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Abstract

In this thesis we consider three different models for strongly correlated electrons,
namely a multi-band Hubbard model as well as the spinless Falicov-Kimball model,
both with a semi-elliptical density of states in the limit of infinite dimensions d, and
the attractive Hubbard model on a square lattice in d = 2.

In the first part, we study a two-band Hubbard model with unequal bandwidths
and anisotropic Hund’s rule coupling (Jz-model) in the limit of infinite dimensions
within the dynamical mean-field theory (DMFT). Here, the DMFT impurity problem
is solved with the use of quantum Monte Carlo (QMC) simulations. Our main result
is that the Jz-model describes the occurrence of an orbital-selective Mott transition
(OSMT), in contrast to earlier findings. We investigate the model with a high-
precision DMFT algorithm, which was developed as part of this thesis and which
supplements QMC with a high-frequency expansion of the self-energy. The main
advantage of this scheme is the extraordinary accuracy of the numerical solutions,
which can be obtained already with moderate computational effort, so that studies of
multi-orbital systems within the DMFT+QMC are strongly improved. We also found
that a suitably defined Falicov-Kimball (FK) model exhibits an OSMT, revealing the
close connection of the Falicov-Kimball physics to the Jz-model in the OSM phase.

In the second part of this thesis we study the attractive Hubbard model in two spa-
tial dimensions within second-order self-consistent perturbation theory. This model
is considered on a square lattice at finite doping and at low temperatures. Our main
result is that the predictions of first-order perturbation theory (Hartree-Fock approx-
imation) are renormalized by a factor of the order of unity even at arbitrarily weak
interaction (U → 0). The renormalization factor q can be evaluated as a function
of the filling n for 0 < n < 1. In the limit n → 0, the q-factor vanishes, signaling
the divergence of self-consistent perturbation theory in this limit. Thus we present
the first asymptotically exact results at weak-coupling for the negative-U Hubbard
model in d = 2 at finite doping.
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Zusammenfassung

In dieser Arbeit werden drei verschiedene Modelle stark korrelierter Elektronen-
systeme betrachtet. Diese sind ein Mehrband-Hubbard-Modell sowie ein Falicov-
Kimball-Modell, die beide mit halb-elliptischer Zustandsdichte und im Limes un-
endlicher Dimensionen behandelt werden. Außerdem wird das attraktive Hubbard-
Modell auf dem Quadratgitter in zwei Dimensionen untersucht.

Im ersten Teil der Arbeit wird ein Zweiband-Hubbard-Modell mit unter-
schiedlichen Bandbreiten und anisotroper Hund’scher Kopplung (Jz-Modell) im
Limes unendlicher Dimensionen im Rahmen der Dynamischen Molekularfeld-Theorie
(DMFT) behandelt. Das DMFT-Störstellenproblem wird dabei mittels einer
Quanten-Monte-Carlo-Simulation (QMC) gelöst. Als wichtigstes Resultat finden wir,
daß das Jz-Modell das Phänomen des orbital-selektiven Mott-Übergangs (OSMT)
beschreibt, im Gegensatz zu Ergebnissen früherer Arbeiten. Das Modell wird dabei
mit einem hochpräzisen DMFT-Algorithmus untersucht, der als Teil dieser Arbeit
entwickelt wurde und welcher die QMC-Ergebnisse um die Hochfrequenzentwick-
lung der Selbstenergie ergänzt. Der Hauptvorteil dieser Methode besteht in der
außergewöhnlichen Genauigkeit der numerischen Lösungen, die schon mit moderatem
numerischen Aufwand erhalten werden können. Die Untersuchung von Mehrband-
Systemen wird dadurch stark verbessert. Das Phänomen des OSMT finden wir eben-
falls in einem Falicov-Kimball-Modell (FK), was die enge Verknüpfung der Physik
des FK-Modells mit der orbital-selektiven Phase des Jz-Modells aufzeigt.

Im zweiten Teil dieser Arbeit wird das attraktive Hubbard-Modell in zweiter Ord-
nung selbstkonsistenter Störungstheorie in zwei räumlichen Dimensionen untersucht.
Das Modell wird dabei auf dem Quadratgitter bei endlicher Dotierung und im Gren-
zwert niedriger Temperatur betrachtet. Als wichtigstes Resultat finden wir hier, daß
die Ergebnisse der Störungstheorie erster Ordnung (Hartree-Fock Näherung) schon
bei beliebig schwacher Wechselwirkung (U → 0) um einen Faktor q der Ordnung
eins renormiert werden. Der Renormierungsfaktor wird als Funktion der Füllung
n, mit 0 < n < 1, berechnet. Im Grenzwert n → 0 finden wir, daß der q-Faktor
verschwindet und folglich die Störungstheorie zusammenbricht. Damit haben wir
die ersten aymptotisch exakten Ergebnisse für das attraktive Hubbard-Modell bei
schwacher Kopplung und endlicher Dotierung in zwei Dimensionen erhalten.
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Introduction

The subject of this thesis is the study of strongly correlated electron systems. A
paradigm for such a system is the Hubbard model, which takes into account the
quantum mechanical motion the electrons, Ht, and also a repulsive interaction, HU ,
between them. With the reduction to these two contributions, the Hubbard model
is truly a highly oversimplified model of the solid state. Nevertheless, it constains
the key features of the many-body problem for fermions. Neither of the two parts
alone favors any specific order. Their sum H = Ht + HU , however, is known to
exhibit a variety of nontrivial phenomena, including the correlation-driven metal-
insulator transition (MIT), ferromagnetism, antiferromagnetism, ferrimagnetism, the
Tomonaga-Luttinger liquid and even superconductivity.

The study of the MIT has a long history in solid state physics and much progress
has been made, both experimentally and theoretically, in understanding strongly cor-
related electron systems and MITs (see, e.g., Gebhard, 1997; Imada et al., 1998).
Among the most famous strongly correlated electron systems are the transition metal
oxides, which are mainly degenerate d electron compounds. Of particular importance
for the theoretical description of all of these systems are the strong coupling and the
interplay of spin and orbital degrees of freedom (not to be confused with the usual
spin-orbit coupling, even though it is also relevant in some cases), which constitute
an unavoidable source of complicated behavior. Recently, the interest in these ma-
terials has been intensified by the observation of colossal magnetoresistance in the
manganites and high-Tc superconductivity in the cuprates (Jin et al., 1994; Bed-
norz and Müller, 1986). Additionally, Nakatsuji and Maeno (2000a) found evidence
for an orbital-selective metal-insulator transition (OSMT) in Ca2−xSrxRuO4, which
introduces a new aspect to the theory of Mott transitions.

A very successful method to treat strongly correlated electron systems is given
by the dynamical mean-field theory (DMFT; Metzner and Vollhardt, 1989). It is a
nonperturbative theory that becomes exact in the limit of infinite dimensions d (or
lattice coordination number Z) and is controlled in the parameter 1

d
. The DMFT

is based on a mapping of the lattice model onto a quantum impurity model, sub-
jected to a self-consistency condition. It thus fully retains local quantum mechanical
fluctuations while spatial correlations are neglected.
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For attractive on-site interaction (negative-U), the Hubbard model is one of the
conceptually simplest models to describe superconductivity of two-dimensional sys-
tems with short-range, almost unretarded pairing. Consequently, it has been con-
sidered as an effective model of superconductivity in the family of cuprates, barium
bismuthates, fullerids and Chevrel phases (Micnas et al., 1990). At weak coupling, the
negative-U Hubbard model seems to be well described by a BCS picture of supercon-
ductivity. At strong coupling, however, the scenario of a Bose-Einstein condensate
of preformed pairs appears to be more adequate. Of interest is also the study of
the crossover from weak- to strong-coupling superconductivity, which is motivated
in particular by experimental observations concerning unusual properties of high-Tc
cuprate superconductors (Bednorz and Müller, 1986).

In low-dimensional quantum systems (d = 1, 2), fluctuations are known to be very
strong, such that the results of a mean-field approximation are a priori questionable.
For instance, in the BCS theory of superconductivity or in the antiferromagnetic
Hartree-Fock theory of the Hubbard model, the order parameters (at weak-coupling)
are exponentially small as a function of the interaction. In consideration of the
fact that Hartree-Fock theory is equivalent to self-consistent first-order perturbation
theory and consequently exact at most up to linear order in the interaction, it is of
importance to know the relevance of these predictions. This issue can be studied
by systematically calculating higher-order corrections to the mean-field results. An
elegant method for this purpose is the self-consistent perturbation theory at fixed
order parameters (PTFO; Georges and Yedidia, 1991). The method is based on the
expansion of the free energy per site in powers of the interaction at a fixed value of
the order parameter. Here, a Lagrange parameter is used to keep the order parameter
fixed. Both order parameter and Lagrange parameter then have to be determined
from a self-consistency condition to each order in the expansion.

In the first part of this thesis, we study the two-band Hubbard model with inequiv-
alent bandwidths and isotropic Hund’s rule coupling (Jz-model) within the DMFT
for the occurrence of an OSMT. Here, the impurity problem of the DMFT is solved
within a quantum Monte Carlo (QMC) simulation. The model is investigated with
a high-precision DMFT algorithm that supplements QMC by a high-frequency ex-
pansion of the self-energy, and which is developed as part of this thesis. Included
in this study are results from weak- and strong-coupling calculations. Finally, an
OSMT-version of the Falicov-Kimball model, a simplified, spinless Hubbard model,
is solved exactly in an “exact mean-field” study.

In the second part of this thesis, we consider the negative-U Hubbard model in two
spatial dimensions at weak coupling and in the low-temperature limit. In particular,
we study the relevance of the Hartree-Fock predictions for the model at finite doping
by calculating the second-order corrections within self-consistent perturbation theory.
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Structure of this Thesis

Chapter 1 introduces the Hubbard model, its extension to multiple bands as well as
the negative-U Hubbard model. Thereafter, the DMFT is reviewed and it is shown
how the impurity problem can be solved within an auxiliary-field QMC simulation.
Subsequently, the analytical continuation of imaginary-time Green functions to the
real axis within a maximum entropy method (MEM) is discussed. Finally, we discuss
self-consistent perturbation theory at fixed order parameter, which is used to study
the two-dimensional negative-U Hubbard model at weak coupling.

In chapter 2 we first study the consequences of the discretization of the imaginary
time, introduced by the QMC method, for the solutions of the DMFT-equations.
Then, a high-frequency corrected DMFT+QMC algorithm for the multi-band Hub-
bard model at half filling is developed, which is based on a large-energy expansion
of the self-energy. The properties of this scheme as well as its applicability to the
multi-orbital Hubbard model are then revealed in a comparison with schemes used in
the literature. Finally, we test the applicability of this method also to the Hubbard
model away from half filling.

Chapter 3, which is one of the central chapters of this thesis, concerns about
orbital-selective Mott transitions. In the first part, the experimental observations
and theoretical descriptions of the OSMT phenomenon are discussed. The two-band
Hubbard model with inequivalent bandwidths and anisotropic Hund’s rule coupling
(Jz-model) is then examined for the occurrence of an OSMT in the second part.
Using the high-precision DMFT+QMC scheme developed in chapter 2, we correct
earlier QMC studies, in particular by Liebsch (2004) by proving the existence of two
consecutive Mott transitions. Various observables are employed to study the OSM
phase of the Jz-model. The critical interactions of the two consecutive transitions
are determined as well as the critical temperature of the first transition. It is fur-
ther found that the wide band exhibits non-Fermi-liquid behavior in the OSM phase
and that it essentially displays the physics of the Falicov-Kimball model. The QMC
results are also compared with the second-order weak-coupling expansion of the in-
ternal energy, which is calculated within this chapter. Afterwards, we determine the
magnetic phase diagram of the Jz-model within the DMFT+QMC and compare our
findings to weak- and strong-coupling results. Possible mechanisms of frustration are
discussed subsequently. In the third part of chapter 3, a simplified Hubbard model,
namely the spinless Falicov-Kimball (FK) model, is investigated for an OSMT. The
model is solved exactly with the use of “exact mean-field theory”. The close connec-
tion of the Falicov-Kimball physics and the Jz model in the OSM phase is confirmed
by a comparison of observables. Finally, we study the influence of an additional
hybridization to the FK Hamiltonian on the phase diagram.

In the last chapter (4), we consider the two-dimensional negative-U Hubbard
model away from half-filling and at low temperatures within second-order self-
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consistent (sc) perturbation theory at weak-coupling. The actual calculation is per-
formed for the repulsive Hubbard model within a homogeneous magnetic field B, onto
which the negative-U model can be mapped by a canonical transformation. First,
we review the most important results from Hartree-Fock theory for U → 0, such as
the critical temperature, the order parameter and the free energy gain due to the
symmetry breaking. We then calculate the second-order correction for small U . As
a result we find that the HF order parameter (and similarly the critical tempera-
ture) is rescaled by a factor which is of the order of unity. The dependence of this
renormalization factor on the field B is studied in detail.

Except for chapter 1, each chapter ends with a summary. Discussions and outlooks
are given at the end of each relevant section. The main achievements are summarized
at the end of the thesis.
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Chapter 1

Models and Methods

1.1 Single-Band Hubbard Model

The Hubbard model is a tight-binding1 lattice fermion model in which electrons
are not only allowed to hop from one lattice site to another (kinetic energy) but
also exhibit an on-site interaction (potential energy) that causes their motion to
be correlated. The single band model with one electron per site is therefore also
considered as the ‘minimal’ model for correlated electrons. Originally introduced
independently by Hubbard (1963), Gutzwiller (1963), and Kanamori (1963) in or-
der to describe itinerant ferromagnetism, the Hubbard model has been successfully
used to explain a number of important phenomena in solid state physics, among
which are the Mott-Hubbard metal-insulator transition (Mott, 1968; Brinkman
and Rice, 1970; Gebhard, 1997), antiferromagnetism (Anderson, 1963), ferro-
magnetism (Müller-Hartmann, 1995; Hanisch et al., 1997; Tasaki, 1998a; Wahle
et al., 1998; Ulmke, 1998), incommensurate phases (Schulz, 1990), phase separation
(Visscher, 1974; van Dongen, 1995; van Dongen, 1996), and normal-state properties
of high-Tc materials (Anderson, 1987; Lee and Nagaosa, 1992).

The grand canonical Hamiltonian of the Hubbard model is given [in second-
quantized form2] by:

H = Ht +HU +Hµ (1.1)

= −t
∑

〈ij〉σ

(
c†iσcjσ + H.c.

)
+ U

∑

i

ni↑ni↓ − µ
∑

iσ

niσ , (1.2)

with the creation and annihilation operators of a single-band electron at site i with

1For a discussion of the tight-binding approximation and its terminology, the reader is referred
to textbooks of solid state physics, e.g., to Ashcroft and Mermin (1976).

2The formalism of the ‘second quantization’ is introduced, e.g., by Negele and Orland (1987).
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spin σ, c†iσ and cjσ, respectively, and the number operator niσ ≡ c†iσciσ. The kinetic
energy is parameterized by t and the hopping is restricted to nearest-neighbor (NN)
lattice sites, 〈ij〉.

The operator of the kinetic energy, Ht, is obtained from the overlap of two atomic
Wannier orbitals ψiσ(x) and ψjσ(x) at sites i and j:

t =

∫
dxψ†

iσ(x)
~

2

2m
∆ψjσ(x) , (1.3)

where the Planck constant ~ is set to unity henceforth and m is the mass of the
electron. HU denotes the contribution of the potential energy. The on-site Coulomb
repulsion U of two electrons that occupy the same site is given by:

U =

∫
dx dx′ψ†

iσ(x)ψiσ(x)
e2

|x− x′|ψ
†
iσ̄(x

′)ψiσ̄(x
′) , (1.4)

with σ̄ = −σ. Besides the hopping amplitude t and the Coulomb interaction U , the
system is fully defined by the temperature T , the underlying lattice structure and its
dimensions d as well as by the chemical potential µ.

It is important to note that a number of complications in real materials are ignored
in this simplified electronic model. First, the Hubbard Hamiltonian neglects the
intersite Coulomb force. This Coulomb repulsion, however, results in a (self)screening
of the electrons, which limits the (infinite) range of the interaction. The coordinate-
space screened interaction will be of shorter range with a characteristic screening
length scale. In some cases it is justified to neglect the Coulomb interaction of
electrons beyond the screening radius. Also, the hopping range of the electrons is
restricted to nearest-neighbor sites. This is justified at least for 3d and 4f valence
electrons for which the corresponding atomic orbitals barely overlap (compare, e.g.,
Ashcroft and Mermin, 1976). Consequently, the complexity of the model can be
gradually enhanced by including intersite Coulomb interactions and by increasing the
hopping range. A further simplification is the fact that the Hubbard model considers
only electrons in a single orbit, e.g., the s orbital. This ideal case is justified if all other
bands are energetically far away from the Fermi energy. Most systems of correlated
electrons, like the transition metals, in contrast, are d-electron systems. In case the
orbital degeneracy is lifted, the important low-energy excitations of such systems can
be described by an effective single band close to the Fermi edge. This simplification
is sometimes justified for materials where the bands are under the strong influence of
an anisotropic crystal field. Another important class of materials that might well be
described by an effective single-band model are the high-Tc cuprate superconductors
(Bednorz and Müller, 1986; Anderson, 1987; Zhang and Rice, 1988).3 As before,

3Here, the low-energy electronic structure of the copper oxide can be described well by taking
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the Hubbard model can be extended to include multiple bands in order to make the
description more realistic.

Despite its simplicity, the Hubbard Hamiltonian contains the full complexity of a
many-body problem and the treatment of the single-band Hubbard model turns out
to be extremely difficult. This is due to the fact that the hopping and interaction
terms in (1.1) do not commute and, consequently, cannot be diagonalized in a simple
manner. Exact solutions are therefore known only in few cases. In one dimension,
the Hubbard model could be solved exactly with the Bethe ansatz method (Lieb and
Wu, 1968; Essler et al., 1992). In dimensions d ≥ 2, the few known exact results
concern mainly the magnetic phase diagram. As a magnetically ordered state is
excluded in one and two dimensions at finite temperature by the Mermin-Wagner
theorem (Mermin and Wagner, 1966), symmetry breaking can possibly occur in the
ground state only. Originally introduced as a model for itinerant ferromagnetism in
transition metals, the occurrence of ferromagnetism in the Hubbard model is rather an
exception. The generic magnetic phase of the half-filled single-band Hubbard model
on bipartite lattices at low temperatures is antiferromagnetic (AF) for dimensions d ≥
2 (for d = 2 at T = 0 only). This is found by strong and weak-coupling calculations
in dimensions d > 2 (Penn, 1966; Georges and Yedidia, 1991; van Dongen, 1991), and
within renormalization group methods also for d = 2 (Halboth and Metzner, 2000;
Honerkamp and Salmhofer, 2001).

Ferromagnetism is found for the Hubbard model for the case of one hole in an
otherwise half-filled band in the limit U →∞ for dimensions d ≥ 2 (Nagaoka, 1965).
The extension of this rather pathological case to systems with finite interaction U or
with a finite density of holes was not possible yet, at least not rigorously. In d = 1,
ferromagnetism is excluded by the Lieb-Mattis theorem (Lieb and Mattis, 1962).
Ferromagnetism is also found for so called ‘flat-band systems’, which are marked out
by an idealized density of states with a flat and degenerate band (Mielke, 1991; Mielke
and Tasaki, 1993). Ferrimagnetism is established for a half-filled band on bipartite
lattices, where the sublattices have an unequal number of sites and the electrons can
hop only between the sublattices (Lieb, 1989). Interestingly, the Hubbard model for
this configuration displays superconducting correlations for an attractive interaction
(Shen and Qiu, 1993). For a review on exact results, compare also Tasaki (1998b).

1.2 Multi-Band Hubbard Model

The class of materials that are reasonably well described by an effective single-band
Hubbard model is small, high-Tc materials being a notable exception. Most materials

into account only the dx2−y2 orbital, which is separated from the remaining d orbitals due to the
crystal field. The dx2−y2 orbital that further strongly hybridizes with the 2pσ orbital forms an
effective single antibonding band near the Fermi level.
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with strongly correlated electrons are multi-orbital systems, where the orbital degen-
eracy plays an important role. In the case of Mn and Co compounds, for example,
the relevant d electrons additionally favor high-spin states because of Hund’s rule
coupling. This exchange term was originally introduced to explain ferromagnetism
(Slater, 1936; van Vleck, 1953). A multi-band Hubbard model that includes Hund’s
rule coupling is given by:

H =−
∑

〈ij〉σν
tν
(
c†iνσcjνσ + H.c.

)
+ U

∑

iν

niν↑niν↓ (1.5)

+
∑

i σσ′

ν<ν′

(U ′ − δσσ′Jz)niνσniν′σ′ (1.6)

+ J⊥
∑

i; ν<ν′

(
c†iν↑ciν↓c

†
iν′↓ciν′↑ + c†iν↑c

†
iν↓ciν′↑ciν′↓ + H.c.

)
, (1.7)

with band index ν, interorbital Coulomb interaction U ′, and Hund’s rule coupling
constants Jz and J⊥. Here, the Jz-term in (1.6) denotes the Ising component of
the Hund’s rule coupling, and (1.7) are the spin-flip and the pair-hopping terms,
respectively. The two-band version of this Hamiltonian with distinct hopping am-
plitudes t2 = 2t1 is intensively studied in chapter 3 for the occurrence of an orbital-
selective Mott transition, that was found in the ruthenate Ca2−xSrxRuO4 by Nakat-
suji and Maeno (2000a). The same two-band Hamiltonian with equal hopping am-
plitudes tν = t exhibits ferromagnetism for one-dimensional systems at quarter fill-
ing, as found within exact diagonalization (ED) (Gill and Scalapino, 1987; Kuei
and Scalettar, 1997; Hirsch, 1997), and in a broad range of electron fillings within
DMFT+QMC4 (Held and Vollhardt, 1998). The three-band version of (1.5) is in
general expected to be relevant for the description of double perovskites, which
are of particular interest, since they exhibit colossal magnetoresistance (Kobayashi
et al., 1998; Petrone and Aligia, 2002).

1.3 Attractive Hubbard Model

The attractive (also negative-U) Hubbard model is one of the simplest models for
the study of superconductivity through local pairing. The local attractive on-site
density-density interaction term evidently favors double occupancy of sites and hence
the formation of (s-symmetric) pairs below a critical temperature Tc. The model is
therefore used to describe superconductivity of systems with short-range, almost
unretarded pairing (Micnas et al., 1990), which are characterized by an extremely

4Due to a sign-problem within the DMFT+QMC, the Hund’s rule coupling was restricted to the
Ising component (1.6).
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short coherence length5, in contrast to conventional BCS superconductors (Bardeen
et al., 1957). Thus the attractive Hubbard model has been considered as an effective
model for the superconductivity that occurs in the cuprates, barium bismuthates
(Ba1−xKxBiO3 and BaPbxBi1−xO3), the fullerides, as well as the Chevrel phases
(Micnas et al., 1990).

The concept of pairing in real space, originally introduced by Anderson (1975)
for the description of amorphous semiconductors, is also of interest in the context
of the formation of charge-density waves (CDW) in narrow-band systems (Rice and
Sneddon, 1970; Micnas et al., 1984). Amongst the microscopic mechanisms that
can lead to an effective short-range attraction are strong electron-lattice couplings
(Anderson, 1975; Robaszkiewicz et al., 1987) and couplings between electrons and
quasibosonic excitations of electronic origin, such as excitations or plasmons (Little,
1964; Hirsch and Scalapino, 1985). The coupling mechanisms that can overscreen
the local Coulomb repulsion, and the relevant materials are reviewed, e.g., by Micnas
et al. (1990).

The attractive Hubbard model at arbitrary filling (0 ≤ n ≤ 2) can be mapped onto
the half-filled repulsive Hubbard model in a homogeneous magnetic (Zeeman) field
B by a canonical transformation. The Hamiltonian HR of this (repulsive) Hubbard
model in a homogeneous magnetic field is given by:

HR = Ht +HU +Hµ +HB (1.8)

= Ht +HU +Hµ − B
∑

iσ

σ niσ . (1.9)

Employing a particle-hole (ph) transformation [compare Appendix A] at half filling,
HR can be then mapped onto the attractive Hubbard model HA away from half
filling:

HA = Ht′=t +HU ′=−U +Hµ′=−(U/2+B) . (1.10)

The study of the attractive Hubbard model, HA, is therefore equivalent to the study
of the repulsive model HR.

Exact solutions of the negative-U Hubbard model are known in d = 1 [for n = 1 by
Shiba (1972), for general fillings compare Micnas et al. (1990) and references therein].
The ground state is strictly degenerate with CDW order and singlet-superconducting
(SS) short range order. Furthermore, the single-electron spectrum has a gap for ar-
bitrary n, in contrast to the case U > 0, where a gap exists only for n = 1 (Lieb and
Wu, 1968). In the weak-coupling regime and at half filling, the negative-U Hubbard
model exhibits conventional BCS-type superconductivity; the system undergoes a

5The coherence length of high-Tc superconductors is of the order of some lattice constants, which
is very small compared to that of conventional superconductors, where it is of the order of several
thousand Å.
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transition from a normal metallic phase to a phase of coexisting CDW order and SS
order. Long range pairing correlations occur only below Tc, which is exactly zero
in dimensions d ≤ 2. The transition is essentially mean-field in character (consis-
tent with BCS theory) [compare, e.g., Singer et al. (1996) and references therein],
with a Hartree critical temperature kBTc ∼

√
n(2− n) exp(−2W/|U |) , for a square

DOS with bandwidth W (Robaszkiewicz et al., 1982). In the strong-coupling limit
(and at half filling), the model is adequately described by a Bose-Einstein condensate
(BEC) of local, preformed pairs with a superconductor to insulator critical endpoint.
Here, superconductivity occurs when the pairs condensate at a critical temperature
that decreases as t2/|U | (Robaszkiewicz et al., 1981a; Robaszkiewicz et al., 1981b).
The pairs exist, in contrast to the weak-coupling regime, already above this critical
temperature. Away from half filling, the low-temperature phase is purely supercon-
ducting for |U | > 0, while Tc decreases with filling. In d = 2, there is evidence for
a finite-temperature Kosterlitz-Thouless (Kosterlitz and Thouless, 1973) phase tran-
sition into the SS state with power-law decay of the pairing correlations (Scalettar,
Loh, Gubernatis, Moreo, White, Scalapino, Sugar and Dagotto, 1989).

The attractive Hubbard model is of particular interest, because it allows for the
study of the crossover from extended pairs in BCS-like superconductors to BEC su-
perconductivity with its local pairs, just by tuning the interaction parameter U . The
transition from weak- to strong-coupling superconductivity appears to be continuous
(Nozières and Schmitt-Rink, 1985).

The degenerate ground state of the negative-U Hubbard model can be lifted by
introducing an intersite electron density-density interaction V (extended Hubbard
model). Then, at half-filling, the CDW is stable for V > 0, the SS phase for V < 0.
Away from half filling, the ground state is always ordered, exhibiting either the SS
or a mixed CDW-SS state (Robaszkiewicz et al., 1981c).

1.4 Dynamical Mean-Field Theory

As an exact solution for the Hubbard model is not known for dimensions d > 1, one
can employ methods that give exact results in some limiting case [i.e., an approxima-
tion that is based on some controlled limit], methods that are based on uncontrolled
approximations or apply direct numerical schemes. There exists a large number of
both analytical methods and numerical approaches, all of which have their own lim-
itations. Direct numerical solutions that apply to the Hubbard model using exact
diagonalization and quantum Monte Carlo methods have been reviewed by Dagotto
(1994).

Of particular interest is the limit of infinite dimensionality d→∞ [or the limit of
infinite lattice coordination Z, which is the number of next neighbors of a lattice site],
in which the coupling of one lattice site to the remaining lattice can be described by
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an effective field: The lattice problem is reduced to a single-site problem in an effec-
tive medium. A self-consistency condition is then used to capture the translational
invariance of the original lattice. It is well-known from classical statistical mechanics,
that such a mean-field theory becomes exact in the limit Z →∞, where the inverse
of the coordination number, 1

Z
, plays the role of the control parameter (Brout, 1960).

In a pioneering work, Metzner and Vollhardt (1989) triggered the development of
a mean-field theory that gets exact in the limit of large spatial dimensions also for
strongly correlated fermion systems. This approach is now known as the dynamical
mean-field theory (DMFT). Within the DMFT, local (time-dependent) quantum fluc-
tuations are fully retained, while spatial fluctuations are neglected. Self-consistent
functional equations for a mean-field theory of the Hubbard model, that can be solved
essentially exactly, were then derived independently by Jarrell (1992), Janǐs and Voll-
hardt (1992), and Georges and Kotliar (1992). Thus, an essentially exact solution
exists for the Hubbard model also in d = ∞. The study of this limiting case is
motivated by the fact that it can serve as a starting point for the investigation of
finite-dimensional systems: The coordination number Z of an fcc lattice, for instance,
is Z = 12, such that 1

12
may be considered already as a small parameter. The DMFT

and the limit of infinite dimensions are reviewed by Georges et al. (1996).

In the following, we provide a brief derivation of the self-consistency equations of
the DMFT. More explicit derivations can be found, e.g., in Georges et al. (1996). The
starting point for the development of a mean-field theory for many-body fermionic
models that becomes exact in the limit of large spatial dimensions Z → ∞, is the
introduction of a proper scaling of the hopping amplitude (Economou, 1979; Zaitsev
and Dushenat, 1983; Metzner and Vollhardt, 1989):

t =
t∗√
Z
. (1.11)

This scaling ensures that the kinetic energy does not dominate the potential energy,
which is independent of the coordination number in the limit Z → ∞. The scaling
(1.11) leads to a non-interacting density of states (DOS) for the hypercubic (hc)
lattice, which is Gaussian:6

Nhc(ǫ) =
1

t∗
√

2π
e−

ǫ2

2t∗2 . (1.12)

Within the DMFT, one often uses a Bethe lattice (an infinite Cayley tree) which has
no loops; it is completely characterized by the number of nearest neighbors Z or the
connectivity K = Z − 1. A portion of a Bethe lattice with Z = 3 is depicted in

6Due to the fact that this DOS has (unphysical) tails up to infinite energies, the insulating phase
is not expected to display a sharp gap (Georges et al., 1996).
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G
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Σ Σ

impurity problem

−int. Dyson eq.k

0

G

Figure 1.1: Self-consistency cycle of the DMFT [adapted from Blümer (2002)]. Starting
with an initial guess for the self-energy Σ = Σ0, the k-integrated Dyson equation is used to
calculate the lattice Green function G. This estimate of G and the old self-energy Σ are used
to obtain the bath Green function via the auxiliary equation G−1 = G−1 +Σ. The impurity
problem can then be evaluated with various methods (QMC, IPT, ED, NRG, etc.) to obtain
a new estimate of G. The self-consistency cycle is finally closed by applying once more the
auxiliary equation to yield a new estimate of Σ. Additional under or overrelaxation can be
used to optimize the convergence.

Figure 1.2. The density of states is semi-elliptical:

NBethe(ǫ) =
1

2πt∗2
√

4t∗2 − ǫ2 . (1.13)

Here, the advantage of using a Bethe lattice within the DMFT is that its density of
states has sharp band edges.

The most important observation for the development of the DMFT, however, is
that perturbation theory becomes local in the limit Z → ∞, which implies for the
proper7 self-energy:

Σ(k, ω)
Z→∞−−−→ Σ(ω) , (1.14)

with momentum k and frequency ω. Within the DMFT, the Hubbard model is
mapped to a single-impurity Anderson model (SIAM) embedded in an effective
medium. A self-consistency condition then connects the effective medium with the
original lattice. The self-consistency equations of the DMFT, written in terms of the

7A self-energy is defined to be proper when its external vertices are connected at least by three
single Green function lines (compare, e.g., Economou, 1979).
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Green function G and the self-energy Σ are given by:

Gνσn = −〈ψνσnψ†
νσn〉A (1.15)

Gνσn =

∞∫

−∞

dǫ
N(ǫ)

iωn + µ− Σνσn − ǫ
. (1.16)

Here, ωn = (2n + 1)πT are the fermionic Matsubara frequencies (cf. Negele and
Orland, 1987), ν and σ the spin and orbital index. Further, Gνσn ≡ Gνσ(iωn) and
Σνσn ≡ Σνσ(iωn). The thermal average 〈O〉A of an operator O is defined as the
functional integral over Grassmann variables ψ and ψ∗:

〈O〉A =
1

Z

∫
D[ψ]D[ψ∗]O(ψψ∗)eA(ψ,ψ∗,G) , (1.17)

with the partition function

Z =

∫
D[ψ]D[ψ∗]eA(ψ,ψ∗ ,G) , (1.18)

and the effective local propagator G, which is connected to the Green function and
the self-energy via:

G−1
νσn = G−1

νσn + Σνσn . (1.19)

The single-site action A(ψ, ψ∗,G) describes the dynamics of the impurity problem.
For the multi-band Hubbard model that is restricted to the Ising component of the
Hund’s rule coupling (1.6), A reads:

A(ψ, ψ∗,G) = A0 +AU +AU ′ , (1.20)

with

A0 =
∑

νσn

ψνσnG−1
νσnψ

†
νσn , (1.21)

AU = −U
∑

ν

β∫

0

dτ ψ∗
ν↑(τ)ψν↑(τ)ψ

∗
ν↓(τ)ψν↓(τ) , (1.22)

AU ′ = −
∑

σσ′
ν<ν′

(U ′ − δσσ′Jz)
β∫

0

dτ ψ∗
νσ(τ)ψνσ(τ)ψ

∗
ν′σ′(τ)ψν′σ′(τ) . (1.23)

Here, τ denotes the imaginary time and β = 1
kBT

is the inverse temperature (hence-
forth, kB ≡ 1). It is interesting to note that the lattice structure of the original
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Figure 1.2: Part of the Bethe lattice (or Cayley tree) with Z = 3 nearest neighbors (taken
from wikipedia). Included is also the distance n from a lattice site that is taken as the
central site or the root.

problem enters the self-consistency equation only in the Dyson equation (1.16), in
the form of an integration over the density of states.

The self-consistency equations (1.15) and (1.16) can be solved iteratively as illus-
trated in Fig. 1.1, by making use of (1.19) twice in each cycle. Here, the integration
of the Dyson equation is unproblematic. The main difficulty, in contrast, poses the
impurity problem (1.15). A variety of techniques have been developed for the solution
of the single impurity Anderson model (SIAM), many of which can also be applied to
solve (1.15), such as the exact diagonalization (ED) (Caffarel and Krauth, 1994), the
numerical renormalization group (NRG) (Wilson, 1975), the non-crossing approxima-
tion (NCA) (Keiter and Kimball, 1970) or quantum Monte Carlo (QMC) simulations
(Hirsch and Fye, 1986). Comparatively new QMC approaches to solve the impurity
problem are the continuous time (CT) quantum Monte Carlo method (Rombouts
et al., 1999; Rubtsov et al., 2005) and the projective quantum Monte Carlo method
(Feldbacher et al., 2004) [compare also Sec. 1.5].

Despite its success, the DMFT suffers from fully neglecting nonlocal fluctuations.
The DMFT is thus not able to capture dynamical effects8 either in the charge channel
(e.g., nearest-neighbor repulsion) nor in the spin channel (exchange). It is also impos-
sible to describe pairing states with extended spatial symmetry such as d-wave super-
conductivity or localization in disordered systems (e.g., Anderson localization). There
exist, however, various extentions of the DMFT that add nonlocal corrections. Most
notably are the dynamical cluster approximation (DCA; Hettler et al., 1998; Het-
tler et al., 2000) and the cellular dynamical mean-field theory (CDMFT; Kotliar
et al., 2001). Both methods, which are causal but not systematic in 1/Z, reduce the

8As a matter of course, on-site dynamical effects are included.
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lattice problem by mapping it onto a cluster of finite size, which is embedded self-
consistently in a dynamical mean field. The effective cluster of the DCA is periodic
and therefore translationally invariant. It is thus expected to give a good overall
momentum resolution. The CDMFT, however, replaces the impurity by a cluster
in real space and hence breaks the translational invariance of the lattice (which is
due to the fact that the cluster has open boundary conditions implying that only
the surface sites couple to the mean field). Short-range correlations are thus as-
sumed to be resolved better within CDMFT. However, as shown by Aryanpour et al.
(2005), DCA-results converge faster as a function of the cluster-size [compare also
Biroli and Kotliar (2002)]. Other methods that introduce nonlocal correlations are
the cluster perturbation theory (Pairault et al., 1998; Pairault et al., 2000; Gros and
Valenti, 1994) or the self-energy-functional theory (Potthoff, 2003) [compare also the
footnote 15 on page 98]. For a review of quantum cluster theories, see Maier et al.
(2005).

1.5 Quantum Monte Carlo Algorithm

In this section we discuss how the impurity problem (1.15) can be solved within a
quantum Monte Carlo simulation. We employ the Hirsch-Fey QMC method (Hirsch
and Fye, 1986) for the solution of magnetic impurities, which was extended and ap-
plied to the solutions of the DMFT by Jarrell (1992), Georges and Krauth (1992),
and Rozenberg et al. (1992). Before introducing the technical details of the QMC
algorithm, it is useful to discuss its properties. First, the QMC method is written
in imaginary time, such that Green functions and self-energies are obtained only for
imaginary Matsubara frequencies. Dynamical information, e.g., the spectrum or the
optical conductivity, is obtained only after an analytical continuation to the real axis.
Next, Fourier transformations are needed twice in each DMFT iteration cycle to con-
nect the impurity problem to the Dyson equation, which is formulated in frequency
space, where it is diagonal. Finally, the QMC method is based on a discretization ∆τ
of the imaginary time τ . Therefore, results of the DMFT+QMC scheme correspond
to physical quantities only after an extrapolation ∆τ → 0. The discretization, how-
ever, not only restricts the application of the QMC method to comparatively high
temperatures, but also complicates the Fourier transform. The problems that orig-
inate from the Fourier transforms within the DMFT+QMC simulations are studied
in detail in chapter 2.

Trotter Discretization

The first step to solve the impurity problem (1.15) within a QMC simulation is
to discretize the imaginary time τ into L time slices of the size ∆τ = β

L
. The
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imaginary time integrals of (1.22) and (1.23) are thus replaced by a finite sum over
∆τ . The noncommutative terms representing the kinetic and interaction energy can
then be separated using the Trotter-Suzuki formula (Trotter, 1959; Suzuki, 1976),
with operators A and B:

e−β(A+B) =
(
e−∆τAe−∆τB

)L
+O(∆τ 2) , (1.24)

It is important to note, that the discretization error in ∆τ , introduced by the Trot-
ter breakup, is the only systematic error within the QMC solution of the impurity
problem.

Hubbard-Stratonovich Transformation

The interaction terms that appear in the effective single-site action [(1.22) and (1.23)]
are decoupled by a Hubbard-Stratonovich transformation (Hirsch, 1983):

exp
{∆τ

2
Vνσ;ν′σ′

(
ψ∗
νσlψνσl − ψ∗

ν′σ′lψν′σ′l
)2}

=

1

2

∑

sl
νσ;ν′σ′=±1

exp
{
λνσ;ν′σ′s

l
νσ;ν′σ′

(
ψ∗
νσlψνσl − ψ∗

ν′σ′lψν′σ′l
)}
, (1.25)

with cosh(λνσ;ν′σ′) = exp
(

∆τVνσ;ν′σ′

2

)
and

Vνσ;ν′σ′ =






U for ν ′ = ν and σ′ > σ

U ′ − J for ν ′ > ν and σ′ = σ

U ′ for ν ′ > ν and σ′ 6= σ

0 otherwise

. (1.26)

The integral in (1.15) is thereby replaced by a sum over Lm(2m− 1) auxiliary fields
slνσ;ν′σ′ . The functional integral for the Green function Gνσll′ ≡ Gνσ(l∆τ − l′∆τ) then
reads:

Gνσll′ =
1

Z
∑

{s}

∫
D[ψ]D[ψ∗]ψ∗

νσlψνσl′ exp
{∑

νσ;ll′

ψ∗
νσlM

s
νσll′ψνσl′

}
, (1.27)

with
Ms

νσll′ = ∆τ 2(G−1
νσ )ll′ − δll′

∑

ν′σ′

λνσ;ν′σ′ σ̃νσ;ν′σ′s
l
νσ;ν′σ′ , (1.28)

and σ̃νσ;ν′σ′ = 2Θ(σ′ − σ + δσσ′ [ν
′ − ν]) − 1 = ±1. Here, s denotes the vector

of the auxiliary field, and the sum in (1.27) is taken over all configurations of the
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auxiliary spin field, with independent fermions in each term of the sum only. The
form of the matrix Ms

νσ can be improved by including corrections of O(∆τ) (Georges
et al., 1996; Held, 1999):

Ms
νσ = ∆τ 2G−1

νσ e
−λ̃s

νσ + 1− e−λ̃s
νσ , (1.29)

with the matrix λ̃s
νσ:

λs
νσll′ = −δll′

∑

ν′σ′

λνσ;ν′σ′ σ̃νσ;ν′σ′s
l
νσ;ν′σ′ . (1.30)

The latter form of the matrix λ̃s
νσ is applied in the actual QMC algorithm.

Wick’s Theorem

The functional integral of (1.27) is evaluated by applying Wick’s theorem (cf. Negele
and Orland, 1987):

Gνσll′ =
1

Z
∑

{s}

(
Ms

νσ

)−1

ll′

∏

νσ

det Ms
νσ , (1.31)

with the partition function

Z =
∑

{s}

∏

νσ

det Ms
νσ . (1.32)

The evaluation of the functional integral (1.27) is thus reduced to a matrix problem.
The sum in (1.31) is of exponential order (2Lm(2m−1) terms) and can be summed
up exactly only for Lm(2m − 1) . 24. A successful method to evaluate sums like
(1.31) also for larger values of Lm(2m − 1) is the Monte Carlo simulation, which is
discussed in the following section. It is further advisable to order the sum in (1.31)
in such a way that successive spin-configurations {s} and {s′} differ only by a single
component of the auxiliary spin field (single-spin flip). The computational cost of
a single matrix calculation in (1.31) can be reduced from O(L3) to O(L2), when
updating the matrix after a single-spin flip (Blankenbecler et al., 1981).

Quantum Monte Carlo Simulation

High-dimensional integrals or sums like the one in (1.31) can be approximated by a
Monte Carlo simulation. Therefore, the full sum over a variable f is divided into a
normalized probability distribution P and a remaining observable O:

1
M

M∑

k=1

fk =
M∑

k=1

P (k)Ok ≡ 〈O〉P . (1.33)
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Within a Monte Carlo simulation, (1.33) is then approximated by summing only over
a subset N (with N ≪ M), which is chosen randomly with the propability distribu-
tion P (k) (importance sampling). The distribution P (k), however, is not known a
priori, but can be generated by a stochastic Markov process: Provided a configuration
ki is realized, then a new configuration kj is accepted with the probability:

P(i→ j) = min

{
1,
P (i)

P (j)

}
. (1.34)

This choice of transition introduced by Metropolis et al. (1953) satisfies the detailed
balance principle

P (ki)P(ki → kj) = P (kj)P(kj → ki) , (1.35)

and thus creates configurations that correspond to the distribution P , provided the
process is ergodic. It is important to note, that P remains unnormalized within the
Markov process, implying that only ratios of observables are accessible. Another
point is that the probability P associated with a starting configuration ks might be
extremely small, such that the head of the Markov chain has to be excluded from
the average (because the length of the Markov chain will be finite in the actual
calculation): The auxiliary spin field has to be thermalized.

For the evaluation of (1.31), the (unnormalized) probability distribution P is
identified with

P
(
{s}
)

=
∣∣∣
∏

νσ

det Ms
νσ

∣∣∣ , (1.36)

such that the Green function (1.31) is approximated by

Gνσll′ =
1

Zs

〈(
Ms

νσ

)−1

ll′
sign

(∏

νσ

det Ms
νσ

)〉
s
, (1.37)

with

Zs =
〈
sign

(∏

νσ

det Ms
νσ

)〉

s
. (1.38)

Here, the average 〈· · ·〉s denotes the spin configuration which is sampled according
to (1.36). Note, that the full partition function Z cannot be calculated within the
Monte Carlo simulation (this is due to the importance sampling).

The standard error ∆O of the observable O is given by:

∆O =
1√
N

√
〈O2〉P − 〈O〉2P , (1.39)

where the average is taken over a statistical independent configuration N . In case
the sample N is within a part of the phase space, where positive and negative values
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of the observable O nearly cancel each other, the error ∆O can become larger than
the value of the observable, 〈O〉. This effect is known as the ‘minus-sign problem’.9

The number of independent measurements is reduced due to the finite autocorre-
lation of successive configurations visited in the Markov chain. Thus, the true error
of the measurement is enhanced compared to (1.39).10 The influence of a finite auto-
correlation on the errors and the convergence of (quantum) Monte Carlo simulations
is reviewed by Evertz (2003).

Further QMC Methods

The problems that arise by discretizing the imaginary time is addressed by the con-
tinuous time (CT) quantum monte Carlo method (Rombouts et al., 1999; Rubtsov
et al., 2005). Here, the decomposition is exact and results in a sum over exponen-
tials of one-body operators. Thus, the error is only statistically and stems from
the Monte Carlo sampling of the terms in the decomposition. Advantages of the
CT QMC method in comparison to the Hirsch-Fye QMC scheme are expected for
multiband, time-dependent correlations since no Hubbard-Stratonovich transforma-
tion has to be employed. The computational costs of the CT scheme, however, are
of the same order. Furthermore, the sign problem is found to be similar (Rubtsov
et al., 2005).

A method to solve the impurity problem of the DMFT within a QMC simula-
tion at zero temperature is given by the projective quantum Monte Carlo method
(PQMC; Feldbacher et al., 2004). It is based on the idea that ground state prop-
erties can be obtained by filtering out the ground state wave function from a set
of trial wave functions (here, the filtering is performed by a projection along the
imaginary axis). The convergence to ground state properties is thereby improved
compared to the Hirsch-Fye QMC method. Within the limit β → ∞, the Green
function is only accessible on the interval [0, θ] (with a finite θ), which is discretized
into L time steps with ∆τ = θ/L. In order to close the self-consistency cycle of the
DMFT, a MEM method has to be employed to obtain G(iωn) via the spectral func-
tion G(iωn) =

∫
dω[A(ω)/(iωn − ω)]. The PQMC method, however, has difficulties

to treat insulating solutions with a narrow charge gap, for which θ has to be very
large in order to project the trial wave function (which is always metallic) to the in-
sulating ground state solution. As a consequence, the statistical errors become very
large even at intermediate values of τ , and the extrapolation with the MEM method
results in substantial noise in the charge gap of the spectrum.

9This problem arises within the DMFT+QMC, e.g., for a multi-band Hubbard model with
isotropic Hund’s rule coupling, but not for the anisotropic case.

10The effect of a finite correlation time is not considered in the determination of errors within
this thesis.
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1.6 Maximum Entropy Method

Within the quantum Monte Carlo simulation, Green functions G and self-energies
Σ are accessible only for imaginary times τ or imaginary Matsubara frequencies ωn.
Real-time data is therefore only obtained after an analytical extrapolation to the real
axis. Of particular interest is the local spectral function

A(ω) = −1

π
ImG(ω + i0+) , (1.40)

which, when multiplied with the Fermi function, can be identified with the pho-
toemission spectrum (cf. the review by Damascelli et al., 2003). It is also used to
compute transport properties like the optical conductivity (Pruschke et al., 1993).

In this thesis, the imaginary-time QMC data is extrapolated by use of the maxi-
mum entropy method (MEM) (Silver et al., 1990). Other approaches, like the Padé
approximation of the Green function G(iωn) with a subsequent replacement iωn → ω,
require extremely accurate data which the QMC method cannot provide due to the
statistical errors and the finite correlation length (oversampled data). A review of
the analytic continuation of imaginary-time quantum Monte Carlo data is given by
Jarrell and Gubernatis (1996).

The starting point of the MEM is the spectral representation of the Green func-
tion G(τ), from which the spectral function A(ω) can, in principle, be obtained by
inversion:

G(τ) =

∞∫

−∞

dω
eτ(µ−ω)

1 + eβ(µ−ω)
A(ω) . (1.41)

The inversion, however, is an ill-conditioned problem since the weighting of the spec-
trum A(ω) is exponentially small for large frequencies ω, and the Green function
is measured on a finite grid ∆τ only. This results in large errors of the spectral
function at high frequencies. The low-frequency results of A(ω), in contrast, can be
determined with high accuracy.

As the spectral function A(ω) is normalizable and positive semidefinite, it can

be taken as probability density. The conditional probability distribution of G̃ for a
given spectrum A is given by:

P (G̃|A) ∝ e
1
2
χ2

, (1.42)

where the distribution of the statistical error is assumed to be Gaussian with variance
χ. In order to find the most probable spectrum A for some given data G̃, one has to
invert the conditional probability function P (G̃|A) from (1.42). This is possible using

Bayes theorem of conditional probability: P (A|G̃)P (G̃) = P (G̃|A)P (A). Here, P (G̃)
is constant and can therefore be neglected. According to the principle of maximum
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entropy,11 the probability function A(ω) is also obtained by maximizing the following
entropy expression:

P (A) = eαS[A(ω),m(ω)] , (1.43)

with the entropy

S =

∫
dω

[
A(ω)−m(ω)−A(ω) ln

(
A(ω)

m(ω)

)]
. (1.44)

Here, α is a Lagrange parameter, and m(ω) a default model that can be used to
incorporate prior knowledge. The posterior probability is then given by:

P (A|G̃) = eαS[A,m]− 1
2
χ2

. (1.45)

This posterior probability is finally maximized within the MEM to obtain the spec-
trum that most probably corresponds to the measured data G̃. The Lagrange param-
eter α is used to balance between a good match of the data and a high probability.
For further aspects of the MEM compare also Ref. (Gubernatis et al., 1991). The
issue of oversampled data is discussed in Ref. (Bryan, 1990), the influence of covari-
ance, non-Gaussian distribution of statistical errors, and systematic errors of QMC
data is studied by Blümer (2002).

Within this thesis, spectra are obtained by a program based on the scheme of
Sandvik and Scalapino (1995), which assumes that the components of the imaginary

time Green function G̃(l∆τ) are uncorrelated.12

1.7 Self-Consistent Perturbation Theory

Within weak-coupling perturbation theory of an interacting quantum many-body
systems, one usually expands the free energy f in powers of the interaction strength.
Restricting the series to terms up to first order and determining the order parameters
self-consistently, corresponds to Hartree-Fock theory, which is the classical mean-field
theory for interacting many-particle systems at weak coupling. Its results are asymp-
totically exact in the weak-coupling limit, at least up to linear order in the interaction
and are well suited to describe non-symmetry broken phases. At weak-coupling, how-
ever, the Hartree-Fock predictions for order parameters or critical temperatures that
involve the symmetry broken phase are much smaller than linear in the interaction.
A prominent example is the BCS theory of superconductivity (Bardeen et al., 1957).

11For a definition compare also Ref. (Jarrell and Gubernatis, 1996) and references therein.
12Successive elements of the Green function G(∆τ), in contrast, are correlated; more advanced

codes that take these correlations into account, however, need QMC data with very small statistical
errors (Blümer, 2002). The accuracy of the obtained spectra, as obtained with the Sandvik scheme,
however, was sufficient for the conclusions made within this thesis.
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Here, the energy difference due to the formation of Cooper pairs is exponentially
small at weak interaction: Es−En ∝ − exp(− 1

U
). A similar behavior is found within

mean-field theory of antiferromagnetism for the Hubbard model (Langer et al., 1969).
Especially in low dimensions (d = 1 and d = 2), however, fluctuations are known to
be large [such that long-range order is explicitly excluded for T > 0 (Mermin and
Wagner, 1966)]. As a consequence, Hartree-Fock theory, which completely neglects
fluctuations, overestimates order-parameters of a symmetry-broken phase or even
yields results that are qualitatively incorrect in the limit U → 0. As an example, the
Hartree-Fock results overestimate the Néel temperature and the order parameter of
the Hubbard model by a factor of the order of four in d = 3, even in the extreme
weak-coupling limit, as is known from 1/d-expansions (van Dongen, 1991; van Don-
gen, 1994a), from the local approximation (Tahvildar-Zadeh et al., 1997) and from
fully three-dimensional calculations (Schauerte and van Dongen, 2002). Hence, the
thermodynamics at small interaction has to be determined self-consistently from the
Hartree contributions and the fluctuations together.

There exist various equivalent methods to impose self-consistency, such as the
method of conserving approximations (Baym and Kadanoff, 1961; Baym, 1962), the
self-consistent perturbation scheme of Bickers and Scalapino (1989) and Bickers and
White (1991). A comparatively new method is the self-consistent perturbation theory
at fixed order parameters (PTFO), which was originally developed for the ground
state of the Hubbard model by Georges and Yedidia (1991)13 and was extended to
finite temperatures and nearest neighbor interactions by van Dongen (1991).

Within the self-consistent perturbation theory at fixed order parameter,14 the
free energy per site f(U,m) is expanded in powers of the interaction at a fixed order
parameter m (Georges and Yedidia, 1991):

f(U,m) = f̃0(m) + Uf̃1(m) + U2f̃2(m) + · · ·
≡ f0 + f1 + f2 + · · · . (1.46)

Here, the functions f̃i(m) depend implicitly on U and T . The first two terms of this
expansion reproduce the Hartree-Fock approximation, higher-order terms give cor-
rections to the mean-field theory. The order parameter m is kept fixed by introducing
a Lagrange parameter h(U), which couples linearly to m. The Lagrange parameter
has also to be expanded in powers of the interaction at constant order parameter:

h(U) = h0(m) + h1(m)U + h2(m)U2 + · · · . (1.47)

13Within PTFO, the second-order correction to the mean-field theory (of the expansion of the free
energy) is also referred to as the Onsager reaction term, in allusion to the terminology of spin-glass
theory (Onsager, 1936; Brout and Thomas, 1967).

14Working at fixed order parameter effectively resums an infinite number of diagrams calculated
at fixed field, which becomes evident in the calculation of the inverse susceptibility within PTFO:
χ−1 = χ−1

0 − U
2

+O(U2). This result coincides with the one of the standard random-phase approx-
imation (RPA) (see, e.g., Doniach and Sondheimer, 1998).
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As an example, let us consider the Hamiltonian of the Hubbard model (1.1) at half
filling, implying a chemical potential µ = U

2
. A staggered magnetization mst in

the z direction is assumed. The field h(U) keeps the staggered magnetization per
site at a fixed value mst > 0. The perturbation expansion of the Hamiltonian is
then performed in the usual manner by splitting off the U -dependent terms from the
exactly solvable noninteracting part:

K = K0 +K1 (1.48)

= Ht +HU + h(U)
[
Nmst −

∑

i

(−1)iSzi

]
, (1.49)

with Szi = ni↑ − ni↓. Employing (1.47), one obtains for K0:

K0 = Ht + h0

[
Nmst −

∑

i

(−1)iSzi

]
, (1.50)

while the perturbation K1 is given by:

K1 = HU + (h(U)− h0)
[
Nmst −

∑

i

(−1)iSzi

]
. (1.51)

The perturbation expansion of the free energy in powers of K1 is

f =f0 −
1

βN

β∫

0

dτ 〈K1(τ)〉c0

− 1

2βN

β∫

0

β∫

0

dτ1dτ2〈K1(τ1)K1(τ2)〉c0 + · · · .

(1.52)

Here, 〈· · ·〉c0 signifies that only connected diagrams are taken into account, according
to the linked cluster theorem (compare, e.g., Negele and Orland, 1987). The optimal
value of mst is determined by minimization of the free energy at fixed values of U
and T at each order of the expansion:

df

dmst
= 0 . (1.53)

The optimized order parameter is then used to determine the next order in per-
turbation theory. Truncating the free energy at O(U) yields the Hartree-Fock free
energy.



24 1. Models and Methods



25

Chapter 2

High-Frequency corrected QMC
Simulations within the DMFT

The most successful QMC method1 to solve the DMFT impurity problem, due to
Hirsch and Fye (1986), is based on a discretization of the imaginary time. It is a
nonperturbative method which is numerically exact, i.e., the solution of the impurity
problem is exact in the limit of vanishing discretization. First DMFT+QMC simula-
tions using this method were performed independently by Jarrell (1992), Rozenberg
et al. (1992), and Georges and Kotliar (1992) and allowed, among other things, for
the confirmation of the metal-insulator transition in the half-filled Hubbard model in
infinite dimensions.

The introduction of the imaginary time, however, implies that Fourier transfor-
mations are needed twice in each DMFT iteration cycle, in order to connect the
impurity problem (1.15) to the Dyson equation (1.16), which is formulated and di-
agonal in frequency space. One has to go beyond naive Fourier transforms in order
to maintain causality beyond the Nyquist frequency. This important issue has been
addressed in various ways. Most of the methods are based on the interpolation of the
discretized Green function with cubic splines, but unconventional ones like Ulmke’s
scheme (Ulmke, 1995), which is based on a transformation of the discretized Green
function, also exist.

Of equal importance is the dependence of the QMC estimates on the discretiza-
tion ∆τ . As physical quantities are obtained only after an extrapolation ∆τ → 0
and the numerical effort of the QMC simulations scales like 2m(m − 1)/∆τ 3 (with
the number of orbitals m), it is essential to develop methods with a well controlled2

∆τ dependence in order to study systems like the Hubbard model at low tempera-

1Schemes that are based on the original method for performing QMC calculations for lattice
fermions which is due to Blankenbecler et al. (1981) encountered severe numerical instabilities [cf.
Ref. Georges et al. (1996) and references therein].

2The optimum would be a scheme without ∆τ dependence.
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tures or multi-band systems (m > 1). The error due to the Trotter breakup is of
order ∆τ 2, but the Fourier transform used (more explicitly, the implementation of
the DMFT+QMC scheme) adds significantly to this ∆τ error. The optimization of
DMFT+QMC algorithms is in this respect still an active field [compare also (Joo
and Oudovenko, 2001), and (Oudovenko et al., 2005)].

This chapter introduces a method that supplements the QMC Green functions
and self-energies with the physically correct high-frequency behavior for arbitrarily
large frequencies. This innovation is important, since one finds, apart from obvi-
ous improvements at large frequencies, that this method also reduces the inevitable
discretization error of the DMFT+QMC scheme to the Trotter error even for com-
paratively large values of the discretization.

The structure of this section is as follows. First, the effects of the discretization of
the imaginary time are discussed and methods that are used in the literature to cure
the emerging problems are presented. It is then shown how the DMFT+QMC method
can be supplemented with high-frequency corrections. This method, henceforth called
QMC+ 1

ω
scheme, is valid for the single-band and for the multi-band Hubbard model.

The scheme is finally compared to competing methods for the following characteristic
cases:

• The single-band Hubbard model at half filling,

• the two-band Hubbard model as an example of a multi-band model at half
filling,

• the single-band Hubbard model away from half filling.

Because of symmetry, the single-band Hubbard model at half filling is the easiest
case for the application of high-frequency corrections. The asymptotic behavior to
first order is fully determined by exactly known parameters. This changes in the
multi-band case, where already the first order coefficient is explicitly dependent upon
density-density correlation functions, which have to be determined self-consistently.
The Hubbard model away from half filling turned out to be considerably more dif-
ficult. The symmetry of the imaginary time Green function is reduced, resulting in
Green functions G(iω) with both imaginary and real part. It will be shown, that the
developed scheme does not yet correctly account for this asymmetry.

2.1 Methods

2.1.1 Fourier Transform

The application of a QMC simulation within the DMFT requires Fourier transforma-
tions twice in each iteration cycle. This is due to the fact that the impurity problem
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Figure 2.1: Example of a simple discrete Fourier transform: The discretized (∆τ > 0)
Green function G(∆τ) (a) will be mapped on a Green function G(iωn) (b) that oscillates
instead of showing the correct physical behavior (∆τ = 0): G(iωn)

ωn→∞−−−−→ 1
ωn

.

(1.15) is formulated in imaginary time representation when solved within the QMC
method, whereas the Dyson equation (1.16) is most easily written in terms of Mat-
subara frequencies. Those two representations are connected by the following Fourier
and inverse Fourier transformations:

G(iωn) =

β∫

0

eiωnτG(τ)dτ , (2.1)

G(τ) =
1

β

∞∑

n=−∞
e−iωnτG(iωn) , (2.2)

with ωn = (2n + 1)πT . The Fourier representation takes proper account of the fact
that the Green function is antiperiodic for translations β: G(τ) = −G(τ + β), since
eiωnβ = −1. The Green function G(τ) can further be discontinuous at τ = 0, since
the number of terms is infinite in (2.2). From the spectral representation of a Green
function it is known that G(ω) ≈ 1/ω for ω → ∞ (Negele and Orland, 1987). At
half filling, G(iωn) is purely imaginary, which is equivalent to the Green function for
imaginary times being symmetric: G(τ) = G(β − τ). The Green function away from
half filling, in contrast, lacks this symmetry, as can be seen from Fig. 2.17.

2.1.2 Discretization, Nyquist Theorem

The discretization of the imaginary time τ into L time slices ∆τ = β
L

implies that
the integral in (2.1) has to be approximated by a sum. A simple discretized version
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of the Fourier transformation would read:

G̃(iωn) = ∆τ

(
G(0)−G(β)

2
+

L−1∑

l=1

eiωnl∆τG(l∆τ)

)
(2.3)

G̃(l∆τ) =
1

β

L/2−1∑

n=−L/2
e−iωnl∆τG(iωn) . (2.4)

Now, the Fourier transform (2.3) of G(l∆τ) has an important implication which is
also known as the sampling or Nyquist theorem (Press et al., 1992): Sampling the
continuous function G(τ) at an interval ∆τ results in a Fourier transform G̃(iωn)
which is restricted to the frequency range −ωc < ωn < ωc, with the Nyquist fre-
quency ωc = π

∆τ
. Furthermore, if G(τ) is not bandwidth limited (e.g., its real Fourier

transform G(iωn) 6= 0 for |ω| > ωc) and sampled at an interval ∆τ , the spectrum
that lies outside the frequency range −ωc < ωn < ωc will be incorrectly mapped
into this range. This effect is also called aliasing. Thus, essentially no information
about the Green function G(iωn) above the Nyquist frequency is available directly
from a QMC simulation. The result of the finite sum in (2.3) is that G̃(iωn) does
not show the correct analytic behavior for ωn → ∞ (e.g., 1

ωn
-decay), but drops off

to zero at ωc. The naive Fourier transform further oscillates with period 2ωc, as is
illustrated in Fig. 2.1b. Especially the large error at the Nyquist frequency makes
the solution of the self-consistency equation impossible. A related effect arises from
the finite sum in (2.4) which implies that G̃(l∆τ) is not discontinuous at τ = 0. This
is, however, needed for the Green function to be analytic. Furthermore, the discrete
Fourier transform (2.4) creates Green functions G̃(l∆τ) that oscillate around the real
physical Green function.

Thus, in summary, the following problem has to be overcome: The Green function
in the frequency domain should not vanish at the critical frequency in order to ensure
a solution of the DMFT self-consistency equation. This holds especially for a rather
coarse grid ∆τ , where the critical frequency ωc is small and the relative error at ωc
large. On the other hand, calculations at smaller and smaller values of ∆τ , that would
push the critical frequency to larger and larger values and that would, therefore, also
decrease the relative error at ωc, result in a rapidly increasing numerical effort: The
costs of a QMC simulation scale like m(2m− 1)L3, with L = β

∆τ
and the number of

orbitals m. At present, e.g., single-band calculations are restricted to L . 400 for
supercomputers and to L . 250 for workstations.

2.1.3 Splining

Another important issue is to lift the restriction that is imposed by the discretized
Fourier transform (2.3) that implies the number of Matsubara frequencies to equal
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the number of time slices. From its spectral representation, G(τ) is known to be
a smooth and discontinuous function. Its Fourier transform G(iωn) thus consists
of an infinite number of Matsubara frequencies. The usual method to increase the
frequency-range of a continuous function which is known only at discrete points is
to interpolate between neighboring data points with cubic polynomials. This pro-
cedure is called spline interpolation. The splined Green function can then be either
oversampled or directly piecewise Fourier transformed [as in Krauth’s code (Georges
et al., 1996)] to obtain G(iωn) for arbitrary frequencies. By increasing the range of
Matsubara frequencies one can further correctly reproduce the discontinuity of the
Green function G(τ) via (2.4): The rounding errors at the boundaries τ = 0+ and
τ = β− can be exactly accounted for by adding a constant 1

2
. The errors away from

the boundaries become very small and are negligible. The main difficulty in splin-
ing the discretized Green function is due to its boundary conditions. The boundary
conditions are necessary for closing the set of linear equations that determine the
interpolation function. A natural cubic spline is defined to have a zero second deriva-
tive at its boundary. The m-th derivatives of the Green function, instead, are in
general non-zero, and given by the moments of the spectral density (2.7). A natural
cubic spline therefore oscillates around the correct function in order to compensate
for the wrong boundary condition. This effect is illustrated in Fig. 2.2, showing the
difference of an exact Green function G(τ) and different spline interpolations from
its discretized version G(∆τ). The oscillations can be reduced significantly using an
Akima spline, that allows to have discontinuous second derivatives at the data points
but still has a zero second derivative at its boundary. As a side effect, the frequency
of the resulting oscillations are doubled. Akima-splines are used, e.g., in the QMC
code by Jarrell (the frequency-range is thereby increased to up to 800 Matsubara
frequencies) (Jarrell, 1992). It is of course also possible to account for the boundary
conditions of the Green function already in the spline: This is the case for the ‘opti-
mal spline’ in Fig. 2.2, for which G(2)(0) was estimated by minimizing the following
functional:

F (G(2)(0)) =
L−1∑

j=1

(
G(2)((j + 1)∆τ)

G((j + 1)∆τ)2
− G(2)(j∆τ)

G(j∆τ)2

)2

. (2.5)

The oscillations can thereby be reduced by a factor of 10. A cubic spline interpolation
supplemented with the correct boundary conditions as imposed by the moments of
the spectral density (2.7) is used, e.g., by Joo and Oudovenko (2001).

Directly splining the QMC estimate of the Green function does not account for
fourth and higher order derivatives of G(τ), which are especially large at the bound-
ary. This is, however, possible by splining only the difference of the QMC estimate
of the Green function and a good model Green function, Gmodel, which should, in
particular, reproduce the boundaries of the QMC estimate. A method that uses this
approach is implemented in Jarrell’s code: The reference Green function is obtained
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Figure 2.2: Difference between the exact noninteracting Green function for the Bethe
lattice (β = 100) and different cubic spline interpolations of the discretized Green function
for L = 40 (black crosses). The natural spline and the Akima spline show strong oscillations
close to the boundary τ = 0 (and similarly at τ = β). This behavior is caused by their
vanishing second derivative, which is in contrast to the exact Green function. Using optimal
boundary conditions, as they can be obtained, e.g., by a minimizing functional, reduces the
oscillations by an order of magnitude. The inset shows the results on a different vertical
scale.

from plain second order perturbation theory. This scheme, however, does not account
for terms of O

(
1
ω2

)
or higher. Another way to create a good model Green function

of the QMC estimate, which is based on the moments of the spectral density, is
presented in the Sec. 2.2.

2.1.4 Other Methods

A rather unconventional method to cure the problem of a vanishing Green function
at ωc was presented by Ulmke (1995). A naive asymmetric Fourier transform (2.3)
of the QMC estimate G(∆τ) is combined with an approximation scheme, that is
asymptotically exact for ∆τ → 0, namely:

G(iωn) =
∆τ

ln
[
1 + ∆τ/G̃(iωn)

] . (2.6)
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The transformed Green function then approximately exhibits a 1
ωn

-fall off for large
frequencies. The transformation is inverted before Fourier transforming the Green
function back to the imaginary time representation. Unfortunately, the approxima-
tion also slightly modifies the low frequency regime, resulting in a better treatment
of the metallic phase than of the insulating one (Blümer, 2002). The deficiency of the
transformation (2.6) can be overcome when using a modified version as implemented
by Blümer (2002): The discretization ∆τ in (2.6) is explicity made dependent upon
the frequency: ∆τ →

[
1 − (ωn∆τ/π − 1)8

]
∆τ . This modification ensures that low

frequencies are less affected [to O(∆τ 2) instead of to O(∆τ), as in (2.6)] and that
the smoothing trick works normally for ω ≈ ωc. A comprehensive analysis of Ulmke’s
method and also of the modified version of it, that will be called corrected Ulmke
scheme henceforth, can be found in Ref. Blümer (2002).

2.2 High-Frequency corrected QMC Simulation

In this part, a scheme is presented that supplements the DMFT+QMC Green func-
tions with the physically correct high-frequency behavior up to O

(
1
ω2

)
. The large

frequency behavior of the self-energies is thereby correctly produced up to O
(

1
ω

)
.

For simplicity, the scheme will henceforth also be referred to as the QMC+ 1
ω

method.
The scheme makes use of the fact that the difference of the QMC estimate of the
Green function G(∆τ) and a good model Green function Gmodel, which has physically
correct derivatives at its boundaries at least up to second order, can be interpolated
safely with a natural cubic spline. The constructed model of the Green function is
based on the high-frequency expansion of the self-energy (Potthoff et al., 1997). This
method, already presented in Ref. Knecht (2002) for the single-band Hubbard model
at half filling, will be expanded to the multi-band case at half filling.

2.2.1 Model Green Function

In order to successfully make use of a cubic spline interpolation of the discretized
Green function G(∆τ), it is necessary to correctly account for the boundary condi-
tions. One possibility is to directly impose the correct boundary conditions on the
spline, which was done for the single-band Hubbard model at half filling, e.g., by Joo
and Oudovenko (2001). The second derivatives of the Green function, G(2)(0+, β−),
can be obtained from the moments of the spectral density:

(−1)mG(m)(0+) +G(m)(β−) = 〈(ω − µ)m〉A(w) . (2.7)

Using the symmetry property of the Green function at half filling

G(m)(0+) = (−1)mG(m)(β−) , (2.8)
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and the value of the second moment for µ = 0 which is given in Appendix B, one
finds: G(2)(0+) = G(2)(β−) = U2

8
. Directly splining the full Green function, however,

cannot account for derivatives of fourth and higher order because those derivatives
vanish on segments of the cubic spline. These higher order derivatives are, however,
especially large at the boundaries τ = 0 and τ = β. A possibility to consider them
is not to spline the full Green function but only the difference to a good estimate of
G(∆τ) which incorporates the correct boundary conditions and for which the exact
Fourier transform is known. The missing part can then be added in frequency space
to obtain the full Green function G(iωn).

The construction of a model Green function can be based on an exact high-
frequency expansion of the self-energy, which was presented by Potthoff et al. (1997)
for the single-band Hubbard model:

Σσ(ω) = U 〈n̂−σ〉+
1

ω
U2 〈n̂−σ〉(1− 〈n̂−σ〉) +O(ω−2) . (2.9)

The derivation of this expansion for the single-band case as well as for the general case
of multiple bands is given in Appendix B. A model self-energy which has this asymp-
totic behavior can be used to generate a model Green function in frequency space,
Gmodel(iωn), with the help of the k-integrated Dyson equation (1.16). This model
Green function is then available for arbitrary high frequencies and therefore easily
Fourier transformed to obtain the corresponding model Green function Gmodel(τ) in
the imaginary time representation. The m-th coefficient of the self-energy expansion
(2.9) is determined by the (m+1)-th moment of the spectral density (2.7). It is

therefore assured that the boundary conditions of G
(2)
model(0

+) and G
(2)
model(β

−) exactly
reproduce the ones of the true Green function. Higher order coefficients of the self-
energy expansion then account for the corresponding higher order derivatives at the
boundaries.

The extension to the general case of multiple bands, as obtained independently
by Knecht (2002) and Oudovenko et al. (2005), is given by:

Σγ(ω) =
∑

β 6=γ
Uβγ〈nβ〉+

1

ω

∑

α,β 6=γ
UαγUβγ(〈nαnβ〉 − 〈nα〉〈nβ〉) +O(

1

ω2
) . (2.10)

Here α, β and γ are multi-indices, combining spin and orbital degrees of freedom:
α ≡ (m, σ); the interaction matrix is defined by Umσ,mσ̄ = U , Umσ,m̄σ′ = U ′ − Jzδσσ′ .
Equating the indices α and β reproduces (2.9). In contrast to the single-band case,
higher-order correlation functions of the form 〈nαnβ〉 enter the expansion of the self-
energy. They have to be computed self-consistently within the QMC part of the
DMFT iteration scheme.
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2.2.2 Choice of the Model Self-Energy

For the single-band Hubbard model at half filling, the choice of the exact form of the
model self-energy is not very critical. One possibility is to use a two-pole expansion:

Σσ(ω) = ΣHF
σ +

A1

ω − ω1
+

A2

ω − ω2
. (2.11)

The coefficients Ai of the pole expansion determine the high-frequency behavior. ΣHF
σ

is the Hartree Fock value of the self-energy which is frequency independent because
it acts instantaneously. The values of the parameters ωi are not too important at half
filling, as long as they are not much larger than the bandwidth. They can be used to
adjust the low-frequency part. As the self-energy of the Hubbard model at half filling
is purely imaginary, it is useful to choose the poles to be symmetric with respect to
zero, ω1 = −ω2, and to have equally distributed weights: A1 = A2. This choice
ensures that the self-energy is purely imaginary on the imaginary axis. One then
obtains the following form of a model self-energy, which will henceforth be labeled
PE1 (where PE stands for ‘pole expansion’):

ΣPE1,σ(ω) = U (〈n̂−σ〉 − 1
2
) + 1

2
U2 〈n̂−σ〉(1− 〈n̂−σ〉)

( 1

ω + ω0
+

1

ω − ω0

)
. (2.12)

A model self-energy with two poles is motivated by the fact that it is already able to
describe a 3-peak structure comprising a quasiparticle peak in the spectrum of single-
electron excitations. This corresponds to a simplified picture of the basic structure
of the Hubbard model with the upper and lower Hubbard bands and a quasiparticle
peak.

Another possible form of the model self-energy is a continued fraction expansion:

Σσ(ω) = ΣHF
σ +

Aσ

ω −Bσ −
Cσ

ω −Dσ − · · ·

. (2.13)

Both representations of the self-energy, (2.11) and (2.13) are causal, their coefficients
related non-linearly. The latter representation, however, has an advantage that can
be seen when expanding both representations in a 1

ω
series. For the pole expansion

(2.11) one gets:

Σpole(ω) = ΣHF +
A1 + A2

ω
+
A1ω1 − A2ω2

ω2
+
A1ω

2
1 + A2ω

2
2

ω3
+O(ω−4) . (2.14)

For the continued fraction expansion (2.13) one finds:

Σcf(ω) = ΣHF +
A

ω
− AB

ω2
+
AB2 − AC

ω3
+O(ω−4) , (2.15)
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with B = 0 at half filling and symmetric DOS. Now, there is one fundamental
difference in the dependence of the 1

ω
-coefficients of the pole expansion and of the

continued fraction expansion: Only the first n coefficients of the continued fraction
expansion determine the n-th order of the 1

ω
-expansion. Including a term of the order

n+1 in the continued fraction expansion leaves the coefficients of the 1
ω
-expansion

up to O
(

1
ωn

)
untouched. This is not the case in the pole expansion. There, already

the term of O
(

1
ω2

)
is dependent upon all coefficients of all poles. The inclusion

of an additional pole affects the coefficients of any order in 1
ω
. This difference in

the behavior of the two representations for the self-energy upon its coefficients is
reflected in the ability to find a high-quality model self-energy for the multi-band
case: It turned out that the model self-energy must also be a good estimate in
the intermediate frequency regime to create a model Green function that connects
smoothly to the QMC estimate near the Nyquist critical frequency. This intermediate
regime is controlled by the coefficients ofO

(
1
ω2

)
and higher. In principle, higher order

coefficients can be computed analytically, but they will depend also upon higher
order correlation functions that need to be calculated within the QMC part, which
itself is an extremely time-consuming task. It is, therefore, easier to fit higher order
coefficients to the data. How this is done in detail will be discussed in the following
section. The advantage of the continued fraction expansion for the model self-energy
is, therefore, that the quality of the model self-energy can be increased by successively
taking higher order moments into account without affecting the already optimized
coefficients of lower order. A minimization scheme based upon such a model self-
energy is much more stable than the one using a pole representation for Σmodel.

The model self-energies discussed above are of ‘metallic’ nature. It is therefore
interesting, to also study the QMC+ 1

ω
scheme by using an ‘insulating’ model self-

energy:

ΣPE2(iωn) = −i U
2 sign(ωn)

4(|ωn|+ ωr)
. (2.16)

This model self-energy develops a pole for ωr → 0+ at ω = 0 and therefore exhibits
an ‘insulating’ nature in this limit. Although this model self-energy does not, strictly
speaking, contain actual poles, it will, nevertheless, be referred to as a pole expansion,
labeled by PE2, just to simplify matters. Note that this model self-energy is not
causal and, hence, does not obey a Kramers-Kronig relation. Nevertheless, as is
shown below, this deficiency alone has no influence on the results of the QMC+ 1

ω

scheme for single-band systems at half filling.
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2.3 Comparison of DMFT+QMC Schemes

for the Single-Band Hubbard Model at half

Filling

A fundamental criterion for the comparison of DMFT+QMC schemes is the depen-
dence of the data upon the discretization ∆τ . As physical quantities are only obtained
after an extrapolation ∆τ → 0, a scheme with a small and well-controlled dependence
upon the discretization is favorable. Another important point is the quality of pre-
dictions for the Green function or the self-energy beyond the Nyquist frequency. The
frequency range of some schemes used in the literature up to now is even restricted
to the Nyquist frequency (e.g., Krauth’s or Ulmke’s scheme).

In this section, the developed QMC+ 1
ω

scheme will be compared to the scheme
due to Ulmke (1995) and to its corrected version by Blümer (2002) for the single-
band model. Although the applicability of the QMC+ 1

ω
scheme [in combination

with the pole expansion of the form (2.12) for the model self-energy] was already
demonstrated for the single-band Hubbard model by Knecht (2002), the comparison
is instructive because the features of the QMC+ 1

ω
splining scheme are best illustrated

for the single-band case. A comparison of the multi-band scheme is then given in
Sec. 2.4.

The Ulmke scheme was already verified by Held (1999) by the following tests,
which were applied to both, the single-band and the multi-band case:

• Reproduction of the Green function in the atomic limit (t = 0),

• reproduction of the susceptibilities and Green functions in the Fermi gas limit
(U = 0),

• reproduction of results obtained by Rozenberg (1997) and by Wahle et al.
(1998).

These and further comprehensive tests (which were performed by Blümer (2002) and
are related to the study of the MIT in the 1-band Hubbard model with Bethe DOS)
qualify the corrected Ulmke scheme and, with restrictions3, also Ulmke’s original
scheme as reference systems.

2.3.1 Observables

The observables that will be used in this and in the following comparisons are, on
the one hand, the Green function and the self-energy, which are the solutions of the

3The restriction concerns the difference of the Ulmke scheme in treating metallic and insulating
phases, as mentioned in 2.1.4.
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DMFT self-consistency cycle, and, on the other hand, the Eliashberg estimate of the
quasiparticle weight Z as well as the double occupancy D.

As a matter of course, the self-energy and Green function are naturally considered
in the context of high-frequency corrections. The behavior of the self-energy at the
lowest frequency is closely related to the quasiparticle weight Z or mass renormaliza-
tion factor:4

Z =
m

m∗ =
1

1− ∂ReΣ(ω)|ω=0

∂ω

. (2.17)

Within a QMC simulation, this quantity is normally approximated by the Eliashberg
estimate:

Z ≈ 1

1− ImΣ(iω1)
πT

. (2.18)

The double occupancy D, finally, is an example of a correlation function, which also
determines the lowest order coefficient of the large frequency expansion in the multi-
band case. It is directly calculated within the QMC simulation by employing Wick’s
theorem.

2.3.2 Results

When comparing different QMC schemes, it is not too instructive to consider the
Green function directly, as is illustrated in Fig. 2.3. The small differences at low
frequencies are due to the different ∆τ error of the schemes, while a discrepancy at
large frequencies is not detectable. The estimates of all schemes correctly exhibit a
1
ω
-decay (inset), while the QMC+ 1

ω
scheme is not restricted to frequencies below the

Nyquist critical frequency. The differences of splining methods are better studied
by considering the self-energy. At half filling, it suffices to examine only the imag-
inary part, ImΣ(iωn), because the real part of Σ(iωn) vanishes exactly. Figure 2.4
shows predictions of the self-energy of the single-band Hubbard model with semi-
circular DOS at T = 0.1 for the correlated metallic phase at U = 4, and Fig. 2.6
for the insulating phase at U = 5 for various discretizations ∆τ , as obtained from
Ulmke’s smoothing method. The self-energies are restricted to below and vanish at
the Nyquist frequency. The dependence upon the discretization is significant for all
frequencies. Furthermore, within the insulating solution, the low-frequency behavior
is qualitatively wrong for large values of ∆τ (e.g., for ∆τ = 0.4). The inset shows
the relative deviation from the asymptotic large-frequency behavior −U2/(4ωn). An
approximately correct behavior can be obtained only for very small discretizations
(∆τ < 0.1) at intermediate frequencies.

The self-energies obtained from the QMC+ 1
ω

scheme are shown in Fig. 2.5 and
Fig. 2.7. The correct asymptotic behavior is obtained for all discretizations at large

4The reader is referred to 3.2.1 for a more detailed discussion of the quasiparticle weight.
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Figure 2.3: Imaginary part of the Green function at T = 0.1 and U = 4 for semi-elliptic
DOS with ∆τ = 0.1 as obtained by different splining schemes. The inset shows the product
ωnImG(iωn) and its exact asymptotic value -1.

frequencies. Oscillations around the asymptote are significant only at intermediate
frequencies (cf. insets) for very large discretizations (∆τ & 0.4). Furthermore, the
dependence upon the discretization in the most important low-frequency region is
very small: differences in ImΣ(ω1) for discretizations ∆τ = 0.125 and ∆τ = 0.10
cannot be seen on this scale.

The convergence upon the discretization is illustrated in Fig. 2.8 for the Eliashberg
estimate of the quasiparticle weight Z as a function of ∆τ 2. The quasiparticle weight
obtained by the QMC+ 1

ω
scheme shows the smallest ∆τ dependence and is quadratic

in ∆τ for discretizations ∆τ . 0.4. The results from the corrected Ulmke smoothing
method show a similar behavior. The dependence upon ∆τ is significantly larger for
the Ulmke scheme: its estimates are not purely quadratic in ∆τ , but also depend on
terms of O(∆τ 4) for ∆τ . 0.4.

Figure 2.9 shows the dependence of the double-occupancy D upon ∆τ 2 for T = 1
15

within the Mott insulating regime at U = 6, as obtained by various DMFT+QMC
schemes used in the literature. The correct value for D at T = 0 is calculated
by the ‘extended perturbation theory’ (ePT), a method of Blümer and Kalinowski
(2005). Only the estimates obtained by the QMC+ 1

ω
scheme are quadratic in ∆τ for

∆τ . 0.3.
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Figure 2.5: Imaginary part of the self-energy for U = 4 and T = 0.1 obtained with the
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ω scheme for various discretizations ∆τ . The inset shows the relative deviation from
the asymptotic large-frequency behavior −U2/(4ωn). Adapted from Ref. (Knecht, 2002).
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Having discussed the main features of the QMC+ 1
ω

scheme, it is instructive to
study the influence of the model self-energy on the resulting self-energy or Green
function, respectively. This is illustrated in Fig. 2.10 which shows the imaginary
part of the self-energies ImΣ(iωn) (points) and the corresponding model self-energies
(lines) in the main panel. CF denotes a continued fraction expansion for the model
self-energy of the form (2.13). The coefficients of the expansion are determined
as described below. The free parameter ω0 of the symmetric pole expansion PE1
(2.12) is fixed to ω0 = 1. The free parameter ωr of the model self-energy PE2
(2.16) was adjusted by hand such that the model self-energy connects as smoothly as
possible to the QMC estimate of the self-energy around the Nyquist critical frequency.
The different choices for the model self-energy have obviously no influence on the
low frequency behavior of the self-energy; discrepancies are observed only for ωn >
10, especially within the high-frequency regime. This is illustrated in the inset of
Fig. 2.10, showing the relative deviation from the asymptotic behavior. Solutions
obtained from the continued fraction expansion and from the pole expansion PE1
approach the asymptotic behavior quickly and then oscillate with twice the Nyquist
critical frequency ωc = π

∆τ
. The amplitude of the oscillations for the CF scheme are

reduced by a factor of approximately 2 compared to the ones of the pole expansions
(PE1 and PE2, at least for ωn . 50) . In summary, the highest quality of the self-
energy (with respect to the correct asymptotic behavior and the vanishing of the
oscillations) is achieved by an optimal choice of the free parameters of the model
self-energy.

The free parameters are in principle determined by higher order correlation func-
tions. They are, however, hardly computable within the QMC simulation with a
reasonable effort. It is more advisable to estimate the free parameters numerically
by a minimization scheme. One possibility to approximate the free parameters is to
minimize the difference of the Green function G(∆τ) and the model Green function
Gmodel(∆τ) at the first n time steps τ = n∆τ (n = 0, 1, . . . ). At half filling, it turned
out that it suffices to take the first three coefficients [besides A, also B and C in
(2.13)] into account and to minimize the sum F of the differences up to n = 1:

F =

n∑

k=0

|G(k∆τ)−GM(k∆τ)| . (2.19)

The resulting Green function and the model based on the results of the minimization
is shown in the lower part of Fig. 2.11, while the upper part shows the difference
Green functions GD = G − Gmodel also for the pole expansions PE1 and PE2. The
deviation of the QMC estimate for G from the model Green function, based upon the
continued fraction expansion obtained by minimizing (2.19), is very small at τ = ∆τ
compared to the results from the pole expansions PE1 and PE2 and nearly vanishes
at τ = 2∆τ . This ensures that the second order derivatives (and of higher order)
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Figure 2.10: Imaginary part of the self-energy obtained with different model self-energies
ImΣ(iωn) for U = 4, T = 0.1 and ∆τ = 0.2 for a semi-elliptic DOS. CF denotes a contin-
ued fraction expansion, PE1 (PE2) pole expansions for the model self-energy. PE1 is an
expansion of the form (2.12) with free parameter ω0 = 1, PE2 an expansion of the form
(2.16). Inset: Relative deviation of ImΣ(iωn) from the asymptotic high-frequency form

− U2

4ωn
. The relative deviations shows oscillations around the asymptote with a period of

twice the Nyquist critical frequency ωc = π
∆τ ≈ 15.7.

are very small at the boundaries τ = 0+, β− and thus already well incorporated in
the model Green function Gmodel. The difference Green function GD can, therefore,
be splined with a natural cubic spline which is defined to have a vanishing second
derivative at its boundaries.
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2.4 Comparison of DMFT+QMC Schemes

for the Multi-Band Hubbard Model

at Half Filling

The generalization of the asymptotic expansion of the self-energy to the multi-band
case does not only involve expectation values of the densities 〈nσ〉, but also of pairwise
double occupancies 〈nαnβ〉, which appear already in the terms of O

(
1
ω

)
. These

correlation functions are not known a priori but have to be calculated self-consistently
within the DMFT iteration scheme. Hence, in contrast to the single band case, also
the high-frequency behavior is determined self-consistently. The calculation of the
pairwise double occupancies, however, does not come along with additional costs,
because they are computed by default within the QMC simulation.

In the following, the influence of the form of the model self-energy on the results
of the QMC+ 1

ω
method is studied in the two-band Hubbard model with parameters

U = 2U ′ = 4Jz and equal bandwidths t1 = t2, as an example of a multi-band system.
The results are also compared to the predictions of the Ulmke scheme and its corrected
version. The two-band model is motivated by the fact that it contains already all
possible couplings occurring in the general anisotropic multi-band Hubbard model.
The choice of parameters ensures on the one hand that the extension to the multi-
band case is nontrivial (the model does not decouple into an effective system of two
independent single-band models) and on the other hand corresponds to the parameter
set which is used in chapter 3, with the exception of having equal bandwidths.

Estimates for the imaginary part of the self-energy for the two-band Hubbard
model at half filling with semi-elliptic DOS at T = 0.1 are shown in Fig. 2.12 for
U = 2 and in Fig. 2.13 for U = 4. Similar to the single-band case, an influence of the
form of the model self-energy on the low-frequency behavior of the QMC estimates
for ImΣ is not found. The estimates from the Ulmke scheme are in accord with the
QMC+ 1

ω
results at low frequencies within the metallic phase, but still underestimate

the value of ImΣ(ω1) by more than 30% within the insulating phase. The predictions
of the corrected Ulmke scheme are in exceptionally good agreement with the results
of the refined QMC scheme at low frequencies. At intermediate values of ωn, however,
one observes an overshooting of the QMC estimates of the corrected Ulmke scheme.
The large frequency behavior within both the metallic and insulating phase is shown
in the insets of Fig. 2.12 and Fig. 2.13. The asymptotic behavior of the self-energy
within the metallic phase is approached in almost the same manner as for the single-
band model: Results from the pole expansion PE2 (2.16) (with adjusted coefficient)
converge slowly to the correct behavior, while results from the pole expansion PE1
(2.12) approach the correct behavior quickly and then oscillate again with period 2ωc.
A detailed analysis of the occurring oscillations is depicted in Fig. 2.14, showing the
relative deviation from the asymptotic behavior C1 (B.19) for U = 2 (a) and for U = 4
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Figure 2.14: Relative deviation of ImΣ(iωn) from the asymptotic high-frequency behavior,
given by the coefficient C1 (B.19) in the high-frequency expansion of the self-energy for the
two-band Hubbard model with semi-elliptic DOS at T = 0.1, ∆τ = 0.2 and U = 2U ′ =
4Jz = 2 in (a) and U = 2U ′ = 4Jz = 4 in (b). The inset shows the same relative deviation
from the asymptotic behavior as obtained from the continued fraction expansion for the
model self-energy, but now for different values of the discretization ∆τ .
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(b). The occurring oscillations are minimal for the continued fraction expansion: An
optimal choice for the multi-band case is achieved by including coefficients up to
fourth order. The functional (2.19) is then minimized for n = 3. The oscillations
within the insulating phase are much less strongly dependent on the form of the model
self-energy. The insets show the ∆τ dependence of the oscillations for the continued
fraction expansion of the model self-energy. The initial overshooting is shifted towards
larger frequencies as the discretization gets smaller, resulting in a smoother crossover
to the large frequency behavior. The amplitude of the oscillations, however, is not
decreased but rather independent of ∆τ .

The dependence of observables upon the discretization ∆τ is depicted in Fig. 2.15
for the quasiparticle weight Z and in Fig. 2.16 for the total double occupancy
D = 1

2

∑
α6=β〈nαnβ〉. One important observation is that the results of the QMC+ 1

ω

scheme are essentially equivalent for all three types of model self-energy used. As ex-
pected, differences in the oscillatory behavior at large frequencies (as observed above)
are not reflected in the observables that are mainly determined by the low-frequency
behavior (e.g., Z is a function of ImΣ(ω1) only). It therefore suffices to compare
the results of different QMC schemes, namely the Ulmke scheme, its corrected ver-
sion and the QMC+ 1

ω
scheme. For the estimates of the quasiparticle weight Z, the

QMC+ 1
ω

scheme yields the smallest errors, which are nearly perfectly quadratic in
∆τ in the metallic phase and quasi-independent of the discretization within the insu-
lating phase. The results from the Ulmke scheme and also from its corrected version
clearly depend also on terms of O(∆τ 4) [the corrected Ulmke scheme additionally on
terms of O(∆τ)], while the estimates from the Ulmke scheme in the insulating phase
even disagree after an extrapolation ∆τ → 0. The strong ∆τ -dependence of the
Ulmke scheme obviously requires QMC simulations with much smaller discretization,
in order to achieve correct results. This is a rather severe deficiency, because of the
numerical effort, which scales at least like ∆τ−3.

The ∆τ error of the double occupancy, calculated within the QMC+ 1
ω

scheme,
is of the same order and again nearly quadratic in ∆τ within both the metallic
and the insulating phase. Estimates from the corrected Ulmke scheme show a similar
behavior within the metallic phase, while the results from the Ulmke scheme are again
not purely quadratic in the discretization. Interestingly, results from the corrected
Ulmke scheme are quasi-independent of ∆τ within the insulating phase. Estimates
obtained by the Ulmke scheme show again the largest ∆τ errors. Remarks made
concerning the quasiparticle weight in this respect apply to the double occupancy as
well.

In summary, it could be shown that the results of the QMC+ 1
ω

scheme and the
reference schemes agree in the limit ∆τ → 0 for the two-band Hubbard model.
The chosen example Hamiltonian strongly suggests that the agreement holds also
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for the more generic case of a multi-band Hamiltonian at half filling with arbitrary5

interaction matrix Uαβ. Moreover, the inevitable discretization error of the QMC+ 1
ω

scheme is quadratic in ∆τ at least for ∆τ < 0.5 at T = 1
10

. It is further found
that the large-frequency behavior of the self energy (and, accordingly, of the Green
function) is best controlled by a model self energy of the form of a continued fraction
expansion. The free parameters of this expansion can easily be determined with the
use of a minimization routine.

5Here, the interaction strength is restricted by the usual working rule for a QMC simulation,
namely ∆τ U < 2. This estimate is due to the Trotter breakup and ensures that the systematic
error, introduced by the parameter λ in cosh(λ) = exp

(
∆τU

2

)
, is kept under control (by not allowing

the argument of the exponential to be too large).
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Figure 2.15: Quasiparticle weights Z for the two-band Hubbard model for semi-elliptic
DOS at T = 0.1 and U = 2U ′ = 4Jz = 2 (a) and U = 2U ′ = 4Jz = 4 (b) as a function of
∆τ2.
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2

∑
α6=β nαnβ for the two-band Hubbard model
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2.5 QMC+1
ω

Scheme away from Half Filling

Systems at half filling are the exception rather than the general case. Many interesting
materials, like the manganites or the perovskites, can be described by multi-band
Hubbard models away from half filling (Petrone and Aligia, 2002). A DMFT+QMC
simulation6 of multi-band systems substantially benefits from a scheme producing
reliable results already for a rather coarse grid ∆τ [recall the numerical effort, that
scales like m(m−1)L3]. It would therefore be desirable to apply the QMC+ 1

ω
scheme

also to single-(multi-)band models with arbitrary filling.
It turns out, however, that the asymmetry7 of the Green function, which arises

6The DMFT would additionally be supplemented by the LDA density of states. This method is
then usually referred to as LDA+DMFT. An introduction to the LDA+DMFT method is given by
Held, Nekrasov, Blümer, Anisimov and Vollhardt (2001).

7The asymmetry of the imaginary time Green function away from half filling also implies that
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away from half filling, cannot be accounted for in a satisfactory manner by the model
self-energies that work very successfully for the half-filled case. In the following, the
applicability of the QMC+1/ω scheme away from half filling is studied in detail for
the test case of a the single-band Hubbard model at quarter filling and U = 5. The
Ulmke scheme and its corrected version serve again as reference systems.

The estimates for the imaginary-time Green function G(∆τ) and a model Green
function (CF) are shown in the lower panel of Fig. 2.17. The upper panel shows
the difference Green functions GD as obtained for different model Green functions.
The discrepancy of GD at the boundary τ = 0+, β− decreases as the discretization is
reduced for the case of the continued fraction expansion, but is quasi independent of
∆τ for ΣPE2 (therefore, only results for ∆τ = 0.25 are included). The finite offset of
GD at both τ = 0+ and τ = β− reflects the fact that the correct boundary conditions
can be reproduced neither by a 2-pole expansion of the model self-energy nor by a
continued fraction expansion of the order 4.8

Now, the discrete Fourier transform expects the input data to be periodic, and
the first sample is expected to follow the last samples. The difference between the
amplitude of the first and last sample creates a ringing known as Gibb’s phenomenon.
This ringing distorts the spectral information in the frequency domain [as is observed
in Fig. 2.18]. The width of the ringing can be reduced by increasing the number of
data samples, thus by decreasing ∆τ . This will, however, not reduce the amplitude of
the ringing, which is a function of the difference between the amplitude of the first and
last samples. The Fourier transformation of this discontinuity (which corresponds to
a sawtooth-like function) requires an infinite number of frequencies and essentially
results in the 1

ω2 -contribution to the real part of the Green function that in turn
accounts for the offset in the real part of the self-energy, as observed in Fig. 2.19 (see
below). Within signal or image processing, a discontinuity of this type is reduced by
multiplying the data by a windowing function (sometimes called window weighting
functions) before the Fourier transform is performed. Windowing, however, cannot
be applied in our case without loosing an essential part of the Green function.

The estimates of the imaginary part of the self-energies at T = 0.1 and ∆τ = 0.25
are shown in Fig. 2.18. Results from the QMC+ 1

ω
scheme apparently exhibit stronger

kinks in the crossover region at the Nyquist critical frequency than at half filling.
This ‘ringing’ can be minimized by tuning the free parameters of the model self-
energy, similar to the case of the continued fraction expansion. The inset shows
the large-frequency behavior revealing the characteristic oscillations. The real part
of the self-energy is plotted in Fig. 2.19. It consists only of the constant Hartree
contribution for the pole expansion PE2; higher order terms were neglected in the

the Matsubara frequency Green function and the self-energy have a non-zero real part.
8The offset also remains (selectively at τ = β−, only) when forcing GD(τ = 0)

!
= 0 by applying

a different weight in (2.19).
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Figure 2.20: QMC estimates for the quasiparticle weight Z (a) and the total double
occupancy D (b) as a function of ∆τ2 for the single-band Hubbard model at quarter filling
and T = 0.1. The QMC+ 1

ω scheme clearly generates different results for D, depending on
the model self-energy, uncovering problems in the implementation.

definition of PE2. The model self-energy CF already contains 1
ω2 -corrections. The

discrepancy in the real part of the resulting self-energy and its model is due to a
finite (∆τ -dependent) offset in the 1

ω2 -term of the Green function G(iωn) at large
frequencies, which in turn stems from the discrepancy of the QMC estimate G(∆τ)
and its model Green function Gmodel(∆τ) at the boundaries (τ = 0+, β−) as shown
below (cf. Fig. 2.17). This 1

ω2 -contribution of G(iωn) brings about an offset in the
real part of the self-energy, which can be seen, e.g., by employing the Dyson equation
for the Bethe lattice: Σ = iωn + µ− (W/4)2G− 1

G
.

The problems of the QMC+ 1
ω

implementation are reflected in the ∆τ error of
the observables, as can be seen, e.g., in Fig. 2.20a for the quasiparticle weight Z
and in Fig. 2.20b for the total double occupancy D = 1

2

∑
α6=β〈nαnβ〉. While the

extrapolated values of Z (∆τ → 0) from the compared schemes still agree within the
errors, they do not in the case of the total double occupancy D. Also, the purely
quadratic dependence of D upon ∆τ , which was observed at half filling, is lifted
for the results of the QMC+ 1

ω
scheme. Needless to say, the observed discrepancies

persist for multi-band systems away from half filling. The observed difference of the
extrapolated observables between the QMC+ 1

ω
scheme and the reference schemes is

severe: As the only systematic error of the QMC simulation is introduced by the
discretization of the imaginary time, results from different DMFT+QMC schemes
must yield identical results in the limit of vanishing discretization. Therefore, the
QMC+ 1

ω
scheme is so far applicable only to systems at half filling.
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2.6 Implementation of the QMC+1
ω Method

One part of this thesis was the implementation of the QMC+ 1
ω

scheme for the general
case of multiple bands at half filling into an existing multi-band DMFT+QMC code
by Held and Keller, which was parallelized by Blümer (2002) using the Message
Passing Interface (MPI). Routines for the spline interpolation of the Green function
and the creation of a model self-energy on the base of a pole expansion for the single-
band case were already implemented by Knecht (2002). The optimal parameters of
the continued fraction expansion for the model self-energy are determined by Powell’s
direction set method (Press et al., 1992). To ensure convergence, the number of
coefficients is increased stepwise, using the results of the previous run as input for
the new minimization.

Calculations at low temperatures or at high precision (e.g., for L > 150 and
more than one band) can only be performed efficiently on computers with a very
fast memory access (supercomputers). As the calculation time on supercomputers is
usually limited (as in the case of the IBM p690, on which some of the calculation of
this thesis were performed), the QMC code was constructed such as to be restartable.
For this purpose, all data of the parallelized QMC routine, including Ising spin fields,
Green functions and self-energies from the iteration cycle are stored at constant rate.
An integrated timer automatically stops the QMC simulation before the allocated
time runs out. Both implemented actions allow the calculations to be resumed at
any time, such that calculations can be performed for multi-band models also for
large number of sweeps.

2.7 Summary

In this chapter, a scheme to include high-frequency corrections into the DMFT+QMC
method for multi-band Hubbard models was developed. The method is based on the
large-frequency expansion of the self-energy, which can be derived rigorously by the
moments of the spectral density. The first-order coefficients of the expansion comprise
expectation values of densities in the single-band case and additionally of pairwise
double occupancies in the multi-band case. Correlation functions up to second order
can easily be determined self-consistently within the DMFT iteration cycle. Higher
order coefficients of the expansion, however, also include correlation functions of
higher and higher order, the calculation of which is very time-consuming within a
QMC simulation and thus not practicable. It could be shown in this chapter, that the
scheme works most satisfactorily for both the single-band and the multi-band case
when employing the exactly known coefficients up to O

(
1
ω

)
. The observed artificial

oscillations of the large-frequency behavior can be minimized by adjusting higher
order coefficients to the QMC estimates at intermediate frequencies.
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The developed DMFT+QMC scheme (QMC+ 1
ω
) was compared to reference

schemes by Ulmke and Blümer (corrected Ulmke) for the single and the multi-band
case. It could be shown that all methods produce equivalent physical observables
within the limit ∆τ → 0. Moreover, the analysis of this chapter demonstrated, that
the systematic error of the developed DMFT+QMC scheme is virtually reduced to
the inevitable Trotter error, which is quadratic in the discretization ∆τ . Thus, the
error associated with the discrete Fourier transformations, that are performed twice
in each DMFT iteration cycle, could essentially be eliminated.

It was further shown, that the quality of the scheme concerning the behavior at
intermediate to large frequencies, is optimal when employing a continued fraction
expansion for a model self-energy. This analytical form of the self-energy allows best
for a reliable fitting of higher order coefficients of the large frequency expansion to
the QMC data.

In the last part of this chapter it was pointed out, that the QMC+ 1
ω

scheme is
not yet applicable to systems away from half filling: The extrapolated observables
(∆τ → 0) do not agree with the results of the reference schemes. The reason for this
deficiency is expected to be the asymmetry of the imaginary time Green function
G(τ) away from half filling. The key point to establish the developed scheme also
for systems away from half filling is therefore to produce a model self-energy that
correctly accounts for the asymmetric boundary conditions at both τ = 0+ and
τ = β−. The successful application of the QMC+ 1

ω
scheme to half-filled systems in

this chapter suggests that the construction of an appropriate model self-energy for
doped systems should have high priority in future QMC work.
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Chapter 3

Orbital-Selective Mott Transitions

3.1 Introduction

The interaction-induced Mott metal-insulator transition of strongly correlated elec-
tron systems has been a subject of intense study in solid state physics for decades
(Gebhard, 1997; Imada et al., 1998). Introduced by Mott in 1968, it is a perfect
example of a quantum phase transition where the electron-electron interaction leads
to a transition from a correlated paramagnetic metal to an insulator (Mott, 1968).
If the local moments in the insulating phase do not show long-range order, the
transition is called Mott-Hubbard transition, otherwise Mott-Heisenberg transition
(Gebhard, 1997). The Mott transition is not to be confused with filling-induced tran-
sitions because it cannot be explained in terms of an effective non-interacting electron
theory. To reveal the basic phenomenon of the transition, Mott originally considered
only the single-band case.

The Hubbard model is probably the most prominent example of a system exhibit-
ing a Mott-Hubbard transition. It describes itinerant electrons that interact locally
via a Coulomb interaction U , forcing the electrons’ motion to be correlated. At half
filling, its ground state is metallic for U =0 and insulating for U ≫ W , where W is
the band width. The Hubbard model is expected to exhibit a Mott metal-insulator
transition at a critical interaction Uc ≈W for all dimensions d > 1.1 The exact value
of the critical interaction Uc, is, depending on the lattice dimension, known only for
rather special cases, e.g., at strong magnetic fields (van Dongen, 1994b). Of particu-
lar interest is the limit of infinite dimensions, for which Mott-Hubbard behavior was
first found for a hyper-cubic lattice at half filling by Jarrell (1992). Since then, the
nature of the Mott transition in the d = ∞ Hubbard model has been a subject of

1The metallic region of the Hubbard model in one dimension is restricted to the singular point
U = 0. In the narrower sense, the one-dimensional Hubbard model therefore does not describe a
Mott transition, because the range of the metallic phase is not finite (Gebhard, 1997).
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intense study [compare also the review by Georges et al. (1996)].

A new aspect was brought into the theory of Mott transitions by Nakatsuji
and Maeno (2000a), who found evidence for two consecutive orbital-selective metal-
insulator transitions (OSMT) in Ca2−xSrxRuO4. The crystal structure of this com-
pound, which is a quasi two-dimensional degenerate d-electron system, is shown in
Fig. 3.1a, the phase diagram in Fig. 3.1b. The end-member Ca2RuO4 is a Mott insu-
lator while Sr2RuO4 is a p-wave superconductor. Upon doping x, the system under-
goes complex phase transitions from an antiferromagnetic insulator for 0 ≤ x ≤ 0.2,
via an antiferromagnetically correlated metal for 0.2 ≤ x ≤ 0.5, towards a para-
magnetic metal for x ≥ 0.5. Furthermore, there is an increase of the low-temperature
(uniform) susceptibility for x ≥ 0.5 with a peak at the boundary x ≈ 0.5, correspond-
ing to the formation of a localized spin S = 1

2
. This nearly ferromagnetic state at

x ≈ 0.5 vanishes upon decreasing x towards the antiferromagnetic ordered state at
x ≈ 0.2.

The nature of this complex evolution is debated lively in literature [cf. subsections
3.1.1 and 3.1.2]. A very promising explanation is to assume that some orbitals exhibit
localized spin and orbital degrees of freedom while others retain itinerant. Various
theoretical calculations strongly suggest [LDA (Fang and Terakura, 2001; Fang et al.,
2004), LDA+DMFT (Anisimov et al., 2002), strong-coupling calculations (Sigrist and
Troyer, 2004)] that the occurrence of the orbital-selective metal-insulator transition
is a correlation induced effect in a system with inequivalent bands. The OSMT would
thus generalize the classical Mott transition to the multi-orbital case with inequivalent
bands.

Up to recently, studies of multi-band systems concentrated on the special
‘isotropic’ case of identical orbitals. In these models, the metal-insulator transi-
tion occurs at the same critical Coulomb interaction Uc in all bands. However, it is a
priori not clear how this picture evolves in general. The transition obviously occurs
at different critical interactions if the inequivalent bands are uncoupled.

The chapter is organized as follows. Section 3.1.1 gives an experimental motiva-
tion of the OSMTs. A likely microscopic model for OSMTs, namely the two-band
Hubbard model, is discussed in 3.1.2, followed by a short summary of the recent work
in that field in Sec. 3.1.3. In section 3.2, the anisotropic two-band Hubbard model
is studied within the DMFT+QMC. Using the high-frequency corrected QMC algo-
rithm developed as part of this thesis, the anisotropic Hubbard model is established
as the minimal model for the OSMT in the paramagnetic phase. The orbital-selective
Mott (OSM) phase is further studied within a simplified multi-band Hubbard model,
which has the general structure of a Falicov-Kimball model, in section 3.3. A de-
tailed comparison shows that the physics of the OSM phase is closely related to the
Falicov-Kimball model. The results are discussed at the end of each section [3.2.11
and 3.3.6, respectively], and summarized at the end of this chapter in Sec. 3.4.
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a) b)

Figure 3.1: a) Basic crystal structure of Ca2−xSrxRuO4 (reproduced from Anisimov
et al., 2002). b) Phase diagram of Ca2−xSrxRuO4 with abbreviations: P for paramagnetic,
CAF for canted anti-ferromagnetic, M for magnetic, SC for superconducting phase, -M for
metallic phase, and -I for insulating phase (Nakatsuji and Maeno, 2000a).

3.1.1 Experiment

One of the most famous materials to exhibit a Mott transition is the transition metal
oxide V2O3 (Rice and McWhan, 1970). The transition is induced upon pressure
which directly distorts the lattice structure and thus changes the overlap integral of
the relevant orbitals. This can be identified with a variation of the bandwidth, hence
the transition is also called bandwidth-controlled. The Mott transition in V2O3 is
well described by a half-filled single-band Hubbard model even though orbital effects
certainly play an important role (Held, Keller, Eyert, Vollhardt and Anisimov, 2001).

The microscopic mechanism that leads to the orbital-selective Mott transition
in the ruthenate Ca2−xSrxRuO4 turned out to be fairly complex (Nakatsuji and
Maeno, 2000a; Nakatsuji and Maeno, 2000b; Anisimov et al., 2002; Fang and Ter-
akura, 2001; Fang et al., 2004; Sigrist and Troyer, 2004). The 4d transition metal
oxide belongs to the group of perovskites and crystallizes in a single-layered structure
(cf. Fig. 3.1). The end member Sr2RuO4 was found to be an unconventional supercon-
ductor (Maeno et al., 1994) with spin-triplet Cooper pairing (Ishida et al., 1998). It is
iso-structural to the well known high-Tc superconductor La2−xSrxCuO4. The normal
state of Sr2RuO4 is a good metal, forming a 3-dimensional but anisotropic Landau-
Fermi-liquid at low temperatures (Oguchi, 1995; Singh, 1995; Mackenzie et al., 1996).
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The electronic band structure is dominated by the 4d t2g orbitals (dxy, dyz, dxz) of
the Ru ion. The dxy orbitals π-hybridize with the 2p orbitals of all 4 in-plane O-
neighbors, while the dxz(dyz) orbitals hybridize only with the 2 O-neighbors along
the x(y)-axis (Anisimov et al., 2002). This results in a dxy bandwidth that is ap-
proximately twice the dxz,dyz bandwidths. The t2g bands are occupied as follows:
The dxz,dyz absorb 3 electrons generating a localized spin 1

2
and an orbital isospin 1

2

and the dxy band is filled with one electron. The crystal structure of Ca2RuO4 (for
x = 0) is orthorhombic. The bandwidth of the t2g-orbitals is smaller than the one in
Sr2RuO4 and, additionally, the energy splitting between dxy and (dxz,dyz)-orbitals is
changed. The dxy-orbital is thus fully filled and the 2 remaining electrons occupy the
(dxz,dyz)-orbitals.

The evolution between the two end members, for which the phase diagram is
shown in Fig. 3.1b, is quite complex. Substituting the smaller ion Ca for Sr leads to
a contraction of the crystal volume due to a rotation of the RuO6-octahedra around
the c-axis. This distortion reduces the bandwidth of the t2g-orbitals and also changes
the energy splitting between dxy and (dxz,dyz)-orbitals. For doping x > 0.5, the
system is in a paramagnetic metallic phase. Down to x = 0.5, the crystal remains
tetragonal but is characterized by an increase of the uniform susceptibility. Also, at
x = 0.5, the susceptibility becomes Curie-like with a Curie constant corresponding
to the formation of a localized spin S = 1

2
. From x = 0.5 downward to x= 0.2, an

additional rotation of the RuO6-octahedra takes place, emerging in the orthorhombic
structure of Ca2RuO4. The system remains metallic, but antiferromagnetic ordering
sets in. According to Anisimov et al. (2002), decreasing the doping x in this regime
leads to a progressive narrowing of the three distinct bands; the orbital-selective Mott
transition is then caused by electronic correlations. Finally, at x ≈ 0.2, a first-order
phase transition to the antiferromagnetic insulating phase of Ca2RuO4 takes place.

The microscopic mechanism, which leads to the rich phase diagram of
Ca2−xSrxRuO4 is still discussed lively in literature [cf. also Sec. 3.1.3]. As the com-
pound is assumed to be a strongly-correlated electron system, it is especially impor-
tant whether electronic correlations alone are responsible for the OSMT or whether
other effects, like lattice-distortion or spin-orbit coupling, which is not negligible for
the Ru-ion (Ng and Sigrist, 2000; Sigrist and Troyer, 2004), must also be taken into
account. This leads to the question of whether Mott transitions in a purely electronic
multi-orbital model take place in sequence or simultaneously. Interestingly, experi-
mental observations that contradict the assumption of a correlation-induced transi-
tion also exist: Optical spectroscopy data, e.g., denote that the observed change of
carrier concentration at x ≈ 0.5 is smaller than an orbital-selective Mott transition
would suggest (Lee et al., 2002).
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3.1.2 Theory

A microscopic model able to describe the OSMT must contain at least 2 bands. The
actual number of relevant bands in Ca2−xSrxRuO4, however, is larger. These are the
3 t2g-orbitals of the Ru-ions as well as the 2p-orbitals of the O-ions, if one restricts
oneself to only the low-energy-contributions. The complexity can be reduced by in-
tegrating out the intermediate O-orbitals, yielding an effective2 three-band Hubbard
model. Similar effective models were derived, e.g., for the cuprates yielding an effec-
tive single-band model (Zhang and Rice, 1988) or for double perovskites yielding an
effective three-band model (Petrone and Aligia, 2002).

The essence of the OSMT, however, should already be captured by a two-band
model. One usually considers the following half-filled two-band Hubbard model

H = H1 +H2 , (3.1)

where

H1 = −
∑

〈ij〉mσ
tmc

†
imσcjmσ + U

∑

im

nim↑nim↓ (3.2)

+
∑

iσσ′

(U ′ − δσσ′Jz )ni1σni2σ′ (3.3)

includes hopping between nearest-neighbor sites i, j with amplitude tm for orbital
m ∈ {1, 2}, intra- and interorbital Coulomb repulsion parameterized by U and U ′,
respectively, and Ising-type Hund’s exchange coupling Jz; nimσ = c†imσcimσ for spin
σ ∈ {↑, ↓}. In addition,

H2 = 1
2
J⊥
∑

imσ

c†imσ

(
c†im̄σ̄cimσ̄ + c†imσ̄cim̄σ̄

)
cim̄σ (3.4)

contains spin-flip and pair-hopping terms (with 1̄ ≡ 2, ↑̄ ≡↓ etc.). In the following,
H1 +H2 is referred to as the J-model and the simplified Hamiltonian H1 as the Jz-
model. For the further study of the OSMT it is instructive to discuss the symmetry
of the Hamiltonian in more detail. The terms in H2 were first discussed by Castellani
et al. (1978), who showed that both terms are generated by a spherically symmetric
two-particle potential (in particular therefore by a screened Coulomb interaction).
The authors further noted that the Hamiltonian is rotationally symmetric if and
only if the following relation between the interaction parameters holds:

U = U ′ + 2J , (3.5)

2The advantage of such an effective model is the reduced Hilbert space, e.g., for numerical
diagonalization of finite system and that the largest interactions (mostly the on-site Coulomb inter-
action) are treated exactly inside an effective cell. This makes approximations give better results
when applied to an effective model rather than to the original complex one.
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provided that Jz = J⊥ ≡ J . In this case, the Hamiltonian is SU(2)-symmetric in the
spin sector and SO(2)-symmetric in the band sector [here, the restriction is due to the
pair hopping term]. Precisely the relation (3.5) is usually employed (for simplicity)
in the context of OSMT studies, presuming a rotational invariance. In contrast
to this assumption, the symmetry of the experimental system, Ca2−xSrxRuO4, is
lower and at the most rotationally invariant in the xy plane. The study of the Néel
temperature in Sec. 3.2.8 shows that scaling the interaction parameters according to
(3.5) is problematic and should eventually be lifted. The model 3.1 is investigated
(see Sec. 3.1.3) in the paramagnetic (PM) phase only, where one finds two transitions.
The experimental system, however, is antiferromagnetic for x ≤ 0.2; the influence of
long-range order (LRO) on the phase diagram is ‘under investigation’.

3.1.3 Recent Work

In the context of the OSMT scenario, the Jz-model was originally investigated by
Liebsch (Liebsch, 2003a; Liebsch, 2003b; Liebsch, 2004) using the dynamical mean-
field theory (DMFT) in combination with finite-temperature quantum Monte Carlo
(QMC) calculations. For simplicity, a semi-elliptical DOS with bandwidth ratio
W2/W1 = 2 was considered, motivated by the fact that the MIT, occurring in the
corresponding single-band model, is already well understood. The interorbital inter-
actions were assumed to scale with the on-site Coulomb interaction like U ′ = U

2
and

Jz = U
4
, which fulfills the condition (3.5) for spherically symmetric screened Coulomb

interactions (Castellani et al., 1978). Liebsch claimed that both bands undergo a sin-
gle first-order transition at the same critical Coulomb interaction Uc ≈ 2.1 eV. Also,
the critical temperature was estimated by Tc ≈ 0.038 eV (Liebsch, 2004). The results
were mainly achieved by considering the quasiparticle weight Z [for a definition, see
(3.7)], which is shown in Fig. 3.2a for T = 0.031. The curve 11 (22) denotes the
results for two narrow (wide) orbitals and 12 labels the solutions for orbitals with
bandwidth ratio W2 = 2W1. The change in slope of Z for both bands at Uc ≈ 2.1
was taken as an indicator for the occurrence of one single Mott transition.3

It was subsequently found by Koga et al. (2004) using exact diagonalization (ED)
that an OSMT takes place in the full J-model but not in the Jz-model. Thus the
OSMT was attributed to spin-flip and pair-hopping processes. Figure 3.2b shows
their results for the quasiparticle weight. In contrast to the QMC estimate of Z [cf.
Sec. 3.2.1] the quasiparticle weight calculated within ED is exactly zero at the MIT,
due to the fact that the calculations are performed at zero temperature.

The existence of an OSMT in the J-model was confirmed by calculations based
on the Gutzwiller variational approach at zero temperature by Ferrero et al. (2005),

3Liebsch explicitly stated that, regardless the order, there was no evidence for a second transition
in the wider band at larger interaction U (Liebsch, 2004).
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a) b)

Figure 3.2: a) Quasiparticle weight Z (taken from Liebsch, 2004) for the Jz-model at
T = 0.031 eV, calculated within DMFT+QMC. The change in slope of Z2 at U = 2.1
is taken as an indicator for a single Mott transition. b) Results from DMFT+ED (Koga
et al., 2005a) for Z at zero temperature for the full J-model (squares), the Jz-model (circles)
and an intermediate coupling J⊥/Jz = 0.5 (triangles).

provided that the ratio W2/W1 of the two bandwidths is sufficiently small.4 Simi-
lar results were obtained by Arita and Held (2005) who used the projective QMC
(PQMC) method (Feldbacher et al., 2004) to investigate the J-model at T = 0 and
who demonstrated a first5 OSMT for J = U

4
and U = 2.6 (in units of half the width of

the narrow band). Finally, Koga et al. (2005b) used QMC to characterize the OSMT
for the J-model at finite T on the basis of spin, charge and orbital susceptibilities
as well as spectral functions; they further showed that an additional hybridization
between the bands smears out the OSMT at T = 0.

The scenario of a single Mott transition was then challenged in 2005 by de’ Medici
et al. (2005) and Knecht et al. (2005). Using a slave-spin mean field theory (which is
closely related to the Gutzwiller method), de’ Medici et al. (2005) found an OSMT at
T = 0 for the Jz-model with U ′ = U − 2Jz, in contradiction to Liebsch’s and Koga’s
earlier findings. This result, however, can not be taken as a clear evidence, since the
slave-spin method is essentially uncontrolled. The issue could be clarified using the
high-precision QMC-algorithm developed as a part of this work: It turned out that

4Interestingly, Ferrero et al. (2005) also find, within a DMFT+ED study, existence of small
spectral weight near the Fermi level of the narrow-band subsystem in the orbital-selective Mott
phase, favoring the existence of a single Mott transition only.

5Only the Mott transition of the narrow band could be observed, while the wide band remains
itinerant. The PQMC method is stable only for U . W due to a dramatic increase of the statistical
error that comes along with the spin flip terms of the Hund’s rule coupling (Arita and Held, 2005).
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the Jz-model, indeed, is the minimal model for the OSMT at finite temperatures
(Knecht et al., 2005).

3.2 OSMTs in the Anisotropic Two-Band Hub-

bard Model

In this section, the Jz-model with U ′ = U
2
, Jz = U

4
and semi-elliptic densities of

states with full bandwidths W1 = 2, W2 = 4, for the ‘narrow’ and ‘wide’ band,
respectively, is treated within the DMFT. The calculations are performed using the
QMC+ 1

ω
method developed in chapter 2.

3.2.1 Quasiparticle Weight

A traditional criterion for metal-insulator transitions is the quasiparticle weight or
mass renormalization factor Z, which can be expressed in terms of the real part of
the self-energy Σ(ω):

Z =
m

m∗ =
1

1− dReΣ/dω|ω=0
. (3.6)

In the context of QMC simulations, it is usually estimated in a secant approximation
by the discrete Eliashberg estimate

Z ≈ 1

1− Im Σ(iπT )/(πT )
. (3.7)

Evidently, both definitions recover the limit Z → 1 in the absence of interactions
(when Σ ≡ 0), however, in the insulating regime the discrete approximation neces-
sarily remains finite, whereas the true Z vanishes exactly. As a consequence, metal-
insulator transitions are expected to appear washed-out at finite temperatures. It is
important to note, that Z is a physical observable only within the Fermi-liquid phase;
the value of the discrete estimate for Z has no physical meaning in the insulating
regime.

Figure 3.3 shows Z as a function of the interaction U for temperatures T = 1
32

and T = 1
50

. The quasiparticle weight of the narrow band, Znarrow, drops from its
non-interacting value Znarrow(U=0) = 1 as the interaction is increased. The MIT of
the narrow band is indicated by a drastic change in slope (for T = 1

32
) of Znarrow at

Uc1 ≈ 2.0 and occurs within the coexistence region (T . 1
50

). The behavior of Zwide

is different: At Uc1, it also shows a transition but the drop is smaller compared to the
one of Znarrow. This drop is a signature of the Mott transition of the narrow band, and
reflects the fact that phase transitions usually leave traces in every observable. The
value of Zwide in the interval 2.0 . U . 2.5, however, is still large which indicates
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Figure 3.3: Znarrow, Zwide of the discrete QMC estimates of the quasiparticle weights of
both bands versus interaction U for T = 1

32 (∆τ = 0.32) and T = 1
50 (∆τ = 0.35). The

inset shows a magnified view of the transition region. For T = 1
50 , two solutions coexist

at U = 2.01. A second transition for the wider band is not visible at this scale. Lines are
guides to the eye only.

that the second band is still metallic. For increasing interaction, Zwide seems to
diminish smoothly. The slight change in slope near U ≈ 2.6 cannot be identified as a
second transition on this scale. The fact that the phase transition as indicated by the
discrete estimate of the quasiparticle weight, indeed, looks ‘washed-out’, can be seen
from the inset of Fig. 3.3: Znarrow drops only by about 60% when the band becomes
insulating at U ≈ 2.0.

Another important point concerns the order of the transition at Uc1. A first-order
transition can only take place within a region of coexisting metallic and insulating
solutions. This issue can be studied in Fig. 3.4, which shows a magnified view of
the first transition region for various temperatures. The quasiparticle weight of both
bands is a smooth function of U for high temperatures (T ≥ 1

40
); the transition

region can only be identified by a change in slope of Z (e.g., for T = 1
32

). The first
coexisting metallic and insulating solutions are found for T = 1

50
at U = 2.01. As no

coexistent solutions could be detected for higher temperatures, the estimate of the
critical temperature, below which the transition is of first order, is Tc ≈ 1

50
= 0.02.
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Figure 3.4: Magnified view of the first transition of Fig. 3.3 for various temperatures T
and 0.32 ≤ ∆τ ≤ 0.4. The inset shows the full region of the OSMT.
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The coexistence region that is found at T = 1
60

spans from U = 2.01 to U = 2.03.
These findings are to be contrasted with earlier results by Liebsch who reported a
critical temperature of Tc = 0.038 and a coexistence region of width ∆U = 0.3 at
T = 1

50
(Liebsch, 2004).

Next compare the behavior of the quasiparticle weights at the first transition
(Fig. 3.4). Both bands exhibit a discontinuity of Z for T = 1

50
, whereas the jump

of Znarrow is much larger compared to the one of Zwide [about 75% (30%) for Znarrow

(Zwide)]. The values of Zwide right after the transition, e.g., at U = 2.01, are even
larger than Znarrow right before the transition [at least for temperatures T > 1

60
]. This

finding suggests that the wide band is still metallic after the narrow band became
insulating.

It is also instructive to consider the temperature dependence of the quasiparticle
weights. Znarrow shows, in contrast to Zwide, a strong dependence upon T in the
metallic phase right before the transition (compare, e.g., the solutions at U = 1.95
and at U = 2.0). The dependence on the temperature for U > Uc1 is inverted
compared to the metallic phase: Both Znarrow and Zwide decrease as the temperature
is lowered, whereas the absolute change of Zwide upon T is larger. A detailed analysis
of this temperature dependence is given in Fig. 3.5. In the OSM phase, e.g., at
U = 2.1, Znarrow is proportional to T 2 as T → 0. Making use of the definition (3.7)
of Z, this behavior implies the following relation:

Z−1 ∼ −ImΣ(iω1)

T

!∼ 1

T 2
−→ ImΣ(iω1) ∼ −

1

T
(T → 0). (3.8)

Thus the imaginary part of the self-energy, ImΣ(iω1), diverges for T → 0 within the
insulating phase. If the self-energy is not directly dependent upon T , (3.8) implies
that the limit T → 0 is solely determined by ω1 = πT → 0. This behavior would
correspond to the development of a pole at ω = 0. The condition (3.8) is however
also fulfilled when the self-energy diverges for any low frequency. This demonstrates
that the behavior of the self-energy at low frequencies cannot be inferred from the
quasiparticle weight. This issue is studied in more detail below. Next, consider the
inset of Fig. 3.5, which shows the temperature dependence of Znarrow for U = 1.95
where the narrow band is still metallic. For T → 0, the quasiparticle weight is
best described by Znarrow = a + bT 2 + O(T 4). Employing the same considerations
as in (3.8), one finds, that ImΣ(iω1) ∼ T for T → 0. Thus ImΣ(i0+) of the narrow
band vanishes in the metallic phase at zero temperature, consistent with Fermi-liquid
behavior. The behavior of Zwide after the narrow band became insulating is quite
different. The leading term of Zwide in the extrapolation T → 0 is of O(T ), implying
that ImΣ(iω1) ∼ O(1) for T → 0. Neither does ImΣ(i0+) develop a pole for T→ 0,
indicating an insulating phase, nor does it vanish, as in the metallic phase of a Fermi-
liquid.6 It is also interesting to note, that the prefactor in the term quadratic in T

6Compare also the discussion of Fig. 3.8.
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Figure 3.6: Magnified view of the second transition region of Fig. 3.3 for various temper-
atures. The inset shows the full region of the OSMT. Lines are guides to the eye only.

has opposite sign for Znarrow and Zwide, which results in the opposite curvature. The
main conclusion of this part is, therefore, that the wide band is still metallic after
the narrow band became insulating but does not show Fermi-liquid behavior anymore.

Let us now focus on the region in which the wide band becomes insulating. This
is shown in Fig. 3.6, again for the quasiparticle weight for various temperatures. Zwide

seems to undergo a smooth transition from a quasi linear fall-off starting from Uc1
towards the insulating phase, which is indicated by a slight change in slope at about
U ≈ 2.55. Additionally, the dependence upon the temperature reduces gradually as
the interaction is increased. The analysis of the temperature dependence of Zwide,
similar to the one of Znarrow in (3.8), is depicted in Fig. 3.7. Zwide is again a smooth
function of T , best described by Zwide(T ) = aT + bT 2 +O(T 3). The lines are results
of least square fits. For U = 2.4, Zwide shows a similar behavior as for smaller
interactions (cf. also Zwide in Fig. 3.5); the leading contribution in the limit T → 0
is the term linear in T . Thus the wide band is still within the metallic non-Fermi-
liquid phase. Upon increasing interaction U , the term linear in T diminishes and
the quadratic contribution is more and more pronounced: The wide band becomes
insulating. It is interesting to take a look at the behavior of the coefficients a and b
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as the interaction is increased, which is shown in the insets of Fig. 3.7. The linear
coefficient a decreases approximately exponentially while b exhibits a sharp maximum
at U ≈ 2.5. This extremum in b is a first indicator for a metal insulator transition of
the wide band. Henceforth, the associated critical interaction will be labeled Uc2.

For the study of the OSM phase, it is instructive to resume the discussion of how
the estimate of the quasiparticle weight Z is connected to the self-energy. Within the
QMC method, Z is approximated by the Eliashberg estimate (3.7), which is derived
using the rules of complex derivatives:

∂ReΣ(ω)

∂ω

∣∣∣∣
ω=0

=
∂ImΣ(iωn)

∂ωn

∣∣∣∣
ωn→0

!
= lim

ω1→0

ImΣ(iω1)

ω1
. (3.9)

The definitions agree in the limit T → 0 as long as the Luttinger theorem [i.e.,
ImΣ(ω=0) = 0] is fulfilled. The imaginary part of the self-energy, ImΣ(iωn), of the
wide band is shown in Fig. 3.8 for different temperatures T and interactions U . For
small frequencies, ImΣ(iωn) is well described by the function a/(ωn − b) + c (dashed
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Figure 3.8: QMC estimates of the imaginary part of the self-energy, ImΣ, of the wide band
for different temperatures T and interactions U . The self-energy is essentially independent
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U = 2.4, but diverges for U = 2.6. The inset shows results for the narrow band for U = 2.1,
for which ImΣ(iωn) diverges for ωn → 0, as expected within an insulating phase.

black lines), for which the coefficients are determined with a least square fit. The
imaginary part of the self-energy extrapolates linearly (in first order) to a finite value
Γwide for U = 2.1 and U = 2.4. For U = 2.6, the imaginary part of the self-energy
diverges as 1/ωn for ωn → 0, implying that the wide band is insulating. An equivalent
behavior is found for ImΣ(iωn) of the narrow band already for U = 2.1 (inset).
Moreover, the self-energy of the wide band turns out to be essentially independent of
the temperature for interactions U > Uc1. This behavior is expected at least for the
narrow band, which becomes insulating at Uc1. The strong dependence on T in the
metallic phase of the narrow band stems (only) from the temperature dependence
of the quasiparticle peak, which develops as the temperature is lowered [this can
be inferred, e.g., from Fig. 3.13]. Thus, the absence of a quasiparticle peak in the
spectrum of the wide band in the OSM phase and the already insulating nature of
the narrow band (its quasiparticle peak is already fully destroyed), are expected to
be the reason for the observed T -independence of the wide band.
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Two important conclusions follow from this observation: First, the wide band is
not a Fermi-liquid within the OSM phase because ImΣ(ω1) extrapolates to a finite
value Γwide, i.e., the conditions required for Luttinger’s theorem to apply do not hold
anymore. Secondly, the temperature dependence of the Eliashberg estimate of Z for
a single Coulomb interaction U [as observed, e.g., in Fig. 3.7] results from the approx-
imation used in the definition (3.7) and therefore does not apply for the quasiparticle
weight itself. The genuine quasiparticle weight Z, is seemingly independent of T and
can be approximated in a better way, e.g., by taking the difference quotient in the
middle of equation (3.9).

It should be noted, however, that these observations do not disqualify the Eliash-
berg estimate of the quasiparticle weight, ZEliashberg, for being used as an indicator
for the OSMT at finite temperatures. The vanishing of ZEliashberg within the OSM
phase in the limit T → 0, however, is an artifact due to its definition (3.7), because it
is applied outside its domain (i.e., because the preconditions for Luttinger’s theorem
to hold are not fulfilled).7

3.2.2 Ratio of the Quasiparticle Weights

The analysis of the quasiparticle weight not only shows that the wide band still
exhibits metallic properties above Uc1, but also indicated a second transition at a
critical interaction Uc2 ≈ 2.5 > Uc1. Now consider the ratio r ≡ Znarrow/Zwide of the
quasiparticle weights, which is shown in the lower panel of Fig. 3.9. Clearly, three
different regions can be distinguished: In region I (U . 2.0), r is of the order of
unity with a sharp decrease near the boundary, in region II (2.0 . U . 2.5), r is
nearly constant and of O(0.1), and in region III (U & 2.5), r increases with nearly
constant slope. In order to analyze the boundary between region II and III, piecewise
quadratic fits to the QMC data are performed for both regions separately (lines for
U > 2.1 in Fig. 3.9).

The kinks at the boundary are resolved better after subtracting a linear offset,
as seen in the upper panel of Fig. 3.9. The transition is getting sharper as the
temperature is lowered and for T ≤ 1

32
, all QMC data falls on the fit curve. The

transition of the wide band at Uc2 is thus better resolved in the ratio r (in particular
when subtracting a linear term) than in the quasiparticle weight itself, indicating the
subtle nature of the second transition.

7The difference quotient in (3.9) is consistently applied for the calculation of the quasiparticle
weight in Ref. Blümer and Požgajčić (2005), in which the order of the OSMTs in the Jz-model are
studied for interaction parameters that are parameterized like U ′ = αU

2
, Jz = αU

4
, with 0 ≤ α ≤ 1.

The order of the MIT of the wide band is studied as a function of α, which is obviously of first order
for α = 0 (and T > 0).
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3.2.3 Low-Frequency Analysis of the Self-Energy

The intrinsic ambiguities associated with the discrete estimate for Z can be overcome
when analyzing the low-frequency behavior of the self-energy as is shown in Fig. 3.10.
The data points represent QMC estimates of the product ωΣ(ω) at the Matsubara
frequencies iωn. These products are real-valued since the self-energy is purely imagi-
nary on the imaginary axis due to particle-hole symmetry. The lines, given by cubic
polynomials in ω, are expected to extrapolate to 0 at least linearly within a metal-
lic phase (where Σ is regular) and to a finite value within an insulating phase. By
this criterion, the narrow band (cf. upper panel of Fig. 3.10) becomes insulating for
U & 2.0 while the wide band (cf. lower panel of Fig. 3.10) remains metallic up to
U = 2.4.

The extrapolated product λ ≡ ωΣ(ω)|ω=i0+, a measure of the singularity in the
self-energy and roughly proportional to the expected gap,8 is shown at better resolu-

8This can be inferred from by splitting up Gǫ(ω) = 1/[ω − ǫ − Σ(ω)] into real and imaginary
part and employing A(ω) = − 1

π
ImG(ω + i0+). The width ∆ of the gap is then approximately given
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tion as a function of U in Fig. 3.11. Clearly, two distinct transitions for the narrow
and wide band can be seen at U=Uc1 ≈ 2.0 and at U=Uc2 ≈ 2.5, respectively. Once
the bands become insulating, λ is linear in U (within the errors) which is represented
by the dotted (black) line. In contrast to the kink in λ of the first band (which is
quite sharp and becomes a discontinuity below Tc), the transition of λ for the wide
band is slightly softened. This ‘smoothness’ is probably an artifact of the extrapo-
lation. Another important point is that λ is rather independent of the temperature.
Data for lower temperatures (T = 1

40
and T = 1

50
) is distinguishable only right at the

first transition Uc1. This result strongly suggests, that the character (including the
order) of the two transitions remains unchanged at finite temperatures T > 0. The
transition of the narrow band, however, can become of second order at T = 0, similar
to the behavior of the MIT of the single-band Hubbard model (Georges et al., 1996).

3.2.4 Spectral Function

The two distinct transitions can also be observed in the spectral function

N(ω) = −1

π
ImG(ω + i0+), (3.10)

which is obtained from QMC by analytic continuation using the maximum-entropy
method (MEM). Results for T = 1

40
are depicted in Fig. 3.12. For U = 0, one obtains

the non-interacting semi-elliptic density of states of the Bethe lattice. Up to the
interaction U = 1.8, the density of states at the Fermi energy, N(ω = 0), is pinned
at its noninteracting value 1

2π
for the wide band (lower panel) and nearly pinned for

the narrow band (upper panel). The behavior of the two bands then evolves quite
differently as the interaction is increased. The spectrum of the narrow band shows
a clear quasiparticle peak, e.g., at U = 1.8. The reduction of the peak-height as the
interaction is increased, reflects the destruction of the Fermi-liquid, while spectral
weight is shifted towards the Hubbard shoulder. A gap opens for U & 2.05 and the
narrow band becomes insulating. The behavior of the spectrum is therefore similar to
the one of the single-band case [compare, e.g., Blümer (2002)]. The spectrum of the
wide band, Nwide, shows a quite different behavior. It remains flat near ω ≈ 0 up to
U ≈ 2.05, then develops a dip upon further increase of the interaction, until Nwide(0)
vanishes at U ≈ 2.5. The absence of a quasiparticle peak is another indicator for
that the wide band cannot be described as a Fermi-liquid within the orbital-selective
Mott (OSM) phase. The reduced height of Nwide(0) [the spectrum of the wide band is
obviously not pinned to its noninteracting value within the OSM phase] is consistent
with the results obtained directly from the study of the quasiparticle weight in section

by ∆ = 2ω0 ∼ ReΣ(ω0). Assuming the simplest form of a one-pole self-energy, Σ = a
ω
, implies for

frequencies on the imaginary axis iωnImΣ(iωn)→ a with ω0 =
√

a.
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3.2.1: The violation of the Luttinger sum rule Nwide(0) = N0(0) [with N0(0) being
the non-interacting DOS at the Fermi edge] is due to the finite value Γwide, to which
the imaginary part of the self-energy extrapolates in the limit ω1 → 0. This is seen as
follows. The local Green function is related to the self-energy by the Dyson equation:
G(iωn) =

∫
dǫN0(ǫ)/(iωn − Σ(iωn)− ǫ). Employing this relation in the definition

3.10 and evaluating at ω = 0 implies:

Nwide(0) =

∫
dǫ

N0(ǫ)Γwide

π(ǫ2 + Γ2
wide)

< N0(0) . (3.11)

For U = 2.6, a gap appears also for the wide band. At this interaction, the size
of the gap of the narrow band is already larger than half the bandwidth. Also,
the shape of the corresponding curve is very similar to the narrow-band spectrum for
U = 2.05. The behavior of the spectrum of the wide band close to ω ≈ 0 resembles the
one of the Falicov-Kimball model (compare also Fig. 3.25), which describes spinless
electrons coupled to local charges. In the case of the Jz-model within the OSM phase,
the itinerant electrons of the wide band are coupled to the electrons of the narrow
band which are already local. The essence of the physics in the region of the OSMT
might be captured already by the Falicov-Kimball model, which will be discussed in
section 3.3, although the leading contribution to the interaction (the on-site Coulomb
repulsion for electrons in the same orbital) will be neglected.

The dependence of N(ω=0) upon the interaction and the temperature is resolved
in Fig. 3.13, which exposes the orbital-selective Mott transition quite clearly: At Uc1
a sudden decay to 0 is observed only for the narrow band, while the wide band value is
reduced only by about 20%. The second band becomes insulating only for Uc2 ≈ 2.5.
Both transitions become sharper at lower temperatures. It is of further interest, that
N(ω = 0) of the wide band is practically independent of T right after the narrow
band becomes insulating. This is again a strong indicator for the OSMT scenario to
remain valid also in the limit T → 0.

The local spectral functions of this section were computed with the MEM proce-
dure as implemented by Sandvik and Scalapino (1995) [cf. also 1.6] with a Gaussian
default model. They are based on a minimum of 24 measurements for each parame-
ter set. In order to gain reliable results within the MEM, it is important to ensure
systematic errors to be much smaller than statistical errors. First of all, the finite
discretization (here, ∆τ = 0.4) contributes to the systematic error. Another contri-
bution stems from unconverged solutions. The latter source of errors was kept small
by iterating a stable solution for at least 16 more iterations. In this context it is
important to note the rapid decay of the spectra at high frequencies, which proves
that the quality of the data has kept artificial broadening to a minimum.
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3.2.5 Double Occupancy

Another observable that is useful in the study of Mott transitions, and which can
be directly computed in the QMC routine, is the double occupancy. Of special
interest for the study of the OSMT is the intra-orbital double occupancy Dm =
〈nm↑nm↓〉, where m denotes the orbital. As seen in the lower panel of Fig. 3.14,
Dwide barely shows any features near Uc1, while Dnarrow is reduced by about 50%
from U = 1.9 to U = 2.1. In the insulating phase, Dnarrow is quasi independent of
the temperature. The wide orbital, however, remains itinerant in a regime where the
narrow orbital is already fully localized. At U ≈ 2.5, the wide band exhibits again
an enhanced temperature dependence as well as a change in slope. This transition
can be emphasized by adding a suitable linear term as shown in the upper panel
of Fig. 3.14. Here, both transitions appear as kinks and as regions of enhanced
temperature dependence. For high temperatures, e.g., for T = 1

25
, the kink is even

more pronounced at Uc2 than at Uc1. For lower temperatures (T ≤ Tc), the kink
at Uc1 will be replaced by a discontinuity, due to the coexistence of metallic and
insulating solutions (not shown here). The behavior of Dwide in the insulating phase
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is eventually similar to the corresponding behavior of Dnarrow.
In conclusion, the study of the double occupancy also reveals two consecutive

phase transitions, each of which can be associated with a Mott transition of one
orbital.

3.2.6 Internal Energy within
Second-Order Perturbation Theory

The observable that turned out to be most precise in the determination of the phase
boundary of the Mott transition in the one band Hubbard model is the internal
energy, i.e., the energy per lattice site (Blümer, 2002). It is therefore expected,
that the OSMT is also detectable in this observable. In the following, the internal
energy is first calculated within the weak-coupling limit up to second order [2nd order
perturbation theory (2OPT)] at zero temperature and d = ∞ in order to verify if
the QMC results for the anisotropic two-band model reproduce known exact results.9

The calculation is performed in analogy to the one by van Dongen (2005) for the
single-band model.

The grand canonical Hamiltonian of the Jz-model reads:

H =
∑

kα

ǫkd
†
kαdkα + 1

2

∑

iαγ

Uαγniαniγ − µ
∑

iα

niα , (3.12)

with the momentum k, the band-index ν, and the combined spin-band indices α, γ =
(ν, σ). The usual Hartree decoupling: nαnγ → 〈nα〉nγ + nα〈nγ〉 − 〈nα〉〈nγ〉 gives the
following contribution to the chemical potential µ = µα = 1

2

∑
γ Uαγ and yields the

first-order contribution to the ground state energy at half filling:

EHF = −2
∑

ν

∞∫

0

dǫ ǫNν(ǫ) +
1

4

∑

α>γ

Uαγ . (3.13)

The second-order contribution to the energy is easiest calculated when considering
the following Hamiltonian, where averages are already subtracted:

K = Ht + V (τ) = Ht +
1

2

∑

iαγ

Uαγ (niα − 〈niα〉) (niγ − 〈niγ〉) . (3.14)

The second-order term is then:

e2N = − 1

2β

β∫

0

dτ1

β∫

0

dτ2 〈V (τ1)V (τ2)〉c0 , (3.15)

9The calculation of the energy in the strong-coupling limit is omitted, because it is not expected
to coincide with the QMC results, in analogy to the discrepancy of the QMC estimates of the Néel
temperature and the results of the strong-coupling expansion in Sec. 3.2.8.
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where the upper index c signifies that only connected diagrams contribute, according
to the linked-cluster theorem. As only the z-component of Hund’s coupling is con-
sidered, inter-orbital propagators do not need to be taken into account. In d = ∞,
e2 can be expressed in terms of the local propagator Gα

0 only:

e2 = −1

2

∑

αγ

U2
αγ

β/2∫

0

dτ Gα
0 (τ)Gα

0 (−τ)Gγ
0(τ)G

γ
0(−τ) , (3.16)

with

Gγ
0(τ) = sign(τ)

∞∫

0

dǫNγ(ǫ)e
−|τ |ǫ = sign(τ)N̂γ(τ) . (3.17)

For the semi-elliptic density of states Nγ = 4
Wγπ

√
1−

(
2ǫ
Wγ

)2
with bandwidth Wγ, the

Laplace transform N̂γ can be expressed in terms of the modified Bessel function of
the first kind, I1(x), and the modified Struve function, L1(x):

N̂γ(τ) =
I1
(Wγτ

2

)
− L1

(Wγτ
2

)

Wγτ
2

. (3.18)

The integral in (3.16) can then be evaluated easily and is a function of the bandwidth
Wγ only:

e2 = −1

2

∑

αγ

U2
αγI(Wα,Wγ) , (3.19)

with

I(Wα,Wγ) =

∞∫

0

dτ N̂α(τ)
2N̂γ(τ)

2 . (3.20)

Thus the total energy in 2nd order perturbation theory reads:

E2OPT = − 2

3π

∑

m

Wm +
1

4

∑

α>γ

Uαγ −
∑

α>γ

U2
αγI(Wα,Wγ) , (3.21)

where the sum in the first term is only over the bands. The bandwidths considered
in this chapter are W1 = 2eV and W2 = 4eV . For I(W1,W2), which is symmetric in
the bands m, one finds:

I(W1,W1) = 0.0417324 (3.22)

I(W1,W2) = 0.0282504 (3.23)

I(W2,W2) = 0.0208662 , (3.24)

with all digits significant.
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3.2.7 Internal Energy within QMC

Within the DMFT, the internal energy per orbital ν is given by (Fetter and Walecka,
1971; Georges et al., 1996):

Eν = lim
η→0+

T
∑

n,σ

∞∫

−∞

dǫ
eiωnηǫρν(ǫ)

iωn + µ− Σνσ(iωn)− ǫ
+

1

2
T
∑

n,σ

Σνσ(iωn)Gνσ(iωn) . (3.25)

Here, eiωnη is a convergence factor and thus difficult to control numerically. In actual
calculations, the limit η → 0+ can be either replaced by setting η equal to the
discretization ∆τ , which determines the frequency cutoff in the infinite sum, or by
evaluating the noninteracting part separately. In the latter case, the kinetic energy
per orbital reads:

Ekin,ν = lim
η→0+

2T
∑

n,σ

eiωnη

∞∫

−∞

dǫ
ǫρν(ǫ)

iωn + µ− Σνσ(iωn)− ǫ
(3.26)

= 2

∞∫

−∞

dǫ
ǫρν(ǫ)

eβ(ǫ−µ) + 1
+ 2T

∞∑

n=−∞

∞∫

−∞

dǫρν(ǫ)(Gνǫ(iωn)−G0νǫ(iωn)) (3.27)

≈ 2

∞∫

−∞

dǫ
ǫρν(ǫ)

eβ(ǫ−µ) + 1
+ 2T

L
2∑

n=−L
2

+1

∞∫

−∞

dǫρν(ǫ)(Gνǫ(iωn)−G0
νǫ(iωn)) , (3.28)

where the paramagnetic case is assumed and Gνǫ(iωn) [G0
νǫ(iωn)] denotes the [non-]

interacting Green function for the orbital ν. The truncation error leading to the
finite sum in (3.28) is very small, because, on the one hand, the difference of the
Green functions in the Matsubara frequency sum falls off at least as 1

ω2 , and, on the
other hand, the splining routine allows, in principle, for an arbitrarily large number
of Matsubara frequencies. In the current implementation of the QMC algorithm,
frequency dependent quantities are represented with 1000 Matsubara frequencies by
default. The internal energy per orbital is then given by Eν = Ekin,ν + Epot,ν , with
the potential energy per orbital calculated by the double occupancy via:

Epot,ν =
1

2

∑

σσ′ν′

〈nνσnν′σ′〉Uα=νσ;γ=ν′σ′ , (3.29)

with the multi-indices α, γ combining spin and band index and the Coulomb inter-
action matrix, which is given in (B.14). In the QMC method, the double occupancy
is calculated, according to Wick’s theorem, by averaging over the Ising spin configu-
rations.
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Inset: Transitions in both bands are seen clearly when subtracting a linear term 0.2U .
Lines (black) indicate piecewise linear fits.

The QMC estimates for the internal energy and also the results from 2OPT are
shown in Fig. 3.15. The predictions for small interactions U < 0.5 agree extremely
well with the results of the 2OPT for both bands, even for the relative high temper-
ature of T = 1

32
. The QMC results therefore recover well the weak-coupling limit.

The fact that the results from 2OPT are in exceptional accordance with the QMC
results until the first transition of the narrow band at Uc1 ≈ 2, should not be over-
estimated: Within the perturbation theory at weak coupling, the internal energy is
represented as an asymptotic series with zero radius of convergence only (Guillou
and Zinn-Justin, 1990). As usual in asymptotic expansions, higher order corrections
will change the results noticeably, in particular at intermediate-to-large coupling,
demonstrating that high-order perturbation theory at such large U -values is point-
less. Another important point is the fact that the internal energy also shows two
distinct transitions, one for each band, which are both characterized by a change
in slope: The coexisting solutions of the internal energy at T = 1

60
are not seen on

this scale. The transition of the wide band at Uc2 ≈ 2.5 is more pronounced when
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subtracting a term linear in U as is shown in the inset of Fig. 3.15. The transition
is then clearly seen as a kink. An important observation is that the internal energy
is quasi independent of the temperature within the insulating phase of each band on
this scale. This changes only in the vicinity of the transitions. A similar behavior is
also found for the single-band case (Blümer, 2002) and is expected in general in the
insulating low-temperature phase with a well-developed gap in the spectrum. The re-
duced dependence of the energy upon T compared to the metallic phase comes along
with a reduction of the specific heat right above the Mott transition. The estimates
for the kinetic and potential energy in the transition region of the OSMT are shown
in Fig. 3.16. The transition of the narrow band is seen in both observables as a kink
for temperatures above Tc and as a discontinuity with coexisting solutions for T = 1

60
.

In each case, the transition is reflected in the wide band. Once again, the transition
in the wide band at Uc2 is characterized by a change in slope. The itinerant character
of the electrons can be studied well by means of the kinetic energy: The mobility
decreases quickly in the metallic phase as the Coulomb interaction is increased. The
influence of the on-site interaction on the mobility of the already local electrons in
the insulating phase, however, is small. This is reflected in the reduced dependence
of Ekin upon U above Uc1 and Uc2. The observed temperature dependence of the
internal energy originates from the one of the kinetic and potential energy. Both
show a dependence only for metallic solutions. The general remarks about the shape
and the temperature dependence of the double occupancy in 3.2.5 obviously apply
also to the potential energy.



3.2. OSMTs in the Anisotropic Two-Band Hubbard Model 83

As expected, the OSMT scenario is also observed in the internal energy as well as
in its components, the kinetic and the potential energy. Coexisting solutions are found
for the transition in the narrow band and kinks in the observables for the transition
in the wide band, corresponding to first and second-order transitions, respectively. A
remarkable observation is the extremely small dependence of the insulating solutions
on the temperature, already right above the transitions. This behavior is usually
expected only deep inside the insulating low-temperature phase.

3.2.8 Magnetic Phase Diagram of the Jz-Model

One important aspect in the context of the study of the OSMT that has not been dis-
cussed in the literature up to now concerns the magnetic ground state of the two-band
Hubbard model. The Mott-Hubbard transition in the single-band Hubbard model in
d =∞ occurs only in the fully frustrated phase: The critical temperature T ∗ ≈ 0.055
of the MIT is below the Néel temperature, which is about TN ≈ 0.2. The MIT is
therefore completely hidden in the antiferromagnetic ground state. Consequently, it
is advisable to also determine the magnetic phase diagram for the Jz-model. In the
following, the Néel temparature is calculated within the QMC method and compared
to results of weak-coupling and strong-coupling approaches. It is found, that the OSM
phase is also hidden deep inside the symmetry-broken phase of the Jz-model. The
section therefore ends with a discussion of microscopic mechanisms for frustration.

Néel Temperature within QMC

The magnetic phase diagram of the half-filled single-band Hubbard model in infinite
dimensions actually consists only of the phase boundary of the antiferromagnetic
ground state and the paramagnetic high-temperature phase as a function of the
on-site interaction. Other magnetically ordered phases, like ferromagnetism, which
occur for instance in ‘flat band systems’ (Mielke, 1991; Mielke and Tasaki, 1993),
are not relevant for the case of interest, which is lattices with AB-structure, like
the hypercubic or the Bethe lattice. The antiferromagnetic (AF) ground state for
half-filled and bipartite lattices is found for small interactions for dimensions d ≥ 2
within Hartree-Fock theory and also by variational calculations (Penn, 1966; Langer
et al., 1969). The inclusion of higher order corrections usually leads to a renormal-
ization of the Hartree results (Georges and Yedidia, 1991; van Dongen, 1991). In
the strong-interaction limit, the Hubbard model maps onto the Heisenberg model
which also exhibits an antiferromagnetic state with a Néel temperature proportional
to 1

U
. Results for the Néel temperature at intermediate coupling were obtained with

the QMC-method for a hypercubic lattice by Jarrell (1992) and Georges and Krauth
(1993).

The Néel temperature can be calculated from the antiferromagnetic susceptibility
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Figure 3.17: QMC estimates for the inverse of the antiferromagnetic susceptibility χAF as
a function of T for the two-band Hubbard model with semi-elliptic DOS. Included are the
results from a least square fit. The inset shows directly χAF with the results from the fit.
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χAF in the high-temperature phase, which is expected to show Curie-Weiss mean-field
behavior right above the Néel temperature:

χAF ∝
1

T − TN
, (3.30)

corresponding to a critical exponent γ = 1. It is also possible to compute TN via the
staggered magnetization mst within the antiferromagnetically ordered phase:

mst =
1

2

∑

ασ

ασnασ . (3.31)

Here, α denotes the sublattice: α = ±1. The staggered magnetization of the single-
band model shows a square-root behavior close to the transition temperature, corre-
sponding to a critical exponent β = 1

2
.

The Néel temperature for the two-band model was calculated for various inter-
actions U from the antiferromagnetic susceptibility.10 Results from this approach
are shown in Fig. 3.17 for the inverse susceptibility χ−1

AF for U = 2 and U = 3 and
discretization ∆τ = 0.2. The transition is signalled by the divergence of χAF, which
is shown in the inset. The QMC results for χ−1

AF are well described by a polynomial
quadratic in T , corresponding to the Curie-Weiss form (3.30) close to the transition
temperature. The transition temperature for U = 2 is found to be TN = 0.117±0.005.
The uncertainty does not include the discretization error yet, which is found to alter
the results by about 1-2%, depending on the interaction U . The results of this ap-
proach were verified by predictions from the staggered magnetization for selected in-
teractions. QMC estimates for mst are presented in Fig. 3.18 for U = 2 and ∆τ = 0.2.
The main panel shows m2

st as a function of T . The data fits well a polynomial form
of second order in T , for which the coefficients are determined by a least square fit.
This corresponds to a square root behavior of mst close to the critical temperature
as shown in the inset. The magnetization mst thus shows mean-field behavior and
the transition is of second-order; both in analogy to the single-band model. The
QMC estimate of the critical temperature at U = 2 is TN = 0.115 ± 0.01. The re-
sults of both schemes therefore coincide within the error. The determination of the
phase boundary using the susceptibility, however, is numerically less expensive, as
the calculations are performed at higher temperature within the paramagnetic phase.

10The determination of response functions like susceptibilities, is based on the calculation of vertex
functions such as 〈Tc†σ(τ1)cσ(τ2)c

†
σ(τ3)cσ(τ4)〉A, with the effective action A and the time-ordering

operator T . Within the QMC scheme, those local correlators are computed by employing Wick’s
theorem and subsequently averaging over the auxiliary spin field. Compare also Ref. Georges et al.
(1996) for a comprehensive review of how to calculate response function and transport properties
within the DMFT and Held (1999) for details of the implementation in a multi-orbital context.
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TN within the Weak-Coupling Limit

The Néel temperature of the Hubbard model in infinite dimensions and at half filling
can also be calculated within the weak and strong-coupling limit. At weak coupling,
however, standard perturbation theory yields wrong results within a symmetry broken
phase: The 2nd order correction of standard perturbation theory around the Hartree
result is found to be of the same order of magnitude as the Hartree contribution itself
(van Dongen, 1994a). The thermodynamics at weak coupling is therefore determined
by the Hartree contribution and the fluctuation together. The reason for this failure
is that the energy correction of the symmetry broken phase is exponentially small as
a function of the coupling constant and can therefore not be addressed by the Hartree
term which is of linear order. A similar behavior is found for the order parameter
of the superconducting phase in the BCS theory (Bardeen et al., 1957). A method
that correctly accounts for the fluctuations is the perturbation theory at fixed order
parameter (Georges and Yedidia, 1991), which is discussed in detail in chapter 4. The
calculation of the Néel temperature for the two-band Hubbard model (3.2) within the
weak-coupling limit is due to van Dongen (2005) and performed in analogy to the
single-band case (van Dongen, 1991; van Dongen, 1996).

In order to allow for a possible phase transition to an antiferromagnetically or-
dered state, one has to impose a staggered magnetization ∆m for each band m,
separately:

〈nimσ〉 =
1

2
(1 + λσ∆m) , λ ≡ (−1)i . (3.32)

In a next step, the free energy is expanded in powers of the interaction at constant
staggered magnetization and density. Here, Lagrange multipliers are used to fix the
order parameters. The expansion of the free energy is then truncated at stepwise
increasing powers of U and minimized as a function of the order parameters at each
step. Truncating at O(U) is thereby equivalent to the Hartree free energy. The order
parameters are then determined self-consistently in any order of the perturbation
expansion. A quicker way to obtain the first-order contribution, however, is to directly

apply the usual Hartree decoupling scheme 〈nn〉 HF−→ n〈n〉 + 〈n〉n − 〈n〉〈n〉 to each
density-density interaction of (3.2). A canonical transformation can then be used to
diagonalize the Hamiltonian, resulting in:

HHF =
∑

kmσ

ηkmnkmσ − CN , (3.33)



3.2. OSMTs in the Anisotropic Two-Band Hubbard Model 87

with

C =
1

4
U
∑

m

(1−∆2
m) + U ′ − 1

2
Jz(1 + ∆1∆2) (3.34)

ηkm = sign(ǫkm)
√
ǫ2km + (µ+

m↑)
2 (3.35)

µ+
m↑ =

1

2
(U∆m + Jz∆m) . (3.36)

The grand canonical potential per lattice site, Ω, is given by:

ΩHF = −C − 4

β

∑

m

∞∫

0

dǫ νm(ǫ) ln
[
2 cosh(1

2
βηǫm)

]
. (3.37)

The consistency relations for the order parameters then follow from the requirement
∂ΩHF

∂∆m
= 0. The resulting self-consistency equations are also the defining equations for

the critical temperature, for which the staggered magnetization vanishes: ∆1(Tc) =
∆2(Tc) = 0. The Hartree solution for Tc is then found to be (van Dongen, 2005):

kBT
HF
c = t∗1 exp

[
I∞ +

t∗1
t∗2

ln

(
t∗2
t∗1

)
b
(1)
1 −

t∗1b
(0)
1

Uν(0)

]
, (3.38)

with

b
(0)
1 ≡

(
1 +

t∗1
t∗2

)
−
√(

1− t∗1
t∗2

)2

+ 4j2
3
t∗1
t∗2

2 (1− j2
3)

t∗1
t∗2

, b
(1)
1 ≡

1− (1− j2
3) b

(0)
1(

1 +
t∗1
t∗
2

)
− 2 (1− j2

3) b
(0)
1

t∗1
t∗
2

,

(3.39)
and j3 = Jz

U
. It is interesting to note, that the only result at Hartree level that depends

on the lattice is the constant I∞. All other results are lattice-independent or depend
only on ν(0). For the Bethe lattice one has ν(0) = 1

π
and I∞ = 3 ln 2− ln π − γ − 1,

with Euler’s constant γ.
By applying perturbation theory at constant order parameter up to second-order,

one finds, that the general form of the Hartree results is preserved, but renormalized
by a factor of q, which is of the order of unity for the model under consideration (van
Dongen, 2005). The renormalization effect due to the quantum fluctuations is given
by:

Tc = THF
c exp

[
− t

∗
1 b

′

ν(0)

]
≡ q THF

c . (3.40)

were the constant b′ is explicitly dependent upon the lattice and the interactions of
the Hamiltonian. The critical temperature for the two-band Hubbard model (3.2) is



88 3. Orbital-Selective Mott Transitions

then given by (van Dongen, 2005):

Tc ∼ 0.889 e−
1.4875
U , (3.41)

with a renormalization factor of q = 0.272. The Hartree results are renormalized
already for arbitrary small interactions U . Quantum fluctuations can therefore not
be neglected in high dimensions. They are however small compared to low dimensions
(d ≤ 2), where long-range order is completely suppressed.

TN within the Strong-Coupling Limit

The calculation of the critical temperature within the strong-coupling limit U ≫ W
is comparatively easy: In second order, the Hubbard model at half filling can be
mapped to the antiferromagnetic Heisenberg model with the exchange coupling J =
4t2

U
(Anderson, 1959):

HHeisenberg =
J

2

∑

〈ij〉
Si · Sj , (3.42)

with the spins Sxi = 1
2
(ci↑c

†
i↓+ci↓c

†
i↑), S

y
i = − i

2
(ci↑c

†
i↓−ci↓c†i↑) and Szi = 1

2
(ni↑−ni↓). In

the limit of infinite dimensionality, the effective Heisenberg model is exactly described
by the Weiss mean-field theory. A further simplification occurs due to the anisotropic
coupling in the two-band Hubbard model (3.2), in which spin flips do not occur. In
this case, the effective Heisenberg model is reduced to the Ising model:

HIsing = JIs

∑

〈ij〉
Si3Sj3 , (3.43)

where the effective interaction for the anisotropic two-band Hubbard model is given

by JIS =
t21+t22
U+Jz

for Jz > 0 (van Dongen, 2005). The critical temperature of the Ising
model is kBTc = ZJIs, with Z the number of nearest neighbors of each lattice site of
an AB-lattice. Hence:

kBTc = Z t21 + t22
U + Jz

=
(t∗1)

2 + (t∗2)
2

U + Jz
. (3.44)

Note, that the first-order term in the strong-coupling expansion depends only upon
the on-site Coulomb interaction U and the Hund coupling Jz, but not upon the
interorbital Coulomb interaction U ′. For the parameters considered in this chapter,
Jz = U

4
and 2t∗1 = t∗2 = 1, one gets the following estimate for the Néel temperature:

kBTc =
1

U
, (3.45)

which is identical to the asymptotic behavior of Tc of the single-band Hubbard model
with t∗ = 1.
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Figure 3.19: Magnetic phase diagram of the two-band anisotropic Hubbard model with
U − 2Jz = U ′ and semi-elliptic DOS: QMC estimates and exact results from the weak and
strong-coupling limit for the Néel temperature TN . Included is the MIT phase diagram for
the narrow band with critical temperature Tc ≈ 0.02 at Uc1 ≈ 2.01. PM and AF denote the
paramagnetic and antiferromagnetic phase, respectively. Also included are QMC estimates
for the Néel temperature for the single-band model as well as the corresponding MIT phase
diagram, as obtained using QMC by Blümer (2002). Lines connecting the QMC data are
guides to the eye.

Discussion of the Phase Diagram

The magnetic phase diagram of the anisotropic (J⊥ = 0) two-band Hubbard model
(3.2) is presented in Fig. 3.19, containing QMC estimates for the Néel temperature
TN , which were calculated in this work, as well as results for the strong and weak-
coupling limit as obtained by van Dongen (2005). The position of the MIT of the
narrow band occurring in the fully frustrated model is also plotted. For comparison
to the single-band Hubbard model, QMC estimates for the Néel temperature for the
semi-elliptic DOS with bandwidth W = 4 are reproduced and inserted together with
the corresponding MIT phase diagram as obtained by Blümer (2002).

The study of the phase diagram reveals a number of interesting points. The most
important one concerns the critical temperature Tc1 ≈ 0.02 of the OSMT: It is about
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6 times smaller than the corresponding QMC estimate for the Néel temperature of
TN ≈ 0.12. The OSMT found in the fully frustrated paramagnetic phase is therefore
hidden deep inside the antiferromagnetic ground state of the Jz-model. This is a
rather severe issue, implying that the Jz-model with the selected choice of parameters
is not able to explain the OSMT of Ca2−xSrxRuO4, which occurs in the AF phase.
In order to find an appropriate model one has to either consider more complicated
Hamiltonians or introduce microscopic mechanisms for frustration. The latter point
is discussed in Sec. 3.2.9.

Nevertheless, it is instructive to further discuss the phase diagram. Comparing
the asymptotic results to the QMC predictions, one finds a very good agreement of
the QMC data with the results of the 2OPT at weak coupling for U . 2. Similar to
the findings of the internal energy in Sec. 3.2.7, this accordance should not be overes-
timated: As in all asymptotic expansions, one expects that higher order corrections
will alter the results strongly, in particular at intermediate-to-strong interaction val-
ues. When comparing the QMC results to the strong-coupling limit, one observes a
striking disagreement between the data. The results of the strong-coupling approach
[which includes terms up to order of O( 1

U
)] overestimate the Néel temperature by a

factor of more than 2. This result is in strong contrast to the single-band case, in
which the Néel temperature deviates by less than 10% from the asymptotic behavior
already for interactions of U ≈ 3

2
W . It would therefore be instructive to calculate

the contribution of the next order (which is of the order of 1
U3 ) in the strong-coupling

expansion. Accordingly, the magnetic order of the Jz-model seems to be governed by
the weak-coupling regime.

It is also interesting to compare the Néel temperatures of the two-band model
and the single-band model. The maximum Tmax,1

N ≈ 0.2 for the single-band model
is reached for U ≈ W . The Néel temperature of the two-band model reaches its
maximum of Tmax,2

N ≈ 0.13 for U ≈ 3, which corresponds to about the average of
the bandwidths Wnarrow = 2 and Wwide = 4. TN of the coupled two-band system is
therefore strongly influenced by the narrow band. This scenario is also supported by
the fact that Tmax,2

N is just slightly larger than the maximum of the Néel temperature
of a single-band model with bandwidth W = 2, which would be about Tmax,1

N ≈ 0.1.

3.2.9 Microscopic Mechanisms for Frustration

The results of the previous part showed that the OSM phase is hidden in the AF
ground state of the Jz-model.11 It is therefore essential to study microscopic mech-
anism that suppress the symmetry-broken phase. In the following, the influence of
the interaction parameters of the Jz-model on the Néel temperature is studied within
2OPT. The variation of these parameters, however, is also expected to influence the

11This is true only for ordered bipartite lattices.
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a) b)

Figure 3.20: Phase diagrams of the anisotropic two-band Hubbard model (J⊥ = 0) with
W2

W1
= 2 for the anisotropic case within slave-spin mean-field theory (de’ Medici et al., 2005).

(a) for U vs U ′ at T = 0, and (b) for U vs Jz at T = 0 (narrow stripe) and at T = 1
40 .

Figure 3.21: Phase diagrams of the isotropic two-band Hubbard model with W2

W1
= 2 as

obtained within ED+DMFT (Koga et al., 2004). In phase I (II), both bands are in the
metallic (insulating) state, phase III labels the OSM phase.

OSM phase. For this reason, the known results concerning this issue are reviewed
beforehand. Other relevant microscopic mechanisms for frustration, like disorder or
the influence of the dimensionality, are discussed at the end of this part.
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Dependence of the OSM Phase upon the Interaction Parameters

The parameter space of the anisotropic two-band model (3.2) is already too large to
study the dependence of the OSM phase within a QMC simulation within a reasonable
effort. A more promising approach is to study first the effect of the parameters within
2OPT at weak coupling and to eventually verify the predictions at larger interactions
within a QMC simulation. This approach is supported by the good agreement of
the results of 2OPT to the QMC data in the weak-coupling regime. Changing the
parameters, however, will also influence the position of the OSM phase or, in the
worst case, lead to its destruction. The position of the OSM phase as a function of
the interaction parameters was studied for the isotropic two-band Hubbard model
within exact diagonalization (DMFT+ED) by Koga et al. (2004), and for both the
isotropic and the anisotropic model by means of a slave spin mean-field study [which
is similar to the Gutzwiller approximation of variational wave functions] by Ferrero
et al. (2005) and de’ Medici et al. (2005). The resulting slave spin mean-field phase
diagrams of the OSMT region in the U−U ′-plane as well as in the U − Jz plane
are shown in Fig. 3.20 for T = 0 and T = 1

40
and bandwidth ratio W2

W1
= 2. The

OSMT phase resides only within a small stripe in the upper half (U > U ′) of the
U−U ′ plane. Increasing interorbital interaction U ′ narrows the OSM phase which is
broadest for U ′ = 0, while it is at the same time shifted towards stronger interactions
U before vanishing when U & W . The behavior of the OSM phase upon the Hund’s
rule coupling Jz is different: The width is increased upon raising Jz while the OSM
phase shifts towards lower interactions U . It is also interesting to note, that the
OSM phase is enlarged at finite temperature. Even though the results of the slave
spin mean-field study are intrinsically uncontrolled, they point out the direction in
which the parameters of the anisotropic two-band model should be tuned: The phase
boundary for TN drops quickly for U→0, such that the OSM phase can be driven into
the paramagnetic phase of the Hubbard model by increasing Jz. The phase diagram
of the isotropic two-band model as obtained within DMFT+ED (Koga et al., 2004)
is shown in Fig. 3.21. Here, the OSM phase shows a similar behavior upon U ′, but
is enlarged compared to the previous results for the anisotropic case. Results for the
U−J-plane are not known up to the completion of this work.

Dependence of TN upon the Interaction Parameters within 2OPT

Next, it is important to discuss how the symmetry broken phase can be suppressed
by varying the interaction parameters. In this context, it is of interest to examine
the solution of the two-band Hubbard model in 2OPT; its predictions are expected
to give a first hint of how TN changes [at least at weak coupling].

Within 2OPT, the Néel temperature is governed by the factor q, which renor-
malizes the Hartree results. The prefactor that controls the exponential decay of the
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order parameter, in contrast, is only weakly dependent upon the lattice structure
or the model parameters. A qualitative picture of how TN changes as a function
of the interaction parameters therefore emerges already when considering the factor
q, only. Compared to the parameter set that is considered throughout this section
(U ′ = U − 2Jz , q ≈ 0.272), q is significantly reduced only for the following configura-
tions (van Dongen, 2005):

(i) q → 0 for u′ →∞ (strong interband coupling),

(ii) q ≈ 0.0695 for J = 0, u′ = 1 and W2

W1
= 2 (rotationally invariant case without

Hund coupling),

with U ′

U
≡ u′ ≥ 0 , J⊥ = 0 = Jz and a Bethe DOS. The first case, (i), disqualifies

because the OSM phase vanishes simultaneously according to 3.2.9. Case (ii) is
the only promising candidate, for which q is decreased by about a factor 4. The
OSM phase, however, ceases to exist for vanishing Hund coupling J . Rotationally
invariant configurations that additionally consider spin flip and pair hopping terms
(J⊥ 6= 0) do not lead to a significant reduction of the renormalization factor. These
findings point out, that the antiferromagnetic phase cannot be suppressed sufficiently
by varying the interaction parameters of the two-band Hubbard model, as long as
one assumes the Hamiltonian to be rotational invariant, implying U = U ′− 2J . This
condition, however, was imposed for simplicity only. In contrast, the experimental
system displaying an OSMT, Ca2−xSrxRuO4, is not rotationally invariant but as most
SO(2)-invariant, due to its planar structure. The most important result of the above
considerations is the fact that, eventually, rotational invariance of the Hamiltonian
has to be abandoned for a deeper understanding of the OSMT.

The Effects of Disorder and Dimensionality on TN

The AF phase of the Hubbard model in infinite dimensions is also known to be
suppressed by other microscopic mechanisms such as disorder or the fluctuations
that arise in lower dimensions.

There exists various types of disorder in crystals, starting from impurities (mag-
netic or non-magnetic) and defects of the lattice structure to the limit of strong
disorder of glass or alloy structures. Of particular interest for the case at hand is the
binary alloy disorder, in which two sorts of atoms randomly occupy the lattice sites
of a crystal structure. Important concepts in this field are Anderson localization for
strong disorder (Anderson, 1958) and the coherent potential approximation (CPA)
(Soven, 1967; Taylor, 1967). Reviews on the field of disorder are given, e.g., in Ref.
Elliott et al. (1974) and Ref. Lee and Ramakrishnan (1985). A phenomenon like
Anderson localization, however, cannot be described within the DMFT due to the
purely local nature of the theory. Electrons in infinite dimensions are thus delocalized
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Figure 3.22: Magnetic phase diagram of the single-band Hubbard model for the hypercubic
lattice with NN and NNN hopping in d = ∞ (Schlipf, 1998). The Néel temperature is
suppressed as the frustration parameter a = t′∗

t∗ is decreased.

even for arbitrarily strong disorder. Nevertheless, the introduction of disorder (e.g.,
binary alloy disorder) has several effects. Of importance in this respect is the sup-
pression of the antiferromagnetic long-range order, especially for small interactions in
the metallic regime of the phase diagram [i.e., U

W
< uc ≃ 0.6 for a single-band model

with bandwidth W ]. This was shown, e.g., for diagonal disorder12 for an Anderson-
Hubbard model in infinite dimensions (Ulmke et al., 1995). Similar results were
obtained for a two-dimensional Hubbard model using a finite-temperature quantum
Monte Carlo method (Ulmke et al., 1999). Interestingly, the AF phase is found to be
enhanced for the same configurations at large values of the interaction.

The AF phase is also known to be suppressed upon introducing longer-range
hopping (for hypercubic lattice, Müller-Hartmann, 1989). In general, one has to
distinguish between frustration at constant DOS and frustration, which leads to an
asymmetry of the DOS. In the first case, the MIT is expected to remain unchanged.
The influence of next-neighbor (NN) and next-nearest-neighbor (NNN) hopping on
the Néel temperature of the single-band Hubbard model in d = ∞ was investigated
by Schlipf (1998) within a DMFT+QMC study as an example of frustration that
leads to an asymmetry of the DOS; the results are shown in Fig. 3.22. The Néel
temperature TN is suppressed as a function of the frustration parameter a = t′∗

t∗
,

12Diagonal disorder assumes the hopping elements to be independent of the randomness, while
the atomic potentials are chosen at random.
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with NN and NNN hopping amplitude t∗ and t′∗, respectively. There is, however,
evidence that the critical temperature T ∗

c of the MIT drops quicker than TN upon
decreasing a (Knecht, 2002). The relationship between lattice types, densities of
states, and magnetic frustration, especially in large dimensions, is studied in detail
in Ref. Blümer (2002).

Another important aspect in the context of frustration is the influence of the
dimensionality d. This question was addressed in various approaches to calculate the
Néel temperature such as QMC simulations (Hirsch, 1987; Scalettar, Scalapino, Sugar
and Toussaint, 1989; Ulmke et al., 1996; Staudt et al., 2000), analytical approaches
like the weak-coupling perturbation theory (van Dongen, 1991; van Dongen, 1994a)
or strong-coupling calculations (Szczech et al., 1995), DMFT studies (Jarrell, 1992;
Georges and Krauth, 1993; Ulmke et al., 1995) and the two-particle self-consistent
formalism (Daré and Albinet, 2000). The spatial fluctuations of finite-dimensional
systems are expected to reduce the critical temperature compared to the purely
local theory in d = ∞. In low dimensions (d = 1, 2), fluctuations even completely
suppress long range order at finite temperatures (Mermin and Wagner, 1966). The
effect of finite dimensionality can be studied, e.g., within a 1

d
-expansion. At weak

coupling, the renormalization factor q [which renormalizes the Hartree results in 2nd
order perturbation theory, cf. 3.2.8] is further reduced in finite dimensions, implying
that the Néel temperature is lowered compared to the one in d = ∞ (van Dongen,
1994a). Direct studies of the Hubbard model in three dimensions, e.g., using QMC
simulations, yield Néel temperatures that are in accord with the results of the weak-
coupling expansion for small interactions. In addition, TN is also reduced within the
intermediate and large interaction-regime (Staudt et al., 2000).

3.2.10 Comparison with earlier QMC Results

In the following, the QMC data of this work is compared to earlier results by Liebsch
(Liebsch, 2003a; Liebsch, 2003b; Liebsch, 2004), which explains why the OSMT of
the Jz-model was not found before.

The quasiparticle weights of the OSM phase of this work for discretizations ∆τ =
0.4 and ∆τ = 0.32 are compared to results from (Liebsch, 2004)13 for T = 1

32
in the

lower panel of Fig. 3.23a.

Differences in the two data sets are significant especially in the vicinity of the first
and second transition, at Uc1 and Uc2 respectively. The first transition is much more
pronounced in the data of this work than in Liebsch’s data [which is not only due
to the denser grid of data points but also because of the reduced error (see below)].
The differences in the data are exposed in a better way when adding a linear term
to Zwide as shown in the upper panel of Fig. 3.23a. In this case, the transition of the

13The value of the discretization is not stated in the Ref. Liebsch (2004).
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Figure 3.23: a) Comparison of discrete quasiparticle weights Z at T = 1
32 of QMC data

of this work and by Liebsch (Liebsch, 2004). Upper panel: Added linear term to Zwide

indicates the second transition visible as a kink. b) Estimate of relative errors in Z at
T = 1

32 : The QMC data for discretizations ∆τ = 0.4 and ∆τ = 0.32 (this work) is accurate
within about 1% (except for Znarrow at U = 2.0). Liebsch’s data deviates by more than
100% near transitions.

wide orbital is clearly indicated by a kink only for the data of this work. Liebsch’s
data, in contrast, does not provide evidence for a second transition of the wide band.
Moreover, the behavior of Zwide near the second transition differs even qualitatively:
The change in slope is opposite in direction.

As physical observables are obtained from the QMC data only after an extra-
polation ∆τ→ 0 it is important to also discuss the ∆τ error of the QMC data. As
can be seen from Fig. 3.23 [a) and b)], the QMC estimates of this work for different
discretization ∆τ are practically on top of each other. Deviations can be seen on
this scale only in the vicinity of the transition Uc1. The relative error of the QMC
data with respect to the extrapolated values is plotted in Fig. 3.23b. A significant
dependence upon the discretization is found only for the narrow band (upper panel)
close to the first transition. Throughout the rest of the OSMT region, the relative
error is less than 1%. The relative errors of Liebsch’s QMC estimates, in contrast,
deviates by more than 100% from the exact values, in particular within the important
region in the vicinity of the critical interactions Uc1 and Uc2. Both the study of the
OSM phase by means of the quasiparticle weight as well as the comparison of the
QMC errors explain why the two distinct transitions are only visible in high-quality
QMC data and were missed before.
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3.2.11 Discussion

In this section, the anisotropic two-band Hubbard model (Jz-model) with distinct
bandwidths W2 = 2W1 was considered within the DMFT at finite temperatures.
Using the high-precision QMC simulation developed as part of this thesis (cf. chapter
2), it was shown, that the Jz-model contains two successive metal-insulator transitions
and can therefore be considered as a minimal model for the OSMT phenomenon, as
observed experimentally, e.g., in Ca2−xSrxRuO4.

The transition of the first (narrow) band, is found to be of first order with a critical
interaction Uc1 ≈ 2.01 and a critical temperature of Tc1 ≈ 0.02. This value revises the
previous result of Tc ≈ 0.038 (Liebsch, 2004). The transition of the wide band turned
out to be more subtle. It is reflected in a change of slope in observables like the
quasiparticle weight or the intraorbital double occupancy, but is clearly revealed by
the low-frequency behavior of the self-energy and the spectral function. The second
transition of the wide band therefore shows evidence to be of second order. This
finding is not only in contrast to earlier QMC studies, which reported only a single
Mott transition (Liebsch, 2003a; Liebsch, 2003b; Liebsch, 2004), but also contradicts
early ED results (Koga et al., 2005a). The finite energy-resolution of the ED may be
the reason that the transition cannot be seen there. On the other hand, the results
are in qualitative agreement with a recent slave-spin mean-field phase diagram for the
Jz-model by de’ Medici et al. (2005), which also contains an orbital-selective Mott
phase, albeit at slightly larger values of the interaction U (at T = 0). The quantitative
differences may be due to the approximate nature of the slave-spin mean-field theory
and also to the finite temperatures used within the QMC method. The OSMT found
in the fully frustrated Jz-model implies that the isotropy of the Hund’s rule exchange
is not a prerequisite for the existence of OSMTs, as was suggested by Koga et al.
(2005a) on the basis of ED calculations.

Another important point concerns the value of the critical temperature Tc1 of
the OSMT compared to the critical temperature T ∗ of the single-band model: Tc1 is
decreased by a factor of T ∗

Tc1
≈ 0.055

0.02
= 2.75, which is larger than one would suggest at

first sight by simply considering the ratio of the bandwidths. The critical interaction
Uc1 shows a similar behavior: it is of the size of the bandwidth Wnarrow, compared
to the critical interaction U∗ ≈ 4.66 for T ∗ of the single-band model with bandwidth
W = 4. This decrease of the critical interaction as well as of the critical temperature
of the Mott transition is therefore clearly an effect of the interorbital coupling. It
is however not a priori clear, whether the interorbital Coulomb coupling U ′ or the
anisotropic Hund’s rule coupling Jz, or both couplings together, are responsible for
the observed effect.

It is further found, that the wide band exhibits non-Fermi-liquid behavior in the
OSM phase, in contradiction to the findings of Liebsch (2004). Non-Fermi-liquid
behavior is seen, e.g., in the low-frequency behavior of the self-energy, which extrap-
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olates to a finite imaginary part for wn → 0, independent of the temperature. In this
context, the vanishing of the Eliashberg estimate of the quasiparticle weight Z of the
wide band in the limit T → 0 could be revealed as an artifact,14 which has its origin
in the definition of the Eliashberg estimate of Z. The Eliashberg estimate is often
used to approximate the genuine Z within a QMC simulation, but looses its validity
outside the Fermi-liquid regime. Non-Fermi-liquid behavior is also observed in the
behavior of the spectral function near the Fermi edge. Similar results were found by
Biermann et al. (2005) for an effective Falicov-Kimball model for each spin species,
valid at low energies in the orbital-selective regime (cf. also Sec. 3.3.6). On the basis
of the Falicov-Kimball analogy, it is thus physically plausible that the transition of
the wide orbital at Uc2 is of second order. The first-order transition at Uc1 of the
narrow band, however, is exactly what one expects on the basis of experience with
the Mott transition in the single-band Hubbard model (Gebhard, 1997; Rozenberg
et al., 1999; Blümer, 2002).

Nevertheless, the question of the order of the second transition of the wide band is
still a matter of controversy. For the full J-model, recent ED+DMFT results suggest
that both OSMTs are of first order for T > 0 (Liebsch, 2005). This is supported by
results from Inaba et al. (2005), who find that the OSMTs are of first order at finite
temperatures but of second order at T = 0, in accordance with the scenario of the
single-band Hubbard model. The authors applied the recently introduced self-energy
functional approach15 (SFA) (Potthoff, 2003). In contrast, a first-order scenario of
the transition of the first (narrow) band at T = 0 is found by Arita and Held (2005)
using PQMC. For the Jz-model, DMFT+QMC results (this work) suggest, that the
transition of the narrow band remains of first order, while the second transition of
the wide band is of second order (at least for T > 1

60
). This scenario is supported by

results from ED+DMFT (Liebsch, 2005). In this context, it is interesting to note,
that the MITs of a decoupled two-band Hubbard model are of first order at finite
T and eventually become of second order at T = 0.16 When scaling the interaction
parameters like U ′ = αU

2
, Jz = αU

4
, the second-order transition of the wide band in

14This vanishing of the Eliashberg estimate of Z was incorrectly taken as an indicator for a single
Mott transition to persist also in the limit T → 0 (Liebsch, 2004).

15This approach is based on the fact, that the Luttinger-Ward functional (Luttinger and Ward,
1960; Baym and Kadanoff, 1961) is independent of one-particle contributions (e.g., the kinetic
energy) (Potthoff, 2003). The grand canonical functional Ω = Ω(Σ) can then be evaluated rigorously
on a restricted set of self-energies of a reference system, which shares the same interaction with the
original system. A suitable reference system for the Hubbard model is obtained, e.g., by adding to
each correlated site i a number of ns − 1 uncorrelated (‘bath’) sites, which are disconnected from
the rest of the lattice but hybridize with the correlated site i. This mapping recovers the DMFT in
the limit ns →∞. The special case of a reference system with a local self-energy is also referred to
as the ‘dynamical impurity approximation’ (DIA).

16A two-band model without interorbital coupling corresponds to two single-band Hubbard mod-
els, for which the order of the MIT is as stated. Compare, e.g., (Georges et al., 1996).
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the Jz-model for T > 0, should therefore become a first-order transition for α → 0.
This scenario is studied by Blümer and Požgajčić (2005).

In future work it will be of interest to investigate also the effect of other terms in
the Hamiltonian, such as hybridization terms of various symmetry; first results in this
direction have already been reported by Koga et al. (2005b) and by de’ Medici et al.
(2005). It is also of interest to extend the calculations to the more realistic three-band
case since the experimental system Ca2−xSrxRuO4 has three bands, two of which
are physically equivalent. Since the experimental system is an antiferromagnetic
insulator for small doping (x . 0.2), it is further important to include also magnetic
phases. Finally, as suggested by the study of the magnetic phase diagram, it seems
favorable to abandon the restriction that is imposed on the interaction parameters
(viz. U = U ′ + 2J) by assuming rotational invariance of the Hamiltonian.
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3.3 OSMTs in the Two-Band Falicov-Kimball Model

The Falicov-Kimball (FK) model was initially introduced in 1969 for the study of
metal-insulator transitions in rare-earth and transition metal oxides (Falicov and
Kimball, 1969). It is a simplified version of the Hubbard model in which only the
spin-down electrons can move. The concept appeared already in Hubbard’s earlier
work (Hubbard, 1963) and the model is also referred to as the simplified Hubbard
model (Kennedy and Lieb, 1986).

When it was realized, that the FK model is the simplest model of correlated
electrons to display long-range order for dimensions greater than one at low tem-
peratures (Brandt and Schmidt, 1986; Brandt and Schmidt, 1987; Kennedy and
Lieb, 1986; Lieb, 1986), it became subject of intense study.17 A new aspect was
brought to the physics of the Falicov-Kimball model by the pioneering work on the
limit of large dimensions for strongly correlated fermion models by Metzner and
Vollhardt (1989): The FK model could be solved exactly in the limit of infinite di-
mensions (Brandt and Mielsch, 1989). Among the following work, the exact solution
in d = ∞ also for the Bethe lattice (van Dongen and Vollhardt, 1990), the study
of the breakdown of Fermi-liquid behavior (Si et al., 1992), and the study of the
Mott-like metal-insulator transition (van Dongen and Leinung, 1997) are of partic-
ular interest for the study of the OSMT. Subsequently, the FK model was applied,
among other things, to systems exhibiting a metal-insulator transition upon doping
[TaxN (Freericks et al., 2001)]. A review of the physics of the Falicov-Kimball model
in d =∞ is given by Ref. Freericks and Zlatic (2003).

The FK model describes itinerant electrons of one spin species (e.g., the spin-
down electrons) that interact only on-site with a localized charge. Recall, that the
OSM phase of the Jz-Hubbard model is marked out by itinerant electrons of the wide
band interacting with the already localized electrons of the narrow band. Therefore,
a two-band FK model could give insight into the physics of the Jz-Hubbard model
particularly in this regime. The existence of an OSMT in a two-band FK model
would therefore support the understanding of the OSMT in the anisotropic Hubbard
model.

The structure of this section is as follows. In the first part, an extension of the FK
model to two bands is introduced and discussed. The model is then solved analytically
in d = ∞ within an exact mean-field theory, obtaining an implicit equation for
the Green function. This equation is then solved numerically for different sets of
parameters. The results are discussed and compared to the Jz-model.

17For a list of results in low dimensions compare Ref. Freericks and Zlatic (2003) and references
therein.
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3.3.1 Model

In this section, the following two-band Falicov-Kimball model is considered:

H = − 1√
Z

∑

〈ij〉;m
tmd

†
imdjm +

∑

imm′

Umm′

(
ndim −

1

2

)(
nfim′ − 1

2

)
−
∑

imm′

Vmm′d
†
imdim′ .

(3.46)
Here, d†im and dim create and annihilate the itinerant electrons at site i with hopping
amplitude tm for orbital m∈ {1, 2}, and 〈ij〉 signifies that the hopping is restricted
to nearest neighbors. Furthermore, ndim ≡ d†imdim is the number operator and the
index f labels the localized electrons. The d-electrons may be identified with the
spin-down (↓) electrons of the Hubbard model. The f -electrons can be considered as
localized charges such as ions or as immobile spin-up (↑) electrons at site i. For the
calculation of thermodynamic properties, all possible configurations of the ↑ electrons
are averaged over at the level of the partition function, so that the position of the
↑-electrons are treated as annealed disorder.

The first term of (3.46) is the kinetic energy of the conducting electrons. The
hopping amplitude is scaled with the inverse square root of the coordination number
Z to yield a nontrivial result in the limit of infinite dimensions. The second term is the
interaction term which represents the local Coulomb interaction Umm′ , when itinerant
and localized electrons occupy the same orbital (m = m′) as well as the inter-orbital
interaction for electrons in different bands (m 6= m′). The third term introduces a
possible on-site hybridization of strength Vmm′ . Note that the Hamiltonian (3.46)
[for Vmm′ = 0] is indeed a simplified model of the anisotropic two-band Hubbard
model in which the spin down electrons of both orbitals are immobile [taken to be
fully localized] and identified with the f -electrons of the FK model. The spin up
electrons are itinerant and mapped to the d-electrons of the FK model with hopping
amplitudes t2 = 2t1; the intra-orbital Coulomb interaction, however, is neglected.
The analogy is further justified by the fact that the spins are conserved quantities
because of the absence of spin-flip terms in the Jz-model.

Symmetries of the Hamiltonian

The Hamiltonian (3.46) exhibits a number of symmetries that turn out to be useful
in solving the FK model. In analogy to the Jz-model, we consider the half-filled
case. Thus, the Hamiltonian (3.46) is written in a particle-hole symmetric manner,
implying 〈ndim〉 = 〈nfim〉 = 1/2 for µ = 0.

Let (t1, t2, U, V ) denote the FK model (3.46) with interaction and hybridization
matrices U ≡ Umm′ and V ≡ Vmm′ , respectively. Then, the special particle-hole
transformation

di1 → d†i1e
iα/2, di2 → d†i2e

iα/2, fim → fim , with α ∈ R, (3.47)
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changes the model (t1, t2, U, V ) at half filling into the canonically equivalent model
(−t1,−t2,−U,−V ). Hence, the transformation changes the sign of the Hamiltonian,
implying that each energy eigenvalue has a counterpart with opposite sign. Therefore,
the density of states (DOS) is symmetric. This is true not only for the global DOS
(the sum of the DOS of both bands) but also for the DOS of each band, separately.

The Hamiltonian (3.46) also has to be hermitian, implying the following relation
for the hybridization V :

tm ∈ R, Umm′ ∈ R, (3.48)

V = V † ⇐⇒ Vmm′ = V ∗
m′m . (3.49)

Using the special particle-hole transformation

di1 → d†i1(−1)ieiα/2, di2 → d†i2(−1)ie−iα/2, fim → f †
im(−1)i , with α ∈ R ,

(3.50)
it can further be shown, that

V =

(
0 v
v 0

)
, (v > 0) . (3.51)

The details of the calculation are described in Appendix C. The above relations
imply that the hybridization V is symmetric and a function of one variable only.

3.3.2 Exact Mean-Field Theory

In the following, the FK model (3.46) is solved within the exact mean-field theory
(van Dongen and Vollhardt, 1990; van Dongen, 1992) for the Bethe lattice in the
high-temperature phase. This method is particularly well suited for the calculation
of the density of states. The analytical part of the calculation is due to van Dongen
(2005).

Within the exact mean-field theory for the Falicov-Kimball model, the dynam-
ics of a lattice site is described in terms of collective or mean-field variables. The
Hamiltonian (3.46) of the full FK model on a Bethe lattice in d = ∞ can then be
mapped on a Bethe lattice with coordination number ZMF = 5 by defining collective
fermions:

ΨX =

(
dX1

dX2

)
= Z−n

2

∑

[j1,j2,...,jn]

[
n∏

l=1

α(jl, xl)

](
djn1

djn2

)
, (3.52)

with

X = (x1, x2, . . . , xn) , n ∈ {0, 1, 2, 3} , (3.53)
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Figure 3.24: Effective Bethe lattice of the exact mean-field Hamiltonian with coordination
number ZMF = 5; only the central site 0 has ZMF = 4. Here, the labels (i, ii, ...) denote
the presence or absence of electrons on the f -sites according to (3.3.2).

and

α(jl, xl) =





(1− nfjl1)(1− n
f
jl2

)/
√

(1− ρfl1)(1− ρ
f
l2
) if xl = 0

nfjl1(1− n
f
jl2

)/
√
ρfl1(1− ρ

f
l2
) if xl = 1

(1− nfjl1)n
f
jl2
/
√

(1− ρfl1)ρ
f
l2

if xl = 2

nfjl1n
f
jl2
/
√
ρfl1ρ

f
l2

if xl = 3

, (3.54)

with the density of the f-electrons ρl. The sum in (3.52) runs over all nearest-neighbor
pairs (jl, jl+1), with jl in the lth shell of the Bethe lattice around an arbitrary site 0,
which is defined to be the origin. The collective fermions in (3.52) are then operators
that annihilate a ↓ electron in the nth shell for a given path X with respect to the site
0 [cf. also Fig. 3.24] The atomic configuration of this nth shell further specifies the
form of the annihilation operator, as given by (3.54). At half filling, i.e., for ρl = 1

2

for all l, this implies a mapping of the kinetic energy to the following mean-field
Hamiltonian:

HMF = 1
2

∑

l(X)≥0

(
Ψ†

XΘΨX + H.c.
)
, Θ ≡

(
t1 0
0 t2

)
. (3.55)
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The mean-field variables of HMF are, however, operators, in contrast to Hartree-Fock
theory. The effective Hamiltonian (3.55) can then be solved using the renormalized
perturbation expansion (RPE)(Economou, 1979), which is a perturbation expansion
in the hopping amplitude.

In order to calculate the density of states of the FK model, it is useful to define
the following matrix Green function:

Gij(τ) ≡ −



〈Tτdi1(τ)d†j1(0)〉 〈Tτdi1(τ)d†j2(0)〉

〈Tτdi2(τ)d†j1(0)〉 〈Tτdi2(τ)d†j2(0)〉


 . (3.56)

Of particular interest is only the on-site Green function (i = j). It is further useful
to distinguish between the full on-site Green function G(τ), which includes hopping
processes and the atomic Green function G0(τ), which does not include hopping
processes. There are four atomic environments that have to be averaged over:

(i) 0 f-electrons on the site,

(ii) 1 f-electron in band 1,

(iii) 1 f-electron in band 2,

(iv) 2 f-electrons, one in each band.

With the Fourier transform

G(z) ≡
β∫

0

dτ ezτG(τ) , (3.57)

the corresponding atomic Green functions (label by the upper indices: G(1..4)) are
given in terms of frequency by:

G
(1)
0 (z) =

(
z + U1+ V
V z + U2+

)−1

G
(2)
0 (z) =

(
z − U1− V

V z − U2−

)−1

G
(3)
0 (z) =

(
z + U1− V
V z + U2−

)−1

G
(4)
0 (z) =

(
z − U1+ V

V z − U2+

)−1

,

(3.58)

with Um± ≡ 1
2
(Um,1 ± Um,2). When mapping the full FK model on a Bethe latice

with ZMF = ∞ to a Bethe lattice with Z = 5 by defining collective fermions, one
can make use of the renormalized perturbation expansion (RPE), to get the following
expression for the Green function:

G(b) =
[
1−G(b)

0 ΘGΘ
]−1

G
(b)
0 . (3.59)
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Here, 1 denotes the unit matrix in 2 dimensions and Θ ≡
(
t1 0
0 t2

)
. The full Green

function G is also defined as the average over the Green functions of the atomic
configurations: G ≡ 1

4

∑
b′ G

(b′). One therefore obtains the following consistency
relation for G:

G(z) =
1

4

∑

b

[
G

(b)
0 (z)−1 −ΘG(z)Θ

]−1

. (3.60)

In this matrix equation, G(z) is the only unknown.

Symmetries of G

The matrix equation (3.60) implies the following symmetries of the Green function,
which turn out to be useful:

• G(z) = G(z∗)∗; since both G(z) and G(z∗)∗, separately, are solutions of (3.60)
and coincide for Θ = 0.

• G(z) = G(z∗)†; same argument as above. Combining the first two relations
yields: G(z) = [G(z∗)∗]T = G(z)T . Thus G(z) is an analytic symmetric func-
tion.

• GV (z) = −σ3 [GV (−z∗)]† σ3;
with GV (z) a solution for hybridization V and the Pauli matrix σ3 =

(
1 0
0 −1

)
.

The proof can be found in Appendix C. Both solutions (left and right-hand
side of the equation, separately) coincide for Θ = 0 and are identical also for
Θ 6= 0.

The Green function G can generally be written as:

G(z) ≡
(
g1(z) g2(z)
g2(z) g3(z)

)
. (3.61)

Then, the implications of the last identity are as follows. For z = iωn ∈ iR one gets:

G(iωn) =

(
g1(iωn) g2(iωn)
g2(iωn) g3(iωn)

)
=

(
−g1(iωn)

∗ g2(iωn)
∗

g2(iωn)
∗ −g3(iωn)

∗

)
= −σ3 [GV (−iωn)∗]† σ3 .

(3.62)
Therefore,

g1(iωn), g3(iωn) ∈ iR , g2(iωn) ∈ R . (3.63)

For real frequencies z = E + i0+ one gets:

(
g1(E + i0+) g2(E + i0+)
g2(E + i0+) g3(E + i0+)

)
=

(
−g1(−E + i0+)∗ g2(−E + i0+)∗

g2(−E + i0+)∗ −g3(−E + i0+)∗

)
. (3.64)
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Thus the real parts of g1, g3 and the imaginary part of g2 are antisymmetric under
the transformation E ↔ (−E), while the imaginary parts of g1 , g3 and the real part
of g2 are symmetric. This implies that the DOS of both bands is symmetric,

νm(E) = νm(−E) (m = 1, 2) , (3.65)

in agreement with the previous result (3.47).

The implicit equation (3.60) for the full Green function G(z) cannot be solved
analytically for all frequencies. A common method to solve implicit equations is
to employ a numerical complex root finding algorithm. The explicit equations that
need to be solved are obtained by expanding (3.60). For simplicity, the atomic Green
functions (3.58) are written as:

G
(b)
0 (z)−1 =

(
z + U

(b)
1 V

V z + U
(b)
2

)
, (3.66)

with U
(1)
1,2 ≡ U1,2+ ≡ −U (4)

1,2 and U
(3)
1,2 ≡ U1,2− ≡ −U (2)

1,2 . Then, (3.60) yields:

G =

(
g1 g2

g2 g3

)
=

1

4

∑

b

(
z + U

(b)
1 − t21g1 V − t1t2g2

V − t1t2g2 z + U
(b)
2 − t22g3

)−1

=
1

4

∑

b

1

Db

(
z + U

(b)
2 − t22g3 t1t2g2 − V

t1t2g2 − V z + U
(b)
1 − t21g1

)
,

(3.67)

with the determinants Db:

Db =
(
z + U

(b)
1 − t21g1

)(
z + U

(b)
2 − t22g2

)
−
(
V − t1t2g2

)
, b ∈ (1 . . . 4) . (3.68)

The three coupled equations for g1, g2 and g3 have to be solved simultaneously. As
the Green function is analytic in the upper half of the complex plane, one needs the
root, that behaves as

G(z) ∼ 1

z

(
1 0
0 1

)
, (3.69)

or

g1(z), g3(z) ∼ 1
z
, |g2(z)| < O

(
1
z

)
(z →∞) . (3.70)

These criteria are used to single out the correct Green function in the numerical
solution of (3.67). This procedure is described in the following section.
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3.3.3 Numerical Solution

The coupled equations (3.67) for the Green functions g1, g2 and g3 can be solved
using a complex root finding algorithm. As the three Green functions are complex,
finding a simultaneous solution is equivalent to finding a root in a 6 dimensional
space, which is a difficult task. Normally, root finding mechanisms such as the secant
method or the Newton method work sufficiently well only in 1 dimension. Finding
the root x0 of a function f(x) in the region a− ǫ ≤ x0 ≤ a+ ǫ is, however, equivalent
to finding the minimum of the function f(x)2 [the value of which is zero].

The Green functions g1, g2, and g3 are computed by minimizing the following
functional F :

F = F (g1, g2, g3, z;U, V, t) = f 2
1 + f 2

2 + f 2
3 . (3.71)

Here, fi is the difference of the left and right site of (3.67) for each gi; e.g., for i = 1:

f1(g1, g2, g3, z;U, V, t) = g1 −
1

4

∑

b

1

Db

(
z + U

(b)
2 − t22g3

)
. (3.72)

The actual minimization is performed using Powell’s direction set method (Press
et al., 1992).
Of particular interest is the determination of the local density of states νm of the ↓
electrons in bands m = (1, 2), which are given by:

ν1(E) = −1

π
Im g1(E + i0+) , and ν2(E) = −1

π
Im g3(E + i0+) . (3.73)

The limit of a vanishing imaginary part z = x + i0+ in the arguments of the Green
functions is performed in the following manner for the solution (g1, g2, g3) with inter-
actions (U, V, t):

1. Minimize F for z = x+ iy and y > 0 (with initial value y ≈ 10) with the atomic
Green function (3.66) for interaction Ua = 0 as starting value for (g1, g2, g3).

2. Use the solution of the previous step as input and repeat the minimization,
while adiabatically increasing Ua, until Ua = U .

3. Decrease the imaginary part y adiabatically, while using the result (g1, g2, g3)
of the previous step as input for the new step, until y = 0.

By this procedure, the analytic requirement (3.70) for the Green functions can be
verified easily for every frequency. A solution (g1, g2, g3) was accepted when the
numerical value of F was of the size of the machine-precision.
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Figure 3.25: Density of states of the two-band Falicov-Kimball model in the high-
temperature phase for U ′ = 1

2 U and zero hybridization (V = 0) for various interactions
U . Only positive energies are plotted, since the DOS is symmetric.
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Figure 3.26: a) Density of states at the Fermi edge of the two-band Falicov-Kimball model
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behavior for U → Uc. [The small difference in the slope of the asymptote between the
narrow and wide orbital is due to finite ∆U -effects when determined from the numerical
data.]
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3.3.4 Results: FK Model without Hybridization

In this part, the results for the two-band FK model are discussed for different pa-
rameters. The ratio of the bandwidth is chosen in analogy to the two-band Hubbard
model: t1

t2
= 0.5. The Coulomb interaction between the itinerant ↓ electrons (d) and

the local f -electrons in the same band is set to be equal for the narrow and wide
band, thus U1,1 = U2,2 ≡ U . The interorbital Coulomb interaction is scaled in the
same way as in the two-band Hubbard model: U1,2 = U2,1 ≡ U ′. The hybridization
is neglected (V = 0) in this section but scaled like V = U

4
in Sec. 3.3.5.

The density of states for the two-band FK model without hybridization and for
U ′ = 1

2
U are shown in Fig. 3.25 for various interactions. For the non-interacting

case (U =0), the semi-elliptic density of states of the Bethe lattice is obtained with
values ν(E=0)= 2

π
( 1
π
) for the narrow (wide) orbital at the Fermi edge (E = 0).

Upon increasing interaction, the densities of states at the Fermi edge, ν(E = 0), of
both bands start to decrease while the band edges move outward. At the Fermi edge,
the DOS remains flat, no quasi-particle peak develops. As expected, the two-band
FK model does not exhibit Fermi-liquid behavior, in full analogy to the single-band
case.18 For U > Uc1 ≈ 1.49,19 a gap develops for the narrow orbital: The DOS splits
into an upper and lower band. The DOS of the wide orbital, however, is still nonzero
at E = 0. For U > Uc2 ≈ 2.99, a gap also opens for the wide orbital, while the gap of
the narrow orbital is already well developed. In summary, the two-band FK model
shows for this choice of parameters an OSMT.

Another effect of the interaction is the splitting of the upper and lower band of
each orbital: Already for U = 1, a dip is clearly seen in the DOS of the narrow orbital.
This dip further develops until the band splits into 2 parts at about the same critical
interaction U ≈ 1.5. The upper band of the wide orbital shows the same behavior
and splits for U ≈ 3. Upon further increase of the interaction, the band edges move
apart, while the shape of the parts of the DOS remains the same. The splitting of
the bands does not occur in the single-band FK model20 and is therefore attributed
to the additional orbital degree of freedom in the two-band model. The fact that
the DOS of the narrow (wide) orbital splits into 4 subbands can be explained when

18In fact, the two-band FK model with V = 0 considered in this section effectively ‘is’ a single-
band FK model. Cf. footnote (19).

19The critical interaction can be calculated analytically, provided one assumes that g2 = 0, which
indeed yields a consistent solution, but could not be proven rigorously, and, in fact, emerged as a
byproduct from the numerical solution in section 3.3.3. It then follows, that Uc1 = 2

3

√
5 ≃ 1.49 (van

Dongen, 2005). Employing the scaling behavior of the Green functions, g3(0; U) = t1
t2

g1(0; t1
t2

U)
(which also follows when assuming g2 = 0), the critical interaction of the wide orbital is determined
as Uc2 = t2

t1
Uc1 = 4

3

√
5 ≃ 2.98. The numerical results are therefore in good agreement with these

exact results.
20A splitting of the Hubbard bands occurs in the single-band FK model only when also taking

nearest-neighbor Coulomb repulsion into account (van Dongen, 1992).
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considering the energy that corresponds to hopping processes between singly and
doubly occupied sites.21 The following hopping processes are possible for each, the
narrow and the wide orbital, separately:

(
0

0

) 1
2
U
←→

(
0

1

)
,

(
0

0

)
U←→
(

1

0

)
,

(
0

0

) 3
2
U
←→

(
1

1

)
; (3.74)

(
0

1

) 1
2
U
←→

(
1

0

)
,

(
0

1

)
U←→
(

1

1

)
,

(
1

0

) 1
2
U
←→

(
1

1

)
. (3.75)

The upper label in
(
1
0

)
counts the double occupancies in the same orbital (in this

case, one site is occupied by one d-electron and one f -electron) and the lower label
counts the double-occupancies for different orbitals. The energy-costs of the hopping
process is stated in each case. For each band, there are 4 possible configurations
for doubly-occupied states, thus the DOS splits into 4 parts for sufficiently large
interaction. The centers of the sub-bands are separated by the energy 1

2
U and as

the DOS is symmetric, positioned at 1
4
U , 3

4
U as well as −1

4
U ,−3

4
U for U → ∞.

This conclusion is supported by the numerical data: The sub-bands are found to be
centered at E = ±0.25U and E = ±0.75U with constant width 1(2) and height 1

π
( 1

2π
)

for the narrow (wide) band. The shape is always semi-elliptical. Thus, in the limit
U →∞, the behavior of each sub-band is very similar to the behavior of the Hubbard
bands of the single-band FK model. There, it was found, that the Hubbard bands
are semi-elliptical and centered at E = ±U

2
with constant width (van Dongen, 1992).

The behavior of the DOS at the Fermi edge, ν(E = 0), is shown in Fig. 3.26a.
The decrease of ν(E = 0) is very small as the interaction is gradually turned on
and reaches its maximum when the gap opens at the critical interactions Uc1 =
1.49 ± 0.01 (Uc2 = 2.99 ± 0.01) for the narrow (wide) orbital. The OSMT is clearly
exposed. A criterion that can be used to determine the order of the metal-insulator
transition is the width ∆E of the gap centered at E = 0. The width ∆E is plotted
in Fig. 3.26b for the narrow and wide orbital. The numerical data indicates that
the gap vanishes continuously as a function of U for both orbitals. The functional
dependence for U → Uc is well described by the function ∆ ∼ d (U − Uc)α with a
critical exponent α = 1.50± 0.11 (1.44± 0.07) of the narrow (wide) band and with
constant d = 0.45± 0.12 (0.28± 0.04). The critical exponent is therefore equivalent
to the single-band case, which exhibits a second-order transition at Uc with ∆ ∼

4
3
√

3
(U − Uc)3/2 for U → Uc (van Dongen, 1992). For U → ∞, the width ∆E of the

gap is linear in the interaction: ∆E(U) ∼ 0.5U , for both bands, in analogy to the
single-band case (van Dongen, 1992).

21This scenario corresponds to taking the strong-coupling limit.
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3.3.5 Results: FK Model with Hybridization

The DOS of the two-band FK model for parameters U ′ = 1
2
U and hybridization

V = 1
4
U is plotted in Fig. 3.27. The DOS at the Fermi edge, ν(E=0), decreases as

the interaction is turned on, but stays flat at the Fermi edge. This behavior is similar
to the FK model with vanishing hybridization. The influence of the hybridization,
however, can be seen already for U = 0.5: The singularity at the band edge of the
narrow orbital is lifted and the band edge stretches out, up to the band edge of the
wide orbital. This effect is more pronounced for larger interactions. Furthermore,
the gap of both bands develops for the same interaction Uc ≈ 2.3; thus, only a single
Mott transition takes place. The numerical results suggest a transition of second
order, similar to the case with vanishing hybridization. The bands of both orbitals
also split. The critical interaction of the splitting, however, does not coincide with Uc
anymore, but is increased: Uc2 ≈ 2.7. Additionally, the shape of the upper and lower
part of the split DOS is not the same (or similar) anymore. More spectral weight
remains in the lower part.

The influence of the hybridization on the distribution of the spectral weight
R E

−E
ν(E′) dE′ is depicted in Fig. 3.28. For simplicity, the parts of the DOS are re-

ferred to as the lower and upper subband with respect to the energy of their center.
For V = 0 (a), the spectral weight is equally distributed between the lower and upper
subband for all interactions. The splitting of the DOS is indicated by the flat part,
which appears for U > Uc always at a spectral weight of 0.5. For finite hybridization
(b), about 80% (70%) of the spectral weight of the narrow (wide) orbital is located in
the lower subband. Once the DOS has split, the distribution of the spectral weights
remains constant (at least within the numerical precision).

3.3.6 Discussion

In this section, a simplified two-band Hubbard model (Falicov-Kimball model) with
bandwidth ratio W2

W1
= 2, where only the spin-down electrons of each band can move,

was considered on a Bethe lattice in high dimensions (Z → ∞). The model was
solved in the high-temperature phase in analogy to the single-band Falicov-Kimball
model using an exact mean-field theory (van Dongen and Vollhardt, 1990). The main
result of this part is that the two-band FK model exhibits an OSMT for V = 0 [and
for parameters that are scaled similar to the ones used for the Jz-model in the first
part of this chapter]. In this case, the Green functions of the two orbitals (g1 and
g2) are scaled, such that the two-band FK model reduces to an effective single-band
model. As expected, the OSM phase ceases to exist for finite hybridization (V > 0).

It is instructive to compare the OSM phase of the two-band FK model and the
Jz-model. The critical interaction of the FK model, UFK

c1 ≃ 1.49, for which the
narrow band becomes insulating is smaller than the critical interaction UJz

c1 ≃ 2.01
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of the Jz-model. This is, however, not the case for the transition of the wide band:
UFK
c2 ≃ 2.99 ←→ UJz

c2 ≃ 2.5. The width of the OSM phase is therefore of about a
factor 3 larger in the simplified model, whereas the position of the center of the OSM
phases is similar and about at U ≈ 2.25. Also, the behavior of the spectral density
of the wide bands close to the Fermi edge [Fig. 3.25 for the FK model and Fig. 3.12
for the Jz-model] is similar, emphasizing the fact that the wide band in the OSM
phase of the Jz-model is metallic, but not a Fermi-liquid.22 A similar behavior was
found by Biermann et al. (2005) for a simplified two-band Hubbard model where the
interorbital Coulomb interaction U ′ is neglected in order to retain the intraorbital
interaction U of the itinerant electrons of the wide band. The itinerant electrons
further couple to the localized electrons in the narrow band through Ising terms
only. The resulting effective single-band Hubbard model was then solved within the
DMFT+QMC, by additionally averaging over the Ising spin configurations of the
localized electrons. The authors observed non-Fermi-liquid behavior similar to the
one of the single-band Falicov-Kimball model (Si et al., 1992), namely the following
low-frequency form of the self-energy: Σ(ω + i0+) = −iΓ + (1− 1

Z
)ω, with Γ > 0. It

is interesting to note, that a similar behavior was found for the self-energy Σwide of
the Jz-model in section 3.2.1 within the OSM phase.

Another important issue concerns the order of the metal-insulator transitions in
the FK model. Within both the numerical solution and the exact solution (van
Dongen, 2005) one observes a smooth vanishing of the width of the gap as a function
of U (for V = 0), corresponding to a second-order transition and in analogy to the
single-band FK model. A similar behavior is found for the wide band of the Jz-model
[at least within the examined parameter set of the first part of this chapter and for
high temperatures].

A major difference in the spectra of the FK model and the Jz-model, however, is
the behavior at intermediate to large couplings, namely the splitting of the DOS of
each orbital of the two-band FK model into 4 parts which exactly occurs at the critical
interaction Uc1,2.

23 Even though the spectrum of the wide band of the Jz-model shows
indications of a splitting for U ≈ Uc2 [cf. Fig. 3.12], the Hubbard shoulders retain
a semi-elliptic shape in the strong-coupling limit, similar to the single-band model
(van Dongen, 2005).

The above findings support, that essential features of the paramagnetic OSM
phase of the anisotropic two-band Hubbard model are already captured by a Falicov-
Kimball model. This observation is encouraging: The FK model might also give
insight into the physics of the OSM regime of the Jz-model in the important low-
temperature limit T → 0 and also for lower spatial dimensions, e.g., in d = 2.

22Note, that the FK model shows non-Fermi-liquid behavior in d =∞ (Si et al., 1992).
23In the limit U →∞, the centers of the 4 semi-elliptic parts are located near U = ± 1

2
(U11±U12)

for the first orbital and near U = ± 1

2
(U21 ± U22) for the second orbital.
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Both models have the same magnetically ordered ground state (AF), but numerical
calculations are much easier performed in the FK model.
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3.4 Summary

In the first part of this chapter, the anisotropic two-band Hubbard model (Jz-model)
with distinct band widths W2 = 2W1 was studied within the DMFT+QMC in the
fully frustrated phase at finite temperatures. The interaction parameters were scaled
as U = U ′ +2Jz, implying rotational invariance of the Hamiltonian (Castellani et al.,
1978). Using the high-precision QMC algorithm, which was developed as part of
this thesis, it was shown, that the Jz-model contains two successive metal-insulator
transitions. This finding revises earlier QMC results (Liebsch, 2003b; Liebsch, 2004)
that reported the existence of only one single Mott transition at low temperatures
in the Jz-model, i.e., that the transitions which occur in the separate orbitals merge
upon unison. Thus, the additional spin-flip and pair hopping terms that arise in the J-
model, which clearly exhibits an OSMT (Koga et al., 2004; Koga et al., 2005a; Ferrero
et al., 2005; de’ Medici et al., 2005; Arita and Held, 2005; Koga et al., 2005b), are
not a prerequisite for the existence of two distinct transitions as suggested in Ref.
Koga et al. (2005a). Hence, the Jz-model can be considered as a minimal model for
the OSMT phenomenon. The transitions at Uc1 ≈ 2.01 and Uc2 ≈ 2.5 were revealed
by the low-frequency behavior of the self-energy, but are also visible in the spectral
functions, the intra-orbital double occupancies, the quasiparticle weights and their
temperature dependence as well as in the internal energy and its composites the
kinetic and potential energy.

The transition of the first (narrow) band of the Jz-model is found to be of first
order at Uc1 with a critical temperature Tc1 ≈ 0.02. The physical observables like the
quasiparticle weight or the double occupancy of the second (wide) band, in contrast,
are continuous at Uc2, as expected for a second-order transition. The order of the
second transition, however, cannot be determined definitely within this work. This
is due to the fact that the QMC calculations are at present difficult to perform in
the relevant low-temperature regime [recall, that the computational costs scale like
m(2m−1)L3] and also because it is numerically difficult to distinguish a real second-
order transition at T > 0 from a narrow cross-over, possibly eradiating from a T = 0
quantum critical point.

It was further found, that the wide band exhibits non-Fermi-liquid behavior within
the OSM phase, which is seen in the low-frequency behavior of the self-energy and
also in the spectral function close to the Fermi edge. At low energies, the OSM phase
is characterized by itinerant electrons in the wide band and quasi fully localized
electrons in the narrow band, and is therefore closely related to the physics of the
Falicov-Kimball model, which is known not only to exhibit non-Fermi-liquid behavior
but also a second-order metal-insulator transition. The results of the analogy to the
FK model, which was studied in the second part of this chapter, are summarized
below.

It is also shown, that the high-frequency corrected QMC simulation, as developed
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in chapter 2 of this thesis, gives very accurate solutions of the DMFT self-consistency
equations also for multi-band systems [at half filling]. This is seen, e.g., in the com-
parison of the QMC estimates of the internal energy (energy per lattice site) at weak
coupling with exact results, which were derived within second-order perturbation
theory. The second transition of the wide band is further visible only in high-quality
QMC data. This fact is clearly exposed by a comparison of the QMC data of this
work with results of competing QMC methods used in the literature (Liebsch, 2004).

Another aspect of this chapter was the determination of the magnetic phase
diagram of the Jz-model. The phase boundary between the paramagnetic high-
temperature phase and the antiferromagnetically ordered ground state was deter-
mined within a QMC simulation. The vanishing of the inverse of the staggered
magnetization χst [implying a second-order transition] served as criterion for the de-
termination of the Néel temperature TN . Other magnetically ordered phases, which
would be signalled by the divergence of the associate susceptibility, were not found.
These include ferromagnetic order, orbital order, combined ferromagnetic and orbital
order and charge density waves. At weak coupling, the QMC estimates for TN are
found to agree well with the results of 2OPT (van Dongen, 2005), but differ substan-
tially from first-order strong-coupling results (van Dongen, 2005) at large values of
the interaction: The magnetic phase diagram seems to be governed by the thermo-
dynamics of the narrow band. It is further found in a simulation allowing for AF
order that the OSM phase is hidden deep inside the symmetry-broken phase of the
Jz-model: The critical temperature Tc1 ≈ 0.02 is about a factor of 6 smaller than the
Néel temperature at the same interaction. In addition, the MIT of the narrow band
is shifted towards smaller values of the interactions compared to a decoupled band
of equal width, which is clearly due to the additional interorbital interaction.

It was subsequently studied how the Néel temperature can be suppressed (par-
tial frustration) upon variation of the interaction parameters. The results of 2OPT
suggest that TN cannot be diminished sufficiently by only varying the interaction pa-
rameters while keeping the scaling relation U = U ′ +2J , which was imposed in order
to demand rotational invariance of the Hamiltonian [which the OSMT compound
Ca2−xSrxRuO4, in contrast, does not exhibit]. It is therefore expected, that the AF
phase of the Jz-model can only be sufficiently suppressed by abandoning rotational
invariance of the Hamiltonian and imposing additional frustration, which occurs, e.g.,
upon introduction of longer-range hopping or disorder, but also in lower dimensions.

In the second part of this chapter, a two-band Falicov-Kimball (FK) model with
bandwidth ratio W2 = 2W1 was studied in the limit of infinite dimension on the Bethe
lattice in the high-temperature phase. The considered FK model is a simplified
version of the Jz-model in which only the spin down electrons of each orbital are
allowed to hop [with hopping amplitudes t2 = 2t1] and where the spin up electrons are
taken to be fully localized. In analogy to the Jz-model, the spins are conserved due to
the absence of spin flip terms. When considering the full Hund’s rule coupling, one has
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to additionally include spin flip and pair exchange terms. In this case, the model maps
within the DMFT to a Kondo impurity problem with a self-consistent conduction
electron bath. The FK model can be solved within the exact mean-field theory as
proposed by van Dongen and Vollhardt (1990), resulting in a self-consistency equation
for the local Green functions. It turned out, that this self-consistency equation can
be solved both numerically and analytically for vanishing hybridization V , but only
numerically for V 6= 0. For V = 0, the Green functions of each band further scale
with the ratio of the bandwidth, such that the problem effectively reduces to a single-
band model. The main result, however, is the fact that the FK model exhibits an
OSMT in the absence of hybridization. For the parameter set (U ′ = U

2
, V = 0),

the critical interactions are found to be Uc ≈ 1.49 (2.99) for the narrow (wide) band.
The metal-insulator transition is found to be of second order. In contrast to the
single-band FK model, each of the bands split at the critical interaction Uc into four
parts with semi-elliptical shape and equally distributed weights. Those parts retain
their shape in the strong-coupling limit (U → ∞) and are equally separated near
U = ±1

2
(U11 ± U12) for the first orbital and near U = ±1

2
(U21 ± U22) for the second

orbital.
It is also found, that the OSM phase ceases to exist when switching on a finite hy-

bridization V [studied for parameters (U ′ = U
2
, V = U

4
)]. The single Mott transition

takes then place at Uc ≈ 2.3. The splitting of the upper and lower Hubbard shoulder
now occurs at a slightly larger energy (Uc2 ≈ 2.7). Also, the spectral weight is not
equally distributed anymore; the fraction of the DOS at lower energies accumulates
more spectral weight than the one at higher energies. Also, the shape of the DOS
differs significantly from the case without hybridization.

In summary, an important part of the low-energy physics of the OSM phase of the
fully frustrated Jz-model is determined already by the physics of the Falicov-Kimball
model in its high-temperature phase.
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Chapter 4

The Attractive Hubbard Model at
weak Coupling

In this chapter, we study the attractive (or negative-U) Hubbard model1 away from
half filling within second-order self-consistent (sc) perturbation theory in two spatial
dimensions at weak coupling.

The negative-U Hubbard model2 in d= 2 has been the subject of intense study
(Micnas et al., 1990). At half filling, the ground state is an antiferromagnetic insulator
(Hirsch, 1985; White et al., 1989); the spectrum is therefore gapped. As the Mermin-
Wagner theorem excludes any long-range order at finite temperature, one expects the
opening of a critical-fluctuation-induced pseudogap [or precursor pseudogap (Kampf
and Schrieffer, 1990)] as the temperature is lowered. The existence of the precursor
pseudogap, however, is still a matter of controversy, not only in the doped case but
also at half filling (Moukouri et al., 2000; Huscroft et al., 2001; Sénéchal and Tremblay,
2004; Rohe and Metzner, 2005). The numerical analysis of perturbative (Inui and
Littlewood, 1991) and nonperturbative results (Huscroft et al., 2001) concern mostly
the half-filled case. Close to half filling, the Hubbard model exhibits complicated
behavior due to the mutual interplay of singularities in the particle-particle and
particle-hole channels. A systematic method for the study of this interplay, which
cannot be captured by a simple resummation of Feynman diagrams, is given by the
recently developed functional renormalization group for interacting Fermi systems
(Salmhofer, 1998).

Analytical investigations of the Hubbard model in d = 2 were performed in the
weak- (Schulz, 1990; Mart́ın-Rodero and Flores, 1992) and strong-coupling limits

1The attractive Hubbard model is in particular relevant in the context of superconductivity where
it represents one of the simplest phenomenological Hamiltonians for the study of superconductivity
through local pairing (Micnas et al., 1990). Compare also Sec. 1.3 on page 8.

2Here, the results for the positive-U Hubbard model are also relevant for the negative-U model
since they are connected by a special particle-hole transformation (Emery, 1976).
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(van Dongen, 1994c). At strong coupling, the half-filled Hubbard model maps to an
effective Heisenberg model, for which the estimates of the Néel temperature and the
ground state energy are reliably known. Several methods have been proposed for the
weak- to intermediate-coupling regime (Kakehashi and Hasegawa, 1988; Vilk et al.,
1994; Cyrot and Kaga, 1996; Szczech et al., 1995), many of which also apply to d = 3.
The estimates for the Néel temperature of these approaches in d = 3 all reduce to the
Hartree-Fock result at weak-coupling. The Hartree-Fock approximation, however,
overestimates the critical temperature (and similarly the order parameters) by a
renormalization factor, as is known from DMFT-studies including 1/d-corrections
(van Dongen, 1991; van Dongen, 1994a) and the local approximation (Tahvildar-
Zadeh et al., 1997). The precise value of this factor in d = 3 was calculated by
Schauerte and van Dongen (2002) using self-consistent perturbation theory. The
authors also found that sc perturbation theory diverges for the half-filled Hubbard
model in d ≤ 2. Asymptotically exact results in the weak-coupling limit for finite
doping, however, are as yet unknown.

The main focus of this chapter is to study the broken-symmetry phase of the
negative-U Hubbard model away from half filling and at weak-coupling beyond the
mean-field approximation. As the Hubbard model is nonperturbative even at weak-
coupling, one has to apply self-consistent theories. As sc perturbation theory breaks
down exactly at half-filling (Schauerte and van Dongen, 2002; Kopietz, 1993), we
focus especially on dopings which are not close to half-filling.

In a first step, we review the Hartree-Fock solution of the negative-U Hubbard
model which is equivalent to first-order sc perturbation theory. We then calculate
the second-order correction term. In particular, we present asymptotically exact
results for the critical temperature and the superconducting order parameter. As a
main result we find that the HF order parameter and HF critical temperature are
renormalized by a factor q which is of the order of unity and depends explicitly on
the chemical potential. In the limit of an empty system, we find that perturbation
theory breaks down.

The calculations are actually performed for the positive-U Hubbard model (com-
pare Sec. 1.3) at half filling subject to a uniform magnetic field, onto which the
negative-U model away from half-filling can be mapped by a special particle-hole
transformation (Robaszkiewicz et al., 1981a). The relation between these two mod-
els is most easily expressed in terms of the chemical potential µ and the magnetic
field B. At half-filling, the chemical potential in the model (U > 0, B > 0) is exactly
µ> = U/2. Then, µ< in the model (U < 0, B = 0) reads (see Appendix A.1)

µ< = −U
2
−B . (4.1)

The correspondence of the physical quantities in the two models is summarized in
table 4.1. There are various ways to impose self-consistency of the perturbation
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(U < 0, B = 0, n 6= 1) (U > 0, B > 0, n = 1)

µ −U
2
−B ⇐⇒ U

2

−2χ0 = − 2
N
∑

i〈c†i↑c†i↓〉 ⇐⇒ mx = 2(−1)i〈c†i↑ci↓〉
(superconducting order) (staggered magnetization)

order type
1− n ⇐⇒ mz = 2〈Sz

i〉
(doping) (homogeneous magnetization)

Table 4.1: Correspondence between electronic orderings of the negative-U Hubbard model
away from half filling, (U < 0, B = 0, n 6= 1), and the attractive Hubbard model within a
uniform magnetic field B at half filling , (U > 0, B > 0, n = 1).

expansion [compare Sec. 1.7]. In this chapter we use the self-consistent perturbation
theory at fixed order parameter (PTFO) (Georges and Yedidia, 1991; van Dongen,
1994a).

The chapter is organized as follows. In Sec. 4.1 we solve the Hubbard model in
a uniform magnetic field within first-order self-consistent perturbation theory. In
subsection 4.1.3 we show that these results are equivalent to the HF approximation.
The asymptotic results for small U are derived in Appendix D.2. The second-order
corrections are subsequently calculated in Sec. 4.2. Many of the rather cumbersome
calculations are included in Appendix D.3, D.4 and D.5. It is then shown in Sec. 4.3
that the second-order corrections lead to an renormalization of the HF results. The
findings of this chapter are discussed in Sec. 4.4. Finally, a summary and outlook is
given in Sec. 4.5.

4.1 First-order Perturbation Theory

We assume a homogeneous magnetization mz in the z-direction and a staggered
magnetization mx in the x-direction. Then, the grand canonical Hamiltonian of the
Hubbard model with two additional Lagrange parameters to keep mz and mx fixed
has the form:

K =Ht +HU +HB + µ
[
N −

∑

iσ

niσ

]

+ hx(U)
[
Nmx − 2

∑

i

(−1)iSx
i

]
+ hz(U)

[
Nmz − 2

∑

i

Sz
i

]
,

(4.2)
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with the number of lattice sites N and the total number of particles N . At half filling
we have N = N . Here, Ht and HU are defined in (1.1) and the term HB introduces
a homogeneous (Zeeman) magnetic field in the z-direction:

HB = −B
∑

iσ

σniσ . (4.3)

The fields hz(U) and hx(U) are the Lagrange multipliers for the homogenous and
the staggered magnetization, respectively. Within PTFO, they are both expanded in
powers of the interaction U , according to

hx(U) = hx0(mz, mx) + hx1(mz, mx)U + hx2(mz, mx)U
2 + · · · (4.4)

≡ hx0 + hx1U + hx2U
2 + · · · ,

and

B + hz(U) = hz0(mz, mx) + hz1(mz , mx)U + hz2(mz, mx)U
2 + · · · (4.5)

≡ hz0 + hz1U + hz2U
2 + · · · .

As we focus on the half-filled band (n = 1), the chemical potential is exactly given by
µ(U) = 1

2
U , implying µ0 = 0. At half filling, we define the homogenous magnetization

mz by

〈niσ〉 =
1

2
(1 + σmz) . (4.6)

The staggered magnetization mx in x-direction is given by

〈Sx
i 〉 =

1

2
(−1)imx ≡

1

2
λimx . (4.7)

Here,

S
x,y,z
i =

1

2

∑

αγ

c†iασ
x,y,z
αγ ciγ (4.8)

are the spin operators with the Pauli matrices σx, σy and σz with spin index α and
γ. Note, mz = 2〈Sz

i〉. In a first step, the Hamiltonian (4.2) is split up into an exactly
solvable (U -independent) part K0 and the perturbation K1:

K = K0 +K1 , (4.9)

with

K0 = Ht +HB + hx0

[
Nmx − 2

∑

i

λiS
x
i

]
+ hz0

[
Nmz − 2

∑

i

Sz
i

]
, (4.10)
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and

K1 = HU +
U

2

[
N −

∑

iσ

niσ

]
+ [hx(U)− hx0 ]

[
Nmx − 2

∑

i

λiS
x
i

]

+ [hz(U)− hz0]
[
Nmz − 2

∑

i

Sz
i

]
.

(4.11)

In order to diagonalize K0, we Fourier transform the cj particles into momentum
space, using the relation

cjσ =
1√
N
∑

k

ckσe
ik·j , (4.12)

where k is defined in the Brillouin zone. The resulting Hamiltonian is then diagonal-
ized by a canonical transformation ckσ → dkσ of the form

ckσ = akσdkσ + bkσdk−Q,−σ . (4.13)

The real numbers akσ and bkσ are given by

akσ =

√
ηkσ + ǫkσ

2ηkσ
, bkσ = sign(ǫkσ)

√
ηkσ − ǫkσ

2ηkσ
, (4.14)

and

ηkσ = sign(ǫkσ)
√
ǫ2kσ + hx0

2 . (4.15)

Here, ǫkσ = ǫk − σh0 = ǫk − σ(B + hz0), with the dispersion of the square lattice in
d = 2, ǫk = −2t

∑
l=1,2 cos(kl), for U =0, and the nesting vector Q=(π, π). Finally,

K0 is diagonal in terms of the dkσ operators:

K0 =
∑

kσ

ηkσνkσ +N (hx0mx + hz0mz) , (4.16)

where νkσ = d†kσdkσ is the number operator of the new dkσ particles.

4.1.1 Self-Consistency Relations and Green Functions

The self-consistency relations between the field hz0 and the magnetization mz, as well
as between hx0 and mx, are obtained from

mx =
2

N
∑

i

λi〈c†i↑ci↓〉 = hx0

∞∫

−∞

dǫNd(ǫ)
1

ηǫ↑
tanh

(
1
2
βηǫ↑

)
, (4.17)
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and

mz = −2G0↑(0)− 1 = −
∞∫

−∞

dǫNd(ǫ)
ǫ↑
ηǫ↑

tanh
(

1
2
βηǫ↑

)
, (4.18)

with Gi↑(0) = −〈ni↑〉 and ǫ↑ = ǫ− h0. As the above relations are valid for arbitrary
dimension d, we supplement the density of states, Nd, with a suffix. Explicit expres-
sions for the hypercubic density of states exist only in d = 1, 2 [see, Appendix D.1].
The Green function in (4.18) of the ciσ particles (in position space) is defined by

Glσ(τ − τ ′) ≡ 〈Tτ cj+l,σ(τ)c
†
jσ(τ

′)〉 , (4.19)

with the time ordering operator Tτ . It can be expressed in terms of the Green
functions gkσ(τ) of the new particles dkσ, which is known because the Hamiltonian
(4.16) is diagonal (Negele and Orland, 1987):

〈Tτ dkσ(τ)d
†
k′σ′(τ

′)〉 = δkk′δσσ′gkσ(τ − τ ′) , (4.20)

where
gkσ(τ) = e−ηkστ

[
Θ(τ − 0+)(1− 〈νkσ〉)−Θ(0+ − τ)〈νkσ〉

]
(4.21)

and the step function Θ. One thus finds

Glσ(τ) =
1

N
∑

k

eik·l [a2
kσgkσ(τ) + b2kσgk−Q,−σ(τ)] , (4.22)

resulting in the self-consistency relation (4.18). Eq. (4.17) is obtained along similar
lines. In the limit T → 0, the self-consistency equations simplify to

mx(T = 0) = hx0

∞∫

−∞

dǫ
Nd(ǫ)

|ηǫ↑|
, (4.23)

and

mz(T = 0) = −
∞∫

−∞

dǫ
ǫ↑Nd(ǫ)

|ηǫ↑|
. (4.24)

4.1.2 Calculation of the Free Energy

The thermodynamic results to zeroth order in the interaction U immediately follow
from the definition of the free energy f0 per lattice site:

e−Nβf0 = Z0 = Tr e−βK0 , (4.25)
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where Z0 is the non-interacting partition function. Using the average number of the
dkσ particles, 〈νkσ〉 = (eβηkσ + 1)−1 , one finds

f0 = hx0mx + hz0mz −
1

Nβ
∑

kσ

ln
(
1 + e−βηkσ

)

= hx0mx + hz0mz −
2

β

∞∫

−∞

dǫNd(ǫ± h0) ln
[
2 cosh(1

2
βηǫ)

]
,

(4.26)

where the sign in the density Nd(ǫ ± h0) can be chosen freely. We recall that ηǫ
is defined as ηǫ = sign(ǫ)

√
ǫ2 + hx0

2. The optimization of f0 obviously shows no
magnetization, which is due to the fact that K0 is a noninteracting system.

In order to calculate the first-order contribution to the free energy, f1, the series
expansions of the fields hx and hz [(4.4) and (4.5)] are truncated already after the
first-order term:

K1 = HU+
U

2

[
N−

∑

iσ

niσ

]
+hx1U

[
Nmx−2

∑

i

λiSx
i

]
+hz1U

[
Nmz−2

∑

i

Sz
i

]
. (4.27)

Thus, f1 is given by:

f1 =
1

βN

∞∫

0

dτ 〈K1(τ)〉c0 (4.28)

=
U

βN

∞∫

0

dτ
∑

i

〈c†i↑ci↑c†i↓ci↓〉c0 . (4.29)

Here, the index c signifies that the average is taken over all connected diagrams only,
according to the linked cluster theorem (Negele and Orland, 1987). Using Wick’s
theorem one finds to first-order:

f1 =
U

N
∑

i

{
Gi↑(0)Gi↓(0)− 〈c†i↑ci↓〉0〈c†i↓ci↑〉0

}
(4.30)

=
U

4
[1− (m2

z +m2
x)] . (4.31)

Up to first order, we have for the free energy f :

f = f0 + f1

= hx0mx + hz0mz −
2

β

∞∫

−∞

dǫNd(ǫ± h0) ln
[
2 cosh(1

2
βηǫ)

]
+
U

4
[1− (m2

z +m2
x)] .

(4.32)
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The equilibrium value of the order parameter mx is then determined by minimizing
the free energy at fixed (U, T,mz). The same holds for the order parameter mz, but
keeping (U, T,mx) fixed, instead:

0
!
=

df

dmx
=

∂f0

∂mx
+

∂f1

∂mx
+
dhx0
dmx

(
∂f0

∂hx0
+
∂f1

∂hx0

)

= hx0 −
1

2
Umx ,

(4.33)

and

0
!
=

df

dmz
=

∂f0

∂mz
+
∂f1

∂mz
+
dhz0
dmz

(
∂f0

∂hz0
+
∂f1

∂hz0

)

= hz0 −
1

2
Umz ,

(4.34)

implying

hx0 =
1

2
mxU (4.35)

hz0 =
1

2
mzU . (4.36)

Here, the terms ∂f0
∂hx

0

and ∂f0
∂hz

0

vanish exactly, which follows from (4.18) and (4.17),

respectively. Furthermore, ∂f1
∂hx

0

= 0 and ∂f1
∂hz

0

= 0, as can be inferred from (4.31).

From (4.32) we also find the first order terms of the fields hx and hz by making use
of the Maxwell relations (Georges and Yedidia, 1991):

hx(mz, mx) =
∂hx
∂U

∣∣∣∣
U=0

=
∂2f1

∂U∂mx

∣∣∣∣
U=0

= −1

2
mx (4.37)

hz(mz, mx) =
∂hz
∂U

∣∣∣∣
U=0

=
∂2f1

∂U∂mz

∣∣∣∣
U=0

= −1

2
mz . (4.38)

At this point, it is time to comment on the magnetic field B: The system becomes
fully ferromagnetically ordered for a critical magnetic field Bc(U), which is defined
by mx = 0 and mz = 1. This corresponds to an empty system in the negative-U
picture. At zero temperature, the condition for Bc is expressed by:

mx = 0 ∨ 1 =
U

2

∞∫

−∞

dǫNd(ǫ)
1

|Bc + 1
2
U − ǫ| , (4.39)

mz = 1 ∨ 1 =

∞∫

−∞

dǫNd(ǫ) sign(Bc + 1
2
U − ǫ) . (4.40)

From (4.40) follows that Bc ≥ ǫ+ − 1
2
U , with the band edge ǫ+,3 while equation

3For the square lattice in d = 2, the band edges are at ǫ± = ±4t [see, e.g., Fig. D.1].
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(4.39) is identical to the exact criterion for Bc(U). Therefore, the evaluation of the
results of this chapter for values of the magnetic field larger than Bc is pointless. It
turns out in the remainder of this chapter, that self-consistent perturbation theory
to second order is not applicable also right at Bc, but it is applicable for the whole
range 0 < B < Bc [compare Sec. 4.4].

4.1.3 Hartree-Fock Approximation

The free energy of Eq. (4.32) can also be obtained within Hartree-Fock (HF) theory.
To allow for a staggered magnetization mx, the HF decoupling scheme takes the
following form:

ni↑ni↓
HF−→ 〈ni↑〉ni↓ + ni↑〈ni↓〉 − 〈ni↑〉〈ni↓〉

− c†i↑ci↓〈c†i↓ci↑〉 − 〈c†i↑ci↓〉c†i↓ci↑ + 〈c†i↑ci↓〉〈c†i↓ci↑〉 .
(4.41)

Applying this scheme to the grand canonical Hamiltonian of the Hubbard model H =
Ht+HU +HB +Hµ, with the contribution of the chemical potential Hµ = U

2

∑
iσ niσ,

we obtain (van Dongen, 2005):

KHF =
∑

kσ

ǫkσnkσ − Umx

∑

i

(−1)|i|Sx
i +

1

4
UN (m2

x +m2
z − 1) , (4.42)

where ηǫσ is defined in (4.15) with hx0 = 1
2
Umx and ǫkσ = ǫk − σ(B + 1

2
Umz). Here,

|i| denotes the Manhattan distance on the hypercubic lattice. The Hartree-Fock
Hamiltonian can then be diagonalized in the same manner as K0. One finds for the
ground state energy (van Dongen, 2005):

E0(mx, mz) ≡
E

N = −
∞∫

−∞

dǫNd(ǫ)|ηǫ↑|+
1

4
U(m2

x +m2
z + 1) , (4.43)

with ηǫσ = sign(ǫ− σh0)
√

(ǫ− σh0)2 + (1
2
Umx)2 and h0 = B + 1

2
Umz . This result

is equivalent to (4.32) in the limit T → 0, showing that HF theory yields the same
results as PTFO up to linear order in U .

The order parameters mx and mz can be calculated on the HF level from the
self-consistency relations (4.17) and (4.18). One obtains two solutions: the trivial
solutions mx = 0 and mz = 0 (which are the solutions of the high-temperature
phase) as well as the nontrivial solutions mHF

x > 0 and mHF
z > 0, respectively, which

have lower (Hartree) free energy. This is seen quickly, e.g., for mx as follows: Within
the HF approximation, the energy gain due to the symmetry breaking caused by mx
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Figure 4.1: Value of I2 for the DOS of the square lattice as a function of the field h0. In
the limit h0 → 0, Id exhibits a logarithmic divergence.

at fixed magnetization mz > 0 (i.e., at constant B with 0 < B < Bc) is given by

E0(mx, mz)− E0(0, mz) =
1

4
Um2

x −
∞∫

−∞

dǫNd(ǫ)
[√

(ǫ− h0)2 + (Umx/2)2 − |ǫ− h0|
]

∼ 1

4
Um2

x

[
1− UNd(h0) |ln(Umx)|

]
< 0 for mx ↓ 0 .

(4.44)

It is therefore favorable to have mx > 0 for all B < Bc .

In the following, we will summarize predictions of the Hartree-Fock theory con-
cerning, amongst other things, the order parameters, the critical temperature and
the gain in free energy due to the symmetry breaking in the limit U → 0. Details
of the calculations are presented in Appendix D.2. All quantities at HF level will be
denoted by the superscript HF.

Let us start with the critical temperature kBT
HF
c = (βHF

c )−1 which is defined by
setting mx(Tc) = 0 in (4.17). In the limit U → 0, the critical temperature is found
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to be exponentially small:

kBT
HF
c ∼ exp

(
Id −

1

UNd(h0)

)
, (4.45)

with corrections of the order of (kBTc)
2. The function Id is given by an integral

that is difficult to calculate exactly in d = 2. The numerical solution of I2 as a
function of the field h0 is plotted in Fig. 4.1. It reaches its maximum at the band
edges ǫ±. In the limit h0 → 0, the function I2 exhibits a logarithmic divergence:
I2(h0) ∼ (0.557±0.003) ln(h0). In the limit of large dimensions, however, the integral
Id can be solved exactly (van Dongen, 1994a):

Id = 3
2
ln 2 + 1

2
γ − ln π +

1

4d
+O( 1

d2
) ≃ 0.1836 +

1

4d
, (4.46)

where the 1
d
-correction is included. Comparing the results in d = ∞ with d = 2 of

Fig. 4.1 shows that the 1
d2

-corrections in the 1
d
-expansion must be large.

Similarly, also the order parameter mx is exponentially small:

mHF
x ∝ 4

U

√
ǫ2+ − B2 exp

(
− 1
UN(B)

)
. (4.47)

The exact value at T = 0 can be expressed in terms of the critical temperature βc:

mHF
x (T =0) =

2πe−γ

Uβc
, (4.48)

with Euler’s constant γ ≈ 0.577. The gap ratio Umx(0)/THF
c = 2πe−γ is therefore

identical to the standard BCS gap ratio [compare, e.g., Ashcroft and Mermin (1976)].
Correction terms at low temperatures are exponentially small:

mHF
x (θ) = mHF

x (T = 0)

[
1−

√
θπ

δ0
e−2δ0/θ

]
, (4.49)

with the rescaled temperature θ = T/Tc ≪ 1 and δ0 = 1
2
βcUmx(T = 0).

Finally, the gain in free energy per lattice site ΩHF due to the symmetry breaking
for T ≥ 0 fixed value of mz is given by

ΩHF ∼ −1

4
U2
[
mHF
x

]2
N2(h0) Φ(θ) (U ↓ 0) , (4.50)

with the integral Φ(θ):

Φ(θ) =

∞∫

0

dy

{
2θ

δ2
ln

[
cosh(

√
y2 + δ2/θ)

cosh(y/θ)

]
− tanh(y)

y

}
. (4.51)

which converges for all θ ∈ R
+.
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4.2 Second-Order Corrections

In this section, we calculate the second-order correction to the free energy. The
contributions fn for n = 0, 1, 2 are given by

f0 = hx0mx + hz0mz −
2

β

∞∫

−∞

dǫNd(ǫ± h0) ln
[
2 cosh(1

2
βηǫ)

]
(4.52)

f1 =
U

4
[1− (m2

z +m2
x)] (4.53)

f2 = − 1

2βN

β∫

0

β∫

0

dτ1 dτ2 〈K1(τ1)K1(τ2)〉c0 . (4.54)

In order to determine the perturbation K1 in second order, we need to truncate the
expansion of the fields hx and hz after the first order term. Employing the results for
hx1 and hz1 from (4.37) and (4.38), respectively, K1 can be written as

K1 = H̃U +
1

4
UN (1−m2

x −m2
z) , (4.55)

with
H̃U ≡ HU −HHF

U . (4.56)

Here, HHF
U denotes the Hartree Fock part of HU , which can most easily be inferred

from the Hartree Fock part of (HU − 1
2
U
∑

iσ niσ), which is given by

(
HU −

1

2
U
∑

iσ

niσ

)HF

= U
[
mz

∑

i

Szi −mx

∑

i

λiS
x
i − (1−m2

z −m2
x)
]
. (4.57)

Here, the advantage of subtracting the HF part from the interaction HU is the fact
that all direct (Hartree) diagrams and exchange (Fock) diagrams in the free energy
are already taken account of and thus do not need to be calculated explicitely. The
averages 〈· · ·〉c0 are calculated using Hartree Green functions with gap parameters hx0
and hz0.

The second-order contribution to the free energy, f2, is then transformed into
momentum space, using (4.12):

f2 = − U2

2βN 3

β∫

0

β∫

0

dτ1 dτ2
∑

k1...k8

〈c†k1↑(τ1)c
†
k3↑(τ1)ck4↑(τ1)ck2↑(τ1)

× c†k5↑(τ2)c
†
k7↑(τ2)ck8↑(τ2)ck6↑(τ2)〉

c
0 δ

∗
k1+k3,k2+k4

δ∗k5+k7,k6+k8
. (4.58)
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Here, the function δ∗kp takes into account also Umklapp processes:

δ∗kp =
1

N
∑

j

ei(k−p)·j =
∑

{K}
δk,p+K , (4.59)

where {K} are vectors of the reciprocal lattice and δkp is the usual Kronecker δ.
The thermal average 〈· · ·〉c0 in (4.58) is evaluated using Wick’s theorem (Negele

and Orland, 1987) resulting in the following four contractions, which are expressed
in terms of the HF Green functions: Gkk′σσ′(τ) ≡ 〈Tτ ckσ(τ)c†k′σ′(0)〉0. We then have:

f2 = − U2

2βN 3

β∫

0

β∫

0

dτ1 dτ2 I(τ12) , (4.60)

with

I(τ12) =
∑

1...8

{
G61,↑↑(−τ12)G83,↓↓(−τ12)G47,↓↓(τ12)G25,↑↑(τ12)

+G81,↓↑(−τ12)G63,↑↓(−τ12)G45,↓↑(τ12)G27,↑↓(τ12)

−G81,↓↑(−τ12)G63,↑↓(−τ12)G47,↓↓(τ12)G25,↑↑(τ12)

−G61,↑↑(−τ12)G83,↓↓(−τ12)G45,↓↑(τ12)G27,↑↓(τ12)
}

× δ∗
1+3,2+4

δ∗
5+7,6+8

,

(4.61)

where τ12 = τ1 − τ2. Here, 1 denotes k1 and so forth. By relabeling the indices
(1234)→ (5678) one finds that I(τ) is symmetric [I(τ) = I(−τ)] and periodic with
period β. Therefore, the integrals in (4.60) simplify to

f2 = − U
2

N 3

β/2∫

0

dτ I(τ) . (4.62)

The Green functions Gkk′σσ′(τ) can be expressed in terms of the dkσ particles, similar
to (4.22):

Gkk′σσ′(τ) = δkk′ δσσ′Akσ(τ) + δk,k′−Q δσ,−σ′Bkσ(τ) , (4.63)

with

Akσ(τ) = a2
kσgkσ(τ) + b2kσgk−Q,−σ(τ) (4.64)

Bkσ(τ) = akσbkσ[gk−Q,−σ(τ)− gkσ(τ)] , (4.65)
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and the Green functions gkσ of the dkσ particles, which are defined in (4.21). The
following symmetry relations are useful for the further evaluation of f2:

Akσ(−τ) = −Ak−Q,−σ(τ) (4.66)

Bkσ(−τ) = Bk−Q,−σ(τ) (4.67)

Bk−Q,−σ(τ) = Bkσ(τ) . (4.68)

For β →∞ the expressions Akσ and Bkσ are given by

Akσ(τ) =
1

2

(
1 +

ǫkσ
|ηkσ|

)
e−|ηkσ |τ (4.69)

Bkσ(τ) = − hx0
2|ηkσ|

e−|ηkσ|τ . (4.70)

Inserting the expression of the Green function Gkk′ (4.63) into (4.61) one finds that
one of the two δ∗-constraints is automatically fulfilled. Employing the expressions of
A and B for the ground state, (4.69), and symmetrizing the resulting integrand with
transformations of the form

(1, 3)→ (3−Q, 1−Q)

(2, 4)→ (4−Q, 2−Q) ,
(4.71)

yields

f2 = −U
2

16

∫∫∫∫

1.BZ

d1 . . . d4

(2π)3d
δ∗(1 + 3− 2− 4)F (η1↑, η2↑, η3↓, η4↓; ǫ1↑, ǫ2↑, ǫ3↓, ǫ4↓; h

x
0) ,

(4.72)
with

F (. . . ; . . . ; hx0) =

[
1 +

ǫ1↑ǫ3↓−(hx
0 )2

|η1↑η3↓|

][
1 +

ǫ2↑ǫ4↓−(hx
0 )2

|η2↑η4↓|

]

(
|η1↑|+ |η2↑|+ |η3↓|+ |η4↓|

) , (4.73)

where the sum over k in (4.61) is replaced by the integral over the 1st Brillouin zone,
as indicated.

The self-consistency condition (1.53) for the order parameter implies that we do
not need to calculate f2, but only the derivative with respect to the order parameters,

1

hx0

df2

dhx0
and

1

hz0

df2

dhz0
. (4.74)

Hence, we need the derivatives of F with respect to hx0 and hz0. Using transformations
of the type (4.71) one finds:

df2

dhx0
= −U

2

16

∫∫∫∫

1.BZ

d1 . . . d4

(2π)3d
δ∗(1 + 3− 2− 4)

[
4
hx0
|η1↑|

∂F

∂|η1↑|
+ 2hx0

∂F

∂(hx0)
2

]
(4.75)
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For the further evaluation it is useful to consider the terms containing ∂F
∂|η| and ∂F

∂(hx
0 )2

separately. Some basic transformations, including the substitution q1 = 2 − 1 and
q2 = 3− 4 yields

df2

dhx0
= −U

2hx0
4

[Tη(h
x
0) + Th(h

x
0)] , (4.76)

with

Th(h
x
0) =

∫∫∫

1.BZ

d1d4dq

(2π)3d

−1(
|η1↑|+ |η1+q,↑|+ |η4+q,↓|+ |η4↓|

)
|η1↑η4↓|

×
{

1 +
ǫ1+q,↑ǫ4↓
|η1+q,↑η4↓|

− (hx0)
2

|η1+q,↑η4↓|

}
(4.77)

= −(Ih1
+ Ih3

− (hx0)
2Ih2

) , (4.78)

(4.79)

and

Tη(h
x
0) =

∫∫∫

1.BZ

d1d4dq

(2π)3d

1

|η1↑|
∂F

∂|η1↑|
. (4.80)

As second-order perturbation theory is only meaningful when its corrections are
smaller than the Hartree-Fock results, one expects that hx0 is exponentially small.
We therefore need to know the behavior of df2/dh

x
0 for exponentially small hx0 . One

finds that the leading contribution in the limit hx0 → 0 is due to the integrals Ih1
and

Ih3
, which are of the same order. For general values of the magnetic field B, with

hx0 ≪ B < Bc, both integrals can be evaluated analytically to a certain extent. The
calculation is shown in Appendix D.3. The divergences that appear in the remaining
terms (including the terms that result from df2/dh

z
0) are weaker and can therefore be

neglected.
One finds that

Ih1
+ Ih3

∼ 4

[
ln

(
t

hx0

)]2

LS(h0) , (4.81)

where LS(h0) is a lattice sum that has to be evaluated numerically for generic values
of the field h0. The explicit expression of LS(h0) as well as the method used for its
numerical computation are presented in Appendix D.4. One finds that the lattice sum
LS(h0) can be computed in real space for values of the field h0 for which the following
relation holds: hx0 ≪ h0 < Bc. The restriction to values of h0 that are much larger
than the symmetry breaking field hx0 is due to the logarithmic van Hove singularity
in the density of states N2(ǫ) in d = 2 that appears at ǫ = 0 [see Appendix D.1]. If
h0 ∼ O(hx0), the logarithmic divergence of Ih1

becomes at least of the order of ln(hx0)
4.



134 4. The Attractive Hubbard Model at weak Coupling

This is due to the energy integration in (D.29), which, in that case, becomes of the
order of ln(hx0)

2. This behavior is obvious, because the limit h0 → 0 corresponds
to the Hubbard model without magnetic field B, for which it was shown explicitly
that self-consistent perturbation theory diverges in the symmetry-broken phase for
d ≤ 2 (Schauerte and van Dongen, 2002). Next, the restriction of the field h0 to
values below the critical magnetic field Bc = 4t is due to the fact that all lattice sites
contribute almost equally to the lattice sum LS(h0) as h0 → Bc. This can be seen,
e.g., in Fig. D.2. In the limit h0 → Bc, the integral Ih1

(and similarly Ih3
) is therefore

most conveniently evaluated in momentum space. The analytical calculation in this
limit is performed in Appendix D.5. As a result, one finds for the integral Ih1

:

Ih1
∼ 1

25(π t)3
ln

(
1

b

)[
ln

(
t

hx0

)]2

, (4.82)

with the parameter b = (Bc − h0)/t. Thus, the leading order of the logarithmic
divergence in hx0 is unchanged, but one obtains an additional logarithmic divergence
in b.

4.3 Renormalization of the Hartree Results

The order parameter in second-order perturbation theory can now be obtained by op-
timizing the free energy f = f0+f1+f2, which is the sum of the Hartree contributions
and the second-order corrections. The equilibrium equation for mx is

0 =
df

dmx

∼ hx0 −
1

2
Umx +

df2

dhx0

dhx0
dmx

.
(4.83)

The self-consistency equation (4.17) for the field hx0 and the magnetization mx for
T = 0 implies mx ∼ 2 hx0 N2(h0) ln(1/hx0) for hx0 ↓ 0. Thus

dhx0
dmx

∼ 1

2hx0N2(h0) ln(1/hx0)
. (4.84)

In both cases, in the limit h0 → Bc (case 1) and for generic values of h0 with
hx0 ≪ h0 < Bc (case 2), the derivative df2/dh

x
0 can be expressed by

∂f2

∂hx0
∼ 1

4
hx0U

2 (Ih1
+ Ih3

) = hx0 PU
2

[
ln

(
t

hx0

)]2

, (4.85)
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with

P = LS(h0) for hx0 ≪ h0 < Bc (4.86)

P ∼ (4πt)−3 ln

(
1

b

)
for h0 → Bc , with b = (Bc − h0)/t . (4.87)

When combining the results, equation (4.83) can be written as

hx0 ∼
1

2
Umx

1

1 + ξUN(h0)
with ξ =

P

2[N(h0)]3

=
1

2
aUmx with a =

1

1 + ξUN(h0)
. (4.88)

Inserting (4.88) into the self-consistency equation (4.17) and comparing with the
Hartree result (D.13), shows that mx has the same form as the staggered magne-
tization in Hartree approximation, mHF

x , if one replaces U → aU . Therefore, the
symmetry-breaking field can be expressed in terms of the Hartree result times a
renormalization factor:

hx0 ∼ q hx0
HF , (4.89)

with

q = e−ξ for hx0 ≪ h0 < Bc (4.90)

q ∼
√
b for h0 → Bc . (4.91)

Note, that the q factor in (4.91) is correct only up to an unknown exponent of the order
of unity, which is due to the approximation (D.60) in Appendix D.5. The identical
replacement can be performed in the defining equation of the critical temperature
Tc, (D.6), implying that the Hartree critical temperature THF

c is renormalized by the
same factor q:

Tc ∼ q THF
c for U ↓ 0 . (4.92)

The self-consistency relation for the order parameter mx, (D.15), can be treated in
precisely the same manner, by redefining Θ ≡ T/Tc and δ = 1

2
βcUmx. One finds

that the order parameter is similarly renormalized by the factor q, evaluated at the
temperature T/q:

mx(T ) ∼ q mHF
x (T/q) for U ↓ 0 . (4.93)

The gain in free energy due to the symmetry breaking is directly inferred from (4.50):

Ω ∼ −1

4
U2 [mx(T )]2N2(h0) Φ(θ)

∼ q2 ΩHF(T/q) .
(4.94)
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Figure 4.2: Renormalization factor q in d = 2 as a function of the magnetic field h0 =
B +hz0. For small values of h0, the approximations performed in the derivation of q are not
valid any more. This regime is indicated by the dotted (black) line. In the limit h0 → Bc,
the q factor vanishes as

√
b, with b = (Bc−h0)/t. This behavior is indicated by the dashed

(blue) line. The vanishing of the q-factor is seen in the numerical data only for h0 & 3.99
(one data point).

Thus, since Ω < 0 for T < Tc, the symmetry breaking is stable also within second-
order perturbation theory, where fluctuations are taken into account.

The renormalization factor q in d = 2 is depicted in Fig. 4.2 as a function of
the field h0. For intermediate h0 values, q is of the order of unity and only weakly
dependent on the symmetry breaking field h0. For these values, q reaches a minimum
for h0 ≈ 0.8 with q ≃ (0.2670 ± 0.0007). In the limit h0 → Bc (i.e., b → 0), the
renormalization factor q vanishes as

√
b, as is indicated by the dotted (blue) line.

This drop in q is captured by the numerical estimates only for values of h0, very
close to Bc (compare, e.g., h0 = 3.99). In this regime, the numerical evaluation
of the lattice sum LS(h0) becomes unreasonably difficult because more and more
lattice sites contribute almost equally to the lattice sum. This feature is illustrated
in Fig. D.2. The behavior of q in the limit h0 → 0 is indicated by the dotted (blue)
line in Fig. 4.2.
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4.4 Discussion

In this chapter we studied the negative-U Hubbard model as a function of the chem-
ical potential in second-order self-consistent perturbation theory in two spatial di-
mensions.

The above findings show that sc perturbation theory gives asymptotically exact
results in d = 2 at finite doping. For generic values of the field h0, with hx0 ≪ h0 < Bc

(i.e., 0 < n < 1 in the negative-U picture), the Hartree-Fock results are renormalized
by a factor q(h0), which is positive and smaller than unity. Thus, the Hartree-Fock
predictions are not only relevant for dimensions d > 2 but also in d = 2 if the system
is doped. Quantitatively, however, the HF results are not a good approximation:
Even for arbitrarily weak interaction (U → 0), the HF results are rescaled by a
factor of about 3− 4 for generic values of h0. Consequently, the HF results are also
renormalized at finite U . Higher order corrections are expected to be negligible in the
limit U → 0, on account of the results for d ≥ 3 with B = 0 (van Dongen, 1991; van
Dongen, 1994a). Exactly the same result, namely the renormalization of the HF
results by factor of the order of unity, was found by van Dongen (1991) [compare also
van Dongen (1994a)] for the extended Hubbard model in d & 3 and by Schauerte and
van Dongen (2002) for the Hubbard model in d = 3 (both at half-filling). In d = 2 and
at finite doping, a renormalization of the HF results was obtained earlier by Mart́ın-
Rodero and Flores (1992), however, within an essentially uncontrolled expansion
of the self-energy.4 For a simplified5 density of states and by approximating the
second-order contribution of the self-energy by its local part, they found a (filling-
independent) renormalization factor q = 1

4
.

It is instructive to consider the dependence of the renormalization factor on the
symmetry breaking field h0 in detail. For intermediate h0 values (i.e. hx0 ≪ h0 < Bc),
the q factor is weakly increasing as a function of h0. The numerical value ranges
from q(0.6) ≃ 0.268 to q(3.9) ≃ 0.393. Here, the results can be compared directly
to the renormalization occurring in the positive-U Hubbard model at half filling in
d ≥ 3, since it can be mapped on the negative-U Hubbard model by a particle-hole
transformation. In d = 3, the Hartree results are renormalized by a factor q ≃ 0.2599
(Schauerte and van Dongen, 2002). The renormalization for intermediate h0 values
is therefore weaker than in d = 3 at half filling.6

4Here, the self-energy was assumed to be frequency independent.
5Here, the unperturbed density of states in d = 2 was approximated by N2(ǫ) ∼ 1/ǫ for |ǫ| < ǫ+

(Mart́ın-Rodero and Flores, 1992).
6It is also interesting to note that the structure of the lattice sum in d = 3 differs from LS(h0)

in our case: In d = 3, only lattice sites with an even distance |j| from a central site 0 contribute
to the lattice sum due to a different symmetry of the Green function for even and odd values of |j|
(Schauerte and van Dongen, 2002). At negative U and away from half filling, however, even and
odd lattice sites both contribute significantly to the lattice sum.
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Let us now focus on the case h0 → Bc [which corresponds to the limit n → 0
(empty band) in the negative-U picture]. In this limit, more and more lattice sites
contribute significantly to the lattice sum LS(h0), as can be seen, e.g., in Fig. D.2.
Here, the leading contribution to the integral Ih1

is due to a small region in momentum
space, resulting in an additional logarithmic divergence ln(1/b). Consequently, the
renormalization factor vanishes as q ∼

√
b for b → 0. This behavior is surprising at

first sight: Taking the limit b → 0, corresponds, in the negative-U picture, to the
limit of an empty system, which one expects to be adequately described by a mean-
field theory. Consequently one would expect that the renormalization factor becomes
unity in this limit. In d = 2, however, the density of states displays a discontinuity
right at the band edge ǫ = ±ǫ+ . The occurrence of the discontinuity seems to be the
reason for the inapplicability of sc perturbation theory in this limit. For dimensions
d ≥ 2, however, the DOS vanishes at the band edge (at least for hypercubic lattices).
As a consequence, the exponent ξ in the definition of the renormalization factor q in
(4.88) diverges,7 implying q → 1 in this limit. Sc perturbation theory yields therefore
exact results in d = 3 for all fillings.

Next, let us consider the behavior of the renormalization factor as h0 → 0 [which
corresponds to the limit n → 1 (half-filled band) in the negative-U picture]. In this
case, it is already known that sc perturbation theory diverges in dimensions d ≤ 2
(Schauerte and van Dongen (2002); see also Kopietz (1993) for the second-order term
in the expansion). Here, the quantum fluctuations completely destroy the mean-field
results. The reason for the breakdown of sc perturbation theory in d = 2 is due to
the logarithmic divergence of the DOS at the Fermi level, which gives an extra factor
ln(hx0) to each energy integration in the expansion of the free energy. In our case, the
approximations performed to derive the result (4.81) loose their validity. One expects
that the logarithmic divergence in hx0 of (4.81) is at least of the order of ln(hx0)

4 due
to the additional logarithmic divergence in the DOS.

Let us finally remark on the relevance of the above findings to superconductivity.
The renormalization of the order parameters for the model (U > 0, B > 0, n = 1)
implies that the superconducting transition temperature T sc and the superconducting
order parameter χ0 differ from the BCS predictions by the same factor. The exact
gap ratio Umx(0)/kBTc is found to identical to the BCS gap ratio 2πe−γ ≃ 3.5285.

The most important conclusion of the above findings is the fact that Hartree-Fock
theory (and thus also sc perturbation theory) is relevant for the description of the
negative-U Hubbard model at finite doping. In the limits h0 → 0 and h0 → Bc,
however, sc perturbation theory is not applicable.

7Here, the logarithmic divergence in b is retained, such that in d = 3, the integral Ih1
in (4.82)

remains unchanged (except for the prefactors) and corresponds to the factor P in (4.88).
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4.5 Summary and Outlook

In this section we have studied the negative-U Hubbard model away from half filling
within self-consistent second-order perturbation theory on a hypercubic lattice in
d = 2. The calculations were performed for the repulsive Hubbard model within a
homogenous magnetic field B at half filling, to which the negative-U model can be
mapped by a special particle-hole transformation. We found that the Hartree-Fock
results for the critical temperature and the order parameter are not exact even in the
limit U → 0, but have to be renormalized by a factor of the order of unity. For finite
doping n, with 0 < n < 1, the renormalization factor can be expressed in terms of
a lattice sum that explicitly depends on the doping. A numerical evaluation shows
that the q values are within the range q ≈ 0.25 − 0.4 at finite doping from not too
close to 1. The Hartree-Fock results are therefore rescaled by a factor 2.5 − 4. We
also found that the exact gap ratio Umx(0)/kBTc in the limit U → 0 is identical to
the Hartree-Fock gap ratio 2πe−γ ≃ 3.5285. In the limit n → 0 (i.e., B → Bc), the
renormalization factor can be calculated exactly and vanishes as q ∼

√
(Bc −B)/t.

This implies that sc perturbation theory is not applicable in this limit. A similar
result is known for the half-filled case (n = 1 or B = 0), for which Schauerte and van
Dongen (2002) showed that sc perturbation theory diverges in d ≤ 2. In summary,
we have presented the first asymptotically exact results at weak-coupling for the
negative-U Hubbard model in d = 2 for finite doping.

There are several possibilities to extend the results of this work. First of all, it
would be interesting to investigate the region close to half-filling, which could shed
light on the divergence of sc perturbation theory at half-filling. Another extension
is to study the model for the occurrence of a finite temperature Kosterlitz-Thouless
transition (Kosterlitz and Thouless, 1973), for which numerical evidence has been
found already (Scalettar, Loh, Gubernatis, Moreo, White, Scalapino, Sugar and
Dagotto, 1989; Moreo and Scalapino, 1991). Away from half-filling, such a tran-
sition is expected due to the symmetry breaking induced by the chemical potential
µ (or the field B), which forces the spins to lie in the x−y plane, but canted towards
the z axis. The Hubbard model away from half filling and in d = 2 is thus in the
XY -symmetry class of the Heisenberg model. Another direction of a generalization
would be to include also nearest-neighbor Coulomb interactions V (extended Hub-
bard model), where V is negative [the case (V > 0, d & 3) was treated by van Dongen
(1994a)].
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High-Frequency corrected QMC Simulations

In chapter 2 we developed a scheme that supplements the DMFT+QMC with high-
frequency corrections (QMC+ 1

ω
). The method is based on a large-frequency ex-

pansion of the self-energy. The coefficients of the expansion, which can be derived
rigorously from the moments of the spectral density, have to be determined self-
consistently. We implemented the scheme into an existing multi-band code and sub-
sequently demonstrated its applicability to the multi-orbital Hubbard model at half
filling in a comparison with reference schemes. The QMC+ 1

ω
scheme thereby reduces

the error of the DMFT+QMC method to the inevitable Trotter error. The error
associated with the discrete Fourier transformations, which are needed twice in the
DMFT iteration cycle, is essentially eliminated. At large frequencies, the solutions of
the self-energies are correct up to order 1

ω
, the solutions of the Green functions up to

order 1
ω2 . In a systematic study we showed that the solutions of the QMC+ 1

ω
method

can be optimized also at intermediate frequencies (in terms of oscillations around the
large-frequency behavior). The QMC+ 1

ω
scheme therefore allows for extremely pre-

cise solutions already for large values of the discretization ∆τ . A scheme with these
properties is needed especially for the simulation of multi-orbital systems, where the
numerical effort (which scales like 22m(m−1)L3

, with L = β/∆τ and the number of
orbitals m) is too large to allow for calculations at low temperatures or small values
of ∆τ .

Orbital-Selective Mott Transitions

In chapter 3 we studied the anisotropic two-band Hubbard model (Jz-model) with
bandwidth ratio W2/W1 = 2 and interaction parameters U = U ′ + 2Jz within the
DMFT+QMC in the fully frustrated phase at finite temperatures. Using the high-
precision QMC algorithm developed in chapter 2, we found two successive metal-
insulator transitions and thus corrected earlier QMC results from Liebsch (2004).
We could therefore show that the additional spin-flip and pair-hopping terms that
arise in the full J-model, which clearly exhibits an OSMT, are not a prerequisite
for the OSMT scenario. We calculated estimates for the critical interactions of the
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two transitions and for the critical temperature below which the narrow band ex-
hibits a first-order transition. The second transition of the wide band is of second
order for the examined temperatures. We also found that the OSM phase exhibits
non-Fermi-liquid behavior. The QMC data was further compared to an expansion
of the internal energy within weak-coupling perturbation theory. We determined the
magnetic phase diagram of the Jz-model and compared it to results from weak- and
strong-coupling expansions. Relevant microscopic mechanisms of frustration were
discussed afterwards. The close connection of the physics of the Jz-model within the
OSM phase to the spinless Falicov-Kimball (FK) model was subsequently investi-
gated. For this purpose, we studied the solution of an exact mean-field theory of the
FK model in the limit of infinite dimensions on a Bethe lattice. We found that the
FK model exhibits an OSMT, where both transitions are of second-order. The anal-
ogy to the OSM phase was further revealed in a comparison of observables. Finally,
we analyzed the influence of an additional hybridization to the FK Hamiltonian on
the phase diagram.

Attractive Hubbard Model in d = 2

In chapter 4 we studied the negative-U Hubbard model on a square lattice in two
spatial dimensions at weak-coupling within self-consistent second-order perturbation
theory in the low-temperature limit at finite doping. First, we reviewed the Hartree-
Fock results with special emphasis on the order parameter and the critical temper-
ature in the limit of an asymptotically small interaction U . The calculation of the
second-order corrections then revealed that the HF results are renormalized by a
factor of the order of unity even at arbitrarily weak interaction (U → 0). The renor-
malization factor was evaluated as a function of the chemical potential (or equiva-
lently, the magnetic field B in the repulsive-U picture) for finite doping 1− n (with
0 < n < 1). We found that the renormalization factor can be calculated exactly in
the limit n→ 0 (i.e., B → Bc) and vanishes as q ∼ √Bc − B , which implies that sc
perturbation theory is not applicable in this limit. Furthermore, we observed, that
the exact gap ratio Umx(0)/kBTc in the limit U → 0 is identical to the BCS gap
ratio 2πe−γ ≃ 3.5285. In summary, we have presented the first asymptotically exact
results at weak-coupling for the negative-U Hubbard model in d = 2 at finite doping.
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Appendix A

Auxiliary Calculations for
Chapter 1

A.1 Particle-Hole Transformations

of the Attractive Hubbard Model

In this section it is shown how the repulsive, half-filled Hubbard model in a magnetic
field can be mapped onto the negative-U Hubbard model away from half filling. The
mapping is based on a particle-hole transformation and is valid for bipartite lattices.

The Hamiltonian HR of the repulsive Hubbard model in a homogeneous magnetic
field B is given by:

HR = Ht +HU +Hµ +HB (A.1)

= Ht +HU +Hµ − B
∑

iσ

σniσ . (A.2)

Using the particle-hole transformation that transforms electrons to holes and vice
versa for both spin species on bipartite lattices,

T1 : c†iσ 7→ (−1)i ciσ ; σ =↑ , ↓ , (A.3)

one can easily show that the band is half-filled at all temperatures for the chemical
potential µ = U

2
. This also implies that the phase diagram is symmetric about

half filling, 〈n〉 = 1. The Hamiltonian (A.1) at half filling can then be mapped
to the attractive Hubbard model (HA) away from half filling, when restricting the
transformation (A.3) only to one spin species, e.g., the spin up electrons:

T2 : c†i↑ 7→ (−1)i ci↑ ,

ci↑ 7→ (−1)i c†i↑ .
(A.4)
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This can be seen as follows. The operator of the kinetic energy, Ht, is invariant
under the mapping T2:

Ht = −t
∑

〈ij〉σ

(
c†iσcjσ + H.c.

)
7→ −t

∑

〈ij〉

(
−ci↑c†j↑ + c†i↓cj↓ + H.c.

)
= Ht . (A.5)

The potential energy HU is transformed according to:

HU = U
∑

i

ni↑ni↓ 7→ U
∑

i

(1− ni↑)ni↓ . (A.6)

The chemical potential of the Hubbard model in a magnetic field (1.8) at half filling
is exactly given by µ = U

2
, thus

Hµ = −U
2

∑

iσ

niσ 7→ −U
2

∑

iσ

(1− ni↑ + ni↓) . (A.7)

Finally, the contribution of the magnetic field, HB, is transformed as:

HB = −B
∑

iσ

σniσ 7→ −B
∑

i

(1− ni↑ − ni↓) . (A.8)

Thus the Hamiltonian HR = Ht + HU + Hµ + HB of (1.8) is mapped onto the
Hamiltonian HA according to

HR 7→ HA = Ht − U
∑

i

ni↑ni↓ +
(
U
2

+B
)∑

iσ

niσ −N
(
B + U

2

)

= Ht′=t +HU ′=−U +Hµ′=−(U/2+B) + const.

(A.9)

Hence, HA corresponds to the negative-U Hubbard model away from half filling, with
the chemical potential lowered by a constant U+B.

Assuming a homogeneous magnetization in the z-direction and a staggered mag-
netization in the x-direction, one can define the corresponding order parameters as
follows:

1

2
(1 + σmz) ≡ 〈niσ〉 (A.10)

1

2
(−1)imx ≡ 〈c†i↓ci↑〉 , (A.11)

where the definition in (A.11) is proper because the y-component of the staggered
magnetization is assumed to vanish exactly. Employing T2 one finds that the order
parameters are transformed according to

mz = 〈ni↑〉 − 〈ni↓〉 7→ 〈1− ni↑ − ni↓〉 ≡ 1− n (A.12)

mx 7→ −2〈c†i↓c†i↑〉 ≡ −2χ0 , (A.13)
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with the doping n and the singlet superconducting order parameter χ0. Thus the
homogenous magnetization in the z-direction of the Hamiltonian HR corresponds
to the doping (more explicitely, 1 − n) in the transformed Hamiltonian HA. Simi-
larly, the staggered magnetization in the XY plane of HR corresponds to the singlet
superconducting order parameter in the negative-U Hubbard model.
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Appendix B

High-Frequency Expansion of the
Self-Energy

In this part it is shown, how the coefficients of the high-frequency expansion of the
self-energy can be computed analytically. This was done by Potthoff et al. (1997) for
the single-band Hubbard model and by Oudovenko et al. (2005) and independently
by Knecht (2002) for the multi-band model.

B.1 Single-Band Case

Starting point of the expansion of the self-energy is the single-impurity Anderson
model (SIAM) which can be mapped onto the Hubbard model in the limit of infinite
dimensionality. The Hamiltonian of the SIAM, which describes an impurity coupled
to itinerant band-electrons, is given by:

HSIAM =
∑

kσ

(ǫk − µ)c†kσckσ +
∑

σ

(ǫd − µ)d†σdσ

+ Und↑nd−↓ +
∑

kσ

Vkd

(
d†σckσ + c†kσdσ

)
.

(B.1)

Here, c†kσ, ckσ denote the creation and destruction operators of the itinerant electrons;
d†σ, dσ are the corresponding operators of the Wannier electrons of the d-orbital of
the impurity. U is the on-site Coulomb interaction and Vkd is the hybridization-
matrix of the itinerant electrons with the impurity. For the actual calculation, the
hybridization appears only in the hybridization function:

∆(ω) =
∑

k

V 2
kd

ω − ǫk
. (B.2)
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The self-consistency relation, which connects the SIAM in d = ∞ to the Hubbard
model is given by (Jarrell, 1992; Georges and Kotliar, 1992):

∆σ(ω + µ) = ω − (ǫd − µ)− Σσ(ω)−Gσ(ω)−1 . (B.3)

This relation allows to identify the Green function Gdσ and the self-energy Σdσ of the
d-orbital of the SIAM with the corresponding Green function Gσ and self-energy Σσ

of the Hubbard model.
For the high-frequency expansion, one needs the spectral function Adσ(ω), which

is connected to the Green function via:

Adσ(ω) = −1

π
ImGdσ(ω + i0+) . (B.4)

The Green function can also be expressed in terms of the spectral function:

Gdσ(ω) =

∞∫

−∞

Adσ(ω
′)

ω − ω′ dω
′ . (B.5)

Expanding the denominator of (B.5) in terms of 1
ω
, one finds:

Gdσ(ω) =

∞∑

m=0

1

ωm+1
M

(m)
dσ , (B.6)

where M
(m)
dσ denote the moments of the spectral density:

M
(m)
dσ =

∞∫

−∞

ωmAdσ(ω)dω . (B.7)

A similar expansion of the self-energy yields:

Σdσ(ω) =

∞∑

m=0

1

ωm
C

(m)
dσ . (B.8)

Here, C
(m)
dσ are the coefficients of interest for the development of the model self-energy

in chapter 2. When also expanding the hybridization function (B.2) in terms of 1
ω

one

obtains the coefficients C
(m)
dσ by comparison of coefficients using the Dyson equation

(B.3). The coefficients C
(m)
dσ are then dependent upon the spectral moments (B.7),

for which a completely equivalent representation is given by:

M
(m)
dσ = 〈[Lmdσ, d†σ]+〉, (B.9)
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where LO ≡ [O, HSIAM]− labels the anticommutator of the operator O with the
Hamiltonian, and [ , ]+ labels the commutator. This representation of the spec-
tral moments can be derived using the Heisenberg equation of motion for the time-
dependent operators in the definition of the spectral density.

For the single-band Hubbard model, the first three moments of the spectral func-
tion are given by (Potthoff et al., 1997):

M
(0)
dσ = 1

M
(1)
dσ = ǫ̃d + U〈nd−σ〉

M
(2)
dσ = ǫ̃ 2

d + 2ǫ̃dU〈nd−σ〉+ U2〈nd−σ〉+
∑

k

V 2
kd

M
(3)
dσ = ǫ̃ 3

d + 3ǫ̃ 2
d + ǫ̃dU

2〈nd−σ〉(2 + 〈nd−σ〉) + U3〈nd−σ〉
+
∑

k

V 2
kd(ǫ̃k + 2ǫ̃d + 2U〈nd−σ〉) + U2〈nd−σ〉(1− 〈nd−σ〉)B̃d−σ .

(B.10)

Here, ǫ̃d,k = ǫd,k − µ and B̃dσ = Bdσ − µ, with

B̃dσ = ǫ̃d +
1

〈ndσ〉(1− 〈ndσ〉)
∑

k

Vkd〈c†kσdσ(2nd−σ − 1)〉 . (B.11)

Note, that the moments up to second order are dependent only upon one-particle
expectation values. Higher-order correlation functions enter only for third order
moments and higher.

The coefficients of the self-energy are then given by:

C
(0)
dσ = U〈nd−σ〉

C
(1)
dσ = U2〈nd−σ〉(1− 〈nd−σ〉)

C
(2)
dσ = U2〈nd−σ〉(1− 〈nd−σ〉)(B̃d−σ + U(1− 〈nd−σ〉)) .

(B.12)

The high-frequency behavior of the self-energy is, therefore, determined by the coef-
ficient C

(1)
dσ , which is a function of the on-site interaction U and the density, only.

B.2 Multi-Band Case

The high-frequency expansion of the self-energy for the multi-band case is performed
analogously. The SIAM must be expanded to include multiple bands which are cou-
pled in the same way as the bands in the multi-band Hubbard model. The Hamilto-
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nian of such a multi-band SIAM is then given by:

HSIAM+ =
∑

kα

(ǫkα − µ)c†kαckα +
∑

α

(ǫα − µ)d†αdα

+
1

2

∑

α6=β
Uαβnαnβ +

∑

kα

Vkα

(
d†αckα + c†kαdα

)
,

(B.13)

with multi-indices α, β combining spin σ and band m: α = m, σ. The matrix Uαβ is
defined by:

Uαβ =




0 U U ′ − Jz U ′ U ′ − Jz U ′

U 0 U ′ U ′ − Jz U ′ U ′ − Jz

U ′ − Jz U ′ 0 U U ′ − Jz U ′

U ′ U ′ − Jz U 0 U ′ U ′ − Jz

U ′ − Jz U ′ U ′ − Jz U ′ 0 U
U ′ U ′ − Jz U ′ U ′ − Jz U 0




. (B.14)

A similar evaluation of the defining equation of the moments of the spectral density
yields:

M (0)
γ = 1 (B.15)

M (1)
γ = ǫ̃γ +

∑

α6=γ
Uγα〈nα〉 (B.16)

M (2)
γ = ǫ̃ 2

γ + 2ǫ̃γ
∑

α6=γ
Uγα〈nα〉+

∑

α6=γ

∑

β 6=γ
UγαUγβ〈nαnβ〉+

∑

k

V 2
kγ . (B.17)

In contrast to the single-band case, two-particle correlation functions appear already
in the second moment. For the coefficients of the self-energy one finds:

C(0)
γ =

∑

β 6=γ
Uβγ〈nβ〉 (B.18)

C(1)
γ =

∑

α6=γ

∑

β 6=γ
UαγUβγ(〈nαnβ〉 − 〈nα〉〈nβ〉) . (B.19)

The correlation function 〈nαnβ〉 can be computed self-consistently within the
DMFT+QMC algorithm.
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Appendix C

Auxiliary Calculations for the
Two-Band Falicov-Kimball Model

C.1 Symmetry Properties of the FK Hamiltonian

The Hamiltonian (3.46) of the two-band FK model at half filling implies symmetries
that are used for the calculation of the Green function. It is shown here, that the
hybridization V ≡ Vmm′ is a function of one variable, only.
Hermiticity of the Hamiltonian implies

V = V † ⇐⇒ Vmm′ = V ∗
m′m , (C.1)

therefore, the matrix V can be written as

V = V0σ0 + V1σ1 + V2σ2 + V3σ3 (Vα ∈ R), (C.2)

with σ0 the unit matrix in 2 dimensions and the Pauli matrices σ1,2,3.
Particle-hole symmetry under the transformation

di1 → d†i1(−1)ieiα/2, di2 → d†i2(−1)ie−iα/2, fim → f †
im(−1)i, α ∈ R , (C.3)

then gives the following equation for V :

∑

mm′

Vmm′d
†
mdm′

!
= V11d1d

†
1 + V22d2d

†
2 + V12d1d

†
2e

−iα + V21d2d
†
1e
iα

= Tr(V )− V11d
†
1d1 − V22d

†
2d2 − e−iαV12d

†
2d1 − eiαV21d

†
1d2 ,

(C.4)

thus

Tr(V ) = 0, V11 = −V11, V22 = −V22,

V12 = −eiαV12, V21 = −e−iαV21 .
(C.5)
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The first three conditions imply V0 = V3 = 0.
The last two imply −ieiα/2V21 = ie−iα/2V12 = (−ieiα/2V21)

∗, thus v ≡ −ieiα/2V21 ∈ R.
It follows that:

V12 = V1 + iV2 = ive−iα/2 = v [sin(α/2) + i cos(α/2)] , (C.6)

hence:

V1 = v sin(α/2), V2 = v cos(α/2), V = v [sin(α/2)σ1 + cos(α/2)σ2] . (C.7)

Note, that different choices for α are all canonically equivalent at half filling. There-
fore, the sign of the hybridization is unimportant, since the model with parameter
α is canonically equivalent to the model with parameter α′ = α + 2π, which has a
hybridization v′ = −v. Since all choices for α are equivalent, one can choose α = π
for simplicity, which corresponds to

V = vσ1 =

(
0 v
v 0

)
(v > 0). (C.8)

Since the sign is unimportant one can choose v > 0.

C.2 Symmetry Properties of the Green Function

The defining equation of the Green function G, (3.60), implies important symmetries
for G.

The following identity is proved here: If GV (z) is a solution, then σ3 [GV (−z∗)]† σ3

is also a solution:

−σ3 [GV (−z∗)]† σ3 = −1

4

∑

b

{
σ3

[
G

(b)
0V (−z∗)†

]−1
σ3 −Θσ3GV (−z∗)†σ3Θ

}−1

= −1

4

∑

b

{
−σ3G

(3−b)
0,−V (z)−1σ3 −Θ

(
σ3GV (−z∗)†σ3

)
Θ
}−1

=
1

4

∑

b

{
G

(3−b)
0V (z)−1 −Θ

(
−σ3GV (−z∗)†σ3

)
Θ
}−1

b↔ (3−b)
=

1

4

∑

b

{
G

(b)
0V (z)−1 −Θ

(
−σ3GV (−z∗)†σ3

)
Θ
}−1

.

(C.9)

Since both solutions coincide for Θ = 0, they are identical also for Θ 6= 0. Thus

GV (z) = σ3 [GV (−z∗)]† σ3. (C.10)

This identity can then be used, e.g., to show that the DOS of both orbitals in the
FK model is symmetric.
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Appendix D

Auxiliary Calculations for
Chapter 4

D.1 Density of States in d = 1,2,3

In the following, we briefly comment on the non-interacting density of states of the
Hubbard model for the hypercubic lattice in d = 1, 2 and d = 3.

For U = 0, the energy dispersion in momentum space of the Hubbard model is
given by

ǫk = −2t
d∑

l=1

cos(kl) . (D.1)

The density of states is then obtained via its definition:

N(ǫ) = (2π)−d
∫

1.BZ

dk δ(ǫ− ǫk) =
1

2πt

∞∫

0

dx
[
J0(x)

]d
cos
(
ǫ
2t
x
)
, (D.2)

with the Bessel function of the first kind J0(x).
In d = 1, the integral can be evaluated exactly:

N1(ǫ) =
1

π

1√
(2t)2 − ǫ2

Θ(2t− |ǫ|) (D.3)

with the step function Θ. Thus, the DOS has a square root divergence at the band
edges ǫ± = ±2t.

In d = 2 one finds:

N2(ǫ) =
1

4πt
P−1

2

[
1
2

( ǫ
2t

)2

− 1
]
Θ(4t− |ǫ|) (D.4)
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Figure D.1: Non-interacting density of states of the Hubbard model for the hypercubic
lattice in dimensions d = 1, 2, 3.

where Pn[x] denotes the Legendre functions of the first kind. Here, the DOS diverges
logarithmically at the Fermi energy ǫ = 0 according to

N(ǫ) ∼ 1

2π2t
ln

(
4t

|ǫ|

)
for |ǫ| → 0 . (D.5)

The value at the band edges ǫ± = ±4t is exactly N2(ǫ±) = 1/(4π).

In d = 3, the DOS has to be computed numerically for generic energies. Here,
the band edges are at ǫ± = ±6t.

The non-interacting DOS for d = 1, 2, 3 are shown in Fig. D.1.

D.2 Asymptotic Results for small U

In this section, we calculate the asymptotic behavior of the critical temperature, the
order parameter mx as well as the energy gain due to symmetry breaking within the
Hartree-Fock approximation.



D.2. Asymptotic Results for small U 155

The critical temperature Tc = β−1
c is determined bymx(Tc) = 0 in (4.17), implying

1 =
U

2

∞∫

−∞

dǫN(ǫ)
tanh

[
1
2
βc(ǫ− h0)

]

ǫ− h0

=
U

2
J(1

2
βc) .

(D.6)

Considering the function J for large arguments one finds (van Dongen, 1994a)1:

J(γ) = N ′
2(0)[ln(γ) + I2 + ln 2] +O(γ−1) , (D.7)

with

I2 =

∞∫

0

dy
1

y

[
tanh(y)− 1 +

N ′
2(y)

N ′
2(0)

]
− ln 2 (D.8)

and

N ′
2(ǫ) = 1

2
[N2(ǫ+ h0) +N2(h0 − ǫ)] . (D.9)

The constant I2 is difficult to calculate exactly for the square lattice in d = 2,
but can be approached numerically. The numerical solution for Id as a function of
the field h0 is shown in Fig. 4.1. In the limit h0 → 0, I2 diverges logarithmically:
I2(h0) ∼ 0.557 ln(h0) + 2.116. The asymptotic standard error of both constants from
a least square fit is 0.5%. Approximating the DOS by a square density of states,
Ns(ǫ) = 1

2ǫ+
Θ(ǫ+−|ǫ|), with the step function Θ, one finds for B > 0:

I2 = γ + ln ǫ+ ln 2− ln π ≃ 1.51195 , (D.10)

where γ ≃ 0.577 is Euler’s constant and ǫ+ = 4t the band edge. The constant can
be calculated explicitly in high dimensions d ≫ 1. Including corrections in 1/d one
finds for the hypercubic lattice (van Dongen, 1994a):

Id = 3
2
ln 2 + 1

2
γ − ln π +

1

4d
+O( 1

d2
) ≃ 0.1836 +

1

4d
. (D.11)

It is interesting to note that the constant Id including 1/d corrections is still a factor
0.3086
1.51195

≃ 0.2 smaller than I2 for the square density.

1Here, the calculation was performed for the extended Hubbard model in dimensions d ≥ 3.
The argumentation that leads to our result is identical when replacing the density of states with
N ′

2(ǫ). The essential observation is the fact that the leading contribution to the integration is due
to energies ǫ ≤ O(β−1

c ), such that N ′
2(ǫ) can be replaced by N ′

2(0). The remaining integral can then
be calculated explicitly by multiplying the integrand by a convergence factor e−κǫ and taking the
limit κ ↓ 0.
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Combining the above results for U → 0, one finds that the critical temperature is
exponentially small as a function of U :

kBT
HF
c ∼ exp

(
Id −

1

UN2(h0)

)
. (D.12)

Corrections to (D.12) are exponentially small and of order T 2
c , as can be inferred

from (D.7).
Let us now consider the behavior of the order parameter mx in the ground state

(T = 0 or β = ∞) for small U and at fixed B with 0 < B < Bc. In this case one
expects that ∆mz = 1−mz approaches a constant. From (4.17) follows that

2

U
=

∞∫

−∞

dǫN(ǫ)
1√

(ǫ− h0)2 + (Umx/2)2

∝ 2N(B) ln

[√
ǫ2+ −B2

Umx/2

]
,

(D.13)

implying
1

2
UmHF

x ∝ 2
√
ǫ2+ −B2 exp

(
− 1
UN(B)

)
. (D.14)

This result shows that the staggered magnetization mx is, indeed, exponentially small
as U → 0. The exact behavior of mx, including the temperature dependence, can
be determined by subtracting the defining equation of the critical temperature (D.6)
from the consistency relation (4.17):

0 =

∞∫

−∞

dǫN(ǫ)

[
tanh(1

2
βηǫ↑)

ηǫ↑
− tanh[1

2
βc(ǫ− h0)]

ǫ− h0

]
(D.15)

= 2

∞∫

0

N ′
2(ǫ)

[
tanh(1

2
βηǫ)

ηǫ
− tanh(1

2
βcǫ)

ǫ

]
, (D.16)

with ηǫ = sign(ǫ)
√
ǫ2 + (Umx/2)2. Making use of the fact that the leading contribu-

tion to the integral (D.16) stems from the energy range 0 < ǫ . O
(
β−1
c

)
, one finds

(van Dongen, 1994a)2:

mHF
x (T = 0) =

2πe−γ

Uβc
, (D.17)

with Euler’s constant γ ≈ 0.577. The gap ratio Umx(T = 0)/THF
c = 2πe−γ is there-

fore identical to the standard BCS gap ratio [compare, e.g., Ashcroft and Mermin

2See footnote 1 on page 155.
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(1976)]. Correction terms at low temperatures are exponentially small:

mHF
x (θ) = mHF

x (T =0)

[
1−

√
θπ

δ0
e−2δ0/θ

]
, (D.18)

with θ = T/Tc ≪ 1 and δ0 = 1
2
βcUmx(T = 0). Near Tc, the order parameter shows

mean-field critical behavior,

δ(θ) ∼
√

1− θ
Z

, (D.19)

where the constant Z is defined by

Z ≡
∞∫

0

dy
sinh(2y)− 2y

4y3 cosh2(y)
≃ 0.4263 . (D.20)

Let us now calculated the gain in free energy per lattice site due to the symmetry
breaking for T ≥ 0 and fixed value of mz. The calculation is performed in analogy to
van Dongen (1994a). From the expression for the grand canonical potential we have:

ΩHF ≡ ω(T,mz, mx)− ω(T,mz, 0)

=
1

4
Um2

x −
4

β

∞∫

0

N ′
2(ǫ) ln

[
cosh(1

2
βηǫ)

cosh(1
2
βǫ)

]

=
1

4
Um2

x

{
1− U 2θ

δ2

∞∫

0

dy N ′
2(2y/βc) ln

[
cosh(

√
y2 + δ2/θ)

cosh(y/θ)

]}
,

(D.21)

Recall, ηǫ = sign(ǫ)
√
ǫ2 + hx0

2. Inserting the criterion for the critical temperature Tc
from (D.6) which can be rewritten similarly in the form

1 = U

∞∫

0

dy N ′
2(2y/βc)

tanh(y)

y
, (D.22)

one finds the following exact relation:

ΩHF = −1

4
U2m2

x

∞∫

0

dy N ′
2(2y/βc)

{
2θ

δ2
ln

[
cosh(

√
y2 + δ2/θ)

cosh(y/θ)

]
− tanh(y)

y

}
. (D.23)

The leading contribution to the integral is due to y values of the order of unity, so
that the factor N ′

2(2y/βc) can be replaced by N ′
2(0) in the limit U ↓ 0, or similarly



158 D. Auxiliary Calculations for Chapter 4

βc →∞. One thus finds

ΩHF ∼ −1

4
U2
[
mHF
x

]2
N2(h0)

∞∫

0

dy

{
2θ

δ2
ln

[
cosh(

√
y2 + δ2/θ)

cosh(y/θ)

]
− tanh(y)

y

}

≡ −1

4
U2
[
mHF
x

]2
N2(h0) Φ(θ) .

(D.24)

Here, the integral Φ is convergent for all values of θ. It approaches the value 1
2

for
θ ↓ 0 and vanishes for θ ↑ 0.

D.3 Evaluation of the Integrals Ih1 and Ih3

for hx
0 ≪ B < Bc

The leading contribution to the free energy derivative df2/dh
x
0 in the limit hx0 → 0

is due to the integrals Ih1
and Ih3

, which are evaluated in the following for generic
values of the magnetic field B, with hx0 ≪ B < Bc. The constraints of the field h0

will become clear in the remainder of this section. First, we consider the integral Ih1
;

the integral Ih3
can then be evaluated in the same manner.

Substitution of 4+q → q in (4.79) leads to the following form of the integral Ih1
:

Ih1
=

∫∫∫

1.BZ

d1d4dq

(2π)6

1(
|η1↑|+ |η1+q−4,↑|+ |ηq,↓|+ |η4↓|

)
|η1↑ηq↓|

, (D.25)

where the integration extends over the first Brillouin zone and where 1 denotes k1 and
so forth. The leading contribution to the integral is due to momenta for which both

η1↑ and ηq↓ become small. In the limit hx0 → 0 and with |ηkσ| =
√

(ǫk − σh0)2 + hx0
2

this is the case for k values close to the ǫkσ = σh0 surface. Thus for generic values of
4, the sum of the energy contributions in (D.25) is dominated by η1+q−4,↑ and η4↓.
The integral Ih1

can therefore be approximated by

Ih1
∼
∫∫∫

1.BZ

d1d4dq

(2π)6

1(
|ηq−4+1↑|+ |η4↓|

)
|η1↑ηq↓|

. (D.26)

Employing the 2-particle density of states

νd(ǫ4, ǫ2, q) =
1

N
∑

k4,k2

δ(ǫ4 − ǫk4
)δ(ǫ2 − ǫk2

)δk4,k2+q , (D.27)
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where the sum is as usual over the first Brillouin zone, the integral Ih1
can be written

as:

Ih1
∼ 1

4π2

∫∫
dǫ2dǫ4

1

|ηǫ2↑|+ |ηǫ4↓|

π∫

−π

dq νd(ǫ4, ǫ2, q)

∫∫
dǫ1dǫ3

1

|ηǫ1↑ηǫ3↑|
νd(ǫ1, ǫ3, q) .

(D.28)
The leading contribution to the ǫ1 and ǫ3 integrals on the right hand side of (D.28)
is due to the region where both ηǫ1↑ and ηǫ3↑ become small. For h0 ≫ hx0 (recall,
h0 = B + hz0), the position of the logarithmic divergence of the density of states in
d = 2 (which occurs at ǫ = 0) does not coincide with the divergence of the energy
denominator in (D.28). For small hx0 , the integral then reduces to

∫∫
dǫ1dǫ3

1

|ηǫ1↑ηǫ3↑|
νd(ǫ1, ǫ3, q) ∼ 4νd(h0,−h0, q)




ǫ+∫

0

dǫ
1√

ǫ2 + hx0
2




2

= 4νd(h0,−h0, q)

[
ln

(
ǫ+
hx0

)]2

,

(D.29)

where ǫ+ = 4t is the bandwidth in d = 2. Thus, to leading logarithmic order we have

Ih1
∼ 4

[
ln

(
t

hx0

)]2 ∫∫
dǫ2dǫ4

Nd(ǫ2, ǫ4, h0)

|ηǫ2↑|+ |ηǫ4↓|
, (D.30)

with

Nd(ǫ2, ǫ4, h0) =

π∫

−π

dq

4π2
νd(h0,−h0, q) νd(ǫ2, ǫ4, q) . (D.31)

The function Nd(ǫ1, ǫ2, h0) can now be expressed in terms of a lattice sum over inte-
grals of Bessel functions Jn(x):

Nd(ǫ1, ǫ2, h0) =
∑

j

Fj(h0)Fj(−h0)Fj(ǫ1)Fj(ǫ2) , (D.32)

with

Fj(ǫ) =
1

2π

∞∫

−∞

dη e−iǫη[sign(z)]|j|
d∏

l=1

J|jl|(|z|) ; z = −2tη . (D.33)

Here, |j| denotes the Manhattan distance on the square lattice. A close examination
shows that Fj(ǫ) exhibits an integrable logarithmic divergence at ǫ = 0 for even |j| in
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d = 2. The energy integrals on the right hand side of (D.30) are therefore convergent
for h0 ≫ hx0 . They contribute a finite, h0 dependent coefficient P :

P (h0) =

∫∫
dǫ1dǫ2

Nd(ǫ1, ǫ2, h0)

|ηǫ2↑|+ |ηǫ4↓|
< |∞| . (D.34)

At this point, it is important to note that the requirement h0 ≫ hx0 is essential for
the validity of (D.34). For h0 → hx0 , one has to take into account the logarithmic
divergence of the density of states at ǫ = 0, which results in a logarithmic divergence of
the order of ln(t/hx0)

6 for Ih1
. This, in turn, results in the breakdown of perturbation

theory for the Hubbard model (without magnetic field) in d = 2 (Schauerte and van
Dongen, 2002; Kopietz, 1993).

For the further evaluation of the integral Ih1
it is useful to distinguish between

lattice sites with even and odd values of |j|. Inserting (D.32) into (D.34) yields

P =
∑

|j| even

[Fj(h0)]
2

∞∫

0

dτ [F̂j(τ)]
2 +

∑

|j| odd

[Fj(h0)]
2

∞∫

0

dτ [F̂j(τ)]
2 , (D.35)

with

F̂j(τ) =

∞∫

−∞

dǫ Fj(ǫ)e
−τ |ǫ+h0| . (D.36)

For even |j| we have:

F̂j(τ) = F̂ e
j (τ) =

2

π

∞∫

0

dz cos[h0z/(2t)]
2tτ

(2tτ)2 + z2

d∏

l=1

J|jl|(z) , (D.37)

for odd |j|:

F̂j(τ) = F̂ o
j (τ) = −i 2

π

∞∫

0

dz sin[h0z/(2t)]
2tτ

(2tτ)2 + z2

d∏

l=1

J|jl|(z) . (D.38)

The τ integration in (D.35) can be performed explicitly, resulting in integrals of the
form

∞∫

0

dτ [F̂ e
j (τ)]2 =

1

πt

∞∫

0

∞∫

0

dz1dz2
cos[h0z1/(2t)] cos[h0z2/(2t)]

z1 + z2

d∏

l=1

J|jl|(z1)J|jl|(z2) ,

(D.39)
where |j| is even. For odd |j|, one has to replace the cosine functions by sine functions.
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Hence, to leading logarithmic order in hx0 , the integral Ih1
reads

Ih1
∼ 4

[
ln

(
t

hx0

)]2
{
∑

|j| even

[Fj(h0)]
2

∞∫

0

dτ [F̂ e
j (τ)]2 +

∑

|j| odd

[Fj(h0)]
2

∞∫

0

dτ [F̂ o
j (τ)]2

}
.

(D.40)
The integral Ih3

, with

Ih3
=

∫∫∫

1.BZ

d1d4dq

(2π)6

ǫ1+q,↑ǫ4↓(
|η1↑|+ |η1+q,↑|+ |η4+q,↓|+ |η4↓|

)
|η1↑η1+q↑η4+q↓η4↓|

, (D.41)

gives the following contribution:

Ih3
∼ 4

[
ln

(
t

hx0

)]2
{
−
∑

|j| even

[Fj(h0)]
2

∞∫

0

dτ [F̌ e
j (τ)]2 −

∑

|j| odd

[Fj(h0)]
2

∞∫

0

dτ [F̌ o
j (τ)]2

}
,

(D.42)
where F̌ for even |j| is given by

F̌j(τ) = F̌ e
j (τ) = −2

π

∞∫

0

dz sin[h0z/(2t)]
z

(2tτ)2 + z2

d∏

l=1

J|jl|(z) , (D.43)

and for odd |j| by

F̌j(τ) = F̌ o
j (τ) = i

2

π

∞∫

0

dz cos[h0z/(2t)]
z

(2tτ)2 + z2

d∏

l=1

J|jl|(z) . (D.44)

Combining the integrals Ih1
and Ih3

and simplifying the trigonometric function yields

Ih1
+ Ih3

∼ 4

[
ln

(
t

hx0

)]2∑

|j|
[Fj(h0)]

2 (FT ej + FT oj ) (D.45)

≡ 4

[
ln

(
t

hx0

)]2

LS(h0) , (D.46)

with

FT ej =

∞∫

0

dτ [F̂ e
j (τ)]2 = −

∞∫

0

dτ [F̌ o
j (τ)]2 ,

FT oj =

∞∫

0

dτ [F̂ o
j (τ)]2 = −

∞∫

0

dτ [F̌ e
j (τ)]2 .

(D.47)
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Note that the functions FT ej and FT oj in the lattice sum on the right hand side of
(D.45) are evaluated for both even and odd values of |j|. The lattice sum LS in
(D.46) is still too complicated to be calculated exactly but can be approximated
numerically.

D.4 Numerical Evaluation of the Integral Ih1

for hx
0 ≪ B < Bc

In the following we discuss the numerical evaluation of the integral Ih1
. For this

purpose, we first simplify the lattice sum in (D.45) according to

LS(h0) =
∑

|j| even

[Fj(h0)]
2FTj +

∑

|j| odd

[Fj(h0)]
2FTj , (D.48)

with

FTj(h0) = FT ej + FT oj =
1

πt

∞∫

0

∞∫

0

dx dy
cos[h0

2t
(x+ y)]

x+ y

d∏

l=1

J|jl|(x)J|jl|(y) . (D.49)

The integrals Fj(h0) and FTj(h0) are evaluated numerically using Romberg’s inte-
gration method (Press et al., 1992). Here, the integration of Fj(h0) is straightforward
for generic values of h0. The convergence of the integral FTj(h0), however, is very
slow as h0 → Bc. The two-dimensional integral is therefore evaluated numerically
as a function of the upper integration limits, m; the results are then extrapolated to
the limit m→∞. For large values of m, the functional dependence is well described
by a + b/(m + c). The extrapolation is performed by a least square fit. The lattice
sum over |j| can be simplified due to the symmetry-property of the components:
Fj ≡ Fj1,j2 = Fj2,j1 (the same holds for FTj). Thus, for |j| = j1 + j2, constant, one
has to sum only over |j|/2+1 (integer division) different configurations of (j1, j2).
The numerical effort is therefore only linear in |j|.

Figure D.2 shows the numerical results of addends to the lattice sum LS(h0) as
a function of |j| for different values of the field h0. For intermediate values of the
field h0, i.e. for hx0 ≪ h0 < Bc, the main contribution to the lattice sum is due to
the central site 0. In this regime, the lattice sum is easily evaluated in real space.
As the field approaches the critical value Bc, however, the contribution of the central
site vanishes and the value of LS(h0) is determined by a larger and larger region in
real space. This behavior suggests, that Ih1

is better evaluated in momentum space
in the limit h0 → Bc. Also, the numerical effort increases rapidly in real space as
h0 → Bc.
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Figure D.2: Contributions to the lattice sum LS(h0) stemming from sites at a Manhattan
distance J = |j| from a central site 0 on the square lattice in d = 2 for various values of
the field h0. Errors are of the order of 1% for values of the field h0 6= 3.99. Lines are guides
to the eye only.

D.5 Analytical Evaluation of the Integral Ih1

for B→ Bc

In this section we evaluate the integral Ih1
analytically in the limit h0 → Bc.

From (D.25) we have:

Ih1
=

∫∫∫

1.BZ

d1d4dq

(2π)6

1(
|η1↑|+ |η1+q−4,↑|+ |ηq,↓|+ |η4↓|

)
|η1↑ηq↓|

. (D.50)

Similar to the general case of h0 ≫ hx0 which was regarded in Appendix D.3, the
leading contribution to the integral for hx0 → 0 is determined by the regimes for
which all the energy denominators become small. Now, in the limit h0 → Bc, the
energy ηkσ becomes of the order of hx0 for the following k = (k1, k2) values:

σ =↑: k1 = (2n+ 1) π ; k2 = (2n′ + 1) π

σ =↓: k1 = k2 = 2n′′π with n, n′, n′′ ∈ Z .
(D.51)
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Thus the main contribution to the integral (D.50) comes from q ≃ 0 and 1 ≃ (π, π)
(compare also Fig. D.3). Thus performing the transformation 1 → 1 + (π, π) we
obtain:

Ih1
∼

∫∫∫

{|q|,|1|,|4|≤δ}

d1d4dq

(2π)6

1(
η̃1↑ + η̃1+q−4,↑ + η̃q,↓ + η̃4↓

)
η̃1↑η̃q↓

, (D.52)

where δ is some finite fraction of the size of the first Brillouin zone: δ = ǫπ with
0 < ǫ≪ 1 fixed. For |k| ≤ δ, the energy dispersion η̃k↑ can be approximated by

η̃k↑ =

√(
−2t[cos(π + k1) + cos(π + k2)]− h0

)2
+ hx0

2 (D.53)

∼ t
√

(|k|2 − b)2 + (h̄x0)
2 = t η̄k↑ , (D.54)

with k = (k1, k2) and h̄x0 = hx0/t. Here we have introduced the parameter b, which
controls the limit h0 → Bc:

b =
Bc − h0

t
. (D.55)

Exactly the same approximation holds for η̃k↓:

η̃k↓ =

√(
−2t[cos(k1) + cos(k2)] + h0

)2
+ hx0

2 (D.56)

∼ t
√

(|k|2 − b)2 + (h̄x0)
2 = t η̄k↓ . (D.57)

Thus, for small b, we have η̃k↓ = η̃k↑. For the further evaluation of Ih1
let us consider

the 4 integration of the right hand side of (D.52) only:

1

t

∫

{|4|≤δ}

d4
1

η̄1↑ + η̄q,↓ + η̄1+q−4,↑ + η̄4↓

=
1

t

∫

{|4|≤δ}

d4
1

η̄1↑ + η̄q,↓ +
√

(|4|2 − b)2 +
(
h̄x0
)2

+
√

(|4− 1− q|2 − b)2 +
(
h̄x0
)2 .

(D.58)

Now, for values of the momentum 1, for which (|1|2 − b) ∼ O(hx0), one has η̄1↑ ∼
O(hx0). The same relation holds for the momentum q and the energy η̄q↓. Similarly,
if |4|2 ∼ O(b), the energy η̄4↓ is of the order of hx0 . The second essential observation is
that for almost all (1, q, 4)-values for which (|1|2, |q|2, |4|2)∼ O(b), the sum |4−1−q|2
is not close to b, implying [|4 − 1 − q|2 − b] ∼ O(b). Thus for hx0 ≪ b < δ the
denominator in (D.58) can be approximated by

√
(|4|2 − b)2 + b for |4|2 . O(b) (D.59)

2
√

(|4|2 − b)2 for |4|2 > O(b) . (D.60)
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Figure D.3: The Fermi surface of the noninteracting Hubbard model (t = 1) in d = 2 for
various choices of the chemical potential µ. The Fermi surface at half filling is indicated
by the solid (red) line. Here, the regime close to the four edges k ≃ (π, 0), (0, π), · · · , is
responsible for the logarithmic divergence of the density of states.

The leading contribution of the 4 integral in the limit b → 0 is due to (D.60). The
integration is simple and yields

π

2t
ln

(
δ2 − b
b

)
∼ π

2t
ln

(
1

b

)
. (D.61)

The integral Ih1
is thus to leading logarithmic order in 1/b given by

Ih1
∼ π

2t3(2π)6
ln

(
1

b

)


∫

{|q|≤δ}

dq
1

η̄q↑




2

. (D.62)
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The q integration of (D.62) is straightforward:

1

t

∫

{|q|≤δ}

dq
1√

(|q|2 − b)2 +
(
h̄x0
)2 ∼ π

t






b∫

h̄x
0

+

δ2−b∫

h̄x
0





dr

1

r

∼ π

t

{
ln

(
b

h̄x0

)
+ ln

(
δ2 − b
h̄x0

)}

∼ 2π

t
ln

(
t

hx0

)
.

(D.63)

Thus, in the limit b→ 0, the integral Ih1
has the following form:

Ih1
∼ 1

25(π t)3
ln

(
1

b

)[
ln

(
t

hx0

)]2

. (D.64)

The same expression also holds for the integral Ih3
.
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