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Zusammenfassung

In dieser Arbeit werden Copolymere, die abwechselnd aus steifen Stäbchen und flex-
iblen Ketten zusammengesetzt sind (Rod-Coil Copolymere), mit Hilfe von Skalen-
betrachtungen und feldtheoretischen Rechnungen untersucht.

Skalenargumente werden verwendet, um Rod-Coil Copolymere mit fester Zusam-
mensetzung von steifen Stäbchen und flexiblen Ketten zu studieren. In einem selek-
tiven Lösungsmittel, in dem sich nur die Ketten lösen, bildet ein Rod-Coil Multiblock
zylinderförmige Micellen aus aggregierten Stäbchen verbunden durch flexible Ket-
tenstücke. Die Stäbchen aggregieren, um Energie zu gewinnen. Dieser Prozeß wird
durch den Entropieverlust der flexiblen Ketten ausgeglichen. Für Einzelmicellen-
Konfigurationen wird die mittlere Anzahl an aggregierten Stäbchen berechnet, für
Multimicellen-Konfigurationen die mittlere Anzahl der Micellen. Die Auffaltung
einer einzelnen Micelle unter dem Einfluß einer externen Kraft wird für den Fall
quasistatischen Ziehens untersucht. Für physikalisch sinnvolle Parameter kann der
Auffaltungsprozeß in einem Schritt geschehen. Die Kraft-Ausdehnungskurve weist
dann ein großes Plateau auf.

Das Adsorptionsverhalten von Aggregaten aus einzelnen Rod-Coil Diblöcken in se-
lektivem Lösungsmittel wird anhand von erweiterten Skalenbetrachtungen disku-
tiert. Es wird angenommen, daß sich die Stäbchen ausschließlich parallel aneinan-
derlagern und somit ein Maximum an Energie gewinnen, wenn sie flüssig-kristalline
Strukturen bilden. Wenn ein solches Aggregat mit den Stäbchen parallel zur Ober-
fläche adsorbiert, verschieben sich die Stäbchen gegeneinander, um es den Ketten zu
ermöglichen Entropie zu gewinnen. Das Profil dieser Verschiebung wird berechnet,
indem die freie Energie des Systems minimiert wird. Zusätzlich werden die Stabilität
der adsorbierten Aggregate und andere an der Oberfläche mögliche Konfigurationen
untersucht.

Um einen Rod-Coil Multiblock mit variabler Zusammensetzung zu studieren, wird
eine Feldtheorie entwickelt. Jedes Segment kann entweder steif oder flexibel sein.
Zwei Felder werden eingeführt, eines für die flexiblen und eines für die steifen Seg-
mente. Um eine variable Zusammensetzung zu ermöglichen, wird das großkano-
nische Ensemble verwendet. Die Theorie wird im Rahmen der selbstkonsistenten
Feld Approximation behandelt. Die Differentialgleichungen, durch die die selbstkon-
sistenten Felder bestimmt werden, werden numerisch mit Hilfe von Finite Elemente
Methoden gelöst. Das System zeigt drei Phasenzustände, offene Kette, amorphe
Globule und flüssig-kristalline Globule. Die flüssig-kristalline Globule bildet sich
ohne eine explizit winkelabhängige Wechselwirkung zwischen den Stäbchen. Beim
Übergang von amorpher zu flüssig-kristalliner Globule steigt der Anteil an steifen
Segmenten rapide an. Es wird gezeigt, daß dieser Übergang durch die isotrope
Zwei-Körper-Wechselwirkung zwischen den steifen Segmenten und die anisotrope
Oberflächenenergie der Globule verursacht wird.





Abstract

In this thesis rod-coil copolymers are theoretically investigated by means of scaling
methods and field theory.

Scaling arguments are used to study rod-coil copolymers with a fixed composition
of stiff rods and flexible chain parts. A rod-coil multiblock immersed in a solvent
selective for the flexible parts forms cylindrical micelles of aggregated rods connected
by flexible chain parts. The rods aggregate in order to lower the energy. This process
is counterbalanced by the loss of entropy of the flexible parts. For single micelle
configurations the average aggregation number of rods is calculated and for multi-
micelle configurations the average number of micelles. The unfolding of a single
micelle under an external force is investigated for the case of quasi static pulling. It
is shown that for physically reasonable parameters the unfolding process is likely to
be a one-step process with one large plateau in the force-extension curve.

The adsorption behaviour of an aggregate of individual rod-coil diblocks in selective
solvent is discussed by means of extended scaling methods. The rods are assumed
to align only parallel to each other, so that they gain a maximum energy by forming
liquid-crystalline structures. It is shown that, if an aggregate of these copolymers
adsorbs with the rods parallel to the surface, the rods shift with respect to each
other to allow the chains to gain entropy. The profile of this shift away from the
surface is calculated by minimisation of the free energy of the system. In addition,
the stability of such an adsorbed aggregate and other possible configurations at the
surface are discussed.

A field theory is constructed to study a rod-coil multiblock with variable compo-
sition. Each segment can adopt one of two states, stiff or flexible. Two fields are
introduced. One is associated with the flexible segments and one with the stiff seg-
ments. To allow for a variable composition a grand canonical ensemble formulation
is used. The theory is treated in the self-consistent field approximation. The dif-
ferential equations which determine the self-consistent fields are solved numerically
with finite element methods. The system shows three different phase states, open
chain, amorphous globule and nematic liquid-crystalline globule. The formation
of the liquid-crystalline globule occurs without an orientation dependent alignment
interaction between the rods. The crossover transition from amorphous to liquid-
crystalline globule coincides with a rapid increase in the fraction of stiff segments. It
is shown that this transition is driven by the isotropic two-body interaction between
stiff segments and the anisotropy of the globule surface energy.
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1. Introduction

Polymers are a very diverse and multi-functional class of materials [1]. Synthetic
polymers are used for many purposes, for instance in cling film, plastic bags and
high performance materials for the clothing industry. It is also possible to design
specific self assembling micro- and nanostructures with polymers. In the future, a
new generation of semiconductor devices of polymeric origin might be formed by
self assembly. An even wider range of polymers can be found in living matter [2],
such as DNA, RNA and proteins.

A Polymer is a chain molecule, characterised by the repetition of small chemical
units (monomers) connected to each other by covalent bonds. In the case of a
homopolymer all these repeat units are the same. Some polyesters are examples of
such polymers. If a polymer consists of chemically different monomers, it is called
a heteropolymer. DNA or proteins are examples of heteropolymers. Apart from
single linear chains there are also topologically more complex variants of polymers
or polymer compounds such as stars, combs, networks or brushes, see Figs.(1.1,1.2)

Figure 1.1: Linear Polymer chain

Different polymers can be dissolved in different solvents. These solvents can vary
in quality [1]. A solvent is referred to as good if the polymer is easily dissolved
in it. This gives rise to effective repulsive interactions between the monomers and
the polymer adapts a very open state of low density. A solvent is referred to as
poor if the polymer does not like to be dissolved in it. This gives rise to effective
attractive interactions between the monomers, and the polymer adapts a globular
state of high density. In between these two solvent conditions is the Θ-regime which
corresponds to a cancellation between steric repulsion and van der Waals attraction
between the monomers. For many polymer-solvent systems the quality of the solvent
is a decreasing function of temperature. These qualitative characterisations will be

7



1. Introduction

a
b

c
d

Figure 1.2: Different polymer topologies: a) star-polymer, b) comb-polymer, c) polymer
network, d) polymer brush

put in a more formal description in Chapter 2. A dense system of polymers in the
absence of solvent can form a bulk liquid state which is referred to as polymer melt.

This work focuses on a special kind of polymers called rod-coil copolymers. Rod-coil
multiblock copolymers are heteropolymers which are composed of multiple alternat-
ing blocks of flexible chains and stiff rods, see Fig.(1.3). In a melt, rod-coil multiblock
copolymers are able to self assemble into supramolecular structures [3–7]. These
structures, assembled by the rod segments in rod-coil systems include, for example
sheets, cylinders, finite nanostructures and even 1,2 or 3 dimensional lattices [7]. To
which structure the system assembles depends on the length and diameter of the

L
d

Figure 1.3: This figure shows a rod-coil multiblock copolymer with rods of length L and
diameter d. The stiff rods are connected by flexible chain parts.
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rods and the length and flexibility of the chains. When dissolved in a selective sol-
vent, usually a solvent which is good for the flexible parts and poor for the stiff parts,
rod-coil multiblocks segregate into distinct microdomains. These microdomains can
also form supramolecular structures [7]. In this case the adopted structures depend
also on the quality of the solvent. Rod-coil copolymers are therefore good candidates
to design self-assembled materials with specific physical properties.

Not only the bulk properties of rod-coil copolymers in the melt or in solution are of
interest, but also the properties of a single rod-coil multiblock copolymer immersed
in a selective solvent. Such a polymer shows a rich phase behaviour. The rods
can aggregate to form highly oriented, liquid-crystalline-like structures. Depending
on the geometric properties of the rods, the length of the flexible chains and the
quality of the solvent, they might form one big cylindrical micelle, several connected
micelles or no aggregates at all. Hence a rod-coil multiblock copolymer can serve
as a model system for many exemplary studies of various physical phenomena with
specific interactions and geometrical or steric restrictions. As will be shown at the
end of Chapters 3 and 8 it might also provide a simple physical explanation for the
formation of helix bundles in certain proteins.

Two different kinds of rod-coil copolymers are considered in this work. Copolymers
with a fixed composition of stiff and flexible parts as shown in Fig.(1.3) and copoly-
mers with a variable composition of stiff and flexible parts. Variable composition
means that each segment can either form a flexible part or a stiff part. The equilib-
rium composition of stiff and flexible parts is determined by the specific structure
formed by the complete polymer. On the other hand, these specific structure is also
influenced by the composition of stiff and flexible parts. This interplay of micro-
scopic (a segment can be either flexible or stiff) and mesoscopic structure gives rise
to a very interesting phase behaviour as will be shown in Chapter 8. Helix-forming
polymers, for instance polypeptides, are polymers which a show a variable composi-
tion of stiff and flexible segments. Each segment of such a polymer can either stay
flexible and disordered or coil up to a helix. These helices are usually very stiff (for
instance due to the formation of hydrogen bonds between their turns, which leads
to a persistent length of lp ∼100 nm [8]) and can therefore be regarded as rods.

Each of the two kinds of rod-coil copolymers is investigated by a different technique.
Thus the thesis can be divided into two parts. The first part includes Chapters 3-5 in
which copolymers of fixed composition are investigated using scaling methods. The
second part includes Chapters 6-8 in which copolymers with variable composition
are investigated by means of a self-consistent field theory.

9



1. Introduction

The detailed outline of the thesis is as follows:

• Chapter 2 gives an introduction to some of the theoretical concepts used to
describe polymers. It starts with the description of an ideal polymer chain
as a random walk. The self avoiding walk of a real chain is briefly discussed.
Scaling methods and in particular the notion of a blob are introduced. Finally,
the force-extension behaviour of a real chain under tension is described.

• In Chapter 3 rod-coil multiblock copolymers of fixed composition are discussed
by means of scaling arguments. The configurations of a single rod-coil copoly-
mer in a selective solvent and their stability are considered in detail. It is
shown, that the copolymer can form stable single and multi-micelle configu-
rations. The equilibrium size and number of these micelles is calculated. The
predicted micelle size is compared to experimental values for helix-bundles in
proteins.

• Chapter 4 describes how a rod-coil multiblock copolymer forming one micelle
unfolds under an external force. This corresponds to a single molecule exper-
iment with an atomic force microscope or an optical tweezer. An example of
a typical force-extension curve is calculated and the influence of finite exten-
sibility of the flexible parts is briefly discussed.

• An excursion to rod-coil diblock copolymers is made in Chapter 5. The ad-
sorbtion behaviour of aggregates of these diblocks at a surface is discussed by
means of an extended scaling theory. The diblocks are assumed to aggregate
with the rods being aligned parallel to each other such that the chains all stick
out to one side. If such an aggregate adsorbs to a surface the rods shift with
respect to other. The explicit form of this shift is calculated. In addition,
other possible configurations close to the surface are discussed.

• The self-consistent field theory for copolymers with variable composition is
derived in Chapter 6. A grand canonical formulation is used to allow for a
variable composition. Two fields are introduced, a position and orientation
dependent one associated with the stiff segments and a position dependent
one associated with the flexible segments. The details of the field theoretical
representation of the partition function are discussed in Appendix A. As a
simplification for the subsequent numerical calculations the field associated
with the stiff segments is expanded in Legendre polynomials which makes it
possible to integrate out the orientation dependence.

• In Chapter 7 the self-consistent field equations for a flexible homopolymer
are solved numerically and the coil-globule transition of the homopolymer is
studied as a test case. The numerical routines used to solve the differential
equations in Chapters 7 and 8 are briefly described in Appendix B.

10



• The numerical results of the full self-consistent field equations for the copoly-
mer are presented in Chapter 8. The coil-globule transition of the copolymer
is investigated as well as the change in the composition in terms of fraction of
stiff segments. An additional crossover transition from an amorphous disor-
dered globule to a nematic liquid-crystalline globule with high fraction of stiff
segments can be observed. This transition is studied in great detail and its
relevance for helix-bundle formation in proteins is discussed.

• Finally, conclusions are drawn in Chapter 9. The chapter also presents an
outlook on further interesting investigations for future work.

Parts of this thesis have already been published or have been submitted for review,
i.e. in [11–14].
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2. Description of polymers - basic

aspects

2.1. Random walk of a flexible chain

The simplest model of a polymer is the ideal polymer chain [8]. In an ideal chain
the monomers are simply connected segments without any correlations. The poly-
mer configuration performs a random walk in space. The mean square end-to-end
distance of a chain consisting of N segments (or monomers) each of length b is given
by

R2
e = =

〈
(RN −R1)

2〉 =

〈(
N∑

n=1

[Rn+1 − Rn]

)2〉
(2.1)

=

〈(
N∑

n,m=1

[Rn+1 − Rn][Rm+1 −Rm]

)〉
=

〈
N∑

n=1

[Rn+1 − Rn]
2

〉

= Nb2.

The second to last equality holds due to the absence of correlations. Only the
diagonal terms contribute to the average.

In real polymers neighbouring monomers are correlated due to finite rotational and
bending stiffness of the covalent bonds between the monomers. However, the di-
rectional correlation of two monomers diminishes exponentially with the growth of
the chain length separating them [8]. The constant characterising this exponential
decay for each specific polymer is called persistence length lp. Knowing the persis-
tence length it is possible to describe the polymer as an ideal chain with lp being
the effective segment length b.

An experimentally accessible measure for the size of a polymer is the radius of
gyration

Rgyr =

(
1

2N2

N∑

n,m=1

〈
[Rn − Rm]2

〉)1/2

=

(
1

N

N∑

n=1

〈
[Rcm −Rn]2

〉)1/2

, (2.2)
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2. Description of polymers - basic aspects

where Rcm denotes the position of the centre of mass of the chain. As can be seen
from Eq.(2.2) the radius of gyration averages over all distances between monomers
on a chain. It can be measured for instance by small angle neutron scattering or
light scattering [9].

For the ideal chain the radius of gyration is related to the mean square end-to-end
distance by [9]

R2
gyr =

R2
e

6
. (2.3)

For long chains N ≫ 1 the end-to-end vector Re = RN − R1 obeys a Gaussian
distribution

P (Re) =

(
3

2πR2
e

)3/2

exp

(
− 3R2

e

2Nb2

)
. (2.4)

Therefore an ideal polymer chain is also called Gaussian chain. Several segments
can be combined to a new segment of length b′ > b. The end-to-end vector of a chain
built up from these longer segments also obeys a Gaussian distribution in Eq.(2.4).
The specific local structure of the chain is not necessary to describe its behaviour on
larger scales. The chain is Gaussian on all scales and thus scale invariant (provided
that b > lp).

An end-to-end distance dependent entropy can be defined as follows

S(Re) = kB ln(P (Re)) + S0 = −3kBR
2
e

2Nb2
+ S0. (2.5)

The entropy defined above has its maximum at Re = 0, that is the chain reacts to
stretching with a restoring force K(Re) of entropic nature. It acts like a spring with
spring constant 3kBT

2Nb2
.

K(Re) = T
d

dRe
S(Re) = −3kBT

Nb2
Re (2.6)

For a Gaussian chain not only the probability of the end-to-end vector obeys a
Gaussian distribution but also every distance vector rnm = Rn − Rm between two
segments n and m along the chain.

P (rnm) =

(
3

2π|n−m|b2
)3/2

exp

(
− 3r2

nm

2|n−m|b2
)
. (2.7)

14



2.1. Random walk of a flexible chain

Consider the probability distribution for the distance between neighbouring seg-
ments

P (rnn+1) =

(
3

2πb2

)3/2

exp

(
−3r2

nn+1

2b2

)
. (2.8)

The entire conformational distribution function of the Gaussian chain is then given
by

Ψ ({rnn+1}) =
N∏

n=1

(
3

2πb2

)3/2

exp

(
−3r2

nn+1

2b2

)

=

(
3

2πb2

)3/2

exp

(
N∑

n=1

−3(Rn+1 − Rn)
2

2b2

)
. (2.9)

The Gaussian chain is often represented by a mechanical model of N + 1 beads
connected by harmonic springs. The potential energy of such a chain of beads and
springs is given by

U ({Rn}) =
3kBT

2b2

N∑

n=1

(Rn+1 − Rn)
2. (2.10)

The Boltzmann distribution of such a bead spring model at equilibrium is exactly
the same as Eq.(2.9).

It is often useful to regard the suffix n of the Gaussian chain as a continuous variable.
The continuum limit is taken as follows [10]

Rn+1 −Rn → ∂Rn

∂n
N∑

n=1

→
∫ N

0

dn. (2.11)

Eq.(2.9) can then be written in continuous form as

Ψ (Rn) = N exp

(
− 3

2b2

∫ N

0

(
∂Rn

∂n

)2
)
. (2.12)

The distribution given by Eq.(2.12) is called Wiener distribution. For a detailed
mathematical discussion of the continuum limit defined above, see [43].
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2. Description of polymers - basic aspects

2.2. Real chains

In the previous section the segments along the polymer backbone were assumed not
to interact with each other. In a real polymer chain the segments do interact. A
polymer cannot cross itself. Two segments cannot be at the same position, which
they could if the chain was described by a random walk as in the case of an ideal
or Gaussian chain. Under good solvent conditions this leads to a description of the
polymer as a self avoiding walk. Self avoidance just means that the walk cannot
return to a position where it has already been, i.e. two segments of the polymer
cannot be at the same spatial position. This can be achieved by introducing a
repulsive interaction between the polymer segments. Hence the polymer swells if
immersed in a good solvent. This is referred to as the excluded volume effect.

To introduce interactions it is convenient to consider the canonical partition function

Z =

∫
DR(n) exp(−βH({R(n)})), (2.13)

where β = 1/kBT . The Hamiltonian H0 for a non-interacting polymer chain reads

βH0({R(n)}) =
3

2b2

∫ N

0

dn

(
∂R

∂n

)2

. (2.14)

Now interactions can be introduced. To model good solvent conditions it is sufficient
to introduce a repulsive two-body interaction. For simplicity, this is usually done
by means of a point contact interaction

βHint =
v

2

∫ N

0

dn

∫ N

0

dmδ(R(n) − R(m)). (2.15)

The interaction constant v determines the strength of the interaction. Its given by

v = b3
(

1 − Θ

T

)
≡ b3τ, (2.16)

where b3 is the volume of one segment and Θ is the temperature at which v vanishes
and the chain becomes ideal and behaves like a Gaussian one. The dimensionless
parameter τ is called reduced temperature.

HE = H0 + Hint is called Edwards Hamiltonian. To model poor solvent conditions
a three-body interaction has to be introduced. This will be discussed in detail in
Chapter 6.

As already mentioned, a polymer coil in good solvent swells. Hence the mean square
end-to-end distance Re is larger than the one for an ideal chain, compare Eq.(2.1).
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2.2. Real chains

An exact calculation of Re for the interacting polymer is impossible. For the ideal
chain Re is proportional to N1/2. Hence, for the real chain in good solvent Re must
be proportional to Nν , with the excluded volume exponent ν > 1/2. Significant
work has been done to calculate this exponent [10]. The Flory argument [15] yields
a simple though surprisingly good estimate for Re. The size of the polymer is given
by the balance of two effects. The repulsive two-body excluded volume interaction
tries to swell the polymer. On the other hand the elastic energy arising from the
chain connectivity tries to shrink the polymer. Recalling the expression for the
entropy in Eq.(2.5), the free energy of a non-interacting chain as a function of end-
to-end vector Re is given by

F (Re) = kBT
3R2

e

2Nb2
+ F0. (2.17)

The effect of the excluded volume interaction is estimated by considering a segment
gas confined to a volume R3

e . The interaction energy can then be estimated as
vkBT c̄

2R3
e , where the average concentration is - up to numerical prefactors - given

by c̄ ≃ N/R3
e . The free energy of the interacting polymer is thus approximatively

given by

βF (Re) ≃
3R2

e

2Nb2
+ v

N2

R3
e

+ βF0. (2.18)

Minimisation of F with respect to Re yields the mean square end-to-end distance

Re ≃ b
( v
b3

)1/5

N3/5 → ν ≈ 3/5. (2.19)

The value of the excluded volume exponent ν ≈ 3/5 is very close to the actual value
obtained by more refined techniques such as perturbation calculation [16]. This
gives the following value of ν

ν = 0.588 ± 0.001. (2.20)

In the following chapters the value ν = 3/5 will be used.

For good solvent (at high temperature T ≫ Θ) it is quite common to set the
excluded volume parameter equal to the volume occupied by one monomer, i.e.
v ≃ b3. Eq.(2.19) reduces then to

Re ≃ bNν , (2.21)

which can be used in both the good solvent (ν = 3/5) and Θ-solvent (ν = 1/2) case.
Eq.(2.21) will be used frequently in Chapters 3 and 4.
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2. Description of polymers - basic aspects

2.3. Scaling and the blob picture

For the discussion of rod-coil multiblock copolymers of fixed composition in Chapters
3, 4 and 5 scaling arguments are used. The general ideas are introduced in this
section with a simple example.

Consider a real polymer chain (good solvent conditions) trapped in a thin tube [41].
The diameter D of the tube is assumed to fulfil b ≪ D ≪ Re . The length of the
polymer parallel to the tube R‖ and the energy required to squeeze the chain in the
tube are estimated below.

Since Re and D are the only relevant length scales in the problem, the length R‖
must have the scaling form

R‖ = Re g

(
Re

D

)
, (2.22)

where g(x) → 1 for x→ 0 (D → ∞: thick tube) and g(x) → xm for x→ ∞ (D → 0:
thin tube). For a thin tube the problem becomes one-dimensional and R‖ must be
proportional to N . On the other hand, Re ∼ N3/5. This yields

N3/5(1+m) ≃ N ⇒ m =
2

3
. (2.23)

The length of the chain in the tube is hence given by

R‖ ≃ Nb

(
b

D

)2/3

, (2.24)

or for general exponent ν

R‖ ≃ Nb

(
b

D

)1/ν−1

. (2.25)

There is also another way to derive Eq.(2.24). The tube diameter sets a length
scale in the problem. This length can be associated with the size of a blob [41], see
Fig.(2.1). The chain is confined to the tube and therefore behaves as a sequence of
blobs of diameter D. Inside the blobs the chain is undisturbed and still behaves like
a self-avoiding walk. The number of monomers per blob nB is therefore given by

D ≃ n
3/5
B b. (2.26)

As it is pictured in Fig.(2.1), the blobs are densely packed into a one-dimensional
array. The number of blobs #B is given by #B = N/nB and R‖ is therefore given

18



2.3. Scaling and the blob picture

R‖

D

Figure 2.1: A polymer chain trapped in a tube. The chain behaves like a string of blobs.
Within the length scale of a blob the chain is almost unperturbed and behaves like a free
one.

by

R‖ = #BD =
N

nB
D ≃ Nb

(
b

D

)2/3

, (2.27)

in agreement with Eq.(2.24).

Having calculated R‖, the confinement energy Fconf can now be estimated. This
is the energy required to squeeze the chain in the tube. It measures the loss of
entropy of the chain and must therefore be proportional to T . On the other hand
the confinement energy must be proportional to the number of blobs and therefore
proportional to N . Likewise R‖ it must have the scaling form

Fconf ≃ kBTgF

(
Re

D

)
, (2.28)

where gF(x) → xl for x→ ∞. Since Fconf is proportionalN , Rl
e must be proportional

to N and therefore l = 5/3. The confinement energy is then given by

Fconf ≃ kBTN

(
b

D

)5/3

= kBT#B, (2.29)

or for general exponent ν

Fconf ≃ kBTN

(
b

D

)1/ν

. (2.30)

The result in Eq.(2.29) can also be explained by a physical argument. The con-
finement blobs are all independent of each other and therefore each blob accounts
for a confinement energy of the order of the inherent energy scale kBT . The total
confinement energy is thus given by the number of blobs #B times kBT .
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2. Description of polymers - basic aspects

This analysis can be generalised to chains confined to other geometries, such as
wedges or cones. In all these cases the confinement energy scales linearly with the
number of confinement blobs. The calculation of the confinement energy in Chapter
3 is similar to the calculation of the confinement energy of a polymer chain inside a
truncated cone. The latter one is therefore presented below.

Fig.(2.2) shows a polymer chain confined to the inside of a truncated cone. The

r

R

ζ(r)
R′

Figure 2.2: A polymer chain inside a truncated cone. The chain is grafted to the
truncated tip of the cone at position Rtrunc from the inside. The blob size ζ is an increasing
function of the distance r from the tip.

blob size ζ(r) is given by

ζ(r) = 2 sin(α)r, (2.31)

where 2α is the cone angle. For the confinement energy of the chain the number of
blobs #B has to be calculated. It is given by the following integral

#B =

∫ R

Rtrunc

1

ζr
dr =

1

2 sin(α)
ln

(
R

Rtrunc

)
. (2.32)

The number of monomers per blob is given by

nB ≃
(
ζ(r)

b

)1/ν

=

(
2 sin(α)r

b

)1/ν

, (2.33)

compare Eq.(2.26). Knowing nB it is possible to calculate R.

N =

∫ R

Rtrunc

nB

ζ(r)
dr ≈

∫ R

0

nB

ζ(r)
dr = (2 sin(α))1/ν−1

(
R

b

)1/ν

⇒ R = (2 sin(α))ν−1Nνb, (2.34)
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2.4. Real chain under tension

R

ζP

K

Figure 2.3: A polymer chain under tension. The force K is applied to one end of the
chain, the other end is held fix. The chain breaks up into a series of blobs. The blob size
ζP is set by the force.

where Rtrunc ≪ R has been used. The confinement energy can now be calculated

Fconf ≃ kBT#B = kBT
1

2 sin(α)
ln

(
(2 sin(α))ν−1Nνb

Rtrunc

)
. (2.35)

In Section 3.2 it will be shown that the confinement energy of a starlike corona
formed by polymer chains has a similar structure, compare Eq.(3.7).

2.4. Real chain under tension

Scaling arguments and the blob picture can also be used to describe the behaviour
of a real chain under tension. A force K is applied to the ends of polymer immersed
in good solvent. There are then two characteristic length scales: Re ≃ bNν and
ζP = kBT/K [26]. The extension R of the chain as a function of the force may be
written as [41]

R(K) = RegK

(
Re

ζP

)
. (2.36)

At very low force (x < 1) the extension R should be linear in x, hence gK(x→ 0) ≃ x.
This yields

R(K) ≃ βR2
eK, for KRe < kBT. (2.37)

The more interesting situation at larger force (x ≫ 1) can be described as follows.
The chain breaks up into a series of blobs each of size ζP as shown in Fig.(2.3).
As in the case of the chain confined to a tube, the chain inside the blobs is almost
unperturbed and behaves like a self-avoiding walk. At length scales larger than ζP
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2. Description of polymers - basic aspects

it behaves like a string of independent blobs. Similar to Eq.(2.26) the number of
monomers inside each blob nP is given by

ζP ≃ nν
Pb

⇔ nP ≃
(
kBT

bK

) 1

ν

. (2.38)

The chain extension R is given by the number of blobs #P times the blob size ζP.

R ≃ #PζP ≃ N

nP

ζP ≃ Nb(βKb)
1−ν

ν (2.39)

The corresponding elastic free energy can be estimated by kBT per blob and is thus
given by

βFstretch ≃ #P ≃ N(βbK)
1

ν ≃ N

(
R

Nb

) 1

1−ν

=

(
R

Nνb

) 1

1−ν

≃
(
R

Re

) 1

1−ν

. (2.40)

The total free energy of a chain at an applied force K reads

βF ≃
(
R

Re

) 1

1−ν

− βKR. (2.41)

The arguments used to derive the force-extension relation and the elastic free energy
hold not only in the case of good solvent (ν = 3/5) but also in the case of Θ-solvent
(ν = 1/2). The linear force-extension relation of an ideal chain, compare Eq.(2.6),
can thus be recovered.

For very large forces, the extension of the chain might come close to its contour
length Nb. In this case the picture described above is no longer valid. Obviously,
the maximal extension of the chain is given by its contour length. When approaching
the contour length, the force diverges. The effect of this finite extensibility is briefly
discussed at the end of Chapter 4.
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3. Rod-coil copolymer in selective

solvent

3.1. Introduction

As already mentioned in Chapter 1, the phase behaviour of rod-coil multiblock
copolymers in selective solvent is a very rich field of study. In this chapter a single
rod-coil multiblock copolymer immersed in selective solvent will be studied. It repre-
sents a model system for the formation of structural elements on the single molecule
level. It will be shown in Section 3.5 that a single rod-coil multiblock copolymer
might even serve as a very simple model to explain the specific structure of α-helix
bundles in certain classes of proteins.

In several papers [27–37] the phase diagram for melts of rod-coil polymers is studied
as an extension of the case of flexible copolymers under different architectures.

Significant work has been done for di- and triblock rod-coil copolymers using scaling
arguments, see [29–32]. In Chapter 5 the adsorbtion at a surface of rod-coil diblocks
in selective solvent will be discussed.

The behaviour of a single multiblock polymer containing stiff parts (rods) rods and
flexible parts (coils) is less established, especially concerning the stability of certain
micellar and brushlike structures, see e.g. [38, 39].

Rod-coil multiblock copolymers typically consist of stiff, rodlike blocks of a cer-
tain length L and diameter d which are connected by flexible chains containing
N monomers each as pictured in Fig.(3.1). In this chapter the solvent is always
assumed to be poor for the stiff parts of the copolymer such that they tend to ag-
gregate. For the flexible parts the solvent is assumed to be either Θ-like or good, such

L
d

Figure 3.1: Rod-coil multiblock copolymer with rods of length L and diameter d.
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3. Rod-coil copolymer in selective solvent

r
H

Rcore

Figure 3.2: This figure shows two possible configurations: (a) One big micelle with a
starlike corona is formed. (b) The system forms several connected micelles. The height
of the corona is denoted by H, the radius of the micelle core by Rcore and the distance
between the cores by r. The stretching of the red chain results in additional loss of entropy.

that the monomers of the flexible parts repel each other. Under these assumptions
the effective attraction of the rods drives the system into a compact structure. This
compact structure imposes a confinement on the flexible chains and therefore low-
ers their entropy. It is this interplay between chain entropy and rod-rod attraction
which determines the final equilibrium structure of the system. The precise form of
the compact structure depends strongly on the molecular parameters such as inter-
action energies, but also on the entropic parameters like the number of monomers
between two consecutive rods.

If the attractive forces between the rods are strong enough they typically form a
cylindrical micelle surrounded by a corona of confined coils, see Fig.(3.2). The overall
size of the micelle is naturally limited by the corona, which is itself determined by the
length of the flexible parts and the solvent conditions. The stronger the confinement
of the chains in the corona, the more they try to break up the aggregate of the rods
in order to gain entropy. The size is also limited by the confinement close to the
rod-flexible interface, where the chain segments close to the surface - created by the
aggregating rods - suffer under grafting conditions as in a polymer brush. On the
other hand, if the equilibrium number of rods f forming an individual submicelle
is smaller than the total number of rods, the system might form several connected
micelles, as depicted in Fig.(3.2b).
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3.2. Starlike Limit

Of course there is also the possibility that the energy penalty of the corona becomes
too large and micelle formation is not probable at all (i.e. f ≤ 1). However, if
the system actually forms micelles, there are two limiting cases for the shape of the
corona:

(i) For very long connecting chains the height H of the corona may be much larger
than the radius Rcore of the micelle core formed by the rods. In this limit the corona
almost resembles a star shaped object as shown in Fig.(3.2a). It is therefore referred
to as the starlike limit.

(ii) For short enough connecting chains, H may be much smaller than Rcore. In this
limit the corona looks like a brush and it is therefore referred to as the brushlike
limit.

In the next section the equilibrium aggregation number of rods in the starlike limit
is calculated. In Section 3.3 multi-micelle configurations are discussed in the starlike
limit. The equilibrium aggregation number of rods in the brushlike limit is calculated
in Section 3.4 And finally in Section 3.5 the results of this theory are compared to
experimental values for proteins.

3.2. Starlike Limit

In this section the spherical, starlike limit is discussed. This limit covers a much
wider range of physical parameters than the brushlike limit. It is therefore discussed
in greater detail. Furthermore, multi-micelle configurations will only be discussed
for the starlike limit in Section 3.3.

The free energy of the system consists of the following terms

F = F rods
surface + F rods

entropy + F coils
conf + F coils

connect. (3.1)

The first term in Eq.(3.1) is the energy penalty associated with the surface of the
micelle core that is exposed to the solvent. The entropic contribution of the rods is
taken into account by the second term. F coils

conf specifies the free energy cost due to
the confinement of the coils in the corona and the last term takes into account that
the end-to-end distance of each coil connecting two rods is limited to the radius of
the micelle core. In the following, the individual contributions are introduced and
calculated term by term.

The surface free energy F rods
surface of the rods is given by

βF rods
surface ≃ βγd2

(
f + f 1/2L/d

)
. (3.2)

This contribution to the free energy has its origin in the surface exposed to the
solvent that is created by the aggregation of the rods. γ is the surface tension of the
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3. Rod-coil copolymer in selective solvent

rods and is of the order of γ ∼ O(kBT/d
2). The exact value depends on how poor

the solvent is for the rods. The term ∼ d2f represents the free energy contribution
of the surface of all caps of the rods. It is proportional to the number of rods in the
micelle and therefore does not contribute to the equilibrium micelle size. The term
∼ d2 f 1/2L/d represents the contribution of the hull of the micelle. It is this term
which favours the formation of micelles, compare e.g. [30].

The entropy of the rods is simply given by the exchange possibilities of the rods in
the micelle, hence it is of the usual combinatoric form βF rods

entropy = −f ln f which has
its origin in the number of f ! exchange possibilities of f rods.

To calculate the confinement energy F coils
conf , a specific model to describe the corona

is needed. In the starlike limit the height H of the corona is much larger than the
core radius Rcore. Thus the corona is essentially spherical, that is starlike. The
Daoud-Cotton model [40] used here has become the standard model to describe the
confinement of the polymer chains for such starlike structures.

To estimate the confinement energy in this model the notion of confinement blobs
is used, as introduced in Chapter 2. Inside one of these blobs the chain behaves like
a free unconfined chain. The blobs are densely packed and each blob accounts for a
confinement energy of the order O(kBT ). Hence the blob sets a length scale in the
system.

The coils are confined to f virtual truncated cones beginning at the end of each rod.
The wall of the cones sets the blob size ζ as a function of the distance r from the
micelle core, compare Fig.(3.3) and Section 2.3. To derive this function a spherical
shell of the corona of radius r and thickness ζ(r) is considered. This shell contains f
blobs. Its volume is approximatively given by r2ζ(r). On the other hand its volume
is also given by the volume of a single blob times the number of blobs ζ3(r)f . Hence

r2ζ(r) ≃ ζ3(r)f → ζ(r) ≃ r/f 1/2. (3.3)

To actually calculate the confinement free energy in units of kBT one now simply
has to count the total number of confinement blobs in the corona.

βF coils
conf ≃

∫ Rcore+H

Rcore

r2ζ−3(r) dr = f 3/2 ln

(
Rcore +H

Rcore

)
. (3.4)

In the starlike limit considered here the height of the corona H is much larger than
the radius of the micelle core Rcore ≃ f 1/2d, therefore Rcore can be neglected in the
numerator of Eq.(3.4).

The height of the corona H is calculated in a similar way. One sums up all blobs
until running out of monomers. To do so a quantity nB(r) is introduced that denotes
the number of monomers inside one blob at distance r from the core. Since the chain
behaves like a free chain within the length scale of the blob, ζ(r) is given in terms
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r

ζ(r)

Figure 3.3: This figure shows the blob representation of the model for the corona in
the starlike case. The blobs are shaded in grey for better visibility. The blob size ζ(r)
increases from the micelle core to the outside.

of nB and the monomer size b by ζ(r) ≃ nν
B(r)b. The exponent ν is kept general to

allow for either Θ-solvent (ν = 1/2) or good solvent (ν = 3/5). Now the height of
the corona H can be calculated in the following way

N ≃
∫ Rcore+H

Rcore

nB(r)

ζ(r)
dr ≃

∫ H

0

nB(r)

ζ(r)
dr ≃ f

ν−1

2ν

(
H

b

)1/ν

. (3.5)

In the above calculation H ≫ Rcore has been used. This result immediately yields

H ≃ f
1−ν
2 Nνb. (3.6)

The contribution F coils
conf is now fully determined. It is given by

F coils
conf ≃ f 3/2 ln

(
bNν

df ν/2

)
. (3.7)

The last contribution to the free energy that has to be calculated is F coils
connect. It is the

one that tells the free energy that the entire polymer is connected and has its origin
in the partition function of the chains in the corona. To estimate this term one first
has to notice that the end-to-end distance R of the connecting coils is limited to the
discrete values R = nd, where n = 1, ..., f 1/2. The partition function of each chain
is therefore given by the sum of the probabilities of the end-to-end distances over
all possible discrete end-to-end distances. The case of Θ-solvent is discussed first.
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3. Rod-coil copolymer in selective solvent

For Θ-solvent the contribution to the free energy is given by

βF coils
connect ≃ −f ln




fd2∑

R2=d2

N (N) exp

{
− 3R2

2b2N

}

 , (3.8)

where the normalisation factor N (N) contains a within this scaling approach irrel-
evant N -dependence, which does not contribute to the free energy in a significant
way. Since the sum in Eq.(3.8) corresponds to a simple geometric series it can be
performed and - omitting all numerical prefactors - one obtains

βF coils
connect ≃ −f

(
ln

[
1 − exp {−fd2/b2N)}
1 − exp {−d2/(b2N)}

]
− d2

b2N

)

≃ −f ln f +
f 2 d2

b2N
. (3.9)

The second line in the above equation is a next to leading order approximation. This
result is physically remarkable and deserves some explanation. The first term in
Eq.(3.9) reflects the f discrete possibilities for the end-to-end distance and therefore
- as an entropy term - lowers the free energy. It is identical to the term for the entropy
of the rods F rods

entropy. This is not surprising, since exchanging two chain end points is
equivalent to exchanging two rods within the micelle due to the connectivity of the
entire system. The second term in Eq.(3.9) reflects the energy penalty associated
with the stretching of the connecting chains.

In the case of good solvent conditions the situation concerning this contribution
is slightly subtle, since there is no closed form for the probability distribution of
the end-to-end distance PR(R,N). Fortunately there are limiting expressions. The
best known one is the limit of long end-to-end distances R > Re, where Re denotes
the root mean square end-to-end distance (see Section 2.2). It is given by the

des Cloizeaux form PR(R,N) ∼ e−
3

2
(R/Re)5/2

, see e.g. [42, 43]. However, in the
starlike limit the height of the corona H is much larger than the radius of the
micelle core Rcore. To ensure that this is the case the contour length of the chains
Nb must be sufficiently large. This implies that the root mean square end-to-end
distance of one free chain in Θ-solvent Re is larger than the radius of the micelle
core Rcore = fd1/2. Hence, the largest possible end-to-end distance of the chains
confined in the corona is smaller than the root mean square end-to-end distance of
a free chain. On the other hand the inequality d≫ b surely holds which means that
the smallest possible end-to-end distance is much larger than the segment length.
For these intermediate end-to-end distances it has been shown by Edwards and
Singh [42], that a quasi Gaussian regime in the distribution function exists. Within
the range given above the end-to-end distance distribution for a polymer in good
solvent scales like PR(R,N) ∼ e−

3

2
(R/Re)2 see [42], rather than the well known des
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3.2. Starlike Limit

Cloizeaux form ∼ e−
3

2
(R/Re)5/2

. Thus F coils
connect for good solvent can be formulated in

a similar way as in the Θ-solvent case.

βF coils
connect ≃ −f ln




fd2∑

R2=d2

N (N) exp

{
− 3R2

2b2N6/5

}



≃ −f
(

ln

[
1 − exp

{
−fd2/b2N6/5)

}

1 − exp {−d2/(b2N6/5)}

]

− d2

b2N6/5

)

≃ −f ln f +
f 2 d2

b2N6/5
. (3.10)

The two results - Eqs.(3.9,3.10) - can be summarised in a general form using the
exponent ν.

βF coils
connect ≃ −f ln f +

f 2 d2

b2N2ν
(3.11)

Collecting all essential terms - and omitting those which are linear in f and all
numerical prefactors - the free energy of the system is given by

βF (f) ≃ βf 1/2γd2L

d
+ f 3/2 ln

(
bNν

df ν/2

)
− f ln f + f 2 d2

b2N2ν
. (3.12)

The equilibrium structure corresponds to the minimum of the free energy per rod-
coil subunit F/f ; i.e., ∂(F/f)/∂f = 0.

The dominating contributions to the free energy are F rods
surface and F coils

conf . The other two
contributions F rods

entropy and F coils
connect are much smaller and can be treated as corrections.

First F rods
entropy and F coils

connect are neglected. The free energy per rod-coil subunit then
reads

βF0(f0)

f0

≃ βf
−1/2
0 γd2L

d
+ f

1/2
0 ln

(
bNν

df
ν/2
0

)
. (3.13)

Minimising the above equation and afterwards approximating the logarithmic terms
as constant yields the following result for the equilibrium aggregation number of
rods

f0 ≃ βγd2L

d
. (3.14)

The same result has been obtained by Halperin for a system of unconnected triblock
rod-coil copolymers immersed in selective solvent [25]. If also F rods

entropy and F coils
connect
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3. Rod-coil copolymer in selective solvent

are taken into account, a correction term to f0 can be expected, i.e. f ≈ f0 + ∆f .
In the following ∆f will be determined to linear order.

Minimising the full Eq.(3.12) and approximating the logarithmic terms as constant
yields

0 = − (f0 + ∆f)1/2 + (f0 + ∆f)3/2 d2

b2N2ν
+ ∆f

≃ −f 1/2
0

(
1 + f−1

0 ∆f
)

+ f
3/2
0

(
1 + f−1

0 ∆f
) d2

b2N2ν
+ ∆f

⇔ ∆f =
f

1/2
0 − f

3/2
0 d2/(b2N2ν)

1 − f
−1/2
0 + f

1/2
0 d2/(b2N2ν)

≃ f
1/2
0 − f

3/2
0

d2

b2N2ν
. (3.15)

In the last step f
−1/2
0 + f

1/2
0 d2/(b2N2ν) < 1 was used, which always holds in the

starlike limit. Inserting Eq.(3.14) in Eq.(3.15) yields the following more accurate
result for the equilibrium aggregation number of rods f

f ≃ β γd2L

d
+

(
β γd2L

d

)1/2

−
(
β γd2L

d

)3/2
d2

b2N2ν
. (3.16)

The result shows that, apart from the rod-solvent surface tension γ, mainly the
aspect ratio of the rods L/d and the effective grafting ratio d2/(b2N2ν) determines the
number of aggregating rods. The first correction term due to the exchange entropy
is positive. This is in agreement with the physical intuition, since the formation of
a larger micelle increases the number of exchange possibilities for the rods together
with the number of possible end-to-end distances for the coils. Such a trend of
extending the micelle is counterbalanced by the growing size of the micelle itself
because some of the connecting coils become more and more stretched depending
on the ratio d2/(b2N2ν). Therefore the second correction due to the second term of
F coils

connect (Eq.(3.11)) is negative and reduces f . This last term in Eq.(3.16) becomes
less relevant for larger N , since the stretching of the connecting flexible part becomes
less important.

3.3. Multimicellar structures in the starlike limit

The equilibrium result for the number of rods forming a micelle f might be smaller
than the actual number of rods in the copolymer. If this is the case the copolymer
forms several connected micelles. To obtain the equilibrium structure the interaction
between micelles has to be considered. There are two contributions to the interaction
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3.3. Multimicellar structures in the starlike limit

energy. One is due to the repulsion of the coronas and one is due to the stretching of
the connecting chain, see Fig.3.2b. The possibility of the formation of two micelles
which are connected by a stretched chain will be estimated within the scaling limit.

Let r be the distance between the micelle cores. The stretching energy - compare
Section 2.4 - is then given by

βFstretch ∼ (r/(bNν))1/(1−ν). (3.17)

Here the des Cloizeaux form (see e.g. [42, 43]) for the distribution of the end-to-end
distance PR(R,N) is used. The distance between the two micelle cores should be
comparable to the height of the corona due to the repulsion of the coronas. Therefore
the end-to-end distance of the connecting coil R can assumed to be larger than the
root mean square value Re for the same coil in isolated conditions. Thus the des
Cloizeaux form has to be used.

The repulsive potential U(r) between two coronas can be approximated well by
scaling considerations similar to the ones used by Witten and Pincus for two star
polymers, compare [44]. For distances larger than twice the height of the corona
(2H) the coronas can be assumed not to interact at all since they barely touch each
other, i.e. U(r ≥ 2H) = 0. For distances comparable to the radius of the micelle
core Rcore the bulk of the system is similar to a single corona with 2f coils. Hence
the increase in confinement free energy, which constitutes the interaction energy, is
of the same order of magnitude as the confinement energy itself,

U(Rcore) = ∆F coils
conf ≈ F coils

conf . (3.18)

The probability distribution of two micelles being a distance r apart is given by

P (r)/P (2H) = exp[−βU(r)], (3.19)

where P (2H) is the probability for vanishing interaction potential. Assuming P (r)
has the scaling form P (r) = P (2H)g(r/2H) and matching it with the two lim-
iting cases discussed above immediately leads to the following expression for the
interaction potential

βU(r) ≈
{
f 3/2 ln(2H/r) for r < 2H

0 for r ≥ 2H
(3.20)

which holds similarly for Θ- and good solvent.

Minimisation of U(r)+Fstretch(r) with respect to r gives the equilibrium distance of
the two micelles. It turns out that the equilibrium distance is r ≈ 2H ≃ f (1−ν/2)Nνb
at which the coronas just touch each other, i.e., U(f, 2H) = 0. Thus the total
interaction energy is - within the limits of the scaling approach - given by

βFstretch(2H) ∼ f 1/2. (3.21)
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3. Rod-coil copolymer in selective solvent

It scales with f like the relevant part of the surface contribution to the free energy
(second term in Eq.(3.2)) does. Therefore including this contribution in the total
free energy, Eq.(3.12), simply yields a shift in the surface term,

β γd2 L/d→ β γd2 L/d+ 1. (3.22)

This shift does not change the general scaling behaviour of the equilibrium micelle
size and is therefore neglected in the following considerations.

To test whether a multi micelle configuration is actually stable, the total free energy
of a system with fixed number of rod-coil subunits M forming several micelles is
considered. Let n be the number of micelles formed by the system. For simplicity,
all micelles are assumed to be of the same size. Hence the number of rods forming
each micelle is given by M/n. The total free energy can be expressed similar to
Eq.(3.12) as

βF (M,n) ≃ n

[
β

(
M

n

)1/2

γd2L

d
+

(
M

n

)3/2

ln

(
bNν

d (M/n)ν/2

)

− (M/n) ln (M/n) +

(
M

n

)2
d2

b2N2ν
+ Fmicelles

int

]
, (3.23)

where the last term in the square brackets represents the interaction energy of two
micelles discussed above. As shown above, it only produces a shift in the surface
terms and can be neglected.

To demonstrate the dependence of the free energy of the total system on the number
of micelles, Eq.(3.23) is plotted in Fig.3.4. The plot shows that for a given system,
one big stable micelle (upper curve) can split into several micelles (lower curve) when
the surface tension γ is reduced. Thus for a big enough system size a multi micelle
configuration can be indeed stable. Fig.(3.4) also shows that for the case of n > 1
the shape of the free energy around the minimum becomes rather flat. This implies
that fluctuations become more important and exchange of rods between micelles
could be possible.

After having shown that multi micelle configurations can be stable, it would be in-
teresting to calculate an estimate for the number of micelles formed by the system
in equilibrium. This can be done by means of Eq.(3.23). The number of iden-
tical micelles n for a given system size M is given by the equilibrium condition
∂F (M,n)/∂n = 0. As was done when calculating the equilibrium number of aggre-
gating rods f , the contributions F rods

entropy and F coils
connect (the third and fourth term in
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3.3. Multimicellar structures in the starlike limit
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Figure 3.4: This plot shows the dependence of the free energy in units of kBT on the
number of micelles n. The total number of rod-coil units is chosen to be M = 30 and
the term containing the chain information bNν/d = 10. For the upper dashed curve the
surface term β γd2 L/d is chosen to be 12 and 5 for the lower curve.

Eq.(3.23)) are neglected in a first approximation.

βF0(M,n0) ≃ n0

[
β

(
M

n0

)1/2

γd2L

d
+

(
M

n0

)3/2
]
. (3.24)

Minimising the above equation with respect to n0 yields

n0 ≃M

(
β γd2L

d

)−1

. (3.25)

This result is consistent with the result for the equilibrium number of micelles in
the same approximation f0, compare Eq.(3.14). It is given by f0 = M/n0.

To proceed, the number of micelles n is approximated by n ≈ n0 + ∆n. The
calculation of n to linear order in ∆n follows the same scheme as above - see Eq.(3.15)
- and is omitted here.

n ≃M

[(
β γd2L

d

)−1

+

(
β γd2L

d

)−1/2
d2

b2N2ν
−
(
β γd2L

d

)−3/2
]
. (3.26)

As a consistency check f = M/n is recalculated to linear order using the above
result for n.

f = M (n0 + ∆n)−1 ≃ M

n0

(
1 − ∆n

n0

)

= β γd2L

d
+

(
β γd2L

d

)1/2

−
(
β γd2L

d

)3/2
d2

b2N2ν
. (3.27)
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H

Rcore

Figure 3.5: This figure shows micelles with brushlike coronas: A micelle is described by
H, which denotes the height of the corona and Rcore which is the radius of the micelle
core.

This is indeed the same result for the equilibrium aggregation number of rods as in
Eq.(3.16). Hence the results for both n and f are consistent.

3.4. Brushlike limit

Now the limiting case in which the height of the corona H is much smaller than
the core radius Rcore is considered. Thus the corona is assumed to be brushlike as
depicted in Fig.(3.5).

The confinement energy for a polymer brush scales linearly with the area to which
the brush is grafted (neglecting all edge effects) [45]. For the problem considered
here this means F coils

conf is proportional to f . Hence the confinement energy is extensive
in f and therefore does not influence the equilibrium micelle size. For a system of
unconnected coil-rod-coil copolymers this would mean that the rods either do not
aggregate at all or form arbitrary large lamellar structures [30]. Since the system
under consideration consists of one long multiblock copolymer, F coils

connect limits the
equilibrium size of the micelles. In contrast to the starlike corona case this term is
not a rather small correction but the only contribution to the free energy that limits
the aggregation number of the rods.

For Θ-solvent F coils
connect is the same as in the starlike corona limit. In the good solvent

regime the Gaussian approximation for the end-to-end distance distribution used
above is only valid for end-to-end distances which are certainly less than Rcore.
Nevertheless, these short distances give the highest weights to the sum in the first
line of Eq.(3.10). Hence using the quasi Gaussian approximation for the entire
range of end-to-end distances up to Rcore should be valid within this scaling picture.
Therefore we may use Eq.(3.11) for both solvent regimes.

As already mentioned above, the confinement energy does not influence the equilib-
rium micelle size and can therefore be neglected in the free energy. It only gives an
additive constant to to the free energy per rod-coil subunit. The free energy of one
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3.5. Comparison with proteins

micelle in the brushlike limit is therefore given by

βF (f)

f
≃ βf−1/2γd2L

d
− ln f + f

d2

b2N2ν
. (3.28)

Minimisation with respect to f yields the following equation

f 3/2 d2

b2N2ν
− f 1/2 − βγd2L

d
= 0. (3.29)

The above equation has one real solution for f which is rather long and not very
instructive. However, under the condition βγd2L/d & bNν/d the solution for f can
be well approximated by

f ∼ b2N2ν

d2
+

(
βγd2L

d

b2N2ν

d2

)2/3

. (3.30)

For parameters which violate the above assumption no short approximation for f
can be found.

The scaling behaviour of f is very different from the one in the starlike limit, compare
Eq.(3.16). Since now only F coils

connect limits the equilibrium micelle size, f is a function
of the ratio of Re ∼ bNν and the rod diameter d reflecting the stretching of the
connecting coils. On the other hand the aggregation number f of course increases
with increasing surface energy β γd2 L/d - second term in Eq.(3.30) - as it does in
the starlike limit.

3.5. Comparison with proteins

In the introduction it was mentioned that a rod-coil multiblock copolymer can serve
as a simple model system to describe certain classes of proteins containing α-helix
bundles. The helices are very rigid and can be approximated safely as stiff rods with
a finite diameter, which are connected by flexible (unstructured) chain parts. The
bundles formed of several helices might be modelled by a cylindrical micelle of these
stiff rods. To match the system discussed in this chapter only classes of proteins
with no other secondary structure element rather than α-helices can be considered.
In addition the α-helices in these proteins have to align in bundles. Other tertiary
structure motifs due to very specific interactions cannot be described by this simple
model.

In order to compare with proteins, typical standard values (see for instance [2]) have
to be used for some of the parameters in the equations for the equilibrium micelle
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3. Rod-coil copolymer in selective solvent

size - Eqs.(3.16, 3.30). The ratio of α-helix diameter to amino acid size is known to
be d/b ∼ 2-3. For the surface energy of the rods (in units of kBT ) βγd2 ∼ 1 is used.

In the following the bundle sizes of proteins with six different folds are compared
with the predictions for f . Depending on the length of the chains connecting the
helices, either the result for the starlike limit (Eq.(3.16)) or the one for the brushlike
limit (Eq.(3.30)) has to be used. The solvent is assumed to be Θ-like, i.e. ν = 1/2.
The secondary structure files are taken from the Protein Data Bank (PDB) [56].
As a classification scheme the SCOP database [57] is used. All six folds are from
the basic class ‘all alpha proteins’. For these proteins neither the helices nor the
connecting chains in one protein are all of the same length. To be able to compare
the proteins with the simple rod-coil copolymer model, an estimate for L and N
has to be made. For each protein, the rod length L is estimated by calculating the
average number of amino acids per helix NH multiplied by the pitch of an α-helix.
In units of d this yields

L

d
≈ NH

4
. (3.31)

N is estimated by calculating the average number of amino acids in the connecting
chains between the helices.

Knowing how to estimate all parameters used in Eqs.(3.16, 3.30), the predictions for
the size of the helix bundles f can now be calculated. The following proteins were
analysed:

• Acyl-CoA Binding Protein, PDB identifier: 1aca, brushlike limit

• Apolipoprotein, 1lpe, brushlike limit

• Acyl Carrier Protein, 1acp, brushlike limit

• Apolipophorin III, 1aep, brushlike limit

• Phospholipase A2, 1bp2, starlike limit

• Transcription Elongation Factor S-II, 1enw A, starlike limit

The Table below summarises the results:

PDB identifier # amino acids helices (SCOP) f

1aca 87 4-helix bundle 3-4
1lpe 144 4-helix bundle 4-5
1acp 77 4-helix bundle 3-4
1aep 161 5-helix bundle 5
1bp2 123 2 helices parallel, 3 irregular 2

1enw A 114 3-helix bundle, 1 irregular 3
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3.5. Comparison with proteins

The agreement between the actual size of the helix bundles and the predicted val-
ues for f seems to be very good. Especially for the last two folds with additional
unaligned helices, the correct number of aligned helices is predicted. However, the
scaling results for f - Eqs.(3.16, 3.30) - are only correct up to prefactors. In addi-
tion, the number of amino acids and the bundle size are both comparatively small
and therefore at the limit of the validity of the scaling theory. Hence the correct
numerical agreement might just be coincidence. Nevertheless, the prediction of the
right order of magnitude and the right trend - higher values of f for larger bundles
- suggest that a rod-coil multiblock might indeed serve as a most simplistic model
to study possible configurations of helix bundle proteins.
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3. Rod-coil copolymer in selective solvent

38



4. Force-extension behaviour of a

rod-coil copolymer

4.1. Introduction and basic assumptions

In the previous chapter the equilibrium size of a micelle was calculated. Now a
multiblock copolymer in selective solvent consisting of M rods and M + 1 flexible
parts that forms one big micelle at equilibrium is considered. The rods are still all
of the same length L and diameter d. The chains connecting the rods consist of N
monomers each with monomer size b. The rod and chain parameters are assumed
to be such that the starlike limit is applicable. It was shown that in this limit the
system forms one stable micelle in equilibrium if the number of rods M satisfies
(compare Eq.(3.16))

M ≤ βγd2L

d
+

(
βγd2L

d

)1/2

−
(
βγd2L

d

)3/2
d2

b2N2ν
. (4.1)

The stretching and unfolding behaviour of such a system under force will be discussed
in this chapter. The aim is to calculate a force-extension curve.

A force K is applied at one end of the copolymer whilst the other end is held
fixed, see Fig.(4.1). This picture could be for instance related to an atomic force
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K

Figure 4.1: Rod coil multiblock copolymer in selective solvent forming one micelle. One
end of the copolymer is attached to a substrate, whilst the other end is subject to a force
K.
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4. Force-extension behaviour of a rod-coil copolymer

microscopy (AFM) experiment in which one end of the polymer is attached to a
substrate and therefore held fixed and the other end is attached to the tip of an
AFM-cantilever [17–21]. Another possibility to measure force-extension curves is to
attach a small bead to the end of the polymer that is not fixed and hold this bead in
an optical trap. The deflection of the trapped bead from the trap centre constitutes a
measure of the force [21–24]. Generally, there are two possible scenarios. Either the
displacement (i.e. the end-to-end distance of the polymer) is externally controlled
and the force is measured - see [17, 22], or the force is imposed and the displacement
is measured - see [24].

With increasing force one would first expect stretching of the two flexible end chains
whilst the micelle stays undisturbed. At a certain force one of the outer rods from
the micelle should start sliding off. When it slides off completely there will be a
large drop in the force required to extend the polymer, since now there is a lot of
length to gain from the detached rod and the chain connecting it to the micelle
at very low force. If the force increases again, the chains become stretched again.
Then the next rod will slide off and so on. Hence, if the force is measured at a given
extension, the force extension curve should consist of several humps each of which
corresponds to one rod being pulled out.

If the extension is measured at given force, the shape of the force-extension curve
depends on the value of the force required to pull out each single rod. When there
is a maximum force required to pull out the i-th rod, all other rods will be pulled
out as well by this force. This results in a plateau in the force-extension curve. It
is this scenario which will be considered in an example in Section 4.3, see Fig.(4.3).

For the above scenario to take place it might be necessary to impose a rather strong
limitation on the possible structures of the micelle. The rods within the micelle have
to be ordered in such a way that it is always possible to pull out rods from the outer
shell of the micelle. If this would not be the case, pulling out a rod from within the
micelle could result in breaking the micelle apart.

In the succeeding calculations the applied force is supposed to be given and the
resulting extension will be calculated. The scaling considerations below are all based
on a phenomenological free energy, see Eq.(4.3). This implies the assumption that
the system is in equilibrium at each force given and therefore corresponds to a
situation where the pulling is sufficiently slow to ensure equilibration of the system.
This approach is named quasi static pulling. Using quasi static pulling it might
actually be possible to release the constraint on the micelle structure mentioned
above. During equilibration the micelle might reorganise after pulling out a rod
from within the micelle. However, for this process to take place the micelle has to
open up and hence has to expose most of the rod surfaces to the solvent, thereby
creating a large surface energy. This constitutes a large energy barrier for the system.
To decide whether the simple scaling picture presented below also holds for micelles
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Figure 4.2: The system forms one defect rod and one rod is shifted by ∆L.

of randomly arranged rods, a dynamic description of the pulling process is needed,
which cannot be provided by scaling consideration based on an equilibrium free
energy. To be on the safe side it is better to stick to the assumption of an ordered
micelle.

4.2. Equilibrium calculations

At a certain applied force the polymer is assumed to obtain the following equilibrium
configuration. One big micelle containing M −m rods, of which one is shifted by
∆L, is connected to m rods which are already pulled out completely. The total
length of the polymer is denoted by Ltot, compare Fig.(4.2). The free energy of the
polymer under an applied force K consists of the following contributions:

F (Ltot,∆L,m) = Fmicelle(M −m) + Fdefect(Ltot, m) + Fslide(∆L)

− KLtot. (4.2)

Fmicelle(M−m) is the free energy of the micelle formed by M−m rods. For simplicity
only the surface and confinement contributions are taken into account (1st & 2nd term
in Eq.(4.3)). The contribution from the distribution of the end-to-end distance of
the connecting rods, which - in the star like limit - is small compared to the other
two contributions, is neglected. Fdefect(Ltot, m) is the free energy of the rods which
are already pulled out completely and their connecting flexible chains. It is given
by a surface contribution of the rods and a stretching contributions of the chains
(3rd & 4th term in Eq.(4.3)). The free energy related to the shift of the rod in the
micelle which is connected to the defect rods is named Fslide(∆L). It is also given
by a surface and a stretching contribution (5th & 6th term in Eq.(4.3)). In explicit
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form the complete free energy reads

βF (Ltot,∆L,m) = βγdL(M −m)1/2 + (M −m)3/2 ln

(
bNν

d (M −m)ν/2

)

+ βγdLm+ (m+ 2)

(
Ltot − (m+ 1)L− ∆L

(m+ 2)bNν

) 1

1−ν

+ βγd∆L+

(
∆L

bNν

) 1

1−ν

− βKLtot. (4.3)

The 4th term in the above equation needs to be explained. There are m+ 2 chains
which connect the defect rods to the micelle and the end points. In equilibrium they
are all stretched to the same end-to-end distance. The total extension of all these
chains is given by Ltot − (m + 1)L− ∆L. Each chain has therefore the end-to-end
distance (Ltot − (m + 1)L − ∆L)/(m + 2). Its mean square end-to-end distance is
given by bNν . With Eq.(2.40) from Section 2.4 it should now be obvious how this
term is constructed.

At a given force K and a given number of defect rods m the free energy in Eq.(4.3)
has to be minimised with respect to Ltot and ∆L in order to calculate the equilibrium
extension as a function of K and m. Due to the stretching of the connecting chains
there will be a critical value of the force at which it is preferable for the system
to form another defect rod to release length. There are three possibilities how this
could happen.

One possibility is that at a certain force the rod from the outer shell of the micelle
which is connected to the defect rods starts to slide off and that the energy penalty
due to stretching of the chains does not become large enough to favour the formation
of a new defect rod before the rod is slid off completely. This happens at ∆L = L,
i.e. ∆L is limited to values between 0 ≤ ∆L < L.

Another possibility is that the rod connecting the micelle to the defect rods slides
off up to a shift ∆L < L at which it becomes energetically favourable to split from
the micelle and form a new defect rod.

The third possibility is that the energy penalty due to stretching of the connecting
chains is so large that it becomes energetically favourable to form another defect
rod even before this rod starts to slide. It turns out below that the latter is actually
the case for all sets of parameters and for good solvent as well as for Θ-solvent.

Minimisation of Eq.(4.3) with respect to Ltot gives

Ltot = (m+ 2)bNν [(1 − ν)bNνβK]
1−ν

ν + (m+ 1)L+ ∆L. (4.4)

The first term on the right hand side of Eq.(4.4) represents the length of the m+ 2
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4.2. Equilibrium calculations

stretched chains connecting the defect rods, the micelle and the end points. The
second term represents the length of the defect rods (mL) plus the length of the
micelle core L. The last term is the shift of the outer rod of the micelle directly
connected to the defect rods.

Minimisation of Eq.(4.3) with respect to ∆L gives

βγd− 1

(1 − ν)bNν

(
Ltot − (m+ 1)L− ∆L

(m+ 2)bNν

) ν
1−ν

+
1

(1 − ν)bNν

(
∆L

bNν

) ν
1−ν

= 0.

(4.5)

Inserting the result for Ltot from Eq.(4.4) into the above equation yields

∆L = bNν [(1 − ν)bNν(βK − βγd)]
1−ν

ν . (4.6)

The equation for ∆L shows that the force has to exceed a certain value, K > γd,
before the rod starts to slide off from the micelle. The surface tension per unit area
of a rod exposed to the solvent is given by γ. Hence the associated energy penalty
for an area ∆Ld of the rod surface exposed the solvent is given by γd∆L. Therefore
the force K must exceed the line tension γd in order to create a finite shift ∆L.

Having calculated Ltot and ∆L for given K and m it is now possible to check which
of the three scenarios described above is the correct one to describe the detachment
of a new defect rod. It is first assumed that there is a force K > γd at which the
rod starts to shift but does not detach. There is then a larger force Kcrit at which
the free energy F (∆L,m) of the system with m defect rods and shift ∆L is equal
to the free energy F (∆L = 0, m+ 1) of the system with m+ 1 defect rods and zero
shift. If ∆L(Kcrit) < L, the rod detaches before it is slid off completely. On the
other hand, if ∆L(Kcrit) > L, the rod slides off completely before the force is large
enough to rip it apart from the micelle. Consider F (∆L,m) − F (∆L = 0, m+ 1):

βF (∆L,m) − βF (∆L = 0, m+ 1) = βγdL
(
(M −m)1/2 − (M −m− 1)1/2 − 1

)

+ (M −m)3/2 − (M −m− 1)3/2

− [(1 − ν)bNνβK]
1

ν + βγd∆L+

(
∆L

bNν

) 1

1−ν

+ βK
{
bNν [(1 − ν)bNνβK]

1−ν
ν + L− ∆L

}

(4.7)

The second and third term in Eq.(4.7) are the confinement contributions of the
chains in the micelle formed by M − m rods and M − m − 1 rods respectively.
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4. Force-extension behaviour of a rod-coil copolymer

The logarithmic factor (compare Eq.(4.3)) has been set to unity. The force K has
to be larger than γd for a finite shift to appear. It can therefore be written as
K = γd+ ∆K. The last term in Eq.(4.7) can now be written as

βK
{
bNν [(1 − ν)bNνβK]

1−ν
ν + L− ∆L

}
=

1

1 − ν
[(1 − ν)bNνβK]

1

ν

+ βγdL+ β∆KL− βγd∆L

− β∆K∆L. (4.8)

Regrouping the terms in Eq.(4.7) yields

βF (∆L,m) − βF (∆L = 0, m+ 1) = βγdL
(
(M −m)1/2 − (M −m− 1)1/2

)

+ (M −m)3/2 − (M −m− 1)3/2

+
ν

1 − ν
[(1 − ν)bNνβK]

1

ν +

(
∆L

bNν

) 1

1−ν

+ β∆K(L− ∆L)

> 0 ∀m,∆L. (4.9)

From Eq.(4.9) can be seen that βF (∆L,m) > βF (∆L = 0, m+1) for constant force
K > βγd and all m, ∆L and ν < 1. This means that, with increasing force, it
is energetically favourable to form a new defect rod even before a finite shift ∆L
appears, i.e. the rods are ripped rather than slid off slowly. So in order to calculate
the real critical force at which another defect rod is pulled out from the micelle,
F (∆L = 0, m) = F (∆L = 0, m+ 1) has to be considered.

βF (0, m) − βF (0, m+ 1) = βγdL
(
(M −m)1/2 − (M −m− 1)1/2 − 1

)

+ (M −m)3/2 − (M −m− 1)3/2

− [(1 − ν)bNνβKcrit]
1

ν

+ βKcrit

{
bNν [(1 − ν)bNνβKcrit]

1−ν
ν + L

}

= 0 (4.10)

In the case of Θ-solvent, i.e. ν = 1/2, the above equation can easily be solved for
Kcrit

βK
(Θ)
crit = 2

(
L2

b4N2
+

βγdL
(
1 − (M −m)1/2 + (M −m− 1)1/2

)

b2N

− (M −m)3/2 + (M −m− 1)3/2

b2N

) 1

2

− 2L

b2N
. (4.11)
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4.3. Example of a force-extension curve

For βγd < L/(b2N) the above result can be approximated by

βK
(Θ)
crit ≈ βγd

(
1 − (M −m)1/2 + (M −m− 1)1/2

)

− (M −m)3/2

L
+

(M −m− 1)3/2

L
. (4.12)

In Eq.(4.9) it was shown that ∆L must always be identical zero. The total length
of the system at fixed force K and fixed number of defect rods m is then given by

Ltot = (m+ 2)bNν [(1 − ν)bNνβK]
1−ν

ν + (m+ 1)L, (4.13)

4.3. Example of a force-extension curve

It is now possible to calculate a force-extension curve for a typical set of parameters
and Θ-solvent using Eqs.(4.13, 4.11). The resultant curve is plotted in Fig.(4.3).
In this example Kcrit - see Eq.(4.11) - has a maximum at m = 5. Hence the first
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Figure 4.3: Force-extension curve of a multiblock rod-coil copolymer with Gaussian
chains. The plot on the right shows a magnification of the region in which four of the rods
are pulled out one after the other. Parameters: M = 15, L = 10d, b/d = 0.3, N = 100,
βγd2 = 3

four rods are pulled out separately with increasing force. This appears in the force-
extension curve in form of the small plateaus, see left plot in Fig.(4.3). The force
which is large enough to pull out the fifth rod is then also large enough to pull out
all the other remaining rods in the micelle.

Although the small plateaus corresponding to the detachment of single rods from
the micelle appear in the force-extension curves calculated from this scaling theory,
in a real experiment one would not be able to see them due to the presence of
thermal fluctuations. As can be seen from Fig.(4.3), the increase in force necessary
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4. Force-extension behaviour of a rod-coil copolymer

to pull out one more rod from the micelle is roughly 0.003kBT/d. The length scale
associated with this increase in force is given by the increase of the total length Ltot

when a new rod is pulled out from the micelle. This is roughly given by 20d. Hence
the associated energy is roughly 0.06kBT which is completely dominated by thermal
fluctuations.

The linear increase of the force at the end of the curve after all rods are pulled apart
from each other reflects the elastic stretching of the Gaussian chains. When the
chains are too strongly stretched, the force extension relation becomes non-linear.
The probability distribution of the end-to-end vector for a Gaussian chain, Eq.(2.4),
allows for a finite probability of end-to-end distances larger than the contour length
of the chain Nb. This is of course unphysical. As long as the end-to-end distance
is much smaller than the contour length, the effect of finite extensibility can be
neglected. However, for strongly stretched chains it becomes important.

The easiest way to introduce finite extensibility of the flexible chains in the free
energy is to ensure by hand that the free energy diverges if the extension of each
chain approaches Nb. This can for instance be done by modifying the stretching
energy of a Gaussian chain in the following way

(
R

N1/2b

)2

→
(

R

N1/2b

[
1 − R

Nb

]−1
)2

. (4.14)

The exponent −1 of the term in square brackets in Eq.(4.14) could also chosen to be
smaller or larger yielding a stronger or weaker divergence of the force if the maximum
extension R = Nb is approached. The value of the exponent and hence the nature
of the divergence of the force depends on the chemical details of the polymer, such
as possible bond rotation angles. The considerations here are of a general nature,
since there are so far no experiments on the force-extension behaviour of a rod-coil
multiblock copolymer to compare with. The exponent is thus chosen to be −1 for
simplicity.

With the modification described in Eq.(4.14) the total free energy of a rod-coil
multiblock in Θ-solvent at force K is given by

βF (Ltot, 0, m) = βγdL(M −m)1/2 + (M −m)3/2 ln

(
bN1/2

d (M −m)1/4

)
+ βγdLm

+(m+ 2)

(
Ltot − (m+ 1)L− ∆L

(m+ 2)bN1/2

[
1 − Ltot − (m+ 1)L− ∆L

(m+ 2)bN

]−1
)2

−βKLtot. (4.15)

It is not possible to find a compact analytical expression for Ltot or Kcrit from a
minimisation of Eq.(4.15). However, for the set of parameters chosen above, the
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4.4. Analogy to a homopolymer in poor solvent

force-extension curve can be plotted by calculating Ltot or Kcrit numerically, see
Fig.(4.4). The unravelling of the micelle is now plotted as a one step process,
hence the large plateau without steps. The plateau corresponds to the critical force
necessary to pull out the first rod. For large extensions the force-extension relation
is clearly non-linear. Note, that the total contour length of the copolymer (including
the rods) is 630d for the parameters used in the plot.
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Figure 4.4: Force-extension curve of a multiblock rod-coil copolymer with chains of finite
extensibility. Parameters: M = 15, L = 10d, b/d = 0.3, N = 100, βγd2 = 3

4.4. Analogy to a homopolymer in poor solvent

The response of the rod-coil copolymer in selective solvent to an applied force can
be related to the response of a collapsed homopolymer coil in poor solvent [25].

If a force is applied to one end of a homopolymer in a globular state, the globule is
first elastically deformed, which can be described by a linear force-extension relation.
This stage can be seen as corresponding to the stretching of the end chains of the
copolymer without disturbance of the micelle, which - in Θ-solvent - also shows
a linear force-extension relation. At a certain force, a stretched string of smaller
blobs is pulled out of the globule. The size of these smaller blobs is set by the
force, compare [26] or Section 2.4. This scenario occurs at constant force and is
characterised by a plateau in the force-extension curve, similar to the plateau in
Fig.(4.3), which appears when the rods are pulled out from the micelle. Finally, the
globule is completely unravelled to a string of blobs. If the force is further increased
this string is stretched elastically, showing again a linear force-extension relation.
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4. Force-extension behaviour of a rod-coil copolymer

Similarly, the rod-coil copolymer also shows a linear force-extension relation after
all rods are pulled apart and the connecting chains are elastically stretched.

When the string of blobs is even further stretched a non-linear regime appears as in
the case of the rod-coil copolymer due to finite extensibility.
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5. Adsorption of rod-coil diblocks at

a surface

5.1. Introduction

The previous two chapters dealt with multiblock copolymers of fixed composition
immersed in a selective solvent. Their structural behaviour as well as their response
to an external force was discussed. This chapter presents a short excursion to rod-
coil diblock copolymers. In Section 3.1 it was already mentioned that their phase
behaviour is investigated in various papers. However, the structural behaviour of
dissolved rod-coil diblocks in the presence of a surface is far less understood. Rod-coil
copolymers permanently grafted to a repulsive surface are shown to form ‘turnip’-
or ‘jellyfish’-like micelles on top of the surface [65]. But there seems to exist no
study of rod-coil polymers in the presence of an attractive surface.

In this chapter, rod-coil diblocks in selective solvent close to a surface are considered.
The surface is assumed to be highly attractive for the rods and neutral to the flexible
chains. The solvent is poor for the rods and good for the chains. The rods are
assumed to have a certain chemical structure, such that they prefer to be oriented
parallel with respect to each rather than antiparallel. The aggregation behaviour
of such rod-coil copolymers, showing parallel alignment of the rods only, has been
investigated experimentally and computationally, see [3, 62, 63]. The energy penalty
for antiparallel alignment of two rods is assumed to be much higher than the energy
penalty for these rods being fully exposed to the solvent. In aggregates of these
copolymers the flexible parts therefore stick out in one direction only, see Fig.(5.1).
If such an aggregate adsorbs with the rods parallel to the surface, the rods shift with
respect to each other to allow the chains to gain entropy, see Fig.(5.1).

For simplicity a quasi two-dimensional system is considered. This means that the
width of the system in y-direction is equal to the rod diameter d. This system can
be viewed as a narrow slice of a system with infinite extension in y-direction. Each
of the diblock copolymers under consideration is composed of a stiff rod of length
L and diameter d to which a fully flexible chain of N monomers with monomer
size b is grafted. The parameters characterising the diblocks are consistent with the
one used to describe multiblock copolymers in Chapters 3 and 4. The solvent is
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5. Adsorption of rod-coil diblocks at a surface

Figure 5.1: Aggregate of rod-coil copolymers adsorbed at a surface. The rods are shifted
with respect to each other due to the presence of the surface.

characterised by an energy penalty γ per unit area of a rod exposed to the solvent.
The energy gain −κ per unit area of a rod in contact with the surface has to be
chosen such that an aggregate actually adsorbs to the surface without dissociating
into single rod-coil copolymers.

The methods used to describe the adsorbed aggregate are an extension to the scaling
methods used in the previous two chapters.

In a first approach in Section 5.2 the shift of the rods is assumed to be constant.
A more sophisticated approach allowing the shift to vary with distance from the
surface is considered in Section 5.3. The stability of the adsorbed structures and
configurations different from the one shown in Fig.(5.1) are discussed in Section
5.4. This section concludes with a ‘phase diagram’ of the possible rod-coil diblock
configurations close to the surface.

5.2. Constant Shift

In a first approach the rods are assumed to shift a constant distance with respect
to each other as shown in Fig.(5.2). The characteristic quantity related to this shift
is the angle α. This angle can be calculated by calculating the free energy of the
entire system as a function of α and minimising it with respect to α.

The free energy consists of two parts. One part is the energy penalty due to the
surface of the rods exposed to the solvent. The other one is the free energy of the
confined chains. The contributions of the free energy which do not depend on α are
of no interest and are therefore neglected. Due to the shift there is additional rod
surface exposed to the solvent. This gives rise to an energy penalty, which is given
by

Frod = 2γd2 tanα. (5.1)
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α

Figure 5.2: The rods are all shifted with respect to each other by the same distance.
The shift is characterised by the angle α.

To calculate the free energy of the chains they are treated as if they would form a
finite brush grafted to the dashed surface shown in Fig.(5.2). For a finite brush the
trajectories of the single polymer chains are not all perpendicular to the grafting
surface as for an infinite one. The polymer chains show a splay u. Fig.(5.3) illustrates
how this quantity is defined. A chain trajectory starts at the rod at position x and
ends at the line X(x). Its splay u is then given by u(x) = X(x)−x. The first chain
is allowed a splay of u0 = h tanα due to the presence of the surface, where h is
the brush height. It is given by the equilibrium height of a polymer brush in good
solvent, i.e. h = 4−1/3Nσ1/3b5/3 [45, 64]. The last chain can topple over completely
and is therefore allowed a splay of uL = h. The grafting density σ of the chains is a
function of α as well. It is given by σ(α) = cos(α)/d2.

To calculate the free energy of the finite brush a Flory-type approach is used fol-
lowing the lines of [64] . This means that the free energy is constructed similar to
the one used in the Flory argument to calculate the excluded volume exponent ν
in Chapter 2, compare Eq.(2.18). Within this approach the free energy consists of
an elastic contribution and an excluded volume contribution. The elastic contribu-
tion is given by a term proportional to h2 representing the stretching of the chains
away from the rods and a term proportional to u2(x) representing the stretching
of the chains in x direction. The excluded volume contribution is approximated by
vN2/V , where v is the excluded volume parameter or interaction strength and V is
the volume available to the polymer. This volume varies from chain to chain and
must therefore be calculated for each chain individually. Each chain fills a box of
volume hσ−1(1+ u′/2), with u′ = du/dx [64]. The free energy for the finite brush is
then given by

βFbrush =
d

Nb2
σ




D∫

0

dx
[
u(x)2 + h2

]
+ 4h2

D∫

0

dx

[
1

2 + u′

]

 , (5.2)
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Figure 5.3: This sketch shows how the x-range and the splay are defined. Note: u(x) =
X(x) − x, i.e. u0 = X0 − x0 and uD = XD − (D − x0).

where the first term represents the elastic energy and the second term the excluded
volume energy. For simplicity the excluded volume pararmeter is set to v = b3

(compare Section 2.2). D represents the total length of the brush. For the system of
aggregates of rod-coil copolymers considered here it is given by D(α) = fd cos(α).
Hence the angle α which characterises the shift enters Eq.(5.2) in form of σ(α), D(α)
and u0(α).

In the following an implicit equation for the splay is calculated by functional min-
imisation of Eq.(5.2) with respect to u(x). The implicit equation is then used to
calculate the integrals in Eq.(5.2).

The first integral of the Euler-Lagrange equation for the splay u(x) obtained from
Eq.(5.2) is given by

u2 + 8h2 1 + u′

(2 + u′)2
= C. (5.3)

Eq.(5.2) does not distinguish between positive and negative splay. Hence the system
has to be separated into two finite brushes which meet at the chain with zero splay,
see Fig.(5.3). The position of this chain is determined by the total length of the
brush D and the splay at both ends (u0 and uD).
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5.2. Constant Shift

It is convenient to introduce dimensionless variables ũ = u/(
√

8h), x̃ = x/(
√

8h) and
C̃ = C/(8h2). Eq.(5.3) can be integrated for arbitrary C̃ which leads to

I 2ũ− 2ũD − ln
[
2ũ+ (1 − 4C̃ + 4ũ2)1/2

]

+ ln
[
2ũD + (1 − 4C̃ + 4ũ2

D)1/2
]

= 4(D̃ − x̃0 − x̃). (5.4)

The integration constant can now be calculated by using the condition

2I(ũ = 0) − I(ũ = ũ0) = 4D̃. (5.5)

This gives

C̃ =
1

4

(
1 − (ũ0 + ũD)2 sinh[2D̃ + ũ0 + ũD]−2 + (ũ0 − ũD)2 cosh[2D̃ + ũ0 + ũD]−2

)
.

(5.6)

Unfortunately it is not possible to integrate the free energy in Eq.(5.2) directly using
the implicit solution for the splay ũ, Eq.(5.4). Therefore an appropriate approxima-
tion has to be found. It can be shown that 1 − 4C̃ ≈ 0 holds for all u0 if D ≥ h.
Hence Eq.(5.4) can be very well approximated as

2ũ− 2ũD − ln

[
ũ

ũD

]
ũ = 4(D̃ − x̃0 − x̃) for ũ ≥ ũc =

1

2
(1 − 4C̃)1/2. (5.7)

To calculate the free energy the following integration has to be performed:
∫

dx̃

[
ũ2 +

1

2(2 + ũ′)

]
. (5.8)

The regime 0 ≤ ũ ≤ ũc is considered first:

ũ′(x̃ ≤ x̃c) ≪ 2 ⇒ 1

2(2 + ũ′)
≈ 1

4
, ũ2

c ≪
1

4
(5.9)

The integral in Eq.(5.8) in the interval [0, x̃c] can therefore safely be approximated
by

x̃c∫

0

dx̃

[
ũ2 +

1

2(2 + ũ′)

]
=

1

4
x̃c. (5.10)

In the intervall [x̃c, D̃ − x̃0] the approximation for the splay given by Eq.(5.7) is
valid. The integral in eq.(5.8) can then be rewritten in the following form

D̃−x̃o∫

x̃c

dx̃

[
ũ2 +

1

2(2 + ũ′)

]
=

1

2

D̃−x̃o∫

x̃c

dx̃

[
ũũ′ − ũ2ũ′ − ũ′

4
+

1

2

]

=

[
x̃

4
− ũ

8
+
ũ2

4
− ũ3

6

]D̃−x̃o

x̃c

. (5.11)
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5. Adsorption of rod-coil diblocks at a surface

By construction ũ(x̃c) = ũc ≪ 1, see Eq.(5.7). Therefore the integral in Eq.(5.8) in
the limits [0, D̃ − x̃0] can be very well approximated by

D̃−x̃o∫

0

dx̃

[
ũ2 +

1

2(2 + ũ′)

]
=
D̃ − x̃0

4
− ũD

8
+
ũ2

D

4
− ũ3

D

6
. (5.12)

So far only one part of the brush was calculated. The one from the ‘zero splay chain’
to the open end. In Fig.(5.3) this is the part on the right from 0 to D − x0. The
left part from 0 to x0 or rather from the ‘zero splay chain’ to the surface can be
calculated completely analogously by replacing D̃−x̃0 with x̃0 and ũD with ũ0. After
adding up the results for both parts in both intervals, accounting for the prefactors
in Eq.(5.2) and converting back to variables carrying dimensions the final result for
the free energy of the chains forming the finite brush reads

βFbrush =
d

Nb2
σ

[
3Dh2 − h2(u0 + uD) +

h√
2
(u2

0 + u2
D) − 1

6
(u3

0 + u3
D)

]
. (5.13)

Plugging in the α-dependent expressions for σ, D, u0 and uD and adding the free
energy of the rods from Eq.(5.1), the α-dependent part of the total free energy is
given by

βF (α) = 2fβγd2 tan(α) +
3

42/3
fN

(
b

d

)4/3

cos(α)2/3

+
N2

4

(
b

d

)3

cos2(α)

[
1√
2
− 7

6
− tan(α) +

tan2(α)√
2

− tan3(α)

6

]
(5.14)

This equation is only valid for 0 ≤ α ≤ π/4, because for α = π/4 the splay at the
surface reaches the maximum possible value, i.e. u0(π/4) = h = uD. In the interval
π/4 < α < π/2 the splay at the surface remains constant at its maximum value
u0 = h. Eq.(5.14) then simplifies to

βF (α) = 2fβγd2 tan(α)+
3

42/3
fN

(
b

d

)4/3

cos(α)2/3+
N2

2

(
b

d

)3

cos2(α)

[
1√
2
− 7

6

]
.

(5.15)

There are two regimes in each of which the above free energy, Eqs.(5.14, 5.15),
shows a different behaviour. If the chains are rather short the system shows a
discontinuous transition. With decreasing γ there is a jump from a stable phase
with no shift (α = 0) to a stable phase with a large shift (α ≫ 0). The other regime
in which the chains are rather long shows a continuous transition from a stable phase
with α = 0 to a phase with finite α.
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5.2. Constant Shift

These two regimes can be distinguished by looking at the second derivative of the
free energy at α = 0. If it is negative the transition can only be discontinuous and
if it is positive only continuous. The chain length Nt which separated these two
regimes is given by

Nt ≈ 1.4f

(
d

b

)5/3

. (5.16)

For N < Nt the transition is discontinuous and continuous for N > Nt. Physically,
this condition can be interpreted such that for N < Nt the second term in the free
energy (Eq.(5.14)) dominates the third term. The second term solely represents
the effect of decreasing grafting density, whereas the third term also represents the
effect of increasing splay of the chains close to surface. Therefore if the grafting
density effect is dominant, the transition is similar to the tilting transition observed
in lamellar structures of rod-coil copolymers, see e.g. [29]. Since then the minimum
in the free energy is essentially given by the balance of tanα (first term in Eq.(5.14))
and cosα (second term) a continuous transition with a minimum at small values of
α is not possible. The free energy as a function of α is plotted for different values
of γ in Fig.(5.4). The location of the free energy minimum F0 and the equilibrium
shift angle α0 as functions of γ are plotted in Fig.(5.5).
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Figure 5.4: This plot shows the dependence of the free energy in units of kBT on α for
different values of γ in the regime N < Nt. Parameters: f = 10, b/d = 0.2,N = 50, βγd2 =
1 (upper curve), 0.25, 0.15 (lower curve). In this regime the effect of decreasing grafting
density with increasing α dominates the effect of the splay of the chains close to the surface.

For N ≥ Nt the third term in the free energy, Eq.(5.14), gets equal to or bigger
than the second term. This means that the increase in splay of the chains close to
the surface becomes important. Since u0 scales with tanα like the contribution of
the rods (Frod) does, a continuous transition is now possible. The dependence of the
free energy on α for different values of γ is shown in Fig.(5.6).
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5. Adsorption of rod-coil diblocks at a surface
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Figure 5.5: The left plot shows the dependence of the angle α0 that minimises the
free energy on γ in the regime N < Nt. The right plot shows the dependence of the
corresponding free energy minimum in units of kBT on γ. The other parameters are
chosen as in Fig.(5.4): f = 10, b/d = 0.2,N = 50. The minimisation of the free energy
was done numerically.
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Figure 5.6: This plot shows the dependence of the free energy in units of kBT on α
for different values of γ in the regime N > Nt. Parameters: f = 10, b/d = 0.2,N =
200, βγd2 = 4 (upper curve), 3, 2.5 (lower curve). In this regime the effect of increasing
splay of the chains close to the surface determines the behaviour of the free energy.

In this regime a condition for the appearance of a shift can be found easily. If the
first derivative of the free energy at α = 0 is positive, no shift is possible. As soon as
it becomes negative non-zero shift is possible. The corresponding critical rod-solvent
energy is given by

βγcd
2 =

N2

8f

(
b

d

)3

. (5.17)

For γ > γc no shift is possible. If γ becomes smaller than γc a non-zero shift conti-
nously develops from α = 0 on. Fig.(5.7) shows the dependence of the equilibrium
shift angle α0 and the minimum of the free energy F0 on γ.
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Figure 5.7: The left plot shows the dependence of the angle α0 that minimises the
free energy on γ in the regime N > Nt. The right plot shows the dependence of the
corresponding free energy minimum in units of kBT on γ. The other parameters are
chosen as in Fig.(5.6): f = 10, b/d = 0.2,N = 200. The minimisation of the free energy
was done numerically.

The crossover from one regime (N ≥ Nt) in which a shift develops continuously to
a regime (N < Nt) in which the system shows a jump from zero shift to large shift
would be very interesting result. However, it is most likely to be an artefact of the
constant shift assumption. If the shift is allowed to vary with distance from the
surface, the regime which shows a jump should disappear. Only in the limit of a
very large number of copolymers f forming one lamellar like aggregate the constant
shift assumption might be reasonable. However, in this limit the effect of the surface
becomes negligible and the system always shows a tilting transition - compare [29]
- even if not in contact with the surface.

To gain further insight the shift is allowed to vary with increasing distance from the
surface in the next section.

5.3. Variable Shift

In this section a more realistic approach in which the rods are allowed to shift
a variable distant with respect to each other is considered. The rods close to the
surface are expected to shift more than the rods further away from the surface, since
for the corresponding chains close to the surface there is more entropy to gain than
for the ones further away. Therefore the equilibrium conformation should be similar
to the one shown in Fig.(5.8). The dashed line in Fig.(5.8) can be interpreted as the
profile of the shift l as a function of the distance x from the surface. The chains are
described by a local Flory-type model similar to the one used in the previous section.
In this model the free energy of the system is again given by the sum of an elastic
term and an excluded volume term for the chains plus a term which quantifies the
energy penalty for the additional rod surface exposed to the solvent due to the shift.
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5. Adsorption of rod-coil diblocks at a surface

Figure 5.8: The shift of the rods with respect to each other decays with increasing
distance from the surface.

The free energy is constructed such that it is a functional of the splay of the chains
u(x) and the shift of the rods l(x). At all positions x the shift l(x) is assumed to
be small compared to the height h of the brush-like structure formed by the chains.
Hence h can assumed to be constant for all x.

Fig.(5.9) helps to explain how the excluded volume term of the free energy is con-
structed. A chain starts at the rod and ends at the line X(x) shown in Fig.(5.9). It
is assumed to fill the volume of the box given by the dashed lines around the chains.
This assumption is not valid for the chains far away from the surface, but for these
chains the contribution of the excluded volume term is certainly very small. Hence
the assumption does not affect the total free energy in a significant way. The splay
u(x) is given by X(x) − x.

To explain how to calculate the volume available to each chain, Fig.(5.10) shows a
larger sketch of one of the dotted boxes surrounding each chain in Fig.(5.9). For the
quasi two-dimensional system under consideration the volume is given by the grey
area in Fig.(5.10) times the diameter of the rods d. The area A

(0)
i shaded in light

grey is given by

A
(0)
i = h (d+ ∆ui/2) , (5.18)

where ∆ui = ui −ui−1. It is the area A
(l)
i shaded in dark grey where the shift of the

rods l(x) comes into play. It is given by

A
(l)
i = hqi −

1

2
liqi. (5.19)

As can be seen from Fig.(5.10) the length qi is given by

qi = li
ui−1

h
= li

ui − ∆ui

h
(5.20)

⇒ A
(l)
i = li (ui − ∆ui) ·

[
1 − li

2h

]
≈ li (ui − ∆ui) . (5.21)
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X(x)

−D

l(x)

0

x

Figure 5.9: This sketch shows the spatial segments or boxes filled by each chain. They
get larger with increasing distance from the surface. The shift at each position x is denoted
by l(x). x ranges from −D at the surface to 0 at the last rod. The splay of the chains is
given by u(x) = X(x) − x.

Since li is assumed to be small compared to h, the term in the square brackets
in Eq.(5.21) can be approximated by 1. In Fig.(5.10) this corresponds to double
counting the area of the small triangle with the catheti qi and li. It is convenient to
take the continuum limit: li → l(x), ui → u(x), ∆ui → du′(x). The total volume
V (x) available to a chain at position x is then given by

V (x) = d
(
A(0)(x) + A(l)(x)

)
. (5.22)

Using Eqs.(5.18, 5.21) yields

V (x) = d2h (1 + u′(x)/2) + dl(x)(u(x) − du′(x)). (5.23)

The elastic term of the free energy is the same as in the previous section.

The energy penalty for the additional area of a rod at position i exposed to the
solvent as a function of the shift li is simply given by 2γlid. The complete free
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Figure 5.10: This figure shows how the volume occupied by each chain is calculated as
a function of splay u and shift l.

energy functional can now be constructed.

βF = 2

0∫

−D

dxβγl(x) +
1

Nb2d

0∫

−D

dx
[
u(x)2 + h2

]

+
N2b3

2d

0∫

−D

dx

[
1

hd2(1 + u′(x)/2) + dl(x)(u(x) − du′(x))

]
(5.24)

For simplicity all terms which do not depend on either l or u are dropped because
they are of no interest for the following considerations and the excluded volume
parameter v is set to v = b3 (compare Section 2.2). The excluded volume term in
Eq.(5.24) was constructed assuming constant density of monomers for each chain
within the box of volume V given by Eq.(5.23). The monomer density close to the
rods is larger than the one further away from the rods and therefore this assumption
tends to underestimate the excluded volume energy. However, it is the standard
approximation used in Flory-type models and has been proven to be sufficient to
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5.3. Variable Shift

describe the behaviour of a finite polymer brush, see [64].

Fig.(5.9) shows that the rod at the surface has zero shift since it has no other rod
to the left with respect to which it could shift. So for the rod-coil copolymer at the
surface the integrand in Eq.(5.24) reduces to the one in Eq.(5.2) from the previous
section. This of course also means that the equation for the shift (Eq.(5.27) below)
is only valid from the second rod on (as counted from the surface).

To calculate the equilibrium shift l(x) it is necessary to compute the Euler-Lagrange
equations from a functional minimisation of Eq.(5.24) with respect to u(x) and l(x).
The Euler-Lagrange equation for the splay ũ has the the first integral

2βγl(x) +
u(x)2 + h2

Nb2d

+
N2b3

d

[
1

hd2(2 + u′(x)) + 2dl(x)(u(x) − du′(x))

+
(h− 2l(x)) u′(x)

(hd(2 + u′(x)) + 2l(x)(u(x) − du′(x)))2

]
= C1. (5.25)

Variation of Eq.(5.24) with respect to l(x) yields

2βγ +
2N2b3

d2

[
u(x) − du′(x)

(hd(2 + u′(x)) + 2l(x)(u(x) − du′(x)))2

]
= 0. (5.26)

The quadratic Eq.(5.26) can be solved for the shift l(x).

l(x) =

(
b3N2

d2βγ
(u(x) − du′(x))

) 1

2 − hd(2 + u′(x))

2(u− du′(x))
(5.27)

Inserting the expression for the shift - i.e. Eq.(5.27) - into Eq.(5.25) results in a very
complicated, highly nonlinear differential equation which cannot be solved exactly.
However, the overall effect of the shift on the free energy is certainly smaller than
the overall effect of the splay. Thus it is a reasonable approximation to calculate
the solution for the splay at zero shift and to use this as an approximation for the
splay u in Eq.(5.27). This approximation breaks down when the splay becomes very
small close to the surface. But for zero splay the shift should be constant. The
shape of the profile of the shift away from the surface at finite splay can therefore
be calculated within this approximation.

In the following an approximate solution of the splay u for zero l is calculated.
Setting the shift l(x) identical zero in Eq.(5.25) the differential equation reduces to

u(x)2 + h2

Nb2d
+

2N2b3

hd3

[
1 + u′(x)

(2 + u′(x))2

]
= C1 (5.28)

⇒ u2 + 8h2 1 + u′

(2 + u′)2
= C2 (5.29)
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5. Adsorption of rod-coil diblocks at a surface

which is Eq.(5.3) from the previous section.

At this point it is again convenient to introduce dimensionless variables marked by
a tilde. They are defined as in the previous section, e.g. ũ = u/(

√
8h). Eq.(5.29)

can be integrated for arbitrary C̃2 which leads to an implicit equation for the splay
ũ(x̃) similar to Eq.(5.4)

2ũ0−2ũ+ln
[
2ũ+ (1 − 4C̃2 + 4ũ2)1/2

]
−ln

[
2ũ0 + (1 − 4C̃2 + 4ũ2

0)
1/2
]

= 4x̃. (5.30)

Note that −D̃ ≤ x̃ ≤ 0. The integration constant C̃2 can be determined by using
the boundary condition ũ(−D̃) = 0 - i.e. zero splay at the surface, see Fig.(5.9).

C̃2 =
1

4

(
1 − ũ2

0 sinh
[
2D̃ + ũ0

]−2

+ ũ2
0 cosh

[
2D̃ + ũ0

]−2
)

(5.31)

The chain furthest away from the surface at x = 0 can topple over completely and
is therefore allowed a splay u0 = h or ũ0 = 1/

√
8. Therewith Eqs.(5.30, 5.31) reduce

to

1/
√

2 − 2ũ+ ln
[
2ũ+ (1 − 4C̃2 + 4ũ2)1/2

]

− ln
[
1/
√

2 + (3/2 − 4C̃2)
1/2
]

= 4x̃ (5.32)

C̃2 =
1

8

(
2 − sinh

[
4D̃ + 1/

√
2
]−2
)
. (5.33)

It is not possible to resolve Eq.(5.32) with respect to the splay u. However, x is
known as a function of u, u′ as a function of u (see Eq.(5.29)) and l as function
of u and u′. Hence, for a certain set of parameters, the shift l can be plotted as a
function of x by either numerically resolving Eq.(5.32) or by showing a parameter
plot of l versus x, using u as a parameter. This is done for a characteristic set of
parameters in Fig.(5.11). The plot demonstrates that the assumption for the profile
of the splay in Fig.(5.8) was quite reasonable.

Now an approximate explicit expression for small values of the splay ũ is calculated.
For ũ≪ 1 the logarithmic term dominates the linear term in Eq.(5.32). Neglecting
the linear term 2ũ, Eq.(5.32) can be converted to

2ũ+ (1 − 4C̃2 + 4ũ2)1/2

1/
√

2 + (3/2 − 4C̃2)1/2
= e4x̃−1/

√
2 (5.34)

⇒ ũ =
sinh

[
4(D̃ + x̃)

]

√
8 sinh

[
4D̃ + 1/

√
2
] . (5.35)
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Figure 5.11: The shift l is plotted as a function of negative distance from the outmost
rod towards the surface. The outmost rod (the one furthest away from the surface) is
located at x = 0, compare Fig.(5.9). Parameters: N = 700, b/d = 0.1, βγd2 = 1

Transforming back to variables carrying dimensions yields

u = h
sinh

[√
2(D + x)/h

]

sinh
[
(
√

2D/h+ 1/
√

2
] , (5.36)

u′ =
√

2
cosh

[√
2(D + x)/h

]

sinh
[
(
√

2D/h+ 1/
√

2
] . (5.37)

The splay decays rather fast from the open end inwards. Numerical estimates show
that Eqs.(5.36, 5.37) are actually a rather good approximation for the splay from D
up to D/2. Eqs.(5.36, 5.37) and Eq.(5.27) would form an explicit analytic expression
for the shift l as a function of x close to the surface. But for most parameter combi-
nations this corresponds to a regime in which the effect of the splay is smaller than
the effect of the shift. Therefore the splay can no longer be calculated independent
from the shift and the above result for the splay is no longer a good approximation
in the presence of the shift.

For large splay, the implicit solution for the splay u, Eq.(5.30), can be expanded
in a power series around the maximum splay u0. Unfortunately, an expansion up
to quadratic order gives only a reasonable numerical agreement for values of u very
close to u0. If higher order terms are taken into account, the solution for u gets to
complicated to be of any instructive use.

It is nevertheless possible to estimate the threshold value of γ above which the
energy penalty for additional rod-solvent exposure becomes to large for a shift to
occur. The shift is identically zero if the right hand side of Eq.(5.27) is less or equal
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to zero for all x.

(
b3N2

d2βγ
(u(x) − du′(x))

) 1

2 − hd(2 + u′(x))

2(u− du′(x))
≤ 0

⇒ βγ ≥ b3N2(u(x) − du′(x))

h2d4(2 + u′(x))2
. (5.38)

To find an upper limit for the threshold value γc note that the maximum value of
the shift is u0 = h. An upper estimate for (u(x) − du′(x))/(2 + u′(x))2 is therefore
given by 4h. The upper limit for γc is thus given by

βγc ≈
b3N2

4hd4
≈ 0.4

N

d2

(
b

d

) 4

3

. (5.39)

For the set of parameters chosen in Fig.(5.11) this yields βγcd
2 ≈ 13.

In this section an attempt was made to describe a variable shift l(x). For values
of the splay u(x) which are big enough to dominate the effect of the shift a set of
equations (5.27, 5.32, 5.33) was found which determines l as a function of u and
u as a function of x. Although it is not possible to resolve Eq.(5.32) with respect
to u, the profile of the shift can be plotted for a certain set of parameters, see
Fig.(5.11). In this section and in the previous one it was always assumed that the
adsorbed aggregate is stable and does not disintegrate. The next section discusses
under which conditions this is case and which other configurations are possible.

5.4. Stability and other possible configurations

In the previous section it was assumed that a configuration of f rod-coil copolymers
at a surface as it is pictured in Fig.(5.8) is actually stable. There are three other
possible configurations

In the quasi two-dimensional system considered here only one rod is in contact with
the surface. Therefore a possible configuration is the one shown in Fig.(5.12), where
one single copolymer is adsorbed at the surface and the others form a detached
sheet. Such a situation is called detached configuration in the following. The energy
of the rod-surface contact in this configuration is the same as for the attached one
considered in the previous section.

A configuration with different contact energy is the mushroom-like one as depicted
in Fig.(5.13). This configuration is always preferable to a complete detachment of
the aggregate since in the latter case the system would gain no contact energy.
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5.4. Stability and other possible configurations

Figure 5.12: For long chains a detachment of the aggregate from the rod adsorbed to
the surface might be preferable.

Figure 5.13: Another possible configuration: The aggregated rods adsorb perpendicular
to the surface. This configuration is preferable for large aggregates.

The last possible configuration is a complete dissociation of the aggregate into single
copolymers due to the presence of the attractive surface. These single copolymers
then adsorb individually at the surface, see Fig.(5.14). This configuration yields the
highest gain of contact energy. However, it is also the configuration with the highest
energy penalty for exposure of rod surface to the solvent. For very high contact
energy, i.e. κ ≫ γ, the system always dissociates. On the other hand, if κ is to
small the system might prefer the mushroom configuration even for long rods, since
it allows the chains to gain entropy without much increase in exposure of the rods
to the solvent.

By estimating the free energies of these configurations and comparing them with
the one of the attached configuration, it is possible to find the range of κ in which
the attached configuration is stable. To achieve this at least approximatively the
free energy of the attached configuration with zero shift is calculated. It gives a
slight overestimation of the free energy of the configuration considered in Section
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5. Adsorption of rod-coil diblocks at a surface

Figure 5.14: The aggregate dissociates and the individual rods adsorb at the surface.
This configuration is preferred for large κ.

3. However, it still provides a rough estimate for the parameter range in which the
attached configuration is stable. At zero shift the chains form a finite brush. Its
free energy is calculated in Section 2 and given by Eq.(5.13). One side of the brush
is free and therefore allowed a splay of u0 = h, the other side is confined by the
surface, i.e. uD = 0. The length D is given by fd. The free energy of the attached
configuration then reads

βFattach =
1

Nb2d

[
3fdh2 −

(
7

6
− 1√

2

)
h3

]
. (5.40)

βFattach is used as a reference energy and energy gains and penalties due to rod-
surface contact or rod-solvent exposure are added to the free energies of the other
configurations.

Compared to the attached configuration, the contact energy of the mushroom differs
by κ(Ld− fd2). The chains can also be modelled as a finite brush. Here both ends
are free and are therefore allowed a splay of u0 = uD = h. The free energy of the
mushroom configuration is hence given by

βFmushroom = κ
(
dL− fd2

)

+
1

Nb2d

[
3fdh2 −

(
7

3
−

√
2

)
h3

]
. (5.41)

The attached configuration is preferred to the mushroom configuration if Fattach <
Fmushroom. This yields the following condition for κ

βκ >
0.12N2

Ld− fd2

(
b

d

)3

. (5.42)

This is the lower bound for κ. To get the upper bound the free energy of the
dissociated copolymers - see Fig.(5.14) - has to be estimated.

Compared to the attached configuration, the dissociated one yields a contact energy
gain of −(f − 1)κLd. But on the other hand it also gives rise to an additional
energy penalty of 2(f − 1)γLd. Within this Flory-type theory the flexible chains of
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5.4. Stability and other possible configurations

the individual copolymers at the surface can be treated as free ones and their free
energy can be neglected. Comparison of Fattach and 2(f −1)γLd− (f −1)κLd yields
the upper limit of κ above which the system dissociates:

βκ < 2βγ − 1

(f − 1)Ld2

[
1.2fdN

(
b

d

) 4

3

− 0.12N2b

(
b

d

)2
]
. (5.43)

Within this range of values for κ the attached configuration can actually be stable.
For the parameters chosen in Fig.(5.11), N = 700, b/d = 0.1, βγd2 = 1 and L/d =
80, f = 30, the range of stability is given by 1.18 < βκd2 < 1.52.

It is also of interest to keep κ and γ fixed and to investigate which configuration is
preferred for different combinations of molecular properties. The most characteristic
properties are rod length L (or aspect ratio L/d) and number of chain monomers
N . Therefore the critical rod lengths which separate each of two of the possible
configurations from each other are calculated as functions of N and of the other
parameters. They are then used to calculate a phase diagram of the configurations
in L-N space.

Eq.(5.42) can be rearranged such that it gives the critical rod length below which
the system changes from the attached to the mushroom configuration.

Lattach
mushroom ≈ fd+ 0.12

N2b

βκd2

(
b

d

)2

(5.44)

Comparison of Fmushroom with the energy of the dissociated configuration yields the
rod length Lmushroom

dissociate which separates the mushroom from the dissociated configura-
tion.

Lmushroom
dissociate ≈ 1.2fdN

(
b
d

)4/3 − 0.24N2b
(

b
d

)2 − fdβκd2

2(f − 1)βγd2 − fβκd2
(5.45)

In case of rather large κ (close to the upper limit) there might exist a rod length
which directly separates the attached configuration from the dissociated configura-
tion. It is found to be

Lattach
dissociate ≈

1.2fdN
(

b
d

)4/3 − 0.12N2b
(

b
d

)2

(f − 1)βd2(2γ − κ)
. (5.46)

Now the detached configuration as depicted in Fig.(5.12) is considered. Compared
to the attached configuration its free energy has a contribution from two additional
rod surfaces being exposed to the solvent, which is given by 2Ldγ. The free energy of
the chains of the detached sheet is similar to the one of the mushroom configuration
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5. Adsorption of rod-coil diblocks at a surface

withD = f−1. The free energy of the chain of the single copolymer can be neglected
as in the case of dissociation. Fdetach is hence given by

βFdetach = 2Ldβγ +
1

Nb2d

[
3(f − 1)dh2 −

(
7

3
−

√
2

)
h3

]
. (5.47)

The rod length Ldetach
attach which separates the detached and the attached configuration

can now be estimated.

Ldetach
attach ≈ 0.6

N

dβγ

(
b

d

) 4

3

+ 0.06
N2

dβγ

(
b

d

)3

(5.48)

However, in a wide range of parameters the detached configuration sits in between
the mushroom and the dissociated configuration. Therefore equating Eq.(5.41) and
Eq.(5.47) gives the rod length which separates mushroom and detached configura-
tion.

Lmushroom
detach ≈

(
fd− 1.2

Nd

βκd2

(
b

d

) 4

3

)
·
(
1 − γ

κ

)−1

(5.49)

The length Ldetach
dissociate which separates the detached from the dissociated configuration

is found to be

Ldetach
dissociate ≈

1.2(f − 1)dN
(

b
d

)4/3 − 0.24N2b
(

b
d

)2

2(f − 2)βγd2 − (f − 1)βκd2)
. (5.50)

As already mentioned above, these critical rod lengths can be used to calculate a
phase diagram of the configurations in L-N space, which - for a typical set of pa-
rameters - is shown in Fig.(5.15). Note, that the phase diagram shown in Fig.(5.15)
is only one example. For different parameter combinations some of the configura-
tions might not be accessible for the system. The contact energy per unit area κ
is chosen such that there exists a region in L-N space in which the entropy loss
of the confined chains is compensated by the energy gain due to rod-surface con-
tact. But it is also chosen to be not much larger than the rod-rod contact energy γ,
since otherwise the aggregate would dissociate. However, for very long chains the
aggregate always dissociates into single copolymers which then individually adsorb.
Nevertheless, Fig.(5.15) shows that there is indeed a broad region in L-N space in
which the attached configuration is stable and the rods shift with respect to each
other as discussed in Section 3.
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Figure 5.15: Configurations of the rod-coil copolymers at the surface. Parameters:
b/d = 0.1, f = 30, βγd2 = 1, βκd2 = 1.3
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6. Rod-coil copolymer with variable

composition

6.1. Variable composition and the helix-coil transition

In Chapters 3 and 4 a multiblock copolymer with fixed composition of stiff and flex-
ible parts was discussed. The restriction of fixed composition will now be released.
Each segment is now allowed to undergo a microscopic transition from flexible to
stiff and vice versa. The equilibrium composition of stiff and flexible segments is
determined by the specific structure of the entire copolymer. The specific structure
is also influenced by the composition of stiff and flexible segments. Helix-forming
polymers are polymers with a variable composition of stiff and flexible segments.
The most common examples are polypeptides (i.e. chains of amino acids, for in-
stance proteins) and chains of nucleic acids (RNA and DNA) [2]. In addition, there
are also synthetic polymers that can form helical structures in solution, for instance
polyisocyanide [70] or polybenzylglutamate [55, 71].

Significant work has been done to investigate the helix-coil transition theoreti-
cally [52] and computationally [68, 69]. One of the first and most well-known ap-
proaches is the Zimm-Bragg theory [8, 55]. It considers a one-dimensional Ising type
model in which each segment can be in one of the two states: helical state (stiff)
or coil state (flexible). All interactions between different segments along the chain
are neglected. The helix is stabilised by hydrogen bonds which generates an energy
gain of −ǫ for each segment in the helical state. This energy gain is partly balanced
by an entropy loss −∆S. The free energy difference between the helical state and
the coil state is therefore given by ∆f = −ǫ+ T∆S for each segment.

In an α-helix hydrogen bonds can only form between the ith and the (i+3)th peptide
group. The formation of a hydrogen bond between the first and the third peptide
group requires fixing the conformation of three groups. The next bond between the
second and the fourth group furnishes the same energy gain but requires fixing only
one new group and thus leads to a much smaller entropy loss. The formation of an
α-helix is therefore a cooperative process and the formation of a junction between
helix and coil is energetically unfavourable. This can be modelled by an energy
penalty µJ for each junction between a stretch of helical segments and a stretch of
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6. Rod-coil copolymer with variable composition

flexible segments. Similar arguments hold for all kind of helices. Helix formation is
always a cooperative process.

It is convenient to define the following fugacities

s ≡ e−β∆f , σ ≡ e−2βµJ , (6.1)

where s gives the statistical weight of a helical segment compared to a coil segment.
The cooperativity parameter σ and gives the statistical weight of a junction point.
σ = 1 corresponds to µJ = 0 and therefore to a non-cooperative system. σ → 0
corresponds to µJ → ∞ and therefore to a totally cooperative system, i.e. either the
entire chain forms one big helix or no helix is formed at all. In most helix forming
biopolymers σ is roughly 10−3 − 10−4 [8].

Using a transfer matrix method [8] the one dimensional model can be solved exactly.
For the fraction of stiff helical segment ΘR = NR/N as a function of s and σ one
obtains

ΘR =
1

2
+

s− 1

2 [(s− 1)2 + 4sσ]1/2
. (6.2)

Fig.(6.1) shows ΘR(s) for three different values of σ. With increasing cooperativity
the transition from almost zero fraction of stiff segments to almost zero fraction of
flexible segments becomes sharper and sharper. Note, that at s = 1 energy gain
and entropy loss are exactly balanced, which leads to ΘR = 1/2. For s < 1 the
entropy loss is larger than the energy gain, for s > 1 it is smaller. This rather sharp
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Figure 6.1: Helix-coil transition in the Zimm-Bragg model. The fraction of stiff segments
ΘR is plotted as a function of s for three different cooperativities.

crossover transition due to the cooperativity effect is also observed experimentally,
for instance in polybenzylglutamate [55] or single- and double-stranded DNA [72].
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6.1. Variable composition and the helix-coil transition

Several extensions have been made to this one-dimensional Ising type model. It
has been shown [73] that the transitions becomes less cooperative, if the hydrogen-
bonding ability of the solvent is taken into account. The helix-coil transition in
grafted chains was studied [74] as well as the effect of an external applied force on the
transition [75]. The latter study showed that in the limit of very high cooperativity
σ → 0 the force extension curve of a homopolypeptide shows a plateau corresponding
to the sharp transition from coil to helix. In this case the force extension curve looks
similar to the one observed in Section 4.3, albeit the physical phenomenon behind
the plateau is different.

Of special interest is the application of the one-dimensional models to proteins,
see for instance [76, 77]. A study of the helix-coil transition including long-range
electrostatic interactions [78] can, to some extent, explain the amount and location
of helical segments in globular proteins. However, to understand how α-helices
(or generally secondary structure elements) are formed in the folding process of a
protein and how this influences the compaction and formation of tertiary structure
(and vice versa), it is necessary to combine the one-dimensional physics of the helix-
coil transition with three-dimensional interactions of segments along the chain. This
enables a description of the interplay between the microscopic transition for each
segment and the mesoscopic structure formation of the entire copolymer mentioned
in the first paragraph.

In proteins the stiff helical parts are often hydrophobic, such that this hydropho-
bicity drives the protein into a compact globular phase. Hydrophobic means that
the solvent, in this case physiological saline, is poor for the stiff parts, similar to
the considerations in Chapter 3. Statistical analysis of the data from 41 globular
proteins in native and partially folded conformational states [79] showed a strong
correlation between the amount of secondary structure elements and compactness of
the proteins. This indicates that the formation of secondary structure (for instance
α-helices) and the hydrophobic collapse into a compact globule occur simultane-
ously. This problem has been partially discussed within computer simulations of
globular proteins [53, 54, 80]. The interplay of compaction and secondary structure
formation leads to the formation of the specific three-dimensional tertiary struc-
ture. Computational and experimental studies of this mechanism can for instance
be found in [81, 82]. A general review on physical approaches to the problem of
protein folding is given by [83].

To study the interplay of helix-coil (or stiff-flexible) transition and collapse transition
of the polymer into a compact globule, an approach is developed which combines
variable composition with three-dimensional excluded volume interactions using self-
consistent field theory.

In this section the microscopic helix-coil transition and its application to proteins
was discussed. In the following sections the field theory for the rod-coil (or helix-
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6. Rod-coil copolymer with variable composition

coil) multiblock with variable composition is introduced. Below the term rod-coil
multiblock copolymer rather than helix-coil is mainly used. The model is not limited
to the description of proteins, but is rather meant to provide a general theory to
study rod-coil copolymers with variable composition. First, the canonical partition
function for the rod-coil multiblock is derived. To allow for a variable composition, a
grand canonical description of the system is needed. The grand canonical partition
function is represented in terms of a field theory. This is a rather formal and technical
procedure and therefore placed in Appendix A. In a self-consistent field treatment,
the saddle point grand potential is then minimised with respect to the fields which
leads to a set of differential equations for the self-consistent fields.

6.2. Microscopic model and canonical partition

function

This section introduces the microscopic model and its canonical partition function.
The grand canonical partition function which allows for a variable composition, is
derived in the following section and in Appendix A.

The Edwards Hamiltonian for a flexible polymer chain with two-body excluded
volume interactions was introduced in Section 2.2. It is given by

βHE =
3

2b2

∫ N

0

ds

(
∂r

∂s

)2

+
v

2

∫ N

0

ds

∫ N

0

ds′ δ(r(s) − r(s′)). (6.3)

The two-body interaction constant (or excluded volume parameter) v will later cho-
sen to be negative to describe attractive interaction. To prevent the polymer from
collapsing to a point it is therefore necessary to introduce a repulsive three-body
interaction with positive interaction parameter w. The complete Edwards Hamilto-
nian for one flexible part of the copolymer then reads

βHcoil =
3

2b2

∫ N

0

ds

(
∂r

∂s

)2

+
v

2

∫ N

0

ds

∫ N

0

ds′ δ(r(s) − r(s′))

+
w

3!

∫ N

0

ds

∫ N

0

ds′
∫ N

0

ds′′ δ(r(s) − r(s′))δ(r(s′) − r(s′′)). (6.4)

To construct the Hamiltonian of the entire copolymer it is convenient to introduce
microscopic segment densities. Before this can be done, it is necessary to find a
suitable parameterisation for the copolymer. The multiblock copolymer may be
composed of K rod-coil blocks. In Fig.(6.2) two successive (n − 1, n) blocks and
their parameterisation are shown. The conformation of the rod-coil block number
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6.2. Microscopic model and canonical partition function

n is given by the vector-function rn(s) describing the contour of the coil, the vector
Rn gives the position of the junction point between rod and coil and the unit vector
un describes the orientation of the rod. The length of the nth rod-coil block in units

R

R n - 1

r  (s)

N n )

 n

 n

u

u

 n

n - 1

r  n

r n (0)

(f n

Figure 6.2: Rod-coil multiblock copolymer parameterisation. Two successive rod-coil
blocks with numbers n− 1 and n are shown. The flexible chain coordinates use the vector
set r(s). The orientation of the nth rod is denoted un and the junction point between rod
and coil is given by Rn.

of the segment length b is given by Nn. The fraction of the flexible segments (coil) is
given by fn and the fraction of stiff segments (rod) thus by 1− fn. The microscopic
flexible segment density ρ̂C(r) and stiff segment density ρ̂R(r) can now be defined
as follows

ρ̂C(r) =

K∑

n=0

fnNn∫

0

ds δ(r − rn(s)), (6.5)

ρ̂R(r) =
K∑

n=0

(1−fn)Nn∫

0

ds δ(r −Rn − unsb). (6.6)

The interaction part of the hamiltonian should allow for two- and three-body ex-
cluded volume point interactions between flexible and stiff segments, including cross-
terms. The interaction constants v and w control their strength. To model selective
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6. Rod-coil copolymer with variable composition

solvent conditions an additional two-body interaction between the stiff segments
only is introduced. Its strength is controlled by the interaction constant χ. Mak-
ing use of the microscopic segment densities defined in Eqs.(6.5, 6.6), H iso

int can be
written as

βH iso
int [ρ̂C, ρ̂R] = χ

∫
d3r ρ̂R(r)ρ̂R(r) +

v

2

∫
d3r [ρ̂C(r) + ρ̂R(r)]2

+
w

3!

∫
d3r [ρ̂C(r) + ρ̂R(r)]3 . (6.7)

The superscript ‘iso’ denotes isotropic (not orientation dependent) interactions. In
Chapter 9 it will be shown that this set of isotropic point interactions is enough to
drive the system into a liquid-crystalline globular phase showing nematic order of
the rods. It is nevertheless of interest to include an explicit alignment interaction
between the rods to study its influence on the transition between an isotropic (disor-
dered) globular phase and a liquid-crystalline globular phase. In order to construct
such an interaction, the microscopic orientation density Ŝij(r) is introduced [51].

Ŝij(r) =

K∑

n=0

(1−fn)Nn∫

0

ds δ(r− Rn − unsb)

[
uiuj − 1

3
δij

]
. (6.8)

The microscopic orientation density is sensitive to the collective orientation of the
rods [66]. For the interaction sensitive term in the microscopic orientation den-
sity the standard second Legendre polynomial approximation is used. The rod-rod
alignment interaction is chosen to be of the Maier-Saupe form [66, 67].

g

∫
d3rTr

[
Ŝij(r)Ŝij(r)

]
= g

2

3

∑

n,m

∫
dsds′ δ (Rn + unsb− Rm − ums

′b)

× P2(cos θ̂nm), (6.9)

where P2(cos θ̂nm) = (3 cos2 θ̂nm − 1)/2 is the second Legendre polynomial and θ̂nm

stands for the angle between rod n and rod m. The interaction constant g controls
the strength of the alignment interaction. The total interaction Hamiltonian is thus
given by

βHint = βH iso
int + g

∫
d3rTr

[
Ŝij(r)Ŝij(r)

]
. (6.10)
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The canonical partition function of the entire system can now be constructed.

Z({Nn}, K) =

∫ K∏

n=1

Drn(s)d
3Rnd2un δ(|un| − 1)δ(rn(fnNn) − Rn)

× exp




− 3

2b2

fnNn∫

0

ds

(
∂rn

∂s

)2

− βHint




 , (6.11)

where for each rod-coil block the integration is over all continuous curves rn(s), all
rod-coil junction points Rn and all orientations of the rod un. The first term in
the exponential is responsible for the connectivity of each flexible chain, compare
Chapter 2. The first delta function takes care of the constraint for the tangent
vector of the rods to be a unit vector and the second delta function ensures that the
junction between each rod and flexible chain is located at the end point of the chain.
Hence Eq.(6.11) describes a multiblock rod-coil copolymer composed of K rod-coil
units with interactions as described above. The nth coil has the contour length
fnNnb and the nth rod the length (1 − fn)Nnb. However, to allow for a variable
composition of stiff and flexible segments, this fixed sequence of rods and coils of
specific length has to be released. This can be done by switching from the canonical
description to a grand canonical description.

6.3. Grand canonical description and field theoretical

representation

The composition of the system is assumed to be equilibrated with respect to the total
number of stiff segments NR and flexible segments NC. Therefore the description of
the composition can be reduced to

{Nn}, K → NR, NC, NJ, (6.12)

where NJ is the number of junction points between rod and coil given by NJ = 2K.
To switch to a grand canonical description, it is necessary to introduce chemical
potentials: µC conjugated to the number of flexible segments NC, µR conjugated to
the number of stiff segments NR and µJ conjugated to the number of junctions NJ.
An energy gain ǫ per stiff segments compared to a flexible one is introduced. In the
case of a polypeptide, where the stiff segments are formed by a coil-helix transition,
it corresponds to the energy gain due to the formation of hydrogen bonds. The
chemical potential µR can thus be written as

µR = µ− ǫ, (6.13)
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6. Rod-coil copolymer with variable composition

where µ ≡ µC. Instead of the chemical potential µJ it is convenient to use the
fugacity σ defined by

σ = e−2βµJ . (6.14)

The parameters ǫ and σ are equivalent to the ones used by Zimm and Bragg [55],
see also section 6.1. Note, that it is not necessary to introduce an entropy loss
∆S associated with the formation of a stiff segment by hand as in the Zimm-Bragg
model, since in the three dimensional description the difference of coil- and rod-
entropy is explicitely incorporated.

Formally, the grand canonical partition function is then given by

Z(µ, ǫ, σ) =

∞∑

NC,NR,NJ=0

Z(NR, NC, NJ)e
−βµNCe−β(µ−ǫ)NRσNJ/2. (6.15)

The grand canonical partition function can be represented in terms of an n-component
field theory in the limit n → 0 [12, 47, 48]. A detailed derivation of the field theo-
retical representation is given in Appendix A. Here only the result for the partition
function is given Two n-component vector fields are needed for the field theoretic
representation of the system. The vector field ϕα(r) is associated with the flexible
segments and ψα(r,u) is associated with the stiff segments. The grand canonical
partition function in the field theoretic representation reads

Z(µ, ǫ, σ) = lim
n→0

n∏

α=1

∫
DψαDϕα

[∫
d3r d2u ψ1(r,u)

] [∫
d3r′ ϕ1(r

′)

]

× exp

{
−1

2

n∑

α=1

∫
d3r d2u ψα(r,u)

[
β(µ− ǫ) − b2 (u · ∇r)

2

β(µ− ǫ)

]
ψα(r,u)

− 1

2

n∑

α=1

∫
d3rϕα(r)

[
βµ− b2

6
∇2

r

]
ϕα(r)

− χ

4

∫
d3r

[
n∑

α=1

∫
d2u ψ2

α(r,u)

]2

− v

8

∫
d3r

[
n∑

α=1

∫
d2u ψ2

α(r,u) +
n∑

α′=1

ϕ2
α′(r)

]2

(6.16)
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− w

48

∫
d3r

[
n∑

α=1

∫
d2u ψ2

α(r,u) +
n∑

α′=1

ϕ2
α′(r)

]3

+ σ1/2
n∑

α=1

∫
d3r d2u ψα(r,u)ϕα(r)

− g

4

n∑

α=1

n∑

α′=1

∫
d3r d2u d2u′ P2(u · u′) ψ2

α(r,u) ψ2
α′(r,u′)

}
, (6.16)

where the second Legendre polynomial is given by

P2(u · u′) =
1

2

(
3 cos2 θ − 1

)
(6.17)

and θ denotes the angle between the two unit vectors u and u
′.

This partition cannot be evaluated easily and thus an appropriate approximation is
needed. The method chosen here is the self-consistent field approximation [8]. In
the self-consistent field approximation fluctuations are neglected and the functional
integral over the fields in Eq.(6.16) is integrated by steepest descent. This leads to
an effective saddle point grand potential which has to be minimised with respect to
the fields. A short remark regarding the validity of this approximation is necessary.
In a rather dense system, like a polymer globule in poor solvent, fluctuations are
not important and can therefore safely be neglected. On the hand, in a very open
system of low density, like a swollen polymer chain in good solvent, fluctuations
play a major role and cannot be neglected. The self-consistent field method works
good to describe a polymer from the dense globular state up to the transition point
between globule and coil. The coil state of low density cannot be described properly
by this method.

The saddle point solutions for ϕα(r) and ψα(r,u) are chosen such that the effective
grand potential keeps the full symmetry of the hamiltonian in replica space, i.e. it
is invariant under rotations in replica space. This is the case for

ψα(r,u) = nαψ(r,u)

ϕα(r) = nαϕ(r), (6.18)

where n is a unit vector such that
∑n

α=1 n
2
α = 1. After the saddle point integration
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of the partition function the effective grand potential then reads

βΩ(µ, ǫ, σ) =
1

2

∫
d3r d2u

[
β(µ− ǫ)ψ2(r,u) +

b2[u · ∇rψ(r,u)]2

β(µ− ǫ)

]

+
1

2

∫
d3r

[
βµϕ2(r) +

b2

6
[∇rϕ(r)]2

]

+
χ

4

∫
d3r

[∫
d2u ψ2(r,u)

]2

+
v

8

∫
d3r

[∫
d2u ψ2(r,u) + ϕ2(r)

]2

+
w

48

∫
d3r

[∫
d2u ψ2(r,u) + ϕ2(r)

]3

− σ1/2

∫
d3r d2u ψ(r,u)ϕ(r)

+
g

4

∫
d3r d2u d2u′ P2(u · u′) ψ2(r,u) ψ2(r,u′). (6.19)

The rod and coil densities as well as the orientation density are given by the following
relations

ρC(r) =
1

2
ϕ2(r)

ρR(r) =
1

2

∫
d2u ψ2(r,u)

Sij(r) =
1

2

∫
d2u

(
uiuj − 1

3
δij

)
ψ2(r,u). (6.20)

The equilibrium number of stiff and of flexible segments is then given by

Nrod =
1

2

∫
d3rd2u ψ2(r,u) (6.21)

and

Ncoil =
1

2

∫
d3r ϕ2(r), (6.22)

respectively.

The effective grand potential in Eq.(6.19) has to be minimised with respect to the
fields to obtain the set of equations which determines the self-consistent fields. This
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functional minimisation leads to a set of highly nonlinear integro-differential equa-
tions which are difficult to deal with, even numerically.

[
β(µ− ǫ) − b2(u · ∇r)

2

β(µ− ǫ)

]
ψ(r,u) − σ1/2ϕ(r)

+ χψ(r,u)

∫
d2u′ ψ2(r,u′) +

v

2
ψ(r,u)

[∫
d2u′ ψ2(r,u′) + ϕ2(r)

]

+
w

8
ψ(r,u)

[∫
d2u′ ψ2(r,u′) + ϕ2(r)

]2

+ g ψ(r,u)

∫
d2u′ P2(u · u′) ψ2(r,u′) = 0 (6.23)

and

[
βµ− b2

6
∇2

r

]
ϕ(r) − σ1/2

∫
d2u′ ψ(r,u′)

+
v

2
ϕ(r)

[∫
d2u′ ψ2(r,u′) + ϕ2(r)

]

+
w

8
ϕ(r)

[∫
d2u′ ψ2(r,u′) + ϕ2(r)

]2

= 0. (6.24)

The main difficulties arise from the remaining integrals over the orientation u
′. To

avoid this integration the following approximation is used. The field ψ(r,u) can be
expanded in terms of spherical harmonics. As can be seen from the ψ(u·∇r)

2ψ-term
(first term in the exponential) in Eq.(6.16), the rods do not have a chirality, see also
Appendix A. The solutions for ϕ(r) and ψ(r,u) must therefore respect uniaxial and
cylindrical symmetry and the expansion of ψ(r,u) reduces to Legendre polynomials.
This expansion and the calculation of the corresponding effective grand potential
and the set of equations for the self-consistent fields are presented in the following
section.

6.4. Expansion in terms of Legendre polynomials

In order to simplify the effective grand potential given by Eq.(6.19), ψ(r,u) is ex-
panded in spherical harmonics. This expansion has the form [50]

ψ(r,u) =
∑

l,m

ψlm(r)Ylm(u). (6.25)

81



6. Rod-coil copolymer with variable composition

Since the solution for ψ(r,u) must respect uniaxial and cylindrical symmetry, the
expansion reduces to Legendre polynomials, i.e. m ≡ 0.

ψ(r,u) =
∑

l

ψl(r)Pl(u · n), (6.26)

where n is the main direction along which the rods in the core of the globule are
aligned, if the system forms an anisotropic globule with aligned rods. If they are
not aligned and the system forms an disordered globule, only the first term in the
expansion (l = 0) differs from zero.

The main direction of alignment n can be chosen arbitrarily without loss of gen-
erality, since a change in alignment direction only corresponds to a rotation of the
complete globule in the laboratory coordinate frame. Here the z-axis of the (x, y, z)
laboratory frame is chosen, i.e. n = nz.

As a further simplification, the expansion in Eq.(6.26) is truncated at lowest non-
trivial order

ψ(r,u) ≈
(

1

4π

)1/2

ψ0(r) +

(
5

4π

)1/2

ψ2(r)P2(u · nz). (6.27)

This is a rather severe approximation, but it makes it possible to tackle the problem
numerically, since the set of two integro-differential equations in r and u given by
Eqs.(6.23, 6.24) reduces to three partial differential equations in r, see Eqs.(6.35,
6.36, 6.37) below. Furthermore, the truncation is not expected to change the results
qualitatively. For future considerations it would nevertheless be of interest to try to
develop a numerical routine which can solve the full integro-differential equations.

From Eq.(6.20) and Eq.(6.27) the rod density can be calculated in terms of ψ0(r)
and ψ2(r). It is given by

ρR(r) ≈ 1

2

[
ψ2

0(r) + ψ2
2(r)

]
. (6.28)

After choosing nz as the alignment direction, the orientation density Sij(r) - see
Eq.(6.20) reduces to

S(r) ≡ Szz(r) =
1

3

∫
d2u P2(cos θ)ψ2(r,u)

≈ 2√
5
ψ2(r)

[
ψ0(r) +

√
5ψ2(r)

]
. (6.29)

To measure the orientational order of the entire system a nematic order parameter
S is defined as follows

S =
1

N

∫
d3r S(r). (6.30)
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6.4. Expansion in terms of Legendre polynomials

Substitution of Eq.(6.27) in Eq.(6.19) makes it possible to perform the u-integrations.
To perform the u- and u

′-integrations in the alignment interaction term in Eq.(6.19)
the following addition theorem is used [50]

P2(u · u′) = P2(cos γ) =

(
4π

5

) 2∑

m=−2

Y ∗
2m(u)Y2m(u′). (6.31)

ψ(r,u) and ψ(r,u′) do not depend on the azimuthal angles φ and φ′ respectively.
Therefore the only term which survives after integrations over φ and φ′ corre-
sponds to m = 0 and leads to the factorisation of the alignment interaction term in
Eq.(6.19).

The straightforward u-integrations in the other terms in Eq.(6.19) yields the follow-
ing expression for the effective grand potential in terms of ψ0(r), ψ2(r) and ϕ(r)

βΩ(µ, ǫ, σ) =
β(µ− ǫ)

2

∫
d3r
[
ψ2

0(r) + ψ2
2(r)

]

− b2

210 β (µ− ǫ)

∫
d3r
{

35ψ0(r)∇2
rψ0(r)

+ 14
√

5ψ0(r)
[
2 ∂2

z − ∂2
x − ∂2

y

]
ψ2(r)

+ ψ2(r)
[
25 ∂2

x + 25 ∂2
y + 55 ∂2

z

]
ψ2(r)

}

+
1

2

∫
d3r ϕ(r)

[
βµ− b2

6
∇2

r

]
ϕ(r)

+
χ

4

∫
d3r
[
ψ2

0(r) + ψ2
2(r)

]2

+
v

8

∫
d3r
[
ϕ2(r) + ψ2

0(r) + ψ2
2(r)

]2

+
w

48

∫
d3r

[
ϕ2(r) + ψ2

0(r) + ψ2
2(r)

]3

− 2
√
πσ

∫
d3r ϕ(r)ψ0(r)

+
g

245

∫
d3r
{
ψ2(r)

[
7ψ0(r) +

√
5ψ2(r)

]}2

. (6.32)

The above equation should now be minimised with respect to ψ0(r), ψ2(r) and ϕ(r)
to obtain the set of differential equations for the three fields.

As already mentioned the fields ϕ(r), ψ0(r) and ψ2(r) are symmetric with respect
to rotations within the xy-plane. Hence it is convenient to switch to cylindrical
coordinates

{x, y, z} → {̺, z}, (6.33)
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6. Rod-coil copolymer with variable composition

where ̺ = (x2 + y2 + z2)1/2.

The grand potential Ω(µ, ǫ, σ) then reads

βΩ(µ, ǫ, σ) =
β (µ− ǫ)

2
2π

∫ ∞

0

d̺ ̺

∫ ∞

−∞
dz
[
ψ2

0(̺, z) + ψ2
2(̺, z)

]

− b2

210 β (µ− ǫ)
2π

∫ ∞

0

d̺ ̺

∫ ∞

−∞
dz

{
35ψ0(̺, z)∇2

rψ0(̺, z)

+ 14
√

5ψ0(̺, z)
[
3 ∂2

z −∇2
r

]
ψ2(̺, z)

+ ψ2(̺, z)
[
25∇2

r + 30 ∂2
z

]
ψ2(̺, z)

}

+
1

2
2π

∫ ∞

0

d̺ ̺

∫ ∞

−∞
dz ϕ(̺, z)

[
βµ− b2

6
∇2

r

]
ϕ(̺, z)

+
χ

4
2π

∫ ∞

0

d̺ ̺

∫ ∞

−∞
dz
[
ψ2

0(̺, z) + ψ2
2(̺, z)

]2

+
v

8
2π

∫ ∞

0

d̺ ̺

∫ ∞

−∞
dz
[
ϕ2(̺, z) + ψ2

0(̺, z) + ψ2
2(̺, z)

]2

+
w

48
2π

∫ ∞

0

d̺ ̺

∫ ∞

−∞
dz
[
ϕ2(̺, z) + ψ2

0(̺, z) + ψ2
2(̺, z)

]3

−
√

4πσ 2π

∫ ∞

0

d̺ ̺

∫ ∞

−∞
dz ϕ(̺, z)ψ0(̺, z)

+
g

245
2π

∫ ∞

0

d̺ ̺

∫ ∞

−∞
dz
{
ψ2(̺, z)

[
7ψ0(̺, z) +

√
5ψ2(̺, z)

]}2

,

(6.34)

where the Laplace operator in cylindrical coordinates is given by ∇2
r = ∂2

̺ + 1
̺
∂̺ +∂2

z .

Functional minimisation of Eq.(6.34) with respect to ϕ(̺, z), ψ0(̺, z) and ψ2(̺, z)
gives the following set of equations

− b2

6
∇2

rϕ(̺, z) + βµϕ(̺, z) −
√

4πσψ0(̺, z)

+
v

2
ϕ(̺, z)

[
ϕ2(̺, z) + ψ2

0(̺, z) + ψ2
2(̺, z)

]

+
w

8
ϕ(̺, z)

[
ϕ2(̺, z) + ψ2

0(̺, z) + ψ2
2(̺, z)

]2
= 0, (6.35)
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b2

β(µ− ǫ)

{

−1

3
∇2

rψ0(̺, z) −
√

5

15

[
3 ∂2

zψ2(̺, z) −∇2
rψ2(̺, z)

]
}

+ β(µ− ǫ)ψ0(̺, z) −
√

4πσϕ(̺, z)

+χψ0(̺, z)
[
ψ2

0(̺, z) + ψ2
2(̺, z)

]

+
v

2
ψ0(̺, z)

[
ϕ2(̺, z) + ψ2

0(̺, z) + ψ2
2(̺, z)

]

+
w

8
ψ0(̺, z)

[
ϕ2(̺, z) + ψ2

0(̺, z) + ψ2
2(̺, z)

]2

+
14g

245

[
7ψ0(̺, z) +

√
5ψ2(̺, z)

]
ψ2

2(̺, z) = 0 (6.36)

and

b2

β (µ− ǫ)

{

− 5

21
∇2

rψ2(̺, z) −
6

21
∂2

zψ2(̺, z) −
√

5

15

[
3 ∂2

zψ0(̺, z) −∇2
rψ0(̺, z)

]
}

+ β(µ− ǫ)ψ2(̺, z) + χψ2(̺, z)
[
ψ2

0(̺, z) + ψ2
2(̺, z)

]

+
v

2
ψ2(̺, z)

[
ϕ2(̺, z) + ψ2

0(̺, z) + ψ2
2(̺, z)

]

+
w

8
ψ2(̺, z)

[
ϕ2(̺, z) + ψ2

0(̺, z) + ψ2
2(̺, z)

]2

+
2g

245
ψ2(̺, z)

[
7ψ0(̺, z) +

√
5ψ2(̺, z)

] [
7ψ0(̺, z) + 2

√
5ψ2(̺, z)

]
= 0

(6.37)

This is now a set of three differential equations for the three self-consistent fields
ϕ(r), ψ0(r) and ψ2(r) instead of the two integro-differential equations for ψ(r and
ϕ(r,u) given by Eqs.(6.23, 6.24). The three differential equations must be supple-
mented by the following boundary conditions

ϕ(̺→ ∞) = ψ0(̺→ ∞) = ψ2(̺→ ∞) = 0,

ϕ(̺→ ∞) = ψ0(z → ∞) = ψ2(z → ∞) = 0,

∂

∂̺
ϕ(̺, )

∣∣∣∣
∞

=
∂

∂̺
ψ0(̺)

∣∣∣∣
∞

=
∂

∂̺
ψ2(̺)

∣∣∣∣
∞

= 0,

∂

∂z
ϕ(z)

∣∣∣∣
∞

=
∂

∂z
ψ0(z)

∣∣∣∣
∞

=
∂

∂z
ψ2(z)

∣∣∣∣
∞

= 0. (6.38)

The total number of flexible and stiff segments (compare Eq.(6.22)) is now given by

Ncoil = π

∫ ∞

0

d̺ ̺

∫ ∞

−∞
dz ϕ2(̺, z) (6.39)
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and

Nrod = π

∫ ∞

0

d̺ ̺

∫ ∞

−∞
dz
[
ψ2

0(̺, z) + ψ2
2(̺, z)

]
, (6.40)

respectively.

The three coupled partial differential equations given by Eqs.(6.35, 6.36, 6.37) can
be solved numerically. This is done with the finite element tool kit Gascoigne [58].
A brief description of the numerical methods is given in Appendix B. In the fol-
lowing chapter some results for the coil-globule transition of a homopolymer are
reestablished by setting ψ0 and ψ2 identically to zero.

In Chapter 8 the numerical solutions of the full set of equations are presented and
discussed in detail.
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7. Homopolymer globule

7.1. Differential equation for the self-consistent field

In this chapter the coil-globule transition of a fully flexible homopolymer is investi-
gated as a test for the numerical routines.

After setting ψ equal to zero, Eq.(6.19) reduces to the effective free energy of a
flexible homopolymer.

βF (µ) =
1

2

∫
d3r ϕ(r)

[
βµ− b2

6
ϕ(r)∇2

r

]
ϕ(r)

+
v

8

∫
d3rϕ4(r) +

w

48

∫
d3rϕ6(r). (7.1)

The saddle point free energy given by Eq.(7.1) is sufficient to describe a polymer
from the dense globular state up to the transition point between globule and coil,
see also Section 6.3.

Minimisation with respect to ϕ(r) yields the differential equation which determines
the self-consistent field

[
βµ− b2

6
∇2

r

]
ϕ(r) +

v

2
ϕ3(r) +

w

8
ϕ5(r) = 0. (7.2)

Due to spherical symmetry, Eq.(7.2) can be simplified to

[
βµ− b2

6

(
∂2

̺ +
1

̺
∂̺

)]
ϕ(̺) +

v

2
ϕ3(̺) +

w

8
ϕ5(̺) = 0. (7.3)

The above differential equation has to be supplemented by the boundary conditions

ϕ(̺→ ∞) = 0,

∂

∂̺
ϕ(̺)

∣∣∣∣
∞

= 0. (7.4)
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The total number of segments N is given by

N = 2π

∫ ∞

0

d̺ ̺2ϕ2(̺). (7.5)

In the following, the segment length b is chosen as the unit length scale of the system
and therefore set to b = 1 for convenience. Thus, in the following, all lengths are
given in units of b. The two-body interaction parameter v is given by v = b3τ ,
compare Eq.(2.16) in Section 2.2. For b = 1 it reduces to the reduced temperature
τ . Since here the polymer is described in the dense globular state or up to the
transition point between globule and coil, τ is always negative, i.e. the two-body
interactions are always attractive.

7.2. Coil-globule transition

A polymer immersed in poor solvent adopts a dense globular state characterised by
R ∼ N1/3, where R is the radius of the globule. In the limit of N → ∞ the globule
shows a phase transition to an ideal coil at the Θ temperature. The Θ temperature
is characterised by a vanishing two-body interaction parameter. In reality, polymers
are finite objects. The transition from globule to coil is therefore a finite-width
crossover transition. This crossover transition occurs at finite τ = τc rather than
τ = 0. The critical reduced temperature τc is proportional to N−1/2. This can be
seen from a simple scaling consideration. Similar to Section 2.2 the free energy of
the globule can approximately be written as

βF ≃ R2

N
+ τ

N2

R3
+ w

N3

R6
. (7.6)

The first and second term are the same as in Eq.(2.18). The last term is given by
wc̄3R3. Note, that b is set to one and R is therefore given in units of b. Minimisation
of the above equation with respect to R yields

R

N
− τ

N2

R4
− w

N3

R7
= 0, (7.7)

where numerical prefactors have been omitted. At τ = τc the polymer chain is
almost Gaussian, i.e. R ∼ N1/2. Substituting N1/2 for R in Eq.(7.6) immediately
yields

τc ∼ wN−1/2. (7.8)

A similar scaling relation can be found for the density profile ρ(̺). A homopolymer
globule always adapts a spherically symmetric configuration. The set of coordinates
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7.3. Numerical results

therefore reduces to the radius ̺ of the globule, compare Eq.(7.3). The centre is
located at ̺ = 0. At τ = τc the density profile has the following scaling form

ρc(̺) ≃ Nαg

(
̺

Rc

)
, (7.9)

where Rc ∼ N1/2. The integral over the density gives the total number of segments.

N = 4π

∫ ∞

0

d̺ ̺2ρc(̺) ≃ Nα

∫ ∞

0

d̺ ̺2g

(
̺

Rc

)
= Nα

∫ ∞

0

dxx2R3
cg(x)

≃ Nα+3/2

∫ ∞

0

dxx2g(x),

(7.10)

where x = ̺/Rc. From Eq.(7.10) follows immediately α = −1/2 and hence

ρc(̺) ∼ N−1/2. (7.11)

It should be possible to recover the above scaling relations over a wide range of chain
lengths N from the numerical results.

7.3. Numerical results

In a grand canonical description the total size of the system - here the number
of segments N - depends on the chemical potential µ and on all the interaction
constants. Its mean value is determined by equilibrium conditions. The following
plot shows the µ-dependence of N for the homopolymer as a result of the numerical
solution of Eq.(7.3). The equilibrium value of N is calculated by performing the
integration in Eq.(7.5). Fig.(7.1) shows that N diverges for µ→ 0. This corresponds
to the N ∼ µ−1 behaviour of a quasi ideal chain in the Θ-regime [84]. The divergence
of N at a specific value of µ on the right hand side of the minimum corresponds to
a fully collapsed infinite globule [48]. The left branch of the N(µ)-curve describes
the quasi ideal chain (or open coil) behaviour and the right branch the behaviour
of a globule. This suggests to identify the minimum of the N(µ)-curve with the
transition point between coil and globule. To test whether it is reasonable to define
the minimum of N(µ) as the transition point, the minimum of N for different values
of τ is calculated. Provided that the minimum corresponds to the transition point
this should yield the critical τ for given N . If the definition is reasonable it should
be possible to recover the scaling relation τc ∼ N−1/2. Fig. (7.2) shows indeed the
correct scaling relation τc ∼ N−1/2 for the critical reduced temperature.
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Figure 7.1: Dependence of the length of the polymer chain N on the chemical potential
µ. The chosen parameters are: v = τ = 2, w = 1. Note, that the µ-scale is logarithmic.
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Figure 7.2: Log-log plot of the dependence of the critical reduced temperature τc on the
chain length N . The three-body interaction parameter w is chosen to be 0.1 for all points.
The slope is calculated by linear regression to be −0.500007.

The density profiles at τ = τc for different chain lengths are shown in Fig.(7.3). In
all plots below w is chosen to be 0.1. Fig.(7.3) shows that the critical density profile
becomes more and more peaked around its maximum value ρ0 at the centre (r = 0)
for shorter chains. This change in the shape of the density profile with increasing N
can be explained by two other scaling relations from Section 2.2. At the transition
point τc the size of the globule, described by its radius, should scale like a gaussian
chain, i.e. Rc ∼ N1/2. The density of the globule ρ(̺) on the other hand should
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Figure 7.3: The left plot shows the radial density ρ(̺) for τc = 2 · 10−3, N = 7.5 · 106

(upper curve) and τc = 8.3 · 10−4, N = 4.3 · 107 (lower curve). The right plot shows ρ(̺)
for τc = 0.06 and N = 832.

scale as ρ(̺) ∼ τ ∼ N−1/2.

To test the scaling relation for Rc a reasonable definition for the critical radius from
the numerical data has to be found. The point in the critical density profile at which
the density decreased to 10−3 ρ0 is chosen as Rc. In Fig.(7.4) the critical globule
radius is plotted as a function of chain length N . It shows the correct scaling relation
Rc ∼ N .

1 10 100 1000

1

2

5

10

20

Rc/102
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Figure 7.4: Log-log plot of critical globule radius Rc versus chain length N . The slope
is calculated by linear regression to be 0.500188.

As a last test, in Fig.(7.5) the density maximium at the centre of the critical globule
is plotted as a function of N . Since ρ(̺) ∼ N−1/2, the density maximum ρ0 = ρ(0)
also scales as N−1/2, which is in accordance with the numerical results shown in
Fig.(7.5).
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Figure 7.5: Log-log plot of the density maximum ρ0 versus chain length N . The slope
is calculated by linear regression to be −0.50044.

The plots in Figs.(7.2, 7.4, 7.5) show a very good agreement of the numerical re-
sults with the scaling relations predicted in Section 2.2 over almost four orders of
magnitude for the chain length. It can therefore be assumed that the finite ele-
ment toolkit Gascoigne is well suited to tackle the boundary value problem given
by the differential equations for the self-consistent fields, Eqs.(6.35 - 6.37), and the
corresponding boundary conditions, Eq.(6.38). In addition, they show that it is rea-
sonable to define the minimum of the N(µ)-curve as the transition point between
coil and globule.
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variable composition

8.1. Introductory remarks

In this chapter the numerical results for the full set of equations describing a rod-coil
multiblock copolymer with a variable composition of stiff and flexible segments are
presented. The results are obtained by solving Eqs.(6.35-6.37) with the boundary
conditions given by Eq.(6.38). The segment length is set to b = 1 as in the previous
chapter. In addition, all energies such as ǫ, µ and also the saddle point free energy F
are given in units of kBT . In this chapter this will not be indicated by multiplication
with β in order to avoid complicated notation.

Eqs.(6.35-6.37) describe the copolymer in a grand-canonical representation. In the
grand-canonical ensemble the total number of segments of the polymer N is not
fixed but its mean value is determined by equilibrium conditions, see Section 7.3. A
real polymer has a fixed length. In order to ensure this fixed length N , the chemical
potential µ is - for each set of physical parameters (v, w, χ, g, ǫ, σ) - tuned such
that the equilibrium value of N is equal to the desired one. The total number of
segments N = Ncoil +Nrod is calculated by performing the integrations in Eqs.(6.39,
6.40). For a given set of parameters, N(µ) can be computed and a typical example
of this curve is shown in Fig.(8.1) - similar to the case of a homopolymer shown
in Fig.(7.1). The two branches of each of the N(µ) curves in Fig.(8.1) correspond
to the N ∼ µ−1 behaviour of a Θ-solvent chain (left branch: µ → 0) and a fully
collapsed infinite globule (right branch) as discussed for a homopolymer in Section
7.3. Since N is always fixed by tuning µ, it is possible to distinguish from a plot like
the one shown in Fig.(8.1) whether the system is left of the coil-globule transition
point (i.e. in the open chain regime) or right of the transition point (i.e. in the
globular regime). However, for fixed N , it is necessary to choose one of the two
branches. Since this work focuses on the study of globular structures, the numerical
calculations are always restricted to the right branch including the minimum. The
self-consistent field theory is only expected to give good result for this branch since
fluctuations are neglected.

The three-body interaction parameter w is chosen to be w = 1 throughout the entire
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Figure 8.1: N as a function of µ for w = 1, = 0.2 and σ = 10−4. The dotted curve
corresponds to ǫ = 0.08 and χ = 0. The continuous curve corresponds to ǫ = 0.1 and
χ = 0.0138.

chapter and the two-body interaction constant v is always negative to ensure that
the system stays in the globular regime (up to the transition point).

A short remark on the terminology that will be used below is necessary at this
point. The terms phase and transition will be used frequently although the system
is a polymer of finite length. All transitions are therefore crossover transitions of
finite width with continuous order parameters. It is nevertheless common within
the soft matter community to use the the term ‘phase’ to distinguish the different
structural states of a polymer and to refer to the crossover between these states as
a ‘transition’.

In the following section the coil-globule transition of the copolymer is discussed.
The transition is triggered by the non-selective two-body interaction parameter v
and is therefore very similar to the one of the homopolymer. In Section 8.3 the
energy gain per stiff segment ǫ is varied which leads to an increase in the fraction
of stiff segments similar to the one-dimensional helix-coil transition described in
Section 6.1. A transition to a nematic liquid-crystalline globule can be triggered by
increasing the selective two-body interaction (|χ|) even without an explicit alignment
interaction between the rods (g = 0). This is discussed in detail in Section 8.4.
The N -dependence of this transition is studied in Subsection 8.4.1, the influence of
the cooperativity (σ) on the transition in 8.4.2 and its g-dependence in 8.4.3. In
Subsection 8.4.4 the explicit alignment interactions is switched on (g 6= 0) to study
how it influences the formation of the liquid-crystalline globule. The behaviour of
the free energy in the transition region is discussed in Subsection 8.4.4 and Section
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8.2. Coil-globule transition

8.5 finishes this chapter with references to existing literature and a brief discussion
on the relevance of the results to proteins.

8.2. Coil-globule transition

The rod-coil multiblock copolymer shows a coil-globule transition similar to the
homopolymer globule discussed in the previous chapter. To demonstrate this, the
interactions which are specific for the stiff segments are set to zero, that is χ = g = 0.
In addition, the energy gain per stiff segment is set to zero (ǫ = 0) and it is assumed
that there is no cooperativity in the formation of stiff segments (σ = 1). The two-
body interaction constant v is varied. The transition point between coil and globule
is defined as in Chapter 7 to be the minimum of the N(µ)-curve. The length of the
polymer is fixed at N = 550. Fig.(8.2) shows the profile of the total density ρ(r) of
the copolymer as a function of radial distance from the centre. The total density
ρ(r) at each point is given by

ρ(r) = ρC(r) + ρR(r) =
1

2
ϕ2(r) +

1

2
ψ2

0(r) +
1

2
ψ2

2(r). (8.1)

As can be seen from Fig.(8.2), the density profile becomes broader with decreasing
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Figure 8.2: This plot shows the radial density profile of the entire copolymer in radial
direction for different values of v. The dashed curve for v = −0.077 corresponds to the
coil-globule transition point.

|v|. At v = −0.5 the copolymer is deep in the globular state with a big plateau
of almost constant density and a rather small surface layer of decreasing density.
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8. Results for the copolymer with variable composition

At the transition point v = −0.077 the plateau basically vanished and the surface
layer becomes very broad. To further illustrate the structural change, Fig.(8.3)

̺

z

Figure 8.3: The density of flexible segments is shown on the left and the density of stiff
segments on the right. v = −0.077 for the upper plots and v = −0.5 for the lower plots.

shows a colour-coded plot of the local density in ̺-z space, where ̺ denotes the
radial direction and z the axial direction in cylindrical coordinates as introduced in
Chapter 6. The centre of the globule is located at the bottom left corner of each
picture. The pictures on the left show the local density of flexible segments and
the pictures on the right the local density of stiff segments. Red indicates high
density and dark blue zero density. In the upper two plots the copolymer is at the
transition point (v = −0.077). In the lower two plots it is deep in the globular state
(v = −0.5).

The structural change shown in Figs.(8.2, 8.3) gives only a vague indication of a
crossover transition from coil to globule. A better indication would be a drop or a
strong decrease of the average total density ρ̄ of the globule at the transition point.
To calculate the average density ρ̄ = N/

(
4π
3
R3
)
, a reasonable definition of the radius

R of the globule is needed. As in Section 7.3, the point R in radial direction at which
the density ρ(R) has decreased to ρ(R) = 10−3ρ0 is chosen, where ρ0 is the maximum
density at the centre. In Fig.(8.4) the average density ρ̄ is plotted as a function of v.
It can be seen that around the transition point there is a small drop in the average
density. A much clearer indication that v = −0.077 corresponds to a transition
point can be seen from Fig.(8.5), where the globule radius itself is plotted versus v.

96



8.2. Coil-globule transition

0.1 0.2 0.3 0.4 0.5

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

−v

ρ̄

0.075 0.08 0.085 0.09 0.095 0.1

0.002

0.004

0.006

0.008

0.01

0.012

0.014

−v

ρ̄

Figure 8.4: The average density ρ̄ is plotted as a function of v. The plot on the right
shows a magnification of the first data points for very small |v|.

The radius R shows a rapid increase when v = −0.077 is approached. Note, that
the copolymer is finite (here: N=550) and therefore all transitions are crossover
transitions as discussed in Chapter 7. Hence the order parameters show a strong
increase in the crossover region rather than an abrupt jump.
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Figure 8.5: The globule radius R is plotted as a function of v.

It is also of interest to investigate whether the fraction of stiff segments changes
during the crossover from open coil to dense globule. There is no cooperativity
(σ = 1) and thus no energy penalty for forming single stiff segments. The fraction of
stiff segments at the transition point (v = 0.077) is therefore roughly 1/2. Fig.(8.6)
shows that it stays almost constant with increasing |v|. In Section 8.4, it will be
demonstrated that this behaviour changes drastically when an additional attractive
interaction between the stiff segments is introduced to trigger the crossover towards
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a globular state.
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Figure 8.6: The fraction of stiff segments ΘR is plotted versus v.

8.3. Fraction of stiff segments

In this section the fraction of stiff segments in investigated as a function of the
energy gain per stiff segment ǫ. This is similar to the helix-coil transition described
in Section 6.1. A major difference is the fact that the model used here is a three-
dimensional model of the polymer including interactions, whereas the Zimm-Bragg
model (and its extensions) discussed in Section 6.1 are one-dimensional models with
no interactions and no explicit entropy term. On the other hand, the Zimm-Bragg
model can be solved exactly, whilst the self-consistent field treatment of the three-
dimensional model is a mean-field approach and neglects fluctuations.

Two different regimes will be discussed in the following: a low cooperativity regime
with σ in the range 0.05 − 1 and a high cooperativity regime with σ in the range
7 · 10−3 − 10−4. Remember, that σ = 1 means no cooperativity and σ = 0 means
total cooperativity.

Throughout this section χ and g are set to zero. There are therefore no specific in-
teractions between the stiff segments. The only interactions are attractive two-body
interactions and repulsive three-body interactions between all segments. Fig.(8.7)
shows how the fraction of stiff segments ΘR depends on ǫ for different values of σ
in the range 0.05 − 1. Even for small cooperativity, the slope clearly depends on σ
and gets larger with increasing cooperativity (decreasing σ).

The high cooperativity regime is shown in Fig.(8.8). The slope of the ΘR(ǫ)-curves
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Figure 8.7: The fraction of stiff segments ΘR is plotted as a function of energy gain ǫ per
stiff segments for small (and zero) cooperativity. v = −0.025 and N = 2.5 · 104. The plot
on the left hand side is a magnification of the lower left corner to distinguish the different
slopes.
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Figure 8.8: The fraction of stiff segments ΘR is plotted as a function of ǫ for high
cooperativity. v = −0.2 and N = 105.

increases with decreasing σ as expected. Especially for σ = 10−3 (green curve) it
can be seen that the curve is asymptotically approaching ΘR = 1. The curves for
σ = 10−4, 5 · 10−4 and 10−3 end at a certain value of ǫ. The endpoints correspond
to the coil-globule transition point. This can be explained as follows. If there is no
additional selective interaction energy which favours a compactification of the stiff
segments (i.e. χ = g = 0), the stiffening of parts of the chain due to an increase of
ΘR with increasing ǫ pushes the chain segments further apart from each other and
therefore leads to a more open structure. From a certain value of ǫ on, the system
is thus pushed into the open chain regime. For higher cooperativity this effect is
stronger, since the system forms less junctions points and hence on average longer
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8. Results for the copolymer with variable composition

rods. For smaller σ the coil-globule transition point is therefore reached at smaller
values of ΘR and ǫ.

To illustrate this stiffening, in Fig.(8.9) the average rod length LR is plotted as a
function of ǫ for σ = 10−4. In units of b the average rod length LR is given by the
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Figure 8.9: The average rod length LR is plotted as a function of ǫ for σ = 10−4, v =
−0.2 and N = 105.

total number of stiff segments divided by half the total number of junction points
between stiff rod and flexible chain. In the self-consistent field theory approach LR

is given by

LR

b
=

∫∞
0
d̺ ̺

∫∞
−∞ dz [ψ2

0(̺, z) + ψ2
2(̺, z)]∫∞

0
d̺ ̺

∫∞
−∞ dz ϕ(̺, z)ψ0(̺, z)

. (8.2)

Fig.(8.9) shows that for ǫ = 0 the average rod length is roughly equal to 1. For
ǫ > 0 the cooperativity effect sets in and the average rod length increases up to
LR ≈ 2.3. At this value the stiffening of parts of the chain is strong enough to drive
the polymer in the open chain regime.

It is of interest to compare the results of this three-dimensional model with interac-
tions with the exact one-dimensional Zimm-Bragg model discussed in Section 6.1.
This is done in Fig.(8.10) for σ = 10−3. Note, that in the Zimm-Bragg language the
ǫ used here corresponds to −∆f = ln s.

In the Zimm-Bragg model the increase of ΘR is steeper. This can be explained
by the fact that in the three-dimensional model the entropy of the flexible and the
stiff segments is explicitly taken into account, which hinders the generation of stiff
segments. On the other hand, the mean-field character of the three-dimensional
model might also weaken the cooperativity effect.
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Figure 8.10: ΘR is plotted as a function of ǫ for σ = 10−3. The continuous curve shows
the numerical result for v = −0.2 and N = 105. The dashed curve shows the result of the
one-dimensional Zimm-Bragg theory.

8.4. Transition from amorphous to liquid-crystalline

globule

The model also shows a crossover transition from a disordered amorphous globule
with a low or moderate fraction of stiff segments to an ordered liquid-crystalline
globule with a very high fraction of stiff segments. In Fig.(8.11), on the left, the
fraction of stiff segments ΘR is plotted as a function of the selective two-body in-
teraction parameter χ, which controls the strength of the additional interaction
between stiff segments and therefore models selective solvent conditions. On the
right the nematic order parameter S (as defined by Eqs.(6.29, 6.30)) is plotted as a
function of χ. Throughout the entire section, the non-selective two-body interaction
parameter is set to v = −0.2. The two plots in Fig.(8.11) demonstrate that the
the onset of nematic order and the increase in the fraction of stiff segments occur
simultaneously.

This transition occurs without an explicit angle-dependent alignment interaction,
that is g = 0. The transition is triggered by a subtle interplay of the entropy
contribution (surface energy), represented by the derivative terms in Eq.(6.34), and
bulk interaction energy, represented by the χ-term. This surface energy has an
entropic nature since the conformational set of surface segments is constrained [38].
In a simple homopolymer globule (as discussed in Chapter 7) it is isotropic. For
the rod-coil copolymer the surface energy is anisotropic and the surface tension in
̺-direction is smaller than the one in z-direction. That is why the system tries
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Figure 8.11: The fraction of stiff segments ΘR (left) and the nematic order parameter
S (right) are plotted as functions of χ for σ = 10−4, N = 9.5 · 103 and ǫ = g = 0.

to maximise its lateral surface in ̺-direction and minimise it in z-direction, i.e. a
nematic, cigar shaped, liquid-crystalline globule is formed.

To demonstrate how the shape of the globule changes during the transition, Fig.(8.12)
shows a colour-coded plot of the local density in ̺-z space. The centre of the globule
is in the bottom left corner of each picture. ̺ is increasing from left to right and
z is increasing from bottom to top. Red indicates high density and dark blue zero
density. In Fig.(8.12) a different set of parameters is chosen: σ = 10−4, N = 105 and
ǫ = 0.1. Below, it will be discussed in detail how the nature of the crossover transi-
tion changes with σ, ǫ and N . The values of χ in Fig.(8.12) are chosen such that the
top two pictures (χ = −0.0138) show the system at the transition point between coil
and globule, the middle two pictures (χ = −0.0812) show the system at the transi-
tion point between amorphous and liquid-crystalline globule (as defined below) and
the bottom two pictures (χ = −0.18) show the system deep in the liquid-crystalline
globule phase. The transition from amorphous to nematic liquid-crystalline globule
is a crossover transition of finite width. If one wants to characterise the χ-interval
of the crossover region by a single transition point, a reasonable definition of this
point must be found. It is a rather obvious choice, to define the transition point as
the inflection point of the S(χ)-curve in Fig.(8.11).

At the transition point between coil and globule the system is spherical and has
a very broad surface layer of decaying density. Although the density of the helical
segments shown on the right is higher than the density of the flexible segments shown
on the left, their distribution and the shape of the profile is very similar. At the
transition point between amorphous and liquid-crystalline globule the system adopts
a slightly cylindrical shape indicating the onset of nematic order. It can also be seen
that the density maximum of the flexible segments is not in the centre of the globule
denoting a repulsion of flexible segments from the centre to the surface layer. The
surface layer is now much narrower. Deep in the liquid-crystalline phase the globule
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z

̺

Figure 8.12: The density of the flexible segments is shown on the left and the density of
the stiff segments on the right. σ = 10−4, ǫ = 0.1 and N = 105 for all plots. χ = −0.0138
in the top line, χ = −0.0812 in the middle line and χ = −0.18 in the bottom line.

has developed a strongly asymmetric cylindrical shape indicating strong nematic
order. The repulsion of flexible segments from the centre towards the surface layer
can be seen clearly and the surface layer is now very narrow.

8.4.1. N-dependence

In this subsection it is investigated how the total chain length N influences the tran-
sition from amorphous to liquid-crystalline globule. Fig.(8.13) shows the fraction
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8. Results for the copolymer with variable composition

of stiff segments as a function of χ for four different chain lengths. The crossover
transition from an amorphous globule with moderate number of stiff segments to a
liquid-crystalline globule with very high number of a stiff segments becomes sharper
with decreasing chain length, which, at first sight, is a rather unusual and surprising
behaviour.
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Figure 8.13: The fraction of stiff segments ΘR is plotted as a function of χ for different
chain lengths. The crossover transition becomes sharper with decreasing chain length.

Fig.(8.14) shows the nematic order parameter S as a function of χ for the four chain
lengths. It can be seen that the increase in the order parameter is stronger for
shorter chains. For N = 5 · 105 and χ = −0.214 the system is already so deep in the
globular phase that the corresponding value of µ, which keeps the chain length fixed
at N = 5 ·105, is very close to the value at which N(µ) diverges (see Fig.(8.1)). The
tuning of the chemical potential µ to ensure fixed chain length N becomes therefore
numerically impossible for higher values of |χ|. Although it might be difficult to see,
the corresponding ΘR(χ)-curve in Fig.(8.13) also ends at χ = −0.214.

The transition point between amorphous and liquid-crystalline globule is defined as
the inflection point of the S(χ)-curve. Fig.(8.14), therefore, does not give a clear
indication of the N -dependence of the transition point.

To demonstrate how the shape of the liquid-crystalline globule changes with chain
length N , Fig.(8.15) shows colour-coded density plots of ρC and ρR for the four
different values of the chain length at χ = −0.18. The plots illustrate that the
system changes from a cigar-like shape for N = 104 towards an almost cylindrical
shape for N = 5 · 105. Fig.(8.15) also demsonstrates that the the surface layer
becomes smaller for larger systems, which indicates that a larger system is deeper
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Figure 8.14: The nematic order parameter S is plotted as a function of χ for different
chain lengths.

in the globular state at the same value of χ and v but at the same time showing less
nematic order.

With increasing system size N the liquid-crystalline globule phase eventually van-
ishes (for g = 0). In the limit N → ∞ the surface terms in Eqs.(6.35-6.37) vanishes.
Since for g = 0 these terms are the only non-spherical symmetric terms, the system
cannot adopt a liquid-crystalline globular state any more. Without explicit align-
ment interaction a liquid-crystalline globule with nematic order can therefore only
form in finite systems. The crossover transition becomes sharper for smaller sys-
tems because the entropic surface terms become more important compared to the
isotropic interaction terms. The total value of the isotropic bulk interaction energy
roughly scales as the volume of the globule, whilst the surface energy scales as the
surface area of the globule. This shows that the transition to a liquid-crystalline
polymer globule is actually driven by entropy, due to the entropic origin of the
surface energy.

Finally, in Fig.(8.16), the average length LR of the stiff parts is plotted as a function
of χ for N = 104 and N = 5 · 105. The figure shows that the average length of
the rods is equal to 1 for very small values of χ and ǫ = 0. This is in agreement
with the results from Section 8.3. For N = 104 it stays almost equal to 1 until the
transition point is reached and then shows a rather strong increase. For very high
values of χ it should reach an asymptotic value. However, for χ > 0.25 the fraction
of flexible segments (1 − ΘR see Fig.(8.11)) becomes unphysically small indicating
that the mean field description within the self-consistent field treatment reaches the
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z

̺

Figure 8.15: The density of the flexible segments is shown on the left and the density of
the stiff segments on the right. σ = 10−4, ǫ = g = 0.0 and χ = −0.18 for all plots. From
top to bottom N increases as 104, 3 · 104, 105 and 5 · 105.

limit of its validity. For N = 5 · 105 the crossover to a stronger increase in average
rod length with −χ is much smoother analogous to ΘR and S (see Figs.(8.13, 8.14)).

The stronger increase in average rod length for shorter polymers corresponding to
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Figure 8.16: The average length LR of the stiff parts is plotted as a function of χ for
N = 104 and N = 5 · 105.

a sharper isotropic-nematic transition indicates that this transition is also a co-
operative process. To study the influence of cooperativity, the dependence of the
isotropic-nematic transition on σ is discussed in the next subsection.

8.4.2. σ-dependence

The crossover from amorphous globule to liquid-crystalline globule is a cooperative
process. As shown by Fig.(8.16), an increase in nematic order is not only accom-
panied by a strong increase in fraction of stiff segments but also by an increase in
the average length of the stiff parts. To further investigate the cooperativity of the
transition, the cooperativity parameter σ is varied for fixed chain length N = 105.

Fig.(8.17) shows that the crossover becomes sharper with increasing cooperativity
(decreasing σ) as expected. For very high cooperativity (σ = 10−5) and no selective
interaction (χ ≈ 0), the fraction of stiff segments (ΘR = 0.2) is much smaller than
1/2. When the transition point is approached, the fraction of stiff segments increases
rapidly. For lower cooperativity (larger σ), not only is the crossover much smoother
but the fraction of stiff segments at χ ≈ 0 is much higher (ΘR ≈ 0.5 for σ = 10−3

and σ = 5 · 10−4). Both features clearly show the cooperativity of the transition.

The behaviour of the nematic order parameter S for different values of σ is shown in
Fig.(8.18). For higher σ the increase in nematic order is less steep and the transition
point is significantly shifted to higher values of |χ|. For σ = 5 · 10−4 and higher, the
system only develops a slight onset of order and S remains very small even deep in
the globular state at χ = −0.25. This also demonstrates the cooperativity of the
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Figure 8.17: The fraction of stiff segments is plotted as a function of χ for different
values of σ and N = 105, ǫ = g = 0. The crossover transition becomes sharper with
decreasing σ, i.e. increasing cooperativity.

transition.
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Figure 8.18: The nematic order parameter S is plotted as a function of χ for different
values of σ and N = 105. The transition point is shifted to higher values of |χ| with
increasing σ.

It is therefore of interest to investigate the average rod length LR, which should also
strongly depend on the cooperativity. Fig.(8.19) shows that the increase of LR with
|χ| after the transition point becomes steeper for smaller values of σ as one would
expect.

The isotropic-nematic transition is enhanced by cooperativity and even becomes im-
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Figure 8.19: The average rod length LR is plotted as a function of χ for different values
of σ and N = 105.

possible if the cooperativity is too small. As can be seen from Fig.(8.19) and should
be clear from the definition of the cooperativity parameter σ, only a cooperative
system forms long rods and not just many very short ones. Remember, that σ is
associated with the energy penalty for a boundary between rod and coil, see Section
6.1. The smaller σ is, the larger is this energy penalty and the more favourable is the
formation of long rods rather than short ones. It is intuitively clear that long rods
align much easier than very short ones. When the average rod length stays roughly
equal to 1 for high values of |χ|, alignment cannot happen. Hence cooperativity is
important to drive this transition.

8.4.3. ǫ-dependence

In this subsection the ǫ-dependence of the transition from amorphous to liquid-
crystalline globule is investigated. In Section 8.3, it was shown that the fraction of
stiff segments increases with increasing energy gain ǫ per stiff segment. A higher
value of ǫ yields a higher offset of ΘR at χ = 0 which should in turn lead to a smaller
value of |χ| at the transition point.

Figs.(8.20, 8.21) demonstrate this behaviour. For all plots in this subsection the
cooperativity parameter is set to σ = 10−4 and the total chain length to N = 105.
The explicit rod-rod alignment interaction is still switched off (g = 0). The onset
of the transition is indeed shifted to lower values of |χ| with increasing energy gain
per helical segments ǫ. This is due to an increase of bulk interaction energy for fixed
χ with increasing number of stiff segments.

The curves for ǫ ≥ 0.1 in Figs.(8.20, 8.21) start at non-zero values of χ. These values
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Figure 8.20: Fraction of helical segments ΘR as a function of χ for different values of
the energy gain per helical segment ǫ.
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Figure 8.21: Nematic order parameter S as a function of χ for different values of ǫ.

of χ correspond to the transition point between open chain regime and globular
regime, similar to the discussion in Section 8.2. The main difference in this case
is that at v = −0.2 the non-selective attractive two-body interaction is not strong
enough to drive the system into the globular state. The additional selective two-
body interaction between the stiff segments only (with interaction paramter χ) is
needed to drive the system into the globular state. That this is only the case for
ǫ ≥ 0.1 can be explained as follows ( see also Section 8.3). If there is no additional
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8.4. Transition from amorphous to liquid-crystalline globule

selective interaction energy which favours a compactification of the stiff segments,
the stiffening of parts of the chain due to an increase of ΘR with increasing ǫ pushes
the chain segments further apart from each other and therefore leads to a more
open structure. For ǫ ≥ 0.1, the system is thus pushed into the open chain regime
at χ = 0. Note, that this leads to a situation in which χ is now a critical parameter
not only for the transtion from amorphous to liquid-crystalline globule but also from
coil to globule. This is especially interesting for ǫ > 0.17, since for these values, the
system shows already at the transition point between coil and globule so much
nematic order that S(χ) is on the right of its inflection point and the system is in
the nematic phase.

These findings permit the computation of a complete phase diagram of the rod-
coil copolymer in ǫ-χ space, see Fig.(8.24). But before this is done, it has to be
checked whether the definition of the transition point between coil and globule as
the minimum of theN(µ)-curve is also reasonable in the case of strong nematic order.
In Section 8.2 the radius R of the globule (defined as the point at which the total
density has decreased to ρ(R) = 10−3ρ0) was plotted as a function of v, see Fig.(8.5).
It showed a rapid increase when the transition point between globule and coil was
approached. Here the globule shows nematic order and has an asymmetric shape. It
is therefore necessary to distinguish between ̺- and z-direction. The extensions of
the globule in ̺-direction R̺ and in z-direction Rz are defined - analogously to R in
the case of a spherical globule - as ρ(R̺, 0) = ρ(0, Rz) = 10−3ρ0. In Fig.(8.22)R̺ and
Rz are plotted as functions of χ for ǫ = 0.25. For this choice of ǫ, the system already
shows strong nematic order at χ = −0.0396 which corresponds to the transition
point between globule and coil. Fig.(8.22) demonstrates that the definition of the
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Figure 8.22: The extensions of the globule in ̺-direction R̺ and in z-direction Rz are
plotted as functions of χ for ǫ = 0.25.

transition point beween open chain and globular regime as the minimum of the
N -µ curve is valid even if the system shows strong nematic order. Both curves in
Fig.(8.22) show a rapid increase when approaching the transition point from the
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8. Results for the copolymer with variable composition

right. The different values of R̺ and Rz reflect the cylindrical shape of the globule
due to the nematic order of the stiff segments. For ǫ = 0.25 no isotropic globular
phase exists and the crossover transition leads directly to a liquid-crystalline globule.

For ǫ = 0.1 on the other hand, the system shows no nematic order at the transi-
tion point between open chain and globule (χ = −0.0138). The system therefore
undergoes two transitions. First from an open chain to an amorphous globule and
then at higher |χ| from an amorphous to a liquid-crystalline globule. In Fig.(8.23)
R̺ and Rz are plotted as functions of χ. When the transition point between open
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Figure 8.23: The extensions of the globule in ̺-direction R̺ and in z-direction Rz are
plotted as functions of χ for ǫ = 0.1.

chain and globule (at χ = −0.0138) is approached from the right, R̺ and Rz show
the expected strong increase. When the transition point between amorphous and
liquid-crystalline globule (at χ = −0.0812) is approached from the left, R̺ and Rz

show a different behaviour. In a small interval (corresponding to the width of the
transition) Rz increases whilst R̺ decreases even stronger than before. In this in-
terval the asymmetric shape of the globule is developed. This behaviour will be
discussed further in Subsection 8.4.5.

As already mentioned above, it is now possible to compute a complete phase diagram
in ǫ-χ space. This phase diagram is shown in Fig.(8.24). The triangles are the
transition points between open chain and globule. The squares are the transition
points between amorphous and liquid-crystalline globule. Note, that the points
plotted in the phase diagram, Fig.(8.24), are what is defined above as the points of
rather broad crossover transitions. Therefore the boundaries in the phase diagram
have to be understood as centre lines of broader regions in which the crossover from
one phase to the other occurs. Quantitatively, the phase diagram depends on N , σ,
g and v. The one shown in Fig.(8.24) represents a system with N = 105, σ = 10−4,
g = 0 and v = −0.2. However, the qualitative shape of the phase diagram stays
the same. The discussions in the previous sections make it possible to anticipate
how the phase diagram changes with N , σ and v. If |v| is increased the open
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Figure 8.24: Phase diagram of a rod-coil copolymer in ǫ-χ space. The upper left area
corresponds to an open chain, the lower left area to an amorphous globule and the right
area to a nematic liquid-crystalline-globule. The little arrow to the left indicates the point
in the phase diagram which corresponds to the top two pictures in Fig.(8.12). The arrow
in the middle corresponds to the middle two pictures and the arrow to the right to the
bottom ones. Parameters: N = 105, σ = 10−4, g = 0.

chain region of the phase diagram becomes smaller (and disappears eventually).
With decreasing σ the transition from a disordered to an ordered globule becomes
sharper and the transition line between these two regions is shifted to smaller values
of |χ|, see Subsection 8.4.2. Since this transition occurs due to an interplay between
surface energy and bulk interaction energy, the transition also becomes sharper for
decreasing system size N . For smaller systems the surface energy plays a bigger role
and therefore leads to a sharper transition, see Subsection 8.4.1. For N → ∞ the
ordered globule phase finally disappears, since the surface contributions to the free
energy vanishes for infinite systems.
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8. Results for the copolymer with variable composition

8.4.4. g-dependence

The transition from amorphous to liquid-crystalline globule occurs without an ex-
plicit angle-dependent alignment interaction between the rods. It is nevertheless
interesting to switch the explicit rod-rod alignment interaction on and study its influ-
ence on the transition. The alingment interaction is chosen to be of the Maier-Saupe
form and its strength is controlled by the interaction parameter g, see Eq.(6.32).

The influence of an attractive alignment interaction g < 0, which favours the align-
ment of the rods is studied first. In Fig.(8.25) the fraction of stiff segments is plotted
as a function of χ for different values of g and σ = 10−4, ǫ = 0, N = 9.5 · 103. The
corresponding nematic order parameter S is shown in Fig.(8.26). The transition
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Figure 8.25: Fraction of helical segments ΘR as a function of χ for different values of g.

is shifted to lower values of values of |χ| with increasing |g|. This is not suprising,
since for g < 0 the alignment term provides an additional incentive for the system
to generate nematic order and stiff segments. But the fact that almost up to the
respective transition points the ΘR(χ)-curves lie perfectly on top of each other is
quite remarkable. This can be explained as follows. For ψ2 ≡ 0 the alignment term
in Eq.(6.32) is equal to zero. Therefore the system has to generate a finite ψ2 (i.e.
at least small nematic order) before the alignment interaction can have an effect
on the system. As long as there is no nematic order in the system (ψ2 ≡ 0) the
alignment term is zero and the system behaves as the one with g = 0.

The increase of ΘR and of S for g < 0 is slightly smoother than the curves joining the
numerical data points in Figs.(8.25, 8.26) suggest. It is very hard to get numerical
data points in this region of the curves due to the procedure of adjusting µ to fix
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Figure 8.26: Nematic order parameter S as a function of χ for different values of g.

N . If N changes very sharply when χ is changed only slightly, the adjustment steps
must be very small in order to control N . Therefore there are no points in a very
small χ-interaval around the transition point for the curves with g < 0.

An attractive alignment interaction thus enhances the nematic order and shifts the
transition point to lower values of |χ|.
Instead of being attractive, the alignment interaction can also be chosen to be repul-
sive, that is g > 0. In Fig.(8.27) the fraction of stiff segments is plotted as a function
of χ for g = 1 and, for comparison, g = 0. The system also shows a very strong
increase in ΘR at a certain value of χ, only slightly less than for g = 0. However, the
nematic order parameter S stays very close to zero, as can be seen from Fig.(8.28).
When the χ-value at which ΘR starts to increase strongly is reached, the nematic
order parameter increases to S = 0.015. But this in turn means that the alignment
term increases as well. At S = 0.015 it is large enough to compensate the gain in
surface energy due to the (still very small) nematic order and drives the system back
into the isotropic regime with increasing |χ|.
The colour-coded density plot in Fig.(8.29) demonstrates that the globule is still
spherical for χ = −0.18, although the fraction of stiff segments is very large (Θ =
0.87) and the flexible segments are partly repelled from the centre of the globule.
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Figure 8.27: Fraction of stiff segments ΘR as a function of χ for g = 1 and g = 0 (as a
reference).
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Figure 8.28: Nematic order parameter S as a function of χ for g = 1.

With a repulsive alignment interaction, it is possible to suppress the formation of
a liquid-crystalline globule. In this case the system forms an amorphous globule
with high fraction of stiff segments and a slight repulsion of the flexible segments
from the centre of the globule to the surface layer. However, this situation is rather
artificial and very unlikely to occur in real systems.

116



8.4. Transition from amorphous to liquid-crystalline globule

z

̺

Figure 8.29: Densities of flexible and stiff segments, ρc and ρR respectively for g = 1
and χ = −0.18.

8.4.5. Free energy

In this subsection the behaviour of the effective free energy and its individual con-
tributions in the crossover region is investigated.

The effective saddle point grand potential Ω is given by Eq.(6.34). With the def-
inition of the chemical potential used here (see Eq.(6.15) and Appendix A) the
corresponding effective saddle point free energy is given by

F = Ω − µN. (8.3)

In Fig.(8.30) the free energy F is plotted as a function of χ for σ = 10−4, N = 9.5·103

and ǫ = g = 0. These parameters are the same as the ones used in Fig.(8.11).
Fig.(8.30) demonstrates that the free energy is changing its slope in the crossover
region around the transition point as would be expected for a crossover. However,
it is more interesting to look at the individual contributions to the saddle point
free energy. These are plotted in Fig.(8.31). F surf

̺ denotes the terms of the surface
contributions which contain derivatives with respect to ̺ and F surf

z the ones which
contain derivatives with respect to z. All other contributions are named after the
parameters (interaction constants and σ) which control their strength. Fig.(8.31)
shows that after the transition the interaction terms dominate the free energy. This
is not surprising since the average density of the globule keeps increasing with in-
creasing |χ|. The contribution associated with the junctions between rod and coil
Fσ is asymptotically approaching zero from below. This can be explained by an
increase of average rod length as shown in Fig.(8.16) which leads to a decrease of
the number of junction points between rod and coil.

At the beginning of Section 3.4 the occurrence of the transition from amorphous
to liquid-crystalline globule was explained in terms of the interplay between sur-
face energy and bulk interaction energy. Because of the anisotropy of the surface
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Figure 8.30: Free energy F plotted as a function of χ for σ = 10−4, N = 9.5 · 103 and
ǫ = g = 0.
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Figure 8.31: The individual contributions to the free energy F plotted as functions of χ
for σ = 10−4, N = 9.5 · 103 and ǫ = g = 0.

contributions which originate from the entropy of the rods, the globule tries to min-
imise its surface in z-direction and to maximise its surface in ̺-direction. Before
the transition the amorphous globule has a spherical shape. The surface energies
in x-, y- and z-direction should therefore be all the same. For the cylindrical co-
ordinates used here that implies F surf

̺ = 2F surf
z . A magnification of the F surf

̺ - and
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F surf
z -curves from Fig.(8.31) in Fig.(8.32) show that this is indeed the case. But

also in the liquid-crystalline globule regime after the transition their ratio is roughly
equal to 2 as can be seen from Fig.(8.32). The extension of the globule in ̺- and
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Figure 8.32: F surf
̺ and F surf

z plotted as functions of χ for σ = 10−4, N = 9.5 · 103 and
ǫ = g = 0.

z-direction on the other hand is now very different. It is therefore instructive to
plot F surf

̺ and F surf
z normalised by the corresponding cross sections of the globule.

As an approximation of the cross section in z-direction R2
̺ is chosen. The cross

section in ̺-direction is approximated by R̺Rz, where R̺ and Rz are defined as
in Subsection 8.4.3. In Fig.(8.33) the normalised surface contributions are plotted
on the left hand side and R̺ and Rz one the right hand side. The plot on the left
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Figure 8.33: F surf
̺ /(R̺Rz) and F surf

z /(R2
̺) plotted as functions of χ for σ = 10−4,

N = 9.5 · 103 and ǫ = g = 0.

shows that the surface energy per area in z-direction becomes indeed larger than
the one in ̺-direction in the interval in which the crossover from amorphous globule
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to liquid-crystalline globule occurs. The corresponding extensions of the globule R̺

and Rz plotted on the right illustrate the enlargement of the globule in z-direction
and the diminution in ̺-direction in the crossover interval. When the final shape
of the liquid-crystalline globule has developed the curves become parallel again and
decrease both indicating the further compactification of the entire globule.

The investigations of the surface contributions to the free energy further visualise
that it is the anisotropy of the entropic surface energy that drives the system into
the nematic state.

8.5. Conclusions

In this section the results presented in the previous sections of Chapter 8 are com-
pared to the literature and some remarks on their relevance to homopolypeptides
and proteins are made.

The numerical solutions of the self-consistent field equations show that the rod-
coil copolymer with variable composition can form three phase states, open chain,
amorphous globule and nematic liquid-crystalline globule with high fraction of stiff
segments. The transition between the first two states is similar to the coil-globule
transition of a homopolymer. The formation of a liquid-crystalline globular state
without explicit alignment interaction between the rods is a novel result and deserves
further discussion.

Nematic liquid-crystalline phases in melts of rod-coil diblocks with fixed composition
have been discussed theoretically in [85]. Also semiflexible polymers are able to form
liquid-crystalline phases, see for instance [86–88]. The isotropic to nematic transition
in multicomponent liquid-crystalline polymers has been discussed in [46]. A detailed
review of early results concerning melts and solution of liquid-crystalline polymers
can be found in [89]. In all these approaches the transition into an ordered nematic
state is driven by an explicit angle-dependent alignment interaction.

The formation of a liquid-crystalline globule from a rod-coil multiblock copolymer
with fixed composition has been discussed in an early theoretical work [38]. Phase
states similar to the ones summarised in the phase diagram in Fig.(8.24) are seen
in [90], where the authors consider a homopolymer in which each monomer carries
a dipole moment and take into account explicit dipole-dipole interactions. However,
the schematic phase diagram in [90] has been considered within the so-called volume
approximation where the contribution of the surface energy can be neglected (at
N → ∞) [8] and the transition into the anisotropic globular state with nematic
order is driven by dipole-dipole interactions.

In an early work [91] a cooperative helix-coil liquid-crystal transition was found,
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very similar to the transition from amorphous to liquid-crystalline globule discussed
here. The formation of nematic order is also accompanied by a strong increase
in fraction of stiff (or helical) segments. The main difference is again that the
transition is driven by an explicit alignment interaction of Maier-Saupe type similar
to the additional interaction (g < 0) considered in Section 8.4.4 and not by the
entropic surface tension anisotropy.

In the context of secondary and tertiary structure formation in proteins the interplay
of helix formation and liquid-crystalline order has been studied, see for instance [92,
93]. It was shown that liquid-crystalline ordering enhances the number of helical
segments as well as the average length of the helices which is qualitatively similar to
the results of the model presented here. This indicates that the model of a rod-coil
multiblock copolymer with variable composition might be a good candidate to give
a simple explanation for the formation of helix bundles in certain globular proteins.
Both, simulations [60] and experiments [61] show that proteins can adopt not only
the native state and completely denatured state (open chain) but also so-called
premolten and molten globular states. For helix-bundle proteins the premolten
globule, which does not show any order of the helices, corresponds to the amorphous
globule in this model. The molten globule with ordered helices but without native
contacts (and therefore also without the characteristic helix-helix angle found in the
native state) corresponds to the liquid-crystalline globule. The model also shows
that during the transition to a liquid-crystalline globule not only the amount of
helical segments increases strongly but the globule also becomes more compact. The
experimentally observed [79] correlation between the amount of secondary structure
elements and compactness of proteins mentioned in Section 6.1 might therefore also
be explained by this transition, at least in the case of helix bundle proteins.

Irrespective of the possible application to helix bundle formation in proteins, this
model provides a relatively simple example of the general interplay between sec-
ondary structure (helices or stiff rods) and tertiary structure (liquid-crystalline or-
der) in homopolypeptides.
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9. Final conclusions and outlook

Two very different methods to theoretically treat rod-coil copolymers are discussed
in this thesis, scaling methods and field theory. Copolymers with fixed composi-
tion of stiff and flexible parts are studied by means of scaling considerations. The
equilibrium structures they form in a selective solvent are investigated, as well as
their behaviour under tension due to an applied force. The adsorption behaviour of
rod-coil diblocks to an attractive surface is investigated in a quasi two-dimensional
approximation. The problem of copolymers with a variable composition of stiff
and flexible segments is treated using a self-consistent field theory. The formation
of amorphous and liquid-crystalline globules is observed and their influence on the
composition of the copolymer is studied. It is found that the combination of scaling
arguments and field theory provides a good understanding of the basic features of
structure formation and self assembly of rod-coil copolymers in solution.

Immersed in a solvent which is poor for the rods and good or Θ-like for the coils, the
systems with fixed composition form cylindrical micelles. The micelles are formed
because the rods tend to aggregate in order to minimise their contact with the
solvent and gain energy. This process is counterbalanced by the loss of entropy of the
flexible coils. In equilibrium this leads to a structure of either one cylindrical micelle
with two coronas formed by the coils or several connected micelles. The average
aggregation number of the rods as well as the average number of micelles is calculated
in Chapter 3. For the calculation of the latter it is assumed that all the micelles
are of the same size. The number of micelles is mainly governed by the surface
energy. For large surface energies the formation of only one micelle is favoured. If
the surface energy is lower the system can adopt multi-micelle configurations. The
results of Chapter 3 describe the structure a rod-coil multiblock copolymer adopts in
selective solvent in a quantitative manner. This is certainly of interest for the study
of synthetic systems. It is shown that the system might even serve as a very simple
model to describe helical proteins. For different classes of helix bundle proteins
the results provide a reasonable estimate for the number of helices in the bundle.
Although the model is very simple, the right trend can be predicted for proteins
with larger or smaller bundles.

For future considerations the simple scaling model could be extended by introducing
different rod lengths within one multiblock. The aggregation of rods might then be
sensitive to rod length in order to minimise the defect energy due to the mismatch of
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rods of different lengths. Also multi-micelle configurations in which rods of different
lengths prefer to aggregate in different micelles are conceivable. It would then be
natural to consider configurations with micelles of different size (i.e. aggregation
number). To increase the applicability of the model to proteins it would be of
interest to consider special geometrical shapes of the rods (for instance chiral ones)
to model the characteristic angle between the helices which can be observed in
bundles. This might then also lead to the possibility of a twisted phase in which
the rods are not aligned parallel but are regularly twisted with respect to each other
around their midpoint. For cylindrical rods this phase is energetically not stable.

Chapter 4 discusses how a rod-coil multiblock, that forms one micelle, unfolds under
an external force. For simplicity it is assumed that the micelle is ordered in such
a way that it is always possible to pull out the rods one after another from the
outer shell of the micelle. The scaling approach used in Chapter 4 is only valid in
equilibrium which corresponds to quasi static pulling. For this scenario it is shown
that with increasing force it is energetically favourable to pull out one rod completely
rather than to shift the rod slightly with respect to the other rods in the micelle.
The unfolding is therefore a stepwise process. Assuming Θ-solvent conditions for the
coils, it is possible to calculate the critical force at which this happens for each rod.
It turns out that for parameters which are physically reasonable thermal fluctuations
are very likely to dominate the energy barriers between the removal of individual
rods. The unfolding process then turns into a one-step process showing one large
plateau in the force-extension curve. In this case the assumption of an ordered
micelle could be released since at a certain force the entire micelle unfolds at once
anyway.

These considerations could also be extended to multi-micelle configurations and
systems with different rod lengths within one multiblock. In this case micelles
containing shorter rods might unfold at lower forces than the ones containing longer
rods which would lead to a more complex force-extension curve showing several
plateaus.

The adsorption behaviour of an aggregate of individual rod-coil diblocks is investi-
gated in Chapter 5. It is assumed that the rods align only parallel to each other. A
quasi two-dimensional approximation is considered in which the width of the system
is equal to the rod diameter. It is shown that, within a certain range of parameters,
the rods in an adsorbed aggregate shift with respect to each other so that their
ends are not aligned to allow the chains to gain entropy. For small shifts (smaller
than the splay of the chains) the shift profile is calculated. The stability of the
adsorbed aggregate is discussed and its free energy is compared to the free energy
of the other possible configurations, a mushroom (the aggregate adsorbs with the
rods perpendicular to the surface), a configuration with only one rod adsorbed at
the surface whereas the others form a free aggregate and a complete dissociation of
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the aggregate which leads to the adsorption of the individual rods at the surface.
For a certain combination of parameters, a phase diagram of the configurations in
L-N space is plotted.

The quasi two-dimensional approach is a very simplified model. To gain further in-
sight a three-dimensional model of a cylindrical micelle formed by rod-coil diblocks
should be constructed. The adsorbed micelle is expected to adopt a shape similar to
a semicylinder. The profile of the shift is then expected to form a two-dimensional
surface with the innermost rods close to the surface showing the maximum shift.
The region of stability for such a finite three-dimensional aggregate is expected to be
larger than the one for the quasi two-dimensional model which alters the phase dia-
gram of possible configurations. It would also be of interest to study aggregates with
other geometries or to study the adsorption behaviour of the multiblock copolymer
micelles introduced in Chapter 3.

In Chapters 6-8 a rod-coil multiblock with a variable composition of stiff and flexible
segments is investigated using self-consistent field theory. The system can undergo
a coil-globule transition very similar to that of a homopolymer with almost no
change in composition (for zero energy gain per stiff segment and zero cooperativ-
ity). If in the globular regime the energy gain ǫ per stiff segments is increased, the
fraction of stiff segments ΘR increases in a similar way as in the one-dimensional
Zimm-Bragg type models of the helix-coil transition (although less strongly). At
a certain fraction of stiff segments the stiffening of the polymer drives it into the
open chain regime. The main result of these investigations is the finding of an addi-
tional crossover transition from an amorphous to a liquid-crystalline globule when a
selective two-body interaction (χ) is switched on. The transition occurs even with-
out explicit alignment interaction between the stiff segments. It is triggered by an
interplay between anisotropic surface energy (which is of entropic origin) and bulk
interaction energy. The transition coincides with a rapid increase in the fraction of
stiff segments. It is shown that an attractive alignment interaction enhances this
transition and shifts the transition point to lower values of |χ|, whereas a repulsive
one can suppress the formation of a liquid-crystalline globule without a significant
change of the strong increase in ΘR. Since the crossover to a liquid-crystalline glob-
ule is driven by the anisotropic surface energy, it gets sharper for shorter polymers
and eventually vanishes in the limit of infinite chain length. The crossover is also
sensitive to cooperativity. It gets sharper with increasing cooperativity and occurs
at smaller values of |χ|. An increasing energy gain per stiff segment increases the
fraction of stiff segments at a given χ and therefore shifts the transition point to
smaller values of |χ|. For high enough ǫ the transition point of the amorphous
to liquid-crystalline transition coincides with the one of the coil-globule transition.
These findings are summarised in a phase diagram of the copolymer in ǫ-χ space.
The switching of individual segments from stiff to flexible and the cooperativity of
this behaviour can be related to the helix-coil transition. The transition to a liquid-
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crystalline globule with nematic order can be related to the molten globule state of
helical proteins and might explain bundle formation. Since this transition increases
the fraction of stiff segments and also further compactifies the globule, it might also
provide a rather simple physical explanation of the correlation between the amount
of secondary structure elements and compactness of proteins [79] in the case of helix
bundle proteins.

There are many possibilities to further improve this model. Instead of using the
expansion of ψ in Legendre polynomials, the full orientation dependence could be
accounted for. However, this would significantly complicate the numerical problem,
since it would involve solving integro-differential equations. A final attempt would
be to go beyond the mean-field character of the self-consistent field theory. This
would permit the study of the effect of fluctuations and the investigation of the
open chain regime. A possible extension of the model would be the introduction
of specific angle dependent interactions to model the characteristic tilting angle
between helices in bundles.

A further general question which could be addressed is the effect of a selective
solvent which is good for the rods and poor for the flexible coils. This would lead to
the formation of completely different structures as the ones discussed in this thesis.
Copolymers of alternating flexible parts and semiflexible parts of high stiffness under
such solvent conditions have been studied computationally [94] and it has been
suggested that they form lattice like structures, where the nodes are formed by the
collapsed flexible parts and the links by the stiff parts. Another interesting area for
further studies would be to impose a primary structure in terms of a sequence on the
polymer chain. The polymer would then consist of a specific sequence of hydrophobic
(H) and hydrophilic (P) segments. In this case the three-dimensional structure of
the globule becomes sequence dependent. A specific sequence on the individual rods
could lead to the formation of, for instance, twisted regimes and other structures
different from aggregates in which the rods are simply aligned parallel. The force-
extension curve of such a HP polymer can be used to read its sequence [95]. Another
interesting question would be to study the adsorption behaviour of a HP rod-coil
copolymer onto a patterned (partially attractive and partially repulsive) surface. For
a flexible polymer this was done using a variational method [96]. A first attempt
might be to study the adsorption of a single HP rod on a patterned surface.
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A. Field theoretical representation of

the partition function

In this appendix the grand canonical partition function represented in terms of a
n-component field theory in the limit n→ 0 is derived.

As a start, the canonical partition function given by Eq.(6.11) is rewritten by in-
troducing the collective coil, rod and orientation densities ρC(r), ρR(r) and Sij(r)
respectively via δ-functions.

Z({Nn}, K) =

∫
DρC(r)

∫
DρR(r)

∫
DSij(r)

∫ K∏

n=1

Drn(s) d3Rn d2un

× δ(ρC(r) − ρ̂C(r))δ(ρR(r) − ρ̂R(r))δ(Sij(r) − Ŝij(r))

× δ(|un| − 1)δ(rn(fnNn) − Rn) exp




− 3

2b2

fnNn∫

0

ds

(
∂rn

∂s

)2






× exp

{
−χ
∫

d3r ρR(r)ρR(r) − v

2

∫
d3r [ρC(r) + ρR(r)]2

− w

3!

∫
d3r [ρC(r) + ρR(r)]3 − g

∫
d3rTr

[
Sij(r)Sij(r)

]}
(A.1)

The density δ-functions in Eq.(A.1) can be represented as integrals in the following
way

δ(ρC(r) − ρ̂C(r)) =

∫
DhC(r) exp

{
i

∫
d3r hC(r)[ρC(r) − ρ̂C(r)]

}
. (A.2)

The partition function of the interacting polymer in Eq.(A.1) can then be repre-
sented in terms of the partition function Z(0) of a non-interacting polymer in the
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external fluctuating fields hC, hR, hij
S .

Z({Nn}, K) =

∫
DρC(r)

∫
DρR(r)

∫
DSij(r)

∫
DhC(r)

∫
DhR(r)

∫
Dhij

S (r)

× exp

{
−χ
∫

d3r ρR(r)ρR(r) − v

2

∫
d3r [ρC(r) + ρR(r)]2

− w

3!

∫
d3r [ρC(r) + ρR(r)]3 − g

∫
d3rTr

[
Sij(r)Sij(r)

]

+ i

∫
d3r ρC(r)hC(r) + i

∫
d3r ρR(r)hR(r) + i

∫
d3r Sij(r)hij

S (r)

}

× Z(0)({Nn}, K; [hC] , [hR] ,
[
hij

S

]
) (A.3)

The partition function Z(0) of the non-interacting system in the external fields is
given by

Z(0)({Nn}, K; [hC] , [hR] ,
[
hij

S

]
)

=

∫ K∏

n=1

Drn(s) d3Rn d2un δ(|un| − 1)δ(rn(fnNn) − Rn)

× exp

{
− 3

2b2

∫ fnNn

0

ds

(
∂rn

∂s

)2

− i

∫ fnNn

0

ds hC(rn(s))

− i

∫ (1−fn)Nn

0

ds hR(Rn + uns)

− i

∫ (1−fn)Nn

0

ds hij
S (Rn + uns)

(
ui

nu
j
n − 1

3
δij

)}
. (A.4)

The grand canonical partition function Z(0)(µ, ǫ, σ; [hC] , [hR] ,
[
hij

S

]
) of the non-

interacting system in the external fields can be derived by using the polymeric
correlation function.

Z(0)(µ, ǫ, σ; [hC] , [hR] ,
[
hij

S

]
) =

∫
d1d1′ Ξ(0)(1, 1′;µ, ǫ, σ; [hC] , [hR] ,

[
hij

S

]
),

(A.5)

where the grand canonical polymeric correlation function
Ξ(0)(1, 1′;µ, ǫ, σ; [hC] , [hR] ,

[
hij

S

]
) gives the unnormalised probability of finding the

first segments of the copolymer with variable composition at the coordinate 1 and
the last segment at 1′. 1 stands either for (r1) or for (r1,u1) depending on whether
the first segment is a flexible one or a stiff one. The same applies for the coordinate
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A.1. Coil Green function

1′ of the last segment. The polymeric correlation function is therefore the partition
function of the copolymer with variable composition for ends fixed at 1 and 1′.
In the following, Ξ(0)(1, 1′;µ, ǫ, σ; [hC] , [hR] ,

[
hij

S

]
) will be represented in terms of a

gaussian two dimensional path integral over the field ϕ associated with the flexible
segments and the field ψ associated with the stiff segments, see Eq.(A.26). It will
be shown, that this path integral equals a geometric progression of convoluted rod
and coil Green function operators, see Eq.(A.29). Note, that the path integral is
gaussian, because at this stage it represents the polymeric correlation function of
the non-interacting system.

A.1. Coil Green function

First, the inverse Green function operator for one non-interacting flexible part which
is modelled by a Gaussian chain with MC segments of segment length b in the
external field ihC(r) is derived, compare to e.g. [10, 49]. The Green function of a
chain of length MC with the end points at positions R

′ and R in the external field
ihC(r) is defined as follows

Gcoil(R − R
′;MC) ≡

∫
R

R′

Dr(s) exp

{
− 3

2b2

∫ MC

0

ds

[(
∂r

∂s

)2

+ ihC(r)

]}

∫
d3R′ d3R

∫
R

R′

Dr(s) exp

{

− 3

2b2

∫ MC

0

ds

(
∂r

∂s

)2
} .(A.6)

The Green function gives the probability of finding the end points at R
′ and R of

the chain in the external field ihC(r). For h = 0 the Green function reduces to the
Gaussian probability distribution function, compare to Eq.(2.4) in Section 2.1

G
(0)
coil(R− R

′;MC) =

(
3

2πMCb2

)3/2

exp

(
−3(R− R

′)2

2MCb2

)
. (A.7)

Now an equation of motion for Gcoil(R − R
′;MC) is derived. It can be seen from

the definition of the Green function in Eq.(A.6) that the following identity holds

Gcoil(R − R
′;MC + ∆MC) =

∫
d3R′′Gcoil(R− R

′′; ∆MC)Gcoil(R
′′ − R

′;MC).

(A.8)

Suppose ∆MC is small. For MC < s < MC +∆MC, r(s) is then close to R. Hence, if
h(r) is a smooth function, the integral over the external field ih in the small interval
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A. Field theoretical representation of the partition function

can be approximated as

i

∫ MC+∆MC

MC

ds h(r(s)) ≈ i∆MCh(R). (A.9)

With this approximation Gcoil(R −R
′′; ∆MC) can be obtained from Eq.(A.6)

Gcoil(R − R
′′; ∆MC) = exp(−i∆MCh(R))G

(0)
coil(R − R

′′; ∆MC). (A.10)

Eqs.(A.8, A.10) yield

Gcoil(R − R
′;MC + ∆MC) = exp(−i∆MCh(R))

×
∫

d3R′′G
(0)
coil(R −R

′′; ∆MC)Gcoil(R
′′ − R

′;MC).

(A.11)

For small ∆MC, G
(0)
coil(R− R

′′; ∆MC) has a sharp peak at R = R
′′. The integral in

Eq.(A.11) can therefore be evaluated by expanding Gcoil(R
′′−R

′;MC) with respect
to x = R −R

′′

I =

∫
d3R′′G

(0)
coil(R− R

′′; ∆MC)Gcoil(R
′′ − R

′;MC)

=

∫
d3xG

(0)
coil(x; ∆MC)Gcoil(R − x −R

′;MC)

=

∫
d3xG

(0)
coil(x; ∆MC)

(
1 − xα

∂

∂Rα

+
1

2
xαxβ

∂2

∂Rα∂Rβ

)

× Gcoil(R− R
′;MC). (A.12)

From Eq.(A.7) can be seen that

∫
d3xG

(0)
coil(x; ∆MC)xα = 0,

∫
d3xG

(0)
coil(x; ∆MC)xαxβ = ∆MC

b2

3
δαβ . (A.13)

Therewith the integral I becomes

I =

(
1 +

∆MCb
2

6
∇2

R

)
Gcoil(R −R

′;MC). (A.14)
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To linear order in ∆MC, Eq.(A.11) can now be written as

(
1 + ∆MC

∂

∂MC

)
Gcoil(R − R

′;MC) = (1 − i∆MCh(R))

×
(

1 +
∆MCb

2

6
∇2

R

)
Gcoil(R− R

′;MC).

(A.15)

Comparing all terms linear in ∆MC gives the equation of motion for the coil Green
function

[
∂

∂MC

− b2

6
∇2

R + V (R)

]
Gcoil(R − R

′;MC) = δ(MC)δ(R −R
′), (A.16)

where the δ-functions account for the singularity atMC = 0 and R = R
′. Employing

the standard Laplace transformation with respect to MC yields the grand canonical
Green function Gcoil(R −R

′;µ)

Gcoil(R− R
′;µ) =

∞∫

0

dMC Gcoil(R −R
′;MC)e−βµMC . (A.17)

The inverse Green function operator Ĝ−1
coil in the external field ihC(r) is then given

by

Ĝ−1
coil = δ(r − r

′)

(
βµ− b2

6
∇2

r + ihC(r)

)
. (A.18)

A.2. Rod Green function

Now the Green function for one rod with the number of segments MR of segment
length b with the start point R and the end point R

′ in an external field is derived.
The length of the rod is given by LR = bMR. The rods are assumed to have no
chirality and the rod Green function should therefore be invariant with respect to
flip u → −u.

A suitably symmetric Green function can be constructed as follows

Grod(R −R
′;u;MR) =

1

2
[δ(R− R

′ − ubMR) + δ(R− R
′ + ubMR)] . (A.19)
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Fourier transformation with respect to R−R
′ yields the Green function in k-space

Grod(k;u;MR) =
1

2

[
eibu·kMR + e−ibu·kMR

]
= cos(bu · kMR). (A.20)

The Laplace transformation has to be applied to calculate the grand canonical Green
function in k-space.

Grod(k;u;µ− ǫ) =
1

2






∞∫

0

dMRe
−[β(µ−ǫ)+ibu·k]MR +

∞∫

0

dMRe
−[β(µ−ǫ)−ibu·k]MR






=
1

2

{
1

β(µ− ǫ) + ibu · k +
1

β(µ− ǫ) − ibu · k

}

=
µ− ǫ

β2(µ− ǫ)2 + b2(u · k)2
, (A.21)

where ǫ quantifies the energy gain due to formation of a stiff segment compared to
a flexible one. The inverse Green function operator in k-space is then simply given
by

Ĝ−1
rod,k = β(µ− ǫ) +

b2(u · k)2

β(µ− ǫ)
. (A.22)

The corresponding equation of motion for the rod Green function Grod takes the
form

[
β(µ− ǫ) +

b2(u · k)2

β(µ− ǫ)

]
Grod(k;u;µ− ǫ) = 1. (A.23)

In real space the equation of motion is given by

[
β(µ− ǫ) − b2(u · ∇R)2

β(µ− ǫ)

]
Grod(R − R

′;u;µ− ǫ) = δ(R −R
′). (A.24)

The external field that acts on the rod has to be taken into account. According to

Eq.(A.4) the rod is moving in the external field ihR(r)+i
↔
hS(r) :

↔
P , where the tensor

↔
P is given by P ij ≡ uiuj−δij/3. The resulting inverse Green function operator reads

Ĝ−1
rod = δ(r− r

′)

(
β(µ− ǫ) − b2(u · ∇R)2

β(µ− ǫ)
+ ihR(r) + i

↔
hS(r) :

↔
P

)
. (A.25)
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A.3. Field theoretic representation

Knowing the inverse Green function operators the grand canonical polymeric cor-
relation function can now be represented as the following Gaussian 2-dimensional
path integral

Ξ(0)(1, 1′;µ, ǫ, σ; [hC] , [hR] ,
[
hij

S

]
) =

1

Θ

∫
DψDϕ ψ(1) ϕ(1′)

× exp

{

−1

2

∫
d3 d4

(
ψ(3)
ϕ(3)

)T
(

Ĝ−1
rod −σ1/2

−σ1/2 Ĝ−1
coil

)(
ψ(4)
ϕ(4)

)}

,

(A.26)

where

Θ =

∫
DψDϕ exp

{

−1

2

∫
d3 d4

(
ψ(3)
ϕ(3)

)T
(

Ĝ−1
rod −σ1/2

−σ1/2 Ĝ−1
coil

)(
ψ(4)
ϕ(4)

)}

.

(A.27)

The choice of ψ(1) ϕ(1′) under the path integral yields one rod-coil unit as a basic
building block, see Fig.(A.1) and Eq.(A.29). This choice assigns the coordinates (1)
and (1′) to (r,u) and (r′) respectively. Similarly, (3), (4) is a shorthand notation
for (r3,u3), (r4,u4).

The inversion of the 2 × 2-matrix in Eq.(A.26) reads

(
Ĝ−1

rod −σ1/2

−σ1/2 Ĝ−1
coil

)−1

=
1

Ĝ−1
rod ∗ Ĝ−1

coil − σ

(
Ĝ−1

coil σ1/2

σ1/2 Ĝ−1
rod

)
. (A.28)

The calculation of the path integral in Eq.(A.26) yields the following result

Ξ(0)(1, 1′;µ, ǫ, σ; [hC] , [hR] ,
[
hij

S

]
) =

σ1/2

Ĝ−1
rod ∗ Ĝ−1

coil − σ

= σ1/2Ĝrod ∗ Ĝcoil ∗
[
1̂ + σĜrod ∗ Ĝcoil

+ σ2Ĝrod ∗ Ĝcoil ∗ Ĝrod ∗ Ĝcoil + . . .
]
.

(A.29)

The asterisk in Eq.(A.29) is a shorthand notation for a convolution of Green function
operators. The geometric progression with a convolution as a binary relation has
a clear pictorial representation, see Fig.(A.1). The first term of this series has the
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Figure A.1: Pictorial representation of the geometric progression in Eq.(A.29). One
rod-coil unit constitutes the basic building block.

analytical expression σ1/2Ĝrod ∗ Ĝcoil, whereas the ratio is equal to σĜrod ∗ Ĝcoil, see
also Fig.(A.2). The first term represents one rod-coil unit with one junction between
rod and coil, hence the factor σ1/2. If an additional building block is added, two
more junctions are created, hence the factor σ in the ratio. This series gives a correct
representation of the grand canonical polymeric correlation function.
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Figure A.2: Pictorial representation of the series ratio in Eq.(A.29): each bar (rod),

zigzag line (coil) and fat dot correspond to Ĝrod, Ĝcoil , and σ1/2 respectively.

The denominator in Eq.(A.26) can be avoided by introducing de Gennes’ n→ 0 trick
[47, 48]. Consider the two n-component vector fields {ψα, ϕα}, where α = 1, 2, . . . n.
Then Eq.(A.26) can be formally rewritten as

Ξ(0)(1, 1′;µ, ǫ, σ; [hC] , [hR] ,
[
hij

S

]
) = lim

n→0

n∏

α=1

∫
DψαDϕα ψ1(1) ϕ1(1

′)

× exp
{
−1

2

∫
d3d4

n∑

α=1

(
ψα(3)
ϕα(3)

)T
(

Ĝ−1
rod −σ1/2

−σ1/2 Ĝ−1
coil

)(
ψα(4)
ϕα(4)

)}
.

(A.30)

Eq.(A.30) deserves an explanation. It is given by means of a simpler example.
Consider the following correlation function

Ξ(0)
s =

1

Θs

∫
Dϕϕ(r)ϕ(r′) exp

{
−1

2

∫
d3r ϕ(r)Ĝ−1ϕ(r)

}
, (A.31)
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where

Θs =

∫
Dϕ exp

{
−1

2

∫
d3r ϕ(r)Ĝ−1ϕ(r)

}
. (A.32)

The following identity obviously holds

1

Θs
= lim

n→0
Θn−1

s . (A.33)

Θn−1
s can be written as

Θn−1
s =

(∫
Dϕ exp

{
−1

2

∫
d3r ϕ(r)Ĝ−1ϕ(r)

})n−1

=

∫ n−1∏

α=1

Dϕα exp

{
−1

2

∫
d3r

n−1∑

α=1

ϕα(r)Ĝ−1ϕα(r)

}
. (A.34)

This yields for the correlation function

Ξ(0)
s =

∫
Dϕϕ(r)ϕ(r′) exp

{
−1

2

∫
d3r ϕ(r)Ĝ−1ϕ(r)

}

× lim
n→0

∫ n−1∏

α=1

Dϕα exp

{

−1

2

∫
d3r

n−1∑

α=1

ϕα(r)Ĝ−1ϕα(r)

}

= lim
n→0

∫ n∏

α=1

Dϕα ϕ1(r)ϕ1(r
′) exp

{

−1

2

∫
d3r

n∑

α=1

ϕα(r)Ĝ−1ϕα(r)

}

.

(A.35)

Eq.(A.35) is the equivalent to Eq.(A.30) for the example correlation function Ξ
(0)
s .

By taking into account Eq.(A.18) and Eq.(A.25) a more explicit form of Ξ(0) can be
obtained from Eq.(A.30).

Ξ(0)(1, 1′;µ, ǫ, σ; [hC] , [hR] ,
[
hij

S

]
)

= lim
n→0

n∏

α=1

∫
DψαDϕα ψ1(r,u) ϕ1(r

′) exp

{
−1

2

n∑

α=1

∫
d3r d2u

×ψα(r,u)
[
β(µ− ǫ) − b2 (u · ∇r)

2

β(µ− ǫ)
+ ihR(r) + i

↔
hS(r) :

↔
P
]
ψα(r,u)

−1

2

n∑

α=1

∫
d3r ϕα(r)

[
βµ− b2

6
∇2

r + ihC(r)
]
ϕα(r)

+σ1/2
n∑

α=1

∫
d3r d2uψα(r,u)ϕα(r)

}
(A.36)

135



A. Field theoretical representation of the partition function

This expression is convenient for the following calculations. Recalling Eqs.(A.3, A.5)
the grand canonical partition function of the whole system can be represented in
the form

Z(µ, ǫ, µJ) =

∫
DρC(r)

∫
DρR(r)

∫
DSij(r)

∫
DhC(r)

∫
DhR(r)

∫
Dhij

S (r)

× exp

{
−χ
∫

d3r ρR(r)ρR(r) − v

2

∫
d3r [ρC(r) + ρR(r)]2

− w

3!

∫
d3r [ρC(r) + ρR(r)]3 − g

∫
d3rTr

[
Sij(r)Sij(r)

]

+ i

∫
d3r ρC(r)hC(r) + i

∫
d3r ρR(r)hR(r) + i

∫
d3r Sij(r)hij

S (r)

}

×
∫

d1 d1′Ξ(0)(1, 1′;µ, ǫ, µJ ; [hC] , [hR] ,
[
hij

S

]
). (A.37)

After substitution of Eq.(A.36) into Eq.(A.37) and integration over hC(r), hR(r) and
hij

S (r) a product of three δ-functions appears in the integrand,

δ

(
ρC(r) − 1

2

n∑

α=1

ϕ2
α(r)

)
δ

(
ρR(r) − 1

2

n∑

α=1

∫
d2u ψ2

α(r,u)

)

×δ
(
Sij(r) − 1

2

n∑

α=1

∫
d2u

(
uiuj − 1

3
δij

)
ψ2

α(r,u)

)
. (A.38)

The subsequent integrations over ρC(r), ρR(r) and Sij(r) yield the final field theoretic
representation of the grand canonical partition function

Z(µ, ǫ, σ) = lim
n→0

n∏

α=1

∫
DψαDϕα

[∫
d3r d2u ψ1(r,u)

] [∫
d3r′ ϕ1(r

′)

]

× exp

{
−1

2

n∑

α=1

∫
d3r d2u ψα(r,u)

[
β(µ− ǫ) − b2 (u · ∇r)

2

β(µ− ǫ)

]
ψα(r,u)

− 1

2

n∑

α=1

∫
d3rϕα(r)

[
βµ− b2

6
∇2

r

]
ϕα(r)

− χ

4

∫
d3r

[
n∑

α=1

∫
d2u ψ2

α(r,u)

]2

− v

8

∫
d3r

[
n∑

α=1

∫
d2u ψ2

α(r,u) +
n∑

α′=1

ϕ2
α′(r)

]2

(A.39)
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− w

48

∫
d3r

[
n∑

α=1

∫
d2u ψ2

α(r,u) +
n∑

α′=1

ϕ2
α′(r)

]3

+ σ1/2

n∑

α=1

∫
d3r d2u ψα(r,u)ϕα(r)

− g

4

n∑

α=1

n∑

α′=1

∫
d3r d2u d2u′ P2(u · u′) ψ2

α(r,u) ψ2
α′(r,u′)

}

, (A.39)

where the second Legendre polynomial is given by

P2(u · u′) =
1

2

(
3 cos2 θ − 1

)
. (A.40)

Eq.(A.39) is the same as Eq.(6.16) in Section 6.3, which is further evaluated using
the self-consistent field treatment.
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B. Numerical methods

In this appendix the adaptive finite element method implemented in the program
package Gascoigne [58] is briefly described. A detailed mathematical discussion of
the numerical methods can be found in [59].

B.1. Variational formulation and Newton’s method

The given boundary value problem is transformed into a variational problem. How
this is done is explained with a simple example. Consider the PDE in the region G

−∇2
ru(r) + u2(r) = f(r), (B.1)

with u = ∇ru = 0 on the boundary of G. Multiplying Eq.(B.1) with a test function
v(r) that vanishes at the boundary and integrating over G gives

∫

(G)

d2r
(
−∇2

ru+ u2
)
v =

∫

(G)

d2r fv

⇔
∫

(G)

d2r
[
(∇ru)(∇rv) + u2v

]
=

∫

(G)

d2r fv. (B.2)

Eq.(B.2) is now a variational formulation of the boundary value problem given by
Eq.(B.1). For this example Eq.(B.2) is non-linear. This is also the case for the
corresponding variational formulations of Eqs.(6.35, 6.36, 6.37) which describe the
rod-coil copolymer with variable composition.

The solution for u is iteratively approximated by Newton’s method which yields a
set of linear equations for each iteration step. This set of linear equations is then
solved with the finite element method. The following notation is convenient

A(u, v) ≡
∫

(G)

d2r
[
(∇ru)(∇rv) + u2v

]
(B.3)

F (v) ≡
∫

(G)

d2r fv. (B.4)
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B. Numerical methods

A(u, v) and F (v) can also be regarded as general functionals obtained by the pro-
cedure described above.

The starting point of the Newton scheme is an arbitrary initial guess u0 that fulfils
the boundary conditions. For each iteration k, uk+1 can then be found by solving

A′(uk,∆u, v) = F (v) − A(uk, v) (B.5)

uk+1 = uk + ∆u, (B.6)

where A′(uk,∆u, v) is a shorthand notation for

A′(uk,∆u, v) =
∂

∂s
A(uk + s∆u, v)

∣∣∣∣
s=0

. (B.7)

The derivative of A can be understood as a directional derivative in the direction
of ∆u, which is the direction of search for Newton’s method. For the example
variational problem (Eq.(B.2)) A′ is given by

A′(uk,∆u, v) =

∫

(G)

dr
[
(∇r∆u)(∇rv) + 2uk∆uv

]
. (B.8)

For each iteration step, Eq.(B.5) is solved for ∆u with the finite element method.
Note, that Eq.(B.5) is linear in ∆u.

B.2. Finite element method

For the finite element method a mesh is generated on which the problem is dis-
cretised. After each iteration step of Newton’s method the mesh is refined, this
refinement will be described below.

As an ansatz for ∆u in G,

∆u(r) =
∑

i

uivi(r) (B.9)

is chosen, where i runs over all nodes of the mesh. The test functions vi(r) are
chosen such that they are equal to 1 at position ri of node i and equal to 0 at
the positions of all other nodes. Between node i and all neighbouring nodes vi(r)
decreases linearly from 1 to 0. The discrete set of test functions {vi} is thus fully
determined by the choice of the mesh. The coefficients ui are unknown and must be
determined.
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The linear equation (B.5) must be fulfilled for all test functions vi. This yields the
linear system of equations

Mu = b, (B.10)

where the components of the vector u are the ui and the components of b are given
by

bj = F (vj) − A(uk, vj). (B.11)

The elements of the matrix M are given by

Mij = A′(uk, vi, vj). (B.12)

For the example variational problem (Eq.(B.2)) Mij is given by

Mij =

∫

(G)

dr
[
(∇rvi)(∇rvj) + 2ukvivj

]
. (B.13)

The integrals in Eq.(B.12) are calculated with a Gauss integration formula using
four sampling points for each cell of the mesh.

The solution u of this linear system of equations determines ∆u and uk+1.

This procedure is iterated a certain number of times. Each time the mesh is refined in
some areas and coarsened in others. These regions are chosen according to the local
error of uk. The error is estimated basically by inserting uk(r) into the original PDE,
Eq.(B.1), and calculating the residuals at the positions of the nodes. In the areas
with a high error the mesh is refined and in the areas with a very low error the mesh
is coarsened. Using this process, the total number of nodes is constrained within a
certain interval, therefore a coarsening in some regions is necessary to allow refining
in other regions. Generally, the local error is large in regions where the gradient of
the solution is large and small in regions where the gradient is small. This yields a
very dense mesh in regions over which u changes strongly and a very coarse mesh in
regions where u is almost constant. For the copolymer globule considered in Chapter
8 this means, that the mesh is very fine in the surface layer and very coarse around
the centre of the globule where the fields and hence the density is roughly constant.
As an example, Fig.(B.1) shows a section of a highly adapted mesh together with
the intensity of ψ0.

B.3. Additional remarks

Gascoigne was used to solve the boundary value problem which models a rod-coil
copolymer with variable composition, given by Eqs.(6.35, 6.36, 6.37) together with
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B. Numerical methods

Figure B.1: Section of a highly adapted mesh. The colour coded plot on top of the mesh
shows the intensity of ψ0. The parameters are the same as the ones in the bottom two
pictures in Fig.(8.12).

the boundary conditions in Eq.(6.38). In a numerical treatment the region on which
the equations live has to be finite. The boundary conditions in Eq.(6.38) fix the
values of the fields and their derivatives at infinity. The region which was used
in the computation had therefore to be chosen large enough to ensure that the
finite boundary did not influence the numerical solutions of Eqs.(6.35, 6.36, 6.37)
in a significant way. It was checked that the region was always large enough, that
slightly extending or reducing it did not change the numerical solutions.

For many results presented in Chapter 8 one of the parameters of the model (for
instance χ) was changed over a large interval. For each step, the chemical potential
µ was adjusted in order to adjust N . This was done in very small steps, where each
step corresponded to one iteration in Newton’s method. By choosing the steps small
enough to ensure that the solution changes only slightly from one step to the next,
it was possible to reach a very high accuracy, even with only one iteration per step.
A typical number of steps for one of the curves in Fig.(8.21) was between 104 − 105.
By changing a parameter in discrete steps and by also adjusting µ in discrete steps
it is, of course, not possible to keep N exactly fixed at one value. The stepwise
adjustment of µ ensured that N stayed within a small interval around the desired
value. From one step to the next N usually changes by less than 1%. All other
computed values and also the corresponding parameters were then estimated for the
chosen fixed N by linear interpolation.
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