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Chapter 1

Introduction

You know, it would be sufficient to
really understand the electron.

Albert Einstein

1.1 The g-factor
A current I flowing in a closed loop (fig. 1.1) has an associated magnetic moment
in the form of

~µ =
I

2

∮
~r × ~d` = I ~A (1.1)

where ~d` is the element of loop, ~r is its position’s vector and ~A is the area vector
corresponding to the area enclosed in the loop. According to this definition, for a
classical charged particle orbiting with angular momentum ~L its magnetic moment
can be expressed as

~µl =
q

2m
~L (1.2)

where q and m are the particle’s charge and mass respectively. This can be gener-
alized for a quantum particle with total angular momentum ~J = ~L + ~S, where ~S
denotes the spin and ~L the mechanical angular momentum. In this case, a dimen-
sionless constant gJ has to be introduced which is a function of the total angular

r

Figure 1.1: Elementary magnetic dipolar moment created by an element
of current loop ~d` at a position ~r from the origin of coordinates
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momentum ~J , to be able to reproduce the classical results. This constant is called
Landé’s gyromagnetic factor or, for simplicity, the g-factor. The magnetic moment
is then, in general,

~µJ = gJ
q

2m
~J (1.3)

where gJ is given by Landé’s formula

gJ =
3

2
+

s(s + 1)− l(l + 1)

2j(j + 1)
(1.4)

Thus, for a free particle with spin s = 1
2

the g-factor (in this case gs) should be gs = 2.
From now on we will discuss the electronic magnetic moment that is ~µe = −gJµB

~J ,
where µB is the so-called Bohr magneton given by µB = e/2me, with e being the
elementary charge and me the electron’s mass. For the free electron the g-factor is
supposed to be exactly 2 but due to relativistic and quantum electrodynamical
effects it deviates from this value at the 10�3 level. The most precise experiment on
the free electronic g-factor performed by Dehmelt and coworkers [Deh87] gave a
result for the so-called g-factor anomaly of

ae =
g − 2

2
= 0.001 159 652 188 4(43). (1.5)

In order to perform theoretical predictions, the rules of perturbative quantum elec-
trodynamics (QED) are applied to the system under consideration. Interactions
between Dirac particles with charges ±e are mediated by exchange of photons. Each
exchanged photon introduces a factor α in the corresponding matrix element, α be-
ing the fine structure constant (α ≈ 1/137). Therefore, a perturbation expansion
for the interaction between particles and for the radiative corrections is possible.
The radiative corrections consist of the self energy, the vacuum polarization and the
vertex corrections (fig. 1.2 ).

a)
b)

c)

Figure 1.2: The basic quantum electrodynamical processes, represented
as Feynman diagrams. The plain lines denote free electrons or positrons,
the curly lines denote photons. (a) Emission and reabsorption of a vir-
tual photon by an electron, the so-called self energy. (b) Creation and
re-annihilation of a virtual electron-positron pair by a photon, the so-
called vacuum polarization. (c) Modification of a basic electron-photon
interaction by an additional virtual photon, the so-called vertex correc-
tion.

Then the g-factor can be expressed as a series expansion of the radiative term in
powers of the fine structure constant α:

gfree = 2
( 1∑

n=0

A2n

(α

π

)n

+ A(µ, τ, hadronic)
)

(1.6)
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In the term A(µ, τ, hadronic) all the contributions from heavier leptons, hadrons
and weak interactions are included. The terms in (α

π
)0,(α

π
)1,(α

π
)2,(α

π
)3 have analytical

expressions and the term in (α
π
)4 can be calculated numerically. This calculation up

to the order (α
π
)4 was performed by Kinoshita [Kin90] yielding

A0 = 1,

A2 = 0.5,

A4 = −0.328 478 965 . . . , (1.7)
A6 = 1.181 241 456 . . . ,

A8 = −1.509 8(384),

A(µ, τ, hadronic) = 4.939(27) · 10�12.

As a result of the series expansion the value of the theoretical g-factor is depend-
ing on the value of the fine structure constant. In [Hug99] Hughes and Kinoshita
took into account four different values of α coming from independent experiments
(Quantum Hall effect, ac Josephson effect, muonium hyperfine structure and the de
Broglie wavelength of a neutron beam). The weighted average of these results gives
a value for the theoretical g-factor anomaly of

ae(theory) = 0.001 159 652 187 2(449) (1.8)

which is in perfect concordance with the experimental result. This is one of the most
stringent QED test. Furthermore, assuming the validity of the QED calculations the
measurement of the g-factor anomaly for the free electron could yield an independent
result for the fine structure constant α.

1.2 The bound state corrections to the electronic
g-factor

The recent increase of interest on QED in presence of strong fields makes it necessary
to investigate a way to create such strong fields and how they interact with electrons.
In atomic systems the inner electrons are in a region of high electric field created by
the nucleus, as can be seen in fig. 1.3. For the 1S1/2 electron in high nuclear charge
(Z) atoms the field strength is close to the critical value, which is the one at which
an electron-positron pair is created spontaneously. For an homogeneous field this
critical value amounts to [Sch51, Sch54a, Sch54b]

Ecrit =
(mec

2)2

e~c
= 1.323× 1016 V/cm. (1.9)

In order to perform a high field QED test in atomic systems the first thing to do is
to evaluate which is the most convenient atomic phenomenon to investigate. There
are three interesting quantities to study, namely the hyperfine splitting, the binding
energies and the Zeeman splitting (directly related to the electronic gJ factor). At-
tending to the expected value of the characteristic radial dependence of the operators
related to these quantities, which are 〈1/r2〉, 〈1/r〉 and 〈r〉 (fig. 1.4) respectively one
tends to choose the Zeeman splitting since it is the less affected by nuclear effects.
In an atomic ion the spin is not a good quantum number anymore, the only angular
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Figure 1.3: Expectation value of the electrical field strength for the
lowest-lying states of a hydrogen-like atom in the range Z=1-92. Figure
from [Bei00].

 

 
 

Figure 1.4: Probability density of the 1S1/2-state wave function. Some
characteristic expectation values are also indicated, where 〈1/r2〉 reflects
the characteristic radial dependence of the hyperfine structure splitting
operator, 〈1/r〉 that of the binding energy and 〈r〉 that of the Zeeman
effect and thus the gJ factor. Figure from [Bei00].
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momentum related quantum number is the total angular momentum J . Thus, it
makes no sense to talk about the g-factor related to the electronic spin but the gJ

factor of the ion. But in the special case of a nucleus with vanishing angular mo-
mentum (e.g. even-even nucleus) and striped of all its electrons but one, the total
angular momentum of the ion coincides with the one of the electron, and if the elec-
tron is in the 1S1/2 state, it coincides with the electron spin. Such an ion with only
one electron in the 1S1/2 state is what is usually called a hydrogen-like ion because
its electronic cloud is the same than the one of the neutral hydrogen. Another inter-
esting feature of hydrogen-like ions is that all the atomic properties are much easier
to calculate than in other ions due to the simplicity of having only one electron and
therefore there is no electronic shielding or electron-electron interaction. All these
facts make the gJ factor of hydrogen-like ions a suitable quantity for bound state
QED tests.
The correct description of the bound electron is obtained through the solution of
Dirac’s equation. The first attempt was performed by Breit [Bre28] who derived the
equation

gJ = 2

[
1 + 2

√
1− (Zα)2

3

]
. (1.10)

This solution is only valid for pointlike nuclei. It is a full relativistic solution but
does not take into account any correction due to QED-effects. The extension of the
nucleus implies a small modification in the electronic wave function, which leads to
a deviation in the g-factor of the 1S1/2 electron that spreads from below 1.0× 10�11

for 1H and 4He up to more than 1.0 × 10�3 for 232Th,238U and 244Pu [Bei00]. As a
result a different approach is needed in order to get closer to a realistic solution. The
common way is to try to make a series expansion in the same way as for the free
electron, but now, the interaction with the binding potential has to be taken into
account. The g-factor of an electron bound in a hydrogen like ion can be expressed

12C5+ 16O7+

Dirac Value (point) 1.998 721 354 4 1.997 726 003 1
Fin. nucl. size 0.000 000 000 4 0.000 000 001 5
QED, order (α/π) 0.002 323 663 7(9) 0.002 324 416(1)
QED, order (α/π)2 -0.000 003 516 2(2) -0.000 003 517 1(4)
Recoil 0.000 000 087 6 0.000 000 117 0
Total 2.001 041 589 9(9) 2.000 047 021(1)

40Ca19+ 238U91+

Dirac Value (point) 1.985 723 203 8(1) 1.654 846 173(3)
Fin. nucl. size 0.000 000 113 1(1) 0.001 275 0(25)
QED, order (α/π) 0.002 336 92(1) 0.003 088 93(3)
QED, order (α/π)2 -0.000 003 528(9) -0.000 003 8(9)
Recoil 0.000 000 297 1 0.000 002 491
Total 1.988 057 01(2) 1.659 208 9(27)

Table 1.1: Contributions to the 1S1/2 bound-electron g-factor in hydrogen
like carbon, oxygen, calcium and uranium. Table extracted from [Yer02].
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as

gj1s1/2
(Z) = 2

[
C(0) + C(2)

(α

π

)
+ C(4)

(α

π

)2

+ C(6)
(α

π

)3

+ C(8)
(α

π

)4

+ . . .
]

(1.11)

where C(0) contains the Dirac g-factor of the free electron as well as the correction
due to the binding but none of the QED corrections, and is given by the so-called
Breit Formula (eq. 1.10). The factors C(2n) can be obtained by adding to the free
electron coefficients A2n (eq. 1.6) the QED binding effects. To calculate the QED
binding effects it has to be taken into account that now the coupling constant for
the interaction between the electron and the nucleus is dependent on the nuclear
charge Z and is therefore of magnitude Zα. Thus, the QED binding term can be
expanded in a series in Zα whose leading term is given by

C(2) =
1

2
+

(Zα)2

12
+ . . . (1.12)

Bound QED corrections in order (α/π)2 have not yet been calculated. An estimation
can be obtained observing that all coefficients A2n in eq. 1.6 are of magnitude 1.
Therefore, it is reasonable to assume a scaling by factor (α/π) also for the bound
state contributions. The most accurate estimation, up to now, was performed by
V.A. Yerokhin et al. [Yer02]. In table 1.1 the theoretical values for some ions are
presented as an example.
As tests to these theoretical approaches a number of experiments have been per-
formed during the last years. Table 1.2 shows some of the most prominent results
and the comparison with the theoretical prediction.

gj(experiment) gj(theory) Method Ref.
1H 2.002 283 845(26) 2.002 283 853 SEOP1 [Tie77]
4He+ 2.002 177 4(60) 2.002 177 407 SEOP [Joh80]
12C5+ 2.001 042(2) 2.001 041 591(7) PT2 [Her00]
12C5+ 2.001 041 596(5) 2.001 041 591(7) PT [Häf00b]
16O7+ 2.000 047 025 4(46) 2.000 047 021(1) PT [Ver04]
207Pb81+ 1.78(12) 1.738 281 14 HFST 3 [See98]
209Bi82+ 1.734 1(35) 1.731 013 38 HFST [Win99]

Table 1.2: Some experimental g-factor values for several ions and the the-
oretical prediction.

The goal of the present work is to discuss the experiments performed with the
Penning trap technique and to propose an improvement of this technique. This
improvement consist on reducing the systematical uncertainties arising from the
finite energy of the particles under study by a measurement technique that does not
need the motions to be excited, as has been required until now.

1Spin-Exchange Optical Puming
2Penning Trap technique, is based on the measurement of the Larmor precession frequency of

the spin of an ion confined in space. The magnetic field is calibrated through the measurement of
the ion’s cyclotron frequency

3Hyperfine Splitting Transition



Chapter 2

Theoretical aspects

In science one tries to tell people,
in such a way as to be understood
by everyone, something that no one
ever knew before. But in poetry, it’s
the exact opposite.

Franz Kafka

2.1 Trapping of charged particles
According to Heisenberg’s uncertainty principle, ∆E∆t ≥ ~, a long observation time
is needed in order to be able to perform high precision measurements of energies.
To achieve long observation times it is important to have the experimental object
localized in space. In order to get this confinement for charged particles it is natural
to think in combinations of electromagnetic fields. According to the Laplace equation
∆φ = 0, in absence of charges, it is not possible to create a 3-dimensional potential
minimum with the only help of electrostatic fields. To overcome this problem, mainly,
two possible solutions have been developed :

• The Paul traps: achieving a time averaged potential minimum by adding a
rotating quadrupolar AC-field.

• The Penning traps: generate a potential minimum in one direction (z-axis) and
confine in the perpendicular direction by means of an homogeneous magnetic
field in the direction of the z-axis ( ~B = B ~uz).

For the present experiment the second solution was chosen. For very precise mea-
surements it is convenient to have linear forces for the motion forming a combination
of harmonic oscillators. The typical way to achieve this kind of potential is to use
electrodes with the shape of revolution hyperboloids (fig 2.1) following the curves
given by

z2 = z0
2 + ρ2/2

z2 =
1

2
(ρ2 − ρ0

2).

This electrode geometry gives rise to a quadrupolar potential of the form U = U0

2d2 (z
2 − ρ2

2
),

where z and ρ are the cylindrical coordinates, d = 1
2
(z0

2 + ρ0
2/2) is the so-called
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trap parameter with z0 and ρ0 being the minimum distances of the hyperbolas to the
origin in the axial and radial directions respectively, and U0 is the voltage applied
between the electrodes. In this potential and with a superimposed homogeneous

Figure 2.1: Set of hyperbolical electrodes which compose the classical
Penning trap. Indicated are the characteristic lengths z0 and ρ0.

magnetic field in the z direction, a charged particle “sees” a Lorentz force:
~F = q( ~E + ~v × ~B) (2.1)

since ~B = B~uz ⇒ ~v × ~B ⊥ ~uz. The so-called axial motion is decoupled from the
magnetic field, and is given by

z̈ = − qU0

md2
z (2.2)

which corresponds to a simple harmonic oscillator of frequency

ωz =

√
qU0

md2
. (2.3)

On the other hand, the motion in the x-y-plane is given by

ẍ =
q

m
(Bẏ − U0

2d2
x) (2.4a)

ÿ = − q

m
(Bẋ +

U0

2d2
y). (2.4b)

Introducing the variable u = x + iy and replacing the expression of the free particle
cyclotron frequency, ωc = q

m
B, the equation of motion becomes

ü + ωcu̇ +
ωz

2

2
u = 0. (2.5)

This can easily be solved, yielding the solution of two decoupled harmonic oscillators
of frequencies

ω+ =
ωc

2
+

√
ωc

2

4
− ωz

2

2
(2.6a)

ω� =
ωc

2
−
√

ωc
2

4
− ωz

2

2
. (2.6b)
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They are the so-called reduced cyclotron and magnetron frequency, respectively. The
motion has then the shape shown in figure 2.2.

Figure 2.2: Example of motion of an ion in a Penning trap. All lengths are
expressed in arbitrary units.

In the present experiment one eventually needs to load ions from outside and to in-
troduce microwaves, so the cylindrical geometry proposed by Gabrielse et al. [Gab89]
is used and will be discussed in the section 2.1.2.

2.1.1 Quantum mechanical description of the motion

In general the motion of an ion in a trap can be perfectly described in terms of
classical mechanics due to the relatively high energies involved. But nevertheless for
some details it will be needed to some extent to take into account the quantized
character of the motion. Therefore a summary of the most important features of
the quantum mechanical description of the motion will be presented. As explained
above, the motion of a charged particle in the trap is the composition of three
harmonic oscillators, so a detailed description of the quantized harmonic oscillator
follows.

The motion in the ideal Penning trap

For describing the motion of a charged particle in a Penning trap in terms of the
Quantized Harmonic Oscillator (Q.H.O.) the corresponding ladder operators have
to be introduced for the different degrees of freedom. For the axial motion, as it
is decoupled from all the other degrees of freedom it is a simple one dimensional
Q.H.O and the definition of the ladder operators is as follows

az =

√
mωz

2~
(z + i

pz

mωz

) (2.7a)

ay
z =

√
mωz

2~
(z − i

pz

mωz

) (2.7b)
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For the description of the motion in the radial plane the two motions have to be
decoupled. This is done by introducing an auxiliary operator V � in such a way that
the equation of motion gets decoupled. This operator is defined as

V � =
∂

∂t
ρ− ω�ẑ × ρ (2.8)

Then the ladder operators can be constructed as

a� =

√
m

2~(ω+ − ω�)
(V �

x ∓ iV �
y ) (2.9a)

ay
� =

√
m

2~(ω+ − ω�)
(V �

x ± iV �
y )) (2.9b)

Now, from the definitions in eqs. 2.7, 2.9, the Hamiltonian can be written as

H = ~ωz(N + 1/2) + ~ω+(K + 1/2)− ~ω�(L + 1/2) (2.10)

So the energy eigenvalues are given by

E = ~ωz(n + 1/2) + ~ω+(k + 1/2)− ~ω�(l + 1/2) (2.11)

where the unstable character of the magnetron motion can be seen from the negative
sign of its energy component. The confinement in the Penning trap is only possible
due to the extremely long time constant of the radius growing in the magnetron
motion.

Figure 2.3: Energy eigenvalues of the three Quantum Harmonic Oscillators
of a charged particle stored in a Penning trap. The energy gap between
levels is proportional to the frequencies of each degree of freedom.
The ratios of the frequencies of a 12C5+ ion in our setup are 25:1:0.015
(ω+ : ωz : ω�). The gaps in the figure are scaled to these ratios, except for
the magnetron motion, which is magnified 20 times for a better visibility.
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2.1.2 Open-endcap cylindrical double Penning trap

In the present experiment this solution was adopted in order to be able to

• create ions outside of the trap

• create a well-known microwave field

The trap electrodes have no longer hyperbolical shape but they are open cylinders.
This geometry is chosen because it makes easier to calculate the microwave field
distribution and also simplifies the introduction of ions from the outside. Another
advantage of this geometry is the better mechanical accuracy that can be achieved
while machining the metallic pieces.
To minimize the anharmonicities arising from the deviation of the hyperbolical
shape, the trap is composed of five electrodes instead of three: one ring and two
endcaps plus two correction electrodes (fig. 2.4) intended to make the potential
harmonic in a region as big as possible.

Figure 2.4: Sketch of a cylindrical trap

Generally, for a non-perfect set of electrodes the created potential is no longer har-
monic, but anyways, for the present geometry, i.e assuming cylindrical symmetry
and axial symmetry under reflection across the z = 0 plane, the potential can be
expressed as a series expansion in terms of Legrendre polynomials

U =
U0

2

1∑
k=0

C2k

(r

d

)2k

P2k(cos θ) (2.12)

where r and θ are the spherical coordinates. Even terms are non-vanishing because
of the already mentioned azimuthal symmetry. From eq. 2.12 one can see that for
a perfectly harmonic potential only the term k = 1 makes a contribution . The
term with k = 0 which contributes only with an overall offset of the potential is
disregarded. If d = 1

2
(z0

2 + ρ0
2/2), then C2 = 1 (z0 and ρ0 are defined in fig. 2.4).
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Then, to the lowest order, the axial oscillation frequency ωz of a particle of mass m
and charge q is given by

ωz =

√
qU0C2

md2
. (2.13)

If C4 6= 0 the potential is no longer harmonic and the frequency depends on the
amplitude of the oscillation. The shift in the axial frequency can be written [Bro86,
Gab89] as

∆ωz

ωz

=
3

2

(C4

C2

) Ez

qU0C2

(2.14)

where Ez is the axial energy of the charged particle.
An important task is then to minimize the frequency shifts due to the trap anhar-
monicities, to first order, this means to minimize C4. This is where the correction
electrodes come into play. If a potential U0 is applied between the ring and the
endcaps and a potential Uc between the correction electrodes and the endcaps, the
potential can be written as a superposition U = Uring + Ucorr where Uring and Ucorr

are the potentials created by the ring and the correction electrodes, respectively. In
a small region near the center of the trap, Uring and Ucorr are the solutions to the
Laplace equation with boundary conditions as sketched in fig. 2.5, and they take
the form:

Uring =
U0

2

1∑
k=0

Ck
(c)
(r

d

)k

Pk(cos θ) (2.15a)

Ucorr =
Uc

2

1∑
k=0

Dk

(r

d

)k

Pk(cos θ). (2.15b)

0 z z

Figure 2.5: Boundary conditions for solutions of Laplace’s equation for
two contributions of the potential in a corrected cylindrical Penning
trap. Both are symmetric under rotations around the z-axis and under
reflections across the plane z = 0.
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By comparison of eq. 2.15 with eq. 2.12, the coefficients Ck can be rewritten as

Ck = Ck
(c) + Dk

Uc

U0

. (2.16)

The fraction Uc/U0 will be from now on called “Tuning-ratio” (TR).
The coefficients Ck

(c) and Dk are functions only of the trap’s geometry, so for a given
geometry it is possible to choose a TR such that C4 vanishes:(Uc

U0

)
C4=0

=
−C4

(c)

D4

. (2.17)

But, in general, this adjusting of the tuning-ratio acts also on the C2-term and
therefore in the axial frequency ωz, leading to a new search of the axial resonance
for every change in the tuning-ratio. To overcome this problem, G. Gabrielse [Gab89]
proposes a so-called orthogonalized trap: a geometry such that D2 vanishes. Then,
tuning the trap to make C4 = 0 will have no effect on C2 and therefore also not
on ωz. In our case, the geometry was chosen such that D2 vanishes, but in fact
there is a small deviation from the orthogonality because the finite accuracy of the
manufacture of the electrodes . With the actual geometrical parameters of our trap
(table 2.1), a value of D2 = (−1.594± 0.002)10�3 mm�2 is obtained and from there
the dependency of the axial frequency with the tuning-ratio is found to be

∂ωz

∂TR
=

qU0

mωz

D2 = 23.8 Hz/mUnit1 (2.18)

for an ion of hydrogen-like carbon 12C5+.

Object Magnitude [mm]
Endcap ze=6.80
Ring zr=0.92
Correction electrodes zc=0.92
Radius ρ0=3.50
Gap between electrodes d=0.14

Table 2.1: Dimensions of the trap electrodes

2.2 Magnetic bottle
In order to determine the g-factor, the Larmor precession frequency of the electronic
spin in a magnetic field has to be measured. In order to achieve this goal the spin
degree of freedom of the trapped particles has to be observable. In the case of
our setup this is achieved by coupling the spin degree of freedom with the axial
motion, which can be induced through an inhomogeneity in the magnetic field.
This inhomogeneity is created by introducing a piece of ferromagnetic material in
the trap. Actually, in order to keep the maximum symmetry the ring electrode of
the trap is made of nickel. This nickel ring distorts the magnetic field lines of the

1mUnit ≡ 4TR = 0.001
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otherwise homogeneous magnetic field. Therefore, the magnetic field has now not
only an axial component but also some radial component and thus can be written
as ~B = Bρ · ~uρ + Bz · ~uz. Nevertheless, it can be shown [Ver03] that the ratio Bρ/Bz

is small. Therefore, only the axial part of the magnetic field Bz will be taken into
account. Anyway, Bz is not a constant but is position dependent Bz = Bz(ρ, z)
due to the inhomogeneity. On the z axis, ρ = 0, the magnetic field strength can be
written as a series expansion

B =
1∑

n=0

Bnz
n (2.19)

where only the even terms are taken into account due to the rotational symmetry
around the z-axis and

B2k =
1

2k!

∂2k

∂z2k
Bz(ρ, z)

∣∣∣∣∣
(0,z0)

. (2.20)

Assuming a sufficiently small inhomogeneity, in our case B2/B0 < 3 · 10�3mm�2,
the approximation B = B0 + B2z

2 can be made. From now on we will only take the
B0 and B2 terms into account. The deviation from the homogeneous magnetic field
can be written [Ver03] as

∆ ~B(ρ, z) = B2

[
− zρ · ~uρ +

(
z2 − ρ2

2

)
~uz

]
(2.21)

The potential energy of a magnetic dipole moment µ in an external magnetic field
is −~µ · ~B. The total potential energy of the ion, assuming a perfect quadrupolar
electrical potential, is then given by

Etotal = Eel + Emag =
1

2
mωz0

2z2 − µzBz (2.22)

where ωz0 is the axial frequency arising from the unperturbed quadrupolar electric
field. Then the axial frequency of an ion in an inhomogeneous magnetic field can be
expressed as

ωz =

√
1

m

∂2Epot

∂z2
=

√
ωz0

2 − 2

m
µzBz

2 ≈ ωz0 −
1

mωz0

µzB
z
2 (2.23)

if the inhomogeneity is small and the symmetries are kept in order to be able to
express the axial component of the magnetic field as Bz(z) = Bz

0 + Bz
2z

2.
The magnetic dipole moment of the ion µ has two components, the spin ~S and the
orbital angular momentum ~L. From eq. 2.23 a change in the orientation of the spin’s
axial projection as well as in the orbital angular momentum L, which is proportional
to the energy of the reduced cyclotron motion, can be determined measuring a shift
in the axial frequency ∆ωz.

2.3 Motion of a single ion in a real trap
Due to the effects explained in the sections 2.1.2 and 2.2 the motions are not har-
monic oscillators and their frequencies depend on the amplitudes (energies) of the
motions. From the non-perfect quadrupolar electric potential is possible to deduce
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not only a dependence of the axial frequency on the axial energy (eq. 2.14) but also
an equivalent relationship for the other degrees of freedom. The same approach can
be used also for the influence of the magnetic field inhomogeneity. Then, in first
order approximation in a perturbative approach [Bro86], the energy dependence
of the motions’ frequencies can be written in the form of a matrix (including the
dependence of the Larmor frequency)

∆ω+/ω+

∆ωz/ωz

∆ω�/ω�

∆ωL/ωL

 = Mk

 E+

Ez

E�

 (2.24)

where the Matrix Mk takes different forms depending on the effect taken into ac-
count. For the electric potential anharmonicities, explained in sec. 2.1.2, the matrix
takes the form:

ME =
6C4

qU0C2


+1

4
(ωz/ω+)4 −1

2
(ωz/ω+)2 −(ωz/ω+)2

−1
2
(ωz/ω+)2 1

4
1

−(ωz/ω+)2 1 1
0 0 0

 . (2.25)

For the term corresponding to the magnetic field inhomogeneity given in eq. 2.21
the matrix can be written2 as

MB =
1

mω2
z

B2

B0


−(ωz/ω+)2 1 2

1 0 −1
2 −1 −2

−(ωz/ω+)2 1 2

 . (2.26)

Combining the equations 2.24, 2.25 and 2.26 it is possible to extract the energy in
the reduced cyclotron degree of freedom in units of the shift in the axial frequency
∆ωz:

E+ = mωz
B0

B2

∆ωz. (2.27)

Finally relativistic corrections have to be taken into account. Keeping in mind the
relation between the frequencies ω� � ωz � ω+, one gets in the classical approxi-
mation the matrix

MR =
−1

mc2


1 1/2 −(ωz/ω+)2

1/2 3/8 −1
4
(ωz/ω+)2

−(ωz/ω+)2 −1
4
(ωz/ω+)2 1

4
(ωz/ω+)4

2/9 1/2 −(ωz/ω+)2

 . (2.28)

2.4 Detection of ions
In order to be able to measure the electronic g-factor we have to be able to observe
quantum jumps in the spin degree of freedom. This is only possible with the suited
accuracy, if performed on a single ion. Thus, it is necessary to implement a detection
system capable of detecting single ions. For this purpose an electronic scheme was
chosen [Deh68, Win75, Sta98, Häf98]. It relies on the fact that the object to be

2For getting this simple expression the approximation ω+ ' ωc is done. A more precise calcu-
lation can be found in [Her96] and [Her99]
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Figure 2.6: Model of the electronic detection. a) Spring model on which the
electronic detection is based. b) First approximation to the equivalent
circuit of the combination of a tuned LCR-circuit and an ion.

detected is a charged particle which oscillates harmonically between two conducting
surfaces, the trap electrodes. Then as the charged particle, in our case a hydrogen-like
ion, approaches one of the electrodes it induces some charge on its surface. By closing
a circuit with an impedance (fig. 2.6a) between the two electrodes which correspond
to the opposite phases of the motion, it is possible, in principle, to measure an AC
current flowing through the impedance. Since the motion of the ion is an harmonic
oscillator its frequency is well-defined and therefore the frequency of the AC current
induced by the ion will coincide with the frequency of the ion itself. Of course this
current is very small since it is induced by only one ion. It is actually measured as a
potential difference in the ends of the impedance. The impedance conformed by an
LC-circuit (fig. 2.6b) is tuned at the ion’s frequency. In order to analyze the current
flowing through the circuit it is interesting to calculate the ion’s equivalent circuit
[Sta98].

2.4.1 Ion’s equivalent circuit

We will now discuss the interaction of an ion with the surrounding electronics. To
simplify the problem we will try to deduce the equivalent circuit of an ion confined
in a Penning trap oscillating in the z-direction3. We will use a simple model [Win75]
in which the motion of the ion is produced by an electrically neutral and massless
spring with spring constant k = mωz

2 where m is the ion’s mass and ωz its axial
frequency in the trap. The recovering force that the ion feels, if moved from its
equilibrium, can be written as

F = −k · z. (2.29)

We now add an extra AC potential difference U(t) applied to the endcaps. Then a

3For simplicity, we discuss the detection of the axial motion, from the results given, the calcu-
lations for detection in the radial plane are straight-forward.
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time-dependent electrical field

Ez(t) =
U(t)

2z0

(2.30)

is created. In eq. 2.30 the approximation of a planar capacitor (instead of the hyper-
bolical shape of the classical Penning trap electrodes, see fig. 2.7) was taken in order
to simplify the calculations. 2z0 is the separation between the capacitor’s electrodes
which coincides with the separation between the endcaps.

Figure 2.7: Approximation of an hyperbolical trap to a capacitor of in-
finitely big planar electrodes with an electrode separation 2z0, coinciding
with the electrode separation in the hyperbolical trap.

For a more precise description it is possible to introduce a correction factor γ which
accounts for the curvature of the real electrodes and their finite size [Win75] and
changes the inter-electrode distance 2z0 to an effective distance deff = 2γz0.
From the electric field the ion gets an additional periodic drive in the direction of
the z-axis

FAC(t) = q · Ez(t) =
qU(t)

deff

. (2.31)

The equations of motion can be now written as

mz̈ = F + FAC(t) = −mωz
2 · z +

qU(t)

deff

. (2.32)

On the other hand, the oscillation of the ion represents an alternating current be-
tween the endcap electrodes of magnitude

I = q
ż

deff

. (2.33)

From this expression it is possible to rewrite the equation of motion substituting
the current I by the axial coordinate z. This gives

U = m
d2

eff

q2

(
İ + ωz

2

∫
Idt
)
. (2.34)

Equation 2.34 can be simplified by defining the constants

li = m
d2

eff

q2
(2.35a)

ci =
1

liωz
2

(2.35b)
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which yield

U = li · İ +
1

ci

∫
Idt. (2.36)

Equation 2.36 relates the voltage on the ends of a series resonant LC-circuit with
the current which flows through it. The deviation of the electric field created at the
center of the trap from the one created by the planar electrodes of the capacitor
qU/deff must be taken into account. Therefore, we introduce a constant α which
modifies the ion’s inductance to li = m

d2
eff

αq2 . By coupling inductively this circuit to

Figure 2.8: Complete equivalent circuit of the ion and the tuned LCR-
circuit coupled with an external amplifier which allows the electronic
detection of ions in a Penning trap.

an external amplifier (fig. 2.8), it is possible to measure the combined noise spectrum
of the ion’s lc-circuit in parallel with the tuned resonant LCR circuit. The result
of combining the two resonant circuits will give a Lorentz line shape for the LCR
tuned circuit that is shortcut at the resonance frequency of the lc ion’s equivalent
circuit. This can be seen for three different cases in fig. 2.9.

Figure 2.9: Theoretical noise spectrum of the tank circuit: a) without
ion, b) with an ion oscillation’s frequency in the center of the resonance,
c) with an ion oscillation’s frequency far detuned

This can be generalized to an ion cloud formed by N ions of the same species. It is
possible to obtain the ion number by use of this equivalent circuit. Let us assume
that the center of mass corresponds to the center of charge, and that an ion’s cloud
center of mass behaves in an ion trap in the same way as a single ion with charge
qc = Nq and mass mc = Nm (where q and m are the charge and mass of the single
ion). Then, it is possible to calculate the resonance of the equivalent circuit of the
cloud. The inductance of the cloud lc is given by

lc =
mcd

2
eff

q2
c

=
Nmd2

eff

(Nq)2
= li/N. (2.37)
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On the other hand, the resistance R of the lc-circuit at resonance can be obtained
from

R =
ωreslc

Q
(2.38)

where Q is the quality factor of the resonant circuit given by Q = ωres/∆ω. Then,
from 2.37 and 2.38 one gets

N = ∆ω
li
R

= ∆ω
md2

eff

q2R
(2.39)

which makes it possible to determine the ion number from the width of the ions’
dip.

Figure 2.10: Calculated noise spectrum of the tank circuit with an ion
cloud slightly detuned.

The model presented above for the detection of ions is valid only for the case of
ions and tank circuit in thermal equilibrium. But for the case of “hot” ions it is
easier to explain the detection in terms of the voltage increase in the terminals of
the LC-circuit produced by the ions while they dissipate their energy through the
cold electronic circuit. In this case, instead of a dip in the Johnson-noise of the tank
circuit, a peak superimposed to it is observed (fig. 2.10). This way of detecting ions
is proven to be much faster because no thermal equilibrium is needed and the signal
to noise ratio can be controlled simply by exciting the ions’ motion. In contrast the
frequency measurements arising from this kind of detection are less accurate due to
the fact that the frequencies of the motions may depend on the motions’ energies if
the electric potential is not harmonic or the magnetic field is not homogeneous.

2.5 Line-shape of the Larmor resonance
Good knowledge of the line-shape of the Larmor resonance is necessary in order
to estimate all possible contributions to the systematical uncertainties in the de-
termination of the electronic g-factor. In this section the Larmor resonance will be
discussed. The so-called Larmor frequency, ωL = g µB

~ B, is the precession frequency
of the spin around an external magnetic field B. It also corresponds to the energy
of the Zeeman splitting induced by the same magnetic field B.
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The so-called Rabi formula (deduced in many text books, e.g. [Sak85, All87])

P (t) =
Ω2

Ω2 +
(

ωMW �ω0

2

)2 sin2

[(
Ω2 +

(ωMW − ω0

2

)2
) 1

2

· t

]
(2.40)

gives the probability of inducing a quantum jump, ∆E = ~ω0, between the levels
of an atomic two level system in presence of an electromagnetic wave of frequency
ωMW and a magnetic field amplitude BMW in a time t. In eq. 2.40 Ω = e~

me
BMW /~ is

the so-called Rabi frequency at resonance. Taking into account that our irradiation
time is very long (of the order of minutes) the term in sin2 can be replaced by its
average (1/2). This, for the case of an electron spin with an applied microwave signal
at a frequency near the Larmor frequency ωL, gives

P (t) =
1

2

Ω2

Ω2 +
(

ωMW �ω0

2

)2 (2.41)

that is a lorentzian line-shape with a maximum amplitude of 1/2 for the probability
of inducing an quantum jump between the two spin states, so called spin-flip.
But in the case of an electron bound in a hydrogen-like ion which is confined in a
Penning trap (see sec. 2.1) with an inhomogeneous external magnetic field the Lar-
mor frequency depends on the path of the ion in the trap. Therefore, it depends on
the energies of all degrees of freedom (E+,E� and Ez for the reduced cyclotron, mag-
netron and axial motion respectively). Thus, the line-shape 2.41 has to be modified
according to all these dependencies.
An extensive study was done by J. Verdú [Ver03] and J. Verdú et al. [Ver04] obtaining
a probability for inducing a quantum-jump when irradiating with a microwave of
frequency νMW given by:

P (νMW ; E+, Ez) =
1

2

(
BMW

2π2B0

)2(
BMW

2π2B0

)2
+
(
g0 + α+E+ + αzEZ − ~ωMW

µBB0

) (2.42)

where g0 is the theoretical g-factor (see table 1.1) and α+ and αz are, respectively,
coefficients derived from the energy dependence of both the reduced cyclotron and
the axial frequency. They are given by:

α+ = −B2

B0

g0

mω2
+

[
1 +

ω+

2ω�

B2
1

B0B2

(
1− ω2

z

2ω2
+

)]
(2.43)

αz =
B2

B0

g0

2mω+ω�

. (2.44)

From these equations, resonance curves can be plotted to try to understand the
behavior and shape of the Larmor resonance as a function of several parameters
such as cyclotron energy, axial energy or amplitude of the applied microwaves in
order to optimize the measurement process to avoid possible systematical errors.
As can be seen in figures 2.11 and 2.12, the main effect of the cyclotron energy on
the Larmor resonance is an overall linear shift of the resonance. From equations 2.24,
2.25 and 2.26 it can be seen that the cyclotron energy can be given in units of an
axial frequency shift through the relation E+ ≈ 2.0852π∆ωz.
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In figures 2.13 and 2.14 the dependence of the Larmor resonance with the axial
energy is shown. The energy is given in terms of the associated temperature [Dje04].
In the plot in fig. 2.13 it can be observed that a higher axial temperature leads not
only to a shift in the center frequency and a broadening of the resonance but also
to a decrease of the maximum spin-flip probability. This effect makes it important
to control the axial temperature and to try to bring it to the lowest possible value,
since a lower axial energy would not only decrease systematic uncertainties but also

Figure 2.11: Plot of the Larmor resonance as a function of the cyclotron
energy. The energy is expressed in terms of the shift in the axial
frequency.

Figure 2.12: Plot of the center of the Larmor resonance. The energy is
expressed in terms of the shift in the axial frequency.
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would increase the spin-flip probability and thus decrease the measurement time.
Figures 2.15 and 2.16 show the behavior of the spin-flip probability while varying the
power of the irradiated microwaves. This power is given in fig. 2.15 as the amplitude
of the magnetic field associated to the irradiated microwaves. In fig. 2.16 the power
is given as the spin-flip probability at the maximum of the resonance, which is the
accessible quantity in our measurements.
In all these figures (2.14-2.16) the resonances are given in terms of the ratio ωMW /ωC

Figure 2.13: Plot of the Larmor resonance as a function of the axial energy.
The energy is given in terms of the temperature. The cyclotron en-
ergy is negligible and the microwave amplitude is such that BMW ≈ 7 mG.

Figure 2.14: Plot of the center or the resonance as a function of the axial
energy. The solid line represent the least-squares fit to a third order
polynomial.
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between the applied microwave frequency ωMW and the measured cyclotron fre-
quency ωC in order to simplify the comparison with the experiment.

Figure 2.15: Plot of the Larmor resonance as a function of the applied
microwave power. The power is given by the magnetic field amplitude
of the microwaves. The cyclotron energy is negligible and the axial
temperature is set to be Tz = 61 K in all curves.

Figure 2.16: Plot of the center or the resonance as a function of the
applied microwave power. The power is given in terms of the spin-flip
probability in the maximum of the resonance in the lower plot.
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Chapter 3

Experimental setup and method

An expert is a person who has made
all the mistakes that can be made in
a very narrow field.

Niels Bohr

The Mainz Stern-Gerlach setup was planned as a first step on the way towards
bound-state QED tests on highly charged ions up to U91+. It was built by Ste-
fan Stahl, Nikolaus Hermanspahn and Manfred Tönges. A detailed description can
be found on the doctoral thesis of Stefan Stahl [Sta98]. The first test and mea-
surements were performed mainly by Nikolaus Hermanspahn [Her96, Her99] and
Hartmut Häffner [Häf98, Häf00]. In this chapter an overview of the experimental
setup and the measurement procedure will be given.

3.1 Setup
The core of the experimental apparatus is a cylindrical Penning trap which is located
in the evacuated bore of a superconducting magnet. The complete setup (see fig. 3.1)
includes:

• superconducting magnet and its cryostat, including the liquid helium and ni-
trogen dewars

• trap’s vacuum chamber

• cryogenic electronics

• liquid helium and nitrogen dewar for the apparatus

• room temperature electronics

The magnet is running a field of 3.8 T with an homogeneity on the order of 10µ T/mm2

at the location of the ion trap. The ion trap is actually composed of two indepen-
dent trapping regions, the so-called analysis and precision traps. Both of them are
composed by a stack of five electrodes (see fig. 3.2): two endcaps, two correction
electrodes and a ring. In the case of the analysis trap the ring is made of a ferromag-
netic material (Nickel) to create a quadratic inhomogeneity of the magnetic field
of about 10 mT/mm2 in order to be sensitive to the spin direction of the ion (see
section 2.2).
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The trap is enclosed in a sealed vacuum chamber at liquid helium temperature.
Due to the cryopumping effect the pressure is below 10�16 hPa [Her99]. This upper
limit for the pressure was obtained from the estimation of the free main path of the
ion which was calculated from the measurement of the storage time of ion cloud of
12C5+.

hat

nitrogen
reservoir

Figure 3.1: Overview of the magnet and the apparatus. The apparatus
(right) where the most important parts of the setup are located. There
are the trap’s vacuum chamber, the cryoelectronics which allow the
detection of a single ion and the helium dewar cooling the apparatus to
4.2 K.

Just above the trap’s vacuum chamber sit the cryogenic electronics, composed by
three LC-circuits and the corresponding amplifiers. These electronics are in the 4.2 K
region in order to be able to reduce the noise temperature of the amplifiers and to
make possible the implementation of superconducting resonators. For more details
see sections 2.4 and 3.1.4.



3.1 Setup 27

On top of the cryoelectronic region the liquid helium reservoir is located. Is is in
charge of maintaining the trap and the electronics at 4.2 K. It is shielded from
the external world through an electropolished aluminium tube which is in thermal
contact with the helium vapor, at roughly 20 K. This completes the cold insert
sitting in the evacuated bore of the magnet whose walls are in contact with an extra
liquid nitrogen reservoir. On top of the insert is located the so-called hat.
In order to induce quantum jumps in the spin degree of freedom (spin-flips) in a 3.8
Tesla field a 105 GHz microwave signal is needed. The solution chosen in the present
setup is to use a six times multiplied 17.5 GHz signal coming from a commercial
microwave generator. This is achieved by feeding the 17.5 GHz signal in a two-step
(2x and 3x) frequency multiplier which contains a GaAs based ISIS-varactor diode.
The diode is built in a high quality resonator so that the outgoing signal is only the
6 times multiplied one, yielding an optimized spectral purity. Then, the microwaves
are guided in the apparatus through a hollow wave guide, which is interrupted in the
hat and at the entrance to the trap vacuum chamber in order to preserve the two
different vacuum levels. At this points a teflon and a quartz window, respectively,
are placed. For more information on the microwave system see [Im98, Tön96].

3.1.1 Room temperature electronics

In the room temperature region there are two different parts, the hat electronics
and the control and data acquisition electronics. The hat is the part of the setup
sitting in the top of the cryostat. There are six feedthroughs connecting the “outer
world” with the traps and the 4 K-electronics. A set of electronic devices whose
task is to care about the purity of the signals going in and out of the 4 K region is
located there. In addition to that, in the room temperature region one can find many
electronic devices which deal with the control of the whole experiment and also with
the data acquisition. As an example one can mention: several function generators
ranging from DC up to 20 GHz; a microwave 6-fold multiplier in order to get the
105 Ghz corresponding (approximately) to the electron’s Larmor frequency in a field
of 3.8 Tesla; two realtime-FFT1-analyzers; a precision voltage source; an 80 channel
precision multimeter; and the electronics that control the voltages in the trap and in
the cryo-amplifiers. The control of the signals and voltages and the data acquisition
and pre-analysis are performed by a Pascal-based programm running on an average
PC. The programm was first programmed by Stefan Stahl and further developed by
all the other students working in the experiment.

3.1.2 Magnet

To produce the suitable magnetic field of 3.8 T we make use of a commercial magnet.
The magnet it self is build of a NbTi solenoid which is superconductive at liquid
helium temperature. It is able to produce a magnetic field strength up to 6T. It is
built in a special configuration with a 12cm diameter bore to make it possible to
introduce the traps’ vacuum chamber, the cryoelectronic setup and the cryostat for
cooling them. The bore is evacuated at a pressure of about 10�7 hPa in order to
produce the thermal insulation needed for the inserted cryostat.

1Fast Fourier Transform
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� �
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Figure 3.2: Electrode stack. Indicated are the two different trapping
regions, the attached detection electronics and the electron gun with its
components

3.1.3 Cryostat

In addition to the magnet’s cryostat, our setup includes a second cryostat which
cares for the low temperature electronics and helps to produce the vacuum needed
in the trapping region in order to get the needed storage time for achieving the suited
accuracy. This second cryostat is composed of three concentric cylinders sitting inside
the bore of the magnet. The inner one is actually a cylindrical container, made of
copper and is filled with 5 liters of liquid helium. In order to minimize thermal losses
there is a second cylinder made of electropolished aluminium. This second cylinder
is cooled by the evaporating helium vapor at a typical temperature of roughly 30 K
[Her96]. The outer one is kept at 77 K due to its thermal contact with the inner
surface of the bore of a cylindric dewar that is built on top of the magnet to contain
an extra amount of liquid nitrogen (in fig. 3.1 labelled nitrogen reservoir).
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Figure 3.3: 4 Kelvin electronics region. Shown are the three resonators, one
of the amplifiers and the GaAs-switch for tuning the cyclotron LC-circuit

3.1.4 Cryoelectronics

The main tool for detecting single ions is the cryoelectronics setup. This part of the
setup is composed by three LC resonant circuits and the three corresponding pream-
plifiers (fig. 3.3). The LC-circuits are composed of a coil in a metallic housing and the
main contribution to the capacitance is due to the parasitic capacitances of both the
wiring and the trap electrodes. The circuits can be classified into two types due to
the different frequency ranges that they are supposed to deal with. In one hand the
ones used to detect the axial motion of the ions (in the range of 300-1000 KHz) and
the one used for detecting the modified cyclotron motion, in the range of 25 MHz.
The axial resonators are composed of a coil made of a niobium-titanium alloy, which
is superconducting at 4.2 K (for the mentioned frequency range), enclosed in a NbTi
housing. The inductances of such coils are 1.2 mH and 4.7 mH for the precision and
the analysis trap, respectively. The quality factors are around 1000 and 2500 at
resonance frequencies of 920 KHz and 370 KHz for the precision and the analysis
trap, respectively, at 4.2 K. And in the other hand the one used for the reduced
cyclotron frequency a copper (non-superconducting) coil is used since at that fre-
quency range (25 MHz) the difference in the quality factor from normal copper to
the superconducting NbTi alloy is small. Another factor is that the difficulties con-
necting the superconducting material to the normal conductors do not pay when
compared with the small improvement in the quality factor of the resonant circuit.
The circuit for reduced cyclotron motions has an extra set of switchable capacities
which implements the possibility of decoupling the ion from the detection circuit.
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3.1.5 Double Penning trap

In the present experiment a double trap setup is used in order to be able to spatially
separate the two main tasks: the determination of the spin state (analysis of the
spin direction) and the induction of changes on this degree of freedom, spin-flips,
while measuring the frequencies of the motions. The double trap arrangement is
shown in figure 3.2. The name of the traps (analysis and precision) are given by the
main function of each trap. Both traps are geometrically alike, and as described in
section 2.1.2 with the dimensions given in table 2.1. The only difference between the
two traps is the fact that the ring electrode of the analysis trap is made of a NiFe
alloy, which is ferromagnetic, in order to produce the magnetic field inhomogeneity
needed for the observation of the spin state.

3.1.6 Ion production

The goal of the present experiment is to study highly charged ions. The ions can
be created outside and then introduced in the trap. This solution is not used in our
case because it would make difficult and expensive to achieve the suited conditions of
pressure and temperature in the trap. However, as it is done in this case, the ions can
created inside the trap through a process similar to the one used in electron beam ion
traps (EBITs). For this purpose, as is shown in fig. 3.4, the trap has in the lower end
a field emission point (FEP) which if connected to a high negative voltage will emit
electrons in the direction of the so-called acceleration electrode. The acceleration
electrode is at a positive voltage, and the voltage difference between the FEP and
the acceleration electrode determines the electron current. Once the electrons are
emitted from the FEP they are “trapped” by the high magnetic field and they must
follow the magnetic field lines where they were emitted. They fly in towards the
other end of the trap where they encounter the rejection of the so-called reflection
electrode, which is at a high negative voltage (around 100 V more negative than the
FEP). Thus, they must come back along the same way they arrived. Electrons from
the FEP are continuously added to the beam, and the coulomb repulsion between the
electrons increases the beam radius. After a while some of the electrons collide with
the edges of the anode, where the carbon target is located. The electrons extract
some atoms from the target’s surface. These atoms diffuse all around the target.
Some of them receive further electron impacts with enough energy to ionize them.
These ions get caught in the potential minimum that is set for this purpose in the
precision trap, where they can be further ionized, step wise, by the still flowing
electron beam. From this procedure one obtains an ion distribution of many species
in many ionization stated (see figure 3.5).

Monitoring of the production process

Once ions are created a typical procedure is to monitor the contents of the trap.
This is performed with the help of mass spectra. The procedure to obtain a mass
spectrum relies on the fact that the axial frequency of the ions is a function of the
ring potential and of their charge-to-mass ratio, ω2

z ∝ q/m · V . Then if an LC-
circuit with resonant frequency ω0 is connected to the trap’s correction electrodes
and the ring potential is ramped between V1 and V2, all ions with a value for the
mass-to-charge ratio in the interval [V1/ω0, V2/ω0] will get in resonance successively
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Figure 3.4: Scheme of the double Penning trap. On the bottom a diagram
of the potential levels of the trap’s different regions during the ion
creation is shown. The dark arrow is a representation of the electron’s
beam path.

Figure 3.5: Example of a mass spectrum after creation of an ion cloud.
Observable are peaks corresponding to carbon and oxygen in different
ionization states, and possibly other atomic species. The different ring
voltages correspond to different charge-to-mass ratios.
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with the resonant circuit if the ring voltage is such that for this species the relation
ω0 = ωz(q/m) is fulfilled. Then, if the ions are hot, an increase in the noise voltage in
the terminals of the LC-circuit is observable. Thus, picking out this voltage increase
and plotting it against the ring voltage it is possible to monitor the contents of the
trap (see fig. 3.5).

Figure 3.6: Noise spectrum of the signal used for selectively exciting all
the ion species but the one of interest for the experiment. In this case
the species with axial frequency around 900 KHz are not excited, i.e.
12C5+ for a ring voltage of -13.2 V.

Purification of the ion cloud

After this first detection of the trap’s contents, the next step is to try to get a pure
cloud of one specific ion species. In order to achieve this goal, the procedure used in
our experiment is to perform a cycle of exciting the unwanted ions and lowering the
potential well hoping to kick out only the unwanted ions. This excitation is done by
irradiation of a rf-signal which consists of noise in all frequencies but in the axial
one of the ion of interest (see figure 3.6). After several applications of the cycle of
excitation and lowering the potential well. A mass spectrum yields a result similar
to the one in figure 3.7.

3.2 Single ion preparation and measurement of mode
frequencies

Once a pure cloud of the desired ion species is isolated in the trap, it is possible
to go further in the process of isolating a single ion. In order to monitor this part
of the process the techniques for single ion detection and frequency measurement
are needed. Here these techniques will be presented. At the same time the process
toward a single ion will be discussed.
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Figure 3.7: Example of a mass spectrum after several purifying cycles.
The peak corresponding to 12C

5+ is visible.

3.2.1 Ion counting and the reduced cyclotron frequency

The first thing to do is to count the number of ions in the cloud. There are two
possible ways. One relies on the fact, as explained in sec. 2.4.1, that the width of the
dip produced by a small ion cloud while short-cutting the Johnson-noise of the LC-
circuit is proportional to the number of ions in the cloud. For counting the ions they
should be in thermal equilibrium with the tank circuit, which is not necessarily the
case in the process of ion creation. Another technique makes use of the fact that, even
in the most homogeneous region, the magnetic field is not perfectly homogeneous and
the cyclotron frequency (and therefore the reduced cyclotron frequency) depends on
the radius of the cyclotron orbit. This implies that the reduced cyclotron frequency
depends on the energy of this degree of freedom. Since in an ion sample, like a
cloud, the ions’ cyclotron energy follows a statistical distribution their cyclotron
frequencies will follow the same distribution [Dje04]. Then if the noise spectrum is
observed in detail, it is possible to distinguish several peaks, one for each ion, on
the top of the Johnson-noise of the tank circuit (sec. 2.4.1, fig. 3.8). At this point is
possible to further proceed with the process to leave one single ion. The next step is
to excite the ions cyclotron motion and to lower, very carefully, the well potential.
If done carefully enough, a single ion is lost, and then it is possible to proceed until
one single ion is left in the trap. Once a single ion appears in the noise spectrum
(fig. 3.9) it is possible to measure its reduced cyclotron frequency with an accuracy
on the order of 1010. The next step is to try to observe the ion’s signal in thermal
equilibrium with the tank circuits.

3.2.2 Cooling of the motional modes

As explained in section 2.3, the frequencies depend on the energy in each motional
mode. Thus, to avoid any systematic error they should be measured at the smallest
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Figure 3.8: FFT analysis of the noise on the LC-circuit attached to the
split correction electrode in the precision trap. It shows the peak of 6
12C5+ ions.
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Figure 3.9: A single 12C5+ ion signal observed in the FFT analysis of the
noise on the cyclotron LC-circuit in the precision trap.



3.2 Single ion preparation and measurement of mode frequencies 35

possible energies. Like all physical systems left on their own, the ion will reach the
thermal equilibrium with its environment after certain a time. In this system, the
liquid helium acts as an infinite thermal bath, so the ion at some point will reach the
“temperature” of 4.2 K [Dje04]. The dissipation of the energy of the ion takes mainly
place due to the ohmic part of the LC-circuits, which is why this kind of cooling
is called resistive cooling. Actually, equations 2.32 and 2.33 represent a damped
harmonic oscillator where the damping of the ion motion is introduced by the tank
circuit. The damping constant is then

γ =
q2

4mz2
0

R (3.1)

where R is the real part of the total impedance Z of the resonant circuit. Actually, if
measured as a function of time, the reduced cyclotron frequency shows (fig.3.10) the
characteristic exponential dependency of the resistive cooling with a time constant
of about 4 minutes.

Figure 3.10: Cyclotron Resistive cooling. A time constant of 4.01 minutes
is observed. The exponential behavior of the frequency in time results
from dependency of the reduced cyclotron frequency with the energy in
this degree of freedom due to the residual magnetic field inhomogeneity.

3.2.3 Axial motion

Once the ion is in thermal equilibrium with the resonant circuits, it is possible to
observe its signal in the noise spectrum of the tank circuit as a shortcut in the
Johnson-noise of the circuit (sec. 2.4.1). In a Penning trap the magnetron motion
cannot be coupled to any LC-circuit since the magnetron radius increases as energy
is dissipated (eq. 2.11). The motions that are coupled to the resonant circuits (axial
and reduced cyclotron motion) can be detected with the technique explained in
sec. 2.4. The frequency of the motions can be obtained from the FFT analysis of the
voltage on the LC-circuits. The width of the resonance ∆ω of a single ion depends
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Figure 3.11: FFT analysis of the noise voltage on the LC-circuit con-
nected to the upper endcap of the precision trap showing the axial dip.
From the width of 780 mHz a cooling time constant of 203 ms is obtained.

(eq. 2.39) on the resonance resistance of the LC-circuit and, thus, on the quality
factor. This width can be predicted from the cooling time constant τ of the motion
since from eq. 2.39 and eq. 3.1 one gets τ = 1/γ = 1/∆ω. The reduced cyclotron
motion’s signal cannot be observed directly as a dip in the noise spectrum of the
tank circuit because, due to the high frequency of this motion, it is challenging to
obtain quality factors high enough. In the case of our experiment, with a cooling
time constant for the reduced cyclotron motion of around 4 minutes, the expected
width is about 0.6 mHz@25 MHz. That is beyond the accuracy of any available
spectrum analyzer. Due to the lower frequency domain, the axial motion is much
more favorable for this detection scheme. Indeed, the quality factors of the axial tank
circuits in both traps (Q ' 1000 and Q ' 1500 in the precision and the analysis trap,
respectively) provide much bigger damping than in the case of the reduced cyclotron
motion, which implies a much wider dip. This dip (fig. 3.11) is about 0.8 Hz@1 MHz
and 2 Hz@370 KHz in the precision and the analysis trap, respectively. From these
widths it is possible to estimate the cooling time constants for the ion’s axial motion,
which are in the range of 50 to 200 ms.
In some cases, it is desirable to obtain an axial signal as fast as possible. In these
cases the signal/noise ratio is improved by artificially increasing the Johnson-noise
level of the tank circuit. Since the ion’s signal shortcuts the Johnson-noise if its
level is higher, then the dip would be also bigger and thus easier to observe. This
increase in the Johnson-noise level is produced applying an r.f.-signal that is set to
be squared in frequency domain (see fig. 3.12). This technique is also used to control
the harmonicity of the trap by monitoring the frequency shift of the ion comparing
the axial frequency with and without the square signal on the tank circuit.

Optimizing the tuning ratio

The tuning ratio was defined in section 2.1.2 as the ratio between the voltages applied
to the ring and the correction electrode. If the potential well is not perfectly harmonic
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Figure 3.12: Axial signal on the FFT analyzer with and without increase
of the Johnson noise level. An improvement of the signal/noise ration is
easy to appreciate.
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Figure 3.13: Tuning ratio optimization. Circles represent the axial fre-
quency shift and the open triangles the applied tuning ratio.

the axial frequency depends on the energy of the ion this fact is used to optimize the
tuning ratio, thus, to make the potential well as harmonic as possible. This is done
by measuring the axial frequency of the ion at several axial energies and studying
the dependence of the frequency shift with the applied tuning ratio. The axial energy
is controlled by increasing the tank circuit Johnson-noise level as described above.
The optimization if performed in an automatic mode. The procedure is as follows: a



38 Experimental setup and method

tuning ratio is set, the axial frequency is measured, a square signal is applied to the
tank circuit (fig.3.12) and the axial frequency is measured again. Then the tuning
ratio is changed according with the value of the frequency shift, if the shift is positive
the tuning ratio is decreased and the other way around. This procedure continues
until the frequency shift is smaller than a set value, typically 10mHz, that makes
it acceptable for the precision measurements. In figure 3.13 the frequency shift is
plotted together with the applied tuning ratio.

 
 

 

    

 

Figure 3.14: Axial signals for the two different possible orientations of the
ion’s spin. A shift of about 0.6Hz can be observed.

3.3 Detection of Spin-flips

In order to measure the electronic g-factor we make use of the fact that the Zeeman
energy level splitting of an atomic ion in a magnetic field B is given by:

∆Ezeeman = ~ωL (3.2)

where ωL is the Larmor precession frequency of the ion’s spin around the magnetic
field and can be expressed as:

ωL = g
e

2me

B (3.3)

e being the positive elementary charge and me the electron’s mass. The magnetic
field at the ion’s position can be determined by a measurement of the ion’s true
cyclotron frequency

ωC =
q

mi

B (3.4)



3.3 Detection of Spin-flips 39

where q/mi is the ion’s charge-to-mass ratio. Then combining eq. 3.3 and eq. 3.4
one gets

g = 2
ωL

ωC

q

e

me

mi

(3.5)
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Figure 3.15: Ion’s axial frequency in the analysis trap, plotted as a
function of time while microwaves are irradiated quasi-resonantly with
the Larmor frequency. It can be observed that the 0.6Hz frequency jump
while a spin-flip occurs is much bigger than the average fluctuations of
the axial frequency.
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Figure 3.16: Histogram of the frequencies in the fig. 3.15. The distinct
two level distribution of the frequency points shows the possibility of
distinguishing both spin states.

Thus, a simultaneous measurement of the Larmor precession frequency and cyclotron
frequency gives a way to determining the ion’s g-factor. In case of an ion with
with vanishing angular momentum, e.g. an ion with an even-even nucleus, the ion’s
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gJ-factor coincides with the electronic g-factor. As shown above with the present
setup is possible to determine the cyclotron frequency within an uncertainty in the
order of 10�10. Now a way of determining the Larmor frequency will be discussed.
The spin is an internal degree of freedom but making use of an inhomogeneous
magnetic field O. Stern and W. Gerlach shown that it can be coupled to the motion
of the particle. In fact a modification of the Stern-Gerlach experiment was proposed
by H. Dehmelt to perform a quantum non-demolition experiment in which the spin
orientation relative to a magnetic field can be determined by observing the axial
frequency of a charged particle in confined in a Penning trap. This is the so called
continuous Stern-Gerlach effect [Deh86]. This effect relies on the fact that the axial
frequency of a charged particle in an inhomogeneous magnetic field depends on its
magnetic moment (eq. 2.23). In fact for our setup the frequency jump corresponding
to a quantum jump in the spin degree of freedom is:

|∆νz(spin-flip)| = g µB B2

4π2 mion νz0

≈ 0.65 Hz (3.6)

where νz0 ≈ 365 kHz is the unperturbed2 axial frequency in the analysis trap where
the magnetic field is inhomogeneous due to the nickel ring-electrode. Since the ac-
curacy in the measurement of the axial frequency is better than 500 mHz (fig. 3.11)
it is possible to determine the spin orientation by comparing measurements of the
axial frequency (fig. 3.14). This is also possible because the frequency jump is bigger
than the fluctuations on the axial frequency (fig. 3.15 and fig. 3.16).

2The unperturbed axial frequency is the axial frequency of the ion in Penning trap with a
perfectly homogeneous magnetic field.



Chapter 4

Results

You cannot teach a man anything;
you can only help him find it within
himself.

Galileo Galilei

4.1 Motional mode coupling
As explained in section 3.2.1, the frequency of the reduced cyclotron motion cannot
be measured if the motion is in thermal equilibrium with the resonant circuit because
the dip produced by the ion while shortcutting the Johnson-noise of the LC-circuit
is too narrow for being detected. This and the dependence of the modified cyclotron
frequency on the energy imposes a limit in the accuracy in our measurements. To
overcome this problem a new method for measuring the frequencies that are not
accessible directly was developed. This new method relies on the fact that if two
harmonic oscillators are coupled then the resulting motion is amplitude modulated.
In this section the behavior of the axial motion while coupled with the other two
motions, the perturbed cyclotron and the magnetron motion, will be discussed.
As a first approach, the coupling of the cyclotron an the axial motion will be de-
scribed. For this coupling an r.f.-signal of a frequency ωγ = ω+−ωz +δ is introduced,
where δ is a small detuning. This r.f.-field is applied to one part of a split correction
electrode thus the field has quadrupolar geometry. Let the driving field be

Eγ = Eγe
iωγt(zûx + xûz) (4.1)

where Eγ is the amplitude of the driving field. Then taking the cyclotron motion as
a one-dimensional harmonic oscillator along the x axis, the equations of motion are
now

z̈ + z ω2
z =

q

m
Re
[
Eγe

iωγt
]
x (4.2a)

ẍ + x ω2
+ = − q

m
Re
[
Eγe

iωγt
]
z. (4.2b)

A possible solution for this equation of motion is then

z =
Re [Z(t)eiωzt]
√

πmωz

(4.3a)

x =
Re [X(t)eiω+t]
√

πmω+

(4.3b)
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where Z(t) and X(t) are slowly varying functions of time. With the definition

Ω =
iqEγ

2m
√

ωzω+

(4.4)

which gives a measurement of the coupling strength in frequency units, the solutions
take the form

Ż =
Ω�

2
e�iδtX (4.5a)

Ẋ =
−Ω

2
e+iδtZ. (4.5b)

Figure 4.1: The two harmonic oscillators are equivalent to a single oscil-
lator of frequency ω0 = ω+ − ωz. For the analogy with the dressed-atom
only the transition |k, n〉 ↔ |k − 1, n + 1〉 will be taken into account.

Then one can distinguish 2 cases:

• δ = 0 ⇐⇒ Resonant coupling

While coupling is on we have

Z(t) =
Ω�

|Ω|
X0 sin

(
|Ω|t
2

)
+ Z0 cos

(
|Ω|t
2

)
(4.6a)

X(t) = − Ω

|Ω|
Z0 sin

(
|Ω|t
2

)
+ X0 cos

(
|Ω|t
2

)
(4.6b)

where Z0 and X0 are the initial condition for the functions Z(t) and X(t) and
are complex numbers proportional to the initial phase and action of the axial
and reduced cyclotron motion. In this case, the effect of the coupling is that
the motion oscillates between a pure axial motion and a pure radial motion. If
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the pulse has the strength and duration t such that |Ω| · t = π then after the
pulse

Z(t) =
Ω�

|Ω|
X0 (4.7a)

X(t) =
−Ω

|Ω|
Z0. (4.7b)

which means a complete exchange of the amplitudes on x and z direction.

Figure 4.2: FFT analysis of the noise spectrum in the region of the axial
mode. This spectrum was taken while simultaneously a quasi-resonant
coupling rf-signal was applied. The two side dips are the two components
of the split axial mode. The central peak is a frequency marker gener-
ated by a atomic clock locked frequency generator in order to evaluate
possible shifts of the internal clock of the spectrum analyzer. The solid
lines are lorentzian fits to the peak and dips.

• δ 6= 0 ⇐⇒ non-resonant coupling and classical avoided crossing

This case is easier to study by analogy with the dressed-atom approach [Dal85].
The problem of the coupling of the two motions by the electromagnetic field is
analogous to the problem of a forced quantum harmonic oscillator of frequency
ν0 = ν+− νz (fig. 4.1) and the driving force has the frequency νγ = ν0 + δ. By
analogy with a driven oscillator it is expected that the resulting oscillation has
a frequency which differs from the original one by νγ. With the ion oscillating
in the axial direction at a frequency ν = νz + ε with ε � ωz and in the reduced
cyclotron motion at ν + νγ = ν+ + ε + δ an ansatz could take the form
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Z(t) = Cze
iεt (4.8a)

X(t) = Cxe
i(ε+δ)t. (4.8b)

With these solutions for the functions Z(t) and X(t), substituting in eq. 4.5a
one gets the following expression for ε

ε� =
−δ

2
± 1

2

√
δ2 + |Ω|2 (4.9)

which means that each one of the coupled modes of the motions split into
two modes with a difference in frequency of νr − νl = ε+ − ε� =

√
δ2 + |Ω|2,

which depends both on the detuning of the coupling frequency and on the
strength of the coupling. With the same kind of arguments, it is possible to
get an analogous solution for the coupling between the axial an the magnetron
motion.
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Figure 4.3: Mode frequency as a function of the coupling frequency
detuning for the coupling of the axial with the magnetron motion. Solid
lines represent least-square-fits of the data. The horizontal data points
are the measured axial frequencies that drift 130 mHz during the the
measuring time of 1200 minutes for the left plot and 80 mHz during
the 480 min. for the right one. The diagonal data points corresponds to
the average value of the two modes’ frequencies which equals the axial
frequency for resonant coupling, i.e. vanishing detuning. And finally the
other two data set are the split modes’ frequencies.



4.1 Motional mode coupling 45

4.1.1 Mode splitting

As discussed in the previous section, if coupled the motional the modes split into two.
Thus, a spectrum with two dips can be observed. An example of such a spectrum
is shown in figure 4.2 where a frequency window of 40 Hz span in the region of the
axial mode is taken while a quasi-resonant coupling is applied. Now lets analyze the
behavior of the “new” modes as a function of the parameters of the coupling, namely
the detuning and the strength.
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Figure 4.4: Mode frequency as a function of the coupling frequency
detuning for the coupling of the axial with the cyclotron motion. Solid
lines represent least-square-fits of the data to νr, l = νz − δ

2
± 1

2

√
δ2 + |Ω|2

for the two split modes and to ν = a + bδ for the axial and average
frequencies. δ is the independent variable in both cases.

In figure 4.3 and in figure 4.4 the behavior of the modes as a function of the coupling
frequency is plotted both for the coupling of the axial mode with the magnetron and
the cyclotron motion, respectively. This represents the picture of the so-called classi-
cal avoided crossing [Cor90]. From the fits in this kind of plot it is possible to extract
both the coupling strength and a value for the resonant frequency. These two pa-
rameters can also be extracted from plots where the mode separation is presented
against the detuning δ. In figure 4.5, the solid line denotes the fit to

√
δ2 + |Ω|2,

where δ is the independent variable. From the minimum mode separation it is pos-
sible to extract the strength of the coupling. In fig. 4.6, of the mode separation vs.
the amplitude of the applied r.f-signal, which is proportional to the strength of the
coupling (eq. 4.4), the solid line is the fit to

√
δ2 + (α|V |)2, where the independent

variable is set to be V = Ω/α. The detuning δ is in this case set to be 3.4 Hz. The
proportionality constant α between the Ω and the applied signal amplitude V , was
obtained from the same kind of fit for different values of the detuning and is found
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to be α = 40.5±0.2. This is consistent with the value obtained from the comparison
of the measured strength, from the plot of the separation vs. detuning (fig. 4.5, with
the amplitude of the applied signal, that was Vpp = 0.5V.
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Figure 4.5: Mode separation as a function of the detuning for a fixed
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Figure 4.6: Mode separation as a function of the coupling amplitude for
a fixed value of the detuning. The coupling amplitude is given by the
amplitude in Vpp of the applied signal at the output of the frequency
generator. The solid line is a least-squares fit to
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4.2 Determination of the magnetron frequency
The free cyclotron frequency of a charged particle in a Penning trap cannot be
measured directly because the cyclotron is not a proper motion in the trap. In
contrast, as shown in previous sections, the axial and reduced cyclotron motion
can be determined with high accuracy. In order to determine the g-factor, the free
cyclotron and not the reduced cyclotron frequency has to be measured. In the present
experiment this is done by measuring all three frequencies corresponding to the three
degrees of freedom. Then, according to the so called invariance theorem [Bro86]:

ν2
C = ν2

+ + ν2
z + ν2

� (4.10)

The problem is that the magnetron frequency can also not be measured directly
since the motion is an harmonic oscillator with negative potential energy, i.e. the
energy decreases with the increase of the amplitude of the motion. If the ion is
coupled to a tank circuit the energy will flow out of the motion and thus the ion
gets lost. A possible solution is to measure the magnetron frequency in an indirect
way, namely by coupling the axial and the magnetron motions. Then, in a similar
way as explained above, the modes split into two and now the frequencies of the
split axial mode are given by:

νr,l = νz +
δ

2
± 1

2

√
δ2 + |Ω|2 (4.11)

From eq. 4.11, if the axial frequency is known, one can determine the detuning δ of
the coupling frequency simply by adding the frequencies of the two modes

δ = (νr + νl)− 2νz (4.12)

and then, since the coupling frequency νγ is a priori known, the magnetron frequency
can be calculated as ν� = νγ − νz − δ.

Reduced cyclotron→ ν+= 24 075 434 Hz
Axial → νz= 902 398 Hz

Magnetron → ν�= 16 910 Hz

Table 4.1: Frequencies of the motions in the precision trap.

From the values of the frequencies (table 4.1) in each degree of freedom the total
contribution to the uncertainty to the determination of the free cyclotron frequency
from eq. 4.10 can be calculated to be:

∆νC =
ν+

νc

∆ν+ +
νz

νc

∆νz +
ν�

νc

∆ν�

≈ 0.9993∆ν+ + 0.0374∆νz + 0.0007∆ν�. (4.13)

And thus, assuming absolute uncertainties for the direct measurements of the axial
and reduced cyclotron frequencies of 0.3Hz and 25mHz respectively one get an accu-
racy in the free cyclotron frequency in the order of 10�9 provided the measurement
of the magnetron frequency is accurate on the level of 30 Hz. A magnetron frequency
measurement gives the typical value of ν� = 16 910.5± 0.4 Hz .
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4.3 Method to measure the cyclotron frequency

As seen in section 3.2.1, the reduced cyclotron frequency can be measured with high
accuracy through the Fourier analysis of ion’s image current. But as explained there,
for such a measurement the ion has to be excited since the cyclotron dip would be too
narrow to be detected. As the magnetic field is never completely homogeneous, the
measured cyclotron frequency depends on the ion’s energy (eqs. 2.24, 2.25 and 2.26),
in this degree of freedom. This dependence of the measured reduced cyclotron fre-
quency with the ion’s energy may lead to systematic errors if not corrected properly.
In principle, a possible way of avoiding this error is to measure the frequency for
several different energies and then extrapolate to vanishing energy. An alternative
approach is to measure the reduced cyclotron energy using the same method used
for the magnetron frequency, namely extract it from the coupling of the axial and
reduced cyclotron modes. Another effect of the mode coupling is that while the
motions are coupled the quantum numbers of the motions equalize. Thus, one can
extract a relation between the energies in each degree of freedom. Let the energies
be

E+ = ~ν+(n+ +
1

2
) (4.14)

Ez = ~νz(nz +
1

2
) (4.15)

if n+ = nz, then
E+

Ez

=
ν+

νz

≈ 25 (4.16)

According with eq. 4.16 and assuming that the ion is in thermal equilibrium with
the 4.2 K surrounding, it is possible to measure the reduced cyclotron frequency
at a temperature of approx. 100 K≈ 9 meV. Actually, the lowest axial energy that
has been achieved is ≈ 60 K [Dje04]. This gives a reduced cyclotron energy of about
1500 K≈100 meV which is small if compared with the 33 000 K≈ 3 eV as the mini-
mum reduced cyclotron energy [Ver03] at which the ion is visible over the Johnson-
noise of the tank circuit.

4.4 Measurement procedure

In order to measure the electronic g-factor several steps have to be performed. All
of them have been described in the second and third chapter. Now they will be
summarized in order to give an overview of the experiment before giving the final
result. First, a single ion has to be trapped according to the procedures described
in sec. 3.2. Once a single ion is prepared in the trap and all its frequencies have been
measured for the first time, the procedure continues in a measurement cycle shown in
the flow chart in fig. 4.7. At the end of each complete cycle, the number n(νMW /νC),
of spin-flips induced in the precision trap at a given frequency ratio Γ = νMW /νC

is obtained. Since the superconducting magnet has a finite stability, in the order of
10�9/hour, for each cycle the given frequency ratio Γ is slightly different even without
changing the irradiated microwaves frequency. This allows to probe statistically the
ratio Γ in small ranges. After approximately 24h the microwave frequency νMW is
changed. When enough data points, in the form n(Γ)/nΓt (nΓt is the total number
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Figure 4.7: Flow chart of the measuring process. The rhomboidal boxes
indicate processes, in the square boxes are included values of variables
and the diamond-shaped boxes include decisions. The different color
regions denote the two different traps, 0 and 2 denote the analysis
trap and 1 denotes the precision trap. In the normal measurement the
sub-cycle denoted with 0 is only run once and then the cycle goes 0-
1-2-1-2... In the right column the typical times for each process are given.
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of tries at the frequency ratio Γ) are collected it is possible to plot a histogram
of the probability of inducing a spin-flip in the precision trap as a function of the
frequency ratio Γ. Applying the measurement cycle described above, for 16O7+ the
resonance curve shown in fig. 4.8 was obtained. From this curve a value for Γ can be
extracted. But, for producing this histogram an arbitrary bin width was used. For
a high enough number of experimental data the maximum of the resonance should
be independent of the bin-width used to build the histogram. In fact, as can be
seen in figure 4.9, the maximum of the resonance shows a certain dependence on the
bin-width. Therefore, the value for Γ that will be used to determine the g-factor is
obtained by averaging the values corresponding to several different bin-widths and
is found to be:

Γ0 = 4164.376 184 3(48) (4.17)

where the given uncertainty is obtained as an average of the statistical uncertainties
of all the histograms used for calculating the average.

4.5 The electronic g-factor

Once the νMW /νC resonance is obtained the next step is to extract the electronic g-
factor from the equation 3.5 in which the ratio q/e is known, the ratio νMW

νC
= νMW

νC
is

the quantity measured in this experiment, and the mass ratio has to be taken from

Figure 4.8: Histogram the probability of inducing a spin-flip for a
frequency ratio νMW /νC, also called Γ resonance. The bins are here rep-
resented as circles. The uncertainty of the bins is given by the binomial
distribution. The bin width is arbitrary. The full line is a least-squares
fit to y0 + Aexp[1− exp(−x�xc

w
)− x�xc

w
] with y0 = −0.6± 2.1, A = 48 ± 6,

w = (40± 5) ∗ 10�6 and xc = 4164.376 182 3± 0.000 005 7.
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Figure 4.9: Maximum of the Γ-resonance as a function of the chosen
bin-width. As final value for obtaining the g-factor, Γ0, the average value
was taken.

the literature. The first part of the mass ratio is the electron’s mass. Its present
accepted value is the one given in [Far95]

me = 0.000 548 579 911 1(12)u. (4.18)

In the case of 16O7+, the ion’s mass is given by mi = mO − 7me + EBind., where mO

is the atomic mass of oxygen 16 that can be found in [Aud95] and is accepted to be

mO = 15.994 914 622 0(25)u. (4.19)

EBind. is the sum of the binding energies for all the missing electrons. From the data
given in [Kel87] it can be obtained

EBind = 0.000 001 258 66(9)u. (4.20)

4.5.1 Possible uncertainty sources

In an experimental work one has always to deal with two kind of uncertainties,
first and unavoidable are the statistical errors introduced by the finite number of
experimental data. The other source of uncertainty is the one introduced by the
experimental setup not being perfect, which usually leads to shifts in all measured
quantities. These shifts, if the source is known and understood, may be corrected.
In the case of the present experiment one has to deal with several effects, the more
prominent will be discussed next. In table 4.2 the leading uncertainties and system-
atic corrections are listed.
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• Ground loop: One important feature of a Penning trap is the sensitivity of the
axial frequency to changes in the static potential difference applied between
the ring and the endcap electrodes. For introducing r.f.-signals a large amount
of coaxial lines connecting the experimental setup with the r.f-generators is
needed. The ground conductor of these coaxial lines give rise to so called
ground loops, which are connections between the two main electrical grounds
of the experiment, namely the magnet’s enclosure and the electronic’s rack.
Since the coaxial cables have a finite resistance the magnetic flux fluctuations
through these loops produce fluctuations in the voltage difference between
these two “ground” levels. Thus, the axial frequency experiences some fluc-
tuations. While measuring, the potential difference between the “grounds” is
monitored and the influence on the axial frequency is calibrated.

• Time base: Since the g-factor is a result of a measurement of frequencies it is
very important to control the stability of the internal clocks of all frequency
generators and the FFT spectrum analyzer. All frequency generators (radio
frequency and microwaves) are locked to a rubidium 10 MHz frequency stan-
dard which is itself locked to a Cs atomic clock through the PTB-Braunsweig
radio signal. The only device that is not locked to any external time base is the
FFT-analyzer which, due to internal specifications, cannot be locked. There-
fore, an extra known r.f.-signal is introduced in order to correct the measured
frequencies, this is the so called frequency marker (fig. 4.2).

• Extrapolation to vanishing energies and microwave amplitude: As explained in
section 2.5 the shape and the center of the resonance depends on the motional
energies and in the exciting microwaves amplitude. The g-factor is measured
using finite energies of the motions and amplitude of the microwaves and then
an extrapolation is performed to vanishing energies and microwave amplitude
based on the line-shape knowledge.

• Spectral purity of the microwaves: Since the microwave generators are not
ideal, the line width of microwaves is a function of their amplitude. This is
another source of uncertainty in our measurement.

In addition to that, other sources of uncertainty are the ones introduced by the
quantities that were obtained from the literature, the most prominent of them is the
error quoted in the electron’s mass (eq. 4.18). This is actually the limitation on the
precision of the g-factor delivered by the present experiment.

4.5.2 Comparison of results

Combining the values in 4.17, 4.18, 4.19, 4.20 the value for the electronic g-factor is
obtained and it amounts to

gexp = 2.000 047 020 8(24)(44). (4.21)

This value is in very good agreement with the theoretical result from V.M. Shabaev
and V.A. Yerokhin [Yer02] which amounts to

gtheo = 2.000 047 020 2(6) (4.22)
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Description Value Uncertainty
Maximum of the resonance 4164.376 184 3 48·10�7

Extrapolation Tz/BMW → 0 -0.000 007 4 8·10�7

Extrapolation E� → 0 ≈ 0 6·10�11

Spectrum analyzer time base -0.000 001 6 1·10�7

Lorentz fit -0.000 001 0 4·10�7

Microwaves spectral purity − 2·10�7

Relativistic effects − 4·10�9

Ground loops − 4·10�7

Total 4164.376 174 3 49·10�7

Table 4.2: Collection of the most prominent systematic corrections to Γ
and the related uncertainties. The uncertainty given to the maximum of
the resonance corresponds to the statistical error in the determination
of the center. The total uncertainty is obtained by quadratic sum of all
components.

and also agrees very good with the previous experimental result from Verdú et al.
[Ver04]

gexp1 = 2.000 047 025 4(15)(44). (4.23)

In both experimental results, the uncertainty is given in two parts, the first is the
combined systematic and statistic uncertainty and the second (44×10�10) is arising
from the uncertainty in the electron mass.



54 Results



Chapter 5

Discussion and Outlook

The wireless telegraph is not diffi-
cult to understand. The ordinary
telegraph is like a very long cat.
You pull the tail in New York, and
it meows in Los Angeles. The wire-
less is the same, only without the cat.

Albert Einstein

The experimental uncertainty

Comparing the results with the classical method (eq. 4.23) and with the new method
(eq. 4.21), a bigger uncertainty can be observed in the latest. This contradicts the
expectations for this new method. This effect arises mainly from a couple of factors.
As this measurement on 16O7+ was performed as a test of the new method some
systematics were not treated carefully enough in order to accelerate the data acqui-
sition. The main effect that can be seen in the resonance on fig. 4.8 is the asymmetry
of the resonance, mainly due to the relatively high axial energy at which the mea-
surement was performed, around 200K. This elevated axial energy is introduced on
purpose in order to increase the signal/noise ratio. This increase of the axial energy
leads to a broadening of the resonance (fig. 2.13).A second source for the broadening
of the resonance curve is that in order to maximize the spin-flip’s induction prob-
ability the microwave amplitude was set to a high value. The artificially increased
line-width of the resonance is the main contribution to the statistical and system-
atical uncertainty since for a given number of experimental data the uncertainty
increases linearly with the width of the resonance.

The determination of the electron’s mass

Comparing the results of the theoretical calculation with both experimental results
a very good agreement is found. Thus, repeating the measurement for several ion
species if the same kind of agreement between theory and experiment is found the
theoretical calculations could be believed to be accurate. Then, the result of such
calculations could be used as an input in the g-factor “formula” (eq. 3.5). Using the
Γ measured for 12C5+ and taking into account that the definition of the atomic mass
unit is

1u ≡ m12C

12
(5.1)



56 Discussion and Outlook

the electron’s mass could be extracted. Since the electron’s mass uncertainty is the
main limitation to the experimental accuracy on the g-factor measurements, this
determination can lead to an improvement on the electron’s mass [Bei02]. Making use
of the available data (carbon and oxygen) Yerokhin et al. [Yer02b] did an evaluation
of the electron’s mass, yielding the value

me = 0.000 548 579 909 3(3)u (5.2)

which agrees and improves the previous accepted value [Far95] by a factor of 4

me = 0.000 548 579 911 1(12)u. (5.3)

After the test measurement presented in section 4.5 the setup was opened to tune the
cryogenic LC-circuits to the frequencies of 12C5+. This change was made in order
to repeat the measurement performed by Häffner et al. [Häf00b] with increased
accuracy. This improvement in the experimental result may lead to an order of
magnitude better accuracy on the determination of the electron’s mass.

The reduction of the uncertainty in the determination of the electron’s mass should
have been the main result of the present work. Unfortunately, after changing the
resonance frequency of the LC-circuits, creating and successfully detecting single
12C5+ ions and preparing the setup for the final measurement, it was not possible
to detect ions in the analysis trap. We analyzed carefully the electronics and we did
not observe any anomaly. Then we observed that it was possible to transport the
ions back and forth from the precision to the analysis trap. We observed that this
was possible even applying voltages to the ring electrode of the analysis trap such
that any positively charged particle would have escaped from the trap.
We think that this problem was caused by charging up of some dielectric material
deposited on the surface of one of the electrodes. Another possibility could be some
charging up of one of the electrodes that would be not connected to the external
power supplies while on cryogenic temperature. All connections and voltages were
checked at room temperature.
After several months of intense search for the possible source of the problem we had
to give up due to economic reasons. The apparatus was opened, a new trap was de-
signed and significant changes in the electronics were implemented. The completion
of this work takes several months and goes beyond the time schedule of this thesis.

Outlook

One of the goals of the g-factor experiment is to test bound-QED effects. As shown
in the first chapter these effects scale up with increasing Z. Thus, experiments on
heavier ions are even more interesting for this purpose. Due to the higher ionization
energies the present trap/electron-gun is not able to go much further than hydrogen-
like oxygen. Therefore, a new trap has been developed and is being built up in a very
similar the setup. This new trap will be able to create and store ions up to hydrogen
like calcium (40Ca19+). On the other hand, a new facility, HITRAP, is being built
up at the accelerator facility at GSI-Darmstadt in order to create and decelerate,
cool and trap highly charged heavy ions [Qui01]. At HITRAP ions like 238U92+ at
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rest should be available for experiments of the same kind of the one discussed in the
present work.
Other possibilities are for example measurements on series of ions of the same atom
in different charge states, mainly comparisons of the g-factors of hydrogen-like and
lithium like ion. This could test calculations on electron correlations.
There are also proposals [Qui04] for the measurement of the magnetic moment of
the proton, and the comparison with the one of the antiproton as a test of the
CPT-theorem.
For some of these new measurements a critical improvement has to be implemented.
The experimental object is the spin of the particles. As explained in sec. 2.2 to be
detected it has to be coupled to an external degree of freedom through a magnetic
field inhomogeneity. The strength of this magnetic field inhomogeneity is limited by
the ferromagnetic material’s saturation of the magnetization. Therefore, the maxi-
mum attainable frequency shift (eq. 3.6) is limited and it decreases with increasing
ion’s mass. With the present method it would be impossible to detect it for particles
like the proton because of its small magnetic moment. To overcome this problem
a new method has been developed by Stahl et al. [Sta04]. With this method it is
not the frequency of the motion that is measured and compared for spin up and
down, but the total phase (νz · t + φ0) of the motion. Then, if the initial phase φ0 is
controlled, a frequency shift δνz would lead to a phase shift δνz · t+φ0 that increases
linearly with the waiting time between the instant when the shift occurs and the
instant at which the phase is measured. Thus, if the frequency shift is too small to
be measured directly, for measuring the phase shift one has only to wait long enough
to let it become big enough.
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