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Summary

The present thesis is a contribution to the multi-variable theory of Bergman and Hardy
Toeplitz operators on spaces of holomorphic functions over finite and infinite dimensional
domains. In particular, we focus on certain spectral invariant Fréchet operator algebras F
closely related to the local symbol behavior of Toeplitz operators in F .

We summarize results due to the authors of [79] and [107] on the construction of Ψ0- and
Ψ∗-algebras in operator algebras and corresponding scales of generalized Sobolev spaces
using commutator methods, generalized Laplacians and strongly continuous group actions.

In the case of the Segal-Bargmann space H2(Cn, µ) of Gaussian square integrable entire
functions on Cn we determine a class of vector-fields Y(Cn) supported in cones C ⊂ Cn.
Further, we require that for any finite subset V ⊂ Y(Cn) the Toeplitz projection P is a
smooth element in the Ψ0-algebra constructed by commutator methods with respect to
V . As a result we obtain Ψ0- and Ψ∗-operator algebras F localized in cones C. It is an
immediate consequence that F contains all Toeplitz operators Tf with f bounded on Cn

and smooth with bounded derivatives of all orders in a neighborhood of C.
There is a natural unitary group action on H2(Cn, µ) which is induced by weighted

shifts and unitary groups on Cn. We examine the corresponding Ψ∗-algebras A of smooth
elements in Toeplitz-C∗-algebras. Among other results sufficient conditions on the symbol
f for Tf to belong to A are given in terms of estimates on its Berezin-transform f̃ .

Local aspects of the Szegö projection Ps on the Heisenbeg group and the corresponding
Toeplitz operators Tf with symbol f are studied. In this connection we apply a result due
to Nagel and Stein [117] which states that for any strictly pseudo-convex domain Ω the
projection Ps is a pseudodifferential operator of exotic type (1

2
, 1

2
).

The second part of this thesis is devoted to the infinite dimensional theory of Bergman
and Hardy spaces and the corresponding Toeplitz operators. We give a new proof of a
result observed by Boland [24], [25] and Waelbroeck [141]. Namely, that the space of all
holomorphic functions H(U) on an open subset U of a DFN -space (dual Fréchet nuclear
space) is a FN -space (Fréchet nuclear space) equipped with the compact open topology.
Using the nuclearity of H(U) we obtain Cauchy-Weil-type integral formulas for closed
subalgebras A in H∞(U), the space of all bounded holomorphic functions on U , where A
separates points. Further, we prove the existence of Hardy spaces of holomorphic functions
on U corresponding to the abstract Shilov boundary SA of A and with respect to a suitable
boundary measure Θ on SA.

Finally, for a domain U in a DFN -space or a polish spaces we consider the sym-
metrizations µs of measures µ on U by suitable representations of a group G in the group
of homeomorphisms on U . In particular, in the case where µ leads to Bergman spaces of
holomorphic functions on U , the group G is compact and the representation is continuous
we show that µs defines a Bergman space of holomorphic functions on U as well. This
leads to unitary group representations of G on Lp- and Bergman spaces inducing operator
algebras of smooth elements related to the symmetries of U .
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and Szegö Toeplitz operators 111

4.1 Pseudodifferential operators and
commutator methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2 Localization of operator algebras
and Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
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Introduction

The present thesis is a contribution to the construction of spectral invariant symmetric
Fréchet subalgebras (Ψ∗-algebras) of Toeplitz-C∗-algebras over finite and infinite dimen-
sional domains. Moreover, it is of general interest to give a notion of Bergman and Hardy
spaces and the corresponding Toeplitz operators for domains Ω in certain infinite dimen-
sional nuclear spaces E. This approach only uses the nuclearity of the Fréchet space H(Ω)
of all holomorphic functions on Ω equipped with the compact open topology.

The concept of Ψ∗-algebras is closely related to local aspects in operator theory. To
give an idea of the kind of results we prove let us state the following theorems which can
be found in chapter 2 and 6. Let µ be a Gaussian measure on Cn and fix open cones
C1 ⊂ C2 in Cn. We show how to obtain a rich variety of Ψ∗-algebras Ψ∆

∞ in L( L2(Cn, µ) )
containing the Segal-Bargmann Toeplitz projection P and localized in C1 in the following
sense (cf. Theorem 2.5.3 and Proposition 2.5.2):

Theorem 1 Let h ∈ L∞(Cn) such that supp(h) ⊂ Cn\C2 or let us assume that h ∈ C∞b (C2),
then Th ∈ Ψ∆

∞, where Thg := P (hg) for all g ∈ L2( Cn, µ ).

Hence the algebra Ψ∆
∞ is invariant under perturbations by Toeplitz operators Th with

symbols supported outside of C2 and related to the regularity of h restricted to C2. In our
constructions above we apply quite general ideas which were suggested by the authors of
[79] and do not depend on the finite dimension of the underlying domains. Based on a
combination of results in [25], [121] and [141] we prove that for any open subset U of a
DFN -space E (topological dual of a Fréchet nuclear space) there is a notion of Bergman
space H2(U, µ). Moreover, let A be a closed subalgebra of the Banach algebra H∞(U) of
bounded holomorphic functions on U which separates points and has the abstract Shilov
boundary SA. Then in addition we can prove the existence of a Hardy space of holomorphic
functions on U (cf. Theorem 6.7.1) :

Theorem 2 Let µ1, µ2 ∈ MF2(U) be measures where F = H(U) (cf. Definition 5.4.1).
Assume that there is a diagram

H∞(U) ⊃ A J1−−−→ H2(U, µ1)
J2−−−→ H2(U, µ2)

where Ji are continuous embeddings and J2 is nuclear. Then there is a Hardy space
H2(SA,Θ) containing A which admits a quasi-nuclear embedding into H2(U, µ2).

We want to remark that our construction of Hardy spaces seems to be intrinsic and it
requires no assumption on the boundary of U . For instance note that via biholomorphic
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equivalence for each simply connected domain U in the complex plane the Banach algebra
of holomorphic functions on U with continuous extensions to Ū leads to a closed subalgebra
of H∞(D) separating points where D denotes the open unit disc.

In the infinite dimensional setting the symmetries of the domains U resp. SA can be
used to obtain Ψ∗-algebras of smooth elements in Toeplitz C∗-algebras (cf. chapter 7).

There is an extended theory on (locally) spectral invariant Fréchet algebras subsequent
to [79]. Applications arise in the structural analysis of certain algebras of pseudodifferential
operators, complex analysis, analytic perturbation theory of Fredholm operators, non-
abelian cohomology or for analyzing isomorphisms of abelian groups in K-theory. As for
a more detailed list and the consequences that follow for the algebras given in the present
thesis we refer to Remark 1.0.2. We consider our work to be a first step to make the abstract
theory of Ψ∗-algebra applicable to algebras of Bergman and Hardy Toeplitz operators.

Toeplitz operators and related algebras on classical spaces such as the Hardy space on
the 1-torus or the Bergman space on the unit disc are well-understood and they play an
important role in operator theory. In fact, there are many applications to function theory,
integral equations and control theory. In the higher dimensional setting, the analysis of
multi-variable Toeplitz operators is more complicated and is less well-known. Here the
geometry of the underlying space is closely related to the associated Toeplitz C∗-algebras.
For several classes of domains with not necessarily smooth boundary the spectral behavior,
index theory and solvability of C∗-algebras is examined in [140],[83].

As a model space for quantum mechanical operators, I.E. Segal and V. Bargmann
invented a space Fn := H2(Cn, µ) of entire functions on Cn square integrable with respect to
a Gaussian measure µ and canonically isomorphic to the Fock space [5], [133]. Fundamental
concepts as the creation and annihilation operators can be represented as Toeplitz operators
on Fn and there have been far reaching investigations of the corresponding operator theory
by L.A. Coburn and C.A. Berger [21], [22], [23], [35], [36], [37] see also the results in [11],
[12], [92], [145].

From a physical point of view, it is significant to extend the number of freedom cor-
responding to the complex dimension n to infinity. There also have been approaches on
Toeplitz operators over infinite dimensional domains, motivated by quantum field theory
[93], [90], [14]. J. Janas and K. Rudol have generalized the notion of Toeplitz operators
on the Segal-Bargmann space Fn by replacing Cn by a separable complex Hilbert space
H and µ by an infinite dimensional Gaussian measure on H. Some new phenomena arise,
which have no counterpart in the case of Fn but also create difficulties in the analysis of
[93], [90] and [14] which come from the measure theory on H. A second model, which
is referred to in the literature as the inductive limit approach, only uses a so-called quasi
Gaussian measure on H with non-nuclear correlation and it is based on Segal’s model of
the Fock space [132].

We focus on both, the multi-variable and the infinite dimensional theory of Bergman
and Hardy Toeplitz operators. On the one hand it is of interest in operator theory to
construct subalgebras of C∗algebras in L(H) where H is a Hilbert space which are related
to local properties of its elements and acting on scales of Sobolev spaces. In this connection
the notion of a Ψ-algebra and in particular of a Ψ∗-algebra has attached great importance
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(cf. the list of recent results at the beginning of chapter 1.) On the other hand, motivated
by quantum mechanics, representation theory and infinite dimensional holomorphy we
focus on the theory of Bergman and Hardy spaces over infinite dimensional domains. As
for the area of Toeplitz operators our main interest is the following:

(I) The construction of spectral invariant Fréchet algebras and Ψ∗-algebras in particular
in Toeplitz C∗-algebras for Bergman and Hardy Toeplitz operators Tf related to local
properties of the symbol f .

(II) Bergman and Hardy spaces over certain infinite dimensional spaces related to the
symmetry of the underlying domain and corresponding Toeplitz operators.

We describe what is meant by (I) and (II) above. In general, by passing from a ring
of operators to its closure (a Banach or C∗-algebra) one looses local C∞-properties such
as pseudo- or micro-locality. Hence in order to keep control of the local behavior and,
motivated by the ring of zero-order pseudodifferential operators, the notion of a Ψ-algebra
A in a Banach algebra B was introduced (cf. [69]). In particular, if A is symmetric in a
C∗-algebra B it is referred to as a Ψ∗-algebra. Essential in the definition is the notion of
spectral invariance or invariance under holomorphic functional calculus:

A ∩ B−1 = A−1

where A−1 (resp. B−1) denotes the group of invertible elements [17], [69], [79], [130], [139].
A spectrally invariant algebra A sometimes is called full or algèbre plaine, the pair of
algebras (A,B) is said to be a Wiener-pair following ideas due to Bourbaki, Naimark and
Waelbroeck [27], [118], [142], [143]. As an immediate consequence, a Ψ-algebra A has an
open group A−1 which in general is not the case for an arbitrary Fréchet algebra. Moreover,
we mention that the inversion in A is continuous and it is a useful property of the stability
that countable intersections of Ψ- resp. Ψ∗- algebras are of this type again.

The concept of extracting the notion of spectral invariance from the operator theory
and focusing on an abstract Ψ-algebras has been successful. An extensive study on spectral
invariant Fréchet algebras starting with [69] led to many applications and among others
we mention perturbation theory and homotopy theory of Fredholm functions or the holo-
morphic functional calculus of L. Waelbroeck.

Various methods of generating Ψ-algebras can be found in [79] and in part they are
described in chapter 1 of this thesis. In our constructions later on we use commutator
methods with vector fields supported in suitable sets, generalized Laplacians [44] and unitary
group actions [28], [79], [107]. Let us describe the concept of commutator methods. It was
shown by R. Beals [17] that the Hörmander classes Ψ0

ρ,δ of pseudodifferential operators 1 can
completely be characterized by conditions on iterated commutators with the multiplications
Mxj

and the derivatives ∂xj
of all orders. Using this result, it was shown by R. Beals [17]

and finally by J. Ueberberg [139] and E. Schrohe [130] (cf. [26]) that the classes Ψ0
ρ,δ are

spectral invariant in L(H) where H := L2(Rn, v) and so Ψ0
ρ,δ is a Ψ∗-algebra in the sense

1
0 ≤ δ ≤ ρ ≤ 1 and δ < 1
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of [79]. Moreover, as a result in [40] there are similar descriptions using commutators with
smooth vector fields. The authors of [79] pointed out how to generalize this method to an
abstract setting in order to construct Ψ-algebras A in certain subalgebras of the bounded
operators on a Hilbert space H. These methods are using commutator characterizations
fom begin on and so spectral invariance is an immediate consequence. Let V be a finite
set of densely defined closed operators on H. Then, roughly speaking, for an operator
a ∈ L(H) to be in A =: ΨV∞ we require that all the iterated commutators

[ [
[ a, V1 ], V2

]
, · · ·

]
, Vj ∈ V (0.0.1)

are well-defined on a suitable dense subspace in H and admit extensions to bounded op-
erators on H. Additionally, we remark that in the case where all operators V ∈ V are
symmetric, A becomes a Ψ∗-algebra; associated to V there is a scale of abstract Sobolev
spaces which is preserved by the operators in ΨV∞.

As for question (I) we start our investigation with Toeplitz operators Tf on the Segal-
Bargmann space H2(Cn, µ) of µ-square integrable entire functions on Cn introduced by
I.E. Segal and V. Bargmann [5], [133] (for the theory of Toeplitz operators: [21], [22], [23],
[37], [55], [56],[91], [92], [135]). Here f is an admissible measurable symbol and µ denotes
a Gaussian measure. With the orthogonal projection P from L2(Cn, µ) onto H2(Cn, µ)
the (in general unbounded) operator Tf is defined by Tf (g) := P (fg) provided that the
product fg is in L2(Cn, µ). We determine a subspace Y(Cn) in the class W(Cn) of all
smooth vector fields on Cn and a suitable dense subspace Z ⊂ L2(Cn, µ) with the following
properties:

(P1) For any finite system V ⊂ Y(Cn) of vector fields, with the Toeplitz projection a := P
and Vj ∈ V all the iterated commutators in (0.0.1) are well-defined on Z and they
admit (unique) extensions to bounded operators on L2(Cn, µ).

(P2) Let A be an open set in the complex unit sphere ∂B2n in Cn. Then there exist vector-
fields 0 6= V ∈ Y(Cn) supported in CA := { z ∈ Cn \ {0} : z · ‖z‖−1 ∈ A }.

As a first step, we will prove that the space Y1 of all vector fields with constant coeffi-
cients fullfils (P1) with Z := Cc(Cn). Now, in addition we want to fulfill (P2) and so we have
to enlarge Y1. As it is indicated by Example 2.3.1 one has to be careful. It turns out that
the boundedness of commutators of P with a smooth vector field V =

∑n

j=1{ aj∂j + bj ∂̄j }
is closely related to the oscillation of the coefficients aj and bj at infinity. We prove that
radial extensions to Cn of smooth functions on the complex sphere (which are cut off at 0)
form a class of admissible coefficients aj for V . Moreover, we can choose bj to be smooth
with bounded derivatives of all orders. This finally leads to a space Y(Cn) of vector fields
with (P1) and (P2) which, up-to a cut off at 0, contains Y1 as well as the derivatives
∂ϕj

∈ W(Cn) tangential to the complex sphere ∂B2n.
As a consequence in our theory of operator algebras and with the notations above we

conclude that P ∈ ΨV∞ ⊂ L( L2(Cn, µ) ) for all finite sets V ⊂ Y(Cn) and the Toeplitz
projection P is said to be smooth with respect to V . Let CA be the cone over A ⊂ ∂B2n
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as it was defined in (P2) and assume that all vector fields Vj ∈ V are supported in CA.
Then, for the multiplication Mf ∈ L( L2(Cn, µ) ) with a bounded symbol f to belong to
ΨV∞ only the behavior of f restricted to CA is involved. Therefore, the same holds true
for the Toeplitz operator Tf = PMf . In particular, the Ψ-algebra ΨV∞ is invariant under
perturbations of Toeplitz operators with symbols supported outside of CA. The space
W(Cn) is not symmetric, but after some slight changes of notations we can give similar
constructions of Ψ∗-algebras containing P . Due to the fact that P is a smooth element in
L( L2(Cn, µ) ), the projection PΨV∞P leads to classes of Ψ-algebras (resp Ψ∗-algebras) in
the algebra L(H2(Cn, µ) ) localized by the symbol behaviour, as well.

Following the fairly general concepts in [79] we examine Ψ∗-algebras generated by uni-
tary groups in Toeplitz C∗-algebras [28], [107]. The group of Weyl-operators on the Fock
space have a well-known representation as unitary weighted shift operators Wx on both
spaces H2(Cn, µ) and L2(Cn, µ). More precisely, we have

Wxf := kx · f
(
· −x

)
,

(
x ∈ Cn

)

where kx denotes the normalized reproducing kernel on H := H2(Cn, µ). Moreover, it is a
standard fact that the map

Hn = Cn × R ∋ (x, t) 7→ Wtx ∈ L
(
H2(Cn, µ)

)
=: B

leads to a an irreducible unitary representation of the Heisenberg group Hn in B. As a
link to quantum mechanics, it was shown that the C∗-algebra of canonical commutation
relations over Cn (CCR(Cn)), generated by the Weyl-operators coincides with the C∗-
algebra generated by Toeplitz operators with almost periodic symbols [23], [38].

For any x ∈ Cn we obtain a unitary strongly continuous group (C0-group) (Wtx)t∈R

of operators on H2(Cn, µ) with infinitesimal generator V (x) which coincides on a dense
subspace in H with an (unbounded) Toeplitz operator Tp where p is a linear function. We
can consider the corresponding map ϕx : R → L( L(H) ) defined for t ∈ R and A ∈ L(H)
by conjugating with the Weyl-group:

[
ϕx(t)

]
(A) := Wtx AW−tx ∈ L(H).

In particular, if A = Tf is a Toeplitz operator with (admissible) symbol f it can be
shown that Wx Tf W−x = Tf(·−x). Hence, all C∗-Toeplitz algebras A ⊂ L(H) generated by
Toeplitz operators with symbols in a class of functions invariant under shifts in direction
x are invariant under the action of ϕx(t). Let a ∈ A be fixed, then we define

ϕax : R → L(H) : t 7→
[
ϕx(t)

]
(a).

Under these notations and for all k ∈ N0 ∪ {∞} let us consider the following algebras
of Ck-elements in A, [28], [79], [107]:

Ψk
x[ A ] :=

{
a ∈ A : ϕax ∈ Ck

(
R,L(H)

) }
and Ψ∞x [ A ] :=

⋂

j∈N

Ψj
x[ A ].



10 Introduction

It is well-known that Ψ∞x [A] can also be obtained by using iterated commutator methods
with the one point system V := { V (x)} as described above [28], [107] and Theorem 1.3.1
in chapter 1. Due to the fact that the operator iV (x) is self-adjoint by Stone’s theorem we
conclude that Ψ∞x [ A ] is a Ψ∗-algebras in the Toeplitz C∗-algebra A. Now, let us assume
that A is the Toeplitz C∗-algebra generated by all operators Tf with bounded symbol f
on Cn. Then we have Wtx ∈ A for all t ∈ R and x ∈ Cn and so A is invariant under ϕx(t).
We consider the problem

(P3) Can we describe a class of symbols Dk ⊂ L∞(Cn, µ) such that Tf ∈ Ψk
x[ A ] for all

f ∈ Dk where k ∈ N0 ∪ {∞}?

Let us mention that from our definition above it follows that a := Tf ∈ Ψk
x[ A ] is

described by a differentiability condition on the map

R ∋ t 7→ ϕax(t) = Tf(·−tx) ∈ A

and so one might expect that some kind of smoothness of the symbol f in direction x is
required. In fact this is not the case and we prove that under fairly loose assumptions
based on the regularity of f we obtain operators in Ψk

x[A ] and further that all the algebras
Ψk
x[ A ] for k ∈ N ∪ {∞} coincide. Let us mention an effect that is closely related to this

observation and which is described in detail at [19], [20], [82] and the end of chapter 3 of
the present thesis:

There is a close connection between Toeplitz operators and pseudodifferential operators
on compact manifolds M . By results in [82] the ring of pseudodifferential operators on M
is isomorphic with the ring of Toeplitz operators on a appropriate Grauert tube about
M . Via the Bargmann isometrie β : L2(Rn, v) → H2(Cn, µ), the Segal-Bargmann space
is isomorphic to L2(Rn, v) where v denotes the usual Lebesgue measure. It was shown
that each Toeplitz operator Tf on H2(Cn, µ) corresponds to a pseudodifferential operator
Wσ with symbol σ in its Weyl form on L2(Rn, v) under conjugation with the isometrie
β [82], [35], [36]. Both symbols σ and f are related via the heat equation and Berezin’s
formula. Roughly speaking, the symbol σ of the Weyl operator corresponding to the
Toeplitz operator Tf is the solution of the heat equation on R2n ∼= Cn at time t = 1

8
with

initial data f :

σ =
(
e−

1
8

∆
)
f,

(
Berezin’s formula

)
.

Hence, for any f ∈ L∞(Cn) we conclude that σ is smooth with bounded derivatives of
all orders. Heuristically, all information on the smoothness of f is lost by passing to the
Weyl symbol σ.

We also study the analog of problem (P3) in the case of unitary C0-groups induced
by composition operators on H2(Cn, µ). In contrast to the Weyl group action, here on
a dense subspace of the Segal-Bargmann space, the infinitesimal generator coincides with
an (unbounded) Toeplitz operator Tq having polynomial symbol q of degree 2. The non-
linearity of q causes some more trouble in the norm-estimates of the iterated commutators
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but we can give a characterization of classes Dk in (P3) by growth conditions on the Berezin
transforms of f ∈ Dk (cf. Theorem 3.5.3).

Due to a result by A. Nagel and E.M. Stein [117], for a strictly pseudo-convex domain
the Szegö-projection Ps is a pseudodifferential operator of exotic type (1

2
, 1

2
). This already

occurs in the case of the complex unit sphere in Cn of complex dimension n greater than
1, while on S1 ⊂ C the operator Ps turns out to be of class Ψ0

1,0 ( cf. [103], pp. 178 ).
Via the biholomorphic equivalence of the unit ball B2n+2 ⊂ Cn+1 with the upper half-

space H+ in Cn+1 and by an identification of its boundary ∂H+ with the Heisenberg
group Hn = Cn × R the Szegö-projection Ps can be looked at as a convolution operator
on L2(Hn, v) with respect to the group structure of Hn. Moreover, its localized version
ψ1 Psψ2 where ψj ∈ C∞c (Hn) is of exotic type (1

2
, 1

2
) and so it inherits all pseudo- and mi-

crolocal properties of pseudodifferential operators. On the other hand, in the case of exotic
classes the full asymptotic calculus fails. The pseudodifferential techniques in Hörmander
[88] break down and the L2-boundedness result (which in fact is obvious for the Szegö-
projection) is due to A.P Calderon and R. Vaillancourt [32]. In this setting we study the
following problem:

(P4): Let U ⊂ Hn be an open subset. How can one define classes of spectral invariant
Fréchet algebras or even Ψ∗-algebras BU ⊂ L(L2(Hn, v) ) containing all pseudodiffer-
ential operators of type (1

2
, 1

2
) such that BU is localized on U in the following sense:

For any symbol f ∈ L∞(Hn) which is compactly supported and smooth in a neighbor-
hood of Ū and ϕ ∈ C∞c (Hn) the Toeplitz operator ϕTf is contained in BU?

In order to answer (P4) we use commutator methods with finite systems of smooth and
compactly supported vector fields. Moreover, we introduce a generalized Laplace operator
[44] and a corresponding scale (Hj)j of Sobolev spaces. As a result, we obtain an algebra
BU which solves (P4) and operates on (Hj)j without an order shift.

In the final part of chapter 4 we examine the Szegö-projection P on the unit sphere
S2n−1 = ∂B2n ⊂ Cn. The Szegö kernel explicitly is known and we show that for any
bounded function f smooth in an open set U ⊂ S2n−1 the projection Pf restricted to U
can be obtained by continuous extension of Pf from inside the ball B2n ( cf. Theorem
4.4.3 ). In our analysis the notion of spherical harmonics as well as the asymptotic of
the eigenvalues of the Beltrami-Laplace operator on the complex sphere are involved. As
a conjecture we consider many of the results proved in chapter 4 to be true in greater
generality for strictly pseudo-convex domains in Cn.

The chapters 5, 6 and 7 of this thesis are devoted to the infinite dimensional theory
of Bergman- and Hardy Toeplitz operators (cf. (II) above). In order to define a closed
subspace (Bergman space ) of holomorphic functions in a L2-space over an open manifold
U one has to choose a Borel measure µ on U with the following property:
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For each compact set K ⊂ U there is a compact set H ⊂ U with K ⊂ H such that
for all holomorphic f ∈ H(U) it holds

sup
{
| f(x) | : x ∈ K

}
≤ C

[ ∫

H

| f |2 dµ
] 1

2
. (0.0.2)

Here C is a suitable positive number which is related to K and independent of f .

Under loose topological assumptions on U ( it has to be a k-space and hemi-compact )
we generalize a result due to A. Pietsch in [121] to the infinite dimensional case. The
existence of a measure µ with (0.0.2) is equivalent to the nuclearity of the Fréchet space
H(U) of all holomorphic functions on U with respect to the compact-open topology. The
measure µ with (0.0.2) is said to be a NF2-measure where F := H(U) and in the following
we call U a NF2-space if there exists a NF2-measure on U (cf. Definition 5.4.1).

On the one hand, in the case where U is an open set in Cn, the nuclearity of H(U)
is well-known, but it already fails if we choose U to be an infinite dimensional separable
complex Hilbert space (cf. Corollary 6.2.1). On the other hand, there are results due to
P.J. Boland and L. Waelbroeck [24], [25] and [141] on the nuclearity of H(U) in cases where
U itself is a subset of a nuclear space. The following can be found as Theorem 5.5.2 in
chapter 5:

Theorem 3 (P.J. Boland, L. Waelbroeck, [24], [25], [141]) Let E be a DFN -space ( i.e.
the strong dual of a Fréchet nuclear space ) and U ⊂ E be open. Then endowed with
the compact-open topology the space H(U) of all holomorphic functions on U is a Fréchet
nuclear space ( FN -space ).

Let E be a (complex) DFN -space which without loss of generality is represented by
a nuclear inductive limit of Hilbert spaces in the category of locally convex spaces and
continuous linear mappings. Applying Gaussian measures on infinite dimensional spaces
we explicitly construct a measure µ on E which, restricted to all open subsets U ⊂ E,
has the property (0.0.2). Due to a generalization of Pietsch’s theorem, this leads to a new
proof of Theorem 3. Moreover, it follows that for all open subsets in DFN -spaces we have
the notion of Bergman space of holomorphic functions as well as the Bergman Toeplitz
projection.

How can we obtain a generalization of Hardy spaces of square integrable holomorphic
boundary values? Let us denote by H∞(U) the Banach algebra of all bounded holomorphic
functions on U and fix a closed subalgebra A of H∞(U) which separates points with abstract
Shilov boundary SA. Given a finite measure µ on U with (0.0.2) we prove the existence
of a kernel Φµ : U × SA → C and a finite Radon measure ν on SA with the following
properties:

(1) The map U ∋ z 7→ Φµ(z, x) ∈ C is holomorphic for all x ∈ SA.

(2) For all z ∈ U we have Ψµ(z) = [ Φµ(z, ·) ] ∈ L1(SA, ν).

(3) There is C > 0 with ‖ Φµ(z, ·) ‖L1(SA,ν) ≤ C · ‖ Eval(z) ‖H2(U,µ)′ for all z ∈ U .
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(4) It holds f( z ) =
∫
SA
x(f) · Φµ( z, x ) dν(x) for all f ∈ A and z ∈ U .

(cf. Theorem 6.6.1 and Remark 6.6.1). Partly, we follow some ideas in [61], where an
analog result was proved in the finite dimensional case together with lifting-results due to
R.G. Bartel and L.M. Graves [6]. We essentially use the nuclearity of H(U) and as an
important ingredient in our proof (and suggested by B. Gramsch) Grothendieck’s theorem
6.2.1 is applied. By an abstract Hardy space H2(SA,Θ) we mean a closed subspace of
L2(SA,Θ) where Θ is a suitable finite measure on the Shilov boundary SA, which densely
contains δ[A ]. Here δ : A → C(SA) is defined by δf [ x ] = x( f ) for all x ∈ SA and f ∈ A.
Moreover, we claim that there is a Hardy kernel K : U × SA → C such that

(5) The map K(z, ·) : SA → C is bounded for fixed z ∈ U ,

(6) For each compact set H ⊂ U and f ∈ A it holds:

sup
{
| f(z) | : z ∈ H

}
≤ ‖ δ(f) ‖L2(SA,Θ) · sup

{
‖K(z, ·) ‖L2(SA,Θ) : z ∈ H

}
.

Note that from (6) we can identify H2(SA,Θ) with a space of holomorphic functions on
U . The Hardy kernel K corresponds to Φµ above which in general for fixed first component
only leads to a function in L1(SA, ν). However, under a modification of µ (which always
can be made) we can define K = Φµ with (5) where Θ := ν. Property (6) is a direct
consequence of (4). We mention that under these changes from (1)-(4) to (1), (3), (5) and
(6) the inequality in (3) might get worse because of a new choice of the measure µ.

Even though we have formulated the construction of abstract Hardy spaces in a quite
general setting, it is new and leads to interesting results for regions U in the complex plane
with arbitrary boundary (let U = D be the unit disc) and subalgebras A ⊂ H∞(D).

What would be a canonical choice of a measure µ with (0.0.2) in our definition of
Bergman- and Hardy spaces above if we deal with a domain X in an infinite dimensional
spaces? In general, there is no analog to the Lebesgue measure on Cn, but in the case
where we have a group G and a (measurable) representation

α : G→ Homeo(X) (0.0.3)

into the space of all homeomorphisms on X it seems to be natural to choose a NH(U)2-
measure µs, which is invariant under α(G). We study the existence of such a measure µs
for compact groups G. Using the left-invariant Haar measure m on G and for X being
a polish space or an open subset in a DFN -spaces we give a quite general construction
for µs. Given a function space F ⊂ C(U) which is invariant under α(G), a continuous
group representation α and a NF2-measure µ we can prove that the symmetrization µs is
a NF2-measure again.

In many cases we obtain strongly continuous representations α̃p of G in Lp(X,µs ) and
the construction produces closed operators (infinitesimal generators) attached to the sym-
metries of the underlying infinite dimensional spaces (or manifolds). Following [79] we can
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define Ψ-algebras with spectral invariance and prescribed properties [77], [107], [106]. We
give several examples how to obtain representations α in (0.0.3) which could be used in our
construction above. In the Hilbert space case p = 2 it can be shown that the group action
α̃2 commutes with the Bergman Toeplitz projection Pµs

with respect to the NF2-measure
µs. As a consequence, G also can be represented in the corresponding Bergman spaces and
we can define Ψ-algebras by group actions in the generalized Toeplitz C∗-algebras as well
( cf. Remark 7.6.1 ).

Organization of the text:

Chapter 1: In the first chapter we provide some basic tools in the construction of topo-
logical algebras. Moreover, we set up notation and terminology. The notion of a Ψ-algebra
in the sense of [69] and [79] is given as well as a brief exposition of the recent results in
this area. We recall how to define scales of topological algebras and corresponding Sobolev
spaces by commutator methods, parametrized families of automorphisms and smooth pro-
jections. For a detailed description we refer the reader to [77], [79] and [107].

Chapter 2: We consider the Hilbert space H1 := L2(Cn, µ) where µ denotes a normed
Gaussian measure. The Segal-Bargmann space H2 := H2(Cn, µ) is the closed subspace of
H1 consisting of all entire functions square integrable with respect to µ. It is well-known
that H2 is a reproducing kernel Hilbert space and we prove some norm estimates for linear
operators on H2. The notion of the Toeplitz operators Tf for f in a class of (in general
unbounded) symbols on Cn is introduced. In the case where f1, · · · , fm have only poly-
nomial growth we can define products Tf1 · · ·Tfm

of (unbounded) Toeplitz operators on a
dense subspace of H2 (resp. H1). Hence all iterated commutators of such operators are
meaningful. It was shown in chapter 1, [77], [79] how to construct a decreasing series of
Fréchet operator algebras (Ψ∆

k )k∈N with prescribed properties in L(H1) using commutator
methods with a finite set V of closed operators on H1. We define a class XΦ(Cn) of vector
fields supported in cones such that the Toeplitz projection P from H1 onto H2 is contained
in Ψ∆

k for all k ∈ N and all finite sets V ⊂ XΦ(Cn). This enables us to construct subalge-
bras of L(H2) localized in cones C ⊂ Cn and containing all Toeplitz operators Tf with a
symbol f ∈ L∞(Cn) sufficiently smooth in C with bounded derivatives.

Chapter 3: We consider the C∗-algebra A generated by all Toeplitz operators with
bounded symbols on the Segal-Bargmann space. Using the group of Weyl operators on
L2(Cn, µ) where µ is a Gaussian measure we define a decreasing scale of Banach subalge-
bras Ψα

n[A ], (n ∈ N) continuously embedded in A which is related to the smoothness of the
operators as it was described in chapter 1. The intersection of all these algebras is denoted
by Ψα

∞[ A ] and it coincides with the Ψ∗-algebra of smooth elements in A with respect to
the Weyl group. We examine the class of bounded symbols g on Cn which leads to smooth
Toeplitz operators Tg ∈ Ψα

∞[ A ]. An example of an element in A, which does not belong
to Ψα

1 [A] is given. Via the Bargmann isometrie, the class of Toeplitz operators unitarily is
equivalent to the so called Gabor-Daubechies windowed Fourier localization operators on
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L2(Rn, v) for certain windows resp. to pseudodifferential operators in their Weyl-form. We
can reformulate some of our results in the setting of these operators. Finally, we examine
the case where the Weyl group is replaced by a unitary C0-group of composition opera-
tors on the Segal-Bargmann space. As a common result, we show that the Ψ∗-algebras of
smooth operators are invariant under perturbations of the symbol by continuous functions
with compact support.

Chapter 4: We examine some local aspects of the Szegö-projection Ps and the corre-
sponding Toeplitz operators Tf = PsMf with symbol f . Due to a result by A. Nagel and
E.M. Stein for any strictly pseudo-convex domain Ω, the projection Ps is a pseudodiffer-
ential operator of exotic type (1

2
, 1

2
). Using this fact and by the general theory in [79] a

rich class of spectral invariant Fréchet sub-algebras B in L(L2(∂Ω) ) (or more generally in
a Toeplitz C∗-algebra) containing Ps can be constructed by commutator methods. Hence
conditions on the operator ϕTf to belong to B (with a cut-off function ϕ) can be charac-
terized by the (local) regularity of the symbol f . In the second part of this chapter we
examine the question under which conditions the Szegö projection of a bounded function
on the complex sphere locally admits a continuous extension to an analytic function on the
unit ball. Mainly we are dealing with the upper half-space H+ in Cn+1 and the complex
unit sphere, but we consider many of the results to be true in greater generality for strictly
pseudo-convex domains in Cn.

Chapter 5: With a Gaussian measure µB on an infinite dimensional complex Hilbert
space, we consider the space H2(V, µB) of all square integrable holomorphic functions on
an open subset V ⊂ H. We show that in many cases the L2-closure of H2(V, µB) can be
identified with a space of holomorphic functions (HµB

, τω) defined on a dense submanifold
in V . Here τω denotes a topology which is finer than the compact-open topology. Given an
open subset U in a DFN -space (the topological dual of a nuclear Fréchet space) and using
these results we construct a finite measure ν on U such that the point evaluation map

U ∋ z 7→ δz ∈
[
H( U ) ∩ L2( U, ν )

]′

is a holomorphic function on U . Finally, with this construction and by generalizing a
method of A. Pietsch to the case of infinite dimensions (see [121]) we give a new proof
of a result due to P. Boland and L. Waelbroeck ([25] and [141]). Namely, that the space
( H(U), τ0 ) of holomorphic functions on U endowed with the compact-open topology is a
FN -space (Fréchet nuclear space).

Chapter 6: Let E be the dual of a Fréchet nuclear space (DFN -space) and U ⊂ E
an open subset. We denote by H∞(U) the Banach algebra of all bounded holomorphic
functions on U . For any closed subalgebra A of H∞(U) which separates points let SA be
its abstract Shilov boundary. We prove the existence of an integral formula for f ∈ A
similar to the Cauchy integral formula, which is a generalization of a result in [69] to U
in an infinite dimensional nuclear space. Namely, given any NF2-measure µ on U where
F = H(U) is the Fréchet nuclear space of all holomorphic functions on U (see Definition
5.4.1), there is a finite Radon measure ν on SA and a complex-valued kernel Φµ on U ×SA
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such that Φµ(z, ·) is ν-integrable for all z ∈ U and Φµ(·, x) is holomorphic for all x ∈ SA.
Moreover, the point evaluation on A in z ∈ U is given by an integral operator on A,
considered as a subset of C(SA) with kernel Φµ(z, ·). We prove an estimate on the growth
of Φµ of the form: ∥∥ Φµ( z, ·)

∥∥
L1(SA,ν)

≤ C ·
∥∥ Eval( z )

∥∥
H2(U,µ)′

.

Here C > 0 is a number independent of z and Eval denotes the point evaluation in the
generalized Bergman space H2(U, µ) := L2(U, µ) ∩ H(U). In the last section we define an
abstract Hardy space H2(SA,Θ) of holomorphic functions on U by using the nuclearity of
H(U) and following an idea in [72].

Chapter 7: Given a topological space X with σ-finite Borel measure µ, a locally compact
group G and a measurable representation B of G in the group of all homeomorphisms of
X, we examine how to construct a Borel measure µs on X which is invariant under B(G)
(Lemma 7.1.4). In many cases this construction leads to a non-trivial representation of
G on Lp(X,µs). Under some additional conditions on G, X and the representation B we
show that in the case where µ has the NFp-property, the symmetrized measure µs is a
NFp-measure, as well (Theorem 7.2.1). Finally, we give some examples and an application
of our work leading to the construction of spectrally invariant algebras (Ψ∗- or Ψ0-algebras,
cf. [69], [77])) of C∞-elements in operator-algebras on Lp-spaces and Bergman spaces.

Appendix: We collect some basic results on dual Fréchet spaces E and in particular we
are focusing on the case where E is of DFN -type. Some standard facts on holomorphic
functions on topological spaces are given. Following [134], the Heisenberg group and its
action on the complex sphere in Cn+1 is described and we define the Cauchy-Szegö projec-
tion Ps. We sketch some ideas and proofs in [117] concerning the symbol classes S0

ρ which
contains Ps for an appropriate choice of the pseudo-distance ρ. Finally, we collect results
on the boundedness and compactness of Hankel operators on the Segal-Bargmann space
and symmetric bounded domains in Cn [12], [16], [146], [148], [150].
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Chapter 1

Fréchet algebras with spectral

invariance

Let us remind of the following general concept for the construction of spectral invariant
algebras (Ψ∗-, and Ψ0-algebras) with prescribed properties induced by a finite set of closed
derivations or closed operators (for more details and some of the proofs see [77], [79], [107],
[109]). We start with the definition of a Ψ0- (resp. Ψ∗)-algebra.

Definition 1.0.1 (B. Gramsch, [69]) Let B be a Banach algebra with unit e and F a
subalgebra of B with e ∈ F . Then F is called locally spectral invariant in B if there exists
an ε > 0 with

{ a ∈ F : ‖ e− a ‖B < ε } ⊂ F−1

where F−1 denotes the group of invertible elements in F .

(a) F is called a Ψ0-algebra in B, if F is locally spectral invariant in B and there is a
topology τF on F which makes (F , τF) →֒ B into a continuously embedded Fréchet
algebra .

(b) F is called a Ψ∗-algebra in B, if in addition B is a C∗-algebra and F is a symmetric Ψ0-
algebra in B. (Due to an application of Lemma 1.0.1 this implies that F∩B−1 = F−1).

(c) F is called a submultiplicative Ψ0- resp. Ψ∗-algebra if the topology τF can be gener-
ated by a submultiplicative family of semi-norms (qj)j∈N0 , i.e.

qj( xy ) ≤ qj( x ) qj( y ) and qj( e ) = 1.

Remark 1.0.1 We remark that according to [27], [118], [142] and [143] the algebra F
is called spectral invariant , full or algèbre pleine if F ∩ B−1 = F−1. The pair (F ,B) is
referred to as a Wiener pair (cf. [118], chapt. III, pp. 203, 214, 310).
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It easily follows from the definition that the class of Ψ0-algebras and Ψ∗-algebras is
invariant under countable intersections. For a Fréchet algebra F with open group F−1 of
invertible elements the inversion F−1 ∋ b 7→ b−1 ∈ F is continuous (see [142]). Hence this
applies to any Ψ0-algebra. We give a useful result which was proved in [69].

Lemma 1.0.1 Let F be a dense, locally spectral invariant topological subalgebra of the
Banach algebra B, then F is spectral invariant in B.

Because each symmetric closed subalgebra of a C∗-algebra B is spectral invariant it
follows from Lemma 1.0.1 that every Ψ∗-algebra F in B is spectral invariant.

Remark 1.0.2 It was a rather long process until it had been completely proved that the
Hörmander classes Ψ0

ρ,δ(Rn )1 are submultiplicative Fréchet operator algebras with spectral
invariance in the algebra L(L2(Rn)). There are contributions of a series of mathematicians
including Hörmander, Seeley, Calderón and Vaillancourt, Beals, Cordes, Fefferman, Bony
and Chemin, Ueberberg, Schrohe, Wagner.

During the last two decades it attracted attention that many consequences arise for
algebras of Ψ∗-type. With these notions it is possible to develop an operator theory for
some Fréchet algebras in the microlocal analysis. Special non-linear methods have been
developed which sharpen some results in the Banach- and C∗-setting (cf. [69], [96], [97]).
It is an essential point that in Ψ∗-algebras A the Hilbert space Fredholm inverses are
automatically in A. Therefore it is possible to develop perturbation theory in these Fréchet
algebras namely for holomorphic Fredholm functions:

• Meromorphic inversion and decomposition of holomorphic Semi-Fredholm functions
also on infinite dimensional regions.

• Oka-principle for holomorphic maps with values in complex Fréchet-Lie groups or
in Fréchet manifolds of Fredholm and Semi-Fredholm operators in Ψ∗-algebras of
pseudodifferential operators.

• Existence of global holomorphic projection-valued functions splitting off the kernel
of holomorphic Fredholm functions with fixed dimension of the kernel.

• Division of operator-valued distributions.

A similar development is under way concerning the Lp-theory based on the notion of Ψ0-
algebras as well as algebras of C∞-elements w.r.t. group representations [62].

The Oka-principle (resp. conjecture) leads also to isomorphisms between non-abelian
groups of holomorphic objects on the one side and continuous objects on the other side. The
strategy of proofs involves essentially non-linear functional analytic and complex analytic
methods.

It is an important fact that Waelbroeck ([142] and [143], 1954) had introduced a holo-
morphic functional calculus for complete locally convex algebras with continuous inversion
even for several complex variables. In particular, the holomorphic functional calculus for
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Ψ0- and Ψ∗-algebras is an immediate consequence of his result and it plays an essential role
in a special case of algebras (cf. e.g. [42] and [71] in 1981 and recently [101], 2005) and in
general Ψ∗-algebras. Due to this fact Ψ∗-type algebras are also known as smooth algebras or
algebras stable under holomorphic calculus [101]. Besides the standard Hörmander classes
Ψ0
ρ,δ

1 of order 0 there are lots of other examples of Ψ∗-algebras such as C∞-elements in
C∗-dynamical systems [28], [43], [46] and certain families of crossed products [94], [95],
[131]. Since the important concept of spectral invariance was stressed by B. Gramsch, the
theory of Ψ∗-algebras has developed into a useful tool in the analysis of pseudodifferential
operators and Fréchet operator algebras on singular spaces.

We give some of the results subsequent to [79] and it should be mentioned that the
research is still in progress and far from being complete. For any Hilbert space X it was
shown in [109] that every Ψ∗-algebra in L(X) contains its holomorphic functional calculus
in the sense of J.L. Taylor [107], [128]. Moreover, this calculus applies to algebras of n×n-
matrices with elements in Ψ∗-algebras. It was shown in [112] that any Jordan operator A
in a Ψ∗-algebra A ⊂ L(X) admits a Jordan decomposition within A and as a consequence
one has local similarity cross sections for A in A.

As a contribution to additive complex analytic cohomology it was pointed out by B.
Gramsch and W. Kaballo [76] that an additive decomposition of meromorphic resolvents
M of semi-Fredholm functions into a holomorphic part and a meromorphic part which is
in a small ideal can be generalized to the setting of Ψ∗-algebras. Furthermore, results on
the division problem for real-analytic (semi-)Fredholm functions and operator distributions
in Ψ-algebras are given. In the framework of a submultiplicative Ψ∗-algebra A there also
is a corresponding multiplicative decomposition for holomorphic Fredholm functions with
values in A−1 on a Stein manifold [75]. The first named author of [76] derives an extension
of the Oka-principle to submultiplicative Ψ∗-algebras [68]. Since in the case of Fréchet
spaces the implicit function theorem is not available in [69] there are developed rational
methods which can be applied instead. In this connection it was shown in [69] that the set
of idempotent or relatively regular elements in Ψ∗-algebras form analytic locally rational
Fréchet manifolds. Let us mention that there are results on abstract hypo-ellipticity [77],
wave front sets and propagation of singularities in Ψ∗-algebras which are due to B. Gramsch.
In connection with [69] and [71] it was observed in K-theory around 1984 using Karoubi’s
density theorem [42], [98] that a Ψ0-algebra (resp. Ψ∗-algebra) has the same K-theory as
its norm-closure (resp. C∗-closure).

For appropriate triples (M, g,M) where M denotes an in general non-compact mani-
fold, g is a metric and M a weight function on T ∗M there is a S(M, g)-pseudo-differential
calculus by F. Baldus. It was shown in [3] that the algebra of order zero operators is a
submultiplicative Ψ∗-algebra in the sense of B. Gramsch in L(L2(M)). Using the spectral
invariance and within the S(M, g)-calculus the author of [4] gives sufficient conditions for
an operator to extend to a generator of a Feller semi-group.

The construction methods of Ψ0- and Ψ∗-algebras in [79] are quite flexible tools and
they even apply to operator algebras on fractal sets, (K. Krohne, Mainz, 2003).

1
0 ≤ δ ≤ ρ ≤ 1 and δ < 1
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In the most recent research on Fréchet-algebras there are approaches in infinite di-
mensional analysis by M. Höber. Let H+ ⊂ H0 ⊂ H− be an infinite dimensional Hilbert
space rigging and by µ denote the corresponding canonical Gaussian measure. Using the
Ornstein-Uhlenbeck operator as Laplace operator he defines a scale of Sobolev space and
generalized Hörmander classes by commutator methods. Submultiplicative Ψ∗-subalgebras
of the Hörmander classes are studied containing certain multiplications Mg and operators
of the form F−1MgF , where F is the Fourier-Wiener-transform. Moreover, they contain
continuous pseudodifferential operators defined by S. Albeverio and A. Daletskii [1].

Spectral invariance generates strong connections between Ψ∗-algebras and their C∗-
closures and in some sense one can expect them to behave similar. While representation
theory for C∗-algebras has been treated extensively [51] R. Lauter developed a represen-
tation theory for Ψ∗-algebras [105]. More precisely, using a result due to B. Gramsch on

positive functionals it can be shown that there is a continuous, bijective map Φ : Â −→ B̂,
where B is the enveloping C∗-algebra of a Ψ∗-algebra A and Â resp. B̂ denotes the spectrum
of A resp. B.

There are approaches by J. Ditsche on localization results for special classes of solvable
C*-algebras on manifolds with corners Z. Let Ψ0

b, cl(Z) be the algebra of classical pseudodif-
ferential operators of order zero and B(Z) its C∗-closure in L(L2(Z)). Then it is known
by results of Lauter, Melrose and Nistor that B(Z) is a solvable C∗-algebra in the sense of
[53]. Moreover, one can choose a solving series of minimal length for B(Z), such that the
geometry of Z is readily seen in this ideal chain. Since this is a global approach it should
also be possible, to localize this procedure, i.e. to show, that if we restrict our algebra
to small open neighborhoods of arbitrary points on Z, only the underlying geometry of
those neighborhoods give a contribution to the ideal chain. To do this, J. Ditsche analyzes
algebras ψB(Z)ψ, where ψ is a cut off function with suppψ ⊆ U and U an neighborhood
of p ∈ Z. Moreover, it is shown how to calculate the length of algebras of parameter
depended pseudodifferential operators on Z.

In a paper of X. Chen and S. Wei [34], (2003), which follows a series of results of (cf.
[34]) L.B. Schweitzer, P. Jolissaint, and R. de la Harpe it was mentioned that the notion
of spectral invariance plays an important role in the work of Connes-Moscovici on the
Novikov conjecture as well as in Lafforgues research on the Baum-Connes conjecture (cf.
Noncommutative geometry, Springer Lecture Notes 1831, (2004)). In this connection it is of
interest that for certain discrete groups G with length function l the Schwartz space Sl2(G)
with respect to l is a spectral invariant dense subalgebra of the reduced group C∗-algebra
C∗r (G). For details we refer to [34] and the references given there.

It is known that the dense embedding A →֒ B of a Ψ∗-algebra A into a C∗-algebra
B induces an isomorphism in K-theory of B. Hence on the one hand A is large enough
to preserve the K-theory of B and on the other hand it is better related to differential
structures than a C∗-algebra. This fact is exploited in [101] (2005) to prove a vanishing
theorem for higher traces in cyclic cohomology for the spectral projections. Further the
authors of [101] give applications to the Quantum hall effect and related spectral gaps of
operators.
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1.1 Fréchet algebras generated by closed derivations

In [79] it is shown how to construct Ψ0- (resp. Ψ∗-) algebras with prescribed properties
using closed derivations (resp. closed operators). We give the basic definitions which also
can be found in [107]:

Definition 1.1.1 Let B be a C∗-algebra with unit e ∈ B and assume that (F , (qj)j∈N0) is
a submultiplicative Ψ∗-algebra in B. Moreover, let ∆ be a finite set of closed derivations
δ : F ⊃ D(δ) → F (i.e. δ(ab) = δ(a)b+ aδ(b) such that e ∈ D(δ)). Define:

• Ψ∆
0 := F with the semi-norms q0,j := qj for all j ∈ N0.

• Ψ∆
1 :=

⋂
δ∈∆ D(δ).

• Ψ∆
n :=

{
a ∈ Ψ∆

n−1 : δa ∈ Ψ∆
n−1 for all δ ∈ ∆

}
, n ≥ 2.

• Ψ∆
∞ :=

⋂
n∈N0

Ψ∆
n .

• We endow Ψ∆
n for n ≥ 1 with the system of semi-norms defined by

qn,j( a ) := qn−1,j( a ) +
∑

δ∈∆

qn−1,j( δa )

for all a ∈ Ψ∆
n ⊂ Ψ∆

1 and j ∈ N0 and Ψ∆
∞ with the system (qn,j)n∈N,j∈N0 .

Let D(δ) and A be algebras with a ∗-operation, then a derivation δ : D(δ) → A is
called a ∗-derivation if it holds δ(x∗) = δ(x)∗ for all x ∈ D(δ). An anti-∗-derivation
is characterized by δ(x∗) = −δ(x)∗. Remark that δ is an anti-∗-derivation iff iδ is a ∗-
derivation. As a result of the construction above we obtain (see also [79] and [107], 2.4.3
Proposition and 2.4.4 Corollary):

Proposition 1.1.1 For each n ∈ N and j ∈ N0 the space Ψ∆
n is a subalgebra of F and qn,j

is a submultiplicative semi-norm on Ψ∆
n . Moreover:

(a) ( Ψ∆
n , (qn,j )j∈N0) →֒ F and ( Ψ∆

∞, (qn,j )n∈N,j∈N0) →֒ F are continuously embedded,
submultiplicative Fréchet algebras.

(b) Ψ∆
∞ is a submultiplicative Ψ0-algebra in B and for each δ ∈ ∆ the map δ : Ψ∆

∞ → Ψ∆
∞

is continuous.

(c) If each δ ∈ ∆ is a closed ∗-derivation w.r.t. the ∗-operation induced by B, then Ψ∆
n

is a symmetric subalgebra of F and Ψ∆
∞ is a submultiplicative Ψ∗-algebra in B.
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Proof (a) : We show that Ψ∆
n is an algebra for each n ∈ N0 ∪ {∞}. This is obvious for

n = 0, 1 because F and D(δ) with δ ∈ ∆ are algebras by definition and so we fix a, b ∈ Ψ∆
n

where n ≥ 2 and δ ∈ ∆. Then by induction

ab ∈ Ψ∆
n−1 and δ(ab) = δ(a) b+ a δ(b) ∈ Ψ∆

n−1

which implies that a, b ∈ Ψ∆
n . The algebra Ψ∆

0 := F is submultiplicative by assumption
and for a, b ∈ Ψ∆

n and n ≥ 1 we have:

qn,j(ab) = qn−1,j(ab) +
∑

δ∈∆

qn−1,j

(
δ(ab)

)

≤ qn−1,j(a) · qn−1,j(b) +
∑

δ∈∆

{
qn−1,j

(
δ(a)

)
· qn−1,j(b) + qn−1,j(a) · qn−1,j

(
δ(b)

) }

≤ qn,j(a) · qn,j(b).

Using δ(e) = 0 and qj(e) = 1 for all j ∈ N0 we find qn,j(e) = 1 for n, j ∈ N0. It remains
to show that the algebras Ψ∆

n are complete for n ∈ N0 ∪ {∞}. We only give the proof in
the case n = 1 and omit the induction step.

Let (ak)k∈N be a fundamental sequence in Ψ∆
1 , then by construction of the corresponding

topology and using the fact that F is complete for each δ ∈ ∆ there are a, bδ ∈ F such
that

ak −→ a ∈ F and δ(ak) −→ bδ ∈ F , ∀ δ ∈ ∆.

Because the derivation δ : F ⊃ D(δ) → F is closed by assumption it immediately
follows that a ∈ D(δ) and bδ = δ(a) for all δ ∈ ∆. Thus we obtain that a ∈ Ψ∆

1 is the limit
of (ak)k.

(b): According to Definition 1.0.1 it is sufficient to prove that for each a ∈ Ψ∆
∞ with the

property ‖ a ‖B < 1 it holds:

( e− a )−1 =
∞∑

k=0

ak ∈ Ψ∆
∞. (1.1.1)

Let ρ > 0 with ‖ a ‖B < ρ < 1. Then we show that there are numbers cn,j(a) > 0
depending on a, n and j such that for all k ∈ N0:

qn,j
(
ak
)
≤ cn,j(a) · k2n−1 · ρk−2n+1. (1.1.2)

Using the continuous inversion in the Ψ∗-algebra F it can be shown that (1.1.2) holds in
the case n = 0 (see [107], Lemma 2.1.8) and we only give the induction step. We apply the
well-known formula δ(ak) =

∑k

l=1 a
l−1 δ(a) ak−l which is a generalization of the derivation
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property of δ to k-fold products:

qn,j
(
ak
)

= qn−1,j

(
ak
)

+
∑

δ∈∆

qn−1,j

(
δ
(
ak
) )

≤ qn−1,j

(
ak
)

+
∑

δ∈∆

k∑

l=1

qn−1,j

(
al−1

)
· qn−1,j( δ(a) ) · qn−1,j

(
ak−l

)

≤ cn−1,j(a) k
2n−1−1ρk−2n−1+1 + c̃n,j(a)

∑

δ∈∆

k∑

l=1

(l − 1)2n−1−1(k − l)2n−1−1ρk−2n+1

≤ cn,j(a) k
2n−1ρk−2n+1.

From (1.1.2) it now follows that the series in (1.1.1) converges in Ψ∆
n for all n ∈ N0 and

so it converges in Ψ∆
∞. By construction δ : Ψ∆

∞ → Ψ∆
∞ is closed and well-defined, hence it

is continuous by the closed graph theorem.

(c) : By definition Ψ∆
j is symmetric under the ∗-operation for j = 0, 1. Let n ≥ 2

and choose a ∈ Ψ∆
n . Then by induction we have a∗ ∈ Ψ∆

n−1 and δ(a∗) = δ(a)∗ ∈ Ψ∆
n−1

and it follows that a∗ ∈ Ψ∆
n . Hence Ψ∆

∞ is symmetric and the rest of the assertion is an
application of (a) and (b) above. �

1.2 Operator algebras by commutator methods

Now we specialize our considerations to the case B = L(H) where (H, 〈·, ·〉 ) is a Hilbert
space. Let us describe how closed derivations (resp. ∗-derivations) can be obtained from
closed (resp. symmetric closed) operators on H. Fix a closed and densely defined operator
A on H with domain of definition D(A) ⊂ H.

Definition 1.2.1 Let ( F , (qj)j∈N0 ) →֒ L(H) be a submultiplicative Ψ∗-algebra in L(H).
Without loss of generality we assume that q0 = ‖ · ‖L(H). For any operator a ∈ L(H) such
that a( D(A) ) ⊂ D(A) one defines:

• ad[ A ](a) := Aa− aA : D(A) → H,

• I(A) :=
{
a ∈ F : a ( D(A) ) ⊂ D(A)

}
.

• B(A) :=
{
a ∈ I(A) : ad[ A ](a) extends to a bounded linear operator δAa ∈ F

}
.

• B∗(A) :=
{
a ∈ B(A) : a∗ ∈ B(A)

}
.

Lemma 1.2.1 The operator δA : F ⊃ B(A) → F with δA : a 7→ δAa is a closed derivation.
If in addition A is symmetric closed, then iδA : F ⊃ B∗(A) → F is a closed ∗-derivation.
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Proof Let a, b ∈ B(A) and x ∈ D(A), then it follows for the product ab ∈ I(A):
{

ad[ A ]( ab )
}

( x ) = Aab( x ) − abA( x ) =
{
Aa− aA

}
b( x ) + a

{
Ab− bA

}
( x ).

Hence the commutator ad[A ](ab) extends to a bounded operator

δA( ab ) = δA(a) b+ a δA(b)

and we obtain that ab ∈ B(A). Moreover, δA is a derivation on B(A). In order to show
that δA is closed let (ak)k ⊂ B(A) be a sequence such that ak → a ∈ F and δAak → b ∈ F
as k → ∞ with respect to the topology of F . It follows for any x ∈ D(A) and because of
the continuous embedding F →֒ L(H) that D(A) ∋ ak(x) → a(x) as k → ∞ and

Aak( x ) =
{
δAak

}
( x ) + akA( x ) −→ b( x ) + aA( x ).

Because A is a closed operator by assumption this means that a(x) ∈ D(A) and
{ad[ A ](a)}(x) = b(x). By our definition it holds a ∈ B(A) and δAa = b and δA is a
closed derivation.

Now in addition we assume that A : H ⊃ D(A) → H is a symmetric operator. By
definition B∗(A) is a symmetric subalgebra of F . Let x, y ∈ D(A) and a ∈ B∗(A), then it
follows that:

〈
δA(a)x, y

〉
=
〈
Aax− aAx, y

〉
=
〈
x, a∗Ay − Aa∗y

〉
=
〈
x,−δA(a∗)y

〉
.

From the fact that D(A) is dense in H it follows that δA(a)∗ = −δA(a∗) and so δA is
an anti-∗-derivation. We prove that δA : F ⊃ B∗(A) → F is closed. Let (ak)k ⊂ B∗(A) be
a sequence with ak → a ∈ F and δA(ak) → b ∈ F as k tends to infinity. Then we already
have seen that a ∈ B(A) and δA(a) = b. We have a∗ = limk→∞ a

∗
k ∈ F from the continuity

of the ∗-operation and so

δA ( a∗k ) = −δA ( ak )∗ −→ −b∗ ∈ F .
Again, using the fact that δA : H ⊃ B(A) → H is closed it follows a∗ ∈ B(A) and

δA(a∗) = −δA(a)∗ which implies that a ∈ B∗(A). �

From the construction above we can associate to each finite system V ⊂ L(H) of closed
(symmetric) operators on a Hilbert space H a system of closed (anti-∗-) derivations. By
Definition 1.1.1 this leads to a sequence of topological operator algebras

Ψ∆
k [ F ] := Ψ∆

k where k ∈ N0 ∪ {∞}
with properties described in Proposition 1.1.1. More precisely:

Let ( F , (qj)j∈N ) be a submultiplicative Ψ∗-algebra and B ⊂ L(H) a C∗-algebra with
continuous embedding F →֒ B. Assume that V is a finite set of closed, densely defined
operators on H. In Definition 1.1.1 we set:

∆ :=
{
iδA : F ⊃ B(A) → F : A ∈ V

}
. (1.2.1)
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By Lemma 1.2.1 we obtain a system of ∗-derivations iδA in the case where all A ∈ V
are symmetric. In general, for the construction of the topological algebras in Proposition
1.1.1 it is not important if we use ∗-derivations or anti-∗-derivations. According to the
Definitions 1.1.1 and 1.2.1 there is a decreasing sequence of topological algebras:

F = Ψ∆
0 [ F ] ⊃

⋂

A∈V

B(A) = Ψ∆
1 [ F ] ⊃ · · · ⊃ Ψ∆

k [ F ] ⊃ Ψ∆
k+1[ F ] ⊃ · · · ⊃ Ψ∆

∞[ F ].

In the case of ∗-derivations we replace B(A) by B∗(A). In order to give a more concrete
description of the operator algebras we define iterated commutators with systems of closed
operators:

Definition 1.2.2 Let H be a Hilbert space and M ⊂ H a linear subspace. Denote by
L(M) the space of all linear operators on M . For a finite system

A := [ A1, · · · , Aj ] where A1, · · ·Aj ∈ L(M)

and B ∈ L(M) we call j the length of A and we inductively define:

ad [ A1 ] (B) = [ A1, B ] , ad [ A1, · · ·Ar+1 ] (B) := ad [ Ar+1 ]
(

ad [ A1, · · · , Ar ] (B)
)

where r < j. In addition we set ad[ ∅ ](B) = ad0[ A1 ](B) := B if ∅ denotes the empty
system and we call ad[ A ](B) the commutator of the operator B and the system A.

From now on we assume that, given a finite set V of closed operators A : H ⊃ D(A) →
H, there is a dense subspace D ⊂ H such that each domain of definition D(A) is the
closure of D with respect to the graph norm ‖ · ‖gr := ‖ · ‖ + ‖A · ‖. We prove:

Proposition 1.2.1 Let k ∈ N ∪ {∞} and a ∈ F . With D ⊂ H as above we assume that:

(A): Let D be invariant under all the operators A ∈ V as well as under a ∈ F such that
the commutators ad [ A ](a) : H ⊃ D → H are well-defined for any system A in

Sk( V ) :=
{

[ A1, · · · , Aj ] : where Al ∈ V and 1 ≤ j ≤ k
}
.

Assume that all iterated commutators ad[A ](a) where A ∈ Sk(V ) admit continuous
extensions to operators C(A, a) ∈ F .

Then a ∈ Ψ∆
k [F ] and for any system A ∈ Sk( V ) the operator C(A, a) is a continuous

extension of ad [ A ](a) : H ⊂ D(A) → H for any A ∈ V.

In order to prove Proposition 1.2.1 we give some results on extensions of operators. In
the following assume that ( Ej, ‖ · ‖j ) for j = 1, 2 are normed spaces with a continuous
embedding E1 →֒ E2. We start with the following easy observation:
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Lemma 1.2.2 Let D ⊂ E1 be a dense subspace of E1 and let A ∈ L(E1, E2). If the
restriction A|D : D → E2 has a continuous extension Ã ∈ L(E2), then it holds Ã|E1

= A.
In particular, A is continuous in the topology of E2.

Proof Let x ∈ E1 and choose a sequence (yn)n ⊂ D such that x = limn→∞ yn in E1. Then

Ã|E1
x = lim

n→∞
Ã|E1

yn = lim
n→∞

A|Dyn = Ax. �

The following lemma is an immediate consequence of the closed graph theorem:

Lemma 1.2.3 Assume that (Ej, ‖ · ‖j ) are Banach spaces for j = 1, 2 and let B ∈ L(E2)
with B(E1) ⊂ E1, then it follows B ∈ L(E1).

Proof It is sufficient to prove that B is closed on E1. We choose a sequence (xn)n ⊂ E1

such that limn→∞ xn = y and limn→∞Bxn = z ∈ E1 in the topology of E1. From the
continuous embedding E1 →֒ E2 and because of the continuity of B in the E2-topology it
follows that By = limn→∞Bxn = z. �

We will apply Lemma 1.2.3 in the case where E2 = H and E1 := ( D(A), ‖ · ‖gr ) with
a closed operator A : H ⊃ D(A) → H. As before let D(A) be the graph norm closure of a
dense subspace D ⊂ H. We give a result on the invariance of D(A) under a ∈ L(H).

Lemma 1.2.4 Let a ∈ L(H) be an operator such that a(D) ⊂ D(A) and assume that the
commutator ad [A ](a) : H ⊃ D → H admits an extension to δAa ∈ L(H). Then it follows
that a( D(A) ) ⊂ D(A).

Proof Let x ∈ D(A) and choose a sequence (yk)k ⊂ D such that ‖x−yk‖gr → 0 as k → ∞.
It follows that limk→∞ ayk = ax and because ad[A ](a) admits a bounded extension δAa to
H the sequence

Aayk = ad[ A ](a)yk + aAyk

is convergent in H. By assumption A is closed and so it follows that ax ∈ D(A). �

Collecting our results above we can prove Corollary 1.2.1 which essentially will be used
in the proof of Proposition 1.2.1:

Corollary 1.2.1 Let a ∈ L(H) be an operator with a(D) ⊂ D(A) such that the commu-
tator ad [ A ](a) : H ⊃ D → H has a bounded extension δAa ∈ L(H). Then δAa is an
extension of ad [ A ](a) : H ⊃ D(A) → H as well.

Proof Because of a(D) ⊂ D(A) we conclude from Lemma 1.2.4 that D(A) is invariant
under a and so the commutator ad[ A ](a) : H ⊃ D(A) → H is well-defined. According
to Lemma 1.2.3 with E2 := H and E1 := ( D(A), ‖ · ‖gr ) there is α > 0 such that for all
x ∈ D(A) it holds ‖ax‖gr ≤ α‖x‖gr. Hence for x ∈ D(A) it follows that:

∥∥ ad[ A ](a)x
∥∥ ≤

∥∥ Aax
∥∥+ ‖ a ‖

∥∥ Ax
∥∥ ≤

(
α+ ‖ a ‖

)
‖ x ‖gr.
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Note that the inclusion D ⊂ ( D(A), ‖ · ‖gr ) is dense by our assumption on D(A).
By Lemma 1.2.2 together with the fact that ad[ A ](a) : H ⊃ D → H has a continuous
extension to δA(a) ∈ L(H) the assertion follows. �

Proof of Proposition 1.2.1 Let k = 1, then with our notations of the Definitions 1.1.1
and 1.2.1 we have:

Ψ∆
1 [ F ] =

⋂

δ∈∆

D(δ) =
⋂

A∈V

B(A) ⊂ L(H).

We have to check the inclusion a(D(A)) ⊂ D(A) for all A ∈ V. This in fact follows from
assumption (A) in Proposition 1.2.1 and the inclusion D ⊂ D(A) for all A ∈ V together
with Lemma 1.2.4. Moreover, by Corollary 1.2.1 the operator δAa = C([A ], a) is contained
in F and a continuous extension of

ad[ A ](a) : H ⊃ D(A) → H

for A ∈ V and so it follows that a ∈ Ψ∆
1 [ F ]. Now we assume that a ∈ Ψ∆

j [ F ] where
1 ≤ j < k. Let A ∈ V and consider ad[ A ](a) : H ⊃ D(A) → H which has an extension
δAa ∈ F . Again the commutator:

ad [ Aj ] ( δAa ) = ad [ A,Aj ] (a) : H ⊃ D → D ⊂ H

has a continuous extension to C( [ A,Aj ], a ) ∈ F for all systems Aj ∈ Sj( V ). Hence by
induction we conclude that δAa ∈ Ψ∆

j [ F ] and it follows that a ∈ Ψ∆
j+1[ F ]. �

Next we define a sequence of generalized V-Sobolev spaces in H corresponding to V and
we describe in which sense it is related to the algebras Ψ∆

j .

Definition 1.2.3 Let H be a Hilbert space and assume that V is a finite set of closed,
densely defined operators A : H ⊃ D(A) → H. Then we define:

• H0
V := H with the norm p0 := ‖ · ‖H .

• H1
V :=

⋂
A∈V D(A).

• Hn
V :=

{
x ∈ Hn−1

V : Ax ∈ Hn−1
V for all A ∈ V

}
, n ≥ 2.

• H∞V :=
⋂
n∈N

Hn
V .

We endow Hn
V with the norm pn(x) := pn−1(x) +

∑
A∈V pn−1(Ax) for x ∈ Hn

V and H∞V
with the system of norms (pn)n∈N0 .

Note that we also can replace H in Definition 1.2.3 by a Banach space. By using
arguments similar to the proof of Proposition 1.1.1 it can be shown:

Lemma 1.2.5 Let n ∈ N, then

(a) ( Hn
V , pn ) is a Banach spaces and (H∞V , (pn)n∈N) is a Fréchet space.
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(b) Each operator A ∈ V induces a bounded operator Ãn : Hn
V → Hn−1

V .

Moreover, there are norms p̃n on Hn
V equivalent to pn such that (Hn

V , p̃n) turns into a
Hilbert space and (H∞V , (p̃n)n∈N0) into a Fréchet-Hilbert space.

Let us give a useful relation between the Fréchet operator algebras constructed with
respect to a finite family V of closed (resp. closed and symmetric) densely defined operators
on a Hilbert spaceH and the V-Sobolev spaces introduced above. We are using our previous
notations.

Theorem 1.2.1 Each derivation δA ∈ ∆ where ∆ is defined in (1.2.1) is closed and the
maps in (a) and (b) below:

(a) Ψ∆
n ×Hn

V −→ Hn
V : ( a, x ) 7→ a( x ),

(b) Ψ∆
∞ ×H∞V −→ H∞V : ( a, x ) 7→ a( x )

are continuous and bilinear. Moreover, δA : Ψ∆
∞ → Ψ∆

∞ is continuous for all A ∈ V. If
each A ∈ V is symmetric, then Ψ∆

n is symmetric for all n ∈ N and Ψ∆
∞ is a Ψ∗-algebra.

Proof We only have to show the continuity in (a), then (b) follows as well. We prove for
n ∈ N0 and each pair (a, x) ∈ Ψ∆

n ×Hn
V the inequality:

pn [ a(x) ] ≤ qn,0( a ) · pn[ x ].

Let n = 0, then p0[ a(x) ] = ‖ a(x) ‖H ≤ ‖ a ‖ · ‖ x ‖H = q0,0( a ) · p0( x ). For n ≥ 1 now
the induction step follows from:

pn[ a(x) ] = pn−1[ a(x) ] +
∑

A∈V

pn−1[ Aa(x) ]

≤ pn−1[ a(x) ] +
∑

A∈V

pn−1 [ aA(x) + (δAa) (x) ]

≤ qn−1,0(a) · pn−1(x) +
∑

A∈V

[ qn−1,0(a) · pn−1[A(x)] + qn−1,0 (δAa) · pn−1(x) ]

≤ qn,0( a ) · pn( x ).

The continuity of δA : Ψ∆
∞ → Ψ∆

∞ was proved in Proposition 1.1.1 and the last statement
follows from Proposition 1.1.1 together with Lemma 1.2.1. �

We present a result on abstract regularity due to B. Gramsch and K.G. Kalb, cf. [77].
The proof makes use of the following lemma which can be found in [69], Remark 5.7:

Lemma 1.2.6 Let H be a Hilbert space, Ψ be a Ψ∗-algebra in L(H) and A ∈ Ψ with
closed range R(A) ⊂ H. Then for the orthogonal projection Q ∈ L(H) onto N(A) we have
Q ∈ Ψ. In particular, there is B = (Q+ A∗A)−1A∗ ∈ Ψ such that Q = I −BA.
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We apply Lemma 1.2.6 to prove Theorem 1.2.2 below, which is a special case of 2.5.11
Proposition in [107] and originally can be found in [77]. In the following we assume that
V is a finite set of symmetric closed operators on the Hilbert space H such that Ψ∆

∞[ F ]
turns into a Ψ∗-algebra in L(H) by Proposition 1.1.1, (c). Moreover, let H∞V be dense in
H which is fulfilled in most of the applications. Then it was shown in [77]:

Theorem 1.2.2 Let A ∈ Ψ∆
∞[ F ] be a Fredholm operator. Let u ∈ H be arbitrary such

that Au = f ∈ Hk
V for some k ∈ N0 ∪ {∞}. Then one has u ∈ Hk

V .

Proof Because A is a Fredholm operator it follows that R(A) ⊂ H is closed and by
Lemma 1.2.6 one obtains B ∈ Ψ∆

∞[ F ] such that Q = I −BA ∈ Ψ∆
∞[ F ] is the orthogonal

projection onto N(A). From Theorem 1.2.1 we conclude that Q(H∞V ) ⊂ H∞V and because
of dimR(Q) = dimN(A) <∞ it follows that Q(H∞V ) is closed. Hence we have R(Q) ⊂ H∞V
from the density of the inclusion H∞V ⊂ H. Again by Theorem 1.2.1 we obtain Bf ∈ Hk

V .
This implies that u = BAu+Qu = Bf +Qu ∈ Hk

V which completes the proof. �

1.3 Smooth elements by C0-group action

Let (H,α) be a pair consisting of a Hilbert space H and a strongly continuous one-
parameter group α (C0-group) acting on H. We want to define the algebra of smooth
elements in L(H) with respect to α and we remind of the fact that the smoothness of
operators can be characterized by means of the boundedness of iterated commutators with
the infinitesimal generator of the group.

Let α : R → L−1(H) be a strongly continuous one-parameter group (C0-group) of
operators on H and denote by

V : H ⊃ D(V ) :=
{
x ∈ H : V x := lim

t→0
t−1
(
αtx− x

)
∈ H exists

}
→ H : x 7→ V x

its infinitesimal generator. Then by well-known results the operator V is closed and densely
defined on H with αt( D(V ) ) ⊂ D(V ) and [ αt, V ] x = 0 for all x ∈ D(V ). With our
notation (1.2.1) in section 1.2 we set ∆ simply to be {δV } where δV denotes the derivation
given in Definition 1.2.1. If in addition the group α is unitary then by Stone’s theorem we
conclude that iV is essentially self adjoint and it is easy to check that δV is a ∗-derivation.
Let (

A, (qj)j∈N0

)
→֒ L(H)

be a submultiplicative Ψ∗-algebra which continuously is embedded in L(H). Without loss
of generality we assume that q0 = ‖·‖L(H). By the construction above we obtain a sequence
of operator algebras Ψα

n[ A ] := Ψ∆
n with continuous embeddings:

⋂

k∈N

Ψα
k [ A ] =: Ψα

∞[ A ] ⊂ · · · ⊂ Ψα
k [ A ] ⊂ Ψα

k−1[ A ] ⊂ · · · ⊂ B(V ) ⊂ A (1.3.1)



30 Fréchet Algebras

and corresponding V-Sobolev space Hk
V where k ∈ N ∪ {∞} and V = { V }. In the case

of a unitary C0-group we replace B(V ) in (1.3.1) by B∗(V ). Then the algebras Ψα
n[ A ] are

symmetric for n ∈ N and Ψα
∞[ A ] is a Ψ∗-algebra.

Let us define a second scale of subspaces in L(H) which is generated by the action of
the C0-group (αt)t∈R. Consider the map ϕ : R −→ L( L(H) ) defined for all t ∈ R and a
bounded operator a ∈ L(H) by

[
ϕ(t)

]
(a) := αt a α

−1
t ∈ L(H).

For fixed a ∈ L(H) we denote by ϕa : R → L(H) the map

ϕa( t ) :=
[
ϕ(t)

]
( a ).

In addition we assume that A ⊂ L(H) is a C∗-algebra in L(H) with the induced
topology and let the maps ϕa only have values in A for all a ∈ A. With n ∈ N0 ∪ {∞} we
define:

Ψn
α[ A ] :=

{
a ∈ A : ϕa ∈ Cn

(
R,A

) }
and Ψ∞α [ A ] :=

⋂

j∈N

Ψj
α[ A ].

Here Cn( R,A ) denotes the space of n-times differentiable functions from R to A. We
directly can compute the derivatives of the functions ϕa : R → A where a ∈ Ψn

α[ A ]:

Lemma 1.3.1 For a ∈ Ψn
α[A ] we set bn := ϕ

(n)
a (0) ∈ A, then it holds ϕ

(n)
a (t) = ϕbn(t) for

all t ∈ R.

Proof In the case n = 0 there is nothing to show. For an arbitrary number n ∈ N and
t ∈ R we obtain by induction:

h−1
[
ϕ(n)
a ( t+ h ) − ϕ(n)

a ( t )
]

= h−1
[
αt+h bn α

−1
t+h − αt bn α

−1
t

]

= αt

{
h−1

[
ϕ(n)
a (h) − ϕ(n)

a (0)
] }

α−1
t .

The right hand side of this equation converges to ϕbn+1(t) = αt bn+1 α
−1
t while the left

hand side converges to ϕ
(n+1)
a (t) as h tends to 0. �

A version of the next theorem can be found in [107] and it describes the relation between
the two scales of operators algebras ( Ψn

α[ A ] )n∈N0 and ( Ψα
n[ A ] )n∈N0 .

Theorem 1.3.1 Let (αt)t∈R be a C0-group and A ⊂ L(H) a C∗-subalgebra. Then:

(a) Ψk
α[ A ] ⊂ Ψα

k [ A ] and (δV )k(a) = ϕ
(k)
a (0) for all a ∈ Ψk

α[ A ] and k ∈ N.

(b) Ψα
k+1[ A ] ⊂ Ψk

α[ A ] for all k ∈ N0.

(c) Ψ∞α [ A] = Ψα
∞[ A ].
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Proof (a) : In the case where A = L(H) Theorem 1.2.1 was proved in [107], pp. 222.
Now, assume that A is a C∗-algebra in B := L(H) and let k = 1. With

a ∈ Ψ1
α[ A ] ⊂ Ψ1

α[ B ]

and from ϕa(R) ⊂ A we conclude that a ∈ Ψα
1 [ B ] and δV (a) = ϕ

(1)
a (0) ∈ A. It follows

that a is contained in:
{
b ∈ A : b ( D(V ) ) ⊂ D(V ) and ad[ V ](b) extends to δV (b) ∈ A

}
= Ψα

1 [ A ].

Assume that (a) holds for k ≥ 1 and let a ∈ Ψk+1
α [ A ]. It follows that a ∈ Ψα

k [ A ] and

δV ( a ) = ϕ(1)
a ( 0 ) =: b ∈ Ψk

α[ A ] ⊂ Ψα
k [ A ].

Here we have used ϕb(t) = ϕ
(1)
a (t) for all t ∈ R (see Lemma 1.3.1) and the fact that the

function ϕ
(1)
a is smooth up to the order k. By definition we conclude a ∈ Ψα

k+1[ A ] and so
we have proved (a).

(b) : Let k ∈ N0 and a ∈ Ψα
k+1[ A ] ⊂ Ψα

k+1[ B ]. Then a ∈ Ψk
α[ B ] ∩ A follows from

Theorem 1.2.1 in [107]. By definition we have ϕa ∈ Ck( R,B ) with ϕa(R) ⊂ A. Hence we
conclude that ϕa ∈ Ck( R,A ) and again this implies a ∈ Ψk

α[ A ]. The statement (c) is a
consequence of (a) and (b). �

Let H be a Hilbert space and M ⊂ L(H) be a set of bounded operators. We denote
by C∗(M) ⊂ L(H) the C∗-algebra generated by M. With

M∗ :=
{
a∗ ∈ L(H) : a ∈ M

}

the algebra C∗(M) is the closure of the linear hull span(W ) where W is defined to be

W =
⋃

n∈N

{
a1a2 · · · an : aj ∈ M∪M∗

}
.

Definition 1.3.1 Let b ∈ L−1(H) such that b a b−1 ∈ M for all a ∈ M, then we call M
invariant under b. With a group

α = (αt)t∈R ⊂ L−1(H)

M is said to be invariant under α if M is invariant under αt for all t ∈ R.

Note that with our notations above M is invariant under the group α if and only if the
map ϕx : R → M is well-defined for all x ∈ M. Next we give an easy stability result for
the described group action.

Lemma 1.3.2 Let M ⊂ L(H) be a subset and assume that M∪M∗ is invariant under
b ∈ L−1(H). Then this also holds for the C∗-algebra C∗(M).
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Proof Fix j ∈ N and finitely many operators a1, · · · aj ∈ M∪M∗. For all t ∈ R it follows
that:

b
{
a1 · · · aj

}
b−1 =

{
b a1 b

−1
}
· · ·
{
b aj b

−1
}

and so the space of all finite sums of finite products of operators in M∪M∗ is invariant
under the action of b. The full assertion follows from the continuity of the linear operator
Φb ∈ L( L(H) ) defined by Φb(a) = b a b−1. �

1.4 Projections of algebras

Let B be a Banach algebra with unit e and A ⊂ B be a locally spectral invariant
subalgebra of B. For any projection p = p2 ∈ A we can consider p A p =: Ap. The
following result can be found in [107]:

Lemma 1.4.1 The algebra Ap is locally spectral invariant in Bp := p B p. If A is sym-
metric, B is a C∗-algebra and p = p2 = p∗ ∈ A, then Ap is symmetric and so spectrally
invariant.

Proof Note that Bp is a Banach algebra with unit p. To prove the locally spectral
invariance fix ε > 0 with {

a ∈ A : ‖ e− a ‖ < ε
}
⊂ A−1

and consider x ∈ Ap such that ‖p−x‖ ≤ ε. Then with b = x+e−p it follows b−e = x−p
and so ‖ b− e ‖ < ε. As a consequence b has an inverse in A. Now

e = x b−1 + ( e− p ) b−1 = b−1x+ b−1 ( e− p ).

Finally, applying p from the left and the right hand side to this equation we obtain that
x is invertible in Ap with x−1 = pb−1p ∈ A−1

p . The last statement follows by an application
of Lemma 1.0.1. �

Let B = L(H) where H is a Hilbert space and let the algebra A ⊂ B be constructed
by commutator methods as it was described in section 1.2. We ask under which conditions
the projected algebra Ap where p = p2 ∈ A can be obtained by commutators with systems
of closed operators as well. The general results we prove here will be applied later to the
construction of Fréchet operator in C∗-Toeplitz algebras over Bergman and Hardy spaces.
Let Q ∈ L(H) be an orthogonal projection onto a subspace E := Q(H).

Lemma 1.4.2 Let A : H ⊃ D(A) → H be a closed operator and fix Q ∈ L(H) with
Q = Q2 = Q∗. We assume that:

(a) Q[ D(A) ] ⊂ D(A).

(b) The commutator [ A,Q ] : H ⊃ D(A) → H admits a bounded extension to H.

Then AQ := QAQ : E ⊃ D( AQ ) := Q[ D(A) ] → E is closed on E = Q(H).
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Proof Let (Qxn)n be a sequence in Q[ D(A) ] with (xn)n ⊂ D(A) such that it holds:

Qxn → y = Qy and QAQxn → z ( n→ ∞ ).

Then from the boundedness of the commutator [A,Q ] we conclude that

AQxn = [ A,Q ]Qxn +QAQxn ∈ H

is convergent as n tends to infinity. Because A is closed by assumption it follows that
y ∈ D(A) and so y = Qy ∈ Q[ D(A) ]. Additionally it holds limn→∞AQxn = AQy. Now,
using the continuity of Q we conclude that limn→∞QAQxn = QAQy. This proves the
assertion. �

In the construction of operator algebras using of closed operators it is necessary to
prove the continuity of certain commutators. With the orthogonal projection Q ∈ L(H)
the linear space E = Q(H) and a closed densely defined operator A : H ⊃ D(A) → H as
above we get:

Proposition 1.4.1 Let B ∈ L(H) and assume that:

(a) The inclusion D(AQ) := Q[ D(A) ] ⊂ D(A) holds and [ A,Q ] : H ⊂ D(A) → H has
a bounded extension to an operator in L(H).

(b) The domain of definition D(AQ) is invariant under BQ := QB Q ∈ L(E).

Then with AQ := Q A Q the commutator [ AQ, BQ ] has a bounded extension C1 from
D(AQ) to E if and only if [A,BQ ] has a bounded extension C2 from D(A) to H. Moreover,
we have C1 = QC2Q and so if D(A) is invariant under C2, then D(AQ) is invariant under
the extension C1.

Proof From our assumption (a) and (b) it follows that both commutators [ AQ, BQ ]
(resp. [A,BQ ]) are well-defined on the dense sets D(AQ) (resp. D(A)) in E (resp. in H).
Moreover, the following decomposition holds as operator equation on E or H:

[
A,BQ

]
=
[
AQ, BQ

]
+ (I −Q)

[
A,Q

]
BQ +BQ

[
A,Q

]
(I −Q). (1.4.1)

Because by (a) the commutator [ A,Q ] has a bounded extension from D(A) to H the
first assertion of Proposition 1.4.1 follows. From (1.4.1) we conclude that C1 = Q C2 Q
for the bounded extension C2 of the commutators [ A,BQ ] and C1 of [ AQ, BQ ]. Because
D(A) is invariant under Q and C2 by assumption, it follows the invariance of D(AQ) with
respect to C1 ∈ L(E). �

Under some additional assumptions we can replace (a) in Lemma 1.4.2 and Proposition
1.4.1 by a weaker condition. In many cases we may check the invariance of the domain of
definition by proving it for some subspace. The proof is quite simple:
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Lemma 1.4.3 Let B ∈ L(H) and assume that there is a linear space E ⊂ D(A) with:

(a) E is dense in D(A) with respect to the graph norm ‖ · ‖gr,

(b) It holds B[ E ] ⊂ D(A),

(c) The commutator [ A,B ] admits a continuous extension from E to H.

Then it follows the invariance B[ D(A) ] ⊂ D(A).

Proof Let g ∈ D(A) and choose a sequence (hk)k ⊂ E such that ‖ g − hk ‖gr → 0 as
k → ∞. It follows that limk→∞Bhk = Bg and because [A,B ] admits a bounded extension
to H the sequence

ABhk = [ A,B ]hk +BAhk

is convergent in H. A is closed and so it follows that Bg ∈ D(A). �

Let k ∈ N and choose a finite set V := { A1, · · · , Ak } of closed and densely defined
operators on the Hilbert space H with domains D(Aj) of definition. Further we assume
that ( F , (qj)j∈N ) is a submultiplicative Ψ∗-algebra in a C∗-algebra B ⊂ L(H). In section
1.2 and with our notations in Definition 1.2.1 we have given a set of closed derivations ∆
by

∆ :=
{
iδA : F ⊃ B(A) → F : A ∈ V

}
.

Given any orthogonal projection Q = Q2 = Q∗ ∈ F such that the conditions (a) and
(b) in Lemma 1.4.2 are fulfilled we set E := Q(H). According to Lemma 1.4.2 we can
consider the following system VQ of closed densely defined operators on E:

VQ :=
{
AQ := QAQ : E ⊃ D ( AQ ) → E : A ∈ V and D ( AQ ) := Q[ D(A) ]

}
.

By Lemma 1.4.1 the algebra FQ := QFQ is a Ψ∗-algebra in BQ := QBQ. Further, with
the map

P : F → FQ : x 7→ QxQ

let the topology on the algebra FQ be generated by the systems of submultiplicative semi-
norms q̃j := qj ◦ P for j ∈ N. Because Q is an projection q̃j simply is the restriction of qj
to FQ. According to the submultiplicativity of (qj)j it follows from

q̃j( Px ) = q̃j(x) = qj
(
QxQ

)
≤ qj(Q )2 · qj( x )

for all x ∈ F and all j ∈ N that P is continuous. It is easy to see that (FQ, q̃j) is closed in
(F , qj) and so it is a submultiplicative Ψ∗-algebra as well. Now let us set:

∆Q :=
{
iδA : FQ ⊃ B ( AQ ) → FQ : A ∈ VQ

}
.

Then by the constructions above we obtain a decreasing series of Fréchet operator
algebras in the Ψ∗-algebra FQ by defining:

⋂

j∈N

Ψ
∆Q

j [ FQ ] =: Ψ∆Q
∞ [ FQ ] ⊂ · · · ⊂ Ψ

∆Q

k [ FQ ] ⊂ · · · ⊂ Ψ
∆Q

1 [ FQ ] ⊂ FQ.
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On the other hand, in the case where Q ∈ Ψ∆
j [ F ] we can consider the locally spectral

invariant and symmetric subalgebras

Ψ∆
j [ F ]Q := QΨ∆

j [ F ]Q ⊂ FQ

(
j ∈ N0 ∪ {∞}

)

(see Lemma 1.4.1). As before we set E := Q(H), then we can prove the following relation
between these two scales of algebras:

Proposition 1.4.2 Let k ∈ N0 ∪{∞} and assume that Q ∈ Ψ∆
k [F ]. Then for each j ≤ k

the equality Ψ
∆Q

j [ FQ ] = Ψ∆
j [ F ]Q holds.

Proof The case k = 0 is obvious and for k = ∞ the assertion immediately follows if it is
proved for all k ∈ N. Let j = 1 and fix

B ∈ Ψ
∆Q

1 [ FQ ] =
⋂

A∈V

B ( AQ ) ⊂ FQ.

where AQ := Q A Q for any operator A ∈ V. Then by definition D( AQ ) is invariant
under the operator B = QB Q =: BQ ∈ L(E) and [ AQ, BQ ] admits a bounded extension
C(AQ, BQ ) ∈ FQ from D(AQ ) to E for all A ∈ V. By assumption Q ∈ Ψ∆

1 [F ] and so both
conditions (a) and (b) of Proposition 1.4.1 are fulfilled. We conclude that the commutator
[A,BQ] admits a bounded extension from D(A) to H and D(A) is invariant under BQ for
all A ∈ V. It follows that

BQ ∈
⋂

A∈V

B(A) =: Ψ∆
1 [ F ]

and so we have shown the inclusion Ψ
∆Q

1 [ FQ ] ⊂ Ψ∆
1 [F ]Q.

Now, let CQ ∈ Ψ∆
1 [F ]Q. Because we assume that Q ∈ Ψ∆

1 [F ] we also have CQ ∈ Ψ∆
1 [F ].

In particular, for all A ∈ V the space D(AQ) is invariant under CQ and [ A,CQ ] admits
a bounded extension C( A,CQ ) ∈ F from D(A) to H. Again by Proposition 1.4.1 the
operators [AQ, CQ ] have bounded extensions C(AQ, CQ ) = C(A,CQ )Q ∈ FQ from D(AQ)

to E for all A ∈ V and so CQ ∈ Ψ
∆Q

1 [ FQ ]. Hence in the case j = 1 it follows that:

Ψ
∆Q

j [ FQ ] = Ψ∆
j [ F ]Q . (1.4.2)

Let us assume that (1.4.2) holds for j < k and choose B = BQ ∈ Ψ
∆Q

j+1[ FQ ]. Then by

definition the commutator [AQ, BQ] has a continuous extension C(AQ, BQ) ∈ Ψ
∆Q

j [FQ] from
D(AQ) to H for all A ∈ V. By induction there is D ∈ Ψ∆

j [F ] such that C(AQ, BQ) = DQ.
Moreover, the decomposition

[
A,BQ

]
=
[
AQ, BQ

]
+ (I −Q)

[
A,Q

]
BQ +BQ

[
A,Q

]
(I −Q),

holds. From the fact that [ A,Q ] has a continuous extension C( A,Q ) ∈ Ψ∆
j [ F ] and

because of
B ∈ Ψ

∆Q

j+1 [ FQ ] ⊂ Ψ
∆Q

j [ FQ ] ⊂ Ψ∆
j [ F ]
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we conclude that for all A ∈ V the commutator [ A,BQ ] has a continuous extension
C( A,BQ ) from D(A) to H given by:

C
(
AQ, BQ

)
Q

+ (I −Q) C( A,Q )BQ +BQ C( A,Q ) (I −Q) ∈ Ψ∆
j [ F ].

and by definition it follows that BQ ∈ Ψ∆
j+1[ F ] and so

Ψ
∆Q

j+1

[
FQ

]
⊂ Ψ∆

j+1

[
F
]
Q
.

Finally, let us choose C = CQ ∈ Ψ∆
j+1[ F ]Q ⊂ Ψ∆

j+1[ F ]. Then for all A ∈ V the
commutators [A,CQ ] admit continuous extensions C(A,CQ ) ∈ Ψ∆

j [F ] from D(A) to H.
Using Proposition 1.4.1 and by induction [AQ, CQ ] has a continuous extension to

C ( AQ, CQ ) = C ( A,CQ )
Q
∈ Ψ∆

j [ F ]Q = Ψ
∆Q

j [ FQ ]

and so it follows that CQ ∈ Ψ
∆Q

j+1[ FQ ]. �

Remark 1.4.1 In order to guarantee that Ψ∆
j [ F ]Q is closed under the multiplication in

F we have to claim Q ∈ Ψ∆
j [ F ]. From Proposition 1.4.2 it follows that in this case the

algebras Ψ
∆Q

j [ FQ ] which are defined for j ∈ N0 ∩ {∞} extend the finite series

FQ ⊃ Ψ∆
1 [ F ]Q ⊃ · · · ⊃ Ψ∆

j [ F ]Q

to infinity. Note that construction of Ψ
∆Q

j [ FQ ] only requires the weaker assumptions of
Lemma 1.4.2. Hence the condition Q ∈ Ψ∆

1 [ F ] would be sufficient.

Let us examine the generalized V-Sobolev spaces introduced in Definition 1.2.3. Cor-
responding to Proposition 1.4.2 and with our notations above we show:

Proposition 1.4.3 Let n ∈ N and assume that the projection Q is contained in Ψ∆
n [ F ],

then for all j ∈ { 0, · · · , n } we have the equality Hj
VQ

= Q [ Hj
V ].

Proof Because of D( QA ) = Q [ D(A) ] for all closed operators A ∈ V the assertion is
obvious in the case where j = 0, 1. Assume that

Hj
VQ

= Q [ Hj
V ] for j ∈ { 1, · · · , n− 1 }

By Theorem 1.2.1 together with Q ∈ Ψ∆
n [ F ] it follows that Q [ Hj+1

V ] ⊂ Hj+1
V . Hence

for any x ∈ Q [ Hj+1
V ] we have by definition:

{
x,Ax : A ∈ V

}
⊂ Hj

V and so
{
x = Qx,QAQx : A ∈ V

}
⊂ Q

[
Hj
V

]
= Hj

VQ
.

This now implies that x ∈ Hj+1
VQ

and the inclusion Q [ Hj+1
V ] ⊂ Hj+1

VQ
is proved.
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Conversely, let x = Qx ∈ Hj+1
VQ

, then we have by induction:

{
x,QAQx : A ∈ V

}
⊂ Hj

VQ
= Q

[
Hj
V

]
⊂ Hj

V . (1.4.3)

From Q ∈ Ψ∆
n [ F ] it follows that [ A,Q ] Qx ∈ Hj

V for all A ∈ V and so we conclude
that:

AQx = QAQx+ [ A,Q ]Qx ∈ Hj
V for all A ∈ V.

By definition we obtain x = Qx ∈ Q [ Hj+1
V ] and so we have Hj+1

VQ
⊂ Q [ Hj+1

V ]. �
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Chapter 2

Cone localization of the Segal

Bargmann projection

We consider the Hilbert space H1 := L2(Cn, µ) where µ denotes a normed Gaussian
measure. The Segal-Bargmann space H2 := H2(Cn, µ) is the closed subspace of H1 consist-
ing of all entire functions square integrable with respect to µ. It is well-known that H2 is
a reproducing kernel Hilbert space and we prove some norm estimates for linear operators
on H2 which we need in our analysis later on.

The notion of a Toeplitz operators Tf for f in a class of (in general unbounded) symbols
on Cn is introduced. In the case where f1, · · · , fm only have polynomial growth we can
define products Tf1 · · ·Tfm

of (unbounded) Toeplitz operators on a suitable dense subspace
of H2 (resp. H1). Hence all iterated commutators of such operators are meaningful.

It was shown in chapter 1, [79], [77] and [107] how to construct a decreasing series of
Fréchet operator algebras (Ψ∆

k )k∈N with prescribed properties in L(H1) using commutator
methods with a finite set V of closed operators. We define a class XΦ(Cn) of smooth
vector fields supported in cones such that the Toeplitz projection P from H1 onto H2 is
contained in Ψ∆

k for all k ∈ N and all finite sets V ⊂ XΦ(Cn). This enables us to construct
subalgebras of L(H2) localized in cones C ⊂ Cn and containing all Toeplitz operators Tf
with a bounded symbol f ∈ L∞(Cn) sufficiently smooth in C with bounded derivatives.

Let n ∈ N be fixed and write ‖ · ‖ for the Euclidean norm on Cn (resp. on Rn). Then
we denote by µ the normed Gaussian measure on Cn with density π−n exp(−‖ · ‖2 ) with
respect to the usual Lebesgue measure v on Cn. For the convenience of the reader we
briefly recall the commutator methods introduced in chapter 1. Fix a finite set

V ⊂
{
A : H1 ⊃ D(A) −→ H1 : A is closed and densely defined

}

of closed operators on H1. Let A ∈ V and a ∈ L(H1) such that a( D(A) ) ⊂ D(A). Then
the commutator ad[A ](a) := A a− a A is well-defined on the dense subspace D(A) of H1

and one sets:

• I(A) :=
{
a ∈ L (H1 ) : a ( D(A) ) ⊂ D(A)

}
.
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• B(A) :=
{
a ∈ I(A) : ad[ A ](a) extends to a bounded operator δAa ∈ L (H1)

}
.

We have seen that ∆ := {δA : L(H1) ⊃ B(A) → L(H1) : A ∈ V } is a finite set of closed
derivations on L(H1) (cf. Lemma 1.2.1). Now, we can introduce the following subalgebras
of L(H1):

• Ψ∆
0 := L (H1 ).

• Ψ∆
1 :=

⋂
A∈V B(A).

• Ψ∆
k :=

{
a ∈ Ψ∆

n−1 : δAa ∈ Ψ∆
n−1 for all A ∈ V

}
, k ≥ 2.

• Ψ∆
∞ :=

⋂
k∈N0

Ψ∆
k .

It was shown in Definition 1.1.1 how to construct a norm qk on Ψ∆
k such that all the

spaces ( Ψ∆
k , qk ) turn into Banach algebras and ( Ψ∆

∞, (qk)k ) becomes a sub-multiplicative
Fréchet- operator algebra (resp. a Ψ0- or Ψ∗-algebra). In order to apply the general theory
in the setting of Toeplitz operators on H2 we always assume that the space C∞c (Cn) of
smooth functions with compact support is dense in D(Z) with respect to the graph norm
for all closed operators Z ∈ V. Hence we choose D(Z) to be the graph norm closure of
the test functions C∞c (Cn) in H1. In our specific situation V consists of closed extensions
of operators A, A∗, Re(A) and Im(A) where A is in a class of smooth vector fields XΦ(Cn)
on Cn which we will describe next.

We write B2n for the Euclidean ball in Cn with radius one centered in 0 and by ∂B2n

we denote its boundary. With Ċn := Cn \{0} let us consider the space of all radial smooth
functions R(Ċn) defined by:

R
(

Ċn
)

:=
{
h : Ċn → C : h(z) := f

(
z · ‖ z ‖−1

)
where f ∈ C∞ ( ∂B2n )

}
.

Choose Φ ∈ C∞( Cn, [ 0, 1 ] ) with Φ ≡ 0 on 1
2
B2n and Φ ≡ 1 on Cn \ B2n. Then we

can define a space of smooth functions on Cn which are radial symmetric outside B2n and
vanishing in 0 by:

RΦ ( Cn ) :=
{
f : Cn → C : f = h · Φ on Ċn where h ∈ R

(
Ċn
)

and f( 0 ) = 0
}
.

For k ∈ N0 ∪ {∞} let Ckb (Cn) denote the space of functions f ∈ Ck(Cn) such that all
derivatives of f up to the order k are bounded on Cn. Let ∂i (resp. ∂̄i) be the derivatives
with respect to the complex coordinates zi (resp. z̄i) and ( i = 1, · · · , n ), then we consider
the subspace

XΦ
(

Cn
)

:= span
{
aj ∂j : aj ∈ RΦ ( Cn )

}
⊕ span

{
bj ∂̄j : bj ∈ C∞b ( Cn )

}
.

in the space of all smooth vector fields on Cn. Note that in particular XΦ(Cn) contains all
the vector fields Φ · ∂ϕj

where

∂ϕj
:= ‖ z ‖−1

[
zj ∂̄j − z̄j ∂j

]
, ( j = 1, · · · , n )
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are the normed derivatives tangential to ∂B2n. Our main results are connected to the
smoothness of the Segal-Bargmann Toeplitz projection and the localization of operator
algebras in cones. Let us give the basic notations.

We write P for the orthogonal projection (Toeplitz projection) from H1 onto H2. With
any essentially bounded symbol f ∈ L∞(Cn) we denote by Mf ∈ L(H1) the multiplication
by f and we define the bounded Toeplitz operator Tf := PMf as an element of L(H1)
(resp. of L(H2)). Let M be the set

M :=
{
Z,Z∗,Re(Z), Im(Z) : Z ∈ XΦ ( Cn )

}

where each element of M is considered as a closed operator on H1 in the described way.
With our notations above there are associated operator algebras Ψ∆

k for k ∈ N∪ {∞} and
we show (see Theorem 2.5.1):

Theorem 1 Let V be any finite subset of M and ∆ the associated space of closed derivations
on L(H1). Then P ∈ Ψ∆

∞.

The Segal-Bargmann space H2 is not invariant under the elements of M, but by an
application of Lemma 1.4.2 it follows that for A ∈ M the operators

PA : H2 ⊃ D( PA ) := P
[
D(A)

]
−→ H2

are closed and so the same construction using PM := { PA : A ∈ M } instead of M and
a finite subset PV ⊂ PM leads to algebras in L(H2). Let ∆P be the associated space
of closed derivations on L(H2), then we show that each Toeplitz operator Tf with symbol
f ∈ Ckb (Cn) where k ∈ N∪{∞} is contained in Ψ∆P

k (see Theorem 2.5.2). Now, additionally
we assume that all the operators

A =
n∑

j=1

[
aj ∂j + bj ∂̄j

]
+Mg ∈ V

are supported in a cone C ⊂ Cn. By this we mean that the coefficients aj, bj and g are
supported in C for j = 1, · · · , n. Then the algebras Ψ∆

k and Ψ∆P

k , where k ∈ N ∪ {∞} are
localized in C in the following sense (see Theorem 2.5.3):

Theorem 2 Let h ∈ L∞(Cn) such that supp (h) ⊂ Cn \ C. Then Th ∈ Ψ∆
∞ ⊂ L(H1) (resp.

we have Th ∈ Ψ∆P
∞ ⊂ L(H2)).

In other words the algebras Ψ∆
∞ and Ψ∆P

∞ are invariant under perturbations by Toeplitz
operators with symbols supported in Cn\C. The proof of Theorem 2.5.3 essentially is based
on the fact that the algebras Ψ∆P

j and Ψ∆
j are related in the form Ψ∆P

j = {PAP : A ∈ Ψ∆
j }

which was proved in greater generality in Proposition 1.4.2 of chapter 1.

2.1 Toeplitz operators on the Segal-Bargmann space

For any c > 0 let us denote by µc the normed Gaussian measure on Cn with respect to
the density

dµc = cnπ−n exp
(
− c ‖ · ‖2

)
dv
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where v denotes the usual Lebesgue measure on Cn. In the present chapter we often will
write µ := µ1 and 〈·, ·〉2 (resp. ‖ · ‖2) for the L2(Cn, µ)-inner-product (resp. norm). An
important tool in our analysis to show the Lp-boundedness of integral operators is the so
called Schur test (see [84]) which we prove next for general measure spaces:

Theorem 2.1.1 Let (X, ν) be a measure space and K a measurable function on X ×X.
Suppose there are positive measurable functions p and q on X and positive numbers α and
β such that

∫

X

|K( x, ·) | q dν ≤ α · p( x ) for [ν] − a.e. x ∈ X, (2.1.1)
∫

X

|K(·, y ) | p dν ≤ β · q( y ) for [ν] − a.e. y ∈ X. (2.1.2)

Then the integral operator A given by

[ Af ]( x ) =

∫

X

K( x, ·) f dν

with f ∈ L2(X, ν)and x ∈ X defines a bounded linear operator from L2(X, ν) into itself.
Moreover, the norm of A can be estimated by ‖ A ‖2 ≤ α · β.

Proof Fix a function f ∈ L2(X, ν). If we apply the Cauchy-Schwartz inequality to the
integral

| Af( x ) | ≤
∫

X

q−
1
2 q

1
2 | f | |K( x, ·) | dν

it follows that:

| Af( x ) | ≤
[ ∫

X

q |K( x, ·) | dν
] 1

2

·
[ ∫

X

q−1 | f |2 |K( x, ·) | dν
] 1

2

.

From our assumption (2.1.1) we now obtain:

| Af( x ) |2 ≤ α · p(x) ·
∫

X

q−1 | f |2 |K( x, ·) | dν. (2.1.3)

Finally, using Fubini’s Theorem and (2.1.2) it follows by integrating (2.1.3) over X:

∫

X

| Af |2 dν ≤ α ·
∫

X

q−1( y ) · | f( y ) |2
∫

X

p( x ) |K( x, y ) | dν( x ) dν( y )

≤ β · α ·
∫

X

| f |2 dν.

Thus A is bounded on L2(X, ν) with ‖ A ‖2 ≤ α · β. �
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Remark 2.1.1 Let h be a positive function and α > 0. With 1 < r < ∞ and s > 0 such
that s−1 + r−1 = 1 holds we replace the conditions (2.1.1) and (2.1.2) by:

∫

X

|K( x, ·) | hr dν ≤ α · h( x )r for [ν] − a.e. x ∈ X,
∫

X

|K(·, y ) | hs dν ≤ α · h( y )s for [ν] − a.e. y ∈ X,

then by similar arguments it can be shown that A is bounded on Lr(X, ν) and for its
operator norm we obtain ‖ A ‖L(Lr(X,ν)) ≤ α.

The following result is an immediate consequence of the Schur test.

Proposition 2.1.1 Let L : Cn × Cn → C be a measurable function such that:

| L( x, y ) | ≤ | F ( x− y ) | exp
(
Re 〈 x, y 〉

)

where F ∈ L1(Cn, µ 1
2
). Then the integral operator A on L2(Cn, µ) defined by

[
Af
]
( z ) :=

∫

Cn

L( z, ·) f dµ, f ∈ L2(Cn, µ)

with z ∈ Cn is bounded on L2(Cn, µ). Moreover, we have ‖ A ‖ ≤ 2n‖ F ‖L1(Cn,µ 1
2
).

Proof In Theorem 2.1.1 we choose the positive function p = q = exp( 1
2
‖ · ‖2 ) on Cn.

Then it follows that:
∫

Cn

| L( ·, y ) | p dµ ≤ 1

πn

∫

Cn

| F ( · − y ) | exp
(

Re 〈 ·, y 〉 − 1

2
‖ · ‖2

)
dv

=
1

πn

∫

Cn

| F | exp
(

Re 〈 · + y, y 〉 − 1

2
‖ · +y ‖2

)
dv

= 2n p (y) ‖ F ‖L1( Cn,µ 1
2

).

Similar we get
∫
| L( x, · ) | p dµ ≤ 2n p (x) ‖ F ‖L1(Cn,µ 1

2
). Now, applying the Schur test

(see Theorem 2.1.1), we obtain the desired result. �

Let us describe next the Segal-Bargmann space H2(Cn, µ), which is the closed subspace
of L2(Cn, µ) consisting of all holomorphic and µ-square integrable functions. Moreover, we
introduce the notion of Weyl-operators acting unitarily on both L2(Cn, µ) and H2(Cn, µ).

For j := ( j1, · · · , jn ) ∈ Nn
0 and z ∈ Cn define the monomials mj(z) = zj11 · · · zjnn . We

sometimes also write mj = zj and j! := j1! · · · jn!. Then the system

[
ej := (j!)−

1
2mj : j ∈ Nn

0

]
(2.1.4)
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forms an orthonormal basis inH2(Cn, µ). Throughout this chapter 〈·, ·〉 denotes the Euclid-
ean inner product and ‖ · ‖ the Euclidean norm in Cn. Because each point evaluation is
a continuous functional on H2(Cn, µ) the Segal-Bargmann space is a Hilbert space with
reproducing kernel K which is given by (cf. [82]):

K( z, w ) := exp
(
〈z, w〉

)
z, w ∈ Cn. (2.1.5)

We also use the normalized kernel function defined by

kw( z ) := K( z, w ) · ‖K(·, w ) ‖−1
2 = exp

(
〈z, w〉 − 1

2
‖ w ‖2

)
(2.1.6)

for all z, w ∈ Cn. It is well-known (and not hard to prove) that the reproducing kernel K
is uniquely defined by the following properties:

(a) As a function of the first variable we have K(·, ζ ) ∈ H2(Cn, µ) for all ζ ∈ Cn,

(b) K is conjugate-symmetric: K( z, ζ ) = K( ζ, z ) for all ( z, ζ ) ∈ Cn × Cn,

(c) Reproducing property: For all f ∈ H2(Cn, µ) and for all z ∈ Ω:

f(z) =

∫

Ω

f ·K( z, ·) dµ. (2.1.7)

An application of the Cauchy-Schwartz inequality to equality (2.1.6) leads to a growth
condition for the functions in H2(Cn, µ). For z ∈ Cn a function f in the Segal-Bargmann
space and with the point evaluation δz ∈ H2(Cn, µ)′ in z ∈ Cn defined by δz(f) = f(z) we

have the equality ‖ δz ‖ = K( z, z )
1
2 and so:

δz( f ) = | f(z) | ≤ ‖ f ‖2 ·K( z, z )
1
2 = ‖ f ‖2 · exp

( 1

2
‖ z ‖2

)
.

Let P denote the orthogonal projection from L2(Cn, µ) onto H2(Cn, µ). Then P can
be written as an integral operator in the form (2.1.7). Moreover, for any bounded symbol
in the space f ∈ ( L∞(Cn), ‖ · ‖∞ ) we can define the Toeplitz operator Tf by:

Tf : H2
(

Cn, µ
)
→ H2

(
Cn, µ

)
: g 7→ P ( fg ) = P Mf g. (2.1.8)

where Mf is the multiplication by f . Then Tf is bounded with ‖ Tf ‖ ≤ ‖ f ‖∞. We also
consider densely defined Toeplitz operators with unbounded symbols. Let us describe the
details:

For z, w ∈ Cn let τz denote the z-shift on Cn given by τz(w) := z + w. The Gaussian
measure µ is not invariant under translations and we define the linear space:

T ( Cn ) :=
{
g ∈ L2 ( Cn, µ ) : g ◦ τx ∈ L2 ( Cn, µ ) , ∀ x ∈ Cn

}
. (2.1.9)
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It is easy to verify that a measurable function h on Cn belongs to T (Cn) if and only if
for every x ∈ Cn: [

λ 7→ h( λ ) ·K( λ, x )
]
∈ L2 ( Cn, µ ) .

Moreover, the linear span of the set of all kernel functions {K(·, x ) : x ∈ Cn } is dense
in H2(Cn, µ). Hence the canonical domain of definition of the Toeplitz operator Th = PMh

given by

D
(
Th
)

:=
{
g ∈ H2 ( Cn, µ ) : g · h ∈ L2 ( Cn, µ )

}
(2.1.10)

is a dense, linear subspace of H2(Cn, µ) whenever the symbol h belongs to T (Cn). In order
to define finite products of Toeplitz operators Th with symbols of polynomial growth we
have to determine an invariant subspace ofH2(Cn, µ). In the following we use the notations
H1 := L2(Cn, µ) and H2 := H2(Cn, µ).

We inductively define a sequence (an)n∈N with a1 := 1
4

and an+1 := [ 4 · (1 − an) ]−1 for
all numbers n ≥ 2. It is an easy computation that (an)n∈N has the following properties:

(a) an <
1
2
, ∀ n ∈ N,

(b) (an)n∈N is strictly increasing,

(c) limn→∞ an = 1
2
.

Now let us denote by P[ Cn ] the linear space of all polynomials on Cn in the complex
variables z := ( z1, · · · , zn ) and z̄ := ( z̄1, · · · , z̄n ). Furthermore, we write Pa[ Cn ] for all
analytic polynomials in z. We set

Lexp

(
Cn
)

:=
{
f ∈ H1 : ∃ 0 < c < 2−1, ∃ D > 0 with | f(z) | ≤ D exp

(
c ‖ z ‖2

)
a.e.

}
.

Then Lexp(Cn) contains all polynomials p ∈ P[ Cn ] which form a dense subspace of H1.
We define

Hexp

(
Cn
)

:= H
(

Cn
)
∩ Lexp

(
Cn
)
, (2.1.11)

where H(Cn) denotes the space of entire functions on Cn. Similarly, the analytic poly-
nomials Pa[ Cn ] are contained in Hexp(Cn) and both spaces are dense in H2. With the
Lebesgue measurable complex valued functions M(Cn) on Cn and j ∈ N we define:

(1) Polj( Cn ) :=
{
f ∈ M( Cn ) : | f(z) | ( 1 + ‖ z ‖2 )

− j
2 ∈ L∞(Cn)

}
, the functions of

order j at infinity,

(2) Pol( Cn ) :=
⋃
j∈N

Polj ( Cn ) , all functions of finite order at infinity.

Proposition 2.1.2 For any measurable symbol f in Pol( Cn ) we have the inclusions:

Tf

[
Hexp ( Cn )

]
⊂ Hexp ( Cn ) ⊂ D ( Tf )

where the domain of definition D(Tf ) of the operator Tf was defined in (2.1.10).
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Proof Because f has polynomial growth it is obvious that Hexp( Cn ) ⊂ D( Tf ). In order
to prove the first inclusion fix g ∈ Hexp( Cn ). Then by definition we can choose numbers
0 < c < 1

2
and D1 > 0 such that

| g( z ) | ≤ D1 exp
(
c ‖ z ‖2

)
z ∈ Cn.

By the properties (a), (b) and (c) and with the sequence (an)n∈N defined above there is
a number n0 ∈ N such that c < an0 <

1
2
. Moreover, there is D2 > 0 with

| f( z ) · g( z ) | ≤ D2 exp
(
an0 ‖ z ‖2

)
, a.e. on C.

Using the transformation formula for the integral together with the reproducing prop-
erty of K we obtain:

∣∣ Tfg( z )
∣∣ ≤

∫

Cn

∣∣ f g exp
(
〈z, ·〉

)∣∣ dµ

≤ D2 π
−n

∫

Cn

exp
(

Re〈 z, · 〉 −
[
1 − an0

]
‖ · ‖2

)
dv

= D2

(
1 − an0

)−n
∫

Cn

exp
(

2Re
〈

2−1 :
(

1 − an0

)− 1
2 z, ·

〉 )
dµ

= D3 exp
( [

4 · (1 − an0)
]−1 ‖ z ‖2

)

= D3 exp
(
an0+1 ‖ z ‖2

)
,

where D3 := D2 · ( 1 − an0 )−n. From (a) above we conclude that Tfg ∈ Hexp( Cn ). �

By Proposition 2.1.2 all finite products of Toeplitz operators with symbols in Pol(Cn)
are well-defined on the dense subspace Hexp(Cn) of H2. In general, these operators are
unbounded, but in certain cases there are continuous extensions to H2. We do not want
to make any differences in the notations when we pass to these extensions.

Next we introduce the notion of Weyl operators on H1 and H2. They are weighted
unitary shift operators which correspond to the translations in L2( Rn, v ).

Definition 2.1.1 For x ∈ Cn and f ∈ L2(Cn, µ) we define Wxf := kx · f ◦ τ−x where kx is
defined in (2.1.6). The operators Wx ∈ L(L2(Cn, µ)) are called Weyl operators.

All results on the Weyl operators in Lemma 2.1.1 below follow by straightforward
computations and we omit the details.

Lemma 2.1.1 With x ∈ Cn and a symbol g ∈ T (Cn) the following relations between the
operators Wx, P , Mg and Tg are valid:

(1) Wx is an unitary operator with W ∗
x = W−x = W−1

x .

(2) The commutator [ P,Wx ] := P Wx −Wx P vanishes and Wx(H2 ) = H2.
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(3) The composition rules W ∗
x Mg Wx = Mg◦τx and W ∗

x Tg Wx = Tg◦τx.

(4) For x, y ∈ Cn we have WxWy = exp( −iIm 〈 x, y 〉 )Wx+y.

By another application of the Schur test we examine how to obtain norm estimates for
operators on H2. Let S : H2 ⊃ D(S) → H2 be densely defined such that with its adjoint
operator S∗ the inclusion holds:

M := span
{
K(·, λ) : λ ∈ Cn

}
⊂ D( S ) ∩ D ( S∗ ) . (2.1.12)

Then consider the measurable function KS : Cn × Cn → C defined by:

KS(x, y) :=
[
S K(·, y )

]
( x ) =

[
S∗K(·, x )

]
( y ), x, y ∈ Cn.

By applying the reproducing property of K we obtain for p ∈ span{K(·, λ ) : λ ∈ Cn }
and all z ∈ Cn the equation

[
Sp
]
( z ) =

〈
Sp,K(·, z )

〉
2

=
〈
p, S∗K(·, z )

〉
2

=

∫

Cn

p KS( z, ·) dµ.

Hence, S is an integral operator on a dense subspace of H2 with kernel KS. With these
notations we prove:

Lemma 2.1.2 With an operator S as above and the definition p := exp( 1
2
‖ · ‖2 ) we have

the equations

∫

Cn

p |KS( x, ·) | dµ = 2n p( x ) ‖ S∗x1 ‖L1(Cn,µ 1
2
), (2.1.13)

∫

Cn

p |KS(·, y ) | dµ = 2n p( y ) ‖ Sy1 ‖L1(Cn,µ 1
2
). (2.1.14)

Here S∗x := W−x S
∗Wx and Sy := W−y SWy. If one of the integrals in (2.1.13) or (2.1.14)

does not exist, then both sides of these equations will be ∞.

Proof For all x, y ∈ Cn we have KS( x, y ) = KS∗( y, x ). Hence replacing S∗ by S it is
sufficient to prove (2.1.13).

∫

Cn

p (x)
∣∣ [ S∗K(·, x)

]
( y )

∣∣ dµ( x )

= exp
( 1

2
‖ x ‖2

)∫

Cn

| S∗Wx1 | exp

(
1

2
‖ · ‖2

)
dµ

=2n exp
(
‖ x ‖2

) ∫

Cn

∣∣ [W−xS∗Wx1
]
(· − x )

∣∣ ∣∣ exp( 〈· − x, x〉 )
∣∣ dµ 1

2
= (∗).
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After the shift y 7→ y + x we obtain:

(∗) =
1

πn
exp

( 1

2
‖ x ‖2

)∫

Cn

∣∣W−xS∗Wx1
∣∣ exp

(
−1

2
‖ · ‖2

)
dv

= p ( x )
1

πn

∫

Cn

∣∣ S∗x1
∣∣ exp

(
−1

2
‖ · ‖2

)
dv.

From this equation (2.1.13) follows. Moreover, the integral on the left hand side of
(2.1.13) exists if and only if the integral on the right hand side exists. �

Now, we want to apply the Schur test (see Theorem 2.1.1) to the integral operator with
kernel KS. We define C(S) ∈ R ∪ {∞} by

C(S) := 2n sup
{
‖ Sλ1 ‖L1(Cn,µ 1

2
) : λ ∈ Cn

}
. (2.1.15)

The following result is a straightforward application of Theorem 2.1.1 and Lemma 2.1.2

Theorem 2.1.2 Let S : H2 ⊃ D(S) → H2 be densely defined and linear with adjoint
operator S∗ : H2 ⊃ D(S∗) → H2 such that

(i) it holds {K(·, λ ) : λ ∈ Cn } ⊂ D(S) ∩ D(S∗) and

(ii) the numbers C(S) and C(S∗) defined in (2.1.15) are finite.

Then S has a continuous extension to an integral operator on H1 which again is denoted
by S with ‖ S ‖ ≤ { C(S) · C(S∗) } 1

2 .

Let us describe the notion of Berezin transform for a (possibly unbounded) operator A
on H2. We want to mention that many of the concepts below have a meaning for Bergman
spaces in general and they lead to many interesting questions concerning the operator
theory.

Assume that M ⊂ D(A) where M was defined in (2.1.12). Formally, we associate a
symbol Ã to A by:

Ã : Cn → C : Ã(λ) :=
〈
Akλ, kλ

〉
L2(Cn,µ)

. (2.1.16)

Recall that for λ ∈ Cn the function kλ is the normalized Bergman kernel of H2 in-
troduced in (2.1.6). The complex valued function Ã is called Berezin transform of the
operator A. It can be shown that for any A ∈ L(H2) the Berezin transform Ã is bounded
and leads to the Toeplitz operator:

TÃ =

∫

Cn

W−t AWt dµ(t) =

∫

Cn

At dµ(t)

under a process of integration in the sense of Bochner (cf. [22]). Hence TÃ is some kind of
average of A. Without proofs we give two basic properties of the Berezin transform:
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(I): If A is bounded, then ‖ Ã ‖∞ ≤ ‖A ‖. In the case where A is compact it follows that:

lim
λ→∞

Ã( λ ) = 0 (2.1.17)

but in general (2.1.17) is not sufficient for A to be compact. Moreover, the operator
A vanishes if and only if Ã = 0.

(II): For any symbol f ∈ T (Cn) and A = Tf it can be shown that M ⊂ D(A) and the
Berezin transform Ã of a Toeplitz operator is given by:

Ber(f) := f̃( λ ) := T̃f ( λ ) =

∫

Cn

f(· + λ ) dµ.

In case of a bounded symbol f ∈ L∞(Cn) and for all j ∈ N and by [22] the iterated
Berezin transform Berj(f) is the solution of the heat equation at the time t = 1

4
j:

[
Berj(f)

]
(x) =

1

(πj)n

∫

Cn

f exp

(
−‖ x− ·‖2

j

)
dv

Hence f̃ is a smooth bounded function on Cn. For holomorphic f in T (Cn) it yields

T̃f = f . In general, the operator Ber is ”smoothing”.

Remark 2.1.2 There is an easy connection between the function Sx1 which appears in
Lemma 2.1.2 for x ∈ Cn and the Berezin transform of some operator S. Note that it holds
Wx1 = kx and so it follows that:

[
Sx1

]
( 0 ) =

[
W−x S Wx1

]
(0) =

〈
W−x S kx, 1

〉
2

=
〈
Skx,Wx1

〉
2

= S̃( x ).

Heuristically, this equation shows that S̃ only contains little information on the complex
valued function Sx1 which led to norm estimates on the operator S (see Theorem 2.1.2).
This may count as a hint on the fact that boundedness of S̃ is not sufficient for the
boundedness of the operator S. Nevertheless, the Berezin transform and the closely related
notion of mean oscillation (cf. the appendix) of a symbol plays an important role for norm-
estimates on operators (especially for Hankel operators). Some of these results can be found
in the appendix and [55], [56].

In order to estimate the numbers C(S) and C(S∗) in Theorem 2.1.2 where S is a finite
product of Toeplitz operators with symbols in Pol(Cn) we need the following two lemma:

Lemma 2.1.3 For s ∈ [ 4−1, 2−1 ] the Toeplitz projection P is bounded from L1(Cn, µϕ(s))
to L1(Cn, µs) where

ϕ(s) := 1 − 1

4s
and µ0 := v.

In particular, it follows that P can be considered as an operator in L(L1(Cn, µ 1
2
)) resp.

from L1(Cn, v) to L1(Cn, µ 1
4
).
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Proof Let s ∈ [ 4−1, 2−1 ] and fix a function f ∈ L1(Cn, µϕ(s)). Then we conclude that

‖ Pf ‖L1(Cn,µs) ≤
sn

πn

∫

Cn

∫

Cn

| f( u ) | exp
(

Re 〈z, u〉
)
dµ(u) exp

(
−s ‖ z ‖2

)
dv(z)

=
sn

πn

∫

Cn

| f(u) |
∫

Cn

exp
(

Re 〈z, u〉 − s ‖ z ‖2
)
dv(z) dµ(u)

=

∫

Cn

| f(u) |
∫

Cn

exp
(
2 Re

〈
z,

1

2
s−

1
2u
〉 )

dµ(z) dµ(u).

By the reproducing property of exp( 〈·, ·〉 ) we obtain exp( [4s]−1 ‖ u ‖2 ) for the inner
integral. Hence

‖ Pf ‖L1(Cn,µs) ≤ π−n
∫

Cn

| f | exp
(

−
[
1 − 1

4s

]
‖ · ‖2

)
dv

=

[
1 − 1

4s

]−n
‖ f ‖L1(Cn,µϕ(s)).

In particular, P ∈ L( L1(Cn, µ 1
2
) ) follows from ϕ(1

2
) = 1

2
and the second assertion can

be obtained for s = 1
4
. �

For s ∈ ( 0, 2−1 ] we conclude s ≥ ϕ(s) from

s
(
s− ϕ( s )

)
=
(
s− 2−1

)2 ≥ 0.

Consider the sequence ( xn(s) )n∈N ⊂ R recursively defined by

(i) x1( s ) := s,

(ii) xn+1( s ) := ϕ ( xn(s) ) for xn( s ) > 0.

In case xn(s) ≤ 0 let xn+1( s ) := xn( s ). Then ( xn(s) )n∈N is monotonely decreasing
and bounded from top by 1

2
. Moreover, xm(1

2
) = 1

2
for all m ∈ N. Obviously all xm(s)

continuously depend on s for s in a small neighborhood of 1
2
. Hence for each c ∈ ( 0, 1

2
)

and fixed m ∈ N we can choose ε(m, c ) > 0 such that

c ≤ xj( s ) ≤ 1

2
, j ∈ { 1, · · · ,m } for

1

2
− ε(m, c ) ≤ s ≤ 1

2
.

Lemma 2.1.4 Let p ∈ P[ Cn ] a polynomial and assume that 0 ≤ c1 < c2 ≤ 2−1. Then the
multiplication Mp : L1(Cn, µc1) → L1(Cn, µc2) is continuous.

Proof Choose a number Cp > 0 such that

| p (z) | ≤ Cp exp
(

[ c2 − c1 ] ‖ z ‖2
)

for all z ∈ Cn. Then we have with f ∈ L1(Cn, µc1):

‖Mpf ‖L1(Cn,µc2 ) ≤
cn2
πn

∫

Cn

| p | exp
(

[c1 − c2] ‖ · ‖2
)
| f | exp

(
−c1 ‖ · ‖2

)
dv

≤ C · ‖ f ‖L1(Cn,µc1 ).

where C > 0 is the positive number defined by C := Cp ( c−1
1 · c2 )n. �
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Corollary 2.1.1 Fix m ∈ N and let p1, · · · , pm ∈ P[ Cn ]. Then for each c ∈ ( 0, 1
2

) there
exists C > 0 such that:

‖ Tp1 · · ·Tpm
f ‖L1(Cn,µ 1

2
) ≤ C · ‖ f ‖L1(Cn,µc)

for all functions f ∈ L1(Cn, µc). Here the constant C is independent of f .

Proof With the notations above we can choose ε( c,m ) > 0 and s ∈ [ 2−1 − ε( c,m ), 2−1 ]
such that c ≤ xj+1( s ) < xj( s ) < 1

2
for j = 1, · · · , 2m− 1. By Lemma 2.1.3 and Lemma

2.1.4 the operators

Mpl
, P : L1

(
Cn, µxj+1(s)

)
−→ L1

(
Cn, µxj(s)

)
, ( l = 1, · · · ,m )

are continuous for j = 1, · · · 2m− 1. Thus there are positive numbers C and C̃ > 0 with

‖ Tp1 · · ·Tpm
f ‖L1(Cn, µ 1

2
) ≤ C̃ · ‖ f ‖L1(Cn, µx2m(s)) ≤ C · ‖ f ‖L1(Cn, µc).

This now proves Corollary 2.1.1. �

2.2 Commutators of P with linear vector fields

Denote by C∞c (Cn) the space of smooth complex-valued functions on Cn with compact

support. Let us consider P , ∂i := ∂
∂zi

and ∂i := ∂
∂zi

as operators on C∞c (Cn). With any

multi-index α ∈ Nn
0 we write ∂α := ∂αn

n · · · ∂α1
1 and ∂̄α := ∂̄αn

n · · · ∂̄α1
1 . As we have seen

before the Toeplitz projection P is an integral operator on L2(Cn, µ) given by:

P : H1 → H2 : h 7→
∫

Cn

h(u) exp
(
〈·, u〉

)
dµ(u). (2.2.1)

Applying the Schur test we now can examine the boundedness of commutators of P
with the derivatives ∂i and ∂̄i:

Lemma 2.2.1 With 0 6= α ∈ Nn
0 the following commutator relations between P , ∂α and

∂̄α hold:

(a) [ P, ∂α ] := P ∂α − ∂α P = 0.

(b) The commutator [ P, ∂̄α ] = P ∂̄α has a bounded extensions to L2( Cn, µ ).

Proof Fix x ∈ Cn, a multi-index 0 6= α ∈ Nn
0 and f ∈ C∞c (Cn). Then with the Segal-

Bargmann kernel K : Cn × Cn → C given in (2.1.5) we have:

∂αPf( x ) = ∂α
〈
f,K(·, x )

〉
2

(2.2.2)

=

∫

Cn

f( u ) uαK( u, x ) dµ( u ) =
〈
uα f,K(·, x )

〉
2
.



52 Localization of the Segal-Bargmann Projection

Now, integrating by parts together with (2.2.2) leads to:

P∂αf( x ) =
〈
∂αf,K(·, x )

〉
2

=
(−1)| α |

πn

∫

Cn

f( u )
∂α

∂uα
exp

(
〈x, u〉 − ‖ u ‖2

)
dv( u )

=
〈
uα f,K(·, x )

〉
2

= ∂αPf( x ).

This proves (a). In order to show (b) we integrate by parts again:

P ∂̄αf(x) =
〈
∂̄αf,K(·, x )

〉
2

=
(−1)| α |

πn

∫

Cn

f( u )
∂̄α

∂ūα
exp

(
〈x, u〉 − ‖ u ‖2

)
dv( u )

=

∫

Cn

f( u )
[
u− x

]α
K( x, u ) dµ( u ).

Because ∂̄αP = 0 on C∞c (Cn) for any α 6= 0 it follows [P, ∂
α
] = P ∂

α
. Now we conclude

from Proposition 2.1.1 with F := ‖ · ‖|α| ∈ L1(Cn, µ 1
2
) that the commutators [ P, ∂

α
] can

be extended to continuous operators on H1. �

Consider the space Xlin(Cn) := span{ ∂j, ∂̄j : j = 1, · · · , n } of all vector fields with
constant coefficients on Cn. Using the Lemma above we now can compute the iterated
commutators of P with a finite system Z of vector fields in Xlin(Cn). For the notations
below see Definition 1.2.2.

Proposition 2.2.1 Let Z be a finite system in Xlin(Cn) of length r. Then we have

ad [ Z ] (P ) ∈ span
{
P ∂̄α : α ∈ Nn

0 and | α | = r
}

=: Hr. (2.2.3)

In particular, it follows that the commutator ad[ Z ](P ) admits a bounded and linear
extension to L2(Cn, µ).

Proof According to Lemma 2.2.1, (b) it is sufficient to prove (2.2.3). We use induction
with respect to r ∈ N. For a single vector field

Z1 =
n∑

j=1

[
aj∂j + bj ∂̄j

]
∈ Xlin ( Cn )

we obtain from Lemma 2.2.1, (a) and (b) :

[ Z1, P ] =
n∑

j=1

aj [ ∂j, P ] +
n∑

j=1

bj
[
∂̄j, P

]
= −

n∑

j=1

bjP ∂̄j.
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and this proves (2.2.3) in the case r = 1. Now, we assume that for r ∈ N the commutator
ad[ Z ](P ) has the form

∑
|α|=r cα P ∂̄α with coefficients cα ∈ C and we choose a linear

vector field

Zr+1 :=
n∑

j=1

[
dj∂j + ej ∂̄j

]
∈ Xlin ( Cn ) .

Then it follows that:

ad [ Z, Zr+1 ] (P ) =


 Zr+1,

∑

|α|=r

cα P ∂̄α




=
n∑

j=1

∑

|α|=r

cα

{
dj
[
∂j, P ∂̄

α
]
+ ej

[
∂̄j, P ∂̄

α
] }

.

For j = 1, · · · , n we are using the following equalities which can be obtained from
Lemma 2.2.1 and ∂̄αP = 0 in the case α 6= 0:

(i)
[
∂j, P ∂̄

α
]

= P
[
∂j, ∂̄

α
]
+ [ ∂j, P ] ∂̄α = 0,

(ii)
[
∂̄j, P ∂̄

α
]

= P
[
∂̄j, ∂̄

α
]
+
[
∂̄j, P

]
∂̄α = −P ∂̄j ∂̄

α.

Hence we have ad [ Z, Zr+1 ] (P ) = −∑n

j=1

∑
|α|=r cα ej P ∂̄j ∂̄

α ∈ Hr+1. �

2.3 Radial symmetric vector fields.

Our next aim is it to define a wider class Y( Cn ) of closable operators such that each
finite system A in Y(Cn) admits commutators ad[ A ](P ) which have bounded extensions
from C∞c (Cn) to H1 := L2(Cn, µ). In the previous section we have shown (see Proposition
2.2.1) that this property holds if we choose Y(Cn) to be the space of all linear vector fields
on Cn. Following the construction in chapter 1 we now can associate a sequence of operator
algebras containing P to each finite set in Xlin(Cn).

There are some disadvantages in using these vector fields. As we will see below (compare
Lemma 2.4.1) for j = 1, · · · , n the partial derivatives ∂j and ∂̄j are not symmetric on
C∞c (Cn) with respect to 〈·, ·〉2. Instead it holds ∂∗j = zj − ∂̄j and ∂̄∗j = z̄j − ∂j and because
of the unbounded multiplication operators appearing in these formulas the space Xlin(Cn)
is not invariant under the ∗-operation. One aim of our studies is it to find localizations
of operator algebras to cones C ⊂ Cn. For this purpose we need vector fields which are
supported in C. Thus we have to enlarge Xlin(Cn) to a more appropriate space Y(Cn) such
that a boundedness result similar to Proposition 2.2.1 stays true if we replace Xlin(Cn) by
the new class Y(Cn).

Our first example shows that we can not simply replace Xlin (Cn) by the space of all
smooth vector fields with bounded coefficients. It turns out that the boundedness of the
commutators [X,P ] where X =

∑{aj ∂j + bj ∂̄j } is a smooth vector field is closely related
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to the oscillation of aj and bj at infinity. We give X with rapidly oscillating coefficients
such that [X,P ] not even is bounded on H2 := H2(Cn, µ).

Example 2.3.1 In case of dimension n = 1 we define f(z) := exp( i| z |2 ) for z ∈ C. Let
us consider the smooth vector field X := f ∂, then we show that the commutator

[X,P ] = Mf [ ∂, P ] + [Mf , P ] ∂ = [Mf , P ] ∂

does not admit a bounded extension from the dense subspace P [ C∞c ( C ) ] to H2. With
the Toeplitz operator Tf = P Mf and the orthonormal basis of H2 given in (2.1.4) it is a
straightforward computation that Tf is diagonal of the form

Tfej = [ 1 − i ]−( j+1 ) ej, j ∈ N0.

Let us compute the norm of [Mf , P ]∂ej. It follows with ∂ej =
√
j ej−1 for j ∈ N0 that:

[Mf , P ] ∂ej =
√
j {Mf − Tf } ej−1 =

√
j
{
f − [ 1 − i ]−j

}
ej−1,

‖ [Mf , P ] ∂ej ‖2 ≥
√
j
{

‖ fej−1 ‖2 − 2−
j
2 ‖ ej−1 ‖2

}
=
√
j
[

1 − 2−
j
2

]
.

Hence the numerical sequence ( ‖ [Mf , P ] ∂ej ‖2 )j is unbounded as j tends to infinity
and so the operator [X,P ] does not admit a bounded extension to H2.

We give the definition of a space Y(Cn) = XΦ(Cn) which serves our purposes in a better
way than Xlin(Cn). It will consist of smooth vector fields with coefficients in C∞b (Cn). Let
us start with some notations:

Let Bn ⊂ Rn be the Euclidean ball in Rn and let U ⊂ Rn be an open neighborhood of
the boundary ∂Bn of Bn. With Ṙn := Rn \ {0} we consider

Ψ : Ṙn → ∂Bn : x 7→ x · ‖ x ‖−1.

Let f ∈ C∞(U) and set:

fr : Ṙn → C : x 7→ f ◦ Ψ( x ).

Then fr is a smooth function on Ṙn and in the following we refer to it as the radial
extension of f . Choose Φ ∈ C∞( Rn, [ 0, 1 ] ) with Φ ≡ 0 on 1

2
Bn and Φ ≡ 1 on Rn \Bn and

define:

R
(

Ṙn
)

:=
{
h : Ṙn → C : h = f ◦ Ψ where U ⊃ ∂Bn and f ∈ C∞(U)

}
,

RΦ ( Rn ) :=
{
h : Rn → C : h = g · Φ on Ṙn, where g ∈ R

(
Ṙn
)

and h(0) = 0
}
.

Proposition 2.3.1 With h ∈ R( Ṙn ) it holds | h( x ) − h( u ) | · ‖ u ‖ ≤ C‖ x− u ‖ for all
x, u ∈ Ṙn where C > 0 is independent of u and x.
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Proof Let h ∈ R(Ṙn) and without loss of generality we assume that h is real-valued.
Then there exits an open set U ⊂ Rn with ∂Bn ⊂ U and a function f ∈ C∞(U) such that
h = f ◦ Ψ. First, we assume that n > 2. Choose v, w ∈ ∂Bn and define:

a :=
1

2

(
v + w

)
and b :=

1

2

(
v − w

)
.

It follows that a ⊥ b and because of n > 2 we can choose a vector c ∈ span{a, b}⊥ such
that ‖ c ‖ = ‖ b ‖. Consider the smooth path γ : [ 0, 1 ] → ∂Bn given by

γ( t ) := a+ b cos πt+ c sin πt.

It is easy to check, that γ is well-defined with γ(0) = v and γ(1) = w. Moreover, by
the mean value theorem we have:

| f( v ) − f( w ) | ≤
∫ 1

0

∣∣∣ d
dt

[
f ◦ γ

]
(t)
∣∣∣ dt (2.3.1)

≤ sup
q∈ ∂Bn

‖Df( q ) ‖
∫ 1

0

∥∥∥ d

dt
γ( t )

∥∥∥ dt.

Because of
∫ 1

0
‖ d
dt
γ(t) ‖ = π ‖ b ‖ = π

2
‖ v − w ‖ it follows from (2.3.1), that there is

C > 0 with
| f( v ) − f( w ) | ≤ C ‖ v − w ‖ ∀ v, w ∈ ∂Bn. (2.3.2)

In the case n = 2 choose v = (cosϕ1, sinϕ1) and w = (cosϕ2, sinϕ2) in ∂B2. Without
loss of generality we assume that |ϕ1 −ϕ2 | ≤ π. Then we define the path γ̃ : [ 0, 1 ] → ∂B2

by

γ̃(t) :=
(

cos
(

[ 1 − t ] ϕ1 + t ϕ2

)
, sin

(
[ 1 − t ] ϕ1 + t ϕ2

) )
.

Again it follows that γ̃(0) = v and γ̃(1) = w and we have ‖ d
dt
γ̃( t ) ‖ = |ϕ2 −ϕ1 | for all

t ∈ [ 0, 1 ]. Moreover, an easy calculation shows that there is c > 0 independent of v and
w such that

‖ w − v ‖ =
√

2
[

1 − cos
(
| ϕ2 − ϕ1 |

) ] 1
2

= 2 sin

(
1

2
| ϕ2 − ϕ1 |

)
≥ c | ϕ2 − ϕ1 | .

Hence we conclude from (2.3.1) that (2.3.2) holds with a constant C > 0. Finally, we
have for all dimensions n ∈ N and x, u ∈ Ṙn:

∣∣∣ h( x ) − h( u )
∣∣∣ ‖ u ‖ =

∣∣∣ f ◦ Ψ( x ) − f ◦ Ψ( u )
∣∣∣ ‖ u ‖

≤ C
∥∥ ‖ u ‖ · ‖ x ‖−1 · x− u

∥∥

≤ C
∣∣∣ ‖ u ‖ · ‖ x ‖−1 − 1

∣∣∣ ‖ x ‖ + C ‖ x− u ‖

≤ C
∣∣∣ ‖ u ‖ − ‖ x ‖

∣∣∣+ C ‖ x− u ‖
≤ 2 C ‖ x− u ‖. �
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Using the result of Proposition 2.3.1 we now are able to prove a similar estimate on the
functions in RΦ(Rn).

Corollary 2.3.1 For h ∈ RΦ(Rn) it follows | h(x) − h(u) | · ‖ u ‖ ≤ C [ 1 + ‖ x− u ‖ ] for
all x, u ∈ Rn. Here C > 0 is a positive constant independent of h.

Proof Let h ∈ RΦ(Rn), then there is f ∈ R(Ṙn) with h(x) = [ f · Φ ](x) for all x 6= 0
and h(0) = 0. If x = 0 or u = 0 the inequality in Corollary 2.3.1 directly follows from the
boundedness of h. Hence we assume that x, u ∈ Ṙn. From 0 ≤ Φ ≤ 1 we obtain:

| h(x) − h(u) | ≤ | f(x) − f(u) | + sup
{
|f(z)| : z ∈ Ṙn

}
· | Φ( x ) − Φ( u ) |. (2.3.3)

By Proposition 2.3.1 we can find C > 0 with | f(x) − f(u) | · ‖ u ‖ ≤ C ‖ x − u ‖.
Moreover, we have:

∣∣∣ Φ( x ) − Φ( u )
∣∣∣ ‖ u ‖ ≤

[
| 1 − Φ( x ) | + | 1 − Φ( u ) |

] [
‖ x ‖ + ‖ x− u ‖

]

≤ 1 + 2‖ x− u ‖ + | 1 − Φ( u ) |
[
‖ u ‖ + ‖ x− u ‖

]

≤ 2 + 3 ‖ u− x ‖.

Together with (2.3.3) now the desired result follows. �

For k ∈ Z we write f = O( ‖ x ‖k ) as x → ∞ iff f(x) · ‖ x ‖−k is bounded for all x
sufficiently large. The function f is said to be of order k at infinity.

Lemma 2.3.1 With Ψ := (Ψ1, · · · ,Ψn)
T where Ψj(x) := xj · ‖ x ‖−1 any multi-index

α ∈ Nn
0 and all j = 1, · · · , n we have

∂αΨj

∂xα = O( ‖ x ‖−|α| ) as x→ ∞.

Proof For α = 0 Lemma 2.3.1 is obvious. Now fix 0 6= α ∈ Nn
0 and j ∈ { 1, · · · , n }, then

we prove the following formula for the partial derivatives of Ψj:

∂αΨj

∂xα
( x ) =

pj,α ( x )

‖ x ‖2| α |+1
(2.3.4)

where pj,α is a polynomial on Rn of degree |α |+1. First let α = ei = (δi,j)j for any number
i ∈ { 1, · · · , n }, then we obtain by a straightforward computation:

∂Ψj

∂xi
( x ) =

1

‖ x ‖3

{
−xj xi for i 6= j

‖ x ‖2 − x2
i for i = j.

This proves (2.3.4) in the case | α | = 1. Now, assume that | α | > 1 and choose l such
that αl ≥ 1. Then by induction we have with γ := α − el and a polynomial pj,γ of degree
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| γ | + 1 = | α |:

∂αΨj

∂xα
(x) =

∂

∂xl

∂γΨj

∂xγ
(x)

=
∂

∂xl

pj,γ (x)

‖ x ‖2| α |−1

=
‖ x ‖2 ∂pj,γ

∂xl
(x) − (2| α | − 1) pj,γ (x) xl

‖ x ‖2| α |+1
.

Moreover, the polynomial

pj,α ( x ) := ‖ x ‖2 ∂pj,γ
∂xl

( x ) −
(

2| α | − 1
)
pj,γ ( x ) xl

is of degree | γ | + 2 = | α | + 1. Using equation (2.3.4) for each α ∈ Nn
0 there is Cα > 0

such that ∣∣∣∣
∂αΨj

∂xα
( x )

∣∣∣∣ =
| pj,α ( x ) |
‖ x ‖| α |+1

‖ x ‖−| α | ≤ Cα ‖ x ‖−| α |

for all x ∈ Ṙn and this proves our assertion. �

Corollary 2.3.2 For h ∈ R(Ṙn) and α ∈ Nn
0 we have ∂αh

∂xα = O( ‖ x ‖−| α | ) as x→ ∞.

Proof Let h = f ◦ Ψ where f ∈ C∞(U) and U is an open neighborhood of ∂Bn. In the
case α = 0 Corollary 2.3.2 follows from the boundedness of f on ∂Bn. Let us consider the
case | α | = 1. We obtain for i ∈ { 1, · · · , n }:

∂h

∂xi
( x ) =

n∑

l=1

∂f

∂xl
◦ Ψ ( x ) · ∂Ψl

∂xi
( x ). (2.3.5)

Hence the assertion follows from the boundedness of all partial derivatives of f on ∂Bn

and Lemma 2.3.1. Now assume that

∂αh

∂xα
= O

(
‖ x ‖−| α |

)
as x→ ∞

for α ∈ Nn
0 with | α | ≤ k and k ∈ N. We choose γ ∈ Nn

0 with | γ | = k+ 1, then there is an
index i ∈ { 1, · · · , n } such that γi > 0 and we set α := γ − ei. If we apply the Leibniz rule
to (2.3.5), we obtain:

∂γh

∂xγ
( x ) =

∂α

∂xα
∂h

∂xi
( x ) (2.3.6)

=
n∑

l=1

∑

β≤α

(
α

β

)
∂α−β

∂xα−β

[
∂f

∂xl
◦ Ψ

]
( x ) · ∂

β+eiΨl

∂xβ+ei
( x ).
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Now, by induction and using Lemma 2.3.1 again it follows for l = 1, · · · , n and β ≤ α
as x→ ∞ that:

∂α−β

∂xα−β

[
∂f

∂xl
◦ Ψ

]
( x ) = O

(
‖ x ‖−| α |+| β |

)
,

∂β+eiΨl

∂xβ+ei
( x ) = O

(
‖ x ‖−| β |−1

)
.

Hence we conclude from (2.3.6) that ∂γh
∂xγ (x) = O(‖x‖−| γ | ). By induction the assertion

follows. �

Let M be one of the spaces Rn or Ṙn, then motivated by our results above and with
numbers j, k ∈ N0 we define:

Ok(M) :=
{
f : M → C : f = O

(
‖ x ‖−k

)
as x→ ∞

}
, (2.3.7)

Ob
k(M) :=

{
f ∈ Ok(M) : f is bounded

}
,

Lj(M) :=
{
f : M → C : ∃ C > 0 with | f(x) − f(u) | · ‖ u ‖ ≤ C ·

(
1 + ‖ x− u ‖j

) }
.

It is easy to see that for all j ∈ N the inclusion holds Lj(M) ⊂ Lj+1(M). Let us denote
by L(M) the union over j of all spaces Lj(M) and consider Ob

1(M) equipped with the
sup-norm ‖ · ‖∞.

Proposition 2.3.2 For all j ∈ N we have the inclusion Ob
1(M) ⊂ Lj(M).

Proof By our remarks above we only have to show that Ob
1(M) ⊂ L1(M). Fix h ∈ Ob

1(M)
and choose C > 0 such that it holds

| h( x ) | ·
(

1 + ‖ x ‖
)
≤ C

for all x ∈M . Then it follows with x, u ∈M :

∣∣∣ h( x ) − h( u )
∣∣∣ · ‖ u ‖ (2.3.8)

≤| h(x) | ( 1 + ‖ x ‖ )

∣∣∣∣
‖ u ‖

1 + ‖ x ‖ − ‖ u ‖
1 + ‖ u ‖

∣∣∣∣+ | h(x) | (1 + ‖ x ‖) + | h(u) | ‖ u ‖

≤C
∣∣∣ ‖ u ‖ − ‖ x ‖

∣∣∣+ 2C

≤2C
[

1 + ‖ x− u ‖
]
. �

In the following theorem we summarize our results on the spaces defined above:

Theorem 2.3.1 The inclusions R(Ṙn) ⊂ L1(Ṙn) and RΦ(Rn) ⊂ L1(Rn) hold. Moreover,
all partial derivatives of functions in R(Ṙn) (resp. of functions in RΦ(Rn)) are contained
in the space O1(Ṙn) (resp. in the space Ob

1(R
n)).
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We identify Cn and R2n in the canonical way. Let us denote by Ck
b (C

n) the space of all
complex valued functions on Cn with continuous and bounded derivatives up to the order
k ∈ N and write C∞b (Cn) :=

⋂
j∈N

Cjb (Cn). Then we define:

XΦ ( Cn ) := span
{
aj ∂j : aj ∈ RΦ (Cn)

}
⊕ span

{
bj ∂̄j : bj ∈ C∞b (Cn)

}
.

Example 2.3.2 For j = 1, · · · , n we consider the vector fields ∂ϕj
defined by:

∂ϕj
:= ‖ z ‖−1

[
zj ∂̄j − z̄j ∂j

]

which are the normed derivatives tangential to the sphere ∂B2n ⊂ Cn. An easy calculation
shows that aj∂ϕj

∈ XΦ(Cn) for any function aj ∈ RΦ(Cn). Thus the space

span
{
aj∂ϕj

: where aj ∈ RΦ ( Cn ) for j = 1, · · · , n
}

of spherical vector fields on Cn is naturally embedded into XΦ(Cn).

2.4 Commutators of P with systems of vector fields

In the following section we want to prove a result analogous to Proposition 2.2.1 if
the space Xlin(Cn) of all linear vector fields is replaced by XΦ(Cn). Namely, let us choose
a finite system A in { Z,Z∗,Re(Z), Im(Z) : Z ∈ XΦ(Cn) }. Then we show that all the
iterated commutators

ad [ A ] (P ) : C∞c ( Cn ) → C∞ ( Cn ) (2.4.1)

admit bounded extensions to H1. Note that (2.4.1) is well-defined because each A ∈ A
leaves C∞c (Cn) invariant. In order to prove this result we will show that the operators in
(2.4.1) are integral operators. We give estimates on their kernels and apply the Schur test
to prove boundedness.

In the following let us denote by ∂j,u (resp. ∂j,z) and ∂̄j,u (resp. ∂̄j,z) the partial
derivatives with respect to the variables u (resp. z). Instead of the notation Ma(z) for the
multiplication operator with a function z 7→ a(z) we often simply write a(z). We start
with some general remarks:

Lemma 2.4.1 Let k ∈ { 1, · · · , n }. Then we have for all h ∈ C∞c (Cn) and g ∈ C∞(Cn):

(i) :
〈
∂̄kh, g

〉
2

=
〈
h,
[
z̄k − ∂k

]
g
〉

2
, (ii) :

〈
∂kh, g

〉
2

=
〈
h,
[
zk − ∂̄k

]
g
〉

2
.

Hence we write ∂∗k := zk − ∂̄k and ∂̄∗k := z̄k − ∂k for the formal adjoints of ∂k and ∂̄k.

Proof (i): Let h ∈ C∞c (Cn) and g ∈ C∞(Cn), then integration by parts leads to:
〈
∂̄kh, g

〉
2

=
1

πn

∫

Cn

∂̄kh( z ) g( z ) exp
(
− ‖ z ‖2

)
dv( z )

= − 1

πn

∫

Cn

h( z )
[
∂̄kg( z ) − zkg( z )

]
exp

(
− ‖ z ‖2

)
dv( z )

=
〈
h, [ z̄k − ∂k ] g

〉
2
.
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The equality (ii) follows by a similar computation. �

Let Z =
∑n

j=1{ aj∂j + bj ∂̄j + ∂jcj + ∂̄jdj }+ e where aj, bj, cj, dj, e are smooth complex
valued functions on Cn for j = 1, · · · , n. Then we write:

Z̄ :=
n∑

j=1

{
āj ∂̄j + b̄j∂j + ∂̄j c̄j + ∂j d̄j

}
+ ē,

Z∗ :=
n∑

j=1

{
∂∗j āj + ∂̄∗j b̄j + c̄j∂

∗
j + d̄j ∂̄

∗
j

}
+ ē.

We call Z̄ the conjugate operator and Z∗ the formally adjoint operator. Note that both
operations ∗ and − are involutions on the space

L := span
{
a∂j, b∂̄j, ∂jc, ∂̄jd, e : where a, b, c, d, e ∈ C∞ ( Cn ) and j = 1, · · · , n

}
.

From (∂∗j ) = ( ∂̄j )
∗ it easily follows that Z∗ = ( Z̄ )∗ for all Z ∈ L. We directly compute

these operators in Lemma 2.4.2 for vector fields Z :=
∑n

j=1{ aj∂j + bj ∂̄j } ∈ XΦ(Cn). Let
us associate to Z the functions fZ,1 and fZ,2 on Cn defined by:

fZ,1( z ) : =
n∑

j=1

{
zj āj( z ) + z̄j b̄j( z )

}
(2.4.2)

fZ,2( z ) : =
n∑

j=1

{
[ ∂jaj ] ( z ) +

[
∂̄jbj

]
( z )

}
.

Remark 2.4.1 In the case Z ∈ XΦ(Cn) it follows from Theorem 2.3.1 that fZ,2 ∈ C∞b (Cn)
while in general the function fZ,1 is unbounded on Cn.

Next we prove a decomposition formula for the operators Z̄∗ and Z∗ in terms of Z, Z̄
and the functions defined above.

Lemma 2.4.2 Let Z =
∑n

j=1{aj∂i+bj ∂̄j} ∈ XΦ(Cn). Then we have Z̄∗ = −Z−fZ,2+fZ,1
and Z∗ = −Z̄ − fZ,2 + fZ,1.

Proof From the equality ∂j aj = aj ∂j +M∂jaj
for all j = 1, · · · , n we obtain:

Z̄∗ =
n∑

j=1

{
∂̄∗j aj + ∂∗j bj

}

=
n∑

j=1

[ {
z̄j − ∂j

}
aj +

{
zj − ∂̄j

}
bj

]
= −Z − fZ,2 + fZ,1.

The second formula for Z∗ follows from the first and Z∗ = ( Z̄∗ ). �
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Let us denote the real part (resp. the imaginary part) of Z by

Re( Z ) :=
1

2
[ Z + Z∗ ] , Im( Z ) =

1

2i
[ Z − Z∗ ] .

Now, we compute the iterated commutators of the operators Z,Z∗,Re(Z) and Im(Z)
with the Toeplitz projection P . For A ∈ L we write Az to indicate that we consider A as
an operator with respect to the variable z.

Proposition 2.4.1 Let r ∈ N and let A := [ Ai : i = 1, · · · , r ] be a finite system of
operators in L. Then the commutator ad[ A ](P ) is an integral operators with kernel LA
and

LA
(
u, z

)
=
(
Ār,z − A∗r,u

)
· · ·
(
Ā1,z − A∗1,u

)
K
(
u, z

)
(2.4.3)

for all u, z ∈ Cn with respect to the measure µ. As before we write K(u, z) = exp(〈u, z〉).
Proof Let r = 1, then it follows for any function g ∈ C∞c (Cn) and z ∈ Cn:

{
[ A1, P ]g

}
( z ) = A1,z

〈
g,K(·, z)

〉
2
−
〈
A1,ug,K(·, z )

〉
2

=
〈
g,
[
Ā1,z − A∗1,u

]
K (·, z )

〉
2
.

Thus [ A1, P ] has an integral kernel LA with

LA( u, z ) =
[
Ā1,z − A∗1,u

]
K( u, z ).

Let r > 1 be an entire number and by induction let us assume that equation (2.4.3)
holds for all m ∈ { 1, · · · , r − 1 } and the system Am := [ Aj : j = 1, · · · ,m ]. Then:

{
ad [ Am, Am+1 ] (P ) g

}
( z ) =

{ [
Am+1, ad [ Am ] (P )

]
g
}

( z )

= Am+1,z

〈
g, LAm

(·, z )
〉

2
−
〈
Am+1,ug, LAm

(·, z )
〉

2

=
〈
g,
[
Ām+1,z − A∗m+1,u

]
LAm

(·, z )
〉

2

=
〈
g, LAm+1(·, z )

〉
2
.

for all z ∈ Cn and by induction with Ar = A the assertion follows. �

With a finite system A of operators in
{
Z,Z∗,Re(Z), Im(Z) : Z ∈ XΦ(Cn)

}
⊂ L

we want to estimate the growth of the kernels LA. Using the Schur test (see Theorem 2.1.1)
this will lead to the boundedness results for the iterated commutators. With Z ∈ XΦ(Cn)
consider the following derivations on C∞(Cn × Cn):

(i) : δZ := Z̄z + Z̄u, (ii) : δZ∗ := −Zz − Zu = −δZ . (2.4.4)

Using these notations we prove:
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Lemma 2.4.3 Let Z ∈ XΦ(Cn), then the following decompositions hold:

(a) Z̄z − Z∗u = δZ −
[
fZ,1 − fZ,2

]
( u ),

(b) ( Z∗ )z − ( Z∗ )∗u = δZ∗ +
[
fZ,1 − fZ,2

]
( z ),

(c) Im( Z )z − Im( Z )∗u = 1
2i

[ δZ∗ − δZ ] + 1
2i

[
fZ,1 − fZ,2

]
( u ) + 1

2i

[
fZ,1 − fZ,2

]
( z ),

(d) Re( Z )z − Re( Z )∗u = 1
2
[ δZ + δZ∗ ] − 1

2

[
fZ,1 − fZ,2

]
( u ) + 1

2

[
fZ,1 − fZ,2

]
( z ).

Proof The identities (a) and (b) directly follow from Lemma 2.4.2. We only prove (d) and
remark that (c) can be computed in the same way.

Re( Z )z − Re( Z )∗u =
1

2
[ Zz + Z∗z ] − 1

2
[ Zu + Z∗u ]∗

=
1

2

[
Z̄z − Z∗u

]
+

1

2

[
(Z∗)z − (Z∗u)

∗
]
.

Finally, we apply the formulas (a) and (b) to obtain (d). �

According to the decomposition in Lemma 2.4.3 let us write:

(iii) δRe(Z) :=
1

2
[ δZ + δZ∗ ] (vi) δIm(Z) :=

1

2i
[ δZ∗ − δZ ] . (2.4.5)

With K( u, z ) = exp( 〈u, z〉 ) let us consider the following functions on Cn × Cn:

(a) TZ( u, z ) :=
{
K−1 · [ δZ − fZ,1( u ) ] K

}
( u, z ),

(b) TZ∗( u, z ) :=
{
K−1 ·

[
δZ∗ + fZ,1( z )

]
K
}

( u, z ),

(c) TIm(Z)( u, z ) :=
{
K−1 ·

[
δIm(Z) + 1

2i
fZ,1( u ) + 1

2i
fZ,1( z )

]
K
}

( u, z ),

(d) TRe(Z)( u, z ) :=
{
K−1 ·

[
δRe(Z) − 1

2
fZ,1( u ) + 1

2
fZ,1( z )

]
K
}

( u, z ).

With these definitions we have the identities:

TRe(Z) =
1

2
[ TZ + TZ∗ ] , TIm (Z) =

1

2i
[ TZ∗ − TZ ] . (2.4.6)

We directly compute the functions TZ , TZ∗ , TRe(Z) and TIm(Z). Because of equation
(2.4.6) we only consider TZ and TZ∗ . Let

Z =
n∑

j=1

{
aj∂j + bj ∂̄j

}
,
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then using the identities ∂j,zK = ∂̄j,uK = 0 for the Segal Bargmann kernel K we obtain:

TZ( u, z ) =

{
K−1 ·

n∑

j=1

[
āj( z ) ∂̄j,z + b̄j( u ) ∂j,u

]
K

}
( u, z ) − fZ,1( u ),

=
n∑

j=1

uj [ āj( z ) − āj( u ) ] +
n∑

j=1

b̄j( u ) [ z̄j − ūj ]

= [ FZ +GZ ] ( u, z ),

TZ∗( u, z ) =

{
−K−1 ·

n∑

j=1

[
bj( z ) ∂̄j,z + aj( u ) ∂j,u

]
K

}
( u, z ) + fZ,1( z )

=
n∑

j=1

z̄j [ aj( z ) − aj( u ) ] +
n∑

j=1

bj(z) [ zj − uj ]

= −
[
F̄Z + ḠZ

]
( z, u )

where we define for all ( u, z ) ∈ Cn × Cn:

FZ( u, z ) :=
n∑

j=1

uj [ āj( z ) − āj( u ) ] , GZ( u, z ) :=
n∑

j=1

b̄j( u ) [ z̄j − ūj ] . (2.4.7)

In particular, if we choose Z ∈ XΦ(Cn) and apply Theorem 2.3.1 it follows that

aj ∈ RΦ ( Cn ) ⊂ L1 ( Cn ) and bj ∈ C∞b ( Cn ) for ( j = 1, · · · , n ).

Hence there are constants c1, c2 ≥ 0 such that:

(i)
∣∣ FZ( u, z )

∣∣ ≤ c1 ·
(

1 + ‖ u− z ‖
)
, (ii)

∣∣GZ( u, z )
∣∣ ≤ c2 · ‖ u− z ‖. (2.4.8)

for all ( u, z ) ∈ Cn × Cn. In the following proposition we summarize our results on the
functions TA where A ∈ { Z,Z∗,Re(Z), Im(Z) }.

Proposition 2.4.2 Let Z ∈ XΦ(Cn), then with the definitions above we have:

(a) TZ( u, z ) = [ FZ +GZ ] ( u, z ),

(b) TZ∗( u, z ) = −
[
F̄Z + ḠZ

]
( z, u ),

(c) TRe(Z)( u, z ) = 1
2

[
FZ( u, z ) +GZ( u, z ) − F̄Z( z, u ) − ḠZ( z, u )

]
,

(d) TIm(Z)( u, z ) = i
2

[
FZ( u, z ) +GZ( u, z ) + F̄Z( z, u ) + ḠZ( z, u )

]
.
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Applying these formulas we can give a new description of the integral kernels in Propo-
sition 2.4.1. Assume that A := [ A1, · · · , Ar ] is a finite system of operators in

{
Z,Z∗,Re(Z), Im(Z) : Z ∈ XΦ ( Cn )

}
.

With the derivations in (2.4.4) and (2.4.5) and k ∈ { 1, · · · , r } we define δ
(1)
A := id

and in the case where k ≥ 2 we set δ
(k)
A := δAk

· · · δA2 . Let A be the set consisting of all
permutation of the systems A. Then we consider the algebra MA(C2n) of smooth functions
on Cn × Cn generated by the set:

V :=
{

1, δ
(k)
B TB1 : with k ≤ r and [ B, B1 ] ∈ A

}
.

Proposition 2.4.3 Let A be a finite system in { Z,Z∗,Re(Z), Im(Z) : Z ∈ XΦ(Cn) }.
Then the integral kernel LA of the iterated commutator ad[ A ](P ) has the form

LA( u, z ) =
∑

j

{
Bj · Tj ·K

}
( u, z ) (2.4.9)

where Tj ∈ MA( C2n ) and Bj ∈ C∞b ( C2n ) for all j and the sum in (2.4.9) is finite.

Proof We prove (2.4.9) by induction with respect to the length r of A. By Proposition
2.4.1, Lemma 2.4.3 and Remark 2.4.1 for a single operator A = [ A1 ] we have:

LA( u, z ) =
(
Ā1,z − A∗1,u

)
K( u, z ) = TA1( u, z )K( u, z ) + h( u, z )K( u, z )

where h ∈ C∞b (C2n) and TA1 = δ
(1)
A TA1 ∈ MA(C2n). We are done in the case r = 1. Now,

assume that (2.4.9) holds for systems of length r − 1, then we define

Ar−1 := [ A1, · · · , Ar−1 ] .

Again, it follows from Lemma 2.4.2 that there are two functions h1 ∈ C∞(C2n) and
h2 ∈ C∞b (C2n) such that Ār,z − A∗r,u = δAr

+ h1 + h2. Proposition 2.4.1 now implies with
the system A = [ Ar−1, Ar ] that:

LA( u, z ) =
(
Ār,z − A∗r,u

)
LAr−1( u, z )

=
[
δAr

+ h1

]
LAr−1( u, z ) + h2( u, z ) · LAr−1( u, z ).

Because of h2 ∈ C∞b (C2n) and by induction we conclude that the second summand on
the right hand side already has the form of (2.4.9). Let us compute the first one:

[
δAr

+ h1

]
LAr−1( u, z ) =

∑

j

[
δAr

+ h1

] {
Bj · Tj ·K

}
( u, z ).

Let us consider the functions Hj in this expression defined by

Hj( u, z ) := [ δAr
+ h1 ] {Bj · Tj ·K } ( u, z ).
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Because the operator δAr
is a derivation we find by using [ δAr

+ h1 ]K = TAr
K:

Hj( u, z ) =
[ {

( δAr
Bj )TjK

}
+
{
Bj ( δAr

Tj )K
}

+
{
BjTjTAr

K
} ]

( u, z ).

for all j. We have δAr
Bj ∈ C∞b (C2n) and because δAr

is a derivation it is easy to see that
the functions δAr

Tj and TAr
are contained in MA(C2n) again. It follows that Hj has the

form (2.4.9). �

We want to prove some estimates on the growth of the functions in MA(C2n) where A
is a finite system in { Z,Z∗,Re(Z), Im(Z) : Z ∈ XΦ(Cn) }. With our definition in (2.3.7)
we set:

SO(Cn) :=
{
f ∈ Ob

1 (Cn) : all partial derivatives of f belong to Ob
1 (Cn)

}
.

By the Leibniz formula SO(Cn) is a C∞b (Cn)-module. According to Theorem 2.3.1 all
partial derivatives of functions in RΦ(Cn) are contained in SO(Cn). Moreover, it is easy
to see that for all vector fields Z ∈ XΦ(Cn) and Y ∈ { Z, Z̄ } the inclusion

Y
(
SO ( Cn )

)
⊂ SO ( Cn )

holds. Let us define the involution κ on Cn × Cn given by κ( z, u ) = ( u, z ) and set:

S1

(
C2n
)

:=

{
f, f ◦ κ, f̄ , f̄ ◦ κ : f(u, z) =

n∑

j=1

uj · [ cj(z) − cj(u) ] and cj ∈ SO(Cn)

}
,

S2

(
C2n
)

:=

{
g, g ◦ κ, ḡ, ḡ ◦ κ : g(u, z) =

n∑

j=1

dj(u) · [ z̄j − ūj ] and dj ∈ C∞b (Cn)

}
.

Then for j = 1, 2 the spaces Sj(C2n) are contained in C∞(C2n). Let us prove an equality
for functions in Sj(C2n) where j = 1, 2 which we will need later on in order to estimate
the integral kernels LA in Proposition 2.4.3.

Lemma 2.4.4 Let fj ∈ Sj(C2n) for j = 1, 2, then there are constants cj > 0 such that it
holds

(i) : | f1(u, z) | ≤ c1
(

1 + ‖ u− z ‖
)
, (ii) : | f2(u, z) | ≤ c2 ‖ u− z ‖

where ( u, z ) ∈ Cn × Cn.

Proof The assertion (ii) immediately follows from the definition of S2(C2n). The inequality
(i) can be obtained from SO(Cn) ⊂ Ob

1(C
n) ⊂ L1(Cn) (cf. Proposition 2.3.2) and the fact

that the right hand side of (i) is invariant under κ. �

With a vector field

Z =
n∑

j=1

{
aj ∂j + bj ∂̄j

}
∈ XΦ (Cn)
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and the functions FZ , GZ ∈ C∞ (C2n) defined in (2.4.7) we obtain by applying the derivation
δZ = Z̄z + Z̄u:

δZFZ =
n∑

j=1

{
b̄j,u [ āj,z − āj,u ] + uj

[
(Z̄āj)z − (Z̄āj)u

] }
, (2.4.10)

δZGZ =
n∑

j=1

{
b̄j,u [ āj,z − āj,u ] + (Z̄b̄j)u [ z̄j − ūj ]

}
, (2.4.11)

δZ
[
F̄Z ◦ κ

]
=

n∑

j=1

{
āj,z [ aj,u − aj,z ] + z̄j

[
(Z̄aj)u − (Z̄aj)z

] }
, (2.4.12)

δZ
[
ḠZ ◦ κ

]
=

n∑

j=1

{
bj,z

[
b̄j,u − b̄j,z

]
+ (Z̄bj)z [ uj − zj ]

}
. (2.4.13)

Here we have used the abbreviation az(u, z) := a(z) and au(u, z) := a(u) for any
function a ∈ C∞(Cn). We conclude that:

Lemma 2.4.5 Let Z ∈ XΦ(Cn) and A ∈ { Z,Z∗,Re(Z), Im(Z) }. Then both the func-
tions δAFZ and δA

[
F̄Z ◦ κ

]
(resp. the functions δAGZ and δA

[
ḠZ ◦ κ

]
) are contained

in C∞b (C2n) + S1 (C2n) (resp. in C∞b (C2n) + S2 (C2n)). Moreover, for j = 1, 2 the spaces
C∞b (C2n) + Sj(C2n) are invariant under δA.

Proof In the case A = Z the first assertion directly follows from equations (2.4.10)-(2.4.13)
and the fact that

Z̄ [ C∞b (Cn) ] ⊂ C∞b (Cn) and Z̄
[
RΦ (Cn)

]
⊂ SO (Cn)

which can easily be seen from Theorem 2.3.1. The case A = Z∗ can be obtained by a similar
calculation and using δZ∗ = −δZ . For an operator A ∈ { Re(Z), Im(Z) } our assertion is a
consequence of the decompositions (2.4.5).

Let us prove the last statement. Again we only have to consider the case A ∈ {Z,Z∗ }.
Because C∞b (C2n) is invariant under δZ and δZ∗ it is sufficient to prove that the inclusion

δY
[
Sj
(
C2n
) ]

⊂ Sj
(
C2n
)

+ C∞b
(
C2n
)

holds for j = 1, 2 and Y ∈ {Z,Z∗}. This follows with an calculation analogous to the one in
(2.4.10) and (2.4.11) from X [ SO(Cn) ] ⊂ SO(Cn) together with X [ C∞b (Cn) ] ⊂ C∞b (Cn)
for any X ∈ { Z, Z̄ }. �

Corollary 2.4.1 Let A := [ A1, · · · , Ar ] be a system in
{
Z,Z∗,Re(Z), Im(Z) : Z ∈ XΦ (Cn)

}

where r ∈ N and let δ
(k)
A be defined as above Proposition 2.4.3. Then, there is a positive

constant ck such that for any k ∈ { 1, · · · , r } and for all u, z ∈ Cn × Cn

∣∣∣ δ(k)
A TA1(u, z)

∣∣∣ ≤ ck
(

1 + ‖ u− z ‖
)
. (2.4.14)
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Proof Let k = 1, then from Proposition 2.4.2 we conclude that TA1 = δ
(1)
A TA1 is a linear

combination of FZ , GZ , F̄Z ◦ κ and ḠZ ◦ κ. Hence the existence of c > 0 with (2.4.14)
follows from our inequalities in (2.4.8). Let r ≥ 2 then for k = 2 we obtain from Lemma
2.4.5 that:

δ
(2)
A TA1 = δA2TA1 ∈ S1

(
C2n
)

+ S2

(
C2n
)

+ C∞b
(
C2n
)

and so we conclude (2.4.14) from Lemma 2.4.4. Because we have shown in Lemma 2.4.5
that the space S1(C2n) + S2(C2n) + C∞b (C2n) is invariant under δA where A ∈ A, the
inequality (2.4.14) follows for all k > 2 by induction and Lemma 2.4.4. �

Proposition 2.4.4 Let A be a finite system in { Z,Z∗,Re(Z), Im(Z) : Z ∈ XΦ(Cn) }.
Then there exists m ∈ N and c > 0 such that

| LA(u, z) | ≤ c
(

1 + ‖ u− z ‖m
)
· exp

(
Re 〈u, z〉

)
,

where ( u, z ) ∈ Cn × Cn and LA denotes the integral kernel of ad[ A ](P ).

Proof This directly follows from Corollary 2.4.1, the form of LA given in Proposition 2.4.3
and the fact that there is c̃l > 0 with (1 + t)l ≤ c̃l(1 + tl) for all t > 0 and fixed l ∈ N. �

Remark 2.4.2 Analyzing the proof of Proposition 2.4.3 it is easy to see that the power
m in Proposition 2.4.4 can be chosen to be the length of the system A.

Now we can prove our main theorem in this section concerning the boundedness of the
iterated commutators which is a generalization of Proposition 2.2.1.

Theorem 2.4.1 Let A be a finite system in { Z,Z∗,Re(Z), Im(Z) : Z ∈ XΦ(Cn) }. Then
the commutator ad [ A ](P ) admits a bounded extension from C∞c (Cn) to L2(Cn, µ).

Proof As we have seen in the Propositions 2.4.1 and 2.4.4 the commutators ad[ A ](P )
are integral operators on C∞c (Cn) with kernels LA and there is m ∈ N and c > 0 such that:

| LA( u, z ) | ≤ c ·
(

1 + ‖ u− z ‖m
)
· exp

(
Re 〈u, z〉

)

holds for all u, z ∈ Cn. Because the fact that the function p := (1 + ‖ · ‖m) is contained in
L1(Cn, µ 1

2
) the assertion follows from Proposition 2.1.1. �

Note that in our definition of the vector fields in XΦ(Cn) we have to claim more on the
coefficients al := Zzl than on bl := Zz̄l in order to prove Theorem 2.4.1.

2.5 Fréchet algebras localized in cones

For f ∈ L∞(Cn) we consider the Toeplitz operators Tf with symbol f which was defined
in (2.1.8). Depending on the context Tf can be viewed as a bounded operator on H1 as
well as on H2. With our definitions above let us assume that A is a finite system in

{
Z,Z∗,Re( Z ), Im( Z ) : Z ∈ XΦ ( Cn )

}
.
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To begin with, we consider the commutators of A and Mf where f ∈ Ckb (Cn) and k ∈ N
as operators on the space C∞c (Cn).

Lemma 2.5.1 Assume that A has length r and let f ∈ Crb (Cn). Then as an operator
equation on C∞c (Cn) it holds

ad[ A ] (Mf ) = Mh

where h ∈ Cb(Cn). In particular, the commutator ad[ A ](Mf ) admits a bounded extension
from C∞c (Cn) to H1.

Proof We have shown that for each A ∈ A there is p ∈ C∞(Cn) and a vector fields Y with
coefficients in C∞b (Cn) such that A = Y +Mp. In the case where A = [ A ] only consist of
a single operator it follows:

ad [ A ] (Mf ) = [ A,Mf ] = [ Y +Mp,Mf ] = [ Y,Mf ] = MY f .

and Y f ∈ Cb(Cn). This proves Lemma 2.5.1 in the case r = 1. The full assertion follows
by induction. �

Let us consider Tf as an operators on the Segal-Bargmann space H2. Because in general
this space is not invariant under the vector fields Z ∈ XΦ(Cn) we use operators on H2 of
the form {

PZ, PZ∗, PRe( Z ), P Im( Z ) : Z ∈ XΦ ( Cn )
}
. (2.5.1)

to build commutators. We reformulate PZ and PZ∗ in terms of (unbounded) Toeplitz
operators. For

Z =
n∑

j=1

{
aj ∂j + bj ∂̄j

}
∈ XΦ(Cn)

we define the functions g := fZ,2 and h := fZ,1 as in (2.4.2). It is easy to verify that on H2

it holds ∂j = Tz̄j
and so it follows from Lemma 2.4.2 that:

PZ =
n∑

j=1

Taj
Tz̄j
, and PZ∗ = −

n∑

j=1

Tb̄jTz̄j
+ Th−ḡ. (2.5.2)

Let f ∈ L∞(Cn) and AP a finite system in (2.5.1), then we obtain by equation (2.5.2)
together with Proposition 2.1.2 that all commutators ad[ AP ](Tf ) are well-defined as op-
erators on P [ C∞c (Cn) ] ⊂ Hexp(Cn).

In the following definition we denote by B2n the Euclidean ball in Cn of radius 1 centered
in 0 ∈ Cn and let ∂B2n be its boundary. We want to define what we understand by Aj ∈ A
(or A) to be supported in a cone in Cn.

Definition 2.5.1 Let N ⊂ ∂B2n be an arbitrary subset and define the cone CN over N in
Cn to be the set

CN :=
{
z ∈ Ċn : z · ‖z‖−1 ∈ N

}
⊂ Cn.
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We say that an operator A ∈ { Z,Z∗,Re(Z), Im(Z) : Z ∈ XΦ(Cn) } has support in CN
if all the coefficients aj := Zzj and bj := Zz̄j for have support in CN . The system A has
support in CN if this holds for each A ∈ A.

All the unbounded operators we have considered above are closable on H1. For the rest
of chapter 2 we use the following convention:

General assumption: We identify A ∈ { Z,Z∗,Re(Z), Im(Z) : Z ∈ XΦ(Cn) } with the
closed and densely defined extension Ā : H1 ⊂ D(Ā) → H1 of A where

D(Ā) := closure of C∞c (Cn) in H1 w.r.t. the graph norm ‖ · ‖gr := ‖A · ‖2 + ‖ · ‖2.

To avoid confusing notations we write Ā = A and D(Ā) = D(A). By construction
C∞c (Cn) is dense in D(A) with respect to the graph norm. Hence using this convention we
can consider any finite system

A ⊂
{
Z,Z∗,Re( Z ), Im( Z ) : Z ∈ XΦ ( Cn )

}

as a system of closed and densely defined operators on the space H1 = L2(Cn, µ).

We say [ f ] ∈ H1 has support in C ⊂ Cn if there is a function g ∈ [ f ] such that
supp(g) ⊂ C. Now, we recall the following easy result on multiplication operators:

Lemma 2.5.2 Assume that N1, N2 are open in ∂B2n such that N1 ⊂ N2. If f ∈ H has
support in Cn \ CN2, then:

(a) For A ∈ A and f ∈ D(A) the function Af has support in { Cn \ CN1 } ∩ supp(A).

(b) If A ∈ A has support in CN1, then f ∈ D(A) and Af = 0. In particular, the
commutator [ A,Mf ] : H ⊂ D(A) → H is well-defined and identically zero.

Proof (a) Let f ∈ D(A) with support in Cn \ CN2 . Then we choose (gn)n ⊂ C∞c (Cn) such
that

supp ( gn ) ⊂ Cn \ CN1 and lim
n→∞

‖ gn − f ‖ gr = 0.

It follows for n ∈ N that Agn has support in { Cn \ CN1 } ∩ supp(A) and because
(Agn)n admits a subsequence which converges to Af almost everywhere on Cn we obtain
the inclusion supp(Af) ⊂ { Cn \ CN1 } ∩ supp(A).

(b) Choose a sequence (fn)n ⊂ C∞c (Cn) with limn→∞ ‖fn−f ‖2 = 0 such that each fn has
support in Cn \CN1 . Because A has support in CN1 it follows that Afn = 0. By assumption
A is closed and we conclude that f ∈ D(A) and Af = 0. Because g ∈ Mf [ D(A) ] has
support in Cn \ CN2 it follows that D(A) is invariant under Mf . Hence [ A,Mf ] is well
defined and the composition AMf vanishes on D(A) by (a). Moreover, from (a) it is clear
that supp(Ag) ⊂ CN1 for all g ∈ D(A) and so MfA = 0 on D(A). This proves (b). �

Let us assume that the operator A : H ⊃ D(A) → H is the closed and densely defined
extension of A ∈ { Z,Z∗,Re(Z), Im(Z) : Z ∈ XΦ(Cn) } in the sense described above.
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Lemma 2.5.3 For h ∈ C1
b (C

n) the domain of definition D(A) is invariant under both
operators Mh and P .

Proof Let us write A = Y + Mf where f ∈ C∞(Cn) and Y is a smooth vector field in
XΦ(Cn). Because of the commutator equation

[ A,Mh ] = MY h and Y h ∈ Cb ( Cn )

the commutator [ A,Mh ] admits a bounded extension from C∞c (Cn) to H1. By definition
C∞c (Cn) is dense in D(A) with respect to the graph norm ‖ · ‖gr = ‖ · ‖ + ‖A · ‖. Hence by
Lemma 1.4.3 in chapter 1 we only have to prove that

Mh

[
C∞c ( Cn )

]
⊂ D(A).

Let g ∈ C∞c (Cn) and fix a sequence (ψk)k ⊂ C∞c (Cn) with ψk → h and Y ψk → Y h
uniformly on the compact set supp(g) as k tends to infinity. Then by Lebesgue’s Theorem
it follows that ψk · g →Mhg in H1 and as k → ∞

A
[
ψk · g

]
= ψk · Ag +

{
Y ψk

}
· g

is convergent in H1. Because A is closed by assumption we obtain Mhg ∈ D(A).

We show that D(A) is invariant under P . By Lemma 1.4.3 and because the commutator
[P,A ] has a bounded extension from C∞c (Cn) to H (see Theorem 2.4.1) again we only have
to prove that P [ C∞c (Cn) ] ⊂ D(A). Choose a cut-off function ϕ ∈ C∞(Cn) such that ϕ ≡ 1
on B2n and ϕ ≡ 0 on Cn \ 2B2n and define ϕk := ϕ(k−1·) for k ∈ N. Then ϕk(z) → 1 for
all z ∈ Cn as k tends to infinity and because of

Y ϕk = k−1 [ Y ϕ ]
(
k−1·

)

the sequence ( Y ϕk )k is uniformly bounded and tends to 0 as k → ∞. Let g ∈ C∞c (Cn),
then limk→∞ ϕk · Pg = Pg in H1 and

A
(
ϕk · { Pg }

)
= ϕk ·

{
[ A,P ] g + PAg

}
+ { Y ϕk } · Pg. (2.5.3)

By the continuity of [A,P ] it follows that [A,P ]g ∈ H1. Now Lebesgue’s convergence
theorem implies that the right hand side of (2.5.3) converges in H1. Because A is closed
by assumption we conclude that Pg ∈ D(A). �

We prove a result on commutators analogous to Lemma 2.5.3 which we will need later
on in our definition of Fréchet operator algebras. Let A be a finite systems of closed
operators in { Z,Z∗,Re(Z), Im(Z) : Z ∈ XΦ(Cn) }.

Proposition 2.5.1 For each A ∈ A the space D(A) is invariant under the closed extension
of the commutator ad[ A ](P ).
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Proof Let A ∈ A, then by Theorem 2.4.1 the commutator ad[A, A ](P ) admits a bounded
extension from C∞c (Cn) to H1. Lemma 1.4.3 now implies that it is sufficient to show:

ad [ A ] (P ) : C∞c (Cn) → D(A).

Fix g ∈ C∞c (Cn) and let (ϕk)k be the sequence of functions in the proof of Lemma 2.5.3.
Then we have

lim
k→∞

{
ϕk · ad[ A ](P )g

}
= ad[ A ](P )g

in H1. Furthermore, there is a function f ∈ C∞(Cn) and a smooth vector field Y such that
A = Y +Mf . Hence

A
(
ϕk · ad[ A ](P )g

)
= ϕk ·

{
ad [ A, A ] (P )g + ad[ A ](P )Ag

}
+ [ Y ϕk ] · ad[ A ](P )g.

The right hand side of this equation is convergent in H1 as k tends to infinity and by
the fact that A is closed we conclude that ad[ A ](P )g is contained in D(A). �

As a first application of our calculations above we show that the Segal-Bargmann
Toeplitz projection P is a smooth element with respect to all finite sets V of closed exten-
sions of operators contained in {Z,Z∗,Re(Z), Im(Z) : Z ∈ XΦ(Cn) } (our general assump-
tion on the domains of definitions apply). More precisely, let us choose B = F = L(H) in
Definition 1.2.1. Then we define a chain

(
Ψ∆
k := Ψ∆

k [ F ]
)
k

with k ∈ N0 ∪ {∞}

of Fréchet algebras as it was described in section 1.2. With our definition above Proposition
2.1.2 let us consider the following subspace D of C∞(Cn):

D :=
{
f ∈ Lexp

(
Cn
)
∩ C∞

(
Cn
)

: all partial derivatives of f belong to Lexp

(
Cn
) }

.

By Lemma 2.4.2 and the Leibniz formula it is easy to see that D is invariant under all
operators Z ∈ V. With f ∈ D let us examine the Toeplitz projection Pf ∈ Lexp(Cn ). For
any multi-index α ∈ Nn

0 and with mα(z) := zα we have shown in (2.2.2) that

∂αPf = P
[
m̄αf ].

Because m̄αf ∈ Lexp(Cn) and using the fact that Lexp(Cn) is invariant under P (cf.
Proposition 2.1.2) we conclude that D is invariant under P .

The closed extensions of operators Re(Z) and Im(Z) where Z ∈ XΦ(Cn) are symmetric
and by an application of Lemma 1.2.1 and Proposition 1.1.1 it follows

Lemma 2.5.4 Let V be a symmetric subset of { Z,Z∗,Re(Z), Im(Z) : Z ∈ XΦ(Cn) }, i.e.
A ∈ V iff A∗ ∈ V, then Ψ∆

∞ and PΨ∆
∞P are Ψ∗-algebras in L(H1 ) resp. in L(H2 ).

Proof It is easy to see that we can replace V by the system { Re(Z), Im(Z) : Z ∈ V }
of symmetric closed operators without changing the algebra Ψ∆

∞. The second assertion
directly follows from the first and P = P ∗ ∈ Ψ∆

∞. �



72 Smooth Toeplitz operators by unitary groups

Theorem 2.5.1 It holds P ∈ Ψ∆
∞. In particular, the space H∞V in Definition 1.2.3 is

invariant under the Toeplitz projection P .

Proof To prove Theorem 2.5.1 we have to check assumption (A) in Proposition 1.2.1 for
each k ∈ N. We choose D := D defined above. Then by our general assumption and
C∞c (Cn) ⊂ D for all A ∈ V this is a dense subspace of D(A) with respect so the graph
norm. (A) directly follows from Theorem 2.4.1. �

Proposition 2.5.2 Let k ∈ N and h ∈ Ckb (Cn). Then the multiplication operator Mh as
well as the Toeplitz operators Th are contained in Ψ∆

k .

Proof Because Ψ∆
k is an algebra and P ∈ Ψ∆

∞ ⊂ Ψ∆
k it is sufficient to prove that Mh ∈ Ψ∆

k .
Let k = 1 and fix A ∈ V. Then by Lemma 2.5.3 it follows that D(A) is invariant under Mh.
Because all the commutators [A,Mh] are multiplications with bounded continuous functions
they admit bounded extensions from D(A) to H1. By definition we have Mh ∈ Ψ∆

1 .
Note that in the case k > 1 the commutators [A,Mh ] are multiplications with symbols

in Ck−1
b (Cn) and so the full assertion follows by induction. �

Let f ∈ L∞(Cn) and consider the Toeplitz operator Tf restricted to H2. With a finite
set VP contained in (2.5.1) we immediately obtain from the Propositions 2.5.2 and 1.4.2
with Q := P and the notations introduced there:

Theorem 2.5.2 Let h ∈ Ckb (Cn) where k ∈ N ∪ {∞}, then it holds:

Th ∈ Ψ∆P

k := Ψ∆P

k [ L (H2) ] .

In particular, the PV-Sobolev space Hk
VP

⊂ H2 is invariant under Th.

Finally, we show that the Fréchet operator algebras Ψ∆
k (resp. Ψ∆P

k ) are localized in
the following sense:

Let N1, N2 be open in ∂B2n such that N1 ⊂ N2. Choose a finite set V of operators in
{
Z,Z∗,Re( Z ), Im( Z ) : Z ∈ XΦ ( Cn ) , and Z has support in CN1

}
.

We prove that the constructed Fréchet-algebras are invariant under perturbations of
Toeplitz operators with symbols supported in the cone Cn \ CN2 .

Theorem 2.5.3 Let h ∈ L∞(Cn) such that supp(h) ⊂ Cn \ CN2. Then Th ∈ Ψ∆
∞ ⊂ L(H1)

(resp. we have Th ∈ Ψ∆P
∞ ⊂ L(H2)).

Proof We only have to show Th ∈ Ψ∆
∞, then Th ∈ Ψ∆P

∞ immediately follows from Propo-
sition 1.4.2. According to Theorem 2.5.1 we have P ∈ Ψ∆

∞ and so it is sufficient to prove
Mh ∈ Ψ∆

∞. Let A be a finite system of operators in V and A ∈ A. Then by Lemma 2.5.2
(b) the space

⋂
A∈AD(A) is invariant under Mh and the commutator [ A,Mh ] vanishes

on D(A) because A and h have disjoint support by assumption. By definition we have
Mh ∈ Ψ∆

1 and because the commutator [ A,Mh ] vanishes for all A ∈ V it follows that
Mh ∈ Ψ∆

k for all k ∈ N. �



Chapter 3

Smooth elements in an algebra of

Toeplitz operators

generated by unitary groups.

For n ∈ N we denote by µ the Gaussian measure on the complex space Cn given by the
density dµ = π−n exp(−‖ · ‖2 ) dv where v is the usual Lebesgue measure on Cn ∼= R2n. In
the previous chapter we have introduced the Segal-Bargmann space H2 := H2(Cn, µ) as
the closed subspace of H1 := L2(Cn, µ) consisting of all entire functions which are square
integrable with respect to µ. It is well-known that H2 is a reproducing kernel Hilbert space
and some of the basic results on the operator theory on it can be found in [5] as well as in
[23], [21] and [37].

Let P denote the orthogonal projection from H1 onto H2. With a symbol g ∈ T (Cn)
(for definition see below) the Toeplitz operator

Tg : H2 ⊃ D ( Tg ) → H2

is the densely defined map given by Tgf := P ( gf ) for f ∈ D( Tg ). For g ∈ L∞(Cn) it
is obvious that Tg is bounded and we denote by A ⊂ L(H2) the C∗-algebra generated by
all Toeplitz operators with bounded symbols. In the following we also consider Toeplitz
operators with unbounded symbols and we refer to [89] and [91]. There are unitary groups
acting on H1 and preserving H2 corresponding to the symmetries of Cn, among those the
Weyl group. For each x ∈ Cn the unitary Weyl operator Wx on H2 is a weighted shift
operators in the direction x and it admits an extension to an unitary operator on H1. We
consider the C0-group (Wtx)t∈R which acts on A.

By the construction due to the authors of [79] which we have described in detail in
chapter 1, we obtain a scale of Banach-subalgebras Ψα

n[ A ] ⊂ A which is characterized by
the continuity of iterated commutators with the infinitesimal generator V (x) of (Wtx)t∈R.
Due to our remarks in section 1.3 this scale is related to the smoothness of the operators
in A with respect to the Weyl group action. The Ψ∗-algebra Ψα

∞[A ] of smooth elements in
A with respect to (Wtx)t∈R is obtained by the intersection of the scale ( Ψα

n[A ] )n. It turns
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out that under quite weak conditions on the bounded symbols g the operators Tg ∈ A (and
hence all finite sums of finite products) belong to Ψα

∞[ A ].
Denote by B the C∗-algebra of all multiplication operators Mg on H1 with bounded

symbols g. Then the Weyl group also acts on B and we obtain a similar scale of subalgebras
in this space. Moreover, we denote by Φ the projection from B to A defined by

Φ (Mg ) := Tg = P Mg P.

From the fact that P commutes with Wx for all x ∈ Cn we conclude that P ∈ Ψα
∞[ B ]

and so it clearly holds:
Φ
(

Ψα
∞[ B ]

)
⊂ Ψα

∞[ A ].

The question arises if Φ preserves the scales. Let us denote by Ix := I(V (x)) ⊂ B the
space of all operators in B which leave the domain of definition D(V (x)) ⊂ H1 invariant.
Then we have

L(H1 ) ⊃ Ix ⊃ Ψα
1 [ B ] ⊃ Ψα

2 [ B ] ⊃ · · · ⊃ Ψα
∞[ B ] =

⋂

j∈N

Ψα
j [ B ].

Let Ix ⊂ L(H1) carry the uniform topology of L(H1). We prove that the map:

Φ : Ix −→ Ψα
∞[ A ] =

⋂

j∈N

Ψα
j [ A ]

is well-defined and continuous in the Fréchet topology of Ψα
∞[A ]. Moreover, we show that

the algebra Ψα
∞[A ] contains all Toeplitz operators Tf with continuous symbol f vanishing

at infinity and it follows that the algebra of compact smooth elements is uniformly dense
in K(H2). Our results show that Tf belongs to Ψα

∞[A] under quite weak assumptions on
the symbol f . We can give an example of an operator A ∈ A which does not even belong
to the algebra Ψα

1 [ A ].
Via the Bargmann transform β : L2(Rn, v) → H2 (cf. [5], [58], [82]) and with a bounded

symbol ϕ on Cn we consider the Gabor-Daubechies windowed Fourier localization operators
Lv0ϕ on L2(Rn, v) defined by

Lv0ϕ = β−1 Tϕ β,

where the window v0 is a fixed normalized Gaussian function on L2(Rn, v). For a ∈ Cn the
Weyl group (Wta)t∈R transforms to an unitary group of operators on L2(Rn, v) which in
the case of a ∈ Rn coincides with a usual shift in direction a. The corresponding algebras
of Ck-elements in the C∗-algebra D ⊂ L(L2(Rn, v)) generated by

{
Lv0ϕ : ϕ ∈ L∞ ( Cn )

}

is denoted by Ψp,q
k [ D ] where a = p + iq and k ∈ N0 ∪ {∞}. They can be obtained

from Ψα
k [ A ] by conjugation with β. There is a natural scale of corresponding generalized

Sobolev spaces Hk
p,q ⊂ L2(Rn, v) and as an application of our results on Toeplitz operators
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we prove that Lv01+ϕ is in Ψp,q
∞ [D ] for all continuous symbols ϕ on Cn vanishing at infinity.

Moreover, the general theory leads to a result on regularity. If there is u ∈ L2(Rn, v) such
that

Lv01+ϕu = f ∈ Hk
p,q

for some k ∈ N0 ∪ {∞}, then we show that u ∈ Hk
p,q. The operators Lv0ϕ = β−1 Tϕ β also

can be viewed as pseudo-differential operators on L2(Rn, v) in its Weyl form (cf. [58], [82])
with Weyl symbol σ. Under the canonical identification of Cn and R2n both symbols ϕ
and σ are connected to each other via the heat equation on R2n. Roughly speaking the
Weyl symbol σ of Lv0ϕ is the solution of the heat equation with initial data ϕ at time t = 1

8
:

ϕ( 1
8
) := σ0 =

(
e−

1
8

∆
)
ϕ where σ0( q, p ) = σ(−p, 2q).

From the fact that the heat equation is smoothing we find that σ0 has high regularity
even if we start with an only bounded symbol ϕ. If we restrict ourselves to symbols
ϕ ∈ Cc(Cn) with compact support, then we can show that the map

{ Cc ( Cn ) , ‖ · ‖∞ } ∋ ϕ 7→ ϕ( 1
2
) ∈ S−∞ρ,δ :=

⋂

m∈R

Smρ,δ

is well-defined and continuous for 0 ≤ δ ≤ ρ ≤ 1 if the right hand side carries the pro-
jective (Fréchet)-topology induced by the symbol spaces Smρ,δ for m ∈ R. Note that these
observations have close connections to our results on the smoothness of Toeplitz operators
on H2.

With an unitary C0-group (ut)t∈R ⊂ L(Cn) we consider the corresponding group on H2

of composition operators Ut : H2 ∋ f 7→ f ◦ut ∈ H2. We prove that on a dense subspace of
H2 its infinitesimal generator A2 coincides with an unbounded Toeplitz operator. Denote
by µc the Gaussian measure on Cn with correlation c ∈ (0, 1

2
) and let a be the infinitesimal

generator of (ut)t∈R. Then for f ∈ L∞(Cn) and j ∈ N we define

‖ f ‖c,j := sup
{

( 1 + ‖ aλ ‖ )j · ‖ f ◦ τλ ‖L1(Cn,µc) : λ ∈ Cn
}
.

Note that the group (Ut)t acts isometric with respect to ‖ · ‖c,j and so we can define
the corresponding Ut-invariant normed spaces:

Fc,j(Cn) :=
{
f ∈ L∞(Cn) : ‖ f ‖c,j <∞

}
.

For n ∈ N ∪ {∞} denote by ΨU
n [ A ] ⊂ A the scale of Banach-algebras in A defined by

the action of the unitary C0-group (Ut)t∈R, then for j ∈ N and c ∈ (0, 1
2
) we prove that the

space
{
Tf : f ∈ Fc,j ( Cn ) , R ∋ t 7→ t−1 [ f ◦ ut − f ] ∈ Fc,j (Cn) is continuous in t = 0

}

is contained in ΨU
j [ A ]. As a corollary we conclude that the space of Toeplitz operators

in ΨU
∞[ A ] is invariant under perturbations of the symbols by continuous functions with

compact support. Finally, we compare smoothness with respect to rotation and translation.
We give an example of a function f ∈ L∞(C) such that Tf ∈ Ψα

∞[ A ] but with a rotation
(ut)t in C the group action R ∋ t 7→ U−1

t ◦ Tf ◦ Ut ∈ L(H2) not even is continuous.
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3.1 Smooth Toeplitz operators generated by the Weyl

group action

For any x ∈ Cn we have introduced the unitary group Ut := (Wtx)t∈R of Weyl operators
in Definition 2.1.1. We want to describe conditions on the symbol f of a Toeplitz operator
Tf which are sufficient for Tf to be smooth with respect to the corresponding group action
(cf. section 1.3). According to Theorem 1.3.1 the smoothness of operators equivalently can
be described by iterated commutators with the infinitesimal generator V of the group Ut.
In our situation it turns out that V is an unbounded Toeplitz operator and so we start with
some commutators formulas for Toeplitz operators. Similar to chapter 2 an important tool
for the boundedness results is the Schur test (cf. Theorem 2.1.1 and Proposition 2.1.1).

With our notation in (2.1.11) we define the following subspace SLip(Cn) of Hexp(Cn).
By M(Cn) we denote the space of all measurable functions on Cn:

SLip (Cn) :=
{
f ∈M(Cn) : ∃ c,D > 0 with | f(z) − f(w) | ≤ D · exp

(
c ‖ z − w ‖

) }
.

and we write SPLip(Cn) for the space of all functions in SLip(Cn) of polynomial growth:

SPLip ( Cn ) := SLip ( Cn ) ∩ Pol ( Cn )

Let Lexp(Cn) be the subspace of H1 defined above Proposition 2.1.2. For any linear
space E we denote by L(E) the class of all linear operators on E. We can prove:

Lemma 3.1.1 Let f ∈ SPLip(Cn). Then we have the inclusions

Mf ∈ L ( Lexp (Cn) ) and P [ Lexp ( Cn ) ] ⊂ Hexp ( Cn ) .

Moreover, the commutators adj[ Mf ](P ) ∈ L( Lexp(Cn) ) have a continuous extension
to H1 for all j ∈ N.

Proof The first inclusion is obvious from our assumption on the polynomial growth of
the symbol f and P [ Lexp( Cn ) ] ⊂ Hexp(Cn) follows with the same computation as in
Proposition 2.1.2. In order to show that for all j ∈ N the commutators adj[Mf ](P ) have
a continuous extension to H1 we use the well-known formula

adj [Mf ] (P ) =

j∑

l=0

(−1)l
(
j

l

)
Mfj−lPMf l . (3.1.1)

Consider one of the operators Aj,l := Mfj−lPMf l where j ≥ l. Because the Toeplitz
projection P is an integral operator on H1 with integral kernel K(z, u) = exp(〈z, u〉) we
conclude that Aj,l is an integral operator as well. For its kernel K l

j we compute

K l
j( z, u ) = f(z)j−l · f( u )l · exp

(
〈z, u〉

)
, ∀ z, u ∈ Cn. (3.1.2)
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Hence from (3.1.2) we conclude that the iterated commutators adj[Mf ](P ) are integral
operators with kernel

Kj( z, u ) =

j∑

l=0

(−1)l
(
j

l

)
f( z )j−lf( u )l exp

(
〈z, u〉

)

= [ f( z ) − f( u ) ]j exp
(
〈z, u〉

)
.

Because of f ∈ SPLip(Cn) we can choose constants c,D > 0 such that
∣∣ f( z ) − f( u )

∣∣ ≤ D exp
(
c ‖ z − u ‖

)

and we obtain the following estimate for the kernel of the iterated commutator:

|Kj( z, u ) | ≤ Dj exp
(
cj ‖ z − u ‖ + Re 〈z, u〉

)
.

The function Fj := Dj exp( cj ‖ · ‖ ) is in L1(Cn, µ 1
2
) for all j ∈ N and according to

Proposition 2.1.1 we conclude that adj[ Mf ](P ) has a continuous extension to H1 for all
j ∈ N with: ∥∥ adj[Mf ](P )

∥∥ ≤ 2n ‖ Fj ‖L1(Cn,µ 1
2
) . �

Lemma 3.1.2 With functions f, g ∈ Pol(Cn) and all j ∈ N the iterated commutators

Aj(f, g) := adj [Mf ]
(

[ P,Mg ]
)
∈ L ( Lexp (Cn) )

are well-defined. Moreover, we have

adj[Mf ]
(

[ P,Mg ]
)

=
[
adj[Mf ](P ),Mg

]
.

Proof We conclude from Proposition 2.1.2 that for all j ∈ N the operators Aj(f, g) are
well-defined on Lexp(Cn). Let j = 1, then we have

[
[Mf , P ] ,Mg

]
= [MfP,Mg ] − [ P Mf ,Mg ]

= Mf [ P,Mg ] − [ P,Mg ]Mf = ad [Mf ]
(

[ P,Mg ]
)
.

Now, assume that adj[Mf ]( [ P,Mg ] ) = [ adj[Mf ](P ),Mg ] holds for j ∈ N, then we
find by induction:

adj+1 [Mf ]
(

[ P,Mg ]
)

=
[
Mf , adj[Mf ]

(
[ P,Mg ]

) ]

=
[
Mf ,

[
adj[Mf ](P ),Mg

] ]

=
[
Mf , adj[Mf ](P )Mg

]
−
[
Mf ,Mg adj[Mf ](P )

]

=
[
Mf , adj[Mf ](P )

]
Mg −Mg

[
Mf , adj[Mf ](P )

]

=
[

adj+1 [Mf ](P ),Mg

]
. �
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Corollary 3.1.1 Let g ∈ L∞(Cn) and f ∈ SPLip(Cn). Then for all j ∈ N the operators
Aj(f, g) admit continuous extensions to bounded operators on H1. Moreover, all the maps

L∞ (Cn) ∋ g 7→ Aj(f, g) ∈ L (H1) (3.1.3)

are continuous and linear between Banach spaces.

Proof According to Lemma 3.1.1 all commutators adj[ Mf ] (P ) admit continuous ex-
tensions to H1 for j ∈ N. Further, from Lemma 3.1.2 we conclude that (3.1.3) is linear
with

‖ Aj(f, g) ‖ ≤ 2 ‖ g ‖∞
∥∥ adj[Mf ] (P )

∥∥ . �

Fix a symbol g ∈ L∞(Cn) and let f ∈ SPLip(Cn). Then by Lemma 3.1.2 we have for
all numbers j ∈ N

adj+1 [Mf ] (P ) =
[
Mf , adj[Mf ] (P )

]
= adj [Mf ]

(
[Mf , P ]

)
. (3.1.4)

With a finite set
X :=

{
X1, · · · , Xn

}
⊂ L (H1 )

of bounded operators on H1 we denote by A(X1, · · · , Xn ) the sub-algebra of L(H1) gen-
erated by the elements of X. Moreover, let

MP (X1, · · · , Xn ) :=
{
PCP ∈ L (H2) : C ∈ A (X1, · · · , Xn )

}

be the corresponding subspace in L(H2). Using Lemma 3.1.1 and Corollary 3.1.1 and
according to (3.1.4) we can consider B0(f) := [ P,Mf ], A0(f, g) := [ P,Mg ] and

Bj(f) := adj[Mf ]
(

[ P,Mf ]
)
, Aj (f, g) := adj [Mf ]

(
[ P,Mg ]

)
,

for all j ∈ N as bounded operators on H1. Moreover, from Lemma 3.1.2 and using (3.1.4)
we conclude that the equality holds:

Aj(f, g) = [Mg, Bj−1(f) ]

for all j ≥ 1. Hence for all n ∈ N we have the inclusions

A
(
Bj(f), Aj(f, g) : j = 1, · · · , n

)
⊂ A

(
Bj(f),Mg : j = 0, · · · , n

)
⊂ L (H1) .

and the corresponding result is true if we replace A by MP and H1 by H2.

Theorem 3.1.1 Let g ∈ L∞(Cn) and fix a symbol f ∈ SPLip(Cn). Then for all j ∈ N the
iterated commutators

Cj(f, g) := adj [ Tf ] (Tg) ∈ L (Hexp (Cn) )
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are well-defined and with a finite set L ⊂ N they have the form

Cj( f, g ) :=
∑

l∈L

P al bl cl P (∗)

where

(1) al, cl ∈ Aj(f) := A
(
Br(f), I : r = 0, · · · , j − 1

)
and

(2) bl ∈
{
Ar(f, g) : r = 0, · · · , j − 1

}
.

In particular, we have:

Cj( f, g ) ∈ MP

(
Br(f), Ar(f, g) : r = 0, · · · , j − 1

)

and each operator Cj(f, g) can be considered as an element of L(H2).

Proof By Proposition 2.1.2 the commutators Cj(f, g) are well-defined for all j ∈ N. It is
a straightforward computation that

C1(f, g) = [ Tf , Tg ] = P
[

[ P,Mf ], [ P,Mg ]
]
P = P

[
B0(f), A0(f, g)

]
P

and this proves (∗) in the case j = 1. Assume that Cj(f, g) has the form (∗) for j ∈ N.
Then there are operators al, cl ∈ Aj(f) such that

Cj+1(f, g) = [ Tf , Cj(f, g) ] =
∑

l∈L

[ Tf , P al bl cl P ] .

To prove (∗) in the case j + 1 it is sufficient to show that there is a finite set L̃ ⊂ N
and operators ãk,l, c̃k,l ∈ Aj+1(f) and b̃k,l ∈ { Ar(f, g) : r = 0, · · · , j } such that

[ Tf , P al bl cl P ] =
∑

k∈L̃

P ãk,lb̃k,l c̃k,l P, (l ∈ L).

This follows from Tf P al bl cl P = P Mf P al bl cl P together with

[Mf , Ar(f, g) ] = Ar+1(f, g)

for all r ∈ { 0, · · · , j − 1 } and [Mf , P ], [Mf , al ], [Mf , cl ] ∈ Aj+1(f) for all l ∈ L. �

Corollary 3.1.2 Let g ∈ L∞(Cn) and f ∈ SPLip(Cn). Then with a finite set L ⊂ N and
operators al, cl ∈ Aj(f) the commutators Cj(f, g) have the form

Cj(f, g) :=
∑

l∈L

P alMg cl P.

for all j ∈ N. In particular, the maps

L∞ (Cn) ∋ g 7→ Cj (f, g) ∈ L (H2)

are continuous and linear between Banach spaces.
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Proof In the case j = 1 this follows from

C1(g, f) = P
(

[Mf , P ] Mg +Mg [Mf , P ]
)
P

and for all j > 1 the assertion is a direct consequence of Theorem 3.1.1 together with the
formula Aj(f, g) = [Mg, Bj−1(f) ]. �

For each x ∈ Cn we consider the unitary Weyl operatorsWx ∈ L(H1) we have introduced
in Definition 2.1.1. As we have remarked in Lemma 2.1.1 the operators Wx commute with
the Toeplitz projection P and so H2 is an invariant subspace for Wx. Hence we can consider
Wx as an unitary operator on H2. It is an easy computation that both the spaces Lexp(Cn)
and Hexp(Cn) are invariant for all the Weyl operators. In fact, in the case of Hexp(Cn) this
directly follows by Proposition 2.1.2 and the observation that Wx is a Toeplitz operator
with bounded symbol:

Wx = exp

(
1

2
‖ x ‖2

)
Texp( 2i Im〈·,x〉 ).

We prove this interesting relation. With f ∈ H2 and y ∈ Cn and by the reproducing
property it follows that:

[
Texp( 2i Im〈 ·,x 〉 )f

]
( y ) =

〈
exp

(
2i Im 〈 ·, x 〉

)
f, exp

(
〈 ·, y 〉

) 〉
2

=
〈

exp
(
〈 ·, x 〉

)
f, exp

(
〈 ·, y − x 〉

) 〉
2

= exp
(
〈 y − x, x 〉

)
· f( y − x )

= exp
(
−2−1 ‖ x ‖2

) [
Wxf

]
( y ).

Thus, for each operator A ∈ L(D) where D is one of the spaces Hexp(Cn) or Lexp(Cn)
the conjugation

Ax := W−x AWx ∈ L(D)

is well-defined linear and in general leads to an unbounded operator on D. We give some
easy commutator formulas involving Ax:

Lemma 3.1.3 Let f ∈ Pol(Cn) and A ∈ L( Lexp(Cn) ). Then we have with x ∈ Cn and
all numbers j ∈ N:

(a)
(
adj[Mf ] (A)

)
x

= adj[Mf◦τx ] (Ax).

(b) If in addition f is a linear function, then adj[Mf◦τx ](A) = adj[Mf ](A). In particular,

it follows that
[
adj[Mf ] (P ),Wx

]
= 0.
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Proof By Lemma 2.1.1 we have (Mg )x = Mg◦τx and using formula (3.1.1) with A instead
of P it follows that:

(
adj
[
Mf

]
(A)

)
x

=

j∑

l=0

(−1)l
(
j

l

) (
Mfj−l

)
x
Ax
(
Mf l

)
x

= adj[Mf◦τx ] (Ax).

Now, in addition let f : Cn → C be linear. Then for j = 1 we conclude that:

ad [Mf◦τx ] (A) =
[
Mf+f(x), A

]
= [Mf , A ] = ad [Mf ] (A).

For an arbitrary j ∈ N the first statement in (b) follows by induction. The second
assertion can be obtained from the first one, (a) and Lemma 2.1.1 which implies that
Px = P holds for all x ∈ Cn. �

Fix x ∈ Cn with ‖ x ‖ = 1 and let H ∈ {H1, H2 }. With the space U(H) ⊂ L(H) of all
unitary operators on H we consider the group representation:

R ∋ t 7→ U (x)(t) := Wtx ∈ U(H ). (3.1.5)

By Lemma 2.1.1 (4) equation (3.1.5) defines a group of unitary operators on H. It
is well-known that this group is strongly continuous (C0-group). Hence, its infinitesimal
generator

V (x) : H ⊃ D(V (x)) :=

{
h ∈ H : V (x)h := lim

t→0

U (x)(t)h− h

t
∈ H exits in H

}
−→ H

is a closed, densely defined linear operator on H satisfying

U (x)(t)
[
D(V (x))

]
⊂ D(V (x)) and

[
U (x)(t), V (x)

]
= 0

for all t ∈ R. In addition by Stone’s Theorem iV (x) is self-adjoint. In the following let
H := H2. If we fix an entire function h ∈ D(V (x)) ⊂ H2, then by definition the limit
limt→0 F ( t, x, h ) exists in H2 where

F ( t, x, h ) :=
1

t

[
U (x)( t ) h− h

]
∈ H2, t ∈ R \ {0}. (3.1.6)

Hence, if t tends to 0 the functions (F (t, x, h) )t∈R\{0} ⊂ H2 converge uniformly on each
compact subset K ⊂ Cn to

F ( 0, x, h )( z ) : =
d

dt

[
ktx( z ) h( z − tx )

]
|t=0

(3.1.7)

= 〈z, x〉 · h( z ) +
d

dt
h( z − tx )|t=0 .

In particular, let x = ej = (δi,j)i=1,··· ,n ∈ Cn for j = 1, · · · , n and define the infinitesimal
generators corresponding to the coordinate directions Vj := V (ej) corresponding to the
coordinate directions. Then it follows from (3.1.7) and with h ∈ D(Vj) that

Vj h = F ( 0, ej, h ) =
[
Mzj

− ∂j
]
h ∈ H2, ( j = 1, · · · , n ).

Let us show that V (x) coincides with an unbounded Toeplitz operator restricted to
certain subspaces of D( V (x) ). We need some preparations:
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Lemma 3.1.4 Let α ∈ Nn
0 . Then we have with x ∈ Cn, each multi-index ζ ∈ Nn

0 and the
definition Pα,ζ(t) := 〈K(·, tx)mα ◦ τ−tx,mζ 〉2 where mα(z) = zα for all t ∈ R:

(i) Pα,α(t) = α! − t2Q1(t) where Q1 is a polynomial with Q1(0) = α!
∑n

j=1 αj| xj |2.

(ii) For any number j ∈ { 1, · · · , n } we have Pα,α+ej
(t) = t Q2,j(t), where Q2,j is a

polynomial with Q2,j(0) = α! ( αj + 1 ) x̄j.

(iii) Let j ∈ { 1, · · · , n } with αj ≥ 1, then Pα,α−ej
( t ) = t Q3,j( t ), where Q3,j is a

polynomial with Q3,j(0) = −α! xj.

Proof Using the Taylor-expansion of K we obtain for all α, ζ ∈ Nn
0 and t ∈ R:

Pα,ζ(t) =
∑

β∈Nn
0

1

β!
mβ( tx̄ )

〈
mβ ·mα ◦ τ−tx,mζ

〉
2

(3.1.8)

=
∑

β≤ζ

∑

γ≤α

1

β!

(
α

γ

)
mβ( x̄ )mα−γ( −x ) t| β |+| α−γ | ζ! δβ+γ,ζ .

To prove (i) we set ζ = α. In the case where | β | + | α − γ | = 1 we necessarily
have β 6= 0 and α = γ or β = 0 and α 6= γ. In both situations we find δβ+γ,α = 0 and
so (3.1.8) considered as a function of t is a polynomial without linear term. Moreover,
t|β|+|α−γ|δβ+γ,α = t2 is only possible in the cases where | β | = 1 and γ = α − β. From
(3.1.8) we obtain Q1(0) = α!

∑n

j=1 αj | xj |2.
To prove (ii) let ζ := α+ ej where j ∈ { 1, · · · , n }. From (3.1.8) we find Pα,α+ej

(0) = 0
and we can choose a polynomial Q2,j with Pα,α+ej

(t) = t Q2,j(t). The equality

t| β |+| α−γ |δβ+γ,α+ej
= t

is only possible in the case where β = ej and γ = α. We conclude that

Q2,j( 0 ) = α!
(
αj + 1

)
x̄j.

Finally, consider j ∈ { 1, · · · , n } such that αj ≥ 1 and let ζ = α− ej. Then we obtain
from (3.1.8) that Pα,α−ej

(0) = 0. Choose a polynomial Q3,j such that Pα,α−ej
(t) = tQ3,j(t).

Moreover, the equality t| β |+| α−γ |δβ+γ,α−ej
= t implies β = 0 and γ = α − ej. Hence we

obtain Q3(0) = −α! xj. �

Now, we can prove that the restriction of the infinitesimal generator V (x) to the space
of holomorphic polynomials coincides with an unbounded Toeplitz operator.

Lemma 3.1.5 Let x ∈ Cn with ‖x‖ = 1. Then Pa[Cn ] ⊂ D(V (x)) and for each p ∈ Pa[Cn ]
we have V (x)p = T2iIm〈·,x〉p.
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Proof It is sufficient to show that mα ∈ D(V (x)) for all α ∈ Nn
0 . Let us define the function

Gx,α : R → H2 by

Gx,α(t) :=

{
t−1
[
U (x)( t )mα −mα

]
, t ∈ R \ {0}

∑n

j=1[ x̄j mα+ej
− αj xj mα−ej

], t = 0.

where we set mα−ej
:= 0 ∈ H2 for j ∈ { 1, · · · , n } such that αj = 0. We show that Gx,α is

continuous in t = 0. It is a straightforward computation using 〈mα,mβ〉2 = δα,β α! that

‖Gx,α(0) ‖2
2 =

n∑

j=1

| xj |2 α!
(

2αj + 1
)

= 2α!
n∑

j=1

αj | xj |2 + α!.

With the notations of Lemma 3.1.4 and because the operators U (x)(t) are unitary for
all t ∈ R we have with t 6= 0:

‖Gx,α( t ) ‖2
2 =

2

t2

[
‖mα ‖2

2 − Re
〈
U (x)( t )mα,mα

〉
2

]

=
2

t2

(
‖mα ‖2

2 − exp

(
−t

2

2

)
Re Pα,α( t )

)

=
2

t2

(
α! − exp

(
−t

2

2

) [
α! − t2Q̃(t)

] )

where Q̃( t ) := ReQ1( t ) with Q1 as in Lemma 3.1.4. By using standard analysis we find:

lim
t→∞

‖Gx,α( t ) ‖2
2 = α! + 2Q̃(0) = 2α!

n∑

j=1

αj | xj |2 + α! = ‖Gx,α(0) ‖2
2. (3.1.9)

Next we compute the inner-product 〈Gx,α(t), Gx,α(0) 〉2 for t ∈ R \ {0}. Using Lemma
3.1.4 again we obtain

〈
Gx,α( t ), Gx,α(0)

〉
2

=
1

t

〈
U (x)( t )mα −mα,

n∑

j=1

[
x̄jmα+ej

− αjxjmα−ej

] 〉
2

=
1

t

n∑

j=1

{
xj

〈
U (x)( t )mα,mα+ej

〉
2
− αjx̄j

〈
U (x)( t )mα,mα−ej

〉
2

}

=
1

t
exp

(
− t2

2

) n∑

j=1

{
xj Pα,α+ej

( t ) − αj x̄j Pα,α−ej
( t )

}

= exp
(
− t2

2

) n∑

j=1

{
xj Q2,j( t ) − αj x̄j Q3,j( t )

}
.
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Here we define Pα,α−ej
≡ 0 for αj = 0. Using the notations above it follows that:

lim
t→0

〈
Gx,α( t ), Gx,α( 0 )

〉
2

=
n∑

j=1

[
xj Q2,j( 0 ) − αj x̄j Q3,j( 0 )

]
(3.1.10)

= 2α!
n∑

j=1

αj | xj |2 + α!.

From equations (3.1.9) and (3.1.10) we conclude that

‖Gx,α(t) −Gx,α(0) ‖2
2 =

(
‖Gx,α(t) ‖2

2 − 2Re
〈
Gx,α(t), Gx,α(0)

〉
2
+ ‖Gx,α(0) ‖2

2

)

tends to 0 as t→ 0 and so we obtain mα ∈ D(V (x)) with V (x)mα = Gx,α(0) for all α ∈ Nn
0 .

Finally, to prove the identity
Gx,α(0) = T2i Im〈·,x〉mα

we use the well-known formula Tz̄j
mα = ∂

∂zj
mα, which holds for all α ∈ Nn

0 and j = 1, · · · , n.

T2i Im〈·,x〉mα = T〈·,x〉mα − T〈x,·〉mα (3.1.11)

= 〈·, x 〉 ·mα −
n∑

j=1

xj Tz̄j
mα

=
n∑

j=1

(
x̄jmα+ej

− xj
∂

∂zj
mα

)
(3.1.12)

=
n∑

j=1

(
x̄jmα+ej

− αjxjmα−ej

)
= Gx,α(0). �

Now, let us consider the Toeplitz operator T2i Im〈·,x〉, (x ∈ Cn) which appears in Lemma
3.1.5. We define the function:

Φx := 2i Im〈·, x〉 : Cn → C.

The natural domain of definition of TΦx
is given by

D (TΦx
) :=

{
f ∈ H2 : f · Φx ∈ H1

}
.

Lemma 3.1.6 The Toeplitz operator TΦx
: H2 ⊃ D(TΦx

) → H2 is unbounded, densely
defined and closed.

Proof Because Φx is a linear function we have Φx ∈ SPLip(Cn) and the following equation
holds:

MΦx
= TΦx

+ [MΦx
, P ] : D(TΦx

) ⊂ H2 −→ H1. (3.1.13)

By Lemma 3.1.1 with j = 1 the commutator [MΦx
, P ] has a continuous extension to

H2. Choose a sequence (fn)n∈N ⊂ D( TΦx
) such that:
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(i) limn→∞ fn = f ∈ H2,

(ii) limn→∞ TΦx
fn = g ∈ H2,

then we conclude from the continuity of [MΦx
, P ] and (3.1.13) that

Φxf = lim
n→∞

Φxfn ∈ H1

exists. Hence f ∈ D(TΦx
) by definition with

g = lim
n→∞

TΦx
fn = Φxf − lim

n→∞
[MΦx

, P ] fn = TΦx
f.

It follows that the Toeplitz operator TΦx
is closed. �

Consider the space D(TΦx
) with the graph norm ‖ f ‖x := ‖ f ‖2 + ‖ TΦx

f ‖2. Then
it is clear that ( D(TΦx

), ‖ · ‖x ) is a Banach space which contains the spaces Pa[ Cn ] of
holomorphic polynomials as well as the space Hexp(Cn).

Lemma 3.1.7 Equipped with the graph norm ‖ · ‖x the embedding Pa[ Cn ] →֒ Hexp(Cn) is
dense for all x ∈ Cn.

Proof Let f ∈ Hexp(Cn), then by definition there are numbers c1 ∈ ( 0, 2−1 ) and D1 > 0
such that it holds

| f(z) | ≤ D1 · exp
(
c1 ‖ z ‖2

)

for all z ∈ Cn. Hence we have f ∈ L2(Cn, µr) for all r ∈ (2c1, 1). Now, let us fix two
positive numbers c2, c3 with 2c1 < c2 < c3 < 1 and choose a constant D2 > 0 with

‖ z ‖2 ≤ D2 exp
(

[ c3 − c2 ] ‖ z ‖2
)

for all z ∈ Cn. Then we conclude for all analytic polynomials p ∈ Pa[ Cn ]:

‖ TΦx
(f − p) ‖2

2 ≤ ‖ Φx( f − p ) ‖2
2 ≤ 2 ‖ x ‖2

∫

Cn

‖ · ‖2 | f − p |2 dµ

≤ 2D2 ‖ x ‖2 r−n ‖ f − p ‖2
L2(Cn,µr) <∞

where r = 1 − c3 + c2 ∈ ( 2c1, 1 ). Because Pa[ Cn ] is dense in L2(Cn, µr) ∩ H(Cn) for all
r > 0 the assertion follows. �

Theorem 3.1.2 Let x ∈ Cn with ‖x‖ = 1. Then we have the inclusion

Hexp (Cn) ⊂ D
(
V (x)

)
∩ D (TΦx

)

and it holds V (x)f = TΦx
f for all f ∈ Hexp(Cn).
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Proof This immediately follows from TΦx
p = V (x)p for p ∈ Pa[Cn] and Lemma 3.1.7 which

implies that
Hexp (Cn) ⊂ clos ( Pa [ Cn ] , ‖ · ‖x ) ⊂ D

(
V (x)

)
∩ D (TΦx

)

and the continuity of V (x), TΦx
: ( Pa[ Cn ], ‖ · ‖x ) → H2 in the graph norm. �

Let V
(x)
2 := V (x) and denote by V

(x)
1 the infinitesimal generator of (Ux(t))t∈R considered

as operators on H1. Then V
(x)
2 is the restriction of V

(x)
1 to D(V

(x)
2 ) = D(V

(x)
1 ) ∩H2.

Lemma 3.1.8 Fix x ∈ Cn with ‖x‖ = 1. If r ∈ N and Ar(Φx) ⊂ L(H1) denotes the
algebra defined in Theorem 3.1.1, then we have

A
[
D
(
V

(x)
1

) ]
⊂ D

(
V

(x)
1

)

and the commutator [ A, V
(x)
1 ] vanishes for all operators A ∈ Ar(Φx).

Proof It is sufficient to show that for all j ∈ N the space D(V
(x)
1 ) is invariant under the

operators

Bj( Φx ) := adj [MΦx
]
(

[ P,MΦx
]
)

According to Lemma 3.1.3, (b) together with the linearity of Φx = 2iIm〈·, x〉 we conclude

that the commutator [ U (x)(t), Bj(Φx) ] vanishes for all t ∈ R. Fix h ∈ D(V
(x)
1 ) then:

1

t

{
U (x)(t)Bj(Φx)h−Bj(Φx)h

}
= Bj(Φx)

{
1

t

(
U (x)(t)h− h

) }
→ Bj (Φx) V

(x)
1 h

as t tends to 0. Here we have used the fact that the operators Bj(Φx) have a continuous
extension to H1 (see Corollary 3.1.1 ). �

Remark 3.1.1 Let V be any subspace of H2 with Hexp(Cn) ⊂ V . Assume that A : V → V
is an integral operator with kernel KA and let the restrictions of A

A : Hexp( Cn ) → Hexp( Cn )

be well-defined with adjoint operator A∗ : Hexp(Cn) → Hexp(Cn). Then by the formula

[
AK( ·, λ )

]
(z) =

[
A∗K( ·, z )

]
(λ) = KA(z, λ)

and from K(·, λ) ∈ Hexp(Cn ) it follows that KA is determined by the restriction of A to the
space Hexp( Cn ). Hence A has a continuous extension from V to an (integral)-operator on
H2 iff this is true for A considered as operators on Hexp( Cn ) and both extensions coincide
as operators on H2.

Lemma 3.1.9 Let g ∈ L∞(Cn) such that Mg[ D(V
(x)
1 ) ] ⊂ D(V

(x)
1 ). Then for all numbers

j ∈ N the domain of definition D(V
(x)
2 ) is an invariant subspace for the continuous exten-

sion C̃j(Φx, g) ∈ L(H2) of the commutators adj[TΦx
](Tg) which coincides with a continuous

extension of adj[ V
(x)
2 ]( Tg ).
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Proof By Corollary 3.1.2 there are operators al, cl ∈ Aj(Φx) ⊂ L(H1) with l ∈ L where
L ⊂ N is a finite set such that

C̃j(Φx, g) =
∑

l∈L

P alMg cl P.

Hence it is sufficient to prove that D(V
(x)
2 ) is invariant for each operator P al Mg cl P .

This is obvious with Lemma 3.1.8 and P [ D(V
(x)
1 ) ] = D(V

(x)
2 ) which follows from the fact

that P commutes with the Weyl operators U (x)( t ).

It is easy to see that V
(x)
2 is an integral operator on D( V

(x)
2 ) and so by remark 3.1.1

the last assertion follows. �

In the following theorem we collect all the results we have received in Lemma 3.1.9,
Theorem 3.1.2 and Corollary 3.1.2.

Theorem 3.1.3 Fix x ∈ Cn with ‖ x ‖ = 1 and let g ∈ L∞(Cn) such that

Mg

[
D
(
V

(x)
1

) ]
⊂ D

(
V

(x)
1

)
.

Then we have TΦx
f = V

(x)
2 f for all f ∈ Hexp(Cn) and

(i) The iterated commutators

adj
[
TΦx

]
(Tg) ∈ L (Hexp( Cn ) ) and adj

[
V

(x)
1

]
(Tg) ∈ L

(
D( V

(x)
1 )

)

have continuous extensions to H2 for all j ∈ N. Moreover, these extensions coincide
and they will be denoted by adj[ TΦx

](Tg) as well.

(ii) The map L∞(Cn) ∋ g 7→ adj[ TΦx
](Tg) ∈ L(H2) is continuous.

(iii) The space D(V
(x)
2 ) is invariant under the extension of adj[ TΦx

](Tg) for all j ∈ N.

3.2 Ψ∗-algebras generated by the Weyl group

In the following we denote by B the C∗-algebra {Mf : f ∈ L∞(Cn) } ⊂ L(H1). For the
Toeplitz C∗-algebra in L(H2) generated by all Toeplitz operators with bounded symbols
we use the notation A. For x ∈ Cn with ‖ x ‖ = 1 let

αt := U (x)(t), ( t ∈ R ) (3.2.1)

be the unitary group of Weyl operators on H1 resp. H2.

Lemma 3.2.1 The Toeplitz C∗-algebra A is invariant under the Weyl group action, i.e.
αtAα−t ∈ A for any A ∈ A.
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Proof This follows by an application of Lemma 1.3.2 and 2.1.1, (3). �

We use our notations in section 1.3 of chapter 1 and fix a complex direction x ∈ Cn

where ‖ x ‖ = 1. With the unitary C0-group ( αt )t in (3.2.1) we can define a decreasing
sequence of spectral invariant Fréchet algebras

Ψj
α[ B ] resp. Ψj

α[ A ], j ∈ N0 ∩ {∞}
of Cj-elements in A resp. in B. The operators in Ψ∞α [ B ] resp. Ψ∞α [ A ] are called smooth
with respect to the group (αt)t. We have seen in Theorem 1.3.1 that there is an analog
description of smooth elements using commutators with the infinitesimal generator of the
group (αt)t which we have determined in the section below. This enables us to derive
conditions on the symbol f which are sufficient for Tf to belong to

Ψ∞α [ A ] = Ψα
∞[ A ]

It turns out that this already is the case for quite weak regularity of the function f (cf.
Theorem 3.2.1).

Now, our main theorem states, that the scale of algebras in B generated by the Weyl
group action for all directions x ∈ Cn

L (H1) ⊃ B = Ψα
0 [ B ] ⊃ I

(
V

(x)
1

)
⊃ Ψα

1 [ B ] ⊃ · · · ⊃ Ψα
∞[ B ]

breaks down under the canonical map P : B ∋Mg 7→ Tf ∈ A in the sense that

P
[
I
(
V

(x)
1

) ]
⊂ Ψα

∞[ A ].

Theorem 3.2.1 Let x ∈ Cn with ‖ x ‖ = 1 and fix a function g ∈ L∞(Cn) such that the

domain of definition D(V
(x)
1 ) is invariant under Mḡ and Mg. Then we have

Tg ∈ Ψα
∞[ A ] = Ψ∞α [ A ].

Moreover, the map

I :=
{
g ∈ L∞(Cn) : Mg,Mḡ leave D

(
V

(x)
1

)
invariant

}
∋ g 7→ Tg ∈ Ψα

∞[ A ]

is continuous in the Fréchet topology of Ψα
∞[ A ] if I carries the topology of L∞(Cn).

Proof By Theorem 3.1.3 (i) and (iii) with V
(x)
2 = TΦx

on Hexp(Cn) we conclude that for
all j ∈ N the commutators

adj
[
V

(x)
2

]
( Tg ) and adj

[
V

(x)
2

]
( Tg )∗ = adj

[
V

(x)
2

]
( Tḡ )

have continuous extensions to elements in L(H2). Moreover, these extensions which we

have denoted by δj
V

(x)
2

(Tg) resp. δj
V

(x)
2

(Tḡ) leave the domain of definition D(V
(x)
2 ) invariant.

By definition it follows that

δj
V

(x)
2

(Th) ∈ I
(
V

(x)
2

)
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where h ∈ { g, ḡ } and j ∈ N. Now, from Theorem 1.3.1 we conclude that

Tg ∈ Ψα
∞ [ L(H2) ] = Ψ∞α [ L(H2) ] .

In addition, Theorem 1.3.1 (a) together with ϕTh
: R → A implies that

δj
V

(x)
2

( Th ) = ϕ
( j )
Th

(0) ∈ A for h ∈ { g, ḡ }

and we obtain Tg ∈ Ψα
∞[ A ] = Ψ∞α [ A ]. Finally, the continuity of the symbol map

L∞ (Cn) ∋ g 7→ Tg ∈ Ψα
∞[ A ]

directly follows from Theorem 3.1.3 (ii) and together with the definition of the Fréchet
topology of Ψα

∞[ A ]. �

Next we give an example of a class of bounded functions g such that for all x ∈ Cn

with ‖ x ‖ = 1 the domain of definition D(V
(x)
1 ) is an invariant subspace for Mg and Mḡ.

Denote by Cb(Cn) the space of all complex valued continuous bounded functions. For all
j ∈ { 1, · · · , n } and z ∈ Cn we write zj := xj + iyj and with α, β ∈ Nn

0

zα,β := xα1
1 · · ·xαn

n yβ1

1 · · · yβn
n , ∂α,β := ∂α1

x1
· · · ∂αn

xn
∂β1
y1

· · · ∂βn
yn
.

For each m ∈ N consider the space Cmb (Cn) of bounded complex valued functions on
Cn defined by:

Cmb ( Cn ) :=
{
f ∈ Cm ( Cn ) : ∂α,βf ∈ Cb (Cn) for α, β ∈ Nn

0 with | α | + | β | ≤ m
}
.

Lemma 3.2.2 Let x ∈ Cn with ‖ x ‖ = 1 and g ∈ C2
b ( Cn ). Then Mg leaves D(V

(x)
1 )

invariant.

Proof Choose h ∈ D(V
(x)
1 ) and without loss of generality assume that g is real valued.

By Lemma 2.1.1 it follows that

1

t

[
U (x)(t)Mgh−Mgh

]
=

1

t

[
Mg◦τ−tx

−Mg

]
U (x)(t)h+Mg

1

t

[
U (x)(t)h− h

]
. (3.2.2)

Because of h ∈ D(V
(x)
1 ) the second term converges in H1 as t→ 0 by the continuity of

Mg. In order to treat the first term we define g̃x(z) := −〈 grad [g](z), x 〉R2n for z ∈ Cn.
Then it follows by our choice of g that g̃x ∈ L∞(Cn) and applying the Taylor formula we
get:

Ct,x : =
∥∥∥ 1

t

[
Mg◦τ−tx

−Mg

]
−Mg̃x

∥∥∥

=
∥∥∥ 1

t

[
g ◦ τ−tx − g

]
− g̃x

∥∥∥
∞

≤
∑

| α |+| β |=2

| t |
(α+ β)!

∥∥ ∂α,βg
∥∥
∞

| xα,β |.
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Hence limt→0Ct,x = 0 and so it follows that

∥∥∥ 1

t

[
Mg◦τ−tx

−Mg

]
U (x)(t)h−Mg̃x

h
∥∥∥

2
≤ Ct,x ‖ h ‖2 + ‖Mg̃x

‖
∥∥ U (x)(t)h− h

∥∥
2

tends to 0 as t → 0. We obtain that also the limit of the first term in (3.2.2) exists if t

tends to 0 and this now proves Mgh ∈ D(V
(x)
1 ). �

Remark 3.2.1 Each Toeplitz operator Tf with symbol f ∈ C2
c (C

n) leads to a smooth
element in A with respect to the Weyl group action.

Because the test functions C∞c (Cn) are uniformly dense in Cc(Cn), the space of all
continuous functions with compact support we obtain:

Theorem 3.2.2 Let x ∈ Cn with ‖x‖ = 1 and denote by C0(Cn) the space of all continuous
functions vanishing at infinity. Then { Tf : f ∈ C0(Cn) } ⊂ Ψ∞α [ A ].

Proof According to Theorem 3.2.1 and Lemma 3.2.2 the symbol map

C2
c (Cn) ∋ g 7→ Tg ∈ Ψ∞α [ A ]

is continuous with respect to the uniform topology on C2
c (C

n). Hence the assertion follows
from the fact that C2

c (C
n) is uniformly dense in C0(Cn). �

Corollary 3.2.1 Let K(H2) ⊂ L(H2) denote the ideal of all compact operators on H2.
Then we have the inclusions

K (H2) ⊂ clos
{
A ∈ Ψ∞α [ A ]

}
⊂ A.

Here the closure of Ψ∞α [ A ] is taken with respect to the uniform topology on L(H2).

Proof This follows with Theorem 3.2.2 and K(H2) = clos{ Tg : g ∈ Cc(Cn) } which is
proved in Theorem 9 in [21]. �

Example 3.2.1 We construct an operator A ∈ A which is not contained in Ψα
1 [ A ]. Let

n = 1 and x ∈ C such that |x| = 1. Then for j ∈ N we denote by Pj ∈ L(H2) the rank one
projection onto the space span{mj := zj }. With a sequence a := (an)n∈N ∈ c0(N) we now
define the diagonal operator

A :=
∑

j∈N

ajPj ∈ L(H2).

Then A is compact and we conclude from Corollary 3.2.1 that A ∈ A. With the
function Φx := 2i Im〈·, x〉 let us compute the commutator [ TΦx

, A ]mj = [ V (x), A ]mj for
all j ∈ N. Using Lemma 3.1.5 we obtain

[ TΦx
, A ] mj = aj TΦx

mj − A
[
x̄ mj+1 − j x mj−1

]

= aj
(
x̄ mj+1 − j x mj−1

)
−
(
aj+1 x̄ mj+1 − j aj−1 x mj−1

)

=
(
aj − aj+1

)
x̄ mj+1 − j x

(
aj − aj−1

)
mj−1.
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Now, define ej := (j!)−
1
2 zj as in (2.1.4). Then we have 〈 ej, el 〉2 = δl,j for all j, l ∈ N.

Hence it follows that

‖ [ TΦx
, A ] (ej) ‖2

2 = ( j + 1 ) | aj − aj+1 |2 + | aj − aj−1 |2 . (3.2.3)

We choose the sequence a ∈ c0(N) such that the right hand side of (3.2.3) tends to
infinity for j → ∞. This can be done by the choice of an oscillating sequence

aj := (−1)jj−
1
4 .

Then it follows

∣∣ aj − aj+1

∣∣2 =
∣∣ j− 1

4 + ( j + 1 )−
1
4

∣∣2 ≤ 4j−
1
2

and so the right hand side of (3.2.3) is unbounded for j → ∞. We conclude that [ TΦx
, A ]

has no bounded extension to H2 and so A /∈ Ψα
1 [ A ]. By Theorem 1.3.1 we also have

A /∈ Ψ1
α[ A ].

3.3 Berezin Toeplitz and Gabor-Daubechies

Windowed Fourier localization operators

We describe the connection between the Berezin Toeplitz operators on H2 and the class
of Gabor-Daubechies localization operators Lwϕ with window w ∈ L2(Rn, v) and symbol ϕ
(see [35]). They are operators on L2(Rn, v) defined by

〈
Lwϕf, g

〉
L2(Rn,v)

=
1

πn

∫

Cn

ϕ( a )
〈
βf,Waβw

〉
2

〈
Waβw, βg

〉
2
dv( a )

where β : L2(Rn, v) → H2 = H2(Cn, µ) denotes the Bargmann isometrie. Here β is an
integral operator and it is well-known [57], [35] that for f ∈ L2(Rn, v)

[ βf ]( z ) = ( 2π )−
n
4

∫

Rn

f( x ) exp
(
xz − 1

4
x2 − 1

2
z2
)
dv( x ) (3.3.1)

where we define zy := z1y1 + · · · + znyn for all z, y ∈ Cn. Let a := p + iq ∈ Cn with
p, q ∈ Rn, then it is an easy computation that with H := L2(Rn, v):

β−1 Wa β =: F q
p : H → H : f 7→

[
x 7→ f

(
x− 2p

)
exp

(
iq [ p− x ]

) ]
. (3.3.2)

In particular, for a ∈ Rn we conclude that F 0
a is the usual unitary shift by −2a. The

Segal-Bargmann space H2 canonically can be identified with the Boson-Fock space

F ( Cn ) :=
⊕

j≥0

[
Cn
]j
s
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where
[
Cn
]j
s
denotes the symmetric Hilbert space tensor product Cn⊗· · ·⊗Cn of length j.

It can be shown that the operators on H2 corresponding to the creation and annihilation
operators on F(Cn) are given by:

Mzi
= Tzi

and ∂zi
= Tz̄i

, ( i = 1, · · · , n ).

By a straightforward computation using the integral formula (3.3.1) one verifies that
the corresponding creation and annihilation operators on L2(Rn, v) have the form:

β−1 Mzi
β =

1

2
xi − ∂xi

and β−1 ∂zi
β =

1

2
xi + ∂xi

. (3.3.3)

With the orthonormal basis [ ej : j ∈ Nn
0 ] in H2 consisting of monomial on Cn which

we have defined in (2.1.4) the Hermite functions are given by

wj := β−1 ( ej ) ∈ L2 (Rn, v) .

In the following for z ∈ Cn and the normalized kernels kz ∈ H2 in (2.1.6) we write:

vz := β−1 ( kz ) ∈ L2( Rn, v ). (3.3.4)

We can calculate the function vz ∈ L2(Rn, v) for z ∈ Cn more explicitly. The following
result was proved in [82].

Lemma 3.3.1 For z ∈ Cn there is a constant cz ∈ Cn not depending on x ∈ Rn such that
it holds

vz(x) = cz exp

(
z̄x− 1

4
x2

)
. (3.3.5)

Proof The normalized kernel kz ∈ H2 for the Gaussian measure µ was given by:

kz( λ ) := exp
(
〈λ, z〉 − 1

2
‖ z ‖2

)

and so it fulfills the differential equations ∂λi
kz = z̄ikz for i = 1, · · · , n. From the identity

in (3.3.3) we conclude that

[
1

2
xi + ∂xi

]
vz = β−1 ∂λi

βvz = β−1 ∂λi
kz = z̄ivz. (3.3.6)

The most general solution of equation (3.3.6) is given by (3.3.5). �

The connection between the Gabor-Daubechies localization operators Lwϕ with window
w = vz and the (Berezin) Toeplitz operators is given by the following lemma.

Lemma 3.3.2 Let z ∈ Cn and let ϕ ∈ L∞(Cn). Then β Lvz
ϕ β−1 = Tϕ◦τ−z

.
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Proof Let f, g ∈ H2, then by an application of Lemma 2.1.1 it follows with Wz1 = kz for
all z ∈ Cn:

〈
βLvz

ϕ β
−1f, g

〉
2

=
1

πn

∫

Cn

ϕ( a )
〈
f,Wakz

〉
2

〈
Wakz, g

〉
2
dv( a )

=

∫

Cn

ϕ( a ) [W−zf ] ( a )[W−zg ] ( a ) dµ( a )

=
〈
TϕW−zf,W−zg

〉
2

=
〈
Tϕ◦τ−z

f, g
〉

2
.

Because f, g ∈ H2 were arbitrary this implies the assertion. �

Let us denote by D ⊂ L( L2(Rn, v) ) the C∗-algebra in L( L2(Rn, v) ) generated by the
Gabor-Daubechies operators { Lv0ϕ : ϕ ∈ L∞(Cn) }. Then by Lemma 3.3.2 we have with
the Toeplitz algebra A ⊂ L(H2)

D = β−1 A β :=
{
β−1 A β : A ∈ A

}
⊂ L

(
L2 (Rn, v)

)
.

Fix p, q ∈ Rn and consider the unitary C0-group ( F tq
tp )t∈R ⊂ D. By V q

p we denote its

infinitesimal generator. Let a := p+ iq ∈ Cn and V (a) be the generator of the unitary Weyl
group (Wta)t∈R ⊂ A, then

D
(
V q
p

)
= β−1

[
D
(
V (a)

) ]
and V q

p = β−1 V (a) β.

According to section 3.2 we can define the Fréchet algebras Ψα
k [ A ] ⊂ A given by the

group (Wta)t and the corresponding scale of algebras:

Ψp,q
k [ D ] ⊂ D

generated by ( F tq
tp )t∈R. It is easy to check that for all k ∈ N0 ∪ {∞} it holds:

Ψp,q
k [ D ] = β−1 Ψα

k [ A ] β :=
{
β−1 A β : A ∈ Ψα

k [ A ]
}
.

Similarly, for all k ∈ N we can define the corresponding Sobolev spaces in the sense of
Definition 1.2.3 by Hk

α := D( (V (a))k ) and Hk
p,q := D( (V q

p )k ). In the case k = ∞ we set:

H∞α :=
⋂

k∈N

Hk
α, and H∞p,q :=

⋂

k∈N

Hk
p,q.

Then for all k ∈ N0 ∪ {∞} we have: Hk
p,q = β−1Hk

α.

In particular, let q = 0 and p ∈ Rn with ‖ p ‖ = 1
2
. Then due to (3.3.2) the group

(F 0
tp)t∈R is the usual shift operator in direction p. Hence the infinitesimal generator V 0

p
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is a closed extension of the partial derivative ∂
∂p

: C∞c (Rn,C) → L2(Rn, v) in direction p.
Moreover, the inclusions

C∞c ( Rn ) ⊂ H∞p,q ⊂ L2 ( Rn, v )

are dense in L2(Rn, v). In the following we want to prove a result on the regularity of a
solution u ∈ L2(Rn, v) of the equation

Lv0ϕ u = f, with symbol ϕ ∈ L∞ (Cn)

provided f is in one of the generalized Sobolev spaces Hk
p,q where k ∈ N0 ∪{∞}. The next

lemma can be found in [69], Remark 5.7 or in [107].

Lemma 3.3.3 Let H be a Hilbert space, Ψ be a Ψ∗-algebra in L(H) and A ∈ Ψ with
closed range R(A) ⊂ H. Then for the orthogonal projection Q ∈ L(H) onto N(A) we have
Q ∈ Ψ. In particular, there exists an operator B ∈ Ψ, namely B = (Q+ A∗A )−1A∗ such
that Q = I −BA.

We apply Lemma 3.3.3 to prove the following theorem, which is a special case of 2.5.11
Proposition in [107]. Originally it can be found in [77].

Theorem 3.3.1 Let p, q ∈ Rn and A ∈ Ψp,q
∞ [D ] be a Fredholm operator. Let u ∈ L2(Rn, v)

be arbitrary such that
Au = f ∈ Hk

p,q

for some k ∈ N0 ∪ {∞}. Then one has u ∈ Hk
p,q.

Proof Because A is a Fredholm operator it follows that R(A) ⊂ L2(Rn, v) is closed and
by Lemma 3.3.3 one obtains B ∈ Ψp,q

∞ [ D ] such that

Q = I −BA ∈ Ψp,q
∞ [ D ]

is the orthogonal projection ontoN(A). From Theorem 1.2.1 we conclude that the inclusion
holds Q( H∞p,q ) ⊂ H∞p,q. Because of dimR(Q) =dimN(A) < ∞ it follows that Q( H∞p,q )
is closed. Hence we have R(Q) ⊂ H∞p,q from the density of H∞p,q ⊂ L2( Rn, v ). Again by
Theorem 1.2.1 we obtain Bf ∈ Hk

p,q. This now implies that

u = BAu+Qu = Bf +Qu ∈ Hk
p,q

which completes the proof. �

If we combine Theorem 3.2.2 and Theorem 3.3.1 we obtain the following result on the
regularity of Gabor-Daubechies operators Lv0ϕ .

Corollary 3.3.1 Let a = p+ iq ∈ Cn with ‖a‖ = 1. Then for all ϕ ∈ C0(Cn) we have

Lv01+ϕ ∈ Ψp,q
∞ [ D ].

Moreover, if u ∈ L2(Rn, v) such that Lv01+ϕu = f ∈ Hk
p,q for some k ∈ N0 ∪ {∞}, then

one has u ∈ Hk
p,q.
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Proof According to Theorem 3.2.2 and Lemma 3.3.2 we have for all ϕ ∈ C0(Cn)

Lv01+ϕ = β−1 ( I + Tϕ ) β ∈ β−1 Ψα
∞[ A ] β = Ψp,q

∞ [ D ].

It is well-known, that Tϕ is compact and so Lv01+ϕ = I+β−1Tϕβ is a Fredholm operator.
Now the assertion follows with Theorem 3.3.1. �

3.4 Berezin Toeplitz operator and Weyl quantization

Next we give some applications to the Weyl-quantization and for further details we refer
to [82]. Let us recall the notion of Weyl pseudodifferential operators on L2(Rn, v).

Let Φ ∈ L1(R2n, v) be an integrable function, then arising from a representation of the
Heisenberg group (cf. [82]) we define for any u ∈ (R2n)∗:

σ( u ) :=

∫

R2n

Φ exp( i 〈u, ·〉 ) dv.

With a suitable interpretation let us consider the (distribution) kernel W given by the
Fourier transform:

Wσ( x, y ) :=
1

(2π)n

∫

Rn

σ

(
p,
x+ y

2

)
exp

(
i p ( x− y )

)
dv( p )

which makes sense as a function for σ ∈ L1(R2n, v). The map σ 7→ Wσ is an isomorphism
on the rapidly decreasing functions S( R2n ), the tempered distributions S ′( R2n ) and on
the space L2( R2n, v ) (cf. [58], p. 80). We call σ the Weyl-symbol of the integral operator

Aσf( x ) :=

∫

Rn

f ·Wσ( x, · ) dv, f ∈ S ( Rn ) (3.4.1)

and Aσ is said to be the Weyl pseudodifferential operator with symbol σ. Via the Bargmann
isometrie (3.3.1) the operatorAσ correspond to an operator aσ onH2, which was determined
in [82]. We only have to derive the corresponding Berezin transform ãσ. In analogy to our
notation in (3.3.4) we define for all λ ∈ Cn:

Vλ := β−1K(·, λ ) where K( a, b ) = exp( 〈a, b〉 ).

According to (2.1.16) and in the case where Aσ is well defined on { Vλ : λ ∈ Cn } we
obtain for all λ ∈ Cn:

ãσ(λ) =
〈
aσkλ, kλ

〉
2

= ‖ Vλ ‖−2
L2(Rn,v)

〈
AσVλ, Vλ

〉
L2(Rn,v)

. (3.4.2)

For λ ∈ Cn and x ∈ Rn let us define the function fλ ∈ L2(Rn, v) by:

fλ(x) := exp

(
λ̄ x− 1

4
x2

)
. (3.4.3)
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Then by a computation similar to the proof of Lemma 3.3.1 there is a constant cλ ∈ C
independent of x ∈ Rn such that it holds Vλ = cλ · fλ. By this (3.4.2) transforms to:

ãσ( λ ) = ‖ fλ ‖−2
L2(Rn,v)

〈
Aσfλ, fλ

〉
L2(Rn,v)

. (3.4.4)

Let us explicitly compute the norm ‖ fλ ‖2
L2(Rn,v) for λ ∈ Rn. By definition of fλ it

follows:

‖ fλ ‖2 =

∫

Rn

exp

(
2x Reλ− 1

2
x2

)
dv(x) (3.4.5)

= exp
(

2 [ Reλ ]2
) ∫

Rn

exp

(
−1

2
[ x− 2Reλ ]2

)
dv(x)

= ( 2π )
n
2 · exp

(
2 [ Reλ ]2

)
.

Moreover, for the inner-product 〈 Aσfλ, fλ 〉L2(Rn,v) we obtain the integral formula:

〈
Aσfλ, fλ

〉
L2(Rn,v)

=

∫

R3n

σ

(
p,
x+ y

2

)
F1(λ, x, y) exp

(
i p ( x− y )

)
dv(x, y, p) = (∗)

where the kernel F1 is defined by the expression:

F1( λ, x, y ) :=
1

(2π)n
· exp

(
λ̄ y + λ x− 1

4

(
x2 + y2

) )
.

For fixed x and p let us change the variables q := 1
2

( x + y ), then it follows for the
integral (∗) above:

(∗) =

∫

R2n

σ( p, q ) · F2( λ, p, q ) exp
(

2q λ̄− 2i p q
)
dv( p, q ).

Here the function F2( λ , p, q ) is defined by the integral:

F2( λ, p, q ) : =
1

(2π)n

∫

Rn

exp
(
x ( λ− λ̄ ) − 1

4
x2 − 1

4
( 2q − x )2 + 2i p x

)
dv(x)

= exp
(
−q2

) 1

(2π)n

∫

Rn

exp
(
γ x− 1

2
x2
)
dv(x) = (∗∗)

where γ = q + 2i [ Imλ+ p ]. Hence we obtain that:

(∗∗) = exp

(
−q2 +

1

2
γ2

)
1

(2π)n

∫

Rn

exp

(
−1

2
( x− γ )2

)
dv(x)

=
1

(2π)
n
2

· exp

(
−q2 +

1

2
γ2

)
.
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Substituting this into the integral above we obtain with a := 2Reλ and b := 2Imλ:
〈
Aσfλ, fλ

〉
L2(Rn,v)

=
1

(2π)
n
2

∫

R2n

σ( p, q ) exp

(
−q2 +

1

2
γ2 + 2 qλ̄− 2i pq

)
dv( p, q )

=
1

(2π)
n
2

exp
(

2−1 a2
) ∫

R2n

σ(p, q) exp

(
−2

{
1

2
q − 1

2
a

}2

− 2

{
p+

1

2
b

}2
)
dv(p, q).

After dividing this by (3.4.5) and the transformations p 7→ −p and q 7→ 2q it follows
for the Berezin transform ãσ of aσ:

ãσ( λ ) =
2n

πn

∫

R2n

σ ( −p, 2q ) exp
(

2
∥∥ ( q, p ) − ( Reλ, Imλ )

∥∥2
)
dv( p, q ).

We can interpret the right hand side as the solution of the heat equation on R2n with
initial data

R2n ∋ ( q, p ) 7→ σ ( −p, 2q ) =: σ0( q, p )

at time t = 1
8

in λ := ( Reλ, Imλ ) ∈ R2n ∼= Cn. It follows Berezin’s formula (cf. [19]):

ãσ ( λ1 + iλ2 ) =
(
e−

1
8

∆σ0

)
( λ1, λ2 ) .

As aσ was a Toeplitz operator Tρ with symbol ρ, then we would have for its Berezin
transform:

ãσ ( λ1 + iλ2 ) = T̃ρ ( λ1 + iλ2 ) = ρ̃ ( λ1 + iλ2 ) =
(
e−

1
4
∆ρ
)

( λ1, λ2 ) .

Then the (transformed) Weyl symbol σ0 of the Weyl operator Aσ on L2(Rn, v) corre-
sponding to the Toeplitz operator on H2 with symbols ρ is the solution of the heat equation
on R2n ∼= Cn at time t = 1

8
with initial data ρ.

σ0 =
(
e−

1
8

∆
)
ρ and

(
e

1
8

∆
)
σ0 = ρ. (3.4.6)

To determine the Weyl symbol of a given Toeplitz operator we only have to solve the
heat equation. On the other hand in order to present a Weyl pseudo-differential operator
as a Toeplitz operator on H2 the retrograde heat equation has to be solved which in general
is not possible. Nevertheless, if we restrict ourselves to a certain class of symbols with
asymptotic expansion there is a one-to-one correspondence between Weyl-operators on
L2(Rn, v) and Toeplitz operators on H2. For the details we refer to [82].

Let f ∈ L∞(Cn, µ) be a bounded function and t = 1
8
, then we denote by f (t) the solution

of the heat equation with initial data f at time t > 0. For t = 1
2

it is given by the integral
formula:

f ( 1
8
)( ξ, x ) =

2n

πn

∫

R2n

f exp
(
−2 ‖ ( ξ, x ) − · ‖2

)
dv. (3.4.7)
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For α, β ∈ Nn
0 and applying standard facts on parameter integrals there is a polynomial

Qβ
α on R2n depending only on α and β such that for the partial derivatives of (3.4.7) it

holds:

∂αξ ∂
β
xf

( 1
8
)( ξ, x ) =

2n

πn

∫

R2n

f Qβ
α

(
( ξ, x ) − ·

)
exp

(
−2 ‖ ( ξ, x ) − · ‖2

)
dv

=
2n

πn

∫

R2n

f
(
· +( ξ, x )

)
Qβ
α exp

(
−2 ‖ · ‖2

)
dv

From this equation it follows that for all α, β ∈ Nn
0 there is a constant Cβ

α > 0 which is
independent of f such that:

∣∣∣ ∂αξ ∂βx f ( 1
8
)( ξ, x )

∣∣∣ ≤ ‖ f ‖∞
2n

πn

∫

R2n

∣∣Qβ
α

∣∣ exp
(
−2 ‖ · ‖2

)
dv = Cβ

α ‖ f ‖∞.

Hence as a pseudo-differential symbol we find that f ( 1
8
) ∈ S0

0,0. In particular, if we
assume that f has compact support K ⊂ R2n then there is c > 0 with:

∣∣∣ ∂αξ ∂βx f ( 1
8
)( ξ, x )

∣∣∣ ≤ ‖ f ‖∞
2n

πn

∫

K−(ξ,x)

∣∣Qβ
α

∣∣ exp
(
−2 ‖ · ‖2

)
dv (3.4.8)

≤ c ‖ f ‖∞ exp
(
−‖ ξ ‖2 − ‖ x ‖2

)
.

Hence in this case we have

f ( 1
8
) ∈ ∩m∈R Smρ,δ =: S−∞ρ,δ where ( 0 ≤ δ ≤ ρ ≤ 1 )

and so the Weyl operator corresponding to the Toeplitz operator Tf with symbol f under
the canonical identification Cn ∼= R2n belongs to the space

OPS−∞ρ,δ :=
{
Aσ : σ ∈ S−∞ρ,δ

}

where Aσ is defined as in (3.4.1). Note that by the inequality (3.4.8) the map

(
Cc (Cn) , ‖ · ‖∞

)
∋ f 7→ f ( 1

8
) ∈ S−∞ρ,δ (3.4.9)

is continuous if the space Smρ,δ carry the Fréchet topology induced by the family of norms:

‖ σ ‖[j] = sup
| α |+| β |≤j

sup
ξ,x

| ∂αξ ∂βx σ( ξ, x ) | λ(ξ)−m+ρ| α |−δ | β |

for j ∈ N0 and σ ∈ Smρ,δ 1 where λ(ξ) = ( 1 + ξ2 )
1
2 . The space S−∞ρ,δ equipped with the

projective topology of Smρ,δ, m ∈ R is a Fréchet space as well. Hence the map (3.4.9)
extents to C0(Cn) equipped with the sup-norm. Note that this result has close connection
to Theorem 3.2.2 in the case of Toeplitz operators on H2.

1
0 ≤ δ ≤ ρ ≤ 1
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3.5 Algebras by groups of composition operators

Denote by U(Cn) the group of unitary matrices on Cn and and let us fix a unitary
C0-group

R ∋ t 7→ ut ∈ U ( Cn )

with infinitesimal generator a ∈ L(Cn). Then for each of the Hilbert spaces H ∈ {H1, H2 }
where H1 := L2(Cn, µ) and H2 := H(Cn)∩L2(Cn, µ) we define a group (Ut)t∈R ⊂ L(H) of
composition operators by:

Ut : R −→ L(H) : t 7→
[
H ∋ f 7→ Ut( f ) := f ◦ ut ∈ H

]
. (3.5.1)

Lemma 3.5.1 The map (Ut)t∈R ⊂ L(H2) given in (3.5.1) defines a C0-group of unitary
operators on H2.

Proof Because the Gaussian measure µ is invariant under the unitary transformations
(ut)t∈R it follows that (Ut)t∈R defines an unitary group of operators on H2. In order to
prove the strong continuity it is sufficient to show that

lim
t→0

〈
Utf − f, f

〉
2

= lim
t→0

〈
f ◦ ut − f, f

〉
2

= 0, ∀ f ∈ H2.

Let ε > 0 and note that the linear hull span{K(·, λ) : λ ∈ Cn } ⊂ H2 is dense. Thus
we can choose h :=

∑m

j=1 αj K(·, λj ) with λ1, · · · , λm ∈ Cn and α1, · · · , αm ∈ C such that
it holds ‖ f − h ‖2 < ε. We obtain:

∣∣ 〈 f ◦ ut − f, f
〉
2

∣∣ =
∣∣ 〈 f ◦ ut − f, f − h

〉
2

∣∣+
∣∣ 〈 f ◦ ut − f, h

〉
2

∣∣

≤ 2ε ‖ f ‖2 +
m∑

j=1

ᾱj

[
f ◦ ut(λj) − f(λj)

]
< 3ε ‖ f ‖2

for suitable small |t| > 0 and by the strong continuity of (ut)t∈R together with the continuity
of f ∈ H2. �

Denote by A, the infinitesimal generator of the unitary group (Ut)t∈R on H2. Then

A : D(A) :=

{
f ∈ H2 : Af := lim

t→0

1

t
( Utf − f ) ∈ H2 exists

}
⊂ H2 → H2.

is an unbounded and densely defined operator on L(H2). Moreover, by Stone’s Theorem
iA is self-adjoint. The next lemma follows by a straightforward computation.

Lemma 3.5.2 Let (Ut)t∈R ⊂ U(H1) be the unitary group defined above and let g ∈ T (Cn)
(for definition see (2.1.9)).

(a) For all t ∈ R we have (Ut)
∗ = (U∗)t = U−t where (U∗)t∈R denotes the group defined

by the action of
R ∋ t 7→ u∗t = u−t ∈ U (Cn) .
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(b) The commutator [ P,Ut ] vanishes. In particular we have Ut[H2 ] = H2.

(c) For all t ∈ R we have U∗t [ D(Mg) ] = D(MU∗
t g

) and U∗tMgUt = MU∗
t g

.

(d) For all t ∈ R we have U∗t [ D(Tg) ] = D( TU∗
t g

) and U∗t TgUt = TU∗
t g

.

Next we give a composition formula for certain classes of Toeplitz operators which can
be found in [37]. For C∞-functions f, g we consider the (formal) twisted product.

f ⋄ g :=
∑

k

(−1)| k |

k!

(
∂kf

)(
∂
k
g
)
.

A straightforward adaption of Theorem 2 in [37] to the measure µ we are using here
leads to:

Theorem 3.5.1 For polynomials ϕ, ψ ∈ P[Cn ] we have TϕTψ defined on a the dense linear
hull span { p exp(〈·, a〉) : a ∈ Cn and p ∈ P[ Cn ] }. On this domain TϕTψ = Tϕ⋄ψ and the
new symbol ϕ ⋄ ψ is contained in P[ Cn ].

After this preparation we compute the infinitesimal generator A on a dense subspace
of its domain of definition D(A) ⊂ H2.

Lemma 3.5.3 The inclusion Pa[ Cn ] ⊂ D(A) ⊂ H2 holds and for any given polynomial
p ∈ Pa[ Cn ] we have

Ap =
[
T〈az,z〉 − n · tr(a)I

]
p, (3.5.2)

where T〈az,z〉 is an unbounded Toeplitz operator.

Proof It is sufficient to prove (3.5.2) in the case where p = mα = zα with α ∈ Nn
0 . For

z ∈ Cn let us define the function

Fα(z) :=
d

dt
[mα ◦ ut( z ) ]|t=0

∈ C.

Then, by Theorem 3.5.1 we compute with mα ◦ ut(z) = 〈mα, exp( 〈·, utz 〉 ) 〉2

Fα(z) =
〈
mα,

d

dt

[
exp( 〈·, utz 〉 )

]
|t=0

〉
2

=
〈
mα〈az, ·〉, exp( 〈·, z 〉 )

〉
2

=
[ n∑

j=1

T[ az ]jTzj
mα

]
( z ) =

[ n∑

i=1

T[ az ]j⋄z̄j
mα

]
( z ).

Moreover, for the ⋄-product we obtain [ az ]j ⋄ z̄j = [ az ]j z̄j − tr(a) for j ∈ { 1, · · · , n }
and this leads to:

Fα( z ) =
[
T〈az,z〉mα − ntr(a)mα

]
( z ).
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In the following we denote by [ dj : j = 1, · · ·n ] the standard orthonormal basis in Cn.
By using the Taylor formula we obtain for all z ∈ Cn and t ∈ R \ {0}:

Fα(t, z) :=
1

t

[
mα ◦ ut(z) −mα(z)

]
=

1

t

∑

γ≤α

γ 6=0

(
α

γ

)
mα−γ(z)mγ ◦ [ ut − I ] (z). (3.5.3)

From mγ ◦ [ ut − I ](z) =
∏n

j=1〈 z, [ u∗t − I ] dj 〉γj we conclude that

|mγ ◦ [ ut − I ] (z) | ≤ ‖ z ‖| γ | · ‖ u∗t − I ‖| γ |

and similar |mα−γ(z) | ≤ ‖ z ‖| α |−| γ |. If we insert this in equation (3.5.3) it follows that
there is a positive number c > 0 such that

| Fα(t, z) | ≤ c ‖ z ‖| α | 1

| t | ‖ u
∗
t − I ‖ . (3.5.4)

By the strong continuity of the unitary group (ut)t the map

[ −1, 1 ] \ { 0 } ∋ t 7→ 1

| t | ‖ u
∗
t − I ‖ ∈ R

is bounded and we conclude from (3.5.4) that there is C > 0 with | Fα(t, z) | ≤ C‖ z ‖|α|
for all t ∈ [ −1, 1 ] \ { 0 }. Moreover, we have:

Fα( z ) = lim
t→0

Fα( t, z ) =
[
T〈az,z〉 mα − n tr(a)mα

]
( z ).

By Lebesgue’s theorem it follows limt→0 Fα(t, ·) = Fα in L2(Cn, µ) and this implies that
mα ∈ D(A) with Amα = [ T〈az,z〉 − n tr(a)I ]mα. �

Let us define λ(z) := (1+‖ z ‖2 )
1
2 and consider the norm ‖ · ‖∼ := ‖Mλ2 · ‖2 on Pa[Cn] .

By ‖ · ‖gr := ‖ · ‖2 + ‖A · ‖2 we denote the graph norm on D(A).

Lemma 3.5.4 There is C > 0 such that for all p ∈ Pa[ Cn ] we have ‖ p ‖gr ≤ C ‖ p ‖∼.
Proof Because of A = T〈az,z〉 − n · tr(a)I on Pa[ Cn ] it follows for p ∈ Pa[ Cn ]:

‖ p ‖gr = ‖ p ‖2 + ‖ Ap ‖2

≤ ‖ p ‖∼ + ‖ 〈az, z〉p ‖2 + n · tr(a) ‖ p ‖∼

≤
(
1 + n · tr(a) + ‖ a ‖

)
‖ p ‖∼. �

By a similar computation than we have done in the proof of Lemma 3.1.7 we find that
the inclusion Pa[ Cn ] ⊂ Hexp(Cn) is dense with respect to ‖ · ‖∼.

Corollary 3.5.1 With the unbounded Toeplitz operator B := T〈az,z〉 − n · tr(a)I we have
the inclusion Hexp(Cn) ⊂ D(A) ∩ D(B) ⊂ H2 and A = B on Hexp(Cn).
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Proof From Lemma 3.5.4 and with Pa[ Cn ] ⊂ D(A) we obtain the following inclusions

Pa [ Cn ] ⊂ Hexp (Cn) ⊂ clos ( Pa [ Cn ] , ‖ · ‖∼ ) ⊂ clos ( Pa[ Cn ], ‖ · ‖gr ) ⊂ D(A) ∩ D(B).

Both operators A and B are continuous on Pa[ Cn ] with respect to ‖ · ‖∼ and they
coincide on Pa[ Cn ]. Hence they also coincide on Hexp(Cn) ⊂ D(A) ∩ D(B). �

In the following let A : H2 ⊃ D(A) → H2 (resp. a ∈ L(Cn)) denote the infinitesimal
generator of the unitary group defined in (3.5.1) (resp. of (ut)t∈R ⊂ U(Cn)).

Lemma 3.5.5 Let λ ∈ Cn. Then for j ∈ N and each symbol f ∈ L∞(Cn) we have

W−λ adj[ A ] (Tf ) Wλ1 =
∑

| α |+| β |≤j

[ aλ ]α [ aλ ]
β
Aα,β( λ )1 (3.5.5)

where Aα,β( λ ) ∈ Nj,f := { Tp1 · · ·Tpk
Tf◦τλTpk+1

· · ·Tpj
: pl ∈ P[ Cn ] } ⊂ L(Hexp(Cn) ).

Proof By Proposition 2.1.2 and for all α, β ∈ Nn
0 the operators Aα,β( λ ) are well-defined

and using Corollary 3.5.1 we have

A = T〈az,z〉 − n · tr(a)I : Hexp ( Cn ) → Hexp ( Cn ) .

It follows from Lemma 3.1.3 and for all λ ∈ Cn that:

W−λ adj[ A ] (Tf ) Wλ 1 = W−λ adj
[
T〈 az,z 〉

]
(Tf ) Wλ 1

= adj
[
T〈 a( z+λ ), z+λ 〉

]
( Tf◦τλ ) 1

= adj
[
T〈az,z〉 +

n∑

j=1

[ aλ ]j Tz̄j
+

n∑

j=1

[ aλ ]j Tzj

]
(Tf◦τλ) 1.

Now, from the formula

adj[ C ](D) =

j∑

l=0

(−1)l
(
j

l

)
Cj−l D C l

for operators D,C we obtain the assertion. �.

Corollary 3.5.2 Let 0 < c < 1
2

and f ∈ L∞(Cn). Then there is C > 0 independent of f
such that for all λ ∈ Cn:

∥∥W−λadj[ A ] (Tf ) Wλ 1
∥∥
L1( Cn,µ 1

2
)
≤ C

[
1 + ‖ aλ ‖

]j
‖ f ◦ τλ ‖L1(Cn,µc)
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Proof According to Lemma 3.5.5 there are operators Aα,β(λ) ∈ Nj,f such that:

∥∥W−λ adj[ A ] (Tf ) Wλ 1
∥∥
L1(Cn,µ 1

2
)
≤

∑

|α|+|β|≤j

∣∣ [ aλ ]α
∣∣ ∣∣ [ aλ ]β

∣∣ · ‖ Aα,β( λ ) 1 ‖
L1(Cn,µ 1

2
) .

Let 0 ≤ k ≤ j and fix polynomials pk+1, · · · , pj ∈ P[Cn ]. Then by an easy computation
we find Tpk+1

· · ·Tpj
1 ∈ P[ Cn ] ⊂ L1(Cn, µc). Hence by Corollary 2.1.1 there are positive

numbers Cα,β independent of f such that

‖ Aα,β( λ ) 1 ‖
L1(Cn,µ 1

2
) ≤ Cα,β ‖ f ◦ τλ ‖L1(Cn,µc).

We conclude that it exists C > 0 with

∥∥W−λ adj[ A ] (Tf ) Wλ 1
∥∥
L1(Cn,µ 1

2
)
≤ C

[
1 + ‖ aλ ‖

]j
‖ f ◦ τλ‖L1(Cn,µc)

. �

Because of Corollary 3.5.1 and Proposition 2.1.2 for f ∈ L∞(Cn) we have the inclusions

A [Hexp (Cn) ] ⊂ Hexp (Cn) and Tf [Hexp (Cn) ] ⊂ Hexp (Cn) .

Hence for each j ∈ N the operator adj[A ] (Tf ) : Hexp (Cn) ⊂ H2 −→ H2 is well-defined
on a dense subspace of H2. For its adjoint operator we prove:

Lemma 3.5.6 Let j ∈ N and λ ∈ Cn. For f ∈ L∞(Cn) and the Segal Bargmann kernel
K we have

K(·, λ ) ∈ D
(
adj[ A ] (Tf )

∗ )

and the equality adj[ A ]( Tf )∗K(·, λ ) = adj[ A ]( Tf̄ )K(·, λ ) holds.

Proof For λ ∈ Cn and all functions g ∈ Hexp(Cn) = D( adj[A ](Tf ) ) we have to show that

〈
adj[ A ] (Tf ) g,K(·, λ )

〉
2

=
〈
g, adj[ A ]

(
Tf̄
)
K( ·, λ )

〉
2
.

Let g ∈ Hexp(Cn), then:

〈
adj[ A ] (Tf ) g, K(·, λ )

〉
2

=

j∑

l=0

(
j

l

)
(−1)l

〈
Aj−l Tf A

l g,K(·, λ )
〉

2

=

j∑

l=0

(
j

l

)
(−1)j−l

〈
g, Al Tf̄ A

j−l K(·, λ )
〉

2

=
〈
g, adj[ A ]

(
Tf̄
)
K(·, λ )

〉
2
.

Here we have used the invariance of Hexp(Cn) under the operators A and Tf as well as
the formulas A∗ = −A and T ∗f = Tf̄ . �
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Definition 3.5.1 Let j ∈ Cn and c > 0. For each f ∈ L∞(Cn) we define the norms:

‖ f ‖c,j := sup
{ [

1 + ‖ aλ ‖
]j

‖ f ◦ τλ ‖L1( Cn,µc ) : λ ∈ Cn
}
∈ R ∪ {∞}.

By Fc,j(Cn) we denote the normed linear space

Fc,j ( Cn ) :=
{
f ∈ L∞ (Cn) : ‖ f ‖c,j <∞

}
.

Note that the group (Ut)t acts isometric with respect to ‖ · ‖c,j and so all the spaces
Fc,j(Cn) are Ut-invariant.

Theorem 3.5.2 Let f ∈ Fc,j(Cn) with j ∈ N and assume that c ∈ ( 0, 1
2

). Then the
iterated commutator adj[ A ](Tf ) has a continuous extension to an operator on H1 such
that there is C > 0 with:

‖ adj[ A ] (Tf ) ‖ ≤ C ‖ f ‖c,j.

Proof Because f̄ ∈ Fc,j(Cn) as well, we conclude from Corollary 3.5.2 that there is C > 0
with

sup
λ∈Cn

∥∥W−λ adj[ A ] (Th)Wλ 1
∥∥
L1(Cn,µ 1

2
)
≤ C ‖ f ‖c,j <∞

for h ∈ { f, f̄ }. Hence by Lemma 3.5.6 assumptions (i) and (ii) in Theorem 2.1.2 hold for
the iterated commutator adj[ A ](Tf ) and we conclude that it has a continuous extension
to H1 such that ‖ adj[ A ](Tf ) ‖ ≤ C‖ f ‖c,j. �

With the infinitesimal generator a ∈ L(Cn) of the unitary group (ut)t∈R we denote by
N(a) the kernel of a. For each r > 0 and x ∈ Cn let Kr(x) be the ball in Cn centered in x
with radius r.

Corollary 3.5.3 Let f ∈ L∞(Cn) such that there is a radius r > 0 with

suppf ⊂ N(a) +Kr(0).

Then for each j ∈ Cn we have f ∈ F 1
4
,j(C

n). In particular, the iterated commutator

adj[ A ](Tf ) has a continuous extension to H2.

Proof Let c := 1
4

and denote by Pa the orthogonal projection from Cn onto N(a). Then
we have for all λ ∈ Cn with λ1 := ( I − Pa )λ and λ2 := Paλ:

‖f ◦ τλ‖L1(Cn,µ 1
4
)

=
1

(4π)n

∫

N(a)

∫

N(a)⊥
| f(z1 + z2 + λ) | exp

(
− 1

4
‖ z1 ‖2 − 1

4
‖ z2 ‖2

)
dv (z1) dv (z2)

=
1

(4π)n

∫

N(a)

∫

N(a)⊥
| f(z1 + z2) | exp

(
− 1

4
‖ z1 − λ1 ‖2 − 1

4
‖ z2 − λ2 ‖2

)
dv (z1) dv (z2)

≤C ‖ f ‖∞
∫

Kr(0)

exp
(
− 1

4
‖ z1 − λ1 ‖2

)
dv (z1) (3.5.6)
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where the constant C is given by the integral

C :=
1

(4π)n

∫

N(a)

exp

(
−1

4
‖ z ‖2

)
dv(z) > 0.

Now, we estimate the integral on the right hand side of (3.5.6) as a function of λ1.
There is C̃ > 0 such that

∫

Kr(0)

exp
(
− 1

4
‖ z − λ1 ‖2

)
dv(z)

≤ exp
(
− 1

4
‖ λ1 ‖2

)∫

Kr(0)

exp

(
1

2
Re〈λ1, z〉 −

1

4
‖ z ‖2

)
dv(z)

≤C̃ exp
(
− 1

4
‖ λ1 ‖2 + r ‖ λ1 ‖

)
.

With a suitable positive number D now it follows that

‖ f ◦ τλ ‖L1(Cn,µ 1
4
) ≤ D ‖ f ‖∞ exp

(
−1

4
‖ λ1 ‖2 + r ‖ λ1 ‖

)
.

This implies that f ∈ ⋂j∈N
Fc,j(Cn) and with Theorem 3.5.2 the assertion follows. �

As we already mentioned above for each c ∈ ( 0, 2−1 ) the spaces Fc,j(Cn) are invariant
under the action of the unitary group (ut)t∈R ⊂ L(Cn). Moreover, the map

Fc,j ( Cn ) ∋ f 7→ f ◦ ut ∈ Fc,j ( Cn )

defines isometries for all j ∈ N and t ∈ R. This easily follows for f ∈ Fc,j(Cn) from the
equality

‖ f ◦ ut ◦ τλ ‖L1(Cn,µc)
= ‖ f ◦ τutλ ‖L1(Cn,µc)

and [ a, ut ] = 0 for all t ∈ R and λ ∈ Cn which implies that:

‖ f ◦ ut ‖c,j = sup
λ∈Cn

[
1 + ‖ aλ ‖

]j
‖ f ◦ ut ◦ τλ ‖L1(Cn,µc)

= sup
λ∈Cn

[
1 + ‖ autλ ‖

]j
‖ f ◦ τutλ ‖L1(Cn,µc)

= ‖ f ‖c,j.

Lemma 3.5.7 Let j ∈ N and f ∈ Fc,j(Cn). Assume that the map

R ∋ t 7→ t−1 [ f ◦ ut − f ] ∈ Fc,j ( Cn ) (3.5.7)

is continuous in t = 0. Then the continuous extension C̃j(A, Tf ) of adj[A ](Tf ) leaves the
space D(A) invariant.
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Proof Let h ∈ D(A), then we have with j ∈ N and for all t ∈ R:

1

t
[ Ut − I ] C̃j ( A, Tf ) h =

1

t

[
Ut, C̃j ( A, Tf )

]
h+ C̃j ( A, Tf )

1

t
[ Ut − I ] h. (3.5.8)

Because of h ∈ D(A) the limit of the second term in (3.5.8) exists if t tends to zero.
Hence we only have to show the existence of

lim
t→0

1

t

[
Ut, C̃j ( A, Tf )

]
h ∈ H2. (3.5.9)

From [ Ut, A ] = 0 on D(A) and Ut Th U−t = Th◦ut
for all t ∈ R it follows that

1

t

[
Ut, C̃j ( A, Tf )

]
h = C̃j

(
A, T 1

t
[ f◦ut−f ]

)
Uth.

From Theorem 3.5.2 the map Fc,j(Cn) ∋ g 7→ C̃j(A, Tg) ∈ L(H2) is continuous and by
the continuity of (3.5.7) in t = 0 we now obtain that

G : R 7→ L (H2) : t 7→ C̃j

(
A, T 1

t
[ f◦ut−f ]

)
∈ L (H2)

is continuous in t = 0. Let us define G(0) := limt→0G(t) ∈ L(H2), then the existence of
the limit (3.5.9) follows from

‖G(t) Ut h−G(0) h ‖2 ≤ ‖G(t) −G(0) ‖ · ‖ h ‖2 + ‖G(0) ‖ · ‖ Ut h− h ‖2

and the convergence limt→0 ‖ Ut h− h ‖2 = 0. �

Denote by A the C∗-algebra in L(H2) generated by all Toeplitz operators with bounded
symbols. Then for functions g1, · · · , gm ∈ L∞(Cn) and the unitary group (Ut)t∈R ⊂ L(H2)
it follows for all t ∈ R by Lemma 3.5.2

Ut Tg1 · · ·Tgm
U−t = Tg1◦ut

· · ·Tgm◦ut
∈ A.

We conclude that for all t ∈ R the space A is invariant under ϕ : R 7→ L(L(H2) ) which
is defined by

ϕ(t)X :=
[
L (H2) ∋ X 7→ Ut X U−t

]
.

For n ∈ N ∪ {∞} consider the scales of algebras

(
Ψn
U [ A ]

)
n
⊂ A and

(
ΨU
n [ A ]

)
n
⊂ A

defined by the action of the group (Ut)t as it was described in section 3.2. By the remarks
above it follows that Theorem 1.3.1 holds for these scales and Lemma 3.5.7 together with
Theorem 3.5.2 imply:
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Theorem 3.5.3 Let c ∈ ( 0, 2−1 ) and j ∈ N. With g(f, t) := t−1 [ f ◦ ut − f ] it holds the
inclusion

F̃c,j(Cn) :=
{
Tf : f ∈ Fc,j(Cn), R ∋ t 7→ g(f, t) ∈ Fc,j(Cn) is continuous

}
⊂ ΨU

j [ A ].

Moreover, the map

F̃c,j (Cn) ∋ f 7→ Tf ∈ ΨU
j [ A ]

is continuous if F̃c,j(Cn) carries the topology induced by Fc,j(Cn).

We give a class of functions which belongs to the spaces Fc,j(Cn) for all c ∈ ( 0, 1
2
) and

each number j ∈ N.

Corollary 3.5.4 It holds { Tf : f ∈ C2
c (C

n) } ⊂ ΨU
∞[ A ] = Ψ∞U [ A ].

Proof Without loss of generality we can assume that f is real valued. Choose r > 0 such
that suppf ⊂ Kr(0) and define the function

g(z) :=
〈

gradf(z), az
〉
.

Because (ut)t ∈ L(Cn) is unitary the support of t−1 [ f ◦ ut − f ] − g is contained in
Kr(0) for all t > 0. With a similar computation than the one in Corollary 3.5.3 there is
C1 > 0 with

∥∥∥ 1

t
[ f ◦ ut − f ] ◦ τλ − g ◦ τλ

∥∥∥
L1(Cn,µ 1

4
)

≤ C1

∥∥∥ 1

t
[ f ◦ ut − f ] − g

∥∥∥
∞

exp
(
− 1

4
‖ λ ‖2 + r ‖ λ ‖

)
. (3.5.10)

Consider the function F : [ −1, 1 ] × Cn → R defined by F ( t, z ) := f ◦ ut(z). Then for
all ‖ z ‖ = ‖ utz ‖ > r and t ∈ [ −1, 1 ] it follows that F ( t, z ) = 0. This shows that

d2

dt2
F ∈ C2

c

(
[ −1, 1 ] × Cn,R

)
.

Hence there is a number C > 0 such that

sup

{
d2

dt2
F (t, z) : (t, z) ∈ [−1, 1] × Cn

}
≤ C <∞.

By the Taylor formula we conclude from g(z) = d
dt
F (0, z) ∈ R for | t | < 1 and all

z ∈ Cn:

∣∣∣∣
1

t
[ f ◦ ut(z) − f(z) ] − g(z)

∣∣∣∣ ≤
t

2

d2

dt2
| F ( θ, z ) | ≤ t

2
C, | θ | < 1.
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Hence t−1[ f ◦ ut− f ]− g converges to 0 uniformly on Cn if t tends to 0. By inequality
(3.5.10) together with Corollary 3.5.3 we obtain that

f ∈
⋂

j∈N

F̃ 1
4
,j ( Cn ) ⊂ ΨU

∞[ A ] = Ψ∞U [ A ]. �

As a corollary we conclude that the space of smooth Toeplitz operators with respect to
(ut)t is invariant under perturbations of the symbols by continuous functions with compact
support.

Theorem 3.5.4 It holds { Tf : f ∈ Cc(Cn) } ⊂ ΨU
∞[ A ] = Ψ∞U [ A ].

Proof Let f ∈ Cc(Cn) and r > 0 with suppf ⊂ Kr(0). Analyzing the proof of Corollary
3.5.3 and using Corollary 3.5.4 it follows that the map

M :=
{
g ∈ C2

c (Cn) : supp g ⊂ Kr+1(0)
}
∋ g 7→ Tg ∈ ΨU

∞[ A ]

is continuous if M carries the sup-norm. The assertion now follows from the fact that f
can be approximated uniformly by functions g ∈ M. �

Finally, we give an example of an Toeplitz operator in Ψ∞α [A ] with a bounded symbol,
which is not even continuous with respect to a rotation. To simplify the computations we
restrict ourselves to the case n = 1.

Example 3.5.1 For the dimension n = 1 we consider the unitary C0-group

ut : R → L(C) : t 7→ ut( z ) := exp( it ) · z.
Then, the corresponding unitary C0-group (Ut)t∈R ⊂ L(H2) of composition operators

has the infinitesimal generator A with

Ap = i
[
T|z|2 − I

]
p for all p ∈ Pa [ C ] .

Let x ∈ C and consider gx : C → C defined by gx(z) := exp( 2i Im〈z, x〉 ). For f ∈ H2

and z ∈ C it follows that:

[ Tgx
f ] ( z ) =

〈
f exp

(
〈·, x〉 − 〈x, · 〉

)
, exp

(
〈·, z〉

) 〉
2

=
〈
f exp

(
〈·, x〉

)
, exp

(
〈·, z − x〉

) 〉
2

= exp
(
〈z − x, x〉

)
f ◦ τ−x(z) = exp

(
− 1

2
| x |2

)
[Wxf ] ( z ).

Hence we conclude that Tgx
= exp(−1

2
| x |2 ) Wx with the Weyl operator Wx. Next

consider the function Φx : R → L(H2) defined by:

Φx(t) : = Ut Tgx
U−t = Tgx◦ut

= Tgu∗
t x

= exp
(
− 1

2
| x |2

)
Wu∗t x

= exp
(
− 1

2
| x |2

)
Wexp(−it )x.
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For t ∈ R now we show that ‖Φ1(t)−Φ1(0) ‖ = exp(−1
2
) ‖Wexp(−it ) −W1 ‖ stays away

from 0. Let w ∈ C, then we have:

∥∥Wexp(−it )x −Wx

∥∥ (3.5.11)

≥
∣∣∣
〈 [

Wexp(−it )x −Wx

]
kw, kw

〉
2

∣∣∣

= exp
(
− 1

2
| x |2 − | w |2

) ∣∣∣K( w, u∗tx )K( w − u∗tx,w ) −K( w, x )K( w − x,w )
∣∣∣

= exp

(
−1

2
| x |2

) ∣∣∣ exp( 2i Im〈 w, u∗tx 〉 ) − exp( 2i Im〈 w, x 〉 )
∣∣∣.

Now we assume that x = 1 and t ∈ [ −π
2
, π

2
] \ {0}. Then we can define

wt := ( sin t )−1 exp( −it ) ∈ C.

It follows that 〈wt, u∗t1〉 = ( sin t )−1 and 〈wt, 1〉 = ( sin t )−1 exp( −it ). Using equation
(3.5.11) we obtain

∥∥Wexp(−it) −W1

∥∥ ≥ exp
(
− 1

2

)
| 1 − exp( 2i ) | > 0, ∀ t ∈

[
− π

2
,
π

2

]
\ {0}.

Hence the map Φ1 : R 7→ L(H2) is not continuous in t = 0. Moreover, because of

g1 ◦ τt = g1 for all t ∈ R

it is easy to see that [Wt,Mg1 ] = 0 and with the infinitesimal generator v(1) of the Weyl
group (Wt )t∈R it follows that

Mh

[
D
(
V (1)

) ]
⊂ D

(
V (1)

)

where h ∈ { g1, g1 } and so Tg1 ∈ Ψα
∞[ A ] = Ψ∞α [ A ], the smooth elements with respect to

the Weyl group action.
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Chapter 4

Fréchet algebras by localized

commutator methods

and Szegö Toeplitz operators

We examine some local aspects of the Szegö-projection Ps and the corresponding
Toeplitz operators Tf = PsMf with symbol f . Due to a result by A. Nagel and E. M.
Stein for any strictly pseudo-convex domain Ω the projection Ps is a pseudo-differential
operator of exotic type (1

2
, 1

2
). Using this fact and by the general theory in [79] a rich class

of spectral invariant Fréchet sub-algebras B in L2(∂Ω) (or more generally in a Toeplitz C∗-
algebra) containing Ps can be constructed by commutator methods. Hence conditions on
the operator ϕTf to belong to B with a cut-off function ϕ can be characterized by the (lo-
cal) regularity of the symbol f . In the second part of this chapter we examine the question
under which conditions the Szegö projection of a bounded function on the complex sphere
locally admits a continuous extension to an analytic function on the unit ball. Mainly
we are dealing with the upper half-space H+ in Cn+1 and the complex unit sphere, but
we consider many of the results to be true in wider generality for strictly pseudo-convex
domains in Cn.

Let H+ be the upper half-space in Cn+1 and by Ps denote the orthogonal projection (Szegö-
projection) of L2(∂H+) onto the closed subspace of square integrable boundary values of
holomorphic functions in H+. By identifying the boundary ∂H+ of H+ with the Heisen-
berg group Hn = Cn × R we can look at the Szegö-projection as a (singular) convolution
operator on H := L2(Hn, β) with respect to the group action on Hn ([134], [117], the
appendix). Here β denotes the left-invariant Haar measure on Hn which coincides with
the 2n + 1-dimensional Lebesgue measure under the canonical identification Hn ∼= R2n+1.
The theory of singular integrals and pseudo-differential operators are closely related. The
localized version ψ1Psψ2 = ψ1Tψ2 of Ps where ψ1, ψ2 ∈ C∞c (Hn) is an operator in the exotic
class Ψ0

1
2
, 1
2

(see [134], [117]). More general, by results due to A. Nagel and E. M. Stein (see

[117]), the Szegö-projection on any strictly pseudo-convex domain is a pseudo-differential
operator of type (1

2
, 1

2
) and so it inherits many nice properties like pseudo locality. It is
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a well-known fact that symbols in Ψ0
1,1 in general do not lead to bounded operators on

L2(Rn, v). On the other hand for Ψ0
ρ,ρ with 0 ≤ ρ < 1 the almost-orthogonality principle

applies (see [134]) and so operators in this class are bounded on L2(Rn, v) (which in fact
is obvious in the case of ρ = 1

2
and the Szegö-projection). A difficulty one has to deal

with in the case of exotic classes is the fact that the full asymptotic calculus fails. For
operators of type (1

2
, 1

2
) the pseudo-differential techniques in Hörmander [88] break down;

here the L2-boundedness result is due to A.P. Calderón and R. Vaillancourt [32]. Given
f ∈ L∞(Hn) we examine in which sense local smoothness of the symbol f is reflected by
the Toeplitz operator Tf := PsMf We consider the following problem:

(P): Let U ⊂ Hn be an open subset. How can one define classes of spectral invariant
Fréchet algebras or even Ψ∗-algebras BU ⊂ L( L2(Hn, β) ) containing all pseudo-
differential operators of type (1

2
, 1

2
) such that BU is localized on U in the following

sense:

For any symbol f ∈ L∞(Hn) which is compactly supported and smooth in a neigh-
borhood of Ū and ϕ ∈ C∞c (Hn) the Toeplitz operator ϕTf is contained in BU?

It was shown by R. Beals [17] that the Hörmander classes Ψ0
ρ,δ of pseudo-differential

operators where 0 ≤ δ ≤ ρ ≤ 1 and δ < 1 completely can be characterized by conditions
on iterated commutators with the multiplications Mxj

and the derivatives ∂xj
of all orders.

In fact this observation led to a proof of spectral invariance of Ψ0
ρ,δ in L( L2(Rn, v) ).

Moreover, by a result in [40] the class Ψ0
1
2
, 1
2

has an analog description using commutators

with smooth vector fields. We solve the problem (P ) by following a general construction in
[79], motivated by the above mentioned properties of pseudo-differential operators in Ψ0

ρ,δ.
We are using commutator methods with finite systems of smooth and compactly supported
vector fields and as a result the algebras BU operate on a given scale of Sobolev spaces
without order shift. The multiplication Mf as well as the operator ψ1Tψ2 are contained in
BU for any bounded symbol f smooth in a neighborhood of Ū and ψ1, ψ2 ∈ C∞c (Hn).

Finally we examine the Szegö-projection P on the unit sphere S2n−1 in Cn. The Szegö-
kernel is explicitly known and P is an integral operator on V := L2(S2n−1, σ) with the
usual surface measure σ. Here P maps V onto the Hardy-space H2(S2n−1) of holomorphic
functions on the ball B2n ⊂ Cn with square integrable boundary values. We show that
the Szegö-projection of any smooth function f on S2n−1 is smooth again and it admits a
continuous analytic extension to B2n. The proof uses the fact that there is a canonical or-
thonormal basis of H2(S2n−1) consisting of eigenfunctions of the Beltrami Laplace operator
B on C∞(S2n−1) and the asymptotics of the corresponding eigenvalues. This result has a
local version if we only claim the smoothness of f on open subsets of S2n−1 (see Theorem
4.4.3).

Chapter 4 is organized as follows: we summarize some important facts on the Hörman-
der classes Ψm

ρ,δ of pseudo-differential operators (see [103], [134], [88]) and we study general
scales of Sobolev spaces generated by generalized Laplacians (see [44]). The algebras A
and its local version AΦ as well as sub-algebras Ψρ[A ] and Ψρ[AΦ ] defined by commutator
methods with smooth vector-fields are introduced. We show that for appropriate choices
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of Φ ∈ C∞c (Hn) the algebras BU := Ψ 1
2
[ AΦ ] solve our problem (P ) above. We prove

spectral invariance (for further detail we refer to [79] or chapter 1) and under additional
conditions on the defining vector-fields symmetry of the algebras is obtained. Hence in
this case BU is a Ψ∗-algebra in the sense of [79] (cf Definition 1.0.1). In the fourth part
we recall the definition of the Szegö-projection on the Heisenberg group Hn as a singular
convolution operator with respect to the group structure and we prove that it preserves
local smoothness. The discussion of the Szegö-projection P on the unit sphere S2n−1 in Cn

is contained in the last section. There we give the results on the continuous extensions of
Pf to the interior of the complex ball provided f is smooth in some open subset U ⊂ S2n−1.

4.1 Pseudodifferential operators and

commutator methods

In the following let Smρ,δ for m ∈ R and (0 ≤ δ ≤ ρ ≤ 1) denote the standard symbol
classes of all smooth functions a(x, ξ) on Rn × Rn such that for α, β ∈ Nn

0 :
∣∣ ∂βx ∂αξ a(x, ξ)

∣∣ ≤ Cα,β · λ( ξ )m−ρ| α |+δ| β |

where λ(ξ) := ( 1 + ‖ ξ ‖2 )
1
2 and ‖ · ‖ is the Euclidean norm on Rn resp. Cn. For any

symbol a ∈ Smρ,δ the corresponding pseudo-differential operator Ra on S := S(Rn) (the
rapidly decreasing functions) is given by:

Raf( x ) := (2π)−n
∫

Rn

a( x, ξ ) eix·ξ f̂( ξ ) dξ. (4.1.1)

Here f̂ denotes the Fourier transform of f ∈ S defined by f̂(ξ) =
∫
f(x) e−ix·ξ dx. The

class of all operators Ra with symbol a ∈ Smρ,δ is denoted by Ψm
ρ,δ and Ra can be considered

as a continuous linear map on S. The operators in Ψ0
ρ,δ are said to be of type ( ρ, δ ).

Moreover, we write Ψ−∞ :=
⋂
m∈N

Ψm
ρ,δ which is independent of ρ and δ. In general, the

following inclusions hold (see [103]):

Ψ−∞ ⊂ Ψm
1,0 ⊂ Ψm

ρ,δ ⊂ Ψm′

ρ′,δ′ , (m ≤ m′, ρ ≥ ρ′, δ ≤ δ′ ).

With the operator Λs := Rλs ∈ Ψs
1,0 and s ∈ R (see [103]) and the L2(Rn, v)-norm ‖ · ‖2

we obtain the usual scale of Sobolev spaces:

Hs = Hs ( Rn ) :=
{
u ∈ S ′ : Λsu ∈ L2 ( Rn ) , ‖ u ‖Hs := ‖ Λsu ‖2

}

and we write H∞ :=
⋂
t∈R

H t and H−∞ :=
⋃
t∈R

H t. It is a well-known fact, that the class
Ψm
ρ,δ with ( 0 ≤ δ ≤ ρ ≤ 1 ) and δ < 1 acts on Hs for s > 0 as follows (see [32], [103], p.

224 remark 1, [130], [139]):

Theorem 4.1.1 Let Ra ∈ Ψm
ρ,δ where 0 ≤ δ ≤ ρ ≤ 1 and δ < 1, then for all s ∈ R there

is a continuous extension of Ra from Hs+m to Hs.
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In particular, in the case m = 0 it follows that Ra is a continuous operator on L2(Rn, v).
Let us mention two more structural results which give characterizations of the Hörmander
classes by commutators and can be found in [17] resp. [40]. For multi-indices α, β ∈ Nn

0

and with Dxi
:= −i ∂

∂xi

= −i∂xi
we introduce the iterated commutators

ad[ −ix ]αad[Dx ]β := ad[−ix1]
α1 · · · ad[ −ixn ]αnad[Dx1 ]β1 · · · ad[Dxn

]βn .

The following result is due to R. Beals [17].

Theorem 4.1.2 Let 0 ≤ δ ≤ ρ ≤ 1 and δ < 1. Assume that B : S → S ′ is a continuous
operator. Then (a) and (b) below are equivalent:

(a) B is of the class Ψ0
ρ,δ.

(b) The commutators ad[ −ix ]αad[ Dx ]β(B) : Hs−ρ| α |+δ| β | → Hs have extensions to
continuous operators for all α, β ∈ Nn

0 .

Using this result, it was shown by R. Beals [17] and finally by J Ueberberg [139] and E.
Schrohe [130] that the classes Ψ0

ρ,δ are spectral invariant in L(H) where H := L2(Rn, v) and
so Ψ0

ρ,δ is a Ψ∗-algebra in the sense of [79]. There is a characterization of pseudo-differential
operators of class Ψ0

1
2
, 1
2

by iterated commutators with smooth vector fields on Rn due to

R. Coifman and Y. Meyer [40]. With a finite system Vn := [X1, · · · , Xn ] of vector fields
and an operator T we inductively define, provided the compositions make sense:

ad[X1 ](T ) = [X1, T ] = X1T − TX1 and ad[ Vj ](T ) :=
[
Xj, ad[ Vj−1 ](T )

]
.

Theorem 4.1.3 ([40]) Let K ⊂ Rn be compact and T : C∞c (Rn) → C∞c (Rn) a continuous
operator with supp (T ) ⊂ K. Then (a) and (b) below are equivalent:

(a) T is of the class Ψ0
1
2
, 1
2

.

(b) For all s ∈ R there is a continuous extension T : Hs → Hs of T . Moreover, for
any vector fields Vm := [ X1, · · · , Xm ], m ∈ N with C∞-coefficients all the iterated
commutators ad[ Vm ](T ) have continuous extensions to Tm : Hs → Hs−m

2 .

Remark 4.1.1 For any smooth and compactly supported vector-field Z there is a smooth
and compactly supported vector-field Z̄ and ϕ ∈ C∞c (Rn) such that Z∗ = Z̄+Mϕ. Because
for T ∈ Ψ0

1
2
, 1
2

the commutator [Mϕ, T ] is of class Ψ0
1
2
, 1
2

again, we conclude in this case that

the implication (a) ⇒ (b) in Theorem 4.1.3 still holds if we replace Vm := [ X1, · · · , Xm ]
by V∗m := [X∗1 , · · · , X∗m ].
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4.2 Localization of operator algebras

and Sobolev spaces

Following the theory developed in chapter 1 we construct a scale of Sobolev spaces
starting with certain positive self-adjoint operators, the generalized Laplacians (see [44]).
In the following we use the notation H := L2(Rn, v) and we write ‖ · ‖2 for the L2-norm on
H. As a result we obtain a localized version of the Sobolev spaces Hs and corresponding
Ψ∗-algebras in L(H). Let Φ ∈ C∞c (Rn) be a cut-off function with Φ ≥ 0, then we consider
the positive (semi-bounded below) operators

ΛΦ := I + Φ Λ
1
2 Φ. (4.2.1)

Note that ΛΦ ∈ Ψ
1
2
1,0 ⊂ Ψ

1
2
ρ,δ for ( 0 ≤ δ ≤ ρ ≤ 1 ) and δ < 1. By general results on

semi-bounded operators (see [44], Theorem 2.7) it follows that ΛΦ admits a self-adjoint
extension (Friedrichs extension) which is denoted by ΛΦ again. In analogy to the classical
Sobolev norms ‖ · ‖Hs for s ∈ R we define with u ∈ D (Λ2s

Φ )

‖ u ‖Φ,s :=
∥∥ Λ2s

Φ u
∥∥

2

(for details see [44]). Let Hs
Φ be the completion of D( Λ2s

Φ ) with respect to ‖ · ‖Φ,s. Then
by [44], p. 30 we have H0

Φ = H and Hs
Φ ⊂ Ht

Φ if s > t. We introduce the locally convex
spaces

H∞Φ :=
⋂

s∈R

Hs
Φ and H−∞Φ :=

⋃

s∈R

Hs
Φ.

where H−∞Φ carries the inductive limit topology, while H∞Φ is a Fréchet space with a
topology induced by all the norms ‖·‖Φ,k where k ∈ N. A collection of spaces Hs

Φ for s ∈ R
constructed above will be referred to as an HS-chain.

In order to continue with our construction we have to consider commutators of pseudo-
differential operators of class Ψ0

ρ,δ. For Pj ∈ Ψ
mj

ρ,δ where j = 1, 2 the product P1P2 as well
as the commutator [ P1, P2 ] are pseudo-differential operators again. More precisely, they

are of class P1P2 ∈ Ψm1+m2
ρ,δ and [ P1, P2 ] ∈ Ψ

m1+m2−(ρ−δ)
ρ,δ (see [103], pp. 59-60). Hence in

the exotic case ρ = δ and m1 = m2 = 0 the order of the commutator [ P1, P2 ] in general
does not improve. For P1 = Λs or a multiplication by Φ ∈ C∞c (Rn) we can prove a stronger
result.

Proposition 4.2.1 Let 0 ≤ δ ≤ ρ ≤ 1 where δ < 1 and fix R ∈ Ψ0
ρ,δ. Then it holds:

(a) For Φ ∈ C∞c (Rn) the commutator [ Φ, R ] is of class Ψ−ρρ,δ.

(b) For all s ∈ R the commutator [ Λs, R ] is of class Ψ
s−(1−δ)
ρ,δ .
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For δ < ρ Proposition 4.2.1 easily can be proved using the asymptotic expansion for
the symbol of the commutators. In fact, this is not possible for the exotic classes Ψ0

ρ,ρ

where ρ < 1 and so we have to calculate the symbols more directly. In order to proceed
we introduce the double symbols of Kumano-go [103].

Let m,m′ ∈ R and 0 ≤ δ ≤ ρ ≤ 1 and δ < 1, then we denote by Sm,m′

ρ,δ (double symbols)
the class of all C∞-functions on R4n = Rn

x × Rn
ξ × Rn

x′ × Rn
ξ′ such that

∣∣∣ ∂αξ ∂α
′

ξ′ D
β
xD

β′

x′a( x, ξ, x
′, ξ′ )

∣∣∣ ≤ Cα,α′,β,β′ · λ(ξ)m+δ| β |−ρ| α |λ ( ξ, ξ′ )
δ|β′|

λ ( ξ′ )
m′−ρ| α′ |

where λ(ξ, ξ′ ) := (1+ |ξ |2 + |ξ′ |2 )
1
2 . Using this inequality the space Sm,m′

ρ,δ can be equipped

with a Fréchet topology in the standard way. To any symbol a ∈ Sm,m′

ρ,δ we can associate
an operator R on S in the sense of [103], p. 65. The class of all operators with symbol

in Sm,m′

ρ,δ is denoted by Ψm,m′

ρ,δ . Let us assume that a ∈ Sm,0ρ,δ does not depend on ξ′, then

by Corollary 3, p. 66 in [103] for any f ∈ S the corresponding operator R ∈ Ψm,0
ρ,δ has the

form of an double integral:

Rf( x ) := (2π)−n
∫ ∫

ei( x−y )·ξa( x, ξ, y ) f( y ) dy dξ. (4.2.2)

In fact, the operators with double symbols are pseudo-differential operators in the usual
sense. The following relation between both classes holds (see [103] Theorem 2.5, p.73).

Theorem 4.2.1 Let m,m′ ∈ R and 0 ≤ δ ≤ ρ ≤ 1, δ < 1, then Ψm,m′

ρ,δ →֒ Ψm+m′

ρ,δ .
Moreover, equipped with the Fréchet topologies the embedding is continuous.

Now, using well-known results on the symbols of composed pseudo-differential we can
prove Proposition 4.2.1 above:

Proof of Proposition 4.2.1 In order to prove (a) and (b) we compute the symbols of
both commutators. Let Φ ∈ C∞c (Rn) and R ∈ Ψ0

ρ,δ with symbol b ∈ S0
ρ,δ, then [ Φ, R ] is of

the form (4.2.2) where

a
(
x, ξ, y

)
:= Φ( x ) · b( x, ξ ) − b( x, ξ ) · Φ( y ) ∈ S0,0

ρ,δ .

Using the Taylor formula together with a( x, ξ, x ) = 0 we rewrite a in the form

a( x, ξ, y ) =
n∑

k=1

(
yk − xk

) ∫ 1

0

∂yk
a
(
x, ξ, x+ θ( y − x )

)
dθ.

If we put this in (4.2.2) and replace (yk−xk ) ·ei( x−y )·ξ by i∂ξke
i( x−y )·ξ, then integration

by parts implies that we can replace a in (4.2.2) by

ã
(
x, ξ, y

)
= −i

n∑

k=1

∫ 1

0

∂ξk∂yk
a
(
x, ξ, x+ θ( y − x )

)
dθ. (4.2.3)
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Let us compute the integrand in (4.2.3):

∂ξk∂yk
a
(
x, ξ, x+ θ( y − x )

)
= −∂ξkb( x, ξ ) · ∂yk

Φ
(
x+ θ( y − x )

)
.

The first factor of the term on the right hand side is in S−ρρ,δ while the second factor is in
C∞c (Rn) as a function of x and y. Hence if we consider ã as a double symbol it follows from
Corollary 2 in [103], p. 66 that ã ∈ S−ρ,0ρ,δ . By Theorem 4.2.1 we conclude that [Φ, R ] ∈ S−ρρ,δ
and we have proved (a).

A similar argument works in the proof of (b). For s ∈ R and using Theorem 2.6, p. 74
in [103] it is easy to see that the symbol of R ◦Λs is given by a( x, ξ ) ·λs( ξ ). Furthermore
by applying Corollary 2, p. 66 in [103] the double symbol p( x, ξ, x′, ξ′ ) of Λs ◦ R has the
form:

p
(
x, ξ, x′, ξ′

)
= λs( ξ ) · a

(
x′, ξ′

)
∈ Ss,0ρ,δ .

It follows from Theorem 3.1, p. 75 in [103] and p( x, ξ, x, ξ ) = λs( ξ ) · a( x, ξ ) that R ◦ Λs

is a pseudo-differential operator with single symbol given by:

pL
(
x, ξ

)
:= λs( ξ ) · a( x, ξ ) +

n∑

k=1

∫ 1

0

rk,θ( x, ξ ) dθ

where

rk,θ
(
x, ξ

)
:= (2π)−n · Os −

∫ ∫
e−iy·η∂ξkDx′

k
p
(
x, ξ + θη, x+ y, ξ

)
dy dη

is an oscillatory integral. We conclude that the commutator [Λs, R ] has the (single) symbol

σ
(

[ Λs, R ]
)

=
n∑

k=1

∫ 1

0

rk,θ( x, ξ ) dθ. (4.2.4)

Let us compute the integrands appearing in rk,θ. We obtain from Corollary 2, p. 66 in
[103] together with ∂ξkλ

s( ξ ) ∈ Ss−1
1,0 ⊂ Ss−1

ρ,δ and ∂x′
k
a( x′, ξ′ ) ∈ Sδρ,δ that

∂ξk∂x′kp
(
x, ξ, x′, ξ′

)
= ∂ξkλ

s( ξ ) · ∂x′
k
a
(
x′, ξ′

)
∈ Ss−1,δ

ρ,δ .

Finally, applying Lemma 2.4, p. 69 in [103] it follows that { rk,θ( x, ξ )}| θ |≤1 is a bounded

subset of Ss−(1−δ)
ρ,δ in the Fréchet topology. Hence by (4.2.4) the function σ( [ Λs, R ] ) is a

symbol in Ss−(1−δ)
ρ,δ . �

Corollary 4.2.1 Let R ∈ Ψ0
1
2
, 1
2

and assume that X is one of the operators Λ
1
2 or ΛΦ. Then

all commutators ad l [X ] (R) where l ∈ N0 are of class Ψ0
1
2
, 1
2

. In particular, they admit

bounded extensions to operators in L(H).
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Proof By induction it is sufficient to show that [X,R ] is of class Ψ0
1
2
, 1
2

. For X := Λ
1
2 this

directly follows from Proposition 4.2.1, (b). Now we assume that X = ΛΦ, then

[ ΛΦ, R ] = Φ Λ
1
2 [ Φ, R ] + Φ

[
Λ

1
2 , R

]
Φ + [ Φ, R ] Λ

1
2 Φ.

Applying Proposition 4.2.1 it follows that [ Λ
1
2 , R ] ∈ Ψ0

1
2
, 1
2

and [ Φ, R ] ∈ Ψ
− 1

2
1
2
, 1
2

. From the

composition rule for pseudo-differential operators and Λ
1
2 ∈ Ψ

1
2
1
2
, 1
2

the assertion follows. �

Now, following the general theory in [79] (see also [30] and Proposition 1.2.1 with
D := H∞) for any s > 0 we can define the algebra As by:

As :=
{
a ∈ L(H) : a

(
H∞

)
⊂ H∞ and for all j ∈ N0

∥∥ adj
[
Λ

s
2

]
(a) f

∥∥
2
≤ αj · ‖ f ‖2, ∀ f ∈ H∞ and αj ≥ 0 suitable

}
.

It follows from Λ
s
2 ∈ Ψ

s
2
1,0 and Theorem 4.1.1 that H∞ is invariant under Λ

s
2 . Hence

all the commutators adj
[
Λ

s
2

]
(a) and powers Λ

js
2 with j ∈ N are well-defined on H∞.

Because Λ
s
2 is a symmetric closed operator it follows by standard arguments that As is a

Ψ∗-algebra in the sense of [79].

Using a cut-off function Φ ∈ C∞c (Rn) with Φ ≥ 0 and the corresponding self-adjoint
operator ΛΦ in (4.2.1) we can define a local version As

Φ of As for s > 0.

As
Φ :=

{
a ∈ L(H) : a

(
H∞Φ

)
⊂ H∞Φ and for all j ∈ N0

∥∥ adj [ Λs
Φ ] (a) f

∥∥
2
≤ αj · ‖ f ‖2, ∀ f ∈ H∞Φ and αj ≥ 0 suitable

}
.

We obtain with the definitions A := A1 and AΦ := A1
Φ:

Lemma 4.2.1 Let Φ ∈ C∞c (Rn) be a positive function. Then the algebra Ψ0
1
2
, 1
2

of pseudo-

differential operators is contained in both A and AΦ.

Proof The inclusion Ψ0
1
2
, 1
2

⊂ A directly follows from Corollary 4.2.1 and Theorem 4.1.1.

Let us show that Ψ0
1
2
, 1
2

⊂ AΦ. Considered as operators on the scale Hs, s ∈ R of Sobolev

spaces a direct computation with a ∈ Ψ0
1
2
, 1
2

shows:

Λ2m
Φ a =

2m∑

l=0

(
2m

l

)
adl [ ΛΦ ] (a) Λ2m−l

Φ . (4.2.5)

Let u ∈ Hm
Φ ⊂ H where m ∈ N, then Λj

Φu ∈ H for j = 0, · · · , 2m. Hence by Corollary
4.2.1 together with (4.2.5) it follows that Λ2m

Φ au ∈ H and so a(u) ∈ Hm
Φ . Because m ∈ N
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was arbitrary we conclude that a( H∞Φ ) ⊂ H∞Φ . The boundedness of all commutators
adl[ ΛΦ ](a) follows from Corollary 4.2.1. �

Let us show that AΦ contains all the multiplication operators with symbols smooth in
a neighborhood of supp (Φ).

Lemma 4.2.2 Let f ∈ L∞(Rn) be smooth in a open neighborhood U of supp (Φ). Then
the multiplication operator Mf is contained in AΦ.

Proof Let us compute a single commutator [ ΛΦ, f ]. Because the product f · Φ belongs
to C∞c (Rn) the following equality is well-defined:

[ ΛΦ, f ] =
[

Λ
1
2 , | Φ |2f

]
+ Φf

[
Φ,Λ

1
2

]
+
[

Φ,Λ
1
2

]
Φf.

From Proposition 4.2.1 it follows that [ Λ
1
2 , h ] ∈ Ψ

− 1
2

1
2
, 1
2

⊂ Ψ0
1
2
, 1
2

for any h ∈ C∞c (Rn) and

so we conclude that [ ΛΦ, f ] ∈ Ψ0
1
2
, 1
2

. By induction and using Corollary 4.2.1 all iterated

commutator adl[ ΛΦ ](f) are contained in Ψ0
1
2
, 1
2

. In particular, they admit a bounded

extension to H. Now, the assertion follows with an argument similar to the proof of
Lemma 4.2.1. �

Note that the algebras As and As
Φ operate on the corresponding scales of Sobolev spaces

without an order shift. For As
Φ this follows from

Λms
Φ a =

m∑

l=0

(
m

l

)
adl [ Λs

Φ ] (a) Λ
(m−l )s
Φ . (4.2.6)

considered as an operator equation on H∞Φ . For b ∈ As
Φ and a ∈ { b, b∗ } ⊂ As

Φ we conclude
from (4.2.6) for all m ∈ N0 and with a suitable positive constant c and f ∈ H∞Φ that:

‖ af ‖Φ,ms =
∥∥ Λ2ms

Φ af
∥∥

2
≤

2m∑

l=0

(
2m

l

)
· αl ·

∥∥∥ Λ
(2m−l)s
Φ f

∥∥∥
2
≤ c · ‖ f ‖Φ,ms.

Let ρ ∈ R and Y s, (s ∈ R ∪ {∞,−∞}) be one of the HS-chains Hs or Hs
Φ. In the

following we denote by

O( ρ ) :=
⋂

t∈R

L
(
Y t, Y t−ρ

)

the order class of all linear operators a ∈ L(Y ∞) such that, for every t ∈ R there is a
bounded extension at of a from Y t to Y t−ρ. It is a well-known fact (see [44], Theorem 6.3)
that for any ρ ∈ R the space O( ρ ) equipped with the norms

‖ a ‖Y t,Y t−ρ := sup
{
‖ atu ‖Y t−ρ : u ∈ Y t, ‖ u ‖Y t ≤ 1

}
, t ∈ R

is a Fréchet space. It follows that As ⊂ ⋂
m∈N0

L( H
ms
2 ) and As

Φ ⊂ ⋂
m∈N

L( Hms
Φ ). By

standard arguments in interpolation theory (see [44], Theorem 6.3) we obtain for s > 0:

As ⊂
⋂

t∈R

L
(
H t
)

= O( 0 ) and As
Φ ⊂

⋂

t∈R

L
(
Ht

Φ

)
= O( 0 ). (4.2.7)
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Proposition 4.2.2 Let Φ ∈ C∞c (Rn) be a positive function, then for all k ∈ N0 the embed-

ding H
k
2 →֒ H

k
2
Φ is well-defined and continuous.

Proof For k = 0 the assertion is obvious. Let us assume that ‖ v ‖Φ, k
2
≤ c ‖ v ‖

H
k
2

for

k ∈ N0, with a suitable number c > 0 and v ∈ H
k
2 . Then from Lemma 4.2.2 and (4.2.7)

the multiplication MΦ is an operator in L(Hs
Φ) for all s ≥ 0 and so there is c̃ > 0 such that

with any u ∈ H
k+1
2

Φ

‖ u ‖Φ, k+1
2

=
∥∥ ( 1 + Φ Λ

1
2 Φ
)
u
∥∥

Φ, k
2

≤ c̃
(
‖ u ‖Φ, k

2
+
∥∥ [ Λ

1
2 ,Φ ]u

∥∥
Φ, k

2

+
∥∥ Λ

1
2u
∥∥

Φ, k
2

)
.

From Proposition 4.2.1 it follows that X := [ Λ
1
2 ,Φ ] ∈ Ψ0

1
2
, 1
2

and by Theorem 4.1.1 X

is continuous on H
k
2 . By induction there are c1, c2 > 0 such that

‖ u ‖Φ, k+1
2

= c1

(
‖ u ‖

H
k
2

+
∥∥ Λ

1
2u
∥∥
H

k
2

)
≤ c2 ‖ u ‖

H
k+1
2
.

From this inequality we conclude that H
k+1
2 →֒ Hk+1

Φ is embedded continuously. �

Remark 4.2.1 By identifying the spaces H−s for s ≥ 0 with the topological dual space
(Hs)′ (resp. by identifying H−sΦ and (Hs

Φ)′) with respect to the inner-product on H in the

sense of [44] there is a continuous embedding of Sobolev spaces H−
k
2

Φ →֒ H−
k
2 for k ∈ N.

Under some additional conditions we can show that - localized in the support of Φ -
the Sobolov spaces Hs and Hs

Φ coincide. To be more precise let us make the following
assumptions on the cut-off functions Φ,Θ ∈ C∞c (Rn) with Φ,Θ ≥ 0:

(a) Let U ⊂ Rn be open with Φ ≡ 1 on U .

(b) With V ⊂⊂W ⊂⊂ U we assume that Θ ≡ 1 on V and suppΘ ⊂ W .

Here we write V ⊂⊂ W iff V is an open and bounded subset of W such that the closure
V̄ of V is contained in W .

Theorem 4.2.2 Under the assumptions (a) and (b) above the multiplication MΘ is a con-

tinuous operator from H
k
2
Φ to H

k
2 (resp. from H−

k
2 to H−

k
2

Φ ) for all k ∈ N.

Proof By duality it is sufficient to prove the first assertion. Let u ∈ H
k
2
Φ ⊂ H where

k ∈ N0, then we prove the following decomposition:

(
ΦΛ

1
2 Φ
)k
MΘu = Λ

k
2MΘu+ Aku (4.2.8)

where Ak is an operator in Ψ−∞. Let k = 1, then we obtain with Φ · Θ = Θ:

ΦΛ
1
2 Φ

(
Θu
)

= ΦΛ
1
2

(
Θu
)

= Λ
1
2

(
Θu
)

+
(

Φ − 1
)

Λ
1
2

(
Θu
)
.
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By our choice of Φ and Θ it follows that dist
(

supp(Φ − 1), suppΘ
)
> 0 and so by

Theorem 2.7, p. 75 in [103] we conclude that

A1 :=
(

Φ − 1
)
Λ

1
2 Θ ∈ Ψ−∞.

Let us assume that (4.2.8) holds for k ∈ N. Then by induction and using a similar
argument:

(
ΦΛ

1
2 Φ
)k+1 (

Θu
)

=
(

ΦΛ
1
2 Φ
)

Λ
k
2

(
Θu
)

+
(

ΦΛ
1
2 Φ
)
Ak( u )

= ΦΛ
k+1
2

(
Θu
)

+ ΦΛ
1
2

(
Φ − 1

)
Λ

k
2

(
Θu
)

+
(
ΦΛ

1
2 Φ
)
Ak( u )

= Λ
k+1
2

(
Θu
)

+ Ak+1( u )

where Ak+1 ∈ Ψ−∞ and this proves (4.2.8). It is easy to see that ( ΦΛ
1
2 Φ )k maps H

k
2
Φ

continuously to H0
Φ = H. Because of MΘ ∈ O(0) it follows that Θu ∈ H

k
2
Φ and from

Λ
k
2

(
Θu
)

=
(

ΦΛ
1
2 Φ
)k (

Θu
)
− Ak( u ) ∈ H0

Φ = H

we conclude that Θu ∈ H
k
2 . Due to the fact that Ak is a continuous operator on H for all

k ∈ N together with Lemma 4.2.2 and (4.2.7) we obtain:

‖MΘu ‖
H

k
2

=
∥∥∥ Λ

k
2 Θu

∥∥∥
2
≤ c1 ‖MΘu ‖Φ, k

2
+ ‖ Aku ‖2

≤ c2

{
‖MΘu ‖Φ, k

2
+ ‖ u ‖Φ,0

}
≤ c3‖ u ‖Φ, k

2

and this finally proves the continuity of MΘ from H
k
2
Φ to H

k
2 for k ∈ N0. �

Let a be an operator of type (1
2
, 1

2
) with compact support, then according to Theorem

4.1.3 for any finite system Vm := [ Z1, · · · , Zm ] of smooth vector fields the commutator
ad[ Vm ](a) on H∞ can be extended to a continuous operator from Hs to Hs−m

2 where
s ∈ R. We show that a similar result holds true if we replace the Sobolev spaces Hs by
the local version Hk

Φ for k ∈ N. Here the function Φ is as in (a) and we assume that all
the coefficients of Zj are supported in V ⊂⊂ U .

Proposition 4.2.3 Let Ṽ ⊂⊂ U and fix a finite system Vm := [ Z1, · · · , Zm ] of smooth
vector fields supported in Ṽ . Assume that a and a∗ are are operators with compact support
and of type (1

2
, 1

2
). Then for all k ∈ Z the iterated commutator ad [ Vm ](a) on H∞Φ has a

continuous extensions from Hk
Φ to Hk−m

2
Φ .

Proof First we assume that k ∈ N with k ≥ m
2
. Let u ∈ H∞Φ and choose open sets V

and W with Ṽ ⊂⊂ V ⊂⊂ W ⊂⊂ U . Fix a cut-off function Θ ∈ C∞c (Rn) as in (b) above
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i.e. Θ ≡ 1 on V and supp(Θ) ⊂ W . Then for m ∈ N we have by our assumptions on the
support of Zm:

ad [ Vm ] (a)u = ad [ Vm ] (a)MΘu+ Zm ad [ Vm−1 ] (a)M(1−Θ)u.

The second term of the right hand side is an operator in Ψ−∞ and so it maps Hk
Φ to

Hk−m
Φ continuously. From Theorem 4.2.2 we conclude that MΘ is bounded from Hk

Φ to
Hk and by the classical Theorem 4.1.3 the commutators ad [ Vm ] (a) cause an order shift
of Sobolev spaces from Hk to Hk−m

2 . Finally, the assertion follows from the continuous

embedding Hk−m
2 →֒ Hk−m

2
Φ .

Let us define the system V∗m := [ Z∗1 , · · · , Z∗m ]. By similar arguments and applying
remark 4.1.1 it follows that the iterated commutator ad[ V∗m ](a∗) maps Hk

Φ continuously

into Hk−m
2

Φ for all integers k ≥ m
2
. By duality and Proposition 6.4 in [44] we obtain that

ad[ Vm ](a) = (−1)m
{

ad [ V∗m ] (a∗)
}∗

is continuous from H−kΦ to H−k−
m
2

Φ for k ≥ 0. The full assertion now follows by interpolation
theory (see [44], Theorem 6.3). �

Let V := { Z1, · · · , Zk } be a finite set of compactly supported smooth vector-fields.
Then we have Zj ∈ Ψ1

1,0 and according to Theorem 4.1.1 for all s ∈ R there are continuous
extensions of Zj from Hs+1 to Hs. For all positive parameters ρ > 0 we define a sub-algebra
Ψρ [ A ] of A by:

Ψρ [ A ] :=
{
a ∈ A : ad [ Zi1 , · · ·Zim ] (a) ∈

⋂

s∈Z

L
(
Hs, Hs−mρ

)
for Zil ∈ V

}
.

In the same manner we construct a local version of Ψρ[ A ] in AΦ by using commutator
methods. Let us assume that Φ is a cut-off function defined as in (a) above Theorem 4.2.2
and W := { Y1, · · · , Yk } denotes a finite set of vector-fields supported in U .

Ψρ [ AΦ ] :=
{
a ∈ AΦ : ad [ Yi1 , · · ·Yim ] (a) ∈

⋂

s∈Z

L
(
Hs

Φ,Hs−mρ
Φ

)
for Yil ∈ W

}
.

Theorem 4.2.3 The class Ψ0
1
2
, 1
2

of pseudo-differential operators with compact support is

contained in both algebras Ψ 1
2
[ A ] and Ψ 1

2
[ AΦ ]. Moreover, let f ∈ L∞(Hn) be smooth in

a neighborhood N of supp(Φ), then the multiplication Mh is an operator in Ψ 1
2
[ AΦ ].

Proof The first assertion directly can be derived from Lemma 4.2.1, Theorem 4.1.3 and
Proposition 4.2.3. It was shown in Lemma 4.2.2 that Mh ∈ AΦ. The commutator condi-
tions follow from the fact that each vector-field Y ∈ W is supported in U ⊂⊂ N which
implies from Φ ≡ 1 on U that YMh = YMh Φ with h Φ ∈ C∞c (Rn). �

A sub-algebra B in L(H) is called spectral invariant if it holds

B ∩ L(H)−1 = B−1
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where we denote by B−1 the group of all invertible elements in B. It can be shown that
both Ψρ[A ] and Ψρ [AΦ ] are algebras but additionally the spectral invariance follows from
the construction:

Proposition 4.2.4 The algebras Ψρ [ A ] and Ψρ[ AΦ ] are spectral invariant in L(H).

Proof Because the proof only uses general facts on commutators we only treat the case
Ψρ[ A ]. Let a ∈ A such that a−1 exists in L(H). From the fact that A is a Ψ∗-algebra
in L(H) it follows that the inverse a−1 is contained in A. Let us verify the commutator
conditions on a−1. For any finite system [ Zi1 , · · · , Zim ] in V we define a function Γ by:

Γ
(
a−1

)
= Γ( a ) := 0 Γ

(
ad [ Zi1 , · · · , Zim ] (a)

)
:= m.

Let us extend Γ to finite products b1 ·b2 · · · bk of operators a, a−1 and ad[Zi1 , · · · , Zij ](a)
by the rule:

Γ ( b1 · b2 · · · bk ) := Γ ( b1 ) + Γ ( b2 ) + · · · + Γ ( bk ) .

Assume that b := b1 · b2, · · · bk with Γ(b) = m. With Zj ∈ V we prove for the single
commutator [ Zj, b ] that:

[ Zj, b ] ∈ span
{
c := c1 · c2 · · · cl : Γ(c) = m+ 1 and ci ∈

{
a−1, ad[ Zi1 , · · · , Zir ](a)

} }

and we denote the linear space appearing on the right hand side by Vm+1. In fact, this
assertion directly follows from the functional equation on Γ and the well-known product
rule:

[ Zj, b ] =
k∑

l=1

b1 · · · bl−1 · [ Zj, bl ] · bl+1 · · · bk

together with [ Zj, a
−1 ] = −a−1 [ Zj, a ] a−1 which implies that Γ( [ Zj, a

−1 ] ) = 1. In
particular, by induction we conclude that

ad [ Zi1 , · · ·Zim ]
(
a−1
)
∈ Vm. (4.2.9)

Considered as operators on the scale of Sobolev spaces defined above the elements in
Vm cause an order shift by −mρ. Hence from (4.2.9) it follows that a−1 ∈ Ψρ [A ] and this
proves spectral invariance. �

Under some more restrictions on the vector-fields in V resp. W we can prove that the
algebras Ψρ[ A ] and Ψρ[ AΦ ] are symmetric (Ψ∗-algebras).

Lemma 4.2.3 Assume that Zj ∈ V (resp. Yj ∈ W) have real valued coefficients and with
ρ > 0 let B be one of the algebras Ψρ[ A ] or Ψρ[ AΦ ]. Then B is symmetric, i.e if a ∈ B,
then a∗ ∈ B. In particular, B is a Ψ∗-algebra in L(H).
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Proof We only give the proof in the case where B = Ψρ[ AΦ ]. Let a ∈ Ψρ[ AΦ ], then
in particular it follows that a, a∗ ∈ AΦ are in the class O(0) with respect to the scale Hj

Φ.
Hence the space H∞Φ is invariant under a∗ and by Proposition 6.4 in [44] together with our
notations above it holds (at)

∗ = (a∗)−t for all t ∈ R. Considered as an operator on H∞Φ we
prove that there is b ∈ O( (m− 1)ρ ) such that

ad [ Vm ] (a∗) =
{

ad [ Vm ] (a)
}∗

+ b ∈ O(mρ ). (4.2.10)

Let m = 1, then with Zi1 =
∑n

j=1 c
i1
j ∂xj

and f, g ∈ H∞Φ it follows from Theorem

4.2.2 that it holds ci1j · g ∈ H∞ ⊂ C∞(Rn). Because by assumption all the coefficients ci1j
are compactly supported and we conclude that ci1j · g ∈ C∞c (Rn). By a straightforward
computation: 〈

[ Zi1 , a ] f, g
〉

=
〈
f,
{

[ Zi1 , a
∗ ] + [Mh1 , a

∗ ]
}
g
〉

where h1 :=
∑n

j=1 ∂xj
ci1j ∈ C∞c (Rn). According to Lemma 4.2.2 it follows that the commu-

tator [Mh1 , a
∗ ] is contained in AΦ and so [ Zi1 , a ]∗ = [ Zi1 , a

∗ ] + b where b ∈ AΦ = O(0).
Now by induction and with hm :=

∑n

j=1 ∂j c
im
j we obtain with a similar calculation:

{
ad [ Vm ] (a)

}∗
= ad [ Vm ] (a∗) +

[
Mhm

, ad [ Vm−1 ] (a∗)
]

+ [ Zim +Mhm
, b ] .

where b ∈ O((m − 2)ρ) by our inductional assumption. Hence, the second and the third
term on the right hand side belong to the class O( (m − 1)ρ ) and so (4.2.10) is proved.
By Proposition 6.4 in [44] for any A ∈ O(s) it follows that A∗ ∈ O(s) and so we conclude
from (4.2.10) and for all m ∈ N that ad[ Vm ](a∗) ∈ O(mρ). Thus by definition we obtain
that a∗ ∈ Ψρ[ AΦ ]. �

Our next aim is it to define a topology on the algebras Ψρ[ A ] and Ψρ[ AΦ ]. Recall
that both spaces A and AΦ already carry the projective topology of a Fréchet algebra with
sub-multiplicative semi-norms (pk)k∈N (see [79], [30]). For t ∈ R and k ∈ N we define

‖ a ‖t,k := sup
{

‖ ad [ Zi1 , · · · , Zik ] (a) ‖Ht,Ht−kρ : Zij ∈ V
}

where a ∈ Ψρ[ A ]. We equip Ψρ[ A ] with the projective topology given by the system of
semi-norms {

pi, ‖ · ‖t,k : t ∈ R, i, k ∈ N
}
. (4.2.11)

Applying interpolation theory (see [44], Theorem 6.3) we can replace (4.2.11) by a
countable system of semi-norms generating the same topology. According to [79] (Propo-
sition 3.5 and 3.6 remark 1.) we can assume that these semi-norms are sub-multiplicative.
The same construction leads to a Fréchet topology for Ψρ[ AΦ ].

Theorem 4.2.4 Let ρ > 0 and B one of the algebras Ψρ[A ] or Ψρ[AΦ ]. Then B is spectral
invariant in L(H) and sub-multiplicative. Moreover,

b : B ×W → W : ( a, x ) 7→ a( x ) (4.2.12)
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is continuous with respect to the product topology where W = H∞ (resp. W = H∞Φ ). If all
vector-fields in V (resp. W) have real valued coefficients, then B is a Ψ∗-algebra.

Proof We only have to prove the continuity of b in (4.2.12). This follows from the general
theory in [79] and the fact that by definition the algebra B is continuously embedded in A
(resp. AΦ.) �

4.3 The Szegö-projection in the theory of

pseudo-differential operators

Let us give the definition of the Szegö-projection on the Heisenberg group Hn = Cn×R
with invariant Haar measure β. For further details and the notations below the reader is

referred to [117], [134]. We recall that the boundary of the upper half-space H+ in Cn+1 can
be identified canonically with Hn (see the appendix). Hence the Szegö-projection Ps from
L2( H+, v ) onto the space of square integrable boundary values of holomorphic functions
on H+ can be considered as an operator on L2(Hn ) := L2(Hn, β ) where β denotes the left
invariant Haar measure on Hn. It can be shown that β coincides with the usual Lebesgue
measure on Hn under the identification Hn ∼= R2n+1. If we denote by y · x for x = [ η, s ]
and y := [ ζ, t ] in Hn the Heisenberg product given by

[
ζ, t
]
·
[
η, s

]
:=
[
ζ + η, t+ s+ 2 Im( ζ · η̄ )

]
,

then according to [134], p. 540 the operator Ps can be written in the sense of an L2(Hn)-
limit as:

Psf( x ) = lim
ε→0

∫

Hn

Kε

(
y−1 · x

)
f( y ) dy (4.3.1)

where f ∈ L2( Hn ). For ε > 0 and with c := 2n−1in+1 n! π−(n+1) and the Euclidean inner
product ‖ · ‖ on Cn the kernel Kε is given by

Kε( y ) :=
c

( t+ i ‖ ζ ‖2 + iε )n+1 , y := [ ζ, t ] ∈ Hn.

Note that the integral in (4.3.1) is defined by identifying ( Hn, β ) with R2n+1 equipped
with the usual Lebesgue measure. It follows with Θ( x, y ) := x · y−1 and

| detDΦ( x, ·) | = 1 for all x ∈ Hn

that:

Psf( x ) = K
[
f ◦ Θ(x, ·)

]
:= lim

ε→0

∫

Hn

Kε( y ) · f ◦ Θ( x, y ) dy. (4.3.2)

Hence, formally for f ∈ S( Hn ) and with respect to the Heisenberg product the Szegö-
projection Ps is given by the convolution formula Psf(x) = f ∗ K(x) where K is the
distribution limε→0Kε. We can write Kε in the form:

Kε( y ) = − ∂

∂t

( c

n
·
[
t+ i ‖ ζ ‖2 + i ε

]−n )
. (4.3.3)
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Let us consider the norm function γ : Hn → R+ defined by

γ( x ) := max
{
‖ ζ ‖, | t | 12

}
.

It can be shown (see [134], p. 542), that there is α > 0 such that for any non-negative
measurable function F : ( 0,∞ ) → R+

∫

Hn

F ◦ γ( x ) dx = α

∫ ∞

0

F ( r ) r2n+1 dr. (4.3.4)

Because of

γ( y ) ≤
(
t2 + ‖ ζ ‖4

) 1
4 ≤ 2

1
4 γ( y )

the map gρ[ t, ζ ] := [ t+ i · ‖ ζ ‖2 ]−ρ is integrable at infinity iff ρ > n+1. Furthermore, gρ is
locally integrable iff ρ < n+ 1. From the fact that gn is locally integrable, we can consider
the distribution K given by

K( x ) = − ∂

∂t

( c

n
·
[
t+ i ‖ ζ ‖2

]−n )
= − c

n
· ∂t gn. (4.3.5)

Note that K coincides with c·gn+1 away from the origin. For any f ∈ L2(Hn) supported
in a compact set and with x /∈ supp (f) we can write:

Psf( x ) =

∫

Hn

K
(
y−1 · x

)
· f( y ) dy. (4.3.6)

Let us consider G : ( Hn × Hn ) \ ∆ → C where ∆ := { ( x, x ) : x ∈ Hn } denotes the
diagonal defined for y := [ ζ, t ] and x := [ η, s ] by:

G( x, y ) := K
(
y−1 · x

)
=

c
(
t− s− 2 Im( ζ · η̄ ) + i‖ η − ζ ‖2

)n+1 .

The following important result which is due to A. Nagel and E.M Stein can be found
in [117] and [134] and the appendix.

Theorem 4.3.1 Let ϕ, ψ ∈ C∞c (Hn), then the localized form ϕPsψ of the Szegö-projection
is an pseudo-differential operator in Ψ0

1
2
, 1
2

.

In particular, in the case where supp (ϕ)∩ supp(ψ) = ∅ it follows that ϕPsψ ∈ Ψ−∞. In
the following lemma we prove that a global version of this result holds true for the Toeplitz
projection Ps.

Lemma 4.3.1 Let U ⊂ Hn be open and [ f ] ∈ L2(Hn) with supp (f) ∩ U = ∅, then the
Toeplitz projection Psf is a smooth function on U .
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Proof For any compact set K ⊂ U and x ∈ K ⊂ Hn \ supp(f) it follows by equation
(4.3.6) that Psf has the form:

Psf( x ) =

∫

Hn

G( x, y ) · f( y ) dy. (4.3.7)

We show that there are numbers c̃, r > 0 such that for all (x, y) ∈ K × { ‖ y ‖ ≥ r } it
holds: ∣∣G( x, y )

∣∣ ≤ c̃ · γ( y )−2n−2. (4.3.8)

Note that with the dilation δ on the Heisenberg group Hn defined by

δ
[
ζ, t
]

:=
[
δ ζ, δ2 t

]

we have γ ◦ δ(x) = δ · γ(x) for all x ∈ Hn and δ > 0. Because of

(
t2 + ‖ ζ ‖4

) 1
4 >

1

2
· γ( y )

for all y = [ ζ, t ] ∈ Hn we can choose δ > 0 sufficiently large such that

∣∣∣∣ t−
s

δ2
− 2

δ
Im( ζ · η̄ )

∣∣∣∣
2

+

∥∥∥∥
1

δ
η − ζ

∥∥∥∥
4

≥ 1

16
· γ( y )4

for all ( x = [ η, s ], y = [ ζ, t ] ) ∈ K ×{ ‖ y ‖ = 1 }. Hence multiplying this inequality by δ4

it follows that:

∣∣ δ2t− s− 2 Im( δζ · η̄ )
∣∣2 + ‖ η − δζ ‖4 ≥ 1

16
· γ ◦ δ( y )4.

Thus there are δ0, c̃ > 0 such that for ( x, y ) ∈ Mδ0 := K × { δ(z) : ‖ z ‖ = 1, δ ≥ δ0 }
we obtain (4.3.8):

∣∣G( x, y )
∣∣ =

c
(
| t− s− 2 Im( ζ · η̄ ) |2 + ‖ η − ζ ‖4

)n+1
2

≤ c̃ γ( y )−(2n+2). (4.3.9)

By writing G in the form

G( x, y ) = c
(
t− s− 2i ζ̄ · η + i‖ η ‖2 + i‖ ζ ‖2

)−(n+1)

it is easy to see that for k ∈ N0 and β ∈ Nn
0 it holds:

∂ks ∂
β
η̄G( x, y ) = cn,β η

β G( x, y )
n+1+k+| β |

n+1

where cn,β > 0. By induction it follows that there are positive numbers cγ for γ ∈ Nn
0 such

that

∂αη ∂
k
s ∂

β
η̄G( x, y ) =

∑

γ≤α,γ≤β

cγ η
β−γ

(
− 2iζ̄ + iη̄

)α−γ
G( x, y )

n+1+k+| β |+| α |−| γ |
n+1 .
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Hence there is r > 0 such that for all α, β ∈ Nn
0 and k ∈ N0 it exits a positive number

cα,β,k independent of y ∈ Hn with:

∣∣∣ ∂αη ∂ks ∂βη̄G( x, y )
∣∣∣ ≤ cα,β,k

∑

γ≤α,γ≤β

(
1+ ‖ ζ ‖

)| α |+| β |−2 | γ ||G(x, y ) |
n+1+k+| β |+| α |−| γ |

n+1 = (∗)

for all x ∈ K and ‖ y ‖ > r. By our estimate in (4.3.9) there are δ0 > 0 and c̃α,β,k > 0 such
that for all (x, y) ∈Mδ0 it holds

(∗) ≤ c̃α,β,k · γ( y )| α |+| β | · γ( y )−2(n+1+k+| β |+| α |) ≤ c̃α,β,k · γ( y )−2(n+1+k)−| α |−| β |.

According to (4.3.4) the power γ( y )−2m is square integrable at infinity if and only if
m > 1

2
( n+ 1 ) and we conclude that for any f ∈ L2(Hn) with dist(K, supp(f) ) > 0:

[
Hn ∋ y 7→ sup

x∈K

∣∣∣ ∂ks ∂αη ∂βη̄G( x, y ) · f( y )
∣∣∣
]
∈ L1 ( Hn ) .

where α, β ∈ Nn
0 and k ∈ N0. By well-known results on parameter integrals we conclude

from equation (4.3.7) that the restriction Psf|K is in C∞(K) and because K ⊂ U was
arbitrary the assertion follows. �

Now, we can prove that the Szegö-projection Ps does not increase the singular support
of a function f ∈ L2(Hn).

Theorem 4.3.2 Let [ f ] ∈ L2(Hn) and U ⊂ Hn an open set such that f|U ∈ C∞(U). Then
there is [ g ] ∈ L2(Hn) such that g is smooth on U and [ g ] = [ Psf ] ∈ L2(Hn).

Proof Choose x ∈ U and fix open and bounded neighborhoods V1 and V2 of x ∈ U such
that x ∈ V1 ⊂⊂ V2 ⊂⊂ U . Let ϕ1, ϕ2 ∈ C∞c (Hn) be functions with ϕj ≡ 1 on Vj for
j = 1, 2. Moreover, we assume that supp(ϕ1) ⊂ V2 and supp(ϕ2) ⊂ U . Then we have the
equality ϕ2 · ϕ1 = ϕ1 and for x ∈ V1 it follows that:

ϕ1 Psf = ϕ1 Ps ϕ2

(
ϕ1 f

)
+ ϕ1 Ps

(
1 − ϕ1

)
f. (4.3.10)

By Theorem 4.3.1 the operator ϕ1Psϕ2 is a pseudo-differential operator of class Ψ0
1
2
, 1
2

.

Because of ϕ1 f ∈ C∞c (Hn) the first summand of (4.3.10) is smooth on Hn with compact
support. By Lemma 4.3.1 the second term is smooth restricted to all open sets V0 ⊂⊂ V1

with x ∈ V0. �

For a bounded symbol h ∈ L∞(Hn) and with H := L2(Hn) we consider the Toeplitz
operator Th := PsMh ∈ L(H). As an immediate consequence of Theorem 4.3.2 we have:

Corollary 4.3.1 Let [ f ] ∈ L2(Hn) and x ∈ Hn. Assume that f and the symbol h are
smooth in a neighborhood of x, then the same holds true for Thf .
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Let us consider the spectral invariant Fréchet algebra Ψ 1
2
[ AΦ ] we have constructed

above Theorem 4.2.3. Then it was shown that Ψ 1
2
[ AΦ ] contains the class of compactly

supported operators in Ψ0
1
2
, 1
2

as well as all multiplication operators with symbols smooth

in a neighborhood of supp(Φ) (see Theorem 4.2.3). An application of Theorem 4.3.1 now
proves that Ψ 1

2
[ AΦ ] solves problem (P ) of the introduction

Theorem 4.3.3 (Localization of Toeplitz operators) Let ϕ ∈ C∞c (Hn) and h ∈ L∞(Hn)
compactly supported such that h is smooth in a neighborhood of supp (Φ), then for the
Toeplitz operator it follows that ϕ Th ∈ Ψ 1

2
[ AΦ ].

Finally, we want to mention that a result analog to Theorem 4.3.1 holds in greater
generality. The authors of [117] introduce new classes of pseudo-differential operators
which allow the description of the parametricies of some non-elliptic pseudo-differential
operators such as the Szegö-projection for strictly pseudo-convex domains. As a main
result it has been shown:

Theorem 4.3.4 ([6], [117]) The Szegö-projection on a strictly pseudo-convex domain has
a symbol of class S0

1
2
, 1
2

.

4.4 Expansion of smooth functions on odd spheres

We consider the Hardy-Toeplitz projection P on the complex sphere S2n−1 in Cn.
As it was mentioned in Theorem 4.3.4 above P is a pseudo-differential operator of class
Ψ0

1
2
, 1
2

(S2n−1) and so it has the pseudo-local property. Let f ∈ L2(S2n−1) and assume that f

restricted to an open subset U ⊂ S2n−1 is in C∞(U). The Hardy Toeplitz projection Pf of
f can be considered as a holomorphic function fh on the open unit ball B2n ⊂ Cn. Under
our assumptions on f the question arises if fh admits a continuous extension to U which
coincides with Pf on S2n−1. In particular, it is of interest if the Fourier expansion of fh is
convergent in U . As a fundamental ingredient in our proofs we use the asymptotic of the
eigenvalues for the Beltrami-Laplace operator on the sphere. It is likely that some of the
results corresponding to Theorem 4.4.2 and 4.4.3 below are valid for strictly pseudo-convex
domains in Cn. To begin with and for the convenience of the reader we give some facts on
harmonic polynomials in Rn.

Let n ≥ 2 and denote by Sn−1 := { z ∈ Rn : ‖ z ‖ = 1 } the unit sphere in Rn. With the
usual Laplace operator ∆ := ∂2

x1
+ · · ·+ ∂2

xn
on Rn where ∂xj

:= ∂
∂xj

we consider the space

SHR

l (n) of homogeneous polynomials of degree l ∈ N0 on Rn contained in the kernel of ∆.
A polynomial p ∈ SHR

l (n) is called (regular) spherical harmonics of order l.

Applying Green’s formula where σ denotes the usual surface measure on Sn−1 we obtain
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for hj ∈ SHR

j (n) and j ∈ N0:

0 =

∫

‖ x ‖<1

{
hl( x ) · ∆hm( x ) − hm( x ) · ∆hl( x )

}
dx

=

∫

S2n−1

(
m− l

)
· hl( ξ ) · hm( ξ ) dσ( ξ ).

Here we have used the fact that the normal derivative of a R-homogeneous polynomial
Q of degree l on Sn−1 is given by d

dt
Q(t ξ)|t=1 = l · Q(ξ). Thus the spherical harmonics

of distinct degrees are orthogonal with respect to the L2(Sn−1, σ)-inner product. In the
following we identify R2n and Cn in the canonical way:

z = ( z1, · · · , zn ) = ( x1, · · · , xn ) + i( y1, · · · , yn ), z̄ := ( z̄1, · · · , z̄n ).

With the complex derivatives ∂zk
:= 2−1( ∂xk

+ i∂yk
) and ∂z̄k

:= 2−1( ∂xk
− i∂yk

) the
complex Laplacian 2 has the form:

2 := 2
n∑

k=1

∂zk
∂z̄k

=
1

2

n∑

k=1

{
(∂xk

)2 + (∂yk
)2 } .

and so for all dimensions n ∈ N we have the notion of spherical harmonics on the complex
sphere S2n−1 ∼= { z ∈ Cn : ‖ z ‖ = 1 }. Let us write SHC

j (n) for the space of all R-
homogeneous polynomials in z and z̄ on Cn which are in the kernel of 2. Examples of
spherical harmonics in SHC

j (n) are given by the monomials on Cn of degree j:

zα := zα1
1 · · · zαn

n , α ∈ Nn
0 , and | α | = j.

Here the defining equation 2zα = 0 is obvious from ∂z̄k
zα = 0. It follows from our

computation above that the monomials zα and zβ of distinct orders | α | 6= | β | are
orthogonal in L2(S2n−1, σ). In fact this is even true for α 6= β.

Let us return to the general case of Sn−1 ⊂ Rn. We denote by B the Beltrami Laplace
operator on C∞(Sn−1). The following result can be found in [138]:

Theorem 4.4.1 The operator B is essentially self-adjoint with 〈Bϕ,ϕ〉L2(Sn−1,σ) > 0 for
any function ϕ ∈ D(B) = C∞(Sn−1). The closure B̄ of B is an operator with a pure point
spectrum, and its eigenvalues are γl := l (l + n − 2) for l ∈ N0. The spherical harmonics
SHR

l (n) of degree l form the eigenfunctions of B̄ with eigenvalue γl.

In particular, we conclude that with our identification of R2n and Cn above the restric-
tions of the monomials zα for α ∈ N0 to the complex sphere S2n−1 ⊂ Cn are eigenfunctions
of B with corresponding eigenvalues

λα := | α | ·
(
| α | + 2n− 2

)
. (4.4.1)

From the fact that C∞(S2n−1) = D(Bk) for all powers k ∈ N we can prove an asymptotic
behavior of the Fourier coefficients of C∞-functions on the complex sphere. In the following
denote by 〈·, ·〉σ the L2-inner-product on S2n−1.



W. Bauer 131

Lemma 4.4.1 Let f ∈ C∞(S2n−1), then for all k > 0 there is ck > 0 such that for all

multi-indices α ∈ Nn
0 the inequality | 〈f, zα〉σ | ≤ ck · ( 1 + | α |2 )

−k · ‖ zα ‖σ holds.

Proof For k ∈ N and α ∈ Nn
0 it follows from Theorem 4.4.1 and the eigen-value λα of B

corresponding to zα that

〈
Bkf, zα

〉
σ

=
〈
f,Bkzα

〉
σ

= λkα · 〈 f, zα 〉σ .

From (4.4.1) it is clear that there is c > 0 with λα ≥ c · ( 1 + | α |2 ) for all 0 6= α ∈ Nn
0 .

Hence it follows that:

| 〈 f, zα 〉σ | ≤ λ−kα ·
∥∥Bkf

∥∥
σ
· ‖ zα ‖σ ≤ ck

(
1 + | α |2

)−k · ‖ zα ‖σ , ( α 6= 0 ).

where ck > 0 does not depend on α. To include the case α = 0 we may increase ck. �

Let us consider the Hardy space H2( S2n−1 ) on the unit sphere which can be defined
to be the closure of span{zα : α ∈ Nn

0 } in L2(S2n−1, σ). Then H2(S2n−1) consists of square
integrable boundary values of holomorphic functions in B2n := { z ∈ Cn : ‖ z ‖ < 1}. By P
we denote the orthogonal projection (Szegö-projection) from L2(S2n−1, σ) onto the Hardy
space and we write eα := zα · ‖ zα ‖−1

σ for α ∈ Nn
0 . The system [ eα : α ∈ Nα

0 ] forms an
orthonormal basis of H2(S2n−1) (see [39]) and we can prove:

Theorem 4.4.2 Let f ∈ C∞(S2n−1), then the expansion g(z) :=
∑

α∈Nn
0
〈 f, eα 〉σ · eα de-

fines a holomorphic function on B2n. All (formal) derivatives of g and g itself are conver-
gent on the closed ball B2n and they represent continuous functions on B2n. Furthermore,
the restriction of g to S2n−1 coincides with Pf ∈ C∞(S2n−1).

Proof By a standard calculation for α ∈ Nn
0 (see [39]) the L2-norm ‖zα‖2

σ of the monomials
zα is given by:

‖ zα ‖2
σ = 2 πn

α!

( n+ | α | − 1 )!
. (4.4.2)

Hence it follows that for all z ∈ B2n the Fourier expansion of g can be written in the
following form:

g( z ) =
1

2 πn
·
∑

α∈Nn
0

〈 f, zα 〉σ
( n+ | α | − 1 )!

α!
· zα.

With any β ∈ Nn
0 we write ∂βz = ∂βn

zn
· · · ∂β1

z1
. Then with the usual multi-index notation

we have

∂βz z
α =

α!

( α− β )!
zα−β

and so it follows for z ∈ B2n with cα( f ) := 〈 f, zα 〉σ and by an index shift as a function
on the open unit ball:

∂βz g( z ) =
1

2 πn
·
∑

α∈Nn
0

cα+β(f) · ( n+ | α | + | β | − 1 )!

α!
· zα.
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Now, we use our estimate on the Fourier coefficients cα(f) of f . By Lemma 4.4.1 and
for any k ∈ N there is ck > 0 such that:

∣∣ cα+β(f)
∣∣ ≤ ck ·

(
1 + | α+ β |2

)−k ·
{

( α+ β )!

( n+ | α | + | β | − 1 )!

} 1
2

.

Applying this estimate to the series above we obtain:

∑

α∈Nn
0

| cα+β(f) | ( n+ | α | + | β | − 1 )!

α!
· | zα |

≤ ck ·
∑

α∈Nn
0

(
1 + | α+ β |2

)−k ·
{

( n+ | α | + | β | − 1 )!

α!

} 1
2

·
{

( α+ β )!

α!

} 1
2

· | zα | .

We show that the right hand side of this inequality is convergent on S2n−1 for an
integer k sufficiently large. By the Cauchy-Schwartz inequality we only have to prove the
convergence of

(i) Gk( z ) :=
∑

α∈Nn
0
( 1 + | α+ β |2 )

−k · ( α+β )!
α!

and

(ii) Fk( z ) :=
∑

α∈Nn
0
( 1 + | α+ β |2 )

−k · ( n+| α |+| β |−1 )!
α!

· | zα |2 .

Let us start with (i). For large k ∈ N convergence follows from standard calculations
together with the estimate

( α+ β )!

α!
≤ | α+ β || β |.

In order to treat (ii) we use the multi-nominal formula ‖ z ‖2l =
∑
| α |=l

l!
α!
| zα |2 for

l ∈ N0 and z ∈ Cn. We compute

Fk( z ) =
∞∑

l=0

(
1 + [ l + | β | ]2

)−k · ( n+ l + | β | − 1 )!

l!
·
∑

| α |=l

l!

α!
· | zα |2

≤
∞∑

l=0

(
1 + l2

)−k ·
∣∣ n+ l + | β | − 1

∣∣n+| β |−1 · ‖ z ‖2l.

Let c > 0 be a constant with

∣∣ n+ l + | β | − 1
∣∣n+| β |−1 ≤ c ·

(
1 + l2

)n+| β |−1

for our fixed β and all l ∈ N. Then we obtain with z ∈ S2n−1:

Fk( z ) ≤ c

∞∑

l=0

(
1 + l2

)−k−1+n+| β |
<∞
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for k > n+ | β | − 1
2
. Hence we have proved that all formal derivatives of g are convergent

for all z in the closed unit ball B2n. In particular, ∂βz g is bounded on B2n for all β ∈ Nn
0

and so g together with its derivatives are equi-continuous on B2n. By the general theory it
follows that ∂βz g have continuous extensions hβ to B2n. From Abel’s theorem we conclude
that for all z ∈ S2n−1:

hβ( z ) = lim
r↑1

∂βz g( rz ) = ∂βz g( z )

where the right hand side denotes the formal derivative of g on S2n−1 which converges
by our computation above. It is well-known that Pf can be obtained a.e. on S2n−1 by
non-tangential limit of g from the inside of the ball. From the continuity of g up to the
boundary it follows that g coincides with Pf a.e. on S2n−1. �

Finally, we want to prove a localized version of Proposition 4.4.2. Let us remind of the
Szegö-kernel Ks : B2n × S2n−1 → C for the sphere which gives an integral representation
of g in the open ball B2n. According to [102] the kernel Ks can be calculated explicitly

Ks( z, ζ ) :=
( n− 1 )!

2 πn
· 1(

1 − z · ζ̄
)n (4.4.3)

Given any f ∈ L2(S2n−1, σ) the Szegö-projection Pf can be considered as holomorphic
function on B2n by the integral formula:

Pf( z ) =

∫

S2n−1

Ks( z, ζ ) · f( ζ ) dσ( ζ ), ( z ∈ B2n ). (4.4.4)

Fix a point x ∈ S2n−1 and assume that f vanishes in a ε-neighborhood Uε(x) ⊂ S2n−1

of x, then there is an open ε̃-neighborhood Uε̃(x) ⊂ Cn such that for all α ∈ Nn
0 :

sup
{

| ∂αzKs( z, ζ ) | : z ∈ Uε̃( x ), ζ ∈ S2n−1 \ Uε( x )
}

=: cα <∞.

In fact, this follows from the explicit form of the kernel Ks in (4.4.3). We conclude that
the integral expression

Γ : Uε̃( x ) ∩B2n ∋ z 7→
∫

S2n−1

Ks( z, ζ ) · f( ζ ) dσ( ζ ) (4.4.5)

admits an analytic extensions Γ̄ to Uε̃(x). By standard arguments the restriction of Γ̄ to
S2n−1 ∩ Uε̃(x) coincides with Pf in this set. Now we can prove:

Theorem 4.4.3 Let f ∈ L2(S2n−1, σ) be smooth in an open subset U ⊂ S2n−1. Then the
Toeplitz projection Pf of f is smooth on U as well. Moreover, Pf admits a continuous
extension to an analytic function on an open neighborhood of U in B2n ⊂ Cn.

Proof Let x ∈ U and choose V ⊂⊂ U with x ∈ V . Fix ϕ ∈ C∞(S2n−1) such that ϕ ≡ 1
on V and ϕ ≡ 0 on S2n−1 \ U . We consider the decomposition

Pf = P
(

1 − ϕ
)
f + Pϕf. (4.4.6)
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Because ϕf is smooth on S2n−1 it follows from Proposition 4.4.2 that Pϕf is contained
in C∞(S2n−1) and it admits a continuous extensions to a function analytic in B2n. By
our remarks above the first term on the right hand side of (4.4.6) is the restriction of an
analytic function on a neighborhood Uε(x) ⊂ Cn of x to Uε(x) ∩ S2n−1. �



Chapter 5

Gaussian measures and holomorphic

functions on open

subsets of DFN -spaces.

With a Gaussian measure µB on an infinite dimensional complex Hilbert space, we
consider the space H2(V, µB) of all square integrable holomorphic functions on an open
subset V ⊂ H. We show that in many cases the L2-closure of H2(V, µB) can be identified
with a space of holomorphic functions (HµB

, τω) defined on a dense submanifold in V . Here
τω denotes a topology which is finer than the compact-open topology. Given an open subset
U in a DFN -space (the topological dual of a nuclear Fréchet space) and using these results
we construct a finite measure ν on U such that the point evaluation map

U ∋ z 7→ δz ∈
[
H( U ) ∩ L2( U, ν )

]′

is a holomorphic function on U . Finally, with this measure construction and by generalizing
a method of A. Pietsch to the case of infinite dimensions (see [121]) we give a new proof of
a result due to P. Boland and L. Waelbroeck (cf. [25] and [141]). Namely, that the space
( H(U), τ0 ) of holomorphic functions on U endowed with the compact-open topology is a
FN -space (nuclear Fréchet space).

Let Ω be a bounded domain in Cn and denote by v the usual Lebesgue measure under
the canonical identification Cn ∼= R2n. Then it is a well-known fact (cf. [140], p. 79 and
Proposition 5.2.1 below), that for any compact subset K ⊂ Ω, the restriction map:

L2( Ω, v ) ∩H( Ω ) ∋ f 7→ f|K ∈ C(K ) (5.0.1)

is continuous. Here C(K) denotes the Banach-algebra of continuous functions on K and
H(Ω) is the space of all holomorphic functions on Ω. By a result due to A. Pietsch (see
[121]) the continuity of (5.0.1) implies the nuclearity of the Fréchet space (H(Ω), τ0 ) with
respect to the compact-open topology τ0.

Let us replace Cn by an infinite dimensional separable complex Hilbert space H and
instead of the Lebesgue measure v we use a fully σ-additive Gaussian measure µB on H.
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Moreover, Ω is replaced by an open (not necessary bounded) subset V ⊂ H. In this setting
it turns out that L2(V, µB)-convergence in L2(V, µB)∩H(V ) does not imply convergence in
the compact-open topology of H(V ) anymore. What can be proved is, that there exists an
infinite dimensional subspace H1 ⊂ H nuclear embedded into H and a topology τω on the
space H(V ∩H1) of holomorphic functions which is finer than τ0 such that the restriction
map

L2
(
V, µB

)
∩H( V ) ∋ f 7→ f|V ∩H1

∈
(
H ( V ∩H1 ) , τω

)

is continuous. Moreover, in the case where V is a balanced open set it is a well-known
fact that the space ( H(V ∩H1), τω ) is locally convex and complete [51]. In this sense the
closure of L2(V, µB) ∩ H(V ) in L2(V, µB) can be identified with a space of holomorphic
functions on a dense sub-manifold of V .

Finally, we consider the Fréchet space of holomorphic functions on an open subset
U of a DFN -space E (dual of a Fréchet nuclear space) equipped with the compact-open
topology. We represent E as a nuclear inductive limit of dense Hilbert space embeddings in
the category of locally convex spaces and continuous mappings. Using the above mentioned
results on holomorphic functions on Hilbert spaces, we construct a measure ν on E such
that (5.0.1) is valid, where Ω and v are replaced by U and ν. A generalization of a result
in [121] to the infinite dimensional case now implies the nuclearity of the Fréchet space
(H(U), τ0). By different methods this already was proved in [25] and [141].

5.1 Gaussian measures on Hilbert spaces

Let ( H, 〈·, ·〉 ) be an infinite dimensional separable complex Hilbert space with Borel
σ-algebra B(H). A complex valued function Ψ on H is called positive definite if for every
finite collections y1, · · · , yn ∈ H and any complex numbers α1, · · · , αn ∈ C the following
inequality holds:

n∑

k,j=1

Ψ
(
yj − yk

)
αj αk ≥ 0.

Let us denote by F the collection of all finite dimensional subspaces of H. Moreover,
for any G ∈ F we write PG for the orthogonal projection from H onto G. Consider the
subalgebra

U :=
⋃ {

UG : G ∈ F
}
⊂ B(H) where UG :=

{
P−1
G (A) ⊂ H : A ∈ B(G)

}
.

An additive set function µ : U → R+
0 is called non-negative quasi-measure on U if for

each G ∈ F the restriction µ|UG
is a measure on the σ-algebra UG. A function f : H → C is

called cylindrical if there is G ∈ F such that f = f ◦PG and in addition f is UG-measurable.
In this case we can define the integral of f by

∫

H

f dµ :=

∫

G

f ◦ PG dµG
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where µG is the measure on B(G) defined by µG(A) := µ( P−1
G (A) ) for A ∈ B(G). Let

y ∈ H then the map exp( iRe〈·, y〉 ) is cylindrical on H and we can define the characteristic
function χµ : H → C of the quasi-measure µ by:

χµ( x ) :=

∫

H

exp
(
iRe 〈 z, x 〉

)
dµ( z ).

It is easy to check that χµ is positive definite. In general, the relation between positive
definite functions on H and quasi-measures on U is given by the following result which is
a generalization of Bochner’s Theorem and can be found in [48].

Theorem 5.1.1 A necessary and sufficient condition for a complex-valued function Ψ on
H to be a characteristic function of a non-negative quasi-measure µ on (H,U) is that it
is positive definite and that all its restriction to finite dimensional subspaces of H are
continuous at 0.

Let B ∈ L(H) be a non-negative linear operator, then we consider the corresponding
function ΨB : H → C defined for all z ∈ H by:

ΨB( z ) := exp
(
− 〈Bz, z 〉

)
= exp

(
−
∥∥B 1

2 z
∥∥2 )

.

It can be shown that ΨB is positive definite on H and so using Theorem 5.1.1 it is
the characteristic function of a positive quasi-measure µB on U . We call µB the Gaussian
quasi-measure with correlation operator B. Because of

µB(H ) = χµB
( 0 ) = ΨB( 0 ) = 1

µB is a probability measure. The question arises whether or not µB is σ-additive on U .
The following necessary and sufficient condition can be found in [48]:

Theorem 5.1.2 The quasi-measure µB is σ-additive if and only if the correlation B is a
non-negative nuclear operator on H.

In the following we only use σ-additive Gaussian quasi-measures µB. In this case µB
can be extended to a measure on the σ-algebra B(H) and we call µB Gaussian measure on
the Hilbert space H. From now on we assume that the correlation operator B be positive
and nuclear. Let [ bj : j ∈ N ] be an orthonormal basis of H consisting of eigenvalues of B
with corresponding sequence (λj)j ⊂ R+ of eigenvalues. Then for any n ∈ N we define a
function Φn : H → Cn by:

Φn( z ) :=
(
〈z, b1〉, · · · , 〈z, bn〉

)T
∈ Cn, and βn := diag

(
λ1, · · · , λn

)
∈ Rn×n.

Note that Φn : PnH → Cn is an isometrie with βsn ◦ Φn = Φn ◦ Bs for s ∈ R. For
any dimension n ∈ N let v be the usual Lebesgue measure on Cn under the canonical
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identification Cn ∼= R2n. Then we denote by µβn
the Gaussian measure on Cn with the

density:

dµβn
( z ) =

1

πn detβn
exp

(
−
〈
β−1
n z, z

〉
n

)
dv( z ).

Here we write 〈·, ·〉n for the Euclidean norm on Cn. With F ∈ L1(Cn, µβn
) consider the

function f on H defined by f := F ◦ Φn : H → C. Then we have f ∈ L1(H,µB) with:

∫

H

f dµB =

∫

Cn

F dµβn
. (5.1.1)

It can be shown that for a linear subspace V of H only the cases µB(V ) ∈ {0, 1} are
possible (cf. [48]). For later applications we examine the case V = BsH with s ∈ [ 0, 1 ].

Proposition 5.1.1 Let µB be the Gaussian measure with positive nuclear correlation op-
erator B ∈ L(H). Then

µB(BsH) =

{
1 if B1−2s is nuclear and positive

0 else.

In particular, it holds µB(BsH ) = 0 for s ∈ [ 1
2
, 1 ].

Proof Assume that s ∈ [ 0, 1 ] with µB( BsH ) = 1. Then we denote by µs the restriction
of µB to (BsH, ‖B−s · ‖ ). Let us compute the characteristic function of µs.

χµs
( x ) =

∫

BsH

exp
(
i Re

〈
B−s·, B−sx

〉 )
dµs, ( x ∈ BsH ).

Because the integrand is defined almost everywhere on H for x ∈ BsH and by our
definition of µs we can write:

χµs
( x ) =

∫

H

exp
(
i Re

〈
B−s·, B−sx

〉 )
dµB = χµB

(
B−2sx

)
= exp

(
−
∥∥B 1

2
−sx

∥∥2

s

)

where ‖ · ‖s := ‖B−s · ‖ and x ∈ BsH. Because µs is σ-additive it directly follows from
Theorem 5.1.2 that B1−2s has to be a nuclear operator. Note that the nuclearity of a
positive power of B does not depend on the space BsH where it is defined.

Conversely, let B1−2s > 0 be nuclear on (BsH, ‖ · ‖s ) and denote by µs the σ-additive
Gaussian measure on BsH with correlation B1−2s. Then from the continuous embedding
BsH →֒ H we can define the transported measure µ̃s on H by:

µ̃s( A ) := µs
(
A ∩BsH

)
for all A ∈ B(H).
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By the transformation formula for integrals we find for the characteristic function χµ̃s
(x)

with x ∈ H:

χµ̃s
( x ) =

∫

H

exp
(
i Re〈 x, · 〉

)
dµ̃s

=

∫

BsH

exp
(
i Re〈B2sx, · 〉s

)
dµs

= exp
(
−
∥∥B 1

2
−sB2sx

∥∥2

s

)
= exp

(
−
∥∥B 1

2x
∥∥2
)
.

Because the measure µ̃s is uniquely determined by its characteristic function (cf. [48])
it follows that µ̃s = µB and so µB(BsH ) = µs(B

sH ) = 1. �

5.2 Integral estimates for holomorphic functions

We prove an estimate on the point evaluation for a Bergman space over an open subset
in Cn, which can be generalized to the case of an infinite dimensional Hilbert space with
σ-additive Gaussian measure. Let µn denote the Gaussian measure on Cn defined by the
density:

dµn( z ) = π−n exp
(
− ‖ z ‖2

n

)
dv( z )

where ‖ · ‖n is the Euclidean norm and v denotes the usual Lebesgue measure on Cn. With
the translation τz(x) := z + x for z, x ∈ Cn and the Euclidean inner product 〈·, ·〉n one
easily verifies:

Lemma 5.2.1 Let M ⊂ Cn be a measurable set and f ∈ L1(M,µn), then for each z ∈ Cn

we have ∫

M

f dµn = exp
(
− ‖ z ‖2

n

) ∫

τ−z(M)

f ◦ τz · exp
(
− 2 Re 〈·, z 〉n

)
dµn.

Let H(Ω) denote the space of all holomorphic functions on the open set Ω ⊂ Cn. It is
well-known that the Bergman-space

H2
(

Ω, µn
)

:= L2
(

Ω, µn
)
∩H( Ω )

is a reproducing kernel Hilbert space and so for each z ∈ Ω the point evaluation map
δz : H2( Ω, µn ) → C defined by δz(f) := f(z) is a continuous functional. Proposition 5.2.1
provides an estimate for the norm of δz.

Proposition 5.2.1 Let Ω ⊂ Cn be open and x ∈ Ω. If r1, · · · , rn are nonnegative real
numbers such that Qx := {y ∈ Cn : |yj−xj | < rj} ⊂ Ω. Then we obtain for f ∈ H2(Ω, µn):

| f( x ) | ≤ ‖ f ‖L2(Ω,µn) · exp
(

2−1‖ x ‖2
n

)
·
n∏

j=1

[
1 − exp

(
− r2

j

) ]− 1
2
. (5.2.1)
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Proof Using the transformation formula in Lemma 5.2.1 it follows that:

exp
(
‖ x ‖2

n

) ∫

Ω

| f |2 dµn ≥ exp
(
‖ x ‖2

n

) ∫

Qx

| f |2 dµn

=

∫

Q0

| f ◦ τx |2 exp
(
− 2Re〈·, x 〉n

)
dµn = (∗).

Now, using the Taylor expansion of exp(−〈z, x〉n )·f ◦τx(z ) =
∑

α∈Nn
0
aαz

α as a function
of z we obtain:

(∗) =

∫

Q0

∣∣ exp
(
− 〈·, x 〉n

)
f ◦ τx

∣∣2 dµn( z )
(+)
=
∑

α∈Nn
0

∣∣ aα
∣∣2
∫

Q0

∣∣ zα
∣∣2 dµn. (5.2.2)

In (+) we have used the fact that the monomials zα with α ∈ Nn
0 are mutual orthogonal

with respect to the Gaussian measure on Q0. Now, equation (5.2.2) leads to the inequality

∫

Ω

| f |2 dµn ≥ exp
(
− ‖ x ‖2

n

) ∣∣ a0

∣∣2
n∏

j=1

π−1

∫

| u |≤rj

exp
(
− | u |2

)
dv1( u ). (5.2.3)

The integrals on the right hand side of the inequality (5.2.3) can be computed easily
by using polar coordinates:

∫

| u |≤rj

exp
(
− | u |2

)
dv1( u ) =

∫ 2π

0

∫ rj

0

r exp
(
− r2

)
dr dϕ

= π
[

1 − exp
(
− r2

j

) ]
.

This together with | a0 | = | f(x) | and (5.2.3) implies Proposition 5.2.1. �

Corollary 5.2.1 Let Ω ⊂ Cn be open and K : Ω×Ω → C the reproducing kernel function
for H2( Ω, µn ). With the notation of Proposition 5.2.1 and x ∈ Ω such that Qx ⊂ Ω we
have:

K
(
x, x

)
≤ exp

(
‖ x ‖2

n

) n∏

j=1

[
1 − exp

(
− r2

j

) ]−1
(5.2.4)

Moreover, it holds ‖ δx ‖2
H2(Ω,µn) ≤ K( x, x ) for all x ∈ Ω.

Proof Because of K(·, x ) ∈ H2( Ω, µn ) for all x ∈ Ω and K( x, x ) > 0 Proposition 5.2.1
implies that:

∣∣K( x, x )
∣∣ ≤ ‖K(·, x ) ‖L2(Ω,µn) exp

(
2−1‖ x ‖2

n

)
·
n∏

j=1

[
1 − exp

(
− r2

j

) ]− 1
2
. (5.2.5)

By applying the reproducing kernel property ofK we have ‖K(·, x)‖L2(Ω,µn) = K(x, x)
1
2

and using (5.2.5) the inequality (5.2.4) follows. The second assertion can be obtained be
the reproducing kernel property of K by standard arguments. �
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We want to prove an estimate analogous to Proposition 5.2.2 in the case of an infinite
dimensional Gaussian measure on a complex Hilbert spaceH. We will see that an inequality
corresponding to (5.2.1) only holds for x in a certain sub-manifolds of the open set V where
the measure is supported. Let V be an open subset of the complex and separable infinite
dimensional Hilbert space H. Fix a Gaussian measure µB on H with positive nuclear
correlation B ∈ L(H). As before, by H2(V, µB) we denotes the closure of all holomorphic
polynomials in L2(V, µB). In the following we use all the notations of section 5.1 and in

addition we assume that tr(B
1
2 ) <∞ for the trace tr of B

1
2 .

If r > 0 and z ∈ Cj (resp. x ∈ H), then let Kj(r, z) ⊂ Cj (resp. K∞(r, x) ⊂ H) be the
open ball in the Euclidean norm ‖ · ‖j (resp. the Hilbert space norm ‖ · ‖ ) with radius r
centered in z (resp. x). Finally, we denote by

Pj : H → span
{
b1, · · · , bj

}

the orthogonal projection onto the linear hull of the eigen-vectors b1, · · · , bj of B.

Lemma 5.2.2 Let r > 0 and x ∈ H. If χr,x denotes the characteristic function of the

closed ball K∞( r, x ) in H. Then we have

χr,x,j ◦ Pj( y )
j→∞−−−→ χr,x( y ), ∀ y ∈ H. (5.2.6)

where Mj := K∞( r, Pjx )∩PjH for j ∈ N and χr,x,j is the characteristic function of Mj.

Proof To begin with assume that y /∈ K∞( r, x ), then there is a number j0 ∈ N such
that ‖ Pj0( y − x ) ‖ > r and so it follows that χr,x,j ◦ Pj(y) = 0 for j ≥ j0.

For y ∈ K∞(r, x) we have ‖ Pj( y− x ) ‖ ≤ ‖ y− x ‖ ≤ r for all j ∈ N and so Pjy ∈Mj.
Hence χr,x,j ◦ Pj(y) = 1 for all j ∈ N. �

Now, using Lemma 5.2.2 and the inequalities in Proposition 5.2.1 we can give the
desired norm estimates for certain point evaluations δz on H(V ) ∩ L2(V, µB).

Theorem 5.2.1 Let R > 0 and x = B
1
2y ∈ K∞(R, 0) with y ∈ H. If we fix a number

r with 0 < r < dist(x, ∂K∞(R, 0)), then for any holomorphic function f on K∞(R, 0) it
holds

| f(x) | ≤ C(B, r ) · exp
(

2−1 ‖ y ‖2
)
· ‖ f ‖L2(K∞(R,0),µB)

where

C(B, r ) =
∞∏

j=1

[
1 − exp

(
−r2 · λ−

1
2

j · tr
(
B

1
2

)−1
) ]− 1

2

is a finite number independent of f .

Proof Each function f ∈ H( K∞(R, 0) ) is weakly continuous on K∞(r, x) and so f is
bounded there. Using Lebesgue’s Theorem, the continuity of |f |2 and Lemma 5.2.2 we
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obtain that:

‖ f ‖2
L2(K∞(r,x),µB)

= lim
j→∞

∫

H

∣∣ f ◦ Pj
∣∣2 · χr,x,j ◦ Pj dµB( z )

= lim
j→∞

1

πj det βj

∫

Kj(r,Φj◦Pjx)

∣∣ f ◦ Φ−1
j ( z )

∣∣2 · exp
(
−
〈
β−1
j z, z

〉
j

)
dvj( z ).

Because of K∞( r, x ) ⊂ K∞( R, 0 ) and by the transformation formula for the integral
(see Lemma 5.2.1) we conclude with yj := Φj ◦ Pj(x) ∈ Cj for j ∈ N:

‖ f ‖2
L2(K∞(R,0),µB) (5.2.7)

≥‖ f ‖2
L2(K∞(r,x),µB)

= lim
j→∞

∫

β
− 1

2
j (Kj(r,yj))

∣∣ f ◦ Φ−1
j ◦ β

1
2
j ( z )

∣∣2 dµj( z )

= lim
j→∞

exp
(
−
∥∥ β−

1
2

j yj
∥∥2

j

)∫

β
− 1

2
j (Kj(r,0))

∣∣∣∣ Fj( z ) exp

(
−
〈
z, β

− 1
2

j yj

〉
j

) ∣∣∣∣
2

dµj( z ).

Here Fj( z ) := f ◦Φ−1
j ◦ β

1
2
j

(
z + β

− 1
2

j yj

)
and µj denotes the Gaussian measure on Cj

with the density π−j exp(−‖ · ‖2
j ) with respect to the Lebesgue measure. Because βj is a

diagonal matrix, it is easy to see that

β
− 1

2
j Kj( r, 0 ) =

{
z ∈ Cj :

j∑

l=1

λl · | zl |2 ≤ r2
}
.

Now, we consider the poly-disc Sj ⊂ Cj defined by:

Sj :=

{
z ∈ Cj : | zl |2 ≤ r2 · λ−

1
2

l tr
(
B

1
2

)−1

for l = 1, · · · , j
}
.

Then for each j ∈ N we have the inclusion (∗) Sj ⊂ β
− 1

2
j Kj( r, 0 ). With z ∈ Sj this

directly follows from:

j∑

l=1

λl · | zl |2 ≤
j∑

l=1

λl ·
r2

λ
1
2
l tr
(
B

1
2

) =
r2

tr
(
B

1
2

) ·
j∑

l=1

λ
1
2
l < r2.

Using (∗) and inequality (5.2.7) we obtain now with ‖ β−
1
2

j yj ‖j = ‖B− 1
2 ◦Pjx ‖ and for

all dimensions j ∈ N:

‖ f ‖2
L2(K∞(R,0),µB) ≥ lim sup

j→∞

{
exp

(
−‖B− 1

2 ◦ Pjx ‖2
)
·
∫

Sj

|Gj |2dµj
}
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where Gj := Fj · exp(−〈·, β−
1
2

j yj 〉j ). Because Gj is holomorphic in a neighborhood of Sj
an application of Proposition 5.2.1 with Gj( 0 ) = Fj( 0 ) leads to:

∫

Sj

|Gj |2 dµj ≥
∣∣ Fj(0)

∣∣2 ·
j∏

l=1

[
1 − exp

(
−r2 · λ−

1
2

l · tr
(
B

1
2

)−1
) ]

. (5.2.8)

Using Fj(0) = f ◦ Pj(x) and the continuity of f , inequality (5.2.8) together with the

convergence limj→∞ exp(−‖B− 1
2 ◦ Pjx ‖2 ) = exp(−‖ y ‖2 ) implies that:

‖ f ‖2
L2(K∞(R,0),µB) ≥ exp

(
− ‖ y ‖2

)
· | f(x) |2 ·

∞∏

l=1

[
1 − exp

(
−r2 · λ−

1
2

l · tr
(
B

1
2

)−1
) ]

.

In order to finish the proof we have to show that the right hand side does not vanish.
Because of

0 < cl := exp

(
−r2 · λ−

1
2

l · tr
(
B

1
2

)−1
)

≤
λ

1
2
l tr
(
B

1
2

)

λ
1
2
l tr
(
B

1
2

)
+ r2

< 1

and (λl)l ∈ l
1
2 (N) it follows that (cl)l ∈ l1(N) and so the infinite product converges to a

positive number C(B, r )−2. �

In the following we define D :=
⋃
j∈N

PjH ⊂ H. Then D is a dense subspace of H and
Theorem 5.2.1 can be generalized in the following sense.

Corollary 5.2.2 Let R > 0 and u ∈ D. For x = B
1
2y ∈ K∞(R, u ) where y ∈ H and any

number 0 < r < dist( x, ∂K∞(R, u) ) we have with f ∈ H(K∞(R, u) ):
∣∣ f(x)

∣∣ ≤ C(B, r ) · exp
(

2−1‖ y ‖2
)
· ‖ f ‖L2(K∞(R,u),µB ), (5.2.9)

where C(B, r) is the positive constant defined in Theorem 5.2.1.

Proof Because of D ⊂ B(H) it is known that the Gaussian measure µB is quasi-invariant
under translations in direction u (cf. [48] and Lemma 5.2.1 for the finite dimensional case)
and
∫

K∞(R,u)

|f |2dµB = exp
(
−
∥∥B− 1

2u
∥∥2
)∫

K∞(R,0)

∣∣f◦τu·exp
(
−
〈
·, B−1u

〉 ) ∣∣2dµB. (5.2.10)

By assumption we have x− u ∈ K∞(R, 0) and

0 < r < dist
(
x− u, ∂K∞(R, 0)

)
= dist

(
x, ∂K∞(R, u)

)
.

If we apply Theorem 5.2.1 to the holomorphic function Fu := f ◦ τu exp(−〈·, B−1u 〉 )
for the point x̃ := x− u ∈ K∞(R, 0 ) it follows that:

∣∣ f(x)
∣∣ ≤ C(B, r) · exp

(
2−1

∥∥∥ y −B−
1
2u
∥∥∥

2

+ Re
〈
x− u,B−1u

〉)
· ‖ Fu ‖L2(K∞(R,0),µB).
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Finally, (5.2.10) together with the identity 〈 x − u,B−1u 〉 = 〈 y − B−
1
2u,B−

1
2u 〉 lead

to inequality (5.2.9). �

In the following we denote by H1 the complex Hilbert space B
1
2H endowed with the

inner product 〈·, ·〉1 := 〈B− 1
2 ·, B− 1

2 · 〉. Then B−
1
2 : H1 → H is an isometrie. Let V ⊂ H be

open. The next lemma provides a locally uniform estimate on H1 of holomorphic functions
with respect to the L2(V, µB)- norm.

Proposition 5.2.2 Let V ⊂ H be an open set and x ∈ V ∩ H1. Then there is an open
neighborhood Wx ⊂ V ∩H1 of x with respect to the topology of H1 and a constant Cx > 0
such that for each f ∈ H(V ) the following inequality holds

sup
{
| f(z) | : z ∈Wx

}
≤ Cx · ‖ f ‖L2(V,µB)

where Cx is independent of the holomorphic function f .

Proof Because D ⊂ H is dense we can choose z ∈ D and r1 > 0 with x ∈ K∞(r1, z) ⊂ V .
Further, choose r2 > 0 with K∞( r2, x ) ⊂ K∞( r1, z ) ⊂ V and consider

Wx := K∞

(
1

2
· r2, x

)
∩K(1)

∞ ( 1, x ) ⊂ H1 ∩ V

where K
(1)
∞ ( 1, x ) denotes the open ball in H1 with radius 1 centered in x. Because the

embedding H1 →֒ H is continuous, Wx is an open neighborhood of x in H1 ∩ V .
Let 0 < r3 <

1
2
· r2, then r3 < dist( y, ∂K∞(r1, z) ) for all y ∈ Wx and Corollary 5.2.2

implies that:

∣∣ f(y)
∣∣ ≤ C

(
B, r3

)
· exp

(
2−1‖ y ‖2

1

)
· ‖ f ‖L2(K∞( r1,z ),µB) ≤ Cx · ‖ f ‖L2(V,µB)

with Cx := exp ( 2−1( ‖ x ‖1 + 1 )2 ) ·C(B, r3 ). Because y ∈Wx was arbitrary Proposition
5.2.2 is proved. �

Lemma 5.2.3 There is a countable collection (Wn)n∈N of open sets in V ∩H1 with respect
to the topology of H1 and a sequence (Cn)n∈N of positive numbers such that

(i) V ∩H1 =
⋃
n∈N

Wn.

(ii) The inequality sup{ | f(z) | : z ∈ Wn } ≤ Cn · ‖ f ‖L2(V,µB) holds for all f ∈ H(V ) and
all n ∈ N.

Proof We can choose a sequence (zj)j∈N ⊂ D ∩ V which is dense V . Hence for j ∈ N
there are numbers rj > 0 such that

H1 ∩ V =
⋃

j∈N

[
K∞( rj, zj ) ∩H1

]
.
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From this we conclude that it is sufficient to prove Lemma 5.2.3 in the case of open
balls V := K∞(r, z) ⊂ H where r > 0 and z ∈ D ∩ V . Define

Wn := K∞

( [
1 − 1

n

]
r, z

)
∩K(1)

∞ ( n, z ), n ∈ N.

Then we have
⋃
n∈N

Wn = K∞(r, z) ∩ H1 and by the same argument we have used in
the proof of Proposition 5.2.2 we find Cn > 0 such that

sup
{
| f(z) | : z ∈Wn

}
≤ Cn · ‖ f ‖L2(V,µB)

holds for all f ∈ H(V ) and all n ∈ N. �

Let U be an open subset in an locally convex space E. Consider the space H(U) of all
(continuous) holomorphic functions on U endowed with the compact-open topology which
is generated by the semi-norms

pK( f ) := sup
{
| f(x) | : x ∈ K

}
.

Here K ranges over the compact subsets of U . We denote this topology by τ0. If U is
an open subset of an infinite dimensional Banach space, then ( H(U), τ0 ) is not barreled
and thus it is not a Fréchet space (see [51], p. 168) as in the case of finite dimensions. In
the following we define a topology τω on H(U) which is finer then τ0. In particular, for any
infinite dimensional Banach space E and each open subset U ⊂ E we have τ0 � τω. The
following definition can be found in [51].

Definition 5.2.1 A semi-norm p on H(U) is ported by the compact subset K of U if for
every open set V with K ⊂ V ⊂ U , there exists cV > 0 such that

p( f ) ≤ cV · sup
{
| f(x) | : x ∈ V

}
, ∀ f ∈ H(U).

The τω-topology on H(U) is the topology generated by the semi-norms ported by the
compact subsets of U .

Lemma 5.2.4 Let H be a complex separable Hilbert space and V ⊂ H be an open subset.
Then the restriction map

R : H( V ) ∩ L2
(
V, µB

)
−→

(
H( V ∩H1 ), τω

)

defined by R(f) := f|V ∩H1
is continuous with respect to the L2(V, µB)-topology.

Proof Choose a countable family (Wn)n of open sets in V ∩H1 and a sequence (Cn)n of
positive numbers such that (i) and (ii) in Lemma 5.2.3 hold. If necessary after replacing
Wn by

W̃n :=
n⋃

j=1

Wj ⊂ H1 ∩ V, ( n ∈ N )
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we can assume without loss of generality that the family (Wn)n is an increasing countable
cover of V ∩H1 with (ii). Let K ⊂ V ∩H1 be compact, then there is n0 ∈ N with K ⊂ Wn0

and for each τω-continuous semi-norm p on H(V ∩H1) we have

p( f ) ≤ c · sup
{
| f(x) | : z ∈Wn0

}
≤ c · Cn0 · ‖ f ‖L2(V,µB)

where c > 0 is a suitable constant. From this the result follows. �

The next lemma as well as some more topological properties of the space ( H(V ), τω )
can be found in [51], p. 216.

Lemma 5.2.5 If U is a balanced open subset of a Fréchet space, then ( H(U), τω ) is a
complete locally convex space.

Let V be a balanced open subset of H, and M ⊂ H(V ) ∩ L2(V, µB) be an arbitrary
set of holomorphic functions. Then by Lemma 5.2.4 and Lemma 5.2.5 the closure of M
in L2(V, µB) can be identified with a subspace of ( H(V ∩H1), τω ). This is analog to the
well-known result, that in the case of finite dimensions the Bergman space on bounded
subsets of Cn can be considered as a space of holomorphic functions. n space on bounded
subsets of Cn can be considered as a space of holomorphic functions.

5.3 Some topological properties of DFN -spaces

In this section we want to list some well-known topological properties of DFN -spaces
(dual of a Fréchet nuclear space). A more detailed description and most of the proofs can
be found in [51], [60], [116] and our appendix. In the following let E be a DFN -space then
with the compact-open topology E can be represented as a nuclear inductive countable
spectrum of Banach spaces in the category of locally convex spaces and continuous linear
mappings. Some important examples of DFN -spaces are given by:

(1) The space s′ where s denotes the rapidly decreasing sequences.

(2) The tempered distributions S ′(Rn).

(3) The dual of C∞(Ω) where Ω is an open subset of Rn.

(4) The dual of the space H(U) of all holomorphic functions on U where U is an open
subset in Cn or in a DFN -space.

(5) Any countable nuclear inductive spectrum of Banach spaces.

Remark 5.3.1 Each DFN -space can be densely embedded into a Hilbert-space (cf. the
appendix). Moreover, in the appendix we give an example of a class of DNF -spaces which
canonically are embedded in a Bergman space of holomorphic functions on open subsets in
Cn. Let us mention that there are many examples of DFN -spaces which in addition are
algebras (DFN -algebras).
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We use the following notations (cf. Definition A.1.1):

Definition 5.3.1 Let X be a topological locally convex space and U ⊂ X be open.

(1) A sequence (Kn)n∈N of compact sets Kn ⊂ U is called fundamental sequence, if for
each compact set K ⊂ U there is n0 ∈ N such that K ⊂ Kn0 . The set U is called
hemi-compact if it contains a fundamental sequence of compact sets.

(2) The open set U is called Lindelöf if each open cover of U admits a countable subcover.

(3) X is called k-space, if M ⊂ X is open if and only if M ∩K is open in K, with the
induced topology, for each compact subset K ⊂ X.

The proof of Theorem 5.3.1 can be found in [116] ( p. 513, 7.6 Theorem ) and Corol-
lary A.1.3. Together with Lemma 5.3.1 it implies that the space H(U) (resp. C(U)) of
holomorphic (resp. continuous) functions on an open subset U ⊂ E endowed with the
compact-open topology are Fréchet spaces.

Theorem 5.3.1 Let E be a DFN -space. Then all the open and all the closed subsets of
E are k-spaces.

As another useful property of DFN -spaces we mention the following lemma which is
proved in the appendix, Lemma A.1.2. l property of DFN -spaces we mention the following
lemma which is proved in the appendix, Lemma A.1.2.

Lemma 5.3.1 Let U ⊂ E be an open set in a DFN -space E, then U is hemi-compact.

As an easy consequence of Lemma 5.3.1 we obtain:

Corollary 5.3.1 Let E be a DFN -space and U ⊂ E be open, then U is Lindelöf.

For the construction of a measure ν on E such that for all open subsets U ⊂ E the point
evaluations in L2(U, ν)∩H(U) is continuous we use the fact that E can be represented as
a particular inductive spectrum of Hilbert spaces.

Lemma 5.3.2 Any DFN -space E is isomorphic to a nuclear inductive spectrum
−→

lim
m→∞

Hm

of Hilbert spaces Hm. Moreover, the defining maps πn,m : Hn →֒ Hm are (nuclear) dense
embeddings for n,m ∈ N with m > n.

Proof Let the Fréchet nuclear space F be represented strictly by a countable nuclear
projective spectrum {Bn, ρ} of Banach spaces ([60], pp. 108). If E := F ′b denotes the dual
space of F with the strong topology it follows from Satz 2.4, p. 146 in [60] that E is the

inductive limit E = (
←

proj
m→∞

Bm)′b
∼=

→

lim
m→∞

B′m. For all n,m ∈ N with n < m the spectral maps

πn,m : B′n → B′m are nuclear. Every nuclear map between complete local convex spaces



148 Holomorphy and DFN -spaces

can be factorized over l2(N) (see [60], p. 102). From this fact we obtain the following
commuting diagram:

B′1
π1,2 //

α1 ""DD
DD

DD
DD

B′2
π2,3 //

α2 ""DD
DD

DD
DD

B′3 · · ·

α3 %%KKKKKKKKK

l2(N)

β1

<<zzzzzzzz

T1

// l2(N)

β2

;;vvvvvvvvv

T2

// l2(N) · · ·

with Tj := αj+1 ◦ βj for j ∈ N. Denote by { H̃n, π } the nuclear inductive spectrum defined
by the Hilbert spaces l2(N) and the nuclear maps Tj with j ∈ N. The commuting diagram
together with the reflexivity of F with respect to the strong topology now shows that:

E ∼=
( ←

proj
m→∞

Bm

)′
b
∼=

→

lim
m→∞

B′m
∼=

→

lim
m→∞

H̃m F ∼=
( →

lim
m→∞

H̃m

)′
b
∼=

←

proj
m→∞

H̃ ′m

where H̃ ′m are Hilbert spaces. Using ([60], p. 143) there is a reduced nuclear projective

spectrum {Hm, ρ} of Hilbert spaces Hm [ i.e. ρn(
←

proj
m→∞

Hm) is dense in Hn for all n ∈ N ]

with
←

proj
m→∞

H̃ ′m
∼=

←

proj
m→∞

Hm. We obtain that

E ∼=
( ←

proj
m→∞

Hm

)′
b
∼=

→

lim
m→∞

H ′m

and with ([60], p. 145) for all n,m ∈ N with n < m the defining maps πn,m : H ′n → H ′m
are one-to-one. Consider the following commutative diagram:

H ′1
π1,2 // H ′2

π2,3 // H ′3
π3,4 // H ′4 · · ·

H ′1
π1,2 //

π1,2

OO

π1,2H ′1
π2,3 //

π2,3

OO

π2,3H ′2
π3,4 //

π3,4

OO

π3,4H ′3 · · ·

H ′1
π1,2 //

π1,2

OO

H ′2
π2,3 //

π2,3

OO

H ′3
π3,4 //

π3,4

OO

H ′4 · · ·

(5.3.1)

Here the spaces πj,j+1H ′j with j ∈ N denote the H ′j+1-closure of πj,j+1H
′
j. Using ([60],

p. 122) we conclude that the nuclear inductive spectrum { H ′n, π } is isomorphic to the
nuclear inductive spectrum

H ′1
π1,2−−−→ π1,2H ′1

π2,3−−−→ π2,3H ′2 · · · . (5.3.2)

Thus it is sufficient to prove that the inductive limit generated by the spectrum (5.3.2)
is isomorphic to the inductive limit of a nuclear spectrum of Hilbert space embeddings.
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We consider:
H ′1

π1,2−−−→ π1,2H ′1
π2,3−−−→ π2,3H ′2 · · ·

id

y π̃−1
1,2

y π̃−1
2,3

y

H ′1
id−−−→ (H ′1, ‖π1,2 · ‖)̃

π̃1,2−−−→ (H ′2, ‖π2,3 · ‖)̃ · · ·
id

y π̃1,2

y π̃2,3

y

H ′1
π1,2−−−→ π1,2H ′1

π2,3−−−→ π2,3H ′2 · · ·
The spaces (H ′j, ‖πj,j+1 · ‖ )̃ denote the completions of the spaces H ′j with respect to the

Prae-Hilbert space norm ‖πj,j+1 · ‖ and the maps π̃j,j+1 (resp. π̃−1
j,j+1) are the continuous

continuations of πj,j+1 (resp. π−1
j,j+1). It is easy to show that all the maps are continuous

and one-to-one. Moreover H ′1 is dense in (H ′1, ‖π1,2 · ‖ )̃.

After repeating this procedure we obtain the diagram where all the spaces H
(l)
j with

l, j ∈ N are Hilbert spaces and the vertical arrows denote mutual inverse continuous maps.

H ′1
π1,2 //

��

π1,2H ′1
π2,3 //

��

π2,3H ′2 · · ·

��

H
(1)
1

id //

OO

H
(1)
2

π̃1,2 //

OO

��

H
(1)
3

π̃3,4 //

OO

��

H
(1)
4 · · ·

��

H
(2)
1

id //

OO

H
(2)
2

˜̃π1,2 //

OO

H
(2)
3

˜̃π3,4 //

OO

H
(2)
4 · · ·

Here H
(1)
1 = H ′1 and H

(j)
2 = H

(j+1)
1 . The spaces H

(j)
1 are dense in H

(j)
2 for all j ∈ N.

From this we have the diagram

H ′1
π1,2 //

��

π1,2H ′1
π2,3 //

��

π2,3H ′2 · · ·

��

H
(1)
1

id //

OO

H
(2)
1

id //

OO

H
(3)
1 · · ·

OO

Because all the maps πj,j+1 are nuclear, it follows that the inductive spectrum (5.3.2)
is isomorphic to the following nuclear spectrum of Hilbert spaces

H
(1)
1

id−−−→ H
(2)
1

id−−−→ H
(3)
1 · · ·

where all the defining maps are embeddings with dense range. �

Remark 5.3.2 After replacing the norms ‖ · ‖n in the Hilbert spaces Hn in Lemma 5.3.2
by the norms cn‖ · ‖n where cn > 0 are suitable positive constants we can assume without
lost of generality that ‖ πn,m ‖ < 1 for all m,n ∈ N with n < m.
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5.4 NFp-measures on open sets of DFN -spaces

Using the results of section 5.1 we construct a finite Borel measure ν on the DFN -space
E with a topological property which is closely related to the nuclearity of H(E). To be
more precise we have to define the notion of a NFp-measure for a real number p ≥ 1.

Let X be a locally convex space and assume that F ⊂ C(X) is a linear subspace in
the algebra C(X) of continuous complex-valued functions on X. By Mσ(X) we denote the
space of all σ-finite Borel-measures on X. We define:

Definition 5.4.1 Let p ≥ 1, then we call µ ∈ Mσ(X) a NFp-measure iff for each compact
set K ⊂ X there is a compact set H ⊂ X with K ⊂ H and C > 0 such that for all f ∈ F

sup
{
| f(x) | : x ∈ K

}
≤ C

[ ∫

H

| f |p dµ
] 1

p

. (5.4.1)

The space of all NFp-measures on X is denoted by MFp(X). We call X a NFp-space
if MFp(X) 6= ∅.

Example 5.4.1 We give examples for NFp-spaces X, where F := H(X) is the spaces of
holomorphic functions on X.

(a) Let U ⊂ Cn ∼= R2n be open and denote by v the usual Lebesgue-measure on U . Then
for 1 ≤ p ≤ 2 and F := H(U) it is well-known that v is a NFp-measure and so U is
a NFp-space (cf. Proposition 5.2.1).

(b) Let P (x,D) be a hypo-elliptic differential operator. Then the solution space of
P (x,D) is a NF2-space (cf. [72]).

We will prove later on:

(c) Let E be a DFN -space and Ω ⊂ E be open in E. For the space F := H(Ω) and
1 ≤ p ≤ 2 it can be shown that MFp(Ω) 6= ∅. Hence Ω is a NFp-space.

We prove a permanence property of NF2-measures. Let Xj for j = 1, 2 be locally
convex spaces and assume that F j ⊂ C(Xj) are linear subspaces. With the usual definition

f1 ⊗ f2( z, w ) := f1( z ) · f2( w ), ( z, w ) ∈ X1 ×X2

for fj ∈ F j for j = 1, 2 the algebraic tensor product F1 ⊗ F2 can be considered as a
subspace of C(X1 × X2) where X1 × X2 carries the topology of a product space. The
following properties of NF2-measures can be shown:

Proposition 5.4.1 Let νj be NF j
2-measures for j = 1, 2, then the product measure ν1⊗ν2

is a NG2-measure where G = F1 ⊗F2.
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Proof Fix a compact set K ⊂ X1 ×X2 and for j = 1, 2 consider the canonical continuous
projections πj : X1 ×X2 → Xj. Then both spaces Kj := πj(K) ⊂ Xj are compact and the
inclusion holds:

K ⊂ K1 ×K2 ⊂ X1 ×X2.

Because by our assumption νj are NF j
2-measures for j = 1, 2 we can choose compact

subsets Hj of Xj with Kj ⊂ Hj and constants Mj > 0 such that for j = 1, 2:

sup
{
| fj(x) | : x ∈ Kj

}
≤Mj ·

[ ∫

Hj

| fj |2 dνj
] 1

2

. (5.4.2)

for all fj ∈ F j. By restriction we can consider F j as subspaces of L2(Hj, νj). Let us
denote its Hilbert space closure by F j

c . According to (5.4.2) we can regard elements of F j
c

as continuous functions on Kj and for any x ∈ Kj the point evaluation

δjx : F j → C : fj 7→ fj( x )

have a continuous extension to a functional in ( F j
c )′ which again we denote by δjx. From

the Riesz Lemma there are kernel function Bj : Hj ×Kj → C for j = 1, 2 with

fj( x ) = δjx
(
fj
)

=
〈
fj, Bj(·, x )

〉
L2(Hj ,νj)

and Bj(·, x ) ∈ F j
c . (5.4.3)

Let us denote by 〈·, ·〉j the inner-product in L2(Hj, νj), then from equation (5.4.3) it is
easy to see that:

∥∥ δjx
∥∥ = ‖Bj(·, x ) ‖

j
= Bj( x, x )

1
2 ,

(
x ∈ Kj

)
.

Moreover, by equation (5.4.2) the map Kj ∋ x 7→ Bj( x, x )
1
2 ∈ R+ is bounded by Mj.

Fix ( x, y ) ∈ K1 ×K2 and h =
∑n

i=1 fi ⊗ gj in G, then:

∣∣ h( x, y )
∣∣ =

∣∣∣
n∑

i=1

〈
fi, B1(·, x )

〉
1

〈
gi, B2(·, y )

〉
2

∣∣∣

=
∣∣∣
∫

H1×H2

h
(
z1, z2

)
·B1( z1, x ) ·B2( z2, y ) d( ν1 ⊗ ν2 )( z1, z2 )

∣∣∣

≤
[ ∫

H1×H2

| h |2 d(ν1 ⊗ ν2)
] 1

2 ·B1( x, x )
1
2 ·B2( y, y )

1
2

Finally, from the boundedness of Bj on the diagonal in K1×K2 an the fact that H1×H2

is compact in X1 ×X2 we obtain that ν1 ⊗ ν2 is a NG2-measure. �

Let C(Xj) be a Fréchet space with respect to the compact open topology and let us
equip F1 ⊗F2 with the π-topology. By the universal property of the π-tensor-product the
embedding

F1 ⊗π F2 →֒ C (X1 ×X2 ) (5.4.4)

is continuous. Hence the completion Ĝ := F1⊗̂πF2 of F1 ⊗π F2 can be considered as a
subspace of C(X1 ×X2 ).
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Corollary 5.4.1 With our notations above, the product ν1 ⊗ ν2 is a NĜ2-measure.

Proof Let h ∈ Ĝ and choose (hn)n ⊂ G converging to h with respect to the π-topology.
According to the continuous embedding (5.4.4) the sequence (hn)n tends to h uniformly
on all compact subsets of X1 × X2. Let K ⊂ X1 × X2 be compact, then it follows from
Proposition 5.4.1 that we can fix a constant M > 0 and H ⊂ X1 ×X2 compact such that
K ⊂ H and

sup
{ ∣∣ hn( x, y )

∣∣ : ( x, y ) ∈ K
}
≤M ·

[ ∫

H

| hn |2 d( ν1 ⊗ ν2 )

] 1
2

(5.4.5)

for all n ∈ N. If n tends to infinity we obtain inequality (5.4.5) for the function h instead
of hn and this proves our assertion. �

In our setting we choose X to be an open set U in a DFN -space E and F := H(U).
By the explicit construction of a measure ν with (5.4.1) we show that U is a NF2-space.
Finally, inequality (5.4.1) together with a generalization of a result due to A. Pietsch (see
[121]) to infinite dimensions leads to the nuclearity of the Fréchet space H(U) with respect
to the compact open topology.

Lemma 5.4.1 Let (Hj, 〈·, ·〉j ) for j = 1, 2 be separable complex Hilbert spaces with nuclear
and dense embedding I : H1 →֒ H2. Then there is a nuclear positive operator B ∈ L(H2)

such that H1 ⊂ B
1
2H2 and the embedding J : H1 →֒ (B

1
2H2, ‖B−

1
2 · ‖2 ) is continuous with

the norm estimate ‖ J ‖ ≤ tr(B).

Proof Because I(H1) ⊂ H2 is a dense subspace the map I∗ : H2 → H1 is one-to-one. From
the nuclearity of I we conclude that I∗ is nuclear as well and so there are orthonormal
bases [ ej : j ∈ N ] and [ dj : j ∈ N ] of H2 resp. H1 such that

I∗x =
∑

j∈N

αj · 〈 x, ej 〉2 dj

for all x ∈ H2. Without loss of generality we can assume that αi ≥ αj > 0 for i ≤ j.
Moreover (αj)j ∈ l1(N). Now we consider the operator:

Bx :=
∑

j∈N

αj · 〈 x, ej 〉2 ej.

Then B ∈ L(H2) is nuclear and positive. Fix a point z =
∑

j∈N
〈z, ej〉2 ej ∈ H1, then

we have z ∈ B
1
2H2 if there exists y ∈ H2 such that α

1
2
j 〈y, ej〉2 = 〈z, ej〉2 for all j ∈ N. In

order to prove the existence of such an y ∈ H2 it is enough to show (α
− 1

2
j 〈z, ej〉2)j ∈ l2(N)

which follows from

α−1
j | 〈z, ej〉2 |2 = α−1

j | 〈Iz, ej〉2 |2 = α−1
j | 〈z, I∗ej〉1 |2 ≤ α−1

j ‖ z ‖2
1 ‖ I∗ej ‖2

1 = αj · ‖ z ‖2
1.
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Moreover, by summarizing this inequality over j ∈ N we obtain:

∥∥B− 1
2 z
∥∥2

2
=
∥∥∥
∑

j∈N

α
− 1

2
j · 〈z, ej〉2 ej

∥∥∥
2

2
=
∑

j∈N

α−1
j · | 〈z, ej〉2 |2 ≤ ‖ z ‖2

1

∑

j∈N

αj.

Because of (αj)j ∈ l1(N) this proves the continuity of H1 →֒ (B
1
2H2, ‖B−

1
2 ·‖2 ) together

with the norm estimate ‖ J ‖ ≤∑j αj = tr(B). �

Remark 5.4.1 Consider the Hilbert space triple (Hj, 〈·, ·〉j) for j = 1, 2, 3 where Hj ⊂ Hl

whenever j < l. Assume that the embeddings Ij : Hj → Hj+1 are nuclear for j = 1, 2
and define I3 := I2 ◦ I1 : H1 → H3. Because the adjoint operators I∗2 : H3 → H2 and
I∗1 : H2 → H1 are nuclear as well it follows with Theorem 8.3.3. in [120] that:

I∗2 ∈ l1
(
H3, H2

)
and I∗1 ∈ l1

(
H2, H1

)
.

Using Theorem 8.2.7. in [120] we conclude that I∗3 = I∗1 ◦ I∗2 ∈ l
1
2 ( H3, H1 ). Fix

orthonormal bases [ ẽj : j ∈ N ] and [ d̃j : j ∈ N ] of H3 resp. H1 such that (as in Lemma
5.4.1) the operator I∗3 has the form:

I∗3x =
∑

j∈N

α̃j · 〈 x, ẽj 〉3 d̃j, (x ∈ H3)

where α̃j > 0 for all j ∈ N and α̃j ≤ α̃l whenever j ≥ l. By Theorem 8.3.2. in [120] we

find that α̃j is the jth approximation number of I∗3 and so it follows from I∗3 ∈ l
1
2 (H3, H1)

that it holds (α̃j)j ∈ l
1
2 (N). We conclude that the positive nuclear operator B which we

have constructed in Lemma 5.4.1 can be chosen such that tr(B
1
2 ) < ∞ in the case where

the embedding I3 factorizes into two nuclear embeddings I1 and I2.

Let E be a DFN -space. According to Lemma 5.3.2 and the following remark E can
be represented as a nuclear inductive spectrum {Hn, π }n∈N0 of separable complex Hilbert
spaces Hn in the category of locally convex spaces and continuous mappings. In addition
all the maps πn,n+1 : Hn →֒ Hn+1 are dense nuclear embeddings with ‖ πn,n+1 ‖ < 1 for
n ∈ N0. Without loss of generality we can assume that each embedding πn,n+1 factorizes
in two nuclear embeddings.

According to Lemma 5.4.1 and Remark 5.4.1 there is a sequence (Bn)n∈N of positive

nuclear operators with Bn ∈ L(Hn) and tr(B
1
2
n ) < ∞ such that Hn−1 ⊂ B

1
2
nHn for all

n ∈ N. Moreover, the embeddings

Hn−1 →֒
(
B

1
2
nHn, ‖B−

1
2

n · ‖n
)

are continuous. Let νn, n ∈ N be the normed Gaussian measure on Hn with the correlation
operator Bn. Then all the assumptions on Bn in section 5.1 hold. With the continuous
embedding

πn : Hn →֒
⋃

n∈N

Hn = E =
→

lim
n→∞

Hn
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and with a sequence (γn)n∈N ∈ l1(N) such that γn > 0 for all n ∈ N we can consider the
finite Borel-measure ν on E defined by:

ν(A) :=
∑

n∈N

γn · νn
(
π−1
n (A)

)
, ( A ∈ B(E)

)
. (5.4.6)

Here B(E) denotes the Borel σ-algebra of E and we have used the continuity of πn for
all n ∈ N. With x ∈ Hn and r > 0 let K(n)(r, x) be the ball in Hn with radius r centered
in x.

Lemma 5.4.2 Consider E :=
⋃
n∈N

Hn with the inductive limit topology. With the nuclear
embeddings πn,n+1 : Hn →֒ Hn+1 we assume that ‖ πn,n+1 ‖ ≤ 1 for all n ∈ N. If U ⊂ E is
an open subset, then we have for all n ∈ N:

(a) ∂n ( U ∩Hn ) ⊂ ∂n+1 ( U ∩Hn+1 ) .

(b) Let T ⊂ U ∩Hn, then distn+1 [ T, ∂n+1 ( U ∩Hn+1 ) ] ≤ distn [ T, ∂n( U ∩Hn ) ] .

Here ∂n denotes the boundary and distn the distance in the Hilbert space Hn.

Proof In order to prove (a) let x ∈ ∂n( U ∩Hn ) and r > 0. Then we have by definition:

(i) : K(n)(r, x) ∩ U 6= ∅ and (ii) : K(n)(r, x) ∩ (Hn \ U ) 6= ∅.

Because of ‖ πn,n+1 ‖ ≤ 1 it follows that K(n)(r, x) ⊂ K(n+1)(r, x) and from (i) we
conclude that K(n+1)(r, x) ∩ U 6= ∅. Finally using Hn ⊂ Hn+1 we have for all n ∈ N

∅ 6= K(n+1)(r, x) ∩ (Hn+1 \ U ) .

and it follows x ∈ ∂n+1 (U ∩Hn+1). For the proof of (b) we apply (a) and ‖ · ‖n+1 ≤ ‖ · ‖n :

distn+1 [ T, ∂n+1 (U ∩Hn+1) ] = inf
{
‖x− y‖n+1 : x ∈ T, y ∈ ∂n+1 (U ∩Hn+1)

}

≤ inf
{
‖x− y‖n : x ∈ T, y ∈ ∂n (U ∩Hn)

}

= distn [ T, ∂n (U ∩Hn) ] . �

Theorem 5.4.1 Let E be as in Lemma 5.4.2 and U ⊂ E an open subset. Then the
measure ν is a NF2-measure where F = H(U).

Proof Let K1 ⊂ U be compact. Then we can choose n ∈ N such that K1 ⊂ U ∩Hn is a
compact set in the topology of Hn. Because K1 also is compact in U ∩ Hn+2, it follows
that:

ǫ̃ := distn+2

[
K1, ∂n+2 ( U ∩Hn+2 )

]
> 0.

Fix 0 < ǫ < ǫ̃ and for j ≥ n define

U( ǫ, j ) :=
{
y ∈ U ∩Hj : distj

(
y,K1

)
< ǫ

}
.



W. Bauer 155

By Lemma 5.4.2 (b) we have the inclusions

U( ǫ, n ) ⊂ U( ǫ, n+ 1 ) ⊂ U( ǫ, n+ 2 ) ⊂ U ∩Hn+2

and because U( ǫ, n+1) is bounded in Hn+1 by nuclearity of πn+1,n+2 it is relative compact
in Hn+2. Now, define K2 to be the closure of U(ǫ, n+ 1) in Hn+2. Then we have

K1 ⊂ K2 ⊂ U ∩Hn+2 ⊂ U

andK2 is a compact subset of U . Let f ∈ H(U), then by restriction it defines a holomorphic
function on U(ǫ, n + 1) which is bounded due to the compactness of K2 ⊂ U . Hence by

Proposition 5.2.2 for each x ∈ K1 there is an open neighborhood Wx ⊂ U ∩B
1
2
n+1Hn+1 with

the topology induced by ‖B−
1
2

n+1 · ‖n+1 and a constant Mx > 0 such that

sup
{
| f(z) | : z ∈ Wx

}
≤Mx · ‖ f ‖L2(U(ǫ,n+1), νn+1). (5.4.7)

By the continuity of the embedding Hn →֒ (B
1
2
n+1Hn+1, ‖B−

1
2

n+1 ·‖n+1 ) (see Lemma 5.4.1)

the sets W̃x := Wx∩Hn are open in Hn and equation (5.4.7) holds with W̃x instead of Wx.
Finally, due to the compactness of K1 in U ∩Hn and because of U( ǫ, n+ 1 ) ⊂ K2 we

can find M̃ > 0 with

sup
{
| f(z) | : z ∈ K1

}
≤ M̃ · ‖ f ‖L2(K2,νn+1) ≤

M̃

γn+1

‖ f ‖L2(K2,ν).

This implies Theorem 5.4.1. �

5.5 The Nuclearity of H(U)

Let E be a DFN -space and U ⊂ E an open subset. In [25], [141] it was proved that the
space H(U) of all continuous holomorphic functions on U with the compact-open topology
is a FN -space (nuclear Fréchet space). Using the NH(U)2-measure ν on U which we
have constructed above as well as a generalization of a result in [120], we give a new proof
of this fact.

Theorem 5.5.1 Let U be an open set in a DFN -space E and let F := N (U) be a locally
convex subspace of the Fréchet space C(U). Then F is a nuclear space if and only if F is
a NFp-space with 1 ≤ p ≤ 2.

Proof Let N (U) be a nuclear space. Then for each compact subset K ⊂ U we consider
the normed spaces

N (K) :=
{
f|K : K → C : f ∈ N (U), ‖ f ‖K := sup{ | f(x) | : x ∈ K }

}
.



156 Holomorphy and DFN -spaces

By assumption using the nuclearity of N (U) we conclude that there is a compact set
H with K ⊂ H ⊂ U such that the restriction map

πH,K : N (H) → N (K) : f 7→ f|K

is nuclear. This implies that there are sequences (φj)j∈N ⊂ N (H)′ in the topological dual
of N (H) and (gj)j∈N ⊂ N (K) with ‖ gi ‖K ≤ 1 such that:

f( z ) =
∞∑

j=1

φj( f ) · gj( z ) and
∞∑

j=1

∥∥ φj
∥∥
N (H)′

<∞ (5.5.1)

for all f ∈ N (H) and all z ∈ K. By the Hahn-Banach Theorem we can choose a sequence
of Radon measures (µj)j∈N ⊂ C(H)′ extending φj to C(H) and ‖ µj ‖C(H)′ = ‖ φj ‖N (H)′ for
all j ∈ N. By (5.5.1) the definition µH :=

∑∞
j=1 | µj | leads to a positive Radon measure

µH on H. For each z ∈ K and f ∈ N (H) we obtain:

| f(z) | ≤
∞∑

j=1

∣∣ φj(f)
∣∣ ≤

∞∑

j=1

∣∣ µi
∣∣( |f | ) =

∫

H

| f | dµH .

According to Lemma 5.3.1 U is hemi-compact and so we can fix a fundamental sequence
(Ki)i∈N ⊂ U of compact sets. In the described way we can find a sequence (Hi)i∈N ⊂ U of
compact sets Hi with Ki ⊂ Hi ⊂ U and positive Radon measures (µ̃i)i∈N with:

sup
{
| F (z) | : z ∈ Ki

}
≤
∫

Hi

| F | dµ̃i, ∀ F ∈ N (U), ∀ i ∈ N.

Moreover, if we define µ :=
∑∞

j=1 2−j · µ̃j(Hj )−1 · µ̃i we obtain a finite positive Radon
measure µ on U with:

sup
{
| F (z) | : z ∈ Kj

}
≤ 2j · µ̃j

(
Hj

) ∫

Hj

| F | dµ

≤ 2j · µ̃j
(
Hj

)1+ 1
q

[ ∫

Hj

| F |p dµ
] 1

p

where j ∈ N and 1 ≤ p <∞ with 1
p

+ 1
q

= 1. In other words µ is a NFp-measure.

Now, assume that F = N (U) is a NFp-space with 1 ≤ p ≤ 2. Then there is a measure
µ on U such that the compact-open topology on N (U) is generated by the semi-norms

pK( f ) :=

[ ∫

K

| f |2 dµ
] 1

2

, f ∈ N (U)

where K ranges over the compact subsets of U . Denote by N 2
µ(K) the closure of N (K)

in the space L2(K,µ). In order to prove the nuclearity of N (U) it is enough to show that
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for each compact set K ⊂ U there is a compact set H with K ⊂ H ⊂ U such that the
restriction operator

π̃H,K : N 2
µ(H) → N 2

µ(K)

is quasi-nuclear (Hilbert Schmidt). For each compact set K ⊂ U we can find a compact set
H with K ⊂ H ⊂ U such that for all z ∈ K the point evaluation δz : N (H) → C defined
by δz(f) := f(z) is continuous with respect to the L2(H,µ)-topology. Hence for all z ∈ K
the mapping δz can be considered as a continuous functional on N 2

µ(H). Moreover, there
is M > 0 with:

∥∥ δz
∥∥ = sup

{
| f(z) | : f ∈ N (H), ‖ f ‖L2(H,µ) ≤ 1

}
≤M, ( z ∈ K ).

We denote by 〈·, ·〉H the inner product of L2(H,µ). Then by the Hahn-Banach Theorem
for each z ∈ K there is fz ∈ L2(H,µ) such that for all g ∈ N 2

µ(H)

δz( g ) = 〈 g, fz 〉H , and ‖ fz ‖L2(H,µ) = ‖ δz ‖ ≤M.

Choose an orthonormal basis [ ej : j ∈ N ] ⊂ N (H) of N 2
µ (H). Then with the Bessel

inequality we obtain for all z ∈ K

∞∑

j=1

∣∣ ej(z)
∣∣2 =

∞∑

j=1

∣∣ δz(ej)
∣∣2 =

∞∑

j=1

∣∣ 〈ej, fz〉H
∣∣2 ≤ ‖ fz ‖2

L2(H,µ) = ‖ δz ‖2 ≤M2. (5.5.2)

By integrating inequality (5.5.2) with respect to µ over the compact set K and using
the monotone convergence theorem we conclude that

∞∑

j=1

‖ π̃H,Kej ‖2
L2(K,µ) ≤M2 · µ(K) <∞.

Hence the restriction map π̃H,K : N 2
µ (H) → N 2

µ (K) is quasi-nuclear. �

In Theorem 5.4.1 we have proved that ν is a NF2-measure for F := H(U) where U is
an open subset of a DFN -space. Theorem 5.5.1 now implies:

Theorem 5.5.2 Let U ⊂ E be an open subset of a DFN -space E. Then, endowed with
the compact-open topology, the space H(U) of all holomorphic functions on U is a nuclear
Fréchet space (FN -space).
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Chapter 6

The Cauchy-Weil theorem and

abstract Hardy spaces

for open subsets of DFN -spaces

Let E be the dual of a Fréchet nuclear space (DFN -space) and U ⊂ E an open subset.
We denote by H∞(U) the Banach algebra of all bounded holomorphic functions on U . For
any closed subalgebra A of H∞(U) which separates points let SA be its abstract Shilov
boundary. We prove the existence of an integral formula for f ∈ A which is a generalization
of a result in [69] to U in an infinite dimensional nuclear space. Namely, given any NF2-
measure µ on U where F = H(U) is the nuclear Fréchet space of all holomorphic functions
on U (cf. Definition 5.4.1), there is a finite Radon measure ν on SA and a complex-
valued kernel Φµ on U × SA such that Φµ(z, ·) is ν-integrable for all z ∈ U and Φµ(·, x) is
holomorphic for all x ∈ SA. Moreover, the point evaluation on A in z ∈ U is given by an
integral operator on A considered as a subset of C(SA) with kernel Φµ(z, ·). We prove an
estimate on the growth of Φµ of the form:

∥∥ Φµ( z, ·)
∥∥
L1(SA,ν)

≤ C ·
∥∥ Eval( z )

∥∥
H2(U,µ)′

.

Here C > 0 is a number independent of z and Eval denotes the point evaluation in the
generalized Bergman space H2(U, µ) := L2(U, µ) ∩ H(U). In the last section we define an
abstract Hardy space H2(SA,Θ) of holomorphic functions on U by using the nuclearity of
H(U) and following an idea in [72].

It was shown in [25], [142] and chapter 5 that the space H(U) of all holomorphic
functions on U equipped with the compact-open topology is a nuclear Fréchet space (for the
notion of holomorphic functions on U we refer to [51]). With any measure space (X,S, ν)
and 1 ≤ p < ∞ we define Bp := Lp(X, ν). Given a holomorphic Bp-valued function
G ∈ H(U,Bp) we prove by applying a result due to A. Grothendieck [81]:

Theorem 1 There is a kernel function Φ : U ×X → C with the following properties:

(a) For all z ∈ U we have G(z) = [X ∋ x 7→ Φ(z, x) ∈ C ] ∈ Bp.
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(b) For all x ∈ X the map U ∋ z 7→ Φ(z, x) ∈ C is holomorphic.

The existence of Φ is closely related to the nuclearity of H(U). We give an example
which shows that in the case of an open subset V in an infinite dimensional separable
complex Hilbert space H a kernel Φ with (a) and (b) above in general does not exist. As
a corollary it follows that H(H) can not be a nuclear Fréchet space with respect to any
topology which is finer than the topology of pointwise convergence on H.

In section 6.3 we show how to construct a holomorphic lifting of Banach space valued
functions with certain growth condition by the use of NF2-measures. Before we state the
result we give some notations.

In Definition 5.4.1 we have introduce the notion of NF2-spaces. We call a finite Borel
measure µ on U a NF2-measure iff for each compact set K ⊂ U there exists a compact
set H ⊂ U with K ⊂ H and a constant C > 0 such that for all f ∈ F = H(U) it holds:

sup
{
| f(z) | : z ∈ K

}
≤ C ·

[ ∫

H

| f |2 dµ
] 1

2

. (6.0.1)

Let MF2(U) be the space of all NF2 -measures on U . In the case where MF2(U) 6= ∅
we call U a NF2-space. In Theorem 5.5.1 we have proved a generalization of a result due
to A. Pietsch to infinite dimensional domains (see [121]). Namely, that for the nuclearity
of F = H(U) it is sufficient and necessary that U is a NF2-space.

Let us fix a measure µ ∈ MF2(U), then by using the estimate (6.0.1) above it turns
out that the space H2(U, µ) of all holomorphic functions which are square integrable with
respect to µ is closed in L2(U, µ). Let us denote by Pµ the orthogonal projection of L2(U, µ)
onto H2(U, µ). By general results Pµ is an integral operator with kernel Kµ : U ×U → C.

With a pair of complex Banach spaces A and B over C, a linear operator η of A onto
B and f ∈ H(U,B) - the space of holomorphic B-valued functions on U - we prove the
existence of λ ∈ H(U,A) which fulfills a certain growth condition and solves the lifting
problem f = η ◦ λ:

A

η

��
U

f
//

λ
??~~~~~~~
B

ξ

[[

where ξ : B → A is a continuous (not necessary linear) left inverse of η which exists by
a result due to R.G. Bartle and L.M. Graves (see [6]). Again the proof essentially uses
the nuclearity of H(U). We obtain λ by integrating the continuous lifting λ̃ := ξ ◦ f with
respect to the integral kernel Kµ : U × U → C of the projection Pµ.

Theorem 2 There is λ ∈ H(U,A) solving the lifting problem f = η ◦ λ. Moreover, for
any measure µ ∈ MF2(U) such that ‖ f ‖B is µ-square integrable over U we can choose λ
with

‖ λ(z) ‖A ≤ c · ‖ Eval(z) ‖H2(U,µ)′ = c ·Kµ( z, z )
1
2
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where Eval(z) ∈ H2(U, µ)′ is the evaluation in z ∈ U and c is a suitable positive number
depending only on f and η.

Let µ ∈ MF2(U), then for any f ∈ H2(U, µ) and z ∈ U we have an integral formula
for the evaluation given by:

f( z ) =

∫

U

f ·Kµ

(
z, ·
)
dµ. (6.0.2)

The question arises whether µ with property (6.0.2) can be concentrated to the bound-
ary ∂U (or more generally to an abstract boundary of U) if we restrict ourselves to functions
f ∈ H2(U, µ) which admit certain extensions to U . Let H∞(U) be the Banach algebra of
all bounded holomorphic functions on U and denote by A ⊂ H∞(U) a closed subalgebra
which separates the points of U with abstract Shilov boundary SA. Then we prove a gen-
eralization of the results in [69] to the infinite dimensional case:

Theorem 3 For any µ ∈ MF2(U), there is a finite positive Radon measure ν on SA and
a kernel function Φµ : U × SA → C with the properties:

• The map U ∋ z 7→ Φµ(z, x) ∈ C is holomorphic for all x ∈ SA.

• For all z ∈ U we have Φµ(z, ·) ∈ L1(SA, ν).

• There is c > 0 with ‖ Φµ(z, ·) ‖L1(SA,ν) ≤ c · ‖ Eval(z) ‖H2(U,µ)′ for all z ∈ U .

• It holds f( z ) =
∫
SA
x( f ) · Φµ( z, x ) dν(x) for all f ∈ A and z ∈ U .

The proof of Theorem 3 involves our results on kernels in Theorem 1 as well as on
holomorphic liftings in Theorem 2 stated above.

In the last part of the present chapter we define an abstract Hardy space H2(SA,Θ). By
this we mean a closed subspace of L2(SA,Θ) where Θ is a suitable measure on the Shilov
boundary SA which densely contains δ[A]. Here δ : A → C(SA) is given by δ(f)[x] := x(f )
for all x ∈ SA and f ∈ A. Moreover, we claim that there is a kernel K : U ×SA → C such
that

(i) The map K(z, ·) : SA → C is bounded for fixed z ∈ U ,

(ii) For each compact set H ⊂ U and f ∈ A it holds:

sup
{
| f(z) | : z ∈ H

}
≤ ‖ δ(f) ‖L2(SA,Θ) · sup

{
‖K(z, ·) ‖L2(SA,Θ) : z ∈ H

}
.

From (ii) it is clear that we can identify H2(SA,Θ) with a space of holomorphic func-
tions on U . We want to mention that this construction is even new and leads to non-trivial
results for regions U in the complex plane with arbitrary boundary (or the case where U
is the unit disc) and subalgebras A ⊂ H∞(U). Given finite measures µ1, µ2 ∈ MF2(U)
where F = H(U) such that there exists a nuclear embedding H2(U, µ1) →֒ H2(U, µ2) we
can construct an abstract Hardy space H2(SA,Θ) in the sense described above which has
a quasi-nuclear (Hilbert-Schmidt) embedding into H2(U, µ2).
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6.1 Nuclearity and generalized Bergman spaces

As a general assumption in the present chapter let E be a DFN -space and U ⊂ E
an open subset. It is well-known that a function f from U to any topological space is
continuous on U iff its restriction to each compact subset K ⊂ U equipped with the
induced topology is continuous (cf. [116] or Lemma A.1.1 and Corollary A.1.3 in our
appendix). We call the class of topological spaces sharing this property k-spaces. Further,
we have mentioned in Lemma 5.3.1 that U admits a fundamental sequence of compact
subsets. We call U hemi-compact and using these properties it easily can be shown that,
equipped with the compact-open topology, the linear space F := H(U) of complex valued
holomorphic functions on U is a Fréchet space. By Theorem 5.5.2 (cf. [25], [142]) a result
similar to the case of open subsets in Cn holds for DFN -spaces. Namely, the Fréchet
topology on F is nuclear.

Generalizing a result due to A. Pietsch in [121] to the infinite dimensional setting it
was shown in Theorem 5.5.1 that the nuclearity of F implies that MF2(U) 6= ∅ and so
according to Definition 5.4.1 it follows that U is a NF2-space. In chapter 5 we explicitly
have given the construction of a finite measure µ ∈ MF2(U) on U by using infinite
dimensional Gaussian measures on Hilbert spaces. It is easy to see that µ is not unique;
once we have proved its existence it can be chosen in the following way:

Lemma 6.1.1 Let MF2(U) 6= ∅, then for any g ∈ C(U) there is a measure µ ∈ MF2(U)
such that g ∈ L2(U, µ).

Proof Let γ ∈ MF2(U) and define a measure µ by dµ := [ 1 + | g |2 ]−1 dγ. Because γ
is finite by definition it follows that g ∈ L2(U, µ). For any compact set K ⊂ U there is a
compact set H ⊂ U with K ⊂ H and C > 0 such that (5.4.1) holds with p = 2, all f ∈ F
and with γ instead of µ. We define D := sup{ 1 + | g(x) |2 : x ∈ H } <∞. Then it follows:

sup
{
| f(z) | : z ∈ K

}
≤ C ·D 1

2 ·
[ ∫

H

| f |2 dµ
] 1

2

for all f ∈ F and by definition we conclude that µ ∈ MF2(U). �

Let µ ∈ MF2(U), then by our remarks above it is easy to see that the linear space

H2(U, µ) := L2(U, µ) ∩H(U)

is closed in L2(U, µ). Moreover, for z ∈ U the evaluation Eval(z) ∈ H2(U, µ)′ defined
for all f ∈ H2(U, µ) by [ Eval(z) ](f) := f(z) is a continuous functional. By standard
arguments H2(U, µ) is a Hilbert space with reproducing kernel function Kµ : U × U → C
and Eval(z) = 〈 ·, Kµ(·, z ) 〉L2(U,µ). Let us denote by

Pµ : L2( U, µ ) → H2( U, µ )
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the orthogonal projection (Toeplitz projection) onto H2(U, µ). Then it is easy to see that
Pµ is an integral operator on U with

[ Pµf ] ( z ) =

∫

U

f Kµ( z, ·) dµ

for all z ∈ U and f ∈ L2(U, µ). The reproducing kernel Kµ is continuous on U in each
variable separately, but using the nuclearity of F = H(U) we also can prove:

Lemma 6.1.2 For any µ ∈ MF2(U) the map Fµ : U → R+ defined by Fµ(z) := Kµ(z, z)
is continuous on U .

Proof Because U is a k-space it is sufficient to prove the continuity of Fµ restricted to
each compact set K ⊂ U . With the induced topology K is a metric space with metric d.
Let us fix an orthonormal basis [ϕj : j ∈ N ] of H2(U, µ), then the kernel Kµ has the form:

Kµ( z, ζ ) =
∑

j∈N

ϕj( z ) · ϕj( ζ ).

By the Riesz-Fischer and the Riesz representation theorem we obtain for each z ∈ U :

Kµ(z, z) =
∑

j∈N

| ϕj(z) |2 = sup
{ ∣∣∣
〈
a, ( ϕj(z) )

〉
l2(N)

∣∣∣
2

: a ∈ l2(N), ‖ a ‖l2(N) = 1
}

= sup
{
| f(z) | : f ∈ H2(U, µ), ‖ f ‖L2(U,µ) = 1

}2

. (6.1.1)

Because µ is a NF2-measure the set M := { f ∈ H2(U, µ) : ‖ f ‖L2(U,µ) = 1 } is
bounded in F := H(U). Now, using the nuclearity of H(U) it follows that the space
MK := { f|K : f ∈ M } is relatively compact in

H(K) :=
{
g|K : K → C : g ∈ H(U), ‖ f ‖K := sup{ | f(z) | : z ∈ K }

}
.

The compactness of K ⊂ U and the theorem of Arzela Ascoli imply that MK is an
equicontinuous and bounded family. Hence for ǫ > 0 and z1 ∈ K there is δ > 0 such that
for all z2 ∈ K with d( z1, z2 ) < δ:

sup
{
| f(z1) − f(z2) | : f ∈ M

}
< ǫ.

Without loss of generality we now assume that Kµ(z1, z1) ≥ Kµ(z2, z2). Then the
inequality (6.1.1) shows in the case of d( z1, z2 ) < δ :

∣∣∣Kµ(z1, z1)
1
2 −Kµ(z2, z2)

1
2

∣∣∣ = sup
f∈M

| f(z1) | − sup
f∈M

| f(z2) |

≤ sup
f∈M

{
| f(z1) − f(z2) | + |f(z2)|

}
− sup

f∈M
| f(z2) |

≤ sup
f∈M

| f(z1) − f(z2) | < ǫ.

This finally proves the continuity of Fµ : U → R+ . �
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6.2 Grothendiecks Theorem and Nuclearity

With a measure space (X,S, ν) and 1 ≤ p <∞ we defineBp := Lp(X, ν) and we consider
the space H(U,Bp) of all holomorphic Bp-valued functions on U . Given G ∈ H(U,Bp) we
construct a kernel Φ : U ×X → C with the properties:

(a) For all z ∈ U we have G(z) = [X ∋ x 7→ Φ(z, x) ∈ C ] ∈ Bp.

(b) For all x ∈ X the map U ∋ z 7→ Φ(z, x) ∈ C is holomorphic on U .

In order to prove the existence of such a map Φ we essentially use the fact that H(U)
carries the topology of a nuclear Fréchet space together with an application of a theorem
due to Grothendieck (see [72], [81]). Let Λ be a set and assume that N is a nuclear Fréchet
space of complex valued functions on Λ with a topology finer than the topology of pointwise
convergence.

Theorem 6.2.1 (Grothendieck) Assume that B is a Banach space and let B′ be its topo-
logical dual. Let F : U → B be a function with the weak extension property: For each
continuous functional ϕ ∈ B′ there is h ∈ N such that

h( λ ) = ϕ ◦ F ( λ ), ( λ ∈ Λ ).

Then F has an expansion F (λ) =
∑∞

j=1 αj · hj( λ ) · fj where (hj)j ⊂ N and (fj)j ⊂ B
tends to zero. Moreover, the sequence (αj)j ⊂ R+ can be chosen rapidly decreasing.

Remark 6.2.1 Let F̃ : U → B′ be a function with the weak extension property: For each
y ∈ B there is h̃ ∈ N such that h̃( λ ) = F ( λ )y for all λ ∈ Λ. Then F̃ has an expansion
similar to the one in Theorem 6.2.1 with a sequence (fj)j ∈ B′ tending to zero.

In the following let us denote by ‖ · ‖p the Bp-norm, then we prove:

Proposition 6.2.1 For 1 ≤ p <∞ let ( [fj ] )j∈N ⊂ Bp and fix a sequence λ = (λj) ∈ l1(N)
with λj > 0. Then there is a set Dλ ⊂ X of measure zero such that for all z ∈ X \Dλ and

for almost all j ∈ N the inequality |fj(z)| ≤ λ
− 1

p

j · ‖ fj ‖p holds.

Proof Because for [ fj ] ∈ Bp the function | fj |p is ν-integrable over X it is sufficient to
prove Proposition 6.2.1 in the case p = 1. Let t > 0 and assume that g ∈ L1(X, ν). With
the measurable set Tt,g := { x ∈ X : | g(x) | > t · ‖ g ‖1 } we obtain:

ν ( Tt,g ) · t · ‖ g ‖1 ≤
∫

X

| g | dν = ‖ g ‖1. (6.2.1)

In case g = 0 we have ν(Tt,g) = 0 and for g 6= 0 it follows from (6.2.1) that ν(Tt,g) ≤ t−1.
With the sequence (fj)j we obtain:

ν
( ⋃

j∈N

Tλ−1
j ,fj

)
≤
∑

j∈N

λj <∞.
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Hence the set Dλ :=
⋂
l∈N

⋃∞
j=l Tλ−1

j ,fj
has measure zero and for each point z ∈ X \Dλ

we have the inequality | fj(z) | > λ−1
j · ‖ fj ‖1 for only finitely many j ∈ N. �

Applying Theorem 6.2.1 we can prove the existence of Φ : U ×X → C representing the
holomorphic function G ∈ H(U,Bp).

Theorem 6.2.2 Let 1 ≤ p < ∞ and fix a holomorphic function G ∈ H(U,Bp). Then
there exists Φ : U ×X → C with (a) and (b) above.

Proof Let us choose N := H(U) in Theorem 6.2.1 (for nuclearity see chapter 5, [25] or
[142]). Then for each ϕ ∈ B′p we have ϕ ◦ G ∈ H(U). Hence by Theorem 6.2.1 there
are sequences ( [ fj ] )j ⊂ Bp and ( hj )j ⊂ H(U) tending to zero and (αj)j ⊂ R+ rapidly
decreasing such that the following expansion holds:

G( z ) =
∞∑

j=1

αj · hj( z ) · [ fj ] .

Choose λ = (λj) ∈ l1(N) with λj > 0 for all j ∈ N such that ( λ
− 1

p

j · αj )j ∈ l1(N) (e.g.
we can define (λj) with λj := j−2p for j ∈ N). For each j ∈ N let fj be a representation
of [ fj ] ∈ Bp. Then with Proposition 6.2.1 and the boundedness of the numerical sequence
( ‖ [fj] ‖p )j we can determine a set Dλ ⊂ X of measure zero and C > 0 such that for all

x ∈ X \Dλ and for almost all j ∈ N the inequality | λ
1
p

j · fj(x) | ≤ ‖ fj ‖p ≤ C is valid. Let
us write

G( z ) =
∞∑

j=1

(
λ
− 1

p

j · αj
)
· hj( z ) ·

[
λ

1
p

j · fj
]
.

For any (z, x) ∈ U ×X we define:

Φ( z, x ) :=

{∑∞
j=1 αj · hj( z ) · fj( x ) x ∈ X \Dλ

0 x ∈ Dλ.
(6.2.2)

Because of ( λ
− 1

p

j · αj )j ∈ l1(N) and from the fact that (hj)j tends to zero uniformly
on all compact subsets of U we conclude that the series in (6.2.2) as a function of z is
convergent in H(U) for all x ∈ X \Dλ and so (b) follows. Moreover, for fixed z ∈ U the
expansion 6.2.2 converges to G(z) a.e. on X and this finally implies (a). �

The following example shows that the nuclearity condition on H(U) in Theorem 6.3.1
is essential for existence of Φ : U ×X → C with (a) and (b). We choose p = 2 and replace
U in Theorem 6.3.1 by an infinite dimensional separable complex Hilbert space. In our
construction below infinite dimensional Gaussian measures are involved; for details and
some proofs we refer to chapter 5, [14] or [48].
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Example 6.2.1 Let (H, 〈·, ·〉) be an infinite dimensional separable complex Hilbert space.
Fix a Gaussian measure µ on H with nuclear positive correlation operator B > 0, i.e. µ is
the unique probability measure on H with characteristic function

χµ( z ) :=

∫

H

exp
(
i · Re〈z, x〉

)
dµ( x ) = exp

(
−
∥∥B 1

2 z
∥∥2
)
.

We denote by [ ej : j ∈ N ] an orthonormal basis of H consisting of eigenvectors of B
and we write (λj)j ∈ l1(N) for the corresponding sequence of eigenvalues. In addition let us

assume that the operator B
1
2 > 0 is not nuclear (iff (

√
λj)j /∈ l1(N)), then by Proposition

5.1.1 it follows that µ(B
1
4H ) = 0. For l ∈ N we consider gl : H ×H → C defined by:

gl( z, x ) :=
l∑

j=1

λ
− 1

2
j · 〈 z, ej 〉 · 〈 ej, x 〉 .

Using the formula
∫
H
〈·, ej 〉 · 〈 el, ·〉 dµ = λj · δj,l (cf. [48]) we conclude for l,m ∈ N with

l ≥ m and all z ∈ H that:

∥∥ gl( z, ·) − gm( z, ·)
∥∥2

L2(H,µ)
=

l∑

j=m+1

| 〈 z, ej 〉 |2

and so G( z ) := liml→∞ gl( z, ·) ∈ L2(H,µ) is well-defined for each fixed z ∈ H. Moreover,
the map H ∋ z 7→ G(z) ∈ L2(H,µ) is isometric:

‖G(z) ‖L2(H,µ) = lim
l→∞

∥∥ gl( z, ·)
∥∥
L2(H,µ)

= ‖ z ‖.

With B2 := L2(H,µ) it follows that G ∈ L(H,B2) ⊂ H(H,B2). Let us assume that
there is a function Φ : H×H → C such that (a) and (b) above Theorem 6.2.1 holds. With
z1, z2 ∈ H and λ ∈ C we consider the sets:

Az1,z2, : =
{
x ∈ H : Φ( z1 + z2, x ) − Φ( z1, x ) − Φ( z2, x ) = 0

}
,

Az1,λ : =
{
x ∈ H : Φ( λ · z1, x ) − λ · Φ( z1, x ) = 0

}
.

Because G : H → B2 is linear, we conclude that µ(Az1,z2) = µ(Az1,λ) = 1. Choose
countable dense subsets D1 ⊂ H and D2 ⊂ C and define

A :=
⋂

z1,z2∈D1

Az1,z2 ∩
⋂

z1∈D1,λ∈D2

Az1,λ.

Then µ(A) = 1 and by the continuity of H ∋ z 7→ Φ(z, x) it follows that Φ(·, x) is linear
for all x ∈ A. Let us define Φ̃(z, x) := Φ(z, x) for all (z, x) ∈ H × A and Φ̃(z, x) := 0 in
the case x ∈ H \A. By this we have constructed a function with (a) such that Φ̃(·, x) is a
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continuous functional on H for all x ∈ H. Hence there is a map f : H → H such that for
fixed x ∈ H:

Φ̃( z, x ) = 〈 z, f(x) 〉 =
∞∑

j=1

〈 ej, f(x) 〉 · 〈 z, ej 〉 .

In particular, for l ∈ N there is a set Cl ⊂ H of measure one such that for all x ∈ Cl
the equality:

〈 el, f(x) 〉 = Φ̃( el, x ) = G( el, x ) = λ
− 1

2
l 〈 el, x 〉

holds. Hence Φ̃(z, x) =
∑∞

j=1 λ
− 1

2
j ·〈ej, x〉·〈z, ej 〉 for all z ∈ H and x ∈ C :=

⋂
l∈N

Cl where

µ(C) = 1. In our construction above we have chosen the correlation B with µ(B
1
4H) = 0.

Thus C̃ := (H \B 1
4H)∩C has measure 1. In particular, we conclude that C̃ 6= ∅ and with

x ∈ C̃ it follows that:

∞ > Φ̃( x, x ) =
∞∑

j=1

∣∣∣
〈
x, λ

− 1
4

j ej

〉 ∣∣∣
2

=
∥∥B− 1

4x
∥∥∥

2

.

This is a contradiction to our assumption x /∈ B
1
4H and we conclude that a map Φ

with (a) and (b) above does not exist.

It follows from Example 6.2.1, Theorem 6.2.1 and the proof of Theorem 6.2.2:

Corollary 6.2.1 Let H be an infinite dimensional separable complex Hilbert space. Then
H(H) is not nuclear with respect to any Fréchet topology which is finer than the topology
of pointwise convergence on H.

6.3 Holomorphic liftings for Banach space

valued functions

Let (A, ‖ · ‖A ) and (B, ‖ · ‖B ) be Banach spaces and η ∈ L(A,B) a continuous operator
of A onto B. It was shown in [6] that there is a continuous right inverse ξ ∈ C(B,A) of η,
i.e. η ◦ ξ = id|B . Let E be a DFN -space and U ⊂ E an open subset, then for f ∈ C(U,B)
the lifting problem f = η ◦ λ

A

η

��
U

f
//

λ
??~~~~~~~
B

ξ

[[ (6.3.1)

has the continuous solution λ := ξ ◦ f : U → A. Using a suitable measure µ ∈ MF2(U)
with corresponding reproducing kernel function Kµ : U×U → C the following result shows
that for holomorphic functions f ∈ H(U,B) the lifting λ with f = η ◦ λ can be chosen
holomorphic with certain growth conditions depending on µ.
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Theorem 6.3.1 Let f ∈ H(U,B), then there is λ ∈ H(U,A) solving η ◦λ = f . Moreover,
for any measure µ ∈ MF2(U) such that the function ‖ f ‖B is µ-square integrable over U
the lifting λ can be chosen with

‖ λ(z) ‖A ≤ c · ‖ Eval(z) ‖H2(U,µ)′ (6.3.2)

where Eval(z) ∈ H2(U, µ)′ is the evaluation in z ∈ U and c > 0 only depends on f and ξ.

Proof Let ξ ∈ C(B,A) be the continuous (possibly non-linear) Bartle and Graves right
inverse with η ◦ξ = id|B and define λ̃ := ξ ◦f . Then λ̃ is a continuous solution of the lifting
problem (6.3.1). Consider the continuous map:

G : U ∋ z 7→ ‖ f(z) ‖B ∈ R+
0 .

Using Lemma 6.1.1 there is a measure µ ∈ MF2(U) with G ∈ L2(U, µ). The authors
of [6] have shown that the inequality ‖ ξ(y) ‖A ≤ β · ‖ y ‖B holds for all y ∈ B where

β = ρ · sup
{

inf { ‖ x ‖B : ξ(x) = y } : ‖ y ‖A = 1
}
, ( ρ > 1 ).

In particular, from our assumption on G it follows that ‖ λ̃(·) ‖A ∈ L2(U, µ). As before
we denote by Kµ : U × U → C the reproducing kernel for H2(U, µ). For each z ∈ U the
function Kµ(z, ·) is square integrable over U with respect to µ and so

U ∋ y 7→
∥∥∥Kµ( z, y ) · λ̃( y )

∥∥∥
A
≤ β ·

∣∣Kµ( z, y )
∣∣ ·G( y ) ∈ R+

0 (6.3.3)

is µ-integrable. Because Fz : U ∋ y 7→ Kµ(z, y) · λ̃(y) ∈ A is continuous for all z ∈ U we
conclude from the general theory and (6.3.3) that Fz is Bochner µ-integrable. Now, define
the map λ : U → A by

λ( z ) :=

∫

U

Kµ( z, ·) λ̃ dµ =

∫

U

Fz dµ.

We show that λ is holomorphic with η ◦ λ = f . Using well-known properties of the
Bochner integral we obtain for each ϕ ∈ A′

ϕ ◦ λ( z ) =

∫

U

ϕ ◦ λ̃ ·Kµ( z, ·) dµ = Pµ

(
ϕ ◦ λ̃

)
( z )

and thus ϕ ◦ λ ∈ H(U). Moreover, for z1, z2 ∈ U with the L2(U, µ)-norm ‖ · ‖ the Cauchy-
Schwartz inequality shows that:

‖ λ(z1) − λ(z2) ‖A ≤
∫

U

∣∣Kµ(z1, ·) −Kµ(z2, ·)
∣∣ ·
∥∥ λ̃
∥∥
A
dµ

≤ β · ‖Kµ(z1, ·) −Kµ(z2, ·) ‖ · ‖G ‖

= β ·
[
Kµ(z1, z1) − 2ReKµ(z1, z2) +Kµ(z2, z2)

] 1
2 · ‖G ‖.
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Using Lemma 6.1.2 the continuity of λ : U → A follows and so λ ∈ H(U,A). Let ψ ∈ B′

and z ∈ U , then we have | ψ ◦ f(z) | ≤ ‖ ψ ‖B′ ·G( z ) and because G is square integrable
over U with respect to µ and f is holomorphic we obtain ψ ◦ f ∈ H2(U, µ). Thus

ψ ◦ η ◦ λ( z ) =

∫

U

Kµ(z, ·)
[
ψ ◦ η ◦ λ̃

]
dµ =

∫

U

Kµ(z, ·)
[
ψ ◦ f

]
dµ = ψ ◦ f( z ).

Because ψ ∈ B′ was arbitrary this proves η ◦ λ = f . Finally, the inequality (6.3.2)
follows from

‖ λ(z) ‖A ≤
∫

U

∣∣Kµ(z, ·)
∣∣ ∥∥ λ̃

∥∥
A
dµ ≤ β · c ·

∥∥Kµ(z, ·)
∥∥ = β · c ·

∥∥ δz
∥∥
H2(U,µ)′

where β only depends on η while c2 :=
∫
U
‖ f ‖2

B dµ is depending on f . �

6.4 Holomorphic liftings on an inductive nuclear

spectrum of Hilbert spaces

In Theorem 6.3.1 the norm of the point evaluation map on H2(U, µ) plays an important
role for the estimate of the holomorphic liftings. In the case of an open subset U in
an nuclear inductive spectrum of Hilbert space embeddings we explicitly can estimate
the growth of Kµ on the diagonal. We remark that by Lemma 5.3.2 each DFN -space
has representation as such an inductive spectrum and so this assumption is not quite a
restriction. In the following we use some calculations we have done in chapter 5.

Let ( Hj, ‖ · ‖j ) for j ∈ N0 be a sequence of infinite dimensional separable complex
Hilbert spaces with nuclear embeddings πj,j+1 : Hj → Hj+1. Then with the topology of
the inductive limit

E :=
⋃

j∈N0

Hj

becomes a DFN -space. Without loss of generality we can assume that each embedding
πj,j+1 factorizes in two nuclear embeddings. According to Lemma 5.4.1 in chapter 5 there

is a sequence (Bn)n∈N of positive nuclear operators Bn ∈ L(Hn) with tr(B
1
2
n ) < ∞ and

Hn−1 ⊂ B
1
2
nHn for all n ∈ N. Moreover, all the embeddings

Hn−1 →֒
(
B

1
2
nHn,

∥∥B−
1
2

n ·
∥∥
n

)

are continuous. Let νn be the normed Gaussian measure on Hn with correlation operator
Bn. Then, with the embedding πn : Hn →֒ E and any sequence (γn)n ∈ l1(N) such that
γn > 0 for all n ∈ N we can consider the finite Borel measure ν on U defined by

ν(A) :=
∑

n∈N

γn · νn
(
π−1
n (A)

)
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for A in the Borel-σ-algebra of E (see 5.4.6). We have shown in chapter 5 Theorem 5.4.1,
that for any open subset U ⊂ E the restriction of ν to U is contained in MF2(U) where
F := H(U). As before let Pν be the orthogonal projection from L2(U, ν) onto H2(U, ν)
with integral kernel function Kν : U × U → C. Now we want to estimate the growth of

U ∋ z 7→ Kν( z, z ) ∈ R+

in terms of the nuclear embeddings Bn and the boundary distance of z to ∂Un where
Un := U ∩Hn in a suitable Hilbert space Hn. By an application of Corollary 5.2.2 we have:

Lemma 6.4.1 For x ∈ Un−1 ⊂ B
1
2
nHn and 0 < r < distn( x, ∂Un ) where the distance and

the boundary are taken in Hn we have:

| f(x) | ≤ exp

(
2−1 ·

∥∥∥B−
1
2

n x
∥∥∥

2

n

)
· C(Bn, r) · ‖ f ‖L2(Un,νn) (6.4.1)

for f ∈ H2(Un, νn) := H(Un) ∩ L2(Un, νn). Here C(Bn, r) > 0 only depends on Bn and r.

The constant C(Bn, r) explicitly was given in Theorem 5.2.1. With the sequence (λj)j
of eigenvalues of the operator Bn:

C (Bn, r ) =
∞∏

j=1

[
1 − exp

(
−r2 · λ−

1
2

j ·
[

trB
1
2
n

]−1
) ]− 1

2

≤ exp

(
1

2
·
∞∑

j=1

log
[

1 + r−2 · λ
1
2
j · trB

1
2
n

] )
≤ exp

(
1

2
· r−2 ·

[
trB

1
2
n

]2 )
.

Here we have used the inequalities [ 1 − exp(−t) ]−
1
2 ≤ [ 1 + t−1 ]

1
2 and log( 1 + t ) ≤ t

which hold for all positive numbers t.

According to inequality (6.4.1) the evaluation map Eval(z) on H2(Un, νn) has an ex-
tension to a continuous functional on the L2-closure H2

c(Un, νn) of H2(Un, νn) in L2(Un, νn)
for all z ∈ Un−1. Hence for each n ∈ N there is a kernel

kn : Un × Un−1 → C,

such that kn(·, z) ∈ H2
c(Un, νn) for all z ∈ Un−1 and

Eval( z ) =
〈
·, kn(·, z )

〉
L2(Un,νn)

.

We can identify H2
c(Un, νn) with a subspace of H(Un−1) and for all f ∈ H2

c(Un, νn) and
z ∈ Un−1 we have:

f( z ) =

∫

Un

f kn(·, z ) dνn.
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Example 6.4.1 Let Un = Hn for n ∈ N. Then the kernel kn : Hn ×Hn−1 → C explicitly
is given by

kn(·, z) = exp ◦G
B− 1

2 z
with Gy :=

〈
B
− 1

2
n ·, y

〉
n

for any y ∈ Hn. Here Gy can be considered as an element in L2(Hn, νn) (cf. our computa-
tions in Example 6.2.1).

For each n ∈ N we define a function K̃n : U × Un−1 → C with K̃n(·, z) ∈ L2(U, ν) in
the following way. Fix z ∈ Un−1, then we set:

K̃n( u, z ) :=

{
kn( u, z ) for u ∈ Un \ Un−1

0 else.

Finally, we define the kernel Kn : U ×Un−1 → C. Let (u, z) ∈ U ×Un−1, then for n ∈ N
we write:

Kn( u, z ) := γ−1
n · Pν

[
K̃n(·, z )

]
( u ).

Lemma 6.4.2 For all n ∈ N and (u, z) ∈ U × Un−1 it holds Kν(u, z) = Kn(u, z).

Proof Let z ∈ Un−1, then the restriction of Kν(·, z) to Un belongs to H2(Un, νn). From
the reproducing property of kn(·, z) ∈ H2

c(Un, νn) and for all (u, z) ∈ U × Un−1 it follows
that:

Kν( z, u ) =
〈
Kν(·, u), kn(·, z)

〉
L2(Un,νn)

= γ−1
n ·

〈
Kν(·, u), K̃n(·, z)

〉
L2(U,ν)

=
〈
Kν(·, u), Kn(·, z)

〉
L2(U,ν)

.

Here we have used νj(Hj−1) = 0 for all j ∈ N (cf. [48] or Proposition 5.1.1 together

with Hn−1 ⊂ B
1
2
nHn). Hence from the reproducing property of Kν on H2(U, ν) it follows

for all (u, z) ∈ U × Un−1:
〈
Kν(·, u), Kν(·, z) −Kn(·, z)

〉
L2(U,ν)

= 0.

Because the linear hull of { Kν(·, u ) : u ∈ U } is a dense subspace of H2(U, ν) we
conclude that Kν(u, z) = Kn(u, z) for all (u, z) ∈ U × Un−1. �

Now, we can prove the desired estimate on the point evaluation in H2(U, ν). Let n ∈ N
and z ∈ Un−1, then it follows with our notations above:

‖ Eval(z) ‖2
H2(U,ν)′ ≤ Kν( z, z )

= γ−2
n ·

∥∥∥ PνK̃n(·, z )
∥∥∥

2

L2(U,ν)

≤ γ−1
n · ‖ kn(·, z) ‖2

L2(Un,νn) = γ−1
n · ‖ Evaln(z) ‖2

H2
c(Un,νn) .

where Evaln(z) denotes the evaluation on H2
c(Un, νn) in z ∈ Un−1. The following propo-

sition is an immediate consequence of this calculation, Lemma 6.4.1 and our estimate on
C(Bn, r) above:
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Proposition 6.4.1 Let z ∈ Un−1 where n ∈ N and 0 < r < distn( z, ∂Un ). The distance
and the boundary are taken with respect to the topology of Hn. Then for the reproducing
kernel Kν : U × U → C it follows that:

Kν( z, z )
1
2 = ‖ Eval(z) ‖H2(U,ν)′ ≤ γ

− 1
2

n · exp
(
2−1 ·

∥∥B−
1
2

n z
∥∥2

n
+

1

2r2
·
[
trB

1
2
n

]2 )
.

Remark 6.4.1 In the case where U = E we can choose r > 0 arbitrarily and it follows

from Proposition 6.4.1 that Kν(z, z)
1
2 ≤ γ

− 1
2

n exp( 2−1 · ‖B−
1
2

n z ‖2
n ) for all z ∈ Hn−1.

6.5 The Shilov boundary

Let A be a Banach algebra with unit e ∈ A and denote by M(A) the space of multi-
plicative functionals (maximal ideals) in A. Then endowed with the weak∗-topology

U(A) :=
{
a∗ ∈ M(A) : ‖ a∗ ‖M(A) = 1

}

is a compact space. Moreover, for each a ∈ A the evaluation δa : U(A) → C in a defined
by δa(a

∗) = a∗(a) is continuous. With any I ⊂ U(A) and g ∈ C( U(A) ) we define:

‖ g ‖I := sup
{
| g(a∗) | : a∗ ∈ I

}
.

Let us consider the space C( U(A) ) with the usual norm ‖ · ‖ := ‖ · ‖U(A). Then the
evaluation map δ : A ∋ a 7→ δa ∈ C( U(A) ) is linear and continuous:

∥∥ δa
∥∥ = sup

{
| δa(a∗) | = | a∗(a) | : a∗ ∈ U(A)

}
≤ ‖ a ‖A. (6.5.1)

From now on we suppose that A is an unital subalgebra of the bounded continuous
functions on some Hausdorff space X. Consider the map:

Eval : X −→ U(A) : x 7→
[
A ∋ a 7→ a( x ) ∈ C

]
.

Then Eval is continuous and it is one-to-one if and only if A separates the points of
X. With a ∈ A it yields δa ◦ Eval = a and we obtain that:

‖ a ‖A = sup
{ ∣∣ δa ◦ Eval(x)

∣∣ : x ∈ X
}

(6.5.2)

≤ sup
{ ∣∣ δa(a∗)

∣∣ : a∗ ∈ U(A)
}

=
∥∥ δa

∥∥.

For function algebras A the inequalities (6.5.1) and (6.5.2) prove that δ is an isometry.
It turns out that among all the compact subsets of U(A) there is at least one minimal
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compact set S for which ‖ · ‖S = ‖ · ‖ (see [118]). S is called the Shilov boundary of A.
Using our inequalities above it follows for a ∈ A:

∥∥ δa
∥∥ ≤ ‖ a ‖A = sup

{ ∣∣ δa ◦ Eval(x)
∣∣ : x ∈ X

}
=
∥∥ δa

∥∥Eval(X) ≤
∥∥ δa

∥∥.

This shows that ‖ δa ‖ = ‖ δa ‖I where I = Eval(X) and we obtain that

S ⊂ Eval(X ) ⊂ U( A ).

If in addition X is compact and A separates the points the mapping Eval is one-to-one
and Eval(X) is compact as well. In this case Eval is a homeomorphism between X and
Eval(X) and S can be considered as a subset of X. If X is compact but A does not
separate the points then Eval is not one-to-one. Every function in A achieves its norm on
the set Eval−1(S), but this set needs not to be minimal. In general, there will be many
minimal compact subsets of X which carry the norms of the functions in A.

For j = 1, 2 let Aj be unital subalgebras in the space of all bounded continuous functions
on X with Shilov boundaries Sj. Assume that there is an isometry I : A1 → A2 of algebras
which is onto, then the adjoint map I∗ : M(A2) → M(A1) is isometric and onto as well
with (I∗)−1 = (I−1)∗. In particular, U(A1) is the range of U(A2) under I∗. We define
I1 := I∗(S2) ⊂ U(A1). Then by the continuity of I∗ we conclude that I1 is compact and
it is a straightforward computation that with a1 ∈ A1 it holds:

∥∥ δa1

∥∥I1 =
∥∥ δIa1

∥∥S2 =
∥∥ δIa1

∥∥ =
∥∥ Ia1

∥∥
A2

=
∥∥ a1

∥∥
A1

=
∥∥ δa1

∥∥.

This now implies S1 ⊂ I1 and similar S2 ⊂ (I−1)∗(S1). It follows that I1 ⊂ S1 and we
obtain the identity I∗(S2) = S1.

Example 6.5.1 Let X1 and X2 be Hausdorff spaces and A2 ⊂ Cb(X2) be an unital sub-
algebra of the space of all bounded continuous functions on X2. Let i : X1 → X2 be
a continuous function which is one-to-one and with dense range. Then we consider the
induced subalgebra A1 of Cb(X1) defined by:

A1 :=
{
I( a2 ) := a2 ◦ i ∈ Cb(X1 ) : a2 ∈ A2

}
.

Because the map i has dense range by assumption it follows that I : A2 → A1 is an
isometry and onto. With the Shilov boundaries Sj of Aj for j = 1, 2 we obtain with our
remark above S2 = I∗(S1).

Now, we specialize to the case of functions algebras on open subsets U of a DFN -space
E. There are no non-trivial open sets in E with compact closure and so we cannot identify
the Shilov boundary of subalgebras in Cb(Ū) with a subset of Ū in the described way. Let
us assume that there is a separable complex Hilbert-space ( H, 〈·, ·〉 ) and a continuous
and dense embedding i : E →֒ H. In fact, by Corollary A.2.1 such an embedding can
always be constructed in a canonical way using the Bergman kernel on U with respect to
a NF2-measure.
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Example 6.5.2 Assume that the closure UH ⊂ H of U in the topology of H is bounded
in H. Then UH is a weakly compact set and so we can consider the dense and continuous
embedding i : U →֒ UH . Moreover, let us write Hb(UH) for the space of all weakly
continuous functions f : UH → C such that the restriction of f to U is in H(U). Then
Hb(UH) is a Banach algebra of continuous functions on a compact space. Let us remark that
each (continuous) holomorphic function on an open subset of a Hilbert space automatically
is weakly continuous. Hence as a subspace Hb(UH) contains all functions on UH which
admit a holomorphic extension to an open neighborhood of UH . As in example 6.5.1 we
define the following algebra of bounded holomorphic functions on U :

Hb,H( U ) :=
{
I(f) := f ◦ i : U → C : with f ∈ Hb(UH)

}
.

In other words Hb,H(U) is the space of holomorphic functions on U which admit a
weakly continuous extension to UH . In particular, Hb(UH) contains all restrictions to
UH of linear functionals on H and it follows that both Hb(UH) and Hb,H(U) separate
points. Let us write A1 := Hb(UH) and A2 := Hb,H(U). By our remarks above the maps
I : A1 → A2 and I∗ : M(A2) → M(A1) are isometries and onto. With these notations we
define:

Definition 6.5.1 We call a set A ⊂ E ∩ UH which is closed in the topology of E a
boundary of A2 iff for all f ∈ A1:

sup
{
| f(z) | : z ∈ A

}
=
∥∥ δf

∥∥U(A1)
=
∥∥ δI(f)

∥∥U(A2)
. (∗)

Hence f archives his norm on the closed set A.

We denote by S1 ⊂ U(A1) the Shilov boundary of A1. By the fact that A1 is a
subalgebra of the space of all weakly continuous functions on the weakly compact set UH

we can identify the compact space S1 with a subset of UH . More precisely, there is a
minimal compact set V in UH such that S1 = Eval(V ).

Lemma 6.5.1 Assume that A := V ∩ E is dense in V ⊂ H with respect to the weak
topology of H. Then A is a boundary of A2.

Proof Because V is closed in H and the embedding E →֒ H is continuous, it follows that
A = V ∩ E is closed in the topology of E. In order to prove that A is a boundary of A2

we fix f ∈ A1. We obtain that:

sup
{
| f(z) | : z ∈ A

}
= sup

{
| f(z) | : z ∈ V

}

=
∥∥ δf

∥∥S1 =
∥∥ δf

∥∥U(A1)
=
∥∥ δI(f)

∥∥U(A2)
.

from the fact that A is weakly dense in V and f is weakly continuous on UH . �
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6.6 The abstract Cauchy-Weil theorem

We remind of some well-known results on the topological dual C(X)′ of all continuous
and complex valued functions on a compact Hausdorff space X. Consider a finite positive
Radon measure ν on X, then there is a canonical isometric embedding J of L1(X, ν) into
C(X)′. The proof of the following lemma can be found in [69]:

Lemma 6.6.1 For every subset M of C(X)′ which is separable in the norm topology there
is a finite positive Radon measure ν on X such that M ⊂ J( L1(X, ν) ).

Let U be an open subset of a DFN -space E. We denote by H∞(U) the Banach algebra
of all bounded and holomorphic functions in U . With a closed subalgebra A of H∞(U)
which separates points of U we write SA for the Shilov boundary of A and F := H(U).
Moreover, let A′ be the topological dual of A:

Theorem 6.6.1 Let µ ∈ MF2(U), then there is a finite positive Radon measure ν on SA
and a kernel Ψ = Ψµ ∈ H( U,L1(SA, ν) ) such that for all f ∈ A and z ∈ U it holds:

f( z ) =

∫

SA

δf · Ψ( z ) dν (6.6.1)

Moreover, it exists c > 0 with ‖ Ψ(z) ‖L1(SA,ν) ≤ c · ‖ Eval(z) ‖H2(U,µ)′ for all z ∈ U .

Proof With our previous notations we consider the isometry δ : A → C(SA) which is
defined by δ(f) := δf and we write δ∗ : C(SA)′ → A′ for its adjoint. Let ϕ ∈ A′, then by
the Hahn Banach theorem there is τ ∈ C(SA)′ extending ϕ ◦ δ−1 ∈ δ[A ]′. Hence it follows
that δ∗(τ) = ϕ and δ∗ is onto. Now, consider the evaluation:

Eval : U → M(A) ⊂ A′.

Then ‖Eval(z) ‖A′ ≤ 1 for all z ∈ U and Eval is holomorphic on U by Theorem 6.2.1.
We obtain a diagram:

C(SA)′

δ∗

��
U

Eval
//

Ψ̃
<<xxxxxxxxx

A′
ξ

YY
(6.6.2)

where ξ is a continuous right inverse of δ∗ (see [6]). According to Theorem 6.3.1 for any
measure µ ∈ MF2(U) there is a holomorphic lifting Ψ̃ : U → C(SA)′ with Eval = δ∗ ◦ Ψ̃
and it exists c > 0 such that

∥∥ Ψ̃(z)
∥∥
C(SA)′

≤ c ·
∥∥ Eval(z)

∥∥
H2(U,µ)′

. (6.6.3)

In the last inequality we write Eval for the evaluation map in H2(U, µ)′. Because U is
separable and Ψ̃ : U → C(SA)′ is continuous the range Ψ̃(U) is separable in C(SA)′ as well.
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From Lemma 6.6.1 we conclude that there is a positive Radon measure ν on SA such that
with the canonical isometric embedding J from L1(SA, ν) into C(SA)′ the inclusion holds:

Ψ̃(U) ⊂ J
[
L1(SA, ν)

]
⊂ C(SA)′.

We can define Ψ ∈ H( U,L1(SA, ν) ) by Ψ := J−1 ◦ Ψ̃. Because the embedding J is
isometric inequality (6.6.3) holds for Ψ instead of Ψ̃. Finally, we have for f ∈ A and all
z ∈ U using (6.6.2):

∫

SA

δf · Ψ( z ) dν =
[
J ◦ Ψ(z)

]
( δf ) =

[
Ψ̃(z)

]
( δf ) =

[
δ∗ ◦ Ψ̃(z)

]
( f ) = f( z ). �

Remark 6.6.1 Using Theorem 6.2.2 and with the notations of Theorem 6.6.1 for any
finite measure µ ∈ MF2(U) there is a kernel Φµ : U × SA → C such that:

• The map U ∋ z 7→ Φµ(z, x) ∈ C is holomorphic for all x ∈ SA.

• For all z ∈ U we have Ψµ(z) = [ Φµ(z, ·) ] ∈ L1(SA, ν).

• There is C > 0 with ‖ Φµ(z, ·) ‖L1(SA,ν) ≤ C · ‖ Eval(z) ‖H2(U,µ)′ for all z ∈ U .

• It holds f( z ) =
∫
SA
δf · Φµ( z, ·) dν for all f ∈ A and z ∈ U .

Example 6.6.1 Let us assume that there is a separable complex Hilbert space H and a
dense embedding i : E →֒ H. With an open set U ⊂ E, which is bounded in H we use our
notations in Example 6.5.2. Then there is a compact set V ⊂ ∂UH ⊂ H, the boundary in
H, such that:

κ :=
(
I∗
)−1 ◦ Eval : H ⊃ V

Eval−−−→ SA1

( I∗ )−1

−−−−→ SA2

is a homeomorphism. For µ ∈ MF2(U) let ν be the corresponding measure in Theorem
6.6.1 on SA2 and let Φµ : U × SA2 → C be as in Remark 6.6.1. Then we can define the
transported measure ν̃ := ν[ κ( · ) ] on V . We obtain the integral formula:

f( z ) =

∫

V

f( x ) · Φµ

(
z, κ( x )

)
dν̃( x ).

for all f ∈ A2 by the transformation formula for integrals.

6.7 Abstract Hardy spaces for domains with arbitrary

boundary

In the following section we define an abstract Hardy space for open domains U in
a DFN -space E with arbitrary boundary by exploiting an idea in [72]. We want to
emphasize that this construction even leads to new results for regions U in the complex
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plane with arbitrary boundary and algebras A ⊂ H∞(U). For instance we can choose
U to be a simply connected domain with arbitrary boundary. Then the Banachalgebra
of holomorphic functions on U which are continuous up to the boundary of U leads via
biholomorphic equivalence to a closed subalgebra of H∞(D) where D ⊂ C denotes the
complex unit disc.

Let A be a closed subalgebra of H∞(U) which separates points and denote by SA its
abstract Shilov-boundary. Then, via the isometry δ : A → C(SA) we can identify A with
a closed subspace of the C(SA). Our aim is to construct a finite measure Θ on SA and a
kernel K : U×SA → C such that an integral formula holds for f ∈ A and all z ∈ U similar
to (6.6.1) in Theorem 6.6.1 and Remark (6.6.1). Namely, for all z ∈ U we claim:

f( z ) =

∫

SA

δf ·K(z, ·) dΘ, ( f ∈ A )

Moreover, we want to choose K such that K(z, ·) is bounded on SA for fixed z ∈ U or
more generally such that

Φ : U → L2 ( SA,Θ ) : z 7→ K( z, · )

is well-defined and holomorphic on U . Comparing this construction to Theorem 6.6.1 where
we only have Ψ(z, ·) ∈ L1(SA, ν) for all z ∈ U we loose some information on the growth of

U ∋ z 7→ ‖K(z, ·) ‖2 ∈ R+

near the boundary of U . Here ‖ · ‖2 is the L2(SA,Θ)-norm for. Similar to the classical
situation the abstract Hardy space H2(SA,Θ) now is defined to be the Hilbert space closure
of δ[ A ] ⊂ C(SA) in L2(SA,Θ). We show that for all compact sets H ⊂ U there is an
inequality of the form:

sup
{
| f(z) | : z ∈ H

}
≤
∥∥ δf

∥∥
L2(SA,Θ)

· sup
{
‖K(z, ·) ‖L2(SA,Θ) : z ∈ H

}
<∞.

Hence H2(SA,Θ) can be identified with a Hilbert space of holomorphic functions on U .
Finally, given Bergman spaces H2(U, µj) with j = 1, 2 and continuous embeddings

A J1−−−→ H2( U, µ1 )
J2−−−→ H2( U, µ2 )

where J2 is nuclear we show that it exists an abstract Hardy space in between A and
H2(U, µ2) which has a quasi-nuclear (Hilbert-Schmidt) embedding into H2(U, µ2).

Let us start with a lemma which involves some elementary results in measure theory
(cf. [125]). Assume that X is a compact space and µ is a finite measure on X. We denote
by D ⊂ C the closed unit disc and fix f ∈ L1(X,µ). Then according to 1.40 Theorem in
[125] it follows from the condition

µ(E)−1 ·
∫

E

f dµ ∈ D (6.7.1)
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for all Borel sets E with µ(E) > 0 that f(x) ∈ D for µ-almost all x ∈ X.

In the following we write M(X) for the Banach space of all complex measures on X
equipped with the norm ‖ ν ‖ := | ν | (X) (total variation of ν). Let (Φj)j ⊂ M(X) be a
sequence with

∑∞
k=1 ‖ Φk ‖ <∞ and define the positive Borel-measure

µ :=
∞∑

k=1

∣∣ Φk

∣∣ ∈ M(X).

Lemma 6.7.1 ([72], 2.5 Satz 3) There exists a sequence (fj)j ∈ L∞(X,µ) of complex
valued functions such that ‖ fj ‖∞ ≤ 1 with dΦj = fj dµ for all j ∈ N.

Proof It is trivial that Φj < µ for all j ∈ N and therefore the Radon-Nikodym theorem
guarantees the existence of fj ∈ L1(X,µ) such that dΦj = fj dµ holds. In order to show
(6.7.1) fix a Borel set E with µ(E) > 0, then

µ(E)−1 ·
∣∣∣
∫

E

fj dµ
∣∣∣ =

[ ∑

j∈N

∣∣ Φj

∣∣(E)
]−1

·
∣∣ Φj(E)

∣∣ ≤ 1.

By the criterion mentioned above it follows that | fj(x) | ≤ 1 for µ-almost all x ∈ X
and j ∈ N. Hence ‖ f ‖∞ ≤ 1. �

Let A be a closed subalgebra of H∞(U) which separates points. Following an idea
in [72] we consider the point evaluation Eval : U → A′. We apply Remark 6.2.1 with
the nuclear Fréchet space N := H(U). Then there are sequences (αj)j ⊂ R+ rapidly
decreasing, (hj)j ∈ H(U) and (ϕj)j ∈ A′ tending to zero and an expansion:

Eval( z ) =
∑

j∈N

αj · hj( z ) · ϕj. (6.7.2)

As we have seen in the proof of Theorem 6.6.1, the adjoint map δ∗ : C(SA)′ → A′ is
onto and so it admits a continuous right inverse ξ : A′ → C(SA)′ (cf. [6]) which in general
is not linear but fulfills the norm inequality ‖ ξ(y) ‖ ≤ λ · ‖ y ‖ with suitable λ > 0.

We can choose µj = ξ(ϕj) ∈ C(SA)′, a sequence (σj)j ∈ l1(N) with σj > 0 and (βj)j
rapidly decreasing such that αj = σj · βj for all j ∈ N. Then (µj)j tends to zero and for all
z ∈ U :

Eval( z ) =
∑

j∈N

βj · hj( z ) ·
[
σj δ

∗( µj )
]
∈ A′.

Consider the positive measure Θ :=
∑∞

j=1 σj · | µj |. According to Lemma 6.7.1 there is
a sequence (fj) ∈ L∞(SA,Θ) of complex valued functions with |fj(x)| ≤ 1 for all x ∈ SA
such that σj dµj = fj dΘ for all j ∈ N. Let us define the kernel:

K : U × SA −→ C : (z, u) 7→
∑

j∈N

βj · hj(z) · fj(u).
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For any compact set H ⊂ U it follows that

sup
{
|K(z, u) | : z ∈ H, u ∈ SA

}
<∞.

Moreover, we obtain for f ∈ A the integral formula:
∫

SA

δf ·K( z, ·) dΘ =
∑

j∈N

βj · hj( z ) ·
∫

SA

δf · fj dΘ (6.7.3)

=
∑

j∈N

αj · hj( z ) ·
∫

SA

δf dµj

=
∑

j∈N

αj · hj( z ) · δ∗(µj)[ f ] = Eval(z)[ f ] = f( z ).

Now, we can define the Hardy space H2(SA,Θ) by:

H2( SA,Θ ) := closure of δ[ A ] ⊂ C(SA) in L2(SA,Θ).

From our computations above and using the Cauchy-Schwartz inequality we obtain for
each compact set H ⊂ U and f ∈ A:

sup
{
| f(z) | : z ∈ H

}
≤
∥∥ δf

∥∥
L2(SA,Θ)

· sup
{
‖K(z, ·) ‖L2(SA,Θ) : z ∈ H

}
<∞. (6.7.4)

Hence we can consider H2(SA,Θ) as a space of holomorphic functions on U . Let us
show how an expansion (6.7.2) can be obtained by using Bergman spaces H2(U, µ) with a
measure µ ∈ MF2(U) where F = H(U). Under some additional assumptions on µ we can
prove that the abstract Hardy space H2(SA,Θ) admits a Hilbert-Schmidt (quasi-nuclear)
embedding into H2(U, µ). We want to generate the diagram

H∞(U) ⊃ A I1−−−→ H2(SA,Θ)
I2−−−→ H2(U, µ) (6.7.5)

where Ij are embeddings for j = 1, 2 and I2 is of Hilbert-Schmidt type. Hence it is natural
to claim some kind of nuclearity condition on the embbeding I3 : A → H2(U, µ). In order
to proceed we remind of the following result on operators between Hilbert spaces which
factorize over a Banach space of continuous functions. Let ω : U → R+ be continuous,
then we define the Banach space

Cω(U) :=
{
f ∈ C(U) : ‖ f ‖ω := sup{ | f(z) | · ω(z) : z ∈ U } <∞

}
.

Assume that there are separable complex Hilbert spaces (H1, 〈·, ·〉1) and (H2, 〈·, ·〉2) and
a continuous operator A : H1 → Cω(U). Let I : Cω(U) →֒ H2 be a continuous embedding,
then we can prove:

Lemma 6.7.2 Let H2 := L2(U, µ) where µ is a measure such that ω−1 ∈ L2(U, µ). Then
the operator T := I ◦ A ∈ L(H1, H2) is of Hilbert-Schmidt type.



180 Abstract Hardy spaces

Proof Fix an orthonormal basis [ ek : k ∈ N ] of H1 and denote by εx : Cω(U) → C
the evaluation map in x ∈ U . Then εx is continuous with ‖ εx ‖ ≤ ω(x)−1. Consider the
continuous functional Φx := εx ◦ A ∈ H ′1 and choose gx ∈ H1 with Φx = 〈·, gx 〉1. Then we
obtain:

∥∥ gx
∥∥2

1
=
∞∑

k=1

∣∣ 〈ek, gx〉1
∣∣2 =

∞∑

k=1

∣∣ [ εx ◦ A ] ( ek )
∣∣2 =

∞∑

k=1

∣∣ [ Aek ] (x)
∣∣2 (6.7.6)

for all x ∈ H1. On the other hand we compute for the norm of gx:

∥∥ gx
∥∥2

1
=
∣∣ 〈gx, gx〉

∣∣ =
∣∣ Φx( gx )

∣∣ =
∣∣ [ εx ◦ A

]
( gx )

∣∣ ≤
∥∥ εx

∥∥ ∥∥ A
∥∥ ∥∥ gx

∥∥
1

(6.7.7)

and this implies that ‖gx ‖1 ≤ ‖εx ‖‖A‖ ≤ ω(x)−1 ‖A‖. Using (6.7.6) and (6.7.7) together
we find:

∞∑

k=1

∣∣ [ Tek ] (x)
∣∣2 =

∞∑

k=1

∣∣ [ Aek ](x)
∣∣2 =

∥∥ gx
∥∥2

1
≤ ω−2( x ) ‖ A ‖2.

By our assumption the right hand side of this inequality is µ-integrable over U and so:

∞∑

k=1

∥∥ Tek
∥∥2

2
=

∫

U

∞∑

k=1

∣∣ [ Tek ](x)
∣∣2dµ(x) <∞.

Hence T : H1 → H2 is a Hilbert-Schmidt operator. �

Now we can construct the embeddings (6.7.5). The idea is to give an expansion (6.7.2)
where we can control the behavior of the holomorphic parts hj ∈ H(U) near the boundary.

Theorem 6.7.1 Let U be an open subset of a DFN -space E and fix two finite measures
µ1, µ2 ∈ MF2(U) where F = H(U). Assume that there is a diagram

H∞(U) ⊃ A J1−−−→ H2(U, µ1)
J2−−−→ H2(U, µ2)

where Ji are continuous embeddings and J2 is nuclear. Then there is a Hardy space
H2(SA,Θ) which admits a quasi-nuclear embedding into H2(U, µ2).

Proof Fix an orthonormal basis [ ej : j ∈ N ] of the Bergman space H2(U, µ2) and let
us denote by k2 : U × U → C its Bergman kernel. Then for z ∈ U and f ∈ H2(U, µ1) it
follows that:

f( z ) =
〈 [

J2f
]
, k2(·, z )

〉
µ2

=
〈
f, J∗2 k2(·, z )

〉
µ1

. (6.7.8)

Using the expansion J∗2 k2(·, z ) =
∑∞

k=1[ J
∗
2ek ] · ek(z) which is convergent in H2(U, µ1)

we obtain from (6.7.8):

f( z ) =
∞∑

k=1

ek( z ) ·
〈
f, J∗2ek

〉
µ1

.
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Consider the holomorphic map Eval : U → A′. Because of ‖ Eval(z) ‖A′ ≤ 1 the
following expression is well defined in the sense of Bochner-integrals:

Eval( z ) =
∞∑

k=1

ek( z ) ·
∫

U

Eval ·
[
J∗2ek

]
dµ1 ∈ A′. (6.7.9)

Let us denote by ϕk for k ∈ N the integrals in the expansion (6.7.9). Then we have
written the evaluation Eval( z ) =

∑∞
k=1 ek( z ) · ϕk in the form (6.7.2) with the additional

information that ek ∈ H2(U, µ2) with norm 1 for all k ∈ N. Moreover, from the nuclearity
of J∗2 : H2(U, µ2) → H2(U, µ1) and

∥∥ ϕk
∥∥
A′ ≤

∫

U

‖ Eval ‖A′ ·
∣∣ J∗2ek

∣∣ dµ1 ≤ c ·
∥∥ J∗2ek

∥∥
L2(U,µ1)

.

where c > 0 we conclude that
∑∞

k=1 ‖ ϕk ‖A′ < ∞. Now, we proceed as it was described
before in the general construction of H2(SA,Θ). We can choose a sequence of finite complex
measures νj := ξ( ϕj ) ∈ C′( SA ) such that

∞∑

j=1

‖ νj ‖C′( SA ) ≤ c ·
∞∑

j=1

‖ ϕj ‖A′ ≤ ∞ and Θ :=
∞∑

j=1

| νj | ∈ M(SA).

Moreover, there is a sequence of pointwise defined functions (fk)k ∈ L∞(SA,Θ) such
that | fk(x) | ≤ 1 for all x ∈ SA and dνk = fk dΘ. Consider the map

Φ : U → L2
(
SA,Θ

)
: z 7→

∞∑

k=1

ek(z) · fk.

We show that Φ is well-defined and holomorphic on U . Because of | fk( x ) | ≤ 1 it
follows that:

∫

SA

∣∣ fk
∣∣2 dΘ ≤

∫

SA

∣∣ fk
∣∣ dΘ =

∥∥ νk
∥∥
C( SA )′

≤ c ·
∥∥ ϕj ‖A′

where c is a suitable positive number and so we immediately have from our inequalities
above:

∫

SA

| Φ(z) |2 dΘ ≤
∞∑

k=1

∣∣ ek( z )
∣∣2

∞∑

k=1

∫

SA

∣∣ fk
∣∣2 dΘ ≤ c · k2( z, z )

∞∑

k=1

∥∥ ϕj
∥∥
A′ ≤ ∞.

Applying Theorem 6.2.2 there is a kernel function K : U ×SA → C such that both (a)
and (b) below are fulfilled:

(a) For all z ∈ U we have Φ(z) = [ SA ∋ x 7→ K( z, x ) ∈ C ] ∈ L2( SA,Θ ).

(b) For all x ∈ SA the map U ∋ z 7→ K( z, x ) ∈ C is holomorphic.
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Let us define ω : U → R+ by ω(z) = ‖ K(z, ·) ‖−1
L2(SA,Θ) = ‖ Φ( z ) ‖−1

L2(SA,Θ), then by

(6.7.4) we obtain a continuous embedding

j : H2
(
SA,Θ

)
→֒ Cω( U ).

Next we prove that ω−1 ∈ L2(U, µ2). This follows by the monotone convergence theorem
and:

∫

U

ω−2 dµ2 =

∫

U

∫

SA

∣∣K(z, x)
∣∣2 dΘ(x) dµ2(z)

=

∫

SA

∫

U

∣∣∣
∞∑

k=1

ek( z ) · fk( x )
∣∣∣
2

dµ2(z) dΘ(x)

=

∫

SA

∞∑

k=1

| fk |2 dΘ

≤
∞∑

k=1

∫

SA

| fk | dΘ

=
∞∑

k=1

∥∥ νk
∥∥
C(SA)′

≤ c ·
∞∑

k=1

∥∥ ϕk
∥∥
A′ <∞.

Hence the embedding H2(SA,Θ) →֒ H2(U, µ2) is well-defined and it factorizes over the
space Cω(U). From Lemma 6.7.2 the assertion follows. �

Remark 6.7.1 Let µ1 ∈ MF2(U), then it is always possible to construct µ2 ∈ MF2(U)
such that the embedding J2 : H2(U, µ1) →֒ H2(U, µ2) is nuclear. Because the composition
of quasi-nuclear operators is nuclear it is sufficient to prove the existence of a quasi-nuclear
embedding J2. Let Kµ1 : U × U → C be the Bergman kernel of µ1, then we have for all
z ∈ U :

ω( z ) := Kµ1( z, z ) = ‖ Eval(z) ‖2
H2(U,µ1)′ ≥ µ1(U)−2 > 0

and by Lemma 6.1.2 it follows that ω is continuous on U . Hence we can define a finite
measure µ2 ∈ MF2(U) by dµ2 := ω−1 dµ1. Let [ ej : j ∈ N ] be an orthonormal basis of
H2(U, µ1), then

∥∥ J2

∥∥2

HS
=
∑

k∈N

∥∥ J2ek
∥∥2

L2(U,µ2)
=

∫

U

ω dµ2 = µ1(U) <∞.

In the following example we compute the lp-type of embedding from the classical Hardy
space over the n-dimensional unit sphere ∂Bn into the Bergman space over the unit ball
Bn. We write ‖ · ‖ for the Euclidean norm on Cn.
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Example 6.7.1 Let Bn := {z ∈ Cn : ‖z ‖ < 1} be the open unit ball in Cn and write ∂Bn

for its boundary. Equipped with the standard area measure σ on ∂Bn and the Lebesgue
measure v on Bn we consider the classical Hardy space H2(∂Bn, σ) and the corresponding
Bergman space H2(Bn, v). It is well-known that the monomials [ zα : α ∈ Nn

0 ] form a
complete orthogonal system in both spaces and by a standard calculation (see [102]) there
is a constant c > 0 such that for all α ∈ Nn

0 the following equality holds:

∥∥ zα
∥∥
L2(∂Bn,σ)

= c ·
(
| α | + n

) 1
2 ·
∥∥ zα

∥∥
L2(Bn,v)

.

Because of
∑

α∈Nn
0
( | α | + n )−

p
2 < ∞ for all p > 2n we conclude that in the case of

dimension n ∈ N the embedding J : H2(∂Bn, σ) →֒ H2(Bn, v) has lp-type p > 2n. In
particular, it follows that J is not quasi-nuclear even in the case n = 1.
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Chapter 7

Invariant measures for special groups

of homeomorphisms

on infinite dimensional spaces

Given a topological space X with σ-finite Borel measure µ, a locally compact group
G and a representation B of G in the group of all homeomorphisms of X, we examine
how to construct a Borel measure µs on X which is invariant under B(G) (Lemma 7.1.4).
In many cases this construction leads to a non-trivial representation of G on Lp(X,µs).
Under some additional conditions on G, X and the representation B we show that in the
case where µ has the NFp-property, the symmetrized measure µs is a NFp-measure, as
well (Theorem 7.2.1). Finally we give some examples and an application of our work leads
to the construction of spectrally invariant algebras (Ψ∗- or Ψ0-algebras, cf. [69], [77])) of
C∞-elements in operator-algebras on Lp-spaces and Bergman spaces.

This chapter is a joint work with M. Hoeber; the main idea arose when we considered
the following two problems:

(a) Let ( W,µ ) be an open subset of a Hilbert space H with Gaussian measure µg,
where µ is the restriction of µg to W . Furthermore, let (Bt)t∈G be a (semi)-group of
homeomorphisms of W where G is a compact or locally compact group. Is it possible
to find a measure µ̃ on W invariant with respect to (Bt), namely µ̃(Bt(A)) = µ̃(A) for
all µ−measurable sets A ⊂ W and t ∈ G such that µ̃(A) > 0 for all open nonempty
sets A ⊂ W?

(b) Let Hm be a product of an infinite dimensional Hilbert-space H with a Gaussian
measure µ (e.g. product of suitable Sobolev spaces). We assume that H ⊆ C(Ω,C),
where Ω is the closure of an open and bounded subset of Rn with nice boundary. Let
U be a region in Cm andG a closed subgroup of the group Aut(U) of all biholomorphic
maps of U . Let W := { f ∈ Hm : f(Ω) ⊂ U }. Is it possible to find an invariant
measure µ̃ on W such that µ̃( α(A) ) = µ̃(A) for all µ-measurable sets A ⊂ W and
all α ∈ G such that µ̃(A) > 0 for all open nonempty sets A ⊂ W?
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Let (M, g ) be a Riemannian manifold with metric g. Then it is well-known that each
isometry Φ on M leaves the Riemannian measure mR invariant (see [85], p. 85) and so
Φ leads to an isometry of the spaces Lp(M,mR) where 1 ≤ p < ∞. In particular, each
semi-group (αt)t≥0 of isometries on M can be represented as a semi-group of isometric
composition operators (Ct)t≥0 on Lp(M,mR) by setting Ct(f) := f ◦αt for f ∈ Lp(M,mR).
In the case where (Ct)t≥0 is strongly continuous it follows from the general theory of semi-
groups on Banach spaces that it defines a closed generator A which is connected to the
geometry of M .

If the underlying measure space X is not locally compact one has to be more careful
about the existence of invariant measures even if we deal with quite natural groups of
isomorphisms acting on X. It is well-known that on an infinite dimensional separable
Hilbert-space H there is no translation invariant Borel measure µ such that bounded
sets have finite measure and it holds µ(U) > 0 for all open nonempty sets U ⊂ H (see
[104]). Hence the group action of H on itself by translation does not lead to an unitary
representation ofH in Lp(H,µ) for any Borel measure µ onH with the described properties.
Moreover, Oxtoby (cf.[119]) showed, that on a complete separable metric group G, which
is not locally compact, there exists no non-trivial left-invariant Borel measure µ such that
µ is locally finite or µ(K) <∞ for all K ⊂ G compact.

Here we consider the case in between. A locally compact space G acts on a topological
space X which not necessarily has to be locally compact. More precisely, starting with a
measure µ on X and a representation B : G → Homeo(X) of a locally compact group G
into the group of all homeomorphisms on X, we adapt µ such that it becomes invariant
under all homeomorphisms Bt ∈ B(G) (Lemma 7.1.4). This construction is quite general
and, in particular, it applies to the case where X is an open subspace of a separable infinite
dimensional Hilbert-space or of a DFN -space (the dual space of a nuclear Frèchet space)
(Theorem 7.1.1). As a result we obtain an answer to problem (a). The definitions will be
as follows:

Denote by m a left invariant Haar measure m on G, which is finite if and only if G
is compact (in this case we choose m such that m(G) = 1). Let µ be any positive and
σ-finite Borel measure on X and assume that the map G ∋ t 7→ µ( B−1

t C ) ∈ [ 0,∞ ] is
Borel-measurable on G for all sets C in the Borel-σ-algebra B(X), then define

µs(C) :=

∫

G

µ
(
B−1
t C

)
dm(t).

We obtain a measure µs which is invariant under the action of G onX (e.g. µs(B
−1
t C) =

µs(C) for all t ∈ G) and finite in the case where µ is finite and G is compact (in general
µs not even has to be σ-finite). We show that the definition of µs is meaningful if X is
a polish space (i.e. complete metric space with countable base of topology) or an open
set in a DFN -space. Let B̃t denote the induced group action on Lp(X,µs) defined by the
composition operators B̃tf := f ◦ Bt for f ∈ Lp(X,µs). Then in many cases (B̃t)t∈G is a
strongly continuous group representation if (Bt)t∈G is so (Proposition 7.2.1, 7.2.2, 7.2.3).
Here we use some measure theoretic methods, e.g. Kuratowski’s Theorem and the fact
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that every open subset U of a DFN -space can be written as a countable union of compact
metric spaces (we say U is hemi-compact).

Our construction produces closed operators attached to infinite dimensional spaces (or
manifolds). This leads to Fréchet operator algebras with spectral invariance ([79], [69],
[107], [106]) respectively non-commutative geometries with prescribed properties using
systems of closed operators also in the singularities of the underlying space.

Let F ⊂ C(X) be a subspace of all continuous complex-valued functions on X. In
chapter 5, Definition 5.4.1 we have introduced the notion of a NFp-measure µ. Roughly
speaking µ is characterized by the property that the embedding

F̃ := F ∩ Lp(X,µ) →֒ C(X)

is continuous if F̃ carries the Lp(X,µ)-topology and C(X) is equipped with the compact-
open topology (topology of uniform convergence on all compact subsets of X). Hence in the
case where C(X) is complete we can consider the closure F̃c of F̃ in Lp(X,µ) as a space of
continuous functions on X.

We give conditions on X, the group G and the representation B under which the
described process of symmetrization of a given NFp-measure µ again defines a NFp-
measure µs (Theorem 7.2.1). Starting with a B(G)-invariant subspace F ⊂ C(X) (i.e.
B̃t(F) ⊂ F for all t ∈ G) this enables us to consider groups of composition operators
acting on closed subspaces of Lp(X,µs).

In the case where p = 2 we can define the orthogonal projection from L2(X,µs) onto
F̃c. We show that P and all B̃t commute as operators on L2(X,µs) (Corollary 7.6.1). We
denote by T (S) ⊂ L(F̃c) the C∗-Toeplitz algebra generated by operators Tf := PMf on
F̃c with symbols f in a space S of bounded measurable and B-invariant symbols. It turns
out that T (S) is invariant under the isomorphisms Bt ∈ L( L(L2(X,µ)) ) defined by

Bt(A) := B̃t A B̃t−1 , ( t ∈ G ).

This fact in connection with the general theory of [79], [69], [107] and [106] gives the
possibility to construct Ψ∗-algebras in T (S) defined by iterated commutators with the
infinitesimal generator of (Bt)t∈G.

We give several examples how to obtain homeomorphisms (Bt)t∈G which can be used in
the constructions described above. In particular, we discuss the case of measures on finite
products of Hilbert-spaces which are embedded in a space of continuous function, e.g. let
us take Sobolev-spaces of continuous functions. In case of our constructions we give an
answer to problem (b) mentioned above.

By quite similar methods we show that we can lift strongly continuous semi-groups
(Bt)t≥0 of invertible operators on Hilbert-spaces to semi-groups (B̃t)t≥0 of composition
operators on L2(H,µs,α) (Theorem 7.3.1). Here µs,α (α > 0) is a finite Borel measure on
H arising from an infinite dimensional Gaussian measure. The semi-group (B̃t)t≥0 fails to
be unitary but we obtain ‖ B̃t ‖ ≤ e

α
2
t for all t ≥ 0. More general, instead of H we can take
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open or closed subsets U of H and assume that (Bt)t≥0 is a semi-group of homeomorphism
of U .

Finally, by a different method using the eigen-functions of the Beltrami-Laplace op-
erator we show how to construct Gaussian measures on L2-spaces over a compact and
connected Riemannian manifolds M which are invariant under all composition operators
with isometries Φ on M (Proposition 7.5.1, Theorem 7.5.2). This construction is closely
related to the theory of dynamical systems.

7.1 Symmetric Borel measures on topological spaces

Let (X,Σ1, µ) and (Y,Σ2,m) be measure spaces. We denote by M(X,Y ) the space of all
measurable functions from X to Y . Let M−1(X,Y ) be the subspace of M(X,Y ) consisting
of all invertible functions h : X → Y such that h as well as its inverse are measurable.
We often write M(X) (resp. M−1(X)) instead of M(X,X) (resp. M−1(X,X)). Let
Q ∈ M(X), then the measure µ is called Q-invariant (or Q-preserving) iff µQ = µ where
µQ(M) := µ(Q−1M) for all M ∈ Σ1. Generalizing the notation of Q-invariance to families
of measurable maps, we define:

Definition 7.1.1 Let Q ⊂M(X), then we call µ a Q-invariant (or Q-preserving) measure,
if µ is Q-invariant for all Q ∈ Q.

In the following we write Mσ(X) for the space of all σ-finite measures on X. In the
case where X also is considered as a topological space the σ-algebra Σ1 always will be the
Borel σ-algebra B(X) on X. We denote by Σ1 ⊗Σ2 the smallest σ-algebra in X × Y such
that both projections PX : X × Y → X and PY : X × Y → Y are measurable.

We remind of the notion of group representations. Let G be a locally compact group,
then by Homeo(X) we denote the space of all homeomorphisms of X. A group homomor-
phism

B : G ∋ t 7→ Bt ∈ Homeo(X)

is called a representation of G in Homeo(X). The representation B is said to be continuous
(resp. measurable) iff the map (t, x) 7→ Btx of G ×X into X is continuous (resp. iff this
map is B(G×X) − B(X)-measurable).

To begin with, we explicitly compute how a weighted Lebesgue measure on an open
subset of Rn can be adapted to a given group representation. We are making use of
the transformation formula for the Lebesgue integral which in general is not available for
arbitrary measure spaces.

Fix n ∈ N, let Ω ⊂ Rn be open and G a compact group with unit e ∈ G. By Diff(Ω) we
denote the group of all diffeomorphisms of Ω. Assume that B : G→ Diff(Ω) is a continuous
representation of G in Diff(Ω). Starting with a weighted Lebesgue measure µ ∈ Mσ(Ω)
we want to construct a measure µs ∈ Mσ(Ω) which is B(G)-invariant. This construction
arises from a procedure of integration of µ along B(G). For i = 1, · · · , n we denote by
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πi : Rn → R the projection on the i-th component. Then we assume that all the maps
given in (i) and (ii):

(i) Ω ∋ z 7→
[
G ∋ t 7→ πi ◦Bt−1z

]
∈ C(G,R) for i = 1, · · · , n;

(ii) Ω ∋ z 7→
[
G ∋ t 7→ ∂

∂zj
{ πi ◦Bt−1z }

]
∈ C(G,R) for i, j = 1, · · · , n

are well-defined and continuous on Ω if C(G,R) carries the topology of uniform convergence
on G. Let m be the unique translation-invariant Haar-measure on G with m(G) = 1 and
assume that g : Ω → R+ is a positive and continuous weight-function. Let us consider
µ ∈ Mσ(Ω) defined by dµ = g dv, where v is the usual Lebesgue measure on Ω. We show
that a B(G)-invariant measure µs on Ω is given by dµs := f dv where

f( z ) :=

∫

G

g ◦Bt−1( z )
∣∣∣ det

[
DzBt−1

]
( z )

∣∣∣ dm(t), ( z ∈ Ω ). (7.1.1)

Lemma 7.1.1 Let Ω ⊂ Rn be open and assume that µs ∈ Mσ(Ω) is defined by dµs = f dv.
Then µs is B(G)-invariant.

Proof Let t0 ∈ G and A ∈ B(Ω) be a Borel set in Ω. Then, using the transformation
formula for the Lebesgue integral, we find with the characteristic function χA of A:

µs(B
−1
t0
A)

=

∫

Ω

χB
t
−1
0
A(z)f(z) dv(z)

=

∫

G

∫

Ω

χA ◦Bt0(z) g ◦Bt−1(z)
∣∣∣ det

[
DzBt−1

]
(z)
∣∣∣ dv(z) dm(t)

=

∫

G

∫

Ω

χA(z)g ◦B(t0t)−1(z)
∣∣∣ det

[
DzBt−1

]
(Bt−1

0
(z)) · det

[
DzBt−1

0

]
(z)
∣∣∣ dv(z) dm(t)

=

∫

Ω

χA(z)

∫

G

g ◦B(t0t)−1(z)
∣∣∣ det

[
DzB(t0t)−1

]
(z)
∣∣∣ dm(t) dv(z)

=

∫

Ω

χA(z)f(z) dv(z) = µs(A).

Here we have used the translation invariance of m on G in the last equality. �

Let X be a topological space, F ⊂ C(X) a subspace. In Definition 5.3.1 we have
introduced the notion of NFp-measures and NFp-spaces for 1 ≤ p < ∞. The question
arises whether or not the invariant measure µs is a NFp-measure for F ⊂ C(Ω), whenever
µ has this property. We can prove the following easy lemma:

Lemma 7.1.2 Let µ ∈ MFp(X) where p ≥ 1. If g : X → R+ is a continuous positive
function and µ̃ is defined by dµ̃ = g · dµ, then µ̃ ∈ MFp(X) as well.
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Proof Fix a compact set K ⊂ X. Then, by assumption, there is a compact set H ⊂ X
such that K ⊂ H and C > 0 with

sup
{
| f(x) | : x ∈ K

}
≤ C

[ ∫

H

| f |p dµ
] 1

p

.

for all f ∈ F . Define ε := inf{ | g(z) | : z ∈ H } > 0, then inequality (5.4.1) holds with µ̃

instead of µ and Cε−
1
p > 0 instead of C. �

Remark 7.1.1 From Lemma 7.1.2 it is easy to see that for each continuous function
h : X → C and each finite measure µ ∈ MFp(X) it can be constructed µ̃ ∈ MFp(X)
such that h is µ̃-integrable (use the continuous positive weight g(z) := ( 1 + | h(z) | )−1 for
all z ∈ X and cf. Lemma 6.1.1).

For the next lemma let us assume that Ω ⊂ R2n ∼= Cn. Then we obtain with our
notations above:

Lemma 7.1.3 Assume that g : Ω → R+ is uniformly continuous. Then µ as well as µs
belong to MFp(Ω) where F := H(Ω) is the space of all holomorphic functions on Ω and
1 ≤ p ≤ 2.

Proof According to example 5.4.1 (a) we have v ∈ MFp(Ω) for 1 ≤ p ≤ 2. In order
to show that µs is a NFp-measure it is enough to prove that f : Ω → R+ in (7.1.1) is
continuous and positive (see Lemma 7.1.2). This easily follows from assumptions (i) and
(ii) on B together with uniform estimates on g. �

If we deal with a topological space X (e.g. X is an infinite dimensional Hilbert-space
or a DFN -space) in general we can not directly make use of the transformation formula.
Let us find an equivalent definition for µs where µ is a finite Borel measure on X. For a
Borel set A ∈ B(Ω) where Ω ⊂ Rn is open we have from our definitions above (dµ = g dv):

µs(A) =

∫

Ω

∫

G

χA(z) g ◦Bt−1(z)
∣∣∣ det

[
DzBt−1

]
(z)
∣∣∣ dm(t) dv(z)

=

∫

G

∫

Ω

χA ◦Bt(z) g(z)
∣∣∣ det

[
DzBt−1

]
(Btz ) · det

[
DzBt

]
(z)
∣∣∣ dv(z) dm(t)

=

∫

G

∫

Ω

χB
t−1A(z)

∣∣∣ det
[
DzBt−1t

]
(z)
∣∣∣ g(z) dv(z) dm(t)

=

∫

G

µ
(
B−1
t A

)
dm(t).

We have used that Bt−1t = Be = id. The expression on the right hand side also makes
sense for a wider class of Borel measures µ̃ on a topological space X, provided that the
mapping

G ∋ t 7→ µ̃
(
B−1
t A

)
∈ [ 0,∞ ]

is B(G)-measurable. We intend to examine this question in greater generality for measure
spaces which not necessarily are carrying a group structure:
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Definition 7.1.2 Let (X,Σ1, µ ) and (Y,Σ2,m ) be σ-finite measure spaces. Assume that
there is a map B : Y →M−1(X) such that

Y ∋ t 7→ µ
(
B−1
t A

)
∈ [ 0,∞ ] (7.1.2)

is Σ2- measurable for all A ∈ Σ1. Then we define the symmetrization µs of µ w.r.t. to B
to be the integral

µs(A) :=

∫

Y

µ
(
B−1
t A

)
dm(t).

In our applications we often assume that X is a topological space with Borel σ-algebra
B(X) and µ is a finite or σ-finite Borel measure on X. For the measure space ( Y,Σ2,m )
we choose a compact or locally compact group G = Y with the translation invariant Haar-
measure m. The mapping B : G → M−1(X) is a group homomorphism from G into
Homeo(X).

Lemma 7.1.4 The symmetrization µs defines a Borel measure on Σ1. If in addition the
space Y = G is a locally compact group with left-invariant Haar-measure m and Σ2 := B(G)
then µs is B(G)-invariant for a group homomorphism B : G→M−1(X).

Proof By assumption the map Y ∋ t 7→ µ(B−1
t A ) ∈ [ 0,∞ ] is Σ2-measurable for any set

A ∈ Σ1 and we conclude that µs is well-defined on Σ1. We prove the σ-additivity of µs.
Let (Ai)i∈N ⊂ Σ1 be a sequence such that Ai ∩ Aj = ∅ for i 6= j. Because for each t ∈ G
the map Bt is one-to-one it follows that:

B−1
t Ai ∩B−1

t Aj = ∅ for i 6= j and B−1
t

[ ⋃

i

Ai

]
=
⋃

i

B−1
t Ai.

Hence by the σ-additivity of µ we have:

Y ∋ t 7→
∑

i

µ
(
B−1
t Ai

)
= µ

(
B−1
t

[ ⋃

i

Ai

] )
∈ [ 0,∞ ] (7.1.3)

and the map (7.1.3) is Σ2-measurable. Now, the theorem of dominated convergence applied
to µ implies that:

µs

( ⋃

i

Ai

)
=

∫

G

∑

i

µ
(
B−1
t Ai

)
dm(t)

=
∑

i

∫

G

µ
(
B−1
t Ai

)
dm(t) =

∑

i

µs
(
Ai
)
.

In the case where Y = G is a locally compact group with left-invariant Haar-measure
m and B : G → M−1(X) is a group homomorphism we can prove the B(G)-invariance of
the measure µs. Fix t0 ∈ G and A ∈ Σ1, then it follows that:

µ
Bt0
s (A) = µs

(
Bt−1

0
A
)

=

∫

G

µ
(
Bt−1Bt−1

0
A
)
dm(t) =

∫

G

µ
(
B(t0t)−1A

)
dm(t) = µs(A)
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by the left-translation invariance of the Haar-measure m on G. �

With the notations of Definition 7.1.2 we want to find conditions under which the map
(7.1.2) is Σ2- measurable on Y for all A ∈ Σ1.

Lemma 7.1.5 Let F : Y ×X → X defined by F (t, x) := Btx be Σ2 ⊗ Σ1-Σ1-measurable.
Then Y ∋ t 7→ µ

(
B−1
t A

)
∈ [ 0,∞ ] is Σ2-measurable for each A ∈ Σ1.

Proof Let A ∈ Σ1. By our assumption χA ◦F : Y ×X → R is Σ2⊗Σ1-measurable. Using
Tonelli’s theorem it follows that:

Y ∋ t 7→
∫

X

χA ◦ F ( t, ·) dµ =

∫

X

χB−1
t A dµ = µ

(
B−1
t A

)
∈ [ 0,∞ ]

is a Σ2-measurable function (cf. [7]). �

We conclude that under the assumptions of Lemma 7.1.5 the symmetrization µs of µ
is a well-defined measure on (X,Σ1 ) (which does not have to be σ-finite again).

Let Ω ⊂ Rn be open, g : Ω → R+ a continuous and strictly positive weight function and
the measure µ ∈ Mσ(Ω) be defined by dµ = gdv. Given a continuous representation B of a
compact group G in Diff(Ω) with (i) and (ii) above we have shown (see Lemma 7.1.1) that
the B(G)-invariant measure µs is absolutely continuous w.r.t. the Lebesgue measure. The
following example points out that this property does not hold in the more general setting
of Definition 7.1.2. We give a finite measure µ on a Hilbert space H with the property
µ(U) > 0 for all open subsets U ⊂ H and a group representation B : R → Homeo(H)
such that µ and µs are orthogonal ( i.e. there is X ⊂ H with µ(X) = 1 and µs(X) = 0,
see [48, p. 60]).

Example 7.1.1 Let H1, H2 be separable infinite dimensional Hilbert spaces. In addition
we assume that there is a dense and continuous embedding I : H1 →֒ H2. Fix a Gaussian
measure µ1 on H1 with the property µ1(U) > 0 for all open subsets U ⊂ H1 and define
the measure µ2 on H2 by µ2(A) := µ1(A ∩H1) for all A ∈ B(H2). Then µ2 = µI1 and it is
well-known (see [48], p. 44) that µ2 is a Gaussian measure on H2. Moreover,

µ2(H1) = µ1(H1) = 1 and µ2(V ) > 0 (7.1.4)

for all open sets V ⊂ H2 from the fact that H1 is dense in H2. Choose 0 6= a ∈ H2 \ H1

and consider the representation (Bt)t∈R of R in H2 defined by Bty := y+ ta for all y ∈ H2.
Because of H1 + ta ∩H1 = ∅ for t 6= 0 and µ2(H1) = µ2(H2) = 1 it follows that

µ2 (H1 + ta ) = 0 ∀ t 6= 0.

Let us choose ( X,Σ1, µ ) = ( H2,B(H2), µ2 ) and ( Y,Σ2,m ) = ( R,B(R), e−t
2
dt ) in

Definition 7.1.2. We obtain:

µ2 (H1) = 1, (µ2)s (H1) =

∫

R

µ2

(
H1 + ta

)
e−t

2

dt = 0

and so the measures µ2 and (µ2)s are orthogonal on H2 with the desired properties.
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Now, let us describe how to integrate w.r.t µs. With the notations of Definition 7.1.2 we
assume that the function F : Y ×X → X with F (t, x) := Btx is Σ2 ⊗ Σ1- Σ1-measurable.

Lemma 7.1.6 Let f : X → [ 0,∞ ] be a non-negative Σ1-measurable numerical function.
Then: ∫

X

f dµs =

∫

Y×X

f ◦ F d(m⊗ µ )

where we denote by m⊗ µ the product measure on Σ2 ⊗ Σ1.

Proof First let us assume that g : X → R+
0 is a Σ1-step-function on X. Then we can

write g =
∑n

i=1 αi · χAi
where Ai ∈ Σ1 and αi > 0 for i = 1, · · · , n. It follows that:

∫

X

g dµs =
n∑

i=1

αi · µs(Ai) (7.1.5)

=
n∑

i=1

αi

∫

Y

∫

X

χB−1
t Ai

(x) dµ(x) dm(t)

=
n∑

i=1

αi

∫

Y

∫

X

χAi
◦ F ( t, x ) dµ(x) dm(t) =

∫

Y×X

g ◦ F d(m⊗ µ ).

For an arbitrary Σ1-measurable numerical function f ≥ 0 let (gn)n∈N be a sequence of
non-negative Σ1-step-functions with gn ↑ f . Then (gn ◦ F )n∈N is a sequence of Σ2 ⊗ Σ1-
step-functions with gn ◦ F ↑ f ◦ F . From equation (7.1.5) the assertion follows. �

In particular, under the conditions of Lemma 7.1.6 it follows that a Σ1-measurable
numerical function f : X → C is µs-integrable iff f ◦ F : G×X → C is m⊗ µ-integrable
and the integrals coincide. Let (X,Σ1, µ ) be a σ-finite measure space and let Y := G be
a locally compact group with left-invariant Haar-measure m. If B : G → M−1(X) is a
representation of G such that F : G×X → X in Lemma 7.1.5 is B(G)⊗Σ1- Σ1-measurable,
then we can prove:

Corollary 7.1.1 Let t1, t2 ∈ G and f : X → C be Σ1-measurable. Then f ◦ Bt1 is µs-
integrable iff f ◦Bt2 is µs-integrable and in this case both integrals coincide.

Proof By Lemma 7.1.6, Fubini‘s Theorem and the translation invariance of m we find:
∫

X

∣∣ f ◦Bt1

∣∣ dµs =

∫

G×X

∣∣ f ◦Bt1 ◦Bt(z)
∣∣ d(m⊗ µ)(t, z)

=

∫

X

∫

G

∣∣ f ◦Bt1t(z)
∣∣ dm(t) dµ(z)

=

∫

X

∫

G

∣∣ f ◦Bt2t(z)
∣∣ dm(t) dµ(z) =

∫

X

∣∣ f ◦Bt2

∣∣ dµs.

Now, the assertion follows from Tonelli‘s theorem. �
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For a topological space Y denote by O(Y ) the family of all open sets in Y . A complete
metric space Y with countable base X ⊂ O(Y ) (i.e. each A ∈ O(Y ) is union of sets in the
countable system X ) is called polish space. In general the inclusion:

B(Y ) ⊗ B(X) ⊂ B(Y ×X)

holds, but if we restrict ourselves to polish spaces or DFN -spaces we can prove:

Proposition 7.1.1 Let Y and X be polish spaces and consider Y × X with the product
metric. Then we have B(Y ×X) = B(Y ) ⊗ B(X).

Proof Fix countable bases Y (resp. X ) of open sets in Y (resp. in X) and consider the
system:

Y ⊗ X :=
{
U × V : U ∈ Y and V ∈ X

}
⊂ O( Y ×X ).

Then Y ⊗X is a countable base for Y ×X and so it generates B(Y ×X). On the other
hand Y (resp. X ) generates B(Y ) (resp. B(X)) and so by Satz 22.1 in [7] we conclude
that Y ⊗ X also generates B(Y ) ⊗ B(X). Hence B(Y ×X) = B(Y ) ⊗ B(X). �

Let us consider a DFN -space E. In general there is no metric on E which induces the
topology. But it is known ( cf. Lemma 5.3.1 and Lemma A.1.2 ) that each open subset
U ⊂ E can be written as a countable union of compact metric spaces each with countable
base (we have called U hemi-compact).

Proposition 7.1.2 Let E be a DFN -space and U ⊂ E be open. If Y is a polish space
and Y × U carries the product topology, then B(Y × U) = B(Y ) ⊗ B(U).

Proof Fix a fundamental system (Ki)i∈N ⊂ U of compact sets (i.e. Ki ⊂ Ki+1 for i ∈ N
and U =

⋃
iKi, see [116]). Then for each i ∈ N the complete metric space Ki has a

countable base Ki ⊂ O(Ki) ⊂ B(U). Fix a countable base Y ⊂ O(Y ) of Y and consider
the system:

Y ⊗K :=
⋃

i∈N

{
Z × Vi : Z ∈ Y and Vi ∈ Ki

}
.

Then Y ⊗K is a countable system of sets in B(Y ×U). Indeed, if PY : Y ×U → Y and
PU : G× U → U denote the continuous projections, it follows:

Z × Vi = P−1
Y (Z) ∩ P−1

U (Vi) ⊂ B(Y × U), ∀ Z × Vi ∈ Y ⊗K.

Let W ⊂ Y ×U be open and (x,w) ∈W . Then fix i ∈ N with (x,w) ∈ Y ×Ki. Because
the intersection W ∩ [ Y ×Ki ] is open in Y ×Ki and Y and Ki are metric spaces we find
a set-product Z × Vi ∈ Y ⊗K with

(x,w) ∈ Z × Vi ⊂ W ∩
[
Y ×Ki

]
⊂ W.

Hence the open set

W =
⋃{

Z × Vi ∈ Y ⊗K : Z × Vi ⊂ W
}
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is a countable union and so B(Y × U) is generated by Y ⊗ K. Because Y generates the
Borel-σ-algebra B(Y ) and

⋃
i{Vi : Vi ∈ Ki } generates B(U) it follows from Satz 22.1 in [7]

that Y ⊗K also generates B(Y ) ⊗ B(U). �

The well-known fact, that each compact space with countable base is metrizable to-
gether with Lemma 7.1.5, Proposition 7.1.1 and 7.1.2 now leads to:

Theorem 7.1.1 Let G be a compact group with countable base and assume that X is a pol-
ish space or an open set in a DFN -space. Let µ ∈ Mσ(X) be finite and B : G→M−1(X)
a measurable representation. Then for each A ∈ B(X) the map G ∋ t 7→ µ( B−1

t A ) ∈ R+

is integrable over G.

7.2 Group representations and symmetric measures

We show, that under some continuity conditions on F : G×X → X with F (t, x) := Btx
the space MFp(X) is invariant under the symmetrization process. In this section, if
nothing else is said, we assume that X is a polish space or an open subset of a DFN -
space with the Borel σ-algebra. Moreover, let G be a compact group with countable base
and B : G → Homeo(X) a continuous group representation of G in the space of all
homeomorphisms of X.

Definition 7.2.1 A subspace H ⊂M(X,C) is called B(G)-invariant iff for all f ∈ H the
inclusion { f ◦Bt : t ∈ G } ⊂ H holds.

For any H ⊂M(X,C) we can consider HG := { f ◦Bt : f ∈ H, t ∈ G }. Then HG is a
B(G)-invariant space and H is B(G)-invariant itself iff H = HG.

Theorem 7.2.1 Let F ⊂ M(X,C) be B(G)-invariant and µ ∈ MFp(X) where p ≥ 1,
then it follows that µs ∈ MFp(X) as well.

Proof According to Theorem 7.1.1 µs is well-defined. Let K1 ⊂ X be compact, then we
conclude from the continuity of the representation B that the spaces G × K1 ⊂ G × X
and K2 := F (G × K1) ⊂ X are compact, as well. Because µ ∈ MFp(X) and F is a
B(G)-invariant space, there is C > 0 and a compact set K3 with K2 ⊂ K3 ⊂ X such that
for all f ∈ F and t ∈ G:

sup
{ ∣∣ f ◦Bt(z)

∣∣ : z ∈ K2

}p
≤ C

∫

K3

∣∣ f ◦Bt

∣∣p dµ.

In particular, we have with z ∈ K1 and u := Bt−1z ∈ K2 for all t ∈ G the estimate:

sup
{
| f(z) | : z ∈ K1

}p
≤ sup

{ ∣∣ f ◦Bt(u)
∣∣ : u ∈ K2

}p
≤ C

∫

K3

∣∣ f ◦Bt

∣∣p dµ.
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Finally, integration over G together with m(G) = 1 and an application of Lemma 7.1.6
shows that:

sup
{
| f(z) | : z ∈ K1

}p
≤ C

∫

G×K3

| f |p ◦ F d(m⊗ µ) = C

∫

K3

| f |p dµs

and by definition it follows that µs ∈ MFp(X). �

Let p ≥ 1 and H ⊂M(X,C) be a B(G)-invariant space. Assume thatB : G→M−1(X)
is a measurable representation such that µs is well-defined for any µ ∈ Mσ(X). According
to Corollary 7.1.1 the space Hp := H ∩ Lp(X,µs) is B(G)-invariant. Denote by Hp the
Lp-closure of Hp. Then we have shown that

B̃ : G ∋ t 7→
[
Hp ∈ f 7→ f ◦Bt ∈ Hp

]
∈ L(Hp) (7.2.1)

is well-defined. For all t ∈ G the operators B̃t ∈ L(Hp) are bijective and isometric. In the
case where p = 2 we obtain a group of unitary operators. Next we give some conditions
under which (B̃t)t∈G is strongly continuous.

Proposition 7.2.1 Let p ≥ 1 and assume that H ⊂ C(X) is a B(G)-invariant space and
µ ∈ Mσ(X) is finite. For all h ∈ Hp let the convergence h ◦ Bt → h hold uniformly on X
as t→ e. Then B̃ is strongly continuous.

Proof Denote by ‖ · ‖p the Lp(X,µs)-norm on X. Let f ∈ Hp and ε > 0. Then choose
h ∈ Hp with ‖ f − h ‖p < ε. It follows that:

∥∥ f ◦Bt − f
∥∥
p
≤
∥∥ (f − h) ◦Bt

∥∥
p
+
∥∥ h ◦Bt − h

∥∥
p
+
∥∥ h− f

∥∥
p

(7.2.2)

= 2
∥∥ f − h

∥∥
p
+
∥∥ h ◦Bt − h

∥∥
p

≤ 2ε+
∥∥ h ◦Bt − h

∥∥
p
.

From Lebesgue‘s convergence theorem together with the uniform convergence h◦Bt → h
as t tends to e ∈ G and | h | + 1 ∈ Lp(X,µ) it follows that ‖ h ◦ Bt − h ‖p < ε for t in a
suitable neighborhood of e. Using (7.2.2) this implies the strong continuity of (7.2.1). �

Let Cb(X) be the space of bounded complex-valued continuous functions. If we assume
that H is a subspace of Cb(X), then by similar arguments we can prove for all finite measures
µ ∈ Mσ(X):

Proposition 7.2.2 Let p ≥ 1 and let H ⊂ Cb(X) be B(G)-invariant. Assume that the
convergence Btx → x as t → e holds for all x ∈ X. Then the group representation in
(7.2.1) is strongly continuous.

Let us choose H = Cb(X). Under certain additional assumptions we can show that Hp

is dense in Lp(X,µs). One of these condition is that the topological space X is normal,
e.g. Tietze’s extension theorem applies.
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Lemma 7.2.1 Let Z be a metric or normal locally compact Hausdorff space. With a
regular finite Borel measure µ on Z and 1 ≤ p <∞ the space Cb(Z) is dense in Lp(Z, µ).

Proof Choose f ∈ Lp(Z, µ) and ε > 0. Then there exists a step-function s, such that
‖ f − s ‖p ≤ ε

2
. Clearly s is bounded and according to [57, 2.3.6] there is ũ ∈ C(Z) with:

µ
( {

x : s(x) 6= ũ(x)
} )

≤
(

ε

4‖ s ‖∞

)p
.

Now we define u(x) :=sgn( ũ(x) ) min{ | ũ(x) |, ‖ s ‖∞ }. Then by definition u ∈ Cb(Z)

with ‖ u ‖∞ ≤ ‖ s ‖∞ and µ(B) ≤
(

ε
4 ‖ s ‖∞

)p
where B := { x : s(x) 6= u(x) }. Now, we

obtain:

‖ s− u ‖pp =

∫

B

| u− s |p dµ ≤ 2p ‖ s ‖p∞ µ(B) ≤
( ε

2

)p
.

This implies ‖ f − u ‖p ≤ ε. �

If we assume that p = 2 and µ is a finite NF2-measure we can give another condition
for the strong continuity of a group of composition operators. For the notion of k-spaces
see Definition 5.3.1 and Lemma A.1.1

Lemma 7.2.2 Let Z be a k-space and F ⊂ C(Z). Assume that µ is a NF2-measure on
Z. Then for each [ g ] ∈ F2 there is f ∈ C(Z) with [ g ] = [ f ].

Proof Let ( [ fn ] )n ⊂ F2 be a fundamental sequence with respect to the L2-topology.
We conclude from (5.4.1) and µ ∈ MF2(Z) that (fn)n is compact uniformly convergent
to a function f : Z → C which is continuous restricted to each compact subset K ⊂ Z.
Because Z is a k-space by assumption, it follows that f ∈ C(Z). Let [ g ] ∈ L2(Z, µ) be the
L2-limit of ([ fn ])n. From the fact that (fn)n admits a subsequence which tends to g a.e.
on Z we conclude that [ f ] = [ g ]. �

From Lemma 7.2.2 it is clear that F2 can be identified with a space of continuous
complex-valued functions on Z.

Proposition 7.2.3 Let X be a k-space, F ⊂ C(X) be B(G)-invariant and µ ∈ MF2(X).
Then the unitary operator-group (7.2.1) on H2 := F2 is strongly continuous.

Proof The space H2 ⊂ L2(X,µs) is a Hilbert-space and because µs is a NF2-measure
by Theorem 7.2.1, the map H2 ∋ f 7→ f(x) ∈ C is continuous for any x ∈ X. By the
Riesz-Fischer lemma there is K : X ×X → C with K(·, x) ∈ H2 and for x ∈ X

f( x ) =
〈
f,K(·, x)

〉
2
, ∀ f ∈ H2. (7.2.3)

Because each f ∈ H2 is continuous it follows that D := span{ K(·, x) : x ∈ X } is
a dense subspace of H2. By an argument similar to the proof of Proposition 7.2.1 it is
sufficient to prove the strong continuity of (7.2.1) on D. Let

h =
n∑

i=1

αi ·K
(
·, xi

)
∈ D
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with coefficients αi ∈ C and xi ∈ X for i = 1, · · · , n. Then we have:

∥∥ h ◦Bt − h
∥∥2

2
= 2
[
‖ h ‖2

2 − Re〈 h ◦Bt, h 〉2
]

and so we only have to show that 〈h ◦Bt, h 〉2 → ‖h ‖2
2 as t→ e. Using (7.2.3) this follows

from:

〈 h ◦Bt, h 〉2 =
n∑

i,j=1

αi · αj ·
〈
K
(
Bt·, xi

)
, K
(
·, xj

) 〉
2

=
n∑

i,j=1

αi · αj ·K
(
Btxj, xi

)
t→e−−−→ ‖ h ‖2

2.

We have used that K(·, xi) ∈ C(X) and the continuity of B : G→ Homeo(X). �

7.3 Representations of C0-semi-groups on L2-spaces

In this section let H be a separable Hilbert-space and let (Bt)t≥0 ⊂ L−1(H) be a C0-
semi-group of invertible bounded operators on H. Assume that µ is a finite Borel measure
on G, where G is a Gδ-set in H ( i.e. G is a countable intersection of open sets in H )
such that Bt(G) ⊂ G for all t ≥ 0. We construct a C0-semigroup (B̃t)t≥0 ⊂ L−1(H̃) on
H̃ := L2(G, µs) of composition operators B̃t(f) := f ◦Bt where f ∈ H̃.

Lemma 7.3.1 The mapping R+ ×H −→ H : ( t, z ) 7−→ Btz is continuous with respect
to the product topology.

Proof Since (Bt)t≥0 is strongly continuous it is well-known that there exist M > 1 and
β > 0 such that ‖ Bt ‖ ≤ Meβt. Let (t, z) ∈ R+ × H and (tn, zn)n∈N ⊂ R+ × H be a
sequence with (tn, zn) → (t, z) as n→ ∞. Then we obtain:

∥∥Btnzn −Btz
∥∥ ≤Meβtn

∥∥ zn − z
∥∥+

∥∥Btnz −Btz
∥∥ n−→∞−−−−→ 0,

since (Bt)t≥0 is strongly continuous. �

With the notations of Definition 7.1.2 let (X,Σ1, µ) := (G,B(G), µ), where µ ∈ Mσ(G)
is finite and define ( Y,Σ2,mα ) := ( R+,B(R+), e−tαdt ) with α > 0. Let µs,α denote the
symmetrization of µ (which is well-defined according to the lemma above and the fact that
G (cf. [123, p. 150]) is a polish spaces) and define B̃t by B̃t(f) = f ◦Bt for all t ∈ R+.

As an example for the choice of G we can set G = H or G to be an open ball in H
centered in 0 and (Bt)t≥0 be a semi-group of unitary operators on H.

Lemma 7.3.2 For all t ≥ 0 and f ∈ L2(G, µs,α) it holds ‖ B̃tf ‖s,α ≤ e
α
2
t‖ f ‖s,α, where

‖ · ‖s,α denotes the L2(G, µs,α)-norm.
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Proof Let t0 ≥ 0 and f ∈ L2(G, µs,α). According to Lemma 7.1.6 we obtain:
∫

G

∣∣ f ◦Bt0

∣∣2 dµs,α =

∫

G×R+

∣∣ f(Bt0Btx )
∣∣2 d(µ⊗mα)(x, t)

=

∫

G

∫

[ t0,∞ )

∣∣ f(Bsx)
∣∣2 e−α(s−t0) ds dµ(x)

≤ eαt0
∫

G

∫

R+

∣∣ f(Bsx)
∣∣2 e−αs ds dµ(x) = eαt0‖ f ‖2

s,α.

This proves B̃t0f ∈ L2(G, µs,α) and the desired inequality. �

Theorem 7.3.1 Let G be a Gδ-set, µ ∈ Mσ(G) and α > 0. Moreover, we assume that
(Bt)t≥0 ⊂ L−1(H) is a C0-semi-group of invertible bounded operators on H such that the
inclusion Bt(G) ⊂ G holds. For any t ≥ 0 let B̃t be the isomorphism defined above, e.g.
B̃tf = f ◦Bt. Then (B̃t)t≥0 defines a C0-semi-group on L2(G, µs,α).
Proof It is obvious that (B̃t)t≥0 is a semi-group of isomorphisms on L2(G, µs,α). Let us fix
a function g ∈ Cb(G), then we obtain for all x ∈ H:

[
B̃tg

]
( x ) − g( x ) = g

(
Btx

)
− g( x )

t−→0−−−→ 0,

since (Bt)t≥0 is strongly continuous and g is a continuous function. Moreover, g is bounded
and thus by Lebesgue’s Theorem of dominated convergence it follows that:

∥∥ B̃tg − g
∥∥
s,α

t−→0−−−→ 0. (7.3.1)

Now let f ∈ L2(G, µs,α) be arbitrary and fix ε > 0. According to Lemma 7.2.1 there
exists g ∈ Cb(G) with ‖ f − g ‖s,α ≤ ε. Furthermore (7.3.1) implies that there is t0 ≤ 1 such
that for all 0 < t ≤ t0 we have ‖ B̃tg − g ‖s,α < ε. Thus for t ∈ [ 0, t0 ] we get:

∥∥ B̃tf − f
∥∥
s,α

≤
∥∥ B̃tf − B̃tg

∥∥
s,α

+
∥∥ B̃tg − g

∥∥
s,α

+
∥∥ g − f

∥∥
s,α

≤
∥∥ B̃t

∥∥ ε+ 2ε ≤
(
eα + 2

)
ε. �

7.4 Group actions induced by symmetries

We give examples how to construct representations G ∋ t 7→ Homeo(X), where G is a
compact group with countable base, X denotes a topological space and Homeo(X) is the
group of all homeomorphisms of X.

Let Ω ⊂ Rn be open or closed and let ω : Ω → R+ be a strictly positive and continuous
weight function. With f ∈ C(Ω) consider ‖ f ‖ω := sup{ | f(x) | ·ω(x) : x ∈ Ω }. Define the
Banach space Cω(Ω) of continuous functions by

Cω(Ω) :=
{
f ∈ C(Ω), ‖ f ‖ω <∞

}
.
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Assume that E is a topological space which is continuously embedded in Cω(Ω). Fix
m ∈ N, then with the product topology on ×n

i=1Cω(Ω) and the topology on C(Ω,Cm) of
uniformly compact convergence we have the continuous inclusions

Em := ×m
i=1E →֒ Cω( Ω )m := ×n

i=1Cω(Ω) →֒ C ( Ω,Cm ) .

Let U ⊂ Cm be open and bounded. For each set A ⊂ U we denote by A the closure of
A in Cm. Now consider:

XU :=
{
f = ( f1, · · · , fm ) ∈ Em : [ f · ω ](Ω) ⊂ U

}
⊂ Em. (7.4.1)

Lemma 7.4.1 The set XU ⊂ Em defined in (7.4.1) is open with respect to the product
topology of Em.

Proof Because the embedding Em →֒ Cω(Ω)m is continuous, it is sufficient to show that
the set

X̃U :=
{
f ∈ Cω(Ω)m : [ f · ω ](Ω) ⊂ U

}
⊂ Cω(Ω)m (7.4.2)

is open in Cω(Ω)m. Fix f ∈ X̃U and let ε := dist1( [ f · ω ](Ω), ∂U ) > 0 denote the distance
of the compact set [ f · ω ](Ω) to the topological boundary ∂U of U with respect to the
1-norm. Fix a function g ∈ Cω(Ω)m such that

∥∥ g1 − f1

∥∥
ω

+ · · · +
∥∥ gm − fm

∥∥
ω
<
ε

2
.

It follows that [ g · ω ](Ω) ⊂ [ f · ω ](Ω) + K ε
2
⊂ U where Kr ⊂ Cm denotes the open

r-ball where r > 0 with respect to the 1-norm centered in 0 ∈ Cm. Then [ g · ω ](Ω) ⊂ U
and so by definition g ∈ X̃U . �

Assume that b : G → Homeo(U) is a representation of G in the group of all homeo-
morphisms on U . With the notation of (7.4.2) let us define the induced representation

B̃t : G→ Homeo
(
X̃U

)
: f 7→

(
bt ◦ [ f · ω ]

)
· ω−1

for f ∈ X̃U . Because of [ f · ω ](Ω) ⊂ U and

[
(B̃tf) · ω

]
(Ω) = bt ◦ [ f · ω ](Ω) = bt

(
[ f · ω ](Ω)

)
⊂ U

for all f ∈ X̃U the map B̃t is well-defined. It is easy to check that it is a group homomor-
phism and for fixed t ∈ G the map B̃t : X̃U → X̃U is continuous.

Remark 7.4.1 If in addition for t ∈ G the homeomorphism bt : U → U extends to a
linear map on Cm, then we have B̃tf = bt ◦ f .

With a bounded open set U ⊂ Cn we equip the space Homeo(U) with the topology of
uniform convergence on all compact subset K ⊂ U .
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Proposition 7.4.1 Let b : G → Homeo(U) be a continuous representation, then the
induced representation B̃ : G→ Homeo(X̃U) is continuous as well.

Proof Let s, t ∈ G and f, g ∈ X̃U . Then with the supremums-norm ‖ · ‖sup on Ω and the
product norm ‖ · ‖X̃U

on X̃U ⊂ Cω(Ω)m we have:

∥∥ B̃tf − B̃sg
∥∥
X̃U

=
m∑

j=1

∥∥ bt ◦ [ f · ω ]j − bs ◦ [ g · ω ]j
∥∥

sup
. (7.4.3)

Fix a sequence ( tn, fn )n∈N ⊂ G×X̃U with ( tn, fn ) → ( t, f ) ∈ G×X̃U as (n→ ∞). By
definition of the topology on X̃U we conclude that ( fn · ω )n converges to f · ω uniformly
on Ω. Hence we can choose a compact set K ⊂ U and n0 ∈ N such that [ fn · ω ](Ω) ⊂ K
for all k ≥ n0 and [ f · ω ](Ω) ⊂ K. The continuity of the map G ∋ t 7→ bt ∈ Homeo(U)
now implies that: ∥∥ btn ◦ [ fn · ω ]j − bt ◦ [ f · ω ]j

∥∥
sup

n→∞−−−→ 0

for all j = 1, · · · ,m. Together with (7.4.3) this finally implies B̃tnfn → B̃tf in X̃U . �

In order to define µs for µ ∈ Mσ(X) and a polish space X we only need a measurable
representation B : G → M−1(X). With our notations above let Ṽ ⊂ Cω(Ω)m be open. In
addition, assume that E is a polish space and define V := Ṽ ∩Em ⊂ Em. It is well-known
that the spaces Ṽ and V with the induced topologies are polish spaces as well (see [7]).

Proposition 7.4.2 Let B̃ : G → M−1(Ṽ ) be measurable with B̃t(V ) ⊂ V for all t ∈ G.
Then B : G→M−1(V ) defined by Bt := B̃t|V for t ∈ G is measurable, as well.

Proof For each t ∈ G the map Bt : V → V is bijective. We show that it is measurable as
well. Fix A ∈ B(V ), then it follows from the continuous embedding V →֒ Ṽ , the fact that
V and Ṽ are polish spaces and Kuratowski‘s Theorem (see [89], p.420) that A ∈ B(Ṽ ).
Because Bt : V → Ṽ is Borel-measurable we obtain B−1

t (A) ⊂ B(V ). Hence Bt : V → V
is Borel-measurable for all t ∈ G and so B is well-defined.

Now, we prove that G× V ∋ ( t, z ) 7→ Btz ∈ V is B(G× V ) − B(V )-measurable. As
we have shown above B(V ) ⊂ B(Ṽ ) and by assumption the map

G× Ṽ → Ṽ : ( t, z ) 7→ Btz =: F ( t, z )

is B(G× Ṽ )-B(Ṽ )- measurable. Hence F−1(A) ∈ B(G× Ṽ ) and by the continuity of the
embedding G×V →֒ G× Ṽ together with the inclusion F−1(A) ⊂ G×V we conclude that
F−1(A) ∈ B(G× V ). �

Under some more conditions on b : G → Homeo(U) the restriction of B̃t to XU leads
to a continuous representation B : G→ Homeo(XU). Let us consider some special cases:

Example 7.4.1 Let Ω ⊂ Cn ∼= R2n be open and bounded. We can consider the Bergman
space H := H2(Ω, v) defined as the L2(Ω, v)-closure of

{
f ∈ C

(
Ω
)

: f|Ω : Ω → C is holomorphic
}
.
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Denote by K : Ω×Ω → C the Bergman kernel of Ω and define the weight ω : Ω → R+

by ω( x ) := K( x, x )−
1
2 . It is well-known that ω is strictly positive and continuous on Ω.

Moreover, for each f ∈ H and x ∈ Ω we have:

| f(x) | ≤ ‖ f ‖2 K(x, x)
1
2 = ‖ f ‖2 ω(x)−1 (7.4.4)

where ‖ · ‖2 denotes the L2(Ω, v)-norm. Hence from (7.4.4) it follows that the inclusion
H2(Ω, v) →֒ Cω(Ω) is continuous. Let U ⊂ Cm be open and consider the space

GL(U) :=
{
A ∈ GL ( Cm ) : A(U) = U

}
.

(More about this definition can be found in [111] and [122].) Let G be a compact group
with countable base and b : G→ GL(U) a measurable representation (e.g. U can be chosen
to be the Euclidean ball in Cm and G := U(Cm), the unitary group. Then a representation
b : G → GL(U) is given by bU(z) := Uz with U ∈ U(Cm) and z ∈ U .) Due to Remark
7.4.1 the induced representation

B̃ : G→ Homeo
(
X̃U

)

(see (7.4.2)) is given by B̃tf = bt ◦ f . If U is bounded, then XU = X̃U ∩ Hm is B(G)-
invariant and by restriction of B̃t to XU we obtain a representation B : G→ Homeo(XU)
which is measurable according to Proposition 7.4.2. In the case where b : G → GL(U) is
continuous it follows from standard arguments that B is a continuous representation.

Example 7.4.2 Let Ω ⊂ Rn be open or closed and bounded, such that the boundary
fulfills e.g. the conditions of Calderons’s extension theorem. Choose s > n

2
then, by well-

known results, the Sobolev-space Hs(Ω) is a Banach-algebra and Hs(Ω) →֒ C(Ω). Let
U ⊂ Cm be open and bounded and consider Aut(U), the group of biholomorphic mappings
in U . Let G be a compact group with countable base and b : G→ Aut(U) a representation.
The induced representation

B̃ : G→ Homeo
(
X̃U

)

is given by Btf = bt ◦ f . Since H := Hs(Ω) is a Banach-algebra XU = X̃U ∩Hm is B(G)-
invariant by holomorphic functional calculus. Thus by restriction of B̃t to XU we obtain a
representation B : G→ Homeo(XU ).

Considering the group Diffk(U) of Ck-diffeomorphisms (k > s) instead of Aut(U) we
obtain again a representation B : G→ Homeo(XU ) by well-known theorems on Sobolev-
spaces.

Example 7.4.3 Let U ⊂ Cn be open or closed and G a compact group with countable
base. Assume that b : G → Homeo(U) is a measurable representation of G. We might
think of U as a symmetric space and b : G → GL(U) where GL(U) denotes the group of
invertible homomorphisms leaving U invariant. With the usual Lebesgue measure v on U
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consider vs defined by the representation b (see Definition 7.1.2 and Theorem 7.1.1). As
we have remarked in (7.2.1) we obtain an unitary representation

B̃ : G ∋ t 7→
[
L2( U, vs ) ∋ f 7→ f ◦ bt ∈ L2( U, vs )

]
∈ L( L2(U, vs) ). (7.4.5)

We have given several conditions under which the representation (7.4.5) is strongly
continuous. If this is the case it is a continuous representation in our sense (cf. Lemma
7.3.1). Indeed, fix a sequences ( tn, fn )n ⊂ G× L2(U, vs) and ( t, f ) such that tn → t in G
and fn → f in L2(U, vs) as n→ ∞, then:

∥∥Btnfn −Btf
∥∥
L2 ≤

∥∥ fn − f
∥∥
L2 +

∥∥Btnf −Btf
∥∥
L2

n→∞−−−→ 0

by the strong continuity of the unitary group (Bt)t∈G. Fix any infinite dimensional finite
Borel measure µ onH := L2(U, vs) (e.g. let µ be a Gaussian measure), then we can consider
the symmetrization µs of µ given by the representation (7.4.5). By the same construction

we obtain an unitary representation ˜̃B : G → L( L2(H,µs) ). By continuing this process
we build a sequence of unitary groups on Hilbert-spaces induced by symmetries of the base
space U .

As we have seen in Example 7.1.1 in general the measures µ and µs in Definition 7.1.2
are not equivalent. The following example is devoted to this question in our construction
above. Here we choose µ to be a finite product of infinite dimensional Gaussian measures
and Bt to be linear for all t. In this specific situation we obtain conditions under which µs
is absolutely continuous w.r.t. µ. It turns out that these conditions are quite restrictive
and in general absolute continuity of the measures fails.

Example 7.4.4 Let H be an infinite dimensional Hilbert space over R with Gaussian
measure µB where B is the nuclear positive correlation operator (for the definition we refer
to chapter 5 or [48, pp.40]). Fix n ∈ N and let us consider Hn with the product measure
µn := µB⊗· · ·⊗µB. For each invertible matrix C ∈ Cn we define C : Hn → Hn by matrix
multiplication. The space Hn is a Hilbert space with norm

∥∥ ( z1, · · · , zn )
∥∥2

Hn :=
n∑

j=1

∥∥ zj
∥∥2
.

For any finite Borel measure ν on H we recall that the characteristic function χν is
defined by the integral χν(z) =

∫
H

exp( i〈z, ·〉 ) dν. In case of the Gaussian measure µB it
is well-know that we have

χµB
(z) = exp

(
−
∥∥B 1

2 z
∥∥2
)

for z ∈ H (see [48]) and so we obtain for the characteristic function of µn:

χµn

(
z1, · · · , zn

)
=

n∏

j=1

χµB
( zj ) = exp

(
−
∥∥ [ diag(B

1
2 )
]
( z1, · · · , zn )

∥∥2

Hn

)
.
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Here we denote by diag( B
1
2 ) the map ( z1, · · · , zn ) 7→ ( B

1
2 z1, · · · , B

1
2 zn ) on Hn.

Because µn is uniquely determined by χµn
we conclude that it is a Gaussian measure

with correlation operator diag(B). Now let us consider the measure µCn on Hn defined by
µCn (X) = µn( C

−1X ) for all X ∈ B(Hn). It is shown (see [48], p. 42) that µCn again is
a Gaussian measure with correlation Cdiag(B)C∗. In what follows we use the following
general result about equivalence of infinite dimensional Gaussian measures µB1 , µB2 with
nuclear positive correlations B1, B2 (see [48] remark 4.4, p. 66):

Let the operator B
− 1

2
1 B2B

− 1
2

1 be bounded and invertible. If B
− 1

2
1 B2B

− 1
2

1 − I is a Hilbert-
Schmidt operator, then the measures µB1 and µB2 are equivalent. Otherwise they are or-
thogonal i.e. there is X ⊂ H such that µB1(X) = µB1(H) = 1 and µB2(X) = 0.

Let us apply this criterion to µn and µCn . We set B1 :=diag(B) and B2 := CB1C
∗. It

is easy to see that diag(B
1
2 ) commutes with C and C∗ and so it follows:

B
− 1

2
1 B2B

− 1
2

1 = diag
(
B−

1
2

)
C diag(B ) C∗ diag

(
B−

1
2

)
= C C∗.

Because C was invertible by assumption it follows that B
− 1

2
1 B2B

− 1
2

1 is invertible as well
and so by the criterion above the operator CC∗ − I has to be Hilbert Schmidt for µn and
µCn to be equivalent. In the case where C is an unitary matrix it follows now that µn and
µCn are equivalent. If the matrix CC∗ − I is invertible on Hn itself (we can choose C = tI
with t ∈ R \ {0, 1}) both measures are orthogonal.

Now, let us assume that Ω ⊂ Rn is open and H ⊂ Cω(Ω) where ω : Ω → R+ is a
strictly positive and continuous weight function. Denote by Ur ⊂ Cn the complex ball
in Cn with radius r centered in 0 and consider the set XUr

⊂ Hn defined as in (7.4.1)
where E = H. Then according to Lemma 7.4.1 the set XUr

is open and so µn(Ur) > 0.
In the following the restriction of µn to XUr

is denoted by µn,r. Let N ⊂ U(Cn) be a
compact subgroup of the group U(Cn) of all unitary matrices on Cn with Haar measure
mN . There is a natural group action of N on XUr

by BC(z) = C(z) for C ∈ N . If we
choose (X,Σ1, µ ) = (XUr

,B(XUr
), µn,r ) and ( Y,Σ2,m ) = (N ,B(N ),mN ) in Definition

7.1.2, then we can prove:

Theorem 7.4.1 The measure ( µn,r )s in Definition 7.1.2 w.r.t. ( BC )C∈N is absolutely
continuous w.r.t. µn,r.

Proof Let C ∈ N and choose a Borel set N ⊂ XUr
such that µn,r(N) = µn(N) = 0. It

follows from our computations above that µn,r(C[N ] ) = µn(C[N ] ) = 0. Hence we obtain

[ µn,r ]
s
(N) =

∫

N

µn,r

(
C[N ]

)
dmN (C) = 0. �
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7.5 Dynamical systems on L2-spaces over Riemannian

manifolds

In this section we show, how to construct a dynamical system ( H,B(H), µ, T ) (for
definition see [89]). Here H is a L2-space over a Riemannian manifold, µ is an infinite
dimensional Gaussian measure on H and T : H → H a µ-preserving (i.e. µT = µ)
isomorphism. Unlike to our previous examples we are not symmetrizing a given measure
by an integration process, but the µ-preserving property will follow more directly from our
choice of parameters. Let us first remind of some general results in connection with infinite
dimensional Gaussian measures.

Let H be an infinite dimensional separable Hilbert-space over R or C and B ∈ L(H)
a non-negative nuclear operator on H. Let us denote by νB the Gaussian measure on H
with characteristic function

χνB
(z) =

∫

H

exp
(
iRe 〈·, z 〉

)
dνB = exp

(
− 〈Bz, z 〉

)
.

For each bounded operator A ∈ L(H) we consider the induced Borel measure νAB
defined by νAB(M) := νB(A−1(M) ) for all M ∈ B(H). By a standard calculation using the
transformation formula (see [14]) for integrals one finds for the characteristic function of
µ := νAB :

χµ(z) = exp
(
− 〈 ABA∗z, z 〉

)
, ∀ z ∈ H.

Let us assume that A ∈ L(H) is unitary and [ A,B ] = 0. It follows χµ = χνB
and

because the Gaussian measures are uniquely determined by its characteristic functions we
conclude that νAB = νB. Hence A is µ-preserving and in particular the composition operator

CA : L2(H, νB) → L2(H, νB) : f 7→ f ◦ A

is unitary. In order to find H, a Gaussian measure µ on H and isomorphisms T ∈ L(H)
such that (H,B(H), µ, T ) becomes a dynamical system we restrict ourselves to L2-Hilbert-
spaces H over a Riemannian manifold. Due to our remarks above we construct a nuclear
operator B (which is naturally related to the geometry of H) as well as a family of unitary
operators on H commuting with B.

Let (M, g ) be a Riemannian manifold with metric g (for details see [85]) and denote
by L the Beltrami-Laplace operator on M . A map Φ : M →M is called an isometry of M
if Φ is a diffeomorphism preserving the metric g. By this we mean that for each p ∈M

gp( u, v ) = gΦ(p)

(
dΦpu, dΦpv

)
, ( u, v ∈Mp )

where Mp denotes the tangent space to M at p ∈M . In other words dΦp is an isometry of
Euclidean vector spaces between (Mp, gp ) and (MΦ(p), gΦ(p) ). According to Proposition 1.3
in [85], p. 85 and the remark following it, the Riemannian measure mR on M is invariant
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under isometries. Hence each isometry Φ : M → M leads to an unitary composition
operator

CΦ : L2(M,mR) ∋ f 7→ f ◦ Φ ∈ L2(M,mR).

There is the following characterization of diffeomorphisms of M which are isometries
in terms of the Beltrami-Laplace operator L. A proof can be found in [85] Proposition 2.4:

Theorem 7.5.1 Let Φ : M → M be a diffeomorphism of the Riemannian manifold M .
Then Φ leaves the Beltrami-Laplace operator L invariant (i.e the commutator [ CΦ, L ]
vanishes) if and only if it is an isometry.

From now on assume that (M, g) is a compact connected oriented Riemannian manifold.
By the well-known Hodge Theorem (see [124]) it follows that there exists an orthonormal
basis [ϕn : n ∈ N] of L2(M,mR) consisting of eigen-functions of the Laplacian L. Moreover,
all the eigen-values (λn)n∈N are positive, except that zero is an eigen-value with multiplicity
one. Each eigenvalue has finite multiplicity and they accumulate only at infinity. The
asymptotic behavior of (λn)n is given by the formula

λn ∼ n
2

dim M as n→ ∞ (7.5.1)

which was discovered by H. Weyl and can be found in [33]. It also is a standard fact that
the heat operator e−tL on L2(M,mR) with t ∈ R+ has a decomposition of the form:

e−tLϕn = e−λntϕn.

for all n ∈ N. Hence it follows from the asymptotic (7.5.1) that tr( e−tL ) < ∞. Fix
an isometry Φ on M . Because the composition operators CΦ commutes with L, it also
commutes with the compact operator e−tL for all t ∈ R+. Moreover, e−tL is positive for
each t > 0 and so we can consider the Gaussian measure νL,t on H with characteristic
function χνL,t

defined for z ∈ H by

χνL,t
( z ) = exp

(
−
〈
e−tLz, z

〉 )
.

From our remark above each composition operator CΦ with an isometry Φ : M → M
fulfills [ CΦ, e

−tL ] = 0. Hence we obtain the following Proposition:

Proposition 7.5.1 Let (M, g) be a Riemannian manifold and Φ be an isometry on (M, g).
Moreover, let νL,t be the Gaussian measure defined above. Then CΦ defined by

CΦf := f ◦ Φ

is νL,t-preserving and we obtain the following unitary operators:

CΦ,t : L2
(
H, νL,t

)
→ L2

(
H, νL,t

)
: f 7→ f ◦ Φ.

In other words ( E := L2(H, νL,t),B(E), νL,t,CΦ,t ) defines a dynamical system on E
for each t ∈ R+. Let Iso(M, g) be the isometry-group of (M, g). Then Iso(M, g) is a
Lie-group and compact if M is compact (cf. [100][ch. II Theorem 1.2]).
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Theorem 7.5.2 Let ( M, g ) be a Riemannian manifold and Iso(M, g) be the isometry-
group of (M,g). Moreover, let νL,t be the Gaussian measure defined above, e.g. νL,t has
the characteristic function χνL,t

(z) = exp
(
−
〈
e−tLz, z

〉 )
, where L is the Beltrami-Laplace

operator and t > 0. Then

Ct : Iso(M, g ) ∋ Φ 7→
[
L2(H, νL,t ) ∋ f 7→ f ◦ Φ ∈ L2(H, νL,t )

]
∈ L( L2(H, νL,t) )

is an unitary group representation of the Lie-group Iso(M, g) on L( L2(H, νL,t) ).

7.6 Group action on generalized Toeplitz-algebras

Let X be a polish space or an open subset of a DFN -space. In addition we assume that
X is a k-space with MF2(X) 6= ∅, (cf. Example 5.4.1). Assume that G is a compact group
with countable base, B : G → Homeo(X) is a continuous representation and H ⊂ C(X)
is B(G)-invariant. Fix µ ∈ MF2(X), then according to Theorem 7.2.1 it follows that
µs ∈ MF2(X) as well. With the notations in (7.2.1) and Proposition 7.2.3 we conclude
that the unitary group:

B̃ : G ∋ t 7→
[
H2 ∋ f 7→ f ◦Bt ∈ H2

]
∈ L

(
H2

)
(7.6.1)

is strongly continuous. By definition and Lemma 7.2.2 the space H2 is closed in L2(X,µs)
and it consists of continuous functions on X. We refer to it as H-Bergman space over X.
In the following we denote by P : L2(X,µs) → H2 the orthogonal projection (Toeplitz pro-
jection) onto H2. Using our previous measure constructions we show how a representation
of G in a generalized class of Toeplitz C∗-algebras can be defined.

Definition 7.6.1 Let f ∈ L∞(X), then we denote by Tf ∈ L(H2 ) the Bergman-Toeplitz
operator defined by Tfg := P ( fg ) for all g ∈ H2.

As we already have mentioned in the proof of Proposition 7.2.3, the point evaluation on
X gives a continuous functional on H2 and so there is a Bergman kernel K : X ×X → C
with (7.2.3).

Lemma 7.6.1 For x, y ∈ X and t ∈ G we have the invariance K(Btx, y ) = K( x,Bt−1y )
of the Bergman kernel.

Proof Let [ ej : j ∈ N ] be an orthonormal base of H2. The group (7.6.1) acts unitarily
on H2 and so [ ej ◦Bt : j ∈ N ] also defines an ONB of H2. Let x, y ∈ X and t ∈ G, then

K( x, y ) =
∑

i

ei( x ) ei( y ) =
∑

i

ei ◦Bt( x ) ei ◦Bt( y ) = K
(
Btx,Bty

)
. �

Corollary 7.6.1 For all t ∈ G the commutator [ P, B̃t ] := PB̃t − B̃tP on L2(X,µs)
vanishes.
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Proof Fix f ∈ L2(X,µs), t ∈ G and z ∈ X. Then by the reproducing kernel property of
K and Lemma 7.6.1 we have:

[
PB̃tf

]
( z ) =

〈
PB̃tf,K(·, z )

〉
2

=
〈
f,K

(
Bt−1·, z

) 〉
2

=
[
Pf
](
Btz

)
=
[
B̃tPf

]
( z ).

We conclude that PB̃tf = B̃tPf for all f ∈ L2(X,µs) and so [ P, B̃t ] = 0. �

For each space Y ⊂ X consider HY := { f ∈ H : f|Y = 0 }. In the case where Y is

B(G)-invariant it directly follows that HY is B̃(G)-invariant.

Lemma 7.6.2 Let x0 ∈ X and Y := {Btx0 : t ∈ G }. Assume that HY = { 0 }, then there
is f0 ∈ H2 such that H2 is the closure of span{ B̃tf0 : t ∈ G }.
Proof Define f0 := K(·, x0) ∈ H2 with the reproducing kernel K and assume that

V := span{ B̃tf0 : t ∈ G } & H2.

Then there is 0 6= g ∈ H2 with 0 = 〈g, h〉2 for all h ∈ V . In particular, we conclude
that:

0 =
〈
g, B̃tf0

〉
2

=
〈
g,K

(
Bt·, x0

) 〉
2

=
〈
g,K

(
·, Bt−1x0

) 〉
2

= g ◦Bt−1( x0 )

for all t ∈ G. Hence g ∈ HY = { 0 } and we have received a contradiction. �

With a symbol f ∈ L∞(X) we write Mf ∈ L(L2(X,µs)) for the multiplication operator
given by Mfh := f · h where h ∈ L2(X,µs).

Lemma 7.6.3 Let f ∈ L∞(X), then for all t ∈ G we have the identities:

(a) B̃tMf B̃t−1 = Mf◦Bt
,

(b) B̃t Tf B̃t−1 = Tf◦Bt
.

Proof Let h ∈ L2(X,µs) and z ∈ X. Then it follows for all t ∈ G:
[
B̃tMf B̃t−1h

]
( z ) =

[
B̃t

(
f · h ◦Bt−1

) ]
( z ) = f ◦Bt(z) · h( z ) = [Mf◦Bt

h ] ( z ).

This implies (a) and (b) follows from the (a) and Corollary 7.6.1 which shows that:

B̃t Tf B̃t−1 = B̃t P Mf B̃t−1 = P B̃tMf B̃t−1 = P Mf◦Bt
= Tf◦Bt

. �

Definition 7.6.2 Let S ⊂ L∞(X) a space of symbols, then we define the Toeplitz C∗-
algebra

T (S) := C∗
{
Tf : f ∈ S

}
⊂ L

(
H2

)

to be the C∗-algebra generated by all operators Tf with symbols f ∈ S.
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Consider the representation of G in L( H2 ) defined by:

B : G ∋ t 7→
[
L
(
H2

)
∋ A 7→ B̃tAB̃t−1 ∈ L

(
H2

) ]
∈ L

(
L
(
H2

))
.

Theorem 7.6.1 Let S ⊂ L∞(X) be B(G)-invariant. Then T (S) is B(G)-invariant.

Proof Define S := { f : f ∈ S } where f̄ denotes the complex conjugate of f . Moreover,
for all n ∈ N consider the space

Wn :=
{
Tf1 · · ·Tfn

: fj ∈ S ∪ S
}
.

It is easy to show that T ∗f = Tf̄ and so it follows that the linear hull of W :=
⋃
nWn is

invariant under the ∗-operation. Further, we have with t ∈ G and f1, · · · , fn ∈ S ∪ S:

Bt

(
Tf1 · · ·Tfn

)
= Bt

(
Tf1
)
· · ·Bt

(
Tfn

)
= Tf1◦Bt

· · ·Tfn◦Bt
∈ T ( S )

because S ∪ S is B-invariant. The linear hull of W is dense in T (S) and each Bt is
continuous on L

(
H2

)
. From this the assertion follows. �

Remark 7.6.1 By Theorem 7.6.1 we can define a representation of G in the Toeplitz C∗-
algebra T (S). This fact in connection with the general theory developed in [79], [69], [107]
and [106] leads to the construction of Ψ∗-algebras in T (S) induced by the group action of
B and iterated commutators.
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Chapter A

Appendix

In this appendix we collect the basic tools in our analysis before. Some of the proofs
can be found here and we give references for more detailed informations.

A.1 On the topology of DFN -spaces

We prove some topological results on open or closed submanifolds of DFN -spaces. A
more detailed description and some of the proofs also can be found in ([51], [60], [116]). In
the following let E be a dual Fréchet nuclear space (DFN -space). Then, due to Lemma
5.3.2 with respect to the compact-open topology E can be represented as a nuclear induc-
tive countable spectrum of Banach spaces in the category of locally convex spaces and
continuous linear mappings. Moreover, the nuclear maps can be chosen to be embeddings.

Definition A.1.1 Let X be a topological locally convex space and U ⊂ X and open
subset of X.

(1) A sequence (Kn)n∈N of compact sets Kn ⊂ U is called fundamental sequence, if for
each compact set K ⊂ U there is n0 ∈ N such that K ⊂ Kn0 . The set U is called
hemi-compact if it contains a fundamental sequence of compact sets.

(2) The open set U is called Lindelöf if each open cover of U admits a countable subcover.

(3) X is called k-space, if M ⊂ X is open if and only if M ∩K is open in each compact
subset K ⊂ X with the induced topology.

An equivalent characterization of k-spaces using continuous mappings is given by the
following lemma.

Lemma A.1.1 Let (X, τ ) and (Y, σ ) be topological spaces then (a) and (b) are equivalent

(a) X is a k-space.
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(b) A mapping f : X → Y is continuous if the restriction of f to K is continuous for
each compact subset K of X.

Proof Assume that (a) holds and f : X → Y has the property that its restriction to each
compact set K ⊂ X is continuous. Let U ⊂ Y be an open subset, then

f−1(U) ∩K =
(
f|K
)−1

(U) ⊂ K

is an open set in K for all compact sets K in X. By (a) we conclude that f−1(U) ⊂ X is
open and (b) follows . Now, assume that (b) holds. Consider the topology τ̃ on X given
by the open sets

{
U ⊂ X : U ∩K ⊂ K is open in K for all compact sets K of X

}
.

Then obviously τ̃ is finer than τ and the restriction of (∗) id : (X, τ ) → (X, τ̃ ) to all
compact sets K ⊂ (X, τ ) is continuous. By assumption (b) the map (∗) is continuous and
it follows that τ is finer than τ̃ . This now implies (a). �

Important examples of k-spaces are Hausdorff spaces which are locally compact or
satisfy the first axiom of countability (cf. [99], p. 231, 13 Theorem). In general, subspaces
of k-spaces do not have to be k-spaces again. An example of a space which is not a k-space
is given by the product of uncountably many copies of the real line (cf. [99], p. 240).

Lemma A.1.2 Let U ⊂ E be an open set in a DFN -space E, then U is hemi-compact.

Proof Without loss of generality we consider an inductive spectrum E = { En, π } of
Banach spaces (En, ‖ · ‖n ) such that the map πn,n+1 : En →֒ En+1 are nuclear embeddings
and we define with Un := U ∩ En for m,n ∈ N:

Kn,m :=

{
x ∈ Un : ‖ x ‖n ≤ m, and distn+1 ( x, ∂Un+1 ) ≥ 1

m

}
.

Here ∂Un denotes the boundary of Un in En and we write distn for the distance function
in En. For all n,m ∈ N the sets Kn,m are bounded in En and so they are relatively compact
in En+1. Let us write Ka

n,m for the closure of Kn,m in En+1 and fix a compact set C ⊂ U .
Then there is n ∈ N such that C ⊂ En ∩ U = Un ⊂ Un+1 is compact (cf. [60]). Because
Un+1 is an open subset of En+1 it follows that

distn+1 ( C, ∂Un+1 ) > 0.

Hence there are n,m ∈ N such that C ⊂ Kn,m ⊂ Ka
n,m. Let j : N → N × N be a

bijection, then we define

Kl :=
l⋃

r=1

Ka
j(r).

We obtain a fundamental sequence (Kl) of compact sets such that Kl1 ⊂ Kl2 for l1 ≤ l2
and U =

⋃
l∈N

Kl. �
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Corollary A.1.1 Let E be a DFN -space and U ⊂ E be open, then U is Lindelöf.

Proof Assume that (∗) U ⊂ ⋃α∈I Uα is an open cover of U where I is any index set. By
Lemma A.1.2 we can fix a fundamental sequence (Kl)l∈N of compact sets in U such that
U is the countable union of all Kl for l ∈ N. Now, for each n ∈ N it is clear that (∗) is
an open cover of Kn and so there are finitely many indices α(n, 1), · · · , α(n,mn) ∈ I such
that

Kn ⊂
mn⋃

l=1

Uα( n, l ).

Hence we conclude that the sets { Uα( n, j ) : n ∈ N, j = α( n, 1 ), · · · , α( n,mn ) } form
a countable sub-cover of (∗). �

Remark A.1.1 In Lemma A.1.2 all we have used was the compactness of the embeddings

πn,n+1 : En →֒ En+1, ( n ∈ N )

and so we can conclude that all open sets in dual Fréchet Montel spaces (DFM-spaces)
are hemi-compact as well. In general, if E is a DFC-space ( i.e. E = F

′

c is the dual of a
Frèchet space endowed with the topology of compact convergence ), then the compact sets
of F ′c are metric and hence separable. Moreover, each open subset of E is hemi-compact
and Lindelöf and for the proof of this fact we refer to [116], p. 511, 7.2 Proposition. The
following result can be found in [116], p. 513, 7.6 Theorem. Because it is essential for our
construction of the reproducing kernel Hilbert spaces in the infinite dimensional setting we
give the proof.

Theorem A.1.1 Let E be a DFC-space. Then each closed subset of E is a k-space.

Proof Let X be a closed subset of E and U ⊂ X such that U ∩ K is open in K for
each compact subset K of X. We have to show, that U is an open neighborhood of all
its elements ξ ∈ U . Without loss of generality we assume that ξ = 0 ∈ U . Let E be the
dual of the Fréchet space F with the compact open topology. For the proof we construct
a compact set L of F such that L◦ ∩X ⊂ U where

L◦ :=
{
x ∈ E : sup{ | 〈x, ϕ〉E,F | : ϕ ∈ L } ≤ 1

}

denotes the polar of L in E and 〈·, ·〉E,F is given by the duality between E and F . Then
the assertion follows from the fact that L◦ is an open neighborhood of 0 in E and so L◦∩X
is a 0-neighborhood in X.

Let (Wm)m∈N be a decreasing 0-neighborhood base in F with F = W0. We define

Km := Wm
◦ ∩X ⊂ X.

We show that there exists a sequence of finite sets Am ⊂ Wm such that with the union
Bm := A0 ∪ · · · ∪ Am we have

Bm
◦ ∩Km+1 ⊂ U. (A.1.1)
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To prove (A.1.1) notice first that the sets Km are compact in X and hence E induces
on each Km the weak topology σ(E,F ) (cf. Proposition 32.7 and 32.8 in [137] ). Since the
set U ∩K1 is a 0-neighborhood in K1 by assumption we can find a finite set A0 ⊂ F = W0

such that
A0
◦ ∩K1 ⊂ U ∩K1 ⊂ U.

Suppose that we have already found finite sets Aj ⊂ Wj for j = 0, · · · ,m such that
(A.1.1) holds and assume that

∅ 6= (Bm ∪ P )◦ ∩Km+2 6⊂ U

for any finite set P ⊂ Wm+1. Let K be the complement of U ∩Km+2 in Km+2, then K is
a compact subset of Km+2. For each finite set P ⊂ Wm+1 the set

(Bm ∪ P )◦ ∩K = Bm
◦ ∩ P ◦ ∩K (A.1.2)

is a non-void closed subset of K and so compact itself. If P is a finite family of finite
subsets P ⊂ Wm+1 then it follows from

⋂

P∈P

{Bm
◦ ∩ P ◦ ∩K } = B◦m ∩

[
∪
{
P : P ∈ P

} ]◦
∩K 6= ∅

that the sets in (A.1.2) have the finite intersection property, and therefore by compactness

B◦m ∩W ◦
m+1 ∩K =

⋂{
Bm
◦ ∩ P ◦ ∩K : P ⊂ Wm+1, P finite

}
6= ∅.

Because of K ⊂ X this leads to Bm
◦ ∩ Km+1 = Bm

◦ ∩Wm+1
◦ ∩ X 6⊂ U which is a

contradiction to (A.1.1). Now, we define

B :=
⋃

m

Am =
⋃

m

Bm ⊂ F.

Since by our choice Am ⊂ Wm for every m ∈ N and because each Am is finite, we
conclude that B is the range of a null sequence in F . Let L := B ∪ {0}, then L is a
compact subset of F and according to (A.1.1)

L◦ ∩Km+1 ⊂ Bm
◦ ∩Km+1 ⊂ U

for every m ∈ N. Since X =
⋂
mKm we conclude that L◦ ∩X ⊂ U . �

Corollary A.1.2 Let E be a DFC-space. Then each open subset of E is a k-space.

Proof Let V ⊂ E be open. Consider f : V → Y into a topological space Y such that
the restriction of f to each compact subset K of V is continuous. By Theorem A.1.1 and
Lemma A.1.1 the restriction of f to each subset X of V , which is closed in E, is continuous.
Since each point of V admits a neighborhood base formed by closed sets the mapping f is
continuous. Again, using Lemma A.1.1 we conclude that V is a k-space. �

Let F be a nuclear Frèchet space, then the bounded subsets of F are relative compact
and so F ′ equipped with the compact-open topology is a DFC-space. From Theorem A.1.1
and Lemma A.1.1 we immediately obtain:
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Corollary A.1.3 Let E be a DFN -space then both, the closed and the open subsets of E
are k-spaces.

Definition A.1.2 An open set U in a locally convex space X is said to be uniformly open
if there exists a continuous semi-norm p on X such that U is open in the semi-normed
space (X, p ).

Using these topological results on DFN -spaces we can now prove

Theorem A.1.2 Let E be a DFN -space, then every open set in E is uniformly open.

Proof Let U ⊂ E be an open subset. For each x ∈ U we can choose a continuous
semi-norm px on E such that x+Bpx

(1) ⊂ U where

Bpx
(1) :=

{
y ∈ E : px(y) < 1

}

is the open unit ball with respect to px. According to Corollary A.1.1 the set U is Lindelöf
and so there exists a sequence (xn)n∈N ⊂ U such that

U =
⋃

n∈N

{
xn +Bpxn

(1)
}
.

The space U is hemi-compact by Lemma A.1.2 and so there is an increasing fundamental
system (Kn)n of compact sets in U . For n ∈ N choose λn > 0 with Kn ⊂ λnBpxn

(1) and let
us define V :=

⋂
n∈N

λnBpxn
(1). If B ⊂ E is a bounded set, then B is relatively compact

in E and there is n0 ∈ N with

B ⊂ Kn ⊂ λnBpxn
(1) for all n ≥ n0.

Hence V absorbs all bounded subsets of E and because E is bornological it follows that
V is a neighborhood of zero. If we denote by p the Minkowsky functional defined by V we
have pxn

≤ λnp or equivalently Bp(1) ⊂ λnBpxn
(1) for all n ∈ N. Therefore U is an open

set in ( E, p ). �

A.2 DFN -spaces of holomorphic functions

In chapter 5 we have given several examples of DFN -spaces. Here we want to de-
scribe a class of such spaces consisting of holomorphic functions on open subsets of Cn.
More precisely, we define an inductive nuclear spectrum of Hilbert spaces which is contin-
uously embedded into a Bergman space. Moreover, we show that each DFN -space can be
embedded continuously and dense into a suitable Hilbert space.

Let m ∈ N and Ω∞ ⊂ Cm be an open set. Fix a fundamental sequence (Ωn)n∈N of
bounded and open subsets of Ω∞ satisfying the conditions:

Ωn ⊂ Ωn+1 and Ω∞ =
⋃

n∈N

Ωn ( n ∈ N ).
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Let us consider the Bergman spaces of holomorphic functions on Ωn defined by:

H2
(

Ωn, v
)

:= H
(

Ωn

)
∩ L2

(
Ωn, v

)

with respect to the usual Lebesgue measure v and the space H(Ωn) of all holomorphic
functions on Ωn. For j < n we can extend the functions in H2(Ωj, v) to Ωn \Ωj by 0. Then
we obtain canonical isometric embeddings:

Ij,n : H2 ( Ωj, v ) →֒ L2 ( Ωn, v ) for all j ≤ n.

Let us write In := In,∞ for n ∈ N. The Bergman spaces H2( Ω, v ) are closed subspaces
of L2( Ωn, v ) and we denote by

Pn : L2( Ωn, v ) → H2( Ωn, v ) and P := P∞

the orthogonal projections. By 〈·, ·〉Ωj
for j ∈ N ∪ {∞} we indicate the L2( Ωj, v )-inner

product. The range

Hn := P ◦ In
[
H2 ( Ωn, v )

]
⊂ H2 ( Ω∞, v )

is a space of holomorphic functions on Ω∞ for all n ∈ N. It is a well-known fact that each
of the Bergman spaces H2( Ωn, v ) is a reproducing kernel Hilbert-space. Denote by

Kn : Ωn × Ωn → C

for n ∈ N ∪ {∞} the corresponding Bergman kernel. As an easy observation we prove:

Lemma A.2.1 Fix a number n ∈ N and (u, v) ∈ Ωn × Ω∞. Then for all k > n we have
the identity P ◦ In [Kn( ·, u ) ] (v) = P ◦ Ik [Kk(·, u ) ] (v).

Proof With z ∈ Ω∞ we obtain by the reproducing property of Kn:

〈
K∞(·, z), P ◦ In [Kn(·, u) ]

〉
Ω∞

=
〈
K∞(·, z), Kn(·, u)

〉
Ωn

= K∞( u, z ). (A.2.1)

Equation (A.2.1) is independent of n ∈ N and so we conclude that

K∞(·, z) ⊥ P
[
InKn(·, u ) − Ik Kk(·, u )

]

for all z ∈ Ω∞. From the fact that the linear hull span{K∞(·, z) : z ∈ Ω∞ } is dense in the
Bergman space H2( Ω∞, v ) the assertion follows. �

For all numbers n, j ∈ N ∪ {∞} with j ≤ n we consider the restriction map:

Rn,j : H2 ( Ωn, v ) −→ H2 ( Ωj, v ) : f 7→ f|Ωj
,
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and we define Rj := R∞,j. Fix a point z ∈ Ωn and f ∈ H2( Ωj, v ), then we compute for
the adjoint operator R∗n,j:

[
R∗n,jf

]
(z) =

〈
R∗n,jf,Kn(·, z )

〉
Ωn

=
〈
f,Rn,j Kn(·, z )

〉
Ωj

=
〈
Ij,nf,Kn(·, z )

〉
Ωn

= [ Pn ◦ Ij,nf ] (z).

Hence we find the identities R∗n,j = Pn ◦ Ij,n and R∗k = P ◦ Ik for all k ∈ N.

Lemma A.2.2 Assume that the range ran(Rj) is dense in H2(Ωj, v ) for all j ∈ N. Then
the operator P ◦ In : H2( Ωn, v ) → Hn := ran( P ◦ In ) is an isomorphism.

Proof We only have to prove that P ◦ In is injective. This follows from the computation
above with P ◦ In = R∗n and the fact that Rn has dense range in H2(Ωn, v) which implies
that it adjoint map is injective. �

In the following we assume that Rn have dense range in H2(Ωn, v) for all n ∈ N in order
to apply Lemma A.2.2. This assumption is not too restrictive, in particular it holds if the
holomorphic polynomials are dense in H2(Ωj, v) for all j ∈ N.

Via the isomorphism P ◦ In in Lemma A.2.2 we can consider the topology on the space
Hn := ran( P ◦ In ) induced by H2( Ωn, v ). Then obviously Hn becomes a Hilbert space
for each n ∈ N with the inner-product given by:

〈·, ·〉n :=
〈

[ P ◦ In ]−1 ·, [ P ◦ In ]−1 ·
〉

Ωn

.

Lemma A.2.3 For j ∈ N∪{∞} and n ≥ j the inclusions Jj,n : Hj →֒ Hn are well-defined
and continuous with ‖ Jj,n ‖ ≤ 1.

Proof Let n ∈ N and j ≤ n, then by the computation above we have the equalities:

P ◦ Ij = R∗j =
[
Rn,j ◦Rn

]∗
= R∗n ◦R∗n,j = P ◦ In ◦ Pn ◦ Ij,n. (A.2.2)

Let f = P ◦ Ij g ∈ Hj with g ∈ H2( Ωj, v ) and define

h := Pn ◦ Ij,n g ∈ H2 ( Ωn, v ) .

By equation (A.2.2) it follows that f = P ◦ In h ∈ Hn and so the embedding Hj →֒ Hn

is well-defined. The continuity follows from:

‖ Jj,nf ‖
n

= ‖ f ‖n = ‖ h ‖Ωn
≤ ‖ Ij,ng ‖Ωn

= ‖ g ‖Ωj
= ‖ f ‖j

which in addition implies that ‖ Jj,n ‖ ≤ 1. �
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From the construction above we obtain a continuous spectrum of Hilbert spaces of
holomorphic functions on Ω∞.

H0
J0,1−−−→ H1

J1,2−−−→ · · · −−−→ Hj

Ij−−−→ H2 ( Ω∞, v ) . (A.2.3)

We show that (A.2.3) is nuclear and so equipped with the inductive topology we obtain
a DFN -space

E :=
⋃

n∈N

Hn ⊂ H2 ( Ω∞, v )

of square-integrable holomorphic functions on Ω∞.

Lemma A.2.4 The spectrum (A.2.3) is nuclear, i.e. the embeddings Jj,n : Hj → Hn are
of Hilbert-Schmidt type for all n ∈ N and j < n.

Proof Fix n ∈ N, then according to equation (A.2.2) we have the following commutative
diagram:

H2 ( Ωn, v )
Pn+1In,n+1−−−−−−→ H2 ( Ωn+1, v )

PIn

y PIn+1

y

Hn

Jn,n+1−−−−→ Hn+1.

From the fact that all the maps P ◦Ij from H2(Ωj, v ) to Hj are isometric isomorphisms
it is sufficient to prove that Pn+1 ◦ In,n+1 = R∗n+1,n is of Hilbert-Schmidt type. This again
holds iff Rn+1,n is Hilbert-Schmidt. Let [ ej : j ∈ N ] be an orthonormal basis in the space
H2( Ωn+1, v ), then it is well-known that

Kn+1( z, w ) =
∑

j∈N

ej( z ) · ej( w ), (z, w) ∈ Ωn+1 × Ωn+1.

Moreover, the map Ωn+1 ∋ z 7→ Kn+1(z, z) =: ω(z) ∈ R+ is continuous by Lemma
6.1.2. From the theorem of monotone convergence we find that:

‖Rn+1,n ‖HS =
∑

j∈N

∫

Ωn

|Rn+1,nej |2 dv

=

∫

Ωn

∑

j∈N

|Rn+1,nej |2 dv =

∫

Ωn

ω dv <∞.

Here ‖ · ‖HS denotes the Hilbert-Schmidt norm. For the existence of the last integral
we have used the compactness of Ωn ⊂ Cn and the continuity of ω on Ωn. �

We have constructed a countable nuclear inductive spectrum of Hilbert space embed-
dings which is contained in a Bergman space of holomorphic functions on an open set
Ω∞ in Cn. Let us show that each spectrum of this type can densely and continuously be
embedded into a suitable separable complex Hilbert space.
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Let E be a DFN -space. According to Lemma 5.3.2 and Remark 5.3.2 E can be repre-
sented as a nuclear inductive spectrum {Hn, πn}n∈N0 of separable complex Hilbert spaces
Hn with norms ‖ · ‖n in the category of locally convex spaces and continuous mappings.
In addition, all the maps πn,n+1 : Hn →֒ Hn+1 are dense and nuclear embeddings with
‖ πn,n+1 ‖ < 1 for all n ∈ N0. Without loss of generality we can assume that each πn,n+1

factorizes into two nuclear embeddings. According to Lemma 5.4.1 and Remark 5.4.1 there

is a sequence (Bn)n∈N of positive nuclear operators with Bn ∈ L(Hn) and tr(B
1
2
n ) <∞ such

that Hn−1 ⊂ B
1
2
nHn for all n ∈ N. Moreover, all the embeddings

in−1 : Hn−1 →֒
(
B

1
2
nHn,

∥∥B−
1
2

n ·
∥∥
n

)

are continuous with ‖ in−1 ‖ ≤ tr(Bn). Let νn, n ∈ N be the normed Gaussian measure on
Hn with correlation operator Bn. With the embedding

πn : Hn →֒
⋃

n∈N

Hn = E =
→

lim
n→∞

Hn

and any sequence (γn)n∈N ∈ l1(N,N+) we can consider the finite Borel-measure ν on E
defined on the Borel σ-algebra B(E) of E by

ν(A) :=
∑

n∈N

γn · νn
(
π−1
n (A)

)
, for all A ∈ B(E). (A.2.4)

By our computations in Example 6.2.1 it follows that there is a canonical isometry of
Hn into L2(Hn, νn) given by:

Hn ∋ z 7→
〈
B
− 1

2
n ·, z

〉
n

=: Gz,n ∈ L2 (Hn, νn ) .

In general, by standard calculations (cf. [48]) all the powers Gk
z,n where k ∈ N0 are

νn-integrable and they are mutual orthogonal in L2(Hn, νn ) with:
∥∥Gk

z,n

∥∥
L2(Hn,νn)

=
√
k! · ‖ z ‖kn.

Hence for any fixed z ∈ Hn−1 ⊂ B
1
2Hn we can define a map Φz,n : R → L2(Hn, νn ) by:

Φz,n(t) :=
∞∑

k=0

tk

k!
·Gk

y,n = exp ( t ·Gy,n ) , with y := B
− 1

2
n z ∈ Hn. (A.2.5)

where due to the orthogonality of the powers Gk
y,n and equation (A.2.5) the series is con-

vergent in L2(Hn, νn ) with

‖ Φz,n(t) ‖2
L2(Hn,νn) = exp

(
t2 · ‖ y ‖2

n

)

for all t ∈ R. Moreover, it can be shown that Φz,n(t) has the reproducing property:

f( t · z ) =
〈
f,Φz,n(t)

〉
L2(Hn,νn)

for all f ∈ H (Hn ) ∩ L2 (Hn, νn ) . (A.2.6)

It directly follows from (A.2.5) that:
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Lemma A.2.5 Let n ∈ N and y = B
− 1

2
n z ∈ Hn where z ∈ Hn−1. Then the mapping Φz,n

is differentiable in t0 = 0 with Φ′z,n(0) = Gy,n ∈ L2(Hn, νn ).

Now, using the Toeplitz projection we construct a complex Hilbert space HE together
with a continuous embedding E →֒ HE. The topology on HE is induced by the Bergman
metric on E. Via restriction to E the space of holomorphic polynomials on HE will be
contained in H2( U, ν ) for all open subsets U ⊂ E. Let

P : L2( E, ν ) → H2( E, ν ) := H( E ) ∩ L2( E, ν )

be the orthogonal projection onto the Bergman space. For each n ∈ N we define a sesquilin-
ear form βn : Hn ×Hn → C by:

βn( w, z ) := γ−2
n+1 ·

〈
P Gy,n+1, P Gv,n+1

〉
L2( E,ν )

.

where y := B
− 1

2
n+1z and v := B

− 1
2

n+1w. Here we extend both function Gy,n+1 and Gv,n+1 from
Hn+1 to E by zero.

Lemma A.2.6 Let n ∈ N and fix (z, w) ∈ Hn ×Hn. Then βn is continuous and βm(w, z)
is independent of m ≥ n. Moreover, if E ′ ∩H2(E, ν ) separates the points of E then βn is
positive definite.

Proof The continuity of βn in each component directly follows from the continuity of the

operators P , the correlation B
− 1

2
n+1 : Hn → Hn+1 and the map

Hn+1 ∋ y 7→ Gy,n+1 ∈ L2 (Hn+1, νn+1 ) →֒ L2( E, ν ).

With z, w ∈ Hn let us define y := B
− 1

2
n+1z and v := B

− 1
2

n+1w . Then we have v, y ∈ Hn+1

and according to Lemma A.2.5 it follows for t ∈ R and the L2(E, ν)-inner product 〈·, ·〉
that:

βn(w, z) = γ−2
n+1

〈
P Φ′z,n+1(0), P Φ′w,n+1(0)

〉

=
∂2

∂t ∂s

〈
γ−1
n+1P Φz,n+1(t), γ

−1
n+1P Φw,n+1(s)

〉
|s=t=0

.

Note that for t ∈ R the functions Φz,n+1(t) coincides with kn+1(·, tz) for U = E where
kn+1 was defined in Example 6.4.1. Hence with the Bergman kernel KE : E×E → C of E
we conclude from Lemma 6.4.2 that:

βn(w, z) =
∂2

∂t ∂s
KE( sw, tz )|t=s=0 .

In particular, βn(w, z) is independent of m ≥ n. Assume that E ′ ∩H2(E, ν ) separates
the points of E and there is 0 6= z0 ∈ Hn such that βn(z0, z0) = 0. Choose a continuous
functional

ϕ ∈ E ′ ∩H2( E, ν ) with ϕ(z0) 6= 0.
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Because the restriction of ϕ to Hn+1 is contained in H2(Hn+1, νn+1 ) we have by (A.2.6)

and with y0 := B
− 1

2
n+1z0 ∈ Hn+1:

0 6= | ϕ(z0) | =
∣∣∣ 〈 ϕ,Φz0, n+1(1) 〉

L2
n+1

∣∣∣

=
∣∣∣ 〈 ϕ,Gy0,n+1 〉L2

n+1

∣∣∣

= γ−1
n+1 ·

∣∣∣ 〈 ϕ, P Gy0,n+1 〉
∣∣∣

≤ γ−1
n+1 · ‖ ϕ ‖ · ‖ P Gy0,n+1 ‖ = ‖ϕ‖ · β

1
2
n (z0, z0) = 0.

By this contradiction we necessarily have βn(z0, z0) > 0 and so the form βn is positive
definite. �

Example A.2.1 We show that the sequence (γn)n ∈ l1(N,N+) can be chosen such that
with the corresponding measure ν in (A.2.4) the space E ′ ∩H2(E, ν) separates the points
of E.

Because E \ {0} is hemi-compact by Lemma A.1.2 there is an increasing sequence
(Kn)n∈N ⊂ E \ {0} of compact subsets such that

E \ {0} =
⋃

n∈N

Kn.

Due to the compactness of Kn there are finitely many points x
(n)
1 , · · · , x(n)

mn ∈ Kn and

corresponding functionals ϕ
(n)
1 , · · · , ϕ(n)

mn ∈ E ′ such that ϕ
(n)
j (x

(n)
j ) = 1 for all j = 1, · · · ,mn

and

Kn ⊂
mn⋃

j=1

{
x ∈ E : | ϕ(n)

j (x) | > 1

2

}
.

Let ϕ ∈ E ′ and ν be the finite measure defined in (A.2.4). Then for each n ∈ N there is
a constant cn > 0 such that |ϕ(x) | ≤ cn · ‖ x ‖n for all x ∈ Hn. We obtain for the L2-norm
of ϕ: ∫

E

| ϕ |2 dν ≤
∑

n∈N

γn · c2n
∫

Hn

‖ · ‖2
n dνn =

∑

n∈N

γn · c2n · tr (Bn )

where the right hand side of this inequality is finite for a suitable choice of the sequence
(γn) ∈ l1(N,N+). Hence let (γ

(n)
j )j∈N ⊂ l1(N,N+) be with

{
ϕ

(n)
1 , · · · , ϕ(n)

mn

}
⊂ H2

(
E, ν(n)

)

where we denote by ν(n) the measure in (A.2.4) defined by (γ
(n)
j )j. Without loss of generality

we can assume that

γ
(n)
j ≥ γ

(n)
j+1 and γ

(n)
j ≥ γ

(n+1)
j , ∀ ( n, j ) ∈ N2.
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Finally consider the diagonal sequence γj := γ
(j)
j . Then (γj)j∈N ∈ l1(N,N+) and the

inclusion ⋃

n∈N

{
ϕ

(n)
1 , · · · , ϕ(n)

mn

}
⊂ H2( E, ν )

holds where ν denotes the measure corresponding to (γj)j. Moreover, this set of continuous
functionals separates the points of E.

Definition A.2.1 We assume that E ′ ∩H2(E, ν ) separates the points of E. Further, let
the map β : E × E → C be given by

β( w, z ) := βn( w, z ) for ( w, z ) ∈ Hn ×Hn.

Then from Lemma A.2.6 we conclude that β is a well-defined positive sesquilinear form
on E. Let us denote by (HE, β ) the Hilbert space completion of ( E, β ).

For all n ∈ N and each w ∈ Hn we have with our notations above:

β( w,w )
1
2 = γ−1

n+1 · ‖ P Gy,n+1 ‖ (A.2.7)

≤ γ
− 1

2
n+1 · ‖Gy,n+1 ‖L2

n+1

= γ
− 1

2
n+1 · ‖ y ‖n+1 = γ

− 1
2

n+1 · tr (Bn+1) · ‖ w ‖n

where y := B
− 1

2
n+1w ∈ Hn+1. Now, this proves that E can be considered as a subspace of

the Hilbert space HE:

Corollary A.2.1 For all n ∈ N the embeddings in : Hn →֒ HE are continuous and hence
nuclear. In particular, the inclusion E →֒ HE is continuous and dense.

Denote by P [ β(·, w) : w ∈ E ] the space of all holomorphic polynomials on E in with
”variables” β(·, w) for w ∈ E. It is well-known (cf. [48]) that all powers ‖ · ‖kn with k ∈ N
are integrable over Hn with respect to the Gaussian measure νn. In the following Lemma
let H2(Hn, νn ) be the closure of all holomorphic and νn-square integrable functions over
Hn in L2( Hn, νn ). From the Cauchy-Schwartz inequality and (A.2.7) it follows that by
restriction from E to Hn we can consider P [β(·, w) : w ∈ E ] as a subspace of H2(Hn, νn ).

Lemma A.2.7 The restriction map R : P [ β(·, w) : w ∈ E ] → H2( Hn, νn ) is dense for
all numbers n ∈ N.

Proof Because for each n ∈ N the inclusion jn : Hn →֒ HE is nuclear, there are orthonor-
mal bases [ ej : j ∈ N ] of Hn and [ dl : l ∈ N ] ⊂ E of HE and (λj)j ∈ l1(N) with λj 6= 0
such that:

jn(z) =
∞∑

l=1

λl · 〈z, el〉n dl and so β(z, di) = λi〈z, ei〉n (A.2.8)

for all z ∈ Hn and i ∈ N. It is known (cf. [48]) that the polynomials P [ 〈·, ej〉n : j ∈ N ] in
the infinitely many variables 〈·, ej〉n form a dense subspace in H2(Hn, νn ). From (A.2.8)
we conclude that P [ 〈·, ej〉n : j ∈ N ] ⊂ P [ β(·, w) : w ∈ E ] and the assertion follows. �
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A.3 Holomorphy on topological spaces

For the convenience of the reader we want to give some result on holomorphic functions
on topological spaces which we use throughout this thesis. We are following closely [51].

We define G-holomorphic functions on so-called finitely open subsets of a vector space
X over C into a locally convex space. This approach only uses the locally convex topology
of uniform convergence over finite dimensional compact subsets of U and it enjoys great
generality. However, the definition of holomorphic or F-holomorphic functions also involves
the given locally convex topology on the domain space.

Definition A.3.1 A subset U of a complex linear space X is said to be finitely open if
the section U ∩ F ⊂ L is open in the Euclidean topology of L for each finite dimensional
subspace L of X.

Using the notion of finitely open sets we now can define the space of G-holomorphic
functions on U . ( cf. [51], pp. 144 )

Definition A.3.2 Let X be a complex linear space, U a finitely open subset of X and F
a locally convex space. A function f : U ⊂ X → F is called G- holomorphic if for each
ξ ∈ U , η ∈ X and Φ ∈ F ′ the C-valued function of one complex variable

C ⊃ V ∋ λ 7→ Φ ◦ f
(
ξ + λη

)
∈ C

is holomorphic on some neighborhood V of 0 in C. We let HG( U, F ) denote the set of all
G-holomorphic functions from U into F . In the case F = C we simply write HG( U ) in
place of HG( U, F ).

Some important results on G-holomorphic functions can be found in [51]. In this thesis
we mostly deal with holomorphic functions on vector spaces equipped with a locally convex
topology. Then we use the notion of a holomorphic function or F-holomorphic function in
the following sense:

Definition A.3.3 If X and F are locally convex spaces over C and U is an open subset of
X, then f : U → F is holomorphic or F-holomorphic if f ∈ HG(U, F ) and f is continuous.
We let H(U, F ) denote the set of all holomorphic mappings from U into F and write H(U )
in place of H( U,C ).

Denote by Pa( X,F ) (resp. P(n)
a ( X,F )) the vector space of all polynomials (resp.

n-homogeneous polynomials) from X into F and let P(X,F ) (resp. P(n)(X,F )) be the
space of all continuous polynomials (resp. n-homogeneous continuous polynomials). Then
it is shown in [51] that each G-holomorphic function can be expanded into a power series.

Note that in our definitions above we do not make assumption on the completeness of
the topological spaces. However, in the following theorem we denote by F̃ the completion
of a locally convex space F .
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Theorem A.3.1 ( [51] ) Let X be a complex linear space and F denotes a locally convex
space over C. With a finitely open subset U ⊂ X and ξ ∈ U define

Bξ :=
{
z ∈ X : ξ + λz ∈ U : | λ | ≤ 1

}
.

If f : U → F , then f ∈ HG( U, F ) if and only if for every ξ ∈ U there exists a unique

sequence of homogeneous polynomials, ( Pn,ξ,f )n∈N such that Pn,ξ,f ∈ P(n)
a (X, F̃ ) and

f( ξ + z ) =
∞∑

n=0

Pn,ξ,f ( z ), where Pn,ξ,f (z) =
1

2πi

∫

| λ |=1

f( ξ + λz )

λn+1
dλ. (A.3.1)

for all z ∈ Bξ and all n ∈ N. Moreover, if W is a balanced subset of X and rW ⊂ Bξ for
r > 0, then

‖ Pn,ξ,f ‖β,W ≤ 1

rn
‖ f ‖β,ξ+rW

for all continuous semi-norms β on F and with ‖ f ‖β,W := sup{ β ◦ f(z) : z ∈ W }.

For f ∈ H(U, F ) the polynomials Pn,ξ,f in Theorem A.3.1 can be chosen to be continuous
and the power series in (A.3.1) converges uniformly on a suitable neighborhood of ξ. If
in addition F is a normed space, then the continuity of a function f ∈ HG( U, F ) follows
from a condition which seems to be weaker:

Theorem A.3.2 ([51]) If U is an open subset of a locally convex space E and F is a
normed linear space, then f ∈ HG(U, F ) is holomorphic iff it is locally bounded.

Under additional conditions on X and F the next theorem, which can be found as
example 3.8, (a) and (b) in [51] shows that the continuity of a function f ∈ HG(U, F )
where U ⊂ X follows from apparently rather weak assumptions

Lemma A.3.1 Let X and F be Banach spaces and U be a connected open subset of X.
Assume that f ∈ HG( U, F ), then f ∈ H(U, F ) if one of the following conditions holds

(i) There is ξ ∈ U such that the n-homogeneous polynomials Pn,ξ,f in the power series
expansion of f in Theorem A.3.1 are continuous on X.

(ii) f is continuous at a single point in U .

Let E be the inductive limit of Banach spaces in the category of topological spaces and
continuous mappings (such spaces are called super inductive). Let U ⊂ E be a connected
open subset of E, F a Banach space and f ∈ HG(U, F ). Then again the criterion in Lemma
A.3.1 for the continuity of f holds. In particular, Lemma A.3.1 is true for connected open
subsets of DFN -spaces E and Banach spaces F but in this case we even have a stronger
result ( [51], example 3.8.(e)):
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Lemma A.3.2 ([51]) Let E be a DFN -space and F a Banach space. If U ⊂ E is an
open set and f ∈ HG( U, F ), then f is F-holomorphic if it is bounded on compact sets.
Moreover, a collection of holomorphic functions which is uniformly bounded on compact
sets is locally bounded or equi-continuous.

If E is a DFN -space and U ⊂ E an open subset, then denote by τ0 the topology
on H(U, F ) of uniform convergence on all compact subsets of U (compact-open topology).
According to Theorem A.1.2 the space U is uniformly open and so there is a continuous
semi-norm p on E such that U is open in the semi-normed space ( E, p ). Denote by Up
the set U considered as an open subset of ( E, p ).

Corollary A.3.1 Let E be a DFN -space, F a Banach space and assume that U ⊂ E is
an open subset. If F is a τ0-bounded subset in ( H( U, F ), τ0 ), then we can choose the
semi-norm p in such a way that F ⊂ H( Up, F ) is locally bounded.

Proof By Lemma A.3.2 we can choose the sequences (xn)n∈N and (pxn
)n∈N in the proof

of Theorem A.1.2 in such a way that with Vn := Bpxn
(1) it follows

U =
⋃

n∈N

{
xn + Vn

}
and sup

{
‖ f ‖xn+Vn

: f ∈ F
}
<∞, ( n ∈ N )

where we define ‖ f ‖xn+Vn
:= sup{ ‖ f(z) ‖F : z ∈ xn +Vn }. Because for all n ∈ N we have

Bp(1) ⊂ λnVn

it follows that F is a locally bounded subset of H(Up, F ). �

A.4 Heisenberg group and Hardy spaces over the ball

Let D be the open unit disc in C, then by classical analysis D is biholomorphically
equivalent to the upper half-plane H+ := { z ∈ C : Im(z) > 0 }. The real line acts on H+

by translation and it can be identified with the boundary of H+. There is a generalization
of this fact to the case Cn+1 for n ∈ N which we want to describe here. We closely follow
the book of Stein, [134]. Let Bn+1 denote the open unit ball in Cn+1 with respect to the
Euclidean topology. Then the upper half-space H+ ⊂ Cn+1 is given by:

H+ :=
{

( z, zn+1 ) ∈ Cn+1 : z ∈ Cn and Im zn+1 > ‖ z ‖2
}

where we write ‖ · ‖ for the Euclidean norm in Cn. The domains Bn+1 and H+ are biholo-
morphically equivalent under the map F = ( F1, · · · , Fn+1 ) : H+ → Bn+1 with:

Fn+1( z ) =
i− zn+1

i+ zn+1

Fk( z ) =
2izk

i+ zn+1

, k = 1, · · · , n

F−1
n+1( w ) =

i− iwn+1

1 + wn+1

F−1
k ( w ) =

wk
1 + wn+1

, k = 1, · · · , n.

Moreover, it is easy to check that via F the boundary ∂H+ corresponds to the boundary
∂Bn+1 of the complex unit ball except for the south pole ( 0, · · · , 0,−1 ).
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A.5 Symmetries of the ball

By symmetries or automorphisms of a domain Ω in Cn+1 we denote the Lie-group Aut(Ω)
of biholomorphic self-mappings. In the case of the upper half-space Ω = H+ we describe
the subgroups in Aut(H+) of dilation, rotation and translation. Let z ∈ Cn+1, then in the
following we use the notation:

z =
(
z′, zn+1

)
, with z′ :=

(
z1, · · · , zn

)
∈ Cn and zn+1 ∈ C.

For any positive number δ > 0 and a unitary transformation u ∈ L(Cn) it is easy to
see that both maps below are symmetries of Hn+1

+ :

δ [ z ] := δ
[ (

z′, zn+1

) ]
:=
(
δ · z′, δ2 · zn+1

)
,

(
dilation

)
,

U [ z ] := U
[ (

z′, zn+1

) ]
=
(
u( z′ ), zn+1

) (
rotation

)
.

In order to describe the translation we have to introduce the Heisenberg group Hn. As
a set we define:

Hn := Cn × R =
{

[ ζ, t ] : ζ ∈ Cn, t ∈ R
}
.

We endow Hn with the multiplication given for [ ζ, t ], [ η, s ] ∈ Hn by the rule:
[
ζ, t
]
·
[
η, s

]
:=
[
ζ + η, t+ s+ 2 · Im (ζ · η̄)

]

where as usual ζ · η̄ := ζ1 · η̄1 + · · · + ζn · η̄n. Then Hn becomes a group with identity
e := [ 0, 0 ] and inverse [

ζ, t
]−1

=
[
− ζ,−t

]
.

There is a map g : Hn → Aut( H+ ) into the symmetries of the upper half space given
for each [ ζ, t ] ∈ Hn by:

g
[
ζ, t
]

: H+ → H+ :
(
z′, zn+1

)
7→
(
z′ + ζ, zn+1 + t+ 2i z′ · ζ̄ + i‖ ζ ‖2

)
. (A.5.1)

It is easy to check that the automorphisms g [ ζ, t ] are well-defined and they preserve
the boundary ∂H+. Moreover, it holds:

g
{ [

ζ, t
]
·
[
η, s

] }
= g

[
ζ, t
]
◦ g
[
η, s

]
(A.5.2)

and so g is a group homomorphism which is faithful. The action of g is simply transitive
on ∂H+, i.e. for any two points z, y ∈ ∂H+ there exists a unique element [ ζ, t ] ∈ Hn such
that g [ ζ, t ](z) = y. Hence via its action on the origin we can identify the Heisenberg
group with the boundary ∂H+ of the upper half-space by:

G : Hn ∋ [ ζ, t ] 7→
(
ζ, t+ i‖ ζ ‖2

)
= g [ ζ, t ] (0, 0) ∈ ∂H+. (A.5.3)

By this identification and the fact that Hn acts on ∂H+ we obtain an action of Hn on
itself which simply is given by the left translation

Hn ∋ b 7→ a b ∈ Hn.

It can be shown that the left-invariant Haar measure µ on Hn is given by the usual
Lebesgue measure under the identification Hn ∼= R2n+1. Hence µ also is right-invariant.
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A.6 Cauchy-Szegö projection and Hardy spaces

As before we denote by H+ the upper half-space in Cn+1 with boundary ∂H+ which
was identified with the Heisenberg group Hn. By transporting the Haar measure µ on Hn

(which simply is the Lebesgue measure on Cn × R ) to ∂H+ we obtain a measure β on
∂H+. Hence for all p ∈ [ 1,∞ ) we can identify the spaces Lp( Hn ) := Lp( Hn, µ ) and
Lp( ∂H+, β ).

We define the Hardy space of holomorphic functions with square integrable boundary
values as a closed subspace of L2( ∂H+, β ). Let F be a function on H+ and ε > 0, then
with i := ( 0, · · · , 0, i ) ∈ Cn+1

Fε(z) := F
(
z + ε · i

)

is defined in a neighborhood of H+. Denote by H2( H+) the space of all holomorphic
functions F on H+ such that:

‖ F ‖2
H2 : = sup

ε>0

∫

∂H+

| Fε |2 dβ

= sup
ε>0

∫

Cn×R

∣∣ F
(
z′, t+ i

{
ε+ ‖ z′ ‖2

} ) ∣∣2 dz′ dt <∞.

The functions in H2( H+) can be identified with their boundary values. A proof of
Theorem A.6.1 can be found in [134]:

Theorem A.6.1 Let F ∈ H2( H+), then:

(i) There is f ∈ L2( ∂H+, β ) such that limε→0 F ( z + ε · i )|∂H+
= f with respect to the

L2-topology.

(ii) The space of all boundary values f of functions F in (i) is a closed subspace of the
Hilbert space L2( ∂H+, β ). Moreover, ‖ f ‖L2( ∂H+,β ) = ‖ F ‖H2.

For each z ∈ H+ the evaluation δz in the topological dual H2( H+)′ of H2( H+) given
by δz(F ) = F (z) is continuous. There is a unique function

S : H+ ×H+ → C,

the so called Cauchy-Szegö kernel, with the following properties (cf. [134]):

(a) For each w ∈ H+ it holds S(·, w) ∈ H2( H+).

(b) For each pair z, w ∈ H+ the function S is symmetric, i.e. S(z, w) = S(w, z).

(c) The kernel S has the reproducing property: For all z ∈ H+ and F ∈ H2(H+) it holds:

F (z) =

∫

∂H+

F · S( z, ·) dβ

where we have identified F with its boundary values in the sense of Theorem A.6.1.
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For any function F = f ∈ L2( ∂H+, β ) the integral formula in (c) gives the orthogonal
projection onto the Hardy space H2( H+). In the case of the upper half-space we can
calculate the Cauchy-Szegö kernel explicitly. A proof of the next result can be found in
[134].

Proposition A.6.1 With cn := (4 πn+1)−1 n! it holds S(z, w) = cn · [ r(z, w) ]−n−1 where

r(z, w) :=
i

2
·
(
w̄n+1 − zn+1

)
−

n∑

k=1

zk · w̄k

and S is the unique function that enjoys the properties (a), (b) and (c) above.

It is a straightforward computation that the Cauchy-Szegö kernel transforms in the
following way under the following symmetries of H+.

(a) dilation: For δ > 0 we have S( δ ◦ z, δ ◦ w ) = δ−2n−2 · S( z, w ).

(b) rotation: For any unitary rotation u on Cn we have S( u(z), u(w) ) = S( z, w ).

(c) translation: For h ∈ Hn we have S( h(z), h(w) ) = S( z, w ) where we identify Hn

with a group of symmetries in the described way.

As it was mentioned before we can write the orthogonal projection Ps of L2( ∂H+, β )
onto the Hardy space H2( H+) as an integral operator:

[
Psf

]
(z) =

〈
f, S(·, z )

〉
L2(∂H+,β )

= lim
ε→0

∫

∂H+

f S( z + ε · i, · ) dβ (A.6.1)

where the limit exists in the L2( ∂H+, β )-norm. From the identification of Hn and ∂H+

and the fact that β is the transported version of the invariant Haar measure µ = v on Hn

we can rewrite Ps as a (convolution) integral operator on L2(Hn, v ) as follows. We use the
invariance of S under translation by the Heisenberg group and the bijective map

G : Hn → ∂H+ : h 7→ h( 0 )

in (A.5.3). Here we identify Hn with its action on the boundary ∂H+. For any two points
z, w ∈ ∂H+ we can choose g, h ∈ Hn such that w = G(g) = g(0) and z = G(h) = h(0).
Moreover, we have:

g−1
(
z + ε · i

)
= g−1( z ) + ε · i

and so we obtain:

S
(
z + ε · i, w

)
= S

(
h( 0 ) + ε · i, g( 0 )

)
= S

(
g−1h( 0 ) + ε · i, 0

)
.

For h ∈ Hn we define Kε : Hn → C by Kε(h) := S(h(0)+ε ·i, 0). A direct computation
using Proposition A.6.1 leads to

Kε

(
[ ζ, t ]

)
=

c

( t+ i‖ ζ ‖2 + iε )n+1 , where c =
(

2n−1in+1n!
)
π−n−1. (A.6.2)
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A.7 Cauchy-Szegö projection and exotic classes

Let us examine convolution operators on Hn with respect the multiplication on the
Heisenberg group. For y := [ ζ, t ] and x := [ η, s ] ∈ Hn we define:

Θ
(
y−1, x−1

)
= Lx

(
x− y

)
:= y−1 · x

=
[
− ζ,−t

]
·
[
η, s

]
=
[
η − ζ, s− t− 2 · Im(ζ · η̄)

]
(A.7.1)

where the mapping Lx(z) = z + [ 0, 2 · Im(z′ · η̄) ] with z = [ z′, r ] is linear with detLx = 1
and x 7→ Lx(y) varies smoothly. We want to show that a convolution operator T on the
Heisenberg group Hn given by:

[
Tf
]
(x) =

∫

Hn

k
(
y−1 · x

)
· f( y ) dy =

∫

Hn

f
(
x · y−1

)
· k( y ) dy (A.7.2)

=

∫

Hn

f ◦ Θ( x, ·) k dv =:
(
f ∗ k

)
( x )

has a realization as a pseudo-differential operator. Moreover, we can compute its symbol.
In this section we use the following convention for the Fourier transform (which slightly
differs from our formulas in chapter 4). For any f ∈ S( Rn ) and ξ ∈ Rn we write:

[
Ff

]
( ξ ) = f̂( ξ ) :=

∫

Rn

f( x ) e−2πix·ξ dv(x).

Proposition A.7.1 ([117]) Let k ∈ L1( Hn ), then (A.7.2) defines a pseudodifferential
operator with symbol a( x, ξ ) = k̂ ◦ L̃x( ξ ) where L̃x = ( Ltx )−1.

Proof For f ∈ S( Hn ) a change of variables to η = Ltx( ξ ) and the inversion formula for
the Fourier transform imply that:

(
f ∗ k

)
( x ) =

∫

Hn

f( y ) · k ◦ Lx( x− y ) dy

=

∫

Hn

∫

Hn

f( y ) · e2πi Lx( x−y )·ξ · k̂( ξ ) dy dξ

=

∫

Hn

∫

Hn

f( y ) · e2πi ( x−y )·η · k̂ ◦ L̃x( η ) dy dη

=

∫

Hn

k̂ ◦ L̃x( η ) · e2πi x·η · f̂( η ) dη.

Comparing this formula with (A.7.2) implies the assertion. �

For ε > 0 we want to apply this result to the kernels k = Kε defined in (A.6.2). Hence
we have to compute the Fourier transform of Kε. For ε ≥ 0 and ( ξ′, ξ2n+1 ) ∈ Cn × R let
us consider the function

Fε
(
ξ′, ξ2n+1

)
:=

{
exp

(
− π

2 ξ2n+1
· ‖ ξ′ ‖2 − 2 π ε ξ2n+1

)
, ξ2n+1 > 0

0 else.
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Lemma A.7.1 There is a constant c̃ ∈ C such that for ε > 0 and with the kernel Kε in
(A.6.2) it holds Fε = c̃ · K̂ε.

Proof For ε > 0 let us compute the inverse Fourier transform F−1( Fε ) of Fε. Fix an
element z = [ x, t ] ∈ Hn, then

[
F−1Fε

]
( z )

=

∫ ∞

0

∫

Cn

exp
{ −π ‖ ξ′ ‖2

2 ξ2n+1

− 2π
(
ε ξ2n+1 − i Re

(
x · ξ′

)
− it ξ2n+1

) }
dξ′ dξ2n+1

=

∫ ∞

0

exp
{
− 2π ξ2n+1( ε− it )

} ∫

Cn

exp
{
− π ‖ ξ′ ‖2

2 ξ2n+1

+ 2πi Re( x · ξ′ )
}
dξ′ dξ2n+1

Now using the well-known formula where a > 0 :

F−1
(

exp
{
−a ‖ · ‖2

} )
( x ) =

πn

an
exp

{
−π

2

a
‖ x ‖2

}
.

with a := π
2 ξ2n+1

, then it follows that:

[
F−1Fε

]
(z) = 2n

∫ ∞

0

ξn2n+1 exp
{
− ξ2n+12 π

(
‖ x ‖2 + ε− i t

)}
dξ2n+1

=
n!

2πn+1
· 1

( ‖ x ‖2 + ε− i t )n+1 =
c̃

( i‖ x ‖2 + iε+ t )n+1 .

Comparing this with formula (A.6.2) our assertion follows. �

With our notations above and according to [134], p. 540, for f ∈ L2( Hn ) the Toeplitz
projection Ps can be viewed in the sense of a L2( Hn )-limit as:

[ Psf ] ( x ) = lim
ε→0

∫

Hn

Kε

(
y−1 · x

)
f( y ) dy

with Kε as in (A.6.2). Moreover, in the case where ϕ ∈ S( Hn ) and x ∈ Hn we write:

[ Psϕ ] ( x ) = K
[
ϕ ◦ Θ ( x, ·)

]
= lim

ε→0

∫

Hn

Kε( y ) · ϕ ◦ Θ( x, y ) dy.

Hence formally and with respect to the Heisenberg product Ps is given by the convolu-
tion formula Psϕ(x) = ϕ ∗K(x) where K is the distribution

K = lim
ε→0

Kε. (A.7.3)
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Let ϕ ∈ S( Hn ), then we obtain from Lemma A.7.1 that:

K̂( ϕ ) = K
(
ϕ̂
)

= lim
ε→0

Kε

(
ϕ̂
)

= lim
ε→0

K̂ε( ϕ ) = c̃ · lim
ε→0

Fε( ϕ ) = c̃ · F0( ϕ ).

and so for the Cauchy-Szegö kernel K one obtains with a constant c̃ > 0:

K̂ = F0 =

{
c̃ · exp

{
− π

2 ξ2n+1
· ‖ ξ′ ‖2

}
, ξ2n+1 > 0

0 else.
(A.7.4)

Note that for any δ > 0 the kernel K̂ is homogeneous of degree 0 with respect to the
dilations:

δ : Hn → Hn :
[
ξ, ξ2n+1

]
7→
[
δξ, δ2ξ2n+1

]
. (A.7.5)

Moreover, because F0 is a bounded function if follows from (A.6.2) and Proposition
A.7.1 for ϕ ∈ S( Hn ) that

[
Psϕ

]
( x ) = lim

ε→0
ϕ ∗Kε( x ) (A.7.6)

= lim
ε→0

∫

Hn

K̂ε ◦ L̃x( η ) · e2πi x·η ϕ̂( η ) dη

= c̃−1

∫

Hn

F0 ◦ L̃x( η ) · e2πi x·η ϕ̂( η ) dη.

Hence we conclude that the Cauchy-Szegö projection Ps is a pseudo-differential operator
with symbol a( x, η ) = F0 ◦ L̃x( η ) where F0 is homogeneous of degree 0. In the following
section we will show that localized in x the symbol a( x, η ) belongs to the class S0

1
2
, 1
2

(cf.

section 4.1 ).

A.8 On the symbol class S0
ρ

Starting with a pseudo-distance ρ on Hn we describe a related class S0
ρ of symbols on

the space Hn
x × Hn

ξ
∼= R4n+2 which first was introduced by A. Nagel and E. M. Stein (cf.

[117]). For an appropriate choice of ρ the inclusion

S0
ρ ⊂ S0

1
2
, 1
2

holds (cf. Theorem A.8.1) where S0
1
2
, 1
2

denotes the class of exotic symbols of Hörmander

type defined in section 4.1. Let us give the definition of the pseudo-distance ρ on Hn which
we will need for the estimates on the symbols a ∈ Sρ. We identify both spaces Hn = Cn×R
and R2n+1 in the following manner. For ξ = ( ξ1, · · · , ξn, ξ2n+1 ) ∈ Hn we write

ζj := Re
(
ξj
)
, ζj+n := Im

(
ξj
)

and ζ2n+1 = ξ2n+1, ( j = 1, · · · , n ).
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Moreover, with ζ := ( ζ ′, ζ2n+1 ) = ( ζ1, · · · , ζ2n, ζ2n+1 ) ∈ R2n+1 ∼= Hn we define a
pseudo-distance:

ρ0 : Hn × Hn → R+ : ρ0

(
x, ζ

)
= ρ0

(
ζ
)

:=
{ ∥∥ ζ ′

∥∥2
+
∥∥ ζ
∥∥2
} 1

4
. (A.8.1)

where ‖ · ‖ denotes the Euclidean norm in Hn resp in Cn. Hence ρ0 does only depend on
the (cotangent) ζ-space. With our notations in (A.7.1) and Proposition (A.7.1) we define
a x-depended distance function ρ̃ by writing:

ρ̃ : Hn × Hn → R+ : ρ̃
(
x, ζ

)
:= ρ0 ◦ L̃x

(
ζ
)

(A.8.2)

where again we use the described identification of Hn and R2n+1.

Definition A.8.1 ( [117] ) Let ρ be a pseudo-distance as in (A.8.2) or (A.8.1), then we
denote by Ŝmρ the collection of all a(x, ζ ) ∈ C∞(Hn×Hn ) with compact support in x such

that for all λ(1), · · · , λ(l) ∈ Hn it holds:

∣∣∣
(
λ(1), ∂ζ

)
· · ·
(
λ(l), ∂ζ

)
a ( x, ζ )

∣∣∣ ≤ Cl · ρ
(
x, ζ

)m ·
l∏

j=1

θ

{
ρ ( x, λ(j) )

ρ ( x, ζ )

}
(A.8.3)

where θ( t ) = t+ t2 and we denote by ( λj, ∂ζ ) the vector fields
∑2n+1

r=1 λ
(j)
r · ∂ζr . The class

Smρ is the collection of symbols a ∈ Ŝmρ such that

∂xj
a
(
x, ζ

)
=

2n+1∑

k=1

ak
(
x, ζ

)
· ζk + a0

(
x, ζ

)
(A.8.4)

for j = 1, · · · , 2n + 1 where ak ∈ Ŝm−1
ρ and a0 ∈ Ŝmρ . Moreover, we claim that ∂xj

ak and
∂xj

a0 have a decomposition of the form (A.8.4) again. The same has to be true for the
new symbols in this decomposition and so on ad infinitum.

The next theorem is a special case of Proposition 16 in [117]. We assume that ρ = ρ̃ is
the pseudo-distance in (A.8.2).

Theorem A.8.1 ( [117] ) Let a(x, ζ) ∈ S0
ρ , then locally in x the symbol a(x, ζ) is in S0

1
2
, 1
2

.

Proof By definition we have to prove that for any α, β ∈ N2n
0 and a symbol a(x, ζ) in S0

ρ

having compact support in x it holds:

∣∣ ∂αζ ∂βxa( x, ζ )
∣∣ ≤ cα,β

(
1 + ‖ ζ ‖

)− | α |
2

+
| β |
2

From Definition A.8.1 it follows that for β ∈ N2n
0 the derivatives ∂βxa are of the form:

∂βxa
(
x, ζ

)
=

∑

| γ |≤| β |

aγ
(
x, ζ

)
· ζγ
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where aγ ∈ Ŝ−| γ |ρ . Our next aim is to compute the derivatives ∂αζ { aγ( x, ζ ) · ζγ }. They
are made up of terms like

{
∂α1
ζ aγ( x, ζ )

}
·
{
∂α2
ζ ζ

γ
}
, where α1 + α2 = α.

It is easy to verify that ‖ ζ ‖ 1
2 ≤ ρ( x, ζ ) ≤ ‖ ζ ‖ for large ζ. For functions p and q we

write p(x) . q(x) if there is a positive constant c with p(x) ≤ c · q(x). With this notation
we have:

∣∣ ∂α1
ζ aγ( x, ζ )

∣∣ ·
∣∣ ∂α2

ζ ζ
γ
∣∣ . ρ( x, ζ )−| γ |−| α1 |‖ ζ ‖| γ |−| α2 |

.
(

1 + ‖ ζ ‖
)− | γ |

2
−

| α1 |
2

+| γ |−| α2 |
.
(

1 + ‖ ζ ‖
) | β |

2
− | α |

2

where we have used the fact that | γ | ≤ | β |. �

We define the notion of homogeneous distributions. As before δ denotes the dilation
on Hn of homogeneous dimension 2n+ 2 defined in (A.7.5).

Definition A.8.2 A distribution K ∈ S ′( Hn ) is said to be homogeneous of degree λ if it
holds

δ−( 2n+2 ) ·K
(
ϕ ◦ δ−1

)
= δλ ·K( ϕ )

for all test functions ϕ ∈ S( Hn ). Moreover, we call K a C∞-distribution in an open set
Ω ⊂ Hn if there is a function f ∈ C∞( Ω ) such that K( ϕ ) =

∫
f · ϕ for all ϕ ∈ C∞c ( Ω ).

Remark A.8.1 By a straightforward computation it follows that the distribution K in
(A.7.3) is homogeneous of degree λ = −2n− 2. Hence we have:

K
(
ϕ ◦ δ−1

)
= K(ϕ), for ϕ ∈ S

(
Hn
)
.

Because of ϕ̂ ◦ δ−1 = δ2n+2 · ϕ̂ ◦ δ it follows that δ2n+2 · K̂(ϕ ◦ δ) = K̂(ϕ) and so K̂ is
a distribution of degree 0. It can be shown that K is the sum of a function of mean value
zero and a multiple of the delta distribution at the origin (see [117]).

Locally we can write the Cauchy-Szegö projection as an Fourier-integral operator. Let
K be the distribution in (A.7.3) which is C∞ away from the origin. Choose a cut-off
function ψ ∈ C∞c ( Hn ) with ψ ≡ 1 in a neighborhood of 0 and define K0 := K · ψ. We
recall of the definition

Θ
(
y−1, x−1

)
:= Lx

(
x− y

)
= y−1 · x, ( x, y ∈ Hn )

in (A.7.1). With cut-off functions a, b ∈ C∞c ( Hn ) we assume that

a( x ) ·
{
K ◦ Θ( x, y )

}
· b( y ) = a( x ) ·

{
K0 ◦ Θ( x, y )

}
· b( y )
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and we define G := K̂0 ∈ C∞(Hn ) (note that K0 has compact support). From Proposition
A.7.1 and our notations there together with (A.7.6) it follows for the operator Ps:

[
aPsbf

]
( x ) = c̃−1

∫

Hn

a(x)G ◦ L̃x( ξ ) e2πi x·ξ f̂ · b( ξ ) dξ (A.8.5)

= c̃−1

∫

Hn

a( x )G( ξ ) e2πi (x·Lt
xξ) f̂ · b

(
Ltxξ

)
dξ

= c̃−1

∫

Hn

∫

Hn

a( x )G( ξ ) e2πi ( x−y )·Lt
xξ f( y ) b( y ) dy dξ

= c̃−1

∫

Hn

∫

Hn

a( x )G( ξ ) e2πi Lx( x−y )·ξ f( y ) b( y ) dy dξ.

Hence the localized version aPsb of the Cauchy-Szegö projection has the form of a
Fourier-integral operator with symbol ã( x, ξ ) = a( x ) G( ξ ). Using the fact that the
function a(x) ∈ C∞c (Hn ) has compact support the following result directly can be obtained
from Theorem 18 in [117]. The distance function ρ0 appearing in the next theorem was
given in (A.8.1).

Theorem A.8.2 ([117]) If G ∈ S0
ρ0

, then the operator aPsb in (A.8.5) is a pseudodiffer-

ential operator b( x,D ) with symbol b ∈ S0
ρ̃ where ρ̃( x, ξ ) := ρ0 ◦ L̃x(ξ).

Hence we have to show that the function G is in the symbol class S0
ρ0

. Because G and
ρ0 do not depend on the space variable x we only have to prove that for all α ∈ N2n

0 and
k ∈ N0 there is a constant Cα,k > 0 with

∣∣ ∂αζ ∂kξ2n+1
G( ξ )

∣∣ ≤ Cα,k ·
|α|+k∏

j=1

θ
{
ρ0( ξ )−1

}
(A.8.6)

for ξ = ( ζ, ξ2n+1 ) ∈ R2n+1 ∼= Hn and θ( t ) = t+ t2.

Lemma A.8.1 The function G := K̂0 ∈ C∞( Hn ) fulfills (A.8.6) for α ∈ N2n
0 and k ∈ N0.

Proof To estimate G let us fix a test function ϕ ∈ S( Hn ). It follows from integration by
parts that:

K0

(
ϕ
)

=
c

n

∫

R2n+1

1

( ‖ ζ ‖2 − it )n
∂

∂t

[
ψ · ϕ

]
( ζ, t ) dζ dt.

=
c

n

∫

R2n+1

F̃ ( y ) · ϕ( y ) dy +
c

n

∫

R2n+1

ψ( ζ, t )

( ‖ ζ ‖2 − it )n
∂

∂t
ϕ( ζ, t ) dζ dt

where F̃ ( ζ, t ) := ( ‖ ζ ‖2 − it )−n · ∂
∂t
ψ( ζ, t ) is contained in C∞c (Hn). Because the Fourier

transform of the first term is in S( Hn ) it is sufficient to prove the estimates (A.8.6) for
the singular part:

G̃( ξ ) :=
c

n

∫

R2n+1

ψ( ζ, t )

( ‖ ζ ‖2 − it )n
∂

∂t
exp

(
2πi

{
ξ′ · ζ + ξ2n+1 · t

} )
dζ dt
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where ξ = ( ξ′, ξ2n+1 ) ∈ R2n+1 ∼= Hn. With the dilation δ( ξ ) = ( δξ′, δ2t ) we compute the
partial derivatives [

∂αξ′∂
k
ξ2n+1

G̃
]
◦ δ( ξ ) (A.8.7)

for all α ∈ N2n
0 and k ∈ N0. Because the map Hn ∋ (ζ, t ) 7→ (‖ζ ‖2− it )−n is homogeneous

of degree 2n it is easy to verify that:

[
∂αξ′ ∂

k
ξ2n+1

G̃
]
◦ δ( ξ )

= c̃ · δ−|α|−2k−2 ·
∫

R2n+1

ψ ◦ δ−1( ζ, t )

( ‖ ζ ‖2 − it )n
· ζα tk exp

(
− 2πi { ξ′ · ζ + ξ2n+1 · t }

)
dξ′ dt

where c̃ > 0 is independent of δ. From this computation it follows for the asymptotic
behavior of (A.8.7)

[
∂αξ′ ∂

k
ξ2n+1

G̃
]
◦ δ( ξ ) = O

(
δ−| α |−2k−2

)
, as ( δ → ∞ ).

Using the fact that ρ0 ◦ δ( ξ )−1 = O( δ−1 ) as δ → ∞ the right hand side of (A.8.6) is
of order −| α | − k as δ → ∞. Hence we conclude that G ∈ S0

ρ0
. �

Therefore, it follows from Theorem A.8.1 and Theorem A.8.2:

Theorem A.8.3 Let a, b ∈ C∞c ( Hn ), then the localized form aPsb of the Cauchy-Szegö
projection is an pseudo-differential operator with symbol in S0

1
2
, 1
2

.

This result can be generalized to domains in Cn+1 with smooth strictly pseudo-convex
boundary but the details are more technically. The proof can be found in [117], Theorem
20.

Theorem A.8.4 The Cauchy-Szegö projection on a strictly pseudo-convex domain has a
symbol of class S0

1
2
, 1
2

.

Remark A.8.2 In our summary above we were concerned with the case of the Cauchy-
Szegö projection Ps on the unit ball in Cn+1 of complex dimension a least two. In case of
the unit circle

S1 :=
{
z ∈ C : | z | = 1

}

it is well-known that Ps is a pseudo-differential operator of class S0
1,0 (see [103], pp.178).

A.9 Hankel operators and mean oscillation

Let n ∈ N and denote by v the usual Lebesgue measure on Cn ∼= R2n. Then we write
µ for the normalized Gaussian measure on Cn with the density

dµ := π−n · exp
(
− ‖ · ‖2

)
dv.
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The Segal Bargmann space H2 := H2( Cn, µ ) of all µ-square-integrable holomorphic
functions on Cn is a closed subspace in H1 := L2( Cn, µ ). Moreover, all point evaluations
are continuous and so H2 is a reproducing kernel Hilbert space with reproducing kernel K
given by:

K( x, λ ) := exp
(
〈x, λ〉

)
, ( x, λ ∈ Cn ).

Let P be the orthogonal projection (Toeplitz projection) from H1 onto H2 and write
Q := (I − P ). We define a space of symbols:

T ( Cn ) :=
{
g ∈ H1 : g ◦ τx ∈ H1, ∀ x ∈ Cn

}

where τx(z) := z + x denotes the translation by x. (Note that µ is not invariant under
translations!). For any f ∈ T ( Cn ) let Mf be the (in general unbounded) multiplication
by f on H1. Formally:

Mf =

(
Tf H∗

f̄

Hf QMf Q

)
:
H2

⊕
H⊥2

→
H2

⊕
H⊥2

with:

• Tf := P Mf P : H2 → H2, the Toeplitz operator with symbol f .

• Hf := QMf P : H2 → H⊥2 , the Hankel operator with symbol f .

• H∗
f̄

:= P Mf Q : H⊥2 → H2.

Remark A.9.1 The facts (a) and (b) below can be checked easily:

(a) The space T ( Cn ) contains P[ z, z̄ ], the polynomials in the variables z and z̄ on Cn.

(b) For each symbol f ∈ T ( Cn ) and with the subspace D of H2 defined by:

D :=
{
g ∈ H2 : f · g ∈ H1

}

both operators Tf and Hf on D are densely defined (and in general unbounded).

Let us consider the linear and dense subspace M ⊂ H2 with:

M := span
{
K(·, λ ) : λ ∈ Cn

}
⊂ H2.

Let A be a (possibly unbounded) operator on H2 with domain of definition D(A) such
that M ⊂ D(A). Formally, we associate a symbol Ã to A by:

Ã : Cn → C : Ã
(
λ
)

:=
〈
Akλ, kλ

〉
H2

(A.9.1)
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where for z, λ ∈ Cn (see [20] and [19]):

kλ( z ) :=
K(z, λ )

‖K(·, λ) ‖H2

= exp
(
〈 z, λ 〉 − 2−1‖ λ ‖2

)

is the normalized Bergman kernel of H2. The complex valued function Ã is called the
Berezin transform of the operator A. For functions f ∈ T ( Cn ) the Berezin transform of
Tf is well-defined and we shortly write:

f̃ := T̃f : Cn → C. (A.9.2)

By a straightforward calculation it can be shown that f̃ is the solution of the heat
equation on Cn ∼= R2n at time t = 1

4
with initial data f . Moreover, by the analysis in [22]

for any operator A ∈ L(H2 ) it holds in the sense of a Bochner integral:

TÃ =

∫

Cn

WtAW−t dµ(t) (A.9.3)

with the unitary Weyl operators {Wt : t ∈ Cn } of weighted shifts on Cn in Definition
2.1.1. Hence the Toeplitz operator TÃ is some kind of average of A. The formula (A.9.1) is
meaningful for all Bergman spaces and so the Berezin transform can be defined in greater
generality. For some of its basic properties in the case of H2 we refer to our remarks below
Theorem 2.1.2 and [21], [22].

Next we introduce the notion of oscillation and mean oscillation. Consider the spaces:

BC ( Cn ) := bounded continuous functions on Cn,

C0 ( Cn ) := continuous functions on Cn vanishing at ∞.

For f ∈ BC( Cn ) and z ∈ Cn the oscillation is defined to be:

Oscz( f ) := sup
{
| f(z) − f(w) | : ‖ z − w ‖ < 1

}
.

We call a function f of bounded oscillation and we write f ∈ BO( Cn ) if and only if:

[
z 7→ Oscz( f )

]
∈ BC ( Cn ) .

Similar we call f of vanishing oscillation and we write f ∈ VO( Cn ) if and only if:

[
z 7→ Oscz( f )

]
∈ C0 ( Cn ) .

Furthermore, for symbols f such that | f |2 ∈ T ( Cn ) and all z ∈ Cn we define:

MO
(
f, z

)
:= |̃ f |2(z) − | f̃(z) |2 and ‖ f ‖BMO := sup

{
MO

(
f, z

) 1
2 : z ∈ Cn

}
.
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We call f a function of bounded mean oscillation and we write f ∈ BMO( Cn ) if and
only if ‖ f ‖BMO < ∞. Similar, f is said to be of vanishing mean oscillation and in the
following we write f ∈ VMO( Cn ) if and only if

MO( f, ·) ∈ C0 ( Cn ) .

All spaces defined above are linear. The functions in BMO( Cn ) and VMO( Cn ) can
be unbounded.

Example A.9.1 ([12]) Let p ∈ P[ z, z̄ ] ⊂ T ( Cn ) be a non-constant polynomial in z and
z̄ of degree ρ, then MO( p, ·) is a polynomial in P[ z, z̄ ] of maximal degree 2ρ − 2. In
particular, the mean oscillation of any linear polynomial is a constant function. Hence:

{
f ∈ P[ z, z̄ ] : f linear

}
⊂ BMO ( Cn ) .

We want to give sufficient and necessary conditions on symbols f ∈ T (Cn) for Hf and
Hf̄ to be bounded (resp. compact).

Lemma A.9.1 Let g ∈ T ( Cn ) and λ ∈ Cn, then it follows that:

MO
(
g, λ

) 1
2 ≤

√
2 · max

{
‖Hg ‖, ‖Hḡ ‖

}
.

Hence if the Hankel operators Hg and Hḡ are simultaneously bounded on H2, then it
holds that g ∈ BMO( Cn ).

The question arises if g ∈ BMO( Cn ) is sufficient for the boundedness of Hg and Hḡ.
One step toward an answer of this problem is given by the following result:

Proposition A.9.1 Let g ∈ BMO( Cn ) and a, b ∈ Cn, then it follows that:
∣∣ g̃(a) − g̃(b)

∣∣ ≤ 2 · ‖ g ‖BMO‖ a− b ‖.

In particular, we have g̃ ∈ BO( Cn ) and ‖Oscz( g̃ ) ‖∞ ≤ 2 · ‖ g ‖BMO.

Using the observation above we can give a quite useful decomposition of both the spaces
BMO( Cn ) and VMO( Cn ). Let us define:

F : =
{
f ∈ T ( Cn ) : |̃ f |2 ∈ BC ( Cn )

}

I : =
{
f ∈ T ( Cn ) : |̃ f |2 ∈ C0 ( Cn )

}
.

Then for f ∈ BMO(Cn), the trivial identity f = f̃ + (f − f̃) leads to:

BMO ( Cn ) = BO ( Cn ) + F and VMO ( Cn ) = VO ( Cn ) + I.

It can be shown (cf. [12]) that for g ∈ BO(Cn )∪F the Hankel operator Hg is bounded.
Similar for h ∈ VO( Cn ) ∪ I the operator Hh is compact. Hence from the decomposition
above we conclude that:
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Theorem A.9.1 ([12]) For f ∈ T (Cn) the following are equivalent:

(a) Hf and Hf̄ are bounded operators,

(b) The commutator [Mf , P ] = MfP − PMf is bounded on L2( Cn, µ ),

(c) f ∈ BMO( Cn ) = BO( Cn ) + F .

All the quantities ‖ [Mf , P ] ‖, max{ ‖Hf ‖, ‖Hf̄ ‖ } and ‖ f ‖BMO are equivalent. The
corresponding equivalence of (a), (b) and (c) is true if we replace ”bounded” by ”compact”
and the space BMO( Cn ) by VMO( Cn ).

What are the bounded (resp. compact ) Hankel operators with anti-holomorphic resp.
polynomial symbols?

Corollary A.9.1 ([12]) For p ∈ P[ z, z̄ ] and f ∈ T ( Cn ) holomorphic the assertions (a)
and (b) and the assertions (c) and (d) are equivalent:

(a) f is a linear polynomial in z.

(b) The Hankel operator Hf̄ is bounded.

and

(c) p is a linear polynomial in z and z̄.

(d) The Hankel operators Hp and Hp̄ are bounded.

Compact Hankel operator Hf with polynomial or anti-holomorphic symbols f are only
possible in the trivial case Hf = 0.

There are similar results on Hankel operators in the case of bounded symmetric domains
in [16]. In general the oscillation has to be measured with respect to the Bergman metric.
Note the Segal-Bargmann space is flat in the sense that

Bergman metric = Euclidean metric.

Let Ω ⊂ Cn be a bounded symmetric domain (a bounded subset of Cn which contains
0 and is invariant under

z 7→ λz, λ ∈ C, | λ | = 1.)

Then the class of anti-holomorphic functions leading to bounded resp. compact Hankel
operators may be richer. A result analog to Corollary A.9.1 can be found in [16]. With a
holomorphic symbol f the Hankel operator Hf̄ is bounded if an only if f is in the Bloch
space B( Ω ) and Hf̄ is compact if and only if f is in the little Bloch space B0( Ω ). We
recall the definition of B( Ω ) and B0( Ω ). With the Bergman kernel K corresponding to
Ω let us write:

Gz :=
1

2

(
∂2

∂zj∂z̄j
logK( z, z )

)

i,j
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for the Bergman metric. We define the expression:n metric. We define the expression:

Qf ( z ) := sup
{ ∣∣ 〈 ∇zf, x̄ 〉

∣∣ · 〈Gzx, x 〉−
1
2 : 0 6= x

}
.

where ∆z := ( ∂z1 , · · · , ∂zn
). Then the following characterizations hold:

f ∈ B( Ω ) ⇐⇒
∥∥Qf

∥∥
sup

<∞.

f ∈ B0( Ω ) ⇐⇒ lim
z→∂Ω

Qf ( z ) = 0

There are some interesting results on Hankel operators and Schatten-p-classes which
we give next:

For and 1 ≤ p < ∞ the Schatten-p-class Sp consists of operators T with ‖ T ‖p < ∞,
where

‖ T ‖p :=
[

tr
{

(T ∗T )
p
2

} ] 1
p

.

Closely related to the results before it holds in case of the Segal-Bargmann space:

Theorem A.9.2 (J.Xia, D. Zheng, (2001), [145]). Let 1 ≤ p <∞ and f ∈ T ( Cn ), then
(a) and (b) below are equivalent:

(a) Hf and Hf̄ are in Sp simultaneously.

(b) The following integral is finite:
∫

Cn

MO
(
f, ·
) p

2 dµ <∞.

Following [145] we are comparing Theorem A.9.2 to the case of Bergman spaces over
the unit ball:

Bn :=
{
z ∈ Cn : ‖ z ‖ < 1

}
⊂ Cn.

Let f ∈ L2( Bn, v ), then in the case of Bn the mean oscillation MO( f, · ) is given by
the formula:

MO
(
f, z

)
= |̃ f |2(z) − | f̃(z) |2

=

∫

Bn

∣∣ f − f̃(z)
∣∣2 ( 1 − ‖ z ‖2 )

n+1

| 1 − 〈 z, ·〉 |2n+2
dv.

There is a result due to K. Zhu which is analog to Theorem A.9.2 above and actually
was proved earlier.

Theorem A.9.3 (K. Zhu, [148]) For 2 ≤ p < ∞ and f ∈ L2( Bn, v ) the statements (a)
and (b) below are equivalent:
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(a) Hf and Hf̄ are in Sp simultaneously.

(b) The following integral is finite:
∫

Bn

MO
(
f, z

) p
2 · 1
(

1 − ‖ z ‖2
)n+1 dv(z) <∞.

Remark A.9.2 By comparing both Theorems A.9.2 and A.9.3 we find that from the point
of operator theory the Bergman spaces over the ball and the Segal Bargmann space differ
in some points:

• Theorem A.9.2 involves the Möbius invariant measure dγ = (1 − ‖ z ‖2)−(n+1) dv .
The Möbius group corresponds to the group of translations { τx : x ∈ Cn } on Cn.

• Theorem A.9.2 only holds for 2 ≤ p <∞. It was extended by J. Xia to the case:

cn :=
2n

n+ 1
< p < 2.

It is easy to see that for 1 ≤ p ≤ cn condition (b) of Theorem A.9.3 is sufficient but
not necessary for (a) to be true. Because of

lim
n→∞

2n

n+ 1
= 2

Theorem A.9.3 is the best one can say in the case of general dimensions n ∈ N.

If we restrict ourselves to the case of bounded symbols

L∞ ( Cn ) ⊂ T ( Cn ) ,

then for Hankel operators on the Segal-Bargmann space a specific effect arises, which might
be seen as an operator theoretical analogy to Liouville’s Theorem. Namely, that there are
no non-constant bounded entire functions.

Theorem A.9.4 (A. Berger, L.A. Coburn, K. Stroethoff, [22], [135]) For any bounded
symbol f ∈ L∞( Cn ) the Hankel operator Hf is compact if and only if Hf̄ is compact.

There are many other ideals above the compact operators such as the Schatten-p-classes.
The following questions arise:

(a) Does for bounded symbols f and 1 ≤ p <∞ it hold that:

Hf ∈ Sp ⇐⇒ Hf̄ ∈ Sp ?

(b) If (a) holds true, is there any connection between the norms ‖ Hf ‖p and ‖ Hf̄ ‖p?
(maybe ” = ” ?)
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Problem (a) was proved by J. Xia and D. Zheng for the complex plane n = 1 and p = 2
in [145]. A generalization to all dimensions n ∈ N and an answer to (b) for the case p = 2
is given by the author:

Theorem A.9.5 ([11]) The assertion (a) holds for S2 (the Hilbert-Schmidt operators) and
all dimensions n ∈ N. Moreover, for a Hankel operator Hf ∈ S2 with f ∈ L∞( Cn ):

∥∥Hf̄

∥∥
2
≤ 2 ·

∥∥Hf

∥∥
2
. (A.9.4)

Theorem A.9.5 is easy to prove in the case of symbols f ∈ L2(Cn, v) because then the
operators Hf , Tf and Tf̄ are in S2 and T| f |2 is in S1. From

H∗fHf = T| f |2 − Tf̄Tf

it follows that:

∥∥Hf

∥∥
2

= tr
(
H∗fHf

)
= tr

(
T| f |2

)
− tr

(
Tf̄Tf

)
=
∥∥Hf̄

∥∥
2
.

It is easy to see that Theorem A.9.5 fails in the case of unbounded symbols f ∈ T (Cn ).
We do not know if the constant ”2” in the estimate (A.9.4) is sharp. By our knowledge
the case p 6= 2 in (a) above still is an open problem, even for the complex plane.
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[60] K. Floret, J. Wloka, Einführung in die Theorie der lokalkonvexen Räume,
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manifolds in topological algebras of the microlocal analysis, Banach algebras 97:
Proceedings of the 13th international conference on Banach algebras held at the
Heinrich Fabri Institute of the University in Blaubeuren, July 20-August 3, 1997,
de Gruyter, pp. 189-204, (1998).

[67] B. Gramsch, Lifting of idempotent operator functions, Banach algebras 97: Pro-
ceedings of the 13th international conference on Banach algebras held at the Hein-
rich Fabri Institute of the University in Blaubeuren, July 20-August 3, 1997, de
Gruyter, pp. 527-533, (1998)

[68] B. Gramsch, Analytische Bündel mit Fréchet-Faser in der Störungstheorie von
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217-228, (1990).

[94] R. Ji, L.B. Schweitzer, Spectral invariance of smooth crossed products and
rapid decay locally compact groups. K-Theory 10, pp. 283-305, (1996).



250 References

[95] R. Ji, Smooth dense subalgebras of reduced group C∗-algebras, Schwartz cohomol-
ogy of groups and cyclic cohomology, J. Funct. Anal. 107, pp. 1-33, (1992).

[96] J. Jung, Inverse function theorems in Fréchet spaces and applications to deforma-
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Ṙn, 54
f ⋄ g, 100
f (t), 97
kw, 44
mj, 43
Hn, 125
P[Cn], Pa[Cn], 45
∂A(k) , 64
qj, 17
v, 41
zα,β, 89



256 Index

Index

algebra
C∗−, 18, 30, 93, 106

Toeplitz, 87
Ψ∗−, 11, 17, 94, 112, 114, 123
Ψ0−, 17
Banach, 32, 172
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Szegö, 133
Toeplitz, 71

property
weak extension, 164

pseudo-distance, 231

regularity, 28, 94

Schur test, 42, 43, 48, 59
semi-norm

ported, 145
set

Gδ−, 198
finitely open, 223
group invariant, 31
hemi-compact, 147
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