37100.790.00C14H12N1193.08915.02100.790.00C14H12N1193.08915.05100.790.00C14H12N1193.08915.05100.790.00C14H12N1193.08916.13100.790.00C14H12N1193.08916.51100.790.00C14H12N1193.08916.51100.790.00C14H12N1193.08917.71100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.14673.3541.580.08C10H1104194.05792.7661.000.40	C14H12N1	193.0891	3.53	10	0.79	0.00
C14H12N1193.08913.80100.790.00C14H12N1193.08913.90100.790.00C14H12N1193.08914.03100.790.00C14H12N1193.08914.21100.790.00C14H12N1193.08914.37100.790.00C14H12N1193.08915.02100.790.00C14H12N1193.08915.05100.790.00C14H12N1193.08916.08100.790.00C14H12N1193.08916.13100.790.00C14H12N1193.08916.51100.790.00C14H12N1193.08916.51100.790.00C14H12N1193.08917.71100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.810.00.40C12H2001N1193.14673.3541.580.08C10H1104194.05792.7661.000.40	C14H12N1	193.0891	3.67	10	0.79	0.00
C14H12N1193.08913.90100.790.00C14H12N1193.08914.03100.790.00C14H12N1193.08914.21100.790.00C14H12N1193.08914.37100.790.00C14H12N1193.08915.02100.790.00C14H12N1193.08915.05100.790.00C14H12N1193.08915.05100.790.00C14H12N1193.08916.08100.790.00C14H12N1193.08916.13100.790.00C14H12N1193.08916.51100.790.00C14H12N1193.08917.71100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.14673.3541.580.08C10H1104194.05792.7661.000.40	C14H12N1	193.0891	3.80	10	0.79	0.00
C14H12N1193.08914.03100.790.00C14H12N1193.08914.21100.790.00C14H12N1193.08914.37100.790.00C14H12N1193.08915.02100.790.00C14H12N1193.08915.05100.790.00C14H12N1193.08916.08100.790.00C14H12N1193.08916.13100.790.00C14H12N1193.08916.51100.790.00C14H12N1193.08916.51100.790.00C14H12N1193.08917.71100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C9H17O2N1Na1171.12591.3521.890.22C12H20O1N1193.14673.3541.580.08C10H1104194.05792.7661.000.40C10H1104194.05792.8261.000.40	C14H12N1	193.0891	3.90	10	0.79	0.00
C14H12N1193.08914.21100.790.00C14H12N1193.08914.37100.790.00C14H12N1193.08915.02100.790.00C14H12N1193.08915.05100.790.00C14H12N1193.08916.08100.790.00C14H12N1193.08916.13100.790.00C14H12N1193.08916.13100.790.00C14H12N1193.08916.51100.790.00C14H12N1193.08917.71100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.14673.3541.580.08C10H1104194.05792.7661.000.40	C14H12N1	193.0891	4.03	10	0.79	0.00
C14H12N1193.08914.37100.790.00C14H12N1193.08915.02100.790.00C14H12N1193.08915.05100.790.00C14H12N1193.08916.08100.790.00C14H12N1193.08916.13100.790.00C14H12N1193.08916.51100.790.00C14H12N1193.08916.51100.790.00C14H12N1193.08917.71100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C9H17O2N1Na1171.12591.3521.890.22C12H2001N1193.14673.3541.580.08C10H1104194.05792.7661.000.40C10H1104194.05792.8261.000.40	C14H12N1	193.0891	4.21	10	0.79	0.00
C14H12N1193.08915.02100.790.00C14H12N1193.08915.05100.790.00C14H12N1193.08916.08100.790.00C14H12N1193.08916.13100.790.00C14H12N1193.08916.51100.790.00C14H12N1193.08916.51100.790.00C14H12N1193.08917.71100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1194.05792.7661.000.40C10H1104194.05792.8261.000.40	C14H12N1	193.0891	4.37	10	0.79	0.00
C14H12N1193.08915.05100.790.00C14H12N1193.08916.08100.790.00C14H12N1193.08916.13100.790.00C14H12N1193.08916.51100.790.00C14H12N1193.08917.71100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C9H17O2N1Na1171.12591.3521.890.22C12H20O1N1193.14673.3541.580.08C10H1104194.05792.7661.000.40C10H1104194.05792.8261.000.40	C14H12N1	193.0891	5.02	10	0.79	0.00
C14H12N1193.08916.08100.790.00C14H12N1193.08916.13100.790.00C14H12N1193.08916.51100.790.00C14H12N1193.08917.71100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C9H1702N1Na1171.12591.3521.890.22C12H2001N1193.14673.3541.580.08C10H1104194.05792.7661.000.40	C14H12N1	193.0891	5.05	10	0.79	0.00
C14H12N1193.08916.13100.790.00C14H12N1193.08916.51100.790.00C14H12N1193.08917.71100.790.00C14H12N1193.08917.81100.790.00C14H12N1193.08917.81100.790.00C9H1702N1Na1171.12591.3521.890.22C12H2001N1193.14673.3541.580.08C10H1104194.05792.7661.000.40	C14H12N1	193.0891	6.08	10	0.79	0.00
C14H12N1193.08916.51100.790.00C14H12N1193.08917.71100.790.00C14H12N1193.08917.81100.790.00C9H1702N1Na1171.12591.3521.890.22C12H2001N1193.14673.3541.580.08C10H1104194.05792.7661.000.40	C14H12N1	193.0891	6.13	10	0.79	0.00
C14H12N1193.08917.71100.790.00C14H12N1193.08917.81100.790.00C9H17O2N1Na1171.12591.3521.890.22C12H20O1N1193.14673.3541.580.08C10H1104194.05792.7661.000.40C10H1104194.05792.8261.000.40	C14H12N1	193.0891	6.51	10	0.79	0.00
C14H12N1193.08917.81100.790.00C9H17O2N1Na1171.12591.3521.890.22C12H20O1N1193.14673.3541.580.08C10H11O4194.05792.7661.000.40C10H11O4194.05792.8261.000.40	C14H12N1	193.0891	7.71	10	0.79	0.00
C9H17O2N1Na1171.12591.3521.890.22C12H20O1N1193.14673.3541.580.08C10H11O4194.05792.7661.000.40C10H11O4194.05792.8261.000.40	C14H12N1	193.0891	7.81	10	0.79	0.00
C12H20O1N1193.14673.3541.580.08C10H11O4194.05792.7661.000.40C10H11O4194.05792.8261.000.40	C9H17O2N1Na1	171.1259	1.35	2	1.89	0.22
C10H11O4194.05792.7661.000.40C10H11O4194.05792.8261.000.40	C12H20O1N1	193.1467	3.35	4	1.58	0.08
C10H11O4 194.0579 2.82 6 1.00 0.40	C10H11O4	194.0579	2.76	6	1.00	0.40
	C10H11O4	194.0579	2.82	6	1.00	0.40

C10H11O4	194.0579	2.88	6	1.00	0.40
C10H11O4	194.0579	2.98	6	1.00	0.40
C10H9O3	176.0473	3.08	7	0.80	0.30
C9H11O3N2	194.0691	0.43	6	1.11	0.33
C9H11O3N2	194.0691	1.21	6	1.11	0.33
C14H11O1	194.0732	7.68	10	0.71	0.07
C14H11O1	194.0732	7.74	10	0.71	0.07
C14H11O1	194.0732	7.80	10	0.71	0.07
C14H11O1	194.0732	8.03	10	0.71	0.07
C14H11O1	194.0732	8.20	10	0.71	0.07
C14H11O1	194.0732	8.29	10	0.71	0.07
C13H11N2	194.0844	2.90	10	0.77	0.00
C13H11N2	194.0844	2.98	10	0.77	0.00
C13H11N2	194.0844	3.01	10	0.77	0.00
C13H11N2	194.0844	3.22	10	0.77	0.00
C13H11N2	194.0844	3.33	10	0.77	0.00
C13H11N2	194.0844	3.53	10	0.77	0.00
C11H15O3	194.0943	2.56	5	1.27	0.27
C11H15O3	194.0943	2.88	5	1.27	0.27
C10H15O2N2	194,1055	0.62	5	1.40	0.20
C10H15O2N2	194.1055	0.90	5	1.40	0.20
C10H15O2N2	194,1055	1.11	5	1.40	0.20
C10H15O2N2	194.1055	1.55	5	1.40	0.20
C10H15O2N2	194,1055	2.72	5	1.40	0.20
C10H15O2N2	194,1055	2.86	5	1.40	0.20
C11H19O1N2	194,1419	2.60	4	1.64	0.09
C11H19O1N2	194.1419	2.90	4	1.64	0.09
C11H19O1N2	194,1419	3.19	4	1.64	0.09
C12H23N2	194.1783	3.47	3	1.83	0.00
C12H23N2	194,1783	3.54	3	1.83	0.00
C12H23N2	194,1783	3.65	3	1.83	0.00
C12H23N2	194,1783	6.87	3	1.83	0.00
C9H10O4N1	195.0532	0.37	6	1.00	0.44
C13H10O1N1	195.0684	2.75	10	0.69	0.08
C13H10O1N1	195.0684	2.83	10	0.69	0.08
C13H10O1N1	195.0684	2.95	10	0.69	0.08
C13H10O1N1	195.0684	3.03	10	0.69	0.08
C13H10O1N1	195.0684	3.10	10	0.69	0.08
C13H10O1N1	195.0684	3 19	10	0.69	0.08
C13H10O1N1	195.0684	3 24	10	0.69	0.08
C13H10O1N1	195 0684	3.47	10	0.69	0.08
C13H10O1N1	195 0684	3.47	10	0.69	0.08
C13H10O1N1	195 0684	4 49	10	0.69	0.08
C13H10O1N1	195.0004	6.22	10	0.69	0.08
C13H10O1N1	195.0004	6.71	10	0.69	0.08
C13H10O1N1	195 0684	6.96	10	0.69	0.08
C13H10O1N1	195 0684	7 13	10	0.69	0.08
C13H10O1N1	195.0004	7.15	10	0.09	0.00
C10H14O3N1	195 0895	0.86	5	1.30	0.00
C10H14O3N1	105 0805	1.02	5	1.30	0.30
C10H1403N1	173.0073	1.05	S	1.30	0.50

C10H14O3N1	195 0895	2 42	5	1 30	0.30
C10H14O3N1	195.0895	2.42	5	1.30	0.30
C10H14O3N1	195.0895	2.55	5	1.30	0.30
C10H14O3N1	195.0895	2.80	5	1.30	0.30
C10H14O3N1	195.0895	3 56	5	1.30	0.30
C0H14O2N3	105 1008	0.50	5	1.30	0.30
C14H14N1	195.1008	3.20	9	0.93	0.00
C14H14N1	105 1048	2.41	0	0.93	0.00
C14H14N1	195.1046	3.41	9	0.93	0.00
C141114N1	195.1048	2.54	9	0.93	0.00
C14H14N1	195.1048	5.34 2.71	9	0.93	0.00
C14H14N1	195.1046	3.71	9	0.93	0.00
CI4HI4NI CI4HI4NI	195.1048	3.83	9	0.93	0.00
C14H14N1	195.1048	3.90	9	0.95	0.00
CI2H22OINI	195.1623	2.78	3	1.75	0.08
C13H9O2	196.0524	4.62	10	0.62	0.15
C13H9O2	196.0524	4.71	10	0.62	0.15
C13H9O2	196.0524	4.90	10	0.62	0.15
C13H9O2	196.0524	5.79	10	0.62	0.15
C13H9O2	196.0524	6.76	10	0.62	0.15
C13H9O2	196.0524	7.19	10	0.62	0.15
C13H9O2	196.0524	7.55	10	0.62	0.15
C13H9O2	196.0524	7.60	10	0.62	0.15
C13H9O2	196.0524	7.68	10	0.62	0.15
C13H9O2	196.0524	7.77	10	0.62	0.15
C13H9O2	196.0524	7.96	10	0.62	0.15
C13H9O2	196.0524	8.02	10	0.62	0.15
C12H9O1N2	196.0637	2.78	10	0.67	0.08
C12H9O1N2	196.0637	3.90	10	0.67	0.08
C12H9O1N2	196.0637	4.18	10	0.67	0.08
C10H13O4	196.0736	0.58	5	1.20	0.40
C10H13O4	196.0736	2.80	5	1.20	0.40
C10H13O4	196.0736	3.04	5	1.20	0.40
C10H13O4	196.0736	3.24	5	1.20	0.40
C10H13O4	196.0736	3.35	5	1.20	0.40
C10H13O4	196.0736	3.52	5	1.20	0.40
C9H13O3N2	196.0848	0.93	5	1.33	0.33
C9H13O3N2	196.0848	1.36	5	1.33	0.33
C14H13O1	196.0888	8.17	9	0.86	0.07
C13H13N2	196.1000	3.04	9	0.92	0.00
C13H13N2	196.1000	3.14	9	0.92	0.00
C13H13N2	196.1000	3.22	9	0.92	0.00
C13H13N2	196.1000	3.31	9	0.92	0.00
C13H13N2	196.1000	3.39	9	0.92	0.00
C13H13N2	196.1000	3.55	9	0.92	0.00
C11H17O3	196.1099	2.99	4	1.45	0.27
C11H17O3	196.1099	3.21	4	1.45	0.27
C10H17O2N2	196.1212	0.74	4	1.60	0.20
C10H17O2N2	196.1212	1.28	4	1.60	0.20
C10H17O2N2	196.1212	2.27	4	1.60	0.20
C10H17O2N2	196.1212	2.40	4	1.60	0.20

C10H13N2	160.1000	2.49	6	1.20	0.00
C10H17O2N2	196.1212	2.56	4	1.60	0.20
C10H17O2N2	196.1212	2.64	4	1.60	0.20
C10H17O2N2	196.1212	2.70	4	1.60	0.20
C10H17O2N2	196.1212	2.77	4	1.60	0.20
C10H17O2N2	196.1212	2.91	4	1.60	0.20
C10H17O2N2	196.1212	3.02	4	1.60	0.20
C4H8O6N1S1	196,9994	0.56	2	1.75	1.50
C12H8O2N1	197.0477	3.44	10	0.58	0.17
C12H8O2N1	197.0477	3.87	10	0.58	0.17
C12H8O2N1	197.0477	4.20	10	0.58	0.17
C12H8O2N1	197.0477	4 57	10	0.58	0.17
C13H12O1N1	197.0841	2.71	9	0.85	0.08
C13H12O1N1	197.0841	2.83	9	0.85	0.08
C13H12O1N1	197.0841	2.94	9	0.85	0.08
C13H12O1N1	197.0841	3.02	ý	0.85	0.08
C13H12O1N1	197.0841	3.14	9	0.85	0.08
C13H12O1N1	197.0841	3.14	0	0.85	0.08
C13H12O1N1	197.0841	3.27	9	0.85	0.08
C13H12O1N1	107.0841	3.57	0	0.85	0.08
C13H12O1N1	197.0841	3.51	9	0.85	0.08
C13H12O1N1	107.0841	3.38	0	0.85	0.08
C13H12O1N1	197.0841	3.73	9	0.85	0.08
C12111201N1	197.0841	2.04	9	0.85	0.08
C13H12O1N1	197.0841	5.94	9	0.85	0.08
C13H12O1N1	197.0841	4.11	9	0.85	0.08
C13H12O1N1	197.0841	4.25	9	0.85	0.08
C13H12O1N1	197.0841	0.82	9	0.85	0.08
CI3HI2OINI	197.0841	7.10	9	0.85	0.08
CI3HI2OINI	197.0841	7.18	9	0.85	0.08
CI3HI2OINI	197.0841	7.32	9	0.85	0.08
CI3HI2OINI	197.0841	7.51	9	0.85	0.08
CI3HI2OINI	197.0841	7.60	9	0.85	0.08
C13H12O1N1	197.0841	7.79	9	0.85	0.08
C13H12O1N1	197.0841	7.84	9	0.85	0.08
C13H12O1N1	197.0841	7.99	9	0.85	0.08
C13H12O1N1	197.0841	8.20	9	0.85	0.08
C13H12O1N1	197.0841	4.35	9	0.85	0.08
C13H12O1N1	197.0841	3.94	9	0.85	0.08
C6H16O6N1	197.0899	0.33	0	2.50	1.00
C12H12N3	197.0953	2.79	9	0.92	0.00
C14H16N1	197.1204	3.15	8	1.07	0.00
C14H16N1	197.1204	3.32	8	1.07	0.00
C14H16N1	197.1204	3.42	8	1.07	0.00
C14H16N1	197.1204	3.53	8	1.07	0.00
C14H16N1	197.1204	3.74	8	1.07	0.00
C14H16N1	197.1204	3.79	8	1.07	0.00
C14H16N1	197.1204	3.95	8	1.07	0.00
C14H16N1	197.1204	4.04	8	1.07	0.00
C14H16N1	197.1204	4.15	8	1.07	0.00
C14H16N1	197.1204	4.16	8	1.07	0.00

C14H16N1	197.1204	4.28	8	1.07	0.00
C14H16N1	197.1204	4.38	8	1.07	0.00
C14H16N1	197.1204	4.54	8	1.07	0.00
C12H7O3	198.0317	3.88	10	0.50	0.25
C12H7O3	198.0317	6.54	10	0.50	0.25
C5H7O3N6	198.0501	0.51	6	1.20	0.60
C9H11O5	198.0528	2.80	5	1.11	0.56
C13H11O2	198.0681	4.81	9	0.77	0.15
C13H11O2	198.0681	5.22	9	0.77	0.15
C13H11O2	198.0681	6.53	9	0.77	0.15
C13H11O2	198.0681	6.80	9	0.77	0.15
C13H11O2	198.0681	7.13	9	0.77	0.15
C13H11O2	198.0681	7.23	9	0.77	0.15
C13H11O2	198.0681	7.45	9	0.77	0.15
C13H11O2	198.0681	7.59	9	0.77	0.15
C13H11O2	198.0681	7.76	9	0.77	0.15
C12H11O1N2	198.0793	2.60	9	0.83	0.08
C12H11O1N2	198.0793	2.75	9	0.83	0.08
C12H11O1N2	198.0793	2.85	9	0.83	0.08
C12H11O1N2	198.0793	2.93	9	0.83	0.08
C12H11O1N2	198.0793	3.05	9	0.83	0.08
C12H11O1N2	198.0793	3.24	9	0.83	0.08
C10H15O4	198.0892	2.89	4	1.40	0.40
C9H15O3N2	198.1004	0.45	4	1.56	0.33
C9H15O3N2	198.1004	0.59	4	1.56	0.33
C9H15O3N2	198.1004	0.83	4	1.56	0.33
C9H15O3N2	198.1004	0.89	4	1.56	0.33
C9H15O3N2	198.1004	1.02	4	1.56	0.33
C9H15O3N2	198.1004	1.19	4	1.56	0.33
C9H15O3N2	198.1004	2.46	4	1.56	0.33
C13H15N2	198.1157	3.07	8	1.08	0.00
C12H10O2N1	199.0633	2.69	9	0.75	0.17
C12H10O2N1	199.0633	2.83	9	0.75	0.17
C12H10O2N1	199.0633	3.14	9	0.75	0.17
C12H10O2N1	199.0633	3.24	9	0.75	0.17
C12H10O2N1	199.0633	3.38	9	0.75	0.17
C12H10O2N1	199.0633	3.53	9	0.75	0.17
C8H14O3N3	199.0957	0.36	4	1.63	0.38
C13H14O1N1	199.0997	2.45	8	1.00	0.08
C13H14O1N1	199.0997	2.49	8	1.00	0.08
C13H14O1N1	199.0997	2.63	8	1.00	0.08
C13H14O1N1	199.0997	2.74	8	1.00	0.08
C13H14O1N1	199 0997	2.83	8	1.00	0.08
C13H14O1N1	199.0997	2.03	8	1.00	0.08
C13H14O1N1	199.0997	2.91	8	1.00	0.08
C13H14O1N1	199 0997	3.01	8	1.00	0.08
C13H14O1N1	199 0997	3.12	8	1.00	0.08
C13H14O1N1	199 0997	3.12	8	1.00	0.08
C13H14O1N1	199 0997	3.10	8	1.00	0.08
C13H14O1N1	100 0007	3.27	8	1.00	0.00
013111401101	177.0777	5.44	0	1.00	0.00
C13H14O1N1	199 0997	3 50	8	1.00	0.08
--------------	----------	------	---	------	------
C13H14O1N1	199.0997	6.89	8	1.00	0.08
C13H14O1N1	199.0997	6.94	8	1.00	0.08
C13H14O1N1	199.0997	6.99	8	1.00	0.08
C13H14O1N1	199.0997	7.30	8	1.00	0.08
C1/H18N1	100 1361	3.46	7	1.00	0.00
C14H18N1	199.1361	3.40	7	1.21	0.00
C14H18N1	100 1261	2.61	7	1.21	0.00
C14H18N1	199.1301	2.79	7	1.21	0.00
C141110101	100 1261	2.86	7	1.21	0.00
C14H18N1	199.1301	3.80	7	1.21	0.00
CI4HI6NI	199.1301	3.92	7	1.21	0.00
CI4HI8NI	199.1361	3.98	7	1.21	0.00
CI4HI8NI	199.1361	4.05	/	1.21	0.00
CI4HI8NI	199.1361	4.22	7	1.21	0.00
CI4HI8NI	199.1361	4.41	1	1.21	0.00
C11H22O2N1	199.1572	2.90	2	1.91	0.18
C12H9O3	200.0473	7.27	9	0.67	0.25
C12H9O3	200.0473	7.59	9	0.67	0.25
C9H13O5	200.0685	3.14	4	1.33	0.56
C13H13O2	200.0837	4.90	8	0.92	0.15
C13H13O2	200.0837	5.15	8	0.92	0.15
C13H13O2	200.0837	7.45	8	0.92	0.15
C13H13O2	200.0837	7.58	8	0.92	0.15
C13H13O2	200.0837	8.04	8	0.92	0.15
C13H13O2	200.0837	8.10	8	0.92	0.15
C12H13O1N2	200.0950	2.66	8	1.00	0.08
C12H13O1N2	200.0950	2.84	8	1.00	0.08
C12H13O1N2	200.0950	3.00	8	1.00	0.08
C12H13O1N2	200.0950	3.09	8	1.00	0.08
C12H13O1N2	200.0950	3.17	8	1.00	0.08
C12H13O1N2	200.0950	3.47	8	1.00	0.08
C12H13O1N2	200.0950	3.70	8	1.00	0.08
C12H13O1N2	200.0950	3.81	8	1.00	0.08
C13H17N2	200.1313	3.11	7	1.23	0.00
C13H17N2	200.1313	3.19	7	1.23	0.00
C13H17N2	200.1313	3.44	7	1.23	0.00
C13H17N2	200.1313	3.63	7	1.23	0.00
C11H21O3	200.1412	7.11	2	1.82	0.27
C8H12O5N1	201.0637	0.37	4	1.38	0.63
C12H12O2N1	201.0790	1.04	8	0.92	0.17
C12H12O2N1	201.0790	1.73	8	0.92	0.17
C12H12O2N1	201.0790	1.95	8	0.92	0.17
C12H12O2N1	201.0790	2.32	8	0.92	0.17
C12H12O2N1	201.0790	2.47	8	0.92	0.17
C12H12O2N1	201.0790	2.55	8	0.92	0.17
C12H12O2N1	201.0790	2.80	8	0.92	0.17
C12H12O2N1	201.0790	2.92	8	0.92	0.17
C12H12O2N1	201.0790	3.04	8	0.92	0.17
C12H12O2N1	201.0790	3 20	8	0.92	0.17
C12H12O2N1	201.0790	3 35	8	0.92	0.17
012111202101	201.0770	5.55	0	0.74	0.17

C12H12O2N1	201.0790	3.54	8	0.92	0.17
C12H12O2N1	201.0790	3.68	8	0.92	0.17
C12H12O2N1	201.0790	3.79	8	0.92	0.17
C12H12O2N1	201.0790	4.14	8	0.92	0.17
C13H16O1N1	201.1154	2.62	7	1.15	0.08
C13H16O1N1	201.1154	2.79	7	1.15	0.08
C13H16O1N1	201.1154	3.04	7	1.15	0.08
C13H16O1N1	201.1154	3.08	7	1.15	0.08
C13H16O1N1	201.1154	3.16	7	1.15	0.08
C13H16O1N1	201.1154	3.29	7	1.15	0.08
C13H16O1N1	201.1154	3.32	7	1.15	0.08
C13H16O1N1	201.1154	3.40	7	1.15	0.08
C13H16O1N1	201.1154	3.49	7	1.15	0.08
C13H16O1N1	201.1154	3.80	7	1.15	0.08
C13H16O1N1	201.1154	3.84	7	1.15	0.08
C13H16O1N1	201.1154	7.60	7	1.15	0.08
C13H16O1N1	201.1154	7.68	7	1.15	0.08
C13H16O1N1	201.1154	7.81	7	1.15	0.08
C13H16O1N1	201.1154	7.89	7	1.15	0.08
C14H20N1	201.1517	3.68	6	1.36	0.00
C14H20N1	201.1517	3.74	6	1.36	0.00
C14H20N1	201.1517	3.76	6	1.36	0.00
C14H20N1	201.1517	3.82	6	1.36	0.00
C14H20N1	201.1517	3.88	6	1.36	0.00
C14H20N1	201.1517	3.94	6	1.36	0.00
C14H20N1	201.1517	4.20	6	1.36	0.00
C14H20N1	201.1517	4.28	6	1.36	0.00
C7H11O3N2S1	202.0412	0.37	4	1.43	0.43
C12H11O3	202.0630	3.43	8	0.83	0.25
C12H11O3	202.0630	3.55	8	0.83	0.25
C12H11O3	202.0630	4.13	8	0.83	0.25
C12H11O3	202.0630	5.37	8	0.83	0.25
C12H11O3	202.0630	6.52	8	0.83	0.25
C12H11O3	202.0630	7.48	8	0.83	0.25
C11H11O2N2	202.0742	1.07	8	0.91	0.18
C11H11O2N2	202.0742	2.42	8	0.91	0.18
C11H11O2N2	202.0742	2.47	8	0.91	0.18
C11H11O2N2	202.0742	2.57	8	0.91	0.18
C11H11O2N2	202.0742	2.70	8	0.91	0.18
C11H11O2N2	202.0742	2.89	8	0.91	0.18
C11H11O2N2	202.0742	3 20	8	0.91	0.18
C11H1102N2	202.0742	3 23	8	0.91	0.18
C11H1102N2	202.0742	2.97	8	0.91	0.18
C13H15O2	202.0994	4 34	7	1.08	0.15
C13H15O2	202.0994	4 57	, 7	1.08	0.15
C13H15O2	202.0994	4 73	, 7	1.08	0.15
C13H15O2	202.0994	4 88	, 7	1.00	0.15
C13H15O2	202.0994	4 98	, 7	1.08	0.15
C13H15O2	202.0994	5.06	, 7	1.00	0.15
C121115O2	202.0994	5.17	7	1.00	0.15

C13H15O2	202.0994	5.47	7	1.08	0.15
C13H15O2	202.0994	5.82	7	1.08	0.15
C13H15O2	202.0994	5.96	7	1.08	0.15
C13H15O2	202.0994	6.10	7	1.08	0.15
C13H15O2	202.0994	6.26	7	1.08	0.15
C13H15O2	202.0994	6.46	7	1.08	0.15
C13H15O2	202.0994	6.63	7	1.08	0.15
C13H15O2	202.0994	6.74	7	1.08	0.15
C13H15O2	202.0994	6.85	7	1.08	0.15
C13H15O2	202.0994	7.02	7	1.08	0.15
C13H15O2	202.0994	7.10	7	1.08	0.15
C13H15O2	202.0994	7.19	7	1.08	0.15
C13H15O2	202.0994	7.27	7	1.08	0.15
C13H15O2	202.0994	7.33	7	1.08	0.15
C13H15O2	202.0994	7.48	7	1.08	0.15
C13H15O2	202.0994	5.59	7	1.08	0.15
C13H15O2	202.0994	6.34	7	1.08	0.15
C13H15O2	202.0994	7.82	7	1.08	0.15
C13H15O2	202.0994	5.58	7	1.08	0.15
C12H15O1N2	202.1106	2.12	7	1.17	0.08
C12H15O1N2	202.1106	2.26	7	1.17	0.08
C12H15O1N2	202.1106	2.45	7	1.17	0.08
C12H15O1N2	202.1106	2.49	7	1.17	0.08
C12H15O1N2	202.1106	2.67	7	1.17	0.08
C12H15O1N2	202.1106	2.81	7	1.17	0.08
C12H15O1N2	202.1106	2.84	7	1.17	0.08
C12H15O1N2	202.1106	2.93	7	1.17	0.08
C13H16N1	185.1204	3.34	7	1.15	0.00
C7H10O4N1S1	203.0252	0.56	4	1.29	0.57
C7H10O4N1S1	203.0252	0.57	4	1.29	0.57
C11H10O3N1	203.0582	2.52	8	0.82	0.27
C15H10N1	203.0735	5.87	12	0.60	0.00
C15H10N1	203.0735	7.09	12	0.60	0.00
C15H10N1	203.0735	7.60	12	0.60	0.00
C15H10N1	203.0735	7.84	12	0.60	0.00
C15H10N1	203.0735	7.84	12	0.60	0.00
C9H10O1N5	203.0807	2.53	8	1.00	0.11
C12H14O2N1	203.0946	2.92	7	1.08	0.17
C12H14O2N1	203.0946	3.05	7	1.08	0.17
C12H14O2N1	203.0946	3.31	7	1.08	0.17
C12H14O2N1	203.0946	3.65	7	1.08	0.17
C12H14O2N1	203.0946	3.83	7	1.08	0.17
C12H14O2N1	203.0946	5.26	7	1.08	0.17
C12H14O2N1	203.0946	3.46	7	1.08	0.17
C12H14O2N1	203.0946	3.91	7	1.08	0.17
C11H14O1N3	203.1059	2.62	7	1.18	0.09
C13H18O1N1	203.1310	2.79	6	1.31	0.08
C13H18O1N1	203.1310	2.84	6	1.31	0.08
C13H18O1N1	203.1310	2.91	6	1.31	0.08
C13H18O1N1	203.1310	3.07	6	1.31	0.08

C13H18O1N1	203.1310	3.20	6	1.31	0.08
C13H18O1N1	203.1310	3.26	6	1.31	0.08
C13H18O1N1	203.1310	3.36	6	1.31	0.08
C13H18O1N1	203.1310	7.34	6	1.31	0.08
C13H18O1N1	203.1310	7.61	6	1.31	0.08
C13H18O1N1	203.1310	7.77	6	1.31	0.08
C13H18O1N1	203.1310	7.89	6	1.31	0.08
C12H18N3	203.1422	2.83	6	1.42	0.00
C12H18N3	203.1422	2.90	6	1.42	0.00
C12H18N3	203.1422	3.02	6	1.42	0.00
C12H18N3	203.1422	3.15	6	1.42	0.00
C12H18N3	203.1422	3.20	6	1.42	0.00
C11H9O4	204.0423	3.33	8	0.73	0.36
C8H13O6	204.0634	0.39	3	1.50	0.75
C8H13O6	204.0634	0.46	3	1.50	0.75
C8H13O6	204.0634	0.59	3	1.50	0.75
C8H13O6	204.0634	0.77	3	1.50	0.75
C14H9N2	204.0687	7.53	12	0.57	0.00
C14H9N2	204.0687	8.14	12	0.57	0.00
C11H13O2N2	204,0899	0.85	7	1.09	0.18
C11H13O2N2	204.0899	1.05	7	1.09	0.18
C11H13O2N2	204,0899	1.40	7	1.09	0.18
C11H13O2N2	204.0899	1.89	7	1.09	0.18
C11H13O2N2	204 0899	2.34	7	1.09	0.18
C11H13O2N2	204,0899	2.49	, 7	1.09	0.18
C11H13O2N2	204 0899	2 72	7	1.09	0.18
C11H13O2N2	204.0899	2.72	7	1.09	0.18
C11H13O2N2	204.0899	2.05	, 7	1.09	0.18
C13H17O2	204.1150	7.23	6	1.09	0.15
C13H17O2	204.1150	7.23	6	1.23	0.15
C12H17O1N2	204.1150	2.58	6	1.23	0.08
C12H17O1N2	204.1263	2.58	6	1.33	0.08
C12H17O1N2	204.1203	2.70	6	1.33	0.08
C12H17O1N2	204.1203	2.70	6	1.33	0.08
C12H17OIN2	204.1203	3.00 2.27	0	1.33	0.08
C15H1205N1	205.0759	2.37	/	0.72	0.27
CI5HI2NI CI5HI2NI	205.0891	2.19	11	0.73	0.00
CI5HI2NI CI5HI2NI	205.0891	3.05	11	0.73	0.00
C15H12N1	205.0891	3.90	11	0.73	0.00
C15H12N1	205.0891	4.73	11	0.73	0.00
CI5HI2NI CI5HI2NI	205.0891	5.39	11	0.73	0.00
CI5HI2NI CI5HI2NI	205.0891	6.39	11	0.73	0.00
CI5HI2NI CI5HI2NI	205.0891	0.89	11	0.73	0.00
CIJIIZNI CIULIONI	203.0891	1.33	11	0.75	0.00
CINICONI	205.0950	2.38	2	1.88	0.03
CI2HI0O2NI	205.1103	2.74	0 C	1.25	0.17
CI2HI6O2NI	205.1103	2.91	0	1.25	0.17
CITHI6UIN3	205.1215	2.43	6	1.30	0.09
CI3H200INI	205.1467	2.75	5	1.46	0.08
CI3H20OINI	205.1467	2.88	5	1.46	0.08
C10H7O5	206.0215	3.16	8	0.60	0.50

C11H11O4	206.0579	3.06	7	0.91	0.36
C11H11O4	206.0579	3.11	7	0.91	0.36
C11H11O4	206.0579	3.29	7	0.91	0.36
C11H11O4	206.0579	3.46	7	0.91	0.36
C11H11O4	206.0579	3.60	7	0.91	0.36
C11H11O4	206.0579	4.16	7	0.91	0.36
C11H11O4	206.0579	6.01	7	0.91	0.36
C11H11O4	206.0579	6.40	7	0.91	0.36
C11H11O4	206.0579	6.49	7	0.91	0.36
C15H11O1	206.0732	7.62	11	0.67	0.07
C8H15O6	206.0790	0.77	2	1.75	0.75
C12H15O3	206.0943	2.69	6	1.17	0.25
C5H15O1N6S1	206.0950	2.77	2	2.80	0.20
C5H15O1N6S1	206.0950	3.27	2	2.80	0.20
C12H15O3	206.0943	3.44	6	1.17	0.25
C12H15O3	206.0943	3.56	6	1.17	0.25
C12H15O3	206.0943	3.62	6	1.17	0.25
C12H15O3	206.0943	3.76	6	1.17	0.25
C12H15O3	206.0943	4.26	6	1.17	0.25
C12H15O3	206.0943	4.57	6	1.17	0.25
C12H15O3	206.0943	4.74	6	1.17	0.25
C12H15O3	206.0943	5.04	6	1.17	0.25
C11H15O2N2	206.1055	0.66	6	1.27	0.18
C11H15O2N2	206.1055	0.86	6	1.27	0.18
C11H15O2N2	206.1055	1.31	6	1.27	0.18
C12H19O3N2	238.1317	2.58	5	1.50	0.25
C11H15O2N2	206.1055	3.04	6	1.27	0.18
C11H15O2N2	206.1055	3.20	6	1.27	0.18
C11H15O2N2	206.1055	3.25	6	1.27	0.18
C12H19O1N2	206.1419	2.73	5	1.50	0.08
C11H14O3N1	207.0895	2.94	6	1.18	0.27
C11H14O3N1	207.0895	3.16	6	1.18	0.27
C15H14N1	207.1048	3.63	10	0.87	0.00
C15H14N1	207.1048	3.80	10	0.87	0.00
C15H14N1	207.1048	3.97	10	0.87	0.00
C15H14N1	207.1048	4.03	10	0.87	0.00
C15H14N1	207.1048	4.43	10	0.87	0.00
C15H14N1	207.1048	4.50	10	0.87	0.00
C15H14N1	207.1048	4.62	10	0.87	0.00
C15H14N1	207.1048	4.16	10	0.87	0.00
C12H18O2N1	207.1259	2.43	5	1.42	0.17
C12H16O1N1	189.1154	2.50	6	1.25	0.08
C12H18O2N1	207.1259	2.74	5	1.42	0.17
C12H18O2N1	207.1259	2.80	5	1.42	0.17
C14H19O1N2	230.1419	2.93	7	1.29	0.07
C11H18O1N3	207.1372	2.44	5	1.55	0.09
C8H22O3N3	207.1583	0.35	0	2.63	0.38
C6H13O6N2	208.0695	0.28	2	2.00	1.00
C9H14O4Na1	186.0892	2.16	3	1.56	0.44
C11H13O4	208.0736	3.17	6	1.09	0.36

C11H13O4	208.0736	3.54	6	1.09	0.36
C11H13O4	208.0736	3.96	6	1.09	0.36
C11H13O4	208.0736	5.78	6	1.09	0.36
C10H13O3N2	208.0848	0.51	6	1.20	0.30
C10H13O3N2	208.0848	0.95	6	1.20	0.30
C15H13O1	208.0888	8.07	10	0.80	0.07
C14H13N2	208.1000	3.17	10	0.86	0.00
C14H13N2	208.1000	3.32	10	0.86	0.00
C6H17O2N4S1	208.0994	3.49	1	2.67	0.33
C11H17O2N2	208.1212	1.16	5	1.45	0.18
C11H17O2N2	208.1212	1.24	5	1.45	0.18
C11H17O2N2	208.1212	1.46	5	1.45	0.18
C11H17O2N2	208.1212	1.88	5	1.45	0.18
C11H17O2N2	208.1212	2.46	5	1.45	0.18
C11H17O2N2	208.1212	2.56	5	1.45	0.18
C11H17O2N2	208.1212	2.74	5	1.45	0.18
C11H17O2N2	208.1212	3.02	5	1.45	0.18
C12H21O1N2	208.1576	2.83	4	1.67	0.08
C12H21O1N2	208.1576	2.90	4	1.67	0.08
C13H8O2N1	209.0477	4.43	11	0.54	0.15
C6H12O7N1	209.0536	0.39	2	1.83	1.17
C10H12O4N1	209.0688	0.38	6	1.10	0.40
C10H12O4N1	209.0688	0.48	6	1.10	0.40
C14H12O1N1	209.0841	3.20	10	0.79	0.07
C14H12O1N1	209.0841	3.47	10	0.79	0.07
C14H12O1N1	209.0841	3.56	10	0.79	0.07
C14H12O1N1	209.0841	3.63	10	0.79	0.07
C14H12O1N1	209.0841	3.64	10	0.79	0.07
C14H12O1N1	209.0841	7.27	10	0.79	0.07
C14H12O1N1	209.0841	7.42	10	0.79	0.07
C14H12O1N1	209.0841	7.80	10	0.79	0.07
C14H12O1N1	209.0841	7.88	10	0.79	0.07
C7H16O6N1	209.0899	0.39	1	2.14	0.86
C15H16N1	209.1204	3.70	9	1.00	0.00
C15H16N1	209.1204	3.86	9	1.00	0.00
C15H16N1	209.1204	4.20	9	1.00	0.00
C12H20O2N1	209.1416	2.25	4	1.58	0.17
C9H7O6	210.0164	1.14	7	0.67	0.67
C8H12O5Na1	188.0685	2.38	3	1.50	0.63
C14H11O2	210.0681	6.46	10	0.71	0.14
C14H11O2	210.0681	6.96	10	0.71	0.14
C14H11O2	210.0681	7 50	10	0.71	0.14
C14H11O2	210.0681	7.30	10	0.71	0.14
C14H11O2	210.0681	8.28	10	0.71	0.14
C13H1101N2	210.0001	2.83	10	0.77	0.08
C13H1101N2	210.0793	2.03	10	0.77	0.00
C11H15O4	210.0775	1 3/	5	1.27	0.00
C11H15O4	210.0092	2 27	5	1.27	0.36
C11H15O4	210.0092	2.57	5	1.27	0.30
C11H15O4	210.0092	3.09	5	1.27	0.36
01111304	210.0072	5.15	5	1.4/	0.50

C11H15O4	210.0892	3.31	5	1.27	0.36
C11H15O4	210.0892	2.45	5	1.27	0.36
C10H15O3N2	210.1004	0.47	5	1.40	0.30
C10H15O3N2	210,1004	0.58	5	1.40	0.30
C10H15O3N2	210.1004	0.67	5	1.40	0.30
C10H15O3N2	210.1004	0.95	5	1.40	0.30
C10H15O3N2	210.1004	1.10	5	1.40	0.30
C10H15O3N2	210.1004	1.20	5	1.40	0.30
C10H15O3N2	210.1004	1.40	5	1.40	0.30
C10H15O3N2	210.1004	2.27	5	1.40	0.30
C10H15O3N2	210.1004	2.55	5	1.40	0.30
C14H15N2	210 1157	3 27	9	1.00	0.00
C14H15N2	210.1157	3.27	9	1.00	0.00
C14H15N2	210.1157	3.25	9	1.00	0.00
C11H19O2N2	210.1157	2 49	4	1.60	0.18
C11H19O2N2	210.1368	2.49	4	1.64	0.18
C11H19O2N2	210.1368	2.03	4 4	1.64	0.18
C11H10O2N2	210.1368	2.72	4	1.64	0.18
C11H19O2N2	210.1368	2.79	4	1.64	0.18
C11H10O2N2	210.1308	2.91	4	1.04	0.18
C11H19O2N2	210.1308	2.99	4	1.04	0.18
C111110O2N2	210.1308	2.20	4	1.04	0.18
C10H17O4N2	210.1508	5.39	4	1.04	0.18
C10H17O4N2	226.1110	0.00	4	1.00	0.40
C14H14O1N1	211.0997	2.89	9	0.93	0.07
C14H14O1N1	211.0997	2.99	9	0.93	0.07
C14H14O1N1	211.0997	3.05	9	0.93	0.07
C14H14O1N1	211.0997	3.14	9	0.93	0.07
CI4HI4OINI	211.0997	3.37	9	0.93	0.07
CI4HI4OINI	211.0997	3.66	9	0.93	0.07
CI4HI4OINI	211.0997	3.88	9	0.93	0.07
CI4HI4OINI	211.0997	7.45	9	0.93	0.07
CI4HI4OINI	211.0997	7.88	9	0.93	0.07
C7H18O6N1	211.1056	0.38	0	2.43	0.86
C13H14N3	211.1109	3.03	9	1.00	0.00
C15H18N1	211.1361	3.65	8	1.13	0.00
C15H18N1	211.1361	3.73	8	1.13	0.00
C15H18N1	211.1361	4.13	8	1.13	0.00
C15H18N1	211.1361	4.21	8	1.13	0.00
C15H18N1	211.1361	4.26	8	1.13	0.00
C15H18N1	211.1361	4.66	8	1.13	0.00
C13H9O3	212.0473	6.20	10	0.62	0.23
C13H9O3	212.0473	7.03	10	0.62	0.23
C13H9O3	212.0473	7.31	10	0.62	0.23
C13H9O3	212.0473	7.56	10	0.62	0.23
C10H13O5	212.0685	2.87	5	1.20	0.50
C10H13O5	212.0685	3.90	5	1.20	0.50
C9H13O4N2	212.0797	0.48	5	1.33	0.44
C9H13O4N2	212.0797	1.00	5	1.33	0.44
C14H13O2	212.0837	7.02	9	0.86	0.14
C14H13O2	212.0837	7.12	9	0.86	0.14

C14H13O2	212.0837	7.28	9	0.86	0.14
C14H13O2	212.0837	7.41	9	0.86	0.14
C14H13O2	212.0837	7.55	9	0.86	0.14
C14H13O2	212.0837	7.78	9	0.86	0.14
C14H13O2	212.0837	8.18	9	0.86	0.14
C13H13O1N2	212.0950	2.65	9	0.92	0.08
C13H13O1N2	212.0950	2.87	9	0.92	0.08
C13H13O1N2	212.0950	3.28	9	0.92	0.08
C11H17O4	212.1049	3.05	4	1.45	0.36
C10H17O3N2	212.1161	0.60	4	1.60	0.30
C10H17O3N2	212.1161	0.68	4	1.60	0.30
C10H17O3N2	212,1161	0.90	4	1.60	0.30
C10H17O3N2	212.1161	0.98	4	1.60	0.30
C10H17O3N2	212.1161	1 11	4	1.60	0.30
C10H17O3N2	212.1161	1.19	4	1.60	0.30
C14H17N2	212.1101	3 39	8	1.00	0.00
C5H16O4N3S1	212.1313	2 79	0	3.00	0.80
C13H12O2N1	213.0709	2.75	0	0.85	0.15
C13H12O2N1	213.0790	3.10	9	0.85	0.15
C13H12O2N1	213.0790	3.10	0	0.85	0.15
C13H12O2N1	213.0790	3.27	9	0.85	0.15
C5H16O4N3S1	213.0790	3.46	0	3.00	0.15
C14H16O1N1	213.0783	2.60	8	3.00	0.80
C14H1001N1	213.1134	2.09	0	1.07	0.07
C14H16O1N1	213.1134	2.00	0	1.07	0.07
C14H1001N1	213.1134	3.22	0	1.07	0.07
C14H16O1N1	213.1154	5.57 7.82	8	1.07	0.07
CI4HI00INI	213.1134	7.82	0	1.07	0.07
CI4HI6UINI	213.1154	7.93	8	1.07	0.07
C/HI2O6Nal	192.0634	0.54	2	1./1	0.86
CITHI2O3Nal	192.0786	3.01	6	1.09	0.27
C13H1103	214.0630	6.37	9	0.77	0.23
C13H1103	214.0630	6.52	9	0.77	0.23
C13H1103	214.0630	6.77	9	0.77	0.23
C13H11O3	214.0630	8.04	9	0.77	0.23
C12H11O2N2	214.0742	1.46	9	0.83	0.17
C10H15O5	214.0841	3.87	4	1.40	0.50
C14H15O2	214.0994	6.81	8	1.00	0.14
C14H15O2	214.0994	6.98	8	1.00	0.14
C14H15O2	214.0994	7.27	8	1.00	0.14
C14H15O2	214.0994	7.28	8	1.00	0.14
C14H15O2	214.0994	7.33	8	1.00	0.14
C14H15O2	214.0994	8.06	8	1.00	0.14
C14H15O2	214.0994	8.33	8	1.00	0.14
C13H15O1N2	214.1106	2.64	8	1.08	0.08
C13H15O1N2	214.1106	2.87	8	1.08	0.08
C14H19N2	214.1470	3.43	7	1.29	0.00
C14H19N2	214.1470	3.63	7	1.29	0.00
C12H10O3N1	215.0582	2.48	9	0.75	0.25
C12H10O3N1	215.0582	3.82	9	0.75	0.25
C13H14O2N1	215.0946	1.83	8	1.00	0.15

C13H14O2N1	215.0946	2.24	8	1.00	0.15
C13H14O2N1	215.0946	2.52	8	1.00	0.15
C13H14O2N1	215.0946	2.92	8	1.00	0.15
C13H14O2N1	215.0946	3.12	8	1.00	0.15
C13H14O2N1	215.0946	3.30	8	1.00	0.15
C13H14O2N1	215.0946	3.46	8	1.00	0.15
C13H14O2N1	215.0946	2.88	8	1.00	0.15
C14H18O1N1	215.1310	3.29	7	1.21	0.07
C14H18O1N1	215.1310	3.56	7	1.21	0.07
C14H18O1N1	215.1310	8.05	7	1.21	0.07
C14H18O1N1	215.1310	8.14	7	1.21	0.07
C9H13O6	216.0634	1.54	4	1.33	0.67
C9H13O6	216.0634	2.74	4	1.33	0.67
C13H13O3	216.0786	7.25	8	0.92	0.23
C12H13O2N2	216.0899	2.92	8	1.00	0.17
C12H13O2N2	216.0899	3.05	8	1.00	0.17
C12H13O2N2	216.0899	3.20	8	1.00	0.17
C12H13O2N2	216.0899	3.36	8	1.00	0.17
C10H20O5N1	233.1263	3.17	2	1.90	0.50
C14H17O2	216.1150	6.75	7	1.14	0.14
C14H17O2	216.1150	6.87	7	1.14	0.14
C14H17O2	216.1150	6.94	7	1.14	0.14
C14H17O2	216.1150	7.03	7	1.14	0.14
C14H17O2	216.1150	7.20	7	1.14	0.14
C14H17O2	216.1150	7.25	7	1.14	0.14
C14H17O2	216.1150	7.37	7	1.14	0.14
C14H17O2	216.1150	7.44	7	1.14	0.14
C14H17O2	216.1150	7.53	7	1.14	0.14
C14H17O2	216.1150	7.70	7	1.14	0.14
C14H17O2	216.1150	7.78	7	1.14	0.14
C14H17O2	216.1150	7.85	7	1.14	0.14
C13H17O1N2	216.1263	2.60	7	1.23	0.08
C13H17O1N2	216.1263	2.74	7	1.23	0.08
C13H17O1N2	216.1263	2.96	7	1.23	0.08
C13H17O1N2	216.1263	3.32	7	1.23	0.08
C14H21N2	216.1626	3.65	6	1.43	0.00
C12H12O3N1	217.0739	0.71	8	0.92	0.25
C12H12O3N1	217.0739	1.22	8	0.92	0.25
C12H12O3N1	217.0739	1.37	8	0.92	0.25
C12H12O3N1	217.0739	2.95	8	0.92	0.25
C11H14O5N1	239.0794	0.39	6	1.18	0.45
C13H16O2N1	217.1103	2.71	7	1.15	0.15
C13H16O2N1	217.1103	2.85	7	1.15	0.15
C13H16O2N1	217 1103	2.97	7	1 15	0.15
C12H16O1N3	217.1215	2.69	7	1.15	0.08
C14H20O1N1	217.1213	7.80	6	1.25	0.07
C7H11O4N2S1	218 0361	0.38	4	1.30	0.57
C11H11O3N2	218.0501	2.52	8	0.91	0.27
C13H15O3	218.0021	3 25	7	1.08	0.27
C13H15O3	210.0943	3.25	, 7	1.00	0.23
010111000	210.0745	5.15	1	1.00	0.23

C13H15O3	218.0943	4.11	7	1.08	0.23
C13H15O3	218.0943	4.26	7	1.08	0.23
C13H15O3	218.0943	4.36	7	1.08	0.23
C13H15O3	218.0943	4.56	7	1.08	0.23
C13H13O2	200.0837	4.74	8	0.92	0.15
C13H15O3	218.0943	5.32	7	1.08	0.23
C13H15O3	218.0943	5.86	7	1.08	0.23
C12H15O2N2	218,1055	1.66	7	1.17	0.17
C12H15O2N2	218.1055	2.33	7	1.17	0.17
C12H15O2N2	218 1055	2.49	7	1 17	0.17
C12H15O2N2	218.1055	2.81	, 7	1.17	0.17
C12H15O2N2	218.1055	2.01	, 7	1.17	0.17
C13H19O1N2	218.1419	2.93	6	1.17	0.08
C6H10O4N3S1	219.0314	0.38	4	1.50	0.67
C15H10O1N1	219.0514	7.65	12	0.60	0.07
C12H14O3N1	219.0004	2.66	7	1.08	0.25
C12H14O3N1	219.0895	3.08	7	1.08	0.25
C16H14N1	219.0099	3.08	, 11	0.81	0.25
C16H14N1	219.1048	3.85	11	0.81	0.00
C16H14N1	219.1048	3.10	11	0.81	0.00
C13H18O2N1	219.1048	2.19	6	1.31	0.00
C14H22O1N1	219.1239	2.70	5	1.51	0.15
C7H13O4N2S1	219.1025	0.30	3	1.50	0.07
C10H14O4N251	108 0802	0.39	3	1.71	0.37
C10H1404Na1	196.0692	2.51	4	1.40	0.40
C12H13O4	220.0736	2.90	7	1.00	0.33
C12H13O4	220.0736	3.03	7	1.00	0.33
C12111304	220.0730	2.67	7	1.00	0.33
C12H1304	220.0736	2.07	7	1.00	0.55
C12H1504	220.0736	3.63	7	1.00	0.55
C15H210IN2	220.1576	2.88	5	1.54	0.08
C15H25U1	220.1827	1.11	4	1.60	0.07
CI5HI2OINI	221.0841	2.76	11	0.73	0.07
CI5HI2OINI	221.0841	2.88	11	0.73	0.07
CI5HI2OINI	221.0841	3.00	11	0.73	0.07
CI5HI2OINI	221.0841	3.16	11	0.73	0.07
CI5HI2OINI	221.0841	3.37	11	0.73	0.07
C15H12O1N1	221.0841	4.64	11	0.73	0.07
C15H12O1N1	221.0841	3.50	11	0.73	0.07
C8H16O6N1	221.0899	0.66	2	1.88	0.75
C13H20O2N1	221.1416	3.03	5	1.46	0.15
C13H20O2N1	221.1416	3.65	5	1.46	0.15
C15H11O2	222.0681	6.71	11	0.67	0.13
C15H15N2	222.1157	3.42	10	0.93	0.00
C10H22O5Na1	222.1467	2.73	0	2.20	0.50
C4H11O8N1Na1	201.0485	0.64	0	2.75	2.00
C11H14O4N1	223.0845	0.50	6	1.18	0.36
C11H14O4N1	223.0845	0.64	6	1.18	0.36
C10H14O3N3	223.0957	0.39	6	1.30	0.30
C15H14O1N1	223.0997	3.05	10	0.87	0.07
C15H14O1N1	223.0997	3.20	10	0.87	0.07

C7H18O3N3S1	223.0991	3.32	1	2.43	0.43
C15H14O1N1	223.0997	7.30	10	0.87	0.07
C15H14O1N1	223.0997	7.35	10	0.87	0.07
C15H14O1N1	223.0997	7.79	10	0.87	0.07
C15H14O1N1	223.0997	3.36	10	0.87	0.07
C12H22O1N3	223.1685	2.55	4	1.75	0.08
C14H9O3	224.0473	7.32	11	0.57	0.21
C10H13O4N2	224.0797	0.41	6	1.20	0.40
C15H13O2	224.0837	7.22	10	0.80	0.13
C15H13O2	224.0837	7.32	10	0.80	0.13
C15H13O2	224.0837	7.43	10	0.80	0.13
C15H13O2	224.0837	7.60	10	0.80	0.13
C15H13O2	224.0837	8.51	10	0.80	0.13
C14H13O1N2	224.0950	2.58	10	0.86	0.07
C12H17O4	224.1049	4.10	5	1.33	0.33
C11H17O3N2	224.1161	0.73	5	1.45	0.27
C11H17O3N2	224.1161	0.87	5	1.45	0.27
C11H14O3N1	207.0895	2.61	6	1.18	0.27
C11H17O3N2	224.1161	2.79	5	1.45	0.27
C12H21O2N2	224.1525	2.92	4	1.67	0.17
C12H21O2N2	224.1525	3.00	4	1.67	0.17
C3H9O9N1Na1	203.0277	3.04	0	3.00	3.00
C6H16O4N3S1	225.0783	7.81	1	2.50	0.67
C15H16O1N1	225.1154	3.09	9	1.00	0.07
C15H16O1N1	225.1154	3.19	9	1.00	0.07
C15H16O1N1	225.1154	3.34	9	1.00	0.07
C15H16O1N1	225.1154	3.48	9	1.00	0.07
C15H16O1N1	225.1154	7.60	9	1.00	0.07
C15H16O1N1	225.1154	7.94	9	1.00	0.07
C6H7O4N6	226.0451	0.60	7	1.00	0.67
C8H12O6Na1	204.0634	0.74	3	1.50	0.75
C14H11O3	226.0630	7.29	10	0.71	0.21
C14H11O3	226.0630	7.32	10	0.71	0.21
C14H11O3	226.0630	7.59	10	0.71	0.21
C14H11O3	226.0630	7.67	10	0.71	0.21
C14H11O3	226.0630	7.79	10	0.71	0.21
C14H11O3	226.0630	7.88	10	0.71	0.21
C14H11O3	226.0630	7.89	10	0.71	0.21
C10H15O4N2	226.0954	1.07	5	1.40	0.40
C15H15O2	226.0994	7.45	9	0.93	0.13
C15H15O2	226.0994	7.52	9	0.93	0.13
C15H15O2	226.0994	7.69	9	0.93	0.13
C15H15O2	226.0994	7.79	9	0.93	0.13
C15H15O2	226.0994	7.94	9	0.93	0.13
C15H15O2	226.0994	8.08	9	0.93	0.13
C11H19O3N2	226.1317	2.96	4	1.64	0.27
C12H23O2N2	226.1681	1.54	3	1.83	0.17
C15H11N1Na1	205.0891	7.15	11	0.73	0.00
C14H14O2N1	227.0946	2.81	9	0.93	0.14
C14H14O2N1	227.0946	3.00	9	0.93	0.14

C14H14O2N1	227.0946	3.09	9	0.93	0.14
C14H14O2N1	227.0946	3.21	9	0.93	0.14
C11H18O4N1	227.1158	3.16	4	1.55	0.36
C15H18O1N1	227.1310	2.92	8	1.13	0.07
C15H18O1N1	227.1310	3.00	8	1.13	0.07
C15H18O1N1	227.1310	3.11	8	1.13	0.07
C15H18O1N1	227.1310	3.21	8	1.13	0.07
C15H18O1N1	227.1310	3.34	8	1.13	0.07
C15H18O1N1	227.1310	3.43	8	1.13	0.07
C15H18O1N1	227.1310	3.57	8	1.13	0.07
C15H18O1N1	227.1310	3.82	8	1.13	0.07
C15H18O1N1	227.1310	8.09	8	1.13	0.07
C13H9O4	228.0423	7.88	10	0.62	0.31
C6H9O4N6	228.0607	0.56	6	1.33	0.67
C14H13O3	228.0786	7.72	9	0.86	0.21
C13H13O2N2	228 0899	2.64	9	0.92	0.15
C13H13O2N2	228.0899	2.79	9	0.92	0.15
C13H13O2N2	228.0899	2.96	9	0.92	0.15
C13H13O2N2	228.0899	3.06	9	0.92	0.15
C10H17O4N2	228.1110	0.74	4	1.60	0.40
C15H17O2	228.1110	7 42	8	1.00	0.13
C15H17O2	228.1150	7.42	8	1.07	0.13
C1/H17O1N2	228.1150	2.84	8	1.07	0.07
C14H17O1N2	228.1263	2.04	0	1.14	0.07
C14H17O1N2	220.1203	3.02 7.05	0	1.14	0.07
C14H17O1N2	228.1203	2.15	0	1.14	0.07
C14H17OIN2	228.1205	2.89	0	1.14	0.07
CI5HI2O5NI	229.0739	2.88	9	0.83	0.23
CI/HI2NI	229.0891	8.64	15	0.65	0.00
C14H16O2N1	229.1103	2.63	8	1.07	0.14
C14H16O2N1	229.1103	2.84	8	1.07	0.14
C14H16O2N1	229.1103	3.09	8	1.07	0.14
CI4HI6O2NI	229.1103	3.34	8	1.07	0.14
C6H9O3N2S3	251.9697	0.31	4	1.33	0.50
C10H12O3N2Na1	208.0848	0.96	6	1.20	0.30
CI7HIIOI	230.0732	8.31	13	0.59	0.06
CI/HIIOI	230.0732	8.42	13	0.59	0.06
C13H15O2N2	230.1055	2.79	8	1.08	0.15
C13H15O2N2	230.1055	3.02	8	1.08	0.15
C13H15O2N2	230.1055	3.17	8	1.08	0.15
C15H19O2	230.1307	7.71	7	1.20	0.13
C15H19O2	230.1307	7.87	7	1.20	0.13
C14H19O1N2	230.1419	3.12	7	1.29	0.07
C16H10O1N1	231.0684	8.06	13	0.56	0.06
C13H14O3N1	231.0895	0.91	8	1.00	0.23
C13H14O3N1	231.0895	2.32	8	1.00	0.23
C13H14O3N1	231.0895	2.60	8	1.00	0.23
C13H14O3N1	231.0895	2.71	8	1.00	0.23
C13H14O3N1	231.0895	2.87	8	1.00	0.23
C13H14O3N1	231.0895	3.01	8	1.00	0.23
C16H9O2	232.0524	7.65	13	0.50	0.13

C12H13O3N2	232.0848	2.62	8	1.00	0.25
C12H13O3N2	232.0848	2.68	8	1.00	0.25
C12H13O3N2	232.0848	3.04	8	1.00	0.25
C12H13O3N2	232.0848	3.22	8	1.00	0.25
C14H17O3	232.1099	4.79	7	1.14	0.21
C14H17O3	232,1099	5.03	, 7	1 14	0.21
C14H17O3	232.1099	6.57	, 7	1.14	0.21
C13H17O2N2	232.1099	1.68	, 7	1.23	0.15
C13H17O2N2	232.1212	2.51	, 7	1.23	0.15
C13H17O2N2	232.1212	2.51	7	1.23	0.15
C13H17O2N2	232.1212	2.09	7	1.23	0.15
C13H17O2N2	232.1212	2.80	7	1.23	0.15
C14H21O1N2	232.1212	2.88	6	1.23	0.15
C14H2101N2	232.1370	2.91	e e	0.02	0.07
C12H12O4N1	233.0088	3.09 2.78	0 7	0.92	0.33
CIGHIDOSNI	255.1052	2.78	12	1.13	0.23
C10H1102	234.0081	0.97	12	0.03	0.15
C13H1504	234.0892	3.27	7	1.08	0.31
C13H1504	234.0892	3.34	7	1.08	0.31
C13H1504	234.0892	3.45	7	1.08	0.31
C13H1504	234.0892	3.86	/	1.08	0.31
C13H1504	234.0892	4.77	/	1.08	0.31
C12H15O3N2	234.1004	2.68	11	1.17	0.25
CI6HI4OINI	235.0997	2.64	11	0.81	0.06
C8H18O3N3S1	235.0991	3.24	2	2.13	0.38
CI6HI4OINI	235.0997	3.49	11	0.81	0.06
CI6HI4OINI	235.0997	3.57	11	0.81	0.06
C14H22O2N1	235.1572	3.19	5	1.50	0.14
C9H13O2N6	236.1022	3.21	7	1.33	0.22
C12H17O3N2	236.1161	2.44	6	1.33	0.25
C13H21O2N2	236.1525	2.57	5	1.54	0.15
C13H21O2N2	236.1525	2.69	5	1.54	0.15
C7H16O4N3S1	237.0783	2.89	2	2.14	0.57
C8H16O7N1	237.0849	0.39	2	1.88	0.88
C12H8O4Na1	216.0423	3.88	9	0.67	0.33
C15H11O3	238.0630	7.93	11	0.67	0.20
C16H15O2	238.0994	7.80	10	0.88	0.13
C7H19O3N4S1	238.1100	3.12	1	2.57	0.43
C12H19O3N2	238.1317	2.59	5	1.50	0.25
C13H23O2N2	238.1681	3.09	4	1.69	0.15
C13H23O2N2	238.1681	3.13	4	1.69	0.15
C8H18O5N1S1	239.0827	2.32	1	2.13	0.63
C8H22O3N3S1	239.1304	3.28	0	2.63	0.38
C16H18O1N1	239.1310	3.54	9	1.06	0.06
C15H13O3	240.0786	7.80	10	0.80	0.20
C11H17O4N2	240.1110	0.52	5	1.45	0.36
C16H17O2	240.1150	7.96	9	1.00	0.13
C16H17O2	240.1150	8.01	9	1.00	0.13
C16H17O2	240.1150	8.06	9	1.00	0.13
C16H17O2	240.1150	8.21	9	1.00	0.13
C12H21O3N2	240.1474	2.65	4	1.67	0.25

C12H21O3N2	240.1474	3.14	4	1.67	0.25
C7H20O4N3S1	241.1096	3.11	0	2.71	0.57
C16H20O1N1	241.1467	3.15	8	1.19	0.06
C16H20O1N1	241.1467	3.19	8	1.19	0.06
C11H19O3N3Na1	241.1426	3.41	4	1.73	0.27
C16H20O1N1	241.1467	3.46	8	1.19	0.06
C6H7O5N6	242.0400	0.39	7	1.00	0.83
C14H11O4	242.0579	5.11	10	0.71	0.29
C10H15O5N2	242.0903	0.40	5	1.40	0.50
C15H15O3	242.0943	7.57	9	0.93	0.20
C14H15O2N2	242.1055	3.26	9	1.00	0.14
C16H19O2	242.1307	7.86	8	1.13	0.13
C15H19O1N2	242.1419	8.28	8	1.20	0.07
C14H14O3N1	243.0895	2.49	9	0.93	0.21
C14H14O3N1	243.0895	2.66	9	0.93	0.21
C15H18O2N1	243.1259	3.05	8	1.13	0.13
C15H18O2N1	243.1259	3.27	8	1.13	0.13
C9H13O6N2	244 0695	0.38	5	1 33	0.67
C13H13O3N2	244,0848	2.61	9	0.92	0.23
C15H17O3	244 1099	7.84	8	1.07	0.20
C14H17O2N2	244 1212	3 19	8	1.07	0.14
C10H22O5Na1	277.1467	2.69	0	2 20	0.50
C16H21O2	222.1467	8.18	7	1.25	0.13
C15H21O1N2	244.1405	3 25	, 7	1.23	0.07
C14H16O3N1	244.1370	2.43	8	1.55	0.07
C14H16O3N1	245.1052	2.45	8	1.07	0.21
C14H16O3N1	245.1052	2.50	0	1.07	0.21
C141116O2N1	245.1052	2.08	0	1.07	0.21
C14H16O2N1	245.1052	2.03	0	1.07	0.21
	245.1052	5.04	0 5	1.07	0.21
CIALLISONNO	246.0713	0.36	5	1.07	0.83
CI3HI5O3N2	246.1004	3.15	8	1.08	0.23
C13H15O3N2	246.1004	3.33	8	1.08	0.23
C15H19O3	246.1256	7.41	/	1.20	0.20
C15H19O3	246.1256	7.61	-	1.20	0.20
C14H19O2N2	246.1368	2.65	7	1.29	0.14
C13H14O4N1	247.0845	2.76	8	1.00	0.31
C11H22O1N1S2	247.1065	3.00	2	1.91	0.09
C14H17O4	248.1049	3.95	7	1.14	0.29
C14H17O4	248.1049	4.26	7	1.14	0.29
C10H20O6N1	249.1212	0.57	2	1.90	0.60
C16H11O3	250.0630	7.65	12	0.63	0.19
C3H3O7N1Na1S2	228.9351	0.31	3	1.00	2.33
C16H14O2N1	251.0946	3.09	11	0.81	0.13
C11H18O5Na1	230.1154	3.22	3	1.64	0.45
C17H17O2	252.1150	8.18	10	0.94	0.12
C9H19O5N1Na1S1	253.0984	1.42	1	2.11	0.56
C13H19O5	254.1154	6.09	5	1.38	0.38
C14H9O5	256.0372	7.09	11	0.57	0.36
C10H18O6Na1	234.1103	2.82	2	1.80	0.60
C15H16O3N1	257.1052	2.51	9	1.00	0.20

C15H16O3N1	257.1052	2.75	9	1.00	0.20
C15H16O3N1	257.1052	2.83	9	1.00	0.20
C17H7O3	258.0317	2.37	15	0.35	0.18
C15H18O3N1	259.1208	2.68	8	1.13	0.20
C15H18O3N1	259.1208	2.76	8	1.13	0.20
C15H18O3N1	259.1208	2.89	8	1.13	0.20
C15H18O3N1	259.1208	2.92	8	1.13	0.20
C13H13O4N2	260.0797	2.59	9	0.92	0.31
C15H17O4	260.1049	7.88	8	1.07	0.27
C14H17O3N2	260.1161	2.75	8	1.14	0.21
C14H16O4N1	261.1001	1.25	8	1.07	0.29
C13H15O4N2	262.0954	2.69	8	1.08	0.31
C14H19O3N2	262.1317	2.56	7	1.29	0.21
C12H20O3N2Na1	240.1474	3.97	4	1.67	0.25
C9H20O4N3S1	265.1096	2.71	2	2.11	0.44
C10H23O4N2S1	266.1300	8.25	1	2.20	0.40
C3H3O7N1Na1S2	228.9351	0.31	3	1.00	2.33
C10H14O7Na1	246.0740	2.02	4	1.40	0.70
C6H3O4N7Na1S1	268.9967	1.47	9	0.50	0.67
C12H16O6N1	269.0899	0.38	6	1.25	0.50
C16H18O3N1	271.1208	2.68	9	1.06	0.19
C16H18O3N1	271.1208	3.06	9	1.06	0.19
C15H16O4N1	273.1001	2.61	9	1.00	0.27
C11H24O6Na1	252.1573	2.67	0	2.18	0.55
C15H18O4N1	275.1158	2.28	8	1.13	0.27
C15H18O4N1	275.1158	2.60	8	1.13	0.27
C15H21O3N2	276.1474	2.75	7	1.33	0.20
C17H25O3	276.1725	7.58	6	1.41	0.18
C6H4O6N1S3	280.9122	0.30	6	0.50	1.00
C14H24O3N3	281.1739	2.49	5	1.64	0.21
C16H18O4N1	287.1158	2.70	9	1.06	0.25
C6H6O7N1S3	298.9228	0.29	5	0.83	1.17
C12H22O7Na1	278.1366	2.90	2	1.83	0.58
C12H4O1N6Na1S1	280.0167	2.63	14	0.33	0.08
C16H18O5N1	303.1107	2.69	9	1.06	0.31
C16H20O5N1	305.1263	2.44	8	1.19	0.31
C13H17O5N2S1	312.0780	1.10	7	1.23	0.38
C16H30O5N1	315.2046	2.57	3	1.81	0.31
C16H35O4N2	318.2519	0.39	1	2.13	0.25
C10H21O4N6S1	320.1267	6.30	4	2.00	0.40
C20H31O4	334.2144	8.14	6	1.50	0.20
C10H7O8N6	338.0247	2.41	11	0.60	0.80
C18H34O5N1	343.2359	3.26	3	1.83	0.28
C20H25O5	344.1624	7.35	9	1.20	0.25
C9H22O6N6Na1S1	342.1322	3.35	2	2.44	0.67
C10H6O9N7	367.0149	1.45	12	0.50	0.90
C19H24O6Na1	348.1573	7.62	8	1.26	0.32
C18H38O7Na1	366.2618	4.96	0	2.11	0.39
C11H8O10N7	397 0254	2.23	12	0.64	0.91
C21H44O8Na1	424 3036	6.82	0	2 10	0.38

C26H49O6N2	484.3512	2.55	4	1.85	0.23

	Neutral mass				
Formula [M-H]	(Da)	RT (min)	DBE	H/C	O/C
C3H5O6S1	169.9885	0.38	1	2.00	2.00
C4H7O6S1	184.0042	0.43	1	2.00	1.50
C3H3O4	104.0110	0.37	2	1.33	1.33
C5H7O7S1	211.9991	0.38	2	1.60	1.40
C4H5O5	134.0215	0.39	2	1.50	1.25
C3H4O5N1	135.0168	0.39	2	1.67	1.67
C8H7O1	120.0575	3.07	5	1.00	0.13
C3H4O5N1S1	166.9888	0.35	2	1.67	1.67
C7H5O2	122.0368	2.60	5	0.86	0.29
C7H5O2	122.0368	2.66	5	0.86	0.29
C2H5O4S1	125.9987	0.38	0	3.00	2.00
C5H5O5	146.0215	0.38	3	1.20	1.00
C5H7O5	148.0372	0.39	2	1.60	1.00
C5H5O4	130.0266	0.59	3	1.20	0.80
C5H3O3N4	168.0283	0.36	6	0.80	0.60
C5H7O4	132.0423	0.77	2	1.60	0.80
C5H7O4	132.0423	1.10	2	1.60	0.80
C9H7O1	132.0575	3.11	6	0.89	0.11
C8H5O2	134.0368	1.83	6	0.75	0.25
C7H4O2N1	135.0320	2.69	6	0.71	0.29
C4H7O5	136.0372	0.33	1	2.00	1.25
C8H7O2	136.0524	3.10	5	1.00	0.25
C2H2O4N1S1	136.9783	0.37	2	1.50	2.00
C5H2O2N3	137.0225	2.80	6	0.60	0.40
C5H2O2N3	137.0225	3.20	6	0.60	0.40
C7H6O2N1	137.0477	2.39	5	1.00	0.29
C3H5O4S1	137.9987	0.36	1	2.00	1.33
C7H5O3	138.0317	2.17	5	0.86	0.43
C7H5O3	138.0317	2.34	5	0.86	0.43
C7H5O3	138.0317	3.57	5	0.86	0.43
C6H4O3N1	139.0269	3.76	5	0.83	0.50
C2H3O5S1	139.9779	0.34	1	2.00	2.50
C3H7O4S1	140.0143	0.50	0	2.67	1.33
C5H3O3N2	140.0222	2.40	5	0.80	0.60
C6H7O8S1	239,9940	0.39	3	1.33	1.33
C8H3O1N2	144.0324	3.70	8	0.50	0.13
C6H7O4	144.0423	0.69	3	1.33	0.67
C6H7O4	144.0423	1.34	3	1.33	0.67
C9H6O1N1	145.0528	2.26	7	0.78	0.11
C8H4O2N1	147.0320	3.27	7	0.63	0.25
C9H7O2	148.0524	2.96	6	0.89	0.22
C9H7O2	148.0524	3.10	6	0.89	0.22

Table S3.2.3 Molecular formulas of organic compounds detected in SH in ESI- mode.

C8H5O3	150.0317	0.82	6	0.75	0.38
C8H5O3	150.0317	2.64	6	0.75	0.38
C5H9O5	150.0528	0.34	1	2.00	1.00
C4H7O4S1	152.0143	0.38	1	2.00	1.00
C4H7O4S1	152.0143	2.85	1	2.00	1.00
C8H7O3	152.0473	2.65	5	1.00	0.38
C8H7O3	152.0473	2.99	5	1.00	0.38
C5H11O3S1	152.0507	1.88	0	2.40	0.60
C7H6O3N1	153.0426	5.22	5	1.00	0.43
C7H6O3N1	153.0426	6.06	5	1.00	0.43
C3H5O5S1	153.9936	0.37	1	2.00	1.67
C7H5O4	154.0266	1.30	5	0.86	0.57
C7H5O4	154.0266	2.10	5	0.86	0.57
C7H5O4	154 0266	2.62	5	0.86	0.57
C4H9O4S1	154.0300	0.93	0	2.50	1.00
C6H5O3N2	154 0378	2.85	5	1.00	0.50
C6H5O3N2	154.0378	3.33	5	1.00	0.50
C6H4O4N1	155 0219	0.42	5	0.83	0.67
C6H4O4N1	155.0219	3.09	5	0.83	0.67
C6H4O4N1	155.0219	3.82	5	0.83	0.67
C2H3O6S1	155.0219	0.34	1	2.00	3.00
C4H2O4N3	157.0124	3.25	5	0.75	1.00
C6H5O3S1	158.0038	0.74	4	1.00	0.50
C6H5O5	158.0015	0.38		1.00	0.83
C6H8O4N1	159.0532	0.38	3	1.50	0.65
C4H3O3N2S1	159.0002	0.37	4	1.00	0.75
C9H5O3	162 0317	3.08	7	0.67	0.33
C9H5O3	162.0317	3.26	, 7	0.67	0.33
C9H5O3	162.0317	3.31	7	0.67	0.33
C8H5O2N2	162.0317	6.09	7	0.75	0.35
C10H9O2	162.042)	3.63	6	1.00	0.20
C7H13O4	162.0001	0.85	1	2.00	0.20
C7H3O3N2	164.0222	4.01	1	2.00	0.37
C7H3O3N2	164.0222	4.23	7	0.57	0.43
C9H7O3	164.0222	2.49	6	0.37	0.43
C9H7O3	164.0473	3.07	6	0.89	0.33
C9H7O3	164.0473	3.29	0	0.89	0.33
C8H6O3N1	165.0426	3.20	0	0.89	0.33
C8H6O3N1	165.0426	5.09	0	0.88	0.38
C8H6O3N1	165.0426	675	0	0.88	0.38
C4H5O5S1	165.0426	0.75	0	0.88	0.38
C8H5O4	105.9936	1.09	2	1.50	1.25
C8H5O4	166.0266	1.34	6	0.75	0.50
C8H5O4	166.0266	2 67	6	0.75	0.50
C8H5O4	166.0266	2.07	6	0.75	0.50
C6H11O6S1	166.0266	0.39	6	0.75	0.50
C7H5O3N2	212.0355	3 47	I	2.00	1.00
C8H8O3N1	166.0378	7.7K	6	0.86	0.43
C8H8O2N1	167.0582	7.20	5	1.13	0.38
C5H110491	167.0582	1.57	5	1.13	0.38
031110451	168.0456	2.22	0	2.40	0.80

C5H11O4S1	168.0456	2.82	0	2.40	0.80
C7H6O4N1	169.0375	2.95	5	1.00	0.57
C7H6O4N1	169.0375	2.99	5	1.00	0.57
C6H4O5N1	171.0168	2.31	5	0.83	0.83
C5H4O4N3	171.0280	3.94	5	1.00	0.80
C7H11O7	208.0583	0.39	2	1.71	1.00
C7H7O5	172.0372	0.54	4	1.14	0.71
C11H7O2	172.0524	3.86	8	0.73	0.18
C8H11O4	172.0736	2.48	3	1.50	0.50
C7H11O3N2	172.0848	2.49	3	1.71	0.43
C7H9O5	174.0528	0.75	3	1.43	0.71
C7H9O5	174.0528	0.96	3	1.43	0.71
C5H4O4N1S1	174.9939	0.38	4	1.00	0.80
C6H8O5N1	175.0481	0.38	3	1.50	0.83
C10H9O4	194.0579	3.20	6	1.00	0.40
C9H7O2N2	176.0586	7.47	7	0.89	0.22
C7H11O5	176.0685	0.95	2	1.71	0.71
C7H11O5	176.0685	1.15	2	1.71	0.71
C8H15O4	176.1049	1.47	1	2.00	0.50
C9H6O3N1	177.0426	2.77	7	0.78	0.33
C9H6O3N1	177.0426	3.32	7	0.78	0.33
C9H5O4	178.0266	2.82	7	0.67	0.44
C9H5O4	178.0266	2.99	7	0.67	0.44
C10H9O3	178.0630	3.00	6	1.00	0.30
C10H9O3	178.0630	3.81	6	1.00	0.30
C8H4O4N1	179.0219	4.92	7	0.63	0.50
C8H4O4N1	179.0219	5.40	7	0.63	0.50
C9H8O3N1	179.0582	3.34	6	1.00	0.33
C9H8O3N1	179.0582	7.30	6	1.00	0.33
C9H8O3N1	179.0582	7.45	6	1.00	0.33
C6H9O7S1	226.0147	0.39	2	1.67	1.17
C7H3O4N2	180.0171	3.53	7	0.57	0.57
C9H7O4	180.0423	2.77	6	0.89	0.44
C9H7O4	180.0423	2.86	6	0.89	0.44
C9H7O4	180.0423	3.04	6	0.89	0.44
C9H7O4	180.0423	3.16	6	0.89	0.44
C9H7O4	180.0423	3.58	6	0.89	0.44
C9H7O4	180.0423	4.13	6	0.89	0.44
C8H7O3N2	180.0535	3.83	6	1.00	0.38
C6H11O6	180.0535	0.34	1	2.00	1.00
C7H2O1N1S2	180.0054	0.33	1	0.43	0.14
C8H6O4N1	181.0375	3.91	6	0.88	0.14
C9H10O3N1	181.0739	7.96	5	1.22	0.30
C8H5O5	182.0215	1.07	5	0.75	0.53
C8H5O5	182.0215	1.92	6	0.75	0.03
C8H5O5	182.0215	2.46	6	0.75	0.03
C8H5O5	102.0213	2.82	0	0.75	0.05
C5H9O5S1	102.0213	0.48	0	2.00	1.00
C5H9O5S1	102.0249	0.68	1	2.00	1.00
C5H9O5S1	102.0249	0.90	1	2.00	1.00
	162.0249	0.20	1	2.00	1.00

C7H5O4N2	182.0328	3.13	6	0.86	0.57
C7H5O4N2	182.0328	3.47	6	0.86	0.57
C9H9O4	182.0579	2.30	5	1.11	0.44
C6H13O4S1	182.0613	3.02	0	2.33	0.67
C6H13O4S1	182.0613	3.14	0	2.33	0.67
C6H13O4S1	182.0613	3.51	0	2.33	0.67
C7H4O5N1	183.0168	2.95	6	0.71	0.71
C7H4O5N1	183.0168	3.27	6	0.71	0.71
C7H4O5N1	183.0168	3.34	6	0.71	0.71
C6H4O4N3	183.0280	4.93	6	0.83	0.67
C6H4O4N3	183.0280	5.05	6	0.83	0.67
C8H8O4N1	183.0532	3.37	5	1.13	0.50
C8H8O4N1	183.0532	3.45	5	1.13	0.50
C8H8O4N1	183.0532	3.52	5	1.13	0.50
C8H8O4N1	183.0532	4.18	5	1.13	0.50
C8H8O4N1	183.0532	5.69	5	1.13	0.50
C8H8O4N1	183.0532	5.97	5	1.13	0.50
C8H8O4N1	183.0532	6.52	5	1.13	0.50
C8H8O4N1	183.0532	7.05	5	1.13	0.50
C5H11O5S1	184.0405	0.51	0	2.40	1.00
C7H6O5N1	185.0324	3.30	5	1.00	0.71
C11H7O3	188.0473	7.28	8	0.73	0.27
C11H7O3	188.0473	7.78	8	0.73	0.27
C8H11O5	188.0685	1.29	3	1.50	0.63
C8H11O5	188.0685	1.92	3	1.50	0.63
C8H11O5	188.0685	2.37	3	1.50	0.63
C10H6O3N1	189.0426	7.74	8	0.70	0.30
C9H5O3N2	190.0378	2.76	8	0.67	0.33
C8H13O5	190.0841	2.27	2	1.75	0.63
C9H17O4	190.1205	2.80	-	2.00	0.44
C9H3O5	192.0059	1.95	8	0.44	0.56
C6H7O7	192.0039	0.38	3	1 33	1 17
C10H7O4	192.0278	2.40	5 7	0.80	0.40
C10H7O4	192.0423	2.91	, 7	0.80	0.40
C10H7O4	192.0423	3.00	, 7	0.80	0.40
C10H7O4	192.0423	3.12	7	0.80	0.40
C10H7O4	192.0423	3.28	, 7	0.80	0.40
C10H7O4	192.0423	6.99	7	0.80	0.40
C8H15O3S1	192.0425	3.99	, 1	2.00	0.38
C9H6O4N1	193.0375	3.48	7	0.78	0.44
C9H6O4N1	193.0375	3.64	7	0.78	0.44
C9H6O4N1	193.0375	7.16	7	0.78	0.44
C9H5O5	194.0215	0.82	7	0.78	0.44
C9H5O5	194.0215	2.61	7	0.67	0.56
C9H5O5	194.0215	2.77	7	0.67	0.56
C9H5O5	104.0215	2.90	י ד	0.07	0.50
C10H9O4	194.0213	2.86	6	1.00	0.30
C10H9O4	174.0379	3.61	6	1.00	0.40
C10H9O4	194.0379	3.74	U E	1.00	0.40
C10H9O4	194.0379	6.39	0 2	1.00	0.40
	194.0379	0.07	0	1.00	0.40

C10H9O4	194.0579	3.96	6	1.00	0.40
C8H17O3S1	194.0977	5.18	0	2.25	0.38
C8H4O5N1	195.0168	3.15	7	0.63	0.63
C9H7O5	196.0372	2.74	6	0.89	0.56
C9H7O5	196.0372	3.18	6	0.89	0.56
C9H7O5	196.0372	3.41	6	0.89	0.56
C9H7O5	196.0372	3.72	6	0.89	0.56
C6H11O5S1	196.0405	0.83	1	2.00	0.83
C6H11O5S1	196.0405	1.05	1	2.00	0.83
C8H7O4N2	196.0484	3.19	6	1.00	0.50
C13H7O2	196.0524	4.89	10	0.62	0.15
C13H7O2	196.0524	7.17	10	0.62	0.15
C13H7O2	196.0524	7.53	10	0.62	0.15
C7H15O4S1	196.0769	5.15	0	2.29	0.57
C8H6O5N1	197.0324	4.31	6	0.88	0.63
C8H6O5N1	197.0324	4.70	6	0.88	0.63
C7H6O4N3	197.0437	6.96	6	1.00	0.57
C9H10O4N1	197.0688	7.36	5	1.22	0.44
C9H10O4N1	197.0688	7.57	5	1.22	0.44
C8H5O6	198.0164	0.90	6	0.75	0.75
C8H5O6	198.0164	1.22	6	0.75	0.75
C8H5O6	198.0164	3.09	6	0.75	0.75
C7H5O5N2	198.0277	7.41	6	0.86	0.71
C7H4O6N1	199 0117	2.67	6	0.71	0.86
C7H4O6N1	199.0117	3.43	6	0.71	0.86
C8H8O5N1	199.0481	2.51	5	1.13	0.63
C8H8O5N1	199.0481	2.81	5	1.13	0.63
C8H8O5N1	199.0481	4.25	5	1.13	0.63
C6H3O6N2	200.0069	4.24	6	0.67	1.00
C6H3O6N2	200.0069	4.80	6	0.67	1.00
C13H11O2	200.0837	7.72	8	0.92	0.15
C7H5O5S1	201.9936	0.63	5	0.86	0.71
C9H13O5	202.0841	2.70	3	1.56	0.56
C11H8O3N1	203.0582	7.97	8	0.82	0.27
C11H8O3N1	203.0582	8.07	8	0.82	0.27
C8H13O7	203.0302	0.39	2	1.75	0.88
C8H11O6	204 0634	0.55	3	1.75	0.00
C10H6O4N1	205.0375	3.03	8	0.70	0.40
C10H6O4N1	205.0375	3.13	8	0.70	0.40
C10H5O5	205.0315	3.15	8	0.60	0.10
C11H9O4	206.0219	3.19	7	0.00	0.36
C9H4O5N1	200.0379	2.52	8	0.51	0.56
C9H4O5N1	207.0168	3.19	8	0.56	0.56
C9H4O5N1	207.0168	3.93	8	0.56	0.56
C10H8O4N1	207.0100	2.83	7	0.90	0.30
C10H8O4N1	207.0532	7.70	, 7	0.90	0.40
C6H7O6S1	207.0332	0.39	2	1 33	1.00
C10H7O5	200.0042	2.54	5 7	0.80	0.50
C10H7O5	200.0372	2.77	י ד	0.80	0.50
C10H7O5	200.0372	2.87	י ד	0.00	0.50
	200.0372		/	0.00	0.30

C10H7O5	208.0372	3.00	7	0.80	0.50
C8H15O4S1	208.0769	4.86	1	2.00	0.50
C9H5O6	210.0164	1.10	7	0.67	0.67
C9H5O6	210.0164	1.95	7	0.67	0.67
C9H5O6	210.0164	2.24	7	0.67	0.67
C9H5O6	210.0164	2.55	7	0.67	0.67
C10H9O5	210.0528	2.85	6	1.00	0.50
C10H9O5	210.0528	3.02	6	1.00	0.50
C14H9O2	210.0681	7.75	10	0.71	0.14
C14H9O2	210.0681	7.88	10	0.71	0.14
C8H17O4S1	210.0926	7.16	0	2.25	0.50
C11H17O2N2	210.1368	2.72	4	1.64	0.18
C8H4O6N1	211.0117	3.01	7	0.63	0.75
C9H8O5N1	211.0481	7.06	6	1.00	0.56
C6H11O6S1	212.0355	1.02	1	2.00	1.00
C6H11O6S1	212 0355	2.85	1	2.00	1.00
C8H7O5N2	212.0433	7.92	6	1.00	0.63
C13H7O3	212.0473	6.54	10	0.62	0.23
C13H7O3	212.0473	7.08	10	0.62	0.23
C13H7O3	212.0473	7.48	10	0.62	0.23
C8H6O6N1	213 0273	3.42	6	0.82	0.25
C8H5O5S1	213.0275	1.58	6	0.75	0.63
C7H5O6N2	213.5550	3.55	6	0.75	0.86
C7H5O6N2	214.0226	4.84	6	0.86	0.86
C12H5O4	214.0226	5.49	10	0.50	0.33
C13H9O3	214.0630	8.03	9	0.50	0.23
C4H8O7N1S1	215.0100	1.48	1	2.25	1.75
C12H8O3N1	215.0100	7.86	9	0.75	0.25
C12H8O3N1	215.0582	8.10	9	0.75	0.25
C8H7O5S1	215.0302	1.80	5	1.00	0.63
C12H7O4	216.0092	3.86	9	0.67	0.03
C12H7O4	216.0423	4.05	9	0.67	0.33
C12H7O4	216.0423	4.46	9	0.67	0.33
C12H10O3N1	217.0739	8.21	8	0.07	0.35
C6H1O3S3	217.0739	0.54	6	0.92	0.23
C8H9O5S1	217.0100	1.42	4	1.25	0.50
C16H9O1	218.0242	8.36	12	0.63	0.05
C6H4O6N1S1	218.0732	2.93	5	0.03	1.00
C8H11O7	218.9838	0.38	3	1.50	0.88
C11H9O5	220.0383	2.91	3 7	0.01	0.88
C11H9O5	222.0528	3.04	7	0.91	0.45
C11H9O5	222.0328	3.16	7	0.91	0.45
C11H9O5	222.0328	3.30	7	0.91	0.45
C15H9O2	222.0328	7.23	/	0.91	0.43
C12H13O4	222.0081	8.04	11	0.07	0.15
C8H3O6N2	222.0892	4 15	0	1.17	0.33
C10H706	224.0009	2.73	ð	0.50	0.75
C10H7O6	224.0321	2.75	/	0.80	0.60
C10H7O6	224.0321	2.00	- 7	0.80	0.60
C10H7O6	224.0321	3.00	7	0.80	0.60
001/00	224.0321	3.13	7	0.80	0.60

C8H13O8S1	270.0409	0.38	2	1.75	1.00
C14H7O3	224.0473	7.57	11	0.57	0.21
C8H15O5S1	224.0718	2.57	1	2.00	0.63
C8H15O5S1	224.0718	2.67	1	2.00	0.63
C8H15O5S1	224.0718	2.83	1	2.00	0.63
C9H19O4S1	224,1082	7.64	0	2.22	0.44
C9H6O6N1	225.0273	3.13	7	0.78	0.67
C9H6O6N1	225.0273	3.23	7	0.78	0.67
C9H10O4N3	225.0750	7.68	6	1.22	0.44
C9H5O7	226.0114	1.07	7	0.67	0.78
C9H5O7	226.0114	2.88	, 7	0.67	0.78
C7H13O6S1	226.0511	2.49	1	2.00	0.86
C7H13O6S1	226.0511	2.81	1	2.00	0.86
C14H9O3	226.0630	7.12	10	0.71	0.21
C14H9O3	226.0630	7.26	10	0.71	0.21
C8H17O5S1	226.0835	2.95	0	2.25	0.63
C8H4O7N1	220.0075	4.08	7	0.63	0.88
C9H8O6N1	227.0000	2.99	6	1.00	0.67
C9H8O6N1	227.0430	3.38	6	1.00	0.67
C13H8O3N1	227.0130	8.23	10	0.69	0.23
C7H3O7N2	228.0019	4.07	7	0.57	1.00
C8H7O6N2	228.0382	4.69	6	1.00	0.75
C13H7O4	228.0382	7.87	10	0.62	0.75
C5H10O7N1S1	220.0425	2.76	10	2.20	1.40
C5H10O7N1S1	229.0256	2.84	1	2.20	1.40
C12H6O4N1	229.0250	7.98	10	0.58	0.33
C12H6O4N1	229.0375	8.05	10	0.58	0.33
C13H10O3N1	229.0375	8.12	9	0.85	0.23
C13H10O3N1	229.0739	8.28	9	0.85	0.23
C8H5O6S1	229.0735	2.53	6	0.05	0.25
C9H9O5S1	229.9885	2.57	5	1 11	0.75
C11H17O5	230.0249	3.22	3	1.11	0.50
C4H8O8N1S1	231.0049	0.70	1	2.25	2.00
C5H4O6N5	231.0049	0.37	6	1.00	1.20
C12H8O4N1	231.0240	7.43	9	0.75	0.33
C12H8O4N1	231.0532	7.81	9	0.75	0.33
C10H15O6	231.0332	3.05	3	1.60	0.55
C10H5O5N2	232.0947	7.61	0	0.60	0.00
C11H7O6	234.0277	2.59	9 Q	0.00	0.50
C15H9O4	250.0521	7.87	0	0.75	0.33
C9H15O5S1	234.0379	2.66	2	1.78	0.27
C7H10O6N1S1	230.0718	0.38	2	1.70	0.30
C10H5O3S2	237.0307	0.52	2 0	0.60	0.80
C8H11O9S1	237.9738	0.38	0	1.50	0.30
C12H13O5	284.0202	3.42	5	1.30	1.15
C14H7O4	238.0841	7.12	0	1.17	0.42
C14H7O4	240.0423	7.28	11	0.57	0.29
C8H15O6S1	240.0423	2.88	11	2.00	0.29
C8H15O6S1	240.0008	2.99	1	2.00	0.75
C13H6O4N1	240.0008	7.83	1	2.00	0.75
01511004111	241.0375	1.05	11	0.54	0.31

C8H17O2S3	242.0469	0.47	0	2.25	0.25
C9H9O6N2	242.0539	6.82	6	1.11	0.67
C14H9O4	242.0579	5.06	10	0.71	0.29
C14H9O4	242.0579	7.48	10	0.71	0.29
C8H4O8N1	243.0015	2.90	7	0.63	1.00
C7H4O7N3	243.0127	5.69	7	0.71	1.00
C6H12O7N1S1	243.0413	3.45	1	2.17	1.17
C14H12O3N1	243.0895	8.31	9	0.93	0.21
C9H7O6S1	244.0042	2.34	6	0.89	0.67
C12H19O5	244 1311	4.35	3	1.67	0.42
C8H8O6N1S1	247.0151	1.43	5	1.13	0.75
C8H3O4N6	248 0294	3.09	10	0.50	0.50
C8H3O4N6	248 0294	3.16	10	0.50	0.50
C16H7O3	248 0473	7.41	13	0.50	0.19
C10H15O5S1	248.0718	2.99	3	1.60	0.19
C7H5O8S1	249 9783	2.60	5	0.86	1 14
C10H17O5S1	250 0875	3.09	2	1.80	0.50
C14H4O2N1S1	251.0041	2.66	13	0.36	0.14
C8H11O7S1	252 0304	0.38	3	1.50	0.88
C15H7O4	252.0304	7.60	12	0.53	0.00
C9H15O6S1	252.0425	2.62	2	1.78	0.27
C10H19O5S1	252.0000	7.01	1	2.00	0.50
C11H23O4S1	252.1091	8.19	0	2.00	0.36
C7H10O7N1S1	253.0256	0.38	3	1.57	1.00
C8H13O7S1	254 0460	1.05	2	1.57	0.88
C12H17O4N2	254 1267	2.67	5	1.75	0.33
C10H9O6S1	258 0198	1.79	6	1.00	0.55
C12H4O6N1	259.0117	3.87	11	0.42	0.50
C9H7O7S1	259.0117	1.71	6	0.42	0.30
C12H7O5N2	260.0433	8.31	10	0.67	0.42
C8H8O7N1S1	263.0100	3.61	5	1.13	0.42
C12H9O5S1	266.0249	3.34	8	0.83	0.00
C16H15O4	272 1049	8.15	9	1.00	0.42
C13H23O4N2	272.1049	2.33	3	1.00	0.25
C14H9O4S1	272.1730	7.09	10	0.71	0.31
C7H4O5N3S2	274.0500	0.28	7	0.71	0.2)
C9H8O7N1S1	274.0071	4.21	6	1.00	0.78
C12H23O5S1	275.0100	7.14	1	2.00	0.78
C8H14O8N1S1	285.0518	2.99	1	2.00	1.00
C15H9O6	285.0518	3.51	2 11	1.00	0.40
C8H16O8N1S1	280.0477	3.07	1	0.07	1.00
C15H11O4S1	287.0075	7.42	1	2.15	0.27
C18H9O4	200.0430	7.71	10	0.60	0.27
C13H25O5S1	290.0379	7.59	14	2.00	0.22
C10H16O7N1S1	294.1301	4.70	1	2.00	0.38
C10H16O7N1S1	293.0726	6.32	2	1.70	0.70
C10H16O7N1S1	293.0726	6.62	2 2	1.70	0.70
C10H16O7N1S1	293.0726	6.84	3 2	1.70	0.70
C10H16O7N1S1	293.0720	7.01	3 2	1.70	0.70
C9H14O8N1S1	293.0726	3 27	с С	1.70	0.70
0/11110010151	297.0518	5.21	3	1.6/	0.89

C9H16O8N1S1	299.0675	3.37	2	1.89	0.89
C15H10O4N1S1	301.0409	3.04	11	0.73	0.27
C9H18O8N1S1	301.0831	3.22	1	2.11	0.89
C13H5O4N6	310.0451	5.06	14	0.46	0.31
C10H16O8N1S1	311.0675	3.50	3	1.70	0.80
C10H18O8N1S1	313.0831	2.81	2	1.90	0.80
C10H18O8N1S1	313.0831	2.94	2	1.90	0.80
C10H18O8N1S1	313.0831	3.09	2	1.90	0.80
C10H18O8N1S1	313.0831	3.40	2	1.90	0.80
C10H18O8N1S1	313.0831	3.53	2	1.90	0.80
C17H13O6	314.0790	7.96	11	0.82	0.35
C9H16O9N1S1	315.0624	2.54	2	1.89	1.00
C18H12O6N1	339.0743	7.85	13	0.72	0.33
C7H7O8S4	347.9102	0.28	4	1.14	1.14
C14H5O6N6	354.0349	2.59	15	0.43	0.43
C15H24O7N1S1	363.1352	8.04	4	1.67	0.47
C8H2O8N1S4	368.8741	0.33	8	0.38	1.00
C10H17O11N2S1	374.0631	3.18	3	1.80	1.10
C10H17O11N2S1	374.0631	3.33	3	1.80	1.10
C10H17O11N2S1	374.0631	4.37	3	1.80	1.10
C20H17O8	386.1002	8.21	12	0.90	0.40
C20H17O9	402.0951	7.43	12	0.90	0.45
C10H27O11N6	408.1816	8.05	0	2.80	1.10
C10H16O13N3S1	419.0482	7.61	4	1.70	1.30

Table S3.2.4 Molecular formulas of organic compounds detected in SH in ESI+ mode.

Formula [M+H]/[M+Na]	Neutral mass (Da)	RT (min)	DBE	H/C	O/C
C6H9O3N2	156,0535	0.32	4	1.33	0.50
C4H12O4N2Na1S3	247.9959	0.28	0	3.00	1.00
C6H4O5N1S4	296.8894	0.28	6	0.50	0.83
C12H17O2N2	220.1212	0.34	6	1.33	0.17
C6H11N2	110.0844	0.89	3	1.67	0.00
C7H11O2N2	154.0742	0.43	4	1.43	0.29
C7H16N1	113.1204	1.00	1	2.14	0.00
C6H15N2	114.1157	1.24	1	2.33	0.00
C6H15N2	114.1157	1.50	1	2.33	0.00
C6H9O2N2	140.0586	0.38	4	1.33	0.33
C7H7N2	118.0531	0.39	6	0.86	0.00
C7H7N2	118.0531	0.43	6	0.86	0.00
C7H7N2	118.0531	0.47	6	0.86	0.00
C7H7N2	118.0531	0.66	6	0.86	0.00
C7H7N2	118.0531	0.77	6	0.86	0.00
C5H14O2N1	119.0946	0.32	0	2.60	0.40
C7H11O1N2	138.0793	0.39	4	1.43	0.14
C4H12O1N1S1	121.0561	0.33	0	2.75	0.25
C10H15N2	162.1157	0.39	5	1.40	0.00
C7H7O2	122.0368	2.77	5	0.86	0.29
C7H11N2	122.0844	0.43	4	1.43	0.00

C7H11N2122.08440.9741.430.00C7H11N2122.08441.0241.430.00C7H1001N1123.06840.5041.290.14C7H1001N1123.06842.5941.290.14C3H905124.03720.2802.671.67C7H13N2124.10000.3931.710.00C7H13N2124.10000.7031.710.00C7H13N2124.10000.8931.710.00C7H13N2124.10001.3031.710.00C7H13N2124.10001.3031.710.00C7H13N2124.10001.2931.710.00C7H13N2124.10001.9631.710.00C7H13N2124.10001.9631.710.00C7H13N2124.10002.3231.710.00C7H13N2124.10002.3231.710.00C7H13N2124.10002.3231.710.00C7H13N2124.10002.4231.710.00C7H13N2124.10002.4231.710.00C7H13N2124.10002.4231.710.00C7H13N2124.10002.4231.710.00C7H13N2124.10002.4231.710.00C7H13N2126.04770.3941.170.33C6H802N1125.0477	C7H11N2	122.0844	0.49	4	1.43	0.00
C7H11N2122.08441.0241.430.00C7H1001N1123.06840.5041.290.14C7H1001N1123.06842.5941.290.14C3H905124.03720.2802.671.67C7H13N2124.10000.3931.710.00C7H13N2124.10000.7031.710.00C7H13N2124.10000.8931.710.00C7H13N2124.10001.3031.710.00C7H13N2124.10001.3931.710.00C7H13N2124.10001.8931.710.00C7H13N2124.10001.9631.710.00C7H13N2124.10001.9631.710.00C7H13N2124.10002.0731.710.00C7H13N2124.10002.3231.710.00C7H13N2124.10002.3231.710.00C7H13N2124.10002.4231.710.00C7H13N2124.10002.4231.710.00C7H13N2124.10002.4231.710.00C7H13N2124.10002.4231.710.00C7H13N2124.10002.4231.710.00C7H13N2126.04770.3941.170.33C6H802N1125.04770.4441.170.33C5H702N2126.042	C7H11N2	122.0844	0.97	4	1.43	0.00
C7H1001N1123.06840.5041.290.14C7H1001N1123.06842.5941.290.14C3H905124.03720.2802.671.67C7H13N2124.10000.3931.710.00C7H13N2124.10000.7031.710.00C7H13N2124.10000.8931.710.00C7H13N2124.10001.3031.710.00C7H13N2124.10001.3031.710.00C7H13N2124.10001.2931.710.00C7H13N2124.10001.8931.710.00C7H13N2124.10001.9631.710.00C7H13N2124.10002.0731.710.00C7H13N2124.10002.3231.710.00C7H13N2124.10002.3231.710.00C7H13N2124.10002.3231.710.00C7H13N2124.10002.3231.710.00C7H13N2124.10002.4231.710.00C7H13N2124.10002.4231.710.00C7H13N2124.10002.4231.710.00C7H13N2124.10002.4241.170.33C6H802N1125.04770.4441.170.33C6H802N1125.04770.4241.200.40C5H702N2126.04	C7H11N2	122.0844	1.02	4	1.43	0.00
C7H1001N1123.06842.5941.290.14C3H9O5124.03720.2802.671.67C7H13N2124.10000.3931.710.00C7H13N2124.10000.7031.710.00C7H13N2124.10000.8931.710.00C7H13N2124.10001.3031.710.00C7H13N2124.10001.3031.710.00C7H13N2124.10001.8931.710.00C7H13N2124.10001.8931.710.00C7H13N2124.10001.9631.710.00C7H13N2124.10002.0731.710.00C7H13N2124.10002.0731.710.00C7H13N2124.10002.3231.710.00C7H13N2124.10002.3231.710.00C7H13N2124.10002.3231.710.00C7H13N2124.10002.3231.710.00C7H13N2124.10002.4231.710.00C7H13N2124.10002.4231.710.00C7H13N2124.10002.4231.710.00C7H13N2124.10002.4231.710.00C7H13N2124.10002.4231.710.00C6H802N1125.04770.3941.170.33C6H802N1125.0477<	C7H10O1N1	123.0684	0.50	4	1.29	0.14
C3H9O5124.03720.2802.671.67C7H13N2124.10000.3931.710.00C7H13N2124.10000.7031.710.00C7H13N2124.10000.8931.710.00C7H13N2124.10001.3031.710.00C7H13N2124.10001.2931.710.00C7H13N2124.10001.2931.710.00C7H13N2124.10001.8931.710.00C7H13N2124.10001.9631.710.00C7H13N2124.10002.0731.710.00C7H13N2124.10002.0731.710.00C7H13N2124.10002.3231.710.00C7H13N2124.10002.3231.710.00C7H13N2124.10002.4231.710.00C7H13N2124.10002.4231.710.00C7H13N2124.10002.4231.710.00C6H802N1125.04770.3941.170.33C6H802N1125.04770.4441.170.33C6H802N1125.04771.2241.200.40C5H702N2126.04290.7441.200.40C5H702N2126.04290.7522.000.00	C7H10O1N1	123.0684	2.59	4	1.29	0.14
C7H13N2124.10000.3931.710.00C7H13N2124.10000.7031.710.00C7H13N2124.10000.8931.710.00C7H13N2124.10001.3031.710.00C7H13N2124.10001.3031.710.00C7H13N2124.10001.2931.710.00C7H13N2124.10001.8931.710.00C7H13N2124.10001.9631.710.00C7H13N2124.10002.0731.710.00C7H13N2124.10002.0731.710.00C7H13N2124.10002.3231.710.00C7H13N2124.10002.4231.710.00C7H13N2124.10002.4231.710.00C7H13N2124.10002.4231.710.00C6H802N1125.04770.3941.170.33C6H802N1125.04770.4441.170.33C6H802N1125.04771.2241.200.40C5H702N2126.04290.7441.200.40C7H15N2126.11570.7522.000.00	C3H9O5	124.0372	0.28	0	2.67	1.67
C7H13N2124.10000.7031.710.00C7H13N2124.10000.8931.710.00C7H13N2124.10001.3031.710.00C7H13N2124.10001.2931.710.00C7H13N2124.10001.8931.710.00C7H13N2124.10001.9631.710.00C7H13N2124.10001.9631.710.00C7H13N2124.10002.0731.710.00C7H13N2124.10002.3231.710.00C7H13N2124.10002.3231.710.00C7H13N2124.10002.4231.710.00C7H13N2124.10002.4231.710.00C7H13N2124.10002.4231.710.00C7H13N2124.10002.4231.710.00C6H802N1125.04770.3941.170.33C6H802N1125.04771.2241.170.33C6H802N1125.04771.2241.200.40C5H702N2126.04290.7441.200.40C5H702N2126.04290.7522.000.00	C7H13N2	124.1000	0.39	3	1.71	0.00
C7H13N2124.10000.8931.710.00C7H13N2124.10001.3031.710.00C7H13N2124.10001.2931.710.00C7H13N2124.10001.8931.710.00C7H13N2124.10001.9631.710.00C7H13N2124.10001.9631.710.00C7H13N2124.10002.0731.710.00C7H13N2124.10002.3231.710.00C7H13N2124.10002.3231.710.00C7H13N2124.10002.4231.710.00C7H13N2124.10002.4231.710.00C6H8O2N1125.04770.3941.170.33C6H8O2N1125.04770.4441.170.33C6H8O2N1125.04771.2241.170.33C6H8O2N1126.04290.4241.200.40C5H7O2N2126.04290.7441.200.40C7H15N2126.11570.7522.000.00	C7H13N2	124.1000	0.70	3	1.71	0.00
C7H13N2124.10001.3031.710.00C7H13N2124.10001.2931.710.00C7H13N2124.10001.8931.710.00C7H13N2124.10001.9631.710.00C7H13N2124.10002.0731.710.00C7H13N2124.10002.0731.710.00C7H13N2124.10002.3231.710.00C7H13N2124.10002.4231.710.00C7H13N2124.10002.4231.710.00C7H13N2124.10002.4231.710.00C6H802N1125.04770.3941.170.33C6H802N1125.04770.4441.170.33C6H802N1125.04771.2241.170.33C5H702N2126.04290.4241.200.40C5H702N2126.04290.7441.200.40C7H15N2126.11570.7522.000.00	C7H13N2	124.1000	0.89	3	1.71	0.00
C7H13N2124.10001.2931.710.00C7H13N2124.10001.8931.710.00C7H13N2124.10001.9631.710.00C7H13N2124.10002.0731.710.00C7H13N2124.10002.0731.710.00C7H13N2124.10002.3231.710.00C7H13N2124.10002.4231.710.00C7H13N2124.10002.4231.710.00C6H802N1125.04770.3941.170.33C6H802N1125.04770.4441.170.33C6H802N1125.04771.2241.170.33C6H802N1126.04290.4241.200.40C5H702N2126.04290.7441.200.40C7H15N2126.11570.7522.000.00	C7H13N2	124.1000	1.30	3	1.71	0.00
C7H13N2124.10001.8931.710.00C7H13N2124.10001.9631.710.00C7H13N2124.10002.0731.710.00C7H13N2124.10002.3231.710.00C7H13N2124.10002.3231.710.00C7H13N2124.10002.4231.710.00C7H13N2124.10002.4231.710.00C6H802N1125.04770.3941.170.33C6H802N1125.04770.4441.170.33C6H802N1125.04771.2241.170.33C6H802N1126.04290.4241.200.40C5H702N2126.04290.7441.200.40C7H15N2126.11570.7522.000.00	C7H13N2	124.1000	1.29	3	1.71	0.00
C7H13N2124.10001.9631.710.00C7H13N2124.10002.0731.710.00C7H13N2124.10002.3231.710.00C7H13N2124.10002.4231.710.00C7H13N2124.10002.4231.710.00C6H802N1125.04770.3941.170.33C6H802N1125.04770.4441.170.33C6H802N1125.04771.2241.170.33C6H802N1125.04771.2241.170.33C6H802N1126.04290.4241.200.40C5H702N2126.04290.7441.200.40C7H15N2126.11570.7522.000.00	C7H13N2	124.1000	1.89	3	1.71	0.00
C7H13N2124.10002.0731.710.00C7H13N2124.10002.3231.710.00C7H13N2124.10002.4231.710.00C6H802N1125.04770.3941.170.33C6H802N1125.04770.4441.170.33C6H802N1125.04771.2241.170.33C6H802N1125.04771.2241.170.33C6H802N1126.04290.4241.200.40C5H702N2126.04290.7441.200.40C7H15N2126.11570.7522.000.00	C7H13N2	124.1000	1.96	3	1.71	0.00
C7H13N2124.10002.3231.710.00C7H13N2124.10002.4231.710.00C6H802N1125.04770.3941.170.33C6H802N1125.04770.4441.170.33C6H802N1125.04771.2241.170.33C6H802N1125.04771.2241.170.33C6H802N1126.04290.4241.200.40C5H702N2126.04290.7441.200.40C7H15N2126.11570.7522.000.00	C7H13N2	124.1000	2.07	3	1.71	0.00
C7H13N2124.10002.4231.710.00C6H8O2N1125.04770.3941.170.33C6H8O2N1125.04770.4441.170.33C6H8O2N1125.04771.2241.170.33C6H8O2N1125.04771.2241.170.33C5H7O2N2126.04290.4241.200.40C5H7O2N2126.04290.7441.200.40C7H15N2126.11570.7522.000.00	C7H13N2	124.1000	2.32	3	1.71	0.00
C6H802N1125.04770.3941.170.33C6H802N1125.04770.4441.170.33C6H802N1125.04771.2241.170.33C6H802N1125.04771.2241.170.33C5H702N2126.04290.4241.200.40C5H702N2126.04290.7441.200.40C7H15N2126.11570.7522.000.00	C7H13N2	124.1000	2.42	3	1.71	0.00
C6H802N1125.04770.4441.170.33C6H802N1125.04771.2241.170.33C5H702N2126.04290.4241.200.40C5H702N2126.04290.7441.200.40C7H15N2126.11570.7522.000.00	C6H8O2N1	125.0477	0.39	4	1.17	0.33
C6H802N1125.04771.2241.170.33C5H702N2126.04290.4241.200.40C5H702N2126.04290.7441.200.40C7H15N2126.11570.7522.000.00	C6H8O2N1	125.0477	0.44	4	1.17	0.33
C5H7O2N2126.04290.4241.200.40C5H7O2N2126.04290.7441.200.40C7H15N2126.11570.7522.000.00	C6H8O2N1	125.0477	1.22	4	1.17	0.33
C5H7O2N2126.04290.7441.200.40C7H15N2126.11570.7522.000.00	C5H7O2N2	126.0429	0.42	4	1.20	0.40
C7H15N2 126.1157 0.75 2 2.00 0.00	C5H7O2N2	126.0429	0.74	4	1.20	0.40
	C7H15N2	126.1157	0.75	2	2.00	0.00
C7H15N2 126.1157 0.90 2 2.00 0.00	C7H15N2	126.1157	0.90	2	2.00	0.00
C7H15N2 126.1157 1.77 2 2.00 0.00	C7H15N2	126.1157	1.77	2	2.00	0.00
C8H18N1 127.1361 1.14 1 2.13 0.00	C8H18N1	127.1361	1.14	1	2.13	0.00
C6H13O1N2 128.0950 0.33 2 2.00 0.17	C6H13O1N2	128.0950	0.33	2	2.00	0.17
C7H16O1N1 129.1154 0.38 1 2.14 0.14	C7H16O1N1	129.1154	0.38	1	2.14	0.14
C8H7N2 130.0531 1.00 7 0.75 0.00	C8H7N2	130.0531	1.00	7	0.75	0.00
C8H5O2 132.0211 2.66 7 0.50 0.25	C8H5O2	132.0211	2.66	7	0.50	0.25
C8H14O6N1 219.0743 0.38 3 1.63 0.75	C8H14O6N1	219.0743	0.38	3	1.63	0.75
C8H9N2 132.0687 0.77 6 1.00 0.00	C8H9N2	132.0687	0.77	6	1.00	0.00
C8H9N2 132.0687 0.83 6 1.00 0.00	C8H9N2	132.0687	0.83	6	1.00	0.00
C8H9N2 132.0687 1.05 6 1.00 0.00	C8H9N2	132.0687	1.05	6	1.00	0.00
C8H9N2 132.0687 1.31 6 1.00 0.00	C8H9N2	132.0687	1.31	6	1.00	0.00
C8H9N2 132.0687 2.14 6 1.00 0.00	C8H9N2	132.0687	2.14	6	1.00	0.00
C8H8O1N1 133.0528 2.79 6 0.88 0.13	C8H8O1N1	133.0528	2.79	6	0.88	0.13
C7H8N3 133.0640 1.58 6 1.00 0.00	C7H8N3	133.0640	1.58	6	1.00	0.00
C9H12N1 133.0891 1.24 5 1.22 0.00	C9H12N1	133.0891	1.24	5	1.22	0.00
C7H7O1N2 134.0480 0.58 6 0.86 0.14	C7H7O1N2	134.0480	0.58	6	0.86	0.14
C7H7O1N2 134.0480 2.71 6 0.86 0.14	C7H7O1N2	134.0480	2.71	6	0.86	0.14
C8H11N2 134.0844 0.36 5 1.25 0.00	C8H11N2	134.0844	0.36	5	1.25	0.00
C8H11N2 134.0844 0.65 5 1.25 0.00	C8H11N2	134.0844	0.65	5	1.25	0.00
C8H11N2 134.0844 1.18 5 1.25 0.00	C8H11N2	134.0844	1.18	5	1.25	0.00
C6H6O1N3 135.0433 1.02 6 0.83 0.17	C6H6O1N3	135.0433	1.02	6	0.83	0.17
C9H14N1 135.1048 1.15 4 1.44 0.00	C9H14N1	135.1048	1.15	4	1.44	0.00
C5H5O1N4 136.0385 0.39 6 0.80 0.20	C5H5O1N4	136.0385	0.39	6	0.80	0.20
C8H9O2 136.0524 3.01 5 1.00 0.25	C8H9O2	136.0524	3.01	5	1.00	0.25
C7H9O1N2 136.0637 0.41 5 1.14 0.14	C7H9O1N2	136.0637	0.41	5	1.14	0.14
C8H13N2 136.1000 0.71 4 1.50 0.00	C8H13N2	136.1000	0.71	4	1.50	0.00
C8H13N2 136.1000 0.83 4 1.50 0.00	C8H13N2	136.1000	0.83	4	1.50	0.00

C8H13N2	136.1000	1.05	4	1.50	0.00
C8H13N2	136.1000	1.36	4	1.50	0.00
C8H13N2	136.1000	2.35	4	1.50	0.00
C8H13N2	136.1000	2.48	4	1.50	0.00
C7H8O2N1	137.0477	0.38	5	1.00	0.29
C8H12O1N1	137.0841	0.50	4	1.38	0.13
C8H12O1N1	137.0841	0.55	4	1.38	0.13
C8H12O1N1	137.0841	0.91	4	1.38	0.13
C8H12O1N1	137.0841	1.10	4	1.38	0.13
C8H12O1N1	137.0841	1.15	4	1.38	0.13
C8H12O1N1	137.0841	1.22	4	1.38	0.13
C8H12O1N1	137.0841	2.31	4	1.38	0.13
C8H12O1N1	137.0841	3.10	4	1.38	0.13
C8H15O2N2	170 1055	0.38	3	1.56	0.25
C7H8O1N1	121.0528	0.39	5	1.75	0.14
C7H11O1N2	138 0793	0.44	4	1.00	0.14
C7H11O1N2	138.0793	0.68	4	1.43	0.14
C7H11O1N2	138.0793	0.73		1.43	0.14
C8H15N2	138.0775	0.93	4	1.45	0.14
C8H15N2	138.1157	1.13	3	1.75	0.00
C8H15N2	138.1157	1.32	3	1.75	0.00
C8H15N2	128 1157	1.50	3	1.75	0.00
C8H15N2	138.1157	1.77	3	1.75	0.00
C8H15N2	138.1157	2.11	2	1.75	0.00
C8H15N2	138.1137	2.29	3	1.75	0.00
C8H15N2	138.1157	2.51	2	1.75	0.00
C8H15N2	138.1157	2.61	3	1.75	0.00
C8H15N2	138.1157	2.01	3	1.75	0.00
C8H15N2	138.1157	3.03	3	1.75	0.00
C6H6O3N1	138.1157	0.58	3	1.75	0.00
C7H10O2N1	139.0269	0.50	5	0.83	0.50
C7H10O2N1	139.0633	0.00	4	1.29	0.29
C7H10O2N1	139.0633	2.61	4	1.29	0.29
C7H10O2N1	139.0633	2.01	4	1.29	0.29
C7H10O2N1	139.0633	2.79	4	1.29	0.29
C5H10N5	139.0633	0.28	4	1.29	0.29
COLLIAOINI	139.0858	0.30	4	1.80	0.00
C5115O2N2	139.0997	0.58	3	1.63	0.13
COHJUSN2	140.0222	2.41	5	0.80	0.60
C8H1/N2	140.1313	2.30	2	2.00	0.00
C8H1/N2	140.1313	2.44	2	2.00	0.00
C6H/O4	142.0266	0.53	4	1.00	0.67
C5H/O3N2	142.0378	0.34	4	1.20	0.60
C6H10O3N1	143.0582	0.89	3	1.50	0.50
CIOHIONI	143.0735	0.70	7	0.90	0.00
CIOHIONI	143.0735	1.47	7	0.90	0.00
C10H10N1	143.0735	1.79	7	0.90	0.00
C10H10N1	143.0735	2.26	7	0.90	0.00
C7H14O2N1	143.0946	0.34	2	1.86	0.29
C9H22N1	143.1674	6.73	0	2.33	0.00
C9H9N2	144.0687	1.26	7	0.89	0.00

C9H9N2	144.0687	2.35	7	0.89	0.00
C9H9N2	144.0687	2.40	7	0.89	0.00
C9H9N2	144.0687	2.46	7	0.89	0.00
C9H9N2	144.0687	2.46	7	0.89	0.00
C9H8O1N1	145.0528	2.33	, 7	0.78	0.11
C9H8O1N1	145.0528	2.31	, 7	0.78	0.11
C9H8O1N1	145.0528	3.14	, 7	0.78	0.11
C9H8O1N1	145.0528	3.24	, 7	0.78	0.11
C9H12O1N3	177 0902	0.65	6	1.22	0.11
C6H12O3N1	145.0720	0.33	2	1.22	0.11
C6H12O3N1	145.0739	0.63	2	1.03	0.50
C7H16O2N1	145.0759	0.37	2 1	1.65	0.30
C9H7O2	145.1105	3.13	1	2.14	0.29
C8H7O1N2	146.0368	2.63	/	0.67	0.22
C0H11N2	146.0480	0.52	1	0.75	0.13
COH11N2	146.0844	0.52	6	1.11	0.00
COLLIN2	146.0844	1.05	6	1.11	0.00
C9H11N2	146.0844	1.05	6	1.11	0.00
C9H11N2	146.0844	1.15	6	1.11	0.00
C9H11N2	146.0844	1.28	6	1.11	0.00
C9H11N2	146.0844	1.41	6	1.11	0.00
C9H11N2	146.0844	1.54	6	1.11	0.00
C9H11N2	146.0844	1.64	6	1.11	0.00
C9H11N2	146.0844	1.79	6	1.11	0.00
C9H11N2	146.0844	2.40	6	1.11	0.00
C9H11N2	146.0844	2.52	6	1.11	0.00
C9H11N2	146.0844	2.63	6	1.11	0.00
C9H11N2	146.0844	1.85	6	1.11	0.00
C9H8N1	129.0578	0.44	7	0.78	0.00
C8H10N3	147.0796	0.39	6	1.13	0.00
C8H10N3	147.0796	0.46	6	1.13	0.00
C8H10N3	147.0796	0.68	6	1.13	0.00
C8H10N3	147.0796	2.25	6	1.13	0.00
C8H10N3	147.0796	2.79	6	1.13	0.00
C10H14N1	147.1048	2.43	5	1.30	0.00
C10H14N1	147.1048	2.53	5	1.30	0.00
C4H9O4N2	148.0484	0.33	2	2.00	1.00
C9H9O2	148.0524	2.97	6	0.89	0.22
C8H9O1N2	148.0637	0.77	6	1.00	0.13
C8H9O1N2	148.0637	3.23	6	1.00	0.13
C9H13N2	148 1000	0.38	5	1.33	0.00
C9H13N2	148 1000	1.25	5	1 33	0.00
C9H13N2	148 1000	1.53	5	1 33	0.00
C9H13N2	148 1000	2.36	5	1 33	0.00
C9H13N2	1/18 1000	2.56	5	1.33	0.00
C9H13N2	148 1000	2.69	5	1.33	0.00
C8H8O2N1	140.1000	2.14	5 6	1.33	0.00
C7H8O1N3	149.04//	0.38	0	0.88	0.25
C7H8O1N3	149.0389	2.40	0	1.00	0.14
C5H12O4N1	149.0589	0.32	0	1.00	0.14
C9H12O1N1	149.0688	3 21	1	2.20	0.80
0/11/2011/1	149.0841	5.21	5	1.22	0.11

C6H16O3N1	149.1052	0.32	0	2.50	0.50
C10H16N1	149.1204	2.67	4	1.50	0.00
C6H7O1N4	150.0542	0.55	6	1.00	0.17
C9H15N2	150.1157	1.22	4	1.56	0.00
C9H15N2	150.1157	2.14	4	1.56	0.00
C9H15N2	150.1157	2.42	4	1.56	0.00
C9H15N2	150.1157	2.57	4	1.56	0.00
C9H15N2	150.1157	2.63	4	1.56	0.00
C9H15N2	150.1157	2.78	4	1.56	0.00
C9H15N2	150.1157	1.60	4	1.56	0.00
C9H15N2	150.1157	3.02	4	1.56	0.00
C8H10O2N1	151.0633	0.51	5	1.13	0.25
C8H10O2N1	151.0633	1.74	5	1.13	0.25
C9H14O1N1	151.0997	0.54	4	1.44	0.11
C9H14O1N1	151.0997	0.70	4	1.44	0.11
C9H14O1N1	151.0997	1.05	4	1.44	0.11
C9H14O1N1	151.0997	1.87	4	1.44	0.11
C9H14O1N1	151 0997	2.09	4	1 44	0.11
C9H14O1N1	151.0997	2.27	4	1.44	0.11
C9H14O1N1	151.0997	2.43	4	1.11	0.11
C9H14O1N1	151.0997	2.56	4	1.44	0.11
C9H14O1N1	151.0997	2.65	4	1.44	0.11
C9H14O1N1	151.0997	2.76	4	1.44	0.11
C9H14O1N1	151.0997	3.77	4	1.44	0.11
C10H18N1	151.1361	2.84	3	1.70	0.00
C8H9O3	152 0473	2.66	5	1.70	0.38
C7H9O2N2	152.0475	0.45	5	1.00	0.38
C7H9O2N2	152.0586	0.73	5	1.14	0.29
C9H17N2	152.0580	2.32	3	1.14	0.29
C9H17N2	152.1313	2.38	3	1.78	0.00
C9H17N2	152.1313	2.46	3	1.78	0.00
C9H17N2	152.1313	2.55	3	1.70	0.00
C9H17N2	152.1313	2.64	3	1.70	0.00
C9H17N2	152.1313	2.69	3	1.70	0.00
C9H17N2	152.1313	2.80	3	1.78	0.00
C9H17N2	152.1313	2.86	3	1.70	0.00
C9H17N2	152.1313	2.94	3	1.70	0.00
C9H17N2	152.1313	3.08	2	1.78	0.00
C9H17N2	152.1515	3.19	2	1.70	0.00
C7H8O3N1	152.1313	0.56	5 5	1.78	0.00
C7H8O3N1	153.0426	2.59	5	1.00	0.43
C6H8O2N3	153.0426	0.39	5	1.00	0.43
C8H12O2N1	153.0538	1 31	5	1.17	0.33
C7H11O2N2	153.0790	0.49	4	1.38	0.25
C7H10O3N1	154.0742	1.37	4	1.43	0.29
C10H0N2	155.0582	1.57	4	1.29	0.43
C7H13O2N2	156.0687	2 00	8	0.80	0.00
C6H6O2N1	156.0899	2.90	3	1.71	0.29
	139.0269	0.39	5	0.83	0.50
	157.0891	2.72	7	1.00	0.00
CIUHIIN2	158.0844	1.82	7	1.00	0.00

C10H11N2	158.0844	2.37	7	1.00	0.00
C10H11N2	158.0844	2.46	7	1.00	0.00
C10H11N2	158.0844	2.71	7	1.00	0.00
C10H11N2	158.0844	2.83	7	1.00	0.00
C6H10O4N1	159.0532	0.37	3	1.50	0.67
C7H14O5N1	191.0794	0.38	2	1.86	0.71
C7H14O3N1	159.0895	0.33	2	1.86	0.43
C9H9O1N2	160.0637	1.00	7	0.89	0.11
C10H13N2	160.1000	0.39	6	1.20	0.00
C10H13N2	160.1000	2.41	6	1.20	0.00
C10H13N2	160.1000	2.49	6	1.20	0.00
C10H13N2	160.1000	2.60	6	1.20	0.00
C10H13N2	160.1000	2.69	6	1.20	0.00
C10H13N2	160,1000	2.76	6	1.20	0.00
C10H13N2	160.1000	2.85	6	1.20	0.00
C10H13N2	160 1000	2.99	6	1.20	0.00
C10H13N2	160,1000	3.10	6	1.20	0.00
C8H17O3	160 1099	3.16	1	2.00	0.38
C8H13O3N2	184,0848	0.35	4	1.50	0.38
C10H12O1N1	161 0841	0.58	6	1 10	0.10
C10H12O1N1	161.0841	4.02	6	1.10	0.10
C9H12N3	161.0011	0.85	6	1.10	0.00
C9H12N3	161.0953	0.95	6	1.22	0.00
C9H12N3	161.0953	1.21	6	1.22	0.00
C11H16N1	161 1204	2.86	5	1.22	0.00
C8H20O2N1	161.1204	0.54	0	2.38	0.00
C9H7O3	162 0317	2.61	0	2.38	0.23
C9H7O3	162.0317	3.04	, 7	0.67	0.33
C9H7O3	162.0317	3.18	7	0.67	0.33
C6H10O5Na1	162.0517	0.35	2	1.67	0.33
C10H11O2	162.0528	3.63	2	1.07	0.85
C10H15N2	162.0081	0.49	5	1.00	0.20
C9H10O2N1	162.1137	0.57	5	1.40	0.00
C8H10O1N3	162.0033	0.49	6	1.00	0.22
C6H14O4N1	163.0740	0.33	0	1.15	0.13
C10H14O1N1	163.0843	0.61	1	2.17	0.07
C10H14O1N1	163.0997	0.79	5	1.30	0.10
C10H14O1N1	163.0997	0.93	5	1.30	0.10
C10H14O1N1	163.0997	2.76	5	1.30	0.10
C10H14O1N1	163.0997	3.45	5	1.30	0.10
C10H14O1N1	163.0997	4 09	5	1.30	0.10
C8H5O4	163.0997	1.09	5	1.30	0.10
C8H5O4	164.0110	2.74	7	0.50	0.50
C8H0O2N2	164.0110	0.34	1	0.50	0.50
C7H9O1N4	164.0586	0.34	6	1.00	0.25
C7H0O1N4	164.0698	0.02	6	1.14	0.14
C7H0O1N4	164.0698	0.00	6	1.14	0.14
C7H0O1N4	164.0698	0.90	6	1.14	0.14
C7U001N4	164.0698	0.92	6	1.14	0.14
C/H9UIN4	164.0698	0.93	6	1.14	0.14
C/H9UIN4	164.0698	0.93	6	1.14	0.14

C6H13O5	164.0685	3.08	1	2.00	0.83
C9H16O1N3	181.1215	0.38	4	1.67	0.11
C9H11N2	146.0844	0.44	6	1.11	0.00
C9H13O1N2	164.0950	0.68	5	1.33	0.11
C5H11O2N6	186.0865	1.45	4	2.00	0.40
C10H17N2	164.1313	2.41	4	1.60	0.00
C10H17N2	164.1313	2.55	4	1.60	0.00
C10H17N2	164.1313	2.65	4	1.60	0.00
C10H17N2	164.1313	2.86	4	1.60	0.00
C10H17N2	164.1313	3.03	4	1.60	0.00
C8H8O3N1	165.0426	1.08	6	0.88	0.38
C8H8O3N1	165.0426	3.21	6	0.88	0.38
C9H12O2N1	165.0790	0.47	5	1.22	0.22
C9H12O2N1	165,0790	0.66	5	1.22	0.22
C10H16O1N1	165.1154	0.69	4	1.50	0.10
C10H16O1N1	165,1154	0.80	4	1.50	0.10
C10H16O1N1	165.1154	0.86	4	1.50	0.10
C10H16O1N1	165 1154	1.00	4	1 50	0.10
C10H16O1N1	165,1154	2.76	4	1.50	0.10
C10H16O1N1	165 1154	3.12	4	1.50	0.10
C10H16O1N1	165,1154	3.17	4	1.50	0.10
C10H19N2	166 1470	2.63	3	1.80	0.00
C10H19N2	166.1470	2.84	3	1.80	0.00
C10H19N2	166 1470	2.97	3	1.80	0.00
C10H19N2	166 1470	3.15	3	1.80	0.00
C8H10O3N1	167.0582	0.36	5	1.00	0.38
C8H10O3N1	167.0582	0.43	5	1.13	0.38
C8H10O3N1	167.0582	0.46	5	1.13	0.38
C8H10O3N1	167.0582	0.48	5	1.13	0.38
C8H10O3N1	167.0582	0.58	5	1.13	0.38
C7H10O2N3	167.0502	0.39	5	1.15	0.29
C10H18O1N1	167 1310	2.80	3	1.29	0.10
C11H22N1	167 1674	2.47	2	1.70	0.00
C9H6O2Na1	146 0368	0.33	2	0.67	0.00
C11H5O2	168 0211	3.87	10	0.07	0.18
C5H5O3N4	168.0283	0.38	6	0.50	0.60
C4H9O7	168.0270	2.66	1	2.00	1.75
C11H9N2	168.0687	2.56	9	0.73	0.00
C11H9N2	168.0687	2.70	9	0.73	0.00
C11H9N2	168.0687	2.85	9	0.73	0.00
C11H9N2	168.0687	2.98	9	0.73	0.00
C11H9N2	168.0687	3.08	0	0.73	0.00
C11H9N2	168.0687	3.97	0	0.73	0.00
C8H13O2N2	168.0899	0.38	1	1.50	0.00
C8H13O2N2	168 0800	0.72	4	1.50	0.25
C8H13O2N2	168 0800	0.80	4	1.50	0.25
C10H21N2	168 1676	2.74	+ 2	2.00	0.25
C10H21N2	168 1626	2.81	2	2.00	0.00
C10H21N2	168 1626	2.84	∠ 2	2.00	0.00
C10H21N2	160.1020	2.94	2	2.00	0.00
2101121112	108.1020	2.7 T	L	2.00	0.00

C8H4N5	169.0388	0.30	10	0.38	0.00
C6H8O3N3	169.0487	0.34	5	1.17	0.50
C11H8O1N1	169.0528	2.87	9	0.64	0.09
C11H8O1N1	169.0528	2.91	9	0.64	0.09
C8H15O3N2	186.1004	0.38	3	1.75	0.38
C8H11O4	170.0579	0.83	4	1.25	0.50
C8H11O4	170.0579	0.92	4	1.25	0.50
C7H11O3N2	170.0691	0.34	4	1.43	0.43
C7H11O3N2	170.0691	0.55	4	1.43	0.43
C11H11N2	170.0844	3.06	8	0.91	0.00
C8H15O2N2	170,1055	0.40	3	1.75	0.25
C6H10O3N3	171 0644	0.33	4	1.50	0.50
C11H10O1N1	171.0684	1.77	8	0.82	0.09
C11H10O1N1	171.0684	2.57	8	0.82	0.09
C11H10O1N1	171.0684	2.77	8	0.82	0.09
C13H11N2	194 0844	3.02	10	0.02	0.09
C12H14N1	171 1048	2.84	7	1.08	0.00
C12H14N1	171.1048	3.22	7	1.08	0.00
C12H14N1	171.1048	3.25	7	1.08	0.00
C10H22O1N1	171.1040	3.03	1	2.10	0.00
C11H13N2	171.1025	2.51	1	2.10	0.10
C11H13N2	172.1000	2.64	7	1.09	0.00
C11H13N2	172.1000	2.74	7	1.09	0.00
C11H13N2	172.1000	2.86	7	1.09	0.00
C11H13N2	172.1000	3.01	7	1.09	0.00
C4H4O3N2Na1S2	172.1000	0.28	/	1.09	0.00
C11H12O1N1	191.9663	2.51	4	1.00	0.75
C11H12O1N1	173.0841	2.51	/	1.00	0.09
C11H12O1N1	173.0841	2.02	7	1.00	0.09
C11H12O1N1	173.0841	2.72	-	1.00	0.09
C11H12O1N1	173.0841	2.05	7	1.00	0.09
COH20O2N1	173.0841	5.04 2.75	7	1.00	0.09
C10U24O1N1	173.1416	2.73	1	2.11	0.22
C10H24OINI	173.1780	2.74	0	2.30	0.10
C/HIIO5	174.0528	0.54	3	1.43	0.71
C1011104N2	174.0641	0.55	3	1.67	0.67
CIUHIIOIN2	174.0793	2.80	7	1.00	0.10
CITHI5N2	174.1157	0.50	6	1.27	0.00
CITHI5N2	174.1157	2.88	6	1.27	0.00
CITHI5N2	174.1157	3.03	6	1.27	0.00
CITHI5N2	174.1157	3.15	6	1.27	0.00
C5H6O4N1S1	174.9939	0.36	4	1.00	0.80
C6H10O5N1	175.0481	0.38	3	1.50	0.83
C10H10O2N1	175.0633	2.55	7	0.90	0.20
C10H10O2N1	175.0633	2.81	7	0.90	0.20
C7H14O4N1	175.0845	0.35	2	1.86	0.57
C7H14O4N1	175.0845	1.32	2	1.86	0.57
C7H18O2N3	175.1321	0.34	1	2.43	0.29
C12H18N1	175.1361	2.70	5	1.42	0.00
C5H9O5N2	176.0433	0.33	3	1.60	1.00
C10H9O3	176.0473	2.99	7	0.80	0.30

C10H9O3	176.0473	3.11	7	0.80	0.30
C10H9O3	176.0473	3.20	7	0.80	0.30
C10H9O3	176.0473	3.30	7	0.80	0.30
C10H9O3	176.0473	3.67	7	0.80	0.30
C6H13O4N2	176.0797	0.33	2	2.00	0.67
C8H17O4	176.1049	1.47	1	2.00	0.50
C11H17N2	176.1313	2.84	5	1.45	0.00
C11H17N2	176.1313	2.93	5	1.45	0.00
C9H8O3N1	177.0426	2.34	7	0.78	0.33
C9H8O3N1	177.0426	2.64	7	0.78	0.33
C9H7O4	178.0266	2.23	7	0.67	0.44
C10H11O3	178.0630	3.05	6	1.00	0.30
C10H11O3	178.0630	3.75	6	1.00	0.30
C10H11O3	178.0630	3.82	6	1.00	0.30
C11H19N2	178.1470	2.84	4	1.64	0.00
C11H19N2	178.1470	2.96	4	1.64	0.00
C11H19N2	178.1470	3.07	4	1.64	0.00
C11H19N2	178 1470	3.15	4	1.64	0.00
C11H19N2	178.1470	3.27	4	1.64	0.00
C13H10N1	179.0735	2.90	10	0.69	0.00
C13H10N1	179.0735	3.15	10	0.69	0.00
C13H10N1	179.0735	3.39	10	0.69	0.00
C13H10N1	179.0735	4.02	10	0.02	0.00
C13H10N1	179.0735	3.48	10	0.69	0.00
C10H14O2N1	179.0735	0.56	5	1.30	0.00
C10H14O2N1	179.0946	0.65	5	1.30	0.20
C10H14O2N1	179.0940	0.90	5	1.30	0.20
C10H14O2N1	179.0946	2.64	5	1.30	0.20
C9H14O1N3	179.0940	0.39	5	1.50	0.20
C11H18O1N1	179.1039	3.03	3	1.44	0.11
C9H9O4	1/9.1310	3.16	4	1.55	0.09
C10H13O3	180.0425	2.82	5	1.20	0.44
C10H13O3	180.0786	3.00	5	1.20	0.30
C9H13O2N2	180.0780	2.24	5	1.20	0.30
C10H17O1N2	180.0899	2.76	5	1.55	0.22
C11H21N2	180.1265	3.11	4	1.00	0.10
C11H21N2	180.1626	3 14	3	1.82	0.00
C11H21N2	180.1626	3 30	3	1.82	0.00
C11H21N2	180.1626	3 36	3	1.82	0.00
C11H21N2	180.1626	3.40	3	1.82	0.00
C11H21N2	180.1626	1.46	3	1.82	0.00
C11H21N2	180.1626	5.86	3	1.82	0.00
C11H21N2	180.1626	5.00	3	1.82	0.00
C2H8O4N1	180.1626	0.38	3	1.82	0.00
C5H12O6N1	181.0375	0.38	6	0.88	0.50
C0112O0N1	181.0586	0.37	1	2.20	1.20
CIALLIZOINI	181.0739	2.04	5	1.22	0.33
C14H100INI	213.1154	5.04 0.40	8	1.07	0.07
C10H10U2N1	181.1103	0.49	4	1.50	0.20
CI2H24NI	181.1830	5.28	2	1.92	0.00
C12H7O2	182.0368	4.45	10	0.50	0.17

C12H11N2	182.0844	2.72	9	0.83	0.00
C12H11N2	182.0844	2.85	9	0.83	0.00
C12H11N2	182.0844	2.91	9	0.83	0.00
C12H11N2	182.0844	3.06	9	0.83	0.00
C12H11N2	182.0844	3.15	9	0.83	0.00
C12H11N2	182.0844	3.23	9	0.83	0.00
C12H11N2	182.0844	3.38	9	0.83	0.00
C11H23N2	182.1783	3.13	2	2.00	0.00
C11H23N2	182.1783	3.24	2	2.00	0.00
C11H23N2	182.1783	3.32	2	2.00	0.00
C11H23N2	182.1783	3.37	2	2.00	0.00
C5H14O4N1S1	183.0565	0.33	0	2.60	0.80
C12H10O1N1	183.0684	3.15	9	0.75	0.08
C11H10N3	183.0796	2.66	9	0.82	0.00
C9H12O2N1	165.0790	0.38	5	1.22	0.22
C13H14N1	183 1048	3.13	8	1.00	0.00
C12H9O2	184 0524	3.48	9	0.67	0.00
C8H13O3N2	184 0848	0.43	4	1.50	0.38
C12H13N2	184 1000	3.02	8	1.00	0.00
C10H17O3	184 1099	3.38	3	1.60	0.00
C10H17O3	184 1099	3.89	3	1.60	0.30
C10H17O3	184 1099	3.48	3	1.60	0.30
C9H17O2N2	184 1212	0.40	3	1.00	0.22
C8H12O4N1	185.0688	0.60	1	1.78	0.22
C12H12O1N1	185.0841	2.56	4	0.92	0.08
C12H12O1N1	185.0841	2.69	8	0.92	0.08
C12H12O1N1	185.0841	2.86	8	0.92	0.08
C12H12O1N1	185.0841	3.02	8	0.92	0.08
C13H16N1	185.1204	3.29	0 7	0.92	0.08
C13H16N1	185.1204	3.30	7	1.15	0.00
C13H16N1	185.1204	3.33	7	1.15	0.00
C12H28N1	185 21/2	4.12	0	2.25	0.00
C11H11O1N2	186.0702	2.50	0	2.23	0.00
C7H16O4Na1	160.0795	1.41	0	0.91	0.09
C9H15O4	104.1049	2.83	0	2.29	0.37
C9H15O4	186.0892	2.89	2	1.50	0.44
C9H15O4	186.0892	2.97	2	1.50	0.44
C8H15O3N2	186.0892	0.34	3	1.50	0.44
C12H15N2	186.1004	2.89	3	1.75	0.38
C12H15N2	180.1157	2.97	7	1.17	0.00
C12H15N2	186.1157	3.16	7	1.17	0.00
C8H19O1N4	186.1157	1.63	7	1.17	0.00
C11H10O2N1	186.1481	2 55	2	2.25	0.13
C9H10N5	187.0033	2.55	ð	0.82	0.18
C12H14O1N1	187.0858	2.80	8	1.00	0.00
C12H14O1N1	187.0997	2.00	/	1.08	0.08
C12H14O1N1	187.0997	2.92	-	1.08	0.08
C10H0O2N2	187.0997	0.63	7	1.08	0.08
C11H13O1N2	188.0586	0.05	8	0.80	0.20
C11H12O1N2	188.0950	0.09	7	1.09	0.09
CHILISOIN2	188.0950	2.04	7	1.09	0.09

C12H17N2	188.1313	2.98	6	1.33	0.00
C12H17N2	188.1313	3.16	6	1.33	0.00
C12H17N2	188.1313	3.32	6	1.33	0.00
C11H12O2N1	189.0790	3.08	7	1.00	0.18
C8H16O4N1	189.1001	0.40	2	1.88	0.50
C11H16N3	189.1266	2.47	6	1.36	0.00
C11H16N3	189.1266	2.77	6	1.36	0.00
C11H15O1N2	190.1106	0.64	6	1.27	0.09
C11H15O1N2	190.1106	0.96	6	1.27	0.09
C11H15O1N2	190.1106	2.79	6	1.27	0.09
C11H15O1N2	190.1106	3.02	6	1.27	0.09
C9H10O2N3	191.0695	2.43	7	1.00	0.22
C7H14O5N1	191.0794	0.94	2	1.86	0.71
C6H8O7Na1	192.0270	0.38	3	1.33	1.17
C10H9O4	192.0423	3.13	7	0.80	0.40
C10H9O4	192.0423	3.18	7	0.80	0.40
C10H13O2N2	192.0899	0.39	6	1.20	0.20
C12H21N2	192.1626	4.04	4	1.67	0.00
C11H16O4N1	225 1001	0.38	5	1.07	0.36
C10H12O3N1	193 0739	2.83	6	1.30	0.30
C14H12N1	193.0792	3.36	10	0.79	0.00
C14H12N1	193.0891	3.45	10	0.79	0.00
C14H11O1	194.0732	7.70	10	0.75	0.00
C11H19O1N2	194.1419	2.45	4	1.64	0.09
C12H23N2	194 1783	3.94	4	1.04	0.09
C12H23N2	10/ 1783	4.09	3	1.05	0.00
C12H23N2	194.1783	6.83	3	1.83	0.00
C13H10O1N1	195.0684	6.93	10	0.69	0.00
C10H14O3N1	195.0004	0.50	5	1.30	0.08
C10H14O3N1	105.0805	0.85	5	1.30	0.30
C10H14O3N1	195.0895	3.32	5	1.30	0.30
C12H22O1N1	195.0895	2.63	3	1.50	0.30
C12H22O1N1	195.1023	2.76	3	1.75	0.08
C13H9O2	195.1025	4.92	10	0.62	0.08
C13H13N2	196.0324	3.10	10	0.02	0.13
C13H13N2	196.1000	3 21	9	0.92	0.00
C13H13N2	196.1000	3 44	9	0.92	0.00
C13H13N2	196.1000	3 57	9	0.92	0.00
C10H17O2N2	196.1000	2 23	9	0.92	0.00
C10H17O2N2	196.1212	2.25	4	1.60	0.20
C10H17O2N2	196.1212	2.50	4	1.60	0.20
C13H12O1N1	196.1212	2.05	4	1.60	0.20
C12H12N3	197.0841	2.00	9	0.85	0.08
C10H16O3N1	197.0953	2.90	9	0.92	0.00
C14H16N1	197.1052	2 27	4	1.50	0.30
C14H10N1	197.1204	3.27 2.97	8	1.07	0.00
C0115O2N2	198.0317	5.8/ 0.77	10	0.50	0.25
COULTSO2N2	198.1004	0.77	4	1.56	0.33
C12111401N1	198.1004	2.50	4	1.56	0.33
C13H14O1N1	199.0997	2.84	8	1.00	0.08
C13H14O1N1	199.0997	2.97	8	1.00	0.08

C10H18O3N1	199.1208	0.66	3	1.70	0.30
C12H9O3	200.0473	4.41	9	0.67	0.25
C8H13O4N2	200.0797	0.34	4	1.50	0.50
C12H13O1N2	200.0950	2.79	8	1.00	0.08
C13H17N2	200.1313	3.17	7	1.23	0.00
C12H12O2N1	201.0790	0.81	8	0.92	0.17
C12H12O2N1	201.0790	2.47	8	0.92	0.17
C12H12O2N1	201.0790	2.55	8	0.92	0.17
C7H11O5N2	202.0590	0.33	4	1.43	0.71
C11H11O2N2	202.0742	2.64	8	0.91	0.18
C11H11O2N2	202.0742	2.96	8	0.91	0.18
C12H15O1N2	202.1106	2.65	7	1 17	0.08
C12H15O1N2	202.1106	2.99	, 7	1.17	0.08
C13H19N2	202.1470	3.44	6	1.17	0.00
C15H10N1	202.1470	3.30	12	0.60	0.00
C15H10N1	203.0735	7.10	12	0.00	0.00
C15H10N1	203.0735	7.61	12	0.00	0.00
C13H18O1N1	203.0735	2.78	6	1.21	0.00
C9H17O5	203.1310	2.71	2	1.51	0.08
C15H12N1	204.0998	2.78	2 11	0.72	0.50
C13H20O1N1	205.0891	2.78	5	0.75	0.00
C13H20O1N1	205.1407	2.89	5	1.40	0.08
C10H7O5	205.1407	2.45	5 0	1.40	0.08
C10H7O5	206.0215	2.88	0	0.00	0.30
C11H1104	206.0215	3.80	8	0.00	0.50
C8H11O1N6	206.0379	3 19	7	1.25	0.30
C11H15O2N2	206.0916	0.39		1.25	0.13
C11H15O2N2	206.1055	3.18	0	1.27	0.18
C12H19O1N2	206.1055	2 76	0	1.27	0.18
C13H10N3	206.1419	7 39	5	1.50	0.08
C11H14O3N1	207.0796	3.15	11	0.69	0.00
C15H14N1	207.0895	3.63	6	1.18	0.27
C12H18O2N1	207.1048	2.05	10	0.87	0.00
C12H18O2N1	207.1259	2.20	5	1.42	0.17
C12H18O2N1	207.1259	2.40	5	1.42	0.17
C12H18O2N1	207.1259	2.45	5	1.42	0.17
C12H18O2N1	207.1259	2.44	5	1.42	0.17
C12H18O2N1	207.1259	2.44	5	1.42	0.17
C12H18O2N1	207.1259	2.59	5	1.42	0.17
C12H18O2N1	207.1259	2.02	5	1.42	0.17
C12H18O2N1	207.1259	2.71	5	1.42	0.17
C12H22O1N1	207.1372	2.39	5	1.55	0.09
C13H22OINI	207.1623	2.88	4	1.62	0.08
C14H8O2Na1	208.0524	7.48	11	0.57	0.14
C14H13N2	208.1000	3.09	10	0.86	0.00
C14H13N2	208.1000	3.32	10	0.86	0.00
C11H17O2N2	208.1212	3.02	5	1.45	0.18
C9H20O5Nal	208.1311	2.47	0	2.22	0.56
C13H25N2	208.1939	7.33	3	1.85	0.00
C14H12O1N1	209.0841	7.60	10	0.79	0.07
C11H20O1N3	209.1528	1.80	4	1.73	0.09

-

C9H7O6	210.0164	1.09	7	0.67	0.67
C8H12O5Na1	188.0685	1.95	3	1.50	0.63
C10H15O3N2	210.1004	0.43	5	1.40	0.30
C14H15N2	210.1157	3.38	9	1.00	0.00
C11H19O2N2	210.1368	2.63	4	1.64	0.18
C11H19O2N2	210 1368	2.96	4	1 64	0.18
C6H14O7N1	211.0692	0.36	1	2.17	1.17
C11H18O5N1	243 1107	0.38	4	1.55	0.45
C13H14N3	211 1109	3.04	9	1.00	0.00
C9H13O4N2	212 0797	0.93	5	1.00	0.00
C13H13O1N2	212.0757	2.48	9	0.92	0.08
C10H17O3N2	212.0550	0.58	4	1.60	0.30
C10H17O3N2	212.1161	3.13	4	1.60	0.30
C10H16O4N1	212.1101	0.38	4	1.50	0.30
C14H16O1N1	213.1001	2.77		1.50	0.40
C14H16O1N1	213.1154	3.07	8	1.07	0.07
C10H15O5	213.1134	2.69	4	1.07	0.50
C11H19O4	214.0041	4.45	4	1.40	0.36
C14H19N2	214.1203	3.70	3 7	1.04	0.30
C13H14O2N1	214.1470	2.42	0	1.29	0.00
C13H14O2N1	215.0940	2.67	o Q	1.00	0.15
C10H18O4N1	215.0940	0.38	0	1.00	0.13
C10H17O5	215.1158	3.16	2	1.70	0.40
C13H17O1N2	216.0998	2.72	3 7	1.00	0.30
C11H21O4	210.1203	3.06	2	1.23	0.08
C11H21O4	216.1362	7.08	2	1.82	0.36
C14H21N2	216.1362	3.63	2	1.82	0.36
C8H12O6N1	216.1626	0.38	6	1.43	0.00
C6H12O7Na1	217.0586	0.33	4	1.38	0.75
C12H15O2N2	196.0583	2.88	1	2.00	1.17
C15H10O1N1	218.1055	2.00	7	1.17	0.17
C9H14O6N1	219.0684	0.29	12	0.60	0.07
C16H1400N1	219.0743	2.07	3	1.63	0.75
C16H14N1	219.1048	2.17	11	0.81	0.00
C10H14N1	219.1048	5.17 2.91	11	0.81	0.00
C15H1602N1	219.1259	2.01	6	1.31	0.15
C14H22OINI	219.1623	5.04 2.72	5	1.50	0.07
CI0HI4O4Nai	198.0892	2.75	4	1.40	0.40
C12H13O4	220.0736	3.40	7	1.00	0.33
CITHI3O3N2	220.0848	0.38	7	1.09	0.27
C13H2101N2	220.1576	2.77	5	1.54	0.08
CI3H2IOIN2	220.1576	2.85	5	1.54	0.08
C13H21O1N2	220.1576	2.95	5	1.54	0.08
CI5HI2OINI	221.0841	2.76	11	0.73	0.07
C8H16O6N1	221.0899	0.42	2	1.88	0.75
C8H16O6N1	221.0899	0.54	2	1.88	0.75
C13H20O2N1	221.1416	2.76	5	1.46	0.15
C13H20O2N1	221.1416	2.95	5	1.46	0.15
C12H19O2N2	222.1368	2.48	5	1.50	0.17
C12H22O1N3	223.1685	2.54	4	1.75	0.08
C9H14O5Na1	202.0841	2.65	3	1.56	0.56
C9H14O5Na1	202.0841	2.70	3	1.56	0.56
---------------	----------	--------------	---------	------	------
C12H21O2N2	224.1525	2.89	4	1.67	0.17
C12H21O2N2	224.1525	2.98	4	1.67	0.17
C12H21O2N2	224.1525	3.13	4	1.67	0.17
C13H12O1N3	225.0902	3.18	10	0.85	0.08
C8H12O6Na1	204.0634	0.56	3	1.50	0.75
C7H11O3N6	226.0814	2.69	6	1.43	0.43
C11H19O3N2	226.1317	2.47	4	1.64	0.27
C12H23O2N2	226.1681	2.34	3	1.83	0.17
C7H3O1N5Na1S1	205.0058	0.78	9	0.43	0.14
C9H14O4N3	227.0906	0.37	5	1.44	0.44
C14H14O2N1	227,0946	2.69	9	0.93	0.14
C14H17O1N2	228.1263	2.72	8	1.14	0.07
C12H21O4	228.1362	6.64	3	1.67	0.33
C14H16O2N1	229.1103	2.77	8	1.07	0.14
C14H16O2N1	229 1103	2.80	8	1.07	0.14
C14H16O2N1	229.1103	3.16	8	1.07	0.14
C12H24O3N1	229.1678	2.93	2	1.07	0.25
C17H11O1	230 0732	8.31	13	0.59	0.25
C17H11O1	230.0732	8.46	13	0.59	0.06
C9H15O5N2	230.0903	0.33	4	1.56	0.00
C7H15O3N6	230.1127	2.33	4	2.00	0.43
C11H19O5	230.1127	3.25	3	1.64	0.45
C14H19O1N2	230.1419	2.99	7	1.04	0.43
C16H10O1N1	231.0684	8.26	13	0.56	0.07
C14H21O1N2	232 1576	2.92	6	1.43	0.00
C15H11O1N2	232.1370	7.44	12	0.67	0.07
C10H16O3N2Na1	212 1161	3.09	4	1.60	0.30
C7H7O5N3Na1	212.1101	0.59	4	1.00	0.30
C8H18O3N3S1	215.0580	2.76	2	2.13	0.71
C14H22O2N1	235.0771	2.95	5	1.50	0.38
C14H22O2N1	235.1572	3.25	5	1.50	0.14
C8H16O7N1	235.1372	0.39	2	1.30	0.14
C15H15O1N2	237.0849	3.12	2 10	0.02	0.88
C12H19O3N2	238.1100	2.76	5	1.50	0.07
C13H23O2N2	238.1317	3.08	3	1.50	0.23
C13H23O2N2	238.1081	3.14	4	1.09	0.15
C13H23O2N2	238.1081	3.36	4	1.09	0.15
C14H9O4	238.1081	5.27	4	1.09	0.15
C12H21O3N2	240.0423	2.68	11	0.57	0.29
C8H12O7Na1	240.1474	0.38	4	1.07	0.25
C10H15O5N2	220.0583	0.39	5	1.50	0.88
C12H19O5	242.0903	3.01	5	1.40	0.50
C15H19O1N2	242.1154	8 27	4	1.50	0.42
C13H23O4	242.1419	7 49	8	1.20	0.07
C7H3O2N5Na1S1	242.1518	0.41	3	1.69	0.31
C15H18O2N1	221.0007	3.02	9	0.43	0.29
C14H17O2N2	243.1259	3.02	8	1.13	0.13
C14111/02N2	244.1212	2.13	8	1.14	0.14
C14H1/U2N2	244.1212	3.24 2.21	8	1.14	0.14
C13H2101N2	244.1576	3.21	7	1.33	0.07

C8H17O6N1Na1	223.1056	3.69	1	2.13	0.75
C12H24O4N1	245.1627	2.86	2	1.92	0.33
C12H24O4N1	245.1627	3.02	2	1.92	0.33
C14H21O2N2	248.1525	0.33	6	1.43	0.14
C16H11O3	250.0630	7.63	12	0.63	0.19
C12H20O4Na1	228.1362	2.82	3	1.67	0.33
C13H21O3N2	252.1474	2.82	5	1.54	0.23
C11H24O6Na1	252.1573	2.70	0	2.18	0.55
C14H25O2N2	252.1838	3.62	4	1.71	0.14
C12H19O4N2	254.1267	2.69	5	1.50	0.33
C13H23O3N2	254.1630	2.76	4	1.69	0.23
C14H25O4	256.1675	7.86	3	1.71	0.29
C12H14O5Na1	238.0841	3.42	6	1.17	0.42
C16H26O2N1	263.1885	3.68	5	1.56	0.13
C12H20O5Na1	244.1311	4.38	3	1.67	0.42
C13H21O4N2	268.1423	2.88	5	1.54	0.31
C16H29O3	268.2038	7.89	3	1.75	0.19
C8H5O3N7Na1	247.0454	7.42	10	0.63	0.38
C5H5O5N1Na1S3	254.9330	0.33	4	1.00	1.00
C8H15O7N4	278.0862	7.71	4	1.75	0.88
C14H19O4N2	278.1267	0.32	7	1.29	0.29
C12H15O6N2	282.0852	0.39	7	1.17	0.50
C14H23O4N2	282.1580	2.87	5	1.57	0.29
C14H25O4N2	284.1736	2.71	4	1.71	0.29
C4H12O11N2Na1	264.0441	2.62	0	3.00	2.75
C11H15O7N2	286.0801	0.39	6	1.27	0.64
C17H27O2N2	290.1994	2.98	6	1.53	0.12
C15H22O3N1S1	295.1242	2.52	6	1.40	0.20
C14H23O5N2	298.1529	2.73	5	1.57	0.36
C12H4O1N6Na1S1	280.0167	2.62	14	0.33	0.08
C20H27O4	330.1831	7.60	8	1.30	0.20
C6H5O10N1Na1S4	378.8796	0.29	5	0.83	1.67
C16H26O5N6Na1S1	414.1685	8.30	7	1.63	0.31

Table S3.2.5 Molecular formulas of organic compounds detected in GZ in ESI- mode.

	Neutral mass				
Formula [M-H]	(Da)	RT (min)	DBE	H/C	O/C
C3H5O6S1	169.9885	0.38	1	2.00	2.00
C6H11O4	148.0736	0.48	1	2.00	0.67
C3H3O4	104.0110	0.37	2	1.33	1.33
C5H7O5	148.0372	0.38	2	1.60	1.00
C5H7O7S1	211.9991	0.38	2	1.60	1.40
C4H5O5	134.0215	0.38	2	1.50	1.25
C6H11O2	116.0837	2.94	1	2.00	0.33
C3H4O5N1	135.0168	0.39	2	1.67	1.67
C4H5O4	118.0266	0.53	2	1.50	1.00
C7H5O2	122.0368	2.66	5	0.86	0.29
C7H5O2	122.0368	2.76	5	0.86	0.29
C2H5O4S1	125.9987	0.38	0	3.00	2.00

C8H9O7	218.0427	0.38	4	1.25	0.88
C8H13O1	126.1045	3.72	2	1.75	0.13
C5H4O3N1	127.0269	1.02	4	1.00	0.60
C5H5O5	146.0215	0.38	3	1.20	1.00
C7H11O2	128.0837	2.47	2	1.71	0.29
C7H11O2	128.0837	2.68	2	1.71	0.29
C5H5O4	130.0266	0.60	3	1.20	0.80
C5H8O3N1	131.0582	0.44	2	1.80	0.60
C5H3O3N4	168.0283	0.35	6	0.80	0.60
C5H7O4	132.0423	0.77	2	1.60	0.80
C5H7O4	132.0423	1.10	2	1.60	0.80
C8H5O2	134 0368	1.83	-	0.75	0.25
C7H4O2N1	135.0320	2.69	6	0.73	0.29
C8H7O2	136.0524	3.10	5	1.00	0.25
C5H2O2N3	137.0225	2.79	6	0.60	0.40
C5H2O2N3	137.0225	3.20	6	0.60	0.40
C3H5O4S1	137.0225	0.36	1	2.00	1 33
C7H5O3	138.0317	2.34	5	0.86	0.43
C6H4O3N1	139.0269	3.76	5	0.83	0.49
C2H3O5S1	139.0209	0.33	1	2.00	2 50
C3H7O4S1	140 0143	0.51	0	2.00	1.33
C5H3O3N2	140.0222	1.16	5	0.80	0.60
C5H3O3N2	140.0222	2.40	5	0.80	0.60
C6H7O4	144 0423	0.56	3	1 33	0.67
C6H7O4	144.0423	0.68	3	1.33	0.67
C9H6O1N1	145 0528	2.26	7	0.78	0.11
C6H9O4	146.0579	1.71	2	1.67	0.67
C8H4O2N1	147.0320	3.26	7	0.63	0.25
C9H7O2	148.0524	2.95	6	0.89	0.22
C9H7O2	148.0524	3.10	6	0.89	0.22
C8H5O3	150.0317	0.82	6	0.75	0.38
C8H5O3	150.0317	2.64	6	0.75	0.38
C8H8O2N1	151.0633	1.80	5	1.13	0.25
C8H7O3	152.0473	2.65	5	1.00	0.38
C8H7O3	152.0473	3.04	5	1.00	0.38
C7H6O3N1	153.0426	5.23	5	1.00	0.43
C7H6O3N1	153.0426	6.07	5	1.00	0.43
C3H5O5S1	153,9936	0.37	1	2.00	1.67
C7H5O4	154.0266	1.30	5	0.86	0.57
C7H5O4	154.0266	2.61	5	0.86	0.57
C4H9O4S1	154,0300	0.93	0	2.50	1.00
C6H5O3N2	154.0378	2.83	5	1.00	0.50
C6H5O3N2	154.0378	3.34	5	1.00	0.50
C8H9O3	154.0630	1.59	4	1.25	0.38
C6H4O4N1	155.0219	0.46	5	0.83	0.67
C6H4O4N1	155.0219	3.09	5	0.83	0.67
C6H4O4N1	155.0219	3.83	5	0.83	0.67
C2H3O6S1	155.9729	0.33	1	2.00	3.00
C6H3O5	156.0059	0.69	5	0.67	0.83
C5H3O4N2	156.0171	1.24	5	0.80	0.80

C4H2O4N3	157.0124	3.25	5	0.75	1.00
C6H5O3S1	158.0038	0.74	4	1.00	0.50
C7H11O4	160.0736	2.73	2	1.71	0.57
C9H7O4	180.0423	3.13	6	0.89	0.44
C9H5O3	162.0317	3.29	7	0.67	0.33
C8H5O2N2	162.0429	6.11	7	0.75	0.25
C10H9O2	162.0681	3.38	6	1.00	0.20
C7H13O4	162.0892	0.86	1	2.00	0.57
C7H3O3N2	164.0222	4.02	7	0.57	0.43
C7H3O3N2	164.0222	4.23	7	0.57	0.43
C9H7O3	164.0473	2.48	6	0.89	0.33
C9H7O3	164.0473	3.07	6	0.89	0.33
C9H7O3	164.0473	3.29	6	0.89	0.33
C8H6O3N1	165.0426	3.20	6	0.88	0.38
C8H6O3N1	165.0426	5.09	6	0.88	0.38
C8H6O3N1	165.0426	6.78	6	0.88	0.38
C6H9O9S1	258.0046	0.37	2	1.67	1.50
C8H5O4	166.0266	1.34	6	0.75	0.50
C8H5O4	166.0266	2.66	6	0.75	0.50
C8H5O4	166.0266	2.94	6	0.75	0.50
C7H5O3N2	166.0378	3.46	6	0.86	0.43
C9H9O3	166.0630	3.25	5	1.11	0.33
C6H13O3S1	166.0664	2.95	0	2.33	0.50
C3H4O5N1S1	166.9888	0.36	2	1.67	1.67
C7H4O4N1	167.0219	3.81	6	0.71	0.57
C8H8O3N1	167.0582	7.26	5	1.13	0.38
C8H8O3N1	167.0582	7.57	5	1.13	0.38
C8H7O4	168.0423	3.15	5	1.00	0.50
C5H11O4S1	168.0456	2.46	0	2.40	0.80
C5H11O4S1	168.0456	2.82	0	2.40	0.80
C7H7O3N2	168.0535	3.76	5	1.14	0.43
C7H6O4N1	169.0375	2.94	5	1.00	0.57
C7H6O4N1	169.0375	2.99	5	1.00	0.57
C7H6O4N1	169.0375	3.67	5	1.00	0.57
C7H6O4N1	169.0375	3.83	5	1.00	0.57
C7H6O4N1	169.0375	4.15	5	1.00	0.57
C7H6O4N1	169.0375	4.68	5	1.00	0.57
C6H4O5N1	171.0168	2.31	5	0.83	0.83
C5H4O4N3	171.0280	3.92	5	1.00	0.80
C11H7O2	172.0524	3.86	8	0.73	0.18
C8H11O4	172.0736	2.48	3	1.50	0.50
C7H9O5	174.0528	0.56	3	1.43	0.71
C7H9O5	174.0528	0.75	3	1.43	0.71
C7H9O5	174.0528	0.96	3	1.43	0.71
C6H8O5N1	175.0481	0.38	3	1.50	0.83
C10H7O3	176.0473	3.29	7	0.80	0.30
C9H7O2N2	176.0586	7.47	7	0.89	0.22
C7H11O5	176.0685	0.95	2	1.71	0.71
C7H11O5	176.0685	1.15	2	1.71	0.71
C9H6O3N1	177.0426	3.28	7	0.78	0.33

C9H5O4	178.0266	2.44	7	0.67	0.44
C9H5O4	178.0266	2.82	7	0.67	0.44
C9H7O5	196.0372	2.99	6	0.89	0.56
C10H9O3	178.0630	3.81	6	1.00	0.30
C8H4O4N1	179.0219	2.90	7	0.63	0.50
C8H4O4N1	179.0219	4.92	7	0.63	0.50
C8H4O4N1	179.0219	5.41	7	0.63	0.50
C9H8O3N1	179.0582	7.01	6	1.00	0.33
C9H8O3N1	179.0582	7.45	6	1.00	0.33
C4H3O6S1	179.9729	0.40	3	1.00	1.50
C6H9O7S1	226.0147	0.39	2	1.67	1.17
C7H3O4N2	180.0171	3.52	7	0.57	0.57
C9H7O4	180.0423	2.76	6	0.89	0.44
C8H6O4N1	181.0375	2.15	6	0.88	0.50
C8H6O4N1	181.0375	2.62	6	0.88	0.50
C8H6O4N1	181.0375	3.90	6	0.88	0.50
C9H10O3N1	181.0739	7.99	5	1.22	0.33
C8H5O5	182.0215	1.07	6	0.75	0.63
C8H5O5	182.0215	1.92	6	0.75	0.63
C8H5O5	182.0215	2.46	6	0.75	0.63
C6H11O7S1	228.0304	0.40	1	2.00	1.17
C5H9O5S1	182.0249	0.52	1	2.00	1.00
C7H5O4N2	182.0328	3.13	6	0.86	0.57
C7H5O4N2	182.0328	3.46	6	0.86	0.57
C9H9O4	182.0579	2.30	5	1.11	0.44
C7H4O5N1	183.0168	1.29	6	0.71	0.71
C7H4O5N1	183.0168	2.94	6	0.71	0.71
C7H4O5N1	183.0168	3.26	6	0.71	0.71
C6H4O4N3	183.0280	4.93	6	0.83	0.67
C8H8O4N1	183.0532	3.33	5	1.13	0.50
C8H8O4N1	183.0532	3.41	5	1.13	0.50
C8H8O4N1	183.0532	3.51	5	1.13	0.50
C8H8O4N1	183.0532	4.18	5	1.13	0.50
C8H8O4N1	183.0532	5.70	5	1.13	0.50
C8H8O4N1	183.0532	5.99	5	1.13	0.50
C8H8O4N1	183.0532	6.53	5	1.13	0.50
C8H8O4N1	183.0532	7.05	5	1.13	0.50
C6H3O5N2	184.0120	6.31	6	0.67	0.83
C5H11O5S1	184.0405	0.52	0	2.40	1.00
C7H6O5N1	185.0324	2.44	5	1.00	0.71
C7H6O5N1	185.0324	2.62	5	1.00	0.71
C7H6O5N1	185.0324	3.30	5	1.00	0.71
C10H5O2N2	186.0429	3.50	9	0.60	0.20
C8H11O6	204.0634	0.60	3	1.50	0.75
C8H9O5	186.0528	3.04	4	1.25	0.63
C9H13O4	186.0892	2.85	3	1.56	0.44
C9H13O4	186.0892	2.95	3	1.56	0.44
C7H7O6	188.0321	0.46	4	1.14	0.86
C8H11O5	188.0685	0.85	3	1.50	0.63
C8H11O5	188.0685	1.27	3	1.50	0.63
	100.0000		5	1.20	0.05

C8H11O5	188.0685	1.93	3	1.50	0.63
C8H11O5	188.0685	2.45	3	1.50	0.63
C8H11O5	188.0685	2.78	3	1.50	0.63
C8H11O5	188.0685	1.47	3	1.50	0.63
C10H6O3N1	189.0426	7.74	8	0.70	0.30
C9H5O3N2	190.0378	2.75	8	0.67	0.33
C7H9O6	190.0477	0.77	3	1.43	0.86
C7H9O6	190.0477	0.99	3	1.43	0.86
C8H13O5	190.0841	2.26	2	1.75	0.63
C9H17O4	190 1205	2.86	- 1	2.00	0.44
C6H7O7	192.0270	0.38	3	1.33	1.17
C10H7O4	192.0423	2.40	7	0.80	0.40
C10H7O4	192.0423	3.10	7	0.80	0.40
C10H7O4	192.0423	3.28	, 7	0.80	0.40
C10H7O4	192.0423	7.00	7	0.80	0.40
C7H11O6	192.0425	0.39	2	1 71	0.46
C9H6O4N1	193 0375	3.48	2	0.78	0.44
C9H6O4N1	193.0375	3.66	, 7	0.78	0.44
C9H6O4N1	193.0375	6.79	7	0.78	0.44
C9H6O4N1	193.0375	7.17	, 7	0.78	0.44
C9H6O4N1	193.0375	7.26	7	0.78	0.44
C9H5O5	194.0215	0.82	, 7	0.70	0.56
C9H5O5	194.0215	2.61	7	0.67	0.56
C9H5O5	194.0215	2.77	7	0.67	0.56
C8H7O7	216 0270	0.35	5	1.00	0.50
C10H9O4	194.0579	3.65	5	1.00	0.88
C10H9O4	194.0579	3.80	6	1.00	0.40
C10H9O4	194.0579	3.95	6	1.00	0.40
C10H9O4	194.0579	6.40	6	1.00	0.40
C8H17O3S1	194.0977	5.21	0	2.25	0.40
C8H4O5N1	105.0168	3.15	0	0.63	0.58
C9H8O4N1	195.0108	3.96	6	1.00	0.03
C9H8O4N1	195.0532	4.76	6	1.00	0.44
C9H8O4N1	105.0532	5.01	6	1.00	0.44
C9H8O4N1	195.0532	6.34	6	1.00	0.44
C9H8O4N1	195.0532	6.63	6	1.00	0.44
C6H9O8S1	242.0006	0.47	0	1.00	1.22
C9H7O5	242.0090	2.50	2	0.80	0.56
C9H7O5	190.0372	2.74	0	0.89	0.50
C9H7O5	190.0372	3.27	0	0.89	0.50
C9H7O5	190.0372	3.39	6	0.89	0.56
C6H11O5S1	196.0372	0.85	0	0.89	0.30
C6H1105S1	190.0403	1.02	1	2.00	0.83
C8H7O4N2	196.0405	3 19	I	2.00	0.83
C13H7O2	196.0484	4 90	0	1.00	0.50
C13H7O2	196.0524	7 17	10	0.62	0.15
C13H7O2	190.0524	7 53	10	0.62	0.15
C7H15O4S1	196.0524	5 16	10	0.62	0.15
C8H6O5N1	196.0769	3.10	0	2.29	0.57
C8H6O5N1	197.0324	5.20 A 31	6	0.88	0.63
011003101	197.0324	7. J1	6	0.88	0.63

C8H6O5N1	197.0324	4.71	6	0.88	0.63
C9H10O4N1	197.0688	7.57	5	1.22	0.44
C9H10O4N1	197.0688	7.77	5	1.22	0.44
C8H5O6	198.0164	0.90	6	0.75	0.75
C8H5O6	198.0164	1.23	6	0.75	0.75
C8H5O6	198.0164	3.09	6	0.75	0.75
C7H5O5N2	198.0277	7.42	6	0.86	0.71
C10H13O4	198.0892	2.65	4	1.40	0.40
C10H13O4	198.0892	3.75	4	1.40	0.40
C7H4O6N1	199.0117	2.67	6	0.71	0.86
C7H4O6N1	199.0117	3.42	6	0.71	0.86
C8H8O5N1	199.0481	2.50	5	1.13	0.63
C8H8O5N1	199.0481	2.83	5	1.13	0.63
C8H8O5N1	199.0481	4.26	5	1.13	0.63
C6H3O6N2	200.0069	4.24	6	0.67	1.00
C7H5O5S1	201.9936	0.63	5	0.86	0.71
C9H13O5	202.0841	2.50	3	1.56	0.56
C9H13O5	202.0841	2.64	3	1.56	0.56
C9H13O5	202.0841	2.69	3	1.56	0.56
C10H17O4	202.1205	2.89	2	1.80	0.40
C10H4O2N1S1	203.0041	0.52	9	0.50	0.20
C11H8O3N1	203.0582	8.06	8	0.82	0.27
C5H3O1N2S3	203.9486	0.30	5	0.80	0.20
C8H11O6	204.0634	0.67	3	1.50	0.75
C7H7O6N6	272.0505	2.33	7	1.14	0.86
C9H15O5	204.0998	2.57	2	1.78	0.56
C9H15O5	204.0998	2.77	2	1.78	0.56
C10H6O4N1	205.0375	3.12	8	0.70	0.40
C10H5O5	206.0215	3.15	8	0.60	0.50
C11H9O4	206.0579	3.19	7	0.91	0.36
C9H4O5N1	207.0168	3.19	8	0.56	0.56
C9H4O5N1	207.0168	3.93	8	0.56	0.56
C10H8O4N1	207.0532	4.56	7	0.90	0.40
C10H8O4N1	207.0532	4.89	7	0.90	0.40
C10H8O4N1	207.0532	7.65	7	0.90	0.40
C10H7O5	208.0372	2.27	7	0.80	0.50
C10H7O5	208.0372	2.37	7	0.80	0.50
C10H7O5	208.0372	2.54	7	0.80	0.50
C10H7O5	208.0372	2.72	7	0.80	0.50
C10H7O5	208.0372	2.84	7	0.80	0.50
C10H7O5	208.0372	2.94	7	0.80	0.50
C10H7O5	208.0372	2.97	7	0.80	0.50
C7H11O7	208.0583	0.37	2	1.71	1.00
C5H6O6N1S1	208.9994	0.38	3	1.40	1.20
C9H6O5N1	209.0324	3.99	7	0.78	0.56
C9H6O5N1	209.0324	4.08	7	0.78	0.56
C10H10O4N1	209.0688	7.56	6	1.10	0.40
C9H5O6	210.0164	1.09	7	0.67	0.67
C9H5O6	210.0164	1.94	7	0.67	0.67
C9H5O6	210.0164	2.23	7	0.67	0.67

C9H5O6	210.0164	2.54	7	0.67	0.67
C6H9O6S1	210.0198	0.90	2	1.67	1.00
C8H7O6N2	228.0382	7.60	6	1.00	0.75
C7H13O5S1	210.0562	1.93	1	2.00	0.71
C7H13O5S1	210.0562	2.51	1	2.00	0.71
C8H17O4S1	210.0926	7.16	0	2.25	0.50
C8H4O6N1	211.0117	2.58	7	0.63	0.75
C9H8O5N1	211.0481	3.15	6	1.00	0.56
C9H8O5N1	211.0481	7.01	6	1.00	0.56
C6H11O6S1	212.0355	0.96	1	2.00	1.00
C6H11O6S1	212.0355	1.59	1	2.00	1.00
C6H11O6S1	212.0000	0.97	1	2.00	1.00
C8H7O5N2	212.0333	7.92	6	1.00	0.63
C13H7O3	212.0473	7.09	10	0.62	0.03
C8H6O6N1	212.0473	2.66	6	0.88	0.25
C8H6O6N1	213.0273	3.42	6	0.88	0.75
C8H6O6N1	213.0273	3.72	6	0.88	0.75
C8H5O5S1	213.0275	1.59	6	0.88	0.73
C7H5O6N2	213.9930	3.55	6	0.75	0.03
C7H5O6N2	214.0220	4.84	6	0.80	0.86
C7H5O6N2	214.0220	7.12	0	0.80	0.80
C7H5O6N2	214.0220	7.27	6	0.80	0.80
C12H5O4	214.0220	5.50	0	0.80	0.80
C6H13O6S1	214.0200	0.38	10	0.50	1.00
C10H13O5	214.0311	2.51	0	2.55	0.50
C10H13O5	214.0841	2.81	4	1.40	0.50
C10H13O5	214.0841	2.88	4	1.40	0.50
C11H17O4	214.0041	4.43	4	1.40	0.30
C11H17O4	214.1205	6.76	3	1.04	0.30
C12H8O3N1	214.1203	7.86	5	0.75	0.30
C12H8O3N1	215.0582	8.10	9	0.75	0.25
C4H7O8S1	215.0040	0.32	2	2.00	2.00
C12H7O4	215.9940	3.86	1	2.00	0.22
C12H7O4	216.0423	4.06	9	0.07	0.33
C12H7O4	216.0423	4.46	9	0.07	0.33
C10H15O5	216.0425	2.91	9	0.07	0.55
C10H15O5	216.0998	3.02	3	1.60	0.30
C12H10O3N1	210.0998	8.22	3	1.60	0.50
C8H9O5S1	217.0739	1.42	8	0.92	0.25
C16H9O1	218.0249	8 36	4	1.25	0.63
C9H13O6	218.0732	1 33	12	0.63	0.06
C9H13O6	218.0790	3.01	3	1.56	0.67
C8H1107	218.0790	0.38	3	1.56	0.67
C8H1107	220.0583	0.38	3	1.50	0.88
C10H6O5N1	220.0583	3.47	3	1.50	0.88
C10H6O5N1	221.0324	J.47 A 18	8	0.70	0.50
CIOHOOSNI	221.0324	4.10 5 86	8	0.70	0.50
C11H0O5	221.0324	5.00 2.71	8	0.70	0.50
C11H0O5	222.0528	2./1	7	0.91	0.45
C11U9O5	222.0528	2.90	7	0.91	0.45
011H905	222.0528	2.90	7	0.91	0.45

C11H9O5	222.0528	3.06	7	0.91	0.45
C11H9O5	222.0528	3.16	7	0.91	0.45
C12H13O4	222.0892	7.48	6	1.17	0.33
C12H7O5N2	260.0433	8.04	10	0.67	0.42
C10H8O5N1	223.0481	5.94	7	0.90	0.50
C8H3O6N2	224.0069	4.16	8	0.50	0.75
C10H7O6	224.0321	2.31	7	0.80	0.60
C10H7O6	224.0321	2.43	7	0.80	0.60
C10H7O6	224.0321	2.87	7	0.80	0.60
C10H7O6	224.0321	3.02	7	0.80	0.60
C10H7O6	224.0321	3.07	7	0.80	0.60
C14H7O3	224.0473	7.57	11	0.57	0.21
C8H15O5S1	224.0718	2.82	1	2.00	0.63
C9H19O4S1	224.1082	7.64	0	2.22	0.44
C9H5O7	226.0114	1.06	7	0.67	0.78
C9H5O7	226.0114	2.88	7	0.67	0.78
C7H13O6S1	226.0511	2.22	1	2.00	0.86
C7H13O6S1	226.0511	2.45	1	2.00	0.86
C7H13O6S1	226.0511	2.48	1	2.00	0.86
C14H9O3	226.0630	7.13	10	0.71	0.21
C14H9O3	226.0630	7.26	10	0.71	0.21
C8H4O7N1	227.0066	4.09	7	0.63	0.88
C9H8O6N1	227.0430	2.99	6	1.00	0.67
C9H8O6N1	227.0430	3.38	6	1.00	0.67
C13H8O3N1	227.0582	8.23	10	0.69	0.23
C7H3O7N2	228.0019	4.07	7	0.57	1.00
C8H7O6N2	228.0382	4.69	6	1.00	0.75
C11H15O5	228.0998	3.02	4	1.45	0.45
C12H19O4	228.1362	6.64	3	1.67	0.33
C6H2O7N3	228.9971	4.09	7	0.50	1.17
C5H10O7N1S1	229.0256	2.74	1	2.20	1.40
C12H6O4N1	229.0375	7.99	10	0.58	0.33
C12H6O4N1	229.0375	8.06	10	0.58	0.33
C13H10O3N1	229.0739	8.12	9	0.85	0.23
C13H10O3N1	229.0739	8.20	9	0.85	0.23
C8H5O4S2	229.9707	0.30	6	0.75	0.50
C8H5O6S1	229.9885	2.52	6	0.75	0.75
C10H13O6	230.0790	2.30	4	1.40	0.60
C10H13O6	230.0790	2.71	4	1.40	0.60
C10H13O6	230.0790	2.82	4	1.40	0.60
C11H17O5	230.1154	3.21	3	1.64	0.45
C11H17O5	230.1154	3.42	3	1.64	0.45
C12H8O4N1	231.0532	7.44	9	0.75	0.33
C10H15O6	232.0947	3.05	3	1.60	0.60
C11H6O5N1	233.0324	7.22	9	0.64	0.45
C10H5O5N2	234.0277	7.61	9	0.60	0.50
C12H9O5	234.0528	3.19	8	0.83	0.42
C12H11O5	236.0685	3.15	7	1.00	0.42
C9H15O5S1	236.0718	2.66	2	1.78	0.56
C10H5O3S2	237.9758	0.53	8	0.60	0.30
			5	0.00	0.00

C7H9O7S1	238.0147	0.44	3	1.43	1.00
C11H9O6	238.0477	2.85	7	0.91	0.55
C11H9O6	238.0477	3.01	7	0.91	0.55
C12H13O5	238.0841	3.42	6	1.17	0.42
C12H13O5	238.0841	3.54	6	1.17	0.42
C12H13O5	238.0841	3.58	6	1.17	0.42
C9H17O5S1	238.0875	3.17	1	2.00	0.56
C10H21O4S1	238.1239	7.95	0	2.20	0.40
C14H8O3N1	239.0582	8.22	11	0.64	0.21
C10H7O7	240.0270	2.65	7	0.80	0.70
C8H13O9S1	286.0359	0.38	2	1.75	1.13
C7H11O7S1	240.0304	0.90	2	1.71	1.00
C14H7O4	240.0423	3.97	11	0.57	0.29
C14H7O4	240.0423	7.13	11	0.57	0.29
C14H7O4	240.0423	7.28	11	0.57	0.29
C8H15O6S1	240.0668	2.76	1	2.00	0.75
C8H15O6S1	240.0668	2.99	1	2.00	0.75
C13H6O4N1	241.0375	7.83	11	0.54	0.31
C7H13O7S1	242.0460	0.57	1	2.00	1.00
C9H9O6N2	242.0539	6.82	6	1.11	0.67
C14H9O4	242.0579	5.07	10	0.71	0.29
C14H9O4	242.0579	7.48	10	0.71	0.29
C8H4O8N1	243.0015	2.89	7	0.63	1.00
C6H12O7N1S1	243.0413	3.46	1	2.17	1.17
C11H15O6	244.0947	2.83	4	1.45	0.55
C11H15O6	244.0947	2.90	4	1.45	0.55
C12H19O5	244.1311	3.83	3	1.67	0.42
C12H19O5	244.1311	3.94	3	1.67	0.42
C12H19O5	244.1311	4.37	3	1.67	0.42
C9H9O6S1	246.0198	2.88	5	1.11	0.67
C9H9O8	246.0376	0.38	5	1.11	0.89
C11H17O6	246.1103	4.39	3	1.64	0.55
C8H3O4N6	248.0294	3.13	10	0.50	0.50
C10H17O6S1	266.0824	2.99	2	1.80	0.60
C7H5O8S1	249.9783	2.59	5	0.86	1.14
C10H17O5S1	250.0875	3.09	2	1.80	0.50
C14H4O2N1S1	251.0041	2.66	13	0.36	0.14
C11H7O7	252.0270	2.75	8	0.73	0.64
C8H11O7S1	252.0304	0.38	3	1.50	0.88
C8H11O7S1	252.0304	0.62	3	1.50	0.88
C9H15O6S1	252.0668	2.60	2	1.78	0.67
C9H15O6S1	252.0668	3.91	2	1.78	0.67
C9H15O6S1	252.0668	4.10	2	1.78	0.67
C10H19O5S1	252.1031	7.01	1	2.00	0.50
C11H23O4S1	252.1395	8.19	0	2.18	0.36
C8H13O7S1	254.0460	1.05	2	1.75	0.88
C8H13O7S1	254.0460	2.32	2	1.75	0.88
C10H9O6N2	254.0539	7.80	7	1.00	0.60
C9H17O6S1	254.0824	3.19	1	2.00	0.67
C9H17O6S1	254.0824	3.54	1	2.00	0.67

-	C10H11O6N2	256.0695	8.04	6	1.20	0.60
	C14H23O4	256,1675	7.86	3	1.71	0.29
	C6H5O6N6	258.0349	0.55	7	1.00	1.00
	C12H17O6	258,1103	2.89	4	1.50	0.50
	C12H4O6N1	259.0117	3.87	11	0.42	0.50
	C6H12O8N1S1	259.0362	1.44	1	2.17	1 33
	C8H8O7N1S1	263.0100	3.61	5	1.13	0.88
	C10H15O6S1	263.0100	3.14	3	1.60	0.60
	C12H9O5S1	266 0249	3.34	8	0.83	0.42
	C8H11O8S1	268.0253	0.62	3	1.50	1.00
	C9H15O7S1	268.0255	2.15	2	1.50	0.78
	C9H15O7S1	268.0617	2.23	2	1.78	0.78
	C9H15O7S1	268.0617	2.50	2	1.78	0.78
	C9H15O7S1	268.0617	2.61	2	1.78	0.78
	C13H5O1N6S1	208.0017	2.35	2 14	0.46	0.78
	C16H15O4	294.0324	8.15	14	1.00	0.08
	C13H23O4N2	272.1049	2.33	2	1.00	0.23
	C7H14O8N1S1	272.1730	2.70	3	1.65	0.31
	C14H9O4S1	273.0318	7.09	1	2.14	1.14
	C9H8O7N1S1	274.0300	3.72	10	0.71	0.29
	C9H8O7N1S1	275.0100	4.22	0	1.00	0.78
	C9H3O5N6	275.0100	2.86	0	0.44	0.78
	C9H5O5N6	270.0243	3.01	10	0.44	0.36
	C10H15O7S1	278.0400	2.48	10	0.07	0.30
	C10H15O7S1	280.0017	2.69	3	1.60	0.70
	C8H11O9S1	280.0017	0.42	3	1.00	0.70
	C9H15O8S1	284.0202	2.50	2	1.30	0.89
	C15H21O8	204.0500	3.08	5	1.78	0.89
	C8H14O8N1S1	295.0519	2.99	2	1.47	1.00
	C15H9O6	285.0518	3.51	2	1.00	0.40
	C8H16O8N1S1	280.0477	2.90	1	0.07	1.00
	C8H16O8N1S1	287.0075	2.94	1	2.13	1.00
	C13H25O5S1	207.0073	7.60	1	2.13	0.28
	C13H25O5S1	294.1501	7.72	1	2.00	0.38
	C10H16O7N1S1	294.1501	4.71	1	2.00	0.38
	C10H16O7N1S1	295.0720	6.33	3	1.70	0.70
	C10H16O7N1S1	295.0720	6.61	3	1.70	0.70
	C10H16O7N1S1	295.0726	6.85	3	1.70	0.70
	C10H16O7N1S1	295.0726	7.02	3	1.70	0.70
	C10H16O7N1S1	295.0726	7.25	3	1.70	0.70
	C9H14O8N1S1	293.0720	2.82	3	1.70	0.70
	C9H14O8N1S1	297.0518	2.92	3	1.07	0.89
	C9H14O8N1S1	297.0518	3.27	3	1.07	0.89
	C7H6O7N7	297.0518	3.04	3	1.07	0.89
	C9H18O8N1S1	301.0407	3.40	ð 1	1.00	1.00
	C5H9O11N2S1	301.0831	2.61	1	2.11	0.89
	C10H1608N1S1	300.0005	3 52	2	2.00	2.20
	C10H1808N1S1	311.06/5	3.09	5	1.70	0.80
	C10H1808N1S1	313.0831	3.40	2	1.90	0.80
	C17H13O6	313.0831	7 97	2	1.90	0.80
-	01/111500	314.0790	1.71	11	0.82	0.35

C19H21O4	314.1518	7.71	9	1.16	0.21
C9H16O9N1S1	315.0624	2.54	2	1.89	1.00
C8H11O11S1	316.0100	0.38	3	1.50	1.38
C6H3O12N4	323.9826	2.59	7	0.67	2.00
C10H16O9N1S1	327.0624	2.54	3	1.70	0.90
C10H16O9N1S1	327.0624	2.83	3	1.70	0.90
C10H18O9N1S1	329.0781	2.70	2	1.90	0.90
C20H25O4	330.1831	7.61	8	1.30	0.20
C11H19O10N2	340.1118	6.81	3	1.82	0.91
C6H1O9N2S3	341.8922	0.27	7	0.33	1.50
C10H16O10N1S1	343.0573	2.69	3	1.70	1.00
C10H16O10N1S1	343.0573	2.88	3	1.70	1.00
C16H31O6S1	352.1920	7.88	1	2.00	0.38
C16H31O6S1	352.1920	8.10	1	2.00	0.38
C7H20O10N7	363.1350	8.04	1	3.00	1.43
C10H17O11N2S1	374.0631	3.16	3	1.80	1.10
C10H17O11N2S1	374.0631	3.33	3	1.80	1.10
C10H17O11N2S1	374.0631	3.68	3	1.80	1.10
C10H17O11N2S1	374.0631	3.88	3	1.80	1.10
C10H17O11N2S1	374.0631	4.56	3	1.80	1.10
C20H17O8	386.1002	8.21	12	0.90	0.40
C10H16O11N1S2	391.0243	3.09	3	1.70	1.10
C20H17O9	402.0951	7.44	12	0.90	0.45
C18H33O8S1	410.1974	8.19	2	1.89	0.44
C10H16O13N3S1	419.0482	7.61	4	1.70	1.30
C8H5O7N6S4	425.9181	0.27	9	0.75	0.88

Table S3.2.6 Molecular formulas of organic compounds detected in GZ in ESI+ mode.

Formula	Neutral mass				
[M+H]/[M+Na]	(Da)	RT (min)	DBE	H/C	O/C
C3H7O5N2	150.0277	0.28	2	2.00	1.67
C6H11O2N2	142.0742	0.37	3	1.67	0.33
C6H13O5	164.0685	0.36	1	2.00	0.83
C8H12N1	121.0891	1.47	4	1.38	0.00
C7H8N3	133.0640	0.38	6	1.00	0.00
C7H12O1N3	153.0902	0.33	4	1.57	0.14
C7H11O2N2	154.0742	0.43	4	1.43	0.29
C7H16N1	113.1204	1.00	1	2.14	0.00
C6H15N2	114.1157	1.24	1	2.33	0.00
C6H15N2	114.1157	1.50	1	2.33	0.00
C6H9O2N2	140.0586	0.38	4	1.33	0.33
C7H7N2	118.0531	0.49	6	0.86	0.00
C7H7N2	118.0531	0.76	6	0.86	0.00
C6H6N3	119.0483	0.35	6	0.83	0.00
C6H6N3	119.0483	2.76	6	0.83	0.00
C8H10N1	119.0735	0.39	5	1.13	0.00
C5H14O2N1	119.0946	0.32	0	2.60	0.40
C7H9N2	120.0687	0.38	5	1.14	0.00
C7H9N2	120.0687	0.58	5	1.14	0.00

C10H15N2	162.1157	0.39	5	1.40	0.00
C8H12N1	121.0891	0.76	4	1.38	0.00
C8H12N1	121.0891	0.85	4	1.38	0.00
C8H12N1	121.0891	1.49	4	1.38	0.00
C7H11N2	122.0844	0.46	4	1.43	0.00
C7H11N2	122.0844	0.48	4	1.43	0.00
C7H11N2	122.0844	0.49	4	1.43	0.00
C7H11N2	122.0844	0.93	4	1.43	0.00
C7H11N2	122.0844	0.99	4	1.43	0.00
C7H11N2	122.0844	1.02	4	1.43	0.00
C7H11N2	122.0844	1.05	4	1.43	0.00
C7H11N2	122.0844	1.15	4	1.43	0.00
C7H10O1N1	123.0684	0.55	4	1.29	0.14
C8H10N3	147.0796	0.38	6	1.13	0.00
C5H9N4	124 0749	0.39	4	1.60	0.00
C7H13N2	124 1000	0.39	3	1.00	0.00
C7H13N2	124.1000	0.56	3	1.71	0.00
C7H13N2	124.1000	0.70	3	1.71	0.00
C7H13N2	124.1000	0.89	3	1.71	0.00
C7H13N2	124.1000	0.99	3	1.71	0.00
C7H13N2	124.1000	1.31	3	1.71	0.00
C7H13N2	124.1000	1.86	3	1.71	0.00
C7H13N2	124.1000	1.97	3	1.71	0.00
C7H13N2	124.1000	2.09	3	1.71	0.00
C7H13N2	124.1000	2.38	3	1.71	0.00
C6H8O2N1	124.1000	0.38	3	1./1	0.00
C6H8O2N1	125.0477	1.21	4	1.17	0.33
C5H7O2N2	125.0477	0.44	4	1.17	0.33
C7H15N2	126.0429	0.83	4	1.20	0.40
C7H15N2	126.1157	1.50	2	2.00	0.00
C9H19N1	126.1157	1.50	2	2.00	0.00
C3H0O3N2S1	127.1361	0.28	1	2.13	0.00
C7H16O1N1	152.0256	0.28	1	2.67	1.00
C9H20N1	129.1154	0.56	1	2.14	0.14
COLIZINI	129.1517	2.34	0	2.38	0.00
	130.0531	1.01	7	0.75	0.00
C3H1102N2	130.0742	0.55	2	2.00	0.40
C4H10O2N3	131.0695	0.33	2	2.25	0.50
C9H10N1	131.0735	0.39	6	1.00	0.00
C9HI0NI	131.0735	0.46	6	1.00	0.00
C8H9N2	132.0687	0.62	6	1.00	0.00
C8H9N2	132.0687	1.31	6	1.00	0.00
C8H9N2	132.0687	1.64	6	1.00	0.00
C8H9N2	132.0687	2.15	6	1.00	0.00
C7H8N3	133.0640	1.56	6	1.00	0.00
C9H18O6N1S1	267.0777	3.73	2	1.89	0.67
C8H7O2	134.0368	3.10	6	0.75	0.25
C7H7O1N2	134.0480	0.57	6	0.86	0.14
C7H7O1N2	134.0480	2.71	6	0.86	0.14
C6H6O1N3	135.0433	0.37	6	0.83	0.17
C8H10O1N1	135.0684	0.37	5	1.13	0.13

C8H13N2	136.1000	0.70	4	1.50	0.00
C8H13N2	136.1000	0.83	4	1.50	0.00
C8H13N2	136.1000	1.32	4	1.50	0.00
C8H13N2	136.1000	2.09	4	1.50	0.00
C8H13N2	136.1000	2.38	4	1.50	0.00
C8H13N2	136,1000	2.47	4	1.50	0.00
C7H8O2N1	137.0477	0.38	5	1.00	0.29
C10H13N2	160,1000	0.39	6	1.20	0.00
C8H12O1N1	137.0841	0.51	4	1.38	0.13
C8H12O1N1	137.0841	0.91	4	1.38	0.13
C8H12O1N1	137.0841	1.15	4	1.38	0.13
C8H12O1N1	137 0841	1.29	4	1 38	0.13
C12H12O2N1	201.0790	2.53	8	0.92	0.17
C7H11O1N2	138 0793	0.38	4	1 43	0.14
C7H11O1N2	138.0793	0.58	4	1.43	0.14
C8H15N2	138 1157	1.27	3	1.75	0.00
C8H15N2	138 1157	1.48	3	1.75	0.00
C8H15N2	138 1157	1.57	3	1.75	0.00
C8H15N2	138.1157	1.77	3	1.75	0.00
C8H15N2	138 1157	2.03	3	1.75	0.00
C8H15N2	138.1157	2.15	3	1.75	0.00
C8H15N2	138,1157	2.29	3	1.75	0.00
C8H15N2	138.1157	2.47	3	1.75	0.00
C8H15N2	130.1157	2.61	3	1.75	0.00
C8H15N2	130.1157	2.77	3	1.75	0.00
C6H6O3N1	130.1137	0.37	5	0.82	0.00
C6H6O3N1	139.0209	0.59	5	0.83	0.30
C7H10O2N1	139.0209	0.38	3	1.20	0.30
C7H10O2N1	139.0633	0.50	4	1.29	0.29
C7H10O2N1	139.0633	0.83	4	1.29	0.29
C5H10N5	139.0633	0.39	4	1.29	0.29
C8H14O1N1	139.0858	0.39	4	1.80	0.00
C9H18N1	139.0997	1 79	3	1.63	0.13
C8H17N2	139.1361	1.75	2	1.89	0.00
C8H17N2	140.1313	2.43	2	2.00	0.00
C6H8O3N1	140.1313	0.43	2	2.00	0.00
C7H12O2N1	141.0426	0.43	4	1.17	0.50
C/HI2O2NI	141.0790	0.54	3	1.57	0.29
C5U7O2N2	142.0266	0.34	4	1.00	0.67
CGH1102N2	142.0378	0.39	4	1.20	0.60
C10U10N1	142.0742	0.39	3	1.67	0.33
CIOHIONI	143.0735	1.41	7	0.90	0.00
CIOHIONI	143.0735	1.78	7	0.90	0.00
CIOHIONI	143.0735	2.21	7	0.90	0.00
C6H9O4	144.0423	0.69	3	1.33	0.67
C5H9O3N2	144.0535	0.33	3	1.60	0.60
C9H9N2	144.0687	1.26	7	0.89	0.00
C9H9N2	144.0687	2.43	7	0.89	0.00
C/H1104N2	186.0641	0.36	4	1.43	0.57
C9H8O1N1	145.0528	0.90	7	0.78	0.11
C9H8O1N1	145.0528	2.25	7	0.78	0.11

C9H8O1N1	145.0528	2.32	7	0.78	0.11
C9H8O1N1	145.0528	3.15	7	0.78	0.11
C9H8O1N1	145.0528	3.24	7	0.78	0.11
C9H8O1N1	145.0528	2.40	7	0.78	0.11
C6H12O3N1	145.0739	0.33	2	1.83	0.50
C6H12O3N1	145.0739	0.64	2	1.83	0.50
C10H12N1	145.0891	1.61	6	1.10	0.00
C7H16O2N1	145.1103	0.36	1	2.14	0.29
C5H7O5	146.0215	0.39	3	1.20	1.00
C4H7O4N2	146.0328	0.33	3	1.50	1.00
C9H7O2	146.0368	2.29	7	0.67	0.22
C9H7O2	146.0368	3.07	7	0.67	0.22
C9H7O2	146.0368	2.67	, 7	0.67	0.22
C8H7O1N2	146 0480	2.63	, 7	0.75	0.13
C5H11O3N2	146 0691	0.32	2	2.00	0.60
C9H11N2	146 0844	0.48	-	1 11	0.00
C9H11N2	146 0844	1.06	6	1.11	0.00
C9H11N2	146.0844	1.21	6	1.11	0.00
C9H11N2	146.0844	1.29	6	1.11	0.00
C9H11N2	146.0844	1.35	6	1.11	0.00
C9H11N2	146.0844	1.44	6	1.11	0.00
C9H11N2	146.0844	1.53	6	1.11	0.00
C9H11N2	140.0844	1.76	6	1.11	0.00
C9H11N2	140.0044	1.87	6	1.11	0.00
C9H11N2	140.0844	2.30	6	1.11	0.00
C9H11N2	140.0044	2.39	6	1.11	0.00
C9H11N2	146.0844	2.53	0	1.11	0.00
C9H11N2	140.0844	2.55	0	1.11	0.00
C9H11N2	146.0844	2.00	6	1.11	0.00
C9H11N2	146.0844	2.75	6	1.11	0.00
C8H10N3	146.0844	0.49	6	1.11	0.00
C8H10N3	147.0796	0.49	6	1.13	0.00
C8H10N3	147.0796	0.55	6	1.13	0.00
C8H10N3	147.0796	2.26	6	1.13	0.00
COHION2	147.0796	2.20	6	1.13	0.00
C6H14O2N1	147.0796	0.22	6	1.13	0.00
C10H14N1	147.0895	0.52	1	2.17	0.50
COLIOCI	147.1048	2.38	5	1.30	0.00
C9H9U2	148.0524	2.97	6	0.89	0.22
C8H9OIN2	148.0637	0.78	6	1.00	0.13
C8H9OIN2	148.0637	3.25	6	1.00	0.13
C9HI3N2	148.1000	2.30	5	1.33	0.00
C/H8OIN3	149.0589	0.38	6	1.00	0.14
C5H12O4N1	149.0688	0.33	1	2.20	0.80
C6H8N5	149.0701	0.50	6	1.17	0.00
C9H12OINI	149.0841	3.20	5	1.22	0.11
C6H16O3N1	149.1052	0.32	0	2.50	0.50
C10H16N1	149.1204	2.53	4	1.50	0.00
C10H16N1	149.1204	2.67	4	1.50	0.00
C10H16N1	149.1204	2.81	4	1.50	0.00
C8H7O3	150.0317	2.65	6	0.75	0.38

C5H8O2N2Na1	128.0586	0.37	3	1.60	0.40
C6H7O1N4	150.0542	0.55	6	1.00	0.17
C9H11O2	150.0681	2.94	5	1.11	0.22
C8H11O1N2	150.0793	0.46	5	1.25	0.13
C9H15N2	150.1157	1.52	4	1.56	0.00
C9H15N2	150.1157	2.26	4	1.56	0.00
C9H15N2	150.1157	2.55	4	1.56	0.00
C9H15N2	150.1157	2.80	4	1.56	0.00
C9H15N2	150.1157	2.89	4	1.56	0.00
C9H15N2	150.1157	1.64	4	1.56	0.00
C8H10O2N1	151.0633	0.74	5	1.13	0.25
C8H10O2N1	151.0633	1.76	5	1.13	0.25
C11H17O1N2	192.1263	0.40	5	1.45	0.09
C9H14O1N1	151.0997	0.52	4	1.44	0.11
C9H14O1N1	151.0997	0.69	4	1.44	0.11
C9H14O1N1	151.0997	1.06	4	1.44	0.11
C9H14O1N1	151.0997	2.37	4	1.44	0.11
C9H14O1N1	151 0997	2.49	4	1 44	0.11
C9H14O1N1	151.0997	2.66	4	1.44	0.11
C9H14O1N1	151.0997	0.79	4	1.11	0.11
C8H9O3	152 0473	2.65	5	1.44	0.38
C7H9O2N2	152.0475	0.45	5	1.00	0.29
C8H13O3N2	184 0848	0.46	4	1.14	0.29
C7H9O2N2	152 0586	0.48	5	1.50	0.30
C7H9O2N2	152.0586	0.51	5	1.14	0.29
C7H9O2N2	152.0586	0.79	5	1.14	0.29
C9H17N2	152.0380	2.23	3	1.14	0.00
C9H17N2	152.1313	2.34	3	1.78	0.00
C9H17N2	152.1313	2.41	3	1.78	0.00
C9H17N2	152.1313	2.54	3	1.78	0.00
C9H17N2	152.1313	2.63	3	1.78	0.00
C9H17N2	152.1313	2.75	3	1.78	0.00
C9H17N2	152.1313	2.86	3	1.78	0.00
C7H8O3N1	152.1515	0.56	5	1.78	0.00
C7H8O3N1	153.0420	1.06	5	1.00	0.43
C7H8O3N1	153.0420	2.61	5	1.00	0.43
C6H8O2N3	153.0420	0.41	5	1.00	0.43
C8H12O2N1	153.0558	0.38	3	1.17	0.33
C8H12O2N1	153.0790	0.99	4	1.38	0.23
C6H7O3N2	155.0790	2.86	4	1.58	0.23
C7H11O2N2	154.0378	0.47	5	1.00	0.50
C7H11O2N2	154.0742	0.58	4	1.43	0.29
C5H11N6	154.0742	0.50	4	1.43	0.29
C7H10O3N1	154.0967	0.71	4	2.00	0.00
C11H13N2	155.0582	0.44 2.77	4	1.29	0.43
C7H9O4	172.1000	0.75	1	1.09	0.00
C10H0N2	156.0423	1.64	4	1.14	0.57
C101171N2 C8H1104N2	156.0687	0.38	8	0.80	0.00
C6U12O2N2	198.0641	0.30	5	1.25	0.50
C1111202N3	157.0851	0.58	3	1.83	0.33
CIIHI2NI	157.0891	2.54	7	1.00	0.00

C11H12N1	157.0891	2.71	7	1.00	0.00
C7H11O4	158.0579	2.75	3	1.43	0.57
C7H11O4	158.0579	2.79	3	1.43	0.57
C10H11N2	158.0844	1.88	7	1.00	0.00
C10H11N2	158.0844	2.41	7	1.00	0.00
C10H11N2	158.0844	2.48	7	1.00	0.00
C10H11N2	158.0844	2.66	7	1.00	0.00
C6H8O3N1	141.0426	0.38	4	1.17	0.50
C6H10O4N1	159.0532	0.64	3	1.50	0.67
C7H14O3N1	159 0895	0.35	2	1.86	0.43
C11H15O3N2	222,1004	0.36	- 6	1.27	0.27
C11H14N1	159 1048	2.54	6	1.18	0.00
C10H9O2	160.0524	3.82	7	0.80	0.00
C9H9O1N2	160.0637	2.37	, 7	0.89	0.11
C10H13N2	160.1000	2.41	6	1.20	0.00
C10H13N2	160.1000	2.58	6	1.20	0.00
C10H13N2	160.1000	2.67	6	1.20	0.00
C10H13N2	160.1000	2.78	6	1.20	0.00
C10H13N2	160.1000	2.88	6	1.20	0.00
C10H13N2	160.1000	2.98	6	1.20	0.00
C10H13N2	160.1000	3.07	6	1.20	0.00
C6H12O4N1	161.0699	0.33	0	1.20	0.00
C10H12O1N1	161.0000	0.60	۲ ۲	1.65	0.07
C9H12N3	161.0841	1.20	0	1.10	0.10
C11H16N1	161.0953	2.89	6	1.22	0.00
C9H7O3	161.1204	2.09	5	1.30	0.00
C9H7O3	162.0317	2.52	7	0.67	0.33
C10H15N2	162.0317	0.49	7	0.67	0.33
C5H1005N1	162.1157	0.33	5	1.40	0.00
C8H10O1N3	163.0481	0.33	2	1.80	1.00
C6H14O4N1	163.0746	0.48	6	1.13	0.13
C7H10N5	163.0845	0.52	1	2.17	0.67
C10H14O1N1	163.0858	0.05	6	1.29	0.00
C10H14O1N1	163.0997	0.01	5	1.30	0.10
C10H14O1N1	163.0997	0.74	5	1.30	0.10
C10H1401N1	163.0997	1.09	5	1.30	0.10
C8H5O4	164.0110	1.08	7	0.50	0.50
	164.0110	2.72	7	0.50	0.50
C4H9O5N2	164.0433	0.33	2	2.00	1.25
C9H9O3	164.0473	3.06	6	0.89	0.33
C9H9O3	164.0473	3.36	6	0.89	0.33
C8H9O2N2	164.0586	0.39	6	1.00	0.25
C/H9OIN4	164.0698	0.80	6	1.14	0.14
C8H16O5N1	205.0950	0.81	2	1.88	0.63
C/H9O1N4	164.0698	0.89	6	1.14	0.14
C9H13O1N2	164.0950	0.44	5	1.33	0.11
C10H17N2	164.1313	2.54	4	1.60	0.00
C10H17N2	164.1313	2.63	4	1.60	0.00
C10H17N2	164.1313	2.77	4	1.60	0.00
C10H17N2	164.1313	2.85	4	1.60	0.00
C8H8O3N1	165.0426	1.25	6	0.88	0.38

C8H8O3N1	165.0426	3.20	6	0.88	0.38
C9H12O2N1	165.0790	0.39	5	1.22	0.22
C9H12O2N1	165.0790	0.62	5	1.22	0.22
C10H16O1N1	165.1154	2.64	4	1.50	0.10
C10H16O1N1	165.1154	2.68	4	1.50	0.10
C10H16O1N1	165,1154	2.77	4	1.50	0.10
C12H17N2	188.1313	3.14	6	1.33	0.00
C8H7O4	166.0266	2.57	6	0.75	0.50
C8H5O3	148 0160	2.58	7	0.75	0.38
C9H13N2	148.1000	0.38	5	1.33	0.00
C10H19N2	166 1470	2.70	3	1.55	0.00
C10H19N2	166 1470	2.86	3	1.00	0.00
C10H19N2	166 1470	3.04	3	1.80	0.00
C8H10O3N1	167.0582	0.40	5	1.00	0.00
C8H10O3N1	167.0382	0.70	5	1.15	0.38
C8H10O3N1	167.0382	2 78	5	1.15	0.38
C10H18O3N1	167.0582	0.38	2	1.13	0.38
C10H18O3N1	199.1208	0.38	3	1.70	0.30
C9H14O2N1	199.1208	0.50	3	1.70	0.30
C9H14O2N1	167.0946	2.53	4	1.44	0.22
C9H14O2N1	167.0946	2.33	4	1.44	0.22
C11U5O2	167.0946	2.13	4	1.44	0.22
C11H3O2	168.0211	3.80	10	0.36	0.18
C4H907	168.0270	2.65	1	2.00	1.75
CITH9N2	168.0687	2.22	9	0.73	0.00
CITH9N2	168.0687	2.51	9	0.73	0.00
CITH9N2	168.0687	2.73	9	0.73	0.00
CITH9N2	168.0687	2.90	9	0.73	0.00
C11H9N2	168.0687	3.01	9	0.73	0.00
C9H13O3	168.0786	2.61	4	1.33	0.33
C8H13O2N2	168.0899	0.39	4	1.50	0.25
C8H10O2N1	151.0633	0.52	5	1.13	0.25
C8H13O2N2	168.0899	0.74	4	1.50	0.25
C8H13O2N2	168.0899	0.85	4	1.50	0.25
C7H8O4N1	169.0375	0.34	5	1.00	0.57
C11H8O1N1	169.0528	2.90	9	0.64	0.09
C8H12O3N1	169.0739	0.58	4	1.38	0.38
C8H12O3N1	169.0739	0.75	4	1.38	0.38
C8H11O4	170.0579	0.84	4	1.25	0.50
C8H11O4	170.0579	1.94	4	1.25	0.50
C8H11O4	170.0579	2.38	4	1.25	0.50
C8H11O4	170.0579	2.41	4	1.25	0.50
C11H11N2	170.0844	2.68	8	0.91	0.00
C8H15O2N2	170.1055	0.38	3	1.75	0.25
C8H15O2N2	170.1055	0.43	3	1.75	0.25
C8H15O2N2	170.1055	0.46	3	1.75	0.25
C8H15O2N2	170,1055	2.23	3	1.75	0.25
C11H10O1N1	171.0684	1.79	8	0.82	0.09
C11H10O1N1	171.0684	2.43	8	0.82	0.09
C9H18O4N1	203 1158	0.38	2	1.89	0.44
	203.1130	• • • •	-	1.07	5.11

Cliff902 172.0524 3.25 8 0.73 0.18 C8H1304 172.0736 2.27 3 1.50 0.50 C8H1304 172.0736 2.45 3 1.50 0.50 C8H1304 172.0736 3.05 3 1.50 0.50 C7H1303N2 172.0848 0.33 3 1.71 0.43 C11H13N2 172.1000 2.74 7 1.09 0.00 C1H13N2 172.1000 2.84 7 1.09 0.00 C1H13N2 172.0888 0.41 3 1.57 0.57 C6H1203N3 173.0800 0.33 3 1.83 0.50 C1H1201N1 173.0841 2.67 7 1.00 0.09 C1H1201N1 173.0841 2.88 7 1.00 0.09 C1H1201N1 173.0841 2.96 7 1.00 0.09 C1H1201N1 173.0841 2.97 7 0.00 0.09	C12H14N1	171.1048	3.14	7	1.08	0.00
C8H1304 172.0736 2.27 3 1.50 0.50 C8H1304 172.0736 2.45 3 1.50 0.50 C8H1304 172.0736 3.05 3 1.50 0.50 C8H1304 172.0736 3.05 3 1.50 0.50 C1H1302 172.0848 0.33 3 1.71 0.43 C1H13N2 172.1000 2.67 7 1.09 0.00 C1H13N2 172.1000 2.84 7 1.09 0.00 C7H120N1 173.0880 0.41 3 1.57 0.57 C6H120N1 173.0841 2.67 7 1.00 0.09 C1H120N1 173.0841 2.77 7 1.00 0.09 C1H120N1 173.0841 2.96 7 1.00 0.09 C1H120N1 173.0841 2.96 7 1.00 0.09 C1H120N1 173.0841 2.33 1.67 0.67 C1H120N1	C11H9O2	172.0524	3.25	8	0.73	0.18
C8H1304 172.0736 2.45 3 1.50 0.50 C8H1304 172.0736 2.50 3 1.50 0.50 C8H1304 172.0736 3.05 3 1.50 0.50 C7H1303N2 172.0736 3.05 3 1.71 0.433 C11H13N2 172.1000 2.67 7 1.09 0.00 C11H13N2 172.1000 2.84 7 1.09 0.00 C1H1302 172.0783 0.28 5 0.60 0.80 C7H1204N1 173.0841 2.57 7 1.00 0.09 C1H1201N1 173.0841 2.63 7 1.00 0.09 C1H1201N1 173.0841 2.96 7 1.00 0.09 C1H1201N1 173.0841 2.96 7 1.00 0.09 C1H1201N1 173.0841 2.96 7 1.00 0.09 C1H1201N1 173.0841 3.03 1.67 0.67 C1H11201N1	C8H13O4	172.0736	2.27	3	1.50	0.50
CSH13O4 172.0736 2.50 3 1.50 0.50 CSH13OM2 172.0736 3.05 3 1.50 0.50 C7H13O3N2 172.00848 0.33 3 1.71 0.43 C1HH13N2 172.1000 2.67 7 1.09 0.00 C1HH13N2 172.1000 2.84 7 1.09 0.00 C5H40AHNIS1 172.9783 0.28 5 0.60 0.80 C7H12O4N1 173.0684 0.41 3 1.57 0.57 C6H12O3N3 173.0800 0.33 3 1.83 0.50 C1H12O1N1 173.0841 2.67 7 1.00 0.09 C1H12O1N1 173.0841 2.63 7 1.00 0.09 C1H12O1N1 173.0841 2.88 7 1.00 0.09 C1H12O1N1 173.0841 2.06 7 0.00 0.10 C6H1104N2 174.0641 0.33 3 1.67 0.67 <	C8H13O4	172.0736	2.45	3	1.50	0.50
CSH13O4 172,0736 3.05 3 1.50 0.50 CTH13OSN2 172,0848 0.33 3 1.71 0.43 C11H13N2 172,1000 2.67 7 1.09 0.00 C11H13N2 172,1000 2.74 7 1.09 0.00 C1H12N2 172,1000 2.84 7 1.09 0.00 C1H12ON1 173,0688 0.41 3 1.57 0.57 C6H12O3N3 173,0800 0.33 3 1.83 0.50 C11H12O1N1 173,0841 2.63 7 1.00 0.09 C11H12O1N1 173,0841 2.64 7 1.00 0.09 C11H12O1N1 173,0841 2.96 7 1.00 0.09 C11H12O1N1 173,0841 2.96 7 1.00 0.09 C1H12O1N1 173,0841 2.96 7 1.00 0.09 C1H12O1N1 173,0841 2.96 1.27 0.00 C1H1	C8H13O4	172.0736	2.50	3	1.50	0.50
C7H1303N2 172.0848 0.33 3 1.71 0.43 C1H13N2 172.1000 2.67 7 1.09 0.00 C1H13N2 172.1000 2.74 7 1.09 0.00 C1H13N2 172.1000 2.84 7 1.09 0.00 C5H404N1S1 172.9783 0.28 5 0.60 0.80 C7H1204N1 173.0688 0.41 3 1.57 0.57 C6H1203N3 173.0800 0.33 3 1.83 0.50 C11H1201N1 173.0841 2.63 7 1.00 0.09 C11H1201N1 173.0841 2.96 7 1.00 0.09 C1H1201N1 173.0841 3.03 7 1.00 0.09 C1H1201N1 173.0841 2.96 7 1.00 0.09 C1H1201N1 173.0841 3.03 1.00 0.09 C1H1201N1 173.0841 3.03 1.67 0.67 C1H1201N1	C8H13O4	172.0736	3.05	3	1.50	0.50
C11H13N2 172.1000 2.67 7 1.09 0.00 C11H13N2 172.1000 2.84 7 1.09 0.00 C1H13N2 172.1000 2.84 7 1.09 0.00 C1H13N2 172.1000 2.84 7 1.09 0.00 CSH404N1S1 173.0688 0.41 3 1.57 0.57 C6H12OSN3 173.0800 0.33 3 1.83 0.50 C1H12O1N1 173.0841 2.57 7 1.00 0.09 C1H12O1N1 173.0841 2.86 7 1.00 0.09 C1H12O1N1 173.0841 2.86 7 1.00 0.09 C1H12O1N1 173.0841 2.86 7 1.00 0.09 C1H12O1N1 173.0841 2.87 1.00 0.09 C1H12O1N1 173.0841 3.03 7 1.00 0.09 C1H11SD1 174.1157 2.84 6 1.27 0.00 C1H11SN	C7H13O3N2	172.0848	0.33	3	1.71	0.43
C11H13N2 172.1000 2.74 7 1.09 0.00 C1HH13N2 172.1000 2.84 7 1.09 0.00 C5H404N1S1 172.9783 0.28 5 0.60 0.80 C7H1204N1 173.0688 0.41 3 1.57 0.57 C6H1203N3 173.0800 0.33 3 1.83 0.50 C11H1201N1 173.0841 2.63 7 1.00 0.09 C11H1201N1 173.0841 2.88 7 1.00 0.09 C11H1201N1 173.0841 2.96 7 1.00 0.09 C11H1201N1 173.0841 2.96 7 1.00 0.09 C11H1201N1 173.0841 2.96 7 1.00 0.09 C1H11201N1 173.0841 2.96 7 1.00 0.09 C1H11201N1 173.0841 3.03 1.67 0.67 C11H1201N1 173.0841 0.33 3 1.67 0.67	C11H13N2	172.1000	2.67	7	1.09	0.00
C11H13N2 172.1000 2.84 7 1.09 0.00 C5H404N1S1 172.9783 0.28 5 0.60 0.80 C7H1204N1 173.0688 0.41 3 1.57 0.57 C6H1203N3 173.0800 0.33 3 1.83 0.50 C11H1201N1 173.0841 2.57 7 1.00 0.09 C11H1201N1 173.0841 2.63 7 1.00 0.09 C11H1201N1 173.0841 2.96 7 1.00 0.09 C11H1201N1 173.0841 3.03 7 1.00 0.09 C1H120N1 173.0841 3.03 1.67 0.67 C1H15N2 174.1157 2.84 6 1.27 0.00 C11	C11H13N2	172.1000	2.74	7	1.09	0.00
CSH404NIS1 172.9783 0.28 5 0.60 0.80 C7H1204N1 173.0688 0.41 3 1.57 0.57 C6H1203N3 173.0800 0.33 3 1.83 0.50 C11H1201N1 173.0841 2.63 7 1.00 0.09 C11H1201N1 173.0841 2.63 7 1.00 0.09 C11H1201N1 173.0841 2.96 7 1.00 0.09 C11H1201N1 173.0841 2.96 7 1.00 0.09 C11H1201N1 173.0841 2.96 7 1.00 0.09 C11H1201N1 173.0841 3.03 7 1.00 0.09 C11H1201N1 173.0841 3.03 7 1.00 0.09 C1H1201N1 173.0841 2.30 0.10 C6H1104N2 174.0641 0.33 3 1.67 0.67 C1H15N2 174.1157 2.84 6 1.27 0.00 C1H115N2 174.1157 3.3	C11H13N2	172.1000	2.84	7	1.09	0.00
C7H1204N1 173.0688 0.41 3 1.57 0.57 C6H1203N3 173.0800 0.33 3 1.83 0.50 C11H1201N1 173.0841 2.63 7 1.00 0.09 C11H1201N1 173.0841 2.63 7 1.00 0.09 C11H1201N1 173.0841 2.77 7 1.00 0.09 C11H1201N1 173.0841 2.96 7 1.00 0.09 C11H1201N1 173.0841 3.03 7 1.00 0.09 C1H1201N1 173.0841 3.03 7 1.00 0.09 C1H1201N1 173.0841 3.03 7 1.00 0.09 C1H1201N1 173.0841 3.03 3 1.67 0.67 C11H1201N1 173.0841 2.74 0 2.30 0.00 C1H15N2 174.1157 2.77 6 1.27 0.00 C1H15N2 174.1157 3.32 6 1.27 0.00	C5H4O4N1S1	172.9783	0.28	5	0.60	0.80
C6H1203N3173.0800 0.33 31.83 0.50 C11H1201N1173.08412.5771.000.09C11H1201N1173.08412.6371.000.09C11H1201N1173.08412.7771.000.09C11H1201N1173.08412.8871.000.09C11H1201N1173.08412.9671.000.09C11H1201N1173.08413.0371.000.09C10H2401N1173.08413.0371.000.09C10H1201N1173.08413.0331.670.67C11H1502174.11572.7761.270.00C11H15N2174.11572.8461.270.00C11H15N2174.11573.0261.270.00C11H15N2174.11573.0261.270.00C11H15N2174.11573.0261.270.00C1H15N2174.11573.3260.577C7H1404N1175.04810.3831.500.83C7H1404N1175.04850.4321.860.57C7H1404N1175.08450.4321.860.57C7H1404N1175.08450.4321.860.57C1H1401N1175.08450.4321.860.57C1H1401N1175.08450.4321.860.57C1H1404N1175.08450.43220.00 </td <td>C7H12O4N1</td> <td>173.0688</td> <td>0.41</td> <td>3</td> <td>1.57</td> <td>0.57</td>	C7H12O4N1	173.0688	0.41	3	1.57	0.57
C11H1201N1 173.0841 2.57 7 1.00 0.09 C11H1201N1 173.0841 2.63 7 1.00 0.09 C11H1201N1 173.0841 2.88 7 1.00 0.09 C11H1201N1 173.0841 2.88 7 1.00 0.09 C11H1201N1 173.0841 3.03 7 1.00 0.09 C11H1201N1 173.0841 3.03 7 1.00 0.09 C10H2401N1 173.0841 3.03 7 1.00 0.09 C11H15N2 174.1157 2.74 0 2.30 0.10 C11H15N2 174.1157 2.77 6 1.27 0.00 C11H15N2 174.1157 3.02 6 1.27 0.00 C11H15N2 174.1157 3.02 6 1.27 0.00 C11H15N2 174.1157 3.32 6 6.57 0.00 C11H15N2 174.1157 3.32 1.86 0.57	C6H12O3N3	173.0800	0.33	3	1.83	0.50
C11H1201N1 173.0841 2.63 7 1.00 0.09 C11H1201N1 173.0841 2.77 7 1.00 0.09 C11H1201N1 173.0841 2.88 7 1.00 0.09 C11H1201N1 173.0841 2.96 7 1.00 0.09 C11H1201N1 173.0841 3.03 7 1.00 0.09 C11H1201N1 173.0841 3.03 7 1.00 0.09 C11H1201N1 173.0841 0.33 3 1.67 0.67 C11H15N2 174.1157 2.77 6 1.27 0.00 C11H15N2 174.1157 2.93 6 1.27 0.00 C11H15N2 174.1157 3.02 6 1.27 0.00 C1H15N2 174.1157 3.02 6 1.27 0.00 C5H604N1S1 174.9939 0.37 4 1.00 0.80 C6H100SN1 175.0845 0.33 2 1.86 0.57	C11H12O1N1	173.0841	2.57	7	1.00	0.09
C11H1201N1 173.0841 2.77 7 1.00 0.09 C11H1201N1 173.0841 2.88 7 1.00 0.09 C11H1201N1 173.0841 3.03 7 1.00 0.09 C10H1201N1 173.0841 3.03 7 1.00 0.09 C10H1201N1 173.1780 2.74 0 2.30 0.10 C6H1104N2 174.0641 0.33 3 1.67 0.67 C11H15N2 174.1157 2.84 6 1.27 0.00 C11H15N2 174.1157 3.02 6 1.27 0.00 C5H604N1S1 174.9939 0.37 4 1.00 0.80	C11H12O1N1	173.0841	2.63	7	1.00	0.09
C11H1201N1 173.0841 2.88 7 1.00 0.09 C11H1201N1 173.0841 2.96 7 1.00 0.09 C11H1201N1 173.0841 3.03 7 1.00 0.09 C10H2401N1 173.1780 2.74 0 2.30 0.10 C6H1104N2 174.0641 0.33 3 1.67 0.67 C11H15N2 174.1157 2.84 6 1.27 0.00 C11H15N2 174.1157 2.93 6 1.27 0.00 C11H15N2 174.1157 3.02 6 1.27 0.00 C1H15N2 174.1157 3.02 6 1.27 0.00 C1H15N2 174.1157 3.32 6 1.27 0.00 C5H604N1S1 174.9939 0.37 4 1.00 0.80 C6H100SN1 175.0845 0.33 2 1.86 0.57 C7H1404N1 175.0845 1.26 1.86 0.57 C1H	C11H12O1N1	173.0841	2.77	7	1.00	0.09
C11H1201N1 173.0841 2.96 7 1.00 0.09 C11H1201N1 173.0841 3.03 7 1.00 0.09 C10H2401N1 173.1780 2.74 0 2.30 0.10 C6H1104N2 174.0641 0.33 3 1.67 0.67 C11H15N2 174.1157 2.84 6 1.27 0.00 C11H15N2 174.1157 2.93 6 1.27 0.00 C11H15N2 174.1157 3.02 6 1.27 0.00 C11H15N2 174.1157 3.32 6 1.27 0.00 C1H15N2 174.1157 3.32 6 1.27 0.00 C5H604N1S1 174.9939 0.37 4 1.00 0.80 C6H100SN1 175.0481 0.38 3 1.50 0.83 C7H1404N1 175.0845 0.43 2 1.86 0.57 C1H1401N1 175.0907 1.25 6 1.18 0.09 <	C11H12O1N1	173.0841	2.88	7	1.00	0.09
C11H1201N1 173.0841 3.03 7 1.00 0.09 C10H2401N1 173.1780 2.74 0 2.30 0.10 C6H1104N2 174.0641 0.33 3 1.67 0.67 C11H15N2 174.1157 2.77 6 1.27 0.00 C11H15N2 174.1157 2.84 6 1.27 0.00 C11H15N2 174.1157 3.02 6 1.27 0.00 C11H15N2 174.1157 3.02 6 1.27 0.00 C1H15N2 174.1157 3.32 6 1.27 0.00 C1H15N2 174.1157 3.32 6 1.27 0.00 C5H604N1S1 174.9939 0.37 4 1.00 0.80 C6H1005N1 175.0481 0.38 3 1.50 0.83 C7H1404N1 175.0845 1.26 2 1.86 0.57 C1H1401N1 175.0845 1.26 1.86 0.57 C1H14V	C11H12O1N1	173.0841	2.96	7	1.00	0.09
C10H2401N1173.17802.7402.300.10C6H1104N2174.06410.3331.670.67C11H15N2174.11572.7761.270.00C11H15N2174.11572.9361.270.00C11H15N2174.11572.9361.270.00C11H15N2174.11573.0261.270.00C11H15N2174.11573.3261.270.00C11H15N2174.11573.3261.270.00C5H604N1S1174.99390.3741.000.80C6H1005N1175.04810.3831.500.83C7H1404N1175.08450.4321.860.57C7H1404N1175.08451.2621.860.57C1H140N1175.08451.2621.860.57C1H140N1175.08451.2621.860.57C1H140N1175.08451.2621.860.57C1H140N1175.09971.2561.300.00C10H903176.04733.1570.800.30C10H903176.04733.7270.800.30C10H903176.04733.7270.800.30C10H903176.04733.8770.800.30C10H903176.04733.8061.000.30C10H903176.07970.3222.000.67C9H8	C11H12O1N1	173.0841	3.03	7	1.00	0.09
C6H1104N2 174.0641 0.33 3 1.67 0.67 C11H15N2 174.1157 2.77 6 1.27 0.00 C11H15N2 174.1157 2.84 6 1.27 0.00 C11H15N2 174.1157 2.93 6 1.27 0.00 C11H15N2 174.1157 3.02 6 1.27 0.00 C11H15N2 174.1157 3.32 6 1.27 0.00 C1H15N2 174.1157 3.32 6 1.27 0.00 C5H604N1S1 174.9939 0.37 4 1.00 0.80 C6H1005N1 175.0481 0.33 2 1.86 0.57 C7H1404N1 175.0845 1.26 2 1.86 0.57 C1H140N1 175.0845 1.26 2 1.86 0.57 C1H140N1 175.0845 1.26 1.86 0.57 C1H140N1 175.0997 1.25 6 1.18 0.09 C10H14N3 </td <td>C10H24O1N1</td> <td>173.1780</td> <td>2.74</td> <td>0</td> <td>2.30</td> <td>0.10</td>	C10H24O1N1	173.1780	2.74	0	2.30	0.10
C11H15N2 174.1157 2.77 6 1.27 0.00 C11H15N2 174.1157 2.84 6 1.27 0.00 C11H15N2 174.1157 2.93 6 1.27 0.00 C11H15N2 174.1157 3.02 6 1.27 0.00 C11H15N2 174.1157 3.32 6 1.27 0.00 C1H15N2 174.1157 3.32 6 1.27 0.00 C5H604N1S1 174.9939 0.37 4 1.00 0.80 C6H100SN1 175.0481 0.38 3 1.50 0.83 C7H1404N1 175.0845 0.43 2 1.86 0.57 C7H1404N1 175.0845 1.26 2 1.86 0.57 C11H1401N1 175.0997 1.25 6 1.18 0.09 C10H1403 176.0473 3.15 7 0.80 0.30 C10H903 176.0473 3.72 7 0.80 0.30	C6H11O4N2	174.0641	0.33	3	1.67	0.67
C11H15N2 174.1157 2.84 6 1.27 0.00 C11H15N2 174.1157 2.93 6 1.27 0.00 C11H15N2 174.1157 3.02 6 1.27 0.00 C11H15N2 174.1157 3.02 6 1.27 0.00 C11H15N2 174.1157 3.32 6 1.27 0.00 C5H604N1S1 174.9939 0.37 4 1.00 0.80 C6H100SN1 175.0481 0.38 3 1.50 0.83 C7H1404N1 175.0845 0.43 2 1.86 0.57 C11H1401N1 175.0845 1.26 2 1.86 0.57 C11H1401N1 175.0997 1.25 6 1.18 0.09 C10H14N3 176.0473 3.15 7 0.80 0.30 C10H903 176.0473 3.42 7 0.80 0.30 C10H903 176.0473 3.72 7 0.80 0.30	C11H15N2	174,1157	2.77	6	1.27	0.00
C11H15N2 174.1157 2.93 6 1.27 0.00 C11H15N2 174.1157 3.02 6 1.27 0.00 C11H15N2 174.1157 3.32 6 1.27 0.00 C5H604N1S1 174.9939 0.37 4 1.00 0.80 C6H1005N1 175.0481 0.38 3 1.50 0.83 C7H1404N1 175.0845 0.43 2 1.86 0.57 C7H1404N1 175.0845 1.26 2 1.86 0.57 C7H1404N1 175.0845 1.26 2 1.86 0.57 C11H1401N1 175.0997 1.25 6 1.18 0.09 C10H14N3 175.1109 2.50 6 1.30 0.00 C10H903 176.0473 3.15 7 0.80 0.30 C10H903 176.0473 3.72 7 0.80 0.30 C10H903 176.0473 3.87 7 0.80 0.30	C11H15N2	174.1157	2.84	6	1.27	0.00
C11H15N2 174.1157 3.02 6 1.27 0.00 C11H15N2 174.1157 3.32 6 1.27 0.00 C5H6O4N1S1 174.9939 0.37 4 1.00 0.80 C6H10O5N1 175.0481 0.38 3 1.50 0.83 C7H14O4N1 175.0845 0.33 2 1.86 0.57 C7H14O4N1 175.0845 0.43 2 1.86 0.57 C7H14O4N1 175.0845 1.26 2 1.86 0.57 C11H1401N1 175.0845 1.26 2 1.86 0.57 C11H1401N1 175.0997 1.25 6 1.18 0.09 C10H14N3 175.1109 2.50 6 1.30 0.00 C10H903 176.0473 3.15 7 0.80 0.30 C10H903 176.0473 3.72 7 0.80 0.30 C10H903 176.0473 3.87 7 0.89 0.22 C	C11H15N2	174,1157	2.93	6	1.27	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C11H15N2	174.1157	3.02	6	1.27	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C11H15N2	174.1157	3.32	6	1.27	0.00
C6H1005N1 175.0481 0.38 3 1.50 0.83 C7H1404N1 175.0845 0.33 2 1.86 0.57 C7H1404N1 175.0845 0.43 2 1.86 0.57 C7H1404N1 175.0845 1.26 2 1.86 0.57 C1H1401N1 175.0997 1.25 6 1.18 0.09 C10H14N3 175.1109 2.50 6 1.30 0.00 C10H903 176.0473 3.15 7 0.80 0.30 C10H903 176.0473 3.42 7 0.80 0.30 C10H903 176.0473 3.72 7 0.80 0.30 C10H903 176.0473 3.87 7 0.80 0.30 C10H903 176.0473 3.87 7 0.80 0.30 C10H903 176.0473 3.87 7 0.89 0.22 C6H1304N2 176.0797 0.32 2 2.00 0.67	C5H6O4N1S1	174.9939	0.37	4	1.00	0.80
C7H1404N1175.08450.3321.860.57C7H1404N1175.08451.2621.860.57C7H1404N1175.08451.2621.860.57C11H1401N1175.09971.2561.180.09C10H14N3175.11092.5061.300.00C10H903176.04733.1570.800.30C10H903176.04733.3270.800.30C10H903176.04733.4270.800.30C10H903176.04733.7270.800.30C10H903176.04733.7270.800.30C10H903176.04733.8770.800.30C10H903176.04733.8770.800.30C10H903176.04733.8770.800.30C10H903176.04733.8770.800.30C10H903176.04733.8770.800.30C10H903176.04733.8770.800.30C10H903176.04733.8770.800.30C10H903176.04733.8770.800.30C10H903176.04733.8770.800.30C10H903176.04733.8770.800.30C992N2176.05860.7970.890.22C6H1304N2176.07970.3222.000.67C9H803N1	C6H10O5N1	175.0481	0.38	3	1.50	0.83
C7H1404N1 175.0845 0.43 2 1.86 0.57 C7H1404N1 175.0845 1.26 2 1.86 0.57 C11H1401N1 175.0997 1.25 6 1.18 0.09 C10H14N3 175.1109 2.50 6 1.30 0.00 C10H903 176.0473 3.15 7 0.80 0.30 C10H903 176.0473 3.42 7 0.80 0.30 C10H903 176.0473 3.42 7 0.80 0.30 C10H903 176.0473 3.72 7 0.80 0.30 C10H903 176.0473 3.72 7 0.80 0.30 C10H903 176.0473 3.87 7 0.80 0.30 C10H903 176.0473 3.87 7 0.89 0.22 C6H1304N2 176.0797 0.32 2 2.00 0.67 C9H803N1 177.0426 2.72 7 0.67 0.44 <	C7H14O4N1	175.0845	0.33	2	1.86	0.57
C7H14O4N1 175.0845 1.26 2 1.86 0.57 C11H14O1N1 175.0997 1.25 6 1.18 0.09 C10H14N3 175.1109 2.50 6 1.30 0.00 C10H9O3 176.0473 3.15 7 0.80 0.30 C10H9O3 176.0473 3.32 7 0.80 0.30 C10H9O3 176.0473 3.42 7 0.80 0.30 C10H9O3 176.0473 3.72 7 0.80 0.30 C10H9O3 176.0473 3.72 7 0.80 0.30 C10H9O3 176.0473 3.87 7 0.80 0.30 C10H9O3 176.0473 3.87 7 0.89 0.22 C6H13O4N2 176.0797 0.32 2 2.00 0.67 C9H8O3N1 177.0426 2.72 7 0.78 0.33 C9H12O1N3 178.0630 3.80 6 1.00 0.30 <	C7H14O4N1	175.0845	0.43	2	1.86	0.57
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C7H14O4N1	175.0845	1.26	2	1.86	0.57
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C11H14O1N1	175.0997	1.25	6	1.18	0.09
C10H9O3 176.0473 3.15 7 0.80 0.30 C10H9O3 176.0473 3.32 7 0.80 0.30 C10H9O3 176.0473 3.42 7 0.80 0.30 C10H9O3 176.0473 3.42 7 0.80 0.30 C10H9O3 176.0473 3.72 7 0.80 0.30 C10H9O3 176.0473 3.72 7 0.80 0.30 C10H9O3 176.0473 3.87 7 0.80 0.30 C10H9O3 176.0473 3.87 7 0.80 0.30 C9H9O2N2 176.0586 0.79 7 0.89 0.22 C6H13O4N2 176.0797 0.32 2 2.00 0.67 C9H8O3N1 177.0902 0.61 6 1.22 0.11 C9H7O4 178.0266 2.22 7 0.67 0.44 C10H11O3 178.0630 3.80 6 1.00 0.30 C10H	C10H14N3	175.1109	2.50	6	1.30	0.00
C10H9O3 176.0473 3.32 7 0.80 0.30 C10H9O3 176.0473 3.42 7 0.80 0.30 C10H9O3 176.0473 3.72 7 0.80 0.30 C10H9O3 176.0473 3.72 7 0.80 0.30 C10H9O3 176.0473 3.87 7 0.80 0.30 C10H9O3 176.0473 3.87 7 0.80 0.30 C10H9O3 176.0473 3.87 7 0.80 0.30 C9H9O2N2 176.0586 0.79 7 0.89 0.22 C6H13O4N2 176.0797 0.32 2 2.00 0.67 C9H8O3N1 177.0902 0.61 6 1.22 0.11 C9H7O4 178.0266 2.22 7 0.67 0.44 C10H11O3 178.0630 3.80 6 1.00 0.30 C10H1501N2 178.1470 3.08 4 1.64 0.00 C	C10H9O3	176.0473	3.15	7	0.80	0.30
C10H9O3 176.0473 3.42 7 0.80 0.30 C10H9O3 176.0473 3.72 7 0.80 0.30 C10H9O3 176.0473 3.72 7 0.80 0.30 C10H9O3 176.0473 3.87 7 0.80 0.30 C10H9O3 176.0473 3.87 7 0.80 0.30 C9H9O2N2 176.0586 0.79 7 0.89 0.22 C6H13O4N2 176.0797 0.32 2 2.00 0.67 C9H8O3N1 177.0902 0.61 6 1.22 0.11 C9H7O4 178.0266 2.22 7 0.67 0.44 C10H11O3 178.0630 3.80 6 1.00 0.30 C10H15O1N2 178.1106 0.51 5 1.40 0.10 C11H19N2 178.1470 3.08 4 1.64 0.00 C13H10N1 179.0735 2.89 10 0.69 0.00 <t< td=""><td>C10H9O3</td><td>176.0473</td><td>3.32</td><td>7</td><td>0.80</td><td>0.30</td></t<>	C10H9O3	176.0473	3.32	7	0.80	0.30
C10H9O3 176.0473 3.72 7 0.80 0.30 C10H9O3 176.0473 3.87 7 0.80 0.30 C9H9O2N2 176.0586 0.79 7 0.89 0.22 C6H13O4N2 176.0797 0.32 2 2.00 0.67 C9H8O3N1 177.0426 2.72 7 0.78 0.33 C9H12O1N3 177.0902 0.61 6 1.22 0.11 C9H7O4 178.0266 2.22 7 0.67 0.44 C10H11O3 178.0630 3.80 6 1.00 0.30 C10H15O1N2 178.1106 0.51 5 1.40 0.10 C11H19N2 178.1470 3.08 4 1.64 0.00 C13H10N1 179.0735 2.89 10 0.69 0.00 C13H10N1 179.0735 3.32 10 0.69 0.00 C13H10N1 179.0735 3.32 10 0.69 0.00	C10H9O3	176.0473	3.42	7	0.80	0.30
C10H9O3176.04733.8770.800.30C9H9O2N2176.05860.7970.890.22C6H13O4N2176.07970.3222.000.67C9H8O3N1177.04262.7270.780.33C9H12O1N3177.09020.6161.220.11C9H7O4178.02662.2270.670.44C10H11O3178.06303.8061.000.30C10H15O1N2178.11060.5151.400.10C11H19N2178.14703.0841.640.00C13H10N1179.07352.89100.690.00C13H10N1179.07353.32100.690.00C13H10N1179.07354.02100.690.00	C10H9O3	176.0473	3.72	7	0.80	0.30
C9H902N2 176.0586 0.79 7 0.89 0.22 C6H1304N2 176.0797 0.32 2 2.00 0.67 C9H803N1 177.0426 2.72 7 0.78 0.33 C9H1201N3 177.0902 0.61 6 1.22 0.11 C9H704 178.0266 2.22 7 0.67 0.44 C10H1103 178.0630 3.80 6 1.00 0.30 C10H1501N2 178.1106 0.51 5 1.40 0.10 C11H19N2 178.1470 3.08 4 1.64 0.00 C13H10N1 179.0735 2.89 10 0.69 0.00 C13H10N1 179.0735 3.32 10 0.69 0.00 C13H10N1 179.0735 3.32 10 0.69 0.00	C10H9O3	176.0473	3.87	7	0.80	0.30
C6H13O4N2 176.0797 0.32 2 2.00 0.67 C9H8O3N1 177.0426 2.72 7 0.78 0.33 C9H12O1N3 177.0902 0.61 6 1.22 0.11 C9H7O4 178.0266 2.22 7 0.67 0.44 C10H11O3 178.0630 3.80 6 1.00 0.30 C10H1501N2 178.1106 0.51 5 1.40 0.10 C11H19N2 178.1470 3.08 4 1.64 0.00 C13H10N1 179.0735 2.89 10 0.69 0.00 C13H10N1 179.0735 3.32 10 0.69 0.00 C13H10N1 179.0735 3.32 10 0.69 0.00	C9H9O2N2	176.0586	0.79	7	0.89	0.22
C9H803N1 177.0426 2.72 7 0.78 0.33 C9H1201N3 177.0902 0.61 6 1.22 0.11 C9H704 178.0266 2.22 7 0.67 0.44 C10H1103 178.0630 3.80 6 1.00 0.30 C10H1501N2 178.1106 0.51 5 1.40 0.10 C11H19N2 178.1470 3.08 4 1.64 0.00 C13H10N1 179.0735 2.89 10 0.69 0.00 C13H10N1 179.0735 3.32 10 0.69 0.00 C13H10N1 179.0735 3.32 10 0.69 0.00 C13H10N1 179.0735 4.02 10 0.69 0.00	C6H13O4N2	176.0797	0.32	2	2.00	0.67
C9H12O1N3 177.0902 0.61 6 1.22 0.11 C9H7O4 178.0266 2.22 7 0.67 0.44 C10H11O3 178.0630 3.80 6 1.00 0.30 C10H15O1N2 178.1106 0.51 5 1.40 0.10 C11H19N2 178.1470 3.08 4 1.64 0.00 C13H10N1 179.0735 2.89 10 0.69 0.00 C13H10N1 179.0735 3.32 10 0.69 0.00 C13H10N1 179.0735 4.02 10 0.69 0.00	C9H8O3N1	177.0426	2.72	7	0.78	0.33
C9H7O4 178.0266 2.22 7 0.67 0.44 C10H11O3 178.0630 3.80 6 1.00 0.30 C10H15O1N2 178.1106 0.51 5 1.40 0.10 C11H19N2 178.1470 3.08 4 1.64 0.00 C13H10N1 179.0735 2.89 10 0.69 0.00 C13H10N1 179.0735 3.32 10 0.69 0.00 C13H10N1 179.0735 3.32 10 0.69 0.00 C13H10N1 179.0735 4.02 10 0.69 0.00	C9H12O1N3	177.0902	0.61	6	1.22	0.11
C10H1103 178.0630 3.80 6 1.00 0.30 C10H1501N2 178.1106 0.51 5 1.40 0.10 C11H19N2 178.1470 3.08 4 1.64 0.00 C13H10N1 179.0735 2.89 10 0.69 0.00 C13H13N2 196.1000 3.17 9 0.92 0.00 C13H10N1 179.0735 3.32 10 0.69 0.00 C13H10N1 179.0735 4.02 10 0.69 0.00	C9H7O4	178.0266	2.22	7	0.67	0.44
C10H15O1N2 178.1106 0.51 5 1.40 0.10 C11H19N2 178.1470 3.08 4 1.64 0.00 C13H10N1 179.0735 2.89 10 0.69 0.00 C13H13N2 196.1000 3.17 9 0.92 0.00 C13H10N1 179.0735 3.32 10 0.69 0.00 C13H10N1 179.0735 4.02 10 0.69 0.00	C10H11O3	178.0630	3.80	6	1.00	0.30
C11H19N2 178.1470 3.08 4 1.64 0.00 C13H10N1 179.0735 2.89 10 0.69 0.00 C13H13N2 196.1000 3.17 9 0.92 0.00 C13H10N1 179.0735 3.32 10 0.69 0.00 C13H10N1 179.0735 3.22 10 0.69 0.00 C13H10N1 179.0735 4.02 10 0.69 0.00	C10H15O1N2	178,1106	0.51	5	1.40	0.10
C13H10N1 179.0735 2.89 10 0.69 0.00 C13H13N2 196.1000 3.17 9 0.92 0.00 C13H10N1 179.0735 3.32 10 0.69 0.00 C13H10N1 179.0735 3.02 10 0.69 0.00 C13H10N1 179.0735 4.02 10 0.69 0.00	C11H19N2	178.1470	3.08	4	1.64	0.00
C13H13N2 196.1000 3.17 9 0.92 0.00 C13H10N1 179.0735 3.32 10 0.69 0.00 C13H10N1 179.0735 4.02 10 0.69 0.00	C13H10N1	179.0735	2.89	10	0.69	0.00
C13H10N1 179.0735 3.32 10 0.69 0.00 C13H10N1 179.0735 4.02 10 0.69 0.00	C13H13N2	196,1000	3.17	9	0.92	0.00
C13H10N1 179.0735 4.02 10 0.69 0.00	C13H10N1	179.0735	3.32	10	0.69	0.00
10 0.07 0.00	C13H10N1	179.0735	4.02	10	0.69	0.00

C13H10N1	179.0735	3.42	10	0.69	0.00
C10H14O2N1	179.0946	0.39	5	1.30	0.20
C10H14O2N1	179.0946	0.43	5	1.30	0.20
C10H14O2N1	179.0946	0.48	5	1.30	0.20
C10H14O2N1	179.0946	0.57	5	1.30	0.20
C10H14O2N1	179.0946	0.70	5	1.30	0.20
C10H14O2N1	179.0946	0.88	5	1.30	0.20
C10H14O2N1	179.0946	0.95	5	1.30	0.20
C10H14O2N1	179.0946	1.05	5	1.30	0.20
C10H14O2N1	179.0946	1.97	5	1.30	0.20
C9H13O2N2	180.0899	2.76	5	1.33	0.22
C11H21N2	180.1626	3.31	3	1.82	0.00
C11H21N2	180.1626	3.37	3	1.82	0.00
C5H9O1N3Na1S1	159.0466	5.09	3	1.80	0.20
C8H8O4N1	181.0375	0.35	6	0.88	0.50
C5H12O6N1	181 0586	0.37	1	2.20	1 20
C9H12O3N1	181.0739	0.47	5	1.22	0.33
C9H8O1N1	145 0528	0.87	7	0.78	0.11
C9H12O3N1	181 0739	2.55	, 5	1.22	0.33
C9H12O3N1	181.0739	2.87	5	1.22	0.33
C6H16O5N1	181.0950	0.34	0	2.50	0.83
C10H16O2N1	181 1103	0.48	4	1.50	0.00
C9H16O1N3	181 1215	0.39	4	1.50	0.11
C12H24N1	181 1830	3.28	2	1.07	0.00
C12H11N2	182 0844	2.81	9	0.83	0.00
C12H11N2	182.0844	2.93	9	0.83	0.00
C12H11N2	182.0844	2.97	9	0.83	0.00
C10H15O3	182.0943	2.46	4	1.40	0.00
C10H15O3	182.0943	2.58		1.40	0.30
C10H15O3	182.0943	2.70	4	1.40	0.30
C10H15O3	182.0943	3.08	4	1.40	0.30
C10H15O3	182.0943	3.16		1.40	0.30
C10H15O3	182.0943	4.34	4	1.40	0.30
C9H15O2N2	182.0045	0.38	4	1.40	0.30
C9H15O2N2	182.1055	0.89	4	1.50	0.22
C11H23N2	182.1055	3.20	+ 2	2.00	0.22
C11H23N2	182.1783	3.25	2	2.00	0.00
C11H23N2	182.1783	3.35	2	2.00	0.00
C8H10O4N1	182.1785	0.40	2	2.00	0.00
C5H14O4N1S1	183.0332	0.33	5	1.15	0.30
C7H10O3N3	183.0303	0.38	5	2.00	0.80
C13H14N1	183.0044	3.14	2 0	1.29	0.43
C12H9O2	183.1048	3 47	8	1.00	0.00
C9H13O4	184.0524	2.71	9	0.07	0.17
C9H13O4	184.0736	2.71	4	1.33	0.44
C8H13O3N2	184.0736	0.48	4	1.55	0.44
C12H13N2	184.0848	3 14	4	1.50	0.38
C10H17O3	184.1000	3.14	8	1.00	0.00
C10H17O3	184.1099	3.21	3	1.60	0.30
	184.1099	0.36	3	1.60	0.30
C9H1/U2N2	184.1212	0.30	3	1.78	0.22

C12H12O1N1	185.0841	2.49	8	0.92	0.08
C12H12O1N1	185.0841	2.65	8	0.92	0.08
C12H12O1N1	185.0841	2.78	8	0.92	0.08
C12H12O1N1	185.0841	2.91	8	0.92	0.08
C9H16O3N1	185.1052	0.40	3	1.67	0.33
C13H16N1	185.1204	3.22	7	1.15	0.00
C13H16N1	185.1204	3.24	7	1.15	0.00
C12H28N1	185.2143	4.12	0	2.25	0.00
C8H11O5	186.0528	0.64	4	1.25	0.63
C7H9O2N6	208.0709	1.58	7	1.14	0.29
C9H15O4	186.0892	2.84	3	1.56	0.44
C9H15O4	186.0892	2.94	3	1.56	0.44
C9H15O4	186.0892	2.97	3	1.56	0.44
C12H15N2	186,1157	2.93	7	1.17	0.00
C12H15N2	186.1157	3.05	7	1.17	0.00
C12H15N2	186,1157	3.15	7	1.17	0.00
C8H19O1N4	186.1481	1.64	2	2.25	0.13
C12H14O1N1	187 0997	2.83	7	1.08	0.08
C8H13O5	188.0685	0.84	3	1.50	0.63
C6H7O3N6	210.0501	1.95	7	1.00	0.50
C9H17O4	188 1049	3.72	2	1.00	0.30
C8H16O4N1	189 1001	0.47	2	1.70	0.50
C8H16O4N1	189,1001	2.31	2	1.88	0.50
C10H11O2N2	100.0742	0.54	2	1.00	0.20
C10H11O2N2	190.0742	2.45	7	1.00	0.20
C8H11O5N2	214.0590	0.37	5	1.00	0.63
C5H10O5N3	191.0542	0.28	3	1.25	1.00
C10H10O3N1	191.0542	3.16	7	0.00	0.30
C9H10O2N3	191.0582	0.37	7	1.00	0.30
C7H14O5N1	191.0095	0.33	2	1.00	0.22
C9H5O5	191.0794	1.95	2	0.44	0.71
C6H8O7Na1	192.0035	0.38	3	1.33	1.17
C10H9O4	192.0270	2.94	3	0.80	0.40
C10H9O4	192.0423	3.10	7	0.80	0.40
C10H9O4	192.0423	3.17	7	0.80	0.40
C7H9O1N6	192.0423	2.73	7	1.14	0.40
C9H8O4N1	192.0700	2.37	7	0.78	0.14
C10H12O3N1	193.0373	0.38	6	0.78	0.44
C14H12N1	193.0739	3.26	0	1.10	0.30
C12H20O1N1	193.0891	2.68	10	0.79	0.00
C9H7O5	193.1407	1.32	4	1.58	0.08
C13H11N2	194.0215	2.99	/	0.07	0.56
C11H15O3	194.0844	3.22	10	0.77	0.00
C10H15O2N2	194.0943	1.57	5 7	1.27	0.27
C10H15O2N2	194.1055	2.04	5	1.40	0.20
C12H23N2	194.1055	6.84	5	1.40	0.20
C12H123IN2	194.1783	0.04 1 07	3	1.83	0.00
C12H10O1N1	194.1783	4.27 6.02	3	1.83	0.00
C10H14O2N1	195.0684	0.93	10	0.69	0.08
C10H14O3N1	195.0895	0.40	5	1.30	0.30
C10H14O3N1	195.0895	0.30	5	1.30	0.30

C10H14O3N1	195.0895	1.07	5	1.30	0.30
C10H14O3N1	195.0895	1.17	5	1.30	0.30
C13H26N1	195.1987	3.34	2	1.92	0.00
C10H13O4	196.0736	2.80	5	1.20	0.40
C9H13O3N2	196.0848	0.43	5	1.33	0.33
C13H13N2	196.1000	3.05	9	0.92	0.00
C13H13N2	196.1000	3.20	9	0.92	0.00
C11H17O3	196.1099	3.39	4	1.45	0.27
C10H17O2N2	196.1212	2.24	4	1.60	0.20
C10H17O2N2	196.1212	2.58	4	1.60	0.20
C12H24O1N1	197.1780	2.59	2	1.92	0.08
C12H7O3	198.0317	3.87	10	0.50	0.25
C10H15O4	198.0892	2.90	4	1.40	0.40
C10H15O4	198.0892	2.94	4	1.40	0.40
C10H15O4	198.0892	3.14	4	1.40	0.40
C9H15O3N2	198.1004	0.46	4	1.56	0.33
C13H15N2	198.1157	2.98	8	1.08	0.00
C8H14O3N3	199.0957	0.33	4	1.63	0.38
C13H14O1N1	199.0997	2.72	8	1.00	0.08
C13H14O1N1	199.0997	2.90	8	1.00	0.08
C10H18O3N1	199.1208	0.41	3	1.70	0.30
C12H9O3	200.0473	4.41	9	0.67	0.25
C8H13O4N2	200.0797	0.33	4	1.50	0.29
C10H20O4N1	217 1314	2.37	2	1.90	0.40
C10H17O4	200 1049	2.56	3	1.50	0.40
C10H17O4	200.1049	3.41	3	1.60	0.40
C13H17N2	200.1042	3.16	7	1.00	0.40
C8H12O5N1	200.1515	0.36	, 4	1.23	0.63
C12H12O2N1	201.0037	1.01	8	0.92	0.03
C12H12O2N1	201.0790	2.45	8	0.92	0.17
C10H20O3N1	201.0750	0.36	2	1.90	0.17
C12H11O3	201.1505	3.10	8	0.83	0.25
C12H11O3	202.0630	3.56	8	0.83	0.25
C11H11O2N2	202.0030	2.65	8	0.05	0.18
C8H15O4N2	202.0742	0.33	3	1.75	0.10
C13H19N2	202.0754	3.10	6	1.75	0.00
C15H10N1	202.1470	3.30	12	0.60	0.00
C15H10N1	203.0735	7.13	12	0.00	0.00
C15H10N1	203.0735	7.21	12	0.00	0.00
C15H10N1	203.0735	7.61	12	0.00	0.00
C8H14O5N1	203.0755	0.60	12	1.63	0.00
C9H18O4N1	203.0794	2.86	2	1.05	0.03
C13H18O1N1	203.1136	2.77	6	1.09	0.44
C8H12O6Na1	203.1310	2.34	2	1.51	0.08
C8H9O1N6	204.0034	2.54	3 0	1.50	0.73
C9H17O5	204.0760	2.62	0 2	1.00	0.13
C12H17O1N2	204.0998	0.62	2	1.78	0.50
C15H12N1	204.1263	2.78	0	1.33	0.08
C7H7O2N6	205.0891	1 97	11	0.73	0.00
C11H1104	206.0552	3.03	8	0.86	0.29
01111104	206.0579	5.05	1	0.91	0.36

C11H11O4	206.0579	3.40	7	0.91	0.36
C12H19O1N2	206.1419	2.53	5	1.50	0.08
C10H22O4Na1	206.1518	3.61	0	2.20	0.40
C11H14O3N1	207.0895	0.54	6	1.18	0.27
C11H14O3N1	207.0895	0.99	6	1.18	0.27
C12H18O2N1	207.1259	2.43	5	1.42	0.17
C12H18O2N1	207.1259	2.46	5	1.42	0.17
C12H18O2N1	207.1259	2.56	5	1.42	0.17
C12H18O2N1	207.1259	2.61	5	1.42	0.17
C12H18O2N1	207.1259	2.74	5	1.42	0.17
C11H18O1N3	207.1372	2.40	5	1.55	0.09
C9H14O4Na1	186.0892	2.95	3	1.56	0.44
C14H13N2	208.1000	3.14	10	0.86	0.00
C9H20O5Na1	208 1311	2.47	0	2.22	0.56
C10H12O4N1	209.0688	0.39	6	1.10	0.40
C14H12O1N1	209.0000	7.60	10	0.79	0.07
C7H16O6N1	209.0041	0.38	1	2 14	0.86
C9H7O6	210.0164	1.06	7	0.67	0.67
C6H7O3N6	210.0104	1.32	7	1.00	0.50
C7H11O2N6	210.0301	2.63	6	1.00	0.30
C14H15N2	210.0005	3.40	9	1.45	0.29
C14H14N2Na1	210.1157	7.23	0	1.00	0.00
C11H19O2N2	210.1157	2.63	9 1	1.00	0.00
C11H19O2N2	210.1308	2.93	4	1.04	0.18
C11H19O2N2	210.1308	2.97	4	1.04	0.18
C6H14O1N1S3	210.1308	0.77	4	1.04	0.18
C6H14O7N1	211.0159	0.36	1	2.17	0.17
C13H14N3	211.0092	3.03	1	2.17	1.17
C5H5O4N6	211.1109	0.49	9	1.00	0.00
C13H13O1N2	212.0294	2 45	/	0.80	0.80
C11H17O4	212.0950	2.45	9	0.92	0.08
C11H17O4	212.1049	3.00	4	1.45	0.36
C10H17O3N2	212.1049	3.11	4	1.45	0.36
C14H16O1N1	212.1161	2.75	4	1.60	0.30
C14H16O1N1	213.1154	2.75	8	1.07	0.07
C9U1105N2	213.1154	0.27	8	1.07	0.07
C10H15O5	214.0590	0.57	5	1.25	0.63
C10H15O5	214.0841	2.07	4	1.40	0.50
C10H1505	214.0841	2.81	4	1.40	0.50
C13H14O2N1	215.0946	2.43	8	1.00	0.15
C13H14O2N1	215.0946	2.61	8	1.00	0.15
C13H14O2N1	215.0946	2.96	8	1.00	0.15
C8H12O6N1	217.0586	0.38	4	1.38	0.75
CI2HI2O3NI	217.0739	0.70	8	0.92	0.25
C9H16O5N1	217.0950	0.38	3	1.67	0.56
C/H1106N2	218.0539	0.35	4	1.43	0.86
C12H11O4	218.0579	3.15	8	0.83	0.33
C8H15O5N2	218.0903	0.33	3	1.75	0.63
C8H9O2N6	220.0709	2.73	8	1.00	0.25
C8H9O2N6	220.0709	2.77	8	1.00	0.25
C12H17O2N2	220.1212	0.33	6	1.33	0.17

C8H16O6N1	221.0899	0.47	2	1.88	0.75
C8H16O6N1	221.0899	0.76	2	1.88	0.75
C13H20O2N1	221.1416	2.75	5	1.46	0.15
C13H20O2N1	221.1416	2.86	5	1.46	0.15
C13H20O2N1	221.1416	2.88	5	1.46	0.15
C7H7O3N6	222.0501	1.47	8	0.86	0.43
C10H16O4Na1	200.1049	2.91	3	1.60	0.40
C12H15O4	222.0892	7.48	6	1.17	0.33
C7H14O7N1	223.0692	0.38	2	1.86	1.00
C10H14O3N3	223 0957	0.38	-	1 30	0.30
C8H18O6N1	223.1056	0.39	1	2.13	0.30
C14H9O3	223.1033	7.31	11	0.57	0.73
C9H14O5Na1	202.0841	2.64	3	1.56	0.56
C9H14O5Na1	202.0841	2.69	3	1.56	0.56
C9H11O5N2	202.0041	0.38	6	1.50	0.56
C12H23O2N2	226.0590	1.50	3	1.83	0.17
C12H23O2N2	226.1681	2.34	3	1.83	0.17
C7H3O1N5Na1S1	205.0058	0.77	9	0.43	0.17
C14H14O2N1	205.0058	2.70	9	0.43	0.14
C15H18O1N1	227.0340	3.09	8	1 13	0.07
C11H17O5	227.1310	3.03	4	1.15	0.45
C10H17O4N2	228.0778	0.38	4	1.45	0.45
C10H16O5N1	228.1110	0.38	4	1.00	0.40
C14H16O2N1	229.0930	2.83	+ Q	1.50	0.50
C6H9O3N2S3	229.1103	0.30	0	1.07	0.14
C17H11O1	231.0077	8.33	13	0.50	0.06
C17H1101	230.0732	8.44	13	0.59	0.00
C6H11O4N6	230.0752	0.31	5	1.67	0.00
C9H15O5N2	230.0704	0.33	3	1.07	0.07
C14H19O1N2	230.0903	2.98	4	1.30	0.30
C13H14O3N1	230.1419	2.69	/ 0	1.29	0.07
C11H22O4N1	231.0893	2.78	0 2	1.00	0.23
C15H22O1N1	231.14/1	3.14	2	1.91	0.30
C9H6O6Na1	251.1025	1 95	0	1.40	0.07
C16H9O2	210.0164	7.64	/	0.67	0.67
C14H21O1N2	232.0524	0.33	15	0.50	0.13
C4H5O5N1Na1S2	232.1576	0.35	6	1.43	0.07
C14H20O2N1	210.9609	2.90	3	1.25	1.25
C13H19O2N2	233.1416	0.32	6	1.36	0.14
C16H27O3	234.1368	8.06	6	1.38	0.15
C6H6O3N183	266.1882	0.00	4	1.63	0.19
C7H7O5N3No1	234.9432	0.57	5	0.83	0.50
C8H14O7N1	213.0386	0.00	6	1.00	0.71
C1/H22O2N1	235.0692	2.94	3	1.63	0.88
C14H22O2N1	235.1572	2.04	5	1.50	0.14
C11U004	235.1572	5.00 2.41	5	1.50	0.14
C7H0O2N2Na1S1	236.0321	2.41	8	0.73	0.55
	215.0365	0.00	5	1.29	0.43
C101004N-1	237.0637	2 20	7	1.00	0.45
CPUL1O2NC	216.0423	5.89 2.65	9	0.67	0.33
C8H11U3N6	238.0814	2.65	7	1.25	0.38

C10H16O5Na1 216.0998 2.93 3 1.60	0.50
C11H15O4N2 238.0954 0.38 6 1.27	0.36
C13H19N2 202.1470 3.11 6 1.38	0.00
C7H9O4N6 240.0607 2.69 7 1.14	0.57
C12H21O3N2 240.1474 2.68 4 1.67	0.25
C8H12O7Na1 220.0583 0.38 3 1.50	0.88
C14H11O4 242.0579 5.09 10 0.71	0.29
C12H19O5 242.1154 2.91 4 1.50	0.42
C13H23O4 242.1518 7.49 3 1.69	0.31
C10H14O6N1 243.0743 0.38 5 1.30	0.60
C14H17O2N2 244.1212 3.14 8 1.14	0.14
C10H16O6N1 245.0899 2.69 4 1.50	0.60
C9H14O7N1 247.0692 0.38 4 1.44	0.78
C12H16O6N1 269.0899 0.38 6 1.25	0.50
C15H21O3 248.1412 7.38 6 1.33	0.20
C14H21O2N2 248.1525 0.32 6 1.43	0.14
C16H11O3 250.0630 7.63 12 0.63	0.19
C8H15O5N2S1 250.0623 7.64 3 1.75	0.63
C8H15O5N2S1 250.0623 7.64 3 1.75	0.63
C16H11O3 250.0630 7.65 12 0.63	0.19
C11H16O5Na1 228.0998 2.88 4 1.45	0.45
C12H20O4Na1 228.1362 2.81 3 1.67	0.33
C13H19O3N2 250.1317 0.32 6 1.38	0.23
C8H14O8N1 251.0641 0.38 3 1.63	1.00
C11H15O5N2 254.0903 0.38 6 1.27	0.45
C13H23O3N2 254.1630 2.76 4 1.69	0.23
C16H22N3 255.1735 7.23 8 1.31	0.00
C11H18O6N1 259.1056 0.39 4 1.55	0.55
C12H14O5Na1 238.0841 3.42 6 1.17	0.42
C9H14O8N1 263.0641 0.38 4 1.44	0.89
C14H21O3N2 264.1474 0.32 6 1.43	0.21
C9H16O8N1 265.0798 0.38 3 1.67	0.89
C12H15O5N2 266.0903 0.38 7 1.17	0.42
C16H29O3 268.2038 7.83 3 1.75	0.19
C16H29O3 268.2038 8.49 3 1.75	0.19
C5H4O4N1S4 268.8945 0.29 5 0.60	0.80
C11H13O4N2 236.0797 0.38 7 1.09	0.36
C18H11O3 274.0630 7.95 14 0.56	0.17
C10H16O8N1 277.0798 0.38 4 1.50	0.80
C8H15O7N4 278.0862 7.71 4 1.75	0.88
C14H19O4N2 278.1267 0.32 7 1.29	0.29
C12H23O6 262.1416 3.45 2 1.83	0.50
C6H4O6N1S3 280.9122 0.29 6 0.50	1.00
C14H23O4N2 282.1580 2.87 5 1.57	0.29
C14H21O6 284.1260 3.07 5 1.43	0.43
C16H29O4 284.1988 7.91 3 1.75	0.25
C10H18O8Na1 266.1002 2.92 2 1.80	0.80
C12H26O6Na1 266.1729 2.76 0 2.17	0.50
C15H19O4N2 290.1267 0.32 8 1.20	0.27

C5H7O10N1Na1S1	272.9791	0.28	3	1.40	2.00
C15H22O3N1S1	295.1242	2.52	6	1.40	0.20
C6H6O7N1S3	298.9228	0.29	5	0.83	1.17
C12H22O7Na1	278.1366	2.89	2	1.83	0.58
C4H7O12N4	301.9982	2.63	4	1.50	3.00
C14H26O6N1	303.1682	7.75	3	1.79	0.43
C10H21O8N1Na1	283.1267	3.12	1	2.10	0.80
C6H6O4N5S3	306.9504	0.28	7	0.83	0.67
C7H18O7N7	311.1189	2.95	3	2.43	1.00
C16H23O5N2	322.1529	0.38	7	1.38	0.31
C16H23O5N2	322.1529	0.47	7	1.38	0.31
C16H23O5N2	322.1529	0.48	7	1.38	0.31
C8H15O10N4	326.0710	8.50	4	1.75	1.25
C13H27O2N6S1	330.1838	7.61	4	2.00	0.15
C18H34O5N1	343.2359	3.24	3	1.83	0.28
C20H44O5N1	377.3141	8.42	0	2.15	0.25
C23H26O7Na1	414.1679	8.30	11	1.13	0.30
C24H52O6N1	449.3716	8.68	0	2.13	0.25

C. Supplementary material to chapter 4

"Molecular characterization and source prediction of atmospheric particulate organosulfates using ultrahigh resolution mass spectrometry

Molecular Weight (MW)	Formula	precursor	Ref.
139.9779437	C2H4O5S	isoprene	Surratt et al., 2007
153.9935937	C3H6O5S	isoprene	Surratt et al., 2007
155.9728583	C2H4O6S	isoprene	Surratt et al., 2007
169.9885083	C3H6O6S	isoprene	Surratt et al., 2007
199.9990729	C4H8O7S	isoprene	Surratt et al., 2007
211.9990729	C5H8O7S	isoprene	Surratt et al., 2007
214.0147229	C5H10O7S	isoprene	Surratt et al., 2007
216.0303729	C5H12O7S	isoprene	synthesized
302.0307667	C8H14O10S	isoprene	Surratt et al., 2007
332.0777167	C10H20O10S	isoprene	Surratt et al., 2007
334.0933667	C10H22O10S	isoprene	Surratt et al., 2007
452.1563605	C15H32O13S	isoprene	Surratt et al., 2007
224.0354583	C7H12O6S	α-pinene	Surratt et al., 2007
227.9939875	C5H8O8S	α-pinene	Surratt et al., 2007
238.0511083	C8H14O6S	α-pinene	Surratt et al., 2007
248.0718437	C10H16O5S	α-pinene	Surratt et al., 2007
250.0874937	C10H18O5S	α-pinene	Surratt et al., 2007
266.0824083	C10H18O6S	α-pinene	Surratt et al., 2007
280.0616729	C10H16O7S	α-pinene	Surratt et al., 2007
282.0773229	C10H18O7S	α-pinene	Surratt et al., 2007
298.0722375	C10H18O8S	α-pinene	Surratt et al., 2007
240.0303729	C7H12O7S	limonene	Surratt et al., 2007
250.0511083	C9H14O6S	limonene	Surratt et al., 2007
252.0667583	C9H16O6S	limonene	Surratt et al., 2007
268.0616729	C9H16O7S	limonene	Surratt et al., 2007

Table S4.3.1: List of the molecular formulas of OS and nitrooxy-OS generated from smog chamber experiments.

229

7 Appendix

280.0616729	C10H16O7S	limonene	Surratt et al., 2007
282.0773229	C10H18O7S	limonene	Surratt et al., 2007
254.0460229	C8H14O7S	α-terpinene	Surratt et al., 2007
266.0824083	C10H18O6S	α-terpinene	Surratt et al., 2007
280.0616729	C10H16O7S	α-terpinene	Surratt et al., 2007
282.0773229	C10H18O7S	α-terpinene	Surratt et al., 2007
330.0443082	C10H18O8S	α-terpinene	Surratt et al., 2007
284.0565875	C9H16O8S	α-terpinene	Surratt et al., 2007
284.0929729	C10H20O7S	α-terpinene	Surratt et al., 2007
280.0616729	C10H16O7S	γ-terpinene	Surratt et al., 2007
250.0511083	C9H14O6S	terpinolene	Surratt et al., 2007
250.0874937	C10H18O5S	terpinolene	Surratt et al., 2007
266.0824083	C10H18O6S	terpinolene	Surratt et al., 2007
282.0773229	C10H18O7S	terpinolene	Surratt et al., 2007
284.0929729	C10H20O7S	terpinolene	Surratt et al., 2007
298.0722375	C10H18O8S	terpinolene	Surratt et al., 2007
250.0874937	C10H18O5S	β-pinene	Surratt et al., 2007
264.0667583	C10H16O6S	β-pinene	Surratt et al., 2007
280.0616729	C10H16O7S	β-pinene	Surratt et al., 2007
282.0773229	C10H18O7S	β-pinene	Surratt et al., 2007
284.0929729	C10H20O7S	β-pinene	Surratt et al., 2007
252.0667583	C9H16O6S	β-caryophyllene	Chan et al., 2011
304.1344437	C14H24O5S	β-caryophyllene	Chan et al., 2011
318.1500937	C15H26O5S	β-caryophyllene	Chan et al., 2011
320.1293583	C14H24O6S	β-caryophyllene	Chan et al., 2011
334.1086229	C14H22O7S	β-caryophyllene	Chan et al., 2011
334.1450083	C15H26O6S	β-caryophyllene	Chan et al., 2011
348.1242729	C15H24O7S	β-caryophyllene	Chan et al., 2011
350.1035375	C14H22O8S	β-caryophyllene	Chan et al., 2011
350.1399229	C15H26O7S	β-caryophyllene	Chan et al., 2011
352.1191875	C14H24O8S	β-caryophyllene	Chan et al., 2011
364.1191875	C15H24O8S	β-caryophyllene	Chan et al., 2011

364.1555729	C16H28O7S	β -caryophyllene	Chan et al., 2011
380.1504875	C16H28O8S	β -caryophyllene	Chan et al., 2011
210.0561937	C7H14O5S	dodecane	Riva et al., 2016
238.0874937	C9H18O5S	dodecane	Riva et al., 2016
252.1031437	C10H20O5S	cyclodecane	Riva et al., 2016
266.0824083	C10H18O6S	cyclodecane	Riva et al., 2016
268.0616729	C9H16O7S	decalin	Riva et al., 2016
270.0773229	C9H18O7S	decalin	Riva et al., 2016
280.0616729	C10H16O7S	cyclodecane	Riva et al., 2016
280.1344437	C12H24O5S	dodecane	Riva et al., 2016
286.0722375	C9H18O8S	decalin	Riva et al., 2016
296.0565875	C10H16O8S	decalin	Riva et al., 2016
298.0722375	C10H18O8S	decalin	Riva et al., 2016
210.0925791	C8H18SO4	octyl OS	commercial available
266.1551791	C12H26SO4	dodecyl OS	commercial available
258.0198083	C10H10O6S	naphthalene	Riva et al., 2015
274.0147229	C10H10O7S	naphthalene	Riva et al., 2015
276.0303729	C10H12O7S	naphthalene	Riva et al., 2015
232.0405437	C9H12O5S	2-methylnaphthalene	Riva et al., 2015
288.0303729	C11H12O7S	2-methylnaphthalene	Riva et al., 2015
290.0460229	C11H14O7S	2-methylnaphthalene	Riva et al., 2015
202.0299791	C8H10S1O4	benzene	synthesized
216.0456291	C9H12S1O4	benzene	synthesized
202.0299791	C8H10S1O4	benzene	synthesized
173.9986791	C6H6S1O4	benzene	synthesized
188.0143291	C7H8S1O4	benzene	synthesized
216.0456291	C9H12S1O4	benzene	synthesized
245.0205365	C5H11NO8S	isoprene	Surratt et al., 2007
261.0154511	C5H11NO9S	isoprene	Surratt et al., 2007
306.0005293	C5H10N2O11S	isoprene	Surratt et al., 2007
347.0158449	C8H13NO12S	isoprene	Surratt et al., 2007
295.0725719	C10H17NO7S	α-pinene	Surratt et al., 2007

7 Appendix

_	311.0674865	C10H17NO8S	α-pinene	Surratt et al., 2007
	340.0576501	C10H16N2O9S	α-pinene	Surratt et al., 2007
	343.0573157	C10H17NO10S	α-pinene	Surratt et al., 2007
	356.0525647	C10H16N2O10S	α-pinene	Surratt et al., 2007
	297.0518365	C9H15NO8S	limonene	Surratt et al., 2007
	313.0467511	C9H15NO9S	limonene	Surratt et al., 2007
	327.0624011	C10H17NO9S	limonene	Surratt et al., 2007
	329.0780511	C10H19NO9S	limonene	Surratt et al., 2007
	331.0573157	C9H17NO10S	limonene	Surratt et al., 2007
	374.0631293	C10H18N2O11S	limonene	Surratt et al., 2007
	390.0580439	C10H18N2O12S	limonene	Surratt et al., 2007
	295.0725719	C10H17NO7S	α-terpinene	Surratt et al., 2007
	311.0674865	C10H17NO8S	α-terpinene	Surratt et al., 2007
	343.0573157	C10H17NO10S	α-terpinene	Surratt et al., 2007
	374.0631293	C10H18N2O11S	α-terpinene	Surratt et al., 2007
	311.0674865	C10H17NO8S	γ-terpinene	Surratt et al., 2007
	374.0631293	C10H18N2O11S	γ-terpinene	Surratt et al., 2007
	295.0725719	C10H17NO7S	terpinolene	Surratt et al., 2007
	327.0624011	C10H17NO9S	terpinolene	Surratt et al., 2007
	374.0631293	C10H18N2O11S	terpinolene	Surratt et al., 2007
	295.0725719	C10H17NO7S	β-pinene	Surratt et al., 2007
	311.0674865	C10H17NO8S	β-pinene	Surratt et al., 2007
	327.0624011	C10H17NO9S	β-pinene	Surratt et al., 2007
	343.0573157	C10H17NO10S	β-pinene	Surratt et al., 2007
	363.1351719	C15H25NO7S	β -caryophyllene	Chan et al., 2011
	383.1250011	C14H25NO9S	β -caryophyllene	Chan et al., 2011
	327.0624011	C10H17NO9S	decalin	Riva et al., 2016
	321.0154511	C10H11NO9S	naphthalene	Riva et al., 2015
	218.9837573	C6H5NO6S	2-methylnaphthalene	Riva et al., 2015

D. List of related publications and presentations

Peer-reviewed publications:

<u>Wang K.</u>, Zhang, Y., Huang, R. J., Cao, J. J., and Hoffmann, T.: UHPLC- Orbitrap mass spectrometric characterization of organic aerosol from a central European city (Mainz, Germany) and a Chinese megacity (Beijing), *Atmos. Environ.*, <u>https://doi.org/10.1016/j.atmosenv</u>.2018. 06.036, **2018**.

Wang K., Zhang, Y., Huang, R. J., Cao, J. J., Kampf, C., Cheng, Y. F., Pöschl, U., and Hoffmann T.: *Molecular characterization of organic aerosols in three cities at the northeast, central east and southeast of China using UHPLC- Orbitrap mass spectrometry, Atmos. Chem. Phys.*, in preparation, **2018**.

<u>Wang K.</u>, Zhang, Y., Huang, R. J., Cao, J. J., Kampf, C., Cheng, Y. F., Pöschl, U., Glasius, M. and Hoffmann T.: *Molecular characterization and source prediction of atmospheric particulate organosulfates using ultrahigh resolution mass spectrometry, Atmos. Chem. Phys.*, in preparation, **2018**.

Huang, R. J., Yang, L., Cao, J. J., Chen, Y., Chen, Q., Li, Y. J., Duan, J., Zhu, C. S., Dai, W. T., <u>Wang, K.,</u> Lin, C. S., Ni, H. Y., Corbin, J. C., Wu, Y. F., Zhang, R., J., Tie, X. X., Hoffmann, T., O'Dowd, C. D., and Dusek, U.: Brown carbon aerosol in urban Xi'an, Northwest China: the composition and light absorption properties, *Environ. Sci. Technol.*, doi: 10.1021/acs.est.8b02386, **2018**.

Huang, R. J., Cao, J. J., Chen, Y., Yang, L., Shen, J. C., You, Q. H., <u>Wang, K.,</u> Lin, C. S., Gao, B., Li, Y. J., Hoffmann, T., O'Dowd, C. D., Bilde, M., and Glasius, M.: Organosulfates in atmospheric aerosol: synthesis and quantitative analysis of PM2.5 from Xi'an, Northwest China, *Atmos. Meas. Tech.*, *https://doi.org/10.5194/amt-11-3447-2018*, **2018**.

Presentations:

<u>Wang K.</u>, Huang, R. J., and Hoffmann, T.: Ultrahigh resolution mass spectrometric characterization of organic aerosol from European and Chinese cities, *European Geosciences Union, General Assembly*, Vienna, Austria, April 2016, (post presentation).

<u>Wang K.</u>, Huang, R. J., Cao, J. J., Kampf, C., Cheng, Y. F., Pöschl, U., and Hoffmann T.: Molecular characterization of organic aerosol from European and Chinese cities: an ultrahigh resolution mass spectrometry study, *European Aerosol Conference*, Tours, France, September 2016, (post presentation).

<u>Wang K.</u>, Huang, R. J., Cao, J. J., Kampf, C., Cheng, Y. F., Pöschl, U., and Hoffmann T.: Molecular characterization of organosulfates from European and Chinese cities by ultrahigh resolution mass spectrometry., *European Aerosol Conference*, Zurich, Switzerland, September 2017, (post presentation).

<u>Wang K.</u>, and Hoffmann T.: Orbitrap coupled with UHPLC applied for organic aerosol analysis, *Ultrahigh Resolution Mass Spectrometry and Data Interpretation Workshop*, Paris, France, June, 2017, (oral presentation).

E. Acknowledgements

F. Curriculum vitae