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Abstract

This thesis reports on the experimental investigation of controlled spin dependent interac-
tions in a sample of ultracold 87Rb atoms trapped in a periodic optical potential. In such
a situation, the most basic interaction between only two atoms at one common potential
well, forming a micro laboratory for this atom pair, can be investigated. Spin dependent
interactions between the atoms can lead to an intriguing time evolution of the system. In
this work, we present two examples of such spin interaction induced dynamics. First, we
have been able to observe and control a coherent spin changing interaction. Second, we
have achieved to examine and manipulate an interaction induced time evolution of the rel-
ative phase of a spin 1/2-system, both in the case of particle pairs and in the more general
case of N interacting particles.

The first part of this thesis elucidates the spin-changing interaction mechanism under-
lying many fascinating effects resulting from interacting spins at ultracold temperatures.
This process changes the spin states of two colliding particles, while preserving total mag-
netization. If initial and final states have almost equal energy, this process is resonant and
leads to large amplitude oscillations between different spin states. The measured coupling
parameters of such a process allow to precisely infer atomic scattering length differences,
that e.g. determine the nature of the magnetic ground state of the hyperfine states in 87Rb.

Moreover, a method to tune the spin oscillations at will based on the AC-Zeeman effect
has been implemented. This allowed us to use resonant spin changing collisions as a
quantitative and non-destructive particle pair probe in the optical lattice. This led to a
series of experiments shedding light on the Bosonic superfluid to Mott insulator transition.

In a second series of experiments we have been able to coherently manipulate the inter-
action induced time evolution of the relative phase in an ensemble of spin 1/2-systems. For
two particles, interactions can lead to an entanglement oscillation of the particle pair. For
the general case of N interacting particles, the ideal time evolution leads to the creation
of spin squeezed states and even Schrödinger cat states. In the experiment we have been
able to control the underlying interactions by a Feshbach resonance. For particle pairs we
could directly observe the entanglement oscillations. For the many particle case we have
been able to observe and reverse the interaction induced dispersion of the relative phase.

The presented results demonstrate how correlated spin states can be engineered through
control of atomic interactions. Moreover, the results point towards the possibility to simu-
late quantum magnetism phenomena with ultracold atoms in optical traps, and to realize
and analyze many novel quantum spin states which have not been experimentally realized
so far.
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Zusammenfassung

In dieser Arbeit werden Experimente vorgestellt, die den Einfluß von spinabhängiger Wech-
selwirkung auf das Verhalten von ultrakalten 87Rb Atomen in einem 3D periodischen op-
tischen Potential untersuchen. In solch einem Potential kann die grundlegende Wechsel-
wirkung zwischen nur zwei Atomen, gefangen in einem gemeinsamen Potentialminimum,
wie in einem Mikrolabor untersucht werden. Hängt die Wechselwirkung zwischen den
Atomen vom jeweiligen Spinzustand der Teilchen ab, so kann das zu einer faszinierenden
Zeitentwicklung des Systems führen. In der vorliegenden Arbeit werden zwei Beispiele einer
solchen Zeitentwicklung vorgestellt, die durch spinabhängige Stöße induziert sind. Zum
einen konnten wir in unseren Experimenten eine kohärente, spinändernde Wechselwirkung
beobachten und kontrollieren. Zum anderen waren wir in der Lage, die wechselwirkungsin-
duzierte Zeitentwicklung der relativen Phase eines Spin-1/2 Systems zu beobachten und zu
manipulieren, sowohl für zwei als auch für N wechselwirkende Teilchen.

Der erste Teil der Arbeit behandelt die spin-ändernde Wechselwirkung, die vielen beob-
achteten Effekten mit wechselwirkenden Spins zugrunde liegt. Diese Wechselwirkung än-
dert die Spinzustände der beiden stoßenden Teilchen, während die Gesamtmagnetisierung
erhalten bleibt. Wenn Anfangs- und Endzustände fast gleiche Energien haben, kann
dieser Prozeß resonant ablaufen und zu deutlichen Oszillationen zwischen den Besetzun-
gen verschiedener Spinzustände führen. Aus den gemessenen Kopplungsparametern dieses
Prozesses können fundamentale Differenzen von Streulängen, die zum Beispiel den mag-
netischen Grundzustand der beiden Hyperfeinzustände des 87Rb Grundzustandes definieren,
sehr genau abgeleitet werden.

Zudem konnten wir basierend auf dem AC-Zeemaneffekt eine Methode entwickeln, um
die Spinoszillationen nach Belieben zu kontrollieren. Diese Kontrolle erlaubte es uns, die
spinändernden Stöße als quantitatives Maß für Teilchenpaare im optischen Gitter zu ver-
wenden. Diese Methode ermöglichte eine Reihe von Experimenten, die sehr genaue Ein-
blicke in den bosonischen Superfluid nach Mott-Isolator Übergang gewährt haben.

In einer zweiten Serie von Experimenten konnten wir die wechselwirkungsinduzierte Zeit-
entwicklung der relativen Phase in einem Spin-1/2 System kohärent manipulieren. Für ein
Atompaar kann die Wechselwirkung zu einer zeitlichen Oszillation zwischen einem separa-
blen und einem verschränkten Zustand führen. Für den allgemeineren Fall von N wech-
selwirkenden Teilchen kann die Dynamik korrelierte Zustände erzeugen, wie zum Beispiel
Spin-gequetschte oder maximal verschränkte Schrödinger-Katzen Zustände. In den Exper-
imenten konnten wir die zugrunde liegenden Wechselwirkungen mit Hilfe einer Feshbach
Resonanz einstellen. Im Fall zweier wechselwirkender Atome waren die Verschränkung-
soszillationen direkt zu beobachten. Für das Vielteilchensystem konnten wir die Dispersion
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der relativen Phase detektieren und zeitlich umkehren.

Die dargestellten Experimente demonstrieren, daß korrelierte Spinzustände allein durch
Kontrolle der Wechselwirkungseigenschaften in optischen Potentialen konstruiert werden
können. Darüber hinaus zeigen die Ergebnisse die Möglichkeit auf, Quantenmagnetismus
mit ultrakalten Atomen in optischen Gittern zu simulieren, und viele neue Quantenzustände
zu erzeugen und zu analysieren, die dem Experiment bisher nicht zugänglich waren.

iv



Contents

1 Introduction 3

2 Interactions at ultracold temperatures 9
2.1 Scattering in the s-wave regime . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 The Fermi-contact potential . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Interactions between particles with spin-degree of freedom . . . . . . . . . 12

2.3.1 Single particle effects . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Spin dependent interactions . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Combined potentials . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 Additional interactions . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Loss processes and inelastic collisions . . . . . . . . . . . . . . . . . . . . . 16
2.5 Quantitative theoretical predictions . . . . . . . . . . . . . . . . . . . . . . 18

3 Multi-component Bose-Einstein condensates in optical lattices 21
3.1 Bose-Einstein condensation in magnetic traps . . . . . . . . . . . . . . . . 21

3.1.1 Theoretical description of BEC . . . . . . . . . . . . . . . . . . . . 21
3.2 Dipole traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Dipole potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Spontaneous scattering in dipole traps . . . . . . . . . . . . . . . . 25

3.3 Periodic dipole potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Bose-Hubbard Hamiltonian . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Energy scales in the Bose-Hubbard model . . . . . . . . . . . . . . 30

3.4 Coherent control of the spin-degree of freedom . . . . . . . . . . . . . . . . 34
3.4.1 The Bloch-sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.2 Transitions with variable detuning: Rapid adiabatic passage . . . . 35
3.4.3 Transitions on resonance: Rabi flopping . . . . . . . . . . . . . . . 37
3.4.4 Ramsey interferometry . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.5 Two-photon transitions . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Experimental sequence for spinor quantum gases in optical lattices . . . . . 41
3.5.1 Bose-Einstein condensate . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.2 3D optical lattice potential . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.3 Spin sensitive detection . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.4 Addressing the spin . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Coherent spin changing collisions 49
4.1 Theory of coherent collisional spin dynamics . . . . . . . . . . . . . . . . . 50

v



Contents

4.1.1 Spin changing collisions in optical lattices . . . . . . . . . . . . . . 50
4.1.2 Two level system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.3 Three-level system . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Experimental sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 Dynamics in the f = 1 hyperfine state . . . . . . . . . . . . . . . . 59
4.3.2 Dynamics in the f = 2 hyperfine state . . . . . . . . . . . . . . . . 61
4.3.3 Determining scattering length differences . . . . . . . . . . . . . . . 63
4.3.4 Comparison with theory . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.5 Contrast enhancement by filtering a Mott-insulator . . . . . . . . . 65
4.3.6 Damping mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Tuning spin-changing collisions via AC-Zeeman shift . . . . . . . . . . . . 68
4.5 Nature of the magnetic ground state . . . . . . . . . . . . . . . . . . . . . 74
4.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6.1 Number squeezing in the superfluid to Mott-insulator transition . . 78
4.6.2 Spatially resolving the Mott-insulator shells . . . . . . . . . . . . . 79

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Coherent interaction induced phase evolution 83
5.1 Interactions between two spin-1/2 systems . . . . . . . . . . . . . . . . . . 84

5.1.1 State evolution of two interacting particles . . . . . . . . . . . . . . 84
5.1.2 Ramsey interferometry as a measure for entanglement . . . . . . . . 87

5.2 Interactions in a many particle quasi spin-1/2 system . . . . . . . . . . . . 88
5.2.1 Quasi spin-1/2 model . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.2 Interaction Hamiltonian in a many-body system . . . . . . . . . . . 91
5.2.3 Coherent phase evolution of the many-particle state . . . . . . . . . 93

5.3 Tuning elastic interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.1 Magnetic Feshbach resonances . . . . . . . . . . . . . . . . . . . . . 98
5.3.2 Mixed spin state Feshbach resonance in 87Rb . . . . . . . . . . . . . 100

5.4 Interaction induced binary entanglement in an optical lattice . . . . . . . . 103
5.4.1 Observation of interaction induced entanglement oscillations . . . . 103
5.4.2 Precision measurements of elastic scattering properties . . . . . . . 106

5.5 Reversible quantum phase dispersion in the many-particle system . . . . . 108
5.5.1 Theoretical Model of Ramsey fringe collapse close to the Feshbach

resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.5.2 Interaction induced collapse of the Ramsey fringe . . . . . . . . . . 112
5.5.3 Time reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6 Outlook 121
6.1 Spin changing collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2 Coherent phase evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

vi



Contents

A Calculating spin dependent interaction strengths 127

B Non-linear interactions in an array of quasi 1D-Bose gases 131
B.1 Entanglement Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . 131
B.2 Many-body phase evolution under non-linear interactions . . . . . . . . . . 132
B.3 Degenerate gases in 1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Bibliography 137

1



Contents

2



1 Introduction

Recent experimental progress in the preparation and manipulation of ultracold atomic
samples has allowed to access an intriguing regime where strong adjustable interactions
dominate the properties of the system. In this regime, fascinating, however still unresolved
questions of condensed matter physics or quantum information processing could be ex-
perimentally addressed in a very controlled atomic physics system. Prominent examples
for such experiments are the realization of the superfluid to Mott-insulator transition of
Bosons in optical lattices [1, 2, 3] or the creation of condensed systems in degenerate Fermi
gases consisting of molecules [4, 5, 6, 7] or correlated fermion pairs [8, 9, 10]. The strong in-
teratomic interactions present in such experiments build up quantum correlations between
particles. These inter-particle correlations are responsible for the remarkable properties of
the novel quantum states. For example, atom number correlations between lattice sites in
the case of a Mott-insulator imply the absence of inter-site coherence [5], but reflect the
existence of number squeezed states at each lattice site [11, 12]. Atom-pair correlations in
the case of degenerate Fermi gases enable the condensation to a molecular Bose-Einstein
condensate or a condensate of loosely bound Fermion pairs [13, 14], despite the Pauli
principle which tends to hinder interactions between particles.

The class of the so-called correlated states comprises a much larger manifold of quan-
tum states, including the pair condensates and insulating states mentioned above, but also
highly entangled few and many-body states as well as squeezed states. Moreover, many
novel quantum states, such as Luttinger liquids (see e.g. Ref. [15]), have been predicted,
and partly been realized. One example for such a low-dimensional correlated system is
the Tonks-Girardeau gas in a one-dimensional system [16, 17] which shows an interesting
Fermionized behavior of Bosons, for example in the two-body correlation function [18].
All these correlated states have unique properties markedly different from classical states
that make them ideal candidates for a large number of applications in quantum physics
experiments. For example, spin squeezed states have reduced quantum fluctuations below
the standard quantum limit along one observable [19]. Therefore they have been proposed
to enhance the performance of interferometers and precision measurements [20]. Entan-
gled states exhibit non-local information, i.e. information that cannot be inferred from just
independent measurements of the single-particle properties of the entangled states [21].
These states are an important prerequisite in quantum computing schemes [21]. Moreover,
understanding the interplay between interactions and correlations might offer a better
insight into how the quantum world connects to the classical world, in particular for in-
creasing number of particles involved. The creation, controlled manipulation and analysis
of strongly correlated quantum states is therefore an important aim of both experimental
and theoretical effort in quantum physics.
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1 Introduction

This thesis

This thesis focuses on experimental spin dependent quantum state engineering and analysis
in an ultracold sample of neutral atoms trapped in a periodic optical potential. In optical
potentials the spin degree of freedom is liberated because all spin states can be trapped.
Such multi-spin superpositions are usually referred to as spinor systems. The realization
of these systems adds a novel degree of freedom in experiments with ultracold atoms that
can be used to simulate quantum magnetism phenomena in a very controlled way, or to
encode quantum information in the spin degree of freedom, for which e.g. entangled spin
states are desirable. As will be outlined below, spin dependent interactions between atoms
are usually substantially weaker than the spin independent interactions in the experiments
mentioned above. Therefore it is crucial to enhance the ratio of spin dependent to spin
independent interactions in experiments. In the cases presented in the following, an in-
teraction dominated regime is entered by loading a Rubidium Bose-Einstein condensate
into an optical lattice. Thus an array of strongly interacting particle pairs can be real-
ized, where each pair can be considered a well isolated “micro laboratory”, perfectly suited
to study interaction effects on a fundamental level. In order to enhance the spin depen-
dent interaction compared to the spin independent, certain resonance phenomena are used.
Thereby, two remarkable effects could be experimentally observed and will be discussed
in this thesis. The first effect results in an interaction driven coherent spin-population
oscillation of particle pairs. The second effect affects the relative phase between two spin
states and results in an intriguing time evolution of the relative two- or even many-body
phase from an initially classical, coherent spin state into a correlated spin state.

Coherent spin changing collisions If the initial spin state of two colliding atoms is
energetically degenerate with another combination of spin states of the two atoms, a res-
onant spin changing dynamics can be observed, assuming conservation laws are obeyed
(see e.g. Ref. [22]). In our experiments we have been able to observe such a coherent
spin changing dynamics in a 3D optical lattice filled with a 87Rb Bose-Einstein condensate,
which almost perfectly realizes the ideal case of an array of strongly interacting atom pairs,
where each pair is well isolated from the environment. The two hyperfine ground states
with total atomic spin1 f = 1 and f = 2 constitute a perfect example for spin dynamics in
a spin-1 and spin-2 manifold, respectively (see Fig. 1.1). As will be outlined, the dynamics
can be related to fundamental scattering properties of the atomic species, that also de-
termine the magnetic ground state of the system. Our results allow to make quantitative
statements on the magnetic ground state of the f = 1 and f = 2 hyperfine manifold at zero
magnetic field, which we find to be ferromagnetic and antiferromagnetic, respectively.

Moreover we have been able to develop a method to control the observed dynamics by
means of an external electromagnetic field due to the AC-Zeeman effect, which allows for
an efficient quantum state preparation. As a consequence, the number of atom pairs is

1Throughout this thesis we will use lower size letters to denote properties for single atoms, whereas capital
letters are used for combined, coupled quantities of two atoms.
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Figure 1.1: Encoding spins in hyperfine states of the 87Rb 5 S 1/2 ground state, here depicted at
small magnetic field. The Zeeman levels within the f = 1 and f = 2 hyperfine manifolds represent
examples of spin-1 (blue) and spin-2 (red) systems, respectively. Choosing one Zeeman level in
each of the two hyperfine states can be considered a quasi spin-1/2 system (green), provided the
other Zeeman level are decoupled.

directly related to the amplitude of the spin population oscillations. This amplitude has
therefore been used as a sensitive probe for pairs in our optical lattice, leading to the
observation of number squeezing across the superfluid to Mott-insulator transition, and to
the detection of Mott-insulator shells in the inhomogeneous system.

Coherent time evolution of the relative many-body phase Even if in a collision no
change in the spin state populations occurs, a time evolution of the relative phase between
the spin states is present. For the spin-1/2 system this phase evolution can cause an initially
coherent (classical) state to evolve into an entangled state in the two-particle case. In a
many-body system the phase evolution is more intricate (see e.g. Ref. [23] for a review),
including the evolution to a spin squeezed state and possibly to a maximally entangled
Schrödinger cat state. This evolution is in fact is not limited to the experimental situation
presented in this thesis. It is intrinsic to many quantum systems like Josephson junctions,
interacting Bose-Einstein condensates in double wells, or in experiments with single atoms
coupled to a microwave cavity field.

We have been able to control the coherent phase evolution of spin-1/2 systems by tuning
the relative interaction strength of certain spin-combinations. Here the spin-1/2 system
has been realized in two Zeeman levels, one in the f = 1 and the other in the f = 2
hyperfine state (see Fig. 1.1). The tuning has been achieved via a so-called Feshbach
resonance [24], i.e. by bringing the state of the initially unbound particles energetically
close to a molecular bound state coupled to the initial state of the unbound particles,
which enhances the corresponding interaction energy.

For the two-particle case the resulting entanglement dynamics could be observed by
monitoring the interaction induced collapse and revival of coherence through a Ramsey-

5



1 Introduction

type atom interferometer sequence. This allows to extract precise information about the
scattering properties of the system. For the many body case, the coherent revival of the
initial state could be tracked after a time reversal sequence. Thereby the coherent nature
of this interaction could be demonstrated.

Overview

This thesis is organized as follows. Chapter 2 will introduce the description of scattering
at ultralow temperatures by the s-wave scattering length in the spin independent case.
The modifications due to the spin degree of freedom will be discussed. The experimental
situation of a Bose-Einstein condensate in optical lattices and the relevant energy scales are
described in Chapter 3. The technical tools for the creation, manipulation and detection of
a spinor Bose-gas in an optical lattice will be introduced. In particular Ramsey interferom-
etry will be explained. Chapter 4 presents the first series of experiments investigating the
coherent spin changing interaction, leading to an oscillatory population transfer between
spin states. The theoretical description suggests a Rabi-type model which is applicable for
a wide parameter range; from this, fundamental scattering parameters can be extracted.
A method to tune the dynamics by means of an “AC-Zeeman effect” is introduced. The
implications of the presented results on the magnetic properties of the system will be dis-
cussed. Exemplary applications of spin changing collisions as a particle pair probe in a
3D optical lattice are outlined. This chapter is mainly based on Refs. [25, 26, 27]. An
experimental demonstration of a coherent phase evolution under a non-linear spin inter-
action in a spin-1/2 system is considered in Chapter 5. The basic idea is given for two
interacting particles, and the time evolution is outlined. Then the situation is generalized
to a system of N interacting spin 1/2 particles, and the corresponding time evolution is
sketched. The concept of magnetic Feshbach resonances is briefly discussed. This type of
resonance is used in order to enhance the spin dependent interaction strength in the exper-
imental realization. Finally experimental results for such an intriguing phase evolution are
presented, demonstrating the possibility to create a huge array of entangled particle pairs
in a 3D optical periodic potential. Moreover, the coherent nature of the interaction driven
phase dynamics in the many-body case is demonstrated. This chapter is partly based on
Ref. [28, 29]. Chapter 6 outlines the potential of the experiments performed and points
towards possible further experiments and applications.

Publications in the context of this PhD thesis

In the following list of results published during the last few years, the most relevant for
this thesis have been marked.

⇒ Entanglement Interferometry for Precision Measurement of Atomic Scat-
tering Properties
A. Widera, O. Mandel, M. Greiner, S. Kreim, T.W. Hänsch and I. Bloch
Phys. Rev. Lett. 92, 160406 (2004)
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� Tonks-Girardeau gas of ultracold atoms in an optical lattice
B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G.V. Shlyapnikov,
T.W. Hänsch and I. Bloch
Nature 429, 277 (2004)

� State Selective Production of Molecules in Optical Lattices
T. Rom, T. Best, O. Mandel, A. Widera, M. Greiner, T.W. Hänsch and I. Bloch
Phys. Rev. Lett. 93, 073002 (2004)

� Spatial quantum noise interferometry in expanding ultracold atom clouds
S. Fölling, F. Gerbier, A. Widera, O. Mandel, T. Gericke and I. Bloch
Nature 434, 481 (2005)

� Phase coherence of an atomic Mott insulator
F. Gerbier, A. Widera, S. Fölling, O. Mandel, T. Gericke and I. Bloch
Phys. Rev. Lett. 95, 050404 (2005)

⇒ Coherent collisional spin dynamics in optical lattices
A. Widera, F. Gerbier, S. Fölling, T. Gericke, O. Mandel and I. Bloch
Phys. Rev. Lett. 95, 190405 (2005)

� Interference pattern and visibility of a Mott insulator
F. Gerbier, A. Widera, S. Fölling, O. Mandel, T. Gericke and I. Bloch
Phys. Rev. A 72, 053606 (2005)

� Probing Number squeezing of Ultracold Atoms across the Superfluid-Mott
Insulator Transition
F. Gerbier, S. Fölling, A. Widera, O. Mandel, T. Gericke and I. Bloch
Phys. Rev. Lett. 96, 090401 (2006)

⇒ Resonant control of spin dynamics in ultracold quantum gases by mi-
crowave dressing
F. Gerbier, A. Widera, S. Fölling, O. Mandel and I. Bloch
Phys. Rev. A 73, 041602(R) (2006)

� Adiabatic loading of a Bose-Einstein condensate in a 3D optical lattice
T. Gericke, F. Gerbier, A. Widera, S. Fölling, O. Mandel and I. Bloch
arXiv:cond-mat/0603590 (2006)

⇒ Precision measurement of spin-dependent interaction strengths for spin-1
and spin-2 87Rb atoms
A. Widera, F. Gerbier, S. Fölling, T. Gericke, O. Mandel and I. Bloch
New J. Phys. 8, 152 (2006)

� Formation of spatial shell structures in the superfluid to Mott insulator
transition
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1 Introduction

S. Fölling, A. Widera, T. Müller, F. Gerbier and I. Bloch
Phys. Rev. Lett. 96, 090401 (2006)

� State preparation and dynamics of ultracold atoms in higher lattice or-
bitals
T. Müller, S. Fölling, A. Widera and I. Bloch
to be published, (2007)

⇒ Quantum spin dynamics of squeezed Luttinger liquids in two-components
atomic gases
A. Widera, S. Trotzky, P. Cheinet, S. Fölling, F. Gerbier, I. Bloch, V. Gritsev,
M.D. Lukin and E. Demler
to be published.

8



2 Interactions at ultracold temperatures

Interactions play a central role in experiments with ultracold atoms. The most basic process
that can occur is the collision between only two particles. Understanding this mechanism
yields insight into more complex interaction driven phenomena. Therefore in this chapter,
the elementary scattering theory at ultralow temperatures between two spinless atoms will
be briefly recalled. In particular, the description of a scattering event by a single parameter
only, the s-wave scattering length, will be introduced. Further, the effects resulting from
the spin-degree of freedom will be discussed. These spin-dependent interactions are the
key ingredient leading to the spin dynamics presented in following chapters.

2.1 Scattering in the s-wave regime

Partial wave decomposition

Scattering of two identical, neutral, and spinless particles with mass m can be reduced
to the problem of one particle with effective mass µred = m/2 in a spherically symmetric
scattering potential V(r). The problem is described by a Schödinger equation for the wave
function ψ(r) (

−
~2 ∇2

2µred
+ V(r)

)
ψk(r) = Ekψk(r), (2.1)

where Ek = ~2k2

2µred
with k being the wave vector at large particle separation. This problem is

solved in many text books [30]. Therefore we will only briefly outline the relevant case for
the further treatment in this thesis. For a spherically symmetric potential, it is convenient
to express the amplitudes of the various outgoing modes, i.e. the scattering amplitudes, in
terms of eigenfunctions of the angular momentum operator, which are called partial waves.
This results in an effective one-dimensional potential

Veff(r) =
~2l(l + 1)
2µredr2 + V(r), (2.2)

where l labels the partial wave. The total scattering cross section – usually calculated as
the sum over all scattering amplitudes – is the sum of all partial wave contributions

σtot =

∞∑
l=0

σl =

∞∑
l=0

4π
k2 (2l + 1) sin2 δl, (2.3)

where δl is the phase shift of the partial wave with respect to the incoming wave due to
the scattering potential. This phase shift can be calculated in the case of low energy to be

δl(k) ≈ nπ − al k2l+1. (2.4)
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2 Interactions at ultracold temperatures
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Figure 2.1: Demonstration of s-wave scattering in ultracold collisions. (a) A pulsed optical
lattice creates higher momentum components ±2 ~k in an initially k = 0 Bose-Einstein condensate
in trap, where k = 2π/λ, with λ/2 the lattice spacing. When the atoms are allowed to expand
in free fall, in-trap momentum is mapped onto spatial position after free flight. During the first
period of free fall, atoms from the central order k = 0 can collide with atoms having higher
order momentum k = ±2 ~k. (b) Due to the s-wave character, the final states are isotropically
distributed over a sphere with the relative momentum difference 2 ~k as diameter and the center
at the mean momentum ~k.

Here, n is an integer, and the coefficients al are proportionality constants for the lth partial
wave, depending on the form of the potential V(r). Substituting this into Eq. (2.3) and
expanding around k = 0 shows that for extremely low energies the contribution of the lth

partial wave vanishes as limk→0 σl = k4l. In particular, for typical experiments with Bose-
Einstein condensates, only the l = 0 partial wave has to be taken into account, because
all higher partial waves are reflected by the centrifugal barrier in Eq. (2.2) before they
experience an influence of the scattering potential V(r). In this regime, the scattered wave
function can be written as

ψk ∼ eikr + fk
eikr

r
, (2.5)

where fk is the corresponding scattering amplitude of the spherical outgoing wave. Here, no
angular dependence is left over. This regime is referred to as s-wave scattering regime. For
87Rb – the atomic species under investigation in this work – this regime is reached below
some 100 µK [31], whereas typical temperatures of the atomic sample used throughout
this thesis is below 1 µK. Therefore we can treat all further interaction effects between
ultracold bosonic atoms safely in the framework of s-wave scattering only. The discussion
of the free-particle collision can be equivalently used for the situation of a trapped ultracold
gas, because in the approximately harmonic trapping potential, the center of mass motion
can be separated from the relative dynamics; then the arguments given above hold in the
same way for the relative wave functions in the trap. An experimental demonstration of
the s-wave scattering is shown in Fig. 2.1.
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2.1 Scattering in the s-wave regime
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Figure 2.2: Effect of the scattering potential on a relative wave function. The asymptotic part
of the wave function for long distances r shows a zero-crossing at the value of the scattering length
when extended to small distances, reflecting the repulsive interaction for the case presented as > 0.
This zero crossing goes to as = 0 for Veff → 0.

The s-wave scattering length

For s-wave collisions the phase shift δ0 between the outgoing and incoming wave can be
characterized by a single parameter as ≡ al=0, which is called the s-wave scattering length
given by

as = − lim
k→0

tan δ0

k
. (2.6)

Here the notation for the s-wave scattering length should not be confused with the notation
for the singlet scattering length, which is widely used in the literature. The physical
meaning of the s-wave scattering length is given by the asymptotic behavior of the radial
part of the wave function, see Fig. 2.2. This asymptote has a zero crossing at as. Therefore,
the effect of the scattering potential is to shift the asymptotic wave function by as. The
sign of the scattering length determines the kind of interaction: For a negative scattering
length the interaction is attractive, whereas a positive scattering length corresponds to a
repulsive interaction. The latter situation can be visualized as scattering of hard spheres
with radius as. For 87Rb the s-wave scattering length is on the order of as ≈ 100 aB, where
aB ≈ 0.53 Å.

The s-wave scattering length plays a central role for the description of interatomic colli-
sions at ultracold temperatures, as it is the only parameter characterizing the fundamental
strength of the interaction.
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2 Interactions at ultracold temperatures

Crossections

So far we have considered the case of two-particle collisions, where both particles are
distinguishable. In this case the total scattering cross section for s-wave scattering is

σtot = 4πa2
s . (2.7)

Here, the scattering cross section again resembles the geometric cross section of hard spheres
with size as.

For identical, i.e. indistinguishable particles the amplitudes of forward and backward
scattering (see Fig. 2.1(b)) have to be summed which alters the cross section by a factor
of two:

σidentical
tot = 8πa2

s . (2.8)

2.2 The Fermi-contact potential

The s-wave interaction induced above can conveniently be expressed by an effective contact
potential

V(r) = g δ(r), (2.9)

where r is the relative distance between the two interacting particles, and g is the coupling
constant of the interaction. The coupling constant has to be chosen such that both poten-
tials, the complicated “real” potential and the effective contact potential lead to the same
phase shift, i.e. scattering length. This implies

g =
4π~2

m
as, (2.10)

where ~ is Planck’s constant divided by 2π, and as is the corresponding scattering length.
With this the interaction energy for two 87Rb atoms in state ψ becomes

U = |〈ψ|V(r)|ψ〉|2 =
4π~2

mRb
as ×

∫
|φ0(r)|4dr, (2.11)

where φ0 is the identical spatial wave function of each particle, mRb is the mass of a rubidium
atom, and as is the s-wave scattering length corresponding to the internal state of the two
particles. If the two particles do not share the same spatial wave function, the term
in Eq. (2.11) is replaced by an integral over the corresponding single particle densities:∫
|φ1|

2 |φ2|
2 d3r.

2.3 Interactions between particles with spin-degree of freedom

So far we considered two interacting particles that had no further degree of freedom, similar
to the case of colliding hard spheres. This assumption greatly simplified the description
by an s-wave scattering length characterizing the interaction strength irrespective of the
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2.3 Interactions between particles with spin-degree of freedom

detailed form of the potential. In general, the situation is more complicated, as both atoms
might have a spin degree of freedom which changes the problem in two important respects.
First, the additional degree of freedom can interact with external fields, e.g. magnetic
fields. Second, in the collision of two particles, the spins can interact with each other.
Hence, depending on the relative orientation of the two interacting spins the interaction
strength can vary and thus the s-wave scattering length might depend on the spin quantum
numbers. The knowledge of the precise form of the interaction potential is crucial in order
to determine proper values of the s-wave scattering lengths. As this will be of central
importance in this thesis, the section will expand in more detail on this issue.

2.3.1 Single particle effects

An atom with electron spin s and nuclear spin i will experience an energy shift in a magnetic
field B due to the Zeeman interaction

ĤZ = (γe s + γn i) · B, (2.12)

where γe and γn are the gyromagnetic ratios, i.e. ratio between angular momentum and
corresponding magnetic moments, for the electron and nucleus, respectively. In addition,
both spins couple to the total atomic spin f = s+ i. This coupling gives rise to the hyperfine
interaction

Ĥhf = ahf s · i, (2.13)

where ahf is the hyperfine coupling constant; for 87Rb in the electronic ground state s = 1/2
and i = 3/2, and this energy amounts to a splitting of h × 6.8 GHz between the f = 1 and
f = 2 hyperfine ground states.

2.3.2 Spin dependent interactions

For the ground state collision of two interacting spin-1/2 particles, each particle experi-
ences a central potential VC originating from the other atom. Depending on the relative
distance, different mechanisms dominate the character of this potential. For extremely
small internuclear distances, the Coulomb repulsion of the atomic cores dominates VC, see
Fig. 2.3. For larger internuclear separation, the quantum mechanical exchange interaction
for the overlapping electron clouds is dominating. This interaction depends on the total
spin S = s1 + s2 and leads to a splitting of VC into a singlet (S = 0) potential VS and a
triplet (S = 1) potential VT . These potentials differ by twice the exchange energy, which
essentially is an exponentially decreasing function of the relative distance r

Vex ∝ e−2r/r0 , (2.14)

where r0 is some constant. The common course of both potentials is approximately given
by a dispersive energy

Vdisp = −
C6

r6 −
C8

r8 −
C10

r10 + . . . . (2.15)
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Figure 2.3: Molecular potentials for the scattering of two particles with spin 1/2. For very
small inter-nuclear distance the Coulomb repulsion is dominating. In an intermediate regime
the quantum mechanical exchange interaction dominates. For even larger separation, when the
hyperfine energy becomes larger than the exchange energy, multipole interactions, e.g. van der
Waals type, are the most relevant, before the problem asymptotically connects to two independent
particles.

Here exact knowledge of the coefficients Ci is crucial for a precise determination of the re-
spective scattering length. For extremely large separation of the two particles, the problem
asymptotically turns into the case of two independent particles.

2.3.3 Combined potentials

Combining the results of the two parts above, one finds the total Hamiltonian for the
interaction of two particles with spin degree of freedom for the relative coordinate r as

Ĥ = Ĥkin +
∑
j=1,2

ĤZ, j + Ĥhf, j + VC(r), (2.16)

where Ĥkin = p2/(2µred), with p the relative momentum and µred the reduced mass.
For very large inter-nuclear separation the interaction potential VC can be neglected. In

this situation the atoms are well described by their respective total atomic spin fi and its
projection onto the quantization axis mi, where i = 1, 2 labels the atom. Strictly, f is a
good quantum number only for |B| = 0, but for all cases considered in the following, the
magnetic field values are small enough to justify the use of f .

As the atoms approach each other, however, the exchange energy in VC, i.e. the splitting
between singlet and triplet potentials, can become comparable to the individual Zeeman-
and hyperfine energies. Therefore the individual total spin f and its projection m are
not good quantum numbers any more. However, the interaction (2.16) is invariant under
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2.3 Interactions between particles with spin-degree of freedom

rotation of the coupled total angular momentum F = f1 + f2. Consequently F and its
projection M onto the quantization axis are still conserved. Therefore collisions can be
treated in the basis of total coupled spin F. Each value F of total spin corresponds to
the collision in a certain scattering channel, that imposes a certain phase shift onto the
asymptotic atomic wave function in this channel. According to the previous section, the
effect of this phase shift can be summarized in an s-wave scattering length aF, labeled by the
particular scattering channel. For different values of the coupled spin F, the corresponding
scattering length aF is in general also different. In ultracold collisions for the case of two
interacting f = 1 ( f = 2) bosons, the coupled spin F can take the values 0 and 2 (0, 2 and
4), since for bosons due to symmetry reasons only even combinations of the total coupled
spin are possible in s-wave collisions.

In practice, and in particular in the cases discussed throughout this thesis, the initial
states of atoms entering a collisional event are experimentally prepared in a certain hyper-
fine state. Therefore the initial basis is conveniently expressed in terms of the individual
atomic total spin quantum numbers | f ,m f 〉. In order to describe the effect of an interaction
for two atoms, these initial, asymptotic quantum states |ψi〉 have to be decomposed into
the basis of total coupled angular momentum

|ψi〉 = | f1,m1〉 ⊗ | f2,m2〉 =

f1+ f2∑
F=0

F∑
M=−F

|F,M〉〈F,M| f1,m1; f2,m2〉 , F even. (2.17)

Each state |F,M〉 evolves according to the interaction strength aF, and the outgoing wave
|ψ f 〉 can be re-expressed in the original basis of individual total atomic spin f and m

|ψ f 〉 =
∑
f3, f4

∑
m3+m4=M

CF | f3,m3; f4,m4〉〈F,M| f3,m3; f4,m4〉, F even, (2.18)

where CF is a complex amplitude depending on the scattering length aF. It is important
to note that in general the outgoing wave in one asymptotic channel1 | f3,m3; f4,m4〉 is the
coherent superposition of various waves coming from different channels with coupled spin
F. The complex amplitudes CF in these channels give rise to interference effects in the
final state. In particular, even if a state has been polarized in | f1,m1; f2,m2〉, interactions
can transfer amplitude to different hyperfine states | f3,m3; f4,m4〉. This interference effect
will be important for the dynamics presented in chapter 4.

In some cases, however, only atoms which leave the collision region in the same state
as they entered in are considered. In this case, population transfer to other states is
summarized as loss, because part of the outgoing wave function in the relevant state is
missing. Effectively, this situation can then be described in terms of a complex effective
scattering length labeled by the asymptotic hyperfine state of interest. The real part of
this scattering length describes the phase shift of the relevant asymptotic state, and the
imaginary part accounts for losses due to the interaction.

1The streched state, i.e. with extremal quantum number m for one given angular momentum f , maps
directly onto a single interaction channel.
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2 Interactions at ultracold temperatures

In the discussion of interaction driven spin dynamics it is important to note the following
distinction. The bare scattering length is responsible for the overall phase shift of the
asymptotic outgoing wave. In contrast, for spin effects the difference between the various
interaction channels is important. This translates into a difference of phases for the different
channels. Therefore, the dynamical effects discussed in Chapters 4 and 5 relate to certain
differences of s-wave scattering lengths for the various coupling channels that the initially
prepared states can access. In fact, measuring the time scales of the spin dynamics allows
to extract exact knowledge of the difference of scattering lengths, which unambiguously
determine spin properties such as the magnetic ground state of the system.

2.3.4 Additional interactions

The types of interaction discussed above are the dominating ones for the discussion of the
experiments presented in the following. On a much smaller energy scale there exist addi-
tional interaction mechanisms. First, the dipole-dipole interaction of two atoms via their
electron spin’s magnetic moments; and second the spin-orbit interaction of the electrons
coupling angular momentum and spin degree of freedom leads in second order to a spin-spin
coupling of the two electron spins [32]. As a consequence of these coupling mechanisms, the
total coupled angular momentum F is not independently conserved any more. However,
the energy scales of these two interactions are several orders of magnitude smaller than the
typical energy of spin dependent interactions. Therefore they are neglected for most cases
considered here. They do play a role, however, as a mechanism leading to a loss of atoms
from the trap.

2.4 Loss processes and inelastic collisions

For trapped atomic samples, collisions between atoms can lead to an unwanted loss of
atoms. This is the case if either internal energy is converted into kinetic energy, which can
be sufficient for particles to leave the trap, or if the new internal state of the particles cannot
be detected any more. For experiments with degenerate gases, there are two important
processes. First, two interacting particles can form a weakly bound molecule while a
third carries the excess energy and momentum. This process is referred to as three-body
recombination. And second, in a collision between two particles the internal states can
change, leading to a loss of atoms from the trap, called two-body decay. In addition,
collisions with untrapped particles from the background can lead to loss. The decay of
atoms over time from a sample can be calculated as

dN
dt

=

3∑
p=1

−Kp

∫
np(r, t) dr, (2.19)
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2.4 Loss processes and inelastic collisions

where p = 1, 2, 3 denotes background collisions, two-body decay and three-body recombi-
nation, respectively. This leads for each process to a decay according to [33]

N(t) = N(0) exp
{
−Kp

∫ t′

0
dt′

∫
V

np(r, t)
N(t′)

dr
}
. (2.20)

For experiments with ultracold clouds it is important to know the contributions of the
three different processes, as loss usually implies heating of the sample and a reduction of
measured signal.

Background collisions The number of collisions with hot, untrapped particles depends on
the vacuum conditions in the experimental situation. For the experiments presented here,
the decay time resulting from (2.20) is well above one minute. Therefore this contribution
can be neglected for the experiments discussed in the following as they take much less time.

Two-body decay This process is due to two different physical mechanisms [34]. First,
the spin exchange interaction can transfer population to other hyperfine states according
to the corresponding scattering lengths. If the final scattering states are not magnetically
trapped, this process leads to loss from the trap. This was originally discussed in the
context of experiments with two-component 87Rb gases in magnetic traps. There, a mixture
of the two states | f = 1,m = −1〉 and | f = 2,m = +1〉 was prepared in a magnetic trap
[35, 36]. A surprising long lifetime of the overlapping system could be measured. This
could be explained by relating the absolute value of the corresponding loss rate Kexch

2 to
the difference of singlet and triplet scattering lengths [37, 38, 39]. For 87Rb the difference
is small, therefore this loss process is suppressed. In our case, an optical trap is used, such
that all final spin states could be trapped and detected. In fact, this process is exactly the
one that causes the coherent time evolution of two-particle spin states, in our case within
one hyperfine state as presented in Chapter 4.

The second mechanism contributing to two-body decay is dipolar relaxation. This mech-
anism is caused by the weak dipole-dipole interaction mentioned in Section 2.3.4. Here,
the total angular momentum F is not independently conserved in a collision. As a conse-
quence, an individual atom can change its hyperfine state, and release the hyperfine energy
of h×6.8 GHz, exceeding the typical optical trap depth around h×100 kHz by far. Therefore
one, possibly both atoms are lost.

For the experiments presented here, strong losses due to two-body decay occur for atoms
is the f = 2 hyperfine state2 of 87Rb, and for mixtures of f = 1 and f = 2. The correspond-
ing loss rates have been measured to be K2 ≈ 8.8 × 10−14 cm3/s, see Ref. [25].

Three-body recombination In a recombination process usually all particles are lost from
the trap. The molecule cannot be detected by the standard imaging procedure, and the
kinetic energy of the third particle is usually much larger than the trap depth. This process

2Not in the stretched spin states with m = ±2.
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2 Interactions at ultracold temperatures

depends strongly on the atomic density, as the probability for three particles to collide scales
as n(r)3. In current experiments with Bose-Einstein condensates this mechanism limits the
maximal achievable number of atoms in the condensate. It has been shown that the decay
rate K3 shows a strong dependence on the s-wave scattering length [40]. In particular,
for large values |as| of the scattering length, the decay rate grows as K3 ∝ a4 [41, 42].
The corresponding decay rates for 87Rb have been experimentally determined to be for
the f = 1 hyperfine state K3 = 5.8 × 10−30 cm6/s [33], and for the f = 2 hyperfine state
K3 = 1.8 × 10−29 cm6/s [43].

2.5 Quantitative theoretical predictions

In the experiments presented in this thesis, the interesting dynamics is driven by a spin
dependent interaction energy. The value of this energy can be experimentally determined
on a sub-percent level compared to other energy scales. In order to compare these results
with theory, the values for the s-wave scattering lengths have to be known to a similar
degree.

For precise, quantitative predictions in inter-atomic collisions, in principle the exact
form of the interaction potential has to be known. From this, the eigenenergies of the
bound states can be calculated, which permits the prediction of transition frequencies in
e.g. photo-association experiments, and moreover the translation into scattering lengths.
However, especially the innermost part of the interaction potential is extremely hard to
model, as the energy scales of many different interaction mechanisms become comparable.
This allows neither to solve the problem analytically, nor to simplify the problem by proper
approximations. Therefore, the “real” potential is assembled by a series of effective poten-
tials, each for a certain region of the internuclear distance. They are chosen such that they
connect smoothly to each other and describe the experimental findings as good as possible.

An ongoing interplay between theoretical and experimental effort led to successively
refined interaction potentials. For 87Rb, improving the accuracy of the scattering potentials
could be achieved by adding information on loss rates to the initial photo-association
data. Reducing thereby the error bars on the scattering length values from a & 5% level
[44, 38, 45] to ≈ 1% [46] already allowed first predictions on magnetic properties of the
system. Further improvement could be achieved by precisely locating the positions of
magnetic Feshbach resonances in addition with more accurate photo-association data [47].
Finally, the measurement of several rather high-field Feshbach resonances in 87Rb led to an
extremely good knowledge of the interaction potentials and predictions for the scattering
lengths with errors on a level of . 1h [48]. One of the current models for the precise
calculation of the molecular potential is the accumulated phase method [49, 32]. As the
innermost part of the potential is very hard to model, the effect of this part for distances r <
r0 is effectively captured by an accumulated phase φS , φT for singlet and triplet potentials,
respectively, at a certain relative distance r0. The potential itself is modeled for internuclear
distances r > r0 such that the boundary condition for the phase in each channel is met
at r = r0. The advantage of this model compared to other approaches is that only three
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2.5 Quantitative theoretical predictions

parameters r0, φS and φT are involved. With this model and the experimental results
outlined above, scattering lengths can be calculated with unprecedented accuracy. These
values [47, 32, 50] will be given in the corresponding context and compared with the
experimentally determined data presented in this work.
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3 Multi-component Bose-Einstein condensates in optical
lattices

Trapping Bose-Einstein condensates (BEC) in periodic optical potentials has been shown
to allow for entering an interaction dominated regime. Moreover, since in optical traps the
spin degree of freedom is not frozen as in magnetic traps, these systems offer the possibility
to create and investigate interactions between atoms possessing different internal degrees
of freedom, which lead to novel physical effects. This chapter aims at describing the basic
properties of BEC and periodic dipole potentials as traps for ultracold bosonic samples.
We will briefly sketch the description of such a system by the Bose-Hubbard Hamiltonian
and how in such an environment interactions can be studied in detail. We will describe
how the spin degree of freedom can be coherently manipulated and used for a precise
state preparation in the system. Finally we will outline the experimental realization of a
degenerate spinor gas in an optical lattice potential in our experimental setup.

3.1 Bose-Einstein condensation in magnetic traps

Since the first realization of BEC in 1995 [51, 52], the creation of coherent macroscopic
matter waves has become a standard tool in many laboratories world wide. We will there-
fore only briefly describe the most important steps on the way to a BEC and refer to
literature for a more detailed description of BEC in general (see Refs. [23, 53, 54] and
references therein) or our specific experimental apparatus used in the cases presented here
[55, 56, 57, 58].

3.1.1 Theoretical description of BEC

The first approach in creating a BEC was to use a magnetic trap as container for the
atomic sample [59, 60]. Originally, the so-called Earnshaw theorem states, that in any
static electric field there does not exist a stable configuration of charged particles 1 [61]. If,
however, the internal degree of freedom can interact with the external field, this can lead to
a position- and level-dependent interaction energy, and hence to a force trapping the atom.
For magnetic fields, no field maximum can be created in free space. Therefore only states
that minimize their Zeeman energy Ez = g f µB m B with decreasing magnetic field B can be
trapped in a magnetic field minimum. Here µB is the Bohr magneton (µB/h ≈ 1.4 MHz/G)
and g f is the Landé factor. For 87Rb which is the element used throughout this thesis, the
Zeeman energy of the two ground state manifolds is shown in Fig. 3.1.

1This can be extended to other static fields, e.g. gravitational or magnetic potentials.
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Figure 3.1: (a) Ground state manifold of the electronic 5 2S 1/2 state of 87Rb for a finite magnetic
field. (b) Zeeman splitting due to an external magnetic field in the low field regime. Only states
that lower their energy with decreasing magnetic field (green) can be trapped in magnetic traps.
The others are either untrapped (black) or repelled from the trap (red).

By application of additional cooling through forced radio frequency evaporation [60, 62,
63] in these traps, the phase space density of the system can be compressed to above a
critical value on the order

n λ3
dB ≈ 1, (3.1)

where n is the particle density and λdB = 2π/k is the deBroglie wavelength with ~k the
momentum of the atomic matter wave. When the critical phase space density is reached, a
macroscopic number of particles occupies the ground state of the trapping potential; this
part of the atoms is called Bose-Einstein condensate (BEC). For zero temperature in the
non-interacting case, all atoms occupy this state as predicted originally by Einstein [64].

The zero-momentum population can be described by a macroscopic condensate wave
function Φ(r, t) which obeys a non-linear Schrödinger equation, the so-called Gross-Pitaevskii
equation

i~
∂

∂t
Φ(r, t) =

(
−
~2 ∇2

r

2mRb
+ Vtrap + g|Φ(r, t)|2

)
Φ(r, t), (3.2)

where Vtrap is the magnetic trapping potential, and g is the interaction coupling constant
introduced in Section 2.2. For the ground state, the condensate wave function can be
written as

Φ(r, t) = φ(r) × e−iµ t/~ ≡
√

n(r) × e−iϕ, (3.3)

with µ the constant chemical potential of the condensate in the trap. In the last step in
Eq. (3.3) we have introduced the normalization of the spatial wave function to the total
number of atoms

∫
dr |φ(r)|2 = N, and the global phase ϕ = µ × t/~.
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3.1 Bose-Einstein condensation in magnetic traps

Due to the interaction term in Eq. (3.2), part of the atoms, however, do not occupy
the zero-momentum state. This is usually referred to as quantum depletion. The ratio of
atoms with non-zero momentum Ndepl to the total atom number N can be calculated to be
[53, 65]

Ndepl

N
=

5
√
π

8

√
a3

s n(0), (3.4)

where n(0) is the atomic density in the center. For typical BECs this depletion amounts
to roughly one percent of the total atom number [53]. In case interactions are enhanced,
e.g. by an optical lattice, the depletion can grow up to several ten percent [66]. In the
extreme case of a Mott-insulating state (see below), the quantum depletion can cause the
zero momentum component to vanish.

Substituting Eq. (3.3) into Eq. (3.2) leads to a stationary non-linear Schrödinger equation(
−
~2 ∇2

r

2mRb
+ Vtrap + gφ2(r)

)
φ(r) = µφ(r). (3.5)

Neglecting the kinetic term, one finds the density profile of the BEC to be

n(r) = |φ(r)|2 =
µ − Vtrap

g
. (3.6)

Since the chemical potential is constant over the system, a harmonic trap leads to a har-
monic density profile as shown in Fig. 3.2.
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(a) (b)

x

n

Figure 3.2: (a) Bose-Einstein condensate in a harmonic trap. The chemical potential in the
trap is flat over the system. This leads to a harmonic density profile (b).

The normalization condition on the total number of atoms for a harmonic trap yields
the chemical potential

µ =
~ω̄

2

(
15N as

aho

)2/5

, (3.7)

where as is the s-wave scattering length of the coupling constant g, N is the total number

of atoms, ω̄ =
3
√∏3

i ωi is the geometric average of trapping frequencies along the different

axes, and aho =
√

~
mRbω̄

is the mean ground state harmonic oscillator length.
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3 Multi-component Bose-Einstein condensates in optical lattices

At this point it can already be seen from Eq. (3.7) and (3.3) that in the ground state the
mean field interaction, represented by the s-wave scattering length as, leads to a coherent
evolution of the global phase of the BEC.

It should be noted that the description of a BEC introduced above so far assumed a
3D system. Some experiments described in this thesis have been carried out in a 1D
regime. There, due to the particular geometry, a degenerate gas strictly cannot form a
BEC. In addition, interactions in such a gas lead to a slightly different value of e.g. the
chemical potential. A more quantitative treatment describing the specific situation of our
experimental realization can be found in Appendix B.3. For related work on 1D gases see
Refs. [67, 68, 69].

3.2 Dipole traps

Magnetic traps that have been introduced as containers for BEC so far have the serious
constraint that only few of the ground state Zeeman levels can be trapped. In case of
87Rb these are | f = 2,m = +2〉, | f = 2,m = +1〉, and | f = 1,m = −1〉. The other states are
either untrapped (| f = 1,m = 0〉, | f = 2,m = 0〉), or repelled. Although spin-1/2 phenomena
have been studied with BEC in magnetic traps for certain internal states in a series of
experiments [35, 36, 70, 71, 72], the restrictions of a magnetic trap make it difficult to
study arbitrary multi-spin systems and their dynamics. This problem can be overcome by
the use of far detuned dipole traps. In contrast to the magnetic traps they can exhibit an
attractive force on all quantum states in the ground state manifold of a particle, which can
even be a molecule. For a proper choice of parameters, the trap depth can be approximately
the same for different hyperfine or Zeeman levels of one atom.

3.2.1 Dipole potential

The mechanism of optical traps can be understood in the following simple picture. A
more thorough treatment can be found in Refs. [73, 61]. Placing a two-level atom with an
atomic transition of frequency ω0 into a laser field with amplitude E and frequency ω of
the electric field will induce a dipole d in the atom. The magnitude of the induced dipole
is related to the amplitude of the electric field E through the atomic polarizability α(ω)

d = α(ω) E. (3.8)

This induced dipole has a certain potential energy in the external electric field. The time
averaged potential energy can be calculated to be

Udip = −Re (α(ω)) |E|2, (3.9)

which is proportional to the intensity of the light field I = 1/2 ε0c|E|2, with ε0 the electric
constant and c the speed of light. The polarizability can be calculated in a semiclassical
model, i.e. considering the atom as quantum mechanical two-level system interacting with
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3.2 Dipole traps

a classical radiation field. With the resulting value for the polarizability α(ω) Eq. (3.9) can
be re-written in the rotating wave approximation as [73]

Udip =
3πc2

2ω3
0

Γ

∆
I(r), (3.10)

with Γ being the natural line width of the atomic transition, and ∆ ≡ ω −ω0 the detuning
from the atomic transition. The sign of the detuning determines the nature of the cor-
responding conservative force −∇rUdip that the light field exerts on the atom. For ∆ > 0
(blue detuning) the potential is positive, and the force ∇Udip ∼ ∇I(r) is repulsive. For
∆ < 0 (red detuning), the potential is negative, and the corresponding force attractive.
The dipole potential (3.10) is identical to the AC-Stark shift which a detuned laser induces

E
ne

rg
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ħ

r b

(a) (b) (c)

Figure 3.3: Far detuned dipole trap. (a) A laser beam that is detuned to lower (higher)
frequencies than the atomic transition, i.e. ω < ω0 (ω > ω0) causes atoms to be attracted (repelled)
from intensity maxima (b,c).

in a two-level atom [73].
In reality, atoms cannot be described as simple two-level systems, as they show further

substructure due to fine- and hyperfine energy splitting. However, in the case where the
detuning ∆ becomes much larger than the excited or ground state hyperfine energy, or even
the fine structure splitting, those substructures are not resolved and the approximation by
a two-level system yields reasonable results. For our experiment, typically a dipole laser
wavelength of λdip = 845 nm is used, whereas the atomic transitions are found at λD1 ≈

795 nm and λD2 ≈ 780 nm. Therefore the detunings to the two fine structure multiplets are
considered individually and their contributions are summed.

3.2.2 Spontaneous scattering in dipole traps

Another important quantity in the discussion of optical traps is the photon scattering rate
Γsc. Due to the imaginary part of the polarizability, the atom can absorb energy from
the radiation field and re-emit it as dipole radiation. This process corresponds to the
absorption and spontaneous emission of a photon from the light field. For experiments
with BEC, spontaneous photon scattering events are usually unwanted as they introduce
heating in the system and can create excitations. Therefore the experimental parameters
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3 Multi-component Bose-Einstein condensates in optical lattices

are chosen as to minimize the scattering rate. For large detuning, the scattering rate can
be calculated from the model described above to be [73]

Γsc =
3πc2

2~ω3
0

(
Γ

∆

)2

I(r). (3.11)

Comparison of Eq. (3.10) with Eq. (3.11) shows that for the same dipole potential the
scattering rate can be minimized by increasing the detuning ∆ and correspondingly the
intensity I. For a typical experiment described in this thesis, the dipole potential amounts
to Udip ≈ h × 103 Hz, while the scattering rate is on the order of Γsc ≈ 1 s−1.

3.3 Periodic dipole potentials

In this section we will investigate the case where a dipole trap is not formed by a single
laser beam but by the interference pattern of two counter propagating laser beams. This
changes the situation drastically, as it creates a periodic potential resembling the crystalline
potential structure of an idealized, simple-cubic solid. For a review and further information
than can be given in this section see Ref. [74] and references therein.

For a Gaussian laser beam with wave vector k traveling along the êx direction, the electric
field amplitude, i.e. neglecting polarization effects, can be described by

E(ρ, z) = E0 e−ρ
2/w2
× Re

[
eik x eiωt

]
, (3.12)

where ρ denotes the radial coordinate in the plane perpendicular to the propagation axis,
and we consider a focused beam with waist w (1/e2 radius). For two counter propagating
beams with wave vectors k1 = k and k2 = −k, respectively, the resulting time independent
intensity pattern can be calculated to be

I(ρ, z) = |Ek(ρ, x) + E−k(ρ, x)|2 = 4E0 e−2 ρ2

w2 cos2(kx). (3.13)

In the following we will assume the laser frequency to be red detuned with respect to
the atomic transition (ω < ω0), because this is the case in the experiments described
below. Following the arguments in Section 3.2, atoms are attracted by the anti-nodes of
the standing wave (3.13) leading to a potential

V(ρ, z) = −V0 e−2 ρ2

w2 sin2(kx), (3.14)

where V0 is the maximally achievable potential depth given by 4 Udip. This potential is
periodic along the axis of propagation with periodicity λ/2, where λ is the laser wave-
length. Along the propagation axis of the laser beams, we can therefore identify several
periodically spaced potential minima (see Fig. 3.4) that we will call from now on lattice
sites. Radially the potential has a Gaussian profile in the plane perpendicular to the prop-
agation axis which leads to a transversal confinement of the atoms. This will be important
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Figure 3.4: Periodic dipole Potential. (a) Two counter propagating laser beams create a pe-
riodic interference pattern. (b) In case of an additional inhomogeneity, such as the harmonic
magnetic trap potential or the Gaussian profile of perpendicularly aligned dipole lasers, the pe-
riodic potential is varying on a large length scale due to this smooth overall confinement.

when discussing effects arising from the inhomogeneity of the trapping potential. While
Eq. (3.14) describes a one-dimensional periodic potential, which is often referred to as a
one-dimensional optical lattice, this can be extended to higher dimensions by adding addi-
tional standing waves. The resulting potential landscapes for the various configuration is
shown in Fig. 3.5.

3.3.1 Bose-Hubbard Hamiltonian

The situation of Bosonic matter waves trapped in a periodic potential as given in Eq. (3.14)
can be described by the Bose-Hubbard Hamiltonian [75, 76, 77]

Ĥ = −J
∑
〈i, j〉

â†j âi +
U
2

∑
i

n̂i (n̂i − 1) +
∑

i

εini, (3.15)

where âi is the bosonic annihilation operator on site i and n̂i ≡ â†i âi is the corresponding
atom number operator. The three terms in this Hamiltonian stand for three different phys-
ical mechanisms:
The first term in Eq. 3.15 describes tunneling between adjacent lattice wells (see Fig. 3.6(a)),
denoted by the angled brackets in the sum. By tunneling from site i to site j an atom can
lower its energy by the amount

J =

∫
φ∗(x − xi)

(
−
~2 ∇2

2mRb
+ Vlat

)
φ(x − x j) d3x (3.16)
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Figure 3.5: (a) Two dimensional optical lattice. The superposition of two mutually orthogonal
pairs of counter propagating laser beams results in a 2D array of cigar shaped traps. (b) If three
orthogonal pairs of laser beams are superimposed, the resulting pattern resembles the structure
of a simple cubic crystal.
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J
U

(a) (c)(b)

Figure 3.6: (a) Sketch of tunnel matrix element J and interaction energy U in a periodic
potential. (b) Sketch of a possible lattice site occupation in a measurement for the superfluid
ground state (U/J � 1) and averaged filling n̄ = 1 in the homogeneous system. Site occupation
numbers follow Poissonian statistics. (c) Same for the Mott-insulating ground state (U/J � 1).
Other parameters as in (b).

where φ(xi) is a localized wave function at lattice site i; a convenient set of localized wave
functions are Wannier functions, which can be approximated by Gaussian wave packets for
large values of the optical potential.

The second term in Eq. (3.15) describes the on-site interaction (see Fig. 3.6(a)). If there
are ni atoms trapped at lattice site i, each of the ni atoms interacts with ni − 1 others. In
each such interaction, the total energy is raised because of the repulsive interaction energy
(2.11) by the amount

U =
4π~2 as

mRb

∫
|φ(x − xi)|4 d3x. (3.17)

The last term in Eq. (3.15) accounts for an energy offset εi at lattice site i due to the
inhomogeneous trapping potential, which is essentially given by the transversal confinement
given in Eq. (3.14) (see Fig. 3.4(b)).

Interaction and tunneling are competing terms, as the one lowers the total energy while
the other increases it. Depending on the relative strength of these two terms, the system
can be in two different ground states which will be described here only briefly. For further
discussion of the superfluid to Mott-insulator transition, see Refs. [57, 78].

Superfluid ground state For U/J → 0 the atomic waves are delocalized over the entire
lattice, thereby minimizing the total energy and preserving phase coherence throughout
the system. At each lattice site one finds a coherent state where the atom number follows
a Poissonian distribution. This state is referred to as superfluid state (SF). A possible
realization of such a ground state is depicted in Fig. 3.6(b) for an average filling of ν̄ = 1,
where the average filling is defined as ratio of atom number divided by the number of lattice
sites.
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3 Multi-component Bose-Einstein condensates in optical lattices

Mott-insulating ground state For U/J → ∞, on the other hand, delocalization cannot
compensate for the on-site repulsion. Therefore the system arranges in a way as to minimize
the interaction energy. This can be achieved by forming localized states at each lattice site
with a well defined number of particles, so-called Fock or number states. As a consequence,
phase coherence between lattice sites is lost. This many-body state of the system is known
as Mott-insulating state (MI). In the homogeneous system for an average filling of ν̄ = 1
the state is a uniform array of sites with exactly one atom per lattice well as shown in
Fig. 3.6(c).
The depth of a periodic optical potential can be precisely controlled by the intensity of
the laser beams forming the optical lattice. This allows to vary the ratio of U/J over a
wide range of parameters in an experiment. This offered the opportunity to adiabatically
transfer an initially delocalized BEC at very shallow potential depths in a three-dimensional
optical lattice into the Mott-insulating state of the system, where tunneling is suppressed
at very deep potential depths. Thereby, the quantum phase transition from a SF to a MI
state could be systematically studied for the first time [1, 57]. For the further discussion it
is important to note that in the MI, each lattice well can be prepared with a well defined
number of particles that is perfectly isolated from all the other lattice wells. This situation
can be seen as a micro-laboratory, where for example the interaction of exactly two atoms
can be studied.

3.3.2 Energy scales in the Bose-Hubbard model

For the experimental realization it is often crucial to compare relevant energy scales in the
system in order to estimate time scales on which different physical mechanisms – such as
interaction driven phase evolution or tunneling – take place. Therefore a precise knowledge
of the parameters appearing in the Bose-Hubbard Hamiltonian (3.15) is indispensable.
In particular we will present calculations on the tunneling matrix element J (3.16), the
interaction matrix element U (3.17) and give an estimate on the inhomogeneity εi in our
system.

Calculating tunneling rates

A periodic potential, i.e. a potential where sites are coupled by tunneling, is in general
described in terms of a band structure. This can be obtained by diagonalizing the Hamil-
tonian

Ĥlat =
~∇2

2mRb
+ Vlat, (3.18)

assuming Bloch waves as single particle wave functions, i.e. combinations of plane waves
and functions u(n)

q that have the same periodicity as the lattice

φ(n)
q (x) = eiqx/~ u(n)

q . (3.19)

Here, q is the quasi momentum of the particle, and n is the band index. The eigenenergies
of the Hamiltonian (3.18) are the allowed energy values E(n)

q that a Bloch wave with certain
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Figure 3.7: (a) Calculated tunneling matrix element J in single photon recoil units Er and
frequency assuming λlat = 840 nm. The red line has been calculated as one fourth the width of
the lowest band (see inset for a band structure for Vlat = 1 Er). The black line represents the
analytical approximation given in Eq. (3.21). (b) Absolute (black line) and relative (blue line)
difference between the two calculations in part (a).

quasi-momentum q can have such that

Ĥlat φ
(n)
q = E(n)

q φ(n)
q . (3.20)

From such a band structure calculation one finds the tunneling energy in the lowest band
J as one fourth the width of the lowest band [78], i.e. the energy difference between q = 0
and q = ~k (see inset in Fig.3.7(a)).

An analytical expression for the tunneling energy in deep potentials Vlat � Er has been
derived [77]

J ≈
4
√
π

Er

(
Vlat

Er

)3/4

exp
−2

√
Vlat

Er

 , (3.21)

where Er is the single photon recoil energy, which is given by

Er =
~2k2

2mRb
. (3.22)

For most cases in our experiment, the analytical formula (3.21) is a good approximation
for depths Vlat ≥ 20 Er, although the relative difference is still on the order of 10%. The
abolute tunneling energy, however, is already rather small compared to other energy scales,
so that this error is usually not important.

Calculating interaction energies

As this work closely investigates the interaction of ultracold atoms, calculation of the
interaction matrix element (3.17) is a central point in the discussion of the Bose Hubbard
Hamiltonian. Besides the precise knowledge of the s-wave scattering lengths as, which will
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3 Multi-component Bose-Einstein condensates in optical lattices

be the focus in later chapters, the essential quantity is the wave function overlap between
two particles trapped at a common lattice site∫

|φ1(x)|2 |φ2(x)|2d3x. (3.23)

The problem in calculating the wave function overlap is to find the correct single particle
wave functions. In the following we will introduce two approximations and discuss their
limitations.

A first approximation, which is in particular valid for V0 � Er, expands the periodic
lattice potential up to second order around the potential minimum

Vlat(z) = −V0 sin2(kz) ≈ −V0 k2z2 + O(z4). (3.24)

This harmonic oscillator has a trapping frequency ωtrap and harmonic oscillator length aho

of

ωtrap =

√
2V0k2

mRb
and aho =

√
~

mRb ωtrap
. (3.25)

The harmonic oscillator ground state function can therefore be taken as a first approxima-
tion of the real on-site wave function

φ0(x) =
1√
πa2

ho

exp
−1

2

(
x

aho

)2 . (3.26)

Using this approximation, the on-site interaction energy (3.17) becomes

U ≈

√
8
π

k as Er

(
V0

Er

)3/4

. (3.27)

The course of the interaction energy with changing lattice depth according to Eq. (3.27) is
shown in Fig. 3.8(a).

For many purposes, however, this approximation is not accurate enough. In this case,
one has to find a better approximation of the on-site wave function. The next step would
be to take the higher order terms into account in Eq. (3.24). Ultimately, this corresponds
to finding the localized eigenfunctions of the full sinusoidal potential. A convenient set of
such localized functions are Wannier functions which can be written as

w(x − xi) =
∑

q

eiqxi/~ φq(x), (3.28)

and are constructed from the eigenfunctions φq of Eq. (3.20). Wannier functions differ
from Gaussian wave packets for small lattice potentials especially in side-lobes at adjacent
sites which increase the tunneling probability compared to Gaussian wave packets. The
interaction energy Ubs calculated with Wannier functions is displayed in Fig. 3.8(a).
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Figure 3.8: (a) Calculated interaction energy U in single photon recoil units Er and frequency
assuming λlat = 840 nm. The black line shows an approximation of the wave function by a
harmonic oscillator ground state, the red line uses Wannier functions from a band structure
calculation. The inset shows the sketch of a harmonic oscillator wave function (black) and a
Wannier function (red) in a 1 Er deep lattice. (b) Absolute (black line) and relative (blue line)
differences of the two approximations shown in (a)

The on-site interaction energy changes for small lattice potentials by several tens of
percent when comparing Gaussian wave packets with Wannier functions. The absolute
difference in Fig. 3.8(b) shows that for larger lattice depth the band structure calculation
predicts a more and more Gaussian-like on-site wave function. For typical lattice depths
around 40 Er where the experiments described below have been prepared, the relative
difference between harmonic approximation and band structure calculation is about ≈ 5%
of Ubs, which is the value obtained in the band structure calculation.

Recently, several approximations to the relative wave function of two particles in a trap
have been compared. In particular, the non-interacting Gaussian ansatz is compared with
two other approximations. First, a variational method including dipolar interaction has
been presented, where the width of the on-site wave packet has been used as variational
parameter. Second, a “mean field” approach was applied to the problem of two atoms
in a trap, including the conventional spin-independent interaction [79]. A comparison of
the three approaches shows a difference for a typical depth of 40 Er again on the order
of 5% [80]. More recently, a model has been presented that calculates the wave function
of interacting particles while taking into account the correct optical lattice potential [81].
The results indicate a difference to the band structure calculation displayed in Fig. 3.8 on
the order of +3% of Ubs for a depth of 40 Er.

Inhomogeneities in the trapping potential

The Gaussian shape of the laser beam profile on the one hand leads to an additional overall
confinement of the atoms. On the other hand the spatially changing intensity leads to a
varying lattice depth in 2D and 3D optical lattices that results for example in a spatially
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varying on-site interaction strength U and tunneling energy J. In order to quantify these
effects, we expand the radial term in Eq. (3.14) to quadratic order in ρ around the point
of maximal intensity

V(ρ) = −V0 e−2 ρ2

w2 ≈ −V0

(
1 −

2ρ2

w2 + O(ρ4)
)
. (3.29)

This harmonic oscillator has a trapping frequency Ω and oscillator length aΩ of

Ω =

√
4V0

mRbw2 and aΩ =

√
~

mRbΩ
. (3.30)

This leads to an anharmonicity parameter εi in Eq. (3.15) of

εi =
1
2

mRbΩ
2 ρ2

i , (3.31)

where ρi is the distance from lattice site i to the center of the trap.
For typical experimental parameters (w ≈ 130 µm, V0 ≈ 40 Er), one can calculate the

ratio of axial to radial trapping frequencies in a single standing wave trap to be on the
order of 10−3. Therefore atoms in such a one dimensional optical lattice take the form of a
stack of pancakes. Similarly, the differential change of on-site interaction energy between
the center and the border of the cloud due to the overall harmonic confinement can be
calculated for these parameters to be on the order of . 5% of Ubs.

3.4 Coherent control of the spin-degree of freedom

One of the great advantages of optical traps, as opposed to magnetic traps, is the possibility
to trap all magnetic sublevels of the ground state manifolds. Since our experiment starts
from a spin polarized sample in a magnetic trap, additional tools have to be used to bring
the atoms into a desired spin state. In particular, for many applications it is necessary to
have not only control over the different spin populations, but also over the relative phases
between different spin states. This allows the controlled creation of coherent superpositions
of spin states. We next introduce the experimental methods which allow us to create any
desired polarized spin state in the 87Rb f = 1 and f = 2 hyperfine manifolds starting from
the initially prepared | f = 1,m = −1〉 BEC, together with the Bloch-sphere representation
for single particle operations in a spin 1/2 system.

3.4.1 The Bloch-sphere

For most cases considered in this thesis, any individual transition between two spin states
can be seen as a transition in a two-level system {|g〉, |e〉}, as long as all other transitions
are sufficiently far detuned (see Fig. 3.9(a)). This problem is well known, and the following
standard treatment can be found for instance in Refs. [82, 61].
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Figure 3.9: (a) Two level system driven by an external electro-magnetic field. (b) Bloch sphere
representation of the two-level system depicted in (a).

A convenient way of visualizing the state of such a two-level system is the Bloch sphere
as depicted in Fig. 3.9(b). Here, the surface of the sphere is the manifold of all possible pure
quantum states that a single two-level system can be prepared in. In particular, the two
poles represent the two polarized states |g〉 and |e〉. The position of the tip of the so-called
Bloch vector characterizes the actual state of the system. Here, the projection of the Bloch
vector onto the axis through the two poles, the w-axis, gives the population difference
Ne − Ng. Thus, any vector within the equatorial plane describes an equal superposition of
both states. Additionally, the phase in the equatorial plane reflects the relative quantum
phase φ between the two states.

If the system is manipulated by a radiation field with energy ~ω, the Hamiltonian de-
scribing the time dynamics of the system is given by

Ĥ =
~

2

(
δ Ω

Ω −δ

)
, (3.32)

where Ω = d E/~ is the coupling strength with d the dipole matrix element and E the
electric field amplitude of the driving field; δ = ω − ω0 is the detuning from the two-
level resonance, and ~ω0 is the energy difference between the two levels |g〉 and |e〉. In
the following we will consider two ways to transfer population from an initially prepared
system in state |g〉 to |e〉, depending on the specific choice of the values for Ω and δ.

3.4.2 Transitions with variable detuning: Rapid adiabatic passage

The first possibility in transferring population from |g〉 to |e〉 is to apply a radiation field
with time varying detuning δ(t). The basic mechanism can be understood in the so-called
dressed state picture, i.e. in a picture of eigenstates of the Hamiltonian (3.32), which are
combined states of atom and radiation field; for further information see Refs. [61, 83, 84].
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Figure 3.10: Energy diagram for a two-level system and a light field in the dressed state picture.
The energy of (n−1) photons has been subtracted on the energy axis. For no atom-field coupling,
the energy of the dressed states is given by the dashed lines according to Eq. (3.34). For a coupling
of strength Ω, an avoided crossing opens up, where the energy gap is given by Eq. (3.35).

The eigenenergies of the two eigenstates of Eq. (3.32) are given by

E = ±
~

2

√
Ω2 + δ2. (3.33)

The initial dressed state is |g, n〉, where the first entry in the state vector denotes the state
of the atom, the second denotes the number of photons in the radiation field. If the atom
absorbs a photon, it is transferred into the excited state, while one photon is missing in
the radiation field. The corresponding dressed state is |e, n − 1〉. In the absence of coupling
Ω = 0, the energy shift for the two dressed states is according to Eq. (3.33)

∆Eg,e = ±
~δ

2
, (3.34)

where the upper (lower) sign is for |g, n〉 (|e, n − 1〉), see Fig. 3.10. If a coupling between
these two dressed states is present (cf. Fig. 3.10), it leads to an avoided crossing, where the
energy separation for δ = 0 is according to (3.33) given by

∆E = ~Ω. (3.35)

As a consequence, starting from |g, n〉 with δ � −Ω and increasing the detuning sufficiently
slow to δ � Ω results in an adiabatic following of the actual state of the system into the
state |e, n − 1〉 due to the avoided crossing (see Fig. 3.10). “Sufficiently slow” here means to
be slow enough so that the system cannot intersect the avoided crossing. This adiabaticity
condition can be written as

d
dt
|δ| � Ω2. (3.36)

On the other hand, the passage must be fast enough so that no population can decay while
the sweep is still in progress. But as the life-time of the hyperfine states in 87Rb is much
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Figure 3.11: Rabi oscillations on the Bloch sphere and the correspondingly measured population
of the excited state for the case of resonant excitation (a) or strongly detuned excitation (b).
The power has been adapted such that the oscillation frequency is the same for both cases.

longer than any other experimentally relevant time scale, this is in practice not a limiting
factor. The combination of both requirements leads to the name Rapid Adiabatic Passage
for this method. Also, in the literature it is often referred to as Landau Zener transition
from the underlying theoretical model that describes this situation [83, 84].

3.4.3 Transitions on resonance: Rabi flopping

The second possibility to transfer population from |g〉 to |e〉 is by applying near-resonant
radiation, i.e. δ � Ω as introduced by I. Rabi [85]; in contrast to the previous situation,
δ is constant in time. From Eq. (3.32), one can calculate the probability of exciting the
two-level system from its ground state to the excited state to be

P|e〉(t) =

(
Ω

Ω′

)2 1
2

(
1 − cos(Ω′ t)

)
, (3.37)

where Ω′ =
√

Ω2 + δ2 is the effective Rabi frequency. The periodic population transfer
which is described by Eq. (3.37) is called Rabi oscillation.

In the experiment, the coupling strength Ω can be adjusted by controlling the power
of the radiation field. Transitions within the hyperfine manifold, as in our case, are
highly electric dipole forbidden. Instead they are magnetic dipole transitions, which
leads to a coupling strength Ω that is several orders of magnitude smaller than the cou-
pling strength for dipole transitions. Typical values of the Rabi frequency for transitions
| f = 1,m = −1〉 → | f = 2,m = −1 + ∆m〉, ∆m = 0, ±1 are Ω ≈ 2π × 5 . . . 50 kHz.

Controlling the time during which the microwave field is applied, enables us to perform
pulses with well defined pulse area. In particular, for a general pulse area ϑ = Ω′ t and
phase ϕ, the transformation matrix is given by

M[ϑ, ϕ] =

 cos
(
ϑ
2

)
eiϕ sin

(
ϑ
2

)
−e−iϕ sin

(
ϑ
2

)
cos

(
ϑ
2

)  . (3.38)

37



3 Multi-component Bose-Einstein condensates in optical lattices

This transformation acts on the two-particle states(
g
e

)
≡ g |g〉 + e |e〉. (3.39)

In the literature there is often a difference between a π/2-pulse and a so-called Hadamard
gate, which differ by a phase ϕ = π/2. For simplicity, we omit writing this phase of
π/2 and assume pulses with ϕ = 0 if not otherwise noted. With this, the transformation
matrices for a π/2-pulse and a π-pulse are represented by the matrices M[π/2, 0] and M[π, 0],
respectively. It should be noted that Eq. (3.38) shows the correct behaviour for a rotation
of ϑ = 2π, reflecting the underlying symmetry group of S U(2) rather than the group for
spatial rotations, S O(3).

Applied to a usual experimental situation, starting from a spin-polarized sample in
| f = 1,m = −1〉, a π/2-pulse with the correct frequency will prepare the system in a coher-
ent superposition of for example 1/

√
2 (| f = 1,m = −1〉 − | f = 2,m = 0〉), whereas a π-pulse

will transfer all atoms into the f = 2 state. The pulse area can be controlled on a percent
level. Additionally, the phase ϕ of the microwave radiation can be controlled to a high
degree. That enables us to perform Ramsey type interferometer sequences.

3.4.4 Ramsey interferometry

An important tool to exploit the coherence of atomic systems for precision measurements,
e.g. to measure acceleration and rotation or to construct precise frequency standards, is
atom interferometry (for a review see Ref. [86] and references therein). The backbone of
atom interferometry is the Ramsey method of separated oscillatory fields [87]. Before the
invention of this method, precision measurements on atomic beams were done by making
use of the Rabi method [85]. Thereby, an atomic beam was sent through a region of
well defined homogeneous magnetic field, and on a certain atomic transition Rabi flopping
was driven. The measured frequency was used for example as a signal to determine the
precise transition frequency. In order to increase precision, the interaction region had to be
extended, as more oscillation periods correspond to a better frequency resolution. However,
it became technically increasingly difficult to control the homogeneity of the magnetic fields
sufficiently well in order to obtain a higher resolution. This problem could be overcome
by Ramsey’s famous method of two separated oscillatory fields, where a very homogeneous
field had only to be present in two small interaction zones, whereas the space between
those two regions could be field free.

In our case, we use an adopted method as our sample is stationary in space. The
experiments presented in the following start with a polarized sample to which a π/2-pulse
is applied, i.e. a radiation field is switched such that the atoms are prepared in a coherent
superposition of two internal states. The atomic state after this pulse according to (3.38)
reads

|ψ〉initial = |g〉
π/2
−→ |ψ′〉(0) =

1
√

2
(|g〉 − |e〉) , (3.40)
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Figure 3.12: Ramsey method:(a) Starting from a spin polarized sample in the internal state |g〉,
a first π/2 pulse prepares a coherent superposition where the Bloch vector lies in the equatorial
plane (b). During a wait time t the relative phase evolves, for example due to a detuning δ

between the external radiation field and the transition frequency of the atom, (c). A final π/2-
pulse is used to read out this phase evolution by mapping the phase onto the population of the
two internal states (d).

where we have set the phase of the first pulse ϕ = 0 without loss of generality, as this only
determines an arbitrary orientation of the Bloch sphere itself. This first pulse rotates the
Bloch vector of each atom into the equatorial plane, see Fig. 3.12(a). Subsequently the
system evolves for a time t. This corresponds2 to a precession of the Bloch vector in the
equatorial plane with the rotation frequency δ. During the wait time, the atomic Bloch
vector has thus collected a phase φ = δ t compared to the microwave field (Fig. 3.12(b))
and the state after the evolution reads

|ψ′〉(t) =
1
√

2

(
|g〉 − e−iδt|e〉

)
. (3.41)

The relative phase can finally be read out by a second π/2-pulse with phase α, mapping
the relative phase between the spin states onto the populations of the internal states, see
Fig. 3.12(c). Depending on the relative phase between the atomic Bloch vector and the
radiation field, the Bloch vector is rotated to different positions on the Bloch sphere. The
final state |ψfinal〉 created by the last π/2-pulse reads

|ψfinal〉 =
1
2

([
1 − e−iδt+iα

]
|g〉 −

[
e−iα + e−iδt

]
|e〉

)
, (3.42)

where the microwave phase α cannot be neglected anymore. A subsequent measurement
of the population in one of the two internal states (Fig. 3.12(d)) therefore yields a relative

2In this Bloch-sphere picture a rotating frame has been adopted.
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Figure 3.13: Spin echo sequence in an ensemble where individual particles (with red, green and
blue Bloch vectors) experience different detunings. (a) Directly after a first π/2-pulse, all Bloch
vectors point in the equatorial plane along the v-direction. (b) Different detunings cause the
Bloch vectors to acquire different phases during the wait time twait/2. (c) A π-pulse causes each
Bloch vector to perform one half rotation around the u-axis of the Bloch sphere until it ends again
in the equatorial plane, effectively mirroring each vector on the u-axis. (d) The subsequent time
evolution with different detuning leads to a re-phasing of all Bloch vectors after another time
interval twait/2. The final π/2-pulse therefore rotates all vectors to one common position on the
sphere.

population in the excited state

Pe = |〈e|ψfinal〉|
2 =

1
2

(
1 + cos(α − δ t)

)
. (3.43)

This gives the form of a so called Ramsey fringe, where the measured population is an
oscillating function of (i) the detuning, (ii) the time for a given non-zero detuning, and
(iii) the phase of the last microwave pulse. In the experiments presented here, the time
separation t often is the interaction time which must be varied independently in order to
control the atom-atom interaction. Instead, the detuning δ is set to zero and Ramsey
fringes are obtained by scanning the phase α of the final π/2-pulse.

The recorded fringe can be affected by several mechanisms. First, spatial inhomogeneities
might lead to a spatially varying detuning. In an ensemble measurement Ramsey fringes
with different phases are therefore added which leads to decreased contrast of the signal.
Second, a fringe is recorded by performing a number of measurements with different phases
α. If for different measurements the detuning changes over time, for example due to varying
magnetic fields, the phase of the Ramsey fringe acquires a random contribution which leads
to noise in the final signal.

The effect of spatial inhomogeneities can be canceled by a single particle spin-echo tech-
nique. Here, the sequence is split into two parts, where after the first π/2-pulse a waiting
time twait/2 is introduced. During this time, at different positions of the system, local phases
δ(r) t have been acquired as shown in Fig. 3.13(b). Subsequently a π-pulse is applied that
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exchanges the roles of the two internal states |g〉 ↔ |e〉. In the Bloch sphere picture the
π-pulse effectively mirrors each Bloch vector with respect to the u axis and transforms each
phase δ twait/2 → π − δ twait/2. During a second waiting time twait/2 the same phase δ(r) t
is acquired. The Bloch vectors thus re-phase after this second wait time at the common
phase φ = π in the equatorial plane (see Fig. 3.13(d)). A final π/2-pulse can therefore
rotate the Bloch vectors of all particles onto a common final position on the Bloch sphere.
This method allows to compensate for time constant inhomogeneities in the experimental
realization of Ramsey spectroscopy, which can play an important role due to the overall
confinement of the optical potential or magnetic field gradients.

3.4.5 Two-photon transitions

Although in principle any polarized spin state can be prepared by the two methods in-
troduced above, sometimes it is necessary to create coherent superpositions between two
internal states that cannot be coupled by a single photon transition due to conservation of
angular momentum. This is for example the case for the two states |ψi〉 ≡ | f = 1,m = +1〉
and |ψ f 〉 ≡ | f = 2,m = −1〉. Here the transition requires ∆m = −2, while a photon can only
carry a single quantum of angular momentum. Therefore this transition can only be driven
by a two-photon transition, where two radiation photons together fulfill the condition for
the transition. In particular, energy conservation requires

~(ω1 + ω2) = ~ω0, (3.44)

where ω0 is the transition frequency between the two states of interest, and ωi is the
frequency of the radiation field i. Those two frequencies cannot be chosen arbitrarily, as
for very large detuning from any atomic transition the effect on the atom will be negligible.
Therefore the frequencies have to be chosen close to a transition to some intermediate state
|aux〉. In order not to drive the single photon transition to |aux〉, the detuning from the
intermediate state ∆ has to be chosen sufficiently large. Then, the system can again be
considered as a coupled two-level system with an effective coupling strength, i.e. two-photon
Rabi frequency, of

Ω2photon ∝
Ω1 Ω2

4∆
, (3.45)

where Ωi denotes the single-photon Rabi frequency of radiation field i for the single photon
transition.

3.5 Experimental sequence for spinor quantum gases in optical
lattices

The apparatus used for BEC creation and subsequent loading into a periodic potential
has been described in detail elsewhere [57, 58, 88]. Therefore this section will only briefly
summarize the main steps on the way to a degenerate spinor gas in optical lattices. It is
interesting to note that a single realization in total takes about 55 s, from the beginning of
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the first laser cooling stage to the final, destructive image of the ultracold atom cloud. For
each change of parameters, a new sample has to be prepared.

3.5.1 Bose-Einstein condensate

The present apparatus consists of a two-chamber vacuum system, separated by a differential
pumping stage. In the first chamber with a gas pressure of ≈ 10−10 mbar, about 109

87Rb atoms are captured in a standard six-beam magneto optical trap (MOT) from the
background gas in 15 s. The atoms are optically pumped into the | f = 1,m = −1〉 hyperfine
state, which is magnetically trappable, and subsequently loaded into a pure magnetic
quadrupole trap. By making use of a magnetic conveyor belt setup [88], the magnetic trap
minimum is shifted into the second part of the vacuum chamber within ≈ 3 s. This second
chamber has a pressure roughly one order of magnitude smaller than the MOT chamber.
After transport, the atoms are transferred into a quadrupole-Ioffe configuration (QUIC)
magnetic trap [55] which leads to a cigar shaped trap geometry with trapping frequencies
of axially ωax = 2π × 15 Hz and radially ω⊥ = 2π × 120 Hz.

There, radio-frequency (rf) forced evaporation cooling [60, 62, 63] provides the last step
on the way to BEC, taking about 30 s. This cooling stage results in an atomic sample of up
to 5× 105 atoms in a quasi-pure BEC in the magnetic trap. As for further experiments the
anisotropy of the QUIC trap is unfavorable, a homogeneous magnetic offset field of ≈ 150 G
is ramped up within 0.7 . . . 1 s along the weak axis of the QUIC trap, thereby releasing the
confinement along the radial axes without exciting sloshing motions of the BEC. The
resulting combined potential is an almost isotropic trap with trapping frequencies around
ωmag ≈ 2π × 12 Hz.

3.5.2 3D optical lattice potential

In order to adiabatically load the sample into a periodic lattice potential, up to three pairs
of counter propagating laser beams are superimposed onto the BEC. The beams are all
derived from a common laser source3 which has a tunable wavelength around 840 nm. The
resulting standing waves are mutually orthogonal and have orthogonal polarizations to
avoid cross interference between the standing waves. In addition, the orthogonal standing
waves are artificially detuned by several tens of MHz in order to average any residual
interference pattern on a time scale of a few tens of nano seconds.

The intensity of the laser beams is slowly increased by an active stabilization in order to
avoid any excitation in the system, especially population of higher vibrational bands. The
ramps have either an exponentially rising form [1, 57], or an s-shape, specifically calculated
in order to minimize residual perturbations [89]. The ramps typically last between 160 ms
and 320 ms; the time constant of the exponential rise is usually τ ≈ 40 . . . 80 ms; cf. Ref. [90].
For most experiments, the final light intensity can be on the order of a few hundred

3Coherent MBR Ti:Sa laser pumped by a Coherent Verdi V18, or Coherent 899 Ti:Sa ring laser pumped
by Coherent Verdi V10
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Figure 3.14: Experimental setup, (a) with optics removed and (b) with optics and further elec-
tronics. Atoms from a Rubidium reservoir diffuse into the magneto optical trap (left), where they
are cooled by laser colling and subsequently transfered into a pure magnetic trap. A “magnetic
conveyor belt” [88] transports them into a glass cell (right), where they are loaded into a QUIC
trap [55]. There rf-forced evaporation creates a BEC. Laser beams can be applied from three
perpendicular directions onto the BEC. In addition, a wave guide is installed to drive microwave
transitions between different hyperfine states.
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Milliwatts per axis, which for our beam waists of w̄ ≈ 130 µm corresponds to a maximum
lattice potential depth of up to 60 Er, deep within the MI regime.

For these parameters, in particular for total atom numbers between 2 × 105 and 3 × 105,
the MI system is expected to exhibit a shell structure [76, 91, 92, 93], where approximately
half of the atoms are trapped in a central core at lattice sites with double occupancy. They
are surrounded by a shell of isolated atoms (see Refs. [94, 12] and references therein for the
numerical model). Due to the deep lattice, tunneling is well suppressed. For a 40 Er lattice
the tunneling matrix element is on the order of J/~ ≈ 2π × 30 · 10−3 Hz, whereas typical
spin-dependent interaction energies investigated below are well above Uspin/~ ≈ 2π× 10 Hz.
Moreover, the spatial degree of freedom in the trap is also frozen, because the next higher
lying vibrational level has a frequency of ωv=1 ≈ 2π×40 kHz; therefore the typical interaction
energy (U/~ ≈ 2π × 3 kHz) cannot excite atoms to higher vibrational states. This is a
convenient situation to study interaction phenomena in a very controlled situation.

3.5.3 Spin sensitive detection

After the system has been manipulated and possibly has interacted for a certain time,
the quantum state of the ultracold atomic sample has to be detected. This is done by
standard absorption imaging, see e.g. Ref. [95]. For that, all traps are switched off, and the
atomic cloud can fall due to gravity and expand for a certain time-of-flight (TOF), usually
between 10 ms and 16 ms. Subsequently, a light pulse resonant to the D2 transition between
the hyperfine states f = 2 → f ′ = 3 is applied for approximately 70 µs, and the shadow
of the atomic cloud is imaged by a CCD camera4 as indicated in Fig. 3.15(a). Typical
images are displayed in Fig. 3.15(b-d). The imaging involves scattering of many resonant
photons, which heats the sample and destroys the quantum state. Therefore, each specific
realization can be imaged only once; for another set of parameters the experimental cycle
of approximately 55 s has to be repeated.

As the imaging pulse is only seen by the f = 2 hyperfine state, for the detection of the
f = 1 state, an additional laser beam has to be applied, resonant to the D2 f = 1→ f ′ = 2
transition. Turning this additional laser beam on or not allows to discriminate detection
of either only atoms in f = 2 or all atoms, respectively. In order to detect the relative
atom number in f = 2 of one atomic sample, both the atom number in f = 2 and the
total atom number have to be measured shortly after each other. This is done on two
different cameras along two different spatial axes, one for the f = 2 atom number and
the other for the total atom number. As for each imaging axis the projection of the light
polarization onto the magnetic field axis is different, the same “real” atom number leads
to two slightly different measured numbers of the two cameras. This results in relative
atom numbers slightly different from unity. This can be compensated for by taking images
of atom clouds with the same atom number. From the statistics of the atom numbers
measured on the two cameras the correction factor can be inferred. For the cases presented
here, the factor between the atom number in f = 2 N f =2 and the total atom number Ntot

4The camera types used are Andor IXON and Apogee AP1E
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Figure 3.15: (a) Sketch of imaging procedure by absorption in the experiment and typical images
of (b) a BEC, (c) a SF 3D lattice at 6 Er, and (d) a MI at 25 Er. If a magnetic field gradient is
applied during TOF, clouds with different magnetic moments can be spatially separated (e), as
shown here for the f = 2 hyperfine state. The field gradient is slightly tilted with respect to the
horizontal plane.

measured on another camera is 1.06(3). This factor has been included in the images of the
Rabi oscillations shown in Figs. 3.16 or 3.17.

In order to distinguish different Zeeman sublevels, during the first 3 ms of TOF a mag-
netic field gradient is applied which exerts a force onto the atoms that depends on the
magnetic sublevel, similar to the historical Stern-Gerlach experiment [96]. Thereby clouds
of different magnetic moments are separated after TOF and can be imaged independently.
A typical camera picture with all Zeeman sublevels in f = 2 populated is depicted in
Fig. 3.15(e). This allows for the quantitative detection of any internal state in the hyper-
fine ground states of 87Rb.

3.5.4 Addressing the spin

Due to the magnetic trap, only the | f = 1,m = −1〉 state is present in the combined optical
and magnetic potential. Therefore all magnetic fields are switched off after the lattice ramp
has reached the final potential depth. Only a small ≈ 1 G magnetic offset field is preserved
in order to maintain spin polarization of the atomic sample. The magnetic field is switched
within a few milliseconds, but it needs several 10 ms until residual transients have decayed
to below ≈ 10 mG. In practice, homogeneous magnetic fields are created by currents running
through coils that are approximately in Helmholtz configuration. The absolute value of the
magnetic field is measured by driving single photon transitions between f = 1 and f = 2
at low power (ΩµW ≤ 2π × 100 Hz) and calculating from the measured transition frequency
the magnetic field value via the Breit-Rabi formula [97].

In order to drive transitions between the hyperfine ground states, a microwave field with
a frequency close to 6.8 GHz – the hyperfine splitting of the 87Rb ground state – is radiated
from a hollow wave guide. As this wave guide is not matched to the impedance of free space,
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just a fraction of the initially injected 10 W is in fact radiated upon the atom cloud; the rest
is reflected from the wave guide. Additionally, the contributions of the various polarizations
in the field are not well known, as the wave guide is placed at a distance to the atoms that
is neither clearly in the near field nor in the far field. Moreover, when the magnetic field
value changes between different realizations of the experiment, the magnetic field axis can
also change direction. Hence the projection of the different polarization components onto
the magnetic field axis can change. Therefore the coupling strength of the microwave
transitions is calibrated for one specific experimental realization by driving single-particle
Rabi oscillations on the various transitions and the Rabi frequency is determined according
to Eq. (3.37).

Single photon Rabi oscillations

Typical Rabi oscillations used in order to calibrate the microwave pulse duration are shown
in Fig. 3.16. This enables for example the state preparation of all atoms in | f = 1,m = 0〉
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Figure 3.16: Rabi oscillations for two transitions in the hyperfine ground states of 87Rb indicated
in the scheme (a) at a magnetic field of 1.2 G. The σ−-transition | f = 1,m = −1〉 → |2, 0〉 (b) has
a transition frequency of 6.833832(3) GHz and a coupling strength of Ω ≈ 2π × 5.1 kHz. The
π-transition | f = 2,m = 0〉 → |1, 0〉 (c) is resonant for a frequency of 6.834683(1) GHz and has a
Rabi frequency of Ω ≈ 2π × 89 kHz for maximum micro wave powers.

starting from |1,−1〉 by application of a microwave pulse on the first transition (Fig.3.16(b))
for ≈ 97 µs and a subsequent pulse on the second transition (Fig. 3.16(c)) for 5.7 µs.

Two-photon Rabi oscillations

As pointed out before, for some experiments it is necessary to coherently couple two internal
states that differ by two quanta of angular momentum. This can be done by a two-photon
transition. Such a transition coupling the two states | f = 1,m = +1〉 and |2,−1〉 is shown
in Fig. 3.17(b). Here, the microwave field is detuned from the single-photon transition
to |2, 0〉 by 130 kHz and an additional radio frequency (rf) field is applied at a frequency
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Figure 3.17: Two photon Rabi oscillations between the hyperfine ground states as indicated
in (a) at a magnetic field of B = 9.13 G. The oscillations are driven by a combined microwave
and rf-field with frequencies of 6.841020 GHz and 6.275 MHz, respectively, which corresponds to a
detuning of ∆ = −130 kHz from the intermediate state. The effective two-photon Rabi frequency
is Ω2photon ≈ 2π × 1.25 kHz for full powers of the microwave and rf-radiation field.

around 6 MHz, corresponding to the linear Zeeman splitting between the |2, 0〉 and |2,−1〉
states. Thereby we reach effective coupling strengths of Ω2photon = 2π × 1.25 kHz.

Rapid adiabatic passage

In order to populate the initial state |1,+1〉 starting from |1,−1〉, a rapid adiabatic passage
is performed, similar to the scheme explained in Section 3.4.2. In the case presented here,
however, there are three levels present. This situation can be considered as a combination
of two two-level systems that are nearly degenerate for low magnetic fields. Therefore, a
single sweep allows to transfer population from |1,−1〉 via |1, 0〉 to |1,+1〉 at a magnetic field
of B ≈ 1 G by sweeping the rf frequency linearly within 10 ms from 380 kHz to 1.08 MHz.
The resulting population transfer efficiency is typically above 95% .
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4 Coherent spin changing collisions

After degenerate quantum gases had been loaded into optical traps, one of the first obser-
vations was that an initially spin polarized sodium BEC loaded into a dipole trap could
show the formation of domains when the trapped sample could evolve freely over time [98].
Since then many fascinating spin changing phenomena have been observed and proposed.
In particular, ultracold atomic samples with liberated spin degree of freedom have been
seen to exhibit a rather intricate spin dynamics [99, 100, 101] and can lead to spin mixing
[102, 103], spin-segregation [70] and spin waves [71, 104].

The underlying mechanism of these phenomena is a coherent interaction between two
atoms which changes the individual spins of the colliding particles while preserving the
total magnetization [22, 46, 105, 106, 107], see Fig. 4.1. This interaction is described by a
unitary Hamiltonian. Despite this fact, the coherent nature of the interaction driven time
evolution has for a long time eluded direct observation. The reason for this is that in many
BEC experiments, dynamics and excitations of the spatial degree of freedom can perturb
the spin dynamics signature. In the interpretation of many spin dynamics experiments
with BECs, a single-mode approximation is proposed, which assumes a time-independent
common wave function for all spin-components. However, the spin dependent interaction
energy is rather small compared to the usual mean field energy (a few percent, as will be
explained later). Therefore the time scale on which the spin mixing signal occurs is rather
long compared to typical time scales on which mean field driven effects evolve. These effects
can lead to a breakdown of the single mode approximation and make an interpretation
therefore ambiguous. Independently from the work presented in this chapter, other groups
have recently observed the coherent nature of the spin changing interaction in a BEC by
exploiting the Bosonic-enhancement factor when working with a macroscopic sample of
atoms [108, 109].

The experiments described in the following pursue a different approach. In an optical
lattice, atom pairs can be trapped in the vibrational ground state of individual lattice
sites. Due to the tight confinement, they are isolated from the environment as the tunnel
energy can be suppressed to a small value compared to the spin-dependent interaction
strength. Moreover, the next vibrational level on a lattice site is energetically so high that
no interaction energy can vibrationally excite the system. Consequently, at each lattice site
only the spin-dependent interaction causes the ensuing time evolution and can be studied
in a very controlled way, thus forming a micro-laboratory for a single atomic pair.

This chapter focuses on the fundamental spin changing mechanism, which we observe
through coherent spin population oscillations. Moreover many promising applications have
come into reach due to the high level of control over the spin changing interaction. Section
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4.1 introduces the fundamental mechanism of spin changing collisions and the resulting
collisionally induced Rabi-oscillations between spin population states in an optical lattice.
A detailed description of the experimental sequence is presented in Section 4.2. In Section
4.3 the main experimental results are discussed for both 87Rb hyperfine states, and the
relevant parameters characterizing the spin-dependent interaction are deduced. Those
parameters are derived from differences of fundamental s-wave scattering lengths, which
can be inferred from the spin oscillation frequency with high precision1. Moreover, a
method to tune and switch the interaction in a convenient way based on the AC-Zeeman
effect is presented in Section 4.42.

Furthermore, the differences of scattering lengths also have wide reaching implications
on the magnetic state of the system. In a many-particle system, the spin dependence of the
scattering potential leads to a spin-dependent interaction energy. The spin configuration
which minimizes this energy at zero magnetic field is energetically favoured and is called the
magnetic ground state of the system. Section 4.5 describes how the precise determination
of the collisional coupling constants can identify the magnetic ground states of spin-1
and spin-2 87Rb ground state atoms. Finally, two applications that have been realized
based on the spin-changing interaction mechanism are outlined in Section 4.6, namely the
observation of number squeezing in the SF to MI transition and the observation of spatial
shell structures in the inhomogeneous MI.

4.1 Theory of coherent collisional spin dynamics

4.1.1 Spin changing collisions in optical lattices

Let us consider two colliding 87Rb atoms of spin- f , initially in the single-particle Zeeman
states with magnetic quantum numbers m1 and m2. The particles can undergo a spin
changing collision and be tranferred into a final state characterized by the quantum numbers
m3 and m4 (see Fig. 4.1a). In binary collisions between alkali atoms the total spin projection
on the quantization axis is conserved [22, 102, 103, 105], which implies m1 + m2 = m3 + m4.
This limits the number of accessible final scattering states after a collision to those that
have the same total magnetization as the initial one. For two colliding spin- f particles, the
interaction strength is characterized by 2 f independent scattering lengths aF, labeled by
the total coupled spin F of the two particles. For bosons (fermions) the total spin F takes
even (odd) values between 0 and 2 f . Following the discussion in Section 2.3 the interaction

1The first three sections are mainly based on two publications:
A. Widera, F. Gerbier, S. Fölling, T. Gericke, O. Mandel and I. Bloch. Coherent collisional spin
dynamics in optical lattices. Phys. Rev. Lett. 95, 190405 (2005).
A. Widera, F. Gerbier, S. Fölling, T. Gericke, O. Mandel and I. Bloch. Precision measurements of
spin-dependent interaction strengths for spin-1 and spin-2 87Rb atoms. New J. Phys. 8, 152 (2006).

2This section is based on
F. Gerbier, A. Widera, S. Fölling, O. Mandel and I. Bloch. Resonant control of spin dynamics in
ultracold quantum gases by microwave dressing. Phys. Rev. A 73, 041602(R) (2006).
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Figure 4.1: Sketch of a spin-changing collisional event. (a) Two atoms with magnetic quan-
tum numbers m1 and m2 undergo a collisional event which they leave with quantum num-
bers m3 and m4, respectively. (b) An atom pair trapped in the vibrational ground state of
a deep potential well oscillates between the two-particle states | f = 1,m = 0; f = 1,m = 0〉 and
| f = 1,m = +1; f = 1,m = −1〉 due to the spin-changing interaction. As the spatial wave function
is frozen due to the tight confinement, the interaction only affects the spin wave function.

can be described by a potential of the form [22]

V (r1 − r2) = Vs δ (r1 − r2) =

2 f∑
F=0

gF PF δ (r1 − r2) , (4.1)

where gF = (4π~2/M) aF, M is the mass of one atom, PF is the projection operator onto the
subspace of total spin F, aF is the s-wave scattering length for two atoms colliding in such
a channel with total spin F, and ~ = h/2π, with h Planck’s constant. For more details, see
Appendix A.

In a deep three-dimensional periodic potential as in the case presented here (see Section
4.2), the situation can be adjusted such that at many (∼ 105) lattice sites there are two
atoms trapped in the vibrational ground state of the potential. Throughout the following
discussion we assume a sufficiently deep potential such that the atoms can neither leave
the trap nor be excited via interactions into a higher vibrational state. Consequently, the
atoms remain in the lowest vibrational state at all times. Because the spatial dynamics is
frozen, the ensuing dynamics caused by spin-dependent interactions only affects the spin
component of the two-particle wavefunction. To describe this collisional dynamics, we
write two-particle atomic wavefunctions in the form

|Φ〉 ≡ |φ0〉1|φ0〉2 ⊗ S| f ,m; f ,m′〉. (4.2)

Here 1, 2 labels the two atoms in the pair, S is the symmetrization operator, |φ0〉 is the
spatial wavefunction corresponding to the vibrational ground state in each well. Also
| f ,m; f ,m′〉 denotes the (unsymmetrized) two-particle spin wavefunction. In the following
we describe the atom pair by its spin wavefunction only. With this notation, the interaction
potential (4.1) connecting an initial two-particle state | f ,m1; f ,m2〉 with a final two-particle
state | f ,m3; f ,m4〉 can be written as (see Appendix A)

〈 f ,m3; f ,m4|V | f ,m1; f ,m2〉 = Ũ × ∆am3,m4
m1,m2

, (4.3)
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where the “specific interaction strength” Ũ and the effective scattering length difference ∆a
are given by

∆am3,m4
m1,m2

=

2 f∑
F=0

F∑
m=−F

〈 f ,m3; f ,m4|F M〉〈F M| f ,m1; f ,m2〉 aF (4.4)

Ũ =
4π~2

M
×

∫
d3r |φ0|

4. (4.5)

Here, ∆am3,m4
m1,m2 is given by a difference of the scattering lengths aF weighted by the relevant

Clebsch-Gordan coefficients 〈 f ,m3; f ,m4|F ,m〉 connecting the initial and final spin states
through an intermediate, coupled spin state |F ,m〉. The prefactor Ũ contains all constants
and the spatial wavefunction overlap. As explained in Section 3.3, it can be calculated as

Ũ = ŨHO + Ũanharm + Ũint, (4.6)

where ŨHO is calculated by approximating the lattice potential by a harmonic well around
each potential minimum, and by using the lowest harmonic oscillator eigenfunction as φ0.
For our case there are two possibly relevant corrections. First, using Wannier functions from
a band structure calculation for the wave function φ0 instead of a Gaussian yields a negative
correction term Ũanharm which is on the order of 5% of ŨHO. Second, at short distances the
spatial wave function of the colliding particles is expected to deviate from the product
form in (4.5). A recent theoretical investigation indicates that this deviation introduces a
positive correction Ũint amounting to ∼ 3% of ŨHO [81]. We have experimentally measured
a value for the prefactor Ũ by observing the collapse and revival of the coherent matter-
wave field [110]3. We measure values of Ũ consistent with calculated values including only
the correction due to the anharmonicity Ũanharm. Hence, the actual values we use in the
following include the first correction term Ũanharm, but not the second Ũint. The values are
Ũ = 2π × (30.4 ± 1.1) Hz/aB for a lattice depth of 40 Er, and Ũ = 2π × (33.0 ± 1.4) Hz/aB

for 45 Er. Here aB is the Bohr-radius and Er is again the single photon recoil energy. The
error is given by our uncertainty in optical potential depth, for which we assumed an upper
bound of 10%, but a possible additional systematic error of Ũ due to the correction Ũint is
not explicitely given.

4.1.2 Two level system

In the experiments described below (see cases a-c in Figure 4.2), we prepare all atom pairs
in the lattice in a specific spin state |ψi〉. This initial state is in general coupled to one
or several final states |ψ f 〉 by the spin-changing interaction. In the simplest cases, where
the atom pair is initially prepared in |1, 0; 1, 0〉 (Figure 4.2a) or in |2,−1; 2,−1〉 (Figure
4.2b), the system can access only one final state, |1,+1; 1,−1〉 or |2, 0; 2,−2〉, respectively,

3It should be noted that the collapse and revival experiment has been performed at a magnetic field
of B = 150 G, whereas the dynamics driven by the spin-dependent interaction occurs at low magnetic
fields around 1 G.
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Figure 4.2: Different processes of spin changing collisions with linear Zeeman shift subtracted.
While conserving total angular momentum, three different processes are possible in the 87Rb
hyperfine structure. (a) For the f = 1 ground state, two atoms can be coupled between
|1, 0; 1, 0〉 ↔ |1,+1; 1,−1〉. (b) In f = 2 the simplest process coupling only two states is
|2,−1; 2,−1〉 ↔ |2, 0; 2,−2〉. (c) Due to the increased number of magnetic sublevels, also more
complicated processes are possible coupling three states |2, 0; 2, 0〉 ↔ |2,+1; 2,−1〉 ↔ |2,+2; 2,−2〉.
The numbers refer to Fig. 4.3(b).

while conserving total magnetization. Thereby the initially large transfer matrix 〈ψi|V̂S |ψ f 〉

yielding the coupling strength between two arbitrary initial and final states, reduces to
a 2 × 2 sub-matrix of non-zero entries. This sub matrix can be written in the form of a
Rabi-model

H =
~

2

(
0 Ωi f

Ωi f 2δi f

)
, (4.7)

where the coupling strength Ωi f is determined by the matrix element 〈ψ f |V̂S |ψi〉 of the
spin-changing interaction via ~Ωi f /2 = 〈ψ f |V̂S |ψi〉, and where the detuning δi f can be
decomposed into two parts:

δi f = δint + δB. (4.8)

The first detuning δint arises from the difference of interaction energies in the initial and
final states ~ δint = 〈ψi|V̂S |ψi〉 − 〈ψ f |V̂S |ψ f 〉 (see Fig. 4.3(a)). The second detuning δB is due
to the energy shift of initial and final states in a non-zero magnetic field (see Fig. 4.3(b)).
Since the total magnetization is conserved, the system is not sensitive to linear Zeeman
shifts, because the initial and the final states experience the same linear Zeeman effect.
Consequently the detuning is to leading order determined by the quadratic Zeeman shift.
Therefore the second detuning in Equation (4.8) is given by the quadratic Zeeman-effect

δB ∝
(µBB)2

2~ωhfs
, where ωhfs denotes the hyperfine splitting. For the two-level systems considered

in the following, the corresponding detuning δB is shown versus magnetic field in Fig. 4.3(c).
As for any two-level system interacting with a near resonant radiation field, the proba-

bility to find the atom pair initially prepared in |ψi〉 after a time t in the final state |ψ f 〉 is
given by the Rabi formula

P f =
Ω2

2Ω′2i f

[
1 − cos(Ω′i f t)

]
, (4.9)
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Figure 4.3: (a) Energy of the two-particle states (i. e. linear Zeeman shift is canceled) in
the Rabi-model for spin-changing collisions. The only detuning for B = 0 is the difference in
interaction energy between initial and final states, δint. (b) For a non-zero magnetic field a
detuning δB due to the quadratic Zeeman effect additionally splits the two energy levels. (c)
Detuning δB for the various cases depicted in Fig. 4.2(a-c).

with the effective Rabi frequency Ω′i f given by

Ω′i f =

√
Ω2

i f + δ2
i f . (4.10)

As indicated in the previous section, the two parameters of the Rabi model can be written
in the form ∆a × Ũ, where the value of ∆a, different for Ωi f and δi f , can be calculated for
each specific case (see Table A.1). It should be noted that for 87Rb the bare scattering
lengths aF are almost equal; recently calculated values [47] are a0 = (101.78 ± 0.2) aB and
a2 = (100.40 ± 0.1) aB for spin-1. Predicted values for spin-2 [111] are a0 = (87.93 ± 0.2) aB,
a2 = (91.28 ± 0.2) aB and a4 = (98.98 ± 0.2) aB, where the Bohr-radius aB = 5.29 × 10−11 m.
The differences in scattering length describing the spin-dependent coupling give values of
∆a on the order of a few percent of the bare scattering lengths aF.

Since the course of the detuning δB with external magnetic field is known, a measurement
of the effective Rabi frequency Ω′i f for different magnetic field values allows to extract the
absolute value of the coupling strength Ωi f . In addition, both the absolute value of the
constant detuning δint and its sign compared to the sign of the second order Zeeman shift
can be inferred. The form of Equation (4.10) implies that even at zero external magnetic
field, Rabi oscillations do not show unity contrast if δint and δB have the same sign, because
the constant detuning δint is present for all magnetic field values.

An important point in the discussion of the spin-dependent interaction strength is that,
for the case of more than two atoms, the interaction energy of the system increases with
occupation number, similarly to the case of the Bose-Hubbard Hamiltonian (3.15). For
example, the interaction strength of the process |1, 0; 1, 0〉 ↔ |1,−1; 1,+1〉 is for three
particles trapped in a common well larger by a factor

√
3 than for an atom pair: Ωi f ,3b =
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√
3Ωi f . In most parts of the chapter we restrict the discussion to the case of only singly

or doubly occupied lattice sites, thereby neglecting the occupation number dependency of
the interaction strength.

4.1.3 Three-level system

The processes introduced in the previous section involved only two coupled states, so
that the description by the Rabi model could be applied. Another possibility (case (c)
in Figure 4.2) is that two final states ψ f1 and ψ f2 fulfill the condition of a conserved total
magnetization. The dynamics can then be modeled by a coupled three-level system, as
has been calculated in detail in Ref. [112]. Assuming that the direct coupling between
|ψi〉 and |ψ f2〉 is negligible, as is the case in our experiment, the corresponding interaction
Hamiltonian reads

Ĥ =
~

2

 0 Ω1 0
Ω1 2 δ1 Ω2

0 Ω2 2 δ2

 , (4.11)

where Ωi and δi describe the coupling strengths and total detunings, respectively, and
i = 1, 2 labels the process |ψi〉 ↔ |ψ f1〉 (|ψ f1〉 ↔ |ψ f2〉). Similar to the treatment in [113] we
find the eigenfrequencies ω as solutions to the secular equation

ω3 − ω2(δ1 + δ2) + ω

(
δ1δ2 −

Ω2
1

4
−

Ω2
2

4
+

Ω2
1

4
δ2

)
= 0. (4.12)

The eigenfrequencies then read

ω0 =
1
3

(
δ1 + δ2 + Ω̃ cos

ζ

3

)
ω+ =

1
3

(
δ1 + δ2 + Ω̃ cos

2π + ζ

3

)
ω− =

1
3

(
δ1 + δ2 + Ω̃ cos

2π − ζ
3

)
, (4.13)

where

Ω̃ =

√
3(Ω2

1 + Ω2
2) + 4(δ2

1 − δ1δ2 + δ2
2)

ζ = 2π − arccos
{

[9(Ω2
1 + Ω2

2) − 4(2δ1 − δ2)(2δ2 − δ1)](δ1 + δ2) − 27Ω2
1δ2

Ω̃3

}
. (4.14)

In the case where |ψ f2〉 is separated by a very large energy difference from the other two
states, δ2 � δ1, the system effectively reduces to a two-level system oscillating between ψi

and ψ f1 . The relevant oscillation frequency then becomes limδ2→∞(ω0 −ω+) =

√
Ω2

1 + δ2
1. In

this limit, a description as a two-level system |ψi〉 ↔ |ψ f1〉 is valid.
Comparing to the situation depicted in Figure 4.2c this means that for low magnetic

fields a model including all three states has to be used in order to describe the dynamics.
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For increasing magnetic fields, the quadratic Zeeman shift detunes the final state |ψ f2〉 =

|2,+2; 2,−2〉 faster than the other final state |ψ f1〉 = |2,+1; 2,−1〉 (see Figure 4.2d), such
that for magnetic fields large enough a two-level model including only the states |2, 0; 2, 0〉
and |2,+1; 2,−1〉 is sufficient.

4.2 Experimental sequence

In order to realize the different situations of spin dynamics in an optical lattice as depicted
in Figure 4.2(a-c), we start from a BEC of around 2×105 atoms in a combined magnetic trap
and optical lattice potential prepared as described in Section 3.5. The depth of the optical
lattice during preparation of the sample is either 40 Er or 45 Er, suppressing tunneling on
the time scales of the experiment. We assume an uncertainty in the potential depth of
∼ 10% for this particular experiment, which should be understood as an upper bound.
The particular form of the lattice-intensity ramp has been taken from [114], minimizing
excitations in the system. It has a total duration of 160 ms (see Fig. 4.4).
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Figure 4.4: (a) Sketch of the experimental sequence. (b) Typical camera image for atoms in
f = 1 and (c) f = 2. The dashed boxes illustrate areas in which the atom number for each
magnetic sublevel is counted. The magnetic field gradient separating the different Zeeman levels
has a small tilt compared to the horizontal plane. Therefore the clouds are not aligned perfectly
horizontal.

In order to observe spin oscillations, the magnetic trap is switched off, leaving the sample
in a pure optical trap. The spin-polarization of the atoms is preserved by a small homo-
geneous offset-field of ∼ 1.2 G which is switched on 5 ms before switching off the magnetic
trap (see Fig.4.4). After a hold time of 60 ms during which the bias field of the magnetic
trap decays to below 1 mG, the atoms are prepared in their initial state for spin dynamics
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by application of microwave pulses with a frequency around 6.8 GHz and a pulse duration
between 6 µs and 150 µs, depending on the specific transition.

Directly after the last pulse, the homogeneous magnetic field is ramped to its final
value. The time constant of the magnetic field change is on the order of a few hundred
µs; this magnetic field has been calibrated by microwave spectroscopy and is known to a
value better than ∼ 10 mG, which in the following we consider as an upper bound of the
systematic error in the magnetic field. After a variable hold time t the optical trapping
potential is switched off and the atoms can expand during 7 ms of time-of-flight (TOF),
while the homogeneous magnetic field is still present. During the first 3 ms of TOF a
gradient field is switched on in order to spatially separate the different magnetic sublevels.
The population Nm of each magnetic sublevel m is recorded after TOF with standard
absorption imaging by counting the atom number around the corresponding atom cloud
(see dashed boxes in Figure 4.4 (b,c)). The total atom number Ntot is counted in a large
region including all magnetic sublevels. However, the different atom clouds corresponding
to different magnetic sublevels are not well enough separated. In order to avoid double
counting of atoms, we chose counting regions that do not overlap, and therefore slightly
underestimate the population Nm of each cloud. Moreover, an additional background signal
on the order of a few percent is counted in the global region used to find the total atom
number Ntot. As a consequence, the relative atom numbers in the various spin states add
up to a value slightly smaller than unity.

A time evolution obtained by this experimental sequence is shown in Fig. 4.5(a) for the
spin dynamics starting from |2, 0; 2, 0〉. The relative spin populations are determined from
counting the number of atoms in the particular Zeeman sublevel as shown in Fig. 4.5(b).
In the following we will use this representation of the population oscillation measurements.

For the analysis of the spin dynamics, it is important to note that the amplitude of the
oscillations is affected by the initially prepared state of the system. Due to the Gaussian
shape of the lattice laser beams, the atoms in the optical lattice experience an additional
smooth confinement and the system therefore favours the formation of Mott shells with
distinct, integer number of atoms per site [12, 76, 92, 115] (see also Section 4.6). For
our trap parameters we calculate that a central core of atom pairs contains approximately
half of the atoms. This core is surrounded by a shell with isolated atoms, whereas the
number of sites with more than two atoms is negligible. Due to this shell structure, not
all atoms contribute to the spin oscillations. Consequently the measured amplitude of the
spin oscillation – normalized to the signal from all atoms – is decreased compared to the
value predicted by the Rabi model. The measured relative amplitude is expected to be

N+1 + N−1

Ntot
= n P f , (4.15)

where n is the fraction of atoms in sites with double filling.
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Figure 4.5: (a) Part of a time evolution for spin dynamics in the f = 2 hyperfine manifold.
The spin populations show an oscillatory behaviour that becomes evident, when the relative
population dynamics is extracted in (b). For more details on this data set, see Fig. 4.10.

4.3 Experimental results

We have experimentally investigated the spin dynamics in the three situations depicted in
Figure 4.2(a-c), where the system is initialized in different internal atomic states. The initial
states for those cases are (i) | f = 1,m f = 0〉, (ii) | f = 2,m f = −1〉, and (iii) | f = 2,m f = 0〉.
In most cases, the assumption that for an initial state only one final state is accessible after
a spin changing collision is valid. In the lower f = 1 hyperfine manifold, this is naturally
fulfilled, because only one combination of two-particle states conserves total magnetization.
For the upper f = 2 hyperfine state, there are in general more initial and final states
accessible. For case (ii) the description as a two-level system is valid at all parameters used
in our experiments. For case (iii) a sufficiently large external magnetic field can be used
to tune the system via the quadratic Zeeman-shift into a regime where the approximation
by a two-level system is sufficient. For small magnetic fields, however, a three-level system
must be considered.

Another difference between the f = 1 and f = 2 cases is the role of losses. Due to
our preparation in the optical lattice, three-body recombination processes are suppressed,
because most atoms are either in singly or doubly occupied lattice sites. In the f = 1 state,
two-body loss rates are very low, so that atom losses are negligible. This is not the case
in f = 2 where hyperfine changing collisions have been seen to be significant [99, 116]. We
still observe several coherent spin-oscillations in the upper hyperfine state, because of the
relatively large spin-dependent coupling strengths in f = 2.

In each case, the frequency of the coherent spin oscillations can be changed by the
magnetic field dependent detuning δB. We record the population in each Zeeman sublevel
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as a function of time for the three initial states introduced above for different values of the
external magnetic field. From these measurements we extract the corresponding oscillation
frequency. From the theoretical analysis in Section 4.1 and Appendix A it is apparent that
the strength of the spin dependent interaction is determined by only one (two) scattering
length differences for f = 1 ( f = 2). The strength of the interaction is then determining
the oscillation frequency. In turn, from the measured oscillation frequencies, the important
scattering length differences can be inferred.

In the following we will first show the main results of population oscillations in f = 1
(Section 4.3.1) and f = 2 (Section 4.3.2), while we describe the determination of the
oscillation frequencies and the scattering length differences in Section 4.3.3. For simplicity,
the notation of two-particle states in the following sections will omit the total spin f ; for
ambiguous cases the total angular momentum will be explicitly written.

4.3.1 Dynamics in the f = 1 hyperfine state

The collisional coupling between two f = 1 atoms is an almost ideal example of the Rabi
model introduced above. The only possible process conserving total magnetization is
|0; 0〉 ↔ | + 1;−1〉, where the two-particle states in this section assume f = 1. In order
to observe spin dynamics, the atomic sample is prepared by a first microwave pulse in
the | f = 2,m f = 0〉 state, immediately followed by a second pulse, transferring the atoms
into | f = 1,m f = 0〉. A typical oscillation for a lattice depth of 45 Er at a magnetic field
of B = 0.28 G is shown in Fig. 4.6a. A fit to the population oscillation reveals a slight
damping with a rate of γ ≈ 3(2) s−1 to be discussed below (see 4.3.6). Spin oscillations have
been observed for various magnetic fields between approximately 170 mG and 600 mG. For
larger magnetic field, the amplitude is strongly suppressed, because the magnetic field
dependent detuning δB becomes large compared to the coupling strength. In this limit,
spin oscillations become difficult to resolve. Technical limitations prevent the observation
of spin oscillations for magnetic fields even smaller than 170 mG. The measured oscilla-
tion frequency (Fig. 4.6(b)) is well described by the effective Rabi frequency (4.10), when
the detuning is changed via the external magnetic field. Instead of extracting the Rabi
frequency and detuning separately, we perform a fit with only one parameter as will be
explained in Section 4.3.3.

Further evidence for the validity of the Rabi model comes from the behavior of oscillation
amplitude for varying magnetic field. The data set shown in Fig. 4.7 is well described by
the Rabi formula. In order to fit the data, we employ the expected form of the amplitude
for Rabi oscillations, equation (4.9) with (4.15), and fix the spin dependent interaction
strength via the interaction detuning δ1 = 11.8 Hz. This value has been determined from
the oscillation frequency measurement (cf. Section 4.3.3 and Table A.1). Hence the only
free parameter in the fit is the relative number of doubly occupied sites n, defined in (4.15).
We find as best fit parameter n = 0.54(2) in good agreement with the expected value around
0.5 and previous measurements [25]. Because this scaling factor enters in the amplitude of
the spin population oscillations and leads to additional statistical and systematic errors, we
extract all relevant values concerning the s-wave scattering length differences only from the
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Figure 4.6: (a) Spin population oscillations in f = 1 between |0; 0〉 (�) and | + 1;−1〉 (�) at a
magnetic field of 0.28 G and a lattice depth of 45 Er. A fit to a damped sine (solid lines) yields an
oscillation frequency of 40.2(3) Hz and a damping rate of γ = 3(2) s−1. For a discussion of the offset
see Section 4.3.6. (b) Measured oscillation frequency of the |0; 0〉 ↔ | + 1;−1〉 collision process
versus external magnetic field B. The solid line is a fit to the expected behaviour according to
the effective Rabi-frequency Ω′i f . The dashed line is the calculated curve based on the predicted
scattering lengths [47]. The shaded region reflects our uncertainty in magnetic field of ±10 mG
and the uncertainty in potential depth (upper bound of 10%).
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Figure 4.8: (a)Spin population oscillations of the process | − 1;−1〉 ↔ |0;−2〉 for a magnetic field
of B = 0.8 G. The atoms are initially prepared in | − 1;−1〉 (�) and can evolve to |0;−2〉 (�). (b)
Oscillation frequency of the same process for varying magnetic field. The red line is a fit to the
Rabi model.

oscillation frequency measurements. In fact, the oscillation frequencies can be measured
independently of the value of n as long as the signal is strong enough to be detected.

In Fig. 4.6(b) the predicted curve for the spin oscillation frequency versus magnetic field
is shown, based on the Rabi model presented in Section 4.1 and predicted scattering lengths
[47]. The difference between experimentally measured values and the theoretical prediction
will be discussed in more detail below.

4.3.2 Dynamics in the f = 2 hyperfine state

Two-level system. As mentioned above, the coherent coupling due to spin changing colli-
sions in the upper hyperfine ground state f = 2 is more complicated than in the f = 1 case.
For the case where the dynamics starts from4 | − 1;−1〉, the only possible interconversion
process that preserves total magnetization is | − 1;−1〉 ↔ |0;−2〉. Thus this situation can
also be described as a two-level system. The interaction induced spin population dynam-
ics is shown in Fig. 4.8; the population oscillations (Fig. 4.8(a)) show a clearly sinusoidal
behavior, and the oscillation frequency (Fig. 4.8(b)) is again well described by the Rabi
model. Compared to the dynamics in the f = 1 hyperfine state, the presented dynamics
in f = 2 takes place on a faster time scale. This is due to the corresponding effective
scattering length differences ∆a, which are larger for the f = 2 case. Also, in Fig. 4.8(a)
the oscillation shows a damping with a rate γ ≈ 35(4) s−1 that was strongly suppressed in
the f = 1 case. This damping will be investigated below.

Three-level system. For the case where the system is initialized in |0; 0〉, there are, how-
ever, the two final states | + 1;−1〉 and | + 2;−2〉 accessible. The direct process |0; 0〉 ↔

4In the following, the notation of two-particle states implies f = 2.
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4 Coherent spin changing collisions

| + 2;−2〉 is strongly suppressed as the coupling matrix element is several orders of mag-
nitude smaller than the other relevant matrix elements. However, this final state can be
populated through a two-step process |0; 0〉 ↔ | + 1;−1〉 ↔ | + 2;−2〉. For sufficiently large
magnetic field, the state | + 2;−2〉 is far detuned so that the situation is effectively described
by a two-level system [25].

For lower magnetic fields, a three-level description as in Section 4.1.3 must be used
in order to describe the population oscillation. In Figure 4.9(a) we show a population
oscillation for a lattice depth of 40 Er and a magnetic field of B = 0.24 G which clearly
differs from the simple sinusoidal case. Here, the solid lines are a calculation from a three-
level model which shows good agreement with the measured data.

R
el

at
iv

e 
po

pu
la

tio
ns

 
in

 Z
ee

m
an

 s
ta

te
s

(a)

0.0

0.2

0.4

0.6

0.8

Hold time t (ms)
0 3010 205 15 25

1.0

Magnetic field B (G)

O
sc

ill
at

io
n 

fre
qu

en
cy

 (H
z)

(b)

200

400

600

800

0.4 0.8 1.2 1.6 2.0 2.40

Figure 4.9: (a) Measured population dynamics for the coupled three-level system |0; 0〉(�) ↔
| + 1;−1〉(�) ↔ | + 2;−2〉(4) at a magnetic field of B = 0.24 G and a lattice depth of 40 Er. One
clearly sees the deviation from the pure sinusoidal two-level oscillations and the rather large
population of | + 2;−2〉. The solid lines are calculations based on a coupled three-level system
(4.11) with parameters corresponding to the experimental realization. For a discussion of the
offset see Section 4.3.6. (b) Oscillation frequency vs magnetic field for spin dynamics starting
from |0; 0〉. The red line is a fit to the analytical solution of the three-level model (4.13)and the
dashed black line shows the result of a two-level model (see [25]).

For this calculation we use the fitted values of the two detunings δ2,1 and δ2,2 (see 4.3.3)
together with the form of the Rabi parameters given in Table A.1. With this we calculate
the values of the three-level model (4.11) Ω1 = 2π×265 Hz, δ1 = 2π×33 Hz for the coupling
of |0; 0〉 with | + 1;−1〉, and Ω2 = 2π × 134 Hz, δ2 = 2π × 100 Hz for the coupling between
| + 1;−1〉 and | + 1,−2〉. The phenomenological damping rates for both processes have been
set to the experimentally determined value γ ≈ 30 s−1 and the decay from | + 2;−2〉 has been
neglected. The amplitude has been set to account for ∼ 50% of the atoms contributing to
the spin-dynamics, and the offset for each population (see Section 4.3.6) has been set in
order to match the data.

Unfortunately, a fit to the coupled three-level system defined by (4.11) yields very un-
reliable results, because of the large number of parameters involved. Instead, we fit the
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m f = 0 population with the same sinusoidal form as used in the previous cases to approx-
imate the predominant oscillation frequency. The observed oscillation frequency versus
magnetic field is shown in Figure 4.9(b). In order to include the three-level character, we
fit the measured oscillations frequency versus magnetic field (Fig. 4.9b) with the analytical
solution of the three-level model (4.14). The fit is shown as solid line in Figure 4.9(b).
The small deviations between experimentally measured data points and the fit in Fig. 4.9
come from the fact, that the fit is not independent, but related to the result of the fit for
the process | − 1;−1〉 ↔ |0,−2〉 (Fig. 4.8) as will be explained in the next paragraph. The
theoretical prediction from a two-level system (see [25]) is shown as dashed black line and
does not describe the dynamics well for small magnetic fields.

4.3.3 Determining scattering length differences

From the population oscillations presented in the previous section, the scattering length
differences driving the dynamics can be inferred. We briefly recall the results and give the
extracted scattering length differences. For the analysis one has to keep in mind that in
a spin dependent collision of two spin-1 atoms the dynamics is determined by only one
scattering length difference, respectively two in the spin-2 case. It can be calculated from
Eqs. (4.3)–(4.5) (cf. Table A.1) that the parameters Ωi f and δint are directly related to those

scattering length differences. For example, in the spin-1 case one finds Ωi f = 2
√

2 δint, with
δint =

(a2−a0)
3 .

For f = 1 the difference (a2 − a0) directly relates to the interaction detuning δint and
results from a fit of the form (4.10) to the measured data. We perform this fit with one
free parameter δ1 defined as the interaction detuning for the process. The fit yields a value
of δ1 = 2π × (−11.8±0.04

±0.2 ) Hz, where here and in the following the errors in the upper and
lower row denote the statistical and systematic error due to magnetic fields, respectively.
The sign of this detuning reflects the fact that the f = 1 ground state is ferromagnetic, as
will be explained in Section 4.5. We stress, that this parameter is still free from systematic
effects due to our uncertainty in optical potential depth, but has a statistical error, as well
as a systematic error due to magnetic field uncertainty.

For f = 2, the process |2,−1; 2,−1〉 ↔ |2, 0; 2,−2〉 depends only on the scattering length
difference (a4 − a2), whereas the dynamics starting from |2, 0; 2, 0〉 depends on both dif-
ferences, (a4 − a2) and (a2 − a0). We first fit the data set for oscillation frequency versus
magnetic field of the process |2,−1; 2,−1〉 ↔ |2, 0; 2,−2〉 with only one parameter δ2,2,
reflecting the scattering length difference (a4 − a2). The resulting best fit parameter is
δ2,2 = 2π × (30.2±0.1

±0.3) Hz. Then we fit the data set for the dynamics starting from |2, 0; 2, 0〉
with δ2,2 fixed to this value, and leave the second relevant interaction detuning δ2,1 – re-
flecting the influence of the scattering length difference (a2 − a0) – as free parameter. For
this fit, which is shown in Figure 4.9(b), we employ the analytical solution of the three
level system, Equations (4.14). The best fit is achieved for δ2,1 = 2π× (33.4±1.4

±1.1) Hz. Due to
the small uncertainty in each data point of the first data set compared to the uncertainty
of the second data set, this treatment is equivalent to one combined fit of both data sets
with two parameters.
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4 Coherent spin changing collisions

In order to extract the scattering length differences, we use the relations from Table
A.1 and the values for Ũ given in Section 4.1.1. Those scattering length differences are
summarized in Table 4.1. The values now have an uncertainty due to the optical potential,
entering via the constant Ũ.

f ∆a Measured (aB) Predicted (aB)
f = 1 a2 − a0 −1.07±0.01

±0.02±0.06 −1.38

f = 2 a2 − a0 3.51±0.2
±0.18±0.16 3.35

a4 − a2 6.95±0.02
±0.07±0.26 7.70

Table 4.1: Scattering length differences inferred from the spin population oscillation measure-
ment. The errors in the upper row give the statistical uncertainty from the fit, whereas the first
and second value in the lower row give the systematic error due to the uncertainty in magnetic
field and optical potential depth, respectively. The theoretical predictions are calculations based
on values from [47, 111].

4.3.4 Comparison with theory

As indicated in Fig. 4.6 and Table 4.1, the experimentally obtained values differ from
the theoretically predictions by significantly more than explained by the statistical and
systematic errors. For the spin oscillation frequencies, the difference is largest in f = 1,
indicated in Fig. 4.6. There the difference is on the order of 20% and slightly smaller
for f = 2 [26]. As already stated in the discussion of Eq. (4.6), a correction of the wave
function overlap due to interaction increases the difference by approximately 3%. Although
experiment and theory agree if also the errors of the theoretically predicted scattering
lengths are taken into account, in the following we will briefly discuss the possible origins
for the remaining difference.

Possible sources for the deviations might be e.g. magnetic field gradients, causing the
wave function overlap of the | + 1;−1〉 two-particle state to decrease. The reason is that
in a magnetic gradient field B′ a magnetic sublevel with quantum number m , 0 tries to
reduce the Zeeman energy m gF µB B′ ∆x by moving a distance ∆x at the expense of an
increased potential energy in the trap. As the Zeeman energies in states m = ±1 shift
opposite in a gradient, the corresponding wave functions tend to separate. However, a
simple estimate using a harmonic oscillator approximation shows that in order to decrease
the wave function overlap by 10%, each wave function has to move on the order of 15% of
the harmonic oscillator length in the lattice well. For the trap parameters presented here,
this corresponds to ≈ 0.15×100 nm. Thereby the potential energy is raised by 0.02×~ωtrap,
where ωtrap is the trap frequency. Comparing this with the Zeeman energy in a gradient
field, one finds that the magnetic gradient must be on the order of ≈ 100 G/cm, which
would be a large gradient in experiments with ultracold atoms. As a comparison, this
gradient is on the order of typical gradients in quadrupole traps. This underlines the fact
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that the tight confinement by the optical lattice essentially freezes out the spatial degree of
freedom. Estimating the gradient fields in the present setup, the atomic sample could be
displaced from the optimal position between the coils producing the homogeneous magnetic
field. This can lead, however, to gradients on the order of 10 mG/cm, orders of magnitude
smaller than the gradient needed to explain the difference between measured and calculated
spin oscillation frequencies.

Second, the measured absolute value of the magnetic fields could be systematically
shifted. All values of the magnetic fields are based on a measurement of a transition
frequency difference between two Zeeman states, one in f = 1 and the other in f = 2.
These frequencies around 6.8 GHz can be measured to a kHz level, corresponding to a
magnetic field uncertainty of approximately 3 to 6 mG. A systematic shift of the transition
line due to the AC-Stark shift is avoided by using long microwave pulses with very small
microwave powers. From the measured frequency for one transition the magnetic field can
be calculated by making use of the Breit-Rabi formula. The results for two independent
measurements on two different transitions can be compared. They differ by approximately
the same magnetic field as the uncertainty of a single measurement, i.e. 3 to 6 mG.

Another possible reason could result from imprecisely measured optical potential depths.
However, independent measurements from vibrational band spectroscopy [117, 118] com-
pared to direct measurements of the on-site interaction energy U through the collapse and
revival of the coherent matter wave field [110] yield agreement to better than 10%.

A finally possible reason might origin from the errors of the predicted values for scattering
lengths. Although they are known to a very high precision, for the scattering length
differences considered here, even small deviations in the individual scattering lengths can
lead to a large change in the scattering length difference, because they are rather small
compared to the bare scattering lengths. This remaining difference still needs clarification
by further theoretical as well as experimental investigation.

4.3.5 Contrast enhancement by filtering a Mott-insulator

As explained in Section 4.2, the harmonic confinement of the lattice laser beams leads to
a Mott insulating state with both, singly and doubly occupied lattice sites. Only the atom
pairs contribute to the spin population oscillations as they can interact in their lattice well.
Because the spin populations are normalized to the total number of atoms, i.e. including
the singly occupied sites, the contrast is reduced due to the isolated atoms. This artificial
decrease can be removed by a contrast enhancement sequence. In Fig. 4.10(a) a typical
signal of spin oscillations is shown for the process |2, 0; 2, 0〉 ↔ |2,+1; 2,−1〉. Due to isolated
atoms not contributing to the total signal (Fig. 4.10(b)), the amplitude is low (≈ 31(3)%).
After half an oscillation period, however, doubly occupied sites are in a different magnetic
sublevel (m = ±1) compared to singly occupied sites (m = 0). A microwave pulse can
therefore selectively transfer the atoms into the f = 1 hyperfine state. Since the imaging
light is resonant to the optical transition f = 2 → f ′ = 3 only, the isolated atoms become
transparent for the imaging light pulse (see Fig. 4.10(c)) and remain undetected during
the imaging. This enhances the observed amplitude in the subsequent spin oscillations
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Figure 4.10: Contrast enhancement sequence. (a) Spin oscillation signal for the process
|2, 0; 2, 0〉 ↔ |2,+1; 2,−1〉 at a magnetic field B = 0.6 G. All atoms, isolated atoms and atom
pairs as sketched in (b), are detected in the signal. After the first half oscillations period the
isolated atoms can be selectively transfered into a hyperfine state which is transparent to the
imaging light as shown in the sketch (c). Therefore these atoms remain undetected, and the
contrast of the observed spin oscillations is enhanced as shown in (d). The missing fraction of
atoms is due to a population in the m = ±2 state (e).
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to ≈ 56(4)% (Fig. 4.10(d)). The difference to the expected value of 80% can be partly
explained by a ≈ 17% fraction of atoms in m = ±2, see Fig. 4.10(e).

4.3.6 Damping mechanisms

An experimentally observed feature of the coherent spin dynamics in both hyperfine states
is the damping which is not expected from the models describing the coherent dynamics.
The strongest damping of the spin oscillations is present in the f = 2 hyperfine state (see
Fig. 4.8(a) or Fig. 4.10(d)). In order to investigate this damping, we record spin popu-
lation oscillations at different lattice depths and extract the damping rate for each depth
(Fig. 4.11(a)). The damping shows an exponential increase for lower optical potentials,
and levels at a constant, non-zero value for deep lattices. The exponential increase is well
fitted by the behavior of the tunneling matrix element J, i.e. proportional to the tunneling
rate between neighboring sites in the lattice. This can be understood in a simple picture.
When two atoms undergo the Rabi-like spin oscillations and one atom tunnels to a neigh-
boring site, the coherent oscillation stops. As the tunneling occurs randomly, and we detect
the ensemble average of many thousand particle pairs, the increased tunneling probability
leads to a damping of the coherent evolution. For large lattice depth the tunneling is well
suppressed. However, a non-zero damping rate is still present in Fig. 4.11(a). The origin
of this offset can be attributed to loss processes in f = 2. There, losses have been seen
to be significant [25, 116], partly due to dipolar relaxation, where in the collision of two
f = 2 atoms the spin of a single atom can flip, and the hyperfine energy is released as
kinetic energy. This energy ∼ h× 6.8 GHz is large compared to the trap depth and leads to
a loss of at least one particle. If during the coherent spin evolution of an atom pair, one of
the atoms is lost by such a process, the evolution stops and the total signal will exhibit a
damping as in the case of tunneling.

Such large loss rates are absent for f = 1, and the observed damping is much smaller.
Still, a finite damping on the order of γ ≈ 3 s−1 is observed even in the spin-1 data for
large lattice depth. One source for this damping could be the inhomogeneity of our sys-
tem, cf. Eq. (3.31). Due to the Gaussian intensity profile of the lattice laser beams, the
wavefunction overlap

∫
d3r|φ0|

4 is slightly higher in the center than in the outer regions of
the system. Therefore the coupling strength Ωi f and the constant detuning δint are slightly
position dependent. This leads to a small dephasing in the system, with a rate that we
estimate to be on the order of 0.3 s−1. Therefore its influence on the observed damping
is rather small. Another possible explanation for the observed damping at high lattice
depths in the spin-1 case are off-resonant Raman transitions introduced by the lattice laser
beams. The expected rate of those events has been estimated to be similar to the observed
damping rate. However, this effect has not been experimentally investigated. Also, heat-
ing to higher vibrational bands and subsequent tunneling to neighboring sites is a possible
damping mechanism.

Another feature of the coherent spin dynamics in f = 1 that has also been observed
in f = 2 is an initial rise of the population in the final two-particle state, which is faster
than predicted by the simple Rabi-model. This fast initial rise at the beginning of the
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Figure 4.11: (a) Damping rate of the spin changing collisions in f = 2 versus depth of the
confining optical lattice. The increased damping at low lattice depths can be attributed to
increased tunneling; the solid line is a fit to a function of the form cJ J/h + γ0 with the tunneling
element J (cf. Eq. (3.21)) and yields an amplitude cJ = 9(1) and an offset γ0 = 37(3) s−1. (b)
Loss of atoms in a 3D optical lattice in the f = 2 state. The fast loss in the beginning shows a
decay rate of γ1 ≈ 35(5) s−1, coinciding with the damping offset in (a). After all sites with double
occupancy have been depleted, only residual tunneling can induce additional loss, or collisions
with background particles. Both processes occur with much smaller rate; therefore the losses slow
down for longer hold times.

spin dynamics together with the offset of the oscillations can partially be explained by
the magnetic field ramp after the last microwave pulse. Here, the sample experiences a
changing detuning, and the state from which the spin dynamics start from can be changed.

4.4 Tuning spin-changing collisions via AC-Zeeman shift

As demonstrated in the previous section, control over the spin changing interaction can
be gained by changing the external magnetic field. Thereby the energy detuning δi f is
adjusted and consequently also the effective Rabi frequency. Usually, full control over the
detuning allows to either tune the system into resonance (δ = 0), or completely suppress
the dynamics (δ � Ω). For the case of 87Rb, however, it turns out that the two terms
δint and δB determining the total detuning δi f in Eq. (4.8) have the same sign. As the
magnetic field dependent detuning can take only positive values, even for B = 0 the second
term due to different interaction strengths in the initial and final two-particle states, δint,
persists. This so far prevented the observation of fully resonant interaction induced Rabi
oscillations. In order to circumvent this problem, one has to introduce a selective energy
shift which compensates the sum of detuning due to magnetic field δB and interaction
induced detuning δint. In this section we present a method to gain full control over the
energy difference of the two-particle states during the spin changing collisions and to tune
it to a desired value (see Fig. 4.12a-c). This allows not only to observe fully resonant spin
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Figure 4.12: Selective control over the two-particle energy difference during the spin changing
collisions. In a usual situation (a), the energy difference between initial |ψi〉 and final |ψ f 〉 two-
particle states (here in f = 1) are given by the sum of interaction detuning δint and the quadratic
Zeeman shift δB, where the first persists even for zero external magnetic field. The aim is to
introduce an additional energy shift, which can exactly compensate for the original detuning,
bringing the two states into degeneracy (b), or increasing the detuning to a large value (c),
thereby suppressing the spin changing collisional process.

dynamics, but also to switch the dynamics off by increasing the detuning to a large value,
independent of the actual magnetic field value.

AC-Stark shift

In atomic systems, energy shifts can be exerted through the interaction with a light field
detuned by a frequency ∆ from an atomic transition. This energy shift, known as AC-Stark
shift, is essentially the same as the dipole potential introduced in Eq. (3.10) [73], and can
be written for a two-level system as

∆E = ±
~Ω̃2

4∆
, (4.16)

where the lower (upper) sign holds for the ground (excited) state. Here Ω̃ = −delE/~ is the
coupling strength between electric field E and the atomic system, and del is the electric
dipole. In order to distinguish this radiation induced coupling strength from the interaction
induced coupling used before, we denote it by a tilde above in the following. A convenient
theoretical treatment describes this shift in terms of the so-called “dressed states” which
consider combined states of the atom and photon field (see also discussion is Section 3.4).
Therefore we call the coupling strength in the following “dressing Rabi frequency”. The
energy shift (4.16) can be conveniently adjusted in the experiment by the detuning ∆ and
by the coupling strength Ω̃ through the light field intensity I, because Ω̃2 ∼ E2 ∼ I. In
a more realistic situation, there are more than two atomic levels involved. In addition,
different polarizations will couple with different strengths. In this case the total energy
shift is the sum of all individual contributions.

AC-Zeeman shift

In our case, we focus in the following on spin oscillations in f = 1 and again omit writing the
total angular momentum in the two-particle states, but the method presented is not limited
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Figure 4.13: Scheme of energy shift due to a detuned radiation field. (a) In the two level system,
a radiation field that is detuned from the transition frequency causes an energy shift according
to Eq. (4.16) of both states. (b) For 87Rb at zero magnetic field there are for each magnetic
sublevel in f = 1 in general three contributions to the energy shift due to the possible transitions
with π and σ± polarized light. (c) For a small magnetic field on the order of a few Gauss, each
magnetic sublevel is shifted in energy by the linear Zeeman shift. This additionally changes the
coupling to the microwave field as now the detuning changes.

to this case. Consequently, the detuning between the two particle states |m = 0; m = 0〉 and
| + 1;−1〉 (see Fig. 4.12a-c) has to be compensated by an external field. Instead of an optical
transition, we use a microwave radiation field coupling the f = 1 hyperfine manifold to the
f = 2 states. In this case, the coupling strength Ω̃ is not determined by the electric dipole
moment del, but by the magnetic moment µ of the atom. Therefore we call the resulting
energy shift an AC-Zeeman shift. The detuning is defined as ∆ = ωµW − ωhf, where ωµW is
the frequency of the microwave field applied, and ωhf is the hyperfine splitting frequency
between the f = 1 and the f = 2 state at zero magnetic field.

In contrast to the two-level system, the energy shift in the hyperfine structure will differ
from the value given in Eq. (4.16) in two respects. First, because of selection rules, each
f = 1 ground state can couple to the f = 2 manifold via three transitions with different
polarizations denoted by the parameter q (q = 0,±1 for π and σ± transitions, respectively)
as depicted in Fig. 4.13(b). Each transition contributes with different strength due to the
different geometrical wave function overlap. This is accounted for by the corresponding
Clebsch-Gordan coefficient 〈 f = 1,m; 1, q| f = 2,m + q〉, connecting the state | f = 1,m〉 to
the state | f = 2,m + q〉 by a photon of polarization q. Additionally, in general different
polarizations will have different intensities Iq in the experiment.

Second, a small magnetic field (∼ 1 G) will shift the magnetic sublevels due to the linear
Zeeman effect (see Fig. 4.13(c)) by an amount

∆EB ≈ gFµBmB, (4.17)

where µB is the Bohr magneton, gF = ±1
2 is the Landé factor, where the upper (lower) sign

is for f = 1 ( f = 2). This effectively changes the detuning ∆ of the transition, as now
the levels coupled by the microwave field might be shifted closer to resonance or further
away. In particular, for π-transitions the differential shift is given by m µB B, whereas for
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circular polarized light the shift will be increased or decreased by 1
2 µB B. Therefore the

total detuning is given by ~∆ − (m + q/2) µBB.
Accounting for these effects and for sufficiently large detuning, the energy shift of the

atomic state | f = 1,m〉 can be calculated as

∆Em ≈
~Ω̃2

π

4∆
× fm

(
µBB
~∆

)
,

fm(x) =
∑

q=0,±1

3Cm,q

4
Iq

Iπ

1
1 − (m + q/2)x

. (4.18)

Here the Cm,q = |〈 f = 1,m; 1, q| f = 2,m + q〉|2 are square moduli of Clebsch-Gordan coeffi-
cients for the relevant transition. Furthermore we have defined the coupling strength of the
π-transition Ω̃π as the second free parameter in addition to the detuning ∆. This reflects
the experimental situation, where the two adjustable parameters varied in the experiment
are the frequency νµW and the intensity IµW ∼ Iπ of the microwave field. Therefore the dif-
ferent intensities of the other polarization components Iq enter relative to the π component.
The Iq can be calibrated by fast Rabi flopping on different transitions in the experiment.
Finally we have introduced x =

µBB
~δ

.
In the absence of the microwave field, the detuning of the spin population oscillations are

given by Eq. (4.8) as δi f = δint +
(µBB)2

2~ωhf
. In the presence of such a radiation field, the energy

shift due to the AC-Zeeman shift adds, and the effective detuning between the two-particle
states becomes

~δeff = ~α(Ω̃2
π − Ω̃2

res), (4.19)

where the factor

α =
f+1(x) + f−1(x) − 2 f0(x)

4∆
(4.20)

accounts for the specific process |0; 0〉 ↔ | + 1;−1〉 which we consider here. Moreover, the
resonant Rabi frequency Ω̃res which we introduced in Eq. (4.19) describes the case where

~αΩ̃2
res = −(δint + δB). (4.21)

In this situation, the two-particle states |0; 0〉 and | + 1;−1〉 are degenerate and the inter-
action driven spin oscillations should occur with maximum amplitude.

AC-Zeeman shift in the experiment

Before implementing the AC-Zeeman shift in the experiment, one has to estimate the
effect of a radiation field on the level structure in the 87Rb hyperfine states. First, as
mentioned already in Section 3.4, the microwave field radiated upon the atoms comprises
all three polarizations with unknown ratio. In addition, due to the experimental setup,
a change of magnetic field value can also be accompanied by a change in the direction of
the magnetic field, which also changes the direction of the quantization axis. Therefore,
even for constant ratios of polarization components in the microwave field, the relevant
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Figure 4.14: (a) Expected level energy shift due to AC-Zeeman effect for a microwave coupling
of Ω̃π = 2π × 2.5 kHz at a magnetic field of B = 0.4 G (solid line). The dashed line indicates the
energy of the detuning δi f ≈ −105 Hz for the spin oscillations at this magnetic field. For the
experiments and part (b), we choose the dressing frequency νµW ≈ 533.545 MHz, marked by the
arrow. (b) AC-Zeeman level shift as a function of the coupling strength Ω̃π at the same conditions
as in (a) and the microwave field tuned to the arrow position. From the graph we find that for a
microwave Rabi frequency around Ω̃π ≈ 2π × 23 kHz the spinor detuning can be compensated for
by the AC-Zeeman shift.

projections onto the quantization axis can change with magnetic field. In order to work
under controlled conditions, we fix in the following the magnetic field value at which the
spin-changing collisions can occur to B ≈ 0.42 G and calibrate the different polarization
components Iq by driving fast single-particle Rabi oscillations starting from | f = 1,m = −1〉
and ending in | f = 2,m = −1 + q〉. Thereby we obtain

Iσ−
Iπ
≈ 0.33(2), and

Iσ+

Iπ
≈ 0.02(1).

With this we can calculate the energy shift on the relevant quantity for the spin oscillation
process as

∆Ef=1 = 2 ∆E0 − (∆E+1 + ∆E−1). (4.22)

Assuming a moderate coupling strength of Ω̃π = 2π × 2.5 kHz, we plot the change of ∆Ef=1

when changing the microwave frequency νµW in Fig. 4.14(a). The positions of the seven
resonances coincide with the possible transition frequencies calculated at the given magnetic
field with the Breit-Rabi formula. We observe only seven instead of nine as there are two
degenerate pairs (| f = 1,m = ±1〉 → | f = 2,m = 0〉 is quasi-degenerate with | f = 1,m = 0〉 →
| f = 2,m = ±1〉 at these low magnetic field values and for our frequency resolution). These
degeneracies are lifted by higher order contributions of the Zeeman shift for larger magnetic
field values. In order to choose the correct dressing frequency νµW, one has to consider two
constraints. First, as the difference energy ~(δint + δB) is negative at any magnetic field,
i.e. the two-particle state |1, 0; 1, 0〉 has a lower energy than |1,−1; 1,+1〉, the AC-Zeeman
shift has to be positive. As depicted in Fig. 4.14(a) there are several regions where the
AC-Zeeman energy shift can counteract this detuning. However in an experiment, any
transition to the f = 2 hyperfine manifold is unwanted as this will destroy the coherent
spin changing collisions. Therefore the detuning ∆ between the atomic transitions and
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Figure 4.15: (a) Measured spin population oscillations for the process |0; 0〉 ↔ | − 1; +1〉 at
B = 0.4 G and various intensities of the dressing microwave radiations: (1) Ω̃π = 0; (2) Ω̃π = −δi f ;
(3) Ω̃π > δi f . The microwave frequency is set to νµW = 533.545 MHz+6.3 GHz. From this type
of curves we extract oscillation period (b) and amplitude (c) versus the microwave coupling
strength Ω̃π. Both curves show a maximum, indicating resonant coupling. The solid lines are fits
to the Rabi model including the AC-Zeeman energy shift.

the microwave field should be as large as possible. We choose a frequency which is red
detuned from any hyperfine transition at νµW = 533.545 MHz+6.3 GHz, which is still in the
region of positive energy shift ∆Etot. This is marked by an arrow in Fig. 4.14(a). Using this
frequency, we calculate the energy shift that can be achieved versus the microwave coupling
strength Ω̃π in Fig. 4.14(b). Apparently, the AC-Zeeman shift can easily compensate the
spin oscillation detuning (i.e. for a dressing Rabi frequency of Ω̃π ≈ 2π× 23 kHz), and even
overcompensate it, which is important in case the interaction shall be completely switched
off.

The experimental sequence to observe the effect of the detuned microwave field on the
atoms is similar to the one introduced above for f = 1. In addition, after the second pulse
preparing the atoms in | f = 1,m = 0〉, we add a microwave dressing field which introduces
an AC-Zeeman shift. For different values of the microwave intensity, i.e. different values of
Ω̃π, we study the behavior of the spin population oscillations. We present a result of such
an experimental sequence in Fig. 4.15(a). The data shows that the Rabi oscillations can
indeed be tuned into resonance, when amplitude and oscillation period are maximal. This
can be seen when the oscillation period and amplitude are plotted versus the microwave
coupling strength Ω̃π in Fig. 4.15(b) and (c), respectively. The values for the resonant
coupling strength extracted from the period (Ω̃res = 2π×22.8(2) kHz) and amplitude (Ω̃res =

2π × 21.7(3) kHz) are in good agreement with the calculated value given above.
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4 Coherent spin changing collisions

A non-destructive probe for atom pairs

This method thus offers a convenient tool to control the spin changing collisional interac-
tion, independent of the external magnetic field. Resonant spin changing collisions have
also been observed for different magnetic fields by choosing the dressing frequency properly
[27]. Since the microwave field can be switched fast (≈ 100 ns) compared to all relevant
time scales in the experiment, the interaction can be literally switched on and off. This is
in particular important when the spin changing interaction is supposed to be applied in a
pulsed-like manner for a well defined time.

Moreover, on resonance, the Rabi model predicts unity transfer efficiency from the initial
to the final state. Therefore, dressed spin changing collisions constitute a quantitative probe
of particle pairs in the optical lattice. After half an oscillation period tπ, the populations
of the different Zeeman sublevels directly reflect the atom number distribution throughout
the lattice. In the case of f = 1, after an interaction time tπ the isolated atoms will all
be in | f = 1,m = 0〉, whereas the number of atoms in doubly occupied sites corresponds
to the population of the m = ±1 Zeeman levels. Even more appealing, this pair probe is
non-destructive, as the dynamics can be reversed in the resonant case, and the initial state
can be restored. As will be demostrated in Section 4.6, this probe for particle pairs gives
rise to many intriguing applications.

In addition, based on this atom pair probe, we could propose a method to transform an
inhomogeneous Mott-insulator with shells including singly and doubly occupied sites into
a system with only singly occupied sites. For this, only an alternating sequence of π-pulses
for spin changing population oscillations on the one hand and single particle microwave
pulses on the other hand has to be applied [27].

4.5 Nature of the magnetic ground state

The experimentally determined values of the coupling parameters for the spin-changing
interaction presented in Section 4.3 have wide reaching consequences on interactions in the
two hyperfine ground states of 87Rb. In particular, their knowledge contains all information
about the spin dependent part of the interaction potential. The value of the inferred
scattering length differences e.g. determines the particular relative spin orientation which
has the smallest spin dependent interaction energy. The many-body state minimizing the
spin-dependent interaction energy is called magnetic ground state.

For interacting spin-1 gases this magnetic ground state can be either ferromagnetic or
antiferromagnetic in nature, i.e. spin dependent interactions favour the relative orientation
of two atomic spins to be either parallel or antiparallel. In the spin-2 case an additional
cyclic phase can also arise (see e.g. Refs. [106, 107]). Here spin-spin correlations are revealed
for three particles, whose spin orientations tend to form an equilateral triangle in a plane.
The phase diagram for both spin states is depicted in Fig. 4.16 as a function of one (two)
interaction parameters for f = 1 ( f = 2), which will be defined below. These systems
are promising in order to study quantum magnetism phenomena [22, 105, 106, 46], and to
create strongly correlated magnetic quantum states in optical traps [107, 119, 120, 121, 122]
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Figure 4.16: Phase diagram of the magnetic ground state for 87Rb in (a) f = 1 and (b) f = 2.
The diagram is shown as a function of specific parameters defined below in Eq. (4.23) and (4.24).

and optical lattices [123, 124, 125, 126, 127, 15, 128, 129, 130, 131].

The magnetic ground state of the hyperfine ground states in 87Rb has been addressed
in many experiments on multi-component quantum gases [99, 100, 101, 108]. In order
to identify the magnetic ground state of spin-1 87Rb BECs the dynamics of such systems
has been experimentally investigated [99, 100]. There, a slow spin dynamics has been
observed on a second timescale leading to a final state close to the predicted ferromagnetic
ground state at zero external magnetic field. Recently, an experiment observing coherent
spin dynamics in a BEC [108] has shown the spin-1 magnetic ground state of 87Rb to be
ferromagnetic. For spin-2 87Rb atoms, the magnetic ground state has been predicted to be
antiferromagnetic, but close to the phase boundary of the cyclic phase. Recent experiments
[99, 101], again observing the spin dynamics for various population of the Zeeman sublevels,
seem to agree with this prediction. One problem, however, arises from the fact that even
small magnetic fields can perturb the system and pin it to some configuration which is
not the ground state at zero external field. Another difficulty in precisely determining the
ground state stems from the fact that the differences of the scattering lengths driving the
spin dynamics is very small (typically only a few percent of the bare scattering lengths),
so that the time scale on which the system relaxes to its ground state is very long. More
recently, a novel method has been proposed theoretically to identify the magnetic ground
state of 87Rb spin-2 atoms [132] circumventing many of the problems described above. By
preparing an initial state with controlled population and phases of the Zeeman sublevels,
the initial dynamics of the system would reveal the nature of the spin singlet term.

Here, we present a different approach and introduce a method based on the coherence of
the spin evolution. The absolute value and sign of the various spin-dependent interaction
terms in the Hamiltonian can be directly deduced from the observed coherent Rabi-type
oscillations in an optical lattice driven by spin changing collisions [25]. From the measured
oscillation frequencies we are able to infer the coefficients in the interaction Hamiltonian
and the value of the differences in scattering lengths. The knowledge of these allow in
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turn to determine the magnetic ground state. There are several advantages of this method
compared to similar experiments in the mean field regime. First, in our system the spatial
degree of freedom is frozen, so that any dynamics observed can be attributed to the spin
interaction only. Second, the optical lattice leads to a significant enhancement of the
coupling strength determining the time scale of the spin-changing dynamics. Therefore,
even for the spin-2 case where strong losses are present, coherent spin-changing collisions
can be observed.

As explained in the introduction, the relative orientation of two spins in a collisional event
changes the actual interaction strength. In order to determine the particular orientation
that minimizes the mean field energy at zero magnetic field, i.e. the magnetic ground state,
it is convenient to express the interaction potential in terms of spin-independent and spin
dependent parts (see e.g. [22, 133]).

For the spin-1 case this yields the potential

VS = c0 + c2f1 · f2, (4.23)

where c0 ≡ (4π~2/M) × (a0 + 2a2)/3 is the spin-independent part, and c2 ≡ (4π~2/M) × (a2 −

a0)/3 describes spin-spin interactions. For the antiferromagnetic or polar phase, the mean
field energy according to (4.1) is minimized by aligning the spins of two interacting atoms
anti-parallel, and it emerges for c2 > 0, i.e. a2 > a0 [22], whereas the mean field energy
in the ferromagnetic case is minimized by aligning the spins parallel, implying c2 < 0 (see
Fig. 4.16(a)).

In a similar way, the interaction potential for the spin-2 case can be written as [133]

VS = c0 + c1f1 · f2 + 5c2P0. (4.24)

Here, P0 is a projector onto the singlet subspace, c0 ≡ (4π~2/M) × (4a2 + 3a4)/7 describes
the spin-independent part, c1 ≡ (4π~2/M)× (a4 − a2)/7 determines the spin-spin interaction
and c2 ≡ (4π~2/M) × (7a0 − 10a2 + 3a4)/7 accounts for the interaction between spin-singlet
pairs. Differently from the spin-1 case, there exist three possible phases for a spin-2 Bose-
gas at zero magnetic field. In addition to the ferromagnetic and antiferromagnetic phases
the system can have a cyclic phase. In this phase the spin orientation of three interacting
particles tend to form an equilateral triangle in a plane. The phase diagram is now two di-
mensional, depending on the spin-dependent coefficients c1 and c2 as shown in Fig. 4.16(b).
The ground state is ferromagnetic for c1 < 0 and c1−c2/20 < 0, antiferromagnetic for c2 < 0
and c1 − c2/20 > 0, and cyclic for c1 > 0 and c2 > 0.

A summary of the values for the spin-dependent coefficients in f = 1 and f = 2 deter-
mined from the frequency measurement of the coherent spin dynamics is given in Table
4.2 together with the theoretically predicted values that show in general good agreement.
For the spin-1 case the inferred coefficient c2 clearly shows a ferromagnetic ground state
at zero magnetic field. For the spin-2 case the coefficients point towards the antiferromag-
netic ground state within our error bars. The coefficient c1 clearly excludes a ferromagnetic
ground state. For the coefficient c2,however, slight changes in, e.g., the fit procedure can
imply large changes of the resulting fit value and strongly increases the uncertainty on this
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f ci/(4π~2/M) Measured ∆a/aB Predicted ∆a/aB

f = 1 c2 −0.36±0.01
±0.01±0.02 −0.46

f = 2 c1 +0.99±0.01
±0.01±0.04 +1.1

c2 −0.53±0.2
±0.18±0.2 −0.05

Table 4.2: Summary of the measured coefficients of the spin-dependent interaction (4.23,4.24).
The errors are the statistical errors (upper row) and the systematic errors (lower row, first number
due to magnetic field, second due to lattice potential). The calculated values are based on recently
predicted scattering lengths [47, 111].

value. The theoretically predicted coefficient is so small that for most practical situations
the expected interaction energy arising from this term will be also small. This implies that
other terms in energy are easily dominant and that the time scales to reach the magnetic
ground state are extremely long.

It should be noted that the statements about the magnetic ground state of the system
made above hold equally for the measured interaction detunings δi. These quantities,
however, are still free from systematic errors due to the optical potential.

4.6 Applications

In summary, we have shown that both hyperfine states of 87Rb show collisionally driven
spin oscillations between two-particle states in a deep optical lattice. The oscillations can
be described by a Rabi-model for a broad range of parameters. In the case where two final
states are accessible, the observed spin dynamics can be explained by a coupled three-level
system.

The parameters of the Rabi model are directly related to differences of the scattering
lengths in the 87Rb hyperfine states f = 1 and f = 2. The measured values can be com-
pared to calculations based on recent theoretical predictions of the scattering lengths, and
show good agreement. The residual deviation from the predicted values may be due to a
systematically different value of the parameter Ũ as mentioned in Section 4.1.1, connect-
ing the fundamental scattering length differences with the actual experimentally observed
interaction energy. Another possibility might be small deviations of the scattering lengths
from the theoretically calculated values. A resolution of the observed deviations requires
further experimental and theoretical investigation.

The possibility to control resonant spin oscillations enabled a series of experiments yield-
ing deeper insight about the SF to MI transition [11, 12] which will be presented in the
following.
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Figure 4.17: Number squeezing in the SF to MI transition. (a) The system is prepared either in
a SF or in a MI situation in the optical lattice. The actual atom number distribution is frozen by
a fast increase of the optical potential. Subsequently, the amplitude of resonance spin changing
collisions is measured. (b) In case of shallow lattices in the SF regime, atom number fluctuations
lead to a non-zero signal, i.e. atom pairs are present at some lattice sites, even for very low total
atom number ν̄ < 1. The signal increases with increasing total atom number as the Poissonian
distribution predicts a larger probability for double occupancy. (c) In case of a deep lattice
potential, i.e. in the MI regime, the atom number fluctuations are suppressed, and for low total
atom number only sites with unity filling are occupied. Starting from ∼ 6 × 104 atoms, a shell
with ν̄ = 2 starts to form. Consequently, the atom pairs can undergo a spin changing collisional
event, and the detected signal becomes non-zero. The solid lines are guides to the eye.

4.6.1 Number squeezing in the superfluid to Mott-insulator transition

The superfluid (SF) to Mott-insulator (MI) quantum phase transition in a 3D optical lattice
[1] was one of the first examples of a strongly correlated quantum phase, experimentally
realized in an ultracold atomic system. Since then it has attracted a lot of attention and
initiated large theoretical and experimental effort to further understand the system and
exploit its properties for quantum information processing or solid state simulations. In the
first experiments, the quantum phase transition was observed through the signature of a
loss of phase coherence and an opening gap for excitations on the order of the interaction
energy U in the MI region [1]. As explained in Section 3.3, the ground states of the Bose-
Hubbard Hamiltonian exhibit another striking difference: In the SF regime, atom number
fluctuations should be present and the on-site atom number should follow a Poissonian
distribution. In the MI region in contrast these fluctuations are expected to be suppressed
and only a well defined, constant atom number should be observed in an experiment. This
atom number squeezing in the MI region can now be investigated using the non-destructive
atom pair probe developed earlier in this chapter.

The experimental sequence and results can be found in Ref. [11] and will be only briefly
outlined here. The main idea is to selectively detect different occupation numbers of atoms
in the system for changing lattice depth and changing total atom number. We use resonant
spin changing collisions as a probe for particle pairs. Here it becomes important that the
interaction strength is occupation number dependent. Hence, if the AC-Zeeman effect tunes
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atom pairs into resonance for the spin changing collisions, the atom triples are not resonant
and the spin population conversion is strongly suppressed [11]. In the experiment, the
system is prepared with a certain atom number in either a superfluid or a Mott-insulating
state. In order to freeze out the actual atom number distribution (Poissonian in case of a SF
or Fock states in case of a MI), the optical potential is quickly (within ≈ 50 µs) increased to
a value where tunneling is strongly suppressed, see Fig. 4.17(a). In this situation, resonant
spin changing collisions can be employed and yield a quantitative measure of the number
of atom pairs in the originally prepared quantum state. For shallow lattices, the system
is expected to be a superfluid. Atom number fluctuations of the Poissonian distribution
in such a superfluid state are expected to lead to a non-zero amount of lattice sites with
a filling of two, even when the overall filling is smaller than unity (ν̄ < 1)5. This can be
realized by preparing the system with a small total atom number. Indeed, in this case of
small total atom number, the amplitude of the resonant spin changing collisions shows a
finite value of doubly occupied sites, see Fig. 4.17(b). For larger mean filling ν̄, i.e. larger
total atom number, the pair occupancy is expected to increase.

For deep lattice depth, such that the system is expected to be in the MI region, atom
number fluctuations should be absent. In case of low total atom number ν̄ ≤ 1 there should
be almost exclusively singly occupied lattice sites. Consequently, the signal of a spin-
changing collision sequence should be close to zero. This can be seen in Fig. 4.17(c), where
the signal of the spin changing collisions becomes non-zero only for total atom numbers
starting from a value, where the shell with filling n = 2 is expected to form. For even
larger total atom number a third shell is expected to appear; since the AC-Zeeman shift
compensates the interaction detuning for one particular filling (n = 2 in our case), the
triply occupied sites cannot show resonant population oscillations, and the signal of the
pair probe Fig. 4.17(b) decreases.

4.6.2 Spatially resolving the Mott-insulator shells

The perfect MI is supposed to be a homogeneous array of equally populated lattice sites. In
current experiments, however, a smoothly varying harmonic confinement on a large length
scale makes the system inhomogeneous. The resulting distribution of occupation numbers
has been calculated by e.g. a local chemical potential approach to take the form of a so-
called wedding cake [76]. According to this distribution, in the center a region forms with
constant filling, for example, n = 2. This region is surrounded by a superfluid shell. For
larger distance from the center, another shell with constant, but small filling follows, here
n = 1. Although a first consistent evidence has been obtained through the observation
of number squeezing (see Fig. 4.17(b)), the predicted Mott-insulator shells with constant
filling in each shell were not yet observed.

This could recently be achieved in our group [12] by combining a method to address
the system with spatial resolution on the one hand with the occupation selective probe of
spin changing collisions on the other hand. The spatial resolution was obtained by using

5The overall or mean filling ν̄ denotes the ratio of total atom number and number of occupied sites. In
contrast, the onsite filling n is the number of atoms in a specific lattice well.
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an analogue to nuclear magnetic resonance spectroscopy: Before the optical potential is
applied, the BEC is held in a magnetic trap. Due to gravitation, however, it is not located at
the magnetic field minimum, but at a position, where the magnetic gradient compensates
the gravitational gradient. Thus, in the combined magnetic and optical potential, the
system still experiences a (vertically oriented) magnetic gradient. This gradient exerts a
spatially varying Zeeman shift onto the atomic sample. A narrow line-width microwave
transition, tuned to a transition from f = 1 to f = 2, can now address only a small
horizontal slice in the atomic system. The width of this slice can be approximately 3 to
5 lattice sites. In such a measurement, three quantities can be extracted as a function of
vertical position, i.e. microwave frequency. First, the total atom number in such a slice is
measured (see Fig. 4.18(a) to (c)). Furthermore, within this slice, resonant spin changing
collisions can be induced, yielding the amount of particle pairs in each slice. Finally, the
difference between the total number of atoms per slice and the number of pairs per slice
can be calculated.
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Figure 4.18: (a) By a technique similar to magnetic resonance tomography, only a thin slice of
the trapped atom cloud is addressed, and the total atom number per slice is detected. Within this
slice, atom pairs can undergo resonant spin changing collisions and change the Zeeman sublevel,
while isolated atoms remain in their initial state. The final signal (cf. (b),(c)) yields the relative
number of atom pairs (red, offset for clarity) and total number of atoms (gray) in each slice versus
vertical position; the difference between the two curves (blue) corresponds to occupation numbers
n , 2. Solid lines are fits to the expected model (see Ref. [12]). (b) Integrated density profile
for a SF system. Doubly occupied sites are present even at the borders of the system and all
occupation number show a similar density profile. (c) Integrated density profile for a MI with
occupation numbers of n = 1 and n = 2. The n = 2 shell is concentrated to the center of the
cloud, as expected from the predictions of a wedding cake structure in the inhomogeneous MI.
The flat-top profile of the n = 1 shell is clearly visible. For details see Ref. [12]

An example for each of the two ground states shows the marked difference between the
two regimes: The density profile in the SF regime (Fig. 4.18(b)) shows a Thomas-Fermi
like distribution for all observed occupation numbers, in this case n = 2 on the one hand
and n , 2 on the other hand. In particular, the n = 2 shell extends to the very border of the
system, as expected in the SF ground state. This is in strong contrast to the profile observed
in the MI region (Fig. 4.18(c)), where the profile of n = 2 has an inverted parabola profile,
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as expected from an integrated sphere-like distribution with constant filling. Moreover, the
n = 2 shell does not extend to the border of the system, but is indeed limited to the core
of the atom cloud. Furthermore, the spatial distribution for n , 2, which corresponds to
n = 1 in our case, exhibits a striking flat top profile, as expected from a shell embracing
the inner core.

This measurement has been the first conclusive evidence for the formation of a shell
structure in the inhomogeneous MI where the signal of resonant spin changing collisions
allowed for a systematic investigation on how the n = 2 shell evolves with atom number.
For details see Ref. [12]. It should be noted that occupation number dependent detection
with spatial resolution in a 3D lattice system has also been realized in [134].

4.7 Conclusion

In this chapter, the coherent spin changing interaction between two atoms in an optical
lattice has been discussed. The dynamics has been investigated in three different cases
that can be realized in the present system. For most of the cases, the problem simplifies to
a Rabi model which describes the observed dynamics quantitatively. The relevant param-
eters driving the spin changing collision could be related to fundamental scattering length
differences that have been extracted from the measurements. These parameters determine
the magnetic ground state of the system. For 87Rb in the two hyperfine ground states
f = 1 and f = 2 the magnetic ground state could be determined to be ferromagnetic and
antiferromagnetic, respectively, in agreement with theoretical predictions.

Furthermore, a method to control the detuning of the spin population oscillations based
on a selective levelshift has been introduced. This level shift could be realized by a detuned
microwave field exerting an AC-Zeeman shift onto the various Zeeman sublevels. Using
this novel technique, fully resonant population transfer between two-particle Zeeman states
could be achieved.

This enabled a series of experiments, giving a more detailed insight into the SF to
MI transition [11, 12]. The high degree of control and precision in the measurements
combined with the intriguing properties of the states created by this interaction makes it
a well suited tool for further quantum state engineering of correlated spin states. Some
promising prospects will be outlined in Section 6.1.
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5 Coherent interaction induced phase evolution

One of the most fascinating differences between the quantum world and every day“classical”
life is the existence of states that exhibit non-trivial quantum correlations or entanglement.
These quantum properties are an important prerequisite in many proposals for quantum
information schemes or applications and experiments investigating quantum effects. The
creation, analysis and application of such states is a focus of current research with ultracold
atoms. This chapter describes one of the paths to the creation of correlated states by
time evolution of an initially uncorrelated state in the presence of non-linear interactions
[135, 136, 137, 138, 102, 139]. In general (for a review see [23]), a two-mode system is
considered, where the two modes can be realized for example as two superconducting
regions of a Josephson junction, the two sites of a double well potential, two internal spin
states etc. Two additional conditions have to be fulfilled in order to observe the emergence
of non-classical correlations is such systems. First, the two modes have to have a well
defined relative phase. Second, the system has to be interacting. With these requirements,
the relative phase between the two modes can exhibit a fascinating time evolution from an
initially classical state via squeezed states to maximally entangled Schrödinger cat states.

In the following the case of effective spin 1/2 systems will be discussed, where the two
spin states are “encoded” in the internal total angular momentum states of the 87Rb atoms.
In Section 5.1 the basic idea of interaction induced phase evolution will be introduced
in a discussion of two spin-1/2 particles. This will be extended to the general case of N
spin-1/2 particles in Section 5.2. Here the full phase evolution is calculated. It turns out
that for these systems the speed of the non-trivial phase evolution depends on the relative
strength of various scattering lengths in the problem. In a typical experimental realization
this scattering length difference is very small. In order to speed up the phase evolution
significantly, the relevant interaction strengths have to be enhanced, which can be achieved
by the method of magnetic Feshbach resonances. This method allows to selectively tune
particular scattering lengths and will be introduced in Section 5.3. The resonance which is
eventually used in the experiments will be presented together with a novel, so far unknown
hyperfine Feshbach resonance.

The situations of either two interacting particles or of an interacting many-body state can
be experimentally realized in optical lattices, where in a 3D lattice atom pairs are trapped at
many lattice sites and are isolated from their environment. The experimental realization of
a two-particle entanglement oscillation in an array of such isolated atom pairs is presented
in Section 5.4. Similarly, in a 2D optical lattice potential, an array of mesoscopic interacting
quantum gases can be created, and the intriguing coherent time evolution of their relative
phase mentioned above can be investigated. This will be demonstrated in Section 5.5.
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5 Coherent interaction induced phase evolution

Note added — Just recently, the data presented in Section 5.5 on spin dynamics in a
many-body system have been re-interpreted. In the new model, the intrinsic fluctuations
in relative phase between the two spin states arising from the deep 1D configuration could
be modeled in a Luttinger liquid approach. This model could quantitatively reproduce
the enhanced contrast drop close to the Feshbach resonance as well as the partial revivals
observed in this work 1.

5.1 Interactions between two spin-1/2 systems

Arguably the simplest yet non-trivial model in quantum mechanics is the coupled two-level
system, already considered in previous chapters. Here, this model will be considered in
order to understand the basic effects that an interaction induced phase evolution can have
on such a system. In the following we consider the two states | ↑〉 and | ↓〉, separated by
an energy difference ~ω0. Two such two-level systems are allowed to interact. The effect
of this interaction on the relative phase between the two spin states is investigated. As in
chapter 2, we assume different interaction strengths for the intra-species and inter-species
scattering, i. e. there are three relevant scattering lengths a↑↑, a↓↓ and a↑↓ = a↓↑, where the
last equality holds due to symmetry reasons.

5.1.1 State evolution of two interacting particles

In order to calculate the effect of the spin-dependent interaction, let us assume two par-
ticles trapped in a deep potential well. Tunneling is sufficiently small for the atoms to
stay trapped on a time scale long compared to any interaction effect. Furthermore, any
interaction energy is smaller than the energy needed to excite atoms into higher vibrational
states. Consequently, we will consider the atomic spin wave function only, as the spatial
wave function can be assumed stationary on the time scale of the spin evolution. We as-
sume that both atoms are initially in a coherent superposition of the two internal states
by applying a π/2-pulse to the spin polarized state in | ↓〉. The resulting two-body wave
function can be written as

|ψ〉i =
1
√

2
(| ↓〉 − |↑〉) ⊗

1
√

2
(| ↓〉 − |↑〉)

=
1
2

(| ↓↓〉 − |↓↑〉 − |↑↓〉 + | ↑↑〉) , (5.1)

where for simplicity we have contracted |ψ1〉 ⊗ |ψ2〉 = |ψ1 ψ2〉. The coherent superposition
therefore can be considered as a combination of all possible relative spin orientations of
the two spins involved as illustrated in Fig. 5.1.

1A. Widera et al. Quantum spin dynamics of squeezed Luttinger liquids in two-component atomic gases,
to be published.
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Figure 5.1: The two-particle state of two equal weight coherent superpositions can be seen as a
combination of all possible relative spin orientations.

In the presence of interactions in the ultracold regime, each term acquires an interaction
phase according to the interaction energy Ui j (cf. Eq. (2.11)) as

φi j =
Ui j

~
× t. (5.2)

Here, i ( j) labels the state of the first (second) atom and can take the values | ↑〉 and | ↓〉.
For the three scattering lengths, we find three interaction phases for a given interaction
time, φ↑↑, φ↓↓ and φ↑↓ = φ↓↑. Therefore after some interaction time t the state of the two
interacting particles will read

|ψ(t)〉 =
1
2

(
eiφ↓↓ | ↓↓〉 − eiφ↓↑

(
| ↓↑〉 + | ↑↓〉

)
+ eiφ↑↑ | ↑↑〉

)
. (5.3)

The situation can be simplified by an approximation reflecting the experimental situation.
As we will see in later sections, the scattering length a↓↓ ≈ a↑↑, so that we introduce the
average interaction phase φ̃ = (φ↓↓+φ↑↑)/2 and assume the two states | ↓↓〉 and | ↑↑〉 to both
evolve with this average phase. In addition, we factor out the inter-species interaction
phase φ↓↑. Thus we find

|ψ(t)〉 =
1
2

eiφ↓↑
(
ei(φ̃−φ↓↑) | ↓↓〉 −

(
| ↓↑〉 + | ↑↓〉

)
+ ei(φ̃−φ↓↑) | ↑↑〉

)
. (5.4)

This can be further simplified by defining the effective interaction phase φχ ≡ φ̃ − φ↓↑.
Omitting the overall phase factor eiφ↓↑ , the state after time t reads:

|ψ(t)〉 =
1
2

(
eiφχ | ↓↓〉 −

(
| ↓↑〉 + | ↑↓〉

)
+ eiφχ | ↑↑〉

)
. (5.5)

The effective interaction phase φχ corresponds to an effective difference of interaction
strengths which can be characterized by the energy

~χ =
U↑↑ + U↓↓ − 2 U↓↑

2
. (5.6)

This effective spin dependent interaction energy, which is introduced here phenomenolog-
ically, will be defined more thoroughly in Eq. (5.26). In the single-mode approximation,
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5 Coherent interaction induced phase evolution

i.e. assuming that only one spatial mode is present for all spin states, this can be mapped
onto a difference of scattering lengths

aχ ≡
a↑↑ + a↓↓ − 2 a↓↑

2
. (5.7)

The effective interaction phase φχ fully determines the intriguing time evolution of the
two-particle state. In order to better study this evolution, a second π/2-pulse is applied to
the state |ψ(t)〉 after the interaction in order to map the relative phase onto the populations
of the internal states. The state then reads

|ψ〉 f =
1
2

{(
eiφχ − 1

)
| ↓↓〉 +

(
eiφχ + 1

)
| ↑↑〉

}
. (5.8)

The properties of the final state now crucially depend on the effective interaction phase φχ.
One can distinguish four important cases:

1. For vanishing interaction time, φχ = 0 and the final state becomes

|ψ〉 f = | ↑↑〉 = | ↑〉 ⊗ |↑〉 (5.9)

just as expected from two subsequent π/2 pulses. In particular the state is separable.

2. For interaction times leading to φχ = π/2, the final state reads

|ψ〉 f =
1
2
{(i − 1)| ↓↓〉 + (i + 1)| ↑↑〉} . (5.10)

This state cannot be written as a product state any more. Up to the phase factors the
state resembles the well known entangled Bell-state |BELL〉 = (| ↓↓〉 + | ↑↑〉)/2. Here,
the spins are perfectly correlated and therefore this state is of great importance in
quantum mechanics [21].

3. For even longer interaction times, such that φχ = π, the final state is

|ψ〉 f = −|↓↓〉 = −|↓〉 ⊗ |↓〉, (5.11)

which is a separable state again.

4. For even larger effective interaction phases, the state entangles and disentangles again,
until for φχ = 2 π the initial state is restored:

|ψ〉 f = | ↑↑〉 = | ↑〉 ⊗ |↑〉. (5.12)

Due to the periodicity of the phase evolution, this entangling-disentangling dynamics is
periodic with the effective interaction phase φχ. The time scale of the dynamics is given
by the interaction energy ~ χ, or equivalently the scattering length difference aχ.

This rather simple case of two particles already shows how interactions can lead to a non-
trivial phase evolution and evolve an initially classical state into a non-classical, entangled
state with fascinating properties.
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5.1 Interactions between two spin-1/2 systems

5.1.2 Ramsey interferometry as a measure for entanglement

In order to detect the entanglement evolution of the two-particle state, outlined in eqs. (5.9-
5.12), we make use of the fact that the sequence leading to the final state is essentially a
Ramsey sequence. In a Ramsey interferometer as introduced in Section 3.4.4 the coherence
properties of the system are probed by mapping the relative phase between the two spin
states onto the population of these states. The fringe for one particular interaction time
is obtained by scanning the phase α of the last π/2-pulse. This general final state for the
interacting two-particle system is more complicated than the expressions (5.9-5.12). The
probability of finding an atom in state | ↑〉 is given by

P↑ =
1
2

(1 + cos φχ cosα). (5.13)

A detailed calculation of this probability can be found in Appendix B.1. Compared to
the usual Ramsey fringe Eq. (3.43), the probability (5.13) is in addition modulated by
the effective interaction phase φχ. Without interactions, the usual Ramsey fringe (3.43)
is recovered. However, for the entangled state (5.10) the final signal of a Ramsey fringe
would yield P↑ = 1/2 irrespective of the particular value of α. Consequently the Ramsey
fringe is collapsed.

This fact has already been observed in other context [58, 78, 140] for highly entangled
two-particle and many-particle states. The collapse of the Ramsey fringe can be understood
in a simple picture. If a single entangled entangled pair of the form (| ↑↑〉 + | ↓↓〉)/2 is
considered, a measurement will always yield a correlated result. Thus, either both atoms
are detected in state | ↑〉 or none. Calculating the total Ramsey fringe signal, in particular
Eq. (5.13), involves a quantum mechanical ensemble average. Although in an ensemble
each individual system yields a correlated outcome, they are not correlated among each
other. The individual results rather add up incoherently, so that in each realization on
average half the atoms are in | ↑〉 and half are in | ↓〉. Consequently the total detected signal
will always yield a probability of P↑ = 1/2 independent of the phase α. In order to reveal
the underlying quantum spin-correlations, higher order correlation functions would have
to be considered.

A quantitative measure of the entanglement dynamics (5.9-5.12) can be defined through
the visibility of the Ramsey fringe

V ≡
maxα P↑ −minα P↑
maxα P↑ + minα P↑

, (5.14)

which for the two-particle system evolves as

V = | cos φχ|. (5.15)

In particular, for a separable state (φχ = n π, n = 0, 1, . . .) the visibility reaches unity,
whereas it is zero for a maximally entangled state (φχ = (2n + 1) π/2, n = 0, 1, . . .). The
time evolution of such an entanglement oscillation is displayed in Fig. 5.2(b).
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Figure 5.2: (a) The relative phase of two interacting spin-1/2 particles with internal spins | ↑〉
(red) and | ↓〉 (blue) can undergo an entanglement oscillation. (b) The resulting visibility of
a Ramsey interferometer sequence exhibits oscillations, where the separable (classical) state is
present for V = 1 and the maximally entangled state for V = 0.

The collapse of the Ramsey fringe is hence an indication for an entangled state. However,
it is not a proof of entanglement, as decoherence also leads eventually to zero visibility. In
the case of an incoherent state, however, there is no possibility that a time evolution could
restore the coherence and the visibility could revive. The interaction induced collapse of
the Ramsey fringe must therefore be distinguished from decoherence effects as in the final
entangled state atom pairs are perfectly correlated. This can be seen by the phase dynamics
(5.9-5.12) which shows that these correlations can be re-converted into coherence of the
system. A full cycle of the dynamics as introduced above therefore shows the coherent
entanglement evolution and rules out the ”trivial“ collapse due to decoherence.

5.2 Interactions in a many particle quasi spin-1/2 system

The two-particle example in the previous section already demonstrated how proper inter-
atomic interactions can lead to a time evolution that evolves an initially classical state into
a state with non-classical properties. A system where this method could lead to even more
intriguing non-classical states is a many-particle spin-1/2 system. Here, the same type of
interactions can lead to mesoscopic samples of e.g. spin-squeezed states or might even lead
to highly entangled many-particle states, in particular mesoscopic material Schrödinger
cat states. This section will investigate the effect of inter-particle interactions on a many-
particle state analogous to the treatment of the two-particle case. For a more general
review see Ref. [23].
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5.2 Interactions in a many particle quasi spin-1/2 system

5.2.1 Quasi spin-1/2 model

A many-particle state is much more difficult to describe than the two-particle state, as
the number of terms in a state as given in Eq. (5.1) for an N particle state scales like 2N .
For larger atom numbers such an analysis can therefore not be done analogous to the two-
particle case. Instead, the case of N spin-1/2 systems is mapped onto a pseudo spin-1/2
system with collective spin Ŝ of magnitude N/2. The cartesian components of this spin are
defined as

Ŝ x =
ĉ†
↓

ĉ
↑

+ ĉ†
↑

ĉ
↓

2

Ŝ y =
ĉ†
↓

ĉ
↑
− ĉ†

↑
ĉ
↓

2i

Ŝ z =
ĉ†
↓

ĉ
↓
− ĉ†

↑
ĉ
↑

2
. (5.16)

Here, ĉ
↓

and ĉ
↑

are the annihilation operators for the two states | ↓〉 and | ↑〉, respectively.

The Ŝ z component describes the population difference between the two spin states, whereas
their relative phase is governed by the transverse components Ŝ x and Ŝ y. The cartesian
components of the collective spin Ŝ fulfill the usual angular momentum commutation re-
lations [

Ŝ u, Ŝ v

]
= εuvw i~ Ŝ w, (5.17)

with the Levi-Civita symbol εuvw.
In addition, raising and lowering operators can be defined as

Ŝ + = Ŝ x + iŜ y = ĉ†
↓
ĉ
↑

Ŝ − = Ŝ x − iŜ y = ĉ†
↑
ĉ
↓
. (5.18)

Ramsey interferometry

As for any spin 1/2 system, the quasi-spin 1/2 system introduced in eqs. (5.16) can be
visualized by a macroscopic Bloch sphere of radius N/2. Similar to the two-particle ex-
ample, a sample initially spin-polarized in | ↓〉, can be written as |S z = N/2〉 and visualized
as a vector on the Bloch sphere with length N/2 pointing to the lower pole. As before, a
π/2-pulse prepares the N-particle system in a coherent superposition of the two internal
states for each particle

|ψ〉 =

(
| ↑〉 + | ↓〉
√

2

)⊗N

. (5.19)

This state is an eigenstate of the Ŝ y operator with eigenvalue N/2. It belongs to a class
of many-particle states called coherent spin states (CSS) which can in general be written
as

|ϑ, ϕ〉 ≡
1
√

N!

(
cos

(
ϑ

2

)
e−iϕ/2 ĉ†

↑
+ sin

(
ϑ

2

)
eiϕ/2 ĉ†

↓

)
|0〉. (5.20)
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Figure 5.3: (a) Macroscopic Bloch sphere. (b) Quasi probability distribution (QPD) of a
coherent spin state for N = 100 on the macroscopic Bloch sphere. The variance of the distribution
is N/4 in any direction perpendicular to the spin vector. The color scale is the legend for the
QPD.

Here, the angles ϑ and ϕ give the position of the state on the Bloch sphere in spherical
coordinates, see Fig. 5.3(a). Different from the single-particle state, the many particle CSS
has a Gaussian shaped uncertainty in any direction S i perpendicular to the mean spin
vector which is expressed as the variance

∆S 2
i = 〈Ŝ 2

i 〉 − 〈Ŝ i〉
2 =

S
2

=
N
4
, (5.21)

which is the standard quantum limit (SQL) for fluctuations due to the uncertainty principle
for any value of ϑ and ϕ. This can be understood by expanding Eq. (5.19). All possible dif-
ferent spin configurations have to be summed, with the amplitude following a multinomial
distribution. Consequently, terms arise with non-zero probability that have imbalanced
spin-populations and lead to a distribution of spin populations along the Ŝ z direction.
Similarly fluctuations along the equator, i.e. fluctuations of the relative phase between the
two spin-states arise. The total distribution of fluctuations leads to the initial Gaussian
quasi-probability distribution (QPD) of the relative phase displayed in Fig. 5.3(b).

In order to extract information about the phase of the system, a phase operator is
needed. This can be done for the single particle phases of a CSS |ψ〉 = |π/2, ϕ〉. This state
is often referred to as phase state, as it exhibits equal populations of | ↑〉 and | ↓〉, and well
defined single particle phases, captured by the expectation value of the raising and lowering
operators

〈π/2, ϕ|Ŝ ±|π/2, ϕ〉 =
N
2

e±iϕ. (5.22)

For the many-body relative phase, however, it is more difficult to define such a phase
operator and is not a simple extension of the single particle phase. The discussion of
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5.2 Interactions in a many particle quasi spin-1/2 system

defining a many-body relative phase goes beyond the scope of this thesis; an approach can
be found for example in Ref. [141]. Here, a macroscopic relative phase is assumed to be
meaningful to the extend that the expectation values 〈Ŝ ±〉 are non-zero. As a consequence,
the relative phase φ ∝ 〈Ŝ +〉 and atom number difference n ≡ N↓−N↑ ∝ 〈Ŝ z〉 fulfill a modified
uncertainty relation

∆φ δn & 1. (5.23)

In a Ramsey sequence, the first π/2-pulse preparing a CSS is followed by a second π/2-
pulse with phase α compared to the first one. The final measurement of populations
amounts to finding the expectations value 〈Ŝ z〉. According to Eq. (5.22), the phase expec-
tation value before the final π/2-pulse will be rotated along Ŝ z and thus

〈Ŝ z〉 =
1
2

(
〈Ŝ +〉 eiα + h. c.

)
, (5.24)

where 〈·〉 denotes an average just before the final π/2-pulse. Taking into account that the
relative phase in a Ramsey interferometer evolves as ϕ = δ t one finds the usual formula
for the Ramsey fringe signal Eq. (3.43). It should be noted that as ∆Ŝ 2

+ , 0, also the final
Ramsey fringe signal shows noise due to the fluctuations in the initial CSS. This noise is
often referred to as “quantum projection noise”. If such a measurement is performed on a
single system, the outcome will consequently show scatter around the expectation value.
The probability of the outcome in a measurement is is depending on the variance of the
scatter in the corresponding observable. In an ensemble, as mentioned in the context of an
array of particle pairs, all the individual results add up incoherently to the total signal.

5.2.2 Interaction Hamiltonian in a many-body system

So far, the discussion of the many-body spin 1/2 without interaction has been very similar
to the one for a two-particle system. In case of interactions, however, the situation of the
many-particle case becomes more intricate and shows an intriguing dynamics, markedly
different from the entanglement oscillations discussed in Section 5.1.1.

Many-body interaction Hamiltonian

The Hamiltonian for an interacting ultracold two-component gas with states | ↑〉 and | ↓〉
can be written as [102]

Ĥ =

∫
dr Ψ̂

†

↑
(r)

[
−
~2∇2

r

2M
+ Vext(r)

]
Ψ̂
↑
(r) +

g
↑↑

2

∫
d3r

[
Ψ̂
†

↑
(r) Ψ̂

↑
(r)

]2

+

∫
d3r Ψ̂

†

↓
(r)

[
−
~2∇2

r

2M
+ Vext(r)

]
Ψ̂
↓
(r) +

g
↓↓

2

∫
d3r

[
Ψ̂
†

↓
(r) Ψ̂

↓
(r)

]2

+ g
↑↓

∫
d3r Ψ̂

†

↑
(r) Ψ̂

†

↓
(r) Ψ̂

↑
(r) Ψ̂

↓
(r). (5.25)
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Here Ψ̂i(r) is the bosonic field annihilation operator for an atom in state |i〉. In the first and
second row in Eq. (5.25) the first and second term describe the kinetic and intra-species
interaction for state | ↑〉 and | ↓〉, respectively. The term in the last row accounts for inter-
species interaction. As usual, the coupling constants are defined as gi j = 4π~2ai j/M, see
Eq. (2.10).

The Hamiltonian (5.25) can be simplified by making the following assumptions. (i) All
particles in a given spin state are assumed to occupy the same spatial ground state function
φ↑ or φ↓. (ii) These wave functions are stationary and rigid, i.e. independent of time and
changes in the respective atom number. And (iii) losses and dephasing do not occur. With
these assumptions the field operators are substituted by Ψ̂i(r) → φi(r) ĉi, with φi(r) → φi

the spatial wave function and ĉi the annihilation operator of spin state |i〉. In fact, the
assumptions (i) and (ii) imply that both condensate wave functions are equal (i.e. a single
mode approximation can be used) if a CSS |π/2, ϕ〉 is considered that has been created from
an initially spin polarized sample. In this case φ↑ = φ↓ = φ0, where φ0 is the initial spatial
wave function before the first π/2-pulse. With this Eq. (5.25) can be expressed in terms of
the z-component of the macroscopic spin operator introduced in Section 5.2.1. Neglecting
terms of higher order than quadratic in Ŝ z, the Hamiltonian reads [102]

Ĥ = f (N) + N ~η Ŝ z + ~χ Ŝ 2
z , (5.26)

where f (N) is a function of the total atom number N, i.e. absorbing terms of the form
ĉ†
↑

ĉ
↑

+ ĉ†
↓

ĉ
↓
. This term sets a global energy scale of the system. The second term accounts

for different interaction energies in the states | ↑〉 and | ↓〉, where

~η ≡
a↓↓ − a↑↑

2
Ũ, (5.27)

with Ũ = 4π~2/M ×
∫

d3r |φ0|
4, cf. Eq. (4.5). This term is the analogue to the precession of

the Bloch vector due to the energy difference between the two states in the single-particle
spin-1/2 Bloch sphere picture. The first two terms therefore lead to a dynamics of the
many-particle phase that can be compensated for by a proper rotation of the Bloch sphere.
Hence they will be neglected in the future discussion of the problem.

The third and non-linear term in Eq. (5.26) leads to a non-trivial phase dynamics of the
many-body state that will be investigated in the following. Here, the energy scale is set by

~χ ≡
a↑↑ + a↓↓ − 2 a↑↓

2
Ũ. (5.28)

This is the same effective interaction energy that has been introduced phenomenologically
in Eq. (5.6); here, however, no further approximations have been made.

Time evolution under non-linear interactions

The form of the Hamiltonian (5.26) is in particular convenient to study the time evolution
of a CSS (5.20). The Hamiltonian is expressed in terms of the operator Ŝ z and a CSS
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5.2 Interactions in a many particle quasi spin-1/2 system

can be easily expanded in terms of eigenstates to this operator. The time evolution then
reduces to a phase evolution of the various eigenstates. Assuming again a Ramsey like
sequence, the initial phase state |ϑ = π/2, ϕ = 0〉 can be written as (see Appendix B.2)

|ψ(t = 0)〉 ≡ |ϑ = π/2, ϕ = 0〉 =

N
2∑

mz=−
N
2

Cmz |mz〉. (5.29)

Here |mz〉 and mz are eigenstates and eigenvalues of the Ŝ z-operator, respectively, and the
coefficients Cmz are the coefficients of the binomial distribution. The time evolution under
the non-linear Hamiltonian

Ĥnl = ~χ Ŝ 2
z (5.30)

can therefore be calculated as

|ψ(t)〉 = e−iĤt/~ ψ(0) =

N
2∑

mz=−
N
2

C(mz) e−iχm2
z t |mz〉. (5.31)

A convenient visualization of the time evolution can be employed similar to the Q-function
in quantum optics [19], i.e. finding the overlap with some arbitrary coherent state |θ, φ〉 in
order to calculate the quasi-probability distribution

P(θ, φ, t) ≡ |〈θ, φ|ψ(t)〉|2. (5.32)

This function can be displayed as a quasi-probability distribution on the Bloch sphere as
shown in Fig. 5.4(a), or more conveniently as a projection onto a cylinder touching the
equator of the Bloch sphere, see Fig. 5.4(b).

Non-linear interactions that can be described by a Hamiltonian of the form (5.30) can
also be found in many other physical systems, where the situation is very similar to the
one presented here. For example, non-linear interactions between single, highly excited
Rydberg atoms coupled to a coherent electromagnetic field have been seen to induce a
non-trivial time-evolution leading to entangled states of the light field [142, 143]. Also,
an interacting BEC in a double well potential [144] can exhibit a similar dynamics [145],
where the two potential wells are the analogue of the two internal states presented here.
A general motivation of the form of (5.26) can be found in Ref. [23], where some of the
systems realizing this Hamiltonian are presented.

5.2.3 Coherent phase evolution of the many-particle state

The time evolution of the initial CSS given by eqs. (5.31,5.32) splits into several parts.
Some particular states resulting from this phase evolution are shown in Fig. 5.4.
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Figure 5.4: (a) Quasi probability distribution of a phase state (5.20) on the macroscopic Bloch
sphere. (b) Projection of this QPD onto a plane touching the equator of the Bloch sphere. This
initial state evolves under the non-linear Hamiltonian (5.30) to non-classical states. The acquired
interaction phases shown are: (c) χ t = 0.08; (d) χ t = 0.235 and (e) χ t = 0.471, spin squeezed
states. (f) χ t = π/4, partial revival. (g) χ t = π/2, Schrödinger cat state.

Phase spreading For small interaction times χ t � 1, the initially circular phase distri-
bution becomes increasingly elongated and takes the form of an ellipse [102, 135, 136, 137,
138, 146], see Fig. 5.4(c) and (d). The long axis of this ellipse is tilted with respect to the
equator where the tilt angle becomes smaller for larger interaction times. This stretching
of the phase distribution is often referred to as “phase diffusion” in literature as the relative
phase becomes more and more uncertain. This time evolution is, however, due to a unitary
Hamiltonian. In particular, proper manipulation of this Hamiltonian, for example, would
allow to reverse this evolution, in contrast to a real diffusive process. Therefore the term
“phase dispersion” will be used for the interaction induced spreading of the relative phase.

Spin squeezing The short axis of the ellipse exhibits an uncertainty which becomes
smaller than the SQL of N/4 [146]. Although the quantum fluctuations for conjugate
variables still have to fulfill the Heisenberg uncertainty principle, the fluctuations in one
observable can become smaller at the expense of the conjugate. These ”spin squeezed
states“ are a class of well studied correlated many-body states [19]. In fact, it has been
proposed to take advantage of the reduced fluctuations in order to improve the precision of
experiments in metrology or interferometry [20, 147]. Squeezed states of the electromag-
netic field have for example been realized in quantum optical experiments [148, 149, 150];
spin squeezed atomic states have been realized through the interaction with pre-squeezed
light [151] or in experiments with back action on an atomic sample after quantum non-
demolition measurements [152]. Although these methods can produce squeezed spin states
in atomic samples, the advantage of the method presented here is that the initial state is a
classical state that can be produced by default in experiments with ultracold atomic sam-
ples, involving a mesoscopic number of atoms. Moreover, a substantial amount of squeezing
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5.2 Interactions in a many particle quasi spin-1/2 system

can be achieved just by time evolution of this initial state. The minimal variance has been
calculated to occur after an effective interaction phase χ t ≈ 0.1, see Appendix B.2. In
fact, this method of creating spin squeezed states can be improved by choosing a slightly
different interaction Hamiltonian, which does not only involve a rotation around a single
axis (Ŝ z-axis here), but two perpendicular axes, for example Ŝ 2

+ + Ŝ 2
− [146]. The advan-

tages of the latter ”two-axis squeezing“ compared to the former ”one-axis“ squeezing are
that a larger degree of squeezing can be achieved and the tilt of the ellipse is absent. For
a different choice of the two axes, the time evolution can be faster [153]. This two-axes
squeezing is not investigated in this thesis, but might be an interesting extension in future
realizations.

Maximally entangled Schrödinger cat states For increasing interaction phases χ t >
0.15, the phase distribution wraps around the whole Bloch sphere and shows a more com-
plex sub-structure [102, 135, 136, 137, 138] (see Fig. 5.4(e)). For example, partial revivals
can be seen as displayed in Fig. 5.4(f), when the phase distribution breaks up into a super-
position of several CSS at different positions on the equator. After a well defined interaction
phase χ t = π/2, the distribution shows a superposition of two CSS on opposite sides of the
Bloch sphere in Fig. 5.4(f) [136, 139]. This state is a mesoscopic, material Schrödinger cat
state, the many-particle analogue to the Bell state introduced in Eq. (5.10). This state is
in particular interesting as a macroscopic number of particles (the cat) is in an entangled
many-body state

|CAT〉 =
1
√

2

(
|S y = N

2 〉 + |S y = −N
2 〉

)
=

1
√

2

(
|ϑ = π

2 , ϕ = 0〉 + |ϑ = π
2 , ϕ = π〉

)
, (5.33)

i.e. the sample is in a coherent superposition of having relative phase ϑ = 0 or ϑ = π. By
application of a π/2-pulse, this can be mapped for example onto a Schrödinger cat state
of the spin populations, i.e. 1/

√
2 (| ↑〉⊗N + | ↓〉⊗N). Although there is a strong demand for

the experimental realization of macroscopic, maximally entangled states, large material
Schrödinger cat states could so far not be produced. They are extremely fragile objects
which are destroyed by a single decoherence event, which could be a spin flip or loss of
an individual atom in the experiment. The probability for these events increases strongly
with the number of particles involved. So far, only small ”Schrödinger kitten“, involving few
entangled parties, could be realized in neutral atoms [110], ions [154] or photons [143, 155].

Revival of the initial state If the interaction phase becomes even larger χ t > π/2, the
phase distribution spreads again, until for χ t = 2π the initial state is restored up to a phase
factor of −1 [136].

Interaction induced collapse of the Ramsey fringe contrast

In order to experimentally track the signature of the coherent phase evolution induced by
the non-linear interactions, the method of observing the dynamics of the Ramsey fringe
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visibility introduced in Section 5.1.2 can be employed. The final signal after the last π/2-
pulse with phase α can be determined by calculating the expectation value of the spin
raising operator Ŝ + [23]. For this, the exact result given in Ref. [146] can be approximated
as

〈Ŝ +〉 =
N
2

(cos (χ t))N−1
≈

N
2

exp
{
−

N χ2t2

2

}
, (5.34)

where the approximation is valid for small interaction times χ t � 1. Substituting (5.34)
into (5.24), one finds the expected Ramsey fringe signal as

P↑(t) =
V(t)

2

(
1 + cos (δ t + α)

)
, (5.35)

where the visibility V(t) is defined in (5.14) and reflects the collapse of the Ramsey fringe
for short times according to

V(t) = exp
{
−

N χ2t2

2

}
. (5.36)

From this a typical collapse time can be defined as

tcoll ≡
1

χ
√

N
. (5.37)

The collapse of the Ramsey fringe is a consequence of the elongated phase distribution
along the equator. This can be intuitively understood by considering the mapping of the
phase distribution onto the Bloch sphere during the Ramsey sequence as shown in Fig. 5.5.
In particular, after a certain interaction phase has been acquired, the increased fluctuations
along the equator (neglecting the tilt of the ellipse) are rotated in the Ŝ z direction by the
last π/2-pulse and thereby translated into an uncertainty of the population measurement.

Comparing the typical collapse time (5.37) with the time scale on which squeezing of
the phase distribution occurs (see Appendix B.2), one finds that the state with minimum
variance in the squeezed axis is expected to occur already well before the Ramsey fringe
signal has completely collapsed [146].

Importantly, the collapse of the Ramsey fringe signal as discussed before is valid only
for short times. In fact, as the exact expression (5.34) is oscillatory, for interaction phases
χ trev = 2π, the initial CSS is expected to reform and the Ramsey fringe visibility would
revive. Such a revival of coherence has been seen in a different context, where the phase
evolution of a superposition of several lowest Fock states in a strongly interacting spinless
system showed a collapse and subsequent revival of the coherent matter wave field [110].
For the case presented here, the relatively small spin dependent interactions result in a
rather late revival. Compared to the typical collapse time (5.37) the revival is expected
to occur at a time trev = tcoll × 2π

√
N. Therefore the entanglement oscillations present in

the two-particle case transform into rather sharp revivals of coherence. The time scale of
the revival for typical mesoscopic atom numbers (≈ 100) can exceed the collapse time by
roughly two orders of magnitude.
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Figure 5.5: Illustration of the quantum phase distribution on the Bloch sphere during a Ramsey
sequence. (a) Initial state |S z = −N/2〉, (b) CSS |S y = N/2〉 after the first π/2-pulse , (c) Elongated
phase distribution due to phase dispersion according to (5.30). The final π/2-pulse rotates the
increased fluctuations along the equator into the S z-direction (d).

The first part of Eq. (5.34) shows also another important issue. For the Schrödinger
cat state χ t = π, the expectation value of the annihilation operator is exactly zero, and a
relative many-particle phase is not strictly defined.

5.3 Tuning elastic interactions

Observing the dynamics introduced in Section 5.1.1 for two spin 1/2-particles and in Section
5.2 for a many-body spin 1/2-system depends on the effective interaction energy ~χ. In
the single mode approximation it is essentially given by a difference of scattering lengths
aχ = (a↑↑ + a↓↓ − 2 a↑↓)/2, see (5.7). For example, when χ ≈ 0, the strength for various
combinations of interacting spins are balanced, and the phase evolution introduced above
takes place either on a very slow time scale, or it is completely absent for χ = 0.

For the atomic species 87Rb used in the experiments presented here, it turns out that
the scattering lengths in the two hyperfine ground states are all approximately equal. In
particular for the choice of | ↓〉 ≡ | f = 1,m = +1〉 and | ↑〉 ≡ | f = 2,m = −1〉, the predicted
scattering lengths are a↓↓ ≈ 100.4 aB, a↑↑ ≈ 95.7 aB and a↓↑ ≈ 98 aB [47], leading to an
effective scattering length difference of aχ ≈ 0.1 aB, where aB = 0.052918 × 10−9 m is the
Bohr radius. For typical experimental parameters (e.g. as given in Section 3.5) the spin
independent interaction is typically U/~ ≈ 2π× 3 kHz, while the corresponding spin depen-
dent interaction is on the order χ ≈ 2π × 3 Hz. Consequently the time scale on which the
interaction driven time evolution occurs changes from the order of milliseconds in the spin-
independent to seconds in the spin dependent case. From an experimental point of view
this makes it extremely difficult, if not impossible, to distinguish the phase evolution from
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other effects occuring on much faster time scales. In addition, experimental constraints
– summarized as decoherence processes – set a time limit on which a coherent evolution
can be detected. Therefore it is crucial to enhance the role of spin-dependent interactions,
i.e. increasing the effective interaction energy ~ χ. Unfortunately, the disadvantageous sit-
uation of χ ≈ 0 does not change significantly if other combinations of states within the two
hyperfine ground state levels are chosen.

There are, however, two approaches to directly modify the effective interaction energy.
First, the single mode approximation can be abandoned. Instead, an approximation with
two spatial modes φ↓ and φ↑ can be introduced. If those two modes can be controlled
independently, the corresponding interaction energies Ui j can be controlled via the wave
function overlap

∫
d3 |φi|

2 |φ j|
2. In this case the effective spin-dependent interaction can be

significantly larger than zero, and can even reach the strength of the spin-independent inter-
action [156, 157, 158]. This has been demonstrated recently by employing spin-dependent
optical lattice potentials that can be controlled to a very high degree [159]. For proper
conditions, the system has been predicted to show entanglement oscillations [160] leading
in the ideal case to a maximally entangled “cluster state” [156, 160]. This class of states
has intriguing properties making them a well suited candidate for quantum computation
purposes [161]. The creation of entanglement by spin dependent lattices has been detected
by collapse and revival of the contrast in a spatial interferometer as well as in a Ramsey
interferometric sequence [140].

The second possibility of tuning the effective spin-dependent interaction strength is to
directly affect the relevant scattering lengths. One tool offering this possibility is the mag-
netic Feshbach resonance (see for example Ref. [24]), which has received a lot of attention
in recent years.

5.3.1 Magnetic Feshbach resonances

In chapter 2 the collision of two particles in a molecular potential has been considered.
There, the relative wave function entered and left the molecular potential just above the
dissociation threshold; this scattering channel will be called “open channel” from now on.
Here the phase of the wave function was shifted due to the scattering potential. This
phase shift, determining the s-wave scattering length, can be strongly affected, if the in-
coming wave is coupled via the hyperfine interaction (2.13) to a bound state in some other
molecular potential, called “closed channel”, see Fig. 5.6(a). This coupling mixes the two
channels, so that part of the incoming wave acquires bound state character. The more
bound state is admixed to the incoming wave, the more time both atoms will spend in
close proximity. This will naturally lead to a larger phase shift of the asymptotic wave
function and consequently to a larger value of the scattering length. The amount of bound
state admixture in the open channel depends on the energy difference between the two
channels. In general, the quantum states of the open and closed channels differ by angular
momentum quantum numbers and have therefore different magnetic moments. Thus their
energy difference will depend on the externally applied magnetic field. For a certain mag-
netic field the incoming wave couples resonantly to the bound state. If a non-zero energy
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Figure 5.6: Principle of a Feshbach resonance. (a) The relative wave function (red) of two
colliding particles in the scattering potential (open channel) has an energy just above dissociation
threshold. If a bound state in some other molecular potential (closed channel, blue) is energetically
close to the scattering energy, the scattering phase shift can be strongly affected provided that
the channels are coupled via the hyperfine interaction. The energy difference between scattering
wave function and bound state can be tuned in some cases by an external magnetic field. When
the magnetic field is scanned across such a Feshbach resonance, the elastic (b) and inelastic (c)
part of the scattering length show the typical dispersive profile (5.38).

difference between the two channels exist, the sign of this difference also determines the
sign of the scattering length. For a strong coupling between the channels, there is a large
admixture of the molecular state in the total wave function. In most cases this molecular
state can decay to other ro-vibronic states such that a re-conversion to the open channel
is not possible. This process is detected as loss of atoms from the trap, giving rise to an
imaginary part of the scattering length.

As the detailed description of Feshbach resonances is extensive, only a phenomenological
description will be given here. In particular, the change of s-wave scattering length with
magnetic field B can be parametrized by the general expression [47, 32]

as(B) = abg

1 − e2i φR
∆el

B − B0 + 1
2 i∆inel

 , (5.38)

where B0 is the position of the Feshbach resonance, abg is the background s-wave scattering
length, i.e. far away from the resonance position, ∆el and ∆inel are the width of the elastic
and inelastic part of the scattering length, respectively. The physical meaning of ∆el is the
coupling strength between the two channels, and ∆inel depends on the energy width of the
bound state, determined by loss channels from this state. The phase φR is an additional
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Figure 5.7: Elastic (a) and inelastic (b) part of the predicted hyperfine Feshbach resonance be-
tween | f = 1,m = +1〉 and | f = 2,m = −1〉 for 87Rb. The curves have been calculated using different
input parameters and models. In particular, the red line is the one presented in Ref. [47] and the
blue includes in addition the data from Ref. [48]. Graphs are courtesy of Servaas Kokkelmans.

phase constant arising due to inelastic collisions [47] and resulting in an asymmetry of the
elastic part of the scattering length around the resonance position.

The scattering length given in (5.38) is a complex function of magnetic field. As men-
tioned above, similar to e.g. the complex index of refraction, the real part Re(a) is the
elastic scattering length, responsible for the coherent phase evolution. The imaginary part
Im(a) describes inelastic interactions, leading to losses in the system. Fig. 5.6(b) and (c)
show the typical course of the elastic and inelastic part of a Feshbach resonance. For 87Rb,
typical magnetic Feshbach resonances are at rather high magnetic fields between 400 G
and 1000 G for two atoms in the state | f = 1,m = +1〉; typical widths are between 1% and
up to 20% of the resonance magnetic field B0 [48]. These resonances are suited to form a
molecule from two colliding | f = 1,m = +1〉 atoms; moreover it would be possible to tune
the scattering length a↓↓ with respect to the other two scattering lengths, thereby changing
χ. However, the relatively high magnetic fields are experimentally difficult to handle in
the present experimental setup. Therefore another Feshbach resonance is used, where the
open channel asymptotically connects to the mixed spin state | ↑↓〉.

5.3.2 Mixed spin state Feshbach resonance in 87Rb

Such a hyperfine Feshbach resonance has been predicted to exist between the two states
| f = 1,m = −1〉 and | f = 2,m = +1〉, labelled as | ↓〉 and | ↑〉, respectively, for moderate mag-
netic fields around 9.1 G [47], see Fig. 5.7. Compared to other ”usual“ Feshbach resonances
that are used in order to study ultracold molecules [48], the decay of the bound molecu-
lar state is relatively large. Therefore, this resonance is not suited to create an ultracold
molecular sample. Moreover, the relatively large value of the inelastic width ∆inel leads to
a rather moderate change of a↓↑ on the order of a few 10% of the background value.
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Figure 5.8: Loss channel of the hyperfine Feshbach resonance. (a) Experimental sequence
locating the Feshbach resonance. (b) Remaining number of atoms after holding a coherent
superposition of | ↑〉 and | ↓〉 at the respective field for 1 ms in a 2D optical lattice. (c) Time
resolved loss of atoms right on the resonance field in a 3D optical lattice potential. Lattice sites
occupied by more than one atom are depleted within 3 ms, while isolated atoms remain trapped
for long times.

So far, the elastic part of the scattering length, responsible for the coherent phase evolu-
tion, has been at the focus of the discussion. As can be seen from Fig. 5.7(b), however, the
Feshbach resonance not only enhances this elastic interaction, but also losses. Probable
decay mechanisms are three-body recombination and two-body losses such as dipolar relax-
ation. In the first process two particles form a molecule, while a third particle absorbs the
excess energy and momentum to ensure conservation of both quantities, thereby probably
leaving the trap. Here all three particles are effectively lost, because the molecule cannot
be detected by the imaging sequence, although it might stay trapped. The second process
occurs between two particles, where without conservation of total angular momentum the
spin of a particle can flip from f = 2 to f = 1, releasing the hyperfine energy of h×6.8 GHz.
This energy is usually much larger than typical optical trap depths (Vlat = 40 Er corre-
sponds to ≈ h× 120 kHz) and transformed into kinetic energy, causing the particle to leave
the trap.

Experimentally locating the Feshbach resonance

In order to employ the hyperfine Feshbach resonance around 9.1 G its position has to
be precisely known. Therefore the inelastic channel of the Feshbach resonance is located
by detecting enhanced atomic loss in a superposition of the two relevant internal states
close to the resonance position. The sequence starts from a BEC loaded into a pure 2D-
optical lattice potential while a small homogeneous magnetic field along the x-axis of the
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system is still present (see Section 3.5). This magnetic field is actively stabilized in the
x-direction, while the magnetic fields along y and z are externally compensated without
active regulation. The stabilization sequence takes roughly 120 ms before the atoms are
transfered into the | ↓〉 = | f = 1,m = +1〉 state by a Landau-Zener sweep. Subsequently
the magnetic field is increased to ≈ 8.6 G (see Fig. 5.8(a)), and a resonant two photon
transition involving a microwave photon around 6.8 GHz and an rf-photon around 6 MHz
creates a coherent superposition of | ↓〉 and | ↑〉 = | f = 2,m = −1〉. Then, the magnetic field
is quickly (≈ 10 µs) ramped to various magnetic fields around 9.12 G, the predicted position
of the Feshbach resonance. The ramp speed is important, especially if the magnetic field
crosses the position of the resonance; in this case the ramp has to be fast enough so
that no effect of the increased interaction during the ramp already affects the state of
the system. At the final magnetic field value, the system can interact for 1 ms with the
corresponding scattering length. After this interaction time, all traps are switched off and
the residual total atom number is detected after TOF. For a magnetic field around 9.12 G
a strong atom loss is detected (see Fig. 5.8(b)), as is expected in the proximity of the
Feshbach resonance. The measured position 9.121(9) G and width 20(5) mG agree with the
theoretical prediction. The loss channel of this Feshbach resonance has also been detected
independently by another group [162].

In addition, Fig. 5.8(c) shows a time resolved loss measurement right on resonance, where
the sample has been prepared in a 3D-optical lattice. The system is expected to have sites
filled with predominantly either one or two atoms per site. Sites with a filling of larger
than two are expected to be depleted during the 150 ms wait time between the end of
the lattice intensity ramp and the microwave pulse preparing the coherent superposition.
After this pulse, only atom pairs can interact and consequently decay, while the isolated
atoms are unaffected by the Feshbach resonance. Hence, after long time, all atom pairs
will have decayed, while the isolated atoms remain trapped. The measured data therefore
allows to extract the number of singly and doubly occupied lattice sites, and shows that
roughly 105 atoms are trapped in doubly occupied sites. Further measurements, however,
indicate that lost atoms can undergo secondary collisions and cause e.g. isolated atoms to
also leave the trap. This effect can be on the order of 10% . Further, the time resolved loss
curves taken in a 2D and a 3D optical lattice configuration do not show a drastic difference
except for the offset due to isolated atoms trapped in the 3D lattice, as can be seen in
Fig. 5.9(a). This points to the fact that two-body decay processes are dominant for the
observed loss of atoms; in particular, as the losses are definitely enhanced by the vicinity
of the Feshbach resonance, exactly one atom is lost from either spin state | ↑〉 and | ↓〉. This
will be important in the later discussion of the role of losses during the many-body phase
evolution.

Finally, a new, so far unknown hyperfine Feshbach resonance could be located in the
loss channel. This resonance has been measured to exist between the states | f = 1,m = +1〉
and | f = 2,m = 0〉 at a magnetic field of ≈ 9.06 G. As can be seen from Fig. 5.9(b), the
amplitude and width of the loss channel is comparable to the previously detected resonance.
The position has subsequently been found in calculations [50].
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Figure 5.9: (a) Time resolved atom loss on resonance for systems optical lattices with varying
spatial degree of freedom. 1D lattice (pan-cake shaped systems) (�), 2D lattice (cigar shaped
systems) (�) and 3D lattice (isotropic lattice sites) (4). The increased loss rate from 1D to
2D is due to the enhanced density in the tubes. For a 3D lattice the atom number levels at a
finite number, indicating the presence of isolated atom pairs. (b) Loss channels of the Feshbach
resonances between | f = 1,m = +1〉 and | f = 2,m = −1〉 (�) and the so far unknown resonance
between | f = 1,m = +1〉 and | f = 2,m = 0〉 (�). The fit for the new resonance yields B0 = 9.057(7) G
and ∆loss = 13(5) mG. For the previously known resonance the fitted position and width are
B0 = 9.117(7) G and ∆loss = 14(5).

5.4 Interaction induced binary entanglement in an optical lattice

The elastic channel of the Feshbach resonance found close to the predicted magnetic field
opens the opportunity to study the phase evolution to binary entangled states, introduced
in Section 5.1. In order to observe the expected entanglement oscillations, a Ramsey-type
interferometer sequence is used to study the coherence properties of atom pairs trapped in
a deep 3D optical lattice potential.

5.4.1 Observation of interaction induced entanglement oscillations

The experimental sequence is similar to the one used for locating the Feshbach resonance
through enhanced atomic losses, see Section 5.3.2, and shown in Fig. 5.10. Instead of
a single microwave pulse we perform a complete Ramsey sequence, where in the time
between the pulses the interaction properties are changed by ramping the magnetic field
to a certain magnetic field value in the proximity of the Feshbach resonance. Thereby the
coherent superposition created by the first π/2-pulse (5.1) can evolve under the influence of
an increased non-linear interaction energy ~χ to the various final states given in eqs. (5.9-
5.12). The coherence properties of these states are probed by the last π/2-pulse. In order
to apply this pulse, the magnetic field is ramped back to the value present during the first
pulse. In addition, a single-particle spin echo π-pulse is included to compensate for time
constant spatial inhomogeneities in the system. Finally, the relative number of atoms in
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Figure 5.10: Experimental sequence for the Ramsey interferometer in order to observe the
two-particle entanglement oscillations in a deep 3D optical lattice.

| ↑〉 is detected as a function of the phase of the last π/2-pulse.

The Ramsey fringes obtained by this sequence for a certain magnetic field show an
interesting behaviour displayed in Fig. 5.11, which is expected from the discussion in Section
5.1.2. The contrast starts initially at a high value and follows an oscillatory collapse and
revival evolution with time, as expected from the entanglement dynamics predicted in
Eq. (5.15). However, it is important that the system is not described by the atom pair
signal alone, but the isolated atoms have to be taken into account. Although these atoms
do not take part in the interaction induced entanglement evolution, they do show a Ramsey
fringe signal. The importance can be seen in particular for the effective interaction phase
of φχ = π/2. The atom pairs are expected to not contribute to the total signal as suggested
by Eq. (5.10). Isolated atoms, however, still show a Ramsey fringe. As their contribution
can be up to 50% of the total signal, for this interaction phase, a total fringe signal is still
expected. On the other hand, when the atom pairs have disentangled again, their Ramsey
fringe is phase shifted by π compared to the fringe of isolated atoms, as can be seen by
comparing the two final states (5.9) and (5.11). Thus if the isolated atoms are in state
| ↑〉, the pairs will be in | ↓〉 and vice versa. Hence the detected total signal will exhibit
a minimum modulation. The value of this residual modulation depends on the ratio of
singly to doubly occupied sites. As approximately half the atoms are isolated and half are
trapped in doubly occupied sites, the minimum visibility will be close to zero. However,
loss of atom pairs during the interaction will increase the minimum observable visibility.
Importantly, for an interaction phase of φχ = 2π the final state is restored. Here, atom
pairs and isolated atoms show in-phase Ramsey fringes. Consequently the contrast of the
oscillations is maximal.

In summary, for the interpretation of the Ramsey fringe data obtained in a system with
both isolated atoms and particle pairs, two effects have to be taken into account. First,
the collapse and revival of the Ramsey fringe contrast of the atom pairs due to interaction.
And second the phase between the Ramsey fringe contributions of atom pairs and isolated
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Figure 5.11: Ramsey fringes at a magnetic field of B = 9.081 G and interaction times of (a)
0.1 ms, (b) 2 ms, (c) 4 ms, (d) 7 ms, and (e) 10 ms. (f) - (j) On the right hand side a sketch
illustrates for each respective interaction time the interplay between singly and doubly occupied
lattice sites, where only the atom pairs undergo the entanglement oscillations: (f) in-phase
Ramsey fringes, (g) entangled atom pairs, (h) fringes of isolated atoms and pairs are π out of
phase, (i) entangled pairs, and (j) Ramsey fringes of all atoms are in phase again.
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Figure 5.12: (a) In a mixture of isolated atoms and atoms pairs the contribution of both
fractions add in the total signal of the Ramsey fringe measurement. (b) The form of the contrast
versus interaction phase ∆φ depends on the ratio n1/n2. For balanced populations (solid), the
visibility reaches zero at exactly ∆φ = π, where both populations show a Ramsey fringe out of
phase. For a ratio larger than unity (n1/n2 = 3/2 dashed line), the contrast never reaches zero,
whereas for a ratio smaller than unity a small revival can be seen (n1/n2 = 2/3 dotted line). In
all cases, the entangled pairs form for finite contrast at ∆φ = π/2, 3π/2 (blue shaded region). For
n1/n2 = 0 the behavior shown in Fig. 5.2 is recovered.

atoms. This can be quantified by the expected Ramsey fringe signal which becomes

P↑ = n1 cos(α) + n2 cos(α) cos(∆φ), (5.39)

where n1 is the fraction of isolated atoms and n2 = 1 − n1 is the relative number of atoms
trapped at sites with double occupancy. The form of the resulting visibility oscillations
depends very much on the ratio n1/n2, as can be seen in Fig. 5.12, and it can strongly deviate
from the dynamics predicted by Eq. (5.15). In fact, the measured form of the visibility
curve versus interaction time (see Fig. 5.13(a)) shows a rather harmonic oscillation, which
in comparison with the theoretically calculated curve in Fig. 5.12(b) suggests a ratio of
n1/n2 slightly larger than unity.

5.4.2 Precision measurements of elastic scattering properties

Another interesting feature of the interaction induced entanglement oscillations is the pos-
sibility to extract precise information about the altered interaction properties via the time
scale of the phase evolution. In particular, for the revival of the Ramsey fringe contrast
one finds

2π = φχ =
1

trev
Ũ × aχ, (5.40)

where trev is the interaction time after which the contrast has reached its maximum again.
This can be precisely determined from the measured curves of visibility versus interaction
time for a given magnetic field B as shown in Fig. 5.13(a).
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Figure 5.13: (a) Visibility V of Ramsey fringes versus interaction time t for a magnetic field
of B = 9.081 G. The time trev when the visibility reaches a maximum again is determined by
the change of elastic scattering length due to the Feshbach resonance. The value of the revival-
visibility is limited by single-particle decoherence. Comparison with Fig. 5.12(b) suggests a ratio
n1/n2 slightly larger than unity. (b) Extracted effective scattering length difference aχ versus
magnetic field in the proximity of the Feshbach resonance. The sign of the scattering length has
been determined independently (see text).

The factor Ũ can be also independently determined by either calculations (see Section
3.3.2) or by calibrating the interaction strength via a collapse and revival of the coherent
matter wave field [110]. The only unknown parameter is aχ(B) which can be hence extracted
from (5.40) by measuring trev as a function of the magnetic field value. This yields the basic
form of the elastic channel for the predicted Feshbach resonance. This method, however, is
not sensitive to the sign of the effective scattering length difference aχ. In order to obtain
also information about the sign of the effective scattering length difference, the size of the
condensate prepared in a coherent superposition of | ↑〉 and | ↓〉 after TOF is measured,
where during the first 3 ms of TOF the magnetic field is held at a certain value close to
the Feshbach resonance [163]. The altered average scattering length is transformed into
kinetic energy and can thereby change the expansion during TOF. The atom cloud changes
size by ≈ 10%, indicating a larger average scattering length below the resonance and a
smaller above. As the intra-species scattering lengths remain unchanged, this change can
be attributed to the inter-species scattering, in agreement with the theoretical prediction.
Including this information yields a complete measurement on the elastic channel of the
Feshbach resonance; a fit to the expected dispersive profile returns a resonance position
of B0 = 9.128(9) G and a width of ∆ = 15(4) mG, also in good agreement with theoretical
predictions.
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5 Coherent interaction induced phase evolution

5.5 Reversible quantum phase dispersion in the many-particle system

Although the extension from the interacting two-particle case to N interacting particles
appeared to be straightforward when turning from Section 5.1 to Section 5.2, the experi-
mental realization turns out to be more involved. An important issue is the time scale on
which the dynamics occurs compared to the coherence time of the system. Typical coher-
ence times for the two states | ↑〉 and | ↓〉 are on the order of several ten milliseconds and
limited by external, technical decoherence sources. The influence of decoherence can be
seen e.g. in Fig. 5.13(a), where the decoherence limits the revival visibility toV(trev) . 70%.
Therefore the phase evolution must take place in a time short compared to this limit. In
addition, in the many particle case several other physical mechanisms affecting the macro-
scopic relative phase have to be considered in order to gain a quantitative understanding of
the experimentally obtained Ramsey fringe decay. Therefore the most important physical
mechanisms will be discussed before the main results are presented.

5.5.1 Theoretical Model of Ramsey fringe collapse close to the Feshbach resonance

Single particle decoherence

Technical imperfections in the time period between the two π/2-pulses, such as magnetic
field fluctuations or fluctuation of the lattice laser beam pointing or intensity, lead to a loss
of coherence that typically suppresses the visibility of a Ramsey fringe exponentially with
time

V(t) ∝ exp
(
−

1
2

t
tdec

)
. (5.41)

Moreover, as the experimentally realized situation comprises many individual systems,
spatial inhomogeneities cause a dephasing of the Ramsey fringes. This is also accounted
for in the exponential decay (5.41). In practice, the time constant tdec of this drop in the
cases presented here is determined by an exponential fit to an experimentally obtained
visibility decay far away from the Feshbach resonance, as shown in Fig. 5.14 with a typical
decoherence time of tdec = 27 ms.

Phase dispersion

Preparing a 3D optical lattice system with a larger number of atoms might seem to be a
simple way of increasing the number of interacting particles together with the non-linear
interaction energy. Unfortunately, this approach is not feasible, as the resulting large
densities at each lattice site combined with the relatively high loss rates in the f = 2 state
would quickly deplete any lattice site with more than two atoms.

In order to keep losses low, instead of three pairs of standing waves only two are super-
imposed onto the BEC, creating a 2D optical lattice. In this case, atoms are trapped in an
array of cigar shaped tubes (see Fig. 3.5(a)). In each of these tubes a quasi-1D Bose gas is
realized [56, 67, 164]. Calculations (see Appendix B.3) show that for an atom number of
2.8 × 105 atoms, on the order of 8 × 103 tubes are filled with on average ∼ 60 atoms. For
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Figure 5.14: Time resolved decay of Ramsey fringe visibility far away from the Feshbach res-
onance at 8.7 G. The solid line is a fit to an exponential, yielding a decay to the e−1/2 value in
27 ms.

typical final lattice depths of 40 Er along two axes, the radial confinement within each tube
is strong, with trap frequencies ω⊥ ≈ 2π × 40 kHz, while the axial confinement is relatively
weak, ωax ≈ 2π × 90 Hz.

In order to calculate the non-linear interaction energy it is important to notice that the
relevant quantity for the time evolution is the interaction energy rather than the chemical
potential. The interaction energy is defined as

Utube =
∂µ

∂N

∣∣∣∣∣
N=Ntube

, (5.42)

where µtube and Ntube are the chemical potential and atom number in a single tube, respec-
tively. As the chemical potential follows a power law (see Appendix B.3), the interaction
energy can be calculated as [68]

Utube =
2
3
µtube

Ntube
∝ N−1/3

tube . (5.43)

Hence, for constant chemical potential the interaction energy is effectively reduced with
increasing number of particles. In order to estimate the value of the non-linear interaction
parameter χ, the center of the Feshbach resonance is re-located in the 2D-lattice configura-
tion (B0 = 9.120(4) G) and assumed to have the same width ∆el = 15(4) mG and amplitude
≈20(4)% of the bare scattering length a↓↓ as stated above. This yields scattering length
differences aχ on the order of a few 10% of the bare scattering length.

In order to calculate the interaction strength ~χ, a single tube with Ntube atoms is con-
sidered that is axially in the Thomas-Fermi regime with known chemical potential µ [67].
The actual distribution of atom numbers Ntube in the array is calculated similar to the
procedure in Ref. [16] by using the total atom number and actual trap parameters of our
system. However, as argued in Appendix B.3, the total atom number affects the non-linear
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interaction energy only very weakly. Therefore in the following a single tube is assumed
and the average atom number and chemical potential in this system is calculated in order
to find the relevant non-linear interaction energy. For the trapping parameters given above
and an atom number of Ntube = 60, the chemical potential can be calculated according
to Ref. [67] as µ ≈ h × 2.5 kHz. With this we find non-linear interaction parameters for
B = 9.131 G of χ ≈ 2π × 29 Hz and for B = 9.106 G of χ ≈ 2π × −25 Hz, respectively.
The errors resulting from the uncertainty in the position and width are displayed in the
calculated graphs below (Fig. 5.15 and 5.19) as shaded regions.

The role of losses

Atom losses can change the coherence of the system in various ways. If atoms are lost,
usually internal energy is released as kinetic energy which can heat the system through
secondary collisions and thereby diminish the coherence of the Ramsey interferometer prior
to the last π/2-pulse. This effect becomes apparent as an exponential drop of the contrast
of the Ramsey signal. In a fit, it is effectively described as single particle decoherence
(5.41).

However, losses affect the phase distribution also in a more subtle way. As mentioned
above, relative phase and atom number can be considered conjugate variables. Conse-
quently, a random, uncorrelated loss from either spin state will lead to a phase kick of the
expectation value 〈Ŝ +〉. A series of such uncorrelated loss events will leave the expectation
value of the phase unchanged. However, the distribution of the relative phase will spread
irreversibly as has been shown in Ref. [165]. In this context it is important to note that the
losses in the proximity of the Feshbach resonance are very likely to be correlated, as can be
seen from the atom loss in a deep 3D optical lattice. There, the loss of atoms is strongly
increased when approaching the resonance, even in a situation where three-body recombi-
nation is suppressed due to the lack of lattice sites with occupation number larger than two.
This suggests that in particular the two-body loss rate is enhanced, which corresponds to a
loss of exactly one atom from either spin state. From the formalism of Ref. [165] it can be
shown that these correlated losses leave the phase distribution undisturbed. Therefore only
the two-body and three-body loss rates far away from the resonance need to be considered.
Applying the results of Ref. [165] to the case presented here, one finds a suppression of the
Ramsey fringe contrast by a factor

V(t) ∝ exp
−1

2

(
t

tloss

)3 . (5.44)

The characteristic decay time

tloss =

(
3

χ2 p2λ

) 1
3

(5.45)

depends on the specific loss process, where p particles are lost with an event rate λ per
particle. With measured values of the three-body recombination rate for f = 1 of K3 ≈

5.8×10−30 cm6/s ([33]) and for f = 2 of K3 ≈ 1.8×10−29 cm6/s ([43]) it can be estimated that
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this contribution can be neglected for the experiments presented here. The corresponding
decay time tloss is on the order of a second. For the two-body loss the relevant process is the
collision of two atoms in state | ↑〉 (i.e. f = 2), where losses have been seen to be significant
[25]. Here the corresponding loss rate has been measured [25] as K2 ≈ 8.8 × 10−14 cm3/s.
This contribution is more significant and yields for B = 9.131 G a value of tloss ≈ 43 ms.

Effects on the spatial wave function

So far the discussion of interactions in a many-body system was greatly simplified by the
single mode approximation, i.e. assuming a common, constant wave function for all spin
states. Initially, all atoms occupy the same spatial wave function, as before the first π/2-
pulse they are in the same spin state. The validity of this assumption after the preparation
pulse depends strongly on the non-linear interaction parameter, in particular on its sign.

Below the Feshbach resonance χ < 0 and the inter-species repulsion a↑↓ is larger than
the intra-species repulsion a↓↓, a↑↑. As the system tries to minimize the repulsive energy,
the system tends to avoid the largest contribution due to inter-species interaction a↑↓ and
the initially well overlapped wave functions φ↑ and φ↓ will start to demix. Hence the
system becomes dynamically unstable. The instability leads to the exponential creation of
elementary excitations, resulting in a reduced wave function overlap and possibly heating
prior to the final π/2-pulse. Therefore the Ramsey fringe contrast in this situation is
reduced compared to the same absolute value of χ above the resonance. There, it is
energetically favorable for the two spin states to mix as here the inter-species repulsion is
smaller than the inter-species repulsion a↑↓ < a↑↑, a↓↓.

It should be noted that this kind of phase separation would also occur in a perfectly
homogeneous system; it is therefore different from the one observed in Rubidium spinor
BECs before [35], where χ ≈ 0 and the separation was driven by the inhomogeneity of the
magnetic trap and a small difference between a↑↑ and a↓↓.

To quantify the effect of the phase separation on the final Ramsey fringe contrast, a
Bogoliubov-type approach (cf. [54]) can be used to calculate the excitations in the system.
From this one can estimate the visibility reduction of the Ramsey fringe due to the phase
separation in the center of the tube as [166]

V(t) ∝ exp
(
−

1
2

t
tφ

)
, (5.46)

with the time constant

tφ = c
N~2ωz

µ2 ×
a↓↓
aχ
, (5.47)

where ωz is the axial trapping frequency along the tube, c is a proportionality constant
and aχ is assumed to be negative. In practice, the corresponding time constant is extracted
from a fit to experimentally measured data.
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Figure 5.15: (a) Different contributions to the final Ramsey fringe collapse behavior. Included
are the contributions of single particle decoherence (dashed line), phase dispersion (solid line),
atom losses (dotted line), and phase separation below the Feshbach resonance (dashed-dotted
line), calculated here for a typical experiment below the resonance at B = 9.106 G. At this magnetic
field a non-linear interaction energy of χ = −25 Hz is expected. The single particle decoherence
has been extracted from an independent measurement far away from the Feshbach resonance, see
Fig. 5.14. (b) The total signal of Ramsey fringe collapse for magnetic fields above B = 9.131 G
(corresponding to χ ≈ 29 Hz), black, and below B = 9.106 G the Feshbach resonance, red line.
The latter is the signal obtained by incorporating all contributions shown in part (a). The shaded
region reflects the possible values consistent with the uncertainties in position and width of the
Feshbach resonance.

Total signal

The different effects presented above allow to estimate the total signal that is expected when
the collapse of the Ramsey fringe is monitored in a time resolved measurement. Fig. 5.15(a)
shows the contributions of the various mechanisms, according to phase dispersion (5.36),
atom losses (5.44), and the phase separation below the Feshbach resonance (5.46). For
the last contribution a proportionality constant c on the order of unity has been used;
furthermore Eq. (5.46) has been assumed to be valid for the whole extension of the tube,
instead of the tube center only. The resulting total signal for two magnetic fields above
and below the Feshbach resonance are shown in Fig. 5.15(b).

5.5.2 Interaction induced collapse of the Ramsey fringe

The experimental sequence is very similar to the one used in the two-particle case, but
the atoms are now confined in a quasi 1D geometry as explained above. A first π/2-pulse
creates a CSS, which can evolve at a certain magnetic field B1 for an interaction time tint.
Then a second π/2-pulse with variable phase α is again used to read out the relative phase
between the two internal states. A Ramsey fringe is obtained by scanning α over 2 π. The
decay of contrast as defined in (5.14) is monitored over time at various magnetic fields.

Far away from the Feshbach resonance the effect of the non-linear term can be neglected.
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Figure 5.16: (a) Time resolved decay of Ramsey fringe visibility at two magnetic fields located
almost symmetrically around the Feshbach resonance, B = 9.106 G (red) and B = 9.131 G (black).
The solid lines are a constrained fit to (5.48). The dashed line reproduces the exponential decay
far away from the resonance presented in Fig. 5.14. Each data point corresponds to a full Ramsey
fringe, as shown here for 9.131 G and t = 0.3 ms (b) and t = 10.2 ms (c).

An estimate using the scattering lengths quoted in Section 5.3 yields a typical time scale
for the phase dispersion on the order of a second, far beyond the expected coherence time.
In fact, a measurement of the Ramsey fringe visibility, including a single particle spin-echo
pulse, shows an exponential decay to the e−1/2 value within 27 ms as shown in Fig. 5.14.
This decay is likely to be due to technical imperfections, such as technical noise on the
currents creating the magnetic fields, background magnetic field fluctuations, or heating
of the sample due to laser beam intensity or beam pointing fluctuations. We assume this
decoherence to be approximately constant and use the measurement presented in Fig. 5.14
as a reference for the further discussion.

When the magnetic field is tuned close to the Feshbach resonance, the measured decay of
Ramsey fringe visibility is much faster. In fact, this behavior is expected for an increased
non-linear interaction. In Fig. 5.16 the time resolved decay of Ramsey fringe contrast is
shown for two magnetic fields located almost symmetrically around the Feshbach resonance.
As predicted by Eq. (5.36) the visibility drops faster than far away from the resonance. In
fact, a single particle spin echo does not seem to have an effect on this behavior, supporting
the assumption that the decay indeed is due to enhanced atomic interaction.

However, the observation differs from the prediction (5.36) in an important respect.
Although both magnetic fields have the same separation from the center of the Feshbach
resonance, implying an almost identical absolute value of the non-linear interaction energy
~χ, the decay is much faster below the resonance. In contrast, Eq. (5.36) predicts a
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5 Coherent interaction induced phase evolution

symmetrical phase evolution if the change in interaction strength is symmetric. This can
be attributed to the phase separation below the Feshbach resonance introduced in Section
5.5.1. In fact, a comparison between the measured data in Fig. 5.16 and the predictions of
the model shown in Fig. 5.15 shows qualitative agreement between both figures. In order
to extract quantitative information, a fit function is used, which includes the different
contributions as introduced in Section 5.5.1

V(t) = exp
{
−

1
2

(
t

tdec

)}
× exp

−1
2

(
t

tdisp

)2
 × exp

−1
2

(
t

tloss

)3
 × exp

{
−

1
2

(
t
tφ

)}
, (5.48)

where the last term is relevant only below the Feshbach resonance.
For the data above the resonance at 9.131 G the independently determined value for

tdec = 27 ms (see Fig. 5.14) and the calculated value tloss = 43 ms are fixed. The fit yields
tdisp = 8.9(4) ms, on the same order as the calculated value of 4.5+2

−0.2 ms for this magnetic
field. For the measurement below the resonance B = 9.106 G, the contributions tdec = 27 ms
and tloss = 47 ms are fixed. The remaining two parameters are fitted to be tdisp = 9(2) ms
and tφ = 4.6(7) ms, also close to the calculated value tdisp = 5.0+2.5

−0.8 ms.
This enhanced Ramsey fringe collapse in the proximity of the Feshbach resonance is

highly indicative of an interaction induced phase evolution. However, it is no proof for
a coherent evolution of the relative phase, as other mechanisms such as decoherence can
lead to a similar signature close to the Feshbach resonance. In particular, the systematic
deviation of the fit from the measured data above the resonance in Fig. 5.16 suggests that
the single particle decoherence has a larger effect on the total signal than far away from
the resonance.

5.5.3 Time reversal

One possible way to prove that the quantum phase evolution is coherent, is to increase the
interaction time, until the initial, disentangled state is restored. This could be detected by
a revival of the coherence of the system as the initial CSS re-forms. From the discussion in
Section 5.2.3 the revival time can be ≈ 50 times larger than the typical collapse time tdisp.
For the cases shown above, this would correspond to a revival time trev ≈ 400 ms. Con-
sidering the fact that the other mechanisms tend to suppress the Ramsey fringe visibility
on time scales already below 100 ms, it becomes apparent that this approach cannot be
accomplished in the present setup. In fact, comparing the entanglement dynamics of two
particles with the expected revival time of the many-body system (see Fig. 5.17) suggests
that in the present situation the contrast of the many-body system is suppressed during
the long waiting time until the revival occurs.

Instead, we follow a suggestion to time-reverse the evolution [167, 153], and thereby
observe a revival of coherence in the system at much earlier times, well within the coherence
time of our system. Such a time reversal sequence has been used in cavity quantum
electrodynamics experiments [168] to probe the quantum dispersion of a coherent light
field.
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Contrast

Interaction time t

Figure 5.17: Calculated contrast versus interaction time for the two-particle case (black) and
the many particle case (red). For illustration purposes, only every third oscillation in the two
particle curve is shown. The parameters used are U/~ = 2π × 3 kHz, µtube/~ = 2π × 2.5 kHz,
Ntube = 60, χ = 0.1 a↑↑.

Neglecting the effect of the spatial wave function, an initial contrast drop due to the
non-linear interaction (5.30) can be restored by changing the sign of χ, which effectively
reverses the time dynamics of the phase from −i|χ|Ŝ 2t to +i|χ|Ŝ 2t. However, since the
spatial wave function is also affected by a sign change of χ, an increase of Ramsey fringe
contrast is not always a sufficient signal of coherent phase evolution, as the transition from
a dynamically instable to a spin-mixing situation could increase the visibility similarly to
the phase dynamics.

Experimental time reversal sequence

In order to be able to attribute the increased visibility to the coherent nature of the phase
evolution, the following sequence is applied (see Fig. 5.18(a)).

After a first π/2-pulse, the system evolves for 6 ms under an effective interaction χ > 0,
i.e. at a magnetic field B1 above the Feshbach resonance, until the Ramsey fringe contrast
has dropped to approximately 60%. In this region the two spin components are miscible
and the spatial wave functions are expected to be well overlapped. Subsequently, the sign
of the effective interaction is rapidly changed from χ > 0 to χ < 0 by quickly ramping the
magnetic field over the Feshbach resonance to a value B2 a few 10 mG below the resonance.
In this region demixing of the two spin components tends to decrease the Ramsey fringe
contrast. Consequently, any increase in the visibility after changing the sign of χ can be
attributed only to a reversed coherent phase evolution rather than to a change in the spatial
wave function overlap.

Ramping through the resonance, however, is accompanied by drastically increased atom
losses induced by the Feshbach resonance. If these losses cannot be omitted, they easily
completely destroy the coherence of the system, leaving a small thermal atomic sample.
In order to minimize the effect of losses on the system, shortly before the magnetic field
ramp, the atomic density is reduced by lowering the trap depth of the optical potential to
a value of the mean radial trap frequency of ω⊥ ≈ 2π × 27 kHz. The ramp of the optical
potential is done in ≈ 200 µs, which is slow enough not to excite higher radial vibrational
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Figure 5.18: (a) Time reversal sequence for the magnetic field (upper graph) and optical po-
tential (lower graph). Within the first 6 ms of interaction time, a π-pulse acts as a single-particle
spin echo. This is, however, not possible in the second hold time at B2, because this would imply
two additional ramps through the resonance to reach the magnetic field B1 while applying the
π-pulse. Moreover, as stated above, an effect of the single-particle spin echo on the Ramsey fringe
contrast decay could not be seen close to the Feshbach resonance. (b) Real and imaginary part
of the scattering length around the Feshbach resonance. Ramping the magnetic field from B1 to
B2 brings the system through a regime of extremely high losses. In order to avoid substantial
heating, the optical potential is lowered in order to reduce the atomic density while the magnetic
field is changed. Thereby the magnetic field ramp can be performed without measurable heating
or losses.
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5.5 Reversible quantum phase dispersion in the many-particle system
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Figure 5.19: Result of a time reversal sequence on the quantum phase dispersion. (a) Measured
data where the sample has been held exclusively at B1 = 9.131 G (black) or B2 = 9.101 G (green),
and of the time reversal, where the system could interact for 6 ms at B1. The magnetic field is
subsequently changed to B2 (red). (b) Predictions of the model with no free parameter for the
same situation as predicted in (a). The red shaded region reflects the possible values consistent
with the uncertainties in position and width of the Feshbach resonance. The time when the
reversal is applied is indicated by a blue shaded region and blue line for (a) and (b), respectively.

modes in the system. The subsequent magnetic field ramp crosses the region of increased
losses at the center of the resonance within a few 10 µs. Finally the magnetic field needs
≈ 200 µs to stabilize at the final value before the optical potential is ramped back up to its
initial value. This sequence takes approximately 1 ms and enables us to cross the resonance
without significant additional atom loss or heating.

Due to the changed sign of χ, the phase dynamics is effectively inverted and causes the
phase distribution to evolve back towards the initially prepared Gaussian distribution, and
beyond [136]. As a consequence, the measured contrast of a Ramsey fringe will increase
with time until the initial distribution is restored; further time evolution will cause the
Ramsey fringe contrast to drop again. It should be noted that the time reversal presented
here relates to the evolution of the many-body wave function, while the more common
single particle spin echo technique in magnetic resonance affects only the single particle
evolution.

Fig. 5.19(a) displays the result of such a time-reversal sequence together with the pre-
diction of the model introduced above (no free parameters) in Fig. 5.19(b). Although the
model systematically predicts smaller visibilities, it qualitatively reproduces the observed
behavior of the system: The visibility drops due to several mechanisms in Fig. 5.19(a),
region I. After the time reversal has been applied, the quantum phase distribution evolves
back towards the initial CSS, while other mechanisms continue to suppress the visibility,
until a local maximum is reached when the CSS has revived (region II). For longer inter-
action time, the phase distribution starts to spread again, so that all contributions tend to
decrease the visibility (region III).
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5 Coherent interaction induced phase evolution

Limitations on the restored coherence

Ideally one would expect the visibility to revive back to the initial value. However, due
to several mechanisms a complete revival of the contrast cannot be observed. This can
be seen in Eq. (5.48), where all physical effects but the phase dispersion tend to suppress
the visibility irrespective of a time reversal sequence. In particular, the changed sign of
the effective interaction below the resonance and the resulting strong consequences on the
spatial wave function imply the by far strongest reduction of the Ramsey fringe contrast
at the revival time. In order to partially compensate for this artificial decrease, we take
the data including the time reversal by jumping to B2 after a certain time on the one hand,
and with just holding at the final B2 from the start on the other hand. In both data sets
the contrast decay due to decoherence, loss and especially due to the spatial wave function
instability is expected to be approximately the same, because they evolve at the same
magnetic field. The difference between both data sets, however, is exactly the behavior of
the phase dispersion contribution. Therefore the calculated difference between both data
sets is expected to exhibit a clear signature of the revival of the Ramsey fringe visibility. In
fact, the experimentally determined difference displayed in Fig. 5.20 indeed reveals clearly
the revival of coherence. The visibility maximum shifts to smaller times, when the final
magnetic field is set closer to the Feshbach resonance. The shift of the maximum is due
to the fact that closer to the Feshbach resonance the reversed time evolution takes place
faster because of an increased value of the effective interaction χ.

5.6 Conclusion

The experiments presented in this chapter clearly show the coherent nature of the interac-
tion induced evolution of the relative phase, leading to an entanglement evolution in the
two particle case, and to a more intricate phase evolution in the many-body system.

The experimental demonstration of the two-particle entanglement evolution presented in
Section 5.4 is a way to deterministically create a large array of maximally entangled atom
pairs for φχ = π/2 that can be used for further experiments, e.g. a register or resource for
quantum computing purposes. Moreover, the method presented also offers the possibility
to non-destructively separate singly from doubly occupied sites. For an interaction phase
φχ = π, the expectation value 〈Ŝ z〉 for singly and doubly occupied sites is maximally
different, meaning that the Bloch vectors of these two different occupation numbers point
to exactly opposite points on the Bloch sphere. Additional microwave or laser pulses can
therefore manipulate the population of one specific occupation number, independent of the
remaining population.

The demonstration of revival of coherence after time reversal of the many-body time
evolution presented in Section 5.5 shows that the phase dispersion dynamics due to the
non-linear interaction is indeed a coherent process. Importantly, many limitations discussed
above are not fundamental but rather due to the specific experimental realization, i.e. an
array of tubes.

The experiment presented is an example how interactions can transform coherence into
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Figure 5.20: Revival of coherence after time reversal. Displayed is the Ramsey fringe contrast
difference between signals obtained after a time reversal sequence, i.e. holding for 6 ms at a
magnetic field B1 above the resonance and subsequently jumping to B2 below the resonance, and
signals taken at B2 from the start. Both signals are expected to show the same contribution of the
altered spatial wave function overlap; this is to first order compensated in the difference. Solid
lines are a guide to the eye. For all curves, B1 = 9.131 G. (a) B2 = 9.090 G, (b) B2 = 9.095 G, (c)
B2 = 9.101 G, and (d) B2 = 9.105 G. As the time of maximal contrast is related to the strength of
the non-linear interaction, we plot the inverse time of maximal contrast versus B2 in (e), which
shows an increase as expected for the left branch of the Feshbach resonance.
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5 Coherent interaction induced phase evolution

inter-particle correlations; if the information embedded in these correlations is not ex-
tracted, for example by higher order correlation measurements, the lack of this information
becomes apparent as decoherence. This is the case in typical atom interferometer experi-
ments, because they probe the first order coherence of the system only, whereas interatomic
interactions tend to decrease the first order coherence in favor of higher order correlations.
As demonstrated, the coherence is not irreversibly lost, but it can be restored by proper
manipulation of the underlying interactions. At the same time the results underline the im-
portance to develop more experimental tools to create and probe the fascinating properties
of strongly correlated quantum states.
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6 Outlook

The results of the experiments described in this thesis pave the way for the creation of
several correlated spin states. In the following we will briefly summarize the main findings,
and subsequently outline some future prospects and suggestions.

6.1 Spin changing collisions

In the course of this thesis, the coherent, interaction driven spin population oscillations
due to spin changing collisions have been observed. The measured oscillations could be
described by a Rabi-type model or a model of three coupled states, depending on the
number of involved Zeeman states accessible as final scattering states. The extracted
coupling parameters are directly related to atomic scattering length differences, which could
be inferred with high precision. This allowed to determine the magnetic ground states for
the 87Rb hyperfine states to be ferromagnetic and antiferromagnetic for the f = 1 and
f = 2 states, respectively.

We have been able to develop a method to control the spin changing population oscilla-
tions in terms of an AC-Zeeman effect. Thereby, fully resonant population transfer between
different spin states could be achieved. The amplitude of such oscillations could be con-
sequently employed as a quantitative probe for particle pairs in our lattice. This allowed
to monitor the on-site number squeezing as the system is brought from the superfluid to
the Mott-insulating regime on the one hand, and the spatial resolution of Mott-insulator
shells on the other hand.

The potential of controlling spin changing collisions as described in chapter 4 goes well
beyond the applications that have already been realized [11, 12]. Here two further promising
applications will be outlined. First, a spin-spin interaction will be introduced that has
been just briefly mentioned in the beginning of this thesis. Second, as shown in this thesis,
atomic interactions can build up quantum correlations between particles in a system. The
properties of a correlated spin state resulting from a coherent spin changing collision will
be discussed.

Dipolar effects in spin dynamics A topic which has attracted lots of attention recently
is the realization of dipole-dipole interactions in a degenerate gas of atoms, see e.g. [169,
170, 171, 172]. There are two main reasons for this attention. First, the dipole-dipole
interaction is a long range interaction compared to the contact interaction that has been
considered so far. And second, unlike the spherical symmetric s-wave interactions, the
dipole-dipole interaction potential is not invariant under spatial rotations. This can be
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seen by comparing the contact interaction for spin-1 atoms (cf. Eq. (4.23))

Vs = (c0 + c2 f1 · f2) δ(r) (6.1)

with the dipole-dipole interaction potential

Vdd =
cdd

r3
(f1 · f2 − 3(f1 · êr) · (f2 · êr)) , (6.2)

where c0 and c2 have been defined in Section 4.5 on page 76, r = r1 − r2 is the relative
coordinate between the two atoms, and

cdd ≡
µ0

4π
g2

Fµ
2
B. (6.3)

Here µ0 is the permeability of the vacuum. For alkali atoms, the dipole-dipole interaction
(and correspondingly cdd) is several orders of magnitude smaller than the mean-field in-
teraction (i.e. c0). In order to relate the dipole-dipole interaction to the spin-independent
interaction, the typical figure of merit is the dimensionless parameter

εdd ≡
4
3
πr3 ×

cdd/r3

c0
=
µ0µ

2
mm

12πas
, (6.4)

where a ”typical“ volume 4
3πr3 is assumed in order to compare both strengths correctly, and

µm is the permanent dipole moment. For alkali atoms, the relative dipole strength (6.4)
can be calculated to be εdd = 6.4 × 10−3 for 87Rb and 3.5 × 10−3 for 23Na. Therefore other
species with larger permanent dipole moment are are usually considered more promising
candidates in order to observe dipolar interactions. Recently, 52Cr has been cooled to
degeneracy [173]; this species has a magnetic moment of 6 µB and therefore exhibits dipole-
dipole interactions that are larger by a factor 36 compared to alkali atoms; in fact the
relative dipole-dipole interaction strength has been measured to be ∼ 160 × 10−3 for 52Cr
[174] and the signature of dipole-dipole interactions in these gases has been observed [175].

In our case of a deep optical lattice, however, the spin dynamics is not driven by the
mean field equivalent ∝ c0, but by the spin-changing interaction ∝ c2. Therefore it has
been pointed out [80] that the dipole-dipole interaction should be rather compared to this
quantity. In order to compare the different contributions, the interaction energies for our
typical parameters (i. e. 40 Er deep lattice, λlat = 840 nm) have been calculated [80] to be
c0 n0/~ ≈ 2π × 6.6 kHz for the spin independent interaction, c2 n/~ ≈ 2π × (−30) Hz for the
spin dependent interaction (the sign reflects ferromagnetic nature of the magnetic ground
state), and cdd n/~ ≈ 2π × 3 Hz for the dipole-dipole interaction in a spherical symmetric
trap, with n0 the density in the lowest vibrational state. Due to the spherical symmetry,
the contribution of the dipole-dipole interaction will average to zero; still, the order of
magnitude estimate shows that the contribution of a few Hz can in principle be detected,
as the spin population oscillations have been seen to be sensitive enough. In the optical
lattice, however, by choosing different lattice depths or laser wavelengths along different
axes, the vibrational frequencies can be made different along the axes. The corresponding
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6.1 Spin changing collisions

asymmetry parameter λ ≡ ωz/ω⊥ can be adjusted to yield either oblate (λ > 1) or prolate
(λ < 1) shaped lattice wells. This breaks the symmetry of the problem, so that the
dipole-dipole interaction does not average to zero. It has been stated [80] that for λ ≥ 3
the dipole-dipole interaction can exceed 10% of the spin dependent interaction, which
should be detectable in the spin population oscillations. This approach is limited however,
as the asymmetry is adjusted by reducing the lattice laser power along one axis while
increasing it along other axes. The limitation to higher depths is imposed by available
laser power. A typical maximum lattice depth here is around 70 to 80 Er. Unfortunately,
the trapping frequency scales with the square root of the lattice depth, so that compared
to the measurements presented in this thesis at 40 Er the increase in λ is only a factor 1.4.
For lower lattice depths the onset of tunneling limits the observation of spin population
oscillations. For small anisotropy, the effect of the dipole-dipole interaction is small and the
measurement time must be long in order to resolve this small change. Therefore, lattice
depths smaller than 30 Er will probably allow for too much tunnel processes which will
damp the spin changing oscillations. These problems can be overcome for example by
using a different lattice laser wavelength along one of the axes. For example, with the
same tunneling rate as in a 40 Er deep lattice at 840 nm, choosing on one axis a lattice
with roughly the double periodicity would lead to an asymmetry parameter of λ ≈ 4,
which clearly enhances the contribution of dipole-dipole interaction. Therefore, it seems
well possible that in optical lattice traps the effect of dipole-dipole interactions can be very
precisely investigated.

A source for “decoherence free” qubits So far one important fact has been used im-
plicitly in the discussion of the spin changing collision process. Initially the system has
been prepared in state |m1 = 0; m2 = 0〉 and evolves for half an oscillation period of the spin
oscillations. In the resulting state we have no information about which atom is in which
Zeeman sublevel. This fact has been included in the discussion via the symmetrization
operator S in Eq. (4.2). Explicitly writing the symmetrized wave function yields

|ψ f 〉 =
1
√

2
(|m1 = −1,m2 = +1〉 + |m1 = +1,m2 = −1〉) , (6.5)

where again 1 and 2 label the atoms and we have omitted explicitly writing the total
angular momentum f . The triplet state naturally emerges in the quantum mechanical
description of the two-body spin problem and can be found for example in the electronic
state of the Helium atom. It is, however, interesting as the embedded spin correlations can
be transferred into entangled states.

The particular structure of the triplet state makes it very insusceptible to external per-
turbations due to e.g. magnetic field fluctuations. Those fluctuations affect the two Zeeman
sublevels m = +1 and m = −1 differently because of their different magnetic moment. In
many experiments the different Zeeman energies lead to an additional single particle phase
evolution that is different for the two sublevels. In case of residual magnetic gradient fields,
this will lead to a dephasing of the system. In the experimental signal this becomes visible
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as decoherence. For the two-particle state given in Eq. (6.5), however, each term acquires
the same phase, as we only consider the same combinations of Zeeman sublevels. This phase
is therefore common to all terms and can be neglected as a global phase. For quantum
information processing, it is therefore advantageous to encode the qubits in such “deco-
herence free subspaces” as this enables a larger number of operations within the typical
coherence time. In recent experiments with trapped ions, this property of robustness has
been already experimentally implemented in more sophisticated entangled quantum states
to yield extremely long-lived Bell-states [176] and to improve the sensitivity of precision
measurements [177].

Spin squeezing in a perfectly spin-correlated state An array of triplet states (6.5) has
another intriguing property. If such an array, originally trapped in an optical lattice, is
melted, i.e. the optical potential is adiabatically switched off, the final spin state becomes

|ΨT 〉 =

((
ĉ†
↑

)⊗N/2
+

(
ĉ†
↓

)⊗N/2
)
|0〉. (6.6)

Compared to a “normal” coherent superposition of the two internal states

|Ψcoh〉 =

 ĉ†
↑

+ ĉ†
↓

√
2


⊗N

|0〉, (6.7)

the triplet state is not only a number squeezed state, i.e. fluctuations of the atom number
in the spin states are reduced; it is moreover a perfectly correlated spin state, i.e. for every
single atom in | ↑〉 there is exactly one in | ↓〉, in each single realization of the experiment.
It might be interesting to closer investigate these correlations as it might give a deeper
insight into other strongly spin-correlated systems and lead to a better understanding on
how such correlations are affected by finite temperature, atom loss or other decoherence
sources.

6.2 Coherent phase evolution

Interacting spin-1/2 systems can show an interesting time evolution of the relative phase
between the two internal states. For two particles, the atom pair undergoes an interaction
driven entanglement dynamics between a separable state and an entangled state. This
dynamics could be observed by monitoring the coherence properties of an array of atom
pairs in a Ramsey-type interferometer sequence. Here, the obtained Ramsey fringes showed
an oscillatory collapse and revival demonstrating the predicted entanglement dynamics.
For a many-body system, non-linear interactions is predicted to lead to a dispersion of
the relative phase to a spin squeezed state and eventually to a Schrödinger cat state.
The dynamics could be observed by the collapse of the Ramsey fringe contrast which is a
consequence of increased phase fluctuation due to the phase dispersion. In a time-reversal
sequence this dynamics could be reversed and a revival of coherence could be observed.
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6.2 Coherent phase evolution

The ability to manipulate a quantum many-body state to see a coherent and reversible
phase evolution is a promising starting point for further experiments. However, the various
other mechanisms limiting the maximum revival contrast in the measurements seem to
object to observe a further phase evolution. A close investigation reveals that most of these
objections are not fundamental but rather due to the specific experimental realization.

Spin squeezing in a single tube First the coherence in the system can still be improved,
e.g. by actively reducing magnetic field fluctuations over time. Further, investigating a
single interacting many-body system instead of an array of quantum gases as created in the
optical lattice leads to several advantages. Spatial inhomogeneities are expected to affect
the coherence less than in the more extended array of tubes. Further, a measurement on a
single system does not constitute an ensemble average as this was the case in the array of
tubes. Thereby the variance of the quantum phase distribution could be directly accessed.
The direct observation of the fluctuations would also allow to observe the phase dynamics
on only one side of the Feshbach resonance, thereby avoiding the artificial decrease of
Ramsey fringe contrast for negative values of the effective interaction energy χ due to the
dynamical instability of the spatial wave function.

All these improvements might eventually bring the creation of a material Schrödinger
cat into reach.

Simulation of quantum magnetism The dynamical instability at one side of the Fesh-
bach resonance has so far been considered as an inconvenient complication in the observa-
tion of phase dynamics. The origin of a spin mixing region on the one side and a phase
separating region on the other side of the Feshbach resonance, however, implies a very
intriguing application.

Assuming a homogeneous system in a superposition of the two internal states (after a
π/2-pulse) for χ = 0, the spatial wave function in the two-mode approximation will be
the same for both spin states. Tuning now χ < 0, the difference in interaction energies
will start to separate the two spin wave functions as explained already above. The ground
state in this region is similar to a ferromagnet, where domains of equal spin form. Thereby
a large repulsive interaction energy is present only at the borders to neighboring spin
domains (“domain walls”), while the interaction energy in the bulk of the domain is reduced.
Likewise, for χ > 0 the spins mix. In the limit a↑↓ = 0 and for T = 0 the ground state of
the system will exhibit antiferromagnetic order. In such a situation the interaction energy
would be zero.

The Feshbach resonance therefore allows to tune magnetic interactions both qualitatively
and quantitatively between ferro- and antiferromagnetic. In a single tube with a high
resolution optical detection system [178, 179], this would offer the opportunity to study
the quantum dynamics of domain formation, or to create an antiferromagnetic system.

The high degree of control over the spin interactions in this thesis pave the way for the
creation of novel correlated spin states. However, for future experiments several points have
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to be considered. First, for the realization of many novel quantum states, the temperature
of the sample can become an issue [180]. Moreover, in order to verify the creation of
correlated states and to exploit their properties, their correlations have to be directly
detectable and accessible in experiments. In order to reveal the underlying structure of
spin-correlated many body states, novel techniques have therefore to be developed. A
promising candidate is the spin-sensitive extension of the noise-correlation measurements
already used to see the particle correlations in a molecular BEC [14] or site correlations
in a MI state [94]. Such a technique would enable the direct observation of e.g. a spin-
antiferromagnet or spin pair correlations, as well as dynamical properties of such states.
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A Calculating spin dependent interaction strengths

It is important to notice that for the collision of two spin-1 atoms only one scattering
length difference is sufficient to describe the dynamics; for the case of two colliding spin-2
particles there are two relevant scattering length differences. For f = 1 this is the difference
a2 − a0, and for f = 2 there are two differences a2 − a0 and a4 − a2. In most of the cases it
is, however, more convenient to use derived quantities that directly describe the dynamics
for the actual experimental situation. In this section the line of argumentation given in
chapter 4 will be expanded. In particular, the relevant parameters for the spin dependent
interaction in f = 1 will be explicitly calculated.

In order to keep notation simple, we employ second quantized notation and restrict the
discussion to the case f = 1. The field annihilation operator for an atom in state |1,m〉
at position r is Ψ̂m(r), and we assume a common, constant spatial wave function φ0(r) for
all spin states. In the following we might omit writing the spatial dependence explicitly.
With this the Hamiltonian for the spin dependent interaction can be written as

Ĥs =
1
2

∫
d3r

∑
i jkl

Ψ̂
†

k Ψ̂
†

l

2 f∑
F=0

gF PF δ(r) Ψ̂i Ψ̂ j , (A.1)

where the relative coordinate between the two particles is denoted as r. The integration
over the delta function can be evaluated by using the assumption of a common wave
function to yield a factor

∫
d3r|φ0|

4. With this we define Ũ ≡ 4π~2

M ×
∫

d3r |φ0(r)|4. As the
contribution of the spatial wave function can be considered as a constant factor, we use
in the following “spin operators”, where ψ̂i is the annihilation operator of the spin state
| f ,m = i〉. Then the Hamiltonian can be written as

Ĥs = Ũ ×
1
2

∑
i jkl

ψ̂†k ψ̂
†

l

 2 f∑
F=0

∑
m

〈 f , k; f , l|F,m〉〈F,m| f , i; f , j〉 × aF

 ψ̂i ψ̂ j , (A.2)

where we have explicitly written the projection onto the intermediate, coupled state |F,m〉.
As already mentioned, for bosons only even values of F are possible. Using the abbreviation

∆akl
i j ≡

2 f∑
F=0

∑
m

aF × 〈 f , k; f , l|F,m〉〈F,m| f , i; f , j〉 (A.3)

the re-sorted Hamiltonian (A.2) reads

Ĥs =
Ũ
2
×

∑
i

∆aii
ii ψ̂

†2
i ψ̂2

i +
∑

i, j

∆ai j
i j ψ̂

†

i ψ̂
†

j ψ̂i ψ̂ j (A.4)
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+
∑

i+ j=k+l

∆akl
i j ψ̂

†

k ψ̂
†

l ψ̂i ψ̂ j

 . (A.5)

The terms in the first row (A.4) are the so-called “self-interaction energy”; the difference
between each two of these terms gives rise to the interaction detuning δint. The second line
(A.5) is responsible for the spin changing interaction; here, the conservation of magnetiza-
tion has been indicated in the sum.

For the example of two interacting spin-1 atoms, the Hamiltonian reduces to three non-
zero terms:

Ĥs( f = 1) =
Ũ
2
×

(
∆a00

00 × ψ̂
†2
0 ψ̂2

0 + 4 ∆a+1−1
+1−1 × ψ̂

†

+1 ψ̂
†

−1 ψ̂+1 ψ̂−1 + 2 ∆a+1−1
00 × ψ̂†

+1 ψ̂
†

−1 ψ̂
2
0

)
. (A.6)

Here, the first two terms are the self-interaction energies in the initial and final two-particle
states, and the third term describes the spin-changing interaction. The interaction energy
for changing an initial state |i〉 into a final state | f 〉 can be calculated as 〈 f |Ĥs|i〉. The
states in second quantized notation can be written as |i〉 = |m1 = 0,m2 = 0〉 → |2 : 0〉 and
| f 〉 = |m3 = −1,m4 = +1〉 → |1 : −1, 1 : +1〉. With this the spin changing interaction energy
reads:

〈 f |Ĥs|i〉 =
Ũ
2

2 ∆a+1−1
00 × 〈1 : −1, 1 : +1|ψ̂†

+1 ψ̂
†

−1 ψ̂
2
0|2 : 0〉

=
√

2 Ũ × ∆a+1−1
00 . (A.7)

This yields a coupling strength according to
~Ωi f

2 =
√

2Ũ × ∆a+1−1
00 . Similarly, the self

interaction terms can be evaluated as

〈i|Ĥs|i〉 =
Ũ
2
× ∆a00

00〈2 : 0|ψ̂†20 ψ̂2
0|2 : 0〉 = Ũ × ∆a00

00,

〈 f |Ĥs| f 〉 = 4
Ũ
2
× ∆a+1−1

+1−1〈1 : −1, 1 : +1|ψ̂†
+1 ψ̂

†

−1 ψ̂+1 ψ̂−1|1 : −1, 1 : +1〉 = 2 Ũ × ∆a+1−1
+1−1.

The interaction detuning is therefore determined by ~δint = Ũ × (∆a00
00 − 2∆a+1−1

+1−1).
The scattering length differences defined by Eq. (A.3) are easily evaluated by calculating

the Clebsch-Gordan coefficients to give

∆a+1−1
00 =

a2 − a0

3

∆a00
00 =

a0 + 2a2

3

∆a+1−1
+1−1 =

2a0 + a2

3
. (A.8)

With this we find

~δint = Ũ ×
a2 − a0

3
≡ δ1, (A.9)

~Ωi f = 2
√

2 Ũ ×
a2 − a0

3
, (A.10)
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as stated in chapter 4.
Similarly the coupling parameters for the processes in f = 2 can be calculated. The

results are summarized in Table A.1. It should be noted that there the scattering lengths
a0 and a2 have different values depending on the hyperfine manifold, f = 1 or f = 2. As
described in Section 4.3 we fit the measured oscillation frequency versus magnetic field
with only one (two) free parameters for f = 1 ( f = 2), independent of our uncertainty in
optical potential depth. For this, we express all relevant quantities in terms of interaction
detunings δint (see last column in Table A.1).

f Process Parameter Corresponding ∆a
f = 1 |0, 0〉 ↔ | + 1,−1〉 Ωi f (2

√
2/3)(a2 − a0) 2

√
2δ1

δint ≡ δ1 (a2 − a0)/3 δ1

f = 2 |0, 0〉 ↔ | + 1,−1〉 Ωi f (2
√

2/35)[7(a2 − a0) + 12(a4 − a2)] 2
√

2(δ2,1 + 2δ2,2)
δint ≡ δ2,1 [7(a2 − a0) + 2(a4 − a2)]/35 δ2,1

f = 2 |0, 0〉 ↔ | + 2,−2〉 Ωi f (2
√

2/35)[−7(a2 − a0) + 3(a4 − a2)] 2
√

2(δ2,2 − δ2,1)
δint [7(a2 − a0) + 17(a4 − a2)]/35 (δ2,1 + 3δ2,2)

f = 2 | + 1,−1〉 ↔ | + 2,−2〉 Ωi f (4/35)[7(a2 − a0) + 2(a4 − a2)] 4δ2,2

δint 3/7(a4 − a2) 3δ2,2

f = 2 | − 1,−1〉 ↔ |0,−2〉 Ωi f (4
√

3/7)(a4 − a2) 4
√

3δ2,2

δint ≡ δ2,2 (a4 − a2)/7 δ2,2

Table A.1: Summary of the collisional coupling strengths and detunings for the experimentally
investigated cases as a function of the spin-dependent scattering lengths aF . The last column
gives expressions of the various parameters in terms of interaction detunings δi of the measured
processes used in the fitting procedure presented in Section 4.3.3.
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A Calculating spin dependent interaction strengths
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B Non-linear interactions in an array of quasi 1D-Bose
gases

This appendix summarizes the calculations that allow to quantify the phase evolution of
interacting systems. The first section considers the outcome of a Ramsey interferometer
sequence for two interacting particles. Then, this is generalized to an array of strongly in-
teracting quasi 1D quantum gases. First, the phase evolution under non-linear interactions
is considered. Then the relevant interaction energy is calculated for a single tube. Finally
the distribution of atoms throughout the lattice is considered.

B.1 Entanglement Interferometry

In this section the signal of a Ramsey interferometer will be calculated in the presence of
interactions, leading to an entanglement evolution as introduced in Section 5.1.1. Again,
we assume two interacting two-level systems with internal states | ↑〉 and | ↓〉. The spatial
degree of freedom is assumed to be frozen so that only the spin will be considered. The
two particles are initially in the internal state | ↓〉. A first π/2-pulse prepares them in a
coherent superposition

|ψ〉i =
1
2

(| ↓↓〉 − |↓↑〉 − |↑↓〉 + | ↑↑〉) . (B.1)

After some interaction time t and the simplification made in section 5.1.1 we find the state
in Eq. (5.5)

|ψ(t)〉 =
1
2

(
eiφχ | ↓↓〉 − (| ↓↑〉 + | ↑↓〉) + eiφχ | ↑↑〉

)
. (B.2)

In order to obtain a full Ramsey fringe we now apply a final π/2-pulse with variable phase
α. This leads to the final state

|ψ〉 f =
1
2

{
eiα

(
eiφχ cosα − 1

)
| ↓↓〉

+i eiφχ sinα
(
| ↓↑〉 + | ↑↓〉

)
+e−iα

(
eiφχ cosα + 1

)
| ↑↑〉

}
. (B.3)

In this form it is hard to recover the properties of the entangled or separable state. There-
fore we calculate the probability to measure an atom in state | ↑〉 after the Ramsey sequence
in order to find Eq. (5.13). The probability of finding the state |i〉 when performing a mea-
surement on the final state |ψ〉 f is |〈i|ψ〉 f |

2.
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B Non-linear interactions in an array of quasi 1D-Bose gases

For the state (B.3) there are three possibilities to detect atoms in | ↑〉: The final state
could collapse onto | ↑↓〉, | ↓↑〉 or | ↑↑〉. The total probability P↑ therefore can be calculated
as

P↑ =
1
2

(|〈↑↓ |ψ〉 f |
2 + |〈↓↑ |ψ〉 f |

2 + 2 |〈↑↑ |ψ〉 f |
2), (B.4)

where the pre-factor 1/2 comes from the normalization of the probability to unity, and the
factor 2 of the last term is due to the fact that in case | ↑↑〉 is measured, two atoms are in
| ↑〉.

From (B.3) we find

|〈↑↓ |ψ〉 f |
2 = |〈↓↑ |ψ〉 f |

2 =
1
4

sin2 α. (B.5)

For the state | ↑↑〉 we find

|〈↑↑ |ψ〉 f |
2 =

1
4

(cos2 α + 2 cosα cos φχ + 1). (B.6)

Substituting eqs. (B.5) and (B.6) into Eq. (B.4) we find Eq. (5.13) as

P↑ =
1
2

(1 + cosα cos φχ). (B.7)

B.2 Many-body phase evolution under non-linear interactions

Quasi-probability distribution

Here the problem of a many-body system of spin 1/2-particles is considered and the time
evolution of the relative phase under the influence of non-linear interactions is calculated.
The initial state is assumed to be created from a spin-polarized sample in | ↓〉 by a π/2-
pulse. In order to find a convenient representation of the resulting CSS |π/2, 0〉, it can be
expanded in terms of eigenstates of the Ŝ z operator [146] as

|ϑ, ϕ〉 =

(
1 + tan2 ϑ

2

)−S 2S∑
k=0

(
eiϕ tan

ϑ

2

)k ( 2S
k

)1/2

|S , S − k〉. (B.8)

For the system under investigation one can identify S = N/2, ϑ = π/2, φ = 0, and mz = S −k
the eigenvalue of the Ŝ z-operator for the eigenstate |S , S − k〉 in order to find (5.29).

|ϑ = π/2, ϕ = 0〉 =

N
2∑

mz=−
N
2

√
N!

N
2

(
N
2 − mz

)
!
(

N
2 + mz

)
!
|mz〉

≡

N
2∑

mz=−
N
2

C(mz)|mz〉. (B.9)
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B.3 Degenerate gases in 1D

The time evolution of this CSS under the non-linear Hamiltonian Ĥnl = ~χ Ŝ 2
z then becomes

|ψ(t)〉 =

N
2∑

mz=−
N
2

C(mz) eiχm2
z t |mz〉. (B.10)

The quasi-probability distribution is calculated as the overlap of |ψ(t)〉 with an arbitrary
coherent state |θ, φ〉:

〈θ, φ|ψ(t)〉 =

N
2∑

mz=−
N
2

(
e−iφ/2 sin

θ

2

) N
2 −mz (

eiφ/2 cos
θ

2

) N
2 +mz

C2(mz) e−iχm2
z t 〈mz|mz〉

=

N∑
mz=0

1

2
N
2

e−iχm2
z t

(
e−iφ/2 sin

θ

2

) N
2 −mz (

eiφ/2 cos
θ

2

) N
2 +mz

(
N
mz

)
. (B.11)

With this the time evolution of the quasi probability distribution (QPD) |〈θ, φ|ψ(t)〉|2 can
be numerically evaluated, see Fig. 5.4.

Spin squeezing in the interaction induced phase evolution

The spin squeezing of the phase distribution under the non-linear Hamiltonian (5.30) has
been considered in Ref. [146].

There, from the phase distribution (B.11) the minimum variance Vmin has been calculated
as

Vmin =
1
2

(N
6

) 1
3

≈ 0.28 N
1
3 , (B.12)

and it is reached after a time

t(Vmin) = tmin =
2

5
3

24
1
6 χ

N−
2
3 ≈

1.35
χ

N−
2
3 . (B.13)

For a typical atom number of N ≈ 60 atoms this corresponds to a squeezing below the
standard quantum limit N/4 of ξ ≈ −0.75 dB, reached after an interaction time χ tmin ≈

0.088. This has to be compared to the usual collapse time, where one finds χ tcoll ≈ 0.13.
Hence, the point of minimal variance is reached well before the Ramsey fringe has collapsed.

B.3 Degenerate gases in 1D

In the following the situation of an array of quasi-1D Bose gases in an optical lattice will
be modeled. The analysis is based on the work of Ref. [67].
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B Non-linear interactions in an array of quasi 1D-Bose gases

Chemical potential in a single tube

Within each tube atoms are in a quasi 1D-regime, where radially the situation can be
described by a harmonic oscillator with oscillator length

lr =

√
~

mω⊥
, (B.14)

where m is the mass of an atom, ~ is Planck’s constant divided by 2 π, and ω⊥ is the radial
trapping frequency.

For a harmonic confinement along the tube axis with trapping frequency ωax, interactions
can be described by a 1D coupling constant given by

g =
2~2

m l2
r
× a, (B.15)

from which one can obtain the dimensionless quantity

α ≡
mglax

~2 , (B.16)

with lax =
√
~/mωax and a the s-wave scattering length.

For the central tube containing N00 atoms one finds a parabolic density profile

n0(z) = n0,max

1 − z2

R2
TF,ax

 , (B.17)

where z is the coordinate along the tube, and n0,max is the maximum density in the tube,
given by

n0,max =
µ

g
. (B.18)

The Thomas-Fermi (TF) radius of the density distribution along the tube is given by

RTF,ax =

√
2µ

mω2
ax
, (B.19)

and the chemical potential in the tube reads

µ = ~ωax

(
3N00 α

4
√

2

) 2
3

, (B.20)

with N00 the number of particles in the central tube. Using equations (B.16) and (B.15),
the expression for the chemical potential (B.20) can be rewritten to yield

µ =
~ωax

2

(
3N00

a lax

l2
r

) 2
3

. (B.21)

134



B.3 Degenerate gases in 1D

Interaction energy in a single tube

For a given tube (i, j), the interaction strength χi j depends on the total atom number Ni j

in this tube. The definition of χ reads

χi j ≡
a↑↑ + a↓↓ − 2a↓↑

2ās
×

4π~2

m
ās

∫
|φi j|

4d3r︸                   ︷︷                   ︸
=Ui j

. (B.22)

The interaction parameter Ui j can either be calculated from the definition of the wave
functions in the tube, or via the relation

Ui j =
∂µi j

∂Ni j

=
∂µi j

∂N

∣∣∣∣∣∣
N=Ni j

. (B.23)

We anticipate the discussion in the following section by introducing an overall harmonic
confinement on large length scales with trapping frequency Ωr. From equations (B.30),(B.29)
we find the local chemical potential

µi j = µ −
λ2 m Ω2

r

8
(i2 + j2), (B.24)

so that
∂µi j

∂N

∣∣∣∣∣∣
N=Ni j

=
∂µ

∂N

∣∣∣∣∣
N=Ni j

. (B.25)

From the form of the chemical potential (B.20) one finds

∂µ

∂N

∣∣∣∣∣
N=Ni j

=
~ωax

2

(
3āslax

l2
r

)2/3

× N−1/3
i j

=
µ(Ni j)

Ni j
. (B.26)

Interestingly, the interaction strength scales with a negative power of the atom number,
meaning that more atoms imply a smaller interaction parameter. This is, however, not
the full story; usually one considers the complete interaction term of the Hamiltonian
U/2

∑
i n̂i(n̂i − 1), where the more familiar scaling with atom number is seen. In the case

presented here the term ~χŜ 2
z is considered, where the parameter χ is fixed in a first

approximation. If in contrast the time evolution of the QPD is considered for various
initial atom numbers, the correct and intuitively expected behavior is found.

In fact, from eqs. (B.26) and (5.43) one finds the typical collapse time scales as tdisp ∝

N−1/6, i.e. with a very small power of the atom number. Even by changing the atom number
by a factor of 2 yields 90% of the initial collapse time. Therefore, in the calculations for
the total Ramsey fringe contrast drop only a single tube is considered, as the distribution
of atoms is expected to have only a minor effect. Still the distribution of atoms throughout
the array is calculated below for completeness.
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B Non-linear interactions in an array of quasi 1D-Bose gases

Extension to an array of tubes

Starting from a BEC, by ramping up a 2D optical lattice with laser wavelength λ, one
ends with an array of 1D quantum gases, where the distribution of atoms over the tubes
depends on the density distribution of the 3D gas in the moment where tunneling between
tubes is suppressed. In the following an overall confinement which is the same for both
directions perpendicular to the tube axis with trapping frequency of Ωr is assumed. The
tubes in the array are labeled by (i, j). The distance from a tube to the central tube is
given by

d(i, j) =
λ2

4
(i2 + j2), (B.27)

which can be related to the TF-radius of the overal system by

λ2

4
(i2 + j2) = κ (i2 + j2)

R2
TF,r

2
, (B.28)

with RTF,r =
√

2µ/mΩ2
r the TF radius of the overall system, and

κ ≡
λ2

2
×

mΩ2
r

2µ
. (B.29)

The local chemical potential of a tube (i, j) is approximated by the chemical potential of
the central tube minus the potential due to the optical potential at the specific position,
because the chemical potential tends to be flat over the whole system as long as tunneling
is possible, see Fig. B.1. Therefore

µi j = µ00(1 − κ(i2 + j2)/2). (B.30)

Total number of particles in an array of 1D tubes

In the array of 1D gases the total number of atoms Ntot must be conserved. Hence the
number of atoms in the tubes Ni, j must obey

Ntot =
∑

i, j

Ni, j. (B.31)

In principle this sum can be evaluated by solving (B.30) for Ni j and numerically solve
(B.31). Here, the sum is approximated by the integral to get

Ntot =

∫
dNi j. (B.32)

The local atom number can be calculated using the local chemical potential (B.30) as

Ni j =

(
µ(1 −

κ

2
(i2 + j2))

) 3
2 N00

µ3/2 . (B.33)
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B.3 Degenerate gases in 1D

Site index i

0 1 2 5-1-2-5

E

µi=0

µi=7

0 1 2 5-1-2-5

n

Site index i

(a) (b)

Figure B.1: (a) As long as tunneling is possible, the chemical potential tends to be flat over the
whole system. In case tunneling is suppressed, at each site the local chemical potential is frozen,
leading to the parabolic envelope of the density distribution in (b).

Integration finally yields

Ntot =

∫ ρ=
√

2/κ

ρ=0

(
µ(1 − κ/2ρ2)

)3/2 N00

µ3/2 2π ρ dρ

=
4πN00

5κ
. (B.34)

If the total atom number is known, Eq. (B.34) allows to calculate the number of atoms
in the central tube. From Eq. (B.33) the distribution Ni j throughout the array can be
calculated. For the experimental parameters stated in section 5.5 the actual atom number
distribution is shown in Fig. B.2.
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B Non-linear interactions in an array of quasi 1D-Bose gases
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Figure B.2: (a) Spatial distribution of atoms throughout the 2D array of tubes for a lattice
depth of Vy = Vz = 20 Er, where tunneling is expected to be suppressed, and a total atom number
of 2.8 × 105. (b) Profile through (a) at z = 0.
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[164] H. Moritz, T. Stöferle, M. Köhl, and T. Esslinger. Exciting Collective Oscillations in
a Trapped 1D Gas. Phys. Rev. Lett., 91:250402, 2003.

[165] A. Sinatra and Y. Castin. Binary mixtures of Bose-Einstein condensates: Phase
dynamics and spatial dynamics. Eur. Phys. J. D, 8:319, 1999.

[166] F. Gerbier.

[167] G. Morigi, E. Solano, B.-E. Englert, and H. Walther. Measuring irreversible dynamics
of a quantum harmonic oscillator. Phys. Rev. A, 65:040102, 2002.

[168] T. Meunier, S. Gleyzes, A. Auffeves, G. Nogues, M. Brune, J.M. Raimond, and
S. Haroche. Rabi Oscillations Revival Induced by Time Reversal: A Test of Meso-
scopic Quantum Coherence. Phys. Rev. Lett., 94:010401, 2005.

[169] L. Santos, G.V. Shlyapnikov, P. Zoller, and M. Lewenstein. Bose-Einstein Conden-
sation in Trapped Dipolar Gases. Phys. Rev. Lett., 85:1791, 2000.

[170] H. Pu, W. Zhang, and P. Meystre. Ferromagnetism in a Lattice of Bose-Einstein
Condensates. Phys. Rev. Lett., 87:140405, 2001.

150



Bibliography

[171] W. Zhang, H. Pu, C. Search, and P. Meystre. Spin Waves in a Bose-Einstein-
Condensed Atomic Spin Chain. Phys. Rev. Lett., 88:060401, 2002.
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