
RelAndXML

A System to Manage

XML-based Course Material with

Object-Relational Databases

Dissertation

zur Erlangung des Grades

»Doktor der Naturwissenschaften«

am Fachbereich Mathematik und Informatik

der Johannes Gutenberg-Universität in Mainz

vorgelegt von

Astrid Susanne Schnädelbach

geboren in Kaiserslautern

Mainz, im August 2003

Die Dissertation ist im Logos Verlag Berlin, http://www.logos-verlag.de,

unter der ISBN 3-8325-0517-2 erschienen.

Mündliche Prüfung: 2004

D 77 (Dissertation an der Johannes Gutenberg-Universität Mainz)

iii

Zusammenfassung

Die vorliegende Arbeit beschreibt das im Rahmen dieses Dissertationsprojekts implemen-

tierte System RelAndXML , das für das Management und die Speicherung von hyper-

textzentrierten XML-Dokumenten und den dazugehörenden XSL-Stylesheet-Dokumen-

ten spezialisiert ist.

Der Anwendungsbereich sind die Vorlesungsmaterialien an der Universität. Typi-

scherweise werden einige Übungsaufgaben in den Folgejahren wiederverwendet, andere

aber auch durch neue Aufgaben ersetzt. Zur Zeit verwenden die wissenschaftlichen Mit-

arbeiterinnen und Mitarbeiter unterschiedliche Textverarbeitungssysteme, außerdem ist

nicht immer sichergestellt, dass die Dateien mit den Aufgaben aus vergangenen Jahren

auch zur Verfügung stehen. Daher werden manchmal die gleichen Aufgaben erneut

eingetippt. RelAndXML löst dieses Problem dadurch, dass die in XML geschriebenen

Übungsblätter, aufgeteilt in Textbausteine sowie sonstige Teile, in einer speziellen Daten-

bank abgelegt werden. RelAndXML kann aber auch für andere Anwendungsbereiche

verwendet werden, indem einfach das Kernschema der Datenbank durch ein anderes, zum

Beispiel für technische Dokumentationen, ersetzt wird.

Die Speicherung von XML-Dokumenten in Datenbanken ist seit einigen Jahren ein

wichtiges Thema der Datenbankforschung. Ansätze dafür sind von dem jeweiligen An-

wendungsbereich abhängig und gliedern sich in solche für datenzentrierte und andere

für dokumentenzentrierte Dokumente. Datenzentrierte XML-Dokumente sind gültig in

Bezug auf eine Document Type Definition (DTD), sie haben wenig gemischten Inhalt und

die Reihenfolge innerhalb des Dokuments ist weitgehend unwichtig. Um datenzentrierte

Dokumente in einer (objekt-) relationalen Datenbank zu speichern, definiert man eine Ab-

bildung zwischen der DTD und dem Datenbankschema. Da unser Hypertext keiner DTD

genügt, können wir keinen der bekannten datenzentrierten Ansätze verwenden. Doku-

mentenzentriertes XML hat keine DTD, ist also nicht gültig, stattdessen gibt es einen rel-

ativ hohen Anteil an gemischtem Inhalt und die Reihenfolge innerhalb des Dokuments ist

sehr wichtig. Die bisher bekannten Ansätze zur Speicherung von dokumentenzentriertem

XML erlauben leider nicht die Wiederverwendung von Textbausteinen.

Die vorliegende Arbeit präsentiert einen Ansatz zur Speicherung von hypertextzentrier-

ten XML-Dokumenten, der Aspekte von datenzentrierten und dokumentenzentrierten An-

sätzen kombiniert. Der Ansatz erlaubt die Wiederverwendung von Textbausteinen und

speichert die Reihenfolge dort, wo sie wichtig ist. Mit RelAndXML können nicht nur

Elemente gespeichert werden, wie mit einigen anderen Ansätzen, sondern auch Attribute,

Kommentare und Processing Instructions.

RelAndXML wurde mit Java und unter Verwendung einer objekt-relationalen Daten-

bank implementiert. Das System hat eine graphische Benutzungsoberfläche, die das Er-

iv

stellen und Verändern der XML- und XSL-Dokumente, das Einfügen von neuen oder

schon gespeicherten Textbausteinen sowie das Erzeugen von HTML-Dokumenten zur

Veröffentlichung ermöglicht.

Abstract

In this thesis, we present our newly invented system RelAndXML for the management

and storage of hypertext-centric XML documents and the according XSL stylesheets.

Our sample application area is the course material at university. Typically, course ma-

terial is being reused on multiple assignments, while it is also important to add or replace

questions. Currently, teaching assistants use different word processors and the availabil-

ity of previous year’s assignment files is not always certain. This results sometimes in

retyping the same questions. RelAndXML offers a solution to this problem by saving

the XML formatted assignments as text modules and other parts in a special database.

However, RelAndXML is not restricted to this application area, since the core schema

can easily be replaced, e.g. by a schema for technical online manuals.

Storing XML documents in databases has been a major topic in database research in

the last few years. Approaches on this topic are dependent on the desired application area

and can be divided into two main directions: some concentrate on data-centric and others

on document-centric documents. Data-centric XML documents are valid with respect

to a document type definition (DTD), they have sparse mixed content and the order in

which subelements and PCDATA occur is usually unimportant. The concept for storing

data-centric XML in (object-) relational database systems is to define a mapping between

the DTD and the database schema. Since our hypertext does not conform to a DTD, we

cannot use a data-centric approach on its own. Document-centric XML often has no DTD

such that it is non-valid XML, mixed content often occurs, and the document order does

matter. The known document-centric approaches do preserve document order, but they

make reusing text modules impossible.

In this thesis, we present a hypertext-centric approach that combines aspects of data-

centric as well as document-centric approaches. It enables the reuse of text modules and

preserves document order where necessary. Another important feature of RelAndXML

is that it supports not only XML elements, but also attributes, comments, and processing

instructions.

RelAndXML is a Java-implemented system using an object-relational database. It

provides a graphical user interface which allows to create and update the XML and XSL

parts of hypertext documents, to insert new or saved text modules, and to generate HTML

or XHTML output documents.

v

Acknowledgements

I would like to thank my supervisors for the possibility to write this thesis and for the

valuable discussions concerning the research presented.

Many thanks to my friends for sharing the PhD time with me and for careful proofreading.

Special thanks to everybody who helped and encouraged me during the past years.

Finally, I would like to thank my family for their support.

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Scope . 3

1.3 Organization of this Thesis . 5

2 The XML World – Introduction and Running Examples 7

2.1 XML . 8

2.1.1 Definition and Basic Concepts 8

2.1.2 A Very Short History . 10

2.1.3 Document Type Definitions . 10

2.1.4 XHTML . 14

2.1.5 Document-centric versus Data-centric XML 16

2.1.6 Hypertext-centric XML . 18

2.1.7 Graph Representation . 18

2.1.8 DOM and SAX . 21

2.1.9 Running Examples . 23

2.2 XSLT and XPath . 25

2.2.1 Basic XPath Concepts . 26

2.2.2 Basic XSLT Concepts . 27

2.2.3 Running Examples . 30

2.3 XML Query Languages . 37

2.4 Summary: RelAndXML’s World . 38

3 Selecting a Database System for RelAndXML 39

3.1 Types of XML Databases . 39

3.2 XML Databases with Various Data Models 41

3.2.1 File Systems . 41

3.2.2 Object-Oriented Database Systems 42

3.2.3 Proprietary Storage Formats . 43

viii Contents

3.2.4 Object-Relational Database Systems 44

3.3 Various Aspects of Object-Relational DBMSs 44

3.3.1 SQL Standards . 45

3.3.2 SQL:1999 – New Basic Data Types and Type Constructors 46

3.3.3 SQL:1999 – Recursive Queries 48

3.3.4 SQL:2003 – Generated Columns, Sequence Generators and Iden-

tity Columns . 53

3.3.5 SQL:2003 – SQL/XML . 54

3.3.6 XML Extensions of Some Current ORDBMS Products 55

3.4 Summary: RelAndXML as Middleware for an ORDBMS 57

4 Storing XML Documents in Object-Relational Databases 59

4.1 Some Methods to Save Data-Centric XML 60

4.1.1 Mapping Database Content to XML Documents 60

4.1.2 Mapping a DTD to a Database Schema 65

4.1.3 Related Work . 71

4.1.4 Deriving a DTD from a Database Schema 72

4.2 Some Methods to Save Document-Centric XML 73

4.2.1 Edge Approach . 73

4.2.2 Edge+Inlining Approach . 75

4.2.3 Binary Approach and Binary+Inlining Approach 75

4.2.4 Comparing the Edge and Binary (with Inlining) Approaches . . . 76

4.2.5 Path Approach . 79

4.3 Conclusion: RelAndXML’s Method to Save Hypertext-Centric XML . . . 83

5 The InfDB Database Schema 85

5.1 Core Schema . 86

5.1.1 ER Schema for the Core . 86

5.1.2 Relational Schema for the Core 88

5.1.3 Running Example Tuples for the Core 89

5.2 Extension Schema . 90

5.2.1 ER Schema for the Extension 90

5.2.2 Relational Schema for the Extension 93

5.2.3 Running Example Tuples for the Extension 93

5.3 Presentation Schema . 95

5.3.1 ER Schema for the Presentation 95

5.3.2 Relational Schema for the Presentation 97

5.3.3 Running Example Tuples for the Presentation 97

Contents ix

5.4 Metadata Schema . 99

5.4.1 ER Schema for the Metadata . 99

5.4.2 Relational Schema for the Metadata 101

5.4.3 Running Example Tuples for the Metadata 102

5.5 Summary: Database Schemas for RelAndXML 104

6 Tutorial: How to use RelAndXML 105

6.1 Working with XML Documents . 106

6.2 Working with XSLT Documents . 113

6.3 Viewing HTML Documents . 115

6.4 Various Features . 115

6.5 Conclusion and Outlook . 118

7 Implementation of RelAndXML 119

7.1 System Architecture . 119

7.2 Applied Java Technologies . 122

7.2.1 Handling XML Documents . 122

7.2.2 Handling XSL Documents . 127

7.2.3 Database Access with JDBC and the Metadata 128

7.3 A Graphical User Interface for a DOM Tree 129

7.3.1 Displaying a DOM Tree . 129

7.3.2 Adding or Updating Nodes . 134

7.3.3 Deleting Nodes . 140

7.3.4 Displaying and Changing Attributes 141

7.4 Rel2XML – Composing XML Documents 144

7.4.1 Assembling the Core . 145

7.4.2 Assembling the Extension . 147

7.4.3 Adding Data, Attributes, Comments, and Processing Instructions . 151

7.5 XML2Rel – Decomposing XML Documents 152

7.6 Conclusion and Outlook . 154

8 Conclusion 155

A Create Commands for InfDB 157

A.1 Core Commands . 157

A.2 Extension Commands . 162

A.3 Presentation Commands . 165

A.4 Metadata Commands . 167

x Contents

References 169

List of Abbreviations 177

List of Figures 179

List of Listings 181

List of Tables 183

Index 185

Chapter 1

Introduction

1.1 Motivation

The aim of this research project is to design and implement a system for the management

and storage of academic course material such as assignments and examinations.

Typically, the teaching assistant responsible for the questions on the assignments of a

specific course changes every other year. Different teaching assistants use different word

processors like Microsoft Word or LATEX, or write their assignments in HTML.

However, it is a common and useful practice to reuse questions from the previous

years, especially those with a high learning impact. Of course, new questions are also

added, in particular for examinations. But the availability and compatibility of previous

years’ document files is not always certain. This results sometimes in retyping the same

questions. There also is no tool for the search of questions about a specific topic.

In this thesis, we present a solution to these problems: we use XML as unified data for-

mat and store all the assignments with their questions in such a way that old assignments

can be reproduced any time and that new assignments can be assembled from reused as

well as new questions.

Let us take a short look at the structure of assignments. They usually consist of a

header with the course name, date, number, etc., and several questions, possibly having

several parts. We also find various hints, notes about the exam, and holiday greetings. To

summarise, these documents have a number of regularly occurring text modules (course,

question, part) and a number of irregular and seldomly occurring parts (hints, notes, greet-

ings); we call this hypertext-centric. We design our system not just for academic course

material, but more generally for hypertext-centric documents.

2 Chapter 1: Introduction

Storing XML documents in databases has been a major topic in database research

in the last few years [CFP00, Wid99]. Approaches on this topic depend on the desired

application area and can be divided into two main directions: some concentrate on data-

centric and others on document-centric documents [Bou03a].

Data-centric documents are usually valid XML documents (i.e., they have a fairly

regular structure which can be described by a DTD) with sparse mixed content, and the

order in which subelements and PCDATA occur is usually irrelevant. Document-centric

XML is often non-valid XML (meaning having no DTD), mixed content occurs often

and order does matter. The distinction between data-centric and document-centric can

be subtle, and some documents could be viewed either way. In a hypertext application

area, documents are written as a combination of new and existing text modules. Most of

the text modules are data-centric, but their occurrence within the document is not very

restricted and also, free text might be allowed in between text modules. The document

order is very important, e.g. a book is not just a set of chapters, but the ordering of the

chapters is very important.

The concept for storing data-centric XML in (object-) relational database systems is

to define a mapping between the DTD and the database schema [Bou03c, KKR01, RP02,

STH
�

99]. The advantages of these mappings are that query writing is easy and that the

DBMS (or the XML Parser using the DTD) checks data consistency.

Known storage concepts for document-centric XML are different. They either store

the entire document without fragmenting and concentrate on fast search algorithms (full-

text and indexing) [Tam03]. Other approaches for storing arbitrary XML documents frag-

ment down to every single element [FK99b, Kud01, SYU99] – giving a large number of

database tuples per document. This makes queries on the documents and their reconstruc-

tion expensive.

For these reasons, we were looking for a suitable approach for a hypertext application

area, where documents are written as a combination of new and existing text modules.

In such documents, the document order is important. All the quoted document-centric

approaches do preserve document order, but they make reusing text modules impossible.

The data-centric approaches are not suitable either, since our hypertext does not conform

to a DTD.

In this thesis we present our new concept for storing hypertext-centric XML and call it

RelAndXML . It is a combination of a data-centric with a document-centric approach, sav-

ing the structured part in a Core schema and the remaining data in an Extension schema.

This approach allows us to store document-structured data and still keep the mentioned

advantages for the structured part of the data. We support not just XML elements (like

[FK99b] does), but also attributes, comments, and processing instructions. We concen-

Section 1.2: Scope 3

trate on text sizes usually found on local computers, RelAndXML is not designed for

mass data. It preserves document order and allows storing and updating text modules.

Additional features include searching assignment questions by keywords and exporting

in HTML via XSL.

1.2 Scope

General Features

RelAndXML is a system that manages a collection of hypertext documents. These

documents consist of some regular text modules but might also contain some additional

text modules whose structure and number is not restricted. Each hypertext document is

stored in two parts: an XML document encloses the content and structure of the document

whereas an XSL document contains the corresponding stylesheet. The document order

of the original document – the order in which text modules, figures, etc. appear in the

document – must be preserved, but document order information might be spread on the

XML document and on the stylesheet.

RelAndXML provides a graphical user interface (GUI) which allows the creation and

update of the XML and XSL parts of hypertext documents, the insertion of new or saved

text modules and the production of HTML or XHTML as output document. Since Rel-

AndXML is not a web server, the documents must be transferred to a web server to be

published. Therefore, the system enables users to save both the XML and the XSLT

part of documents or the (X)HTML output document to files. We note that only newer

browsers like Internet Explorer 5.5 and later or Netscape 6.0 and later display XML docu-

ments with a corresponding XSL stylesheet or XHTML documents correctly. Therefore,

it is preferable to publish HTML documents as long as older web browsers like Netscape

4.7 are used widely.

RelAndXML is not restricted to a specific application area. Given some meta data

about the desired application area, the system is able to save a matching document collec-

tion.

RelAndXML is a Java-implemented system using an object-relational database (Post-

greSQL or IBM DB2). XML documents are fragmented into parts of useful size. Efficient

algorithms for composing and decomposing are provided. “Efficient” here refers to a min-

imization of the number of database accesses, since on a client/server environment, they

are the main time consumers.

4 Chapter 1: Introduction

Course Material

We have chosen the academic course material as application area for this thesis, es-

pecially assignments and examinations. These documents contain some questions, each

possibly including several parts or figures. In addition, they usually enclose information

about the course, the lecturer, and the teaching assistant. Examinations include rules that

must be followed during the exam and a section for summarizing the marking. All these

regular document parts are the above-mentioned text modules. Apart from this informa-

tion that is usually included, RelAndXML provides ways to save additional information:

An example are the keywords which can be assigned to text modules to simplify the search

on a specific topic. A second example is that a question, which is a sequel of another one,

can be linked to this other question. The XML document contains this additional infor-

mation, which can be used within the system, but need not be published. The user can

write two different stylesheets – one for the document to be handed out to students, and

one with additional internal information.

Identifiers, Versioning, and Publishing

RelAndXML uses identifiers, version numbers, and an attribute called published for

the text modules, also called objects, in a document. These aspects are explained in the

following using short examples with course material.

The user must provide an object identifier, called user (generated) identifier (uid) for

each object. If the uids are chosen thoughtfully, they make finding objects very easy.

Example 1: The first assignment of the course “Databases 1” in the summer semester

2002 gets the uid “DB1_Su2002_A1”.

It is also possible to save versions of objects. This means they have the same uid, but

different version numbers.

Example 2: In summer 2001, assignment 1 included a question with uid

“DB1_Su2001_A1_Q1”, so this is version “1.0” of the question. The assignment 1 in

summer 2002 includes a slightly different version of this question, thus the uid remains

unchanged and the version number is “2.0”.

RelAndXML is also an archive for documents. Objects that have been published

should not be changed. Therefore, each object has a boolean attribute published.

Section 1.3: Organization of this Thesis 5

Example 2 (continued): Since the question with uid “DB1_Su2001_A1_Q1” and ver-

sion number “1.0” was published in summer 2001, the system forces the user to change

the version number, in order to be allowed to make any changes. Experience in program-

ming shows that this is safer than relying on the user’s responsibility.

Example 3: The assignment 2 with uid “DB1_Su2002_A2” and version “1.0” was pub-

lished on June 24. The author wants to correct a mistake in one question on June 27.

Since the object has been published, the author must increase the version number in order

to change the document. This way, the difference between the version handed out to stu-

dents and the one published on the web server is documented in the system.

The system uses additional system (generated) identifiers (sid) for XML objects, which

cannot be changed by the user and which are unique within the database.

Reconstruction and Standard Queries

The most important query is the reconstruction of documents or parts of it. Apart

from this, the system should (at least) be able to answer queries of the following kind:

� Find all questions with paragraphs containing the term “ER schema”.

� Has this question been used on an examination before?

� Find all assignments with questions about “Finite Automata”. (Keywords must have

been assigned by the authors of the assignments.)

1.3 Organization of this Thesis

The remainder of this thesis is organised as follows:

In Chapter 2, we give an insight into the data format and structure of hypertext-centric

XML documents as well as data-centric XSL documents which we want to store in Rel-

AndXML . We also introduce some running examples that will be used in later chapters.

In Chapter 3, we check several database types for their ability to store hypertext-

centric XML efficiently. We give reasons why we use an object-relational database man-

agement system (ORDBMS) for RelAndXML . Then, we describe various features of

ORDBMS products that we considered using for our system.

Chapter 4 describes approaches for the storage of data-centric as well as document-

centric approaches and gathers information on aspects that are important for the storage

of hypertext-centric XML.

6 Chapter 1: Introduction

In Chapter 5, we describe the database model whose design is based on knowledge

from Chapter 4. The database has a Core part for the regular text modules, an Extension

part for the irregular document parts, a Presentation part for the XSL documents and a

Metadata part with metadata information about the three other parts.

Chapter 6 presents a tutorial showing how to work with XML and XSL documents

and how to view HTML documents in RelAndXML .

In Chapter 7, we explain the Java implementation of RelAndXML . We show how we

connect the tree representation with the underlying XML document. Furthermore, we

describe the assembling of XML documents from database tuples and their disassembling

in fragments suitable for the database.

Finally, Chapter 8 concludes this thesis by briefly summarizing the results and by

pointing out suggestions for future work.

Figure 1.1: RelAndXML Logo

Chapter 2

The XML World – Introduction and

Running Examples

This chapter gives an introduction to the XML world, providing an insight into the data

format of the documents that are to be stored in RelAndXML . Later chapters will focus

on how to store that data. The chapter contains a section about XML followed by a section

about XSLT and XPath and a short section about XML query languages. The first section

starts with introducing the metamarkup language XML itself, followed by a short histor-

ical overview. Subsequently, it is shown how context-free grammars for XML languages

can be defined with Document Type Definitions (DTDs). XHTML, which has the same

expressiveness as HTML, is presented as such an XML language. Thereafter, three types

of XML documents are defined: data-centric, document-centric, and hypertext-centric.

Graphs, the Document Object Model (DOM), and the Simple API for XML (SAX) are

introduced as models for XML. The section ends with some running examples. The sec-

ond section gives an introduction to the access of document parts with XPath, followed

by an overview of XSLT, which is employed to write stylesheets for XML documents,

and makes use of XPath expressions. Afterwards, some running examples are provided.

As outlined in the specification for RelAndXML (see Section 1.2), the document order

must be preserved when documents are saved as a collection of fragments. Therefore,

we explain at several points in this chapter, how document order information can both

be included and used in the XML and XSLT documents. The last section about XML

query languages briefly introduces the evolving language XQuery and explains why SQL

is used as query language for RelAndXML .

8 Chapter 2: The XML World – Introduction and Running Examples

2.1 XML

2.1.1 Definition and Basic Concepts

XML – the eXtensible Markup Language – is a metamarkup language for text docu-

ments [XML00]. Data is represented as strings of text and is surrounded by markup

describing the properties of the data. The markup occurs predominantly as tags, which

are distinguished from the unmarked up text – the character data – by surrounding an-

gle brackets “<” and “>”. Elements are the basic building block of XML. An element

begins with a start tag “<elementname>” and ends with an end tag “</elementname>”

the difference being that it has an additional slash “/”. Elements may contain character

data and/or other elements, called subelements. Elements might also have attributes

which consist of a name and a value. They are placed within the start tag in the form

“<elementname attr=’value’>”. Several attributes are separated by whitespace; an element

cannot have two attributes with the same name; single and double quotation marks can be

used interchangeably. Elements with no content but possibly attributes are called empty

and can be represented by a single empty-element tag that begins with “<” but ends with

“/>”. So, “<elementname attr=’value’/>” is the short cut for “<elementname attr=’value’>

</elementname>”. An XML document has a single root element, which contains other

elements and/or character data. A document has a natural order, called document order.

In order to be processed by an XML parser or web browser, an XML document must be

well-formed. To be well-formed it needs to have a hierarchical structure, also called tree

structure, and to start with the XML declaration

<?xml version="1.0" encoding="ISO-8859-1"?>

The version number states the used XML specification, which is currently 1.0 (see also

Subsection 2.1.2). XML uses the Unicode Standard [Uni03], where characters from all

known languages are collected. To specify a subset, the attribute encoding is used (ISO-

8859-1 is the encoding for most Western European languages).

The word “eXtensible” in XML hints at the fact that XML does not provide a fixed set

of tags, instead XML is a metamarkup language allowing users to define their own XML

markup languages.

Listing 2.1 shows a very short XML coded sample “Assignment 1”. The well-formed

document starts with the XML declaration in line 1, followed by the root element assign-

ment in line 2. The assignment includes as attributes the user identifier uid, the version

number, the date, and the boolean published. Subelements are number, dateOfIssue,

deadline, and the element asHasQu (“assignment has question”) leading to an encapsu-

lated question. The question has uid, version, date and published as attributes and also

the marks which can be achieved with a correct solution. In this first example, a question

Section 2.1: XML 9

solely consists of a single paragraph element. The paragraph in turn consists of character

data intermingled with a subelement emph. This compound is called mixed content.

Listing 2.1 XML coded “Assignment 1” (unpublished)

1 <?xml version="1.0" encoding="ISO-8859-1" ?>

2 <assignment uid="DB1_Su2002_A1" version="1.0"

3 published="false" date="06/14/02">

4 <number>Assignment 1</number>

5 <dateOfIssue>June 17, 2002</dateOfIssue>

6 <deadline>Monday, June 24, 2002, 4pm</deadline>

7 <asHasQu>

8 <question uid="DB1_Su2002_A1_Q1" version="1.0"

9 published="false" date="06/07/02" marks="4">

10 <paragraph>

11 Translate the <emph>Company</emph>

12 ER schema into a relational schema.

13 </paragraph>

14 </question>

15 </asHasQu>

16 </assignment>

To distinguish between markup and character data, XML predefines five entity refer-

ences for characters with markup-meaning that would cause problems in the document:

the less-than sign < and the ampersand & must be used in element content. The

others are optional. The greater-than sign > is allowed mostly for symmetry with <,

since a greater-than sign cannot be misinterpreted as closing a tag. " (") and '

(’) are used to include double resp. single quotation marks within double resp. single

quotation marks.

When more than a few of these signs are used in a part of the document, this encoding

becomes tedious. For that reason, a CDATA section, set off by a <![CDATA[and]]>, can

be used; meaning everything in the section – except for the CDATA section end delimiter

itself – is treated as raw character data, not markup. To include]]> within a CDATA

section, one can write]]> .

Comments are enclosed by <!-- and --> and must not contain the string --. Process-

ing instructions have the form <?identifier ... ?> and give information for applications

processing the document. A widely used processing instruction, xml-stylesheet, is used

to attach stylesheets to documents (see Subsection 2.2). Comments and processing in-

10 Chapter 2: The XML World – Introduction and Running Examples

structions are allowed to appear anywhere in the document outside of a tag, particularly

before or after the root element.

2.1.2 A Very Short History

XML is a descendant of SGML, which stands for Standard Generalized Markup Lan-

guage. SGML is like XML a semantic and structural markup language for text documents;

it has been an ISO-certified standard since 1986 [SGM86]. SGML is too powerful and

complicated that it never became popular. SGML’s biggest success was HTML, which is

an SGML application. The current version is 4.01 [HTM99]. It provides a finite set of

tags designed to describe web pages. HTML is so successful because of its simplicity.

Otherwise, it mixes content, structure and layout, and provides no ways of integrating se-

mantics with the data. Therefore, XML was designed as a subset of SGML retaining only

the important features – like the separation of content, structure and layout of documents

– with the aim to make XML simpler and more popular.

The World Wide Web Consortium (W3C) was created in October 1994 and has de-

fined most of the important web standards [W3C03]. The specifications progress through

several stages of maturity: Working Draft, Last Call Working Draft, Candidate Recom-

mendation, Proposed Recommendation, and finally Recommendation.

XML version 1.0 was published as a W3C Recommendation in 1998; a second edi-

tion (still version 1.0) which corrects some minor errors was published in 2000 [XML00].

Currently, the W3C is working on XML 1.1, which got the status “Candidate Recommen-

dation” in October 2002 [XML02]. XML 1.1 updates XML to use Unicode 3.1 and later

versions. It also normalizes character encodings to ease string identity matching, indexing

etc. (for example, “ � ” equals “α” in XML, but for a simple string algorithm they

appear different). These improvements are not relevant for our work, furthermore most

recent tools do not support this version yet; therefore XML 1.0 is used for RelAndXML .

Seeing the benefits of XML, the W3C decided to define an XML-compatible version of

HTML which is called XHTML [XHT02].

2.1.3 Document Type Definitions

As mentioned earlier, XML is a metamarkup language providing no fixed set of tags. But

when XML is used to exchange data, individuals or organisations might better agree on a

fixed set of tags – called XML application – for reasons of interoperability. This can be

done by fixing a schema, which is a context-free grammar, that defines the XML appli-

cation. The schema language defined in the XML 1.0 specification is the document type

definition (DTD). A DTD describes which elements, attributes and entities may appear

Section 2.1: XML 11

where in the document. We give an overview of the notation; for a full description, see

the XML specification [XML00] or one of the many XML books, whereby [HM02] is

recommended by the author.

Listing 2.2 shows a DTD for the unpublished “Assignment 1” in Listing 2.1; we call

it SmallCore DTD. It has a number of entity, element and attribute declarations. Line 2

Listing 2.2 SmallCore DTD

1 <!-- Filename: smallcore.dtd -->

2 <!ENTITY % basic "uid CDATA #REQUIRED

3 version CDATA #REQUIRED

4 published (false | true) ’false’

5 date CDATA #IMPLIED">

6 <!ELEMENT assignment (number, dateOfIssue?, deadline?, asHasQu+)>

7 <!ATTLIST assignment %basic;>

8 <!ELEMENT asHasQu (question)>

9 <!ATTLIST asHasQu ordinal CDATA #IMPLIED>

10 <!ELEMENT question (paragraph)>

11 <!ATTLIST question %basic;

12 marks CDATA #IMPLIED>

13 <!ELEMENT number (#PCDATA)>

14 <!ELEMENT dateOfIssue (#PCDATA)>

15 <!ELEMENT deadline (#PCDATA)>

16 <!ELEMENT paragraph (#PCDATA | emph)*>

17 <!ELEMENT emph (#PCDATA)>

contains a parameter entity declaration which defines %basic; as short cut for the quoted

string. This type of short cut can be used within the DTD and %basic; is used in attribute

declarations (see below).

The element declaration in line 6 describes the assignment element. It states that

each assignment element must contain a sequence of subelements: exactly one number

element, zero or one dateOfIssue element(s) and zero or one deadline element(s) (suffix

?), followed by one or more asHasQu elements (suffix +). The sequence also fixes the

order of the subelements. Another suffix is * for “zero or more of the element”. The

elements number, dateOfIssue and deadline may only contain parsed character data –

plain text that might contain entity references –, but no subelements of any type. This

is stated by the keyword #PCDATA. The element declaration paragraph in line 16 shows

the only way to declare mixed content: #PCDATA must be the first in a list of choices

(here just emph) and the choice can be made zero or more times. Elements can also

12 Chapter 2: The XML World – Introduction and Running Examples

be declared to have no content but possibly attributes (keyword EMPTY) or to have any

content (keyword ANY), meaning they contain mixed content with any of the declared

elements. (In particular, this means that ANY does NOT allow to write “anything”.) The

order of element declarations is not relevant, and the root element is not fixed within the

DTD.

Attribute declarations describe the attributes of elements and have the keyword AT-

TLIST. In line 7, the parameter entity of line 2 is used to define four attributes of the

element assignment. The attributes uid and version are required, whereas the date is op-

tional (keyword #IMPLIED). The type of uid, version and date is CDATA – this is the most

general attribute type allowing any character data. The attribute published has an enu-

meration type with the values true or false; the literal false defines this value as default

that is included by the XML parser if missing. The element asHasQu has an optional

attribute ordinal, in which the desired ordinal number can be provided, when there are

several questions on an assignment. The ordinal attribute is part of the document order

information. Other attribute types are NMTOKEN, NMTOKENS, ENTITY, ENTITIES, ID,

IDREF, IDREFS, and NOTATION.

General entity declarations are used to set short cuts that can be used within the XML

document. The difference to the declaration of parsed entities is the missing % after

the keyword ENTITY. The following line defines &oopj; as an abbreviation for “Object-

oriented Programming with Java”.

<!ENTITY oopj "Object-oriented Programming with Java">

A well-formed XML document including a document type declaration with an URL

pointing to a DTD and conforming to that DTD is said to be valid. Accordingly, an XML

parser which checks the conformity of an XML document with its DTD is called validat-

ing; it is called non-validating when it checks well-formedness only. We use Xerces, the

validating XML parser of the Apache XML project [Xer03]. It can be used within Java

applications (see Section 7.2). How to include a document type declaration, is shown in

the following lines

1 <?xml version="1.0" encoding="ISO-8859-1" standalone="no">

2 <!DOCTYPE assignment SYSTEM "smallcore.dtd">

3 <assignment ...>

4 . . .

5 </assignment>

which are to be added to the document in Listing 2.1. Line 1 contains the attribute

standalone with value "no", stating that the XML document needs another file to be

parsed. Line 2 says that the root element of the document is assignment and that the

Section 2.1: XML 13

DTD is found on the same machine (SYSTEM) in the same directory as the XML file

(relative URL (Uniform Resource Locator)).

There are a number of W3C standardized XML applications like MathML, XHTML

and so on. Their DTDs are publicly available and usually provided with the keyword

PUBLIC and an absolute Uniform Resource Identifier (URI). A URI is either a URL or a

Uniform Resource Name (URN), where a URN is an address agreed upon by an organi-

zation – it needs not exist. The above are examples for external DTDs; a DTD might also

be included within the XML document (called internal DTD) or even be a combination

of an internal DTD subset and an external DTD subset. The two subsets must be compat-

ible. Neither can override the element declarations of the other. The following example

combines the SmallCore DTD with the general entity declaration from above.

1 <?xml version="1.0" encoding="ISO-8859-1" standalone="no">

2 <!DOCTYPE assignment SYSTEM "smallcore.dtd" [

3 <!ENTITY oopj "Object-oriented Programming with Java">

4]>

An internal DTD can also be used to incorporate all HTML entities in a simple way.

Why would one need HTML entities in XML? When the right encoding is chosen, e.g.

ISO-8859-1 for German, all characters of the desired language are available for markup –

for example <Straße>Höfchen</Straße> is well-formed XML – as well as for character

data, and do not have to be written with entity references like ß or ö. But

for every other character that is not in the chosen character set or not on the computer

keyboard (e.g. greek characters and mathematical symbols often used in assignments),

an entity declaration must provide the number of the character in the Unicode set. For

example, the greek character � must be declared as <!ENTITY alpha "α">.

If more than a few HTML entities are used, it is easier to include all of them. The

W3C provides three DTD fragments that together define all the familiar HTML character

references. They can be included in an internal DTD as shown in Listing 2.3. However,

it is recommendable to save local copies and to set the SYSTEM identifier accordingly,

rather than downloading the DTD fragments every time a file is parsed.

One defining feature of RelAndXML is that it does not restrict the user with DTDs.

We thought about providing the possibility to use internal DTDs to import such entity

declarations, but that did not work since if entities are defined, elements have to be de-

clared as well. See also page 92.

When a document includes tags from several DTDs, some tags might be defined multi-

ple times, and for this reason, namespaces are useful. A namespace is a prefix to elements

and attributes of the form identifier:. Each prefix is mapped to a URI by an xmlns:prefix

14 Chapter 2: The XML World – Introduction and Running Examples

Listing 2.3 Internal DTD for including HTML entities

<!DOCTYPE assignment [

<!ENTITY % xhtml-lat1 PUBLIC "-//W3C//ENTITIES Latin 1 for XHTML//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml-lat1.ent">

<!ENTITY % xhtml-special PUBLIC "-//W3C//ENTITIES Special for XHTML//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml-special.ent">

<!ENTITY % xhtml-symbol PUBLIC "-//W3C//ENTITIES Symbol for XHTML//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml-symbol.ent">

%xhtml-lat1;

%xhtml-special;

%xhtml-symbol;

]>

attribute in the root element of the document. For an example, see Subsection 2.2.

The expressiveness of DTDs is rather limited. A DTD can neither describe the length

or permitted values of the text content of elements, nor does it have knowledge of the

standard data types like integer, double, etc. for attributes. To overcome these limitations,

another schema language, called XML Schema, was standardized by the W3C. It has the

advantage to be an XML language, so that schemas are written in XML instead of in some

other notation like, for example, the DTD notation. XML Schema is more expressive,

but usually results in lengthy schemas. The specification is so long that it was divided

intro three parts [XMS01a, XMS01b, XMS01c]. Since XML Schema is not used for

RelAndXML , we abstain from giving an introduction to it. There are numerous other

XML schema languages including RELAX NG [REL03] and Schematron [Sch03a], each

with their own strengths and weaknesses.

2.1.4 XHTML

XHTML is an XML application with the same vocabulary as HTML, so the differences

between XHTML and HTML are minor. Since it has a DTD, XHTML forces to write

HTML more correctly. Valid XHTML is displayed correctly only by newer browsers

(Mozilla, Opera 5.0 and later, Internet Explorer 5.5 and later, as well as Netscape 6.0 and

later). Older browsers have problems with processing instructions and CDATA sections,

for instance. RelAndXML leaves the choice of HTML or XHTML as output format to

the user. But XHTML has to be used for fragments to be included in XSLT stylesheets,

since these are valid XML documents (see Section 2.2). Here is a list of the important

differences:

Section 2.1: XML 15

� All tags are written in lower case, whereas in HTML lower and upper case might

be mixed up.

� There must be an end tag for every start tag; e.g. must not be omitted unlike

in HTML. As a special case, HTML commands without end tag get an additional

blank (to support older browser versions) and a slash like in
 or in <img

src="myImage.gif" />.

� Attributes must have a quoted value, e.g. write <table border="1"> instead of <ta-

ble border> and <select name="Options" multiple="multiple"> instead of <select

name="Options" multiple>.

� Some commands are not allowed within others, for instance the “preformatted”

command <pre> must not contain an image .

� The attribute name of the commands a, applet, form, frame, iframe, img, and map

is replaced by id, e.g.

� XHTML might contain CDATA sections and processing instructions.

Each XHTML document must contain a document type declaration, and there are

three DTDs to choose from:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

The strict definition excludes all commands (elements and attributes) which are depre-

cated in HTML 4.01. This concerns many of the HTML commands used for presentation,

such as the tag and the align attribute – they have been replaced by the equivalent

properties in the CSS (Cascading StyleSheet) model.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

The transitional DTD is closest to the HTML 4.01 standard and includes all the dep-

recated elements.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

The third DTD combines the transitional DTD with commands for frame sets.

The W3C published the XHTML standard as [XHT02] and offers a validation service

for HTML and XHTML files at http://validator.w3.org/, where files can be

uploaded and tested.

16 Chapter 2: The XML World – Introduction and Running Examples

2.1.5 Document-centric versus Data-centric XML

XML was originally designed for the web, as an advanced version of HTML, to bring

semantics into web pages – which means to write documents in the ordinary sense of the

word. This type of document is called document-centric. It often has a rather irregular,

frequently changing structure, lots of mixed content while the document order is essen-

tial. Other terms for this type are semi-structured, document-oriented and document-

processing-oriented XML. Document-centric XML is of course well-formed, but often

non-valid since it has no DTD (or other type of schema).

Compare the published version of “Assignment 1” (shown in Listing 2.4) to the Small-

Core DTD in Listing 2.2 on page 11. It does not conform to this DTD because of the ad-

ditional attribute folder in line 2, the decision to markup “Company” with the tag strong

instead of with emph in line 10, the added keyword in lines 13-15, and the note about the

exam in line 19. Please note that the comment in line 18 is included for further use of this

example, whereas a DTD does neither restrict nor allow comments.

Listing 2.4 XML coded “Assignment 1” (published)

1 <assignment uid="DB1_Su2002_A1" version="1.0"

2 published="true" date="06/14/02" folder="DB1_Su2002">

3 <number>Assignment 1</number>

4 <dateOfIssue>June 17, 2002</dateOfIssue>

5 <deadline>Monday, June 24, 2002, 4pm</deadline>

6 <asHasQu>

7 <question uid="DB1_Su2002_A1_Q1" version="1.0"

8 published="true" date="06/07/02" marks="4">

9 <paragraph>

10 Translate the Company

11 ER schema into a relational schema.

12 </paragraph>

13 <keyword uid="ERschema" version="1.0" published="true">

14 <name>ER schema</name>

15 </keyword>

16 </question>

17 </asHasQu>

18 <!-- Add a question about 3NF here. -->

19 <exam>The exam is an open book exam.</exam>

20 </assignment>

Section 2.1: XML 17

Naturally, one could extend the SmallCore DTD to cover these additions. But if

changes in the structure occur frequently, this becomes a strain to the DTD author.

A document-centric XML document is a string of text and all of its parts are therefore

also strings. This is why DTDs (being the earliest schema definition language) do not

describe data types. A more detailed description of documents is needed for data-centric

XML. This type of XML is widely used for the exchange of data. Data-centric XML

has sparse mixed content and the document order is usually unimportant. As mentioned

earlier, a DTD (or XML Schema if data types shall be defined) is needed to exchange

data sensibly, therefore data-centric XML is most of the time valid XML. Synonyms to

data-centric XML are data-oriented as well as data-processing-oriented XML.

Listing 2.5 shows a data-centric XML document with data of a company1. A company

has a number of departments, each having a number of employees. The order of the

employee elements within a department element contains no semantic meaning.

Listing 2.5 Data-centric sample XML

<company>

<department dnumber="5" dname="Research">

<employee ssn="123456789">

<fname>John</fname>

<lname>Smith</lname>

</employee>

<employee ssn="453453453">

<fname>Joyce</fname>

<lname>English</lname>

</employee>

</department>

<department dnumber="1" dname="Headquarters">

<employee ssn="888665555">

<fname>James</fname>

<lname>Borg</lname>

</employee>

</department>

</company>

1A Company database, which contains this (and more) data, is one of the running examples for relational

databases in [EN00].

18 Chapter 2: The XML World – Introduction and Running Examples

2.1.6 Hypertext-centric XML

The distinction between data-centric and document-centric XML can be subtle, and some

documents could be regarded either way. In hypertext application areas – where RelAnd-

XML concentrates on – documents are written as a combination of new and existing text

modules. Most of the text modules are data-centric, but their occurrence within the doc-

ument is not very restricted and also, free text and markup might be allowed in between

text modules. We see hypertext as mainly document-centric, but with data-centric parts

and will use the term hypertext-centric XML.

assignment: DB1_Su2002_A1

number dateOfIssue deadline

question: DB1_Su2002_A1_Q1

<!-- ... -->

exam

Figure 2.1: Hasse diagram for “Assignment 1”

The document order at large is important, but within the data-centric text modules it is

sometimes dispensable. This imposes a partial order on the documents. Figure 2.1 shows

a Hasse diagram for the published “Assignment 1”. It states that number, dateOfIssue,

and deadline might appear in any order, while the other items need to be ordered as

follows: first question DB1_Su2002_A1_Q1, then the comment and at the end follows

the note about the exam.

2.1.7 Graph Representation

XML documents are also represented as ordered and labeled directed graphs. XML ele-

ments are represented by nodes in the graph; nodes are labeled with identifiers. (We use

system generated identifiers (sids) for this purpose.) Subelements are connected to their

parent element with edges that are labeled by the name of the subelement. Attributes are

connected to their element with dashed edges and comments with dotted edges. Values are

shown as leaves in the graph. To represent the partial order, edges are labeled with their

boxed ordinal number. The graph in Figure 2.2 corresponds to the published “Assignment

1” in Listing 2.4 on page 16 without most attributes.

Section 2.1: XML 19

Translate
the

The exam
is an

2

Add a
question
... here.

assignment

assignment−1

question

ER schema ...

keyword

folder

paragraph

DB1_Su2002

Assignment 1

e1

dateOfIssuenumber

asHasQu−2

deadline

keyword−4

21

name

ER schema

e2

June 17 ... Monday ...

Company

asHasQu

e6e5

e4

question−3

3

3

strong

1 1 1 2

e8

strong

4

1 2 3

1

examcomment

open book

exam.

e3 e7 exam−6

Figure 2.2: XML tree for “Assignment 1”

20 Chapter 2: The XML World – Introduction and Running Examples

Listing 2.6 Running example ”Assignment 1”

1 <assignment uid="DB1_Su2002_A1" version="1.0"

2 published="true" date="06/14/02" folder="DB1_Su2002">

3 <number>Assignment 1</number>

4 <dateOfIssue>June 17, 2002</dateOfIssue>

5 <deadline>Monday, June 24, 2002, 4pm</deadline>

6 <asHasQu ordinal="2">

7 <question uid="DB1_Su2002_A1_Q1" version="1.0"

8 published="true" date="06/07/02" marks="4">

9 <paragraph>

10 Translate the Company

11 ER schema into a relational schema.

12 </paragraph>

13 <keyword uid="ERschema" version="1.0" published="true">

14 <name>ER schema</name>

15 </keyword>

16 </question>

17 </asHasQu>

18 <comment ordinal="3">

19 <!-- Add a question about 3NF here. -->

20 </comment>

21 <exam ordinal="4">

22 <text ordinal="1">The exam is an</text>

23 <strong ordinal="2">open book

24 <text ordinal="3">exam.</text>

25 </exam>

26 </assignment>

Section 2.1: XML 21

To integrate the ordering information into the XML document we use the attribute

ordinal and wrap the character data in mixed content parts with the element text and com-

ments with the element comment. Listing 2.6 shows the comment and the exam element

at the end of “Assignment 1” with wrapping and ordinal attributes; we will use this version

of “Assignment 1” as running example.

There are several possibilities to define links in between and across XML documents

(like the attribute types ID, IDREF(S) in DTDs, as well as XLink and XPointer) justify-

ing the used term “graph” for XML documents. Since references can be represented as

regular edges, so that the graph can be reduced to a tree, we use the term XML tree in the

subsequent chapters.

The graph presentation is one of several data models for XML, some others are de-

scribed in the next subsection.

2.1.8 DOM and SAX

The Document Object Model (DOM) is a programming language-neutral object model,

standardized by the W3C [DOM03]; it defines the logical structure of documents and the

way a document is accessed and manipulated, by providing a tree-based Application Pro-

gramming Interface (API) to process those documents. The DOM Core module contains

the tree model; the definition of the DOM interface (DOM API) is written with the Inter-

face Definition Language (IDL), which is the specification language of the CORBA stan-

dard [COR03]. Since Java is used in this thesis, we write interfaces and methods with the

notation from the Java binding [DJL00]. The root of the class hierarchy in the DOM Core

is the Node interface. It can be used to extract information from any DOM object without

knowing its actual type. The Node interface provides methods to navigate and manipulate

the graph structure, e.g. getParent(), getChildren(), getNextSibling(), and

removeChild(Node). The class hierarchy of the DOM is shown in Figure 2.3. It in-

cludes subclasses like Document for the document’s root, Element for elements, Attr

for attributes, etc. Each of these classes contains methods to access the represented XML

construct.

The Simple API for XML (SAX) is another object model for XML, which is public-

domain software and not standardized by the W3C [SAX03], but as popular as the DOM.

Whereas DOM is a tree-based model, SAX does not build a complete parse tree at the

beginning of processing, but gives events to the application program, e.g. when a start or

end tag is found.

22 Chapter 2: The XML World – Introduction and Running Examples

DocumentType Document
Fragment

Document Element Attr

Notation CharacterData Entity EntityReference
Instruction
Processing

Text Comment

CDATASection

Node

Figure 2.3: DOM Class Hierarchy

XML 1.0, DOM, SAX, XML Schema, XPath and XQuery all have similar but subtly

different conceptual models of the structure of an XML document. For instance, the

XPath and XQuery data models do not contain CDATA sections, entity references, and

document type declarations. Thus the W3C provides in the XML Information Set (also

called XML Infoset) a consistent set of definitions for use in the other specifications that

refer to the information in a well-formed XML document [XIn01].

Section 2.1: XML 23

2.1.9 Running Examples

Apart from “Assignment 1” in Listing 2.6 we use four more XML documents as running

examples in this thesis. Listing 2.7 shows “Assignment 2”, which contains two questions.

The asHasQu elements have ordinal attributes that allow to derive the right order of the

questions. This XML document is valid to the SmallCore DTD.

Listing 2.7 XML running example “Assignment 2”

1 <assignment uid="A2">

2 <number>Assignment 2</number>

3 <dateOfIssue>October 14, 2002</dateOfIssue>

4 <deadline>Monday, October 21, 2002, 4pm</deadline>

5 <asHasQu ordinal="2">

6 <question uid="Q2">

7 <paragraph>Prove <emph>Lemma</emph> 2.2.</paragraph>

8 </question>

9 </asHasQu>

10 <asHasQu ordinal="1">

11 <question uid="Q1">

12 <paragraph>Prove <emph>Lemma</emph> 2.1.</paragraph>

13 </question>

14 </asHasQu>

15 </assignment>

Assignment 2 contains questions but no course information, in Assignment 3, this is

vice versa; see Listing 2.8. This split will help to keep the examples in the following

chapters short.

Another example is “Question 4”, which is part of “Assignment 4”, shown in List-

ing 2.9 on the following page. In HTML, its text reads “Solve question 2 of assignment 2

by using question 1 and Theorem 3 in the lecture notes” and is divided into a paragraph

element, two links and two text elements, all of these having ordinal attributes. The first

link points to a question in another assignment and the second to a question of the same

assignment. Both links have the attribute internal="true", which means that they link to an-

other document or object within RelAndXML . The question element has an uid identifier

and its subelements have sid identifiers.

Listing 2.10 shows XML code for “Question 5” which contains data for a figure of

an ER schema, with attributes like height and width. Since it was drawn with the Unix

program xfig (sourcetype), it has a sourcefilename.

24 Chapter 2: The XML World – Introduction and Running Examples

Listing 2.8 XML running example “Assignment 3”

1 <assignment uid=”A3” version=”1.0” published=”false”>

2 <number>Assignment 3</number>

3 <dateOfIssue>October 21, 2002</dateOfIssue>

4 <deadline>Monday, October 28, 2002, 4pm</deadline>

5 <isAssignmentOfCourse>

6 <course uid=”FCS1” version=”1.0”>

7 <name>Fundamentals of Computer Science 1</name>

8 <semester>Winter 2002/03</semester>

9 </course>

10 </isAssignmentOfCourse>

11 </assignment>

Listing 2.9 XML running example “Question 4”

1 <assignment uid="A4">

2 <number>Assignment 4</number>

3 <asHasQu ordinal="1">

4 <question uid="Q3" marks="4">

5 <paragraph>Prove Lemma 3.1.</paragraph>

6 </question>

7 </asHasQu>

8 <asHasQu ordinal="2">

9 <question uid="Q4">

10 <paragraph sid="P1" ordinal="1">Solve</paragraph>

11 <link sid="L1" ordinal="2" internal="true">

12 <href>A2.html#Q2</href>

13 <text>question 2 of assignment 2</text>

14 </link>

15 <link sid="L2" ordinal="4" internal="true">

16 <href>#Q3</href>

17 <text>question 1</text>

18 </link>

19 <text sid="T2" ordinal="3">by using</text>

20 <text sid="T4" ordinal="5">

21 and Theorem 3 in the lecture notes.</text>

22 </question>

23 </asHasQu>

24 </assignment>

Section 2.2: XSLT and XPath 25

Listing 2.10 Running example “Question 5”

1 <question sid="Q5" uid="Question5" marks="6">

2 <paragraph>Transform the shown ER schema into a relational schema.

3 </paragraph>

4 <figure date=’June 2002’ published=’true’

5 uid=’Figure_Company_ER’ version=’1.0’>

6 <filename>company_ERschema.gif</filename>

7 <height>131</height>

8 <width>226</width>

9 <type>gif</type>

10 <sourcefilename>company_ERschema.fig</sourcefilename>

11 <sourcetype>xfig</sourcetype>

12 </figure>

13 </question>

2.2 XSLT and XPath

XSLT, the eXtensible Stylesheet Language for Transformations, has been a W3C Recom-

mendation since 1999 [XSL99]. XSLT is an XML application, which means that XSLT

stylesheets are written in XML notation. XPath, the XML Path Language [XPa99], is used

within stylesheets to describe sets of XML nodes. The eXtensible Stylesheet Language

(XSL) consists of XSLT, XPath, and the XSL Formatting Objects (XSL-FO), which allow

to define a sophisticated page layout [XSL03]. Formatting objects are not used in this

thesis.

An XSL processor takes an XML document and an XSLT stylesheet as input docu-

ments to produce an output document. For processing, the XML document is seen as

XML tree. The XSL processor starts at the root and selects a matching rule. This rule

includes information which nodes are to be processed next. This means in particular that

the processing order is not restricted to the document order of the input XML document.

We use Xalan, the XSL processor of the Apache XML project [Xal03]. It can be used as

a command line tool or within Java applications (see Section 7.2).

In the following, we describe enough XSLT and XPath to read the running examples

and to judge the way XSLT is saved in Chapter 5; but considering the rich possibilities of

these languages we will not give more than a short introduction. Apart from the official

documents [XSL99, XPa99], there are many books on this topic – a good overview is

given in [HM02], and detailed references can be found in [Kay01] and [Tid01].

26 Chapter 2: The XML World – Introduction and Running Examples

2.2.1 Basic XPath Concepts

XPath is a language for specifying navigation within an XML document and for identi-

fying parts of the XML document. XPath views an XML document as a tree of nodes

very similar to a DOM tree, except for that in XPath there are only seven kinds of nodes:

the root node as well as element, attribute, text, comment, processing instruction, and

namespace nodes. This means especially that the XML declaration and the document

type declaration are not included in XPath’s view of an XML document. Also, all entity

references and CDATA sections are resolved.

The result of evaluating an XPath expression on a given XML document is a set of

nodes sorted according to document order. A location path expression is built of suc-

cessive location steps, which are separated by forward slashes. Each location step is

evaluated relative to a particular node in the document called the context node.

The simplest location paths and steps are the following. The forward slash / selects the

root node of the document. A single element name name selects all child elements of the

context node with the specified name. The asterisk * is a wildcard matching any element

node regardless of name. This is analogous for attributes: @name selects all attributes of

the context node with the specified name and @* matches any attribute node.

In general, each location step contains an axis and a node test separated by a double

colon. It might be suffixed with one or more predicates enclosed in square brackets that

further reduce the node set.

location-step ::= axis::node-test[predicate]

All of these parts are optional, since there is also some abbreviated syntax (see be-

low). The most common axes are the child, parent, self, attribute, and descendant-or-self

axes. There are node tests for text nodes (text()), comment nodes (comment()), processing

instructions (processing-instruction()), and all kinds of nodes (node()).

Some very common location steps have an abbreviated syntax for axis:: like shown in

the following table. Only the abbreviated syntax is allowed in XSLT match patterns (see

below).

Section 2.2: XSLT and XPath 27

Location Step Abbreviation Explanation

child::name name the child element name

self::* . the context node

parent::* .. the parent node

attribute::name @name the attribute name

/descendant-or-self::node()/ // any descendant of the context

node or the context node itself

Predicates contain a Boolean expression, which is tested for each node in the context

node list. There are some built-in functions, which can be used in predicates (and in

expressions). For instance, position() returns the position of the current node in the context

node set.

Multiple location paths can be combined with the union operator | to get the union of

the node sets retrieved by the location paths.

We conclude this subsection with a few XPath expression examples. For more exam-

ples, see the match patterns in the following subsection.

Expression matches

//question all question elements in the document

@uid the uid attribute of the context node

//question[@published=’true’] all questions that are published

//question/paragraph the paragraphs of all questions

//text()[.=’Test’] all text nodes with value Test

2.2.2 Basic XSLT Concepts

A well-formed XSLT document contains the XML declaration and an xsl:stylesheet ele-

ment (or the synonym xsl:transform) as root.

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

. . .

</xsl:stylesheet>

The attribute xmlns:xsl declares the namespace xsl: for the document. This protects

against mixing up XSLT tags with tags from the XML document to be transformed. Next

is usually the description of the output format with the <xsl:output ... /> command. The

method attribute specifies the type of the output ("xml", "html", or "text"). The methods

28 Chapter 2: The XML World – Introduction and Running Examples

"xml" and "html" can be further described with the version and the document type dec-

laration (attributes doctype-public and doctype-system). If the attribute indent is set to

"yes", the XSLT parser breaks the lines of the output document more or less sensibly,

whereas everything is written on a single line when indent equals "no". The two following

examples show an xsl:output command for HTML and for XHTML respectively.

<xsl:output method="html" version="4.01" encoding="ISO-8859-1"

indent="yes" media-type="text/html"

doctype-public="-//W3C//DTD HTML 4.01 Transitional//EN"

doctype-system="http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd"/>

<xsl:output method="xml" version="1.0" encoding="ISO-8859-1"

indent="yes" media-type="text/xml"

doctype-public="-//W3C//DTD XHTML 1.0 Transitional//EN"

doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"/>

XSLT contains template rules that are applied to the nodes in the XML document.

Each template rule has an XPath pattern describing the nodes the rule should be applied

to and a number of templates. The XML element is called xsl:template and has four

attributes as the following lines show.

<xsl:template match = pattern

name = qname

priority = number

mode = qname>

<!-- some templates -->

</xsl:template>

The attribute match defines the pattern with an XPath expression. The simplest ex-

ample for this is just an element name like “question”. As an alternative to a pattern, a

template rule can be given a name. Using this attribute, a template rule can be called

independently of some node structure. The attributes priority and mode are used to define

several template rules for the same pattern. When the pattern matches, the attribute values

determine which template rule is to be called.

The processing instruction xml:stylesheet can be used to attach a stylesheet to an

XML document. It must be included in the prolog of the document and contains either an

absolute or a relative URL to the stylesheet file, see the following lines.

Section 2.2: XSLT and XPath 29

<?xml version="1.0" encoding="ISO-8859-1" ?>

<?xml-stylesheet type="application/xml" href="assignment.xsl" ?>

<assignment . . . >

. . .

</assignment>

A choice of templates

Templates build the body of a template rule together with text and tags that are directly

copied to the output. There are a number of templates available.

<xsl:value-of select = pattern />

The value-of template returns the value of the node selected by the pattern. The value of

an element is its text content stripped of any tags and with entity and character references

resolved.

<xsl:apply-templates select = pattern mode=qname />

This template selects all the nodes matching the pattern for processing. For each node, the

XSL processor selects a matching template rule (taking the optional mode into account)

and moves on to that rule. In particular, this might change the order of traversal.

<xsl:apply-templates />

This template processes all child nodes of the current node using preorder traversal.

The following list shows some other templates and their purpose.

� xsl:text for the insertion of text, especially blanks

� xsl:for-each for iteration loops

� xsl:if, xsl:choose, xsl:when, and xsl:otherwise for conditional processing

� xsl:copy for copying elements and xsl:copy-of for copying tree fragments

� xsl:sort for sorting

For some of these, there are examples in Subsection 2.2.3.

The following lines show an example with two template rules for question and para-

graph.

30 Chapter 2: The XML World – Introduction and Running Examples

<xsl:template match="question">

<h4>Marks: <xsl:value-of select="@marks"/></h4>

<xsl:apply-templates select="paragraph"/>

</xsl:template>

<xsl:template match="paragraph">

<p><xsl:apply-templates/></p>

</xsl:template>

In the question rule, the marks of the question are output as an HTML heading <h4>.

Then the template rule for paragraph is called. The paragraph rule puts all its content into

an HTML paragraph <p>.

Built-In Template Rules

What will happen in the previous example, if there are no template rules for @marks

and for an emph subelement of paragraph? XSLT provides default built-in template rules

for the different kinds of nodes, which are applied if no specific template rule is available

in a stylesheet. For text and attribute nodes, the built-in template rule copies their value

into the output document. Be aware though that attribute nodes are only processed, when

a template rule asks for it. If there is no specific template rule for the corresponding

element, the attribute content will not be displayed. The default template rule for the root

node and for element nodes processes all child nodes by preorder traversal. For comments

and processing instructions the built-in template rule says not to output anything into the

result tree.

<xsl:template match="text()|@*">

<xsl:value-of select="."/>

</xsl:template>

<xsl:template match="*|/">

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="processing-instruction()|comment()"/>

2.2.3 Running Examples

In the following examples, we are especially interested in ordering, sorting and numbering

elements.

The simplest way of changing the order of elements is writing the templates in the

desired order.

Section 2.2: XSLT and XPath 31

<xsl:template match="assignment[@uid=’A2’]">

<xsl:apply-templates select="asHasQu/question[@uid=’Q1’]"/>

<xsl:apply-templates select="asHasQu/question[@uid=’Q2’]"/>

</xsl:template>

The shown template rule for “Assignment 2” (see Listing 2.7) calls a template rule

for question “Q1” before calling one for question “Q2”. There might be two different

template rules for the questions, but there might be just one template rule as well. This

approach has the disadvantage that a stylesheet must be written for each assignment.

A more general approach is possible because “Assignment 2” contains ordinal at-

tributes; it is shown in the following lines.

1 <xsl:for-each select=’asHasQu’>

2 <xsl:sort select=’@ordinal’ data-type=’number’/>

3 <h3>

4 Question <xsl:number value="position()" /></h3>

5 <xsl:apply-templates select="question"/>

6 </xsl:for-each>

The xsl:for-each command loops over all asHasQu elements, but before the loop is

started, the xsl:sort command is executed. It sorts the asHasQu elements by their ordinal

attribute using the data type number (number sorts the values 2, 1, 10 as 1, 2, 10 whereas

the default value text sorts them as 1, 10, 2). In the third line, an HTML anchor is gen-

erated. In line 4 the xsl:number command outputs the number of each question on this

assignment as “Question 1”, “Question 2” and so on, using the XPath expression posi-

tion() which returns the position of a node between its siblings. Afterwards the question

rule is called.

Listing 2.11 shows the complete stylesheet for the XML running examples “Assign-

ment 1” and “Assignment 2”. It has templates for assignment, question, paragraph, exam,

text, and strong. The keywords of the question are seen as an aid for the author of the

assigment only and are not printed on the assignment.

The complete HTML output for “Assignment 1” is shown in Listing 2.12, and the

body of the HTML document for “Assignment 2” in Listing 2.13. Since there is no tem-

plate rule for emph, the built-in template rule for elements is used. For completeness, the

XSL templates and the HTML output for “Assignment 3”, “Question 4” and “Question

5” are shown in the Listings 2.14 to 2.19.

32 Chapter 2: The XML World – Introduction and Running Examples

Listing 2.11 XSL stylesheet for “Assignment 1” and “Assignment 2”

1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
3
4 <xsl:output method="html" version="4.01" encoding="ISO-8859-1"
5 indent="yes" media-type="text/html"
6 doctype-public="-//W3C//DTD HTML 4.01 Transitional//EN"
7 doctype-system="http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd"/>
8
9 <xsl:template match="assignment">
10 <html>
11 <head> <title><xsl:value-of select="number"/></title> </head>
12 <body>
13 <h1><xsl:value-of select=’number’/>
14 <xsl:if test=’dateOfIssue’>- <xsl:value-of select=’dateOfIssue’/></xsl:if>
15 </h1>
16 <xsl:if test=’deadline’>
17 <h2>Deadline: <xsl:value-of select=’deadline’/></h2>
18 </xsl:if>
19 <xsl:for-each select="asHasQu">
20 <xsl:sort select=’@ordinal’ data-type=’number’/>
21 <h3>
22 Question <xsl:number value="position()" /></h3>
23 <xsl:apply-templates select="question"/>
24 </xsl:for-each>
25 <hr />
26 <xsl:apply-templates select="exam"/>
27 </body>
28 </html>
29 </xsl:template>
30
31 <xsl:template match="question">
32 <h4>Marks: <xsl:value-of select="@marks"/></h4>
33 <xsl:apply-templates select="paragraph"/>
34 </xsl:template>
35
36 <xsl:template match="paragraph">
37 <p><xsl:apply-templates/></p>
38 </xsl:template>
39
40 <xsl:template match="exam">
41 <p><i>Note:</i><xsl:apply-templates>
42 <xsl:sort select="@ordinal" data-type="number"/>
43 </xsl:apply-templates></p>
44 </xsl:template>
45
46 <xsl:template match=’text’>
47 <xsl:text> </xsl:text><xsl:apply-templates/><xsl:text> </xsl:text>
48 </xsl:template>
49
50 <xsl:template match="strong">
51 <xsl:apply-templates/>
52 </xsl:template>
53
54 </xsl:stylesheet>

Section 2.2: XSLT and XPath 33

Listing 2.12 HTML output for “Assignment 1”

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd">

<html>

<head>

<META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>Assignment 1</title>

</head>

<body>

<h1>Assignment 1 - June 17, 2002</h1>

<h2>Deadline: Monday, June 24, 2002, 4pm</h2>

<h3>Question 1</h3>

<h4>Marks: 4</h4>

<p>Translate the Company

ER schema into a relational schema. </p>

<hr>

<p><i>Note:</i> The exam is an open book exam.</p>

</body>

</html>

Listing 2.13 HTML output for “Assignment 2”

<body>

<h1>Assignment 2</h1>

<h3>Question 1</h3>

<h4>Marks: 4</h4>

<p>Prove Lemma 2.1.</p>

<h3>Question 2</h3>

<h4>Marks: 4</h4>

<p>Prove Lemma 2.2.</p>

<hr>

</body>

34 Chapter 2: The XML World – Introduction and Running Examples

Listing 2.14 XSL templates for “Assignment 3”

<xsl:template match=’assignment’>

...

<xsl:if test=’isAssignmentOfCourse’>

<h2><xsl:apply-templates select=’isAssignmentOfCourse/course’/></h2>

</xsl:if>

...

</xsl:template>

<xsl:template match=’course’>

<xsl:value-of select=’name’/><xsl:text> - </xsl:text>

<xsl:value-of select=’semester’/>

</xsl:template>

Listing 2.15 HTML output for “Assignment 3”

<body>

<h1>Assignment 3 - October 21, 2002</h1>

<h2>Fundamentals of Computer Science 1 - Winter 2002/03</h2>

<h2>Deadline: Monday, October 28, 2002, 4pm</h2>

</body>

Section 2.2: XSLT and XPath 35

Listing 2.16 XSL templates for “Question 4”

<xsl:template match=’question[@uid="Question4"]’>

<h4>Marks: <xsl:value-of select=’@marks’/></h4>

<xsl:apply-templates mode=’extended’>

<xsl:sort select=’@ordinal’ data-type=’number’/>

</xsl:apply-templates>

</xsl:template>

<xsl:template match=’paragraph’ mode=’extended’>

<xsl:apply-templates/><xsl:text> </xsl:text>

</xsl:template>

<xsl:template match=’link’ mode=’extended’>

<xsl:text> </xsl:text>

<xsl:value-of select=’text’/><xsl:text> </xsl:text>

</xsl:template>

<xsl:template match=’text’ mode=’extended’>

<xsl:text> </xsl:text><xsl:apply-templates/><xsl:text> </xsl:text>

</xsl:template>

Listing 2.17 HTML output for “Question 4”

Solve

question 2 of assignment 2

by using

question 1

and Theorem 3 in the lecture notes.

36 Chapter 2: The XML World – Introduction and Running Examples

Listing 2.18 XSL templates for “Question 5”

<xsl:template match=’question[@uid="Question5"]’>

<h4>Marks: <xsl:value-of select=’@marks’/></h4>

<xsl:apply-templates select="paragraph"/>

<xsl:apply-templates select="figure"/>

</xsl:template>

<xsl:template match=’figure’>

<img src="{filename}" alt="{@uid}"

width="{width}" height="{height}"/>

</xsl:template>

Listing 2.19 HTML output for “Question 5”

<p>Transform the shown ER schema into a relational schema.</p>

<img height="131" width="226"

alt="Figure_Company_ER"

src="company_ERschema.gif">

Section 2.3: XML Query Languages 37

2.3 XML Query Languages

The XML Query Working Group of the W3C has been working on a standardized query

language for XML since 1998, but the specification of XQuery still has the stage Working

Draft [XQu03].

Commercial XML database systems (see Chapter 3) mostly use XPath with extensions

for queries over multiple documents. Research groups often preferred XML-QL [XQL98]

during the last years, but there are also numerous proprietary query languages for XML.

During the design phase and the implementation of RelAndXML , the possible out-

come of the XML Query Working Group was still very unclear. Furthermore, the avail-

ability of an implementation of the query language was unclear. The usual way for re-

searchers was to write their own translator from the preferred XML query language to

the query language of the chosen database, for instance to SQL for a relational database

[TVB
�

02, YASU01]. Since the implementation of such a translator is a project of its

own, we decided that the use of an XML query language is out of the scope of the project

RelAndXML . We use SQL to query the data in RelAndXML .

In the future, XQuery will most probably be the most popular XML query language.

Many XML database vendors have already implemented some version of XQuery. The

current version of XQuery and a list of implementations can be found at [XMQ03]. If we

implement an add-on for RelAndXML in the future, it will use XQuery. We give a very

brief introduction in the following.

XQuery is a query language for XML documents and collections of these documents.

It is an extension of XPath 2.0, which means that (almost) every XPath expression is an

XQuery expression. XQuery uses the same data model as XPath, so it has the same seven

kinds of nodes: document, element, attribute, text, namespace, processing instruction, and

comment. It is a functional language: each expression operates on instances of the data

model and produces an instance of the data model.

The FLWR expression (say “flower”) is as central to XQuery as SELECT is to SQL.

It consists of one or more FOR and/or LET clauses, an optional WHERE clause, and a

RETURN clause.

The FOR and LET clauses bind variables differently as the following examples show.

The result of the XQuery expression

LET $i := (<one/>, <two/>)

RETURN <r>{$i}</r>

is <r><one/><two/></r>. The result of

38 Chapter 2: The XML World – Introduction and Running Examples

FOR $i := (<one/>, <two/>)

RETURN <r>{$i}</r>

is <r><one/></r><r><two/></r>. The WHERE clause filters the tuples selected in the

LET and FOR clauses. The RETURN clause generates an XML fragment for every tuple

in the result.

Joins are very similar to SQL joins. The following query shows a join that selects

pairs of assignments and questions whose author is the same. The FOR clause selects

all assignment and question fragments in the queried document and the WHERE clause

filters these fragments leaving only those, where the author is the same. The RETURN

clause creates an element <sameauthor> for each pair, with attributes for the author and

the user identifiers of the assignment and the question.

FOR $a IN //assignment, $q IN //question

WHERE $a/@author = $q/@author

RETURN <sameauthor author={$a/@author}

assignment={$a/@uid} question={$a/@uid}></sameauthor>

For more information on XQuery, see for example [EM02a] or [Sch03b].

2.4 Summary: RelAndXML’s World

In this chapter, we gave an introduction to the XML world which is based on XML and

DTDs. XML documents can now be classified in data-centric, document-centric and

hypertext-centric documents. RelAndXML is designed for hypertext-centric documents,

which contain structured, data-centric text modules as well as unstructured, document-

centric parts. Graphs, DOM and SAX can be used as data models for XML. We use

XSLT and XPath to convert XML documents to the output language HTML or XHTML.

The chapter contains running examples for XML, XSLT and HTML that are used in the

following chapters. XML query languages are out of the scope of this thesis. We use SQL

to query the data in RelAndXML .

Chapter 3

Selecting a Database System for

RelAndXML

The aim of this chapter is the selection of a suitable database type for the system RelAnd-

XML without introducing a dependency on a single DBMS product. In the first section,

we introduce three types of XML databases. The second section contains an overview

of the various data models which are in use for XML databases and lists some of the

products built on these data models together with their XML database type. We also ex-

plain why we decided on using an object-relational DBMS for RelAndXML . In the third

section, we describe various features of the SQL standard and list which of them are im-

plemented in the most popular object-relational DBMSs. We concentrate on features that

we considered using for RelAndXML and which influenced our decision for a particular

ORDBMS. Furthermore, we describe the new SQL/XML part of the SQL standard, which

will most probably be published in 2003, and the quite different current XML extensions

of the most popular ORDBMSs. The final section summarizes the decision to implement

RelAndXML as middleware on an object-relational DBMS.

3.1 Types of XML Databases

A general definition for an XML database is the following.

An XML database is a collection of XML documents that persist and can be

manipulated. [Gra02]

The Initiative for XML Databases XML:DB has defined three different types of XML

databases [XDB03]: native XML database, XML enabled database, and hybrid XML

database. The definitions are as follows.

40 Chapter 3: Selecting a Database System for RelAndXML

Native XML Database (NXD)

(a) Defines a (logical) model for an XML document – as opposed to the data in that

document – and stores and retrieves documents according to that model. At a min-

imum, the model must include elements, attributes, PCDATA, and document order.

Examples of such models are the XPath data model, the XML Infoset, and the mod-

els implied by the DOM and the events in SAX 1.0.

(b) Has an XML document as its fundamental unit of (logical) storage, just as a rela-

tional database has a row in a table as its fundamental unit of (logical) storage.

(c) Is not required to have any particular underlying data model. For example, it can be

built on a relational, hierarchical, or object-oriented database, or use a proprietary

storage format such as indexed, compressed files.

XML Enabled Database (XEDB) – A database that has an added XML mapping layer

provided either by the database vendor or a third party. This mapping layer manages

the storage and retrieval of XML data. Data that is mapped into the database is mapped

into application specific formats and the original XML meta-data and structure may be

lost. Data retrieved as XML is NOT guaranteed to have originated in XML form. Data

manipulation may occur via either XML specific technologies (e.g. XPath, XSL-T, DOM

or SAX) or other database technologies (e.g. SQL). The fundamental unit of storage in

an XEDB is implementation dependent. [...]

Hybrid XML Database (HXD) – A database that can be treated as either a Native

XML Database or as an XML Enabled Database depending on the requirements of the

application. [...]

XML documents can also be stored in databases via middleware.

Middleware – Software that is called from an application to transfer data between XML

documents and databases. In general, it does not require the database to have any XML

features.

All of the above databases might be combined with a web server. Therefore, we add

the following definition.

Web Database System – A Web database system is a database system that delivers per-

sistent data via the Web [Gra02]. Apart from a usual database system it includes a Web

Section 3.2: XML Databases with Various Data Models 41

server and network protocols.

Native XML databases are not suitable for RelAndXML , since their fundamental unit

of storage is an XML document, and RelAndXML is designed to save fragments of XML

documents. An XML enabled database is only suitable for RelAndXML , if it does pre-

serve the original XML metadata and structure like comments, CDATA sections, process-

ing instructions, and document order. Hybrid XML databases or middleware are most

appropriate for the hypertext-centric XML we want to store in our system. In this way,

we can combine features of XML enabled databases for the text modules with features of

native XML databases for the additional parts like comments and free markup or free text.

How to combine these features is a main topic of this thesis. Since RelAndXML will not

include a web server, it is not a web database system.

3.2 XML Databases with Various Data Models

In this section, we give an overview of the various data models of XML databases and

the corresponding storage techniques. We also name a few commercial or open-source

products built on these models and assign XML database types to them. Note that there

is a fast-moving market for XML databases. Bourret maintains a regularly updated list of

XML database products at [Bou03b].

3.2.1 File Systems

XML documents can be stored and managed simply as files in a file system; the funda-

mental unit of storage are the complete XML documents. The advantage of a file system

is that it is easy to maintain. XSLT and XQuery can be used to search for documents. A

web server can also be added. Storing and loading documents is very fast, since there is

no transformation needed at all. Even though this is an XML database in the sense of the

general definition of [Gra02], the disadvantages of a file system are that the main benefits

of DBMSs are missing: data security, query languages, concurrency control, and recov-

ery facilities. Nevertheless, managing XML documents with the file system is reasonable

when the following criteria apply:

� there is a relatively small number of documents

� the documents are small enough to be worked on in main memory

� there is single user operation

42 Chapter 3: Selecting a Database System for RelAndXML

A file system is not suitable for RelAndXML , since we need a smaller fundamental

unit of storage than complete XML documents.

3.2.2 Object-Oriented Database Systems

There are two ways of mapping XML to an object-oriented database system, the object-

centric approach for data-centric documents and the node-centric approach for document-

centric XML. For the object-centric approach, an object-oriented class model is generated

from the DTD and used as database schema. XML documents are then seen as objects

within the class model.1 The node-centric approach is based on building a class hierarchy

on the W3C DOM objects Attr, CharacterData, Comment, Document, Element, and Node.

In this way, any document can be saved. Since each document is shredded to many small

objects, it is very important that these are stored very efficiently.

The object-oriented database management system POET offers a middleware com-

ponent which is able to store XML with the object-centric or the node-centric approach.

POET is a hybrid XML database [POE03].

The eXtensible Information Server (XIS) of eXcelon [eXc03] is a web-enabled native

XML database that is built on the company’s own object-oriented database management

system ObjectStore. It manages XML using the node-centric approach and comes with a

DOM and XQL interface, an XML parser, an XSLT engine as well as XQuery support.

The fundamental unit of storage are complete documents, which means that documents

are retrieved in their entirety, and that there is no exploration or browsing of the contents

of a document.

We could have used an object-oriented database for RelAndXML , but decided against

it for the following reasons. In [Heu02], Heuer argues that the object-oriented DBMS

standard by the ODMG (Object Database Management Group) is weak, inconsistent,

and lacks some DBMS functionality like access authorization and views and that object-

oriented DBMS products only have a niche at the market. But there will be no future

versions of the ODMG standard, since as quoted from [ODM03] “The ODMG group

completed its work on object data management standards in 2001 and was disbanded.”

Furthermore, there seems to be less interest in the research community for object-oriented

databases than for (object-)relational databases: For example, the well-known online com-

puter science bibliography DBLP (see [DBL03]) lists 11 papers for the search “XML

object-oriented”, but 77 for the search “XML relational” (both considering all years).

The papers with “object-oriented database” in the title decrease each year (51 in 1999, 40

1This approach works analogously to the object-relational mapping described in Subsection 4.1.2 on

page 65. Instead of foreign key relationships between tables, we get associations between classes.

Section 3.2: XML Databases with Various Data Models 43

in 2000, 32 in 2001, 26 in 2002), whereas the number of papers with “relational database”

in the title is fairly constant (54 in 1999, 56 in 2000, 58 in 2001, 54 in 2002). Note that

the result sets for the term “relational” also contain the term “object-relational”.

3.2.3 Proprietary Storage Formats

Proprietary storage formats are used by most of the native XML databases. They can

be based on knowledge from hierarchical, object-oriented, or object-relational DBMSs

and/or use information retrieval methods on indexed, compressed files. In order to keep

their proprietary storage formats as internal knowledge, the companies of most products

give only very little information. Some of these products are the following.

Tamino XML Server is the web-enabled native database system of the Software AG

[Tam03]. The approach of Tamino is to store the entire document without fragmenting

and to concentrate on fast search algorithms (full-text and indexing). The Software AG

does not release any details about the storage format. It certainly uses know-how from

Adabas [Ada03] – the company’s relational DBMS that also has hierarchical features

(nested tables). Tamino is suitable for document-centric XML. Like in XIS, documents

are seen in their entirety only, access to document parts is not provided. XML documents

are put in collections, queries can be asked on collections as well as on single documents.

Tamino contains an extension of XPath that allows fast searching and sorting methods.

An open-source product is Xindice, the native XML database of Apache’s XML

project [Xin03]. Its proprietary storage format is model-based. Documents are put in

collections, like in Tamino. It is also possible to build collections of collections. XPath

is used for searching across collections of documents. To search efficiently, indices can

be created on elements and on attributes. Full-text search is not available. To save parts

of documents, XUpdate can be used. Xindice is suitable for collections of many small

documents.

Infonyte [Inf03a] is designed for storing single large documents up to one terabyte. To

achieve this, a DOM implementation is used, that builds the object hierarchy not in main

memory but in the background memory of the DBMS. It is therefore called “Persistent

DOM”. XQL, XPath and XSLT can be used for querying documents. Infonyte is a native

XML DBMS.

As mentioned above, native XML databases are not appropriate for RelAndXML ,

since they save documents in their entirety instead of in fragments. Furthermore, the

companies’ discretion about technical details makes these products rather uninteresting

for our research project.

44 Chapter 3: Selecting a Database System for RelAndXML

3.2.4 Object-Relational Database Systems

Object-relational database management systems (ORDBMS) provide very robust database

technology. An XML interface to a relational DBMS offers the combination of this tech-

nology and the advantages of XML delivery. Complex queries may be written in SQL

and their results may be formatted as XML. The data may be accessed through all exist-

ing applications to an object-relational database, like query tools, browsers, data loaders,

and data exporters. Other important aspects are the sophisticated transaction management

and the recovery mechanisms in today’s ORDBMSs. Moreover, the interoperability with

other object-relational databases can be used for the federation of databases.

The most popular ORDBMSs (Oracle, IBM DB2) and the relational system Microsoft

SQL Server are all XML enabled. There also exists numerous middleware, that is mostly

DBMS-independent [Bou03b]. Middleware also works with systems which are not XML

enabled (e.g. PostgreSQL). With XML add-ons, the data may be manipulated with XML

query languages like XPath and XQuery. XML documents can be saved in their entirety,

as larger or smaller fragments.

We think, the object-relational technology is the most interesting for our research

project, because of its versatility, robustness, and the enormous standardization efforts for

SQL (see Subsection 3.3.1). Also when we started this project back in 1999, the XML

query languages were just about to be designed, so we thought it was safer to have SQL

access at least.

The following section discusses object-relational technology in more detail. Object-

-relational data can be fairly easily expressed in XML, but loading data from an arbitrary

XML document into an object-relational database can be difficult; we cover methods for

storing XML documents in object-relational databases in Chapter 4.

3.3 Various Aspects of Object-Relational Database Man-

agement Systems

This section about various aspects of object-relational DBMSs starts with an overview of

the SQL standard. Next, we describe some features like new data types and recursive SQL

that we either are using for RelAndXML or at least considered using during the design

phase (in this case, we explain why we decided against using them). The availability

of these features influenced our decision for a particular DBMS. We also explain the

standardization efforts for XML extensions (SQL/XML) and the quite different current

XML extensions.

Section 3.3: Various Aspects of Object-Relational DBMSs 45

We considered four DBMS products and refer to the versions, which were the latest

in March 2003. These are

● IBM DB2, Version 8.1 – called DB2 – homepage at [DB203]

● IBM Informix, Version 9.3.1 – called Informix – homepage at [Inf03b]

● Oracle9i, Release 2 – called Oracle – homepage at [Ora03]

● PostgreSQL, Version 7.3 – called PostgreSQL – homepage at [Pos03]

● Microsoft SQL Server 2000 – called SQL Server – homepage at [MSS03]

We have worked with DB2, PostgreSQL and SQL Server, but not with Oracle or

Informix. The information, which features are implemented in which system, is mainly

taken from [Tür03] or other cited literature, where we could not test the features ourselves.

SQL Server actually is not advertised as being object-relational, although it has many of

the newer features (but not the “object” features explained below). We therefore refrain

from writing “(object-) relational systems” in the following.

3.3.1 SQL Standards

The SQL standard has undergone many revisions and its parts were often published in

between versions. We give a short overview.

The first standard for SQL was passed by the American National Standards Institute

(ANSI) in 1986 and was accepted by the International Organization Standardization (ISO)

in 1987. The following work on the standard was called SQL2, and in 1992, a major

revision called SQL-92 was passed by ANSI and ISO. We assume, the reader is familiar

with this version of the standard and give just a brief refresher, which aspects are included:

SQL-92 provides a data definition language (DDL) to create tables, a data manipulation

language (DML) with constructs to insert, update, and delete rows from tables as well

as query expressions to retrieve selected rows from one or more tables. It also has a set

of basic data types for columns, a notion of privileges to control access to tables as well

as declarative integrity constraints and the notion of referential integrity. Other features

include outer joins, catalogues, domains, and temporary tables.

Accordingly, the work on the next generation was called SQL3; some parts of it were

published in 1999 as SQL:19992. Since SQL:1999 integrates aspects from object-oriented

2A note about the naming conventions: The change to use a colon instead of the hyphen was made to

align with the conventions of the ISO, rather than with the ANSI’s conventions as before. This reflects the

increasingly international character of the SQL standards. The change to add the century indicator to the

year was made in 1999, when the “Year 2000 problem” was addressed throughout the world. Nevertheless,

the unofficial term SQL-99 is also in use.

46 Chapter 3: Selecting a Database System for RelAndXML

technology, most DBMS products with SQL:1999 features call themselves “object-re-

lational”. Structured types are user-defined types with attributes and methods, and are

similar to classes. A class hierarchy can be built, since structured types can be subtyped.

Objects of structured types do not necessarily have an object identifier such that a basic

object-oriented aspect is not realized.

We are mainly interested in the new basic data types and type constructors (see Sub-

section 3.3.2) and in recursive SQL queries (see Subsection 3.3.3 on page 48). Recursive

queries are part of SQL/PSM (Persistent Stored Modules), which specifies the ability to

define functions and procedures which are written in SQL or in a host programming lan-

guage and which are invoked from SQL programs. These functions and procedures are

commonly called stored procedures, because they are actually stored right in the database

itself. SQL/PSM also defines a number of procedural SQL statements like WHILE-DO,

REPEAT-UNTIL, IF-THEN-ELSE, and CASE, besides the recursive SQL queries, thus

making SQL computationally complete for the first time.

The next revision of the SQL standard is expected to be published in 2003, thus called

SQL:2003. It contains all parts of SQL:1999 as well as a new part called SQL/XML

(XML-Related Specifications) that we describe in Subsection 3.3.5. Apart from SQL/XML,

SQL:2003 only contains some miscellaneous new functionality like a data type for big in-

tegers and a statement called MERGE which is a combined insert and update command.

Generated columns, sequence generators and identity columns are covered in Subsec-

tion 3.3.4.

The vendors still have considerable work to do to conform to SQL:1999 and cur-

rently, no product is claiming conformance to SQL:1999. According to Melton and Si-

mon ([MS02], p. 55), “conformance to Core SQL means that a DBMS product contains

all of Entry SQL-92, plus much of Intermediate SQL-92 and some of Full SQL-92, plus

a few new SQL:1999 features.”3 The authors describe SQL:1999 in two volumes thor-

oughly [MS02, Mel03]. A more compact book which also covers SQL:2003 is [Tür03] by

Türker. A comprehensive overview of the SQL standard is given in the article [MKF
�

03]

by Michels et al.

3.3.2 SQL:1999 – New Basic Data Types and Type Constructors

SQL:1999 defines three new basic data types: BOOLEAN, BLOB, and CLOB.

The BOOLEAN data type can have one of three literal values: TRUE, FALSE, or UN-

KNOWN; yet, UNKNOWN and NULL are considered the same4. This data type is imple-

mented in Informix and PostgreSQL, but not in DB2, Oracle and SQL Server. The usual

3The authors provide a comprehensive list of the Core SQL features in [MS02], pages 801–807.
4We think this is more likely a source of confusion than an aid to the user.

Section 3.3: Various Aspects of Object-Relational DBMSs 47

work-around is to declare a CHARACTER(5) data type with permissible values of ’true’ or

’false’.

The CLOB data type is used for “Character Large Objects” (for documents); the BLOB

data type is meant for handling “Binary Large Objects”, e.g. for embedding a GIF file

within a database row. The size of CLOB and BLOB columns can be specified using K,

M, or G for kilo-, mega-, or giga-, respectively. Both data types are supported by all the

mentioned DBMS products. In PostgreSQL and SQL Server, the CLOB data type is called

TEXT; the BLOB data type is called TYPEA in PostgreSQL and IMAGE in SQL Server.

SQL:1999 offers the anonymous type constructors ROW and ARRAY. The type con-

structor ROW allows to create nested tables: the value of a single column is a tuple of

values, for example if an address column contains the fields street, city, and zipcode. It is

only implemented in Informix. The ARRAY type, which is implemented in PostgreSQL,

allows to store ordered collections of values in one column of a database table up to the

specified maximum cardinality, for example, if a column knowledgeOfLanguages holds

an array with up to eight languages. Informix has a LIST type which is not included in

SQL:1999.

Structured types, which allow to store objects with attributes and methods, are imple-

mented in DB2 and Oracle.

SQL:

1999

DB2 Informix Oracle PostgreSQL SQL

Server

BOOLEAN ✔ ✕ ✔ ✕ ✔ ✕

BLOB ✔ ✔ ✔ ✔ TYPEA IMAGE

CLOB ✔ ✔ ✔ ✔ TEXT TEXT

ROW ✔ ✕ ✔ ✕ ✕ ✕

ARRAY ✔ ✕ ✕ ✕ ✔ ✕

LIST ✕ ✕ ✔ ✕ ✕ ✕

Structured Types ✔ ✔ ✕ ✔ ✕ ✕

Recursive Queries ✔ ✔ ✕ ✔ ✕ ✕

Table 3.1: SQL:1999 Features in ORDBMS Products

Table 3.1 summarizes the features and their availability in current ORDBMS products.

In RelAndXML , we have boolean attributes, but they can almost as well be saved with a

character data type, so this is not a necessary feature. We use the CLOB data type, which

is fortunately available in all of these DBMS products. We explained the ROW, ARRAY

48 Chapter 3: Selecting a Database System for RelAndXML

and LIST type constructors, since they are used in a special clause of recursive SQL and/or

in some papers that we cite in Chapter 4.

3.3.3 SQL:1999 – Recursive Queries

With recursive SQL queries, we are able to retrieve all the nodes which are connected

to a specific node in a graph or we can compute the transitive closure of a set of nodes,

for example. These questions might arise when XML documents are saved as a set of

edges.5 Recursive queries are realized with the help of named queries. A named query is

a query expression, which can be referenced and therefore reused within the immediately

following query. It is like a temporary view, which only exists during the execution of the

recursive query.6

As an example, we save the source and target nodes of the edges of two XML graphs

in an Edge table (see Table 3.2).

Edge

source target

A1 A2

A2 A3

A1 A4

A4 A5

A5 A6

A6 A7

B1 B2

B2 B3

B3 B2

B1

B2

B3

A2

A5

A7

A1

A6

A3

A4

Graph A Graph B

Table 3.2: Edge table for two XML Graphs

First, we try to retrieve all the nodes that can be reached from the root “A1”, called the

transitive closure of “A1”. The corresponding recursive query is shown as Listing 3.1 on

the facing page. The WITH clause defines the named query Treedata with columns source

and target as the result set of the two subqueries in parentheses which are combined with

UNION ALL. The first subquery (lines 3 to 5) is called initial subquery or seed and finds

a set of rows from which the recursion is started. Our seed consists of the first two rows

5See Section 4.2 on page 73.
6The advantage to a usual view is that a temporary view does not need to be deleted with a DROP VIEW

command.

Section 3.3: Various Aspects of Object-Relational DBMSs 49

in the table shown as Table 3.3(a). The second subquery (lines 7 to 9) is the recursive

subquery, which accumulates more rows based on their relationship with the rows in the

seed; this is done with a join between Treedata and Edge. The recursion terminates when

no new tuples are found; this is called a fixpoint (the problem of termination is addressed

below). The last line contains the non-recursive part of the coded query; it retrieves all

rows from the temporary view and thus returns the result set of our recursive query shown

as Table 3.3(a).

Listing 3.1 Recursive query to retrieve the transitive closure of “A1”

1 WITH RECURSIVE Treedata(source, target) AS

2 (

3 SELECT source, target

4 FROM Edge

5 WHERE source = ’A1’

6 UNION ALL

7 SELECT In.source, Out.target

8 FROM Treedata In, Edge Out

9 WHERE In.target = Out.source

10)

11 SELECT * FROM Treedata;

source target

A1 A2

A1 A4

A1 A3

A1 A5

A1 A6

A1 A7

(a) Nodes connected to “A1”

source target

A1 A2

A2 A3

A1 A4

A4 A5

A5 A6

A6 A7

(b) Edges of the graph A

Table 3.3: Result sets of the basic recursive queries

50 Chapter 3: Selecting a Database System for RelAndXML

If we replace line 7 of our recursive query by

7 SELECT In.target, Out.target

we get all the edges of the graph A (see Table 3.3(b)).

The termination of recursive queries is a central problem. A recursive query is safe (al-

ways terminates) when it has a fixpoint. A fixpoint exists when the number of rows being

accumulated into the result of a recursive query is monotone increasing. The monotonic-

ity assures that no tuples of the temporary view are updated or deleted. It can be violated

by negation with NOT EXISTS, EXCEPT, INTERSECT, and DISTINCT, as well as by ag-

gregate and arithmetic functions. Therefore, these SQL features are only allowed in the

non-recursive part at the end of a recursive query.

The termination is also put at risk when the data contains cycles like the XML graph

B in Table 3.2. SQL:1999 provides two ways to deal with cycles: limit the depth of

recursion or use a CYCLE clause. We give examples for both possibilities. The recursive

query in Listing 3.2 retrieves all the edges of graph B and is limited to depth 4. The depth

is computed in the third column, called connections, of the named query; it is initialized

with 0 in the initial query and increased by 1 in each step of the recursive query.

Listing 3.2 Recursive query with depth limited to 4

1 WITH RECURSIVE Treedata(source, target, connections) AS

2 (

3 SELECT source, target, 0

4 FROM Edge

5 WHERE source = ’B1’

6 UNION ALL

7 SELECT In.target, Out.target, In.connections+1

8 FROM Treedata In, Edge Out

9 WHERE In.target = Out.source

10 AND In.connections < 4

11)

12 SELECT DISTINCT source, target FROM Treedata;

The temporary view Treedata of this recursive query contains duplicate rows (see

Table 3.4(a)), since the recursion already occurs at depth 3. The duplicates are eliminated

by the non-recursive part in line 12, giving us the result set shown as Table 3.4(b). The

disadvantage of limiting the depth of recursion is that the limit must be chosen by the user

who might not know the data well enough for this task.

Section 3.3: Various Aspects of Object-Relational DBMSs 51

source target connections

B1 B2 0

B2 B3 1

B3 B2 2

B2 B3 3

B3 B2 4

(a) Temporary view

source target

B1 B2

B2 B3

B3 B2

(b) Result set

Table 3.4: Temporary view and result set for the depth-limited query

The second way to ensure termination of recursive queries is using a CYCLE clause.

Listing 3.3 shows a version of Listing 3.2 with a CYCLE clause instead of the depth limit.

The temporary view of this query is shown in Table 3.5 and its result set is the same as in

Table 3.4(b); the explanation follows below.

Listing 3.3 Recursive query with cycle clause

1 WITH RECURSIVE Treedata(source, target) AS

2 (

3 SELECT source, target

4 FROM Edge

5 WHERE source = ’B1’

6 UNION ALL

7 SELECT In.target, Out.target

8 FROM Treedata In, Edge Out

9 WHERE In.target = Out.source

10)

11 CYCLE source, target SET cyclemark

12 TO ’1’ DEFAULT ’0’ USING cyclepath

13 SELECT DISTINCT source, target FROM Treedata;

The cycle detection of the DBMS saves the accumulated values of the source and

target cells in column cyclepath, which needs as data type a combination of ARRAY and

ROW. The cyclemark is set to its default value ’0’, as long as there are no duplicates in

cyclepath. When a duplicate is found, cyclemark is set to ’1’, and the query execution is

continued with the non-recursive part.7

7The values of cyclemark need not be ’0’ and ’1’, but they must be of type CHAR(1).

52 Chapter 3: Selecting a Database System for RelAndXML

source target cyclemark cyclepath

B1 B2 0 [(B1,B2)]

B2 B3 0 [(B1,B2),(B2,B3)]

B3 B2 0 [(B1,B2),(B2,B3),(B3,B2)]

B2 B3 1 [(B1,B2),(B2,B3),(B3,B2),(B2,B3)]

Table 3.5: Temporary view for the query with CYCLE clause

SQL:1999 also provides recursive views, which are views that are defined with a re-

cursive query. In Listing 3.4, we show an example with a recursive view Data with all

successor nodes of the node “A4“ of graph A (see Table 3.2). The view is shown as Ta-

ble 3.6.

Listing 3.4 Creating a view with a recursive query

1 CREATE RECURSIVE VIEW Data(source, target) AS

2 WITH RECURSIVE Treedata(source, target) AS

3 (

4 SELECT source, target FROM Edge WHERE source = ’A4’

5 UNION ALL

6 SELECT In.target, Out.target

7 FROM Treedata In, Edge Out

8 WHERE In.target = Out.source

9)

10 SELECT * FROM Treedata;

source target

A4 A5

A5 A6

A6 A7

Table 3.6: The view Data

Oracle and DB2 support recursive queries, but not the CYCLE clause8. Note that

in DB2, the keyword RECURSIVE must be omitted. Informix, PostgreSQL, and SQL

Server do not support recursive queries. For RelAndXML , we use recursive queries

in the algorithm Rel2XML (see Section 7.4) that generates an XML document from the

8Oracle and DB2 do not support the ARRAY and ROW type constructors necessary for the CYCLE clause.

Section 3.3: Various Aspects of Object-Relational DBMSs 53

relational tables. We also implemented a version of this algorithm that works without

recursive queries, such that we are not restricted to use a particular DBMS.

3.3.4 SQL:2003 – Generated Columns, Sequence Generators and Iden-

tity Columns

SQL:2003 defines three possibilities for generating or computing values of columns. Iden-

tity columns combine the concepts of generated columns and sequence generators.

A generated column is a column whose value is computed from values of other

columns in the same row. To give an example, suppose we had an Employee table with

columns salary and bonus. A column total_pay could be declared to be a generated col-

umn with the keywords GENERATED ALWAYS AS and the formula salary + bonus.

ALTER TABLE Employee

ADD COLUMN total_pay GENERATED ALWAYS AS (salary + bonus)

A sequence generator produces a sequence of numerical values. It has the following

syntax; most of it is self-explanatory.

CREATE SEQUENCE <sequencename>

[START WITH <initialvalue>]

[INCREMENT BY <incrementalvalue>]

[NO MINVALUE | MINVALUE <minimalvalue>]

[NO MAXVALUE | MAXVALUE <maximalvalue>]

[NO CYCLE | CYCLE]

NEXT VALUE FOR <sequencename> returns the next value of a sequence.9 When

the maximal value is reached, and the option NO CYCLE is in use, the DBMS throws an

exception. When CYCLE is in use, the generation starts again with the minimal value. Se-

quence generators can be used when identity columns are not implemented in the chosen

DBMS.

When a column is declared to be an identity column, then the DBMS will generate a

unique value for that column in each row as it is inserted into the table.

ALTER TABLE Employee

ADD COLUMN dbmsId INT GENERATED ALWAYS AS

IDENTITY (START WITH 10000

MINVALUE 10000 MAXVALUE 99999 NO CYCLE)

9nextval(’<sequencename>’) in PostgreSQL

54 Chapter 3: Selecting a Database System for RelAndXML

Generated and identity columns are features that where implemented in DB2, and then

integrated into SQL:2003. The implementations in PostgreSQL and SQL Server do not

conform to this standard. Sequence generators are supported by all mentioned DBMS

products except by SQL Server.

SQL:

2003

DB2 Informix Oracle PostgreSQL SQL

Server

Generated Columns ✔ ✔ ✕ ✕ ✕ (✔)

Sequence Generators ✔ ✔ ✔ ✔ ✔ ✕

Identity Columns ✔ ✔ ✕ ✕ (✔) (✔)

Table 3.7: SQL:2003 Features in ORDBMS Products

We considered using sequence generators or identity columns for the primary key

columns in RelAndXML , but decided against it for the following three reasons. First, for

RelAndXML we need identity values which are unique within the system and not just

within the table.10 Second, within the GUI we need an identity for a new object as soon

as it is created and long before it is inserted into the database for the first time. Third, we

want to send all the INSERT commands for an XML document at once; this is impossible

with sequence generators since generated primary key values are usually used as foreign

key values in other INSERT statements for the same document.

3.3.5 SQL:2003 – SQL/XML

SQL/XML will standardize the various, mostly incompatible XML extensions that OR-

DBMS products have today (see the following Subsection 3.3.6). It consists of three major

features: an XML data type, functions to generate XML from SQL data, and a mapping

from SQL tables to XML documents.

Cells of the new XML data type are able to store XML documents, individual elements,

sequences of elements (with no single root), text nodes, and mixed content. Attributes can

exist within an element, but they are not legal XML values themselves. XML comments

and processing instructions are not currently allowed within the XML data type.

The following functions produce values of the new XML data type from SQL data.

� XMLGEN generates an XML value based on a query that is written in XQuery.

10One can work around this by adding the tablename as prefix, everytime a value is read from the database

and cutting it before writing to the database, but that solution is tedious.

Section 3.3: Various Aspects of Object-Relational DBMSs 55

� XMLELEMENT creates XML elements from database columns, these elements might

also have attributes which are specified with XMLATTRIBUTES.

� XMLFOREST produces a sequence of XML elements from a sequence of columns.

� XMLCONCAT concatenates several XML elements.

� XMLAGG produces a single XML value from a group of XML values.

In the following example, we use XMLELEMENT to create an element for each spec-

ified row of an Assignment table. For more information and examples, see [EM02b,

Mel03, SQL03, Tür03].

SELECT a.sid,

XMLELEMENT(NAME “A”, XMLATTRIBUTES(a.sid), a.number)

AS “data”

FROM Assignment a

sid number

1002 Assignment 2

1003 Assignment 3

(a) Table Assignment

sid data

1002 Assignment 2

1003 Assignment 3

(b) Result Set

SQL/XML also defines a mapping from tables to XML documents, see Subsection 4.1.1

on page 60. The standardization has not been finished, so some features might still be

changed or added.

3.3.6 XML Extensions of Some Current ORDBMS Products

The DBMS products DB2, Oracle and SQL Server do have an XML extension, but they all

use proprietary storage formats and functions. The standard XML data type is very similar

to the one used in Oracle. Informix and PostgreSQL do not have an XML extension.

Hopefully, the vendors will implement SQL/XML soon.

When we were in the design phase for RelAndXML , the XML extensions were still

in their infancy and had no standard. So we decided not to use any of these XML features,

but to implement the shredding and generating of XML documents with Java and JDBC

(see Chapter 7).

Nevertheless, we explain the XML concepts of DB2, Oracle and SQL Server shortly

in the remainder of this subsection. For more information, see [KM03, Sch03b] or the

web sites of the products [DB203, Ora03, MSS03].

56 Chapter 3: Selecting a Database System for RelAndXML

IBM DB2

The IBM DB2 XML Extender gives a choice between storing the entire XML document

or storing it as a collection of XML fragments, and therefore is a hybrid XML database.

With the XML Column option, an entire XML document is saved as an XML user-defined

type (UDT) column. Three UDTs are provided: XMLFile for a reference to an exter-

nal XML file, XMLVarchar for short internal documents, and XMLCLOB for long internal

documents. User-defined functions (UDFs) are used for insert, select and update opera-

tions. Elements and attributes can be indexed for faster search results. Document order is

preserved and a DTD need not be available.

XML Collection denotes methods for an XML to object-relational tables mapping and

vice versa. This is realised with a group of stored procedures with the prefix dxx like

dxxGenXML for composing and dxxShredXML for decomposing XML. The mapping is

described with a Data Access Definition (DAD), which is an XML document itself. It can

access both XML Columns and SQL standard types. XML Collection only works well

for valid XML, since a DAD conforms to a DTD. The document structure is preserved by

the DAD, but the complete document order is lost.

The TextExtender adds full text functionality as known from information retrieval.

Oracle 9i

Oracle 9i provides the Oracle XML Developer’s Kit (Oracle XDK) which includes meth-

ods to read, transform, manipulate, and generate XML documents. The XML SQL Utility

(XSU) includes three essential components: the export of database content as XML doc-

uments, the native storage of XML with the data type XMLType with the possibility to use

XPath queries, and the structured mapping of XML data in relations and attributes.

The export and import methods map object-relational structured types to the structure

of an XML document: an attribute with a structured type is mapped to a nested subele-

ment. Referential integrity constraints are mapped to ID/IDREF links within a document.

The data type XMLType, which is new in version 9i, saves XML documents or frag-

ments; it is similar to the data type XML in SQL/XML. The storage is internally based

on CLOBs. SELECT statements with embedded XPath expressions are used to search on

these columns. There are no update operations on parts of a XMLType cell. To change the

data it must be replaced in its entirety.

Oracle 9i supports the hybrid storage of XML documents. Data-centric parts can be

saved in usual SQL data type columns and document-centric parts in XMLType columns.

Queries and export methods work on all data types such that combined XML documents

can be retrieved as well.

Information retrieval methods are also included in this DBMS.

Section 3.4: Summary: RelAndXML as Middleware for an ORDBMS 57

Microsoft SQL Server 2000

The XML extension of the SQL Server is called SQLXML despite its limited similarity

to the standard SQL/XML. The focus is on publishing relational data as XML. SQLXML

extends SQL by adding a FOR XML clause to the end of the SELECT statement, which

formats the rows of the result set as an XML document. Options to the FOR XML clause

allow formatting the data in an attribute-oriented or element-oriented way.

XML documents can be stored with the aid of the function OpenXML, which reads an

XML document and returns a result set according to an XPath expression. By using this

result set in an INSERT command, the extracted data can be stored in the database.

Microsoft SQL Server does not have a special XML data type and provides only func-

tionality for data-centric, but not for document-centric XML. It therefore is an XML en-

abled database.

3.4 Summary: RelAndXML as Middleware for an OR-

DBMS

The aim of this chapter was to select the appropriate type of database for RelAndXML .

We showed that native XML databases are not suitable because of their characteristic to

save entire XML documents. XML enabled databases do not preserve comments and

document order, so they cannot be used without an add-on. RelAndXML should be

based on a hybrid XML database or be implemented as middleware, such that the special

characteristics of hypertext-centric XML can be supported.

We described several data models and chose the object-relational because of its promis-

ing versatility. We considered the most popular (object-) relational DBMS products IBM

DB2, IBM Informix, Oracle, PostgreSQL, and Microsoft SQL Server (see Table 3.8).

SQL:

1999

DB2 Informix Oracle PostgreSQL SQL

Server

BOOLEAN ✔ ✕ ✔ ✕ ✔ ✕

CLOB ✔ ✔ ✔ ✔ TEXT TEXT

Recursive Queries ✔ ✔ ✕ ✔ ✕ ✕

XML Data Type SQL:

2003

✕ ✕ (XMLType) ✕ ✕

XML Extension ✕ ✔ ✕ ✔ ✕ ✔

Table 3.8: SQL Features in ORDBMS Products

58 Chapter 3: Selecting a Database System for RelAndXML

Of the various SQL:1999 features, we need the CLOB data type for larger XML frag-

ments, which is supported by all the mentioned products. The BOOLEAN data type is

a desirable feature for RelAndXML , but with no big consequences if it is not available.

We use recursive queries in the algorithm Rel2XML (see Section 7.4) that generates an

XML document from the relational tables. Since we also implemented a version of this

algorithm working without recursive queries, this feature does not need to be available,

but probably gives a speed bonus.

The new standard XML data type of SQL:2003 could of course be used instead of

CLOB, but it is not yet available in the mentioned products – the XMLType of Oracle is

closest to the standard. We refrained from using the proprietary XML extensions, since

they require an implementation that is very product-specific and would not work with

other products without considerable effort.

In summary we meet our goal to keep RelAndXML independent from a single partic-

ular DBMS product. Any of the mentioned products would be appropriate. Our decision

was also influenced by the need for free or at least inexpensive licences for the products.

We worked with a free trial version of DB2 to implement the recursive queries and then

decided to switch to the free PostgreSQL product.

Chapter 4

Storing XML Documents in

Object-Relational Databases

Storing XML documents in databases has been a major topic in database research in the

last few years [CFP00, Wid99]. Approaches to this topic are dependent on the desired

application area and can be divided into two main directions: some concentrate on data-

centric and others on document-centric documents. To name the basic possibilities: The

XML data can be stored as one document, divided into smaller sections and stored as

fragments, or broken up into individual elements. Document-centric documents are often

stored in their entirety, whereas data-centric documents are often shredded into individual

elements.

The concept for storing data-centric XML in (object-) relational database systems

((O)RDBMS) is to define a mapping between the DTD and the database schema [Bou01,

RP02, STH
�

99]. The advantages of these mappings are that query writing is easy and

that the DBMS (or the XML Parser using the DTD) checks data consistency. The obvious

draw-back is that these mappings only work for valid XML.

Many approaches for storing document-centric XML documents fragment down to

every single element [FK99b, Kud01, SYU99], which leads to a large number of database

tuples per document. This makes the reconstruction of documents expensive. These ap-

proaches do preserve document order, but they make reusing text modules impossible.

In this chapter, we start developing an approach to store hypertext-centric XML in

an object-relational database. We plan to save the data-centric text modules in a Core ,

the document-centric additional text and metadata in an Extension , and the data-centric

XSLT text modules as Presentation . The details of this approach will be explained in

Chapter 5. Let us now take a look at both data-centric and document-centric approaches

to find the best combination.

60 Chapter 4: Storing XML Documents in Object-Relational Databases

4.1 Some Methods to Save Data-Centric XML

In this section, we discuss different aspects of the storing of data-centric XML. In the

first subsection, we describe how to present data from a relational database as an XML

document, especially the representation of foreign key-modeled relationships. For Rel-

AndXML , we will use the object-based mapping with representation of associated ob-

jects contained in this subsection. We describe in the second subsection how a DTD can

be mapped to a database schema, such that valid XML documents can be stored in the

database. Since there are many papers on this topic, we summarize the most important

ones in the third subsection. In the last subsection, we explain briefly how to derive a

DTD from a database schema.

4.1.1 Mapping Database Content to XML Documents

To explain the publishing of relational data as an XML document, we use a database

consisting of the tables Assignment and Course, which are shown with some sample

content in Table 4.1. Note that there is a many-to-one relationship between the tables

through the foreign key columns courseUid and courseVersion in Assignment.

Assignment

uid version published number dateOfIssue

A2 1.0 false Assignment 2 October 14, 2002

A3 1.0 false Assignment 3 October 21, 2002

deadline courseUid courseVersion

Monday, October 21, 2002, 4pm FCS1 1.0

Monday, October 28, 2002, 4pm FCS1 1.0

Course

uid version name semester

FCS1 1.0 Fundamentals of Computer Science 1 Winter 2002/03

Table 4.1: Tables Assignment and Course

Table-based mapping

The simplest mapping is the table-based mapping, which maps tables to an XML doc-

ument in the following way: A root element is created with the name of the table. It

contains a row element for each row in the table. Each row element consists of a sequence

Section 4.1: Some Methods to Save Data-Centric XML 61

of column elements, each with the name of the column. Each column element contains

a data value. This mapping is element-oriented, since it maps everything to an element.

The content of the Assignment table leads to the following XML data:

<assignment>

<row>

<uid>A2</uid>

<version>1.0</version>

. . .

</row>

<row>

<uid>A3</uid>

<version>1.0</version>

. . .

</row>

</assignment>

When several tables are mapped, the root element is named like the database (here

<infdb>) and contains the table elements (here <assignment> and <course>).

<infdb>

<assignment>

. . .

</assignment>

<course>

. . .

</course>

</infdb>

The table-based mapping is used by many of the middleware products that transfer

data between an XML document and a relational database [Bou03a], and it is defined in

SQL/XML [MKF
�

03].

A variation of this mapping uses the table name element instead of the row element

and the plural of the table name instead of the table name element.

<assignments>

<assignment>

<uid>A2</uid>

<version>1.0</version>

. . .

</assignment>

62 Chapter 4: Storing XML Documents in Object-Relational Databases

<assignment>

<uid>A3</uid>

<version>1.0</version>

. . .

</assignment>

</assignments>

Also, the mapping can specify XML attributes for some or all of the columns (in the

latter case, it is called attribute-oriented); the following lines show a mixed mapping.

<assignment uid=”A3” version=”1.0” published=”false”

courseUid=”FCS1” courseVersion=”1.0”>

<number>Assignment 3</number>

<dateOfIssue>October 21, 2002</dateOfIssue>

<deadline>Monday, October 28, 2002, 4pm</deadline>

</assignment>

The table-based mapping is also suitable for result sets of queries. The rows of the

result set are listed in one of the mentioned manners with a resultset element as root ele-

ment.

There are two ways to deal with null values: (1) do not include the corresponding

element or attribute to the document, or (2) include the corresponding element or attribute

to the document with a zero-length string value.

At first sight, the first way seems to be the more correct way, since the common defini-

tion for a null value is to be “just not there” for unkown reasons, and a zero-length string

value is clearly different from a null value. The second way is used to show what ele-

ments and attributes are available and not (yet) filled, and is therefore often used [Bou01].

We use this way for RelAndXML . The user works with a GUI and chooses from text

modules, which suggest elements and attributes to the user. In this situation it is the best

solution to give elements and attributes a zero-length string value as long as they are not

yet filled.

Object-based Mapping with Representation of Associated Objects

So far, we can map complete tables or result sets. Now, we are interested in a mapping

suitable for objects, for example to get an XML document with all the relevant infor-

mation on “Assignment 3”. For this mapping we want to improve the representation of

associated objects – up to now, only the foreign key values are mapped. For example,

Section 4.1: Some Methods to Save Data-Centric XML 63

the assignment above contains the foreign key values for the corresponding course, but

not the course itself. Also, when the course is mapped in a table-based way, it does not

have any information about its assignments. Therefore, we suggest to use elements for

the relationships and to consider including the corresponding objects. Listing 4.1 shows

an XML document for “Assignment 3” where the associated course element is included

within an element isAssignmentOfCourse into the document. Note that this is exactly our

running example “Assignment 3”, see Listing 2.8 on page 24.

Listing 4.1 Copy of XML running example “Assignment 3”

<assignment uid=”A3” version=”1.0” published=”false”>

<number>Assignment 3</number>

<dateOfIssue>October 21, 2002</dateOfIssue>

<deadline>Monday, October 28, 2002, 4pm</deadline>

<isAssignmentOfCourse>

<course uid=”FCS1” version=”1.0”>

<name>Fundamentals of Computer Science 1</name>

<semester>Winter 2002/03</semester>

</course>

</isAssignmentOfCourse>

</assignment>

To prevent an infinite loop, we have to choose at most one side of the relationship,

which includes the other side. It is okay to include all columns of the corresponding

table, but not to consider other relationships. One might think that for one-to-many re-

lationships it should always be the “one” side which includes the “many” side, because

this fits naturally into the XML tree structure. We prefer to choose the side that makes se-

mantically the most sense. For example, we need the information about the name and the

semester of a course to be printed on each assignment, so we include the course (which is

the “one” side of the relationship) into the assignment (which is the “many” side). When

the XML document for the course is assembled, we get a list with its assignments (see

Listing 4.2 on the next page), which is more useful than a huge document including all

assignments completely.

In the literature, there often is no element for the relationship [STH
�

99, Bou01] or

just one relationship element which includes all associated objects [SSB
�

01]. In the first

case, the mapping does not work properly whenever there is more than one relationship

between two tables. In the latter case, relationship attributes, e.g. ordinal, must be part of

the associated element, e.g. assignment in Listing 4.2, which is semantically less clear.

64 Chapter 4: Storing XML Documents in Object-Relational Databases

Listing 4.2 XML running example “Course FCS 1”

<course uid=”FCS1” version=”1.0”>

<name>Fundamentals of Computer Science 1</name>

<semester>Winter 2002/03</semester>

<hasAssignments ordinal=”2”>

<assignment uid=”A2” version=”1.0” published=”false”>

<number>Assignment 2</number>

<dateOfIssue>October 14, 2002</dateOfIssue>

<deadline>Monday, October 21, 2002, 4pm</deadline>

</assignment>

</hasAssignments>

<hasAssignments ordinal=”3”>

<assignment uid=”A3” version=”1.0” published=”false”>

<number>Assignment 3</number>

<dateOfIssue>October 21, 2002</dateOfIssue>

<deadline>Monday, October 28, 2002, 4pm</deadline>

</assignment>

</hasAssignments>

</course>

Also, the relationship names should be unique in order to support reflexive relationships

as well.

We developed the object-based mapping with representation of associated objects for

the Core part of RelAndXML and summarize it here. Examples are shown in Listing 4.1

and in Listing 4.2.

1. Each database tuple is mapped to an XML element with the name of the database

table.

2. A subset of the database attributes is mapped to XML elements, the rest to XML

attributes.

3. Relationships are mapped to relationship elements with unique names.

4. For each relationship, there is a rule fixing whether to insert the associated object.

Section 4.1: Some Methods to Save Data-Centric XML 65

4.1.2 Mapping a DTD to a Database Schema

The mappings of a DTD to a database schema describe rules for the creation of tables,

columns, and foreign key relationships for the element and attribute types of the DTD. If

RelAndXML is to be used for a new application area having a DTD, we can use such a

mapping to define an appropriate Core database schema.

We follow the descriptions of Bourret, who offers a comprehensive version in [Bou01]

and a summary in [Bou03a]. The object-relational mapping, as the author calls it, is used

by all currently available XML-enabled relational databases and some middleware prod-

ucts. For this mapping, an object view is defined for an XML document that models the

data in the document as a tree of objects similar to our graph presentation (see Subsec-

tion 2.1.7). The object view is then mapped to a database schema. Complex element types

are element types which have attributes, contain subelements and/or mixed content. They

are usually viewed as classes and mapped to a table. Simple element types have PCDATA-

only content and are, as well as single-valued attributes, usually viewed as properties and

mapped to columns.

We quote the five steps to generate a relational schema from a DTD from [Bou03a]

and explain them using the SmallCore DTD from Chapter 2, which is shown again in

Listing 4.3. The resulting table structure is shown in the Tables 4.2 to 4.5; a discussion

follows afterwards.

Step 1: For each complex element type, create a table and a primary key column.

We have four complex element types giving us four tables. Assignment, Question,

AsHasQu, and Paragraph get as primary key the column a_sid_pk, q_sid_pk, ahq_sid_pk,

and p_sid_pk, respectively. See Table 4.2.

Step 2: For each element type with mixed content, create a separate table in which

to store the PCDATA, linked to the parent table through the parent table’s primary

key.

The explanation for this step in [Bou03a] is not very concrete. We decided to create

a table Paragraph_MixedContent, in which the mixed content of a paragraph is saved

little by little. To store the sibling order, we add an ordinal column. The table structure

and its content for “Assignment 2” are shown in the Tables 4.3 and 4.4. Note that the

number of null values in this mixed content table grows with the number of alternative

elements in the DTD. In the earlier paper [Bou01], the author suggests to create one

table for the PCDATA and one for each alternative. This clearly requires more joins

for the reconstruction of objects. The content of these tables for the running example

66 Chapter 4: Storing XML Documents in Object-Relational Databases

Listing 4.3 Copy of the SmallCore DTD

1 <!-- Filename: smallcore.dtd -->

2 <!ENTITY % basic "uid CDATA #REQUIRED

3 version CDATA #REQUIRED

4 published (false | true) ’false’

5 date CDATA #IMPLIED">

6 <!ELEMENT assignment (number, dateOfIssue?, deadline?, asHasQu+)>

7 <!ATTLIST assignment %basic;>

8 <!ELEMENT asHasQu (question)>

9 <!ATTLIST asHasQu ordinal CDATA #IMPLIED>

10 <!ELEMENT question (paragraph)>

11 <!ATTLIST question %basic;

12 marks CDATA #IMPLIED>

13 <!ELEMENT number (#PCDATA)>

14 <!ELEMENT dateOfIssue (#PCDATA)>

15 <!ELEMENT deadline (#PCDATA)>

16 <!ELEMENT paragraph (#PCDATA | emph)*>

17 <!ELEMENT emph (#PCDATA)>

“Assignment 2” (see Listing 2.7 on page 23) is shown in Table 4.5. We suggest to use

stop tags for mixed content as explained on page 69.

Step 3: For each single-valued attribute of that element type, and for each singly-

occurring simple child element, create a column in that table. If the child element

type or attribute is optional, make the column nullable.

The single-valued attributes and singly-occurring simple child elements are mapped to

the columns as shown in Table 4.2.

Step 4: For each multi-valued attribute and for each multiply-occurring simple child

element, create a separate table to store values, linked to the parent table through

the parent table’s primary key.

This step does not apply to our example. Note that we could use an ARRAY column

instead of the separate table if this type constructor is available in the chosen DBMS.1

Step 5: For each complex child element, link the parent element type’s table to the

child element type’s table with the parent table’s primary key.

1See Subsection 3.3.2 on page 46.

Section 4.1: Some Methods to Save Data-Centric XML 67

There are three primary key/foreign key references: AsHasQu gets a foreign key a_sid_fk

to Assignment, Question gets a foreign key ahq_sid_fk to AsHasQu, and Paragraph is

connected to Question by the foreign key q_sid_fk. See Table 4.2.

Table Assignment

Column

name

Value is

nullable

Column

created in

a_sid_pk no Step 1

uid no Step 3

version no Step 3

published no Step 3

date yes Step 3

number no Step 3

dateOfIssue yes Step 3

deadline yes Step 3

Table Question

Column

name

Value is

nullable

Column

created in

q_sid_pk no Step 1

uid no Step 3

version no Step 3

published no Step 3

date yes Step 3

marks yes Step 3

ahq_sid_fk no Step 5

Table AsHasQu

Column

name

Value is

nullable

Column

created in

ahq_sid_pk no Step 1

ordinal no Step 3

a_sid_fk no Step 5

Table Paragraph

Column

name

Value is

nullable

Column

created in

p_sid_pk no Step 1

q_sid_fk no Step 5

Table 4.2: Tables for the SmallCore DTD

68 Chapter 4: Storing XML Documents in Object-Relational Databases

Table Paragraph_MixedContent

Column

name

Value is

nullable

Column

created in

p_sid_fk no Step 2

pcdata yes Step 2

emph yes Step 2

ordinal no Step 2

Table 4.3: Paragraph_MixedContent table for the SmallCore DTD

Paragraph

p_sid_pk q_sid_fk

4001 2001a

4002 2002b

a2001 is the system generated

identifier for the question with

uid=”Q2” and version=”1.0”
b2002 is the system generated

identifier for the question with

uid=”Q1” and version=”1.0”

Paragraph_MixedContent

p_sid_fk pcdata emph ordinal

4001 Prove 1

4001 Lemma 2

4001 2.2. 3

4002 Prove 1

4002 Lemma 2

4002 2.1. 3

Table 4.4: Content of the Paragraph tables for “Assignment 2”

Paragraph_Emph

p_sid_fk emph ordinal

4001 Lemma 2

4002 Lemma 2

Paragraph_PCDATA

p_sid_fk pcdata ordinal

4001 Prove 1

4001 2.2. 3

4002 Prove 1

4002 2.1. 3

Table 4.5: Content of the Paragraph tables for “Assignment 2” as in [Bou01]

Section 4.1: Some Methods to Save Data-Centric XML 69

Discussion

Data Types Since DTDs do not contain concrete data type information, the column data

types and lengths must be specified by hand.2 As mentioned before, we will use mostly

character data types for the InfDB database except for the sibling-order saving columns

ordinal, which are integers.

Null Values XML supports the concept of null data through optional element types and

attributes. If the value of an optional element type or attribute is null, it simply is not

included in the document. Therefore, they are mapped to nullable columns.3

Primary Keys The algorithm adds an additional primary key column to each table. If

XML data is retrieved from the database without including the primary key into the XML

document, it will not be possible to save an updated version of the document back to the

database (since new primary key values would be generated). On the other hand, if the

primary key is included, it should also be added to the DTD, otherwise the retrieved XML

documents will not be valid any more. Another solution is to specify already existing

attributes as primary key columns if possible. For example, the columns uid and version

are a suitable primary key for the tables Assignment and Question.

Changing Names Of course, names can be changed during the mapping. This is neces-

sary, for example, if the XML names are SQL keywords like SELECT or ORDER (SQL

is not case-sensitive), or contain characters that are not included in the character set of the

DBMS, e.g. map the element Straße to the column Strasse.

Complexity of the Database Schema In the example we have seen that we easily get

a fair amount of tables. Reducing the number of tables is desirable, since it reduces

the average number of joins needed for evaluating queries. Also, some tables might be

sparsely populated like the mixed content tables.

To reduce the number of tables we could decide to use complex element types with

mixed content as stop tags. This means the mixed content is saved as one piece including

the comprised tags. Also, we could combine AsHasQu and Question to a single table;

asHasQu is then a so-called wrapper element. This gives us two tables, shown in Ta-

ble 4.6, instead of six tables as before. (To be exact, the combined AsHasQu-Question

2Note that data types and lengths can be predicted from an XML Schema document.
3As mentioned before, attributes containing zero length strings and empty elements are not null, but

in spite of this definition, it is quite likely that XML documents will use empty (zero-length) strings to

represent null values.

70 Chapter 4: Storing XML Documents in Object-Relational Databases

table should be named AsHasQu like its wrapper element, but we apply the above rule

on changing names.) The new columns in Question are marked with “Step 6”. Table 4.7

shows the content of the Question table for “Assignment 2”. We use stop tags in the Core

of RelAndXML . Approaches with stop tags are called hybrid [KM00].

Table Assignment

Column

name

Value is

nullable

Column

created in

a_sid_pk no Step 1

uid no Step 3

version no Step 3

published no Step 3

date yes Step 3

number no Step 3

dateOfIssue yes Step 3

deadline yes Step 3

Table Question

Column

name

Value is

nullable

Column

created in

q_sid_pk no Step 1

uid no Step 3

version no Step 3

published no Step 3

date yes Step 3

marks yes Step 3

paragraph no Step 6

ordinal no Step 6

a_sid_fk no Step 6

Table 4.6: Reduced tables for the SmallCore DTD

Question

q_sid_pk uid version published marks

2001 Q2 1.0 false null

2002 Q1 1.0 false null

paragraph ordinal a_sid_fk

Prove <emph>Lemma</emph> 2.2. 2 1002a

Prove <emph>Lemma</emph> 2.1. 1 1002

a1002 is the system generated identifier for “Assignment 2”.

Table 4.7: Question table for “Assignment 2”

Quality of the Database Schema The greatest mismatch between database tables and

a DTD is for many-to-many relationships, because the notion of many-to-many does not

really exist in DTDs. Suppose we update the DTD with the following lines

<!ELEMENT question (paragraph, isQuestionOf*)>

<!ELEMENT isQuestionOf (assignment)>

Section 4.1: Some Methods to Save Data-Centric XML 71

to represent that not only an assignment can have multiple questions, but that a ques-

tion might be present on several assignments also. (Remember that a DTD does not

specify the root element of the documents.) Note that now we have a recursion in the

DTD. Bourret’s algorithm would result in two one-to-many relationships instead of the

many-to-many relationship; this must be fixed by hand. For papers concerned with find-

ing recursion on DTDs, see the next subsection.

4.1.3 Related Work

Several researchers have published algorithms for the mapping of a DTD to a database

schema; we describe and cite some of them next.

When the structure of the DTD is very complex, it can be reasonable to apply a number

of rules to simplify the DTD first, in order to get a better database schema. Shanmugasun-

daram et al. provide such a set of rules in [STH
�

99]. Of course, XML documents valid to

the original DTD can be stored in the database, but the sibling order is lost in some cases.

To give an example, the rules simplify the element a specified as

<!ELEMENT a ((b|c|d)?,(d?|(e?,(b,b) �)) �)>, where b, c, d and e are other elements, to

<!ELEMENT a (b � , c?, d � , e �)>.

The authors also introduce the notion of a DTD graph, which represents the structure

of a DTD; its nodes are elements, attributes and operators in the DTD. A DTD graph is

used to find recursion in the DTD. This is necessary since as many elements as possible

are inlined into their parent element (in other words, the algorithm looks for suitable

wrapper elements), but even in the case of a recursive DTD the inlining must come to an

end.

The authors propose in [STH
�

99] three strategies to map DTDs into relational schemas

and identify the Hybrid Inling algorithm as being superior to the others in most cases.

Runapongsa and Patel present in [RP02] an improved version of the Hybrid Inling

algorithm and call it the XORator algorithm.

In [KM00], Klettke and Meyer present an algorithm that finds an object-relational

hybrid mapping based on the DTD and statistics. The statistics are derived from sample

XML document sets and some knowledge about queries on the XML document collec-

tion. The algorithm is based on the idea to find stop tags, which are called document

fragments here, and to map them on database columns of type XML or CLOB (as avail-

able). Without explaining all the details, the results of the statistical calculations can

be summarized as follows: Document fragments are built from elements which are of-

ten null, seldomly requested in queries and to whom’s attributes and child elements the

72 Chapter 4: Storing XML Documents in Object-Relational Databases

same criteria applies. Also, they suggest to use the ROW and LIST type constructors (only

available in Informix, see Subsection 3.3.2 on page 46) for wrapper elements, which give

a clearer database structure.

In [KC02], Kudrass and Conrad use structured data types and nested tables for an

Oracle-specific mapping. Like the use of ROW and LIST, this approach makes the reuse

of text modules impossible.

Bohannon et al. introduce in [BFRS02] a cost-based XML storage mapping engine

similar to [KM00], which automatically finds the best mapping for a given configuration

of an XML Schema, XML data statistics, and an XQuery workload.

The first hybrid approach was, to our best knowledge, published (but not explicitly

using the term “hybrid approach”) by Deutsch, Fernandez, and Suciu in the paper “Storing

Semistructured Data with STORED” [DFS99]. Since there is no DTD available for the

semistructured data, the authors use text-mining methods to identify structured document

fragments that occur frequently within a sample document collection. Then, tables are

defined to store the elements and attributes of these document fragments. Parts of the

semistructured data that do not fit into the schema are stored in overflow graphs. The

authors suggested a “semistructured data object repository” for the overflow graphs, when

they wrote the paper in 1999. A column of the new XML data type would be a good choice

as soon as available.

4.1.4 Deriving a DTD from a Database Schema

None of the Database-to-XML mappings presented in Subsection 4.1.1 needs a DTD,

but we could derive one from the database schema, if desired. A short algorithm for

generating a DTD from a relational schema is given in [Bou03a]; we quote it here without

giving an example. This algorithm creates the relationships on both sides, but it does not

use relationship names.

In order to generate a DTD from a relational schema, follow these steps:

� For each table, create an element type.
� For each data (non-key) column in that table, as well as for the primary key col-

umn(s), add an attribute to the element type or a PCDATA-only child element to its

content model.
� For each table to which the primary key is exported, add a child element to the

content model and process the table recursively.
� For each foreign key, add a child element to the content model and process the

foreign key table recursively.

Section 4.2: Some Methods to Save Document-Centric XML 73

4.2 Some Methods to Save Document-Centric XML

Methods for document-centric XML work without any knowledge about the schema of

the XML documents. As discussed in Chapter 3, native XML databases store the entire

XML documents and concentrate on fast full text search algorithms. We are looking for an

approach for the Extension of RelAndXML , where those parts of the document are saved

that do not fit the Core: additional elements and attributes, comments, and processing

instructions. We first concentrate on how to store additional elements. This section also

shows why a Core is useful, rather than saving the complete document in the Extension

part.

Highest priority first, we are especially interested in the following features:

1. For the reconstruction of a document, the number of databases accesses is as small

as possible.

2. Reusing text modules without saving them twice.

3. Typical queries need few joins.

4. Inserting and deleting is easy.

Florescu and Kossmann discuss in [FK99b] (more verbose in the technical report

[FK99a]) several basic approaches. All of them save the edges of a tree representation of

an XML document, which is why they are called edge approaches. The authors tested the

performance of the approaches and also suggested indexes for the database tables. Since

attributes are treated like subelements, the exact reconstruction is not possible. Com-

ments, processing instructions, and so on are not considered. We give a summary of

their suggestions in the Subsections 4.2.1 to 4.2.4 and use “Question 4” of Listing 2.9 on

page 24 as example – it is shown as XML tree in Figure 4.1 with attributes represented as

subelements. Subsection 4.2.5 describes a path approach, where paths instead of single

edges are saved, and gives reasons why we drop this approach.

4.2.1 Edge Approach

The Edge approach suggests to save all the edges of the XML tree in a single Edge table

and the values in the leaves in separate value tables. The Edge table saves the parent node

(source) and child node (target) of each edge together with its label (name), its ordinal

number and a flag. The flag identifies an edge as internal reference (to an inner node of the

XML tree) or as reference to a leaf with a value. The primary key is {source, ordinal}. The

edges of the running example “Question 4” with the identifier “Q4” result in the tuples

shown in Table 4.8.

74 Chapter 4: Storing XML Documents in Object-Relational Databases

2 3 4

H1

P1 T4

T1 I1

1 2

H2 T3

1 2

I2

33

51

L1 T2 L2

by usingSolve and Theorem 3
in the lecture notes.

link text

Q4

question

link

A2.html#Q2

href

question 2
of assignment 2

text internal

true #Q3

question 1

href text

true

internal

textparagraph

Figure 4.1: XML tree for “Question 4” with attributes represented as subelements

source ordinal name flag target

Q4 1 paragraph string P1

Q4 2 link ref L1

Q4 3 text string T2

Q4 4 link ref L2

Q4 5 text string T4

L1 1 href string H1

L1 2 text string T1

L1 3 internal string I1

L2 1 href string H2

L2 2 text string T3

L2 3 internal string I2

Table 4.8: Edge table for “Question 4”

Section 4.2: Some Methods to Save Document-Centric XML 75

Florescu and Kossmann [FK99b, FK99a] suggest two indexes for this table. The index

on column source accelerates the reconstruction of objects when the object identifier is

given (forward traversal). The index on {name, target} speeds up queries like “Find links

with href=’#Q3’ ” (backward traversal).

There is a separate value table for each data type, with the column sid as primary key

and a value column. The flag column in the Edge table denotes the appropriate value

table. Since “Question 4” contains strings only, there is a single ValueString table, shown

as Table 4.9.

sid value

P1 Solve

T2 by using

T4 and Theorem 3 in the lecture notes.

H1 A2.html#Q2

T1 question 2 of assignment 2

I1 true

H2 #Q3

T3 question 1

I2 true

Table 4.9: ValueString table for “Question 4”

4.2.2 Edge+Inlining Approach

The second approach inlines the values from the value tables into the Edge table which is

then called EdgeInline table. One column per data type is added and the flag column is

dropped. The inlining is done by a join on the target column in Edge with the sid column

of the value tables. Apart from the two indexes that the Edge table has, the EdgeInline

table gets an index on each of the new value columns. Supposing there were integer as

well as string values, the EdgeInline table saves “Question 4” like shown in Table 4.10.

4.2.3 Binary Approach and Binary+Inlining Approach

The Binary approach suggests to put all edges with the same label in one table. This is a

horizontal partitioning of the Edge table, using name as the partitioning attribute. Analo-

gously, the BinaryInline tables are a horizontal partition of the EdgeInline table. Indexes

on the source column, on the target column, and on each value column are suggested.

76 Chapter 4: Storing XML Documents in Object-Relational Databases

source ordinal name target valstring valint

Q4 1 paragraph P1 Solve null

Q4 2 link L1 null null

Q4 3 text T2 by using null

Q4 4 link L2 null null

Q4 5 text T4 and Theorem 3... null

L1 1 href H1 A2.html#Q2 null

L1 2 text T1 question 2 of... null

L1 3 internal I1 true null

L2 1 href H2 #Q3 null

L2 2 text T3 question 1 null

L2 3 internal I2 true null

Table 4.10: EdgeInline table for “Question 4”

For “Question 4”, the partitioning results in five tables shown in Table 4.11 on the facing

page.

The problem with this approach is that a new table has to be created whenever a new

edge label is found. In a running system, this is possible but rather unpopular.

4.2.4 Comparing the Edge and Binary (with Inlining) Approaches

To compare the Edge and Binary approaches (with Inlining, resp.), we look at the aspects

reconstruction, database size, query performance, ease of deleting and inserting objects,

as well as reusing objects.

Reconstruction To judge the efficiency of reconstruction we examine the cost of SQL

statements necessary to reconstruct an object given its oid only, and including its children

but excluding its further descendants. For the Edge approach, there is one indexed query

to the Edge table needed with a join to each value table. For the Binary approach, an

indexed query to each Binary table is needed, since it is unknown in which of them the

subelements are included. The queries can be coupled with UNION. Afterwards, values

are read from the value tables. When EdgeInline or BinaryInline are used, the joins to

the value tables are left out. With each approach, the child elements can be ordered using

the clause “ORDER BY ordinal”. As can be seen clearly, the EdgeInline approach is most

efficient for the reconstruction of flat objects and even more for the reconstruction of

documents.

Section 4.2: Some Methods to Save Document-Centric XML 77

BinaryInline_Paragraph

source ordinal target valstring valint

Q4 1 P1 Solve null

BinaryInline_Link

source ordinal target valstring valint

Q4 2 L1 null null

Q4 4 L2 null null

BinaryInline_Text

source ordinal target valstring valint

Q4 3 T2 by using null

Q4 5 T4 and Theorem 3... null

L1 2 T1 question 2 of... null

L2 3 T3 question 1 null

BinaryInline_Href

source ordinal target valstring valint

L1 1 H1 A2.html#Q2 null

L2 1 H2 #Q3 null

BinaryInline_Internal

source ordinal target valstring valint

L1 3 I1 true null

L2 3 I2 true null

Table 4.11: BinaryInline tables for “Question 4”

78 Chapter 4: Storing XML Documents in Object-Relational Databases

Database Size With the Edge approach, the edge labels are saved redundantly in the

name column resulting in a database larger than the database obtained when using the

Binary approach. Inlining the values results in a smaller database, since the column oid is

left out and the null values in the EdgeInline or BinaryInline tables need little space. So

the BinaryInline approach gives the smallest database.

Queries Queries are executed faster when using the Binary approach than the Edge

approach, since joins with the large Edge table are expensive. Inlining accelerates queries

because there are no joins to any value tables. So again, BinaryInline wins this aspect.

Inserting and Deleting Objects Inserting an object into the Edge table and correspond-

ing value tables or into the EdgeInline table is very easy, but may require updating the

ordinal attribute of some sibling objects. Inserting an object into the Binary or BinaryIn-

line tables causes difficulties if the edge label to this object is new, which means that a

new table for this label has to be created. When these approaches are used for non-valid

XML, it is very likely for new labels to show up at run time of the system. Although it is

possible to create tables at run time (e.g. via JDBC) it is very unusual and most database

administrators would not like this approach for safety reasons.

Deleting objects is easy in all approaches. The Binary and BinaryInline approaches

might give some empty tables at run time, but this does not cause any problems.

Reusing Objects Reusing objects is possible with all approaches. To insert “Question

4” into an “Assignment 4711”, for example, there are just two new edges (asHasQu and

question) necessary.

Since we find it unacceptable to create tables at run time, we decided to use neither

the Binary nor the BinaryInline approach. From our point of view, where efficient recon-

struction is most important, the EdgeInline approach wins this comparison. Nevertheless,

we see the performance problems that a huge EdgeInline table causes. We also think that

there should be tables for attributes and comments, and that the Edge approach with more

sophisticated value tables can outstand the disadvantage of needing more joins. To see

how we combine the EdgeInline and Edge approaches with these ideas, read Chapter 5.

Kudrass describes in [Kud01] an approach where the document identifier and the

depth of the nodes are saved for each edge. Since this makes inserting, deleting, and

reusing objects harder, we do not consider this approach.

Section 4.2: Some Methods to Save Document-Centric XML 79

4.2.5 Path Approach

Path approaches follow the idea to save paths from the root of the document to each node,

instead of single edges like in the previous edge approaches. A path approach is given in

[SYU99]4 – in the following we will describe a similar approach.

Since a path expression generally occurs several times in a document (especially in a

document collection) there is a separate PathExpression table with columns pathID, which

is a counter, and pathExp containing the path expression. Attributes get a preceding “@”

to distinguish them from subelements. For the running example “Question 4”, this gives

the tuples shown in Table 4.12.

pathID pathExp

1 /question/paragraph

2 /question/link/href

3 /question/link/text

4 /question/link/@internal

5 /question/text

Table 4.12: PathExpression table for “Question 4”

To preserve document order, the authors in [SYU99] use a text-oriented approach to

number the elements. The numbering for “Question 4” is shown with numbers printed in

bold type in Listing 4.4.

First, every single word of the text content gets an integer as number. Each start

tag of an element gets a real number. Its integer part indicates the integer number of the

preceding word and its decimal part indicates the position of the tag between the preceding

and the succeeding word. This numbering approach does not reflect the tree structure at

all.

Therefore, we use the following ordinal numbers instead: The ordinal number of a

node of depth � in the tree has � stages. Each stage counts the nodes of this depth in the

tree; the root always has the ordinal number
�
. So in Figure 4.2 the five nodes of depth

�
get the ordinals

�����
,
�����

,
���
	

,
�����

, and
����

. Attributes do not need to have their own

numbers, since they are identified by the ordinal of the corresponding element and their

pathID.

In [SYU99] the authors suggest three tables for elements, attributes, and text. Since we

have already seen the advantages of inlining the text values, we propose an “ElementIn-

line” table. Remembering that “Question 4” belongs to an assignment with identifier
4A more verbose description of this approach which includes query translation from restricted XPath

expressions to SQL can be found in [YASU01].

80 Chapter 4: Storing XML Documents in Object-Relational Databases

Listing 4.4 XML running example “Question 4” with ordinal numbers as proposed in

[SYU99]

1 <question uid="Q4">(0.1)

2 <paragraph>(0.2) Solve(1)</paragraph>

3 <link internal="true">(1.1)

4 <href>(1.2) A2.html#Q2(2)</href>

5 <text>(2.1) question(3) 2(4) of(5) assignment(6) 2(7)</text>

6 </link>

7 <text>(7.1) by(8) using(9)</text>

8 <link internal="true">(9.1)
9 <href>(9.2) #Q3(10)</href>

10 <text>(10.1) question(11) 1(12)</text>

11 </link>

12 <text>(12.1)
13 and(13) Theorem(14) 3(15) in(16) the(17) lecture(18) notes.(19)

14 </text>

15 </question>

H1

P1 T4

T1 H2 T3

0.1

0.4.2

L1 T2 L2

by usingSolve and Theorem 3
in the lecture notes.

link text

Q4

question

link

A2.html#Q2

href

question 2
of assignment 2

text internal

true #Q3

question 1

href text

true

internal

textparagraph

0

0.3 0.4 0.50.2

0.2.1 0.2.2 0.4.1

Figure 4.2: XML tree for “Question 4”

Section 4.2: Some Methods to Save Document-Centric XML 81

ElementInline

docID pathID ordinal value

A4 1 0.1 Solve

A4 2 0.2.1 A2.html#Q2

A4 3 0.2.2 question 2 of assignment 2

A4 5 0.3 by using

A4 2 0.4.1 #Q3

A4 3 0.4.2 question 1

A4 5 0.5 and Theorem 3 in the lecture notes.

Attribute

docID pathID ordinal value

A4 4 0.2 true

A4 4 0.4 true

Table 4.13: Element and attribute tables for “Question 4”

“A4”, the corresponding tables look like shown in Table 4.13. Note that a docID is saved

for each element.

Reconstruction The reconstruction of an object, given its docID, path expression, and

ordinal, needs two queries to ElementInline and Attribute each with a join to the Path

table. Because of the join, the cost is slightly higher than with the EdgeInline approach.

To reconstruct a document given its identifier, there are just two queries without any joins

needed to retrieve all elements and all attributes, respectively. The path expressions can

then be interpreted in main memory to reconstruct the XML tree. The number of queries

for a reconstruction is smaller than for any of the edge approaches.

Database Size The storage space needed by this approach is comparable to that of the

BinaryInline approach since the path expressions are saved in a separate table.

Queries Like for the Edge and EdgeInline approach, joins with the large ElementInline

table are expensive.

Inserting and Deleting Objects Inserting or deleting an object is costly, since the or-

dinals not just of the siblings but of all nodes further right and/or down in the tree have to

be updated.

82 Chapter 4: Storing XML Documents in Object-Relational Databases

Reusing Objects Since a document identifier is saved with each object, the reuse of

objects in other documents is not possible in an intuitive way. One could try and save

some kind of links from the new document to the reused objects in the old document, but

this is likely to cause confusion when the old document is updated.

Path approaches are suitable to save documents in their entirety, but only when update

operations do not occur frequently. Parts of documents cannot be reused in other docu-

ments. For these reasons, path approaches are not suitable for RelAndXML and are not

considered any further in this thesis.

Section 4.3: Conclusion: RelAndXML’s Method to Save Hypertext-Centric XML83

4.3 Conclusion: RelAndXML’s Method to Save Hypertext-

Centric XML

For RelAndXML , we combine a Core schema for the data-centric text modules of the

XML document with an Extension schema for the document-centric parts, and a Presen-

tation for the data-centric XSLT text modules (see Figure 4.3). There is also a Metadata

part with structural information on the other parts used in the shredding and generating

algorithms.

hypertext−centricRelAndXML

Metadata

data−centric XSLTPresentation

document−centric

data−centric

Extension

Core

Figure 4.3: RelAndXML with Core , Extension , Presentation , and Metadata

The Core of RelAndXML is application-specific. We will use a Core for academic

course material called InfDB (for Informatics Database). The data is transferred to XML

according to the object-based mapping with representation of associated objects. The

stored XML does not have to be valid, since the Core contains stop tags for saving mixed

content and additional child elements.

Further additional elements, attributes, comments, and processing instructions are

stored in the Extension . This part has an EdgeInline table for additional single elements,

an Edge table, and some value tables for additional text modules, plus tables for attributes,

comments, and processing instructions.

The data-centric XSLT text modules are stored in the Presentation , which also in-

cludes many stop tags.

Core and InfDB , Extension , Presentation as well as Metadata are explained in detail

in the following Chapter 5.

84 Chapter 4: Storing XML Documents in Object-Relational Databases

Chapter 5

The InfDB Database Schema

In this chapter, we explain the full database schema of the InfDB database for academic

course material as a result of the considerations in the previous chapters. Only the Core

and a part of the Extension of the InfDB are application-specific. We modeled that area

within the usual process of conceptual database design, of course taking into account

knowledge about data-centric XML. The rest of the Extension as well as the Presentation

and Metadata parts are independent of a specific application area. Whereas Extension

and Presentation are designed based on knowledge from Chapter 4, the Metadata is

designed to give information on the relational structure of the Core , Extension , and Pre-

sentation .

We use UML class diagrams as the graphical notation for conceptual database design.

They comprise all the constructs of the extended Entity-Relationship model (EER model)

with the advantage of being space-saving. Nevertheless, we write “entity type” for class

and “entity” for object.

At the heart of the database model is the abstract entity type Node with a system gen-

erated identifier sid, a user identifier uid, a version number, and the attribute published (see

Figure 5.1). Node is the supertype of the abstract entity types CoreNode and Extension-

Node, thus it connects the Core with the Extension . It also builds the connection to the

Presentation as will be shown later.

Since Node is the supertype of all entity types in the Core and the Extension , there

exists a key that is unique within these database parts. This was one reason for choosing

a system generated identifier, the other reason is, that we want to be independent of a par-

ticular DBMS, but the database generated identifiers are quite diverse in different DBMSs

as described in Subsection 3.3.4.

The remainder of this chapter includes a section for each of the Core , Extension ,

Presentation and the Metadata schema.

86 Chapter 5: The InfDB Database Schema

CoreNode

Node

sid

ExtensionNode

version
uid

published

date

Figure 5.1: UML class diagram for the InfDB database – Overview

5.1 Core Schema

5.1.1 ER Schema for the Core

Within the Core schema, which is shown in Figure 5.2 on the next page, the entity type

CoreNode is the supertype of all the other entity types. It inherits from its supertype

Node the attributes sid, user identifier uid, version and published. The user identifier is

a string chosen by the user, e.g. “DB1_Su02_A1” for the first assignment in the course

“Databases 1” in the summer semester 2002. This way, it is easier for the user to find

objects within the database. It is possible to save several versions of an object with the

same uid. Objects that have been published should not be changed anymore, except for

when the version number is increased. CoreNode also has an attribute date to save the

last changes date.

The entity type Person saves the firstname, the lastname, the initials, and the academic

title of a person. The entity types Assignment, Examination, Question, Part, and Figure

have a N:1 relationship to Person to save the author, Course has this relationship to store

the lecturer.

A Course is described by its name and semester. The entity type Assignment has a

number, a date of issue and a deadline. An assignment belongs to a course, whereas a

course comprises several assignments. Assignment and Question have a M:N relationship

AsHasQues with the attribute ordinal that stores the order of the questions within an

assignment. A Question has a single paragraph and the marks students can achieve.

Some questions are building up on others, this is mapped with the recursive relationship

QuesUsesQues. A Question might have several Parts that also have a single paragraph

and some marks. A Part is semantically dependent of a question, therefore there must be

at least one associated Question. This M:N relationship, called QuesHasPart, also saves

Section 5.1: Core Schema 87

marks
paragraph

marks

QuesUsesQues
ordinal

ordinal

ordinal

ExtensionNode

Person
initials
title
firstname
lastname

Node

CoreNode

sid

Figure
type
filename
height
width
sourcefilename
sourcetype0..1 0..1 0..1

Examination
head
title
student
valuation
remarks
pageheader

�

Part
�

�

�

Question

paragraph

�

�

Assignment
number
dateOfIssue
deadline

1
�

1.. �

�

�

1
Course
name
semester

�

�

0..1

�

�

�

uid
version
published

date

0..1 �

0..1

ExamHasQues

AsHasQues

QuesHasPart

Figure 5.2: UML class diagram for the InfDB database – Core

88 Chapter 5: The InfDB Database Schema

the order of the parts with the attribute ordinal.

An Examination has a title, a head paragraph, some lines to write information about

the student, about the valuation, some remarks and a pageheader. Like an Assignment,

it has a N:1 relationship to Course and a M:N association with Question. The latter is

called ExamHasQues and has an ordinal attribute.

A Figure has the attributes height, width, type, and filename. The attributes sourcetype

and sourcefilename keep information if the figure was created using a graphics tool and

then exported to have a suitable data format. Figures are not saved within the database,

but on a file server.

5.1.2 Relational Schema for the Core

For the transfer of the EER schema into a relational schema, we use the well-known

standard algorithm (see e.g. [EN00]). The relations are shown in Figure 5.3 on the facing

page with underlined primary keys and foreign keys marked with a small arrow ➚; we

give some explanations in the following.

Since Node and CoreNode are abstract entity types, there are no tables for them,

but they transmit their attributes to their subtypes. Therefore the tables Course, Person,

Assignment, Examination, Question, Part, and Figure each get the attributes sid, uid,

version, published, and date.

Within the Core , the relations Course, Person, Assignment, Examination, Question,

Part, and Figure get uid and version as primary key attribute and sid as secondary key.

Why not choose sid as primary key, since it makes sure that every relationship within the

Core needs just one foreign key attribute? The exchange of the Core should be as easy as

possible. Suppose we want to use as Core an existent database. Then we add to each table

the column sid. If RelAndXML was only able to cope with sid as primary key, we would

have to add foreign key columns for every relationship in the database. We would also

have to fill those columns with the correct values. If it is not a toy database, this cannot

be done manually, so we would need a tool to accomplish this task. Also, if the database

is still used by some other software, the change of the relationships is not appropriate.

Therefore the foreign key relationships in the Core do not use the sid-columns. They are

only used for the relationships in the Extension (see Section 5.2 on page 90).

Because of the 1:N relationships between Person and Course, Assignment, Exami-

nation, Question, Part, and Figure respectively, those relations get foreign key attributes

(lecturerUID and lecturerVersion or authorUID and authorVersion) to Person. Assign-

ment and Examination get foreign keys (courseUID and courseVersion) to the associated

Course.

Section 5.1: Core Schema 89

Course { sid, uid, version, published, date, name, semester, lecturerUid➚,

lecturerVersion➚}

Person { sid, uid, version, published, date, initials, title, firstname, lastname}

Assignment { sid, uid, version, published, date, authorUID➚, authorVersion➚,

number, dateOfIssue, deadline, courseUID➚, courseVersion➚}

Examination { sid, uid, version, published, date, authorUID➚, authorVersion➚,

head, title, student, valuation, remarks, pageheader,

courseUID➚, courseVersion➚}

Question { sid, uid, version, published, date, authorUID➚, authorVersion➚,

marks, paragraph}

Part { sid, uid, version, published, date, authorUID➚, authorVersion➚,

marks, paragraph}

Figure { sid, uid, version, published, date, authorUID➚, authorVersion➚,

type, filename, sourcetype, sourcefilename, width, height}

AsHasQues { sid, asUid➚, asVersion➚, quUid➚, quVersion➚, ordinal}

ExamHasQues { sid, emUid➚, emVersion➚, quUid➚, quVersion➚, ordinal}

QuesHasPart { sid, quUid➚, quVersion➚, paUid➚, paVersion➚, ordinal}

QuesUsesQues { sid, quUid➚, quVersion➚, usedUid➚,usedVersion➚}

Figure 5.3: Relations of the Core Schema

There are four relations for the M:N relationships: AsHasQues, ExamHasQues, Que-

sHasPart, and QuesUsesQues with foreign keys to the associated relations. The foreign

key attributes form the primary key of these relations. We add a secondary key sid for

consistency reasons.

To create the tables, we have to choose data types for all of the columns. We use the

CHAR or VARCHAR data types of different length for most columns. The CLOB data type

is used for stop tag columns, when the character data is expected to be long, for instance

the paragraph column in Question. We use INTEGER for the ordinal columns to ensure

correct numerical ordering when the ORDER BY clause is used in queries. The CREATE

commands for the Core are shown in the appendix in Section A.1 on page 157.

5.1.3 Running Example Tuples for the Core

Table 5.1 shows the Core tuples for the running example “Assignment 1” of Listing 2.6 on

page 20. We omit the foreign key columns to Person and Course which have null values

in this example. The paragraph of a Question is defined as a stop tag column.

90 Chapter 5: The InfDB Database Schema

Assignment

sid uid version published date

assignment-1 DB1_Su2002_A1 1.0 true 06/14/02

number dateOfIssue deadline

Assignment 1 June 17, 2002 Monday, June 24, 2002, 4pm

AsHasQues

sid asUid asVersion quUid

asHasQues-2 DB1_Su2002_A1 1.0 DB1_Su2002_A1_Q1

quVersion ordinal

1.0 2

Question

sid uid version published date

question-3 DB1_Su2002_A1_Q1 1.0 true 06/07/02

marks paragraph

4 Translate the Company ER schema into a

relational schema.

Table 5.1: Tables in the Core schema

5.2 Extension Schema

5.2.1 ER Schema for the Extension

For the Extension schema we extend the Edge and Edge+Inlining approaches from Flo-

rescu and Kossmann [FK99b] described in Subsections 4.2.1 and 4.2.2. Before going into

details, we give a short overview: We use Edge and EdgeInline entity types similar to the

ones in [FK99b] and add the entity types EdgeAttribute, EdgeComment, EdgeProcInstr

to support attributes, comments, and processing instructions, respectively. All of these

entity types are called Edge entity types. Instead of the simple value tables / entity types

from [FK99b], we use ExtensionNode entity types that save complete text modules.

We now explain the Extension schema, which is shown in Figure 5.4, in detail:

The ExtensionNode entity types are subtypes of the abstract entity type ExtensionNode

and store structured text modules that unlike the entity types in the Core schema do not

have fixed relationships to other entity types. Compared to [FK99b], they are extended

value entity types that work together with the Edge entity type. They are application-

Section 5.2: Extension Schema 91

specific and in InfDB , we have the two entity types Link and Keyword. The entity type

Link has the attributes date, the target href, text and internal. If internal is true, the link

connects to another object or document within the system; otherwise it is an external

link to any web page. The entity type Keyword has the attribute name. As mentioned

in Subsection 4.2.4, the disadvantage of the Edge approach compared to the EdgeInline

approach is that we need additional joins to the value tables. The ExtensionNode entity

types overcome this disadvantage by compressing several XML pieces into one database

tuple.

Node

sid
1�

name
value

EdgeAttribute

1

Edge

published

sid

ordinal

name

1 �

ssid
�1

tsid

ssid

�

1�

EdgeComment

�

CoreNode

EdgeInlineKeyword

name

ssid

ssid

ssidordinal
comment
sid

uid
version
published

date

1

value
ordinal
name
tsid

text

Link

href
date

internal

ExtensionNode

EdgeProcInstr

ordinal
data
target
sid

Figure 5.4: UML class diagram for the InfDB database – Extension

The rest of the entity types in the Extension schema are called Edge entity types and

save the edges to ExtensionNodes as well as all still remaining XML fragments. The

edges between ExtensionNodes are saved with the Edge entity type. As in [FK99b] it has

the attributes name and ordinal. Through the mandatory N:1 relationships to Node, it gets

the attributes ssid and tsid, which are equivalent to source and target in [FK99b]. We add

the attributes sid and published for consistency reasons. We drop the flag attribute from

[FK99b], since Edge is only used for connections to ExtensionNodes.

The EdgeInline entity saves all the still left-over XML elements. It saves an edge

together with information about a node and therefore is, exactly speaking, an Edge as

92 Chapter 5: The InfDB Database Schema

well as an ExtensionNode entity type. As a subtype of ExtensionNode, it inherits the

attributes sid, uid, version, and published. The inherited attribute sid is renamed to tsid,

since it is the identifier of the stored target node. The entity type also needs an associated

source Node (ssid). Furthermore, it has the attributes sid (for consistency reasons), name,

ordinal and value. Taking the renaming of source to ssid, target to tsid, and valstring to

value into account, our EdgeInline table is the same as in [FK99b] with additional columns

sid, uid, version, and published.

Attributes are saved with the entity EdgeAttribute. They have a name and a value

and belong to a Node. This means especially, that any XML element of the Core or

the Extension can have additional XML attributes. A Node may also contain comments

and processing instructions. Comments are saved in EdgeComment with the attributes

sid, comment, and ordinal. Processing Instructions are saved in EdgeProcInstr with the

attributes sid, target, data, and ordinal.

The reason why Edge, EdgeInline, EdgeComment, and EdgeProcInstr each have a

system identifier sid is to ease the implementation: Otherwise the combination of the for-

eign key ssid and ordinal would be the primary key of the table. But ordinal is an attribute

that often changes its value such that it is not appropriate to be used as part of a primary

key. Without sid we would have modeled Edge as recursive M:N relationship to Node,

and EdgeComment and EdgeProcInstr as weak entity types.

We thought about adding an entity type EdgeDocType with the attribute doctype to

save an internal or external DTD. This entity type would have an association to Node.

Initially, we wanted to add this feature to provide HTML entities like α for � in

RelAndXML . But if entities are defined, elements have to be declared as well. The XML

parser does not accept entity declarations on their own, which means that it prints an error

message for each element, for instance:

Element “assignment” must be declared.

Since RelAndXML is not designed for data-centric, valid XML, it is not very useful to

provide a feature that forces documents to be valid. Furthermore, every Unicode character

can be saved in RelAndXML directly, the problem is to provide a way of inserting it

directly into the document (there is no � on the keyboard). We tried “Copy & Paste”

from other programs such as the browser view of Netscape and that works well. It is

also possible to wrap the values of EdgeInline with CDATA sections. In this way, HTML

entities can be used in EdgeInline elements, since CDATA sections are ignored by the

XML parser.

Section 5.2: Extension Schema 93

5.2.2 Relational Schema for the Extension

The relational schema for the Extension , which is shown in Figure 5.5, has five application-

independent relations for Edge entity types and two application-specific ExtensionNode

relations.

Edge { sid, ssid➚, tsid➚, ordinal, name, published}

EdgeInline { sid, ssid➚, tsid, ordinal, name, value, uid, version, published}

EdgeAttribute { ssid➚, name, value}

EdgeComment { sid, ssid➚, comment, ordinal}

EdgeProcInstr { sid, ssid➚, target, data, ordinal}

Link { sid, uid, version, published, date, href, text, internal}

Keyword { sid, uid, version, published, name}

Figure 5.5: Relations of the Extension Schema

The table Edge receives two foreign keys ssid and tsid to the source and the target

node respectively. The table EdgeInline also gets a foreign key ssid to the source node.

Since EdgeInline combines an edge and a node, it also inherits the attribute sid from Node.

It is renamed tsid, since it is the target node of the saved edge. The tables EdgeAttribute,

EdgeComment and EdgeProcInstr each get a foreign key called ssid to the corresponding

Node.

The CREATE commands for the Extension are shown in the appendix in Section A.2

on page 162. We use the CHAR, VARCHAR or CLOB data types for all of the columns

except for the ordinal columns, which are INTEGER columns. The foreign keys cannot

be realized with a foreign key constraint, since Node is an abstract entity type. We ensure

data consistency within the RelAndXML system.

Although we do not use {ssid, ordinal} as primary key for the Edge tables as pro-

posed in [FK99b], we create an index on these columns in the tables Edge, EdgeInline,

EdgeComment, and EdgeProcInstr. Furthermore, we create an index on {name, tsid} in

the tables Edge and EdgeInline as well as on value in EdgeInline as proposed in [FK99b].

In Link and Keyword, there is a secondary key on {uid, version}.

5.2.3 Running Example Tuples for the Extension

Table 5.2 on the following page shows the Extension tuples for the running example

“Assignment 1”. For its XML tree, please refer to Figure 2.2 on page 19 and for the

XML source, see Listing 2.6 on page 20.

94 Chapter 5: The InfDB Database Schema

Edge

sid ssid tsid ordinal name

edge-5 question-3 keyword-4 2 keyword

Keyword

sid uid version published name

keyword-4 ERSchema 1.0 true ER Schema

EdgeInline

sid ssid tsid uid version

edgeinline-7 assignment-1 exam-6 DB1-Exam-Su2002 1.0

edgeinline-9 exam-6 text-8 text-8 1.0

edgeinline-11 exam-6 strong-10 strong-10 1.0

edgeinline-13 exam-6 text-12 text-12 1.0

published ordinal name value

true 4 exam

true 1 text The exam is an

true 2 strong open book

true 3 text exam.

EdgeAttribute

ssid name value

assignment-1 folder DB1_Su2002

EdgeComment

sid ssid ordinal comment

edgecomment-14 assignment-1 3 Add a question about 3NF here.

Table 5.2: Tables in the Extension schema

Section 5.3: Presentation Schema 95

5.3 Presentation Schema

5.3.1 ER Schema for the Presentation

With the Presentation schema we save the XSLT stylesheets which are applied to the XML

documents to receive complete, ready-to-publish documents. Since XSLT stylesheets are

valid XML documents we could take their DTD, derive a corresponding schema with the

mapping described in Subsection 4.1.2 on page 65 and save the stylesheets analogous to

the Core . But there is no advantage of storing stylesheets in such a fine-grained manner.

As we have shown in Section 2.2, an XSLT stylesheet consists of an xsl:stylesheet or

xsl:transform root element, an xsl:output element and a number of template rules. Other

XSLT elements are usually contained within a template rule. We therefore use a coarse-

grained manner to save stylesheets, which views them as a sequence of flat text modules

rather than as an XML tree. Figure 5.6 on the next page shows the ER schema for the

Presentation .

Xsl_Stylesheet saves the start and end sections of XSL stylesheets in its attributes

starttags and endtags. The remainder of the attributes are an aid for the user but not

included in the XSLT document: sid, uid, version, published, date, and description.

Xsl_Template saves the XSL template rules in its attribute component. We add attributes

for the XML attributes of xsl:template (match, name, priority, mode) to ease the search for

template rules. Furthermore, it has the same helpful attributes as Xsl_Stylesheet: sid, uid,

version, published, date, and description. Xsl_Stylesheet and Xsl_Template each have a

N:1 relationship to the Core entity type Person to save the author. For this reason, the

Core and the Presentation are NOT completely independent. However, when the Core is

exchanged such that it has no Person entity type, we just leave these attributes empty.

Xsl_Stylesheet and Xsl_Template are related to each other by a many-to-many asso-

ciation. It has no ordinal attribute, since the order of the template rules within a stylesheet

is not relevant. A general stylesheet should include default template rules for all of the

CoreNode and ExtensionNode types. It can also contain more specific template rules. For

instance, there is a special template rule for “Question 4” (see Listing 2.16 on page 35)

in addition to the default rule for question. With Xsl_Node_Style, nodes or group of

nodes and stylesheets can be connected. A group of nodes is specified by the node-

name, e.g. “question”. A sid column makes this design possible. The same applies

to Xsl_Node_Template. Especially nodes saved in the EdgeInline table need their own

template rules and it is useful to save the association in Xsl_Node_Template.

96 Chapter 5: The InfDB Database Schema

� �

��

0..1

0..1

��

�

�

Xsl_Template
sid
uid
version
published

name

description

sid

Node

CoreNode

uid
version
published

Person
initials
title
firstname
lastname

Xsl_Stylesheet
sid
uid
version
published

description
starttags

date

component

endtags
mode
priority

match
date

date

Xsl_Node_Style
sid
nodename

ExtensionNode

Xsl_Node_Template
sid
nodename

Figure 5.6: UML class diagram for the InfDB database – Presentation

Section 5.3: Presentation Schema 97

5.3.2 Relational Schema for the Presentation

The relational schema for the Presentation is shown in Figure 5.7. Xsl_Stylesheet and

Xsl_Template each have uid and version as primary key attributes, sid as secondary key,

and get foreign key attributes to Person. The M:N relationship table between Xsl_Style-

sheet and Xsl_Template is called Xsl_Style_Template. The relations Xsl_Node_Style and

Xsl_Node_Template get foreign key attributes nuid, nversion to the associated Node as

well as suid and sversion or tuid and tversion to the corresponding Xsl_Stylesheet or

Xsl_Template. The primary key is sid, since nuid and nversion might be null when node-

name has a not null value.

Xsl_Stylesheet { sid, uid, version, published, date, authorUid➚,

authorVersion➚, description, starttags, endtags}

Xsl_Template { sid, uid, version, published, date, authorUid➚,

authorVersion➚, match, mode, priority, name, description,

component}

Xsl_Style_Template { suid➚, sversion➚, tuid➚, tversion➚}

Xsl_Node_Style { sid, nuid➚, nversion➚, nodename, suid➚, sversion➚}

Xsl_Node_Template { sid, nuid➚, nversion➚, nodename, tuid➚, tversion➚}

Figure 5.7: Relations of the Presentation Schema

For the CREATE commands for the Presentation , see Section A.3 on page 165 in the

appendix. We use the CHAR, VARCHAR or CLOB data types for all of the columns. In

Xsl_Node_Style and Xsl_Node_Template, the foreign key built out of nuid and nversion

cannot be realized with a foreign key constraint, since Node is an abstract entity type.

Instead, RelAndXML ensures the consistency of the data.

5.3.3 Running Example Tuples for the Presentation

We show some tuples for the running example stylesheet, which is shown as Listing 2.11

on page 32, in Table 5.3 on the following page.

98 Chapter 5: The InfDB Database Schema

Xsl_Stylesheet

sid uid version published date

xsl_stylesheet-15 Stylesheet_HTML 1.0 true 06/14/02

description starttags endtags

null <xsl:stylesheet ...> <xsl:output .../> </xsl:stylesheet>

Xsl_Style_Template

sUid sVersion tUid tVersion

Stylesheet_HTML 1.0 Templ_Assignment 1.0

Stylesheet_HTML 1.0 Templ_Question 1.0

Xsl_Template

sid uid version published date

xsl_template-16 Templ_Assignment 1.0 true 06/14/02

xsl_template-17 Templ_Question 1.0 true 06/14/02

match mode name priority

assignment null null null

question null null null

description component

null <xsl:template match=”assignment”>...</xsl:template>

null <xsl:template match=”question”>...</xsl:template>

Table 5.3: Tables in the Presentation schema

Section 5.4: Metadata Schema 99

5.4 Metadata Schema

Metadata is needed for the composing and fragmenting of XML documents according

to the Core and Extension schema. The metadata is kept in the database as well, in the

Metadata schema.

5.4.1 ER Schema for the Metadata

The ER schema for the Metadata is shown in Figure 5.8. To distinguish the entity types

of this schema from the rest of the database, their names have the prefix RaxMeta (for

RelAndXML Meta). The tables of the Core , Extension , and Presentation schemas are

called DB tables in this section.

relname is
the name of
the m:n table

1

1 �

1

1
table2

table1

column2

column1

�

�

�

�

�

1

1

RaxMetaRelColumn

side

RaxMetaTable

dbtable
type
number

RaxMeta1ToOne

xmlnameOneIntoN

xmlnameNintoOne

insertOneIntoN

insertNintoOne insertOneInto1

insert1IntoOne
xmlname1IntoOne

xmlnameOneInto1

RaxMetaOneToN

RaxMetaXToY

relname

RaxMetaColumn

column
domain
width
pk
nnull
xmlattr

xmlnameNintoM

xmlnameMintoN

RaxMetaMToN

insertNintoM

insertMintoN

Figure 5.8: UML class diagram for the Metadata schema of the InfDB database

The entity type RaxMetaTable saves all DB tables (dbtable), their type (“core”, “ex-

tension”, “edge”, “mn”, “xsl”, or “xslmn”) and a number. The number orders the DB

tables, when SQL statements must be executed in a certain order such that the foreign

key constraints are not violated; for instance, an INSERT into Question must be executed

before the INSERT into the M:N table AsHasQues.

100 Chapter 5: The InfDB Database Schema

The entity type RaxMetaColumn comprises information about all the columns of the

DB tables and therefore has a N:1 relationship to RaxMetaTable. It saves the column

name, the domain and the width of the table. The further attributes are booleans indicating

if it is a primary key column (pk), if it is a not-null column (nnull) and if it should be shown

as an XML attribute or as an XML element (xmlattr).

The remaining entity types save information about the relationships between the DB

tables. There is an entity type for 1:1 relationships RaxMeta1ToOne, one for 1:N relation-

ships RaxMetaOneToN, and one for M:N relationships RaxMetaMToN. They are subtypes

of the abstract entity type RaxMetaXToY , which has the attribute relname for the name

of the relationship and two N:1 relationships to RaxMetaTable qualifying the two related

tables (table1, table2). For M:N relationships the relname must be the name of the M:N

relationship table. The three subtypes have four attributes each, which are needed for

(de-)composing documents, two for each side of the relationship:

If insertXintoY is true, insert the X-side element with its attributes into the

Y-side element and follow all of its associations as well. Else insert the X-side

element with its attributes, but do not follow its associations. Use xmlname-

XintoY to name the XML element for the relationship.

One might have used just the entity type RaxMetaXToY directly, with attributes rel-

name, insertXintoY, xmlnameXintoY, insertYintoX, xmlnameYintoX, and an additional at-

tribute type with values “1:1”, “1:N” or “M:N” instead. That design is more compact,

whereas the chosen design has more clarity.

To prevent the algorithm that composes XML documents (Rel2XML, see Section 7.4)

from infinite loops, the insertion graph representing the insert rules must be cycle free.

Its nodes are the entity types of the Core . There is an edge from entity type X to entity

type Y if insertXintoY is true. The insertion graph for the Core of the InfDB is shown in

Figure 5.9.

Since a foreign key relationship can have more than one column, the information

about the foreign keys is put into a separate entity type RaxMetaRelColumn. This entity

type has as attribute the side of the relation (“M”, “N”, “One” or “1”). Through a N:1

relationship with RaxMetaXToY the relationship name is known. Two relationships to

RaxMetaColumn with the role names column1 and column2 give information about the

related columns.

Section 5.4: Metadata Schema 101

Person Figure

Course

Assignment Examination

Question

Part

Figure 5.9: Cycle free insertion graph for InfDB

5.4.2 Relational Schema for the Metadata

The ER schema for the metadata results in the relations shown in Figure 5.10.

RaxMetaTable { dbtable, type, number}

RaxMetaColumn { tablecolumn, dbtable➚, column, pk, nnull, xmlattr, domain, width}

RaxMetaMToN { relname, table1➚, table2➚, insertNintoM, xmlnameNintoM,

insertMintoN, xmlnameMintoN}

RaxMetaOneToN { relname, table1➚, table2➚, insertOneIntoN, xmlnameOneIntoN,

insertNIntoOne, xmlnameNIntoOne}

RaxMeta1ToOne { relname, table1➚, table2➚, insert1IntoOne, xmlname1IntoOne,

insertOneInto1,xmlnameOneInto1}

RaxMetaRelColumn { relname➚, column1➚, column2➚, side}

Figure 5.10: Relations of the Metadata Schema

The table RaxMetaColumn receives a foreign key dbtable to RaxMetaTable. It also

gets an additional column tablecolumn, which is the primary key, containing the table-

name and the columnname separated by a dot. This redundant information reduces the

number of foreign key columns in RaxMetaRelColumn from four to two. So RaxMeta-

RelColumn includes the associated columns (column1 and column2) and the name of the

relationship relname; that combination is the primary key.

102 Chapter 5: The InfDB Database Schema

The tables RaxMeta1ToOne, RaxMetaOneToN, and RaxMetaMToN each get two for-

eign keys table1 and table2 to hold the relationship with RaxMetaTable.

The CREATE commands for the Metadata are shown in the appendix in Section A.4

on page 167. We use the CHAR or VARCHAR data types for most of the columns except

for the number in RaxMetaTable and the width in RaxMetaColumn, which are INTEGER

columns.

5.4.3 Running Example Tuples for the Metadata

Table 5.4 shows some tuples of the RaxMeta tables, especially for the M:N relationship

between Assignment and Question.

Section 5.4: Metadata Schema 103

RaxMetaTable

dbtable type number

assignment core 1

question core 2

ashasques mn 8

edgeinline edge 14

RaxMetaColumn

tablecolumn dbtable column pk nnull

assignment.sid assignment sid false true

assignment.number assignment number false false

question.paragraph question paragraph false false

ashasques.ordinal ashasques ordinal false true

xmlattr domain width

true varchar 40

false varchar 120

false text 65535

true int 4

RaxMetaMToN

relname table1 table2 insertNintoM

ashasques assignment question true

xmlnameNintoM insertMintoN xmlnameMintoN

asHasQues false isQuestionOfAssignment

RaxMetaRelColumn

relname column1 column2 side

ashasques assignment.uid ashasques.asUid m

ashasques assignment.version ashasques.asVersion m

ashasques question.uid ashasques.quUid n

ashasques question.version ashasques.quVersion n

Table 5.4: Tables in the Metadata schema

104 Chapter 5: The InfDB Database Schema

5.5 Summary: Database Schemas for RelAndXML

A database schema for RelAndXML always consists of the following four parts: the

Core and the Extension for XML documents, the Presentation for XSL documents, and

the Metadata for metadata describing the other three parts.

The Core schema is an application-specific schema for data-centric text modules. In

the InfDB database, the Core is designed for academic course material. The Extension

has two parts: the ExtensionNode part and the Edge part. The ExtensionNode part is also

application-specific; it contains tables for text modules which do not have fixed relations

to other text modules but might appear everywhere in a document. The Presentation

schema saves XSL documents and is application-independent. The Metadata schema

saves information about the tables and foreign key relationships of the Core , Extension ,

and Metadata . The CREATE commands for the InfDB database are shown in Appendix A.

To use RelAndXML with another Core than the one in InfDB , we have to populate

the Metadata tables with the according information. The administration tool of RelAnd-

XML (see Chapter 6) generates INSERT commands for the tables RaxMetaTable and

RaxMetaColumn that must be completed by hand: the user has to set the type and num-

ber in RaxMetaTable, the pk, nnull, and xmlattr values in RaxMetaColumn, and all the

information about the relationships.

Outlook We could extend the Core with tables for assignment solutions.

Chapter 6

Tutorial: How to use RelAndXML

In this chapter, we give a tutorial showing how to use the system RelAndXML .

The main window XMLTree-Editor offers seven tabbed panes to the user (see Fig-

ure 6.1): DOM View and XML Source to work with XML documents, XSL Stylesheet ,

XSL Templates and XSL Source to work with XSL documents, and HTML Source and

HTML View to look at the resulting HTML documents.

Figure 6.1: XMLTree-Editor with Assignment 1

The XMLTree-Editor has the four menus File , Node , Leaf , and Miscellaneous: File

has menu items to create new XML or XSL documents, to open XML or XSL documents

from the database, to save those documents to the database or to the file system, and to

save the output HTML documents to the file system. The menus Node and Leaf are used

106 Chapter 6: Tutorial: How to use RelAndXML

for the DOM View only: Node lets the user insert or delete nodes to or from the DOM

tree and Leaf allows to update the text or change the attributes of leaf nodes. The menu

Miscellaneous lets the user open the Administration window and the About (the program)

window.

In the following sections of this chapter, we explain the work with XML and XSL doc-

uments, as well as the viewing of HTML documents. After explaining various features,

we give a conclusion and an outlook.

6.1 Working with XML Documents

When the system is started, it first displays the login dialog shown in Figure 6.2.

Figure 6.2: Login Dialog

We start with creating a new assignment in the DOM View pane by choosing the

according menu item in the File menu (see Figure 6.3). A dialog opens where we insert

the basic information about an assignment (see Figure 6.4). When we close this dialog

with the OK button, a DOM view of this XML document is created (see Figure 6.5). The

left frame, called Tree , shows a tree representation of the XML document. The upper right

frame, called Content , shows the element names or the content of text nodes. In the lower

right frame, called Attributes , the attributes of the selected node are shown. The selected

element Assignment has, as the other elements also, an internal attribute _status="New"

stating that the elements have not been inserted to the database.

Now, we choose Save XML to DB in the File menu, and then switch to the XML

Source view (see Figure 6.6), which displays the serialized XML document in read-only

mode. Note that the attribute _status now has the value "Clean" after the save operation.

Section 6.1: Working with XML Documents 107

Figure 6.3: Menu - New Assignment

Figure 6.4: New Assignment Dialog

108 Chapter 6: Tutorial: How to use RelAndXML

Figure 6.5: DOM View pane of Assignment 1

Figure 6.6: XML Source pane

Section 6.1: Working with XML Documents 109

The DOM View offers several windows, which we can open via the Node menu or

context sensitive menus in the Tree , for inserting objects according to the Core and Exten-

sion tables - either new objects or loaded from the database. Figure 6.7 shows the context

sensitive menu that shows up with a right click on the element assignment. We choose

Insert as Child - DB Question , which will insert the new document fragment as the last

child node. Insert as Sibling would insert the new document fragment as sibling node

before the selected node (which is not possible here, since the selected node is the root

element). With these two possiblities, we can control the order of the documents parts.

Figure 6.7: Open DB question menu

Figure 6.8 shows the dialog that helps the user to find a question. On the top, the

user assembles an SQL statement to select questions. The combobox at the top offers for

instance “SELECT * FROM question” to retrieve all questions. In the example shown, we

ask for all questions with a keyword starting with ’ER’. After clicking of the Find button,

we can flip through the selected questions in the lower part of the dialog. When we have

found the right question, we press the Insert button. In Figure 6.9, we see the inserted

question.

Only the windows for adding new or existing text modules according to the Core

schema and the ExtensionNode tables Link and Keyword are specific to the student as-

signments application. All other parts of the implemented system can still be used if the

110 Chapter 6: Tutorial: How to use RelAndXML

Core schema is replaced.

Figure 6.8: Open DB question dialog

Figure 6.9: DOM View pane of Assignment 1 with question

Section 6.1: Working with XML Documents 111

Now we want to add the exam element, which is not part of the Core . We click the

menu item Insert as Child - New Element and fill in the dialog shown in Figure 6.10.

To the exam node we add a text element in the same way. To change the text content,

we use the Content text panel and right-click there to choose Update Text as shown in

Figure 6.11. (We could also choose the menu item Leaf - Update Text .) If we need single

quotation marks in our text, we use ', since in SQL, strings are delimited by single

quotation marks.

Figure 6.10: New element dialog

Figure 6.11: Update text of an element

112 Chapter 6: Tutorial: How to use RelAndXML

Attributes can be added or removed by right-clicking in the Attributes part of the

DOM View or by using the Leaf menu and filling in the dialog shown in Figure 6.12.

When we remove an attribute, it gets the value "Delete" and will be removed when we

save the XML document. When we delete other nodes with Node - Delete , these nodes

get the _status="Delete" and are also removed during the next save action. We can choose

between deleting with or without successor nodes.

Figure 6.12: New attribute dialog

Next, we add a comment by right-clicking on the element exam and choosing Insert

as Sibling - New Comment in the popup menu to insert the comment before the exam

(not shown). We write the comment into the dialog (see Figure 6.13) and press the OK

button. The XML Source for the comment looks like shown in Figure 6.14. Analogously,

we can add processing instructions.

Figure 6.13: New comment dialog

We finish with saving the document (File - Save XML to DB), so we have the XML

document shown in Figure 6.1 on page 105. When the assignment is handed out to stu-

dents, it is useful to publish it in RelAndXML with File - Publish Document and then

File - Save XML to DB . Then, the document cannot be changed any more without giving

it a new version number.

Section 6.2: Working with XSLT Documents 113

Figure 6.14: XML Source pane with comment

6.2 Working with XSLT Documents

We open and save XSL documents via the File menu. Figure 6.15 shows the XSL

Stylesheet with the start tags and the end tag of a stylesheet. The XSL Templates , shown

in Figure 6.16, lets the user flip through all the templates of the stylesheet. With the but-

tons at the bottom of the view, we can remove the current template from the stylesheet

and add it again, we can create a new template and save or cancel changes to the template.

The button Find More Templates lets the user search for templates in the database and

add them to the current stylesheet. We can look at the source of the XSL document in the

read-only XSL Source (see Figure 6.17).

Figure 6.15: XSL Stylesheet pane

114 Chapter 6: Tutorial: How to use RelAndXML

Figure 6.16: XSL Templates pane

Figure 6.17: XSL Source pane

Section 6.3: Viewing HTML Documents 115

6.3 Viewing HTML Documents

When we switch to HTML Source (see Figure 6.18), the XSL processor takes the current

XML and XSL documents as input and procudes an HTML document as output. Fig-

ure 6.19 shows the HTML View – the HTML output like presented in a browser. This

browser view is working correctly for HTML 3.2 only, due to the limited functionality

of the Java class JEditorPane. If the HTML view looks incorrect, we use File - Save

HTML to File and view the document in our favorite browser. (If it still looks incorrect,

we go back to our XSL document and look for errors.)

Figure 6.18: HTML Source pane

6.4 Various Features

The application has a Protocol window, where the SQL statements that are executed are

shown. Figure 6.20 shows this window during a save action for “Assignment 1” when

some elements and attributes were added.

116 Chapter 6: Tutorial: How to use RelAndXML

Figure 6.19: HTML View pane

Figure 6.20: Protocol window with INSERT and UPDATE commands

Section 6.4: Various Features 117

The Administration window for the administrator contains just a few features. It is

not meant to replace the tools that come with the chosen DBMS product. With the Select

button, we can print the content of the table chosen in the combobox on the right to

the Protocol window. With the Run Script button, we can run a script via JDBC. The

Generate Metadata button is useful when the Core is replaced: it generates INSERT

commands for some of the meta data tables. The buttons Save Tables and Load Tables

are a simple possibility to backup and restore the database content from RelAndXML ;

instead of a semicolon as delimiter, we use <_raxtrenner> (it’s a constant, so we can

change it) such that we can use semicolons in the database content.

Figure 6.21: Frame for the administrator

The about box of the system is shown in Figure 6.22.

Figure 6.22: About box

118 Chapter 6: Tutorial: How to use RelAndXML

6.5 Conclusion and Outlook

RelAndXML offers a user-friendly graphical user interface to work with XML, XSL, and

HTML documents.

The implementation shows that the design of the database meets the requirements that

we described in the Introduction.

The response time of the system is good. In our system environment with a client PC

and a LAN network connection to the database server, it takes less than a second to open

or save a document.

Outlook

Nevertheless, RelAndXML is still prototype software. In the future, one could include

the following features:

� The menus in the DOM View should be context-sensitive. For instance, on a right-

click on a text node, they should not show the Insert as Child menu item.

� The Node menu should have the items Update Assignment , Update Question , etc.

that open dialogs similar to the Open ... and DB ... dialogs and offer a more conve-

nient way to change the values of text modules.

� The search parts of the “Open from database” dialogs should be extended such that

the user does not have to write SQL statements.

Chapter 7

Implementation of RelAndXML

In this chapter, we describe the implementation of RelAndXML . We start with a section

about the system architecture. In the second section, we describe the applied technologies:

Java with the DOM parser Xerces, the XSL processor Xalan, and the database access with

JDBC. In the third section, we describe the implementation of the graphical user interface

for the DOM documents. The fourth section explains the algorithm Rel2XML which

builds an XML document from the relational data. In the fifth section, the decomposing

and saving of an XML document into the relational database with the algorithm XML2Rel

is explained. We conclude with an outlook to suggestions for improvement and possible

extensions.

7.1 System Architecture

The Java implementation consists of the package relandxml having four packages gui,

algo, db, and utils; see Figure 7.1.

relandxml

gui algo db utils

Figure 7.1: RelAndXML packages

120 Chapter 7: Implementation of RelAndXML

Figure 7.2 gives an overview about the system with the according packages shown

on the right. At the top, a schematic DOM view stands in place of the classes for the

graphical user interface that we have shown in the tutorial (see Chapter 6) and that belong

to the package gui.

In the remainder of the figure, we show classes with data structure character in square

boxes with rounded corners and classes with mostly algorithmic character written along

an arrow.

The package algo contains the main algorithms and data structures: The classes

DomToTreeModelAdapter,AttrToTableModelAdapter, and AdapterNode are used

to connect the GUI tree presentation to the underlying DOM document (see Subsec-

tion 7.2.1 and Section 7.3). The class XMLBaum comprises the DOM document and several

objects of helper classes which are used during the assembling and decomposing of the

document: PrimaryKey identifies the database tuple that belongs to the root element of

the document. This class as well as the helper classes ValueKnoten and BaumKnoten

are explained along with the algorithmic class Rel2XML in Section 7.4. The decomposing

algorithm XML2Rel as well as its helper class Datensatz are described in Section 7.5.

The db package contains the classes for the database access. The class DBAccess

has the information about the JDBC connection; it executes SQL statements and delivers

the results. When the system is started, DBAccess fills the MetaDatenbankwith values

according to the Metadata tables in the database. The MetaDatenbank is also used by

Rel2XML and XML2Rel. See also Subsection 7.2.3.

The package util contains a few helper classes used in the other packages.

We do not use a DOM representation of the XSL document. Instead, the XSL Stylesheet

and the XSL Templates views of the XMLTree-Editor read and write plain strings from

and to the tables in the Presentation schema. For the XSL Source , we concatenate the

strings from XSL Stylesheet and XSL Templates to receive the complete stylesheet. Since

this is standard programming, we do not explain it in greater detail. For the transformation

to an HTML document, we use the XSL processor Xalan as explained in Subsection 7.2.2.

Section 7.1: System Architecture 121

Database

Tree

Attributes

Content

DOM Document

DOM View

D
B

A
cc

es
sD

B
A

ccess

X
M

L2RelRel
2X

M
L

XMLBaum

D
om

T
oT

re
eM

od
el

A
da

pt
er

A
ttrT

oT
ableM

odelA
dapter

AdapterNode

PrimaryKey

BaumKnoten

ValueKnoten

MetaDatenbank

Datensatz

algo

db

gui

Figure 7.2: RelAndXML system

122 Chapter 7: Implementation of RelAndXML

7.2 Applied Java Technologies

In this section, we give a brief introduction to the Java technologies applied for the imple-

mentation: the XML parser Xerces, the XSL processor Xalan, and JDBC for the database

access.

7.2.1 Handling XML Documents

For the parsing and construction of XML documents and their DOM trees, we use Xerces,

which is the XML parser of the Apache XML project. See [Xer03] for download and

installation instructions.

Parsing XML Files

The class library of Xerces includes a simple command-line program called

sax.Counter to check XML documents. By default, sax.Counter only checks for

well-formedness, the -v flag turns on validation. To validate the document assign-

ment2.xml that includes a document type declaration, we write

java sax.Counter -v assignment2.xml

In the following lines of a Java program, we check XML documents with a DOM-

Parser object from the package org.apache.xerces.parsers. We also import the

package org.w3c.dom, which includes the interfaces for the different DOM types, for

instance Document and Element1. We turn on the validation feature in line 6.

1 import org.apache.xerces.parsers.*;

2 import org.w3c.dom.*;

3 ...

4 String xmlDocument = "assignment2.xml";

5 DOMParser parser = new DOMParser();

6 parser.setFeature("http://xml.org/sax/features/validation",

7 true);

8 parser.parse(xmlDocument);

9 Document doc = parser.getDocument();

If the XML document is not valid (or well-formed), Java throws a SAXParseExcep-

tion, which contains an error message as well as the line and column of the first error.

1The DOM types are shown in Figure 2.3 on page 22.

Section 7.2: Applied Java Technologies 123

Creating DOM Trees

With the following lines, we explain how to create a DOM tree with Java.

1 import org.w3c.dom.*;

2 import org.apache.xerces.dom.*;

3 ...

4 DOMImplementation domImpl = new DOMImplementationImpl();

5 Document doc = domImpl.createDocument(namespaceURI,

6 rootName, docType);

7 doc.appendChild(

8 doc.createProcessingInstruction("xml",

9 "version=\"1.0\" encoding=\"ISO-8859-1\""));

10 Element root = doc.getDocumentElement();

The interface DOMImplementation is part of the package org.w3c.dom. We also

need the Xerces-specific implementation DOMImplementationImpl from the package

org.apache.xerces.dom. In line 4, we create a DOMImplementation object, which

we use in line 5 to create a Document with a namespace, name of the root element and a

document type declaration. The namespace and document type declaration can be null.

In lines 7 to 9 we create the XML declaration and append it to the document. In line 10,

we access the root element of the document.

The following lines show how new nodes are created. First, we create a node of type

X, then we append it to its parent node. To an element elt we can also add attributes.

x = doc.createX(...);

elt.appendChild(x);

elt.setAttribute(name, value);

Among the createX methods, we use the following:

createElement(name)

createTextNode(data)

createCDATASection(data)

createComment(data)

createProcessingInstruction(target,data)

124 Chapter 7: Implementation of RelAndXML

Traversing DOM Trees

Next, we explain how a DOM tree can be traversed with Xerces. Every node has the

following (and more) methods for traversing. The methods on the left side return if there

are child nodes or attributes and give access to the nodes or attributes. The methods on

the right side return the DOM type of the node, its name and its value.

hasChildNodes() getNodeType()

getChildNodes() getNodeName()

getFirstChild() getNodeValue()

getNextSibling()

hasAttributes()

getAttributes()

The values of node name, node value, and attributes vary according to the node type as

shown in Table 7.1, which is part of the Java documentation [Jav03] for org.w3c.dom.

Node.

Interface nodeName nodeValue attributes

Attr name of attribute value of attribute null

CDATASection "#cdata-section" content of the CDATA

Section

null

Comment "#comment" content of the comment null

Document "#document" null null

Document-

Fragment

"#document-

fragment"

null null

DocumentType document type

name

null null

Element tag name null NamedNodeMap

Entity entity name null null

EntityReference name of entity

referenced

null null

Notation notation name null null

Processing-

Instruction

target entire content excluding

the target

null

Text "#text" content of the text node null

Table 7.1: DOM node types

Section 7.2: Applied Java Technologies 125

In the following listing, we use these methods in decomposeNode for decompos-

ing a document. Starting with the document node, we decompose each node recur-

sively and use a switch-case statement for the different types of nodes. The cases

Node.DOCUMENT_NODEand Node.ELEMENT_NODE show how to traverse the child nodes

of a node with a for loop (lines 8-11 and 26-32). The attributes of an element are ac-

cessed within the Node.ELEMENT_NODE case, also using a for loop (lines 17-25).

decomposeNode

1 private static void

2 decomposeNode(Node node, BufferedWriter writer,

3 String indentLevel) throws IOException {

4 // switch on the type of the node

5 switch (node.getNodeType()) {

6 case Node.DOCUMENT_NODE:

7 // recursive call for every child

8 NodeList nodes = node.getChildNodes();

9 for (int i = 0; i < nodes.getLength(); ++i)

10 decomposeNode(nodes.item(i), writer, "");

11 break;

12 case Node.ELEMENT_NODE:

13 String name = node.getNodeName();

14 writer.write(indentLevel + "Element: " + name);

15 writer.newLine();

16 // walk through attributes

17 NamedNodeMap attributes = node.getAttributes();

18 for (int i = 0; i < attributes.getLength(); ++i) {

19 Node current = attributes.item(i);

20 writer.write(indentLevel + "Attribute: "

21 + current.getNodeName() +

22 "=\"" + current.getNodeValue() + "\"");

23 writer.newLine();

24 }

25 // recursive call for every child

26 NodeList children = node.getChildNodes();

27 for (int i = 0; i < children.getLength(); ++i) {

28 decomposeNode(children.item(i), writer,

29 indentLevel + INDENT);

30 writer.newLine();

31 }

32 break;

126 Chapter 7: Implementation of RelAndXML

33 case Node.TEXT_NODE:

34 writer.write(indentLevel + "TextNode: "

35 + node.getNodeValue());

36 break;

37 case Node.CDATA_SECTION_NODE:

38 writer.write(indentLevel + "CDATASection: "

39 + node.getNodeValue());

40 break;

41 case Node.COMMENT_NODE:

42 writer.write(indentLevel + "Comment: "

43 + node.getNodeValue());

44 break;

45 case Node.PROCESSING_INSTRUCTION_NODE:

46 writer.write(indentLevel + "Processing Instruction: "

47 + node.getNodeName() +

48 " " + node.getNodeValue());

49 break;

50 default:

51 writer.write("***** Ignoring node: "

52 + node.getClass().getName());

53 }

54 }

55 /** Indentation */

56 private static final String INDENT = " ";
decomposeNode

Serialization

The transformation of a DOM tree to an XML document is called serialization. It can be

done analogously to the listing above, but it is easier to use the Xerces-specific XMLSe-

rializer from the package org.apache.xml.serialize or the implementation-

independent javax.xml.transform.Transformer. In the following lines, we show

how to use TransformerFactory to get a Transformer. We can set some output

properties like the method ("xml", "html", "text"), the encoding (set to "ISO-8859-

1" for German umlauts) and the indentation. The serialization is done in lines 9 and

10. The first parameter of the transform method is the input, the second is the output.

Both can be either a DOM document (classes DOMSource and DOMResult) or a stream

object (classes StreamSource and StreamResult). The exception TransformerEx-

Section 7.2: Applied Java Technologies 127

ception has to be caught. The classes are in the packages javax.xml.transform,

javax.xml.transform.stream, and javax.xml.transform.dom.

1 Document doc = ...;

2 TransformerFactory transFactory

3 = TransformerFactory.newInstance();

4 Transformer transformer = transFactory.newTransformer();

5 transformer.setOutputProperty(OutputKeys.METHOD, "xml");

6 transformer.setOutputProperty(OutputKeys.ENCODING,

7 "ISO-8859-1");

8 transformer.setOutputProperty(OutputKeys.INDENT, "yes");

9 transformer.transform(new DOMSource(doc),

10 new StreamResult(outputFilename));

7.2.2 Handling XSL Documents

For the processing of XSL documents, we use Xalan which is the XSLT processor of the

Apache XML project [Xal03]. To use Xalan as a command line processor, pass the input

file, stylesheet file, and output file as shown here:

java org.apache.xalan.xslt.Process -in <input.xml>

-xsl <transform.xsl> -out <output.html>

Xalan can be used within Java with a Transformer object similar to the one for

Xerces. The difference is the constructor of the Transformer: it gets the XSL stylesheet

as parameter.

1 Document doc = ...;

2 String xslFile = ...;

3 String htmlFile = ...;

4 TransformerFactory tFactory

5 = TransformerFactory.newInstance();

6 Transformer transformer = tFactory.newTransformer(

7 new StreamSource(

8 new FileReader(xslFile)));

9 transformer.transform(new DOMSource(doc),

10 new StreamResult(htmlFile);

128 Chapter 7: Implementation of RelAndXML

7.2.3 Database Access with JDBC and the Metadata

JDBC provides database access from Java programs that is independent from a specific

object-relational database product. This works with JDBC drivers which are available

for almost all database products. After establishing a connection to a (possibly remote)

database server, JDBC passes SQL statements to it and returns result messages (e.g. for

INSERT and UPDATE commands) or result sets (for SELECT commands). The result sets

have methods to walk through the rows and to access the values of each row.

Since JDBC is widely in use, we refrain from explaining code examples here. For

further information, see [HC02, JDB03].

In RelAndXML , the class DBAccess is concerned with the JDBC access and it also

manages the MetaDatenbank that contains the information from the Metadata tables in

the database. When RelAndXML is started, DBAccess reads the URL of the database

and the location of the JDBC driver from a properties file and fills the MetaDatenbank

with information. In this way, RelAndXML does not have to access the database every-

time, some metadata information is needed (and this information is needed constantly).

Figure 7.3 shows the structure of the MetaDatenbank. It contains a hash map (a subclass

of java.util.HashMap) with one MetaTabelle object for each table in the Core , Ex-

tension , and Presentation part of the database.

MetaSpalte

MetaXZuYBeziehung

MetaDatenbank

MetaTabelle

Figure 7.3: Class MetaDatenbank

Each MetaTabelle object has the information from the table RaxMetaTable and also

contains some hash maps: one for the MetaSpalte objects and several for the relation-

ship objects. There is a MetaSpalte object for each column of the table. It contains the

information from the metadata table RaxMetaColumn. Then there are HashMaps for 1:1,

1:N, and M:N relationships with the information from the tables RaxMeta1ToOne, Rax-

MetaOneToN, and RaxMetaMToN respectively. The structure of these metadata objects

is analogous to the ER schema shown in Subsection 5.4.1 on page 99. For instance, each

Section 7.3: A Graphical User Interface for a DOM Tree 129

column object is associated to its table object, and each relationship object has access to

the involved column or table objects.

7.3 A Graphical User Interface for a DOM Tree

As we have seen in the tutorial in Chapter 6, RelAndXML has a GUI with a tree represen-

tation that provides methods to update the tree by adding, changing or deleting parts of it.

In this subsection, we explain how the underlying DOM tree and the GUI are connected.

Figure 7.4 shows the DOM View pane of the XMLTree-Editor window. The left side,

called Tree , shows the DOM tree with a JTree object. The upper right side, called Con-

tent , displays the content or name of the selected node. Since attributes are not included

as children in the DOM hierarchy, we display them in a JTable object in the lower right

side called Attributes , if the selected node is an element.

Tree

Content

Attributes

Figure 7.4: XMLTree-Editor – DOM View pane

We follow the description in [A
�

01], which allows the display of a DOM as a JTree.

Then, we extend it using some information of [ASW01] such that modifications of the

JTree are done in the DOM tree also. We also set a status flag which makes it possible

to transfer the modifications to the database.

7.3.1 Displaying a DOM Tree

A JTree object is able to display a TreeModel. Therefore, we need an adapter class

AdapterNode to wrap each DOM node and a class DomToTreeModelAdapter which

implements the interface TreeModel. Both classes are part of the relandxml.algo

package.

The class AdapterNode declares a variable domNode to hold the DOM Node. The

methods of AdapterNode pass requests to the domNode by calling its methods (see Sub-

130 Chapter 7: Implementation of RelAndXML

section 7.2.1). The toString method is used for the representation of the Tree in the

DOM view and prints the node type, possibly followed by its name or value (see Ta-

ble 7.1).

AdapterNode

1 public class AdapterNode {

2 private org.w3c.dom.Node domNode;

3 private static final String[] typeName = {

4 "none", "Element", "Attr", "Text", "CDATA", "EntityRef",

5 "Entity", "ProcInstr", "Comment", "Document",

6 "DocType", "DocFragment", "Notation"

7 };

8

9 public AdapterNode(org.w3c.dom.Node node)

10 throws DOMException {

11 domNode = node;

12 }

13

14 public String toString() {

15 String s = typeName[domNode.getNodeType()];

16 String nodeName = domNode.getNodeName();

17 if (! nodeName.startsWith("#")) {

18 s += ": " + nodeName;

19 }

20 if (domNode.getNodeValue() != null) {

21 if (s.startsWith("ProcInstr"))

22 s += ", ";

23 else

24 s += ": ";

25 // Trim the value to get rid of NL’s at the front

26 String t = domNode.getNodeValue().trim();

27 int x = t.indexOf("\n");

28 if (x >= 0)

29 t = t.substring(0, x);

30 s += t;

31 }

32 return s;

33 }

34 ...

35 }
AdapterNode

Section 7.3: A Graphical User Interface for a DOM Tree 131

The following content method is used for the Content part of the DOM view and

either prints the node name or its value.

Class AdapterNode

1 public String content() {

2 String s = "";

3 switch (domNode.getNodeType()) {

4 case Node.DOCUMENT_TYPE_NODE:

5 s += domNode.getNodeName();

6 break;

7 case Node.ELEMENT_NODE:

8 s += domNode.getNodeName();

9 break;

10 case Node.COMMENT_NODE: // fall through

11 case Node.CDATA_SECTION_NODE: // fall through

12 case Node.TEXT_NODE:

13 s += domNode.getNodeValue();

14 break;

15 case Node.ENTITY_NODE: //fall through

16 case Node.ENTITY_REFERENCE_NODE:

17 s += domNode.getNodeName();

18 break;

19 }

20 return s;

21 }
Class AdapterNode

We also add the following three methods, which are called by the TreeModel adapter.

They return the index of a specified child, the child that corresponds to a given index, and

the count of child nodes.

Class AdapterNode

1 public int index(AdapterNode child) {

2 int count = childCount();

3 for (int i=0; i<count; i++) {

4 AdapterNode n = this.child(i);

5 if (child.domNode == n.domNode) return i;

6 }

7 return -1; // Should never get here.

8 }

9

132 Chapter 7: Implementation of RelAndXML

10 public AdapterNode child(int searchIndex) {

11 return new AdapterNode(

12 domNode.getChildNodes().item(searchIndex));

13 }

14 public int childCount() {

15 return domNode.getChildNodes().getLength();

16 }
Class AdapterNode

We will add more methods to AdapterNode in this section, but first, we define the

DomToTreeModelAdapter, which converts the current DOM document into a JTree

model. Since DomToTreeModelAdapter implements the interface of javax.swing.

tree.TreeModel, it has to implement the following methods:

Interface TreeModel

1 public Object getRoot();

2 public boolean isLeaf(Object node);

3 public int getChildCount(Object parent);

4 public Object getChild(Object parent, Object child);

5 public int getIndexOfChild(Object parent,

6 Object child);

7 public void valueForPathChanged(TreePath path,

8 Object newValue);

9 void addTreeModelListener(TreeModelListener l);

10 void removeTreeModelListener(TreeModelListener l);
Interface TreeModel

In DomToTreeModelAdapter, the getRoot method returns the root node of the

document, wrapped as an AdapterNode object. JTree uses the isLeaf method to

determine whether or not to display a clickable expand/contract icon to the left of the node,

so this method returns true only if the node has children. The methods getChildCount,

getChild, and getIndexOfChild are straightforward.

Class DomToTreeModelAdapter

1 public class DomToTreeModelAdapter

2 implements javax.swing.tree.TreeModel {

3 private org.w3c.dom.Document document;

4

5 public DomToTreeModelAdapter(Document document) {

6 this.document = document;

7 }

Section 7.3: A Graphical User Interface for a DOM Tree 133

8 public Object getRoot() {

9 return rootNode;

10 }

11

12 public boolean isLeaf(Object aNode) {

13 AdapterNode node = (AdapterNode) aNode;

14 if (node.childCount() > 0)

15 return false;

16 return true;

17 }

18

19 public int getChildCount(Object parent) {

20 AdapterNode node = (AdapterNode) parent;

21 return node.childCount();

22 }

23

24 public Object getChild(Object parent, int index) {

25 AdapterNode node = (AdapterNode) parent;

26 return node.child(index);

27 }

28

29 public int getIndexOfChild(Object parent, Object child) {

30 AdapterNode node = (AdapterNode) parent;

31 return node.index((AdapterNode) child);

32 }

33 }
Class DomToTreeModelAdapter

Now, we add the code to construct an adapter and deliver it to the JTree as the

TreeModel:

JTree tree = new JTree(new DomToTreeModelAdapter());

134 Chapter 7: Implementation of RelAndXML

7.3.2 Adding or Updating Nodes

Listeners and Events

The following methods are needed to change the document. After any change to the

underlying model, we need to inform all the listeners that a change had occurred. To

inform listeners, we need the ability to register them.

Class DomToTreeModelAdapter

1 private LinkedList listenerList = new LinkedList();

2 public void addTreeModelListener(TreeModelListener listener) {

3 if (listener!=null && !listenerList.contains(listener)) {

4 listenerList.add(listener);

5 }

6 }

7 public void removeTreeModelListener(

8 TreeModelListener listener) {

9 if (listener!=null) {

10 listenerList.remove (listener);

11 }

12 }
Class DomToTreeModelAdapter

When the JTree component is created, it registers itself with the model as a TreeMod-

elListener. Therefore, the TreeModel is expected to perform the following notifica-

tions, which are defined in swing.event.TreeModelListener.

Interface TreeModelListener

1 void treeNodesChanged (TreeModelEvent e);

2 void treeNodesInserted (TreeModelEvent e);

3 void treeNodesRemoved (TreeModelEvent e);

4 void treeStructureChanged (TreeModelEvent e);
Interface TreeModelListener

A TreeModelEvent encapsulates information describing the changes to the tree

model. Depending on the type of notification, we use one of the following constructors

of TreeModelEvent:

Class TreeModelEvent

1 public TreeModelEvent(Object source, TreePath path) {...};

2 public TreeModelEvent(Object source, TreePath path,

3 int[] childIndices,

4 Object[] children) {...};
Class TreeModelEvent

Section 7.3: A Graphical User Interface for a DOM Tree 135

In our case, the source argument is the DomToTreeModelAdapter object. The

path argument points to the parent of the changes. For instance, if nodes were inserted,

the path points to the parent node under which the inserts took place. (A TreePath

represents a path to a node with an array containing all the nodes from the root to that

node.)

The first constructor does not specify children and is used when making a structure-

changed notification. We use this constructor in the method valueForPathChanged on

page 138. When making a nodes-changed, nodes-inserted, or nodes-removed notification,

the second constructor is used. Children are specified as indexes under a single parent.

Changes to multiple nodes require multiple notifications. We usually only have a single

child, whose index and node we have to convert to an array, see the methods insert-

NodeInto and insertNodeBefore starting on page 139.

The methods of TreeModelListener are called from the following methods in

DomToTreeModelAdapter, which are invoked whenever we need to notify JTree lis-

teners of a change.

Class DomToTreeModelAdapter

1 public void fireTreeNodesChanged(TreeModelEvent e) {

2 Iterator listeners = listenerList.iterator();

3 while (listeners.hasNext()) {

4 TreeModelListener listener

5 = (TreeModelListener) listeners.next();

6 listener.treeNodesChanged(e);

7 }

8 }

9

10 public void fireTreeNodesInserted(TreeModelEvent e) {

11 Iterator listeners = listenerList.iterator();

12 while (listeners.hasNext()) {

13 TreeModelListener listener

14 = (TreeModelListener) listeners.next();

15 listener.treeNodesInserted(e);

16 }

17 }

18

19 public void fireTreeNodesRemoved(TreeModelEvent e) {

20 Iterator listeners = listenerList.iterator();

21 while (listeners.hasNext()) {

22 TreeModelListener listener

136 Chapter 7: Implementation of RelAndXML

23 = (TreeModelListener) listeners.next();

24 listener.treeNodesRemoved(e);

25 }

26 }

27

28 public void fireTreeStructureChanged(TreeModelEvent e) {

29 Iterator listeners = listenerList.iterator();

30 while (listeners.hasNext()) {

31 TreeModelListener listener

32 = (TreeModelListener) listeners.next();

33 listener.treeStructureChanged(e);

34 }

35 }
Class DomToTreeModelAdapter

Status of Nodes

As mentioned in the tutorial, we use an attribute _status when making changes in the

tree. This status is set via the class AdapterNode. The status of each node decides in

XML2Rel, whether an INSERT, UPDATE, or DELETE command is generated.

Class AdapterNode

1 public static final String RAX_STATUS = "_status";

2 public static final String RAX_CLEAN = "Clean";

3 public static final String RAX_READONLY = "ReadOnly";

4 public static final String RAX_NEW = "New";

5 public static final String RAX_MODIFIED = "Modified";

6 public static final String RAX_DELETE = "Delete";

7

8 public String getStatus() { ... };

9 protected void setStatus (String newStatus) { ... };
Class AdapterNode

When a document is loaded from the database, its modifiable nodes get the status

"Clean" and the not changeable elements the status "ReadOnly". Elements that are in-

serted via the GUI are "New". When a child node or attribute of a node is added, modified

or removed, the setStatus method in AdapterNode is called with the claimed status

"Modified". It sets the status as shown in the following table.

Section 7.3: A Graphical User Interface for a DOM Tree 137

Current Status + Claimed Status = New Status

"New" "Modified" "New"

"Clean" "Modified" "Modified"

"ReadOnly" "Modified" throws Exception

"Delete" "Modified" "Delete"

When the status is "ReadOnly", the user is not allowed to make changes to that

node. When the user wants to delete nodes, only new nodes are deleted immediately.

Other nodes are marked with the status "Delete" and removed after the next save action.

Current Status + Claimed Status = New Status

"New" "Delete" remove from tree

"Clean" "Delete" "Delete"

"ReadOnly" "Delete" "ReadOnly"

"Modified" "Delete" "Delete"

Next, we extend AdapterNodewith an update and a replaceChildmethod which

are used to change the value of a node. They change the status to "Modified" with the

method setStatus.

Class AdapterNode

1 public void update(Object newVal, AdapterNode parent) {

2 String newValue = newVal.toString();

3 int type = domNode.getNodeType();

4 if (type == Node.TEXT_NODE || type == Node.COMMENT_NODE

5 || type == Node.CDATA_SECTION_NODE) {

6 if (domNode.getNodeValue().equals(newValue))

7 return;

8 domNode.setNodeValue(newValue);

9 parent.setStatus(RAX_MODIFIED);

10 }

11 if (type == Node.ELEMENT_NODE) {

12 if (childCount() == 0) {

13 AdapterNode newNode = new AdapterNode(document,

14 newValue);

15 parent.replaceChild(newNode, this);

16 domNode = newNode.domNode;

17 setStatus(RAX_MODIFIED);

18 }

19 else {

138 Chapter 7: Implementation of RelAndXML

20 String message = "You can only rename elements that

21 do not have any child nodes.";

22 throw new RelAndXMLException(message);

23 }

24 }

25 }

26

27 public void replaceChild (AdapterNode newChild,

28 AdapterNode oldChild) {

29 domNode.replaceChild(newChild.domNode, oldChild.domNode);

30 setStatus(RAX_MODIFIED);

31 }
Class AdapterNode

The update method of AdapterNode is used in DomToTreeModelAdapter in the

method valueForPathChanged which is shown below. It notifies its listeners (the

JTree) of the change by calling fireTreeNodesChanged. Now we have completed

the implementation of the interface TreeModel.

Class DomToTreeModelAdapter

1 public void valueForPathChanged(TreePath path,

2 Object newValue) {

3 AdapterNode node

4 = (AdapterNode)path.getLastPathComponent();

5 TreePath parentPath = path.getParentPath();

6 AdapterNode parent

7 = (AdapterNode)parentPath.getLastPathComponent();

8 node.update(newValue, parent);

9 fireTreeNodesChanged(

10 new TreeModelEvent(this, parentPath));

11 }
Class DomToTreeModelAdapter

The following methods for AdapterNode are used for the insertion of nodes.

Class AdapterNode

1 public void appendChildNode (AdapterNode node) {

2 domNode.appendChild(node.domNode);

3 setStatus(RAX_MODIFIED);

4 }

Section 7.3: A Graphical User Interface for a DOM Tree 139

5 public void insertBefore (AdapterNode newNode,

6 AdapterNode oldNode) {

7 domNode.insertBefore(newNode.domNode, oldNode.domNode);

8 setStatus(RAX_MODIFIED);

9 }
Class AdapterNode

In DomToTreeModelAdapter, the method insertNodeInto inserts a new child

node into the node. The method insertBeforeNode inserts a new sibling node before

the node. At the end of the methods, we fire fireTreeNodesInserted(evt) to notify

the underlying tree.

Class DomToTreeModelAdapter

1 public TreePath insertNodeInto (int type,AdapterNode node,

2 TreePath path)

3 throws DOMException{

4 if (RAX_READONLY.equals(node.getStatus())) {

5 throw new RelAndXMLException(readOnlyMsg);

6 }

7 switch (node.getW3CNodeType()) {

8 case Node.DOCUMENT_NODE: //fall through

9 case Node.ELEMENT_NODE:

10 AdapterNode child = new AdapterNode(document, type);

11 node.appendChildNode(child);

12 int[] index = {node.childCount()};

13 Object[] children = {child};

14 TreeModelEvent evt

15 = new TreeModelEvent(this, path, index, children);

16 fireTreeNodesInserted(evt);

17 return path.pathByAddingChild(child);

18 default:

19 throw new RelAndXMLException(noChildrenMsg);

20 }

21 }

22

23 public TreePath insertNodeBefore (int type, AdapterNode

24 oldNode, TreePath path) {

25 AdapterNode parentNode

26 = (AdapterNode)path.getLastPathComponent();

27 String nodeStatus = parentNode.getStatus();

140 Chapter 7: Implementation of RelAndXML

28 if (RAX_READONLY.equals(nodeStatus)) {

29 throw new RelAndXMLException(readOnlyParentMsg);

30 }

31 switch (parentNode.getW3CNodeType()) {

32 case Node.DOCUMENT_NODE: // fall through

33 case Node.ELEMENT_NODE:

34 AdapterNode newNode

35 = new AdapterNode(document, type);

36 parentNode.insertBefore(newNode, oldNode);

37 int index[] = {parentNode.index(oldNode)};

38 Object[] children = {newNode};

39 TreeModelEvent evt

40 = new TreeModelEvent(this, path, index, children);

41 fireTreeNodesInserted(evt);

42 return path.pathByAddingChild(newNode);

43 default:

44 throw new RelAndXMLException(noChildrenMsg);

45 }

46 }
Class DomToTreeModelAdapter

7.3.3 Deleting Nodes

For the deletion of nodes, we add a method removeChild to AdapterNode that removes

the child and then sets the status of the node.

Class AdapterNode

1 public void removeChild (AdapterNode node) {

2 if (RAX_READONLY.equals(getStatus()))

3 return;

4 domNode.removeChild(node.domNode);

5 if (domNode.getNodeType() == Node.ELEMENT_NODE) {

6 setStatus(RAX_MODIFIED);

7 }

8 }
Class AdapterNode

Changes of the DOM tree are only transferred to the database when a save action is

performed. Therefore, we cannot actually delete nodes immediately, since they would not

be deleted in the database later. The deleteNodemethod in DomToTreeModelAdapter

sets the status of nodes that are to be deleted to "Delete" and leaves them in the tree.

Section 7.3: A Graphical User Interface for a DOM Tree 141

The parameter deep decides whether all successive nodes are deleted also. An exception

are nodes with the status "New": they have not been inserted into the database, so they

can be deleted immediately.

Class DomToTreeModelAdapter

1 public boolean deleteNode (AdapterNode deleteNode,

2 TreePath path, boolean deep) {

3 AdapterNode parent = deleteNode.getParentNode();

4 String delStatus = deleteNode.getStatus();

5 int[]index = {getIndexOfChild(parent, deleteNode)};

6 Object[] children = {deleteNode};

7 if (AdapterNode.RAX_CLEAN.equals(delStatus)

8 ||AdapterNode.RAX_MODIFIED.equals(delStatus)) {

9 deleteNode.setStatus(AdapterNode.RAX_DELETE, deep);

10 deleteNode.getParentNode().setStatus(

11 AdapterNode.RAX_MODIFIED);

12 TreeModelEvent evt

13 = new TreeModelEvent(this, path, index, children);

14 fireTreeNodesChanged(evt);

15 return false;

16 }

17 else if (AdapterNode.RAX_NEW.equals(delStatus)) {

18 parent.removeChild(deleteNode);

19 TreeModelEvent evt

20 = new TreeModelEvent(this, path, index, children);

21 fireTreeNodesRemoved(evt);

22 return true;

23 }

24 else

25 throw new RelAndXMLException("Cannot delete node "

26 + deleteNode);

27 }
Class DomToTreeModelAdapter

7.3.4 Displaying and Changing Attributes

To display and change the attributes of element nodes, we use a JTablewith two columns:

the first for the attributes names, the second for the attribute values. The class Attr-

ToTableModelAdapter, which implements javax.swing.table.TableModel, is

142 Chapter 7: Implementation of RelAndXML

the equivalent to DomToTreeModelAdapter. The interface TableModel has the fol-

lowing methods.

Interface TableModel

1 public int getColumnCount();

2 public int getRowCount();

3 public Object getValueAt(int row, int column);

4 public void setValueAt(Object newValue, int row,

5 int column);

6 public boolean isCellEditable(int row, int column);

7 public String getColumnName(int column);

8 public Class getColumnClass(int column);

9 public void addTableModelListener(

10 TableModelListener listener);

11 public void removeTableModelListener(

12 TableModelListener listener);

13 public void fireTableDataChanged();
Interface TableModel

For space reasons, we do not show the implementation of these methods in Attr-

ToTableModelAdapter, but they are straightforward and make use of some additional

methods in AdapterNode that we show next.

Class AdapterNode

1 public int attributeCount() {

2 if (domNode.getNodeType()==Node.ELEMENT_NODE)

3 return domNode.getAttributes().getLength();

4 else

5 return 0;

6 }

7

8 public String getAttributeName(int i) {

9 String s = "";

10 if (domNode.getNodeType()==Node.ELEMENT_NODE) {

11 NamedNodeMap attrs = domNode.getAttributes();

12 if (i>=0 || i < attrs.getLength())

13 s = attrs.item(i).getNodeName();

14 }

15 return s;

16 }

17

Section 7.3: A Graphical User Interface for a DOM Tree 143

18 public String getAttributeValue(int i) {

19 String s = "";

20 if (domNode.getNodeType()==Node.ELEMENT_NODE) {

21 NamedNodeMap attrs = domNode.getAttributes();

22 if (i>= 0 || i < attrs.getLength())

23 s = attrs.item(i).getNodeValue();

24 }

25 return s;

26 }

27

28 public void setAttribute(String name, String newValue) {

29 if (domNode.getNodeType()!=Node.ELEMENT_NODE)

30 return;

31 Element elt = (Element)domNode;

32 String value = elt.getAttribute(name);

33 if (value.equals("")) {

34 elt.setAttribute(name, newValue);

35 setStatus(RAX_MODIFIED);

36 }

37 else if (!newValue.equals(value)) {

38 elt.setAttribute(name, newValue);

39 setStatus(RAX_MODIFIED);

40 }

41 }

42

43 public void removeAttribute(String name) {

44 if (domNode.getNodeType()!=Node.ELEMENT_NODE)

45 return;

46 Element elt = (Element)domNode;

47 elt.setAttribute(name, RAX_DELETE);

48 }
Class AdapterNode

To remove an attribute, its value is set to "Delete" such that it can be deleted during

the next save action.

144 Chapter 7: Implementation of RelAndXML

7.4 Rel2XML – Composing XML Documents

The algorithmic class Rel2XML contains methods for the assembling of the Core and the

Extension . It gets as input a PrimaryKey object which identifies a unique database tuple

and assembles a DOM document from this starting point by checking all the Core and Ex-

tension tables for related tuples and following the principle of breadth search. Dynamic

data structures like hash maps and dynamic arrays are used in the classes BaumKnoten

and ValueKnoten in order to minimize the number of database accesses.

The algorithm is explained with the running example “Assignment 1”, whose XML

source is shown in Listing 2.6 on page 20. The database tuples for this assignment are

shown in the Tables 5.1 on page 90 and 5.2 on page 94. The algorithm gets as input a

PrimaryKey object with the table name and the primary key. In our example, we have a

PrimaryKey object with the attributes

PrimaryKey for “Assignment 1”

tabName = "assignment"

systemId = "assignment-1"

attributes = {uid="DB1_Su2002_A1", version="1.0"}

Our aim is to get a DOM tree of the document which we represent as shown in Figure

7.5. For a shorter notation, we omit attribute nodes, text nodes and child Core nodes.

Ordinal attributes are shown in squared boxes.

assignment-1

assignment

asHasQues-2

2
asHasQues

question-3
question

keyword-4
keyword

Comment

3
comment

exam-6

4
exam

text-8

1

text
strong-10

2

strong

text-12

3

text

Figure 7.5: XML tree for “Assignment 1”

Section 7.4: Rel2XML – Composing XML Documents 145

There are three main steps in the algorithm:

1. Assemble the Core nodes using their identifiers only.

2. Assemble the Extension nodes, using identifiers only for extension table nodes.

3. Fill the Core and Extension nodes with data.

The table name will be the XML root element. Note that any table name from the Core

schema can serve as root element. From there the algorithm builds SELECT statements

dynamically according to the metadata in MetaDatenbank.

The class BaumKnoten is a subclass of HashMap. The keys are the PrimaryKey

objects for the nodes, and the values have type ArrayList. We use two objects er-

wKnoten and neuKnoten of this class to save nodes that will be considered again during

the algorithm.

The class ValueKnoten is a subclass of HashMap as well. There, the keys are table

names and the values are of type BaumKnoten. An object kernKnoten of this class

is used while assembling the Core . An instance valueKnoten of this class is used to

save nodes, whose data has to be loaded from a node table. This way, each node table is

accessed at most once.

7.4.1 Assembling the Core

At the start, the kernKnoten object contains a BaumKnoten object for the table Assign-

ment and the node with the sid "assignment-1". We represent the PrimaryKey object

by its systemId and the node by drawing an oval around it.

kernKnoten=ValueKnoten[

"assignment"=BaumKnoten{"assignment-1"
� (assignment-1)}

]

For each entry in kernKnoten, Rel2XML checks the MetaDatenbank for relation-

ships to the table in the key of the entry ("assignment" here) and dynamically builds

SELECT statements to look for tuples in related tables whose foreign key columns match

the values of the PrimaryKey objects. In our example, we get three queries since the

table Assignment is associated with Course, Person, and Question. The queries look

somewhat verbose and generous with parentheses, because the generating methods work

for all cases, especially for reflexive relationships.

146 Chapter 7: Implementation of RelAndXML

1 SELECT a.sid AS asid, b.version AS bversion,b.uid AS buid, b.sid AS bsid,

2 b.courseuid AS bcourseuid,b.courseversion AS bcourseversion

3 FROM assignment AS b, course AS a

4 WHERE ((b.version=’1.0’ AND b.uid=’DB1_Su2002_A1’))

5 AND (a.uid=b.courseuid AND a.version=b.courseversion)

6

7 SELECT a.sid AS asid, b.version AS bversion,b.uid AS buid, b.sid AS bsid,

8 b.authoruid AS bauthoruid,b.authorversion AS bauthorversion

9 FROM assignment AS b, person AS a

10 WHERE ((b.version=’1.0’ AND b.uid=’DB1_Su2002_A1’))

11 AND (a.uid=b.authoruid AND a.version=b.authorversion)

12

13 SELECT ashasques.quuid,ashasques.sid,ashasques.asversion,

14 ashasques.asuid,ashasques.quversion,ashasques.ordinal,

15 ashasques.sid AS ashasquessid, question.sid AS questionsid

16 FROM ashasques, question

17 WHERE ((ashasques.asuid=’DB1_Su2002_A1’

18 AND ashasques.asversion=’1.0’))

19 AND (question.uid=ashasques.quuid

20 AND question.version=ashasques.quversion)

21 ORDER BY ordinal

Only the last of these SQL statements gives a result containing a single question. XML

elements and attributes are created in the DOM tree for this tuple (see Figure 7.6). For the

usual case with several questions, we order them with an ORDER BY clause. We might

as well order them with an XSL stylesheet, but that has the disadvantage that only the

HTML View pane shows the correct order but not the DOM View pane.

assignment-1

assignment

asHasQues-2

2

asHasQues

question-3
question

Figure 7.6: XML tree for “Assignment 1” – Core completed

Section 7.4: Rel2XML – Composing XML Documents 147

The PrimaryKey for "question-3" is saved in kernKnoten for the next step

within the Core .

kernKnoten=ValueKnoten[

"question"=BaumKnoten{"question-3"
� (question-3)}

]

Furthermore, the PrimaryKey objects for "assignment-1" and "question-3"

are saved in the BaumKnoten object erwKnoten, which will be used when assembling

the Extension .

erwKnoten = BaumKnoten {"assignment-1" � (assignment-1),

"question-3"
� (question-3)}

Next, we search for nodes associated to the ones in kernKnoten, but there are no

results, such that the recursion for the assembling of the Core comes to an end. The cycle

free insertion graph for the Metadata (see Figure 5.9 on page 101) is very important here.

It guarantees that the recursion stops.

Due to the hypertext-centric design, we can assemble not only assignments, but other

documents as well. If we open a course, for example, we get a document with the course

information, information about the lecturer, and the user identifiers and versions of all the

assignments and examinations. This is a distinctive feature of RelAndXML .

The number of SELECT statements needed to assemble the Core is mostly dependent

on the number of tables and foreign key relationships, and not on the depth of the tree

(except for reflexive relationships). This means that a large collection of questions does

not need more SELECT statements than an assignment with a single question.

7.4.2 Assembling the Extension

For assembling the Extension , we look recursively for tuples in the tables Edge and

EdgeInline that are related to the nodes in neuKnoten which is a copy of erwKnoten at

the start of the recursion.

neuKnoten = BaumKnoten {"assignment-1" � (assignment-1),

"question-3"
� (question-3)}

148 Chapter 7: Implementation of RelAndXML

1 SELECT * FROM Edge

2 WHERE ssid IN (’assignment-1’,’question-3’)

3 ORDER BY ssid, ordinal;

4

5 SELECT * FROM EdgeInline

6 WHERE ssid IN (’assignment-1’,’question-3’)

7 ORDER BY ssid, ordinal;

As during the assembling of the Core we use an ORDER BY clause, such that the

elements in the DOM View are ordered as much as possible.

The result contains the identifiers "keyword-4" from the Edge table and "exam-6"

from the EdgeInline table. They are added to erwKnoten and the object neuKnoten is

changed to the nodes "keyword-4" and "exam-6".

erwKnoten = BaumKnoten {"assignment-1" � (assignment-1),

"question-3"
� (question-3),

"keyword-4"
� (keyword-4),

"exam-6"
� (exam-6) }

neuKnoten = BaumKnoten {"keyword-4" � (keyword-4),

"exam-6"
� (exam-6)}

This step has to be repeated recursively until the result set is empty. The number of

SELECT statements is
��������� �	�

where
�

is the longest path of a Core node to a leaf of

the tree. Figure 7.7 shows the tree after the completion of step 2.

Section 7.4: Rel2XML – Composing XML Documents 149

assignment-1

assignment

asHasQues-2

2

asHasQues

question-3
question

keyword-4

exam-6

4

exam

text-8

1

text
strong-10

2

strong

text-12

3

text

Figure 7.7: XML tree after Step 2

If the DBMS supports recursive SQL (see Subsection 3.3.3 on page 48), we can re-

place these
� � ��� � �	�

statements by the single statement shown in Listing 7.1.

The initial query (lines 4 to 14) has two subqueries connected by UNION ALL. It

delivers those child nodes of the Core nodes that are saved in Edge or in EdgeInline. The

child nodes are marked with level 1. The recursive query (lines 16 to 26) is also built by

two subqueries and a UNION ALL. It delivers child nodes of those nodes found in the last

step. The level is increased by 1 for every recursive call.2 The finiteness of the recursive

query is assured by restricting the level by 10000 (or any constant that is surely greater

than any forthcoming depth). The actual query in line 28 orders and lists all the tuples.

The result of this query is shown in Table 7.2. The DOM tree is built successively from

this data.

The integration of searching in Edge and EdgeInline in one query assures that children

of Edge-nodes contained in EdgeInline (and vice versa) are also found.

Assuming all XML fragments were saved in the EdgeInline table, this query shows a

way of constructing a document from this table with a single SQL statement. This is not

included in [FK99a, FK99b] and to our best knowledge has not been described elsewhere.

2Note that the level is not the depth in the tree, since the recursion is started with nodes of different

depth.

150 Chapter 7: Implementation of RelAndXML

Listing 7.1 Recursive query for Edge and EdgeInline

1 WITH RECURSIVE Treedata(level, sid, ssid, tsid, uid, version, published,

2 ordinal, name, value, tabname) AS

3 (

4 (SELECT 1, sid, ssid, tsid, ” as uid, ” as version, ” as published,

5 ordinal, name, ” as value, ’edge’ as tabname

6 FROM Edge

7 WHERE ssid IN (’assignment-1’, ’question-3’)

8 UNION ALL

9 SELECT 1, sid, ssid, tsid, uid, version, published,

10 ordinal, name, value, ’edgeinline’ as tabname

11 FROM EdgeInline

12 WHERE ssid IN (’assignment-1’, ’question-3’)

13)

14 UNION ALL

15 (SELECT In.level+1, Out.sid, In.tsid, Out.tsid, ”, ”,

16 ”, Out.ordinal, Out.name, ”, ’edge’

17 FROM Treedata In, Edge Out

18 WHERE In.tsid = Out.ssid

19 UNION ALL

20 SELECT In.level+1, Out.sid, In.tsid, Out.tsid, Out.uid, Out.version,

21 Out.published, Out.ordinal, Out.name, Out.value, ’edgeinline’

22 FROM Treedata In, EdgeInline Out

23 WHERE In.tsid = Out.ssid AND In.level < 10000

24)

25)

26 SELECT * FROM Treedata ORDER BY level, ssid, ordinal;

Section 7.4: Rel2XML – Composing XML Documents 151

Treedata

level sid ssid tid ordinal name

1 edgeinline-7 assignment-1 exam-6 4 exam

1 edge-5 question-3 keyword-4 1 keyword

2 edgeinline-9 exam-6 text-8 1 text

2 edgeinline-11 exam-6 strong-10 2 strong

2 edgeinline-13 exam-6 text-12 3 text

value tabname uid version published

edgeinline DB1_Su2002_Exam 1.0 false

edge

The exam is an edgeinline text-8 1.0 false

open book edgeinline strong-10 1.0 false

exam. edgeinline text-12 1.0 false

Table 7.2: Result set Treedata of the recursive query

7.4.3 Adding Data, Attributes, Comments, and Processing Instruc-

tions

The last step is to get additional tuples from the EdgeAttribute, EdgeComment, and Edge-

ProcInstr tables as well as from the ExtensionNode tables. We also get the data for all the

PrimaryKey objects in erwKnoten. In this way, there is at most one SELECT for each

of these tables.

1 SELECT * FROM EdgeAttribute

2 WHERE ssid IN (’assignment-1’,’question-3’,’keyword-4’,

3 ’exam-6’,’text-8’, ’strong-10’, ’text-12’);

4 SELECT * FROM EdgeComment

5 WHERE ssid IN (’assignment-1’,’question-3’,’keyword-4’,

6 ’exam-6’,’text-8’, ’strong-10’, ’text-12’);

7 SELECT * FROM EdgeProcInstr

8 WHERE ssid IN (’assignment-1’,’question-3’,’keyword-4’,

9 ’exam-6’,’text-8’, ’strong-10’, ’text-12’);

10 SELECT * FROM Assignment WHERE sid IN (’assignment-1’);

11 SELECT * FROM Question WHERE sid IN (’question-3’);

12 SELECT * FROM Keyword WHERE sid IN (’keyword-4’);

Now, we have a complete DOM document as the one shown in Figure 7.5 on page 144.

152 Chapter 7: Implementation of RelAndXML

The document is partially ordered by this time. Any additional ordering is done by an XSL

processor using an XSL stylesheet.

7.5 XML2Rel – Decomposing XML Documents

The algorithm XML2Rel traverses the DOM representation of the XML document to frag-

ment it into pieces suitable for the relational database. The fragmented data is saved in a

hash map Datensatz; only when the traversing is completed, SQL statements are gener-

ated according to the content of the hash maps and the statements are executed as a single

transaction.

The traversing is done like explained in Subsection 7.2.1 plus it uses the metadata in

the MetaDatenbank object about the Core and Extension schemas. The root node has

to be a Core table element. For every node, the algorithm is called recursively, checks

the node and puts its data into a Datensatz object. If a node is a table node, the algo-

rithm looks for children and attributes that are column nodes. It creates a Tabellensatz

object, which is also a hash map, when the table occurs for the first time, and puts the

Tabellensatz in the hash map Datensatz with the table name as key. Each Tabel-

lensatz might contain several Zeilensatz hash maps, with a PrimaryKey object as

the key. The PrimaryKey also contains the status of the node. The Zeilensatz

objects have column names as keys and the data values. Left over attributes are put in

Datensatz for the table EdgeAttribute. The algorithm also looks for relationship nodes.

By checking the metadata the allowed cardinality of the relationship is known. Errors in

the structure like missing not-null attributes or wrong cardinalities are handled by excep-

tions. The edges to children corresponding to ExtensionNode tables are put in Daten-

satz for the Edge table. The remaining XML elements are marked for the EdgeInline

table.

The following lines show the Tabellensatz for the table EdgeInline when “Assign-

ment 1” is saved. The status of all nodes is "New".

1 datensatz = Datensatz{

2 edgeinline=Tabellensatz{

3 PrimaryKey[systemId=strong-10,raxStatus=New]

4 = Zeilensatz{value=’open book’, sid=’edgeinline-11’,

5 tsid=’strong-10’, published=’false’,

6 ssid=’exam-6’, uid=’edgeinline-11’,

7 ordinal=2, name=’strong’, version=’1.0’},

Section 7.5: XML2Rel – Decomposing XML Documents 153

8 PrimaryKey[systemId=text-8,raxStatus=New]

9 = Zeilensatz{value=’The exam is an’,

10 sid=’edgeinline-9’,

11 tsid=’text-8’, published=’false’,

12 ssid=’exam-6’, uid=’edgeinline-9’,

13 ordinal=1, name=’text’, version=’1.0’},

14 PrimaryKey[systemId=text-12,raxStatus=New]

15 = Zeilensatz{value=’exam.’, sid=’edgeinline-13’,

16 tsid=’text-12’, published=’false’,

17 ssid=’exam-6’, uid=’edgeinline-13’,

18 ordinal=3, name=’text’, version=’1.0’},

19

20 PrimaryKey[systemId=exam-6,raxStatus=New]

21 = Zeilensatz{value=’’, sid=’edgeinline-7’,

22 tsid=’exam-6’, published=’false’,

23 ssid=’assignment-1’, uid=’edgeinline-7’,

24 ordinal=4, name=’exam’, version=’1.0’}}

25 }

26 ...

27 }

In a second step the appropriate SQL statements are generated and executed as a sin-

gle transaction. To be able to update text modules, the system must be able to generate

INSERT-, UPDATE- and DELETE- statements. We found a good solution to this problem

by using the internal XML attribute _status, which we explained in Section 7.3. If the

_status equals "New", an INSERT statement is generated. There is an UPDATE state-

ment for _status equals "Modified" and a DELETE statement for _status equals

"Delete". If the _status equals "Clean" or "ReadOnly", no SQL statement is cre-

ated. The SQL commands that are generated from the Tabellensatz above are shown

in Figure 6.20 on page 116. After a successful save action all _status attributes are

changed to "Clean".

154 Chapter 7: Implementation of RelAndXML

7.6 Conclusion and Outlook

RelAndXML is a graphical XML editor with a tree representation on the left side and

a right side divided to edit text nodes on the top and attributes on the bottom half. It is

directly connected to an object-relational database system.

The entire source code was written by the author of this thesis except for two helper

classes3 and parts of the classes DomToTreeModelAdapter and AdapterNode which

were taken from the technical manual [A
�

01]. There are approximately 25.000 lines of

code in about 120 classes.

The system works well with an average response time for save and load actions of

less than a second. The saving is faster, since it first disassembles the complete document

and then executes the SQL statements in a single transaction. For instance, saving a new

assignment with 3 questions, two parts and one additional paragraph with 12 INSERT

statements takes about 220 milliseconds. For loading, SELECT statements and assem-

bling methods are executed alternately. Loading an average assignment takes 300 to 500

milliseconds and about 30 SELECT statements. The highest loading time of the real-

world documents in InfDB has an assignment with the questions of a complete semester

– it needs about 1900 milliseconds for 36 SELECT statements.

The assembling with a recursive query is indeed faster than the non-recursive alter-

native. We inserted a synthetic assignment with two questions and with 100 EdgeInline

elements to the database, such that each EdgeInline element is the parent of the next el-

ement. With DB2, RelAndXML needs 228 SELECT statements and 2.14 seconds to

assemble the assignment. The recursive alternative only needs 27 SELECT statements

and 1.1 seconds.

In order to make the system an even more user-friendly tool, we propose to implement

the improvements suggested in the conclusion of Chapter 6.

The successful implementation proves the quality of our concept for the management

and storage of hypertext-centric XML. A distinctive feature is that we can store the text

modules of a document, and then assemble several documents from this data. For in-

stance, we save the assignments of a course, and then get documents about the course and

the lecturer in addition to the assignments.

3The class ObjectAnalyzer of the package util prints the values of an object and is taken from

[HC03]. The class gui.XMLDocumentWriterwhich we adopted from [Fla00] is an XML serializer

that indents more accurately than the one provided by Xerces.

Chapter 8

Conclusion

RelAndXML is a system that was especially designed to store and manage hypertext-

centric XML documents and the according XSL stylesheets. Aspects of data-centric as

well as document-centric storage approaches are combined for our hypertext-centric stor-

age approach.

We implemented a graphical XML editor as well as the connection to an object-

relational database system with Java. There are numerous XML editors (see [XEd03]) and

various XML databases (see Chapter 3), but RelAndXML is an XML editor with a direct

connection to an XML database. The requirements from Chapter 1 are fulfilled: RelAnd-

XML saves XML text modules, additional XML document parts, and XSL stylesheets.

It preserves document order, provides versioning and publishing of documents, and pro-

duces HTML or XHTML as output. Standard queries, especially for the search of text

modules, are answered by the system.

We inserted some assignments from several courses at our institute. To earn the ben-

efits of the system, we would have to insert the complete assignments for all the courses

from the previous semesters. The best thing would be to have a translator from LATEX to

XML. One thing to start with could be a tool that assists the user by translating a given

LATEX document into an XML document that, afterwards, could be adjusted by a human

user. Such a tool would be a nice extension to RelAndXML .

156 Chapter 8: Conclusion

Appendix A

Create Commands for InfDB

In this appendix, we show the CREATE commands for the InfDB database as we ran

them on the PostgreSQL DBMS. The only expected difference when switching to another

DBMS are the TEXT columns for the CLOB data type.

A.1 Core Commands

1 CREATE TABLE person (

2 sid varchar(40) NOT NULL,

3 published char(5) NOT NULL

4 CHECK (published IN (’true’,’false’))

5 DEFAULT ’false’,

6 uid varchar(60) NOT NULL,

7 version char(5) NOT NULL,

8 date varchar(60),

9 initials char(8),

10 title char(20),

11 firstname varchar(50),

12 lastname varchar(50),

13 PRIMARY KEY (uid, version),

14 UNIQUE (sid)

15);

16

17 CREATE TABLE course (

18 sid varchar(40) NOT NULL,

19 published char(5) NOT NULL

20 CHECK (published IN (’true’,’false’))

21 DEFAULT ’false’,

158 Chapter A: Create Commands for InfDB

22 uid varchar(60) NOT NULL,

23 version char(5) NOT NULL,

24 date varchar(60),

25 name varchar(200),

26 semester varchar(60),

27 lectureruid varchar(60),

28 lecturerversion char(5),

29 PRIMARY KEY (uid, version),

30 UNIQUE (sid),

31 FOREIGN KEY (lectureruid, lecturerversion)

32 REFERENCES person(uid, version)

33);

34

35 CREATE TABLE assignment (

36 sid varchar(40) NOT NULL,

37 published char(5) NOT NULL

38 CHECK (published IN (’true’,’false’))

39 DEFAULT ’false’,

40 uid varchar(60) NOT NULL,

41 version char(5) NOT NULL,

42 date varchar(60),

43 authoruid varchar(60),

44 authorversion char(5),

45 number varchar(120),

46 dateofissue varchar(120),

47 deadline varchar(120),

48 courseuid varchar(60),

49 courseversion char(5),

50 PRIMARY KEY (uid, version),

51 UNIQUE (sid),

52 FOREIGN KEY (courseuid, courseversion)

53 REFERENCES course(uid, version),

54 FOREIGN KEY (authoruid, authorversion)

55 REFERENCES person(uid, version)

56);

57

58 CREATE TABLE question (

59 sid varchar(40) NOT NULL,

60 published char(5) NOT NULL

61 CHECK (published IN (’true’,’false’))

Section A.1: Core Commands 159

62 DEFAULT ’false’,

63 uid varchar(60) NOT NULL,

64 version char(5) NOT NULL,

65 date varchar(60),

66 authoruid varchar(60),

67 authorversion char(5),

68 marks varchar(60),

69 paragraph text,

70 PRIMARY KEY (uid, version),

71 UNIQUE (sid),

72 FOREIGN KEY (authoruid, authorversion)

73 REFERENCES person(uid, version)

74);

75

76 CREATE TABLE part (

77 sid varchar(40) NOT NULL,

78 published char(5) NOT NULL

79 CHECK (published IN (’true’,’false’))

80 DEFAULT ’false’,

81 uid varchar(60) NOT NULL,

82 version char(5) NOT NULL,

83 date varchar(60),

84 authoruid varchar(60),

85 authorversion char(5),

86 marks varchar(60),

87 paragraph text,

88 PRIMARY KEY (uid, version),

89 UNIQUE (sid),

90 FOREIGN KEY (authoruid, authorversion)

91 REFERENCES person(uid, version)

92);

93

94 CREATE TABLE examination (

95 sid varchar(40) NOT NULL,

96 published char(5) NOT NULL

97 CHECK (published IN (’true’,’false’))

98 DEFAULT ’false’,

99 uid varchar(60) NOT NULL,

100 version char(5) NOT NULL,

101 date varchar(60),

160 Chapter A: Create Commands for InfDB

102 authoruid varchar(60),

103 authorversion char(5),

104 head varchar(200),

105 title varchar(200),

106 student varchar(1000),

107 valuation varchar(1000),

108 remarks varchar(1000),

109 pageheader varchar(200),

110 courseuid varchar(60),

111 courseversion char(5),

112 PRIMARY KEY (uid, version),

113 UNIQUE (sid),

114 FOREIGN KEY (courseuid, courseversion)

115 REFERENCES course(uid, version),

116 FOREIGN KEY (authoruid, authorversion)

117 REFERENCES person(uid, version)

118);

119

120 CREATE TABLE figure (

121 sid varchar(40) NOT NULL,

122 published char(5) NOT NULL

123 CHECK (published IN (’true’,’false’))

124 DEFAULT ’false’,

125 uid varchar(60) NOT NULL,

126 version char(5) NOT NULL,

127 date varchar(60),

128 authoruid varchar(60),

129 authorversion char(5),

130 type varchar(60),

131 filename varchar(120),

132 width varchar(40),

133 height varchar(40),

134 sourcetype varchar(60),

135 sourcefilename varchar(120),

136 PRIMARY KEY (uid, version),

137 UNIQUE (sid),

138 FOREIGN KEY (authoruid, authorversion)

139 REFERENCES person(uid, version)

140);

141

Section A.1: Core Commands 161

142 -----------------------------

143 -- Many-to-many relations

144 -----------------------------

145 CREATE TABLE ashasques (

146 sid varchar(40) NOT NULL,

147 asuid varchar(60) NOT NULL,

148 asversion char(5) NOT NULL,

149 quuid varchar(60) NOT NULL,

150 quversion char(5) NOT NULL,

151 ordinal integer,

152 PRIMARY KEY (asuid, asversion, quuid, quversion),

153 UNIQUE (sid),

154 FOREIGN KEY (asuid, asversion)

155 REFERENCES assignment(uid,version),

156 FOREIGN KEY (quuid, quversion)

157 REFERENCES question(uid,version)

158);

159

160 CREATE TABLE examhasques (

161 sid varchar(40) NOT NULL,

162 emuid varchar(60) NOT NULL,

163 emversion char(5) NOT NULL,

164 quuid varchar(60) NOT NULL,

165 quversion char(5) NOT NULL,

166 ordinal integer,

167 PRIMARY KEY (emuid, emversion, quuid, quversion),

168 UNIQUE (sid),

169 FOREIGN KEY (emuid, emversion)

170 REFERENCES examination(uid,version),

171 FOREIGN KEY (quuid, quversion)

172 REFERENCES question(uid,version)

173);

174

175 CREATE TABLE queshaspart (

176 sid varchar(40) NOT NULL,

177 quuid varchar(60) NOT NULL,

178 quversion char(5) NOT NULL,

179 pauid varchar(60) NOT NULL,

180 paversion char(5) NOT NULL,

181 ordinal int,

162 Chapter A: Create Commands for InfDB

182 PRIMARY KEY (quuid, quversion, pauid, paversion),

183 UNIQUE (sid),

184 FOREIGN KEY (quuid, quversion)

185 REFERENCES question(uid, version),

186 FOREIGN KEY (pauid, paversion)

187 REFERENCES part(uid, version)

188);

189

190 CREATE TABLE quesusesques (

191 sid varchar(40) NOT NULL,

192 quuid varchar(60) NOT NULL,

193 quversion char(5) NOT NULL,

194 useduid varchar(60) NOT NULL,

195 usedversion char(5) NOT NULL,

196 PRIMARY KEY (sid),

197 UNIQUE (sid),

198 FOREIGN KEY (quuid, quversion)

199 REFERENCES question(uid, version),

200 FOREIGN KEY (useduid, usedversion)

201 REFERENCES question(uid, version)

202);

A.2 Extension Commands

1 ----------------------------------

2 -- Extension Node tables

3 ----------------------------------

4 CREATE TABLE link (

5 sid varchar(40) NOT NULL,

6 published char(5) NOT NULL

7 CHECK (published IN (’true’,’false’))

8 DEFAULT ’false’,

9 uid varchar(60) NOT NULL,

10 version char(5) NOT NULL,

11 date varchar(60),

12 internal char(5)

13 CHECK (internal IN (’true’,’false’)),

14 href varchar(200),

15 text varchar(300),

Section A.2: Extension Commands 163

16 PRIMARY KEY (sid),

17 UNIQUE (uid, version)

18);

19

20 CREATE TABLE keyword (

21 sid varchar(40) NOT NULL,

22 published char(5) NOT NULL

23 CHECK (published IN (’true’,’false’))

24 DEFAULT ’false’,

25 uid varchar(60) NOT NULL,

26 version char(5) NOT NULL,

27 name varchar(250),

28 PRIMARY KEY (sid),

29 UNIQUE (uid, version)

30);

31

32 ----------------------------------

33 -- Extension Edge tables

34 ----------------------------------

35 CREATE TABLE edgeinline (

36 sid varchar(40) NOT NULL,

37 ssid varchar(40) NOT NULL,

38 tsid varchar(40) NOT NULL,

39 published char(5) NOT NULL

40 CHECK (published IN (’true’,’false’))

41 DEFAULT ’false’,

42 uid varchar(60) NOT NULL,

43 version char(5) NOT NULL,

44 ordinal int NOT NULL,

45 name varchar(120) NOT NULL,

46 value text,

47 PRIMARY KEY (sid)

48);

49

50 CREATE INDEX edgeinline_indx1 ON edgeinline(ssid, ordinal);

51 CREATE INDEX edgeinline_indx2 ON edgeinline(name, tsid);

52 CREATE INDEX edgeinline_indx3 ON edgeinline(value);

53

54 CREATE TABLE edge (

55 sid varchar(40) NOT NULL,

164 Chapter A: Create Commands for InfDB

56 ssid varchar(40) NOT NULL,

57 tsid varchar(40) NOT NULL,

58 ordinal int NOT NULL,

59 name varchar(120) NOT NULL,

60 PRIMARY KEY (sid)

61);

62

63 CREATE INDEX edge_indx1 ON edge(ssid, ordinal);

64 CREATE INDEX edge_indx2 ON edge(name, tsid);

65

66 CREATE TABLE edgeattribute (

67 ssid varchar(40) NOT NULL,

68 name varchar(60) NOT NULL,

69 value varchar(120),

70 PRIMARY KEY (ssid, name)

71);

72

73 CREATE TABLE edgecomment (

74 sid varchar(40) NOT NULL,

75 ssid varchar(40) NOT NULL,

76 ordinal int NOT NULL,

77 comment varchar(3000),

78 PRIMARY KEY (sid)

79);

80

81 CREATE INDEX edgecomment_indx1 ON edgecomment(ssid, ordinal);

82

83 CREATE TABLE edgeprocinstr (

84 sid varchar(40) NOT NULL,

85 ssid varchar(40) NOT NULL,

86 ordinal int NOT NULL,

87 target varchar(30) NOT NULL,

88 data text,

89 PRIMARY KEY (sid)

90);

91

92 CREATE INDEX edgepi_indx1 ON edgeprocinstr(ssid, ordinal);

Section A.3: Presentation Commands 165

A.3 Presentation Commands

1 CREATE TABLE xsl_stylesheet (

2 sid varchar(40) NOT NULL,

3 published char(5) NOT NULL

4 CHECK (Published IN (’true’,’false’))

5 DEFAULT ’false’,

6 uid varchar(60) NOT NULL,

7 version char(5) NOT NULL,

8 date varchar(60),

9 authorUID varchar(60),

10 authorVersion char(5),

11 starttags text,

12 endtags varchar(100),

13 description varchar(300),

14 PRIMARY KEY (uid, version),

15 UNIQUE (sid)

16);

17

18 ALTER TABLE xsl_stylesheet ADD CONSTRAINT xs_FK1

19 FOREIGN KEY (authoruid, authorversion)

20 REFERENCES Person(uid, version);

21

22 CREATE TABLE xsl_template (

23 sid varchar(40) NOT NULL,

24 published char(5) NOT NULL

25 CHECK (published IN (’true’,’false’))

26 DEFAULT ’false’,

27 uid varchar(60) NOT NULL,

28 version char(5) NOT NULL,

29 date varchar(60),

30 authorUID varchar(60),

31 authorVersion char(5),

32 match varchar(120),

33 name varchar(60),

34 priority varchar(60),

35 mode varchar(60),

36 component text,

37 description varchar(300),

38 PRIMARY KEY (uid, version),

166 Chapter A: Create Commands for InfDB

39 UNIQUE (sid)

40);

41

42 ALTER TABLE xsl_template ADD CONSTRAINT xt_FK1

43 FOREIGN KEY (AuthorUID, AuthorVersion)

44 REFERENCES Person(UID, Version);

45

46 CREATE TABLE xsl_style_template (

47 sUid varchar(60) NOT NULL,

48 sVersion char(5) NOT NULL,

49 tUid varchar(60) NOT NULL,

50 tVersion char(5) NOT NULL,

51 PRIMARY KEY (suid, sversion, tuid, tversion)

52);

53

54 ALTER TABLE xsl_style_template ADD CONSTRAINT xst_FK1

55 FOREIGN KEY (suid,sversion)

56 REFERENCES xsl_stylesheet(uid,version);

57 ALTER TABLE xsl_style_template ADD CONSTRAINT xst_FK2

58 FOREIGN KEY (tuid,tversion)

59 REFERENCES xsl_template(uid,version);

60

61 CREATE TABLE xsl_node_style (

62 sid varchar(60) NOT NULL,

63 nuid varchar(60),

64 nversion char(5),

65 nodename varchar(120),

66 suid varchar(60) NOT NULL,

67 sversion char(5) NOT NULL,

68 PRIMARY KEY (sid)

69);

70

71 ALTER TABLE xsl_node_style ADD CONSTRAINT xns_FK1

72 FOREIGN KEY (suid,sversion)

73 REFERENCES xsl_stylesheet(uid,version);

74

75 CREATE TABLE xsl_node_template (

76 sid varchar(60) NOT NULL,

77 nuid varchar(60),

78 nversion char(5),

Section A.4: Metadata Commands 167

79 nodename varchar(120),

80 tuid varchar(60) NOT NULL,

81 tversion char(5) NOT NULL,

82 PRIMARY KEY (sid)

83);

84 ALTER TABLE xsl_node_template ADD CONSTRAINT xnt_FK1

85 FOREIGN KEY (tuid,tversion)

86 REFERENCES xsl_template(uid,version);

A.4 Metadata Commands

1 CREATE TABLE raxmetatable (

2 dbtable varchar(40) NOT NULL,

3 type char(10) NOT NULL,

4 number int NOT NULL,

5 PRIMARY KEY (dbtable)

6);

7

8 CREATE TABLE raxmetacolumn (

9 tablecolumn varchar(81) NOT NULL,

10 dbtable varchar(40) NOT NULL,

11 columnname varchar(40) NOT NULL,

12 domain varchar(30) NOT NULL,

13 width int NOT NULL,

14 pk char(5) NOT NULL,

15 nnull char(5) NOT NULL,

16 xmlattr char(5) NOT NULL,

17 PRIMARY KEY (tablecolumn),

18 FOREIGN KEY (dbtable) REFERENCES raxmetatable(dbtable)

19);

20

21 create table raxmeta1toone (

22 relname varchar(81) NOT NULL,

23 table1 varchar(40) NOT NULL,

24 table2 varchar(40) NOT NULL,

25 insert1intoone char(5) NOT NULL,

26 xmlname1intoone varchar(40) NOT NULL,

27 insertoneinto1 char(5) NOT NULL,

28 xmlnameoneinto1 varchar(40) NOT NULL,

168 Chapter A: Create Commands for InfDB

29 PRIMARY KEY (relname),

30 FOREIGN KEY (table1) REFERENCES raxmetatable(dbtable),

31 FOREIGN KEY (table2) REFERENCES raxmetatable(dbtable)

32);

33

34 CREATE TABLE raxmetaoneton (

35 relname varchar(81) NOT NULL,

36 table1 varchar(40) NOT NULL,

37 table2 varchar(40) NOT NULL,

38 insertoneinton char(5) NOT NULL,

39 xmlnameoneinton varchar(40) NOT NULL,

40 insertnintoone char(5) NOT NULL,

41 xmlnamenintoone varchar(40) NOT NULL,

42 PRIMARY KEY (relname),

43 FOREIGN KEY (table1) REFERENCES raxmetatable(dbtable),

44 FOREIGN KEY (table2) REFERENCES raxmetatable(dbtable)

45);

46

47 CREATE TABLE raxmetamton (

48 relname varchar(40) NOT NULL,

49 table1 varchar(40) NOT NULL,

50 table2 varchar(40) NOT NULL,

51 insertminton char(5) NOT NULL,

52 xmlnameminton varchar(40) NOT NULL,

53 insertnintom char(5) NOT NULL,

54 xmlnamenintom varchar(40) NOT NULL,

55 PRIMARY KEY (relname),

56 FOREIGN KEY (table1) REFERENCES raxmetatable(dbtable),

57 FOREIGN KEY (table2) REFERENCES raxmetatable(dbtable)

58);

59

60 CREATE TABLE raxmetarelcolumn (

61 relname varchar(81) NOT NULL,

62 column1 varchar(81) NOT NULL,

63 column2 varchar(81) NOT NULL,

64 side varchar(5),

65 PRIMARY KEY (relname, column1, column2),

66 FOREIGN KEY (column1) REFERENCES raxmetacolumn(tablecolumn),

67 FOREIGN KEY (column2) REFERENCES raxmetacolumn(tablecolumn)

68);

References

[A
�

01] Eric Armstrong et al. Working with XML: The Java API for Xml Pro-

cessing (JAXP) Tutorial – Part III: XML and the Document Object Model

(DOM). http://java.sun.com/xml/jaxp/dist/1.1/docs/

tutorial/dom/index.html, 2001. Verified on 27 June 2003.

[Ada03] Adabas. http://www.softwareag.com/adabas, verified on 30 May

2003.

[ASW01] Eric Armstrong, Tom Santos, and Steve Wilson. Understanding the

TreeModel: Why ’Less Is More’ is an Elegant Design. http://java.

sun.com/products/jfc/tsc/articles/jtree/index.html,

2001. Verified on 26 June 2003.

[BFRS02] Philip Bohannon, Juliana Freire, Prasan Roy, and Jérôme Siméon. From

XML Schema to Relations: A Cost-Based Approach to XML Storage. In

ICDE, 2002.

[Bou01] Ronald Bourret. Mapping DTDs to Databases. URL: http://www.xml.

com/pub/a/2001/05/09/dtdtodbs.html, May 2001.

[Bou03a] Ronald Bourret. XML and Databases, January 2003. http://www.

rpbourret.com/xml/XMLAndDatabases.htm.

[Bou03b] Ronald Bourret. XML Database Products, March 2003. http://www.

rpbourret.com/xml/XMLDatabaseProds.htm.

[Bou03c] Ronald Bourret. XML-DBMS. http://www.rpbourret.com/

xmldbms/, verified on 30 May 2003.

[CFP00] Stefano Ceri, Piero Fraternali, and Stefano Paraboschi. XML: Current De-

velopments and Future Challenges for the Database Community. In EDBT

2000, LNCS 1777, pages 3–17, 2000.

170 References

[COR03] CORBA. http://www.corba.org, verified on 30 May 2003.

[DB203] IBM DB2 Universal Database. http://www.ibm.com/software/

data/db2/udb/, verified on 30 May 2003.

[DBL03] DBLP Computer Science Library. http://dblp.uni-trier.de, ver-

ified on 30 May 2003.

[DFS99] Alin Deutsch, Mary Fernandez, and Dan Suciu. Storing Semistructured Data

with STORED. In Proceedings of the ACM SIGMOD International Con-

ference on Management of Data, 1999. Available from http://www.

research.att.com/~suciu.

[DJL00] DOM Java Language Binding. http://www.w3.org/TR/

DOM-Level-2-Core/java-binding.html, 2000.

[DOM03] Document Object Model. http://www.w3.org/DOM/, verified on 30

May 2003.

[EM02a] Andrew Eisenberg and Jim Melton. An Early Look at XQuery. ACM SIG-

MOD Records, 31(4), December 2002.

[EM02b] Andrew Eisenberg and Jim Melton. SQL/XML is Making Good Progress.

ACM SIGMOD Records, 31(2), June 2002.

[EN00] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Sys-

tems. Addison-Wesley, Reading, Massachusetts, 3rd edition, 2000.

[eXc03] eXcelon Corporation. http://www.exln.com, verified on 30 May 2003.

[FK99a] Daniela Florescu and Donald Kossmann. A Performance Evaluation of Al-

ternative Mapping Schemes for Storing XML Data in a Relational Database.

Technical Report 3680, INRIA, Rocquencourt, May 1999.

[FK99b] Daniela Florescu and Donald Kossmann. Storing and querying XML data

using an RDBMS. IEEE Data Engineering Bulletin, 22(3):27–34, 1999.

[Fla00] David Flanagan. Java Examples in a Nutshell. O’Reilly, 2000.

[Gra02] Mark Graves. Designing XML Databases. Prentice Hall PTR, 2002.

[HC02] Cay Horstmann and Gary Cornell. Core Java 2, volume II - Advanced Fea-

tures. Sun Microsystems Press (Prentice Hall), 5th edition, 2002.

References 171

[HC03] Cay Horstmann and Gary Cornell. Core Java 2, volume I - Fundamentals.

Sun Microsystems Press (Prentice Hall), 6th edition, 2003.

[Heu02] Andreas Heuer. Objektorientierte Datenbanken – Rückblick oder Aus-

blick? – Das Los des Joschka Fischer. GI-Fachgruppentreffen Daten-

banken, October 2002. Conference manuskript, available from http:

//www.datenbank-portal.de/Programm.27.0.html.

[HM02] Elliote Rusty Harold and W. Scott Means. XML in a Nutshell. O’Reilly,

second edition, 2002.

[HTM99] HTML 4.01 Specification. http://www.w3.org/TR/html401, 1999.

[Inf03a] Infonyte. http://www.infonyte.com, verified on 30 May 2003.

[Inf03b] IBM Informix. http://www.ibm.com/software/data/

informix/, verified on 30 May 2003.

[Jav03] Java 2 Platform, Standard Edition, v 1.4.1 API Specification. http://

java.sun.com/j2se/1.4.1/docs/api/, verified on 25 July 2003.

[JDB03] JDBC API Documentation. http://java.sun.com/j2se/1.4.2/

docs/guide/jdbc/index.html, verified on 30 June 2003.

[Kay01] Michael Kay. XSLT 2nd Edition: Programmer’s Reference. Wrox Press,

2001.

[KC02] Thomas Kudrass and Matthias Conrad. Management of XML Documents in

Object-Relational Databases. In XML-Based Data Management and Multi-

media Egineering – EDBT 2002 Workshops, pages 210–227, 2002.

[KKR01] Gerti Kappel, Elisabeth Kapsammer, and Werner Retschitzegger. Architec-

tural Issues for Integrating XML and Relational Database Systems - The X-

Ray Approach. In Workshop XML Technologies and Software Engineering

(XSE 2001), Toronto, Canada, May 2001.

[KM00] Meike Klettke and Holger Meyer. XML and object-relational database sys-

tems - enhancing structural mappings based on statistics. In Proc. WebDB

2000, May 2000.

[KM03] Meike Klettke and Holger Meyer. XML & Datenbanken – Konzepte,

Sprachen und Systeme. dpunkt, Heidelberg, 2003.

172 References

[Kud01] Thomas Kudrass. Management of XML Documents without Schema in Re-

lational Database Systems. In Proc. of the OOPSLA Workshop on Objects,

<XML> and Databases, October 2001.

[Mel03] Jim Melton. Advanced SQL:1999 – Understanding Object-Relational and

Other Advanced Features. Morgan Kaufmann Publishers, 2003.

[MKF
�

03] Jan-Eike Michels, Krishna Kulkarni, Christopher M. Farrar, Andrew Eisen-

berg, Nelson Mattos, and Hugh Darwen. The SQL Standard. it – Information

Technology, 45(1):30–38, February 2003.

[MS02] Jim Melton and Alan R. Simon. SQL:1999 – Understanding Relational Lan-

guage Components. Morgan Kaufmann Publishers, 2002.

[MSS03] Microsoft SQL Server. http://www.microsoft.com/sql, verified

on 30 May 2003.

[ODM03] Object Database Management Group. http://www.odmg.org, verified

on 24 July 2003.

[Ora03] Oracle. http://www.oracle.com, verified on 30 May 2003.

[POE03] POET Software Corporation. http://www.poet.com, verified on 30

May 2003.

[Pos03] PostgreSQL. http://www.postgresql.org, verified on 2 June 2003.

[REL03] RELAX NG. http://www.oasis-open.org/committees/

relax-ng/, verified on 30 May 2003.

[RP02] Kanda Runapongsa and Jignesh M. Patel. Storing and Querying XML Data

in Object-Relational DBMSs. In EDBT 2002 - Workshop XMLDM, March

2002.

[SAX03] Simple API for XML. http://www.saxproject.org, verified on 30

May 2003.

[Sch03a] Schematron. http://www.ascc.net/xml/resource/

schematron/, verified on 30 May 2003.

[Sch03b] Harald Schöning. XML und Datenbanken – Konzepte und Systeme. Hanser,

München, 2003.

[SGM86] Standard Generalized Markup Language (SGML). ISO 8879, 1986.

References 173

[SQL03] SQLX Group. http://www.sqlx.org, verified on 24 July 2003.

[SSB
�

01] Jayavel Shanmugasundaram, Eugene J. Shekita, Rimon Barr, Michael J.

Carey, Bruce G. Lindsay, Hamid Pirahesh, and Berthold Reinwald. Ef-

ficiently publishing relational data as XML documents. VLDB Journal,

10:133–154, 2001.

[STH
�

99] Jayavel Shanmugasundaram, Kristin Tufte, Gang He, Chun Zhang, David J.

DeWitt, and Jeffrey F. Naughton. Relational Databases for Querying XML

Documents: Limitations and Opportunities. In Proceedings of the 25th VLDB

Conference, Edinburgh, Scotland, pages 302–314, 1999.

[SYU99] Takeyuki Shimura, Masatoshi Yoshikawa, and Shunsuke Uemura. Storage

and Retrieval of XML Documents Using Object-Relational Databases. In

Proceedings of the DEXA’99, pages 206–217, 1999.

[Tam03] Tamino XML Server. http://www.softwareag.com/tamino/, ver-

ified on 30 May 2003.

[Tid01] Doug Tidwell. XSLT: Mastering XML Transformations. O’Reilly, 2001.

[Tür03] Can Türker. SQL:1999 & SQL:2003. dpunkt, Heidelberg, 2003.

[TVB
�

02] Igor Tatarinov, Stratis D. Viglas, Kevin Beyer, Jayavel Shanmugasundaram,

Eugene Shekita, and Chun Zhang. Storing and Querying Ordered XML Us-

ing a Relational Database System. ACM SIGMOD, 2002.

[Uni03] Unicode. http://www.unicode.org, verified on 30 May 2003.

[W3C03] World Wide Web Consortium (W3C). http://www.w3.org, verified on

30 May 2003.

[Wid99] Jennifer Widom. Data Management for XML – Research Directions. IEEE

Data Engineering Bulletin, Special Issue on XML, 22(3):44–52, September

1999.

[Xal03] Xalan (XSL Processor). http://xml.apache.org/xalan-j/, veri-

fied on 30 May 2003.

[XDB03] XML:DB Initiative for XML Databases. http://www.xmldb.org, ver-

ified on 30 May 2003.

[XEd03] XML.com: Editors. http://www.xml.com/pub/pt/3, verified on 28

July 2003.

174 References

[Xer03] Xerces (XML Parser). http://xml.apache.org/xerces2-j/, ver-

ified on 30 May 2003.

[XHT02] XHTML 1.0: The Extensible HyperText Markup Language (Second Edition).

http://www.w3.org/TR/xhtml1, 2002.

[XIn01] XML Information Set: W3C Recommendation. http://www.w3.org/

TR/xml-infoset/, October 2001.

[Xin03] Xindice. http://xml.apache.org/xindice, verified on 30 May

2003.

[XML00] eXtensible Markup Language (XML) 1.0 (Second Edition): W3C Recom-

mendation. http://www.w3.org/TR/2000/REC-xml-20001006,

October 2000.

[XML02] Extensible Markup Language (XML) 1.1: W3C Candidate Recommendation

15 October 2002. http://www.w3.org/TR/xml11, 2002. Verified on

4 June 2003.

[XMQ03] XML Query. http://www.w3.org/XML/Query, verified on 23 June 2003.

[XMS01a] XML Schema Part 0: Primer. http://www.w3.org/TR/

xmlschema-0, 2001.

[XMS01b] XML Schema Part 1: Structures. http://www.w3.org/TR/

xmlschema-1, 2001.

[XMS01c] XML Schema Part 2: Datatypes. http://www.w3.org/TR/

xmlschema-2, 2001.

[XPa99] XML Path Language (XPath), Version 1.0: W3C Recommendation. http:

//www.w3.org/TR/1999/REC-xpath-19991116, November 1999.

[XQL98] XML-QL: A Query Language for XML Submission to the World

Wide Web Consortium 19-August-1998. http://www.w3.org/TR/

NOTE-xml-ql, 1998. Verified on 23 June 2003.

[XQu03] XQuery 1.0: An XML Query Language, W3C Working Draft 02 May 2003.

http://www.w3.org/TR/xquery/, verified on 4 June 2003.

[XSL99] XSL Transformations Version 1.0: W3C Recommendation. http://www.

w3.org/TR/xslt, November 1999.

References 175

[XSL03] The Extensible Stylesheet Language Family (XSL). http://www.w3.

org/Style/XSL/, verified on July 28 2003.

[YASU01] Masatoshi Yoshikawa, Toshiyuki Amagasa, Takeyuki Shimura, and Shunsuke

Uemura. XRel: a path-based approach to storage and retrieval of XML docu-

ments using relational databases. ACM Transactions on Internet Technology

(TOIT), 1(1):110–141, 2001.

176 References

List of Abbreviations

ANSI American National Standards Institute

API Application Programming Interface

CSS Cascading StyleSheet

DBMS Database Management System

DDL Data Definition Language

DML Data Manipulation Language

DOM Document Object Model

DTD Document Type Definition

EER model Extended Entity-Relationship model

HTML Hypertext Markup Language

HXD Hybrid XML Database

IDL Interface Definition Language

ISO International Organization Standardization

NXD Native XML Database

ODBC Open Database Connectivity

ODMG Object Database Management Group

ORDBMS Object-Relational Database Management System

RDBMS Relational Database Management System

SAX Simple API for XML

sid system identifier

SGML Standard Generalized Markup Language

SQL Structured Query Language

SQL/PSM Persistent Stored Modules (Part of the SQL standard)

SQL/XML XML-Related Specifications (Part of the SQL standard)

178 List of Abbreviations

uid user identifier

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

W3C World Wide Web Consortium

XEDB XML Enabled Database

XML eXtensible Markup Language

XML:DB Initiative for XML Databases

XPath XML Path Language

XQuery XML Query Language

XSL-FO XSL Formatting Objects

XSL eXtensible Stylesheet Language

XSLT eXtensible Stylesheet Language for Transformations

List of Figures

1.1 RelAndXML Logo . 6

2.1 Hasse diagram for “Assignment 1” . 18

2.2 XML tree for “Assignment 1” . 19

2.3 DOM Class Hierarchy . 22

4.1 XML tree for “Question 4” with attributes represented as subelements . . 74

4.2 XML tree for “Question 4” . 80

4.3 RelAndXML with Core , Extension , Presentation , and Metadata 83

5.1 UML class diagram for the InfDB database – Overview 86

5.2 UML class diagram for the InfDB database – Core 87

5.3 Relations of the Core Schema . 89

5.4 UML class diagram for the InfDB database – Extension 91

5.5 Relations of the Extension Schema . 93

5.6 UML class diagram for the InfDB database – Presentation 96

5.7 Relations of the Presentation Schema 97

5.8 UML class diagram for the Metadata schema of the InfDB database . . . 99

5.9 Cycle free insertion graph for InfDB . 101

5.10 Relations of the Metadata Schema . 101

6.1 XMLTree-Editor with Assignment 1 . 105

6.2 Login Dialog . 106

6.3 Menu - New Assignment . 107

6.4 New Assignment Dialog . 107

6.5 DOM View pane of Assignment 1 . 108

6.6 XML Source pane . 108

6.7 Open DB question menu . 109

6.8 Open DB question dialog . 110

6.9 DOM View pane of Assignment 1 with question 110

6.10 New element dialog . 111

180 List of Figures

6.11 Update text of an element . 111

6.12 New attribute dialog . 112

6.13 New comment dialog . 112

6.14 XML Source pane with comment . 113

6.15 XSL Stylesheet pane . 113

6.16 XSL Templates pane . 114

6.17 XSL Source pane . 114

6.18 HTML Source pane . 115

6.19 HTML View pane . 116

6.20 Protocol window with INSERT and UPDATE commands 116

6.21 Frame for the administrator . 117

6.22 About box . 117

7.1 RelAndXML packages . 119

7.2 RelAndXML system . 121

7.3 Class MetaDatenbank . 128

7.4 XMLTree-Editor – DOM View pane . 129

7.5 XML tree for “Assignment 1” . 144

7.6 XML tree for “Assignment 1” – Core completed 146

7.7 XML tree after Step 2 . 149

List of Listings

2.1 XML coded “Assignment 1” (unpublished) 9

2.2 SmallCore DTD . 11

2.3 Internal DTD for including HTML entities 14

2.4 XML coded “Assignment 1” (published) 16

2.5 Data-centric sample XML . 17

2.6 Running example ”Assignment 1” . 20

2.7 XML running example “Assignment 2” 23

2.8 XML running example “Assignment 3” 24

2.9 XML running example “Question 4” . 24

2.10 Running example “Question 5” . 25

2.11 XSL stylesheet for “Assignment 1” and “Assignment 2” 32

2.12 HTML output for “Assignment 1” . 33

2.13 HTML output for “Assignment 2” . 33

2.14 XSL templates for “Assignment 3” . 34

2.15 HTML output for “Assignment 3” . 34

2.16 XSL templates for “Question 4” . 35

2.17 HTML output for “Question 4” . 35

2.18 XSL templates for “Question 5” . 36

2.19 HTML output for “Question 5” . 36

3.1 Recursive query to retrieve the transitive closure of “A1” 49

3.2 Recursive query with depth limited to 4 50

3.3 Recursive query with cycle clause . 51

3.4 Creating a view with a recursive query 52

4.1 Copy of XML running example “Assignment 3” 63

4.2 XML running example “Course FCS 1” 64

4.3 Copy of the SmallCore DTD . 66

182 List of Listings

4.4 XML running example “Question 4” with ordinal numbers as proposed in

[SYU99] . 80

7.1 Recursive query for Edge and EdgeInline 150

List of Tables

3.1 SQL:1999 Features in ORDBMS Products 47

3.2 Edge table for two XML Graphs . 48

3.3 Result sets of the basic recursive queries 49

3.4 Temporary view and result set for the depth-limited query 51

3.5 Temporary view for the query with CYCLE clause 52

3.6 The view Data . 52

3.7 SQL:2003 Features in ORDBMS Products 54

3.8 SQL Features in ORDBMS Products . 57

4.1 Tables Assignment and Course . 60

4.2 Tables for the SmallCore DTD . 67

4.3 Paragraph_MixedContent table for the SmallCore DTD 68

4.4 Content of the Paragraph tables for “Assignment 2” 68

4.5 Content of the Paragraph tables for “Assignment 2” as in [Bou01] 68

4.6 Reduced tables for the SmallCore DTD 70

4.7 Question table for “Assignment 2” . 70

4.8 Edge table for “Question 4” . 74

4.9 ValueString table for “Question 4” . 75

4.10 EdgeInline table for “Question 4” . 76

4.11 BinaryInline tables for “Question 4” . 77

4.12 PathExpression table for “Question 4” 79

4.13 Element and attribute tables for “Question 4” 81

5.1 Tables in the Core schema . 90

5.2 Tables in the Extension schema . 94

5.3 Tables in the Presentation schema . 98

5.4 Tables in the Metadata schema . 103

7.1 DOM node types . 124

7.2 Result set Treedata of the recursive query 151

184 List of Tables

Index

AdapterNode 120, 129–143

Administration window 117

ANY . 12

ARRAY type constructor 47

Assignment 1 8, 11, 16, 18, 21, 31, 33,

89, 93, 144–153

Assignment 2 23, 31, 60–68, 70

Assignment 3 23, 31, 60–64

Assignment 4 23, 31

attribute . 8

attribute declaration 12

AttrToTableModelAdapter 120,

141–143

axis . 26

BaumKnoten 120, 145

Binary approach 75–78

Binary+Inlining approach 75–78

BLOB data type 47

BOOLEAN data type 46, 58

Bourret, Ronald 41, 65

built-in template rule 30

CDATA section9, 92

character data .8

CLOB data type . . 47, 58, 71, 89, 157

comment 9, 92, 112

Company database 17

complex element type 65

context node . 26

Core . 59,

70, 73, 83, 85–90, 99, 100, 104,

109, 117, 128, 145–147, 152

CoreNode entity type 85, 86

CYCLE clause 50, 51

data definition language 45

data manipulation language 45

data-centric XML 2, 17, 60–72

Datensatz 120, 152

DB2 45, 47, 52, 54–57, 154

DBAccess 120, 128

document order 8, 18, 25

document type declaration 12

document type definition 10

document-centric XML . 2, 16, 73–78

DOM . 21

DOM document 123

DOM node 123, 124, 129

DOM tree 123, 144

traversing 124

DOM View pane 105–112, 129

Attributes 106, 112, 129

Content 106, 111, 129

Tree 106, 109, 129

DomToTreeModelAdapter 120,

129–141

DTD 10–13, 17, 65, 92

DTD graph . 71

Edge approach 73, 76–78, 90

Edge entity type 90, 91

Edge table73, 83, 93, 147, 152

Edge+Inlining approach . . . 75–78, 90

186 Index

EdgeAttribute entity type 90, 92

EdgeAttribute table 93, 151, 152

EdgeComment entity type 90, 92

EdgeComment table 93, 151

EdgeInline entity type 90, 92

EdgeInline table . 75, 83, 93, 147, 152

EdgeProcInstr entity type 90, 92

EdgeProcInstr table93, 151

EER model .85

element . 8

element declaration 11

EMPTY . 12

entity reference 9

eXcelon .42

Extension 59, 73, 83, 85, 90–152

ExtensionNode entity type 85

ExtensionNode table 93, 109, 152

file system . 41

fixpoint . 49, 50

Florescu, Daniela 73, 90

FLWR expression 37

general entity declaration 12

generated column 53

Heuer, Andreas 42

HTML 10, 14, 31

HTML document

working with 115–116

HTML entities 13, 92

HTML Source pane 105, 115

HTML View pane 105, 115

hybrid approach 70

hypertext-centric XML 1, 18, 57, 147,

154

identity column 53

InfDB 83, 85–104

Infonyte . 43

Informix 45, 47, 52, 54, 55, 57

initial subquery 48

insertion graph 100, 147

Java 21, 119, 122

JDBC . 128

JTable . 141

JTree . 129, 133

Kossmann, Donald 73, 90

LIST type constructor 47, 71

location path . 26

location step .26

Metadata . . . 83, 85, 99–104, 117, 120,

128, 147

MetaDatenbank . . . 120, 128, 145, 152

MetaSpalte . 128

MetaTabelle . 128

Microsoft SQL Server . 45, 47, 52, 54,

55, 57

middleware 40, 44, 61

mixed content . 9

named query . 48

namespace . 13

Node entity type 85

non-valid XML 16

object view . 65

object-based mapping 62–64, 83

object-oriented DBMS 42

node-centric approach 42

object-centric approach 42

object-relational DBMS . . 44, 46, 128

object-relational hybrid mapping . . 71

object-relational mapping 65

ODMG . 42

Index 187

Oracle 45, 47, 52, 54–57

ordinal 21, 73, 89, 144

overflow graph 72

packages 119–121

parameter entity declaration11

parsed character data 11

partial order 18, 146, 152

path approach 79–82

PCDATA .11

POET . 42

PostgreSQL 45, 47, 52, 54, 55, 57, 157

Presentation . . . 59, 83, 85, 95–97, 99,

104, 120, 128

PrimaryKey 120, 144, 152

processing instruction 9, 92

proprietary storage format 43

Protocol window 115

Question 4 23, 31, 73–81

Question 5 23, 31

RaxMeta1ToOne 100, 128

RaxMetaColumn 99, 104, 128

RaxMetaMToN 100, 128

RaxMetaOneToN 100, 128

RaxMetaRelColumn 100

RaxMetaTable 99, 104

recursive SQL query . 46, 48–53, 149,

154

recursive subquery 49

recursive view 52

Rel2XML 52, 120, 144–152

root element . 8

ROW type constructor 47, 71

SAX .21

seed . 48

sequence generator 53

serialization . 126

SGML . 10

simple element type 65

SmallCore DTD 11, 23, 65

SQL 37, 128, 145, 153

SQL standard .45

SQL-92 . 45

SQL/PSM . 46

SQL/XML 46, 54–55, 61

SQL:1999 45–53, 58

SQL:2003 46, 53–55, 58

status . . . 106, 112, 129, 136–137, 152

stop tag 69, 71, 89

subelement . 8

system architecture 119

system identifier (sid) 5, 85, 88

Tabellensatz . 152

table-based mapping 60

attribute-oriented62

element-oriented 61

TableModel . 142

tag . 8

Tamino . 43

template . 28

template rule . 28

TEXT data type 47, 157

Transformer 126, 127

transitive closure 48

TreeModel 129, 132

TreeModelEvent 134

TreeModelListener 134

TreePath . 135

UML class diagram 85

Unicode .8

user identifier (uid) 4, 86, 88

valid XML . 12

188 Index

value table . 75

ValueKnoten120, 145

W3C 10, 15, 21, 37

web database system 40

well-formed XML 8

wrapper element 69

Xalan . 25, 127

Xerces . 12, 122

XHTML 10, 13–15

Xindice . 43

XML . 8–10, 22

data models 21

graph representation 18

tree . 21

XML data type 54, 58, 71

XML database 39

hybrid . 40

native 40, 43

XML enabled database 40, 44

XML declaration 8

XML document 8, 104

creating DOM tree 123

parsing . 122

working with 106–112

XML Information Set 22

XML parser 12, 122

XML Schema 14, 22

XML Source pane 105

XML2Rel 120, 136, 152–153

XMLBaum . 120

XMLTree-Editor window . . . 105, 129

XPath 22, 25–27, 37

XQuery 22, 37–38

XSL . 25

XSL processor 25, 127, 152

XSL Source pane . 105, 112, 113, 120

XSL stylesheet 27, 95, 104, 127

working with 113–114

XSL Stylesheet pane . . . 105, 113, 120

XSL Templates pane . . . 105, 113, 120

XSLT . 25, 27–31

Zeilensatz . 152

