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Abstract

This thesis is concerned with calculations in manifestly Lorentz-invariant baryon
chiral perturbation theory beyond order D = 4. We investigate two different meth-
ods. The first approach consists of the inclusion of additional particles besides pions
and nucleons as explicit degrees of freedom. This results in the resummation of an
infinite number of higher-order terms which contribute to higher-order low-energy
constants in the standard formulation. In this thesis the nucleon axial, induced pseu-
doscalar, and pion-nucleon form factors are investigated. They are first calculated
in the standard approach up to order D = 4. Next, the inclusion of the axial-vector
meson a1(1260) is considered. We find three diagrams with an axial-vector meson
which are relevant to the form factors. Due to the applied renormalization scheme,
however, the contributions of the two loop diagrams vanish and only a tree diagram
contributes explicitly. The appearing coupling constant is fitted to experimental
data of the axial form factor. The inclusion of the axial-vector meson results in an
improved description of the axial form factor for higher values of momentum transfer.
The contributions to the induced pseudoscalar form factor, however, are negligible
for the considered momentum transfer, and the axial-vector meson does not con-
tribute to the pion-nucleon form factor. The second method consists in the explicit
calculation of higher-order diagrams. This thesis describes the applied renormaliza-
tion scheme and shows that all symmetries and the power counting are preserved.
As an application we determine the nucleon mass up to order D = 6 which includes
the evaluation of two-loop diagrams. This is the first complete calculation in mani-
festly Lorentz-invariant baryon chiral perturbation theory at the two-loop level. The
numerical contributions of the terms of order D = 5 and D = 6 are estimated, and
we investigate their pion-mass dependence. Furthermore, the higher-order terms of
the nucleon σ term are determined with the help of the Feynman-Hellmann theorem.



Zusammenfassung

Die vorliegende Dissertation befasst sich mit Rechnungen in manifest Lorentz-invari-
anter baryonischer chiraler Störungstheorie, die über die chirale Ordnung D = 4 hin-
ausgehen. Hierbei werden zwei unterschiedliche Ansätze untersucht. Die erste Me-
thode besteht darin, neben Pionen und Nukleonen zusätzliche Freiheitsgrade explizit
zu berücksichtigen. Dadurch wird eine unendliche Anzahl an Termen, die in der
herkömmlichen Formulierung zu den Niederenergiekonstanten höherer Ordnungen
beitragen, aufsummiert. In der vorliegenden Arbeit werden der axiale, der induziert
pseudoskalare und der Pion-Nukleon-Formfaktor untersucht. Diese werden zunächst
auf herkömmliche Weise bis zur Ordnung D = 4 berechnet. Anschließend wird der
Einbau des Axialvektormesons a1(1260) betrachtet. Man findet drei Diagramme
mit einem Axialvektormeson, welche für die Formfaktoren relevant sind. Auf Grund
des verwendeten Renormierungsschemas verschwinden jedoch die Beiträge der zwei
Schleifendiagramme und nur ein Baumdiagramm trägt explizit bei. Die auftre-
tende Kopplungskonstante wird an experimentelle Daten des axialen Formfaktors
angepasst. Durch die Berücksichtigung des Axialvektormesons wird die Beschrei-
bung des axialen Formfaktors für höhere Werte des Impulsübertrags verbessert.
Die Beiträge des Axialvektormesondiagramms zum induziert pseudoskalaren Form-
faktor sind hingegen bei den betrachteten Impulsüberträgen vernachlässigbar, und
das Axialvektormeson trägt nicht zum Pion-Nukleon-Formfaktor bei. Die zweite
Methode besteht in einer expliziten Berechnung der Diagramme höherer Ordnung.
Die vorliegende Dissertation beschreibt das verwendete Renormierungsschema und
zeigt, dass alle Symmetrien und das Zählschema erhalten werden. Als Anwen-
dung wird die Nukleonmasse bis zur Ordnung D = 6 berechnet, was auch die
Berechnung von Zweischleifendiagrammen beinhaltet. Hierbei handelt es sich um
die erste vollständige Rechnung in manifest Lorentz-invarianter baryonischer chi-
raler Störungstheorie auf dem Zweischleifenniveau. Die numerischen Beiträge der
Terme der Ordnungen D = 5 und D = 6 werden abgeschätzt und ihre Pionmassen-
abhängigkeit untersucht. Mittels des Feynman-Hellmann-Theorems werden zudem
die Terme höherer Ordnung des σ-Terms bestimmt.
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Chapter 1

Introduction

Quantum chromodynamics (QCD) [GW 73a, Wei 73, FGL 73] has been established
as the field theory describing the strong interactions. It is an SU(3) gauge theory
formulated in terms of quark and gluon fields. In the Standard Model of particle
physics, quarks form one kind of fundamental constituents of matter, with leptons
being the other kind. There exist 6 different kinds of quarks, called flavors, which
differ in their electric charges and masses. These flavors are called up (u), down
(d), strange (s), charmed (c), bottom (b), and top (t). While the electric charge
only takes two values, 2/3 for the u, c, and t quarks and −1/3 for the d, s, and b
quarks, respectively, the masses range from a few MeV for the u and d quarks to
about 172 GeV for the t quark [Yao+ 06]. In addition, each flavor carries a so-called
“color” charge, which can take three values. The strong interaction between quarks
is mediated through the exchange of massless gluons, the gauge bosons of QCD
which themselves carry color charge and interact with each other through three-
and four-gluon vertices.

QCD exhibits two especially remarkable features. While quarks are the con-
stituents of matter, no isolated quark has been observed. Only color-neutral com-
binations of quarks and gluons, called hadrons, seem to appear in nature. This
is known as confinement [GW 73b], and the derivation of confinement from QCD
remains an open question of high interest. One possible explanation is related to
the second phenomenon, called asymptotic freedom [GW 73a, GW 73b, Pol 73]. It
was shown that the running of the strong coupling constant is such that it decreases
for increasing energies, or equivalently for shorter length scales. However, for lower
energies, i.e. larger distances, the coupling between quarks increases, providing a
possible mechanism for confinement. The increase of the strong coupling constant
for low energies poses a significant problem for QCD calculations in this regime.
For large values of the coupling constant a perturbative treatment of the theory in
powers of the coupling constant is no longer applicable. So far no analytical method
is known to solve QCD at low energies.

One of the tools for the non-perturbative treatment of QCD is given by lattice
QCD [Wil 74] (for a review see, e.g., [Rot 05]). Here, space-time is discretized onto a
finite lattice, which in turn transforms path integrals into finite dimensional integrals
that are accessible by numerical calculations. While lattice calculations have made
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2 Introduction

and continue to make great progress, an analytical method for calculations in the
energy region below 1 GeV remains desirable. One possible tool is the use of an
effective field theory (EFT) (see, e.g., [Pol 92, Geo 93, Kap 95, Man 96, Pic 98,
Kap 05]). In general, effective field theories are low-energy approximations to more
fundamental theories. According to a “folk theorem” by Weinberg [Wei 97], Lorentz-
invariant quantum theories that satisfy the cluster decomposition principle will, at
sufficiently low energies, have the form of a quantum field theory. This means that,
instead of having to solve the underlying theory, low-energy physics can be described
with a set of variables that is suited for the particular energy region of interest by
writing down the “most general possible Lagrangian consistent with the symmetries
of the theory”[Wei 97]. The effective field theory can then be used to calculate
physical quantities in terms of an expansion in q/Λ, where q stands for momenta
or masses that are smaller than some scale Λ. An effective field theory obviously
has a limited range of applicability as the expansion in q/Λ becomes useless for
sufficiently large values of q. In addition, EFTs give an appropriate description up
to finite accuracy, as in actual calculations only a finite number of terms in the
expansion in q/Λ is considered.

The general prescription for EFTs requires the most general Lagrangian con-
sistent with the symmetries of the underlying theory. With no further restrictions
the Lagrangian contains an infinite number of terms. Each term in the Lagrangian
is accompanied by a coefficient, called low-energy coupling constant (LEC). Since
one does not want to include any additional assumptions beyond invariance under
the symmetries, the quantum nature of the theory and cluster decomposition, the
LECs are free parameters from the EFT viewpoint. If the underlying theory is
known, these constants can in principle be calculated. There are cases where the
fundamental theory is unknown or the connection to the effective theory cannot be
established directly. In these cases the coefficients in the EFT Lagrangian can be
obtained by comparison with experimental data. The values of the LECs are inde-
pendent of physical processes, therefore once their values have been determined they
can be used in all other calculations. The general prescription for the construction
of an EFT leads to two immediate concerns. The infinite number of terms in the
Lagrangian of an EFT might suggest that the theory lacks predictive power. This
is not the case, since calculations are perturbative in q/Λ, and one works to a finite
order. Only a finite number of LECs contributes up to a certain order, and once
these have been determined, either by matching to the underlying theory or by com-
parison with a set of experiments, all further results can be predicted. The second
issue is related to renormalization. The LECs accompany operators with arbitrarily
high mass dimensions. An infinite number of the LECs in an EFT will therefore
have negative mass dimensions. This means that EFTs are non-renormalizable in
the traditional sense, i.e. there is no finite set of parameters that can be fixed to
render calculations finite up to infinite order. However, since one always works to
finite order and the Lagrangian contains all terms allowed by the symmetries, in-
finities appearing up to any finite order can be absorbed by the LECs up to that
order. EFTs are said to be renormalizable in a “modern sense” [Wei 97].

The method of EFTs can be applied to QCD at low energies. Instead of us-
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ing quarks and gluons as dynamical degrees of freedom, one formulates an EFT
called chiral perturbation theory [Wei 79, GL 84, GL 85]. Chiral perturbation the-
ory (ChPT) is described in terms of the degrees of freedom relevant to low-energy
strong processes which, in its SU(2) formulation, are pions and nucleons. Physical
quantities are then calculated as expansions in terms of small parameters such as
the pion mass and small momenta. The Lagrangian of ChPT contains an infinite
number of terms, from which an infinite number of Feynman diagrams contributing
to any physical process can be derived. In the mesonic sector the choice which of
these diagrams is relevant for a calculation up to a given accuracy can be made with
a scheme called “Weinberg’s power counting” [Wei 79]. It assigns a chiral order D
to each diagram, and diagrams with higher D are suppressed relative to those with
lower D. However, the extension to processes including a nucleon [GSS 88] originally
turned out to be problematic, as expressions renormalized with the methods known
from the mesonic sector did not obey the proposed power counting. These problems
can, however, be overcome by the application of a suitable renormalization scheme,
which restores the power counting.

ChPT relies on a perturbative expansion in terms of small parameters for which
the question of convergence arises. Assuming the parameters of the expansion to be
of natural size one would expect contributions at order D + 1 to be suppressed by a
factor q/Λ compared to contributions at order D. For q of the order of the pion mass
and Λ ≈ 1 GeV, which is the expected size of Λ for ChPT, this corresponds to a
correction of about 20%. In the mesonic sector this rough estimate seems accurate,
the situation is less clear for the baryonic sector though. While for example the chiral
expansion of the nucleon mass shows a good convergence behavior, the nucleon axial
coupling gA receives large contributions from higher-order terms [KM 99]. Further
examples include the electromagnetic form factors of the nucleon (see, e.g., [KM 01]),
which only describe the data for very low values of momentum transfer. For some
of these quantities higher-order contributions clearly play an important role.

The convergence properties of baryon chiral perturbation theory (BChPT) are
also of great importance for lattice QCD. While the physical value of the pion mass
is fixed, lattice calculations treat the pion mass as an adjustable parameter. Due
to numerical costs, present lattice calculations still require pion masses larger than
the physical one, and results obtained on the lattice have to be extrapolated to the
physical point. ChPT as an expansion in the pion mass is the appropriate tool
to perform such extrapolations, which again poses the question for which values of
small parameters the ChPT expansion gives reliable predictions.

In quantum electrodynamics (QED) the inclusion of higher-order terms has
proven to be successful in increasing the accuracy of theoretical predictions. The
electron anomalous magnetic moment ae has been calculated up to four-loop order,
resulting in an impressive agreement between experiment and theory of ae(exp) −
ae(th) = 12.4(4.3)(8.5) × 10−12 [KN 06]. This is possible since QED is renormal-
izable in the traditional sense. Only a fixed number of constants, in the case of
QED the charge e of the electron and its mass me, have to be determined and con-
tribute in calculations of arbitrary order in the loop expansion. Since ChPT as an
effective field theory is non-renormalizable in the standard sense, an infinite number
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of counterterms occurs. Even though the number of terms is finite up to a given
accuracy, it increases with the order of the calculation. Performing higher-order cal-
culations therefore results in the inclusion of a number of previously undetermined
LECs. Higher-order calculations can only result in increased accuracy once a suf-
ficient number of physical quantities has been calculated and the LECs have been
extracted from comparison with experimental data.

In this thesis we discuss two methods of calculating higher-order contributions
in baryonic ChPT. The first approach consists of including additional particles in
the theory. In ChPT calculations the contributions from resonances like vector and
axial-vector mesons are included in the LECs of the Lagrangian. Symbolically, the
resonance propagator is expanded,

1

q2 −M2
R

= − 1

M2
R

[
1 +

q2

M2
R

+

(
q2

M2
R

)2

+

(
q2

M2
R

)3

+O(q8)

]
, (1.1)

and the contributions stemming from these expressions at each order are absorbed
in the LECs of the ChPT Lagrangian at that order. By considering resonances
as explicit degrees of freedom, one does not have to expand the propagator and
can take into account all terms on the right-hand side of Eq. (1.1). The inclusion
of additional degrees of freedom therefore allows for a convenient resummation of
higher-order terms. There is an additional aspect why the inclusion of additional
particles is of interest. The mass of the lowest-lying particle not included as an
explicit degree of freedom provides an upper bound on the energy domain in which
an effective field theory can be applied. By including additional degrees of freedom
explicitly one therefore hopes to increase the range of applicability of the EFT.
One of the prerequisites, however, is the existence of a consistent power counting.
The lightest resonances not included in the standard ChPT Lagrangian are the
ρ mesons, which can decay into two pions. Due to the mass of the ρ these pions
have momenta that can no longer be considered small and so far no consistent power
counting exists for vector mesons that are real particles. This problem does not occur
though if the resonances only appear as internal particles in Feynman diagrams at
low energies. An application where the method of including additional particles
has proven to be successful is the calculation of the nucleon electromagnetic form
factors. The ChPT results up to fourth order for the electromagnetic form factors
only agree with experimental data for small values of momentum transfer (see, e.g.,
Refs. [Ber+ 92, Fea+ 97, KM 01, FGS 04]). It is known that the low-lying vector
mesons, such as the ρ, ω, and φ, play an important role in the description of the
nucleon form factors and it was shown in Refs. [KM 01, SGS 05] that the inclusion
of these vector mesons into the effective theory results in an improved description
of the data. Although the inclusion of vector mesons seems to resum the important
higher-order terms, it does not include all of these terms. Therefore the method
has to be viewed as a phenomenological extension of ChPT. However, it is based on
a consistent power counting and allows for the systematic determination of which
diagrams to consider in a calculation. It should be noted that in a strict chiral
expansion the results with and without additional degrees of freedom do not differ
up to a given order once the LECs have been adjusted accordingly.
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The question arises why one does not simply perform a straightforward cal-
culation of higher-order terms for each physical quantity. This approach is ap-
plied in the mesonic sector of ChPT where calculations are now performed up to
sixth order in the chiral expansion (see, e.g., [Bij 07] for a recent review), and for
the SU(2) case good agreement with experimental results is found. The exten-
sion to BChPT is more difficult. The renormalization in the mesonic sector is
performed using a version of the minimal subtraction scheme (see, e.g., [Col 84]),
which is also extensively used in other areas of particle physics. However, as men-
tioned above, this method does not result in a proper power counting in BChPT.
The framework of heavy baryon ChPT (HBChPT) [JM 91, Ber+ 92], in which an
expansion in inverse powers of the nucleon mass is performed in the Lagrangian,
was the first solution to this problem. While HBChPT has been applied success-
fully to a variety of physical processes (for a review see [BKM 95]) it produces the
wrong analytical structure for some Green functions in certain kinematical regimes
[BKM 96]. In addition, the expansion in 1/m creates a large number of terms in the
effective Lagrangian. Several manifestly Lorentz-invariant renormalization schemes
[ET 98, BL 99, GJ 99, GJW 03, Goi+ 01, Fuc+ 03a] have been developed which
give a proper power counting while also respecting the analytic structure in the
whole low-energy domain. The most commonly used of these is the infrared (IR)
regularization of Ref. [BL 99], which is also employed in this thesis. All these renor-
malization schemes have in common that there is a relation between the chiral order
and the loop expansion. For example, for both HBChPT and IR regularization a cal-
culation up to chiral order D = 4 includes the evaluation of one-loop diagrams, while
chiral orders D = 5 and D = 6 also require two-loop diagrams. In the framework
of HBChPT a calculation of the nucleon mass at order D = 5 exists [MB 99], and
the leading nonanalytic contributions to the nucleon axial-vector coupling constant
gA have been determined using renormalization group techniques in Ref. [BM 06].
However, to the best of our knowledge no complete calculation beyond D = 4 has
been performed in a manifestly Lorentz-invariant renormalization scheme. In the
framework of the extended-on-mass-shell scheme [Fuc+ 03a] a two-loop calculation
for a toy-model Lagrangian showed the applicability of this method in higher-order
calculations [SGS 04b]. In its original formulation the IR regularization can be ap-
plied to one-loop diagrams, and a generalization of this method to allow for the
treatment of multi-loop diagrams was proposed in Ref. [LP 02]. There also exists
a reformulation of the IR regularization [SGS 04a] that allows for the application
to multi-loop diagrams [SGS 04b]. In this thesis we show the details of how the
renormalization of two-loop diagrams can be performed while preserving all rele-
vant symmetries and present the details of the first complete two-loop calculation
in infrared regularization.

This thesis is organized as follows. In Chapter 2 we discuss the QCD Lagrangian
and its symmetries, which are relevant for the construction of the ChPT Lagrangian.
Power counting is described and we present the Lagrangians relevant to the follow-
ing calculations. One renormalization scheme which results in a consistent power
counting for the baryonic sector of ChPT, the infrared regularization of Becher and
Leutwyler [BL 99], is introduced in Chapter 3. We also present an alternative for-
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mulation of this scheme which can also be applied to diagrams containing additional
degrees of freedom and to multi-loop diagrams. The axial, induced pseudoscalar,
and pion-nucleon form factors are calculated in Chapter 4. After presenting the
results of a calculation in the standard formulation of ChPT, we show how an axial-
vector meson can be included to resum important higher-order contributions. The
results of this work have been published in Ref. [Sch+ 07]. Chapter 5 discusses
details of the infrared renormalization of two-loop diagrams. It is shown how the
renormalization is performed such that all relevant symmetries as well as the power
counting are preserved, and we then introduce a simplified method applicable to
the calculation of the nucleon mass. The details of such a calculation up to and
including order D = 6 are presented in Chapter 6. As a result we obtain the chiral
expansion of the nucleon mass up to sixth order, and estimates for the numerical
contributions of the higher-order terms are given. These results can also be found
in Ref. [Sch+ 06]. We analyze the pion mass dependence of a specific term and
estimate the contribution to the σ term. A summary and conclusions can be found
in Chapter 7, while the appendices contain theoretical details such as the definition
and explicit expressions of integrals and a discussion of the method of dimensional
counting analysis.



Chapter 2

QCD and chiral perturbation
theory

Quantum chromodynamics (QCD) [GW 73a, Wei 73, FGL 73] describes the strong
interactions between quarks by the exchange of massless gauge bosons, the gluons.
It is a non-Abelian gauge theory with SU(3) as the underlying gauge group. The
present chapter discusses the Lagrangian of QCD and its symmetries, which play
a crucial role in the construction of the corresponding effective field theory, chiral
perturbation theory. The Lagrangians of the mesonic and baryonic sectors of baryon
ChPT relevant for this work are presented.

2.1 Quantum chromodynamics

Denoting the quark fields by qf , where the subscript f stands for one of the six
flavors up (u), down (d), strange (s), charm (c), bottom (b) or top (t), and the
gluon fields by Aµ,a, the QCD Lagrangian is given by [MP 78, Alt 82]

LQCD =
∑

f

q̄f

(
i /D −mf

)
qf − 1

4
Gµν, aGµν

a . (2.1)

Quarks carry the so-called color charge, which takes the three values red (r), green
(g) and blue (b). The quark fields are color triplets,

qf =




qf,r

qf,g

qf,b


 , (2.2)

and Dµ qf denotes the covariant derivative on the quark fields,

Dµqf = ∂µqf − ig

8∑
a=1

λa

2
Aµ, aqf , (2.3)

with λa the Gell-Mann matrices. The gluon field is also contained in the field
strength tensor Gµν, a,

Gµν,a = ∂µAν, a − ∂νAµ, a + gfabcAµ, bAν, c (2.4)

7



8 QCD and chiral perturbation theory

where fabc are the structure functions of SU(3) and g is the coupling constant of the
strong interactions. The parameters mf in the Lagrangian of Eq. (2.1) are referred
to as quark masses and their values span a wide range, from 1.5 − 3 MeV for the
u quark and 3 − 7 MeV for the d quark, up to about 172 GeV for the t quark
[Yao+ 06].1 The Lagrangian of Eq. (2.1) is invariant under parity transformations
(P), charge conjugation (C) and time reversal (T). Gauge invariance would also
allow a term in the Lagrangian that violates P and CP symmetry, the so-called
θ-term,

Lθ =
g2θ̄

64π2
εµνρσ

8∑
a=1

Ga
µνGa

ρσ . (2.5)

Since the experimental situation seems to indicate a very small value for the param-
eter θ̄ [Bak 06] and no P- or CP-violating processes are considered in this work, we
neglect this term and only consider the P- and CP-invariant Lagrangian of Eq. (2.1).

Using the compact notation

q = (qu, qd, qs, qc, qb, qt)
T

and introducing the projection operators

PR =
1

2
(1 + γ5), PL =

1

2
(1− γ5) , (2.6)

which project the quark fields q onto their chiral components qR and qL, respectively,
the QCD Lagrangian can be written as

LQCD = (q̄R i /DqR + q̄L i /DqL − q̄RMqL − q̄LMqR)− 1

4
Gµν, aGµν

a . (2.7)

Here, M denotes the quark mass matrix,

M =




mu 0 0
0 md 0 · · ·
0 0 ms

...
. . .


 .

One sees that in the derivative term right-handed (left-handed) fields exclusively
couple to right-handed (left-handed) fields, while the mass term introduces couplings
between right- and left-handed fields. Setting the quark mass parameters equal to
zero, the coupling between right- and left-handed fields vanishes,

L0
QCD =

∑

f

(q̄f, R i /Dqf, R + q̄f, L i /Dqf, L)− 1

4
Gµν, aGµν

a . (2.8)

The Lagrangian L0
QCD is invariant under independent global U(Nf ) transformations

for qL and qR,

qL 7→ ULqL ,

qR 7→ URqR , (2.9)

1Since quarks do not appear as asymptotic physical states, the definition of their masses is
ambiguous (see the note on quark masses in [Yao+ 06]).
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in other words the massless QCD Lagrangian has a U(Nf )L×U(Nf )R symmetry. The
group U(Nf )L×U(Nf )R is locally isomorphic to SU(Nf )L×SU(Nf )R×U(1)V×U(1)A,
where U(1)V (U(1)A) refers to a multiplication of the right- and left handed fields
with an equal (opposite) phase.2 The symmetry considerations above hold on the
classical level. Due to an anomaly [AB 69, Adl 69, Bar 69, BJ 69] the axial U(1)A

symmetry is not preserved upon quantization, and only a SU(Nf )L × SU(Nf )R ×
U(1)V symmetry remains. The U(1)V invariance is related to baryon number con-
servation, and the SU(Nf )L×SU(Nf )R symmetry is referred to as chiral symmetry.3

Non-zero quark masses explicitly break chiral symmetry, as they couple left-
handed to right-handed quarks. In the simplest quark model picture the proton
is thought to consist of two u quarks and one d quark. However, comparing the
proton mass mp = 938 MeV to the sum of quark masses one sees that mp À
2mu + md. The bulk of the proton mass does not seem to stem from the quark
masses. As a starting point one can assume the u and d quarks to be massless and
think of the chiral symmetry breaking due to their finite masses as a perturbation.
For the case of massless u and d quarks the QCD Lagrangian has a SU(2)L ×
SU(2)R symmetry, and this symmetry of the Lagrangian should manifest itself in
the spectrum of hadrons which (in quark model language) contain only u and d
quarks. Arranging the generators of SU(2)L×SU(2)R into linear combinations with
positive and negative parity, Qa

V = Qa
R + Qa

L and Qa
A = Qa

R − Qa
L (a = 1, 2, 3),

one thus expects degenerate SU(2) multiplets of opposite parity. The observed
spectrum, however, does not show the expected symmetry pattern. Instead the
low-energy hadrons containing u and d quarks can be arranged in SU(2) multiplets,
with all members of a certain multiplet having the same behavior under parity
transformations, but degenerate multiplets of opposite parity are not observed. It
was shown that for massless u and d quarks SU(2)V is not broken [VW 84]. The
absence of parity doubling then suggests that the axial symmetry, related to the
generators Qa

A, is spontaneously broken.

2.2 Spontaneous symmetry breaking

A symmetry is said to be spontaneously broken if the ground state of a theory is
not invariant under the full symmetry group of the Hamiltonian. In a quantum field
theory this is the case when the Hamiltonian allows for several (up to infinitely many)
degenerate ground states. The choice of one of those ground states as the physical
one breaks the symmetry.4 Spontaneous breaking does not have to occur for the
complete symmetry group, it can leave the ground state invariant under a subgroup.
If the considered symmetry is a continuous symmetry and nG denotes the number of

2To be precise, the group U(N)×U(N) is isomorphic to U(1)×SU(N)/ZN×U(1)×SU(N)/ZN ,
where ZN is the center of SU(N).

3In the literature the term chiral symmetry is sometimes also used for a U(Nf )L × U(Nf )R

symmetry.
4Note that in quantum mechanics the existence of several degenerate ground states does not

result in spontaneous symmetry breaking, since the physical ground state can be a linear superpo-
sition of ground states.
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generators of the symmetry group G, while nH stands for the number of generators of
the residual symmetry subgroup H, Goldstone’s theorem [Gol 61, GSW 62] predicts
the existence of nG − nH massless spin-0 bosons, called Goldstone bosons. In the
case where the underlying symmetry group G is not exact, but only approximate,
the appearing spinless particles have a non-vanishing, but small mass and are called
pseudo-Goldstone bosons.

Let us apply the above considerations to the QCD Lagrangian with small values
of the u and d quarks. The Lagrangian is approximately invariant under G =
SU(2)L × SU(2)R with nG = 6. The symmetry is assumed to be broken to a H =
SU(2)V symmetry with nH = 3. One therefore expects the existence of nG − nH =
6 − 3 = 3 light spinless particles. In the hadron spectrum the pions have spin 0
and are much lighter than other hadrons containing only u and d quarks, like the
ρ mesons for example, which leads to the identification of the pions as the pseudo-
Goldstone bosons of spontaneously broken chiral symmetry.

2.3 Ward identities and local symmetry

The global SU(2)L × SU(2)R symmetry for massless u and d quarks provides con-
straints on the Green functions of QCD. In particular, it also imposes relations
among different Green functions, known as Ward-Fradkin-Takahashi identities (Ward
identities for short) [War 50, Fra 55, Tak 57]. The QCD Green functions for the vec-
tor, axial vector, scalar and pseudoscalar currents can be derived from a generating
functional when a coupling of the quarks to external fields is considered,

L = L0
QCD + Lext = L0

QCD + q̄γµ(vµ +
1

3
vµ

(s) + γ5a
µ)q − q̄(s− iγ5p)q. (2.10)

The external fields are hermitian and color-neutral matrices acting in flavor space.
Note that the QCD Lagrangian is obtained by setting s = M and vµ = vµ

(s) = aµ =
p = 0. Since in the following we will be interested in Green functions of currents
of the u and d quarks, we restrict the discussion to these two flavors. The external
fields are then given by 2× 2 matrices,

vµ =
3∑

i=1

τi

2
vµ

i , vµ
(s) =

τ0

2
vµ

0 , aµ =
3∑

i=1

τi

2
aµ

i , s =
3∑

i=0

τisi, p =
3∑

i=0

τipi, (2.11)

where τ0 is the two-dimensional unit matrix and τi (i = 1, 2, 3) are the Pauli matrices.
The generating functional takes the form

exp(iZ[v, a, s, p]) = 〈0|T exp

[
i

∫
d4xLext(x)

]
|0〉, (2.12)

and by functional differentiation with respect to the external fields the Green func-
tions can be obtained. The resulting Green functions obey the Ward identities
stemming from the global SU(2)L × SU(2)R symmetry of the massless QCD La-
grangian. These Ward identities imply that the generating functional is invariant
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under the same local transformation of the external fields as occur if one requires
the Lagrangian of Eq. (2.10) to be invariant under local SU(2)L × SU(2)R transfor-
mations,

(vµ + aµ) 7→ VR(vµ + aµ)V †
R + iVR∂µV †

R,

(vµ − aµ) 7→ VL(vµ − aµ)V †
L + iVL∂µV †

L ,

(s + ip) 7→ VR(s + ip)V †
L ,

(s− ip) 7→ VL(s− ip)V †
R, (2.13)

where (VL, VR) ∈ SU(2)L×SU(2)R. The invariance of the generating functional under
local transformations of the external fields allows to obtain all Ward identities by
functional derivatives of a master equation (see, e.g., Appendix A of Ref. [Sch 03]).
While at the level of QCD the invariance of the generating functional under local
transformations collects the Ward identities in a very compact form, the local version
of the symmetry plays a crucial role for the corresponding effective field theory. As
shown in Ref. [Leu 94] the effective Lagrangian reproducing the Green functions
obtained from the generating functional of Eq. (2.12) can be brought into a form that
is invariant under local SU(2)L×SU(2)R transformations, which provides important
constraints for the construction of the Lagrangian. In addition, local invariance also
allows for the coupling of the effective degrees of freedom to external gauge fields
such as the electromagnetic field.

2.4 Chiral perturbation theory

Having established the symmetries of the QCD Lagrangian, one can proceed to
construct the corresponding effective field theory for low-energy hadronic processes,
called chiral perturbation theory (ChPT) [Wei 79, GL 84, GL 85]. For an extensive
introduction to ChPT see, e.g., Ref. [Sch 03]. One of the advantages of an EFT is
that the degrees of freedom can be chosen to be those relevant to the energy region of
interest. For strong interaction processes far below 1 GeV these are hadrons instead
of the more fundamental quarks and gluons. Considering only the u and d quarks
to be light, one expects the hadron spectrum to show an SU(2) multiplet pattern.
The lowest-lying SU(2) multiplet is the triplet of pions, which as explained above
are considered the Goldstone bosons of spontaneous chiral symmetry breaking. In
its mesonic sector ChPT describes the interaction among pions as well as of pions
with external fields. One needs to write down the most general Lagrangian in
terms of the pion fields that is consistent with the symmetries of QCD as discussed
above, and in particular is invariant under local SU(2)L×SU(2)R transformations.
Physical quantities are then calculated as expansions in q/Λ, where q stands for
small momenta or the pion mass and Λ is expected to be approximately 1 GeV,
the scale of spontaneous chiral symmetry breaking. As an extension the interaction
of pions with baryons can be considered. The lowest-lying baryon multiplet is the
nucleon doublet of proton and neutron. The interaction of nucleons with pions and
external fields can also be described by ChPT, provided that the appearing nucleon
three momenta are much smaller than 1 GeV [GSS 88].
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2.4.1 Power counting

The ChPT Lagrangian contains an infinite number of terms, which can be ordered
according to the number of derivatives acting on pion fields and powers of pion
masses,

L = L1 + L2 + L3 + · · · . (2.14)

As will be explained below, the mesonic Lagrangian only contains terms of even
power, while in the baryonic sector also odd numbers of derivatives appear. Since
an infinite number of Feynman diagrams derived from this Lagrangian contributes
to any physical process, a scheme is required to determine the relative importance
of each diagram, which in turn allows to identify those diagrams necessary for a cal-
culation to a certain accuracy. For the mesonic sector this is achieved by Weinberg’s
power counting [Wei 79]. Consider the behavior of the invariant amplitudeM(p,mq)
under linear rescaling of the external pion momenta, pi 7→ tpi, and quadratic rescal-
ing of quark masses, mq 7→ t2mq,

M(pi,mq) 7→ M(tpi, t
2mq) = tDM(pi,mq). (2.15)

Here, D is the so-called chiral dimension and is given by

D = 2 +
∞∑

n=0

2(n− 1)N2n + 2NL, (2.16)

where N2n is the number of vertices from L2n and NL stands for the number of loop
integrations. For small values of t diagrams with low D dominate and diagrams with
D larger than a certain value can be neglected in calculations to a given accuracy.
Using the relation

NV = NI −NL + 1,

where NV is the total number of vertices and NI denotes the number of internal
pion lines, one can write D as

D = 4NL − 2NI +
∞∑

n=0

2nN2n. (2.17)

One therefore assigns the following chiral orders to the individual parts of Feynman
diagrams: Loop integration in 4 dimensions counts as order D = 4, a pion propagator
as D = −2 and a vertex from L2n as D = 2n.

When extended to the nucleonic sector, the same power counting rules can be
chosen with the addition that a nucleon propagator counts as D = −1 and vertices
from the jth-order nucleonic Lagrangian count as order D = j [Wei 91, Eck 95].

2.4.2 Mesonic Lagrangian

Following the general description of Ref. [CWZ 69, Cal+ 69], the Goldstone boson
fields are collected in the unimodular unitary 2× 2 matrix U ,

U(x) = exp

(
iΦ(x)

F

)
, Φ(x) =

3∑
i=1

τiΦi =

(
π0

√
2π+√

2π− −π0

)
, (2.18)
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the covariant derivative of which is defined as

DµU = ∂µU − irµU + iUlµ ,

with
rµ = vµ + aµ, lµ = vµ − aµ, χ = 2B(s + ip) .

The quantities vµ, aµ, s, and p stand for external vector, axial-vector, scalar, and
pseudoscalar sources, respectively, and B is related to the quark condensate 〈q̄q〉0
in the chiral limit. To construct a chirally invariant Lagrangian the transformation
properties of the different building blocks under the group SU(2)L×SU(2)R need to
be known. The Goldstone boson fields transform as

U(x) 7→ VRU(x)V †
L , (2.19)

where (VL, VR) ∈ SU(2)L×SU(2)R, while the transformation behavior of the external
fields is given by

rµ 7→ VRrµV †
R + iVR∂µV †

R ,

lµ 7→ VLlµV †
L + iVL∂µV †

L ,

χ 7→ VRχV †
L ,

χ† 7→ VLχ†V †
R . (2.20)

For the construction of higher-order terms it is useful to define the field strength
tensors of the external fields,

fR
µν = ∂µrν − ∂νrµ − i[rµ, rν ] ,

fL
µν = ∂µlν − ∂νlµ − i[lµ, lν ] , (2.21)

which transform under SU(2)L × SU(2)R as

fR
µν 7→ VRfR

µνV
†
R ,

fL
µν 7→ VLfL

µνV
†
L . (2.22)

The chiral orders of these building blocks are given by

U = O(q0), DµU = O(q1), fR/L
µν = O(q2), χ = O(q2) . (2.23)

Together with the transformation behavior under charge conjugation C and parity
P , which are listed in Table 2.1, one can proceed to construct the most general
Lagrangian invariant under these symmetries at any given order. Due to Lorentz
invariance the mesonic Lagrangian only contains even powers,

Lπ = L2 + L4 + · · · . (2.24)

The lowest-order Lagrangian L2 reads [GL 84]

L2 =
F 2

4
Tr

[
DµU(DµU)†

]
+

F 2

4
Tr

[
χU † + Uχ†

]
. (2.25)



14 QCD and chiral perturbation theory

U DµU χ Dµχ rµ lµ fR
µν fL

µν

C UT (DµU)T χT (Dµχ)T −lTµ −rT
µ −(fL

µν)
T −(fR

µν)
T

P U † (DµU)† χ† (Dµχ)† lµ rµ fL, µν fR, µν

Table 2.1: Transformation behavior under C, P .

Two low-energy coupling constants (LECs) appear in the lowest-order Lagrangian,
F and B. As mentioned above, B is related to the quark condensate in the chiral
limit, and one finds that the constant F is the pion decay constant in the chiral
limit, Fπ = F + O(m̂), with m̂ = (mu + md)/2. Furthermore, the leading-order
expression for the pion mass squared in terms of the average light quark mass is
given by M2 = 2Bm̂ [GL 84]. For the following calculations only two terms from
the Lagrangian L4 are needed. We will employ the notation of Ref. [GSS 88] in
which the relevant terms of the Lagrangian read

L4 = · · ·+ l3 + l4
16

[
Tr(χU † + Uχ†)

]2
+

l4
8

[
DµU(DµU)†

]
Tr(χU †+Uχ†)+· · · . (2.26)

2.4.3 Baryonic Lagrangian

In order to construct the most general Lagrangian for processes including nucleons,
the nucleon degrees of freedom are contained in the isospinor

Ψ =

(
p
n

)
. (2.27)

The transformation behavior of Ψ under the chiral group SU(2)L × SU(2)R is given
in terms of the compensator K(VL, VR, U),

Ψ 7→ K(VL, VR, U)Ψ ,

Ψ̄ 7→ Ψ̄K−1(VL, VR, U) . (2.28)

K(VL, VR, U) is a function of the group elements (VL, VR) of SU(2)L × SU(2)R as
well as the Goldstone boson fields. Its explicit form is given by

K(VL, VR, U) = u′−1VRu =

√
VRUV †

L

−1

VR

√
U (2.29)

where the notation u =
√

U has been used for the Goldstone boson fields and

u′ =
√

VRUV †
L is related to the transformed Goldstone boson fields. With the

definition of the so-called connection [Eck 95],

Γµ =
1

2

[
u†(∂µ − irµ)u + u(∂µ − ilµ)u†

]
, (2.30)

the covariant derivative of the nucleon is given by

DµΨ =
(
∂µ + Γµ − iv(s)

µ

)
Ψ . (2.31)
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Here, v
(s)
µ stands for the external isoscalar vector field and the covariant derivative

transforms in the same way under SU(2)L×SU(2)R transformations as the isospinor
Ψ,

DµΨ 7→ K(VL, VR, U)DµΨ . (2.32)

In order to construct a Lagrangian that is invariant under SU(2)L × SU(2)R it
is convenient to define new building blocks which contain the Goldstone bosons as
well as external fields and which have specific transformation properties in terms of
the compensator K(VL, VR, U). These building blocks are given by

uµ = i
[
u†(∂µ − irµ)u− u(∂µ − ilµ)u†

]
,

χ± = u†χu† ± uχ†u,

f±µν = ufL
µνu

† ± u†fR
µνu,

v(s)
µν = ∂µv

(s)
ν − ∂νv

(s)
µ , (2.33)

which transform as

X 7→ K(VL, VR, U)XK−1(VL, VR, U), X = uµ, χ±, f±µν ,

v(s)
µν 7→ v(s)

µν (2.34)

under chiral transformations. Furthermore the covariant derivatives of the building
blocks are given by

DµX = ∂µX + [Γµ, X] , (2.35)

which transform in the same way as the building blocks. With these definitions
one can construct a Lagrangian containing terms of the form Ψ̄OΨ, where O is
an operator composed from the building blocks of Eq. (2.33) and their covariant
derivatives.

The lowest-order Lagrangian reads [GSS 88]

L(1)
πN = Ψ̄

[
i /D −m +

gA

2
γµγ5uµ

]
Ψ, (2.36)

where m is the nucleon mass in the chiral limit and gA is the nucleon axial-vector
coupling constant, also in the chiral limit. The complete Lagrangians of orders
O(q2), O(q3), and O(q4) are given in [EM 96, Fet+ 00]. We only show those terms
explicitly which are required for our calculations. The Lagrangian at order O(q2)
contains seven terms, of which we need

L(2)
πN = c1Tr(χ+)Ψ̄Ψ− c2

4m2

[
Ψ̄Tr(uµuν)D

µDνΨ + h.c.
]
+

c3

2
Ψ̄Tr(uµu

µ)Ψ

+Ψ̄
[
i
c4

4
[uµuν ] +

c6

2
f+

µν

]
σµνΨ + · · · , (2.37)

where h.c. stands for the hermitian conjugate. Out of the 23 terms at order O(q3)
the following are relevant for our purposes,

L(3)
πN =

d16

2
Ψ̄Tr(χ+)γµγ5uµΨ + i

d18

2
Ψ̄γµγ5[Dµ, χ−]Ψ +

d22

2
Ψ̄γµγ5[D

ν , F−
µν ]Ψ + · · · .

(2.38)
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The Lagrangian at order O(q4) reads

L(4)
πN = · · ·+ e14Ψ̄Tr(hµνh

µν)Ψ− e15

4m2
Ψ̄Tr(hλµh

λ
ν)D

µνΨ + h.c.

+
e16

48m4
Ψ̄Tr(hλµhλρ)D

λµνρΨ + h.c. + e19Ψ̄Tr(χ+)Tr(uµu
µ)Ψ

− e20

4m2
Ψ̄Tr(χ+)Tr(uµuν)D

µνΨ + h.c.− i
e35

4m2
Ψ̄Tr(χ−hµν)D

µνΨ + h.c.

+ie36Ψ̄Tr(uµ)Dµχ−Ψ + e38Ψ̄Tr(χ+)2Ψ +
e115

4
Ψ̄Tr(χ2

+ − χ2
−)Ψ

−e116

4
Ψ̄

[
Tr(χ2

−)− Tr(χ−)2 + Tr(χ2
+)− Tr(χ+)2

]
Ψ + · · · , (2.39)

where h.c. again stands for the hermitian conjugate and always refers to the structure
immediately in front of it. The notation

hµν = Dµuν + Dνuµ, DµνΨ = (DµDν + DνDµ)Ψ (2.40)

has been introduced for the symmetrized combinations of the covariant derivative.
The Lagrangians of order O(q5) and O(q6) have not been constructed yet. How-

ever, in a calculation of the nucleon mass to order O(q6) they will only contribute to
tree-level diagrams. Since an expression proportional to M5, where M denotes the
pion mass, is nonanalytic in the quark masses it cannot appear in the Lagrangian.
Therefore only terms from the Lagrangian at order O(q6) are needed. There are
several relevant terms in the Lagrangian of that order and the contribution to the
nucleon mass involves a linear combination of LECs, which we denote by ĝ1. The
relevant part of the Lagrangian can then be written as

L(6)
πN ∼ ĝ1M

6Ψ̄Ψ + · · · . (2.41)



Chapter 3

Infrared regularization

When chiral perturbation theory was first extended to include processes with one
nucleon [GSS 88], problems with the power counting appeared. Consider the dia-
gram of Fig. 3.1, which corresponds to a nucleon self-energy contribution. According
to the power counting specified in Chapter 2, the result should be of order

D = n + 2 · 1− 1− 2 = n− 1
n→4−→ 3. (3.1)

In the mesonic sector diagrams are evaluated using dimensional regularization
[HV 72] in combination with the modified minimal subtraction scheme of ChPT

(M̃S) [Fuc+ 03a].
When the same methods are applied to the diagram of Fig. 3.1, however, the

lowest-order term in the result has chiral order

D = 2, (3.2)

lower than suggested by Eq. (3.1). It was already realized in Ref. [GSS 88] that
the failure of the power counting rules is related to the regularization and renor-
malization procedure. The first solution to this power counting problem was given
by heavy-baryon ChPT (HBChPT) [JM 91, Ber+ 92], in which an expansion in
inverse powers of the nucleon mass is performed in the Lagrangian. The price
of this method, besides an increase in the number of terms in the Lagrangian, is
that manifest Lorentz invariance is lost. Subsequently several manifestly Lorentz-
invariant renormalization schemes have been developed that also result in a proper
power counting [ET 98, BL 99, GJ 99, GJW 03, Goi+ 01, Fuc+ 03a]. The most
commonly used scheme is the infrared (IR) regularization of Becher and Leutwyler
[BL 99], which is also applied in this work.

�p p� kk p1 1
Figure 3.1: Nucleon self-energy contribution.
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3.1 Infrared regularization of Becher and Leutwyler

The method of infrared regularization [BL 99] is based on dimensional regularization
and the analytic properties of loop integrals. It is applicable to one-loop integrals
in the one-nucleon sector of ChPT. Consider the general integral

Hπ···N ···(q1, . . . , p1, . . .) = i

∫
dnk

(2π)n

1

a1 · · · am b1 · · · bl

, (3.3)

where ai = (k+qi)
2−M2+i0+ and bj = (k+pj)

2−m2+i0+ denote inverse pion and
nucleon propagators, respectively, and n is the number of space-time dimensions.
One combines the pion propagators using

1

a1 · · · am

=

(
∂

∂M2

)(m−1) ∫ 1

0

dx1 · · ·
∫ 1

0

dxm−1
X

A
, (3.4)

with the numerator given by

X =

{
1 for m = 2,
x2(x3)

2 · · · (xm−1)
m−2 for m > 2,

(3.5)

and the recursive relation for the denominator

A = Am,
A1 = a1,

Ap+1 = xpAp + (1− xp)ap+1 (p = 1, . . . ,m− 1).
(3.6)

The denominator A can be written as

A = (k + q̄)2 − Ā + i0+, (3.7)

where q̄ is a linear combination of the external momenta qi and Ā is a constant.
Similarly we combine the nucleon propagators

1

b1 · · · bl

=

(
∂

∂m2

)(l−1) ∫ 1

0

dy1 · · ·
∫ 1

0

dyl−1
Y

B
, (3.8)

where the numerator reads

Y =

{
1 for l = 2,
y2(y3)

2 · · · (yl−1)
l−2 for l > 2,

(3.9)

and the recursive relation for the denominator B is given by

B = Bl,
B1 = b1,

Bp+1 = ypBp + (1− yp)bp+1 (p = 1, . . . , l − 1).
(3.10)

Again the result for the denominator is quadratic in k,

B = (k + p̄)2 − B̄ + i0+, (3.11)
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where p̄ is a linear combination of the external momenta pi. The two resulting
denominators can be combined using the identity

1

AB
=

∫ 1

0

dz

[(1− z)A + zB]2
, (3.12)

resulting in

Hπ···N ···(q1, . . . , p1, . . .)

= i

(
∂

∂M2

)(m−1) (
∂

∂m2

)(l−1) ∫ 1

0

dz

∫ 1

0

dxi

∫ 1

0

dyj XY

∫
dnk

(2π)n

1

[(1− z)A + zB]2
,

(3.13)

where
∫ 1

0

dxi =

∫ 1

0

dx1 · · ·
∫ 1

0

dxm−1 ,

∫ 1

0

dyj =

∫ 1

0

dy1 · · ·
∫ 1

0

dyl−1 .

After evaluating the derivatives and performing the integration over k one obtains

Hπ···N ···(q1, . . . , p1, . . .)

=
(−1)1−l−m

(4π)n/2
Γ(l + m− n/2)

∫ 1

0

dz zl−1(1− z)m−1

∫ 1

0

dxi

∫ 1

0

dyj XY [f(z)](n/2)−l−m,

(3.14)

with

f(z) = p̄2z2 − (
p̄2 − B̄

)
z + Ā(1− z)− (

q̄2 − 2p̄ · q̄) z(1− z)− i0+ .

The infrared regularization consists of rewriting the z integration as

∫ 1

0

dz · · · =
∫ ∞

0

dz · · · −
∫ ∞

1

dz · · · . (3.15)

The first term on the right-hand side of Eq. (3.15) is called the infrared singular
part I, while the second term is referred to as the infrared regular part R,

Hπ···N ··· = Iπ···N ··· + Rπ···N ··· , (3.16)

or for short
H = I + R . (3.17)

The advantage of splitting the original integral into two parts is that the infrared
singular part I satisfies the power counting, while R contains terms that violate the
power counting. In addition, the infrared singular and infrared regular parts differ
in their analytic properties. For noninteger n the expansion of I in small quantities
results in only noninteger powers of these variables, while R only contains analytic
contributions. As mentioned in Chapter 2, symmetries introduce relations among
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various Green functions of the theory, called Ward identities. Expressions containing
the integrals H satisfy the Ward identities,1 since they are derived from an invariant
Lagrangian and dimensional regularization does not violate the symmetries. Since
I only contains nonanalytic terms, while R consists of analytic contributions only,
each part has to satisfy the Ward identities separately in order for the sum H = I+R
not to violate any symmetry.

3.2 Reformulation of infrared regularization

In its original formulation by Becher and Leutwyler, infrared regularization2 is ap-
plicable to one-loop integrals containing pion and nucleon propagators in the one-
nucleon sector of ChPT. It is possible to formulate IR renormalization in a way that
it can also be applied to multi-loop diagrams and diagrams containing additional
degrees of freedom, such as vector or axial-vector mesons [SGS 04a].

In the original formulation the integration over the parameter z in the infrared
regular part R is given by

−
∫ ∞

1

dz zl−1(1− z)m−1[f(z)](n/2)−l−m. (3.18)

The chiral expansion for R can be performed before evaluating the z integration
[BL 99]. The infrared regular part is then given as a sum of terms containing
integrals over z of the type

Ri = −
∫ ∞

1

dz zn+i. (3.19)

These integrals are calculated by analytic continuation from the domain of n in
which they converge,

Ri = − zn+i+1

n + i + 1

∣∣∣∣
∞

1

=
1

n + i + 1
. (3.20)

One can reproduce the result of Eq. (3.20) without having to split the integral
over z into two parts. Instead one performs the chiral expansion of the integrand in
the original integral H of Eq. (3.14) and interchanges summation and integration.
Since the result only contains terms analytic in small parameters, but H in most
cases also contains nonanalytic terms, this does not reproduce the chiral expansion
of H. The resulting series contains the same coefficients as the expansion of R,
except that the integrals Ri are replaced by integrals of the type

Ji =

∫ 1

0

dz zn+i. (3.21)

1In the following we use the phrase that integrals satisfy the Ward identities, by which we mean
that expressions containing these integrals satisfy the Ward identities.

2Since the infrared regularization actually also describes a renormalization procedure, the term
infrared renormalization is used in the following.
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Again performing an analytic continuation the integrals Ji are given by

Ji =
zn+i+1

n + i + 1

∣∣∣∣
1

0

=
1

n + i + 1
. (3.22)

Comparing Eqs. (3.20) and (3.22) one sees that the two results agree. The infrared
regular part of the integral H can therefore be obtained by reducing H to an integral
over Schwinger or Feynman parameters, expanding the resulting expression in small
quantities and interchanging summation and integration.

As an example consider the integral

HπN(0,−p) = i

∫
dnk

(2π)n

1

[k2 −M2 + i0+][(k − p)2 −m2 + i0+]
. (3.23)

To apply the reformulated version of IR renormalization we combine the two prop-
agators using Eq. (3.12), and perform the integration over the loop momentum k,
resulting in

HπN(0,−p) = − 1

(4π)n/2
Γ(2− n/2)

∫ 1

0

dz [C(z)](n/2)−2 , (3.24)

where C(z) = m2z2 − (p2 − m2)(1 − z)z + M2(1 − z) − i0+. We now expand

[C(z)](n/2)−2 in p2 −m2 and M2 and interchange summation and integration. The
chiral expansion of the infrared regular part R is then given by

R = −mn−4Γ(2− n/2)

(4π)n/2(n− 3)

[
1− p2 −m2

2m2
+

(n− 6) (p2 −m2)
2

4m4(n− 5)
+

(n− 3)M2

2m2(n− 5)
+ · · ·

]
.

(3.25)
which coincides with the expansion of R given in Ref. [BL 99].

In the original formulation the extension of infrared renormalization beyond one-
loop diagrams of the one-nucleon sector of BChPT is not straightforward, as it is not
obvious which of the Schwinger or Feynman parameter integrals needs to be divided
into two distinct parts. Such a problem does not occur in the new formulation which
can be applied to multi-loop diagrams [SGS 04b] and diagrams containing additional
degrees of freedom [SGS 05].

In both formulations R and I contain additional divergences not present in the
original integral H. These divergences, Radd/ε and Iadd/ε, respectively, with ε = n−4

2
,

are generated by the splitting of the z integration in the original formulation, or
equivalently by the interchange of summation and integration in the reformulated
version. Since these additional divergences do not appear in H, they have to cancel
in the sum of I + R = H. This means that

Radd

ε
= −Iadd

ε
. (3.26)
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3.3 Renormalization

The ε expansion of H is given by

H =
HUV

ε
+ H0 +O(ε)

=
HUV

ε
+

Iadd

ε
+

Radd

ε
+ Ĩ + R̄, (3.27)

where HUV /ε denotes the ultraviolet divergence of H, H0 refers to the terms propor-
tional to ε0, and we have explicitly shown the additional divergences in the second
line. The renormalized expression Hr of the integral H is defined as its finite infrared
singular term,

Hr = Ĩ , (3.28)

which satisfies the power counting since all terms violating it are contained in R.
One of the fundamental properties used in the construction of the effective La-
grangian is the invariance under symmetries of the underlying theory. It is therefore
of utmost importance that these symmetries are not violated at any step in the
calculations. We now show that the definition of the renormalized integral Hr of
Eq. (3.28) satisfies this requirement. The original integral H is obtained from a
chirally symmetric Lagrangian using dimensional regularization, which preserves all
symmetries. Therefore expressions containing H satisfy the Ward identities; and
in particular their ε expansions satisfy the Ward identities order by order. As ex-
plained above, R satisfies the Ward identities separately from I. This also means
that the Ward identities are satisfied order by order in the ε expansion of R and I,
respectively. Therefore the identification of the renormalized integral Hr as Hr = Ĩ
does not violate any symmetry constraints. Since the sum of additional divergences
cancels, the subtraction term to arrive at Eq. (3.28) is given by

R̃ =
HUV

ε
+ R̄. (3.29)

With Eq. (3.26) and the definition of Eq. (3.29) we can write

H = Ĩ + R̃. (3.30)



Chapter 4

Axial, induced pseudoscalar, and
pion-nucleon form factors

The electroweak form factors are sets of functions that are used to parameterize
the structure of the nucleon as seen by the electromagnetic and the weak probes.
While a wealth of data and theoretical predictions exist for the electromagnetic
form factors (see, e.g., [Gao 03, FW 03, HWJ 04] and references therein), the nu-
cleon form factors of the isovector axial-vector current, the axial form factor GA(q2)
and, in particular, the induced pseudoscalar form factor GP (q2), are not as well-
known (see, e.g., [BEM 02, GF 04] for a review). However, there are ongoing efforts
to increase our understanding of these form factors. Chiral perturbation theory as
the low-energy effective theory of the Standard Model allows for model-independent
calculations of these form factors, and calculations in HBChPT can be found in
Refs. [BKM 92, Ber+ 94, Fea+ 97, Ber+ 98]. In this chapter the axial, the induced
pseudoscalar, and the pion nucleon form factors of the nucleon are calculated in
manifestly Lorentz-invariant ChPT up to and including order O(q4) using infrared
renormalization. In addition the a1 meson is included as an explicit degree of free-
dom, which resums certain higher-order contributions and results in an improved
description of the experimental data of the axial form factor.

4.1 Definition and properties of the form factors

The axial and induced pseudoscalar form factors are defined via the matrix element
of the isovector axial-vector current. In QCD the three components of this current
are defined as

Aµ,a(x) ≡ q̄(x)γµγ5
τa

2
q(x), q =

(
u
d

)
, a = 1, 2, 3. (4.1)

The operators Aµ,a(x) are hermitian,

Aµ,a†(x) = Aµ,a(x), (4.2)

and obey the following equal-time commutation relations with the vector charges:

[Qa
V (t), Aµ,b(t, ~x)] = iεabcAµ,c(t, ~x). (4.3)

23



24 Axial, induced pseudoscalar, and pion-nucleon form factors

Under parity the operators Aµ,a(x) transform as

Aµ,a(x)
P7→ −Aa

µ(x̃), x̃µ = xµ, (4.4)

while their behavior under charge conjugation is given by

Aµ,a(x)
C7→ Aµ,a(x), a = 1, 3,

Aµ,2(x)
C7→ −Aµ,2(x). (4.5)

The isovector axial-vector operators also obey the partially conserved axial-vector
current (PCAC) relation,

∂µA
µ,a = iq̄γ5{τa

2
,M}q, (4.6)

where M = diag(mu, md) is the quark mass matrix.
Assuming isospin symmetry, mu = md = m̂, the most general parametrization

of the isovector axial-vector current evaluated between one-nucleon states in terms
of axial-vector covariants is given by

〈N(p′)|Aµ,a(0)|N(p)〉 = ū(p′)
[
γµγ5GA(q2) +

qµ

2mN

γ5GP (q2)

]
τa

2
u(p), (4.7)

where qµ = p′µ − pµ is the momentum transfer and mN denotes the nucleon mass.
GA(q2) is called the axial form factor and GP (q2) is the induced pseudoscalar form
factor. From the Hermiticity of Eq. (4.2) we find that GA and GP are real for
space-like momenta (q2 ≤ 0). In the case of perfect isospin symmetry the strong
interactions are invariant under G conjugation, which is a combination of charge
conjugation C and a rotation by π about the 2 axis in isospin space (charge symmetry
operation),

G = C exp(iπQ2
V ). (4.8)

The presence of a third, so-called second-class structure [Wei 58] of the type iσµνqν

γ5GT (q2) in the charged transition would indicate a violation of G conjugation.
As there seems to be no clear empirical evidence for such a contribution [Wil 00,
Min+ 02] GT (q2) is not considered in the following.

Compared to the electromagnetic form factors the axial form factor GA(q2) is not
as well known. The value of GA at zero momentum transfer is defined as the axial-
vector coupling constant gA and is quite precisely determined from neutron beta
decay. The q2 dependence of the axial form factor can be obtained either through
neutrino scattering or pion electroproduction (see [BEM 02] and references therein).
The induced pseudoscalar form factor GP (q2) is even less known than GA(q2). It
has been investigated in ordinary and radiative muon capture as well as pion elec-
troproduction. Analogous to the axial-vector coupling constant gA, the induced
pseudoscalar coupling constant is defined through gP = mµ

2mN
GP (q2 = −0.88m2

µ),

where q2 = −0.88 m2
µ corresponds to muon capture kinematics and the additional

factor mµ

2mN
stems from a different convention used in muon capture. For a com-

prehensive review on the experimental and theoretical situation concerning GP (q2)
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see for example Ref. [GF 04]. A discrepancy between the results in ordinary and
radiative muon capture has recently been addressed in [Cla+ 06]. Theoretical ap-
proaches to the axial and induced pseudoscalar form factors include the early current
algebra and PCAC calculations [AG 66, NS 62, SYT 67], various quark model (see,
e.g., [TW 83, HE 85, Bof+ 02, Mer+ 02, MQS 02, Kho+ 04, Sil+ 05]) and lattice
calculations [Liu+ 94, Liu+ 95]. For a recent discussion on extracting the axial
form factor in the timelike region from p̄ + n → π− + `− + `+ (` = e or µ) see
Ref. [Ada+ 06].

Similar to the isovector axial-vector current the nucleon matrix element of the
pseudoscalar density P a(x) = iq̄(x)γ5τ

aq(x) can be parameterized as

m̂〈N(p′)|P a(0)|N(p)〉 =
M2

πFπ

M2
π − q2

GπN(q2)iū(p′)γ5τ
au(p), (4.9)

where Mπ is the pion mass and Fπ the pion decay constant. Equation (4.9) de-
fines the form factor GπN(q2) in terms of the QCD operator m̂P a(x). The operator
m̂P a(x)/(M2

πFπ) serves as an interpolating pion field and thus GπN(q2) is also re-
ferred to as the pion-nucleon form factor for this specific choice of the interpolating
pion field [BKM 95]. Analogous to the axial-vector and pseudoscalar coupling con-
stants, one defines the value of GπN(q2) evaluated at q2 = M2

π as the pion-nucleon
coupling constant gπN .

The PCAC relation, Eq. (4.6), relates the three form factors GA, GP , and GπN ,

2mNGA(q2) +
q2

2mN

GP (q2) = 2
M2

πFπ

M2
π − q2

GπN(q2), (4.10)

and this relation serves as an important check for the calculations of the three form
factors.

4.2 Results without explicit axial-vector mesons

The Lagrangians required for the calculation of the form factors are given in Chap-
ter 2. To couple to an external axial-vector source one needs to set aµ = τaaa

µ/2 in
the corresponding expressions, while the quark masses are contained in the external
scalar source s. For example, the pion covariant derivative DµU with a coupling to
an external axial-vector field only is given by

DµU = ∂µU − iaµU − iUaµ .

4.2.1 Axial form factor GA(q2)

The axial form factor GA(q2) only receives contributions from the one-particle-
irreducible diagrams of Fig. 4.1. The unrenormalized result reads
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1 3 1 1 1 1

1 1 1 1 2 1 1 2

Figure 4.1: One-particle-irreducible diagrams contributing to the nucleon matrix
element of the isovector axial-vector current.

GA0(q
2) = gA + 4M2d16 − d22q

2 − gA

F 2
Iπ + 2

gA

F 2
M2IπN(m2

N)

+8
gA

F 2
mN

{
c4

[
M2IπN(m2

N)− I
(00)
πN (m2

N)
]
− c3I

(00)
πN (m2

N)
}

− g3
A

4F 2

[
Iπ − 4m2

NI
(p)
πN(m2

N) + 4m2
N(n− 2)I

(00)
πNN(q2)

+16m4
NI

(PP )
πNN (q2) + 4m2

N tI
(qq)
πNN(q2)

]
. (4.11)

The definition of the integrals can be found in App. B. To renormalize the expression
for GA(q2) we multiply Eq. (4.11) by the nucleon wave function renormalization
constant Z [BL 99],

Z = 1− 9g2
AM2

32π2F 2

[
1

3
+ ln

(
M

m

)]
+

9g2
AM3

64πF 2m
, (4.12)

and replace the integrals with their infrared singular parts.
The axial-vector coupling constant gA is defined as gA = GA(q2 = 0) = 1.2695(29)

[Yao+ 06]. Besides experimental and theoretical efforts such as quark model cal-
culations, gA has been the aim of several lattice QCD studies (see, e.g., [Oht+ 03,
Sas+ 03, Kha+ 05, Edw+ 06]), from which the value at the physical pion mass can
be determined using a chiral extrapolation. We obtain for the quark-mass expansion
of gA

gA = gA + g
(1)
A M2 + g

(2)
A M2 ln

(
M

m

)
+ g

(3)
A M3 +O(M4), (4.13)

with

g
(1)
A = 4d16 − g3

A

16π2F 2
,

g
(2)
A = − gA

8π2F 2
(1 + 2g2

A) ,

g
(3)
A =

gA

8πF 2m
(1 + g2

A)− gA

6πF 2
(c3 − 2c4), (4.14)

where all coefficients are understood as IR renormalized parameters. These results
agree with the chiral coefficients obtained in HBChPT [KM 99, BM 06] as well as
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the IR calculation of Ref. [AF 07]. It is worth noting that an agreement for the

algebraic expression of the analytic term g
(1)
A cannot be expected in general. For

example, when expressed in terms of the renormalized couplings of the extended
on-mass-shell (EOMS) renormalization scheme of [Fuc+ 03a], the g

(1)
A coefficient is

given by [AF 07]

4dEOMS
16 − gA

16π2F 2
(2 + 3g2

A) +
c1gAm

4π2F 2
(4− g2

A).

The difference between the two expressions is due to the fact that also the expressions
for renormalized LECs differ in the various renormalization schemes. For a similar
discussion regarding the chiral expansion of the nucleon mass, see [Fuc+ 03a]. It
was pointed out in [KM 99] that the chiral expansion of Eq. (4.13) does not converge
well, as the term proportional to M3 gives a correction of the order of 30%. Neither
gA nor d16 have been reliably determined in the IR renormalization scheme, so we

do not attempt to determine the size of g
(1)
A . To get an estimate for the size of g

(2)
A

and g
(3)
A we use the three values gA = {1.0, 1.1, 1.2}. Together with the constants

c3 = −4.2m−1
N and c4 = 2.3m−1

N [BL 01] we obtain

g
(2)
A M2 ln

(
M

m

)
= {0.17, 0.21, 0.27}, (4.15)

g
(3)
A M3 = {0.19, 0.21, 0.23}, (4.16)

which compared to the leading order term gA gives

g
(2)
A M2 ln

(
M
m

)

gA

= {17%, 19%, 21%}, (4.17)

g
(3)
A M3

gA

= {19%, 19%, 19%}. (4.18)

While the corrections found here are not as large as the ones in Ref. [KM 99], one
still sees that the convergence of gA is slow. In Ref. [BM 06] the leading nonanalytic
contributions to gA at the two-loop level have been considered, which, however, are
not unusually large at the physical value of the pion mass.

The axial form factor can be written as

GA(q2) = gA +
1

6
gA 〈r2

A〉 q2 +
g3

A

4F 2
H(q2), (4.19)

where 〈r2
A〉 is the axial mean-square radius and H(q2) contains loop contributions

and satisfies H(0) = H ′(0) = 0. The LECs d16 and d22 are thus absorbed in the axial-
vector coupling constant gA and the axial mean-square radius 〈r2

A〉. The numerical
contribution of H(q2) for the low-energy region we are interested in is negligible.
This can be understood by expanding H in a Taylor series in q2. Such an expansion
generates powers of q2/m2 where the individual coefficients have a chiral expansion
similar to Eq. (4.13) and H(q2) is at least of order (q2/m2)

2
.
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For the analysis of experimental data, GA(q2) is conventionally parameterized
using a dipole form as

GA(q2) =
gA

(1− q2

M2
A
)2

, (4.20)

where the so-called axial mass MA is related to the axial root-mean-square radius
by 〈r2

A〉
1
2 = 2

√
3/MA. The global average for the axial mass extracted from neutrino

scattering experiments given in Ref. [Lie+ 99] is

MA = (1.026± 0.021) GeV, (4.21)

whereas a recent analysis [BBA 03] taking account of updated expressions for the
vector form factors finds a slightly smaller value

MA = (1.001± 0.020) GeV. (4.22)

On the other hand, smaller values of (0.95 ± 0.03) GeV and (0.96 ± 0.03) GeV
have been obtained in [KLN 06] as world averages from quasielastic scattering and
(1.12 ± 0.03) GeV from single pion neutrinoproduction. Finally, the most recent
result extracted from quasielastic νµn → µ−p in oxygen nuclei reported by the K2K
Collaboration, MA = (1.20± 0.12) GeV, is considerably larger [Gra+ 06].

The extraction of the axial mean-square radius from charged pion electroproduc-
tion at threshold is motivated by current algebra results and the PCAC hypothesis
(see, e.g., [Gel 64, AD 68]). The most recent result for the reaction p(e, e′π+)n has
been obtained at MAMI at an invariant mass of W = 1125 MeV (corresponding to
a pion center-of-mass momentum of |~q∗| = 112 MeV) and photon four-momentum
transfers of −k2 = 0.117, 0.195 and 0.273 GeV2 [Lie+ 99]. Using an effective-
Lagrangian model an axial mass of

M̄A = (1.077± 0.039) GeV

was extracted, where the bar is used to distinguish the result from the neutrino
scattering value. In the meantime, the experiment has been repeated including an
additional value of −k2 = 0.058 GeV2 [Bau 04] and is currently being analyzed. The
global average from several pion electroproduction experiments is given by [BEM 02]

M̄A = (1.068± 0.017) GeV. (4.23)

It can be seen that the values of Eqs. (4.21) and (4.22) for the neutrino scattering
experiments are smaller than that of Eq. (4.23) for the pion electroproduction exper-
iments. The discrepancy was explained in heavy baryon chiral perturbation theory
[BKM 92]. It was shown that at order O(q3) pion loop contributions modify the
k2 dependence of the electric dipole amplitude from which M̄A is extracted. These
contributions result in a change of

∆MA = 0.056 GeV, (4.24)

bringing the neutrino scattering and pion electroproduction results for the axial
mass into agreement.
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Figure 4.2: The axial form factor GA in manifestly Lorentz-invariant ChPT at
O(q4). Full line: result in infrared renormalization with parameters fitted to re-
produce the axial mean-square radius corresponding to the dipole parametrization
with MA = 1.026 GeV (dashed line). The dotted and dashed-dotted lines refer to
dipole parameterizations with MA = 0.95 GeV and MA = 1.20 GeV, respectively.
The experimental values are taken from [BEM 02].

Using the convention Q2 = −q2 the result for the axial form factor GA(q2) in
the momentum transfer region 0 GeV2 ≤ Q2 ≤ 0.4 GeV2 is shown in Fig. 4.2. The
parameters have been determined such as to reproduce the axial mean-square radius
corresponding to the dipole parametrization with MA = 1.026 GeV (dashed line).
The dotted and dashed-dotted lines refer to dipole parameterizations with MA =
0.95 GeV and MA = 1.20 GeV, respectively. As anticipated, the loop contributions
from H(q2) are small and the result does not produce enough curvature to describe
the data for momentum transfers Q2 ≥ 0.1 GeV2. The situation is reminiscent of the
electromagnetic case [KM 01, FGS 04] where ChPT at O(q4) also fails to describe
the form factors beyond Q2 ≥ 0.1 GeV2.

4.2.2 Induced pseudoscalar form factor

The one-particle-irreducible diagrams of Fig. 4.1 also contribute to the induced
pseudoscalar form factor GP (q2),

Girr
P (q2) = 4m2

Nd22 + 8m4
N

g3
A

F 2
I

(qq)
πNN(q2) . (4.25)
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Figure 4.3: Pion pole graph of the isovector axial-vector current.

2 4 2

Figure 4.4: Diagrams contributing to the coupling of the isovector axial-vector cur-
rent to a pion up to order O(q4).

Furthermore, GP (q2) receives contributions from the pion pole graph of Fig. 4.3. It
consists of three building blocks: The coupling of the external axial source to the
pion, the pion propagator, and the πN vertex, respectively. We consider each part
separately.

The renormalized coupling of the external axial source to a pion up to order
O(q4) is given by

εA · qFπδij, (4.26)

where the diagrams in Fig. 4.4 have been taken into account and the renormalized
pion decay constant reads

Fπ = F

[
1 +

M2

F 2
lr4 −

M2

8π2F 2
ln

(
M

m

)
+O(M4)

]
. (4.27)

We have used the pion wave function renormalization constant

Zπ = 1− 2M2

F 2

[
lr4 +

1

24π2

(
R− ln

(
M

m

))]
, (4.28)

with lr4 the renormalized coupling of Eq. (2.26) and R = 2
n−4

+ γE − 1− ln(4π).
The renormalized pion propagator is obtained by simply replacing the lowest-

order pion mass M by the expression for the physical mass Mπ up to order O(q4),

M2
π = M2 + Σ(M2

π) = M2

[
1 +

2M2

F 2

(
lr3 +

1

32π2
ln

(
M

m

))]
. (4.29)

The πN vertex evaluated between on-mass-shell nucleon states up to order O(q4)
receives contributions from the diagrams in Fig. 4.5 and the unrenormalized result
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Figure 4.5: Diagrams contributing to the pion-nucleon vertex up to order O(q4).

for a pion with isospin index i is given by

Γ(q2)γ5τi =

(
−gA

F
mN + 2

M2

F
mN(d18 − 2d16) +

gA

3F 2
mNIπ − 2

gA

F 3
M2mNIπN(m2

N)

−8
gA

F 2
m2

N

{
c4

[
M2IπN(m2

N)− I
(00)
πN (m2

N)
]
− c3I

(00)
πN (m2

N)
}

+
g3

A

4F 3
mN

[
Iπ + 4mM2INN(q2) + 4m2

NM2IπNN(q2)
])

γ5τi . (4.30)

To find the renormalized vertex one multiplies with Z
√

Zπ and replaces the integrals
with their infrared singular parts.

However, the renormalized result should not be confused with the pion-nucleon
form factor GπN(q2) of Eq. (4.9). In general, the pion-nucleon vertex depends on
the choice of the field variables in the (effective) Lagrangian. In the present case,
the pion-nucleon vertex is only an auxiliary quantity, whereas the “fundamental”
quantity (entering chiral Ward identities) is the matrix element of the pseudoscalar
density. Only at q2 = M2

π , we expect the same coupling strength, since both
m̂P a(x)/(M2

πFπ) and the field Φi of Eq. (2.18) serve as interpolating pion fields.
One can therefore determine the quark-mass expansion of the pion-nucleon coupling
constant gπN = GπN(M2) from Eq. (4.30). After renormalization we obtain

gπN = gπN + g
(1)
πNM2 + g

(2)
πNM2 ln

(
M

m

)
+ g

(3)
πNM3 +O(M4) , (4.31)

with

gπN =
gAm

F
,

g
(1)
πN = −gA

lr4m

F 3
− 4gA

c1

F
+

2(2d16 − d18)m

F
− g3

A

m

16π2F 3
,

g
(2)
πN = −g3

A

m

4π2F 3
,

g
(3)
πN = gA

4 + g2
A

32πF 3
− gA

(c3 − 2c4)m

6πF 3
, (4.32)
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where all coefficients are understood as IR renormalized parameters. These results
agree with the chiral coefficients obtained in [BL 01]. In the chiral limit, Eq. (4.31)
satisfies the Goldberger-Treiman relation gπN = gAm/F [GT 58a, GT 58b, Nam 60].
The numerical violation of the Goldberger-Treiman relation as expressed in the so-
called Goldberger-Treiman discrepancy [Pag 69],

∆ = 1− mNgA

FπgπN

, (4.33)

is at the percent level, ∆ = (2.44+0.89
−0.51) % for mN = (mp + mn)/2 = 938.92 MeV,

gA = 1.2695(29), Fπ = 92.42(26) MeV, and gπN = 13.21+0.11
−0.05 [Sch+ 01]. Using

different values for the pion-nucleon coupling constant such as gπN = 13.0 ± 0.1
[STS 93], gπN = 13.3±0.1 [ELT 02], and gπN = 13.15±0.01 [Arn+ 06] results in the
GT discrepancies ∆ = (0.79±0.84) %, ∆ = (3.03±0.81) %, and ∆ = (1.922±0.363)
%, respectively. The chiral expansions of gA etc. may be used to relate the parameter
d18 to ∆ [BL 01],

∆ = −2d18M
2

gA

+O(M4). (4.34)

Note that ∆ of Eq. (4.33) and ∆GT of [BL 01, Sch+ 01] are related by ∆GT =
∆/(1−∆). In particular, the leading order of the quark-mass expansions of ∆ and
∆GT is the same.

The induced pseudoscalar form factor GP (q2) is obtained by combining Eqs. (4.25),
(4.27), (4.29) and the renormalized expression for Eq. (4.30). With the help of Eqs.
(4.33) and (4.34) it can entirely be written in terms of known physical quantities as
[BKM 94]

GP (q2) = −4
mNFπgπN

q2 −M2
π

− 2

3
m2

NgA〈r2
A〉+O(q2). (4.35)

The 1/(q2−M2
π) behavior of GP is not in conflict with the book-keeping of a calcu-

lation at chiral order O(q4). Since the external axial-vector field aµ counts as O(q),
and the definition of the matrix element contains a momentum (p′ − p)µ and the
Dirac matrix γ5, the contribution to the induced pseudoscalar form factor from a
diagram with order D is of order D − 3. Therefore diagrams of order O(q) give a
contribution of order O(q−2) to GP . The terms that have been neglected in the form
factor GP are of order M2, q2/m2 and higher.

Using the above values for mN , gA, Fπ as well as gπN = 13.21+0.11
−0.05, MA =

(1.026 ± 0.021) GeV, M = Mπ+ = 139.57 MeV and mµ = 105.66 MeV [Yao+ 06]
we obtain for the induced pseudoscalar coupling

gP = 8.29+0.24
−0.13 ± 0.52, (4.36)

which is in agreement with the heavy-baryon results 8.44 ± 0.23 [BKM 94] and
8.21± 0.09 [Fea+ 97], once the differences in the coupling constants used are taken
in consideration. The first error given in Eq. (4.36) stems only from the empirical
uncertainties in the quantities of Eq. (4.35). As an attempt to estimate the error
originating in the truncation of the chiral expansion in the baryonic sector we assign
a relative error of 0.5k, where k denotes the difference between the order that has
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Figure 4.6: The induced pseudoscalar form factor GP in manifestly Lorentz-invariant
ChPT at O(q4).

been neglected and the leading order at which a non-vanishing result appears. Such
a (conservative) error is motivated by, e. g., the analysis of the individual terms
of Eq. (4.13) as well as the determination of the LECs ci at O(q2) and to one-
loop accuracy O(q3) in the heavy-baryon framework [BKM 97]. For gP we have
thus added a truncation error of 0.52. Experimentally, gP can be determined from
ordinary and radiative muon capture (for a review see, e.g., [GF 04]). The average
over the recent ordinary muon capture results is given by [GF 04]

gOMC
P = 10.5± 1.8, (4.37)

while the radiative muon capture experiment performed at TRIUMF gives [Cla+ 06]

gRMC
P = 10.6± 1.1. (4.38)

Both these values are larger than the result of Eq. (4.36), but still consistent at
the level of 1-1.5 standard deviations. It should also be noted that value of gP as
extracted from ordinary and radiative muon capture on liquid helium depends on
the ortho-para transition rate in intermediate pµp molecules. A recent measurement
of this rate yielded a significantly larger value than previously used, which results in
an average value of gP = 5.6± 4.1 when reanalyzing earlier experiments [Cla+ 06].
Clearly, further efforts are needed to determine gP .

Figure 4.6 shows our result for GP (q2) in the momentum transfer region−0.2 GeV2

≤ Q2 ≤ 0.2 GeV2. One can clearly see the dominant pion pole contribution at
q2 ≈ M2

π which is also supported by the experimental results of [Cho+ 93].

4.2.3 Pion-nucleon form factor

Using Eq. (4.10) allows one to also determine the pion-nucleon form factor GπN(q2)
in terms of the results for GA(q2) and GP (q2). When expressed in terms of physical
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quantities, it has the particularly simple form

GπN(q2) =
mNgA

Fπ

+ gπN∆
q2

M2
π

+O(q4). (4.39)

We have explicitly verified that the results agree with a direct calculation of GπN(q2)
in terms of a coupling to an external pseudoscalar source. There are two types of
contributions, a contact term and a pion pole diagram. The contact contribution to
the pion-nucleon form factor is given by

Gcont
πN (q2) = −2mN

q2 −M2
π

Fπ

d18, (4.40)

while the pion pole diagram can be evaluated using the renormalized expressions for
the pion-nucleon vertex of Eq. (4.30), the pion propagator, and the expression for
the coupling of an external pseudoscalar source to a pion,

iM2
πFπ. (4.41)

Denoting the renormalized pion-nucleon vertex by Γr(q2)γ5τi the pion-nucleon form
factor is given by

GπN(q2) = −2mN
q2 −M2

π

Fπ

d18 − Γr(q2). (4.42)

Noting that Γr(q2) = −gπN + O(q4), replacing d18 with the help of Eq. (4.34) and
using Eq. (4.33) one reproduces the result of Eq. (4.39). Observe that, with our
definition in terms of QCD bilinears, the pion-nucleon form factor is, in general,
not proportional to the axial form factor. The relation GπN(q2) = mNGA(q2)/Fπ

which is sometimes used in PCAC applications implies a pion-pole dominance for
GP (q2) of the form GP (q2) = 4m2

NGA(q2)/(M2
π − q2). However, as can be seen from

Eq. (4.39), there are deviations at O(q2) from such a complete pion-pole dominance
assumption.

The difference between GπN(q2 = M2
π) and GπN(q2 = 0) is entirely given in

terms of the GT discrepancy [BKM 95],

GπN(M2
π)−GπN(0) = gπN∆. (4.43)

Parameterizing the form factor in terms of a monopole,

Gmono
πN (q2) = gπN

Λ2 −M2
π

Λ2 − q2
, (4.44)

Eq. (4.43) translates into a mass parameter Λ = 894 MeV for ∆ = 2.44 %.

4.3 Inclusion of axial-vector mesons

The situation for the axial form factor GA(q2) is similar to the electromagnetic
case, where standard ChPT can only describe the form factors for small values of
momentum transfer as well. It was shown that the inclusion of the ρ, ω and φ mesons
improves the description of the experimental data [KM 01, SGS 05]. Motivated by
this success we include an axial-vector meson into the theory to resum higher-order
contributions.
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4.3.1 Lagrangian and power counting

In order to include axial-vector mesons as explicit degrees of freedom we consider
the vector-field formulation of [Eck+ 89] in which the a1(1260) meson is represented
by Aµ = Aa

µτ
a. Under chiral transformations Aµ transforms as

Aµ
G7→ K(VL, VR, U)AµK(VL, VR, U), (4.45)

with the compensator K(VL, VR, U) defined in Eq. (2.29). Aµ is counted as O(q0).
It is convenient to define the field strength tensor

Aµν = ∇µAν −∇νAµ, (4.46)

which, due to the covariant derivative

∇µAν = ∂µAν + [Γµ,Aν ], (4.47)

is a quantity of order O(q1). Under parity transformations Aµ behaves as

Aµ(x)
P7→ −Aµ(x̃), x̃µ = xµ, (4.48)

while the charge conjugation behavior is given by

Aµ
C7→ AT

µ . (4.49)

Together with the properties of the chiral building blocks given in Chapter 2 the
most general Lagrangian containing the axial-vector meson can be constructed. For
the mesonic sector the coupling to pions and external fields starts at order O(q3)
and the complete list of terms can be found in [Eck+ 89]. The only term relevant
for the calculation of the form factors is given by

L(3)
πA =

fA

4
Tr(AµνF

µν
− ). (4.50)

Due to Lorentz invariance and the transformation properties of the building blocks
no Lagrangian at order O(q4) can be constructed that satisfies all requirements.

The coupling of the axial-vector meson to the nucleon field starts at order O(q0).
Since we are only interested in terms that do not contain any additional fields besides
the axial-vector meson and the nucleon, the corresponding Lagrangian reads

L(0)
NA =

ga1

2
Ψ̄γµγ5AµΨ. (4.51)

A calculation up to order O(q4) would in principle also require the Lagrangian of
orderO(q). The only term that can be constructed without violating any symmetries
has the form

L(1)
NA ∼ iεµνρσ

[
Ψ̄AµνγρDσΨ−DσΨ̄AµνγρΨ

]
. (4.52)

However, using εµνρσγρ = −1
2
(γ5γ

σσµν + σµνγ5γ
σ) and the equation of motion for

the nucleon field one can show that this term only starts to contribute at higher
order. Therefore there is no coupling of the axial-vector meson to the nucleon at
order O(q1).

In addition to the usual power counting rules we count the axial-vector meson
propagator as order O(q0), vertices from L(3)

πA as order O(q3) and vertices from L(0)
AN

as order O(q0), respectively [Fuc+ 03b].



36 Axial, induced pseudoscalar, and pion-nucleon form factors

0

3

Figure 4.7: Diagram containing an axial-vector meson (double line) contributing to
the form factors GA and GP .

0 1 0 0 2 0

Figure 4.8: Diagrams containing an axial-vector meson (double line) that vanish in
infrared renormalization.

4.3.2 Results

The contributions of the axial-vector meson to the form factors GA and GP up to and
including order O(q4) stem from the diagram in Fig. 4.7. The diagrams in Fig. 4.8
are of orderO(q3) andO(q4), respectively, and are expected to contribute to the form
factors as well. However, loop diagrams with internal axial-vector meson lines that
do not contain internal pion lines vanish in the infrared renormalization employed
in this work. Therefore the diagrams of Fig. 4.8 do not explicitly contribute to the
form factors GA(q2) and GP (q2). With the Lagrangians of Eqs. (4.50) and (4.51)
the axial form factor receives the contribution

GAV M
A (q2) = −fAga1

q2

q2 −M2
a1

, (4.53)

while the result for the induced pseudoscalar form factor reads

GAV M
P (t) = 4m2

NfAga1

1

q2 −M2
a1

. (4.54)

The Lagrangians for the axial-vector meson contain two new LECs, fA and ga1 ,
respectively. However, we find that they only appear through the combination
fAga1 , effectively leaving only one unknown LEC. Performing a fit to the data of
GA(q2) in the momentum region 0 GeV2 ≤ Q2 ≤ 0.4 GeV2, using Ma1 = 1230 MeV
[Yao+ 06], the product of the coupling constants is determined to be

fAga1 ≈ 8.70. (4.55)
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Figure 4.9: The axial form factor GA in manifestly Lorentz-invariant ChPT at O(q4)
including the axial-vector meson a1 explicitly. Full line: result in infrared renormal-
ization, dashed line: dipole parametrization. The experimental values are taken
from [BEM 02].

Figure 4.9 shows our fitted result for the axial form factor GA(q2) at order O(q4)
in the momentum region 0 GeV2 ≤ Q2 ≤ 0.4 GeV2 with the a1 meson included as an
explicit degree of freedom. As was expected from phenomenological considerations,
the description of the data has improved for momentum transfers Q2 & 0.1 GeV2.
We would like to stress again that in a strict chiral expansion up to order O(q4) the
results with and without axial vector mesons do not differ from each other. The
improved description of the data in the case with the explicit axial-vector meson
is the result of a resummation of certain higher-order terms. While the choice of
which additional degree of freedom to include compared to the standard calculation
is completely phenomenological, once this choice has been made there exists a sys-
tematic framework in which to calculate the corresponding contributions as well as
higher-order corrections.

It can be seen from Eq. (4.53) that in our formalism the axial-vector meson does
not contribute to the axial-vector coupling constant gA. The pion-nucleon vertex also
remains unchanged at the given order, while the axial mean-square radius receives
a contribution. The values for the LECs d16 and d18 therefore do not change, while
d22 can be determined from the new expression for the axial radius using the value
of Eq. (4.55) for the combination of coupling constants. In Fig. 4.10 we show the
result for GP (q2) in the momentum transfer region −0.2 GeV2 ≤ Q2 ≤ 0.2 GeV2.
Also shown for comparison is the result without the explicit axial-vector meson.
One sees that the contribution of the a1 to GP (q2) for these momentum transfers is
rather small and that GP (q2) is still dominated by the pion pole diagrams.
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Figure 4.10: The induced pseudoscalar form factor GP in manifestly Lorentz-
invariant ChPT at O(q4) including the axial-vector meson a1 explicitly. Full line:
result with axial-vector meson, dashed line: result without axial-vector meson.

The form factors GA and GP are related to the pion-nucleon form factor via
Eq. (4.10). For the contributions of the axial-vector meson we find

2mNGAV M
A (q2) +

q2

2mN

GAV M
P (q2) = 0 , (4.56)

so that the pion-nucleon form factor is not modified by the inclusion of the a1 meson.



Chapter 5

Infrared renormalization of
two-loop integrals

Chapter 3 discusses the infrared renormalization of one-loop integrals. In the follow-
ing the extension to two-loop integrals contributing to the nucleon mass is described
in detail. It is shown that the renormalization can be performed while preserving all
relevant symmetries, in particular chiral symmetry, and that renormalized diagrams
respect the same power counting rules as in the one-loop sector.

5.1 Infrared renormalization and dimensional

counting

At the one-loop level an integral H is written as

H = I + R, (5.1)

where I is the infrared singular part and R the infrared regular part, respectively.
The chiral expansion of R can be obtained by expanding the integrand of H and
interchanging summation and integration [SGS 04a].

Within the framework of dimensional regularization, the dimensional counting
analysis of Ref. [GJT 94] provides a method to obtain expansions of loop integrals in
small parameters. This method is described in detail in Appendix C. Here we show
how the infrared regular and infrared singular parts of the integral H are related to
the different terms obtained from this method. Using dimensional counting, H is
written as

H = F1 + F2. (5.2)

For F1 we simply expand the integrand in M and interchange summation and in-
tegration. F2 is obtained by rescaling the integration variable k 7→ M

m
k and then

expanding the integrand with subsequent interchange of summation and integration.
The method of obtaining F1 is the same as the one used to determine the expansion
of the infrared-regular part R. It follows that

F1 =
∑

n

Rn = R, (5.3)

39
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(a) (b) (c) (d)

Figure 5.1: Two-loop diagram with corresponding subdiagram and counterterm
diagram.

while F2 gives the chiral expansion of the infrared singular term I,

F2 =
∑

n

In, (5.4)

where Rn and In are the terms in the chiral expansion of the infrared regular and
infrared singular parts, respectively. It should be noted that the expansion of I does
not always converge in the entire low-energy region [BL 99]. For the integrals con-
sidered in the calculation of the nucleon mass, however, this is not the case and the
expansion of I converges. The identification of F1 and F2 with the infrared regular
and infrared singular parts, respectively, is used below to show that the renormal-
ization process in the two-loop sector does not violate the considered symmetries.

5.2 Renormalization of two-loop integrals

We give a brief description of the general renormalization procedure for two-loop
integrals before presenting details of the IR renormalization. The discussion follows
Ref. [Col 84].

At the two-loop level integrals not only contain overall UV divergences, but can
also contain subdivergences for the case where one integration momentum is fixed
while the other one goes to infinity. As an example consider the two-loop diagram
of Fig. 5.1 (a). It contains one-loop subdiagrams, shown in Fig. 5.1 (b). The
renormalization of subdiagrams requires vertices as shown in Fig. 5.1 (c), which are
of order ~. At order ~2 these vertices appear in so-called counterterm diagrams as
the one shown in Fig. 5.1 (d). When the sum of the original diagram and the one-
loop counterterm diagrams, Fig. 5.1 (a) and twice the contribution from Fig. 5.1 (d),
respectively, is considered, the remaining divergence is local and can be absorbed
by counterterms. In order to renormalize a two-loop diagram one therefore has to
take into account all corresponding one-loop counterterm diagrams.

We distinguish two general types of two-loop integrals. The first type can be
directly written as the product of two one-loop integrals, while this decomposition
is not possible for the second type.
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5.3 Infrared renormalization of products of one-

loop integrals

Consider the product of two one-loop integrals,

H = H1H2. (5.5)

H is a two-loop integral and the result of a dimensional counting analysis reads (see
App. C.2)

H = F1 + F2 + F3 + F4, (5.6)

where F1, F2 +F3, and F4 satisfy the Ward identities separately due to different an-
alytic structures, i.e. different overall powers of M in n dimensions. Using Eq. (5.1),
H can also be expressed as

H = I1I2 + I1R2 + R1I2 + R1R2, (5.7)

where again I1I2, I1R2 + R1I2, and R1R2 satisfy the Ward identities individually.
To renormalize the integral H we need to add the contributions of (renormalized)

counterterm integrals. The vertex used in the counterterm integral is determined by
standard IR renormalization of a one-loop subintegral. In a one-loop calculation we
do not have to consider terms proportional to ε for the subtraction terms, since at the
end of the calculation the limit ε → 4 is taken. At the two-loop level, however, the
subtraction terms are multiplied with terms proportional to ε−1 from the second loop
integration. Therefore the choice whether or not to include the terms proportional
to ε in one-loop subtraction terms results in different finite contributions in the two-
loop integrals. In addition to the UV divergences and the terms proportional to ε0

we choose the subtraction terms for one-loop integrals to contain all positive powers
of ε,

R̃ =
HUV

ε
+ R̃0 + εR̃1 + · · · . (5.8)

This choice is crucial for the preservation of the relevant symmetries as is discussed
in the following. H contains two subintegrals, H1 and H2. The expressions for the
unrenormalized counterterm integrals then read

−R̃1H2 − R̃2H1. (5.9)

The Hi are one-loop integrals from which we would subtract the term R̃i in a one-loop
calculation, excluding the additional divergences. However, the term R̃j multiplying
Hi contains terms with positive powers of ε, so that in the product of R̃j and Ri we
get finite terms from the additional divergences in Ri. These would not be removed
if we chose the subtraction term to be R̃jR̃i. Instead we define the subtraction term
for the product R̃jHi to be

−R̃jRi +
HUV

j Radd
i

ε2
+ R̃0

j

Radd
i

ε
, (5.10)
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i.e. we subtract all finite terms stemming from the additional divergences in Ri

but do not subtract the additional divergences themselves. This is analogous to the
one-loop sector, where we do not subtract the additional divergences in the infrared
regular part either (see Eqs. (3.27) and (3.29)).

We now show that this renormalization procedure for the counterterm integrals
does not violate the Ward identities. We know that the subtraction terms S for
one-loop integrals do not violate the Ward identities and result in a modification of
the coupling constants and fields in the Lagrangian. The counterterm integrals are
then calculated with the help of this new Lagrangian which means that the term

−S H (5.11)

also respects all Ward identities. H is a one-loop integral and Eq. (5.11) can be
written as

−S I − S R (5.12)

where −S I and −S R satisfy the Ward identities separately. In particular, the
Ward identities are satisfied term by term in an expansion in ε for S I and S R,
respectively. The expansion for S I is given by

S I =

(
Sdiv

ε
+ Sfin

)(
Iadd

ε
+ Ifin

)
=

SdivIadd

ε2
+

1

ε

[
SdivIfin + SfinIadd

]
+ · · · .

(5.13)
Suppose we choose the finite part of the counterterm to vanish,1

Sfin = 0.

In this case we can see that the term proportional to ε−1 is given by

1

ε
Sdiv Ifin. (5.14)

It has to satisfy the Ward identities since for this choice of S it is the only term pro-
portional to ε−1 in the ε expansion of S I. By changing the renormalization scheme
to also include finite terms in the subtraction terms, the product in Eq. (5.14) does
not change, but we obtain the more general expression of Eq. (5.13). Considering
the term proportional to ε−1 and keeping in mind that Eq. (5.14) respects the Ward
identities we now see that

1

ε
Sfin Iadd (5.15)

satisfies the Ward identities separately. Since the additional divergences have to
cancel in the sum of I and R it follows that Iadd = −Radd and

−1

ε
Sfin Radd (5.16)

1In baryonic ChPT this would result in terms violating the power counting. So far we are only
concerned with the symmetries of the theory, which are conserved for Sfin = 0. The issue of power
counting is addressed below.
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does not violate any symmetry constraints. Using the fact that S R respects all
symmetries and choosing the subtraction term S to be R̃j (which only contains UV
divergences),

S = R̃j, Sdiv = HUV
j , Sfin = R̃0

j ,

it follows that

−HUV
j Radd

ε2
− R̃0

j

Radd

ε
(5.17)

satisfies the Ward identities and therefore also our prescription for the subtraction
terms of the counterterm diagrams of Eq. (5.10) satisfies the Ward identities.

Using the above method the sum of the original expression and the renormalized
counterterm integrals gives

H1H2 − R̃1H2 + R̃1R2 − HUV
1 Radd

2

ε2
− R̃0

1

Radd
2

ε
− R̃2H1 + R̃2R1 − Radd

1 HUV
2

ε2

−R̃0
2

Radd
1

ε

= I1I2 + I1R2 + I2R1 + R1R2 − R̃1I2 − HUV
1 Radd

2

ε2
− R̃0

1

Radd
2

ε
− R̃2I1

−Radd
1 HUV

2

ε2
− R̃0

2

Radd
1

ε

= I1I2 + I1(R2 − R̃2) + I2(R1 − R̃1)− HUV
1 Radd

2 + Radd
1 HUV

2

ε2
− R̃0

1

Radd
2

ε

−R̃0
2

Radd
1

ε
+ R1R2 . (5.18)

The difference between Ri and R̃i is only given by the additional divergences Radd
i /ε,

resulting in
(

Ĩ1 +
Iadd
1

ε

)(
Ĩ2 +

Iadd
2

ε

)
+

(
Ĩ1 +

Iadd
1

ε

)
Radd

2

ε
+

(
Ĩ2 +

Iadd
2

ε

)
Radd

1

ε

−HUV
1 Radd

2 + Radd
1 HUV

2

ε2
− R̃0

1

Radd
2

ε
− R̃0

2

Radd
1

ε
+ R1R2 . (5.19)

Using Iadd
i = −Radd

i we obtain

Ĩ1Ĩ2− Iadd
1 Iadd

2

ε2
− HUV

1 Radd
2 + Radd

1 HUV
2

ε2
− R̃0

1

Radd
2

ε
− R̃0

2

Radd
1

ε
+R1R2 +O(ε). (5.20)

Expanding R1R2 in ε and simplifying the resulting expression gives

Ĩ1Ĩ2− Iadd
1 Iadd

2

ε2
+

Radd
1 Radd

2

ε2
+

HUV
1 HUV

2

ε2
+

HUV
1 R̃0

2 + R̃0
1H

UV
2

ε
+(R1R2)

0+O(ε), (5.21)

where (R1R2)
0 stands for the terms proportional to ε0 in the product R1R2. Using

again Iadd
i = −Radd

i we see that all terms containing the additional divergences
vanish,

= Ĩ1Ĩ2 +
HUV

1 HUV
2

ε2
+

HUV
1 R̃0

2 + R̃0
1H

UV
2

ε
+ (R1R2)

0 +O(ε) .

(5.22)
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The term R1R2 satisfies the Ward identities, in particular each term in the ε ex-
pansion of R1R2 does so individually. This means that we can subtract the finite
part of R1R2 by a counterterm. The terms proportional to ε−2 and ε−1 stem from
the UV divergences in H1 and H2. These terms also satisfy the Ward identities
individually and are absorbed in counterterms. As desired, the renormalized result
for the product of two one-loop integrals including the counterterm integrals is then
simply the product of the renormalized one-loop integrals,

(H1H2)
r = Ĩ1Ĩ2. (5.23)

Besides respecting all symmetries the renormalization prescription must also
result in a proper power counting for renormalized integrals. The chiral order of a
product of two integrals is the sum of the individual orders. For a one-loop integral
the infrared singular part Ĩ satisfies the power counting. Therefore the result of
Eq. (5.23) also satisfies power counting.

5.4 Infrared renormalization of two-loop integrals

relevant to the nucleon mass calculation

In this section we describe the renormalization procedure for two-loop integrals that
do not directly factorize into the product of two one-loop integrals. We follow the
general method presented in Ref. [SGS 04b], but give more details. After show-
ing how the proper renormalization of two-loop integrals and the corresponding
counterterm integrals preserves the underlying symmetries, we describe a simpli-
fied formalism to arrive at the same results while greatly reducing the calculational
difficulties.

5.4.1 General method

Denote a general two-loop integral contributing to the self-energy by H,

H =

∫∫
dnk1d

nk2

(2π)2n

1

AaBbCcDdEe
, (5.24)

where

A = k2
1 −M2 + i0+,

B = k2
2 −M2 + i0+,

C = k2
1 + 2p · k1 + i0+,

D = k2
2 + 2p · k2 + i0+,

E = k2
1 + 2p · k1 + 2k1 · k2 + 2p · k2 + k2

2 + i0+. (5.25)

Using a dimensional counting analysis we can write H as

H = F1 + F2 + F3 + F4. (5.26)
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F1 is obtained by simply expanding the integrand in M and interchanging summa-
tion and integration. For F2 we rescale the first loop momentum k1 by

k1 7→ M

m
k1, (5.27)

expand the resulting integrand in M and interchange summation and integration.
F3 is obtained analogously to F2, only that instead of k1 the second loop momentum
k2 is rescaled,

k2 7→ M

m
k2. (5.28)

Finally F4 is defined as the result from simultaneously rescaling both loop momenta,

k1 7→ M

m
k1, k2 7→ M

m
k2, (5.29)

and expanding the integrand with subsequent interchange of summation and inte-
gration. F1, F2 + F3, and F4 separately satisfy the Ward identities due to different
overall factors of M . This is analogous to the one-loop sector, where the infrared
singular and infrared regular parts separately satisfy the Ward identities, since the
infrared singular part is nonanalytic in small quantities for noninteger n, while the
infrared regular term is analytic. As in the one-loop case the interchange of sum-
mation and integration generates additional divergences not present in H in each
of the terms F1, F2 + F3, and F4. Again, these additional divergences cancel in the
sum of all terms.

In addition to the two-loop integral we also need to determine the corresponding
subintegrals. To identify the first subintegral we consider the k1 integration in H,

Hsub1 =

∫
dnk1

(2π)n

1

AaCcEe
. (5.30)

This is a one-loop integral which is renormalized using “standard” infrared renor-
malization. The infrared regular part Rsub1 of this integral is obtained by expanding
the integrand in M and interchanging summation and integration. The only term
in Eq. (5.30) depending on M is A. Symbolically we write

Rsub1 =
∑ ∫

dnk1

(2π)n

1

AaCcEe
, (5.31)

where underlined expressions are understood as an expansion in M . Rsub1 contains

additional divergences, and we define R̃sub1 as Rsub1 without these divergences,2

R̃sub1 = Rsub1 −
Radd

sub1

ε
. (5.32)

As in the definition of Eq. (3.27), R̃sub1 again contains all terms of positive power of

ε. Since Hsub1 is a standard one-loop integral, R̃sub1 will satisfy the Ward identities
and can be absorbed in counterterms of the Lagrangian.

2Note that for the integrals of interest here, the UV divergence is included in the infrared regular
part R.



46 Infrared renormalization of two-loop integrals

Using these counterterms as a vertex we obtain a counterterm integral of the
form

HCT1 = −
∫

dnk2

(2π)n
R̃sub1

1

BbDd
. (5.33)

HCT1 is generated by a Lagrangian that is consistent with the considered symmetries.
Therefore, HCT1 satisfies the Ward identities. Inserting Eqs. (5.31) and (5.32) we
rewrite HCT1 as

HCT1 = −
∫

dnk2

(2π)n

∑∫
dnk1

(2π)n

1

AaBbCCDdEe
+

∫
dnk2

(2π)n

Radd
sub1

ε

1

BbDd
. (5.34)

Equation (5.34) still needs to be renormalized. After the k1 integration has been
performed, Eq. (5.34) is a one-loop integral and standard infrared renormalization
can be used. To obtain the infrared singular part ICT1 we rescale k2 7→ M

m
k2, expand

in M , and interchange summation and integration. Symbolically we write

ICT1 = −
∑ ∫

dnk2

(2π)n

∑∫
dnk1

(2π)n

1

AaBbCCDdEe
+

∑ ∫
dnk2

(2π)n
ε−1Radd

sub1

1

BbDd
,

(5.35)
where double-underlined quantities are first rescaled and then expanded. Note that
Radd

sub1
can also depend on k2 through the denominator E in Eq. (5.30). Since ICT1

is obtained from a one-loop integral that satisfies the Ward identities through the
standard infrared renormalization process, it will itself satisfy the Ward identities.
The infrared renormalized expression for the counterterm integral,

ĨCT1 = ICT1 −
Iadd
CT1

ε
, (5.36)

then also satisfies the Ward identities. Note that Iadd
CT1

itself contains terms pro-
portional to 1

ε
, since it stems from the one-loop counterterm for the subintegral,

but we choose not to include any terms proportional to positive powers of ε. This
means that ε−1Iadd

CT1
only contains terms proportional to ε−2 and ε−1. The expression

for ĨCT1 therefore does not contain any divergent terms stemming from additional
divergences.

We now show how ĨCT1 is related to the term F3 of Eq. (5.26). As explained
above, F3 is obtained by rescaling k2, expanding the resulting integrand and inter-
changing summation and integration. In the above notation this would correspond
to

F3 =
∑ ∫∫

dnk1d
nk2

(2π)2n

1

AaBbCCDdEe
. (5.37)

Comparing with the first term in Eq. (5.35) we see that the integrands in both cases
are expanded in the same way. Therefore, when adding the counterterm diagram
ĨCT1 to H it cancels parts of F3. The difference between ĨCT1 and F3 is that in F3

the terms stemming from the additional divergences Radd
sub1

(including finite terms)
as well as the additional divergences Iadd

CT1
/ε that are proportional to ε−2 and ε−1

are not subtracted. As pointed out above, the original integral H only contains UV
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divergences, therefore the additional divergences cancel in the sum F1+F2+F3+F4.
The terms remaining in the sum ĨCT1 +F3 are the finite contributions stemming from
the additional divergences in Rsub1 . Since in F3 the variable k2 is rescaled before
expanding while the k1 variable remains unchanged, F3 can be considered as a sum
of products of infrared singular and infrared regular terms, which we symbolically
write as

F3 =
∑

R1I2 . (5.38)

In this notation the remaining finite terms are
∑

Radd
1 Iε

2, where ε−1Radd
1 is the ad-

ditional divergence of R1 and Iε
2 is the part of I2 proportional to ε.

The second subdiagram can be calculated analogously, and is related to the term
F2 in Eq. (5.26).

Taking the above considerations into account we obtain for the sum of the original
integral H and the corresponding counterterm integrals

H + ĨCT1 + ĨCT2 = F1 + F2 + F3 + F4 + ĨCT1 + ĨCT2

= F̃1 + F̃4 +
∑

Radd
1 Iε

2 +
∑

Radd
2 Iε

1

= F̃1 + F̃4 −
∑

Iadd
1 Iε

2 −
∑

Iadd
2 Iε

1 , (5.39)

where F̃i indicates that the additional divergences are excluded.
The expression in Eq. (5.39) satisfies the Ward identities since each term in the

sum on the left side of the first line does so individually. F1 separately satisfies
the Ward identities, in particular this is the case for each term in its ε expansion.
This means that we can subtract the finite part of F̃1 by an overall counterterm
without violating the symmetries. Since the remaining UV divergences also satisfy
the Ward identities, absorbing them in an overall counterterm does not violate the
symmetries. The result for the renormalized two-loop diagram is then

Hr = F̃4 −
∑

Iadd
1 Iε

2 −
∑

Iadd
2 Iε

1 . (5.40)

Since all subtractions preserve the symmetries Hr will satisfy the Ward identities.
So far we have subtracted pole parts in the epsilon expansion. Following [BL 99]

we choose to absorb the combination

λ =
1

(4π)2

[
1

n− 4
− 1

2
(log(4π) + Γ′(1) + 1)

]
(5.41)

instead, which is achieved by simply replacing the t’Hooft parameter µ by

µ → µ

(4π)1/2
e

γE−1

2 , (5.42)

where γE = −Γ′(1) (see also App. D).
F4 is obtained by rescaling both k1 and k2 and satisfies the power counting rules.

Since the terms Ii result from the rescaling of ki, the product I1I2 has the same
analytic structure in M as F4, and therefore satisfies the power counting. This
means that also the renormalized integral Hr = F̃4−

∑
Iadd
1 Iε

2−
∑

Iadd
2 Iε

1 obeys the
power counting.
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5.4.2 Simplified method

In the previous subsection we have established the concept of infrared renormal-
ization of two-loop integrals. The procedure outlined above is quite involved when
applied to actual calculations of physical processes. Therefore, we now describe a
simpler method of obtaining the renormalized expression Hr which, however, is only
applicable to integrals with a single small scale. This is the case for the calculation
of the nucleon mass, whereas e.g. the nucleon form factors contain the momentum
transfer as an additional small quantity.

Instead of calculating the subintegrals of the original integral H, consider just the
terms in F4. F4 itself is a sum of two-loop integrals. Each two-loop integral contains
one-loop subintegrals, i.e. only one loop integration is performed while the other one
is kept fixed. These subintegrals contain divergences, resulting in divergent as well
as finite contributions when the second loop integration is performed. In addition
to the subintegral contributions, F4 contains finite parts and additional divergences
originating in the interchange of summation and integration when generating F4.
We can symbolically write F4 as

F4 = F̄4 +
F̄ add,2

4

ε2
+

F̄ add,1
4

ε
+

F Sub1,div
4

ε
F k2

4 +
F Sub2,div

4

ε
F k1

4 . (5.43)

Here, the finite parts of F4 are denoted by F̄4 to distinguish them from F̃4 in
Eq. (5.39). The bar notation is also used for the divergent terms F̄ add,2

4 and F̄ add,1
4

to show that these are not the complete divergent expressions for F4, but only the
additional divergences of order ε−2 and ε−1, respectively. The terms ε−1F Subi,div

4 de-
note the divergences of the subintegral with respect to the integration over ki, while
F

kj

4 stands for the remaining second integration of the counterterm integral. Note
that the divergent part of the first loop integration over ki in general depends on
the second loop momentum kj. This dependance is included in the expression F

kj

4 .
We now show how the different parts in Eq. (5.43) are related to expressions in F2

and F3 and then describe the simplified renormalization method. F4 is obtained from
the original integral H by rescaling k1 and k2, expanding the resulting integrand in
M and interchanging summation and integration. For the denominators of Eq. (5.25)
the rescaling results in

k2
1 −M2 + i0+ 7→

(
M

m

)2

(k2
1 −m2 + i0+),

k2
2 −M2 + i0+ 7→

(
M

m

)2

(k2
2 −m2 + i0+),

k2
1 + 2p · k1 + i0+ 7→

(
M

m

)(
M

m
k2

1 + 2p · k1 + i0+

)
,

k2
2 + 2p · k2 + i0+ 7→

(
M

m

)(
M

m
k2

2 + 2p · k2 + i0+

)
,

k2
1 + 2p · k1 + 2k1 · k2 + 2p · k2 + k2

2 + i0+ 7→(
M

m

)(
M

m
k2

1 + 2p · k1 + 2
M

m
k1 · k2 + 2p · k2 +

M

m
k2

2 + i0+

)
.
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After the interchange of summation and integration one can perform the substitution
ki 7→ m

M
ki to bring the denominators k2

1 −m2 + i0+ and k2
2 −m2 + i0+ back into

the form A and B, respectively. The result can be interpreted as obtained from the
original integral by leaving A and B unchanged and expanding C in k2

1, D in k2
2,

and E in k2
1 + 2k1 · k2 + k2

2, respectively. Symbolically

F4 ∼
∑ ∫∫

dnk1d
nk2

(2π)2n

1

[k2
1 −M2 + i0+]a[k2

2 −M2 + i0+]b[k1
2 + 2p · k1 + i0+]c

× 1

[k2
2 + 2p · k2 + i0+]d[k1

2 + 2p · k1 + 2k1 · k2 + 2p · k2 + k2
2 + i0+]e

,

(5.44)

where we have used the underlined notation to mark terms that we have expanded
in.

The divergent parts of the k1 subintegral stem from the integration region k1 →
∞. They can be generated by further expanding each term in F4 in inverse pow-
ers of k1. This corresponds to an expansion in positive powers of M for the first
denominator and in positive powers of 2p · k2 in the resulting last propagator,

F Sub1,div
4

ε
F k2

4 ∼
∑ ∫∫

dnk2d
nk1

(2π)2n

1

[k2
1 −M2 + i0+]a[k2

2 −M2 + i0+]b

× 1

[k1
2 + 2p · k1 + i0+]c[k2

2 + 2p · k2 + i0+]d

× 1

[k1
2 + 2p · k1 + 2k1 · k2 + 2p · k2 + k2

2 + i0+]e
. (5.45)

We see that the expression for F k2
4 is of the form

F k2
4 ∼

∑∫
dnk2

(2π)n

fµνλ··· k
µ
2 kν

2k
λ
2 · · ·

[k2
2 −M2 + i0+]b[2p · k2 + i0+]d+i1

, (5.46)

where fµνλ··· denotes the coefficients that result from the expansion in Eq. (5.45).
Next we show that F k2

4 is related to terms in F3. F3 is generated from the original
integral H by rescaling k2, expanding the resulting integrand and interchanging
summation and integration. After the substitution k2 7→ m

M
k2 and using the above

notation we write

F3 ∼
∑∫∫

dnk1d
nk2

(2π)2n

1

[k2
1 −M2 + i0+]a[k2

2 −M2 + i0+]b[k2
1 + 2p · k1 + i0+]c

× 1

[k2
2 + 2p · k2 + i0+]d[k2

1 + 2p · k1 + 2k1 · k2 + 2p · k2 + k2
2 + i0+]e

∼
∑∫∫

dnk1d
nk2

(2π)2n

[k2
2]

j4 [2k1 · k2]
j5

[k2
1 + i0+]a+j1 [k2

1 + 2p · k1 + i0+]c+e+j2 [k2
2 −M2 + i0+]b

× 1

[2p · k2 + i0+]d+j3
. (5.47)
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We see that F3 is the sum of products of one-loop (tensorial) integrals. As explained
above these products of one-loop integrals are in fact products of infrared singular
and infrared regular parts of integrals (see Eq. (5.38)),

F3 =
∑

R1I2 ,

and the expressions for I2 are given by

I2 ∼
∑ ∫

dnk2

(2π)n

kα
2 kβ

2 kγ
2 · · ·

[k2
2 −M2 + i0+]b[2p · k2 + i0+]d+i2

. (5.48)

Considering the k2 integrals of Eqs. (5.45) and (5.47) one sees that one has ex-
panded in the same quantities. While the ordering of the expansions as well as
the interchanges of summation and integration are different, the two expansions are
equivalent. Therefore, comparing Eqs. (5.46) and (5.48), one finds that for each
term in F k2

4 there is a corresponding term in I2, or symbolically

F k2
4 = I2 . (5.49)

An analogous analysis for the second subintegral gives

F k1
4 = I1 . (5.50)

As a next step we show that the divergences of the F4 subintegrals are related
to the additional divergences of the integrals Ri in F2 and F3. From Eq. (5.44) we
see that the k1 subintegral is given by integrals of the type

F Sub1
4 ∼

∑ ∫
dnk1

(2π)n

1

[k2
1 −M2 + i0+]a[k1

2 + 2p · k1 + i0+]c

× 1

[k1
2 + 2p · k1 + 2k1 · k2 + 2p · k2 + k2

2 + i0+]e

∼
∑ ∫

dnk1

(2π)n

kµ
1 kν

1 · · ·
[k2

1 −M2 + i0+]a[2p · k1 + i0+]c+e+l2
. (5.51)

The infrared regular integrals R1 in Eq. (5.47) read

R1 ∼
∑∫

dnk1

(2π)n

kµ
1 kν

1 · · ·
[k2

1 + i0+]a+m1 [k2
1 + 2p · k1 + i0+]c+e+m2

. (5.52)

F Sub1
4 and R1 can be interpreted as the infrared singular and infrared regular parts

of the auxiliary integrals

h ∼
∑∫

dnk1

(2π)n

kµ
1 kν

1 · · ·
[k2

1 −M2 + i0+]α[k2
1 + 2p·k1 + i0+]β[k2

1 + 2p·k1 + 2Mp·k2 + i0+]γ
,

(5.53)
respectively. Note the extra factor of M in the last denominator necessary for this
identification. Since h is a “standard” one-loop integral that is only UV divergent,
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the additional divergences in its IR regular part R1 must cancel exactly with the
divergences in its IR singular part F Sub1,div

4 . Therefore,

F Sub1,div
4

ε
= −Radd

1

ε
, (5.54)

and, using Radd
1 = −Iadd

1 , it also follows that

F Sub1,div
4

ε
=

Iadd
1

ε
. (5.55)

Analogously
F Sub2,div

4

ε
= −Radd

2

ε
=

Iadd
2

ε
. (5.56)

Having established the relationship between the terms in F4 and the terms in
F2 and F3 we now describe the renormalization procedure. Our method consists of
treating each two-loop integral contributing to F4 as an independent integral. We
then renormalize each two-loop integral in the M̃S scheme, i.e. we

- determine the divergences in the subintegrals,

- use the divergences as vertices in one-loop counterterm integrals that are added
to F4,

- perform an additional overall subtraction by absorbing all remaining diver-
gences in counterterms,

- replace µ̃ = µ
(4π)1/2 e

γE−1

2 and set µ = m.

The divergences in the subintegrals are given by ε−1F Subi,div
4 . The one-loop counter-

term integrals using these divergences read

−F Sub1,div
4

ε
F k2

4 − F Sub2,div
4

ε
F k1

4 . (5.57)

According to Eqs. (5.49), (5.50), (5.55), and (5.56) this can be written as

−Iadd
2

ε
I1 − Iadd

1

ε
I2 . (5.58)

When added to F4 we obtain

F4 − Iadd
2

ε
I1 − Iadd

1

ε
I2 . (5.59)

Using the notation of Subsec. 5.4.1, we write F4 as the sum of the additional diver-
gences and a remainder F̃4,

F4 =
F add,2

4

ε2
+

F add,1
4

ε
+ F̃4 . (5.60)
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Note that the divergent terms F add,i
4 are not the divergent expressions F̄ add,i

4 of
Eq. (5.43). Performing the ε expansion for the integrals Ii,

Ii = ε−1Iadd
i + I0

i + εIε
i ,

the sum of F4 and the counterterm integrals is given by

F add,2
4

ε2
+

F add,1
4

ε
− 2

Iadd
2 Iadd

1

ε2
− Iadd

1

ε
I0
2 −

Iadd
2

ε
I0
1 + F̃4 − Iadd

1 Iε
2 − Iadd

2 Iε
1 . (5.61)

We now show that the remaining divergences are analytical in M2 and can there-
fore be absorbed by counterterms. Recall that the sum of all additional divergences
has to vanish, since they are not present in the original integral,

0 =
F add,2

1

ε2
+

F add,1
1

ε
+

F add,2
2

ε2
+

F add,1
2

ε
+

F add,2
3

ε2
+

F add,1
3

ε
+

F add,2
4

ε2
+

F add,1
4

ε
. (5.62)

As shown above F2 and F3 are the sums of products of one-loop integrals, so
Eq. (5.62) can be rewritten as

0 =
F add,2

1

ε2
+

F add,1
1

ε
+

Iadd
1 Radd

2

ε2
+

Iadd
1

ε
R0

2 + I0
1

Radd
2

ε
+

Iadd
2 Radd

1

ε2
+

Iadd
2

ε
R0

1

+I0
2

Radd
1

ε
+

F add,2
4

ε2
+

F add,1
4

ε
. (5.63)

Making use of Iadd
i = −Radd

i the sum of all additional divergences takes the form

0 =
F add,2

1

ε2
+

F add,1
1

ε
− Radd

1

ε
R0

2 −
Radd

2

ε
R0

1

−2
Iadd
1 Iadd

2

ε2
− Iadd

1

ε
I0
2 −

Iadd
2

ε
I0
1 +

F add,2
4

ε2
+

F add,1
4

ε
. (5.64)

All terms in F1 for the two-loop integral as well as the infrared regular terms in one-
loop integrals are analytic in M2. Therefore the first line in Eq. (5.64) is analytic
in M2. Since the sum of all terms vanishes the second line also has to be analytic.
This second line, however, comprises exactly the remaining divergences in Eq. (5.61),
which are therefore analytic in M2 and can be subtracted. After these divergences
have been absorbed in counterterms, the resulting expression for the renormalized
contribution of F4 reads

F r
4 = F̃4 −

∑
Iadd
1 Iε

2 −
∑

Iadd
2 Iε

1 , (5.65)

where we have explicitly shown the sums again. Comparing with Eq. (5.40) we
see that our result exactly reproduces the expression for the renormalized original
integral Hr.
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1 1 1 1

Figure 5.2: Two-loop diagram contributing to the nucleon self-energy.

5.4.3 ε-dependent factors

For actual calculations it is often convenient to reduce appearing tensorial integrals
to scalar integrals before performing the dimensional counting analysis as well as the
renormalization. The reduction of the tensorial integrals can result in ε-dependent
factors multiplying the scalar integrals. These change the form of the result of
Eq. (5.40) since additional finite terms can appear. Let the ε-dependent factor be
given by

φ(ε) = φ0 + εφ1 + ε2φ2 + · · · . (5.66)

Consider performing the k1 integration first. Suppose that from the result one can
extract an ε-dependent factor ϕ1(ε), and the subsequently performed k2 integration
leads to another ε-dependent factor, ϕ2(ε), with

φ(ε) = ϕ1(ε) · ϕ2(ε). (5.67)

One can also perform the k2 integration first, which leads to a different factor ϕ̃2(ε),
followed by the k1 integration resulting in a factor ϕ̃1(ε) with

φ(ε) = ϕ̃2(ε) · ϕ̃1(ε) . (5.68)

The terms ϕ1(ε) = ϕ0
1 + εϕ1

1 + ε2ϕ2
1 + · · · and ϕ̃2(ε) = ϕ̃0

2 + εϕ̃1
2 + ε2ϕ̃2

2 + · · · can then
directly be taken into account when determining the divergent contributions from
subintegrals. The result Hr, φ for the renormalized integral φ(ε)H reads

Hr, φ = F̃ φ
4 −ϕ0

1I
add
1

(
ϕ2

2I
add
2 + ϕ1

2I
0
2 + ϕ0

2I
ε
2

)−ϕ̃0
2I

add
2

(
ϕ̃2

1I
add
1 + ϕ̃1

1I
0
1 + ϕ̃0

1I
ε
1

)
, (5.69)

where F̃ φ
4 denotes the finite terms in φ(ε) F4, and I0

i , ϕ0
1 and ϕ̃0

2 are the ε-independent
terms in Ii, ϕ1 and ϕ̃2, respectively. Our simplified method still holds provided the
ε-dependent factors are taken into account.

As an example consider the diagram of Fig. 5.2. Ignoring constant factors, one
can show that in a calculation up to order O(q6) the nucleon mass only receives
contributions from

γµ(/p−m)γα(/p + m)γν(/p−m)γβ

∫∫
dn+2k1 dn+2k2

(2π)2n+4

gαβgµν

ABCDE
, (5.70)

where the denominators are given in Eq. (5.25). One would also obtain the contri-
bution of Eq. (5.70) if one considered a diagram with fictitious particles as shown
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(a)

k1

k2

β

ν

α

µ

k2

k1

(b)

β

ν

α

(c)

k2

ν µ

Figure 5.3: Two-loop diagram and diagrams corresponding to k1 and subsequent
k2 integrations. The diamond-shaped vertex corresponds to the result of the k1

integration.

in Fig. 5.3 (a), with Feynman rules given by

k
µ ν gµν

k2 −M2 + i0+
,

p + k
/p−m

k2 + 2p · k + i0+
,

p + k
/p + m

k2 + 2p · k + i0+
,

µ

γµ ,

µ

γµ .

The subintegral corresponding to performing the k1 integration first is shown in
Fig. 5.3 (b). With the Feynman rules above it is proportional to

(n− 3)
(
4m2γν − 4mpν

)
, (5.71)

so that we can identify ϕ1(ε) = n − 3 = 1 + 2ε. The subsequent k2 integration
corresponds to the diagram of Fig. 5.3 (c), where the diamond-shaped vertex is
given by the result of the k1 integration. One finds that the term proportional to pν

only contributes to higher orders and can be ignored. The remaining expression is
proportional to

(n− 3)γµ(/p−m)γνg
µν = −2m(n− 3)(n− 1), (5.72)
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and therefore ϕ2(ε) = n − 1 = 3 + 2ε. On the other hand, considering the k2

integration first leads to an analogous analysis with the results ϕ̃2(ε) = n − 3 =
1 + 2ε = ϕ1(ε) and ϕ̃1(ε) = n− 1 = 3 + 2ε = ϕ2(ε).

In the cases where one cannot identify the individual contributions to φ(ε) from
the integrations of k1 and k2, respectively (this happens for example for tensor
integrals of the type kµ

1 kν
2), one has to perform the dimensional counting analysis

before reducing the tensor integrals.



Chapter 6

Nucleon mass to order O(q6)

In this chapter we calculate the nucleon mass up to order O(q6) using the refor-
mulated infrared renormalization. Besides the evaluation of contact and one-loop
diagrams this includes the analysis of all two-loop diagrams containing pion and
nucleon lines that can be constructed up to this order. To the best of our knowl-
edge this is the first complete two-loop calculation in manifestly Lorentz-invariant
BChPT.

6.1 Nucleon propagator

A one-particle state in the spectrum of a Hamiltonian has the (physical) mass mN

if p2 = m2
N for this one-particle state. The corresponding full propagator SN has a

simple pole at p2 = m2
N . In terms of the bare mass m0 appearing as a parameter in

the free Lagrangian L0 the full propagator of a spin-1/2 particle can be written as

SN(/p) =
1

/p−m0 − Σ(/p,m0) + i0+
, (6.1)

where iΣ(/p,m0) is the sum of all one-particle irreducible self-energy diagrams. The
physical mass is determined by the solution to the equation

S−1
N

∣∣
/p=mN

= [/p−m0 − Σ(/p,m0)]
∣∣
/p=mN

= 0. (6.2)

The self-energy receives contributions from contact terms as well as from loop dia-
grams,

Σ(/p,m0) = Σc + Σloop(/p,m0). (6.3)

With the form of the BChPT Lagrangian given in Chapter 2, Σc for the nucleon is
independent of /p. Inserting Eq. (6.3) into Eq. (6.2) one finds

[/p−m0 − Σc − Σloop(/p,m0)]
∣∣
/p=mN

= 0. (6.4)

In a loop expansion Eq. (6.4) has the perturbative solution

mN = m0 + Σc +O(~). (6.5)

56
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In the above the bare propagator which is used in the calculation of the self-energy
diagrams has been chosen to be

S0
N(/p) =

1

/p−m0 + i0+
. (6.6)

However, one can also choose this propagator to be

S̃0
N(/p) =

1

/p−m0 − Σc + i0+
. (6.7)

This corresponds to including in the free Lagrangian those bilinear terms which
generate the contact term diagrams in the self-energy contribution. The advantage
of this choice is that all self-energy diagrams with contact interaction insertions in
the propagator are summed up automatically. With this choice of the propagator
the self-energy is now given by the sum of loop diagrams only, i. e.

Σ(/p,m0) → Σ̃loop(/p, m̃) , (6.8)

where
m̃ = m0 + Σc . (6.9)

As an additional benefit, when working to two-loop accuracy, one can set /p = m̃ in
the expression of two-loop diagrams, since corrections are at least of order O(~3).
To obtain mN one has to solve the equation

S̃−1
N (mN) = [/p− m̃− Σ̃loop(/p, m̃)]

∣∣∣
/p=mN

= 0 . (6.10)

Inserting the loop expansion for Σ̃loop(/p, m̃),

Σ̃loop(/p, m̃) = ~Σ̃(1)
loop(/p, m̃) + ~2Σ̃

(2)
loop(/p, m̃) + · · · , (6.11)

using the ansatz
mN = m̃ + ~δm1 + ~2δm2 + · · · , (6.12)

and expanding around m̃ we obtain up to the two-loop level

0 = m̃ + ~δm1 + ~2δm2 − m̃− ~Σ̃(1)
loop(m̃ + ~δm1, m̃)− ~2Σ̃

(2)
loop(m̃, m̃)

= ~
[
δm1 − Σ̃

(1)
loop(m̃, m̃)

]
+ ~2

[
δm2 − δm1 Σ̃

(1)′
loop(m̃, m̃)− Σ̃

(2)
loop(m̃, m̃)

]
. (6.13)

The solutions for δm1 and δm2 are given by

δm1 = Σ̃
(1)
loop(m̃, m̃), (6.14)

δm2 = Σ̃
(1)
loop(m̃, m̃)Σ̃

(1)′
loop(m̃, m̃) + Σ̃

(2)
loop(m̃, m̃) . (6.15)

To obtain the nucleon mass up to chiral order O(q6) one needs to determine Σc,
δm1, and δm2 up to that order.

In principle, the nucleon propagator is a 2× 2 matrix in isospin space. For arbi-
trary values of the up and down quark masses the propagator is a diagonal matrix;
since, however, in this work the isospin-symmetric case mu = md is considered, the
masses of proton and neutron are identical and the propagator is proportional to
the unit matrix.
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(a)

1 1

(b)

1 3 + 3 1

(c)

4

1 1

(d)

2

(e)

4

Figure 6.1: One-loop diagrams contributing to the nucleon self-energy up to order
O(q6).

6.2 Contact terms

The contributions to the nucleon mass from contact interactions are given by

Σc = −4c1M
2 − (16e38 + 2e115 + 2e116)M

4 + ĝ1M
6

= −4c1M
2 − ê1M

4 + ĝ1M
6 , (6.16)

where we use the notation ê1 = 16e38 + 2e115 + 2e116 and ĝ1 denotes a linear com-
bination of LECs from the Lagrangian at order O(q6) (see Subsection 2.4.3). As
discussed above we replace the mass in the chiral limit m by

m4 = m− 4c1M
2 − ê1M

4 (6.17)

in the expression for loop integrals. This ensures that all diagrams with contact in-
teraction insertions in the nucleon propagator are automatically taken into account.

6.3 One-loop contributions

The one-loop diagrams contributing to the nucleon mass up to orderO(q6) are shown
in Fig. (6.1). Diagrams (a) and (d) are of order O(q3) and O(q4), respectively, and
already contribute in a one-loop calculation. Diagrams (b) and (c) are of order
O(q5), while the power counting gives D = 6 for diagram (e).

Using dimensional regularization the unrenormalized results for the one-loop
diagrams up to order O(q6) read

Σ1(a) = −3g2
A

4F 2

[
(/p + m)IN + (/p + m)M2IπN(p2) + (p2 −m2)/pI

(p)
πN(p2)

]
,

Σ1(b) = −3gA

F 2
(2d16 − d18)M

2
[
(/p + m)IN + (/p + m)M2IπN(p2)

+(p2 −m2)/pI
(p)
πN(p2)

]
,
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Σ1(c) = −3g2
A

F 4
mM4

[
(l3 − l4)IπN(p2) + l3M

2IππN(0)
]
,

Σ1(d) =
3

F 2

[
(2c1 − c3)M

2Iπ − c2
p2

m2
I(00)
π

]
,

Σ1(e) = − 12

F 2

{
[2(e14 + e19)− e36 + 4e38] Iπ + [e15 + 2e20]

p2

m2
M2I(00)

π

−2e16
p4

m4
I(0000)
π

}
. (6.18)

The integrals Iπ, IπN(p2), . . . are given in App. B. The infrared renormalized expres-
sions, denoted by a superscript r, up to order M6 are given by

Σ r
1(a) = − 3g2

A

32πF 2
M3 − 3g2

A

64π2F 2m

[
2 ln

M

µ
+ 1

]
M4

+
3g2

A

1024π3F 4m2

[
4π2F 2 + 3g2

Am2 + 9g2
Am2 ln

M

µ

]
M5

− g2
A

2048π4F 4m3

[
27π2g2

Am2 + 384π2c1F
2m− 16π2F 2 − 9m2(g2

A − c2m)

+ 3m
[−15g2

Am + 16c1(3m
2 + 16π2F 2) + 3m2(c2 − 8c3)

]
ln

M

µ

− 54m2
(
g2

A − 8c1m + c2m + 4c3m
)
ln2 M

µ

]
M6 ,

Σ r
1(b) = − 3gA

8πF 2
(2d16 − d18) M5 − 3gA

16π2F 2m
(2d16 − d18)

[
2 ln

M

µ
+ 1

]
M6 ,

Σ r
1(c) = − 3g2

A

32πF 4
(3l3 − 2l4)M

5 − 3g2
A

32π2F 4m

[
3l3 − l4 + 2(2l3 − l4) ln

M

µ

]
M6 ,

Σ r
1(d) =

3

128π2F 2

[
c2 + ln

M

µ
(32c1 − 4c2 − 16c3)

]
M4 +

3c1c2

16π2F 2m

[
4 ln

M

µ
− 1

]
M6,

Σ r
1(e) =

M6

96π2F 2
[18(e15 + e20 + e35) + 5e16]

− M6

8π2F 2
ln

M

µ
[24(e14 + e19) + 6(e15 + e20 + e35) + e16 − 12e36 − 48e38] .

(6.19)

Various combinations of fourth-order baryonic LECs appear through the vertex in
diagram (e). To simplify the notation we use

ê1 = 16e38 + 2e115 + 2e116 ,

ê2 = 2e14 + 2e19 − e36 − 4e38 , (6.20)

ê3 = e15 + e20 + e35

for these combinations.
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6.4 Two-loop contributions

The two-loop diagrams relevant for a calculation of the nucleon self-energy up to
order O(q6) are shown in Fig. 6.2. According to the power counting there are further
diagrams at the given order. An example would be diagram 6.2 (c) with one first-
order vertex replaced by a second-order one. As a result of our calculation we find
that these diagrams give vanishing contributions to the nucleon mass up to the order
we are considering.

We again employ dimensional regularization. The unrenormalized expressions
for the diagrams of Fig. 6.2 up to order O(q6) can be reduced to

Σ2(a) = −6g4
A

F 4
π2m3(n− 1)(n− 3)J2(1, 1, 1, 1, 1|n + 2) ,

Σ2(b) =
9g4

A

F 4
mπ2(n− 1)

{
2m2J2(1, 1, 1, 0, 2|n + 2)−M2J2(1, 2, 1, 0, 1|n + 2)

− 4m2M2 [J2(1, 2, 2, 0, 1|n + 2) + J2(1, 1, 2, 0, 2|n + 2)]

−32π2m2 [2J2(1, 2, 1, 0, 3|n + 4) + J2(1, 2, 2, 0, 2|n + 4)]
}

,

Σ2(c) =
1

2

3

F 4
m

{
1

2
J2(1, 1, 0, 0, 0|n)−M2J2(1, 1, 0, 0, 1|n)− J2(1, 0, 0, 0, 1|n)

+ 8π2(n− 1)J2(1, 1, 0, 0, 2|n + 2)− 16π2(M2 − 2m2)J2(1, 2, 0, 0, 2|n + 2)

}
,

Σ2(d) =
24g2

A

F 4

[
32π2m3(n− 1) [2J2(1, 2, 1, 0, 3|n + 4) + J2(1, 2, 2, 0, 2|n + 4)]

+π2mM2 [(n− 1)J2(1, 2, 1, 0, 1|n + 2) + J2(1, 2, 0, 0, 2|n + 2)]
]

,

Σ2(e) = −48g2
A

F 4
π2m2(n− 1)

{
c3

[
J2(1, 1, 0, 0, 2|n + 2)− 64π2m2J2(2, 1, 1, 0, 3|n + 4)

]

+ c4

[
2J2(1, 1, 0, 0, 2|n + 2)− 2M2J2(1, 2, 1, 0, 1|n + 2)

−64π2m2J2(2, 1, 1, 0, 3|n + 4)
]}

,

Σ2(f) =
3g2

A

2F 4
mM4JπN(1, 1|n)JπN(1, 1|n) ,

Σ2(g) =
24g2

A

F 4
π2m2(n− 1) [(n− 2)c4 − c3] JπN(1, 1|n + 2)JπN(1, 1|n + 2) ,

Σ2(h) =
18g2

A

F 4
πm2M2(n− 1)

[c2

n
+ c3 − 2c1

]
JπN(1, 0|n)JπN(1, 2|n + 2)

= −72g2
A

F 4
π2m2M2(n− 1)

[c2

n
+ c3 − 2c1

]
JπN(2, 0|n + 2)JπN(1, 2|n + 2) ,

Σ2(i) = −g2
A

F 4
mM2JπN(1, 0|n)JπN(1, 1|n) ,

Σ2(j) =
1

8

4M2

F 4

[
5c1 − 4

c2

n
− 4c3

]
JπN(1, 0|n)JπN(1, 0|n) ,

Σ2(k) =
1

4

2

F 4

{
3
[c2

n
+ c3 − 2c1

]
M4JπN(1, 0|n)JπN(2, 0|n)

+
[
7
c2

n
+ 7c3 − 8c1

]
M2JπN(1, 0|n)JπN(1, 0|n)

}
,
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Figure 6.2: Two-loop diagrams contributing to the nucleon self-energy up to order
O(q6).
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Σ2(l) =
g2

A

4F 4
mJπN(1, 0|n)

[
4JπN(0, 1|n) + 7M2JπN(1, 1|n) + 3M4JπN(2, 1|n)

]
.

(6.21)

The integrals JπN(a, b|n) and J2(a, b, c, d, e|n) are defined in App. B. Here we have
expressed tensor integrals in terms of scalar integrals in higher dimensions where
convenient (see App. B and also Ref. [Tar 96]).

After performing the infrared renormalization as described in Chapter 5 the
contributions to the nucleon self-energy up to order O(q6) read

Σ r
2(a) = − g4

A

512π3F 4

[
3M5

(
1 + ln

M

µ

)
− M6

48πm

(
5 + 36π2 + 48 ln

M

µ

)]
,

Σ r
2(b) =

g4
A

F 4

[
9

1024π3
M5

(
1 + 3 ln

M

µ

)
− 27

4096π4m
M6

(
1 + 6 ln

M

µ
+ 4 ln2 M

µ

)]
,

Σ r
2(c) =

M6

2048π4F 4m
,

Σ r
2(d) = − g2

A

1536π4F 4m
M6

[
1 + 9π2 − 6 ln

M

µ

]
,

Σ r
2(e) =

g2
A

128π2F 4
M6 [c3 − 2c4] ,

Σ r
2(f) = − 3g2

A

512π2F 4m
M6 ,

Σ r
2(g) =

g2
A

128π2F 4
[c3 − 2c4] M

6 ,

Σ r
2(h) = − 9g2

A

256π4F 4
M6

[
(c3 − 2c1)

(
ln

M

µ
+ 3 ln2 M

µ

)
+

c2

16

(
−1 + ln

M

µ

+12 ln2 M

µ

)]
,

Σ r
2(i) =

g2
A

128π3F 4
ln

M

µ
M5 +

g2
A

256π4F 4m

(
ln

M

µ
+ 2 ln2 M

µ

)
M6 ,

Σ r
2(j) = − M6

128π4F 4

[
(5c1 − c2 − 4c3) ln2 M

µ
+

c2

4
ln

M

µ

]
,

Σ r
2(k) =

M6

512π4F 4

[
(12c1 + c2 − 6c3) ln

M

µ
+ 2(28c1 − 5c2 − 20c3) ln2 M

µ

]
,

Σ r
2(l) = − 17g2

A

1024π3F 4
ln

M

µ
M5 − g2

A

1024π4F 4m

(
13 ln

M

µ
+ 20 ln2 M

µ

)
M6 . (6.22)

6.5 Results and discussion

Combining the contributions from the contact interactions with the one- and two-
loop results we obtain for the nucleon mass up to order O(q6)

mN = m + k1M
2 + k2 M3 + k3M

4 ln
M

µ
+ k4M

4 + k5M
5 ln

M

µ
+ k6M

5
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+ k7M
6 ln2 M

µ
+ k8M

6 ln
M

µ
+ k9M

6 . (6.23)

The coefficients ki are given by

k1 = −4c1 ,

k2 = − 3g2
A

32πF 2
,

k3 = − 3

32π2F 2m

(
g2

A − 8c1m + c2m + 4c3m
)

,

k4 = −ê1 − 3

128π2F 2m

(
2g2

A − c2m
)

,

k5 =
3g2

A

1024π3F 4

(
16g2

A − 3
)

,

k6 =
3g2

A

256π3F 4

[
g2

A +
π2F 2

m2
− 8π2(3l3 − 2l4)− 32π2F 2

gA

(2d16 − d18)

]
,

k7 = − 3

256π4F 4m

[
g2

A − 6c1m + c2m + 4c3m
]

,

k8 = − g4
A

64π4F 4m
− g2

A

1024π4F 4m2

[
384π2F 2c1 + 5m + 192π2m(2l3 − l4)

]

− 3gA

8π2F 2m
[2d16 − d18] +

3

256π4F 4
[2c1 − c3]

+
1

8π2F 2m
[6c1c2 − 12ê2m− 6ê3m− e16m] ,

k9 = ĝ1 − g4
A

24576π4F 4m

(
49 + 288π2

)− 3gA

16π2F 2m
(2d16 − d18)

− g2
A

1536π4F 4m3

[
m2(1 + 18π2)− 12π2F 2 + 144π2m2 (3l3 − l4)

+ 288π2F 2mc1 − 24π2m3 (c3 − 2c4)
]

+
1

6144π4F 4m

[
3− 1152π2F 2c1c2 + 1152π2F 2m ê3 + 320π2F 2me16

]
. (6.24)

The combinations êi of fourth-order baryonic LECs are given in Eq. (6.20), while ĝ1

denotes a combination of LECs from the Lagrangian at order O(q6).
In general, the expressions of the coefficients in the chiral expansion of a physi-

cal quantity differ in various renormalization schemes, since analytic contributions
can be absorbed by redefining LECs. However, this is not possible for the leading
nonanalytic terms, which therefore have to agree in all renormalization schemes.
Comparing our result with the HBChPT calculation of [MB 99], we see that the
expressions for the coefficients k2, k3, and k5 agree as expected. At order O(q6) also
the coefficient k7 has to be the same in all renormalization schemes. Note that, while
k6M

5 and k8M
6 ln M

µ
are nonanalytic in the quark masses, the algebraic form of the

coefficients k6 and k8 are renormalization scheme dependent. This is due to the dif-
ferent treatment of one-loop diagrams. The counterterms for one-loop subdiagrams
depend on the renormalization scheme and produce nonanalytic terms proportional
to M5 and M6 ln M

µ
when used as vertices in counterterm diagrams. We find that
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our result for k6 coincides with the HBChPT calculation of Ref. [MB 99] except for
a term proportional to d28, which, however, does not have a finite contribution for
manifestly-Lorentz invariant renormalization schemes [FMS 98]. Therefore, at order
O(q5) the chiral expansion of the IR renormalized result reproduces the HBChPT
result.

The numerical contributions from higher-order terms cannot be calculated so far,
since most expressions in Eq. (6.24) contain LECs which are not reliably known in
IR renormalization. In order to get an estimate of these contributions we consider
several terms for which the LECs have previously been determined. The coefficient
k5 is free of higher-order LECs and is given in terms of the axial-vector coupling con-
stant gA and the pion decay constant F . While the values for both gA and F should
be taken in the chiral limit, we evaluate k5 using the physical values gA = 1.2695(29)
[Yao+ 06] and Fπ = 92.42(26) MeV. Setting µ = mN , mN = (mp + mn)/2 = 938.92
MeV, and M = Mπ+ = 139.57 MeV we obtain k5M

5 ln(M/mN) = −3.8 MeV. This
amounts to approximately 25% of the leading nonanalytic contribution at one-loop
order, k2M

3. The mesonic LECs appearing in k6 can be found in Ref. [GL 84] and
are given by l3 = 1.4×10−3 and l4 = 3.7×10−3 at the scale µ = mN . The parameter
d18 can be related to the Goldberger-Treiman discrepancy [BL 01] and is given by
d18 = −0.80 GeV−2. The LEC d16, however, is not as reliably determined. In order
to estimate the magnitude of the contribution stemming from k6 we use the central
value from the reaction πN → ππN , d16 = −1.93 GeV−2 [FBM 00, Bea 04]. It
should be noted that the calculation of Ref. [FBM 00] was performed in HBChPT,
and employing the obtained value for d16 in an infrared renormalized expression
therefore only gives an estimate of the size of the corresponding term. The resulting
contribution is k6M

5 = 3.7 MeV and cancels large parts of the nonanalytic term
k5M

5 ln(M/mN). In Ref. [MB 06] the parameter d16 has been determined by a fit
to lattice data. At the scale µ = mN it is given by d16 = 4.11 GeV−2, which does
not agree with the result from the reaction πN → ππN . With this value of d16

we find k6M
5 = −7.6 MeV. The LECs appearing in k7 have been determined in

Ref. [BL 01], and we obtain k7M
6 ln2(M/mN) = 0.3 MeV.

The terms k8 and k9 contain LECs from the fourth order Lagrangian L(4)
πN which

have not been determined. We try to get a very rough estimate of the size of these
contributions by assuming that all these LECs as well as ĝ1 are of natural size, that
means ei ∼ 1 GeV−3 and ĝ1 ∼ 1 GeV−5. We choose the d16 value from πN → ππN
and use the above values for the other LECs. Setting all appearing ei = 0 GeV−3

gives a contribution k8M
6 ln(M/mN) ≈ 10−2 MeV. The choice ei = 5 GeV−3 results

in k8M
6 ln(M/mN) ≈ 0.7 MeV, while ei = −5 GeV−3 gives k8M

6 ln(M/mN) ≈
−0.7 MeV. A similar analysis for the term k9M

6 gives k9M
6 ≈ −2.8 MeV for all

ei = 0 GeV−3 and ĝ1 = 0 GeV−5, while setting ei = 5 GeV−3, ĝ1 = 5 GeV−5 and ei =
−5 GeV−3, ĝ1 = −5 GeV−5 results in k9M

6 ≈ −2.5 MeV and k9M
6 ≈ −3.1 MeV,

respectively. One should note, however, that the numbers obtained here are only
very rough estimates. Choosing e14 = e15 = 5 GeV−3 and e16 = e19 = e20 = e35 =
e36 = e38 = 1 GeV−3, ĝ1 = 1 GeV−5 leads to large cancelations between terms,
resulting in a complete contribution at order O(M6) of about 0.3 MeV. As a check
we also use the value of d16 as obtained in Ref. [MB 06], which results in contributions
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Figure 6.3: Pion mass dependence of the term k5M
5 ln(M/mN) (solid line) for

M < 400 MeV. For comparison also the term k2M
3 (dashed line) is shown.

from k8 that are about a factor 10 larger, while the dependence of k9 on d16 is much
less pronounced. Clearly a more reliable determination of the higher-order LECs is
desirable.

Chiral expansions like Eq. (6.23) play an important role in the extrapolation of
lattice QCD results to physical quark masses, and the nucleon mass is an example
that has been studied in detail (see, e.g., Refs. [PHW 04, BHM 04, LTY 04, Pro+ 06,
MB 06]). In Ref. [PHW 04] such an extrapolation was performed for the nucleon
mass up to order O(q4), while Ref. [MB 06] includes an analysis of the fifth-order
terms. It was shown, as had also been argued in Ref. [Bea 04], that the terms at order
O(q5) play an important role in the chiral extrapolation. As an illustration we con-
sider the leading nonanalytic term at this order, k5M

5 ln(M/mN). Its dependence
on the pion mass is shown in Fig. 6.3 for pion masses below 400 MeV, which is consid-
ered a region where chiral extrapolations are valid (see, e.g., Refs. [Mei 06, DGS 06]).
We see that already at M ≈ 360 MeV the term k5M

5 ln(M/mN) becomes as large
as the leading nonanalytic term at one-loop order, k2M

3, indicating the importance
of the fifth-order terms at unphysical pion masses. Since the contribution at order
O(M6) depends on a number of unknown LECs, we do not attempt to perform a
chiral extrapolation up to this order here, but restrict the discussion on the pion
mass dependence of the term k7M

6 ln2(M/mN). Figure 6.4 shows this dependence
for pion masses below 400 MeV. No errors are given for the LECs c1, c2, and c3 in
Ref. [BL 01]. For an estimate we have assumed the relative errors of these LECs
and of gA to be 20%, and the corresponding error for k7M

6 ln2(M/mN) is shown
in Fig. 6.4. For comparison we also show the nonanalytic term at fourth order,
k3M

4 ln(M/mN). As expected, and in contrast to the fifth-order term, the two-loop
term k7M

6 ln2(M/mN) is smaller than the one-loop contribution k3M
4 ln(M/mN)

in the considered pion mass region. Note that the relative difference in the pion
mass dependence between k5M

5 ln(M/mN) and k2M
3, as well as k7M

6 ln2(M/mN)
and k3M

4 ln(M/mN) is proportional to a factor M2 ln(M/mN), and that on an
absolute scale the differences in the two cases are comparable. We also show the
pion mass dependence of the terms k7M

6 ln2(M/mN) and k3M
4 ln(M/mN) up to

M ≈ 700 MeV, which, however, is beyond the domain that is considered suitable for
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Figure 6.4: Pion mass dependence of the term k7M
6 ln2(M/mN) (solid line) for

M < 400 MeV. The shaded band corresponds to relative errors of 20% in the LECs.
For comparison also the term k3M

4 ln(M/mN) (dashed line) is shown.
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Figure 6.5: Pion mass dependence of the term k7M
6 ln2(M/mN) (solid line) for

M < 700 MeV. The shaded band corresponds to relative errors of 20% in the LECs.
For comparison also the term k3M

4 ln(M/mN) (dashed line) is shown.
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the application of Eq. (6.23). Again the sixth-order term remains much smaller than
the fourth-order one, also at higher pion masses. Since here only one of the terms
at order O(q6) is considered, and the contribution of the analytic term proportional
to M6 can be considerably larger than k7M

6 ln2(M/mN) depending on the values
of the unknown LECs, the above considerations are not reliable predictions for the
behavior of the complete two-loop contributions at unphysical quark masses.

6.6 Nucleon σ term

The Feynman-Hellmann theorem [Hel 33, Fey 39] relates the nucleon mass to the
value of the nucleon scalar form factor at zero momentum transfer, the so-called σ
term (see, e.g., [Rey 74, Pag 75]),

σ(q2 = 0) = M2∂mN

∂M2
. (6.25)

Applying the Feynman-Hellmann theorem to Eq. (6.23), the chiral expansion of σ(0)
is given by

σ(0) = k1M
2 +

3

2
k2M

3 + 2k3M
4 ln

M

µ
+

(
k3

2
+ 2k4

)
M4 +

5

2
k5M

5 ln
M

µ

+
1

2
(k5 + 5k6)M

5 + 3k7M
6 ln2 M

µ
+ (k7 + 3k8)M

6 ln
M

µ
+

(
k8

2
+ 3k9

)
M6.

(6.26)

The first four terms have already been determined in Ref. [BL 99]. To estimate the
contributions of the terms of order O(M5) we use the same values for the LECs as
above, in particular the value of d16 as extracted from the reaction πN → ππN .
The combined contributions at order order O(M5) are

5

2
k5M

5 ln
M

µ
+

1

2
(k5 + 5k6)M

5 ≈ 0.1 MeV. (6.27)

Given the dependence of the order O(M6) nucleon mass contribution on the specific
values of the LECs ei, we do not attempt to evaluate the terms at order O(M6) in
Eq. (6.26).



Chapter 7

Conclusions

In this thesis we have performed calculations in manifestly Lorentz-invariant baryon
chiral perturbation theory beyond order O(q4). With a suitable renormalization
scheme ChPT exhibits a close connection between the chiral and the loop counting.
In infrared renormalization as used in this work, calculations up to chiral order
O(q4) correspond to tree and one-loop diagrams, while at chiral order O(q5) and
O(q6) also two-loop diagrams have to be taken into account. We have used two
approaches to calculate contributions beyond order O(q4).

The first method consists of including additional particles as explicit degrees of
freedom in the effective theory. In the standard formulation of ChPT resonance
contributions are included in the values of the low-energy coupling constants. By
keeping additional particles as explicit degrees of freedom one can resum some of
the contributions that are of higher-order in a strict chiral expansion. Based on
phenomenological observations one chooses those additional degrees of freedom that
are expected to give the most dominant contributions. Infrared renormalization in
its reformulated version then allows for the consistent treatment of diagrams with
these particles as internal lines in addition to pions and nucleons. Once the choice
of particles to include has been made there exists a power counting that determines
which diagrams to consider up to a certain order and which allows for systematic
corrections. As an application we have calculated the axial, induced pseudoscalar,
and pion-nucleon form factors in BChPT up to order O(q4) with and without the
inclusion of the axial-vector meson a1(1260) in Chapter 4. From a calculation up to
and including O(q4) without the a1 meson the axial form factor GA is described by

GA(q2) = gA+ 1
6
gA 〈r2

A〉 q2+
g3

A

4F 2 H(q2), where the loop contributions H(q2) are found
to be negligible. ChPT can neither predict the axial-vector coupling constant gA nor
the mean-square axial radius 〈r2

A〉. Instead, empirical information on these quantities
is used to absorb the relevant LECs d16 and d22 in gA and 〈r2

A〉. As in the case of the
electromagnetic form factors, the BChPT result for GA(q2) up to order O(q4) does
not produce sufficient curvature to describe the available data beyond very small
values of q2. While a comparison to data is possible for the case of the axial form
factor GA(q2), the experimental situation of the induced pseudoscalar form factor
GP is less clear and mainly limited to the value of the induced pseudoscalar coupling
gP . In BChPT GP (q2) is dominated by a pion-pole contribution and is completely

68



69

fixed from O(q−2) up to and including O(q), once the LEC d18 has been expressed
in terms of the Goldberger-Treiman discrepancy. Using gπN = 13.21 for the pion-
nucleon coupling constant, we obtain for the induced pseudoscalar coupling gP =
8.29+0.24

−0.13±0.52. The first error is due to the error of the empirical quantities entering
the expression for gP and the second error represents our estimate for the truncation
in the chiral expansion. Our result is smaller than the average experimental results,
but still within the range of 1-1.5 standard deviations. Also, the experimental
situation on the determination of gP is not entirely clear. The pion-nucleon form
factor is entirely determined in terms of the axial and induced pseudoscalar form
factors. Assuming this pion-nucleon form factor to be proportional to the axial
form factor leads to a restriction for GP which is not supported by the most general
structure of ChPT.

As a next step we have included the a1 meson as an explicit degree of freedom.
While the Lagrangian for the coupling to pions and external fields was already given
in Ref. [Eck+ 89], we have constructed the relevant Lagrangian for the coupling to
the nucleon. At order O(q0) only one term appears, while there is no term allowed
by the symmetries at order O(q1). With these Lagrangians we find three additional
diagrams relevant to the axial and induced pseudoscalar form factors up to order
O(q4). Two of these are loop diagrams without any internal pion lines, which vanish
in infrared renormalization. Therefore only one tree diagram contributes up to this
order, and effectively only one additional coupling constant appears. With a fit of
this coupling constant to the available data the axial form factor GA(q2) is described
well up to momentum transfers −q2 = 0.4 GeV2. The inclusion of the a1 meson has
only a very small effect on the induced pseudoscalar form factor GP (q2), which is
still dominated by the pion-pole contribution. We also find that the axial-vector
meson in our calculation does not contribute to the pion-nucleon form factor.

The method of resumming higher-order contributions by the inclusion of addi-
tional degrees of freedom has to be viewed as a phenomenological approach. In a
strict chiral expansion the results with and without the additional particles com-
pletely agree up to a given order. Having determined the coupling constant of the
axial-vector meson by a fit to the data, the question arises if the obtained value
also leads to a good description of further physical quantities. However, these would
most likely require the calculation of a larger number of diagrams with possibly more
unknown constants. In this thesis the inclusion of additional degrees of freedom has
been used as a method to resum some higher-order contributions to physical quanti-
ties. The applied power counting is only valid in the low-energy region in which also
standard BChPT is applicable. It would be of great interest to obtain a consistent
power counting that also holds at energies of about the ρ meson mass. In that case
the inclusion of the ρ meson should extend the range of applicability of the EFT to
higher energies.

The second method for calculations beyond order O(q4) consists of a system-
atic analysis of higher-order contributions in the standard formulation of BChPT,
which includes the evaluation and renormalization of two-loop diagrams. In Chap-
ter 5 we showed how the infrared renormalization can be performed at the two-loop
level such that renormalized expressions fulfill the relevant Ward identities. The
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proper renormalization of subintegrals and the inclusion of terms proportional to ε
in counterterms play a crucial role. As a next step we presented a simplified method
of how to renormalize the two-loop integrals relevant to the nucleon mass. This
method relies on a dimensional counting analysis. Instead of complete integrals one
only has to consider those terms obtained from rescaling both integration variables.
These F4 terms are themselves two-loop integrals that one renormalizes using the
M̃S prescription. The results agree with the infrared renormalized expressions of the
original integrals. This method simplifies the calculations considerably, especially
since the renormalization of multi-loop integrals using the M̃S scheme is significantly
easier than infrared renormalization.

As an application we calculated the nucleon mass up to and including order
O(q6) in Chapter 6. This is the first complete two-loop calculation in manifestly
Lorentz-invariant baryon chiral perturbation theory. We find that a number of di-
agrams that appear up to order O(q6) only start to contribute at higher orders
beyond the accuracy considered here. Figure 6.2 shows the two-loop diagrams that
are relevant to our analysis. The result of our calculation is the chiral expansion
of the nucleon mass up to order O(q6). At order O(q5) our results agree with the
ones obtained in the heavy-baryon formulation of ChPT [MB 99], while no pre-
vious results at order O(q6) exist. Due to the lack of reliable values for some of
the low-energy constants appearing in the obtained results we can only estimate
the contributions from higher-order terms. As expected the chiral expansion of the
nucleon mass seems to converge well. The combined contributions at order O(q5)
amount to less than 1 MeV. The nonanalytic terms at order O(q6) are also esti-
mated to be smaller than 1 MeV each. The analytic contribution depends on the
values of unknown LECs, and can amount to a few MeV for natural values of these
constants. However, there also exists a combination of natural values for which the
complete contribution at order O(q6) is less than 1 MeV. Since the chiral expansion
of the nucleon mass might be useful for future extrapolations of lattice QCD results,
we have also considered the pion mass dependence of the leading nonanalytic term
at order O(q6) compared to the nonanalytic contribution proportional to M4. As
expected the M6 term remains much smaller up to pion masses of about 700 MeV,
which, however, is already beyond the region of applicability of ChPT. In the future
we plan to perform such an extrapolation with the currently available lattice QCD
results for the nucleon mass. The results for the nucleon mass were used to estimate
higher-order contributions to the nucleon σ term via the Feynman-Hellmann theo-
rem. Due to the dependence of the order O(q6) terms on the values of the unknown
LECs we only determined the contributions to the nucleon σ term at order O(q5).
We find these higher-order terms to be approximately 0.1 MeV.

The analysis at order O(q4) already shows a good convergence behavior for the
chiral expansion of the nucleon mass. There are other quantities though for which
this is not the case. One example is the nucleon axial-vector coupling gA. Since
it does not depend on any small scale besides the pion mass it would be possible
to apply the simplified renormalization procedure introduced in Chapter 5 in a fu-
ture two-loop calculation. Other quantities to consider are the anomalous magnetic
moments of the proton and neutron. While a calculation of form factors or scatter-



71

ing cross sections would in principle also be possible, the introduction of additional
small scales like a momentum transfer complicates the analysis a lot. Also the lack
of reliable values for the LECs at order O(q4) presents a problem for further calcu-
lations at the two-loop level. Some of these parameters, however, will be directly
available from lattice QCD calculations in the future [Wit 07].



Appendix A

Feynman rules

We list the Feynman rules needed for the calculations in this thesis as derived from
the Lagrangians in Chapter 2. For simplicity we give expressions that appear for
special combinations of incoming and outgoing momenta and isospin indices in some
cases. All momenta of the axial source are assumed to be incoming.

A.1 Propagators

/p

i

/p−m + i0+

k

i

k2 −M2 + i0+

k
µ, a ν, b −i

(
gµν − kµkν

M2
a1
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1

k2 −M2
a1

+ i0+
δab
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Appendix B

Definition of integrals

B.1 Integrals at the one-loop level

We define the one-loop integrals appearing in the results of the nucleon form fac-
tors in Chapter 4, as well as in the one-loop contributions to the nucleon mass in
Chapter 6. We employ the notation

P µ = pµ
i + pµ

f , qµ = pµ
f − pµ

i .

Using dimensional regularization [HV 72] the loop integrals with one or two internal
lines are defined as

Iπ = i

∫
dnk

(2π)n

1

k2 −M2 + i0+
,

gµνI(00)
π = i

∫
dnk

(2π)n

kµkν

k2 −M2 + i0+
,

(gµνgρσ+ gµρgνσ+ gµσgνρ)I(0000)
π = i

∫
dnk

(2π)n

kµkνkρkσ

k2 −M2 + i0+
,
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∫
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1
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∫
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1
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,
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1
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pµI
(p)
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∫
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.

For integrals with three internal lines we assume on-shell kinematics, p2
f = p2

i = m2
N ,

IππN(q2)

= i

∫
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1
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,
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IπNN(q2)

= i
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The tensorial loop integrals can be reduced to scalar ones [PV 79] and we obtain
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I
(p)
πN(p2) =

1

2p2

[
Iπ − IN − (p2 −m2 + M2)IπN(p2)

]
,

I
(00)
πN (p2) =

1

2(n− 1)

[
IN + 2M2IπN(p2) +

(p2 −m2 + M2)

p2
I

(p)
πN(p2)

]
,

I
(P )
πNN(q2) =

1

4m2
N − q2

[
IπN(m2

N)− INN(q2)−M2IπNN(q2)
]
,

I
(00)
πNN(q2) =

1

n− 2

{[
IπNN(q2) + I

(P )
πNN(q2)

]
M2 +

1

2
INN(q2)

}
,

I
(PP )
πNN (q2) =

1

(n− 2)(4m2
N − q2)

{[
(n− 1)I

(P )
πNN(q2) + IπNN(q2)

]
M2

−n− 2

2
I

(p)
πN(m2

N)− n− 3

2
INN(q2)

}
,

I
(qq)
πNN(q2) = − 1

(n− 2)q2

{[
I

(P )
πNN(q2)+IπNN(q2)

]
M2+

n− 2

2
I

(p)
πN(m2

N) +
1

2
INN(q2)

}
.

Defining

λ̄ =
mn−4

16π2

{
1

n− 4
− 1

2
[ln(4π)− γE + 1]

}
,

where γE = Γ′(1) is Euler’s constant, and

Ω =
p2 −m2 −M2

2mM
,
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the scalar loop integrals are given by [Fuc+ 03a]

Iπ = 2M2λ̄ +
M2

8π2
ln

(
M

m

)
,

IN = 2m2λ̄,

Iππ(q2) = 2λ̄ +
1

16π2

[
1 + 2 ln

(
M

m

)
+ J (0)

(
q2

M2

)]
,

INN(q2) = 2λ̄ +
1

16π2

[
1 + J (0)

(
q2

m2

)]

IπN(p2) = 2λ̄ +
1

16π2

[
−1 +

p2 −m2 + M2

p2
ln

(
M

m

)
+

2mM

p2
F (Ω)

]
,

where

J (0)(x) =

∫ 1

0

dz ln[1 + x(z2 − z)− i0+]

=





−2− σ ln
(

σ−1
σ+1

)
, x < 0,

−2 + 2
√

4
x
− 1 arccot

(√
4
x
− 1

)
, 0 ≤ x < 4,

−2− σ ln
(

1−σ
1+σ

)− iπσ, 4 < x,

with

σ(x) =

√
1− 4

x
, x /∈ [0, 4],

and

F (Ω) =





√
Ω2 − 1 ln

(−Ω−√Ω2 − 1
)
, Ω ≤ −1,√

1− Ω2 arccos(−Ω), −1 ≤ Ω ≤ 1,√
Ω2 − 1 ln

(
Ω +

√
Ω2 − 1

)− iπ
√

Ω2 − 1, 1 ≤ Ω.

Integrals with three propagators are analyzed numerically using a Schwinger param-
etrization.

For purely mesonic integrals only the terms proportional to λ̄ have to be sub-
tracted. To determine the infrared regular parts R of the scalar loop integrals,
we use the reformulated version of infrared regularization described in Chapter 3.
On-shell-kinematics are assumed for the subtraction terms. Note that we also list
divergent terms, as they might give finite contributions in the expressions for tensor
integrals when multiplied by terms depending on ε = (n− 4)/2,

RN = IN ,

RNN = INN ,

RπN = λ̄

[
2− M2

m2
(1− 8c1m) +

3g2
AM3

16πF 2m

]
− 1

16π2
− M2

32π2m2
(3 + 8c1m)

− 3g2
AM3

512π3F 2m
+O(q4),
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RπNN =
λ̄

m2

[
1 +

q2

6m2
+ 8c1

M2

m
+

3g2
AM3

16πF 2m

]
+

1

32π2m2
− M2

32π2m4
(1− 16c1m)

+
3g2

AM3

256π3F 2m3
+O(q4).

B.2 Integrals at the two-loop level

In addition to the integrals in the previous section, the calculation of the nucleon
mass at the two-loop level requires further integrals. We define the one-loop integral

JπN(a, b|n) =

∫
dnk

(2π)n

1

[k2 −M2 + i0+]a[k2 + 2p · k + i0+]b
.

Note that we have not included a factor i in the definition, since the one-loop
integrals JπN(a, b|n) always appear in the product JπN(a1, b1|n1)JπN(a2, b2|n2).

The two-loop integrals J2(a, b, c, d, e|n) are defined as

J2(a, b, c, d, e|n) =

∫∫
dnk1d

nk2

(2π)2n

1

AaBbCcDdEe
,

where

A = k2
1 −M2 + i0+,

B = k2
2 −M2 + i0+,

C = k2
1 + 2p · k1 + i0+,

D = k2
2 + 2p · k2 + i0+,

E = k2
1 + 2p · k1 + 2k1 · k2 + 2p · k2 + k2

2 + i0+.

The product of two one-loop integrals with the same space-time dimension n can
then be written as

JπN(a1, b1|n)JπN(a2, b2|n) = J2(a1, a2, b1, b2, 0|n).

We do not attempt to evaluate the integrals J2(a, b, c, d, e|n) here. Instead the
expressions for the renormalized integrals relevant to the nucleon mass including
the corresponding counterterm contributions are given in App. D.

Tensorial integrals have been reduced to scalar ones in the same dimension using
methods similar to the one-loop integrals, or the following relations to scalar integrals
in higher dimensions have been used:

Jµ,
2 (a, b, c, d, e|n) =

∫∫
dnk1d

nk2

(2π)2n

kµ
1

AaBbCcDdEe

= −16π2pµ
[
b c J2 (a, b + 1, c + 1, d, e|n + 2) + c d J2 (a, b, c + 1, d + 1, e|n + 2)

+c e J2 (a, b, c + 1, d, e + 1|n + 2) + b e J2 (a, b + 1, c, d, e + 1|n + 2)
]
,
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Jµν,
2 (a, b, c, d, e|n)

=

∫∫
dnk1d

nk2

(2π)2n

kµ
1 kν

1

AaBbCcDdEe

=
(4π)2

2
gµν [b J2(a, b + 1, c, d, e|n + 2) + d J2(a, b, c, d + 1, e|n + 2)

+e J2(a, b, c, d, e + 1|n + 2)] +O(p),

Jµνλ,
2 (a, b, c, d, e|n) =

∫∫
dnk1d

nk2

(2π)2n

kµ
1 kν

1k
λ
1

AaBbCcDdEe

= −(4π)4

2

[
gµνpλ + gµλpν + gνλpµ

]
[b (b + 1) c J2(a, b + 2, c + 1, d, e|n + 4)

+ b (b + 1) e J2(a, b + 2, c, d, e + 1|n + 4)] +O(p3),

Jµ,ν
2 (a, b, c, d, e|n) =

∫∫
dnk1d

nk2

(2π)2n

kµ
1 kν

2

AaBbCcDdEe

= −(4π)2

2
gµν e J2(a, b, c, d, e + 1|n + 2) +O(p),

Jµ,αβ
2 (a, b, c, d, e|n) =

∫∫
dnk1d

nk2

(2π)2n

kµ
1 kα

2 kβ
2

AaBbCcDdEe

= −(4π)2

2
gαβpµ [c J2(a, b, c + 1, d, e|n + 2) + e J2(a, b, c, d, e + 1|n + 2)]

+
(4π)4

2

[
gαβpµ + gµαpβ + gµβpα

]
[a e (e + 1) J2(a + 1, b, c, d, e + 2|n + 4)

+a d e J2(a + 1, b, c, d + 1, e + 1|n + 4)

+c d e J2(a, b, c + 1, d + 1, e + 1|n + 4)

+d e (e + 1) J2(a, b, c, d + 1, e + 2|n + 4)] +O(p3),

Jαβ,µν
2 (a, b, c, d, e|n) =

∫∫
dnk1d

nk2

(2π)2n

kα
1 kβ

1 kµ
2 kν

2

AaBbCcDdEe

=
(4π)4

4

[
gαβgµν + gαµgβν + gανgβµ

]
e (e + 1) J2(a, b, c, d, e + 2|n + 4)

+
(4π)2

4
gαβgµνJ2(a, b, c, d, e|n + 2) +O(p).

Here, O(p) stands for terms proportional to p ρ, where ρ denotes the Lorentz index
corresponding to the integral under consideration. These terms appear in combina-
tion with expressions like (/p−m)γρ(/p + m), resulting in higher-order contributions
to the nucleon mass that are not considered. As an example we show how to obtain
the first of the previous relations. One uses a Schwinger parametrization to rewrite
the scalar integral as

J2(a, b, c, d, e|n) =
1

(2π)2n

∫ 5∏
i=1

dxi
i−αi

Γ[αi]
xαi−1

i

∫∫
dnk1d

nk2 ef(xj ,k1,k2,p,M), (B.1)

where α1 = a, . . . , α5 = e and f(xj, k1, k2, p, M) is a function of the Schwinger
parameters, the loop momenta, the external nucleon momentum and the pion mass.
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Subsequently performing the integrations over the two loop momenta, using

∫
dnk eiAk2−2iB·k = i1−n/2πn/2A−n/2e−iB2/A, (B.2)

leads to

J2(a, b, c, d, e|n) =
i2−nπn

(2π)2n

∫ ∏
dxi

i−αi

Γ[αi]
xαi−1

i A
−n/2
1 A

−n/2
2 eg(xj ,p,M), (B.3)

where A1 and A2 are functions of the Schwinger parameters and g(xj, p,M) is a
function of the Schwinger parameters, the external momentum and the pion mass.
In order to relate the vector integral to scalar integrals one performs similar steps,
writing

Jµ,
2 (a, b, c, d, e|n) =

1

(2π)2n

∫ ∏
dxi

i−αi

Γ[αi]
xαi−1

i

∫∫
dnk1d

nk2 kµ
1 ef(xj ,k1,k2,p,M).

(B.4)
The integration over loop momenta can again be performed, using

∫
dnk kµeiAk2−2iB·k = i1−n/2πn/2BµA−(n+2)/2e−iB2/A, (B.5)

which can be obtained by differentiating Eq. (B.2) with respect to Bµ. The result
reads

Jµ,
2 (a, b, c, d, e|n) = pµ i2−nπn

(2π)2n

∫ ∏
dxi

i−αi

Γ[αi]
xαi−1

i (−x2x3 − x2x5 − x3x4 − x3x5)

A
−(n+2)/2
1 A

−(n+2)/2
2 eg(xj ,p,M). (B.6)

The function g(xj, p, M) and the Ai are the same as the ones appearing in Eq. (B.3).
Including the appropriate factors of 2iπ one can therefore write Eq. (B.6) as the sum
of scalar integrals in n+2 dimensions with different coefficients αi. All other relations
can be obtained analogously.



Appendix C

Dimensional counting analysis

Analytic expressions for two-loop integrals, especially when two mass scales such
as the pion mass M and the nucleon mass in the chiral limit m appear in the
same integral, can be extremely difficult to obtain. Since we are interested in the
chiral expansion of the considered integrals in the present work, we do not have
to find a closed-form solution to the appearing integrals, but can use a method
called dimensional counting analysis [GJT 94] for the evaluation of integrals. A
closely related way of calculating loop integrals is the so-called ”strategy of regions”
[Smi 02]. Here we present an illustration of dimensional counting for one- and two-
loop integrals.

C.1 One-loop integrals

The advantage of dimensional counting analysis for one-loop integrals lies in its
applicability to dimensionally regulated integrals containing several different masses.
Consider integrals with two different mass scales, M and m, where M < m, and
a possible external momentum p with p2 ≈ m2. Dimensional counting provides a
method to reproduce the expansion of the integral for small values of M at fixed
p2 − m2. To that end one rescales the loop momentum k 7→ Mαi k̃, where αi is a
non-negative real number. After extracting an overall factor of M one expands the
integrand in positive powers of M and interchanges summation and integration. The
sum of all possible rescalings with subsequent expansions with nontrivial coefficients
then reproduces the expansion of the result of the original integral.

To be specific, consider the integral

IπN(p2) =
i

(2π)n

∫
dnk

(k2 −M2 + i0+)[(k + p)2 −m2 + i0+]
. (C.1)

It can be evaluated analytically and the result is given in App. B. After rescaling
one obtains

IπN(p2) 7→ i

(2π)n

∫
Mnαidnk̃

[k̃2M2αi −M2 + i0+][k̃2M2αi + 2p · k̃Mαi + p2 −m2 + i0+]
.

(C.2)
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No overall factor of M can be extracted from the second propagator, which is there-
fore expanded in positive powers of M . As a result the integration variable k̃ only ap-
pears in positive powers in the expanded expression of this propagator. If 0 < αi < 1
one can extract the factor M−2αi from the first propagator, which takes the form

1

k̃2 −M2−2αi + i0+
. (C.3)

Expanding in positive powers of M and interchanging summation and integration
one obtains integrals of the type

∫
dnk̃

1

(k̃2 + i0+)j
. (C.4)

Combined with the expansion of the second propagator the resulting coefficients in
the expansion in M are integrals of the type

∫
dnk̃

k̃m

(k̃2 + i0+)j
, (C.5)

which vanish in dimensional regularization. For the case 1 < αi the first propagator
in Eq. (C.2) can be rewritten as

1

M2

1

(k̃2M2αi−2 − 1 + i0+)
. (C.6)

Expanding in M and combining with the expansion of the second propagator one
obtains integrals of the type ∫

dnk̃ k̃j , (C.7)

which, again, vanish in dimensional regularization. The only contributions to IπN(p2)
can therefore stem from αi = 0 and αi = 1. For αi = 0 one obtains

I
(0)
πN(p2) =

i

(2π)n

∞∑
i=0

(
M2

)i
∫

dnk

[k2 + i0+]1+i[(k + p)2 −m2 + i0+]
, (C.8)

while the expression for αi = 1 reads

I
(1)
πN(p2) =

i

(2π)n

∞∑
i=0

(−1)i Mn−2+i

(p2 −m2)1+i

∫
dnk̃(k̃2M + 2p · k̃)i

[k̃2 − 1 + i0+]
. (C.9)

The expansion of IπN(p2) is then given by

IπN(p2) = I
(0)
πN(p2) + I

(1)
πN(p2), (C.10)

which correctly reproduces the result of App. B.
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C.2 Two-loop integrals

While one of the advantages of the dimensional counting method lies in its applicabil-
ity to integrals containing several mass scales, a difficulty arises for the calculation of
the nucleon mass. Since integrals have to be evaluated on-mass-shell, the two small
scales M and p2−m2 are not independent of each other and are comparable in size.
Therefore an expansion in M

p2−m2 does not converge. By the choice of the nucleon

propagator mass to include all contact interaction contributions (see Chapter 6), the
terms p2 −m2 in the propagator can be neglected in two-loop integrals since they
are of higher order in the loop expansion. The two-loop integrals contributing to
the nucleon mass are therefore reduced to integrals with only one small mass scale,
for which an expansion in M can be obtained.

For the extension of the dimensional counting method to two-loop integrals
J2(a, b, c, d, e|n),

J2(a, b, c, d, e|n) =

∫∫
dnk1d

nk2

(2π)2n

1

[k2
1 −M2 + i0+]a[k2

2 −M2 + i0+]b

× 1

[k2
1 + 2p · k1 + i0+]c[k2

2 + 2p · k2 + i0+]d[(k1 + k2)2 + 2p · k1 + 2p · k2 + i0+]e
,

(C.11)

one has to consider all possible combinations of rescaling the integration variables
k1 7→ Mαi k̃1, k2 7→ Mβi k̃2. The expansion of the two-loop integral is then given by

J2(a, b, c, d, e|n) =
∑

αi,βi

Mϕ(αi,βi)fαi,βi
(p2,m2,M, n), (C.12)

where ϕ(αi, βi) is the overall power of M extracted for each rescaling and the func-
tions fαi,βi

(p2,m2,M, n) are the expressions for the integrated expansions. Following
the discussion of the one-loop sector one sees that the only combinations (αi, βi) that
give non-vanishing contributions are (0, 0), (1, 0), (0, 1) and (1, 1). The correspond-
ing contributions are denoted by F1, F2, F3 and F4, respectively, so that a two-loop
integral is given by

J2(a, b, c, d, e|n) = F1 + F2 + F3 + F4. (C.13)

From a technical point of view it is convenient to consider the rescaling k1 7→
(M/m)αi k̃1, k2 7→ (M/m)βi k̃2, since then the integration variables k̃ have dimension
of momenta. This also facilitates the evaluation of certain loop integrals appearing
in the calculation of the nucleon mass.

As an example consider the integral J2(1, 1, 1, 1, 1|n). For (0, 0) the resulting
integrals read

F1 = J
(0,0)
2 (1, 1, 1, 1, 1|n) =

∑
i,j

M2i+2j

∫∫
dnk1d

nk2

(2π)2n

1

[k2
1 + i0+]1+i[k2

2 + i0+]1+j

× 1

[k2
1 + 2p · k1 + i0+][k2

2 + 2p · k2 + i0+][(k1 + k2)2 + 2p · k1 + 2p · k2 + i0+]
.

(C.14)
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While still a two-loop integral that does not directly factorize into the product of
one-loop integrals, the vanishing of the mass scale M simplifies the evaluation of the
integral. The rescaling of only k1 leads to

F2 = J
(1,0)
2 (1, 1, 1, 1, 1|n) =

∑

i,j,l

(−1)j+lMn−3+2i+j+lm3−n−j−l

∫∫
dnk̃1d

nk2

(2π)2n

× (k̃2
1)

j(M
m

k̃2
1 + 2p · k̃1 + 2k̃1 · k2)

l

[k̃2
1 −m2 + i0+][k2

2 + i0+]1+i[2p · k̃1 + i0+]1+i[k2
2 + 2p · k2 + i0+]2+l

,

(C.15)

while the expression for F3 can be obtained by substituting k̃1 7→ k̃2 and k2 7→ k1 in
Eq. (C.15). One sees that the integrals of Eq. (C.15) can be reduced to the product
of tensorial one-loop integrals, which is a considerable simplification compared to
the original integral. The last contribution stems from αi = 1, βi = 1 and reads

F4 = J
(1,1)
2 (1, 1, 1, 1, 1|n) =

∑

i,j,l

(−1)i+j+l

(
M

m

)2n−7+i+j+l ∫∫
dnk̃1d

nk̃2

(2π)2n

1

[k̃2
1 −m2 + i0+][k̃2

2 −m2 + i0+]

× (k̃2
1)

i(k̃2
2)

j(k̃2
1 + 2k̃1 · k̃2 + k̃2

2)
l

[2p · k̃1 + i0+]1+i[2p · k̃2 + i0+]1+j[2p · k̃1 + 2p · k̃2 + i0+]1+l
,

(C.16)

where the integration can be reduced to the evaluation of a set of basis integrals
(see App. D). The sum of all four contributions reproduces the M expansion of the
integral J2(1, 1, 1, 1, 1|n),

J2(1, 1, 1, 1, 1|n) = J
(0,0)
2 (1, 1, 1, 1, 1|n) + J

(1,0)
2 (1, 1, 1, 1, 1|n) + J

(0,1)
2 (1, 1, 1, 1, 1|n)

+J
(1,1)
2 (1, 1, 1, 1, 1|n). (C.17)
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Evaluation of two-loop integrals

As seen in Chapter 5 the calculation of the two-loop integrals relevant to the nucleon
mass reduces to the evaluation of the F4 part of the respective integrals. The F4

parts are sums of tensor integrals, which can be reduced to scalar integrals [PV 79]
of the form

J
(1,1)
2 (a, b, c, d, e|n) =

∫∫
dnk1d

nk2

(2π)2n

1

[k2
1 −m2 + i0+]a[k2

2 −m2 + i0+]b[2p · k1 + i0+]c

× 1

[2p · k2 + i0+]d[2p · k1 + 2p · k2 + i0+]e
, (D.1)

where the superscript (1, 1) indicates that these integrals have been obtained after
rescaling both integration variables (see App. C) and a, b, c, d, e are integers. De-

pending on the values of the exponents c, d, and e, one can evaluate J
(1,1)
2 (a, b, c, d, e|n)

with the help of several basic integrals.

D.1 e = 0

If the exponent e vanishes, the integral can be written as the product of one-loop
integrals,

J
(1,1)
2 (a, b, c, d, 0|n) = J

(1)
1 (a, c|n)J

(1)
1 (b, d|n), (D.2)

where

J
(1)
1 (a, b|n) =

∫
dnk

(2π)n

1

[k2 −m2 + i0+]a[2p · k + i0+]b

=
i1−2a−2b

2b(4π)n/2

Γ[1
2
]Γ[a + b

2
− n

2
]

Γ[a]Γ[ b+1
2

]
(m2)n/2−a−b/2(p2)−b/2 . (D.3)
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D.2 c = d = 0, e 6= 0

If c = d = 0, the expression for the integral J2(a, b, 0, 0, e|n) reads

J
(1,1)
2 (a, b, 0, 0, e|n)

=

∫∫
dnk1d

nk2

(2π)2n

1

[k2
1 −m2 + i0+]a[k2

2 −m2 + i0+]b[2p · k1 + 2p · k2 + i0+]e

=
i2−2a−2b−2e

2(4π)n
(m2)n−a−b−e/2(p2)−e/2 Γ[a + e

2
− n

2
]Γ[b + e

2
− n

2
]Γ[a + b + e

2
− n]Γ[ e

2
]

Γ[a]Γ[b]Γ[e]Γ[a + b + e− n]
.

(D.4)

D.3 d = 0, c 6= 0, e 6= 0 and c = 0, d 6= 0, e 6= 0

For vanishing d with non-vanishing c and e we consider the integral J
(1,1)
2 (a, b, c, 0, e|n)

for p2 = m2,

J
(1,1)
2 (a, b, c, d, e|n) =

∫∫
dnk1d

nk2

(2π)2n

1

[k2
1 −m2 + i0+]a[k2

2 −m2 + i0+]b[2p · k1 + i0+]c

× 1

[2p · k2 + i0+]d[2p · k1 + 2p · k2 + i0+]e

∣∣∣∣
p2=m2

N

. (D.5)

Note that the mass terms m in the first two propagators stem from the rescaling of
the loop momenta, while we have to consider p2 = m2

N when evaluating the nucleon
mass. In the calculations performed in this work the difference between p2 = m2

and p2 = m2
N in these integrals is of higher order.

The result for J
(1,1)
2 (a, b, c, 0, e|n) is given by the sum

J
(1,1)
2 (a, b, c, 0, e|n) =

c−1∑

l=0

(
c− 1

l

)
(−1)lZ(c+l−2)/2(a, b, c, 0, e|n), (D.6)

where

Zα(a, b, c, 0, e|n) =
i2−2a−2b−2c−2e

(4π)n
m2n−2a−2b−2c−2e Γ[α + 1]

Γ[α + 2]

×Γ[a + c
2

+ e
2
− n

2
]Γ[b + c

2
+ e

2
− n

2
]Γ[ c

2
+ e

2
]Γ[a + b + c

2
+ e

2
− n]

Γ[a]Γ[b]Γ[c]Γ[e]Γ[a + b + c + e− n]

×3F2

(
1, c/2 + e/2, a + c/2 + e/2− n/2

α + 2, a + b + c + e− n

∣∣∣∣ 1

)
(D.7)

and 3F2

(
a,b,c
d,e

∣∣∣ z
)

is a hypergeometric function (see Appendix E). The case c = 0,

d 6= 0, e 6= 0 is obtained by replacing c with d and interchanging a and b in Eq. (D.7).
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D.4 c 6= 0, d 6= 0, e 6= 0

For the case that none of the exponents c, d, e vanishes, it is convenient to perform
an expansion into partial fractions,

1

[2p · k2 + i0+][2p · k1 + 2p · k2 + i0+]

=
1

[2p · k1 + i0+][2p · k2 + i0+]
− 1

[2p · k1 + i0+][2p · k1 + 2p · k2 + i0+]
,

(D.8)

until one obtains a sum of integrals of the form J
(1,1)
2 (a, b, c̃, 0, ẽ) and J

(1,1)
2 (a, b, c̃, d̃, 0),

which are evaluated as described above.

D.5 Subtraction terms

In addition to the integrals given above the evaluation of the subintegrals for the F4

terms requires the integrals

J
(1,1)
1 (a, b; ω|n) =

∫
dnk

(2π)n

1

[k2 −m2 + i0+]a[2p · k + ω + i0+]b
, (D.9)

where ω = 2p · q with q the second loop momentum. The integral J1,1
1 (a, b; ω|n) is

given by the sum

J
(1,1)
1 (a, b; ω|n)

=
i1−2a−2bmn−2a−2b

(4π)n/2

∞∑

l=0

Γ[ b
2

+ l
2
]Γ[a + b

2
− n

2
+ l

2
]

2Γ[a]Γ[b]Γ[l + 1]

( ω

m2

)l
(

m2

p2

)b/2+l/2

.

(D.10)

The sum contains an infinite number of terms. However, when performing the second
loop integration over q in the considered counterterm integrals, increasing orders of
ω = 2p · q contribute to increasing chiral orders. Therefore only a finite number of
terms in Eq. (D.10) is needed in the calculation of the nucleon mass.

D.6 Results for J
(1,1)
2 (a, b, c, d, e|n) and counterterm

integrals

The results for the J
(1,1)
2 parts of the two-loop integrals contributing to the nucleon

mass evaluated on-mass-shell are given by

µ̃8−2nJ
(1,1)
2 (1, 1, 0, 0, 1|n)

= − 1

ε2

3M4

1024π4m2
− 1

ε

M4

1024π4m2

[
1 + 12 ln

M

µ

]
− M4

2048π4m2

[
π2 + 10
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+8 ln
M

µ
+ 48 ln2 M

µ

]
,

µ̃8−2nJ
(1,1)
2 (1, 1, 0, 0, 2|n + 2)

=
1

ε2

M6

24576π6m2
− 1

ε

M6

36864π6m2

[
1− 6 ln

M

µ

]
+

M6

442368π6m2

[
3π2

+26− 48 ln
M

µ
+ 144 ln2 M

µ

]
,

µ̃8−2nJ
(1,1)
2 (1, 2, 0, 0, 2|n + 2)

=
1

ε2

M4

16384π6m2
+

1

ε

M4

4096π6m2
ln

M

µ
+

M4

98304π6m2

[
π2 + 6 + 48 ln2 M

µ

]
,

µ̃8−2nJ
(1,1)
2 (1, 1, 1, 0, 2|n + 2)

= − 1

ε2

M6

98304π6m4
+

1

ε

{
M5

12288π5m3
+

M6

147456π6m4

[
1− 6 ln

M

µ

]}

+
M5

36864π5m3

[
6 ln(2)− 5 + 12 ln

M

µ

]
− M6

1769472π6m4

[
75π2 + 26

−48 ln
M

µ
+ 144 ln2 M

µ

]
,

µ̃8−2nJ
(1,1)
2 (1, 1, 2, 0, 2|n + 2)

= − 1

ε2

5M4

98304π6m4
− 1

ε

M4

147456π6m4

[
1 + 30 ln

M

µ

]
− M4

1769472π6m4

[
87π2

+82 + 48 ln
M

µ
− 720 ln2 M

µ

]
,

µ̃8−2nJ
(1,1)
2 (1, 2, 1, 0, 1|n + 2)

=
1

ε2

M4

49152π6m2
− 1

ε

M4

73728π6m2

[
1− 6 ln

M

µ

]
− M4

884736π6m2

[
69π2 − 26

+48 ln
M

µ
− 144 ln2 M

µ

]
,

µ̃8−2nJ
(1,1)
2 (1, 2, 2, 0, 1|n + 2)

=
1

ε2

11M4

98304π6m4
− 1

ε

[
M3

12288π5m3
− M4

73728π6m4

(
5 + 33 ln

M

µ

)]

+
M3

18432π5m3

[
1− ln 8− 6 ln

M

µ

]
+

M4

1769472π6m4

[
190 + 105π2

+480 ln
M

µ
+ 1584 ln2 M

µ

]
,

2µ̃8−2nJ
(1,1)
2 (1, 2, 1, 0, 3|n + 4) + µ̃8−2nJ

(1,1)
2 (12202|n + 4)

= − 1

ε2

M6

786432π8m4
+

1

ε

M6

1179648π8m4

[
1− 6 ln

M

µ

]
− M6

14155776π8m4

[
3π2
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+26− 48 ln
M

µ
+ 144 ln2 M

µ

]
,

µ̃8−2nJ
(1,1)
2 (2, 1, 1, 0, 3|n + 4)

=
1

ε2

M6

1572864π8m4
− 1

ε

M6

2359296

[
1− 6 ln

M

µ

]
+

M6

28311552π8m4

[
27π2

+26− 48 ln
M

µ
+ 144 ln2 M

µ

]
,

µ̃8−2nJ
(1,1)
2 (1, 1, 1, 1, 1|n + 2)

=
1

ε

M5

6144π5m3
− M5

18432π5m3

[
6 ln(2)− 5 + 12 ln

M

µ

]
− M6

12288π4m4
,

where µ̃ is the ’t Hooft parameter [Hoo 73] and we have used µ̃ = µ
(4π)1/2 e

γE−1

2 . The

M̃S scheme of ChPT corresponds to absorbing the quantity λ̄ defined in App. B
and setting µ̃ = m. This is equivalent to subtracting all terms proportional to ε−1

and setting µ = m. The parameter µ only appears in the logarithm ln(M/µ), and
replacing µ with µ̃ leads to

ln
M

µ
= ln

M

µ̃
− ln

[
(4π)1/2e

1−γE
2

]
= ln

M

µ̃
− 1

2
[ln(4π)− γE + 1] ,

where the second term on the right-hand side are just the finite contributions of λ̄.
The corresponding counterterm integrals J

(1,1)
CT1

(a, b, c, d, e) and J
(1,1)
CT2

(a, b, c, d, e)
are given by

µ̃8−2nJ
(1,1)
CT1

(1, 1, 0, 0, 1|n)

= − 1

ε2

3M4

1024π4m2
− 1

ε

M4

2048π4m2

[
1 + 12 ln

M

µ

]
− M4

4096π4m2

[
π2 + 5 + 4 ln

M

µ

+24 ln2 M

µ

]

= µ̃8−2nJ
(1,1)
CT2

(1, 1, 0, 0, 1|n),

µ̃8−2nJ
(1,1)
CT1

(1, 1, 0, 0, 2|n + 2)

=
1

ε2

M6

24576π6m2
− 1

ε

M6

73728π6m2

[
1− 6 ln

M

µ

]
+

M6

884736π6m2

[
3π2 + 22

−24 ln
M

µ
+ 72 ln2 M

µ

]

= µ̃8−2nJ
(1,1)
CT2

(1, 1, 0, 0, 2|n + 2),

µ̃8−2nJ
(1,1)
CT1

(1, 2, 0, 0, 2|n + 2)

=
1

ε2

M4

16384π6m2
+

1

ε

M4

32768π6m2

[
1 + 4 ln

M

µ

]
+

M4

196608π6m2

[
π2 + 3 + 12 ln

M

µ

+24 ln2 M

µ

]
,
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µ̃8−2nJ
(1,1)
CT2

(1, 2, 0, 0, 2|n + 2)

=
1

ε2

M4

16384π6m2
− 1

ε

M4

32768π6m2

[
1− 4 ln

M

µ

]
+

M4

196608π6m2

[
π2 + 9− 12 ln

M

µ

+24 ln2 M

µ

]
,

µ̃8−2nJ
(1,1)
CT1

(1, 1, 1, 0, 2|n + 2)

=
1

ε2

M6

32768π6m4
− 1

ε

M6

589824π6m4

[
11− 36 ln

M

µ

]
+

M6

3538944π6m4

[
9π2 + 91

−132 ln
M

µ
+ 216 ln2 M

µ

]
,

µ̃8−2nJ
(1,1)
CT2

(1, 1, 1, 0, 2|n + 2)

= − 1

ε2

5M6

98304π6m4
+

1

ε

[
M5

12288π5m3
+

M6

589824π6m4

(
31− 60 ln

M

µ

)]

− M5

36864π5m3

[
5− 6 ln 2− 6 ln2 M

µ

]
− M6

3538944π6m4

[
15π2 + 179− 372 ln

M

µ

+360 ln2 M

µ

]
,

µ̃8−2nJ
(1,1)
CT1

(1, 2, 1, 0, 1|n + 2)

=
1

ε2

5M4

49152π6m2
+

1

ε

M4

98304π6m2

[
1 + 20 ln

M

µ

]
+

M4

589824π6m2

[
5π2 + 27

+12 ln
M

µ
+ 120 ln2 M

µ

]
,

µ̃8−2nJ
(1,1)
CT2

(1, 2, 1, 0, 1|n + 2)

= − 1

ε2

M4

16384π6m2
+

1

ε

M4

32768π6m2

[
1− 4 ln

M

µ

]
− M4

196608π6m2

[
π2 + 9

−12 ln
M

µ
+ 24 ln2 M

µ

]
,

µ̃8−2nJ
(1,1)
CT1

(1, 2, 2, 0, 1|n + 2)

=
1

ε2

7M4

98304π6m4
+

1

ε

M4

196608π6m4

[
1 + 28 ln

M

µ

]
+

M4

1179648π6m4

[
7π2 + 39

+12 ln
M

µ
+ 168 ln2 M

µ

]
,

µ̃8−2nJ
(1,1)
CT2

(1, 2, 2, 0, 1|n + 2)

=
1

ε2

5M4

32768π6m4
− 1

ε

[
M3

12288π5m3
+

M4

1179648π6m4

(
54− 360 ln

M

µ

)]

+
M3

36864π5m3

[
5− 6 ln 2 + 6 ln

M

µ

]
+

M4

393216π6m4

[
5π2 + 39− 36 ln

M

µ
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+120 ln2 M

µ

]
,

2µ̃8−2nJ
(1,1)
CT1

(1, 2, 1, 0, 3|n + 4) + µ̃8−2nJ
(1,1)
CT1

(12202|n + 4)

= − 1

ε2

M6

786432π8m4
+

1

ε

M6

196608π8m4

[
1− 6 ln

M

µ

]
− M6

28311552π8m4

[
3π2 + 22

−24 ln
M

µ
+ 72 ln2 M

µ

]

= 2µ̃8−2nJ
(1,1)
CT2

(1, 2, 1, 0, 3|n + 4) + µ̃8−2nJ
(1,1)
CT2

(12202|n + 4),

µ̃8−2nJ
(1,1)
CT1

(2, 1, 1, 0, 3|n + 4)

= − 1

ε2

M6

4718592π8m4
+

1

ε

M6

28311552π8m4

[
5− 12 ln

M

µ

]
− M6

169869312π8m4

[
3π2

+37− 60 ln
M

µ
+ 72 ln2 M

µ

]
,

µ̃8−2nJ
(1,1)
CT2

(2, 1, 1, 0, 3|n + 4)

=
1

ε2

7M6

4718592π8m4
− 1

ε

M6

28311552π8m4

[
17− 84 ln

M

µ

]
+

M6

169869312π8m4

[
21π2

+169− 204 ln
M

µ
+ 504 ln2 M

µ

]
,

µ̃8−2nJ
(1,1)
CT1

(1, 1, 1, 1, 1|n + 2)

=
1

ε2

[
M5

12288π5m3
+

M6

36864π6m4

]
− 1

ε

M6

884736π6m4

[
11− 48 ln

M

µ

]

− M5

36864π5m3

[
5− 6 ln(2)− 6 ln

M

µ

]

= µ̃8−2nJ
(1,1)
CT2

(1, 1, 1, 1, 1|n + 2).

The results for the products of one-loop integrals read

µ̃8−2nJ
(1,1)
2 (1, 1, 0, 0, 0|n)

= − 1

ε2

M4

256π4
− 1

ε

M4

64π4
ln

M

µ
− M4

1536π4

[
π2 + 6 + 48 ln2 M

µ

]
,

µ̃8−2nJ
(1,1)
2 (1, 2, 0, 0, 0|n)

= − 1

ε2

M2

256π4
− 1

ε

M2

256π4

[
1 + ln

M

µ

]
− M2

1536π4

[
π2 + 6 + 24 ln

M

µ
+ 48 ln2 M

µ

]
,

µ̃8−2nJ
(1,1)
2 (1, 1, 1, 0, 0|n)

= − 1

ε2

M4

512π4m2
− 1

ε

[
M3

256π3m
+

M4

512π4m2

(
1 + 4 ln

M

µ

)]
+

M3

256π3m

[
1− 2 ln(2)

−4 ln
M

µ

]
− M4

3072π4m2

[
π2 + 6 + 24 ln

M

µ
+ 48 ln2 M

µ

]
,
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µ̃8−2nJ
(1,1)
2 (1, 2, 0, 1, 0|n)

= − 1

ε2

M2

512π4m2
− 1

ε

[
M

512π3m
+

M2

256π4m2

(
1 + 2 ln

M

µ

)]
− M

512π3m
[1 + 2 ln(2)

+4 ln
M

µ

]
− M2

3072π4m2

[
π2 + 12 + 48 ln

M

µ
+ 48 ln2 M

µ

]
,

µ̃8−2nJ
(1,1)
2 (2, 1, 0, 2, 0|n + 2)

=
1

ε2

M4

8192π6m2
+

1

ε

M4

2048π6m2
ln

M

µ
+

M4

49152π6m2

[
π2 + 6 + 48 ln2 M

µ

]
,

µ̃8−2nJ
(1,1)
2 (1, 1, 1, 1, 0|n)

= − M2

256π2m2
,

µ̃8−2nJ
(1,1)
2 (1, 1, 1, 1, 0|n + 2)

= − M6

9216π4m2
.

The integral J
(1,1)
2 (1, 0, 0, 0, 1|n) can be written as J

(1,1)
2 (1, 0, 0, 1, 0|n) by the substi-

tution k2 7→ k2 + k1, and

J
(1,1)
2 (1, 0, 0, 1, 0|n) = J

(1)
1 (1, 0|n)J

(1)
1 (0, 1|n) = 0,

since the infrared singular part J
(1)
1 (01|n) of J1(01|n) = −iIN vanishes.

The counterterm integrals corresponding to the products of one-loop integrals
read

µ̃8−2nJ
(1,1)
CT1

(1, 1, 0, 0, 0|n)

= − 1

ε2

M4

256π4
− 1

ε

M4

128π4
ln

M

µ
− M4

3072π4

[
π2 + 6 + 24 ln2 M

µ

]

= µ̃8−2nJ
(1,1)
CT2

(1, 1, 0, 0, 0|n),

µ̃8−2nJ
(1,1)
CT1

(1, 2, 0, 0, 0|n)

= − 1

ε2

M2

256π4
− 1

ε

M2

256π4

[
1 + 2 ln

M

µ

]
− M2

3072π4

[
π2 + 6 + 24 ln

M

µ
+ 24 ln2 M

µ

]
,

µ̃8−2nJ
(1,1)
CT2

(1, 2, 0, 0, 0|n)

= − 1

ε2

M2

256π4
− 1

ε

M2

128π4
ln

M

µ
− M2

3072π4

[
π2 + 6 + 24 ln2 M

µ

]
,

µ̃8−2nJ
(1,1)
CT1

(1, 1, 1, 0, 0|n)

= − 1

ε2

M4

512π4m2
− 1

ε

M4

256π4m2
ln

M

µ
− M4

6144π2m2

[
π2 + 6 + 24 ln2 M

µ

]
,

µ̃8−2nJ
(1,1)
CT2

(1, 1, 1, 0, 0|n)

= − 1

ε2

M4

512π4m2
− 1

ε

[
M3

256π3m
+

M4

512π4m2

(
1 + 2 ln

M

µ

)]
+

M3

256π3m

[
1− 2 ln(2)
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+2 ln
M

µ

]
− M4

6144π2m2

[
π2 + 6 + 24 ln

M

µ
+ 24 ln2 M

µ

]
,

µ̃8−2nJ
(1,1)
CT1

(1, 2, 0, 1, 0|n)

= − 1

ε2

M2

512π4m2
− 1

ε

[
M

512π3m
+

M2

256π4m2

(
1 + ln

M

µ

)]
− M

512π3m

[
1 + 2 ln(2)

+2 ln
M

µ

]
− M2

6144π4m2

[
π2 + 18 + 48 ln

M

µ
+ 24 ln2 M

µ

]
,

µ̃8−2nJ
(1,1)
CT2

(1, 2, 0, 1, 0|n)

= − 1

ε2

M2

512π4m2
− 1

ε

M2

256π4m2
ln

M

µ
− M2

6144π4m2

[
π2 + 6 + 24 ln2 M

µ

]
,

µ̃8−2nJ
(1,1)
CT1

(2, 1, 0, 2, 0|n + 2)

=
1

ε2

M4

8192π6m2
+

1

ε

M4

4096π6m2
ln

M

µ
+

M4

98304π6m2

[
π2 + 6 + 24 ln2 M

µ

]

= µ̃8−2nJ
(1,1)
CT2

(2, 1, 0, 2, 0|n + 2),

µ̃8−2nJ
(1,1)
CT1

(1, 1, 1, 1, 0|n)

= 0

= µ̃8−2nJ
(1,1)
CT2

(1, 1, 1, 1, 0|n),

µ̃8−2nJ
(1,1)
CT1

(1, 1, 1, 1, 0|n + 2)

= 0

= µ̃8−2nJ
(1,1)
CT2

(1, 1, 1, 1, 0|n + 2).



Appendix E

Hypergeometric functions

The integrals of Eq. (D.5) are given in terms of generalized hypergeometric functions

pFq

(
a1,a2,...,ap

b1,...,bq

∣∣∣ z
)

(see, e.g., Ref. [GR 00]). These are defined as

pFq

(
a1, a2, . . . , ap

b1, . . . , bq

∣∣∣∣ z

)
=

∞∑
n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)n

zn

n!
, (E.1)

where (a)n denotes the Pochhammer symbol,

(a)n =
Γ[a + n]

Γ[a]
.

The functions pFq

(
a1,...,ap

b1,...,bq

∣∣∣ z
)

are generalizations of

2F1

( a1, a2

b

∣∣∣ z
)

=
∞∑

n=0

(a1)n(a2)n

(b)n

zn

n!
, (E.2)

which is a particular solution of the differential equation

z(1− z)
d2F (z)

dz2
+ [c− (a + b + 1)z]

dF (z)

dz
− abF (z) = 0. (E.3)

A number of special functions can be expressed in terms of hypergeometric functions;
the exponential function ez for example is given by 0F0(|z). Further examples include
the Bessel functions as well as the Legendre polynomials.

The following relations for hypergeometric functions are useful for the evaluation
of integrals appearing in the calculation of the nucleon mass:

1F0(a|z) = (1− z)−a, (E.4)

2F1

(
a, b

c

∣∣∣∣ 1

)
=

Γ[c]Γ[c− a− b]

Γ[c− a]Γ[c− b]
, (E.5)

3F2

(
a, b, c

d, e

∣∣∣∣ 1

)
=

Γ[d]Γ[d + e− a− b− c]

Γ[d + e− a− b]Γ[d− c]
3F2

(
e− a, e− b, c

d + e− a− b, e

∣∣∣∣ 1

)
, (E.6)
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3F2

(
a, b, c

d, e

∣∣∣∣ z

)
= 1 + z

abc

de
4F3

(
1, a + 1, b + 1, c + 1

2, d + 1, e + 1

∣∣∣∣ z

)
, (E.7)

4F3

(
a, b, c, d

e, f, g

∣∣∣∣ z

)
= 1 + z

abcd

efg
5F4

(
1, a + 1, b + 1, c + 1, d + 1

2, e + 1, f + 1, g + 1

∣∣∣∣ z

)
, (E.8)

pFq

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣ z

)
= 1 + z

a1 · · · ap

b1 · · · bq
p+1Fq+1

(
1, a1 + 1, . . . , ap + 1

2, b1 + 1, . . . , bq + 1

∣∣∣∣ z

)
,

(E.9)

pFq

(
. . . , am−1, am, am+1, . . .

. . . , bk−1, am, bk+1, . . .

∣∣∣∣ z

)
= p−1Fq−1

(
. . . , am−1, am+1, . . .

. . . , bk−1, bk+1, . . .

∣∣∣∣ z

)
.

(E.10)

A list of further relations can be found in [GR 00].
Relations like Eq. (E.9) are used in the calculation of the nucleon mass where

the parameters ai of a hypergeometric function depend on ε = n−4
2

, where n denotes
the number of space-time dimensions. In these cases the functions pFq cannot be
evaluated directly. If, however, the coefficient of the considered hypergeometric
function does not contain inverse powers of ε and the expansion of pFq does not
generate inverse powers of epsilon either, one can set ε = 0 in the hypergeometric
function. As an example consider

1

ε
3F2

(
1, 2− ε, ε

2, 2 + ε

∣∣∣∣ 1

)
, (E.11)

where we choose z = 1 for simplicity. Applying the relation of Eq. (E.7) leads to

1

ε

[
1 +

(2− ε)ε

2(2 + ε)
4F3

(
1, 2, 3− ε, 1 + ε

2, 3, 3 + ε

∣∣∣∣ 1

)]
. (E.12)

One sees that after expanding around ε = 0 the coefficient of 4F3 no longer depends
on inverse powers of ε,

1

ε
+

(
1

2
+O(ε)

)
4F3

(
1, 2, 3− ε, 1 + ε

2, 3, 3 + ε

∣∣∣∣ 1

)
. (E.13)

Therefore one can set ε = 0 in the hypergeometric function. Applying Eq. (E.10)
the expression of Eq. (E.13) simplifies to

1

ε
+

1

2
2F1

(
1, 1

3

∣∣∣∣ 1

)
+O(ε), (E.14)

which can be evaluated using Eq. (E.5) to give

1

ε
+ 1 +O(ε). (E.15)
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