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Abstract

In this thesis we study quantum hydrodynamic (QHD) models, particularly
the ones used in semiconductor device modeling. The QHD model consists
of the conservation laws for the particle density, momentum, and energy
density, including quantum corrections from the Bohm potential.
We start with a review of the known results on collisionless QHD mod-
els derived from the mixed-state Schrödinger system or from the Wigner
equation. Using the reformulation of the one-dimensional stationary QHD
equations with the linear potential as a stationary Schrödinger equation, the
semi-analytical expressions for current-voltage curves are studied.
Further on, we consider viscous stabilizations of the QHD model. The nu-
merical viscosity for the upwind finite-difference discretization of the QHD
model proposed by C. Gardner is computed. On the other side, starting
from the Wigner equation with the Fokker-Planck collision operator we de-
rive the viscous QHD model. This model contains the physical viscosity in-
troduced by the collision operator. The existence of solutions (with strictly
positive particle density) to the isothermal, stationary, one-dimensional vis-
cous model for general data and non-homogeneous boundary conditions is
shown. The estimates depend on the viscosity and do not allow to perform
the inviscid limit. By numerical simulations of the resonant tunneling diode
using the non-isothermal, stationary, one-dimensional viscous QHD model,
we show the influence of the physical viscosity on the solution.
Applying the quantum entropy minimization method, recently developed by
P. Degond and C. Ringhofer, we derive the general QHD equations, starting
from a Wigner-Boltzmann equation with the BGK-type collision operator.
The derivation is based on a careful expansion of the quantum Maxwellian in
powers of the scaled Planck constant. The general QHD model includes also
vorticity terms and a dispersive term for the velocity. Current-voltage curve
of the resonant tunneling diode for the simplified general QHD equations
in one dimension is studied by numerical simulations. The results indicate
that the dispersive velocity term regularizes the solution of the system.



Zusammenfassung

In dieser Arbeit werden Quantum-Hydrodynamische (QHD) Modelle be-
trachtet, die ihren Einsatz besonders in der Modellierung von Halbleiter-
bauteilen finden. Das QHD Modell besteht aus den Erhaltungsgleichungen
für die Teilchendichte, das Momentum und die Energiedichte, inklusive der
Quanten-Korrekturen durch das Bohmsche Potential.
Zu Beginn wird eine Übersicht über die bekannten Ergebnisse der QHD
Modelle unter Vernachlässigung von Kollisionseffekten gegeben, die aus ein-
em Schrödinger-System für den gemischten-Zustand oder aus der Wigner-
Gleichung hergeleitet werden können. Nach der Reformulierung der eindi-
mensionalen QHD Gleichungen mit linearem Potential als stationäre Schrö-
dinger-Gleichung werden die semianalytischen Fassungen der QHD Gle-
ichungen für die Gleichspannungs-Kurve betrachtet.
Weiterhin werden die viskosen Stabilisierungen des QHD Modells berück-
sichtigt, sowie die von Gardner vorgeschlagene numerische Viskosität für das
upwind Finite-Differenzen Schema berechnet. Im Weiteren wird das viskose
QHD Modell aus der Wigner-Gleichung mit Fokker-Planck Kollisions-Ope-
rator hergeleitet. Dieses Modell enthält die physikalische Viskosität, die
durch den Kollision-Operator eingeführt wird. Die Existenz der Lösungen
(mit strikt positiver Teilchendichte) für das isotherme, stationäre, eindimen-
sionale, viskose Modell für allgemeine Daten und nichthomogene Randbe-
dingungen wird gezeigt. Die dafür notwendigen Abschätzungen hängen von
der Viskosität ab und erlauben daher den Grenzübergang zum nicht-viskosen
Fall nicht. Numerische Simulationen der Resonanz-Tunneldiode modelliert
mit dem nichtisothermen, stationären, eindimensionalen, viskosen QHD Mod-
ell zeigen den Einfluss der Viskosität auf die Lösung.
Unter Verwendung des von Degond und Ringhofer entwickelten Quanten-
Entropie-Minimierungs-Verfahren werden die allgemeinen QHD-Gleichungen
aus der Wigner-Boltzmann-Gleichung mit dem BGK-Kollisions-Operator
hergeleitet. Die Herleitung basiert auf der vorsichtige Entwicklung des
Quanten-Maxwellians in Potenzen der skalierten Plankschen Konstante. Das
so erhaltene Modell enthält auch vertex-Terme und dispersive Terme für die
Geschwindigkeit. Dadurch bleibt die Gleichspannungs-Kurve für die Reso-
nanz-Tunneldiode unter Verwendung des allgemeinen QHD Modells in einer
Dimension numerisch erhalten. Die Ergebnisse zeigen, dass der dispersive
Geschwindigkeits-Term die Lösung des Systems stabilisiert.
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Chapter 1

Introduction

In this work we are concerned with the modeling, mathematical analysis
and numerical approximation of quantum hydrodynamic models for semi-
conductors.

Semiconductor devices, electronic components made of semiconductor mate-
rials, are essential in digital technologies, from computers to cellular phones.
Semiconductors are materials whose ability to transport electricity is some-
where between conductors and insulators. At low temperatures semicon-
ductors behave like insulators, but with some additional input their ability
to conduct electricity can be greatly changed. The speciality of semiconduc-
tors lies in the fact that their current flow can be controlled (using external
control voltages or adding impurities). Due to this fact, semiconductors
are ideal for construction of electronic components, such are for example
transistors. Transistors can serve as switches (on/off) or amplifiers, and
are the key elements in integrated circuits. The first transistor, made of
germanium, was developed in 1947. by Bardeen, Brattain and Schockley
who were awarded the 1956. Nobel Prize in Physics, for their research

on semiconductors and their discovery of the transistor effect. Since then
semiconductor devices have evolved tremendously. Important fact which
contributed to the success of the semiconductor technology is miniaturiza-
tion1 of the device length: from 20µm of the first transistor towards to the
90nm of the transistors in Pentium 4 processor. Modern quantum-based de-
vices, like tunneling diodes, have structures of only few nanometer length.

1 According to the International Technology Roadmap for Semiconductors,
http://www.itrs.net/.

11



12 1. Introduction

Clearly, on such scales, physical models should include quantum mechanical
approaches. The hierarchy of quantum models for semiconductors is shown
in the Figure 1.1. Formally, in the semi-classical limit, one obtains well
known classical counterparts of mentioned models: Boltzmann, Vlasov and
Liouville equation as the kinetic models and hydrodynamic, drift-diffusion
and energy-transport equations in the group of classical fluid-type models
for semiconductors. Detailed description of classical models can be found in
[64, 84]. In the literature, the quantum Liouville equation is usually called
the (many-particle) Wigner equation. This convention will be used also in
this thesis.

quantum Vlasov equation

quantum Liouville equation
quantum Boltzmann equation

microscopic macroscopic

Schroedinger equation
quantum hydrodynamic 
quantum drift−diffusion
quantum energy−transport

Figure 1.1: Hierarchy of quantum models for semiconductors

Besides mathematical modeling, the simulation of charge transport in semi-
conductor devices is also important research area. In order to produce de-
vices at low cost and to reduce the production time, efficient computer
simulations are necessary. However, simulations using quantum microscopic
models, like the Schrödinger or Wigner equation, are very time consum-
ing. Furthermore, since the problems of interest are defined on the bounded
semiconductor domain, we encounter the problem of defining physically ac-
ceptable boundary conditions for microscopic variables.

In the literature, macroscopic quantum models have been proposed [3, 33,

34, 40, 47] and they seem to represent a compromise between requirements
of physical accuracy and computational efficiency. In quantum fluid mod-
els the flow of the electrons in the semiconductor is considered as a gas
of charged particles. These models have several advantages: they are for-
mulated in terms of macroscopic quantities, like for example, the particle
density, the fluid velocity or the temperature and consequently fluid-type
boundary conditions can be imposed.

Roughly speaking, quantum macroscopic models belong either to the class
of quantum hydrodynamic equations or to the class of quantum diffusion
models (quantum drift-diffusion and quantum energy-transport models). As
we have already pointed out at the beginning of the section, our aim is to
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consider hydrodynamic rather then the diffusive models.

Quantum hydrodynamic models can be obtained through the moment ex-
pansion of the Wigner equation closed by quantum equilibrium distribution.
Central to the kinetic theory is the collision operator, which models the in-
teractions between the particles or their interactions with the surrounding
environment (crystal lattice of the semiconductor). Here we mention that
a quantum theory of collisions is still at a rather early stage and in fact
there is no complete quantum collision theory up to now. There are many
derivations of collision operators modeling the interactions of electrons with
phonons [8, 13, 35, 39, 43], but none of them lead to a form which is
computationally tractable and, at the same time, is usable for fluid approx-
imations. However, for the derivation of quantum hydrodynamic models
with collisions, in this work we use two simple collision models which have
been derived in the literature. The first is the Fokker-Planck collision opera-
tor, derived by Caldeira and Leggett in [23] and later improved by Castella
et al. in [24]. The second simple collision operator used in this thesis is
given by a BGK approach (Bhatnagar, Gross and Krook [16]).

The collision operator is the source of entropy dissipation which induces
the relaxation of the system towards local thermodynamical equilibrium.
When this relaxation is achieved, the system evolves according to the fluid
equations. Fluid-dynamical descriptions of gases rest on the assumption
that the average distance travelled between the collisions is much smaller
then the macroscopic length scales of interest. Here we mention that in some
physical situations when the mean momentum of equilibrium vanishes, the
motion of the mobile species must be observed at longer time scales. In this
regimes the limit hydrodynamic model is not well adapted to capture the
transport properties of the system and one needs the diffusive models.

The investigation of quantum hydrodynamic models, both from the ana-
lytical and numerical point of view attracts recently the attention of the
scientific community. The quantum hydrodynamic equations are highly non-
linear, dispersive regularization of the classical Euler equations and due to
their complicated mathematical structure there are still many open problems
in their analysis. On the other side, using quantum hydrodynamic models in
simulations of ultra-integrated semiconductor devices purely based on quan-
tum effects, it is possible to describe quantum phenomena, such as negative
differential resistance in a resonant tunneling diode.

Finally, we notice that the models similar to the quantum hydrodynamic
equations also appear in application areas other than semiconductor theory,
for example in superfluidity [80, 81] and thermistor theory, [29, 98].
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1.1 Basic semiconductor physics

This section gives a short summary of the semiconductor physics. The aim
here is just to motivate some concepts relevant to the material presented in
the following chapters. In order to get the detailed view in this matter, we
refer to textbooks on semiconductor physics, e.g., [11, 19, 93].
A semiconductor is a solid with an energy gap larger than zero and smaller
than about 4eV (electron volt). In order to define the energy gap we describe
briefly the crystal structure of solids. Solids are made of an infinite three-
dimensional array of atoms arranged according to a lattice

L = {n1~a1 + n2~a2 + n3~a3 : n1, n2, n3 ∈ Z} ⊂ R
3,

where ~a1, ~a2, ~a3 are basis vectors of the lattice. The set L is also called a
Bravais lattice. The connected set D ⊂ R

3 is called the primitive cell of L if

vol(D) = ~a1 · (~a2 × ~a3),

and if the whole space R
3 is covered with the union of translates of D by

the basis vectors. The reciprocal lattice L∗ is defined by

L∗ = {n1~a
∗
1 + n2~a

∗
2 + n3~a

∗
3 : n1, n2, n3 ∈ Z} ⊂ R

3,

where
~aj · ~a∗r = 2πδjr, j, r = 1, 2, 3.

The Brillouin zone B ⊂ R
3 is the primitive cell of the reciprocal lattice L∗

which is defined as (see Figure 1.2):

B = {k ∈ R
3 : |k| ≤ min

l∈L∗
|k + l|, l 6= 0}.

The lattice atoms generate a periodic electrostatic potential VL,

VL(x+ y) = VL(x), for all x ∈ R
3, y ∈ L.

The state of an electron moving in this periodic potential is described by an
eigenfunction ψ(x) of the stationary Schrödinger equation

− ~
2

2m
∆ψ − qVL(x)ψ = Eψ, x ∈ R

3, (1.1)

where ψ : R
3 → C is the (stationary) wave function, ~ is the reduced Planck

constant, m the electron mass (at rest), q the elementary charge and E the
energy.
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Figure 1.2: The primitive vectors of a two-dimensional lattice L and its
reciprocal lattice L∗ and the Brillouin zone (from [64], Figure 2.4).

Due to the Bloch theorem [11], the whole-space Schrödinger problem (1.1)
can be reduced to an eigenvalue problem on a cell of the lattice. More
precisely, the Bloch theorem says that the eigenfunctions of the problem
(1.1) can be written as

ψ(x) = eik·xu(x), (1.2)

(where i2 = −1), for some k ∈ B and some function u(x) satisfying

u(x) = u(x+ y), for all x ∈ R
3, y ∈ L. (1.3)

Inserting the decomposition (1.2) into the Schrödinger equation (1.1), one
obtains that u(x) satisfies the eigenvalue problem

− ~
2

2m
(∆u+ 2ik · ∇u) +

(
~

2

2m
|k|2 − qVL(x)

)
u = Eu, in D, (1.4)

with the periodicity condition (1.3). Because of the self-adjointness of the
operator defined by the left-hand side of (1.4), for each k ∈ B there exists
a sequence of eigenfunctions u = un,k and eigenvalues E = En(k) of (1.4)-
(1.3). Since, in particular the functions (un,k)n∈N form an orthonormal basis
of the underlying Hilbert space L2(D), one introduce the so-called Bloch
functions

ψn,k(x) = eik·xun,k(x).
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The Bloch pair (ψn,k(x), En(k))n∈N is a solution of the eigenvalue problem
for Schrödinger equation (1.1) in the primitive cell D of L with pseudo-
periodic boundary conditions

ψn,k(x+ y) = eik·yψn,k(x), x, x+ y ∈ ∂D.

The continuous function k 7→ En(k) represents the n-th energy band. The
ranges of all energy bands do not fill the whole energy space R. There
may exist energies E∗ for which there is no n ∈ N and no k ∈ B such that
En(k) = E∗. Every connected component of the set of such energies is called
an energy gap. The nearest energy band below the energy gap is called the
valence band whereas the nearest one above is named the conduction band.
So, the energy gap separates the top of the valence band and the bottom of
the conduction band (see Figure 1.3).

valence band

band gap

conduction band

Figure 1.3: Simplified band diagram of a semiconductor

In a semiconductor, the energy gap is fairly small. At a low temperature
the semiconductor has a completely filled valence band. There are no empty
energy positions available for electrons to be accelerated in. Therefore, at
low temperatures the semiconductor behaves like an insulator. At room
temperature, the atoms in the semiconductor material vibrate enough so
that a few electrons may escape from their positions in the valence band
into unoccupied positions in the conduction band. The conduction at room
temperature, however, is so small that no significant current can be said to
pass. Finally, the electrical conductance happens when the energy level of a
semiconductor crystal is moderately raised by, e.g., applying an electric field
or increasing the temperature, since then many valence electrons became the
conduction ones.
Semiconductors may be elemental materials such as silicon and germanium,
or compound semiconductors such as gallium arsenide and indium phos-
phide, or alloys such as silicon germanium or aluminium gallium arsenide.
The values of the energy gaps for some commonly used semiconductor ma-
terials can be seen in Table 1.1.
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Material Symbol Energy gap in eV

silicon Si 1.12
germanium Ge 0.67

gallium arsenide GaAl 1.42
aluminium gallium arsenide Al0.3Ga0.7As 1.80

gallium phosphide GaP 2.20

Table 1.1: Energy gaps of selected semiconductors (from [11], Table 28.1
and [82], Fig.1.14).

The mean velocity of the electron belonging to the n-th energy band is
identified with the group velocity of the corresponding wave packet

vn(k) =
1

~
∇kEn(k). (1.5)

The expression (1.5) has some important consequences. First, it is well
known that the change of energy with respect to time equals the product of
a force F and the velocity vn. Combining this fact with (1.5), one obtains

∂tEn(k) = ~
−1F∇kEn(k).

On the other side, using the chain rule ∂tEn(k) = ∇kEn(k)∂tk we conclude
that

F = ∂t(~k). (1.6)

Differentiating the expression (1.5) and using (1.6) leads to

∂tvn =
1

~2
(∇2

kEn)F.

Then, by Newton’s law F = ∂tp = m∗∂tvn, and we infer that

(m∗)−1 =
1

~2
∇2

kEn. (1.7)

The expression (1.7) is considered as a definition of the effective mass m∗.
We note here that symbol (m∗)−1 is R

3×3 matrix. Let k0 be a local minimum
of the conduction band, i.e. ∇kEn(k0) = 0. Then, since the Hessian matrix
∇2

kEn(k0) is symmetric, positive definite, it can be diagonalized and the
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diagonal elements are positive. Assuming that the coordinates are chosen
such that ∇2

kEn(k0) is already diagonal, we can write

1

~2
∇2

kEn(k0) =




1/m∗
1 0 0

0 1/m∗
2 0

0 0 1/m∗
3.


 (1.8)

If the function k 7→ En(k) is smooth, Taylor’s formula gives

En(k) = En(k0) +
~

2

2

[(k1 − k0
1)

2

m∗
1

+
(k2 − k0

2)
2

m∗
2

+
(k3 − k0

3)
2

m∗
3

]
+O(|k− k0|3),

where k = (k1, k2, k3)
T . In the case when k0 = 0 and m∗

1 = m∗
2 = m∗

3 = m∗,
we can write, neglecting higher-order terms

En(k) = En(0) +
~

2

2m∗
|k|2. (1.9)

Expression (1.9) is called the parabolic band approximation.
Up to now we saw that semiconductors exhibit an energy gap according to
the band theory of solids. The population of the conduction band is de-
scribed by the Fermi-Dirac distribution function, i.e. the electron probability
of occupying an available energy state E is given by

fFD(E) =
1

1 + e
E−qµ
kBT

, (1.10)

where kB is the Boltzmann constant, T the (electron) temperature and µ
the chemical potential. We notice that, in the semiconductor theory, the
product qµ is usually referred to as the Fermi level and it is noted by EF . For
energies much larger than the Fermi level in the sense of E−EF ≫ kBT , the
Fermi-Dirac distribution can be approximated by the Maxwell-Boltzmann
distribution

fMB(E) = e
−

E−EF
kBT .

A pure semiconductor with no impurities is called an intrinsic semicon-
ductor. In this case, electrons in the conduction band can only come from
valence band levels leaving a vacancy behind them. Vacancies in the valence
band are called holes. Therefore, the number of electrons in the conduction
band is equal to the number of holes in the valence band,

n = p = ni,



1.2. Resonant tunneling diode 19

where ni is the intrinsic density. Replacing some atoms in the semiconduc-
tor crystal by atoms which provide free electrons in the conduction band or
free holes in the valence band, allows to increase the conductivity. Such pro-
cess is called doping. Impurities are called donors, if they supply additional
electrons and acceptors, if they supply the additional holes. Let ND(x) and
NA(x) denote the densities of the donor and acceptor impurities, respec-
tively. The doping profile or doping concentration is

C(x) = NA(x) −ND(x),

and the total space charge ρ is given by ρ = −q(n− p − C(x)). It remains
to write the equation for the electrostatic potential. Electrons and holes
interact on long-ranges via the Coulomb force

F (x, y) = − q

4πǫS

x− y

|x− y|3 ,

where ǫS denotes the material constant called electrical permittivity. The
resulting electric field is

Eef (x, t) =
1

4πǫS

∫

R3

ρ(y, t)
x− y

|x− y|3 dy.

The electrostatic potential V , defined via Eef = −∇V , is the solution of the
Poisson equation

ǫS∆V = q(n− p−C) in R
3.

1.2 Resonant tunneling diode

The resonant tunneling diode (RTD) is a device whose behaviour is dom-
inated by quantum effects. Quantum hydrodynamical models derived in
Chapters 3 and 4 are used in the simulations of simple one-dimensional
resonant tunneling diode.
The resonant tunneling diode consists of the GaAs quantum well sandwiched
between two very thin AlGaAs layers and heavily doped GaAs n+-regions,
called source and drain, situated at the contacts. The substrate of the n-
channel between the n+-regions is usually weakly doped. Figure 1.4 shows
the cross section of the resonant tunneling diode. Applying a bias voltage
to the device contacts, the resonant tunneling diode produces the certain
current. The dependence of the obtained current upon the applied voltage
is described with the current-voltage characteristics. The typical current-
voltage curve for the resonant tunneling diode and the corresponding po-
tential diagram are shown in the Figure 1.5. We observe that the current
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A
lG

aA
s

G
aA

s

A
lG

aA
s

GaAs GaAs

Figure 1.4: Resonant tunneling diode

depends non-monotonically on the applied potential: there is a part of the
current-voltage curve where the current decreases with increasing voltage.
This is called the negative differential resistance (NDR) and it is caused by
the quantum effect of tunneling. The tunneling process in the resonant tun-
neling diode is described here schematically following [41] and observing the
Figure 1.5, without going into any deeper details. Firstly, a size-quantized
state is confined in the well; its energy is indicated by the dashed line.
The structure in equilibrium is denoted with (a). When a voltage is ap-
plied, electrons can resonantly tunnel out of occupied states (shaded region)
through the confined state, (b). Finally, as the voltage is increased, the
resonant state is pulled below the occupied levels and the tunneling current
decreases, leading to the negative differential resistance. The goal of our nu-

U

a

c

b

J

b

a

c

Figure 1.5: The schematic current-voltage curve of a resonant tunneling
diode with the corresponding applied bias potential

merical simulations is to obtain, using the quantum hydrodynamic models
derived in this thesis, the current-voltage curves for the resonant tunneling
diode which reproduce the negative differential resistance effect. The exper-
imental current-voltage curves for resonant tunneling diode can be found,
for example, in [74, 89].

We note that the phenomenon of resonant tunneling in double barrier het-
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erostructures was first investigated in the seminal work of Chang, Esaki,
and Tsu [26]. It is worth to mention that Esaki received in 1973. the Nobel
Prize in physics for discovering the electron tunneling effect used in tunnel
diodes. Due to their intrinsically high-speed negative differential character-
istics at room temperatures, resonant tunneling diodes are very promising
nanoelectronic devices for digital logic circuit applications [85]. They are
also used at very high frequencies as amplifiers or oscillators.

1.3 Overview of the main results

A fluid-dynamics formulation of the Schrödinger equation is known since
the early years of quantum mechanics. In [83] Madelung assumed that the
wave function can be written as

ψ(x, t) =
√
n(x, t)e

iS(x,t)
ε , (1.11)

where n(x, t) is the electron density, S(x, t) the phase and ε the scaled
Planck constant. By performing elementary calculations (see Section 2.1
and Section 2.4), separating the real and the imaginary part of the single-
state Schrödinger equation and defining the current density as J(x, t) =
n(x, t)∇S(x, t), one obtains the (scaled) zero-temperature quantum hydro-
dynamic equations:

∂tn− divJ = 0,

∂tJ − div

(
J ⊗ J

n

)
+ n∇V +

ε2

2
n∇

(
∆
√
n√
n

)
= 0, x ∈ R

d, t > 0,

which are usually coupled with the Poisson equation for the potential

λ2∆V = n− C(x), (1.12)

where λ is the scaled Debye length and C(x) the concentration of fixed
charged background ions (the doping profile). Here, the unknowns are the
electron density n(x, t), the electron current density J(x, t), and the elec-
trostatic potential V (x, t). Naturally, we impose initial conditions on the
variables n and J . The velocity of the system can be defined as u = J/n.
The matrix J ⊗ J consists of the elements JlJk, l, k = 1, . . . , d. The above
equations are quantum analogue of the pressureless Euler equations un-
der an electric force E = ∇V and with an additional third-order term.
This quantum term can be interpreted either as an internal self-potential,
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so-called Bohm potential, ∆
√
n/

√
n, or as a non-diagonal pressure tensor,

(∇⊗∇) log n, since

1

2
div(n(∇⊗∇) log n) = n∇

(∆
√
n√
n

)
. (1.13)

In order to include temperature effects we abandon the Madelung’s ansatz,
since it is essentially devoted to the pure-state mechanics and cannot be
adapted to include many-body effects. We are aware of two approaches
of incorporating many-particle effects. The first approach starts from the
mixed-state Schrödinger-Poisson system [56, 63]. Defining the particle and
current densities as the superpositions of all single-state densities, quantum
equations for the macroscopic variables (particle density, current density,
and energy density) are derived. The system of equations is closed by ex-
pressing the heat flux heuristically in terms of the macroscopic variables.
This approach is mentioned in Section 2.3 and it will not be used later in
the thesis.
The second approach concerns the Wigner formalism together with the
moment-method and it is used in this work in the derivation of the quantum
hydrodynamic models. The schematic view of the quantum hydrodynamic
models considered here together with the derivation techniques is presented
in the Figure 1.6. The original contribution of this thesis concerns different

quantum
kinetic
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moment

collision
effects
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quantum

Wigner
equation

BGK−type
principle

Gardner’s
QHD
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QHD

QHD
entropy min.
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closure
condition

general

ε  )

Fokker−Planck

Caldeira−Leggett
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Figure 1.6: The summary of derivation methods, collision operators and
models considered in this thesis.

aspects related to the analysis and numerics for the Gardner’s QHD, the
viscous QHD, and the general QHD model. More precisely, we studied the
upwind scheme for the one-dimensional Gardner’s QHD model, proposed
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in [47]. Next, we derived the viscous quantum hydrodynamic model and
performed the numerical simulations for a one-dimensional resonant tun-
neling diode. Moreover, for the isothermal version of this model in one
space dimension we showed the existence of steady-state solutions. Finally,
using the entropy minimization principle we derived the general quantum
hydrodynamic model and for its simplified, one-dimensional version we made
numerical simulations of a resonant tunneling diode.
Now, following the schematic view shown in the Figure 1.6, we explain the
main steps in the derivation of quantum hydrodynamic models considered
in the thesis. We start with the (collisional) Wigner equation in position-
momentum phase space,

∂tf + p · ∇xf + θ[V ]f = Q(f), (x, p) ∈ R
2d, t > 0, (1.14)

where (x, p) is the position-momentum variable, t > 0 is the time, and θ[V ]
is a pseudo-differential operator defined by

(θ[V ]f)(x, p, t)

=
i

(2π)d/2

∫

R2d

1

ε

[
V

(
x+

ε

2
η, t

)
− V

(
x− ε

2
η, t

)]
f(x, p′, t)eiη·(p−p′)dηdp′.

The operator Q(f) on the right-hand side of the equation (1.14) is a quan-
tum collision operator and models the interactions of electrons with the
semiconductor crystal lattice. We leave this operator unspecified for the
moment. The electric potential V = V (x, t) is self-consistently coupled to
the Wigner function f(x, p, t) via Poisson’s equation (1.12), where n(x, t) =∫

Rd f(x, p, t)dp. The macroscopic variables are defined as the moments
of the Wigner function f over momentum space; more precisely, we con-
sider the particle density n = 〈1〉, the fluid-dynamical momentum density
nu = 〈p〉, and the energy density e = 〈1

2 |p|2〉, where we have used the no-
tation 〈g(p)〉 =

∫
f(·, p)g(p)dp for functions g(p). In order to obtain macro-

scopic equations, a moment method is applied to (1.14): we multiply the
equation by 1, p, and 1

2 |p|2 and integrate over the momentum space. This
yields evolution equations for n, nu and ne:

∂

∂t




n
nu
2ne


 + ∇x

∫

Rd

f




p
p⊗ p
|p|2p


 dp+




0
n∇xV
nu · ∇xV




=

∫

Rd

Q(f)




1
p
|p|2


 dp. (1.15)
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However, the above equations contain the integrals

∫

Rd

f(x, p, t)p⊗ p dp and

∫

Rd

f(x, p, t)|p|2p dp (1.16)

which generally cannot be expressed in terms of macroscopic variables n,
nu and ne without the additional assumption on the Wigner function f , i.e.
the system (1.15) is not closed. In order to pass from the microscopic to the
macroscopic level, we need to specify the collision operator and to close the
system. We achieve the closure by approximating the Wigner function with
the thermal equilibrium distribution function.

Roughly speaking, certain definitions of the collision operator and the ther-
mal equilibrium distribution lead us to different quantum hydrodynamic
models. We start our introductory overview of the models studied in this
thesis with the Gardner’s quantum hydrodynamic model.

Gardner’s quantum hydrodynamic model

Very important work on the quantum hydrodynamics for semiconductors
is given in the article of Gardner [47] where he derived the quantum hy-
drodynamic equations, performed an upwind numerical scheme and made
the simulations of the resonant tunneling diode. In Section 3.3.2 we ana-
lyze the Gardner’s finite-difference scheme. Furthermore, in Section 3.3.3
and Section 4.5 we compare numerical results achieved using the quantum
hydrodynamic models derived originally in this thesis with the model of
Gardner.

The main steps in the derivation of the Gardner’s model can be seen in
Section 2.3 (there presented without the collision operator). For modelling
the collisions Gardner used the Caldeira-Leggett operator [23]. Namely,
Caldeira and Leggett derived a Wigner equation in the large-temperature
limit (1.14) with the operator

(Q(f))(x, p, t) = ∆pf(x, p, t) +
1

τ
divp(pf(x, p, t)), (1.17)

where τ > 0 is the relaxation time. As a closure condition Gardner employed
a quantum-corrected thermal equilibrium distribution function (2.15), based
on the result of Wigner [97], in place of f in the derivation of the moment
equations. Arguing that the electric potential is close to log n near equilib-
rium, Gardner replaces V by log n, which is the origin of the Bohm potential.

The main mathematical difficulty in the analysis of quantum hydrodynamic
models is the treatment of highly nonlinear third-order quantum term and



1.3. Overview of the main results 25

the proof of the nonnegativity of the particle density, since in general max-
imum principles cannot be applied here. The mathematical difficulties in-
fluence also the numerical approximation of the equations. There is strong
numerical evidence that the equations, discretized by finite differences or
finite elements, need some kind of stabilization. In view of the similarity
of the (transient) quantum hydrodynamic model to the Euler equations,
the use of a hyperbolic scheme, treating the third-order quantum part as
a perturbation, seems to be appropriate. In this sense, as we have already
mentioned, Gardner [47] employed the upwind scheme to the stationary
one-dimensional quantum model, which introduces numerical viscosity. In
Section 3.3.2 is shown that the numerical viscosity is (in one space dimen-
sion) of the form h(|u|nx)x/2 in the continuity equation and h(|u|(nu)x)x
in the momentum equation, where h is the mesh size and u is the velocity.
Moreover, numerical results show that the static current-voltage curve of a
tunneling diode is strongly mesh-depending.

Viscous quantum hydrodynamic model

Chapter 3 is devoted to the analytical and numerical considerations of the
viscous quantum hydrodynamic model. Instead of employing a numerical
viscosity stabilization of quantum hydrodynamic equations, we are inter-
ested in the stabilization by a physical viscosity which will be introduced in
the model by appropriate collision operator. This was the motivation for
deriving the viscous quantum hydrodynamic model. For modelling the colli-
sions we used the Fokker-Planck operator proposed by Castella et al., in [24]
as an improvement of the Caldeira-Leggett operator [23]. Namely, the cor-
responding Wigner equation in the large-temperature limit (1.14) with the
Caldeira-Leggett operator on the right hand side was not in Lindblad form
and hence, the positivity of the density operator was not preserved under
temporal evolution. Castella et al. improved the derivation of the Caldeira-
Leggett model and derived a Wigner-Fokker-Planck model belonging to the
Lindblad class. This model reads as (1.14) with the collision operator

(Q(f))(x, p, t) = ν0∆xf(x, p, t) + ν1∆pf(x, p, t)

+ ν2divx(∇pf(x, p, t)) +
1

τ
divp(pf(x, p, t)). (1.18)

The parameters ν0, ν1, ν2 ≥ 0 constitute the phase-space diffusion matrix
of the system, and τ > 0 is like before a friction parameter, the relaxation
time. We notice that in the semi-classical limit ε→ 0, where ε is the (scaled)
Planck constant, it holds ν0 → 0 and ν2 → 0, and the scattering operator
reduces to the Caldeira-Leggett operator (1.17).
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In order to close the system, we employed the shifted-equilibrium distribu-
tion (2.15) in the corresponding Wigner model. The isothermal quantum
hydrodynamic model containing viscous terms has been already derived in
[58, 72]. Moreover, in this thesis we proceed one step further and derive the
nonisothermal viscous quantum hydrodynamic model for the particle density
n, the current density J , and the energy density ne:

∂tn+ divJ = F1, (1.19)

∂tJ + div
(J ⊗ J

n

)
+ divP − n∇V = F2, (1.20)

∂t(ne) + div
(J
n

(P + neI)
)
− J · ∇V = F3, x ∈ Ω, t > 0, (1.21)

where Ω ⊂ R
3 is a bounded domain, I is the identity matrix, the (scaled)

stress tensor P and energy density ne are given by

P = nTI − ε2

12
n(∇⊗∇) log n, ne =

|J |2
2n

+
3

2
nT − ε2

24
n∆ log n,

with the (scaled) Planck constant ε and the particle temperature T . We
note here that the stress tensor P is given as a sum of the classical pressure
term followed by the quantum correction. In the same sense, the energy e
is given as a sum of the kinetic energy, thermal energy and the quantum
correction. The source terms F1, F2, and F3 are given as

F1 = ν∆n, F2 = −J
τ

+ ν∆J − µ∇n,

F3 = −2

τ

(
ne− 3

2
n
)

+ ν∆(ne) − µdivJ,

where ν > 0 is the (scaled) viscosity constant and µ is proportional to ν/ε
(see Section 3.1 for details on the derivation and the scaling of the equa-
tions). The electric potential V is self-consistently coupled to the Poisson
equation (1.12). Equations (1.19)-(1.21), (1.12) are to be supplemented with
boundary conditions for n, J , ne, and V . Notice that the viscous terms in
F1 and F2 are similar to the numerical viscosity calculated for Gardner’s up-
wind scheme (in one space dimension) with ν replaced by h|u|. The effective
current density is given by J0 = J − ν∇n such that J0 is divergence-free.
The use of physical viscosity has some important consequences. First, we are
able to show the existence of steady-state solutions to the one-dimensional
isothermal model with physically motivated boundary conditions for any
value of ν > 0 and any value for the applied voltage. Namely, we assume
that the particle density n is given at the boundary, that n satisfies as in [47]



1.3. Overview of the main results 27

homogeneous Neumann boundary conditions, and that the second derivative
nxx is periodic at the boundary. Furthermore, the electric potential on the
boundary is given by the applied voltage. Up to now only partial existence
results were available for the viscous quantum hydrodynamic equations [58].
The main difficulties which we needed to overcome in mathematical analysis
of the isothermal model are: (i) the third-order differential operator, (ii) the
strong nonlinearities, and (iii) the nonhomogeneous boundary conditions.
The first idea of the proof of the existence result is to formulate the quantum
hydrodynamic equations as in [54] as a fourth-order differential equation for
the exponential variable n = ew. This avoids the difficulty (i). The fixed-
point operator in the existence proof is then defined in w = lnn with domain
H2

per, the space of periodic H2 functions. The second idea, which allows to
treat the difficulty (ii), consists in estimating the energy production

EP = ν

∫ 1

0

(
nu2

x +
ε2

3
(
√
n)2xx +

ε2

144

n4
x

n3
+

n2

2νλ2
+4

(
T +

ν

τ

)
(
√
n)2x +

J2
0

ντn

)
dx,

where J0 = J−νnx, using the third-order formulation of the viscous quantum
hydrodynamic model. Because of the boundary conditions (difficulty (iii)),
we only obtain the estimate EP ≤ J0U/ν + c, where c > 0 is a constant.
However, the electric power J0U/ν can be estimated, thanks to the Poisson
equation, in terms of the integral

∫
n2dx which can be absorbed by the

energy production. The bound on the energy production only provides an
estimate for

√
n in H2; however, the definition of the fixed-point operator

makes necessary an estimate for w = lnn in H2. This is achieved by first
estimating the velocity J0/n, employing the energy production bound, and
then carefully proving a bound on wxx in L2, by using the fourth-order
formulation of the equation. These estimates are sufficient to apply the
Leray-Schauder fixed-point theorem.
We notice that the proof of the existence result makes use of both the original
third-order and the fourth-order formulation of the quantum hydrodynamic
model. Furthermore, we remark that all a priori bounds depend on ν and
become useless in the limit ν → 0. The above energy estimate shows the
regularizing effect of the viscosity since we obtain (viscosity-dependent) a
priori H2 bounds. Our proof seems to be only valid in the one-dimensional
setting since we use the embedding H1 →֒ L∞. Moreover, it seems to be
difficult to generalize the proof to the viscous quantum hydrodynamic model
including the energy equation (1.21).
The second consequence of the viscous terms concerns the numerical approx-
imation of the quantum hydrodynamic model. In the literature, the quan-
tum hydrodynamic equations have been discretized employing an upwind
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finite-difference approximation [47], a Runge-Kutta discontinuous Galerkin
method [27, 28], and a relaxation scheme [72]. As mentioned above, these
hyperbolic-type schemes lead to possibly large numerical viscosity. On the
other side, the physical viscosity included in the viscous quantum hydrody-
namic equations enables to discretize the model using central finite differ-
ences. Moreover, in Section 3.3.2 we show that the numerical dispersion,
introduced by the central scheme, is much smaller than the physical disper-
sion, given by the third-order quantum terms. In particular, we show that
the numerical results are much less mesh-depending than the upwind scheme
employed for the Gardner’s quantum hydrodynamic equations. However, we
claim that the quantum hydrodynamic model is very sensitive with respect
to any change of physical or numerical viscosity. The central finite-difference
approximation is a rather simple numerical method and usually it has some
stability problems, but here it gives good results, at least in one space dimen-
sion, when the mesh is fine enough. In Section 3.3.2 we give a consistency
analysis which allows to interpret the numerical results for both the central
and the upwind discretization. Notice that the numerical approximation of
the quantum hydrodynamic equations, with or without viscosity, is still not
well understood.

The analytical results do not allow for the inviscid limit ν → 0. Numerically
this can be seen by the fact that the viscosity cannot be chosen arbitrarily
small in our scheme (although the physical value for ν can be used). This
indicates that the physical viscosity is indeed needed for stabilization.

There is also a drawback of the viscous model. One of the interests of the
quantum hydrodynamic equations is the simulation of resonant tunneling
diode whose current-voltage characteristics exhibit negative differential re-
sistance effects, i.e., the current density is monotonically decreasing in a
certain voltage range. An important quantity is the peak-to-valley ratio,
i.e. the quotient of local maximum to local minimum current densities. Our
numerical experiments for the nonisothermal model show that the peak-
to-valley ratio is too small compared to physical experiments. Thus, the
physical viscosity strongly influences the quantum behavior of the model.

General quantum hydrodynamic model.

In Chapter 4 we make more systematic approach to the problem of the
derivation of quantum hydrodynamic models. Instead of taking Gardner’s
closure condition like in Chapter 3, here we apply the quantum entropy
minimization method recently developed by Degond and Ringhofer [36].
Before we sketch the idea of the closure, we specify the collision operator.
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We assume that the kernel of the collision operator consists of the quantum
thermal equilibrium distribution and that the operator preserves certain mo-
ments. Such operator belongs to the class of so-called BGK-type operators,
named by Bhatnagar, Gross and Krook [16].
Our approach to define a closure is based on Levermore’s entropy mini-
mization principle. This method has been first employed in the context of
classical gas dynamics [78] and has been recently extended to quantum flu-
ids [36]. The idea is to define the equilibrium distribution as the minimizer
of the quantum entropy2 subject to the constraints of given moments. The
equilibrium distribution is also called the quantum Maxwellian since there
are some similarities to the classical Maxwellian of gas dynamics. The quan-
tum Maxwellian Mf , as the solution of a constrained minimization problem,
depends on Lagrange multipliers which can be interpreted in the O(ε2) ap-
proximation as the logarithm of the particle density, the fluid velocity, and
the temperature, respectively. Expanding Mf in powers of ε2 and assuming
similarly as in [47] that spatial variations of the temperature T = T (x, t) are
of the order O(ε2), we derive the following quantum hydrodynamic equations
up to order O(ε4),

∂tn+ div(nu) = 0, (1.22)

∂t(nu) + div(nu⊗ u) + divP − n∇V = 0, (1.23)

∂te+ div
(
(P + eI)u

)
+ divS − nu · ∇V = 0, (1.24)

where I is the unit matrix in R
d×d, the energy density equals

e =
d

2
nT +

1

2
n|u|2 − ε2

24
n
(
∆ log n− 1

T
tr(R⊤R)

)
,

with the trace “tr” of a matrix, the quantities P (stress tensor) and S are
given by

P = nTI − ε2

12
n
(
(∇⊗∇) log n− 1

T
R⊤R

)
,

S = − ε2

12
n
((d

2
+ 1

)
R∇ log n+

(d
2

+ 2
)
divR+

3

2
∆u

)

+
ε2

12

(d
2

+ 1
)
n(R∇ log n+ divR),

and the vorticity matrix R = (Rij) is the antisymmetric part of the velocity
derivative,

Rij = ∂xjui − ∂xiuj. (1.25)

2 Here, we adopted the mathematical sign convention of decreasing entropy.
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A more general model, allowing arbitrarily large spatial deviations of the
temperature, is derived in Section 4.2. Employing a Caldeira-Leggett-type
collision operator, relaxation-time terms can be also included (see Section
4.2.1). According to (1.13), the quantum correction (ε2/12)n(∇ ⊗∇) log n
can be interpreted as a force including the Bohm potential ∆

√
n/

√
n [40].

For ε = 0 in (1.22)-(1.24), we recover the classical hydrodynamic equations.
For ε > 0 and constant temperature, we obtain the same equations as derived
in [32, 70] where also the quantum entropy minimization method has been
used. Our model differs from Gardner’s quantum hydrodynamic equations
(formulas (1)-(3) in [47]) by the vorticity term R and the dispersive velocity
term in the energy equation (1.24),

div qS =
ε2

8
div(n∆u). (1.26)

The origin of this difference lies in the different choices of the quantum
Maxwellian. We refer to Section 4.2.5 for a detailed discussion.

The term qS – but not the vorticity R – also appears in some other quantum
hydrodynamic derivations. It has been derived in [48] from a mixed-state
Wigner model and interpreted as a dispersive “heat flux” (see formula (36)
in [48]). Moreover, it appears in the quantum hydrodynamic equations of
[52] involving a “smoothed” potential, derived from the Wigner-Boltzmann
equation by a Chapman-Enskog expansion.
An interesting feature of the dispersive term (1.26) is that it stabilizes the
quantum hydrodynamic system numerically. More precisely, this term al-
lows us to solve the general quantum hydrodynamic equations in one space
dimension by using a central finite difference scheme, thus avoiding numer-
ical viscosity.

The numerical simulations of a quantum hydrodynamic model involving
the term (1.26) are presented in Section 4.5. Like before, a simple one-
dimensional resonant tunneling diode is simulated. The current-voltage
characteristics show multiple regions of negative differential resistance. The
dispersive term (1.26) has the effect of “smoothing” the current-voltage
curve, i.e., it decreases the peak-to-valley ratio.

In Section 4.4 we also examine the existence of conserved quantities of the
general quantum hydrodynamic equations. Clearly, the mass is conserved.
We prove that also the energy E =

∫
(e + λ2|∇V |2/2)dx is conserved. This

provides gradient estimates for the particle density, velocity, and tempera-
ture, which are useful in the mathematical analysis of the equations.

At the end of this introductory overview, we point out that the quantum
entropy minimization principle enables a systematic derivation of quantum
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macroscopic models. Namely, using this principle, not only quantum hydro-
dynamic, but also quantum diffusive models (quantum drift-diffusion and
quantum energy-transport model) can be derived [33, 34].
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Chapter 2

QHD models without

collisions

In this chapter we derive various versions of quantum hydrodynamic mod-
els, either from the Schrödinger or from the Wigner equation. We point out
that Sections 2.1-2.3 are the reviews of known results which can be found for
example in [47, 49, 53, 55]. This chapter begins with Section 2.1, where,
starting from the single-state Schrödinger equation, the zero-temperature
quantum hydrodynamic model is obtained. Next, in Section 2.2 one starts
with the Wigner formalism and derives the small-temperature quantum hy-
drodynamic models. We mention also another approach for the deriva-
tion of the quantum hydrodynamic equations starting from a mixed-state
Schrödinger system. Finally, we end the review sections with a very brief
description of some analytical and numerical results in the literature on
the quantum hydrodynamic models. In Section 2.4 we discuss the current-
voltage curves of the simplified quantum hydrodynamic models, where the
potential V is considered to be given in advance instead as usual, to be
self-consistently coupled to the electron density through the Poisson equa-
tion. The essential idea here is to study simplified situations where the
Schrödinger equation, which is formally equivalent to the quantum hydro-
dynamic model, can be explicitly solved.

33
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2.1 Zero-temperature models

The evolution of a single electron is governed by the (dimensionless) Schrö-
dinger equation for the wave function ψ,

iε∂tψ = −ε
2

2
∆ψ − V ψ, x ∈ R

d, t > 0, (2.1)

ψ(0, x) = ψI(x), x ∈ R
d. (2.2)

We assume that the initial datum is given by the WKB state (Wentzel [94],
Kramers [75], Brillouin [22])

ψI =
√
nI exp(iSI/ε). (2.3)

Then a simple computation [53] shows that the solution of (2.1)-(2.3) is
given by ψ(t, x) =

√
n(t, x) exp(iS(t, x)/ε), where (n, S) is a solution of the

zero-temperature quantum hydrodynamic equations

∂tn− divJ = 0, (2.4)

∂tJ − div

(
J ⊗ J

n

)
+ n∇V +

ε2

2
n∇

(
∆
√
n√
n

)
= 0, (2.5)

where x ∈ R
d, t > 0 with the current density J = −n∇S and the initial

conditions

n(x, 0) = nI(x), J(x, 0) = −nI(x)∇SI(x), x ∈ R
d.

The system (2.4)-(2.5) is the quantum analogue of the classical pressureless
Euler equations of gas dynamics. In the semi-classical limit when ε → 0,
(2.4)-(2.5) reduce to the classical equations. Notice that this derivation
requires an irrotational initial velocity.

In physics textbooks, often the flow equations

∂tn+ div(n∇S) = 0, ∂tS +
1

2
|∇S|2 − V − ε2

2

∆
√
n√
n

= 0

are derived instead of the formulation (2.4)-(2.5). In fact, (2.5) is obtained
from the second equation of the above system after spatial differentiation
and multiplication by n. The above system also occurs in the derivation
of quantum-classical equations for molecular dynamics [17]. It has the dis-
advantage that it is not defined if vacuum n = 0 occurs. Then the phase
S is not defined and the Bohm potential becomes singular. As shown in
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[53], the formulation (2.4)-(2.5) has in general better properties due to the
multiplication with the density n.
We remark that this derivation has been recently extended to a two-band
QHD model in [2].
The QHD model (2.4)-(2.5) is derived for a single particle and therefore,
it does not contain a temperature term. In order to include temperature,
many-particle systems need to be studied. For such systems, quantum hy-
drodynamics is not so well established. The starting point is a statistical
mixture of particles where each of them is described by a single-state QHD
system. Then averaged quantities over the ensemble of quantum states
are needed. This leads to a closure problem, also occurring in the passage
from kinetic to classical hydrodynamic equations. In the literature, several
closure assumptions have been proposed, for instance, small-temperature
asymptotics, use of the Fourier law, or entropy minimization. In the follow-
ing sections, we review these closure strategies in detail.

2.2 Small-temperature models

In the previous section we have derived a relation between the Schrödinger
and the fluid-dynamical picture. Another point of view is given by the
Wigner formalism. More precisely, let ψ be a solution of the Schrödinger
equation (2.1)-(2.2) and let

ρ(r, s, t) = ψ(r, t)ψ(s, t),

where ψ is the complex conjugate of ψ, denote the so-called density matrix.
A computation shows that it satisfies the Heisenberg (or von Neumann)
equation

iε∂tρ = −ε
2

2
(∆s − ∆r)ρ− (V (s, t) − V (r, t))ρ, r, s ∈ R

d, t > 0, (2.6)

with the initial condition ρ(r, s, 0) = ψI(r)ψI(s). Let f(x, v, t) be the Fourier
transform of the density matrix in the variables r = x+ εη/2, s = x− εη/2,

f(x, v, t) =
1

(2π)d

∫

Rd

ρ
(
x+

ε

2
η, x− ε

2
η, t

)
eiη·vdη, x, v ∈ R

d, t ∈ R.

Then, Fourier transforming the Heisenberg equation for the density matrix
(which is equivalent to the Schrödinger equation (2.1)), we obtain the (one-
particle) Wigner equation

∂tf + v · ∇xf + Θ[V ]f = 0, x, v ∈ R
d, t > 0, (2.7)

f(x, v, 0) = fI(x, v), x, v ∈ R
d, (2.8)
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where Θ[V ] is a pseudo-differential operator [92] defined by

(Θ[V ]f)(x, v, t) =
1

(2π)d

∫

Rd

∫

Rd

i

ε

[
V

(
x+

ε

2
η, t

)
− V

(
x− ε

2
η, t

)]

× f(x, v′, t)eiη·(v−v′)dv′dη. (2.9)

We refer to [84] for details of the computation.

In order to derive a QHD model, we prescribe the initial density matrix

ρI(r, s) = ψI(r)ψI(s) exp

(
−θ|r− s|2

2ε2

)
, r, s ∈ R

d,

where ψI(x) is given with the expression (2.3) and θ is the initial tempera-
ture. Notice that the initial Wigner function corresponding to this density
matrix equals

fI(x, v) =
1

(2π)d

∫

Rd

ψI

(
x+

ε

2
η
)
ψI

(
x− ε

2
η
)
eiη·v−θ|η|2/2dη.

Elementary but lengthy calculations give the moments

∫

Rd

fIdv = nI ,

∫

Rd

vfIdv = nI∇SI ,

1

2

∫

Rd

(v ⊗ v)fIdv = nI∇SI ⊗∇SI + nIθ Id − ε2

4
nI(∇⊗∇) log nI ,

where Id denotes the identity matrix in R
d×d.

Now multiply the Wigner equation (2.7) by 1, v and 1
2(v⊗v), integrate over

v ∈ R
d and integrate by parts. We introduce, as in the classical case, the

particle, current and energy density, respectively, by

n =

∫

Rd

fdv, J = −
∫

Rd

vfdv, E =
1

2

∫

Rd

(v ⊗ v)fdv,

and define, motivated by the above moments of fI , the temperature tensor
T via

E =
1

2

(
J ⊗ J

n
+ nT − ε2

4
n(∇⊗∇) log n

)
. (2.10)
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It can be shown that T is of the order of θ. Then we obtain the quantum
hydrodynamic equations with temperature [55],

∂tn− divJ = 0, x ∈ R
d, t > 0, (2.11)

∂tJ − div

(
J ⊗ J

n
+ nT

)
+ n∇V +

ε2

2
n∇

(
∆
√
n√
n

)
= 0, (2.12)

∂tEjk − ∂xℓ

[
Jℓ

n
Ejk +

1

2
(JjTℓk + JkTjℓ) −

ε2

8

(
Jj∂

2
xkxℓ

log n+ Jk∂
2
xjxℓ

log n
)]

+
1

2
(Jj∂xk

V + Jk∂xjV ) + ∂xℓ
qjkℓ = 0, (2.13)

where the heat flux tensor q is defined by

qjkℓ =

∫

Rd

(vj − uj)(vk − uk)(vℓ − uℓ)f(x, v, t)dv, j, k, ℓ = 1, . . . , d,

and u = −J/n is the mean velocity of the particles. Initial conditions for n,
J , and E need to be prescribed.
Again, the above system of equations has to be closed, i.e., we have to find
an expression for q depending only on n, J or T (and their derivatives). The
QHD equations of Gardner [47] are obtained by replacing q in the above
energy equation (2.13) by

qcljkℓ = −ε
2

8
n∂2

xjxk

(
Jℓ

n

)
. (2.14)

However, this closure condition is not asymptotically correct for θ → 0 since
the difference q−qcl = O(θ) can be seen to be of the same order as T = O(θ).
This difficulty can be overcome by assuming “almost coherent” initial states
ψI =

√
nI exp(iSε,θ

I /ε) with Sε,θ
I = SI + O(

√
θ) + O(ε2) as θ → 0, ε → 0.

Then it can be shown [55] that the energy equation (2.13) holds with q
replaced by qcl up to order O(θ)+O(

√
θε2)+O(ε4). We stress the fact that

this QHD model holds for small θ and ε. As explained above, the equations
with the closure qcl are not asymptotically correct for small θ but fixed ε.

2.3 Quantum hydrodynamics

In this section we derive QHD equations for arbitrary large temperature T .
The idea of the derivation is, similar as in the previous section, to multiply
the Wigner equation by 1, v, and v ⊗ v and to integrate over the velocity
space. In the following, we set

〈g(v)〉 =

∫

Rd

g(v)dv
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for any function g depending on v. The integrals 〈f〉, 〈vf〉, and 〈v⊗ vf〉 are
called the zeroth, first, and second moments, respectively. Then the moment
equations read as follows:

∂t〈f〉 + div〈vf〉 = 0,

∂t〈vf〉 + div〈v ⊗ vf〉 − ∇V 〈f〉 = 0,

∂t〈1
2 |v|2f〉 + div〈1

2v|v|2f〉 − ∇V · 〈vf〉 = 0.

As a closure condition we use an O(ε4) approximation of the quantum ther-
mal equilibrium Wigner function first derived by Wigner [97] (see [47, 50]).
More precisely, we assume that the Wigner function equals the vector-
displaced equilibrium distribution f(t, x, v) = fe(t, x, v − u(t, x)), where
u(t, x) is some group velocity and

fe(x, v, t) = A(x, t) exp
(
− |v|2

2T
+
V

T

)[
1 + ε2

{ 1

8T 2
∆V (2.15)

+
1

24T 3
|∇V |2 − 1

24T 3

d∑

j,ℓ=1

vjvℓ
∂2V

∂xj∂xℓ

}
+O(ε4)

]
.

The temperature T = T (x, t) is here a scalar. The function A(x, t) is as-
sumed to be slowly varying in x and t. Notice that for ε = 0 (and V = 0) the
quantum thermal equilibrium distribution function reduces to the classical
Maxwellian. Then the first moments are 〈f〉 = n, 〈vf〉 = −J and

〈v ⊗ vf〉 =
J ⊗ J

n
+ nT Id − ε2

12T
n(∇⊗∇)V +O(ε4), (2.16)

〈v|v|2f〉 = 2
J

n
(e+ T ) − ε2

12
((∇⊗∇)V ) · J +O(ε4), (2.17)

with the quantum energy density

e =
|J |2
2n

+
d

2
nT − ε2

24
n∆ log n.

Notice that e is the trace of the energy tensor (2.10) except of the factor
ε2/24 which is 1/3 of the factor in (2.10) (see the discussion below). The
formula for fe implies that n equals, up to terms of order O(ε2), eV/T times
a constant and therefore, if the temperature is slowly varying,

∂2 log n

∂xj∂xk
=

1

T

∂2V

∂xj∂xk
+O(ε2). (2.18)
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Clearly, this approximation is only valid for smooth functions and excludes
discontinuous potentials arising at heterojunctions (see the discussion be-
low). Under this condition we can replace all second derivatives of V by
second derivatives of log n, only making an error of order O(ε4) in the for-
mulas (2.16) and (2.17). This yields the quantum hydrodynamic equations

∂tn− divJ = 0, x ∈ R
d, t > 0, (2.19)

∂tJ − div

(
J ⊗ J

n

)
−∇(nT ) +

ε2

6
n∇

(
∆
√
n√
n

)
+ n∇V = 0, (2.20)

∂te− div

(
J(e+ T ) − ε2

12
((∇⊗∇) log n) · J

)
+ J · ∇V = 0, (2.21)

together with initial conditions for n, J , and e. We remark that, compared
to the QHD model (2.11)-(2.13), we obtain a scalar energy equation instead
of an energy tensor equation as in (2.13) since we assumed here a scalar
temperature.

Another difference to the equations derived in the previous section are the
factors in front of the third-order derivative of n which are 1/3 of the factors
in (2.12) and (2.13). We remark that the factor 3 is not related to the space
dimension since we are working with arbitrary dimension d. The physical
reason of this discrepancy between the two models is not understood; see
also the discussion in [49].

Let us mention another approach for the derivation of the quantum hydro-
dynamic equations starting from a mixed-state Schrödinger system [56]. A
mixed quantum mechanical state consists of a sequence of single states with
occupation probabilities λk ≥ 0 (k ∈ N) for the k-th state described by

iε∂tψk = −ε
2

2
∆ψk − V ψk, x ∈ R

d, t > 0,

ψk(x, 0) = ψI,k(x), x ∈ R
d,

and each initial wave function is given by a WKB state

ψI,k =
√
nI,k exp(iSI,k/ε), k ∈ N.

The occupation probabilities satisfy
∑∞

k=1 λk = 1. We define the electron
density nk = |ψk|2 and the current density Jk = −εIm(ψk∇ψk) of the k-th
state and assume that the wave function can be decomposed as

ψk(t, x) =
√
nk(t, x) exp(iSk(t, x)/ε).
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Then the single-particle current flow is irrotational since Jk = −nk∇Sk.
Using this ansatz for ψk in the above Schrödinger equation gives the zero-
temperature QHD equations (cf. (2.4)-(2.5))

∂tnk − divJk = 0,

∂tJk − div

(
Jk ⊗ Jk

nk

)
+ nk∇V +

ε2

2
nk∇

(
∆
√
nk√
nk

)
= 0, x ∈ R

d, t > 0,

with the initial conditions

nk(0, x) = nI,k(x), Jk(0, x) = −nI,k(x)∇SI,k(x), x ∈ R
d.

Now we define the total particle density n and current density J by

n =
∞∑

k=1

λknk, J =
∞∑

k=1

λkJk.

The flow generated by the mixed state is generally not irrotational anymore.
Summation of the k-th state QHD equations multiplied by λk leads to the
QHD equations (2.11)-(2.13) where the energy tensor Ejk and the heat flux
tensor qjℓm are given by (2.10), (2.14), respectively [56]. The temperature
T is a tensor defined as the sum of the so-called current temperature Tc and
osmotic temperature Tos, where

Ti =

∞∑

k=1

λk
nk

n
(ui,k − ui) ⊗ (ui,k − ui), i = c, os,

and the “current velocities” uc,k and “osmotic velocities” uos,k are given by

uc,k = −Jk

nk
, uc = −J

n
, uos,k =

ε

2
∇ log nk, uos =

ε

2
∇ log n.

The system of equations (2.11)-(2.13) has to be closed since the heat flux
tensor cannot (in general) be expressed in terms of n, J , and T only. In the
literature, we are aware of two choices. One choice is just to assume that the
temperature is a constant scalar (times the identity matrix) such that the
energy equation (2.13) does not need to be considered [63]. Another choice is
to set q = κ∇T , where κ > 0 denotes the heat conductivity. This closure has
been used in classical hydrodynamics [91] and in quantum hydrodynamic
simulations [28, 47]. We also cite [51] where a dispersive heat flux q has
been derived for a different QHD model.
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The QHD model is used for the simulation of quantum devices, like the res-
onant tunneling diode (see Section 1.2) which consists of different materials.
At the interface of the materials (heterojunctions), the (mean-field) poten-
tial is calibrated by a barrier potential which models the gap between the
conduction bands of each material. The barrier potential is a given function
which is constant inside each material. Thus, the sum of the (mean-field) po-
tential and the barrier potential is discontinuous. The approximation (2.18)
therefore does not make sense for such potentials. Gardner and Ringhofer
[49] have overcome this problem by deriving so-called “smooth” QHD equa-
tions. More precisely, they obtain in the Born approximation to the Bloch
equation the equations (2.19)-(2.21) in which the terms

ε2

6
n∇

(
∆
√
n√
n

)
and

ε2

12
(∇⊗∇) log n

are replaced by

ε2

4
div(n(∇⊗∇)V ) and

ε2

4
(∇⊗∇)V ,

and V = V (x, T ) depends non-locally on x and T (see [49] for details). The
QHD equations (2.19)-(2.21) are recovered in the O(ε2) approximation

V =
1

3
V +O(ε2), ∇ log n = −∇V

T
+O(ε2),

if n, J and T are varying very slowly [49].
We mention that engineers were the first to give (formal) derivations of
quantum hydrodynamic models for the use in semiconductor modeling (see,
for instance, [57] for an isothermal model and [40] for the full model).
Mathematical analysis of the QHD equations has been just partially under-
stood. More precisely, the existence of solutions, both for the transient and
the stationary model, has been proven only in particular situations.
The existence of solutions to the QHD equations in the isothermal case, usu-
ally including a momentum-relaxation term −J/τ with the relaxation time
τ on the right-hand side of (2.20), has been achieved only under a small-
ness condition on the current density similar to classical subsonic flow; see
[45, 46, 54, 62, 66, 99] for the stationary equations. In the similar spirit,
the existence results for the transient model were achieved either for small
times [69] or for initial or boundary data sufficiently close to the thermal
equilibrium state [67, 69, 79]. Non-existence results for supersonic-type
flow using special boundary conditions have been proved in [45] indicating
that the subsonic-type condition may be necessary.
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The main mathematical difficulty, besides of the highly nonlinear struc-
ture of the third-order quantum term, is the proof of positivity (or non-
negativity) of the particle density and temperature. In the stationary case,
the energy estimate only provides a bound for the energy production∫
|J |2/(τn)dx which does not exclude zeros of the particle density. For spe-

cial boundary conditions in the one-dimensional case, even a non-existence
result was shown [45]. Recently, the blow-up in finite time for the solu-
tions of certain initial-boundary value problem for multi-dimensional QHD
equations is proved [44].

The one-dimensional QHD equations have been solved numerically with the
aim to simulate resonant tunneling diodes. Gardner [47] used the upwind
method to discretize the equations, thus treating the third-order quantum
term as a perturbation of the classical Euler equations. Chen [27] em-
ployed a shock-capturing Runge-Kutta discontinuous Galerkin method for
the QHD conservation laws. Caussignac et al. [25] wrote the stationary
equations as a first-order system and used a general-purpose solver. Pietra
and Pohl [87, 88] discretized the model using central finite differences; they
also studied the behavior of the solutions in the semi-classical limit ε→ 0. A
comparison of a central finite-difference scheme and a hyperbolic relaxation
scheme applied to the QHD equations has been presented in [72].

2.4 Semi-analytical expressions for current-voltage

curves

In order to describe the electron transport through the modern nano-scale
semiconductor devices, one has to use fully quantum mechanical models.
Besides studying the transient behaviour of the devices (switching times,
oscillation frequencies), it is also worth to investigate the stationary simu-
lation results (current-voltage curves, possible bistabilities). Although the
primary application of the QHD model is the simulation of quantum devices
that depend on particle tunneling through potential barriers, we study here
the simplified ballistic situation, where no potential barriers are present.
Namely, in this section we consider the simplified one-dimensional, station-
ary QHD model where the real-valued potential V (x) is given and not self-
consistently coupled to the electron density. We take here the potential flow,
i.e. we assume that the current density can be written as J = nSx, where
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S is called a phase. The QHD model of interest reads

Jx = 0, (2.22)
(J2

n
+ p(n)

)
x

+ nVx − ε2

2
n
((

√
n)xx√
n

)
x

= 0, (2.23)

where x ∈ R, ε is the (scaled) Planck constant, n is the electron density and
V is the potential. We consider an isothermal or isentropic quantum fluid of
charged particles. The pressure function p is given by the particle density,
i.e. p(n) = Tn in the isothermal case and p(n) = Tnγ in the isentropic case,
where γ > 1 and T is a (scaled) temperature constant. In the following, we
take T = 1. Our aim is to consider how different terms contained in the
QHD model (2.22)-(2.23) influence the current-voltage curve of the device.
As we have already pointed out in Section 2.1, QHD model can be obtained
from Schrödinger equation, using the Madelung transform. Our intention is,
instead of solving nonlinear, third-order system (2.22)-(2.23), to deal with
the equivalent stationary Schrödinger equation.
Indeed, let us start from the very particular, nonlinear, stationary Schrö-
dinger equation

ε2

2
ψxx − (h(|ψ|2) + V (x))ψ = Eψ, (2.24)

with the real parameter E noted as the energy of the steady-state. The
enthalpy function h is given by the expression

h(n) =
1

T

∫ n

1

p′(s)

s
ds. (2.25)

In the isothermal case, h(n) = log(n) holds, while for isentropic states, we
have h(n) = γ/(γ−1)(nγ−1−1), for γ > 1. Performing the Madelung trans-
form (1.11), i.e. by writing the wave function in the terms of its amplitude√
n(x, t) and the phase S(x, t), then substituting back into the Schrödinger

equation (2.24) and separating its real and imaginary part, one obtains the
following system

(nSx)x = 0, (2.26)

S2
x

2
+ h(n) + V (x) − E − ε2

2

(
√
n)xx√
n

= 0. (2.27)

After taking the derivative of the equation (2.27) with the respect to x,
multiplying by n, and using the relation J = nSx, one finally obtains the
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QHD equations (2.22)-(2.23). In the same way, it is easy to see that starting
with the QHD model (2.22)-(2.23), dividing by n > 0 and integrating with
the respect to x gives the stationary Schrödinger equation (2.24) where the
integration constant is noted by E. So, we conclude that the QHD model
(2.22)-(2.23) is equivalent to the nonlinear stationary Schrödinger equation
(2.24). This equivalence is only formal, i.e. it holds only for smooth solu-
tions with strictly positive density. Note also that here we spoked about
the equivalence on the whole space, without considering the boundary con-
ditions.
Motivated with the equivalence mentioned above, our intention is to get
the expression for the current-voltage curve J = J(U), where U is the
applied potential, by solving explicitly the Schrödinger equation. From the
Madelung ansatz (1.11) it is obvious that

n(x, t) = |ψ(x, t)|2. (2.28)

In order to motivate the expression for the current density J in terms of the
wave function, we return for the moment back to the transient Schrödinger
equation

iεψt = −ε
2

2
ψxx + V (x)ψ, x ∈ R, t > 0. (2.29)

Using the fact that the wave function solves the equation (2.29) we obtain

d

dt
|ψ|2 =

iε

2
(ψxψ − ψxψ)x = −ε

(
Im(ψxψ)

)
x
. (2.30)

Comparing the equation (2.30) with the continuity equation nt + Jx = 0, it
follows that the current density J is defined as

J(x, t) = ε Im(ψx(x, t)ψ(x, t)), t > 0. (2.31)

Let the device region be represented by the spatial (scaled) interval (0, 1).
The next step is to define appropriate boundary conditions for the Schrö-
dinger equation, which are motivated by the boundary conditions used for
the QHD model. For the moment, we take the equivalent QHD formulation
(2.26)-(2.27). Naturally , we impose that

V (0) = 0, V (1) = U, (2.32)

where U ∈ R is the applied potential. To derive the boundary conditions
for n and S we make physically relevant hypotheses, following [62]. The
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boundary data are assumed to be the superposition of the thermal equilib-
rium functions (neq, Seq) and the applied potential U , i.e. at the boundary
valids

n = neq, S = Seq + U. (2.33)

The thermal equilibrium state is defined by J = 0 or, equivalently, S =
const. (as n > 0). By fixing the reference point for S (and Seq) we can
suppose that Seq = 0. Further, we assume neq = 1 at the boundary. In this
way we get the Dirichlet boundary conditions

n(0) = n(1) = 1, S(0) = 0, S(1) = U. (2.34)

Boundary conditions (2.34) are non-local for the QHD system (2.22)-(2.23).
Here we point out that the condition S(1) = U can be written in the integral
form

∫ 1

0

J(s)

n(s)
ds = U.

In multi-dimensional case, a system similar to (2.26)-(2.27), coupled with
the Poisson equation for the potential, is studied in [62]. More precisely, the
model considered there contains an additional relaxation term S/τ , where τ
is the relaxation parameter and the boundary conditions were (2.34)-(2.32).
In [62] it is shown that for sufficiently small |U |, there exists a solution
(w,S, V ) with strictly positive w =

√
n.

Using the Madelung ansatz, the boundary conditions (2.34) can be written
in terms of the wave function, as follows

ψ(0) = 1, ψ(1) = e
iU
ε . (2.35)

However, in the simulations of tunneling devices, later in this thesis other
boundary conditions for (2.22)-(2.23) are also used (see Section 3.3 and
Section 4.5):

n(0) = n(1) = 1, nx(0) = nx(1) = 0. (2.36)

The boundary conditions (2.36) written in terms of the wave function ψ read

ψ(0) = 1, |ψ(1)|2 = 1, (2.37)

Re(ψψx(0)) = Re(ψψx(1)) = 0. (2.38)

As we have already pointed out, we are interested in the boundary conditions
for Schrödinger equation which are meaningful from the point of view of the
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QHD model. For the accurate simulation of quantum devices a careful
modeling and numerical discretization of the boundary conditions are of
the enormous importance. However, the Schrödinger equation is usually
considered on a large, possibly unbounded domain. Due to the numerical
reasons, one has to assume that the modeling and simulation are confined
to a finite subregion. At the boundary of this subregion one introduces an
artificial boundary condition, taking that the incoming flux of charge carriers
is known. It is clear that the choice of appropriate boundary conditions is
a prerequisite for obtaining any meaningful result. In recent years lot of
progress towards the understanding of the transparent boundary conditions
for the Schrödinger equation, suggested in the work of Lent and Kirkner
[77] has been done. For example in [9, 15] the boundary value problem for
the one-dimensional Schrödinger equation with the boundary conditions

ψ′(0) + ikψ(0) = 2ik, ψ′(1) = i
√
k2 − 2V (1)/ε2ψ(1), (2.39)

where k > 0 is the wave vector, is analytically and numerically studied.

Different QHD models and their current-voltage curves

The goal is to study the influence of the drift, pressure, potential and
quantum term on the behaviour of the current-voltage curves for chosen
(simplified) QHD model (2.22)-(2.23). Our observations show that current-
voltage curves of the model under consideration depend very sensitively on
the choice of boundary values. As we commented above, the derivation of
sensible boundary conditions forms a vital part in the modelling process.
Moreover, the current-voltage curves analytically calculated in this section
differ in an essential way from the curves which are numerically obtained and
presented later in the thesis (see Section 3.3.3 and Section 4.5). Numerical
simulations there, however, are performed for the QHD equations coupled
with the Poisson equation for the potential and containing some additional
terms, like for example the relaxation term −J/τ , where τ is the relaxation
parameter. Our impression is that these terms strongly influence both the
qualitative and the quantitative behaviour of the current-voltage curves for
QHD models.

The procedure we follow here is to solve the corresponding Schrödinger equa-
tion with the appropriate boundary conditions, then to calculate J and n
using formulas (2.28), (2.31) respectively, and finally to draw the corre-
sponding current-voltage curve.
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The reduced QHD model

For the beginning, we consider the situation without the pressure term and
where V ≡ 0. The QHD system of the interest reads

Jx = 0, (2.40)
(J2

n

)
x
− ε2

2
n
((

√
n)xx√
n

)
x

= 0, (2.41)

and it is formally equivalent to the stationary Schrödinger equation

−ε
2

2
ψxx = Eψ, (2.42)

where E ∈ R is the energy of the steady-state. The equation (2.42) consid-
ered for x ∈ R is the standard free-electron problem. The solution of this
differential equation is given as a linear combination of plane waves eikx,
e−ikx, where k is a wave number defined as k =

√
2E/ε2. Therefore, the

energy can be expressed in terms of k as

E =
ε2k2

2
, (2.43)

which means that E ≥ 0 if k is a real number. The wave number becomes
imaginary, k → iκ, if E < 0. Then, the wave function ψ(x) is a linear
combination of sinh(κx) and cosh(κx) with E = −ε2κ2/2. These wave
functions are all real and all diverge as x→ ±∞ in at least one direction. A
divergent wave function is not physically acceptable, so these solutions can
be used only in a restricted region of space [30].
Therefore, we study the problem (2.40)-(2.41) on a bounded domain (0, 1).
We point out that we consider (2.42)-(2.35) as the nonlinear eigenvalue
problem, where the eigenvalues E will be fixed with an additional boundary
condition which is assumed to be natural for the macroscopic considerations.
Let us start with the case E = 0. This has already being considered in
[61]. For E = 0, the equation (2.42) degenerates to the one-dimensional
Laplace equation which has the solutions of the form ψ(x) = Ax+ B with
the complex-valued constants A and B. Using the boundary conditions
(2.35) the constants A and B can be specified and we obtain the solution

ψ(x) = 1 + x(cos(U/ε) − 1) + ix sin(U/ε).

The formula (2.31) gives the expression for the corresponding current-voltage
curve:

J(U) = ε sin(U/ε).
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The electron density and the current-voltage curve obtained for the reduced
QHD model (2.40)-(2.41) are shown in the Figure 2.1. The chosen value of
the (scaled) Planck constant is ε2 = 10−1. The logarithmic-scaled electron
density is shown for U = 0.158, i.e. in the peak of the corresponding current-
voltage curve and for U = 0.314, where the current density becomes zero.
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Figure 2.1: The reduced QHD model, ε2 = 10−1. Left: the current-voltage
curve, right: the electron density.

Next, we consider the case E > 0. In order to fix the constant E and due to
the standard boundary conditions used for QHD model (2.36), we impose,
additionally to (2.35), the following boundary condition

nx(0) = 0. (2.44)

Written in the terms of the wave function, and taking into account that
ψ(0) = 1, the condition (2.44) reads

Re(ψx(0)) = 0. (2.45)

Solving the (complex) ordinary differential equation (2.42) with the bound-
ary conditions (2.35) and (2.45), one obtains the solution

ψ(x) = cos(kx) ± i sin(kx),

with the energies E given by the expression (2.43) where k = ±U/ε · 2lπ,
l ∈ Z. Easy calculation shows that the current-voltage curve reads

Jl(U) = U + 2lπε, l ∈ Z.

For l = 0 one obtains the current-voltage curve J(U) = U with linear
dependence of the current density J upon the applied potential U . Although
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trivial, this result shows that in some cases (depending on the choice of the
boundary conditions) the QHD model is able to produce the current-voltage
curves which are behaving according to the Ohm’s law (up to some factor).

The QHD model with the linear potential

As the second example, we study the QHD model with the linear potential
V (x) = xU , imposing the non-local boundary conditions (2.34) and we
discuss the behaviour of the corresponding current-voltage curves. Notice
that with the above definition of the potential V , the boundary condition
(2.32) is satisfied. Firstly, we consider the case without the pressure term.
Therefore, the QHD model of interest reads

Jx = 0,
(J2

n

)
x

+ nU − ε2

2
n
((

√
n)xx√
n

)
x

= 0, x ∈ (0, 1),

The corresponding stationary Schrödinger equation is

−ε
2

2
ψxx + xUψ = Eψ, x ∈ (0, 1), E ∈ R (2.46)

with the boundary conditions given by (2.35). For simplicity, we consider
first the case E = 0. By introducing the constant

α = 2U/ε2, (2.47)

substituting ξ = βx and ψ(x) = ϕ(βx), the Schrödinger equation can be
rewritten as

ϕ′′(ξ) − α

β3
ξϕ(ξ) = 0. (2.48)

By choosing β = (2U/ε2)1/3 we obtain the Airy differential equation

ϕ′′(ξ) − ξϕ(ξ) = 0, (2.49)

with the boundary conditions

ϕ(0) = 1, ϕ(β) = e
iU
ε . (2.50)

Two linear independent solutions of the second-order differential equation
(2.49), the Airy functions Ai(ξ) and Bi(ξ) are shown in the Figure 2.2. Their
asymptotic representation for large |ξ| due to [1, 76] reads:

Ai(ξ) =
1

2
√
πξ1/4

e−
2
3
ξ3/2

[1 +O(|ξ|−3/2)], (2.51)
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Bi(ξ) =
1√
πξ1/4

e
2
3
ξ3/2

[1 +O(|ξ|−3/2)]. (2.52)

The solution of the boundary problem (2.49)-(2.50) is given as a linear
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Figure 2.2: The Airy functions Ai(x) and Bi(x).

combination of the Airy functions, namely

ϕ(ξ) = C1Ai(ξ) +C2Bi(ξ),

where the complex-valued constants C1 and C2 are determined as the solu-
tion of the linear system

C1Ai(0) + C2Bi(0) = 1, (2.53)

C1Ai(β) + C2Bi(β) = e
iU
ε . (2.54)

Taking into account that the current density J is constant, using the fact
that the Wronskian of the Airy functions is equal 1/π, direct calculation
gives the expression for the current-voltage curve

J =
1

π
· εβ · Im(C1C2). (2.55)

By solving the system (2.53)-(2.54), one obtains the constants C1 and C2

and finally the current-voltage curve reads

J(U) = − 1

π
βε

sin(U/ε)

Ai(β)Bi(0) −Ai(0)Bi(β)
. (2.56)

Next, we consider the behaviour of the function J = J(U), when U → 0.
The expansion of the Airy functions in the Taylor series

Ai(β) = Ai(0) +Ai′(0)β +O(β2),

Bi(β) = Bi(0) +Bi′(0)β +O(β2).
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enables us to write the denominator of the expression (2.56) as

Ai(β)Bi(0) −Ai(0)Bi(β) = (Ai(0) +Ai′(0)β +O(β2))Bi(0)

−Ai(0)(Bi(0) +Bi′(0)β +O(β2))

= β(Ai′(0)Bi(0) −Ai(0)Bi′(0)) +O(β2).

Since the Wronskian of the Airy functions equals 1/π, we get

Ai(β)Bi(0) −Ai(0)Bi(β) = β((−1/π) +O(β)). (2.57)

From the expression (2.57), taking into account that sin(x)/x → 1, as x→ 0,
we obtain

J(U) = − 1

π
εβ
U

ε

1

β(−1/π +O(β))

=
U

(1 − πO(β))
→ 0, for U → 0. (2.58)

We just mention that the other way to obtain the same conclusion is to
use the L’Hospital rule in the calculation of the limes of the expression
(2.56), as U → 0. Thus, the formula (2.56) make sense physically, since
J = 0 at U = 0, as expected. The current-voltage curve obtained using the
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Figure 2.3: Left: The current-voltage curve, right: the electron density for
the linear potential, ε2 = 10−2.

expression (2.56) is shown in the Figure 2.3, left. Obviously, the dependence
of the produced current depends nonmonotonically on the applied voltage.
The (scaled) Planck constant is chosen to be ε2 = 10−2. The electron
density, shown in the Figure 2.3, right, using the log-scale, is presented for
some characteristic points of the current-voltage curve. Namely, we were
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interested to see how the electron density behaves in the first peak of the
current-voltage curve (U = 0.072), then in the point where the current-
voltage curve changes the sign for the first and second time (U = 0.314
and U = 0.63, respectively) and finally for U = 1. In order to consider
the behaviour of J(U) when U → ∞, we need the asymptotics of the Airy
functions Ai(x) and Bi(x) as x → ∞ given with the formulas (2.51) and
(2.52). Direct calculation shows that

J(U) → 0, as U → ∞. (2.59)

The result (2.59) is far from the physical behaviour of the current-voltage
curve. It is expected that for large values of the increasing applied potential
U , the produced current J also increases. We suppose that this ambiguity
appears due to the fact that here we consider the QHD model without the
relaxation term.

Next, the Figure 2.4 shows that the decreasing of the scaled Planck constant
ε2 has the consequence that the corresponding current-voltage curves are
damped to zero. This follows from easy calculation of the limit J(U) when
ε→ 0, using formula (2.56).
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Figure 2.4: The current-voltage curve for the linear potential as ε2 → 0.

The QHD model with the linear potential and the pressure term

Next, we include the density-dependent pressure term p(n) in the stationary
QHD model with the linear potential, taking into account the non-local
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boundary conditions (2.34). The QHD model under consideration reads

Jx = 0,
(J2

n
+ p(n)

)
x

+ nU − ε2

2
n
((

√
n)xx√
n

)
x

= 0, x ∈ (0, 1).

As we have already shown at the beginning of this section, this QHD model
is formally equivalent to the following Schrödinger equation

ε2

2
ψxx − (h(|ψ|2) + xU)ψ = Eψ, x ∈ (0, 1), E ∈ R. (2.60)

Like before, due to the simplicity, here we consider the case E = 0. The
boundary conditions written in the terms of the wave function are given by
(2.35). Equation (2.60) can be written as

ψ′′ − αxψ − δψh(|ψ2|) = 0, (2.61)

where the constant α is given in (2.47) and δ = 2/ε2. We solve boundary
value problem (2.61)-(2.35) by routine bvp4c of MATLABR©, since apparently,
no explicit solution can be found.
In order to consider the isothermal case we take that the enthalpy function
h is scaled with some parameter η, i.e. h(s) = η log(s) and we consider the
behaviour of the current-voltage curves when η → 0. Figure 2.5 (left), shows
that in this case, the obtained curves converge to the one obtained for the
model without the pressure term (compare with the Figure 2.3, left). The
current-voltage curves for the isentropic case with the different choices of
the parameter γ are shown in the Figure 2.5, right.

The multi-valuedness of the unrelaxed QHD model

Finally, we consider the Schrödinger equation (2.46) for E 6= 0 with the
boundary conditions (2.37)-(2.38) which appear in the semiconductor mod-
elling. The boundary value problem that we intend to solve here is an
eigenvalue problem with the solution pair (ψ(x), E), where E ∈ R. Here
we follow the idea of Matthes, given in [86]. First, using the substitution
x = βy + γ with

β =
( ε2

2U

)1/3
, γ =

E

U

and defining ψ(x) = φ(y), we rewrite the equation (2.46) in the form of the
Airy differential equation

φyy − yφ = 0, y ∈ [y0, y1] (2.62)



54 2. QHD models without collisions

0 0.2 0.4 0.6 0.8 1
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

U

J

 

 

η = 5 ⋅ 10−2

η = 10−2

η = 10−3

η = 10−4

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

3

4

5

6

7
x 10

−3

U

J

 

 

γ = 1.5
γ = 1.67
γ = 2
γ = 2.5

Figure 2.5: The current-voltage curves for the model with the linear po-
tential and the pressure, ε2 = 10−2. Left: h(s) = η log(s), η → 0, right:
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γ−1s
γ−1, γ > 1.

where

y0 = − E

ε2/3
21/3U−2/3, y1 =

U − E

ε2/3
21/3U−2/3. (2.63)

The boundary conditions (2.37)-(2.38) can be rewritten as

φ(y0) = 1, (2.64)

|φ(y1)|2 = 1, (2.65)

Re(φy(y0)) = 0, (2.66)

Re(φ(y1)φy(y1)) = 0. (2.67)

where we used that φ(y0) = 1. The solution of the equation (2.62) is given
as the linear combination of the Airy functions, i.e.

φ(y) = (a1 + ib1)Ai(y) + (a2 + ib2)Bi(y), (2.68)

where ai, bi ∈ R for i = 1, 2. The condition (2.64) gives the following system:

a1Ai(y0) + a2Bi(y0) = 1, (2.69)

b1Ai(y0) + b2Bi(y0) = 0. (2.70)

Further on, the condition (2.66) gives the equation

a1Ai
′(y0) + a2Bi

′(y0) = 0, (2.71)



2.4. Semi-analytical expressions for current-voltage curves 55

Now, using the fact that the Wronskian of the Airy functions equals 1/π,
the conditions (2.69) and (2.71) give

a1 = πBi′(y0), a2 = −πAi′(y0).

Further on, it is obvious that constants b1 and b2 appear in the condition
(2.70) can be written as

b1 = πλBi(y0), b2 = −πλAi(y0),

where λ ∈ R. Boundary condition (2.65) gives

Q1(y0, y1)λ
2 +R1(y0, y1) −

1

π2
= 0, (2.72)

where

R1(y0, y1) = Ai2(y1)(Bi
′(y0))

2 +Bi2(y1)(Ai
′(y0))

2

− 2Ai(y1)Ai
′(y0)Bi(y1)Bi

′(y0)

and

Q1(y0, y1) = Ai2(y1)Bi
2(y0) +Bi2(y1)Ai

2(y0)

− 2Ai(y1)Ai(y0)Bi(y1)Bi(y0).

Finally, the condition (2.67) can be written as

Q2(y0, y1)λ
2 +R2(y0, y1) = 0, (2.73)

where

R2(y0, y1) = (Bi′(y0))
2Ai(y1)Ai

′(y1) + (Ai′(y0))
2Bi(y1)Bi

′(y1)

−Ai′(y0)Bi
′(y0)(Ai(y1)Bi

′(y1) +Ai′(y1)Bi(y1)),

and

Q2(y0, y1) = Bi2(y0)Ai(y1)Ai
′(y1) +Ai2(y0)Bi(y1)Bi

′(y1)

−Ai(y0)Bi(y0)(Ai(y1)Bi
′(y1) +Ai′(y1)Bi(y1)).

The original problem (2.62)-(2.63) with boundary conditions (2.64)-(2.67)
has a solution if and only if there exists a real λ such that (2.72) and (2.73)
are satisfied. Such λ exists if and only if

Q1(y0, y1)R2(y0, y1) −Q2(y0, y1)[R1(y0, y1) −
1

π2
] = 0, (2.74)
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and

Q1(y0, y1) 6= 0, Q1(y0, y1)
( 1

π2
−R1(y0, y1)

)
≥ 0. (2.75)

In order to simplify the notation, we define the function ∆: R × R → R by

∆(y0, y1) := Q1(y0, y1)R2(y0, y1) −Q2(y0, y1)[R1(y0, y1) −
1

π2
]. (2.76)

Since the boundary points y0 and y1 depend upon E, we can study the
solutions of the equation (2.74) as functions of E, i. e. for given U consider

∆̃(E) = ∆
(
− E

ε2/3
21/3U−2/3,

U − E

ε2/3
21/3U−2/3

)
, (2.77)

By increasing the potential U we obtain corresponding discrete energies E.
For each value of E the current density JE is calculated using the expression
(2.31). Like it is shown in the Figure 2.6 (left), the obtained current-voltage
curves are multivalued, since one value of the applied potential U corre-
sponds to countable many values of energies E. In our numerical consider-
ations we choose values of E from some fixed interval, for example, here we
took that E ∈ [0.01, 1]. The dependence of values of energies E upon the
applied potential U can be seen in the Figure 2.6, right.
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Figure 2.6: Eigenvalue problem for Schrödinger equation, ε2 = 10−2. Left:
Current-voltage curves for different values of E, right: the dependence of E
upon U .

We notice here that the use of the macroscopic boundary conditions (2.36)
leads to a multi-value current-voltage curve. It seems that this multi-
valuedness is an essential for the unrelaxed QHD system.
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Chapter 3

QHD models using

Fokker-Planck operator

This chapter is devoted to an analytical and numerical study of quantum
hydrodynamic equations when they contain additional viscosity terms either
originating from particle collisions or from an upwind numerical discretiza-
tion. The chapter is organized as follows. In Section 3.1 we sketch the
derivation of the viscous quantum hydrodynamic equations starting from
the Wigner-Fokker-Planck model and we detail the scaling. Section 3.2 is
devoted to the proof of the existence of solutions to the isothermal model in
one space dimension. In Section 3.3 some numerical results for the isother-
mal and the nonisothermal one-dimensional models are presented. Next we
compared the finite-difference approximations of the viscous and the invis-
cid model. Moreover, in Section 3.3.2 we computed the numerical viscosity
and the numerical dispersion of the schemes. Finally, we present numerical
simulations of a resonant tunneling diode.

3.1 Modeling—scaling

The viscous QHD equations are derived from the Wigner-Fokker-Planck
equation for the distribution function f(x, p, t),

∂tf +
p

m
· ∇xf +

q

m
θ[V ]f = QFP (f), (x, p) ∈ R

6, t > 0, (3.1)

59
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where (x, p) denotes the position-momentum variables, t > 0 the time, and
θ[V ] is a pseudo-differential operator defined by

(θ[V ]f)(x, p, t)

=
i

(2π)3/2

∫

R6

m

~

[
V

(
x+

~

2
η, t

)
− V

(
x− ~

2
η, t

)]
f(x, p′, t)eiη·(p−p′)dηdp′

(see [58]). The physical constants are the effective electron mass m, the ele-
mentary charge q, and the reduced Planck constant ~. The function V (x, t)
is the electric potential, self-consistently given by the Poisson equation

εs∆xV = q
(
~
−3

∫

R3

fdp− C(x)
)
,

where εs denotes the permittivity of the semiconductor material and C(x)
is the doping profile. We assume that the collision operator QFP (f) mod-
els the interaction of the electrons with the phonons of the crystal lattice
(oscillators) and that it is given by the Fokker-Planck expression [24]

QFP (f) =
1

τ0
divp(pf) +Dpp∆pf + 2Dpqdivx(∇pf) +Dqq∆xf,

where τ0 is a friction parameter (relaxation time) and the constants

Dpp =
mkBT0

τ0
, Dpq =

Ω~
2

12πkBT0τ0
, Dqq =

~
2

12mkBT0τ0

constitute the phase-space diffusion matrix. Here, T0 is the lattice tempera-
ture and Ω the cut-off frequency of the reservoir oscillators. If Dpq = 0 and
Dqq = 0, this gives the Caldeira-Leggett operator [23]. The above scattering
operator has been derived under the assumptions that the thermal energy
kBT0 is of the same order as the wave energy Ω~ corresponding to the cut-off
frequency, and that the reservoir memory time 1/Ω is much smaller than
the characteristic time scale t∗ of the electrons and the relaxation time τ0.
For a discussion of the Wigner-Fokker-Planck model (3.1), we refer to [10].
In order to derive macroscopic equations we apply the moment method as
in [47]. The idea is to multiply (3.1) by 1, p, and 1

2 |p|2 and to integrate
over R

3 with respect to p/~3. The resulting system of equations is closed
by Gardner’s shifted quantum Maxwellian [47], which is an approximation
of the quantum equilibrium state according to Wigner [97, formula (25)].
Gardner’s shifted Maxwellian is a quantum mechanical analogue of the clas-
sical Maxwellian which lies in the kernel of the Fokker-Planck operator. A
different quantum Maxwellian derived from quantum entropy maximization
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has been recently suggested by [36] and that will be considered in the Chap-
ter 4. However, the resulting model equations are more complicated such
that we prefer here the simpler choice of [47].
The only difference to the derivation in [47] is the integration of the Fokker-
Planck term. This yields

〈QFP (f)〉 = Dqq∆x〈f〉,

〈pQFP (f)〉 = − 1

τ0
〈pf〉 − 2Dpq∇x〈f〉 +Dqq∆x〈pf〉,

〈1
2 |p|

2QFP (f)〉 = − 2
τ0
〈1
2 |p|2f〉+ 3Dpp〈f〉 − 2Dpqdivx〈pf〉 +Dqq∆x〈1

2 |p|2f〉,

where we used the notation

〈g(p)〉 = ~
−3

∫

R3

g(p)dp

for functions g(p). Introducing the electron density n = 〈f〉, the electron
current density J = −(q/m)〈pf〉, and the energy density ne = 〈|p|2〉/2m,
we obtain finally the viscous QHD equations

∂tn− 1

q
divJ = Dqq∆n, (3.2)

∂tJ − 1

q
div

(J ⊗ J

n

)
− qkB

m
∇(nT ) +

q2

m
n∇V (3.3)

+
q~2

12m2
div(n(∇⊗∇) log n) = − J

τ0
+

2qDpq

m
∇n+Dqq∆J,

∂t(ne) −
1

q
div

(J
n

(ne+ P )
)

+ J · ∇V (3.4)

= − 2

τ0

(
ne− 3

2
nkBT0

)
+

2Dpq

q
divJ +Dqq∆(ne),

ε2s∆V = q(n− C(x)), x ∈ R
3, t > 0, (3.5)

where J⊗J denotes the matrix with components JjJk, and the stress tensor
and energy density are given by, respectively,

P = nkBTI −
~

2

12m
n(∇⊗∇) log n,

ne =
m

2q2
|J |2
n

+
3

2
nkBT − ~

2

24m
n∆ log n.

The stress tensor consists of the classical pressure and a quantum “pressure”
term. The energy density is the sum of kinetic energy, thermal energy, and
quantum energy.
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Next, we scale the above system of equations. Let L be a characteristic
length, for instance the device length. We define the characteristic density,
voltage, and current density, respectively, by

C∗ = sup |C|, V ∗ =
kBT0

q
, J∗ =

qkBT0C
∗t∗

mL
,

where the characteristic time t∗ is given by kBT0 = mL2/(t∗)2, i.e., we
assume that the thermal energy of a particle is equal to the kinetic energy
needed to cross the device in time t∗. According to the conditions under
which the Fokker-Planck term has been derived, we assume that the cut-
off wave energy equals the thermal energy, i.e., Ω~ = kBT0. Then, after
introducing the scaling (notice the change of sign for the current density)

x→ Lx, t→ t∗t, C → C∗C, V → V ∗V, J → −J∗J, T → T0T,

we obtain the scaled equations

∂tn+ divJ = ν∆n, (3.6)

∂tJ + div
(J ⊗ J

n

)
+ ∇(nT ) − n∇V − ε2

6
n∇

(∆
√
n√
n

)
(3.7)

= −J
τ

+ ν∆J − µ∇n,

∂t(ne) + div
(J
n

(ne+ P )
)
− J · ∇V (3.8)

= −2

τ
n
(
e− 3

2

)
+ ν∆(ne) − µdivJ,

λ2∆V = n− C(x), (3.9)

where the scaled parameters are the viscosity constant ν, the Planck con-
stant ε, the Debye length λ, given by

ν =
~√

kBT0mL2

~

12kBT0τ0
, ε2 =

~
2

kBT0mL2
, λ2 =

εskBT0

q2C∗L2
,

and the relaxation time and interaction constant, respectively,

τ =
τ0
t∗
, µ =

~

6πkBT0τ0
.

The scaled stress tensor and energy density can be expressed as

P = nTI − ε2

12
n(∇⊗∇) log n, ne =

|J |2
2n

+
3

2
nT − ε2

24
n∆ log n.

In the following sections we will study the one-dimensional stationary equa-
tions in a bounded domain.
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3.2 Analytical results

In this section we consider the stationary viscous QHD equations with con-
stant temperature T in one space dimension,

Jx = νnxx, (3.10)
(J2

n

)

x
+ Tnx − nVx − ε2

6
n
((

√
n)xx√
n

)

x
= −J

τ
+ νJxx, (3.11)

λ2Vxx = n− C(x) in (0, 1), (3.12)

with the physically motivated boundary conditions

n(0) = n(1) = 1, nx(0) = nx(1), nxx(0) = nxx(1), (3.13)

V (0) = 0, V (1) = U. (3.14)

Notice that the term µnx in (3.7) can be absorbed by Tnx. The first two
boundary conditions express that the total space charge vanishes at the
boundary (if C(0) = C(1) = 1). The remaining conditions on n can be
justified if the doping profile is nearly constant close to the boundary points
(see Section 3.3.3). Notice that (3.10) and the boundary condition nx(0) =
nx(1) imply that the current density takes the same value at x = 0 and x = 1,
namely J(0) = J(1) = J0 for some constant J0. Given the applied voltage
U , the effective current density J0 can be computed from the solution of the
above boundary-value problem, which gives a well-defined current-voltage
characteristic.

It is not difficult to see that the number of boundary conditions for the
system (3.10)-(3.12) is correct. Indeed, (3.10) implies that J = νnx + J0

which gives

(J2

n

)
x
− νJxx = −2ν2n

((
√
n)xx√
n

)
x

+
(J2

0

n

)
x

+ 2νJ0(log n)xx,

and hence, (3.11) can be written as

(J2
0

n

)
x

+
(
T +

ν

τ

)
nx − nVx −

(
2ν2 +

ε2

6

)
n
((

√
n)xx√
n

)
x

(3.15)

= −J0

τ
− 2J0ν(log n)xx.

Therefore, the system (3.10)-(3.12) is (formally) equivalent to the system
(3.15) and (3.12) for which five boundary conditions are sufficient.
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The left-hand side of (3.15) equals the usual QHD equations except that the
scaled Planck constant and the scaled temperature are larger. The viscosity
ν has the effect of increasing the Bohm potential and the pressure. Moreover,
the right-hand side of (3.15) contains the diffusion term 2J0ν(log n)xx. Thus,
the viscous QHD equations can be interpreted as a quantum fluid model with
larger scaled Planck constant and with a diffusion term in the variable log n.
We notice that QHD models with various diffusion terms in n (but not in
log n) have been studied in [45].
Our main result is the following existence theorem.

Theorem 3.1. Let C ∈ L2(0, 1) and let T , ε, τ , and λ be positive constants.
Then there exists for any U ∈ R and any ν > 0 a solution (n, J, V ) ∈
H4(0, 1) × H3(0, 1) × H2(0, 1) to (3.10)-(3.14) satisfying n > 0 in (0, 1).
Moreover,

‖
√
n‖H2 + ‖ log n‖H2 +

∥∥∥
J0

n

∥∥∥
L∞

≤ cν−1,

where J0 = J − νnx ∈ R and c > 0 is a constant depending only on the data
but not on ν.

3.2.1 Reformulation of the equations

The first idea for the proof, taken from [54], is to formulate the system (3.15)
and (3.12) as a single fourth-order equation, in which the Poisson equation
is taken into account. We divide (3.15) by n, differentiate the resulting
equation with respect to x and employ the Poisson equation (3.12):

−
(
2ν2 +

ε2

6

)((
√
n)xx√
n

)
xx

+
(
T +

ν

τ

)
(log n)xx

=
n− C

λ2
+ J2

0

(nx

n3

)
x
− 2J0ν

( 1

n
(log n)xx

)
x
− J0

τ

( 1

n

)
x
. (3.16)

The electric potential can be recovered from (3.15), after division by n
and integration, taking into account the boundary conditions n(0) = 1 and
V (0) = 0,

V (x) = −
(
2ν2 +

ε2

6

)(
√
n)xx(x)√
n(x)

+
(
T +

ν

τ

)
log n(x) +

J2
0

2n(x)2

+
J0

τ

∫ x

0

ds

n
+ 2J0ν

nx(x)

n(x)2
+ 2J0ν

∫ x

0

n2
x

n3
ds (3.17)

+
(
2ν2 +

ε2

6

)
(
√
n)xx(0) − J2

0

2
− 2J0νnx(0).
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Introducing the new variable n = ew and observing that

((
√
n)xx√
n

)
xx

=
1

2

( 1

n

(
n(log n)xx

)
x

)
x

=
1

2

(
wxx +

w2
x

2

)
xx
,

we can write (3.16)-(3.17) as

−
(
ν2 +

ε2

12

)(
wxx +

w2
x

2

)
xx

+
(
T +

ν

τ

)
wxx

= λ−2(ew − C) + J2
0 (e−2wwx)x − 2J0ν(e

−wwxx)x − J0

τ
(e−w)x, (3.18)

and

V (x) = −
(
ν2 +

ε2

12

)(
wxx(x) +

wx(x)2

2

)
+

(
T +

ν

τ

)
w(x) +

J2
0

2
e−2w(x)

+
J0

τ

∫ x

0
e−w(s)ds + 2J0νe

−w(x)wx(x) + 2J0ν

∫ x

0
e−w(s)wx(s)2ds

(3.19)

+
(
ν2 +

ε2

12

)(
wxx(0) +

wx(0)2

2

)
− J2

0

2
− 2J0νwx(0).

Equation (3.18) has to be solved in the interval (0, 1) with the boundary
conditions

w(0) = w(1) = 0, wx(0) = wx(1), wxx(0) = wxx(1). (3.20)

We have shown the first part of the following lemma.

Lemma 3.1. Let (n, J, V ) be a smooth solution to (3.10)-(3.14) such that
n > 0 in (0, 1). Then w = log n is a solution to (3.18) with boundary
conditions (3.20), V solves (3.19), and J0 is defined by (3.17) with x = 1,
i.e.

U =
J0

τ

∫ 1

0

dx

n
+ 2J0ν

∫ 1

0

n2
x

n3
dx. (3.21)

Conversely, if w ∈ H4(0, 1) is a solution to (3.18) with boundary conditions
(3.20) and if V and J0 are given by, respectively, (3.19) and (3.21), then
(ew, J, V ) ∈ H4(0, 1) × H3(0, 1) × H2(0, 1) is a solution to (3.10)-(3.14),
where J := νewwx + J0.

Proof. It remains to show that (ew, J, V ) solves (3.10)-(3.14). In order to see
this, first differentiate (3.19) twice with respect to x and take the difference
to (3.18). This yields the Poisson equation (3.12). Then differentiate (3.19)
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once with respect to x and multiply the resulting equation by n. This equals
(3.15). Defining J = νnx + J0, we see that (3.15) is equivalent to (3.11).
Moreover, differentiating J with respect to x gives (3.10). The boundary
conditions (3.13) are a consequence of (3.20). Finally, the boundary con-
ditions (3.14) are obtained by taking x = 0 and x = 1 in (3.19) and using
(3.21).

3.2.2 Uniform estimates

For the proof of Theorem 3.1 we need some uniform estimates. Our sec-
ond idea of the existence analysis is to show that the energy production is
bounded which provides the necessary estimates.

Lemma 3.2. Let (n, J, V ) ∈ H4(0, 1)×H3(0, 1)×H2(0, 1) be a solution to
(3.10)-(3.14) such that n > 0 in (0, 1). Then there exists a constant c > 0
such that

∫ 1

0

((Jxn− Jnx)2

n3
+
ε2

3
(
√
n)2xx +

ε2

144

n4
x

n3
+

n2

4λ2
+ 4

(
T +

ν

τ

)
(
√
n)2x

+
J2

0

ντn

)
dx ≤ cν−2,

where c > 0 only depends on τ , λ, U , and ‖C‖L2 .

The integrand of the above inequality can be indeed interpreted as the en-
ergy production: In [59] it has been shown that, with thermal equilibrium
boundary conditions, the energy of the time-dependent viscous QHD equa-
tions is bounded for all time and the energy production is given by the above
integral. We notice that, setting J = nu, the first integrand can be written
as

∫ 1
0 nu

2
xdx.

Proof. We multiply (3.10) by T log n − J2/2n2 − V − ε2(
√
n)xx/6

√
n and

integrate by parts to obtain

∫ 1

0

(
− TJ

nx

n
− J2Jx

2n2
+ JVx − ε2

6

(
√
n)xx√
n

Jx

)
dx+ [JT log n− JV ]10

= ν

∫ 1

0

(
− T

n2
x

n
+

( J2

2n2

)
x
nx + nxVx − ε2

6

(
√
n)xx√
n

nxx

)
dx

+ ν
[
nxT log n− nx

J2

2n2
− nxV

]1

0
. (3.22)
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Taking into account the boundary conditions (3.13)-(3.14) and J(0) = J(1),
the above equation becomes

∫ 1

0

(
− TJ

nx

n
− J2Jx

2n2
+ JVx − ε2

6

(
√
n)xx√
n

Jx

)
dx− J(1)U

= ν

∫ 1

0

(
− T

n2
x

n
+

( J2

2n2

)
x
nx + nxVx − ε2

6

(
√
n)xx√
n

nxx

)
dx− νnx(1)U.

Furthermore, we multiply (3.11) by J/n and integrate by parts:

∫ 1

0

((J2

n

)
x

J

n
+ TJ

nx

n
− JVx +

ε2

6

(
√
n)xx√
n

Jx

)
dx− ε2

6

[(
√
n)xx√
n

J
]1

0

=

∫ 1

0

(
− J2

τn
− νJx

(J
n

)
x

)
dx+

[
νJx

J

n

]1

0
. (3.23)

Taking into account the boundary conditions (3.13) and Jx = νnxx, the
boundary terms vanish. Hence, adding (3.22) and (3.23) gives, since some
terms cancel,

∫ 1

0

(
− J2Jx

2n2
+

(J2

n

)

x

J

n

)
dx+ ν

∫ 1

0

(
Jx

(J
n

)

x
−

( J2

2n2

)

x
nx

)
dx

+ ν
ε2

6

∫ 1

0

(
√
n)xx√
n

nxxdx− ν

∫ 1

0
nxVxdx+

∫ 1

0

(
νT

n2
x

n
+
J2

τn

)
dx

(3.24)

= J(1)U − νnx(1)U = J0U.

The first integral vanishes since

∫ 1

0

(
− J2Jx

2n2
+

(J2

n

)
x

J

n

)
dx =

1

2

∫ 1

0

(J3

n2

)
x
dx =

1

2

[J3

n2

]1

0

=
1

2
(J(1)3 − J(0)3) = 0.

The second integral equals

ν

∫ 1

0

(
Jx

(J
n

)
x
−

( J2

2n2

)
x
nx

)
dx = ν

∫ 1

0

1

n3
(Jxn− Jnx)

2dx.

Since, using n(0) = n(1) and nx(0) = nx(1),

∫ 1

0

n2
xnxx

2n2
dx =

1

3

∫ 1

0

(n3
x)x

2n2
dx =

1

3

∫ 1

0

n4
x

n3
dx+

1

3

[ n3
x

2n2

]1

0
=

1

3

∫ 1

0

n4
x

n3
dx,
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the third integral in (3.24) becomes

ν
ε2

12

∫ 1

0

(n2
xx

n
− n2

xnxx

2n2

)
dx = ν

ε2

3

∫ 1

0

(
(
√
n)2xx +

n4
x

48n3

)
dx.

Multiplying the Poisson equation (3.12) by n − 1 and integrating by parts
yields

λ2

∫ 1

0
Vxnxdx = −

∫ 1

0
(n− 1)(n − C(x))dx ≤ −1

2

∫ 1

0
n2dx+ c1,

where c1 = (1+‖C‖2
L2)/2. Furthermore, it follows from J = −νnx +J0 that

∫ 1

0

J2

τn
dx =

J2
0

τ

∫ 1

0

dx

n
+

4ν2

τ

∫ 1

0
(
√
n)2xdx,

since the integral over the mixed term
∫ 1
0 (log n)xdx vanishes in view of the

boundary conditions n(0) = n(1) = 1. Therefore, we obtain from (3.24),
divided by ν,
∫ 1

0

( 1

n3
(Jxn− Jnx)2 +

ε2

3
(
√
n)2xx +

ε2

144

n4
x

n3
+

n2

2λ2
+ 4

(
T +

ν

τ

)
(
√
n)2x

)
dx

≤ −J
2
0

τν

∫ 1

0

dx

n
+
J0U

ν
+
c1
λ2
. (3.25)

It remains to estimate the term J0U/ν. For this we employ Young’s inequal-
ity,

J0U

ν
≤ J2

0

2τν

∫ 1

0

dx

n
+
τU2

2ν

∫ 1

0
ndx.

The first term on the right-hand side can be absorbed by the corresponding
term in (3.25). We employ again Young’s inequality to treat the second
term:

τU2

2ν

∫ 1

0
ndx =

τU2

2ν
‖
√
n‖2

L2 ≤ τU2

2ν
‖
√
n‖2

L4

≤ 1

4λ2
‖
√
n‖4

L4 +
λ2τ2U4

4ν2
=

1

4λ2

∫ 1

0
n2dx+

λ2τ2U4

4ν2
.

Putting these inequalities into (3.25), we obtain
∫ 1

0

( 1

n3
(Jxn− Jnx)2 +

ε2

3
(
√
n)2xx +

ε2

144

n4
x

n3
+

n2

4λ2
+ 4

(
T +

ν

τ

)
(
√
n)2x

)
dx

≤ − J2
0

2τν

∫ 1

0

dx

n
+
λ2τ2U4

4ν2
+
c1
λ2
.

This shows the lemma.
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The following a priori estimates are consequences of the previous lemma.

Lemma 3.3. Let (n, J, V ) ∈ H4(0, 1)×H3(0, 1)×H2(0, 1) be a solution to
(3.10)-(3.14) satisfying n > 0 in (0, 1). Then there exists a constant c > 0
such that

|J0| ≤ cν−1, |J0|
∥∥∥

1√
n

∥∥∥
2

H1
≤ cν−1,

where J0 = J − νnx and c only depends on τ , λ, U , and ‖C‖L2 .

If U = 0, (3.21) shows that J0 = 0 and hence, the above estimates become
trivial. A consequence of the above lemma is the boundedness of the velocity
J0/n in L∞(0, 1).

Proof. Lemma 3.2 immediately gives the bound ‖√n‖L∞ ≤ cν−1 since
H2(0, 1) embeddes into L∞(0, 1). (Here and in the following, c > 0 de-
notes a generic constant not depending on ν.) Thus, since J2

0

∫ 1
0 dx/n is

uniformly bounded,

J2
0 ≤ J2

0

∫ 1

0

dx

n
‖
√
n‖2

L∞ ≤ c‖
√
n‖2

L∞ ≤ cν−2,

which shows the first assertion.
If U > 0 then, by (3.21), J0 > 0 and

J0

∫ 1

0

n2
x

n3
dx =

U

2ν
− J0

2τν

∫ 1

0

dx

n
≤ U

2ν
.

On the other hand, if U < 0 then J0 < 0 and

−J0

∫ 1

0

n2
x

n3
dx = − U

2ν
+

J0

2τν

∫ 1

0

dx

n
≤ − U

2ν
.

This shows that

|J0|
∫ 1

0

∣∣∣
( 1√

n

)
x

∣∣∣
2
dx =

|J0|
4

∫ 1

0

n2
x

n3
dx ≤ |U |

8ν
.

By Poincaré’s inequality, we have

|J0|
∫ 1

0

( 1

2n
− 1

)
dx ≤ |J0|

∫ 1

0

( 1√
n
− 1

)2
dx ≤ c|J0|

∥∥∥
( 1√

n

)
x

∥∥∥
2

L2
≤ cν−1,

and hence, using the first assertion,

|J0|
2

∥∥∥
1√
n

∥∥∥
2

L2
≤ cν−1 + |J0| ≤ cν−1.

The second assertion is proved.
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Lemma 3.4. Let (n, J, V ) ∈ H4(0, 1)×H3(0, 1)×H2(0, 1) be a solution to
(3.10)-(3.14) satisfying n > 0 in (0, 1). Then there exists a constant c > 0
such that for all ν < 1,

‖ log n‖H2 ≤ cν−1,

and c > 0 only depends on T , ε, λ, U , and ‖C‖L2 .

Proof. By Lemma 3.1, w = log n solves (3.18). Since w ∈ H2
per(0, 1), where

H2
per(0, 1) is the space of all periodic H2 functions, we can use w as a test

function in the weak formulation of (3.18) leading to

(
ν2 +

ε2

12

) ∫ 1

0
w2

xxdx+
(
T +

ν

τ

) ∫ 1

0
w2

xdx

= −λ−2

∫ 1

0
(ew − C)wdx+ J2

0

∫ 1

0
e−2ww2

xdx

− 2J0ν

∫ 1

0
e−wwxxwxdx− J0

τ

∫ 1

0
e−wwxdx.

The last integral on the right-hand side vanishes since w(0) = w(1). The
function x 7→ −xex, x ∈ R, has the maximal value e−1. Hence, the first inte-
gral on the right-hand side can be estimated as follows, employing Poincaré’s
and Young’s inequalities,

−λ−2

∫ 1

0
(ew −C)wdx ≤ λ−2

∫ 1

0
(e−1 + Cw)dx ≤ λ−2

(
1 + ‖C‖L2‖w‖L2

)

≤ c+
T

2
‖wx‖2

L2 ,

where c > 0 depends on T . Next, we consider the second integral:

J2
0

∫ 1

0
e−2ww2

xdx ≤ ‖J0e
−w‖L∞ |J0|

∫ 1

0
e−ww2

xdx

=
∥∥∥
J0

n

∥∥∥
L∞

· |J0|
∫ 1

0

n2
x

n3
dx ≤ cν−1 · cν−1 = cν−2,

using Lemma 3.3. This inequality allows to treat the remaining third inte-
gral:

−2J0ν

∫ 1

0
e−wwxxwxdx ≤ ε2

24

∫ 1

0
w2

xxdx+
24ν2J2

0

ε2

∫ 1

0
e−2ww2

xdx

≤ ε2

24

∫ 1

0
w2

xxdx+ c.
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Putting together the above estimates gives, for ν < 1,

(
ν2 +

ε2

24

) ∫ 1

0
w2

xxdx+
(T

2
+
ν

τ

) ∫ 1

0
w2

xdx ≤ cν−2.

Then the conclusion follows from Poincaré’s inequality.

3.2.3 Existence of solutions

Lemma 3.5. Let C ∈ L2(0, 1). Then there exists a solution w ∈ H4(0, 1)
to (3.18) and (3.20).

Proof. The proof is based on Leray-Schauder’s fixed-point theorem and the
a priori estimate of Lemma 3.4. First, we consider weak solutions. Let
H = H1

0 (0, 1) ∩ H2
per(0, 1). As usual, w ∈ H is called a weak solution to

(3.18) and (3.20) if, for J0 ∈ R given, for all φ ∈ H,

−
(
ν2 +

ε2

12

)∫ 1

0
(wxx +

1

2
w2

x)φxxdx−
(
T +

ν

τ

) ∫ 1

0
wxφxdx

= λ−2

∫ 1

0
(ew − C)φdx− J2

0

∫ 1

0
e−2wwxφxdx (3.26)

+ 2J0ν

∫ 1

0
e−wwxxφxdx+

J0

τ

∫ 1

0
e−wφxdx.

For the definition of the fixed-point operator, let v ∈W 1,4(0, 1), I0 ∈ R, and
σ ∈ [0, 1] be given. We wish to solve the following linear problem in H,

a(w,φ) = σF (φ) for all φ ∈ H, (3.27)

where for all w, φ ∈ H,

a(w,φ) =
(
ν2 +

ε2

12

)∫ 1

0
wxxφxxdx+

(
T +

ν

τ

)∫ 1

0
wxφxdx,

F (φ) = −1

2

(
ν2 +

ε2

12

) ∫ 1

0
v2
xφxxdx− λ−2

∫ 1

0
(ev − C)dx

+ I2
0

∫ 1

0
e−2vvxφxdx+ 2νI0

∫ 1

0
(e−vφx)xvxdx− I0

τ

∫ 1

0
e−vφxdx.

Notice that the product v2
xφxx is integrable since v ∈W 1,4(0, 1). The bilinear

form a(·, ·) is continuous and coercive in H since we can apply Poincaré’s
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inequality. Furthermore, the linear functional F is continuous. Hence, Lax-
Milgram’s lemma provides the existence of a unique solution w ∈ H to
(3.27). Finally, we define J0 as the solution to (see (3.21))

σU = J0

(1

τ

∫ 1

0
e−wdx+ 2ν

∫ 1

0
e−ww2

xdx
)
. (3.28)

Clearly, if U = 0 then J0 = 0.

Thus we can define the fixed-point operator S : (W 1,4(0, 1) × R) × [0, 1] →
W 1,4(0, 1)×R by S(v, I0, σ) = (w, J0). By Poincaré’s inequality, S(v, I0, 0) =
(0, 0). By standard arguments, S is continuous and, since the range of S
is contained in H2(0, 1) and H2(0, 1) embeddes compactly into W 1,4(0, 1),
also compact. It remains to show that there is a constant c > 0 such that
‖w‖W 1,4 + |J0| ≤ c for all fixed points (w, J0) of S(·, ·, σ).

Let (w, J0) ∈ H × R be a fixed point of S. Then w ∈ H satisfies (3.18) in
the sense of H−2(0, 1). Since (w2

x)xx, (e−wwxx)x ∈ H−1(0, 1), this equation
shows that wxxxx ∈ H−1(0, 1) and wxxx ∈ L2(0, 1). Employing (3.18) again,
we obtain wxxxx ∈ L2(0, 1) and thus w ∈ H4(0, 1), i.e., (3.18) is satisfied
pointwise in (0, 1). Moreover, V ∈ H2(0, 1) by (3.19). (In fact, V is much
more regular but we do not need this fact.) Thus, (n, J, V ) ∈ H4(0, 1) ×
H3(0, 1) ×H2(0, 1) with n = ew > 0 and J = νnx + J0 solves (3.10)-(3.14).
In particular, Lemmas 3.3 and 3.4 can be applied providing uniform bounds
for |J0| and w = log n in H2(0, 1). More precisely, this settles the case σ = 1;
however, it is not difficult to see that a similar estimate also holds for σ < 1.
Hence, Leray-Schauder’s fixed-point theorem gives a solution to (3.26) and
thus to (3.18) and (3.20).

3.3 Numerical results

In this section we discretize and numerically solve the viscous and the invis-
cid QHD equations using finite differences.

3.3.1 Numerical discretization

The stationary viscous QHD model is numerically solved in one space di-
mension. In this situation, the temperature in (3.7) can be replaced by the
energy density and a term involving n(log n)xx, which can be summed with
the quantum term in (3.7). This leads to the following set of equations in
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the variables n, J , and ne (and the potential V ):

Jx = νnxx, (3.29)

2

3

(J2

n

)
x

+
2

3
(ne)x − nVx − ε2

18

(
n(log n)xx

)
x

= −J
τ

+ νJxx − µnx, (3.30)

5

3

(J ne
n

)
x
−

( J3

3n2

)
x
− JVx − ε2

18

(
J(log n)xx

)
x

(3.31)

= −2

τ

(
ne− 3

2
n
)

+ ν(ne)xx − µJx,

λ2Vxx = n− C(x). (3.32)

We define a uniform mesh by xi = ih (i = 0, . . . ,N), where h = 1/N is
the mesh size. In order to discretize the Neumann boundary conditions,
we introduce the ghost cells [x−1, x0] and [xN , xN+1], where x−1 = −h and
xN+1 = (n+ 1)h.
First we discretize the viscous QHD equations using a central finite-difference
scheme. For this, the electron density n and electric potential V are approx-
imated at the grid points xi, whereas the current density J and the energy
density ne are discretized in the mid-points xi−1/2 = (xi + xi−1)/2. We
denote by ni and Vi the approximations of n(xi) and V (xi) and by Ji−1/2

and nei−1/2 the approximations of J(xi−1/2), and ne(xi−1/2), respectively.
For the sake of completeness, and since we analyze the numerical scheme
in the next subsection, we make explicit the discretization. The central
finite-difference scheme for (3.29) and (3.32) at x = xi reads as

0 =
Ji+1/2 − Ji−1/2

h
− ν

h2
(ni+1 − 2ni + ni−1), (3.33)

0 = −λ
2

h2
(Vi+1 − 2Vi + Vi−1) + ni −Ci, (3.34)

where Ci = C(xi) and i = 1, . . . , N − 1. The central discretization of (3.30)
at x = xi−1/2 is

0 =
1

6h

((Ji+1/2 + Ji−1/2)
2

ni
−

(Ji−1/2 + Ji−3/2)
2

ni−1

)
(3.35)

+
1

3h
(nei+1/2 − nei−3/2) −

ni + ni−1

2

Vi − Vi−1

h

− ε2

18h3

(
ni log

ni+1ni−1

n2
i

− ni−1 log
nini−2

n2
i−1

)

+
Ji−1/2

τ
+
µ

h
(ni − ni−1) −

ν

h2
(Ji+1/2 − 2Ji−1/2 + Ji−3/2),
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and the central discretization of (3.31) at x = xi−1/2 reads as

0 =
5

12h

((Ji+1/2 + Ji−1/2)(nei+1/2 + nei−1/2)

ni
(3.36)

−
(Ji−1/2 + Ji−3/2)(nei−1/2 + nei−3/2)

ni−1

)

− 1

24h

((Ji+1/2 + Ji−1/2)
3

n2
i

−
(Ji−1/2 + Ji−3/2)

3

n2
i−1

)
− Ji−1/2

Vi − Vi−1

h

− ε2

36h3

(
(Ji+1/2 + Ji−1/2) log

ni+1ni−1

n2
i

− (Ji−1/2 + Ji−3/2) log
nini−2

n2
i−1

)

+
2

τ

(
nei−1/2 −

3

4
(ni + ni−1)

)
+

µ

2h
(Ji+1/2 − Ji−3/2)

− ν

h2
(nei+1/2 − 2nei−1/2 + nei−3/2),

where i = 1, . . . , N .
We impose the following boundary conditions

n0 = C0, nN = CN , n1 = n−1, nN−1 = nN+1, (3.37)

J1/2 = J−1/2, JN+1/2 = JN−1/2,

ne1/2 = ne−1/2, neN+1/2 = neN−1/2, (3.38)

V0 = 0, VN = U. (3.39)

With these ten conditions, the discrete system seems to be overdetermined.
However, the choice of the doping profile of the tunneling diode simulated
in Section 3.3.3 implies that the particle density fulfills approximately the
conditions n = C, J = νnx = 0, and Jx = νnxx = 0 at the boundary such
that the discrete system is practically not overdetermined.
Next, we turn to the discretization of the inviscid QHD model. Gardner
suggested in [47] the upwind finite-difference scheme which we recall here.
The QHD equations are here written in the variables n, u = J/n, and
T rather than in n, J , and ne. Furthermore, the variables n, T , and V
are approximated at the grid points xi but only u is discretized at the mid-
points xi−1/2. The QHD system can be formulated in the form (ug)x+f = 0,
where g, f ∈ R

4 are appropriate vector-valued functions, namely, writing
g = (g(1), g(2), g(3), g(4)),

g(1) = n, g(2) = nu,

g(3) =
5

2
nT +

1

2
nu2 − nV − ε2

12

(
n(log n)xx

)
x
, g(4) = 0.
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The advection terms (ng(j))x are discretized using second upwind differences.
More precisely, (nu)x at xi is discretized by

A1 =
1

h
(ui+1/2n

up
i+1/2 − ui−1/2n

up
i−1/2), (3.40)

where

nup
i+1/2 =

{
ni if ui+1/2 > 0

ni+1 if ui+1/2 < 0.

The term (nu2)x is approximated at xi+1/2 by

A2 =
1

h
(ui+1(nu)

up
i+1 − ui(nu)

up
i ), (3.41)

where

(nu)up
i+1 =

{
1
2 (ni + ni+1)ui+1/2 if ui+1 > 0
1
2 (ni+1 + ni+2)ui+3/2 if ui+1 < 0.

The remaining term (ng(3))x is discretized at xi+1/2 in a similar way noticing

that g(3)(xi) is approximated by

g
(3)
i =

5

2
niTi +

1

8
ni(ui−1/2 + ui+1/2)

2 − niVi −
ε2

12h2
ni log

(ni+1ni−1

n2
i

)
.

Gardner has imposed the following boundary conditions

n(0) = C(0), n(1) = C(1), nx(0) = nx(1) = 0,

T (0) = T (1) = 1, V (0) = 0, V (1) = U,

which are discretized similar as in (3.37)-(3.39).
The above discrete nonlinear systems are solved by using Newton’s me-
thod and the line search method of [37] (Algorithm A6.3.1, p. 325). For a
given applied voltage, we employed the continuation method, i. e., with the
solution for the applied voltage U as an initial guess, we solve the problem
applying the potential U+△U and use this solution again as an initial guess
for the next applied voltage. For the computations in Section 3.3.3, we have
chosen △U = 1 mV and the final voltage is usually U = 0.5 V. The number
of grid points is N = 1000 such that h = 1/N = 10−3.

3.3.2 Numerical viscosity and numerical dispersion

In this section, we analyze the finite-difference schemes of Section 3.3.1. In
particular, we derive the consistency error in order to examine the strength
of numerical viscosity or dispersion introduced by the discretization.
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We start with the viscous QHD model. Let (n, J, ne, V ) be a smooth solution
to (3.29)-(3.32). To simplify the notation we set ni = n(xi), ni+1/2 =
n(xi+1/2) etc. Since we consider in this section only exact solutions, no
confusion with the notation of the previous section should arise. By standard
Taylor expansion, we find that (3.29) can be expanded as

(Jx − νnxx)(xi) =
1

h
(Ji+1/2 − Ji−1/2) −

ν

h2
(ni+1 − 2ni + ni−1)

− νh2

24
nxxxx(xi) +O(h4).

Typical values of ε2, ν, and h are (see Section 3.3.3) ε2 = 10−2, ν = 10−2,
h = 10−3. Thus our central finite-difference discretization involves the nu-
merical fourth-order diffusion (νh2/24)nxxxx ≈ 10−10nxxxx.

The expansions for the terms of (3.30) read as follows:

(J2

n

)
x
(xi−1/2) =

1

4h

((Ji+1/2 + Ji−1/2)
2

ni
−

(Ji−1/2 + Ji−3/2)
2

ni−1

)

+
h2

24

(J2

n

)

xxx
(xi−1/2) +O(h3),

nx(xi−1/2) =
1

h
(ni − ni−1) −

h2

24
nxxx(xi−1/2) +O(h4),

ε2
(
n(log n)xx

)
x
(xi−1/2) =

ε2

h3

(
ni log

(ni+1ni−1

n2
i

)
− ni−1 log

(nini−2

n2
i−1

))

+
ε2h2

24
nxxx(xi−1/2) +O(h3),

νJxx(xi−1/2) =
ν

h2
(Ji+1/2 − 2Ji−1/2 + Ji−3/2)

− ν2h2

12
nxxxxx(xi−1/2) +O(h4).

Thus we obtain a numerical dispersion at most of order (h2/24)nxxx ≈
10−7nxxx which is much smaller than the physical dispersion being of order
ε2nxxx ≈ 10−4nxxx.
In a similar way, one can show that the numerical viscosity and diffusion in
the central discretization of (3.31) is of order h2 = 10−6 and therefore much
smaller than ε2 and ν. Therefore, we expect that the numerical error of the
central scheme is rather small. This expectation will be verified numerically
in Section 3.3.3.
Next, we turn to the upwind discretization of Gardner’s QHD model. The
main error comes from the discretization of the advection terms which are



3.3. Numerical results 77

only of order one. Setting u+
j = max{u(xj), 0} and u−j = −min{u(xj), 0},

we can write the upwind discretization A1 of (nu)x(xi) (see (3.40)) as

A1 =
1

h

(
(u+

i+1/2ni − u−i+1/2ni+1) − (u+
i−1/2ni−1 − u−i−1/2ni)

)

=
1

h

(
− u−i+1/2ni+1 + (u+

i+1/2 + u−i−1/2)ni − u+
i−1/2ni−1

)

=
1

h
(ui+1/2ni+1/2 − ui−1/2ni−1/2)

− 1

h
u+

i+1/2(ni+1/2 − ni) −
1

h
u−i+1/2(ni+1 − ni+1/2)

+
1

h
u+

i−1/2(ni−1/2 − ni−1) +
1

h
u−i−1/2(ni − ni−1/2).

The central discretization of nxx gives

ni+1/2 − ni =
1

2
(ni+1 − ni) +

h2

8
nxx(xi+1/2) +O(h4),

and hence, we obtain

A1 =
1

h
(ui+1/2ni+1/2 − ui−1/2ni−1/2)

− 1

2h

(
|ui+1/2|(ni+1 − ni) − |ui−1/2|(ni − ni−1)

)

− h

8

(
ui+1/2nxx(xi+1/2) − ui−1/2nxx(xi−1/2)

)
+O(h3).

A Taylor expansion shows that this expression can be written as

A1 = (un)x(xi) −
h

2
(|u|nx)x(xi) +O(h2).

The upwind discretization A2 of (nu2)x(xi+1/2) (see (3.41)) can be written
as

A2 =
1

h
(ni+1u

2
i+1 − niu

2
i ) +

(
ui+1((nu)

up
i+1 − ni+1ui+1) − ui((nu)

up
i − niui)

)

=
1

h
(ni+1u

2
i+1 − niu

2
i ) −

B

h
,

where

B = u+
i+1

(
ni+1ui+1 −

1

2
(ni+1 + ni)ui+1/2

)

− u−i+1

(
ni+1ui+1 −

1

2
(ni+2 + ni+1)ui+3/2

)

− u+
i

(
niui −

1

2
(ni + ni−1)ui−1/2

)
+ u−i

(
niui −

1

2
(ni+1 + ni)ui+1/2

)
.
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Employing the approximation ui = (ui+1/2 +ui−1/2)/2+u′′(xi)h
2/4+O(h3)

and the relation u± = (|u|±u)/2, we obtain after some tedious computations

B =
1

4

(
|ui+1|

(
(ni+1 + ni+2)ui+3/2 − (ni+1 + ni)ui+1/2

)

− |ui|
(
(ni+1 + ni)ui+1/2 − (ni + ni−1)ui−1/2

))

+
1

4

(
ui+1

(
(ni+1 − ni)ui+1/2 − (ni+2 − ni+1)ui+3/2

)

− ui

(
(ni − ni−1)ui−1/2 − (ni+1 − ni)ui+1/2

))
+O(h3).

This term is a central finite-difference approximation of

h2(|u|(nu)x)x + h3(u(unx)x)x at x = xi+1/2

such that

A2 = (nu2)x(xi+1/2) + h(|u|(nu)x)x(xi+1/2) +O(h2).

The above calculations show that the upwind scheme introduces diffusion
terms for the variables n and nu (with diffusion coefficient |u|) being of the
order h = 10−3. Since the scaled velocity |u| has numerically values of the
order 103 (or larger), the artificial diffusion term is of the order O(1) which
is much larger than the physical diffusion being of the order ν = 10−2.

3.3.3 Numerical simulations of a resonant tunneling diode

The numerical scheme of Section 3.3.1 is used to simulate a simple one-
dimensional resonant tunneling diode. We choose the same geometry and
data as in [47]. More precisely, our resonant tunneling diode of interest
consists of highly doped GaAs regions near the contacts and a lightly doped
middle region of 25 nm length (see Figure 3.1). The middle region contains a
quantum well of 5 nm length sandwiched between two 5nm AlGaAs barriers.
The double barrier heterostructure is placed between two 10 nm GaAs spacer
layers with a doping of 5·1015 cm−3. These spacers are enclosed by two layers
of 50 nm length and with doping 1018 cm−3. The total length is thus 125 nm
and the double barrier height is 0.209 eV. The barriers are modeled by an
additional step function Vext added to the electric potential. The physical
constants are summarized in Table 3.1.
Gardner [47] has added the heat flux term kBσ(nTx)x to the right-hand
side of the equation for the energy, where σ = κτ0kBT0/m and κ = 0.2 is
the thermal conductivity, for numerical stability. This term is not needed in
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Figure 3.1: Geometry of the resonant tunneling diode with Al mole fraction
x = 0.3.

Parameter Physical meaning Numerical value

q elementary charge 1.602 · 10−19 As
meff effective electron mass 0.067 · 9.11 · 10−31 kg
m0 electron mass at rest 9.11 · 10−31 kg
kB Boltzmann constant 1.380 · 10−23 J/K
~ reduced Planck constant 1.055 · 10−34 Js
εS semiconductor permittivity 1.012 · 10−10 As/Vm
T0 lattice temperature 77 K
τ0 momentum relaxation time 0.9 · 10−12 s
ν viscosity 1.589 · 10−5m2/s2

Table 3.1: Physical parameters and their numerical values.

the numerical solution of the viscous QHD equations, but we used it in the
solution of Gardner’s QHD model. We notice that the expressions for the
momentum relaxation and energy relaxation terms are different in Gardner’s
QHD model. We use the same values as in [47].

First, we present numerical results for the isothermal model (3.29), (3.30),
(3.32) with constant lattice temperature T = 77 K in order to test our
numerical algorithm. The stationary numerical solution was already calcu-
lated in [72] such that our results can be compared to results shown there.
More precisely, in [72] the one-dimensional transient equations have been
numerically discretized using a central finite-difference scheme in space and
a second-order Runge-Kutta method in time, and stationary solutions are
obtained by letting numerically t → ∞. The disadvantage of this strategy
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is that the scheme is extremely time consuming, even in one space dimen-
sion. Here we discretize directly the stationary equations using central finite
differences and solve the resulting nonlinear system with a damped Newton
method.
Current-voltage characteristics for the resonant tunneling diode described
above are displayed in Figures 3.2 and 3.3. We observe several regions of
negative differential resistance (NDR) characterizing the tunneling diode.
The curve becomes “smoother” for larger values of the viscosity constant
which is expected physically. However, there is a jump of the current den-
sity to a larger value after each local minimum; this jump seems to be not
physical since in experiments [74], as well as in numerical simulations using
the Schrödinger equation (see, e.g., [38]), sharp gradients are observed just
after the current peaks. A possible explanation, already given in [72], is
that the energy equation needs to be taken into account and that will be
done below.
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Figure 3.2: Current-voltage characteristics of a tunneling diode for various
values of the viscosity with ν0 = 1.589 · 10−5 m2/s2 (left) and various values
of the lattice temperature (right), computed from the isothermal model.

In Figure 3.3 the current-voltage curves for various values of the effective
mass constant α with meff = α · m0 are shown. The peak-to-valley ratios
are given in Table 3.2.
Next, we turn to the numerical results obtained from the nonisothermal
model (3.29)-(3.32). In Figure 3.4 the current-voltage characteristics are
shown with lattice temperature T0 = 77 K. In order to obtain NDR effects,
we need to choose a smaller relaxation time than that taken in the isother-
mal model. The peak-to-valley ratio is too small compared to experiments
which may be due to the viscosity. Again, for larger viscosity constants,
the current-voltage curves become “smoother”. Numerical difficulties (sup-
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Figure 3.3: Current-voltage characteristics of a tunneling diode for various
values of the effective mass computed from the isothermal model.

Effective mass First ratio Second ratio

0.067m0 1.750 1.180
0.092m0 1.707 1.086
0.126m0 2.205 1.108

Table 3.2: Peak-to-valley ratios from Figure 3.3 for different effective masses.

ported by the analytical estimates of Section 3.2) do not allow to perform
numerically the inviscid limit ν → 0. Interestingly, the current-voltage curve
shows a plateau-like behavior (see the zoom in Figure 3.5) which can be also
observed experimentally [18, 73].

In Figure 3.6, the electron densities for the isothermal and nonisothermal
model at the peak and valley current values are displayed. For the non-
isothermal model, the data corresponds to the dashed curve in Figure 3.4
(left). The electron density shows a charge enhancement in the quantum
well which is more pronounced in the isothermal model. At the center of
the right barrier, the electron density dramatically decreases. At the peak
current (left figure), the density from the isothermal model develops a “wig-
gle”. This phenomenum is not a numerical effect since it has been observed
in various numerical simulations [72, 87]. This “wiggle” disappears at the
valley current where the density becomes very small (right figure). The
electron density from the nonisothermal model is “smoother” and its mini-
mum is larger than in the isothermal model, which stabilizes the numerical
scheme.
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Figure 3.4: Current-voltage characteristics of a tunneling diode computed
from the nonisothermal model with relaxation time τ = 0.9 ps and viscosity
ν = 1.589 · 10−5 m2/s2.
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Figure 3.5: Zoom of Figure 3.4.

Next, we investigate the influence of the lattice temperature (see Figure
3.7). In order to compute the solution for T0 = 200K and T0 = 300 K we
needed a larger viscosity constant, namely 5ν. We see that there is no NDR
region, even not for small lattice temperature. It seems that the viscosity
dominates the quantum effects.

Finally, we notice that the number of discretization points influences the
solution behavior only slightly (Figure 3.8) which is to be expected since the
central scheme is of second order. On the other hand, due to the numerical
viscosity introduced by the upwind scheme, the solution of Gardner’s QHD
model depends rather strongly on the mesh size. Moreover, as it will also
be noticed in the Section 4.5, the slope of the curve in Gardner’s model
becomes steeper just after the first valley when the number of grid points is
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Figure 3.6: Electron density versus position with relaxation time τ/4 =
0.225 ps at the peak (left) and valley (right) current.
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Figure 3.7: Current-voltage characteristics of a tunneling diode computed
from the nonisothermal model for various values of the lattice temperature
(left: ν = 1.589 · 10−5 m2/s2; right: ν = 5 · 1.589 · 10−5 m2/s2).

larger. This behavior is not observed in the viscous QHD model thanks to
the physical viscosity.
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Figure 3.8: Influence of the number of discretization points on the current-
voltage characteristics computed from the nonisothermal model (left) and
from Gardner’s QHD model (right).



Chapter 4

QHD models using

BGK-type operator

In Chapter 3 we have derived the quantum hydrodynamic equations by
moment method using the Wigner’s approximation of the quantum thermal
equilibrium as a closure condition. In this chapter we present another closure
ansatz. More precisely, for the thermal equilibrium function we take the so-
lution of the constrained quantum entropy minimization problem. This ap-
proach is based on Levermore’s methodology for classical case [78], while the
generalization on quantum systems has been done by Degond and Ringhofer
in [36]. The chapter is organized as follows. In Section 4.1 we specify the
definition of the quantum Maxwellian which is used as the closure in the
moment method developed in Section 4.2. Furthermore, the same section
gives the detailed derivation of the new quantum hydrodynamic model (in
the text also called the generalized quantum hydrodynamic model). It fol-
lows Section 4.3, devoted to the simplified models. In Section 4.4 we prove
that the energy of the system is conserved. Finally, in Section 4.5, the new
quantum hydrodynamic model is numerically discretized and solved in one
space dimension. Moreover, simulations of a resonant tunneling diode are
presented.

4.1 Definition of the quantum Maxwellian

In order to define the quantum Maxwellian, we first recall the Wigner trans-
form. Let Aρ be an operator on L2(Rd) with integral kernel ρ(x, x′), i.e.

(Aρφ)(x) =

∫

Rd

ρ(x, x′)φ(x′)dx′ for all φ ∈ L2(Rd).

85
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The Wigner transform of Aρ is defined by

W (Aρ)(x, p) =
1

(2π)d

∫

Rd

ρ
(
x+

ε

2
η, x− ε

2
η
)
eiη·pdη.

Its inverse W−1, also called Weyl quantization, is defined as an operator on
L2(Rd):

(W−1(f)φ)(x) =

∫

R2d

f
(x+ y

2
, p

)
φ(y)eip·(x−y)/εdpdy for all φ ∈ L2(Rd).

With these definitions we are able to introduce the quantum exponential and
the quantum logarithm formally by

Exp f = W (expW−1(f)), Log f = W (logW−1(f)),

where exp and log are the operator exponential and logarithm, respectively.
In [34] it has been (formally) shown that the quantum exponential and
quantum logarithm are equal to the usual exponential and logarithm, re-
spectively, up to order O(ε2),

Exp f = exp f +O(ε2), Log f = log f +O(ε2). (4.1)

The essential ingredient in the definition of the quantum Maxwellian is the
relative quantum entropy. Let a quantum mechanical state be described by
the Wigner function f solving the Wigner equation (1.14). Then its relative
quantum (von Neumann) entropy is given by [36]

H(f) =

∫

R2d

f(x, p)
(
(Log f)(x, p) − 1 +

|p|2
2

− V (x)
)
dxdp.

Whereas the classical entropy is a function on the configuration space, the
above quantum entropy is a real number, underlining the non-local nature
of quantum mechanics.

We define the quantum thermal equilibrium or quantum Maxwellian Mf for
some given function f(x, p) as the solution of the constrained minimization
problem

H(Mf ) = min



H(f̂) :

∫

Rd

f̂(x, p, t)




1
p

|p|2/2


 dp =



n(x, t)
nu(x, t)
e(x, t)






 , (4.2)
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where x ∈ R
d, t > 0 and

n(x, t) = 〈1〉(x, t) =

∫

Rd

f(x, p, t)dp,

nu(x, t) = 〈p〉(x, t) =

∫

Rd

f(x, p, t)pdp,

e(x, t) =
1

2
〈|p|2〉(x, t) =

1

2

∫

Rd

f(x, p, t)|p|2dp.

In [36] it is shown that the solution f∗ of the constrained minimization
problem (if it exists) is given by

Mf (x, p, t) = Exp
(
A(x, t) − |p− w(x, t)|2

2T (x, t)

)
. (4.3)

The Lagrange multipliers A, w, and T are uniquely determined by the mo-
ments of f . They correspond in the classical setting to the logarithm of the
particle density, the velocity, and the temperature, respectively (see Lemma
4.4).

4.2 Derivation of the general QHD model

The derivation of the general QHD equations is done in several steps. First,
we derive the moment equations. Then the quantum exponential is ex-
panded in powers of ε2 up to order O(ε4). The third step is to expand
the moments accordingly. Finally, the expansions are substituted into the
moment equations.

4.2.1 Moment equations

We consider the Wigner-Boltzmann equation (1.14) in the hydrodynamic
scaling, i.e., we introduce the scaling

x′ = δx, t′ = δt,

for some parameter δ > 0 which is assumed to be small compared to one.
Then (1.14) becomes for f = fδ (omitting the primes)

∂tfδ + p · ∇xfδ + θ[V ]fδ = δ−1Q(fδ), (x, p) ∈ R
2d, t > 0, (4.4)

with initial condition fδ(x, p, 0) = fI(x, p). We assume that the collision
operator has the following properties: Its kernel consists exactly of (multiples
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of) Mf and

∫

Rd

Q(f)dp = 0,

∫

Rd

Q(f)pdp = 0,

∫

Rd

Q(f)1
2 |p|2dp = 0, (4.5)

for all f(x, p). An example satisfying these conditions is the relaxation-time
or “BGK” operator Q(f) = Mf −f (with scaled relaxation time τ = 1) [16].
A more general collision operator, allowing for relaxation-time terms in the
macroscopic equations, can be defined as follows. Assume that the collision
operator can be written as Q(f) = Q0(f) + δQ1(f), where the operator
Q0(f) models elastic collisions and satisfies the conditions (4.5), and Q1(f)
is given by the Caldeira-Leggett operator [23] (mentioned in Section 1.3,
expression (1.17))

Q1(f) =
1

τp
(divp(pf) + ∆pf),

modeling inelastic collisions and τp is the momentum relaxation time. Then

∫

Rd

Q1(f)dp = 0,

∫

Rd

Q1(f)pdp = −nu
τp
,

∫

Rd

Q1(f)1
2 |p|

2dp = − 2

τp

(
e− d

2
n
)
, (4.6)

which is (a special case of) the momentum and energy relaxation-time terms
employed in [47].
The formal limit δ → 0 in (4.4) yields Q(f) = 0, where f = limδ→0 fδ,
which implies that the limit f is equal to Mf . The moment equations are
obtained from (4.4) by multiplication with 1, p, and 1

2 |p|2, respectively, and
integration over the momentum space. Since
∫

Rd

θ[V ]fdp = 0,

∫

Rd

θ[V ]fpdp = −n∇V,
∫

Rd

θ[V ]f 1
2 |p|2dp = −nu · ∇V

(see, e.g., [34]), we obtain

∂tn+ div(nu) = 0, (4.7)

∂t(nu) + div〈p⊗ p〉 − n∇V = 0, (4.8)

∂te+ div〈1
2 |p|2p〉 − nu · ∇V = 0, (4.9)

where (p ⊗ p)ij = pipj for i, j = 1, . . . , d. Recall that the brackets denote
integration against the Wigner function f = Mf , i.e. in multi-index notation,

〈pα〉(x, t) =

∫

Rd

Mf (x, p, t)pαdp,
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for multi-indices α ∈ N
d. When employing the Caldeira-Leggett operator

defined above, the right-hand sides of (4.7)-(4.9) equal the right-hand sides
of (4.6). To close the system (4.7)-(4.9), we need to express the integrals
〈p⊗ p〉 and 〈1

2 |p|2p〉 in terms of the moments n, nu, and e. This constitutes
the main step of the derivation.
The following computations are simplified by working with the new variable
s = T−1/2(p − w), where w is the Lagrange multiplier introduced in (4.3).
In terms of s, the quantum Maxwellian reads as

Mf (x, p(s)) = Exp
(
A(x) − 1

2
|s|2

)
=: g(x, s).

From now on, we omit the dependence of the time t since it acts only as a
parameter. The substitution p 7→ s yields

〈sα〉(x) = T d/2

∫

Rd

g(x, s)sαds.

In the following lemma we express the moments 〈pα〉 in terms of moments
in s. This allows for a more canonical form of the QHD equations.

Lemma 4.1. The system (4.7)-(4.9) is equivalent to

∂tn+ div(nu) = 0, (4.10)

∂t(nu) + div(nu⊗ u) + divP − n∇V = 0, (4.11)

∂te+ div
(
(P + eI)u

)
+ divS − nu · ∇V = 0, (4.12)

where I is the identity matrix, u = (nu)/n, P = 〈(p − u) ⊗ (p − u)〉 is
the stress tensor, and S = 〈1

2 (p − u)|p − u|2〉 is the (quantum) heat flux.
Moreover, the following expansions holds:

P = T 〈s⊗s〉+O(ε4), S =
1

2
T 3/2〈|s|2s〉−

(d
2

+1
)
T 3/2〈s〉+O(ε4). (4.13)

Proof. The formulation (4.10)-(4.12) follows immediately from (4.7)-(4.9)
since

〈p⊗ p〉 = P + nu⊗ u and 〈1
2 |p|2p〉 = S + (P + eI)u.

Using the expansion (4.1), elementary integrations yield for i, j = 1, . . . , d,

〈1〉 = T d/2eA
∫

Rd

e−|s|2/2ds+O(ε2) = (2πT )d/2eA +O(ε2),(4.14)

〈si〉 = T d/2eA
∫

Rd

e−|s|2/2sids+O(ε2) = O(ε2), (4.15)

〈sisj〉 = T d/2eA
∫

Rd

e−|s|2/2sisjds +O(ε2) = nδij +O(ε2). (4.16)
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The relations n = 〈1〉, 〈w〉 = w〈1〉 = nw, and nu = 〈p〉 = 〈T 1/2s + w〉 =
T 1/2〈s〉 + nw give for the second moments

〈p⊗ p〉 = T 〈s⊗ s〉 +
〈
(T 1/2s+ w) ⊗ (T 1/2s+ w) − (T 1/2s) ⊗ (T 1/2s)

〉

= T 〈s⊗ s〉 + T 1/2〈s〉 ⊗ w + T 1/2w ⊗ 〈s〉 + w ⊗ w〈1〉

= T 〈s⊗ s〉 +
1

n
〈T 1/2s+ w〉 ⊗ 〈T 1/2s+ w〉 − T

n
〈s〉 ⊗ 〈s〉

= T 〈s⊗ s〉 + nu⊗ u+O(ε4),

where in the last equality we have employed (4.15). Therefore, P = 〈p ⊗
p〉 − nu ⊗ u = T 〈s ⊗ s〉 + O(ε4). In a similar way, we compute the third
moment:

1

2
〈|p|2p〉 =

1

2
T 1/2〈|T 1/2s+ w|2s〉 +

1

2
w〈|p|2〉

=
1

2
T 3/2〈|s|2s〉 + T 〈s⊗ s〉w +

1

2
T 1/2|w|2〈s〉 + ew

=
1

2
T 3/2〈|s|2s〉 + (P + eI)w +

1

2
T 1/2|w|2〈s〉.

By (4.14) and (4.15), the energy density can be expanded as

e =
1

2
〈|p|2〉 =

T

2
〈|s|2〉 + T 1/2w · 〈s〉 +

1

2
|w|2〈1〉 =

d

2
nT +

1

2
n|w|2 +O(ε2).

Thus, since w = u− T 1/2〈s〉/n and P = nTI +O(ε2), we obtain

1

2
〈|p|2p〉 =

1

2
T 3/2〈|s|2s〉 + (P + eI)u− T 1/2

n

(
P + eI − 1

2
n|w|2I

)
〈s〉

=
1

2
T 3/2〈|s|2s〉 + (P + eI)u− T 3/2

n

((d
2

+ 1
)
nI +O(ε2)

)
〈s〉.

This shows that S = 〈1
2 |p|2p〉−(P+eI)u = 1

2T
3/2〈|s|2s〉−(d/2+1)T 3/2n〈s〉+

O(ε4).

4.2.2 Expansion of the quantum exponential

We wish to give asymptotic expansions of P , S, and U up to order O(ε4).
For this, we first need to expand the quantum Maxwellian. This is done by
means of the following lemma, which is adopted from [36].
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Lemma 4.2. Let f(x, p) be a smooth symbol. Then the quantum exponential
Exp f can be expanded as follows:

Exp f = ef − ε2

8
efQ +O(ε4),

where, using Einstein’s summation convention,

Q = ∂2
xixj

f ∂2
pipj

f − ∂2
xipj

f ∂2
pixj

f +
1

3
∂2

xixj
f ∂pif ∂pjf

− 2

3
∂2

xipj
f ∂pif ∂xjf +

1

3
∂2

pipj
f ∂xif ∂xjf. (4.17)

In the situation at hand, the symbol is f(x, p) = A(x)− |p−w(x)|2/2T (x).
Then we obtain the following result.

Lemma 4.3. The quantum correction (4.17) can be written for f(x, p) =
A(x) − |p− w(x)|2/2T (x) as follows:

Q(s) = T−1
(
X0 +X1

i si +X2
ijsisj +X3

ijksisjsk

+ Y 0|s|2 + Y 1
i |s|2si + Y 2

ij|s|2sisj + Z0|s|4
)
, (4.18)

where the coefficients Xi, Y i, and Z are defined by

X0 = −∆A− 1

3
|∇A|2 +

1

2T
tr (R̃⊤R̃),

X1
i =

2

T 1/2
∂xm

(1

3
A− log T

)
R̃mi −

1√
T

∆wi,

X2
ij =

1

3
∂2

xixj
A+

2

3
∂xi(log T )∂xjA− ∂xi(log T )∂xj(log T ) − 1

3T
(R̃⊤R̃)ij

X3
ijk =

1

3T 1/2
∂2

xixj
wk,

Y 0 = ∇
(1

2
log T − 1

3
A

)
· ∇(log T ) − 1

2
∆(log T ),

Y 1
i =

1

3T 1/2
∂xm(log T )R̃mi,

Y 2
ij =

1

6

(
∂2

xixj
(log T ) + ∂xi(log T )∂xj (log T )

)
,

Z0 = − 1

12
|∇(log T )|2,

and R̃ij = ∂xjwi − ∂xiwj. The symbol “tr” denotes the trace of a matrix.
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Proof. The proof consists in computing the relevant derivatives of f with
respect to xi and pj, namely

∂xi
f = ∂xi

A+ T−1∂xi
wk(p− w)k +

1

2
T−2∂xi

T |p− w|2

= ∂xi
A+ T−1/2∂xi

wksk +
1

2
T−1∂xi

T |s|2,

∂2

xixj
f = ∂2

xixj
A− T−1∂xi

wk∂xj
wk − T−2∂xj

T∂xi
wk(p− w)k + T−1∂2

xixj
wk(p− w)k

− T−2∂xi
T∂xj

wk(p− w)k − T−3∂xi
T∂xj

T |p− w|2 +
1

2
T−2∂2

xixj
T |p− w|2

= ∂2

xixj
A− T−1∂xi

wk∂xj
wk − T−3/2∂xj

T∂xi
wksk + T−1/2∂2

xixj
wksk

− T−3/2∂xi
T∂xj

wksk − T−2∂xi
T∂xj

T |s|2 +
1

2
T−1∂2

xixj
T |s|2,

∂pi
f = −T−1(p− w)i = −T−1/2si,

∂2

pixj
f = T−1∂xj

wi + T−2∂xj
T (p− w)i = T−1∂xj

wi + T−3/2∂xj
Tsi,

∂2

pipj
f = −T−1δij ,

and the products appearing in the sum (4.17), which are

∂2

xixj
f ∂2

pipj
F =

(
−T−1∆A− T−3/2∆wk + T−2‖∇w‖2 + 2T−5/2∇T · ∇wk

)
sk

+

(
1

2
T−2∆T − T−3|∇T |2

)
|s|2,

∂2

xipj
f ∂2

pixj
f = T−2∂xi

wj∂xj
wi + 2T−5/2∂xj

T∂xi
wjsi + T−3∂xi

T∂xj
Tsisj ,

∂2

xixj
f ∂pi

f ∂pj
f =

(
T−1∂2

xixj
A− T−2∂xi

wℓ∂xj
wℓ

)
sisj

+
(
T−3/2∂2

xixj
wk − 2T−5/2∂xi

T∂xj
wk

)
sisjsk

+

(
1

2
T−2∂2

xixj
T − T−3∂xi

T∂xj
T

)
|s|2sisj ,

∂2

xipj
f ∂pi

f ∂xj
f = −T−3/2∂xℓ

A∂xi
wℓsi − T−2∂xi

T∂xj
Asisj − T−2∂xi

wj∂xj
wksisk

− T−5/2∂xi
T∂xj

wksisjsk − 1

2
T−5/2∂xi

wj∂xj
T |s|2si

− 1

2
T−3∂xi

T∂xj
T |s|2sisj ,

∂2

pipj
f ∂xi

f ∂xj
f = −T−1|∇A|2 − 2T−3/2∇A · ∇wksk − T−2∇A · ∇T |s|2

− T−2∇wk · ∇wℓsksℓ − T−5/2∇T · ∇wk|s|2sk − 1

4
T−3|∇T |2|s|4.

Inserting these expressions into (4.17) and simplifying, we arrive at (4.18).



4.2. Derivation of the general QHD model 93

4.2.3 Expansion of the moments

The aim of this subsection is to specify the integrals 〈sα〉 in order to expand
the moments n, nu, and e. By Lemma 4.2, we obtain

〈sα〉 = T d/2

∫

Rd

g(x, s)sαds

= T d/2

∫

Rd

eA−|s|2/2
(
1 − ε2

8
Q(s)

)
sαds+O(ε4)

= (2πT )d/2eA
(
[sα] − ε2

8
[Q(s)sα]

)
+O(ε4),

where [g] denotes the integral of a function g = g(s) against the classical
Gaussian kernel,

[g] = (2π)−d/2

∫

Rd

e−|s|2/2g(s)ds.

Notice that from the expansion

n = 〈1〉 = (2πT )d/2eA
(
1 − ε2

8
[Q(s)]

)
+O(ε4) (4.19)

it follows that

〈sα〉 = n
(
[sα] +

ε2

8

(
[Q(s)][sα] − [Q(s)sα]

))
+O(ε4). (4.20)

Thus it remains to calculate the integrals [Q(s)sα].
Integrals of type [sα] can be computed explicitly. Using

∫

R

tme−t2/2dt =
√

2π ×





0 if m is odd
1 if m = 0 or m = 2
3 if m = 4

15 if m = 6,

it becomes a matter of combinatorics to conclude for i, j, m, n = 1, . . . , d,

[sisj] = δij ,

[|s|2] = d,

[sisjsmsn] = δijδmn + δimδjn + δinδjm,

[sisj|s|2] = (d+ 2)δij ,

[|s|4] = d(d+ 2),

[sisjsmsn|s|2] = (d+ 4)(δijδmn + δimδjn + δinδjm),

[smsn|s|4] = (d+ 2)(d + 4)δmn.
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Then the expansion of Q(s), given in (4.18), yields the following formulas:

[Q(s)] = X0 +
∑

ℓ

X2
ℓℓ + dY 0

+ (d+ 2)
∑

ℓ

Y 2
ℓℓ + d(d+ 2)Z0, (4.21)

[Q(s)sm] = X1
m +

∑

ℓ

(
X3

mℓℓ +X3
ℓmℓ +X3

ℓℓm

)
+ (d+ 2)Y 1

m, (4.22)

[Q(s)s2m] = [Q(s)] + 2X2
mm + 2Y 0 + 2

∑

ℓ

Y 2
ℓℓ

+ 2(d + 4)Y 2
mm + 4(d + 2)Z0, (4.23)

[Q(s)smsn] =
(
X2

mn +X2
nm

)
+ (d+ 4)

(
Y 2

mn + Y 2
nm

)
, (4.24)

[Q(s)|s|2sm] = (d+ 2)X1
m + (d+ 4)

∑

ℓ

(
X3

mℓℓ +X3
ℓmℓ +X3

ℓℓm

)

+ (d+ 2)(d + 4)Y 1
m. (4.25)

Lemma 4.4. The moments n, nu, and e can be expressed in terms of the
Lagrange multipliers A, w, and T asymptotically as follows:

n = (2πT )d/2eA − ε2

24T
(2πT )d/2eA

×
{
− 2∆A− |∇A|2 + (d− 2)∇ log T · ∇A− (d− 1)∆ log T

−
(d

2
− 1

)(d
2
− 2

)
|∇ log T |2 +

1

2T
tr (R̃⊤R̃)

}
+O(ε4), (4.26)

nu = nw + T−1U, (4.27)

e =
d

2
nT +

1

2
n|u|2 − ε2

24
n
{
∆ log n− 1

T
tr (R̃⊤R̃) +

d

2
|∇ log T |2

− ∆ log T −∇ log T · ∇ log n
}

+O(ε4). (4.28)

Notice that (4.26) and (4.27) imply the inverse relations

A = log n− d

2
log T − d

2
log(2π) +O(ε2), w = u+O(ε2). (4.29)

In particular, the vorticity matrices R̃ and R, defined in (1.25), coincide up
to order O(ε2) since R̃ij = ∂jui − ∂iuj +O(ε2) = Rij +O(ε2).

Proof. The formula for the particle density (4.26) is obtained by first sub-
stituting the expressions for the coefficients X, Y , and Z into (4.21). This
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yields [Q(s)] in terms of A, w, and T . Inserting the result into (4.19) then
gives (4.26).
In order to derive (4.27), we write, by the definition of U (see (4.13)),

nu = 〈T 1/2s+ w〉 = T 1/2〈s〉 + w〈1〉 = T−1U + nw.

Hence, u−w = U/nT = O(ε2). The above equations also show that T 1/2w ·
〈s〉 = nu · w − n|w|2. Hence, using 〈1〉 = n,

e =
1

2
〈|T 1/2s+ w|2〉 =

T

2
〈|s|2〉 + T 1/2w · 〈s〉 +

1

2
|w|2〈1〉

=
T

2
〈|s|2〉 + nu · w − 1

2
n|w|2 =

T

2
〈|s|2〉 +

1

2
n|u|2 − 1

2
n|u− w|2.

In view of (4.29), we have |u− w|2 = O(ε4) from which we conclude

e =
T

2
〈|s|2〉 +

1

2
n|u|2 +O(ε4).

The bracket 〈|s|2〉 can be computed from (4.20), employing [|s|2] = d,

〈|s|2〉 = dn+
ε2

8
n

∑

m

(
[Q(s)] − [Q(s)s2m]

)
+O(ε4).

Substitution of (4.21) and (4.23) into the above expression and elimination
of A and w using (4.29), gives 〈|s|2〉 in terms of n, nu, and T . This finally
leads to (4.28).

4.2.4 Expansion of the terms P , S, and U

The QHD equations (4.10)-(4.12) are determined by the following expan-
sion of the auxiliary terms P , S, and U , defined in (4.13), in terms of the
macroscopic variables n, nu, and e.

Lemma 4.5. The following expansion holds:

P = nTI +
ε2

12
n
{(d

2
+ 1

)
∇ log T ⊗∇ log T −∇ log T ⊗∇ log n

−∇ log n⊗∇ log T − (∇⊗∇) log(nT 2) +
R⊤R

T

}
(4.30)

+
ε2

12
Tdiv

(
n
∇ log T

T

)
I +O(ε4),

S = − ε2

12
n
{(d

2
+ 1

)
R∇ log

(n
T

)
+

(d
2

+ 2
)
divR+

3

2
∆u

}
(4.31)

+
ε2

12

(d
2

+ 1
)
n
{
R∇ log

( n

T 2

)
+ divR

}
+O(ε4). (4.32)
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Proof. We apply formula (4.20) to obtain for all m, n = 1, . . . , d,

Pmn = nT
(
δmn +

ε2

8
(δmn[Q(s)] − [Q(s)smsn])

)
,

Sm = − ε2

16
nT 3/2[Q(s)|s|2sm] +

ε2

8

(d
2

+ 1
)
nT 3/2[Q(s)sm].

Then the components of P are computed by employing (4.21) and (4.24),
substituting the definitions of the coefficients X, Y , and Z, and replacing
A and w by n and nu according to (4.29). In a similar way, S is evaluated
using (4.22) and (4.25).

4.2.5 Discussion of the QHD equations

The differences between our QHD equations and Gardner’s model can be
understood as follows. In both approaches, closure is obtained by assuming
that the Wigner function f is in thermal equilibrium. However, the notion
of “thermal equilibrium” is different.

In order to illustrate the differences, we recall the classical situation. For
a system with the Hamiltonian h(x, p) = |p|2/2 + V (x), the unconstrained
thermal equilibrium distribution is given by the Gibbs measure fG(x, p) =
exp(−h(x, p)/T0) which minimizes the relative entropy S =

∫
f(log f − 1 −

h/T0)dp. Here, T0 denotes a temperature constant. If mass, momentum, and
energy densities are given, the constrained thermal equilibrium is realized
by a suitable rescaling and a momentum-shift of the Gibbs state,

f̃G(x, p) = n(x) exp
(
− h(x, p− u(x))

T (x)

)
. (4.33)

The temperature T (x), which is a Lagrange multiplier coming from the
minimization procedure, is determined from the given energy density. The
choice of f̃G as a thermal equilibrium function has its physical justification
in the fact that it is the unique minimizer of the relative entropy S with the
prescribed moments.
Analogously, a quantum system, which is characterized by its energy opera-
tor W−1(h) (recall that W−1 is the Weyl quantization), attains its minimum
of the relative (von Neumann) entropy in the mixed state with Wigner func-
tion fQ = Exp (−h/T0). This state represents the unconstrained quantum
thermal equilibrium. The expansion of fQ in terms of the scaled Planck
constant ε2 was first given in [97],

fQ(x, p) = exp(−h(x, p)/T0)(1 + ε2f2(x, p)) +O(ε4)
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with an appropriate function f2. As a definition of the quantum equilib-
rium with moment constraints, Gardner employed this expansion of fQ and
modified it as follows:

f̃Q(x, p) = n(x) exp
(
− h(x, p− u(x))

T (x)

)(
1 + ε2f2(x, p− u(x))

)
+O(ε4).

(4.34)

These modifications mimic the passage from the Gibbs state to (4.33) in
the classical situation. The use of f̃Q as an equilibrium function results in
simple formulas for the moment equations. However, the Wigner function
(4.34) is an ad hoc ansatz. Moreover, in contrast to the classical case, f̃Q is
not the constrained minimizer for the relative von Neumann entropy.
The equilibrium state Mf used here is a genuine minimizer of the relative
quantum entropy with respect to the given moments. In the spirit of the
classical situation, these equilibria seem to be more natural. The price we
have to pay is the appearance of various additional terms in the expansion
of Mf .
If the temperature is assumed to be constant and if only the particle density
is prescribed, both approaches to define a thermal equilibrium coincide. In
order to see this, we write Gardner’s momentum-shifted quantum equilib-
rium once again1 more explicitly than in (4.34):

f̃G(x, p, t) = e−V/T−|p|2/2T

{
1 +

ε2

8T 2

(
− ∆V +

1

3T
|∇V |2 +

1

3T
pipj∂xixjV

)}
+O(ε4).

The equilibrium function obtained from the entropy minimization with given
particle density equals (see [70], Remark 3.3)

f̃(x, p, t) = Exp
(
A(x, t) − |p|2

2T

)

= eA−|p|2/2T
{
1 +

ε2

8T

(
∆A+

1

3
|∇A|2 − 1

3T
pipj∂xixjA

)}
+O(ε4).

Both approximations are essentially derived in the same way. Using n =∫
f̃Qdp = (2πT )d/2e−V/T + O(ε2) and assuming constant (or “slowly vary-

ing”) temperature, Gardner has substituted ∇V = −T∇ log n+O(ε2) in the
formula for f̃Q in order to avoid the second-order derivatives of the poten-

tial. This substitution in fact yields the approximation f̃ since, by (4.29),
∇A = ∇ log n+O(ε2), and thus, both expansions f̃Q and f̃ coincide.

1 We mentioned it already in (2.15).
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4.3 Simplified QHD models

The full QHD model is given by equations (4.10)-(4.12) with the constitu-
tive relations (4.30)-(4.32). In this section we will discuss some simplified
versions. We recall the QHD equations

∂tn+ div(nu) = 0, (4.35)

∂t(nu) + div(nu⊗ u) + divP − n∇V = 0, (4.36)

∂te+ div
(
(P + eI)u

)
+ divS − nu · ∇V = 0, (4.37)

where e is the energy density given by (4.28), and P , S, and U are given by
(4.30)-(4.32) (without the O(ε4) terms).
First, we shall assume that the temperature is slowly varying in the sense
of ∇ log T = O(ε2). Then the expressions ε2∇ log T in (4.30)-(4.32) are of
order O(ε4) and can therefore be neglected in our approximation:

P = nTI − ε2

12
n
(
(∇⊗∇) log n− R⊤R

T

)
, (4.38)

S = − ε2

12
n
{(d

2
+ 1

)
R∇ log n+

(d
2

+ 2
)
divR+

3

2
∆u

}

+
ε2

12

(d
2

+ 1
)
n
{
R∇ log n+ divR

}
, (4.39)

e =
d

2
nT +

1

2
n|u|2 − ε2

24
n
(
∆ log n− 1

T
tr (R⊤R)

)
, (4.40)

The stress tensor P consists of the classical pressure nT on the diagonal,
the “quantum pressure” (ε2/12)n(∇⊗∇) log n, and the vorticity correction
(ε2/12)nR⊤R/T . The term S provides additional quantum corrections not
present in [47]. The energy density consists of the thermal energy, kinetic
energy, and quantum energy. Again, due to the vorticity R, the energy takes
a different form than the expressions in [47, 52].
Further simplifications can be obtained if the vorticity is “small”, i.e. R =
O(ε2). In one space dimension this term always vanishes. If R = O(ε2) then
ε2R is of order O(ε4) and can be neglected. We obtain the QHD equations

∂tn+ div(nu) = 0, (4.41)

∂t(nu) + div(nu⊗ u) + ∇(nT )

− ε2

12
div

(
n(∇⊗∇) log n

)
− n∇V = 0, (4.42)

∂te+ div
(
(P + eI)u

)
− ε2

8
div(n∆u) − nu · ∇V = 0, (4.43)
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with the stress tensor and energy density, respectively,

P = nTI − ε2

12
n(∇⊗∇) log n, e =

d

2
nT +

1

2
n|u|2 − ε2

24
n∆ log n.

This system of equations corresponds to Gardner’s QHD model (without
relaxation-time terms) except for the dispersive velocity term (ε2/8)div(n∆u).
We already mentioned in the introduction that this term has been also
derived by Gardner and Ringhofer [52] by employing a Chapman-Enskog
expansion of the Wigner-Boltzmann equation. They do not obtain vor-
ticity terms since they assume that the quantum equilibrium distribution
is an even function of the momentum p. Roughly speaking, this gives
(in our context) the quantum exponential Exp (A − |p|2/2T ) instead of
Exp (A− |p− w|2/2T ). The Lagrange multiplier w, however, is responsible
for the presence of the vorticity term R.

Interestingly, most quantum terms cancel out in the energy equation. In
fact, by substituting the above expression for the energy density in (4.43),
a computation yields

∂t(nT ) + div (nTu) +
2

d
nTdivu− ε2

6d
div(n∆u) = 0.

4.4 Conserved quantities

In this section we show that the mass and energy are conserved for the
system (4.10)-(4.12) with the relations (4.30)-(4.32), neglecting the O(ε4)
terms. The momentum is not conserved due to the electric force given by∫
n∇V dx and the potential is given with the Poisson equation (1.12).

Lemma 4.6. The mass N(t) =
∫
ndx and the energy

E(t) =

∫

Rd

(
e+

λ2

2
|∇V |2

)
dx,

where e is defined in (4.28) (without the O(ε4) term), are conserved, i.e.
dN/dt(t) = 0 and dE(t)/dt = 0 for all t > 0. Furthermore, the energy can
be written as

E(t) =

∫

Rd

(d
2
nT +

1

2
n|u|2 +

λ2

2
|∇V |2 +

ε2

6
|∇

√
n|2 +

ε2d

48
n|∇ log T |2

+
ε2

24T
n tr(R⊤R)

)
dx ≥ 0. (4.44)
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Proof. The conservation of N is clear. In order to prove that E is conserved,
we differentiate E and employ the equations (4.37) and (1.12):

dE

dt
=

∫

Rd

(∂te+ λ2∇V · ∇∂tV )dx =

∫

Rd

(nu · ∇V − λ2V ∂t∆V )dx

=

∫

Rd

(−div(nu)V − V ∂tn)dx = 0,

taking into account (4.35). Next we show the formulation (4.44). The
integral of the energy density e can be written as

E =

∫

Rd

(d
2
nT +

1

2
n|u|2 +

ε2d

48
n|∇ log T |2 +

ε2

24T
n tr(R⊤R)

)
dx

+
ε2

24

∫

Rd

(
− n∆ log n+ n∆ log T + n∇ log T · ∇ log n

)
dx.

The last integral equals, after an integration by parts, to

ε2

24

∫

Rd

(
4|∇

√
n|2 −∇n ·∇ log T +n∇ log T ·∇ log n

)
dx =

ε2

6

∫

Rd

|∇
√
n|2dx,

which shows (4.44).

The energy (4.44) consists of, in this order, the thermal energy, the kinetic
energy, the electrostatic energy, and that of the Bohm potential. The re-
maining two terms represent additional field quantum energies associated
to spatial variations of the temperature and the vorticity. These last two
energy terms are new, i.e., they do not appear in the QHD equations of [47].
In the case of the QHD equations with slowly varying temperature, i.e. equa-
tions (4.35)-(4.37) and (1.12) with the definitions (4.38)-(4.39), the energy
is given by (4.44) except the term involving |∇ log T |2. If, additionally, the
vorticity is “small”, i.e. in the case of the model (4.41)-(4.43) and (1.12),
which is used in the numerical simulations of section 4.5, the energy is equal
to (4.44) except the last two terms.
Unfortunately, we are not able to prove the conservation of theO(ε4) approx-
imation of the quantum entropy and the positivity of the particle density
(as for the model in [36]) since we obtain O(ε4) correction terms which do
not vanish.

4.5 Numerical results

In this section we present the results from our numerical simulations of a
simple one-dimensional GaAs resonant tunneling diode, using the general
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QHD system. The aim is also to compare the new equations with Gardner’s
QHD model; in particular, the influence of the dispersive velocity term will
be explored.
The geometry of the resonant tunneling diode is chosen essentially as in
Section 3.3.3. For our simulations, we use the one-dimensional stationary
QHD equations for small temperature variations ∇ log T = O(ε2) coupled
to the Poisson equation for the electric potential. Including the physical
parameters, these equations read as follows:

(nu)x = 0, (4.45)

m(nu2)x + kB(nT )x − ~
2

12m
(n(log n)xx)x − qnVx = 0, (4.46)

5

2
kB(nTu)x +

1

2
m(nu3)x − ~

2

8m
(nu(log n)xx + nuxx)x − qnuVx

= kBσ(nTx)x, (4.47)

εsVxx = q(n− C). (4.48)

The physical constants in the above equations are the effective mass m,
the Boltzmann constant kB , the reduced Planck constant ~, the elemen-
tary charge q, and the semiconductor permittivity εs. The values of these
constants are given in Section 3.3.3, Table 3.1. The parameter σ is defined
by

σ = κτ0
kBT0

m
,

with the thermal conductivity κ, the relaxation time τ0, and the lattice
temperature T0.
We have allowed the heat flux kBσ(nTx)x since this term has also been
used by Gardner [47] in his model with which we wish to compare our
numerical results. In fact, we need this term for numerical stability as it is
needed in Gardner’s QHD equations. We expect that the heat conductivity
can be obtained by a Chapman-Enskog expansion of the Wigner-Boltzmann
equation but probably, additional diffusion terms might appear.
Using a standard scaling (see, e.g., [58]), we obtain the scaled QHD equa-
tions where the nondimensional parameters are the scaled Planck constant
and the Debye length

ε2 =
~

2

mkBT0L2
, λ2 =

εskBT0

q2C∗L2
,

respectively. Here, L is the device length and C∗ the maximal doping con-
centration. For the values we used in the numerical simulations below (see
Table 3.1), we obtain ε2 ≈ 0.011 which justifies our expansion in ε2.
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We compare the numerical results with Gardner’s QHD equations which
do not contain the dispersive expression (ε2/8)(nuxx)x in the velocity but
additional relaxation-time terms of Baccarani-Wordeman type [14]:

(nu)x = 0, (4.49)

m(nu2)x + kB(nT )x − ~
2

12m
(n(log n)xx)x − qnVx = −mnu

τp
, (4.50)

5

2
kB(nTu)x +

1

2
m(nu3)x − ~

2

8m
(nu(log n)xx)x − qnuVx

= kBσ(nTx)x − 1

τw

(
e− 3

2
nT0

)
, (4.51)

together with the Poisson equation (4.48). Here, the momentum and energy
relaxation times are given by, respectively,

τp = τ0
T0

T
, τw =

τp
2

(
1 +

3T

mv2
s

)
,

where τ0 = 0.9·10−12s is the momentum relaxation time and vs = 2·107 cm/s
is the saturation velocity. The inclusion of these terms (at least if τp =
τw/2) can be justified by employing a Caldeira-Leggett scattering operator
as exposed in Section 4.2.1. We observed that the relaxation-time terms in
Gardner’s QHD model are necessary for numerical stability; on the other
hand, they lead to severe numerical difficulties when included in the general
QHD equations.

The above QHD equations have to be solved in the interval (0, 1) with the
following boundary conditions taken from [47]:

n(0) = C(0), n(1) = C(1), nx(0) = nx(1) = 0,

ux(0) = ux(1) = 0, T (0) = T (1) = T0, V (0) = 0, V (1) = U0,

where U0 is the applied voltage.

First, we discretize the new QHD equations (4.45)-(4.48) using central finite
differences on a uniform mesh with N = 500 points. This corresponds to a
mesh size of h = 1/500 = 0.002. The resulting discrete nonlinear system is
solved by a damped Newton method with damping parameter found by a line
search method (see Algorithm A6.3.1 in [37]). We employ the continuation
method for the applied voltage, explained already in Section 3.3.1. The
voltage step is chosen as △U = 1mV.

The current-voltage characteristics using the thermal conductivities κ = 0.2
and κ = 0.3 are presented in Figure 4.1. There are apparently two regions



4.5. Numerical results 103

of negative differential resistance (NDR) if κ = 0.2 and three NDR regions
if κ = 0.3. It is well known for Gardner’s QHD model, that the behavior
of the solutions is quite sensitive to changes of the value of the thermal
conductivity. We observe a similar sensitive dependence: the peak-to-valley
ratio, i.e. the ratio of local maximum to local minimum current density, is
larger for larger thermal conductivities.

The electron density shows a charge enhancement in the quantum well which
is more pronounced for smaller κ (see Figure 4.2 left). At the center of the
right barrier, the electron density dramatically decreases. After the first
valley in the current-voltage curve, the density develops a “wiggle”, already
observed in the viscous QHD (see Section 3.3.3, Figure 3.6). For larger values
of the thermal conductivity, the minimum of the particle density increases,
which stabilizes the numerical scheme.
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Figure 4.1: Left: Current-voltage characteristics for the general QHD system
with thermal conductivities κ = 0.2 (solid line) and κ = 0.3 (dashed line).
Right: Influence of the dispersive velocity term (δ2/8)(nuxx)x on the current-
voltage curve for thermal conductivity κ = 0.2.

Next, we study the influence of the dispersive velocity term (ε2/8)(nuxx)x.
For this, we replace the factor ε2/8 by δ2/8 and choose various values for
δ. Clearly, only δ = ε corresponds to the physical situation. The disper-
sive velocity term indeed regularizes the equations in the sense that the
current-voltage curves become “smoother” (see Figure 4.1 right). A sim-
ilar “smoothing” has been observed in Section 3.3.3 for the viscous QHD
equations, but there, the smoothing originates from a diffusive and not from
a dispersive term. For smaller values of δ, the peak-to-valley ratio of the
first NDR region becomes larger. For δ = 0, we arrive at Gardner’s QHD
equations without relaxation terms. We already mentioned that a central
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finite-difference discretization fails for this model; therefore, the limit δ → 0
cannot be performed numerically.
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Figure 4.2: Electron density before (dashed line) and after (solid line) the
first valley for thermal conductivities κ = 0.2 (left) and κ = 0.3 (right).

In Figure 4.3 the thermal energy 3/2nkBT and the velocity u = J/(qn)
are reported. The velocity profile is very similar to that computed from
Gardner’s model (see Figure 4.4, N = 500). The velocity is high in the
barriers and rather small in the well, i.e., the electrons spend more time in
the quantum well than in the barriers. On the other hand, the tempera-
ture of the new QHD model differs from that obtained by Gardner’s QHD
model, in particular in the region between the barriers. The heating in the
well in our model can be probably explained by the central scheme that we
have used. Gardner’s upwind scheme involves some numerical diffusion (see
Section 3.3.2) which seems to bring down the thermal energy in the quan-
tum well. We notice that ∇ log T is not of order O(ε2) as assumed in the
derivation of the model except in the high doped contact regions.
The influence of the effective mass on the current-voltage curves are shown
in Figure 4.5 (left). Corresponding to the effective masses m = 0.067m0,
m = 0.092m0, m = 0.126m0, the peak-to-valley ratios are 1.44, 1.79, 2.37,
respectively. Here, m0 denotes the electron mass at rest (see Table 3.1). The
peak-to-valley ratio increases with the effective mass. Strictly speaking,
the effective mass is not constant in the whole device but it is material
depending. The use of a nonconstant effective mass would be more physical,
but the modeling and the numerical approximation is—even in the much
simpler quantum drift-diffusion model—a lot more involved [95, 96].
In Figure 4.5 (right) the current-voltage curve for the barrier height B =
0.3 eV is shown. As expected, the peak-to-valley ratio is larger if the barrier
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Figure 4.3: Thermal energy density (left) and velocity (right) before (dashed
line) and after (solid line) the first valley computed from the general QHD
model (thermal conductivity κ = 0.2).
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Figure 4.4: Thermal energy density (left) and velocity (right) before (dashed
line) and after (solid line) the first valley computed from Gardner’s QHD
model (thermal conductivity κ = 0.2).

is higher (corresponding to a higher Al mole fraction); the values for the first
NDR region are 1.44 for B = 0.209 eV and 2.48 for B = 0.3 eV. The current
densities are much smaller than in Figure 4.1, where the lower potential
barrier B = 0.209 eV has been used. Interestingly, there are at least three
NDR regions, whereas there are only two regions for the barrier height B =
0.209 eV.

In Figure 4.6, the current-voltage curves for the general QHD equations and
for Gardner’s model are compared. Gardner’s model is discretized using the
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Figure 4.5: Left: Influence of the effective mass meff on the current-voltage
characteristic. Right: Current-voltage characteristic for a barrier height of
B = 0.3 eV. In both pictures, κ = 0.2.
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Figure 4.6: Influence of the number of discretization points on the current-
voltage characteristics for the general QHD equations (left) and for Gard-
ner’s QHD model (right). In both pictures, κ = 0.2.

upwind method as in [47] (see also Section 3.3.1). The right figure with
N = 500 points corresponds to Figure 2 of the cited paper. Notice that
close to thermal equilibrium, there are well-known difficulties to compute
the solution, which is not the case for our new model. Due to the numerical
viscosity introduced by the upwind method, it is clear that the solution
of Gardner’s model depends on the mesh size. The solution to the new
QHD equations is less mesh depending. In particular, the numerical results
before the first valley are almost the same for N ≥ 500 grid points. More
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importantly, the slope of the curve in Gardner’s model becomes steeper in
the region after the valley when the mesh size h is decreased. On the other
hand, the current-voltage curve of the general QHD model does not seem to
develop such singular slopes. Moreover, it is possible to solve the discrete
system for grid points N > 750 (not shown).





Conclusion and open

problems

This thesis is devoted to the derivation, mathematical analysis and numerical
approximation of quantum hydrodynamic models for semiconductor devices.
Quantum hydrodynamic models are dispersive regularization of the classi-
cal Euler equations from fluid mechanics. The highly nonlinear structure
and the quantum third-order terms make the analysis as well as numerics
of these models very challenging and demanding. The central part of the
thesis are the general quantum hydrodynamic model, derived by a moment
method from the Wigner-Boltzmann equation using the entropy minimiza-
tion principle and the viscous quantum hydrodynamic model, derived from
the Wigner-Fokker-Planck equation, also by the method of moments but
using different closure.

Although the entropy minimization principle enables a systematic approach
to the construction of the quantum hydrodynamic models, it should be
stressed that most of the mathematical properties concerning these models
are not researched yet and that fact opens a large field of investigations for
the future. Some of the possible, still unsolved tasks mentioned in [36] are:
existence of solutions for the entropy minimization problem, well-posedness
of the quantum hydrodynamic equations and the quantum BGK models,
etc. However, a practical usage of new models does not require that all
mathematical theory is settled. In this thesis it is shown that the simplified
version of the general quantum hydrodynamic model is capable to produce
the negative differential resistance in the simulation of the resonant tunnel-
ing diode.

Viscous quantum hydrodynamic model was developed by using particular
collision operator, in order to replace numerical viscosity introduced by up-
wind discretization by correct physical viscosity. Due to the numerical tests
performed in this thesis, the physical viscosity obtained from the Fokker-
Planck collision operator was too strong and it caused the smoothing of the
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current-voltage curve. Although the viscous quantum hydrodynamic model
presented here is not the favourable one, our results motivate the consider-
ation of the quantum hydrodynamic models with some different viscosities.
We point out that our work here is a continuation of the idea of the viscous
regularization of the classical hydrodynamic equations, already performed
in [6, 7, 12]. In the same spirit, the viscous regularizations of the quantum
hydrodynamic equations, were studied in [45, 58, 72]. Recently, the analy-
sis of viscous regularizations in related Euler equations describing diffusive
capillarity effects, including Korteweg-type terms with third-order deriva-
tives, has been studied in [21, 20]. Interestingly, for a special choice of the
capillarity function, the third-order Bohm potential is recovered. It is shown
that introducing certain viscous terms enables the proof of new a priori esti-
mates, leading to general existence results. Moreover, the strict positivity of
the particle density can be proven. This observation motivate the study of
the influence of various viscosities in the quantum hydrodynamic equations
and their use as numerical stabilizations.
One interesting task concerning quantum hydrodynamic models would be
to couple them to the mixed-state Schrödinger system in order to get hybrid

quantum models. This has already been done for the classical and quantum
drift-diffusion models in [31, 38].
At the end, we hope that the new results presented in this thesis contribute
to the research of the quantum hydrodynamic models, opening in the same
time some new perspectives for the future work.
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[71] A. Jüngel and S. Tang. A relaxation scheme for the hydrodynamic equations
for semiconductors. Appl. Num. Math. 43 (2002), 229-252.
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