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Abstract

In dieser Arbeit wird ein adaptives numerisches Verfahren zur Simulation
einer Klasse von makroskopischen Halbleitermodellen vorgestellt und analy-
siert. Dazu wird zunächst in die mathematische Modellierung von Halb-
leitern eingeführt. Dies dient zur Einordnung der im weiteren Verlauf nu-
merisch in 2D genauer untersuchten Energie–Transport Modelle. Diese
Modellklasse beschreibt den Fluß von geladenen Teilchen, d.h. von negativ
geladenen Elektronen und sogenannten Löchern, das sind Pseudoteilchen mit
positiver Ladung, und deren Energieverteilung in einem Halbleiterkristall
anhand eines Systems von nichtlinearen gekoppelten partiellen Differential-
gleichungen.
Eine wesentliche Schwierigkeit in der numerischen Behandlung dieser Gle-
ichungen stellen einerseits die nichtlineare Kopplung und die nur teilweise
durch die Daten abschätzbaren lokalen Phänomene, sogenannter “hot elec-
tron effects”, dieser teils konvektionsdominanten Gleichungen dar. Die pri-
mären Größen der Modelle sind in der hier für die Simulationen verwen-
deten Formulierung Teilchen- und Energiedichten. Weiterhin entscheidend
ist für den Anwender die Größe des Stromflusses durch Teile des Randes,
sogenannte Kontakte. Das hier betrachtete numerische Verfahren verwen-
det gemischte Finite Elemente als Ansatzraum für die diskrete Lösung. Die
stetige Diskretisierung der Normalkomponente der Stromdichte ist aus Sicht
der Anwendung der entscheidende Vorteil dieser Elemente. Es wird gezeigt,
daß im Laufe des Algorithmus unter bestimmten Bedingungen an die Tri-
angulierung sichergestellt ist, daß die Teilchendichten positiv bleiben. In
diesem Zusammenhang wird ebenfalls eine a priori Fehlerabschätzung für die
diskrete Lösung einer linearen Konvektions-Diffusions-Gleichung bewiesen.
Die lokalen Phänomene im Halbleiter werden durch adaptive Verfahren, die
auf a posteriori Fehlerschätzern beruhen, geeignet aufgelöst. Es findet an
dieser Stelle ein Vergleich verschiedener Fehlerschätzer statt.
Außerdem wird ein Verfahren zur Fehlerschätzung in von der Lösung ab-
geleiteten Größen, sogenannten ‘functional outputs’, auf die Diskretisierung
mit gemischten Finiten Elementen übertragen. An einem Beispielproblem
wird dargestellt, wie dieses Verfahren noch erfolgversprechend angewendet
werden kann, wenn Standardfehlerschätzer keine Reduktion des Fehlers im
Zuge iterativer Gitterverfeinerung erzielen.
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Chapter 1

Introduction

Telecommunication was one of the major factors driving the development
of modern societies in the last century. This development is closely related
to the evolution of semiconductor technology. A technology that started in
1947 when Bardon, Brattain and Schockley presented the first semiconduc-
tor device (a germanium transistor) for which they were awarded the Nobel
Prize in 1956.

Semiconductor devices as a replacement for the electronic devices used at
that time were much smaller. The combination of several transistors and
other structures in an electronic circuit on a single semiconductor crystal led
to the so-called integrated circuits (J. Kilby of Texas Instruments, R. Noyce
of Fairchild Semiconductor) which was the beginning of a process leading to
todays chips containing millions of transistors on an area of about 1cm2. In
the industry the term “scaling” refers to the continued reduction of the size
of the structures on a chip.

The characteristic length scales reached dimensions of 90nm in June 2004
in Intel’s Pentium 4 and the process to build structures with 65nm is al-
ready in development. In these dimensions quantum effects cannot always
be neglected. However, in the energy-transport model that we will use for
the device simulation it is looked at the movement of electrons in a semi-
conductor in a continuum sense. Similar to fluid dynamics a hierarchy of
models exists to describe this “electron gas”. The quantum physical struc-
ture of the crystal is incorporated only via special predetermined param-
eters in the most detailed so called microscopic model in this hierarchy,
the semi–classical semiconductor Boltzmann equation. The least complex
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6 1. Introduction

and best understood macroscopic model, the drift-diffusion model, consists
of the mass conservation equation and a constitutive equation for the cur-
rent density only. It has been derived from phenomenological considerations
[102], a rigorous derivation is due to Poupaud [97]. We will clarify the po-
sition of the energy-transport model in the hierarchy of these semi–classical
semiconductor models.

Numerical simulations of chips with microscopic models are impossible.
Even macroscopic models are only applied to simulate very few connected
devices. In the past the behaviour of a device in an integrated circuit was
described with a rather small set of parameters that had been extracted from
precedingly-performed device simulations. The scaling of device dimensions
has led to a larger set of necessary parameters to describe the device reac-
tion on external inputs. For techniques to automatically identify significant
parameters see [70]. There is a demand for more detailed information on
the interaction of the device with a connected circuit. Therefore methods to
directly couple device and circuit simulation have been developed, see [109].
The active region of a device is modeled by macroscopic device equations
and the remaining circuit is described by differential algebraic equations. A
very interesting question in this coupling in present devices is for instance
the device temperature.

In both of these fields the drift-diffusion model is not accurate enough to
capture the additional features. Refined models were proposed by physi-
cists and later mathematically analyzed, namely the hydrodynamic model
introduced by Bløtekjær [18] and Baccarani and Wordemann [7] and the
energy-transport model introduced by Stratton [111].

The energy-transport models are more complex than the drift-diffusion equa-
tions but keep their parabolic nature. For the numerical solution of the hy-
drodynamic model, which contains hyperbolic modes, special (efficient) al-
gorithms are necessary (see, e.g.,[61]). This intermediate complexity makes
the energy-transport system appropriate for fast and accurate semiconduc-
tor simulations. Extensions of recently developed algorithmic device design
optimization techniques [71] for the drift-diffusion equations seem to be
possible.

To solve this model with a flexible and robust numerical method that can
automatically adapt to the local behaviour of solutions to semiconductor
device simulations is the main goal of this work. In [49] it was shown
that the energy-transport equations can be written in a drift-diffusion form.
The unknowns in this formulation are the electron number and the electron
energy density which should remain positive to be physically meaningful.
Under this premise the discretization of drift dominated problems is not
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straight forward, for instance, standard methods for convection-dominated
problems, e.g. streamline diffusion methods, do not preserve the positivity
of the numerical solution.

A main concern in stationary device simulation is the current voltage rela-
tion, which is of high importance to appraise the device effectivity. In order
to generate such curves the current flowing through parts of the device
boundary is quantified for a set of different values of an externally-applied
voltage that is a difference in the electrostatic potential. In standard one-
field finite-element methods the current is a derived quantity and therefore
not of as high accuracy as the original unknown. To the contrary, mixed
finite-elements introduce the current density as a second independent vari-
able. Moreover, the current density will then be approximated in H(div,Ω),
which as a consequence, leads to the continuity of the current density’s nor-
mal component, see [99], and thus to current conservation.

In the simulation we use an exponentially fitted mixed-hybrid finite-element
method to discretize the stationary energy-transport model in two space
dimensions. More precisely, we use the finite-element introduced by Marini
and Pietra [89] adapted to energy-transport equations [49, 79] and an adap-
tive refinement of the elements based on an error estimator which is moti-
vated by results of Hoppe and Wohlmuth [72, 73, 117]. We adopt a gradient
recovery based estimator introduced by Carstensen and Bartels in [31, 12]
and compare it with the above estimator. These estimators are used to-
gether to define a new estimator for the mixed finite-element method that
estimates directly the error in a derived quantity of interest. This estimator
is an extension of the dual weighted residual approach developed by Becker
and Rannacher [14, 13, 15] to mixed finite-elements.

The method we develop and analyze is applied to some example device to
validate it in comparison with one dimensional simulations of [49] and to
show its numerical convergence and robustness when simulating a MESFET
(metal semiconductor field effect transistor) device, in which areas with
very low densities, so-called depletion regions, complicate the simulation.
Finally, a simulation of a submicron MOSFET (metal-oxide semiconductor
FET) device with a channel length of 70nm is performed.

In Section 1.1, the introduction will review the relationships between the
different models to describe charge transport in a semiconductor, i.e. we
present a hierarchy of models that can be seen as formal limiting equa-
tions derived from the Boltzmann equation, following the presentation in
[17, 50]. It follows an introduction into adaptive finite-element methods
especially concerning relations between the elements developed in [89] and
standard mixed finite-elements in Section 1.2, before we start with analyz-
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ing the numerical method for linear elliptic convection-diffusion problems
in Chapter 2. Chapter 3 is devoted to the treatment of the nonlinear sys-
tem of energy-transport equations. An iterative procedure is defined that
extends the continuation method for the drift-diffusion model, the Gummel
map [69], and finally we present the numerical examples.

1.1 Semiconductor Device Modeling

In this section we review different limiting procedures to derive energy-
transport models from the semi–classical Boltzmann equation. Thus, we get
more information about the simplifying assumptions that limit the accuracy
of energy-transport models, including a display of its advantages over the
drift-diffusion models. In physics literature the refined models that we will
present are referred to as models for hot electron transport. Reference [100]
is mentioned for the physical data that might occur in the formulas. For
the Boltzmann picture in the theory of dilute gases, gas molecules obey
Newton’s laws

∂tx = v, ∂tv = 1
mF (t), t > 0, x ∈ R

d, (1.1)

where v denotes the velocity and F describes a force field. Particles that
do not interact with each other stay on a trajectory (x(t), v(t)). Letting
f(t, x, v) be their distribution function at a time t in position-velocity phase-
space, we can express the last sentence by

0 =
df

dt
(t, x(t), v(t)) = ∂tf + ∂tx(t) · ∇xf + ∂tv(t) · ∇vf

= ∂tf + v · ∇xf + 1
mF · ∇vf.

This is the Vlasov equation or collisionless Boltzmann transport equation.
Particle interactions that instantaneously change the particles’ velocity but
not their positions are called collisions. The classical Boltzmann equation
states that the rate of change in particle distribution function along trajec-
tories is only due to collisions, consequently we have, denoting the collision
operator by Q(f):

∂tf + v · ∇xf + 1
mF · ∇vf = Q(f), x, v ∈ R

3, t > 0. (1.2)

1.1.1 Semi-Classical Picture of Quantum Mechanics

The situation for electrons in a semiconductor crystal is considerably differ-
ent. In the semi-classical picture of electron transport in a crystal, the laws
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of classical mechanics (1.1) are substituted by

∂tx = v(k) =
1

~
∇kE(k) (1.3)

∂tvc = (m∗)−1∂t(~k) = −(m∗)−1 q

~
∇xV (x, t), (1.4)

where E(k) is the electron energy in a certain energy band depending on
the pseudo wave vector k and V (x, t) is the electrostatic potential, ~ the
reduced Planck constant and q the electron charge. In analogy to classical
mechanics the product p = ~k is termed crystal momentum and m∗ the
effective mass tensor, motivated via the identification

∂tv(k) =
1

~

d2E(k)

dk2
︸ ︷︷ ︸

=~2(m∗)−1

∂tk = (m∗)−1∂tp.

To understand this relation we have to make a small excursion into quantum
mechanics. At the smallest length scales an electron is quantum mechan-
ically described as a wave that is a complex valued function ψ(x, t) that
solves the Schrödinger equation for a given potential V

i~∂tψ = − ~
2

2m
∆ψ − qV ψ, t > 0, ψ(x, 0) = ψ0(x), x ∈ R

3,

where i is the imaginary unit, m the free electron mass. The semi-classical
picture tries to find a particle reinterpretation of these waves. We now want
to give a short abridgement of this procedure. If we neglect time dependence
in V the solutions to the Schrödinger equation can be solved by a separation
ansatz, which leads to the eigenvalue problem of the stationary Schrödinger
equation

− ~
2

2m
∆ψ − qV ψ = Eψ in R

3. (1.5)

The simplest case is V ≡ 0, which permits solutions and eigenvalues of the
form

ψ(x) = exp(ik·x), E =
(~|k|)2

2m
, k ∈ R

3.

These solutions are called plane waves for the wave vector k and it can be
shown that ~k is their quantum mechanical momentum, which means that
the eigenvalues represent the energy of these wave.

If V is periodic and describes the potential of the atomic nuclei in an infinite
crystal, or more precisely, if V (x) = V (x + y) for all x ∈ R

3 and y ∈ L, L
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being the crystal lattice, the structure of the solution is more complex. The
Bloch–Theorem says that the solutions in this case have the form

ψB(k, x) = exp(ik · x)u(x),

where the Bloch function u is L–periodic and k ∈ B. The Brillouin zone
B can be understood as the largest area, so that an arbitrary plane wave
exp(ik̃·x) cannot be split into a product of a L-periodic function and a
plane wave exp(ik·x) with |k| ≤ |k̃|. For a one-dimensional example of this
decomposition see Figure 1.1.

−6 −4 −2 0 2 4 6
−2

0

2

u(
x)

−6 −4 −2 0 2 4 6
−2

0

2

eik
x

−6 −4 −2 0 2 4 6
−2

0

2

ψ
(x

)

E(k)=3.1933, k=1.6186

Figure 1.1: Bloch decomposition for a lattice(o) potential V . Solid lines
display real parts, dash-dotted lines imaginary parts. The wave length of u
and the plane wave are different. The state ψ is not necessarily periodic.

Since ψB(k, x) is not a plane wave, k is called pseudo–wave vector. Inserting
ψB in (1.5) we obtain for any fixed k ∈ B an eigenvalue problem for u. The
sequence of eigenvalue-eigenfunction pairs is denoted by (En(k), un,k). The
function k 7→ En(k) is called dispersion relation or the n-th energy band.
It shows how the energy of the n-th band depends on the (pseudo-)wave
vector k. The union of ranges of En over n ∈ N is not necessarily the whole
real line R. Energies that are not in the range are denoted as “forbidden”
energies. They form intervals, the so-called energy gaps.
A crystal will always be of limited size, which leads to a limited number of
available states in each energy band, or equivalently formulated, each state
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occupies a certain volume in k-space. The occupation of the available states
characterize the material. The Pauli principle which holds for electrons
says that each state can only be occupied by one electron of a specific spin.
Hence, each state may be occupied by a fixed number of electrons, which
we set to one, neglecting different spins.

In thermodynamic equilibrium at zero temperature the quantum mechanical
system has minimal energy, which requires that the states are filled from
the state of lowest energy up to a certain level. This energy is called Fermi
level EF = qµ, and can be expressed by the chemical potential qµ. For a
semiconductor or insulator the Fermi level lies within a band gap and all the
states in the bands below are occupied. The band below the gap is called the
valence band in contrast to the band above the Fermi level which is called
conduction band.

Conductance under an applied electric field can only start if an electron
gains enough energy to reach an empty state in an upper band. The size
of the energy gap therefore differs between insulators, semiconductors and
conductors. For semiconductors it is approximately 0.1 to 0.5eV, for insula-
tors it is larger than 1eV and for conductors the fully occupied energy bands
and the empty bands overlap.

However, if the system gets excited thermally, the distribution of electrons
is only given via a probability distribution function. This function is de-
termined by the supposed state-changing mechanism and the principle of
detailed balance, which roughly says that in thermal equilibrium state tran-
sitions from one state to an other happen equally in each direction. For
electrons with a thermal energy kBT in a semiconductor, kB being the Boltz-
mann constant, this leads to the Fermi Dirac distribution

f(E) =
1

1 + exp
(
E−EF
kBT

) . (1.6)

States that are used for conduction are close to the Fermi level, since it
deserves only little energy to free these states. For the intended derivation,
it is therefore sufficient to include the energy bands at the gap, Ev(k) and
Ec(k), the band edges, and to approximate them by Taylor-polynomials
around their extrema Ec(kc) = E0

c , and Ev(kv) = E0
v .

Ec(k−kc) = E0
c +

1

2
(k−kc)

> d2Ec(k)

dk2 (k−kc) +O(|k−kc|3)

Ev(k−kv) = E0
v +

1

2
(k−kv)

> d2Ev(k)

dk2 (k−kv) +O(|k−kv|3)
(1.7)
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We now want to associate a velocity to an electron in an energy band. So far,
we only have a description of the quantum mechanical state of one electron in
a lattice-periodic potential. Measurable quantities of this state are operators
on the wave function ψ. The important observables, the electron density
n(x, t) and the electron current density J(x, t), are defined as

n(x, t) = |ψ(x, t)|2 and J(x, t) = −~q

m
Im((ψ∇ψ)(x, t)).

A first idea is to use the classical particle velocity J = −qnv̂(x, t). But this
does not give an idea of the motion of an electron as a wave packet. The
velocity of a wave packet is the mean velocity over a primitive lattice cell D
and the following relation can be deduced if no external potential is applied
apart from the lattice potential:

vb(k) =

∫

D
v̂b(k)nb(k)/

∫

D
nb(k) dx =

1

~
∇kEb(k), b ∈ {c, v}. (1.8)

The notion of the group velocity is band specific. By introducing this veloc-
ity into the Boltzmann equation we model a priori only the flow of electrons
within one band. Electron interaction and band interchange have to be
modeled differently, see below.
We now consider the structure of the energy bands in more detail, starting
with the conduction band. Close to the band minimum a second order
approximation of the dispersion relation may be sufficient. The Hessian
matrix at the band minimum is symmetric and positive definite, e.g., it can
be written in its symmetry axis by:

1

~2

d2Ec(k)

dk2

∣∣∣∣
k=kc

= (m∗
c)

−1 =




1/m∗
1 0 0

0 1/m∗
2 0

0 0 1/m∗
3




This is regarded as the definition of the effective mass tensor. Often it is
reduced further to an isotropic effective mass m∗

c = m∗
cId. By shifting (1.7)

so that the conduction band minimum is zero and lies at kc = 0 we obtain
the parabolic band approximation:

Ec(k) =
~

2

2m∗
c

|k|2 (1.9)

Compared to the dispersion relation of a free particle, electrons in the con-
duction band are regarded as free particles with the mass m∗

c .
In case of electrons in the valence band the Hessian matrix at the band
maximum is symmetric and negative definite. Reduced to the isotropic
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approximation this would lead to a negative effective electron mass. This can
be avoided if we assume that these states are occupied by pseudo particles
of an opposite charge. Physically this can be understood as vacancies in
the valence band, generally termed holes. Substituting q̃ = −q in equation
Jb = −q̃nbv̂v(x, t) we obtain ṽv(k) = −vv(k). It is therefore convention to
use the Ẽv(k) = −Ev(k) as the dispersion relation for holes and to write

ṽv(k) =
1

~
∇kẼv(k),

(m∗
v)

−1 =
1

~2

d2Ẽv(k)

dk2

∣∣∣∣∣
k=kc

and then to use the isotropic approximation m∗
v = m∗

vId.
If in addition to the lattice potential an external potential is applied, V =
VL+ Ṽ , the band structure changes significantly and the bands are coupled.
However, it is usually assumed that the variation of the external potential
is small on the length scale of the lattice potential. So that by the process
of homogenization [98, 63] to the larger length scale, the external potential
Ṽ becomes the driving potential in (1.4) only. Before summarizing this

(quasi-)particle velocity mass

free electron 1
~
∇(~k)2/(2m) m=9.1·10−31kg

conduction band el. vc=
1
~
∇Ec(k) m∗

c=
(d2Ec(kc)

dk2

)−1

valence band hole vv=
1
~
∇Ẽv(k), Ẽv=−Ev m∗

v=
(d2Ẽv(kv)

dk2

)−1

Table 1.1: Comparison of free electrons with the semi-classical interpretation
of electrons in a crystal as quasi particles with different masses.

excursion into quantum mechanics in Table 1.1, we want to mention that
higher order terms in the band diagram approximation cannot be neglected
for larger fields. The following variation is frequently referred to as non-
parabolic band approximation (in the sense of Kane[82]):

Ec(k)(1 + αEc(k)) =
~

2

2m∗
|k|2.

The validity of the semi-classical picture is restricted by the Heisenberg
uncertainty principle. Position and momentum are conjugate variables and
both of them cannot be measured sharply. It is assumed that the uncertainty
of the momentum is small, so that the electron energy is defined sharply.
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According to this, the uncertainty in the electron position should be small
in the length scale of the variation of the external potential.
So far, the electrostatic potential V was regarded as given, and the Boltz-
mann equation models the motion of one particle in this potential. Electron
and hole ensembles interact on short distances via collision mechanisms.
These are commonly denoted as scattering events to emphasize the wave
character of these quasi particles in the semi-classical picture. Additionally,
they interact on long ranges via the Coulomb force

F (x, y) = − q

4πεs

x− y
|x− y|3 ,

where εs is electrical permittivity, a material constant. If ρ(x, t) is the total
space charge density, the resulting electric field is

Eef(x, t) =
1

4πεs

∫

R3

ρ(y, t)
x− y
|x− y|3 dy.

The total space charge is the sum of the electron n(x, t), the hole density
p(x, t) and the density of impurities ions, C(x) that are inserted during
the production process and are afterwards seen as fixed in the crystal. The
electrostatic potential, defined via Eef = −∇V , is the solution to the Poisson
equation

εs∆V = ρ = q(n− p− C) in R
3.

Remark 1.1. The concentration of impurity ions, the so-called doping,
C(x), varies almost discontinuously over a large range of values. After scal-
ing the equation in a dimensionless form this leads to a small diffusion coeffi-
cient, and locally to very large electric fields, also causing the main difficulty
in simulating the macroscopic models for charge transport in semiconductor
devices.

Electron and hole densities are given via the Boltzmann equation leading
to the coupled Boltzmann-Poisson system that is the starting point for the
derivation of macroscopic models in the following:

∂tfc + vc(k)·∇xfc +
q

~
∇V ·∇kfc = Qc(fc) + Ic(fc, fv), (1.10)

∂tfv + vv(k)·∇xfv −
q

~
∇V ·∇kfv = Qv(fv) + Iv(fc, fv), (1.11)

εs∆v = q(n− p− C) x ∈ R
3,k ∈ B, (1.12)

where the densities are given through

n(x, t) =

∫

B
fc(x,k, t) dk, p(x,t) =

∫

B
fv(x,k, t) dk. (1.13)
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Accompanied with initial values and periodic boundary conditions

fi(x,k, t) = f(x,−k, t), x ∈ R
3, k ∈ ∂B, t > 0 (1.14)

fi(x,k, 0) = f 0
i (x,k), x ∈ R

3, k ∈ B, i ∈ {c, v}. (1.15)

The terms on the right-hand sides Qi(fi) and Ii(·, ·) model the scattering
of particles. The terms Ii(·, ·) especially denote the effect of the genera-
tion of an electron-hole pair by absorbing energy and the counterpart of
recombination of such a pair under the emission of energy. Before we detail
the structure of these terms further, we note that the Boltzmann-Poisson
system is a nonlinear integro-differential system in seven dimensions and
therefore numerically only treatable with very high effort, e.g., employing
Monte Carlo simulations. Often, they are used to fix parameters of previ-
ously phenomenological models with a higher accuracy and to investigate
different, especially non-isotropic materials, see [56, 115]. In the following,
we seek for simplifications through reducing the dimension.
We now have to specify the collision operator from which the macroscopic
models are derived. As mentioned above, collisions are regarded as events
changing the velocity instantaneously at a fixed point in space, and therefore
concern mainly the pseudo wave vector k, which is often called Bloch state
in this context. For the moment, we neglect the possibility that a scattering
event leads to a jump in the band index. We will therefore omit the band
index as far as possible.
The number of electrons in a specific Bloch state k is changed by two dif-
ferent state transitions types. Either an electron is scattered “out” of its
initial state k to the state k′, or an electron is scattered “in” the state k

from its former state k′. At first, we describe the modeling of the “out”
type transition. The rate of electrons at a point (x, t) changing its state
from k to k′ is proportional to the number of electrons available in the state
k that is f(x, k, t). The Pauli exclusion principle allows scattering into a
specific state only, if this state is free. The proportion of unoccupied states
k′ is given by (1 − f(x,k′, t)). The probability that a particle changes its
Bloch state from k to k′ is denoted by s(x,k,k′) and called scattering rate.
Altogether the rate at which particles change the state at the point (x, t)
from k→ k′ is

s(x,k,k′)f(x,k, t)(1− f(x,k′, t)).

The scattering “in” type transition is obtained by exchanging k and k ′ thus
leading to the collision operator:

Q(f)(x,k, t) =

∫

B
s(x,k′,k)f ′(1− f)− s(x,k,k′)f(1− f ′) dk′, (1.16)
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abbreviating f = f(x,k, t) and f ′ = f(x,k′, t). Before classifying differ-
ent collision operators, we also want to describe the recombination genera-
tion process phenomenologically. The generation of an electron-hole pair is
only possible, if the final states are empty, thus, with the generation rate
g(x,k,k′) ≥ 0, leading to

g(x,k,k′)(1 − fc)(1− f ′v).

The recombination of an electron in state k and a hole in state k ′ is given
analogously by

r(x,k,k′)fcf
′
v,

where r(x,k,k′) ≥ 0. The physical principle of detailed balance at equilib-
rium relates r and g by r(x,k,k′) = exp((Ec(k)−Ev(k′))/(kBT ))g(x,k,k′).
We obtain:

Ic(fc, fh)(x,k, t) =

∫

B
g(x,k,k′)

(
1− e(Ec(k)−Ev(k′))/(kBT )

)
fcf

′
p dk′,

Iv(fc, fh)(x,k, t) =

∫

B
g(x,k,k′)

(
1− e(Ec(k′)−Ev(k))/(kBT )

)
f ′cfp dk′.

For more advanced models for recombination generation effects and the
derivation of macroscopic limits, we refer to [41]. In the following, we will
neglect these terms.

Different physical scattering mechanisms can be modelled via (1.16). We
will not describe the underlying physical processes in a detailed way, see
e.g. [86], as for the following derivation, it is more important to distinguish
between elastic and inelastic collisions. For many scattering mechanisms, it
is possible to separate a predominant elastic contribution from an inelastic
correction. This is a key point in the derivation of macroscopic models we
review. In the process of elastic collision the two states before and after
the collision k and k′ have equal energies E(k) = E(k′), i.e. the state of
the particle changes only within surfaces of equal energy. These collision
operators may be summarized by the formula:

Qel(f) =

∫

B
φel(k,k

′)δ(E(k)−E(k′))(f ′ − f) dk, (1.17)

where δ is the Dirac delta ’function’, and φel is a cross section of the scatter-
ing rates of the underlying physical scattering mechanisms. The evaluation
of the Dirac delta function in (1.17) is performed by means of the coarea
formula, [55, 88]:



1.1. Semiconductor Device Modeling 17

Lemma 1.1 (Coarea formula). For any smooth function f , and periodic
C1 function E(k) : B → R ⊂ R with nondegenerate critical points, it holds:

∫

B
f(k) dk =

∫

R

∫

E−1(ε)
f(k)

dF (k)

|∇kE(k)| dε, (1.18)

where dF (k) is the two dimensional hypersurface element, and E−1(ε) =
{k ∈ B : E(k) = ε}.

Binary scattering of electrons will play an important role in the derivation
of energy-transport models; we therefore report the collision term:

Qee(f)(k) =

∫

B3

φee(k,k
′,k1,k

′
1)δ(E

′+E′
1−E−E1)δp(k

′+k′
1−k−k1)

[f ′f ′1(1−f)(1−f1)−ff1(1−f ′)(1−f ′1)] dk1 dk′ dk′
1. (1.19)

The mapping of the collision operator should result in a function whose
domain within the k variable remains B, δp is a periodic Delta function and
accounts for projecting k into B if k′ + k′

1−k1 is not in B. Additionally, it
is required by the principle of detailed balance that

φee(k,k
′,k1,k

′
1) = φee(k

′,k,k1,k
′
1) = φee(k1,k

′
1,k,k

′).

1.1.2 Macroscopic Models

In the scaled form the semiconductor Boltzmann equation for those electrons
in the conduction band can be written as

α2∂tf + α(∇kE(k)·∇xf +∇xV ·∇kf) = Q(f). (1.20)

Let λel be the length of the mean free path between two consecutive elastic
collisions and λinel the corresponding length for inelastic collisions. The
scaling parameter is then given by

α2 =
λel

λinel
.

It is assumed that elastic collisions dominate the collision operator, i.e. 0 <
α� 1. For the comparison of limiting procedures it is convenient to define
β = λee/λel, where λee is the mean free path length between two binary
electron-electron collisions. The collision operator is assumed to have the
form

Q(f) = Qel + βQee + α2Qinel
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Boltzmann eq.

SHE

Energy-transport

drift-diffusion

β=α2, α→ 0

τ0 → 0

β → 0

orig.: β = 1, α→ 0
new: β = α→ 0

Figure 1.2: The scaling parameter α relates time between two consecutive
collisions and the macroscopic time, whereas β relates the distances between
consecutive collisions of specific types, τ0 is the energy relaxation time.

The models that are derived from this scaling are depicted in Figure 1.2,
including the limiting procedures connecting them. The direct limit from
the Boltzmann equation to the energy transport equations was investigated
in [16]. It has the drawback that the coefficients in the resulting model are
given via operator equations that require additional numerical effort. For
this limit elastic and electron-electron collisions are set to be of equal order,
i.e. β = α0. In [17] a different procedure via an intermediate model was
proposed that allowed for much simpler and in a reduced case even explicit
expressions for the coefficients in the resulting energy transport model. The
intermediate model, the SHE model, is often referred to as a mesoscopic
model, since it describes the distribution function via levels of kinetic en-
ergy, which is much sharper than describing the width of the Fermi-Dirac
distribution via temperature. More recently, it was found that it is possible
to retrieve the same energy transport model as in the two step procedure
via a different direct scaling limit, see [50]. In this limit electron-electron
collisions lie in the intermediate scale between elastic and inelastic collisions,
β = α1.

On a formal level we now sketch the derivation via the SHE model and
subsequently the limit to the energy-transport model. We follow the pre-
sentation in [50]. Mathematically more rigorous proofs of the results may
be found there and in the references therein. The first step is to insert the
Hilbert expansion

f = f0 + αf1 + α2f2 + . . .
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into (1.20) for β = α2 and to identify terms of equal order in α to obtain

α0

=⇒ Qel(f0) = 0, (1.21)

α1

=⇒ Qel(f1) = ∇kE(k)·∇xf0 +∇V ·∇kf0, (1.22)

α2

=⇒ Qel(f2) = ∂tf0+∇kE(k)·∇xf1+∇xV ·∇kf1−(Qinel+Qee)(f0). (1.23)

The first equation requires f0 ∈ N(Qel), the kernel of Qel which is given by
functions only depending on E(k), thus

f0(x,k, t) = F (x,E(k), t).

The solvability conditions for (1.22)-(1.23) lead to the equations that govern
the evolution of F .

Proposition 1.1. [17]Formally, for β = α2 the solution to (1.20) tends to
a function F = F (x,E(k), t) as α→ 0 where F (x, ε, t) satisfies the following
SHE model:

N(ε)∂tF +∇∗J = See,inel(F ), (1.24)

J(x, ε,t) = −D(x, ε)∇∗F, (1.25)

with

∇∗ = ∇x +∇xV ∂ε, N(ε) =

∫

B
δ(E(k) − ε) dk, (1.26)

See,inel(F )(ε) =

∫

B
(Qee +Qinel)(F (x,E(k), t))δ(E(k)− ε) dk, (1.27)

D(x, ε) = −
∫

B
∇kE(k)Q−1

el
(∇kE(k))δ(E(k)− ε) dk. (1.28)

The term N(ε) is called the density of states of energy ε.

The computation of the diffusion matrix D(x, ε) requires the inversion of the
elastic collision operator. For a number of cases of physical interest this can
be done explicitly, see below. The macroscopic quantities, electron density
and electron energy density, are given by

(
n(x, t)
E(x, t)

)
=

∫

R

(
1
ε

)
N(ε)F (x, ε, t) dε.

These quantities implicitly depend on the distribution function F . If we
assume for a moment that F obeys a certain distribution parameterized by
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macroscopic quantities, the multiplication of (1.24) with (1, ε)> together
with this F leads to a purely macroscopic energy-transport model. Indeed,
the next asymptotic limit will provide such a distribution function for F .

We assume that electron-electron collisions dominate the physical regime
and we set afresh the right-hand side in equation (1.24) to

S(Fβ) =

∫

B
(Qinel +

1

β
Qel)(Fβ(x,E(k), t))δ(E(k)− ε) dk.

As in the previous step in the limit β → 0 the function F0 is required to be
in the kernel of the dominant collision operator See, which is obtained from
(1.27) by omitting the inelastic collisions. The dominant collision operator
has the following properties:

Lemma 1.2. [17]

(i) Entropy inequality:

∫

R
See(F ) ln(F/(1 − F )) dε ≤ 0.

(ii) Mass and energy conservation:

∫

R
See(F )(1, ε)> dε = (0, 0)>.

(iii) Equilibrium states: See(F )=0⇐⇒ ∃(µ, T ) ∈ R× [0,∞) s.t.

F = Fµ,T (ε) =
1

1 + exp( ε−µT )

The equilibrium distribution is the Fermi-Dirac distribution. The inelastic
collision operator Sinel, which is defined by droppingQee in (1.27) is assumed
to be mass conservative,

∫
R Sinel dε = 0. Equipped with the Fermi-Dirac

parameterization of F we perform the above mentioned multiplication of
(1.24) and (1.25) by (1, ε)> and obtain the following result. The potential
V may be given by a self-consistent coupling with the Poisson equation.

Proposition 1.2. [17] Formally, Fβ tends to the Fermi-Dirac distribu-
tion function Fµ,T (ε) where the position-time-dependent chemical potential
µ(x, t) and temperature T (x, t) satisfy the energy-transport model:

∂

∂t

(
n(µ, T )
E(µ, T )

)
−
(

divx J1

divx J2

)
=

(
0

J1·∇xV

)
+

(
0
W

)
, (1.29)

(
J1

J2

)
=

(
D11 D12

D21 D22

)((
∇x
( µ
T

)
− ∇xV

T

)

∇x
(
− 1
T

)
)
. (1.30)
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The entries of the diffusion matrix D are given by

Dij(µ, T ) =

∫

R
D(x, ε)Fµ,T (1−Fµ,T )εi+j−2 dε, i, j ∈ {1, 2}. (1.31)

The term W is called energy relaxation term and depends on the inelastic
scattering processes:

W (µ, T ) =

∫

R
Sinel(Fµ,T )εdε. (1.32)

The last limit is to recover the drift-diffusion model. It is assumed that the
energy loss due to inelastic collision is large and that the electron temper-
ature returns to the lattice temperature. We therefore substitute the last
term in (1.29) by (0, σ−1W )>. Following the lines in [17] we perform a
Hilbert expansion of the form

µσ = µ0 + σµ1 + . . . , T σ = T0 + σT1, Jσi = Ji0 + σJi1.

Identifying the equations of the order σ−1 and σ0, we obtain:

0 = W (µ0, T0, TL), (1.33)

∂tn(µ0, T0) + div J10 = 0, (1.34)

where J10 is obtained from the first row of (1.30) by substituting µσ, T σ

with µ0, T0. It was shown in [17] that the solution to (1.33) and (1.34) for
a constant lattice temperature TL is T0 = TL and

J10 = D11(x, µ0, TL)
∇(µ0 − V )

TL
. (1.35)

Assuming for simplicity that D(x, ε) is a constant, TL = 1, a parabolic band
structure and n(µ0, TL) = ceµ0 , for some constant c, simple calculations lead
to D11 = eµ = n/c. Introduced in (1.35) we obtain for the current

J10 =
n

c
∇(log n− c− V )) =

1

c
(∇n− n∇V )

which is the classical drift-diffusion current density relation.
Summarizing this subsection, we point out that due to the understanding
of limiting procedures all parameters in the macroscopic models are based
on microscopic mechanisms. It is now possible to use refined parameters
obtained by Monte Carlo simulations, for adjusting the parameters in the
macroscopic models, enabling the simulation of advanced materials. The
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energy-transport models have to be solved on a domain with fewer dimen-
sions than the mesoscopic or even the microscopic models, and they still in-
corporate the temperature which is important for simulating “hot electron”
effects. This makes energy-transport models altogether very interesting for
simulations in the design process of new devices. Other so-called hydro-
dynamic models can be derived via moment methods from the Boltzmann
equation. The resulting macroscopic model contains hyperbolic modes. Spe-
cial numerical methods have been developed for those models as well, see
[18, 38, 60, 61]. The energy-transport model is of parabolic type. This
makes the discretization in the transient case a little easier. In the physical
literature, energy-transport equations have been derived from hydrodynamic
models usually by neglecting certain convection terms (see, e.g., [103] and
references therein). This approach can be made rigorously by considering a
diffusion time scaling [62], which gives an additional connection in the hi-
erarchy of macroscopic semiconductor models, see also [81] for a numerical
comparison.

In the next section, we give a short overview on the state of the art in
energy-transport models. Furthermore, we specify the parameters on the
microscopic level that lead to the class of stationary energy-transport models
which be the subject for the simulations in this work.

1.1.3 Energy-transport Models – An Overview

The analysis of the class of models consisting of the equations (1.29)-(1.32),
coupled to the Poisson equation (1.12) were performed under the assumption
of uniformly bounded diffusion coefficients, D, in [47, 48]. The existence and
uniqueness of weak solutions to both the stationary and the time-dependent
(initial) boundary-value problems were proved. Existence results with dif-
ferent assumptions (for instance, near-equilibrium situations) were shown in
[3, 68, 78, 54, 40, 39].

The numerical discretization of energy-transport models has been inves-
tigated in the physical literature for quite some years [5, 36, 57, 37,
110, 114]. Mathematicians started to pay attention to these models in
the 1990s, using ENO (essentially non-oscillatory) numerical schemes [77],
finite-difference methods [58, 59, 101], mixed finite-volume schemes [20],
mixed finite-element methods [85, 92], or mixed finite-elements for the for-
mulation (1.36) [49] (see also [24] for an overview), but always for a fixed
discretization mesh.

In this work, we consider only stationary energy-transport models. The
structure of the class of models that we will use in the simulations needs
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to be elaborated. In order to find constitutive relations for D and W , we
formulate the following three main hypotheses:

• The energy band diagram is spherical symmetric. The Brillouin zone
is therefore replaced by R

3. We continue to denote E(k) = E(k), for
some k with |k| = k, and assume that E(k) is strictly monotone.

• The Fermi-Dirac distribution is substituted by the Maxwell-Boltzmann
distribution given by M(µ, T ) = exp(−(ε−µ)/T ). Assuming that ε is
large enough, we approximate F(1 − F) ≈ M as well. In the physics
literature, this assumption is referred to as a semiconductor with non-
degenerate statistics.

• The elastic collision operator is a relaxation time operator. These
operators follow from (1.17) under the assumption that the scattering
rate is energy and position dependent only φx(k,k

′) = φ(x,E(k)) =
φ0(x)E

β , β > −2.

The key point is that under these assumptions the constitutive relations of
both currents (1.30) obey the same convection diffusion form, which was
discovered in [49]. Indeed, it is possible to define the new variables g1, g2
such that the constitutive relations for the current densities have a drift-
diffusion form:

Ji = ∇g1 −
∇V
T
g1, i ∈ {1, 2}, (1.36)

where the temperature is given by T = T (g1, g2).(In fact, g1 = D11 and
g2 = D21; see [49] for details.)
In literature, the values β = 1/2 (used by Chen et al. [36]) and β = 0 (used
by Lyumkis et al. [87]) have been employed. In case β = 1/2 the diffusion
matrix for the parabolic band approximation has the form

D(x, µ, T ) =
n(µ, T )

6
√

2πφ0(x)

(
Id 3

2T Id
3
2T Id 15

4 T
2Id

)
.

We call the resulting model with this diffusion matrix the Chen model. In
case β = 0, we obtain

D(x, µ, T ) =
2T 1/2n(µ, T )

3φ0(x)

(
Id 2T Id
2Id 6T 2Id

)
.

The corresponding energy-transport equations are called the Lyumkis model.
If we use the Fokker-Planck approximation[106] of the energy relaxation
term (1.32), it can be written in those new variables as W = c1g1 − c2g2
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with ci = ci(g1, g2) ≥ 0. Using the current densities (1.36) we thus write the
stationary energy-transport model in a scaled form: (See Chapter 3 for the
precise constitutive relations.)

−div J1 = 0, (1.37)

−div J2 + c2g2 = −J1·∇V + c1g1, (1.38)

λ2∆V = n(g1, g2)− C. (1.39)

The above equations have to be solved in a bounded domain Ω ⊂ R
2. We

now (implicitly) complement the equations with physically motivated mixed
Dirichlet-Neumann boundary conditions:

n = nD, T = TD, V = VD on ΓD, (1.40)

J1 · ν = J2 · ν = ∇V · ν = 0 on ΓN , (1.41)

modelling the (Ohmic or Schottky) contacts ΓD and the insulating boundary
parts ΓN . We have assumed that ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅ holds
and that the exterior normal unit vector ν exists almost everywhere on ∂Ω.

By freezing the coefficients in c1, c2 and ∇V T−1 (obtained from the previ-
ous iteration in the global iteration procedure), the energy-transport model
can be written (in each iteration step) as a system of convection-diffusion
equations.

As we pointed out in Remark 1.1 a very high electric field might be present
in parts of the domain, which leads to a convection dominated problem.
Therefore, an adaptive refinement strategy is crucial to resolve accurately
and efficiently very sharp gradients occurring in the device simulations.

Standard mixed finite-element families like Raviart–Thomas (RT ) or Brezzi–
Douglas–Marini (BDM) elements of polynomial degree p are extensively
used in various applications where the currents or fluxes are the more im-
portant quantities. However, in the discretization of a symmetric elliptic
problem with zeroth order term they might not preserve the positivity of
the solution for given positive boundary data, which is crucial in our simu-
lation. Another class of mixed finite-elements was proposed by Marini and
Pietra in [89] to overcome this deficiency in the simulation of drift-diffusion
equations. Interestingly, the Marini–Pietra elements (MP ) can be regarded
as an extension of the RT–elements. In the case of a non-homogeneous
Dirichlet problem without internal load, the discrete solutions are the same.

The discretization of the drift-diffusion model takes advantage of the exis-
tence of a transformation on the continuous level which allows to rewrite
the convection-diffusion problem as a symmetric elliptic problem. Due to



1.2. A Mixed Finite–Element Framework 25

the non-constant temperature in the energy-transport model, this transfor-
mation can only be made on the discrete level. In Chapter 2, we detail this
transformation and prove an a priori error estimate for the discrete solution
of a general convection-diffusion-reaction problem.
In the next section, we present the relations between the above mentioned
mixed finite-element classes, and, in the last part of this section, we focus
on the mesh refinement process in an adaptive solution process.

1.2 A Mixed Finite–Element Framework

In this section we sketch an abstract error analysis framework, in which stan-
dard mixed finite-elements and the more specialized Marini-Pietra (MP )
elements can jointly be analyzed. This framework was originally published
in [89] and in a more streamlined form in [24, Chapters 3.1 to 3.6]. The
main result of this comparison is given in Proposition 1.3 and Remark 1.2
on page 29.
A simplified linear model problem suits to elaborate the similarities and
differences of different mixed finite-element methods. We shall use standard
notation for Sobolev spaces, [1], and the respective norms that will occur.
Let Ω be a polygonal domain in R

2, and a, d, g and f be sufficiently regular
functions, then we consider the problem: Find u ∈ H 1(Ω) so that

−div(a∇u) + du = f in Ω, u = g on ∂Ω.

Assume that d is non-negative and bounded, a is bounded; the lower bound is
given by a constant a0 > 0. The central step for deriving a mixed formulation
from the above equation is to introduce the flux σ = a∇u as an independent
variable, thus we have

a−1σ −∇u = 0 in Ω,

−div σ + du = f in Ω, (1.42)

u = g on Γ = ∂Ω.

We abbreviate the notation of the normed function spaces by

W = L2(Ω), ‖w‖W = ‖w‖0 = ‖w‖L2(Ω),

V = H(div,Ω), ‖q‖2V = ‖q‖20 + ‖div q‖20.
Let us introduce the bilinear forms a(·, ·):V×V → R, b(·, ·):W×V → R,
d(·, ·):W×W → R

a(σ, τ) =

∫

Ω
a−1στ dx, b(v, τ) =

∫

Ω
v div τ dx, d(u,w) =

∫

Ω
duv dx.
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The weak mixed formulation then reads:

Find (σ, u) ∈ V×W such that

a(σ, τ) + b(u, τ) = 〈g, τ ·ν〉|Γ ∀τ ∈ V, (1.43)

b(w, σ) − d(u,w) = −(f, w) ∀w ∈W,

where 〈·, ·〉|Γ is the duality pairing between H1/2(Γ) and its dual space

H−1/2(Γ), and (·, ·) is the inner product in L2(Ω). The following properties
ensure well-posedness of the continuous problem (1.43), see [24, Theorem
3.1]. There exist constants α > 0, γ > 0 so that:

(P1) a(·, ·), b(·, ·), and d(·, ·) are continuous bilinear forms.

(P2) a(τ, τ) ≥ α‖τ‖20, ∀τ ∈ V.

(P3) sup
τ∈V

b(w, τ)

‖τ‖V
≥ γ‖w‖W ∀w ∈W, an inf-sup condition.

Furthermore, the solution (σ, u) lies in a more regular space V ∗ ×W , see
[24, Theorem 3.2], with

V ∗ = {τ ∈ (Lp(Ω))2| p > 2, div τ ∈ L2(Ω)}.

and an inf-sup condition in a stronger norm ‖·‖V ∗ holds as well. For the
discrete problem, we assume the Ω is exactly covered by a regular simplicial
triangulation Th in the sense of Ciarlet [42]. The discrete spaces Vh and Wh

are assumed to consist of piecewise polynomial functions and the element-
wise restrictions are denoted as Vh(K) and Wh(K). Here we treat only
conforming approximations of the vector valued part of the solution, i.e.
Vh ⊂ V . However, to state a discrete problem this requirement is not
mandatory and non-conforming approximation spaces fitting in a slightly
extended framework have been proposed as well, see [89, Example 5].
The discrete analogue of the inf-sup condition has some implication for the
possible combination of approximation spaces Vh and Wh. It is therefore
useful to define the normed space V̂ related to a triangulation

V̂ = L2(Ω) ∩
∏

K∈Th

H(div,K), ‖τ‖2
V̂

= ‖τ‖20,Ω +
∑

K∈Th

‖div τ‖20,K .

The bilinear form b is meaningless on the space V̂ . It is substituted by

bh(w, τ) =
∑

K∈Th

bKh (w, τ), with bKh (w, τ) =

∫

K
w div τ dx,
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and we notice that b(w, τ) ≡ bh(w, τ) for all τ ∈ V and w ∈W . We associate
an operator B : V̂ → W ′ with the bilinear form bh(·, ·) and distinguish
between:

KerBh :=
{
τh ∈

∏
K Vh(K)| bKh (wh, τh) = 0 ∀wh ∈Wh

}
, and

KerB̂ :=
{
τ ∈ V̂ | bh(w, τ) = 0 ∀w ∈W

}
.

The discrete formulation of (1.43) is now:

Find (σh, uh) ∈ Vh×Wh such that

a(σh, τh) + b(uh, τh) = 〈g, τh·ν〉|Γ ∀τh ∈ Vh, (1.44)

b(wh, σh)− d(uh, wh) = −(f, wh) ∀wh ∈Wh.

In this framework the proof of existence of discrete solutions and optimal
error bounds is based on the following additional assumptions on the discrete
spaces:

(P4) KerBh ⊂ KerB̂.

(P5) There exists an interpolation operator Πh : V ∗ → Vh such that

bh(wh, τ−Πhτ)=0∀wh ∈Wh, and ‖Πhτ‖V̂≤C‖τ‖V ∗ ∀τ ∈ V ∗

with a mesh-independent constant C.

These assumptions have the following consequences. Firstly, they imply that
a discrete inf-sup condition holds:

∃ γ > 0 : sup
τh∈Vh

bh(wh, τh)

‖τh‖V̂
≥ γ‖wh‖W . (1.45)

This inter-relates the dimension of the approximation spaces:

dim(div Vh) ≡ dim(Wh).

Moreover, for any choice of basis functions {w1, . . . , wr} and {d1, . . . , dr} in
Wh(K) and div Vh(K) respectively the matrix

∫

K
diwj dx i, j ∈ {1, . . . , r} (1.46)

is nonsingular. To prove (1.45) we use the inf-sup condition given for the
continuous problem in the form that for any wh ∈ Wh ⊂ W , there exists
τ ∈ V ∗ such that

b(wh, τ)

‖τ‖V ∗

≤ γ∗‖wh‖W
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Now we infer

bh(wh,Πτ)

‖Πτ‖V̂
≥ bh(wh, τ)

C‖τ‖V̂
≥ b(wh, τ)

C‖τ‖V̂
≥ γ∗

C
‖wh‖W

hence (1.45) holds with γ = γ∗/C. The assumption (P4) and (1.45) render
the second consequence. We now need to define an interpolation operator
on the primal field. Because of the invertibility of the matrix in equation
(1.46) this can be done by requiring that

∫

K
(w − Phw) div τh dx = 0 ∀τh ∈ Vh(K). (1.47)

Now we are able to write the abstract error estimate:

Proposition 1.3. [24] Let (σ, u) be a solution to (1.43) and (σh, uh) be a so-
lution of (1.44). Under the assumptions (P1)–(P5) there exists a constant
C that is independent of the mesh size h, such that the following estimate
holds.

‖Πhσ − σh‖V̂ + ‖Phu− uh‖W ≤ C(‖σ −Πhσ‖0 + ‖u− Phu‖W )

Proof. Due to the conformity of the finite dimensional spaces, we obtain
a discrete difference problem by subtracting (1.43) from (1.44) and adding
and subtracting projections of σ and u into the discrete spaces:

{
a(Πhσ − σh, τh) + bh(Phu− uh, τh) = a(Πhσ − σ, τh) ∀τh ∈ Vh
bh(wh,Πhσ − σh)− d(Phu− uh, wh) = d(u− Phu,wh) ∀wh ∈Wh

Well-posedness of the discrete problem yields the error estimate. The con-
stant C depends on the continuity properties of the underlying bilinear
forms, the coercivity of a(·, ·) and the inf-sup condition for bh(·, ·).

An estimate on the difference ‖σ−σh‖ in a certain norm ‖·‖ may be deduced
from Proposition 1.3 via the triangle inequality

‖σ − σh‖ ≤ ‖σ −Πhσ‖+ ‖Πhσ − σh‖.

If both terms on the right-hand side can be bounded in a specific norm we
directly deduce an estimate on the error in this norm. Taking, for instance,
‖·‖ = ‖·‖0 the second term is bounded due to ‖·‖0 ≤ ‖·‖V̂ . An interpolation
estimate in the L2–norm is at hand for standard mixed finite-elements as
well as for the MP–elements. A bound in the stronger norm on V̂ requires
an estimate for ‖Πhσ−σ‖V̂ which is not available for the MP–elements. We
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recall that Πhσ is only defined via bh(wh, σ − Πhσ) = 0, which depends on
the actual pair (Vh,Wh) of approximation spaces.

Remark 1.2. [24, equations (3.110)-(3.111), (3.124)] The Raviart–Thomas
element of lowest order RT0 as well as the conforming Marini–Pietra ele-
ment are accompanied by Wh(K) = P0(K), the element-wise constant func-
tions. For both elements we have:

‖σ − σh‖0 + ‖u− uh‖W ≤ Ch(|σ|1 + |u|1).

For the RT0 it holds ‖σ − Πhσ‖V̂ ≤ Ch(|σ|1 + |div σ|1), see [23, 42], con-
sequently we deduce

‖σ − σh‖V̂ + ‖u− uh‖W ≤ Ch(|σ|1 + |div σ|1 + |u|1).

The advantages of the MP–elements will become apparent on the implemen-
tational side. Furthermore, these advantages enable the a priori analysis for
a general convection–diffusion problem that we will carry out in Chapter 2.
Here we explain further similarities and the fundamental difference between
RT0– and MP–elements. The dimension of the two spaces is the same, they
are spanned locally by

RT0(K) = span{(0, 1)>, (1, 0)>, qRT0
}, qRT0

= (x, y)>

MP (K) = span{(0, 1)>, (1, 0)>, qMP }, qMP ∈ P2(K).

The precise form of qMP will be specified later, at this stage we only note
that it is a special second order polynomial in each component. Let τi denote
the basis elements. By construction (see Section 2.1) the matrix

∫

ej(K)

τi·nj ds ∀K ∈ Th,

is invertible for both elements, where nj is the outward normal vector of the
edge ej . Consequently the local projections ΠRT0

h τ and ΠMP
h τ are given by

∫

ej(K)

(τ −ΠS
hτ)·nj ds = 0 ∀j ∈ {1, 2, 3}, S ∈ {MP,RT0}.

For τh ∈ RT0(K) it is obvious that div τh ∈ P0(K). The projection Ph is
therefore the usual L2-projection

∫

K
(v − Phv)w = 0 ∀w ∈W.
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This is not true for the MP–elements since div qMP ∈ P1(K), but an inter-
polation estimate still exists. On the other hand, if we equip V̂ with the
norm

‖τ‖2h = ‖τ‖20 +
∑

K∈Th

hK
2‖div τ‖20,

it is possible to prove ‖ΠMP
h τ‖h ≤ C‖τ‖V ∗ . It is not necessary for the RT -

elements to exchanging the norm on V̂ , i.e. we directly have ‖ΠRT0
h τ‖V̂ ≤

C‖τ‖V ∗ . Accordingly, the properties (P4), (P5) are fulfilled and the ab-
stract framework applies.
As a final statement of this section, we point out that the main requirement
in the target application is the conforming approximation inH(div,Ω) which
leads to conservation of the total particle current. This requirement is ful-
filled by both elements.

1.2.1 Hybridization

The algebraic system that corresponds to (1.44) may be indefinite, for in-
stance if γ ≡ 0. Compared with standard one-field finite-element methods
the linear system is much larger and it would be require to construct con-
forming basis functions in H(div,Ω). A different way to solve the discrete
problem (1.44) avoiding all of the above deficiencies is to drop the continu-
ity property in the definition of the discrete spaces, to enforce it through an
additional constraint and to solve the new problem by means of a Lagrange
multiplier method. This procedure is called hybridization. We closely follow
in this subsection the lines of [24, Section 3.6].
The space of multipliers is directly attached to Eh, the set of edges of the
triangulation. For the lowest order method it is precisely:

Λh = {µh ∈ L2(Eh)|µh|e ∈ P0(e)∀e ∈ Eh}.
In order to impose boundary conditions, we write for a given function g:

Λh,g = {µh ∈ Λh|
∫

e
µh−g ds = 0 ∀e ∈ Eh ∩ Γ}.

The constraint will be based on the bilinear form

ch(µh, τh) =
∑

e∈Eh

∫

e
µh[τ ·n] ds,

where [τh·n]|e denotes the jump of τ ·n over the edge e. For a function τ ∈ V̂
the constraint that τ is actually in V is given by the requirement

ch(µh, τ) = 0 ∀µh ∈ Λh,0.
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The hybridized discrete problem then is:

Find (σh, uh, λh) ∈ (
∏
Vh(K))×Wh × Λh,g such that

a(σh, τh) + b(uh, τh)− ch(λh, τh) = 0 ∀τh ∈ Vh,
b(wh, σh)− d(uh, wh) = −(f, wh) ∀wh ∈Wh,

ch(µh, σh) = 0 ∀µh ∈ Λh,0.

(1.48)

Existence and uniqueness follows directly from an inf-sup condition on the
new bilinear form ch. Once more we stress that through enforcing the con-
tinuity of the normal component of the vector-valued variable in the last of
the above equations force the solution to be equal to that of problem (1.44).

The Lagrange multipliers λh are an approximation of the solution’s primal
variable u that is only defined on the skeleton of the triangulation. Error
estimates are derived utilizing the results of Proposition 1.3 in the following
form:

Proposition 1.4. If we assume that the triangulation is quasi-uniform, and
the vector valued variable is approximated either by RT0– or MP–elements,
the following estimate holds (see [24, equation (3.200)]):

‖λh −Pu‖0,Eh ≤ C(h1/2‖σ − σh‖0 + h−1/2‖Phu− uh‖0) ≤ Ch1/2, (1.49)

where P is the L2-projection onto Λh.

So far, the introduction of the Lagrange multipliers has enlarged the cor-
responding linear system even further. Setting aside any inter-element
continuity property in the approximation spaces for (σh, uh) allows for an
element-by-element elimination of these variables expressing them in terms
of λh. By that means the linear system is reduced to the size of the number
of internal edges of the triangulation. Here lies the main advantage of the
MP–elements, since even in case γ 6≡ 0 the resulting matrix is a M -matrix,
and therefore a discrete maximum principle holds, ensuring that particle
densities do not become negative. This is not true for the RT0–element, and
has negative effects, as shown in [90].

The procedure of eliminating the original unknowns is called static conden-
sation and it has a major impact on the analysis that we carry out in Section
2.2, where we prove a new estimate for the Lagrange multipliers for a gen-
eral convection-diffusion problem. The new technique to derive this estimate
does not rely on independently-obtained estimates on the other variables.

Furthermore, the Lagrange multipliers λh allow for a postprocessing in which
new higher order approximations ûh to the primal variable are generated.
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Although this higher order estimate was only proven for symmetric problems
approximated by standard mixed elements, it holds numerically also in the
case of drift dominated simulations. This effect will be exploited to estimate
a posteriori the error of a computed solution and to have an adaptive control
on the refinement of the mesh in Section 2.3. The next section will give a
brief introduction in this field.

1.2.2 Basic Adaptive Algorithm

Numerical errors are intrinsic to the simulation of the partial differential
equations their exact solutions lie in infinite dimensional function spaces
which are substituted by finite dimensional approximations in order to sim-
ulate them in the computer. The question is, how the error can be effec-
tively minimized. The finite-element method is often also called a projection
method, since it produces the optimal approximate solution for a given dis-
crete space, with respect to a specific problem dependent norm, cf. Galerkin
orthogonality.

The question, how the error can be effectively minimized, can be rephrased
into how can appropriate discrete spaces be defined. The a priori estimation
of numerical errors delivers only the asymptotic behaviour of a simulation
technique. A discrete space that has been designed by means of an a priori
bound to guarantee a prescribed accuracy in the solution is often far too
complex.

If a less complex space is used instead, how can the accuracy of the calculated
solution be measured? It is the objective of a posteriori error analysis to
answer this question. In case of an insufficient accuracy, the discretization
may be refined. An a posteriori error estimator η(uh) – computed from the
approximate solution uh – may therefore be broken up into local element-
wise contributions ηK . These local indicators form the basis for adaptive
refinement algorithms.

Different strategies can be pursued to manipulate the spaces. For a fixed
triangulation the polynomial degree p can be altered, which is referred to
as p–refinement. On the other hand, if the polynomial degree is fixed, the
triangulation can be refined, thereby changing the element diameter h, ac-
cordingly denoted as h–refinement. A variation in both directions is called
hp-refinement, although it is hard to decide, whether one should increase
the polynomial degree or refine the mesh, see [107, 75] and the references
therein. The approximation of functions with a large gradient by high order
polynomials tend to be oscillating. This prohibits the use of high order ele-
ments, since, in regions with positive but small densities, these oscillations
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might range into negative, thus unphysical, values. In this work we only
consider the h–refinement for elements of lowest order.
The main concepts that distinguish the quality in estimating the error
‖u − uh‖ are reliability, efficiency and asymptotic exactness. Reliability
guarantees that the error is below a certain bound

‖u− uh‖ ≤ Crη(uh),

where Cr is a mesh independent constant. The true error might be much
smaller, which would again lead to over-refinement, as in the case of mesh
design by an a priori bound. This can be avoided if a lower bound is avail-
able. Therefore, an estimator is called efficient if a bound from below with
a mesh independent constant Ce is given

Ceη(uh) ≥ ‖u− uh‖.

An estimator is said to be asymptotic exact if both constants Cr, and Ce tend
to one. Two different a posteriori estimators will be assessed numerically
in Section 2.3. Under certain assumptions on the approximation spaces
and the regularity of the solution, reliability and efficiency estimates hold.
These two estimators are used together to construct a new goal oriented
estimator. These estimators are even more efficient in the sense that they
directly consider the error in a (local) quantity of interest, whereas standard
estimators may have only indirect control on these quantities through the
norm that they control. The procedure is illustrated in Section 2.4.
The adaptive algorithm for all these estimators does not change besides the
substitution of the error indicator. It is depicted in Algorithm 1. The actual
mesh refinement is based on the PDEToolbox of MATLABr .
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Algorithmus 1 : Adaptive mesh refinement

Input : Initial mesh T0, tolerance δ > 0, max. triangle number Kmax

Output : Refined mesh T ′, discrete solution uh
k ← 0
repeat

compute discrete solution uh on the mesh Tk
compute global error estimator η(uh) and local error indicator ηK
collect a set RK of elements have to be refined
generate a refined mesh Tk+1

k ← k + 1
until η(uh) < δ or |Tk| > Kmax

T ′ ← Tk−1



Chapter 2

A Hybridized Mixed

Finite–Element

Method for

Convection-Diffusion

Problems

This chapter consists of three main parts. In the first section the discretiza-
tion is delineated leading to the main important property that the matrix
of the algebraic system is an M-matrix, which is proven in Lemma 2.1. In
Section 2.2 we describe the new interpretation of the discrete system after
hybridization, that can be understood as a discrete bilinear form acting on
the Lagrange multipliers only. We will obtain a new a priori estimate on the
Lagrange multiplier that requires only minimal regularity of the solution to
the continuous problem in Theorem 2.3. The last two parts of this chap-
ter are devoted to different kinds of a posteriori error estimation techniques
combined in a new dual-weighted-residual estimator[15] in Section 2.4.

2.1 Discretization

Basically, the method treats the convection term with a local exponential
fitting discretization. These methods, often also referred to as Scharfetter
and Gummel (SG) type discretization, have been used in many ways to
solve convection–diffusion problems. The originally one-dimensional idea of
Scharfetter and Gummel [105] has been extended to higher dimensions to

35
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the so called SG-Box Method [9, 10, 25]. Several other generalizations of
this idea can be found, especially if monotone schemes are desired, cf. e.g.
[118, 96] and more recently [116]. In contrast to the edge-averaged finite-
element method presented in [118] our method preserves additionally to the
maximum principal also the continuity of the normal component of the flux
density. In this section we state the precise problem assumption before elab-
orating on the connection of the final discretization given through problem
(2.10) to the method introduced by Van Nooyen in [96]. We will therefore
include an intermediate discretization, problem (2.4), that, additionally, has
important utility for the analysis in Section 2.2.

We state the convection–diffusion problem directly as a system of first order
equations, which is closely related to the mixed discretization of the problem.
Let Ω ⊂ R

2 be a bounded polygonal domain and consider

σ = −a(∇u− bu) in Ω,

div σ + du = f in Ω,

u = g on ΓD, σ · ν = 0 on ΓN

(2.1)

We impose the following assumptions on the data.

Assumption 1. The diffusion coefficient a ∈ C0(Ω̄) with 0 < amin ≤
a(x) ≤ amax and b ∈ W 1,∞(Ω̄), d ∈ C0(Ω), 0 ≤ d(x) + 1

2 div(ab)(x) almost

everywhere in Ω, f ∈ L2(Ω), Γ̄D∪ΓN = ∂Ω, ΓD∩ΓN = ∅ and g ∈ H1/2(ΓD).

Under even weaker assumptions it is known that a maximum principle holds
for this operator [64]. Let Ω be exactly covered by a regular simplicial
triangulation Th in the sense of [42]. We denote by Eh the set of edges e of
the triangulation and by Nh the set of all nodes or vertices. May also ΓD
and ΓN always be connected via a vertex of the triangulation. By Pk(O)
we denote the space of polynomials over the domain O of degree less than
or equal to k. We denote the norms on spaces Hk(O) by ‖·‖k,O. Associated
with Th let Wh ⊂ L2(Ω) be the space of piecewise constant functions, let
Λh be the space of edgewise constant functions, that may incorporate given
boundary data in the following form

Λh,uD =
{
λ ∈

∏

e∈Eh

P0(e);

∫

e
uD − λds = 0 ∀e ∈ ΓD

}
.

In the mixed finite element discretization of (2.1) σ is approximated directly
by a discrete function σh. This vector valued approximation requires in
the hybridized setting only local regularity, for instance, σh|K ∈ Vh(K) ⊂
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H1(K)2, ∀K ∈ Th. We may set Vh =
∏
K∈Th

Vh(K) composed by the local
Marini-Pietra elements defined through

Vh(K) := span{(1, 0)>, (0, 1)>, q}.
Where q = (φ1, φ2)

> ∈ P2(K) is characterized by




∫
K φi dx = 0 for i = 1, 2,

(φ1, φ2)
>|ei · νei = δ1i for ei ∈ ∂K,

(φ1, φ2)
> · t(m1) = 0,

(2.2)

where m1 is the midpoint of the edge e1 and t the respective tangent vector.
The local edge numbering will be uniquely determined through the drift term
as we will specify below. This specific choice of q will confine the influence
of the zeroth order term to diagonal of the final algebraic system, see (2.13)-
(2.14) below. The space of Raviart–Thomas finite-elements of lowest order
can be equipped with local nodal basis functions of similar structure, where
we denote by xB the barycenter of K:

RT (K) := span{(1, 0)>, (0, 1)>, x− xB}.
The final discretization will be an inconsistent approximation of the origi-
nal problem. Our aim is now to state an intermediate mesh dependent but
consistent problem, which illustrates the connection of the final discretiza-
tions to other approaches to solve the convection-diffusion problem and it
will serve as a tool in the later proofs. We abbreviate by f̄ ∈ Wh the L2-
projection of a function f onto Wh. The important point is that we associate
to b a function ψ ∈ L2(Ω) through the local requirement

∇b̄|K = ∇ψ|K ∀K ∈ Th, (2.3)

so that the extension of ψ|K to K attains its largest value zero at one vertex
of K. Let Vh,ψ =

∏
K∈Th

eψVh(K) be the space of exponentially fitted test

functions. We also use the notation τ̃ = eψτ . We state the first discrete
problem.
Find (σh, uh, λh) ∈ Vh ×Wh × Λh,g so that

∑

K∈Th

∫

K

cσhτ̃h − uh div τ̃h − uhbτ̃h dx+

∫

∂K∩Ω

λhτ̃h · ν ds=−
∫

ΓD

gτ̃h·ν ds, (2.4a)

∑

K∈Th

∫

K

wh div σh + dwhuh dx =

∫

Ω

fwh dx, (2.4b)

∑

K∈Th

∫

∂K

µhσh·ν ds =0, (2.4c)
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holds for every (τ̃h, wh, µh) ∈ Vh,ψ ×Wh × Λh,0 with c = a−1.
This scheme can be understood as a kind of Petrov-Galerkin finite-element
method. The space Vh,ψ is in some sense the nonconforming analogue of
the conforming exponential test space for rectangular meshes that was in-
troduced in [96]. There Van Nooyen derived a monotone mixed Petrov-
Galerkin scheme for a fixed rectangular grid. A rectangular grid allows to
separate the components of the vector valued test functions. Therefore a
conforming construction of the test space is possible as in one dimension.
We circumvent this loss of conformity of the test function by applying a
static condensation procedure and obtain finally also a monotone scheme of
first order.
The final scheme is now derived by substituting the terms in (2.4) with
suitable approximations. The generated inconsistencies will be analyzed in
the following section. At first we note that the choice of Vh,ψ does not
completely symmetrize the method and we get the principal inconsistency
of the scheme, since we drop in the discretization the last term of

∫

K
−udiv τ̃h − ubτ̃h dx =

∫

K
−ueψ div τh − u(b− b̄)eψτh dx. (2.5)

Due to the local nature of the requirement ∇Kψ = −b̄|K we can further

ensure that ψ ≤ 0 and thereby bound ‖eψ‖L∞(Ω) ≤ 1. This prevents error
amplification for instance in the last term in (2.5). The exponential functions
in the integrals will be substituted by carefully chosen integral mean values,
given by

RK =
1

|K|

∫

K

eψ dx, Sei(K) =
1

|ei(K)|

∫

ei(K)

eψ ds, SK = max
e∈∂K

Se(K), (2.6)

where |K| and |e| denote the area of a triangle K and the length of an edge e,
respectively, and we define the function R,S ∈Wh through R|K = RK and
S|K = SK . We will also approximate the coefficients c, d in the equations
(2.4a) and (2.4b) in Wh. In order to define a matrix description of the
actual numerical scheme that we will analyze, we introduce the operators
A : Vh → Vh, B : Vh →Wh, C : Vh → Λh, D : Wh →Wh

(Ap, q)Ω =

∫

Ω
Rc̄p · q dx, (Bp, v)Ω =

∑

K∈Th

∫

K
v div pdx (2.7)

(Dw, v)Ω =

∫

Ω
d̄wv dx, (Cp, µ)Eh = −

∑

K∈Th

∫

∂K
µp·ν ds, (2.8)
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and the adjoints adjusted to the nonsymmetric operator, defined locally by

(B̃>u, q)K =

∫

K
SKudiv q dx, (C̃>λ, q)K = −

∫

∂K
Sei(K)λq ·ν ds. (2.9)

Here and in the following (·, ·)O denotes the L2(O) inner product. The alge-
braic system corresponding to the hybridized mixed method is then defined
as follows: Find (σh, uh, λh) ∈ Vh ×Wh × Λh,g so that



A −B̃> −C̃>

B D 0
C 0 0





σh
uh
λh


 =




0
F
0


 , (2.10)

where F is the vector of nodal values of f̄ , and with respective bases for
Vh,Wh, and Λh,g the matrix parts are given by the corresponding operators
defined by the equations (2.7)-(2.9).
In applications the use of this algebraic system is limited due to its size,
but it is the basis of our analysis in the following section. The number
of unknowns can be reduced by eliminating the unknowns σh and uh from
(2.10). The elementary matrices associated with the element K will be
denoted with the superscript K. Then it holds B̃K = SKB

K ∈ R
3. For C̃K

we get

C̃K = CKdiag(Se1 , Se2 , Se3).

In view of the definition of Vh (see (2.2)) the matrix corresponding to A has
a diagonal structure and can easily be inverted, i.e. σh can be removed from
the system by static condensation. Similar arguments for −BTA−1B̃ − D
allow to eliminate uh.
We obtain the final linear system Mλh = G acting on the vector of nodal
values λh of the Lagrange multipliers only, with

M = C>A−1C̃ − C>A−1B̃(B>A−1B̃ +D)−1B>A−1C̃,

G = −C>A−1B̃(B>A−1B̃ +D)−1F.

For the current density σh and for uh we get

σh = A−1[B̃(B>A−1B̃ +D)−1(−F −B>A−1C̃λh) + C̃λh], (2.11)

uh = (B>A−1B̃ +D)−1(f̄ −BA−1C̃>λh). (2.12)

To emphasize the structure of the equation Mλh = G we detail the con-
tribution of the element matrix MK . Here λh denotes the vector of nodal



40 2. A Hybridized Mixed-FEM for Convection-Diffusion Problems

values according to the basis {χei : ∀ei ∈ Eh}, where χe is the characteristic
function of the edge e. With the local edge numbering so that SK = Se1
and ni = |ei|νi, νi being the outward normal of the respective edge ei, the
local element contribution to the global stiffness matrix M has the form:

MK
i,j =





SK
c̄RK

|e1|2
|K| + d̄|K|γ(d̄) for i = j = 1,

Sej
c̄RK

ni · nj
|K| ,

(2.13)

γ(d̄) = |e1|2
(
|e1|2 + d̄|K|‖τ3‖2L2(K)

c̄RK
SK

)−1
. (2.14)

Remark 2.1. (i) In the implementational practice possible cancellation ef-
fects in the computation of the quotients Sej/RK have to be dealt with.
The resulting numerical technique is now transfered into the require-
ment eψ ≤ 1, which prevents the error amplification in our analysis.
Since only local quotients occur, the method is still equivalent to the
one proposed in [25, 26, 90] for the special case b = ∇ψ, where ψ is a
piecewise linear function. Additionally the scheme used in [80] is also
covered by the above method.

(ii) A scaling argument shows that even in the hyperbolic limit the ap-
proximation of the zeroth order term d̄γ(d̄) is of the correct order of
magnitude compared to the drift term (cf. [90]).

Remark 2.2. Since

M̃K
ij =

ni · nj
|K| , i, j = 1, 2, 3,

is the elementary stiffness matrix corresponding to a P1 non-conforming
finite-element discretization of the Laplace operator and since for constant
potential it holds SK/RK = 1, a treatment of the lower order terms with a
non-conforming P1 elements is motivated. In Chapter 3 we perform for the
first device example a comparison of the different treatments.

Lemma 2.1. If the triangulation Th is weakly acute then the global stiffness
matrix M is a M-Matrix for every given data satisfying Assumption 1.

Proof. Each column of the matrix M corresponds, due to the chosen basis
of Λh, to one edge of the triangulation. With the global edge numbering
as shown in Figure 2.1 the contributions to the column of the edge e3 stem
from the two adjacent triangles K1,K2 with edges e1, e2, e3 and e3, e4, e5
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Figure 2.1: Degrees of freedom that contribute to the column corresponding
to the edge e3

respectively. Regarding now (2.13) this leads to at most five nonzero entries.
The coefficients RKl , Sem(Kl) and c̄ are positive and d̄γ(d̄) is nonnegative.
This leads to positive diagonal entries in M . The off diagonal entries’ sign
is determined by the sign of the term |ei||ej |νi · νj which is negative due to
the fact that the triangles are non obtuse.

It remains to show that the matrix is column diagonally dominant. Each
matrix MKl is column diagonally dominant, see (2.13), and this property is
invariant under summation. Elimination of boundary edges completes the
proof.

We complete this section with the component description of the reconstruc-
tion of the current density σh and the piecewise constant approximation of
the primal variable uh. Due to the block structure in (2.11) and (2.12) σh
and uh are reconstructed element per element. Let λi, i = 1, 2, 3 be the
values λh corresponding to the edges ei of a triangle K, then we have:

σKh = −
3∑

j=1

Sej(K)R
−1
K λjnj −

γ(d̄)|K|
|e1|

(d̄λ1 − f̄)qK and (2.15)

uKh = γ(d̄)
(
λ1 +

f̄ |K|c̄Rk‖q‖2
Se1 |e1|2

)
. (2.16)

The reconstruction of the current density is clearly very important, whereas
the benefit of the reconstruction of uh is questionable. The space Wh con-
tains less degrees of freedom compared to the space of the Lagrange mul-
tiplier Λh, which indicates a loss of approximation quality. Actually there
are other reconstructions that show numerically a higher convergence order
and that will be considered in Section 2.3.
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2.2 A priori Analysis

The basis of the new error analysis is to reinterpret the result of the static
condensation procedure Mλ = G as a variational problem a(λ, µ) = b(µ).
The bilinear form a(·, ·) acting on the Lagrange multiplier consists of certain
lifting operators that represent the original problem. This general technique,
developed by Cockburn and Gopalakrishnan[43, 44], has been applied to
several approximation spaces like Raviart–Thomas and Brezzi–Douglas–Ma-
rini[43] elements and later to a variable degree Raviart–Thomas space[44]
for second order selfadjoint elliptic problems. The error estimate on the
Lagrange multiplier is deduced in the norm induced by the bilinear form
a(·, ·). Already in the symmetric case the discretization is not consistent in
the sense that for the exact solution u

a(Pu, µ) − b(µ) 6= 0,

for any µ ∈ Λh,0. This lack of consistency has to be estimated carefully
to derive the error estimates. In the nonsymmetric case of the convection-
diffusion problem considered here, we have to recover in a first step the
reinterpretation result, see Theorem 2.1, by defining an extended set of
lifting operators. The seconds step comprises of identifying the additional
inconsistencies in Theorem 2.2 and analyzing their convergence behaviour,
yielding the main result in Theorem 2.3. This is followed by a subsection
containing proofs of the more technical details.
Inspired by the ideas of [44] we now start with the new interpretation of
(2.13) by introducing the lifting operators. The most important change is
how the local liftings need to be adopted to represent the nonsymmetric
nature of the continuous problem. We define therefore two classes of lifting
operators, starting with the definition of Q̃ : Λ(K)→ Vh(K), Q̃ : Vh(K)→
Vh(K), Q̃ : Wh(K) → Vh(K) and Ũ : Λ(K) → Wh(K), Ũ : Vh(K) →
Wh(K), Ũ : Wh(K)→Wh(K) through

(
A −B̃>

B D

)(
Q̃λ Q̃α Q̃f

Ũλ Ũα Ũf

)
=

(
C̃>λ α 0

0 0 f

)
(2.17)

Additionally we define for a “transposed” problem similar operator pairs
Q,U and Q, U through

(
A −B>

B S−1
K D

)(
Qλ Qf
Uλ Uf

)
=

(
C>λ 0

0 f

)
. (2.18)

We see that (Qλ,Uλ) can be regarded as a discrete solution to

−div(ae−ψ∇u) + e−ψdu = 0 in K, u = λ on ∂K,
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in the sense that (Qλ,Uλ) is an approximation of (−ae−ψ∇u, u). By this
means we obtain, similar to the symmetrization in Petrov-Galerkin methods
[94], the reinterpretation result.

Theorem 2.1. Assume that (σ, u, λ) ∈ Vh × Wh × Λh,g is a solution of
(2.10) for a right hand side (α, δ, 0)> with α ∈ Vh and δ ∈ Wh. Then λ is
the unique solution to

a(λ, µ) = b(µ) for all µ ∈ Λh,0, (2.19)

where

a(λ, µ) =
∑

K∈Th

∫

K
c̄Rk Q̃λQµdx+

∫

K
d̄ ŨλUµdx, (2.20)

b(µ) = (δ, Uµ)− (α, Qµ). (2.21)

Proof. The proof can be done elementwise. It follows mainly the ideas of
[44]. The differences lie in the nonsymmetry of the operators in (2.17)
and (2.18) as we will now demonstrate. Comparing the definition of the
operators with (2.10) it directly follows that

σ = Q̃λ+ Q̃α+ Q̃δ, (2.22)

u = Ũλ+ Ũα+ Ũδ. (2.23)

Inserting the first expression into the last equation of (2.10) and multiplying
with a test function µ ∈ Λ(∂K) we obtain

0 = ( Q̃λ,C>µ) + ( Q̃α,C>µ) + ( Q̃δ, C>µ)

The first term will give the definition of aK(λ, µ) whereas the two last terms
define −b(µ). By the definition of the lifting operator Q in (2.18) it follows
from the second equation of (2.17) that

( Q̃λ,C>µ) = ( Q̃λ,AQµ) + ( Q̃λ,−B>Uµ)

= ( Q̃λ,AQµ) + (D Ũλ,Uµ) =: aK(λ, µ)

Next we will show ( Q̃α,C>µ) = −(α, Qµ). Since SKUλ ∈ Wh(K) we get
from the second equation in (2.18)

( Q̃α,B>Uµ) = (B Q̃α, Uµ) = −(D Ũα, Uµ)

= −(SK Ũα, S−1
K DUµ) = (SK Ũα,B Qµ)

= (B̃>Ũα, Qµ).
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Thus finally

( Q̃α,C>µ) = (A Q̃α− B̃> Ũα, Qµ) = −(α, Qµ).

Similar manipulations lead to ( Q̃δ, C>µ) = −(δ, Uµ) which completes the
proof.

If we identify again an element µ ∈ Λh with its corresponding vector of
nodal values µ, we can express the bilinear form a in (2.20) in terms of the
matrix M with

a(λ, µ) = µ>Mλ

From Theorem 2.1 we deduce an a priori error estimate for the Lagrange
multiplier in the “energy norm“

‖λ‖a = sup
‖Qµ‖+‖Uµ‖6=0

|a(λ, µ)|
‖Qµ‖+ ‖Uµ‖ .

The definiteness even in the case b 6= 0 follows then directly from Lemma
2.1 since for all µ 6= 0 we have

a(µ, µ) = 1
2µ>(M +M>)µ > 0

Remark 2.3. If |b| → 0 this norm is equivalent to the norm ||| · |||a which
was studied for the Raviart-Thomas element in [44].

Before stating the main result we present some properties of the operators
defined in (2.17) and (2.18) that elucidate in which way the structure of
the continuous problem is recovered. Therefore, an element v ∈ Vh(K) is
decomposed into v = v0 ⊕ v1 so that (v0, q)K = 0 (see (2.2)) and denote
likewise for example by Q̃0 and Q̃1 the respective parts of the operator Q̃.
The proofs of the following assertions will be given in the Section 2.2.1.

Lemma 2.2. For |b| 6= 0 and d = 0 we have the equivalences

(i) Q0µ|K = 0⇐⇒ µ is constant on ∂K.

(ii) Q̃0λ
∗|K = 0⇐⇒ λ∗|ei(K) = lS−1

ei for a constant l ∈ R.

(iii) If λ is constant on ∂K, then Q̃0λ = −c̄−1b̄λ.

Another important observation is that the part that Q1 contributes to the
L2-norm decreases with the mesh size.
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Lemma 2.3. There exists a mesh-independent constant C > 0 such that for
dM = max

K
d, µ ∈ Λh, and f ∈Wh(K),

‖Q1µ‖0,K ≤ ChK
√
dM‖Uµ‖0,K , (2.24)

‖Qf‖0,K ≤ ChK‖f‖0,K . (2.25)

We define the projection P onto Λh,g in the usual L2-sense by requiring
locally on each edge e

∫

e
(Pu − u)µds = 0 ∀µ ∈ P0(e).

Similarly we denote by P the L2-orthogonal projection onto Wh, and recall
that the projection Π onto Vh is given by properties (P4) and (P5) from
the abstract framework of Section 1.2.

Theorem 2.2. Let (σ, u) denote the exact solution to (2.1), then the incon-
sistency of the method can be described by

a(Pu− λ, µ) = (εeψ + εb̄ + εc̄ + εΠ, Qµ) + (εP ,Uµ), (2.26)

where

εeψ = c̄(R− eψ)σ + C>P(eψK (Pu− u)) +B>u(S − eψ), (2.27)

εb̄ = u(b− b̄)eψ, εc̄ = (c̄− c)eψσ, εP = P (d(Pu− u)), (2.28)

εΠ = c̄R(Πσ − σ). (2.29)

Proof. The exact solution satisfies (2.4). In order to pass into a discrete
formulation we substitute (σ, u, u) by (Πσ, Pu,Pu) and transform the equa-
tion to obey the form of equation (2.10). With (τ̃ , w, µ) ∈ Ṽh ×Wh × Λh,0,
τ̃ = eψτ, τ ∈ Vh we obtain from the first term in (2.4a)

∫

K

cστ̃ dx =

∫

K

c̄RΠστ dx+

∫

K

c̄R(σ −Πσ)τ dx

+

∫

K

c̄(eψ −R)στ + (c− c̄)σeψτ dx.

Since the function S lies inWh, we have
∫
K uSK div τ dx =

∫
K PuSK div τ dx
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and we obtain for the second and third terms in (2.4a), recalling (2.5),

∫

K

−udiv τ̃ − ubτ̃ dx =

∫

K

−PuSK div τ dx−
∫

K

u(b− b̄)eψτ dx

+

∫

Ω

u(eψ − SK) div τ dx,

∫

∂K

uτ̃ · ν ds =

∫

∂K

PueψK τ · ν ds+

∫

∂K

eψK (u−Pu)τ · ν ds

This can be rephrased in the discrete system of equations that are satisfied
by (Πσ, Pu,Pu)



A −B̃> −C̃>

B D 0
C 0 0






Πσ
Puh
Pu


 =




α
Pf + εP

0


 , (2.30)

with α ∈ Vh and given through

(αK , τ) =

∫

∂K
eψK (u−Pu)τ · ν ds+

∫

K
u(eψ − SK) div τ dx

+ (c̄σ(eψ −R) + εΠ + εb̄ + εc̄, τ)K

By subtracting from (2.30) the equation (2.10) for the discrete solution and
with Theorem 2.1 the assertion is proven.

Theorem 2.3. Suppose that u ∈ H1(Ω) and σ = −a(∇u− bu) ∈ H1(Ω)2,
and further that c ∈ W 1,∞(Ω), b ∈ W 1,∞(Ω)2 then there exists a mesh-
independent constant C depending only on the W 1,∞-norms of c and b so
that

‖λ−Pu‖a ≤ Ch(‖u‖H1(Ω) + ‖σ‖H1(Ω)2).

Remark 2.4. Depending on the regularity of the solution, expressed by u ∈
Hs(Ω) (cf. [67]), we have for s = 1 or s = 3/2 that the drift dependent
part of the constant C is of order ‖b‖L∞(Ω)h

s−1/2. In the case s = 3/2, the
extra regularity is only needed for the last term in the definition of εeψ , see
equations (2.33)-(2.35) below.

Proof. The main difficulty in proving Theorem 2.3 lies in estimating εeψ .
The rest mainly follows from standard results in approximation theory to-
gether with ‖eψ‖L∞(Ω) ≤ 1.
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Before we start estimating these terms we state two lemmas. The first one
is concerned with the boundedness of the operators B> and C>, and the
second lemma relies on the properties of B>. The proofs will be given in
Section 2.2.1.

Lemma 2.4. The operators B>:L2(K)→Vh(K) and C>:L2(∂K)→Vh(K)
are defined for all v ∈ L2(K), µ ∈ L2(Eh) and q ∈ Vh(K) by

(B>v, q)K =

∫

K
v div q dx and (C>µ, q)K =

∫

∂K
µq · nds. (2.31)

There are positive mesh-independent constants c1, c2 and c3 such that

c1h
−1
K ‖v‖0,K ≤ ‖B>v‖0,K ≤ c2‖v̂‖0,K̂ and ‖C>µ‖0,K ≤ c3h−1/2

K ‖µ‖0,∂K .
(2.32)

Remark 2.5. We denote by v̂ in equation (2.32) and in the following the
usual transform to the reference triangle K of the function v.

Let us begin the estimation of eψ with the last term in (2.27). The range
of B> lies is the subspace spanned by q. Recall that Q1µ denotes the part
of Qµ which lies in the subspace spanned by q. With Lemma 2.4 and the
supposed maximum principle yielding u ∈ L∞(Ω) we have

(B>u(eψ−S), Qµ)K ≤ (B>u(eψ−S), Q1µ)K ≤ ‖u(eψ̂−S)‖0,K̂‖Q1µ‖0,K
≤ C‖u‖L∞(K)‖eψ̂−S‖0,K̂hK

√
dM‖Uµ‖0,K .

We see here that this part of the error disappears if d ≡ 0. For a nonvanishing

zeroth-order part we need to estimate ‖eψ̂−S‖0,K̂ . Although SK is only

the mean value of eψK along one edge, we show now that this term is of
order O(bh). This holds true since SK is the largest edge mean value. The
transformation to the reference triangle may be such that ψ̂ is zero in the
origin and such that e1 is mapped to the horizontal edge of K̂. In other
words let

ψ̂(x, y) = e−bhK(x+ay) with b ≥ 0, a ≥ 1 and SK =
1− e−bhK
bhK

.

Then we have

‖eψ̂ − SK‖20,K̂ ≤
1

24
(2a2 − 2a+ 1)b2h2

K +O(h3
K) ≤ C‖b‖2∞,Kh

2
K .
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For the second term in equation (2.27) we want to use Lemma 2.4. Since
v · ν|e(K) is constant for all v ∈ Vh(K) and e ∈ ∂K, we have

(C>eψ(u−Pu),v)K =

∫

∂K

eψ(u−Pu)v·ν ds =
∑

e∈∂K

∫

e

(eψ−Se)(u−Pu)v·ν ds

= (C>P((eψ−S∂K)(u−Pu)),v)K ,

where we denote by S∂K an element of Λh that takes on the edges ei(K) the
value of Sei(K). Due to eψK |e being smooth and ‖eψ‖L∞(Ω) ≤ 1 we obtain

‖eψ − Se(K)‖0,e(K) ≤ |e(K)||eψ |1,e ≤ |b̄|h‖eψ‖0,e ≤ |b̄|h3/2.

By requiring only u ∈ H1(Ω) and remembering Pu|e being the integral mean
over the edge e it follows with a mesh-independent constant c (see eg. [52,
Lemma 3.32])

‖u−Pu‖0,e(K) ≤ ch1/2|u|1,K , that leads to (2.33)

‖C>eψ(u−Pu)‖0,K ≤ ch3/2‖b‖∞,K |u|1,K . (2.34)

If the exact solution has traces in H1(Eh), (2.34) may be improved by
substituting (2.33) with

‖u−Pu‖0,e(K) ≤ ch|u|1,∂K . (2.35)

The first term in εeψ in (2.27) is bounded and thus Theorem 2.3 follows.

2.2.1 Proofs of technical lemmas

Proofs of Lemma 2.2. The first assertion has been proven already in [65],
since V (K) differs from the lowest order Raviart-Thomas space only in the
non-constant part. If we only regard Q̃0 and Q0, i.e the piecewise constant
parts, the equations (2.17) and (2.18) simplify to

(c̄RK Q0λ− C>λ,v) = 0 and (c̄RK Q̃0λ− C̃>λ,v) = 0 ∀v ∈ P0(K)2.

With the canonical basis for Vh(K)0 and Λh(K), we obtain the matrix C of
maximal rank so that (C>λ,v) = v>Cλ. Defining S = diag(Se1 , Se2 , Se3)
leads on the other hand to (C̃>λ,v) = v>CSλ. This leads finally to Ker Q̃ =
S−1 Ker C. The kernel of C are the piecewise constant functions and λ∗ =
S−1l, for some constant l, which proves the second assertion.
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The assertion (iii) simply follows by

(C̃>λ,v)K =
∑

ei∈∂K

∫

ei

λSeiv · ν ds = λ

∫

∂K
eψv · ν ds

= λ

∫

K
div(eψv) dx = −λ

∫

K
eψ b̄ · v dx = −(RK b̄λ,v). (2.36)

Proof of Lemma 2.4. Although the elementwise divergence does not map
Vh(K) onto Wh(K), there exist for each w ∈ Wh(K) a unique vw ∈ Vh(K)
so that ‖w‖20,K = (w,div vw)K . Therefore we have with appropriate spaces

Vh(K̂) and Wh(K̂) on the reference triangle K̂ the inequality

‖ŵ‖0,K̂ ≤ Ĉ sup
v∈Vh(K̂)

(ŵ,div v)K̂
‖v‖0,K̂

∀ŵ ∈Wh(K̂).

Employing the Piola-map for v (see [23, chapter III.1.3]) when returning to
the element K yields

Ch−1
K ‖w‖0,K ≤ Ĉ sup

v∈Vh(K)

(w,div v)K

Ch
2/2−1
K ‖v‖0,K

∀w ∈Wh(K),

which proves the first inequality. We notice that B> maps onto the subspace
spanned by q = (φ1, φ2)

> since q is orthogonal to (P0(K))2 in the sense of
L2. A simple scaling argument therefore leads to

‖B>w‖0,K =
(w,div q)K
‖q‖0,K

≤ C‖ŵ‖0,K̂ , ∀w ∈ L2(K).

In the proof of the second inequality we denote by B = {(1, 0)>, (0, 1)>, q}
an orthogonal basis of Vh(K). For each vi ∈ B we have |vi · ν|K | ≤ 1.

Together with C>f =
∑3

i=1 τivi we get

|(C>f,vi)| = |
∫

∂K
fvi · ν ds| ≤

∫

∂K
|f | 1 ds ≤ h1/2‖f‖0,∂K

together with ‖vi‖0,K ≥ ch2/2

‖C>f‖0,K ≤ ch−1/2‖f‖0,∂K .
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Proof of Lemma 3.2. The proof is a slight variant of the results given in
Lemma 4.1 of [44]. We report them since it is interesting to see how the con-
stants at the end depend on the convection term b. We begin with equation
(2.25). The matrix in equation (2.18) is skew symmetric which leads together
with Qf = A−1B>Uf to (B>Uf,A−1B>Uf) + (S−1

K DUf, Uf) = (Uf, f).
Therefore we also deduce for Marini-Pietra elements with Lemma 2.4

‖Uf‖20,K ≤ h2‖B>Uf‖20,K ≤ c̄RKh2‖Uf‖0,K‖f‖0,K . (2.37)

We observe that the stability constant is slightly better than that of a purely
diffusive problem with the same diffusion coefficient a = c−1 since RK ≤ 1.
Using now the first equation of (2.18) with Qf as test function, we obtain
in analogy to [44]

(c̄RK)−1‖Qf‖20,K ≤ (B>Uf,Qf)K = (Uf,BQf)K

= (Uf, f)K − (S−1
K DUf, Uf)K ≤ ‖Uf‖0,K‖f‖0,K

≤ c̄RKh2‖f‖20,K by (2.37).

Regarding the second equation of (2.18) we obtain from Q1µ = lµq and
Uµ ∈ P0(K) that

lµ

∫

K
div q dx = S−1

K d̄ ‖Uµ‖0,K = S−1
K d̄ ‖Uµ‖0,K

‖Q1µ‖0,K = S−1
K d̄
‖q‖0,K
|e1|

‖Uµ‖0,K by (2.2).

From here the result follows by a usual scaling argument since q ∈ P2(K).
For the variable degree Raviart–Thomas case the inequality (2.24) also holds
for the non-solenoidal part of Q (see [44, Lemma 5.3]).
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2.3 A Posteriori Error Estimation

In this section we introduce two a posteriori estimators, that on the one hand
are directly applied to the semiconductor application, and on the other hand
they build the basic tools for the estimation methodology that is presented
in Section 2.4. It is well known that in semiconductor modeling, the equa-
tions (2.1) are usually convection dominated due to high electric fields. An
adaptive refinement strategy, therefore, is crucial to resolve accurately and
efficiently very sharp gradients occurring in the device simulations. Reli-
able and efficient a posteriori error estimators are an indispensable tool for
efficient adaptive algorithms.

Although we will combine different error estimators in the device simulation
for the continuity equations and the Poisson equation, we will present here in
detail only techniques to estimate the error in the hybridized mixed method
to discretize the continuity equations. In Chapter 3 we will describe how to
apply these techniques to the nonlinear system of the application.

We will distinguish two different types of estimators. One way to obtain
an a posteriori estimate is to compare different approximate solutions. The
rough idea is to take the solution in the richer approximation space as a
substitute for the exact solution and to calculate the norm of the difference
of these two approximations as an a posteriori estimate. These higher order
approximation can be obtained in different ways, and the methods might
be distinguished by the accuracy that is obtained and the effort that it
takes to calculate them, [2]. If one of the approximations is obtained with
reduced computational cost, these estimators are often referred to embedded
estimators.

A different class of a posteriori error estimates is based on evaluating the dual
norm of the residual. The development of residual based error estimates for
mixed finite elements starts with the work of Braess and Verfürth [21], who
required a saturation assumption to prove reliability and efficiency of their
estimator for the RT -element. An overview of different approaches for the
RT -element is given in [73] and the work of Carstensen [28] provides residual
based error estimator for spaces with a structural assumption fulfilled by
many typical examples, like RT - or BDM -elements.

In this section we will focus at the beginning to the first class of estimators.
In Section 2.4 we return to residual based estimators with the extension
of the so-called dual–weighted–residual (DWR) estimators. These estima-
tors have been developed for standard finite elements by Becker, Rannacher,
et.al., see [14, 15] and the references therein. We will extend this method-
ology to mixed finite-element methods. Let us point out, that at least for
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symmetric problems all what follows also holds for RT -elements, especially
the new estimator in Section 2.4 will also be applied to RT -elements.

2.3.1 An Embedded Estimator Controlling the L
2-Error

The error estimator is based on a comparison of the two approximations
λh ∈ Λh,uD , the Lagrange multiplier and uh ∈ Wh of the primal variable
u ∈ H1(Ω) of the exact solution to continuous problem (2.1). The first
approximation λh is only defined on the edges of the triangles, whereas the
second approximation uh is piecewise constant on the triangles. Following
[6], we introduce a suitable lifting of λh and we compare then functions
in L2(Ω). More precisely, we introduce the Crouzeix-Raviart finite-element
space of lowest order [45],

CRh,ξ = {v ∈ L2(Ω) : v|K ∈P1(K) ∀K ∈ Th; (2.38)

v is continuous in me ∀e∈Eh\Γh; (2.39)

v|K(me) =
∫
eξ ds/|e| ∀e∈Γh}, (2.40)

and we define the lifting ûh ∈ CRh,ud of λh and the interpolation PCRu of
u in CRh,uD by

∫

e
(λh − ûh) ds =

∫

e
(PCRu− u) ds = 0 ∀e ∈ Eh.

In the above definition of CRh,ξ, Γh ⊂ Eh denotes the set of all edges on the
boundary of Ω, and we recall that me is the midpoint of an edge e ∈ Eh.
Clearly, the nodal values of λh and ûh are the same.
We introduce the discretization errors, and abbreviate again the L2–norm
by ‖ · ‖0

e1 = ‖ûh − PCRu‖0 and e2 = ‖uh − PCRu‖0. (2.41)

The error estimator is based on the assumption that there exists a constant
0 ≤ γ < 1 so that

e1 ≤ γe2. (2.42)

This saturation assumption gives rise to an upper and lower bound for the
discretization error uh since from

‖ûh − uh‖0 ≤ ‖ûh − PCRu‖0 + ‖uh − PCRu‖0 ≤ (1 + γ)‖uh − PCRu‖0,
‖ûh − uh‖0 ≥ ‖ûh − PCRu‖0 − ‖uh − PCRu‖0 ≥ (1− γ)‖uh − PCRu‖0

it follows

(1 + γ)−1‖ûh − uh‖0 ≤ ‖uh − PCRu‖0 ≤ (1− γ)−1‖ûh − uh‖0.
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The first inequality expresses the efficiency and the second one the reliability
of the error estimator defined by

ηCR = ‖ûh − uh‖0.

Introducing the local contributions

η2
CR,K(ûh, uh) =

|K|
3

3∑

i=1

(ûh(mei)− uh|K)2, (2.43)

we can see that the error estimator now writes

η2
CR =

∑

K∈Th

η2
CR,K . (2.44)

Moreover, as the functions λh and ûh have the same values on the nodes,

η2
CR,K(λh, uh) =

|K|
3

3∑

i=1

(λh|ei − uh|K)2.

2.3.2 Benchmark Problems

The saturation assumption (2.42) will be numerically verified for the above
elements in two test problems. We take test problems that have been used
in the literature in order to study different schemes for convection-diffusion
equations [27, 93, 104]. The main feature of these problems is that the
solutions exhibit very large gradients for strong convective data, which is
typical in semiconductor device simulations. In both cases, we set Ω =
(0, 1)2, consider the problem (2.1) and denote the space variables by x and
y. The first problem is constructed from the explicitly given solution

u(x, y) = xy(1− e(x−1)/ε)(1 − e(y−1)/ε),

which forms sharp layers at the boundaries {x = 1} and {y = 1} for small
ε > 0 (see Figure 2.2 (left)). The right-hand side f is constructed according
to the data diffusion coefficient a = ε, drift β = (1, 1)T , and zeroth order
term d = 2 in Ω, see (2.1). We choose the boundary condition u = 0 on ∂Ω.
The errors e1 and e2, defined in (2.41), for ε = 2−j (j = 2, 4, 6, 8) are shown
in Figure 2.3. The error e2 decreases with a rate approximately equal to
1. Generally, the rate of convergence of e1 is larger than that of e2. In
Table 2.1, the ratios e1/e2 are listed. For solutions with small gradients
(or equivalently, large ε), the ratios decrease with smaller mesh sizes. For
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Figure 2.2: Solutions of the first test problem for ε = 2−8 (left) and of the
second test problem for hmax = 0.02 (right).
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Figure 2.3: Logarithmic plot of e1 (left) and e2 (right) for ε = 2−j , j =
2, 4, 6, 8 (from bottom to top). For ε not too small the rate of convergence
for e1 is larger than 1, which is approximately the rate for e2.

smaller ε the ratios decrease only for finer meshes. Hence, the saturation
assumption (2.42) with γ < 1 seems to hold if the gradients of the solution
are not too large or if the mesh is fine enough to resolve the shape of the
solution.

The second problem focuses on the crosswind dissipation along a transported
discontinuity. We take the same parameters as in [104], ε = 10−6, β =
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ε

hmax 2−2 2−4 2−6 2−8 2−10 2−12

1/4 0.2279 0.3511 0.3656 0.3559 0.3538 0.3537
1/8 0.2187 0.3829 0.4462 0.4120 0.4001 0.3995
1/16 0.1708 0.3213 0.5710 0.5579 0.5039 0.4949
1/32 0.1412 0.2191 0.5397 0.7374 0.6026 0.5264
1/64 0.1252 0.1483 0.3658 0.8053 0.8375 0.6261
1/128 0.1150 0.1207 0.2021 0.6432 1.0440 0.8658
1/256 0.1110 0.1167 0.1165 0.3919 0.9372 1.1904

Table 2.1: Ratio e1/e2 for different diffusion coefficients ε and maximum
mesh sizes hmax.

(1, 3)T , f = d = 0 and

uD(x, y) =

{
1 for x = 0, y ∈ [0, 1] or x ∈ [0, 1/3], y = 0

0 else.

The solution for hmax = 0.02 is shown in Figure 2.2 (right). In addition
to the interior layer there is also a layer at the domain boundary. Since
an explicit solution is not available, the errors are computed by using a
reference solution from a very fine mesh with hmax = 1/384. From the
results in Table 2.2 we see that even for this quite small diffusion coefficient
the quotient e1/e2 is smaller than one for all used meshes. The quotients
ei/ηCR (i = 1, 2), defined in (2.44) and depicted in Table 2.2, are called the
efficiency indices. Roughly speaking, the closer this index is to one the more
accurate is the error indicator.

hmax e1 e2 e1/e2 e1/ηCR e2/ηCR

1/3 0.1796 0.2444 0.73 1.08 1.47
1/6 0.1389 0.1753 0.79 1.29 1.63
1/12 0.1089 0.1324 0.82 1.43 1.75
1/24 0.0827 0.0984 0.84 1.56 1.85
1/48 0.0584 0.0694 0.84 1.57 1.87
1/96 0.0365 0.0449 0.81 1.40 1.72

Table 2.2: Global errors e1 and e2 for the second test problem.
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2.3.3 Error Control Based on the Current Density

In the semiconductor device application we will see that the error control
based on the L2-error in the primal variable u leads to a rather rough re-
finement control. Since users of semiconductor device simulation are mainly
interested in the current through parts of the boundary of the device an es-
timate of the error in the current density is likely to give a better refinement
control. In the application of the MOSFET device we will numerically ver-
ify that the estimator which we will present now offers a significantly better
mesh refinement if one looks at the terminal current.
The error estimator targets at the error ‖σ − σh‖0,Ω. It is constructed by
substituting σ by higher order reconstruction based on local averaging of
σh. Such kind of estimators are often referred to as gradient recovery or
Zienkiewich-Zhu type [120] error indicator. The estimator used here has
been analyzed in various model problems for second-order elliptic boundary
value problems [31, 12, 32, 33]. We will follow in our presentation mainly
the lines in [29] and adopt it to the mixed discretization of a convection–
diffusion equation.
At first we introduce an averaging space V ∗

h which carefully adopts the
boundary conditions and in the simplest case it contains element–wise linear
functions which are globally continuous. One error indicator can be defined
by

ηM := min{‖σh − vh‖0,Ω : ∀vh ∈ V ∗
h }.

Provided that the exact solution σ offers sufficient regularity a standard
interpolation estimate directly leads to a proof of the efficiency of this esti-
mator up to a remainder term (h.o.t.) of higher order than the error itself.

ηM = min
vh∈V

∗

h

‖σh − σ + σ − vh‖0,Ω

≤ ‖σ − σh‖0,Ω + min
vh∈V

∗

h

‖σ − vh‖0,Ω

= ‖σ − σh‖0,Ω + h.o.t.

We note that the efficiency coefficient is one, which means that ηM is a
direct lower bound of the error in the current density up to higher order
terms. Unfortunately this minimum might not be easy to calculate and is
therefore replaced by an upper bound

ηM ≤ ηZZ := ‖σh −Aσh‖0,Ω,

where Aσh ∈ V ∗
h is computed by a local averaging operator A that is ad-

justed to the given boundary data according to the equation for the current
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density. If it is possible to prove the reliability ‖σ − σh‖0,Ω ≤ CηM of ηM
then clearly the reliability of ηZZ holds with the same multiplicative con-
stant. The efficiency of the error indicator ηZZ is proven once an upper
bound

Ceff ηM ≥ ηZZ
would give the equivalence of the error indicators ηZZ and ηM . Such kind
of problems have been investigated in [29] and bounds that depend only on
the shape of the triangulation and not on the mesh-size have been obtained.
Numerically the efficiency index of ηZZ behaves better than the value of the
upper bound Ceff suggests.

We will now define the averaging operator A and the space V ∗
h and finally

illustrate the indicator efficiency for the numerical example of the previous
section. The construction of the operator A consists of two parts. In the
first step an averaging operator M : Vh → S2

1,h maps σh onto σ∗h ∈ (S1,h)
2

and in a second step σ∗
h is projected onto V ∗

h . The spaces Sk,h consist of
globally continuous functions that are element–wise polynomials of degree
not more than k, for later reference we write

Sk,h := {v ∈ C0(Ω) : v|K ∈ Pk(K), ∀K ∈ Th}. (2.45)

By choosing the standard nodal basis in S1,h the characterization of V ∗
h

amounts to define at each vertex p of the triangulation a subspace V ∗
h,p ⊂ R

2

of nodal values. In the interior this space will be unrestricted but for bound-
ary nodes this may be an affine subspace, according to the boundary data.
In order to characterize these restrictions we introduce some notation. Let
EN , ED be the set of edges along the boundary part ΓN and ΓD, respec-
tively. The presentation exploits the simplification of the two dimensional
setting but can be easily be extended to higher dimensions. For a given edge
e ∈ ∂K we denote by νe the outward unit normal vector, and te the unit
tangent vector. For any p ∈ E∂Ω we define for given Dirichlet boundary data
uD and homogeneous Neumann data the affine subspace

V ∗
h,p = {v∗ ∈ R

2 : v∗ · νe = 0 ∀e ∈ EN and with p ∈ e
v∗ · te = a(∂teuD + β · teuD) ∀e ∈ ED, p ∈ e}

In three dimensions this might possibly lead to an overdetermined linear
system, whereas in two dimensions a vertex p ∈ ∂Ω is always the intersection
of two neighboring boundary edges Ep = e1 ∪ e2. However we need to
require the compatibility conditions that are uD ∈ C1(Ep) for Ep ⊂ ΓD and
0 = a(∂teuD + β · teuD)|ΓD if p ∈ ΓN ∩ Γ̄D.
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This leads to the definition, denoting the set of vertices of the triangulation
by Nh

V ∗
h = {qh ∈ S2

1,h : ∀p ∈ Nh ∩ ∂Ω, qh(p) ∈ V ∗
h,p}.

For the purpose of unifying the definition of the averaging operator for the
boundary and the interior nodes we set V ∗

h,p := R
2 for all p ∈ Nh ∩ Ω and

denote by πp : R
2 → R

2 the orthogonal projection onto V ∗
h,p. We set

(Aσ)(p) = πp ◦Mp(σ)

where Mp(σ) is the average of σ over a certain domain, here Ωp = {K ∈
Th : p ∈ K} the patch of elements K having the node p in common, more
precisely

Mpσ =
1

|Ωp|

∫

Ωp

σ dx.

Remark 2.6. The actual choice of the averaging operator and the specific
properties of the Marini-Pietra elements lead to a very simple implementa-
tion of the averaging operator. It is precisely the local property q⊥P0(K) that
allows the simplification: Let σ ∈ Vh with σ|K = (σ1, σ2)

>+σ3q, σi(K) ∈ R.

Mpσ =
1

|Ωp|
∑

K∈Ωp

∫

K

σ dx =
1

|Ωp|
∑

K∈Ωp

∫

K

(
σ1

σ2

)
dx

=
1

|Ωp|
∑

K∈Ωp

|K|
(
σ1

σ2

)
.

Proofs of the reliability of this estimator usually show the equivalence to a
residual type estimator for which a reliability proof involves a global stability
constant that tends to be large for convection dominant problems. We are
therefore much more interested in the actual performance for model prob-
lems as for the previous estimator. The ideas of a residual type estimator
will be presented in Section 2.4.

As for the estimator ηCR in Section 2.3.2 we compare now the indicator
value ηZZ with the estimated error ‖σ − σh‖0. For notational convenience
we denote e3 = ‖σ−σh‖0 and report the values of the efficiency index e3/ηZZ
in the Tables 2.3 and 2.4. In a second step we compare the adaptive mesh
refinement controlled by the two estimators ηCR and ηZZ in Figure 2.4.

The efficiency indexes in Table 2.3 are calculated for meshes, that are cre-
ated starting from a Delauney triangulation by refining each triangle of the
previous refinement step into four congruent triangles and thereby halving
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the mesh size. For relatively large diffusion coefficients ε the efficiency in-
dexes remain almost constant and strictly below one. This indicates some
kind of super convergence phenomenon in the numerical solution which of-
ten happens for congruent meshes.The adaptive refinement procedure in
[12] incorporates a mesh distortion procedure, which moves the internal
mesh points randomly out of the barycenter. This technique should pre-
vent the super convergence and an improvement of the estimator efficiency
may be achieved. However, mesh distortion would increase the number of
obtuse triangles and thereby reduce the numerical stability of our method
as discussed in Section 2.2. Here we can see that the dependence on the
mesh congruency is reduced if convection becomes dominant. We do not
incorporate a mesh distortion in the adaptive refinement in the application.
In Table 2.4 the triangulation of each row is a Delauney triangulation for the
stated maximal element size hmax. We see that even for these typically com-
pletely unstructured meshes the efficiency index remains bounded although
it strongly varies for the finest triangulation. This numerical example does
not allow for further conclusions, but it seems that at least in the large
diffusion case the efficiency index tends towards asymptotic exactness.
The Delauney triangulation may contain obtuse triangles which may lead to
these pollution effects. We refer to [29] where precise bounds are analyzed
for the first time.
Locally refined meshes that are generated by an adaptive refinement algo-
rithm do not bear as many local element similarities as the meshes of the
first example. In this sense the result of the second mesh category gives a
more realistic view on the estimation accuracy in the application.

ε

hmax 20 2−2 2−4 2−6 2−8 2−10 2−12

1/4 0.6367 0.7479 0.8668 0.939 1.03 1.057 1.06
1/8 0.6372 0.7527 0.8582 0.7667 0.7914 0.8265 0.8331
1/16 0.6364 0.7471 0.863 0.7422 0.5943 0.592 0.6046
1/32 0.6362 0.7456 0.8718 0.8179 0.5723 0.4497 0.4474
1/64 0.6362 0.7449 0.8745 0.8932 0.6714 0.4142 0.3331
1/128 0.6361 0.7442 0.8748 0.9331 0.8007 0.5051 0.2871
1/256 0.6339 0.7401 0.8733 0.9478 0.9007 0.6422 0.3361

Table 2.3: Efficiency index values e3/ηZZ for nested meshes with locally
congruent triangles for the first benchmark problem.

Let us recall that the second benchmark problem focuses on the crosswind
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ε

hmax 20 2−2 2−4 2−6 2−8 2−10 2−12

1/4 0.6367 0.7479 0.8668 0.939 1.03 1.057 1.06
1/8 0.6417 0.7635 0.8551 0.732 0.7323 0.7611 0.7679
1/16 0.6373 0.7814 0.9424 0.7297 0.5651 0.5679 0.5828
1/32 0.6442 0.8563 1.211 0.9759 0.6309 0.5103 0.5082
1/64 0.6565 1.086 1.914 1.553 0.8946 0.6064 0.5449
1/128 0.7183 1.838 3.622 2.924 1.533 0.9086 0.7601
1/256 0.7438 2.159 4.30 3.52 1.951 1.009 0.7026

Table 2.4: Efficiency index values e3/ηZZ for the Delauney triangulations
for a given maximal edge length hmax.

dissipation along a transported discontinuity. Unstructured grids that are
not aligned to the direction of the transport in the problem diffuse the so-
lution too much. It is therefore very important that an adaptive refinement
procedure automatically refines at the onset of the discontinuity. The com-
parison in Figure 2.4 is done for ε = 10−6. For both estimators the top
5% of the triangles K with largest ηKCR,ZZ are refined in each step and we
present the result after 14 steps. Both estimators detect the discontinuity
and we obtain very similar contour plots. The mesh produced under the
control of ηCR contains a large area of refined triangles, this leads with 7580
elements to a higher number of triangles compared to 4040 elements in the
refined mesh produced under the estimator ηZZ . Focusing the area around
the onset of the discontinuity it is clearly visible that the estimator ηZZ is
capable to refine closer to the discontinuity and therefore resolves the solu-
tion with far less triangles. The difference in the element number is also due
to the process of removal of hanging nodes.
These results clearly indicate, that a refinement based on or aiming at con-
trolling the current density could be advantageous. On the other hand is
the computational effort to compute the estimator is higher than for ηCR,
due to the larger averaging regions in evaluating the ηZZ . For symmetric
problems the estimator ηCR may be sufficient. In Section 3.4 we will assess
the estimator in the semiconductor application. Another important appli-
cation will be given in the next section where the goal is to refine the mesh
in order to approximate a certain linear functional acting on the solution
with best possible quality. In the construction of this new estimator both
ηCR and ηZZ will be incorporated.
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Figure 2.4: Comparing the resulting meshes after 14 adaptive mesh refine-
ments, where only 5% of the triangles have been refined in each step. The
first row shows the initial triangulation. In the second row the refinement
is controlled by ηCR and in the last row by ηZZ .

2.4 The Dual–Weighted–Residual Estimation for

Efficient Mesh Refinement Control

Residual-based a posteriori error estimates have been used successfully for
many finite element methods and various applications. Introductions to this
field might be found in any modern textbook concerning finite element anal-
ysis (cf. [52, 22]). Typically these estimates bound the error in the energy
norm and involve a global stability constant of a dual problem, whose deter-
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mination might be viewed as a starting point for the following investigations.
The analytical methods to quantify this constant (see eg. [53]) are limited.
In more complex situations one could determine this constant to a certain
extend by using benchmark calculations before beginning the simulation of
the original problem.
But controlling the error in a global norm might not lead to a good control of
local quantities that are very often the main objective of the simulation. The
dual problem may provide further information to control the error in these
quantities, especially if local phenomena are the main sources of the error.
The key idea of the approach we present here is to compute the solution
to a dual problem before refining the mesh. The dual solution is used to
calculate weighting factors that emphasize parts of the local residuals in the
indicator.
The main advantage is that the functional in the dual problem may be
chosen freely, which means that there is only little effort necessary to switch
to the estimation between several quantities of interest or even a global
norm. The only demand is that this quantity must be defined as, or at
least approximated by, a linear functional acting on the space in which the
solution to the primal problem exists.
The development of this methodology started in standard conforming finite-
element schemes and lead to the survey article by Becker and Rannacher
[15]. The method has been extended also to stabilized methods for transport
problems, but to our knowledge this is the first time that an extension of the
output oriented estimation approach to mixed finite-elements is performed.
For a residual-based estimator for mixed finite-elements that evaluate the
residual on carefully chosen test functions, cf. [28]. This procedure is not
extendable to the DWR–framework, where the residual is evaluated on a
dual problem’s solution. We will see how to circumvent this deficiency.
The rest of this section is organized as follows. We briefly summarize the
DWR–approach for standard finite-element discretizations before we present
the new estimator for the mixed finite-element method, and finish with a
benchmark problem that shows the practical applicability of the DWR–
method.

2.4.1 Methodology for Standard Finite–Element Methods

Consider the model problem

−∆u = f in Ω, u = 0 on ∂Ω, (2.46)

for a polygonal domain Ω ⊂ R
2. The function space used in the weak

formulation will be V := H1
0 (Ω) and in the variational formulation of (2.46)
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we will look for u ∈ V , so that

a(u, v) = (f, v), for all v ∈ V , (2.47)

with a(u, v) := (∇u,∇v), and (·, ·) being the L2-scalar product. To simplify
the presentation of the estimator’s structure we choose the approximation
space Vh := S2,h ∩H1

0 (Ω) of continuous second order polynomials, cf. (2.45)
for a definition. The discrete version of (2.46) reads as: Find uh ∈ Vh so
that

a(uh, vh) = (f, vh), for all vh ∈ Vh.
Following the notation in [15] we denote the residual ρh(·) := (f, ·)−a(uh, ·)
of the discrete solution uh ∈ Vh and the error e = u − uh. One important
property is the ’Galerkin orthogonality’

0 = ρh(vh) = a(e, vh), for all vh ∈ Vh.
The users interest, which might be the value of the solution at a fixed point
in the domain or at the boundary δx0(u) or boundary integrals for instance,
is denoted as a functional J(·) ∈ H−1(Ω). The DWR–method consists of
estimating the functional error J(u) − J(uh). Therefore we introduce the
dual problem: Find z ∈ V so that

J(v) = a(v, z), for all v ∈ V . (2.48)

We observe that the functional error can be expressed by the residual func-
tional applied to z ∈ V the solution of the dual problem. We employ the
Galerkin orthogonality for an arbitrary vh ∈ Vh to deduce

J(e) = a(u− uh, z) = ρh(z) = ρh(z − vh).

With an element–wise integration by parts we get the expression

J(e) =
∑

K∈Th

(f −∆uh, z − vh)K − (ν·∇uh, z − vh)∂K .

This leads to the error estimate: |J(e)| ≤ η(1/2)
ω (uh) with (cf. [14, 15])

η(1)
ω (uh) =

∑

K∈Th

|(f −∆uh, z − vh)− (1
2ν·[∇uh], z − vh)∂K |, (2.49)

or in emphasizing the structure of element residuals ρK and weights ωK with

η(2)
ω (uh) =

∑

K∈Th

ρKωK,

{
ρK :=‖f −∆uh‖K + h−1/2‖1

2ν·[∇uh]‖∂K ,
ωK :=‖z − vh‖K + h1/2‖z − vh‖∂K .

(2.50)
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The term [∇uh] denotes the jump of ∇uh for an interior edge and is extended
by 0 for boundary edges. The first part of ρK measures the local error
production due to data approximation, whereas the second part measures
the local smoothness of the solution.
Clearly, ρK is computable for each element once the approximate solution
uh is obtained, but the evaluation of the weights ωK remains open. Three
approaches to evaluate the weighting factors have been presented and as-
sessed in [15, Section 5], that we briefly describe here to motivate the choice
taken later for the new estimator.

(i) Starting with the first approach in the literature, [13], where we simply
set vh = Ihz, a suitable interpolant is chosen to derive

ωK ≈ ‖z − Ihz‖0,K ≤ cih2|z|2,K .

For simplicity zh the discrete dual solution on the same mesh is em-
ployed as an approximation to z. The quality of these weights is
suboptimal.

Compared to separating the norms in η
(2)
ω the estimation by evaluation the

formula (2.49) is more accurate. The remaining two alternatives substitute
vh in (2.49) by the discrete dual solution zh on the same mesh and choose a
more accurate approximation as a substitute for z.

(ii) This more precise approximation can be an interpolation of zh on a
space of higher order polynomials. In the test examples this method
behaved more accurately compared to (i). The interpolation for one
element amounts to evaluating zh on patches of elements and is there-
fore more costly than the first approach.

(iii) This method consists in computing globally ẑh ∈ V̂h on a richer ap-
proximation space and set vh = Ihẑh. Enriching is either possible by
refining the mesh or by increasing the polynomial degree. In both
cases this is much more costly since a much larger dual problem needs
to be solved. On the other hand this is the most accurate way to
estimate the functional error. Another extension is to use completely
different meshes for the primal and the dual problem as performed in
[74] for a stabilized method applied to transport problems.

In the mixed finite-element method the postprocessing techniques of the
previous section directly provide these higher order approximations without
changing the triangulation, which makes them very attractive for the use in
this methodology.
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2.4.2 DWR-Estimator for Mixed Finite–Element Methods

We derive the estimator for a symmetric second order elliptic equation with
mixed Dirichlet-Neumann boundary data. For notational simplicity we as-
sume that the triangulation covers Ω ⊂ R

2 completely and that the problem
data is sufficiently regular. The continuous problem reads

σ = a∇u, −div σ + du = f in Ω

σ · ν = 0 on ΓN , u = g on ΓD
(2.51)

Compared to the convection–diffusion problem that we were treating before
there is no additional drift term in the first equation in (2.51) and we remark
that we changed the sign there too. In order to treat convection–diffusion
problems discretized with the method of the previous sections we would need
to deal with the inconsistencies like u(b − b̄) as well, which would require
some additional thoughts.
One idea to recover the structure of the setting in standard finite-element
methods could be to work with the bilinear a(·, ·) form of Section 2.2. This
bilinear form acts only on discrete quantities and we do not have Galerkin
orthogonality there, which would reduce the estimation accuracy further.
Therefore we resort to the more standard bilinear form on the product space
X = HN (div,Ω)× L2(Ω), where

HN (div,Ω) := {τ ∈ H(div,Ω)| 〈τ ·ν, v〉 = 0,∀v ∈ H1
0,ΓD(Ω)},

andH1
0,ΓD

(Ω) contains the functions whose traces on ΓD are zero. We obtain
the weak form: Find [σ, u] ∈ X so that

A([σ, u], [τ, v]) = B([τ, v]) ∀[τ, v] ∈ X, with (2.52a)

A([σ, u], [τ, v]) =

∫

Ω
cσ·τ + udiv τ − v div σ + duv dx, (2.52b)

B([τ, v]) =

∫

Ω
fv dx+ 〈τ ·ν, g〉

(H
1/2
00 (ΓD))′,H

1/2
00 (ΓD)

. (2.52c)

The coefficient c = a−1 is again the inverse of the diffusion coefficient. We
will not make particular use of properties of the spaces occurring in the dual
pairing on the Dirichlet boundary. We mention them here as an example
for a functional in X ′. Exhaustive discussions on these spaces especially on
nonsmooth domains may be found in [66, 67] although we adopt the more
intuitive notation of [8], see also [95] for polygonal domains.
The first order system formulation is easily retrieved from (2.52) by choosing
specific test functions. The equation for the current density is expressed by

A([σ, u], [τ, 0]) = B([τ, 0]) ∀[τ, 0] ∈ X (2.53)
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and the second equation in (2.51) respectively by

A([σ, u], [0, v]) = B([0, v]) ∀[0, v] ∈ X. (2.54)

With conforming discrete spaces, eg. RT -elements of lowest order or MP -
element for the current density, and the piecewise constant functionsWh here
combined in Xh = Vh ×Wh we formulate the discrete mixed finite-element
problem: Find [σh, uh] ∈ Xh so that

A([σh, uh], [τh, vh]) = B([τh, vh]) ∀[τh, vh] ∈ Xh. (2.55)

We abbreviate [ε, e] = [σ − σh, u − uh]. As before we obtain the residual
ρ[σh,uh] ∈ X ′ and due to Xh ⊂ X we directly have Galerkin orthogonality

ρ[σh,uh]([τ, v]) = A([ε, e], [τ, v]) ∀[τ, v] ∈ X. (2.56)

0 = A([ε, e], [τh, vh]) ∀[τh, vh] ∈ Xh. (2.57)

If the quantity of interest can be formulated as a functional F ∈ X ′ the dual
problem has the following form: Find [ζ, z] ∈ X so that

F ([ϑ,w]) = A([ϑ,w], [ζ, z]) ∀[ϑ,w] ∈ X. (2.58)

Inserting here the error [ε, e] as test function and in view of (2.53), (2.54)
and (2.57) we obtain

F ([ε, e]) =A([ε, e], [ζ, z]) = ρ[σh,uh]([ζ − ζh, z − zh]) ∀[ζh, zh] ∈ Xh

=B([ζ − ζh, 0])−
∫

Ω
cσh(ζ − ζh) + uh div(ζ − ζh) dx +

∫

Ω
(f + div σh − duh)︸ ︷︷ ︸

=:ρV

(z − zh) dx.
(2.59)

The last term contains the volumetric residual ρV that we have already
seen in the standard finite-element case, representing the error due to data
approximation. We still deserve a measure of the local smoothness of the
solution. In standard finite-element methods this was measured by ν·[∇u]e,
the jump of the gradient’s normal component over internal edges. Now, due
to the current density’s approximation in HN(div,Ω), these jumps would
be zero. The question is how to combine the remaining parts of (2.59) in a
locally balanced form, that can be regarded as a measure of the solution’s
local smoothness. The tool of choice would be element-wise partial inte-
gration in the second last term in (2.59), but applied directly we end up
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with element boundary integrals of jumps of uh, which do not balance with
any other term. To cure this problem we choose some ũ ∈ H 1(Ω), add and
subtract to (2.59) ũdiv(ζ − ζh), and by partial integration we get

F ([ε, e]) =

∫

Ω

{
(∇ũ− cσh)(ζ − ζh) + (ũ− uh) div(ζ − ζh)+

ρV (z − zh)
}

dx+B([ζ − ζh, 0]).
(2.60)

Our objective is to define ũ ∈ H1(Ω) in an efficiently computable way.
In the implementation of the mixed method uh itself is derived from the
Lagrange multipliers λh. The interpretation of the Lagrange multipliers as
nodal values of ûh ∈ CRh,g does not serve directly as a substitute, since
CRh,g 6⊂ H1(Ω), cf. (2.38) for a definition. Therefore we use the projection
PS : L2(Ω) → S1,h introduced in [117, Subsection 4.2]. If we restrict the
arguments to v ∈ CRh,g, the projection PSv ∈ S1,h is described through the
values at the vertices p

PSv(p) =
1

np

∑

K∈ωp

v|K(p),

where np is the number of elements Ki so that p is a vertex of Ki and ωp =⋃
iKi. The averaging that enters by defining ũ := PS ûh clearly connects in

(2.60) local solution values [σh, uh]|K with the values in the patch of elements
containing K, and therefore measures the smoothness of the solution. This
enables us to present a DWR-estimator in the mixed finite-element setting.

Proposition 2.1. Let [σ, u] ∈ X be the solution to (2.52) and [σh, uh] ∈ Vh×
Wh = Xh ⊂ X the discrete solution in a conforming approximation space
and ûh ∈ CRh the reinterpretation of the Lagrange multipliers occurring in
solving the matrix problem. Let F ∈ X ′ describe the quantity of interest,
and abbreviate the error by [ε, e] = [σ − σh, u − uh]. The functional error
F ([ε, e]) may be bounded by

|F (ε, e)|2 ≤
∑

K∈Th

ηV,Kωz,K + ηS1,Kωζ,K + ηS2,Kωdiv ζ,K =: ηω, (2.61)

where

ηV,K = ‖f + div σh − duh‖K,0, ωz,K = ‖ẑh − zh‖K,0, (2.62)

ηS1,K = ‖∇(PS û)− cσh‖K,0, ωζ,K = ‖Aζh − ζh‖K,0, (2.63)

ηS2,K = ‖(PS û)− uh‖K,0, ωdiv ζ,K = ‖div(Aζh − ζh)‖K,0. (2.64)
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Here [ζh, zh] denotes the solution to the discrete dual problem, and again
ẑh ∈ CRh denotes the reinterpretation of the Lagrange multipliers in the
dual matrix problem. The operator A is the averaging operator defined in
Subsection 2.3.3 adjusted to the boundary data of the dual problem.

Remark 2.7. Carstensen presented residual estimators for standard mixed
finite-elements in [28] and in a unifying framework very recently in [30]. In
[30] it is shown in the case c ≡ 1 for RT -elements:

min
w∈H1(Ω)

‖σh −∇w‖0 ≈ ‖h1/2
Eh

[σh·tEh ]‖L2(
S

Eh).

Although the proof delivers no construction of the minimizer, this result
supports the argument that contributions ‖∇ũ − cσh‖0,K measure the local
smoothness of the solution. The estimates of Carstensen are focusing global
norms. The technique to derive the estimate is based on the evaluation of
the residual ρ[σh,uh] on test functions of the form

qh = (−∂yvh, ∂xvh)> = Curlh v ∈ H(div,Ω),

where v ∈ S1,h. If we aim at functional error estimation the test function is
not at our disposal, since it is a solution [ζ, z] to a dual problem, which is the
main difference between this approach and the estimation in global norms.

Remark 2.8. We remind the reader that error estimates for ‖div(ζ− ζh)‖0
are not available for MP–elements. This is caused by the missing commuting
diagram property for these elements, cf. [24]. This lack might cause an
overrefinement. In the following we perform simulations for the RT– and
MP–finite-elements, and there is no difference in the error decay that could
be interpreted as an overrefinement.

2.4.3 A Problem of the SIAM 100-Digit Challenge

The challenge consisted of ten numerical problems posted in the SIAM News
issue January/February 2002 and later also in Science. The solution to each
of the problems was a real number and the contestants could get a point
for every of the first ten correctly computed digits of these numbers. This
challenge was a great succuss, in the sense that 94 teams from 24 countries
entered the competition, many of them solved all the problems and published
there results, finally all this culminated in a book [19]. Folkmar Bornemann,
investigated the last of these ten problems further and finally found that
the solution can be written in a closed form, that can be evaluated with
arbitrary precision, see below. This together with the fact that the problem
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can be solved by finite-elements, and a remark Folkmar Bornemann made in
a talk, that there is a lack of a good error estimator for this problem in the
finite-element package that he used, attracted the attention of the author.
Additionally to the performance demonstration, this problem serves as an
example of how to apply a DWR-estimator in cases where the quantity of
interest cannot be written as an element of X ′. The problem was originally
stated in the form:

A particle at the center of a 10x1 rectangle undergoes a Brow-
nian motion (i.e. 2D random walk with infinitesimal step length)
till it hits the boundary. What is the probability that it hits on
of the ends rather than at the sides?

Translated into an elliptic boundary value problem this reads: If u(x1, x2)
describes the probability that a particle starting at the point x = (x1, x2)

>

hits one of the ends, then u is the solution to

−∆u = 0 in (−L,L)× (−0.5, 0.5), L = 5

u|{|x2|=L} = 1, u|{|x2|=0.5} = 0.

The domain is chosen such that the center of the rectangle, our starting
point, lies in the origin. This problem may be solved by separation of vari-
ables, which describes the solution as an infinite series. Solutions in closed
form may be obtained by methods of complex analysis or the theory of ellip-
tic functions, see [19]. For our objective, to solve the problem numerically,
already the separation ansatz delivers sufficiently precise values. Before this

Figure 2.5: Computational domain

problem is solved numerically the symmetries are exploited, see Figure 2.5,
to yield

−∆u = 0 in Ω = (0, L) × (0, 0.5),

u|Γ1 = 1, u|Γ0 =0, ν·∇u = 0 on ΓN ,

ΓN = {(x| x1 = 0 ∨ x2 = 0}, Γ1 = {x1 = L}, Γ0 = {x2 = 0.5}.
(2.65)
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The solution to the original problem is u0 = 3.8375 89792 51226 . . . · 10−7.
Interestingly, if L =

√
3/2, the probability to reach Γ1 with a random walk

starting in the origin is u0 = 1/6. We perform simulations for both aspect
ratios. Transfered into the mixed finite-elements setting we have: Find
[σ, u] ∈ X = HN (div,Ω)× L2(Ω):

A([σ, u], [τ, v]) =

∫

Ω
σ·τ + udiv τ − v div σ dx =

∫

Γ1

τ ·ν ds = B([τ, v])

for all [τ, v] ∈ X. The functional output clearly is δ0, the Dirac measure of
the origin. Here we encounter the first difficulty, since δ0 is not an element
of X ′ and neither of X ′

h. We need to find an approximation of δ0 in Wh.
Functions in Wh are only defined inside a triangle. For an adaptively refined
mesh the origin is generally a vertex that is connected to several triangles.
In the computation we chose therefore u0:=(PSuh)(0), which simplifies to
the integral mean value of uh over Ω0, denoting by Ω0 the patch of elements
connected to zero. This corresponds to the approximation of δ0,h ∈ Wh of
the form

δ0,h|K =

{
|Ω0|−1, if K ∈ Ω0

0, elsewhere.

The evaluation of the functional output can be reformulated by

δ0,h(u) = F ([σ, u]) = A([σ, u], [ζ, z]) = B([ζ, z]) =

∫

Γ1

ζ·ν ds.

For a function ζ ∈ Vh ⊂ H(div,Ω) the jumps [ζ·ν] over inter-element edges
vanish, therefore the last boundary integral might be a better way to eval-
uate the functional output in the end. Neglecting the connection between
computing u0,h and the functional output, the source term in the dual prob-
lem F ([ϑ,w]) = A([ϑ,w], [ζ, z]) can be any discrete version of δ0. In the
computation we tried also the following approximation; let K0 be the trian-
gle whose barycenter has the closest distance to the origin and set

δ̃0,h|K =

{
1/|K0|, if K = K0,

0, otherwise.

Regarding again the primal problem, the jumping boundary condition makes
a refinement in the top left corner together with a low order finite-element
approximation necessary. To the contrary the smoothness of the solution
close to the origin would allow a higher order polynomial approximation.
We will not be able to obtain ten digits with our method. The aim of
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Figure 2.6: Refinement controlled by the estimators ηZZ and ηCR in the
case L =

√
3/2. For both estimators the functional error does not decrease.

Refinement under ηZZ only refines near the top right corner and even after
many refinement steps the error does not decrease.

the following simulation is that starting from a coarse mesh the estimator
should control the refinement automatically so that the estimated functional
error decreases. For a comparison the functional error is displayed in Figure
2.6 if the refinement is controlled by ηCR or ηZZ in the case L =

√
3/2.

Although the jump in the boundary data is closer to the point of interest
the refinement does not lead to a steadily increased accuracy in the output.
Next compare the influence of different approximation of the functional out-
put δ0,h and δ̃0,h. The estimated error in the functional output decays for
both approximation with the same rate, see Figure 2.7. If the exact func-
tional output is regarded as unknown, this simulation can assure the user
that the computed quantity is calculated with a higher than the estimated
accuracy. To improve the global functional error estimate one could substi-
tute [ζ, z] := [Aζh, ẑh] directly in evaluating the right-hand side of equation
(2.60). The example on the right in Figure 2.7, shows that after some re-
finement steps controlled by ηω the evaluation of u0,h does not differ from
evaluating F ([ζh, zh]). This simulation was performed with a maximum el-
ement number of 40000, and by refining elements that sum up to a fixed
fraction of the total estimator value.

This example problem permits a comparison of the approximation by MP–
or RT–elements with very little changes. Considering the question of a pos-
sible overrefinement for the MP–elements the next test gives a first positive
answer, in the sense that the error decays for both elements with the same
approximate rate. The similarities in the discretizations are due to the fact
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Figure 2.7: On the left a comparison of refinements for approximate dual
functionals δ0,h and δ̃0,h. The good agreement of the final approximate
values supports the argument that the final values are of a higher accuracy
than estimated. On the right the difference in evaluating u0,h or F ([ζh, zh])
is almost invisible after some refinement steps.

that there is no zeroth order term d in (2.65). The matrix entries in the
Lagrange multiplier formulation Mλ = G for the RT–elements, given as an
example in [43, Section 3.2], are the same as in the linear system for the
MP–elements. The parts in G representing the Dirichlet boundary data are
the same, too. Together this leads in the primal problem to λRT ≡ λMP .
The reconstruction of [σh, uh] (cf. proof of Theorem 2.1 and [44]) simplifies
due to the symmetry of the present problem to

σRT,MP
h = Qλ, uRTh = URTλ, uMP

h = Uλ.

For the dual problem the approximation of δ0,h leads to different right-hand
sides GRT and GMP , but the reconstructions of the current density still bear
some similarities:

ζRTh = QλRT + QRT δ0,h, zRTh = URTλRT + URT δ0,h,

ζMP
h = QλMP + QMP δ0,h, zMP

h = UMPλMP + UMP δ0,h.

The averaging operator A used to compute the higher order approximation
Aζh does not change if we define the basis of RT (K) as:

RT (K) = span{(1, 0)>, (0, 1)>,x− xB}, xB the barycenter of K.

In Figure 2.8 we display for both aspect ratios the error decay under the new
estimator applied to the RT– and MP–elements implementation. Clearly the
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Figure 2.8: Comparison of RT– and MP– elements for the current density
variable. On the left for L =

√
3/2, on the right L = 5.

problem for L = 5 is harder to solve, but for both elements we see a very
similar refinement behavior and the difference in the estimated values of u0

is very small, too.
We point out that standard estimators fail to control the refinement process
as we see from Figure 2.6. In contrast to that we see in all the examples of
the new estimator that the estimated error decreases with each refinement
step. The true error remains always much smaller than the estimated value
although it does not behave with the same monotonicity.
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Chapter 3

The Semiconductor

Application

This chapter will explain how the mixed finite-element method is applied
to the device simulation problem. As a first step we present the complete
physical model and scrutinize the scaling of the equation. This is followed
by a characterization of the state of thermal equilibrium. This description
will provide the boundary data as well as a motivation for the iterative
procedure that is used to solve the nonlinear system, which can be regarded
as an approximate Newton method.

3.1 The Complete Physical Model

The introduction was meant to show the physical background leading to the
convection-diffusion equations, we will now specify the precise constitutive
relations used in the device simulation. We start with defining the complete
model in the physical variables, detail the scaling to a dimensionless form
in order to recover the precise coefficients in the final system of convection-
diffusion equations.

All the following device examples are majority carrier devices which means
that the terminal current depends mainly on the current induced by the
majority carriers. The flow of the majority carriers, the electrons, is modeled
by the system of energy transport equations. We neglect temperature effects
for the minority carriers thus couple the drift-diffusion equation for holes
to the problem. The carrier transport equations are coupled through the
generation recombination effects. These effects are accounted for in the
term R(n, p). For the Shockley-Read-Hall recombination generation effect

75
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this term has the form:

R(n, p) =
np− n2

i

τp(n+ ni) + τn(p+ ni)
,

with the intrinsic density ni and the electron and hole life times τn, τp.
The energy relaxation term is given in the Fokker-Planck approximation
[106, 49] by

W (n, t) =
3

2

nkB(T − T0)

τβ(T/T0)
,

where kB is the Boltzmann constant, T0 the lattice temperature. The index
β > −1 determines the energy dependence of the inelastic scattering cross
section, thus the temperature dependent energy relaxation time τβ will be
specified for the Chen model (β = 1/2) and the Lyumkis model (β = 0)
separately. The unscaled complete problem has the form

−div J1 = −qR(n, p), (3.1)

−div J2 = −J1 · ∇V +W (n, T )− 3

2
kBTR(n, p), (3.2)

−div Jp = qR(n, p) (3.3)

ε0εr∆V = q(n− p− C(x)), (3.4)

with current density relations

J1 = q

(
∇
(
µ

(1)
β

(
T

T0

)
kBT

q
n

)
− µ(1)

β

(
T

T0

)
n∇V

)
, (3.5)

J2 = ∇
(
µ

(2)
β

(
T

T0

)
(kBT )2

q
n

)
− µ(2)

β

(
T

T0

)
nkBT∇V, (3.6)

Jp = −q
(
µp,0

kBT0

q
∇p+ µp,0p∇V

)
, (3.7)

where q is the elementary charge. The terms µ
(i)
β are the electron and elec-

tron energy mobility relations, which each depend on the inelastic scattering
process, too, and therefore have different forms depending on the parameter
β, see equation (3.8) below. Instead of adjusting the material related pa-
rameters in the scattering cross section and the effective mass, the material
properties are expressed by the low field mobilities µn,0, µp,0 and a typical
energy relaxation time τ0 which can be quantified by measurements. For
the precise dependence of τ0 and µn,0, µp,0 on the microscopic quantities,
the effective mass of electrons in the conduction band m∗

c and the scattering
cross section φ0(x), we refer to [49, Section 2.4].
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Let additionally Cm be the maximal value of the doping profile, `∗ the
diameter of the device, and U0 = kBT0/q the thermal voltage. Using the
scaling

n→ Cmn, p→ Cmp, C → CmC, T → T0T, V → U0V, x→ `∗x,

J1 → j0J1, J2 → (U0j0)J2, Jp → (qµp,0U0Cm/`
∗)Jp,

R→ (j0/(`
∗q))R, ni → Cmni, W → (U0j0/`

∗)W,

with j0 = (qµn,0U0Cm/`
∗) the scaling factor of the electron current density,

we can introduce the new variables gi for i = 1, 2, based on the scaled version

of the mobilities µ
(i)
β :

gi(n, T ) = µ
(i)
β (T )T in, µ

(i)
β (T ) =

2Γ(i+ 1− β)√
π

T− 1
2
−β. (3.8)

The symbol Γ denotes the Gamma function defined by

Γ(s) =

∫ ∞

0
us−1e−udu, s > 0.

In the scaled equations below we find various products of mobilities and
relaxation times µr,0τs, r ∈ {n, p}, s ∈ {0, n, p} for which the above scaling
leads to the dimensionless form

µr,0τs → `2/U0µr,0τs.

In the new variables the energy relaxation term has the form

W (n, T ) =
3

2τβ(T )T

(
g1

µ
(1)
β (T )

− g2

µ
(2)
β (T )

)
, with

τβ(T ) =
3
√
πµn,0τ0

4Γ(β + 2)
T

1
2
−β.

The scaled equations in the variables (g1, g2, p, V ) have the form

−div Ji + cigi = fi, Ji = ∇gi − gi
∇V

T (g1, g2)
, (3.9)

−div Jp + cpp = fp, Jp = −∇p− p∇V, (3.10)

λ2∆V = n(g1, g2)− p− C(x) in Ω, (3.11)

gi = gD,i, p = pD, V = VD on ΓD,

J1 · ν = J2 · ν = Jp · ν∇V · ν = 0 on ΓN ,
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where gD,i = gi(nD, TD) for i = 1, 2 and λ =
√
ε0εrUT /(qCm`∗2) is the

scaled Debye length. The coefficients ci and right-hand sides fi are now
specified for the models employed in the simulations. For the Chen model
(β = 1/2) we have Γ(3/2) =

√
π/2 and Γ(5/2) = 3

√
π/4 and therefore

c1 =
r

µn,0
p, f1 =

r

µn,0
n2
i , cp =

r

µp,0
n, fp =

r

µp,0
n2
i (3.12)

c2 =
1

µn,0
(

1

τ0
+ rp) f2 = −J1·∇V +

3

2µn,0

(g1
τ0

+ Tn2
i r
)

(3.13)

T (g1, g2) =
2g2
3g1

, n(g1, g2) = g1, (3.14)

where r(g1, g2, p) = (τp(n(g1, g2) + ni) + τn(p+ ni))
−1. In many situations,

the doping is used to create very high electron concentrations, for example,
the minority carrier concentration is then several orders of magnitude below
that of the majority carrier and is therefore neglected completely in the
simulation. Thus for unipolar simulations the equation (3.10) is omitted
and in equation (3.11) it is set p = 0 and r = 0, which leads to c1 = f1 = 0.
The coefficients in (3.9) for unipolar simulations with the Lyumkis model
(β = 0) in the variables (g1, g2, V ) have the form

c2(g1, g2) =
1

τ0µn,0T (g1, g2)
, f2(g1, g2) = −J1·∇V +

1

2
c2, (3.15)

T (g1, g2) =
g2
2g1

, n(g1, g2) =
(π

2

g3
1

g2

)1/2
. (3.16)

Name Description Value

τp / τn carrier life times 10−5 / 10−6s
µp,0 / µn,0 low-field carrier mobilities 450 / 1500 cm2/Vs
ni intrinsic density 1.4 · 1010 cm−3

τ0 energy relaxation time 0.4 ps
ε0 permittivity of vacuum 8.85·10−14 As/(Vcm)
εr(Si) relative permittivity of silicon 11.7
εr(SiO2) relative permittivity of the oxide 3.8
T0 ambient temperature 300K

Table 3.1: Material and model parameters.

The precise Dirichlet boundary will be specified in the next section, since
they are derived from the relations at thermal equilibrium. To conclude
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this section we collect the material parameters of Silicon in Table 3.1. The
relative permittivity of SiO2 will be used in the simulation of a MOSFET
device in Subsection 3.4.4.

3.2 Thermal equilibrium

The state of thermal equilibrium plays an important role also in the de-
vice simulation. In this situation the system of energy-transport equations
reduces to a semilinear Poisson equation, which is clearly much simpler to
solve numerically than the full nonlinear system. When generating current-
voltage curves the solution at thermal equilibrium is used to compute the
starting values for the nonlinear solution mechanism to solve the complete
system.
The stationary state of thermal equilibrium is characterized by zero current
flow, and an electron temperature that equals the lattice temperature. If
the lattice temperature is constant, the energy-transport system reduces to
the drift-diffusion model. Together this implies that R(n, p) = 0 or np = n2

i ,
see (3.1). The current density relation Jn and Jp reduce to

Jn = ∇n− n∇V
T0

, Jp = ∇p+ p
∇V
T0

, .

The equation Jn = Jp = 0 together with np = ni
2 yields, for details see [91],

n = nie
V , p = nie

−V . (3.17)

Inserting this into the Poisson equation we obtain the semilinear elliptic
equation

λ2∆V = n− p− C = ni(e
V − e−V )− C

= 2ni sinhV −C in Ω. (3.18)

In order to avoid boundary layers the built-in potential Vel is the unique
solution to boundary value problem that is obtained by requiring a vanishing
right-hand side of (3.18)

Vel,D = arcsinh

(
C

2ni

)
on ΓD, ∇Vel·ν = 0 on ΓN .

Once the built-in potential has been computed, the equilibrium particle
densities are directly given by (3.17). A damped Newton algorithm to solve
this problem would have the form:

(i) Initialize V0 obeying the boundary conditions.
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(ii) Do
(a) Let n = nie

V0 , p = nie
−V0 .

(b) Set V := V0 and solve

{
λ2∆φ− (p+ n)φ = −λ2∆V + n− p−C in Ω
φ = 0 on ΓD, ∇φ·ν = 0 on ΓN .

(3.19)

(c) Set V0 := V + tφ, with some t ∈ (0, 1].
Until convergence.

(iii) Set Vel := V0.

The built-in potential characterizes the device in thermal equilibrium. If
we want to solve the macroscopic semiconductor device equation in a non-
equilibrium situations, we need a to accommodate the iterative method to
solve the coupled nonlinear system. A damped Newton method would be
much more complex compared to the equilibrium case described above. In-
stead, often a different class of iteration methods is used, the so-called Gum-
mel maps. We now give a brief idea, starting with the boundary conditions,
of how to define a Gummel mapping.
Non-equilibrium situations are induced by adding a potential difference at
the Dirichlet contacts. It is assumed that the particle densities remain in
thermal equilibrium at the ohmic contacts. This leads to Dirichlet boundary
data in the application [91, Chapter 4]

nD :=
1

2

(√
C2 + 4n2

i + C
)
, pD :=

1

2

(√
C2 + 4n2

i − C
)
,

VD := Vel + Vappl., TD := 1.
(3.20)

The Neumann boundary conditions remain unchanged, see (1.41).
In order to illustrate the iterative procedure to solve the nonlinear system,
we may define new variables, ρn and ρp from

n = niρne
V , p = niρpe

−V .

Gummel-type mappings consist of variants of the above algorithm for the
equilibrium case. They are obtained by substituting the equilibrium rela-
tions in step (ii)(a) with drift-diffusion equations for the given potential V0

to compute updates ρn and ρp or equivalently to obtain n and p. These
new values for the densities n and p are then used in step (ii)(b) to update
the potential until convergence is reached. Clearly ρn and ρp are equal to
one in the state of thermal equilibrium. But they vary largely if an external
potential is applied and (n, p, V ) is a solution to the complete drift-diffusion
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model. Proofs of convergence of such approximate Newton methods rely on
ρn − 1 and ρp − 1 being small in suitable norms.

Therefore convergence results for Gummel mappings were only derived for
small applied voltage differences and R = 0, see [76] and the references
therein. To the contrary, the extension of this idea to the energy-transport
system still leads to a flexible and stable method that converges even in
situations where of a full Newton method did not converge due to the large
condition number of the Jacobian matrix. We point out that in the Gum-
mel iteration the information about the strong coupling of the unknowns
is incorporated into the Poisson equation only. This allows a flexible ex-
tension to more advanced simulations including multi band methods where
equations for each band are coupled through extended recombination gener-
ation effects, see Kerkhoven [83]. This procedure of step-wise solving linear
elliptic subproblems reduces the memory consumption which would allow
to increase the number of degrees of freedom in the finite-element space so
that extensions to finite-element approximations of three-dimensional do-
mains are possible. An extension of the mixed finite-element method of
Section 2.1 to three dimensions has not been derived yet, and only very few
exponentially fitted methods have been proposed for three dimensions, see
[4] and the references therein.

3.3 Global Iteration

For the classical drift-diffusion model, several iterative procedures for solving
the coupled system have been proposed in the literature (see e.g., [76, 84, 9]
and the references therein). We have used a Gummel-type [69] method for
the numerical examples in the following section, combined with an iteration
procedure for the temperature. An adaptive mesh refinement is integrated
in a second step.

This decoupling procedure allows us to apply the mixed scheme of Chapter
2 to the corresponding subproblems (see below). We present the iteration
in case of the energy-transport-drift-diffusion system, when the Chen model
is used for the constitutive relations in the energy-transport part.

We recall that in the Chen model, g1 = n and g2 = (3/2)nT holds but in
general, n is a function of g1 and T (see [49]). We assume that a set of

functions (g
(l)
1 , g

(l)
2 , p(l), V (l), T (l)), some constant δT (l) and the piecewise

constant function T are given. These functions may not only stem from a
foregoing iteration step but can also stem from an approximate solution on
a coarser mesh which has been interpolated. The algorithm to solve the
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system (called algorithm (A)) is as follows:

1. Let g∗1 = g
(l)
1 , p∗ = p(l), V = V (l).

2. Do

(a) find g1 such that





−div J1 +
r(g∗1 ,T

(l),p∗)
µn,0

p∗g1 = n2
i
r(g∗1 ,T

(l),p∗)
µn,0

in Ω,

J1 = ∇g1 −∇V T−1
g1 in Ω,

g1 = nD on ΓD, J1·ν = 0 on ΓN ;

(3.21)

(b) find p such that





−div Jp + r(g1,T (l),p∗)
µp,0

g1p = n2
i
r(g1,T (l),p∗)

µp,0
in Ω,

Jp = ∇p+∇V p in Ω,

p = pD on ΓD, Jp·ν = 0 on ΓN ;

(3.22)

(c) set n = g1 and V1 = V + δV , where δV is the solution of

{
λ2∆(δV )− (p+ n)δV = −λ2∆V + n− p− C in Ω,

δV = 0 on ΓD, ∇(δV )·ν = 0 on ΓN ;
(3.23)

(d) set g∗1 := g1, p
∗ := p, V := V1;

until ‖δV ‖L2 < ε(δT (l)).

3. Find g
(l+1)
2 such that for r = r(g1, T

(l), p)





−div J
(l+1)
2 + 3

2µn,0
(r + τ−1

0 )g
(l+1)
2

= −J1 · ∇V + 3
2µn,0

(T0τ
−1
0 g1 + n2

iT
(l)r) in Ω,

J
(l+1)
2 = ∇g(l+1)

2 −∇V T−1
g
(l+1)
2 in Ω,

g
(l+1)
2 = 3

2nDTD on ΓD, J
(l+1)
2 ·ν = 0 on ΓN .

(3.24)

4. Set g
(l+1)
1 := g1, p

(l+1) := p.

5. Compute T (l+1) = 2
3g

(l+1)
2 /g

(l+1)
1 , a piecewise constant approximation

T , and let δT (l+1) = ‖T (l+1) − T (l)‖L∞ .

6. Define V (l+1) = V + δV where δV is the solution of (3.23).
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As a stopping criterion we use the L∞-norm of two consecutive iteration

functions (g
(l)
1 , g

(l)
2 , T (l), p(l), V (l)).

Steps 2(a), 2(b), and 3 are performed by means to the mixed scheme de-
scribed in Section 2.1. The subtle part is the definition of the drift coefficient
b according to equation (2.1) on the discrete level, which we now describe.

We therefore denote the finite-element approximations of g
(l+1)
i , V (l+1) by

ghi and V h respectively. In the iteration process an electron temperature T h

is defined via (3.14) as a function which is piecewise constant on the edges.
The linearized Poisson equation in step 2(c) is solved by using a noncon-
forming method approximating the potential by V h ∈ CRh,VD , with CRh,ξ
defined in (2.38). For the discretization of the hole current equation (3.22)
in step 2(b) we can directly use b̄ = ∇V h since the hole temperature is con-
stant. This is equivalent to setting in equation (2.3) ψ = V h, cf. Remark
2.1(i). In the electron particle and energy flux equations (3.21) and (3.24)
of steps 2(a) and 3, we substitute the temperature by the local mean tem-
perature T |K which is defined by the (arithmetic) mean value of T h on the
edges e ∈ ∂K. Observing that ∇V h is piecewise constant for V h ∈ CRh,VD ,

we can define the piecewise constant drift coefficient b = b̄ = ∇V hT
−1

and
accordingly ψ through the equation (2.3).
After convergence of the iterative scheme, the current densities are computed
using formula (2.15), originating from the mixed scheme.

3.3.1 Refinement Strategy

For the adaptive procedure we need to define an indicator for the whole
system of equations. The estimator ηCR of Subsection 2.3.1 with its local
contributions ηCR,K defined in (2.43) is employed for the particle and energy
flux equations. To simplify the notation we drop the index CR in this section.
An estimator for the error of the Poisson equation is taken from the lit-
erature. Several estimators for elliptic problems discretized by Crouzeix-
Raviart elements can be found in the literature, see, e.g., [34, 46, 117]. We
use the estimator derived in [117]. More precisely, the error estimator for
the electrostatic potential has the form

(ηV )2 =
∑

K∈Th

(ηVK)2

with the local contributions

(ηVK)2 =
(hT
λ

)2
‖n− p−C‖20;T +

3∑

i=1

1

2

(
hei

∫

ei

[∇V · ν]2ds+
λ2

hei

∫

ei

[V ]2ds
)
,
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where [u] is the jump of u across an edge ei.
We also add the heuristic term ηK(gh2 /g

h
1 , ḡ

h
2/ḡ

h
1 ) to the indicator of the sys-

tem, with ghi and ḡhi the approximations of ghi in the spaces Λh and Wh

respectively, see (2.43). The idea is to monitor directly changes of the quo-
tient gh2 /g

h
1 . In the present situation, the quotient equals the temperature

(multiplied by 3/2). In general, in particular for nonparabolic band dia-
grams, the temperature depends nonlinearly on that quotient; see [49]. We
observed that the estimators for gh1 or gh2 alone are not able to resolve strong
changes of the quotient in regions with very low densities. The error esti-
mator that we used in our simulations reads as follows (with ḡhi , p̄

h ∈Wh):

η2
K,ET = η2

K(gh1 , ḡ
h
1 ) + η2

K(gh2 , ḡ
h
2 ) + (ηVK)2 + η2

K(gh2 /g
h
1 , ḡ

h
2 /ḡ

h
1 ), (3.25)

η2
K,ET&DD = η2

K,ET + η2
K(ph, p̄h), (3.26)

with ηK(ph, p̄h) defined through equation (2.43).
The estimator ηZZ can be used as a substitute for the first two summands
in (3.25) as indicated in Subsection 2.3.3. For the MOSFET device we will
compare simulation results obtained under the refinement control of ηCR
with those obtained by means of ηZZ .
In the adaptive strategy we refine the triangles belonging to the set

RK = {K ∈ Th : ηK,ET&DD ≥ 0.7 max
K∈Th

ηK,ET&DD}.

More precisely, the triangles of this set are first refined into four congruent
triangles. Possible hanging nodes are removed by using the algorithm of
Bank [11]. This algorithm may introduce triangles with obtuse angles. The
number of these triangles are diminished by the so-called “barycentric mesh
regularization” technique. The idea is to move any interior vertex P of the
triangulation Th to the barycenter of the set DP = {K ∈ Th : P ∈ ∂K} of
neighboring triangles (for details see [113]).
The direct interpolation of the nonconforming P1 discretization of V h given
on Th might be very “oscillating” in regions where the potential has steep
gradients. Therefore we construct a conforming P1 interpolation on Th/2 ⊃
Th. For the vertices which are the midpoints of edges in Th, we use the corre-
sponding values of V h. The values at the remaining vertices are determined
by the mean value of V h taken over the midpoints of the edges that are
connected to the corresponding vertex. The variables gh1 , gh2 and ph, which
are defined at the midpoints of the edges, are treated analogously.
For the global iteration we assume that additionally to the data needed for
the algorithm (A) of the previous subsection, the estimator η is initialized.
The adaptive procedure then reads as follows:
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Do

1. Perform the steps of the algorithm (A) until ‖(g(l+1)
1 , g

(l+1)
2 , p(l+1), V (l+1),

T (l+1))− (g
(l)
1 , g

(l)
2 , p(l), V (l), T (l))‖L∞ < 10−4 · η;

2. Compute η2 =
∑

K∈Th
ηK,ET&DD;

3. Let RK = {K ∈ Th : ηK,ET&DD ≥ 0.7maxK∈Th ηK,ET&DD};
4. Generate a new mesh Th by refining all K ∈ RK regularly, removing

any hanging nodes and regularizing the mesh;

5. Generate the new vectors of nodal values by interpolating the solution
from the previous mesh;

until η < 10−5 or #K > Nmax.

3.4 Semiconductor Devices

In this section we present the numerical simulations for a set of device ex-
amples. The first device is used to assess the numerical convergence of the
scheme, whereas the following examples represent configurations of more
realistic devices. These include some specialties for the boundary data, so-
called Schottky contacts and Oxide layers, which have to be explained in
the respective sections.

3.4.1 A Ballistic Diode

We consider a two-dimensional diode which is uniform in one dimension. The
semiconductor domain is Ω = (0, lx)×(0, ly), where lx = 0.6µm, ly = 0.2µm,
and the length of the channel equals 0.4µm. The n+ doping regions are de-
fined in (0, 0.1µm)× (0, ly) and (0.5µm, lx)× (0, ly), the n region (or channel
region) in (0.1µm, 0.5µm) × (0, ly). The diode has two Ohmic contacts on
both sides of the domain whereas the remaining boundary parts are insu-
lating. We choose:

ΓD1 = {x = 0}, ΓD2 = {x = lx}, ΓN = {y = 0} ∪ {y = ly}.

On ΓN homogeneous Neumann boundary data are imposed and on ΓD the
Dirichlet boundary data are given as follows:

n = Cm, T = T0, V = Vel on ΓD1,

n = Cm, T = T0, V = U + Vel on ΓD2.
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Here, the ambient temperature is T0 = 300K, U = 1.5V is the applied
voltage, and the built-in potential Vel is given by

Vel = U0 ln(n/ni). (3.27)

The doping concentration in the n+ region is Cm = 5·1017cm−3, in the
channel region we take a doping density of 2·1015cm−3. These values are
the same as in [36, 49, 92, 110] and allow for a comparison with the results
presented in these papers.
First we report the relative errors (RE) of the computed solutions in the
L2-norm in Table 3.2 and Table 3.3, using the Chen model (see Section
3.1). The mesh on which the reference solution was computed has 20480
triangles and maximal edge length h = 1/160. As mentioned in Remark
2.2 we compare the proposed scheme with a P1 nonconforming treatment of
the zeroth-order terms, cf. Remark 2.2. The convergence rates of the mixed
discretization for Th, nh, g2,h are 1.55, 1.85, and 1.84, respectively. For a
constant potential one would expect the P1 nonconforming scheme to give
better results, since there the lower-order terms have a stronger effect on the
resulting matrix. For the present situation the errors do almost not differ.
This shows that the convection parts play here an important role. We finally
mention that similar results have been obtained using the Lyumkis model.

h RE for Ψh RE for Th RE for nh RE for g2,h

0.1 5.4 · 10−3 0.0122 0.100 0.100
0.05 1.9 · 10−3 4.96 · 10−3 0.029 0.029
0.025 5.1 · 10−4 1.4 · 10−3 7.7 · 10−3 7.7 · 10−3

Table 3.2: Relative errors for the mixed scheme (Chen model).

h RE for Ψh RE for Th RE for nh RE for g2,h

0.1 5.4 · 10−3 0.0122 0.100 0.100
0.05 1.9 · 10−3 3.4 · 10−3 0.029 0.029
0.025 4.8 · 10−4 9.9 · 10−4 7.8 · 10−3 7.8 · 10−3

Table 3.3: Relative errors for the P1 nonconforming scheme (Chen model).

Now we present the numerical results for a non-uniform mesh with 900
triangles. In Figure 3.1 the (unscaled) electron temperature for the Lyumkis
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Figure 3.1: Electron temperature versus position in a ballistic diode.

and the Chen model are shown. As expected, the temperature profiles are
almost uniform in one space direction. Moreover, they coincide with the
values computed in [49].

In Figure 3.2 we show the (unscaled) electron mean velocity u = J1/(qn).
Again, the profiles coincide almost with the corresponding results in [49].
The maximum values for the Lyumkis and the Chen model are 3.03·107cm/s
and 1.44 ·107cm/s, respectively. In [49], the maximum values 2.92 ·107cm/s
(Lyumkis model) and 1.44 · 107cm/s (Chen model) are reported.

3.4.2 A MESFET Device

The MESFET (metal-semiconductor field-effect transistor) device is used as
a switch or amplifier [112]. We present two examples of this device type.
For the first example we use data from the literature, see below. The second
example in the next section will be the first adaptive simulation and presents
the different states of a switch.

The device behavior is mainly governed by the size of the depletion re-
gion (i.e., a region with very low electron density) that develops around the
Schottky contact at the gate, see Figures 3.3 and 3.9. This depletion region
enlarges if the gate voltage is decreased, and therefore diminishes the chan-
nel width which leads to a reduced current for a fixed applied drain voltage
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Figure 3.2: Electron mean velocity versus position in a ballistic diode.

(closed state). For larger gate voltage, the depletion region becomes smaller
and a significant current can flow (open state).

The device geometry of the first example is as follows. The device consists
of two high-doped n+ regions near the Ohmic contacts (called source and
drain) and an n region with a Schottky contact (called gate); see Figure 3.3.

The source and drain contact lengths are 0.1µm; the gate contact length is
0.2µm. For the doping profile we use the smoothed function presented in
Figure 3.4. It holds (in µm):

DrainGateSource

PSfrag replacements

n

n+n+

Figure 3.3: Geometry of the MESFET.
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Figure 3.4: Doping profile of the MESFET.

C(x, y) =

{
3 · 1017cm−3 : (x, y) ∈ [0, 0.1] × [0.15, 0.2] ∪ [0.5, 0.6] × [0.15, 0.2],

1 · 1017cm−3 : else.

The boundary data is given as follows (with Vel as defined in (3.27)):

• at the source: n = 3 · 1017cm−3, T = 300K, V = Vel;

• at the drain: n = 3 · 1017cm−3, T = 300K, V = Vel + 2V;

• at the gate: n = 3.9 · 105cm−3, T = 300K, V = Vel − 0.8V;

• for the remaining boundary segments, homogeneous Neumann bound-
ary conditions for J1, J2, and V are used.

These values are the same as in [77, 38], but we do not prescribe the ve-
locity on the contact parts. The value for n at the gate contact has been
computed from the formula (5.1-19) from [108]. We use the definition of
the temperature and the energy relaxation term of the Chen model.

For this device geometry, the Gummel-type iteration presented in Section
3.3 converges very slowly. The reason may be the complex structure of the
temperature profile, in particular the large gradients near the gate contact.
For this reason, a full Newton scheme has been used.
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The discrete version of equation (3.14) for T = f(g1, g2) is of algebraic
nature and therefore, it is different from the discrete versions of (3.9)-(3.11)
since it does not stem from a variational formulation. Using it directly in
the derivation of the Newton scheme leads to a badly conditioned Jacobian
matrix. To avoid this we assume that Th and fh, given by Th = fh =
f(gh1 , g

h
2 ), are a P1 nonconforming approximation of the temperature and

the right-hand side of (3.14). The “variational” formulation of the equation
Th = fh, with basis functions ϕi, is as follows:

∫

Ω
Thjϕjϕidxdy =

∫

Ω
fhjϕjϕidxdy.

Now, since
∫
ϕjϕidxdy = |supp(ϕj)|/3 · δij we get

Thj|supp(ϕj)|/3 = fhj|supp(ϕj)|/3, (3.28)

which is of the same order of magnitude as the differential equations. This
leads especially for bad initial values or high increments in the bias contin-
uation to much faster convergence compared to a Newton scheme that does
not incorporate the scaling factor |supp(ϕj)|/3 in equation (3.28).

Figures 3.5-3.8 show the computational results for a mesh with 1564 nodes.
It has been a priori refined near the Dirichlet boundaries and the junctions.
In Figure 3.5 the electron density is shown. The depletion area around the
gate contact is clearly seen.

The electron temperature is presented in Figure 3.6. The maximal tem-
perature is 3152K. As expected, the temperature is large near the drain
contact. Near the gate, the gradient of the temperature is very large, which
may indicate that the fixed boundary temperature of 300K is physically not
appropriate.

In Figure 3.7 the electrostatic potential is shown. Since the electrons are
moving in the direction of positive potential, we expect a significant current
flow from the source to the drain. This is confirmed by Figure 3.8 where the
vector of the particle current density is depicted. In fact, with the above
data, the MESFET device is in an “open” state. In a “closed” state the
depletion region is much larger than shown in Figure 3.5 and the current
density much smaller as we will see in the next example.

3.4.3 A Double-Gate MESFET

To improve the control of the channel we add a second gate contact at the
lower boundary, more precisely the device consists of two high-doped n+
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Figure 3.5: Electron density in the MESFET (Chen model).

regions near the Ohmic contacts (called source and drain) and an n region
with an upper and a lower Schottky contact (called gate) in a sandwich
configuration (see Figure 3.9).
The model parameters of the MESFET of size 0.6µm×0.24µm are as follows.
The source and drain contact lengths are 0.24µm; the gate contact length is
0.2µm. Moreover, the length of the low-doped (channel) region is 0.36µm.
The discontinuous doping profile is given by

C(x, y) =

{
1 · 1017cm−3 : x ∈ [0.12µm, 0.48µm], y ∈ [0, 0.24µm]

3 · 1017cm−3 : else.

At the source and drain contacts the data for the particle density are equal to
the equilibrium values, see equation (3.20). Apart from the Schottky contact
the boundary values are as before. At the Schottky contact the boundary
data for the potential consists of the usual parts, the built-in potential and
the applied voltage, but additionally the so-called Schottky barrier height
is subtracted, i.e. V |G = Vapplied + Vel − Vbarrier. A barrier height of 0.8V is
used as a typical value for a n-type silicon/metal contact. The temperature
at all contacts is equal to the ambient temperature T0. The particle density
at the Schottky gates is computed from formula (5.1-19) in [108]. In the
following we summarize the boundary conditions:
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Figure 3.6: Electron temperature in the MESFET (Chen model).

• at the source: n = 3 · 1017cm−3, V = Φ0;

• at the drain: n = 3 · 1017cm−3, V = Φ0 + 2V;

• at the gates:

open state: n = 3.9 · 105cm−3, V = 0V + Φ0 − 0.8V;

close state: n = 2.4 · 105cm−3, V = −1.2V + Φ0 − 0.8V;

• for the remaining boundary segments, homogeneous Neumann bound-
ary conditions for J1, J2, and V are used.

In Figure 3.10, we present the electron and the energy density in the open
and closed state, respectively. In the open state we can observe clearly the
channel between the depletion regions at the gate contacts, built by the
electrons. As expected, the energy density is much larger in the open state
than in the closed state.
The electrostatic potential and the electron temperature are depicted in
Figure 3.11. Although the electron density is very low in the channel and
at the drain junction, the electron temperature is much higher in the closed
state since the electric field is larger here than in the open state.
In Figures 3.12 and 3.13 we present two current-voltage curves: the drain
current ID depending on the drain voltage UD with no applied gate voltage
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Figure 3.7: Electrostatic potential in the MESFET (Chen model).

and the drain current ID depending on the gate voltage VG with a drain
voltage of 2V. The dependence of ID(VG) is approximately quadratic which
confirms the results mentioned in [112]. Moreover, it can be seen that
the value of the current density is not strongly affected by the number of
triangles. This situation changes when simulating a MOSFET device (see
the next section).

3.4.4 A Deep Submicron MOSFET

A MOSFET (metal-oxide semiconductor field-effect transistor) device can
be used as a voltage-driven switch and is the most used device in computer
technology. We simulate a transistor of size 420nm×210nm with an effective
channel length of 70nm and an oxide thickness of 1.5nm. The length of the
source and drain contacts is 30nm (see Fig. 3.14). The doping profile is given
by a step function with values 1019cm−3 in the n+-region and −1017cm−3

in the p bulk region. The geometry and data of this device are adapted
from the work of Cassan et al. [35]. Cassan et al. compare Monte-Carlo
simulations of the Boltzmann transport equation with numerical results from
drift-diffusion and energy-transport models. Under the assumption that
direct tunneling through the oxide is the dominant mechanism producing
gate currents, they develop a post processing procedure to calculate these
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Figure 3.9: Geometry of the MESFET with two coupled gate contacts.

currents from the simulations using the energy-transport and drift-diffusion
models. They observed that gate currents for n-MOSFET devices with an
oxide thickness less than 2nm, calculated by post processing, are in good
agreement with gate currents calculated from Monte-Carlo simulations. This
justifies in some sense the use of the energy-transport model for the above
MOSFET geometry.

The current-voltage characteristics of the device are mainly influenced by
the electric field at the semiconductor oxide junction. To model the influence
of the oxide we assume that the particles do not penetrate the oxide region.
We denote the semiconductor region by ΩS, ΩO is the oxide region, ΓS/O =
∂ΩS ∩ ∂ΩO is the silicon/silicon oxide interface, ΓG is the gate contact part
of ∂ΩO, and ΓN,O = ∂ΩO\(ΓG ∪ ΓS/O) are the remaining boundary parts
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Figure 3.10: Electron density n (upper row) and energy density 3
2nT (lower

row) in a double-gate MESFET (left column: open state; right column:
closed state).

of ΩO. We choose Dirichlet boundary conditions at the source, drain and
bulk, i.e., the densities are set to their equilibrium values (see [91]). Since
we assume that the particles do not penetrate the oxide, the particle and
energy densities do not need to be computed in ΩO. We impose homogeneous
Neumann boundary conditions Jα · ν = 0 for α = 1, 2, p on ΓS/O and on the
remaining parts of the boundary of ΩS . We solve the Poisson equation in
the domain ΩS ∪ΩO with a space-dependent permittivity which is constant
in each Ωi, i = S,O, and we specify homogeneous Neumann boundary
conditions on ΓN,O and a Dirichlet condition on ΓG.

Before we present the numerical results we show the meshes generated by
our refinement strategy in Figure 3.15. The initial mesh is constructed
without any knowledge of the location of the junctions. After the adaptive
procedure, the final grid is refined near the junctions and near the gate
oxide. The importance of the adaptive scheme becomes apparent when
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Figure 3.11: Electrostatic potential (upper row) and electron temperature
(lower row) in a double-gate MESFET (left column: open state; right col-
umn: closed state).

comparing the current-voltage curves for different meshes (Figure 3.16). The
characteristics seem to stabilize for meshes with about 5000 triangles for the
estimator ηCR on the left. On the right of Figure 3.16 the estimator ηZZ was
used for the electron current density in the system indicator to control the
refinement process. We clearly see that the IV-curves stabilize already for
a smaller number of elements, and the maximum current is slightly larger
for the curves computed under refinement control of ηZZ . The strongly
localized current flow in the MOSFET device is the main reason for this
advantageous behaviour. Keeping the applied voltage fixed we see for both
estimators, that the current is slowly increasing with refining the mesh.

First we present current-voltage curves of the drain current ID(VD) depend-
ing on the drain voltage VD for different applied gate voltages (Figure 3.17).
For larger gate voltages the drain current reaches a higher level before sat-
uration effects diminish the slope of the curves [112].

The influence of the electron temperature is shown in Figures 3.18 and 3.19
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Figure 3.12: MESFET drain current as a function of the drain voltage for
various meshes (VG = 0V).
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Figure 3.13: MESFET drain current as a function of the gate voltage (VD =
2V).
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Figure 3.15: Adaptively refined triangulations for the MOSFET (zoom).
Left: initial mesh (about 1000 triangles); right: final mesh (about 4000
triangles).

(using VD = 1V and VG = 1V). Due to the high temperature region at the
drain junction the effective electron mobility µ(T ) = µn,0/T decreases and
a region with a higher electron concentration is formed in the channel. The
temperature near the right end of the drain junction is larger than at the
source junction since the electrons gain more energy from the electric field
during their flow through the device.

Finally we want to mention two fields for further investigations, where we ex-
clude already possible extensions to quantum fluid models. Considering for
instance the simulation results for the MESFET device, the boundary layer
of the temperature near the gate contact indicates that different bound-
ary conditions may be physically more appropriate. One possibility is to
employ Robin boundary conditions at the contacts, since they are second-
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Figure 3.16: Drain current depending on the drain voltage for different
meshes (VG = 0.95V). For each curve the maximum element count is fixed.
The refinement starts always from the same coarse mesh. On the left the
refinement is derived from ηCR and on the right from ηZZ .
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Figure 3.17: Current-voltage curves for different applied gate voltages.

order approximations of boundary conditions for the Boltzmann equation
[51] and the energy-transport equations are itself derived from the Boltz-
mann equation [17]. Robin boundary conditions have already been used
in the drift-diffusion model [119]. A second very interesting point for fu-
ture extensions is to derive a DWR-estimator for the convection-diffusion
problem and to apply it to a linearized version of the full nonlinear system.

Summarizing this section we can say that numerical method is in good
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Figure 3.18: Electron density (left) and electron energy density (right) in a
MOSFET with 70nm channel length (logarithmic plot). Notice that a part
of the bulk region is not shown.
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Figure 3.19: Electrostatic potential (left) and electron temperature (right)
in a MOSFET with 70nm channel length.

agreement with the results available in the literature. It is very flexible in
the choice of the underlying physical model as well as regarding the adaptive
refinement strategy. Especially the error estimator may be configured easily
by adding weighting factors in the definitions (3.25) and (3.26) to address
specific simulation interests.
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[88] J. Malý, D. Swanson, W. Ziemer. The Coarea formula for Sobolev mappings.
Trans. Amer. Math. Soc. 355:477-492, 2003.

[89] L. D. Marini and P. Pietra. An abstract theory for mixed approximations of
second order elliptic equations. Mat. Aplic. Comp. 8:219–239, 1989.

[90] L. D. Marini and P. Pietra. New mixed finite element schemes for current
continuity equations. COMPEL, 9:257–268, 1990.

[91] P. A. Markowich, C. A. Ringhofer, and C. Schmeiser. Semiconductor Equa-
tions. Springer, 1990.



108 Bibliography

[92] A. Marrocco, P. Montarnal, and B. Perthame. Simulation of the energy-
transport and simplified hydrodynamic models for semiconductor devices us-
ing mixed finite elements. In Proc. of ECCOMAS 96, Wiley, 1996.

[93] J. J. Miller and S. Wang. A new non-conforming Petrov-Galerkin finite-
element method with triangular elements for a singularly perturbated ad-
vection-diffusion problem. IMA J. Numer. Anal. 14:257–276, 1996.

[94] K. W. Morton. Numerical solution of convection-diffusion problems. Applied
Mathematics and Mathematical Computation 12, Chapman & Hall, 1996.

[95] S. Nicaise. Polynomial Interface Problems. Peter Lang, Frankfurt am Main,
1993.

[96] R.R.P. van Nooyen. A Petrov-Galerkin mixed finite element method with
exponential fitting. Numer. Meth. Part. Differ. Eq. 11,5:501–524, 1995.

[97] F. Poupaud. Diffusion approximation of the linear semiconductor Boltzmann
equation. J. on Asympt. Anal. 4:293–317, 1991.

[98] F. Poupaud and C. Ringhofer. Semi-classical limits in a crystal with exterior
potentials and effective mass theorems. Commun. Partial Differ. Equations
21,No. 11-12:1897-1918, 1996.

[99] P. Raviart and J. Thomas. A mixed finite element method for second order
elliptic equations. In Mathematical Aspects of the Finite Element Method,
volume 606 of Lecture Notes in Math. pages 292–315. Springer, 1977.

[100] L. Reggiani. Hot-Electron Transport in Semiconductors. Springer, 1985.

[101] C. Ringhofer. An entropy-based finite difference method for the energy trans-
port system. Math. Models Meth. Appl. Sci. 11:769–796, 2001.

[102] W. Van Roosbroeck. Theory of flow of electron and holes in germanium and
other semiconductors. Bell Syst. Techn. J. 29:560–607, 1950.

[103] M. Rudan, A. Gnudi, and W. Quade. A generalized approach to the hydro-
dynamic model of semiconductor equations. In G. Baccarani, editor, Process
and Device Modeling for Microelectronics, Amsterdam, 1993. Elsevier.

[104] R. Sacco and F. Saleri. Stabilization of mixed finite elements for convection-
diffusion problems. CWI Quarterly, Vol 10:301-315, 1997.

[105] D. Scharfetter and H.K. Gummel. Large-signal analysis of a silicon read
diode oscillator. IEEE Trans. Elec. Dev. ED-16:64–77, 1969.

[106] C. Schmeiser and A. Zwirchmayr. Elastic and drift-diffusion limits of electron-
phonon interaction in semiconductors. Math. Models Meth. Appl. Sci. 8:37–53,
1998.



Bibliography 109

[107] C. Schwab. p− and hp− Finite Element Methods. Theory and Applications
to Solid and Fluid Mechanics, Oxford University Press, 1998.

[108] S. Selberherr. Analysis and Simulation of Semiconductor Devices. Springer,
1984.

[109] M. Selva Soto and C. Tischendorf. Numerical Analysis of DAEs from Coupled
Circuit and Semiconductor Simulation. Appl. Numer. Math. 53,2-4:471–488,
2005.

[110] K. Souissi, F. Odeh, H. Tang, and A. Gnudi. Comparative studies of hydro-
dynamic and energy transport models. COMPEL, 13:439–453, 1994.

[111] R. Stratton. Diffusion of hot and cold electrons in semiconductor barriers.
Phys. Rev. 126:2002–2014, 1962.

[112] S. Sze. Physics of Semiconductor Devices. John Wiley, New York, 1981.

[113] R. Verfürth. A Review of a Posteriori Error Estimation and Adaptive Mesh
Refinement Techniques. Wiley, Teubner, Germany, 1996.

[114] P. Visocky. A method for transient semiconductor device simulation using
hot-electron transport equations. In J. Miller, editor, Proc. of the Nasecode X
Conf. Dublin, 1994. Boole Press.

[115] W. Walus. Computational methods for the Boltzmann equation. In N. Bel-
lomo, editor, Lecture Notes on the Mathematical Theory of the Boltzmann
Equation, pages 179–223. World Scientific, Singapore, 1995.

[116] S. Wang and L. Angermann. On convergence of the exponentially fitted finite
volume method with an anisotropic mesh refinement for a singularly perturbed
convection-diffusion equation. Comp. Meth. Appl. Math. 3:493–512, 2003.

[117] B. Wohlmuth. A residual based error estimator for mortar finite element
discretizations. Numer. Math. 84:143–171, 1999.

[118] J. Xu and L. Zikatanov. A monotone finite element method for convection–
diffusion equations. Math. Comp. 68,228:149–1446, 1999.

[119] A. Yamnahakki. Second order boundary conditions for the drift-diffusion
equations of semiconductors. Math. Models Meth. Appl. Sci. 5:429–455, 1995.

[120] O.C. Zienkiewich and J.Z. Zhu. A simple error estimator and adaptive proce-
dure for practical engineering analysis. Int. J. Numer. Methods Eng. 24:337–
357, 1987.





Curriculum Vitae

Name: Stefan Holst
Born: 9.6.1973 in Berlin - Germany
Nationality: German

Education

1979-85 Alfred-Brehm-Primary School
1985-92 Carl-Friedrich-v.-Siemens-Grammar School
1990 Participation at the “Mathematical Seminar for pupils” at the

FU Berlin
1992 Finishing grammar school with “A-Level”, main subjects:

Mathematics, Physics, English and Political Science
1993-99 Study of Applied Mathematics at the TU Berlin
11/5/1999 Degree with distinction in applied mathematics (Dipl. Math.

techn.) at the TU Berlin

Professional Experience

07/1996-11/1999 student assistant for software-development at the com-
puter science faculty of the TU Berlin

05/1999-10/1999 student assistant for teaching at the math faculty of
the TU Berlin

11/1999-1/9/2000 research associate at the computer science faculty of
the TU Berlin for finalizing a running project

1/2000-10/2002 research associate at the math faculty of the Univer-
sity of Konstanz

since 11/2002 research associate at the math faculty of the Univer-
sity of Mainz

111


	 Introduction
	Semiconductor Device Modeling
	Semi-Classical Picture of Quantum Mechanics
	Macroscopic Models
	Energy-transport Models -- An Overview

	A Mixed Finite--Element Framework
	Hybridization
	Basic Adaptive Algorithm


	 A Hybridized Mixed-FEM for Convection-Diffusion Problems
	Discretization
	A priori Analysis
	Proofs of technical lemmas

	A Posteriori Error Estimation
	An Embedded Estimator Controlling the L2-Error
	Benchmark Problems
	Error Control Based on the Current Density

	The DWR-Estimation for Mesh Refinement Control
	Methodology for Standard Finite--Element Methods
	DWR-Estimator for Mixed Finite--Element Methods
	A Problem of the SIAM 100-Digit Challenge


	 The Semiconductor Application
	The Complete Physical Model
	Thermal equilibrium
	Global Iteration
	Refinement Strategy

	Semiconductor Devices
	A Ballistic Diode
	A MESFET Device
	A Double-Gate MESFET
	A Deep Submicron MOSFET


	Bibliography

