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Zusammenfassung

Als Basis zahlreicher Produkte des téglichen Lebens mit der daraus resultieren-
den erheblichen industriellen Bedeutung wie auch als Bausteine fiir Biomaterialien
stellen geladene Hydrogele auch nach Jahrzehnten des praktischen Einsatzes und in-
tensivster Forschung Wissenschaftler der verschiedensten Fachrichtungen vor immer
neue Herausforderungen. Trotz eines relativ einfach zu beschreibenden Aufbaus er-
schweren vor allem ihre internen Wechselwirkungsmechanismen aufgrund der einzi-
gartigen Kombination von kurz- und langreichweitigen Kraften wissenschaftliche
Untersuchungen ihrer charakteristischen Eigenschaften. Daher ist es wohl kaum ver-
wunderlich, dafl auf diesem Gebiet schon frith Computersimulationen als Bindeglied
zwischen analytischer Theorie und empirischen Experimenten zum Einsatz kamen,
um so die Liicke zwischen den vereinfachenden Annahmen der Modelle und der
Komplexitdt realer Messungen schrittweise zu schlieBen. Aufgrund des selbst fiir
Hochstleistungsrechenanlagen immensen numerischen Aufwands mufiten die betra-
chteten Systemgrofien und Zeitskalen jedoch lange verhaltnisméfBig klein sein; erst
heute sind die technischen Moglichkeiten vorhanden, welche es erlauben, auch ein
Netzwerk geladener Polyelektrolyte numerisch zu modellieren. Dies ist Gegenstand
der vorliegenden Doktorarbeit, welche sich mit einem der fundamentalen und zugle-
ich auBerst faszinierenden Phanomenen der Polymerforschung beschaftigt:

Dem Quellverhalten von Hydrogelen.

Hierzu wurde ein erweiterbares Simulationspaket fiir Untersuchungen weicher Ma-
terie, Kurzform: ESPResSo, geschaffen, das insbesondere das mesoskopische Kugel-
Feder-Standardmakromolekiil zu komplexen Systemen zusammengesetzt zu berech-
nen versteht. Hocheffiziente Algorithmen und massive Parallelisierung verkiirzen
darin die erforderliche Rechenzeit zur Losung der Bewegungsgleichungen selbst im
Falle der langreichweitigen Elektrostatik und fiir hohe Teilchenzahlen, so dass selbst
numerisch aufwendige Anwendungen realisierbar werden. Dabei ist dieses Programim
dennoch modular und einfach strukturiert, um so steten Ausbau durch neue Wechsel-
wirkungsmechanismen, Freiheitsgrade, Ensemble und Integratoren zu ermoglichen,
zugleich aber einsteigerfreundlich dank Trennung in ein die Simulation steuerndes
Tcl-Skript und den die Numerik ausfithrenden, rechenintensiven C-Teil gehalten.
Eine Vielzahl verschiedener Analyseroutinen erlaubt zudem die Untersuchung ex-
tensiver wie intensiver Observablen.

Auch wenn sich in den letzten Jahren analytische Theorien weitgehend auf eine



Modellbildung geeinigt hatten, zeigen die im Rahmen dieses Forschungsprojektes
durchgefiihrten numerischen MD-Simulationen, dass selbst im Falle einfacher Mod-
ellsysteme bereits grundlegende Annahmen der Theorien aufler fiir einen engen Pa-
rameterbereich nicht mehr zutreffen und somit nicht langer in der Lage sind, wichtige
Observable korrekt vorherzusagen. Dank “mikroskopischer” Analyse der isolierten
Beitrage einzelner Systemkomponenten, dies eine besondere Stirke von Computer-
simulationen, gelang es aber dennoch, das Verhalten geladener Polymernetzwerke
im Quellgleichgewicht in gutem Losungsmittel und in der Ndhe des 8-Punktes durch
entscheidende Modellmodifikationen erfolgreich beschreiben zu konnen.

Ermoglicht wurde dies durch die konsequente Erweiterung bekannter einfacher
Skalenargumente um in unserer detailierten Studie zuvor als ausschlaggebend iden-
tifizierte Mechanismen, welche sich dann zu einem generalisierten Modell zusam-
menfiigen liefen. Mit diesem gelang es dann erstmals das finale Systemvolumen
gequollener Polyelektrolytgele iiber den gesamten untersuchten Parameterbereich,
fiir verschiedene Netzwerkgroflen, Ladungsanteile und Wechselwirkungsstiarken mit
Ergebnissen der Computersimulationen in Ubereinstimmung zu bringen. Zudem
wurde mit der Idee einer “Zelle unter Zugspannung” ein selbstregulierender Ansatz
vorgestellt, der eine Vorhersage des Quellgrades allein auf Basis der verwendeten
Systemparameter erlaubt. Ohne Riickgriff auf implizite oder effektive Observable
kann so aus der Minimierung der freien Energie das Gleichgewichtsverhalten bes-
timmt werden.

In schlechter Losung verandert sich das Aussehen der Netzwerkketten grundle-
gend, da nun deren Hydrophobizitit entgegen der AbstoBung gleichgeladener
Monomere den Kollaps der Polyelektrolyte betreibt. Je nach gewahlten Parametern
kann sich so ein fragiles Gleichgewicht ausbilden, das faszinierenden geometrischen
Strukturen Vorschub leistet wie beispielsweise sogenannten Perlenketten. Dieses von
einzelnen Polyelektrolyten unter ahnlichen Umgebungsbedingungen bekannte Ver-
halten war theoretisch vorhergesagt, konnte aber in unseren Simulationen nicht
nur erstmalig nachgewiesen werden, sondern erlaubte auch anhand der Analyse to-
taler Strukturfaktoren erste Indizien fiir eine Existenz solcher Strukturen in experi-
mentellen Ergebnissen erfolgreich zu bestétigen.
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Summary

Being basic ingredients of numerous daily-life products with significant industrial
importance as well as basic building blocks for biomaterials, charged hydrogels con-
tinue to pose a series of unanswered challenges for scientists even after decades of
practical applications and intensive research efforts. Despite a rather simple internal
structure it is mainly the unique combination of short- and long-range forces which
render scientific investigations of their characteristic properties to be quite difficult.
Hence early on computer simulations were used to link analytical theory and em-
pirical experiments, bridging the gap between the simplifying assumptions of the
models and the complexity of real world measurements. Due to the immense numer-
ical effort, even for high performance supercomputers, system sizes and time scales
were rather restricted until recently, whereas it only now has become possible to also
simulate a network of charged macromolecules. This is the topic of the presented
thesis which investigates one of the fundamental and at the same time highly fasci-
nating phenomenon of polymer research: The swelling behaviour of polyelectrolyte
networks.

For this an extensible simulation package for the research on soft matter systems,
ESPResSo for short, was created which puts a particular emphasis on mesoscopic
bead-spring-models of complex systems. Highly efficient algorithms and a consis-
tent parallelization reduced the necessary computation time for solving equations of
motion even in case of long-ranged electrostatics and large number of particles, al-
lowing to tackle even expensive calculations and applications. Nevertheless, the pro-
gram has a modular and simple structure, enabling a continuous process of adding
new potentials, interactions, degrees of freedom, ensembles, and integrators, while
staying easily accessible for newcomers due to a Tcl-script steering level controlling
the C-implemented simulation core. Numerous analysis routines provide means to
investigate system properties and observables on-the-fly.

Even though analytical theories agreed on the modeling of networks in the past
years, our numerical MD-simulations show that even in case of simple model systems
fundamental theoretical assumptions no longer apply except for a small parameter
regime, prohibiting correct predictions of observables. Applying a “microscopic”
analysis of the isolated contributions of individual system components, one of the
particular strengths of computer simulations, it was then possible to describe the
behaviour of charged polymer networks at swelling equilibrium in good solvent and

il



close to the #-point by introducing appropriate model modifications.

This became possible by enhancing known simple scaling arguments with com-
ponents deemed crucial in our detailed study, through which a generalized model
could be constructed. Herewith an agreement of the final system volume of swollen
polyelectrolyte gels with results of computer simulations could be shown success-
fully over the entire investigated range of parameters, for different network sizes,
charge fractions, and interaction strengths. In addition, the “cell under tension”
was presented as a self-regulating approach for predicting the amount of swelling
based on the used system parameters only. Without the need for measured observ-
ables as input, minimizing the free energy alone already allows to determine the the
equilibrium behaviour.

In poor solvent the shape of the network chains changes considerably, as now their
hydrophobicity counteracts the repulsion of like-wise charged monomers and pursues
collapsing the polyelectrolytes. Depending on the chosen parameters a fragile balance
emerges, giving rise to fascinating geometrical structures such as the so-called pear-
necklaces. This behaviour, known from single chain polyelectrolytes under similar
environmental conditions and also theoretically predicted, could be detected for the
first time for networks as well. An analysis of the total structure factors confirmed
first evidences for the existence of such structures found in experimental results.

v
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Introduction

One of the most prominent features of a polyelectrolyte network can be observed
when immersing a dry sample in solution: This hydrogel is then able to absorb large
amounts of the solvent molecules, up to several hundred times its dry mass, while
swelling to an enormous size. It will also respond to variations of the external condi-
tions by rather drastic volume changes. Such remarkable properties allow numerous
industrial applications, e.g. as superabsorbants (hygiene products, health care, water
treatment, environmental cleanup operations), in drug delivery, cosmetics, pharma-
ceuticals, agriculture, in everyday products like rubber and compact discs, or as
actuators in microfluidic devices [3-8]. With hygiene products alone being a billion-
dollar-market [9], not only their economical importance ensured investigations into
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Figure 1.1.: Polyelectrolyte networks and their wide range of usability.

Left: Pharmaceutical application — this hydrogel is self-regulating, i.e. it releases
moisture into dry wounds or absorbs excessive exudate from sezernising wounds up
to twice its own weight, to ensure an optimal healing environment (see [1]).

Right: Agricultural application — while the two plants on the left hand side already
perish after eight days without water supply, one tea spoon of hydrogel, immersed
into the top two inches of the sandy-loam soil in which all four cosmos sulphureus
are grown, sufficed to ensure the survival of both plants to the right for over 17 days
under otherwise equal environmental conditions (picture taken on eighth day [2]).
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Figure 1.2.: Example of a flexible polyelectrolyte, contrasting the consti-
tution formula for sulfonated polystyrene and its sodium counterions (left)
with the coarse-grained depiction of a physicist (right) who models the
counterions in the solution as well as the relatively stiff monomer units on
the chain as simple (charged) spheres, any chemical bonds between them
as e.g. harmonic springs (taken from [11]).

the chemical processes required for their synthesis and application, but the general
usefulness of the hydrogels’ many trademark features as well. Despite the broad
range of scientific questions provoked thereby, the underlying physical mechanisms
however have not been receiving the same attention; simple theoretical models ex-
ist, but their validity cannot easily be verified against the experimental work due to
the multitude of different effects overlaying each other. Containing macromolecular
properties as well as long-range electrostatic interactions, they result in an impres-
sive (and mostly cross-correlated) variety of phenomena and fundamental questions,
i.e. [7] regarding the influence of molecular weight, intrinsic stiffness, solvent quality
or ionic strength on the size of the polyelectrolytes, the characterizability of observ-
ables by coarse-grained quantities (such as a linear charge density) versus the neces-
sity of considering full chemical details, the relation of dynamic quantities such as
viscosity or electrophoretic mobility to static properties. Their fundamental under-
standing is also crucial in e.g. biochemistry or molecular biology with most proteins,
including DNA itself, essentially being charged polymers. Nevertheless, mechanisms
of their interactions with the cell membranes remain largely unknown [10], their
mutual attraction surprising at first — why should not two likely charged objects
repel each other?

Chemically, charged hydrogels are composed of cross-linked polyelectrolytes, poly-
mer chains which dissociate ions in polar solvents [12]. Due to the macroscopic re-
quirement of electro-neutrality the counterions released from the chains are hereby
confined inside the gel and exert an osmotic pressure which leads to the swelling
of the network against the elastic response of the network strands. The increase
of the counterion entropy caused by the larger volume available to the ions in the



swollen state is thought to be the driving force behind the large swelling capacity of
charged gels, neglecting long-range electrostatics, short-range hydrophobic interac-
tions, and deviations from ideal behaviour. It is their delicate balance which renders
the magnitude of the swelling and the phase behaviour of polyelectrolyte networks
hard to predict [13]. In real systems, the composition of the gel and its surround-
ing solvent plays also an important role, though usually only the relative amount
of cross-linkers can be well-controlled experimentally. The topology is much harder
to control, and almost impossible to determine, leaving the distribution and type
of strand lengths, entanglements, dangling ends, etc., unknown and/or fluctuating.
Despite recent progress in that respect, allowing to synthesize well-defined model
polyelectrolyte networks based on the photodimerization of monodisperse star poly-
mers from Poly(tert-butyl methacrylate) (PtBMA) star precursor polymers with
subsequent photocrosslinking [14], equilibrium properties in general do depend on
the preparation process of the gel (e.g. active ends, n-functional crosslinking agents).
In contrast, the characteristics of the solution are relatively easy to control, with
the addition of salt [15], multivalent ions, and oppositely charged surfactants [16,17]
effectively reducing the gel volume.

Over the past decades, the attention polyelectrolyte networks attracted from both
science and industry increased profoundly. While the latter used the gels’ unprece-
dentedly high swelling capacity and their behaviour under external stimuli, the for-
mer’s interest focuses on the complex interplay of short- and long-range effects which
determine the equilibrium swelling properties [13]. Experimentally those have been
extensively studied for a long time [19-21], where initial work concentrated on the
swelling behaviour in solutions of simple salt [22,23]. More recent studies also ad-
dressed, among others, the influence of oppositely charged surfactants [24-28] and
microgel particles [29, 30].

Aside the experimental works, both single chain polyelectrolytes and neutral poly-
mer gels have also been thoroughly examined by analytical [12,31 33| and numerical
investigations [34 38| for a long time now. Charged networks or hydrogels on the
other hand have been subjected to much less analytical or computational studies,
which is why, from a fundamental point of view, polyelectrolyte gels are therefore
less understood than neutral ones. This is largely due to the fact that uncharged
polymer networks can benefit to a great extent from the powerful scaling descrip-
tion developed for single neutral chains and solutions, as one considers a semi-dilute
polymer solution at the overlap concentration (c¢*-picture) to be similar to a neutral
gel without trapped entanglements and heterogeneities at swelling equilibrium. For
a (charged) hydrogel no such strong analogy to polyelectrolyte solutions exists; even
if for sufficiently large pressures p > 0 both systems display comparable behaviour,
the underlying physical mechanisms remain different. Over the last years, theore-
tical approaches therefore concentrated on thermodynamic arguments, developing
rather simple models for the equilibrium states of charged gels [39-41], studying
the swelling of polyelectrolyte and polyampholyte networks in pure solvent, in the
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Figure 1.3.: One of the famous polyelectrolyte networks T. Tanaka’s group built (left).
Roughly 10 cm in diameter, it is capable of absorbing water up to a thousand times its
dry volume, since the solvent causes the ionizable groups on the macromolecular chains to
dissociate counterions into solution; these remain confined to within the gel-like structure
due to the global requirement of electro-neutrality, such that their osmotic pressure initi-
ates the swelling process of the hydrogel during which its increasing volume draws more
and more solvent into the network. The irregular pattern on its surface remains a mystery
up to now; it seems to depend on the chemical substances used and the synthesis process
employed, but no suitable explanation for its occurrence, shape, and geometry could yet
be found (taken from [18]). On the right hand side the synthesis of P¢BMA star precursor
polymers is given which are subsequently photo-crosslinked by UV-radiation activating
their end-groups to form a regular model network (from [14]). This method, developed
at our institute, represents one of many possibilities to experimentally construct a poly-
electrolyte metwork, here with special focus on the uniformity of the sample which allows
increased control over the parameters and thus far better comparability with the idealized
systems simulation and theory have to restrict themselves to (also see section 2.1). Chem-
ical details are given in table 2.1, underlining the regularity of the created tri-, tetra-, and
penta-functional stars with Ny, = 14,...,165 monomers per arm, but still maintaining a
very sharp molecular weight distribution, which indicates very small fluctuations in the
arm’s length. Due to the photocrosslinking, the chains can only bind at their ends, and
provide an excellent model network for quantitative studies.



presence of salt, in mixed solvents, and in the presence of other macroions, e.g. sur-
factant micelles [13]. They usually calculated the free energy of the gel as sum of
contributions from the elasticity of the strands, the solvent interaction of the net-
work, the free motion of the counterions (entropy term), and the electrostatics in
the system; such a treatment assumes the validity of the Flory-Rehner-Hypothesis
(FRH) [42] which suggests that the elastic part of the free energy and the part
from the interactions may simply be added, a procedure which is believed to fail in
general [43,44], then leading to a modified description [45,46]|. Unfortunately, due
to the tremendous chemo-physical effort required for physically analyzable experi-
mental investigations, no definite conclusion can be drawn from them regarding the
validity or even applicability of the theories or their assumptions. On the one hand,
this is caused by a vast number of hardly avoidable side effects in system and setup,
on the other hand by the metrological necessity to always measure averages over
large numbers of imperfect polymers, all deviating from ideal model behaviour in
an individual manner, which may greatly obstruct accuracy and reproducibility of
the results obtained.

This is where computer simulations come into play. They allow for well-defined
systems (no impurities, parasitic drag, ...) which can be thoroughly evaluated and
analyzed without much problems, since all real-world observables are available from
the direct access to any microscopical details of the “experiment”. That also al-
lows control over individual effects by systematicly manipulating environmental or
particle parameters to study their impact on the entire ensemble, giving valuable
insight into what the leading contributions and mechanisms are that govern the
macroscopic behaviour of the sample. Ideally, the results then enable experimental-
ists to focus their efforts on optimizing only predominantly important ingredients
in their setup, control primary sources of error, and develop measurement methods
for isolating the main effects, while theoreticians are given some means to evaluate
the proposed models, whether their predictions can be confirmed quantitatively or
at least qualitatively, and the validity of the underlying assumptions, whether these
apply to the considered parameter regimes or need to be adjusted or revised. Here,
another advantage of computer simulations becomes obvious: Being simplified de-
scriptions of reality themselves, they can be based on the very same assumptions
the theoretical models imposed, consequently revealing how the latter would behave
as real world systems but representing an idealized realization of the experimen-
tal system at the same time. This bridges the gap between theory and experiment
by determining how the systems would behave experimentally if all the theoretical
model assumptions and simplifications were correct; any deviations found can then
be traced rather easily! to imperfections in the underlying description of reality, be

1 At least compared to the effort it would take the experimentalists to improve on their measure-
ments, trying to separate interacting effects and to isolate microscopic details in a macroscopic
sample, or to the problems theoreticians would have to face if they had to relinquish several of
their (well-justified) presumptions about the system.
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it that some of the simplifications were unjustified or too extensive, that important
aspects or contributions were wrongfully neglected, or that the modeling itself failed
to depict the leading mechanisms correctly. Next, whatever changes are proposed
can directly be executed within the simulation environment, introducing new or
modifying existing constraints, adding extended functionality or degrees of freedom
if necessary (e.g. dipolar moments or rotational orientations, which are both com-
monly neglected), or simply evaluating the different model components separately
to determine if their significance was properly addressed by the theory. Particularly
the latter usually leads to the most valuable insights computer simulations can offer:
While the analytical treatment concentrates on the description of certain aspects of
the system and aims for explicit predictions of selected observables, the simulation
derives the full behaviour of (a simplified version of)) the setup and obtains complete
particle trajectories and their spatio-temporal evolution (which themselves need to
be analyzed as any experimental data has to be); but because both are based on
the same model assumptions, comparing forecast and observation, then investigat-
ing how deviations change when manipulating model mechanisms in the simulation
allows specific statements about their theoretical treatment and any changes nec-
essary therein. Although it will always depend on the verification through “real”
experiments and to no lesser extend on the input and guidance by analytical stud-
ies, the methodology of computational investigations has proved its worth over the
years particularly in such complex and challenging applications as the many-body
macromolecular systems in polymer physics with their different time and length
scales, layers of intertwined interactions and coarse-grained behaviour based on mi-
croscopic details.

One commonly chosen approach thereby employs Molecular Dynamics (MD) sim-
ulations [47-51] which treats the polymer not atomisticly or even on a quantum level,
but rather coarse-grained towards a simpler depiction, as hinted to in figure 1.2 and
elaborated on in figure I.4. The basic idea behind it originates in the argument that
compared to the macroscopic length scales each molecular repeat unit can essen-
tially be considered a solid object of constant size, with the overall shape of the
polymer being determined by the relative orientation of these monomers to each
other. Interconnected by chemical bonds along the carbon backbone, the distance
between neighbouring monomeric center-of-masses behaves similarly to the elonga-
tion of a spring affixed accordingly, while the internal structure within the repeat
units remains relatively unchanged. Usually, they are rotated around the polymer’s
contour axis, depending on the local charge distribution and other chemical effects,
hence determining the overall shape of the macromolecule. The bead-spring-model
now replaces each monomer by a simple sphere (charged, if appropriate) which is
connected with an artificial spring to its neighbours; their respective radii are cho-
sen such that the combination of excluded volume interactions and spring potential
has the resulting bead-bead-separation (“bond length”) correspond to the aforemen-
tioned center-of-mass distance.
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chemical structures polyelectrolyte networks consist of onto the simpler bead-spring-model
used in this computer simulation study. As examples AMAMPS (top) and PSS (bottom)
have been chosen, whose possible steric conformations are displayed on the molecular
level in the outer graphic panels. The corresponding chemical structure equations, given
towards the center of the figure, translate to the 3D-depiction using the same colour
coding for carbon (gray), hydrogen (white), sulfone (yellow), oxygen (red), and nitrogen
(blue) atoms in both pictures. Every fourth monomer is charged (at the SO, -group) in case
of AMAMPS as well as for PSS, the other three repeat units are electrostaticly neutral. In
the middle the coarse-grained representation is given, replacing each monomer repeat unit
in its entirety by a single sphere (which is coloured in red and assigned the appropriate
charge of —1e if it stands for a charged repeat unit), connected via a spring-like potential
to its neighbours; it is the same for both polyelectrolytes (for further details see text).



Introduction

Figure 1.4 displays this exemplary for the two polyelectrolytes poly(acrylamide-
co-sodium-2-acrylamido-2-methylpropane sulfonate) (AMAMPS) and poly(styrene-
co-styrene sulfonate) (PSS), the former having a hydrophilic backbone, meaning
that in aqueous solution it tries to increase its contact surface with the surrounding
solvent, while the latter’s hydrophobic backbone would generally lead towards the
collapse of the macromolecule into a globular state, hence minimizing its contact
surface with the solvent?. The carbon backbone of both macromolecules, to which
their monomer groups are connected, is marking the principal axis of the polymer,
around which the repeat units may freely rotate to minimize their steric energy.
The regular fraction f of charged monomers has been chosen as f = 0.25 with
the idealization that every repeat unit bearing the SO, -group responsible for the
monomer’s charge of ¢ = —1le is periodically followed by three neutral ones for
illustration purposes (in reality it would not be possible to create such a regular
structure, and f would rather reflect the ensemble average with the charged groups
randomly distributed along the chain). Particularly if now looking at their respective
chemical structure equations in figure 1.4, a good illustration of the coarse-graining
process can be obtained: Each of their monomer repeat units is replaced in its
entirety by a sphere, and connected via a spring-like potential to its neighbours;
charges ¢ are assigned to these spheres according to the valency of the underlying
molecules (with ¢ = —1e for the red-coloured ones in our example). Although this
ad-hoc approach waives the specifics in the configuration, it is nevertheless a good
approximation for their conformation. As it turns out, the resulting bead-spring-
model is the same for both AMAMPS and PSS, despite the differences between the
two polyelectrolytes in chemical composition as well as chemo-physical properties.
This will be addressed by how the potentials are defined which model the bonds
and the excluded volume of the spheres, since e.g. using for the latter a purely
repulsive potential would mimic hydrophilic behaviour, while adding an attractive
part on larger length scales leads towards increasing hydrophobicity within the same
coarse-grained representation. It is also possible to include additional effects such as
torsion or steric hindrance through further interactions or by employing bond angle
or multi-body potentials in place of the simple spring bonds, these refinements will
however not be considered in this work.

Although the example in figure 1.4 presents single chain polyelectrolytes, the ex-
tension towards a network is straight forward and also mimics the common chemical

2 In general this is only true for neutral polymers. In case of polyelectrolytes the picture becomes
more complicated, since the likewise charged monomers along the chain repel each other elec-
trostaticly, hence counteracting the collapsing tendency. Eventually, a delicate balance emerges
and the chain may assume a pearl-necklace-like structure [52 54] where globular parts (due to
the hydrophobicity) are connected by straight elongated segments (due to the electrostatic re-
pulsion). Found for single polyelectrolytes in computer simulations and preliminarily observed in
experiments e.g. at our institute [55], similar behaviour is theoretically predicted for hydrophobic
hydrogels as well [40]; however, this will be detailed in chapter 5.



creation process: Once the polymers are set up, additional bonds are introduced be-
tween monomers on different chains once they are sufficiently close to each other;
because the length of these crosslinks is typically not larger than the intra-chain
bond lengths, this either requires a high enough density in the system to work or
another mechanism to attract potential binding sites towards each other. In the
experiments, one of several possibilities to realize this consists of using chemically
active ends which will form a covalent bond if close to any other monomer, result-
ing in a randomly end-crosslinked network where entanglements between and loops
around neighbouring chains may (even frequently) occur. Since such hydrogels do no
longer have one common chain length® but rather a distribution of probable values,
the end-to-end crosslinked networks are more suitable candidates for representing
the very simple theoretical models; with their active ends only able to link to other
end groups (or to specific n-functional crosslinking agents added to the system), the
single chain observables retain their meaning, and eventual entanglements are left
as source of impurities. Figure 1.5 contrasts these two approaches, also visualizing
the different density regimes where the respective network formations take place.
Following the strategies detailed in the previous paragraphs, the coarse-grained
modeling of crosslinked PSS or PtBMA would consequently result in a depiction
similar to the left resp. right panel in figure 1.5, and could therefore be used as a
starting point for MD computer simulations. Despite the profound experience of
the theory group at the Max-Planck-Institute for Polymer Research, where the pre-
sented research was conducted, in single chain polyelectrolytes and neutral polymer
networks, charged hydrogels had never been dealt with before in a numerical inves-
tigation, hence no ready-to-use solution existed in the beginning. Instead of writing
an entirely new program or modifying existing code towards that aim, ending up
with a highly specialized program from which once again future projects could only
benefit if they were treating very similar systems, it was decided early on to create
a more flexible, modular, and extensible simulation package which would be capa-
ble of handling all different kinds of coarse-grained setups in soft matter systems.
In cooperation with Axel Arnold and Hans-Jorg Limbach we therefore developed
ESPResSo* where all available algorithms and special expertises the group had ac-
cumulated over the years were merged into, and which soon lived up to its promise
by quickly replacing all other programs previously being used in the group, enabling
new users to start off with their computer experiments almost immediately and
without the need for software development, stimulating them to enter their specific
knowledge through small enhancements (new interaction potentials, new analysis
routines, etc.) later on. Due to this, the capabilities of ESPResSo grew tremendously
since its first official release in April of 2003, now covering one of the widest ranges of

3 In a network, “chain length” refers to the number of monomers between nearest neighbouring
nodes, an analogy which extends to all other single chain properties as well, e.g. “end-to-end
distance” Rg, here describing the separation of nearest neighbouring nodes.

4 Abbreviates Extensible Simulation Package for Research on Soft Matter Systems.
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Figure 1.5.: Coarse-grained polymer network formation. Left: A randomly end-
crosslinked network composed of single chains with Ny, = 8 monomers each, where the
active ends (blue spheres) establish crosslinks (red bonds) to close enough monomers of
other chains, forming tetra-functional nodes (green spheres) in this example. Right: An
end-to-end crosslinked network built from shorter Ny, = 6-chains in a system where tetra-
functional crosslinking agents (brown spheres) had been added to which the active ends
bounded. Note the significantly lower density of this network to the previous one (the lack
of entanglements is due to the 2D representation where they cannot occur).

techniques developed for MD simulations, and still being one of the fastest programs
available due to its usage of some of the most efficient algorithms and its parallelized
structures for multi processor environments. It has not only become the default sim-
ulation tool at our institute, but it is also used by an increasing number of scientific
groups in Germany, Europe, and worldwide, as well as industrial researchers at e.g.
Freudenberg, BASF, and Nestlé. Awarded at the annual Heinz-Billing-Competition
2003 for the Advancement of Scientific Computation [56,57], ESPResSo remains an
open source project free of charge for public use. More informations and a detailed
overview of its current capabilities will be given in chapter 1.

It was not before the beginning of this Ph. D. project, that simulation techniques
and computational resources allowed for numerical studies of polyelectrolyte net-
works [58-63] because of the vast effort required when dealing with electrostatic
systems under periodic boundary conditions and because of the understanding of
the single chain behaviour which had only just previously reached a sufficiently
satisfying degree. The cited works usually examined an end-to-end crosslinked gel
with ideal diamond configuration in a (N, V, T')-ensemble at various network packing
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fractions and different sets of parameters [58,60,61] or in cubic symmetry and with
explicit solvent [59] in very small systems, confirming the tremendous swelling as
compared to uncharged systems [58,61] and claiming a discontinuous volume transi-
tion at very high electrostatic coupling [60], but without investigating the connection
of the measured data to the theoretical predictions mentioned before. Their findings
will be summarized at the beginning of chapter 4 and chapter 5 as far as they are
relevant for this work.

Here, it is our aim to investigate the physical foundations of the swelling behaviour
of polyelectrolyte networks. Chapter 2 will therefore introduce important concepts in
polymer physics which are a prerequisite for the theoretical treatment of chapter 3,
where we develop and discuss suitable approaches to the prediction of macroscopic
properties based on input parameters only.

Using computer simulations and employing a similar model system as the one
previously described, we then thoroughly examine the validity of simple scaling
arguments for a wide range of multiple parameters, focusing on a detailed analysis
of the different contributions entering the theoretical models. From there we are able
to determine their limits and possible corrections to the assumed mechanisms behind
the swelling equilibrium. In chapter 4 we will thereby focus on hydrophilic hydrogels
similar to the AMAMPS in the upper half of figure 1.4, for which an aqueous solution
is a good solvent. Since the solubility also depends on system properties such as
the pH-level or the temperature, changing e.g. the latter may cause a crossover
from hydrophilic to hydrophobic behaviour at a specific temperature which has
historically been termed 6. In that state monomers do not seem to have an excluded
volume any longer, and (neutral) polymers behave as ideal chains with a Gaussian
distribution describing the chain conformations, which now look like a Random
Walk of stepsize IV,,. Nevertheless, it turns out that at this #-point the theoretical
predictions remain basically the same, at least on the scaling level where prefactors
are neglected, and that the only distinction resides in an universal exponent v which
is slightly larger for the good solvent regime (v = 0.588) than at the -point (v =
0.5). Consequently, to prevent repetitions we integrated the results of f-like hydrogels
into chapter 4 as well, pointing out whenever there are differences between both
systems.

Regarding hydrophobic hydrogels such as the PSS in the lower section of figure 1.4
for which water is a poor solvent, we report our findings in chapter 5. There, fun-
damental changes occur compared to hydrophilic or #-systems, as now the energetic
trend to minimize the contact surface with the solvent overcomes the entropy, caus-
ing a neutral polymer to collapse and fall out of solution; a polyelectrolyte, however,
will enter a delicate balance as its charges repel each other and thus counteract the
collapsing tendencies, which may lead to a good solvent-like elongated shape (if there
are many effective charges on the chain), to a slower collapse (if only few effective
charges remain), or to a compromise in the shape of e.g. a pearl-necklace-like struc-
ture. In case of hydrogels, the network structure introduces another constraint, now
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acting as an “external” force on the strands. Nevertheless, for sufficiently long chains
similar structures are expected [40] and can be confirmed by our simulations. Here
we also perform a thorough comparison to the single polyelectrolyte results found
in our group [52 54] to evaluate the assumed mechanisms behind the equilibrium
swelling behaviour of polyelectrolyte networks in poor solvents.

While the ESPResSo core program was originally developed by Axel Arnold, Hans-
Jorg Limbach, and myself, the project itself has now become a group effort with
various people contributing extensions, modifications, and bug fixes. The actual
simulation scripts as well as conducting, analyzing, and evaluating the numerical
experiments towards this Ph. D. thesis were however my sole responsibility.

Parts of this thesis have already been published, accepted for publication, or
submitted for (re-)review, i.e. in [56,57,64] (chapter 1), [62,63,65] (chapters 2-4),
and [66] (chapter 5).
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1. ESPResSo —

An Extensible Simulation Package for the Research on Soft Matter Systems

The computer code concept this work is based upon is introduced. Design
aspects and abilities are listed. Special features and implementation details
are discussed. The parallel performance presented shows favorable scaling and
competitive computation speed limited only by hardware constraints.

Real-world experiments have nature as driving force determining observations and
outcome, computer simulations require software to create the same in a virtual envi-
ronment. While the choice of possible setups is unlimited in reality (given unlimited
resources and time), the usability of a simulation is limited to the capabilites of the
underlying algorithms. Consequently, it is important to ensure that the code engine
of a simulation is powerful, versatile and flexible enough to address all aspects of
the system under investigation.

On the coarse-grained level we are interested in, long years of methodological re-
search offer a wide range of suitable algorithms to tackle not only our depiction of
polyelectrolyte networks, but all sorts of coarse-grained soft matter systems such
as membranes, DNA, ferrofluids, polyampholytes, and much more. The basic idea
thereby is the application of Newton’s laws of motion [67] to the (consequently clas-
sical) treatment of a many-body system of simple, interacting particles, whose force
potentials superpose such that the resulting net force E on each individual object
7 induces an acceleration a; = 1?Z /m; which will move the particle. This Molecular
Dynamics (MD) approach will be detailed a bit further in section 4.1 regarding its
employment in the framework of our computer simulations. The great advantage lies
in the obvious ability to actually follow particle trajectories through phase space,
depicting a somewhat “realistic” temporal evolution of a given system. Another
ansatz arriving at thermodynamic equilibrium much faster, initially at the expense
of only representing possible snapshots or equilibrium conformations without a tem-
poral connection between them, is called Monte Carlo-technique (MC). Here, the
total energy of the system is calculated based on the current particle positions and
their mutual interactions with each other, before arbitrary (but system compliant)
changes are applied to the setup, e.¢g. random re-positioning of particles or poly-
mers, re-sizing of the simulation box, insertion/deletion of particles. The new state
is accepted as next iteration if its energy is now lower, otherwise it is discarded with
a certain probability increasing with the expected energy gain.

A good introduction to these and other important standard techniques can be
found in [47,51]. In the following we will focus on a more general description of
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the program package we developed with Axel Arnold and Hans-Jorg Limbach that
is designed to perform numerical MD-/MC-simulations for a broad class of soft
matter systems in a parallel computing environment. Our main concept during its
development was to provide a user friendly and fast simulation tool which serves
at the same time as a research platform capable of rapidly incorporating the latest
algorithmic achievements in the field of soft matter sciences; that is reflected in
its name, Extensible Simulation Package for Research on Soft Matter Systems, or
ESPResSo for short.

It is unique with respect to the efficient treatment of long-range interactions for
various geometries using modern algorithms like P*M, MMM2D, MMM 1D and ELC.
Already equipped with a broad variety of interaction potentials, thermostats, and
integrators, it offers the usage of constraints, masses and rotational degrees of free-
dom, and allows to move between different ensembles on-the-fly. Should the need
arise for new features, a clear program structure enables even average users to en-
hance ESPResSo to everyone’s desired custom level. An efficient MPI parallelization
encourages usage of multi-processor architectures, while strict employment of ANSI-C
for the core functions and the Tcl-script driven user interface make ESPResSo plat-
form independent. This also ensures easily modifiable interfaces to communicate
with other MD-/MC-packages, real-time visualization tools, and other programs.
ESPResSo is an open source project and is therefore giving others full and up-to-
date access to new developments, with the goal to stimulate researchers all over the
world to contribute to the package by incorporating their special (i.e. algorithmic)
expertise into the core distribution of the program.

1.1. Soft Matter Simulations

Soft matteris a term?! for materials in states that are neither simple liquids nor hard
solids (crystals,...) but rather macromolecular assemblies, e.g. polymers, colloids,
liquid crystals, and dipolar fluids. Many such materials are familiar from everyday
life — glues, paints, soaps, baby diapers — while others are important in industrial
processes, such as polymer melts that are molded and extruded to form plastics [68§],
or polymer networks for the development of rubber [69]. Biological components are
mainly made out of soft matter as well, 7.e. DNA, membranes, filaments and other
proteins, and even most of the food we digest belongs to this class.

Common for all these materials is the importance of a wide range of length and
time scales for both their microscopic behaviour and their macroscopic properties.
Since typical energies between different structures are similar to thermal energies,
Brownian motion of thermal fluctuations plays a prominent role. Another key fea-
ture, the propensity of soft matter systems to self-assemble, often results in complex

! With many soft matter systems being highly complex in their composition and their interactions,
they are also called complex fluids.
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phase behaviours yielding a rich variety of accessible structures; most of the biolog-
ical systems are not even in equilibrium usually but evolve along switchable steady
states. Much of today’s insight into their underlying mechanisms has thereby been
gained through computer simulations of these systems at either the full atomistic or
on a coarse-grained, so called mesoscopic, level.

In the past, charged polymers (polyelectrolytes) and colloids have been a key cen-
ter of interest in the research activities at our institute. Serving as important sub-
stances for many of the technical applications mentioned so far, charged systems also
occur in biological environments [70] and are already involved when modeling explicit
water, hereby entering through the partial charges. Simulating these systems is not
straightforward and very time consuming [35,71,72], since the effort scales at best
linearly with the number of charges, thus the production of single data points could
take weeks or even months for complex biomolecular problems [73]. Consequently, a
number of algorithms have been improved or developed in our group which yield fast
expressions for the energy and forces of fully or partially periodic systems [74-78|,
pending a suitable simulation environment to be applied to. Another research focus
in our group, besides considering charged systems in various geometries, e.g. films or
porous media, and with different topologies ranging from linear to branched to net-
works [62,63], considers systematically coarse-graining atomistic models such that
one can access mesoscopic time and length scales with computer simulations [79-81],
necessary for quantitatively predicting dynamic properties or surface interactions for
complex materials which depend on local chemical interactions and local packing.
For the coarse-graining procedure it is required to switch back and forth between an
atomistic and a coarse-grained description, implying complicated steering schemes
for a simulation; therefore, a high flexibility of the steering level and an easy way to
interact with other programs is needed as well as extensibility to easily implement
and test new methods and algorithms, because such tasks usually involve changes
in the core part of a program.

What else should a suitable program be able to do? It should be easy to use, but
scientifically sound; it should grant experts access to state-of-the-art techniques, but
enable beginners to investigate scientific problems easily and at the same time not
limit them to run the program as a “black box”; it should be general and flexible, but
still fast; it should be easily extensible, but remain at the same time reliable and keep
continuity with older versions. Looking at other available simulation packages, e.g.
BALL [82], GISMOS [83], GROMOS [84], GROMACS [85], LAMMPS [86], NAMD [87,
88], polyMD [89], Amber [90], NWChem [91], DL_Poly [92], and OCTA [93], none of
these were fit to meet all the desired (and required) capabilites.

This led us to create a newly structured program for this field of science, which
we called ESPResSo [56,57,64]. (In the meantime, another project called Quantum-
Espresso [94] has been established, which is a package for Car-Parinello MD sim-
ulations and is independent of our approach.) Our program is designed to study
soft matter model systems via Molecular Dynamics (MD) algorithms, with partic-
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ular emphasis on extensibility for new, highly complex force/energy algorithms. It
is parallelizable and fast and thus able to compete in speed with any of the above
mentioned programs (see section 1.6). On the steering level it is far more flexible
than any other simulation tool with a similar scope that we have seen; still, the clear
program structure together with the documentation enables new users to run their
own simulations after a very short time, contributing new features soon thereafter.

In this chapter, the current version of the ESPResSo-package is presented, which as
of this writing continues to be expanded with new features and capabilities, undergo-
ing thorough testing before being officially announced. Downloads, updates and more
documentation can be found on the project’s webpage http://www.espresso.mpg.de/.
The distribution of the source code adheres to the open source standards under the
GPL-License [95]. By this we hope to ignite the further development of our code
into a valuable research tool for the soft matter community, beyond the already
participating groups, scientific institutes, and researchers at industrial companies.

The description of ESPResSo starts with a general outline of the design ideas that
guided the development (section 1.2), before giving an overview of the capabilities
and algorithms included in section 1.3. Followed by a discussion of some implemen-
tation details in section 1.4, benchmarks for sample systems are presented in section
1.6 and the speed to other simulation programs is compared. This chapter is rounded
off by conclusions and an outlook about features that will be incorporated in the
near future.

1.2. Program Design

This section lists the main design goals and their implementation in ESPResSo dur-
ing the process of development. They are given in order of precedence, since as usual
there has to be a certain trade-off between competing design goals, and they are cer-
tainly influenced by the special needs of our work group, where we use coarse-grained
descriptions of soft matter systems, mainly bead-spring models, as enhancements of
the fully atomistic treatment. However, it had also become evident in the past that
applying a program to different scientific scenarios can only be successful if its code
is easily adjustable to the specific challenges each new project contains. In achieving
this requirement even some performance loss on runtime is absolutely acceptable,
as it will be overcompensated by the reduced preparation period needed to initiate
the actual simulation.

1.2.1. Goals and Principles

Extensibility: It is the nature of fundamental research projects that objectives can
change, system complexities expand, and often new challenges arise — a simulation
package must enable the user to add custom code, otherwise it will only be useful
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for a very restricted group of people. ESPResSo addresses these concerns by having
an entirely modular integration and communication core around which all other
routines are structured. This allows the exploration of a wide range of models with
a vast variety of properties, and gives at the same time solid support for algorithm
development. The extensibility of ESPResSo, its routines and its data structures, has
been proven during the incorporation of new algorithmic techniques like the Maggs
algorithm (see section 1.3.3) and the lattice Boltzmann algorithm (see section 1.7)
which both required changes in the core of the program. This makes us confident
that the given program structure is well suited for further not yet foreseen changes
and additional features.

Readability: Unless the structure and coding style are kept simple, extensibility
would remain a theoretical issue. That is why ESPResSo puts much emphasis on
a clear structure and thorough documentation, to ensure that programmers with
various degree of programming skills are able to gain access to the different coding
layers that form the simulation engine. Naturally, beginners would want to start
off with smaller tasks such as implementing a new potential (maybe following the
How To-Guide in the documentation) before attempting to alter core sections of
ESPResSo, since the latter’s complexity naturally requires an increased experience
from the user.

Flexibility: ESPResSo’s scope of general applicability discourages the usage of
highly specialized and optimized functions. Flexibility requires looking at each func-
tionality or data structure from multiple directions to ensure that it is useful to a
large variety of problems. Even if most enhancements probably originate from a very
concrete application, the aim is to always extend them towards a more universal ap-
plicability before they are released. Examples for this flexibility are the usage of a
very general Lennard-Jones potential which enables the simulation of colloidal par-
ticles and the implementation of a particle structure which allows also the treatment
of anisotropic particles.

But this is only one part of ESPResSo’s flexibility. The employment of Tcl as
the steering level opens vast opportunities for the design and course of intended
computer experiments. Moreover it opens the opportunity to implement new re-
quirements on a script language level at the same time still being in close linkage
to the program core. Practiced e.g. for hybrid Monte-Carlo-/MD-simulations, this
approach saved a huge amount of human development time, at the expense that the
resulting program will be somewhat slower than a highly optimized and specialized
one — acceptable for the aforementioned reasons.

Correctness: ESPResSo is not only a multi-user, but more importantly a multi-
developer program where the full source code is accessible to everyone. This has the
advantage that whoever is a specialist in a certain (algorithmic) field will be im-
plementing the desired functions with expert knowledge. However, every individual
contributor to the ESPResSo-project must be enabled to run a thorough check on
the added code fragments to ensure that the numerical and physical correctness of
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the package as a whole remains intact even after the changes were applied.

For this purpose, ESPResSo includes a testsuite of various cases which quickly
evaluates if the most important features are still functioning properly; since this
check takes only a few minutes, the inhibition threshold for developers to use it is
low. In addition, there are also more elaborate test scenarios and sample scripts that
contain well known physical problems and systems solved some time ago. These will
provide a very thorough review of ESPResSo’s overall integrity by comparing the
computed results to the published reference data; although these tests take longer,
they help to avoid programming bugs. Despite the automatic control features already
ensuring a high degree of reliability of the package’s consistency, for any major release
we check the correctness of added or changed features and code sections manually
as well.

Efficiency: Last, but surely not least, the applied algorithms should naturally
be the most modern ones available, to ensure a fast execution time of the simula-
tion. For this purpose ESPResSo incorporates state-of-the-art electrostatic routines
such as P3M or ELC, provides multiple cell systems for choosing a particle storage
organization optimized for the investigated systems, and constantly adds new algo-
rithms (e.g. a recent suggestion for treating electrostatics locally [96,97]) providing
new features. However, all these attempts must still fulfill the previous design cri-
teria, particularly readability and flexibility — i.e., no hardcoded assembler loops or
platform dependent computation tricks will be implemented, because the achiev-
able speedup through this would most likely render further attempts of enhancing
the program much harder, if not impossible, also sacrificing platform independency
along the way.

These wide specifications and conflicting design goals enforced a thorough thinking
about the program architecture, data structures and general programming guide-
lines for the development of ESPResSo. Since ESPResSo is a team project where
basic concepts evolve in a discussion process, further adjustments may be imple-
mented, always having feasibility and applicability in mind. In the end, everything
will be documented in an understandable and usable way to ensure coherence and
compliance for future releases (see section 1.5).

1.2.2. Basic Program Structure

ESPResSo is organized in two hierarchical program levels, each suited to optimize
some of the main targets in mind: the steering level for large flexibility, usability
and extensibility, the simulation engine level for efficiency, readability and again
extensibility.

Steering Level: The steering of ESPResSo is done on a script language level,
namely Tcl/Tk [98]. All tasks are implemented as C-functions enhancing the Tcl-
interpreter and acting as new Tcl-script commands. This includes input and output
of data, setting of particle properties, interactions, and parameters, and performing
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the integration and analysis of a given system. All commands interacting with the
simulation are by construction able to both set and retrieve informations similar to
the Tcl-syntax, e.g.

thermostat set langevin 1.0 1.0

will active the Langevin thermostat with a reduced temperature 7% = 1.0 and a
friction coefficient I' = 1.07 !, whereas executing thermostat alone would output

{ set langevin 1.0 1.0 }

i.e. all currently activated thermostats with their parameters.

But steering a simulation in ESPResSo is much more than setting up system
parameters. From the steering level one can interact with the actual simulation in
a very flexible way. That means one can change the system properties during the
simulation in any desired way, may this be the insertion or deletion of particles,
a change of interaction parameters, a switch from one to another thermodynamic
ensemble, a change of parameters for the integrator or the thermostat — just to name
a few possibilities. This allows e.g. to conduct simulated annealing by modulating
the temperature, or to perform a thermodynamic integration by gradually changing
the Hamiltonian of the system.

However, in the equilibration of most systems, this feature is also frequently used:
For the simulation of dense, charged polymer melts, as another example, one could
start the equilibration without electrostatics, add polymers and some neutral spheres
(the latter to become counterions later on) at the correct density; temporarily cap-
ping the excluded volume interactions would then allow to carefully push overlap-
ping particles apart, always supervised by the Tcl-script which could use analysis
routines to monitor the minimum distance of all particles until they are separated.
Afterwards, the spatial positions of the monomers could be fixed before the electro-
static interactions are activated, to prevent locally unbalanced charges to rupture
the polymer’s bonds, allowing the counterions to equilibrate. Releasing the chains is
then the last step towards the physical system setup of a poor solvent polyelectrolyte
melt (see chapter 5 for further details).

All steps described above are typically part of the Tcl-script that steers the sim-
ulation. Even more complex tasks can easily be formulated with the Tcl language.
It is also possible to conduct a wide range of data analysis during runtime of the
simulation, which is not only convenient but also allows to feedback analysis results
into the steering of the simulation flow, e.g. to implement cross checks surveying
the kinetic temperature in an isothermal ensemble or the instantaneous pressure
in (N,p,T), to initiate system configuration swaps, something needed to use par-
allel tempering [99], or to change the coarse-graining level of the physical system.
This can involve replacing explicit particles with a larger and appropriately heavier
center-of-mass representation, and vice versa.
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With all these possibilities available, the user is never constrained to a specific
system, ensemble, or configuration. One can, in principle, modify all of the initially
chosen properties during runtime. Of course, instead of using the slower, but more
flexible Tcl interface, the user always has the option of adding features to the engine
level of ESPResSo. As already mentioned in section 1.2.1 the steering level enables
the user to carry out a huge part of the programming work required for solving
new problems on the script language level rather than being forced into laborious
C-programming. Even though for standard simulations the script can be very sim-
ple, the given possibilities can yield quite complex simulation scripts, which perform
not only the steering of the simulation, but also analyze the data on the fly, report
regularly the observables of interest, and directly export graphs of their mutual in-
terplay. The steering level also allows to manipulate the simulation from a graphical
user interface (Tk) or via input from external programs.

Simulation Engine Level: In contrast to the steering level, which uses the
Tcl-script language for easy usability, the simulation engine has to be as efficient
as possible, therefore being implemented in ANSI-C. The engine is responsible for
storing the particle and interaction data on any number of processors, but it also
performs the integration of Newton’s equation of motion as well as the necessary
calculations of basic quantities like forces, energies and pressures.

The simulation engine code has been organized to be as modular as possible,
separating clearly different tasks like e.g. particle organization, interaction organi-
zation, integration, or force calculation. Some advanced algorithms, especially for
the calculation of the electrostatic interactions, require deep knowledge about the
particle organization, making complex interfacing necessary. Basic functions can be
accessed using well-defined lean interfaces, hiding the details of the complex numer-
ical algorithms, and important informations such as the particle data can always be
accessed through a defined set of functions and variables, although internally very
different particle organization schemes can be applied (see section 1.4).

Another example is the implementation of new potentials, which is possible with-
out touching the integrator code, while in turn the integrator can be modified with-
out touching the potential implementations. In this way it is much easier to imple-
ment a new type of interaction, a new integrator, or a new thermostat. It is also
much easier for a beginner to understand what the program is doing during the
simulation, which is important in light of our belief that it is not useful to perform
scientific research with a simulation tool that appears mainly as a ”black-box” to
the scientist utilizing it.

Besides Tcl/Tk, ESPResSo relies on another open source package, namely the
FFTW [100] in the P3>M method for the electrostatic interaction, providing the
“fastest Fourier transform in the west” (according to the acronym used). For the par-
allelization MPI routines are used; on platforms running Linux and Darwin ESPResSo
employs the LAM/MPI [101] implementation, offering the option to choose other
packages such as MPICH [102] instead.
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1.3. Capability and Algorithms

Although ESPResSo is highly extensible, it is of course favorable to find the desired
features already implemented in the program. Therefore, this section will give a
short overview of algorithms and capabilities available in ESPResSo as of this writ-
ing, ranging from different integrators and thermostats over particle interactions
and potentials up to data analysis routines. During the start of our program most
of the implemented algorithms had been devoted to (charged) polymers, rod-like
objects, or membranes [56,57|, while today ESPResSo is not limited to these appli-
cations anymore. Many features have been added in the meantime, including the
possibility to perform atomistic simulations and to employ various coarse-graining
techniques. Since ESPResSo is constantly being extended by the users at our insti-
tute, at all the other collaborating scientific places, and at the associated industrial
workgroups, the features presented in the following are in the continuous process of
being amended, complemented and expanded. Therefore, an up-to-date listing can
always be found in the RELEASE_NOTES-file of the distribution and on our webpage
(http://wuw.espresso.mpg.de).

1.3.1. System Setup

The Tcl-script level of ESPResSo allows for an easy and variable setup of the start-
ing configurations together with the simulation parameters, as well as choosing the
desired algorithms. From placing particles and charges, defining potentials and in-
teractions, assigning bonds and constraints, applying external forces and customized
boundary conditions, to reading in existing configurations in ESPResSo’s native
blockfiles (see 1.3.5) and other formats, everything can be easily executed using
few simple commands within the Tcl-script. It is also possible to rely on pre-defined
setup routines and sample topologies such as polymer chains, networks, fullerenes,
counterion- and salt-distributions which are provided as shortcut-like conveniences
of commonly employed systems, and which the user may adjust to any custom needs
arising.

For an impression of the scripting interface some simple sample segments now
show how to e.g. create a simple Lennard-Jones fluid by putting particles at random
positions in the simulation box, which is possible to do directly within a single loop:

set box_x [lindex [setmd box_1] 0]
set box_y [lindex [setmd box_1] 1]
set box_z [lindex [setmd box_1] 2]
for {set i 0} { $i < $n_part } {incr i} {
part $i pos [expr $box_x*[t_random]] \
[expr $box_y*[t_random]] \
[expr $box_z+*[t_random]]
type O
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}

Here, the first three lines extracted the current length of the simulation box in
all three dimensions, relying on the aforementioned mechanisms that any Tcl- and
ESPResSo-command returns its current settings automatically (conversely, the box
can be set up using setmd box_1 $box_x $box_y $box_z once the Tcl-variables
box_x, box_y, and box_z have been assigned proper values). The following loop
iterated over all set n_part [setmd n_part] particles known to ESPResSo at that
point, setting their respective positions to a random fraction of the box length (with
[t_random] returning random numbers on the unit interval) and their particle type
to 0 for latter reference (e.g. when defining interactions which should only act on
certain kind of objects).

Next, the setup of a somewhat more complex system is demonstrated, namely a
bead spring model of a polymer melt, consisting of 100 chains carrying 200 monomers
each [34], thereby using the polymer- command as an example of a pre-defined setup
routine which reduces this entire task to a single line:

polymer 100 200 1.0 mode SAW

It fills the simulation box with the corresponding number of self-avoiding walks
(SAW) of step size 1.00 (the bond length), once the excluded volume interactions
and the bond potentials have been defined. To obtain correct statistics, whenever the
placement of a monomer fails due to its intended position being too close to already
existing particles, the entire chain is removed and its creation process restarted. Al-
though it would be tempting for performance reasons? to think of rather replacing
only the obstructed monomer, which would very quickly lead to a start-up sys-
tem with correct minimal distances between all monomers, the resulting polymer
conformation distribution would differ from SAW statistics such that an additional
warm-up process being sufficiently long?® would be required to allow relaxation of all
chains, overcompensating the initial speed-up in the setup for high densities.

Using optional arguments (e.g. charge +1) turns the polymers into polyelec-
trolytes, with

counterions [expr 100%200] charge -1
salt [expr 100%50] [expr 100%*150] charges +3 -1

adding the appropriate amount of oppositely charged counterions and some trivalent
salt to the system (note the usage of Tcl for calculating the necessary numbers).
Creating a (single-stranded) DNA-helix instead is just as simple, using

polymer 1 10000 1.0 angle [expr [PI]/4.] [expr [PI]/6.]1 \
charge -1 distance 2

2 Tt is quite obvious that the deletion of the entire polymer leads to a diverging probability of
being able to create a suitable start-up system at all if the density becomes very high.

3 Herein lies the central problem as the required relaxation time diverges for high densities, being
on the order of typical time scales for an entire project.
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to have every other monomer along the coiled backbone carry one negative unit
charge.

If one needs to constrain single particles, part ... fix fixes their spatial coordi-
nates, for example if one wants to investigate the force acting on them as a function
of the (imposed) distance, or if one wants to model immobile surfaces.

The user’s influence is not limited to geometrical or topological issues. Besides
specifying the particles’ interactions, choosing thermostats, or the ensemble (e.g.
constant volume or constant pressure), all other aspects of the simulation remain
fully customizable in the course of the whole simulation. All parameters may be
freely adjusted depending on whatever criterion chosen. This is useful in system
equilibration, where interaction can be capped temporarily, or during the integra-
tion, e.g. to perform simulated annealing, or to add/remove/manipulate particles
for grand canonical ensembles or multiscale approaches.

1.3.2. Integrators and Thermostats

ESPResSo uses as default the Velocity Verlet Molecular Dynamics integration scheme
[51,103] for rotationally invariant particles, which is robust enough for most appli-
cations. If a simulation incorporates particles with rotationally degrees of freedom
like dipoles or cigar shaped Lennard-Jones particles, the rotational degrees of free-
dom are represented by quaternions, and an extension of the velocity Verlet al-
gorithm for rigid body motion is used [104]. Mass and inertia moments are fully
implemented, but may be replaced by the default reduced mass m* = 1 for per-
formance reasons if no distinction of different masses is desired (as is the case for
our entire investigations in the following chapters). For the simulation of dynamic
experiments like a simple shear flow, ESPResSo uses Non Fquilibrium Molecular
Dynamics (NEMD) [105,106]. In addition to the intrinsic (N, V| F)-ensemble, the
velocity Verlet integration scheme can be combined with one of the implemented
thermostats to obtain integrators for the (N, V,T)-ensemble. At the moment these
include a Langevin thermostat, a Berendsen thermostat [107] and a dissipative par-
ticle dynamics thermostat (DPD) [106, 108]. The type and the temperature of the
thermostat can be changed during the simulation on the script level, allowing e.g.
simulated annealing. The DPD thermostat implements the friction and noise as a
particle pair force rather than a global one, and thus maintains momentum con-
servation, which is important for yielding correct hydrodynamic interactions for
equilibrium and non-equilibrium simulations [106].

Apart from (N, V, E)- and (N, V, T)-ensembles, ESPResSo is also able to keep the
pressure constant during the particle propagation, i.e. to simulate the (N,p,T)-
ensemble [109]. This is implemented by introducing an artificial piston mass which
acts on the simulation box and rescales its dimensions isotropically. With the
Langevin-type equations of motion for this new degree of freedom one arrives at
a stochastic MD integration scheme, enhancing the MD approach by Andersen,
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Nosé, and Hoover with stochastic dynamics (SD), and follows the momentum of
the piston such that its derivative corresponds to the difference between the cur-
rently measured “instantaneous” pressure and the given external one. There is also a
corresponding isotropic thermostat available which adds friction and noise. In addi-
tion to the implementation given in [109], our algorithm allows for using a constant
tension ensemble as well, where only the pressure in one or two dimensions is con-
sidered, the rescaling adjusted to respond accordingly; this is useful when studying
e.g. membranes under tension [110].

Details on these algorithms, their implementation in ESPResSo, and their appli-
cation to our systems are given in sections 4.1 and 5.3.1, where they will also be
compared to alternative approaches.

1.3.3. Force Calculation Strategies

ESPResSo distinguishes three kinds of forces: long-ranged forces, short-ranged forces,
and bonded interactions. Short-ranged interactions have to be calculated only for
particles within a small interaction range. To avoid unnecessary operations, infor-
mation from the cell structure can be used for eliminating particle pairs that are
far away from each other. Therefore, each cell structure comes with an optimized
force calculation routine for the short-ranged forces. For example, when the particles
are sorted by the domain decomposition cell structure (see section 1.4.1), the linked
cell concept chooses the size of the space-filling cells corresponding to the maximum
range of the short-range interactions, such that only particles in adjacent cells can
interact with each other; this naturally reduces drastically the number of particle
pairs that have to be considered. Additionally, ESPResSo keeps a record of the par-
ticles currently interacting in so-called Verlet lists to decrease the computational
work by another factor of around 8, since the lists have to be updated only every
few time steps as long as the movement of the particles is small compared to the cell
sizes. The optimal choice of this “skin” (defining the threshold for a “small move-
ment”) also depends on the cell layout, because as usually the box length will not
be a multiple of the aforementioned maximum range of the short-range interactions,
the smallest possible space-filling cell layout will have to have larger cell sizes, such
that each of them will unavoidably contain some non-interacting particles. As larger
cells allow for larger skins reducing the need for Verlet-updates but increasing the
time every update requires, ESPResSo contains an automatic tuning routine which
will take care of optimizing this balance by finding an appropriate choice for the
parameters.

The bonded interactions are treated together with the short-ranged interactions.
There is no limitation on the number of bond partners, i.e. many-body bonded
interactions are already implemented in ESPResSo. The efficient treatment of long-
range forces is only possible using highly sophisticated algorithms. Those will be
discussed in section 1.3.3.
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Short-ranged non—-bonded Potentials

ESPResSo features the following non bonded short-ranged potentials:

Lennard—Jones potential. In our implementation the cut-off radius of this po-
tential can be shifted to obtain a purely repulsive interaction (so-called WCA
potential [111]), or one can add an additional hard-core offset radius. The
Lennard-Jones can be capped during the warm-up phase of the simulation,
such that even overlapping particles feel only a finite repulsive force. This al-
lows for an easy random placing of particles in an initial configuration, and
will be used in our simulations as well (see sections 4.1 and 5.3.1).

Combined Lennard—Jones—cosine potential. If the Lennard-Jones potential is
not cut-off in its minimum, e.g. if one needs the attractive tail, the forces are
discontinuous. This potential adds a monotonous part of the cosine function
to ensure that the force are continuous everywhere [112].

Buckingham potential [113]. This is another potential mimicking a van-der-
Waals type interaction between particles. It is a widely used force field in
atomistic simulations.

Gay—Berne potential [114]. Essentially the anisotropic version of the Lennard—
Jones potential, i.e.for cigar shaped objects, it has to be used in conjunction
with an integrator for rigid bodies.

Debye—Hiickel potential [115]. This potential describes a screened Coulomb
interaction, which is short ranged by itself. In the limit of a screening length
k1 — 00, the pure Coulomb potential is obtained. Note, however, that in this
special case the integration loop is of order O(N?) in the number of particles
N.

Tabulated potentials. ESPResSo can handle any number of tabulated potentials,
where the force and the energy is described as a piecewise linear function
of the distance with finite support. A very useful feature if one either has
very complex particle interactions (e.g. based on an only numerically solvable
formula), wants to compare the simulation to an experimentally obtained force
field, or looks for a simple way to try out new potentials without directly
implementing them as a well-defined new feature.

There are special model systems such as phantom networks, in which there are
no nonbonded interactions between particles of the same chain. This behaviour can
be implemented using different particle types, which however is extremely inefficient
if several thousand chains are to be considered. ESPResSo offers exclusions as an
alternative, allowing to specify particle pairs for which the nonbonded interactions
are not calculated, e.g. interactions along the backbone of specific chains. While
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these exclusions can be set manually, in standard atomistic simulations one typically
excludes the interactions of each particle with its neighbours within the molecule,
which can be done automatically by the part auto_exclude command.

Bonded Potentials
The bonded potentials are:

e Puair forces. Two particles can be bound by FENE (finite extensible nonlinear
elastic) [112] and harmonic bonds. As an alternative to the exclusion mecha-
nism, ESPResSo features a two-particle Lennard-Jones subtraction potential,
which is simply a bonded version of the Lennard-Jones potential with inverted
sign. The exclusion code adds some additional overhead to the nonbonded force
calculation, since one needs to check for each pair of particles whether they
interact or do not. If only a few interactions have to be left out, it may be more
efficient to calculate the nonbonded interactions the usual way, subtracting the
interaction of non-wanted particle pairs.

e Three-body forces. Three particles can be bound by a bond-angle potential.
ESPResSo implements three different kinds of bond-angle potentials. First, a
harmonic potential around the optimal angle ¢g, i.e. 1/2k(¢ — ¢o)?, then a
cosine potential k(1 — cos(¢ — ¢p)), and finally a harmonic cosine potential

(1/2)k(cos(¢) — cos(¢o))*.

e Four body forces. Four particles can be bound by a dihedral angle potential.
The implemented form is k(1 4 6 cos(nd)), where 6 is the dihedral angle, n =
1,2, ...,6 is the multiplicity and 6 = +1 is a phase factor. With this potential
one can also mimic force fields which use >, k; cos(6)" as the functional form
for the dihedral interactions.

e In addition to the potentials above, bonded potentials can be given in a tabu-
lated form as well, where the energy and the force are given as piecewise linear
functions of the distance (two particles), the bond angle (three particles), or
the dihedral angle (four particles); see section 1.3.3.

Long-range Potentials

While the implementation of the short-ranged potential normally consists only of
two short routines, namely the force and energy calculations, the treatment of long-
ranged interactions requires much more care due to the large number of possible
interaction partners. The algorithms for long-range interactions are highly sophis-
ticated [71] and normally have their own parallelization strategies, separate from
the one applied to all other parts of the program. This enormous effort is justified
by the fact that a simulation with electrostatic interactions might spend more than
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two thirds of the computation time only for the calculation of the long-range inter-
actions. While ESPResSo currently handles Coulomb interactions only, since this is
the dominant force for soft matter problems, fast algorithms for dipolar interactions
are already being implemented at the moment.

For any finite geometry without periodic boundary conditions a simple loop over
all N charged particles is used, resulting in an algorithm of order O(N?) in the
particle number N, as it was the case for the Debye-Hiickel potential in the limit
of k=t — oo. For 3D periodic boundary conditions the standard Ewald method still
has a complexity of O(N?/?) in its optimal implementation, which is why ESPResSo
contains the P3M algorithm of Hockney and Eastwood [116] in the version of [74],
where the computational effort now scales with O(Nlog V). This method is the
optimal choice for FFT-based “particle mesh Ewald” algorithms since it uses the
lattice Green’s function optimized for minimal pair-force errors, being superior to
other variants by construction [117,118]. Additionally, robust error estimates exist
[75] to ensure the best trade-off between speed and accuracy. The implementation in
ESPResSo handles arbitrary dielectric constants at the boundary, while it uses the
FFTW for the necessary Fourier transformations, which exists for various platforms
and is self-confidently dubbed “Fastest Fourier Transform in the West” by its
developers [100]. As the maximal number of usable processors is usually required
to be equal to the mesh size in the parallel multidimensional FFT employed in the
FFTW, ESPResSo uses a combination of MPI and the only one-dimensional version
of the FFTW for its more flexible parallel implementation.

For systems with periodicity only in 2 or 1 dimensions, ESPResSo features the
MMM2D [76,119] and MMM1D algorithms [120] which stand for “Multiple Mesh
Method” in 2D or 1D periodic systems, respectively. They are based on a conver-
gence factor approach to evaluate the Coulomb sum. These algorithms are imple-
mented for arbitrary box shapes, but have scalings of O(N°/3) (2D) and O(N?)
(1D). They also feature robust error estimates, and one of their advantages is that
high numerical precision is not computationally costly, being faster and more robust
than the 1D and 2D standard Ewald methods, or Lekner sums [121]. For a more
complete discussion see [76,119,122,123].

MMM2D’s scaling of O(N*/?) normally allows for not more than 1000 particles
to be treated in a simulation. Dense electrostatically interacting systems in e.g.
biomolecular applications require higher particle numbers or lower precision, for
which ESPResSo contains an “Electrostatic Layer Correction” (ELC) to be com-
bined with any arbitrary algorithm for fully periodic boundary conditions (preferably
one with a favorable scaling, P3M for example), only replicating two of the three
dimensions [77,78,123]. The summation order is made slabwise by a simple change
in the dipole term [124], computing the unwanted interactions of particles with their
images in the non-periodic dimension analytically (ELC-term) to be subsequently
subtracted through the ELC-term. Since its calculation is linear in the number of
charges, the favorable scaling of e.g. the P3M method is preserved, improving quite
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impressively on MMM2D.

All the methods described so far allow pre-setting a user defined accuracy based on
which the remaining parameters are optimized automatically, taking the employed
computer hardware into account as well. To the best of our knowledge, this ability
of choosing the accuracy and having an automated tuning facility for long-range
algorithms is unique to ESPResSo and not contained in other simulation packages.

In addition to the methods already described, ESPResSo also possesses a local
electrostatic solver introduced by T. Maggs [96, 125] in the version of Pasichnyk
and Diinweg [97], developed for MD simulations. The essential philosophy of this
approach is to view electrostatics as the quasi-static limit of a dynamic field theory,
in this case Maxwell electrodynamics, and to explicitly simulate the dynamics of the
field degrees of freedom. The speed of light ¢ appears as an adjustable parameter
and realistic dynamics occurs for particle velocities v < ¢. The Maxwell equations
are discretized on a simple-cubic lattice, with scalars on the sites, electric fields on
the links, and magnetic fields on the plaquettes. The method is rather simple to
implement and to parallelize, and appears to be quite competitive with respect to
efficiency. In principle, it should allow for a locally varying dielectric constant [125],
although this feature has not yet been implemented.

1.3.4. Constraints and External Forces

For a non-bulk simulation, the particles usually have to be constrained to some
finite region of the space. In ESPResSo these constraints are implemented as soft
immobile objects, i.e. they interact with the particles through one of the short-
ranged potentials. ESPResSo features basic constraints such as walls, cylinders or
spheres, which can be arbitrarily combined to form the desired simulation region.
Walls and cylinders with infinite extension, i.e. in periodic boundary conditions, are
able to carry a charge for simulations of charged surfaces. More exotic constraints are
available, too, such as a two-dimensional array of spherical cavities interconnected
by circular holes, a geometry used by Nykypanchuk et al. [126] to study Brownian
motion of DNA.

Other type of constraints are positional constraints and external forces. While the
former simply makes a particle immobile in some or all of the spatial coordinates,
allowing e.g. pulling at a molecule fixed to a surface, the latter exerts a constant
force on specific particles as if they were in an external field. This can be used to e.g.
determine the potential of mean force between two macromolecules by fixing their
center-of-mass distance through the comfixed-constraint, which allows to explore
the configurational phase space as a function of the center-of-mass separation.
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1.3.5. File Input/Output

Though Tcl provides built-in support for reading and writing (text-)files, ESPResSo
introduces a unified file format for saving and (automatically) restoring its com-
puter simulation data to allow easy exchange between users. Based on the structure
of Tcl-lists, this blockfile format subdivides all informations on the current state of
the program into categories (blocks). For each block type routines exist to write
the block to a blockfile and to read its data back into the running simulation.
ESPResSo handles many block types by default, such as variable (contains global
parameters such as simulation box length, skin, processor node grid, cell grid, cho-
sen periodicity), tclvariable (contains Tcl-variables, such as important constants
or observables in the simulation script), interactions (contains a list of all the
employed bonded, non-bonded, and electrostatic potentials with their parameters),
integrator, thermostat (both contain parameters for the respective integrators
and thermostats), particle (contains informations on the particles, e.g. positions,
velocities, forces, and charges), bonds (contains the bonding topology of the sys-
tem), random (contains the state of the random number generators) and configs
(contains the particle trajectories of past, user-defined timesteps for online analysis
purposes).

In addition to these standard blocks, ESPResSo allows to add arbitrary blocks
written in Tcl. As a matter of fact, the default block types are implemented as Tcl
routines, too. To add a new block type, one has to define only two Tcl procedures,
one which is used to write the block data and one to parse it. This is quite easy to do
because most ESPResSo-commands are able to output their parameters in a format
that allows to be directly used as input, already demonstrated in section 1.2.2 where

eval thermostat [thermostat]

would expand to the thermostat set langevin 1.0 1.0 employed there. This
feature can also be used to conveniently write and parse observables.

For each of the categories a block is defined and transferred to or from the file,
its head providing unique identification of the content. Consequently, parsing of a
blockfile is a simple task, allowing ESPResSo to not only read in the informations
given therein, but to directly apply all settings to the simulation engine level appro-
priately, hence preparing the simulation environment for further immediate usage.

As with all aspects of ESPResSo, the amount of informations to be included may
be chosen entirely by the user. Some shortcut commands exist as well, e.g. to create
a simulation system snapshot which includes everything necessary for starting or
resuming an integration. The output will be saved in plain text (ASCII) format
ensuring great flexibility, portability, and (more importantly) platform independence
compared to proprietary, system dependent binary formats; the unavoidable size
disadvantage is easily compensated when compressing the resulting files (which can
be done on-the-fly) using external programs such as gzip.
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{variable
{box_1 316.950192362 316.950192362 316.950192362}
{periodicity 1 1 1}
{node_grid 1 1 1}
{time 52003}
{time_step 0.0125}

}
{interactions
{0 FENE 7.0 2.0}
{0 0 lennard-jones 1.75 1.0 2.5 0.004079222784 0.0 0.0 }
}
{integrate
{ set nvt }
}
{thermostat
{ langevin 1.0 1.0 }
}

{particles {id pos type q}
{0 -0.933410431074 -4.396367828 4.07839266194 0 1.0}
{1 80.6308288023 73.5960975815 74.5619693121 0 1.0}

{3583 28.8582652959 75.2256394353 412.044956716 2 -1.0}

}
{bonds

{0 {}}

{206 { {0 205} {0 1} } }
}

{tclvariable {V1 31840000.0} }

Figure 1.1.: Example sketch of an ESPResSo-compatible blockfile (excerpt), displaying
some of the different categories as described in the text. Taken from an actual simulation,
it contains informations on the simulation box (box length, boundary conditions), the
parallelization (from the node grid it follows that this was a single CPU job), and the
temporal status (¢t = 52007 with At = 0.01257) in the first block. A bonded FENE-
and a nonbonded LJ-potential are defined next, followed by settings for the integrator
(standard velocity Verlet, (N, V, T')-ensemble) and the thermostat (Langevin, with reduced
temperature 7% = 1.0 and friction I' = 771). Afterwards, unique identifier, 3D position,
type number, and charge (in multiples of the electron charge eg) are given for all particles
in the system, including their bonding information in the next block (showing that no
bond is stored with the zeroth particle, while the 206¢h is connected to particle 205 and
particle 1). Finally, the value of a user-defined Tcl-variable V1 is included, which could e.g.
represent an observable. Points (.. .) indicate wherever the output was abridged.
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Most architectures ESPResSo supports excel through high availability. Neverthe-
less, apart from job execution interruptions by simple system maintenance or re-
stricted resources of CPU time, it may also be useful for later offline analysis of
particle trajectories or merely for sound scientific documentation that it is easily
possible to create checkpoints regularly on course of the computer experiment’s run
that can be used to restart the system in a well defined state. For this matter,
invocation of

checkpoint_set custom_name.$i.gz

from the Tcl-script will create a blockfile custom_name.$i.gz which will be com-
pressed automatically, and which stores all available information about the currently
executed simulation. This file represents the i-th entry to the list of checkpoints. Its
filename will be appended to custom_name.chk, allowing to keep track of the se-
ries of checkpoints built so far. Whenever it is necessary or desired to resume the
program,

checkpoint_read custom_name.chk

will successively rebuild the stored trajectory, continuing the simulation exactly at
the data status of the last checkpoint.

In addition to reading its own data format, ESPResSo is also able to read or write
other file formats, such as pdb/psf-files which are used by visualization software such
as VMD [127] and file formats of simulation packages previously used in our work
group; there is also an ongoing project to include import and export of GROMOS
and GROMACS files. Due to the use of the Tcl-script language, adding new text
file formats is particularly easy, which is often necessary if data from self-written
simulation codes should be imported to ESPResSo.

1.3.6. Data Analysis

ESPResSo does not only supply the simulation kernel, but provides tools for analyz-
ing the data as well. The analysis can be done both after the simulation is complete
and while it is running (“on-the-fly” or “online”) and the trajectory is still being
built. This can be used to implement some simple plausibility checks, e.g. for follow-
ing energy conservation or the temporal evolution of selected observables, allowing
to abort the simulation in the case of abnormal values. On the other hand it might
be necessary to perform an additional analysis later (“off-line”) that one did not
think of when writing the simulation, so an off-line analysis of stored configurations
is also important. Typical derived observables range from the forces exerted on spe-
cific particles, the energy or pressure, particle distributions, to typical properties of
chain molecules. The pressure can hereby be calculated both tensorial and isotropic.

Radial distribution functions can be computed for specific particle types, allowing
for e.g. the calculation of the distribution of counterions around a macromolecule.
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Implemented observables for chain molecules are the average end-to-end distance
Rg, the radius of gyration Rg, the hydrodynamic radius Ry, the average bond
length (b), the internal distance distribution, and the mean square displacements g;
of the particles, g of chain particles relative to the chain’s center-of-mass, and the
center-of-mass displacement g3 itself. For comparison with scattering experiments,
structure factors, both as spatially averaged single-chain form factors for polymers,
as well as as total structure factors for selected particle species or the entire system,
can be calculated (see e.g. (4.9) and (5.9) resp. (5.10) later on). For membrane
systems, ESPResSo can perform a fluctuation mode analysis [128].

Most of the data analysis does not only average over the current sample, but is also
able to optionally average over an entire series of past timesteps stored in memory.
For this feature, ESPResSo allows to keep specific configurations loaded, building up
an entire trajectory for online analysis; of course, this trajectory can also be saved
to disk for later re-usage employing the blockfile format (i.e. the configs-block).

For a simple error analysis of the averaged observables, the standard deviation of
the measured values is computed. The derivation of more abstract error estimates
is supported by a simple linear regression, or, for correlated observables, the uwerr-
command, which calculates the errors of values derived by, in general, nonlinear
functions from observables with known correlated errors [129].

1.3.7. Additional Features

In addition to the built-in analysis procedures, there is a fast growing number of
Tcl procedures for mathematical treatments, analysis, and general data manipula-
tion. The extensibility of ESPResSo also brought up some more unusual features:
ESPResSo can make use of the Tcl extension Tk, which allows for the creation of
graphical interfaces. This is useful primarily for writing scripts for visual simulation
demonstrations. To this aim, ESPResSo also has an IMD interface that can send
configurations during the simulation to the visualization package VMD [127] which
can provide animated movies of the simulation trajectories. ESPResSo can automat-
ically generate postscript graphics of graphs using gnuplot for direct plotting of any
arbitrary combination and functional expressions of measured observables.

1.3.8. Testsuite

Due to the scope and sheer size of ESPResSo it is an important task on its own to
ensure the physical correctness of the entire package, its reliability, and backwards
compatibility — despite the easy access of all users to all parts of the program. To this
aim, each of the major features in ESPResSo (e.g. each potential, each integrator, the
thermostats, common data analysis routines, specialties such as constraints, partial
periodic boundary conditions, external forces, etc.) have their own little testcase
which quickly compares the output of the current version of the program to an earlier
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reference state, thereby detecting any deviations (maybe inadvertently) introduced
in between.

Before submitting modifications to the CVS-repository for future releases of
ESPResSo, each developer is required to ensure an error- and warning-free com-
pilation on all the officially supported hardware platforms, checking for each archi-
tecture whether the testsuite runs through without any problems. The testsuite is
build into the project’s makefile for the compilation; hence, it can be executed with
the single command gmake test. By construction all the testcases add up to only
a few minutes of computation time to encourage developers to use it as often as
possible.

In addition, larger checks testing physical properties of “real” systems provide
simple means to also trace more subtle bugs only occurring for specific scenarios or
unique combinations of features or circumstances. Being based on previous research
projects or “classic” simulation scenarios (e.g. the Kremer-Grest study of a polymer
melt [34]), these may take considerable longer time to complete. The comparison of
the output of the current program version to the published data, however, allows
for an excellent test of the overall correctness of ESPResSo. Done on a regular basis,
all these verification scenarios are executed and need to be fulfilled when releasing
a new version of the code. In this way we hope to keep the number of newly created
errors in updated releases bound to a minimum, and to enhance stability of our
program package.

1.4. Implementation Details

After having described the overall structure, capabilities, and included algorithms of
ESPResSo this section will now focus on details of the implementation, especially of
the particle data organization optimized for highly efficient computations in parallel
environments.

1.4.1. Data Structures for Parallel Computation

The data ESPResSo needs during the integration are mainly particles, interactions,
and constraints. While the number of interactions and constraints is normally small,
and simple lists are efficient enough for their storage, the particle data needs some
more elaborate organization. as the particle itself is represented by a structure con-
sisting of several substructures, which in turn represent basic physical properties
such as position, velocity, force, mass (if enabled), or charge. The particles are orga-
nized in one or more particle lists on each node, the cells, which in turn are arranged
again in one of several possible layouts, the cell systems. Each of these defines how
the particles are stored in ESPResSo, i.e. how they are distributed onto the processor
nodes and how they are organized there. The program currently supports three cell
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Figure 1.2.: Schematic description of the particle data organization using the domain
decomposition cell system within ESPResSo. The simulation box is split up into equally
sized regions, each assigned to a single processor and subsequently split up spatially into
cells (dark blue squares); around the cells, a shell of additional cells is wrapped that will
contain data of the particles from neighbouring processors (light blue squares). The cells
are simple arrays of particles, which finally consist of several substructures containing the
position, force and other particle data. Depending on the type of simulations, the detailed
contents of the substructures can vary (taken from [64,123]).

systems, namely an N2-model, a layered model, and a domain decomposition model.
For most simulations (including our own) the last model is used, which is shown
schematically in figure 1.2.

Technically, a cell is organized as a dynamically growing array, not as a list,
ensuring that the data of all particles in a cell is stored contiguously in the memory.
It is accessed transparently through a set of methods common to all cell systems,
which allocate the cells, add new particles, retrieve particle information and are
responsible for communicating the particle data between the nodes. Therefore, most
parts of the code can access informations on the particles safely without direct
knowledge of the currently used cell system. Only the force, energy and pressure
loops are implemented separately for each cell model, because their calculation is
able to benefit directly from the particle organization by e.g. deriving the pair forces
in linear computation time using the domain decomposition method.

Many pairwise interactions, such as the Lennard-Jones potential, are short-ranged,
i.e. their value becomes negligible at distances much smaller than the size of the
simulated system. As a consequence, only interactions with particles close to each
other have to be calculated, and a potential cut-off r.; may be introduced allowing to
simply ignore the interaction for distances r;; > 7¢,. Although already saving quite
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an amount of unnecessary potential evaluations, because of the required derivation
of the respective particle-particle separation r;; this would still remain an algorithm
with a computation time scaling of O(N?), i.e. the number of necessary operations
growing quadratically with the number of particles. The link cell algorithm [47,130,
131], on which the domain decomposition cell system in ESPResSo is based upon,
therefore introduces additional cells at the beginning of the simulation which fill the
entire box volume and contain links to all the particles in their spatial domain (thus
“link cells” as their name), with their size chosen slightly larger than the maximal
interaction range r... In the force calculation only interactions between particles
in adjacent cells have then to be calculated, because by construction the distance
r;; between any particle ¢ in a given cell to any particle j in the next-nearest cell
is larger than r.., the lower limit for the width of the cell in between. Instead of
looking at all possible particle pair combinations, one now has to only loop over
the 27 neighbours of each cell (in three dimensions), reducing the computational
effort to O(N) at constant density and interaction ranges (which keep the number
of particles in a cell constant), as this algorithm looks at each cell (i.e. each particle)
only once.

Parallelization of the force calculation within the domain decomposition cell sys-
tem is straightforward, too. The simulation box is split up into a number of smaller
sections corresponding to the amount of processors available, aiming for equal sec-
tion sizes but not necessarily for isotropy (i.e. distributing a cubic box onto two
processors results in non-cubic sections with (L/2, L, L) as subbox lengths). The
particles are then assigned to the processor that is responsible for the subbox they
are located in, before each subbox is subsequently divided up into the domain decom-
position cells previously discussed. Since for the force calculation mentioned there
the particles in all neighbouring boxes are needed, the cells adjacent to each subbox
are required as well to be able to compute the interaction of objects in the outermost
layer of cells on the processor to those on the next one. To this aim, that layer is
replicated as ghost shell on all neighbours, with the particle copies contained therein
being the ghosts [89], see the sketch in figure 1.2. While all the other particles are
only needed on the processor possessing their cell, ghosts need to be communicated
between nodes once every timestep; as a consequence, this parallelization scheme
is useful for short-range (i.e. re, small) interactions and homogeneous systems be-
cause in that regime the amount of communication required for transferring the
ghosts between nodes is much smaller than the time spent on actually computing
forces between the particles on the node. (As mentioned in section 1.3.3, “real” long-
range interactions, i.e. those without a potential cut-off, have an entirely different
parallelization scheme, independent of the cell system employed.)

Each of the integration schemes (see section 1.3.2) uses equations of motion tem-
porally discretized to propagate the entire system. Every timestep might thereby
move particles out of their cell, which would require updating the link cells, even
causing costly particle transfers between nodes in a multiprocessor environment. To
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reduce the amount of updates, it is possible to exploit the cell size being constructed
slightly larger than the maximal interaction range 7., with their difference rgyg, act-
ing as a skin for the particles. As long as none of them moved further than 7y, /2,
the distance of two particles did not increase by more than rgg,, such that adjacent
cells still contain all interacting particle pairs, and the link cells do not have to be
updated. Storing its spatial position 7,q during the creation of the current set of
cells, finding one particle at 7 with |77 — 7o1q| > 7skin Will then trigger the re-creation
of the link cells (and overwriting of 7,4 with 7). In actual simulations, the skin can
become as large as 20 — 40% of the maximum interaction range, while the particle
lists turn out to be updated e.g. every 15— 35 timesteps when running ESPResSo on
an average AMD Linux-PC. To safely cover a wide range of simulation conditions,
the distance criterion is checked after every integration step, in contrast to many
other programs.

Contrary to the original version, the domain decomposition cell system imple-
mented in ESPResSo does not use links to the particles but has the cells contain
their data directly. Although this creates considerable overhead once the lists have
to be rebuilt, since now the entire physical particle information needs to be moved
to its new location instead of simple re-setting a pointer, it also avoids a lot of in-
direct particle accesses through the link cell pointers, actually accelerating access
to the data now stored in larger contiguous blocks. This is advantageous especially
on modern computers, where not only random memory access is quite slow while
continuous transfers circumvent most of the addressing issues, but clever prefetching
algorithms already load data they think to be required next while the current cal-
culation is still executed — and during the processing of a contiguous memory block
these guesses are rarely wrong. To support this, looking at a double data rate RAM
module at 200 MHz, less than 50 words per microseconds may be read from random
positions, while a contiguous block of memory will be fetched at a rate of more than
250 words per microseconds, corresponding to 1 GB/s instead of 200 MB/s. In con-
trast, an AMD Opteron processor can multiply 500 double precision floating point
numbers per microsecond, clearly identifying main memory as the bottleneck of our
computer simulations. It can be partially bypassed by the processor cache which is
small but operates at the full processor clock speed, corresponding to more than
700 words per microsecond; its size, however, is only sufficient for about 1000 par-
ticles. In the benchmark section 1.6 this effect will be demonstrated, e.g. timing
simulation runs with an increasing number of particles which will clearly exhibit a
significant slowdown once the cache size is no longer able to hold all their data.

The optimal value for the skin is hardware-dependent because it reflects a trade-
off between larger cells (for larger rg,), causing more particles to be part of the
distance and force calculation loop, and smaller rg;,, enforcing more frequent list
updates; while the former is favored by systems with low memory bandwidth, as it
reduces the frequency of particle data reorganization, the latter is preferred by mem-
ory systems with a high throughput compared to the floating point performance,

36



1.4. Implementation Details

because it minimizes the computational effort. As it is also a question of whether the
architecture is more efficient in accessing the memory or shifting particles between
nodes or prefetching desired data into its caches, no general statement can be made;
ESPResSo however contains an automated tuning routine which invokes several inte-
grations at different skin values for the user’s current system, choosing the parameter
set running the least amount of time. Due to its different memory organization, the
optimal skin values of ESPResSo are slightly larger than the values typically used in
other programs, which simply reflects that the particle reorganization is more, while
the interaction calculation is less costly.

In a simulation box with an e.g. cubic geometry of length L = 200 and 2 pro-
cessors, each will be responsible for the particles within a non-cubic subbox of
(100,200, 200). If the maximal interaction range is 1.20, the minimal possible cell
size is 1.250 for 8 cells along the first spatial coordinate, allowing for a small skin of
0.050, while it increases to 0.467¢ for only 6 cells assigned to the first coordinate.
Assuming the cells to be cubic (the subbox is not!), the latter would be organized
by ESPResSo on each node in a 6 x 12 x 12 cell grid embedded at the center of a
8 x 14 x 14 grid, where the additional cells represent the ghost shell in which the
information of the ghost particles from the neighbouring nodes is stored. This has
the particle information to reside in 1568 particle lists per node, with 864 of these
actually containing particles assigned to that processor, while the remainder consists
of ghosts from other nodes.

The other two cell systems, namely the N2-cell system and the layered cell system,
are not as efficient as the domain decomposition and are only used in conjuction with
certain potentials. The N2-cell system derives the interactions for all particle pairs,
as is necessary e.g. for MMM1D, a method for the calculation of the electrostatic
interaction in one dimensionally periodic systems, or for the computation of the
electrostatic interaction with no periodic boundary conditions at all, e.g. in a simple
cell model that possesses hard or open boundaries. Since both examples require
all interactions to be calculated anyway, a domain decomposition is unnecessary,
and its organizational overhead would only decrease the (already poor) performance
further; the only optimization applied therefore restricts to the particles being load
balanced at the beginning of the simulation, i.e. the particle number does not differ
by more than one from the average particle number on each node, without resorting
them during the simulation.

The layered cell system is specificly designed for MMM2D, a method for the calcu-
lation of the electrostatic interaction in two dimensionally periodic systems, although
it may be used for other algorithms, too. Being a combination of the domain de-
composition and the N2-method, it splits the system into cells or layers only along
the z-coordinate, treating interactions with particles in adjacent layers only.

The concept of having multiple cell systems allows for quite different data orga-
nization schemes, enabling ESPResSo to provide whatever framework some state-of-
the-art algorithms require, and is also quite unique for a simulation package of this
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scope. It renders the program code to be somewhat easier to read, making the addi-
tion of new cell systems rather simple if a new algorithm should require a different
particle organization. As a consequence, it nicely reflects the design goals we set out
to fulfill in section 1.2.

1.4.2. Topology Information in ESPResSo

The topology of a simulation system is what distinguishes e.g. a simple LJ-liquid
from a polymer melt from a rubber-like network. Being both global and local prop-
erty, different concepts on how to implement, store, and process bonds and connec-
tions seem suitable depending on the desired application.

For the integrator, only informations related to the calculation of interaction forces
are required. It is therefore sufficient to store only reduced topology informations,
i.e. a bond list containing the bond type and the unique identifier of all bond part-
ners, locally at each particle, which is then always present where needed. This also
allows the user to specify whatever topology desired on the script level, connecting
individual particles using

part <ID> bond { <bond_type> <bond_partnerl> ... }

or relying on some of the predefined geometries such as the polymer-command al-
ready discussed in section 1.3.1. It additionally grants the ability to change the
topology at all times during the simulation run, adding/removing/modifying bonds,
bond partners, or bond potential parameters. Usually, this is sufficient for the in-
tegrator, rendering any additional topological concepts such as molecules, polymer
chains or residues in a protein unnecessary, and thereby avoids ambiguity e.g. in a
random network where “molecule” would loose most of its unique meaning. For some
applications it is nevertheless advantageous to distinguish inter- and intramolecu-
lar interactions, e.g. in a phantom model [132,133] where the chains entangle and
interact with each other, but not with itself. In addition to the particle type, deter-
mining non-bonded interactions, each particle therefore has a molecule identity as
well which can be used in the potential derivation.

In contrast to the integrator, data analysis usually requires knowledge of the global
topology to be effective, as otherwise e.g. for the derivation of the end-to-end distance
in a polymer melt the algorithm would have to loop through all particles, trying to
reconstruct which particles are actually joint on the same chain and identifying the
end monomers before being able to start the actual calculation of the observable; in a
network, where the node-node separation takes the place of the end-to-end distance,
the pattern recognition would be even more difficult (and time consuming). Thus,
the topology in the analysis routines of ESPResSo is stored as a list of molecules,
each containing a sorted sequence of particle identities, such that the aforementioned
example would simply have to look at the first and last entry in each molecule’s list
to access the particle positions of the end monomers.
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As illustrated in figure 1.3, the three topology concepts are by default independent
from each other, with separate interfaces connecting them to the simulation script.
If desired, it is however possible to synchronize all three such that they describe the
same structure. Within this concept, any topology containing n-body interactions
can be handled; the number of bond partners is merely restricted by the potentials
implemented.

Steering Level

— ) T

Module particle_data. [ch] topology. [ch]
Description Particle Particle Molecule
bond list molecule identity descriptor
Storage local local global
Bonded Non bonded :
Usage , , , ) Analysis
interactions interactions

Figure 1.3.: The three different topology concepts in ESPResSo. Shown are the location
in the program package, the type of data storage, and their main usage (taken from [64]).

1.4.3. Internal Program Flow

The Tcl-simulation script is processed by a Tcl-interpreter on a single node, the mas-
ter node or node 0, while all other nodes (slaves) are standing by and wait for com-
mands to be issued from the master node. For any non-Tcl-statement the interpreter
encounters, the Tcl-connection built into the code upon compilation will allow to find
and invoke the appropriate C-procedure in ESPResSo, which by convention has the
same name as the calling command, i.e. setmd will call the C-procedure “setmd()”,
with the variable name and value as (string) parameters. The C-procedure then
parses the input and performs the desired operations, e.g. setting or retrieving the
value of a global variable. In a multiprocessor environment, most commands cause
changes in the entire system (a modified global parameter, for example, must be
known to all other nodes, too), which is why the C-function on the master node will
issue a communication request in such cases, transferring the necessary informations
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to the slaves and invoking an appropriate procedure there, e.g. updating the value
of the local copy corresponding to the global variable in question. Since the amount
and sequence of commands coming from the master node during this process is a
priori unknown, the communication is asynchronous.

ESPResSo allows to change anything accessible from the script at any time, even
on course of the simulation run. This requires special efforts to ensure continued
consistency within the system, as a change in the processor grid, for example, might
change the association of the particles to the different nodes which would have
to call for a rebuilt of the internal particle structures. Similarly, if the Bjerrum
length is changed, the currently used method for the calculation of the electrostatic
interaction has to be reinitialized; moreover, if this happens during the simulation,
the forces stored in the particles for the current configuration are invalid and have to
be recalculated. Due to the large number of algorithms implemented in ESPResSo,
such dependencies are actually even more complex, which is why the sample scripts
are so important in tracing possible conflicts of this kind (see section 1.3.8). They are
to be resolved by handler procedures, dealing with common events such as changes
in a global parameter (calls on_parameter_change()) or in one of the electrostatic
methods (calls on_coulomb_change(), is also called by on_parameter_change());
these are covering a rather general range of steps to be taken to keep the state
of the simulation consistent, even if that implies e.g. reinitializing more parts of
the code than absolutely necessary. While it does not affect the actual speed on the
simulation engine level because such changes are usually invoked from the Tcl-script?
where efficiency is not as important, it greatly increases the robustness of the code
which by itself would already justify any minor drawbacks in computational speed.

One of the asynchronous commands (usually integrate) starts the propagation
of the system in time, the integration. During the integration, ESPResSo uses syn-
chronous communication as do all other simulation programs for efficiency reasons,
i.e. every node has to know without prior request which MP| communication follows.
This is less robust than the asynchronous communication scheme, but the request—
answer structure creates too big of an overhead, and is not needed in the integration,
if everything is implemented properly.

1.4.4. Error Handling

The Tcl-command extensions of ESPResSo use the standard Tcl-error return mech-
anism to report erroneous execution. If the error is not caught, this mechanism
will terminate script execution and output a script backtrace, which, together with
comprehensible error messages, allows to easily identify the source of the error.

4 There are exceptions such as the (IV,p,T)-integrator which are modifying global system
properties (i.e. the box length) at every single timestep which would be unfeasably slow if
on_parameter_change was to be executed everytime; in those cases only the necessary adjust-
ments were isolated and are now separately called by this functions.
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However, as the Tcl-interpreter exists only on the master node, ESPResSo imple-
ments its own error reporting scheme for the other nodes. Moreover, an immediate
error reporting during the synchronous phase, i.e. integration, would be ineffective.
Instead of terminating erroneous conditions, only an error message is placed in an
error buffer, and the parameters are adjusted such that execution can temporarily
continue. During the integration loop and just before completing any Tcl-command
execution, the master node then checks regularly for errors from the slaves, creating
a regular Tcl-error if an error condition is found. Such background errors are reported
in addition to regular Tcl-errors as a string like

background_errors O {<error>} {<error>}...
1 {<error>} {<error>}...

Following the background errors keyword, the error messages are listed, preceded
by the number of the node that raised the error. If all nodes report the same error, for
example, an unset timestep, then instead of repeating the error messages, a simple
<consent> is output for each node except the master. A typical example is

background_errors O {010 time_step not set} {011 skin not set}
{012 thermostat not initialized} 1 <consent>

which is the result if the integrator is started without setting up anything. Typical
examples, where the messages are different from node to node, are broken bonds,
which look like

background_errors O {083 bond broken between particles 1 and 0}
1 {083 bond broken between particles 22 and 23}}

Fach error message is assigned a unique three digit code to support automated
parsing of error messages. There are various applications of this feature, for example
testing simulation parameters for validity during tuning, or speeding up warmup
up by using larger timesteps. If a bond breaks, one can simply return to an earlier
timestep, simulate more carefully for some time, and then raise the timestep again.
For polymer networks, this allows to reduce the warmup time considerably, while
it is an almost mandatory feature for employing the (N, p, T')-algorithm to charged
hydrogels where the box fluctuations may become so large that they rupture the
bonds of the network strands; as in the latter example the simulation remains phys-
ically sound, reverting to a previous timestep and simply increasing the piston mass
() ensures further survival of the experiment (see section 4.1 for details).

1.5. Documentation

ESPResSo is not intended to be a black-box-like package. Users are encouraged to
try to understand its algorithms and routines, and developers are strongly advised
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to do so before extending it. In order to preserve the knowledge about algorithms
and their physical/chemical background, it is important to provide and maintain a
well structured documentation.

The hierarchical program design is reflected once more by its organization. The
first information for the user is a separated documentation of the Tcl-extensions to
steer the simulation, to organize the data in- and output, and to analyze the resulting
observables; examples are the part command that modifies the particle data, or the
analyze command that performs data analysis. It also contains documentation of
Tcl-procedures that serve to abbreviate common programming tasks on the script
level, for example setting up a polymer chain. In the meantime, we have also realized
a thorough documentation of the program flow, the integration schemes, and the
basic data structures to give new users an introduction to the general program
design and an overview of the connection between the different modules.

The largest part of the documentation is done within the program code itself
and will be automatically extracted, processed and linked to the above described
parts with help of the doxygen program [134]. The result is a cross-referencing
HTML documentation or a pdf-user manual. It is important to note that also the
documentation of the Tcl-commands and the underlying physical principals and
algorithms is directly linked to the corresponding source code documentation.

Changes and extensions made during the development process are documented
via the log function of the CVS-environment (concurrent version system [135]) where
the project resides in. To make important changes more visible to both users and
developers, the RELEASE_NOTES-file contains information about all new features,
relevant changes, and important bug fixes in a condensed and easily accessible way.

1.6. Benchmarks and Comparison

While the general aim in the development process of ESPResSo had been directed
towards the flexibility and extensibility of a simulation package and its portability
to a wide range of commonly used scientific computation platforms and architec-
tures, ESPResSo is also comparable in performance with other state-of-the-art simu-
lation codes in both single CPU and multi-processor environments. ESPResSo does
not use platform-dependent optimizations, but the clever particle organization (see
section 1.4.1) together with algorithms like P®M or ELC nevertheless results in a
high-performance code. With Moore’s Law still valid and the continuous plunging of
costs for faster and more powerful computers, it is no longer economically expedient
to invest human resources into developing hardware-related algorithms: Often the
achievable speed-up becomes more than overcompensated by technological advance-
ments during the time frame of the implementation, particularly since switching to
different platforms or different scientific problems usually renders these optimiza-
tions useless. In this section, the performance of ESPResSo will be demonstrated
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using several benchmarking scenarios on various hardware platforms (systems).

We begin by demonstrating the scaling of the computation time with the number
of particles on a single AMD Opteron 246 processor. The benchmark scenarios are:

b1

b2

b3

a simple Lennard-Jones (LJ) liquid:

The scenario consists of N particles in a cubic simulation box at a den-
sity of p = 0.84420~3, with a purely repulsive Lennard-Jones potential
as the only interactions between them. Simulating a (N, V, E')-ensemble,
the timestep was chosen to be At = 0.004627.

This scenario only uses the short-ranged nonbonded interactions of
ESPResSo. It is relatively dense, leading to a large number of simple in-
teractions to be calculated; therefore, this benchmark stresses especially
the memory architecture of the used hardware platform.

a dilute electrostatic scenario:

The scenario consists of N unit charges in a cubic simulation box at a
density of p = 1073073, Half of the particles are positively charged, the
other half is negative. The Bjerrum length, characterizing the strength
of the electrostatic interactions, is set to /g = m = 20, and again
the particles also interact via a purely repulsive Lennard-Jones poten-
tial. The temperature is now set to T" = le, which is maintained using
the Langevin thermostat with a friction coefficient of I' = 77!, and a
timestep of At = 0.0017. For the calculation of the electrostatic inter-
actions the P3M algorithm is used, tuned to a force error smaller than
10 %¢/o.

Here, the calculation of the long-ranged electrostatic interactions domi-
nates the computation time, while memory bandwidth only plays a mi-
nor role compared to the floating point performance of the used CPU
architecture.

Kremer-Grest polymer melt:

The scenario consists of N particles in a cubic simulation box at a
density of p = 0.850 73 grouped into polymer chains of 100 monomers
each; in addition to a purely repulsive Lennard-Jones interaction be-
tween beads, their bonds are constructed by a FENE-spring-potential
with kp = 3028L and rp = 1.50 (parameters taken from [34]); a timestep
of At = 0.0067 with T'= le and I' = 0.57~! was chosen.

It tests the ability of ESPResSo to deal with bonded interactions, and
allows to compare this additional effort to the plain Lennard-Jones liquid

b1 at a similarly dense density.
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b4 (N,p,T) constant pressure thermostat:

The scenario is identical to the simple Lennard-Jones scenario, but uses
the (N, p, T)-integrator of ESPResSo to maintain a constant pressure of
2¢/02. The (N, p, T)-algorithm prohibits the use of Verlet lists, therefore
this test shows the efficiency of the plain link cell implementation.

It also displays a typical performance difference when using ESPResSo’s
extensibility to modify or rewrite its core integration routine, since the
(N, p, T')-algorithm is implemented as (optional) addition to the standard
velocity Verlet integration scheme.

The time measurements are performed using a Tcl control script to ensure realistic
numbers representing an entire integration cycle, rather than only measuring the ex-
ecution times of specific parts of the simulation code. For each benchmark case, five
independent pre-equilibrated configurations were integrated for 1000 MD steps each,
and the computation time per particle and timestep was measured. Prior to this,
the cell size (= Tgan, see section 1.4.1) and, for the electrostatics scenario, the P3M
parameters were automatically tuned using the built-in tuning functions. For all
benchmarks only minimal ESPResSo components were compiled in (e.g. no electro-
statics for the neutral cases b1, b3 and b4), and compiler flags for platform-dependent
optimization were used where available. Throughout this section computation times
are given as wall times, as measured by the Tcl-command time.

Figure 1.4 shows the resulting computation times. As expected, the electrostatic
scenario b2 is the slowest scenario, compared to the simple Lennard-Jones liquid it is
slower by a factor of ~ 3.5. The computation time for this scenario shows a typical
festoon shape, which is generated by the interplay of the constant FF'T computation
time at fixed mesh size and an increasing real space computation time. Whenever
the real space computation becomes too costly, the optimal mesh size increases,
creating a larger constant offset.

For all other scenarios, the computation time per particle decreases slightly for up
to 1000 particles. This simply reflects that the computation time scales proportional
with the number of the particles plus a small constant overhead, which becomes
negligible with increasing number of particles. The data of more than 500 to 1000
particles and the necessary organizational data no longer fit into the IMB L2 cache
of the Opteron, and more and more data has to be fetched and put back to the
slower main memory. When finally the entire particle data has to be read from main
memory, the computation time is around 70% larger compared to the calculation
that completely uses the cache. This drop is easily understood from the fact that
even linear main memory accesses are three times slower than cache accesses, see
section 1.4.1. Nevertheless, 1.4y s per particle and timestep is still a very good
performance and comparable to other simulation codes. The cache effect is not visible
in the electrostatics scenarios, since the slowdown through the grid discretization is
much stronger.
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Figure 1.4.: Computation time 7 in microseconds per particle and timestep
of ESPResSo for various benchmark scenarios with different numbers of parti-
cles N, each run on a single AMD Opteron 246 processor. The symbols stand
for the scenario b1 (crosses), b2 (circles), b3 (squares) and b4 (triangles). The
arrows denote the P3M mesh size used, e.g. 8 for up to 500 particles, 16 for
up to 4000 particles and so on. For details on the scenarios, see text.

It is remarkable that the additional computation of the bonded interactions in the
Kremer-Grest scenarios does not lead to a significant increase in the computation
time. This shows that, once the organizational part of the integration is done and
the particle data is loaded into the fast .1 cache of the CPU, the computation
time spent in the actual force calculation is almost negligible, not least due to the
computationally cheap choice of the bond potential [34] having only a logarithm in
the FENE formula (4.1) instead of the usual square root of the harmonic (Gaussian)
one.

The approximately constant offset between b4 and the two fastest scenarios (b1
and b3) originates in the (IV,p,T)-algorithm itself, which requires an additional
amount of operations for each particle (i.e. pressure evaluations, coordinate rescal-
ing, and thermostat application) without further accesses to stored data; conse-
quently, the computation time increases compared to b1 and b3 while displaying
the same cache-related behaviour on the amount of particles N in the simulation.
Efficient bookkeeping tricks such as the employment of Verlet-lists cannot be used
for the (IV,p, T)-algorithm because in the environment of a fluctuating simulation
box with a continuously rescaled coordinate system it is not possible to define a
suitable distance criterion, which signals whenever particles from a cell have moved
“too far” such that the Verlet-lists would have to be updated, as long as there
is not distinction possible between “real” particle movement based on the force
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Figure 1.5.: Computation time 7' in microseconds per particle and timestep
of ESPResSo for the benchmark scenarios b1 (stars), b2 (squares), b4 (circles)
on an IBM Regatta system of up to 16 pSeries 690 with different numbers of
processors Np,o. and 4000 particles per processor. For each scenario, the dot-
ted, lower lines denote results for an otherwise unloaded 32 processor machine,
while the solid, upper lines represent data for a fully loaded machine.

fields and “virtual” displacement due to changes in the box volume®. Without the
Verlet-lists, b4 encounters an N-dependent slowdown due to the need to assess all
ZL . (# of cells)3(# of particles per cell)* ~ N interactions per cell (as the number
of cells scales with the number of particles) and the additional operations required
to calculate the pressure (which is done on-the-fly during the integration, i.e. con-
sisting of a constant number of operations per particle), plus the administrative
overhead for adjusting the box dimensions (negligible, as it is only required once per
timestep), i.e. the offset exhibited in figure 1.4 depending on the amount of particles
N alone.

For a parallel simulation code the scaling with the number of processors is as im-
portant as the scaling with the number of particles. In figure 1.5 we demonstrate the
scaling of ESPResSo for the simple Lennard-Jones liquid scenario b1, the electrostat-
ics scenario 02, and the (N, p,T') scenario b4 on an IBM Regatta system consisting
of up to 16 pSeries 690 system with 32 Power4d CPUs running at 1.3 GHz each. The
Kremer-Grest scenario b3 was not repeated on the multiprocessor system, as it is
very similar to the Lennard-Jones scenario (see figure 1.4). The number of particles
was chosen proportional to the number of processors, namely 4000 particles per pro-

5 It would be possible of course to track all particles accordingly to obtain this information,
however the administrative and computational cost would simply be too high.
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cessor. For less than 32 processors, a single machine was used for two runs, one on an
otherwise unloaded machine and one on a fully loaded machine (which is the more
realistic scenario, but naturally generates larger error bars and may increase the
computation time if memory access is the bottleneck). For more than 32 processors,
we always used entire 32 processor machines, interconnected by an IBM federation
switch.

From the computation times given in Fig. 1.5, it is easy to calculate the speedup
factors for ESPResSo which are defined depending on the number N, of employed
processors as the computation time used on a single CPU divided by the computation
time for IV, processors. For testsystem b1, the factor is between 95% and 105% for 1
to 16 processors, 85% for 32 processors, and slowly drops to 70% for 512 processors,
which is comparable to e.g. the benchmarks known from LAMMPS [136].

Both b1 and b4 scale extremely well with the number of processors. For the b2
scenario ESPResSo shows the typical festoon behaviour, which was already observed
in the single CPU benchmarks, and which is due to the complex interplay of FFT
time and real space calculation time. It should be noted that ESPResSo scales ex-
tremely well up to 512 processors or 2 million particles, even for the electrostatic
scenario, and there is no fundamental reason that ESPResSo should not able to run
on even larger supercomputers.

In the b2 scenario, the Regatta system switches faster to higher grid sizes, which
simply reflects that the Regatta FFTW implementation performs extremely well.
Again, the additional computational effort required for the (N, p,T) is responsible
for a constant (i.e. N-dependent) decrease of that scenario’s performance compared
to the LJ-liquid’s case. For the b1 and b4 scenario, there is a noticeable computation
time difference between a fully loaded and an unloaded machine. This is a result of
the shared memory architecture of the Regatta system: The CPUs are organized in
dual core units with a small shared L2 cache of only 1.44MB. Four of these dual
core units form a processor board with a total of eight processors, which share an
additional L3 cache of 32MB. If all 32 processors are loaded, the .2 cache per CPU
is 768kB, which is not enough for 4000 particles, and the CPU has to resort to the
L3 cache. However, if only one processor per dual core is active (as is the case for
Nyroe < 16 on an otherwise unloaded machine), then it can use the full 1.44MB
L2 cache, which is sufficient for the data of 4000 particles. Since in a production
environment normally all 32 CPUs will be loaded, the numbers for the loaded system
are more realistic regarding e.g. estimation of required CPU time for a given project,
although the unloaded machine illustrates the theoretical performance of ESPResSo
as determined by its algorithms and program design.

In contrast to the memory organization of the Regatta system, the federation
switch shows a high performance and does not seem to add a noticeable additional
performance loss for less than 16 machines; even for 16 machines, the impact is
only small. Therefore, it should be possible to simulate scenarios of several million
charged (!) particles using ESPResSo on a sufficiently large IBM Regatta system.
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Now that we have shown the scaling of ESPResSo for some of the built-in algo-
rithms on a single CPU and a multiprocessor system, we finally want to compare
results from different architectures, i.e.

s1 dual AMD Opteron 246, 2 GB RAM, S.u.S.E.-Linux 9.1, gce 3.3 [137]
s2 single AMD Athlon64 3200+, 1 GB RAM, S.u.S.E.-Linux 9.1, gcc 3.3
s8 dual AMD AthlonMP 2000+, 1 GB RAM, S.u.S.E.-Linux 9.0, gcc 3.1
s4 dual Intel Xeon 2.8 GHz, 3 GB RAM, RedHat 9.0, icc v8.0 [138]

s5 dual Apple G5 2.0 GHz, 1 GB RAM, MacOS X (Darwin 7.4.0), gcc 3.3

s6 IBM pSeries 690 Turbo, 32-way Powerd 1.3GHz, 64 GB RAM, AIX 5.2,
IBM xlc V6

s7 IBM pSeries 655, 8-way Powerd 1.7GHz, 16 GB RAM, AIX 5.2, IBM xlc
v6

s8 dual Alpha 21264 833MHz, 3 GB RAM, Tru64 V5.1A, Compaq C V6.4

Again, the benchmarking scenarios b1 and b2 were run five times with 4000 and
16000 particles on each architecture, measuring the computation time per particle
and timestep, as well as the used number of cells N,..;s and mesh points per dimen-
sion. The majority of the systems are multi processor systems with varying numbers
of processors, however for comparability all scenarios were done on only one of the
CPUs. All other CPUs were loaded with other simulations as in a typical production
environment. Although this perturbs the measured computation times a little bit
(for systems with shared access to the memory banks, e.g. s3 or s6, but not for sys-
tems such as s7 which have a n-way connection between CPU and RAM), it gives
the best picture of what one can expect when running ESPResSo for production.
The results are shown in table 1.1, giving an overview of the efficiency of ESPResSo
on the various platforms.

For scenario b1 and 4000 particles, the maximal possible number of cells is 14, for
scenario b2 8 cells with a FFT mesh size of 16 and a charge assignment order of 3,
and 15 cells for a mesh size of 32 and order 3. The optimal grid sizes for the scenarios
are slightly smaller, and correspond to skin sizes of 0.3 — 0.50. For 16000 particles,
the maximal number of cells is 23, and the chosen cell sizes correspond to skin sizes
of 0.3 — 0.60. Despite the fact that the number of cells is chosen automatically by a
simple golden section search, the resulting cell sizes correspond to skins which are
only slightly larger than the values typically used by other simulation codes, ranging
from 0.20 to 0.40. The reason for this is the link cell implementation of ESPResSo
requiring more memory operations during the particle reorganization, making it
slower compared to other implementations, while the building of the Verlet list and
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system || Tp1[us] Neelis Tha[ps] Neeuis mesh
sT [ 1.31 (1.31,1.31) | 10 5.32 (4.60,5.60) 8 16
s2 || 1.58 (1.57,1.59) | 10 4.87 (4.85,4.89) 8 16
s8 || 3.35(3.34,3.35) | 10 11.36 (10.50,12.72) | 7.6 (6,8) 16
s/ || 2.18 (1.99,2.48) | 10.4 (10,11) || 7.55 (5.66,10.24) ~ | 7.4 (7.8) 16
s5 || 2.27 (2.26,2.27) | 10 8.69 (7.39,10.64) | 7.6 (7.8) 16
s6 || 3.83 (3.54,4.08) | 10.7 (10,11) || 14.23 (13.43,16.45) | 11.8 (7,14) | 28.0 (16,32)
s7 || 2.37 (2.37,2.38) | 11.2 (11,12) 7.58 (7.28,8.66) 13.6 (11,15) | 32
s8 || 2.26 (2.23,2.29) | 10.8 (10,11) || 9.75 (9.70,9.82) 8 16
s1 || 1.63 (L.ALL.83) | 15.0 (15,16) || 4.77 (4.72,4.91) 4 32
s2 || 1.63 (1.63,1.64) | 16 5.79 (5.76,5.81 14 32
s8 || 4.11 (3.47,5.44) | 15.6 (15,16) 15.88 (15.21,16.51) | 13.6 (12,14) | 32
s/ || 3.14 (3.06,3.17) | 15 10.19 (7.58,12.05) | 13.4 (13,14) | 32
s5 || 3.05 (2.82,3.36) | 15.8 (15,17) || 9.27 (8.48,11.32) | 13 (10,14) | 32
s6 || 5.52 (4.26,6.64) | 18.3 (15,17) || 18.84 (14.06,22.47) | 11.6 (11,13) | 32
s7 || 2.60 (2.56,2.63) | 17.8 (17,18) || 7.16 (7.07,7.39) 14 32
s8 || 3.01 (2.93,3.07) | 16.8 (16,17) || 11.48 (11.34,11.60) | 14 32

Table 1.1.: Computation time 7' in microseconds per particle and timestep for
the b1 and b2 scenarios with 4000 (top) and 16000 (bottom) particles on the
platforms described in the text. N denotes the used cell grid sizes (due to the
symmetry of the scenarios, the cell grid is always cubic, i.e. Neeis X Neeirs X Neells)-
For the b2 scenario, the Coulomb mesh size is shown as well. The numbers are
given as average(min,maz) of the five runs performed for each system. If minimum
and maximum are not given, all five measurements produced the same value.

the force calculation are somewhat faster. The larger skin sizes that are optimal for
ESPResSo reflect this, since a larger skin means less frequent particle reorganization
steps (see section 1.4.1).

Systems s7 through s5 favor smaller cell grids compared to systems s6 through s8,
especially for 16000 particles. Since the cell grid size represents a trade-off between
an increased number of particle moves for large numbers of cells, and an increased
number of particle distance calculations for smaller grids, this means that memory
operations are fast compared to floating point operations on the latter systems. This
is an effect of the different cache sizes of the used systems: Systems sI through s
have L2 cache sizes of at most 1MB, and only system s/ has an additional L3 cache
of 2MB per CPU; thus, only for system s4 4000 particles fit into the L3 cache. In
contrast, systems s6 and s7 have 1.44MB L2 cache per two CPUs and 32MB L3
cache per eight CPUs, and system s§ even has an 8MB L2 cache, allowing the latter
systems to easily fit the data of 16000 particles into their caches, increasing the
memory performance dramatically.

The outstanding performance of the AMD 64-bit systems s and s2 is due to
their large memory bandwidth and the additional 64-bit registers, which can host
floating point numbers and consequently speed up the force calculation. In contrast
to this, the performance of the IBM pSeries 690 system is rather weak. The much
better performance of the pSeries 655, which has a faster memory bus, as well as the
multiprocessor results for the unloaded machines suggest that the primary reason
for this lies in the memory performance of the pSeries architecture, despite the
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large caches. For the electrostatic scenario b2, the efficiency of the FFTW routine is
important, which on the Regatta is much better than the performance of the other
ESPResSo components.

Compared to high performance MD simulation codes like GROMACS or LAMMPS,
ESPResSo excels through its parallelization where it is much faster than e.g. GRO-
MACS, although under certain conditions it may also be somewhat slower, depending
on the used hardware and the benchmark scenario employed. The main reason for
such a performance drop in those cases is the flexibility of the cell systems. Unlike
the other simulation codes, which use specialized force loops for each interaction,
this is not viable in ESPResSo, since it would require a separate implementation not
only for each reasonable combination of potentials, but in addition for each cell sys-
tem as well. Therefore, ESPResSo uses unified force calculation interfaces, rendering
new potentials simple to implement for all cell systems — at the expense of some
overhead which is mainly due to the inability of current compilers to keep array
values in registers. However, looking at the aforementioned unavoidable hardware
restrictions, the impact of compiler optimization and the continuing improvements
expected therein, and the competitive performance of ESPResSo even for modified
and customized scenarios, our design goals from section 1.2 seem once again con-

firmed.

1.7. Conclusion and Qutlook

Several publications have already appeared that used ESPResSo for data produc-
tion [62, 63,97, 110, 139-143]. As of this writing, the ESPResSo-package continues
to undergo significant enlargement. A dipolar Ewald sum [144] is currently being
implemented, with a dipolar P?M version to be added soon, which will enhance the
capabilities to simulate ferrofluids or dipolar fluids like simple water models.

For the dynamics of soft matter systems it is often necessary to include hydro-
dynamic interactions. Since in practice one cannot consider all molecular details of
the systems, this can be achieved on a coarse-grained level by coupling the solvent
degrees of freedom to the simulated particles. The implementation of an advanced
lattice Boltzmann algorithm [145] is almost finished, having already proven its use-
fulness in polymer dynamics simulations [146] and electrophoresis simulations of
charged colloids [147,148].

Clever Monte Carlo strategies are lacking so far. Although easily implementable
on the Tcl-level [62], where for example a hybrid Monte Carlo technique has been
successfully employed [149,150], other, more efficient sampling methods, are planned
for the future.

Other features like the rattle algorithm for constraint dynamics, and more po-
tentials suited for atomistic force fields are already in progress and will continue
towards enabling ESPResSo to handle atomistic simulations. The ultimate goal is to
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implement multiscale simulation strategies which will allow probing different length
and time scales within one single simulation run of the program.

There are many more improvements planned for the years to come, and hopefully
the capabilities of ESPResSo will grow even further once more researchers take up its
idea and contribute to the package by using, customizing, and extending it. The hope
is to attract further developers that can contribute to the project, while keeping the
anticipated program structure simple, extensible, well documented, and easy to use.
We realize that this is a challenging goal to achieve, although the past two years, in
which ESPResSo left its alpha stage and first external collaborations have started,
encouraged us that this challenge can be mastered.
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Basic concepts in polymer physics are introduced and important definitions
detailed. The coarse-graining concept is explained. The freely jointed chain
(FJC) and the worm-like chain (W.JC) models are used to describe ideal chains
under tension, and the force-extension-relation is given for both cases. For real
chains excluded volume effects are added and scaling laws derived based on
the famous Flory estimate. The blob picture is introduced as well and applied
to both neutral and charged polymers, i.e. polyelectrolytes.

Research on polymeric macromolecules, which had used to be a chemically domi-
nated field of science for quite some time, moved to the center of interest in statistical
physics as well due to some groundbreaking achievements on the theoretical level,
such as the works of S.F. Edwards [151] and P.G. deGennes [32]. With some of their
techniques dating back to the first half of the 20" century, it became possible to
approach the complex processes involved on a physical level. Employing increasingly
detailed models and modern analytical methods such as path integrals, scaling con-
cepts, and field-theoretical approaches, basic questions like the shape of a polymer
chain in solution could be formulated and solved systematically. Once the usage
of supercomputers was no longer restricted to military applications and their speed
became exponentially faster, computer simulations were added to the methodic tool-
box as the one bridging element which connects theory and experiments with each
other.

This chapter should provide an introduction to the terminology and concepts used
in polymer physics. While section 2.1 will focus on basic definitions and experimental
observables, section 2.2 will present the coarse-grained approach to incorporate only
the important chemical features on a simplified scale; after some initial derivations
of basic geometric properties for ideal chains, free energies and forces will be studied
in the subsequent section 2.3, before the generalization towards real chains and real
solvents is done in section 2.4. There, the important Flory arguments are introduced
as well as the blob model, both quite useful tools to estimate the spatial extension
of a polymer chain which will be used throughout this work. Finally, the influence
of charged subgroups on the macromolecule are considered in section 2.5, rounding
off this chapter by applying the blob picture to those polyelectrolytes. We hereby
follow [152-156] to some extent.
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Figure 2.1.: Some polyelectrolytes, such as poly(paraphenylene) with iodine counterions,
are relatively stiff and can therefore be treated similar to a charged rod (taken from [157]).

2.1. Terminology and Definitions

In soft matter physics, the term polymer denominates a macromolecule consisting of
Ny, > 1 monomers which are connected by covalent bonds; an oligomeris a polymer
with 2 < N, < 10 monomers. The monomeritself is a molecule carrying one or more
polymerizable groups whose count is given by the functionality f; of the monomer
[154]. As figure 1.4 depicted, a polymer may have a coiled or worm-like shape, but
stiff extensions similar to rods are also common (e.g. poly(paraphenylene) whose
constitution formula figure 2.1 compares to a rod-like model depiction). Typical
chains may be composed of just a few, several hundreds, or even 10° monomers;
DNA for example is composed of up to 107 nucleotides. The monomers are hereby
usually (chemically) identical, with only one kind of molecule repeating itself, as
was visualized by the structure equations in figure I.4. Other possible conformations
exist, figure 2.2 illustrating a few, the polymers considered in this study, however,
fulfill that requirement strictly, being built from just two subgroups (a charged and
a neutral one).

Usually, polymers do not possess an exactly determined molar mass but rather
a mass distribution as sketched in figure 2.2. This allows different averages to be
taken, such as the number average molecular weight

— YNy, M
7 — 2w M,

. 2.1
SN (2.1)

which relates the number of molecules Ny, with length N, and molecular mass
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Figure 2.2.: Examples of polymer architectures (upper left), i.e. (a) linear,
(b) ring, (c¢) star, (d) H, (e) comb, (f) ladder, (g) dendrimer, (h) randomly
branched, and different types of copolymers and terpolymers (right). The
lower left sketches a molar mass distribution of a polydisperse polymer,
comparing the different averages M, M,, and M, (taken from [154,156]).

My, to the total number of polymers, or the weight average molecular weight

2
M, = LN My, > M, (2.2)
YNy, My,
using the total mass of the sample as the reference value. Their ratio M, /Mn is
called the polydispersity indexr which indicates the width of the distribution in fig-
ure 2.2, i.e. the “purity” of the sample in terms of deviations from the averages. If
it was unity, the underlying polymers would be monodisperse and would all have
the same chain length N, = (N,); more common are ratios M,,/M,, ~ 2, though
model systems such as the photocrosslinkable star polymers in figure 1.3 are ca-
pable of reaching almost monodisperse distributions (see table 2.1). The degree of
polymerization
My,

P, = o (2.3)
finally gives a measure for the chain length N, by relating the molecular weight of
the macromolecule to the original weight M, of the monomer the polymer was built
of; the corresponding P,, = M, /M, exists as well, but is less common. Sometimes,
higher moments are considered as well, e.g. M, as the ratio of the third to the sec-
ond moments of the number fraction distribution, emphasizing the high molar mass
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tail of the molar mass distribution (see figure 2.2); molecular theories of polymer
dynamics predict these higher-order averages to be important, but currently avail-
able characterization methods for measuring them have insufficient precision to be
useful [154,156].

polymer’s terminating precursor polymer

name agent M, | M,/M, | f; P, M,
St3—PtBMA 4 TBMB 6.3 1.08 3 14 3.8
St3—PtBMAg0 TBMB 25.3 1.06 3 30 7.9
Sts—PtBMA~5 TBMB 32.5 1.08 3 60 15.3
St3—PtBMA40 TBMB 37.9 1.07 3 75 20.0
Sts—PtBMA,65 TBMB 74.9 1.11 3 90 23.0
Sty_5—PtBMA50 | Ts-(prop-J)s || 13.3 1.15 4-5 | 18-23 7.9

Table 2.1.: Characteristic data of PEBMA star polymers, the polyelectrolyte model net-
works whose synthesis was shown in figure 1.3. M,, is given in g/mol, P, refers to one
of the arms which are connected through the terminating agent (the tri-functional 1,3,5-
trisbromomethylbenzene, or octa[(3-iodopropyl)-silsesquioxane| with an eightfold function-
ality), before being hydrolyzed to PMAA star polymers and photo-crosslinked by UV light
(A = 366 nm) irradiation, or vice versa (from [14]).

If more than one single macromolecule is under consideration, their respective
inter-chain interactions might have to be taken into account, too. Two types of
such polymer liquids are common, namely polymer melts and polymer solutions.
While the former are “neat polymeric liquids” [156] above their glass transition and
melting temperatures, with macroscopic pieces remembering their shape and having
elasticity on short time scales, but exhibiting liquid flow (with a high viscosity) at
long times, the latter can be obtained by e.g. dissolving a polymer in a solvent.
Polymer solutions are classified as dilute or semidilute (see figure 2.3) depending on
the polymer mass concentration c, defined as the ratio of the total mass of polymer
dissolved in a solution and the volume of the solution. Alternatively, the volume
fraction

6=2 (24

relates the concentration to the polymer density p, measuring the ratio of occupied
volume of the polymer in the solution and the volume of the solution.

The pervaded volume V is the volume of solution spanned by the polymer chain
of size Rg, which are roughly related by

V ~ R} (2.5)

if numerical prefactors are ignored!. This volume is typically orders of magnitude
larger than the occupied volume of the chain, most of the pervaded volume will be

! That is a very important concept which will be essential throughout this work: As they remain
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: &

(a) c<c* (b) c=c*

Figure 2.3.: Solution regimes of flexible polymers: (a) dilute, (b) at the overlap concen-
tration ¢*, (c) semidilute (taken from [158]).

filled with solvent or other chains. The volume fraction of a single macromolecule
inside its pervaded volume is called the overlap volume fraction ¢* or the corre-
sponding overlap concentration c*, as obtained from (2.4). This definition allows
to classify different regimes of polymer solutions: If the volume fraction ¢ of the
polymer solution is equal to the overlap volume fraction ¢*, the pervaded volumes
of macromolecules densely fill space, and the chains are just at overlap with each
other (¢ = ¢*, see figure 2.3). If it is below the overlap volume fraction (or ¢ < ¢*),
the solution is called dilute, and the average distance between chains will be larger
than their size Rg. Therefore, polymer coils in dilute solutions are far from each
other, inter-chain interactions are negligible, and most of their properties are very
similar to pure solvent with small modifications due to the presence of the polymer.
In semi-dilute polymer solutions (with ¢ > ¢*) however, the polymer coils overlap
and dominate most of the physical properties of the solvent, despite the fact that
actual values of the volume fractions are still usually quite low (¢ < 1), and most of
the volume is occupied by the solvent. Thus, adding a very small amount of polymer
to a solvent can create a liquid with drastically different properties than the solvent.

2.2. Coarse-Graining Concepts

To allow an effective yet sufficient treatment of polymer physics problems, figure 1.4
already introduced the concept of coarse-graining the chemical details on the macro-
molecule towards a simpler bead-spring-model. Using the periodicity of its repeat
units, the polymer is pictured as a linear chain of n interconnected spheres, char-
acterized by a bond length ¢; (measuring the distance between two neighbouring

constant for different Rg as long as the physics stays the same, prefactors of order unity are
considered to not change the qualitative behaviour (e.g. critical exponents) and are therefore
ignored.
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Figure 2.4.: Illustration of the notation regarding monomer-monomer
vector 7; = !7;, bond angle 6;, and torsion angle ¢; for a sequence of three
main-chain bonds (left) and a conformation of a flexible polymer (right)
with end-to-end vector R,, = Rg (taken from [156]).

center-of-masses) and an angle 6; (comparing the direction of neighbouring bond
vectors) for each of the monomer pairs (7,7 4+ 1). As shown in figure 2.4, a random
conformation of the polymer can then be described in terms of the bond vectors Z_;,
such that the end-to-end distance 7 and its square 7% follow as

n 2
12 = (7g)? = (ZE) =nl®+2y 00 (2.6)
i=1

j>i

In its current form, (2.6) is even valid for a single polymer with non-local interactions
and additional effects, although in the following we will drop that generality. As with
many macromolecular systems, it is now feasible to employ a statistical description of
the entire ensemble of chains, accounting for the inner degrees of freedom of the chain
molecules and their respective interactions; in fact, due to the unavoidable thermal
fluctuations it is even mandatory to do so, which is why in the following sections
we will always refer to statistical averages when discussing observables from the
simulations (even if not using (.)) unless explicitely stated otherwise. Here, (¢;) = /¢
and

Ry = (rg) =nl* + Z <€_; . Zj> = nl? + (* (cos §) = nl? (2.7)

j>i

following from (2.6) and from the expectation value (cos @) = 0 for the bond angles,

—

the latter originating in the assumption that all bonds ¢; are randomly oriented,
rendering all conformations {Z} of the polymers to be uniformly distributed. That

now leads to
(rE) =0 (2.8)
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2.2. Coarse-Graining Concepts

essentially rendering that observable useless, and at the same time the reason for
choosing R% (or Rg = /R% # (rg)) as the quantity to look at. Consequently,
the probability of finding a chain with end-to-end vector 7y follows a Gaussian

distribution ,
P(rg,n) _3 ) e 3re forn>1 (2.9)
= - X — .
B 2mnl? P 2nl?

as would a Random Walk of n steps of (average) length ¢, with the polymer as
possible depiction of the taken path.

Flexible polymers have many universal properties that are independent of local
chemical structure. A simple unified description of all ideal polymers is provided by
an equivalent freely jointed chain: It has by definition the same mean-square end-to-
end distance (R%) and the same maximum end-to-end distance R, as the actual
polymer, but instead of any more chemical details it simply consists of N, freely
jointed effective bonds of length b, called the Kuhn length. Then, the contour length
of this equivalent freely jointed chain is

Nub = Riax (2.10)
and its mean-square end-to-end distance is
(R%) = Nub? = bRinax (2.11)

as in (2.7), describing a simple random walk. This allows an alternative definition
of the sphere size for the bead-spring model depiction, particularly if the optimal
mapping of the chemical details to the coarse-grained level is not yet known?.

While the (equivalent) freely jointed chain (FJC) model® merely assumed a con-
stant bond length b and no correlations between the directions of different bond
vectors, i.e. (cos®;j) = 0 for i # j, the freely rotating chain model (FRC) only ig-
nores differences between the probabilities of different torsion angles, assuming all
—m < ; < 1 to be equally likely and independent of each other, but takes all bond
lengths b and bond angles 6 to be fixed at constant values. The mean-square end-
to-end distance of the freely rotating chain is then a simple function of the number
Ny, of bonds in the backbone, the length b of each backbone bond, and the bond
angle 0:

cos 0 o1+ cosd

2V = nl? + 2nl? =
(Rg) = nl +2n 1 — cos® " 1 —cos®

(2.12)

2 On a more general level, it also allows to treat any macromolecule with n repeat units connected
by bond vectors E_; in a similar fashion, mapping it as explained onto an equivalent freely jointed
chain of N, Kuhn segments (monomers) with bond lengths b = ;%i%ai’ removing another layer

of chemical details from the scene. In this work, however, we always assume the Kuhn segments

to correspond to the repeat units, 7.e. we use the assumption £ = b.

3 Without “equivalent” it uses n and E , otherwise N, and l_)‘7 ; as mentioned in the preceeding
footnote, we are not differentiating between the two models here.
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Polymers with carbon single bonds making up their backbone, such as those in
figure 1.4, have a bond angle of § = 68° [156], would turn the prefactor in (2.12)
to be &~ 2. However, real chains are never as flexible as the freely rotating chain
model predicts, since the most flexible polymers (those with § = 68°) rather have a
prefactor of 2 4, because there is steric hindrance to bond rotation in all polymers.

The worm-like chain model (WLC) is a special case of a freely rotating chain for
very small values of the bond angle. It is a good model for stiff polymers, such as
double stranded DNA for which the flexibility is due to fluctuations of the contour
of the chain from a straight line rather than due to bond rotations. Regarding the
number s, of main-chain bonds in a persistence segments, which is the scale at which
local correlations between bond vectors decay, the FRC result

1

In(cos 6) (2.13)

Sp = —

92

can be expanded for small values of the bond angle § < 1, and with cos = 1 — 3

and In(1 — z) = —z (for small x) it becomes

2
=

I

S

(2.14)

for a worm-like chain. Since 6 is small, the persistence segment contains a large
number of main-chain bonds, and the persistence length

2

lp == Spg == g@

renders the prefactor in (2.12) to be similarly large, namely ~ é%. The correspond-

ing Kuhn length b is twice the persistence length, b = 2[,, which in case of the
aforementioned double-helical DNA translates to [, ~ 50 nm and b ~ 100 nm.

Up to now, the size of the polymers was characterized by their mean-square end-
to-end distance Rg. However, for more complex macromolecules like branched or ring
polymers or networks this quantity is not well defined, because those either have too
many ends or no ends at all* This is overcome by employing the square radius of
gyration R%, which is defined as the average square distance between monomers in a
given conformation R; and the polymer’s center of mass® Rom = Nim Zfi”i R; along

(2.15)

Nm Nm

2]1[31 ;;<<éi—ﬁj)2> = Nimg<(éi—ﬁm)2> (2.16)

4 Although for networks one can simply define the distance between nearest crosslinks as R,
which overcomes the ambiguity particularly in our case of model networks.

5 Note that this definition does not actually contain a “mass”, as we assume throughout this study
that all monomers have equal masses, which can be scaled out. This is also justifiable since we
do not distinguish between different types of monomers, even counterions are treated similarly
to one repeat unit.

=0 .
RG =
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2.2. Coarse-Graining Concepts

using Féi-i—l — R, =1b Vi= 1,..., Nn. It can not only characterize the size of poly-
mers of any architecture, but it is also measurable experimentally by static scatter-
ing experiments (e.g. SANS or SAXS). For an ideal linear chain, using continuous
coordinates (instead of the discrete repeat units) allows to derive [156]

(R%) — / Nm / " B) — Bo)?)dvdu — 2 / o / " (0~ w)dudu
¢ N2 ngl 0 u
2 b2

Nm Nm—u b2 Nm(N —U) Nm
— - /d/d - m d _ ,2d,
v [ e [ e [

B2 N3 Npb®  (R2)
_ m _ MmO () 2.1
2N2 3 6 6 (2.17)

using (2.7) once more in the last step. Similarly, the radius of gyration of other shapes
of flexible ideal chains can be calculated (see table 2.2). For a rod-like polymer the
end-to-end distance becomes Rg = Runax = Nmb = L, from where the original
definition (2.16) leads to

PN NG\ o
2y Y _m 2
(Rg) = N (u 2) du = N x dx
NLb? _ (Ri)
= m_ 2.1
12 12 (2.18)

which is noticeably different from (2.17) for a linear chain. Again, other rigid objects
can be derived similarly, results are given in table 2.2.

: . Npb? e Nmb? . Npb? 2 . Npb? 89
linear: ~m> ring:  ~=- | fr-arm star: T;F(B - ﬁ) H-polymer: =22
‘e B2 . 3R . L2 Cders B L2
disk: sphere: = rod: 15 cylinder: = 5

Table 2.2.: Mean-square radii of gyration Ré of ideal polymers with Ny Kuhn monomers
of length b: ideal chains (fop), i.e. linear chain, fer-arm star with each arm containing Ny, / f¢
Kuhn monomers, and H-polymer with all linear sections containing Ny, /5 Kuhn monomers;
rigid objects (bottom), namely uniform thin disc of radius R, uniform sphere of radius R,
thin rod of length L, and uniform right cylinder of radius R and length L (from [156]).

Particularly for polyelectrolytes, a third observable related to the size of a polymer
chain becomes important, the hydrodynamic radius

1 1 o
w(ipfe)

which can be obtained from e.g. measuring the diffusion constant [151]

kBT

~ o R ( (2.20)
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in the experiment.

With these findings it is now also possible to characterize non-ideal polymers
by measuring their R%/RZ-ratio: If it is close to 6, one observes a macromolecule
exhibiting features of a Random Walk, close to 12 will be the outcome for a strongly
stretched polymer. Even higher ratios are possible, if the chain becomes highly
anisotropic by e.¢g. having a rather large accumulation of monomers close to its
center-of-mass.

2.3. Free Energies and Forces

With Q(Ny, EE) as the number of conformations of a freely jointed chain of Ny,
monomers with end-to-end vector Rg, the entropy

S(Ny, Bg) = kg In Q(Ny, Rg) (2.21)

is the product of the Boltzmann constant kg and the logarithm of the number of
states €2, and it is then also a function of IV, and Rg. The probability distribution,
since (2.9) known to be Gaussian for ideal chains in the FJC-model, is in general the
fraction of all conformations that actually have an end-to-end vector Rr between
EE and EE + dﬁE, namely

Q(Nma EE)

P(Nu, Rg) = o
[ (N, Rg)dRg

(2.22)
Using (2.22) and (2.9) in (2.21), gives

S(Nw,Rg) = kgln P(Ny, Rg) + kg ln [/Q(Nm,ﬁE)dﬁE}

32
= —§]{JB& + §kB In <L) —+ kB In |:/ Q(Nm, RE)dRE:|

2 PN 2 27 Nonb?
3 R
= ke pz + SN, 0) (2.23)

where the terms independent of Ry have been denoted by S(Ny,., 0).

Since the monomers of an ideal chain have no interaction energy6 the energy
U(Nyy, RE) of an ideal chain is also independent of the end-to-end vector R, and
the Helmholtz free energy F(Np, RE) then becomes

s - S 3 R
F(Nu, Bg) = U(Np, Rg) — TS(Ny, Rg) = L

+ F(Np,0)  (2.24)

6 The ideal chain never has long-range interactions, though short-range interactions are possible.
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2.3. Free Energies and Forces

where F(Ny,,0) is the free energy of the chain with both ends at the same point.
The largest number of chain conformations correspond to Fg = 0 [156]; that num-
ber decreases with increasing end-to-end vector, leading to the decrease of polymer
entropy and increase of its free energy, the latter quadratically with the magnitude
of Rg. This implies that the entropic elasticity of an ideal chain satisfies Hooke’s
law: To hold the chain at a fixed end-to-end vector By would therefore require equal
and opposite forces fE acting on the chain ends, proportional to RE

 3keT

fg = VF = N

(2.25)

like a simple elastic spring. Note that the prefactor in (2.25), the entropic spring con-
stant, is proportional to the temperature, which is a signature of entropic elasticity
and distinguishes polymers from other materials such as metals or ceramics which
become softer as temperature is raised because their deformation requires displac-
ing atoms from their preferred positions, while for larger end-to-end distances of a
polymer the restoring force increases because there are fewer possible conformations
available. The linear dependence in (2.25) is due to the Gaussian approximation,
valid only for Rg < Runax = Nmb; for larger extensions the dependence has to be-
come strongly non-linear, with the force fg diverging at Rg = Ry, due to the finite
extensibility of real chains as will be discussed later on.

Since most of the conformational entropy of the chain arises from local conforma-
tional freedom on the smallest length scales, the random walks that happen to have
end-to-end distances Rg > N?b can be regarded as a sequential array of smaller
sections sized & that are essentially unperturbed by the stretch, as shown in the
left part of figure 2.5. Then, the mean-square projection of the end-to-end vector of
these sections onto Ry obeys (2.7),

&~ by (2.26)

when g denotes the number of monomers per section, while on larger length scales
than £ the external tension £ changes the polymer conformation from that of a
random walk to that of an elongated chain, which is why the sections are also called
tension blobs. The physical reason for the chain to only be extended on its largest
length scale lies again in the resulting maximization of the chain’s conformational
entropy through this phenomenon. As there are now NV,,/g such sections, it is as-
sumed that they arrange sequentially, such that

Npnb?
£

Ry ~ 5— (2.27)

Stretching the chain forces each tension blob to follow a particular direction (i.e. f_{;),
therefore one degree of freedom is restricted per section, and from the equipartition
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theorem it follows that the free energy of the chain increases by kg1’ per blob:

32
Comparing (2.28) and (2.24), it turns out that this crude approximation nevertheless
gets the correct result within a prefactor of order unity. This is the character of all
scaling predictions as they provide a simple means to extract the essential physics,
but fail to determine numerical coefficients. Regarding all the assumptions which
already went into the coarse-grained models of the macromolecule (see e.g. figure 1.4
and section 2.2) that however seems like a good trade-off; it is also very acceptable,
as it is the general physical understanding we are interested in.

120 . 35
|/ Gaussian o
1F |/ Freely jointed e) 30+
P 2251
& b Worm-like |  § 201
2 06 2154
& In 9 -
N 041 Y % 10+
3]
0.2 51
0 t t t
R S T T 001 01 1 10 100
fbI(KT) Force (pN)

Figure 2.5.: Blob depiction of an ideal polymer, elongated by opposing forces :|:1?X to
an end-to-end distance Ry. The chain is only stretched on its largest length scales, while
inside the tension blobs of diameter £ the conformation of the chain remains essentially
unperturbed (left). The center panel displays the average end-to-end distance as a func-
tion of stretching force for a Gaussian chain (see (2.25), thin line), a freely jointed chain
(Langevin function (2.31), dashed line), and a worm-like chain (according to (2.34), thick
line). On the right hand side a comparison of experimental forces measured for 97 kilobase
A-DNA dimers with the worm-like chain model is shown, using (2.34) with Rpax = 33 pum
and b = 100 nm as parameters; the dotted curve corresponds to the Langevin function
(2.31) of the freely jointed chain model (taken from [156]).

If one now considers a freely jointed chain of N, bonds in place of the ideal
Gaussian model, the effect of the finite extensibility of real chains can be estimated.
Again stretching it by a force FX towards an elongation R; gives rise to the energy U =
—E( . éx of the chain. Different chain conformations will then have different statistical
Boltzmann factors exp(—U/kgT'), whose sum over all possible conformations leads
to the partition function Z. Equivalent to this approach is taking the integral over
all possible orientations of all bond vectors of the chain, and representing the z-
component of the end-to-end vector as the sum of the projections of all bond vectors

onto the z-axis:
U fo- Ry
Z = E exXp (_kB—T> = E exXp <— kBT >

states states
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f Ry
= /exp( T )1—181119d9dgoZ
f, N
— /exp< T )Hsm@d@dgpl

=1

W fxb N
= 2msin 0; exp | —— cos 0; | d;
LJo kT
or f.b f.b
= kfx:% exp ]{;B—T —exXp | — ]{;BT
B

Nm

Nm
[ 47 sinh (k T)
_ = (2.29)
I kpT
From (2.29), the Gibbs free energy G can be directly calculated as [155]
f f
G=—kgThhZ =—kgT {ln (47T sinh (k;l;>) —1In (k;;)} (2.30)
Similarly to (2.25), the divergent restoring force fy follows implicitly as a function
of Ry
oG fb 1
x) = ——— =0bN, |coth -
B = 5, [CO (kBT) ,;_I;F]
B
(Ry) b
Ak 2.31
- Rmax ﬁ kBT ( s )
using the Langevin function
1
L(B) = coth(B) — 3 (2.32)

as an abbreviation for the expression in the square brackets.

The center part of figure 2.5 now illustrates how the Langevin function in (2.31)
relates the average chain elongation to the normalized extensional force for a freely
jointed chain by comparing this to the Gaussian case from (2.25). It can be observed
that for small relative elongations, i.e. (Ry) < Ruax, both curves coincide approx-
imately, as L(§) = g for f < 1 makes (2.31) following Hooke’s law (2.25) in that
regime. For larger relative elongations, the Langevin function significantly deviates
from linear dependence and saturates at unity, approaching another simple limit for

fe > 5L namely £(3) = 1— = for B > 1. Consequently, for strong stretching (2.31)
becomes
fb o ! for (R R 2.33
o T o () o)
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having the restoring force f; diverge reciprocally proportional to Ry.x — (Rx).
There is no similarly simple analytical solution for the worm-like chain model at
all extensions [156], but again approximations exist for both small and large relative

extensions: )
fib (Re) 1 1 1
2 — | —— — = 2.34
kBT Rmax+2<1—@> 2 ( )

Rm ax

I

While in the first case worm-like chains behave as Hookean springs, just as the freely
jointed chains did, the second case has the extensional force diverge reciprocally to
the square of R,,.x — (Ry) along

2
fb 1 1 1
T [P . 2,
kBT 2(1_M> 2(1_ <Rx>>2 or <RX>_>R ( 35)

max Rmax

These different divergences of the force near the maximum chain extension in (2.35)
and (2.33) are due to bending modes on length scales shorter than the Kuhn length
b. These modes do not exist in freely jointed chains because sections of length b are
assumed to be absolutely rigid in FJC, but not in WLC.

Figure 2.5 now contrasts this difference (center panel) once more, but it also
shows an experimental force-extension-relation for double-stranded DNA (on the
right hand side), clearly favoring the worm-like chain model as being in excellent
agreement with the experimental data.

2.4. Real Chains and Real Solvents

While in the previous subsections the conformations of an ideal chain were studied
that ignored interactions between monomers separated by many bonds along the
chain, in the following their impact on the polymer’s behaviour should be considered.
Regarding the energy cost U(r) of bringing two monomers from oo to within a
distance r of each other in a solvent, it will contain a repulsive hard-core barrier that
corresponds to the energy cost of steric repulsion of two overlapping repeat units,
implying U(r — 0) — oco. Depending on the affinity of the monomers to each other
compared to the solvent, U(r) will have an attractive well around finite distances
for hydrophobic groups which prefer contact with other monomers over contact with
solvent molecules (see left panel in figure 2.6), while hydrophilic ones might see a
purely repulsive potential U(r). If the monomers are chemically identical to the
solvent and there is no energy difference between their interactions, the energy U (r)
will contain only the hard-core repulsion; that is the case for an athermal solvent.
The probability of finding two monomers separated by a distance r in a solvent

at temperature 7' is now proportional to the Boltzmann factor exp [—[k]?;)] (see
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U(r)
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Figure 2.6.: Effective interaction potential between two monomers in a solution of other
molecules (left). Relative probability of finding a second monomer at distance r from a
given monomer (center). The Mayer f-function and its integration (shaded region) to
determine excluded volume (right, taken from [156]).

center panel of figure 2.6). With the help of the Mayer f-function, taken to be the
difference between the Boltzmann factor for two monomers at distance r and that
for the case of no interaction (i.e. r = 00),

F(r) = exp [_%’H 1 (2.36)

an ezxcluded volume ve can be defined as

Vexe = —/f(r)d37“ = / (1 — exp {— Zé;)D d*r (2.37)

to summarize the net two-body interaction between monomers. As shown on the
right hand side of figure 2.6, the hard-core repulsion for » < 1 makes a negative
contribution to the integration of the Mayer f-function and a positive contribution
to excluded volume, while the opposite is true for the attractive part U(r > 1). In
this example, attraction and repulsion largely offset each other, rendering the net
excluded volume quite small; net attraction would however be registered by this
definition through a negative excluded volume v, < 0, while net repulsion would
have vex > 0. Note however, that the simple calculation in (2.37) is only valid for
spherical monomers, to which we restrict ourself in this study anyway.
Using vy, one now has a criterion to distinguish the different solvent regimes:
(a) Athermal solvents: In the high temperature limit, the Mayer f-function (2.36)
has a contribution only from hard-core repulsion, making the excluded volume
independent of temperature (hence “athermal”).

Vex R b (2.38)

An example is polystyrene in ethyl benzene.
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(b)

Good solvents: In the athermal limit, the monomer makes no energetic dis-
tinction between other monomers and solvent molecules, contrary to typical
solvents where the monomer-monomer attraction is slightly stronger than the
monomer-solvent attraction because dispersion forces usually favor identical
species. This net attraction creates a small attractive well U(r) < 0 which
leads to a lower excluded volume than the athermal value.

0 < vex < b (2.39)

An example is polystyrene immersed in benzene.
Theta solvents: As the temperature is lowered, the excluded volume is reduced
further, until it reaches

Vo = 0 (2.40)

at the O-temperature, where the contribution from the attractive well exactly
cancels the hard-core repulsion. Then, the chains have nearly ideal conforma-
tions” because there is no penalty for monomer-monomer contact.

An example is polystyrene in cyclohexane at 6 22 34.5°C.

Poor solvents: For T' < 0, the attractive well dominates the interactions, and
it is more likely to find monomers close together due to the net attraction,
which is also signified by a negative excluded volume.

—b* < ey <0 (2.41)

An example is polystyrene in ethanol.

“Non-solvents”: This is the limiting case of the poor solvent, where the strong
attraction leads the polymer to prefer its own monomers over all solvent
molecules, nearly excluding the latter from being within the forming coil.

b R ey (2.42)

An example is polystyrene in waterS.

Note that these definitions are based on a mean-field approximation of the system,
taking only two-body interactions into account. Going to three or more body poten-
tials lowers the given thresholds, such that the case of v ~ b® may be considered
to be the “real” good solvent, while v, = 0 would still be on the good side, shifting
the #-point slightly into the regime of v, < 0.

The conformations of a real chain in an athermal or good solvent are determined
by the balance of the effective repulsion energy between monomers that tends to
swell the chain and the entropy loss due to such deformation. Though surprising at
first regarding its simplicity, one of the most successful simple models that captures

7 Up to logarithmic corrections.
8 This is also the reason why styrofoam coffee cups are made from polystyrene.
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the essence of this balance remains the Flory theory [31] which makes rough estimates
of both the energetic and the entropic contributions to the free energy. It considers a
polymer of N, repeat units, swollen to size Rg > Rgaug = LN/ (see the prediction
of (2.7) for ideal chains whose end-to-end vectors R, follow a Gaussian distribution),
and assumes that these monomers are uniformly distributed within the volume R}
with no correlations between them. The probability of a second monomer being
within the excluded volume v, of a given first monomer then follows as vy - NmR;},
where N, R;” is the number density of monomers in the pervaded volume of the
chain. The energetic cost of being excluded from this volume, i.e. the energy of
excluded volume interaction, is kg1’ per exclusion, or kBT-veX-NmRE3 per monomer.
For all N, repeat units on the chain, this energy is simply Ny, times larger, namely

N2
f.int ~ kBT * Vex * R—gl (243)

)
which already roughly corresponds to the beginning of the virial expansion of the
free interaction energy. The Flory estimate of the entropic contribution to the free
energy of a real chain is the energy required to stretch an ideal chain to end-to-end

distance Rpg,
Ry

Fent =~ kpT— 2.44
o~ kel s (2.44)

as was already derived for the ideal chains in a similar manner in (2.24) and (2.28);
it may be re-used here because it is argued that the difference between ideal and real
chains (the interactivity of the chain monomers) does not influence the response of
the (harmonic) bonds. Then, the total free energy of a real chain in the Flory approx-

imation is the sum of the energetic interaction (2.43) and the entropic contributions
(2.44), adding up to

N R
Frot = Fint + Fent = kT’ (UexR—% + le)2> (2.45)

The optimum size of the real chain, the Flory radius R, is determined through the
minimum free energy of the chain:

OF:o N2 R?

aj;” =0 = kBT(—SvexR—TJrQN %2>
E F m

= Rp ~ oM b¥ N3/5 (2.46)

Long real chains are consequently predicted to be much larger than ideal chains with
the same number of monomers Ny, as also depicted by figure 2.7.

Looking at (2.46), it displays a universal power law dependence of the polymer
size Rg on the number of monomers N,,, namely

Rg ~ N, (2.47)
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Figure 2.7.: Comparison of an ideal (top) and a real chain (bottom) of the same
contour length Ryax = Npyb stretched by the same force fy (taken from [156]).

which does not only contain (2.46) for v = 3/5, but it also describes the result
of an ideal chain (2.7) for v = 1/2 on the scaling level (i.e. neglecting numerical
prefactors). This analogy continues regarding the random walk conformation of ideal
chains as the real chain’s monomers cannot occupy the same position in space due to
their excluded volume, rendering its conformation similar to that of a self-avoiding
(random) walk (SAW). Dimensional arguments [31, 153, 159] generalize this good
solvent result to d dimensions, the so-called Flory estimate

3

__3 2.4
YT o1d (2.48)

which is exact for d = 2 and d = 4, while being close to the more exact value of
v =0.588(1) [153,160, 161] for d = 3.

Note that though the predictions of the Flory theory are in good agreement with
experiments, computer simulations, and more sophisticated theories, it is neverthe-
less due to a fortuitous cancellation of errors: The repulsion energy is overestimated
because the correlations between monomers along the chain are omitted, while the
elastic energy is also overestimated since the ideal chain conformational entropy is
assumed. However, the Flory theory remains useful because it is simple and pro-
vides a reasonably good estimation. In the same spirit, mean-field estimates of the
energetic part of the free energy, ignoring correlations between monomers, are often
used with entropy estimates based on ideal chain statistics, referring to such simple
calculations as “Flory(-type) theory”, too, while also hoping that the errors will
cancel again.

70



2.5. Polyelectrolyte Chains in Solution

Next in the comparison between ideal and real chains is their behaviour under
tension. Continuing the arguments from section 2.3, a #-solvent with nearly ideal
chain statistics and a good solvent with excluded volume ve, = b% is considered. If
both polymers are put under tension by the same force E(, the tension blob depiction
of figure 2.5 changes to that of figure 2.7 because of the larger space Rp = bNS® a
real chain requires compared to the Rg,ug = bNI;/ ? of Gaussian chain; this difference
in the end-to-end distance will however diminish for f, — oo as local repulsion will
play an increasingly negligible role for overstretched chains. The size of one tension

blob now changes from the & ~ bg'/? in (2.26) to
£~ bg®/" (2.49)

once again arguing that on local scales within a blob the behaviour of the g monomers
is unperturbed by the global tension, which in turn only extends the N,,/g blobs
along the direction of f,. Therefore, (2.27) or R, ~ R%, /¢ becomes

N0 R
£2/3 ~ £2/3

Nm
Ry~ §{— =~ (2.50)
g
The free energy cost for stretching the chains, on the order of kg'l" per tension blob,
changes F ~ kgT (Ry/Rgaug)® from (2.28) to

R\ /2
F ~ kgT (R—:> (2.51)

from where the force f, necessary to stretch the chain to an end-to-end distance R,

can be derived as 3/2
oF 5 ( Ry

instead of the linear Hooke’s law (2.25). This non-linear dependence of f, on an
elongation Ry for real chains in (2.52) was first derived by Pincus [162] which is
why the tension blobs are also called Pincus blobs. The divergence of the force near
maximal extension Ry, — Ruax is not described by this scaling approach. For ideal
chains given in (2.31), in case of real polymers it is not a textbook topic and will be
derived in section 3.2.6.

2.5. Polyelectrolyte Chains in Solution

Up to now, only neutral systems have been considered. The general ideas and scaling
concepts can however be applied in case of weakly charged chains as well, if the
electrostatic interaction along the backbone with charge fraction f is smaller than
the thermal energy, i.e. if

lsf?

ke T < kgT (2.53)
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(where the Bjerrum length (g = €3/(4mepesksT) indicates the strength of the elec-
trostatic coupling by representing the distance two elementary charges e, have when
their interaction energy is kgT').

Then, for sufficient dilution a single chain may be treated while neglecting its
counterions, because the coulombic coupling between them and the monomers is
smaller than the counterions’ entropy. The repulsion between the monomers comes
into play, and the chain conformation is determined by the competition between the
chain entropy and the electrostatic repulsion of the charged beads. For large length
scales, electrostatics dominates and leads to a rodlike shape, while for small scales
entropy dictates Gaussian statistics. The resulting blob picture [12,33,163] is similar
to the one previously discussed for neutral systems, except that now the coulombic
coupling determines the formation of the string of electrostatic blobs of size {pg with
gpeg monomers each. Hence, each blob balances electrostatic and thermal energy to

s (fgpr)’

krT
P e

~ kpT (2.54)

while within lengths smaller £pg obeying Gaussian chain statistics because there the
coulombic interaction energy is smaller than kgT'.
In the #-regime this translates to

Epp ~ byl (2.55)

from where £pg and gpr can be derived by using (2.54) with (2.55) to arrive at

Q

épp b3t 2 (2.56)
gre & BRPps (2.57)

Since there are N,,,/gpg blobs of that size, the total extension Rg = (N,,/gpg)&pr of

the chain follows as X
lf?\ 3
Ry = Nmb( Bbf ) (2.58)

if N, monomers are present.

Good solvent conditions, high temperatures, strong(er) electrostatics cause this
picture to break down, and a rich phase diagram as a function of the solvent quality
and the Bjerrum length is discovered [33,164]. These and similar considerations can
then be transferred to the network regime, which will be done in section 3.2.3.

2.6. Conclusions and Outlook

This chapter introduced the basic concepts in polymer physics upon which the con-
siderations in the following chapters are based. It clarified elementary definitions
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and discussed the coarse-graining idea used by theoreticians and computer exper-
imentalists alike to tame the complex macromolecular mechanisms. It contrasted
the different ideal chain models, particularly the (equivalent) freely jointed chain
(FJC) and the worm-like chain (WLC) which will play an important role when we
will try to characterize the force-elongation-relation of the network strands later on.
Changes in the free energy and the response to an externally applied pulling force
were also detailed for both models. Theoretically favorable as well as experimentally
accessible definitions for the chain conformation size were given, where the end-to-
end distance Rg will be one of the main observables we will be investigating, without
neglecting the radius of gyration Rg and the hydrodynamic radius Ry useful for real
world comparison. Moving from ideal to real solvent environments, good and 6-like
and poor solvents were contrasted, introducing the excluded volume concept and
the very important Flory arguments for obtaining a scaling relation between chain
length N, and chain extension Rg up to omitted prefactors of order unity. The
blob picture contained therein was subsequently applied to charged polymers, the
polyelectrolytes, too, and will reappear in the following chapter when predictions
for the macroscopic swelling behaviour of a polyelectrolyte network will be made.
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3. Theoretical Treatment of
Good Solvent Hydrogels

Advanced concepts in polymer physics are introduced and applied to macro-
molecular networks. The c*-picture is detailed by discussing the c*-gel upon
which most known theories are based. Simple models are sufficient to describe
the swelling equilibrium of polyelectrolyte networks in the limit of weak elec-
trostatics. Higher charge fractions and/or stronger coulombic coupling cause
deviations, requiring a number of corrections to account for neglected but in-
creasingly important mechanisms in that regime. A blob picture based scaling
approach is shown to be able to take all these into account, and successfully
matches results from computer simulations over the entire parameter range.
Alternatively, the “cell under tension”-model is introduced which allows for a
self-consistent way to do the same, but without any additional assumptions
on the system.

For describing a polymer network theoretically, the single chain concepts from the
previous chapter 2 become very useful. The reason lies in the ¢*-picture, which will
be introduced in section 3.1, because it allows to derive network properties from the
behaviour of a single chain. Even if the ¢*-theorem, explained in that section as well,
is not applicable in the case of our charged hydrogels, the construct of a c¢*-gel and
many other techniques developed for the single chain or neutral network treatment
may be re-used.

This quickly leads to first, simple estimates on their equilibrium extension in a
f-solvent environment (section 3.2.1) and in a good solvent (section 3.2.2), which
will be enhanced further by considering the polyelectrolyte blobs from section 2.5
(section 3.2.3), the effect of counterion condensation (section 3.2.4), screening ef-
fects (section 3.2.5), and the finite extensibility of the chains (section 3.2.6). Such
additional layers of complexity are necessary because the simpler models naturally
neglect a number of mechanisms which might modify the gel’s behaviour in certain
parameter regimes; we will therefore investigate how their predictions compare to the
outcome of our computer simulations from chapter 4 and what deviations remain.
This will inevitably lead back to the question of the counterion distribution, which
can be addressed in a more systematic way in the framework of the cylindrical cell
model (section 3.2.7), where the solution of the Poisson-Boltzmann equation gives
both their osmotic pressure and number density in the system. Discussing different
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definitions for the effective charge fraction and adding the intra-chain charge repul-
sion in section 3.2.8 completes the extensions to the simple scaling approach. As final
result we will be able to predict the equilibrium behaviour of charged hydrogels on
the scaling level, which will be double-checked for finite size effects in section 3.2.9
and employed to predict p(V)-relations as well, rounding off section 3.2.

Next, in section 3.3 we will develop a self-consistent model depiction of the swelling
of polyelectrolyte networks in good solvent by introducing the “cell under tension”-
model of a self-regulating cell system. The focus will thereby be on incorporating
all the mechanisms previously identified as important into the framework, with-
out using anything but system parameters as model input. A comparison with the
simple scaling arguments to determine which approach yields the more promising
perspective to justify further investigations rounds off this chapter.

3.1. Comments on the c¢*-picture

In the following sections we are going to make extensive use of the construct of a
c*-gel for describing the basic behaviour of our networks. Hence, this section should
provide a bit of background on the c¢*-picture usually used for neutral systems.

In a good solvent polymers are swollen due to excluded volume effects. The c¢*-
theorem states, that for crosslinking in solution a gel automatically maintains a
concentration close to the overlap concentration of the corresponding semi-dilute
solution of non-crosslinked chains. As a consequence, the network strands exhibit
single chain behaviour and act as non-linear entropic springs. The elastic properties
of a network of such springs can be estimated within the usual approximations.
This phenomenon is well understood for individual chains, but it is less clear what
happens in the case of polymer networks which were prepared by cross-linking a
dense melt of linear precursor chains. Recent computer simulations [37] suggest a
surprising scenario: the network strands are more strongly swollen than single chains
and exhibit a fractal structure characterized by a new exponent v = 7/10.

There is a fundamental difference between having a c¢*-gel and using the c*-
theorem. While a c¢*-gel in essence is nothing more than a polymer network which
happens to have the same concentration ¢ = Ny /V as a corresponding polymer
solution at its overlap concentration ¢* := N,,/Rj, = ¢ (except for numerical pref-
actors correcting for the implied spherical symmetry), the ¢*-theorem assumes this
to be true in general, which would allow to treat the swelling process of a (neutral)
network by always considering single chain effects at ¢ = ¢*. However, it can be
shown [37] that this would rather quickly lead to serious contradictions.

As an example, if one starts with a (neutral) c*-gel in the swollen state, then
Rr = Rp = bN! with Rp being the Flory radius, and from the concentration
¢* = N,/ R the volume fraction would follow to be ® = b*c* = b3N,,,/ Ry = N1 73".
Compressing this towards the melt state (where ® = 1) by scaling V' — V/A3
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requires A = ®1/3 to achieve ® — ®\* = 1, which in turn leads to Rg — Rg/\ =
Rp®/3 = bNY - No{*™ = bNa/® - but this would be a globular (collapsed) state,
contradicting our assumption to compress to the melt state!

Similarly, problems also arise when starting with a polymer melt, forming the
network there. Even if one now assumed the network strands to be of equal length
Np,, all excluded volume interactions would be entirely screened such that Ry =
Rgaws = bNél/ ?_ This would leave two choices for extending the network back to
the swollen state discussed before: First, one could stretch the chains until their
extension reaches Ry, requiring Rg — RgA with A = Rp/Rgaus, decreasing the
volume fraction to ® — ®/A3 = 1/(Rp/Raaus)® = No/> ¥, instead of the N1-3
derived before (remember that & = 1 in the melt state). Second, one could directly
aim for that volume fraction by setting A = (N1=3)=1/3 = N '*" hich would
then extend the chains towards Rg — Rg)\ = bNél/ 2. N;l/ g bNiq/ 0+ instead of
Rp = bN!. Furthermore, if applying the ¢*-theorem to the melt the volume fraction
would become ® = 6Ny /R2,, s = Nm'/® # 1, such that it had to be interpreted

as N2 interpenetrating networks to arrive at the required ® = 1; this would in
turn lead back to the two aforementioned choices of A = Rp/Rgaug Or A = N 1/3+v
and their corresponding failure to describe the network’s swelling process towards a

c*-gel.

polymer melt swollen c*-gel
1/2
RGauﬁ — bNm/
b =1
/\:¢_1/3/‘//',4//"’
R = bNY?
D=1
e Ry = bN?,
A= (Nélg)l/B' b = N3/2-3v
‘\x*“\)}—;:;ﬁﬁ/f?(?auﬁ g = bNr}ﬂ/6+u
7§ N

Figure 3.1.: Tllustrating the failure of the ¢*-theorem for describing the swelling process
of networks by considering different (de-)swelling factors A between a dry melt and a gel
resp. interpenetrating networks (for details see text).

Considering that we even neglected impurities all randomly formed networks will

inevitably have, i.e. the existence of entanglements when the formation occurred in
the melt state, which in a first approximation would replace N, by a distribution
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of chain lengths, a rather random topology depending on the connectivity of nodes
and network monomers, and maybe even dangling ends, it is safe to conclude that
the ¢*-theorem is not applicable for gels crosslinked in a melt, as could be seen in
the example of the interpenetrating regular networks. Randomly crosslinked c¢*-gels
are produced from crosslinking in dilute solution, albeit mechanically they are rela-
tively instable. Non-interpenetrating and non-entangled regular networks, however,
do have equilibrium concentrations on the order of ¢* as well, which is why it is more
than justified to describe the swollen networks in our system as a c*-gel, i.e. using
¢ = Niot/V ¢ Nu/R3,.

3.2. The Swelling Equilibrium of Polyelectrolyte
Networks

This section will construct a theoretical model which will be able to describe the
swelling equilibrium of charged hydrogels on the scaling level, i.e. up to numerical
prefactors on the order of unity. To do so, we will first start with commonly accepted
simple models for e.g. ideal neutral networks and charged model gels, which however
quickly turn out to fail beyond the limit of weak electrostatics; the reason for this and
the connection to their underlying assumptions will be thoroughly investigated in
the next chapter 4 where we will focus on the discrepancy between the behaviour of
model and simulation systems. This section then continues to build upon the simple
models’ basic ideas, expanding them by incorporating the neglected additional effects
responsible for their original failure, until we reach satisfactory agreement with the
simulations over the entire range of system parameters.

In a polyelectrolyte network the interplay of monomers and counterions, their
charged, bonded and excluded volume interactions all lead to a multitude of pressure
components P;, most of which are separable within the simulated environment,
while few are independent of each other. Swelling equilibrium is reached when they
all balance one another, and P = ,P; = 0, i.e. no effective forces are acting on
the simulation box, neither outwards (P > 0) nor inwards (P < 0), to change its
volume. Microscopically, the P; can be categorized by e.g. sorting all mechanical
and network-related contributions into P, the ideal gas-like pressure and possible
excluded volume effects of the counterions into P°', leaving the unparticularizable
Piot = s (Ec) on its own'.

Note however that although the pressure components itself are additive, the as-
sumption of e.g. having all direct electrostatic contributions collected in ’P;gt is by
itself already assuming the validity of the Flory-Rehner-Hypothesis (FRH; see sec-
tion 4.3), the reason being that in principle one could find e.g. electrostatic effects

! More on the P; and their categorization can be found in the simulation sections, e.g. in sec-
tions 4.1 and 4.2.3.
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in other components as well, where the coulombic coupling changes for example
the counterion distribution which in turn affects their excluded volume interactions
and therefore PE1. Such cross-correlation would essentially prevent any modeling at-
tempt, whereas the FRH restricts considerations to the superposition of independent
contributions.

On a qualitative level, the swelling equilibrium can then be described by incorpo-
rating the following layers of complexity into one model:

e c*-gel of point-like monomers swollen by an ideal gas of neutral “counterions”
e excluded volume effects on the chains — tension or Pincus blobs
e clectrostatic effects — polyelectrolyte blobs

e counterion condensation for strongly charged systems
— effective charge fraction f.g and number of effective charges Qg

e screening of coulombic interactions — Debye screening length =1
e finite extensibility of the chains

e counterion density in the cell model — ITg?

e charge renormalization and counterion distributions

e intra-chain repulsion of charged monomers

This will be done in the subsequent subsections. Note however, that the given
list is by no means comprehensive, since it focuses on the effects predominant in
our systems and parameter regimes; other influences, such as e.g. the impact of the
valency on the shape of the network, which in the case of multivalent counterions will
see them rather collapse the network than condense onto the chains if electrostatic
interactions are strong, are deliberately omitted if irrelevant here (everything is
monovalent in our study).

3.2.1. O-solvent

Assuming the validity of FRH, the swelling equilibrium of a charged gel should
mainly result from the elastic response of the chains’ inner bonds balancing the
osmotic pressure of the counterions trapped inside the network by the macroscopic
electro-neutrality requirement.

Neglecting explicit electrostatic effects and treating all objects to be point-like,
the Ngr counterions in the simulation box volume V' thereby behave as an ideal
gas-like cloud surrounding the N, network chains, and elongate each to an average
end-to-end distance Rg. Their osmotic pressure g = pkgT’ consequently follows as

NCI fNrn
e = kT —= o kpT 3.1
C B % X KB R% ( )

79



3. Theoretical Treatment of Good Solvent Hydrogels

if using the depiction of a ¢*-gel (see section 3.1) with N,oqes tetra-functional nodes
and N, monomers per strand, of which a fraction f is oppositely charged to the
monovalent counterions. Evidently, this can only be an accurate description as long
as the coulombic contribution Il,, to the pressure remains negligible, i.e. the Ny,
monomers per strand are not too strongly charged, the fraction (1 — f) of neutral
ones is not too small, and the electrostatic interactions are not too large.
For harmonic chains with Gaussian statistics the elastic response Ilg of the bonds
of length b connecting the monomers is given by
kgT
Mg =———— 3.2
T NLb? - Ry (3.2
which makes it possible to derive a simple prediction for the node-node-separation
Rg, therefore describing the network’s equilibrium extension, by balancing both
terms in (3.1) and (3.2) to mimic the swelling equilibrium.
From there, IIg + g = 0 gives [39-41]
Rg = f'/*Npb _Be (g, 3.3
E=f m = a(,fﬁg—(f m) (3.3)
for the end-to-end extension of the network strands, and the swelling ratio ay relating
Rg to the neutral single chain case where Ry = bNél/ 2,

3.2.2. Good Solvent

Drawing further on the analogy to single chains, excluded volume effects can be
taken into account by employing the classical tension blob model [31,32] developed
for ideal polymers (section 2.3) and modified for good solvent (section 2.4).

It allows the network chains to be treated as a sequence of % blobs of size
&r = bgh containing g monomers of size b each, and having Ry = & - % as
the chain extension.This implies the network strands to have unperturbated single
chain characteristics on local scales of length &r, i.e. inside the tension or Pincus
blobs [162]. Since & is chosen such that one blob has the energy kT = fg - &1,
the presence of fN,, counterions per strand stretches each chain as if a force fg
was acting on the ends, elongating it to an end-to-end distance Rg, which puts the

elastic pressure at
fe - Re ksT Ny
HE —_— — 3 — — 3 PR —
Ry, Ry gr
As before in section 3.2.1, this is supposed to balance the osmotic pressure Ilg of
the counterions given by (3.1),

me> ( ks T Nm>
0=Tc+p = (kT2 ) + (-2 .=

(3.4)
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from where the number of monomers per blob follows as

1
9r=7 (3.5)
The scaling prediction [39,62,63] for the network strands then yields
Rp = 17" Nuyb _ B gy 3.6

using the single chain description R, = bN! for uncharged systems in the swelling
ratio «,,.

For Gaussian chains (f-solvent, v = 1) the very same result has been obtained in
(3.3), so that the blob picture turns out to be an equivalent description; in a good
solvent, however, v = % [31] or v = 0.588 [153,160,161], hence the dependency of Rg
on f is expected to be more pronounced than for the f-case (note that 0 < f < 1).

3.2.3. Polyelectrolyte Blobs

An alternative scenario considers the swelling of the gel to be a single-chain effect due
to repulsive electrostatic interactions between the monomers on the network strands
(see section 2.5). So far, these interactions have been neglected, all mechanisms
discussed have been of a purely mechanical nature. That is no longer valid once the
coulombic energy exceeds the tension one from the previous section 3.2.2 because
in that case the size of a blob, i.e. the length scale on which the interaction energy
between monomers reaches kg7, is set by {pg < &7 along [163]

(ngE)2

PE

kpT = kpT - (g

with gpg < ¢gr denoting again the number of monomers per blob ( “the smaller

blob wins”). From (3.7) and the definition of a blob, namely that within one the
unperturbated ideal chain behaviour {pg = bgpy is valid, gpg follows as

grE = <fb£B)_ﬁ (3.8)

Comparing (3.8) to the tension blob result (3.5) allows to distinguish both regimes:

gre < gt
f*ls T 1
:’< b ) S
)"
=f > (?> (3.9)
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Hence, with (3.9) one has a qualitative criterion for the applicability of the two
blob models presented, intuitively predicting that for larger f (higher fraction of
charged monomers, more important electrostatics) coulombic interactions will be-
come stronger than the tension, leading to the Pincus blobs being replaced by the
polyelectrolyte blob regime (see figure 3.3).

3.2.4. Counterion Condensation

Increasing the strength of the electrostatic interactions further will also invalidate
the description of the counterions as an ideal gas-like cloud acting as an osmotic
pressure exerting but otherwise uniform charged background. Ions close to the chains
will become increasingly attracted towards them, until eventually a defined number
will be systematically trapped in their vicinity due to the coulombic attraction
overcompensating the entropic penalty. For the special case of an infinitely stiff,
entirely straight polymer (or its model, a charged rod) it has been found [165], that
for a Manning parameter &y = %3 > % (a being the charge separation on the
rod, vgr being the valency of the counterions) a fraction of (1 — LM) counterions will
“condense” onto the rod, i.e. will be confined to a small cylindrical volume around
it, thereby renormalizing f towards an effective charge fraction f.g; for & > 1 all
counterions added to the system will condense as well, rendering any f > fuy., to not
increase the amount of free counterions contributing to Il and keeping the effective
charge fog to one charge per Bjerrum length. Consequently, it is given by

fﬂ—{f for & < L = f < fia,

vCr

fmaxzf%:;cl for%g>L:>fomaxa

- vcr

(3.10)

allowing a simple argument for the inherently complex situation of having firmly
trapped, partially attracted, and entirely undisturbed counterions to be accounted
for?.

Although only considering monovalent systems here (vgr = 1), applying the Man-
ning picture to real polymers leaves the problem of determining the distance a be-
tween neighbouring charges. As depicted in figure 3.2, the definition a = % be-
comes ambiguous when used with only rod-/like polymers: Depending on whether one
measures the charge separation along the chain’s contour length or projects that dis-
tance onto a line of length Rg, gives with a = b/f and a = Rg/(f Nn), respectively,
two results dissimilar even for highly extended polymers with e.g. (R%)/(R%) = 12.
Within the blob picture any criterion is to be applied locally to each blob, leading to
a=¢&/(fg) for &, g corresponding to either &, gr from the Pincus model, or &pg, gpg
in case of polyelectrolyte blobs. To illustrate this dilemma, in the following both the
rod’s frod = (¢g/b) "t (using a = b/f) and fPlob = ¢/(glg) (from the blob picture’s

a=¢&/(fg)) will be applied to the results from the previous sections.

2 Note that this definition (3.10) is more general than the one previously used in (4.11).
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length of rod

# charges on ro\(y\

Figure 3.2.: Tllustrating the problem of finding an appropriate description for the charge
separation a in the Manning criterion: Defined for a rod (left), in case of a real polymer
(center) using the separation b/ f along the contour length bVy, is different from projecting
the charges onto Rg/ f Ny, while for the blob model (right) the projection occurs separately
within each blob.

Since & = bg”, the requirement f < fPlob hecomes f < ¢g¥1b/fg, which in the
tension blob regime (3.5) translates to

N b
o= (?) o
5 -
= f < (—) (3.11)
l5

For polyelectrolyte blobs (3.8) we find

1 1

f2€B 727u'(V71) b 2(17L) EB T2y
< —_— = 2—v J—
s ( b o b

b\ o) (=a2) b\ v
= f < [= S 3.12
/o< (513) (58) (3-12)

Comparing (3.11), (3.12) to the crossover criterion (3.9) between the Pincus (¢ = gr)
and the polyelectrolyte blob (g = gpg) regime, it is noteworthy that they all coincide,
i.e. as soon as fg/b > f~ and the electrostatic interactions begin to dominate the
chain conformation, counterion condensation immediately sets in, too. Since this
fixes f in gpg at fP'°P) re-inserting f = fP1°P into (3.8) shows that further increasing

max ? max
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electrostatics will rather squeeze more monomers into one blob along

e\t
R = (;B) (3.13)

causing Ry = & -% = g 1bN,, to shrink. As is illustrated in figure 3.3, considering g

as a function of £g/b has it consequently cross over from g = gp directly to g = gpigP

at fg/b= f~" and

1 1 1 blob Ly _ 1
Q(F) = gT(F) = QPE(F) = (f”) =7 (3.14)

without even entering the region where g = gpg would be applicable.

5 T T T T
Pincus Blobs Polyelectrolyte Blobs
4 .
1 1
_ 2 >y
gT — _ f' £B 2—v
f grE = b
()]
S 3t counterion condensation
- on blob-like chain
: R
# - (7)
g counterion condensation
S 2 on rod-like chain h
2 ( 1 1) 7 T py s
Mo f - gf:"él—(—B)
. ’
f = g7 (f=0.25) =—
f 9pE (f=0.25) ————
e
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g (i=1.0) —
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Figure 3.3.: The number g of monomers in a blob, given for constant f as a function
of ¢ /b, the strength of the electrostatic interactions. While for ¢g/b < f~" it follows the
tension blob description g = gy, the behaviour for stronger coulombic interactions depends
on the model chosen to specify the distance a between two neighbouring charges on the
chains, having g to either directly enter the Manning regime by diverging along g = g}%lﬁb,
or having it display the polyelectrolyte blob behaviour g = gpg first, before then diverging

slower with g = gr5d at /b > f~1 (for full details see text).
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3.2. The Swelling Equilibrium of Polyelectrolyte Networks

Using the rod-like description f < frd = (/5/b)~! instead shifts the onset of
counterion condensation towards stronger coulombic interactions, since due to 0 <
f <1 for the charge fraction f7°¢ < 1= b < fg and thence (fg/b)~/" < (f5/b)~"
follows (as v < 1). Contrary to the previous case, this implies an intermediate regime
where the number of monomers g behaves as gpg before the Manning condensation

begins to set in at f > f°d. Again, inserting this then fixed charge fraction into

gpg allows to derive
1
=
9FE = (3]3) (3.15)

now exhibiting a slower divergence than in the case of gpiP, indicating an also

slower decrease in Rg. Regarding the intersection of this second transition, looking
at fg/b= f~"in (3.8) and (3.15) gives

1 1 rod

1
9(}) = QPE(?) = gPE(?)

7fﬁ

(3.16)

i.e. a lower value than in the case of ghiP.

g (029 —
14 9pg (f=0.25) ——— 4

gr (f=0.5)

gpe (-=0.5)

g7 (1=1.0) ——
1.2 + gpg (;=1.0) ——

counterion condensation
on rod-like chain

o Polyelectrolyte Blobs
R (ts\ =
1 /—v B < ) R 2€ 5:—5
) e _ (L
08 F bN,, b

06 [

relative chain extension Rg / (b Ny)

04l ONw -

counterion condensation
on blob-like chain /
02t .
Rg ()
bNm ( b >

0 L L L L
0 1 2 3 4 5

g /b

Figure 3.4.: Using Ry = ¢* 'bN,,, this plot translates the number g of monomers in a
blob from figure 3.3 to the relative chain extension Rg/(bNy), again for constant f as a
function of /g /b (for full details see text).
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As a consequence, depending on the chosen model the onset of counterion conden-
sation displays qualitatively different behaviour: In case of the blob-like description
the chain collapses as soon as the Manning criterion is fulfilled, whereas figure 3.4
shows for the rod-like depiction that in an intermediate regime the strands actually
reach a local maximum, even larger than their tension blob value. In the following
we therefore have to bear in mind that the choice of model already leads to a certain
physical behaviour, and further findings, e.g. from our simulation study, are required
to decide which approach is more likely to match reality.

This disadvantage can be avoided if one employs the following simple argument
to merely estimate the effective charge on a charged hydrogels’ network chain: Ob-
viously, its line charge density depends on the amount of swelling in the system,
with the projected distance a along ﬁE between neighbouring charges being bound
by a > (g from below because of the Manning condensation preventing anything
closer. Re-using the blob picture, a will be given locally as a = £/(fg) with blob
size £ and g monomers per blob, such that an amount of effective charges Q. would

essentially follow
R R
Qe == = ¢ (3.17)
BT 7,
Though (3.17) is only an estimate based on suitable limiting behaviour, it will nev-

ertheless be sufficient on the scaling level, as we will see in the next sections.

3.2.5. Screening Effects

For any coulombic coupling strength, proximity of the counterions to oppositely
charged monomers on the chains leads to a partial screening of electrostatic effects
on length scales characterized by the Debye screening length x~!. Within the con-
text of describing the network strands as a linear sequence of blobs, this allows to
consider an overall neutralized volume 3 around each chain, containing a charge
concentration

SN

c= m (3.18)

g
of ions and monomers in Ny, /g blobs of diameter £. In analogy to the polyelectrolyte
blobs (3.7), the criterion kgT = kgT - fg(c- k3)/k ! then gives k* = (g - c for the
square of the inverse screening length, from which a Debye-Hiickel type pressure
IIpg can be derived to

No \° 1
HDH = ]{ZBT/{3 — kBT (&3@) 0.6 m (319)

g

using that g and & = bg” have no explicit dependency on Ny, as could be seen e.g.
in (3.5) and (3.8). From here, the force fpg acting on the end of each chain follows
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as
N, 2 ls - FN. 3/2
for = Tpg - <7 .5) _ kBTM (3.20)

(% . 5) 5/2

which has the pressure contributions of the screening effects being negligible if fpy <
kpT /¢, leading to

(05 - fNw)*? (ts- )2
52 3/2 . o %3 <1
g3/2,(&> Nm‘b/'g2 2
g
s 3/2 3/2
N (b)Tf < g7 (3.21)

This means, that the impact of IIpy on the total pressure balance in the system can
always be made negligible for sufficiently large N, i.e. similar to the influence of
the charge accumulation around the nodes this is a physical finite size effect.

To assert the significance of this statement, inserting ¢ = gr from (3.5) and
g = gpg from (3.8), respectively, into (3.21) gives

o e

>
N

f
(g 3v—2
= N, > <?) I (3.22)

(S5

in the regime of Pincus blobs, and

__1 3v-5 3/2
P\ T (t)*2 por2
b Nin

P
=N, > (?B) = (3.23)

where polyelectrolyte blobs apply. Since we are interested in knowing if our chains
have a large enough N, are already large enough to neglect IIpg, we only need an
upper bound. Therefore, applying (3.9) in the tension blob regime as ({g/b)™" > f

to (3.22) gives
1 3
lg\" lg\? ,sv2

and using it as f* > (fg/b)~" in (3.23) for polyelectrolyte blobs leads to

1 gB _21/174 _ 3u—4
— J— 2v—4 2
= (5) &2
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3. Theoretical Treatment of Good Solvent Hydrogels

which both allow to draw the conclusion from (3.21) that for “normal” parameter
regimes such as our 0 < /g < 50, b = 1o, 0 < f < 1 a network chain length
of N, > 39 monomers is more than sufficient to safely neglect additional pressure
components originating in electrostatic screening effects.

Similarly, the electrostatic persistence length

‘- (1)

does then not represent one of the leading contributions to the swelling equilibrium
either, as the same line of arguments also lead to a N_!-dependency sufficiently
decreased for our parameters, independent of the blob representation.

With Ilpg made negligible, however, electrostatics would become negligible as a
whole in such a Debye-Hiickel approach. Obviously, this cannot be true, as stronger
coulombic couplings causing counterion condensation must have a significant elec-
trostatic contribution P to the pressure (which our simulations will confirm, see
e.g. the data in table 4.3). Hence, it can only be concluded that this Debye-Hiickel

picture cannot be applied to these systems.

3.2.6. Finite Extensibility

Following the trivial observation that for f — Ni (the obvious lower boundary

for the charge fraction of a polyelectrolyte chain) the scaling in (3.6) becomes that
of a single neutral chain R,, the other extreme of strong elongation should now
be addressed. Real chains cannot extend beyond R.. = b/N, without breaking.
From (3.6) it follows that therefore the charge fraction, more precisely f'=”, has
to be significantly smaller than 1, i.e. that the chains may not be too strongly
charged for the scaling law to be applicable. Although the charge renormalization
from section 3.2.4 allows to treat systems with very strong electrostatics in that
limit, too, because their heavy counterion condensation will eventually lead to a
small enough f.g, the intermediate regime depicted in figure 3.3 remains which is
more pronounced for a large amount of counterions fN, =~ N, per chain but low
electrostatics (& &~ 1). Here, the finite extensibility of real network chains causes
the restoring force fg of the bonds to strongly deviate from the harmonic behaviour
implied in Ilg.

The polymer chains in our simulation are modeled as bead spring chains with the
FENE (Finite Extension Nonlinear Elastic) potential

1 [ %
UFENE<7"/ <7”F) = ——k‘FT%ID 1— (T—) ]
2 TF
ke 1
UFENE(T<Rmax) = ?Rmaxln —3 (327)
- (=)
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3.2. The Swelling Equilibrium of Polyelectrolyte Networks

representing bonds and cross-links, similar to the (4.1) we will use for the simulation
model (see section 4.1). While for small elongations r it corresponds to the harmonic
r? 3 r?

3
UGauB(r) — 5 <R3> — §b2Nm (328)

which itself allows for arbitrarily long chain extension, Urgng diverges at 7 — Riax
to infinity, hence enforcing bonds to always have 0 < b < rp, with the equilibrium
bond length also depending on the chosen representation of the excluded volume
interactions.

Using the blob depiction again, we now want to incorporate those excluded volume
interactions on a general level first into Ug,,.s, having the emerging Usaw describe
harmonic bonds on a self-avoiding walk-like polymer, to then be able to deduce from
there how to modify Upgng to end up with an interaction potential Upgpsaw repre-
senting finite extensible nonlinear elastic bonds between monomers with excluded
volume interactions.

Similar to the derivation of (3.4) a good starting point is the blob definition kg7 =
fg-£. From there, with & = bg", the requirement of unperturbated behaviour within a
blob, follows fg - (bg”) = kgT and g” = kgT/(fg-b). Since Rg = Ny, /g-& = Nyubg” ™!,
one finds (with Rp = NZb from (2.46) being the Flory radius)

@ _ Nmb A gu—l
Rp N¥b

N Ry = ~ fe-Rgp
Rp - ksT

such that an appropriate description for Usaw is given by

Usaw (r) = ksT <RLF> (3.29)
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using U(r) = [0U(r) = — [ For.
Incorporating the structure of (3.29) into Upgng from (3.27) leads to the desired

R \ 77 1
Uppsaw (1) = kBT( 7 ) In 7
F r 1—v
1= ()
1

= kyTNpln . (3.30)

r 1—v
1 B (Rmax>

with the corresponding restoring force

_ OUrpesaw

or
Ny kT
_ _m B (3.31)

Toa-)- [(Rm)l _ 1}

For small relative extensions € = (7/Ruyax)/1™) < 1 the logarithm in (3.30) can be
expanded to

fFESAW =

In [1 ! J S ; L O (3.32)

showing that Upgsaw AASIITN Usaw as intended.

Now that (3.30) provides a description for excluded volume chains connected
by finite extensible bonds, we can replace the harmonic restoring force fg in the
derivation of (3.4) by fpgsaw, which allows to extend the scaling prediction (3.6) for
Rg to the regime of overstretched chains. From the equilibrium swelling condition
for the pressure balance

0 = I¢+ HEESAW (3.33)
frEsaw - R
R}
fNm Ny kgT
am

RE R} (1_”)'[(&—’1)"1]—1]

the end-to-end distance is now found to scale as

1-v
oo (L) 330

= pksT +

1—v
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bare charge fraction f

Figure 3.5.: Comparison of the simulation data for a chain length of N, = 239 monomers
(see next chapter for details) to the scaling prediction (3.34) which includes the finite exten-
sibility of the network strands (curved solid line); also given are the maximum elongation
Rpax = bNy, (dotted horizontal line) and the ideal behaviour (3.6) of a harmonic chain in
good solvent (dotted diagonal line). The colour coding scheme for the simulation parame-
ters follows table S.1, using same symbols for same Bjerrum length ¢5, and same colours
for same bare charge fraction f on the chains.

with a being a (constant) placeholder for omitted numerical prefactors.

This scaling prediction now provides a smooth crossover from the blob behaviour
(3.6) towards the maximum elongation Ry.x = bNy, of a chain of NV, monomers,
as shown in figure 3.5 for an a = 1/4. Compared to the simulation data also given
therein (see next chapter 4 for details on them), the general trend is already captured
correctly, which comes as not too much of an surprise since the divergence in the
elastic restoring force was modeled based on the potential utilized for the bonded
interactions in the computer experiment. There are, however, some clear and some
subtle deviations which deserve additional attention in the following.

Most noticeable are the much smaller relative chain extensions for the systems
with strong electrostatic interactions (i.e. g = 50). Here, the counterion condensa-
tion (see also section 3.2.4) is too large to allow for the ideal gas assumption used
in (3.33) for the derivation of (3.34) to be applicable, as due to &y <5 up to 80 %
of the originally fN,, mobile charges per strand are now confined to a small volume
around it, such that the remaining osmotic pressure I effectively acting on the
chains and swelling the network is much smaller. Section 3.2.4 presented a way to
incorporate this effect into the harmonic blob pictures by replacing the amount of
bare charges fN,, in the ansatz (3.1) for the ideal gas pressure Ilg by an effec-
tive number Qe = ferNm as in (3.17). Combining that idea with the blob picture
as in subsection 3.2.2, where a network chain was considered to be composed of
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3. Theoretical Treatment of Good Solvent Hydrogels

blobs with diameter £ containing g monomers each, the self-consistency condition

kpT = fg-& = fg = kpT/¢ for a stretching force fg acting on the blob can be fulfilled
with fg oc IIg R% being generated by the remaining (effective) ions in the gel. Hence,

feHNm Qeff
fg oo TgRp (kBT 7 Ry = kT o

@i kT 1 kT
g - =
lp + fg 5

(3.35)

provides a possibility to find the equilibrium swelling behaviour of a charged hydrogel
based on only local observables, here still for fully harmonic (i.e. infinitely extensible)
network chains, but already with an effective amount of charge to take condensation
effects into account. For practical reasons one would now use

€ o< bg” (3.36)

(valid for linear chains even under tension) to reduce (3.35) from two to one un-
known, ending at

bg” <1 - ﬁ) = lp (3.37)

for the amount of monomers g per blob in equilibrium, which can then be used to
obtain the end-to-end distance Rg = (Ny/g)¢ o< g* 'bN,. Although due to the
scaling nature of the derivation this introduces two numerical prefactors of order
unity, ¢iq in the expression for Ilg, and ¢, in the blob relation between & and g,
(3.37) provides a convenient way to include counterion condensation without the
problems addressed in section 3.2.4 regarding renormalization and definitions.
Even the finite extensibility of real network chains can now be easily added on this
level by re-using once more the self-consistency condition kgT’ L fg-& = ¢ = kpT /fg,
this time with fg = fpgsaw from (3.31) as the now non-linear restoring force. With
Nm/RE = g/f and RE/RInaX = RE/(bNm) X é'/(bg) this leads /CBT/f = fFESAW(r =

Rg) to become
ENTT
= —1 .
g x (bg (3.38)

which now replaces the previous £  bg” from the linear regime and therefore (3.37)
by the equation system consisting of (3.35) and (3.38). Unfortunately, this cannot
be solved explicitely, numerical solutions are however easily obtainable.

The plots in figure 3.6 now demonstrate both by picking up the representation
of the previous figure 3.5 to compare condition (3.35) to the simulation data, for
the case of linear chains (left plot) as well as for the finite extensible strands (right
plot). The connection to figure 3.5 does not end at using the same axes and data,
but it also allows a simple consistency check by comparing both fg = 0o-cases in
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Figure 3.6.: Similar to figure 3.5 the scaling prediction (3.35) is compared to the
same simulation data therein, again plotting the relative chain extension Rg/Ryax =
Rg/(bNp) x £/(bg) as a function of the bare charge fraction f on the z-axis. For technical
reasons, the colouring had to be changed, such that it now represents the Bjerrum length
(with black corresponding to ¢g = 0o, blue to g = lo, green to fg = 20 and red to
lp = 50); the symbol shape however retains its meaning. The plot for (3.37) on the left
extends the basic picture by introducing an effective charge Q.g, the one for the equation
system of (3.37) and (3.38) on the right also adds finite extensibility of the network chains.

figure 3.6 (the black lines) to figure 3.5, where the dotted diagonal line represented the
ideal behaviour (3.6) of a harmonic chain in good solvent, i.e. linear extensibility
as on the [left of the current figure, and the solid curved line plotted the scaling
law (3.34) for non-linear and finite extensible chains, corresponding to the right
side of the current figure. As we did not have explicitely dependent terms on the
electrostatics in both former cases, they should match the limit /g = 0o in our
new models, which can be nicely checked by looking at the corresponding plots.
At the same time figure 3.6 shows the impact of the coulombic coupling to the
ideal gas distribution of counterions alone, because each value of /g now has its
own distinct curvature. These however underestimate the relative extension of the
chains as stronger electrostatics gets; consequently we either underestimated the
amount Qg of remaining charges responsible for swelling the gel, i.e. overestimated
the degree of swelling, or another electrostaticly-based mechanism influencing the
equilibrium behaviour is still neglected.

We leave it to the following subsection 3.2.7 to investigate if a more sophisticated
treatment for the condensing counterions will improve the result; there we will choose
a more rigorous approach by resorting to Poisson-Boltzmann theory to determine
a more appropriate counterion pressure 122 which will then update the pressure
balance (3.33) in the current picture of finite extensibility.

The other possibility of an additional effect will then be discussed in section 3.2.8,
where we will identify the repulsion of the like-wise charge monomers on the chains
as main source for the deviations, being able to correct the current result.

93



3. Theoretical Treatment of Good Solvent Hydrogels

3.2.7. Counterions in the Cell Model

A very well developed theory (see e.g. [157,166,167]) to tackle the intrinsically com-
plex many-body problem of a system with essentially rod-like (i.e. (R%)/(R%) ~ 12)
polyelectrolytes at low densities and associated counterions is the cylindrical cell
model with its effective one-particle treatment. Embedding each chain in a fictitious
cylinder, whose length L.y by definition corresponds to that of the polyelectrolyte,
and whose radius Ry is chosen such that its volume equals the volume per chain
in the system, maps the monomer density to the cell model, while requiring equal
distribution of the counterions between these cylinders ensures the electrostatic de-
coupling of the cells, rendering each electrostaticly neutral:

Lcyl = RE (339&)
V ! Rg
Fp 0.8 R?é = ﬂ—Rzyl . Lcyl = Rcyl = ﬁ (339b)

If end-effects are neglected, i.e. Lo — oo is considered, the problem acquires
cylindrical symmetry. Within this picture, one can now rely on the nonlinear Poisson-
Boltzmann (PB) theory: The individual counterions are replaced by a cylindrical
counterion density n(r), where r denotes the radial distance from the cylinder axis,
assuming it to have cylindrical symmetry, too. From there, the derivation of the
osmotic pressure 1152 of the counterions under the influence of the charges on the rod
is then in principle possible due to the exact result [167,168] that IIE2 corresponds
to the counterion density n(R.) at the outer cell boundary along

5" = kT - n(Rey) (3.40)

leaving the task of determining n(R.y). Unfortunately, for this to succeed one now
has to solve the entire symmetrized problem.
Starting off at the Poisson equation

d2 1d €o
el - 41
(dr2 * Td?“) () € n(r) (3.41)
for the electrostatic potential ¥(r), the dielectric constant e outside the cylinder,

and the unit charge ey, the counterion density is assumed to be influenced by the
potential through the Boltzmann factor

n(r) = n(Rey1) exp {_%(;j)} (3.42)

implying the normalization ¢(R.) = 0. The Poisson-Boltzmann equation itself is
then obtained by simply combining (3.41) and (3.42).
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It is more convenient to rewrite this in terms of the Bjerrum length /g, the Man-
ning parameter &y, and a reduced electrostatic potential y(r) and screening constant
k > 0 defined along

y(r) = ;B—OTM (3.43)
K> = Adrlg - n(Rey) (3.44)

leading to the nonlinear differential equation

/

Y

Y’ + o K*e! (3.45)

with boundary conditions
/ 2£M ’ . .
y'(ro) = o and Y (Rep) =0 and Y(Reyr) =0 (3.46)

on the rod (r = rg) and at the cell’'s surface (r = Rey). First solved by Fuoss et
al. [169] and Alfrey et al. [170], the solution to (3.45) under the constraints of (3.46)

reads
\/1+ vpp cos (7PB In L)} (3.47)
Ry

with the following two coupled transcendental equations

y(r) = —2 In { RT

cyl

7o 1 —&um
In— = arctan 3.48a
PB Rar - ( )
R. 1
In—> = arctan — 3.48b
en Ryt YPB ( )

for the integration constants ypg and Ry, which can be reduced to one by subtracting
(3.48a) from (3.48b) towards

R, 1 -1
vpp In =2 = arctan — + arctan Sl (3.49)
To PB YPB
thus eliminating Ry;. Since vpp is related to k via
KPRZ; =2(1+ ) (3.50)

the derivation of the osmotic pressure IIEP of the counterions through (3.40) is now
achievable by using (3.44) and (3.50) to substitute n(R.y), obtaining

2(1 +’V%B)

LB = kpT -
© " ant R2

(3.51)
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in which the ypp is determined through (3.49).

Unfortunately, the latter equation cannot be solved explicitely. Even more, it only
has a real solution for vpp if &y is larger than some &" (which would need to be
determined as well); for smaller charge densities it becomes imaginary (which does
not hurt IIER as in (3.51) only the square of ypp enters) requiring an analytical
continuation of (3.49). Hence, in the following three regimes will be considered:

Regime & > 1. Here, the right hand side of (3.49) can be expanded to

3V 1 1 3 5
- |14+ = (@) 3.52

T SM_17PB+3 +(€M_1)3 7ps + O(pB) (3.52)
allowing to take the zeroth and the first order Taylor expansion as the
upper resp. lower bound for the left hand side vpp In(Rep/70) in (3.49),
which leads to

Re Em
™> qepln o > 7T—§ [ eB
M —
T
> > - .
jln@_ PB N (3.53)
0 0 Ev—1

and brackets ypg with logarithmically slowly coinciding bounds. Fig-
ure 3.7 illustrates its dependency on &y by plotting both left hand side
and right hand side of (3.49)whose intersections mark the respective so-
lutions to be numerically obtained.

Special case &y = 1. This renders expansion (3.52) invalid, and

™

1
5 ~PB + 3 + 755 + O(125) (3.54)

can be used instead. Consequently, the bracketing bounds become

g > ppln i > — ypp
/2 T
>
In Bext = ep T B g (3.55)
70 70

which, as figure 3.7 shows, may function as new upper limit for even
smaller &yr.

Regime 1 > &y > £0in, The expansion of the right hand side of (3.49)
now changes to

Em 1 1
1 — &y B3 (m - 1) Y5 + O(1pp) (3.56)
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which allows to determine &3 from the first order Taylor expansion:

M Rc 1
> In =
1—éy YPB YpB 1N T
Rcy]
by > gmno o 3.57
M M 1 4 In Reyi ( )

T0

While 7 still is a valid upper bound here due to the two arctan-functions
in (3.49), it was shown in (3.55) that 7/2 can also be used as it limits
the entire r.h.s. for & = 1 which in turn bounds all 1 > & > &ain
from above. The lower bound 0, obtained from using only the first order
Taylor expansion again, can also be improved by taking the next, i.e.
third order term as well, leading to

R. 1 1
7> ppIn =2 > S ’YPB__<ﬁ_1>’Y§B

To 1—&u 3 1—&um
In Bet  _fu
= TR 2B 2 4|3 1:0—11_£M (3.58)
In ro (1—&m)3

which now allows to approach vpg from below.

Special case & = &M, Note that for & — &3 the lower boundary
in (3.58) will go to zero, implying ypp (& — E3™) — 0, too. As depicted
in figure 3.7, from there vypg will cease to posses a real solution for even
smaller &yr.

Regime &3 > &y > 0. Now that no more real solutions for (3.49)
exist and ypp becomes imaginary, the analytical continuation vpg —
—iypp =: Ypp replaces (3.49) with

R. 1 —1
Fpp In =2 — <arccoth —— + arccoth &\f ) (3.59)
To PB PB

whose right hand side expands to

1 1 1
—-1)7 1) A+ 0GR 3.60
(1—51\/[ )7PB+3 ((1—51\/[)3 )/YPB_{— (7ps) (3.60)
for the now real 4pg. While arccothx = arctanh(1/z) has a non-

imaginary solution for |z| > 1, arctanhz for |z| < 1, their sum in
(3.59) is consequently real if |ypg| < 1 and if [(§y — 1)/pp| > 1 =
’s/pB < 1-— é.M (note that SM < éﬁin < land 0 < ’713}3). Since the
left hand side Ypp In(Rey/70) is always positive, while arccoth(1/4pp) >
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arctan(1/ypg) + arctan((&y-1)/vpg)

Figure 3.7.: Illustration of (3.49) and its solution for ypg. While the dashed straight line
depicts the left hand side ypg In(Rcy1/70) for the choice of In(Ry1/79) = 3, the other curves
plot the right hand side for the exemplary values of £\ given in the legend (corresponding
to the lines in order from top to bottom), distinguishing between the first regime (&y > 1,

3.5 T T T

r.h.s. (§y=0.

25 8 75
rh.s. (Ey=0.5

YpB

black lines) and its expansion (3.52) starting at 7, and the second regime (1 > &y > &

gray lines) coming from zero. Note particularly, that, as predicted by (3.57), for &y <
= 0.75 no real solution (i.e. intersection with ypp In(Rey1/r0)) for vpp can be found.

min

M
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arccoth((&y — 1)/4p) > 0 renders the right hand side negative for all
valid arguments, the solution is to be found for 0 < 4pg < 1 only. Fig-
ure 3.8 corroborates this by plotting both sides of (3.59), showing not
only the one solution (i.e. intersection) for 4pp, but also illustrating the
increasingly strong divergence of the right hand side for smaller &y, pos-
ing a serious challenge if intermediates for 4pg({ém — 0) — 1 should be
numerically determined. Similar to (3.58), the bounds necessary for that
are obtained from the expansion (3.60), which is taken up to its third
order term. As illustrated in figure 3.8, it is then possible to arrive at an
approximate lower boundary and therefore narrowing the rough estimate
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1 > App > 0 found so far to
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which particularly in case of the upper bound is unfortunately a hard
limit (“>” instead of the ”>" found before).
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Figure 3.8.: Ilustration of (3.59) and its solution for 4pg. Similar to figure 3.7, the
dashed straight line depicts the left hand side ¥ppIn(Rcy1/70), again for the choice of
In(Rey1/79) = 3, the other curves plot the right hand side for the exemplary values of
v < ff\n/[in given in the legend (corresponding to the lines in order from top to bottom for
ApB < 1). As discussed in the text, no intersection between ypp In(Rcy1/70) and the curves
exists for 4pg > 1 because the right hand side of (3.59), being negative there, goes to
zero. While the uppermost line reprises one representative (& = 0.90) of the previously
discussed regimes, now obviously not being solved by the analytical continuation, the red
line depicts the border & = fﬁin = 0.75 between the second and this third regime. Also
given is the third order Taylor expansion (3.60) for & = 0.25 (without the imaginary
zeroth term), illustrating the difficulties of finding an usable upper bound for bracketing
the solution 4pp.
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3. Theoretical Treatment of Good Solvent Hydrogels

The sharp divergence in figure 3.8, increasingly pronounced for &y —
0, does on the one hand complicate the process of finding a numerical
solution to (3.59); on the other hand, it also offers a convenient way to
approximate ypp by simply setting it to its upper bound Apg ~ 1 — &y,
making a relatively small error which even diminishes further as &y — 0
amplifies the singularity (see figure 3.8). This allows to determine the
limit of vanishing electrostatics for (3.51) as well, in which with &y =
lg/a from section 3.2.4 the aforementioned & — 0 translates to

2(1 + [—1(1 — &)]? kgT
lim TFP — i g2t 2= ) ks (3.62)

(g0 50 Arly - R2,) amRZ,

Recalling the discussion in that section on the difference between mod-
eling the charge distance a within a rod-like (a = b/f) or blob-like
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Figure 3.9.: Numerical solution of the real ypp from (3.49) and its analytical contin-
uation 4pp = —1ypp from (3.59) as a function of the Manning parameter &y, given for
different Ry € {5,10,e%,50,100}c (from top to bottom) and ry = 0. The dashed line
represents the limit 1 — &\ to which 4pp goes for & — 0; the position of the minimum
corresponds to & = In(Rey/r0)/(1 + In(Rey1/70)). Note that for &y < &4 the plotted
App represents the complex solution of (3.49).
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(a = Rg/(fNw)) description, also summarized in figure 3.2, the limit
in (3.62) becomes

_ fNm )
lim H—EB = "l Hina ora=i. (3.63)
t5—0 kgT [N [N for ¢ = o '
RpmRZ) R}, JNm

using the definition for Ry from (3.39b). Hereby it is particularly note-
worthy that within the blob-like description the osmotic pressure of
the counterions from the cell model matches the ideal gas pressure
I = kgT f N,/ R, for vanishing electrostatic interactions perfectly 3.

Figure 3.9 summarizes this discussion by presenting the numerical solu-
tion of (3.49) for ypp, including the analytical continuation ypg = —iypp
from (3.59) for small Manning parameters &y < &3 = In(Rep/70) /(1 +
In(Rey1/r0)) into the picture. Though the chosen parameter range does
not allow to evaluate the limit of very strong electrostatics vpp(&y —
o0) — m, it already becomes clear that this upper bound from (3.53) will
be reached logarithmically slow. All other limits are however present,
including the discussed vpg(&y — 0) — —i(1 — &) for vanishing elec-
trostatics (hence confirming (3.63) as well), and the crossover between
real and complex solution at ypg(&y — &™) — 0.

Therefore, it is now finally possible to return to (3.51) and the (numerical) deriva-
tion of the osmotic pressure TIgP of the counterions within the framework of the
cell model. As announced, we solve (3.49) for each set of &y (see section 3.2.4),
Rey (as in (3.63) choose (3.39b) such that it matches the rod-like or blob-like de-
scription used for &), and 1y = o, and enter the result into (3.51). Figure 3.10
shows this accordingly achieved solution for the rod-like representation, adding the
B = YrB(&M: Rey, To)-values for our simulation parameters. While the rather strong
sensitivity to the bond length b is quite remarkable (using b = 1.000 instead of
b = 1.050 pushes all lines up by ~ 20%), and the dependency of TIEE on & and
f Ny, also changes significantly if the blob-like description is used instead, the graph
also underlines the error made by taking Il to represent an ideal gas-like distribu-
tion of counterions for the pressure balance in e.g. (3.33).

Nevertheless, the question remains if all this effort is really necessary when looking
at our systems. On the one hand, the cell model is a much more accurate description
of rod-like systems than the very simple model of an (even partially condensed) ideal
gas around some strands; on the other hand, we already know that some aspects
cannot be captured on the Poisson-Boltzmann level nonetheless, such as the precise
form of the interactions between condensing/condensed counterion within a curled

3 This is also true for the rod-like case if Ry = Rmax is used there.
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Figure 3.10.: The osmotic pressure IIi® of the fNy, counterions around a rod-like
polyelectrolyte of N, monomers within the cylindrical cell of radius Ry as a function
of the Manning parameter &y, given for N, = 239 but different charge fractions f and
Bjerrum lengths ¢g. Obtained from (3.51), the required ypp = vpB (&M, Reyl, 7o) Was found
numerically from (3.49), as is depicted in figure 3.9. Also given are the solutions for our
simulation parameters, using (3.39) to map them onto {n = €5/(b/ f) and Ryt = bNw //T.
Their discrepancy to the straight lines is solely due to the bond length b which is set to
b = 1.050 there while taken from the measured averaged equilibrium value here (colour
coding scheme as in table S.1).

segment of the charged chains, allowing ions to “enter” the central cylinder hence
experiencing partially shielded countercharges. While we will postpone all these
details to the next section 3.3, where the “cell under tension”-model is introduced
which will be specifically designed to address those questions, and where the Poisson-
Boltzmann results will become important once more, on the current scaling level we
will rather continue with the more simple expression of Q.4 for the effective charges.

Figure 3.11 therefore compares the osmotic pressure Il of the counterions based
on Qe (coloured lines) to IEP including the solution of the Poisson-Boltzmann
equation (coloured symbols connected by gray lines to guide the eye). While both
approaches return pressures on the same order of magnitude, their limiting behaviour
is different: For vanishing electrostatics the cell model predicts higher osmotic pres-
sures than the effective I, and vice versa for strong coulombic coupling where
the charge number Q.g saturates because of the lower limit /g in the distance of
neighbouring charges.

Using TI&? instead of Tlg as the driving force behind the swelling of our hydrogels
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Figure 3.11.: Comparing the ideal gas pressure Ilg of a cloud of Q.g effective coun-
terions around polyelectrolyte network strands to the osmotic pressure HEB of the fNn,
counterions around a blob-like polyelectrolyte of N, monomers within the cylindrical cell
of radius Ry as a function of the Manning parameter &y, given for Ny, = 239 but different
charge fractions f and Bjerrum lengths /5. While the former is given as coloured lines as
in figure 3.6, the latter uses the same colour coding but mere data points connected by
gray lines to guide the eye (for the symbols see table S.1).

should consequently change the scaling prediction (3.34) for the end-to-end distance
of the network strands particularly for strong electrostatic interactions (large (g,
large &y, strong counterion condensation), since the deviation from the ideal gas-
like behaviour previously assumed is strongest there. Hence, replacing Il¢ in (3.33)
with TIEB from (3.51) leads to

0 = HEB—'—HEESAW
2 Ne KT/
T e R N
bNm 1

ol Nm R, vl
_ 1 3.64
bN,. (a1+71%B1—uR% + (3.64)

which by itself cannot be solved explicitely, too, because even when replacing Ry
through (3.39) the middle term will still contain a factor of 1/Rg. Due to the oc-
currence of ypp this is not too much of a drawback as the latter had to be de-
termined numerically anyway, particularly since in the blob-like description of the
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3. Theoretical Treatment of Good Solvent Hydrogels

network strands R and the Manning parameter { become Rg-dependent, ren-
dering vpp(ém, Rey1, 7o) to be an implicit function of Ry, principally prohibiting an
analytical solution to (3.64).

Effective Charge Fraction

The Poisson-Boltzmann equation (3.45) provides a full description of rod-like sys-
tems within the cell model framework. Particularly, it also contains the interplay
between monomer charges and counterions, their increasing interaction for stronger
electrostatics, and the crossover from the initial ideal gas-like distribution through-
out the cell towards the phenomenon of counterion condensation, with which the
confinement of a fraction of (1—1/&y) counterions to the cylindrical volume 7 Ry Ley)
around the rod-like central charge occurring for & > 1 is denoted. This enforced
and permanent proximity of opposite charges cancels part of the coulombic inter-
actions from the system due to screening effects between rod and condensate which
needs to be taken into account when modeling electrostatic effects.

While we already considered the influence of charged interactions on the counter-
ion distribution by using ITEP instead of the simple ideal gas pressure Ilg, it turns
out that the description of the equilibrium swelling condition P = ¥;1I; = 0 for
the pressure also requires a contribution Il,, from the intra-chain repulsion between
the like-charged monomers. This effect however directly depends on the number of
effective charges, i.e. if part of the fNN,, interacting beads have their electrostatic
potential screened through nearby condensed counterions the overall repulsion will
naturally be less pronounced than without any opposite charges. The charge fraction
f consequently drops to feg for &y > 1, given once again within the framework of
the cell model as fog = (1/&um) - f (see section 3.2.4 and (3.10) for details), reducing
the amount of free charges to Qeg.

Even though the different possible definitions for such a measure of effective
coulombic interactions, all based on the rather primitive model of a charged rod
or linearly extended polyelectrolyte chain contained in an isolated cylindrical cell,
already provided relatively satisfying agreement, the remaining deviations still ex-
hibit a dependency on the chain length N, which could not be captured so far.
This is not really surprising, as specific features of a hydrogel such as the crosslink-
ing nodes with their charge accumulation, counteracting both the idea of isolatable
strands and negligible end effects, have not been considered so far. One promising
approach towards their inclusion could be the analyzation of the integrated coun-
terion distribution as measured in our computer experiments, since the inflection
point criterion [166] allows to extract from them another fog which should be more
closely related to the actual amount of condensation, i.e. the true renormalization
of electrostatic interactions (at least as far as this is subsumable into one single
parameter).

An extensive analysis of all integrated counterion distributions for all parameters
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3.2. The Swelling Equilibrium of Polyelectrolyte Networks

we investigated, given and discussed in appendix B, shows a clear correlation to the
fet required for the scaling laws to hold, although evenly clear non-negligible devi-
ations still exist. However, on course of our analysis we also found another striking
observation by indicating the four different effective charge fractions discussed so far
(namely f,(E8°4) and f,(£51°P) for the fog from (3.10) with fr°d and fPlob respec-
tively, and f,(vosd) and f,(7beP) from the scaling laws with the rod-like or blob-like
description entering the derivation of ypp in (3.49) through ro, Rey and &y) in the
plots of the integrated counterion distributions, relating them to the charge fraction
[ at the manually determined point of inflection: While f,(vbeP) and f, do not
always “agree” on the same amount of counterion condensation, it is nevertheless
remarkable that f,(v5eP) always indicates the very same point on the distribution
functions, namely the point of smallest concave radius (point of inflection of the
derivative). Recalling that the inflection criterion leading to f, originates from the
treatment of infinitely long stiff rods and is only valid as a rigid threshold in that
infinite limit anyway, an agreement with f,(755") could not be expected exactly;
it is even uncertain if drawing the analogy to a polyelectrolyte network could work
on a conceptual level due to the lack of a clear definition. Furthermore, comparing
the counterion distributions around the chains to those around the nodes (again, see
appendix B for the plots), the latter almost always display ideal gas-like behaviour
even in the strong condensation limit because they cannot differentiate between
looking at a distance r along a chain or into the space between them; consequently,
that ensures further N -dependent effects in the plots which would not be there for
the infinitely long rod model. While the analogy to the Manning depiction therefore
breaks down on the quantitative level, the qualitative findings, especially regarding
J2(7BIP), tie the free parameter in (3.68) to the effective charge renormalization
due to the counterion condensation, once again confirming the rough estimate we
already did on the scaling level for (4.25).

Having procured that information, the length scales to be found in the integrated
counterion distributions are also noteworthy: For one, the spatial distance |r| from
a chain corresponding to its average length <R%>1/ 2 is indicated as well as the model
representations R2P and Rf}y‘id, the latter providing the idealized length of a network
strand in the blob-like and rod-like representation of the cylindrical cell model,
respectively. Since R?}}fb is essentially a projection of the network strand on the node-

node-axis, Rf‘y‘{d follows the contour line of the chain (assuming it to be sufficiently

Blob
cyl <

is expected as sketched in figure 3.2. This can also be observed in the given

stiff); hence, the rod-like description implies larger charge distances a, and R

Rod
Rcyl

plots of the counterion distributions, where RPP" is identified as too short a distance
for the network’s mesh size, because for |r| = RO < Rp not all counterions have
been found (i.e. the functional value is significantly smaller than 100%). Rgq® and
the measured end-to-end distance Rg on the other hand display a more complicated

connection: While for f = 0.25, fg € {l0,20} and f = 1.0, fg = 5o they coincide,
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3. Theoretical Treatment of Good Solvent Hydrogels

for strong electrostatics the rod-like description tends to overestimate the chain size,
and vice versa for weaker coulombic interactions. Nevertheless, R?;{’b does indicate
an important length scale, namely the one where “far” counterions enter the realm of
the next network chain. This can be most easily seen if looking at the distributions
around the nodes, because they exhibit ideal gas-like behaviour for |r| < REPP,
which changes dramatically once that threshold is surpassed; not quite as obvious
but still noticeable, the same holds true for the chain-centered distributions which
also abandon their convex shape at the same |r|-value. In a way, this refers back to
the cell model which would have that convex trend continued until a fraction of 1.0

is reached, because of its assumption of vanishing potential ¢(r) at its boundaries.

3.2.8. Intra-Chain Charge Repulsion

While the leading effect of the swelling of polyelectrolyte networks is to be found in
the osmotic pressure of the counterions being balanced by the elastic response of the
chains, in section 3.2.4 we already identified the regime of polyelectrolyte blobs where
the coulombic interaction became dominant on local scales. Particularly for strong
electrostatics there has to be an additional pressure component II,, entering the
equilibrium balance which represents the local repulsion of the charged monomers,
consequently depending on the Bjerrum length (g (as representation of the coulombic
strength) and the effective charge distance a (for a discussion on the difference
between rod-like and blob-like treatment see section 3.2.4).
Based on the Coulomb law between each of the fN, neighbouring charges per
chain we can therefore derive the electrostatic potential Uy, for one network strand
2
UgB (’I") = lkBTéBM (365)
2 r
from which, as in (3.31), the repulsion force f,, between the charged monomers
follows

UL,
o = =

= kgT/lg (f Now)”

r2

(3.66)

both up to logarithmical corrections in In(r/ry), as discussed later in section 3.3.3.
Similar to (3.33), the electrostatic contribution to the pressure is consequently given
by

_ fiy - Re
5T 3RS

generalizing the balance from (3.64) towards

(f Nin)*
3RY

T, — knTls (3.67)
0 = HEB + HEB + HEESAW
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Again, this expression cannot be solved explicitely for Rg, for structural reasons
and because of the implicitly Rg-dependent integration constant ypg which needs to
be derived from (3.49). As before in subsection 3.2.6, we can enter the blob picture
to apply the same idea of locally repelling charges there. Using the electrostatic
self-energy

2

Upg = kpTlp—~& (3.69)
Rg

of a blob chain with an effective amount of Qg charges remaining, and the corre-
sponding force
2

= kpTlp—2 (3.70)
r=Rg RE

fo— OUpg
PE = or

allows this effect to be simply added to the osmotic pressure of the counterions, i.e.
to write the self-consistency condition (3.35) for the stretching force on a blob chain
as

kT kgT kgT
fEO(H(jR%—I-prO( B —|—€B B 2; B

B—i—% <£B+%> &

(3.71)

which introduces a third numerical prefactor cpg.

Figure 3.12 demonstrates how the inclusion of the intrachain electrostatic repul-
sion dramatically improves the match between scaling law prediction and computer
simulation study findings. Even for the case of assuming linear chains, the left plot
here shows much higher relative chain lengths than the corresponding one on the
left side of figure 3.6, even overcompensating the latter’s lack of sufficient swelling.
Also taking the finite extensibility into account (the right plots in both figures) fi-
nally shifts the curves right onto the simulation data, indicating that we have now
accounted for all leading contributions to the swelling behaviour of polyelectrolyte
networks, 7.e. an osmotic pressure of an effective amount of non-condensed counte-
rions acting in unison with locally repelling charges on the network chains against
the nonlinearly diverging elastic restoring force of the strands.
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Figure 3.12.: Mimicking figure 3.6, the scaling prediction (3.71) is compared to the
computer simulation data, using the same axes (plotting the relative chain extension
Rg/Rmax = Rg/(bNy) x £/(bg) as a function of the bare charge fraction f on the z-
axis) and colour coding (black corresponds to ¢g = 0o, blue to {g = 1o, green to Ig = 20
and red to fg = 50). The left graph assumes linear chains, while the right one considers
the strands’ finite extensibility, thereby matching the simulation data satisfactorily.

3.2.9. Finite Size Effects & (N, V,T)-Behaviour

Before we can consider the combination of (3.71) and (3.38) a successful scaling
relation for charged hydrogels, we need to check the dependence of the result on
the amount of monomers N,, per chain, because the employed blob picture usually
assumes infinitely long strands, which naturally is not the case in our computer
simulations. Hence, figure 3.13 takes the right plot of the previous figure 3.12 and
adds the relative chain extension for N, = 79 and N, = 159 to the N, = 239
already displayed earlier.

Figure 3.13.: Taking
the right plot of fig-
ure 3.12, the simulation
data for network strands

with N, = 79 and "
N, = 159 is added
to the ones for N, = 0.3}
239 already displayed
there, to be able to as-  , |

sess finite size effects
in the scaling prediction
(3.71); hereby, smaller
symbols correspond to
shorter chains.

While for weak electrostatics there is almost no difference between the results for
N,., in particular if one remembers the size of the error bars of the simulation data
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as given in figure 3.5, even strong coulombic coupling does not exhibit serious finite
size effects but rather a direct convergence of the deviating data onto the predicted
scaling curves. It can therefore be safely concluded that our longer systems with
N = 239 are already close enough to the desired limit of N, — oo that no special
care is required (once again, this is particularly true if the error bars are taken into
account as well).

1.0-10™ ——rrrrer
a Figure 3.14.: Volume dependency of
—é 5.010° | 4 the total theoretical pressure Il as pre-
= dicted by the scaling relation (3.71) com-
z 0010° pared to the (N,V,T)-data P(V) mea-
? sured in the computer simulations for
2_5_0‘10-5 L 1 Nm = 239, a Bjerrum length of ¢g =
E 50, and varying charge fractions f €
= IS I {0.0625,0.125,0.25,0.5, 1.0} (colour coded

10° 10° 107 108 10° as explained in table S.1).
simulation box volume V'

Figure 3.14 takes the scaling prediction (3.71), derived for the system volume
V = Vi at swelling equilibrium where Il;,; = 0, and assumes its validity in the
vicinity of Vi, as well, arguing that

kg1 kgT kg1
fIE]Ot = fE+AfEOCHtOtR%O(£B7€+€B & 5 — ]Z_ =
BT fg (fB + %)
Cid (g CPE Nun/R

1. (3.72)

2 RE + ﬁ R 2 B uil
A () R () ((B2)7 1)

will hold for not too large Iy # 0, too. Plotting the resulting II(V')-graphs as
solid lines, we can then compare that accuracy to the pressures P(V) measured
by computer simulations in the (N, V,T)-ensemble. We find good agreement for
over almost two decades in the volume, which is quite remarkable considering the
approximations we used.

Though it might seem surprising to see such a simple scaling ansatz succeed in
capturing the essential physics behind a rather complex macromolecular system
with all its many interactions and correlations, it is one of the reasons why scaling
theories are so common in polymer physics. It should nevertheless be noted that
this approach is only exact up to the numerical prefactors of order unity we had
to introduce, making a priori predictions of entirely unknown systems rather dif-
ficult. For that reason, the next section 3.3 will present an attempt to extend the
considerations towards a rigorously self-consistent approach, a self-regulating model
construct without the need for additional system input or prefactors.
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3.3. The “Cell under Tension”-Model

The previous section 3.2 introduced the cell model as a framework for solving the
Poisson-Boltzmann equation. While very successful in describing real rode-like sys-
tems, it failed to capture the specifics of a polyelectrolyte network on a more than
qualitative level*. This should now be rectified by developing a unique combina-
tion of the “chain under tension” approach for ideal (section 2.3), real (section 2.4),
and network chains (section 3.2.2), with the said cell model for infinitely long and
infinitely stiff polyelectrolytes (section 3.2.7).

From there, we want to derive a free energy expression for the behaviour of charged
counterions within such a construct, combining it with the expressions (3.30) and
(3.65) for elastic response and electrostatic self-energy, respectively, to obtain a new
framework for the treatment of polyelectrolyte networks.

3.3.1. Self-Stretching Cells

The first task is to replace the four different definitions for the cell dimensions,
entering the length L.y of the cell in (3.39a), its outer radius R.y in (3.39b), and its
inner one ry, with a unified approach which takes the specifics of the polyelectrolyte
networks equally well into account as the definition of the basic cell model itself.

[ ] [ ] [ ] L]
° [ ] .. e o ... .. ".
L] ° [ ] : ..

° o0
° °
» t
° o ©© \
e o

Ld
..'o
o' o

A
Y

Figure 3.15.: Sketch of the cell geometry around each network strand (neglecting the
nodes and crosslinks), illustrating the definition of Ley1, Rey1, and rg; the latter encloses
the entire polymer, assuming that none of the counterions enter that excluded volume.

Instead of distinguishing rod-like and blob-like polymers, we consider the network
strands to be smeared out within the inner cylinder of radius ry, as depicted in
figure 3.15. That allows to define an excluded volume ﬂrg + L¢y1 where none of the

4 That was the reason why we rather continued using the scaling arguments in the previous section.
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counterions enter, but without actually destroying the electrostatic interactions be-
tween them and the monomers, because since the latter are assumed to be on the
(inner) surface of the inner cylinder, the counterions are still able to approach them
as close as desired. It also has the advantage that most of the definitions become
now straightforward: As seen in figure 3.15, L.y, undoubtedly corresponds to the
chain’s end-to-end distance Rg, while the Manning parameter £y = £g/a must take

the form / IN
CuT B m

because of the f Ny, smeared monomer charges along the cylinder of length L., = Rg
which lead to the definition of the charge distance a = length/# charges in (3.10)
to be uniquely fulfilled by a = Leyi/(f Nw). The outer cell radius Ry is once again
given by the requirement of equal total volume between the /N, = 16 cells and the
entire simulation box, such that the average counterion number density 7,y, is the
same in the cell model and the simulation reality. Due to the diamond-like structure
of the cubic unit cell with its edge length ag,, it is even possible to derive the
desired relation including numerical prefactors, because the system setup ensures
Ry = (vV/3/4)agm, as figure 4.2 already showed:

Ny - (Wngl : Lcyl) = V= a?im

= Ny (7R - Be) = (2?4)3

Lo, LY e
cyl 33/27TNp E
1 2
:> Rcyl — WRE (374)

If one excludes the counterions from the inner cylinder with radius 7, that volume
must also be deducted from the cell’s volume to ensure the same 7,y,:

Ny~ (TR%) - Ly =12 - Ley) = V =a

= N, (n(R3—10)- Re) = (\/?;4)3

43
= Ry = \/ R + 12 (3.75)

3321 N,

The radius rq of the inner cell cylinder can now be determined from the blob picture,
as the idea behind this approach is to allow the network chains to minimize their
energy (i.e. balance the blobs) while having the resulting length scale ¢ determine
ro ~ %f . The ratio Ryax/l, of the contour length of the entire chain to the contour
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length [, per blob size £ is going to replace N,,/g because in the limit of strongly
stretched chains when g < 1 it no longer makes sense to interpret g as “monomers
per blob”. Then, the blobs are no longer spherical, and we need to determine the
perpendicular dimension &, (while the parallel one & still corresponds to the known
€). In analogy to section 3.2.2 we can therefore write:

R
" ly — (3.76)

§||  flmax ~ = §||Rmax kT Riax
kT = fg-& g Rg fz - R

Now using (3.30) and (3.31) replaces fg by frrsaw and (3.76) by

1 1
RF 1—v RE v—1
lg = Rmax <m> (1 - l/) (Rmax) — 1] (377)

Since from (2.46) and (2.15) it is known that Rp/RiS = (Y°dY/?, the vertical
extension &, of the blob chain under tension follows from (3.76) as

R ,
€L~ R,,—F (L — &) (3.78)

max

with & = [, R}ana . We have to prevent that the inner cell cylinder becomes smaller
than 1o because that is the minimum separation a monomer must always have from

any counterion, hence we find for ry the requirement

R R Y
e B (1 12) -

max

with [, given by (3.77).

In summary, we introduce a cell model as sketched in figure 3.15 whose param-
eters are given by the condition of equal counterion number density n,y, with the
simulation box and therefore have to fulfill

u me
SuT — g o (3.80a)
Lyt = Ry (3.80b)
3
Rt - (| R2 42 (3.80¢)
Y 33/27er E 0
ro 1a+R}EF (zg (1—2—?)) (3.80d)

which due to its explicit dependence on the chain’s blob conformation represents a
stretched cell under tension.
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3.3. The “Cell under Tension”-Model

3.3.2. Solving the Poisson-Boltzmann Equation

Recalling the definitions of section 3.2.7 for the cylindrical cell model, we considered
the electrostatic potential ¥(r) at a distance r from the cylinder axis in cylindri-
cal symmetry. Introducing the counterion density n(r) and a reduced electrostatic
potential y(r) defined as

() = n(Rey) exp [—,f; )} (3.42)
y(r) =~ () (3.43)

we presented the solution (3.47) to the Poisson-Boltzmann equation

!

Y

Y+ P K2eY (3.45)
under the boundary conditions
2
y'(rg) = —% and Y'(Rey1) = 0 and Y(Re1) =0 (3.46)
0

and derived the numerical solution for one of the two integration constants, vypg,
from (3.49) over the entire range of validity of the Manning parameter &y > 0. As
ypp became purely imaginary for &y < &1, an analytical continuation of (3.49) in
that regime was required which we restricted to vpg because for the remainder of
section 3.2 we were only interested in the osmotic pressure IIEE, a function of only
vpp according to (3.51).

Now, however, we need the full solution for y(r) and the second integration con-
stant Ry as well, because the simplest ansatz for the free energy Fpp of the cylin-
drical cell model, restricting to the electrostatic part of the energy and the entropy,

reads [171,172]

Ry
Frp = Lcyl/ 27r [? (Vo (r)* + kgTn(r) In Z(T) dr (3.81)
r0 avg
requiring knowledge of y(r) for all &y (since n(r), ¥(r) and Fpp then follow from
(3.42), (3.43) and (3.81), respectively). Unfortunately, the known relation (3.47) for
y(r) contains with Ry a second integration constant for which the transcendental
equations in (3.48) only provide a solution if &y > &30, If that is not the case, Ry
becomes complex (just as ypp does) and (3.47) is no longer valid; since there is no
such simple analogon to the analytical continuation for vpg, we have to re-solve the
Poisson-Boltzmann equation to be able to use Fpg for & < &0, too.
A constructive solution for the non-linear differential equation(3.45) may e.g. fol-
low [157,166, 169,170, 173] by substituting r and y(r) according to

u(r) = In(kr) (3.82a)
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3. Theoretical Treatment of Good Solvent Hydrogels

fu) = y(r(u)+2u (3.82b)
which implies

1
ro= —e' = ™=k’ (3.83a)

K

du 1
— = - 3.83b
dr r ( )

d?u 1

With these substitutions the electrostatic potential y(r) becomes

y(r) = flu(r)) —2u(r) (3.84a)
df du du d du

yl(T) _ d_i . E — 25 = (d—i — 2) E (3.84b)

v (Pf du)du (df d*u

y'(r) = (@d—) ot (@—2) a7 (3.84c)

which transform the Poisson-Boltzmann equation, using (3.83), towards

()2 md] 22— e

r r2 r e2u K272
f//_ f/_2 f/_2 f
{ b >}+< -y _
o= (3.85)

The boundary conditions (3.46) become

ISV 1 Em

y'(ro) = _27«_0 — (" (u(r)) = 2) o _QE = f'(u(rg)) =2(1 =&u)  (3.86a)
Y(Rey) =0 = (f (u(Rep)) — 2) R 0 = f'(u(Rep)) =2 (3.86b)
Y(Rey1)) =0 = f(u(Rey1)) = 2u(Reyp) = f(u(Rey)) = 2In (kRey1) (3.86¢)

Multiplying (3.85) by f’ and integrating over u gives

/f’f”du = /f’efdu
10

2(f’) = ¢/ + const,

(f)? = 2¢f 43y (3.87)
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3.3. The “Cell under Tension”-Model

with the integration constant const; := —273g following from (3.86b), (3.87), and
(3.86¢) as
T:Rcyl "= ey
2 n(kReyt) ) > 2
44402, = 2 (e (s m)) = 2 (KRey)
2(1+1pp) = K'RZ, (3.50)

Integrating (3.87) again by separating variables leads to

(f)? = 2¢f —43,

df /
o N VA
df

= du

+/2ef —4r2,
! 2 \71/2
1 V2l — 42,
+— arctan | ————
7PB ( V4ris
with the definition for u from (3.82a), and a second integration constant consty :=

—In (kRy). Re-inserting f from (3.82b) as well as using (3.50) then turns (3.88) for
vpe € R into

1 Qey+2In(kr) _ 42
In(kr) —In(kRy) = +—— arctan V2 Tep
PB VA3

1+ tan? [ypp (— In (kRy) £ In ("”"))]}

= wu+ consty = In (kr) + consts  (3.88)

0 = o

1202
[ K2R? _
i cyl 271238 (1 + tan? [’YPB n (RLM)] ) -

2 2(1 + ~2

y(r) = —In ]; L
| Terl 293 (1 + tan” [PYPB n (RLM)D-
C .

= — 1 — 1 o2 e 2 1 D
y(r) " | RZ (14 7o) cos [VPB ! (RM)]

T T
y(r) = —2n { Rcyl‘/1+75§cos (vpgln R—M)} (3.47)
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The boundary conditions (3.46) consequently result in

26m
! _ —
Y'(ro) = ro
1 _
In(kRy) = {ln (kr) — — arctan m]
TPB ToYPB r=ro
ver In 70— arctan 1~ Cu (3.48a)
Ry TPB
and
y,(Rcyl) =0
1 1
In(kRy) = {ln (kr) — — arctan —}
YPB TYPB] | = Ryl
Ry 1
In —=> = arctan — 3.48b
TPB Ras - ( )

which can be combined by subtracting (3.48a) from (3.48b) to obtain the equation

R 1 -1
vpg In — _ arctan — + arctan >

(3.49)
To YPB YPB

for ypp. How (3.49) can be solved for the different regimes of &y was discussed in
depth in section 3.2.7; here, we are interested only in the regime & < &3® where
~vpp becomes purely imaginary and (3.47), (3.48), and (3.49) are no longer valid.
Using the analytical continuation vpg — —iypg =: Jpp allowed to find a suitable
replacement for (3.49) in section 3.2.7, which is why this idea should now be extended
to the other equations, too.

Restarting at (3.88), which was still valid for both real and imaginary ~vpp, we can
follow the same line of arguments again while using ypg = —iypg € R appropriately
inserted. Instead of (3.47) we then find®

2
r o . ~ r

y(r) =—1In [R 1\/71,; — 1sinh (’ypB In ﬁo)] (3.89)
cy

with the second integration constant from (3.88) modified to

) or Ry = Ryexp (— i ) (3.90)

29pp

Ry = Ry exp (—27
PB

® Contrary to (3.47), in the low electrostatics limit of (3.89) we left the exponent within the
natural logarithm because for r < Ro = In = < 0 = sinh(.) < 0 which renders the argument of
the logarithm to be negative because of sinh(—z) = —sinh(z); only the square around it then
prevents y(r) to become complex. For (3.47) this was not an issue because it contained a cosine

instead, for which cos(—z) = cos(x).
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3.3. The “Cell under Tension”-Model

because as &y — 0 decreases below &3 ypp goes through 0 and becomes purely
imaginary, while Ry goes through 0, too, but becomes complex afterwards; (3.90)
then conveniently defines a Ry € R which keeps y(r) € R as well. Once again

applying the boundary conditions (3.46) replaces (3.48) for ypg € iR by

1—

App In ;—i/{ = —arccoth 'S/PEM (3.91a)
R. 1

YpB In Rl\y; = —arccoth om (3.91b)

which can be combined by subtracting (3.91a) from (3.91b) to obtain the equation

—1

To YPB YPB

—App In Het _ arccoth ; + arccoth 2= (3.59)
for 4pg. While as in section 3.2.7 this allows to derive ypg numerically for all &y
via (3.49) and (3.59), it is now also possible to deduce Ry resp. Ry from (3.48) and
(3.91) even for &y < &3 which finally enables us to determine the electrostatic
potential y(r) within the framework of the cylindrical cell model and the Poisson-
Boltzmann description over the entire parameter range of &y = Ev(f, f), i-e. by
inserting vpp, Ry into (3.47) and Fpp, Ry into (3.89).

Figure 3.16 now displays the resulting y(r) for f € {0.0625,0.125,0.25,0.5,1.0}
and /g € {l0,20,50}, using the equilibrium swelling value of Ry measured in our
simulations (see table 4.1). Similar to a 1/r-potential, the graphs drop monotoni-
cally from larger numbers close the inner rod towards zero, reaching the boundary
condition y(Rey1) = 0 from (3.46) at different values of r for the various parameters
because of Rey = Reyi(Re) depending on the measured Rg we entered into its def-
inition (3.80c). Higher charge fractions f or increased electrostatics (larger fg) are
followed by a shift of the potential towards larger y(r) at all spatial distances r.

The counterion density n(r) is also given in figure 3.16 (right column) as it easily
follows from the electrostatic potential once n(R.y) is derived from (3.44) and (3.50),
and is combined with the definition (3.43) into the Boltzmann factor of (3.42),
obtaining

n(r) = (%) exp [~y(r) (3.92)

Here, the shape of the functions no longer shifts monotonically for increasing param-
eters f and/or fg; instead, they all approach their corresponding average counterion
density

SN
— 7"3) - Rp

(also given in figure 3.16 using the same line style as for the respective n(r) itself)
for vanishing electrostatics. This also allows a simple safeguard calculations to verify

Navg = 3.93
n g ﬂ_(R(Q:yl ( )
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Figure 3.16.: Plots of the electrostatic potential y(r) (left column) and the counterion
density n(r) (right column) within the framework of the “cell under tension”-model,
using the experimental values from table 4.1 for Rg, decreasing Bjerrum length /g =
5o (red lines), {g = 20 (green lines), {g = lo (blue lines), and all charge fractions

f € {0.0625,0.125,0.25,0.5,1.0} (indicated by increasing dashing); the plots of n(r)
also contain the corresponding na.e as a straight line in the appropriate line style.

the results we achieved so far by checking if

Rcyl
/dgr n(r) :/ 271 Leyy drn(r) = fNp
T0

is fulfilled by all derived densities n(r), i.e. all counterion charges are found in the
cylindrical cell (as it turns out, this is the case).
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3.3. The “Cell under Tension”-Model

3.3.3. Free Energies and Equilibrium

The thermodynamic equilibrium is characterized by the minimization of the free en-
ergy of the system. Corresponding to the balance in the pressure components, which
themselves are derivatives of the respective free energy contributions, this opens a
convenient way to determine the equilibrium swelling behaviour of the polyelec-
trolyte networks in the more elaborate setting of the “cell under tension”-model.
Instead of the simple ideal gas approach for the osmotic pressure of the counterions
employed earlier, the free energy Fpp of the cell can be used, which consists of an
electrostatic part of the energy, the entropy, and a free volume contribution:

Fpp = Fpp-k + Fpp-s + Fpp-v (3.94)
Various definitions for the individual components exist, e.g. [167,171,172]
Frp-g = %// drdr n(Pn()V(F—=7) — (fNu) /df’n(f’) V(r)
~—(/d%@mxﬂ{ W) + (j} (3.952)
)|
= kBT/drn( ) In (n(7) - vo) (3.95b)
Fpp-v = —kBT/d?’rn(F) In (1 — @) (3.95¢)

Mmax

Fpp_s = k‘BT d®r n(F) {ln(

with the coulombic interaction potential V() = kT2, the electrostatic potentials

?
Y(r) and Y¢(r) generated by the free counterions res|1;1 the “fixed” charges on the
rod, the molecular volume vy of a counterion, the average resp. maximum counterion
density iy from (3.93) and Apax = gwdg where d = 1.00 is the diameter of the
counterions.

While we found the excluded volume term Fpg_v to be negligible for non-collapsed
chains with Rg/Ruax 2 0.1, the normalization of the counterion density in the
entropic term Fpg_g is not; for the minimization, however, constant contributions
are of no consequence, which is why

kgT / d®r n(7) {m (%) — 1]
_ @T/H%nﬁwm(Mﬂ%-%%%>—q

= kBT/d3T n(7) [In (n(r)ve) — In (VoNave) — 1]
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= k:BT/an(F) In (n(7) - vo) — kg1 [In (VoTayg) — 1] /d37“ n(r)
= k;BT/an(F) In (n(7) - vo) — kT [In (VoTayvg) — 1] (fNm)
shows that both definitions in (3.95b) are equivalent.
Similarly for the electrostatic contribution Fpgp_g: The first definition integrates
the coulombic counterion-counterion and counterion-cylinder interactions over the

entire space (assuming that there are f IV, fixed charges on a rod going through the
origin), which can be re-written as

//drdrnf*)n V(- 7)) — (me)/an(f’)V(f’)
_ /d%nm/d%'n V(7 — ) — (me)/d?’rn(F)V(F’)
= /d%n(fj [§/d3r'n(f') V(ir—+) — (me)V(F’)]
= [Eren 3609+ wo)

to arrive at (3.95a). It is also possible to relate Fpp g to the total electrostatic
potential o (1) = (1) + ¢ (r) via

[ e |30 + )
= [@renin |5 00+ um) + gu]
5 [ A eon(s) () + () (3.96)

eliminating the need for determining ¥ (r), but now requiring 1.4 (r) and 1¢(r). The
latter, however, can be derived on a textbook level [174,175], as it stands for the
electrostatic potential of a homogeneously charged cylinder with line charge density
A = fNu/Ley; employing Gauss’ Law we find for the radial component E, of the
electric field®:

me o )\Lcyl

€0 €0

= fﬁ-dﬁ:Er]{dA:Er-Qchyl

1 A N, 1
I M S T (3.97)

2regr  2meq Lep 7

6 In cylindrical coordinates, the other two components are zero.
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3.3. The “Cell under Tension”-Model

From there, the potential ¥ (r) follows as

_, 1 A
Vi = E = (r) = —/Erdr = —/(27“0;) dr

2
) = gt (7o) = e (]
2meg Ry drepksT € Ry

QkBT T

= — | 3.98

wlr) = e () (3.95)

= ul) = —25M1n( . ) (3.98D)

Rcyl

where we chose 1¢(Rey1) < 0 as normalization for the integration constant, and used
lp = €/(4mepkpT) and & = Mg/ey to replace the line charge density with the
Manning parameter; the analogy to (3.43) then led to the reduced potential yg(r).

Note that through ry = r9(Rg), Reyi = Reyi(REg), Leyig = Leni(RE), and &y =
Em(RE), all due to (3.80), functional minimization of Fpp requires variation of R,
from where then the cell model parameters are set, allowing ypg and Ry resp. Ry to
be computed, which in turn determines y(r) and n(R), leading to ¢ (r) and n(r),
with which one finally arrives at Fpg — a procedure that needs to be repeated for
every Rg until the minimum in the free energy is found.

ém(RE) for & > 51\”}[1“:
Ri — (3.80): ézllégi)) ) (349): vpgfsg(j.is)éﬁ RM = @4
(3.50) — (3.44): n(Rey) N
(r) = (3.43): 6(r) ! { oy | 7on

(3.42): n(r)

Considering that (3.49) and (3.59) can only be solved numerically, the latter thereby
requiring special algorithmic caution due to the steep divergence shown in figure 3.8,
it will be understandable that the intrinsically simple idea of minimizing the free
energies becomes quite an effort for the application to the cell model.

Electrostatic Self-Energy

In its current form, Fpg still lacks an important contribution to the total free energy
FpB_tot Of all currently considered components, namely the self-energy Fie_,oq 0f the
rod. That can be seen most easily when starting off with the definition of Fpp_iot,
i.e. with

Frn = 5 [ Eremald bl = 5 [ Ereoln) +n®) [0 + ()
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: / d*r o [P (F) + n(F)e(F) + ne(Fe()]
- / d*r egn () { Y (7) + wf(ﬁ)] / d*r eqny (7)) (F)
= FpB-E *+ Fse-rod (3.99)

and using n(r)Ye(r) = ne(r)(r) before introducing Fpp_g from (3.95a) and identi-
fying the second term as Fie_roq4, Which in turn can be derived by taking the surface
charges for n¢(7) and the potential ¥¢(7) from (3.98a) to

1
fse—rod = §/d3760nf(m¢f(f)

4 o v nn] [ 5 )

= __)\é-MkBTRE In (Rcyl)

(me) Rcyl
= —k T 1 1
5 B B RE n o (3 00)

again replacing A = fN,,/Rg and & = (g f N,y /R in the last step.

This result is a very nice confirmation for how we previously modeled the self-
energy of a rod-like polyelectrolyte, because up to the logarithmic correction (3.100)
corresponds both to the pressure component II,, we found in our simulation as
difference APgel between charged and uncharged hydrogels at the same volume V,,
as well as to the potential

U, (1) = —kBTéB

5 (3.65)

(f Nw)?
r
we based our theoretical investigation from section 3.2.8 upon. Comparing fig-
ures 3.17 and 3.18, where both Fy_;.q and Uy, are plotted, shows how the log-
arithmic correction depends on the choice of the model parameters ro and Ry,

becoming negligible for large enough chain extensions.

Sticking more closely to the smeared out depiction of the network strands in our
“cell under tension”-model, other descriptions for the self-energy of the monomers
are available as well, e.g. that of a prolate ellipsoid with one large semiaxis a; and
two identical small semiaxes ag, and x = aj/ay > 1 abbreviating the aspect ratio.
If the ellipsoid is charged with a homogeneous charge density equaling the fNy
charges it should represent, then the electrostatic self-energy is given by [176,177]

3 (fNn)® arccosh z
o= = 101
Ut = S hmeoesar VI =22 (3.101)
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Figure 3.17.: Comparison of different electrostatic potentials, namely the Uy, from
(3.65) on the left and UZ from (3.102) on the right, as function of the node-node
separation Rg for a chain with Ny, = 239; similar to e.g. figure 4.8, thinner dashing
refers to smaller charge fraction f € {0.0625,0.125,0.25,0.5,1.0}, while both plots are
only displayed for ¢g = 50 as a different £g would only rescale the y-axis.

Its volume (47/3)aja3 then has to be matched to the polymer cylinder from our
model setup in figure 3.15, setting the semiaxes to

dr 5

2
—aay; = 7y Ley

3
a; = L¢i = Rg
V3

= ay = 77"(]

which, using epes = e2/(4nkgTlp) from the definition of the Bjerrum length /g,
gives

2 Rg
3 N, 2 arccosh (—T—>
Ug = knr2, ) o

) 6(2)RE 1_<lﬁ>2
YRR

as electrostatic self-energy of an ellipsoidal monomer distribution of matching vol-
ume in place of our cell cylinder.

Figure 3.17 shows how U, and UEB differ in their short-range behaviour for small
Rg: While Uy, diverges, as one would expect when considering a charged polymer
chain which is confined to smaller and smaller space, the elliptic potential exhibits
a maximum after which it goes to zero. While U, is much larger for Rg < 0, it
quickly becomes smaller than UlbNew from the latter’s maximum onwards, since
with increasing Rg the polyelectrolyte assumes an increasingly linear shape which
the coulombic potential considers but the elliptic one does not. As could already be
inferred from their respective definitions (3.65) and (3.102), in both cases the charge
fraction f enters quadratically (shown in figure 3.17 through more widely dashed

(3.102)
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lines for larger f), the Bjerrum length /g linearly (which is why only the plots for
{g = 5o are given).

Varying Cell Radii

The definition (3.80d) for the inner cell radius rq is not necessarily undisputed, as we
employed the tension blob model to estimate the impact of the chain extension Ry
on the cylinder size, which will introduce small errors on the order of unity due to
neglected prefactors”. Therefore, we want to investigate how the choice of the inner
cell radius (which in turn also influences the outer one, see (3.80c¢) for the definition
of Rey) influences the free energy components in Fpp_ot-

Besides the obvious alternative of 7y = 1.00, which simply allows the counterions
to approach every monomer on the inner “rod” up to the excluded volume while
neglecting the lateral extension of an eventually coiled polymer®, we also compare
an attempt of an improvement on the blob picture: Returning to (3.76), where the
derivation of rq originated, we replace the elastic force fg acting on each blob not
by the theoretically obtained fpggaw but rather by

kT R \T° Re \7\
fFE/ﬁtBT<3<RE> -<1_<RE)) ) (4.17)

with 8 = 3.7 and v = 2 as exponents, shown in section 4.2.3 to fit the force-extension-
relation measured in our computer simulations; this leads to another alternative set
of cell parameters, i.e.

kBTRmaX ~ RF 7 RE Y
= o Tmax d ~1 I, {1- 3.103
fFE/ﬁt . RE o o ot Rymax ( J ( Rmax)) ( )

which should pose a slightly better representation of our “cell under tension”-idea.

The left plot in figure 3.18 illustrates these three choices by plotting them as a
function of the chain extension Rg. With 7y and Rcyl x Rg as their limits for large
REg, the other two definitions for inner and outer cell radius do not differ much from
each other even for smaller chains, where their similar shapes both diverge while
7o and Rcyl approach the excluded volume limit 1.0c. This also implies that unless
the swelling equilibrium occurs at rather shortly extending strands®, the different

=~
Q

7 An example is the Flory radius Rp ~ bNY for which the alternative expression Rp ~
véf’bz/ 5N,§1/ o may give the same numbers b; = ué,{"’bﬁ/ 5, depending on the system under consid-
eration. Extensive computer simulations of single neutral chains found b; ~ 1.1 for parameters
similar to the ones we employed, although in general scaling predictions might also neglect
prefactors as large as +£9 to be “on the order of unity”.

8 This pictures the polyelectrolyte to essentially shrink along its end-to-end vector.

9 Since both (3.77) and (3.103) used the blob picture to estimate the lateral chain extension, the
equilibrium must occur for Rg > Rp anyway to not conflict with the assumptions employed
therein; looking at our simulation data, where Rg/Rr 2 3.5 for all parameter sets, we certainly
expect our theory to fulfill that requirement.
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Figure 3.18.: Left: Comparison of different definitions for the cell radii from (3.80),
i.e. the usual ry and Ry, printed in Navy blue, the similar 79 and Rcyl in Venetian red,
and 7 = 1.00 as olive lines. Right: Their impact on the electrostatic self-energy Fue_rod
of the inner cylinder in the cell model, again only shown for /g = 50 as different ¢p
merely rescale the y-axis; here, Navy blue lines refer to the usage of rg in the definition
of Fee—rod, While Venetian red indicates employment of 7y, and olive lines of 7y there.
The shaded box indicates the regimes Rgy < Rp where the chain is shorter than the
Flory radius, i.e. the blob picture no longer applies.

modeling of the cell parameters seems to be of secondary importance.

That assessment changes when evaluating its impact on the respective free energy
components Fpp_tot is composed of, choosing /g = 5o as exemplary parameter
value to accompany the charge fractions f € {0.0625,0.125,0.25,0.5,1.0}: The self-
energy Fi_roq Of the rod, shown in the right plot of figure 3.18, e.g. exhibits an
entirely different physical behaviour when using r( or 7y in place of 7y = 1.00, as the
latter follows a simple 1/Rg-dependency, indicating that the system always tries to
maximize the intra-charge distance on the rod by maximizing its total length, while
the former also allow a collapsing chain to minimize the self-energy since for Rg — 0
the inner radius diverges, so does the cylinder’s surface on which the constant fN,,
charges are smeared out, enabling the likewise charged monomers to maximize their
respective distance, too. For ry and 7 the system therefore phase separates, favoring
very large or very small conformations, whereas for 7y only ever increasing extensions
are preferred.

The energetic part Fpg_g of the Poisson-Boltzmann free energy Fpg, as plotted
on the left of figure 3.19, behaves very similar, except that the short-range extremum
is shifted towards smaller Rg and the potential values are about five times larger;
the slope of the 75-limit is now also more strongly curved for smaller f, whereas
in the previous case the curvature was seemingly constant for all charge fractions.
Note however, that Fpg_g has the opposite sign of the self-energy because it is dom-
inated by the (attractive) interaction between ions and chain monomers, which is
more pronounced than the repulsion between mostly gas-like counterions also con-
tained therein. As a consequence, the energetic part of Fpg favors smaller systems,
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Figure 3.19.: Impact of the different definitions ro (Navy blue), 7y (Venetian red),
and 7y (olive lines) for the cell radii on the components of Fpg, i.e. (—1) - Fpp_g (left)
and Fpp_g (right); line style, colours and shaded region as in figure 3.18.

indicating total collapse when using 7, and even exhibiting a distinct minimum for
ro and 7y such that a stable state would be found if nothing but Fpp_g was to
decide. This is understandable because in the second case the suddenly increasing
surface over which the monomers are smeared out for Rg — 0 also decreases the
monomer-ion interaction, as compared to the case of 7y where smaller Ry leads to
much higher charge concentrations on the center cylinder resulting in stronger in-
teractions; the counterions have the same decreasing volume available in both cases,
making their repulsion eventually the dominant contribution under blob-like bound-
ary conditions. Thus, the minimum in Fpp_g essentially reflects the combination of
surface monomer charge density fINV,,/(2rroRg), as indicated by the behaviour of
ro and 7o in the left plot of figure 3.18, and counterion density n(r = ry), as in
figure 3.16, there.

Even more dramatic appear the changes for the entropic component Fpp_g (on
the right in figure 3.19), where functions for ry and 7 only coincide for very small
or very large Rg, with their area of deviation (i.e. the range of Rg where and the
amount by which their energy values differ) vanishing for small f. Although the right
plot in figure 3.19 reveals no physical difference between the definitions this time,
with all functions monotonically decreasing for increasing R, i.e. all counterions
trying to maximize their occupied volume to gain entropy, the olive lines based on
7o = 1.00 are still introducing a different weight into the free energy balance we are
aiming at due to their much steeper descent; consequently, entropic effects will play
a more pronounced role in systems using 7y instead of rg or 7, at least for higher
charge fractions, as for smaller f all three definitions already coincide for Rg larger
than a f-dependent, increasing threshold.

So, the proper choice of the inner cell radius obviously plays a rather significant
role for the free energy equilibrium, with both kinds of definitions, i.e. blob picture
leading to rg or 7y, and excluded volume approach resulting in 7y, = 1.0, being
justifiable from a physical point of view. This is why we want to continue comparing

126



3.3. The “Cell under Tension”-Model

both choices in the following; we are, however, going to neglect 7 as its difference
to the results based on ry are not of a qualitative nature.

Elasticity and Energy Equilibrium

Knowing Fpg is only one part of the bargain, as it merely includes the electrostatic
and entropic contributions of the counterions to the system; even after adding with
Fese—rod the electrostatic self-energy of the rod, Fpp_io; only describes the free energy
of the intrinsic cylindrical cell model. For a proper connection to our network model,
the elastic response of the chains to the swelling process must be included, too. This
was already calculated earlier

U o T [ me ﬁ1 1 P\
rEsaw (1) = —kn (RF) n —(Rm) (3.30)

Urinlr) = o) = ar 57 (3 () (1 i (RiE)ﬁ> )

(3.104)
such that the total free energy Fio: of the hydrogels is given by
FpB-tot + Uresaw = FpB + Fse rod + UrEsaw
Fiot = 3.105
ot { FpB—tot + Urg/sit = FpB + Fse—rod + UrEg/st ( )

depending on the preferred choice of bond model, i.e. frgsaw from (3.31) or frg/s
from (4.17) with its parameters = 3.7 and v = 2 fit to our simulation data in
figure 4.11.

The difference between these two elasticity models becomes apparent when look-
ing at the plots of figure 3.20: For smaller and intermediate chain extensions Rg both
potentials coincide, as by construction they should correspond to the harmonic or
Gaussian limit there. Their divergence, however, is different, with the potential of
the finite extensible self-avoiding walk allowing longer chains which would already
get a rather severe energetic penalty from the fitted force relation (compare their
energy values e.g. with the numbers in figures 3.18 and 3.19), i.e. representing a
stiffer polymer than Upgsaw. Keeping figure 4.11 in mind where Upg/g was suc-
cessfully matched against our simulation data, and recalling that Upgsaw was not
only constructed to correspond to the FENE-potential, used in the simulations to
model chemical bonds, but also provided the improved scaling prediction (3.34)
which matched our weakly charged data in figure 3.5 rather well, their difference
may play an important role now because the elastic energy will be the main compo-
nent counteracting the general trend from the counterions’ entropic and the rod’s
energetic desire for as large as possible system sizes. Consequently, it will have a
significant impact on the overall equilibrium how “soon” (in terms of increasing
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Figure 3.20.: Comparison of different definitions for the elastic energy, i.e. the Upg g4
from (3.104), printed in Navy blue, and Upgsaw from (3.30) in Venetian red; to visualize
the magnitude of both potentials’ divergence towards Ry.x = bNn, = 2390, the same
graph is given on a linear (left) and logarithmic scale (right), albeit with a different
range. The shaded box indicates the regimes Ry < Rp where the chain is shorter than
the Flory radius, i.e. the blob picture no longer applies.

Rg) the elasticity will be large compared to Fpg_i. Note in this context that both
Urgsaw and Urg/ge only depend on Ry and particularly not on f or /g as the other
contributions do; the aforementioned question therefore translates to investigating
when Fpp_iot itself will be large enough to swell against the elastic energy.

Following these trends for the separate contributions to the total free energy Fio of
the “cell under tension” as a function of the chain extension Rg and the coulombic
parameters f and /g leads to plots as in figure 3.21. There, Fpp_iot is detailed
through the electrostatic Fpp_g (long dashed orange lines) and the entropic Fpp_g
(short dashed sandy brown lines) part of the counterions, plus the self-energy Fie 1oq
(straight brown lines) of the smeared out monomeric charges on the rod, with the
added elasticity entering through Urg/s: (dashed blue lines) or Upgsaw (dot-dashed
red lines), respectively. Clearly, entropy and self-energy are the mechanisms trying
to phase separate (left column, using o) or maximize (right column, using 7o = 1.00)
the system size against the combined efforts of elasticity and electrostatic energy,
where it is the respective parameter set deciding on which terms are dominating.
The emerging balance is then characterized by a minimum in the total free energy
Fiot, drawn as thick blue or red lines, depending on which of the elastic potentials
Urg/se 0o Uppsaw was used in (3.105).

First thing to notice when looking at the plots is the lack of such a minimum for
systems with many counterions (f = 1.0) when using 7y = 1.00 as inner boundary
conditions (upper graphs in the right column of figure 3.21). There, the energetic
contribution Fpp_g is so strong that its desire to collapse the network does not only
overcome the electrostatic self-energy F,._,oq but the entropy of the counterions as
well. Between (g = 50 (uppermost plot) and ¢g = lo, however, the pronounced
decrease in the absolute values of all coulombic contributions already sets the trend
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Figure 3.21.: F, and its components, i.e. Fpp_g (long dashed orange lines), Fpp_g
(short dashed sandy brown lines), and Fye roq (straight brown lines), balancing the elastic
energies Upg g (dashed blue lines; total sum: straight, thick blue lines) and Urgsaw (dot-
dashed red lines; total sum: straight, thick red lines) based on the cell radius ro from
(3.80d) for the left column, and on 7y = 1.00 for the plots in the right column; shown are
(from top to bottom) the charge parameters {f,¢g} = {1,50}, {1, 10}, {15,560}, {, 1o}
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3. Theoretical Treatment of Good Solvent Hydrogels

for further diminishing of the electrostatics’ significance as the entropy term starts to
become noticeable by slowing down the descent of Fiy for smaller Rg considerably.
This trend continues when fewer counterions are around (f = 0.0625, lower plots
in the right column), and eventually entropy wins by introducing a minimum into
the total free energy of the system. As a results, employment of purely cylindric
boundary conditions (i.e. allowing the counterions to get as close to the monomers
as excluded volume permits, but also accepting the charge density of the inner rod
to become unrealisticly high for small Rg) with 7y = 1.00 fails to find the swelling
equilibrium once electrostatics becomes dominant, essentially rendering itself useless
because for weak coulombic coupling we already showed much simpler approaches
such as the pressure balance against an ideal gas to work sufficiently well.

The other case of a blob-like depiction for the inner cell cylinder (left column in
figure 3.21) always exhibits a minimum in the total free energy Fi., even for strong
coulombic coupling where it is due to the short range trend of both electrostatic
contributions Fpp_g and Fy_roq going to zero for Ry — 0 and f = 1.0 (instead of
diverging to +oo as for 7y = 1.00). The self-energy (3.100) thereby scales linearly
with /g, i.e. decreasing by a factor of 5 between the upper two plots representing
f = 1.0 and /g = 50 resp. g = 1o, but remains always absolutely smaller than
the energetic part of Fpp even for the former case of strong repulsion between the
close, neighbouring, and likewise charged beads'® on the polymer-cylinder. In the
same regime, the much stronger counterion condensation causing their proximity to
the oppositely charged monomers also has Fpg_g to clearly dominate the energy
balance while decreasing their entropic contribution as well, with ions confined to
a small volume around the central chain clearly having less entropy than those few
remaining free and mobile in the outer cell. That is also why the (absolute) drop
in Fpp_g between /g = 5o and /g = 1o is much more than the factor 5 seen in
the self-energy, since most of the condensed counterions return into an unbound
state, causing Fpg_g to almost double its magnitude along the way towards weaker
electrostatics. Consequently, it is the minimum in Fpp_g alone which determines
the swelling equilibrium in the limit of strong coulombic coupling, before the mono-
tonic decrease in the (absolute) values of Fpp_g and Fy_,oq allows the entropic
term, growing for less condensation and shrinking for smaller charge fractions (i.e.
less counterions), to influence the position of the minimum in Fi.. For vanishing
electrostatics, both lower plots in the left column of figure 3.21 finally reflect the
expected balance between an (almost) ideal gas-like “cloud” of counterions and the
elastic response of the network, which we had already independently confirmed ear-
lier. These graphs do not only visualize how negligible Fpp_g and F,e_,oq really are
with respect to Fpp_g and Urgsaw or Urg/s, even for the strong fg = 5o (as long

10 In reality it is effectively screened, which is purposefully not included in Fy_,oq since we are
interested in the bare effects here; the summed Fpp_to; then contains with the superposition all
effective adjustments as well.
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3.3. The “Cell under Tension”-Model

as with f = 0.0625 only few charges are around) where the entropy of the mobile
ions is nevertheless only barely affected, but they also demonstrate once more the
physical difference in the choice of boundary conditions when comparing them to
the corresponding plots in the right column.
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Figure 3.22.: F, and its components, drawn as in left column, of figure 3.21, i.e. based
on the cell radius ry from (3.80d); shown are (from left to right) the charge parameters

{f, s} = {%,50’}, {iv lo}.

Although for both strong and weak electrostatics the minimum in the total free
energy seemed to be occurring around the same chain extension Rg, the trends we
outlined for the individual contributions to Fi,; would not necessarily indicate this
to hold for all other parameter sets as well. Therefore, we are looking at an additional
intermediate combination of f = 0.25 and ¢g = 50 or /g = 1o plotted on the left and
right of figure 3.22, respectively. The former case of stronger electrostatics appears
similar to the f = 1.0, g = 1o discussed previously, with the energetic Fpp g
determining the minimum which is slightly shifted by an always (absolutely) larger
entropic Fpp_s; since the magnitude of all contributions (except the elastic ones)
is lower, Fi is still platykurtic, albeit its width became smaller, the minimum
more pronounced. The latter case of weaker electrostatics resembles f = 0.0625,
/g = 5o from the previous figure, with the exception of Fpp_g now being small
but non-negligible enough to support the larger entropic contribution in balancing
the elasticity at a much larger value of Rg. It is only now that the difference in
the modeling of the elastic response begins to play a role, as Upggaw produces a
later divergence of Fi than Upg/se; all previous plots had stayed within the regime
where both representations coincided. Consequently, while for /g = 50 the minimum
in the total free energy remains at small chain extensions, for /g = 1o it obviously
depends on the interplay between entropy and elasticity (for small charge fractions)
resp. electrostatic energy (for large f), moving the equilibrium value of Rg through
a maximum at intermediate coulombic coupling.
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3. Theoretical Treatment of Good Solvent Hydrogels

Swelling Behaviour

The equilibrium swelling behaviour of the network strands’ end-to-end distance Rg
follows from minimizing the total free energy Fi. in figure 3.21 which is again only
possible to achieve numerically because of the ¢(r) and n(r) required for Fpp coming
from the solution of the Poisson-Boltzmann equation. While we already discussed the
general trends to be expected for Rg as the underlying charge parameters f and /g
are varied, the previous subsection focused on how the final balance emerged in terms
of the respective contributions to the free energy for some exemplary parameters.
Here, we now want to present the final outcome once all the intermediate steps are
complete, relating the results to previous predictions and our simulation data.

Figure 3.23 therefore picks up the representation of figure 3.5, where the relative
chain extension Rg/Rmax had been plotted as a function of the charge fraction f,
using the Bjerrum length /g as parameter; added to that graph had been lines
indicating the maximum extension R,.x = bN,, to which the chain diverges non-
harmonically before bonds break, the simple scaling prediction Ry = f17VN,,b from
(3.6) valid for not too strong coulombic coupling and counterion condensation, and
the modified scaling prediction

- f 1—v
Rg = bN,, <7f = %) (3.34)

we already applied earlier in section 3.2.6. Colour coded as usual, i.e. blue, green,
and red corresponding to a Bjerrum length of /g = 1o, 20, and 50, respectively,
figure 3.23 compares the results of minimizing the total free energy Fio; derived via
(3.105) for the various parameter sets, given as lines obtained from interpolating the
discrete data, to the simulation results from chapter 4, given as points as before.
After the investigation of the previous subsection into the interplay of the in-
dividual components in Fi revealed that the formation of the total free energy
lacks a (local) minimum for strong electrostatics when the inner cell radius is set to
79 = 1.00, we will focus on the results from the “cell under tension”-model alone,
where for all parameter sets the swelling equilibrium could be found. Using Upggaw
as representation of the chain elasticity, we will omit the other bond potential be-
cause we have seen that they both coincide over almost the entire expected range of
equilibrium chain extensions. Within this framework, the numerical solutions of the
minimization of Fi. are presented for a chain length of N, = 239, a Flory radius
(2.46) of Rp = vl b?P NS with bond length b = 1.00 and excluded volume vey
derived via (2.37) from the Lennard-Jones parameters (4.2) used in our simulation.
For the case of weak electrostatics, i.e. /g = 1o and f < 1.0, or fg = 20 and
f < 0.5, figure 3.23 shows that the interpolated minima of Fi,; now follow the
modified scaling prediction (3.34) quite well. Actually, this is not too surprising
since in those regimes our detailed analysis of the individual components showed
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Figure 3.23.: The relative chain extension Rg/Ry.x as a function of the charge fraction
f for varying coulombic coupling ¢g € {lo,20,50} and a polymer length N, = 239,
obtained from minimizing Fio¢ with 7y as inner boundary condition and Upggaw modeling
the chain elasticity. The dark lines correspond to the limits and scaling predictions from
figure 3.5, the blue, green, and red lines and points to the aforementioned Bjerrum lengths,
respectively, where the lines interpolate the results of the free energy minimization (that
interpolation is also responsible for the seemingly oscillatory overshoot for /g = 20), while
the points indicate the equilibrium swelling data from our computer simulations.

only the entropy and elasticity to be of major importance, while electrostatics could
either be neglected or only played a minor role — as (3.34) is based on the assumed
balance between ideal gas-like and elastic pressure, both being the derivatives of the
terms Fpp_g and Upgsaw we employed here, a good agreement was to be expected
and merely re-confirms the negligibility of coulombic interactions in those regimes.

Complying with our simulation data, stronger electrostatics now shift the equilib-
rium towards shorter chain extensions, because the repulsive increase in Fye_roq X
f%ls and the entropy loss mobile ions experience is overcompensated by the en-
ergy gain of oppositely charged monomers and counterions getting closer, for which
smaller system sizes are more favorable. As was observed before, the strongly charged
hydrogels with /g = 50 even exhibit approximately constant node-node separations,
because of the dominating Fpg_g enforcing its minimum onto Fi,; and allowing only
slight shifts due to Fpp_g, whose balance with the elasticity for small f occurs at
the same Rg/Rpax.

The magnitude, however, deviates dramatically from the experimental expecta-
tions, with data for /g = 5o appearing constant, for /g < 20 and larger charge frac-
tions even suddenly dropping from following the modified scaling prediction onto
the plateau the /g = 5o-values form, as if a collapse-like crossover would be present,
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from the “neutral” behaviour following (3.34) towards the “charged” plateau pre-
pared by the data for very strong electrostatics, occurring in between f = 0.25 and
f=0.5for fg = 20, and for 0.5 < f < 1.0 in case of /g = 1o. This transition mirrors
the maximum in the chain extension Rg described while discussing figure 3.22 in the
previous subsection, where the entropy increasing with f shifted the balance with
the (constant, f-/¢g-independent) elasticity towards longer node-node separations,
until the onset of counterion condensation caused Fpp_g to start shrinking, while
the electrostatic interaction between ions and chain monomers became the dominant
term in Fi., implementing its own minimum as the global one — which is also why
the system size after the transition is complete coincides for all /g, because the lo-
cation of that minimum depends mainly on ry = 7o(Rg) instead of other parameters
(which in exchange decide on its magnitude).

Recalling the results of the previous subsection, particularly the left column of
figure 3.21 where it was shown that the minimum of the total free energy Fi.: for
strong coulombic coupling mainly depends on the shape of the balance between the
electrostatic term Fpp_g and the self-energy Fi._.oq of the polyelectrolyte chain, it
is there where possible improvements have to be applied. As it seems in figure 3.23,
the effect of strong coulombic coupling is either overestimated or not sufficiently
compensated by other contributions, such that the implications of counterion con-
densation (dominating that regime) need to be revised. Although the employment
of the Poisson-Boltzmann theory for deriving the counterion density distribution
n(r) was intended to circumvent this, its original design for infinitely long stiff rods
requires more complex modifications, which will be done in the following.

Penetrating the Central Cylinder

The electrostatic self-energy Fi._roq 0Of the polyelectrolyte was derived from a cylin-
der with the charged monomers being smeared out over its surface, with the choice
of rg, 7y, or 7y deciding whether it depicts a thin rod of diameter 27, with ever
increasing line charge density for Rg — 0, or whether it models a disk-like object
whose surface charges maximize their respective distance in the same limit. Con-
sidering the polymer chain where all charges are at most at fixed separations b/ f
along the backbone, but possibly closer due to a coiled contour for Rg << Rayx, the
electrostatic repulsion has to always diverge for vanishing node-node separations;
according to figure 3.18 this is only the case for an energy like (3.100) if its inner
radius remains constant. On the other hand, because of the desired modeling of
an increased eigenvolume a polymer occupies for decreasing chain extensions, also
distributing the fN,, fixed charges more realisticly in space, the blob-like rq or 7
are better suited as a framework for the terms in Fpg, at the same time ensuring
the total free energy to have a minimum over the entire parameter range.

Which of the boundary conditions 7, rq, or 7 is therefore an appropriate choice
for defining the central cylinder’s boundaries? Is the assumed charge distribution of
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Figure 3.24.: The lateral extension of a network chain perpendicular to its node-node-
axis ﬁE, averaged over all strands and equilibrium conformations of the corresponding
parameter set. Given as a distribution of the individual distances the chain monomers
have from EE, the left plot compares the absolute values for selected parameters, while
the right one rescales the spatial axis by the length of Ry to assert relative effects (colours
and symbols as in table S.1).

the monomers sitting on its surface a realistic description? This can be easily checked
by looking at the simulation data, analyzing the lateral extension of a given network
chain perpendicular to its node-node-axis Rg. Figure 3.24 displays the result as
distribution of the individual distances each monomer has from EE, averaged over
all chains and equilibrium conformations. As it turns out, the co-ions do indeed
exhibit a distinct maximum at a certain distance, although it depends on the given
parameters, ranging between 20 and 5o instead of a constant 7y = 1o; in addition,
its width is much broader than the d-peak assumption implied by the depiction of
an impenetrable central cylinder onto whose surface the monomers were assumed to
be smeared out. All in all, it resembles more the projection of a 3D-Gaussian-like
distribution around an axis EE

Looking at the individual graphs in detail (for better visibility not all parameters
have been plotted), electrostatics seems to mainly determine the lateral extension
of the chains, as for few ions (i.e. a small charge fraction f) the relative width of
the distance distribution is widest and also independent of /g, while for larger f the
Bjerrum length decides if the maximum peak is pronounced and close to the axis
(small /) or if it is wide and further away (large {g) towards the almost neutral cases
with f = 0.0625. In absolute numbers, the peak position for /g = 50 corresponds to
that for f = 0.0625 because of the very strong counterion condensation effectively
neutralizing the chain locally; the tail of the distribution nevertheless extends further
as there the intra-chain charge repulsion becomes effective. For decreasing ¢y this
effect is reduced as now the counterions are no longer “bound” to the chain but rather
accumulate close-by, such that their remaining osmotic pressure swells the system
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and therefore stretches the chains, which in turn decreases their lateral extension.
The onset of condensation is thereby visible when for /g = 1o more counterions
cause a higher peak (larger f means larger 1), whereas for /g > 20 the tide turns
(larger f means larger & means smaller f.g means smaller T1ET).
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How is that reflected by our model? For starters, the peak position, correspond-
ing to the central cylinder’s size r¢, is obviously not constant but has to follow a
length-dependent estimate such as e.g. (3.79). To assess its usefulness, from fig-
ure 3.24 we determined the respective value for all parameters, plotting the result
in figure 3.25, and comparing it with the prediction of (3.79). Without condensa-
tion effects in the system, all data actually obeys our estimate qualitatively (gray
line, (3.79) unchanged) as well as quantitatively (black line, also accounting for the
numerical prefactor in the blob measure £, of section 3.3.1) rather nicely; we only
see deviations for f > 0.5, fg = 20 and f > 0.25, {g = 5o, i.e. for &y > 1 where
condensing counterions obstruct the lateral extension of the chains.

Thus, in general we find (3.79) to be a good description for the inner radius g
of the central cylinder — although figure 3.24 also shows that the assumption of
the monomers to be smeared out only on its surface (i.e. behaving similar to a
d-distribution of charges) is not very accurate. Combined with the fact that the
counterions are actually space-filling, it seems worth investigating how our results
are affected if we allow the ions to penetrate the central cylinder of the cell model,
while also attempting to use different distributions for the monomers there.

No analytical solutions are known for these kind of modifications because they
both render most of the strategy for solving the Poisson-Boltzmann equation over the
entire range of coulombic coupling rather useless. It is however possible, albeit com-
putationally expensive, to construct a solution numerically. The basic idea is given in
Technical Point 1.5 of [157], which we used to write a C-module for Mathematica; its
findings were included into our previous calculation scheme, replacing (3.42), (3.44),
and (3.43) with a new n(r), n(Re) = n(r = Ry ), and y(r) = In (n(r) /n(Repn)), plus
substituting the fixed charge quantities n¢(r) and y¢(r) with their new counterparts.

Figure 3.26 illustrates the resulting changes to the counterion density n(r) and
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Figure 3.26.: Counterion density n(r) (left) and resulting mean electrostatic potential
(right) in the cylindrical cell model as determined by the Poisson-Boltzmann equation
(3.45) for oppositely charged monomers smeared out over the central cylinder’s surface
(magenta and green lines), being homogeneously distributed within (blue and red lines), or
following a Gaussian distribution with mean pgauss = 70 and width ogauss = 3.00 (cyan
and yellow lines); the counterions are excluded from that inner volume (blue, magenta, and
cyan lines) resp. are allowed to enter the central cylinder as well (red, green, and yellow
lines). To magnify the differences between the four combinations, here the parameters
ro = 100, Rey1 = 1000, Nop = 10* were used in addition to /g = 20 and &y = 1 for the
coulombic coupling. The insets zoom in on the regime around r = ry where the differences
between the different definitions are largest.

their electrostatic potential y(r) if one allows the ions to penetrate the central cylin-
der and also modifies the monomers’ charge distribution there. First to notice are
the vanishing deviations for r — Ry in all cases although we purposefully chose
the overexaggerated parameters o = 100, R = 1000, Nor = 10* to magnify
any aberrations. This is a very important observation, because the osmotic pressure
ITEE responsible for swelling the polyelectrolyte network in the cell model is given
by TIER = kpT - n(Rey) according to (3.40), i.e. solely depends on the counterion
density at the outer cell boundary. However, as figure 3.26 shows, that value n(R.y)
coincides despite the significant (physical!) differences between an impenetrable and
a porous cylinder, or a homogeneous vs. a d-distribution. For the parameter regime
of weak electrostatics (which we were already able to predict quantitatively in fig-
ure 3.23 anyway), where the swelling equilibrium is mainly determined by the bal-
ance between osmotic pressure and elastic restoring force, no change is consequently
expected, independent of the chosen combination of ry and ng(r).

This expectation changes if the regime of stronger coulombic coupling is consid-
ered, because there the minimum in the total free energy Fi. is mainly given by the
slope of the electrostatic contributions Fpp_g and Fy._.oq which both depend on the
whole n(r) resp. ng(r). Figure 3.26 shows how the former is affected if the counteri-
ons may enter the central cylinder: Then, n(r) will describe a lower density, which
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3. Theoretical Treatment of Good Solvent Hydrogels

exhibits a maximum at r = 79 and decreases for r — 0 towards a non-zero n(0) if
the monomers remain on the cylinder’s surface (green line), while for a homogeneous
distribution n(r — 0) continues to increase below r < 1y until it reaches a global
maximum at 7 = 0 (red line). That there is no difference between both excluded
cases (blue and magenta line) should not be surprising since the counterion density
is essentially determined by Gauss’ Law (3.97), i.e. by Qin/e0 = § E - dA with the
total charge Q;, enclosed by the considered volume segment, such that it does not
matter how the monomers are distributed within if one only regards r > (.

In case of a Gaussian distribution WHG2us(r) of the monomers around ry (using
HGauss = To and 0gauss = 3.00 as parameters for the mean and width, respectively)
they also extend outside the central cylinder where r > ry, such that their excluded
case (cyan line) differs in the core’s close vicinity from the other two corresponding
cases. Allowed to enter the inner region, the counterion density n(r) here (yellow
line) shows a smooth crossover towards a global maximum at r = 0, thereby re-
maining smaller than the other two cases over the entire range r < ry. Regarding
the charge density n¢(r) of the Gaussian-like distributed monomers, we can use

Qcauss := fNu/ fORcyl WhGauss (r)dr as charge prefactor in the normalization condi-

OGauss

. R. !
tion to ensure ["' 271 Loy e (1) dr = f Ny, for WhSaus () as well.

With the fixed charge density n¢(r) of the monomers therefore becoming

( fNnm .
Smrs Lcy15 (r —ro) monomers on cylinder
ij\;m if r < To
ne(r) = 0 et monomers homogeneous (3.106)
0 if r>rg
e '
| 57 Lcyl - QGauss - WES=(r) monomers Gaussian

the corresponding potential ¢¢(r) follows from integrating

( .
0 if r <rg .
monomers on cylinder
A ifr >
2mweqQr nwr ="To
)\ .
E.(r)= Srear?! if r <y (3.107)
monomers homogeneous
A if 7 >
2mweqr r =Ty
kBT EB 1 T / / !/ :
(25 T Jo 277" Ly ng(r') dr’ - monomers Gaussian
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Figure 3.27.: Electrostatic self-energy Fye_roq for a porous central cylinder and different

monomer distributions.

As on the right of figure 3.18, the shaded box indicates the regime

REg < Rp where the chain is shorter than the Flory radius, i.e. the blob picture no longer

applies; the colour codi

ng follows figure 3.26 with orange representing both (coinciding)

Gaussian cases. For the left plot, the outer radius Ry was given by (3.75), for the right
one through (3.74) which reduced the cylindrical cell’s volume there.

The electrostatic se
(3.100) given through

fsefrod(RE) - +

\ 2

which is plotted in fig

( _kBTgB (f m)

If-energy Fie_roq Of such a porous cylinder is then similar to

monomers on cylinder

1_
4

kpT g 2 [

monomers homogeneous

1 fOR°y1 271 Leyi €g [ng(r) ¢e(r)] dr  monomers Gaussian

(3.109)
ure 3.27. There, compared to figure 3.18 the free energy also

exhibits a minimum for small Rg < Rp (i.e. outside of the range considered here) in
case of the homogeneous charge distribution within the cylinder (left plot), whereas
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3. Theoretical Treatment of Good Solvent Hydrogels

the Gaussian-like monomers (now as orange line) mimic the homogeneous behaviour
for Rg > Ry shifted towards smaller absolute values. Since only the slope of these
functions is of importance for the later minimization process in the total free energy,
not much difference is therefore to be expected between the impact of Fy 10q On
Fiot In these two cases, contrary to the §-peak distribution (green and magenta lines)
whose absolutely smaller slope indicates a minimum at shorter chain extensions. The
independence of the counterion exclusion on all results is understandable because
none of their properties explicitely enter into (3.109).

There is however an implicit influence they have if one remembers our original
definition for the outer cell boundary R from (3.75) where we specifically took
into account that the counterions cannot enter the central cylinder, compensating
for the loss of free volume available to them. Now that the inner core has been made
porous, such correction is no longer necessary, and we can return to the original
definition (3.74) for Ry, effectively reducing the total cell size. While this does not
affect ng(r) or ¢¢(r), it changes observables such as Fy._,.q being integrated over the
entire system space, as can be seen in the right plot of figure 3.27 where the absolute
slope of the curves decreased significantly, pushing the self-energy towards even
negative values for small Rg and non-Gaussian distributions. The more important
relative behaviour between the three cases however remains similar: For large Rg
homogeneous and Gaussian-like monomers contribute alike to the energy balance,
while the absolute slope of the d-peak distribution remains lower; for small chain
extension this does no longer hold, as the orange curve flattens towards zero while
the others continue towards Fe roa( Rg — 0) = —00.

While the changes in the charge distributions n(r) and n¢(r) remain negligible
for weak electrostatics because of the osmotic pressure ISP of the counterions only
depending on n(r = Rcy), which the left plot in figure 3.26 already showed to
not be influenced by the monomers, they play a crucial part once the coulombic
components Fpg g and Fy roqa become dominant in the energy balance (3.105).
Here, the different slopes directly enter the energy balance during the minimization
of Fiot, and shift the equilibrium chain extension compared to figure 3.23 where the
counterions were excluded from the central cylinder.

Using the uncompensated definition (3.74) for the outer cell boundary R, fig-
ure 3.28 presents the resulting swelling sizes of the polyelectrolyte network with
monomers smeared out only on the central cylinder’s surface (plot in the upper
left), distributed evenly within (plot in the upper right), or placed Gaussian-like
around ro (lower plot). We immediately see significant improvement over the previ-
ous minimization once the counterions are allowed to enter the monomer’s regime
r < ro as e.g. the relative chain extension Rp/R,.c no longer forms a plateau for
/g = 5o but rather increases with f similarly to the simulation data. The pre-
dicted sizes are also much higher, whereby the Gaussian case comes closest to the
end-to-end distance we measured in the numerical experiment. Unfortunately, it is
still far from a match, with the prediction for /g = 20 being even lower than the
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3.3. The “Cell under Tension”-Model

Rg /bNy Rz /bNy

Figure 3.28.: The relative chain extension Rg/Rmax as a function of the charge fraction
f as in figure 3.23, but for counterions which are allowed to enter the central cylinder.
Each plot depicts a different distribution of the network’s monomers, assuming them to
be on the cylinder’s surface (upper left), homogeneously distributed within (upper right),
or following a Gaussian distribution with mean pgauss = 7o and width ogauss = 3.00
(lower graph). As before, the blue, green, and red lines represent the results of minimizing
Fiot from (3.105) for varying coulombic coupling /g € {10,20, 50}, respectively, while the
points give the equilibrium swelling data from our computer simulations in chapter 4.

¢y = bo-values. The sudden system collapse for higher electrostatics remains as
well, although in the Gaussian case merely for the intermediate /g = 20, while it
vanishes for /g = 10. This is encouraging because it shows that using W/HSaus(r) to
model the monomer distribution around the network’s backbones comes closest to
the reference behaviour, such that at least qualitatively the data can be described
in both regimes (of weak and of strong electrostatics).

From our analysis of the lateral chain extensions we know how the Gaussian
profile should look like depending on the system parameters. As we have so far only
adjusted ftgauss = 7o and kept 0gauss = 3.00 constant, this would consequently be the
next logical step to consider: Figure 3.24 tells us that the width of the distribution
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3. Theoretical Treatment of Good Solvent Hydrogels

decreases for large amount of counterions but weak coulombic coupling, whereas
for strong electrostatics it becomes wider than the (almost) neutral state of few
free ions (i.e. f = 0.0625) which was independent of /5. Additionally, figure 3.25
shows that the profile’s peak position deviates from pgauss = 70 particularly for those
parameters where the strong coulombic coupling leads to a final underestimate of
the chain extension in figure 3.28. Hence, finding a suitably improved description for
IGauss aNd 0aauss beyond the initial choice employed here due to the time constraints,
e.g. by applying the lateral blob description already used in the derivation of ry in
(3.79), or by re-using the basic ideas behind the scaling arguments of the previous
subsection 3.2, should therefore overcome the remaining issues at high electrostatics,
allowing to use the “cell under tension”-model for the description of the swelling
behaviour of polyelectrolyte networks over the entire parameter range.

3.4. Conclusions and Outlook

Combining both properties of single polyelectrolytes and polymer networks, charged
hydrogels can benefit to a large extent from ideas and techniques developed for
these systems over the last decades. In the beginning of this chapter, we therefore
introduced the reader to the relevant results important for the line of argument later
on, building upon the terminology and basic concepts used for theoretical models in
polymer physics known from chapter 2.

These results were then related to a theoretical modeling of the swelling behaviour,
starting at the simple scaling predictions based on the pressure balance between en-
tropic degrees of freedom of the mobile counterions and the elastic response of the
network chains. We quickly expanded on that picture, considering the polyelectrolyte
and tension blob models as well as combining those approaches with the Poisson-
Boltzmann theory within the framework of the cylindrical cell model. Arriving at
a blob based scaling law, it was then possible to predict the relative chain exten-
sion of the charged hydrogels in equilibrium, matching the reference data from our
computer simulations well within their error bars. Thereby identifying the leading
contributions to the physics behind the macromolecular swelling, i.e. the osmotic
pressure of uncondensed counterions, the electrostatic repulsion of the chain charges,
and the elastic response of the network strands, we could even apply that scaling
relation to the prediction of the P(V)-behaviour in the vicinity of the equilibrium
volume V.

Next, we introduced the self-consistent “cell under tension”-model to avoid the
undetermined numerical prefactors of order unity immanent in any scaling theory.
It combined the cylindrical cell from the rod-like solution of the Poisson-Boltzmann
equation with the constraint of a polyelectrolyte network, including all major compo-
nents but the excluded volume effects of condensed counterions without any required
input parameters but simple system setup ones. Deriving the total free energy of
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such a construct and minimizing it afterwards allowed us to predict the node-node-
separation of a charged hydrogel at swelling equilibrium. Although contrary to the
previous scaling approach we achieved quantitative agreement with the data from
the computer experiments only in the limit of not too strong electrostatics, based
on the qualitative findings we could identify the necessary adjustments to the model
which will allow it to be used over the entire parameter range as well. To this aim
we developed means to solve the Poisson-Boltzmann equation in the cylindrical cell
model for arbitrary distribution of fixed charges and non-excluded counterions, and
studied the lateral extension of the network monomers around their node-node-axis,
finding a Gaussian-type distribution with mean and width depending on the amount
of counterions and the coulombic coupling.

Future directions would therefore start off at this point, fine-tuning the model on
basis of the presented data by trying to find a suitable description for the radially
non-uniform monomer distribution around the cell’s inner cylinder, maybe even
introducing the network topology by an additional z-dependency to reflect the higher
charge accumulation at the nodes. More extensive rebuilds could include to replace
the cylindrical symmetry with a more accurate double cone-shaped one, which would
make the outer cell radius z-dependent, too, as well as to vary the strength of
electrostatics the counterions experience when in the vicinity of the outer boundary,
since in a diamond topology ions close to the cylinder’s end faces are at the same
time already approaching the next chain.
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4. Polyelectrolyte Networks
in f-like and Good Solvent

The swelling equilibrium of a charged, diamond-like model network is investi-
gated by means of MD computer simulations. Simple scaling laws are shown
to hold for weak electrostatics, counterion condensation dominates for strong
coulombic coupling; in between, the crosslinked chains are strongly stretched
and enter the finite extensibility regime. An appropriate effective charge frac-
tion allows to collapse all data onto a single master curve.

In this chapter, we will report on our findings regarding systems of hydrogels in
good solvent and close to the #-point. Section 4.1 will detail the simulation model
employed, also discussing the setup, preparation, equilibration, and execution of the
computer experiment. Afterwards, section 4.2 will expand on our initial work [62],
which was the first to show the validity of simple scaling arguments in the limit
of weak electrostatic interactions in a model hydrogel, and on our vastly extended
study [63], investigating the detailed pressure components in the scaling treatment
and their connection to the physical processes involved. From Molecular Dynamics
(MD) simulations in the (N, p, T')-ensemble we obtain the equilibrium swelling prop-
erties of a charged defect-free network with much higher precision and for a wider
range of system parameters than before, allowing a thorough examination of the
different contributions entering the theoretical models. From there, we are also able
to determine the validity of the Flory-Rehner-Hypothesis (FRH) by investigating
the limits to that description [39-41], which will be done in section 4.3.

4.1. Model and Simulation Method

In our simulations, we employ a perfect and defect-free network of N, polyelectrolyte
chains connected at their ends to V,oqes tetra-functional cross-linking sites (nodes);
this network topology is conserved at all times, i.e. neither formation nor breaking
of bonds or crosslinks is allowed. Considering the multiple short and long-range in-
teractions overlaying each other in a hydrogel, such a well-defined model network
seems like a good starting point for an investigation, allowing to add more com-
plex properties like entanglements, defects, or different preparation processes once
the basic concepts have been understood. Particularly for a simulation study this is
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4. Polyelectrolyte Networks in 0-like and Good Solvent

additionally advantageous because here any effect can in principal be isolated and
manually dis- or enabled; as figure 1.3 already demonstrated, even in real life experi-
ments synthesis procedures for simple model systems exist which exhibit similar(ly)
well-defined properties.

The polymer chains are now modeled as bead spring chains of NV, Lennard-Jones
(LJ) particles each with the FENE (Finite Extension Nonlinear Elastic) potential

2
_%kFrl%ln [1 — (é) } for r < rp

oo (= broken bond)  for r > rgp

UFENE(T) == (41)

added for bonds and cross-links; the parameters are krp = 10.0'“?—3, re = 1.50 [60],
where o is the monomer diameter (LJ unit). Note that, in contrast to the Gaussian
chains from section 2.2, this potential (4.1) is not harmonic but diverges logarith-
mically for 7 — rp to mimic the finite extensibility of real chains (hence its name);
therefore there are also differences to the divergences of the ideal freely jointed
and worm-like chains in (2.33) and (2.35), respectively, because we do not restrict
ourselves to these models. In section 3.2.6, however, a more general approach will
generalize the ideas of section 2.2 to real chains with FENE-bonds, leading to the
diverging restoring force fpgsaw in (3.31).

The van der Waals interaction between chain beads is modeled by the standard

LLJ potential
s [ (@)~ forr <,
Uiy = { e ()7 = () ] forr < (4.2)
0 for r > reut

vanishing for distances r > 7, (the potential cut-off); the constant

~(2) () -

is chosen such that the potential value is zero and continuous in r = 7. As intro-
duced in section 2.4, such a short-range potential can be used to vary the excluded
volume interaction not only between neighbouring beads but between all monomers,
nodes, and counterions, allowing to seamlessly adjust their v., and consequently to
mimic any solubility condition of the background environment, even without the
need of adding explicit solvent molecules to the simulation. Here, good solvent is
modeled by row = 2% and ey = 1kgT, leaving only the repulsive part of the
interaction (4.2); this potential is also employed for the mutual bead-counterion and
counterion-counterion excluded volume interaction. The #-solvent is modeled by an
attractive interaction between the beads, represented by the same I.J potential, now
with a larger cut-off (re = 2.50) and ey = 0.34 kgT chosen to give f-solvent
properties .

1 This value for epj was determined by U. Micka [178,179] for a slightly different bond potential
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Figure 4.1.: The short-range interaction between neighbouring monomers consists
of the excluded volume Lennard-Jones (4.2) and the attractive FENE (4.1) potential
diverging for rp = 1.50. While for the good solvent (left) the LJ is purely repulsive,
cut off at its minimum rey = 290, the f-solvent (right) also sees part of the
attractive well up to 7.y, allowing next-nearest neighbour attraction, too.

All counterions, the N,oqes nodes, and a fraction f of the N, monomers on each
of the N, chains bear ¢; = £1 unit charges ey, interacting via the Coulomb energy
Ec(ri;) = kgTlpqiq;/ri; with other charged particles at distance r;;, where the
Bjerrum length (g = €%/ (4mepesksT) (eo: unit charge, ¢y and eg: permittivity of the
vacuum and of the solvent, respectively) is defined as the distance at which two unit
charges have an interaction energy of kg7 (e.g. for water £ = 7.14A); consequently,
/g is a convenient way to characterize the strength of the electrostatic interaction,
while f represents a similar measure for the amount of charges in the system (since
everything is monovalent anyway). In the simulation, the Coulomb interaction is
calculated with the P3M-algorithm [74,75], tuned to force accuracies well above the
thermal noise level (see section 1.3.3).

The initial setup of the cubic simulation box with periodic boundary conditions
has N, = 16 polymer chains placed along the edges of a diamond lattice and con-
nected at Nyoqes = 8 tetra-functional nodes, a fraction of f monomers charged on
each chain, and N¢1 = Nygdes + Np * f Ny counterions added to the system at random
positions, ensuring overall electro-neutrality for the Niot = Nyodes + Np - N + Nex
particles (see figure 4.2).

Using ESPResSo for the computer simulation, preparing this setup on the steer-
ing level of the Tcl-script, as described in section 1.2.2, was rather easy once all
necessary features were implemented in the simulation engine. So, having a script,

e.g. diamond.tcl, which takes N, f, g, and a solvent identifier as inputs, and
adopting the syntax

with kp = 7’“(‘,3? , ' = 207; within the accuracy of the determination of # we do not expect any
deviation.
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4. Polyelectrolyte Networks in 0-like and Good Solvent

Figure 4.2.: Snapshot depicting the diamond lattice topology of the polyelectrolyte
network. From the Npoqes = 8 tetra-functional nodes and their periodic images (for illus-
tration purposes both drawn as oversized gray spheres) N, = 16 polymer chains emerge,
on each fN,, monomers charged (white spheres) and (1 — f)N,, neutral (blue spheres).
While the strands only occupy those four subboxes shaded in gray due to the periodicity
(even though the nodes are not fixed to their lattice positions, merely placed there ini-
tially during setup), the Ny counterions (orange spheres) move freely through the entire
unit cell (other parameters: Ny, = 239, f = 0.0625, {g = lo; Nor = 232, Ny = 40064;
initial box length L = 545.30; shown is the system in its thermodynamic equilibrium at
L =Val? = 2110 + 40, see table 4.1).
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<Espresso-binary> diamond.tcl <MPC> <charged> <bjerrum> { good | theta }

on the command line, the following lines of Tcl-code were used to create the simu-
lation box in figure 4.2:

### Read in parameters from the command-line

# (’cM_dist’ is the monomer distance between charged Monomers)
set MPC [lindex $argv 0]

set charged [lindex $argv 1]

set cM_dist [expr $charged ? round(l./(1l.*$charged)) : -1]
set bjerrum [lindex $argv 2]

set g_solv  [lindex $argv 3]

### Set system parameters

# (’val_...’ give the valency of nodes, charged Monomers, counterions)
set N_node 8
set N_P 16
set bond_1 1.0
set val_node [expr $charged ? +1. : 0.0]
set val_cM  [expr $charged 7 +1. : 0.0]
set val_CI  [expr $charged ? -1. : 0.0]
set N_CI [expr $charged ? round(($N_nodex*$val_node \
+ $N_Pxint ($charged*$MPC)*$val_cM) / (-1.0%$val_CI)) : O]
set N_T [expr $N_node + $N_P*$MPC + $N_CI]

### Set interaction parameters
if { $q_solv == "good" } {

# Lennard Jones for a good solvent

set 1jl_eps 1.0

set 1jl_sig 1.0

set 1jl_cut 1.122462048309373

set 1j1_shift [expr -4.*$1j1_eps*(pow($ljl_cut,-12)-pow($1ljl_cut,-6))]
} elseif { $q_solv == "theta" } {

# Lennard Jones for a theta solvent

set 1jl_eps 0.34

set 1jl_sig 1.0

set 1jl_cut 2.5

set 1j1_shift [expr -4.*$1j1_eps*(pow($ljl_cut,-12)-pow($1ljl_cut,-6))]
} else {

puts "ERROR: Unknown solvent quality ’$q_solv’!"; exit }
# repulsive Lennard Jones

set 1j2_eps 1.0

set 1j2_sig 1.0

set 1j2_cut  1.122462048309373

set 1j2_shift [expr -4.*$1j2_eps*(pow($1lj2_cut,-12)-pow($1j2_cut,-6))]
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# attractive FENE
set bond "FENE"
set bond_k 10
set bond_r 1.5
# accuracy to which electrostatics will be tuned to
set accuracy 1.0e-02

### Particle & Interaction setup

# create simulation box
set a_cube [expr 4/sqrt(3.)*($MPC+1)*$bond_1]
setmd box_1 $a_cube $a_cube $a_cube

# create interactions (except electrostatics)
inter 0  $bond $bond_k $bond_r

inter O O lennard-jones $1jl1_eps $1j1_sig $1ji_cut $1ji_shift O
inter 0 1 lennard-jones $1jl_eps $1j1_sig $1ji_cut $1j1_shift O
inter 1 1 lennard-jones $1jl1_eps $1j1_sig $1ji1_cut $1ji1_shift O
inter O 2 lennard-jones $1j2_eps $1j2_sig $1j2_cut $1j2_shift O
inter 1 2 lennard-jones $1j2_eps $1j2_sig $1j2_cut $1j2_shift O
inter 2 2 lennard-jones $1j2_eps $1j2_sig $1j2_cut $1j2_shift O

# create diamond network polymers of (initial) bond length $bond_1
# and with ($cM_dist-1) neutral monomers between charged ones
diamond $a_cube $bond_1 $MPC counterions $N_CI \
charges $val_node $val_cM $val_CI distance $cM_dist
# activate electrostatics
inter coulomb $bjerrum p3m tune accuracy $accuracy

As one might notice, only the last of the four paragraphs is actually setting up the
system, the previous ones are merely processing the input and preparing variables
in which the parameters are stored; hence, one could reduce that script down to five
lines only (namely

setmd box_1 554.3 554.3 554.3

inter O FENE 10 1.5

for {set i 0} {$i<=2} {incr i} { for {set j 0} {$j<=2} {incr j} {

inter $i $j lennard-jones 1.0 1.0 1.122462048309373 1.0 } }

diamond 554.3 1.0 239 counterions 3832 charges +1. +1. -1. distance 1.

inter coulomb 2 p3m tune accuracy 1.0e-02
for an assumed N, = 239, f = 1.0, g = 20, and good solvent conditions), though
it would also lessen the flexibility for e.g. changing system parameters.

Initially, the diamond-command creates the polymers directly along the edges
of the diamond lattice, i.e. with Rg = bN,, =: Runa.x and a box length of L =
(4/v/3)( Ny +1)b. Though this allows for an initial bond length b = 1.00 very close to
the equilibrium value (b) ~ 1.040 (figure 4.1 shows that even such a small difference
has quite an impact on the interaction potential), it is clear that such conformation
is far from the desired thermodynamic equilibrium. In addition, the counterions were
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4.1. Model and Simulation Method

created at random positions and may consequently find themselves in energetically
unfavorable states, e.g. too close to another excluded volume or likewise charged
object. Both are calling for an initial preparation of the simulation system by in a
first step integrating the equations of motion without any electrostatic potentials,
relaxing the excluded volume degrees of freedom, and in a second step equilibrating
the Coulomb interactions.

Velocity-Verlet-Algorithm (VVA)

For computer simulations of coarse-grained systems on the bead-spring level one of
the most successful algorithms is based on Newton’s classical laws of motion [67]

— .

which connect forces f; = f;({7};, {Fi}:) to the particle positions 7 and momenta
p; = m;U; (with mass m; to be scaled out in our case, since we assume all coarse-
grained objects to have equal mass as previously discussed) for all 0 < i < Ny.
This Molecular Dynamics (MD) approach is different from Monte Carlo (MC) al-
gorithms which would derive the total energy of a given conformation, introducing
trial changes to it, and accepting those with a certain probability (which depends
on the Boltzmann factor exp(—AFE/kgT)) or if it lowered the energy (i.e. AE < 0).

The velocity Verlet integration scheme now takes (4.4) and propagates a given
set. ({7;(t)}s, pi(t) }:) of initial positions and velocities along a discretized temporal
coordinate t in equidistant timesteps At through

(VVALL) pi(t + 5) = filt) + 5 fi(0)

(VVA.2) 7i(t + At) = 75(t) + At pi(t + §E)

(VVA.3) Derive new forces f;(t + At) based on new positions 7(t + At)
(VVA4) Byt + At) = Gyt + 4 + AL fi(t + At)

Although it is restricted to (N,V, E)- or (N,V,T)-ensemble of constant volume,
constant energy resp. temperature, and fixed number of particles, its simplicity and
speed made it a very good choice for calculations where classical equations of motion
and velocity-independent forces are considered.

In terms of an efficient implementation it is possible to execute steps (VVA.1)
and (VVA.2) successively within the same particle loop because both depend on
the current particle ¢ only, saving some (costly) read-/write-accesses to the main
memory. Similarly, it is advantageous to actually use rescaled variables

p = Atp

~ 2

f = (81) f
2
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4. Polyelectrolyte Networks in 0-like and Good Solvent

throughout the integration as it removes quite a number of N, -dependent mathe-
matical operations from the algorithm.

Introducing friction and noise can be done with the Langevin thermostat which
keeps a (N, V, T)-ensemble at a given temperature 7" through random “kicks” against
the particles, which heat up the system, and friction I', which drains kinetic energy
from it. The force derivation in the above algorithm is thereby replaced by

LAt LAt g AL
(VVA4) £ — fi7—r%7+\/kBTmtz

with uncorrelated random numbers z; = /12 (u — 1/2) where u is uniformly dis-
tributed on the unit interval. Although this introduces a pseudo-dynamic to the
given system, it also allows to reach the thermodynamic equilibrium considerably
faster, depending on a reasonable choice for I'. Since we are only interested in equilib-
rium properties anyway, the (potential) loss of dynamic information is less significant
than the simulation speed-up.

Whenever we are referring to the (IV, V, T')-ensemble in the following, it will there-
fore imply usage of a simulation system solved by MD and VVA with an added
Langevin thermostat for the derivation.

Seeking Equilibrium in (N, V,T)

There are now several ways to determine the swelling equilibrium of a coarse-grained
polyelectrolyte network with computer simulations. While by definition we are look-
ing for the simulation box volume V., = LZ’q where the pressure vanishes, i.e. P = 0,
we have to solve the question how this special volume can be found? In practice
this is not a trivial question because in a MD simulation only (N, V,T)-ensemble
are straight-forward to implement, whereas the obvious choice of a (N, p, T')-system
requires some artifice (which shall be given in the next subsection).

A first approach would simply run a rather large number of individual (N, V. T)-
simulations at a wide range of volumes V', obtaining the P(V') phase diagram whose
root(s) correspond(s) to the targeted V' = V... However, in addition to the vast
amount, of computation time needed the grid points of the volume will most likely
not be fine enough to have one of the simulations at the equilibrium volume; interpo-
lation through all available data, extended to the observables as well, can overcome
this problem, although the effort usually prevents larger scans in the parameter
space. Due to the phase transitions and instabilities associated with the structural

2 That it is P = 0 we are looking for originates in the periodicity we applied to the network;
interpreted as “force per volume”, a positive pressure then means that the system in its entirety
wants to swell further, exerting an outward force on the simulation box, while a negative pressure
points to overstretched network chains which are now mainly spanned by the periodic topology,
but favoring a smaller volume. Consequently, a pressure P = 0 then refers to the state where none
of the system components would prefer a change in the environment — equilibrium is reached.
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4.1. Model and Simulation Method

changes, this method was nevertheless the only one suitable for the investigation of
the charged hydrogels in poor solvent environments, presented in the next chapter 5.

Another attempt succeeds in employing MC-induced volume changes. Here, only
one (N, V, T')-simulation is required during which random volume changes V; — V4
are attempted and accepted if they fulfill the Metropolis criterion, i.e. if either
the difference in energy AE = P;11V;41 — P;V; is negative or the Boltzmann fac-
tor exp (—AE/kgT) is larger than an uncorrelated random number uniformly dis-
tributed on the unit interval. Though very promising at a first glance and quite
successful, too, this ansatz has the methodic disadvantage that it has to rely on
most accurate measurements of the pressure P which by themselves require suffi-
cient timesteps to allow averaging over uncorrelated snapshots®. Additionally, the
volume changes need to be rather large in the beginning to allow fast relaxation,
without being too large as that would either tear the network bonds apart or push
close objects into each others excluded volume, both leading to the eventual (unphys-
ical) explosion of the system; for V'~ V,,, on the other hand, the adjustments to the
volume should just be minimal because equilibrium is near, requiring a sufficiently
adaptive volume adjustment procedure.

It is also possible to estimate the final volume V,, from the ideal gas law statement
that the energy PV is conserved for isothermal changes such as the adjustment of V'
if T remains constant due to the thermostat. Also requiring one (N, V, T')-simulation
only, we measured an external pressure P, through an initial volume change from

(Py, V) to (P, Vp) as

PV — PV,

Pa Pex 'Va: P, Pex -V = Pex:
(Po + Pext) (Ps + Pext) - Vs t V.V,

which allows to derive the targeted volume V;;; (where Pji; = 0 is assumed) from

Pj+Pext

(Pj+Pext)'Vj:(0+Pext)'Vj+1 = Via= D
ext

v
While this once again requires most accurate determination of the pressures involved,
with P, entering all subsequent calculations here even more critical than before, it is
nevertheless the fastest (N, V,T)-based method to find V,,. Some improvements are
also possible, e.g. moving from V; to Vj; in several smaller steps, which prevents the
aforementioned danger of ruptured bonds or exploding systems, and re-calculating
P.. along the volume iterations*.

Another option, in a sense combining previous ideas, is conducting a Golden Sec-
tion Search in P(V) until a volume with P(V) ~ 0 is found, in whose vicinity
several (N, V,T)-simulations with a very fine grid in V' are conducted, allowing to

3 For MC it is also possible to use the instantaneous pressure values, although that introduces
unwanted box fluctuations which will be dealt with in the next subsection.
4 The latter, however, turns out to amplify roundoff errors in V; and V41 dramatically.
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4. Polyelectrolyte Networks in 0-like and Good Solvent

interpolate P(V,,) = 0 with a much higher precision than before. Unfortunately, as
figure 4.3 shows, the very high requirements for pressure measurements will once
again prevent an accurate determination of the equilibrium volume.

5.0107 - . 3
25107 k . 1.10° | .
0.0-10° 3
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75107 e

-6 | _
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Figure 4.3.: Tllustration of the Golden Section Search method for finding
the swelling equilibrium volume V., in a polyelectrolyte network with N, =
239 monomers per chain, a charge fraction of f = 0.5 (left) or f = 1.0
(right), Bjerrum length ¢g = 1o, and linear fit to the data (gray line).

So, while several promising procedures are available, the nature of the charged
hydrogels with their high compressibility close to V, due to the lack of intrinsic
stiffness or entanglements renders the equilibration process to be a tedious enterprise.
The (N, p, T)-ensemble, considered next, introduces some relief, though the difficulty
of persistent pressure determination remains (albeit less severe).

Constant Pressure Algorithm (N, p, T)

Contrary to our first investigation [62] which employed the aforementioned MC-
induced volume changes to determine the equilibrium swelling volume V,, in the
subsequent extended study [63] we used a stochastic MD integration scheme for
isothermal-isobaric (N, p, T))-ensembles, based on Langevin-type equations of mo-
tion for the particle coordinates and a “piston” degree of freedom [109]. This algo-
rithm, enhancing the MD approach by Andersen, Nosé, and Hoover with stochastic
dynamics (SD), follows the canonically conjugate momentum Iy, = QV of an artifi-
cal piston of mass () acting on the simulation box volume V such that the difference
between the currently measured “instantaneous” pressure [109, 157]

1 1
P = pksT = 5 > (EE) + 3y (Fe) (4.5)

1<j

(with Ff’]r being all short-range forces) and the desired “external” pressure P reads
II = P — P. This is also one striking advantage of this method over the previously
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described ones: We do not need the absolute or real pressure of the system here
(it is supposed to be P = 0 anyway), the instantaneous P is sufficient since the
volume changes are not only immediately applied, hence counteracting even random
fluctuations, but a memory of V() is kept as well, ensuring a sustained trend towards
Veq- 1t leads to an updating scheme propagating the momentum p; = m;v; and the
position 7; of each particle i = 0,. .., (Nt — 1) according to:

(NpT.1) p, = pi(t) + fi(1)

(NpT.2) Measure instantaneous pressure P = P((75, V, E)(t), )
My (t+ 4 = Oy (t) + (P((7, V. ) (1), B}) — P)5

(NpT:3) V(t+5) = V(1) + Q My (t + )5

(NpTA) 75 = Fit) + gy &y me A
(NpT:5) V(t+At) =V(t+ 5 + Qv (t+ 55

7t + At) = S0
L(t)

= =
Pi = TaranPi

(NpT.6) Derive new forces f;(t + At) based on new positions 7 (¢ + At)
Measure instantaneous pressure P = P((7;, V. ;) (t + At), pY)
My (£ + AL) =Ty (¢ + 5) + (P((75, Vo) (¢ + AL), 5f) = P) 5

(NpT.7) Bi(t + At) = §/ +fi(t + At) 4t

For an efficient implementation, we grouped the two pressure-/velocity-propagation
steps (NpT.1)~(NpT.2) and (NpT.6)—(NpT.7) as well as the rescaling steps (NpT.3)—
(NpT.5) together. That allowed us to derive the ideal gas part of (4.5) while executing
(NpT.1) or (NpT.7), using the equipartition theorem

Niot—1

JDoF I
S kT = > UGG (4.6)

1=0

(with the fpor = 3 degrees of freedom in our case, fpor = 6 if also rotational energies
are added to the right hand side of (4.6), and so on) to get kg7, because we could
successively build the sum in (4.6) after resp. before each of the propagation steps
for the momentum. In a similar spirit, the virial part of P could be measured while
the forces were updated in (Np7T.6) because after each contribution to (¢ + At) =
f{7(t + At)};) was determined, both FZJ and 7;; are available for entering the sum
in (4.5). Additionally, this part of the instantaneous pressure is independent from
the momenta because no velocity-dependent forces are allowed; it does not change
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4. Polyelectrolyte Networks in 0-like and Good Solvent

between (NpT.6) and step (NpT.2) of the next iteration and may therefore be re-used
there. While the propagation of volume V' and piston momentum Ily in (Np7.3)
(NpT.5) is computationally negligible, the aforementioned adjustments reduce the
required, and very expensive, particle loops from seven to just four (one per group,
and an additional one for the force calculation). This is more than in the case of
the VVA, because there the two loops for propagating momenta and positions could
be merged, whereas here it is unavoidable due to the volume-dependent position
rescaling in (Np7.4) which requires the momentum-dependent Il from (NpT.2).
The implied slowdown has been investigated in the benchmark section 1.6 where
particularly the comparison of benchmark scenarios b1 (pure Lennard-Jones liquid,
constant volume) and b4 (same Lennard-Jones liquid, constant pressure) revealed
an only Ni.-dependent offset in the computation times of about 20% — 30% (see
figures 1.4 and 1.5) which is remarkable considered that efficient bookkeeping tricks
such as the employment of Verlet lists cannot be used for this algorithm.

From the volume oscillations of the piston degree of freedom and hence of P
around P with a frequency € the criterion Q52 = QVky can be found for relating
@ to the system’s isothermal compressibility ;. We have chosen the resonance
coupling 2y = wy to the typical molecular frequency wy of the system which ensures
both sufficiently fast relaxation of V' to the equilibrium V., = V(P ~ P) as well as
suppression of unwanted “box ringing” [109]. Adding friction and noise introduces
two more parameters, namely the molecular, respectively piston, dampening v, and
vy, which are connected via vy /= 2wy, resp. v = 2Q€), to the basic timescales.
They are entering the updating scheme (NpT.1)—(NpT.7) by replacing EAt/ 2 and
Iy = (P — P)At/2 according to

NpT.1 At —»At ; At
(NpT2)

. At At Iy At / At

with uncorrelated random numbers z; and zy having zero mean and unit variance,
e.g. 2 = /12 (u — 1/2) if u is uniformly distributed on the unit interval. Note that
in case of E this directly corresponds to the Langevin thermostat for the VVA, while
the same becomes apparent for [Ty = (P — P) if one follows the analogy of Il being
the momentum of the piston with mass @ (where [T would then correspond to a
force).

The optimal choice of @), 7o and vy is essential for successfully reaching Vi, within
reasonable computation time. Setting the molecular dampening to 7o = 77! (using
7, 0, and € as standard LJ units for time, length, and energy) simplifies its piston
counterpart to vy ~ 2Qy = 2Qwy = Q7 because of the resonance coupling we
chose. The piston mass @) follows from

02 =QVir = Q=1/(wiVrr) (4.7)
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with wp deducible from the intermolecular potentials [109]. The compressibility sy,
which is unfortunately a priori unknown, can be obtained from measuring the vol-
ume fluctuations in the (N, p, T')-ensemble, using [109]

1 2 2
Vir = - (V) = (v)) (4.8)

as a direct measure of the factor in (4.7). During the equilibration process while
V' # Viq this may be non-constant, which is why we employed an iterative process
by starting with an initial guess @ = 1078, determining V k7 from (4.8) at runtime,
and updated @ using (4.7) until the equilibrium was reached.

Following a short warm-up sequence, the full system was integrated with that
scheme for typically 2.4 - 10*r,...,7.2 - 10°7, using an adaptive timestep of At <
0.0127 until the volume V" had finally converged towards Ve, with an accuracy in the
osmotic coefficient Posm = P/(ksT' Nci/V') of |(Posm)| < 0.05, which is the achievable
limit within the high compressibility of the given systems and the resulting high
fluctuations at small densities.

In terms of the Tcl-script, the (V, p, T')-integrator and its corresponding thermo-
stat are activated by

integrate set npt_isotropic $p_ext $piston
thermostat set npt_isotropic $temp $gamma_O $gamma_v

before entering the warm-up sequence for the neutralized system. Here, we want
to prevent excessively large excluded volume repulsion due to too closely created
particles by initially capping the LJ-force at some value, which is quickly increased
during the warm_loop cycles of warm_step timesteps, and removed thereafter.

for { set j $j_start } { $j < $warm_loop } { incr j } {
integrate $warm_step; set tmp_dist [analyze mindist]
if { ($tmp_dist >= $min_dist) && ($j > $min_loop) } { break }
inter ljforcecap $tmp_cap; set tmp_cap [expr $tmp_cap + $warm_incr]
if {$5 % 10==012}+A
polyBlockWriteAll "$name$ident.twm" { j cM_dist tmp_cap } }
}

inter 1ljforcecap O

This sequence also analyzes the minimum distance between all particles, aborting
the integration if they are at least min_dist apart from each other after more
than min_loop integration cycles. The current state of the system is saved every
10 timesteps to allow later resume of the warm-up at j_start, e.g. in case the
hardware malfunctions or the allocated CPU time is exceeded.

In the subsequent equilibration integration with full interactions (i.e.activating
electrostatics as shown before) we can follow the same scheme except for the neces-
sary measurements of the volume fluctuations required to adjust @ using (4.7) by
monitoring Vkp with (4.8) at runtime.
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for { set j $j_start } { $dsw_done < $min_dsw } { incr j } {
integrate $dsw_step
if { $j <= $min_dsw } {
set avg [expr $j*1.0] } else { set avg [expr 1.0*$min_dsw]
set p_io [lindex $p_oI 0]; set p_oIl [lreplace $p_oI 0 0]
set p_inst [setmd npt_p_inst]; set p_al [expr $p_al + $p_inst - $p_io]
lappend p_ol $p_inst
set V1 [expr pow([lindex [setmd box_1] 0],3)]; set rho [expr $N_T/$V1i]
set Vkappa [expr abs([analyze Vkappal)]; set Vkn [analyze Vkappa read]
if { abs($p_al/$avg/($rho*$temp)) < $min_osm } { incr dsw_done
} else { set dsw_done 0 }
if { ($j+$dsw_cycl-$dsw_updt) % $dsw_cycl == 0 } {
modfy_piston $Vkappa; analyze Vkappa reset; analyze Vkappa }
polyBlockWriteAll "$name_ident.tmp" { j dsw_done p_al p_oI }
}
polyBlockWriteAll "$name_ident.dsw" { j piston gamma_O gamma_v Vkappa }

With the history of the previous min_dsw timesteps for both the pressure (stored in
p_oI) and the volume (in V_oV) available, a floating average is taken to allow even
systems starting very far from equilibrium to be processed. While the ESPResSo-
function analyze Vkappa iterates (4.8) with each call, keeping track of the temporal
evolution of the volume until that memory is erased using analyze Vkappa reset,
the Tcl-function modfy_piston <Vkappa> implements (4.7) to adjust the integra-
tion parameters accordingly. The integration loop runs until the osmotic coefficient
|{Posm)| has been smaller than min_osm for min_dsw subsequent cycles; in that case
another checkpoint is created.

From there, the equilibrium properties of the swollen hydrogel were determined by
switching to the (IV,V = V,q, T)-ensemble and applying a standard velocity Verlet
algorithm, coupled to a heat bath and background friction (Langevin thermostat;
friction coefficient T' = 77!, T* = 1¢/kgT). After another equilibration phase in this
new ensemble, where we measured the pressure to check if indeed the V' = V(P ~
0) had previously been found, we integrated the equations of motion for 24007 with
timestep At = 0.0127 [35,180]. This introduces two different kinds of errors into our
data: First, the standard statistical fluctuations of the observables measured in the
(N,V = Vi, T)-ensemble, which lead to the error bars depicted in the plots later
on; second, deviations due to the equilibration process’ accuracy in finding Vo, =
V(P = 0), since the volume of the simulation box directly determines the size of the
conserved network topology, which is spanned by the periodic boundary conditions,
and is hence indirectly entering (along with its error) all other observables. While
a thorough equilibration process can minimize the occurrence of the latter, some
systematic errors may remain in the data.

All in all, we investigated polyelectrolyte networks in good solvent and close to
the 0-point, whose N, = 16 strands carried NV, = 39,...,259 monomers each, a
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fraction f € {1—16, %, i, %,% of them charged, surrounded by Ngp = 72,...,4152
counterions with an electrostatic interaction strength characterized by a Bjerrum
length of /g € {l0,20,50}. In our study, special emphasis was put on evaluating
the significance of the direct electrostatic contributions to the swelling equilibrium,
since they are neglected in classical theories (see section 3.2.2). For this purpose, we
measured how the observables of the swollen hydrogel change when all coulombic
interactions are turned off, leaving full entropic degrees of freedom for the (now
neutral) “counterions”, and remaining at the volume V = V., determined as the
swelling equilibrium value for the charged case. While such a simulation may result
in a non-vanishing total pressure P (namely, if the electrostatic contribution to the
overall pressure is not negligible), its observables will be marked with a superscript
(e.g. ) to distinguish them from their swelling equilibrium counterparts (e.g. z),
with a superscripted A denoting their difference (e.g. Ar =z — ).

In addition, we also applied the entire (IV,p,T)-scheme to systems without any
electrostatics, i.e. /g = 0o, but f-dependent amount of neutral spheres which are
corresponding to the counterions for /g > 0, expecting them to provide the best
correspondence to the theoretical picture of the section 3.2.2. While P = 0 here, for
distinction purposes the aforementioned non-equilibrium measurements at P will
be referred to as e.g. “neutral /g = 10” to stress that they reflect systems with a
simulation box volume solely determined by the corresponding fully charged network
with e.g. /g = lo.

As already indicated, the entire setup, simulation, and analysis was performed
using ESPResSo, the molecular dynamics package we introduced in chapter 1.

4.2. Results and Discussion

Although we already showed in the previous chapter 3 that the solution of a self-
consistency condition such as (3.71) for the stretching force acting on the network
strands in the swelling equilibrium of a charged hydrogel is sufficient to describe
the underlying physical mechanisms, in this section we want to follow a different
path of analysis. Starting off at the previously commonly accepted simple scaling
model (3.6), we aim to illustrate the microscopic findings we obtained from analyzing
our simulation data in detail on basis of the oversimplified picture behind (3.6),
demonstrating the challenges one has to overcome if it should be made working. In
the end we will show that it is indeed possible, if the effective charge fraction f.g used
is adjusted accordingly to also reflect the additional contributions considered in our
own scaling law (3.71), thereby essentially trading the latter’s numerical prefactors
against fitting a physical parameter. Nevertheless, our detailed study reveals the
microscopic mechanisms behind our scaling laws additional contributions, and allows
a closer examination of them, which in turn corroborates further our findings from
the previous chapter.
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4.2.1. Structural Properties

The swelling equilibrium of a charged gel is expected to mainly result from the elastic
response of the chains’ inner bonds balancing the osmotic pressure of the counterions
trapped inside the network by the macroscopic electro-neutrality requirement. As-
suming the validity of the Flory-Rehner-Hypothesis (FRH) and neglecting explicit
electrostatic effects and treating all objects as point-like spheres, in section 3.2 the
classical tension blob model was employed to arrive at the scaling prediction

R,

= 55 = (FNw)*"™ (3.6)

Ry = fliVNmb =  Q

for the network strands’ node-node separation of a gel under #-like (v = %, sec-

tion 3.2.1) or good solvent (v = 2 [31] or v = 0.588 [153, 160, 161], section 3.2.2)
conditions.

In case of only weak electrostatics, we showed the general validity of (3.6) in [62],
having the more detailed study [63] focus on deviations from the previously predicted
behaviour and explore possible corrections to the assumed swelling mechanisms of
the hydrogel. Table 4.1 assembles some equilibrium properties for the longest chain
(Nm = 239) we investigated for all charge fractions f; the complete data, for other
Ny, # 239 as well, is given in appendix A. While shorter /V,, only confirm the overall
observations, fluctuations and finite size effects begin to play an increasing role
particularly for very short chains, where e.g. the network nodes and the heightened
charge concentration there introduce additional deviations not present for longer
chains, which is why we restrict our detailed discussion to the latter.

In general, it can be observed that larger amounts of mobile counterions (larger
f) in the network cause the size of the simulation box L., at P ~ 0 to grow mono-
tonically, which in turn imposes the same behaviour on the gel's geometrical observ-
ables, due to the periodic boundary conditions causing the box to effectively span
the network. Particularly, when comparing the swelling ratio «a,, for different /g but
constant f, it turns out that in case of weakly charged systems the respective values
match relatively well, since in (3.6) they are independent of /g. For larger f, how-
ever, stronger electrostatics causes an increasingly pronounced drop in the swelling
ratio; strongly charged systems are effectively becoming even smaller than gels with
up to 75% less counterions (comparing e.g. {g = bo, f = 1.0 with lg < 50, f = 0.25
in good solvent).

The network strands seem strongly stretched and assume an appearance as rod-
like objects, according to their aspect ratio R4/ R = 12 for all but the most weakly
charged case f = 0.0625 (which still exhibits a RE/R% > 11.4 £ 0.2). Considering
the other possibilities in table 2.2, it is particularly noteworthy that despite our
single chain treatment, they do not follow the aspect ratio of a random walk, where
R%/R% = 6, or a similar shape of an isolated polymer. The scaling arguments from
section 3.2.2 remain valid nevertheless since they essentially treated the network as
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(RE)

b f L=V’ (B o | (RY gE Ry

1 0.0625 | 211+4 9146 3.51 0.368 | 272 11.440.2 13.0£0.5
2 0.0625 | 21644 94+7 3.59 0377 | 272 11.6+0.3 13.2£0.5
5 0.0625 | 210+4 91+7 3.49 0.367 | 272 11.740.3 13.1£0.6
1 0.125 265+4 11445  4.39  0.46 33+2  11.840.2 14.74+0.4
2 0.125 269+4 1166 4.45 0.467 | 34+2 11.9£0.2 14.8+0.5
5 0.125 249+5 1075 4.12 0432 | 312 11.940.2 14.44+04
1 0.25 330+£3 14245 544 0.571 | 41£2  12.0+£0.1 16.7+0.4
2 0.25 329+3 14145 543 0.569 | 412  12.0+0.1 16.84+0.4
) 0.25 27844 1206 4.62 0.485 | 35x2 11.840.2 15.5£0.5
1 0.5 395+2 170+£4 6.51 0.683 | 49+1 12.14+0.1 18.8£0.3
2 0.5 397+3 17145 6.53 0.684 | 49+1  12.040.1 19.1£0.3
) 0.5 303£5 130£6  4.99 0.523 | 382 11.840.2 16.5£0.4
1 1.0 46542 200£3  7.58 0.794 | 571 12.2+0.1 21.1+£0.2
2 1.0 44343 190+£3  7.22 0.756 | 551  11.9£0.1 20.8£0.2
) 1.0 328+E5 141+6 5.33 0.558 | 41£2 11.9+£0.2 17.54+0.4
e L=V (RY” o, 5 (RY @ R

1 0.0625 17244 757 486 0.316 | 2242  11.5£0.3 10.9£0.6
2 0.0625 | 172£4 74+5 485 0.315 | 22+£2 11.940.2 10.940.5
5 0.0625 | 161£H 707 458 0.298 | 21+£2 11.44+0.3 10.840.6
1 0.125 229+3 99+4 642 0.416 | 29+1 11.8+£0.2 12.840.4
2 0.125 23244 100£5 6.52 0.422 | 29+2 11.94+0.2 13.1£04
5 0.125 208+£5 906 5.86 0.38 26+2  11.740.2 12.44£0.5
1 0.25 296+3 12746 8.28 0.536 | 362  12.24+0.2 15.1£0.5
2 0.25 29943 12945 838 0.543 | 371 12.0+0.1 154404
) 0.25 250+5 10846 7.02 0.455 | 3242 11.740.2 14.1£0.5
1 0.5 36942 15944  10.3 0.665 | 45+1  12.240.1 17.6£0.3
2 0.5 370+£3 15944  10.3 0.666 | 461 12.0+0.1 17.9£0.3
) 0.5 27444 1187 7.66 0.496 | 352 11.7£0.2 15.2£0.5
1 1.0 44942 19343 123 0.797 | 551  12.240.1 20.4£0.2
2 1.0 41843 180+5 11.5 0.742 | 5241 11.9+£0.1 19.7+0.3
) 1.0 309+£5 133+£8  8.45 0.548 | 39+2 11.74£0.2 16.7£0.5

Table 4.1.: Selected network properties for a system with N, = 239 monomers per
chain in good solvent (ftop) and close to the @-point (bottom) for different values of
Bjerrum length ¢g and charge fraction f, namely length L of the simulation box after
reaching the equilibrium volume V¢4, the average chain extension RE, its swelling ratio
a,, compared to a single neutral chain, its extension relative to the contour length Ny,b,
its radius of gyration Rg, its aspect ratio R]%: / Ré, and its hydrodynamic radius Ry.
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4. Polyelectrolyte Networks in 0-like and Good Solvent

single chains under tension, an appropriate description regarding the counterions’
pressure which obviously elongates the strands into the rod-like regime.

The impact of the solvent quality diminishes with growing coulombic contribu-
tions: The absolute measures close to the -point such as L or Rg approach their
good solvent counterparts from below (reducing the difference from ~ 210 or ~ 33%
to ~ To or ~ 4%), while their swelling ratio remains significantly larger, both in
agreement with the single chain behaviour, where a #-solvent polymer would always
have a smaller R, than in the good solvent case.

! — N, =239; =0.0
....... N, =239; £=0.0625
- N_=239;£=0.125 y
e T U Rt Nm:239; £=0.25 ]
trre ; £=0.5

10

qS(q)

0.01 0.1 1

Figure 4.4.: Averaged form factor S(gq) of the network strands with Ny, = 239 monomers
per chain, plotted for /g = 0o (black lines), {g = 1o (blue lines), and ¢y = 50 (red lines)
in good solvent, rescaled by S(q) - q/1; different line style corresponds to different charge
fractions f (see legend).

Following the trivial observation that for f — <~ (the obvious lower boundary
for the charge fraction of a polyelectrolyte chain) the scaling in (3.6) becomes that
of a single neutral chain R,, the spherically averaged form factor of the network

strands
DI (49
— 4

=

ﬂ@zﬁ @Sﬂ—

1’1’1

displayed in figure 4.4 for the same N, = 239 as in table 4.1 supports the general
notion of the theoretical model to describe the swollen gel as crosslinked sequences of
blobs. While the uncharged case of f = 0.0 (solid line), containing no counterions and
therefore representing a neutral polymer network, has its strands behave like single
neutral chains extending R, = bNY (= Rgaus for 0-like, = Ry for good solvents),
the presence of even few counterions introduces two regimes to the systems: On
short length scales (large ¢) the segments of the network approximate the neutral
behaviour S(q) ~ ¢~'/¥, for larger length scales (smaller ¢) the chains exhibit the
anticipated straight conformation S(q) ~ ¢~/ of the blobs which we just saw in the
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4.2. Results and Discussion

rod-like aspect ratio R4/ R% = 12 as well. In case of weak electrostatics, the width of
the elongated regime only depends on the amount of counterions within the gel, as
figure 4.4 shows by comparing systems with {g = 0o (i.e. uncharged ones) to /g = lo
(blue lines); their form factors display very small deviations which entirely vanish
for smaller charge fractions, at the same time asymptotically approaching the shape
of the neutral network. Consequently, the crossover between the two regimes shifts
towards smaller ¢ (larger spatial distances) for decreasing f, not only reflecting the
aforementioned trend towards less strongly swollen states (i.e. smaller Rg) contained
in table 4.1, but also supporting g ~ f~! = £ ~ bf™ as obtained in section 3.2.2:
For f = 1.0 each “blob” is predicted to consist of g ~ 1 monomer being & ~ b
wide in diameter (i.e. rendering the blob picture obsolete). This leads to the almost
entirely stretched conformation, represented by the form factor in figure 4.4 for that
charge fraction. For smaller values of f the regime in which S(g) follows the neutral
network behaviour becomes larger, 7.e. more monomers can be considered to be part
of a blob.

In the case of strong electrostatic interactions (fg = 5o, red lines) the relative
dependency on the charge fraction remains the same, but it is shifted towards the
form factors of /g = 1o with smaller f, following the trend of the geometrical
properties such as Rg in table 4.1 for corresponding Bjerrum lengths. This is due to
counterion condensation taking place, renormalizing f towards an effective charge
fraction feg, as will be discussed in the next section 4.2.2. While this explains why
the form factors for g = 5o, f = 1.0 and f = 0.5, with their fog ~ 0.21, behave
similarly to the one of /g = 1o, f = 0.25 in the small ¢ regime, on shorter length
scales they approach their respective f = 1.0 and f = 0.5 counterparts with /g = 10,
since here the global charge renormalization is less significant than the local repulsion
between neighbouring charged monomers.

Typical network conformations at swelling equilibrium are shown in figure 4.5,
colour coded as in the simulation box model snapshot of figure 4.2, i.e. with gray
spheres as network nodes, blue for uncharged and white for charged monomers, and
orange spheres for the counterions. The chosen parameters represent two trends
discussed so far: On the left the smallest (Rg = 910) and largest (Rg = 2000) chain
extensions are compared, where it is easily visualized that the counterions do behave
gas-like and therefore increase the swelling significantly if added at not too strong
coulombic coupling. Nevertheless, for /g = 1o first deviations are already visible,
which become particularly apparent when compared to the case of f = 1.0, fg =
50 (lower right). There, most of the formerly free counterions are now condensed
onto the network chains (note that both lower snapshots have the same amount
Nei present in the system) and obviously reduce the chain extension (Rg = 1410)
because of their lowered osmotic pressure. That reduction, however, now corresponds
to a decrease of the charge fraction to f = 0.25 and of electrostatics to /g =
20 according to the snapshot in the upper right where R = 1410 as well. It is
this delicate interplay between raw number of counterions in the system (given
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4. Polyelectrolyte Networks in 0-like and Good Solvent

Figure 4.5.: Snapshots of network conformations at swelling equilibrium for N, = 239
and f = 0.0625, ¢ = lo (top left), f = 0.25, by = 20 (top right), f = 1.0, lg = lo
(bottom left), and f = 1.0, ¢y = 50 (bottom right), each under good solvent conditions
(colour coding as in figure 4.2).

by f), amount of free counterions contributing to the swelling (addressed in the
next section 4.2.2), and coulombic coupling (given by /g) which will determine the
discussion for the remainder of this chapter.

Looking at the form factors for other chain lengths N, = 39,...,259 and all
(g =00,...,50 (i.e. adding g = 20 as green lines) in good solvent (figure 4.6) and
close to the #-point (figure 4.7) confirms these findings in the limit of large N,,, but
also shows the deviations for short chains: There, for weakly charged networks no
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Figure 4.6.: Averaged form factor S(q) of the network strands with Ny, = 39,...,259
monomers per chain (from top left to bottom right) in good solvent, plotted for /g = Oc
(black lines), by = 1o (blue lines), ly = 20 (green lines), and fg = 50 (red lines), and
rescaled by S(q) - ¢'/1; different line style corresponds to different charge fractions f (see
legend).
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Figure 4.7.: Averaged form factor S(g) of the network strands with Ny, = 39,...,259
monomers per chain (from top left to bottom right) close to the -point, plotted for /g = 0o
(black lines), ty = lo (blue lines), g = 20 (green lines), and ¢y = 50 (red lines), and
rescaled by S(q) - ¢'/1; different line style corresponds to different charge fractions f (see
legend).
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plateau of elongation on larger length scales (i.e. small ¢) can be formed, instead
S(q) mimics shape and maximum of the neutral system. Increasing the strength of
electrostatics to /g = 5o reveals another transitory effect with the form factor having
only the S(q) ~ ¢~ /“-regime but a significantly larger v. A possible explanation is
the increased stiffness of the network strands due to the strong condensation of
counterions onto them which in turn prevent too much coiling, rendering the chains
to appear more like a WLC. Upon closer inspection, this effect remains visible on
short length scales (large ¢) even for N, — 259, as the two regimes of rod-like
and single chain-like behaviour are not distinctly separated but experience a rather
smooth crossover. That also implies a careful evaluation of the scaling prediction
(3.6) as not only finite size effects are to be expected in form of Ny-dependent
deviations, but adjustments to the exponent v might be required, too.

Close to the #-point the aberrations become more apparent, as the only slight
shift in the exponent v of the hydrogels of figure 4.7 increase the difference to the
neutral case with its S(q) ~ ¢/, reducing the agreement with the scaling of the
network strands to the limit of large ¢ and small f. Again, it is the interference of the
counterions which stiffen the chains, as in addition to condensation effects for strong
electrostatics their excluded volume remains purely repulsive, whereas the monomers
gained the attractive part of the Lennard-Jones interaction (4.2) as sketched in the
right hand side of figure 4.1. Consequently, the impact of the Coulomb parameters
f and /g on the shape of the polyelectrolyte networks is more significant than that
of the solvent quality.

4.2.2. Counterion Condensation

The stretched conformations in figure 4.4 for large f or/and /g as well as the aspect
ratio’s R%/R% ~ 12 in the data of table 4.1 suggest the comparison to charged rods.
For these, i.e. infinitely long linear stiff rods, it is known [165] that for a Manning
parameter

/g 1

T var

(var being the valency of the counterions, vo; = 1 in our case) a fraction of (1—1/&y)
counterions will “condense” onto the rod, i.e. will be confined to a small cylindrical
volume around it. Since the arguments in section 3.2.2 support that the translational
entropy of the free counterions is responsible for the swelling of the gel, condensa-
tion would fit into this picture by, in a first approximation, simply replacing f
with an effective charge fraction fos defined by the Manning argument, according
to which for &; > 1 all counterions added to the system will condense and keep
the effective charge of the system to one charge per Bjerrum length. Consequently,

max — _fg ULCI would represent an upper bound for the charge fraction, render-

M - b/fmax
ing any f > fuax to not increase the amount of free counterions contributing to Ilg,

Em (4.10)
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4. Polyelectrolyte Networks in 0-like and Good Solvent

hence not changing the scaling in (3.6) if using

f for 2 <L = f< fa
fogg = ey *’K/Bf N o N (4.11)
fmax_m Orb/_f—ﬁé f_fmax-
instead of f there (most easily seen by using T kBT% to balance Ilg).
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Figure 4.8.: Integrated counterion distribution for N, = 239, with ¢g = 0o (black
lines), g = 1o (blue lines), g = 20 (green lines), and ¢ = 5o (red lines) in good
solvent (left) and close to the #-point (right), normalized by the end-to-end distance
<R2E>1/ 2. different line style corresponds to different charge fractions f (see legend).
For comparison, the corresponding ideal gas distribution for /g = 50 and f = 1.0 is
given as well (solid black line). Note that each of the systems has its own Vi, the

graphs therefore reach the horizontal axis at different 1/Rp.

As can be inferred from figure 4.8, the assumption of an ideal gas-like distribution
made in section 3.2.2 holds sufficiently well for weakly charged systems. Without
electrostatics (black lines), all distributions coincide as expected after a success-
ful equilibration of the systems, because then the number of neutral “counterions”
should not be influential to their homogeneous spread throughout the network at
a constant density; the excluded volume of the chains’ monomers however intro-
duces a constant shift from the shape of the pure ideal gas also given in the plot.
While for /5 = 1o (blue lines) and f < 0.25 there is not much deviation from the
uncharged cases observable, stronger electrostatics perturb the “cloud” of counteri-
ons surrounding the network chains, increasingly attracting the former towards the
charged monomers on the strands. With the integrated distribution functions tak-
ing on an (initially) concave shape up to an inflection point (Ryy, f,) which will be
discussed later on, counterion condensation sets in. In the plots, this is the case for
(g = 50 (red lines) and f > 0.25, although strong deviations from the ideal gas-like
behaviour are already apparent for intermediate parameter regimes like g = 5o and
f = 0.125 where 40% of the counterions are within a distance of |r| = L/10 around
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a network strand, illustrating the difficulty of defining something as continuous as
this “condensation” effect which is obviously all but a sharp transition between two
distinct phases or states.

good solvent (v = 0.588) 0- solvent (v = 0.50)
g f e l—g  f fo| & 1= fa fo
1 0.0625 | 0.0602 - 0.0625 - | 0.0631 - 0.0625 -~
2 0.0625 | 0.12 - 0.0625  — 0.126 - 0.0625  —
5 0.0625 | 0.301 - 0.0625  — 0.316 - 0.0625  —
1 0.125 0.12 - 0.125 - 0.126 - 0.125 -
2 0.125 | 0.241 0.125 0.252 0.125
5 0.125 | 0.602 - 0.125 - 0.631 - 0.125 -
1 0.25 0.241 0.25 0.252 0.25
2 0.25 0.481 - 0.25 - 0.503 - 0.25 -
5 0.25 1.2 0.169 0.208 0.69 | 1.26 0.206  0.198 0.74
1 0.5 0.48 - 0.5 - 0.501 - 0.5
2 0.5 0.959 - 0.5 - 1 0.00145  0.499 -
) 0.5 2.4 0.583  0.208 0.83 | 2.1 0.601 0.199 0.86
1 1.0 0.951 - 1 - 0.988 - 1 -
2 1.0 1.9 0.473 0527 0.52 | 1.97 0.494 0.506  0.59
) 1.0 4.74 0.789  0.211 0.91 | 4.92 0.797  0.203 0.92

Table 4.2.: More network properties as in table 4.1, namely the Manning pa-
rameter £y, the fraction of condensed counterions 1 — z—, and the effective charge
fraction feg, given for both good solvent (left) and close to the 6-point (right); a
“~” for an entry signifies the absence of counterion condensation according to Man-
ning, as the &y < 1 in those cases renders 1 — LM < 0 meaningless. The fraction of
condensed counterions f, is taken from the integrated counterion distributions (see
appendix B) and given as a reference (for details see text).

The same condensation threshold is however predicted by the aforementioned
Manning criterion as well, since only these parameters lead to &y > 1 as laid out in
table 4.2, therefore confirming the analogy drawn to stiff rods qualitatively. Quanti-
tatively, however, the fraction of condensed counterions 1— 5— also given in table 4.2,
is expected to be 0.17, 0.58, and 0.79 for the three charge fractions f = 0.25, 0.5,
and 1.0, respectively, and is therefore underestimating the corresponding values ob-
tained from the inflection point criterion [166], which relates the coordinates (R, fx)
where concave condensation curves change into the convex long-range behaviour to
the Manning parameter &y via f, =1 — é Although it is usually considered to be
more accurate as it corresponds to an analytical solution in the limit of infinitely
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4. Polyelectrolyte Networks in 0-like and Good Solvent

long rods, it is at the same time not necessarily transferable to arbitrary geome-
tries such as diamond-like network topologies. From there it follows that deriving
fesr from (4.11) does capture the correct trend for renormalizing 1, but might not
correct (3.6) sufficiently for large coulombic couplings, i.e. too strong condensation
effects.

This has been investigated in further detail in appendix B where for all parameters
under consideration the integrated counterion distribution functions were analyzed
and compared with the inflection point criterion, the Manning condensation charge
renormalization, and the more refined criteria developed in section 3.2. As it turns
out, the spirit of the inflection point criterion leads to the correct result, meaning
that (R, fz) itself does not reflect a suitable description for condensation effects, but
it is a uniform mathematical argument, namely the point of maximum curvature,
which indicates the y-value corresponding to the appropriate feg. This allows to
continue this investigation using the simple charge renormalization argument to
incorporate the effect of strong electrostatics in the following, leaving the exact
value of feog rather ambiguous at the moment, with (4.11) nevertheless providing a
good first approximation.

4.2.3. Balance in the pressure

One of the major advantages of computer simulations is the access to “microscopic”
details of the investigated systems. Particularly in the case of far-reaching assump-
tions such as section 3.2.2 neglecting electrostatics entirely, it is beneficial to be able
to actually compare the (theoretically) assumed behaviour to the (model) reality.
Therefore, this section will investigate the contributions of counterions resp. gel to
the overall pressure P, starting with the assumption of the theory’s validity, then
carefully evaluating any discrepancies to its predictions from there. Since it is the
balance in the pressure which essentially determines the swelling equilibrium of the
hydrogel, a thorough understanding of how this balance is achieved and maintained
will not only provide the necessary informations needed to arrive at a corrected
theoretical description, but will also allow valuable insight into the actual physical
mechanisms behind that process.

We will begin by introducing the respective components P is composed of, as
by nature computer simulations cannot directly determine those macroscopic ob-
servables which in fact represent the result of multiple microscopic contributions;
they are, however, capable to access precisely these microscopic details, allowing
not only to construct the desired macroscopic quantity from there, but to inves-
tigate the underlying interplay between components, identifying leading contribu-
tions and evaluating possible cancellation taking place, as well. Measured according

monomers

o (4.5), P contains the ideal components PGl and Pmon of counterions and
monomers, respectively, their excluded volume interactions with themselves (PEJI*CI

and Pryromers) and with each other (PEJI—monomers) from the Lennard-Jones interac-
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tion (4.2), the total electrostatic pressure (Pg") from the coulombic coupling, and
the FENE-virial from the bonds (Prgnxg) as in (4.1). Unfortunately, for principal
reasons the long-ranged coulombic contribution 77tOt cannot be subdivided further
into monomer-, counterion-, and crosscorrelated terms in a system with periodicity
in all three dimensions without additional constraints. If the assumptions of sec-
tion 3.2.2 are correct, this should not pose a problem, since then P ~ 0, while
from the ideal gas depiction for the counterions PCI '~ 0 and PCI HIOHOMErS ~ ()
would follow®. Consequently, it seems reasonable to set Py PCI CI—l—PCI HIONOMELS
and to subdivide P = Pyus + Pgel along

Poas = Paea + PLy + Pt (4.12a)
Pgel — il’(rilé)ardllomers _i_ PE}]OHOIDGI‘S _i_ PFENE (4 12b)

referring to Pgas and Pge as “pressure of the gas” and “pressure of the gel”.

Table 4.3 exemplifies this by providing the results of (4.5) for our simulation
data at a chain length of N, = 239 monomers; the corresponding data for other
Ny, # 239 is given in appendix A for comparison. Clearly, the leading contribution
t0 Pgas is the ideal pressure Pdeal of the counterions Wthh is up to three orders
of magnitude larger than the other two components PSl and PtOt This however
varies dramatically with the given parameters, as for increasmg electrostatics the
coulombic part of the pressure jumps up two orders of magnitude, even arriving at
comparable numbers for e.g. /g = 1o and f = 1.0 where PS! | is now only slightly
larger than PEOt Thereby, it might also seem surprising that the latter predominantly
displays positive values, assuming P[’t < 0 only for the strong electrostatics limit
of /g = 50; one should bear in mind, though, that the Coulomb part of the pres-
sure includes the contributions of both counterions and monomers, hence combining
their mutual negative electrostatic interaction energy with the respective positive
one from counterion-counterion and monomer-monomer repulsion can nevertheless
lead to overall positive values. Particularly the latter has quite an impact on the
overall result, as the charged monomers are forced into the energetically unfavorable
constraint of a chain with a fixed maximum distance of b/ f between neighbouring
likewise charges, consequently providing a positive repelling “background” contri-
bution which needs to be overcome by the negative attractive interaction energy
between monomers and counterions. Our findings however indicate that the latter’s
significance overcomes the former’s influence only for very strong electrostatics where
system sizes are also smaller, as are mean distances between oppositely charged unit.
This correlates with the onset of counterion condensation, which also leads to an
increase in the excluded volume part PC of the pressure: Entirely negligible at first,
with PSL, being 400 times larger for /g = 1o and f = 0.0625, it eventually becomes
twice as large as the ideal contribution for /g = 50 and f = 1.0 when more than
80% of the counterions condense onto the network chains, dramatically increasing

5 Since we want to check these assumptions, we are nevertheless considering the full contributions.

171



4. Polyelectrolyte Networks in 0-like and Good Solvent

Pgas Pgel
lp f Pieal PLs Pt deal " Pry™™™  Prene
1 0.0625]2.46-107° 5.66-10~% 2.80-1077 | 4.07-10~* 2.44-107% -2.89-10~*
2 0.0625 | 2.30-107° 4.85-10°% 1.67-1076 | 3.80-10* 2.27-10°% -2.70-10°3
5 0.0625 | 2.51-107° 1.07-10°% 847-10°7 | 4.14-10°* 2.49-10°3 -2.94-10°3
1 0.125 [ 2.55-10°° 2.58-10°% 1.96-10 6 | 2.07-10°* 1.23-10°3 -1.47-10°
2 0125 | 2.41-107° 1.83-10°7 4.37-10°°¢ | 1.96-10°* 1.17-107% -1.39-10°%
5  0.125 | 3.06-107° 3.72-107% -1.19-1076 | 2.48-10~* 1.48-10~% -1.76-10~3
1 025 [265107° 1.73-10=% 3.41-10°% | 1.07-10~* 6.25-10~* -7.62-10~*
2 025 |268107° 4.16-1077 9.70-1076 | 1.08-10~* 6.25-10~* -7.70-10~*
5 025 |443.107° 1.55107° -1.26-107° | 1.78-10~* 1.04-10~3 -1.27-1073
1 0.5 |3.09-107° 5.20-107% 1.07-107° | 6.19-10™> 3.41-10~* -4.47.10~*
2 0.5 |3.05107° 1.64-107% 1.86:107° | 6.13-107° 3.31.10~* -4.45.-107*
5 0.5 |6.90-107° 6.10-107° -4.37-107° | 1.38-10°* 7.67-107* -9.96-10*
1 1.0 | 3.80-10° 3.94-10~7 3.04-107° | 3.80-10~> 1.78-10~* -2.86-10~*
2 1.0 | 4.40-107° 1.44-107° 2.87-107° | 4.40-107®> 2.00-10~* -3.34-107*
5 1.0 | 1.09-107* 2.17-107% -8.62-107° | 1.09-107* 4.78-10~* -8.30-107*
Pgas Pgel
g f Pleal P Pt deal " PLym™™  Prene
1 0.0625]4.53-10°° 1.62:10°7 2.37-10 6 | 7.47-10°* 3.67-103 -4.48-10°
2 0.0625 | 4.54-107° 4.31-1077 3.98-107% | 7.49-10~* 3.69-10~3 -4.49-1073
5 0.0625 | 5.58-10™° 5.25-107% -4.41-107% | 9.23-107* 4.54-10~% -5.53-1073
1 0.125 [ 3.94-107° 9.0810~% 3.44-10°6 | 3.20-10~* 1.56-10=% -1.92-10~"
2 0125 | 3.76-107° 2.72-10°7 8.23-107° | 3.05-10~* 1.48-10~3 -1.84-1073
5 0125 | 5.22-10°° 9.24-10°% -6.95-1079 | 4.23-107* 2.06-10°3 -2.55-103
1 025 |3.68107° 6.24-10°% 8.91-10°% | 1.48-10~* 7.02-10~* -8.97-10~*
2 025 |356-10° 7.06-1077 1.40-107° | 1.43-107* 6.74-107* -8.70-10°*
5  0.25 |6.10-10°° 2.63-10°° -2.13-107° | 2.46-10~* 1.17-1073 -1.49-10°3
1 0.5 [3.80-10° 1.07-107 1.77-10°° | 7.61-10 ° 3.36-10°* -4.69-10*
2 0.5 |3.77-107° 2971079 227.10°° | 7.56-107° 3.27-107* -4.69-10*
5 0.5 |9.2810° 9.26:10° -6.19-107° | 1.86-10~* 8.30-10~* -1.14-103
1 1.0 | 4.24-10° 6.03-1077 3.77-107° | 4.24-107°> 1.53-10~* -2.78-107*
2 1.0 |5.23107° 1.97-10=° 3.28:107° | 5.23-10° 1.85-10~* -3.43-1074
5 1.0 | 1.30-10~* 2.76:10~* -1.01-10~* | 1.30-10~* 4.28-10~* -8.69-10~*

Table 4.3.: Detailed pressure components for a system with Ny, = 239 monomers per
chain in good solvent (top) and close to the #-point (bottom) for different values of Bjerrum
length /g and charge fraction f, namely the contributions to the gas-like pressure Pgas

(ideal part PS!

ideal?

tot

sure P;>) and to the one of the gel Py (ideal part
bonded virial Prgng) for the fully charged gel at its swelling equilibrium volume V.
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4.2. Results and Discussion

the electrostaticly induced vicinity of counterions and monomers which is obviously
merely balanced by the divergence in the Lennard-Jones potential for small spatial
distances. This does not only impair the line of arguments in section 3.2.2 where
neither electrostatics nor excluded volume was an issue, but it is also responsible for
the deviation from ideal behaviour in the form factor S(q) of figures 4.6 and 4.7 on
short length scales (large q).

The elastic response of the network chains on the other hand, as expressed by the
Prene-contribution to the pressure of the gel, appears as the undisputed leading
term in Py, being 2.5 to 10 times larger than the ideal term PRon°™®, and keeping
a smaller but distinct lead over the excluded volume contribution Ppmemers between
monomers. [ts negative sign poses the main mechanism counteracting the swelling
tendencies of the ideal and excluded volume terms, and even the electrostatic pres-
sure component is balanced until the coulombic interaction becomes sufficiently
strong. As a result, its behaviour mirrors that of P;", i.e. Prpne gets larger with
weaker electrostatics due to the influence of the osmotic pressure contribution PSL,
of the counterions. Since a similar, albeit less pronounced, trend can be observed
in Pgon®™e™®, the effects of a smaller equilibrium volume V,, and shorter chains Rg,
which should both indicate less strongly stretched chains, are therefore overcom-
pensated by the additional entropy of the monomers, resulting in more movement
and increased stresses acting on the bonds. The matching behaviour of the ex-
cluded volume term P should thereby not come as a surprise, as figure 4.1
already depicted the very steep minimum in the next neighbour potential of bonded
monomers for the chosen set of parameters; the usual fluctuations induced by the
thermostat will consequently have each monomer contribute to both parts equally
likely, until external effects come into play.

With full control over all aspects of the simulation system, its degrees of free-
dom with respect to the scaling arguments of section 3.2.2 can be reduced by de-
activating electrostatics once the main investigations are complete, and re-running
the (N, V = Viq, T')-ensemble in order to investigate the behaviour of a hydrogel un-
der the same volume constraint but without the long-range coulombic interaction.
Results are given in table 4.4, again for Ny, = 239 only, where 73 denotes the total
pressure measured in such systems, and APgaS = Paas — Pgas and APgel = Pgel — Pgel
give the difference between the gas-like resp. gel-like components of P to those from
the same setup, but with electrostatics turned on (i.e. the Pys and Pye from ta-
ble 4.3). The data confirms the arguments we have devised so far: In case of former
weak electrostatics, switching them off results in a negligible non-zero total pressure
P of as low as 10~ which is already deep within the error bars. For charge frac-
tions f > 0.25, |P| becomes significant, and we find the unexpected property that
for {5 = 1o and f5 = 20 the hydrogel wants to deswell (since P < 0) instead of
indicating further volume increase through P > 0 as in the case of 5 = 50. This is
remarkable because with the removal of electrostatic interactions the “counterions”
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good solvent (v = 0.588) f-solvent (v = 0.50)

g f P AP, APw | P AP, AP,

1 ooe2s | 1.84-107% 3.21-1077 -5.55-107° | -2.02-10~7 2.47-107% -4.40-107°
2 o002 | 6.00-107%  1.71-107% -1.36-107° | 7.76-:10°% 4.36-107% -2.12-10°6
5 ooss | -1.84-107% 1.85-107% 1.84-107% | 8.92-107% 7.00-1077 -6.40-10"6
1 o012 | 1.16-107% 1.98.107° -6.76-107°% | 2.72-107% 3.51-10°% -2.79-10°°
2 o2 | -2.56-107% 4.54-107% 6.36-1077 | -4.54-107% 8.46-107°% 1.05-1077
5 o1z | 5.42:107¢ 2.49-10°% -4.46-107°| 1.04-107° 2.10-10°% -1.59-10°°
1 025 |-4.97-10°% 3.42-10°° 3.33-10°°% | -5.19-10°% 8.96-10° % -1.78-10°°
2 0.25]-361-100% 1.01-10® -5.04-107% | -6.06-10~¢ 1.47-107° -8.67-1076
5 025 1.83-107° 2.73-107% -2.24.107° | 2.02-10® 4.72-1076 -2.19-10°
1 05 ]-5.99-10"% 1.07-10° -5.92:107% | -9.14-107% 1.78-10~® -8.31-107°
2 0.5 |-7.69-107% 2.02-10™° -1.27-107° | -1.04-10~® 2.56-107° -1.59-10~°
5 0.5 | 3.70-107° 1.66-107° -5.54-107° | 4.86-10°> 2.98-10~° -7.80-107°
1 1.0 |-1.11.10™ 3.08107° -2.04-107° | -1.78-10™° 3.83-10° -2.09-10~°
2 1.0 | -6.90-1077 4.28-107° -4.37-107° | -1.25-107% 5.22-10~° -5.12-107°
5 1.0 | 7.80-107® 1.29-10~* -2.08-10* | 8.80-107° 1.72-107* -2.63-10~*

Table 4.4.: More detailed pressure components as in table 4.3 for the same system, but
this time after switching off electrostatics, which changes the total pressure from zero to 73,
and shifts Pg,s and Pge by —APgaS and —APgel, respectively, but keeping at the volume
Veq the charged gel had.

(now merely neutral spheres with excluded volume) will behave as the ideal gas
the theory always assumed®, which increases their osmotic pressure contribution if
formerly condensed ions return into solution as f.g — f; consequently, the shape
of the hydrogel should either remain more or less unchanged (if electrostatics was
weak and therefore negligible beforehand anyway) or its volume should respond to
the additional osmotic pressure by increasing further. The systems with /g = 5o
and strong counterion condensation obey these arguments, while the intermediate
cases of non-negligible but weak electrostatics appear to have an additional swelling
mechanism which is caused by the coulombic interactions and stronger than the ef-
fective osmotic pressure of the counterions but independent of f.g, as in the neutral
case its disappearance weights stronger than the added entropy of the “counteri-
ons”, causing the desired volume decrease; remembering that table 4.3 reported the
similarly unusual P;gt > ( for the very same regime, which was only 2 — 3 times
smaller than PSL, (despite including the negative pressure contributions from the
coulombic counterion-monomer-interaction), this mechanism is easily identified as

6 The excluded volume of the neutral “counterions” is negligible regarding the low density, which
is confirmed by the PFF we measured.
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the electrostatic self-energy of the chain, which repels likewise charged monomers,
as we will demonstrate later on in (4.21).

Gas-like Contributions

Within the theoretical framework of sections 3.2.1 and 3.2.2 Pg,s should equal Il
from (3.1) (as well as Py ~ Ilg from (3.2) resp. (3.4) which will be analyzed in
the next section 4.2.3). However, as the left part of figure 4.9 depicts, this cannot
be confirmed even when renormalizing the effective amount of free counterions,
substituting the feg from (4.11) as charge fraction into Ilg, i.e. using IT8. Not only
that the Manning criterion predicts the wrong pressure, also using the value for f.g
obtained from the inflection point of the integrated counterion distribution in the
simulations leads to strong deviations. While for all neutral systems the simple ideal
gas term is (unsurprisingly) a very good description, the deviations of the actual
Pgas from that picture become more pronounced for larger electrostatic interactions
in the system.
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Figure 4.9.: Comparison of the pressure Pg,s of the gas-like cloud of counterions
to the assumed Ilg from the model in section 3.2.2. While the left plot displays
significant deviations for larger f and ¢g although compensating for the occurrence
of counterion condensation (see section 4.2.2) by using H‘éff, the right plot shows
that those are entirely by the electrostatic effects contained in Apgas, see text (same
colour refers to same f, same symbol refers to same ¢p; for details see table S.1).

Without condensation this can almost entirely be attributed to the Pjo'-
component, while on the other hand confined counterions significantly increase
PLlmmonomers - qyue to the contribution from excluded volume interaction with the
monomers of the chains. The latter is thereby the dominating term in PE} due to
the low density of the networks in the swollen state which renders the remain-
ing free counterions’ 778701 to be negligible, and allows an approximation like

P ~ PS}_mon"merS > PS}_CI which is confirmed by the left plot of figure 4.10
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4. Polyelectrolyte Networks in 0-like and Good Solvent

within the margin of error. Increasing up to three orders along the way (see ta-
ble 4.3), P eventually reaches the same order of magnitude as ngt for strong
coulombic coupling, where it it is even larger by a factor of 2. The right plot in
figure 4.10 also shows that this is combined with some more finite size effects caus-
ing a rather dramatic increase of the ratio P{J/Pie" for intermediate electrostatics
(e.g. lg = 20 and f > 0.5) and small chain lengths N,, where the excluded volume
contribution becomes up to 4 times larger than the coulombic one, as shorter chains
experience a stronger influence from the charge accumulation around the network
nodes, having a much higher density with consequently more particle contacts. Since
P will always be positive, otherwise it would not represent excluded volume (see
(2.37) and section 2.4), the sign of PLj /Pt is given by the balance between repul-
sive and attractive coulombic contributions in P;°, which is why all the values for
¢y = 5o (and some very short and weakly charged chains) are plotted below zero.
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Figure 4.10.: Assessment of the leading pressure components in Pg,s, namely
P a pLymenomers s, PECL (o) and PEY vs. Pt (right); the lines are mere
guides to the eye, connecting the data in the direction of increasing Ny, (symbols as
in figure 4.9).

Electrostatics consequently does play a non-negligible part in the swelling process
of the hydrogel, more than simple charge renormalization can explain. Fortunately,
all its direct and indirect contributions are by construction subsumed in APg,q, so
that

Pgas - A,Pgaus ~ I—IC (413)

provides a good starting point for nonetheless relating Py,s to the ideal gas ansatz
of the simple scaling theories. Shown to work in figure 4.9, this is at the same time
confirming that such a simplified modeling of the counterions’ effect is essentially
only valid in a neutral (or likewise weakly charged) system.

What now remains to be found is of course an appropriate description for APgas.
As discussed, it is essentially dominated by the contributions from the electrostatics
and (in case of condensation) the excluded volume interactions between counterions
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and the chains,
Apgas ~ tot + PE}—monomers >0 (414)

‘B
This pressure, according to (4.13) adding to the purely entropic I, has to increase
the strain on the network chains more than predicted for the neutral case, so that
a similar APgel < 0 is expected to be needed there for the comparison of Py and
[1g; its interplay with APgaS will be investigated in section 4.2.4.

Elastic Contributions

In section 3.2.2, the derivation of Ilg implied the validity of a Gaussian description
for the force-elongation-relation between the extension Rg of a network chain and
the resulting restoring force fg, i.e. an only weak deformation of the tension blobs.
Using the elastic free energy

1

Re \ == R T
Fe=3(1-v) (N—jb) ksT = 3(1 — V) NykgT (Rmix) (4.15)
gives for that force and the corresponding pressure
OFg figb Rg \ T
fp=—— = —=3 4.16
® = ORg knT (Rm (4.16a)
1 1
0Fg kgT ([ Rg \'-* Nu Ry \ 1
g = —— I[lg = ——— = ———kpT 4.16b
BT Ty T OPT TR (N;;lb) RSP (Rm> (4.16b)

with Rpax = Npb and (4.16b) equaling the ITg used in section 3.2.2.

Real chains cannot extend beyond Ry, without breaking. From (3.6) it follows
that therefore the charge fraction, more precisely f177, has to be significantly smaller
than 1, i.e. that the chains may not be too strongly charged for the scaling law to be
applicable. Although the charge renormalization from section 4.2.2 allows to treat
systems with very strong electrostatics in that limit, too, because their pronounced
counterion condensation will lead to a small enough f.g, an intermediate regime
remains which is characterized by a large amount of counterions fN,, ~ N, per
chain but low electrostatics ({u < 1). Here, the finite extensibility of the network
chains causes the restoring force fg to deviate from the ideal behaviour of (4.16a).
Several models exist [156] to describe such a divergence, depending on the physical
characteristics of the polymer: Introduced in section 2.2, the freely jointed chain
(FJC) assumes, for example, that each bond between neighbouring monomers has
the same length b, and no correlations between the directions of different bond
vectors exist; while R, is then the maximum end-to-end distance, more elongated
conformations become less likely to occur, leading to the divergence in the restoring
force fg which was derived in section 2.3 and is given by (2.31) and (2.33) for large
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Ry — Rmax, i.€e.

fub — 1 Jii> ~ 1= Ry \'
kgT Riax Rimax
with £71()\) being the inverse of the Langevin function £(\) = coth(\) — 1/ from

(2.32). The worm-like chain (WLC) additionally fixes all bond angles at very small
values, hence being a good model for very stiff polymers; here the divergence in fg

shifts to ~
M 1 1— R '
kBT 2 Rmax

for Rg — Ruax, according to (2.35). A visualization of these divergences and their
connection to a Gaussian chain was given in the center panel of figure 2.5, even
though it was based on the behaviour of ideal chains.
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Figure 4.11.: Network restoring force fg measured from the elastic contribution to
the pressure, the excluded volume interaction between the monomers, and the ideal
component, as a function of the average end-to-end-distance normalized by the maxi-
muim elongation Rpy.x of a network chain; as reference the force-extension relation for
Gaussian chains (fg), for freely jointed chains (FJC) and for worm-like chains (WLC)
are given as well as the model fit (fﬁeal). The right plot also compensates for the inner
chain repulsion A fr due to the electrostatics, see text (same symbols as in figure 4.9).

Figure 4.11 now compares those models to the network restoring force fg =
—3R% Py measured in the simulations, which consists of the elastic contribution
of the bonds between the monomers, their respective excluded volume interaction,
and the ideal pressure of the monomers, plotted as a function of the elongation of the
chains relative to Ryax. For small extensions, no deviation from (4.16a) is expected
and observed, while longer chains clearly exhibit the announced divergence once the
electrostaticly induced (absolute) pressure increase APgel, leading to the additional

force component A fg = fp — fE, has been removed (right plot of figure 4.11); fE is

178



4.2. Results and Discussion

thereby once again an observable measured without electrostatics in an otherwise
unchanged system. Similarly to P, there is a superposition of “neutral” effects
also present without coulomb interactions, and “charged” ones to be investigated
later on. Though neither the FJC nor the WLC lead to good agreement with the
divergence behaviour of the hydrogel, which is not entirely unexpected since its net-
work chains have neither complete rotational freedom (due to the excluded volume)
as a FJC nor intrinsic stiffness as a WLC, we can use a similar functional form, the
generalized finite extensibility divergence

-
b R\’
—~ | 1- 4.17
kBT ( (Rmax> > ( )
with # = 3.7 and 7 = 2 as exponents, and fg given by (4.16a). As shown in fig-

ure 4.11, the measured fg then corresponds nicely to usual force-extension-relations
for real chains, and the “neutralized” pressure of the gel is therefore describable by

. Rg A
7)gel — A7)gel ~ Hgal - 1_[E {1— <R ) (418)

and IIg < 0 given by (4.16b).

Again, electrostatics decreases this further by a APgel < 0 getting more pro-
nounced as the coulombic coupling is increased (see left part of figure 4.11), although
technically Pye does not contain any direct charged contributions. Obviously, the
(compared to a neutral network) additional pressure introduced into the system by
Apgas > 0 leads to a likewise but opposite response from the gel, stretching the
chains even further (Prpng goes down) without significant changes in the excluded
volume (Pppremers) or the ideal (PRo5e™ers) contribution. Why then the strong devi-
ation of fg from fg in the first place, when we are relating the restoring force to the
chains’ elongation? This is due to the intra-chain repulsion of the charged monomers
which increases their bond length b, causing a rather large increment in Upgng, while
models for fp’s divergence usually assume the bond length itself to be unaffected by
the force extending the chain to Rg (remember that for measuring fr and fg the
volume V,, and, due to the periodic boundary conditions, therefore Rp remains the
same in both cases). Clearly having its foundation in the electrostatics, it should
consequently balance APgaS, more complex effects such as counterion condensation
notwithstanding.

4.2.4. Cancellation and Scaling

The results presented in the previous subsections 4.2.3 and 4.2.3 introduced the
necessary adjustments to the simple model from section 3.2.2, which turned out
to essentially hold for neutral(ized) systems only, while at the same time requiring
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adjustment for the finite extensibility of the network chains not accounted for in the
original Gaussian approach. It now remains to be investigated which mechanisms
govern the electrostatic and electrostaticly induced changes APgas and APgel to the
pressure of the (counterion) gas and the (polymer) gel, respectively.

Firstly, it is useful to note that by construction

o

Apgas + Apgd = (Pgas - 70Dgabs) + (Pgel - Pgel) = _75 (419)

because of the equilibrium condition Pyus + Py = P = 0 ensured by our (N,p =
0,T)-algorithm”. For weakly charged systems one would expect electrostatic effects
and therewith P to be negligible, which would in turn lead to a cancellation of
the additional pressure components discussed before. For strongly charged systems
where counterion condensation occurs one would expect P to reflect the amount
of renormalized charges along e.g. P = kpT (f — for) N/ R because switching off
coulombic interactions for measuring P should return the (now neutral) counterions
into their “gaseous state” and thereby re-introducing additional osmotic pressure
previously removed by the condensation; this presumes P> 0, i.e. the correspond-
ing {g = 0Oo-system with the same number of counterions N¢gy to reach a larger
equilibrium swelling volume V,,. In place of the Manning criterion (4.11), it is then

possible to derive the effective charge fraction f.g from P by

(NCI - Nnodes) - 75Veq /N
fesr = N il R (4.20)

which is plotted in figure 4.12 for the limit of strong electrostatics (where P > 0,
as discussed in section 4.2.3). Though certainly not a perfect match with Manning’s
prediction, which had been for an infinitely long real rod anyway, it is neverthe-
less a convincingly good agreement for f < 0.125 and, in case of sufficiently long
chains, for f > 0.5 as well. The remaining f = 0.25 fails to agree with the predicted
fer = 0.21, but rather assumes values around 0.13, which agrees with the corre-
sponding counterion distribution function in figure 4.8 which displayed more than
the predicted ~ 17% of all counterions concentrated close to the chains.

For systems with a very small amount of counterions N¢p and weak or very strong
electrostatic coupling, both aforementioned assessments of unperturbed behaviour in
the former and Manning-like condensation in the latter case turn out to be verified by
our data. There is, however, the aforementioned intermediate regime where P < 0,
i.e. the corresponding /g = Oo-system is smaller than its charged counterpart, as
can be exemplarily seen in table 4.4 particularly for the results of /g = 1o and
EB = 20.

7 Any deviation from (4.19), e.g. in the data of table 4.4, simply reflects an uncompensated P due
to the fact that the random noise added to the (N, p, T)-algorithm systematically prevents the
instantaneous pressure from (4.5) to ever be ezactly zero; the proximity of P to the desired P is
therefore an indication for the margin of error in V,q (for details see section 4.1).
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Figure 4.12.: The effective charge fraction fes as obtained via (4.20) from the
pressure difference P for strong electrostatics (left), where the straight lines indicate
the prediction of the Manning criterion (4.11), and from fitting feg to the integrated
counterion distributions in appendix B (right), where the lines are once more mere
guides to the eye, connecting the data in the direction of increasing Ny, (colours and
symbols as in figure 4.9; see table S.1).

Disabling electrostatics therefore leads to two possible effects: The (now neutral)
system will either try to expand further (when P > 0) or shrink in size (when
P < 0). Such a behaviour was not observed by Schneider and Linse [58] despite
their /g = 1.75241¢ falling into the intermediate range, too, because they were only
looking at very small systems with N, = 20 monomers per chain — and for these
we also get P>0 (note again that table 4.3 only displays the data for Ny, = 239);
this changes with increasing N, as the charge accumulation around the network
nodes becomes less and less, the charge separation on the chains more and more
influential.

Looking at the total electrostatic pressure P;gt as a function of the coulombic
strength (g f? Ny, /b, plotted in figure 4.13 without and with rescaling by the ideal

contribution PG, of the counterions, the observation of a negative P becomes un-
tot

ideal
derstandable, because for the parameter sets in question P;>" is actually positive,
something one would not expect for e.g. a polyelectrolyte solution, while larger /g
as well as smaller fN,, renders it negative again. The reason is to be found in
the network topology under periodic boundary conditions: It forces the charges on
the chains into energetically unfavorable positions and keeps them there, an effect
more pronounced when many strongly interacting bare charges have only a small
charge separation b/ f (along the contour length) resp. Rg/(fNn) (along the chain
extension) to each other. Larger /g, i.e. stronger coulombic coupling, increases the
charge correlations and also the amount of counterion condensation, which reduces
the number of effective charges and increases their respective distance, all lead-
ing back to a P;o* < 0. A smaller fN,, similarly separates the ionized monomers
further, while fewer N,, lead to a stronger domination of the charge accumulation
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Figure 4.13.: The electrostatic contribution P}gt to the pressure, plotted around
zero (left) and rescaled by Pldeal (right), illustrating the competing effects in the
pressure balance (see text). For simplicity, only the good solvent data is plotted,
because no qualitative changes occur close to the #-point. Again, the lines are mere
guides to the eye, connecting the data in the direction of increasing Ny, (symbols as
in figure 4.9; see table S.1).

around the nodes, both ensuring P;%" < 0 as well. In between there is a maximum
in Pt (g f>Nim/b) at positive values for large enough N, f Ny, and small enough
EB With (0 < Pgymenemers < APgel it follows from (4.14) and (4 19) that, unless
P =~ 0, for Pt < 0 the gas Component APgas is smaller than —APgel (= P> 0),
and vice versa for Pt"t 0 (= P < 0). This explains why, depending on the chosen
parameter regime, expansion or shrinking of the neutralized gel can be observed.

Considering the changes APgel in the pressure of the gel due to the coulombic
interactions in the system, only effects on the network strands are measured, without
any (direct) contributions from the counterions. It therefore has to correspond to
the electrostatic self-energy [33]

EB(me)2

APgel = _HKB = —kBT 3R4E

(4.21)

of a polyelectrolyte chain of the same length R, allowing to model Py using (4.18)
as
Py = HE — 11, (4.22)

which is supported by the lower right inset of figure 4.14. Due to (4.19) this means
in turn that from (4.13) and (4.21)

Poas + P & (AP + 1) + (=APpus — AP) = e — APy ~ Il + 11y,

follows, while the previous discussion of the interplay between the multiple electro-
staticly influenced components in Pg,s and Py, particularly regarding the charge

182



4.2. Results and Discussion

renormalization and the deviation from Gaussian behaviour of the overstretched net-
work chains, leads to P = (Ilg — II&) — (115 — 11%21). Subsumed into one expression,
the pressure of the gas can be written as

P ~ (I 4 114, — (™ — 1) (4.23)

which is confirmed by the upper left inset of figure 4.14.

Once more reminding of our (N,p = 0,7T)-algorithm, these partial pressure bal-
ances in (4.22) and (4.23) now provide access to the global equilibrium swelling
behaviour of the hydrogel:

O - 7) == Pgas + Pgel
~ (I + Mgy — (I — )] + [T — 10,
I+ Iy (4.24)

This does not only imply again the cancellation of the direct electrostatic effects
behind I, but also the removal of the extensively discussed divergence in (4.18)
from the total pressure of the system. In fact, it even brings us close to the original
pressure balance, such that with the definitions of section 3.2.2 and (4.16b) the
scaling prediction for Rg follows

N N =
0 = kBTfeff m_kBT_m<RE)

R}, R} \ Ruax
= Rg = Nub- [" (4.25)

with a good approximation for the effective charge fraction feg given by (4.11), as
we have previously shown [62,63].

Figure 4.14 finally summarizes our results by plotting (4.25) for all the investigated
systems, including the neutral ones with /g = Oc. From the good agreement between
simulation data and theory also in the insets re-confirming the modeling of the
gel-like pressure Py and the gas-like Pg,s in (4.23) and (4.22), respectively, the
developed scaling prediction seems to be correct despite its simpleness. Surprising at
first, this explains why previous studies could safely assume coulombic interactions
to be negligibly small — as we showed they are not, but since their components
cancel each other out globally, the final shape of the network will not explicitely
depend on electrostatic parameters (while still displaying an implicit dependency i.e.
through the effective charge fraction feg). The individual network strands, however,
do appear differently for real neutral systems (i.e. those with /g = 0o) and charged
ones, because all the aforementioned mechanisms will act here locally, pushing the
charges on the chains apart, condensing the counterions such that a strong contact
term arises (— gy momOmers),

The crucial factor in (4.25) remains the determination of the effective charge frac-
tion for. While the Manning criterion used for deriving (4.11) is a good starting
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Figure 4.14.: The equilibrium swelling behaviour of salt-free polyelectrolyte networks in
good solvent and close to the §-point following the scaling law (4.25) successfully. The two
insets provide confirmation for modeling the individual pressure components Pye (lower
right) and Pgas (upper left) by (4.23) and (4.22), respectively, leading to the pressure
balance P = 0 from where the scaling prediction is then derived (symbols as in figure 4.9).

point, it is far from being perfect, as the comparison with the inflection point crite-
rion in section 4.2.2 and table 4.2 showed. The comparison with P from the neutral
systems already yielded some improvement, as the left plot in figure 4.12 showed,
besides not being very useful for practical applications (where one cannot easily
“turn off electrostatics”) it was however only applicable to the strong condensation
regime where P > 0. The right plot in figure 4.12 followed an alternative path
of treating fes as a fitting parameter which resulted in reasonable values for f.g
over the entire range of parameters, and agreed with the counterions’ distribution
functions as well, although it would have been preferable if the amount of effective
charges could have been directly determined from the system properties, too. Since
it essentially comes down to precisely predicting the distributions of the counterions
in the system, such as those in figure 4.8, we refer to the numerous literature on this
challenging topic (see for example [166] and references therein). Continuing along
this path, sections 3.2 and 3.3 explored possible approaches based on solving the
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Poisson-Boltzmann equation for a simplified model system, developing techniques
for tackling the charge renormalization in polyelectrolyte networks.

4.3. On the validity of FRH

In the introduction it was outlined that although most of the commonly accepted
theories on the swelling of polyelectrolyte networks employ the FRH by simply
adding the different parts of the free energy (resp. their corresponding pressure
components) to obtain the equilibrium behaviour, this is not expected to be true in
general, and cross terms between them have to exist. While we found in APgas and
I1;, such contributions which were attributed to the interplay of charge repulsion on
the chains and electrostatic interaction with the condensed counterions, it turned out
that they canceled globally; even more, our derivation of the final scaling prediction
(4.25) was despite all modifications essentially still based on the FRH.

To assess this seeming contradiction, it is plausible to compare our data to non-
FRH theories. In [45] there was e.g. the average end-to-end distance of the chains
connecting two neighbouring endlink-points in the network derived to

2
(R2) o Nl

where k = /4mlpfN,/R3 was the appropriate inverse Debye screening length;
special emphasis was put on the fact that this prediction is made for the small x-

regime, i.e. neither the strong (kRg > 1) nor the weak (kRp < 1) screening limit

which is where our data was taken (1 < kRg < 12, see left plot in figure 4.15),
too. But the corresponding right plot in figure 4.15 shows significant and systematic
differences from the data obtained in the simulations, without the possibility to
relate those to condensation or effects of finite extensibility.

As a small remark it might be added that the independence of kRg of the chain
length Ny, displayed on the left side of figure 4.15, is not really surprising, since
from the definition of the Debye screening length it follows that

J N J N
kRg = 4rlp I - Rp =/ 4n/ly e

N,
47T€Bf7m1—
Nmb *Jeff Y

l
= Ar =2 /

b

(4.26)

I

1—v
eff

will not contain N, explicitely if the validity of (4.25) is used; it might however
be employed as another measure to determine the effective charge fraction f.g, as
previously discussed.
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Figure 4.15.: Left: The product of screening length s and end-to-end distance Rg as
a function of the chain length Ny,. Right: The non-FRH based scaling prediction (4.26)
compared to the measured data, showing fundamental non-agreement even in the regime
of low electrostatics and Gaussian elongation of the chain. Once again, the results close
to the #-point have been omitted from these plots as they show the same qualitative
behaviour (same symbols as in figure 4.9; see table S.1 as a reference).

Without assessing systems in poor solvent or with added salt, it can therefore
only be deduced that the violation of the FRH does not play a significant role in the
description of salt-free model hydrogels and their behaviour at swelling equilibrium,
at least not the way it was assumed in previous works [43-45, 181].

4.4. Conclusions and Outlook

Relating the theoretical considerations from chapter 3 to the numerical solution of
an appropriate model, we investigated the results of large-scale MD computer sim-
ulations of a defect-free polyelectrolyte network without added salt in good solvent
and close to the #-point.

Initially, we detailed the coarse-grained system setup employed to measure the
equilibrium swelling behaviour of the charged hydrogels under the given solvent
conditions. We developed and compared several approaches to determine and reach
that equilibrium characterized by a vanishing instantaneous pressure P = 0. The
swelling properties were subsequently obtained from MD computer experiments in
the (N,V = V(P = 0),T)-ensemble, using the soft matter system simulation
package ESPResSo we presented in chapter 1.

We investigated the results for a diamond-like network topology and a vast range
of configurational, geometrical, and interaction parameters. While no direct violation
of the FRH could be detected and corresponding predictions could not be confirmed,
we developed a scaling relation for the end-to-end distance of the network strands
which takes both the effects of counterion condensation as well as of finite extensibil-
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ity of the chains into account, successfully testing it with our data. The analysis also
showed rather strong components in the pressure which could be attributed to the
inner-chain repulsion of the charged monomers and to the electrostatic interaction of
the counterions with them; however, it was found that these contributions canceled
out in the swelling equilibrium when using the appropriate effective charge fraction.
The final shape of a hydrogel under the considered environmental conditions was
therefore determined by the renormalized amount of charges on its network strands
and their maximum elongation, while coulombic effects did only implicitly affect the
outcome. This was true due to the effective charge fraction reflecting more than just
the neutralization of condensed counterions in the vicinity of the network chains, as
opposed to the more Manning-like usage employed in the previous chapter.

The detailed analysis of the microscopic mechanisms behind the equilibrium state
of a charged hydrogel also revealed a closer look at the leading contributions as-
sumed in our derivation of a universal scaling prediction in the previous chapter. It
confirmed that the swelling is essentially driven by the osmotic pressure of mobile
counterions and the electrostatic repulsion of the like-wise charged co-ions on the
network chains, both acting against the elastic restoring force of the strands chem-
ical bonds. In addition we found a very high excluded volume term for very strong
coulombic coupling, indicating that in such a limit the condensing counterions are
“bound” so strongly onto the chains that they add another swelling tendency to the
System.

For future studies, one could follow the analogy to neutral network investigations
by looking at e.g. randomly crosslinked chains, introducing entanglements, loops,
or dangling ends into the system. Another road to explore would include expanding
more on the coarse-graining aspect towards massively larger system sizes, eventually
arriving at a level were unsolved questions such as to the nature of the curious surface
patterns real world hydrogels like the one in figure 1.3 exhibit could be solved.
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5. Polyelectrolyte Networks
in Poor Solvent

The simulation study is extended to poor solvent environments. There,
regimes with different equilibrium conformations emerge. Pearl-necklace-like
shapes are found, as theoretically predicted, but also other structures simi-
lar to those from an earlier single chain study. They are categorized in the
parameter space, and their equilibrium properties compared.

A large number of polymers are based on a hydrocarbon backbone which is usually
non-soluble in water. While quite often only the addition of charged side groups
ensures solubility, the properties of such polyelectrolytes are fundamentally different
than those of the macromolecules considered in the previous chapter 4. Since most
polymers in biological environments, where the amount of water is usually high,
virtually all proteins as well as the DNA are charged objects, the importance of this
regime and its thorough understanding not only for biochemistry and molecular
biology becomes apparent.

The sulfonated polystyrene (PSS) in the lower half of figure 1.4 also has a hy-
drophobic hydrocarbon backbone, meaning that for this polyelectrolyte water is a
poor solvent, causing the macromolecule to try and minimize its contact surface
with the surrounding solution by attempting to collapse into a globular state. As
was detailed in section 2.4, the same effect occurs if the system temperature T is
lowered below a critical threshold, the O-temperature; there, monomers are more
likely to be found close together due to an effective net attraction, as expressed by
the negative excluded volume in (2.41). An environment exhibiting such features is
generally called a poor solvent because the macromolecule prefers contact with itself
over the solvent molecules, and consequently falls out of solution eventually, if the
system is neutral or the temperature too low.

Adding charges to the system now gives rise to a whole new set of structures,
because the long-range interactions introduced, particularly the repulsion of likewise
charged neighbouring monomers, are competing with the poor solvent attraction,
and depending on the parameters entirely different conformations emerge. For the
most intriguing one, a pearl-necklace-like shape of the chains, theoretical models
for weakly [182-184] and strongly [33, 164, 185] charged chains exist which will be
detailed in section 5.1. Although once more a single chain theory, similar shapes are
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also expected for a polyelectrolyte gel [40] where the scaling predictions change due
to the network topology.

Computer simulation studies [52 54,177 179] were successful in proving the exis-
tence of such shapes within single chain model systems, providing valuable insight
into their basic properties. Section 5.2 will discuss some selected results, focusing on
structural aspects and geometrical observables which are relevant for charged gels.

Based on those system parameters and same solvent conditions to achieve direct
comparability, our numerical experiments of poor solvent polyelectrolyte networks
will then be presented in section 5.3. They are the first to reveal pearl-necklace
structures in charged hydrogels, as expected, and also corroborate findings from real-
world experiments regarding scattering function observations which might indicate
direct evidence for the existence of pearls in poor solvent polyelectrolytes.

5.1. Poor Solvent Theories

This section introduces the theoretical concepts for treating charged polymers under
poor solvent conditions. Drawing further on the analogy to single chains, we first
discuss the scaling picture for polyelectrolytes in dilute solution (section 5.1.1) and
its predictions for the pearl-necklace structures, while later on we transfer these
findings to the network regime (section 5.1.2).

5.1.1. The Scaling Behaviour of Poor Solvent Polyelectrolytes

In a solution with an effective excluded volume v, < 0 the monomers are attracting
each other. For a charged polymer, however, the repulsion of the likewise charged
repeat units along the backbone introduces an additional effect counteracting the
collapsing tendencies induced by the solvent, such that within certain parameter
regimes a fragile balance can emerge, creating a sequence of locally collapsed struc-
tures (called pearls) interconnected by elongated strings, having the polyelectrolyte
appear as a pearl-necklace.

This observation (an exemplary snapshot will be shown later in figure 5.2) can
be treated as an emerging equilibrium between poor solvent attraction and the
electrostatic repulsion. The former leads uncharged chains to form a globule whose
density p = 7/b% is given by the balance of two-body attraction (BNyp) and three-
body repulsion (55N, p?) between the monomers of the chain, with second virial
coefficient B =~ —7b?, reduced temperature 7 = (0 —T") /0 where 6 is the temperature
of the f-point (equivalent definitions exist as well, e.g. 7 = —(e?; — er5)/€l; with
¢! = 0.34 kgT [178,179] as corresponding #-value for our simulations, see sections 4.1
and 5.2), and bond length b; the size R of the globule is then given by [184]

1/3 1/3
R~ (&> ~ &r (&> ~ br VBN (5.1)
p

gr
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It contains an important length scale, namely the thermal blob size &r, indicating the
size of the density fluctuations. As in section 3.2.2, below &1 the chain statistics are
unperturbed by the volume interactions, resembling a random walk of gr monomers
with &1 ~ bg;/ 2; on length scales larger than &, the attraction between monomers is
stronger, causing the thermal blobs in the globule to be space-filling with p ~ gr/&3.
While the number of monomers in a thermal blob is gr =~ 1/72 and its size is
&t ~ b/T, the surface tension 7 of the globule is of the order of kgT per thermal
blob at the globular surface, i.e. v~ kgT &2

The electrostatic interaction introduces coulombic blobs of size pg similar to the
ones in section 3.2.3. However, contrary to the energy relation (3.7) there, they are
determined by the balance between the electrostatic interactions within the blob
and the surface tension = kgT'¢1? = kgT'(7/b)?, given through

(ngE)2

&pE

A ~ e, (5:2)
Below length scales of &pg, electrostatics is negligible, and the coulombic blob is
composed of a dense packing of thermal blobs; for strong electrostatics, the poor
solvent effects are negligible, and the polyelectrolyte appears as a linear sequence
of coulombic blobs as in section 3.2.3. Starting e.¢g. at N, = 96 in figure 5.2 and
increasing the chain length consequently increases the size of the globule, until it is
energetically more favorable for (5.2) to split into two smaller pearls, dramatically
reducing the surface tension (where £pg enters quadratically), but even more dra-
matically reducing the electrostatic repulsion (where, through &pg =2 b(gpg/7)"/>,
the blob size enters with &p).

Considering the shape of a charged globule turns out to be similar to the classical
Rayleigh instability of a charged droplet [184, 186, 187] where it was shown that a
spherical object with radius R and charge Q > e(yR*/(kgT/g))"/? is locally unstable
and deforms spontaneously. Though its equilibrium state, a set of smaller droplets
each charged lower than the critical value and placed at infinite distances, cannot be
related to a polyelectrolyte due to the latter’s chemical bonds of finite size between
each monomer, the analogy still allows to conclude that the system can reduce its
energy by splitting into a set of smaller charged globules connected by narrow strings
— the pearl-necklace conformation.

Overall, a long polyelectrolyte chain in a poor solvent therefore adopts an elon-
gated shape determined by the balance between surface tension and electrostatic
self-energy. Minimizing the free energy of the respective contributions from the
pearls and the strings (both consisting of their surface energy and the coulombic
energy of the charges contained therein) and the total electrostatic energy of the
pearl-necklace structure then leads to a chain extension [40, 188]

g 2 1/2
Rp ~ Nmb( B/ ) T2 (5.3)

b
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which exhibits a different scaling exponent than the good solvent result from (2.58).
At low charge fraction or/and very poor solvent, the surface energy is larger than
the thermal energy, causing the counterions to be regulated by the pearls. The
condensation of counterions inside the globules actually suppresses the Rayleigh
instability, and even a large globule becomes stable against the necklace.

5.1.2. Treatment of Poor Solvent Gels

Not much can be said for the poor solvent behaviour of polyelectrolyte networks due
to the many competing contributions, except for some simple scaling arguments [40].
Following the line of thoughts from sections 3.2.1 and 3.2.2, a c¢*-gel is considered
with disentangled meshes and in the absence of salt, where at equilibrium the total
pressure in the system vanishes. Thus, the contributions arising from the counterions
and from the strand elasticity cancel, and II = [ + IIg = 0.

Drawing further on the analogy to single chains, the elastic energy density in a
poor solvent with ve, = —7b% < 0 is then proportional to the density of tensile blobs
as derived in section 5.1.1, such that at the scaling level [40]

T

Mg — —kpT——
E B R%b

(5.4)

This is compensated once more by the osmotic pressure of the counterions at the
gel equilibrium concentration ¢, given through

3

-
e =krl' fc = kyl ————— .
c=kpl'fc=kg (TN (5.5)
Hence, the equilibrium mesh size follows as
bf Ny
Rg = / (5.6)
T

With respect to a corresponding free necklace chain comprising N, monomers,
such a gel is consequently stretched. Also note that this description requires the
necklace to be shorter than a string of thermal blobs as the pearl-necklace picture
remains valid only if most monomers belong to the pearls, i.e. if Rg < Npybr.
Therefore, (5.6) holds for 7 > /2, whereas closer to the f-point the solvent quality
becomes irrelevant and the structure is that of a #-gel from section 3.2.1.

For very poor solvents the single chain results [40, 188] revealed the counterions
to no longer be free and to condense onto the pearls. The same is expected for the
network, where the gel then macroscopically collapses if 7 > /3.

Concludingly, poor solvent conditions are irrelevant close to the #-point for as long
as 7 < f'/2; the gel shrinks continuously for intermediate solvents f/2 < 7 < f1/3
and undergoes collapse at 7 ~ /3 due to counterion condensation.
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5.2. Single Chain Studies

Accessing the poor solvent regime within a coarse-grained simulation is quite simple
from a technical point of view: Besides lowering the temperature 1" below the critical
f-temperature, one can alternatively adjust the short-range excluded volume inter-
action to exert an additional attraction by e.g. increasing the depth of the energy
well in the Lennard-Jones potential (4.2) from the f-value €f; = 0.34 kgT' [178,179]
to er,; = 1.75 kgT while shifting the potential cut-off to 7.« = 2.50. Introducing the
reduced temperature 7 = (er; — €? ;) /e?; from section 5.1, this leads to the negative
excluded volume ve, = —7b% < 0 in (2.41) because of the attractive well dominating
the interaction, making it more likely to find monomers close together!. It can be
supported further by weakening the finite extensible bond potential from (4.1), de-
creasing the spring constant to kp = 7'2_3—2T and relaxing the maximum bond length
towards rg = 2.00, which results in the effective pair interaction shown in figure 5.1.
Note that other choices are possible, too, as long as the resulting, overall potential
displays the necessary characteristics of an effectively attractive interaction beyond
the 0-point, where the chain conformation would follow Gaussian statistics.

Figure 5.1.: The short-range interaction
between neighbouring monomers in a poor
solvent environment, consisting of the ex-
cluded volume Lennard-Jones (4.2) and the
attractive FENE (4.1) potential. As in fig-
ure 4.1 for the case of good and 6-solvents,
the effective interaction depends on the cho-
sen parameters; here, the LJ includes part of
its attractive well up to reut, extending even
deeper with ery = 1.75kgT, while the fi-
0 05 5 2 25 nite extensible bond potential diverges soft-
oS e lier (kp = 7’“(‘;—2T) and later (rp = 2.00).

LJ potential
FENE bonds
LI+FENE ——

short range interaction potential / &

The aforementioned parameters now correspond to those of a very detailed simu-
lational study [54] conducted at our institute, investigating the structure of strongly
charged polyelectrolytes in the dilute concentration regime of a poor solvent, in
which the chain-chain interaction was found to be weak enough to be able to effec-
tively deal with single-chain properties. Its model consisted of N, flexible bead-spring
chains with N, monomers and an appropriate amount of Ng; counterions to ensure
electroneutrality, all located in a cubic simulation box of length L under periodic
boundary conditions. With a fraction f of the monomers monovalently charged, the

! Thus, instead of disliking the solvent molecules, which are only implicitly present in our model,
the monomers are merely preferring contact with their own kind more; the resulting effects,
however, are naturally the same.
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plain monomer density p, = N,N,,/L? was supplemented with the bulk charge
density p. = 2fN,Ny/L? = 2Nc1/L? to render the system charge neutral. While
the monomers interacted with the effective short-range potential from figure 5.1, the
excluded volume of the counterions was modeled by the purely repulsive Lennard-
Jones used in the good solvent regime, i.e. with re = 2/90. The Coulomb inter-
action between all charged objects was calculated with the P*M-algorithm [74,75]
and force accuracies much higher than the thermal noise level. Overall, a velocity
Verlet algorithm with a standard Langevin thermostat was used to integrate the
equations of motion in the (N, V, T)-ensemble, using I' = 77! as friction coefficient
and a timestep of At = 0.01257.

name H Ny f /g €L] Pe
series Al || 48,...,478 1/3 1.50 1.75kgT 1.0-107°¢—3
series C1 200 1 0o,...,12.00 1.75kgT 5.0-107°c73
series C2 199 1/2 0o,...,6.00 1.75kgT 5.0-107°¢3
series C3 199 1/3 00,...,9.00 1.75kgT 5.0- 10 %03

Table 5.1.: The parameters used in the single chain simulation study [54].

Of all the poor-solvent polyelectrolytes simulated in [54], mainly as a function of
chain length N, solvent quality parameter €rj, strength of the electrostatic inter-
action /g, and charge fraction f, we will focus on the so-called series A1l and C1
through C3 (see table 5.1), because they were covering most of the two-dimensional
parameter space in the poor solvent regime we are interested in (which is why we
will also base our network simulations in the next section 5.3 on their system pa-
rameters, allowing direct comparisons of the respective results as well). Series Al
thereby studied the chain-length dependence for systems with a fixed charge frac-
tion of f = 0.3333, a Bjerrum length /g = 1.50., and a constant bulk charge density
pe = 1-107°073, varying N, = 48, ...,478 in steps of 48 (with N, = 48 being the
first, Ny, = 46 + 48N the subsequent iterations), while choosing ey = 1.75 kg1 deep
within the poor-solvent regime to receive relatively large and stable pearl-necklace
conformations. At the same ¢rj, series C1, C2, C3 studied the effect of the Coulomb
interaction through changing the Bjerrum length between /g = 0o and 100; the
charge fraction remained fixed at f = 1.0 (series C1), f = 0.5 (C2), and f = 0.3333
(C3), the bulk charge density at p. = 5-107°¢ 2 although the actual number of
counterions N¢y = N, fN,, varied due to the different charge fraction.

A first impression of how different polyelectrolytes behave in a poor solvent en-
vironment is given by figure 5.2, where some snapshots from series Al are shown.
Clearly, the coiled but elongated shape found in good solvents, see e.q. our network
snapshot in figure 4.2, is now replaced by a more complex conformation, reflecting
the aforementioned competition between the attractive interactions due to the poor
solubility of the backbone and the electrostatic repulsion of the polyelectrolyte’s
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5.2. Single Chain Studies

Figure 5.2.: Snapshots of
single chain polyelectrolytes
from series Al with different
chain lengths N, in a poor sol-
vent, environment where er,; =
1.75kgT and f = 0.3333,
lg = 150 at a density of
pe = 11072073, resulting
in different numbers of pearls
np; the colour coding indicates
monomers identified as belong-
ing to one of the clusters in
blue, the remaining ones on the
chain, part of the connecting
strings, in red, while counteri-

“ ons are given in yellow (taken
from [54]).

charges. Contrary to chains without charged groups, where the effective attraction
between the monomers causes them to collapse into spherical globules, coalescing
with each other, and precipitating from solution, the coulombic repulsion between
the fN, repeat units per strand significantly improves the polymer solubility, in
the parameter regime of series A1 now leading to the predicted pearl-necklace con-
formations. From visual inspection it can already be observed that the occurrence
of two or more pearls requires a sufficiently long chain, as in the case of N, = 96
the polyelectrolyte has a merely globular, for N, = 142 only a dumbbell-shaped
appearance. With the number gp of monomers per pearl remaining constant, e.g.
gp = 78 = 4 for series Al and N, > 200, this observation becomes understandable
in terms of the emerging equilibrium between the poor solvent attraction and the
electrostatic repulsion, as was discussed in section 5.1.

It is quite apparent that the observables usually employed in polymer physics are
not sufficient to characterize these equilibrium states. Neither end-to-end distance
Rg nor radius of gyration Rg contain enough information on the local structure of
the chains to distinguish between e.g. conformations with four or five pearls; though
the hydrodynamic radius Ry is more sensitive by definition, it is still lacking the
necessary precision for particularly larger number of pearls. In many cases the ener-
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5. Polyelectrolyte Networks in Poor Solvent

getic difference between similar structures is so small that several of them may even
coexist. Consequently, it is important to be able to analyze individual conformations
with respect to occurrence of pearls, their amount and size, because based on this
knowledge interpretation of the experimentally accessible observables will then be
possible on a more substantiated basis. One very successful approach to this task is
the Cluster Recognition Algorithm developed in [188] which detects the pearls and
strings based on a distance criterion, and which had also been used to colour code
the monomers in figure 5.2. Since for a polymer the chain connectivity has to be
taken into account as well, the following algorithm emerges:

(CA.1) Define every monomer ¢ = 1, ..., Ny, on the chain as an initial cluster

C; := {i} of size |C;| = 1.

(CA.2) Merge two clusters C,, and C, if they contain a pair (¢, j) of monomers

i € Cpy and j € Cy,, |i—j| > n. with spatial separation 75; = |7} — 7| < 7.

Repeat (CA.2) for all (m, n) until only non-mergeable clusters remain.
Merge cluster C,, into C,, if C,, € C,; repeat for all (m,n).

Define C,, to be a pearl if |C,,| > p..

Merge all adjacent clusters C,, and C, that are likewise defined.

(CA.3)

( )

( )

(CA.6) Define C,, to be a string if |C,,| < pe.

( )

( ) Remove dangling ends by merging them into the subsequent “pearl”.
(CA.9)

Output length |Cp,| of all clusters sorted in successive sequence.

Three parameters are hereby necessary, namely the minimum number of monomers
pe a cluster must possess before being regarded as “pearl”, the minimum backbone
separation n. between a monomer pair (7, j), i.e. the required number of bonds be-
tween them, before they are considered for the distance criterion, and the maximum
spatial distance r. between two monomers within the same pearl. The output se-
quence, alternating the found sizes of pearls, strings, and pearls, can then easily be
used to obtain the number of pearls np and the average amount of monomers per
pearl gp. Although in [188] and the subsequent publications, where we once again
focus on [54] for comparison, a custom implementation of this cluster algorithm was
used, it has meanwhile become part of ESPResSo as well, such that the simple call

analyze necklace <p_c> <n_c> <r_c> <first_ID> <N_M>

is sufficient to invoke analysis of all particles i =<first_ID>,... <first_ID>+<N_M>.
Figure 5.3 now shows the dependency of the resulting number of pearls np on
the Bjerrum length, comparing it to the behaviour of the end-to-end distance Rg.
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Figure 5.3.: Dependence of np (left) and Ry (right) on the Bjerrum length ¢p for
series C1, C2, C3; the inset of the latter shows the dependence of the end-to-end
distance on the scaling variable fgb~! f2 (taken from [54]).

In the framework of the scaling theory of section 5.1.1, the simulations performed
at the same value of fgb ! f? should be identical, the data should collapse onto
a single master curve. In [54] it was however found that this only holds in the
low electrostatics limit, as the inset in the right plot of figure 5.3 shows. Similarly,
the counterions and their interaction with the chain conformation is only of minor
importance for very small values of /.

The structure diagram in figure 5.4 is now providing an overview of the conforma-
tional variety the single chain polyelectrolytes exhibited in series C1, C2, C3 alone.
Besides the much discussed pearl-necklace structures, which obviously only occurred
for a small range of weak electrostatics, i.e. small Bjerrum lengths /g, other obser-
vations included globular states for vanishing coulombic interactions (in agreement
with the expectations for neutral cases), which slowly grow for increasing f and/or
/g while the self-energy gets larger, until the Rayleigh instability splits the glob-
ule into a dumbbell-like structure and the pearl-necklace regime is entered. In the
case of higher charge fractions > 0.5, a cascade of Rayleigh instabilities leads to a
stretched conformation of maximum extension for increasing /g, while for f = 0.3333
the conformations directly cross from a dumbbell-like structure into the “sausage”-
regime [54], where electrostatics is so high that the resulting counterion condensation
partially neutralizes the chains, causing local collapses which appear as elongated
cigars or “sausages”; smaller values of f hereby lead to thicker structures. Increasing
the coulombic interactions further finally induces enough condensation to effectively
neutralize the entire chain, which then collapses containing the counterions within
its shape (as opposed to the case of very low electrostatics where the entropy of the
counterions keeps them in solution, far from the chains).

The plots on the right side of figure 5.4 finally connect the findings to experimen-
tally accessible observables, i.e. Rg and Ry, by looking at the characteristic ratios
r = (R%)/(R%) and a = (R%)'/?/{Ry) as a function of the Bjerrum length ¢ for the
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Figure 5.4.: Left: Structure diagram of the single chain conformations polyelectrolytes
assume in a poor solvent with er,y = 1.75 kgT for varying charge fraction f and Bjerrum
lengths ¢, sketching snapshots from series C1, C2, C3.

Right: Change of the characteristic ratios 7 = (R3)/(R%) (top) and a = (R%)Y/?/(Ry)
(bottom) with g for series C1, C2, C3 (taken from [54]).

data in series C1, C2, and C3. For the globular conformations at /g = 0o the plots
display r =~ 2.2 and a = 0.9, while for the dumbbell-like structures r =~ 4,...,4.5 and
a ~ 1.6 is found. Further increase of /g leads to a maximum in both observables at
roughly the maximum chain extension, as supported by figure 5.3, after which r and
a decrease towards their final collapsed states where r ~ 3 and a ~ 1. Referring to
table 2.2, for a completely elongated object a characteristic ratio of » = 12 would be
expected, which is not even reached for the polyelectrolytes in the stretched regime,
while the lower boundary seems to be consistent with the predictions for compact
objects (r = 2,...,5/3). The form of the curves in the plots of figure 5.4 clearly
indicates that it is not possible to deduce the type of conformation the chains have
from these observables, because the same value of r or a can indicate e.g. either
a pearl-necklace or a “sausage”-like structure, merely depending on the underlying
Bjerrum length /5. This once again proves the usefulness of computer simulations,
since here we have the possibility to look at all microscopic details when in doubt,
trying to connect the findings to the macroscopic world.
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5.3. Simulations, Snapshots, Structures

There is no apparent reason why a similar variety of structures observed for the
single polyelectrolytes in section 5.2 should not be present in our charged hydrogels
as well, once they are placed in a poor solvent environment. In fact, for the formation
of pearl-necklaces this was already postulated theoretically [40] in section 5.1.2 if
one assumes the strands between neighbouring network nodes to be sufficiently long.

To be able to have this comparison as close as possible, avoiding any addi-
tional aberrations, we adjusted the parameters to the ones from the single chain
study [54] presented in the previous section 5.2 while re-using our diamond-like
network model which was discussed extensively in section 4.1. The following mod-
ifications were employed in that process: The parameters for the Lennard-Jones
interaction between the monomers were changed to ep; = 1.75 kgT and 7. = 2.50,
the ones for the FENE bonds to kp = 7’“;3—2T and rp = 2.00, hence matching the
reference specifications. We investigated systems with N, = 199 as chain length?
and charge fraction f € {0.125,0.25,0.3333,0.5,1.0} for multiple Bjerrum lengths
lg € {00,0.1250,0.250,0.50,0.750, 1.00, 2.00, 3.00, 5.00, 6.00,9.00 }, calling these
parameter sets the C-series because it covers the regime of C1, C2 and C3 from [54].
We looked at additional systems with Ny, € {200,239, 287, 335,383, 431,479} for
charge fraction f = 0.3333 and Bjerrum length /g = 1.50, corresponding to Al
in [54] and consequently called A-series. Then, we also investigated very long chains
at Ny, = 479 for charge fractions f € {0.0625,0.125,0.25,0.3333,0.5,1.0} and
/g = 1.50, which have no counterpart in the previous study; for better reference
it shall be named E-series. Table 5.2 now gives a summary of these settings, reflect-
ing the choices from the single chain study in table 5.1.

name H Nm f gB €LJ
A-series || 200,...,479 0.3333 1.50 1.75kgT
C-series || 199 (or 200) 0.125,...,1.0 Oo,...,9.00 1.75kgT
E-series 479 0.0625,...,1.0 1.50 1.75kgT

Table 5.2.: The parameters used in our simulation study [66].

5.3.1. Finding Equilibrium: Simulation Scripts Revisited

Although we tried hard to get it working, it was not possible to utilize the (N, p, T)-
algorithm in the poor solvent regime. As becomes apparent later on when looking
at the p(V')-diagrams, the fluctuations in the pressure were simply too large and
some of the systems simply too close to a volume collapse that no equilibrium

2 In the case of f = 0.3333 the chain length was actually chosen to be Ny = 200 to ensure that
Ncr € N.

199



5. Polyelectrolyte Networks in Poor Solvent

could be found. This now dramatically increased the required computational ef-
fort for this simulation study, because contrary to the single polyelectrolytes where
any sufficiently low density would suffice, the charged hydrogels must be at P ~ 0
before any evaluation could start, otherwise they are simply not in the thermody-
namic equilibrium. Consequently, we had to revert to the safest method laid out in
section 4.1, namely the thorough measurement of p(V')-diagrams, from which the
swelling equilibrium was then determined as the intersection of the plot at p = 0.
Of course this implied that for every single data point in [54] we had to run at least
16 (!) individual simulations in the (N, V,T)-ensemble, measuring the pressure as
careful as possible, to cover the required minimum of four decades in the system
density. With the parameter regimes we needed to cover, such a procedure totals up
to 112 runs for the A-series, 830 runs for the C-series, and 96 runs for the E-series,
summa summarum a grand total of 1088 runs only for getting the equivalent data to
the single chain results. Now considering that the systems in questions were rather
large setups with up to 15, 344 charged (!) particles®, the amount of necessary CPU
time becomes apparent? (i.e. between 6 and 14 hours per run on system si from
section 1.6, depending on the amount of charges and the range of the electrostatic
interactions).

Varying the simulation box volume over orders of magnitude also made it neces-
sary to enhance the warm-up and equilibration sequences of the simulation scripts
we used for the case of good solvents. Particularly for very large and very small
volumes special care was required, as the former generate strongly elongated chains
close to being ruptured due to the periodic network topology, the latter imply a high
density where excluded volume effects might become destructive. Hence, we had to
reduce the increase of the LLJ-cap in the warm-up sequence from section 4.1 to slow
down the process of pushing particles apart which were set up too close to each
other, because in a very dense system those are usually surrounded by more objects
obstructing the intended separation. It was also necessary to add an intermediate
step afterwards (i.e. with the system still being neutral), where we temporarily fixed
the spatial coordinates of all monomers on the chains, using

for { set i 0 } { $i < $N_node+$N_P*$MPC } { incr i } { part $i fix %}

to allow the counterions to relax towards their equilibrium distribution, once elec-
trostatics had been activated, within one possible electric field generated by the
chains in their current conformation, without having to worry about unrealisticly
high strains on the monomers because of a counterion set up too close to the chains
for too high a Bjerrum length. As soon as this was achieved, the constraint could be

3 The biggest network we investigated under the good solvent conditions of chapter 4 had a chain
length of Ny, = 259, compared to the N, = 479 employed here.

4 Luckily, at the time the poor solvent investigations started ESPResSo had already evolved to
a much more efficient level, with e.g. the newly added cell tuning granting a significant speed
increase; parallelization and hardware optimization for specific platforms had also been improved.
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lifted (using the same loop but merely replacing the keyword fix by unfix), and
the monomers were allowed to adjust their conformation according to the new, and
more equilibrated, distribution of surrounding counterions.

These modifications dramatically improved the simulation results, allowing to ac-
cess all critical values of very large volumes without having the bonds broken on
course of the integration, and also enabled to enter the high density limit, even if
for very high electrostatics (/g — 9.00) the counterion condensation caused systems
particularly with larger charge fractions to become unstable (which is understand-
able as we know from the single polyelectrolytes that the effective neutralization
induces the desire to collapse).

5.3.2. Finding Equilibrium: Diagrams of Pressure and Volume

Without the possibility to use the (N, p, T')-ensemble, the swelling equilibrium has
to be determined from the roots® of a p(V)-diagram which relates the simulation
box volume V' to the pressure P measured according to (4.5) and averaged over
uncorrelated network conformations.

For the C-series this is shown in figures 5.5 and 5.6, where the former uses the bulk
charge density p. = 2N¢g1/V as “inverse” volume axis, while the latter normalizes
P with the ideal pressure p.kgT of the charges, arriving at the equivalent to the
osmotic coefficient commonly considered in polyelectrolyte solutions. Each graph
thereby contains the results for (N, V,T)-simulations with Ny, = 199 and f = 1.0
(red lines), f = 0.5 (green lines), f = 0.3333 (yellow lines; here, N,,, = 200), f = 0.25
(blue lines), and f = 0.125 (magenta lines), the used symbol reflects the Bjerrum
length employed and corresponds to the ones introduced in the previous chapter 4,
ranging from g = 0o in the top left of the respective figure to g = 9.00 in its
bottom right. While the data points are connected by simple straight lines in the
second figure 5.6, splines were used in case of figure 5.5 to emphasize the general
trends over local fluctuations, which may become quite large for high densities and
small charge fractions.

There, multiple effects overlap each other at comparable orders of magnitude, as
very small volume “freezes” part of the conformation such that shifting particles can
greatly change the excluded volume and electrostatic contributions®. An increasing
box size reduces the impact of local fluctuations, and global mechanisms become
more important. Additionally, the network topology constantly reduces the chain’s
degrees of freedom for larger volumes, because in a more elongated state there are
less possible conformations it can assume, which in turn also reduces the possible
constraints on the counterions through the electric field the monomers generate.

5 If there is more than one, we are looking at a phase transition in the volume.
6 A possible improvement to minimize similar effects would be the creation of multiple, indepen-
dent start conformations, averaging their respective results at the end.
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Figure 5.5.: Equilibrium pressure P as a function of the bulk charge density p.
for the C-series with g from ¢g = 0o (upper left) through ¢y = 9.00 (lower right);
the colour coding corresponds again to table S.1 regarding charge fraction f.

This can be most easily seen in the low density limit of figure 5.5 where all plots
approach each other and would also fall on a master curve if not for their different
bulk charge densities (despite a same volume, larger f leads to larger N¢p leads
to larger p.), where the elastic contribution dominates the pressure. Continuing
down towards the minimum possible density puni,, corresponding to a simulation
box volume stretching each network chain to Rg = Ry = Nub with b — rp,
Prene diverges into the finite extensibility of the FENE potential, taking P with it,
and rendering everything else negligible hence, clearly

lim P= lim P=- (5.7)
Pc\ﬂmin V/‘Vmax
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Figure 5.6.: Osmotic coefficient P/(p.kpT) as a function of the box volume V for

the C-series with ¢g from ¢g = 0o (upper left) through g = 9.00 (lower right); the
colour coding corresponds again to table S.1 regarding charge fraction f.

is the lower (upper) limit of the pressure; similar to (3.74), the maximum volume
is given by Viax = a2, = [(4/V3)Rg)? = [(4/V3)Nuwrr]®. For very high densities a

sim
similar line of arguments identifies the excluded volume terms Prenomers and P as
the dominating ones, because pushing the particles into each other acts against the
steep short-range divergence in Upj(r) with =2, which will always overcome the

r~tdivergence in Uy, (r) bearing an opposite sign. The corresponding limit

lim P=_lim P =+oo (5.8)

Pc /" Pmax V\:Vmin

does not seem to be reached for lower charge fractions in figure 5.5; this, however, is
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Figure 5.7.: Elastic pressure contribution —Pprgng as a function of p. as in figure 5.5
for the C-series with ¢g from g = 0o (upper left) through ¢g = 9.00 (lower right).

only due to the magnification employed there (to allow inspection of the low density
limit). As the plots in figure 5.6 show, the limit in (5.8) is not only found for all
parameters where the high density limit could be accessed, but it is approached with
a much higher gradient than the other one, i.e. the corresponding (non-normalized)
values in figure 5.5 are simply off-scale.

There is one striking difference between the pure pressure plots in figure 5.5 and
the rescaled ones in figure 5.6, namely that the osmotic coefficient behaves strictly
monotonic, whereas the total pressure displays monotonic behaviour only for the
highest charge fractions f = 1.0 and f = 0.5, exhibiting a minimum for the oth-
ers. The reason is to be found in the volume dependency of all pressure compo-
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Figure 5.8.: Elasticity and excluded volume pressure Prpng + PLymome™ + PEJI as a
function of p. as in figure 5.5 for the C-series with /g € {Oc,...,90}.

nents, which is effectively scaled out when looking at the osmotic coefficient. If the
volume decreases faster than other effects (such as excluded volume or electrostat-
ics) increase, the resulting P will naturally be lower. With the chains relaxing and
the ideal gas contribution pkgT growing linearly, this is confirmed by figure 5.7
which only shows the FENE-part of the total pressure and clearly decreases fur-
ther for growing p. (note that —1 - Prgng is plotted to be able to use a logarith-
mic y-scale). Even though this might seem counterintuitive at first, it nevertheless
makes sense that while the elastic restoring force decreases linearly (within the
harmonic regime, taking up most of figure 5.7), the absolute value of its pressure
Prene ~ — 2 (freng + 0)/(3L3) grows quadratically in the box length L.
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For low charge fractions f this effect outweighs all others as long as the ex-
cluded volume interaction is not too strong. It is compensated mainly by Pryromers,
which turns out to be larger for higher charge fractions f because it contains with
Py menomers the crossterm between the (fixed amount of ) N,, monomers per chain
and the f N, corresponding counterions, which interact more strongly for increasing
/g and decreasing V'; as more counterions there are (i.e. as higher f becomes), as
more likely it is to find a counterion close enough to a chain, increasing Ppyremes
with f. The other part of the excluded volume contribution, PCJ, becomes noticeable
for very high densities p. > 0.5 only where the box is so small that even the like-
wise charged counterions are pushed onto each other. Both ideal gas-like pressures
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Figure 5.9.: Electrostatic pressure contribution PtOt as a function of p. as in figure 5.5
for the C-series with ¢g from g = Oo (upper left) through g =9.00 (lower right).
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onemers and ngal, growing linearly with the density, merely shift the elastic Prrng

towards positive values, while the coulombic contribution P}gt is negligible for small
Bjerrum lengths, positive for intermediate ones due to the electrostatic self-energy of
the network chains, becoming negative for larger electrostatics and higher densities
once opposite charges end up close to each other (causing Pff_monomers to increase,
too), before finally diverging when the density becomes too high; figure 5.9 thereby
also allows to compare the absolute impact electrostatics has with respect to e.g. the
elastic contribution from figure 5.7 or the effective short-range virial from figure 5.8.

All this allows to understand the behaviour of the measured pressure P as a
function of increasing bulk charge density p. in figure 5.5 and its connection to
the renormalized depiction as osmotic coefficient in figure 5.6. Without the volume
effects the latter is much more convenient to determine the equilibrium swelling
volume Vq where P(V = V) = 0. Instead of continuing with yet another simulation
run at (N,V = Vi, T'), maybe even entering an iterative process similar to the one
described in e.g. figure 4.3, we decided to use the V, from figure 5.6 to interpolate
the equilibrium results at that volume; since for any observable = we had already
obtained its volume dependence x(V') while measuring P(V'), this merely assumes
monotonic behaviour close to V' = V. and a sufficiently fine spacing in V. The
equilibrium properties discussed in the following are likewisely determined, while
the example conformations or snapshots shown will reflect the actual (N,V,T)-
simulation closest to V.

5.3.3. Conformations of Charged Hydrogels at Swelling
Equilibrium

Now we can finally begin comparing our findings from charged hydrogels in a poor
solvent environment to the results of single polyelectrolytes from the previous sec-
tion 5.2. We begin by looking at some simulation snapshots across the parameter
space of charge fraction f and Bjerrum length /g, keeping e.g. the single chain pic-
tures from figure 5.2 in mind. While for full reference the entire C-series is depicted in
appendix C, here we will focus on representative examples for the identified shapes.

Starting in the limit of vanishing electrostatics, figure 5.10 shows conformations
for /g = Oco. For the low charge fraction f = 0.125, depicted in the top left, we
find a clearly collapsed structure. The P(p)-diagram in figure 5.5 confirms that
the system tries to minimize its density as much as possible, and the snapshot
indicates a clear phase separation between the mutually attractive monomers and
the counterions with their purely repulsive excluded volume interactions. Due to
the periodic network topology, the latter are trapped within the hydrogel, thereby
also preventing its total collapse into a space filling globule (note that the seemingly
empty space in the lower left of the snapshot is actually taken up by the periodic
image of the monomers extending outwards of the simulation box to the lower right
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Figure 5.10.: Snapshots of C-series equilibrium conformations at g = 0c for f = 0.125
(top left), f = 0.3333 (top right), and f = 1.0 (bottom right); its position in the parameter
space is illustrated with the yellow-shaded ellipsoid; monomers are red, counterions gray
spheres.

and through the bottom). Consequently, we cannot expect as low a value for Rg
and the characteristic ratios » and a as in the previous section 5.2, because there
the single polymers neither had external constraints while collapsing nor did they
enclose the “counterions” which were free to move away from the emerging globule
due to their entropic degrees of freedom.

That is also the reason why for an increasing charge fraction f we no longer ob-
serve collapsed structures at all, even for the case of no electrostatics: The growing
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amount of Nor = Nyodes + Np - f Vi “counterions” exerts a larger, entropy-driven os-
motic pressure against the short-range attraction between the monomers on smaller
length scales, and enforces swelling of the hydrogel. The two snapshots on the left in
figure 5.10 illustrate this competition, having the network nodes act as condensation
nuclei where, due to the larger monomer density there, onsets of globular collapse
remain. Between the intermediate f = 0.3333 in the upper left and the maximum
f = 1.0 (bottom left), these become as smaller as more counterions enter the sys-
tem and swell the hydrogel. Quite obviously, without the network connectivity no
such swelling mechanisms would exist, allowing the “counterions” to obtain their
entropic freedom without stretching the chains into energetically and entropically
unfavorable positions. Neutral networks (i.e. without additional “counterions”) on
the other hand would also collapse despite their topology, since no counteracting
force prevents them to. Therefore, it is once more the unique combination of bal-
ancing “counterion” and network chain properties which determines the hydrogel’s
behaviour, making it distinct from single polyelectrolytes and neutral networks.
The schematic structure diagram in the lower left of figure 5.10 already indicated
this increased complexity, colour coding simulation runs whose swelling equilibrium
was found to be a collapsed state in red, the ones with only the nodes acting as
condensation nuclei in yellow, pearl-necklace structures in green, simply stretched
networks in blue, and snapshots falling into the sausage-regime in brown. The tran-
sition between the five regimes is smooth and continuous, in good agreement with
the results from single polyelectrolytes, but contrary to what scaling theories have
predicted there, expecting e.g. a collapse of the pearl-necklace structures in a first-
order transition with the onset of counterion condensation [164, 184]. Particularly
the first four categories cannot be precisely separated while they smoothly cross
over from one to the other: Starting out as a collapsed conformation, an increase in
the amount of counterions (i.e. a larger f) and higher electrostatics (i.e. larger /)
slowly pushes the monomers apart and feazes the globules around the network nodes,
which separate once the required volume increase (with the corresponding surface
tension attached) invokes the Rayleigh instability. The emerging structure, now in
the yellow regime, has features of the dumbbell-like polyelectrolytes, except that here
the “dumbbell’s” ends are joined and shared with the three neighbouring network
strands. Increasing f and /g further exerts more pressure on the hydrogel and en-
forces larger box volumes, which in turn causes elongation of the chains and reduces
the number of monomers in the globules at the nodes. As this is an external con-
straint, sufficiently long strands can now form additional pearls, the pear-necklace
regime is reached. There, it is the delicate balance between electrostatic repulsion
and short-range attraction which dominates the shape of the network strands, as we
already know from the investigation of single polyelectrolytes, now competing with
the additional osmotic pressure of the counterions which was unimportant before
in case of the polyelectrolyte solution. Even stronger electrostatics and counterions
shift the balance in favor of the coulombic repulsion, the pearls break down, and
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as the short-range attraction becomes less important the network approaches the
behaviour of strongly charged hydrogels in good solvent.

From this description, the continuous nature of the transitions between these
regimes already becomes apparent. Supplemented by fluctuations and anisotropical
effects in the high density limit, no sudden phase transition can be expected here.
It nevertheless makes sense to distinguish regimes with similar conformations as
good as possible, because they are characterized by intrinsically different physical
mechanisms originating in the respectively dominating effect of either short-range
attraction, entropic degrees of freedom, electrostatic repulsion, surface tension, or
network topology.

Coming back to the pearl-necklace regime, theorists started to suspect its existence
for charged hydrogels in poor solvent as well, once the corresponding conformations
had been found for the single polyelectrolytes. The inset of figure 5.11 shows such a
prediction, taken from [40], and relates it to an actual snapshot from our simulation,

Figure 5.11.: Snapshot of our equilibrium conformation for Ny, = 479, f = 0.3333,
and /g = 1.50, nicely depicting the predicted pearl-necklace structure the theoretical
sketch in the inset (taken from [40]) envisioned.
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for illustration purposes this time not from the C-series we are discussing in this
subsection, but from a system with much longer chains (N, = 479) in the otherwise
unchanged parameter regime (i.e. f = 0.3333 and /g = 1.50) to emphasize that
formation of more than one pearl is actually possible and is only dependent on the
available chain length. We know from figure 5.2 that for NV, = 200 more than the

Figure 5.12.: Snapshots of C-series equilibrium conformations at fg = 0.250 and
f = 0.3333 (bottom left), g = 0.250 and f = 0.5 (bottom right), ¢y = 0.750 and
f = 0.3333 (top left); again, their position in the parameter space is illustrated with
the green-shaded ellipsoid; the structure diagram in the upper right is discussed in the
text.
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two pearls at the respective ends cannot be expected, particularly since section 5.2
estimated each to contain gp = 78 + 4 monomers in the parameter regime we are
using. Since in our networks, the ones at the nodes are actually “shared” with the
neighbouring chains, only around i - 78 monomers have to be contributed by each
one, such that an intermediate pearl and two adjacent strings of ~40 monomers
may exist. Figure 5.12 shows this rough estimate to be correct, as we find the
expected number of pearls in the snapshots. Comparing the case of f = 0.3333
and /g = 0.250 in the lower left to the other two examples depicted, the trends
discussed so far can be found again: For a larger charge fraction of f = 0.5 but the
same strength in the electrostatics, equilibrium is reached at a larger simulation box
volume due to the additional osmotic pressure the higher number of counterions
caused; as a consequence, the network chains in the snapshot on the lower right
are elongated further, the pearls became smaller since the stronger strain on the
strands pulled some of the monomers out of the globules. Increasing electrostatics
to /g = 0.750 instead, while keeping the charge fraction constant at f = 0.3333,
shifts the equilibrium towards smaller volumes of the box, because the counterions
are pulled closer to the chains, as one realizes upon visual inspection of the snapshot
in the upper left of figure 5.12 where the gray spheres depicting the counterions are
more commonly found close to the beads in red; consequently, the chain extension
decreases and more monomers may enter the pearls, hereby favoring the ones at the
nodes due to the locally increased concentration there.

Such behaviour already hints to the conformational changes occurring once the
strength of the coulombic coupling continues to grow, giving rise to effects which
are now less dependent of the charge fraction f but on the Manning parameter
&um, a characteristic combination of system properties and indicator for the onset
of counterion condensation, as extensively discussed in the previous chapters 3 and
4, e.g. sections 3.2.4, 3.2.7, and 4.2.2. Stronger electrostatics pulls the ions towards
the chains, decreasing the effective osmotic pressure swelling the network against
elasticity and short-range attraction. While this merely allows more monomers to
make the globules grow at first, it also screens the electrostatic repulsion separating
the pearls, such that the intermediate strings may become shorter until neighbour-
ing clusters of monomers merge, rendering the chains to appear more cigar-like or
“sausage”-shaped, and the final regime is entered.

Figure 5.13 displays three example conformations which do no longer have distinct
pearls but rather exhibit massive monomeric structures along the network backbone.
These are thicker for lower charge fractions, because the larger ratio of monomers to
counterions makes the (attractive) contacts between beads more likely, while their
repulsive electrostatic interaction is screened by the (almost) completely condensed
counterions. In the case of f = 0.25 and ¢y = 3.00 (lower left of figure 5.13),
the Manning parameter &, ~ 7.5 indicates a very strong coulombic coupling, and
the gray counterions are indeed localized on the chains; the snapshot shows thick
cylindrical or “sausage”-like clustering of the monomers, where the radius naturally

212



5.3. Simulations, Snapshots, Structures

Figure 5.13.: Snapshots of C-series equilibrium conformations at fg = 3.0c and
f = 0.25 (bottom left), g = 5.00 and f = 0.3333 (top left), {5 = 6.00 and f = 0.5
(top right); their position in the parameter space is illustrated with the brown-shaded
ellipsoid.

varies with the distance from the nodes with their locally increased monomeric
density. Even higher electrostatics with f = 0.3333, /g = 5.00, and & ~ 16.7 have
more condensed counterions in contact with chain monomers, preventing part of
their mutual contacts therefore increasing the node-node separation while shrinking
the “sausage” size. The uniformity of such structures is disrupted further for larger
amounts of counterions firmly bound to the chains due to the coulombic coupling,
as in the case of the upper right snapshot with f = 0.5 and /g = 6.00 where the
strand in the center of the picture is still resembling the “sausage”-like clusters from
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the other examples, while some of the outer chains, e.g. the one in the top left of the
simulation box, almost seem to display another pearl-necklace conformation, clearly
having a locally varying monomer density profile.

It is now straightforward to see what will happen for another increase in the
Bjerrum length, as it will tightly bind the few free counterions left to the chains,
completely screening off any remaining repulsion, leaving only the elasticity and
the short-range attraction which will then collapse the network. As figure 5.13 in-
ferred, lower charge fractions will aid in this process because monomer-monomer
interactions are already stronger there, initiating the transition earlier as compared
to systems with many counterions.

Nevertheless, collapsed structures in the strong electrostatics limit are fundamen-
tally different from the ones for vanishing electrostatics, as a direct comparison of
their respective snapshots shows (see e.g. the complete overview in appendix C).
The former see an almost dipolar structure, where pairs of ions and monomers are
maximally mixed, while the latter have a clear phase separation between the “gas”
of counterions, trapped within the network topology but eager to maximize their
respective distance to one another and to the network itself, on the one side, and
the monomers, trying to minimize their mutual separation due to the short-range
attraction between them, on the other. There is a smooth crossover in between,
where the phase separation slowly gives rise to the total mixing of the two particle
types for increasing coulombic coupling; this, however, does not change the general
trend of being collapsed in the swelling equilibrium.

Figure 5.14 summarizes the entire discussion into a structure diagram of charge
fraction f and Bjerrum length /g, illustrating the small sketch already contained in
figures 5.10, 5.12, and 5.13 with even more example conformations taken from the
complete overview in appendix C. Similar to the structure diagram found for sin-
gle polyelectrolytes, which was shown in figure 5.4, we identified regimes of similar
structures, i.e. collapsed conformations for small charge fractions or very strong elec-
trostatics, pearl-necklaces for moderate to high charge fractions and not too strong
coulombic coupling, stretched structures for large f and moderate /g, and finally
the “sausage”-regime for larger Bjerrum lengths; to emphasize the trends discussed
earlier, we distinguished between cases where only the nodes act as condensation
nuclei, and those with at least one additional pearl along the network strand.

Compared to figure 5.4 we notice that the structure diagram for polyelectrolyte
networks contains similar regimes, albeit at shifted positions in the parameter space,
despite the fact that we used the very same set of parameters for our simulations.
Besides the pearl-necklace regime extending down to the case of vanishing electro-
statics (g = 0c) for not too low charge fractions, we do not (and cannot) find
globular conformations, both differences due to the network topology trapping the
counterions. Once electrostatics is up and chains are sufficiently long, the charged
hydrogels behave similarly to the single polyelectrolytes, including the collapse for
very strong coulombic coupling where the remaining dependence on the network
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topology becomes negligible. As we have ventured further towards lower charge
fractions, also investigating f = 0.25 and f = 0.125 which were not considered in
the single chain study, we are able to conclude on that limit, too, particularly since
we find only collapsed conformations for the lowest amount of counterions which
are obviously insufficient to generate a strong enough osmotic pressure to push the
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Figure 5.14.: Structure diagram of the equilibrium swelling conformations charged
hydrogels assume in a poor solvent with er; = 1.75 kT for varying charge fraction
f and Bjerrum length ¢g, contrasting the corresponding picture for single polyelec-
trolytes in figure 5.4 and summarizing the results from the previous figures.
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attractive monomers apart. (One would consequently expect single polyelectrolytes
with f = 0.125 to also form globules for all values of /g, with an increasing amount
of counterion condensation and subsequent mixing between ions and monomers for
growing electrostatics, arguing that the few remaining charges on the chain are not
sufficient to effectively counteract the collapsing tendencies.)

In general, the parameter space for polyelectrolytes has far more dimensions, such
as the solvent quality parameter erj, the valency of monomers or counterions, and
added salt in the system. As we are focusing on a direct comparison with the single
chain results, none of these were examined further; for the future, however, they
would provide the next logical steps.

5.3.4. Geometrical Properties

Now that we have identified and discussed the respective regimes of equivalent con-
formations in the parameter space of charge fraction and Bjerrum length, we can try
to find hints to that behaviour in plots of the geometrical properties at swelling equi-
librium, as determined from the interpolation of the (N, V, T')-data towards V = V.
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Figure 5.15.: Dependence of p. (left) and Rg (right) on the Bjerrum length /g
for the C-series (see table 5.2), contrasting the single polyelectrolyte behaviour from
figure 5.3 (charge fraction dependent colouring as in table S.1).

Starting with the bulk charge density p. and the node-node separation Rg, we
observe largely equivalent dependence on /g in the plots of figure 5.15, because both
are connected via the periodic network topology to the simulation box; contrary to
the total particle density p = Ny, /V', however, the bulk charge density depends on
the amount of charges only, such that its relation to Ry is different from the usual
diamond-lattice prefactor. Where the single polyelectrolytes in figure 5.3 started
off at /g = 0o as compact globules with an almost negligible size independent of
the charge fraction, uniformly returning to only slightly larger conformations in the
high electrostatics limit, the networks have clearly f-dependent sizes in the first
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case, because of the osmotic pressure the trapped counterions exert which prevents
the total collapse; that is corroborated by the fact that higher densities are possible
for /g — 0 if the charge fraction drops. In the other limit, the networks are now
following the example of the single polyelectrolytes, as the counterion condensation-
induced neutralization removes the constraint of their osmotic pressure and allows
the short-range attraction to dominate. Hereby note that our plot only extends up to
/g = 60 as higher electrostatics already proved to be so dense that no equilibration
was possible (also refer to the p(V)-diagrams in figure 5.6); compared to the single
chains the cases of f = 0.5 and f = 0.3333 had already reached similar sizes to their
respective counterparts at that point, resulting in a much higher slope in the descent
and justifying our statement. Though the general trend in Rg(¢g) is the same for
both scenarios, with the chain extension exhibiting a broad maximum for f = 1.0
and f = 0.5, the peak position is shifted from around /g = 20 towards /g = 1o,
being much larger as well (Rg ~ 1300 to Rg ~ 1700 for f = 1.0), once again due to
the presence of the counterions whose osmotic pressure, negligible in the single chain
case, exerts an additional swelling effect (increasing Rg) before being decreased by
the “removal” of condensed ions (shifting ¢g). In case of the lower charge fractions,
the chain extension decreases monotonically as the remaining obstructions from
gas-like ions are also removed through increasing electrostatics binding them to the
chains, maybe with an additional small maximum for f = 0.3333 at very low values
of the coulombic coupling, which could be explained by the initially larger volume
likewise charged counterions require before condensation sets in.
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Figure 5.16.: Change of the characteristic ratios r = (R%)/(R%) (left) and a =
(R%)Y?/(Ry) (right) with ¢g for the C-series, contrasting the single polyelectrolyte
behaviour from figure 5.4; colours correspond to their usual f as in table S.1.

The characteristic ratios r = (R3)/(R%) and o = (R%)Y?/(Ry) as a function of
the Bjerrum length /g, displayed in figure 5.16, reflect this behaviour of equilibrium
density and node-node separation. They do no longer start off at a common value
for /g = 0o, there is no sharp increase in « for small Bjerrum lengths, although the
subsequent monotonic decay can be observed. The values found are also commonly
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higher than in the case of single polyelectrolytes, most notably the ratio between
end-to-end distance and radius of gyration for e.g. f = 1.0 and f = 0.5 which
are indicating through r =~ 12 a strongly elongated conformation, much stronger
than for the isolated chains because these did not experience the additional swelling
contribution from the osmotic pressure of the counterions. Though the intermediate
exceeding of the rod-like ratio for /g < 1o, with f = 0.5 even reaching values close to
r = 14 (1), might seem surprising at first, we already mentioned during the discussion
of the several model values for r collected in table 2.2 that this merely indicates an
increased “mass” (i.e. monomer) agglomeration close to the center-of-mass of the
chain. Recalling that for the chosen parameters and chain lengths we find one pearl
per network strand (plus the shared ones at the nodes) which was located in the
middle of that chain due to the electrostatic pear-pearl repulsion, our observation
fits perfectly as r > 12 now indicates recognition of the locally increased monomer
density close to the chain’s center. Figure 5.17 visualizes this, emphasizing that
since the pearls at the nodes are composed of contributions from all four network
chains crosslinked there, the analysis of the radius of gyration Rg for each of them
individually only detects the “mass” agglomeration at the chain’s center which is
four times higher than the (symmetric) increase at its ends.

Figure 5.17.: Visualization of a ratio 7 > 12 on our network chains occurring
for one central pearl, since the globules at the nodes are composed of contributions
from all four strands crosslinked there (the red circles indicate the positions of pearls,
coloured lines facilitate distinction of different network chains).

For single polyelectrolytes similar findings cannot be expected since it requires the
biggest pearl to be localized close to the middle of the polymer, which is precisely
the opposite of what is usually found as they exhibit an orb-like size profile for the
pearls, i.e. having their diameter grow with the distance from the chain’s center. It
would also be futile to try to generalize this observation towards a pearl-recognition
criterion, because it is an artefact of the network topology which causes the pearls
at the nodes to be “shared” among all neighbouring chains, such that the individual
network strand with one centered pearl only sees slightly increased local monomer
concentrations at its end, without “knowing” that the latter will eventually add up
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to additional pearls. Longer chains with more than one individual pearl along their
backbone will decrease the peak in r further, until it can no longer be distinguished if
the ratio refers to extended conformations as in the case of good solvents or describes
a pearl-necklace structure.

5.3.5. Form Factor Findings

More information about the chain conformation is usually obtainable from the form
factor S(q) which we already employed successfully in section 4.2.1 to study the
reflection of simple scaling arguments in the structural properties of good solvent
hydrogels. For the single polyelectrolytes, the form factor of the chains with N, =
382 in series Al is plotted on the left of figure 5.18, where it is known that they
assume pearl-necklace conformations with np = 4.5 pearls per chain; it is compared
to the charged hydrogels of the A-series plotted on the right for the chain lengths
between N, = 335 and N,, = 479, exhibiting np = 4.0, np = 4.3, np = 5.9, np = 5.7
pearls, respectively.

In the Guinnier regime of low scattering angles ¢Rg < 1, the form factor can be
expanded [156] into the Guinnier function

2 2 2 2
S(Q) %NmeXp (_q 3RG> %Nln <1 - a fG)

providing a basis for determining the radius of gyration from small-angle scattering
experiments for objects with unknown form factor. This yields Rg = 16.80 for the
single polyelectrolytes, in good agreement with the directly measured Rg = 16.90
[54], while in case of the charged hydrogels the same approach results in Rg = 16.70
for the network chains with NV, = 383 monomers, which is also corresponding quite
perfectly to the Rg = 16.70 observed; the other network chains also lead to matching
values of Rg = 15.80 (for Ny, = 335), Rg = 17.20 (Ny, = 431), and Rg = 17.70
(N = 479) for both types of derivations.

Small scattering angles between 0.070 ! and 0.40 7! see the form factor scale as
S(q) o< ¢~1, reminiscent of the strongly elongated structures we observed for good
solvent hydrogels; on length scales larger than 150 the chain conformations are
therefore stretched. It should however be noted that for the isolated polyelectrolytes
this behaviour is only approximately reached, indicated by the employed fit of ~
g %% in the plot, whereas the charged hydrogels clearly exhibit an almost perfect
match with ~ ¢ %% over the entire range given. This reflects what we already found
earlier in the characteristic ratio r = (R%)/(R%) where the single chains could not
really reach the rod-like regime of r = 12 while the networks even exceeded that
threshold locally; it also emphasizes the influence of the node connectivity which is
the responsible mechanism.

For wave vectors around ¢ ~ 0.50 !, we observe a weakly pronounced shoulder in
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Figure 5.18.: Form factor S(q) for typical pearl-necklace conformations on single
polyelectrolytes (left, taken from [54]) with N, = 382, f = 0.3333, (g = 1.50,
and for networks (right) with the same parameters but different chain lengths; the
straight lines are fits to certain g-ranges, the marked region indicates a shoulder in
the plots present for both systems which is magnified in case of the hydrogels.

the form factor. Looking closer (see inset of figure 5.18) it is revealed that S(q) has
an inflection point there, which could be related to the inter-pearl scattering in [54].

In the limit of large ¢ between 0.90~! and 2.507!, the scaling shifts towards
S(q) o< ¢7*, the typical Porod scattering of strongly collapsed objects. While the
single polyelectrolytes exhibit another small dip at ¢ ~ 1.70~! which relates to the
pearl radius, the networks do not seem to distinctly have such a feature because of
the external tension exerted through the network topology.

The cooperative effect of fluctuations on overlapping length scales consequently
broadens all characteristic signatures that can be revealed by experimental scattering
methods. Considering that we have investigated a model system without impurities,
irregularities, influences of defects or other obstructions to the leading mechanisms
we identified here, pear-necklace structures might indeed be difficult to detect in
real world experiments. Nevertheless, our computer simulations allowed to indicate
some of the prominent features experimentalists can expect when analyzing their
data, which combined with highly regular model networks such as the example of the
PtBMA introduced in figure 1.3 should finally enable experimental observation of
the prominent pearl-necklace structures unique to polyelectrolyte networks in poor
solvent.

5.3.6. How Pearls might be discovered

When this work was already completed, we learned of some very recent experiments
by Combet et al. [189] who examined a solution of CsPSS with the help of small angle
x-ray scattering (SASX). Using caesium instead of the usual sodium as counterions
(compare to e.g. figure 1.2 or 1.4) returns a higher intensity and allows to analyze
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spatial structures they might form. As figure 5.19 now shows, rescaling by the many
concentration ¢ does not only have all the data fall onto a single master curve for
sufficiently large ¢, but it also reveals the counterions to have a common second
maximum (marked by the arrow) in their total scattering function which indicates
the existence of a dominant (short-range!) length scale there, at around ¢* ~ 0.2A.

Cs-40-c¢=0.0423 M
Cs-40-c¢=0.0856 M
Cs-40-c=0.1712M
Cs-40-c=0.3388 M <
Cs-40-¢=0.6721 M ]
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Figure 5.19.: Scattering intensity I(q) obtained from SAXS measurements of
CsPSS polyelectrolytes [189]. Normalized by the concentration ¢ all points fall onto
the same master curve for large enough ¢, exhibiting a common maximum for short
spatial distances. On the right it is sketched how the experimentalists attribute
this finding to the polyelectrolyte’s geometrical structure, where the darker core
represents the polymeric backbone, the lighter shell the condensed counterions; the
circles stand for the spherical hydrophobic aggregates (beads), the elongated parts
for the cylindrical strings.

0.01 |

A possible explanation is sketched on the right of figure 5.19 and tries to connect
the findings from the scattering experiment to spatial structures. Claiming that
those counterions which are no longer unperturbed by the electrostatic attraction of
the chains condense or get very close to them, it is argued that they form a “shell”
around the polyelectrolyte’s curled shape induced by the hydrophobic interactions
with the solvent. Then, the second maximum found is indicating both the regularity
of such a structure and its typical spatial extension ¢* = 27/¢* ~ 31A. Such an
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interpretation would be compatible with a pearl-necklace conformation where the
counterions would be localized on the surface of the pearls. Although hydrophobic
aggregates are easily evidenced by SAXS, non-sulfonated sequences could also form
small domains (quenched hydrophobicity) which would be detected in a similar
manner; careful preparation of the setup polyelectrolytes can however minimize such
anomalies, leaving only globular chain segments to be associated with the findings.
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Figure 5.20.: Total structure factor of the counterions for typical pearl-necklace
conformations on the strands of a charged hydrogel. While on the left equilibrium
networks from the C-series have been examined (with N, = 200, f = 0.3333, and
¢g € {0.5,0.75,1.0, 1.5} plotted in cyan, red, green, and blue), with their structure
factor averaged over 27 intermediate snapshots, on the right the same systems were
investigated, but with N,og4es = 64 instead of Nyoqes = 8 to evaluate the influence of
finite size effects.

Consequently, this could lead to the first direct experimental proof of the pearl-
necklace structures on polyelectrolyte chains in poor solvent, and should therefore
be observable in our simulations as well, if the arguments are expected to hold at
all. So we selected some of the equilibrium conformations within the pearl-necklace
regime, and analyzed their total structure factor

Np Nin Np N

S@ = (NpNa) > 32 D7 i) (5.9)

spherically averaged within the periodic simulation box to [188]

|7'1=q+3Aq 17'|=q+3Aq
Sw=1{ > S@|x| > 1 (5.10)
|7 |=q—5Aq |7 |=q—5Aq

and averaged over all 27 intermediate snapshots. The result, shown in figure 5.20,
is very encouraging because it clearly confirms the existence of a second maximum
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at large ¢, even if the finite size of the simulation system prevents from reaching a
high enough resolution to cover the entire experimental range. To make sure that
the information gained on the position of that second maximum is reliable as well as
to estimate the impact of finite size effects on the results, we did not only evaluate
our previously obtained systems with Nyoges = 8 nodes and N, = 16 chains (i.e. a
total of 4,272 particles, left plot in figure 5.20), but we also analyzed the structures
of a diamond-like topology with Nycges = 64 nodes and N, = 128 chains (i.e. a
total of 34,176 particles, right plot in figure 5.20). While none of the main observ-
ables previously discussed are affected by the reduction in artificial periodicity (as
eight periodic images of the smaller system correspond to the simulation box of the
Niodes = 64-system), the resolution of the total structure factor in figure 5.20 im-
proves slightly towards smaller values of ¢, but it still remains too noisy to identify
the main maximum of the scattering function. Further attempts at even larger sys-
tems seem inappropriate regarding the disappointing increase in resolution in view
of the significant rise of the required computation time, because it would take an
estimated factor of 4,096 times the original box size to arrive at a sufficiently large
system, extrapolating current CPU consumption to about 11.5 years. However, as
we are interested in the limit of large ¢, it is sufficient to be able to conclude from
comparing both systems that even the small one has already resolved the second
peak satisfactorily, continuing from there.

With a ¢* ranging from 0.8071 to 1.1071, the second maximum corresponds to
spatial structures of a size between 7.8, ¢ and 5.7, 0. This is in nice agreement with
the outcome of the cluster algorithm which estimated np = 80, ..., 140 monomers
to be in one pearl, putting their extension at around 3.9, 0, ...,4.80 (close packing
assumed), and therefore leads to an average characteristic length scale including the
condensed shell of counterions on their surface of 5.9.0,...,7.30.

Hence it seems that experimentalists are now very close to prove the existence of
the pearl-necklace structures predicted in theories and seen in simulations for some
time, because in our data we can clearly confirm the assumed connection between
pearls and the occurrence of a second maximum in the scattering function of the
counterions. What needs to be done now is to exclude

5.3.7. Chain Length Dependency

It was already recognized early on that the choice of a sufficiently long chain length
plays a more important role in the poor solvent regime, where the dominant effects
require a certain minimum amount of monomers to become visible. When looking
at the snapshots of figure 5.2 and the corresponding data in [54] from the pearl-
necklace regime, a minimum NV, 2 190 is needed to detect pearls also on the chains

Y

themselves, preferring Ny, = 286 to clearly characterize these fluctuating structures

— for a good solvent, such a chain would already be considered very long, while in
poor solvent it seems to rather pose as a lower limit.
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Figure 5.21.: The dependence of node-node separation Rg (left) and the char-
acteristic ratios r (center) and « (right) on the amount of monomers per chain,
reflecting figures 5.15 and 5.16 for the A-series (f = 0.3333, /g = 1.50).

That is why we also investigated the impact of N, on our results previously dis-
cussed. Looking at the data from the A-series, we do not find dramatic changes once
the aforementioned minimum chain length is exceeded. As figure 5.21 illustrates,
the equilibrium end-to-end distance for the chosen parameter set of f = 0.3333 and
g = 1.50, i.e. within the pearl-necklace regime, simply increases linearly with NV,,,
in agreement with simple scaling predictions [40] expecting the chain extension to
behave as Rg = bNy, (6}3f2/b)1/2 7712 where T = (§—T)/0 is once again the reduced
temperature. The characteristic ratio r = (R%)/(R%) is quite constant for N,,, > 287
at values exceeding the rod-like value r = 12 which indicates the aforementioned
anisotropic “mass” distribution along the chain. The increase in a = (R%)Y?/{Ry)
is more pronounced, as the additional pearls allowed on the larger chains become
(indirectly) noticeable. This is also the only effect on the snapshots upon visual
inspection, with more and more pearls emerging on the network chains in a similar
manner the single polyelectrolytes already exhibited in figure 5.2.

If one varies the charge fraction instead, choosing very long chains with N, = 479
monomers at the same fg = 1.50, we can once more observe the transition from col-
lapsed via pearl-necklace towards stretched conformations, as the plots in figure 5.22
show. While the node-node separation Rg(f) grows one order of magnitude, the
characteristic ratio r increases from the random walk-like r = 6 up to around r = 12
of a rod-like, strongly elongated conformation. Similar behaviour is observed for a
which mirrors the trends found for the shorter chains in figure 5.16.

It is therefore safe to assume that the chains in the C-series were sufficiently
long to exhibit the full range of structures, with longer strands only marginally
improving the results (e.g. by having more pearls to average over, etc.) while at the
same time dramatically increasing the required computational effort. Consequently,
future studies might also initially focus on the parameter regime we covered here, as
it was shown to provide access to the complex behaviour of polyelectrolyte networks
in poor solvents.
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Figure 5.22.: The dependence of node-node separation Rg (left) and the charac-
teristic ratios r (center) and « (right) on the charge fraction f, reflecting figures 5.15
and 5.16 for the E-series (N, = 479, ¢g = 1.507; see table 5.2).

5.4. Conclusions and Outlook

Macromolecules below the 0-point are no longer easily solvable and favor contacts
with themselves over the surrounding solvent molecules. Corresponding to an effec-
tive short-range attraction between the repeat units, this additional mechanism gives
rise to a variety of new effects in charged hydrogels, as it is competing with the al-
ready complex interplay of elasticity, excluded volume, and long-range electrostatics
in place.

In this chapter, we therefore expanded further on our results from good solvent
systems, investigating the behaviour of polyelectrolyte networks under poor sol-
vent conditions which were taken to mimic previous studies of single polyelectrolyte
chains. After introducing these results, we found similar equilibrium swelling con-
formations in the charged hydrogels, i.e. collapsed structures for very low charge
fractions or very high electrostatics, local globules of monomers around the nodes
and (later on) on the chains forming pearl-necklaces for increasing f and /g, strongly
stretched conformations for large f and intermediate /g, and “sausage”-like struc-
tures for not too low charge fractions and large Bjerrum lengths. Their response
to the system environment was comparable to the single chain case, albeit a dif-
ferent structure diagram emerged which arranged them based on the parameters
of charge fraction and strength of coulombic coupling. Particularly in the case of
vanishing electrostatics systems were no longer dense globules, because the entropy
of the counterions confined to the network topology prevented too high densities,
increasingly so for larger amounts of mobile ions in the system. The pearl-necklace
regime was smaller than theories anticipated, which was consistent with the single
chain results where even in dilute solution the delicate interplay between the coun-
terion distribution and the chain conformation for strongly charged chains limited
the range of applicability for scaling predictions. We found the point of maximum
extension in the network strands to be larger, but shifted towards smaller Bjerrum
lengths; the former was attributed to the additional osmotic pressure of the ions, the
latter to the onset of condensation effects which effectively remove particles from
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5. Polyelectrolyte Networks in Poor Solvent

the ideal gas-like distribution. The same reason also rendered the network chains to
be more elongated, even surpassing rod-like structures for parameters in the pearl-
necklace regime. This phenomenon was as extensively discussed as the crossover
between the different structures, which was identified to be smooth and continuous.
Experimentally accessible observables such as characteristics ratios and form fac-
tors were also determined; they may aid in the analyzation of experimental data,
although we already revealed that even in the much more homogeneous environment
of our simulation box the signatures of e.g. pearl-necklace structures are not very
pronounced, such that the difficulties in proving the existence of those regimes in
real world experiments becomes understandable.

Consequently, including part of their impurities and anisotropies into the sim-
ulation model might not be too successful in terms of more clearly distinguishing
different regimes, but it would definitely help in understanding the complex sce-
narios experimentalists are facing, allowing to evaluate promising routes towards a
better detection of key observables and structure properties. In that respect, the
same suggestions for the good solvent systems hold here as well, i.e. introducing
random crosslinks with their entanglements and polydisperse polymer distribution,
adding salt molecules, or attempting advanced coarse-graining, although the latter
might lead to severe difficulties in distinguishing the various structures.

It will also remain an ongoing challenge to connect the findings from such sim-
ulations to the theoretical expectations, because the additional layer of complexity
through the parameter-dependent short-range attraction induced by the solvent re-
stricts most of their models to a rather small range of applicability, without the
possibility to find a quite general description for the majority of the parameter
space as this was the case in the good solvent regime from the previous chapters.
This, however, is also once more emphasizing the unique contribution computer sim-
ulations can offer to the scientific community: Taking up the idealized depiction of
reality any theory is based upon, considering it without further assumptions but an
appropriate translation onto the techniques developed to handle such systems, and
treating it as a real world experiment in terms of observables, implementation, and
analysis process; thereby, they are creating a direct link between theory and exper-
iment wherever system complexity formerly prevented it. Until a new generation
of experiments will be able to access structural properties in detail, the presented
computer simulations may therefore provide a very good template for further ex-
pansion upon the achieved relation of the theoretical picture and the single chain
studies to the environment of charged hydrogels, the characterization of their equi-
librium properties, and the successful identification of the main mechanisms behind
the swelling behaviour of polyelectrolyte networks.
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A. Equilibrium Swelling Properties

This appendix provides the geometrical and pressure-related data measured for the
polyelectrolyte model network, as introduced in section 4.1 and depicted in figure 4.2
with Nyodes = 8 nodes and N, = 16 chains carrying N,, monomers each, in good
solvent or close to the f-point. Similar to table 4.1 and table 4.3, the observables were
determined in the swelling equilibrium where the simulation box volume reached
V = V(P =~ 0), comparing the behaviour for different bare charge fractions f
of the network strands and varying strength of the electrostatic interactions, as
expressed through the Bjerrum length /.

While Vi, hereby is the direct result of the (N, p, T)-algorithm described in sec-
tion 4.1, which used an artificial piston mass ) on the simulation box volume to
adjust it such that the measured instantaneous pressure P in the system goes to the
given external P = 0, everything else was measured in the (N, V = V,q, T')-ensemble.
Due to the network’s topology, however, most of its geometric properties are directly
linked to Viq via the periodic boundary conditions, such that even in swelling equi-
librium artifacts of the initial process are unavoidable. Among the observables were
the mean-square end-to-end distance Ry = (R%)l/ ? as in (2.6) and figure 2.4, the
swelling ratio a, = Rg/R, from (3.6), and the relative extension Rg /Ry comparing
the end-to-end distance to the maximum contour or chain length of N, monomers
with average bonds of size b = (b) (see figure 4.11 as well); all of which averaged not
only over all N, chains of the ensemble, but measured repeatedly at 200 equidistant
times on course of the integration for temporal averaging, too. The same holds for
the mean-square radius of gyration Rg = (R2G>1/ ? from (2.16) and its characteristic
ratio with Rg, known since section 2.2 to indicate random walk-like or rod-like be-
haviour of a chain if RE/RE = 6 (2.17) or R%/R% = 12 (2.18), respectively (refer to
table 2.2 for further examples).

As the balance in the pressure components is the crucial mechanism behind the
swelling equilibrium of the charged hydrogels, its contributions from the short range
excluded volume (LJ) and bond potentials as well as from electrostatic interactions
and ideal gas-like behaviour are given, all measured as virial or energetic terms as
in (4.5). From the ten partial pressures followed in the simulation, only the subsets
attributed to the gas part Py, and gel part Py of the system in (4.12) are contained
in this appendix; refer to the discussion in section 4.2.3 for more informations. Note,
however, the leading impact of excluded volume repulsion for highly charged systems
with strong counterion condensation which noticeably shifts the point of equilibrium.
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A. Equilibrium Swelling Properties

e [ |L=Vd" (B)Y o {5 | (BRY) G Ba

1 0.125 44+1 19£2  2.06 0.46 61 10.2+0.3  4.1£0.2
2 0.125 4341 18+2  2.02 0.45 6+1 10.0£0.4 4.1£0.2
5 0.125 38+2 1743 1.83 0.41 5+1 9.6+0.4 4.0+0.3
1 0.25 54+1 2242 247 0.548 7£1 10.8+0.3 4.4+0.2
2 0.25 52+1 2242 242 0.537 7+1 10.7£0.3 4.4+0.2
5 0.25 43+2 183  2.04 0.455 61 9.9+0.4 4.240.2
1 0.5 64+1 262 291 0.645 8+1 11.1+£0.2  4.84+0.2
2 0.5 60+£1 25+2 279 0.619 8=+1 11.0+0.2  4.840.2
) 0.5 47+2 202 221 0.493 61 10.1£0.3  4.4+0.2
1 1.0 73+1 301 3.33 0.738 9+0 11.3£0.1 5.3£0.1
2 1.0 68+1 282  3.11 0.689 8=+0 11.1£0.2 5.1£0.1
) 1.0 4942 21+3 227 0.506 7+1 10.0+£0.4 4.6+0.2

2

s f | L=Vd" (B)' o {5 [(RY) B Ry

1 0.125 37+1 16£2  2.51 0.406 o5=£1 9.9+0.4 3.6%0.3
2 0.125 36+£2 15£2 242 0.392 o5=£1 9.840.4 3.6%0.3
5 0.125 31+£2 1342 2.14 0.348 441 9.1£04 3.5+0.3
1 0.25 48+1 202 3.18 0.512 6+1 10.7£0.3 4.0£0.2
2 0.25 46+2 1942  3.06 0.492 6+1 10.5+0.3 4.0+0.2
5 0.25 37+2 16+2  2.57 0.416 5+1 9.7+0.4 3.840.2
1 0.5 59+1 24+2 3.89 0.624 7£0 11.1+£0.2 4.5+0.2
2 0.5 56+1 23+2 3.7 0.594 T+1 11.0+0.2 4.4+0.2
) 0.5 41+2 183  2.81 0.455 61 9.840.4 4.040.2
1 1.0 7041 29+1  4.54 0.728 9+0 11.3£0.1  5.0£0.1
2 1.0 65+1 272 4.22 0.677 8=+0 11.1+0.2  4.940.1
) 1.0 47+2 203 3.15 0.509 61 10.0+0.3 4.4+0.2

Table A.1.: Selected network properties for a system with Ny, = 39 monomers per chain
in good solvent (top) and close to the O-point (bottom) for different values of Bjerrum
length /5 and charge fraction f, namely length L of the simulation box after reaching the
equilibrium volume V4, the average chain extension Rg, its swelling ratio o, compared
to a single neutral chain, its extension relative to the contour length N, b, its radius of

gyration Rg, its aspect ratio R% /R%, and its hydrodynamic radius Ry.
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s f | PG Pis Piot | Ponomers  ppupnomers Pppyy,

1 0.125 | 8.44-107* 2.22.10~° 9.82:107° | 7.38-10™% 4.44.107% -5.31-102
2 0.125 1] 9.03-10~* 6.17-107° -5.89-107° | 7.89-10~% 4.80-10~2 -5.66-1072
5 0.125 | 1.26-107% 4.10-10~* -7.00-107*| 1.12-102 6.73-1072 -8.01-1072
1 0.25 |9.88107% 3.44-10™° 7.15-107° | 4.12-1073 2.46-10~2 -2.96-10~2
2 025 | 1.07-107% 8.76-107° -4.65-1076 | 4.46-10~% 2.63-1072 -3.22-1072
5 025 | 1.86-107% 9.22-10~* -1.32-1073 | 7.71-10~* 4.60-10~2 -5.55-10"2
1 05 |1.21-107% 7.20-10°° 2.37-10°* | 2.46:103 1.39-10°2 -1.79-10 2
2 0.5 |141-10% 2.83-107* 9.19-107° | 2.86-10% 1.62-10°2 -2.08-10 2
5 0.5 |2971073 3.12.1073 -2.79-10°% | 6.02-10® 3.46-10°2 -4.37-10°2
1 1.0 |1.60-103 2.46:10°* 6.10-10°* | 1.60-1073 8.02-10°3 -1.20-10 2
2 1.0 |[197107% 1.04-107% 3.46-107* | 1.97-10~% 9.54-107% -1.49-1072
5 1.0 [522107% 1.14-107%2 -5.13-1073| 5.21-107% 2.33-1072 -4.02-1072
b f | Piw P Pit | e PR Peowe

1 0.125] 1.45-107% 7.03-10™° -7.14-107% | 1.27-1072 6.34-10~2 -7.72-1072
2 0.125 | 1.60-10% 1.49-10°* -1.38-107*| 1.41-1072 6.99-10°2 -8.53-10 2
5 0.125 | 2.49-107% 1.14-10% -1.63-1073 | 2.19-1072 1.08-10°! -1.33-10°*
1 025 ]1.41-103 7.12:.10°° 1.10-10°* | 5.88-10 3 2.85-10°2 -3.58-10 2
2 025 | 1.59-107% 1.88-10°* -3.02-107° | 6.64-103 3.21-10°2 -4.05-102
5 025 | 2921073 1.83-10~% -2.30-1073 | 1.22:102 5.92-1072 -7.41-1072
1 05 |15410% 1.20-10* 3.05-10* | 3.11-10° % 1.41-10°2 -1.93-10 2
2 0.5 | 181107 4.48.10~* 1.05-10~* | 3.66-10~® 1.66-10~2 -2.27-1072
5 0.5 | 444107 5.27-1073% -4.33-1072 | 8.95-10~% 4.10-107% -5.54.1072
1 1.0 [ 1.8810~% 3.19-107* 7.34-10~* | 1.88-10~% 7.29-10~% -1.22-10~2
2 1.0 |235107® 1.36-107® 4.46-10~* | 2.35-107% 8.84-10~% -1.54-1072
5 1.0 |594-107% 1.37-1072 -5.66-10"% | 5.96-1073 2.00-10"2 -4.00-10"2

Table A.2.: Detailed pressure components for a system with N, = 39 monomers per
chain in good solvent (top) and close to the #-point (bottom) for different values of Bjerrum
length /g and charge fraction f, namely the contributions to the gas-like pressure Pgas
(ideal part PGL,,. excluded volume PFl = PS}fCI + PE}fmonomers, total electrostatic pres-

tot monomers Jpmonomers

sure Pg> ) and to the one of the gel Py (ideal part Piion , excluded volume P17y ,
bonded virial Preng) for the fully charged gel at its swelling equilibrium volume Vq.
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A. Equilibrium Swelling Properties

o f L=V B o B[y fE R

1 0.25 80£2 34+2 294 0.549 | 101  11.3+0.2 5.9£0.3
2 025 T7£2 33+2 289 0539 | 101 11.2+0.2 5.8£0.2
5 0.25 6642 2843 246 0.461 9+1 10.7£0.3  5.5£0.3
1 05 96+1 40£2 3.5 0.653 | 12+£1 11.5+0.2 6.5£0.2
2 05 9142 38+2 334 0.623 | 11£1 11.3+£0.2 6.4£0.2
5 0.5 7242 31+£3  2.65 0497 | 9+£1 10.7£0.3  5.8+0.3
1 1.0 111+1 471 4.03 0.752 | 14+£0 11.6£0.1 7.1£0.1
2 1.0 103£1 43£2 3.7 0.7 13+£1  11.4£0.1 6.9+£0.2
5 1.0 76+4 33+3  2.79 0524 | 101 10.7+£0.3 6.1£0.3

2

s f | L=Vu" (RD'” o, f5 |[(R) 3B Ru

1 025 724£2 31£2  4.07 0.532 9+1 11.2+0.2  5.4£0.3
2 025 6942 2843 3.66 0.479 8+1 11.1£0.3  5.24+0.3
5 0.25 95+£2 23+£3 294 0.38 | T7=£1 10.1£0.4 4.84+0.3
1 0.5 89+1 38+2 493 0.643 | 11£1 11.5+0.2 6.1£0.2
2 05 84+2 362 4.67 0.609 | 11+£1 11.44+0.2 6.0£0.2
5 0.5 63+2 273 3.46 0.454 | 8+l 10.6£0.4 5.3+0.3
1 1.0 105+1 44£2 5.71 0.744 | 13£0 11.6£0.1 6.8%0.1
2 1.0 98+1 42+2 534 0.697 | 121 11.4+0.2 6.6%0.2
5 1.0 70£2 30+£3  3.83 0.501 911 10.5+0.3  5.840.2

Table A.3.: Selected network properties for a system with Ny, = 59 monomers per chain
in good solvent (top) and close to the O-point (bottom) for different values of Bjerrum
length /g and charge fraction f, namely length L of the simulation box after reaching the
equilibrium volume V4, the average chain extension Rg, its swelling ratio o, compared
to a single neutral chain, its extension relative to the contour length N, b, its radius of

gyration Rg, its aspect ratio R3/ Ré, and its hydrodynamic radius Ry.
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s [ | Poa Pis Piot | Pmonomers pppromers Prpng

1 0.25]4.55-10* 9.37.10% 5.49-10~° | 1.87-10~% 1.10-1072 -1.35-1072
2 0.25|4.81-107* 3.24-10~° 3.87-107° | 1.97-10~% 1.16-107% -1.42-1072
5 0.25|8.01-107% 3.79-107* -4.93-107* | 3.28-107% 1.94-1072 -2.35-1072
1 0.5 ]5.36-107% 2.14-10™°  1.48-107* | 1.08-10~% 6.05-10~* -7.85-107*
2 0.5 |6.20-107* 1.06-10~* 9.63-107° | 1.25-10~% 6.97-10~% -9.10-1073
5 05 | 1.28107% 1.29-10~% -1.10-1073 | 2.57-10~% 1.45-10~%2 -1.86-10~2
1 1.0 [6.90-10* 7.89-10° 3.26-10* | 6.90-10* 3.39-103 -5.18-10 3
2 1.0 | 85810°* 4.13-107* 2.22:107* | 8.59-10°* 4.14-10°% -6.48-1073
5 1.0 | 2.16-107® 4.59-107% -1.64-10"% | 2.17-10~% 9.67-10~% -1.66-10~2
ls [ | PG P Pt | Pagiomes Ppenomes Pegng

1 025]5.70-100* 1.48-10~° 7.44-10~° | 2.34-10~% 1.12:1072 -1.43-1072
2 0.25]8.15-107* 8.38107° 4.89-107° | 3.34-107® 1.60-1072 -2.03-102
5 0.25]1.65-10% 1.03-107% -1.20-1073 | 6.78-10% 3.29-10°%2 -4.11-102
1 05 |6.44-10* 3.01-10° 1.77-10* | 1.30-10 % 5.85-103 -8.05-10 3
2 05 |764-100* 1.60-107* 1.15-107* | 1.54-10°% 6.91-107% -9.52-10°3
5 05 | 1981072 2271072 -1.82-1073 | 4.01-102 1.82-107% -2.47-1072
1 1.0 [8.06-10* 1.03-10* 3.88-10* | 8.04-10* 3.08103 -5.20-103
2 1.0 | 9.88-10~* 5.20-10~* 2.67-10~* | 9.89-10~* 3.64-10~% -6.46-10~3
5 1.0 | 2731073 6.12-107% -2.48-1073 | 2.73-10~% 9.14-10~% -1.82-1072

Table A.4.: Detailed pressure components for a system with N, = 59 monomers per
chain in good solvent (top) and close to the §-point (bottom) for different values of Bjerrum
length /g and charge fraction f, namely the contributions to the gas-like pressure Pgas
(ideal part PGl , excluded volume P = PE}_CI + ng_monomers, total electrostatic pres-
sure ’P}gt) and to the one of the gel Py (ideal part PHone™"s, excluded volume Pppromers,

bonded virial Prpng) for the fully charged gel at its swelling equilibrium volume V.
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A. Equilibrium Swelling Properties

(R)

s [ |r=val (m) e, Ry SR Ry

1 0.0625 7342 313 23 0383 | 101 10.6+£0.3 6.1+0.4
2 0.0625 7243 31+4 226 0378 | 101  10.6+£0.4 6.0+0.4
5 0.0625 663 294 2.09 0.35 9+1 10.1+£0.4 5.9£0.4
I 0.125 88+2 373 275 0457 | 11+£1 11.1+£0.3 6.6%0.3
2 0125 86+2 374 2.7 0448 | 11+£1  11.240.3 6.5£0.3
5 0.125 76+3 33+4 239 0.398 | 10£1 10.6+0.3 6.3+0.4
I 025 107+2 463 3.36 0.556 | 13+1 11.5+0.2 7.240.3
2 025 105£2 45+£3 3.28 0.543 | 131 11.4x0.2 7.240.3
5 0.25 85+3 364  2.67 0444 | 11+£1 10.8+0.3 6.7£0.3
1 0.5 12912 952  4.02 0.664 | 161 11.7+0.1 8.0%0.2
2 0.5 12312 92+3  3.81 0.631 | 15+1  11.6+0.2 7.940.2
b 0.5 93+3 40£4 291 0483 ] 121 10.9+0.3 7.040.3
1 1.0 150+1 632 4.62 0.765 | 19+1 11.7+0.1 8.940.2
2 1.0 13942 09+£2 4.27 0.707 | 171  11.6+0.1 8.6%0.2
b 1.0 10043 43+4  3.12 0.517 | 13+1  10.9+0.3 7.540.3
I e C A VI 3 R R B

1 0.0625 S7+3 254 2.81 0.32 8+1 10.2+0.4 5.1£04
2 0.0625 95+3 24+4 2,75 0313 | 8+l 10.0+£0.4 5.1+0.4
5 0.0625 AT£3 213 2.36 0.27 71 9.5+£0.4 4.8+0.4
I 0.125 752 32+3  3.62 0.409 | 10+1 10.9+0.3 5.840.3
2 0.125 7412 32+4  3.62 0.41 10£1  11.04£0.3 5.8+0.3
5 0.125 60+3 263 295 0.334| 8+l 10.1+0.4  5.4£0.3
I 025 962 41£3 4.6 0.519 | 121 11.5£0.2 6.6%0.3
2 0.25 93+2 40£3 447 0504 | 12+&1 11.4£0.2 6.5%0.3
5 0.25 75%3 32+4  3.61 0409 | 101 10.6+0.3 6.0£0.3
1 0.5 12012 o1x2  5.72 0.644 | 15+1 11.7+0.1 7.540.2
2 0.5 11512 48+2 547 0.616 | 14+1 11.5+0.2 7.440.2
b 0.5 85+3 363  4.08 0.461 | 11+£1  10.9+0.3 6.5£0.3
1 1.0 142+1 602  6.69 0.753 | 18+1 11.7+0.1 8.440.2
2 1.0 131+2 56+2  6.21 0.699 | 164+1 11.6+0.1 8.240.2
b} 1.0 10315 44+£3 485 0.547 | 13+£1 11.240.2 7.4+0.3

Table A.5.: Selected network properties for a system with N, = 79 monomers per chain
in good solvent (top) and close to the @-point (bottom) for different values of Bjerrum
length /g and charge fraction f, namely length L of the simulation box after reaching the
equilibrium volume V4, the average chain extension Rg, its swelling ratio o, compared
to a single neutral chain, its extension relative to the contour length N, b, its radius of

gyration Rg, its aspect ratio R% / R%}, and its hydrodynamic radius Ry.
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g S PR P Pt | Pagiemes - Ppenome  Prgng

1 0.0625] 1.86-10°% 1.96-10°% -1.74-10° %] 3.29-10 3 2.00-10°2 -2.35-10 2
2 0.0625 | 1.96-107* 4.11-10°° 1.05-107° | 3.47-10% 2.10-10°2 -2.47-102
5 0.0625 | 2.55-107* 3.30-107° -7.18-107° | 4.50-10~2 2.72:1072 -3.20-1072
1 0.125 [2.2310°% 2.35-10°% 1.03-10°° | 1.87-10 3 1.12:10°2 -1.33-10 2
2 0125 | 2.41-107* 7.93-107% 9.48-107% | 2.01-10~® 1.21.107% -1.43-1072
5 0.125 | 3.51-107* 7.29-107° -8.73-107% | 2.93-10~® 1.76-107%2 -2.09-1072
1 025 |252107* 3.25:10°% 4.08-10° | 1.03-10~% 6.03-10~3 -7.35-10~°
2 0.25 |26910~* 1.42-10~° 3.67-107° | 1.09-10~% 6.40-10~% -7.83-1073
5 0.25 |5.10-107* 2.38-107* -2.91-107*| 2.07-10~% 1.23-107% -1.48-1072
1 0.5 |292107* 7.03-107% 9.48.107° | 5.88-107* 3.29-10~% -4.26-107°
2 0.5 |342107* 4.79-10™° 7.82-107° | 6.89-10~* 3.83-10~% -4.99-1073
5 0.5 |7.80-107* 7.61-107* -6.52-107* | 1.57-103 8.88-10°% -1.14-102
1 1.0 |3.77-10* 3.4810° 2.07-10°* | 3.77-107* 1.83-1073 -2.83-10 %
2 1.0 | 4.7310* 2.16-100* 1.50-10* | 4.74-10°* 2.25-10°% -3.58-10°3
5 1.0 | 1.26-107% 2.65-10% -1.14-1073 | 1.26-10% 5.61-10~% -9.62-10°3
gB f ‘ Pi((ji}eal PIE:} P;gt ‘Pﬁlgﬁomers Pg]on01ners PFENE

1 0.0625 | 3.86-10~* 1.17-10~° -1.38-107% | 6.84-10~% 3.37-107% -4.12-102
2 0.0625 | 4.21.107* 1.39-107° -1.43-107° | 7.46:10~% 3.69-1072 -4.49-1072
5 0.0625 | 6.88-107* 1.56-107* -2.78-10°* | 1.22-102 6.04-10°2 -7.32-102
1 0.125 | 3.60-107* 5.83-107% 2.26-10~° | 3.01-10™3 1.47-1072 -1.82-1072
2 0125 | 3.67-10* 1.50-10°° 1.27-107° | 3.08-10% 1.51-1072 -1.86-102
5 0.125 | 6.96-107* 2.14-10* -3.38-10°* | 5.85-107% 2.88-10°2 -3.53-102
1 025 |3.50-100* 6.35-107% 5.88-10° | 1.43-10~% 6.82-10=3 -8.67-10~°
2 025 |387-107* 299-10™° 5.17-10~® | 1.58-10=3 7.55-10~% -9.57-1073
5  0.25 | 7.51-100* 4.20-10~* -4.82-10~* | 3.06-10~% 1.47-10~%2 -1.86-1072
1 0.5 |3.64-100* 1.38-10° 1.21-10°* | 7.33-10°* 3.26-10 % -4.53-10°3
2 0.5 |4.21-107* 7.62:107° 9.24.107° | 8.44-10* 3.77-107% -5.21.1073
5 0.5 | 1.04-107% 1.13-107% -8.95-107* | 2.09-10 9.49-103 -1.28-1072
1 1.0 |4.43.107* 4.65-10° 2.46-10~* | 4.44-10~* 1.67-10~% -2.87-1073
2 1.0 |5.57-107* 2.82-107* 1.83-10~* | 5.60-10~* 2.07-10~% -3.65-1073
5 1.0 | 1.18107% 2.55-10~% -1.01-1073 | 1.18-10~% 3.90-10~% -7.88-1073

Table A.6.: Detailed pressure components for a system with N, = 79 monomers per
chain in good solvent (top) and close to the §-point (bottom) for different values of Bjerrum
length /g and charge fraction f, namely the contributions to the gas-like pressure Pgas
(ideal part PSL,,, excluded volume PLT = PE }701 + 735 }7m°n°mers, total electrostatic pres-
sure P}gt) and to the one of the gel Py (ideal part PN, excluded volume Pprmomers,
bonded virial Prgng) for the fully charged gel at its swelling equilibrium volume V.
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A. Equilibrium Swelling Properties

s f [ L=Va" By oo FE [ G R

T 0.25] 135%2 58+3  3.71 0.56 | 171 11.7+0.2 8.5£0.3
2 025 13242 56+3  3.62 0.546 | 16+1 11.6+0.2 8.5+0.3
5 0.25] 106£3 46£5 295 0447 | 14+1 11.1+£03 7.8+£04
1 05 163£2 69+2 4.44 0.669 | 201 11.8&0.1 9.5+£0.2
2 0.5 15442 673 429 0.647 | 201 11.6£0.1 9.4+£0.2
5 0.5 11943 51+4  3.28 0.496 | 15+1  11.240.2 8.4+0.3
1 1.0 189+1 80+2 5.12 0.771 | 23£1  11.8£0.1 10.6%0.2
2 1.0 17442 75x2 479 0.722 | 2241 11.7£0.1 10.2%0.2
5 1.0 12443 53+4  3.35 0.505 | 16+1 11.24+0.2 8.7+0.3

2

b f L=V R o g5 (B g5 Ry

1025 121+£2 5243 5.21 0.524 | 15&1 11.7+0.2 7.7£0.3
2 025 118%£2 50£3  5.05 0.509 | 151 11.6£0.2 7.7£0.3
5 0.25 9243 41+4  4.09 0413 | 12+1 10.9+0.3 7.0+£0.4
105 15042 63+2  6.37 0.641 | 18+1 11.94+0.1 8.8+0.2
2 05 14442 61+3 6.18 0.622 | 181 11.7+0.2 8.8+0.3
5 0.5 108+2 46+4 4.6 0465 | 14+1 11.1+£0.3 7.7+£04
1 1.0 17941 752 748 0.752 | 22+1 11.840.1 10.0%0.2
2 10 160£2 70+3  6.93 0.697 | 201 11.6£0.1 9.7£0.2
o 1.0 120+3 5244  5.17 0.521 | 16£1  11.3+0.2 8.5+£0.3

Table A.7.: Selected network properties for a system with Ny, = 99 monomers per chain
in good solvent (top) and close to the O-point (bottom) for different values of Bjerrum
length /g and charge fraction f, namely length L of the simulation box after reaching the
equilibrium volume V4, the average chain extension Rg, its swelling ratio o, compared
to a single neutral chain, its extension relative to the contour length N, b, its radius of
gyration Rg, its aspect ratio R3/ Ré, and its hydrodynamic radius Ry.
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s [ | Poa Pis Piot | Pmonomers pppromers Prpng

1 0.25]1.59-10~* 1.37.107% 2.86-10~° | 6.45-10~* 3.76:10~* -4.61-107>
2 025 1.71-107% 8.01-107% 3.44-10™° | 6.95-107* 4.06-1073 -4.98-107*
5 0.25]3.26-107* 1.41-100* -1.69-107* | 1.32-1073 7.84-107% -9.43-10°3
1 05 | 1.85-107* 4.31-107° 6.80-10~° | 3.71-10~* 2.06-10~* -2.68-10~*
2 0.5 |2.08107* 2.63-107° 6.08-107° | 4.18-10~* 2.30-10~% -3.03-1073
5 0.5 | 4.68-107* 4.49-10~* -3.68-10~* | 9.39-10~* 5.26-10~% -6.78-1073
1 1.0 [23510* 1.81-10° 1.45-10*|2.3510* 1.13-10°3 -1.77-10°3
2 1.0 | 2.89-107* 1.21-107* 1.06-107* | 2.89-107* 1.36-10~% -2.18-10°3
5 1.0 | 8.41-107* 1.74-107% -7.50-107* | 8.41-10~* 3.73-10™% -6.43-1073
ls [ | PG P Pt | Pagiomes Ppenomes Pegng

1 0.25[223107* 297.10°% 4.17-107° | 8.99-10~* 4.27-10~3 -5.45-107°
2 0.25]242-100* 1.44-107° 4.45-107° | 9.81-10°* 4.68-107% -5.95-1073
5 0.25]4.91-107* 2.65-107* -2.92-10°* | 2.00-107® 9.64-10°% -1.21-1072
1 05 [23910* 6.4510% 8.98-10°° | 4.81-10* 2.15-10°3 -2.96-103
2 0.5 |264-100* 4.26-107° 7.39-10°° | 5.31-107* 2.36-107% -3.28-10°3
5 0.5 |6.49-107* 7.09-107* -5.41-107* | 1.31-102 5.91-10~% -8.02-1073
1 1.0 [28810* 266-10° 1.76-10°* | 2.88-10°* 1.10-10°3 -1.86-103
2 1.0 | 3.6810~* 1.77.10~* 1.34-10~* | 3.69-10~* 1.36-10~% -2.40-1073
5 1.0 | 8.70-10~* 1.91.107% -7.48-10~* | 8.72-10~* 2.88-10~% -5.83.1073

Table A.8.: Detailed pressure components for a system with N, = 99 monomers per
chain in good solvent (top) and close to the §-point (bottom) for different values of Bjerrum
length /g and charge fraction f, namely the contributions to the gas-like pressure Pgas
(ideal part PGl , excluded volume P = PE}_CI + ng_monomers, total electrostatic pres-
sure ’P}gt) and to the one of the gel Py (ideal part PHone™"s, excluded volume Pppromers,

bonded virial Prpng) for the fully charged gel at its swelling equilibrium volume V.
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A. Equilibrium Swelling Properties

(RE)

b f | L=V (B)" o, fm | (R 8 Ry

1 0.125 13343 57+4  3.29 0.461 1741 11.5+£0.3 8.840.4
2 0.125| 13143 57+4  3.27 0.458 | 1741 11.54+0.3 8.840.4
5 0.125 119+4 5l+4 298 0.417 | 15+1 11.3+0.3 8.44+0.4
1 0.25 16242 69+3 4 0559 | 2041 11.84£0.2 9.7£0.3
2 0.25 159+3 68+3 392 0.548 | 20+£1 11.840.2 9.740.3
5 0.25 13043 56+4  3.22 0.451 1741 11.3+£0.2  8.9+0.3
1 0.5 196£2 83+3 4.82 0.673 | 24+1 11.940.1 11.0£0.2
2 0.5 18942 80+3 4.64 0.648 | 23+1 11.840.1 10.840.2
) 0.5 141+3 61+5 3.49 0.489 | 18+2 11.44+0.3 9.54+0.4
1 1.0 229+1 97+2 557 0.778 | 2841 11.940.1 12.240.2
2 1.0 21143 90+3 5.15 0.719 | 26+1 11.740.1 11.840.2
) 1.0 15443 66+6 3.74 0.524 | 20+2 11.44+0.3 10.1+0.4

2

s f | L=V® (R)" o, 5 [R5 Ry

1 0.125 11243 48+4 444 0408 | 14+1 11.4+0.3 7.6+£04
2 0.125 11143 48+4 4.4 0.404 | 14+£1 11.5+0.3 7.6+0.4
5 0.125 97+6 42+5 3.88 0.357 | 13£+1 11.1£0.3 7.3+£04
1 0.25 146+2 62+3 5.75 0.528 | 18+1 11.840.2 8.940.3
2 0.25 14442 61+3 5.66 0.519 | 18+1 11.840.2 8.940.3
5 0.25 115+3 49+4 454 0418 | 15+1 11.240.3 8.1£04
1 0.5 183+£2 78+2 7.15 0.656 | 23£1 11.940.1 10.3£0.2
2 0.5 175£2 74+3  6.83 0.627 | 22+1 11.840.1 10.1£0.2
) 0.5 130+4 56+4  5.16 0.474 | 171 11.3+0.2 8.940.3
1 1.0 21742 92+2 837 0.768 | 271 11.940.1 11.640.2
2 1.0 200+2 8+3 7.71 0.708 | 25+1  11.840.1 11.240.2
) 1.0 146+4 63+4 5.62 0.517 | 19+1 11.3+0.2 9.740.4

Table A.9.: Selected network properties for a system with Ny, = 119 monomers per
chain in good solvent (top) and close to the #-point (bottom) for different values of Bjerrum
length /5 and charge fraction f, namely length L of the simulation box after reaching the
equilibrium volume V4, the average chain extension Rg, its swelling ratio o, compared
to a single neutral chain, its extension relative to the contour length N, b, its radius of

gyration Rg, its aspect ratio R% /R%, and its hydrodynamic radius Ry.
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s [ | Paa PLi Pt | Ponomers  pppromers Prpygg

1 0.125]9.90-10° 3.63-10 7 8.10-10 ¢ | 8.17-10°* 4.88-103 -5.82-10 %
2 0.125 | 1.02-107* 1.49-10°% 1.12-107° | 8.43-10~* 5.03-10~% -6.00-1073
5 0.125 | 1.38-107* 2.64-107° -3.31-107° | 1.14-10™® 6.82-10~% -8.08-1073
1 0.25 | 1.10-107* 8.63-10~7 2.18-10° | 4.48-10~* 2.61-10~* -3.20-10~°
2 025 | 1.17-107* 4.39-10°% 2.74-107° | 4.76-10~* 2.77-10~% -3.40-1073
5 0.25 | 2.13.107* 9.03-10™° -1.01-10~* | 8.63-10~* 5.09-10~% -6.16-1073
1 05 |1.27:100* 2.00-107% 4.86-10°° | 2.55-10~* 1.40-10~® -1.84-10~°
2 0.5 |14210* 1.74-107° 4.89-107° | 2.85-10°* 1.57-10°% -2.07-10°3
5 0.5 |340-107* 3.17-107* -2.61-107* | 6.83-107* 3.82-10°% -4.93-10°3
1 1.0 |1.60-100* 1.02:10°° 1.07-10°* | 1.60-10-* 7.63-10~* -1.20-10°
2 1.0 |203107% 843-107° 8.31-107° | 2.03-107* 9.57-107* -1.53-1073
5 1.0 [526-10* 1.07-10°% -4.54-107*| 5.25-10°* 2.32-10% -4.02-10°3
s [ | PG PLi P deal o Prymm™  PrenE

1 0.125| 1.64-10~* 1.87-10°% 1.56-10~° | 1.35-10~% 6.58-10~% -8.13-10~"
2 0.125 | 1.70-10~* 4.90-10~% 1.84-107° | 1.40-10~% 6.81-10~% -8.41-1073
5 0.125 | 2.56-107* 6.41-10°° -9.04-107° | 2.12-10% 1.03-10°2 -1.28-102
1 025 |1.51-107*% 1.82-107% 3.21-107° | 6.11-107* 2.89-10~% -3.70-1073
2 0.25 | 1.60-107* 8.10-10°% 3.74-107° | 6.47-10* 3.06-10°% -3.92-10°3
5 025 [3.12-10* 1.67-107* -1.71-107%| 1.26-10® 6.06-10°2 -7.64-103
1 05 |1.56-107* 3.21-10°6 6.37-10°° | 3.14-10~* 1.39-10—® -1.93-10~°
2 0.5 | 1.78107* 2.52:107° 6.02-107° | 3.59-10~* 1.59-10~% -2.21-1073
5 05 |4.35107* 4.67-10~* -3.16-10~* | 8.73-10~* 3.93-10~% -5.36-1073
1 1.0 [1.8810* 1.40-107° 1.27-107* | 1.88-:10~* 7.02-107* -1.22-1073
2 1.0 |240-107* 1.11-107* 9.82:107° | 2.40-10~* 8.76-10~* -1.56-1073
5 1.0 |6.22:107* 1.35-1073 -5.21-107* | 6.21-10~* 2.06-10~3 -4.15-1073

Table A.10.: Detailed pressure components for a system with Ny, = 119 monomers
per chain in good solvent (top) and close to the #-point (bottom) for different values of
Bjerrum length /g and charge fraction f, namely the contributions to the gas-like pressure
Pgas (ideal part PSL | excluded volume P = 735 }701 + 735 }7m°nomer5, total electrostatic
pressure P}gt) and to the one of the gel Py (ideal part PR excluded volume
prpnemers ‘honded virial Preng) for the fully charged gel at its swelling equilibrium volume
Veq-
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A. Equilibrium Swelling Properties

b f L=V (B o P55 (B G R

1 025] 191+2 82+4 432 0.566 | 24+1 11.840.2 11.0£0.3
2 0.25] 189+£3 83+3 4.38 0.573 | 24+1 11.840.1 11.240.3
5 0.25] 154£3 675 3.51 0.461 | 20£2 11.3£0.2 10.240.4
105 231+2 99+3  5.19 0.68 | 28+1 12.0£0.1 12.440.2
2 05 22342 95+3  5.01 0.657 | 284£1 11.9£0.1 12.3£0.2
5 0.5 170£3 735  3.85 0.505 | 2241  11.440.2 10.840.3
1 1.0 268+1 114+£3 598 0.783 | 331  11.9+0.1 13.840.2
2 1.0 217+£5 101+£5 5.3 0.694 | 30+£1  11.5+0.1 13.1£0.3
5 1.0 18043 75 4.01 0.526 | 234+1  11.54+0.2 11.340.4

2

b f L=V R o g5 (B g5 Ry

1 025] 171+£2 733 6.23 0.528 | 214+£1 11.94£0.1 10.040.3
2 0.25] 16543 734 6.22 0.528 | 214£1 11.84£0.2 10.140.4
5 025 134%£3 58+t5 498 0424 | 17+2 11.44+0.3 9.1+£04
105 21342 92+3 786 0.667 | 27+1  12.0£0.1 11.6%0.3
2 05 206+2 88+3 7.45 0.632 | 2641 11.8+0.1 11.440.2
5 0.5 12544 o8+8 491 0.42 1842  10.7£0.4  9.6%+0.5
1 1.0 25242 1083 9.08 0.77 | 31+1 11.94+0.1 13.140.2
2 1.0 230+2 99+3 83 0.704 | 294+1 11.8£0.1 12.6%0.2
o 1.0 16944 765  6.29 0.535 | 2242  11.54+0.2 11.040.4

Table A.11.: Selected network properties for a system with Ny, = 139 monomers per
chain in good solvent (top) and close to the 8-point (bottom) for different values of Bjerrum
length /g and charge fraction f, namely length L of the simulation box after reaching the
equilibrium volume V4, the average chain extension Rg, its swelling ratio o, compared
to a single neutral chain, its extension relative to the contour length N, b, its radius of

gyration Rg, its aspect ratio R3/ Ré, and its hydrodynamic radius Ry.
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s [ | PG PLi Pt | Pronomers pppromers Prpyg

1 0251792107 4.19-1077 1.64-10~° | 3.19-10~* 1.86-10~% -2.28-1073
2 0.25]7.65-107° 2.22.107% 2.14-107° | 3.09-10~* 1.79-10~% -2.21-1073
5 0.25]1.52-100* 5.89-10° -6.46-10"° | 6.13-10~* 3.61-10~% -4.37-1073
1 0.5 [9.09-107° 9.66-10~7 3.83-10~° | 1.82-10~* 1.00-10—3 -1.32-107°
2 05 |1.00-107* 1.13-10~° 3.91-107° | 2.02-10~* 1.10-10~* -1.46-1073
5 05 | 227100 2.11-10* -1.67-107* | 4.55-10°* 2.54-10°% -3.28-10°3
1 1.0 |1.16-107* 5.69-107% 8.37-10~° | 1.16-10~* 5.50-10~* -8.73-10*
2 1.0 |1.9210* 7.96-10° 8.09-107° | 1.92.10°* 9.05-107* -1.45-1073
5 1.0 | 3.84-107* 7.87-107* -3.29-107* | 3.85-107* 1.70-107% -2.94-10°3
s f | P PLi Pt | Paonomers pppromess Ppgyg

1 025]1.11-107* 8.12:10=7 2.49-10~° | 4.49-10~* 2.13-10~ -2.72-1073
2 0.25]1.14-107* 4.88.10°% 2.96-107° | 4.61.10~* 2.17-10~% -2.80-1073
5 0.251]222107* 1.13-107* -1.14-107* | 8.97-10* 4.29-10°% -5.42-10°3
1 05 |1.10-107* 1.82:10°% 4.65-10~° | 2.20-10~* 9.74-10~* -1.36-10~°
2 05 | 1.2810* 1.6810°° 5.00-107° | 2.5810°* 1.14-107% -1.59-10°3
5 05 |504-100* 541-107* -4.13-107*| 1.01-10® 4.54-107% -6.19-10°3
1 1.0 | 1.38-107* 8.52:10°% 9.90-107° | 1.38-107* 5.14-10~* -8.95-10~*
2 1.0 | 1.82-107* 8.2810°° 7.99-107° | 1.83-10°* 6.64-107* -1.19-10°3
5 1.0 | 411.107* 8.88:107* -3.36-107* | 4.11.10~* 1.36-10~% -2.74.1073

Table A.12.: Detailed pressure components for a system with N, = 139 monomers
per chain in good solvent (top) and close to the #-point (bottom) for different values of
Bjerrum length ¢g and charge fraction f, namely the contributions to the gas-like pressure
Pgas (ideal part PSL |, excluded volume P = 735 }_CI + Pfj_monomers, total electrostatic
pressure P}gt) and to the one of the gel Pga (ideal part PRone™*s  excluded volume
Pryremers ‘bonded virial Preng) for the fully charged gel at its swelling equilibrium volume

Vg,
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A. Equilibrium Swelling Properties

e f L=V () o, fm w08 Ry

1 0.0625 | 14244 6215 3 0373 182 11.1+£0.3 9.8%0.5
2 0.0625 14344 62+6 3.01 0.375| 18+2 11.3£0.3 9.840.5
5 0.0625 | 13344 58+7 284 0.355 | 172 11.3£04 9.6%0.6
1 0.125 177+3 765 3.72 0.462 | 22+1 11.6+0.2 10.940.4
2 0.125 176+3 765 3.69 0.458 | 22+1 11.740.2 10.840.4
5 0.125 157+4 68+5 3.31 0411 201 11.3£0.2 10.5£0.4
1 0.25 218+3 93+4 4.56 0.566 | 271 12.0+0.2 12.240.4
2 0.25 217+£3 93+4 453 0.562 | 271 11.94£0.2 12.2+0.3
) 0.25 180+4 787 3.79 0471 23£2  11.4+£0.3 11.3x0.5
1 0.5 26312 11243 548 0.679 | 32+£1 12.0+0.1 13.740.3
2 0.5 25612 1104  5.34 0.662 | 32+£1 11.940.1 13.740.3
) 0.5 193+4 836 4.05 0.503 | 25+2 11.5£0.2 11.9£0.4
1 1.0 30942 13242 6.37 0.789 | 381 11.940.1 15.440.2
2 1.0 28442 12243 5.87 0.728 | 35+£1 11.94+0.1 14.840.2
) 1.0 209+3 90+4 4.31 0.534 | 261 11.6£0.2 12.6£0.3
e |L=V" (RY” o, 5 (RY FE R

1 0.0625 11443 49+4 394 0.313 | 1561 11.0£0.3 8.240.5
2 0.0625 | 11443 505  3.95 0.315| 152 11.3£04 8.240.5
5 0.0625 | 105£4 45+5 3.62 0.289 | 144+2 11.0£04 7.9£0.5
1 0.125 15243 656+4 522 0415 19+1 11.6£0.2 9.5+0.4
2 0.125 150+3 656+4 5.18 0.411 | 191 11.7+£0.2 9.54+0.4
5 0.125 130+3 566 447 0.356 | 172 11.3£0.3 9.0£0.5
1 0.25 19743 84+4  6.73 0.534 | 24+1 11.940.2 11.14+0.3
2 0.25 195+3 83+4  6.64 0.527 | 24+1 11.9£0.2 11.1£0.3
) 0.25 155+4 675 536 0426 | 202 11.3£0.3 10.1£0.4
1 0.5 246+£2 105£3  8.35 0.663 | 301 12.0£0.1 12.940.3
2 0.5 23942 102+4 81 0.643 | 30£1 11.940.1 12.840.3
) 0.5 174+4 75+6 597 0.475| 22+2 11.6+0.3 10.940.5
1 1.0 29342 125+2  9.83 0.78 361  12.0£0.1 14.6£0.2
2 1.0 27142 1163  9.09 0.721 | 344+1 11.8+£0.1 14.1+0.2
) 1.0 202414 86+4  6.74 0.535| 25+2 11.6£0.2 12.1£0.4

Table A.13.: Selected network properties for a system with Ny, = 159 monomers per
chain in good solvent (top) and close to the @-point (bottom) for different values of Bjerrum
length g and charge fraction f, namely length L of the simulation box after reaching the
equilibrium volume V4, the average chain extension Rg, its swelling ratio o, compared
to a single neutral chain, its extension relative to the contour length N, b, its radius of
gyration Rg, its aspect ratio R% / R%}, and its hydrodynamic radius Ry.
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g S PR P Pt | Pagiemes - Ppenome  Prgng

1 0.0625 | 5.30-10° 1.20-10° 7 1.19-10°° [ 8.93-10* 5.36-10 3 -6.34-10 3
2 0.0625 | 5.19-107° 3.97-10°7 2.40-10°% | 8.74-10* 5.25-107% -6.20-103
5 0.0625 | 6.46-107° 4.11-10°% -6.94-10°% | 1.08-10°% 6.53-10°% -7.70-10°3
1 0.125 | 5.62:10°° 1.60-10°7 3.91-10 ¢ | 4.58-10°* 2.72:10°3 -3.26-10 3
2 0125 | 5.75-107° 6.62-10°7 8.71-107% | 4.70-10~* 2.80-107% -3.34-1073
5 0.125 | 8.05-107° 1.21-10~° -1.40-107° | 6.58-10~* 3.93.10~% -4.67-1073
1 025 [6.11-107° 2.52.10~7 1.29-10~° | 2.46-10~* 1.43-10=3 -1.76-10~3
2 0.25 |6.20-10° 1.50-10~% 2.01-107° | 2.50-10~* 1.45-10~% -1.79-1073
5 0.25 |[1.09-107* 4.18-107° -4.26-107° | 4.39-10~* 2.57-10~% -3.13-1073
1 0.5 | 7.00-10™° 5.59-10°7 3.09-10~° | 1.40-10~* 7.74.10~* -1.01-1073
2 0.5 | 7.56-107° 7.41-107% 3.35-107° | 1.52-10* &8.32-10~* -1.10-1073
5 0.5 | 1.75:107* 1.61-107* -1.26-10"*1 3.53-107* 1.97-102% -2.54-10°3
1 1.0 |8.67-10° 3.29.10°¢ 6.51-10°° | 8.67-10°> 4.07-10* -6.53-10*
2 1.0 | L.11-107* 4.29-10° 5.29-10°° | 1.11-10* 5.17-107* -8.38-10°*
5 1.0 |27810°* 5.66-107* -2.33-107*| 2.7810* 1.23-10°% -2.12-10°3
g S PE PL; Piot | pmonomers pppromers Ppgyg

1 0.0625 | 1.02-10~* 1.01-10~% 4.19-107° | 1.70-10~% 8.38-10~3 -1.02-10~2
2 0.0625 | 1.03-10~* 1.97.10°% 5.57-107% | 1.73-10~% 8.53.10~% -1.04-1072
5 0.0625 | 1.33-107* 1.66-10°° -2.37-107° | 2.23-10% 1.10-10°2 -1.34-102
1 0.125 [ 8.96-10™° 5.34-1077 9.64-107¢ | 7.32-10~* 3.57-10™% -4.41-107*
2 0125 [9.14-107° 1.31-10°% 1.51-107° | 7.49-10* 3.64-107% -4.51-1073
5 0.125 | 1.44-107* 3.36-10° -3.96-107° | 1.18-1073 5.73-10°% -7.07-10°3
1 025 [832107° 4.96-10~7 1.93-10~° | 3.36-10~* 1.59-10=3 -2.04-10~3
2 0.25 |[859-107° 3.23-10°% 2.57-107° | 3.47-10~* 1.64-10~% -2.10-1073
5 025 |1.6810~* 85510~° -8.12:107° | 6.80-10~* 3.24-10~% -4.11-1073
1 0.5 |85810° 1.12:10°% 4.08-10°° | 1.72:10°* 7.62-10°* -1.06-10"3
2 0.5 |9.38107° 1.16-107° 4.02-107° | 1.88-10~* 8.23-10~* -1.16-1073
5 0.5 | 241.107* 2.52.107* -1.83-107* | 4.82:107* 2.16-10~% -2.96-1073
1 1.0 | 1.02-107* 5.1810°% 7.79-10=° | 1.02-10~* 3.74-10~* -6.61-10~*
2 1.0 | 1.28107* 5.50-10° 6.95-107° | 1.28-10~* 4.61-10~* -8.36-10~*
5 1.0 |3.11-107* 6.71-107* -2.53-10~* | 3.11-10~* 1.03-10~% -2.07-1073

Table A.14.: Detailed pressure components for a system with Ny, = 159 monomers
per chain in good solvent (top) and close to the #-point (bottom) for different values of
Bjerrum length /g and charge fraction f, namely the contributions to the gas-like pressure
Pyas (ideal part PG, excluded volume PF} = 735 }701 + 735 }7m°n°mers, total electrostatic
pressure P}gt) and to the one of the gel Py (ideal part PRono™e™, excluded volume
prpnomers ‘honded virial Preng) for the fully charged gel at its swelling equilibrium volume

Veg-
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A. Equilibrium Swelling Properties

b f L=V (B o P55 (B G R

T 025| 2454&3 1054 4.78 0.565 | 30£1  12.0£0.1 13.3%£0.4
2 025 2454£3 1054 4.8 0.567 | 311 11.9+0.1 13.4+0.3
5 0.25] 2014 865 3.94 0.465 | 254+2 11.7£0.2 12.34+0.4
105 297+2 12844 5.8 0.685 | 37x1 12.1+0.1 15.1£0.3
2 05 29043 1263 5.72 0.675| 371 11.8+0.1 15.2+0.3
o 0.5 222+4 95+5 4.32 0.511 | 2841  11.7£0.2 13.14+0.4
1 1.0 349£2 149+3  6.72 0.793 | 431  12.0+0.1 16.940.2
2 1.0 288+4 12948 5.8 0.686 | 38+2 11.4+0.2 16.0£0.3
5 1.0 233+3 1006 4.49 0.53 | 2942 11.840.2 13.7+0.4

2

b f L=V R o g5 (B g5 Ry

1025 221+£3 94+4  7.05 0.527 | 27£1 12.0£0.2 12.040.4
2 0.25] 21943 94+4  7.06 0.528 | 27+1  11.94£0.1 12.240.3
5 0.25] 164%4 76£8  5.69 0.428 | 2242  11.44+0.3 11.040.6
105 25944 1175 8.74 0.653 | 34+1 12.0+0.1 14.0+0.4
2 05 26912 11444 857 0.641 | 331 11.9+0.1 14.0+0.3
5 0.5 17943 80£8 596 0.448 | 2442 11.2+0.3 11.840.4
1 1.0 298+5 1364 10 0.75 | 39+1 11.8+0.1 15.84+0.3
2 1.0 2746 124£8 9.16 0.686 | 37£2 11.5+£0.2 15.3£0.4
o 1.0 151+9 78+14  5.66 0.43 253 10.0£0.5 12.6£0.7

Table A.15.: Selected network properties for a system with Ny, = 179 monomers per
chain in good solvent (top) and close to the 8-point (bottom) for different values of Bjerrum
length /g and charge fraction f, namely length L of the simulation box after reaching the
equilibrium volume V4, the average chain extension Rg, its swelling ratio o, compared
to a single neutral chain, its extension relative to the contour length N, b, its radius of

gyration Rg, its aspect ratio R3/ Ré, and its hydrodynamic radius Ry.
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s [ | PG PLi Pt | Pronomers pppromers Prpyg

1 025]4.87-10™° 1.12-10=7 1.01-10~° | 1.96-10~* 1.14-10=% -1.40-1073
2 0.25]4.79-107° 9.74-10°7 1.53-107° | 1.93-10~* 1.12-107% -1.38-1073
5 0.25]8.82-10™° 3.38:107° -3.35-107° | 3.55-107* 2.09-10~% -2.53-1073
1 05 |545107° 3.40-10°7 2.30-10° | 1.09-10~* 6.00-10~* -7.90-10~*
2 05 |565-107° 4.70-107% 2.72-107° | 1.13-10~* 6.14-10~* -8.22-107*
5 05 | 1.31-100* 1.20-107* -9.17-107° | 2.64-10* 1.47-107% -1.90-1073
1 1.0 [6.76-10™° 2.31-107% 5.48-10~° | 6.77-10~°> 3.17-10~* -5.11-10~*
2 1.0 | 1.15107* 4.51-10° 5.56-107° | 1.16-10°* 5.43-107* -8.70-10°*
5 1.0 | 226-100* 4.59-107* -1.88-107*|2.26-107* 1.00-10°% -1.73-10°3
s f | P PLi Pt | Paonomers pppromess Ppgyg

1 0.25]6.88107° 3.24-10°7 1.56-10° | 2.78-10~* 1.32-10~ -1.68-10~°
2 0.25]6.83-107° 2.26-107% 2.26-107° | 2.77-10~* 1.30-10~% -1.68-1073
5 0.25]147-107* 7.02-107° -6.78-107° | 5.92-10°* 2.82-10~% -3.58-10°3
1 05 |7.62:10° 6.10-10°7 3.55-10° | 1.53-10~* 6.76-10~* -9.42.10~*
2 0.5 |75210° 83310°% 35310°° | 1.51-107* 6.64-107* -9.31-10°*
5 05 |23910* 250-10* -1.80-107* | 4.80-10* 2.16-10°% -2.94-10°3
1 1.0 |1.01-107* 5.04-10°% 8.16-107° | 1.01-107* 3.80-10~* -6.57-10~*
2 1.0 | 1.27-107* 54510°° 6.22-107° | 1.27-10* 4.62-107* -8.29-10°*
5 1.0 | 6.73-107* 1.46-107® -5.66-10"* | 6.73-10~* 2.23-10~% -4.48.1073

Table A.16.: Detailed pressure components for a system with N, = 179 monomers
per chain in good solvent (top) and close to the #-point (bottom) for different values of
Bjerrum length ¢g and charge fraction f, namely the contributions to the gas-like pressure
Pgas (ideal part PSL |, excluded volume P = 735 }_CI + Pfj_monomers, total electrostatic
pressure P}gt) and to the one of the gel Pga (ideal part PRone™*s  excluded volume
Pryremers ‘bonded virial Preng) for the fully charged gel at its swelling equilibrium volume

Vg,
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A. Equilibrium Swelling Properties

e f L=V (BY)' o P (B B Ry

1 0125 | 221+£3 95+6 4.07 0.461 | 2842 12.0£0.2 12.7£0.5
2 0125 | 22143 95+5  4.07 0.46 28+2  11.8£0.2 12.9+0.4
5 0.125 | 2014 875  3.72 042 262  11.5£0.2 12.4+0.4
1 025 2703 116£5 4.96 0.561 | 33£2 12.0£0.2 14.3+£0.4
2 0.25 270+4 1165 4.96 0.56 34+1  11.9£0.1 14.5£0.4
5 0.25 22444 977 4.13 0.468 | 29£2 11.5£0.2 13.3+0.5
1 0.5 327+2 1414 6.01 0.679 | 40£1 12.1£0.1 16.2+0.3
2 0.5 325+£2 139£4 594 0.671 | 40£1 11.9£0.1 16.4%+0.3
5 0.5 24945 1074 4.56 0.515 | 31£1 11.84£0.1 14.3+0.3
1 1.0 388+E2 166£3 7.04 0.795 | 48+1 12.1£0.1 18.3+0.2
2 1.0 360+£2 155+4 6.3 0.738 | 451 11.8+£0.1 17.8%0.3
5 1.0 260+3 112+6 4.71 0.533 | 33£2 11.7+£0.2 14.8+0.4

2

s | L=V’ (R o R | (RY)? B Ry

1 0125 | 191+£3 83+6 589 0419 | 2442 11.7£0.2 11.3£0.5
2 0.125| 191+3 8245 587 0417 | 2442 11.9£0.2 11.3£04
5 0.125 | 165+4 715 5.09 0.362 | 21£2 11.3+0.2 10.740.5
1 0.25 245+3 1056£5 7.49 0.532 | 30£1 12.0+0.2 13.1+£04
2 0.25 243+£3 104+4  7.44 0.528 | 301 12.0+0.2 13.24+0.4
5 0.25 192+4 836 592 (.42 2442 11.6£0.2 11.8+£0.4
1 0.5 308+2 1324 9.39 0.666 | 38+1 12.1£0.1 15.3+0.3
2 0.5 30213 130£5 9.22 0.654 | 38*+1 11.9£0.1 15.4+04
5 0.5 22514 97+5 6.86 0.487 | 28+2 11.7£0.2 13.1+04
1 1.0 369+£2 158+3 11.1 0.787 | 461 12.0£0.1 17.5+0.2
2 1.0 344+£2 148+4 10.3 0.733 | 43£1 11.9£0.1 17.0%+0.3
5 1.0 264+24  113£5 7.89 0.56 33+2 11.5£0.2 14.7+£0.4

Table A.17.: Selected network properties for a system with Ny = 199 monomers per
chain in good solvent (top) and close to the #-point (bottom) for different values of Bjerrum
length /5 and charge fraction f, namely length L of the simulation box after reaching the
equilibrium volume V4, the average chain extension Rg, its swelling ratio o, compared
to a single neutral chain, its extension relative to the contour length N, b, its radius of

gyration Rg, its aspect ratio R% /R%, and its hydrodynamic radius Ry.
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s [ | Paa PLi Pt | Ponomers  pppromers Prpygg

1 0.1253.62:10° 5.96-10 % 3.27-10 % | 2.94.10* 1.75-10°% -2.09-10 3
2 0.125 | 3.65-10™° 2.75-1077 8.26-107% | 2.97-10~* 1.77-107% -2.11-1073
5 0.125 | 4.82.107° 6.13-107% -5.33-107% | 3.94-10~* 2.35-10~% -2.80-1073
1 025 |4.01-10° 1.03-10°7 8.16-10°% | 1.62-10~* 9.40-10~* -1.15-107°
2 0.25 | 4.01-107° 8.05-1077 1.40-107° | 1.62-:10~* 9.33.10~* -1.16-1073
5 0.25 | 7.07-107° 2.64-107° -2.52.107° | 2.85-107* 1.67-10~% -2.03-1073
1 0.5 |45310~° 1.10-10°7 1.81-10~° | 9.09-10~° 5.01-10~* -6.56-10~"*
2 0.5 |4.66-107° 3521079 2.46-107° | 9.33-10°° 5.06-107* -6.77-1074
5 05 |1.04-100* 9.28107° -6.91-107° | 2.08-10* 1.16-10°% -1.50-1073
1 1.0 |54510° 1.11-10°% 4.48-10°° | 5.45-10°° 2.56-10°* -4.11-10*
2 1.0 |6.82107° 2.4510° 3.9510°° | 6.83-107° 3.15-10°* -5.17-10°*
5 1.0 |1.81-107* 3.68.107* -1.50-10"* | 1.81-107* 8.02-10°* -1.38-10°3
s [ | PG PLi P deal o Py Prene

1 0.125 | 5.62-10~° 1.81-10~7 6.70-10°% | 4.58-10~* 2.23-10~ -2.76-10~"
2 0.125 | 5.60-107° 7.26-1077 1.05-107° | 4.56-10~* 2.21-10~% -2.74-1073
5 0.125 | 8.76-107° 1.89-107° -1.83-107° | 7.12-107* 3.47-10°% -4.29-10°3
1 025 |540-10° 2.04-1077 1.36-107° | 2.18-10~* 1.03-107°* -1.32-107*
2 0.25 | 555107° 1.71-107% 1.98107° | 2.24-10* 1.05-10°% -1.36-1073
5 0.25 | 1.12-107* 5.45-107° -3.93-107° | 4.53-10°* 2.17-10°% -2.74-1073
1 05 |543107° 2.31-1007 2.40-107° | 1.09-10~* 4.82-10~* -6.72-10~*
2 0.5 |5.78107° 5.88.107% 2.95.10~° | 1.16-10~* 5.06-10~* -7.19-10~*
5 0.5 |1.41-107* 1.44-10~* -9.01-107° | 2.82-10~* 1.26-10~% -1.73-1073
1 1.0 [6.3310° 2.06:10°% 5.28107° | 6.33-10° 2.32:.10~* -4.13.10*
2 1.0 |7.84:-107° 3.13-107° 4.34-107° | 7.83-107° 2.80-10~* -5.13-107*4
5 1.0 | 1.74107* 3.68-107* -1.35-10"*| 1.74-10~* 5.71-107* -1.16-1073

Table A.18.: Detailed pressure components for a system with Ny = 199 monomers
per chain in good solvent (top) and close to the #-point (bottom) for different values of
Bjerrum length /g and charge fraction f, namely the contributions to the gas-like pressure
Pgas (ideal part PSL | excluded volume P = 735 }701 + 735 }7m°nomer5, total electrostatic
pressure P}gt) and to the one of the gel Py (ideal part PR excluded volume
prpnemers ‘honded virial Preng) for the fully charged gel at its swelling equilibrium volume
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A. Equilibrium Swelling Properties

s J | L=Vel) (R o g5 [ (R G a

1 025| 301£3 129£5 524 0.569 | 37£2 12.0£0.1 15.5£0.4
2 0.25] 304+£3 130+4 5.27 0.573 | 381 11.9+0.1 15.84£0.3
5 0.25 | 25245 1096 4.4 0478 | 32+£2 11.5+0.2 14.5£0.4
1 05 362+2 155+4 6.27 0.681 | 45£1 12.24+0.1 17.6%£0.3
2 05 364£3 158+5  6.38 0.693 | 46+£2 12.1+0.1 17.9£0.4
5 0.5 27514 1186 4.77 0.518 | 34£2 11.840.2 15.3£0.4
1 1.0 430+2 18443 7.37 0.801 | H53£1 12.1+0.1 19.84+0.2
2 1.0 390+£2 170£5  6.77 0.735 | 49+£1 11.840.1 19.240.3
5 1.0 291+4 125+6  4.98 0.542 | 37+2 11.7£0.2 16.2+0.4

2

b f | L=V (B o, fm | (RY) gE Ry

1 0.25| 253+4 115£7  7.81 0.529 | 33£2 11.840.2 14.1£0.6
2 0.25] 272+4 1165 7.9 0.534 | 34£2 12.0+0.1 14.3£0.4
5 0.25] 186+4 869  5.85 0.398 | 26+2 11.2£0.3 12.6+0.5
1 05 3373 1464 991 0.67 | 4241 12.0£0.1 16.6£0.3
2 05 334+3 1444  9.75 0.659 | 4241 12.0£0.1 16.6£0.3
5 05 221+4  101£10 6.83 0.464 | 303 11.3£0.3 13.9+0.6
1 1.0 3507 1646 11 0.742 | 48+2 11.8£0.1 18.4£0.3
2 1.0 | 270£11 13518 892 0.608 | 41+4 10.8£0.4 17.4£0.6
5 1.0 1938 98+17 6.4 0.441 | 30+4 10.6£0.5 14.7£0.9

Table A.19.: Selected network properties for a system with Ny, = 219 monomers per
chain in good solvent (top) and close to the 8-point (bottom) for different values of Bjerrum
length /g and charge fraction f, namely length L of the simulation box after reaching the
equilibrium volume V4, the average chain extension Rg, its swelling ratio o, compared
to a single neutral chain, its extension relative to the contour length N, b, its radius of

gyration Rg, its aspect ratio R3/ Ré, and its hydrodynamic radius Ry.
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s [ | PG PLi Pt | Pronomers pppromers Prpyg

1 025]3.1810™° 2.45-10~% 4.92-107% | 1.28-10~* 7.49-10~* -9.16-10~*
2 0.25]3.10-107° 3.97-1077 1.24-107° | 1.25-10~* 7.23-10~* -8.93-10~*
5 0.25]542-107° 1.94-10° -1.66-107° | 2.19-10~* 1.28-10~% -1.56-1073
1 05 [3.6910° 1.2810°7 1.51-107° | 7.39-10~° 4.07-10~* -5.34-10~*
2 0.5 |3.5210™° 2.03-107% 2.07-107° | 7.05-107° 3.79-10~* -5.12-10~*
5 0.5 | 840-10°° 7.54-107° -5.48-107° | 1.68-10°* 9.39-10°* -1.21-10°3
1 1.0 | 4.42-107° 6.12-1077 3.80-10~° | 4.41-10~> 2.05-10~* -3.33-10~*
2 1.0 |5.99-107° 2.0810°° 3.68-107° | 5.99-10°° 2.76-10~* -4.53-10"*
5 1.0 | 1.42-107* 2.85-107* -1.15-107*| 1.42-10* 6.26-107* -1.08-10°3
s f | P PLi Pt | Paonomers pppromess Ppgyg

1 0.251]4.97-107° 8.86-10~% 1.04-10~° | 2.00-10~* 9.49-10~* -1.21-1073
2 0.25/|4.42-107° 1.04-107% 1.62-10° | 1.77-10~* 8.35-10~* -1.08-1073
5 0.25]1.2810°* 6.09-10°° -5.75-107° | 5.15-10°* 2.46-10~% -3.11-10°3
1 0.5 [4.51-10™° 1.67-10=7 2.24-10~° | 9.02-10~> 3.98-10~* -5.57-10~*
2 05 |4.6310° 4.13-10°% 2.5810° | 9.28-10°° 4.05-10°* -5.74-10"*
5 05 |1.6210* 1.65-10* -1.17-107*| 3.24-10°* 1.45-107% -1.99-10°3
1 1.0 [7.55-:10° 3.03-10 ¢ 6.57-10°° | 7.55-10° 2.82-10°* -4.89-10*
2 1.0 | 1.48-107* 6.53-107° 6.98-107° | 1.48-107* 5.42-107* -9.60-10~*
5 1.0 | 3.89-10~* 8.41.10~* -3.20-10~* | 3.89-10~* 1.29-10~% -2.59-1073

Table A.20.: Detailed pressure components for a system with N, = 219 monomers
per chain in good solvent (top) and close to the #-point (bottom) for different values of
Bjerrum length ¢g and charge fraction f, namely the contributions to the gas-like pressure
Pgas (ideal part PSL |, excluded volume P = 735 }_CI + Pfj_monomers, total electrostatic
pressure P}gt) and to the one of the gel Pga (ideal part PRone™*s  excluded volume
Pryremers ‘bonded virial Preng) for the fully charged gel at its swelling equilibrium volume

Vg,
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A. Equilibrium Swelling Properties

b f L=V (B o P55 (B G R

T 025| 364+£3 1565 5.73 0.581 | 456+2  12.0£0.1 18.0%0.4
2 0.25| 359+4 15545 5.67 0.575 | 454+1  12.14+0.1 18.040.4
5 0.25] 304%4 13145 4.81 0488 | 38+2  11.8+0.1 16.6+0.4
105 433+3  186+4 6.8 0.69 | 53+l  12.24+0.1 20.140.3
2 05 434£3 186+4 6.8 0.689 | 54+1  12.0+0.1 20.4%£0.3
o 0.5 325+4 140£7 513 0.521 | 41£2  11.6+0.2 17.6%0.5
1 1.0 507+£2 2184 788 0.799 | 621 12.2£0.1 22.6%£0.3
2 1.0 481£3 2074 748 0.758 | 60£1  11.9£0.1 22.2£0.3
5 1.0 35244  151£6 5.46 0.553 | 4442  11.8+0.1 18.6%0.5

2

b f L=V R o g5 (B g5 Ry

1025 320+£3 13845 8.63 0.536 | 40+2  12.2+0.1 16.1£0.4
2 0.25] 326%4 140+£5 877 0.545 | 40+2  12.1+0.1 16.4+0.4
5 025 2614  113£7 7.05 0.439| 33+2 11.64+0.2 14.8+0.5
105 406+3  174+£3 10.9 0.675 | 50+1  12.24+0.1 18.9+0.3
2 05 406+3  175+4 10.9 0.675 | 50+1  12.0+0.1 19.2+0.3
5 0.5 29845 12847 7.99 0.497 | 38+2 11.7+0.2 16.24+0.5
1 1.0 482+2 2073 12.7 0.791 | 5941  12.240.1 21.640.3
2 1.0 456£2 196+4 12 0.746 | 571 11.9+0.1 21.1+0.3
5 1.0 | 342416  147£7 897 0.558 | 43+£2 11.84£0.2 18.040.4

Table A.21.: Selected network properties for a system with Ny, = 259 monomers per
chain in good solvent (top) and close to the 8-point (bottom) for different values of Bjerrum
length /g and charge fraction f, namely length L of the simulation box after reaching the
equilibrium volume V4, the average chain extension Rg, its swelling ratio o, compared
to a single neutral chain, its extension relative to the contour length N, b, its radius of

gyration Rg, its aspect ratio R3/ Ré, and its hydrodynamic radius Ry.
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s [ | PG PLi Pt | Pronomers pppromers Prpyg

1 025]214-107° 4.29-10=% 7.30-107% | 8.63-10~°> 4.99-10~* -6.16-10~*
2 0.25]222107° 2.60-1077 8.16-107% | 8.94.10™° 5.16-10~* -6.39-10~*
5 0.25]3.66-107° 1.23-107° -9.08-107% | 1.47-10~* 8.58-10~* -1.05-1073
1 0.5 ]25510° 4.1810% 9.78-10°% | 5.11-10~°> 2.81-10~* -3.69-10~*
2 05 |255107° 1.23-107% 1.72-107° | 5.10-10~° 2.74-10~* -3.70-10~*
5 0.5 |6.07-10° 543.107° -3.81-10°° | 1.21-10°* 6.73-107* -8.74-10°*
1 1.0 [3.19.107° 2.14-1077 2.56-10~° | 3.19-10~> 1.50-10~* -2.41-10~*
2 1.0 [3.7310°° 1.14-10° 2.54-107° | 3.72-10°°> 1.70-107* -2.82-10°*
5 1.0 |9.53-107° 1.91-107* -7.53-107° | 9.53-10°° 4.20-10~* -7.28-10°*
s f | P PLi Pt | Paonomers pppromess Ppgyg

1 0.25|3.14-107° 6.46:10~% 7.03-10°° | 1.26-10~* 5.99-10~* -7.65-10~*
2 0.25]298107° 4.55.10°7 1.21-107° | 1.20-10~* 5.63-10~* -7.28-10~*
5 0.25]5.82-107° 2.62-10°° -2.10-107° | 2.35-10°* 1.12-107% -1.42-10°3
1 0.5 ]3.10-107® 9.33-10=% 1.30-10~° | 6.21-10~°> 2.74-10~* -3.83-10~*
2 0.5 [3.0910° 2.14-10°% 1.9810°° | 6.20-10°°> 2.68-10°* -3.84-10°*
5 0.5 |7.84-10° 7.87-107° -5.2810"° | 1.57-107* 6.98-107* -9.63-10"*
1 1.0 [3.71-10°° 4.00-10°7 3.19-10°° | 3.71-10°° 1.36-10°* -2.42-10°*
2 1.0 | 4.39-107° 1.55-107° 2.92-107° | 4.39-107° 1.55-107* -2.88-107*
5 1.0 | 1.04-10~* 2.19-10~* -7.85-107° | 1.04-10~* 3.41.10~* -6.94-10~*

Table A.22.: Detailed pressure components for a system with N, = 259 monomers
per chain in good solvent (top) and close to the #-point (bottom) for different values of
Bjerrum length ¢g and charge fraction f, namely the contributions to the gas-like pressure
Pgas (ideal part PSL |, excluded volume P = 735 }_CI + Pfj_monomers, total electrostatic
pressure P}gt) and to the one of the gel Pga (ideal part PRone™*s  excluded volume
Pryremers ‘bonded virial Preng) for the fully charged gel at its swelling equilibrium volume

Vg,
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B. Integrated Counterion
Distributions

In this appendix, the integrated counterion distributions are shown for all the poly-
electrolyte networks we investigated in good solvent and close to the #-point. They
are presented along increasing chain length N, and charge fraction f, grouped into
quad panels comparing the three investigated Bjerrum lengths /g and both solvents
with each other.

While the colours and symbols chosen for the respective plots correspond to the
scheme used throughout this entire thesis (i.e. same colour refers to same f, same
symbol to same (- /solvent-combination), it is distinguished between the integrated
counterion distributions around the monomers on the network chains (mere coloured
symbols) and those around the node monomers (line-connected coloured symbols) to
emphasize the different “perspectives” of the strands, onto which condensation and
charge renormalization takes place, and the network nodes, to which the counterions
always appear as an ideal gas. Obtained from counting the number of counterions
within binned distances from the nearest network monomers, the plots have been
normalized onto the unit interval, such that a functional value of e.g. 0.63 for |r| =
240 corresponds to “63 % of all counterions can be found within a radius of 24c¢
around the reference monomers (i.e. network strands or node monomers)”.

In case of the good solvent plots, some additional geometrical properties are given
to allow better estimation of the counterion distributions relative to the system size:
For one, the spatial distance |r| from a chain corresponding to its average length
(RZ)/? is indicated by a straight line, while the model representations REYY (dashed
line) and R3S (dotted line) provide the idealized length of a network strand in the
blob-like and rod-like representation of the cylindrical cell model, respectively.

For strongly charged systems with counterion condensation taking place, the anal-
ogy to single polyelectrolytes suggests that the inflection point of the integrated
counterion distribution corresponds to (Ry, 1/&u). On course of the investigation of
effective charge fractions, however, it was found that this criterion does not provide
suitable results in case of networks. To assert that statement, the good solvent plots
also contain the (2, 2)-Padé-fit of the integrated distribution functions in the vicinity
of the point of inflection with an arrow indicating the point itself (if multiple points
exists, more than one arrow is given), adding additional arrows corresponding to the
fet required from the various theoretical predictions for Rg.

251



o

Integrated Counterion Distributions

int. Cl distribution

int. Cl distribution

int. Cl distribution
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int. Cl distribution
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N € {119,139}, f € {3,1}, fg € {10,20, 50}, in both solvents.
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Figure B.19.: N,, € {219,239}, f € {}, 1}, {5 € {10,20,50}, in both solvents.
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Figure B.20.: N,, € {239}, f € {, 1}, {5 € {10,20,50}, in both solvents.
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Figure B.21.: N,, € {239}, f € {,%}, ¢z € {10,20,50}, in both solvents.
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Figure B.22.: N,, € {259}, f € {1, 1}, ¢g € {10,20,50}, in both solvents.
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Figure B.23.: N,, € {259}, f € {1}, (s € {10, 20, 50}, in both solvents.



C. Snapshots of Poor Hydrogels

To illustrate the different regimes introduced in the phase diagram, this appendix
displays simulation box snapshots of polyelectrolyte networks in a poor solvent en-
vironment close to their swelling equilibrium. As discussed in chapter 5, this will
occur at different system densities, depending on the chosen charge fraction f (de-
termining the amount of counterions Ney = Nyodes + Np - [f(Nm + 1) — 1] around the
N, chains of length N,,, interconnected at Nyoges charged nodes) and the strength

of the electrostatics as characterized through the Bjerrum length (5 = %
(which is /g ~ 7.14A in water at room temperature, and represents the distance
two elementary charges ey will have when interacting with an electrostatic energy of
kgT). Hence, in the following panels the indicated box frame usually sets a different
length scale for different parameters; the relative sphere radius of monomers and
counterions, however, remains the same in all pictures, and might therefore pose as

a reference for comparisons.
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C. Snapshots of Poor Hydrogels

Figure C.1.: Simulation box snapshots for N,, = 199, f = 0.125 (= N¢; = 392,
Nt = 3584) and g = 0o, p = 0.56072, p. = 0.012072 (top left), (g = 0.1250,
p = 028073, p. = 0.062073 (top right), lg = 0.250, p = 0.28073, p. = 0.062073
(center left), {g = 0.50, p = 0.28073, p. = 0.062073 (center right), Iz = 0.750,
p = 0.28073, p. = 0.062072 (bottom left), {g = 1.00, p = 0.28073, p. = 0.0620~3
(bottom right), in a poor solvent environment with e ; = 1.750 and r. = 2.50 as
LJ-parameters.
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Figure C.2.: Simulation box snapshots for N,, = 199, f = 0.125 (= N¢; = 392,
Niot = 3584) and (g = 1.00, p = 0.280 73, p. = 0.06203 (top left), g = 1.50,
p = 02873 p. = 0.0620 2 (top right), Iz = 2.00, p = 0.280 3, p. = 0.0620 >
(center left), Iy = 3.00, p = 0.56072, p. = 0.012073 (center right), {g = 5.00,
p = 0.56073, p. = 0.012073 (bottom left), g = 6.00, p = 0.56073, p. = 0.012073
(bottom right), in a poor solvent environment with er; = 1.750 and r, = 2.50 as
LJ-parameters.
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C. Snapshots of Poor Hydrogels

Figure C.3.: Simulation box snapshots for Ny, = 199, f = 0.25 (= Ng = 792,
Nyt = 3984) and fg = 00, p = 0.013073, p. = 0.0050073 (top left), fx = 0.1250,
p=0.013073, p. = 0.005002 (top right), g = 0.250, p = 0.031673, p. = 0.012073
(center left), g = 0.50, p = 0.093073, p. = 0.037073 (center right), lg = 0.750,
p = 0.063073, p. = 0.025073 (bottom left), {g = 1.00, p = 0.063073, p. = 0.0250~3
(bottom right), in a poor solvent environment with ep; = 1.750 and r. = 2.50 as
LJ-parameters.
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Figure C.4.: Simulation box snapshots for N, = 199, f = 0.25 (= Ng; = 792,
Nit = 3984) and g = 1.00, p = 0.063073, p. = 0.025073 (top left), Iz = 1.50,
p = 013073, p. = 0.050072 (top right), g = 2.00, p = 0.13073, p. = 0.050073
(center left), lg = 3.00, p = 0.094073, p. = 0.037073 (center right), (g = 5.00,
p = 031073, p. = 0.12073 (bottom left), g = 6.00, p = 0.31073, p. = 0.12073
(bottom right), in a poor solvent environment with ey = 1.750 and r. = 2.50 as
LJ-parameters.
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C. Snapshots of Poor Hydrogels

Figure C.5.: Simulation box snapshots for N,, = 200, f = 0.3333 (= N¢; = 1064,
Nyt = 4272) and £ = 0a, p = 0.0067073, p. = 0.0033073 (top left), fg = 0.1250,
p = 0.0033073, p. = 0.0017073 (top right), Ig = 0.250, p = 0.0033073, p. =
0.0017673 (center left), fg = 0.50, p = 0.013073, p. = 0.00660=3 (center right),
(g = 0.750, p = 0.013073, p. = 0.00660=2 (bottom left), Iz = 1.00, p = 0.033073,
pe = 0.017073 (bottom right), in a poor solvent environment with ey = 1.750 and
r. = 2.50 as LJ-parameters.
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Figure C.6.: Simulation box snapshots for N, = 200, f = 0.3333 (= N¢; = 1064,
Niw = 4272) and g = 1.00, p = 0.033073, p. = 0.017073 (top left), lg = 1.50,
p = 0.033073, p. = 0.017073 (top right), g = 2.00, p = 0.033073, p. = 0.017073
(center left), lg = 3.00, p = 0.033073, p. = 0.017073 (center right), (g = 5.00,
p = 0.066073, p. = 0.033073 (bottom left), (g = 6.00, p = 0.0660~2, p. = 0.03303

(bottom right), in a poor solvent environment with ey = 1.750 and r. = 2.50 as
LJ-parameters.
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C. Snapshots of Poor Hydrogels

Figure C.7.: Simulation box snapshots for Ny, = 199, f = 0.5 (= Ng = 1592,
Nyt = 4784) and £ = 0a, p = 0.0038073, p. = 0.0025072 (top left), fg = 0.1250,
p = 0.0015073, p. = 0.001673 (top right), lg = 0.250, p = 0.0015073, p. = 0.001573
(center left), Iy = 0.50, p = 0.000750 73, p. = 0.00050=3 (center right), fg = 0.750,
p = 0.00038073, p. = 0.00025072 (bottom left), (g = 1.00, p = 0.00038¢0 73, p. =
0.000250~3 (bottom right), in a poor solvent environment with ep; = 1.750 and
r. = 2.50 as LJ-parameters.
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Figure C.8.: Simulation box snapshots for N, = 199, f = 0.5 (= N¢g = 1592,
Nyt = 4784) and f5 = 1.00, p = 0.000380 72, p. = 0.000250 73 (top left), g = 1.50,
p = 0.00038073, p. = 0.000250=3 (top right), Iz = 2.0, p = 0.00038¢73, p. =
0.000250=3 (center left), Iy = 3.00, p = 0.00038¢ 73, p. = 0.000255 =3 (center right),
(g = 5.00, p = 0.0015073, p. = 0.001073 (bottom left), g = 6.00, p = 0.0075073,
pe = 0.005072 (bottom right), in a poor solvent environment with ery = 1.750 and

r. = 2.50 as LJ-parameters.
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C. Snapshots of Poor Hydrogels

Figure C.9.: Simulation box snapshots for Ny, = 199, f = 1.0 (= Ng = 3192,
Nyt = 6384) and fg = 00, p = 0.00050073, p. = 0.00050072 (top left), {g =
0.1250, p = 0.00020073, p. = 0.000200~3 (top right), Ix = 0.250, p = 0.000200 3,
pe = 0.000200=3 (center left), fg = 0.50, p = 0.00015073, p. = 0.000155=3 (center
right), g = 0.750, p = 0.00010073, p. = 0.000100=2 (bottom left), (g = 1.00,
p = 0.00010073, p. = 0.000100~2 (bottom right), in a poor solvent environment with
€,y = 1.750 and r. = 2.50 as LJ-parameters.
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Figure C.10.: Simulation box snapshots for Ny, = 199, f = 1.0 (= N¢g = 3192,
Nyt = 6384) and (g = 1.00, p = 0.00010073, p. = 0.00010073 (top left), lg =
1.50, p = 0.00010073, p. = 0.00010672 (top right), fx = 2.00, p = 0.000100~3,
pe = 0.00010073 (center left), (g = 3.00, p = 0.00020073, p. = 0.000200~3 (center
right), {g = 5.00, p = 0.00050073, p. = 0.00050072 (bottom left), {gz = 6.00,
p = 0.00050073, p. = 0.000500~2 (bottom right), in a poor solvent environment
with er,; = 1.750 and r. = 2.50 as LJ-parameters.
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List of Used Symbols

The 52 lower and upper case characters seem to be insufficient when physicists try
to map nature onto mathematical expressions, even when also adding the 48 Greek
characters. The invention of indices at least allowed to group variables with a sim-
ilar meaning, as did the onset of computerized word processing which introduced
the possibility of having varying font sets instead of additional alphabets like old
German, Hebrew, Cyrillic, and so forth. Tradition and convention however limit this
choices again, as certain characters have obtained a specific (unfortunately some-
times ambiguous) meaning over the years.

In this work we nevertheless tried to use a self-consistent notation which is pri-
marily based on the following guidelines: Characters with a special mathematical
meaning are set in a blackboard font, e.g. 1, R, C, except for the Euler number e as
it also stands for the exponential function exp(z) := e”. Free energies are given as
capitalized script letters, e.g. F, as are pressures measured in the simulation, i.e. P.
Capital Greek letters like I1 are used if predicted pressures from a theoretical model
are inferred, the Latin letter P indicates prescripted pressures such as the input
parameter P to the (IV,p, T)-algorithm. Unfortunately, this concept could not be
transferred to the forces investigated due to the many meanings the literature came
to assign the traditional letter used there. Hence, f or f now refer to a scalar force
or force vector, respectively, while f is reserved for the charge fraction of the chain
and fr for the functionality of the monomer.

The remaining conventions are (hopefully) straightforward, as should become clear
in the following list. There, symbols are assorted alphabetically with Roman letters
and lower case characters first, followed by miscellaneous symbols and Greek letters,
while same letters are ordered by different fonts first, then by their indices.

Qgim edge length of a diamond lattice unit cell

b bond length between neighbouring monomers; Kuhn length

c concentration

Chlob scaling factor in the blob extension relation, see section 3.2.6
Cid scaling factor in the ideal gas expression Il¢, see section 3.2.6
CPE scaling factor in the electrostatic self-energy, see section 3.2.8
€o unit charge ey = 1.60217646 - 1019 C
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feﬁ
Je
fmax

blob
max

rod
max

Ja

fDoF

fe
fe
gp
grE

blob
JPE

rod
JrE

Pmin
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charge fraction f € @ of the polyelectrolytes

effective charge fraction

functionality of the monomer

maximum charge fraction due to counterion condensation
maximum charge fraction in the blob-like description
maximum charge fraction in the rod-like description

fraction of condensed counterions at the point of inflection (R, fz)
in the integrated counterion distribution plot (see appendix B); for
infinitely long, charged rods it is related to the Manning parameter
Ev via fy =1-— %M

number of the degrees of freedom in a system (e.g. 3 translative and
3 rotatory ones for a solid, macroscopic object)

measured restoring force of the polymer chain

measured restoring force without electrostatics

monomers per pearl on a polyelectrolyte chain in poor solvent
number of monomers in a polyelectrolyte blob

number gpg including Manning condensation on a blob-like chain
number gpg including Manning condensation on a rod-like chain
number of monomers in a tension blob

spring constant parameter of the harmonic potential

Boltzmann constant kg = 1.380650 - 1023 JK !

Boltzmann factor (“thermal energy’) used to rescale the energy
spring constant parameter of the FENE potential

contour length per blob size £, see (3.77)

persistence length, see (2.15)

counterion (number) density in the framework of Poisson-Boltzmann
theory

average counterion (number) density in the cylindrical cell
minimum monomer separation between clusters C
(number) density of the fixed charges on the center rod
total charge (number) density in the cylindrical cell model
number of pearls on a polyelectrolyte chain in poor solvent
minimum spatial extension of a cluster C

pressure limit for the (N, p, T')-algorithm

scalar scattering number ¢ = |¢] = 27 /A sin (6/2) where A is the wave
length and @ is the scattering angle



Told

T'skin

(Jeil
y(r)

Y (r)

-
[

2J

=

nodes

]\Rot

scattering vector of the employed scattered waves, e.g. x-rays for
SAXS or neutrons for SANS

inner radius of the cylindrical cell model
modified inner radius rg, see section 3.3.3
modified inner radius set to 1.0c, see section 3.3.3
maximum spatial separation between clusters C
cut-off parameter of the Lennard-Jones potential
cut-off parameter of the harmonic potential
cut-off parameter of the FENE potential

former spatial position of a particle

skin distance

excluded volume of a monomer, see (2.37)
valency of the counterions

reduced electrostatic potential of the counterions in the framework
of Poisson-Boltzmann theory

reduced electrostatic potential of the fixed charges (i.e. monomers)
in the framework of Poisson-Boltzmann theory

sum of all short-range forces between particles 7 and 7, see section 4.1
radial electric field of the fixed charges, see (3.98a)

coulombic contributions to the energy, see section 4.1;

also used as average (F) for the measured pressure P;o*

lateral length of the cylindrical cell model

edge length of the (cubic) simulation box at equilibrium, correspond-
ing to Voq = L&

number average of the molecular weight, see (2.1)

weight average of the molecular weight, see (2.2)

higher order average of the molecular weight

number of monomers on each chain, i.e. length of a chain
number of network nodes

number of polymer chains between the network nodes
total number of particles in the simulation box

number of counterions in the simulation box

externally imposed pressure for the (N, p, T')-algorithm

degree of polymerization
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Uharm
UrenE

Urgsaw
UrE/at
UGauB

Urs
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artificial piston mass of the (N, p, T')-integrator, see section 4.1

effective charge in a system with counterion condensation, see (3.17)
in section 3.2.4

total charge within a certain spatial area, e.g. monomers within the
central cylinder of the cylindrical cell model

charge prefactor of Gaussian-like distributed charges, see (3.106)
integration constant replacing a Ry € C, see section 3.3.2

outer radius of the cylindrical cell model

modified outer radius Reyi(ro = 7o), see section 3.3.3

modified outer radius Ry (ro = ), see section 3.3.3

contour length R.. = Nub of a chain with N, monomers and a
bond length b

length of vector ﬁx, i.e. |ﬁx| =R,

extension vector, usually associated with extending a polymer chain
along a specific coordinate axis

length of the center-of-mass vector Reou

vector pointing to the center-of-mass

spatial size (extension) of the polymer chain
end-to-end vector of the chain with |Rg| = Rg
Flory radius, see (2.46)

radius of gyration, see (2.16)

extension of a Gaussian chain, see (2.7)
hydrodynamic radius, see (2.19)

Manning radius of counterion condensation
structure factor, e.g. as single chain form factor
temperature, usually measured in reduced units such as kgT'
harmonic potential

FENE potential, see (4.1)

interaction potential of a self-avoiding walk-like polymer with FENE
bonds, see (3.30)

interaction potential of a self-avoiding walk-like polymer with an
effective bond potential as in the simulations, see (3.104)

interaction potential of a Gaussian chain, see (3.28)
Lennard-Jones potential, see (4.2)

electrostatic self-energy of a blob chain, see (3.69)



Vmax
Vmin

lp

interaction potential of a self-avoiding walk-like polymer with har-
monic bonds, see (3.29)

electrostatic self-energy of likewisely charged monomers, see (3.65)
electrostatic self-energy of an elliptical, charged object, see (3.102)
(current) simulation box volume

simulation box volume at the end of equilibration, i.e. with a mea-
sured pressure of P =0

maximum volume of the simulation box

minimum volume of the simulation box

plain force (not necessarily a scalar)

plain force vector

force along one of the spatial axes

force vector, usually along one of the spatial axes

force corresponding to the pressure Ilpy

restoring force of the polymer chain if extended, see (4.16a)
vector of the restoring force fg

real restoring force, includes a divergence due to the chains’ finite
extensibility

total restoring force for Il # 0, see section 3.2.9
force corresponding to the potential Uppng

force corresponding to the potential Upgsaw
force corresponding to the potential Upg /g

force corresponding to the potential Upg

force corresponding to the potential Uy,

real bond length between two repeat units
real bond length vector with || = ¢

Bjerrum length (g = €3/(4mepesksT), indicating the strength of the
coulombic potential by representing the distance at which two ele-
mentary charges ey have an electrostatic interaction energy of kg7’
also allows to map the simulation length scale o onto Sl-units, as
lp ~ 7.14A in water at room temperature
electrostatic persistence length, see (3.26)

average pressure, measured in equilibrium

297



List of Used Symbols

(Ec)

@

NTDLOZAa™

C
Fse—rod
Frot
Frn

FprB E
FrB-s
Fpe_v
FPB—tot
=
L

£71

D

Pras
Prel
P,

monomers

ideal

7)OSIII

PFENE
CI
PLJ

CI-CI
Pr

I—monomers
PC
LJ
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average of the coulombic contributions to the energy in the (V,p, T)-
integrator, see section 4.1

Fuler number e = 2.718281828 . ..
imaginary unit 12 := —1

set of complex numbers

set of non-negative integers

set of rational numbers

set, of real numbers

set of integers

a cluster on a polyelectrolyte chain in poor solvent
self-energy of the rod-like polymer, see (3.100)
total free energy of the “cell under tension”-model, see (3.105)

free energy of the cell model in the framework of Poisson-Boltzmann
theory, see (3.94)

energetic part of Fpg, see (3.95a)

entropic part of Fpg, see (3.95b)
excluded-volume contribution to Fpg, see (3.95¢)
total free energy of the cell model, see (3.99)

free energy Fpg of the cell model including the free volume term
Langevin function, see (2.32)

inverse of the Langevin function

pressure measured according to (4.5)

measured pressure of the gas, see (4.12a)
measured pressure of the gel, see (4.12b)
measured ideal pressure of the counterions
measured ideal pressure of the monomers
measured osmotic pressure P/(pkgT)

measured pressure due to the elastic bonds

measured excluded volume pressure of counterions, combining PSS =
CI-CI CI—monomers

Poy 7+ Py

measured excluded volume pressure between counterions and coun-

terions

measured excluded volume pressure between counterions and
monomers



pmonomers
LJ

Lot
P
P

Pgas
Pgel
Pl

WUGauss (r)

0Gauss

Afg
Afe
APgas

AP,

Yo
TPB

YPB
4%
€

€0
€LJ
EiJ
€s

0
R
A

HGauss

£
SY

min

M

measured excluded volume pressure between monomers and
IMONOoIers

measured total electrostatic pressure
deviation in the electrostatic pressure

total pressure measured without electrostatics
pressure Py, measured without electrostatics
pressure Py measured without electrostatics
pressure PCl measured without electrostatics

Gaussian probability distribution with mean value j1qaus and profile
width oGanss

difference between fi¥* and fg, see section 3.2.9

difference between the measured forces, i.e. A fe=fe— fE
difference between the measured gas-like pressures, i.e. APgaS =
Pass — Paas

doifference between the measured gel-like pressures, i.e. Apgel = Py —

7Dgel

molecular dampening in the (N, p, T')-integrator, see section 4.1

integration constant for solving the Poisson-Boltzmann equation, see
section 3.2.7 and 3.3.2

imaginary integration constant —ivypp, see section 3.2.7 and 3.3.2
piston dampening in the (V, p, T')-integrator, see section 4.1
Lennard-Jones unit € used as basic energy scale

permittivity of the vacuum

energy parameter of the Lennard-Jones potential

energy parameter epy at the 6-point

permittivity of the solvent

temperature T" at the #-point

isothermal compressibility in the (V, p, T')-integrator, see section 4.1
scattering wave vector

mean of the Gaussian charge distribution ng(r)

spatial extension of a blob

Manning parameter, indicating the effective strength of the electro-
static interactions

Manning minimum parameter
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g
&PE
r
§1
|

T

P

Pe
Pm
Prmax
Pmin
pct

O Gauss

Ve
wtot

Wo

real
HE

FESAW
1—[E
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Manning parameter from the “cell under tension”-model
polyelectrolyte blob size

tension blob size

vertical extension of a blob, see section 3.3.1

horizontal extension of a blob, see section 3.3.1

ratio of a circle’s circumference to its diameter, i.e. 3.141593. ..
system density of particles, i.e. a number density

bulk charge density, i.e. p. = 2N¢g1/V

monomer density, i.e. pp = NyNp,/V

maximum system density

minimum system density

density of the counterions, i.e. pcy = Ncy/V
Lennard-Jones unit ¢ used as basic length scale

width of the Gaussian charge distribution ng(r)

Lennard-Jones unit 7 used as basic time scale;
or: reduced temperature 7 = (0 — 7') /6 in a poor solvent

electrostatic potential of the counterions
electrostatic potential of the fixed charges (i.e. monomers)
total electrostatic potential 1oy = ¥ + ¢

molecular frequency in the (N, p, T')-integrator, see section 4.1

theoretically predicted pressure

canonically conjugate momentum of an artificial piston of mass @) in
the (N, p, T')-integrator, see section 4.1

theoretical pressure without electrostatics

theoretical pressure of the (supposedly ideal) gas

theoretical pressure Ilg including counterion condensation
theoretical pressure Il¢ in the framework of Poisson-Boltzmann
theoretical pressure due to Debye-Hiickel-like screening

theoretical pressure of the gel, i.e. of the elastic response of the net-
work chains

theoretical pressure of the gel including a divergence due to the
chains’ finite extensibility

same as I but using frgsaw to model the (diverging) restoring
force



ITiot total theoretical pressure
theoretical pressure of the electrostatic self-energy

Qo frequency of the fluctuating box walls in the (N, p, T')-integrator, see
section 4.1

In chapter 4 we are comparing the results of computer simulations for various
parameters to the theoretical predictions, namely two kind of solvents (good solvent
with v = 0.5 and close to the #-point where v = 0.588), twelve chain lengths
Ny =39, ..., 259, five charge fractions f = 0.0625, ..., 1.0, and four Bjerrum lengths
g = 0o, ..., 50 for systems with full electrostatics and those termed “neutral” where
the coulombic coupling is deactivated while the volume is kept at the equilibrium
value V' = V., obtained for all interactions present. To be able to distinguish this
multitude of information, we used the following coding scheme in all related plots

to allow easy identification of the respective underlying parameter set:

f ‘0.0625 0.125 0.25 0.3333 0.5 1.0
colour‘ cyan purple blue yellow green red

good solvent (v = 0.588) f-solvent, (v = 0.50)
Iy full electrostatics “neutral” full electrostatics “neutral”
0 - % —
1 N a v v
2 & * | | |
5 o . o °

Table S.1.: The colour coding scheme used for all data plots presenting results
of our computer simulation study, illustrating our principle “same colour refers to
same charge fraction, same symbol to same Bjerrum length”.
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