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geb. in Belgrad

Mainz, den 24. Mai 2004
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Zusammenfassung

In der vorliegenden Doktorarbeit beschäftigen wir uns mit verschiedenen Themen, die
mit der Verpackung und Komplexierung des DNS Moleküls durch Proteine sowie durch
eingeschränkte Geometrien zusammenhängen. In diesem Kontext werden Fragen der
statistischen Mechanik und der Dynamik der DNS mit verschiedene Methoden behan-
delt.
In der ersten Hälfte (Kapitel 2) der Arbeit wird zum ersten mal die Einzelmolekül-
Zustandsgleichung (Kraft-Dehnungsrelation) der DNS mit Selbstkontakt (durch Zuhil-
fenahme von Pfadintegralmethoden) hergeleitet. Wir zeigen in diesem Zusammen-
hang, dass elastische Teilstrukturen wie Schleifen sowie Winkelrandbedingungen bei
der Molekülverankerung (z.B. bei AFM Experimenten) eine starke Renormalisierung
der scheinbaren Persistenzlänge induzieren und erklären damit rätselhafte Befunde bei
Einzelmolekülexperimenten.
In Kapitel 3 wird das thermisch induzierte Wandern des Nukleosoms entlang der DNS
untersucht. Nach eingehender Betrachtung der Experimente und theoretischer Mod-
ellierung der möglichen Mechanismen schliessen wir, dass der ”Korkenziehermechanis-
mus” die wahrscheinlichste Ursache für diesen biologisch wichtigen Prozess sein muss.
Das Kapitel 4 zeigt, dass ”DNS-Spulen” - Strukturen, die aus zylindrisch oder toroidal
gewundener DNS bestehen - eine bemerkenswerte kinetische Trägheit gegenüber kraftin-
duzierter Destabilisierung aufweisen. Wir schlagen damit eine Brücke zwischen ver-
schiedenen Streckungsexperimenten an Nukleosomen und DNS-Toroiden sowie Simula-
tionen und zeigen, dass die auftretenden ”Kraftpeaks” in Kraft-Dehnungsexperimenten
vom gleichen Ursprung sind.
Wir zeigen schliesslich in Kapitel 5, dass eine toroidal verpackte DNS (wie z.B. in
Viren, DNS-Kondensaten oder in Spermienchromatin) einen bemerkenswerten Ver-
drillungsübergang aufweist, sobald der zugrundeliegende Torus ein kritisches Verhältnis
zwischen Querschnitt und (äusserem) Radius überschreitet. Der vorgestellte Mecha-
nismus rationalisiert und verbindet verschiedene experimentelle Funde aus den letzten
25 Jahren und eröffnet die Möglichkeit einer ”topologischen Einkapselung” der DNS
mit potentiellen Anwendungen in der Gentechnologie.



Summary

In this thesis I treat various biophysical questions arising in the context of complexed /
”protein-packed” DNA and DNA in confined geometries (like in viruses or toroidal DNA
condensates). Using diverse theoretical methods I consider the statistical mechanics as
well as the dynamics of DNA under these conditions.
In the first part of the thesis (chapter 2) I derive for the first time the single molecule
”equation of state”, i.e. the force-extension relation of a looped DNA (Eq. 2.94) by using
the path integral formalism. Generalizing these results I show that the presence of
elastic substructures like loops or deflections caused by anchoring boundary conditions
(e.g. at the AFM tip or the mica substrate) gives rise to a significant renormalization of
the apparent persistence length as extracted from single molecule experiments (Eqs. 2.39
and 2.98). As I show the experimentally observed apparent persistence length reduction
by a factor of 10 or more is naturally explained by this theory.
In chapter 3 I theoretically consider the thermal motion of nucleosomes along a DNA
template. After an extensive analysis of available experimental data and theoretical
modelling of two possible mechanisms I conclude that the ”corkscrew-motion” mecha-
nism most consistently explains this biologically important process.
In chapter 4 I demonstrate that DNA-spools (architectures in which DNA circum-
ferentially winds on a cylindrical surface, or onto itself) show a remarkable ”kinetic
inertness” that protects them from tension-induced disruption on experimentally and
biologically relevant timescales (cf. Fig. 4.1 and Eq. 4.18). I show that the under-
lying model establishes a connection between the seemingly unrelated and previously
unexplained force peaks in single molecule nucleosome and DNA-toroid stretching ex-
periments.
Finally in chapter 5 I show that toroidally confined DNA (found in viruses, DNA-
condensates or sperm chromatin) undergoes a transition to a twisted, highly entangled
state provided that the aspect ratio of the underlying torus crosses a certain critical
value (cf. Eq. 5.6 and the phase diagram in Fig. 5.4). The presented mechanism
could rationalize several experimental mysteries, ranging from entangled and super-
coiled toroids released from virus capsids to the unexpectedly short cholesteric pitch in
the (toroidaly wound) sperm chromatin. I propose that the ”topological encapsulation”
resulting from our model may have some practical implications for the gene-therapeutic
DNA delivery process.
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Chapter 1

Introduction of the Main
Characters

Molecular biophysics is a comparably young branch of science dealing quantitatively
with living matter on the microscopic up to mesoscopic scale. By the very nature of the
studied objects (that are often soft and fuzzy in their behavior) it defies all attempts
of formalization. Although the concept of ”life” can indeed be defined in terms of few
basic criteria, the complexity of ”living” phenomena can not be grasped by a limited
number of axioms (as we are used from classical physical theories like classical and
quantum mechanics, electrodynamics). But one should not be mislead to assume that
there are no general laws of living matter at all. The first law that we meet already in
elementary school is the principle of evolution. This extremely powerful principle can
be brought to the simple (slightly caricaturized) form. In classical (non-living) physics
a physicist is allowed to ask the question ”How?” but a biologist / biophysicist may
(by virtue of the evolution principle for living matter) in addition ask the question
”What is it good for?” (without going into metaphysical issues).

What about other general laws in biology/ biophysics, are there any besides evolution?
The answer to this question is surprisingly simple: Yes there is a myriad of general laws
(most of them still awaiting discovery)- yet they are all consequences and specializations
of the mighty and ubiquitous principle of evolution! But if there are myriads of laws
and they are all implications of only one master principle how can they be general?
The answer is that life consist of a myriad of systems, sub systems and sub-sub systems
- we might call them universes without exaggeration1- each of them obeying similar
yet in detail different general laws (general within the ”class of universality” of this
system).

Let us illustrate that. Take a typical representative of life, for instance a house cat
lying purringly in our arms. Let us zoom in its fur. There we observe a flea. A whole
colony of them happily populates their ”biosphere” cat. Let us zoom further, into
the flea. At a magnification of 1:100.000 we observe that the flea itself is the host for
ten-thousands of micronsized bacteria which peacefully populate their universe called

1The simplest cell has a much larger structural and dynamical complexity than any star in our
galaxy. An organism consists of several hundred billions of cells (roughly the number of stars in our
Milky Way) interacting with each other in a complex manner.
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10 CHAPTER 1. INTRODUCTION OF THE MAIN CHARACTERS

flea. If we zoom even further (by electron microscope now), into one of the bacteria we
find it invaded by hundreds of viruses (so called bacteriophages) uptaking control of
the bacterial metabolism right at this moment. Startled by the dramatics of this event
we still continue zooming, this time inside the virus. After penetrating its protein hull
we are suddenly surrounded by something very familiar. In a cloud of water and ions
we recognize the blurred picture of DNA! Now wherever we zoom, into the cat, the
flea, the bacterium or the virus all we find at the highest magnification is DNA!
This is at least how a Hollywood movie would transport the simple message: DNA is
all around us, it codes the genetic information of every living being! Well to be honest
this is only 99% true (true enough for a movie). There are indeed some viruses that
posses RNA instead of DNA. But as viruses do not meet one criterion of life (namely
they have no metabolism by themselves) they are sometimes counted only as ”associate
members” of the society of living creatures. All in all, DNA/RNA is the information
carrier and foundation of all (known) life. And this amazing universality goes even
further. Not only that the information storage medium DNA/RNA is universal also
the way it codes for proteins (the underlying ”compression codec”) is everywhere the
same: three base-pairs (three monomers) of DNA/RNA code for one amino-acid, i.e.,
one monomer of a protein. The famous mapping table of the DNA/RNA trimers to
amino-acids2 belongs to the deepest and most far-reaching achievements of mankind,
and it plays (for terrestrial life) in the same ”league of generality” as the periodic table
of elements, Maxwell-equations, Pauli principle.
Now beyond this remarkable universality of information storage, the information con-
tent in the genes of different species decomposes into different universality classes each
obeying individual yet very related general laws. E.g. all organisms have to replicate
their genetic (DNA/RNA) content and inherit it to their descendants but some (typ-
ically lower organisms) do it in a 1:1 manner via the process of binary fission while
others (typically higher organisms) shuffle their genes with other members of the same
species (via sexual reproduction). In both cases biophysics can (and did) explore the
underlying biology and the physics of the process and find general laws in each univer-
sality class of organisms. Another difference between higher organisms, the so called
eucaryotes (the cat and the flea belong to them) and the simpler procaryotes (like
bacteria) is the degree of complexity in the organization and packing of their genetic
material. In procaryotes the DNA is merely loosely packed and weakly condensed by
superspiralization (like a telephone cable). This simple packing mechanism works well
for the comparably small procaryotic genome sizes (up to a few millions of basepairs).
In contrast to that for the huge eucaryotic genomes consisting of tens of billions of
basepairs, several centimeters to meters in length (per single cell!), the nature had
to invent a more powerful packing mechanism. The evolution finally came up with
a brilliant solution: it invented the nucleosome - a next to perfect complex between
the DNA and a protein core able of hierarchically packing the DNA from the lowest
basepair level up to full chromosomes. Coming back to the question of general prin-
ciples in biology we might remark that the nucleosome is a characteristic of only one
subclass of organisms - the eucaryotes. On the other hand it is an extremely general

2A function that maps 43 triplets of DNA/RNA onto 20 different monomers of amino acids and
additionally some special characters like the ”stop” sign.
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object: humans, cats, fleas and even yeast (brewing our beer) and millions other species
around us have (up to small variations) the same nucleosome structure. Within the
(huge) universality class of eucaryotes it is the nucleosome and not the bare ”naked”
DNA that rules basic processes like gene regulation, DNA duplication and DNA con-
densation. This is an example of a general law referring to a particular (yet huge)
universality class of organisms.
In the following we will present a short yet pictorial description of the main biological
”actors” which will occur in some places later in this thesis. It is not a comprehensive
introduction to those structures (which can be found in later chapters and in the
references in more depth) but should rather serve as an informal conceptual glossary.
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DNA:DNA: The fundamental information storage medium
Constitutes the genetic information of most organisms. Contained in every cell and reaches lengths 
of several meters per cell. Consists of two anti-parallel complementary strands made of a long 
sequence of 4 different nucleotides (adenine, guanine, cytosine and thymine) attached to a 
phosphate-sugar backbone. The complementarity of the strands is guaranteed by hydrogen bonds
(Watson-Crick base-pairing). The typical helical structure is induced by the stacking interaction 
between subsequent base-pairs.

The (animal) cellThe (animal) cell
An animal cell contains several types of membrane-bound organs, or organelles. The nucleusnucleus –
the brain or CPU of the cell directs cell activities and carries genetic information (in form of DNA) 
from generation to generation. It contains the genes packed inside of chromatin. Condensed 
chromatin appears during cell division (mitosis) in form of chromosomes. Other important 
organelles are: the mitochondria generating energy for the cell. Proteins are manufactured by
ribosomes. Ribosomes are assambled in the nucleolus - a suborganelle of the nucleus. The Golgi
apparatus modifies, packages, and distributes proteins while lysosomes store enzymes for 
digesting food. The entire cell is wrapped in a lipid membrane that selectively permits materials 
to pass in and out of the cytoplasm. (Pictures adapted from micro.magnet.fsu.edu/cells/).
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NucleosomeNucleosome :: The DNA packaging unit
Unlike in bacteria most of the DNA (70-90%) in all higher organisms does not appear free but 
packed by a protein complex called the histone octamer. The protein-DNA association between the 
histone octamer and 147 basepairs of DNA (that wrap in 1 and 3/4 superhelical turns around it) 
is called the nucleosome (or sometimes the core-particle). The 14 discrete binding sites between 
the octamer surface and the DNA minor groove guarantee a high stability of the complex despite 
enormous DNA deformation. It compacts the bound DNA by a factor of 6 and (due to its self 
assembly abilities) helps the DNA to pack into higher-order structures up to chromosomes. 
Despite its high stability the nucleosome is surprisingly able to “slide” along DNA allowing the 
latter to be accessible even in the highly packed state. 

The crystal structure of the nucleosome by
Luger et al. Nature 389 (1997) 251
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RNA:RNA: Information carrier and nanomachine: an all-rounder among biomolecules.
RNA differs chemically from DNA in only two minor points (1): its sugar molecule contains an 
oxygen atom not found in DNA, and RNA contains the base uracil in the place of the base thymine
in DNA. Despite possessing very similar chemical structure to DNA, the conformational folding 
(tertiary structure) of RNA is much more variable and complex than for DNA (2). There are three
types of RNA. The highly complex ribosomal RNA (rRNA, cf. 3) is found in the cell's ribosomes
(protein assembly units). Transfer RNA (tRNA) carries amino acids to the ribosomes for
incorporation into a protein. Messenger RNA (mRNA) carries the genetic blueprint copied from the 
sequence of bases in a cell's DNA. There are even RNAs that act as enzymes (ribozymes).

Large ribosomal RNA subunit: Ban et al.  Science. 289 : 878 (2000)

1 2

3

RNARNA PolymerasePolymerase:: The nanomachine performing transcription
The fundamental enzyme that transcribes DNA into a 1:1 RNA offprint. It separates locally the two 
DNA strands and uses one of them as a complementary template for the RNA synthesis. The 
underlying process is called transcription. RNA polymerase requires energy in form of ATP (the
basic fuel for most processes in the cell) and works far from termal equilibrium. It can generate 
significant forces of up to 30 pN, strong enough to move  and remove bound DNA proteins and 
other obstacles on its way. Because it follows one of the two strands (that rotates around the other 
one once every 10 bp) it can create rotational torques as well. The case when the polymerase meets
its most abundant obstacle - the nucleosome will become important later in this text.
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Virus/Phage:Virus/Phage: Creatures at the borderline of life, no metabolism –
pure genetic “software“. Animal/plant viruses and bacteriophages (bacterial viruses) consist 
essentially of pure genetic information in form of DNA or RNA and a protective protein envelope 
(capsid). The virus docks on its host (bacteria or animal cells) injecting its genetic information inside 
them. The latter integrates into the host genome and redirects its metabolism to form copies of same 
virus. A virus has no own metabolism yet highly successfully relies on that of its host, 
demonstrating the power of pure genetic information. The DNA containing viruses are the world 
record holders in DNA packing density (6 times denser than in chromatin). Typically a 15 
micrometer DNA thread is fitted inside of a 50 nm diameter capsid!  The DNA order inside a virus 
is discussed in the last chapter. 

Animal virus Bacteriophage Bacteriophages in action:
conquering a bacterium 

from micro.magnet.fsu.edu/cells/

DNADNA ToroidsToroids:: Typical shape of a condensed single DNA 
Despite its high negative charge DNA can collapse in many poor solvents (alcohol, small polymers 
like PEG, multivalent counterions) and forms bundles. In very dilute DNA solutions single DNA
molecules undergo a condensation from coiled to the toroidal bundle state. The emerging donut 
shape (typical diameter around 100 nm for DNA lengths from 400 to 100000 basepairs) is a 
compromise between the high DNA bending rigidity (causing the hole in the centre) and the solvent 
induced effective DNA-DNA attraction. Together with viruses DNA toroids are the most promising 
candidates for gene transfer to target cells and are therefore of large biotechnological and theoretical 
interest. DNA inside of many viruses as well as sperm-heads is believed to have a toroidal
organisation.

DNA Toroid
Phages eject DNA that form a Toroid

from Lambert et. al. PNAS 2000
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Chapter 2

Stretching of Looped DNA

2.1 DNA as a Wormlike Chain

The most appealing physical continuum description of the DNA molecule is the worm-
like chain (WLC) model. Originating back to the first half of the last century [1] it
gained renewed interest after the semiflexible nature of DNA and other (bio)polymers
became clear. In the last decade it received tremendous attention as its deeper un-
derstanding became indispensable for theoretical the explanation of single molecule
experiments (cf. the review [2]) that became technically feasible and extremely pop-
ular. It is not exaggerated to state that the biophysical revolution that started at
that time and was feeded by the hand in hand development of theory and pioneering
experiments still holds on today. To ”see” single DNAs, RNAs and proteins wiggling,
coiling and jumping between different states under a myriad of different conditions has
not only fired our imagination but it has also deepened our physical understanding.
There are a lot of surprises with general impact on general (especially non-equilibrium)
statistical mechanics awaiting discovery in the single molecule world 1.

In the first part of this chapter we will review the Euler-Kirchhoff elastic description of
the (constrained) ground states of DNA under tension. We explain there the remarkable
analogy between an elastic rod (the DNA) and the spinning top that was discovered
by Kirchhoff more than 100 years ago [5]. It is extremely useful for understanding
the behavior of constrained ”cold DNA”. By ”cold DNA” we metaphorically mean
DNA in situations where the importance of its configurational entropy is negligible as
compared to its elastic energy. This is typically the case for short DNA lengths (below
its persistence length lP ) and large energy densities (larger than tens of kBT ’s per lP ).
In the second part we will switch on the temperature and see how the thermal DNA
wiggling affects its behavior when we ”set it on fire”. We will learn that such ”hot
DNA” at room temperature responds purely entropically to moderate pulling forces
by reviewing the well known derivation of its mechanical ”equation of state”, i.e. the
force extension behavior of stretched DNA.

1A good example is the remarkable (yet widely unknown) Jarzynski equation [3] which connects
measurements on single molecules far from equilibrium to the equilibrium data in a surprisingly simple
and general manner. The reader is warmly recommended to discover for himself this very recent ”gem”
of modern physics [3] still awaiting many applications.
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18 CHAPTER 2. STRETCHING OF LOOPED DNA

Having reviewed those well known basic concepts of single DNA physics we finally push
forward and develop the statistical mechanics of looped DNA under tension for which
we derive the equation of state (cf. Eq. 2.94). In this context we will learn how stretched
DNA behaves when its new ”ground state” is far from the straight configuration. The
analytical machinery that is applied and developed further in this chapter has its roots
in classical problems of physics like the quantum mechanical tunnelling, the statistical
mechanics of dislocations in solids and nucleation of critical bubbles in overheated
liquids (cf. Appendix E and references therein). The unifying concept behind all this
phenomena is that of path integration in the semiclassical limit.

Despite the partly involved techniques that we apply in this chapter the main results
will be stated in terms of simple analytical expressions with intuitive interpretations.
Besides the force extension behavior of a DNA loop in 2-D (Eq. 2.36) and 3-D (Eq. 2.94)
another interesting and potentially important result is the ”renormalization” of the
apparent persistence length found from loops stretching (Eq. 2.39). We show that the
same results apply in the case of AFM stretching of short semiflexible polymers (shorter
than 20 persistence lengths). In this case the boundary anchoring conditions become of
prominent importance for the outcome of the stretching experiment and again lead to
a strong reduction of the apparent persistence length (cf. Eq. 2.98). Interestingly this
behavior which we might call the ”ghost persistence length” effect was also recently
experimentally observed in single molecule AFM stretching experiments by a group at
the University of Mainz [8].

2.1.1 The Euler-Kirchhoff Elastica: the Physics of ”Cold”
DNA

The basic assumption of a purely elastic description of DNA (and other semiflexible
polymers as well) is that the energy density of a given DNA state is given as a quadratic
function of the underlying distortions from the straight state. Let us consider the
simplest case and neglect the DNA twist degree of freedom at first. This can be done
in cases when the DNA twist is not constrained from outside, i.e., when no torsional
torques are acting on it. Then we can describe the path of the DNA of a given length L
and bending constant A in 3D-space by a vector r (s) having a tangent t (s) = d

ds
r (s).

It is convenient to choose the parameter 0 < s < L as the contour length and to
normalize the tangent to unity |t (s)| = 1. The elastic energy will then become [4]

Eelastic =
A

2

∫ L

0

(
dt

ds

)2

ds (2.1)

The curvature κ = dt(s)
ds

has a dimension of 1/length which implies that the bending
constant A has dimension energy×length. The typical value of that important material
constant is around A ≈ 4×10−30Jm (under physiological salt concentration ∼ 100mM
at room-temperature). Although this is a microscopically tiny value, when expressed
in units of thermal energy (at room temperature) it becomes A = lP kBT with a
lengthscale lP ≈ 50nm. The latter length lP = A/kBT which is called the persistence
length sets the upper limit to the purely elastic description of DNA as we will see in



2.1. DNA AS A WORMLIKE CHAIN 19

Figure 2.1: A protein forming a loop on a short stretch of DNA

the next chapter. Here we will take a look at ”cold” DNA at first, i.e., at a molecule
shorter than lP (which is true for sufficiently short DNA or low temperature) where we
can neglect the entropic contributions to its behavior.
Now in a typical application of molecular biophysics the DNA is subjected to forces
and geometrical constrains which are induced by the action of proteins binding to it.
In the simplest case a protein loops DNA as in Figure 2.1. To describe such a situation
we have to introduce an external force F acting locally on the DNA and the total
stress+strain energy now writes

E =

∫ L

0

A

2

(
dt

ds

)2

− F · tds (2.2)

If this force is constant (e.g. of mechanical origin and acting between the two DNA
ends) the problem of finding the DNA conformation reduces to the classical problem of
inextensible elastic beam theory [4] of finding the energy minimizing state which satis-
fies given constrains and δE/δt = 0. In a concrete computation one would parametrize
the unit tangent vector t in spherical coordinates

t =




cos φ sin θ
sin φ sin θ

cos θ




and put the force along the z−axis so that the energy now writes

E =

∫ L

0

[
A

2

(
φ̇2 sin2 θ + θ̇2

)
− F cos θ

]
ds (2.3)

This kind of linear elastic ansatz can be readily extended to the description of twisted
DNA states by the introduction of another degree of freedom the twisting angle ψ (s)
in addition to φ (s) and θ (s) (cf. Fig. 2.2) and the twist-rigidity constant C:

E =

∫ L

0

A

2

(
φ̇2 sin2 θ + θ̇2

)
+

C

2

(
φ cos θ + ψ̇

)2

− F cos θds (2.4)
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Figure 2.2: The Euler angle description of the DNA. The internal coordinate frame of
the DNA is given by a material coordinate triad consisting of the DNA tangent t, the
normal vector n perpendicular to the helical DNA minor groove and the corresponding
binormal m. (This frame should not to be confused with the usual Frenet triad). The
orientation of the internal DNA frame with respect to the laboratory coordinate system
is given by three Euler angles θ, φ and ψ.
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Figure 2.3: The Kirchhoff analogy between the shape of a twisted/bent rod (DNA)
and the time dynamics of the spinning top

Experimentally the twist rigidity C is of the same magnitude as the bending constant
(C ≈ 70kBTnm) so it is not a negligible quantity. The reason why we can neglect
it in some (but by far not all!) problems is that if the twist angle ψ is not explicitly
constrained (no rotational torque or torsional constraining of DNA) it can always adapt
so that the C multiplying term in the integral vanishes (without affecting φ (s) and
θ (s)).

The real beauty of the elastic energy expression in Eq. 2.4 is a powerful and very visual
analogy with a well understood classical mechanical system: the spinning top! More
than a century ago Kirchhoff has pointed out [5] that the elastic energy expression
of an elastic rod can be mapped onto the Lagrangian action of a spinning top. The
angles then θ (s) , φ (s) and ψ (s) describing the local deformations of the rod along the
contour length s become the Euler-angles θ (t) , φ (t) and ψ (t) of the spinning top
describing the rotation of the internal coordinates system (with respect to the space
fixed frame) as functions of time. All the quantities appearing in Eq. 2.4 have their
counterparts in the case of the spinning top. For instance the tension F becomes
equivalent to (minus) gravity force (times distance to the center of mass) in the top
case. The rigidity constants C and A become equivalent to the moments of inertia
around the spinning and perpendicular axis of the top etc. A nice compilation of this
analogy is found in ref. [6]. The Euler-Lagrange equations for Eq. 2.4 look of course
the same as those for the spinning top. The resulting rod shapes are usually called
Euler-Kirchhoff filaments (in 3D) or Euler-elastica (in the 2D case). Some of
them are depicted in Fig. 2.3.

There is only one point of caution about this otherwise very useful analogy. The space
in which the spinning top ”lives” is that of the Euler-angles describing the tops position
in space. In the case of a rod (DNA) the relevant space is the integrated tangent
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space i.e. x (s) =
∫ s

t (θ (s′) , φ (s′) , ψ (s′)) ds′. This seemingly harmless difference
turns out to be crucial in cases when there are interactions along the DNA chain which
obviously happen in the real space (rather than the tangential space). For instance
in cases of DNA self-contacts (which usually appear after elastic instabilities of the
DNA) the naive rod-top analogy breaks down and one is forced to use other (by far
less elegant) methods to handle such problems.

2.1.2 Introduction to Statistical Mechanics of ”Hot” DNA

In the previous section we have treated the case of either very short DNA (shorter
than its persistence length lP which will be explained below) or of DNA at sufficiently
low temperature. Since all living beings exist at room temperatures and have DNA
molecules of typically centimeter to meter length (which is even for a polymer an
extraordinary dimension!) it is of course necessary to extend the methods from the
previous chapter and to introduce a heat bath. We will see in the following how the
conformational properties of DNA get modified and indeed change substantially at non-
zero temperature. In the first introductory part we will mainly present some ”state of
the art” of DNA statistical mechanics. We will follow the derivations of Bresler and
Frenkel [1] , Landau and Lifshits [4] , Marko and Siggia [10], and Odijk [11] dealing
mainly with stretched (or short) DNA as an elementary yet instructive warm-up.
Let us start simple and forget about twisting for a moment and consider the total DNA
energy as in Eqs. 3.2 and 2.3. To make our life even easier let us also switch of the
force and consider a DNA in a plane. In this case we may set φ = 0 in Eq. 3.2 and we
are left only with

E =

∫ L

0

A

2

(
dt

ds

)2

=

∫ L

0

A

2
θ̇2ds (2.5)

The angle θ (s) is measured with respect to an arbitrary coordinate system so we might
set θ (0) = 0 without restriction.
Now we can ask the following simple question: What is the mean end to end distance
of a (planar) DNA molecule of length L and stiffness A at a given temperature T?
To answer this let us consider a small subsegment of the DNA with length l ¿ L. If the
latter is very short we may assume that the DNA behaves mainly elastically on that
scale yet with the constraint that the boundary conditions (in this case θ (L) = ∆θL)
of each realization of an elastic configuration will be affected by the temperature.
The minimization of Eq. 2.5, i.e., setting δE = 0 leads to the simple Euler-Lagrange

equation
··
θ (s) = 0. By imposing the boundary conditions θ (0) = 0 and θ (l) = ∆θl

one obtains θ (s) = (s/l) ∆θl with the bending energy

E [θ] =

∫ l

0

A

2
(∆θl/l)

2 ds = A∆θ2
l /2l (2.6)

The former solution is a circular arc of length l with an opening angle ∆θl and radius
R = l/ |∆θl|. Now the energy in Eq. 2.6 is a quadratic function of the variable ∆θl so
by the equipartition theorem we obtain 〈A∆θ2

l /2l〉 = 1
2
kBT or
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〈
∆θ2

l

〉 ≈ lkBT

A
(for short l)

The latter result means that the tangential correlation function 〈t (s) , t (s + l)〉 of two
DNA tangents at positions separated by a small distance l behaves like

〈t (s) t (s + l)〉 = 〈cos ∆θl〉 ≈ 1− 1

2

〈
∆θ2

l

〉 ≈ 1− l
kBT

2A

At a twice as large distance of 2l we have

〈t (s) t (s + 2l)〉 = 〈cos (∆θl,1 + ∆θl,2)〉
= 〈cos ∆θl,1〉 〈cos ∆θl,2〉 − 〈sin ∆θl,1〉 〈sin ∆θl,2〉︸ ︷︷ ︸

=0

= 〈t (s) t (s + l)〉 〈t (s + l) t (s + 2l)〉

〈t (s) t (s + 2l)〉 =

(
1− l

kBT

2A

)2

In the first step we exploited the independence of the two succeeding bending angles
θl,1 and θl,2. If we now subdivide a long DNA of length L in n short subsegments of
length l we can iterate the upper procedure and get (by straightforward induction)

〈t (s) t (s + nl)〉 =

(
1− l

kBT

2A

)n

So in the limit of very short subsegments l (or n →∞ ) we get

〈t (s) t (s + L)〉 = lim
n→∞

(
1− L

n

kBT

2A

)n

= e
− L

2lP with (2.7)

lP = A/kBT (2.8)

For the full 3-D DNA case it is easy to see that the result gets only modified by a factor
of 2 in the exponent

〈t (s) t (s + L)〉 = e
− L

lP (3D case)

The latter is an important result by Bresler and Frenkel [1]. It states that the tangential
correlations of DNA fall off exponentially on a lengthscale lP . The latter is in fact the
(bending) persistence length introduced above. Looking at Eq. 2.7 we see that for
L < lP one has strongly correlated tangents whereas on longer lengthscales they loose
memory by thermal bombardment. Unlike the bending stiffness A which is a material
constant the persistence length has an inverse temperature dependence. Visually at
larger temperature the chain wiggles more so lP decreases yet without changing stiffness
A (at least in our simple macroscopic model). For DNA at room temperature lP is
around 50nm.
Having derived 〈t (s) t (s + L)〉 it is now easy to compute the mean end to end distance
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〈
R2

〉
=

〈(∫ L

0

t (s) ds

)2
〉

=

∫ L

0

∫ L

0

〈t (s) t (s′)〉 dsds′

=

∫ L

0

∫ L

0

e
−
|s− s′|

2lP dsds′

= 4l2P
(
L/lP + 2e−L/2lP − 2

)
(2.9)

From the latter equation we see that the end-to-end distance 〈R2〉1/2
behaves as L for

L/lP ¿ 1 and 〈R2〉1/2 ≈ 2 (LlP )1/2 for L/lP À 1 so that the DNA behaves as a random
walker on large scales as expected. For the 3D case an analogous formula holds, namely
Eq. 2.9 with lP replaced with 2lP .

2.1.3 The Force-Extension Relation for a Straight DNA

An other interesting question that many people asked theoretically and experimen-
tally [10, 11, 2] is: What is the mean end to end distance of a DNA subjected to a
stretching2 force F at a temperature T? Even without computation we can make some
phenomenological observations. The applied force F and the temperature T will be-
have antagonistically in the stretching process: The force tries to stretch the polymer
while the temperature performing constant bombardment and deflection of the DNA
axis tries to contract the polymer. A (rather biased) ”mediator” between these two
hard opponents will be the bending stiffness A. Obviously if the latter is large the chain
will be more extended so A and F share the same ”desire” to stretch DNA.
Typical observables that one might be interested in is the mean and the mean squared
end-to end distance, 〈∆z〉 and

〈
(∆z − 〈∆z〉)2〉, cf. Fig. 2.4. Experimentally these

quantities can nowadays be measured with amazing accuracies. A typical setup for
such an experiment consists of two tiny (micron sized) magnetic or polystyrene beads
which are tethered to the DNA and in addition a device to excert forces on them and
measure their positions (typically a low intensity laser or a strong inhomogeneous field
magnet and an optical microscope able to resolve their positions). This is nowadays a
standard experiment performed in dozens of labs worldwide but at the time it appeared
for the first time it was a real revolution (reviewed in [2]) which subsequently accelerated
the theoretical understanding of DNA.
Let us briefly rederive the well known results for the force extension behavior [10, 11].
Computationally Eq. 2.3 with the two fields θ and φ entering the energy in a nonlinear
manner makes the problem way too difficult to be treated analytically. In order to
make it more feasible we restrict ourselves to the case of small deflections of the DNA
tangent with the respect to the z−axis (i.e., with respect to the force direction). This
will be fulfilled if the molecule is short enough, the temperature low enough and/or
the force large enough. In this case the energy can be ”expanded around the straight

2The case of compressive forces is usually less relevant for DNA. It appears in the context of DNA
buckling. For literature cf. Ref [12]
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Figure 2.4: The schematic experimental setup of a single molecule DNA stretching
experiment. DNA is tethered with its two ends to a pair of polystyrene (or magnetic)
beads. Forces can be excerted on the latter by laser beam field gradients or (by magnetic
fields) and their positions can be measured with high accuracy.
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configuration”. Now the somehow tricky thing about expanding Eq. 2.3 around the
z−direction is that the coordinate system (i.e. the parametrization in θ and φ) is
singular around the most interesting point namely θ = 0! The fact that φ enters the
expression only through its derivative φ̇ does well for ”cold DNA” problems from the
previous chapter but for doing statistical mechanics it causes serious trouble as we will
see in later chapters3.
The simplest way around this is to introduce two new angles (between the tangent
projected into the two F containing perpendicular planes and to the z-axis, cf. Fig. 2.5)
ϑx and ϑy and to substitute

ϑx = θ cos φ (2.10)

ϑy = θ sin φ

which leads to

ϑ̇2
x + ϑ̇2

y = θ̇2 + φ̇2θ2 ≈ θ̇2 + φ̇2 sin2 θ

ϑ2
x + ϑ2

y = θ2 ≈ 2(1− cos θ)

The the latter approximations hold for small θ ¿ 1. Using this our energy Eq. 2.3
reads

E [ϑx, ϑy] ≈
∫ L

0

[
A

2

(
ϑ̇2

x + ϑ̇2
y

)
+

F

2
(ϑ2

x + ϑ2
y)− F

]
ds (2.11)

: = H [ϑx] + H [ϑy]− FL (2.12)

with a Hamiltonian H

H [ϑ] =
1

2

∫ L

0

[
Aϑ̇2 + Fϑ2

]
ds (2.13)

Having the nice decoupling of the two variables ϑx and ϑy and the quadratic Hamil-
tonian structure of H [ϑ] the statistical mechanics problem of finding the partition
function Q as an integral of exp (−E [ϑx, ϑy] /kBT ) over the two independent functions
ϑx and ϑy is a standard exercise of path integration [13, 14]. Yet it is more illuminating

to write H in Eq. 2.13 in Fourier modes of ϑ by putting4 ϑx/y (s) =
∑

n ϑ̂x/y,ne
−2πins/L.

Then the Hamiltonian readily decouples into a sum over independent modes

H
[
ϑx/y

]
=

∑
n

(
2Aπ2

L
n2 +

1

2
FL

) ∣∣∣ϑ̂x/y,n

∣∣∣
2

.

3Even in the zero temperature case the singular coordinate system has caused a lot of confusion
and wrong results (in highly ranked journals) which predict the stability of certain (un-) stable rod
structures. This problem is discussed and resolved later on in this chapter.

4Here we assumed periodic boundary conditions ϑx/y (L) = ϑx/y (0) but this of course does not
change the physics for long enough L.
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Figure 2.5: The definition of the projected tangent angles ϑx and ϑy. The projection of
the DNA tangent into the y-z plane encloses the angle ϑy with the z-axis. ϑx is defined
in analogous manner via a projection in the x-z plane (not shown here).
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Now one can use once again (cf. previous section) the equipartition theorem for
quadratic Hamiltonians stating that each mode ”absorbs” 1

2
kBT energy on average.

The latter implies the elementary yet important result

〈∣∣∣ϑ̂x/y,n

∣∣∣
2
〉

=
kBT

(4Aπ2/L) n2 + FL

In order to compute the mean end-to-end distance 〈∆z〉 - useful formulas are

∆z =

∫ L

0

cos θds ≈
∫ L

0

(
1− ϑ2

x (s) + ϑ2
y (s)

2

)
ds

〈∆z〉 ≈ L

(
1− 1

2L

∫ L

0

(〈
ϑ2

x (s)
〉

+
〈
ϑ2

y (s)
〉)

ds

)

Now by plugging in the Fourier representation of the integrals above they simplify (by
virtue of the Parceval theorem) leading to the important formula [10, 11]

〈∆z〉 ≈ L

(
1− kBT

2
√

AF

)
(2.14)

This can be solved for the force giving

F ≈ (kBT )2

4A

1

(1− 〈∆z〉 /L)2 =
kBT

4lP

1

(1− 〈∆z〉 /L)2 (2.15)

The latter force has an obvious interpretation. It increases with temperature so it is of
entropic origin. The inverse dependence on the DNA stiffness A means that the softer
the chain (A smaller) the more entropy it has to loose by stretching. Consequently
it is more ”unwilling” to stretch and its force response is larger. Experimentally the
equation Eq. 2.15 turned out to be a very powerful tool for directly and accurately de-
termining the persistence length of DNA molecules subjected to a multitude of different
solvent conditions [2].
A few words on the range of validity of Eq. 2.15 are appropriate here. This elegant
force expression is valid in the limit of large forces (F À kBT

4lP
= 20fN) and large

relative extensions 〈∆z〉 /L ≈ O(1). Looking at its simplicity it is somehow surprising
that it is experimentally accurate for piconewton forces almost up to the point where
DNA starts to melt and the wormlike chain description breaks down (around 60pN).
On the other side for very low forces (on femtonewton scale) the equation Eq. 2.15 has
to be modified and is usually fitted by [21]

F =
(kBT )2

A


 1

4
(
1− 〈∆z〉

L

)2 −
1

4
+
〈∆z〉

L




In the limit of small extensions 〈∆z〉 /L ¿ 1 one recovers F = 3
2

kBT 〈∆z〉
lP L

which is the
force one expects for a Gaussian random coil perturbed by a weak force [22]. For large
forces one asymptotically recovers Eq. 2.15.
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2.1.4 The Partition Function for Straight DNA

The above reviewed derivation of the force extension relation Eq. 2.15 was fairly
straightforward and elegant. By exploiting the equipartition theorem in Fourier space
an explicit evaluation of the partition function Q and the free energy G (F,L, T ) was
avoided there. Of course by virtue of the relation

〈∆z〉 = −∂G (F, L, T )

∂F

we can obtain G (F,L, T ) up to an F independent part. Nevertheless it is instructive
to compute the free energy by direct evaluation of the partition function in terms of a
path integral over quadratic fluctuations. This well known approach (which of course
gives nothing new in the case of straight DNA stretching) is applied in the subsequent
sections to a less trivial case - the stretching of looped DNA.

The partition function of the DNA chain of length L at inverse temperature β under
tension F writes

Q (F,L, T ) =

∫
δ (|t| − 1)D [t] exp

(
−β

∫ L

0

A

2

(
dt

ds

)2

− F · tds

)

The latter is a pretty nontrivial quantity to evaluate exactly even for vanishing tension
F (cf. ref. [25] and refs therein). One seeming simplification is to perform the path-
integral by parametrizing t by two spherical angles φ and θ so that the constraint
|t| = 1 is automatically fulfilled. By doing this another serious problem appears: in the
spherical representation the integration measure has to be corrected in a highly non-
trivial manner [14]. A possible way around this problem is to exploit and generalize
(”quantize”) the Kirchhoff kinetic analogy mentioned above and map the thermalized
DNA to a quantum mechanical spinning top (or a spherical pendulum if one neglects
the twist degree of freedom) as done in refs. [26]. More exactly the quantum mechanical
transition amplitudes 〈t, 0|t, L〉 of the QM spinning top can be mapped to the partition
function Q (F, L, T ) of DNA under tension. The solutions of the quantum mechanical
problem which are readily known can then be mapped by a transition from imaginary
time iτ to the rod length L.

In our almost straight DNA case the situation is somewhat simpler. Because the deflec-
tions in the θ angle are small we can reparametrize the energy Eq. 2.10 by introducing
two new angles ϑx, ϑy (cf. above). The latter has two virtues. First, the metrics of the
parametrization becomes locally ”flat” (for ϑx, ϑy ¿ 1) and a correction of the path
integral measure is not needed. Second, the partition function decouples in two one
dimensional path-integrals:

Q (F,L, T ) =

∫ ∫
D [ϑx]D [ϑy] e

−β
R L
0 [A

2 (ϑ̇2
x+ϑ̇2

y)+F
2

(ϑ2
x+ϑ2

y)−F ]ds (2.16)

= eβFLQ2
1 (F, L, T )

Q1 (F,L, T ) =

∫
D [ϑ] e−

β
2

R L
0 [Aϑ̇2+Fϑ2]ds



30 CHAPTER 2. STRETCHING OF LOOPED DNA

The latter function Q1 looks familiar. Indeed it is analogous to the standard path
integral for the transition amplitudes of a 1-D harmonic oscillator [27, 12]. More
precisely in the case of a QM harmonic oscillator the transition amplitude 〈x1, τ1|x0, τ0〉
writes [13, 14]

〈x1, τ1|x0, τ0〉 =

∫ (x1,τ1)

(x0,τ0)

D [x] e
i
~
R τ1

τ0

1
2
M(ẋ2−ω2x2)dτ

(2.17)

= 1√
2πi~/M

√
ω

sin ω (τ1 − τ0)

× exp

(
iMω

2~
(x2

0 + x2
1) cos ω (τ1 − τ0)− 2x0x1

sin ω (τ1 − τ0)

)

The path integral above differs from the one used in Eq. 2.16 by the constrained
integration, i.e., the fixed boundary conditions (denoted by the upper and lower integral
boundaries (x0, τ0) and (x1, τ1)) used in Eq. 2.17. By performing the substitution
τ → s, ~→ −ikBT , M → A , ω → i

√
F/A and keeping the intuitive bra-ket notation

we obtain the conditional partition function

〈ϑL, L|ϑ0, 0〉 =

√√
FA

4π
β

√
2

sinh
(

L
λ

) (2.18)

×e
−β

√
FA
2

(ϑ2
0+ϑ2

L) cosh(L
λ )−2ϑ0ϑL

sinh(L
λ )

with λ =
√

A/F

The latter expression is proportional to the angular correlation function of the angles
ϑ0 and ϑL at the first and last position of the DNA molecule (up to a normaliza-
tion function). The quantity λ =

√
A/F is usually called the deflection length or

tension-length5. The tension length λ having a dimension of length, becomes now
the relevant lengthscale in the case of DNA under tension replacing the usual (tension-
free!) persistence length lP = A/kBT . To clarify ourselves the meaning of λ let us
consider the limiting case L/λ À 1 which holds for even moderately long DNA and
piconewton forces6. In this case Eq. 2.18 writes

〈ϑL, L|ϑ0, 0〉 ≈ (FA)1/4 (2β/π)1/2 e−
L
2λ e−

β
√

FA
2 (ϑ2

0+ϑ2
L) (2.19)

From the latter expression (which is valid for ϑ0, ϑL ¿ 1) we indeed see that the chain
looses orientational memory exponentially on the scale given by λ.

Now in order to obtain the partition function Q of our system (Eq. 2.16) we need to

5It was probably first introduced by Odijk in [27] in the context od DNA in liquid crystalline
environment. We adopt here the expression ”tension length” as used by Bruinsma and Rudnick in
[28].

6For fairly moderate applied forces of say F = 1pN we have λ ≈ 14nm so L/λ À 1 is indeed
fulfilled for all single molecule experiments (L = 1− 15µm).
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integrate Eq. 2.19 over7 ϑ0,ϑL to obtain

Q1 (F,L, T ) =

∞∫

−∞

∞∫

−∞

〈ϑL, L|ϑ0, 0〉 dϑLdϑ0

≈ (FA)1/4 (2β/π)1/2 e−L/2λ

∞∫

−∞

∞∫

−∞

e−
β
√

FA
2 (ϑ2

0+ϑ2
L)dϑLdϑ0

= 2
√

2π

(
kBT

F lP

)1/4

e−
L
2λ (2.20)

The full partition function Q (F,L, T ) = eβFLQ2
1 (F, L, T ) by virtue of Eq. 2.16 finally

writes

Q (F,L, T ) ≈ 4π

β
√

FA
e

�
βF−

√
F/A

�
L

(2.21)

The free energy then reads

G (F,L, T ) = − 1

β
ln Q (F, L, T )

≈ −FL +

√
F/A

2β
L +

1

β
ln

(
β
√

FA

4π

)

To compute the mean extension 〈∆z〉 = −∂G/∂F

〈∆z〉 ≈ L

(
1− kBT

2
√

FA
+

kBT

2FL

)

If we now neglect the kBT/FL ¿ 1 term which is very small for pN forces and relevant
DNA lengths (> 1µm) we recover Eq. 2.14. Having Q (F,L, T ) from Eq. 2.21 it is an
easy exercise to derive all kind of correlation functions and moments from its partial
derivatives.
Up to now we merely reviewed some well known basic facts about the wormlike chain.
We dispense with their deeper elaboration and move to a somehow less trivial case in
the next section.

7Depending on the boundary conditions we impose, ϑ0 and ϑL can be linked to each other via
ϑ0 = ϑL (for periodic boundary conditions). Here this unnecessary restriction (which is usually very
convenient in the Fourier space representation) is dropped. Generally the boundary condition will
contribute negligibly to the statistics for L/λ À 1.
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2.2 Equation of State for Looped Semiflexible Poly-

mers

In the last chapter we looked at the statistical mechanics and in particular the force-
extension curve (the ”equation of state”) of a DNA molecule close to its straight ground
state. The analogy with the QM harmonic oscillator reviewed above turned out to be
computationally quite useful in obtaining the DNA partition function. The reason for
this mapping to work was the simple quadratic shape of the Hamiltonian in Eq. 2.16.
But how should one deal with non-trivial configurations (far from straight) which
appear in many experimental (in vitro) and natural (in vivo) contexts? A more concrete
question would be: What is the force extension curve of a DNA chain that is locally
folded onto itself like in Fig. 2.6?

Such a backfolding can be caused by a ligand which brings the two distant DNA
parts together but still allowing them to slide with respect to each other. Besides
this somehow obvious realization, there are a multitude of different mechanisms all
able of stabilizing the loop, cf. Fig. 2.6. To list just a few: a) supercoiling in twisted
DNA (the same phenomenon like in a looping telephone cable), b) DNA adsorption
on a surface (e.g. a membrane), c) DNA in a dense liquid crystalline environment
kinetically prohibiting the loop unfolding d) DNA in a strong magnetic field trying
to align it perpendicularly, e) DNA condensed by multivalent counterions and other
ligands etc. Looking at the variety of experimental situations where the loop might
be of relevance motivates our desire to obtain theoretically the corresponding force-
extension curve in order to interpret the available experimental data. Although we
will restrict ourselves to the treatment of the cases d) (for its feasibility) and e) (for
its importance in DNA condensation) the other cases are treatable in the same spirit
(though with additional effort).

In this section we first review and rederive the shape of the homoclinic8 loop at zero
temperature from the corresponding Euler-Lagrange equations. This simplest extended
non-trivial filament shape which was already considered by Euler is essentially two-
dimensional. For a given tension F the homoclinic loop turns out to be stable for
arbitrary large in plane perturbations. Indeed the 2-D loop turns out to be a (static)
topological soliton appearing in various reparametrizations in many contexts of con-
temporary physics ranging from Josephson-junctions (Sine-Gordon equations) to QM
tunneling problems (cf. Appendix E). In the subsequent section we go to the third
dimension by considering the out-of-plane fluctuations and how they contribute to the
force response. On our way we will see that the homoclinic DNA loop is intrinsically
unstable (in contrast to some false claims in literature) in the third dimension and we
will learn how to introduce and deal with potentials or constraints necessary for its
stabilization. We will derive the force extension relations for the DNA loop in 2-D and
the 3-D case under various constraints and potentials. Finally we apply the developed
results to resolve a problem that recently appeared in single molecule (AFM) stretch-

8The term homoclinic stems from the Kirchhoff analogy between the loop that we consider here
and the homoclinic orbit of a (mathematical) pendulum which obtained just enough energy to make
one full 2π rotation in an infinite time interval
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Figure 2.6: Various examples of stable loops in DNA under tension: a) Applied torque
M at the ends. b) DNA adsorbed on a surface. c) DNA surrounded by a dense solution
of infinitely long DNAs. Unfolding of the loop goes hand in hand with an energetically
costly transient ”cavity” creation (in the pink region) d) DNA in a strong magnetic
field H perpendicular to the applied force e) DNA looped by a freely sliding linker
ligand (”weakly condensed” DNA).
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ing experiments: why is the measured persistence length of AFM stretched polymers
often (much) smaller than that obtained by other methods. This ”ghost” persistence
length effect is a very general phenomenon that lies at the heart of stretching elas-
tic substructures (like loops and deflections due to boundary anchoring) in wormlike
chains.

2.2.1 The Planar Homoclinic Loop

Let us start with the simplest case one can imagine: a looped DNA under tension F
along the z-axis. The DNA will at first be allowed to fluctuate only in plane (say a
DNA on the flat surface of a membrane as in Fig. 2.6b). We neglect the DNA twist
degree of freedom which if not explicitly constrained immediately decouples from DNA
bending energy 9. The latter writes in the general 3D case (cf. previous chapter)

E =

∫ L/2

−L/2

(
A

2

(
dt

ds

)2

− Ftz

)
ds

=

∫ L/2

−L/2

(
A

2

(
φ̇2 sin2 θ + θ̇2

)
− F cos θ

)
ds (2.22)

Here tz is the z-projection of the DNA tangent and the dots again represent the dif-
ferentiation with respect to the arc-length parameter s. The two variables θ, φ are the
spherical coordinates of the tangent vector t (with symmetry axis z). In the spirit of
the Kirchhoff kinetic analogy from the previous chapter the bending energy in Eq. 2.22
corresponds to the Lagrangian of a spherical pendulum in the gravitational field. The
Euler-Lagrange equations of Eq. 2.22 become

A
d

ds

(
φ̇ sin2 θ

)
= 0 (2.23)

A

(··
θ − φ̇2 sin θ cos θ

)
− F sin θ = 0 (2.24)

By virtue of the fact that φ becomes a cyclic variable in Eq. 2.22 the equation Eq. 2.23
is integrable and one obtains

φ̇ sin2 θ = Mz/A

with the integration constant Mz being the overall conserved bending moment around
the z-axis10 (cf. [6]). For the planar case we have φ̇ = 0 and consequently Eq. 2.24
simplifies to

··
θ = λ−2 sin θ with λ =

√
A/F (2.25)

9The latter assumption is of course not justified in the pretty involved case depicted Fig. 2.6a)
where one introduces explicit torque.

10The system is indeed fully integrable as it possesses a second integral which is the total stress +
strain energy (or the Hamiltonian corresponding to the Lagrangian in Eq. 2.22) A

2

(
φ̇2 sin2 θ + θ̇2

)
+

F cos θ = const.
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Here once more we meet the tension length λ introduced in the last chapter as the
relevant lengthscale in our problem. The latter equation is the time independent Sine-
Gordon equation well known and studied in many systems especially in the context
of solitons (and their applications like Josephson junctions, cf. Davydov’s book [29]).
Therefore it is appropriate to call the solutions of Eq. 2.25 solitons or kinks. Now the
equation Eq. 2.25 can be integrated twice to obtain

dθ

ds
= λ−1

√
2 (c− cos θ)

(s− s0) /λ =

∫ θ(s)

θ(s0)

dθ′√
2 (c− cos θ′)

(2.26)

with a trivial integration constant s0 reflecting the reparametrization invariance of
our system and a less trivial constant c (related to the total stress+ strain energy cf.
footnote on previous page). The general solution of Eq. 2.25 with arbitrary c leads to
elliptic functions but in our case the solution is even simpler as the DNA curvature
dθ/ds is assumed to vanish asymptotically for s/λ → ±∞. This implies c = 1 and the
solution reads11 θloop = 4 arctan es/λ or

cos θloop (s) = 1− 2

cosh2 (s/λ)
(2.27)

cf. also Fig. 2.7.
To obtain the force-extension behavior of the homoclinic loop / kink in 2-D we need
to evaluate the contribution of the rod elasticity as well as the fluctuation contribution
to the partition function Qloop. The latter writes

Qloop =

∫

θ∈K

D [θ] e−βE[θ] (2.28)

with

E [θ] =

∫ L/2

−L/2

(
1

2
Aθ̇2 − F cos θ

)
ds (2.29)

Here the path integral spans over some (functional) neighborhood K of the kink solution
θloop. For large enough tensions only the quadratic fluctuations will contribute to Qloop

so that we can expand12 E [θ] up to quadratic order around θloop. The linear term δE
in this expansion vanishes because θloop is an extremal point of E. We have

E [θloop + δθ] = Eloop + Efluct [δθ]

with the ”classical” (T = 0) bending energy of the kink

Eloop = E [θloop] = F

∫ L/2

−L/2

(
4

cosh2 s
λ

− 1

)
ds (2.30)

= −FL + 8
√

AF + O
(
e−L/λ

)

11Here the length of the molecule L is assumed to be very large compared to the tension length λ,
i.e., L/λ → ±∞. The solution θkink provided here is only valid in this asymptotic limit. For finite
L/λ case there are exponentially small corrections O

(
e−L/λ

)
treated in the next section.

12This common approximation is usually called the ”saddle point approximation”, cf Appendix A.
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Figure 2.7: a) The definition of the Euler angle θ and the scale of the loop. The
loop head diameter (red) is approximately given by λ =

√
A/F b) The loop solution

θkink (s) as given by Eq. 2.27.
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and the quadratic fluctuation contribution

Efluct [δθ] =

∫ L/2

−L/2

(
A

2
δθ̇2 +

F

2
cos (θloop) δθ2

)
ds

=
A

2

∫ L/2

−L/2

[
δθ̇2 + λ−2

(
1− 2

cosh2 (s/λ)

)
δθ2

]
ds

After performing partial integration and introducing the dimensionless parameter

t =
s

λ

the latter can be recast into

βEfluct [δθ] =
1

2

∫ L/2λ

−L/2λ

δθ (t) T̂ (t) δθ (t) dt

with the (position dependent) Schrödinger-like fluctuation operator

T̂ = β
√

AF

(
− ∂2

∂t2
+

(
1− 2

cosh2 (t)

))
(2.31)

The partition function Eq. 2.28 can now be written as a quadratic path integral over
fluctuations δθ

Qloop = e−βEloopQfluct
loop (2.32)

Qfluct
loop =

∫ (0, L
2λ

)

(0,− L
2λ

)

D [δθ] e−
1
2

R L/2λ
−L/2λ

δθT̂δθdt (2.33)

At first glance the evaluation of this path integral appears very tricky because of the
explicit s (or t) dependence of the fluctuation operator T̂. Fortunately the ”potential
energy part” V (t) ∝ (

1− 2/ cosh2 (t)
)

is just simple enough13 to allow an exact di-

agonalization of T̂. The spectrum of T̂ consists of a discrete spectrum with the only
discrete eigenvalue µ0 = 0 and the continuum spectrum µk = β

√
AF (k2 + 1) , k > 0

(cf. [13, 14, 30]). The existence of a vanishing eigenvalue (Goldstone mode) which is a
consequence of translational invariance t → t + t0 of the kink solution formally causes
a divergence of Eq. 2.33 [13, 14]. Fortunately it can be shown that this problem which
is a consequence of infinite DNA limit (L/λ = ∞) can be cured by taking the limiting
process L/λ → ∞ properly into account. This is done in the next section where we
perform the full derivation of the fluctuation partition function from Eq. 2.33. The
result is

Qloop =

√
2

π
βLFe−

L
2

√
F
A e−β(8

√
FA−LF)

13Such operators appear in the (time independent) 1D Schrödinger equation with the Morse-Rosen
potential V (x) = 2/ cosh2 x . The latter happens to be one of the few exactly soluble non-trivial
cases [30] where the spectrum and the eigenfunctions are given analytically. It is a member of the
supersymmetric potential family generally admitting analytic solutions.
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and the corresponding free energy writes

Gloop =
kBT

2
L

√
F

A
+

(
8
√

AF − LF
)

+ kBT ln
(
π−3/4βLF

)
(2.34)

Comparing the latter free energy expression with the free energy G0 of the stretched
straight DNA (without a loop, cf. last chapter) we get

∆Gloop−0 = Gloop −G0

= 8
√

AF + O

(
kBT ln

(
LF

kBT

))
(2.35)

From that we see that the free energy difference ∆Gloop−0 is dominated by the elastic
energy part 8

√
AF which is the second term in Eloop. (The first one −FL is already

present in the straight DNA case and cancels in the difference.) Besides that typically
very large term there is a mere logarithmic correction term. The observation of weak
coupling of this entropic part with the (circular) shape was already made by Odijk
for circular rings [31], so we are not much surprised by the logarithmic form of this
contribution14. The force-extension curve of a 2-D loop is then given from the mean
end-to-end distance 〈∆z〉 = −∂G/∂F :

〈∆z〉
L

= 1−
(

1

4
+ 4

lP
L

) √
kBT

F lP
+ O

(
kBT

FL

)
(2.36)

We may drop the O (kBT/ (FL)) term which is for all practical purposes negligible.
We can now compare the ”equation of state” of the looped DNA Eq. 2.36 with the
previously obtained one for the straight configuration given by ∆z0 = −∂G0/∂F that
is

〈∆z0〉
L

= 1− 1

4

√
kBT

F lP
+ O

(
kBT

FL

)
(2.37)

Comparing Eq. 2.36 and Eq. 2.37 we see that they both have a leading term F−1/2 only
the prefactor gets renormalized in Eq. 2.36 by a contribution stemming from the elastic
part of the loop free energy! This implies a fairly simple prediction which is useful
for experimental interpretation. Suppose one performs a single molecule stretching
experiment with a DNA that contains a loop. Imagine the experimentalist is ”naive”
and does not know anything about the presence of the loop. He/she merely fits the data
by the usual straight DNA expression Eq. 2.37 (as done for instance in ref. [131]) and
is of course happy that it works well (at least up to the leading term F−1/2). From that
fit he/she recovers correctly the total length of the DNA (from the asymptotic line on
the ∆z axis) but he/she observes that something strange happened to the ”persistence
length”- it is smaller then expected!

14One might be slightly disappointed as one could have also (wrongly) guessed stronger deviations
in entropy between the two states. A naive argument that the entropy should strongly ”feel” the size
(and shape) of the loop around which it acts indeed fails. The reason for this is that the amplitude of
the undulations goes down with increasing forces in roughly the same manner as the loop squeezes.



2.2. EQUATION OF STATE FOR LOOPED SEMIFLEXIBLE POLYMERS 39

The explanation is simple: the apparent persistence length becomes lapp
P =

lP / (1 + 16lP /L)2 instead of the real persistence length lP . For the case of Nloop con-
tained loops the latter easily generalizes (as we see in next sections) to

lapp
P =

lP(
1 + 16Nloop

lP
L

)2 in 2D (2.38)

lapp
P =

lP(
1 + 8Nloop

lP
L

)2 in 3D (2.39)

So we see that with a growing number of loops the apparent persistence length rapidly
goes down, i.e., the effective stretching resistance shoots up (as it should).

2.2.2 The Partition Function of a Planar DNA Loop: The
Formal Derivation

In the previous section we have stated basic results like the partition function, free
energy and force-extension relation of a looped DNA in 2-D without proof. Here we
provide the full derivation. Although quite technical at some points it will reveal the
detailed behavior of the 2-D loop under tension. In the (semi-classical) limit of large
tensions i.e. β

√
AF À 1 it will provide us with exact expressions even for ”big” loops

which are comparable to the DNA length (L/λ ∼ 1).
A standard method for computing path integrals like Eq. 2.33 with 2.31 was developed
in the context of quantum mechanical tunnelling problems, and nucleation of bubbles in
overheated liquids by Langer [15] (cf. also refs. [14] and [13]). In its basic formulation
it requires the knowledge of the whole spectrum of the fluctuation operator T̂. We will
essentially follow (at least in principle) these standard methods but at one point we
will take the shortcut invented by Gelfand and Yaglom [17] to avoid the technicalities
of dealing explicitly with the full spectrum of T̂.
Instead of imposing the ”asymptotically vanishing” boundary conditions dθ (s) /ds → 0
for s/λ → ±∞ (which is an approximation valid for L/λ À 1) as we did above we
do it more correctly here on the finite interval [−L/2, L/2]. Of course the particular
form of boundary conditions will not be crucial for the underlying physics in the limit
L/λ → ∞. As a matter of convenience we make the simplest choice for boundary
conditions: θ (−L/2λ) = 0 and θ (+L/2λ) = 2π, i.e. we clamp the ends of the DNA in
an orientation parallel to the force direction.
In this case the Euler-Lagrange equation Eq. 2.25 gives Eq. 2.26 with s0 = 0 and
θ (0) = π. In terms of the dimensionless variable t = s/λ the solution reads

cos θloop (t) = 2sn2

(
t√
m
|m

)
− 1 (2.40)

θloop (s) = π + 2am

(
t√
m
|m

)
(2.41)

with sn and am being the Jacobi elliptic function with parameter m. The latter results
from the clamped boundary conditions and is implicitly given by

√
mK (m) =

L

2λ
=

L

2

√
F/A (2.42)
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In the same manner as above in Eq. 2.31 we can introduce the fluctuation operator

T̂ = β
√

AF

(
− ∂2

∂t2
+ 2sn2

(
t√
m
|m

)
− 1

)
(2.43)

Note that in the limiting case L/λ →∞ we have m → 1 and the operator 2.43 coincides
with Eq.2.31, the expression Eq. 2.40 reduces to Eq. 2.27 - the asymptotic loop solution
we derived above. In the Kirchhoff analogy the solution Eq. 2.40 describes a revolving
pendulum which makes one full turn (from θ = 0 to 2π) during the finite ”time period”
L/λ.
In the following we also need the derivative

θ′ (t) =
d

dt
θ (t) = λ

d

ds
θ (s) = λθ̇ (s)

with respect to t which writes for the loop solution

θ′loop (t) =
2√
m

dn

(
t√
m
|m

)
(2.44)

We want now to evaluate the partition function around the loop solution θloop. We
perform this computation by using standard path-integral methods developed in the
context of the ”saddle point approximation”. These basic methods are reviewed in the
Appendix A. Using these results the loop partition function

Qloop =

∫ (2π, L
2λ)

(0,− L
2λ)

D [θ] e−βE[θ]

can be written as

Qloop = e−βEloop[θloop]︸ ︷︷ ︸
classical contribution

√
β
√

AF

2πD
(

L
2λ

,− L
2λ

)
︸ ︷︷ ︸

fluctuations around class. solution

(2.45)

The first factor here is the energetic contribution of the ”classical” solution θloop and
the second term

√
... is the entropic contribution of quadratic fluctuations around

θloop (cf. Eq.2.33). The expression D
(

L
2λ

,− L
2λ

)
is defined by the ratio of eigenvalues

of the fluctuation operator T̂ and the corresponding free particle (cf. Appendix A
Eq. 2.105 for details)

λ

L
D

(
L

2λ
,− L

2λ

)
=

det
(
T̂/

(
β
√

AF
))

det
(− ∂2

∂t2

) =
∞∏

k=0

µk/
(
β
√

AF
)

π2 (k + 1)2 λ2/L2
(2.46)

D
(

L
2λ

,− L
2λ

)
can be computed very elegantly via the celebrated method of Gelfand

and Yaglom [17] which consists of solving an initial value problem on the interval
[−L/2λ, L/2λ] (Appendix A Eqs. 2.107,2.106). Remarkably the explicit solution for
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D
(

L
2λ

,− L
2λ

)
can be stated in terms of the ”classical” solution θloop (s) (cf. Eq. 2.108).

By virtue of Eq. 2.44 the latter writes

D

(
L

2λ
,− L

2λ

)
= θ′loop

(
L

2λ

)
θ′loop

(
− L

2λ

) ∫ L/2λ

−L/2λ

dt(
θ′loop (t)

)2

=
4

m
dn2 (K (m) |m)︸ ︷︷ ︸

m3/2

4
=(1−m)

∫ K(m)

−K(m)

dτ

dn2 (τ |m)︸ ︷︷ ︸
=2E(m)/(1−m)

D

(
L

2λ
,− L

2λ

)
= 2

√
mE (m) (2.47)

In the second line we have substituted τ = t/
√

m and used standard properties of the
dn function (cf. [85]). E (m) is the complete elliptic integral of the second kind. The
loop energy Eloop (not to be confused with elliptic integral E (m)) writes

Eloop [θcl] =

∫ L/2

−L/2

(
1

2
Aθ̇2

loop (s)− F cos θloop (s)

)
ds

= F

∫ L/2

−L/2

(
2

m
dn2

(
s√
mλ

|m
)
− 2sn2

(
s√
mλ

|m
)

+ 1

)
ds

= F
λ√
m


(m− 2)

∫ K(m)

−K(m)

dt

︸ ︷︷ ︸
2K(m)

+ 4

∫ K(m)

−K(m)

dn2 (τ |m) dτ

︸ ︷︷ ︸
2E(m)




Eloop [θcl] = 2

√
AF√
m

[K(m) (m− 2) + 4E(m)] (2.48)

In the third line we exploited the relation msn2 + dn2 = 1.

Inserting Eqs. 2.47 and 2.48 in Eq. 2.45 we arrive at the elegant but deceptive expres-
sion

Qwrong!
loop =

√
β
√

AF

4π
√

mE (m)
e
−2β

√
AF√
m

[K(m)(m−2)+4E(m)]
(wrong!) (2.49)

The upper expression for Qwrong!
loop ”looks too good to be true” in all limits. Taking for

instance the limit L/λ → ∞ in Eq. 2.42 we have m → 1 , E(m) → 1, K(m) → L/2λ.

The exponent tends to −β
(
8
√

AF − FL
)

i.e. we indeed recover the loop energy

Eq. 2.30 in this asymptotic case. But in the fluctuation prefactor we miss (at least)

another factor ∼ econst.×L
√

F/A that would account for the fluctuations around the
straight configuration15.

15The latter we expect to be present for physical reasons as the largest part of a very long DNA
is in a roughly straight configuration despite the loop in the middle position. Note that the loop is
spacially confined to a region of length ∼ λ ¿ L (in the long DNA limit).
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The resolution of this discrepancy can cause some headache but it is indeed physically
simple to resolve16. The main problem is that the expression Eq. 2.46 for D

(
L
2λ

,− L
2λ

)

implicitly assumes that all the eigenmodes of the operator T̂ contribute in a quadratic

Gaussian manner i.e. that
(

λ
L
D

(
L
2λ

,− L
2λ

))−1/2
can be thought as a ratio of infinitely

many Gaussian integrals:

1√
λ
L
D

(
L
2λ

,− L
2λ

) = lim
N→∞

N∏

k=0

∫∞
−∞ e−

1
2
µka2

kdak

∫∞
−∞ e−

1
2

λ2π2(k+1)2

L2 a2
kdak

(2.50)

After performing the Gaussian integrals this coincides with Eq. 2.46. The boundaries
in the integrals above are taken to be ±∞ for convenience. But it is exactly this
”convenience” that causes trouble in our case. Especially in the case when one of the
eigenvalues, say µ0, approaches zero, the expression Eq. 2.50 makes a serious flaw as
the potential acting on that mode becomes so ”flat” that the corresponding Gaussian
integral would become unbounded. But thinking physically: what really matters in
this limiting case is rather the finiteness of the (state) space that the almost-zero-
eigenvalue mode can populate (rather than the vanishing potential acting on it). For
the positional translational shifting mode of the loop along the DNA (mentioned in
the previous section) which we expect to occur here in the asymptotic limit L/λ →∞
the size of the state space becomes the (dimensionless) DNA contour length
L/λ. Therefore in the limit µ0 (L/λ)2 ¿ 1 one should correct Eq. 2.50 and rather write

1√
λ
L
Dcorr

(
L
2λ

,− L
2λ

) =

(∫ L/2λ

−L/2λ

e−
1
2
µ0a2

0da0

)

︸ ︷︷ ︸
=
q

2π
µ0

erf
�√

µ0L

2
√

2λ

�
lim

N→∞

∏N
k=1

∫∞
−∞ e−

1
2
µka2

kdak

∏N
k=0

∫∞
−∞ e−

λ2π2(k+1)2

L2 a2
kdak

Here erf (...) is the Gaussian error function. Rewriting in terms of the (wrong) expres-
sion D

(
L
2λ

,− L
2λ

)
we obtain

Dcorr

(
L

2λ
,− L

2λ

)
=




∫∞
−∞ e−

1
2
µ0a2

0da0∫ L/2λ

−L/2λ
e−

1
2
µ0a2

0da0




2

D

(
L

2λ
,− L

2λ

)

=
1

erf2
(√

µ0L

2
√

2λ

)D

(
L

2λ
,− L

2λ

)
(2.51)

In the two limiting cases the latter writes

Dcorr

(
L

2λ
,− L

2λ

)
≈





2πλ2

µ0L2 for
√

µ0
L
λ
¿ 1

1− 4
√

2λ√
πµ0L

e−
µ0L2

8λ2 for
√

µ0
L
λ

& 1
×D

(
L

2
,−L

2

)
(2.52)

In the last line we used the Taylor and the asymptotic expansion of erf around 0 and ∞
respectively. From that we see that the naive expression Eq. 2.49 is valid only for large

16Similar problems occur in the context of the semiclassical treatment of QM tunneling (cf. [13, 14])
and result from time invariance of the tunneling event.
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enough
√

µ0L/λ. In order to compute the corrected fluctuation factor Dcorr explicitly

we still need the lowest eigenvalue µ0 of T̂ (Eq. 2.43). In the Appendix B we show that

µ0 = β
√

AF

(
1

m
− 1

)
(2.53)

=
2lP
L

K (m) (1−m)√
m

(2.54)

In the last line we replaced F via the constraint Eq. 2.42 which provides a unique
mapping m ←→ F . Now putting Eqs. 2.45, 2.47, 2.51 and 2.54 we obtain finally the
correct partition function17

Qloop =

√
β
√

AF

4π
√

mE (m)
erf

(√
µ0L

2
√

2λ

)
e
−2β

√
AF√
m

[K(m)(m−2)+4E(m)]
(2.55)

Using the relations 2.54 and 2.42 we can rewrite this general expression fully in terms
of m

Qloop (m) =
(

lP
2πL

K(m)
E(m)

) 1
2
erf

((
lP
L

) 1
2

K
3
2 (m) (1−m)

1
2 m

1
4

)
e−4

lP
L

K(m)[K(m)(m−2)+4E(m)]

Based on this form a treatment of the exact force extension relation for a 2-D loop for
arbitrary lengths and shapes is possible18.
Here we dispense with that and we focus on the most relevant limiting case L

2λ
À 1

(i.e. the contour length L of the DNA is much larger than the loop-head size λ). In
this case we have m → 1 and for the two elliptic integrals the following asymptotic
expansions hold:

K (m) = ln 4− 1

2
ln (1−m) + O ((1−m) ln (1−m))

E (m) = 1 + O ((1−m) ln (1−m))

The involved expression O ((1−m) ln (1−m)) which goes sublinearly to zero as m
approaches unity can be neglected. The constraint Eq. 2.42 can be solved for m ≈ 1
and we obtain

m ≈ 1− 16e−
L
λ

17It is somehow ironic that the error we have tapped into (Eq. 2.49) at first is corrected by an error
function. It is also remarkable and a strange coincidence (?) that the initially wrong (ghost) entropy
of the µ0 -mode in Eq. 2.49 has exactly ”eaten up” the whole entropy of the wormlike chain behavior
of the largest part of the chain! Identical problems with the (almost) zero mode appear in many other
applications (cf. the Appendix E for references) but there their visual meaning is harder to grasp than
in our example here. We have also seen that the explicit exclusion of the zero eigenvalue by proper
boundary conditions does not save us from renormalizing the contribution of the µ0 mode ”by hand”!

18Taking Eq. 2.42 and differentiating both sides by m we obtain dm(F )
dF = 1/

(
dF (m)

dm

)
. Thus the

derivative required for computing 〈z〉 can be performed, i.e. d ln Q
dF = dm(F )

dF
d ln Q
dm . 〈z〉 = 〈z〉 (m) can

be written in terms of m and a parametric 〈z〉 (m)− F (m) curve can be obtained.
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For the smallest eigenvalue µ0 from Eq. 2.54 we obtain

µ0 =
16lP
λ

e−
L
λ (2.56)

So indeed for L/λ → ∞ this eigenvalue becomes asymptotically zero and the corre-
sponding mode (the translational shifting mode) becomes a Goldstone mode as we
would intuitively expect from the approximate translational invariance of the loop en-
ergy (the loop can be found at any position along the DNA as the boundary conditions
do not play a role in this limit). We obtain

Qloop =

√
2LlP
πλ2

e−
L
2λ e

lP
λ (L

λ
−8)

=

√
2

π
βLFe−

L
2

√
F
A e−β(8

√
FA−LF) (2.57)

The free energy as function of F reads

Gloop =
L

2β

√
F

A
+

(
8
√

AF − LF
)
− 1

β
ln

(√
2

π
βLF

)
(2.58)

Implying the force extension

〈∆z〉
L

= − 1

L

dG

dF

= 1− 1

4β
√

AF
− 4

L

√
A

F
+ O

(
1

βFL

)

This is exactly Eq. 2.36 presented in the previous section.
After this excursion (or rather ”tour de force”) in elliptic functions / integrals in the
following sections we will merely focus on the asymptotic limit L/λ À 1 which is most
relevant and which will make the physics behind most transparent.

2.2.3 The Homoclinic Loop in 3-D

After having understood the behavior of the homoclinic loop (the kink) in 2-D it seems
that a generalization to the third dimension should be straightforward. But as we will
see there are several traps and some interesting physics on the way. The first and main
problem that one encounters is that the homoclinic loop is (unlike in the 2-D case)
elastically unstable! The simplest way to see or better to feel this is to take an elastic
cable make a loop in it and (without torsionally constraining the ends) to pull on it.
Obviously if we force the loop to stay in a plane (its own weight can do it if the cable is
lying on a table provided that we do not pull to strongly) it cannot escape its fate and it
stays what it is: a topological excitation which cannot leave the rod (besides at one
of its two ends)! But in contrast to this situation when redoing the same experiment
in 3-space we feel slightly disappointed observing that the loop immediately unfolds
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at any force19. So if there is any interesting physics of 3-D homoclinic loops it will
have to come through constraints or loop stabilizing potentials. Before we start this
program let us (as warm up) check if the 3-D loop is indeed mechanically unstable.
Therefore we have to consider the 3-D elastic energy, Eq. 2.4, from the last chapter20.
If we dispense with applying torques or torsionally constraining the DNA we can set
C = 0 formally (as explained in the previous section) and forget about the angle ψ.
Then we obtain the energy

E [θ, φ] =

∫ L/2

−L/2

A

2

(
φ̇2 sin2 θ + θ̇2

)
− F cos θds (2.59)

By solving the corresponding Euler-Lagrange equations we see that θloop from Eq. 2.27
and φloop = const. constitute all possible (single) kink solutions with approximate
boundary conditions of vanishing curvatures at infinity (L/λ → ∞). To check the
stability of the loop we need to expand Eq. 2.59 up to second order in terms of small
perturbations δθ and δφ around the loop state (θloop, φloop). As the first variation
δE = 0 vanishes at (θloop, φloop) we obtain

E [θloop + δθ, φloop + δφ] = Eloop +
1

2
δ2E (2.60)

δ2E =

∫ L/2

−L/2

[(
Aδθ̇2 + F cos (θloop) δθ2

)
+ A sin2 (θloop) δφ̇2

]
ds (2.61)

Looking closely at the expansion above δ2E we see that it consists of two contributions.
The first is a functional of δθ and δθ̇ only and appeared already in the planar problem
before. The second term depends only on δφ̇ but not on δφ. It is positive definite!
We are surprised, what went wrong? Did we misinterpret our experiment with the
telephone cable, is it a deception of senses? Is the 3-D kink indeed stable? The answer
is no21! The subtlety lies in the singularity of the (θ, φ) coordinate system: around
θ = 0 the angle φ becomes arbitrary. This leads to peculiar effects. For instance the
energy stays invariant under a transformation J : φ (s) → φ (s) + const.H (s− s0)
where H is the Heaviside step function (H (s) = 0 for s ≤ 0 and H (s) = 1 otherwise)
and s0 is a point where sin θ (s) crosses the zero line. This interesting invariance under
the transformation J (call it the ”jump-gauge”) says that admissible perturbations δφ
need not even to be continuous (δφ̇ can contain delta peaks) at points where sin θ = 0.
This indicates that the naive expansion like done in Eq. 2.60 might be inappropriate.
Instead of going into mathematical subtleties of this peculiar coordinate system we
decide to ”throw it overboard” and chose a new one by rotating it.
Instead of explicitly rotating the coordinate system it is equivalent but more convenient
to rotate the force direction F and put it along the x-axis so that the potential energy

19Here for simplicity we neglect the possibility of applying torques at the ends. If the ratio of the
torque and tension is large enough the loop can indeed be mechanically stabilized as one can again
see by playing with the rod.

20For simplicity we go to the limit L/λ À 1 where the rather sophisticated elliptic functions from
previous section degenerate to hyperbolic functions.

21At this point some smart researchers (not to be named here) in literature stepped into the trap
answering this question with yes!
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part writes now −F cos φ sin θ. Further we introduce for convenience a new angle
ϑ = θ − π/2 instead of θ, i.e., we measure the angle ϑ with respect to the equatorial
plane now (as on a globe). The energy E [ϑ, φ] then writes

E [ϑ, φ] =

∫ L/2

−L/2

A

2

(
φ̇2 cos2 ϑ + ϑ̇2

)
− F cos φ cos ϑds (2.62)

Though the elastic energy looks slightly different from before the physics governed by
it does not change. The Euler-Lagrange equations in this system write

··
ϑ =

F

A
cos φ sin ϑ− φ̇2 cos ϑ sin ϑ

··
φ cos2 ϑ− 2

·
φ
·
ϑ cos ϑ sin ϑ =

F

A
sin φ cos ϑ

Here we are merely interested in the ϑ = 0 solution, i.e., we put the loop into the
x-y-plane. This imposes no restriction as we can always rotate the coordinate system

around the x−axis to achieve ϑ = 0. In this case we have
··
φ = F/A sin φ which is

the same as Eq. 2.25, only that φ and θ interchanged their roles. Of course the kink
solution in this case again writes

cos φloop = 1− 2

cosh2 (s/λ)
(2.63)

ϑloop = 0 (2.64)

Now we can again expand Eq. 2.62 up to second order and obtain this time

E [δϑ, φloop + δφ] = Eloop +
1

2
A

∫ L/2

−L/2

(
δϑ̇2 +

F

A
δϑ2

(
cos φloop − A

F
φ̇2

loop

))
ds

+
1

2
A

∫ L/2

−L/2

(
δφ̇2 +

F

A
cos φloopδφ

2

)
ds (2.65)

With t = s/λ the latter can again be recast in a more illuminating dimensionless
quadratic form

βE [δϑ, φloop + δφ] = βEloop +
1

2

∫ L/2λ

−L/2λ

δφ (t) T̂‖ (t) δφ (t) dt

+
1

2

∫ L/2λ

−L/2λ

δϑ (t) T̂⊥ (t) δϑ (t) dt (2.66)

with the in and out of plane fluctuation operators T̂‖ and T̂⊥ given by

T̂‖ = β
√

AF

(
− ∂2

∂t2
+

(
1− 2/ cosh2 t

))
and (2.67)

T̂⊥ = β
√

AF

(
− ∂2

∂t2
+

(
1− 6/ cosh2 t

))
(2.68)
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The operator T̂‖ governing the fluctuations of the angle φ in the ϑ = 0 plane is of
course the same as in 2-D (cf. Eq. 2.31). It is indeed a special case of Eq. 2.43 for
m → 1. Although very similar to T̂‖ the behavior of the out of plane operator T̂⊥ is

fundamentally different. The discrete spectrum of T̂⊥ consists of two eigenvalues (cf.
for instance [30]) µ⊥−1 = −3β

√
AF and µ⊥0 = 0 the first of which is negative ! That

of course means that the loop conformation has one unstable out of plane direction
corresponding to µ⊥−1. The zero eigenvalue mode of T̂⊥ comes from the rotational
symmetry around the x-axis in a similar manner as the translational invariance of
the loop causes a vanishing eigenvalue22 in T̂‖. It is illuminating to check the latter
statement by looking at infinitesimal rotational transformations of the loop in 3-D. Up
to quadratic order a rotation of a kink with ϑloop = 0 around the x-axis by a small
angle ε looks like




1 0 0
0 1− 1

2
ε2 ε

0 −ε 1− 1
2
ε2







cos φloop

sin φloop

0


 =




cos φloop

sin φloop − 1
2
ε2 sin φloop

−ε sin φloop


 (2.69)

On the other hand the perturbed solution (δϑ, φloop + δφ) implies a representation of
the tangent




cos δϑ cos (φloop + δφ)
cos δϑ sin (φloop + δφ)

− sin δϑ


 ≈




cos φloop − δφ sin φloop − 1
2
(δφ2 + δϑ2) cos φloop

sin φloop + δφ cos φloop − 1
2
(δφ2 + δϑ2) sin φloop

−δϑ




(2.70)
Here we expanded the left side up to second order in perturbations δϑ and δφ. Matching
the two right-hand sides of Eqs. 2.69 and 2.70 we obtain

δϑ ≈ ε sin φloop

δφ ≈ −1

2
ε2 sin φloop cos φloop = O

(
ε2

)

By taking the partial derivative ∂/∂ε...|ε=0 (at ε = 0) we finally obtain the (unnormal-
ized) mode corresponding to the rotational symmetry of the system. After a convenient
normalization (

∫∞
−∞ ϑ2

0dt = 1) the mode writes

ϑ0 (t) =
(

3
2

)1/2
sin φloop =

(
3
2

)1/2 sinh (t)

cosh2 (t)
(2.71)

φ0 (t) = 0

Direct insertion of Eq. 2.71 into Eq. 2.68 confirms that ϑ0 is annihilated by the per-
pendicular fluctuation operator T̂⊥ (φ0 is annihilated by T̂‖ trivially) convincing us
that we indeed obtained the rotational zero-eigenvalue Goldstone mode. Note that in
lowest order this mode leaves φ0 = 0 unaffected and that ϑ0 and φ0 formally decouple.

22This appears also formally when the exponentially small eigenvalue µ0 i.e. m = 1 (Eq. 2.56)
from last section is set to zero. The (normalized) translational shifting mode becomes then φ0 =
1/

(√
2 cosh t

)
.
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2.2.4 The Unstable Mode

Now it is time to treat the most interesting mode- the unstable mode ϑ−1 corresponding
to the negative eigenvalue µ⊥−1 = −3β

√
AF . One can check by insertion into Eq. 2.68

that

ϑ−1 (t) =
(

3
4

)1/2 1

cosh2 t
(2.72)

with eigenvalue
µ⊥−1 = −3β

√
AF (2.73)

is the searched (normalized) unstable mode. The fact that the value
∣∣µ⊥−1

∣∣ (which acts
as a negative ”spring constant” of the mode ϑ−) increases with the force is intuitive as
the loop gains energy during the unfolding (and larger forces give larger gains).
Let us now consider cases in which an external potential or DNA self-interaction can
compensate for the unstable mode. The simplest, yet formal way to stabilize the loop
would be to go to the eigenmode representation of T̂⊥ and introduce an additional
potential acting on the ϑ− mode. But it is hard to imagine an interaction or potential
living in real space that would act on one mode alone. One more physical situation
in which the DNA loop is stabilized is if we switch on (a very strong) magnetic field
along the z-axis perpendicular to the force direction (x-axis), cf. Fig. 2.6d). The DNA
nucleotides (having π-electrons) are known to prefer alignment perpendicular to the
field, i.e., DNA exhibits a negative diamagnetic anisotropy [32]. The application of a
magnetic field H along the z-axis drives the DNA molecule into a plane parallel to the
x-y plane (perpendicular to the field along the z-axis). The total energy of the DNA
writes in this case

E [ϑ, φ] =

∫ L/2

−L/2

A

2

(
φ̇2 cos2 ϑ + ϑ̇2

)
− F cos φ cos ϑ +

κ

2
sin2 ϑds (2.74)

The last term gives the coupling between the DNA tangent and the magnetic field H
where κ = −χaH

2/h characterizes the coupling strength. Here χa is the (experimen-
tally accessible) diamagnetic anisotropy of a single DNA basepair [32] and h = 0.34nm
the distance between the subsequent DNA basepairs. Note that χa is negative here,
i.e., κ > 0 so ϑ = 0 is the preferred rod orientation for large κ. Expanding E [ϑ, φ]
again as in Eq. 2.65 we obtain the same expansion23 as in Eq. 2.66 except that T̂⊥ is
replaced by a new out of plane fluctuation operator T̂κ

⊥

T̂κ
⊥ = β

√
AF

(
− ∂2

∂t2
+

(
1− 6

cosh2 (t)

)
+

κ

F

)
(2.75)

The spectrum of Eq. 2.75 is of course trivially given by shifting the spectrum of T̂⊥
by the constant β

√
AFκ/F , i.e., the new eigenvalues now write µκ

s = µ⊥s + βλκ. The
rotational Goldstone mode is immediately destroyed for any non-zero coupling constant
κ > 0. More importantly the previously unstable mode ϑ−1 now becomes stable
provided that κ/F > 3 i.e. for κ > κcrit = 3F . As the variables ϑ and φ decouple

23Note that the Euler-Lagrange equation write now slightly different but the homoclinic loop is still
a solution to the problem.
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Figure 2.8: The three discrete eigenmodes in action: a) The translational mode φ0 =
1/

(√
2 cosh t

)
, b) The rotational mode ϑ0 =

√
3/2 sinh t cosh−2 t (Eq. 2.71) and c) The

unstable (out of plane tilting) mode ϑ−1 =
√

3/4 cosh−2 t (Eq. 2.72).
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(in quadratic expansion) here the full fluctuation partition function Qfluct = Q‖Qκ
⊥

factorizes into a product of the in plane (Q‖) and out of plane (Qκ
⊥) partition functions.

The partition function Q‖ is nothing else but the fluctuation part of the planar partition
function from Eq. 2.57 from above. The out of plane partition function Qκ

⊥ is derived
via the Gelfand-Yaglom [17] method in the Appendix C. The two expressions write
respectively

Q‖ =

√
2LlP
πλ2

e−
L
2λ (2.76)

Qκ
⊥ =

√
lP
λ

c (c + 2) (c + 1)

π(c− 2)(c− 1)
e−c L

2λ (2.77)

with c =

√
1 +

κ

F

The free energy then writes

βG = − ln
(
e−βEloopQ‖Q⊥

)

= −βFL + 8
lP
λ

+
(1 + c) L

2λ
− ln

(√
2c(c+2)(c+1)
(c−2)(c−1)

Ll
3/2
P

π3/2λ5/2

)
(2.78)

= −βFL + 8β
√

FA +

(
1 +

√
1 + κ

F

)
L

√
F/A

2
− ln

(√
2c(c+2)(c+1)
(c−2)(c−1)

LA1/4

π3/2β3/2 F
5/4

)

By differentiating the upper expression by F we immediately obtain the force-extension
relation for all forces F < κ/3. This turns out to be a lengthy expression that we omit
here. Here we merely state the result for the limiting case24 κ À F À A/L2

∆z

L
= − 1

L

∂G

∂F

= 1− 1

4β
√

Aκ︸ ︷︷ ︸
I

− 1

4β
√

AF

(
1− 1

2

(
F

κ

)3/2

+ O

(
F

κ

)5/2
)

︸ ︷︷ ︸
II

− 4

L

√
A

F︸ ︷︷ ︸
III

+ O

(
1

βFL

)

It is interesting to have a look at the particular terms appearing in the force-extension
relation above. The term II states that (up to corrections in powers of the small
parameter F/κ) the chain behaves essentially as a 2-D WLC, cf. Eq. 2.36. The
F−independent term I says that the effective contour length will appear renormal-
ized by a small relative amount (∝ κ−1/2). This is valid for κ À F and disappears if
κ ∼ F (but then the stability of the loop is destroyed and the expansion above becomes
invalid). The last term III that can also be written as 4λ/L corresponds to the length
required for the loop formation itself.
Finally, could we experimentally observe the force extension curve derived above? Un-
fortunately the coupling parameter κ turns out to be too small for reasonable magnetic

24The second relation F À A/L2 (that usually holds for all DNA stretching experiments) makes
the contributions of the ln (...) term (which scale as O (βFL)−1) negligible.
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fields25 to be of physical relevance in practice (κ > 3F ). Nevertheless, the formal dia-
magnetic term κ sin2 ϑ introduced in Eq.2.74 is conceptually quite useful to understand
the (otherwise unstable) behavior of the DNA loop in 3-D. This case provides a sim-
pler warm-up for the more relevant case of a linker stabilized loop treated in the next
section.

2.2.5 The DNA Self-Attraction and the Homoclinic Loop

In the last subchapter we merely ”calibrated” our computational machinery and learned
how to deal with discrete eigenmodes which turned out to rule the physics of the loop.
Here we treat an experimentally much more relevant case in which the 3-D loop turns
out to be stable: the DNA self attraction. DNA is known to effectively attract itself
in many solvents despite its strong negative bare charge. Typical situations inducing
DNA self-attraction are poor solvents (like alcohol, small neutral polymers like PEG)
the presence of multivalent counterions (like CoHex and Spermidine) or small cationic
proteins acting as linkers between two DNA surfaces. Indeed it was a single molecule
stretching experiment on DNA condensed with multivalent counterions(Baumann et
al. [131]) that made us think about the force response of loops.

How should we deal with the DNA self-interaction? A formal treatment that first
comes to our mind is to introduce a potential V (‖x(s1)− x(s2)‖) acting between any
pair of points s1 and s2 on the DNA molecule and to write the total interaction energy
as a double integral (over s1 and s2) as an additional term in our Hamiltonian. The
hope that we can gain any insight by performing this formally correct procedure (in
the spirit of ref. Doi and Edwards [23]) quickly turns out to be illusive in our case.
Many serious obstacles block our way, like the fact that we (most elegantly) describe
the DNA here by the two spherical angles (ϑ and φ) of its tangent vector. In contrast
to that the self-interaction acts in real space (”integrated tangent space”) which for
our purposes makes the Hamiltonian virtually intractable. This stresses the need for a
tractable simplification of the DNA self-attraction.

To this end, we make here two simplifying assumptions:

1. There is only a single discrete DNA self contact point, given by the crossing point
of the homoclinic loop solution.

2. The interaction potential V (‖x(s1)− x(s2)‖) is short ranged enough so that the
interaction energy at the crossing becomes independent of the crossing angle i.e.
other parts of the DNA (apart from the crossing point) do not interact with each
other.

These fairly reasonable assumptions imply that the loop ground state solution will not
be significantly modified by the self-attraction and only the fluctuations around it will

25The diamagnetic anisotropy per length χa/h of a single basepair is around 3 × 10−6pN/T 2 [32]
i.e. for even very large magnetic fields of say H = 15T we have κ ≈ 7 × 10−4pN . So for DNA this
effect is rather small.
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be affected. This means that we can write down the (linearized) loop energy around
the solution ϑ = 0, φ = φloop in a way similar to the last section, namely

βE [δϑ, φloop + δφ] = βEloop + 1
2

∫ L/2λ

−L/2λ

δφT̂‖δφdt + 1
2

∫ L/2λ

−L/2λ

δϑT̂⊥δϑdt

+V (Dc (δϑ)) (2.79)

The last term V (Dc) that we introduced here (in accordance with our assumptions
1. and 2.) is the interaction potential of two overcrossing parts of DNA which have
a (closest approach) distance Dc. To keep the problem tractable we approximate here
the distance Dc by the perpendicular distance of the two crossing DNA parts at the
equilibrium (mean) crossing point tc (note: t = s/λ as above) of the homoclinic loop

Dc (δϑ) ≈ λ

∫ tc

−tc

sin δϑ (t) dt ≈ λ

∫ tc

−tc

δϑ (t) dt (2.80)

The crossing point tc will be given by the (in plane) projected loop self-crossing. This
implies the condition that the integral (over the interval [−tc, tc]) of the x-component
of the loop tangent vanishes i.e.

∫ tc

−tc

cos φloop (t) dt = 0 implying

tc = 2 tanh tc

A numeric solution of the upper implicit condition gives26 tc ≈ 1. 915. Before we
compute further it is interesting to have a short look at Dc from Eq. 2.80. Because
Dc depends only on the out-of-plane perturbations δϑ the in-plane (δφ) problem stays
unaffected. It is also intuitive that the out-of-plane rotational Goldstone mode ϑ0

(the generator of an infinitesimal rotation) leaves the distance Dc unaffected: formally
because ϑ0 (t) is an odd function, physically because rotations leave distances fixed.
Now it is time to compute the partition function resulting from Eq. 2.79 for any given
V . We can write it as

QV = e−βEloopQ‖Q
V
⊥ (2.81)

where the in plane partition function Q‖ is again given by Eq. 2.76. The out of plane
partition function QV

⊥ is modified by the presence of the contact potential and can be
written as

QV
⊥ =

1

λ

∫ ∞

−∞
e−βV (Dc)Q⊥ (Dc) dDc (2.82)

where the expression Q⊥ (Dc) denotes the constrained partition function

Q⊥ (Dc) =

∫ (0, L
2λ

)

(0,− L
2λ

)

δ

(
Dc

λ
−

∫ tc

−tc

δϑdt

)
e−

1
2

R L/2λ
−L/2λ

δϑT̂⊥δϑdtD [δϑ] (2.83)

Physically the δ function introduced here enforces that the perpendicular distance at
the crossing point has the exact value Dc. This path integral is nothing else but

26This corresponds to the actual loop circumference which is 2× 1.915λ.
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a linearly constrained Gaussian integral. This can be computed by replacing the δ
function by its Fourier representation

δ

(
Dc

λ
−

∫ tc

−tc

δϑdt

)
=

1

2π

∫ ∞

−∞
eip(Dc

λ
−R tc

−tc
δϑdt)dp (2.84)

and by rewriting the integral in the exponent more elegantly as a scalar product of δϑ
with a ”boxcar” function (called so in literature for its characteristic boxcar like shape)

∫ tc

−tc

δϑdt =

∫ L/2λ

−L/2λ

Π (t) δϑ (t) dt = 〈Π|δϑ〉 with (2.85)

Π (t) = H (t + tc)−H (t− tc)

Here the boxcar function Π is most elegantly represented as a difference of two Heaviside
step functions H. The latter is given by H (x) = 1 for x > 0, H (x) = 1/2 for x = 0
and H (x) = 0 otherwise. Above, for convenience we introduced the scalar product on
the interval [−L/2λ, L/2λ]

〈f |g〉 =

∫ L/2λ

−L/2λ

f (t) g (t) dt

In the this notation and by virtue of Eqs.2.84 and 2.85 the partition function Q⊥ (Dc)
(Eq. 2.83) writes more transparently

Q⊥ (Dc) =
1

2π

∫ ∞

−∞
eip Dc

λ

∫ (0, L
2λ

)

(0,− L
2λ

)

e−
1
2
〈δϑ|T̂⊥|δϑ〉−ip〈Π|δϑ〉D [δϑ] dp (2.86)

Equivalently, its Fourier transform Q̂⊥ (p) writes more compact

Q̂⊥ (p) =

∫ (0, L
2λ

)

(0,− L
2λ

)

e−
1
2
〈δϑ|T̂⊥|δϑ〉−ip〈Π|δϑ〉D [δϑ] (inaccurate) (2.87)

Written in terms of the scalar product 〈.|.〉 the upper expression looks quite familiar:
a Gaussian integral with an additional linear term ip 〈Π|δϑ〉. So there is a good hope
of solving this.
But before we try to evaluate Eq. 2.87 we have to resolve a technical problem first
(the reason for Eq. 2.87 being ”inaccurate”). The rotational mode ϑ0 corresponds

to a zero eigenvalue and causes divergence of the partition function Q⊥ (and Q̂⊥ as
well) in its naive form like in Eq. 2.87. The problem results from the fact that a
rotation of the kink around the x-axis costs no energy and consequently the entropic
contribution of this state space direction seemingly diverges (at least in the Gaussian
approximation, implied by the saddle point approximation used here). To avoid this
problem we make the following trick: instead of T̂⊥ we use T̂κ

⊥ from Eq. 2.75 and after
performing all other calculations we let κ → 0 (Note that T̂κ

⊥|κ=0 ≡ T̂⊥ !). Physically
this procedure corresponds to infinitesimally breaking the rotational symmetry (around
the force direction) and restoring it afterwards in a controlled manner in the limit
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κ → 0. Hand in hand with this limit taking we have to properly renormalize the
rotational mode contribution in a similar way we did it in Eq. 2.51 for the translational
mode of T̂‖:

Q̂ren
⊥ (p) =

ren

lim
κ→0

∫ (0, L
2λ

)

(0,− L
2λ

)

e−
1
2
〈δϑ|T̂κ

⊥|δϑ〉−ip〈Π|δϑ〉D [δϑ] (2.88)

The limiting process together with the ”proper renormalization” we denote with a
”ren” over the limit sign. In the Appendix D (cf. Eq. 2.143) we evaluate Eq. 2.88.
Here we merely state the final result that writes

Q̂ren
⊥ (p) = i2

√
6

(
lP
λ

)
e−

L
2λ e

3λ
8lP

(3t2c−10)tcp2

(2.89)

This is an easy Gaussian in the Fourier variable p. We now ”Fourier-back” to obtain

Q⊥ (Dc) =
1

2π

∫ ∞

−∞
eip Dc

λ Q̂ren
⊥ (p) dp

= i

(√
6lP
πλ

)
e−

L
2λ

∫ ∞

−∞
eip Dc

λ e
3
8

λ
lP

(3t2c−10)tcp2

dp

︸ ︷︷ ︸
=−i

r
8πlP

3(3t2c−10)tcλ
exp

�
2lP

3(3t2c−10)tcλ
(Dc

λ )
2
�

We can finally write down the important result for the constrained partition function

Q⊥ (Dc) = 2

√
6Γ

π

(
lP
λ

)3/2

e−
L
2λ exp

(
Γ

lP
λ

(
Dc

λ

)2
)

(2.90)

with the scale-independent (negative) elasticity constant for out of plane tilting

Γ =
2

3 (3t2c − 10) tc
≈ 0.35 (2.91)

The result Eq. 2.90 is quite physical: the larger the perpendicular distance Dc (on the
λ lengthscale!) the larger the partition function, i.e., the ”happier” the system. This is
clear as the system without the constraint ”Dc=fixed” is intrinsically unstable tending
to increase the contact distance Dc!
Having the central formula Eq. 2.90 the rest is an easy exercise: We can compute the
partition functions QV

⊥ and QV (Eq. 2.82 and 2.81) for any given (reasonable) potential
V (x). Combining Eqs. 2.90, 2.82, 2.81, 2.76 together with βEloop = 8lP /λ − βFL
(Eq. 2.30) we obtain the nice result

QV =
4
√

3ΓLl
5/2
P

π3/2λ9/2
eβFL−8

lP
λ
−L

λ

∫ ∞

−∞
eΓ

lP
λ ( x

λ)
2−βV (x)dx (2.92)

This expression has to be taken seriously only for sufficiently fast growing interaction
potentials V (x) for which the integral above stays finite. Otherwise the system is
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metastable and the integral diverges. But even in the case when the bound state, say
x = x0, is just a local metastable state the integral above QV still makes some sense
if the V (x) is very deep. In this case the system can be considered as being in quasi-
equilibrium (on some experimentally relevant timescale). Then we can approximate
V (x) locally by a quadratic potential

V (x) =
1

2
K (x− x0)

2

and we obtain

QV =
4
√

6ΓLl
5/2
P

πλ7/2
√

βλ2K − 2ΓlP /λ
e

ΓβKlP /λ

λ2βK−2ΓlP /λ
x2
0eβFL−8

lP
λ
−L

λ

≈ 4
√

6ΓLl
5/2
P

πλ9/2
√

βK
e

ΓlP
λ3 x2

0eβFL−8
lP
λ
−L

λ

The last expression is valid in the limit of strong localization i.e. Kλ2 À √
AF .

Let us finally write down the force-extension relation resulting from the general ex-
pression 2.92. Therefore we conveniently express the free energy GV = −β−1 ln QV in
terms of F and A (instead of λ =

√
A/F )

βGV = −βFL + (L + 8lP )

√
F

A
− ln

(
L−1

∫ ∞

−∞
eβΓA−1/2F 3/2x2−βV (x)dx

)

− ln

(
4
√

3ΓL2β5/2A1/4F 9/4

π3/2

)

The force extension relation resulting from that is

〈x〉
L

= − 1

L

∂G

∂F

= 1− 1

2

(
1 + 8

lP
L

)
1

β
√

AF
+

3Γ

2

√
F

L
√

A︸ ︷︷ ︸
(Lλ)−1

∫∞
−∞ x2e

F
A

Γx2−βV (x)dx
∫∞
−∞ e

F
A

Γx2−βV (x)dx︸ ︷︷ ︸
=〈D2

c 〉∼DNA cross-section

+ O

(
1

βFL

)
(2.93)

The last term O
(
(βFL)−1) is always negligible for large forces. The second last term

∼ 〈D2
c〉 / (Lλ) is also negligibly small because 〈D2

c〉 typically scales as the squared
polymer cross-section (for a short ranged surface contact interaction). In the most
extreme case the contact distance Dc could become comparable to λ (the loop head
size) i.e. 〈D2

c〉 . λ2 , but the latter is still ¿ Lλ. That means that (for reasonable
parameters of F and L) the force extension relation of a DNA loop with attractive
contact interaction will essentially be independent of the concrete realization of the
self-interaction potential V (x). It will consist only of the first terms in Eq. 2.93 and
write 〈x〉

L
= 1− 1

2β
√

AF︸ ︷︷ ︸
”straight WLC”

− 4
lP
L

1

β
√

AF︸ ︷︷ ︸
”The loop signature”

(2.94)

The first two terms are the usual ”straight WLC” contribution, the last term is the
force extension signature of the DNA loop.
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2.2.6 Summary: A Simple View of Loop Stretching

We invested quite a lot of work to convince ourselves of something that finally looks
almost trivial. The result is fairly independent of many details like how we stabilize the
loop in 3-D. In terms of the two relevant lengthscales the persistence length lP = βA
and the tension length λ =

√
A/F the mean extension (in very good approximation)

looks like:

〈x〉 = L︸︷︷︸
full length

− λ

2lP
L

︸ ︷︷ ︸
length ”eaten” by fluctuations

− 4λ︸︷︷︸
length ”eaten” by the loop

(2.95)

The physical reason for this simple decomposition has its roots in the fact that the WLC
fluctuations (leading to the 2. term) and its state of deformation (3. term) couple only
negligibly in the large force regime (giving merely rise to weak logarithmic corrections
in the free energy and negligible O

(
(βFL)−1) corrections in the extension 〈x〉).

2.3 The ”Ghost - lP” Effect in Polymer Stretching

by AFM

Here we answer an experimentally puzzling question [8]: When stretching short semi-
flexible polymers by an AFM-tip the persistence length seems to be strongly reduced as
compared to that obtained with other methods (e.g. light scattering). We suspect that
one of the main reasons for the observed ”renormalization” of the persistence length
is the same effect that we found in loop stretching. Therefore we shortly recapitulate
the basic observations concerning loop stretching:

1. For large forces F the state of the DNA (i.e. looped or not) negligibly modifies
the entropy of the chain under tension.

2. The bending energy + potential energy resulting from a nontrivial DNA shape
scales as c

√
AF with some shape dependent constant c (e.g. for a complete

loop c = 8). It contributes significantly to the force extension behavior and
modifies the force extension relation by a term 1

2
cλ with λ =

√
A/F the tension

length.

3. The length lelast elastically ”eaten up” by the conformation

lelast (F ) =
c

2
λ =

c

2

√
A/F (2.96)

scales in the same manner with F as the length lentr consumed by the entropic

undulations (〈lentr〉 = L
(
2
√

lP F/kBT
)−1

for a DNA in 3-D)!

4. Instead of the real persistence length in a stretching experiment one would observe
the apparent persistence length lapp

P which we define as

〈x〉 = L

(
1− 1

2

(
kBT

lapp
P

)1/2

F−1/2

)
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Figure 2.9: AFM stretching of a semiflexible polymer from a suface.

It is given by the elasticity factor c (shape constant) via

lapp
P =

lP(
1 + c lP

L

)2 (2.97)

For short DNA molecules with L ∼ lP one can measure a lapp
P many times smaller

than lP !

Now interestingly the same effect can play a role in stretching DNA (or a general
semiflexible polymer) attached to a surface (mica) and the AFM tip on the other side.
Consider Fig. 2.9 where a typical setup of a single molecule AFM pulling experiment is
depicted. Here an AFM-tip catches one end of the polymer at a certain point A and at
a certain angle α with respect to the line AS connecting A with the surface attachment
point S (here for simplicity taken parallel to the pulling direction). The angle between
the polymer tangent and AS at the surface is denoted by σ. The importance of the
two orientational angles α and σ for the outcome of the force-extension measurement
has to our knowledge been completely overseen in the ”force - spectroscopy” literature.
Let us see how crucial α and σ really are by computing the constant c = c (α, σ) giving
the ”elastically lost” length lelast in Eq. 2.96 and lapp

P in Eq. 2.97.
We assume here that the force is large enough so that λ/L ¿ 1, i.e., F À A/L2 (which
is given for typical polymer lengths and the large forces in AFM experiments, F ∼
0.1− 1nN). The two polymer ends in Fig. 2.9 decay to the straight configuration27 in
the same manner as the tangent deflections around the loop-head decayed to the force
direction, cf. Fig. 2.7. In fact the two ends are asymptotically (λ/L ¿ 1) nothing else

27If we refrain from thermal undulations which decouple from the shape as we have seen before.
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but parts of the homoclinic loop in Fig. 2.7. The ”lost length”at the point A is given
by the expression

lAelast (F, α) =

∫ ∞

s0(α)

(1− cos θloop (s)) ds = 2

∫ ∞

s0

ds

cosh2 (s/λ)

= 2λ (1− tanh (s0/λ))

= 2λ
(
1− cos

α

2

)

with θloop from Eq. 2.27. In the last line we used the identity θloop (s0) = α so that
via Eq. 2.27 we can eliminate the hyperbolic functions of s0 in favor of trigonometric
ones of α, in particular cos α

2
= tanh

(
s0

λ

)
. In the same manner we also obtain the ”lost

length”at the point S

lSelast (F, σ) = 2λ
(
1− cos

σ

2

)

And for the total ”lost length” lelast = lAelast + lSelast we obtain

lelast (F, α, σ) = 4λ

(
1− 1

2

(
cos

α

2
+ cos

σ

2

))

We see that the shape constant c = 2lelast/λ can be very large. Consequently the
apparent persistence length can be much smaller than expected, namely

lapp
P (α, σ) =

lP(
1 + 8

(
1− cos(α/2)+cos(σ/2)

2

) lP
L

)2 (2.98)

This is the central formula derived in this section. For a typical experiment with short
polymers, L/lP = 5 with anchoring angles α = σ = π/2 (i.e. perpendicular to the force
direction) we have lapp

P = 0.46lP ! For longer polymers the effect becomes smaller and
asymptotically vanishes but that very slowly: for L/lP = 20 we still have lapp

P = 0.8lP
and for L/lP = 40 we have 0.9lP . That means the effect we discovered here can
indeed be experimentally easily resolved for even quite large L/lP ! To turn it around
and formulate sharply: if one does not account for the boundary anchoring
effects the experimentally fitted (apparent) ”persistence length” is a useless
information for polymers of short to intermediate length (L/lP ≤ 20)!
How should an experimentalist resolve this ambiguity? The assumption α = σ = π/2

(tangents perpendicular to the force
−→
F and tangential to the two surfaces) will probably

be a good initial guess for adsorbed polymers on flat surfaces on both ends. But the
real unknown will be the shape of the AFM-tip and the exact anchoring point A. By
looking at the Fig. 2.9 one can state: The sharper the tip is the more unpredictable
the outcome will be (due to large differences in possible angles α). Can one somehow
measure directly the angles α and σ by a stretching experiment?
A good idea for doing that is to use an additional degree of freedom that the AFM has:
the lateral shifting of the tip. Such a situation is depicted in Fig. 2.10. After a shift
by a distance ∆x =

∣∣AB
∣∣ parallel to the surface the connection line AS is no more

parallel to the force. The effective angles αeff = α + τ and σeff = σ + τ giving rise to
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Figure 2.10: AFM polymer stretching with a lateral shift.
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Figure 2.11: A typical AFM force-extension curve of a single PNI-PAM brush polymer
(data kindly provided by Gunari et. al. [8]). The measured data (blue thin line) are well
fitted by the wormlike chain expression F = kBT

4lapp
P

(1−∆z/L)−2 + Fads (red thick line)

with an additional offset force Fads resulting from a partial desorption of the polymer.
The optimal fitting parameters are Fads = 13.7pN , L = 69.8nm and lapp

P = 0.86nm
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Figure 2.12: AFM picture of the cylindrical PNIPAM brush polymers adsorbed on
mica substrate (in water at T=20C). Picture kindly provided by Gunari et al. [8]

an elastic response (along the effective direction AS) get modified by the tilting angle
τ = arctan (∆x/∆z). By modifying ∆x properly while measuring the force-extension
behavior we can recover the anchoring angles α and σ! The details of this procedure
would lead us too far here and will be discussed elsewhere in future.

Let us finally take a look at a typical experimental force-extension curve [8] obtained
for the cylindrical-brush polymers with PNIPAM side chains [7] by Gunari et. al.,
cf. Fig. 2.11. These PNIPAM brushes are known to behave as semiflexible chains
with a persistence length close to 30nm, cf. Fig. 2.12. A closer inspection of the
experimental data reveals that our model of a tangentially end-grafted polymer is
slightly idealized: The polymer indeed shows a typical continuous desorption behavior
in the small force region. This effect is neglected in our theory that assumes point
anchoring and neglects desorption for simplicity. The typical (apparent) adsorption
force Fads = 14pN indicates an adsorption energy line density of roughly 4kBT/nm.
Despite this complication, in the large force regime (F > 40pN) the curve shows the
typical wormlike chain behavior. The apparent persistence length obtained from that
region is tiny (typically 0.5−2nm) and indeed much smaller than the ”real” persistence
length lP ∼ 30nm. The latter can be estimated from scattering experiments and from
AFM pictures of surface adsorbed PNIPAM brushes (cf. Fig.2.12 ).

The reduction of the apparent persistence length is in qualitative agreement with our
theory but quantitatively it turns out to be significantly stronger than predicted by
Eq. 2.98. Inserting the experimental parameters L = 69.8nm and lP = 30nm into
Eq. 2.98 and assuming again tangential anchoring (α = σ = π/2) we obtain the
apparent persistence length lapp

P = 7.4nm which is still an order of magnitude larger
than the one obtained from the fit (lapp

P = 0.86nm). A closer theoretical inspection of
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the experimental setup reveals that the simplified picture from figure 2.9 with the line
AS of anchoring points being parallel to the force direction is generically violated in
the experiments of Gunari et al. In fact due to continuous chain desorption the angle

ÂSB (cf. Fig. 2.10) is changing in the course of the experiment in a way that reflects
the 2-D (quenched) persistent random walk behavior of the adsorbed part of the chain
(on the substrate surface). The measured force F and the actual tension acting in the
chain Feff are no longer identical. It is easy to see that this effect reduces the apparent

persistence length by an other factor of cos
(
ÂSB

)
.

The details of these effects are still under intense joint theoretical and experimental [8]
investigations.
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2.4 Appendices

2.4.1 Appendix A: The Saddle Point Approximation for Path
Integrals

Here we shortly review the most basic method for lowest order approximation of many
path integrals. In literature it is usually called the saddle point, semiclassical or WKB
approximation.
Consider a path integral for the transition amplitude of a quantum mechanical particle
in a most general potential V (x)

(x1, t1|x0, t0)V =

∫ (x1,t1)

(x0,t0)

D [x] e
i
~A[x] (2.99)

with the Lagrangian L action A given by

A [x] =

∫ t1

t0

L [x] dt (2.100)

L [x] =
1

2
mẋ2 − V (x) (2.101)

The integral in Eq. 2.99 is in general not analytically accessible but there are simple
approximation schemes. The simplest of them is the saddle point approximation which
consists of expanding the action around a ”classical” solution xcl given by

δA [x] |x=xcl
= 0

i.e. the Euler-Lagrange equation

m
··
xcl (t) = −V ′ (xcl (t)) (2.102)

with the two boundary conditions x
(
t0/1

)
= x0/1. Here (...)′ is the derivative with

respect to the variable x.
Taking now x = xcl + δx the action A [x] (Eq. 2.100) can be expanded up to second
order in the small perturbation δx around the classical path:

A [xcl + δx] = A [xcl] +

∫ t1

t0

(
∂L

∂ẋ
δẋ +

∂L

∂x
δx

)
dt

+
1

2

∫ t1

t0

(
∂2L

∂ẋ2
δẋ2 + 2

∂2L

∂x∂ẋ
δxδẋ +

∂2L

∂x2
δx

)
dt + ...

The second term above (the first variation) vanishes and one obtains

A [xcl + δx] = A [xcl] +
1

2

∫ t1

t0

[
m (δẋ)2 − V ′′ (xcl (t)) (δx)2] dt + ...

Inserting this in Eq. 2.99 gives

(x1, t1|x0, t0)V = e
i
~A[xcl]

∫ (0,t1)

(0,t0)

D [δx] e
i

2~
R t1

t0
[m(δẋ)2−V ′′(xcl(t))(δx)2]dt + ... (2.103)
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The first factor here comes from the classical action. The second gives the contribution
of quadratic fluctuations around xcl and it is formally the path integral of a harmonic
oscillator with a time dependent frequency ω2 (t) = 1

m
V ′′ (xcl (t)) (but with Dirichilet

boundary conditions δx (t0) = δx (t1) = 0). There are (at least) three equivalent
methods to write Eq. 2.103 explicitly and depending on the physical problem one
might consider the one or the other is more elegant, didactic or intuitive.

1. The first method rewrites the exponent in Eq. 2.103 (after partial integration) as

i

2~

∫ t1

t0

[
m (δẋ)2 − V ′′ (xcl (t)) (δx)2] dt =

im

2~

∫ t1

t0

(δx) T̂ (δx) dt

with the so called fluctuation operator

T̂ = −
(

∂2

∂t2
+

V ′′ (xcl (t))

m

)

The latter operator being Hermitian has real eigenvalues µn and a complete or-
thonormal set of eigenfunctions vn. Writing Eq. 2.103 in this base T̂ diagonalizes
and one obtains

(x1, t1|x0, t0)V =

√
m

2πi~D (t1, t2)
e

i
~A[xcl] (2.104)

with the fluctuation determinant

D (t1, t0)

t1 − t0
=

det
(
T̂

)

det
(− ∂2

∂t2

) =
∞∏

k=1

µk

π2k2/ (t1 − t0)
2 (Method 1) (2.105)

The last expression (i.e. the product of eigenvalue ratios of the two operators
with Dirichilet boundary conditions) can be taken as a definition for D (t1, t0).
This method requires the knowledge of the whole spectrum µk of T̂ and can
be quite technical. However it can be quite instructive in cases when some µk

approach zero (or turn negative) and the physics behind formal divergence of
(x1, t1|x0, t0)V can be understood better.

2. A second method by Gelfand and Yaglom [17] uses Eq. 2.103 but computes the
eigenvalue ratio D (t1, t0) without explicit knowledge of the whole spectrum. It
can be shown that D (t, t0) satisfies the following initial value problem

d2D (t, t0)

dt2
= −ω2 (t) D (t, t0) with initial conditions (2.106)

D (t0, t0) = 0 and
·
D (t0, t0) = 1 (Method 2) (2.107)

Here we set ω2 (t) = 1
m

V ′′ (xcl (t)). The eigenvalue ratio is then given by

D (t1, t0) = D (t, t0) |t=t1
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A practical way of solving of Eqs. 2.106 and 2.107 comes from the observation
that Eqs. 2.106 without the condition Eq. 2.107 (by virtue of Eq. 2.102) ad-
mits a particular solution, namely ẋcl (t). Finally by d’Alembert’s construction a
solution that satisfies the boundary conditions Eq. 2.107 can be written down as

D (t, t0) = ẋcl (t0) ẋcl (t)

∫ t

t0

dτ

ẋ2
cl (τ)

(improved Method 2) (2.108)

Evaluation of that at t = t1 gives the fluctuation factor D (t1, t0).

3. The third method is useful if we explicitly know the action A [xcl] from Eq. 2.100
as function of the two boundary values x0, x1, i.e. we if can write A [xcl] =
A [xcl; x0, x1]. Then the integral above can be computed giving the following
beautiful and simple formula (cf. [13, 14])

(x1, t1|x0, t0)V =

√
i

2π~
∂2A [xcl; x0, x1]

∂x0∂x1

e
i
~A[xcl;x0,x1] (Method 3) (2.109)

This remarkable expression by Van Vleck, Pauli and Morette says that the fluc-
tuation contribution (up to quadratic order) is given by partial derivatives of
the classical action A [xcl]! A nice thing about ”Method 3” is that it possesses
a straightforward generalization to n-dimensional systems (with x (t) =

(
xk (t)

)
now a n-dimensional vector function of t)

(x1, t1|x0, t0)V =

√(
i

2π~

)n

det

(
∂2A [xcl; x0, x1]

∂xk
0∂xl

1

)
e

i
~A[xcl;x0,x1] (Method 3 in n-D)

The involved expression det (...) is called the Van Vleck-Pauli-Morette determi-
nant.

An illustration: a (1-D) harmonic oscillator has the classical action

Ah =
m (ω (x2

0 + x2
1) cos ω (τ1 − τ0)− 2x0x1)

2 sin ω (t1 − t0)

which by virtue of Eq. 2.109 gives the well known propagator

(x1, t1|x0, t0)h =

√
ωm

2πi~ sin ω (τ1 − τ0)
e

imω

2~
(x2

1 + x2
2) cos ω (τ1 − τ0)− 2x1x2

sin ω (τ1 − τ0)

Here the saddle point approximation gives the exact result as the Lagrangian of
the harmonic oscillator is a quadratic function.

If we want to apply these results to the WLC we just have to rename the involved
constants and the time variable τ via the formal mapping: τ → −it (”Wick rotation”)
with t = s/λ and the replacement 1/~ → β, m → √

AF , ω2 (t) → 1 for the straight
DNA case or generally ω2 (t) →”Fluctuation potential” (e.g. ”1 − 2/ cosh2 (t)” in the
planar loop case).
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2.4.2 Appendix B: Lamé - Type Eigenvalue Problem

Consider an operator of the form

L̂N = − ∂2

∂t2
+

(
N (N + 1) msn2 (t|m)− 1

)
(2.110)

and the corresponding eigenvalue problem

L̂Nfk (t) = νkfk (t) (2.111)

The problem of finding these eigenvalues falls into a class of ”quasi exactly solvable”
problems and typically appears in quantum mechanical problems (like for electrons in a
periodic potential). The corresponding differential equation is called the Lamé equation
[18]. It can admit simple solutions in terms of polynomials of elliptic functions sn, cn
and dn provided that N is an integer.
In the simplest case N = 1 the discrete spectrum and the corresponding eigenfunctions
of L̂2 are given by

ν−1 = m− 1 and f−1 (t) = dn (t|m)

ν0 = 0 and f0 (t) = cn (t|m)

ν1 = m and f1 (t) = sn (t|m)

For a given eigenvalue νk in addition to fk (t) there is always another linearly indepen-

dent solution f̃k (t) with just the opposite even / odd symmetry given by the d’Alembert
construction for linear second order differential equations

f̃k (t) = fk (t)

∫ t

0

(
1

fk (t′)

)2

dt′ (2.112)

In addition L̂N has a continuous spectrum starting after a gap above ν1.
Now the operator from Eq.2.110 is not exactly the one we need in Eq. 2.43. To obtain
the latter we have to analytically continue the operator L̂N to values of m larger than
1 and introduce the parameter m = 1/m < 1 then by Jacobi’s real transformation [85]
we obtain

T̂N = − ∂2

∂t2
+

(
N (N + 1) sn2

(
t√
m
|m

)
− 1

)
(2.113)

whose discrete spectrum and eigenvalues can be obtained from the corresponding ones
of L̂N . For N = 1 they write

ν0 = 0 and f0 (t) = dn

(
t√
m
|m

)

ν−1 =
1

m
− 1 and f−1 (t) = cn

(
t√
m
|m

)

ν1 =
1

m
and f1 (t) = sn

(
t√
m
|m

)
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We can now impose boundary conditions as in text above

f
(±√mK (m)

)
= 0 (2.114)

We immediately observe that for these boundary conditions ν0 = 0 is not an eigenvalue
anymore because no linear combination of f−1 (t) and the corresponding f̃0 (t) (given
by Eq. 2.112) can be constructed to satisfy Eq. 2.114. But the mode f−1 does satisfy
Eq. 2.114 so that ν−1 = 1

m
− 1 becomes the smallest eigenvalue of T̂N (Eq. 2.112)

with these boundary conditions.
Note 1: The eigenvalue ν−1 = 1

m
− 1 is denoted with µ0 in the main text.

Note 2: In the limiting case m,m → 1 the elliptic functions reduce to hyperbolic
functions and we recover the fluctuation operator Eq. 2.31 up to a trivial prefactor.

2.4.3 Appendix C: The Fluctuation Determinant for T̂κ
⊥

Here we compute the fluctuation partition function Qfluct for the DNA loop in magnetic
field. Qfluct = Q‖Qκ

⊥ is the product of two independent partition functions Q‖ and Qκ
⊥

(Eqs. 2.76 and 2.77) for the in plane and out of plane fluctuations, the first of which
was already computed. Here we derive Qκ

⊥ leading to Eq. 2.77 in the main text. It is
defined in terms of the corresponding fluctuation operator

T̂κ
⊥ = β

√
AF

(
− ∂2

∂t2
− N (N + 1)

cosh2 (t)
+ c2

)
(2.115)

with c =
√

1 + κ
F

and N = 2 via

Qκ
⊥ =

∫ (0, L
2λ)

(0,− L
2λ)

e−
1
2

R L/2λ
−L/2λ

δϑT̂κ
⊥δϑdtD [δϑ] =

√
β
√

AF

2πD
(− L

2λ
, L

2λ

) (2.116)

The fluctuation determinant D
(− L

2λ
, L

2λ

)
is most elegantly computed via the Gelfand-

Yaglom initial value problem described above (Appendix A) which states that D
(− L

2λ
, L

2λ

)
=

f (t) |t=L/2λ where f (t) is the solution to

T̂κ
⊥f (t) = 0 with initial values (2.117)

f

(
− L

2λ

)
= 0 and ḟ

(
− L

2λ

)
= 1 (2.118)

The solution of Eq. 2.117 with 2.115 can be written in terms of the two linearly inde-
pendent solutions (cf. [19])

f± (x) = coshN+1 (t)

(
1

cosh t

d

dt

)N+1

e±ct (2.119)

For N = 2 the general solution writes

f (t) = C1e
ct

(
(c− 2 tanh t)(c− tanh t)− cosh−2 (t)

)

+C2e
−ct

(
(c + 2 tanh t)(c + tanh t)− cosh−2 (t)

)
(2.120)
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Enforcing the Gelfand-Yaglom initial conditions in the limit L
2λ
À 1 (where we may

safely set tanh
(± L

2λ

) ≈ ±1, cosh−2
(

L
2λ

) ≈ 0) we obtain the conditions

f

(
− L

2λ

)
= C1(c + 2)(c + 1)e−c L

2λ + C2(c− 2)(c− 1)ec L
2λ = 0

ḟ

(
− L

2λ

)
= C1c(c + 2)(c + 1)e−c L

2λ − C2c(c− 2)(c− 1)ec L
2λ = 1

which imply

C1 =
1

2c (c + 2) (c + 1)
ec L

2λ

C2 = − 1

2c (c− 2) (c− 1)
e−c L

2λ

Evaluating f (t) at the right boundary t = L
2λ

we obtain

D

(
− L

2λ
,

L

2λ

)
=

(c− 2)(c− 1)

2c (c + 2) (c + 1)
ec L

λ ×
(
1 + O

(
e−

L
2λ

))

≈ (c− 2)(c− 1)

2c (c + 2) (c + 1)
ec L

λ (2.121)

The asymptotically unimportant term O
(
e−

L
2λ

)
in the first line can be safely neglected

for L/2λ À 1.
Inserting finally Eq.2.121 into Eq.2.116 we obtain

Qκ
⊥ =

√
lP
λ

c (c + 2) (c + 1)

π(c− 2)(c− 1)
e−c L

2λ (2.122)

with c =

√
1 +

κ

F

Note that unlike for the in plane operator Q‖ case (where a close to 0 eigenmode
appears and creates artifacts) here we need not to renormalize D

(− L
2λ

, L
2λ

)
and Qκ

⊥ as
long as c is sufficiently larger28 than 2.

2.4.4 Appendix D: Computation of the Perpendicularly Con-
strained Partition Function

Here we evaluate the path-integral from Eq. 2.88. It is a special realization of the
general path integral of a QM harmonic oscillator with a time dependent frequency

28If on the other hand c is sufficiently close to 2 we will meet the problem of a formal divergence of
Qκ
⊥. This again is an artifact as for κ ≈ 3F the system becomes unstable (the loop unfolds). If one

is really interested in the limit κ → 3F one has to check again how much of the state-space does the
almost zero eigenvalue mode really physically occupy (beyond the Gaussian treatment). The vanishing
mode in this case represents the loop unfolding direction and its state space volume will scale with λ
(loop-head-size) rather than with L as it is the case for the translational mode contribution to the in
plane fluctuations.
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ω (τ) and a driving force term j (τ). The latter writes

I [ω, j] =

∫ (x1,τ1)

(x0,τ0)

D [x] e
i
~
�R τ1

τ0

m
2 (ẋ2(τ)−ω2(τ)x2(τ))dτ+

R τ1
τ0

j(τ)x(τ)dτ
�

︸ ︷︷ ︸
=e

i~S[j,x]

(2.123)

The latter can be computed exactly (cf. [13, 14])

I [ω, j] =

√
m

2πi~D (τ1, τ0)︸ ︷︷ ︸
fluctuation contribution

e
i
~S[j,xcl]︸ ︷︷ ︸

classical contribution

(2.124)

The first term D (τ1, τ0) here is the functional determinant of the (j-independent!)
operator T̂ = d2/dτ 2 + ω2 (τ) normalized by the free-particle operator d2/dτ 2 i.e.

D (τ1, τ0)

τ1 − τ0

= det

(
d2/dτ 2 + ω2 (τ)

d2/dτ 2

)
(2.125)

The Gelfand-Yaglom method described above can be used to immediately obtain
D (τ1, τ0) (exactly as in the previous case without the driving force j).
The second term in Eq. 2.124 involves the classical action S [j, xcl] which after short
computation (partial integration and exploiting the equation of motion Eq. 2.127 be-
low) can be recast into

S [j, xcl] =
m

2
xcl (τ) ẋcl (τ) |τ1τ0 +

1

2

∫ τ1

τ0

j (τ) xcl (τ) dτ (2.126)

The latter involves the classical path xcl (τ) depends now on j and is the solution of
the corresponding Euler-Lagrange equation (classical equation of motion)

mẍcl (τ) + mω2 (τ) xcl (τ) = j (τ) (2.127)

with boundary conditions xcl

(
τ0/1

)
= x0/1.

Now in our concrete case we have to evaluate

Q̂⊥ (p) =

∫ (0,t1)

(0,t0)

e−
1
2

R t1
t0

δϑT̂κ
⊥δϑdt+

R t1
t0

j(t)δϑdtD [δϑ]

=

∫ (0,t1)

(0,t0)

e
−β

√
AF
2

R t1
t0

�
δϑ̇2+

�
1− 6

cosh2(t)
+ κ

F

�
δϑ2
�
dt+

R t1
t0

j(t)δϑdtD [δϑ] (2.128)

with the (asymptotic) boundary conditions

t1/0 = ± L

2λ
→ ±∞ (2.129)

The operator T̂κ
⊥ is again given by Eq. 2.115.

T̂κ
⊥ = β

√
AF

(
− ∂2

∂t2
+ 1− 6

cosh2 (t)
+

κ

F

)
(2.130)
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The source term is here given by

j (t) = −ip (H (t + tc)−H (t− tc)) (2.131)

with H (t) the Heaviside step function, p and tc (≈ 1. 915) constants. Note that the path
integral in Eq. 2.128 is just the same as that in Eq. 2.123 after the usual ”Wick rotation”
τ → it and the replacement 1/~ → β, m → √

AF , ω2 (t) → (
1− 6/ cosh2 (t) + κ/F

)
.

The Euler-Lagrange equation giving the functional extremum of the exponent in Eq. 2.128
corresponding to the Eq. 2.127 reads

−β
√

AFδϑ̈cl + β
√

AF

(
1− 6

cosh2 (t)
+

κ

F

)
δϑcl − j (t) = 0

or written in terms of T̂κ
⊥

(
− ∂2

∂t2
+ 1− 6

cosh2 (t)
+

κ

F

)

︸ ︷︷ ︸
=(β

√
AF)

−1
T̂κ
⊥

δϑcl (t) =
(
β
√

AF
)−1

j (t) (2.132)

With boundary conditions δϑcl (±∞) = 0. To solve this inhomogeneous Eq. 2.132 we
construct the Green’s function29 G (t, t′) which is the solution to

(
β
√

AF
)−1

T̂κ
⊥G (t, t′) = δ (t− t′) (2.133)

with G (t, t′) = G (t′, t) and proper boundary conditions G (±∞, t′) = 0. The latter is
very useful as it immediately gives the solution to Eq. 2.132 via the simple convolution

δϑcl (t) =
(
β
√

AF
)−1

∫ ∞

−∞
G (t, t′) j (t′) dt (2.134)

For our Dirichilet boundary conditions the Green’s function generally writes30 :

G (t, t′) = −H (t′ − t) f2 (t′) f1 (t) + H (t− t′) f1 (t′) f2 (t)

W
(2.135)

with f1 two f2 being two (arbitrary) linearly independent solutions to the homogeneous

equation
(
β
√

AF
)−1

T̂κ
⊥f = 0 satisfying the (one sided!) boundary conditions f1 (−∞)

= 0 and f2 (∞) = 0 respectively. The constant W is the Wronski determinant of the
two solutions i.e.

W = f1 (t) ḟ2 (t)− ḟ1 (t) f2 (t) = const. (2.136)

29This will work without any problems if the homogeneous equation T̂κ
⊥δϑ = 0 (with δϑ vanishing

at both boundaries) possesses no nontrivial solutions. Such zero eigenmodes of T̂κ
⊥ are excluded

if κ is slightly larger than 0. This is the main idea behind taking κ > 0 instead of the deceptively
harmless κ = 0.

30This solution is valid if the prefactor of the leading order operator (i.e. of ”−d2/dt2”) is normalized

to 1. This is the case for
(
β
√

AF
)−1

T̂κ
⊥ = −d2/dt2+.... For a general exposition of Green’s functions

cf. for instance the nice book by Barton [20].
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Now, we are already in possession of the two solutions (set C2 = 0 and C1 = 0
respectively in Eq. 2.120). They write

f1 (t) = ect
(
(c− 2 tanh t)(c− tanh t)− cosh−2 (t)

)

f2 (t) = e−ct
(
(c + 2 tanh t)(c + tanh t)− cosh−2 (t)

)
(2.137)

with

c =

√
1 +

κ

F

Their Wronskian 2.136 is given after short computation by

W = −2c
(
c2 − 2

) (
c2 − 1

)

Inserting that and Eq. 2.137 into Eq. 2.135 gives a lengthy expression for G (t, t′).
Fortunately there is no need for writing out explicitly neither G (t, t′) nor δϑcl (t) as
we are only interested in S [j, xcl] from Eq. 2.126 (with xcl = δϑcl). In our case the
classical action S [j, δϑcl] writes

βS [j, δϑcl] =
β
√

AF

2
δϑcl (t) δϑ̇cl (t) |∞−∞︸ ︷︷ ︸

=0

− 1

2

∫ ∞

−∞
j (t) δϑcl (t) dt = (2.138)

= − 1

2β
√

AF

∫ ∞

−∞

∫ ∞

−∞
j (t) G (t, t′) j (t′) dtdt′ (2.139)

=
p2

2β
√

AF

∫ tc

−tc

∫ tc

−tc

G (t, t′) dtdt′ (2.140)

In the second line we used Eq. 2.134 and in the third line we exploited that j (t) is
proportional to the characteristic function of the interval [−tc, tc], cf. Eq. 2.131. Now
we can exploit that f2 (t) = f1 (−t) and simplify the involved integral

βS [j, δϑcl] =

(
β
√

AF
)−1

p2

4c (c2 − 2) (c2 − 1)

∫ tc

−tc

∫ tc

−tc

(H (t′ − t) f2 (t′) f1 (t) + H (t− t′) f1 (t′) f2 (t))︸ ︷︷ ︸
=(H(t′−t)f1(−t′)f1(t)+H(t−t′)f1(t′)f1(−t))

dtdt′

=

(
β
√

AF
)−1

p2

4c (c2 − 2) (c2 − 1)

∫ tc

−tc

∫ tc

−tc

2H (t− t′) f1 (t′) f1 (−t) dtdt′

=

(
β
√

AF
)−1

p2

2c (c2 − 2) (c2 − 1)

∫ tc

−tc

f1 (t′)
(∫ tc

t′
f1 (−t) dt

)
dt′

︸ ︷︷ ︸
I(c,tc)

The involved double integral I (c, tc) in the last line will depend on the variable c =√
1 + κ

F
and the numerical constant tc in a complicated manner. But luckily we are
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only interested in the case κ → 0 i.e. c → 1. The expansion of the integrand around
c = 1 (to lowest order) followed by the double integration gives

I (c, tc) = −6 (c− 1)

(
2tc + 3

tc

cosh2 tc
− 5 tanh tc

)
+ O

(
(c− 1)2)

=
3

2
tc

(
3t2c − 10

)
︸ ︷︷ ︸

≈2.88

(c− 1) + O
(
(c− 1)2)

In the second line we merely exploited the definition of tc namely tc = 2 tanh tc. The
limit c → 1 i.e. κ → 0 can now be performed safely and the action S [j, δϑcl] writes

lim
κ→0

βS [j, δϑcl] = lim
c→1





(
β
√

AF
)−1

p2

2c (c2 − 2) (c2 − 1)

3

2
tc

(
3t2c − 10

)
(c− 1)





= −3

8

(3t2c − 10) tc

β
√

AF
p2

≈ − 0.72

β
√

AF
p2 (2.141)

Now the Eq. 2.124 in our case (after ”Wick rotation” τ → −it and the replacement
1/~→ β, m → √

AF , ω2 (t) → (
1− 6/ cosh2 (t) + κ/F

)
etc.) writes

Q̂⊥ (p) =

√
β
√

AF

2πD (t1, t0)︸ ︷︷ ︸
fluctuation contribution

e−βS[j,xcl]︸ ︷︷ ︸
classical contribution

(2.142)

The fluctuation determinant and the ”fluctuation contribution” (which both do not
depend on j (t) and the parameter p) we already computed before in Eqs. 2.121 and
2.122. In the case of the ”fluctuation contribution” (coinciding with Qκ

⊥ in previous
appendix) we cannot carelessly go to the limit31 κ → 0 and t1/0 = ± L

2λ
→ ±∞. The

reason is again the diverging entropic contribution of a zero eigenmode. In the case
κ = 0 (i.e. c = 1) this mode is just the rotational mode of the DNA configuration (i.e.
the ϑ0 in Eq. 2.71). To cure the problem we have to divide out the wrong Gaussian
contribution and multiply the real ”state-space volume” corresponding to this mode,
similarly as we did this in Eq. 2.51 for the translational mode. Compiling Eqs.2.142,
2.141 and 2.121 together with λ =

√
A/F , lP = βA we obtain

Q̂⊥ (p) =

√
lP
λ

c (c + 2) (c + 1)

π(c− 2)(c− 1)
e−c L

2λ e
3
8

λ
lP

(3t2c−10)tcp2

We are almost done besides that we have to perform the ”proper renormalization” of
Q̂⊥ (p) mentioned in the main text. More concretely we have to correct for the (unphys-
ically) diverging contribution of the rotational mode ϑ0 (t) =

√
3/2 sinh (t) cosh−2 (t)

31In contrast to the case of the more tame ”classical contribution” where both limits cause no
problems. Therefore for the ”classical contribution” we go to the limit κ → 0 (c → 1) immediately.
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from Eq. 2.71. The eigenvalue µ0 (κ) of T̂κ
⊥ corresponding to ϑ0 is easily seen to be

µ0 (κ) = βλκ =
lP
λ

(c− 1) (c + 1)

This eigenvalue (artificially) enters the partition function Q̂⊥ (p) through a Gaussian
integral which we need to divide out and replace with a 2π - the state space volume of
the rotational mode. After doing that we are on safe shores and we can switch off the
formally introduced ”magnetic field” (i.e. we can take the limit κ → 0, or c → 1)

Q̂ren
⊥ (p) = lim

c→1

(
2π∫ +∞

−∞ e−
1
2
µ0x2

dx
Q̂⊥ (p)

)
= lim

c→1

(√
2πµ0Q̂⊥ (p)

)

= lim
c→1

√(
lP
λ

)2
2c (c + 2) (c + 1)2

(c− 2)
e−c L

2λ e
3
8

λ
lP

(3t2c−10)tcp2

The limit now is well behaved and we obtain the final result

Q̂ren
⊥ (p) = i2

√
6

(
lP
λ

)
e−

L
2λ e

3
8

λ
lP

(3t2c−10)tcp2

(2.143)

This is a simple ”inverted” (positive exponent) Gaussian!

2.4.5 Appendix E: Analogies with other Systems, Kinks, In-
stantons, Bubbles

Whenever one obtains some equations that look complicated but admit simple solutions
one can make an almost sure bet that (in the best case) some or (in worst case) a whole
community of people uses and solves the same in some other context. This is not much
different in our case. Our problem possesses strong analogies in many branches of
physics. This of course not the place to work them out here - we merely bring them to
our attention:

1. Nucleation of critical droplets (”bubbles”) in overheated liquids and simi-
lar problems. The classical reference on this topic is Langer [15] (cf. also [13, 14])
who treats for the first time the general Kramers (classical) activated barrier
crossing in an infinitely dimensional system.

2. Kinks in (overdamped) soliton bearing systems like solids with dislocations
(or Josephson junctions, cf. [29]). A classical reference on that is the work of
Büttiker and Landauer [16] where they treat dilute soliton gases. A ”kink” in
their work essentially corresponds to a 2-D loop here and the corresponding
partition functions can be mapped onto each other.

3. Quantum mechanical tunneling in single and double well (cubic / quartic)
potentials of all kinds. The main issue here is the evaluation of a transition
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amplitude (the propagator) (x1, t1|x0, t0) of the kind

(x1, t1|x0, t0)V =

∫ (x1,t1)

(x0,t0)

D [x] e
i
~A[x] with the action

A [x] =

∫ t1

t0

(
1

2
Mẋ2 − V (x)

)
dt

for a potential of the form V (x) = a4x
4 + ... + a1x (a4 can be zero) and the

particle mass M . If the involved action integral A happens to be À ~ than most
of the particle paths cancel (by destructive interference) and only the classical
path together with paths close to this classical trajectory remain. The classical
trajectory will be given by the Euler-Lagrange equation δA [xcl] = 0 which leads
to

··
xcl (t) = − 1

M

(
4a4x

3
cl (t) + ... + a1

)
(2.144)

Such an equation is generally solved by elliptic functions and in most interest-
ing limiting cases one usually recovers some reparametrization of a kink (loop)
solutions obtained in the text. The contribution of quantum fluctuations around
a ”tunnelling path”32 xcl between the two valleys of the double well potential
are evaluated in an analogous manner (within the saddle point approximation)
as we did for thermal undulations of the DNA chain around the loop solution.
This is not surprising as quantum fluctuations are formally equivalent to thermal
fluctuations in imaginary time. For an introduction to this topic cf. refs. [13, 14]
and refs. therein.

4. Flexible↔ semiflexible-polymer analogy. This analogy is particularly beau-
tiful and very visual. To my best knowledge it has not been worked out properly
in literature. Take a flexible Gaussian polymer chain and put it an external
potential V (x) . This classical problem was treated in exquisite detail in the
past century [23, 22]. For a typical application of that system in the context of
flexible polymer activated barrier crossing (polymer through a pore problem) cf.
for instance ref. [24]. The free - energy functional of a chain configuration x (n)
parametrized by the bead number n is given by

F [x] =

∫ N

0

(a

2
ẋ2 (n) + V (x (n))

)
dn

with the entropic spring constant a proportional to temperature T. Take now
x (n) to be on a sphere of radius 1 (say a flexible polymer adsorbed on a sphere).
Then the squared derivative ẋ2 = (dx/dn)2 writes in the spherical coordinates

ẋ2 = φ̇2 (n) sin2 θ (n) + θ̇2 (n)

where θ (n) and φ (n) are the corresponding spherical coordinates of the polymer
path. If we now subject the chain to a potential

V (n) = −F cos θ (n) (2.145)

32The tunnelling path xcl is sometimes also called the ”instanton” because it jumps within a very
short time period (almost instantaneously) from one potential valley to the other.
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we obtain a mapping to the wormlike chain bending and potential energy (cf.
Eq. 2.74). The constant a becomes now the stiffness A. So we can state that
the unit (!) tangent of a semiflexible chain can be mapped onto the real - space
position vector x (n) of completely flexible chain on a sphere subjected to the
potential Eq. 2.145. In Fig. 2.13 we represent the magnitude of different acting
(”tangent space”) potentials as distance from the origin so that the potential
energy can be represented as a spherical landscape. Note that by introducing
these hills and valleys we do not really mean that the metrics (line elements,
areas) on the sphere is modified (it is assumed to be constant throughout the
sphere) - it is done only for the sake of visualization that otherwise would be
difficult.
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Figure 2.13: The analogy between a flexible polymer on sphere and a semiflexible
polymer. The potential energy landscape acting on the flexible polymer (left) is repre-
sented by the distance from the coordinate origin. The depicted potentials correspond
in the semiflexible case (right) to the action of a) tension F (the ”apple”), b) magnetic
field H (the ”dumb-bell”), c) both F and H (the ”peanut”) and d) a nematic field n
(the ”red-blood-cell”). The black coils (left) correspond to the semiflexible excitations
(loops,hairpins on right), the white coils are small deviations from straight ”rods”.
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Chapter 3

The Thermal Motion of
Nucleosomes

The genetic information of all higher organisms is organized in huge beads-on-a-chain
arrays consisting of centimeters to meters of DNA wrapped around globular aggregates
of so-called histone proteins (cf. the introductory chapter). The basic unit of chro-
matin, the nucleosome, is a tiny 10×6 nm sized spool composed of 147 base pairs (bps)
DNA tightly wrapped around an octamer made from 8 histone proteins. Each nucleo-
some is connected via a stretch of ”linker” DNA to the next such protein spool. The
wrapped DNA, being coiled in ∼ 13

4
turns of a left handed helix with radius ∼ 4.2 nm,

is strongly distorted from its preferred straight ground state due to strong interactions
with the histone octamer, namely short range electrostatics (between the negatively
charged DNA sugar-phosphate backbone and the positively charged octamer surface)
and through extensive hydrogen-bonding – both localized at 14 discrete interaction
patches helically arranged along the octamer surface [126] (cf. the picture gallery in
chapter 1).

Higher order structures, from the 30nm-chromatin fiber up to the highest level of DNA
condensation, the fully folded chromosome, are designed to achieve a huge DNA volume
fraction. They all rely on the significant stability of the nucleosome complex. On the
other hand, fundamental life processes like transcription (making RNA offprints from
the underlying DNA) and DNA replication seem to be in conflict with the picture of a
stable nucleosome, as they are all performed by protein machines that track the DNA
helix. The latter inevitably implies that every DNA bound obstacle (protein) has to be
penetrated or even completely removed from its DNA target. In fact, the numbers are
quite dramatic: A typical gene extends over hundreds of nucleosomes, each contributing
30 − 40 kBT net adsorption energy [140, 136]. Also other mechanisms like the gene
activation rely on regulatory protein binding to specific DNA sequences that are often
covered by nucleosomes making them inaccessible.

A key to the understanding of these seemingly contradictory features might be the
physical phenomenon of thermally driven nucleosome ”sliding” along DNA (also called
nucleosome repositioning) which has repeatedly observed in well-defined in vitro exper-
iments [36, 103, 38]. Spontaneous repositioning is strongly temperature dependent; at
room temperature nucleosomes move a few tens of bps within an hour. Despite clear

77
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Figure 3.1: The basic problem setting: how does the histone-octamer move along the
DNA template? Below: the DNA loop mechanism as proposed in in Ref. [69]

evidence for repositioning the underlying mechanism has been the matter of longstand-
ing controversy, especially due to the lack of any quantitative theoretical treatment of
nucleosome statics and dynamics that has to rely on the detailed knowledge of the
molecular structure and its underlying parameters.
In this chapter we theoretically consider two distinct models that both could account
for many experimental observations and draw conclusions and theoretical predictions
that are intrinsically linked to both of them respectively. Finally in the last section of
this chapter we will discuss and theoretically model some long awaited and very recent
experimental findings. The result of this modelling will finally shed a surprisingly clear
light on the underlying mechanism.

3.1 Repositioning via Loop Formation

The first explanation which appears to be consistent with the discrete nucleosome
”jumps” (10 bp quantized) and the large barriers observed by Pennings et. al. has
been recently proposed in Ref. [69]. In this model the basic step in the repositioning
process is a partial unwrapping of DNA from the very ends of the nucleosome [70, 71]
followed by a backfolding of DNA with a small 10 bp mismatch (cf. Fig. 3.1). The
result of this process is the formation of a small DNA bulge or loop on the octamer
surface. Once trapped on the nucleosome surface this small defect carrying some
discrete quantum of DNA extra length (a multiple of 10 bp - the DNA helical repeat
length) can propagate by diffusion in both directions. If the loop happens to surround
the nucleosome and comes out at the opposite side (in respect to where it was created)
the nucleosome is eventually repositioned by a distance given by the ”pulled in” extra
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length. The energetic barrier and rates of repositioning were computed [69, 111] and
were shown to be consistent with the Pennings et al. experiment [67, 68]. Moreover,
the 10 bp discrete step repositioning observed in the experiment (discrete bands, no
1 bp spaced intermediates) came out as a natural consequence of the loop length
quantization. The latter is enforced by the strongly preferred DNA minor groove -
octamer interaction and the discrete binding sites at the nucleosome surface as deduced
from the crystallographic structures [73].

In Ref. [69] small loops with short excess length of typically ∼ 1 − 2×10 bp were
considered and it was shown that the looping energies involved increase rapidly with
the excess length implying that only the shortest (10 bp) loop contributes significantly
to the repositioning mechanism. Consequently the model predicts a classical discrete
random walk with a jump-size of 10 bp – instead of a 1 bp motion that would be implied
by a corkscrew motion considered later in this chapter (cf. section 3.2, Fig. 3.11). Apart
from the discrepancy in the elementary step size, both models predict very similar
behavior: a local one-dimensional diffusive motion along the DNA chain.

In this section we will carefully reanalyze the idea of loop-mediated repositioning by
applying the classical tool of the Kirchhoff kinetic analogy (cf. chapter 2) which pro-
vides us with analytic solutions of the loop problem and enables us to look at loops
of virtually any given excess length. The main outcome of our study will be a differ-
ent picture of repositioning which physically results from the looping mechanism: on
short and moderately long segments of up to 2-3× lP (lP : DNA persistence length)
the repositioning is a jumpy process with largest possible loops being the most domi-
nant ones in contrast to short 10 bp steps as conjectured before. For longer and very
long (infinite) DNA segments there is an optimal jump size of order ∼ O(lp) and the
behavior is superdiffusive in contrast to the previously predicted diffusive mechanism.
As we will see below, these predictions allow us to clearly distinguish between different
repositioning mechanisms in experiments expected to be performed in near future.

3.1.1 Energetics of Loops

Let us now consider the energetics of an intranucleosomal DNA loop. We will describe
it within the framework of the Euler-Kirchhoff theory for the static equilibrium of
rods that we already used in chapter 2, cf. Fig. 3.2. For simplicity and because of
the approximate planarity of the problem we can in first approximation assume the
nucleosome and the loop-forming DNA to be in one plane and the DNA to be free
of any twisting deformation. It this case the internal energy of our system is simply
divided into two components, the planar elastic DNA-bending and a histone-octamer
DNA interaction:

Utot = Ubend + Uads (3.1)

The bending energy (within the linear elasticity approximation) can be written in terms
of the local DNA curvature κ

Ubend =
A

2

∫ L/2

−L/2

κ2 (s) ds (3.2)
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Figure 3.2: The Kirchhoff kinetic analogy between the spinning top and the
bent/twisted rod depicted for a special case: the plane pendulum - planar rod equiva-
lence. The inset shows how an intranucleosomal loop can be constructed by inscribing
the octamer (gray disk) into the bent rod. The nucleosome opening angle 2α accounts
for the adsorption energy cost (see text for details).

with A ≈ 50 nm · kBT being the bending rigidity of DNA at room temperature and
physiological salt concentrations [74]. As in chapter 2 the DNA is assumed to be
parametrized by its contour length parameter s ranging from −L/2 to L/2 with L being
the total length of the loop. The latter can be expressed in terms of two independent
quantities: the excess length ∆L and the nucleosome opening angle α (Fig. 3.2)

L (α, ∆L) = 2αR + ∆L (3.3)

where R ≈ 4 nm is the effective nucleosome radius, or more precisely the distance from
the center of the nucleosome to the central DNA axis. Because the DNA can enter the
nucleosome only in quantized orientations (with its minor groove phosphates) and bind
only to discrete positions on the protein surface [73] (cf. the gallery of pictures at the
beginning of the thesis), the excess length ∆L = n×hDNA is to a good approximation
an integer multiple of the DNA repeat length hDNA = 3.4nm.
The second part in the total energy Eq. 3.1 Uads comes from the (predominantly elec-
trostatic) interaction between the positively charged protein surface and the negatively
charged DNA. It can be roughly measured from experiments probing the competitive
protein binding to nucleosomal DNA [70, 71]. Neglecting the discreteness of charges
(binding sites) on the histone octamer surface it can in first approximation be assumed
to be proportional to the opening angle α and the effective1 adsorption energy density

1By ”effective” we mean here the adsorption energy density renormalized by the bending energy
density on the octamer surface (with a radius of curvature R = 4nm). That means: εads= (interaction
energy per length) - (bending energy per length).
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εads

Uads = 2αRεads (3.4)

with εads ≈ 0.5 − 1.0 kBT/nm as roughly extracted from [70] 2. Here and in the
following we assume an intermediate value of εads = 0.7 kBT/nm.

3.1.2 Ground States of Trapped Loops

In order to compute the ground state for a trapped intranucleosomal loop we have to
consider shapes that minimize the total energy 3.1 under two constraints:

1. The excess length ∆L is prescribed. Therefore we have the relation Eq. 3.3
between the opening angle and the total loop length L

∆L = L− 2αR = const. (3.5)

2. At the two ends s± = ±L/2 the rod has to be tangential on an inscribed circle
of given radius (representing the nucleosome) 3:

R =

∣∣∣∣∣
y

(
L
2

)

−x′
(

L
2

)
∣∣∣∣∣ = const. (3.6)

Here x (s) and y (s) are the Cartesian coordinates of the rod axis as a function of the
arc-length parameter s (cf. Fig. 3.2). The absolute value in the second constraint needs
to be introduced formally for dealing with crossed rod solutions (which we consider later
on) and can be omitted for simple uncrossed loops.
For an analytical description it is convenient to use the angle θ = θ (s) between the
DNA tangent and the y axis as a variable describing the DNA centerline. In this
case the integrated sine (cosine) of θ over the arc-length parameter s gives the x (y)
Cartesian coordinate of any point along the rod, and the squared derivative (θ′)2 gives
the rod curvature κ. Furthermore the nucleosome opening angle α is simply related to
θ at the boundary

α =

{
θ (L/2) for simple loops

π − θ (L/2) for crossed loops

The two constraints Eq. 3.5 and Eq. 3.6 can be rewritten in terms of θ and then be
introduced into the minimization by two Lagrange multipliers µ1/2. We then arrive at
the following functional

Ûtot = A

∫ L/2

0

(θ′)2
ds + 2αRεads

+µ1 [L− (∆L + 2αR)]

+µ2

[∫ L/2

0

cos θds−R sin α

]
(3.7)

2In Eq. 3.4 we assume that the interaction is only short ranged (contact interaction) which is
justified by the very short Debye screening length of ≈ 1nm under physiological salt conditions.

3Because of the symmetry we have to impose the conditions only on one side.
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Here the first line is the bending + adsorption energy contribution, the second and
third line are the imposed length and tangency constraint. Eq.3.7 can be rearranged
in a more familiar form ∫ L/2

0

(
A (θ′)2

+ µ2 cos θ
)

ds + b.t. (3.8)

Here b.t. denotes the boundary terms (depending on θ (L/2) only) that obviously
do not contribute to the first variation inside the relevant s interval. The integral in
Eq.3.8 is evidently analogous to the action integral of the plane pendulum with A (θ′)2

corresponding to the kinetic and −µ2 cos θ to the potential energy of the pendulum.
This was explained in the chapter 2 in the context of the Kirchhoff kinetic analogy.
The nice thing about Kirchhoff’s analogy apart from its esthetic content is that it
provides us with explicit expressions for DNA shapes subjected to twist, bending and
various geometric topological constraints. In our simple planar and twistless case, the
”spinning top” simply reduces to the plane pendulum. The corresponding planar and
twistless rods, also called the Euler elastica, are most generally given by

cos θ (s) = 1− 2msn2
( s

λ
| m

)
(3.9)

which can be integrated to obtain the general planar rod shape in Cartesian coordinates:

x (s) = 2
√

mλcn
( s

λ
| m

)
(3.10)

y (s) = 2λE
( s

λ
| m

)
− s (3.11)

with sn, dn, cn(. | m) being the Jacobi elliptic functions with the parameter m and

E (u | m) :=

∫ u

0

dn2 (v | m) dv (3.12)

denoting the incomplete elliptic integral of the second kind in its ”practical” form4.
The two parameters m > 0 and λ (the tension length, cf. chapter 2) in Eqs. 3.10 and
3.11 characterize the shape and the scale of the solution, respectively. These solutions
are up to trivial plane rotations, translations, reflections and shifting of the contour
parameter s → s+s0 the most general planar Euler elastica corresponding to the plane
pendulum. For different parameters m one obtains different rod shapes corresponding
to different solutions of the spinning top (plane pendulum) motion [84]. The case m = 0
describes a pendulum at rest corresponding to a straight rod, for 0 < m < 1 one has
strictly oscillating pendulums corresponding to point symmetric rod shapes which for
m < 0. 92 are free of self intersections like the one depicted in Fig. 3.2. For m higher
than 0. 92 the rods show varying complexity with a multitude of self-intersections and
for m = 1 one has the so-called homoclinic pendulum orbit corresponding to a rod
solution having only one self intersection and becoming asymptotically straight for
s → ±∞ (for details see Ref. [84]). For even higher values 5 of m, i.e., for m ≥ 1 we

4Some useful formulas and relations for the elliptic functions and integrals are briefly sketched in
[84] and found in [85] in full depth.

5Usually the parameter m is artificially assumed to be confined to 0 ≤ m ≤ 1 but by the Jacobi’s
real transform for elliptic functions [85] they stay well-defined even for m > 1.
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have revolving pendulum orbits corresponding to rods with self-intersections lacking
point symmetry. Finally, the limiting case m → ∞ corresponds to the circular rod
shape.
In order to describe a trapped loop we need to use Eqs. 3.10 and 3.11 imposing the con-
straints Eqs. 3.5 and 3.6. It turns out to be more convenient to replace the parameter
set (λ,m, L) with the new (but equivalent) set (λ,m, σ := L

2λ
) where we introduced the

new dimensionless parameter σ which we call the ”contact parameter”6. From Eq. 3.6
together with 3.10 and 3.11 we can immediately extract the scaling parameter λ and
the opening angle in terms of the contact parameter σ and the shape parameter m

λ (σ,m) = R

∣∣∣∣
sn (σ | m) dn (σ | m)

2E (σ | m)− σ

∣∣∣∣ (3.13)

α (σ,m) = arccos
[± (

2dn2 (σ | m)− 1
)]

(3.14)

± := sign (2E (σ | m)− σ) (3.15)

Plugging this into Eq. 3.5 we obtain the final form of the implicit constraint

∆L

2R
= σ

∣∣∣∣
sn (σ | m) dn (σ | m)

2E (σ | m)− σ

∣∣∣∣ (3.16)

− arccos
[± (

2dn2 (σ | m)− 1
)]

The curvature κ (s) and the bending energy Eq. 3.2 follow from the explicit solution
Eq. 3.9 to be

κ (s) =
2
√

m

λ
cn

( s

λ
| m

)
(3.17)

Ubend =
4mA

λ

∫ σ

0

cn2 (t | m) dt (3.18)

=
4A

λ
[(m− 1) σ + E (σ | m)] (3.19)

The latter expression together with Eqs. 3.1, 3.4 - 3.15 gives a lengthy expression for
the total energy with the sign chosen ± as in Eq. 3.15.

Utot (σ,m) =

4A

R

∣∣∣∣
[2E (σ | m)− σ] [E (σ | m) + (m− 1) σ]

sn (σ | m) dn (σ | m)

∣∣∣∣
+2Rεads arccos

[± (
2dn2 (σ | m)− 1

)]
(3.20)

Now our problem of finding the ground state loop for given excess length ∆L reduces
to a two variable (σ,m) minimization of Eq. 3.20 under the constraint Eq. 3.16. This
final step is easily performed numerically.

3.1.3 Loop Zoology: Simple and Crossed Loops

We can scan now through the σ − m parameter plane and look at the shapes of the
solutions and their energies. In Fig. 3.3 we see a small (but most important) part of the

6A more visual parameter set (α, m, λ) using the opening angle α = α(σ,m) produces technical
problems with non-uniqueness of loop representation.
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Figure 3.3: The set of possible ground-state solutions is characterized by two parame-
ters, the contact point parameter σ and the loop shape parameter m. Solutions with
constant excess length ∆L (here 10 × 3.4nm) are located along the dashed lines (e.g.
loops 1-7). The solid lines separate loops with different geometric characteristics: sim-
ple (1,2,3), crossed (4,5,6) and ”exotic” (7,8,9,10) loop shapes.

14.2 kT

17.5 kT

19.6 kT

21.4 kT

23.0 kT

24.6 kT

26.4 kT

28.5 kT

31.8 kT

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ (contact param.)

m
 (

sh
ap

e 
pa

ra
m

.)

1

2

3

5

10

20
50

50
20

10

5
3

2
1

1

2

3

5

10

20
50

>50 kT 

0 kT 

Figure 3.4: Density plot of the total loop energy Eq. 3.20 (grayscale levelsets) as
a function of σ and m (same parameter range as in Fig. 3.3). The white contours
denote lines of constant excess length ∆L = 1, 2, 3, 5, 10, 20, 50 × 3.4 nm. For given
excess length the ground state is the point on the corresponding white line with the
darkest background (note the different branches for given ∆L). The parameters are
εads = 0.7kBT/nm and A = 50nm× kBT and R = 4nm.
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Figure 3.5: The ground state loop energy plotted vs the excess length ∆L. Note
the energy maximum occurring for shorter loops. For much longer loops (around
∆L = 60nm) a transition from simple uncrossed to crossed loop shapes occurs lead-
ing to a kink in Umin (∆L). In the regime of low ∆L . lP the elastic energy prevails
strongly over entropy whereas for large loops the entropy starts to dominate the be-
havior producing a shallow energy minimum in the cross-over regime which roughly
defines the predominant loop size.

whole parameter space and the corresponding different loop geometries. The dashed
lines indicate parameter values which lead to constant excess length ∆L = 10× 3.4nm
(corresponding to 100 bps) in accordance with the constraint Eq. 3.16. The shapes 1-7
are examples of 100bp-loops with different geometries. The whole parameter plane is
subdivided by separation lines (solid) into regions of structurally different solutions.
The large region starting at σ = 0 contains exclusively simple loops (like 1,2 and 3)
without self-intersections and nucleosome penetration. Above that simple-loop-region
we find loops with a single self-intersection (4,5,6) and to the right the loops penetrate
the nucleosome, like loop 10. There are also three other regions with single and double
crossing points (7,8,9) where the loop can also be on the ”wrong” side of the nucleosome
like in 7 and 8.

We are interested in the energy minimizing loops and the underlying minimal energies
as functions of the excess length ∆L. A density plot of these energies as function of
the parameters σ and m together with the corresponding lines of constant ∆L (with
∆L = 1, 2, .., 50× 3.4nm) is given in Fig. 3.4. As can be seen from Fig. 3.3 there are,
for a given ∆L, different branches of (σ,m) values corresponding to uncrossed, simply
crossed and other exotic structures. Of all these structures for short excess lengths,
∆L . 20× 3.4nm, the energetically dominant ones are simple (uncrossed) loops which
we study first. Loops with larger excess length form crossed structures and are studied
later below.
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3.1.4 Simple Loops

For simple uncrossed loops it is a straightforward numerical task to minimize Eq. 3.20
under the constraint of constant excess length, Eq. 3.16. For εads = 0.7kBT/nm and all
the other parameters as above (A = 50nm× kBT, R = 4nm) the ground state energy
Umin as a function7 of the excess length ∆L is shown in Fig. 3.5 (for ∆L . 60nm; for
longer ∆L-values crossed loops are more favorable as discussed in the next section).
Remarkably we find that the loop energy is non-monotonous: For small ∆L Umin

increases with ∆L as (∆L)1/3 (in accordance with Ref. [69] where only small loops
were studied). At some critical excess length ∆L = ∆Lcrit (which is approximately
∆Lcrit ≈ 2.2 × 3.4nm for εads = 0.7 kBT/nm) the loop energy reaches a maximum
(here Umin(∆Lcrit) ≈ 26kBT ). Beyond that the energy decreases with increasing ∆L.

In the following we show how this behavior can be explained on the basis of the loop
geometry. Naively one might argue as follows: For excess lengths shorter than the
persistence length of DNA it is increasingly difficult to store additional length into the
loop because it requires increasing DNA deformation. On the other hand, for loops
longer than lP the bending energy contribution becomes very small and hence one
expects such ground state loops relaxing with increasing ∆L. However the reason for
occurrence of a maximum of Umin around ≈ 2 excess DNA lengths, a value which is
considerably smaller than the persistence length, is not obvious. In order to understand
this finding one has to go beyond the simple handwaving heuristics and needs to take
a close look at the details of the loop geometry.

To this end we introduce here a simple approximation technique which leads to ex-
plicit expressions which can be more easily handled than the exact yet complicated
expressions given above. We call this method the circle-line approximation and give a
detailed exposition in the Appendix. As we will see this method is quite accurate and
at the same time very intuitive.

Looking at the geometrical shapes of the loops in Fig. 3.3 we notice that each of them is
subdivided into several sections of very high and very low curvature (cf. also Eq.3.17).
In first approximation we replace the high curvature regions by sections of circles,
the low curvature regions by straight lines (cf. Fig. 3.6). Furthermore, to keep the
smoothness we assume that the lines are tangents to the circles. Generally in order to
have reasonable approximations of all possible loop shapes we would need to consider
compositions of several circles and lines (cf. for instance loops 3, 6, 7). However, if the
adsorption energies are not to high, i.e., if the opening angle α is ”soft enough” and
does not impose such a severe bending like in loop 3, such multiply bent loops will not
be relevant as ground state solutions. As it turns out for our problem we already obtain
a quite good approximation by assuming that the loop consists of a single circular arc
and two lines only. It is characterized by two quantities : 1) the arc radius r and 2)
the nucleosome opening angle α (cf. Fig. 3.6 and Appendix). With these assumptions
and after some elementary geometry the constraint Eq.3.5 becomes simply

∆L = 2 (R− r) (tan α− α) = const. (3.21)

7Formally the quantisation condition ∆L = 1, 2, ...×3.4nm holds as mentioned above. Nevertheless
for clarity we consider the values in between as well.
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Figure 3.6: Two generic types of simple loop geometries (in the circle-line approxima-
tion): a) the subcritical loop with opening angle α < π/2 and b) the supercritical loop
with α > π/2. In the former case the introduction of further excess length leads to
an energy increase but in the latter case to a relaxation of stress: The introduction
of additional length at points XL and XR followed by a relaxation of the structure
obviously decreases the total energy.

Note that the (more complex) second constraint Eq. 3.6 is eliminated through the
”ansatz” per se. The total loop energy is given in terms of the loop radius r and the
opening angle α

Utot (α, r) = A
α

r
+ 2αRεads

and by applying the constraint Eq. 3.21 (which this time can be solved explicitly!) we
obtain Utot in terms of α and given ∆L

Utot (α) = 2α

(
A

tan α− α

2R (tan α− α)−∆L
+ Rεads

)
(3.22)

which is explicit in α. We note that this approximation for Utot is only reasonable
for 2R (tan α− α) > ∆L, i.e., for not too small α (vs. ∆L), otherwise the bending
contribution diverges or becomes even negative (the latter is obviously absurd). The
reason for this is that for very small angles α (compared to ∆L) uncrossed8 circle-line
loops cannot exist for geometrical reasons. There this most basic approximation breaks
down and we would have to approximate the loop by more than one circular segment.
But as mentioned above, such loops (α small compared to ∆L) are not candidates for
the ground state for moderate εads ∼ O (1), and we therefore dispense with giving a
discussion of this case.
The nice thing about Eq. 3.22 is that despite its simplicity and approximate nature it
reproduces the position of the maximum in Fig. 3.5 quite well. We find the condition for
the critical excess length ∆Lcrit from a simple geometric distinction between two loop

8In contrast to crossed loops there still are solutions for small α (cf. next subsection).
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shapes: the subcritical loop (Fig. 3.6a) with its tangents not being parallel to the Y
axis (α = 0) and the supercritical loop (Fig. 3.6b) having two or more tangents parallel
to the line α = 0. Suppose now we add excess length to a subcritical loop by keeping
the angle α = const. Obviously the loop-energy increases because the loop radius r
becomes smaller. On the other hand in the supercritical case we have the opposite
situation: the loop energy decreases with increasing ∆L. This is simply because we
could cut the loop at two points (XL and XR in Fig. 3.6), introduce there the additional
length (without changing the energy) and then relax the shape by letting it evolve to
the new equilibrium while keeping α = const. Thus we can obtain the condition for the
critical excess length ∆Lcrit by assuming that the corresponding minimum αmin of Utot

just crosses the critical line π/2 line, i.e., αmin (∆Lcrit)
!
= π/2 for the searched ∆Lcrit.

d

dα

∣∣∣∣
α=π/2

Utot (α)
!
= 0 (3.23)

which can be solved for ∆Lcrit

∆Lcrit =
4R

π
+

8R3

πA
εads (3.24)

The latter can now be inserted in Eq. 3.22 leading to

U crit
tot =

πA

2R
+ πRεads (3.25)

For the given values of R, A, εads (R = 4nm , A = 50 nmkBT , εads = 0.7 kBT/nm) we
obtain ∆Lcrit = 7. 37nm and U crit

tot = 28. 4kBT which is in satisfactory agreement with
the exact numeric results (∆Lcrit = 7. 19nm, U crit

tot = 26. 7kBT ). More generally, for not
to high adsorption energies (εads = 0.5 − 2.0 kBT/nm) the circle-line approximation
works well and Eqs. 3.24 and 3.25 reproduce the exact positions of the critical point
typically with a 5-15% accuracy.
For an explicit parametric representation of the minimal energy curve within the circle-
line approximation, which in particular implies the upper results, the reader is referred
to the appendix where the usefulness of this approach is also demonstrated for some
other examples.

3.1.5 Crossed and Entropic Loops

A closer inspection of Fig. 3.4 shows that the ground state of loops switches from
simple uncrossed loops to crossed loops when one reaches an excess length around
50 nm. However, as can be seen for the crossed structures 4, 5 and 6 in Fig. 3.3
these loops have a self-penetration at the crossing point. Therefore, a planar theory
is in principle not sufficient to describe such structures. One possible formal cure for
this problem would be to leave the plane and to consider the rod’s self-contacts with
the corresponding point-forces etc. in 3D as done by Coleman et al. in a general
theory of rod self-contacts [86]. However such a procedure leads to a significant loss
of transparence, not only because of the third dimension entering the scene but also
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due to the necessity to subdivide the rod into different regions with different forces
acting in each of them. Instead of following Coleman at al. [86] we decided to treat
the self-interaction in a perturbational manner as follows. If the self-contact point is
not too close to the nucleosome the rod is not severely deflected out of the plane by
its self-interaction. Thus it remains roughly planar with some out of plane bending in
Z-direction of the rod sections between the nucleosome and the crossing point. This
will cost some additional bending energy Udef that is roughly given by (cf. Appendix)

Udef (σ,m) =
2A

R

ρ arctan
(

ρ tan α(σ,m)
tan2 α(σ,m)−ρ2

)

tan2 α (σ,m)− ρ2
(3.26)

Here ρ := d/R with d ≈ 1nm is the DNA radius. We neglect the slight twisting of
the rod induced by the non-planarity of the DNA and consider the bending only. The
deflection energy Eq. 3.26 can be phenomenologically incorporated into the model by
simply adding it to Eq. 3.20 as a correction term to obtain the final form of the total
energy U∗

tot

U∗
tot (σ,m) =

{
Utot (σ,m) for uncrossed (simple) loops

Utot (σ,m) + Udef (σ,m) for crossed loops

With this additional modification of Utot we computed numerically the minimal energy
(ground state) solution for any given excess length ∆L. The graph of the ground state
energy versus ∆L is shown if Fig. 3.5. We find that even with the inclusion of the
out-of-plane deflection there is still a critical length ∆Lcross (here ≈ 60nm) where the
crossed loops become energetically more favorable than the simple uncrossed. This
behavior that we call the ”crossing transition” can be rationalized by noting that for
long enough loops the adsorption energy (proportional to α) starts to dominate over
the bending energy so that loops with smaller α become increasingly favorable. From
the critical length ∆Lcross on, the gain in adsorption energy (by diminishing α) is more
than sufficient to outweigh the (slight) increase in bending energy together with the
additional self-interaction term, Eq. 3.26.
Increasing the length even further we leave the elastic energy dominated regime in which
the entropic effects can be neglected due to short loop length (. persistence length).
For larger lengths entropic effects become more and more important and we ultimately
enter the entropic loop regime. The crossover between these two regimes is hard to
handle analytically [87]; for the case of closed loops a perturbative description has
been given in Ref. [88]. For our purpose it is sufficient only to consider the asymptotic
behavior. In the large loop limit where the loop is longer than several lP the chain
looses its ”orientational memory” exponentially and behaves roughly as a random walk
which starts from and returns to the same point. The entropic cost for gluing the ends
of a random walk (long loop) together is then given by

U = 3/2kBT ln(∆L/lP ) + E0 + S0 (3.27)

The first constant, E0 ≈ 6.5 kBT is the bending + adsorption energy contribution of the
overcrossing DNA segments leaving / entering the nucleosome which can be determined
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by minimizing the crossed loop energy (cf. Appendix Eq. 3.46) for ∆L → ∞. The
second additive constant S0 ∼ O(kBT ) accounts for the entropic contribution of DNA-
histone octamer interaction volume (the proximity necessary for the histone octamer
and DNA to see each other). Although the latter constant is not easy to estimate
the following prediction is not sensitive to any additive constant. We expect a free
energy minimum to occur at the overlap between the elastic (∆L . lP ) and entropic
(∆L À lP ) region where the decreasing elastic energy is overtaken by the increasing
entropic contribution.
The free energy, Eq. 3.27, leads to an algebraically decaying probability w (∆L) for the

jump lengths scaling as w ∼ (∆L)−3/2. In general, power law distributions of the form
w ∼ (∆L)−γ with γ > 1 lead to superdiffusive behavior of the random walker (here
the nucleosome). According to Levy’s limit theorem the probability distribution of the
random walker (more precisely, the distribution of the sums of independent random
variable drawn out from the same probability distribution w ∼ (∆L)−γ) converges to
a stable Levy distribution of index γ − 1 [89, 90, 91]. This so-called Levy-flight differs
in many respects from the usual diffusion process as for short time intervals big jumps
are still available with significant probability. Moreover, all moments (besides possibly
the first few ones) diverge. For our case γ = 3/2 even the first moment does not exist.
We note that the value 3/2 is based on the assumption of an ideal chain (no excluded
volume); in general the excluded volume leads to self-avoiding-walk statistics with a
slightly larger value of γ around 2.2 [91] (cf. also Ref. [92]). In that case one has a
finite value of the first moment, i.e., of the average jump length.

3.1.6 The Dynamics of Nucleosome Repositioning

In the preceding sections we have computed the typical energies involved in the forma-
tion of arbitrary sized loops. Assuming that a slow creation followed by a fast thermal
migration of loops around the nucleosome is the governing mechanism for nucleosome
repositioning we start now considering the repositioning dynamics. In order to describe
the time-dependent evolution of the nucleosome position we consider its probability dis-
tribution along a DNA segment of a length N × 10bp and write the master equation
governing the jump process

d

dt
pi =

N∑

j=1,j 6=i

wjipj − pi

N∑

j=1,j 6=i

wij (3.28)

where pi is the probability for the nucleosome being at the admissible9 position i on
the DNA segment. The transition rate matrix W = (wij) is given by

wij =

{
CA exp

(
− 1

kBT
Umin (hD |i− j|)

)
for i 6= j

−∑N
k=1,k 6=i wij for i = j

(3.29)

where hD = 3.4nm (DNA helical pitch). CA denotes the Arrhenius constant involved
in the loop formation process that has in principle to be determined experimentally.

9Spaced by a multiple of 10 bp from the initial position
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Figure 3.7: Relaxation dynamics of two initial states of nucleosome positions on a
short DNA segment (147 + 90 bp): a) the nucleosome starting from an end and b) the
nucleosome starting from the middle position. The time unit is the inverse Arrhenius
activation factor C−1

A (compare text).

The rough estimate of C−1
A = 10−6s is provided in Ref. [69] where it was shown that

CA is essentially given by the inverse lifetime of the loop (denoted by A in that paper).
This means that typical repositioning times range from seconds to hours.
The (formal) explicit solution of Eqs. 3.28, 3.29 together with the previously obtained
minimal energy Umin is given by

p (t) = exp(Wt)p (0)

The latter solution can now be considered for different cases: for short or long DNA
chains and for the nucleosome placed in the middle or at the end of the chain.
For short DNA segments we expect a slow repositioning rate due to high energies in-
volved in small loop formation. In Fig. 3.7 we depict the repositioning of a nucleosome
on a DNA piece of a length 147+90 bp. Starting from an end positioned nucleosome
(Fig. 3.7a) we observe a behavior that is completely unlike a local diffusion mechanism:
the jumps bigger than ≈ 2×3.4nm start to dominate over the smaller local ones, which
follows from the loop formation energy cf. Fig. 3.5. Consequently, in the initial phase
of repositioning (of such an end-positioned population) the nucleosomes will predom-
inantly jump between the two end positions. Later, on a much larger timescale they
gradually start to explore the positions towards the middle of the DNA segment. Could
we extract such a behavior from an experiment using gel-electrophoretic separation (as
in [67], [68])? The basis of such separations is the fact that the gel-electrophoretic
mobility of nucleosomes on DNA pieces (longer than 147bp) increases roughly linearly
with its distance from the middle position, i.e., DNA pieces with the nucleosome sitting
close to the end run much faster in gels than equivalent middle positioned nucleosomes
do. We can exploit this (empiric) fact to mimic the outcome of a gel-electrophoresis
experiment (cf. Figs. 3.8 and 3.10). In Fig. 3.8a we depict such a simulated gel pattern
for the middle positioned nucleosome. Since symmetric species are not distinguished by
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Figure 3.8: Typical (1-D) gel electrophoresis signatures expected for the relaxation
dynamics of the two species from Fig. 3.7: a) nucleosome starts from an end and b) from
the middle position. The lanes 1-5 correspond to incubation times (1,5,10,20,100)×108

C−1
A respectively. Note: the population of distant bands in b) lanes 2-4 occurs first, in

sharp contrast to what we expect from a simple (local) diffusive behavior.

this experimental method and are projected onto the same bands (symmetric left/right
positions lead to the same mobility), the expected non-locality of motion cannot be
extracted from the structure of the bands.

For the same short segment, but with the nucleosome starting from the middle position
(Fig. 3.7b) the situation is slightly different: the neighboring positions are populated
more homogeneously, although there is a small initial underpopulation of the 2×3.4nm
distant position as expected from the energy maximum occurring there. In this case, a
slight initial ”population gap” can be observed in gel electrophoresis (Fig. 3.8b) which
in this case would be sufficient to distinguish between a jumpy and a diffusive behavior,
since the latter would obviously lack the ”population gap”.

In the case of longer DNA (but still not entropic segments) like the 147+300 bp seg-
ment in Figs. 3.8 and 3.9, similar effects as for the short segments are expected but
with significantly faster relaxation times by typically 2-3 orders of magnitude as com-
pared to the corresponding short segment populations. The corresponding (simulated)
electrophoretic gels are shown in Fig. 3.10 where for the centrally positioned case
(Fig. 3.10b) the ”population gap” effect is even more pronounced than in the short
segment case.

For even longer DNA segments we expect the gap effect to persist (data not shown)
and the optimal jump size to be around 2-3×lP corresponding to the free energy mini-
mum in Fig. 3.5. For very long DNA segments, the nucleosome repositioning behavior
implied by the big-loop-mechanism becomes strongly non-local which contrasts a local
diffusive motion as expected from cork-screwing motion (cf. Refs. [65, 66, 68, 67]) or
small loop repositioning as considered by Ref. [69]. As mentioned above, this superdif-
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Figure 3.9: Relaxation dynamics of two initial states of nucleosome positions on a
longer DNA segment (147 + 300 bp): a) end positioned and b) centrally positioned
initial species. Note the initial difference in relaxation timescales for a) and b) (which
are due to different loop energies involved).

Figure 3.10: The (1-D) gel electrophoresis signatures simulated for the relaxation dy-
namics of the two initial species from Fig. 3.9. a) End positioned (lanes 1-5 correspond-
ing to incubation times (1,2,3,10,50)×104 C−1

A ) and b) centrally positioned (incubation
times (1,2,3,10,50)×106 C−1

A ).
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fusive behavior has diverging moments which implies strongly enhanced nucleosome
transport along very long DNA pieces. However such an ideal superdiffusion of nu-
cleosomes could hardly occur in vivo because free DNA segments between subsequent
nucleosomes (DNA linkers) are never longer than ∼ O (lP ). Furthermore the neighbor-
ing nucleosomes might be a significant barriers (if not for loop formation then) for loop
migration around the nucleosome which is an indispensable event for loop-mediated
repositioning.

3.1.7 Conclusions on the Loop Mechanism

In this section we examined the first possible mechanism for the repositioning of nucle-
osomes along DNA which is based on the formation and diffusion of intranucleosomal
loops. The most important outcome of this section is the prediction of two classes of
loops that might occur: (1) small 10bp-loops and (2) large loops with a wide distri-
bution of stored lengths with a weak peak at roughly two times the DNA persistence
length.
The small loops were already discussed in Ref. [69] and led to the prediction of reposi-
tioning steps of 10bps. Furthermore, the repositioning time should be of the order of an
hour, a consequence of the large activation energy required to form a loop. This might
explain the strong temperature dependence of the typical repositioning time [67]. In
fact, by lowering the temperature from 37◦ to 4◦C no redistribution within one hour
was detected in that experiments. Assuming a loop formation energy of 23kBT one
finds indeed a slowing down of this process by factor of 13.
On the other hand, the large loop repositioning considered here turns out to be en-
ergetically much more favorable. Loops with an extra length of 2lP have an energy
that is roughly 12-13kBT smaller than that of a 10bp-loop. To a certain extent this is
because such loops can have a very small nucleosome opening angle by forming crossed
loops but the main contribution stems from the significantly decreased DNA bending
energy. One therefore expects that repositioning via large loops should be the dom-
inant process on sufficiently large DNA pieces and that the typical times are much
shorter than the one for small loop repositioning (say, of the order of minutes).
So far, however, the experiments did not report such events. Meerseman et al. [68, 67],
for instance, found on short DNA pieces of 207bps length results that are consistent
with 10bp repositioning – as we would expect for such short DNA fragments. However,
when they redid the experiment with a 414bp long piece, a tandem repeat of the 207bp
DNA, their analysis of the complicated band patterns observed in 2D gel electrophoresis
did not show any indication that the nucleosome was able to move from one half to
the other.
Hence, the question arises if the repositioning observed in these experiments was me-
diated via the loop mechanism or if it occurred via a different process. An analysis of
the results is made especially difficult by two complications: (a) the nucleosomes seem
to prefer to sit on the ends of the DNA fragments and (b) most of the experiments
use strong positioning sequences (like the 5S rDNA sequence). This means that, in-
dependent of what the repositioning process might be, the nucleosomes have certain
preferred positions and these might obscure the underlying repositioning process.



3.2. REPOSITIONING VIA TWIST DIFFUSION 95

Despite those possible artifacts in the experiments performed up to now and the blurred
and fuzzy picture they might draw it cannot be denied that the basic theoretical pre-
diction of the loop model (the non-locality of motion) is not observed experimentally.
We seem to be in a dead end with the loop model - not because of its logic inconsistency
but rather because nature seemingly ”refuses” to act that way. At this point one is re-
minded of the fact that dealing theoretically with such a highly complex and dynamic
mesoscopic object like the nucleosome (consisting of more than 10000 atoms, with-
out solvent and ions!) usually requires additional assumptions (a simplified model).
The validity of the latter is just a working hypothesis always requiring experimental
confirmation.

In the light of that we need to consider other repositioning mechanisms that one could
imagine. The first and indeed most trivial mechanism is that the nucleosome detaches
completely from the DNA and attaches at some other position (or even a different
DNA molecule). This process, however, seems to be excluded by two facts (among
others). First that no repositioning from one half to the other of the 414bp DNA or to
competitor DNA fragments was observed [68, 67]. Secondly, once completely detached
from the DNA template the histone octamer becomes unstable and disintegrates into
a tetrameric and two dimeric subunits which makes an effective nucleosome recon-
stitution difficult (if not impossible). So one has to think of a completely different
mechanism. In the next section we will describe a more promising scenario, and finally
resolve the problem on the basis of new experimental findings.

3.2 Repositioning via Twist Diffusion

In this section we consider a different mechanism for thermal nucleosome repositioning:
the twist diffusion or (more pictorially) the corkscrew motion, cf. Fig. 3.11a. The model
is in some respect similar to the loop model presented above as it assumes that the
nucleosome motion is carried out by the formation and migration of defects in the
adsorbed DNA. But in contrast to the loop model the carrier of motion in this model
is a twist defect that contains one missing or one extra bp (in contrast to a 10 bp
containing loop defects). Experimentally, twist defects have been observed in the high
resolution crystal structure of the nucleosome [126]. In that study the nucleosomes were
reconstituted from histones and DNA of 146 bp assuming that this would be its optimal
length in the crystal. However, the latter turned out to be 1bp longer, i.e. 147 bp. It
was found that the missing bp of the 146 bp DNA was not localized at its terminus
but instead at a 10 bp stretch close to the dyad axis (cf. Fig. 4d in Ref. [126]). That
twist defect allows the DNA termini of adjacent particles in the crystal to come close in
order to mimic a bp step. Obviously this gives an upper bound for the energetic cost of
a single twist defect, namely the stacking energy of the blunt ends ∼ 10− 20kBT [39].
From that we already see that twist defects might be energetically less costly than loop
defects (from the previous section).

In order to model the twist diffusion mechanism we map the nucleosomal DNA on a
Frenkel-Kontorova (FK) chain of particles connected by harmonic springs in a spatially
periodic potential (cf. Fig. 3.11). The original FK model was introduced more than



96 CHAPTER 3. THE THERMAL MOTION OF NUCLEOSOMES

sixty years ago to describe the motion of dislocations in crystals [43]. In the meantime
variants of this model were applied to many different problems including charge density
waves [44], sliding friction [45, 46], ionic conductors [47, 48], chains of coupled Josephson
junctions [49] and adsorbed atomic monolayers [50, 109]. Here, in the context of DNA
adsorbed on the octamer, the beads represent the base pairs. The springs in between
have an equilibrium distance b = 0.34 nm and a stiffnes C that reflects the coupled
DNA twist-stretch elasticity. Specifically

Eelastic ({xn}) =
∑

k

C

(
xk+1 − xk

b
− 1

)2

(3.30)

Here the conformation of the wrapped DNA is given by the set {xn} where xn is the
position of the nth bp measured along the helical backbone; C ' 70 − 100kBT is
the combined twist and stretch spring constant including the (here unfavorable) twist-
stretch coupling [52] and the summation goes over all bp associated with the wrapped
DNA. In addition there is the external potential of the 14 contact points to the octamer
with neighboring points being 10 bp apart [126] that we model as follows

Eads ({xn}) = −U0

∑

k

14∑

l=1

((
xk − 10bl

a

)2

− 1

)2

×θ (a− |xk − 10bl|) (3.31)

with θ being the Heaviside step function. The two parameters of the external potential,
its depth U0 and its width a, can be estimated as follows. U0 represents the pure ad-
sorption energy per point contact which follows from competitive protein binding [140]
to be of order 6kBT . The other parameter, a, can be estimated from the fluctuations of
the DNA in the crystal measured by the B-factor (cf. Fig. 1b in [126]) at different nu-
cleosome positions. The ratio of DNA helix fluctuations Rfluct = 〈x2

middle〉 / 〈x2
bond〉 ≈ 3

at positions between the binding sites and at the bound sites is a measure of DNA
localization. Using a quadratic expansion of Eq. 3.31 one finds from a straightforward
normal mode analysis that a = (5U0/[(Rfluct − 1) C])1/2 b ∼ b/2, i.e., the adsorption
regions lead to a strong localization of the DNA. Knowing all involved parameters the
total energy of the DNA chain confined in the nucleosome can be written down

Etot = Eelastic + Eads + Esd (3.32)

The last term Esd is the sequence dependent part of the total energy which we will
neglect first. In the following we study the mechanism for thermal motion of DNA
governed by Etot. Generally two scenarios are possible: (i) the injection of a kink
(1 bp missing) or antikink (1 additional bp) at either nucleosome end and (ii) the
generation of kink-antikink pairs inside the nucleosome. Since the second mechanism
is energetically roughly twice as costly than the first one, we will focus here on the
(anti)kink injection mechanism only.
How and how fast does the kink step around the nucleosome? Due to the strong DNA
localization at the binding sites (a/b < 1) for a realistic range of parameters U0 and
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Figure 3.11: The twist-diffusion mechanism for nucleosome repositioning. a) A con-
certed translational and rotational motion of DNA leads to injection of twist-defects
(kinks) which migrate between the octamer adsorption sites (black triangles) leading
to a ”creep” motion of DNA. b) The corresponding Frenkel-Kontorova model for twist
diffusion and its characteristic parameters (cf. text for details).

C a given kink is localized either between two adsorption positions, i.e., smeared out
over 10 bp (denoted by the K10 state), or between three of them, i.e., smeared out
over 20 bp (the K20 state). It is obvious that the motion of a (anti)kink will consist
of an alternation between K10 and K20 states similarly to an earthworm creep motion.
To model this process we introduce the effective kink coordinate xK describing the
coordinate of that bp that goes from being pinned to being depinned during a single
kink step, so that xK ≈ 0 and xK ≈ b/2 correspond to K10 and K20, respectively,
whereas xK ≈ b means that the kink moved by one bp step. The Peierls-Nabarro
potential experienced by the kink is then given by

UPN (xK) =

{
Ceff (xK/b− 1/2)2 − U0 (x2

K/a2 − 1)
2
θ (a− x) for 0 < xK < b/2

UPN (b− xK) for b/2 ≤ xK < b

Here Ceff = 2
10±1

C with ”−” referring to a kink and ”+” to an antikink. Depending
on the ratio of parameters U0 and C, the state K20 corresponds to a local minimum or
maximum of UPN whereas K10 is always stable for the relevant parameter range. The
rate for the kink step process is then given by the expression

fstep =
kBTj0

b2ζeff

with

j−1
0 =

(∫ 1

0

e−UPN (sb)/kBT ds

)(∫ 1

0

e+UPN (sb)/kBT ds

)
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and

ζeff =
4π2

10b
µspin

the effective kink friction constant. Here µspin = 1.3×10−20Ns is roughly the rotational
friction for a single basestep [53]. To determine the rate at which twist defects are
formed at the entry/exit points of the DNA one can now use an argument similar to
the one presented in Ref. [41]: The ratio of the life time tlife of a kink to the time
interval tinj between two kink injection events at the end of the wrapped DNA portion
equals the probability to find a defect on the nucleosome, i.e.

tlife/tinj ' Nsitee
−UKink/kBT

Here Nsite = 13 denotes the number of possible positions of the defect between the 14
binding sites and UKink ' C/10 is the energetic cost for a single kink (cf. above).

How is the average life time tlife of a defect related to tstep, the typical time needed for
one step? This can be determined from the mean first passage times τleft and τright for
a defect that forms, say, at the left end to leave the nucleosome at the same or at the
other end, respectively. From Ref. [54] one finds τleft = (25/6) tstep and τright = 28tstep.
Furthermore, the probability to leave at the left end is pleft = 12/13 and at the right end
pright = 1/13 [54] which gives the life time as the weighted average tlife = 6tstep. Only a
fraction pright of the defects reaches the other end and will lead to a repositioning step,
i.e., the time of a 1bp diffusion step of the nucleosome along the DNA is given by T =
tinj/pright. Putting all this together we arrive at T ' 6b2ζeff j−1

0 /kBT exp (C/10kBT ).
For realistic parameter values C = 100kBT , U0 = 6kBT and Rfluct = 3 we find T '
10−3 s implying a nucleosome diffusion constant D = 580 bp2/s = 6.6 × 10−17 m2/s.
Note that UKink ' 9kBT for K10 and ' 11kBT for K20.

Hence we find repositioning rates that are orders of magnitude faster than the ones
observed in experiments [103]. Even worse, the experimental observation of an apparent
10 bp jump length [103] seems to be inconsistent with our predictions. We show
now how these facts can be explained by the existence of additional barriers with
a 10 bp periodicity. To do so we have to extend our simple model to deal with the
quenched disorder stored in the DNA bp sequence. The sequence dependent anisotropic
bendability, i.e., the propensity of DNA to bend in different directions with different
elastic constants turns out to be essential. It has been known for long [55, 56] that
(A/T) rich dinucleotide steps (dns) prefer to face the octamer in the minor groove (i.e.,
at the octamer contact points) whereas (G/C) rich dns prefer to face the octamer in the
major groove (i.e., between contact points). This reflects different propensities of the
dinucleotides to widen or compress towards the DNA minor groove. To incorporate
these anisotropic effects into our model we first note that the bending state of the
DNA molecule is fully constrained by its helical path on the octamer surface. Moving
a DNA sequence via twist diffusion by a few bp (< 10 bp) along that path changes
the relative rotational setting of the bent DNA with respect to its preferred bending
direction causing an energetic penalty, whereas a motion by 10 bp restores the initial
rotational setting. We address this by introducing a 10bp periodic ”bending field”
Fbend (x) = − cos [2πx/ (10b)] attached to the octamer surface. We assume the DNA
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Figure 3.12: The extended Frenkel-Kontorova model includes effects from anisotropic
bp sequences. a) DNA sequences couple additionally to an octamer-fixed ”bending
field” through the anisotropic bending parameters qi (”bending charge”). b) Two
sequences with extremely different mobilities. S1: highly anisotropic, 10 bp phased
(”TG”-like) sequence with Dsd ≈ 10−4 − 10−5 bp2/s. S2: random sequence corre-
sponding to > 95% of the genome with Dsd ≈ 102 bp2/s.
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sequence to couple linearly to that field through ”bending charges” qk attached to each
of the dns. This gives us finally the third term in Eq. 3.32:

Esd =
∑

k
qkFbend (xk) + mk (3.33)

In addition to the anisotropic term we also introduced here the isotropic bending
parameters mk to include isotropic flexibility effects (which become important when
the qk’s vanish or average out). The summation involved is again over all base pairs
incorporated in the nucleosome. qk and mk both have units of energy and can be
extracted from competitive protein binding experiments [56] for each of the 10 dns
(AA, AT, GC...). To obtain a rough estimate we distribute the dns into three classes:
1) (G/C) containing dns, 2) (A/T) containing dns and 3) mixed dns (like AG, CT
etc.) and treat the dns in each class as identical. Using the available experimental
data [56, 57] we then arrive at qG/C ≈ 95, qA/T ≈ −85 , qmixed ≈ 0 and mG/C ≈ 20,
mA/T ≈ −3, mmixed ≈ 7, where all energies are in cal/mol per dns.
It turns out that the nucleosome mobility depends strongly on the underlying bp se-
quence. When shifting the position of all beads by l bp steps, xk → xk + lb, we find
Esd (l) = (A/2) cos (2πl/10− φ) to vary as a cosine function of l with phase φ and
amplitude A determined by the DNA sequence, which is assumed to be appropriately
periodic here. Arranging G/C and A/T tracts properly and taking the sequence de-
pendent q and m values given above we can easily reach amplitudes A (i.e. barriers
to repositioning) that exceed 10− 12 kcal/mol! A very effective sequence arrangement
called the ”TG”-sequence which leads to a strong nucleosome stability and localization
was experimentally constructed in Ref. [56] by putting G/C tracts around positions
k = 0, 10, 20... and A/T tracts around k = 5, 15, 25.... In our picture this means to
put the ”bending charges” q along the DNA such that they couple favorably to the
bending field Fbend for a distinct rotational setting whereas a 5 bp shift is extremely
costly. The 5S-RNA sequence which was used in most nucleosome mobility experiments
shows also the effect of an optimal rotational setting. It is less pronounced than in the
”TG” case, yet it is still detectable. More involved theoretical computations relying on
molecular sequence dependent deformability parameters [58] reveal barriers A ≈ 5− 6
kcal/mol for this particular sequence. The sequence dependent barrier height A ex-
ponentially suppresses the bare (sequence independent) diffusion constant D obtained
above leading to the sequence dependent diffusion constant Dsd:

Dsd = DI−2
0 (A/2kBT ) ≈ πj0A

12ζeff

e−(A+C/10)/kBT (3.34)

with I0 being the modified Bessel function.
Equation 3.34 predicts that mobility experiments with highly anisotropic sequences
like ”TG” (instead of the standard ”5S-RNA”) would find hardly any appreciable
repositioning on the one hour timescale if it would be solely mediated via twist defects
(Dsd = 10−6 − 10−7 ×D = 10−4 − 10−5 bp2/s). The typical path for a nucleosome to
escape from such a rotational trap goes very likely via the previously considered loop
formation mechanism that allows ”tunneling” over sequence barriers, thus dominating
over twist-diffusion for extremely anisotropic sequences. An experimental test for this
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prediction would be to increase the free DNA segment length which in this regime
should strongly enhance the loop mediated mobility [111] whereas it would leave the
twist diffusion unaffected. Going to the other extreme, in the most relevant case
of random isotropically bendable sequences which make up more than 95% of the
eucaryotic genome one should observe that the twist diffusion mechanism is strongly
enhanced by 2-3 orders of magnitude as compared to the in vitro measurements on
”5S-RNA”.
In conclusion the following picture is implied by the twist diffusion mechanism: On
physiological timescales the majority of genomic nucleosomes seems to be intrinsically
highly mobile. However, only a small fraction (< 5%) of all nucleosomes has strongly
reduced mobility due to anisotropic DNA sequences which they populate. We may
speculate that only the latter require the action of active (ATP consuming) remodelling
mechanisms [59] making them hotspots and switching elements for global chromatin
rearrangements.
Despite the plausibility of the twist-diffusion model (and its much better consistency
with the experimental data than the loop model gave before) a decisive experiment
confirming this mechanism was still missing at the time we studied it first [112]. In
the next section we will close this gap by carefully analyzing the newest experimental
data that became available only very recently.

3.3 Nucleosome Corkscrew Dynamics in the Pres-

ence of DNA Ligands

3.3.1 The Experiment

In the previous sections we have considered two different possible scenarios for ther-
mally driven nucleosome motion along a DNA template. Both mechanisms are equally
plausible and we can only rely on experimental observations to decide which one of
them (if not both) is valid for the nucleosome. Although the present experiments that
show a locality of nucleosome motion (no large jumps observed) seem slightly to fa-
vor the twist diffusion over the loop formation mechanism the available data are not
straight forward to interpret (and still may suffer from artifacts).
A new experimental approach that could clarify the situation was taken recently by
Gottesfeld et al. [115]. The authors considered the usual experimental setup i.e. a 216
bp DNA fragment that again contained the sea urchin 5S rDNA nucleosome positioning
sequence. They followed the heat induced nucleosome repositioning (as done in all
previous experiments) but this time in the presence of pyrrole-imidazole polyamides
(PIP s), synthetic minor-groove binding DNA ligands that are designed to bind to
specific target sequences with high (nanomolar) affinities. Experiments have been
performed in the presence of one of 4 different ligands, each having one binding site
on the nucleosomal DNA. The general outcome of this study was as follows: (1) A
one-hour incubation at 37◦ in the absence of any ligand leads to a redistribution of the
nucleosomes. (2) In the presence of 100 nM ligands no repositioning of nucleosomes is
detected after such an incubation if (and only if) the target sequence of this specific
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Figure 3.13: Sequence specific DNA ligands pyrrole-imidazole polyamides (PIPs)
adopted form Ref. [115]: a) The chemical structure of a typical PIP. b) A PIP bound
to the minor groove of DNA. c) PIP binding to specific DNA sequences on the nucle-
osome. A PIP can bind to the nucleosome only if its DNA binding sequence is faced
with its minor groove outwards (away from the histone octamer surface)

ligand faces to the solution when the DNA is bent in its preferred direction. (3) If a
ligand has been added whose binding site faces the octamer in its preferred rotational
frame, the ligand has no detectable effect on the reposition dynamics.
This raises the question whether the described experiment is capable to distinguish
between loop- and twist-defect induced nucleosome mobility. Since the ligands bind to
the minor groove (cf. the co-crystal complexes between nucleosomes and such ligands
[116] and Fig. 3.13) it is quite likely that a bound ligand will block the overall corkscrew
motion of the DNA: The DNA can only rotate on the nucleosome up to a point where
the bound ligand comes close to one of the 14 binding sites. A further rotation of the
DNA is not possible because of steric hindrance and twist defects that would induce
that rotation will be deflected once they encounter the ligand site. In other words:
The observed suppression of mobility through ligand binding agrees qualitatively well
with the twist defect picture. What about a loop defect encountering a bound ligand?
In this case the answer is at first not obvious. One should expect that a bound ligand
does not hinder bulge diffusion – at least sterically (for their small size). Of course, the
ligand might in principle locally stiffen or soften the DNA and might influence the loop
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formation mechanism (either enhancing or suppressing loop formation). But this seems
unlikely as the ligand affinity for DNA is insensitive to the actual DNA curvature as
seen from the almost unaltered ligand binding constants to free DNA as compared to
the strongly curved (and distorted) DNA inside of the nucleosome. Consistently with
that the co-crystal of the PIP ligands with DNA shows only minor distortions of the
DNA. This again indicates that the PIP binding induces a fairly small (if not negligible)
conformational perturbation of the underlying DNA molecule which could not account
for any significant modulation of the loop diffusion mechanism. It therefore seems that
the influence of ligand binding on nucleosome mobility supports much more the idea
of twist diffusion as the underlying mechanism.

In the following we provide a theoretical model for nucleosome repositioning in the
presence of DNA ligands. We make use of the upper results on repositioning via twist
defects in the absence of ligands that essentially provides us with the nucleosomal dif-
fusion constant as a function of temperature and underlying DNA sequence. Assuming
thermodynamic equilibrium we will then calculate the diffusion constant in the pres-
ence of ligands. We find below – in agreement with the experiments – that in the
presence of 100nM ligands the repositioning on the 5S positioning sequence is essen-
tially completely blocked if the ligand binding site prefers to face the solution. On
the other hand, when the binding site faces the octamer surface, the ligands have a
negligible influence on the nucleosome mobility again in complete agreement with the
experiment.

3.3.2 Nucleosome-Ligand Complex: Equilibrium Properties

In this subsection we determine the equilibrium properties of a nucleosome in the
presence of a finite concentration [L] of one synthetic ligand targeting one specific
site on the nucleosomal DNA. In Fig. 3.14 we represent the different possible states
by nodes and the possible pathways from one state to the next state by connecting
lines. Fig. 3.14(a) shows the case of a DNA template with an isotropic bendability. The
open and filled circles correspond to nucleosomes at different positions without a bound
ligand. The filled circles (state ”1”) correspond to states where ligands can bind, i.e.,
to states where the ligand binding site (assumed to be located on the wrapped DNA
portion) faces away from the octamer surface and is accessible. In this case a ligand
can bind; the nucleosome with bound ligand is represented by an open square (state
”0”). We assume that in this case the nucleosome looses its mobility, i.e., we have no
line connecting this state to a neighboring state. Before the nucleosome can ”slide” to
a neighboring position the ligand has to unbind, i.e., one has to go back to state ”1”.
If the nucleosome is in a position where the ligand binding site faces the octamer (open
circle, state ”2”) the site is blocked. At these positions the nucleosome mobility is not
affected by the ligands. For simplicity, we will assume here that always 5 consecutive
bp positions (corresponding to one half turn of the corkscrew motion) have the ligand
binding site exposed to the solvent and represent these 5 positions by the filled circle.
Likewise the other 5 positions are collapsed into the open circle.

Fig. 3.14(b) and 3.14(c) show the case of a rotational positioning sequence as used in
the experiment [115]. In case (b) the situation is such that the ligand can bind when the
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Figure 3.14: Nucleosome repositioning in the presence of ligands. (a) In the case of
a homogenously bendable DNA template the states with exposed binding sites (”1”)
and occluded ones (”2”) have the same elastic energy, ∆G12 = 0. State ”0” represents
the immobile state with a bound ligand. (b) and (c) For templates with a rotational
positioning one state has a higher DNA bending energy than the other. For case (b) the
preferred rotational frame with respect to the octamer corresponds to an open binding
site, in case (c) to a closed one. Each node in this scheme represents 5 consecutive bp
positions so that the periodicity of the bending potential corresponds to one helical
pitch.
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DNA sits on the nucleosome in its preferred bending direction. In this case the states
”1” sit in the potential wells of the elastic energy landscape. We call the difference
in the DNA bending energy between the top and the bottom ∆G12 = G2 − G1. The
case ∆G12 > 0 correspond to the situation where a ligand can most effectively bind to
the nucleosome and block the repositioning (in the experiment this corresponds to the
ligands 1 and 4 [115]). Fig. 3.14(c) depicts the other extreme where the binding site
faces the octamer in the preferred rotational frame (this corresponds to ligands 2 and
3 in the experiment [115]).
We denote by pi the probability for the nucleosome to be in state i. Detailed balance
relates these probabilities as follows:

p2

p1

=
ω12

ω21

= e−∆G12/kBT = f (3.35)

and
p0

p1

=
ω10

ω01

= K =
[L]

Kd

(3.36)

Here ωij denotes the transition rate from state i to state j, K is the equilibrium
constant for the ligand and Kd its dissociation constant. Eqs. 3.35 and 3.36 together
with p1+p2+p3 = 1 yield immediately the occupation probabilities for the three states:

p0 =
K

1 + K + f
(3.37)

p1 =
1

1 + K + f
(3.38)

and

p2 =
f

1 + K + f
(3.39)

Let us consider some special cases. In the absence of ligands one has [L] = 0 and
K = 0. For a homogeneous template one finds in addition f (defined in Eq. 3.35) to
equal unity. Then p1 = p2 = 1/2 and, of course, p0 = 0. Using a rotational positioning
sequence the nucleosome prefers to be in its optimal rotational frame. Then for K = 0
one finds p2/p1 = f . For the 5S positioning sequence one has f ≈ e−10 so that
state ”1” is populated with a roughly 20000 times higher probability then state ”2”.
This explains the electrophoretic band structure with a 10 bp periodicity as observed
in most repositioning experiments [103, 106]. The presence of ligands changes the
relative weight of the different states. We mention here the most intriguing situation: A
rotational positioning sequence with the ligand binding facing inwards in the preferred
rotational frame where ∆G12 < 0 and hence f > 1 (cf. Fig. 3.14(c)). The probability
to find the nucleosome in its mechanically unfavorable states ”0” and ”1” will be
higher than to find it in state ”2”, the usually preferred state, if p0 + p1 > p2, i.e., for
K + 1 > f . For sufficiently high concentration and affinity the presence of the ligand
overrules the positioning sequence! The ligands used in the experiment [115] have
dissociation constants ranging from 0.7 to 6.0nM . For a strong positioning sequence
f is too large for the above inequality to hold for reasonable ligand concentration, say
100nM . However, for less strong sequences this might play a role. Also in the case
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of a 146 bp template corresponding to the total wrapping length as consider by Suto
et al. [116] it might well be that ligands shift the preferred centered DNA position
to an off-centered position. A 1-9 bp shift would cost the opening of one binding site
but might allow ligands to bind more effectively, especially if the binding site(s) at the
centered DNA positions are (partially) occluded. In one case [116] (polyamid 2) such
an effect might have been indeed observed, cf. Fig. 5 in that paper.

3.3.3 Nucleosome Mobility in the Presence of Ligands

We are now in the position to determine the diffusion constant of a nucleosome along
DNA in the various cases. The diffusion constant can be determined from the average
of the diffusion constant for the nucleosome to jump from state ”1” to one of the two
neighboring states ”1” and that of going from ”2” to neighboring ”2’s”. Let us denote
by ω1 the rate to go from a given state ”1” to the next position ”1” to the right and
by ω2 the rate of jumps to the right from ”2” to ”2”. Then the diffusion constant is
given by D = (p1ω1 + p2ω2) l2 where l is the jump length, here l = 10bp. Now ω1 = ω2

follows from Kramers’ rate theory [121] to be ν0e
−|∆G12|/kBT with the attempt frequency

ν0 ≈ D0/l
2 for |∆G12| . kBT and ν0 ≈ π |∆G12|D0/ (kBT l2) for |∆G12| À kBT .

Using Eqs. 3.38 to 3.39 we arrive at the final formula for the diffusion constant for the
case ∆G12 ≥ 0 (i.e. f ≤ 1):

D> =
ν0

1 + K + f

(
f + f 2

)
l2 (3.40)

In the opposite case, ∆G12 ≤ 0 (i.e. f ≥ 1), we find

D< =
ν0

1 + K + f

(
f−1 + 1

)
l2 (3.41)

Let us now consider special cases:
(i) homogeneous DNA bendability, no ligands (∆G12 = 0, [L] = 0): In that case f = 1,
K = 0. Both formulas, Eqs. 3.40 and 3.41 reduce to D> = D< = D0.
(ii) homogeneous DNA bendability but ligands present (∆G12 = 0, [L] > 0), cf. Fig. 3.14(a):
f = 1 leads to

D> = D< = D =
2D0

2 + K
(3.42)

(iii) rotational positioning sequence, no ligands present (|∆G12| À kBT , [L] = 0):
Equations 3.40 and 3.41 reduce to Eq. 3.34 with |∆G12| = A À kBT , the case that has
been already discussed in the previous section [112].
(iv) rotational positioning sequence, ligands present with binding site exposed for the
preferred orientational frame (∆G12 À kBT , [L] > 0), cf. Fig. 3.14(b): Using f ¿ 1
we obtain from Eq. 3.40

D> =
π |∆G12| f

kBT

D0

1 + K
(3.43)

(v) rotational positioning sequence, ligands present with exposed binding site occluded
for the preferred orientational frame (∆G12 ¿ kBT , [L] > 0), cf. Fig. 3.14(c): Here



3.4. APPENDIX: THE CIRCLE-LINE APPROXIMATION 107

f À 1 and from Eq. 3.41 we find

D< =
π |∆G12|

kBT

D0

f + K
(3.44)

We are now in the position to check how effectively the ligands can reduce the repo-
sitioning in the various cases. We estimate in the following the typical equilibration
time on a 216 bp long template (as it has been used in Ref. [115]) to be T70bp =
(216− 146)2 bp2/ (2D). Let us start with case (i) where D = D0 ≈ 580bp2/s. This
leads to the typical time T70bp = 4s. Adding now a ligand with [L] = 100nM and
Kd = 1nM (case (ii)) this leads to a 50 fold reduction of the diffusion constant,
D ≈ 12bp2/s, cf. Eq. 3.42, and to an equilibration time T70bp ≈ 3.5min. If one uses a
positioning sequence instead with |∆G12| = 9kBT one finds in the absence of ligands
(case (iii)) from Eq. 3.34 D ≈ 2bp2/s and T70bp ≈ 20min. Repositioning experiments
on such sequences are thus typically performed on time scale of an hour to ensure
equilibration [103, 115]. Adding now again a ligand with [L] = 100nM and Kd = 1nM
and having its binding site facing the solution in the preferred rotational frame (case
(iv), Fig. 3.14(b)) we predict from Eq. 3.43 an additional dramatic reduction of the
diffusion constant by a factor of 100: D> ≈ 2 × 10−2bp2/s and T70bp ≈ 34h. In other
words, in this situation one does not observe any repositioning of the nucleosomes on
the time scale of an hour. This is in accordance with the experimental observations,
cf. Fig. 5, lane 1 and 4 in the study by Gottesfeld et al. [115]. On the other hand,
for the case of a ligand with same affinity and concentration but with the binding site
in the unfavorable orientation (case (v), Fig. 3.14(c)) one finds hardly any effect; in
fact the diffusion constant as compared to the ligand free case, case(iii), is reduced
by approximately 1 percent, cf. Eq. 3.44. As a matter of fact in the experiment [115]
these two cases were indeed indistinguishable as seen in Fig. 5, lane 0, 2 and 3 in that
paper.
In conclusion the upper analysis explains the whole set of experimental data provided
in [115] on the basis of the twist diffusion model. Strikingly this analysis required no
adjustable parameters. Taken together this provides a strong theoretical support for
the twist diffusion model.

3.4 Appendix: The Circle-Line Approximation

Although the Kirchhoff’s analogy provides us with essentially analytic solutions for the
rod deformed in plane, the occurrence of boundary conditions (like Eqs. 3.5 and 3.6)
prevents us in most cases from obtaining analytical expressions of all the parameters
characterizing the solution (like σ and m above). To overcome this problem, we suggest
here a simple geometric approximation scheme which will prove to be useful in obtaining
analytic results for loops within a reasonable accuracy (usually with a deviation of 5-
15% from the exact numeric results).
The main idea is the following. The curvature and the energy (Eqs. 3.17 and 3.18) of
the loop contains the cn(σ|m) function which for 0 < m < 1 has the typical oscillatory
behavior depicted in Fig. 3.15 (left). This suggests to approximate the curvature
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Figure 3.15: The circle-line approximation for planar rods. The curvature of an equi-
librium rod shape (cn-function, cf. Eq. 3.17) is approximated by a periodic sequence
of step-functions. The latter corresponds to an approximation of the rod shape by a
sequence of straight lines (κ = 0) and circles (κ =const.) glued together in a smooth
manner (continuous tangents).

function simply by a step function consisting of an alternating sequence of negative,
zero and positive piecewise constant curvatures. Consequently the corresponding rod
shape (Fig. 3.15 right) is approximated by a sequence of circles (positive / negative
constant curvature) and lines (zero curvature). An analogous approximation procedure
can also be performed in the case m > 1 where the cn function has a natural analytical
continuation into a dn function with a modified second argument (cf. Ref. [85]).
Using this approximation ansatz several problems concerning planar rods reduce to
elementary geometry as seen from the following simple but illustrative examples.
1) The Yamakawa-Stockmayer angle [88]: Two points on the rod are glued together
without restricting the orientation of the tangents, e.g., a protein connects two distant
points on DNA (cf. Fig. 3.16a). What is the preferred angle χ between the tangents in
the ground state of the rod? By imposing a fixed total rod length L we have the simple
constraint L =

(
2 cot χ

2
+ χ + π

)
r from which we can eliminate r and write the elastic

energy of the configuration as U bend
DNA = A

L
(χ + π)

(
2 cot χ

2
+ χ + π

)
. Its minimization

leads to the transcendent condition χmin +π = tan χmin with the only relevant solution
χmin ≈ 77.5◦. The latter angle differs by 5% from the exact result χmin ≈ 81.6◦ (by
Yamakawa and Stockmayer in [88]) which is satisfactory regarding the simplicity of the
computation.
2) Simple and crossed loops (Fig. 3.16 b,c): We can easily derive an approximate energy
expression for simple / crossed loops as a function of the excess length ∆L and the
opening angle α. By applying simple geometry the excess length constraint can be
easily eliminated (the tangency constraint is trivially fulfilled by the ansatz) and we
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Figure 3.16: Three applications of the circle-line approximation: Problems with com-
plex constraints reduce to simple geometries leading to good approximations: a) the
Yamakawa-Stockmayer angle b) simple loops and c) crossed loops (see the Appendix
text for details).
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Figure 3.17: Comparison of the adsorption and bending energy contributions (Uads and
Ubend) as well as the total ground state energy Utot of the simple loop. The fat lines
represent the circle-line approximation (cf. Eq. 3.45) whereas the thin lines show the
corresponding exact expressions, Eqs. 3.1 and 3.20 (thin line). The parameters are
εads = 0.7kBT/nm and A = 50nm× kBT and R = 4nm.
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arrive at

Usimp (α) = 2α

(
A

tan α− α

2R (tan α− α)−∆L
+ Rεads

)
(3.45)

for simple loops and

Ucross (α) = 2α

(
A

π + tan α− α

∆L− 2R (tan α− α)
+ Rεads

)

+Udef (α) (3.46)

for crossed loops where A,R and εads defined as above and Udef being the excluded
volume interaction at the crossing point, which is considered below (and applied in the
main text as Eq. 3.26). We remark that the above expressions for Usimp and Ucross are
valid within certain α intervals which are given by the restriction 0 < α < π and by
the condition that the first terms in the brackets of Eqs. 3.45 and 3.46 are positive
(these are the necessarily positive bending energy contributions in the two cases.)
These fairly simple expressions can now be used in the two cases to obtain explicitly
the ground state energies by minimizing Eq. 3.45 and Eq. 3.46 with respect to α. For
instance, setting U ′

simp (α) = 0 we obtain a transcendental equation for α. We can
now use the fact that this condition is algebraic in ∆L so that we can solve it for
∆L = ∆L (α). Thus instead of finding α = α(L) (which cannot be given in an explicit
form) we obtain explicitly its inverse:

∆L (α)

R
=

(2− c) G (α) + cH (α)

1− c

+χ

√
[(2− c) G (α) + cH (α)]2 − 4(1− c)G2 (α)

1− c
(3.47)

with the abbreviations

G (α) = tan α− a

H (α) = α tan2 (α)

In Eq. 3.47 the introduced dimensionless constant is c = (1 + 2R2εads/A)
−1

(0 < c <
1, and c = 0.69 here) and χ is the sign accounting for different branches of the α
parametrized solution

χ =

{ −1 for 0 ≤ α ≤ π/2
±1 for π/2 ≤ α ≤ αmax (c)

(3.48)

Note that for α ≤ π/2 there is only one branch but for α > π/2 we have two branches10

(±1) for ∆L (α). The maximal opening angle αmax (c) is obtained by setting the dis-
criminant (expression below the square root) in Eq. 3.47 equal to 0.

10The latter means that for π/2 ≤ α ≤ αmax there are two different excess loop lengths leading
to the same (equilibrium) angle α ,i.e., with increasing ∆L the nucleosome angle α opens but after
passing some critical point on the ∆L axis, it starts closing again.
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Figure 3.18: The out of plane deflection of the incoming/outgoing DNA due to excluded
volume in the top projection (left) and seen from the side (right). In the latter case
(for the sake of visual clarity) the two rods are depicted in a single plane, i.e., rotated
around their contact point (grey dot).

From Eq. 3.47 together with Eq. 3.45 we obtain an explicit parametric representation of
the minimal energy curve for simple loops. A comparison of the approximate minimal
energies (Eq. 3.47 and Eq. 3.45) with the exact minimal energy (cf. also Fig. 3.5
for ∆L . 60nm) is shown in Fig. 3.17. We find that the quantitative agreement is
quite satisfactory taking the simplicity of our ansatz into account. We note here that
analogous computations as we have shown for simple loops can be performed for crossed
loops as well.

For ∆L → 0 we find after an appropriate expansion of Usimp around α = 0 that the

ground state energy scales as Usimp ∼ (∆L/R)1/3 in agreement with Ref. [69]. Further
we obtain the excess length at which the loop ground state energy is maximal by setting
∂Usimp (α) /∂α|α=π/2 = 0. From this follows the critical length ∆Lcrit as discussed in
the main text (cf. Eq. 3.24). This simple approximate expression for ∆Lcrit agrees
within 2-15% with the exact numerical result for a wide range of adsorption energies
with deviations becoming larger for adsorption energies above εads = 2.0 kBT/nm
(data not shown).

3) The overcrossing potential for crossed loops (Fig. 3.18): The outgoing DNA path
is perturbed out of the plane due to the interaction with the ingoing DNA (and vice
versa in a symmetrical manner). Because of that our simple planar and phantom
model (no self interaction) needs modifications. Instead of solving this (nonplanar)
problem within the general theory of self-interacting deformed rods as in Ref. [86]
(which is a feasible but rather technical numerical task) we can treat the out-of-plane
deformation perturbationally. The first assumption we make here is that the overall
shape of the crossed loop does not deviate much from a planar configuration though
the orientation of its (effective) plane might be slightly deflected from the nucleosomal
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plane. Consequently the small perturbation out of the plane and the deformation in
plane essentially decouple into a sum of two energy contributions as in Eq.3.46. Again
by simple geometry (cf. Fig. 3.17), the second (out of the plane) term in 3.46 can in
first approximation be written as

Udef (α) =





2A
d arctan

(
2dx(α)

x2(α)−d2

)

x2 (α)− d2
for x (α) > d

∞ otherwise

(3.49)

where d ≈ 1nm is the thickness of DNA and x (α) := R tan α the length of the
crossed segment. In our simple approximation the self-interaction energy diverges for
x −→ d + 0 as π

2
A(x − d)−1 (extreme deformation) and approaches zero for x −→ ∞

as 4Ad2x−3 (weak deformation).
We finally note that besides the above given examples it is possible to apply the circle-
line approximation to several other standard problems of rod theory like the first and
especially the higher order Euler buckling instabilities to obtain qualitatively the known
results from buckling theory with very little effort. Thus the circle-line approximation
when applied appropriately turns out to be very useful and generally allows computa-
tionally inexpensive qualitative and quantitative insights into the behavior of deformed
rods.



Chapter 4

Kinetic Behavior of DNA Spools
under Tension

Wrapped DNA-protein complexes are ubiquitous in nature [122] and play key roles
in many fundamental life processes. Prominent examples of DNA wrapping proteins
are: the Lac1 repressor [123] participating in the bacterial gene regulation, the DNA-
gyrase [124] directing changes in DNA topology, RNA polymerase [125] copying DNA
to RNA, and of course the histone octamer [126]. Besides the natural wrapped archi-
tectures there are attempts to design nanoparticles imitating that motive [127] as a
means to efficiently pack and transport DNA into cells. In most of these ligand-DNA
complexes the geometry and chemistry of the ligand surface enforces the DNA to follow
a superhelical wrapping path with one or more tight turns. Remarkably, upon addition
of multivalent condensing agents (like in sperm cells) or under high crowding conditions
(like in virus capsids or during ψ-condensation) DNA also shows an intrinsic ability to
self-organize into large toroidal spools [144].

In the past decade single molecule experiments have become available allowing to apply
tension to individual polymers in order to probe their mechanical properties [129] as
well as their interaction with ligands [130, 131, 132] and molecular motors [133]. Static
and dynamic force spectroscopy [134, 135] developed into a powerful tool for measuring
equilibrium as well as kinetic characteristics of single molecules, going far beyond the
information accessible by classical bulk experiments. Application of these methods
to DNA-spool geometries has been awaited for long and was reported only recently
for single nucleosomes [136] and single DNA toroidal condensates [131, 132]. These
experiments – at first glance completely unrelated – reside on different length and
energy scales and ground on different mechanisms of wrapping. Despite that, they
both reveal the same surprising result apparently contradicting all the available bulk
data: the unfolding of wrapped DNA from the spools is a catastrophic event, i.e., it is
sudden and quantized and happens one DNA turn at a time. The aim of this chapter
is to theoretically explain this unusual non-equilibrium effect and to demonstrate the
universality behind it. Our theory is then applied to nucleosomes and DNA toroids
allowing to extract from experiments the relevant energetic parameters and to resolve
apparent ”oddities” in the dynamics of these systems.

113



114 CHAPTER 4. KINETIC BEHAVIOR OF DNA SPOOLS UNDER TENSION

4.1 The Model

In this section we introduce the geometry and energetics of a DNA spool under ten-
sion, cf. Fig. 4.1. We again model the DNA as a Ẅorm-Like Chain(̈WLC) as in all
previous chapters. The WLC can be considered a a semi-flexible tube characterized
by two moduli, the bending and the torsional stiffnesses. The torsional stiffness will
be neglected in the following since we consider the case of freely rotationg ends as in
the experiments [136, 131, 132] to which we will compare our model in the following
sections. Then the elastic energy of a WLC of length L and curvature κ (cf. Eq. 2.1)
writes

Ebend =
A

2

∫ L

0

dsκ2 (s) (4.1)

The DNA is assumed to be adsorbed on the protein spool surface along a predefined
helical path with radius R and pitch height H. This path accounts for the typical
chemical structure of such a protein spool surface (e.g. distribution of charges, hydrogen
donors/acceptors etc.). The DNA is adsorbed with a net adsorption energy density
εads given by the difference of the total DNA-protein binding energy and the stored
DNA bending energy per length along the helical path.
The degree of DNA adsorption is described by the desorption angle α which is defined
to be zero for one full turn wrapped (cf. Fig. 4.1). After short inspection it becomes
clear that the unwrapping problem is non-planar and that the spool needs to rotate
transiently out of the plane while performing a full turn – an effect already pointed out
by Cui and Bustamante [137]. Therefore a second angle, β, is introduced to describe
the out-of-plane tilting of the spool. When a tension F (along the Y –axis here) acts
on the two outgoing DNA ”arms” the system (i.e., the wrapped spool together with
the free DNA ends) will simultaneously respond with (i) DNA deformation, with (ii)
spool tilting and with (iii) DNA desorption from the spool.
The total energy of the system as a function of α and β has three contributions:

Etot = 2Rεadsα + 2Ebend − 2F∆y (4.2)

The first term in Eq. 4.2 is the adsorption energy, the second the bending deformation
energy of the two free DNA portions, and the third term describes the gain in potential
energy by pulling out the DNA ends, each by a distance ∆y.
In order to proceed further we need to find the optimal shape of the DNA arms. We
will not account for entropic shape fluctuations that decouple from the deformation
state in our case (large forces F) as shown in chapter 2. For given boundary conditions
(i.e. given values of the angles α and β) it is possible to find the optimal shape that
minimizes the bending energy, Eq. 4.1, by applying the Kirchhoff analogy (introduced
in the chapter 2) which relates stationary points of that WLC energy, to the well-
studied classical mechanics problem of the trajectory of a symmetric spinning top in a
gravity field [6]. For the twistless case under consideration this analogy reduces to that
between planar untwisted rods, the Euler elastica, and the plane pendulum. One of
the boundary conditions is that the DNA arms should be asymptotically straight. This
leads us directly to the conformation that corresponds to the homoclinic orbit within
the pendulum analogy ([6], cf. chapter 2). The natural parametric representation of a
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Figure 4.1: A) An unfolding DNA-protein spool under tension is characterized by two
angles: the desorption angle α and the tilt angle β. B) The energy landscape of a DNA-
spool (as given by Eq. 4.18 for A = 50nm, F = 4pN, εads = 0.7kBT/nm, R = 4.2nm,
H = 2.5nm) and its unfolding pathway.
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DNA arm within its plane (the x − y-plane which is in general tilted with respect to
the X, Y , Z coordinates shown in Fig.4.1) is then given by

y (s) = s− 2λ tanh (s/λ) (4.3)

x (s)− x (s0) =
2λ

cosh (s/λ)

leading to the local curvature

κ (s) =
1

λ

2

cosh (s/λ)
(4.4)

Here again (as in chapter 2) we introduce the tension length λ =
√

A/F . Note that the
upper expressions describe nothing else but the homoclinic loop solution described in
chapter 2 in depth 1. The equations Eq. 4.3 and Eq. 4.3 are respectively the real-space
(integrated tangent) coordinates and the curvature resulting from Eq. 2.27.
The bending energy of one arm is then given by

Ebend =
A

2

∫ ∞

s0

κ2 (s) ds =
2A

λ
(1− tanh (s0/λ)) (4.5)

The important offset parameter s0 is related to the angle θ, the angle between the Y -axis
and the tangent of the DNA at the point where it leaves the nucleosome. This angle is a
function of α and β (see below). The boundary condition (x′ (s0) , y′ (s0)) = (sin θ, cos θ)
leads to the following relation between s0 and θ:

tanh
s0

λ
= cos

θ

2
(4.6)

for θ < π. This allows to rewrite the bending energy as

Ebend (θ) =
2A

λ

(
1− cos

θ

2

)
= 2

√
AF

(
1− cos

θ

2

)
(4.7)

In the non-planar case we have a tilting of the spool normal n with respect to z-axis by
an angle β as depicted in Fig. 4.1. Due to the symmetry in the problem the nucleosome
dyad axis of the spool always coincides with the x-axis. Consequently n is always in
the Z − Y -plane. The helical wrapping path of DNA on the spool and its tangent for
an untilted geometry, β = 0, is as follows:

h (t) =




R cos t
R sin t

H
2π

(π − t)


 and h

′
0 (t) =

1√
R2 +

(
H
2π

)2



−R sin t
R cos t
− H

4π


 (4.8)

with α < t < 2π−α. To obtain the path for a non-vanishing value of β one has to tilt
the spool by applying a rotation using the rotation matrix

1Note that the roles of the x and y axes are interchanged here with respect to the notation in
chapter 2
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R (β) =




1 0 0
0 cos β − sin β
0 sin β cos β


 (4.9)

This leads to the following helical path

h (t, β) = R (β) h (t) =




R cos t
R cos β sin t− H

2π
(π − t) sin β

R sin β sin t + H
2π

(π − t) cos β


 (4.10)

and its tangent

h
′
0 (t, β) =

R (β) h
′
(t)∥∥R (β) h
′
(t)

∥∥ =
1

R




−R sin t
R cos β cos t + H

2π
sin β

R sin β cos t− H
2π

cos β


 (4.11)

where R =
√

R2 +
(

H
2π

)2
.

We have now the helical wrapping path of the tilted spool in the X−Y −Z coordinates,
Eq. 4.10, and the shape of the DNA arms, Eq. 4.3, in its natural representation. In the
following we have to ”glue” the two DNA arms to the ends of the wrapped portions, i.e.
at t = α and t = 2π − α. This procedure has to fulfill the following three conditions:

1. The free arm attached at t = α is in the plane spanned by the helix tangent
h
′
0 (α, β) (which coincides with the tangent vector of the arm at s = s0) and the

unit vector in Y -direction, ey. The angle θ from above is then given by

cos θ = h
′
0 (α, β) · ey =

R

R
cos β cos a +

H

2πR
sin β (4.12)

2. The offset of the rod at t = α is given by h (α, β), i.e., the rod conformation can
be written as

r (s) = h (α, β) +

(
2λ

cosh (s/λ)
− 2λ

cosh (s0/λ)

)
h
′
⊥ (α, β) (4.13)

− ((s− s0)− 2λ (tanh (s/λ)− tanh (s0/λ))) ey

with h
′
⊥ (α, β) denoting the normalized orthogonal component of h

′
0 (α, β) with

respect to ey. The other side of the DNA rod (starting at t = 2π − α) is given
by the upper solution reflected at the X-axis.

3. The torque must vanish for s → ∞ on both sides. Therefore the Z-component
of r (s) must vanish in that limit, i.e.

ez · r (∞) = ez ·
[
h (α, β)−

(
2λ

cosh (s0/λ)

)
h
′
⊥ (α, β)

]
= 0 (4.14)

Using Eqs. 4.6, 4.12 and 4.13 this condition leads to relation between the applied
tension F and the angles α and β



118 CHAPTER 4. KINETIC BEHAVIOR OF DNA SPOOLS UNDER TENSION

√
2λ

R

√√√√ 1− (
R
R

cos β cos α + H
2πR

sin β
)

sin2 α +
(
sin β cos α− H

2πR
cos β

)2

(
sin β cos α− H

2πR
cos β

)

= sin β sin α +
H

2πR
(π − α) cos β (4.15)

If the wrapped portion would be fixed, i.e. for a given value of α, then Eq. 4.15 is an
implicit equation giving the spool tilting angle β as a function of F .
From Eqs. 4.7 and 4.12 we obtain the bending energy as a function of α and β:

Ebend (α, β) = 2
√

AF


1−

√
1 +

(
R
R

cos β cos α + H
2πR

sin β
)

2


 (4.16)

Using the explicit shape of the DNA arms, Eq. 4.13, we are able to calculate the
pullout length ∆y which is the last term missing in Eq. 4.2. We obtain

∆y = Rα− h (α, β) · ey + 2λ

(
cos

θ (α, β)

2
− 1

)
(4.17)

Here the first term is the amount of DNA released by unpeeling of a DNA arm, the
second accounts for the Y -position of the point where the DNA leaves the spool and,
finally, the third term describes the wasted length by bending of the free DNA. That
term is zero for vanishing chain stiffness, A = 0, when the conformation of the DNA
arm is straight and points parallel to the Y -axis.
We are now in the position to present the total energy, Eq. 4.2. From Eqs. 4.16 and
4.17 follows

Etot (α, β) = 2Rεadsα + 2FR

(
cos β sin α− H

2πR
(π − α) sin β − α

)
(4.18)

+8
√

AF

(
1−

√(
1 +

R

R
cos β cos α +

H

2πR
sin β

)
/2

)

This is the central formula derived here. The first term in Eq. 4.18 describes the
cost of desorption due to unpeeling of the wrapped chain portion. The second term
describes the gain/loss of potential energy by spool opening (change of α) and rotation
(change of β). Finally, the last and most remarkable term accounts for the stiffness of
the non-adsorbed DNA portions. Two effects contribute equally to this term: (i) the
bending energy of the deformed DNA arms, Eq. 4.16, and (ii) the loss of potential
energy by ”wasting” length due to DNA deformation, third term of Eq. 4.17. Eq.
4.18 gives the total energy of the spool under a given tension F as a function of α and
β. In general this does not lead to torque-free geometries that fullfill constraint 4.14.
However, it can be shown that this constraint leads to the energy minimizing value of
the tilting angle β for given values of α and F , i.e. ∂Etot (α, β) /∂β = 0.
To understand the implications of Eq. 4.18 on the kinetics of unwrapping we consider
two limiting cases. First let us look at the case of a large thin spool, i.e., R À A/kBT



4.2. APPLICATIONS 119

(or, equivalently, an infinitely flexible polymer) and R À H, where we may neglect all
the contributions that stem from bending of the two arms. Then Eq. 4.18 simplifies to

Etot (α, β) = 2Rεadsα + 2FR cos β sin α (4.19)

For F > εads the spool moves from the (thermodynamically) metastable state M1 with
α = α0 = − arccos (1− εads/F ) and β = 0 via a saddle point S at α = 0 and β = −α0

into a more favorable minimum M2 at α = π+α0 and β = π. Remarkably S constitutes
a significant energetic barrier between M1 and M2, namely

∆Etot = 2FR (α0 cos α0 − sin α0) (4.20)

This barrier has a tremendous effect on the unwrapping kinetics: For reasonable pa-
rameter values, say R = 50nm, εads = 1kBT/nm and F = 2εads, one finds a huge
barrier of ∆Etot ≈ 70kBT .
A second interesting limit of Eq. 4.18 is given by a flat spool and high polymer stiffness,
i.e., A À RkBT and R À H. For not too large forces (F . A/R2) and εads . F
the kinetic behavior is roughly dominated by the term Estiff . In this case we find a
transition path from (α, β) = (0, 0) over the saddle point (π/2, π/2) to the state (π, π)
with a barrier height

∆Etot = 8
√

AF
(
1− 1/

√
2
)

(4.21)

Note that in this limit the DNA actively participates in the suppression of unwrapping
(∆Etot ∼ A1/2F 1/2) which can even give rise to negative resistance effects [139] for
small forces. In Appendix A we present a simpler geometry where the cylindrical spool
is replaced by a short rod. In that case the effect of DNA stiffness can be understood
more clearly.
In preliminary conclusion, in both limiting cases the unwrapping meets significant
kinetic barriers but for different reasons: because of unfavorable projection of the force
in terms of the (α, β) configurational space in the first limit and due to significant
transient bending of the DNA arms during the transition in the second limit. For
realistic DNA-spools we are somewhere in between these two cases.

4.2 Applications

4.2.1 Nucleosomes under Tension

The most abundant DNA spool in nature is the nucleosome. The question about the
equilibrium and kinetic stability of nucleosomes is one of the important experimentally
unsettled questions in present molecular biology. How can nucleosomes be highly sta-
ble with its wrapped DNA being highly accessible at the same time [140]? A recently
performed experiment [136] (cf. Fig. 4.2) measuring the critical force required to un-
wrap single nucleosomes reveals an interesting and unexpected behavior2. When small

2The experiments were performed on DNA chains with up to 17 nucleosomes complexed at well-
defined positions. In the force range of interest their coupling can be safely neglected since the inter-
nucleosomal distance d ∼ 40nm exceeds the DNA-linker induced interaction length ∼ λ = (A/F )1/2.
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Figure 4.2: Unwrapping nucleosoms: A) The schematic experimental setup: In the
actual experiment 17 nucleosoms were bound to the DNA. B) A typical experimen-
tal force-extension curve: the end-to-end distance is increased at constant speed (20
nm/s) and force is measured. The 17 peaks correspond exactly to the 17 nucleosomes
placed on the DNA sample. The dashed curve corresponds to the same DNA without
nucleosomes. Picture adapted from Brower-Toland et. al. [136].

forces (F < 10pN) are applied for short times (∼ 1 − 10 s) the nucleosome unwraps
only partially by releasing the outer 60-70 bp of wrapped DNA (moving from state a
to b in Fig. 4.1) in a gradual and equilibrium fashion. For higher forces (F ' 20pN)
nucleosomes show a pronounced sudden non-equilibrium release behavior of the re-
maining 80 bp (cf. c-g in Fig. 4.1B) – the latter force being much larger than expected
from equilibrium arguments [141]. In fact, experiments [140] measuring spontaneous
partial unwrapping of nucleosomal DNA suggest 30kBT per 147bp leading to an un-
peeling force of ∼ 2.5pN . To explain this peculiar finding Brower-Toland et al. [136]
conjectured that there must be a barrier in the adsorption energy located after the first
70-80 bp which reflects some biochemical specificity of the nucleosome structure at that
position. Their analysis of the dynamical force spectroscopy measurements revealed
an apparent barrier of ∼ 38kBT smeared out over not more than 10 bp. However,
there is no experimental indication of such a huge specific barrier – neither from the
crystal structure [126] nor from the equilibrium accessibility to nucleosomal DNA [140].
Consequently the question arises if the barrier is really caused by biochemistry of the
nucleosome or, as we show below, by its underlying geometry and physics.

To see that the effect is mainly physical we apply Eq. 4.18 to compute the barrier. For
this purpose we model the nucleosomal adsorption energy density as

εads (α) = ε0
ads + H (α) εes

where ε0
ads ≈ 0.7kBT/nm is taken from the reversible part (for the first 60-70bp) of

the measurement in Ref. [136]. The introduction of the step function (H = 0 for
α < 0 and H = 1 for α ≥ 0) together with a new parameter εes, the electrostatic
interaction energy density, accounts for the DNA-DNA repulsion of the two adjacent
helical gyres which acts only for α < 0 reducing the net εads. Using ε0

ads from above
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Figure 4.3: Kinetic barriers opposing DNA-spool unfolding as function of applied ten-
sion computed for: A) The nucleosome (R = 4.2nm, H = 2.4nm, ε0

ads = 0.7kBT/nm,
A = 50kBTnm,cf. text) for various interstrand repulsion energy densities εes and B)
the DNA toroid (R = 50nm, H = 2.4nm, A = 40kBTnm) for various adsorption
energy densities εads.

we can compute the barrier height for nucleosome unfolding for various values of εes as
done in Fig. 4.3A. To relate the barrier heights from Fig. 4.3A to the dynamical force
spectroscopy (DFS) measurements in Ref. [136] we generalize the classical relation
between the loading rate rF and the most probable rupture force F ∗ [134, 135] to the
case of nonlinear force-barrier dependence and obtain (cf. Appendix)

ln (rF /r0) = ln [−νattkBT/ (r0∆E ′)]−∆E/kBT (4.22)

Here rF and ∆E are functions of F ∗ and ∆E ′ = ∂ (∆E) /∂F ∗. r0 = 1pNs−1 is
an arbitrary scale on the rF axis and νatt is the typical attempt frequency of the
nucleosome. Assuming νatt in the range 105 to 108s−1 we can fit the experimental
data from [136] to obtain the corresponding values of εes, cf. Fig. 4.4. The attempt
frequency νatt is dominated by the slowest process involved in the unfolding event. The
rotational attempt frequency of a nucleosome-sized sphere is of the order 2 kBT

8πR3ηs
≈

105 − 106s−1 with ηs being the water viscosity (a centipoise). The typical frequency
that characterizes the relaxation of the DNA arms is comparable to that – even if one
accounts for additional complexed nuclesomes as it is the case in the experiment [136].
There the first unfolding nucleosome is surrounded by 16 other nucleosomes that have
to move via a distance ∆s ≈ 25nm (unfolding length) under a force of F ≈ 10− 20pN
leading to an lower bound 105 − 106s−1 of that frequency. Hence we estimate νatt /
106s−1. The latter implies εes ≈ 1.4− 1.7kBT/nm. So indeed, at the line α = 0 there
is clear jump in adsorption energy density as we would naively expect from repulsive
DNA-DNA electrostatics under these conditions3. This explains why under equilibrium
conditions (at F = 0) the DNA deeply inside the nucleosomes (almost the whole bound

3Note that the latter alone would not explain the sudden catastrophic behavior and the slow
kinetics of unfolding if the effects described by Eq. 4.18 were not included explicitly.
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Figure 4.4: Optimal fits of the DFS data from Ref. [136] for various attempt frequencies
give the corresponding electrostatic DNA-DNA-repulsion εes.

Figure 4.5: The reason for the nucleosome being highly stable yet highly accessible: One
sided DNA unpeeling is assisted by repulsive DNA-DNA interaction, leading to high
DNA accessibility on both sides. Further opening beyond that point (e.g. simultaneous
opening) becomes energetically much more costly, leading to high nucleosome stability.
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Figure 4.6: Typical force-extension behavior of spermidine condensed DNA from
Ref. [132]. The typical distance between peaks is a multiple of 300 nm indicating
a regular toroidal organization of the condensate.

DNA!) can be rather easily accessed by proteins [140] but the nucleosome is still highly
stable: The line α = 0 can be moved to each position inside the nucleosome if the
left and right DNA arms are adsorbed/desorbed in a consistent manner, cf. Fig. 4.5.
Beyond that (α > 0) the assisting electrostatics switches off and the nucleosome is
suddenly strongly stabilized (by 60− 70kBT in total!).

4.2.2 DNA Toroids under Tension

When long DNA molecules condensed with multivalent counterions were stretched in a
single molecule experiment [131] Baumann et al. found a surprising behavior. When a
critical force (typically F ≈ 4−12pN) is reached large portions of DNA are released in
packets in a discontinuous manner (”stick release pattern”). When the same experiment
was redone recently by another group [132] a pronounced quantization in the DNA
release length of ≈ 300nm was clearly demonstrated. It was noted in Refs. [131,
132] that the latter correlates exactly with the typical size (R ≈ 50nm) of toroidal
condensates formed in solution and led those authors to the conclusion that a single
turn of DNA unwraps from the toroid spool at a time. Despite that interesting finding
the mechanism behind this non-equilibrium effect remained unexplained. However in
the light of our theory the explanation might be again straightforward as a DNA-toroid
exhibits a spool geometry with R ≈ 50nm and H ¿ R. The ”first limit” in Eq. 4.20
considered above gives here a good approximation. The barrier heights for different
values of εads as a function of force are computed in Fig. 4.3B. Similar as in the case
of the nucleosome the attempt frequency νatt is dominated by the rotational friction –
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here of the 50nm sized toroid object – leading to νatt ≈ 3 × (102 − 103) s−1. For high
concentrations of the condensing agent spermidine one finds εads ≈ 0.2 − 0.3kBT/nm
(cf. [131, 132] and the references therein). In case of equilibrium this means a very small
peeling-off force of F ≈ 1− 1.5pN . Our model together with Fig. 4.3 allows us now to
predict the activated non-equilibrium behavior to have very low unfolding frequencies
νunf = vatt exp (−∆E (F ) /kBT ), for instance 10−6 to 10−2s−1 for F = 2pN , 10−3 to
1s−1 for F = 4pN and 0.3 to 50 s−1 for F = 8pN 4 – consistent with experimental
findings [131, 132].

4.3 Conclusion

We have shown that DNA-spools ranging from protein-DNA complexes to DNA toroids
share a universal feature inherited by their geometry: They are strongly kinetically pro-
tected from mechanical disruption upon applied tension. In the case of chromatin fibers
consisting of large arrays of nucleosomes and other DNA spooling proteins this effect
provides a great biological advantage. Strong molecular motors like RNA polymerase
and helicase or microtubuli during cell division are known to act on the fiber with
significant transient tensions of the order of 20pN or even more. While a hypothetical
”fiber A” consisting of DNA and non-spooling proteins (say only DNA bending pro-
teins) would immediately lose most of its protein content a ”fiber B” constituted of
DNA-spools would survive long time periods (up to 106− 108 times longer than ”fiber
A”). We can speculate that this obvious advantage was not overlooked by nature and
has flown into the chromatin fiber design and the nucleosome-spool shape. The remark-
able universality of the ”kinetic protection” also shows up in the case of DNA-toroids
which are roughly ∼ 10 times larger while the DNA is ∼ 10 times weaker adsorbed
than for typical DNA-protein spools. While the biological implications of this finding
still have to be fully figured out it seems that this might play a role in the injection
/ ejection process of DNA from viral capsids inducing similar quantization effects as
found here. Looking at the wealth of peculiar effects revealed by the single molecule
experiments [131, 132] we feel that the present understanding of DNA condensation
kinetics is still incomplete, yet one partial mystery seems resolved.

4.4 Appendix

4.4.1 Simplified geometry

We discuss here a related yet much simpler system where the subtle interplay of bending
and potential energy shows up more transparently and causes an elastic instability.
Consider the two DNA arms attached to a stiff rod of length L as depicted in Fig.
4.7. Each arm is attached to one arm at an end of the rod with the constraint that
the tangent of the rod and the attached DNA are always parallel. This leads to the
condition

4The upper/lower estimate correspond to εads = 0.2 / 0.3kBT/nm; note the strong dependence of
νunf on εads.
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Figure 4.7: Two semiflexible rods are glued tangentially onto a short stiff rod (in red)
of length L. For small forces the straight configuration β = 0 is stable. After crossing
a critical force Fcrit the system goes through a bifurcation and configuration starts to
tilt developing a nonzero angle β.

tanh
s0

λ
= cos

β

2
(4.23)

This relation corresponds to Eq. 4.6 in the spool case. Eq. 4.23 can be rewritten as
follow cosh−2 (s0/λ) = sin2 (β/2). Again we require vanishing torque on the structure
leading to the condition

1

cosh2 (s0/λ)
=

(
L

4λ

)2

sin2 β (4.24)

Combining Eqs. 4.23 and 4.24 we arrive at the equilibrium condition

(1− cos β)

(
2

(
L

4λ

)2

(1 + cos β)− 1

)
= 0 (4.25)

There are three solutions to Eq. 4.25: β = 0, β = π and

cos β =
8A

FL2
− 1 (4.26)

For small tensions Eq. 4.26 has no solution and the rod remains untilted, β = 0 even
though a tension is applied. When a critical force

Fcrit = 4A/L2 (4.27)

is reached the rod begins to rotate in either direction with β given by Eq. 4.26.
This indicates that there is an instability which can also be seen by inspecting the
energy of the system. It has two contributions: Etot = 2Ebend − 2F∆y. Ebend is again
the bending energy per DNA arm, Eq. 4.7 with θ = β. The length ∆y in second term,
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the potential energy, is the sum of two effects: the gain by rod rotation and the cost
by ”wasting” length due to chain bending

∆y = L (1− cos β) + 4λ

(
cos

β

2
− 1

)
(4.28)

The total energy writes then

Etot = 8
√

AF

(
1− cos

β

2

)
− FL (1− cos β) (4.29)

The pitchfork bifurcation at Fcrit can indeed be recovered for the small β-expansion of
Eq. 4.29:

Etot (β)
β→0→

(√
AF − 1

2
FL

)
β2 +

1

48

(
2FL−

√
AF

)
β4 (4.30)

Let us study how this tilting instability is affected by a finite height H between the
two DNA strands (i.e. we assign a thickness to the stiff red segment). For that case
the total energy can be calculated in a similar fashion as Eq. 4.29

Etot = 8
√

AF

(
1− cos

β

2

)
− FL (1− cos β)− FH sin β (4.31)

For small deformations β << 1 we find

Etot (β) ≈ (−FH) β +

(√
AF − 1

2
FL

)
β2 +

1

6
FHβ3 +

1

48

(
2FL−

√
AF

)
β4 (4.32)

For H << L we can use Eq. 4.32 to investigate what happend to the pitchfork
bifurcation in the case of finite H. In fact, for small values of F we have only one

minimum at β ≈ FH/
(
2
√

AF − FL
)
. At Fcrit ≈ 4AL2/ (L2 + 2H2/3)

2
we encounter

a saddle point bifurcation with the middle branch (closest to the β ≈ 0 line) being
unstable, the other two (the upper and the lowest) stable.

4.4.2 Dynamical Force Spectroscopy

We give here a short discussion of dynamical force spectroscopy [134, 135]. This method
allows to estimate the barrier which has be overcome during the unbinding of non-
covalent bonds under the application of an external force. In the present study the
bound state corresponds to that of a wrapped spool with N turns, the unbound state
to that of a spool with one turn less. The rupture rate of the bound state under a
force F with the barrier height Eb and its distance (along the force direction) from the
bound state xb is given by the Kramers rate

νfail (F ) ≈ ν0 (F ) e−(Eb−Fxb(F ))/kBT (4.33)

If we assume a very steep potential, the force F changes neither the attempt frequency
ν0 nor the position of the maximum xb. In that case we may write ν0 (F ) ≈ ν0 (0) = ν0

and xb (F ) ≈ xb (0) = xb and
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Figure 4.8: The principle of a dynamical force spectroscopy (DFS) measurement: The
barrier hight (at a distance xb from the bound state) and the Kramers’ escape rate is
modulated by an applied force F. By applying a time varying force the hight and the
distance xb of the barrier can be recovered from the typical unbinding times/forces.
Picture adopted from [136]

νfail (F ) ≈ ν0e
−(Eb−Fxb)/kBT (4.34)

Assume that the force varies with time F = F (t). The probability for bond failure in
a small time interval [t, t + dt] is then given by

wfail (t) dt = νfail (F (t)) Psurv (t) dt (4.35)

with

Psurv (t) = exp

(
−

∫ t

0

νfail (F (t′)) dt′
)

(4.36)

The first factor in Eq. 4.35 is the dissociation rate at time t that has to be multiplied
by the probability that the bond survives until the time t, i.e. by Psurv (t).
Now assume that the applied force increases linearly in time F (t) = rF t with a loading
rate rF . Then the typical quantity to determine is the maximum value of wfail (t) =
d
dt

(1− Psurv (t)) which gives the peak in the distribution of unbinding forces. This
leads to the condition

d2 exp (−νbρF (t))

dt2
= 0 (4.37)

with νb = ν0e
−βEb and ρF (t) =

∫ t

0
eβxbF (t′)dt′. This can be rewritten as follows

ρ′′F (t)

ρ′2F (t)
= νb (4.38)
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In the case of a linear force ramp ρF (t) can be computed ρF (t) =
∫ t

0
exp (βxbrF τ) dτ =

1
βxbrF

(
eβxbrF t − 1

)
(β = 1/kBT ). From Eq. 4.38 (and using F = rF t) follows then the

peak in the rupture force distribution:

F ∗ =
1

βxb

ln
βxbrF

ν0

+
Eb

xb

(4.39)

The latter is the known Evans-Ritchie result used in virtually all DFS experiments. It
is usually rewritten as

F ∗ (rF ) =
1

βxb

ln
rF

r0

+
1

βxb

ln
r0βxb

ν0

+
Eb

xb

(4.40)

with r0 = 1 p N / s being some arbitrary loading scale. Note that only the first term in
Eq. 4.40 depends on the loading rate rF whereas the other terms are constant.
Having measured F ∗ (rF ) over a range of loading rates, the recipe for computation
of xb and Eb is obvious: (1) Obtain xb from the slope and (2) compute Eb from the
offset constant. For step 3 molecular attempt frequency ν0 (usually ∼ 109 − 1010 s−1)
is needed that cannot be obtained from F ∗ (rF ).
When comparing our theoretical results to the experimental force spectroscopy plot
extracted from nucleosome unwrapping in Ref. [136] we will make use of a generalized
version of Eq. 4.40 that we derive in the following. This takes into account that
νfail (F ) shows in general a more complex dependence on F than assumed in Eq. 4.34.
In this case the condition for the peak F ∗ in the force distribution takes now the form
ν ′fail (rF tm) = ν2

fail (rF tm)

ν−2
fail (F

∗)
dνfail (F

∗)
dF

=
1

rF

(4.41)

For the special case νfail (F ) = ν0e
−(Eb−Fxb)/kBT we recover Eq. 4.39.

On the other hand, for some arbitrary dependence of the barrier height U on F the
failure rate is of the form νfail (F ) = ν0 exp (−U (F ) /kBT ). Using Eq. 4.41 leads to a
generalized relation between rF and F ∗:

ln
rF (F ∗)

r0

= ln

(
− ν0kBT

r0U ′ (F ∗)

)
− U (F ∗)

kBT
(4.42)

In this case the force spectroscopy plot F ∗ vs. ln rF in general does not lead to a linear
relation between these quantities. This can indeed be seen in Fig. 4.4 where we fit the
experimental plot with nonlinear curves F ∗ (rF ).



Chapter 5

The Internal Structure of Toroidal
DNA Condensates

5.1 The Experimental Facts

Single polymers collapse from a random coil conformation to a dense state once the
solvent gets sufficiently poor [142]. For a flexible chain the condition of minimal surface
energy yields an approximately spherical globule, but for semiflexible polymers the
situation is more complex [143]: The local structure of the dense phase then consists
of essentially straight chains with a basically parallel alignment, in order to minimize
bending energy and maximize density, respectively. Such a state can be characterized
by a smooth field of tangent vectors, but in the spherical case this field must have at
least two energetically unfavorable defects on the surface (one can’t comb a sphere).
However, for a torus many defect-free fields are possible. Indeed, DNA, the probably
best studied semiflexible polymer, readily forms beautiful nanotori after adding any one
of a variety of possible condensing agents (like polyethylenglycol (PEG), multivalent
counterions, or bundling proteins) to a dilute solution of DNA chains [144]. These tori
are surprisingly monodisperse, having a radius comparable to the persistence length of
DNA (`p ≈ 50 nm) basically independent of the condensation method [144].
Consider such a condensate, in which the chain is wound up like a garden hose to form a
torus with axial and tubular radii r1 and r2, respectively. Since r1 is the average radius
of curvature of the chain, a simple scaling analysis balancing a bending energy A/r2

1

per unit length of polymer, where A = kBT `p is the bending modulus of a semiflexible
chain, and a surface energy σ per unit area of the torus yields [143] r1 ∼ (σ/A)−2/5V 1/5

and r2 ∼ (σ/A)1/5V 2/5, where the chain volume V ∼ r1r
2
2 as well as the packing density

are assumed constant. Hence, the aspect ratio ξ = r1/r2 ∼ (σ/A)−3/5V −1/5 shrinks if
σ or V increase (i. e., if the solvent gets poorer or the chain longer), and thus the torus
“fattens”. In this case it is no longer justified to calculate the bending energy with some
average radius of curvature 〈ρ〉 = r1. In fact, since 〈ρ−2〉 ≥ 〈ρ〉−2 (by virtue of Jensen’s
inequality [145]), the actual curvature energy should be larger. However, the same
argument indicates that the condensate can lower its bending energy by redistributing
curvature more evenly. In this chapter we demonstrate that indeed below a critical
aspect ratio ξc (or above a critical surface tension σc) the system spontaneously relaxes

129
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Figure 5.1: Supercoiled toroids formed after DNA release from mutated page T4 heads.
Different toroids show either left- or right-handed supercoiling, indicating a sponta-
neous symmetry breaking mechanism. Pictures adopted from ref. [150]

bending energy by twisting the bundle of polymer strands. In other words, given that
the overall shape of the condensate is a torus, its internal structure still depends on
further elastic details. However, the underlying mechanism is very generic and thus
independent of specific microscopic details of the polymer under study.

Indirect indications of such a twisted state can be found in computer simulations [146].
Analyzing Cryo-EM experiments on DNA toroids [147] Hud et al. proposed a rosette-
like DNA winding (slowly precessing off-centered loops which yield a “spirograph”
motif) [148]. Furthermore, such a non-trivial local organization of DNA in toroids
suggests natural explanations for various remarkable large scale findings from in vivo
studies: Certain bacteriophages, whose DNA is (due to a genetic modification) no
longer end-attached to their nucleocapsid, display unusually strong knotting of the
genome [149]. DNA toroids released from giant T4 phages can undergo supercoiling
[150], cf. Fig. 5.1. And the chirality of the highly confined sperm-chromatin is sur-
prisingly pronounced, with a pitch 10 times shorter than in vitro [151]. These facts
make us wonder whether there is a connection to the topological ripening we will now
discuss.

5.2 Nematic Elastic Energy Functional

Let us begin our quantitative analysis of the situation by neglecting the connectivity
of the chain. More specifically, we will first formulate a local theory which is based
on the above mentioned nematic field n of unit tangent vectors [152]. The path of
the actual polymer will later be recovered as an integral curve of this flow field, and
its global topological properties can then be studied. The elastic energy e per unit
volume, describing the deviation from perfectly parallel alignment, is the Frank-Oseen
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free energy density of a uniaxial nematic liquid crystal [153]

e =
1

2
K1

[∇ · n]2
+

1

2
K2

[
n · (∇× n)

]2
+

1

2
K3

[
n× (∇× n)

]2
, (5.1)

where the three terms correspond to splay, twist, and bend deformations, respectively1.
Assuming the condensate to behave like an incompressible liquid (thereby accounting
for excluded volume effects in an effective way) the first term (splay) must vanish
identically in order to maintain a constant polymer density throughout the condensate2,
while the other two terms divide the elastic energy between themselves. The total
energy is of course the integral of Eqn. (5.1) over the torus volume.
It is convenient to treat this situation in suitable toroidal coordinates {r, ϑ, ϕ}, defined
by

x = (r1 − r cos ϑ) cos ϕ , y = (r1 − r cos ϑ) sin ϕ , z = r sin ϑ . (5.2)

The nematic field is now represented as n = nrer + nϑeϑ + nϕeϕ (where the ei =
∂ir/|∂ir| are the toroidal unit tangent vectors). When inserting this into Eqn. (5.1) and
integrating over the volume, we obtain the elastic energy as a functional of nr(r, ϑ, ϕ),
nϑ(r, ϑ, ϕ), and nϕ(r, ϑ, ϕ). At the surface of the torus the boundary condition nr(r =
r2) = 0 must hold, and owing to rotational symmetry we will henceforth make the
(nontrivial but very reasonable) assumption that none of the coordinate functions de-
pends on ϕ. These steps reduce the task of finding the optimal polymer winding to a
two-dimensional variational problem.

5.3 Numerical Minimization

Now that the mathematical problem is formulated, let us first have a look at the full
solution, which we obtained numerically via a conjugate gradient minimization [154].
The results confirm the suspicions made above: For large enough aspect ratio ξ =
r1/r2 the equilibrium nematic field is n = eϕ, corresponding to simple circumferential
winding of the polymer. But as the torus grows sufficiently fat, a continuous transition
occurs to a state in which (simultaneously throughout the entire torus) n acquires
components in eϑ- and er-direction, i. e., the polymer additionally winds around the
tubular circle, see Fig. 5.2. This winding relaxes bending energy, but only at the
expense of the additional twist, which is zero when n = eϕ. Consequently, this twist
instability occurs more readily if the ratio η = K2/K3 of twist and bend modulus
is small. All this is confirmed in Fig. 5.3, where we show the maximum twist angle
τ ≡ arccos(nϕ,min), which is a suitable order parameter, as a function of the aspect ratio
ξ of the torus. Note that the calculation is reliable down to the value ξ = 1, where
the hole in the torus degenerates to a point; here the only possible tangent vector is
eϑ and thus τ = π/2.

1Here we neglect the usually weak cholesteric interaction [151] stemming from DNA chirality.
2In infinitely long polymer liquid crystals without hairpins the splay strongly couples to density

variations [152]
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Figure 5.2: Illustration of the flow field on a toroidal condensate which features addi-
tional twist. The aspect ratio is ξ = 1.5.
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Figure 5.3: Twist order parameter τ ≡ arccos(nϕ,min) as a function of the aspect ratio
ξ = r1/r2. The curves correspond to different ratios of elastic moduli, η = K2/K3 ∈
{0.01, 0.05, 0.1, 0.2, 0.3, 0.4}, the gray arrow pointing toward increasing values. The
inset illustrates the toroidal coordinate system used in the text.
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5.4 Variational Ansatz

The mathematical task of functional minimization can often be accurately approxi-
mated by devising a variational ansatz which is analytically tractable. The follow-
ing choice turns out to be remarkably good: We will first assume that the nematic
field does not have a component in er-direction. The tangential boundary condi-
tion nr(r = r2) = 0 is then automatically taken care of. The remaining two com-
ponents must satisfy the normalization condition n2

ϑ + n2
ϕ = 1, and it thus suffices

to specify one of them, say nϑ. It is easy to check that any ansatz of the form
nϑ = f(r)/[1 − (r/r1) cos ϑ] with an arbitrary function f(r) yields a divergence-free
nematic field. We choose a linear f(r) = ωr/r2, i. e.

nϑ(r, ϑ; ω) = ω
r/r2

1− (r/r1) cos ϑ
, (5.3)

where ω, which we may call the “twisting strength”, is the only free parameter of the
ansatz. With this choice we go back into the Frank-Oseen free energy (5.1), calculate
the derivatives, and integrate over the volume of the torus. Since the sign of ω only
determines the handedness of the twisted structure, it cannot influence the free energy
E, which thus must be an even function of ω. An expansion in powers of ω2 then yields

E

K3 r2

= g0(ξ) + g2(ξ, η) ω2 + g4(ξ, η) ω4 +O(ω6) , (5.4)

where the expansion coefficients gi are functions of the system parameters3. In partic-
ular,

g0(ξ) = 2π2
(
ξ −

√
ξ2 − 1

)
ξ→∞−→ π2/ξ . (5.5)

This term contributes even if the twist ω vanishes. In fact, it coincides with the bending
energy of a chain of length L which has a curvature energy A/ρ2 per unit length (ρ being
the local radius of curvature), and which is wound without additional looping within
a torus of volume V —provided the (intuitively clear) relation K3V = AL holds. This
relates the nematic bending modulus K3 to the more usual polymer bending stiffness
A.
While g0 helped us to map our parameters, g2 will localize the phase transition. The
reason is that Eqn. (5.4) has the form of a Landau free energy as it occurs for phase
transitions with a scalar order parameter, ω, and it predicts a continuous transition
(which breaks chiral symmetry) at the point where the coefficient of the quadratic term
vanishes, i. e., g2(ξ, η) = 0. This results in the phase boundary

η =
1

2
+

ξ2 − 1

4 ξ2

[
1 + 6 ξ

(√
ξ2 − 1− ξ

)]
. (5.6)

This boundary is shown in Fig. 5.4, together with exact points originating from the
full functional minimization. It quantifies the conclusion that toroidal condensates will

3For the particular ansatz (5.3) the resulting coefficient g4 does in fact not depend on η; but
generally it does.
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Figure 5.4: Structural phase diagram of the toroidally wound complex on a log-log
scale. For small ξ = r1/r2 and η = K2/K3 the polymer is wound in a twisted way, for
large ξ and η it prefers to wind straight. The dots are results from the full numerical
minimization, the solid line is Eqn. (5.6), and the dashed line stems from the “improved
ansatz” (see text).

spontaneously twist if the aspect ratio ξ = r1/r2 is small (and the torus thus fat),
and if the ratio of elastic moduli η = K2/K3 is small, i. e. if twisting a bundle is easy
compared to bending it. For large ξ Eqn. (5.6) asymptotically behaves like η ∼ 5

16
ξ−2,

thereby explaining the exponent −2, which is also indicated in Fig. 5.4 and which
actually describes the whole phase boundary quite well. The agreement between the
simple one-parameter variational ansatz and the full calculation is remarkably good.
It can even be improved by including an additional prefactor 1 − r

r1
into Eqn. (5.3).

Particularly for small ξ this improved ansatz agrees better with the exact answer,
basically since the new prefactor cancels the unphysical divergence of the denominator
for r → r1 at ϑ = 0. The analytical expression for the phase boundary is quite involved
and will not be shown here, but it has the same large ξ asymptotics (see Fig. 5.4).

Both the ansatz as well as the full numerical solution point to an upper critical ratio of
elastic moduli, ηc, beyond which the system will no longer spontaneously twist. Even
at the lowest possible aspect ratio ξ = 1 the energetic cost for twisting has become so
large that it no longer admits a bending relaxation. The ansatz (5.3) gives ηc = 1

2
,

the improved ansatz gives ηc ≈ 0.829, while the full numerical solution suggests the
deceptively simple result ηc = 1. We have no analytical support for the latter, but we
also note that the limit ξ → 1 is somewhat academic, because our tacit assumption
that the condensate shape is strictly toroidal will most likely break down in this case
[155].

We have thus seen that the ratio η and the torus geometry ξ uniquely specify the twist-
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state of the condensate. However, while one can easily measure ξ in an experiment
(just by visual inspection), it is hard to specify in advance. In contrast to that, the
surface tension σ can be readily changed (for instance via the concentration of con-
densing agents), but its actual value is hard to measure. In our simple model it is of
course not difficult to add a tension term σ times the torus surface S to the condensate
energy. Using S ∝ ξ1/3V 2/3, one can re-express the twisting transition as being driven
by increasing σ, and it remains continuous. However, practical considerations suggest
that one tunes σ only for the purpose of modifying ξ, but subsequently use ξ as the
independent variable. This way one needs no longer (neither theoretically nor practi-
cally) worry about how a particular concentration of condensing agents gives rise to a
particular torus geometry.

5.5 Global Aspects

After these local considerations it is time to study global aspects of the polymer struc-
ture, i. e., consequences of the chain connectivity which we have neglected so far. Let
us start with the flow itself. It can be shown that incompressibility, ∇·n = 0, together
with axial symmetry causes the flow to be Hamiltonian—hence one more conservation
law exists4. In our case it forces the flow lines to stay on two-dimensional slightly
deformed toroidal surfaces, such that the total flow consists of a nested structure of
invariant tori. In fact, our ansatz (5.3) follows readily from the quadratic Hamiltonian
H = 1

2
ξωr2, which is constant on circular tubular layers. Of course, the actual polymer

has to switch between these layers, reminding us that irrespective of twist none of the
above structures can be realized without localized defects [156], even if the underlying
nematic flow field is everywhere smooth.

There is one global aspect of the polymer structure in which it differs fundamentally
from a plainly wound torus: As is visible in Fig. 5.2, the path of the polymer threads it
repeatedly through the middle hole. Moreover, the amount of this looping (as measured
e. g. by the average change in ϑ per turn) depends on the layer. This effect implies
that the entire polymeric strand is heavily entangled with itself. A rough estimate for
ξ = 1.5 and polymer length L = 15µm gives about 30 threadings through the hole.
In fact, were it not for the two free ends, these knotted states would be topologically
inaccessible. In other words, unlike the initial collapse, the second stage, the structural
ripening, relies on the motion of the free chain ends and is thus a much slower process.

On the other hand this structural ripening meets no kinetic barriers during the relax-
ation to its twisted ground state, as it proceeds downhill on the free energy landscape.
The motion of the two free ends is then energetically directed and their local rearrange-
ment does not involve the highly improbable threading through the toroid hole in 3D
space. In addition, the weak chiral interaction of DNA molecules [151] neglected above,
gives rise to a (small) chiral term in the elastic free energy, which might contribute to

4The following transformation of the field and coordinates given in a cylindrical coordinate sys-
tem, {ρ, z} → {ρ2/2, z}, {nρ, nz} → {ρnρ, nz}, together with the axial symmetry, reduces the 3D
divergence-free nematic field to the (new) 2D divergence-free field. Then the director field can be
written as nρ = ρ−1∂H/∂z, nz = −ρ−1∂H/∂ρ, where H(ρ, z) is the Hamiltonian.
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c)a) b)
Figure 5.5: Possible mechanism for plectonemic supercoiling [150] of the genome of
giant T4 phages: (a) Initially the toroidal genome is only twisted (dark shading) at the
two poles. (b) After removing the capsid, twist propagates into the remaining DNA,
but since the twist-creating confinement is removed, the remaining bundle suddenly is
overtwisted. (c) This then induces a global supercoiling.

the symmetry breaking and “guide” the twisting in a preferred direction.

5.6 Discussion

Is the predicted effect strong enough to be of some relevance for DNA condensation?
For typical experimental parameters of DNA length L = 15 − 30µm, ξ ∼ 1.5 − 2.5,
bending stiffness A ∼ 50kBT ·nm, and inter-helical distance d ∼ 3nm we obtain first the
elastic constant K3 ∼ A/d2 ∼ 20pN, which is dominated by the bending stiffness [152].
The twist constant K2 can be estimated by the decondensation force ∼ 2pN obtained
in single molecule experiments with condenser spermidine [157]. Then the difference
in elastic energy between the twisted and untwisted states, as bounded below by the
the variational ansatz, lies in the range 15 − 30kBT . This indicates that topological
ripening stabilizes the condensate. In addition, if the solvent quality abruptly improves,
the twisted toroid will unfold more inertly than its untwisted counterpart, due to
heavy entanglement with itself. If this stabilization occurs on the typical time scales
relevant for gene therapeutical applications, it might prevent a premature digestion of
the genetic material by the host organism and influence (positively) the efficiency of
the gene delivery process.

Finally, it is tempting to speculate that the twist-bend instability is responsible for
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several puzzling phenomena observed in biology. For instance, sperm chromatin shows
an unusually short DNA cholesteric pitch (10 times shorter than in vitro) [151]. Since
the genome is highly confined in sperm cells, basically at the same density as the DNA
tori discussed above, it is potentially prone to a twist-bend instability (recall that all
one really needs is an externally imposed bending of a bundle of DNA). While the
weak intrinsic DNA chirality might thus determine the handedness of the resulting
twist, its pitch would then be given by the twisted state of polymer strands after the
topological ripening took place. As a second example, if the capsid of bacterial phages is
broken (for instance by osmotic shock), their DNA spills onto the underlying substrate.
The amount of “knotting” displayed by the freed genome is significantly larger for
genetically modified phages, in which the end of the viral genome is not first attached
to the capsid at the time of loading it [149]. Since the ends are free to move, the torus- or
spool-like genome inside such mutant phages can again undergo topological ripening,
explaining the enhanced entanglement of DNA after breaking the capsid. Finally,
Earnshaw et. al [150] have shown that when mutant T4 bacteriophages (displaying
a greatly enhanced capsid aspect ratio) are opened under conditions in which the
toroidally wound-up genome remains condensed, structures resembling “twisted skeins
of yarn” are sometimes observed (see Figs. 5 and 7 in Ref. [150]), cf. Fig. 5.1. Within the
framework of the twist-bend instability discussed in the present chapter, the following
explanation is tempting (see Fig. 5.5): Inside the elongated phage head the genome is
present as a torus which is squeezed flat, and only at the two “poles” curvature exists
which promotes the creation of twist. After opening the capsid, the torus can resume
a properly round shape. Its rather large aspect ratio no longer necessitates a twist,
but for kinetic reasons it cannot instantaneously get rid of it. However, it can rather
quickly exchange twist for writhe [158] and thus undergo plectonemic supercoiling,
a state which indeed characterizes the observed structures rather accurately. Since
supercoiling inherits its handedness from the underlying twist, which itself emerged
via spontaneous breaking of chiral symmetry, both right- and left-handed supercoiled
states should exist, which indeed appears to be borne out by observation [150].
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