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Summary

The present thesis is concerned with certain aspects of di�erential and pseudodif-
ferential operators on in�nite dimensional spaces. We aim to generalize classical
operator theoretical concepts of pseudodi�erential operators on �nite dimensional
spaces to the in�nite dimensional case.

At �rst we summarize some facts about the canonical Gaussian measures
on in�nite dimensional Hilbert space riggings. Considering the naturally uni-
tary group actions in L2(H−, γ) given by weighted shifts and multiplication with
ei〈t , ·〉0 we obtain an unitary equivalence F between them. In this sense F can
be considered as abstract Fourier transform. We show that F coincides with the
Fourier-Wiener transform. Using the Fourier-Wiener Transform we de�ne pseu-
dodi�erential operators in Weyl and Kohn-Nirenberg form on our Hilbert space
rigging.

In the case of this Gaussian measure γ we discuss several possible Laplacians
at �rst the Ornstein-Uhlenbeck operator and then pseudodi�erential operators
with negative de�nite symbol. In the second case, these operators are generators
of L2

γ-sub Markovian semi groups and L2
γ-Dirichlet forms.

In [67] Gramsch, Ueberberg and Wagner described the construction of gen-
eralized Hörmander classes by commutator methods. Following this concept and
the classical �nite dimensional description of Ψ0

%,δ (0 ≤ δ ≤ % ≤ 1) in the C∗-
algebra L (L2) by Beals and Cordes we construct in both cases generalized Hör-
mander classes, which are Ψ∗-algebras. These classes act on a scale of Sobolev
spaces, generated by our Laplacians.

In the case of the Ornstein-Uhlenbeck operator, we prove that a large class
of continuous pseudodi�erential operators considered by Albeverio and Dalecky
[2] is contained in our generalized Hörmander class. Furthermore, in the case
of a Laplacian with negative de�nite symbol, we develop a symbolic calculus for
our operators. We show some Fredholm criteria for them and prove that these
Fredholm operators are hypoelliptic. Moreover, in the �nite dimensional case,
using the Gaussian measure instead of the Lebesgue measure the index of these
Fredholm operators is still given by Fedosov's formula.

Considering an in�nite dimensional Heisenberg group rigging we discuss the
connection of some representations of the Heisenberg group to pseudodi�erential
operators on in�nite dimensional spaces. We use this connections to calculate the
spectrum of pseudodi�erential operators and to construct generalized Hörmander
classes given by smooth elements which a spectrally invariant in L2(H−, γ).

Finally, given a topological space X with Borel measure µ, a locally compact
group G and a representation B of G in the group of all homeomorphisms of X,
we construct a Borel measure µs on X which is invariant under B(G).
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Introduction

In this thesis we discuss certain aspects of di�erential and pseudodi�erential
operators on in�nite dimensional Hilbert space riggings. We generalize operator-
theoretical concepts of pseudodi�erential operators on �nite dimensional spaces
to the in�nite dimensional case. In�nite dimensional operators naturally arise in
mathematical physics and in the theory of stochastic processes. For example in-
�nite dimensional di�erential operators are used to describe the �ow of energy in
systems with in�nitely many degrees of freedom and in stochastic calculus, they
are used to construct di�usion operators (see [21], [104], [105] and [111]). How-
ever, there is also a strong mathematical interest in studying in�nite dimensional
spaces and analysis on them. They appear as spaces of functions, distributions
and sequences.

In the classical �nite dimensional theory pseudodi�erential operators on Rn

are de�ned by oscillatory integrals starting from symbols on Rn
x × Rn

ξ . These
symbols a(x, ξ) are C∞-functions, which ful�ll certain estimates. The class of
operators attached to a certain class of symbols Sm%,δ (0 ≤ δ ≤ %, δ < 1) is the
so called Hörmander-class Ψm

%,δ. In [13] Beals shows that one can describe the
classes Ψ0

%,δ without using symbols, only by using commutators. More precisely,
he shows that

Ψ0
%,δ := {a ∈ L (H0) | adα(M)adβ(∂)a ∈

⋂
s∈R

L (Hs, Hs+%|α|−δ|β|) ∀α, β ∈ Nn
0},

where Hs are the Sobolev spaces.

Spectral invariance. Dealing with pseudodi�erential operators in pertur-
bation theory Gramsch introduced Ψ0- and Ψ∗-algebras (see [56]). A Fréchet
algebra A, which is continuously embedded in a Banach algebra B, is called
Ψ0-algebra, if A is locally spectrally invariant, i.e. if there exists an ε > 0 with

{a ∈ A | ‖e− a‖B < ε} ⊆ A−1,

where A−1 denotes the group of invertible elements in Ψ. In addition we call A
a Ψ-Algebra if A is spectrally invariant, i.e

A ∩ B−1 = A−1.

Moreover, if A is a symmetric Ψ0-sub algebra of a C∗-algebra B, we call A a
Ψ∗-algebra. In this case A is spectrally invariant.

5



6 Introduction

Once established a �rst and immediate consequence of the spectral invariance
is the fact that a Ψ-Algebra A has an open group A−1, which is not true for
general Fréchet algebras. In addition the inversion in A is continuous and Ψ-
resp. Ψ∗-Algebras are stable under countable intersection. But the Ψ-property of
an algebra A has many more consequences. For example Ψ-Algebras are stable
with respect to the holomorphic functional calculus of Waelbroeck ([131]). In
addition Gramsch showed that the Ψ-property is important for Oka's principle
and in the perturbation and homotopy theory of Fredholm functions. Concerning
the importance of these algebras in operator theory and the relevance of spectral
invariance we refer also to [25], [37] [58], [64], [96], [99], [106], [116, chapter 4
and chapter 5] and [123]. Ψ0- and Ψ∗-algebras and their applications have been
considered in many publications during a long period of time. We will give a
short overview over some of these topics at the beginning of chapter 3.

Until now the spectral invariance and the Ψ-property have been proved for
many algebras cf. e.g [5], [11], [13], [29], [30], [44] [56], [58], [96], [98], [100],
[125], [123], [122] and [130]. Moreover, spectral invariance plays an essential
role in recent developments in in�nite dimensional analysis, stochastic analysis
and time-frequency analysis (cf. [69], [70], [68, �13, �14].

In [67] Gramsch, Ueberberg and Wagner described a construction of Ψ0−
resp. Ψ∗-algebras starting from closed derivations or closed operators. In addi-
tion, they developed a method to construct generalized Hörmander classes Ψ̃0

%,δ,
which are sub multiplicative Ψ∗-algebras. We will describe these concepts in
Chapter 3 more detailed .

Using Beal's description of Ψ0
%,δ by commutators Beals [13] and �nally, Ueber-

berg [130] and Schrohe [123] showed that for 0 ≤ δ ≤ % ≤ 1, δ < 1 the classes
Ψ0
%,δ are sub multiplicative Ψ∗-algebras in L (L2(Rn, λ)). Here L (L2(Rn, λ))

stands for the space of all bounded linear operators on the L2 space on Rn with
Lebesgue measure.

Sub-multiplicativity. We call a Fréchet-algebra A sub multiplicative if
there exists a system of semi-norms {‖·‖k} on A which de�nes the topology
of A such that

‖ab‖k ≤ ‖a‖k ‖b‖k ∀ a, b ∈ A.
Until now it is an open question whether every Ψ∗-Algebra is sub multiplicative.
Zelasko showed in [134, Theorem 3] that there exist non commutative Fréchet
algebras with open group which are not sub multiplicative. But for many operator
algebras sub multiplicativity has been proved, for example Gramsch and Schrohe
proved sub multiplicativity for Boutet de Movele's algebra (cf [66]) and Baldus
showed in [4] sub multiplicativity of Ψ(1, g) for all Hörmander metrices g.

Moreover, Gramsch [59] and Gramsch and Kaballo [64] used sub multi-
plicativity in connection with non abelian complex analytic cohomology and Oka's
principle, Phillips [113] and Cuntz [33] used sub multiplicativity in connection
with K- and KK-theory. Considering the case of a commutative Fréchet-algebra
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AMitiagin, Rolewicz and Zelazko [108] showed that sub multiplicativity is equiv-
alent to the property that for every entire function ϕ(z) =

∑∞
n=1 anz

n and every
x ∈ A the series

∑∞
n=1 anx

n is convergent.

Ornstein-Uhlenbeck operator. We aim to generalize Beals' description of
Ψm
%,δ to the in�nite dimensional case. Looking at this characterization, in�nite

dimensional measure theory and analysis the following two questions immediately
arise

• Which measure should we choose on an in�nite dimensional Hilbert
space?

• Having a measure, can we �nd a good candidate for a Laplace operator
in these spaces?

Let us consider the �rst question. As a well known fact there is no Lebesgue
measure on an in�nite dimensional Hilbert space. Even worse, there exists no
measure on an in�nite dimensional Hilbert space for which all shifts are admissi-
ble, i.e. there always exists a shift such that the shifted measure is not absolutely
continuous with regard to the original one. Furthermore, we do not �nd a mea-
sure in the in�nite dimensional case, which can be called canonical. To deal
with this �rst problem we consider quasi-nuclear Hilbert space riggings instead
of single Hilbert spaces.

Definition 0.0.1. We call H+ ⊆ H0 ⊆ H− a quasi-nuclear Hilbert space
rigging, if

(i) H+ ⊆ H0 ⊆ H− are dense real Hilbert spaces,
(ii) the embeddings H+ ↪→ H0 and H0 ↪→ H− are quasi-nuclear,
(iii) H+ is the dual space of H− with regard to the inner product in H0,
(iv) H+ is separable, in particular H0 and H− are separable.

Considering only Gaussian measures we are able to �nd a measure which we
can call canonical with respect to this rigging.

Answering the second question is even more complicated. Let (ej)j∈N be an
orthonormal basis in an in�nite dimensional Hilbert space. Then

∑∞
k=1

∂2

∂x2f does
not necessarily converge, even if f is bounded, twice continuous di�erentiable and
(ek) is an orthonormal basis in H−. Thus we have to �nd a Laplace operator on
in�nite dimensional Hilbert spaces to construct the Sobolev spaces.

In this thesis we discuss two possible ways of de�ning a good Laplace oper-
ator on in�nite dimensional spaces. The �rst Laplace operator is considered in
stochastic analysis for example by Berezanskii [17] and Malliavin [104]. We can
de�ne this Laplace operator by

Lγf(x) = −1

2
(tr0d

2f(x)− 2〈∇f(x), x〉0) ∀f ∈ C 2
b (H−),

(cf. [2],[3] and [18]). We show that this operator coincides with the well known
Ornstein-Uhlenbeck operator, considered by Malliavin (cf. [21], [104], [105] and
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[111]). Moreover, all real powers of the Laplacian are essential selfadjoint on
the space C∞

pol,cly(H−), the space of all cylindrical C∞-functions such that all
derivatives are bounded by polynomials. Starting with this Laplacian we de�ne
a scale of Sobolev spaces Hs.

Negative de�nite functions. A second possibility of constructing general-
ized Laplace operators is adapting the concept of negative de�nite functions to
in�nite dimensional Hilbert spaces. A function ψ : Rn −→ C is called negative
de�nite if ψ(0) ≥ 0 and e−tψ is a positive de�nite function for all t > 0. Let λ be
the Lebesgue measure in R. Then it is well known (cf.[80]) that we can consider
every negative de�nite function as symbol of a pseudodi�erential operator

ψ(D)u := F̃−1ψ(ξ)F̃u,

for u ∈ S(Rn), where F̃ denotes the Fourier-transform. Let A be the closure
of this operator. Then −A is a Dirichlet operator and generates a strongly con-
tinuous contraction sub Markovian semi group. Furthermore, if ψ is real-valued
a symmetric Dirichlet form is de�ned by the closure of 〈Au , u〉 for u ∈ D(A).
More about the relevance of Dirichlet-Forms can be found in [21], [45] and [103].

Conversely, pseudodi�erential operators with negative de�nite functions as
symbols arise naturally as generators of Feller Groups and Dirichlet-forms. In
both case these operators are also generators of a stochastic process. More pre-
cisely, every Levi process possesses as characteristic function a negative de�nite
function and vice versa every negative de�nite function is a characteristic func-
tion of a Levi process. In addition, if µt is a convolution semi group then there
exists a negative de�nite function ψ such that χµt = etψ, where χµt denotes the
characteristic function of µt (cf. [6] [78] [80], [81] and [82]).

At �rst we prove that some well know facts about negative de�nite functions
remain valid if we replace Rn by a general Hilbert space H−. We show that as in
the �nite dimensional case we still have a Petree's inequality for negative de�nite
functions on H−. Moreover, we are able to show that the inequality

|ψ(ξ)| ≤ cψ(1 + ψ(ξ)2)

remains valid, even in the in�nite dimensional case, where the unit ball is not
compact which is needed in the well known �nite dimensional proof (cf. [80,
3.6.22]). Having this result we are able to de�ne a pseudodi�erential operator
attached to a negative de�nite symbol ψ as in Rn with Lebesgue measure, but
now using the Fourier-Wiener-transform F instead of the Fourier-transform. This
Fourier-Wiener-transform is an unitary equivalence between the natural group
action on L2(H−, γ) by weighted unitary shifts and the multiplication with ei〈t , 〉0 .
Furthermore, if ψ has a Levi-Khinchin-representation with respect to our Hilbert
space rigging we determine this pseudodi�erential operator exactly on a subspace
of all C∞-functions on H−. It turns out that the closure of the operator −ψ(D)
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generates a semi group (Tt)t>0. Here Tt is given by

Ttu = F−1ψ(Fu) for all u ∈ L2(H−, γ).

Since we have to consider a Gaussian measure instead of the Lebesgue measure
and the Fourier-Wiener instead of the Fourier-Transform it seems, in view of the
connection between both, in the �nite dimensional case (cf. Proposition 1.4.10)
quite natural to adapt the concept of sub Markovian semi groups and Dirichlet-
forms in the following way: We call a semi group (St)t∈R an L2

γ sub Markovian
semi group if we have

0 ≤ u ≤ e
‖·‖2

2 a.e. implies 0 ≤ Stu ≤ e
‖·‖2

2 a.e.

Using this notation we show that for a cylindrical function ψ Tt is an L2
γ sub Mar-

kovian semi group (cf. 2.3.24). Furthermore −ψ(D) extends to a L2
γ-Dirichlet

operator A. Concerning these adapted concept of Dirichlet operators we show,
that the most important propositions remain valid in case of the Gaussian mea-
sure (see 2.3.15). De�ning for s > 0 the Sobolev-space Hs

ψ(H−) as the space of
all u ∈ L2(H−, γ) such that

‖u‖ψ,s :=
∥∥(1 + |ψ|)s/2Fu

∥∥
L2(H−,γ)

<∞

we are able to show that the domain of de�nition of the generator of Tt isH2
ψ(H−).

In addition this generator is our L2
γ-Dirichlet operator A. If ψ is real-valued we

associate a symmetric L2
γ-Dirichlet-form to the L2

γ-Dirichlet operator A. The
domain of de�nition of this Dirichlet-form is given by H1

ψ(H−).

The Weyl-correspondence. Having these Laplace operators and thus a
scale of Sobolev spaces enables to us discuss pseudodi�erential operators acting
in this scale. Let us consider the case of the Ornstein-Uhlenbeck operator as
Laplace operator �rst. Starting with symbols (functions) a(x, p) on H2

− and an
the Fourier-Wiener-transform F Albeverio and Dalecky de�ned in [2] pseudodif-
ferential operators a(X,D) in Weyl form on in�nite dimensional Hilbert space
riggings H+ ⊆ H0 ⊆ H− by

a(X,D)u(x) := F−1
p→xF−1

y→p

[
a

(
x+ y

2
, p

)
u(y)

]
.

In chapter 3 of this thesis we de�ne generalized Hörmander classes Ψ̃0
%,δ sim-

ilarly to the characterization given by Beals, which contain the elements of a
speci�c class of continuous pseudodi�erential operators de�ned in [2]. These
generalized Hörmander classes are sub multiplicative Ψ∗-Algebras.

Let H+ = H0 = H− = Rn. Consider the canonical Gaussian measure in Rn

and let a be a symbol in S0
0,0. Then the corresponding pseudodi�erential operator

de�ned in [2] is in our generalized Hörmander class Ψ̃0
0,0. Furthermore, in the case

of the canonical Gaussian measure on Rn, for any â ∈ Ψ0 ⊆ Ψ̃0
0,0 there exists an
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a ∈ S0
0,0 such that a is the associated symbol to â. Here Ψ0 is a sub multiplicative

Ψ∗-algebra.

The Kohn-Nirenberg-correspondence. Now let us consider the case of a
negative de�nite function as symbol for the Laplace operator. As in the �nite
dimensional theory we de�ne classes of symbols by

Sm,ψ%k
(H−) := {q ∈ C∞(H− ×H−) |

∣∣∂αξ ∂βxq(x, ξ)∣∣ ≤ c|α|,|β|(1 + ψ(ξ))
m−%k(|α|)

2 }

and

Sm,ψ%,δ (H−) := {q ∈ C∞(H− ×H−) |
∣∣∂αξ ∂βxq(x, ξ)∣∣ ≤ c′|α|,|β|(1 + ψ(ξ))

m−%|α|+δ|β|
2 },

where ψ is a negative de�nite real-valued function. For a function q in these
classes we de�ne the corresponding pseudodi�erential operator q(x,D) in Kohn-
Nirenberg form by

q(x,D) := F−1
ξ→x[q(x, ξ)(Fu)(ξ)],

where F denotes the Fourier Wiener-Transform. We write Ψm,ψ
%k

(H−) resp.

Ψm,ψ
%,δ (H−) for the corresponding classes of pseudodi�erential operators.
For H+ = H0 = H− = Rn and using the Lebesgue measure and the Fourier-

transform instead of the Gaussian measure and the Fourier-Wiener transform
Jacob showed in [81] that the operators de�ned by symbols in Sm,ψ%k

(Rn) are still
continuous operators in a scale of Sobolev-Spaces. Furthermore, for this operators
there still exists a symbolic calculus and a Gårding inequality.

We will show that this fact still holds in the case of the canonical Gaussian
measure on Rn. In addition we prove, that the description of the Hörmander
classes by commutators is still true, if we replace the Lebesgue measure by the
canonical Gaussian measure and the Fourier transform by the Fourier-Wiener
transform. Thus we obtain that for m = 0 these generalized Hörmander classes
are sub multiplicative Ψ∗-algebras. Even in the more general case of a Hörmander-
metric, considered for example by Fe�ermann and Beals [14], [15] or Baldus [6]
they use the Lebesgue measure and the Fourier-Transform.

Some of the facts mentioned above remain valid in the case of an in�nite
dimensional Hilbert space rigging. More precisely, we prove that in the case of
cylindrical symbols or symbols depending only on ξ for the corresponding pseudo-
di�erential operators there still exists some kind of symbolic calculus. Moreover,
all these operators map Hs+m

ψ (H−) continuously to Hs
ψ(H−), where Hs

ψ(H−) is

the scale of Sobolev-spaces mentioned above. In addition, for q ∈ Sm,ψ%k,cyl
(H−) the

Gårding inequality remains valid.
Concerning some special negative-de�nite functions we show that each oper-

ator q(x,D) ∈ Ψm,ψ
%,δ (H−) being cylindrical or depending only on ξ ful�lls that

adα(M)adβ(D)(A) ∈
⋂
s∈R

L (Hs
ψ(H−), H

s−m+%|α|−δ|β|
ψ (H−)).
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Thus these operators are contained in a generalized Hörmander class, constructed
in [67].

In the �nite dimensional case with Lebesgue measure every uniformly elliptic
symbol leads to a Fredholm operator in L2(Rn, λ). Schrohe showed in [122] that
in this case the index of the Fredholm operator q(x,D) is given by Fedosov's for-
mula. Assuming some minimal growth condition on our negative de�nite function
we prove the same result in the case of the Gaussian measure on Rn. In addi-
tion we show in the �nite and the in�nite dimensional case that every Fredholm
operator is hypoelliptic.

The Heisenberg Group. Some representations of the �nite dimensional
Heisenberg Group are used by Taylor [129] and Folland [43] to study pseudodif-
ferential operators in Weyl-form. The connection between these representations
π±λ and the pseudodi�erential operators are given by

π±λ(k) = k̃(±λ,±
√
λX,

√
λD̃),

where

k̃(τ, y, η) = (2π)−
2n+1

2

∫
k(r, s, t)ei(tτ+〈s , y〉)+〈r , η〉λ(dt)λn(ds)λn(dr).

Here k̃(±λ,±
√
λX,

√
λD̃) denotes the pseudodi�erential operator in Weyl form

(cf. De�nition 3.2.2) and k ∈ L1(Hn, λ
2n+1). In the �nite dimensional case it

is well known that λ2n+1 is the Haar measure on the Heisenberg group. Taylor
[129] and Folland [43] use this connection to determine the spectrum of certain
pseudodi�erential operators. Furthermore, in 1979 Cordes [29] used a represen-
tation similary to π±λ of the �nite dimensional Heisenberg Group in L2(Rn, λ)
to describe the Hörmander class Ψ0

0,0 by smooth elements with respect to the
mapping (r, s) 7−→ π(r, s, 0)Aπ(r, s, 0)−1 (A ∈ L (L2(Rn, λ))).

We aim to prove a similar connection between the Heisenberg group and
pseudodi�erential operators in the case of a Gaussian measure on an Hilbert
space rigging. Let H be a Hilbert Space with inner product 〈· , ·〉. Then as in the
�nite dimensional case the Heisenberg group H is de�ned by H := H × H × R
with group law � given by

(r, s, t)� (r′, s′, t′) = (r + r′, s+ s′, t+ t′ +
1

2
〈r , s′〉 − 1

2
〈r′ , s〉).

We denote by H+ ⊂ H0 ⊂ H− the corresponding rigging of Heisenberg groups
to a rigging of Hilbert-spaces. In this case we can extend the group law to a
continuous map H+ ×H− −→ H−.

Let us de�ne a strongly continuous unitary representation of H+ in L2(H−, γ)
by

π(r, s, t)f(x) :=
√
%r(x)e

i(t+〈s , x〉0+ 1
2
〈r , s〉0)f(x+ r), (r, s, t) ∈ H+.
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Then we show, that these representation is irreducible. Set π±λ(r, s, t) :=

π(
√
λr,±

√
λs,±λt). Then �π±λ is a strongly continuous unitary irreducible rep-

resentation again and no two di�erent representations π±λ are unitary equivalent.
Once having established these representation we can prove in the �nite di-

mensional case the same formula for the connection between pseudodi�erential
operators and the Heisenberg group as mentioned above. Having the equations
above we are able to de�ne π±λ(P ) for some functions P even in the in�nite
dimensional case. Considering the well known Ornstein-Uhlenbeck operator we
�nd that in the �nite dimensional case the symbol of this operator is given by

σ(x, ξ) =
∑n

j=1

xj+ξ
2
j−1

2
. In addition, we use the representation π to calculate the

spectrum of some pseudodi�erential operators in the in�nite dimensional case.
Finally, we will construct generalized Hörmander classes given by smooth el-

ements with respect to the the mapping (r, s) 7−→ π(r, s, 0)Aπ(r, s, 0)−1 (A ∈
L (L2(H−, γ))), where r, s are elements of the in�nite dimensional Heisenberg
group H+ and show that these Hörmander classes a spectrally invariant in
L2(H−, γ) in the case of operators of order 0.

Organization on the text.
Chapter1. After giving a short introduction in the theory of cylindrical mea-

sures on quasi-nuclear Hilbert-Space riggings, we consider two important kinds of
unbounded operators: the multiplication operators in coordinate directions and
the operators of partial di�erentiation ∂

∂t
. We determine the in�nitesimal gen-

erator of a strongly continuous unitary translation group Ut and show that the
family Ut (t ∈ H+) is unitary equivalent to a family of multiplication operators
Vt = ei〈t,·〉0 in the space L2(H−2, γ). Hence there exists an operator F such that
FUt = VtF . Thus we can consider F as an abstract Fourier-transform. Finally,
we prove that in the case of the canonical Gaussian measure F coincides with
the Fourier-Wiener-Transform.

Chapter2. In this chapter we consider two possible ways of de�ning a Laplace
operator on an quasi-nuclear Hilbert space rigging. In the �rst part we de�ne an
in�nite dimensional Laplacian Lγ by

Lγf(x) = −1

2
(tr0d

2f(x)− 2〈∇f(x), x〉0).

Then Lγ is positive, symmetric and densely de�ned. Moreover, we show that Lγ
is essentially selfadjoint on C 2

b (H−) and C∞
b,cyl(H−) and coincides with the well

known Ornstein-Uhlenbeck operator, considered by Malliavin. For all s ∈ R the
space C∞

pol,cyl(H−) is a space of essential selfadjointness of (Lγ+id)s. Furthermore,
Lγ leaves the space C∞

pol(H−) invariant.
In the second part of this chapter given a negative de�nite function ψ :

H− −→ C we examine the pseudodi�erential operator ψ(D) with symbol ψ.
Then this pseudodi�erential operator is de�ned by ψ(D)u := F−1ψ(·)Fu. We
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show that this operator is closable and that the domain of de�nition of the clo-
sure A is the Sobolev-Space H2

ψ(H−) attached to the negative de�nite function ψ.
Moreover, after adapting the concept of Dirichlet operators and Dirichlet-forms
to the case of Gaussian measures we obtain that (−A) is a L2

γ-Dirichlet operator
in the case of a cylindrical function ψ. In addition, −A generates a strongly con-
tinuous contraction L2

γ-sub Markovian semi group (Tt)t≥0 on L2(H−, γ), where Tt
is given by Ttu := F−1e−tψFu. Finally, we show that if ψ is real-valued there
exists a symmetric L2

γ-Dirichlet-form (E , D(E)), such that D(E) = H1
ψ(H−) and

for u ∈ D(A), v ∈ D(E) we have E(u, v) = 〈Au , v〉L2(H−,γ).

Chapter3. In [67] Gramsch, Ueberberg and Wagner describe a general the-
ory to construct Ψ0- resp. Ψ∗-algebras. Starting from closed resp. symmetric
operators they use iterated commutators. At �rst we summarize this theory and
then we compute some commutators needed later on. Let (ej)

∞
j=1 ⊂ H+ be an

orthonormal basis in H0. Using the operators Mej and Dej , we de�ne sub multi-
plicative Ψ∗-algebras ΨMD

n ⊆ L (L2(H−, γ)) for all n ∈ N ∪ {∞}, as in [67] and
[96, chapter 2]. Let Hn

MD be the n-th Sobolev space attached to these operators.
Then

ΨMD
n ×Hn

MD −→ Hn
MD : (a, ϕ) 7−→ a(ϕ)

is continuous and bilinear. Furthermore,we de�ne pseudodi�erential operators in
Weyl-form and show the in case of a Gaussian measure some of these operators
are elements of ΨMD

n .
After that we consider the Ornstein-Uhlenbeck as Laplace operator and de�ne

the corresponding scale of Sobolev spaces Hs. Using some kind of the Malliavin
calculus we obtain in the case of a Gaussian measure that the in H0 closed
annihilation and creation operators are continuous mappings from Hs to Hs−1.
Moreover, we apply commutator methods to de�ne generalized Hörmander classes
Ψ̃0
%,δ. We show that this Hörmander classes are sub multiplicative Ψ∗-algebras.

Finally, we reach a sub multiplicative Ψ∗-sub algebra of the Hörmander-class Ψ̃0
0,0

which contains certain multiplication operators, operators of the form F−1MgF ,
where F is the Fourier-Wiener-transform and Mg a certain multiplication opera-
tor. Moreover, this class contains a class of continuous pseudodi�erential opera-
tors de�ned by Albeverio and Dalecky. In addition, in the �nite dimensional case
we completely characterize this Ψ∗-sub algebra of Ψ̃0

0,0 by symbols of operators
from Ψ0

0,0.

Chapter4. Let ψ : H− −→ R be a negative de�nite function on a quasi-nuclear
Hilbert-Space-Rigging H+ ⊂ H0 ⊂ H−. We de�ne classes of symbols as functions
q(x, ξ) on H−×H− which satisfy certain estimates with respect to the given nega-
tive de�nite real-valued function. For such a symbol, we de�ne the corresponding
pseudodi�erential operator by q(x,D) := F−1

ξ→x[q(x, ξ)(Fu)(ξ)], where F denotes
the Fourier Wiener-Transform. For these classes of pseudodi�erential operators
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we show a symbolic calculus. Furthermore, we �nd that some sub classes of these
operators extend to continuous operators in a scale of Sobolev-Spaces. Finally, we
show that for cylindrical symbols and symbol depending only on ξ, q(x,D) is con-
tained in some generalized Hörmander-classe, which in case of operators of order
0 is a Ψ∗-Algebra. In the �nite dimensional case under some additional assump-
tions −q(x,D) − λid extends to a generator of a L2

γ-sub Markovian-semi group.
For ψ = ‖ξ‖2 we give a complete description of our classes of pseudodi�erential
operators by commutator estimates. Finally, we obtain on Rn su�cient criteria
on the symbol of our pseudodi�erential operator to be compact or a Fredholm
operator.

Chapter5. Let γ denote the canonical Gaussian measure on H− with re-
spect to the given rigging and let µ := γ ⊗ γ ⊗ λ. Then µ is a measure on
H− := H− × H− × R. Using this two measures we de�ne strongly unitary
representations π of H+ in L2(H−, γ) and κ of H+ in L2(H−, µ). Moreover,
we show that π is irreducible. We calculate the generators of the correspond-
ing semi groups in coordinate directions and show that this generators ful�ll
the classical commutation relations for the Heisenberg Group. Using this rep-
resentation π we examine pseudodi�erential operators in Weyl-form on H−. In
addition, we calculate the spectrum of some of pseudodi�erential operators. Con-
sidering the classical Heisenberg-Laplacian in the �nite dimensional case we can
easily calculate the symbol and the spectrum of the Ornstein-Uhlenbeck opera-
tor. Furthermore, using results of Caps [25] we discuss the question for which
symbols the pseudodi�erential operator q(X,D) is essential selfadjoint and for
which perturbations q(X,D) the operator Lγ + q(x,D) is essential selfadjoint on
Sγ(R

n). Caps proved his results in the case of Rn with the Lebesgue measure
using the Fe�ermann-Phong inequality. Finally, we construct generalized Hör-
mander classes and Ψ∗-algebras given by smooth elements with respect to the
mapping (r, s) 7−→ π(r, s, 0)Aπ(r, s, 0)−1 (A ∈ L (L2(H−, γ))).

Chapter6. Given a topological spaceX with σ-�nite Borel measure µ, a locally
compact groupG and a representation B ofG in the group of all homeomorphisms
of X, we examine how to construct a Borel measure µs on X which is invariant
under B(G) (Lemma 6.1.9). In many cases this construction leads to a non-trivial
representation of G on Lp(X,µs). We de�ne the notion of a NFp measure. Under
some additional conditions on G, X and the representation B we show that in
the case where µ has the NFp-property, the symmetrized measure µs is a NFp

measure. Finally we give some examples and an application of our work leads
to the construction of spectrally invariant algebras (Ψ∗- or Ψ0-algebras, cf. [56],
[65]) of C∞-elements in operator-algebras on Lp and L2-spaces.
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CHAPTER 1

Unitary translation groups and an abstract

Fourier-transform on in�nite dimensional Hilbert space

riggings

In this chapter we give an introduction to the theory of in�nite dimensional
cylindrical (quasi)measure and discuss some basic properties of these measures.
In particular, we are interested in Gaussian measures in quasi-nuclear Hilbert
space riggings H+ ⊆ H0 ⊆ H−. In this case L2(H−, µ) possesses an orthonormal
basis consisting of generalized Hermite-polynomials. Moreover, we consider two
important kinds of unbounded operators - the multiplication operators in coordi-
nate directions and the operators of partial di�erentiation. In addition, we de�ne
a commuting strongly continuous unitary translation group Ut. We show that the
family Ut (t ∈ H+) is unitary equivalent to a family of multiplication operators
Vt = ei〈t,·〉0 in the space L2(H−, γ). Hence there exists an operator F such that
FUt = VtF . Thus one can consider F as an abstract Fourier-transform.

1.1. Cylindrical measures in in�nite dimensional spaces

At �rst we describe some basic facts about σ-algebras and (quasi)measures in
in�nite dimensional spaces. Moreover, we consider the Fourier-transform of these
quasi measures and present some basic properties of the Fourier-transform. Let
us start with a result, which is true for all σ-�nite measures on a measure space
(Ω, F ).

Lemma 1.1.1. Let µ, ν, % be measures on (Ω, F ) such that the Radon-Nikodym
derivatives d%

dµ
, dν
dµ
and dν

d%
exist. Furthermore, let µ and % be σ-�nite. Then the

following equality holds.

d%

dµ

dν

d%
=
dν

dµ
.

Proof. The Radon-Nikodym theorem (cf. [8, p. 116-118]) implies that there
exist f , g and h with f, g, h ≥ 0, such that ν = fµ, ν = g% and % = hµ. Let
A ∈ F . Then we have∫

A

f dµ = ν(A) =

∫
A

gd% =

∫
A

g d(hµ) =

∫
A

gh dµ.

17
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Since A ∈ F was arbitrary, we obtain
∂ν

∂µ
= f = gh =

dν

d%

d%

dµ
µ− a.e. �

Notations 1.1.2. Let X be a topological space. Then we write B(X) for the
σ-algebra of all Borel sets, i.e. B(X) is the σ-algebra, which contains all open
sets.

In the following we describe special σ-algebras and measures in in�nite di-
mensional quasi-nuclear Hilbert space riggings, called cylindrical. Therefore we
follow closely [17, chapter 2 section 1.4 and 1.9.]. Let H+ ⊂ H0 ⊂ H− be a
quasi-nuclear Hilbert space rigging and K ⊂ H+ �nite dimensional. Moreover,
let δ ∈ B(K) be a Borel set. Then we de�ne

C(K; δ) := {x ∈ H | PKx ∈ δ},
where PK is the orthogonal projection onto K in H0. The set C(K; δ) is called
cylindrical, K its coordinate and δ its base. Let K be a set of �nite dimensional
subspaces of H+. Denote

(1) C(K, H−) := {C(K, δ) | δ ∈ B(K), K ∈ K}.
Lemma 1.1.3.
(i) C(K, H) is an algebra of sets.
(ii) We have Cσ(K, H−) = B(H−), where Cσ(K, H−) is the σ-span of

C(K, H−).

Proof. See [17, page 97]. �

Let K ∈ K and δ ∈ B(H−) �xed. Choosing an orthonormal basis (ek)
n
k=1 in

K, we can rewrite (1) by

C(K; δ) = {x ∈ H− | (〈x , e1〉H0 , . . . , 〈x , en〉H0) ∈ δ}.
Moreover, if we choose arbitrary vectors hk in K, the set

{x ∈ H− | (〈x , e1〉H0 , . . . , 〈x , en〉H0) ∈ δ}
is cylindrical, too (cf. [17, page 98 Remark1]). We aim to construct cylindrical
measures on B(H−). Therefore we �x K. The function of sets

C(K, H−) 3 C −→ µ(C) ∈ [0, 1]

is called a cylindrical quasi measure, if µ(H) = 1 and µ possesses the property of
σ-additivity on the sets with �xed coordinate, i.e.

µ

(
∞⋃
j=1

C(K; δj)

)
=

∞∑
j=1

µ(C(K; δj)) δj ∈ B(K) ∀j ∈ N

for any K ∈ K and mutually disjoint sets C(K; δj). We call µ a cylindrical
measure, if µ is σ−additive on C(K, H−) and thus can be extended to a measure
on B(H−).
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Remark 1.1.4. Let µ be a cylindrical quasi measure on H−.

(i) Then µ is always additive.
(ii) For K ∈ K (K �nite dimensional) �xed the function of sets

B(K) 3 δ −→ µ(C(K, δ))

is a σ-additive measure. Thus the function of sets

(2) {C(K, δ) | δ ∈ B(K)} 3 C −→ µ(C)

is a σ− additive measure.

Definition 1.1.5. Let µ be a cylindrical quasi measure on H− and let y ∈⋃
K∈KK. Then we de�ne the Fourier-transform or the characteristic function of

the cylindrical quasi measure µ by

χµ(y) :=

∫
ei〈x,y〉 dµ(x) :=

∫
ei〈x,y〉 dµ(y)(x),

where µ(y) is the measure from (2) with K = span{y}. The last integral is well
de�ned, since µ(y) is σ−additive.

Definition 1.1.6. A functional L on a topological vector space Φ is called
positive semi-de�nite, if the following inequality holds for allm ∈ N, α1, . . . , αm ∈
C and ϕ1, . . . ϕm,∈ Φ.

m∑
j,k=1

L(ϕj − ϕk)αjαk ≥ 0.

Theorem 1.1.7. Let H+ ⊂ H0 ⊂ H− be a quasi-nuclear Hilbert space rigging
and let L be a functional on H+. In order to be the Fourier-transform of a
cylindrical quasi measure on H−, it is necessary and su�cient, that L is positive
semi-de�nite, continuous in H+ and that we have L(0) = 1.

Proof. See [46, pp. 318-322] . �

We know many results about measures and measurable functions in �nite di-
mensional spaces. Thus it is sometimes convenient to approximate measurable
functions in in�nite dimensional spaces by measurable functions in �nite dimen-
sional spaces. Therefore we now describe the concept of cylindrical functions.

Henceforth let H+ ⊂ H0 ⊂ H− be a quasi nuclear Hilbert space rigging. Let
µ be a measure on H−.

Definition 1.1.8. A function H− 3 ξ −→ f(ξ) ∈ C measurable with regard
to the σ−algebra B(H−) is called cylindrical, if and only if, there exists a �nite
dimensional subspace K ⊂ H+ such that f is measurable with regard to the σ-
algebra C(K, H−), which is the σ−subalgebra of B(H−) consisting of all sets
with �xed coordinate K.
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Lemma 1.1.9. Each cylindrical function f admits a representation f(ξ) =
F (〈ξ, e1〉0, . . . , 〈ξ, en〉0), where ej ∈ H+ and F is a Borel function on Rn. Fur-
thermore, the ej can be chosen orthonormal with regard to the inner product in
H0.

Proof. See [17, p. 126 Lemma 1.4]. �

Lemma 1.1.10. (c.f. Berezansky, Kondratiev, [17]) Let µ be a cylindrical
measure on B(H−). Then the set of bounded cylindrical functions is dense in
each space Lp := Lp(H−, µ).

Proof. We only have to show that we can approximate the characteristic
function χA of an arbitrary set A ∈ B(H−) by a bounded cylindrical function
in Lp. Let ε > 0. Since B(H−)) is generated by the algebra C(H−), we can
�nd a cylindrical set Aε ∈ C(H−) such that µ(A∆Aε) ≤ ε, where A∆B :=
(A \B) ∪ (B \ A). Since χAε is a cylindrical function, we obtain∫

H−

|χA − χAε|
p dµ ≤ µ(A∆Aε) ≤ ε. �

Now we will give an application of the theory of cylindrical functions.

Proposition 1.1.11. Let µ be a probability measure in Rn. Then the set{
ei〈·,t〉 | t ∈ Rn

}
is total in L2(Rn, µ).

Proof. See [77, p. 212/213, Lemma 3.14]. �

Proposition 1.1.12. Let H+ ⊆ H0 ⊆ H− be a quasi-nuclear Hilbert space
rigging. Then the set

{
ei〈·,t〉0 | ∈ H+

}
is total in L2(H−, µ).

Proof. Let f ∈ L2(H−, µ). Applying Lemma 1.1.10, for ε > 0 arbi-
trary, there exists a cylindrical function g(x) := G(〈x, ϕ1〉0, · · · 〈x, ϕn〉0), ϕj ∈
H+, (j = 1 . . . n) orthogonal with respect to 〈·, ·〉0 with ‖f − g‖L2(H−, µ) ≤

ε
2
,

where G(t) ∈ L2(Rn, µ(y1, ··· , yn)) and µy1, ··· , yn is the measure in Rn, ob-
tained from the map x −→ (y1, · · · yn) with yk = 〈x, ϕk〉0. According to
1.1.11 there is a P ∈ span{ei〈·,t〉0} with ‖G− P‖L2(Rn, µ(y1,···yn)) ≤

ε
2
. De�ne

p(x) := P (〈x, ϕ1〉0, · · · 〈x, ϕn〉0) ∀x ∈ H−. Then we have

‖f − p‖L2(H−, µ) ≤ ‖f − g‖L2(H−, µ) + ‖G− P‖L2(Rn, µ(y1,···yn)) ≤ ε. �

Now our aim is to construct Gaussian measures in in�nite dimensional space.
These measures are extensions of cylindrical measures given by Gaussian mea-
sures in �nite dimensional spaces. We present some basic facts about Gaussian
measures and compute some integrals. To do this we follow closely [17, chapter
1 section 1.6, 1.7, 1.9] and use the notations introduced above.

We start by constructing Gaussian measures in quasi-nuclear Hilbert spaces-
riggings. Therefore let S be a positive operator in L (H0). Let a ∈ H0 be �xed
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and SK the restriction of PKS to K for K ∈ K. We de�ne a cylindrical measure
γ on C(K, H) by setting
(3)

γ((K; δ)) = π−
1
2

dim K(det SK)−
1
2

∫
δ

exp
(
−〈S−1

K (x− PKa), x− PKa〉0
)
dλK(x),

where λK is the Lebesgue measure in K induced by the metric of H0. Then γ(C)
is well de�ned for C ∈ C(K, H), i.e. the integral is independent of the choice of
K and δ as long as C = C(K, δ) (cf. [17, page 106]).

Theorem 1.1.13. Formula (3) de�nes a cylindrical measure in H−, which
can be extended to a measure on B(H−). The measure γS,a obtained as result is
called Gaussian measure with correlation operator S and mean value a. Moreover,
the measure γS,a is completely determined by the space H0, the positive operator
S and the mean value a. For ϕ ∈ H+ the Fourier transform

χγS,0(ϕ) =

∫
H−

ei〈x,ϕ〉0dγS,0(x)

is continuous and we have

χγS,0(ϕ) = e
1
4
〈Sϕ,ϕ〉0 .

Proof. See [17, page 111-113]. �

The Gaussian measure γ := γ1 := γid,0 is called canonical Gaussian measure.
We always write γS := γS,0.

Theorem 1.1.14. Let γS be a Gaussian measure in the Hilbert space H−
with positive nuclear operator S and mean value 0. Then γS can be represented
as canonical Gaussian measure by a properly chosen quasi-nuclear Hilbert space
rigging. Conversely every canonical Gaussian measure coincides with a Gaussian
measure γS in H−, where S is a positive nuclear operator.

Proof. See [17, p. 114 Theorem 1.9]. �

Once having this theorem we restrict ourself to the case of the canonical
Gaussian measure. Throughout the rest of this thesis let γ denote the canonical
Gaussian measure with respect to this rigging.

In the case of Gaussian measures in a �nite dimensional space it is well known
that the polynomials are dense in L2. We show the same result in the case of
Gaussian measures in in�nite dimensional spaces. Throughout this section we
follow closely [17, Chapter 2 Section 2.1]. We consider the quasi-nuclear Hilbert
space riggings H+ ⊂ H0 ⊂ H−.

Definition 1.1.15. A measurable function on H− is called measurable linear
functional, if it is the limit of a γ-almost everywhere convergent sequence of
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continuous linear functionals

f(x) = lim
n→∞

〈x, ϕn〉0, γ-a.e. (ϕn ∈ H+).

Proposition 1.1.16. Let h ∈ H0 and let (ϕj)
∞
j=1 ⊂ H+ be a sequence with

ϕj
H0−−−−→

j−→∞
h. Then the measurable linear functional

lh(x) = 〈h, x〉0 = lim
j→∞

〈x, ϕj〉0 (x ∈ H−)

is well de�ned. Moreover, we have lh ∈ L p(H−, γ) for all p ≥ 1.

Proof. See [35]. �

Definition 1.1.17. Let Pcyl(H−) be the space of all continuous polynomials,
which are cylindrical functions. These polynomials are called cylindrical polyno-
mials.

Proposition 1.1.18. For all p ≥ 1, the set of cylindrical polynomials
Pcyl(H−) is dense in Lp(H−, γS).

Proof. See [17, p.133]. �

A shift of a measure is called admissible, if the shifted measure is absolutely
continuous with regard to the original one. In in�nite dimensional spaces the fol-
lowing problem occurs: There are no measures for which all shifts are admissible.
In the following section we describe the set of admissible shifts in the case of a
Gaussian measure. Throughout this section we follow closely [17].

We de�ne the shifted measure on Cσ(H−) for an arbitrary cylindrical measure
µ. Therefore we introduce for y ∈ H− the mapping Ty : H− −→ H− by
Tyx := x+ y. Then Ty is bijective and for the cylindrical set

C = {x ∈ H− | (〈ϕ1, x〉0, . . . , 〈ϕn, x〉0) ∈ δ} (ϕk ∈ Φ, δ ∈ B(Rn))

we have
TyC = {z ∈ H− | (〈ϕ1, z − y〉0, . . . , 〈ϕn, z − y〉0) ∈ δ}

= {z ∈ H− | (〈ϕ1, z〉0, . . . , 〈ϕn, z〉0) ∈ δy},
where δy = δ+(〈ϕ1, y〉0, . . . , 〈ϕn, y〉0) ∈ B(Rn). This shows TyC ∈ C(H−). More-
over, the σ-span of the sets C is the σ-algebra Cσ(H−). This and the bijectivity
of Ty show that

Tyα = {x+ y |x ∈ α} ∈ Cσ(H−)

for α ∈ Cσ(H−). Now we de�ne the measure µy by

µy(α) = µ(Tyα) (α ∈ Cσ(H−); y ∈ H−).

Definition 1.1.19. Consider the Gaussian measure γ. For y ∈ H0 we de�ne

%y(·) = exp(−〈y, y〉0 − 2〈y, ·〉0).



1 Unitary translation groups and an abstract Fourier-transform 23

Lemma 1.1.20. Let y ∈ H0. Then %y(·) ∈ Lp(H−, γ) for all p ≥ 1.

Proof. See [17, p.154 Lemma 2.4]. �

Theorem 1.1.21. For y ∈ H0 the measures γ and γy are mutually absolutely
continuous and we have

dγy
dγ

(·) = %y(·).

Otherwise, the measures γ and γy are orthogonal.

Proof. See [17, p.154-156 Theorem 2.45]. �

Definition 1.1.22. We de�ne the logarithmic derivative βγ of the measure
γ by

(4) βγ(t, x) = lim
h→0

%ht(x)− 1

h
= lim

h→0

1

h

(
e−〈ht,ht〉0−2〈ht,x〉0 − 1

)
= −2〈t , x〉0,

with convergence in Lp(H−, γ) for all 1 ≤ p <∞.

Proof. See [18, page 251-252]. �

Finally we will give a proof of a result concerning arbitrary quasi-invariant
measures.

Lemma 1.1.23. Let µ be a probability measure on B(H−), quasi-invariant with
respect to shifts by elements of H+, i.e. for every t ∈ H+ the Radon-Nikodym-

derivative dµ(·+t)
dµ(·) ∈ L1(H−, µ) exists. Then for every open ball BR(x0) = {x ∈

H− | ‖x− x0‖H−
< R} of radius R > 0 with center x0 we have µ(BR(x0)) > 0.

Proof. Suppose the assertion is wrong. Then there exists x0 ∈ H− and a
R > 0 with µ(BR(x0)) = 0. Since H+ is dense in H−, we �nd a ϕ ∈ H+, with
BR/2(x) ⊂ BR(x0 + ϕ) for any x ∈ H−. By assumption the measures µ(·) and
µ(· + ϕ) are equivalent and hence we have µ(BR(x0 + ϕ)) = 0. Since H− is
separable, we can cover H− with countable many balls of radius R/2. But this
implies µ(H−) = 0, in contradiction to our assumption µ(H−) = 1. �

In the following section we describe an orthonormal basis in the space
L2(H−, γ) consisting of generalized Hermite polynomials. At �rst, we note some
basic facts about Hermite polynomials, following closely [104].

Definition 1.1.24. (cf. [104, p. 230]) For x ∈ R we de�ne the n-th Hermit
polynomial by

Hn(x) = (−1)nex
2 dn

dxn
(e−x

2

).

Lemma 1.1.25. Let dγ1(x) = π−1/2e−x
2
dx be the canonical Gaussian measure

in R. Then we have

(i)
∫
R

Hn(x)Hm(x) dγ1(x) = 2nn!δnm.
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(ii) x2m = (2m)!
22m

m∑
n=0

1
(2n)!(m−n)!

H2n(x).

(iii) x2m+1 = (2m+1)!
22m+1

m∑
n=0

1
(2n+1)!(m−n)

!H2n+1(x).

(iv) The normalized Hermite polynomials

hn(x) = (2nn!)−1/2Hn(x)

form an orthonormal basis in L2(R, γ1).

Proof. See [17, page 138-139]. �

Lemma 1.1.26. (c.f. [104, p. 230]) Set δx := − ∂
∂x

+2x and let f be in C 2(R).
Then we have

(i) δxHn(x) = Hn+1(x),
(ii) ∂

∂x
δx f(x)− δx

∂
∂x
f(x) = 2f(x),

(iii) ∂
∂x
Hn(x) = 2nHn−1(x) for all n ∈ N,

(iv) ( ∂
∂x

+ δx)hn(x) = 2x hn(x),
(v) xHn(x) = 1

2
Hn+1(x) + nHn−1(x) for all n ∈ N,

(vi) ∂
∂x
hn(x) =

√
2n hn−1(x),

(vii) δxhn(x) =
√

2(n+ 1)hn+1(x).

Proof. (i) Suppose n ∈ N0 be arbitrary. Then we have

δxHn(x) = (− ∂

∂x
+ 2x)(−1)nex

2 dn

dxn
(e−x

2

)

= (−1)n+1

(
ex

2 dn

dxn+1
(e−x

2

) + 2xex
2 dn

dxn
(e−x

2

)− 2xex
2 dn

dxn
(e−x

2

)

)
= (−1)n+1ex

2 dn

dxn+1
(e−x

2

) = Hn+1.

(ii) For f ∈ C 2(R) we obtain

∂

∂x
δxf(x)− δx

∂

∂x
f(x) =

∂

∂x
(2x f(x))− 2x

∂

∂x
f(x) = 2f(x).

(iii) An easy computation shows that ∂
∂x
H1(x) = ∂

∂x
(2x) = 2 = 2H0(x). Let

the assumption be right for n− 1 ∈ N. Then it follows

∂

∂x
Hn(x) =

∂

∂x
δxHn−1(x) = δx

∂

∂x
Hn−1(x) + 2Hn−1(x)

= 2(n− 1)δxHn−2(x) + 2Hn−1(x) = 2nHn−1(x).

(iv) Clear by de�nition.
(v) For arbitrary n ∈ N0 we have

xHn(x) =
1

2
(δx +

∂

∂x
)Hn(x) =

1

2
Hn+1(x) + nHn−1(x).
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(vi) For n ∈ N0 we get

∂

∂x
hn(x) =

∂

∂x

1√
2nn!

Hn(x) =
2n√
2nn!

Hn−1(x) =
√

2n hn−1(x).

(vii) Let n ∈ N0. The we obtain

δxhn(x) = δx
1√
2nn!

Hn(x) =
1√
2nn!

Hn+1(x) =
√

2(n+ 1)hn+1(x). �

Theorem 1.1.27. Let (ej)
∞
j=1 ⊂ H+ be an orthonormal basis in H0. For

α ∈ NN0 we set

hα(x) = hα1(〈e1, x〉0) · · ·hαν (〈eν , x〉0).
Then the set (hα)α∈NN0 is an orthornormal basis for L2(H−, γ). In addition, we

set hα := hid
α .

Proof. See [17, page 145-146 Theorem 2.2]. �

1.2. Some closed operators

In the �nite dimensional theory of pseudodi�erential operators we have two
important kinds of unbounded operators - the multiplication operators in coor-
dinate directions and the operators of partial di�erentiations. In this section we
de�ne these operators for functions on an in�nite dimensional Hilbert space and
show that these operators are closed resp. closable.

Therefore let H+ ⊆ H0 ⊆ H− be a quasi-nuclear Hilbert spaces rigging.
Moreover, let γ be the canonical Gaussian measure with respect to this rigging
and %t(·) be de�ned as in 1.1.19.

Definition 1.2.1. Suppose H and P are Hilbert spaces.

(i) Let C k
pol(H,P ) be the space of k times continuous di�erentiable maps

f : H −→ P with ‖dnf(x)‖Ln(H,P ) ≤ Cn (1 + ‖x‖H)mn for all n ∈
N0, n ≤ k and suitable constants Cn ∈ R and mn ∈ N0 depending on
n.

(ii) Furthermore, we write C k
b (H,P ) for the space of k times continuous

di�erentiable maps, with bounded derivatives. For f ∈ C k
b (H,P ) we

de�ne ‖f‖C kb (H,P ) :=
∑n

j=0 ‖djf(x)‖sup.

(iii) Let µ be a measure in H. Then C k
int(H) denotes the space of k times

continuous di�erentiable functions f : H −→ C such that

(x 7−→ ‖x‖mH ‖d
nf(x)‖Ln(H,C)) ∈ L

2(H, µ)

is bounded on bounded sets for all n,m ∈ N0, n ≤ k.
(iv) We denote by C k

pol,cyl(H), (C k
b,cyl(H), C k

int,cyl(H)) the space of all dif-
ferentiable cylindrical functions in C k

pol(H,C), (C k
b (H,C), C k

int(H,C)).



26 1.2 Some closed operators

(v) Let Sγ(Rn) be the space of all functions f ∈ C∞(Rn) such that there
exists a g ∈ S(Rn) with f(x) = e‖x‖/2g(x) for all x ∈ Rn.

(vi) Let Sγ,cyl(H−) be the set of all cylindrical functions f such that there
exist a function F ∈ Sγ(R

n) with f(x) = F (〈e1 , x〉0 · 〈en , x〉), where
(en)n∈N ⊂ H+ denotes an ONB of H0.

Definition 1.2.2. Let t ∈ H+. De�ne Mt : D(Mt) −→ L2(H−, γ) by

Mtf = 〈t, ·〉0f
for all

f ∈ D(Mt) = {f ∈ L2(H−, γ) | 〈t, ·〉0f ∈ L2(H−, γ)}.
Then Mt : D(Mt) −→ L2(H−, γ) is selfadjoint.

Lemma 1.2.3. Let f, g ∈ C 1
b (H−) and t ∈ H+. De�ne δtg(x) := −∂g(x)

∂t
+

2〈t , x〉0g(x). Then we have

〈 ∂
∂t
f, g〉L2(H−, γ) = 〈f, δtg〉L2(H−, γ).

Proof. Using Lebesgue's theorem of dominated convergence we obtain∫
H−

∂f(x)

∂t
g(x)dγ(x)

= lim
h→0

∫
H−

f(x+ ht)− f(x)

h
g(x)dγ(x)

= lim
h→0

1

h

∫
H−

f(x+ ht)g(x)dγ(x)−
∫
H−

f(x)g(x)dγ(x)


= lim

h→0

1

h

∫
H−

f(x)g(x− ht)%−ht(x)dγ(x)−
∫
H−

f(x)g(x)dγ(x)


= lim

h→0

1

h

∫
H−

f(x)
(
g(x− ht)%−ht − g(x)

)
dγ(x)

= lim
h→0

∫
H−

f(x)

(
g(x− ht)− g(x)

h
%−ht(x) +

%−ht(x)− 1

h
g(x)

)
dγ(x)

=

∫
H−

−f(x)
∂g(x)

∂t
+ 2f(x)〈t , x〉0g(x)dγ(x).

Here we used f, g ∈ C 1
b (H−). Thus the di�erence quotients are bounded. More-

over, for βγ we have convergence in L2(H−, γ) by assumption. �
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Proposition 1.2.4. Let t ∈ H+ be �xed. For f ∈ C∞
b (H−) we de�ne ∂t :

C∞
b (H−) −→ L2(H−, γ) by ∂tf(x) = ∂

∂t
f(x). Then ∂t is densely de�ned and

closable in L2(H−, γ). We will denote its closure by ∂t again.

Proof. Set δtg(x) := −∂g(x)
∂t

+ 2〈t , x〉0g(x) for g ∈ C∞
b (H−). Let (fn)

∞
n=1 ⊂

C∞
b sequence with fn

L2(H−, γ)−−−−−−→
n→∞

0 and ∂tfn
L2(H−, γ)−−−−−−→
n→∞

f . Thus for g ∈ C∞
b (H−) we

have

〈f, g〉L2(H−, γ) = lim
n→∞

〈∂tfn, g〉L2(H−, γ)
1.2.3
= lim

n→∞
〈fn, δtg〉L2(H−, γ) = 0.

Since C∞
b (H−) ⊂ L2(H−, γ) is dense, it follows that f = 0. But this is our

assertion. �

Lemma 1.2.5. For f, g ∈ C 1
int(H−) and δt (t ∈ H+) de�ned as in in 1.2.3 we

have

〈 ∂
∂t
f, g〉L2(H−, γ) = 〈f, δtg〉L2(H−, γ).

Moreover,we have C∞
int(H−) ⊂ D(∂t) and for f ∈ C∞

int(H−) we obtain

∂tf(x) =
∂

∂t
f(x).

Proof. Let f, g ∈ C 1
int(H−). Assume ζn ∈ C∞(R) having the following prop-

erties

(i) ζn(t) = 1 ∀ |t| ≤ n, ζn(t) = 0 ∀ |t| ≥ n+ 1,
(ii) |ζn(t)| ≤ 1, |ζ ′n(t)| ≤ c ∀n, where c > 0.

For x ∈ H− de�ne hn(x) := ζn(‖x‖2
−) and fn(x) := f(x)hn(x) and gn(x) :=

g(x)hn(x). Then we have fn(x) −−−−→
n−→∞

f(x) and

∂fn
∂t

(x) =
∂f

∂t
(x)hn(x) + f(x)2〈x, t〉−ζ ′n(‖x‖

2
−) −−−−→

n−→∞

∂f

∂t
(x)

pointwisely. The same equations hold for g and gn. Moreover, we have

(5)

∣∣∣∣∂fn∂t (x)gn(x)

∣∣∣∣ ≤ ‖df(x)‖Op ‖t‖− |g(x)|+ 2 ‖x‖− ‖t‖− |f(x)g(x)|

and

(6) |fn(x)βγ(t, x)gn(x)| ≤ |f(x)2〈x, t〉0g(x)| ≤ |f(x)g(x)| 2 ‖x‖− ‖t‖+ .
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Since f, g, df, dg are bounded on bounded sets by assumption, fn, gn, dfn, dgn
are bounded on H− by de�nition. Now Lebesgue's theorem of dominated conver-
gence implies∫

H−

∂f

∂t
(x)g(x) dγ(x) = lim

n→∞

∫
H−

∂fn
∂t

(x)gn(x) dγ(x)

= lim
n→∞

∫
H−

−fn(x)
∂gn(x)

∂t
+ fn(x)〈2x, t〉0gn(x)dγ(x)

=

∫
H−

−f(x)
∂g(x)

∂t
+ f(x)〈2x, t〉0g(x)dγ(x).

This shows the �rst assertion. Now we will prove the second assertion. Therefore

we only have to show that ∂tfn
L2(H−, γ)−−−−−−→
n→∞

∂
∂t
f . According to (5) we have

|∂fn(x)| ≤ ‖df(x)‖Op ‖t‖− + 2 ‖x‖− ‖t‖− |f(x)| ∈ L2(H−, γ).

Now our assertion follows by using Lebesgue's theorem of dominated convergence,
since ∂tfn(x) −−−→

n→∞
∂
∂t
f(x) pointwisely. �

Remark 1.2.6. Let f ∈ C∞
b (H−) and t ∈ H+. We de�ne

δtf(x) := −∂f(x)

∂t
+ 2〈t , x〉0f(x).

Then 1.2.4 and 1.2.5 remain valid for δt instead of ∂
∂t

resp. ∂t. We will write δt
again for the closure of δt.

1.3. Unitary translation groups and their in�nitesimal generator

In this section we introduce a unitary translation group, which is important
to construct an abstract Fourier transform. In contrast to the theory of pseu-
dodi�erential operators in Rn we do not have any translation invariant measure
in in�nite dimensional spaces. Moreover, there exists only a dense subset of an
in�nite dimensional space such that the translated measure is absolute continu-
ous with regard to a given measure. Therefore we only use shifts by elements of
this dense subset. We also need the Radon-Nikodym derivative of the translated
measures to de�ne this unitary translation group. Let % be de�ned as in 1.1.19.

Remark 1.3.1. For t, τ ∈ H+ and x ∈ H− Lemma 1.1.1 implies

%t+τ (x) =
d%(x+ t+ τ)

d%(x)
=
d%(x+ t)

d%(x)

d%(x+ t+ τ)

d%(x+ t)
= %t(x)%τ (x+ t).

Definition 1.3.2. For t ∈ H+ and ϕ ∈ L2(H−, γ) de�ne Ut by

Utϕ(x) =
√
%t(x)ϕ(x+ t),
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where %t(·) = dγ(·+t)
dγ(·) .

Lemma 1.3.3. Let t ∈ H+. Then Ut is unitary operator in L2(H−, γ) and we
have

Ut
∗ψ(x) =

√
%−t(x)ψ(x− t).

Proof. First we show that Ut is a bounded operator in L2(H−, γ). For
ϕ ∈ L2(H−, γ) we have

‖Utϕ(x)‖2
L2(H−, γ)

=

∫ ∣∣%t(x)ϕ(x+ t)2
∣∣ dγ(x)

=

∫
|%t(x− t)| |ϕ(x)|2 %−t(x)dγ(x)

=

∫
|ϕ(x)|2 dγ(x) = ‖ϕ‖2

L2(H−, γ)
.

This shows that Ut (t ∈ H+) is a bounded operator in L2(H−, γ). Now let us
compute Ut

∗. Therefore let ϕ, ψ ∈ L2(H−, γ). Then it follows that

〈Utϕ, ψ〉L2(H−, γ) =

∫ √
%t(x)ϕ(x+ t)ψ(x)dγ(x)

=

∫
ϕ(x)

√
%t(x− t)ψ(x− t)%−t(x)dγ(x)∫

ϕ(x)
√
%−t(x)ψ(x− t)dγ(x)

= 〈ϕ,Ut∗ψ〉L2(H−, γ)

with Ut
∗ψ(x) =

√
%t(x− t)%−t(x)ψ(x − t). Finally we show that Ut is a unitary

operator.

Ut
∗Utϕ(x) = Ut

∗(
√
%t(x)ϕ(x+ t)) =

√
%−t(x)

√
%t(x− t)ϕ(x) = ϕ(x),

UtUt
∗ϕ(x) = Ut(

√
%−t(x)ϕ(x− t)) =

√
%t(x)

√
%−t(x+ t)ϕ(x) = ϕ(x).

But this is our assertion. �

Theorem 1.3.4. Let t ∈ H+ and Ut de�ned as in 1.3.2. Then Ut is a com-
muting strongly continuous unitary family in L2(H−, γ) with Ut+s = UtUs for all
s, t ∈ H+.

Proof. For t, s ∈ H+ and ϕ ∈ L2(H−, γ) we have

Ut+sϕ(x) =
√
%t+s(x)ϕ(x+ t+ s) =

√
%t(x)%s(x+ t)ϕ(x+ t+ s)

=
√
%t(x)Usϕ(x+ t) = UtUsϕ(x).
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This shows that Ut (t ∈ H+) is a unitary group (note 1.3.3). For ϕ ∈ Cb(H−), it
follows that

〈Utϕ, ϕ〉L2(H−, γ) =

∫ √
%t(x)ϕ(x+ t)ϕ(x) dγ(x)

−−→
t→0

∫
|ϕ(x)|2 dγ(x) = ‖ϕ‖2

L2(H−, γ)
.

Here we used that ϕ is bounded and that
√
%t

L2(H−, γ)−−−−−−→
t→0

1. Hence it follows

‖(Ut − id)ϕ‖2
L2(H−, γ)

= 〈(Ut − id)∗(Ut − id)ϕ, ϕ〉L2(H−, γ)

= 〈(2 id− Ut − Ut
∗)ϕ, ϕ〉L2(H−, γ)

= 2 ‖ϕ‖2
L2(H−, γ)

− 〈Utϕ, ϕ〉L2(H−, γ) − 〈ϕ, Utϕ〉L2(H−, γ)

= 2 ‖ϕ‖2
L2(H−, γ)

− 2Re〈Utϕ, ϕ〉L2(H−, γ) −−→
t→0

0.

Now we show the assertion. Therefore let f ∈ L2(H−, γ) and ε > 0 arbitrary,
but �xed. Then there exists a ϕ ∈ Cb(H−), with ‖f − ϕ‖ ≤ ε

3
, since Cb(H−) ⊂

L2(H−, γ) dense. The computation above shows that for ϕ ∈ Cb(H−), there is a
δ > 0 such that ‖(Ut − id)ϕ‖L2(H−, γ)

≤ ε
3
for all t ∈ H+ with ‖t‖+ ≤ δ. Hence

for all t with ‖t‖+ ≤ δ we have

‖(Ut − id)f‖L2(H−, γ)
≤ ‖(Ut − id)(f − ϕ)‖L2(H−, γ)

+ ‖(Ut − id)ϕ‖L2(H−, γ)

≤ ‖Ut − id‖ ‖f − ϕ‖L2(H−, γ)
+ ‖(Ut − id)ϕ‖L2(H−, γ)

≤ 2
ε

3
+

ε

3
= ε.

Thus lim
t−→0

‖(Ut − id)f‖L2(H−, γ)
= 0 and Ut (t ∈ H+) is strongly continuous. �

Remark 1.3.5. Let t ∈ H+. Then R 3 h 7−→ Uht (h ∈ R) is strongly
continuous unitary one parameter group.

Now we compute the in�nitesimal generator Dt (t ∈ H+) of the unitary one
parameter groups de�ned in the previous section. Furthermore, we show that
these in�nitesimal generators de�ne a family of commuting di�erential operators
of order one. Finally, we determine a domain of essential selfadjointness of these
in�nitesimal generators.

Definition 1.3.6. Let Dt (t ∈ H+) denote the in�nitesimal generator of the
unitary C0 group Uht (h ∈ R). For its domain of de�nition we write D(Dt).
According to the theorem of Stone (cf. [117, Theorem VIII.8]) we obtain that
−iDt is selfadjoint.

Proposition 1.3.7. Let t ∈ H+. Then C 1
b (H−) ⊆ D(Dt) and for ϕ ∈

C 1
b (H−) we have

(7) Dtϕ(x) =
∂

∂t
ϕ(x)− 〈t , x〉0ϕ(x).
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Proof. For t ∈ H+, h ∈ R and ϕ ∈ C 1
b (H−) we get

Uhtϕ(x)− ϕ(x)

h
=

√
%ht(x)ϕ(x+ ht)− ϕ(x)

h

=
√
%ht(x)

ϕ(x+ ht)− ϕ(x)

h
+

√
%ht(x)− 1

h
ϕ(x).

Now we consider the two addends separately.
(i) For the �rst addend we have√

%ht(x)
ϕ(x+ ht)− ϕ(x)

h
− ∂

∂t
ϕ(x)

=
√
%ht(x)

ϕ(x+ ht)− ϕ(x)

h
−
√
%ht(x)

∂

∂t
ϕ(x) +

√
%ht(x)

∂

∂t
ϕ(x)− ∂

∂t
ϕ(x)

=
√
%ht(x)

(
ϕ(x+ ht)− ϕ(x)

h
− ∂

∂t
ϕ(x)

)
+
(√

%ht(x)− 1
) ∂

∂t
ϕ(x).

Thus we obtain∥∥∥∥√%ht(x)

(
ϕ(x+ ht)− ϕ(x)

h
− ∂

∂t
ϕ(x)

)∥∥∥∥2

L2(H−γ)

≤
(∫ ∣∣∣√%ht(x)

∣∣∣4 dγ(x))1/2
(∫ ∣∣∣∣ϕ(x+ ht)− ϕ(x)

h
− ∂

∂t
ϕ(x)

∣∣∣∣4 dγ(x)
)1/2

≤
(∫

%ht(x)
2dγ(x)

)1/2
(∫ ∣∣∣∣ϕ(x+ ht)− ϕ(x)

h
− ∂

∂t
ϕ(x)

∣∣∣∣4 dγ(x)
)1/2

h→0−−→ 0

and∥∥∥∥(√%ht(x)− 1
) ∂

∂t
ϕ(x)

∥∥∥∥
L2(H−γ)

≤ c ‖√%ht(x)− 1‖L2(H−γ)

h→0−−→ 0

by assumption and Lebesgue's theorem of dominated convergence, since
ϕ ∈ C 1

b (H−).
(ii) Moreover, our assumptions imply directly the following equation∥∥∥∥∥

(√
%ht(x)− 1

h
+ 〈t , x〉0

)
ϕ(x)

∥∥∥∥∥
L2(H−, γ)

≤ c

∥∥∥∥∥
√
%ht(x)− 1

h
+ 〈t , x〉0)

∥∥∥∥∥
L2(H−, γ)

h−→0−−−→ 0.

This yields

Dtϕ(x) =
∂

∂t
ϕ(x)− 〈t , x〉0. �
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At next let describe more detailed spaces of essential selfadjointness for the
operator Dt.

Proposition 1.3.8. For every ϕ ∈ C 1
int(H−).

(8) Dtϕ(x) =
∂

∂t
ϕ(x)− 〈t , x〉0ϕ(x).

Moreover, we have Dt(C∞
int(H−)) ⊂ C∞

int(H−), and C∞
int(H−) is a domain of es-

sential selfadjointness of the operator −iDt.

Proof. For f ∈ C 1
int(H−) arbitrary de�ne hn and ζn as in Lemma 1.2.5. Set

fn(x) = f(x)hn(x). Then we have fn −−−−→
n−→∞

f ∈ L2(H−γ) and fn ∈ C 1
b (H−) and

the following equality holds pointwisely.

Dtfn(x) =
∂

∂t
fn(x)− 〈t, x〉0fn(x)

=
∂

∂t
f(x)hn(x) + f(x)

∂

∂t
hn(x)− 〈t, x〉0fn(x)

ptw.−−−−→
n−→∞

∂

∂t
f(x)− 〈t, x〉0f(x).

Moreover,∣∣∣∣ ∂∂tfhn + f
∂

∂t
hn − 〈t, ·〉0fn(x)

∣∣∣∣ ≤ ∣∣∣∣ ∂∂tf
∣∣∣∣+ c |f |+ |〈t, ·〉0f(x)| ∈ L2(H−, γ).

Hence Lebesgue's theorem of dominated convergence implies that Dtfn conver-
gences in L2(H−, γ). Since Dt is closed, the �rst assertion is now a consequence
of step one. Finally we have C∞

int(H−) ⊂ L2(H−, γ) dense, Uht unitary C0 group
and Uht(C∞

int(H−)) ⊂ C∞
int(H−). Hence the second assertion follows directly by

the theorem of Nelson (cf. [117, Theorem VIII.10]). �

Moreover, the proof of Proposition 1.3.8 shows that C∞
b (H−) is a domain of

essential selfadjointness of iDt.

Remark 1.3.9. Furthermore, it is quite obvious that Ut leaves the space
Sγ(H−) and Sγ,cly(H−). Thus both are domains of essential selfadjointnes for
−iDt invariant.

1.4. An abstract Fourier transform

The Fourier transform in Rn is a unitary transform of function of L2(Rn, λ),
which is a unitary equivalence between the translation group and the group of
multiplication with ei〈t,·〉0 . Our aim is to �nd an unitary operator in in�nite
dimensional Hilbert spaces with similar properties as the Fourier transform in
Rn.

But at �rst let us note the following
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Lemma 1.4.1. Let ϕ ∈ H+. Then the following equation holds.

(9)
∫
H−

e〈ϕ,x〉0dγS(x) = eS〈ϕ,ϕ〉0/4.

Proof. See [35]. �

Lemma 1.4.2. Let γ be the canonical Gaussian measure. Then Uϕ (ϕ ∈ H+)
is cyclic with cycle vector 1.

Proof. Suppose ϕ ∈ H+. Then we have

Uϕ1(x) =
√
%ϕ(x) = e−

1
2
〈ϕ,ϕ〉0−〈ϕ,x〉0

Set M := span{Uϕ1(x) |ϕ ∈ H+}. M contains all partial derivatives of Uϕ1 in all
directions ϕ ∈ H+ and thus all polynomials. Since the polynomials are dense in
L2(H−, γ), it follows that M = L2(H−, γ). �

Lemma 1.4.3. For ϕ ∈ H+ set L(ϕ) = 〈Uϕ 1, 1〉L2(H−, γ). Then L : H+ −→
C is continuous, positive semi de�nite and we have L(0) = 1. Moreover, we have

L(ϕ) = e−
1
4
〈ϕ,ϕ〉0 .

Proof. Let ϕ1 . . . ϕn ∈ H+ and α1 . . . αn ∈ C. Then the following computa-
tion holds.

n∑
j,k=1

L(ϕj − ϕk)αjαk =
n∑

j,k=1

〈Uϕj−ϕk 1, 1〉L2(H−, γ)αjαk

=
n∑
j=1

n∑
k=1

〈Uϕj 1, Uϕk 1〉L2(H−, γ)αjαk

=

∥∥∥∥∥
n∑
j=1

αjUϕj 1

∥∥∥∥∥
2

L2(H−, γ)

≥ 0.

Therefore L is positive semi de�nite. The strong continuity of the family
Ut (t ∈ H+) implies directly the continuity of L. Furthermore, we have
L(0) = 〈1, 1〉L2(H−, γ) = 1. In addition we �nd

L(ϕ) =

∫
Uϕ1(x)dγ(x) =

∫ √
%ϕ(x)dγ(x)

= e−
1
2
〈ϕ,ϕ〉0

∫
e−〈ϕ,x〉0dγ(x)

1.4.1
= e−

1
2
〈ϕ,ϕ〉0e

1
4
〈ϕ,ϕ〉0 = e−

1
4
〈ϕ,ϕ〉0 .

�

The following result is well known and used in many publications. But, since
we have not found any references, we will give a complete proof.
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Proposition 1.4.4. The family Ut (t ∈ H+) is unitary equivalent to a family
of multiplication operators Vt = ei〈t,·〉0 in the space L2(H−2, γ).

Proof. For ϕ ∈ H+ let L(ϕ) = 〈Uϕ 1, 1〉L2(H−, γ). Then 1.4.3 implies that
L is continuous and positive semi-de�nite and we have L(0) = 1. Thus applying
Proposition 1.1.7 and Lemma 1.4.3 we obtain that L is the Fourier-transform of
the canonical Gaussian measure γ:

L(ϕ) =

∫
exp(i〈ϕ, x〉0)dγ(x).

Now for ϕ ∈ H+ we de�ne F(Uϕ1) = ei〈ϕ,·〉0 and extend F linearly to
span{Uϕ1 | ϕ ∈ H+}. For fj =

∑nj
kj=1 λ

(j)
kj
Uϕj1 (j = 1, 2) we obtain

〈F(f1),F(f2)〉L2(H−2, γ) =

n1∑
k1=1

n2∑
k2=1

λ
(1)
k1
λ

(2)
k2
〈ei〈ϕk1 ,x〉0 , ei〈ϕk2 ,x〉0〉L2(H−2, γ)

=

n1∑
k1=1

n2∑
k2=1

λ
(1)
k1
λ

(2)
k2

∫
ei〈ϕk1−ϕk2 ,x〉0 dγ(x)

=

n1∑
k1=1

n2∑
k2=1

λ
(1)
k1
λ

(2)
k2
L(ϕk1 − ϕk2)

=

n1∑
k1=1

n2∑
k2=1

λ
(1)
k1
λ

(2)
k2
〈Uϕk1−ϕk21, 1〉L2(H−,γ)

=

n1∑
k1=1

n2∑
k2=1

λ
(1)
k1
λ

(2)
k2
〈Uϕk11, Uϕk21〉L2(H−,γ)

= 〈f1, f2〉L2(H−,γ).

Thus F is well de�ned on span{Uϕ1 | ϕ ∈ H+} and an isometry. Since
span{Uϕ1 | ϕ ∈ H+} is dense in L2(H−, γ) F can be extended to a linear
isometry from L2(H−, γ) in L2(H−2, γ).
Now for ϕ ∈ H+ we de�ne G(ei〈ϕ,·〉0) = Uϕ1 and extend G linearly to
span{ei〈ϕ,·〉0 | ϕ ∈ H+} ⊂ L2(H−, γ). Similarly as above we see that G is an
isometry. Therefore we can extend G to an isometric operator from L2(H−, γ) in
L2(H−, γ), since Proposition 1.1.12 implies that span{ei〈ϕ,·〉0 | ϕ ∈ H+} is dense
in L2(H−2, γ).

For h ∈ L2(H−, γ) there exists a sequence hk ∈ span{ei〈ϕ,·〉0 | ϕ ∈ H+} such
that h = lim

k→∞
hk. Thus we have

FG h = FG lim
k→∞

hk = lim
k→∞

FG hk = lim
k→∞

hk = h.



1 Unitary translation groups and an abstract Fourier-transform 35

Furthermore, for f ∈ L2(H−, γ) there exists a sequence fk ∈ span{Uϕ1 | ϕ ∈
H+} such that f = lim

k→∞
fk. Hence we have

GF f = GF lim
k→∞

fk = lim
k→∞

GF fk = lim
k→∞

fk = f.

This yields that F is bijective and F−1 = G. Since

F(Uϕf1) =

n1∑
k=1

λ
(1)
k F(Uϕ+ϕkg) =

n1∑
k=1

λ
(1)
k ei〈ϕ+ϕk,·〉0 = ei〈ϕ,·〉0F(f1)

and span{Uϕ1 | ϕ ∈ H+2} is dense in L2(H−, γ), we have

FUϕ = ei〈ϕ,·〉0F ,

where F is isometry from L2(H−, γ) onto L2(H−2, γ). �

At next we de�ne the well known Fourier-Wiener-transform and show that in
the case of canonical Gaussian measure our abstract Fourier-transform coincides
with the Fourier-Wiener-transform.

Definition 1.4.5. For w ∈ H0 and f ∈ L2(H, γ2), where γ2 is the Gaussian
measure with correlations operator 2 id. Then the Fourier-Wiener-transform is
de�ned by

Wf(w) = e
‖w‖2

2

∫
H−

e−i〈w,x〉0f(x) dγ2(x).

Remark 1.4.6. In stochastic often the Fourier-Wiener transform is de�ned
without the minus i.e. by e

‖w‖2
2

∫
H−

ei〈w,x〉0f(x) dγ2(x).

Proposition 1.4.7. Let f(x) = F (〈x, e1〉0, . . . 〈x, en〉0) be a cylindrical func-
tion, where e1, . . . en ∈ H+ are mutually orthogonal in H0 and F ∈ L2(Rn, γ2).
Moreover, let P by orthogonal projection in H0 onto span{e1, . . . , en} extended by
continuity to H−. Then Wf is also a cylindrical function

Wf(w) = Wf(Pw) = e
‖Pw‖2

2

∫
H−

e−i〈Pw,x〉0f(x) dγ2(x).

Proof. See [35, page 72, Proposition 5.1]. �

Theorem 1.4.8. The Fourier-Wiener-transform can be extended as a unitary
operator Wf to L2(H−, γ1) , where γ1 is the canonical Gaussian measure in our
Hilbert space rigging.

Proof. See [35, page 73, Theorem 5.1]. �

Proposition 1.4.9. The Fourier-Wiener-transform coincides with the trans-
formation F de�ned in Proposition 1.4.4.
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Proof. For ϕ ∈ H+ let Uϕ be de�ned as in 1.3.2. Then Uϕ1(x) =

e−
1
2
〈ϕ,ϕ〉0−〈ϕ,x〉0 is a cylindrical function. Let Pϕ be the orthogonal projector onto

span{ϕ} in H0 extended by continuity to H−. Then we get

WUϕ1(y) = e
‖Pϕy‖20

2

∫
H−

e−i〈x,Pϕy〉0e−
‖ϕ‖20

2
−〈ϕ,x〉0 dγ2(x)

= e
‖Pϕy‖20

2 e−
‖ϕ‖20

2

∫
H−

e〈−iPϕy−ϕ,x〉0 dγ2(x)

(9)
= ei〈ϕ,y〉0 = FUϕ1(y).

But this is our assertion, since span{Uϕ1 | ϕ ∈ H+} is dense in L2(H−, γ1). �

Proposition and Definition 1.4.10. For u ∈ L2(Rn, γ) we de�ne

VG,nu(x) := π−n/4e−
‖x‖2

2 u(x).

Then VG,n is an isomorphism between L2(Rn, γ) and L2(Rn, λ) with inverse

V −1
G,nu(x) := πn/4e

‖x‖2
2 u(x).

Let F̃ denote the Fourier-Transform on L2(Rn, λ) given by

F̃f(x) := (2π)−n/2
∫
Rn

e−i〈x , y〉f(y)dy.

Then we have for all u ∈ L2(Rn, γ) such that VG,nu ∈ L1(Rn, λ) ∩ L2(Rn, λ)

Fu(x) = [V −1
G,nF̃(VG,nu)](x) = e

‖x‖2
2 F̃(e−

‖x‖2
2 u)(x)

and thus

F−1u(x) = (V −1
G,nF̃

−1VG,nu)(x) = e
‖x‖2

2 ˜F−1(e−
‖x‖2

2 u)(x).

Proof. See [84, Example 13.5]. �



CHAPTER 2

Laplace operators in in�nite dimensional spaces

In the classical �nite dimensional theory the Laplace operator is given by
∆ =

∑n
j=1

∂2

∂x2 and can be extended to a selfadjoint operator on L2(Rn, λ). When
trying to generalize this to the in�nite dimensional theory several problems occur
for example, there is no Lebesgue measure on an in�nite dimensional Hilbert
space. Even worse, there exists no measure on an in�nite dimensional Hilbert
space for which all shifts are admissible, i.e. there always exists a shift such
that the shifted measure is not absolutely continuous with regard to the original
one. Let (ej)j∈N be an orthonormal basis in an in�nite dimensional Hilbert space.
Then the operator f 7−→

∑∞
k=1

∂2

∂x2f does not necessarily convergence, even if f is
bounded, twice continuous di�erentiable and (ek) is an orthonormal basis in H−.
In this chapter we will consider two possible ways to solve this problems. In the
�rst part we consider the Ornstein-Uhlenbeck operator which occurs naturally in
stochastic as a kind of Laplacian (cf [105]). But as we show in Chapter 6 we
are not able to �nd a symbol for this operator. In the second part we consider
a slightly di�erent way, i.e. we consider negative de�nite functions a symbols for
a generalized Laplacian. As these operators are generators of L2

γ-sub Markovian
semi groups resp. L2

γ-Dirichlet-forms it is also quite natural to use them as a
replacement for the �nite dimensional Laplace operator.

2.1. The Ornstein-Uhlenbeck operator as Laplacian

In this section it is our aim to de�ne a �rst Laplace operator in L2(H−, γ).
In the �nite dimensional case the Laplace operator is de�ned as sum of the sec-
ond partial derivatives. Unfortunately, there is no Lebesgue measure in in�nite
dimensional space. Thus we have to consider a slightly modi�ed operator to
achieve selfadjointness of the Laplace operator. The same problem occurs in the
case of a Gaussian measure in the �nite dimensional case. Further on we dis-
cuss the problem of essential selfadjointness of this operator. In the last part
of this section we show that the Laplace operator coincides with the well known
Ornstein-Uhlenbeck operator. Moreover, we describe a domain of essential selfad-
jointness for all positive powers of the Laplace operator. We construct a Laplace
operator in the case of in�nite dimensional spaces. To guaranty the closability of
the Dirichlet-form we have to realize something like 'integration by parts'. Some
of the most important properties of this Laplace operator are discussed in [18].
Thus we follow [18, Chapter 6] to introduce the Laplace operator.

37



38 2.1 The Ornstein-Uhlenbeck operator as Laplacian

Let H+ ⊆ H0 ⊆ H− be a quasi-nuclear Hilbert space rigging and γ denote
the canonical measure with respect to this rigging.

Notations 2.1.1.

(i) For f ∈ C 1(H−,C) let df(·) be the Fréchet-derivative of f . Then ∇f
denotes the realization of the Fréchet-derivative with regard to the inner
product in H0, i.e. for h ∈ H−,C we have

df(·)(h) = 〈∇f(·), h〉0, ∇f(·) ∈ H+,C.

Sometimes we will write f ′ instead of ∇f .
(ii) Furthermore, for f ∈ C 2(H−,C) let d2f(·) be the second derivative of f .

Then f ′′ denotes the realization of d2f with regard to the inner product
in H0, i.e. for h, k ∈ H−,C we have

df(·)(h, k) = 〈f ′′(·)h, k〉0, f ′′(·) ∈ L (H−,C, H+,C).

Definition 2.1.2. For f, g ∈ C 2
b,cyl(H−) we set

dγ(f, g) =
1

2

∫
H−

〈∇f,∇g〉0dγ

and for f, g ∈ C 2
b (H−)1

Lγf = −1

2
(tr0d

2f + 2〈∇f, ·〉0).

Proposition 2.1.3. Let f, g ∈ C 2
b,cyl(H−). Then we have

dγ(f, g) =
1

2

∫
H−

〈∇f,∇g〉0dγ = 〈Lγf, g〉 = 〈f, Lγg〉.2

Proof. See [18, p. 253 Theorem 3.1] �

Lemma 2.1.4. dγ is non-negative and closable.

Proof. We only have to prove that dγ is closable. Let fn ∈ C 2
b,cyl(H−) n ∈ N

with ‖fn‖L2(H−, γ)

n→∞−−−→ 0. Then we have for g ∈ C 2
b,cyl(H−)

|dγ(fn, g)| = |〈Lγfn, g〉| = |〈fn, Lγg〉| ≤ ‖fn‖L2(H−, γ)
‖Lγg‖L2(H−, γ)

n→∞−−−→ 0.

Hence dγ is closable. �

1cf. also [21, page 72, Corollary 1.2.4].
2see also [111, page 62 Proposition 1.5.1]
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Proposition and Definition 2.1.5. According to 2.1.4 dγ is closable and
non-negative on C 2

b,cyl(H−). Thus there exists a minimal closed extension of dγ.
We denote this extension by dγ again and its domain of de�nition by D(dγ).
According to 2.1.4 dγ is a non-negative closable form. Thus we have

dγ(f, g) = 〈
√

LFrγ f,
√

LFrγ f g〉 ∀f, g ∈ D(dγ),

where LFrγ is the Friedrich's-extension3 of Lγ|C 2
b,cyl

and thus selfadjoint in

L2(H−, γ).

Lemma 2.1.6. For f ∈ C 2
b (H−) there exists a sequence (fn)

∞
n=1 ⊂ C 2

b,cyl(H−)

such that fn
L2(H−, γ)−−−−−−→
n→∞

f and

lim
n→∞

Lγfn = Lγf ∈ L2(H−, γ)

Thus for f ∈ C 2
b (H−) we have LFrγ f = Lγf and we write Lγ instead of LFrγ .

Proof. See [3, Lemma 6]. �

Lemma 2.1.7. The closure of (Lγ,C∞
b,cyl(H−)) coincides with the closure of

(Lγ,C 2
b (H−)) and the closure of (Lγ,C∞

0,cyl(H−)).

Proof. This Corollary follows by Lemma 2.1.6 and well known �nite dimen-
sional approximations. �

Theorem 2.1.8. The space C 2
b (H−) is a domain of essential selfadjointness

for Lγ. Thus C∞
b,cyl(H−) and C∞

0,cyl(H−) are domains of essential selfadjointness
for the operator Lγ.

Proof. The �rst part is proved in [18, p. 275 Theorem 3.4]. Thus the second
part follows by Lemma 2.1.7. �

Remark 2.1.9. The De�nition 2.1.2 can be formulated for f, g ∈ C 2
pol,cyl(H−)

resp. f ∈ C 2
pol(H−) instead of C 2

b,cyl(H−) resp. C 2
b (H−) and 2.1.3 - 2.1.4 re-

main valid for f, g ∈ C 2
pol,cyl(H−). Since dγ is positive and closable, we obtain a

Friedrichs-extension of Lγ1 |C 2
pol,cyl(H−). For this selfadjoint extension we write Lpolγ .

Since Lpolγ coincides with Lγ1 on C 2
b,cyl(H−) and since C 2

b,cyl(H−) is a domain of
essential selfadjointness of Lγ1 , we obtain Lpolγ = Lγ1 . Furthermore, Lemma 2.1.6
remains valid for f ∈ C 2

pol(H−) and fn ∈ C 2
pol,cyl(H−). Thus as in Theorem 2.1.8

C∞
pol,cyl(H−) and C∞

pol(H−) are domains of essential selfadjointness of Lγ1 .

Next let us show that the Laplace operator de�ned above coincides with the
so called Ornstein-Uhlenbeck operator. Moreover, we prove that the generalized
Hermite polynomials are eigenvectors of the Laplace operator and that the span
of the generalized Hermit polynomials is a domain of all essential selfadjointness
of all positive powers of Lγ1 + id.

3cf. for example [103, page 22-23]
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Lemma 2.1.10. Let (ej)
n
j=1 ⊂ H+ be an orthonormal basis in H0 = Hid.

Furthermore, let hα be de�ned as in 1.1.27. Then hα is an eigenvector of Lγ1
with eigenvalue |α|, i.e.

Lγ1hα = |α|hα.

Proof. Let α = (0, · · · , 0, n, 0, · · · ), where the is in the k-th place, i.e. hα =
hn(〈ek, x〉0) = cnHn(〈ek, x〉0). Then for n=0 we have Lγ11 = 0 and for n=1

Lγ1H1(〈ek, x〉0) = 〈ek, x〉0
∂

∂xk
H1(x) = 2〈ek, x〉0 = H1(x).

Moreover, according to 1.1.26 we obtain for n>2

Lγ1Hn(〈ek, x〉0)

=− 1

2

(
∂2

∂x2
k

Hn(〈ek, x〉0)− 2〈ek, x〉0)
∂

∂xk
Hn(〈ek, x〉0)

)
=− 1

2
(4n(n− 1)Hn−2(〈ek, x〉0)− 4n〈ek, x〉0Hn−1(〈ek, x〉0))

=− 1

2
(4n(n− 1)Hn−2(〈ek, x〉0)− 4n(

1

2
Hn(〈ek, x〉0) + (n− 1)Hn−2(〈ek, x〉0)))

= nHn(〈ek, x〉0).

Let α ∈ NN
0 arbitrary with |α| = n. Then we have

hα = hα1(〈e1, x〉0) · · ·hαν (〈eν , x〉0)

and thus we obtain

Lγ1hα1(〈e1, x〉0) · · ·hαν (〈eν , x〉0)

= −1

2

ν∑
k=1

(
∂2

∂x2
k

− 2〈ek, x〉0)
∂

∂xk

)
hα1(〈e1, x〉0) · · ·hαν (〈eν , x〉0)

=
ν∑
k=1

αkhα1(〈e1, x〉0) · · ·hαν (〈eν , x〉0)

= |α|hα1(〈e1, x〉0) · · ·hαν (〈eν , x〉0). �

Definition 2.1.11 (Ornstein-Uhlenbeck operator). Let

D =

{
f ∈ L2(H−, γ1) |

∞∑
n=0

n2 ‖PΓn(f)‖2 <∞

}
,

where PΓn denotes the orthogonal projection on the closed linear span of hα with
|α| = n. Then we de�ne L : D −→ L2(H−, γ1) by

L =
∞∑
n=0

n PΓn
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L is called Ornstein-Uhlenbeck operator4.

Proposition 2.1.12. span{hα |α ∈ NN0 } is a domain of essential selfadjoint-
ness for Ls and (L + id)s for all s > 0.

Proof. The PΓn are orthogonal projections with
∑∞

k=0 PΓn(f) = f . Thus
the spectral theorem for unbounded operators implies that

D =

{
f ∈ L2(H−, γ1) |

∞∑
n=0

n2 ‖PΓn(f)‖2
L2(H−, γ1) <∞

}
is a domain of essential selfadjointness for

L =
∞∑
n=0

n PΓn

resp. L+ id and

D(Ls) =

{
f ∈ L2(H−, γ1) |

∞∑
n=0

n2s ‖PΓn(f)‖2
L2(H−, γ1) <∞

}
.

is domain of essential selfadjointness for

Ls =
∞∑
n=0

ns PΓn

resp. (L + id)s. Let f ∈ D(Ls) arbitrary and j ∈ N. Since
∑∞

n=0 PΓn(f) = f ,
there exists a n1 > 0, such that for all k > n1 we have∥∥∥∥∥

k∑
n=0

PΓn(f)− f

∥∥∥∥∥
L2(H−, γ1)

≤ 1

2j
.

Furthermore, f ∈ D(Ls) implies, that there exists n0 > n1 with
∞∑

n=n0+1

n2s ‖PΓn(f)‖2
L2(H−, γ1) <

1

2j
.

Due to the fact that span{hα |α ∈ NN0 , |α| = n} = PΓn(span{hα |α ∈ NN0 }) ⊂
PΓn(L

2(H−, γ1)) dense, there exists a fj ∈ span{hα |α ∈ NN0 , |α| < n0} with∥∥∥∥∥fj −
n0∑
n=0

PΓn(f)

∥∥∥∥∥
L2(H−, γ1)

≤ 1

2j

and ∥∥∥∥∥
n0∑
n=0

n2sPΓn(f − fj)

∥∥∥∥∥
L2(H−, γ1)

≤ 1

2j
.

4cf. also Bouleau, Hirsch [21, Proposition 1.2.7], Nualart [111, page 53] and Malliavin
[105, page 10]
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Overall, we have ‖f − fj‖ ≤ 1
j
and ‖Lf − Lfj‖ ≤ 1

j
. This shows our assertion.

�

Proposition 2.1.13.
L = Lγ1

Proof. According to 2.1.5, Lγ1 is selfadjoint and due to 2.1.9 and 2.1.10 we
have Lf = Lγ1f for all f ∈ span{hα |α ∈ NN0 }. Since span{hα |α ∈ NN0 } is
a domain of essential selfadjointness of L and Lγ1 is a selfadjoint extension of
L|span{hα |α∈NN0 }, we obtain that L = Lγ1 . �

Corollary 2.1.14. C∞
pol(H−) is a domain of essential selfadjointness of Lsγ1

for all s ∈ R and Lγ1 leaves the space C∞
pol(H−) invariant .

Proof. Let f ∈ C∞
pol(H−). Our �rst step is to show by induction that for

k ∈ N0 the following equation holds.

(10) dk(trH0d
2f(x))(y1, . . . , yk) = trH0d

2(dkf(x)(y1, . . . , yk)),

where y1 . . . yk ∈ H− arbitrary. For k = 0 this is clear. Therefore let the as-
sumption be true for �xed k ∈ N0 and let y1 . . . yk+1 ∈ H−. Then the induction
hypothesis implies

dk(trH0d
2f(x)(y1, . . . , yk) = trH0d

2(dkf(x)(y1, . . . , yk)).

Thus we obtain

dk+1(trH0d
2f(x)(y1, . . . , yk+1) = d(dk(trH0d

2f(x)(y1, . . . , yk))(yk+1)

= d(trH0d
2(dkf(x)(y1, . . . , yk)))(yk+1)

=
∂

∂t

∞∑
n=1

gn(t)

∣∣∣∣∣
t=0

,

where gn(t) = dk+2f(x+ tyk+1)(en, en, y1, . . . , yk). However, we have

g′n(t) =
∂

∂yk+1

dk+2f(x+ tyk+1)(en, en, y1, . . . , yk)

= dk+3f(x+ tyk+1)(en, en, y1, . . . , yk+1).

Since t −→ dk+3f(x + tyk+1) continuous by assumption and [−1, 1] is compact,
there exists a c > 0 such that for all t ∈ [−1, 1]

∞∑
n=1

|g′n(t)| ≤
∞∑
n=1

∥∥dk+3f(x+ tyk+1)
∥∥
Op
‖ek‖2

− ‖y1‖− · · · ‖yk+1‖− ≤ c.

Hence it follows that

∂

∂t

∞∑
n=1

gn(t)

∣∣∣∣∣
t=0

=
∞∑
n=1

g′n(0) =
∞∑
n=1

g′n(0) =
∞∑
n=1

dk+3f(x)(en, en, y1, . . . , yk+1)

= trH0d
2(dk+1f(x)(y1, . . . , yk+1)).
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Altogether, we obtain∣∣dk(trH0d
2f(x)(y1, . . . , yk)

∣∣ ≤ c′
∥∥dk+2f(x)

∥∥
Op
‖y1‖− · · · ‖yk‖− ,

where c′ > 0 . Thus trH0d
2 leaves the space C∞

pol(H−) invariant. Moreover, we
have 〈f ′(x), βγ(x)〉 = df(−2x) and hence Lγ1 leaves the space C∞

pol(H−) invariant.
Further on this shows that C∞

pol(H−) ⊂ D((Lγ1 + id)k) for all k ∈ N. The
combination of the above and Proposition 2.1.12 yields C∞

pol(H−) is a domain of
essential selfadjointness of (Lγ1 + id)s for all s ∈ R. �

2.2. In�nite dimensional Laplace operators with negative de�nite
functions as symbols

A function ψ : Rn −→ C is called negative de�nite if ψ(0) ≥ 0 and e−tψ is a
positive de�nite function for all t > 0. In the classical �nite dimensional case ac-
cording to [80] every negative de�nite functions gives raise to a pseudodi�erential
operator ψ(D).

The closure −A of −ψ(D) is a Dirichlet operator and generates a strongly
continuous contraction sub Markovian semi group. Furthermore, if ψ is real-
valued, a symmetric Dirichlet form is de�ned by the closure of 〈Au , u〉 for u ∈
D(A). Conversely, pseudodi�erential operators with negative de�nite functions
as symbols arise naturally as generators of Feller Groups and Dirichlet-forms (cf.
[6] [78] [80], [81], [82]).

In this section we will replace Rn by an in�nite dimensional Hilbert space. At
�rst we prove that some well know facts about negative de�nite functions remain
valid if we replace Rn by a general Hilbert Space H− e.g. Petree's inequality and
the fact that |ψ(ξ)| ≤ cψ(1+ψ(ξ)2). Now we are able to de�ne a pseudodi�erential
operator attached to a negative de�nite symbol ψ by

ψ(D)u := F−1ψ(ξ)Fu,
where F denotes the Fourier-Wiener-transform. It turns out the some extension
of the operator −ψ(D) generates a semi group (Tt)t>0.

Again let H+ ⊂ H0 ⊂ H− denote a quasi-nuclear Hilbert space rigging.

Definition 2.2.1. A function ψ : H− −→ C belongs to the class N(H−) if
for any choice of k ∈ N and vectors ξ1, . . . , ξk ∈ H− the matrix

(ψ(ξj) + ψ(ξl)− ψ(ξj − ξl))j,l=1,...,k

is positive Hermitian. Further we set CN(H−) := N(H−) ∩ C(H−).

At �rst let us note some basic facts about negative de�nite functions.

Proposition 2.2.2. (i) For ψ ∈ N(H−) we have ψ(0) ≥ 0, ψ(ξ) =

ψ(−ξ), Re ψ(ξ) ≥ ψ(0).
(ii) The set N(H−) is a convex cone which is closed under point wise con-

vergence.
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(iii) For ψ ∈ N(H−), ψ and Re ψ belong to N(H−).
(iv) Any non-negative constant is an element of N(H−).
(v) For ψ ∈ N(H−) and λ > 0 the function ξ 7−→ ψ(λξ) belongs to N(H−).
(vi) We have ψ ∈ N(H−) if and only if

(a) ψ(0) ≥ 0

(b) ψ(ξ) = ψ(−ξ)
(c) for any k ∈ N and any choice of vectors ξ1, . . . , ξk ∈ H− and

complex numbers c1, . . . ck with
∑k

j=1 cj = 0 we have
∑k

j,l=1 ψ(ξj −
ξl)cjcl ≤ 0.

(vii) For ψ ∈ N(H−) the function ξ 7−→ ψ(ξ)−ψ(0) belongs also to N(H−).
(viii) Let u : H− −→ C be a positive de�nite function. Then the function

ξ 7−→ u(0)− u(ξ) is an element of N(H−).
(ix) A function ψ is an element of N(H−) if and only if ψ is negative de�nite

in the sense that
(a) ψ(0) ≥ 0
(b) ξ 7−→ e−tψ(ξ) is positive de�nite for t ≥ 0.

(x) Let ψ ∈ N(H−). Then ψ
α+βψ

∈ N(H−) for all α > 0 and β ≥ 0.

(xi) For ψ ∈ N(H−) and ξ, η ∈ H−we have

(a)
√
|ψ(ξ + η)| ≤

√
|ψ(ξ)|+

√
|ψ(η)|

(b)
∣∣∣√|ψ(ξ))| −

√
|ψ(η)|

∣∣∣ ≤√|ψ(ξ − η)|
(c) |ψ(ξ) + ψ(η)− ψ(ξ − η)| ≤ 2(Re ψ(ξ))1/2(Re ψ(η))1/2

(d) 1+|ψ(ξ)|
1+|ψ(η)| ≤ 2(1 + |ψ(ξ − η))|)

(e) 1 + |ψ(ξ ± η)| ≤ (1 + |ψ(ξ)|)(1 +
√
|ψ(η)|)2

(xii) Let ψ ∈ N(H−) be continuous at 0. Then ψ ∈ CN(H−).

Proof. The proof of this proposition can be found in [80, page 122-136] by
writing H− instead of Rn in the corresponding propositions. A complete proof of
this proposition is also given in appendix A1. �

Proposition 2.2.3. Let ψ ∈ N(H−). Moreover, we assume that there exists
ε > 0 and a constant C > 0 such that |ψ(ξ)| ≤ C for all ξ ∈ Bε(0). Then there
exist a constant cψ such that

|ψ(ξ)| ≤ cψ(1 + ‖ξ‖2
−).

Proof. Since ψ is bounded in Bε(0), it is su�cient to show that |ψ(ξ)| ≤
c′ ‖ξ‖2

− for all ξ ∈ H− \B 1
k
(0), where k ∈ N is chosen such that 1

k
≤ ε

2
. By

Proposition 2.2.2(xi) we have ψ(mη) ≤ m2ψ(η) for all η ∈ H−. Now let ‖ξ‖− ≥
1
k
.

Then there exists m0 ∈ N such that ‖ξ‖− ∈ [m0

k
, m0+1

k
). We obtain

1

k
≤
‖ξ‖−
m0

≤ m0 + 1

m0k
= (1 +

1

m0

)
1

k
≤ 2

k
≤ ε
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and thus

|ψ(ξ)| =
∣∣∣∣ψ(

m0

m0

ξ)

∣∣∣∣ ≤ m2
0

∣∣∣∣ψ(
ξ

m0

)

∣∣∣∣ ≤ Cm2
0 ≤ Ck2 ‖ξ‖2

− . �

Corollary 2.2.4. For ψ ∈ CN(H−) there exists a constant cψ such that

|ψ(ξ)| ≤ cψ(1 + ‖ξ‖2
−).

Proof. The continuity of ψ implies that there exists ε > 0 and C > 0 such
that |ψ(ξ)| ≤ C for all ‖ξ‖− ≤ C and thus the assertion follows by Proposition
2.2.3. �

Definition 2.2.5. (i) Let us denote by BN(H−) the set of all functions
ψ ∈ N(H−) for which there exists an ε > 0 and a C > 0 such that
|ψ(ξ)| ≤ C for all ξ ∈ Bε(0).

(ii) We say that a function ψ is a (continuous) negative de�nite function on
H− if ψ ∈ N(H−)(CN(H−)).

Example 2.2.6. Let us give some examples of functions in N(H−).

(i) Let d ∈ H+. Then (ξ 7−→ i〈d , ξ〉0) ∈ CN(H−).
(ii) Let A ∈ L (H−, H+) Then the mapping ξ 7−→ 〈Aξ , ξ〉 belongs to

CN(H−).
(iii) Let x ∈ H+. Then we �nd that ξ 7−→ (1− ei〈x , ξ〉0) is also an element of

CN(H−).

Proof. The proof is similarly to [80, Example 3.6.18] and [80, Example
3.6.19]. �

Example 2.2.7. Let (µt)t≥0 be a convolution semi group on H+, e.g. for all
t ≥ 0 µt is a bounded Borel measure on H+ with µt(H+) ≤ 1, µs ∗ µt = µs+t
and µt −→ ε0 vaguely as t −→ 0. Then there exists a negative de�nite function
ψ : H− −→ C such that µ̂t(ξ) = e−tψ(ξ) for all ξ ∈ H−, where µ̂t denotes the
Fourier-Transform of µt.

Proof. First let us note that the Fourier-Transform of a measure on H+ is
de�ned on (H+)′ = H−. Now the rest of the proof is similar to [80, Theorem
3.6.4] �

Definition 2.2.8. We call ψ : H− −→ C a negative de�nite function in
Levi-Khinchin-Form with respect to the Hilbert space rigging H+ ⊂ H0 ⊂ H− if

ψ(ξ) = c + i〈d , ξ〉0 + 〈Aξ , ξ〉0

+

∫
H+\{0}

(
1− e−i〈x , ξ〉0 − i〈x , ξ〉0

1 + ‖x‖2

)
1 + ‖x‖+

‖x‖2
+

µ(dx),

where c ≥ 0 is a positive constant, d ∈ H+, A ∈ L (H−, H+), such that
〈Aξ , ξ〉0 ≥ 0 for all ξ ∈ H− and µ is a bounded Borel measure in H+. We
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will denote by ν the measure given by

(11) ν(dx) =
1 + ‖x‖+

‖x‖2
+

µ(dx).

Lemma 2.2.9. Let ψ be a negative de�nite function with respect to the Hilbert
space rigging H+ ⊂ H0 ⊂ H− in Levi-Khinchin-Form. Then ψ ∈ N(H−).

Proof. Considering Example 2.2.6 this is obvious. �

Lemma 2.2.10. Let

ψ(ξ) =

∫
H+\{0}

(
1− e−i〈x , ξ〉0 − i〈x , ξ〉0

1 + ‖x‖2

)
ν(dx),

where ν is given by (11). Then we have

|ψ(ξ)| ≤ c(1 + ‖ξ‖2
−).

Proof. The idea of this proof can be found in [80, Theorem 3.7.7]. We have∣∣∣∣∣e−i〈x , ξ〉0 − 1 +
i〈x , ξ〉0
1 + ‖x‖2

+

∣∣∣∣∣
≤

∣∣e−i〈x , ξ〉0 − 1 + i〈x , ξ〉0
∣∣+ ∣∣∣∣∣i〈x , ξ〉0 − i〈x , ξ〉0

1 + ‖x‖2
+

∣∣∣∣∣
≤ 1

2
‖x‖2

+ ‖ξ‖
2
− +

‖x‖2
+

1 + ‖x‖2
+

‖x‖+ ‖ξ‖−

and thus for ‖x‖+ ≤ 1∣∣∣∣∣
(
e−i〈x , ξ〉0 − 1 +

i〈x , ξ〉0
1 + ‖x‖2

+

)
1 + ‖x‖2

+

‖x‖2
+

∣∣∣∣∣ ≤ 1

2
(1 + ‖x‖2

+) ‖ξ‖2
− + ‖x‖+ ‖ξ‖−

≤ 2(1 + ‖ξ‖2
−).

Moreover for ‖x‖+ ≥ 1 we obtain∣∣∣∣∣
(
e−i〈x , ξ〉0 − 1 +

i〈x , ξ〉0
1 + ‖x‖2

+

)
1 + ‖x‖2

+

‖x‖2
+

∣∣∣∣∣ ≤ 4 + ‖ξ‖− ≤ 4(1 + ‖ξ‖2
−).

Since µ is a bounded Borel-measure it follows that

|ψ| (ξ) ≤ c(1 + ‖ξ‖2
−)

where c > 0 is chosen suitable. �
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Corollary 2.2.11. For any negative de�nite Function ψ in Levi-Khinchin-
Form with respect to the Hilbert space rigging H+ ⊂ H0 ⊂ H− there exists a
constant c > 0 such that for all ξ ∈ H−

|ψ(ξ)| ≤ c(1 + ‖ξ‖2
−).

Corollary 2.2.12. Every negative de�nite Function ψ in Levi-Khinchin-
Form with respect to the Hilbert space rigging H+ ⊂ H0 ⊂ H− is continuous.

Proof. According to 2.2.2(xii) we only have to show that ψ is continuous at
0. Moreover, we only have to check that the integral part of ψ is continuous. But
this is clear by virtue of the proof of Lemma 2.2.10 and Lebesgue's theorem of
dominated convergence. �

Proposition 2.2.13. Let A ∈ L (H−, H+) such that 〈Ax , y〉0 = 〈Ay , x〉0
for all x, y ∈ H− and 〈Ax , x〉0 ≥ 0. Then A : H0 −→ H0 is symmetric, non-
negative and trace-class in H0. Thus there exits an orthonormal basis (fj)j∈N in
H0 consisting of eigenvectors of A. For this eigenvectors we have fj ∈ H+ for all
j ∈ N. Moreover, we obtain

(i) 〈Ax , x〉 =
∑∞

j=1 λj〈fj , x〉20 where λj denotes the eigenvalue of the eigen-
vector fj.

(ii)
∣∣∣ ∂∂ej 〈Ax , x〉∣∣∣ ≤ 2

√
λ〈Ax , x〉0 where λ denotes the largest eigenvalue of

A.
(iii)

∣∣∣ ∂
∂ek

∂
∂ej
〈Ax , x〉0

∣∣∣ ≤ 2 ‖A‖L (H−,H+) and all higher partial derivatives are

0.

Proof. Considering

A : H0
H.−S.
↪→ H−

bounded−−−−→ H+
H.−S.
↪→ H0

it follows that A is trace-class. Moreover, for all x, y ∈ H0 we have 〈Ax , y〉0 =
〈Ay , x〉0 = 〈x , Ay〉0. Thus A is symmetric. It is obvious that A is non-
negative. Thus there exists an orthonormal basis in H0 consisting of eigenvectors
(fj)j∈N of A such that for the corresponding sequence of eigenvalues λj we have
λ1 ≥ λ2 ≥ . . .. Since λjfj = Afj ∈ H+ it follows that fj ∈ H+. Now we obtain
for x ∈ H−

〈Ax , x〉 =
∞∑

j,k=1

〈Aej , ek〉0〈ek , x〉0〈ej , x〉0

=
∞∑

j,k=1

∞∑
l=1

λl〈fl , ek〉0〈ek , x〉0〈fl , ej〉0〈ej , x〉0 =
∞∑
j=1

λj〈fj , x〉20.

Furthermore we have∣∣∣∣ ∂∂ej 〈Ax , x〉0
∣∣∣∣2 = |〈Aej , x〉0 + 〈Ax , ej〉0|2 = 4 |〈Ax , ej〉0|2
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= 4

∣∣∣∣∣
∞∑
k=1

λk〈fk , x〉0〈fk , ej〉0

∣∣∣∣∣
2

≤ 4

(
∞∑
k=1

|λk〈fk , x〉0〈fk , ej〉0|

)2

≤ 4

(
∞∑
k=1

|λk〈fk , x〉0|

)2

= 4

(
∞∑
k=1

|〈Ax , fk〉0|

)2

= 4
∞∑
k=1

|〈Ax , fk〉0|2 = 4
∞∑
k=1

λ2
k〈fk , x〉20

≤ 4λ1

∞∑
k=1

λk〈fk , x〉20 = 4λ1〈Ax , x〉0.

But this is our assertion number (ii). Now let us prove number (iii). We have∣∣∣∣ ∂∂ej ∂

∂ek
〈Ax , x〉0

∣∣∣∣ = 2〈Aek , ej〉0 ≤ 2 ‖A‖L (H−,H+) ‖ej‖− ‖ek‖+ ≤ 2 ‖A‖L (H−,H+) .

But this is our proposition. �

Theorem 2.2.14. Let ψ : H− −→ R be a real-valued negative de�-
nite function in Levi-Khinchin-Form with respect to the Hilbert space rigging
H+ ⊂ H0 ⊂ H−. Moreover, let us assume that for 2 ≤ l ≤ m all absolute
H0-moments of the Levy measure ν exist, i.e.

(12) Ml :=

∫
H+\{0}

‖x‖l0 ν(dx) <∞, 2 ≤ l ≤ m.

Then for α ∈ NN0 such that |α| ≤ m we have

∣∣∂αξ ψ(ξ)
∣∣ ≤ c|α| ·


ψ(ξ), α = 0

ψ1/2(ξ), |α| = 1

1, |α| ≥ 2.

In addition, if ψ is cylindric then it is m-times di�erentiable and for m = ∞ also
of the class Sγ,cly(H−).

Proof. Let us consider the function Φ(ξ) :=
∫
H+\{0}(1− cos(〈x , ξ〉0))ν(dx).

Since all moments are �nite we obtain by interchange of di�erentiation and inte-
gration for |α| ≤ m

∂αξ Φ(ξ) = −
∫

H+\{0}

xα(∂α cos)(〈x , ξ〉0)ν(dx).
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For |α| = 1 it follows by the Cauchy-Schwarz inequality

∣∣∂ξjΦ(ξ)
∣∣ ≤

 ∫
H+\{0}

|xj|2 ν(dx)


1/2 ∫

H+\{0}

sin2(〈x , ξ〉)ν(dx)


1/2

≤

 ∫
H+\{0}

‖x‖2
0 ν(dx)


1/22

∫
H+\{0}

(1− cos(〈x , ξ〉)ν(dx)


1/2

= (2M2)
1/2Φ1/2(ξ),

and for 2 ≤ |α| ≤ m we have∣∣∂αξ Φ(ξ)
∣∣ ≤ ∫

H+\{0}

|xα| |(∂α cos)(〈x , ξ〉0)| ν(dx) ≤
∫

H+\{0}

‖x‖|α|0 ν(dx) = M|α|.

For a constant c the result above is obvious, for the quadratic form we proved
this in Proposition 2.2.13. �

Now let us consider negative de�nite functions as symbols for pseudodi�er-
ential operators. In in�nite dimensional spaces pseudodi�erential operators are
de�ned in [2] as Weyl-quantization of the symbol. In the classic �nite dimen-
sional theory of pseudodi�erential operators with negative de�nite symbol one
always considers the Kohn-Nirenberg-quantization. However, since all symbols
considered in this section are independent of x both quantizations coincide.

Definition 2.2.15. Let ψ be in BN(H−) and f ∈ Sγ,cyl(H−). Then we have

ψ(D)f := F−1ψ(·)Ff ∈ L2(H−, γ).

Note that F leaves invariant the space Sγ,cyl(H−). Thus ψ(·)Ff ∈ L2(H−, γ) by
Lemma 2.2.10.

Proposition 2.2.16. Let

ψ(ξ) =

∫
H+\{0}

(
1− e−i〈x , ξ〉0 − i〈x , ξ〉0

1 + ‖x‖2

)
ν(dx),

where ν is given by (11) and f ∈ Sγ,cyl(H−). Then we get

ψ(D)f(ξ) =

∫
H+\{0}

F−1

(
1− e−i〈x , ξ〉0 − i〈x , ξ〉0

1 + ‖x‖2

)
Ff(ξ)ν(dx).

Proof. For ψ, f as above and g ∈ L2(H−, γ) we obtain by Lemma 2.2.10,
De�nition 2.2.15 and Fubini's theorem

〈F−1ψ(·)(Ff) , g〉L2(H−,γ)

= 〈ψ(·)(Ff) , Fg〉L2(H−,γ)
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=

∫
H−

∫
H+\{0}

(
1− e−i〈x , ξ〉0 − i〈x , ξ〉0

1 + ‖x‖2

)
ν(dx)(Ff)(ξ)(Fg)(ξ)γ(dξ)

=

∫
H+\{0}

∫
H−

(
1− e−i〈x , ξ〉0 − i〈x , ξ〉0

1 + ‖x‖2

)
(Ff)(ξ)(Fg)(ξ)γ(dξ)ν(dx)

=

∫
H+\{0}

〈
(

1− e−i〈x , ·〉0 − i〈x , ·〉0
1 + ‖x‖2

)
(Ff) , Fg〉L2(H−,γ)ν(dx)

=

∫
H+\{0}

〈F−1

(
1− e−i〈x , ·〉0 − i〈x , ·〉0

1 + ‖x‖2

)
(Ff) , g〉L2(H−,γ)ν(dx)

=

∫
H+\{0}

∫
H−

(F−1

(
1− e−i〈x , ·〉0 − i〈x , ·〉0

1 + ‖x‖2

)
(Ff))(ξ)g(ξ)γ(dξ)ν(dx)

=

∫
H−

∫
H+\{0}

(F−1

(
1− e−i〈x , ·〉0 − i〈x , ·〉0

1 + ‖x‖2

)
(Ff))(ξ)ν(dx)g(ξ)γ(dξ)

= 〈
∫

H+\{0}

(F−1

(
1− e−i〈x , ·〉0 − i〈x , ·〉0

1 + ‖x‖2

)
(Ff))ν(dx) , g〉L2(H−,γ).

But this is our assertion since g ∈ L2(H−, γ) is arbitrary. �

Theorem 2.2.17. Let ψ : H− −→ C be an negative de�nite function in Levi-
Khinchin-Form with respect to the Hilbert space rigging H+ ⊂ H0 ⊂ H−. Then
one can consider ψ as symbol on H2

− and the corresponding pseudodi�erential

operator ψ̂ = ψ(D) is given by

ψ(D)u(x) = F−1(ψ(·)(Fu)(·))(x)
= cu(x) +Ddu(x)− Tr0Au

′′(x) + Tr0Au(x)

+〈Ax , ∇u(x)〉0 + 〈A∇u(x) , x〉0 − 〈Ax , x〉0u(x)

−
∫

H+\{0}

√
%y(x)u(x− y)− u(x) +

〈∇u(x) , y〉0 − 〈x , y〉0
1 + ‖y‖2

+

dν(y))

for all u ∈ Sγ,cyl(H−), where u′′(x) ∈ L2(H−, H+) is de�ned by 〈u′′(x)h , k〉0 =
d2u(x)(h, k) for all h, k ∈ H−.

Proof. Let us consider the four summands separately:

(i) It is clear, that F−1cF = c id for any constant c.
(ii) Let d ∈ H+. Then we obtain

F−1i〈d , ·〉0(Fu) = Ddu.
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(iii) Let A as in de�nition 2.2.8. For ξ ∈ H− we obtain by continuity

〈Aξ , ξ〉 =
∞∑
k

λkξ
2
k, where ξk := 〈fk , ξ〉 and λk and fk are de�ned as in

Proposition 2.2.13. Thus as in (ii) it follows

F−1〈A· , ·〉0(Fu)(x)

= −
∞∑
k=1

λkD
2
ku(x)

= −
∞∑
k=1

λkDk(
∂

∂xk
u(x)− xku(x))

= −
∞∑
k=1

λk

(
∂2

(∂xk)
2
u(x)− u(x)− xk

∂

∂xk
u(x)− xk

∂

∂xk
u(x) + x2

ku(x)

)
= −Tr0Au′′(x) + (Tr0A)u(x) + 〈Ax , ∇u(x)〉0

+ 〈A∇u(x) , x〉0 − 〈Ax , x〉0u(x).

(iv) In view of Proposition 2.2.16 we obtain

F−1

 ∫
H+\{0}

(
1− e−i〈y , ξ〉0 − i〈y , ξ〉0

1 + ‖y‖2

)
ν(dy)(Fu)(ξ)

 (x)

=

∫
H+\{0}

F−1

(
1− e−i〈y , ξ〉0 − i〈y , ξ〉0

1 + ‖y‖2 (Fu)(ξ)
)

(x)ν(dy)

=

∫
H+\{0}

u(x)−
√
%y(x)u(x− y)−

∑∞
j=1 yjDju(x)

1 + ‖y‖2
+

ν(dy)

= −
∫

H+\{0}

√
%y(x)u(x− y)− u(x) +

〈∇u(x) , y〉0 − 〈x , y〉0
1 + ‖y‖2

+

ν(dy).

Now (i)-(iv) yield our assertion. �

Definition 2.2.18. Let ψ be a continuous negative de�nite function on H−.
For t ≥ 0 we de�ne

Tt : L2(H−, γ) −→ L2(H−, γ)

by

Ttu := F−1e−tψ(·)Fu.
It is obvious that Tt maps L2(H−, γ) to L2(H−, γ) continuously since

∣∣e−tψ(·)
∣∣ ≤

1.
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Proposition 2.2.19. Let ψ be a negative de�nite function on H− and Tt
de�ned as in 2.2.18. Then Tt is a strongly continuous contraction semi group on
L2(H−, γ).

Proof. At �rst let us show that Tt is a semi group. Thus let t, s ≥ 0 and
u ∈ L2(H−, γ). We obtain

(Tt ◦ Ts)u = F−1e−tψ(·)FF−1e−sψ(·)Fu = F−1e−tψ(·)e−sψ(·)Fu
= F−1e−(t+s)ψ(·)Fu = Tt+su.

Moreover Tt is a contraction since

‖Ttu‖L2(H−, γ)
=

∥∥F−1e−tψ(·)Fu
∥∥
L2(H−, γ)

=
∥∥e−tψ(·)Fu

∥∥
L2(H−, γ)

≤ ‖Fu‖L2(H−, γ)
= ‖u‖L2(H−, γ)

.

At last let us show that Ttu is strongly continuous:

‖(Tt − id)u‖2
L2(H−, γ)

=
∥∥(F−1e−tψ(·)F − F−11F)u

∥∥2

L2(H−, γ)

=
∥∥F−1(e−tψ(·) − 1)Fu

∥∥2

L2(H−, γ)

=
∥∥(e−tψ(·) − 1)Fu

∥∥2

L2(H−, γ)

=

∫
H−

∣∣e−tψ(ξ) − 1
∣∣2 |Fu(ξ)|2 γ(dξ) −→ 0

by Lebesgue's Theorem of dominated convergence, since
∣∣e−tψ(ξ) − 1

∣∣2 t−→0−−−→ 0

and
∣∣e−tψ(ξ) − 1

∣∣2 ≤ 4. �

Theorem 2.2.20. Let ψ be a negative de�nite function on H− such that ψ ∈
BN(H−). Moreover, let Tt de�ned as in 2.2.18 and denote by A the in�nitesimal
generator of Tt. Then for u ∈ Sγ,cyl(H−) we have

Au := lim
t→0

Ttu− u

t
= −ψ(D)u,

where ψ(D) is de�ned as in 2.2.15.

Proof. For u ∈ Sγ,cyl(H−) we obtain∥∥∥∥(Ttu− u)

t
+ ψ(D)u

∥∥∥∥2

L2(H−, γ)

=

∥∥∥∥F−1 e
−tψ(·) − 1

t
(Fu) + F−1ψ(·)(Fu)

∥∥∥∥2

L2(H−, γ)

=

∥∥∥∥F−1(
e−tψ(·) − 1

t
+ ψ(·))Fu

∥∥∥∥2

L2(H−, γ)

=

∥∥∥∥(e−tψ(·) − 1

t
+ ψ(·))Fu

∥∥∥∥2

L2(H−, γ)
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=

∫
H−

∣∣∣∣e−tψ(ξ) − 1 + tψξ

t

∣∣∣∣2 |Fu(ξ)|2 γ(dξ).
However, for |t| ≤ 1 we �nd by Lemma 2.2.10 a constant c > 0 such that∣∣∣∣e−tψ(ξ) − 1 + tψξ

t

∣∣∣∣ ≤ 1

2
|t| |ψ(ξ)|2 ≤ 1

2
|ψ(ξ)|2 ≤ c(1 + ‖ξ‖2

−)2.

Of course, we have
∣∣∣ e−tψ(ξ)−1+tψξ

t

∣∣∣ t→0−−→ 0. Now, note that F leaves invariant

the space Sγ,cyl(H−) and thus we obtain by Lebesgue's Theorem of dominate
convergence∥∥∥∥(Ttu− u)

t
+ ψ(D)u

∥∥∥∥2

L2(H−, γ)

=

∫
H−

∣∣∣∣e−tψ(ξ) − 1 + tψξ

t

∣∣∣∣2 |Fu(ξ)|2 γ(dξ) t−→0−−−→ 0.

But this is our assertion. �

Definition 2.2.21. Let f ∈ C∞((0,∞)) be a real valued-function. We call
f a Bernstein function if f ≥ 0 and (−1)k d

kf(x)
dxk

≤ 0 for all n ∈ N \ {0}.

As shown in [80, Theorem 3.9.7] for every Bernstein function f there exits a
unique convolution semi group (ηt)t≥0 supported by [0,∞) such that

(13) L(ηt)(x) = e−tf(x), x > 0 and t > 0,

where L denotes the Laplace-Transform.

Remark 2.2.22. Let ψ be a negative de�nite function and f a Bernstein
function. Then as in [80, Lemma 3.9.9] f ◦ ψ is a negative de�nite function.
Moreover if ψ ∈ BN(H−) then the same is true for f ◦ψ. If ψ is continuous then
f ◦ ψ is continuous. In addition, according to [80, Example 3.9.16] for α ∈ [0, 1]
the function fα(x) = xα is a Bernstein function. Thus we obtain that for any
negative de�nite function ψ the function ψα is also a negative de�nite. This yields
that functions of the form

ψ(ξ) = |ξ1|α1 + |ξ2|α2 + . . .+ |ξn|αn ,
where αj ∈ [0, 2] are negative de�nite functions.

The following Theorem can be found in [80, Theorem 4.3.1]:

Theorem 2.2.23. Let f be a Bernstein function with corresponding convolu-
tion semi group ηt given by equation (13). Moreover, let (Tt)t≥0 be a strongly
continuous contraction semi group on a Banach space (X, ‖·‖X). For u ∈ X we

de�ne T ft u by the Bochner-integral

T ft u =

∞∫
0

Tsu ηt(ds).
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Then the integral is well de�ned and (T ft )t≥0 is a strongly continuous contraction

semi group on X. The semi group T ft is called subordinate to Tt with respect to
f .

Theorem 2.2.24. Let ψ be a negative de�nite function. Moreover, let (Tt)t≥0

be the strongly continuous contraction semi group given by ψ as in De�nition
2.2.18. Furthermore, let f be a Bernstein function with associated convolution
semi group (ηt)t≥0 given by equation (13). Then we obtain for the subordinated

semi group T ft to Tt with respect to f

T ft u = F−1e−tf◦ψ(·)Fu
for all u ∈ L2(H−, γ).

Proof. For u, v ∈ L2(H−, γ) we have
∞∫

0

∫
H−

∣∣∣F−1e−sψ(ξ)Fu(ξ)v(s)
∣∣∣ γ(dξ)ηt(ds) ≤

∞∫
0

∥∥F−1e−sψ(·)Fu
∥∥ ‖v‖ ηt(ds)

≤ ‖u‖ ‖v‖
∞∫

0

ηt(ds) <∞

and
∞∫

0

∫
H−

∣∣∣e−sψ(ξ)Fu(ξ)Fv(s)
∣∣∣ γ(dξ)ηt(ds) ≤

∞∫
0

‖Fu‖ ‖Fv‖ ηt(ds)

≤ ‖u‖ ‖v‖
∞∫

0

ηt(ds) <∞.

Hence we obtain by Fubini's theorem

〈
∞∫

0

F−1e−sψ(·)Fu ηt(ds) , v〉L2(H−,γ) =

∫
H−

∞∫
0

F−1e−sψ(ξ)Fu(ξ) ηt(ds)v(ξ)γ(dξ)

=

∞∫
0

∫
H−

F−1e−sψ(ξ)Fu(ξ)v(ξ)γ(dξ)ηt(ds)

=

∞∫
0

∫
H−

e−sψ(ξ)Fu(ξ)Fv(ξ)γ(dξ)ηt(ds)

=

∫
H−

∞∫
0

e−sψ(ξ)ηt(ds)Fu(ξ)Fv(ξ)γ(dξ)
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= 〈L(ηt)(ψ(·))Fu , Fv〉L2(H−,γ)

= 〈F−1e−tf◦ψ(·)Fu , v〉L2(H−,γ).

But this is our assertion since v ∈ L2(H−, γ) is arbitrary. �

Remark 2.2.25. As shown in [80, Theorem 4.3.20] for a strongly continuous
contraction semi group on a Banach space with generator (A,D(A)) and two
Bernstein functions f1, f2 we have

(i) Aαf1 = αAf1 for all α > 0

(ii) Af1+f2 = Af1 + Af2

(iii) Af1◦f2 = (Af2)f1

(iv) Af1·f2 = −Af1 ◦ Af2 = −Af2 ◦ Af1 if f1 · f2 is also a Bernstein function.

2.3. L2
γ-Sub-Markovian semi groups and Dirichlet-forms

Since we have to consider a Gaussian measure instead of the Lebesgue measure
and the Fourier-Wiener instead of the Fourier-Transform it seems in view of
Proposition 1.4.10 quite natural to adapt the concept of sub Markovian semi
groups and Dirichlet-forms in the following way: We call a semi group (St)t∈R an
L2
γ sub Markovian semi group if we have

0 ≤ u ≤ e
‖Pn·‖0

2 a.e. implies 0 ≤ Stu ≤ e
‖Pn·‖0

2 a.e.

Using this notation we show that for a cylindrical function ψ, Tt is an L2
γ sub Mar-

kovian semi group (cf. 2.3.24). Furthermore −ψ(D) extends to a L2
γ-Dirichlet op-

erator A. Concerning these adapted concept of Dirichlet operators we show, that
the most important propositions remain valid in case of the Gaussian-measure
(see 2.3.15). De�ning for s > 0 the Sobolev-space Hs

ψ(H−) as the space of all
u ∈ L2(H−, γ) such that

‖u‖ψ,s :=
∥∥(1 + |ψ|)s/2Fu

∥∥
L2(H−,γ)

<∞

we are able to show that the domain of de�nition of the generator of Tt isH2
ψ(H−).

In addition this generator is our L2
γ-Dirichlet operator A. Finally, if ψ is real-

valued we associate a symmetric L2
γ-Dirichlet-form to the L2

γ-Dirichlet operator
A. The domain of de�nition of this Dirichlet-form is given by H1

ψ(H−).
However, throughout the �rst part of this section we follow closely [80, 4.6

and 4,7] and transfer the necessary results, but refer to [80] concerning all general
results. From now on let (ej)j∈N ⊂ H+ be an orthonormal basis in H0 such that
(ej)j∈N is orthogonal in H+ and H−. Moreover, we assume that we have for all
x ∈ H+ and y ∈ H−

〈x , y〉0 =
∞∑
j=1

〈x , ej〉0〈ej , y〉0
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Definition 2.3.1. (i) Let Pn denote the orthogonal projection on the
closed linear span of {ej : j ≤ n} in H0 extended by continuity to H−.

(ii) Let S be in L (L2(H−, γ)). Then we call S L2
γ-sub Markovian if there

exists an n0 ∈ N such that for all n ≥ n0

0 ≤ u ≤ e
‖Pn·‖0

2 a.e. implies 0 ≤ Su ≤ e
‖Pn·‖0

2 a.e.

(iii) We call a semi group Tt an L2
γ sub Markovian semi group if Tt is a

contraction semi group and every operator Tt is sub Markovian.

During the rest of this chapter we always assume n ≥ n0.

Lemma 2.3.2. Every L2
γ-sub Markovian Operator S is positivity preserving.

Proof. Let n ≥ n0 and u ∈ L2(H−, γ) such that u ≥ 0. We set uk :=

min{u, ke
‖Pn·‖0

2 }. Then it is obvious that uk
k−→∞−−−−→ u in L2(H−, γ) by Lebesgue's

theorem of dominate convergence. For vk := uk
k

we have 0 ≤ vk ≤ e
‖Pn·‖0

2 and

thus 0 ≤ Svk ≤ e
‖Pn·‖0

2 . Hence it follows 0 ≤ Svk = 1
k
S(uk). Since S is bounded

we obtain Suk
k−→∞−−−−→ Su in L2(H−, γ). Thus there exists a subsequence ukl such

that Sukl
k−→∞−−−−→ Su almost everywhere. This yields 0 ≤ Su a.e. �

For u ∈ L2(H−, γ;R) we denote u+ := max{u, 0}, u− := max{−u, 0} and

u ∧ e
‖Pn·‖0

2 := min{u, e
‖Pn·‖0

2 }. Let S denote a L2
γ-sub Markovian operator. Then

since u = (u − e
‖Pn·‖0

2 )+ + u ∧ e
‖Pn·‖0

2 , 0 ≤ |u| ∧ e
‖Pn·‖0

2 − u ∧ e
‖Pn·‖0

2 and 0 ≤
|u| ∧ e

‖Pn·‖0
2 ≤ e

‖Pn·‖0
2 we obtain

S(u ∧ e
‖Pn·‖0

2 ) ≤ S(|u| ∧ e
‖Pn·‖0

2 ) ≤ e
‖Pn·‖0

2 a.e.

Now we can prove

Lemma 2.3.3. Let (Tt)t≥0 be an L2
γ-sub Markovian contraction semi group

with generator (A,D(A)) Then for all u ∈ D(A) and n ≥ n0 we have

(14)
∫
H−

(Au)(u− e
‖Pn·‖0

2 )+dγ(x) ≤ 0.

Proof. Let u ∈ L2(H−, γ) Then we have∫
H−

(Ttu)(u− e
‖Pn·‖0

2 )+ dγ

=

∫
H−

(Tt(u− e
‖Pn·‖0

2 )+)(u− e
‖Pn·‖0

2 )+ dγ +

∫
H−

(Tt(u ∧ e
‖Pn·‖0

2 ))(u− e
‖Pn·‖0

2 )+ dγ

≤
∥∥∥(u− e

‖Pn·‖0
2 )+

∥∥∥2

H−
+

∫
H−

e
‖Pn·‖0

2 (u− e
‖Pn·‖0

2 )+ dγ
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=

∫
H−

(u− e
‖Pn·‖0

2 )(u− e
‖Pn·‖0

2 )+ dγ +

∫
H−

e
‖Pn·‖0

2 (u− e
‖Pn·‖0

2 )+ dγ

=

∫
H−

u(u− e
‖Pn·‖0

2 )+ dγ.

Thus we �nd
∫
H−

(Ttu− u)(u− e
‖Pn·‖0

2 )+ dγ ≤ 0 which yields∫
H−

(Au)(u− e
‖Pn·‖0

2 )+ dγ = lim
t→0

1

t

∫
H−

(Ttu− u)(u− e
‖Pn·‖0

2 )+ dγ ≤ 0. �

Definition 2.3.4. (i) We call a closed densely de�ned Operator

A : L2(H−, γ;R) ⊇ D(A) −→ L2(H−, γ;R)

an L2
γ-Dirichlet operator if equation (14) is ful�lled for all u ∈ D(A).

(ii) A linear Operator A : L2(H−, γ) ⊇ D(A) −→ L2(H−, γ;R) is called
negative de�nite in L2(H−, γ;R) if

(15)
∫
H−

(Au)u dγ ≤ 0.

Proposition 2.3.5. Let (A,D(A)) be an linear densely de�ned Operator
in L2(H−, γ;R) which satis�es equation (14). Then A is negative de�nite in
L2(H−, γ;R).

Proof. Let u ∈ D(A), n ≥ n0 and k > 0. Then we have (ku − e
‖Pn·‖0

2 )+ =

k(u− e
‖Pn·‖0

2

k
)+ and thus

∫
H−

(Au)(u− e
‖Pn·‖0

2

k
)+ dγ ≤ 0. For k −→ ∞ we obtain

be Lebesgue's Theorem of dominated convergence
∫
H−

(Au)u+ dγ ≤ 0. Moreover,

if we take −u instead of u we have
∫
H−

(Au)u− dγ ≥ 0. Now it follows that∫
H−

(Au)u dγ =

∫
H−

(Au)u+ dγ −
∫
H−

(Au)u− dγ ≤ 0. �

Proposition 2.3.6. Let (A,D(A)) be a negative operator on L2(H−, γ). Then
A is dissipative.

Proof. See [80, Proposition 4.6.12] �

Lemma 2.3.7. A strongly continuous contraction semi group (Tt)t>0 is L
2
γ-sub

Markovian if and only if its resolvent (Rλ)λ>0 ful�lls the following condition:

(16) u ∈ L2(H−, γ) and 0 ≤ u ≤ e
‖Pn·‖0

2 =⇒ 0 ≤ λRλu ≤ e
‖Pn·‖0

2 ,

for all n ≥ n0. Moreover, in this case λRλ is a contraction and we call (Rλ)λ>0

a L2
γ-sub Markovian resolvent.



58 2.3 L2
γ-Sub-Markovian semi groups and Dirichlet-forms

Proof. First let Tt be a L2
γ sub Markovian semi group and u ∈ L2(H−, γ)

such that 0 ≤ u ≤ e
‖Pn·‖0

2 . Then the equation Rλu =
∫∞

0
e−λtTtudt yields

0 ≤ Rλu ≤
∞∫

0

e−λtTtdt ≤
1

λ
e
‖Pn·‖0

2 u

and ‖Rλu‖ ≤ 1
λ
. �

Now let Rλ ful�ll equation (16). Denote by (A,D(A)) the generator of Tt
and let again 0 ≤ u ≤ e

‖Pn·‖0
2 . Let T (λ)

t be the semi group generated by the
Yosida-Approximation Aλ of A. We have T (λ)

t u = e−λt
∑∞

ν=0
tλ
ν!

(λRλ)
νu which

yields 0 ≤ T
(λ)
t u ≤ e−λt

∑∞
ν=0

tλ
ν!
e
‖Pn·‖0

2 = e
‖Pn·‖0

2 . But since T (λ)
t u converges to

Ttu in L2(H−, γ) we �nd a subsequence which converges almost everywhere. But
this shows that Tt is a sub Markovian semi group.

Proposition 2.3.8. Let (A,D(A)) be a L2
γ-Dirichlet operator which generates

a strongly continuous contraction semi group. Then (Tt)t≥0 is L
2
γ-sub Markovian.

Proof. Due to Lemma 2.3.7 it is su�cient to show that (Rλ)λ>0 is a L2
γ-sub

Markovian resolvent. For n ≥ n0 and u ∈ L2(H−, γ) such that u ≤ e
‖Pn·‖0

2 a.e.
set v := λRλu ∈ D(A). Then we obtain

λ

∫
H−

v(v − e
‖Pn·‖0

2 )+dγ

=

∫
H−

(λv − Av)(v − e
‖Pn·‖0

2 )+dγ +

∫
H−

(Av)(v − e
‖Pn·‖0

2 )+dγ

= λ

∫
H−

u(v − e
‖Pn·‖0

2 )+dγ +

∫
H−

(Av)(v − e
‖Pn·‖0

2 )+dγ

≤ λ

∫
H−

e
‖Pn·‖0

2 (v − e
‖Pn·‖0

2 )+dγ,

which yields
∫
H−

((v − e
‖Pn·‖0

2 )+)2dγ = 0 and thus v ≤ e
‖Pn·‖0

2 a.e. For u ≥ 0 we

have −ku ≤ e
‖Pn·‖0

2 for all k ∈ N and thus v ≥ − e
‖Pn·‖0

2

k
for all k ∈ N which yields

v ≥ 0. �

Now we can state in view of the Hille-Yoshida-Theorem the following

Theorem 2.3.9. (i) Let A be a L2
γ-Dirichlet operator with R(λid−A) =

L2(H−, γ;R) for some λ > 0. Then A generates a L2
γ-sub Markovian

semi group on L2(H−, γ).
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(ii) Let A be a densely de�ned Operator which ful�lls (14) for all u ∈ D(A).

Moreover, assume R(λid− A) = L2(H−, γ;R) for some λ > 0. Then A
is closable and its closure generates a L2

γ-sub Markovian semi group on
L2(H−, γ).

Using the same arguments as in [80, p. 385-388], only replacing L2(Rn;R)
by L2(H−, γ;R) we obtain

Theorem 2.3.10. (i) Let (A,D(A)) be a densely de�ned operator on
L2(H−, γ;R), satisfying (15). Moreover we assume that

(17)
∣∣〈−Au , v〉L2(H−,γ)

∣∣ ≤ c(〈−Au , u〉L2(H−,γ))
1/2(〈−Av , v〉L2(H−,γ))

1/2.

Then there exists a closed densely de�ned linear form (E , D(E)) on
L2(H−, γ;R) such that D(A) ⊂ D(E) ⊂ L2(H−, γ;R). For this form
and u ∈ D(A) and v ∈ D(E)) we have E(u, v) = 〈−Au , v〉L2(H−,γ). In
addition we obtain

(18) |E(u, v)| ≤ c(E1(u, u))
1/2(E1(v, v))

1/2.

As usual for λ > 0 we use the notation Eλ(·, ·) = E(·, ·)+λ〈· , ·〉L2(H−,γ)

(ii) The assertion of part (i) holds for every L2
γ-Dirichlet operator which

satis�es (18)
(iii) Moreover, in part (i) the operator (A,D(A)) is closable and its closure

is a subspace of D(E).

Theorem 2.3.11. Let E , (D(E)) be a densely de�ned bilinear form on
L2(H−, γ;R) which ful�lls (18). Moreover, let us assume that E is positive de�-
nite. We denote by (Rλ)λ>0 the corresponding resolvent (cf. [80, 4.7.4]). Suppose
that (Rλ)λ>0 is a L2

γ-sub Markovian resolvent. Then for n ≥ n0 each of the
following equivalent statements hold

(i) For all u ∈ D(E) and all λ > 0, u ∧ λe
‖Pn·‖0

2 ∈ D(E) and

E(u ∧ λe
‖Pn·‖0

2 , u− u ∧ λe
‖Pn·‖0

2 ) ≥ 0.

(ii) For all u ∈ D(E), u+ ∧ e
‖Pn·‖0

2 ∈ D(E) and

E(u+ ∧ e
‖Pn·‖0

2 , u− u+ ∧ e
‖Pn·‖0

2 ) ≥ 0.

(iii) For all u ∈ D(E), u+ ∧ e
‖Pn·‖0

2 ∈ D(E) and

E(u+ u+ ∧ e
‖Pn·‖0

2 , u− u+ ∧ e
‖Pn·‖0

2 ) ≥ 0.

Conversely, if (E , D(E)) satis�es one of the three conditions above for n ≥ n0

then (Rλ)λ>0 is a L2
γ-sub Markovian resolvent and the generator (A,D(A)) of

(Rλ)λ>0 is a Dirichlet operator.



60 2.3 L2
γ-Sub-Markovian semi groups and Dirichlet-forms

Proof. (i) At �rst we show (i). Let u ∈ D(E), λ > 0 and µ > 0. For
all v, w ∈ H− we de�ne

E (µ) := µ〈v − µRµv , w〉L2(H−,γ).

Since u = (u− λe
‖Pn·‖0

2 )+ + u ∧ λe
‖Pn·‖0

2 we get

(19) E (µ)(u ∧ λe
‖Pn·‖0

2 , u− (u ∧ λe
‖Pn·‖0

2 )) = E (µ)(u ∧ λe
‖Pn·‖0

2 , (u− λe
‖Pn·‖0

2 )+).

Remember that Rµ satis�es (16) for all µ > 0. Thus using the same
arguments as in the proof of 2.3.2 we obtain

(u− λe
‖Pn·‖0

2 )+(u ∧ λe
‖Pn·‖0

2 − µRµ(u ∧ λe
‖Pn·‖0

2 ))

= (u− λe
‖Pn·‖0

2 )+(λe
‖Pn·‖0

2 − µRµ(u ∧ λe
‖Pn·‖0

2 ))

= (u− λe
‖Pn·‖0

2 )+(λe
‖Pn·‖0

2 − µRµ(|u| ∧ λe
‖Pn·‖0

2 )) ≥ 0.

(20)

Hence it follows that

Eµ1 ((u− λe
‖Pn·‖0

2 )+, (u− λe
‖Pn·‖0

2 )+)

= Eµ1 (u, (u− λe
‖Pn·‖0

2 )+)

−Eµ((u ∧ λe
‖Pn·‖0

2 ), (u− λe
‖Pn·‖0

2 )+)− 〈u ∧ λe
‖Pn·‖0

2 , (u− λe
‖Pn·‖0

2 )+〉

≤ Eµ1 (u, (u− λe
‖Pn·‖0

2 )+)

≤ c(E1(u, u))
1/2(Eµ1 ((u− λe

‖Pn·‖0
2 )+, (u− λe

‖Pn·‖0
2 )+))1/2

by Lemma [80, 4.7.17]. Now it follows that sup
µ>0

Eµ((u−λe
‖Pn·‖0

2 )+, (u−

λe
‖Pn·‖0

2 )+) < ∞ and we obtain by [80, Lemma 4.7.18] u ∧ λe
‖Pn·‖0

2 =

u− (u−λe
‖Pn·‖0

2 )+ ∈ D(E). Moreover, (19), (20) and [80, 4.7.18] imply

that E(u ∧ λe
‖Pn·‖0

2 , u− (u ∧ λe
‖Pn·‖0

2 )) ≥ 0.
(ii) Now let us show that (i) implies (ii). From (i) it follows that u+ =

−((−u)∧0) ∈ D(E) and thus u− ∈ D(E) and u+∧e
‖Pn·‖0

2 ∈ D(E). Note

that u+∧e
‖Pn·‖0

2 = (u∧e
‖Pn·‖0

2 )+ and u− = (u∧e
‖Pn·‖0

2 )−. Then we have

E(u+ ∧ e
‖Pn·‖0

2 , u− (u+ ∧ e
‖Pn·‖0

2 ))

= E(u+ ∧ e
‖Pn·‖0

2 , u+ − (u+ ∧ e
‖Pn·‖0

2 ))− E(u+ ∧ e
‖Pn·‖0

2 , u−)

≥ −E(u+ ∧ e
‖Pn·‖0

2 , (u ∧ e
‖Pn·‖0

2 )−)

= −E((u ∧ e
‖Pn·‖0

2 )+, (u ∧ e
‖Pn·‖0

2 )+ − (u ∧ e
‖Pn·‖0

2 ))

= E((−(u ∧ e
‖Pn·‖0

2 )) ∧ 0, (−(u ∧ e
‖Pn·‖0

2 ))− (−(u ∧ e
‖Pn·‖0

2 )) ∧ 0) ≥ 0,

which yields (ii).
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(iii) We obtain (iii) from (ii) by

E(u+ u+ ∧ e
‖Pn·‖0

2 , u− (u+ ∧ e
‖Pn·‖0

2 ))

= E(u− ∧ e
‖Pn·‖0

2 , u− (u+ ∧ e
‖Pn·‖0

2 ))

+2E(u+ ∧ e
‖Pn·‖0

2 , u− (u+ ∧ e
‖Pn·‖0

2 )) ≥ 0.

(iv) To �nish the proof let us show that (iii) implies (16) for the resolvent.

Thus let v ∈ L2(H−, γ) such that 0 ≤ v ≤ e
‖Pn·‖0

2 a.e and set u := λRλv.

At �rst it is easy to check that u− (u+∧e
‖Pn·‖0

2 ) = (u−e
‖Pn·‖0

2 )+ +u∧0,

which implies 〈(u+ ∧ e
‖Pn·‖0

2 )− v , u− (u+ ∧ e
‖Pn·‖0

2 )〉L2(H−,γ) ≥ 0. Then
we obtain

0 ≥ −2E(u+ u+ ∧ e
‖Pn·‖0

2 , u− (u+ ∧ e
‖Pn·‖0

2 ))

+E(u− u+ ∧ e
‖Pn·‖0

2 , u− (u+ ∧ e
‖Pn·‖0

2 ))

= −E(u, u− (u+ ∧ e
‖Pn·‖0

2 ))

= −λEλ(Rλv, u− (u+ ∧ e
‖Pn·‖0

2 )) + λ〈u , u− (u+ ∧ e
‖Pn·‖0

2 )〉L2(H−,γ)

= λ〈u− v , u− (u+ ∧ e
‖Pn·‖0

2 )〉L2(H−,γ)

= λ
∥∥∥u− (u+ ∧ e

‖Pn·‖0
2 )

∥∥∥2

L2(H−,γ)

+λ〈(u+ ∧ e
‖Pn·‖0

2 )− v , u− (u+ ∧ e
‖Pn·‖0

2 )〉L2(H−,γ).

Thus we have λ
∥∥∥u− (u+ ∧ e

‖Pn·‖0
2 )

∥∥∥2

L2(H−,γ)
≤ 0 which implies the as-

sertion.
�

Definition 2.3.12. Let (E , D(E)) be a closed linear form on L2(H−, γ;R)
such that E is continuous with respect to Esym1 where Esym1 (u, v) := 1

2
(E1(u, v) +

E1(v, u)) for all u, v ∈ D(E).

(i) The form (E , D(E)) is called a semi-L2
γ-Dirichlet-form if for all n ≥ n0

and u ∈ D(E) we have (u+ ∧ e
‖Pn·‖0

2 ) ∈ D(E) and

(21) E(u+ u+ ∧ e
‖Pn·‖0

2 , u− u+ ∧ e
‖Pn·‖0

2 ) ≥ 0.

(ii) The form (E , D(E)) is said to be a L2
γ-Dirichlet-form if (E , D(E)) is a

semi-L2
γ-Dirichlet and we have in addition

(22) E(u− u+ ∧ e
‖Pn·‖0

2 , u+ u+ ∧ e
‖Pn·‖0

2 ) ≥ 0

for all n ≥ n0.
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(iii) If (E , D(E)) is symmetric and a L2
γ-Dirichlet form then we call (E , D(E))

a symmetric L2
γ-Dirichlet form. Note that for a symmetric form to be a

L2
γ-Dirichlet-form is equivalent to the condition that u ∈ D(E) implies

(u+ ∧ e
‖Pn·‖0

2 ) ∈ D(E) and

E(u+ ∧ e
‖Pn·‖0

2 , u+ ∧ e
‖Pn·‖0

2 ) ≤ E(u, u),

for all n ≥ n0.

Proposition 2.3.13. Let (E , D(E)) be a closed form on L2(H−, γ;R) such
that E is continuous with respect to Esym1 . Assume that for every ε > 0 there
exists a function ϕε : R −→ [−ε, 1 + ε] such that ϕε(t) = t for all t ∈ [0, 1] and
that t1 ≤ t2 implies 0 ≤ ϕε(t2)−ϕε(t1) ≤ t2− t1. In addition we suppose that for

some u ∈ D(E) we have (Φε(u))(·) := ϕε(u(·)e−
‖Pn·‖0

2 )e
‖Pn·‖0

2 ∈ D(E) such that

(23) lim inf
ε→0

E(u+ Φε(u), u− Φε(u)) ≥ 0

and

(24) lim inf
ε→0

E(u− Φε(u), u+ Φε(u)) ≥ 0.

Then we have u+∧e
‖Pn·‖0

2 ∈ D(E) and the equations (21) and (22) hold. Moreover,
(E , D(E)) is a L2

γ-Dirichlet form if and only if this assertion above holds for all
u ∈ D(E) and n ≥ n0.

Proof. Adding the two inequalities above we obtain

lim sup
ε→0

E(Φε(u),Φε(u)) ≤ E(u, u).

Note that Φε(u) −→ u+ ∧ e
‖Pn·‖0

2 in L2(H−, γ;R). Now according to [80, Lemma
4.7.18] there exists a subsequence (εk)k∈N such that εk −→ 0 and Φε(u) −→
u+ ∧ e

‖Pn·‖0
2 weakly in (D(E), Esym1 ) and we have

E(u+ ∧ e
‖Pn·‖0

2 , u+ ∧ e
‖Pn·‖0

2 ) ≤ lim inf
k→∞

E(Φε(u),Φε(u)).

Hence we obtain

E(u+ u+ ∧ e
‖Pn·‖0

2 , u− u+ ∧ e
‖Pn·‖0

2 )

≥ E(u, u)− lim
k→∞

E(u,Φε(u)) + lim
k→∞

E(Φε(u), u)− lim inf
k→∞

E(Φε(u),Φε(u))

= lim sup
ε→0

E(u+ Φε(u), u− Φε(u)) ≥ 0

and

E(u− u+ ∧ e
‖Pn·‖0

2 , u+ u+ ∧ e
‖Pn·‖0

2 )

≥ E(u, u) + lim
k→∞

E(u,Φε(u))− lim
k→∞

E(Φε(u), u)− lim inf
k→∞

E(Φε(u),Φε(u))

= lim sup
ε→0

E(u− Φε(u), u+ Φε(u)) ≥ 0.
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But this is the �rst part of our assertion. Finally we note that if (E , D(E)) is a
L2
γ-Dirichlet form, then the function ϕε(t) = t+ ∧ 1 ful�lls the criterion and for

this function we have Φε(u)(x) = u+∧e
‖Pn·‖0

2 for all u ∈ D(E). Thus the assertion
is proved. �

As in [80, p. 406] we obtain the following

Lemma 2.3.14. Suppose (21) and (22) or (23) and (24) hold only for a dense
subset of (D(E), Esym1 ). Then they hold for all u ∈ D(E).

Summarizing our results above and using [80, 4.1, 4.6 and 4.7] we obtain

Theorem 2.3.15. Let (A,D(A)) be a L2
γ-Dirichlet operator on L

2(H−, γ;R).
Assume that A generates a L2

γ-Sub-Markovian semi group Tt and satis�es equa-
tion (17). Then the bilinear form (E , D(E)) de�ned in Theorem 2.3.10 is a
semi-L2

γ-Dirichlet-form. If in addition (A∗, D(A∗)) is a L2
γ-Dirichlet opera-

tor, then (E , D(E)) is a L2
γ-Dirichlet-form. Moreover, if (A,D(A)) is selfad-

joint then (E , D(E)) is a symmetric L2
γ-Dirichlet-form on L2(H−, γ;R). Con-

versely, suppose that (E , D(E)) is a semi-L2
γ-Dirichlet-form on L2(H−, γ;R).

Then the operator (A,D(A)) de�ned in Theorem 2.3.11 is a L2
γ-Dirichlet op-

erator which generates a L2
γ-sub Markovian semi group. If (E , D(E)) is a L2

γ-
Dirichlet-form then (A∗, D(A∗)) is a L2

γ-Dirichlet operator, too. Furthermore if
(E , D(E)) is a symmetric L2

γ-Dirichlet-form then (A,D(A)) is selfadjont and we

have D(E) = D((−A)1/2) and E(u, v) = 〈(−A)−1/2u , (−A)1/2v〉L2(H−,γ) for all
u, v ∈ D(E).

Now we consider our pseudodi�erential operator with negative de�nite symbol
as some kind of generalized Laplace operator. We de�ne scales of Sobolev-spaces
attached to these operators. We show that they share some important properties
with the classical Laplace operator. For example we determineH2

ψ(H−) as domain
of de�nition for ψ(D). In addition these operators generate L2

γ-Dirichlet-forms
with domain H1

ψ(H−)

Definition 2.3.16. Let ψ be a continuous negative de�nite function. Then
we de�ne for all s ≥ 0 the generalized Sobolev-Space Hs

ψ(H−) as the space of all
u ∈ L2(H−, γ) such that

‖u‖ψ,s :=
∥∥(1 + |ψ|)s/2Fu

∥∥
L2(H−,γ)

<∞.

Furthermore, we set H−s
ψ (H−) := (Hs

ψ(H−))′, where the duality is given with
respect to the inner product inH0

ψ(H−) = L2(H−, γ). As usual we setH∞
ψ (H−) :=⋂

s∈RH
s
ψ(H−) and H−∞

( H−) :=
⋃
s∈RH

s
ψ(H−).

Proposition 2.3.17. Let ψ be a negative de�nite function on H−. Then the
space Sγ,cyl(H−) is a dense subset of Hs

ψ(H−) for all s ≥ 0.
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Proof. At �rst note that the Fourier-Wiener-transform leaves invariant the
space Sγ,cyl(H−). Thus it is clear that Sγ,cyl(H−) ⊂ Hs

ψ(H−). Now let u ∈
Hs
ψ(H−) arbitrary and ε > 0. Then there exists a function w ∈ Cb(H−) such that∥∥∥w − (1 + |ψ|s/2)Fu

∥∥∥
L2(H−,γ)

≤ ε

2
.

Set v := w
(1+|ψ|)s/2 ∈ Cb(H−) ⊂ L2(H−, γ). Then there exists a sequence

(vn)n∈N ⊂ C∞
b,cyl(H−) such that vn

n−→∞−−−−→ v in L2(H−, γ) and almost everywhere.
Moreover we can choose vn such that ‖vn‖sup ≤ ‖v‖sup. Now it is obvious that

(1 + |ψ|)s/2vn
n−→∞−−−−→ (1 + |ψ|)s/2v = w and (1 + |ψ(ξ)|)s/2 |v(ξ)| ≤ |w(ξ)| for

all ξ ∈ H−. Hence we obtain by Lebesgue's Theorem of dominated convergence
(1 + |ψ|)s/2vn

n−→∞−−−−→ w in L2(H−, γ). Thus there exist a n0 ∈ N such that∥∥(1 + |ψ|)s/2vn0 − w
∥∥
L2(H−,γ)

≤ ε

2
.

Now we set ũ := F−1vn0 . Since C∞
b,cyl(H−) ⊂ Sγ,cyl(H−) we obtain ũ ∈ Sγ,cyl(H−).

Moreover, using the triangular inequality we �nd

‖ũ− u‖2
ψ,s =

∥∥(1 + |ψ|)s/2vn0 − (1 + |ψ|)s/2F(u)
∥∥
L2(H−,γ)

≤ ε.

But this is our assertion. �

Theorem 2.3.18. Let ψ1, ψ2 ∈ CN(H−) be two continuous negative de�nite
functions, such that (1 + |ψ2(ξ)|) ≤ c(1 + |ψ1(ξ)|) for all ξ ∈ H−. Then for any
s ≥ 0 the embedding Hs

ψ1
(H−) ↪→ Hs

ψ2
(H−) is continuous. Conversely suppose

that the embedding Hs
ψ1

(H−) ↪→ Hs
ψ2

(H−) is continuous for some s > 0. Then we
have (1 + |ψ2(ξ)|) ≤ c(1 + |ψ1(ξ)|) for all ξ ∈ H−.

Proof. The �rst part is obvious by the de�nition of the norms. Now let
u ∈ Hs

ψ1
(H−)∩Sγ,cyl(H−). Then there exists a constant c0 > 0 such that ‖u‖ψ2,s

≤
c0 ‖u‖ψ1,s

. For η ∈ H+ we set uη := F−1U−ηFu. Then we obtain by Peetre's
inequality 2.2.2(xi)e)∣∣∣(1 + |ψ1(ξ)|s/2Fuη(ξ)

∣∣∣ ≤ 2s/2(1 + |ψ1(η)|)s/2(1 + |ψ1(ξ − η)|)s/2 |Fuη(ξ)|∣∣∣(1 + |ψ2(ξ)|s/2Fuη(ξ)
∣∣∣ ≥ 2−s/2(1 + |ψ2(η)|)s/2(1 + |ψ2(ξ − η)|)−s/2 |Fuη(ξ)| .

Thus we �nd

‖uη‖ψ1,s
=

∥∥(1 + |ψ1(·)|)s/2Fuη(ξ)
∥∥
L2(H−,γ)

≤ c1(1 + |ψ1(η)|)s/2
∥∥(1 + |ψ1(· − η)|)s/2U−η(Fu)(·)

∥∥
L2(H−,γ)

= c1(1 + |ψ1(η)|)s/2
∥∥U−η(1 + |ψ1|)s/2Fu

∥∥
L2(H−,γ)

= c1(1 + |ψ1(η)|)s/2 ‖u‖ψ1,s
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and similarly

‖uη‖ψ2,s
≥ c2(1 + |ψ2(η)|)s/2 ‖u‖ψ2,s

.

Combining these two inequalities we obtain

(1 + |ψ2(η)|)s/2 ≤
‖uη‖ψ2,s

c2 ‖u‖ψ2,s

≤ c0
‖uη‖ψ1,s

c2 ‖u‖ψ2,s

≤

(
c0
c1 ‖u‖ψ1,s

c2 ‖u‖ψ2,s

)
(1 + |ψ1(η)|)s/2.

Thus we have proved our inequality for all η ∈ H+. But since H+ ⊂ H− and
ψ1, ψ2 are continuous it follows that for all ξ ∈ H− we have

(1 + |ψ2(ξ)|) ≤

(
c0
c1 ‖u‖ψ1,s

c2 ‖u‖ψ2,s

)2/s

(1 + |ψ1(ξ)|). �

Proposition 2.3.19. Let ψ be a continuous negative de�nite function. Then
the operator −ψ(D) with domain of de�nition Sγ,cyl(H−) de�ned in 2.2.15 is
closable. Moreover, let A denote the closure of −ψ(D). Then we obtain D(A) =
H2
ψ(H−)

Proof. Let (un)n∈N ⊂ Sγ,cyl(H−) be a sequence such that un
n→∞−−−→ 0 in

L2(H−, γ) and −ψ(D)un
n→∞−−−→ u in L2(H−, γ) for some u ∈ L2(H−, γ). Then we

obtain for all v ∈ Sγ,cyl(H−):

〈u , v〉ψ,0 = lim
n→∞

〈−ψ(D)un , v〉ψ,0 = lim
n→∞

〈un , −ψ(D)v〉ψ,0 = 0,

which yields u = 0. Thus ψ(D) is closable. Moreover, since 1+|ψ|2 ≤ (1+|ψ|)2 ≤
2(1 + |ψ|2) we obtain for u ∈ Sγ,cyl(H−)

‖u‖2
ψ,0 + ‖ψ(D)u‖2

ψ,0 = ‖Fu‖2
ψ,0 + ‖ψ(·)Fu‖2

ψ,0

=

∫
H−

(1 + |ψ(·)|2) |Fu|2 dγ

≤
∫
H−

(1 + |ψ(·)|)2 |Fu|2 dγ

≤ 2

∫
H−

(1 + |ψ(·)|2) |Fu|2 dγ

= 2(‖u‖2
ψ,0 + ‖ψDu‖2

ψ,0)

But this implies that the norm ‖·‖ψ,2 and the graph norm of ψ(D) are equivalent.
Thus we obtain by 2.3.17

D(A) = Sγ,cyl(H−)
‖·‖graph = Sγ,cyl(H−)

‖·‖ψ,2 = H2
ψ(H−) �
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Theorem 2.3.20. Let ψ be a continuous negative de�nite function on H−.
Moreover, let the strongly continuous semi group Tt be de�ned as in De�nition
2.2.18. We denote by (A,D(A)) the generator of this semi group. Then we have

A = −ψ(D) on Sγ,cyl(H−) and D(A) = H2
ψ(H−).

Proof. In view of Theorem 2.2.20, Proposition 2.3.17 and 2.3.19 and Propo-
sition [80, 4.3.6] we only have to show that Tt leaves H2

ψ(H−) invariant. Then
H2
ψ(H−) is a core for A, but since A is closed onH2

ψ(H−) we are �nished. However,
we have for u ∈ H2

ψ(H−)

‖Ttu‖ψ,2 =
∥∥(1 + |ψ|)FF−1e−tψF(u)

∥∥
ψ,0
≤ ‖(1 + |ψ|)F(u)‖ψ,0 = ‖u‖ψ,2 ≤ ∞.

But this shows the assertion. �

Proposition 2.3.21. Let ψ ∈ CN(Rn). Then Tt = F−1e−tψ·F is an L2
γ-sub

Markovian semi group.

Proof. Let u ∈ Cpol(R
n), where Cpol(R

n) denotes the space of all continuous

polynomial bounded functions on Rn. We obtain e−
‖·‖2

2 u ∈ L2(Rn, λ)∩L1(Rn, λ)
and thus VG,nu ∈ L2(Rn, λ) ∩ L1(Rn, λ). Hence by 1.4.10 we obtain

Ttu(x) = F−1etψ(x)Fu(x)
= F−1etψ(x)[V −1

G,nF̃VG,nu](x)
= F−1[etψ(·)V −1

G,nF̃VG,nu](x)
= V −1

G,nF̃
−1[VG,ne

tψ(·)V −1
G,nF̃VG,nu](x)

= V −1
G,nF̃

−1etψ(·)F̃VG,nu(x)

= e
‖x‖2

2

(
F̃−1e−tψ(·)F̃(u(·)e

−‖·‖2
2 )

)
(x) = e

‖x‖2
2 T̃t(u(·)e

−‖·‖2
2 )(x),

where F̃ denotes the usual Fourier-Transform and T̃t the semi group associated
to the negative de�nite function ψ(·) in L2(Rn, λ). For u ∈ Cpol(R

n)and 0 ≤
u ≤ e

‖Pn·‖0
2 a.e. we have 0 ≤ u(·)e

−‖·‖2
2 ≤ 1. Thus since T̃t is sub Markovian

(cf.[80, Example 4.6.29]) we get 0 ≤ T̃tu(·)e
−‖·‖2

2 ≤ 1 a.e. But this implies 0 ≤
Ttu ≤ e

‖Pn·‖0
2 a.e. Now let u ∈ L2(Rn, γ) arbitrary such that 0 ≤ u(x) ≤ e

‖Pnx‖0
2 .

Then there exists a sequence (un)n∈N ⊂ Cpol(R
n) with 0 ≤ un(x) ≤ e

‖x‖2
2 such

that un
n−→∞−−−−→ u in L2(Rn, γ). But since Tt is bounded we have Ttun

n−→∞−−−−→ Ttu

in L2(Rn, γ). Hence there exists a subsequence unk such that Ttunk
k−→∞−−−−→ Ttu

pointwisely. But since 0 ≤ Ttunk ≤ e
‖x‖2

2 a.e. we obtain 0 ≤ Ttu ≤ e
‖x‖2

2 a.e. �

According to [35, Rem 2.2, p. 45] we have γ = γn ⊗ γR, where γn
is the canonical Gaussian measure with respect to the Hilbert space rigging
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Rn ∼= PnH+ ⊂ PnH0 ⊂ PnH− ∼= Rn. Furthermore, γR is the canonical Gauss-
ian measure with respect to the rigging H+ 	 PnH+

∼= H+ ∩ (H0 	 PnH0) ⊂
H0 	 PnH0 ⊂ {x ∈ H− |Pnx = 0} ∼= H− 	 Pn(H−). Here Pn denotes the
orthogonal projection on span{e1, · · · en} in H0. Now by [19, p.24] it follows that

L2(H−, γ) = L2(Rn, γn)⊗̂L2(H− 	 PnH−, γR),

where ⊗̂ denotes the topological tensor-product of Hilbert Spaces. Now let us
note the following lemma, which we will prove in Lemma 4.3.3 in a more general
case.

Lemma 2.3.22. Let ψ(x) = Ψ(〈e1 , x〉0, · · · , 〈en0 , x〉0) be a cylindrical nega-
tive de�nite function and u = f ⊗ g where f ∈ Sγ(Rn) and g ∈ L2(Pn(H−), γR).
Then we have

Ttu(x) = F−1
n e−tΨ(x1,··· ,xn0 )Fnf(x1, · · · , xn)⊗ g(xn+1, . . .).

Proposition 2.3.23. Let ψ ∈ CN(H−) be cylindric. Then Tt = F−1e−tψ·F
is an L2

γ-sub Markovian semi group.

Proof. For the ONB (ek)
∞
k=1 ⊂ H+ in H0 there exits an n0 such that ψ(x) =

Ψ(〈e1 , x〉0, · · · , 〈en0 , x〉0) for all x ∈ H−. Let u ∈ L2(H−, γ) be with with

0 ≤ u(x) ≤ e
‖Pnx‖0

2 for n > n0. Now we will prove this lemma in four steps.
At �rst let us assume that u(x) = f(〈e1 , x〉0, ·, 〈en , x〉0) ⊗ χU(xn+1, . . .), where
χU is the characteristic function of a set U with γR(U) > 0. Then we obtain

0 ≤ f(〈e1 , x〉0, . . . , 〈en , x〉0) ≤ e
‖Pnx‖0

2 and

Ttu(x) = F−1
n e−tΨ(x1,··· ,xn0 )Fnf(x1, · · · , xn)χU(xn+1, . . .)

where Fn denotes the Fourier-Wiener-transform in Rn. But since now Ψ is neg-
ative de�nite to we obtain by proposition 2.3.21 and the fact that |χU | ≤ 1

0 ≤ Ttu ≤ e
‖Pn·‖0

2 a.e.

In a second step let us assume that u(x) = f(〈e1 , x〉0, ·, 〈en , x〉0) ⊗
g(xn+1, . . .), where g is an elementary function in L2(Pn(H−), γR), i.e. v =∑m

j=1 ajχUj , such that Uj ∩ Uk = ∅ for k 6= j and γR(Uj) > 0. Then we have

u(x) =
∑m

j=1(ajf(x1, . . . , xn))χUj(xn+1,...), where 0 ≤ ajf(x1, . . . , xn) ≤ e
‖Pnx‖0

2 .

Thus step 1 implies that 0 ≤ (ajf(x1, . . . , xn))χUj(xn+1,...) ≤ e
‖Pnx‖0

2 . Thus we �nd

0 ≤ u(x) ≤ e
‖Pnx‖0

2 since all Uj are disjoint.
In a third step we will assume that u(x) =

∑m
j=1 fj(〈e1 , x〉0, ·, 〈en , x〉0) ⊗

gj(xn+1, . . .), where the gj are elementary functions as in step 2. Thus we
have u(x) =

∑m
j=1

∑kj
i=1 aj,kfj(〈e1 , x〉0, . . . , 〈en , x〉0)χUj(xn+1, . . .). But this

shows that we �nd disjoint sets Wj and functions f̃j such that u(x) =∑l
j=1 f̃j(〈e1 , x〉0, . . . , 〈en , x〉0)χWj

(xn+1, . . .). Thus step 2 implies that 0 ≤
u(x) ≤ e

‖Pnx‖0
2 .
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Finally, let u ∈ L2(H−, γ) arbitrary such that 0 ≤ u(x) ≤ e
‖Pnx‖0

2 . Then there

exists a sequence (um)m∈N of functions described in (iii) with 0 ≤ um(x) ≤ e
‖Pnx‖0

2

such that um
m−→∞−−−−→ u in L2(H−, γ) and pointwisely a.e. But since Tt is bounded

there we have Ttun
n−→∞−−−−→ Ttu in L2(H−γ). Hence there exists a subsequence

umk such that Ttumk
k−→∞−−−−→ Ttu pointwisely. But since 0 ≤ Ttunk ≤ e

‖Pn·‖0
2 a.e.

we obtain 0 ≤ Ttu ≤ e
‖Pn·‖0

2 a.e. �

Theorem 2.3.24. Let ψ be a cylindrical continuous negative de�nite function
on H−.

(i) Then the operator −ψ(D) extends to selfadjoint L2
γ-Dirichlet operator

(A,H2
ψ(H−,R)).

(ii) The form E(u, v) = 〈−Au , v〉ψ,0 extends to a symmetric L2
γ-Dirichlet-

form on D(E) = H1
ψ(H−) and we have

E(u, v) = 〈ψ1/2F(u) , ψ1/2F(u)〉ψ,0 = 〈[ψ(D)]1/2(u) , [ψ(D)]1/2(u)〉ψ,0
on Sγ,cyl(H−).

Proof. Let us show that A := −ψ(D) is selfadjoint on H2
ψ(H−). Thus

assume that there exists a v, v∗ such that for all u ∈ H2
ψ(H−) we have 〈v , Au〉ψ,0 =

〈v∗ , u〉ψ,0. Then we obtain

〈v∗ , u〉ψ,0 = 〈v , Au〉ψ,0 = 〈Fv , ψFu〉ψ,0 = 〈F−1ψFv , u〉ψ,0.
Since H2

ψ(H−) is dense in L2(H−, γ) we obtain v ∈ H2
ψ(H−) and v∗ = Av. Thus A

is selfadjont. The rest of the �rst part is now clear by Proposition 2.3.23, Lemma
2.3.3 and Theorem 2.3.20. To prove the second part let us �rst show the equation
(17) is ful�lled. For u, v ∈ H2

ψ(H−) we obtain

〈Au , v〉ψ,0 = 〈ψ1/2Fu , ψ1/2Fv〉ψ,0
≤ 〈ψ1/2Fu , ψ1/2Fu〉ψ,0〈ψ1/2Fv , ψ1/2Fv〉ψ,0
= 〈ψFu , Fu〉ψ,0〈Fv , Fv〉ψ,0 = 〈Au , u〉ψ,0〈Av , v〉ψ,0.

Now let us note that f(s) = s1/2 is a Bernstein function and thus ψ1/2 is negative
de�nite too. Thus the assertion follows by the equation above, Remark 2.2.25,
Proposition 2.3.23 and Theorem 2.3.15. �



CHAPTER 3

Ψ∗-Algebras and generalized Hörmander classes of

pseudodi�erential operators in Weyl form

This chapter is concerned with certain aspect of pseudodi�erential operators
on in�nite dimensional Hilbert space riggings in Weyl form. In [56] B. Gramsch
introduced Ψ0- and Ψ∗-algebras. A Fréchet algebra Ψ, which is continuously
embedded in a C∗-algebra B, is called Ψ∗-algebra, if Ψ is spectrally invariant and
symmetric.

In this chapter we will construct generalized Hörmander classes and other Ψ∗-
algebras of pseudodi�erential operators on in�nite dimensional Hilbert spaces.
We de�ne a scale of Sobolev Spaces using the Ornstein-Uhlenbeck operator. Then
∂
∂t
(t ∈ H+) and the operator of multiplication with 〈·, t〉0 (t ∈ H+) are continuous

from Hs to Hs+1.
Starting with symbols (functions) a(x, p) on H2

− Albeverio and Dalecky de-
�ned in [2] pseudodi�erential operators a(X,D) in Weyl form on in�nite di-
mensional Hilbert space riggings H+ ⊆ H0 ⊆ H−. We de�ne generalized Hör-
mander classes Ψ̃0

%,δ and other Ψ∗-algebras of operators acting in the scale of
Sobolev spaces. These generalized Hörmander classes contain certain multipli-
cation and convolution operators. Moreover, we show that pseudodi�erential
operators a(X,D) with symbol a ∈ G are elements of one of our generalized
Hörmander classes, namely Ψ̃0

0,0 Here G denotes the space of functions which a
Fourier transforms of certain complex valued measures on H2

+. For t ∈ H+ the
unitary weighted translations in direction t are elements of G. Thus we cannot
expect that these operators considered by Albeverio and Dalecky are elements of
Ψ̃0
%,δ for % 6= 0. In section 3.3 and 3.4 as well as in chapter 5 we will also discuss

the case where % 6= 0 and δ 6= 0.
Finally, we consider the case H+ = H0 = H− = Rn. Let a be a symbol in

S0
0,0. Then the corresponding pseudodi�erential operator de�ned in [2] is in our

generalized Hörmander class Ψ̃0
0,0. Furthermore, for any a(X,D) ∈ Ψ0 ⊆ Ψ̃0

0,0

there exists an a ∈ S0
0,0 such that a is the associated symbol to a(X,D). Here Ψ0

is a sub multiplicative Ψ∗-algebra.

3.1. Ψ∗-algebras generated by closed operators

In [67] Gramsch, Ueberberg and Wagner describe a construction of Ψ0- resp.
Ψ∗-algebras, starting from closed derivations or closed resp. symmetric operators

69
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(cf. [67]). These concepts are generalized by Lauter in [96]. Before we will de�ne
some Ψ∗-algebras, we will describe these concepts of constructing Ψ∗-algebras.
Throughout the �rst part of this section we will follow closely [96]. We omit all
proofs, but refer to [67] and [96]. In the following let A−1 denote the group of
all invertible elements of an algebra A.

Definition 3.1.1 (Gramsch, 1984). Let B be a Banach algebra with unit e,
and A be a sub algebra of B with e ∈ A. Then

(i) A is called locally spectrally invariant in B, if there exists an ε > 0 such
that

{a ∈ A | ‖e− a‖B < ε} ⊆ A−1,

where A−1 denotes the group of invertible elements in A.
(ii) A is called spectrally invariant in B, if A ∩ B−1 = A−1 holds for the

groups A−1 resp. B−1 of invertible elements in A resp. B.
(iii) A is called a Ψ0-algebra in B, if A is locally spectrally invariant in

B and there is a topology TA on A, which makes (A, TA) ↪→ B into a
continuously embedded Fréchet algebra.

(iv) A is called a Ψ∗-algebra in B, if in addition, B is a C∗-algebra and A
is a symmetric Ψ0-algebra in B.

(v) A is called a sub multiplicative Ψ0- resp. Ψ∗-algebra, if the topology
TA on A can be generated by a sub multiplicative family of semi norms
(qj)j∈N0 , i.e. qj(xy) ≤ qj(x)qj(y) and qj(e) = 1.

According to [23], [110], [132], [131] the algebraA is called spectral invariant,
full or algèbre pleine if A∩B−1 = A−1. The pair (A, B) is known as Wiener pair
(cf. [110, chapt. III, pp.203, 214, 310], [128]).

Remark 3.1.2.

(i) Let A be a dense locally spectrally invariant sub algebra of B. Then
A is spectrally invariant. In particular, every Ψ∗-algebra A in a C∗-
algebra B is spectrally invariant in B. In the de�nition of Ψ0-Algebra
one can actually always achieve ε = 1 (cf. [56, Lemma 5.3] and [96, p.
14]).

(ii) The class of (sub multiplicative) Ψ0- resp. Ψ∗- algebras is stable with
respect to countable intersection (cf. [96, p. 14]).

(iii) Let A be a Fréchet Algebra with open group A−1 of invertible elements.
Then the inversion A−1 3 b 7→ b−1 ∈ A is continuous (cf. [132]).

Before describing the construction of Ψ∗-Algebras by closed derivations let us
make some remarks about the importance of Ψ∗-ALgebras.

Remark 3.1.3. As mentioned in the introduction nowadays it is well known
that the Hörmander classes Ψ%,δ(R

n) (0 ≤ δ ≤ %, % < 1) are submultiplicative
Fréchet operator algebras with spectral invariance in L (L2(Rn, λ)). But it was a
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rather long process until these theorem was completely proved. There are contri-
butions of a series of mathematicians including Hörmander, Seeley, Caldéron and
Vailloncourt, Beals, Cordes, Fe�erman, Boney and Chemin, Gramsch, Ueberberg,
Schrohe and Wagner.

During the last twenty years many results for algebras of Ψ∗-type have been
proved. With these notions it is possible to develop an operator theory for some
Fréchet algebras in microlocal analysis. Special non linear methods have been
developed which sharpen some results in the Banach and C∗-setting (cf. [56],
[88], [87]).

An important point in the theory of Ψ∗-algebras A is that the Hilbert space
Fredholm inverses are automatically in A. Thus one can develop perturbation
theory in these Fréchet algebras for holomorphic Fredholm functions, e.g. one
has

• Oka principle for holomorphic maps with values in complex Fréchet
Lie groups or in Fréchet manifolds of Fredholm and Semi Fredholm
operators in Ψ∗-algebras of pseudodi�erential operators.

• Division of operator valued distributions.
• Existence of global holomorphic projection valued function splitting of
the kernel of holomorphic Fredholm functions with �xed dimension of
the kernel.

• Meromorphic inversion and decomposition of holomorphic Semi Fred-
holm functions also on in�nite dimensional regions

A similar development is under way concerning the Lp-theory based on the notion
of Ψ0- as well as algebras of C∞-elements with respect to group representations
(cf. [48]).

In the case of a Fréchet space the implicit function Theorem is not available.
Thus in [56] there are developed rational methods which can be applied instead.
In this connection it was shown in [56] that the set of relatively regular and idem-
potent elements in Ψ∗-algebras form analytic locally rational Fréchet manifolds.
Furthermore, there are results on abstract hypo ellipticity [65], wave front sets
and propagation of singularities in Ψ∗-algebras which are due to Gramsch.

In connection with [56] and [61] it was observed in K-theory using Karoubi's
density theorem [28], [89] that a Ψ0-algebras (resp. Ψ∗-algebra) has the same K-
theory as its norm closure (resp. C∗-closure). Gramsch and Kaballo [63] pointed
out as a contribution to additive complex analytic cohomology that an additive
decomposition of meromorphic resolvents of semi Fredholm functions into a holo-
morphic part and meromorphic part which is a small ideal can be generalized
to the setting of Ψ∗-algebras. In addition, they gave further results on the di-
vision problem for real analytic Fredholm functions and operator distributions
in Ψ∗-algebras. In the setting of submultiplicative Ψ∗-algebras A there also is a
corresponding multiplicative decomposition for holomorphic Fredholm functions
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with values in A−1 on a Stein manifold [64]. In addition Gramsch derives an
extension of the Oka-principle to submultiplicative Ψ∗-Algebras [57].

Let us mention some results following [67], where the research is still in
progress and far from being completed. For any Hilbert space H it was shown in
[95] that every Ψ∗-algebra in L (H) contains its holomorphic functional calculus
in the sense of J.L. Taylor [96], [124]. Moreover, this calculus applies to algebras
of n×n-matrices with elements in Ψ∗-algebras. Lorentz showed in [102] that any
Jordan operator A in a Ψ∗-algebras A ⊂ L (X) admits a Jordan decomposition
within A and as a consequence one has a local similarity cross section for A in
A.

Furthermore, the Oka-principle leads also to isomorphisms between non-
abelian groups of holomorphic objects on the one side and continuous objects
on the other side. The strategy of proofs involves essentially non-linear func-
tional analytic and complex analytic methods.

In 1954Waelbrock ([132], [131]) introduced a holomorphic functional calculus
for complete locally convex algebras with continuous inversion even for several
variables. The holomorphic functional calculus for Ψ0 and Ψ∗-algebras is an direct
consequence of his results and play an import role in the theory of these algebras
(cf. [28], [55] and [91]). In addition to the standard Hörmander classes there
are lots of other examples of Ψ∗-algebras such as C∞-elements in C∗-dynamical
systems [24], [32], [29] and certain families of cross products [86], [85], [126].
Since the important concept of spectral invariance was stressed by B. Gramsch,
the theory of Ψ∗-algebras has developed into a useful tool in the analysis of
pseudodi�erential operators and Fréchet operator algebras on singular spaces.

The construction methods of Ψ0 and Ψ∗-algebras given in [67] which we will
describe later on are a quite �exible tool and they even apply to operator algebras
on fractal sets [92].

Frank Baldus developed for an appropriate in general non compact manifold
M with metric g and a weight functionM on T ∗M an S(M, g)-pseudodi�erential
calculus. In [7] it was shown that the algebra of order zero operators is a sub-
multiplicative Ψ∗-algebra in the sense of B. Gramsch in L (L2(M)). Using the
spectral invariance within the S(M, g)-calculus the author of [6] gives su�cient
conditions for an operator to extend to a generator of a Feller semi group.

Spectral invariance generates strong connections between Ψ∗-algebras and
their C∗-closure. While representation theory for C∗-algebras has been treated
in [36] Lauter developed a representation theory for Ψ∗-algebras [99]. More
precisely, using a result due to Gramsch on positive functional calculus it can be
shown that there is a continuous, bijective map φ : Â −→ B̂, where B is the
enveloping C∗-algebra of a Ψ∗-algebra A and Â resp. B̂ denotes the spectrum of
A resp. B.
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In a paper of Chen and Wei [27], which follows a series of results of Schweitzer,
Jolissaint and de la Harpe it was mentioned that the notion of spectral invari-
ance plays an important role in the work of Connes-Moscovici on the Novikov
conjecture as well as in La�ourges research on the Baum-Connes conjecture. In
this connection it is of interest that for certain discrete groups G with length
function l the Schwarz space Sl2(G) with respect to l is a spectral invariant dense
subalgebra of the reduced group C∗-algebra C∗

r (G). For more details we refer to
[27].

It is a well known fact that the dense embedding A ↪→ B of a Ψ∗-algebra A
into a C∗-algebra B induces an isomorphism in K-theory of B. Hence on the one
hand A is large enough to preserve the K-theory of B on the other hand it is
better related to the di�erential structure than a C∗-algebra. This fact is used in
[91] to prove a vanishing theorem for higher traces in cyclic cohomology for the
spectral projections. Further there are given applications to the Quantum hall
e�ect and related spectral gaps of operators.

There are approaches by Ditsche on localization results for special classes of
solvable C∗-algebras on manifolds with corners Z. Let Ψ0

b,cl(Z) be the algebra
of classical pseudodi�erential operators of order zero and B(Z) its C∗-closure in
L (L2(Z)). Then it is known by results of Lauter, Melrose and Nistor that B(Z)
is a solvable C∗-algebra in the sense of [39]. Moreover, one can choose a solving
series of minimal length for B(Z), such that the geometry of Z is readily seen
in this ideal chain. Since this is a global approach it should also be possible
to localize this procedure, i.e. to show, that if we restrict our algebra to small
open neighborhoods of arbitrary point on Z, only the underlying geometry of
those neighborhoods give a contribution to the ideal chain. To do this, J. Ditsche
analyzes algebras ψB(Z)ψ, where ψ is a cut o� function with suppψ ⊆ U and U
a neighborhood of p ∈ Z. Moreover, it is shown how to calculate the length of
algebras of parameter dependent pseudodi�erential operators on Z.

Furthermore, in the most recent research on Ψ∗-Fréchet algebras, there are
approaches to Toeplitz operators. In the case of the Segal-Bargmann space
H2(Cn, γ) of Gaussian square integrable entire functions on Cn Bauer determined
in [11] a class of vector-�elds Y(Cn) supported in cones C ⊂ Cn. Showing that
for any �nite subset V ⊂ Y(Cn) the Toeplitz projection is a smooth element in
a Ψ0-algebra constructed by commutator methods with respect to V he obtains
localized Ψ0- and Ψ∗-algebras F in the cones C. As an immediate consequence
he obtains, that F contains all Toeplitz operators Tf with f bounded on Cn and
smooth with bounded derivatives of all orders in a neighborhood of C. In addi-
tion there is a natural unitary group action on H2(Cn, γ) which is induced by
weighted shifts and unitary groups on Cn. W. Bauer examined the correspond-
ing Ψ∗-algebras A of smooth elements in Toeplitz-C∗-algebras and gave su�cient
conditions on the symbol f for Tf to belong to A in terms of estimates on its
Berezin-transform f̃ .
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In a paper [100] which appeared 2005 Lauter, Monthubert and Nistor con-
structed algebras of pseudodi�erential operators on a continuous family groupiod
G that are closed under holomorphic functional calculus, contain the algebra of
pseudodi�erential operators of order 0 on G as a dense subalgebra and re�ect
the structure of the groupoid G, when G is smooth. As an application they got a
better understanding of the structure of inverse of elliptic pseudodi�erential oper-
ators on classes of non-compact manifolds. For the construction of these algebras
closed under holomorphic functional calculus they used commutator methods.
Furthermore, they reduced the construction of spectrally invariant algebras of
order 0 pseudodi�erential operators to the analogous problem for regularizing
operators. They introduced a generalized 'cusp'-calculi cn, n ≥ 2 on manifolds
with boundary and with corners and embedded these calculi in Ψ∗-algebras con-
sisting of smooth kernels.

Now let us describe the construction of Ψ∗-algebras by commutator methods.

Definition 3.1.4. For algebrasD(δ) andA a linear mapping δ : D(δ) −→ A
is called derivation, if δ ful�lls

δ(xy) = δ(x)y + xδ(y) ∀x, y ∈ D(δ).

Furthermore, if D(δ) and A are endowed with a ∗−operation and if δ(x∗) = δ(x)∗

for all x ∈ D(δ), then δ is called a ∗-derivation. It is called an anti-∗-derivation if
δ(x∗) = −δ(x)∗ for all x ∈ D(δ). In addition, if D(δ) is a sub algebra of a Fréchet
algebra A such that δ is a closed linear operator, then δ is said to be a closed
derivation.

Definition 3.1.5. (cf. [96] p.27) Let B be a C∗-algebra with unit e,
(A, (qj)j∈N0) be a sub multiplicative Ψ∗-algebra in B, and ∆ be a �nite set
of closed derivations δ : A ⊇ D(δ) −→ A with e ∈ D(δ). Put

(i) Ψ∆
0 := A with semi-norms q0,j := qj for j ∈ N0.

(ii) Ψ∆
1 :=

⋂
δ∈∆

D(δ).

(iii) Ψ∆
n := {a ∈ Ψ∆

n−1 | δa ∈ Ψ∆
n−1 for all δ ∈ ∆}, n ≥ 2.

(iv) Ψ∆
∞ :=

⋂
n∈N0

Ψ∆
n .

(v) Endow Ψ∆
n for n ≥ 1 with the system of seminorms

qn,j(a) := qn−1,j(a) +
∑
δ∈∆

qn−1,j(δa) for a ∈ Ψ∆
n ⊆ Ψ∆

1 and j ∈ N0

and Ψ∆
∞ with the system (qn,j)n∈N,j∈N0 .

Proposition 3.1.6.
(i) (Ψ∆

n , (qn,j)j∈N0) ↪→ A is a continuously embedded Fréchet sub algebra of
A and qn,j is a sub multiplicative seminorm on Ψ∆

n .
(ii) (Ψ∆

∞, (qn,j)n∈N,j∈N0) ↪→ A is a continuously embedded, sub multiplicative
Fréchet algebra.
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(iii) Ψ∆
∞ is a sub multiplicative Ψ0-algebra in B.

Proof. See [96, Proposition 2.4.3]. �

Corollary 3.1.7. In addition, let each δ ∈ ∆ be a closed ∗- or anti ∗-
derivation with respect to the ∗operation induced by the C∗-algebra B. Then

(i) Ψ∆
n is a symmetric sub algebra of A with respect to the ∗operation in-

duced by B.
(ii) Ψ∆

∞ is a sub multiplicative Ψ∗ − algebra in B.

Proof. See [96, Corollary 2.4.4] and [96, Remark 2.4.5]. �

Definition 3.1.8. Let H be a Hilbert space and (A, (qj)j∈N0) ↪→ L (H) be a
sub multiplicative Ψ∗-algebra. Without loss of generality we assume q0 = ‖·‖L (H).
For a closed, densely de�ned operator V : H ⊇ D(V ) −→ H we de�ne

(i) J (V ) := {a ∈ A | a(D(V )) ⊆ D(V )}.
(ii) ad(V ) : J (V ) −→ L (D(V ), H) by ad(V )(a)x = [V, a]x :=

(V a− aV )x for a ∈ J (V ) and x ∈ D(V ) and recursively adj(V )(a) :=
ad(V )(adj−1(V )(a)).

(iii) B(V ) := {a ∈ J (V ) | ad(V ) extends to a bounded linear operator δV a ∈
A}. For a ∈ B(V ) δV a is uniquely determined by ad(V )a, sinceD(V ) ⊂
H dense.

(iv) B∗(V ) := {a ∈ B(V ) | a∗ ∈ B(V )}.

Lemma 3.1.9.

(i) δV : A ⊂ B(V ) −→ A : a 7−→ δV (a) is a closed derivation.
(ii) If, in addition, V : H ⊇ D(V ) −→ H is symmetric, then δV : A ⊇

B∗(V ) −→ A is a closed anti ∗-derivation.

Proof. See [96, Lemma 2.4.7]. �

Definition 3.1.10. Let E be a Banach space and V be a �nite set of closed,
densely de�ned operators V : E ⊇ D(V ) −→ E. Then we de�ne

(i) H0
V := E with norm p0 := ‖·‖E.

(ii) H1
V :=

⋂
V ∈V

D(V ).

(iii) Hn
V := {ξ ∈ Hn−1

V |V ξ ∈ Hn−1
V for all V ∈ V}, n ≥ 2.

(iv) H∞
V :=

⋂
n∈N

Hn
V .

(v) Endow Hn
V with the norm pn(ξ) := pn−1(ξ)+

∑
V ∈V

pn−1(V ξ), ξ ∈ Hn
V and

H∞
V with the system of norms (pn)n∈N0 .

Lemma 3.1.11.

(i) (Hn
V , pn) is a Banach space.

(ii) (H∞
V , (pn)n∈N0) is a Fréchet space.
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(iii) The closed operator V ∈ V induces for each n ∈ N a operator In(V ) ∈
L (Hn

V ,Hn−1
V ).

(iv) If E is a Hilbert space, then there exists an equivalent norm p̃n on Hn
V ,

which makes (Hn
V , p̃n) into a Hilbert space and (H∞

V , (p̃n)n∈N0) into a
Fréchet-Hilbert space.

Proof. See [96, Lemma 2.4.11] �

Theorem 3.1.12. Let H be a Hilbert space, (A, (qj)j∈N0) be a sub multiplica-
tive Ψ∗-algebra in L (H), B be a C∗-algebra in L (H) with A ⊆ B and V a �nite
set of closed, densely de�ned operators V : H ⊇ D(V ) −→ H such that V or
iV is symmetric. Furthermore, let

(i) Hn
V resp. H∞

V be as in Lemma 3.1.11.
(ii) ∆ := ∆V := {δV |V ∈ V} be the set of closed anti ∗- or ∗-derivations

δV : A ⊇ D(δV ) −→ A with values in A, constructed as in Lemma
3.1.9.

(iii) ΨV
n := Ψ∆V

n resp. ΨV
∞ := Ψ∆V

∞ be the scale of symmetric sub multiplica-
tive Fréchet algebras constructed above corresponding to the set ∆V of
closed (anti)∗-derivations.

Then we have

(i) ΨV
∞ ⊆ ΨV

n ⊆ A ⊆ B for all n ∈ N.
(ii) (ΨV

∞, (qn,j)n∈N,j∈N0) ↪→ B is a sub multiplicative Ψ∗-algebra.
(iii) ΨV

n ×Hn
V −→ Hn

V : (a, ϕ) 7−→ a(ϕ) is continuous and bilinear.
(iv) ΨV

∞ ×H∞
V −→ H∞

V : (a, ϕ) 7−→ a(ϕ) is continuous and bilinear.
(v) δV : ΨV

∞ −→ ΨV
∞ is continuous.

Proof. See [96, Theorem 2.4.13]. �

Proposition and Definition 3.1.13. Let H+ ⊆ H0 ⊆ H− be a quasi-
nuclear Hilbert space rigging and let (ej)j∈N ⊂ H+ be an orthonormal basis in H0.
Moreover, let γ be the canonical Gaussian measure with respect to this rigging.
Let Mj := Mej be de�ned as in De�nition 1.2.2 and let Dj := Dej be de�ned as
in 1.3.6. Then we set

Vk := {M1, . . . , Mk, D1, . . . , Dk}.
Furthermore, we de�ne Hn

Vk resp. H
∞
Vk and ΨVk

n resp. ΨVk
∞ as in Theorem 3.1.12,

with A = L (L2(H−, γ)). Now we set for all n ∈ N

Hn
MD :=

⋂
k∈N

Hn
Vk , ΨMD

n :=
⋂
k∈N

ΨVk
n

and
H∞
MD :=

⋂
k∈N

H∞
Vk , ΨMD :=

⋂
k∈N

ΨVk
∞ .

Then ΨMD
n and ΨMD are sub multiplicative Ψ∗ algebras. Moreover, we have

(i) ΨMD
n ×Hn

MD −→ Hn
MD : (a, ϕ) 7−→ a(ϕ) is continuous and bilinear.
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(ii) ΨMD ×H∞
MD −→ H∞

MD : (a, ϕ) 7−→ a(ϕ) is continuous and bilinear.

Proof. Since Mj is selfadjoint and iDj is selfadjoint, δMj
is an anti-∗-

derivation and δDj is a
∗-derivation. Thus Theorem 3.1.12 implies that ΨVk

n and
ΨVk
∞ are sub multiplicative Ψ∗-algebras and hence, the �rst assertion follows with

Remark 3.1.2. The rest is a direct consequence of Theorem 3.1.12. �

3.2. Commutators of pseudodi�erential operators in Weyl-form with
multiplication operators and partial derivations

In the �rst part of this section we give a de�nition of pseudodi�erential op-
erators starting from a symbol on the in�nite dimensional Hilbert space H2

−.
Moreover, we show some basic properties of these operators and describe a class
of continuous pseudodi�erential operators. Throughout the �rst part of this sec-
tion we follow closely [2].

Let F : L2(H−, γ) −→ L2(H−, ν) denote the isometric isomorphism
from 1.4.4 given by FUt = VtF . Moreover, for τ ∈ H+ de�ne the family
Wτ : L2(H−, γ) −→ L2(H−, γ) by

(25) Wτf = ei〈τ,·〉0f.

Remark 3.2.1. The operators Ut and Wt satisfy the commutator relation in
Weyl form

UtWτ = ei〈t,τ〉0WτUt.

Definition 3.2.2 (pseudodi�erential Operator, Albeverio, Dalecky [2]). Let
a(x, p) be a symbol (a function) on H2

−. De�ne the pseudodi�erential operator
a(X,D) in L2(H−, γ) by

(26) a(X,D)ϕ(x) = F−1
p→xFy→p

[
a

(
x+ y

2
, p

)
ϕ(y)

]
.

The sign "p→ x" means that the corresponding operator is applied to a function
of p and the result is considered as a function of x.

Example 3.2.3. Let us compute some pseudodi�erential operators. Thus let
t ∈ H+ be �xed.

(i) For a(x, p) = 〈t, p〉0 and ϕ ∈ C 1
int(H−) we obtain

a(X,D)ϕ(x) = F−1
p→xFy→p[〈t, p〉0ϕ(y)] = F−1

p→x[〈t, p〉0F (ϕ)(p)] =
1

i
Dtϕ(x).

(ii) Let a(x, p) = 〈t, x〉0 Then for ϕ ∈ Cint(H−) we obtain

a(X,D)ϕ(x) =
1

2

(
〈t, x〉0F−1

p→xFy→pϕ(y) + F−1
p→xFy→p[〈t, y〉0ϕ(y)]

)
= 〈t, x〉0ϕ(x).

At next we describe what these operators look like in the �nite dimensional
case.
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Remark 3.2.4. Let H+ = H0 = H− = Rn. We assume that γ = γ1 is the
canonical Gaussian measure in Rn. Moreover, let a be a symbol on R2n. Then

a(X,D)f(x) = e
‖x‖2

2 a(X, D̃)(e−
‖·‖2

2 f)(x),

where a(X, D̃) is the pseudodi�erential operator in Rn given in Weyl-form1, i.e.

a(X, D̃)f(x) = F̃−1
p→xF̃y→p

[
a

(
x+ y

2
, p

)
f(y)

]
,

where F̃ is the Fourier-transform in Rn with the Lebesgue measure.

Proof. Applying 1.4.9 we obtain

a(X,D)f(x) = F−1
p→xFy→p

[
a

(
x+ y

2
, p

)
f(y)

]
= V −1

G,nF̃
−1
p→xVG,nV

−1
G,nF̃y→pVG,n

[
a

(
x+ y

2
, p

)
f(y)

]
= e

‖x‖2
2 F̃−1

p→xF̃y→p

[
a

(
x+ y

2
, p

)
e−

‖y‖2
2 f(y)

]
.

Furthermore, for a ∈ S0
%,δ(R

n) we obtain

‖a(X,D)f‖L2(Rn, dγ1) =
∥∥V −1

G,na(X,D)VG,nf
∥∥
L2(Rn, dγ1)

= ‖a(X,D)VG,nf‖L2(Rn, dλ)

≤ c ‖VG,nf‖L2(Rn, dλ) = c ‖f‖L2(Rn, dγ1) ,

where λ denotes the Lebesgue measure in Rn and c ≤ 0 suitable. �

Now we consider a certain class of symbols. Our aim is to describe the pseu-
dodi�erential operators attached to such symbols more detailed. Thus we de�ne
the symbol we want to consider at next.

Definition 3.2.5.

(i) Let M∞(H2
+,C) be the space of complex valued measures θ on B(H2

+)
such that ∫

H2
+

e
a‖x‖

H2
+d |θ| (x) <∞ ∀a ∈ R.

(ii) Furthermore, let G be the space of Fourier transforms of measures θ ∈
M∞(H2

+), i.e.

G =

{
a | a(x, p) =

∫
ei〈x,x

′〉0+i〈p,p′〉0dθ(x′, p′), θ ∈M∞(H2
+,C)

}
.

1For more information about pseudodi�erential operators in Weyl-form see for example
Folland [43, chapter 2].
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Proposition 3.2.6. For a ∈ G being the Fourier transform of a measure ξ
the operator a(X,D) is de�ned on C∞

int(H−) and the following formula holds on
C∞
int(H−)

(27) a(X,D)f =

∫
Wx′

2
Up′Wx′

2
f dξ(x′, p′)

or equivalently

(28) a(X,D)f =

∫
Wx′Up′e

i
2
〈x′,p〉0f dξ(x′, p′).

Furthermore, for a ∈ G the formula above holds for any f ∈ L2(H−, γ).

Proof. See [2, Proposition 3.7]. �

Proposition 3.2.7. Let a ∈ G. Then a(X,D) is a continuous linear operator
in L2(H−, γ).

Proof. Let a(x, p) =
∫
ei〈x,x

′〉0+i〈p,p′〉0dξ(x′, p′). Then there exists a ξ-
measurable function g(x′, p′) with |g| = 1 and dξ = gd |ξ| (cf. [22]). Applying
3.2.6 we obtain

‖a(X,D)f‖2
L2(H−, γ)

=

∫ ∣∣∣∣∫ ei〈x,x
′〉0Up′e

i
2
〈x′,p′〉0f(x)g(x′, p′)d |ξ| (x′, p′)

∣∣∣∣2 dγ(x)
≤

∫ ∫ ∣∣∣ei〈x,x′〉0e i2 〈x,x′〉0g(x′, p′)∣∣∣2 d |ξ| (x′, p′)∫ |Up′f(x)|2 d |ξ| (x′, p′)dγ(x)

=

∫
1 d |ξ| (x′, p′)

∫ ∫
|Up′f(x)|2 dγ(x)d |ξ| (x′, p′)

= c

∫
‖Up′f‖2

L2(H−, γ)
d |ξ| (x′, p′)

≤ c

∫
‖Up′‖2

Op ‖f‖
2
L2(H−, γ)

d |ξ| (x′, p′) ≤ c2 ‖f‖2
L2(H−, γ)

,

where c > 0 is chosen suitably. �

Remark 3.2.8. Let a ∈ G. Then we have a(X,D)∗ = b(X,D), where b ∈
G. Moreover, if a is the Fourier transform of a positive measure ξ, we obtain
a(X,D)∗ = a(X,D).

Proof. For a ∈ G there exists a measure ξ ∈M∞(H2
+,C) such that a(x, p) =∫

ei〈x,x
′〉0+i〈p,p′〉0 d ξ(x′, p′). In addition, there exists a ξ-measurable function

h(x′, p′) such that |h| = 1 and dξ = hd |ξ|. Hence for f, g ∈ L2(H−, γ) we obtain

〈a(X,D)f, g〉L2(H−, γ) =

∫∫
Wx′

2
Up′Wx′

2
f(x)g(x) dξ(x′, p′)dγ(x)
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=

∫∫
Wx′

2
Up′Wx′

2
f(x)g(x) dγ(x)dξ(x′, p′)

=

∫∫
f(x)Wx′

2
Up′

∗Wx′
2
g(x) dγ(x)dξ(x′, p′)

=

∫∫
f(x)Wx′

2
Up′

∗Wx′
2
g(x)h(x′, p′) d |ξ| (x′, p′)dγ(x)

=

∫∫
f(x)Wx′

2
Up′Wx′

2
g(x)h(−x′,−p′)d|̃ξ|(x′, p′)dγ(x)

=

∫∫
f(x)Wx′

2
Up′Wx′

2
g(x)dθ(x′, p′)dγ(x)

= 〈f, b(X,D)g〉L2(H−, γ),

where |̃ξ|(x′, p′) is the image of the measure |ξ| under the mapping (x′, p′) 7−→
(−x′,−p′) and dθ(x′, p′) = h(−x′,−p′)d|̃ξ|(x′, p′). In the case of a positive mea-
sure we have h ≡ 1. Thus the second assertion is clear. �

Our aim is to show that for a ∈ G the operator a(X,D) is an element of the
Ψ∗-algebra de�ned in section 3.1. Therefore we have to study the commutators
of a(X,D) and the multiplication and partial di�erential operators in direction
of elements of H+. Let us start with the multiplication operators.

Theorem 3.2.9. Let a ∈ F and t ∈ H+. Then a(X,D)(D(Mt)) ⊆ D(Mt)
and [Mt, a(X,D)] can be extended to L2(H−, γ) continuously, whereMt is de�ned
as in 1.2.2. Moreover, for all j ∈ N (adMt)

j(a(X,D)) can be extended to a
continuous operator on L2(H−, γ).

Proof. Let f ∈ D(Mt). Then we have

〈t, x〉0Up′f(x) = 〈t, x〉0
√
%p′(x)f(x+ p′)

=
√
%p′(x)(〈t,−p′〉0 + 〈t, x+ p′〉0)f(x+ p′)

= −〈t, p′〉0Up′f(x) + Up′(〈t, x〉0f(x)).

It follows [Mt, Wx′
2
Up′Wx′

2
]f = Wx′

2
[Mt, Up′ ]Wx′

2
f = −〈t, p′〉0Wx′

2
Up′Wx′

2
f and

thus

‖Mta(X,D)f − a(X,D)Mtf‖2
L2(H−, γ)

=

∫ ∣∣∣∣∫ 〈t,−p′〉0Wx′
2
Up′Wx′

2
f(x)dξ(x′, p′)

∣∣∣∣2 dγ(x)
≤

∫ ∫
‖p′‖2

H+
‖t‖2

H−
d |ξ| (x′, p′)

∫
|Up′f(x)|2 d |ξ| (x′, p′)dγ(x)

≤ c′
∫
‖Up′f‖2

L2(H−, γ)
d |ξ| (x′, p′) ≤ c ‖f‖2

L2(H−, γ)
.
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Now it follows that adj(Mt)(a(X,D))f(x) =
∫
〈t,−p′〉j0Wx′

2
Up′Wx′

2
f(x)dξ(x′, p′).

Thus as above we obtain
∥∥adj(Mt)(a(X,D))f(x)

∥∥2

L2(H−, γ)
≤ c ‖f‖2

L2(H−, γ)
. �

For t ∈ H+ we de�ne Dt and ∂t as in Proposition 1.3.8 and Proposition 1.2.4
and for t ∈ H− we denote by ∂

∂t
the partial derivative.

Lemma 3.2.10. Let x′ ∈ H+ and f ∈ C 1
int(H−). Then we �nd for t ∈ H−

that [ ∂
∂t
, Wx′

2
]f(x) = i〈x′

2
, t〉0Wx′

2
f(x) and for t ∈ H+ that [Dt, Wx′

2
]f(x) =

i〈x′
2
, t〉0Wx′

2
f(x).

Proof. Let t ∈ H− and f ∈ C 1
int(H−). Then the following equality holds.

[
∂

∂t
, Wx′

2
]f(x)

=
∂

∂t

(
ei〈

x′
2
,x〉0f(x)

)
− ei〈

x′
2
,x〉0 ∂

∂t
f(x)

= ei〈
x′
2
,x〉0 ∂

∂t
f(x) + i〈x

′

2
, t〉0ei〈

x′
2
,x〉0f(x)− ei〈

x′
2
,x〉0 ∂

∂t
f(x) = i〈x

′

2
, t〉0Wx′

2
f(x).

Thus for t ∈ H+ we get [Dt, Wx′
2
]f(x) = [ ∂

∂t
− 〈t, ·〉0, Wx′

2
]f(x) = [ ∂

∂t
, Wx′

2
]f(x).

�

Lemma 3.2.11. Let p′ ∈ H+ and f ∈ C 1
int(H−). Then we have [ ∂

∂t
, Up′ ]f(x) =

−〈p′, t〉0Up′f(x) for t ∈ H−. For t ∈ H+ this yields [Dt, Up′ ]f(x) = 0.

Proof. Let p′ ∈ H+ and t ∈ H− �xed. Then we have for f ∈ C 1
int(H−)

[
∂

∂t
, Up′ ]f(x) =

∂

∂t

(√
%p′(x)f(x+ p′)

)
− Up′

∂

∂t
f(x)

=
1

2
√
%p′(x)

%p′(x)2〈p′, t〉0f(x+ p′) = −〈p′, t〉0Up′f(x).

Hence we get for t ∈ H+ and f ∈ C 1
int(H−)

[Dt, Up′ ]f(x)

= [
∂

∂t
− 〈t, ·〉0, Up′ ]f(x)

= [
∂

∂t
, Up′ ]f(x)− 〈t, x〉0

√
%p′(x)f(x+ p′) +

√
%p′(x)〈t, x+ p′〉0f(x+ p′)

= (−〈p′, t〉0 + 〈t, p′〉0)Up′f(x) = 0,

since 〈·, ·〉0 is a real inner product. �

Corollary 3.2.12. Let x′, p′ ∈ H+ and f ∈ C 1
int(H−). For t ∈ H− we have

[
∂

∂t
, Wx′

2
Up′Wx′

2
]f(x) = (i〈x′, t〉0 − 〈p′, t〉0)Wx′

2
Up′Wx′

2
f(x).

Moreover, for t ∈ H+ we get [Dt, Wx′
2
Up′Wx′

2
]f(x) = i〈x′, t〉0Wx′

2
Up′Wx′

2
f(x).
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Proof. Let x′, p′ ∈ H+ �xed and f ∈ C 1
int(H−). Then applying Lemma

3.2.10 and Lemma 3.2.11, for t ∈ H− the following equality holds.

[
∂

∂t
, Wx′

2
Up′Wx′

2
]f(x)

= [
∂

∂t
, Wx′

2
]Up′Wx′

2
f(x) +Wx′

2
[
∂

∂t
, Up′ ]Wx′

2
f(x) +Wx′

2
Up′ [

∂

∂t
, Wx′

2
]f(x)

= (i〈x′, t〉0 − 〈p′, t〉0)Wx′
2
Up′Wx′

2
f(x).

Similarly, according to Lemma 3.2.10 and Lemma 3.2.11, we have for t ∈ H+ and
f ∈ C 1

int(H−)
[Dt, Wx′

2
Up′Wx′

2
]f = i〈x′, t〉0Wx′

2
Up′Wx′

2
f. �

Considering Proposition 3.2.6, we have to show that the integral and the
partial derivatives commute. Therefore we start with a technical estimation.

Lemma 3.2.13. Let f ∈ C 1
pol(H−), t ∈ H− and x ∈ H− arbitrary. Then there

exist K ≥ 0 and a ≥ 0, such that∣∣∣∣ ∂∂tWx′
2
Up′Wx′

2
f(y)

∣∣∣∣ ≤ K e a(‖x
′‖+‖p′‖) ∀y ∈ U1(x).

Proof. Let x ∈ H− be �xed. Since f ∈ C 1
pol(H−), there exist K1,m ≥ 0

such that |f(y)| ≤ K1(1 + ‖y‖−)m and
∣∣ ∂
∂t
f(y)

∣∣ ≤ K1(1 + ‖y‖−)m for all y ∈ H−.
Thus there exist k, K, a ≥ 0 such that∣∣∣∣ ∂∂tWx′

2
Up′Wx′

2
f(y)

∣∣∣∣
=

∣∣∣∣(i〈x′, t〉0 − 〈p′, t〉0)Wx′
2
Up′Wx′

2
f(y) +Wx′

2
Up′Wx′

2

∂

∂t
f(y)

∣∣∣∣
≤

(
‖x′‖+ ‖t‖− + ‖p′‖+ + ‖t‖−

) ∣∣∣∣√%p′(y) f(y + p′)

∣∣∣∣+ ∣∣∣∣√%p′(y)
∂

∂t
f(y + p′)

∣∣∣∣
≤ (k(‖x′‖+ + ‖p′‖+) + 1)

√
e−‖p

′‖20
√
e−2〈p′,y〉0K1(1 + ‖y + p′‖−)m

≤ K e a(‖x
′‖+‖p′‖). �

Corollary 3.2.14. For ξ ∈ M∞(H2
+), f ∈ C 1

pol(H−) and t ∈ H− the follow-
ing equality holds:

∂

∂t

∫
Wx′

2
Up′Wx′

2
f(x) dξ(x′, p′) =

∫
∂

∂t
Wx′

2
Up′Wx′

2
f(x) dξ(x′, p′).

Moreover, the mapping x 7→
∫

∂
∂t
Wx′

2
Up′Wx′

2
f(x) dξ(x′, p′) is continuous.

Proof. The assertion follows by the di�erentiation lemma and 3.2.13. �

Corollary 3.2.15. For f ∈ C 1
pol(H−) and a ∈ F we have a(X,D)f ∈

C 1
int(H−).
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Proof. Let M ⊂ H− be bounded. Thus there exists C > 0 such that
‖x‖− ≤ C for all x ∈M . Hence we obtain for all x ∈M

a(X,D)f(x) ≤
∫
H+

|Up′f(x)| d |ξ| (x′, p′)

≤ C ′
∫
H+

∣∣∣e‖x‖−‖p′‖+(1 + ‖x+ p′‖−)m
∣∣∣ d |ξ| (x′, p′)

≤ C ′
∫
H+

∣∣∣eC‖p′‖+(1 + C + ‖p′‖+)m
∣∣∣ d |ξ| (x′, p′) ≤ C̃.

Thus a(X,D)f is bounded on bounded sets. Now let us consider the derivative.
According to 3.2.14 we have

∂

∂t
a(X,D)f(x)

=

∫
∂

∂t
Wx′

2
Up′Wx′

2
f(x) dξ(x′, p′)

=

∫
Wx′

2
Up′Wx′

2

∂

∂t
f(x) + (〈ix′ − p′, t〉0)Wx′

2
Up′Wx′

2
f(x) dξ(x′, p′).

(29)

This yields ∂
∂t
a(X,D)f(x) is continuous for all t ∈ H− (cf. Lemma 3.2.14) and

the Fréchet derivative of a(X,D)f exists. As above, we obtain that d a(X,D)f
is bounded on bounded sets and hence we have a(X,D)f ∈ C 1

int(H−). �

Remark 3.2.16. Applying the proof of Corollary 3.2.15 several times for each
f ∈ C∞

pol(H−) it follows a(X,D)f ∈ C∞
int(H−).

Proposition 3.2.17. Let a ∈ F , t ∈ H+ and f ∈ D(∂t). Then we have
a(X,D)(D(∂t)) ⊆ D(∂t) and

[∂t, â]f(x) =

∫
(i〈x′, t〉0 − 〈p′, t〉0)Wx′

2
Up′Wx′

2
f(x) dξ(x′, p′).

As well, we get a(X,D)(D(Dt)) ⊆ D(Dt) and for f ∈ D(Dt) we obtain

[Dt, â]f(x) =

∫
i〈x′, t〉0Wx′

2
Up′Wx′

2
f(x) dξ(x′, p′).

Thus [∂t, â] and [Dt, â] can be extended continuously to L2(H−, γ).

Proof. Let a ∈ F , t ∈ H+ and f ∈ C∞
pol(H−). According to Remark

3.2.16 and equation (29) we have a(X,D)f ∈ C∞
int(H−) and [∂t, â]f(x) =∫

(i〈x′, t〉0 − 〈p′, t〉0)Wx′
2
Up′Wx′

2
f(x) dξ(x′, p′). Now let f ∈ D(∂t) be arbitrary.

Then there exists a sequence (fn)n∈N ⊂ C∞
b (H−) such that fn −−−→

n→∞
f and
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∂tfn −−−→
n→∞

∂tf in L2(H−, γ). Remark 3.2.16 implies a(X,D)fn ∈ C∞
int(H−) and

∂
∂t
a(X,D)fn ∈ C∞

int(H−) and thus we have

∂ta(X,D)fn

= a(X,D)∂tfn +

∫
(i〈x′, t〉0 − 〈p′, t〉0)Wx′

2
Up′Wx′

2
fn(x) dξ(x

′, p′)

−−−→
n→∞

a(X,D)∂tf +

∫
(i〈x′, t〉0 − 〈p′, t〉0)Wx′

2
Up′Wx′

2
f(x) dξ(x′, p′),

since a(X,D) is continuous. As ∂
∂t
is closed this is our assertion. For t ∈ H+ �xed

we consider the operator Dt. Let a ∈ F and f ∈ C∞
b (H−). Corollary 3.2.14 and

3.2.12 yield [Dt, â]f(x) =
∫
i〈x′, t〉0Wx′

2
Up′Wx′

2
f(x) dξ(x′, p′). Thus this assertion

follows similarly to the �rst assertion. Moreover, the rest is similarly to 3.2.9 �

Notations 3.2.18. Let {ej}∞j=1 ⊂ H+ be an orthonormal basis of H− and let
β ∈ NN0 . Furthermore, let ν denote the length of β. Then using the Notations of
3.2.18 we set

(i) Mβ := Mβ1

1 Mβ2

2 . . .Mβν
ν , ∂β := ∂β1

1 ∂
β2

2 . . . ∂βνν , D
β := Dβ1

1 D
β2

2 . . . Dβν
ν ,

(ii) Aβ(p′) := 〈e1,−p′〉β1

0 〈e2,−p′〉
β2

0 . . . 〈eν ,−p′〉βν0 ,
(iii) Bβ(x′) := (i〈x′, e1〉0)β1(i〈x′, e2〉0)β2 . . . (i〈x′, eν〉0)βν ,
(iv) Bβ(x′, p′) := (i〈x′, e1〉0 − 〈S−1p′, e1〉0)β1 . . . (i〈x′, eν〉0 − 〈S−1p′, eν〉0)βν .
Proposition 3.2.19. Let α, β ∈ NN0 , a ∈ F and f ∈ D(Mα∂β) resp. f ∈

D(MαDβ). Then we have

adα(M)adβ(∂)(a(X,D))f(x) =

∫
Aα(p′)Bβ(x′, p′)Wx′

2
Up′Wx′

2
f(x)dξ(x′, p′),

adα(M)adβ(D)(a(X,D))f(x) =

∫
Aα(p′)Bβ(x′)Wx′

2
Up′Wx′

2
f(x)dξ(x′, p′).

Proof. The assertion follows by induction similarly to 3.2.13, 3.2.14, 3.2.17
and can be found in [71, Prop. 3.4.4]. �

Theorem 3.2.20. For α, β ∈ NN
0 and a ∈ F adα(M)adβ(∂)(a(X,D))

and adα(M)adβ(D)(a(X,D)) can be extended to continuous linear operators on
L2(H−, γ).

Proof. Let g ∈ L1(H2
+, |ξ|) with |g| = 1 such that gd |ξ| = dξ. For a ∈ F

and f ∈ D(MαDβ) we have∫ ∣∣adα(M)adβ(D)(a(X,D))f(x)
∣∣2 dγ(x)

3.2.19

≤
∫ ∫ ∣∣Aα(p′)Bβ(x′)

∣∣2d |ξ| (x′, p′)∫ ∣∣∣Wx′
2
Up′Wx′

2
f(x)

∣∣∣2 d |ξ| (x′, p′) dγ(x)
3.2.9,3.2.17

≤ K

∫∫
|Up′f(x)|2 dγ(x)d |ξ| (x′, p′) ≤ K̃ ‖f‖2

L2(H−, γ)
.
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Similarly we can show that adα(M)adβ(∂)(a(X,D)) can be extended to an ele-
ment of L (L2(H−, γ)). �

Corollary 3.2.21. Let a ∈ G. Then we have a(X,D) ∈ ΨMD.

Proof. Follows obviously by Lemma 3.2.19 and Theorem 3.2.20. �

3.3. A scale of Sobolev spaces generated by the Ornstein-Uhlenbeck
operator and generalized Hörmander classes

In the �nite dimensional case we can describe the Ψ∗-algebra Ψ0
%,δ (0 ≤

δ ≤ % ≤ 1, δ < 1) of pseudodi�erential operators by Ψ0
%,δ := {a ∈

L (H0) | adα(M)adβ( ∂
∂x

)(a) ∈ L (Hs, Hs+%|α|−δ|β|) ∀s ∈ R ∀α, β ∈ Nn
0}, where

Hs are the usual �nite dimensional Sobolev spaces. In this chapter we con-
struct a similar Ψ∗-algebra in the in�nite dimensional case. Moreover, we de�ne
generalized Hörmander classes and show that these classes are Ψ∗-algebras in
L (L2(H−, µ)). To de�ne the Sobolev spaces we use the Laplace operator from
the previous section. Furthermore, we show that the operator of partial di�eren-
tiation maps Hs continuously to Hs−1 for all s ∈ R.

Henceforth let Λ be a strictly positive operator in a separable Hilbert space
H. For s ≥ 0 we set Hs

Λ := D(Λs) and H−s
Λ := (Hs

Λ)′. Moreover, for f ∈ H−s
Λ ,

g ∈ Hs
Λ we consider the pairing 〈f, g〉H0

Λ
:= 〈Λ−sf,Λsg〉H0

Λ
.

Proposition 3.3.1. Let A ∈
⋂
k∈ZL (Hk

Λ). Then A ∈
⋂
s∈RL (Hs

Λ)
and there exists a unique operator A∗ ∈

⋂
s∈RL (Hs

Λ) such that 〈Af, g〉H0
Λ

=

〈f, A∗g〉H0
Λ
for f ∈ H−s

Λ and g ∈ Hs
Λ.

Proof. According to [31, Prop. 6.4, p.32], there exists a unique operator
A∗ ∈

⋂
k∈ZL (Hk

Λ) such that 〈Af, g〉HΛ
= 〈f, A∗g〉HΛ

for f ∈ H−k
Λ and g ∈ Hk

Λ.
Now for �xed s > 0, there exist k ∈ N and 0 < θ < 1 such that s = θk. Applying
Theorem [25, Theorem 1.5.5] we get A,A∗ ∈ L ([H,Hk

Λ]θ), since A,A∗ ∈ L (H)∩
L (Hk

Λ). Thus Theorem [25, Theorem 1.5.10] implies that A,A∗ ∈ L (Hs
Λ). Since

s > 0 arbitrary, it follows that A,A∗ ∈
⋂
s≥0 L (Hs

Λ). For any �xed s > 0 the
adjoint (A∗)∗s ∈ L (H−s

Λ ) of A∗ with respect to the inner product in H exists. For
f ∈ H and g ∈ H∞

Λ :=
⋂
s∈RH

s
Λ we get

〈(A∗)∗sf, g〉H − 〈(A∗)∗f, g〉H = 〈f, A∗g〉 − 〈f, A∗g〉 = 0.

Since H∞
Λ is dense in H (cf. [31, p.30 Prop. 6.1]), it follows that (A∗)∗sf =

(A∗)∗f = Af for f ∈ H. Hence A admits a continuous extension to H−s
Λ . But

this shows A ∈
⋂
s∈RL (Hs

Λ). Now using [31, p.32 Prop. 6.4] again, we get
A∗ ∈

⋂
s∈RL (Hs

Λ). �

Corollary 3.3.2. Let A,A∗ ∈
⋂
k∈NL (Hk

Λ), where A∗ is the adjoint of A
in H0

Λ. Then A,A
∗ ∈

⋂
s∈RL (Hs

Λ).

Proof. Modifying the proof of Proposition 3.3.1 we obtain the result. �
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Now we de�ne a scale of Sobolev spaces Hs according to the Laplace op-
erator de�ned in Chapter 4. Moreover, using commutator-methods we de�ne
Ψ∗-algebras and generalized Hörmander classes in L (H0). We show that these
operator algebras are subsets of L (Hs) for all s ∈ R. For this purpose we use
some results of the previous section. At the end we note a proposition about
commutator estimates.

Definition 3.3.3. Let H+ ⊆ H0 ⊆ H− be a quasi-nuclear Hilbert space rig-
ging and γ the canonical Gaussian measure with respect to this measure. More-
over, let Lγ be de�ned as in 2.1.6. Then we set

Λ := (Lγ + id)1/2

and de�ne

Hs := D(Λs) for s ≥ 0

with inner product

〈f, g〉Hs := 〈Λsf,Λsf〉L2(H−, µ) ∀f, g ∈ Hs.

Since Λ is a strictly positive operator, Hs is a Hilbert space and the norm in
Hs is equivalent to the norm de�ned in 3.1.10 for k ∈ N0. Furthermore, we set
H−s := (Hs)′, where the duality is given with respect to the inner product in H0.
In addition, we de�ne

H∞ =
⋂
s∈R

Hs and H−∞ =
⋃
s∈R

Hs.

Hs is called Sobolev space of order s.2

Definition 3.3.4. Let 0 < ε ≤ 1. Then we de�ne

Aε := Ψ{Λε}
∞

= {a ∈ L (H0) | a(H∞) ⊆ H∞ and
∥∥adj(Λε)(a)f

∥∥
H0 ≤ cj ‖f‖H0

∀f ∈ H∞ ∀j ∈ N0, and suitable cj ≥ 0},

as in Theorem 3.1.12. Since Λε is selfadjoint, Aε is a Ψ∗−algebra. Moreover,
according to [25, Theorem 2.3.11], we have Aε′ ⊆ Aε for 0 < ε ≤ ε′ ≤ 1.

Our next aim is to show that Aε ⊆
⋂
s∈RL (Hs). Therefore we prove the

following result.

Lemma 3.3.5. Let H be a Hilbert space and Z : D(Z) −→ H and A :
D(A) −→ H linear. Furthermore, we assume that there exists D ⊂ D(Z)∩D(A)

2The Sobolev spaces Hs coincide with the Sobolev spaces Ds
2 introduced by Malliavin cf.

[21, page 116]. Thus we have again that Hs is the completion of the polynomials with respect
to the norm ‖·‖Hs , at least in the case oft he canonical Gaussian measure.
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such that Z(D) ⊆ D. Let f ∈ D such that AZjf ∈ D for all j ∈ N0. Then we
have

ZnAf =
n∑
k=0

(
n

k

)
adk(Z)(A)Zn−kf.

Proof. (by induction). For n=0 our hypothesis is true. Thus we assume
that the induction hypothesis is true for n ∈ N �xed. For f ∈ D we get

Zn+1Af = Z(ZnAf)

=
n∑
k=0

(
n

k

)
Zadk(Z)(A)Zn−kf

=
n∑
k=0

(
n

k

)
(adk(Z)(A)Zn−k+1f + adk+1(Z)(A)Zn−kf)

=
n+1∑
k=0

(
n+ 1

k

)
adk(Z)(A)Zn+1−kf. �

Corollary 3.3.6. Let 0 < ε ≤ 1 and A ∈ Aε. Then we have

A ∈
⋂
s∈R

L (Hs).

Proof. Let A ∈ Aε. Since Aε is a Ψ∗-algebra, A∗ ∈ Aε. According to
Lemma 3.3.5 we obtain A, A∗ ∈

⋂
k∈N0

Hεk. Thus 3.3.2 implies

A ∈
⋂
s∈R

L (Hs). �

Definition 3.3.7.
LetH+ ⊆ H0 ⊆ H− be a quasi-nuclear Hilbert space rigging and let (ej)j∈N ⊂ H+

be an orthonormal basis in H0. Moreover, let µ be the measure on B(H−), which
ful�lls the conditions of Proposition 1.3.7. Let Mj := Mej be de�ned as in 1.2.2
and Dj := Dej as in 1.3.6. Then we set

Vk := {M1, . . . , Mk, D1, . . . , Dk}.
Furthermore, letA := A1 be constructed as in 3.3.4. We de�ne ΨVk

∞ as in Theorem
3.1.12, i.e.

ΨVk
∞ =

⋂
n∈N0

ΨVk
n ,

where

• ΨVk
0 := A,

• ΨVk
1 :=

⋂
V ∈Vk

D(δV ) (δV de�ned as in 3.1.8),

• ΨVk
n := {a ∈ ΨVk

n−1 | δV a ∈ ΨVk
n−1 for all V ∈ Vk}, n ≥ 2.
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Now we set
Ψ0 :=

⋂
k∈N0

ΨVk
∞ .

Theorem 3.3.8. Let Ψ0 be de�ned as in 3.3.7. Then Ψ0 is a sub multiplicative
Ψ∗-algebra in H0, and

Ψ0 ⊆
⋂
s∈R

L (Hs).

Moreover, Ψ0 ×H∞ −→ H∞ : (a, ϕ) 7−→ a(ϕ) is continuous and bilinear.

Proof. According to 3.1.12 ΨVk
∞ is a sub multiplicative Ψ∗-algebra and thus

Remark 3.1.2 implies that Ψ0 is a Ψ∗-algebra. Moreover, Ψ0
∞ ⊆ A1 and thus

Ψ0 ⊂
⋂
s∈RL (Hs). �

Now, according to [67, section 3] we de�ne generalized Hörmander classes.

Definition 3.3.9. Let α, β ∈ NN0 . Moreover, let adα(M) and adβ(D) be
de�ned as in 3.2.18. For 0 ≤ δ ≤ % ≤ 1 and δ < 1 we de�ne the generalized
Hörmander-class Ψ̃0

%,δ by

Ψ̃0
%,δ := {A ∈ A1−δ | adα(M)adβ(D)(A) ∈

⋂
s∈R

L (Hs, Hs+%|α|−δ|β|), ∀ α, β ∈ NN0 }.

Furthermore, let ‖·‖A1−δ ,l be a fundamental system of sub multiplicative semi-

norms on A1−δ. Then for A ∈ Ψ̃0
%,δ we de�ne a system of semi-norm by

‖A‖k,0,0,0 := ‖·‖A1−δ ,k

and
‖A‖s,l,l′,ν := sup

|α|≤l, l(α)≤ν
|β|≤l′, l(β)≤ν

∥∥adα(M)adβ(D)(A)
∥∥

L (Hs,Hs+%|α|−δ|β|)
,

where k, l, l′, ν ∈ N, s ∈ R, α, β ∈ NN0 and l(α) resp. l(β) denotes the length of
α resp. β.

Theorem 3.3.10. For 0 ≤ δ ≤ % ≤ 1 and δ < 1 Ψ̃0
%,δ is a sub multiplicative

Ψ∗-algebra in L (H0). Furthermore, Ψ̃0
%,δ × H∞ −→ H∞ : (a, ϕ) 7−→ a(ϕ) is

continuous and bilinear.

Proof. See [130]. �

Remark 3.3.11. It is clear that Ψ0 ⊆ Ψ̃0
0,0.

Remark 3.3.12. As mentioned in 3.1.3 it was a long way until it was proved
that the classical Hörmander classes Ψ0

%,δ(R
n) (0 ≤ δ ≤ ε, δ < ε) are sub multi-

plicative Ψ∗-algebras. One important fact in the proof of the spectral invariance
of these Hörmander classes is a result which is due to Ueberberg and Schrohe.
Let Aε be de�ned as in 3.3.4, but using the classical Laplace operator instead
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of the Orstein-Uhlenbeck operator, or equivalently let Aε be de�ned as the set
of all C∞-elements with respect to the mapping αt(a) : R −→ L (L2(Rn, λ))
given by αt(a) := eitΛ

ε
ae−itΛ

ε
, a ∈ L (L2(Rn, λ)). Then they showed that for

0 < ε ≤ 1 − δ Ψ0
%,δ(R

n) ⊂ Aε. Thus it was possible to prove that Ψ0
%,δ(R

n) is a
Ψ∗-algebra on the scale of Sobolev-spaces. Since starting with Aε allows us to
prove the spectral invariance of Ψ%,δ even if ε �xed and %, δ arbitrary we always
start with Aε.

At last we present a result about commutator estimates, which turns out to
be very useful later on.

Proposition 3.3.13 (Caps, [25]). Let Z : D(Z) → H be a strictly positive
operator in a complex Hilbert space H and m ∈ Z �xed. Furthermore, let H∞

Z =⋂
k∈N D(Zk) and A : H∞

Z → H∞
Z be, such that for all k, j ∈ N0 there exists

constants a2k,j ≥ 0, with∥∥Z2kadj(Z2)(A)(x)
∥∥ ≤ a2k,j

∥∥Z2k+m+jx
∥∥

for all x ∈ H∞
Z . Then for all k ∈ Z, j ∈ N0, there exists ck,j ≥ 0 such that∥∥Zkadj(Z)(A)(x)

∥∥ ≤ ck,j
∥∥Zk+mx

∥∥ for all x ∈ H∞
Z .

Proof. See [25, Proposition 2.3.8]. �

We show that the operators of partial di�erentiation, multiplying with coordi-
nate functions and the generator of the translation-semigroup de�ned in Chapter
2 map continuously from Hs+1 to Hs. Moreover, the operator norms of these
operators are bounded by a constant independent of direction t as long as t ∈ H+

and ‖t‖0 = 1.
Throughout this section let (ek)

∞
k=1 ⊂ H+ be an orthonormal basis in H0.

Furthermore, for all k ∈ N and x ∈ H− we de�ne xk := 〈ek , x〉0.

Proposition 3.3.14. Let γ be the canonical Gaussian measure in a Hilbert
space rigging H+ ⊆ H0 ⊆ H−. Then we obtain for all s ∈ R, j ∈ N0 and f ∈ H∞∥∥Λsadj(Λ)(∂ek)f

∥∥ ≤ cs
∥∥Λs+1f

∥∥ ,
where cs =

√
2 for s ≥ 0 and cs = 2

−s+1
2 for s < 0. Moreover, the mapping

∂ek : Hs+1 −→ Hs is continuous for all s ≥ 0 and can be extended for s < 0 to
a continuous linear map.

Proof. The proof of this proposition will be given in several steps.

(i) At �rst we compute Λsadj(Λ)(∂ek)hα, where hα is de�ned as in 1.1.27.
Moreover, let hn be the n-th normalized Hermite-polynomial. Using
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1.1.26 we get

Λ∂ekhα(x)− ∂ekΛhα(x)

=(Λ∂ek − ∂ekΛ)(hα1(x1) · · ·hαν (xν))

=(
√
|α| −

√
|α|+ 1)(

√
2αkhα1(x1) · · ·hαk−1(xk) · · ·hαν (xν))

=(
√
|α| −

√
|α|+ 1)(∂ekhα1(x1) · · ·hαk(xk) · · ·hαν (xν))

=
−1√

|α|+
√
|α|+ 1

∂ekhα(x)

and thus we obtain

adj(Λ)(∂ek)hα(x) =

(
−1√

|α|+
√
|α|+ 1

)j

(∂ek)hα(x)

and

Λsadj(Λ)(∂ek)hα(x) = |α|
s
2

(
−1√

|α|+
√
|α|+ 1

)j

(∂ek)hα(x).

(ii) Now we prove the assertion on the linear span of the hα. Hence let
f ∈ P := span{hα |α ∈ NN0 }, i.e. there exist α(1), · · · , α(n) ∈ NN0 and

al ∈ C, l = 1 . . . n such that f =
n∑
l=1

alhα(l) . It follows that∥∥Λsadj(Λ)(∂ek)f
∥∥2

L2(H−, γ)

=
n∑
l=1

n∑
m=1

alam
∣∣α(l)

∣∣ s2 ( −1√
|α(l)|+

√
|α(l)|+ 1

)j (
−1√

|α(m)|+
√
|α(m)|+ 1

)j

∣∣α(m)
∣∣ s2 〈∂ekh(l)

α , ∂ekh
(m)
α 〉L2(H−, γ)

=
n∑
l=1

|al|2
∣∣α(l)

∣∣s( −1√
|α(l)|+

√
|α(l)|+ 1

)2j

2α
(l)
k

≤c2s
n∑
l=1

|al|2 (
∣∣α(l)

∣∣+ 1)s+1〈he(l)α , h(l)
α 〉L2(H−, γ) = c2s

∥∥Λs+1f
∥∥2

L2(H−, γ)
.

(iii) Let us prove that ∂j : Hs+1 −→ Hs is continuous for all s ≥ 0. Thus
let s ≥ 0 �xed and f ∈ Hs+1 arbitrary. Then there exists a sequence

fn ∈ P such that fn
Hs+1

−−−−→
n−→∞

f . Step 2 implies that

‖∂ekfn − ∂ekfm‖Hs ≤
√

2 ‖fn − fm‖Hs+1 −−−−→
n,m→∞

0.

Thus fn is a Cauchy-sequence in Hs and since Hs is complete, there

exists g ∈ Hs such that ∂ekfn
Hs

−−−−→
n−→∞

g. Hence ∂ekfn
H0

−−−−→
n−→∞

g and
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fn
H0

−−−−→
n−→∞

f . Since ∂ek is closed we obtain g = ∂ekf . Thus ∂ekfn
Hs

−−−−→
n−→∞

∂ekf and

‖∂ekf‖Hs = lim
n→∞

‖∂ekfn‖Hs ≤
√

2 lim
n→∞

‖fn‖Hs+1 =
√

2 ‖f‖Hs+1 .

(iv) For s < 0 ∂ek |P has a continuous extension ∂sek as an operator fromHs+1

to Hs. We show that for s ≤ 0 and f ∈ D(∂ek) this extension coincides
with ∂ek . At �rst let s ≤ −1. Obviously, for any f ∈ D(∂ek) there

exists a sequence (fn)
∞
n=1 ⊂ P such that fn

H0

−−−→
n→∞

f and ∂ekfn
H0

−−−→
n→∞

∂ekf . Hence we obtain ∂sekf = lim
n→∞

∂sekfn = lim
n→∞

∂ekfn = ∂ekf with

convergence in Hs. Now let −1 < s < 0 and f ∈ D(∂ek) ∩Hs+1. Then

there exists a sequence fn ∈ P such that fn
Hs+1

−−−→
k→∞

f and ∂sekfn
Hs

−−−→
k→∞

∂sekf . Now we obtain ∂sekf = lim
n→∞

∂sekfn = lim
n→∞

∂ekfn = ∂ekf with

convergence in H−1.
(v) Finally, let f ∈ H∞, s ∈ R and j ∈ N0 arbitrary. Then there exists a

sequence fn ∈ P such that fn
Hs+2+j

−−−−→
n−→∞

f . According to (iii) and (iv) we

get adj(Λ)(∂ek)fn
Hs

−−−−→
n−→∞

adj(Λ)(∂ek)f and thus

∥∥adj(Λ)(∂ek)f
∥∥
Hs = lim

n→∞

∥∥adj(Λ)(∂ek)fn
∥∥
Hs ≤ lim

n→∞
cs ‖fn‖Hs+1 = cs ‖f‖Hs+1 .

�

Proposition 3.3.15. Let δek be de�ned as in 1.2.6. Then for all s ∈ R and
all j ∈ N0 we get

∥∥Λsadj(Λ)(δek)f
∥∥ ≤ c̃s

∥∥Λs+1f
∥∥ for all f ∈ H∞,

where c̃s =
√

2 for s ≤ 0 and c̃s = 2
s+1
2 for s > 0. Furthermore, the mapping

δek : Hs+1 −→ Hs is continuous for s ≥ 0 and can be extended for s < 0 to a
continuous linear map. Moreover, we have

2 Mxkf = δekf + ∂ekf ∀f ∈ H1.

Proof. Since the proof of this assertion is similar to the proof of Proposition
3.3.14, we will only prove the �rst two steps. Thus let hα be de�ned as in 1.1.27.
Moreover, let hn be the n-th normalized Hermite-polynomial. Using 1.1.26 we
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obtain

Λδekhα(x)− δekΛhα(x)

=(Λδek − δekΛ)(hα1(x1) · · ·hαν (xν))

=(
√
|α|+ 2−

√
|α|+ 1)(

√
2(n+ 1)hα1(x1) · · ·hαk+1(xk) · · ·hαν (xν))

=(
√
|α|+ 2−

√
|α|+ 1)(δekhα1(x1) · · ·hα(xk) · · ·hαν (xν))

=
1√

|α|+ 2 +
√
|α|+ 1

δekhα(x).

Thus

adj(Λ)(δek)hα(x) =

(
1√

|α|+ 2 +
√
|α|+ 1

)j

(δek)hα(x)

and

Λsadj(Λ)(δek)hα(x) = (|α|+ 2)
s
2

(
1√

|α|+ 2 +
√
|α|+ 1

)j

(δek)hα(x).

Now we will prove the assertion for the linear span of hα. Hence let f ∈ P, i.e.

there exist α(1), · · · , α(n) ∈ NN0 and al ∈ C, l = 1 . . . n such that f =
n∑
l=1

alhα(l) .

Then we get∥∥Λsadj(Λ)(δek)hα
∥∥2

L2(H−, γ)

=
n∑
l=1

n∑
m=1

alam
∣∣α(l)

∣∣ s2 ( 1√
|α(l)|+ 2 +

√
|α(l)|+ 1

)j

∣∣α(m)
∣∣ s2 ( 1√

|α(m)|+
√
|α(m)|+ 1

)j

〈δekh(l)
α , δekh

(m)
α 〉L2(H−, γ)

=
n∑
l=1

|al|2 (
∣∣α(l)

∣∣+ 2)s

(
1√

|α(l)|+ 2 +
√
|α(l)|+ 1

)2j

2(α
(l)
k + 1)

≤c̃2s
n∑
l=1

|al|2 (
∣∣α(l)

∣∣+ 1)s+1〈h(l)
α , h(l)

α 〉L2(H−, γ) = c̃2s
∥∥Λs+1f

∥∥2

L2(H−, γ)
.

The rest of this part is similar to the proof of 3.3.14. Finally, we show our last
assertion. Thus let f ∈ H1. Then there exists a sequence (fn)

∞
n=1 ⊂ P such that

fn
H1

−−−→
n→∞

f . Thus we get 2Mxkfn = δekfn + ∂ekfn
H0

−−−→
n→∞

δekf + ∂ekf . Since Mxk is

closed, we have f ∈ D(Mxk) and 2Mxkf = δekf + ∂ekf . �
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Corollary 3.3.16. For all s ∈ R the mappings Mxk and Dek are continuous
from Hs+1 to Hs with∥∥adj(Λ)(Mxk)f

∥∥
Hs ≤ c′s ‖f‖Hs+1 for all f ∈ H∞

and ∥∥adj(Λ)(Dek)f
∥∥
Hs ≤ c′s ‖f‖Hs+1 for all f ∈ H∞,

where c′s ∈ R is a constant depending only on s.

Proof. We have 2Mxkf = ∂ekf + δekf and 2Dekf = ∂ekf − δekf for all
f ∈ H∞ and thus we obtain

‖Mxkf‖Hs ≤
1

2
(‖∂ekf‖Hs + ‖δekf‖Hs) ≤ c′s ‖f‖Hs+1

and

‖Dekf‖Hs ≤
1

2
(‖∂ekf‖Hs + ‖δekf‖Hs) ≤ c′s ‖f‖Hs+1 .

�

Proposition 3.3.17. For k ∈ N the following operators are elements of Aε

for all 0 < ε ≤ 1:
(i) Λ−1∂ek , (ii) Λ−1δek , (iii) Λ−1Mxk , (iv) Λ−1Dek

(v) ∂ekΛ
−1, (vi) ∂ekΛ

−1, (vii) MxkΛ
−1, (viii) DekΛ

−1

Proof. We will prove this lemma only for Λ−1∂ek . For f ∈ H∞ we obtain

ad(Λ)(Λ−1∂ek)f = [Λ, Λ−1∂ek ]f

= ΛΛ−1∂ekf − Λ−1∂ekΛ

= Λ−1Λ∂ekf − Λ−1∂ekΛ

= Λ−1ad(Λ)(∂ek)f

and thus it follows by induction that

adj(Λ)(Λ−1∂ek)f = Λ−1adj(Λ)(∂ek)f.

Hence adj(Λ)(Λ−1∂ek) ∈ L (H0) for all j ∈ N0. Thus Λ−1∂ek ∈ A1 and by [25,
Theorem 2.3.11] Λ−1∂ek ∈ Aε for all 0 < ε ≤ 1. �

Now we will show that the iterated commutators of Λ2 and ∂ek have order
one.

Lemma 3.3.18. Let γ be the canonical Gaussian measure and f ∈ H3. Then
we have

[Λ2, ∂ek ]f(x) = −∂ekf(x).
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Proof. Let hα be de�ned as in 1.1.27. Then we get

Lγ1∂ekhα − ∂ekLγ1hα

= Lγ1∂ek(hα1(x1) · · ·hαν (xν))− ∂ekLγ1(hα1(x1) · · ·hαν (xν))
= Lγ1

√
2αk(hα1(x1) · · ·hαk−1

(xk) · · ·hαν (xν))− ∂ek |α| (hα1(x1) · · ·hαν (xν)
=
√

2αk(|α| − 1− |α|)(hα1(x1) · · ·hαk−1
(xk) · · ·hαν (xν))

= −
√

2αkhα1(x1) · · ·hαk−1
(xk) · · ·hαν (xν) = −∂ekhα.

Thus for all f ∈ P we obtain

[Λ2, ∂ek ]f(x) = −∂ekf(x).

Let f ∈ H3 arbitrary. Then there exists a sequence (fn)n∈N ⊂ P such that

fn
H3

−−−→
n→∞

f . Since fn
H1

−−−→
n→∞

f and Λ2fn
H1

−−−→
n→∞

Λ2f , we obtain ∂ekfn
H0

−−−→
n→∞

∂ekf

and ∂ekΛ
2fn

H0

−−−→
n→∞

∂ekΛ
2f . Hence it follows that

Λ2(∂ekfn) = ∂ekΛ
2fn − ∂ekfn

H0

−−−→
n→∞

∂ekΛ
2f − ∂ekf.

Since Λ2 is closed, this yields Λ2∂ekf = −∂ekf . �

Lemma 3.3.19. Let γ be the canonical Gaussian measure and f ∈ H3. Then
we have

[Λ2, δek ]f(x) = δekf(x).

Proof. Let hα be de�ned as in 1.1.27. Then we get

Lγ1δekhα − δekLγ1hα

= Lγ1δek(hα1(x1) · · ·hαν (xν))− δekLγ1(hα1(x1) · · ·hαν (xν))

= Lγ1
√

2(αk + 1)(hα1(x1) · · ·hαk+1
(xk) · · ·hαν (xν))− δek |α| (hα1(x1) · · ·hαν (xν))

= (
√

2(αk + 1)(|α|+ 1− |α|)(hα1(x1) · · ·hαk+1
(xk) · · ·hαν (xν))

=
√

2(αk + 1)hα1(x1) · · ·hαk+1
(xk) · · ·hαν (xν) = δekhα.

Thus for all f ∈ P we obtain

[Λ2, δek ]f(x) = δekf(x).

For f ∈ H3 arbitrary the assertion follows similarly to Lemma 3.3.18. �

Corollary 3.3.20. Let γ be the canonical Gaussian measure and f ∈ H∞.
Then we have

adj(Λ2)∂ekf(x) = (−1)j∂ekf(x)

and

adj(Λ2)δekf(x) = δekf(x)



3 Hörmander classes of pseudodi�erential operators in Weyl form 95

Proof. (by induction). For j = 1 the hypothesis has been shown in Lemma
3.3.18 and 3.3.19. Thus let the hypothesis be true for �xed j ∈ N. Then we get

adj+1(Λ2)(∂ek)f(x) = ad(Λ2)(adj(Λ2)(∂ek))f(x) = (−1)j+1∂ekf(x).

Similarly we obtain

adj+1(Λ2)(δek)f(x) = ad(Λ2)(δek)f(x) = δekf(x). �

Corollary 3.3.21. Let f ∈ H∞ and j ∈ N. Then we have

[Λ2, (∂ek)
j]f = −j(∂ek)jf

and

[Λ2, (δek)
j]f = j(δek)

jf

Proof. Let f ∈ H∞ and j ∈ N. According to the Leibniz-rule, we obtain

[Λ2, (∂ek)
j]f =

j∑
l=1

(∂ek)
l−1[Λ2, ∂ek ](∂ek)

j−lf = −j(∂ek)jf.

The second assertion follows similarly. �

3.4. Multiplication and convolution operators as elements of the
generalized Hörmander classes

Above we have de�ned the Ψ∗-algebra Ψ0 and the generalized Hörmander
classes Ψ̃0

%,δ. When constructing Ψ∗-algebras by commutator methods, it is a
problem to show that these algebras are non-trivial. Thus we consider some
multiplication operators and prove that these operators are elements of Ψ̃0

%,δ for
all 0 ≤ δ ≤ % ≤ 1, δ < 1. Throughout this section let H+ ⊆ H0 ⊆ H− be a quasi-
nuclear Hilbert space rigging and let γ be the canonical Gaussian measure in this
rigging. Let (ej)

n
j=1 ⊂ H+ be an orthonormal basis in H0. Furthermore, de�ne

P := span{hα |α ∈ NN0 }.

Definition 3.4.1. For a ∈ C∞
b (R) de�ne the operator M(a,j) : H0 −→ H0

by

M(a,j)f(x) = a(〈ej, x〉0)f(x).

Since a is bounded, M(a,j) is bounded. Moreover, for x ∈ H− we de�ne xj :=
〈x, ej〉0 and ∂j := ∂ej .

Lemma 3.4.2. For M(a,j) de�ned as in 3.4.1 and f ∈ P we have

[Λ2,M(a,j)]f = −1

2
M(a′′,j)f +M(a′,j)xjf −M(a′,j)∂jf.
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Proof. Let f ∈ P. Then we obtain

2[Λ2,M(a,j)]f(x)

= (−∂2
j + 2xj∂j)a(xj)f(x)− a(xj)(−∂2

j + 2xj∂j)f(x)

= −∂2
j a(xj)f(x)− 2∂ja(xj)∂jf(x) + 2xj∂ja(xj)f(x)

= −M(a′′,j)f(x) + 2M(a′,j)xjf(x)− 2M(a′,j)∂jf(x). �

Lemma 3.4.3. Let m ∈ N be �xed and a ∈ C∞
b (R). Then there exist a(l,k) ∈

C∞
b (R) (l + k ≤ m) such that

adm(Λ2)(M(a,j))f =
∑
l+k≤m

M(a(l,k),j)x
l
j∂

k
j f ∀f ∈ P,

where M(a(l,k),j) is de�ned as in 3.4.1.

Proof. (by induction) Form = 1 our hypothesis is true by Lemma 3.4.2. Let
the hypothesis by true for �xed m ∈ N. Then there exist b(k,l) ∈ C∞

b (R) (k+ l ≤
m) such that

adm(Λ2)(M(a,j))f =
∑
k+l≤m

M(b(k,l),j)x
l
j(∂j)

kf ∀f ∈ P.

Thus we obtain

adm+1(Λ2)(M(a,j))f(x)

= [Λ2,
∑
k+l≤m

M(b(k,l),j)x
l
j∂

k
j ]f(x)

=
∑
k+l≤m

(
M(b(k,l),j)x

l
j[Λ

2, ∂kj ] +M(b(k,l),j)[Λ
2, xlj]∂

k
j + [Λ2, M(b(k,l),j)]x

l
j∂

k
j

)
f(x)

=
∑
k+l≤m

(
−kM(b(k,l),j)x

l
j∂

k
j +M(b(k,l),j)

l∑
n=1

xn−1
j [Λ2, xj]x

l−n
j ∂kj

+ (−1

2
M(b′′

(k,l)
,j) +M(b′

(k,l)
,j)xj −M(b(k,l),j)∂j)x

l
j∂

k
j

)
f(x)

=
∑
k+l≤m

(
−kM(b(k,l),j)x

l
j∂

k
j +M(b(k,l),j)

l∑
n=1

xn−1
j

1

2
[Λ2, ∂j + δj]x

l−n
j ∂kj

− 1

2
M(b′′

(k,l)
,j)x

l
j∂

k
j +M(b′

(k,l)
,j)xjx

l
j∂

k
j −M(b(k,l),j)∂jx

l
j∂

k
j

)
f(x)

=
∑
k+l≤m

(
−kM(b(k,l),j)x

l
j∂

k
j +M(b(k,l),j)

l∑
n=1

xn−1
j (xj − ∂j)x

l−n
j ∂kj
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−1

2
M(b′′

(k,l)
,j)x

l
j∂

k
j +M(b′

(k,l)
,j)x

l+1
j ∂kj

−M(b(k,l),j)(lx
l−1
j ∂kj + xlj∂

k+1
j )

)
f(x)

=
∑
k+l≤m

(
−kM(b(k,l),j)x

l
j∂

k
j +M(b(k,l),j)

l∑
n=1

(xlj − lxl−1
j ∂kj + xl−1

j ∂k+1
j )

−1

2
M(b′′

(k,l)
,j)x

l
j∂

k
j +M(b′

(k,l)
,j)x

l+1
j ∂kj

−M(b(k,l),j)(lx
l−1
j ∂kj + xlj∂

k+1
j )

)
f(x).

But this is our hypothesis. �

Lemma 3.4.4. Let a ∈ C∞
b (R) and M(a,j) de�ned as in 3.4.1. For all k, m ∈

N0, there exist ck,2m > 0 such that for all f ∈ H∞

∥∥Λ2kadm(Λ2)(M(a,j))f
∥∥

0
≤ c2k,m

∥∥Λ2k+mf
∥∥

0
.

Proof. In a �rst step let f ∈ P. Then by Lemma 3.3.5 we have

Λ2kadm(Λ2)(M(a,j))f =
k∑

n=0

(
k

n

)
adn(Λ2)(adm(Λ2)(M(a,j)))(Λ

2)k−nf

=
k∑

n=0

(
k

n

)
adm+n(Λ2)(M(a,j))(Λ

2)k−nf

=
k∑

n=0

(
k

n

) ∑
i+l≤m+n

M(b(i,l),j)x
l
j(∂j)

i(Λ2)k−nf,

where b(i,l) ∈ C∞
b (R) for all l, i. Thus there exists ci,l > 0 and ck,m > 0 such that

∥∥Λ2kadm(Λ2)(M(a,j))f
∥∥
H0 ≤

k∑
n=0

(
k

n

) ∑
i+l≤m+n

∥∥∥M(b(i,l),j)x
l
j(∂j)

i(Λ2)k−nf
∥∥∥
H0

≤
k∑

n=0

(
k

n

) ∑
i+l≤m+n

c
∥∥xlj(∂j)i(Λ2)k−nf

∥∥
H0

≤
k∑

n=0

(
k

n

) ∑
i+l≤m+n

ci,l ‖f‖Hl+i+2k−2n

≤ c2k,m
∥∥Λ2k+mf

∥∥
H0 .
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For f ∈ H∞ there exists a sequence fn ∈ P such that fn
H2k+2m

−−−−→
n−→∞

f . Hence it

follows that Λ2kadm(Λ2)(M(a,j))fn
H0

−−−−→
n−→∞

Λ2kadm(Λ2)(M(a,j))f and thus∥∥Λ2kadm(Λ2)(M(a,j))f
∥∥
H0 ≤ c2k,m

∥∥Λ2k,mf
∥∥
H0 . �

Proposition 3.4.5. Let j ∈ N, a ∈ C∞
b (R) and M(a,j) be de�ned as in 3.4.1.

Then for each k, m ∈ N0, there exist ck,m ≥ 0 such that for all f ∈ H∞∥∥Λkadm(Λ)(M(a,j))f
∥∥
H0 ≤ ck,m

∥∥Λkf
∥∥
H0 .

Proof. This assertion follows directly by 3.3.13 and 3.4.4. �

Corollary 3.4.6. Let j ∈ N, a ∈ C∞
b (R) and M(a,j) be de�ned as in 3.4.1.

Then

M(a,j) ∈ Aε ∀ 0 < ε ≤ 1.

Proof. Proposition 3.4.5 implies that M(a,j) ∈ A1 and thus our assertion
follows by [25, Theorem 2.3.11]. �

Lemma 3.4.7. Let j ∈ N, a ∈ C∞
b (R) and M(a,j) be de�ned as in 3.4.1.

Moreover, let α, β ∈ NN0 and let adα(M)adβ(D) be de�ned as in 3.2.18. Then we
have for all f ∈ H∞

adα(M)adβ(D)(M(a,j))f =

{
M

(a(βj),j)
f if α = 0 and βk = 0 for all k 6= j

0 else.

Proof. For f ∈ C∞
pol(H−) we obtain

[Dj, M(a,j)]f(x) = [∂j, M(a,j)]f(x) = ∂j[(a(xj)f(x)]− a(xj)∂jf(x) = M(a′,j)f(x).

By induction it follows that ad(Dj)
k(M(a,j))f = M(a(k),j)f The rest of our asser-

tion is clear. �

Corollary 3.4.8. Let j ∈ N, a ∈ C∞
b (R) and M(a,j) be de�ned as in 3.4.1.

Furthermore, let Ψ0 be de�ned as in 3.3.7. Then we have

M(a,j) ∈ Ψ0.

Proof. The assertion is clear by 3.3.7, Lemma 3.4.7 and Corollary 3.4.6. �

Proposition 3.4.9. Let j ∈ N, a ∈ C∞
b (R) and M(a,j) be de�ned as in 3.4.1.

Moreover, for 0 ≤ δ ≤ ρ ≤ 1, δ < 1 let Ψ̃0
%,δ be de�ned as in 3.3.9. Then we have

M(a,j) ∈ Ψ̃0
%,δ.

Proof. Lemma 3.4.6 implies that M(a,j) ∈ A1−δ. Thus the assertion follows
by Lemma 3.4.7. �
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Let γ be the canonical Gaussian measure in the quasi-nuclear Hilbert space
rigging H+ ⊂ H0 ⊂ H−. Let (ej)

n
j=1 ⊂ H+ be an orthonormal basis in H0.

Furthermore, de�ne P := span{hα |α ∈ NN0 }. Let F be the abstract Fourier-
transform de�ned in 1.4.4. Then according to [35, p. 73, Theorem 5.1] we have
F−1f(x) = (f)(−x) and F2f(x) = f(−x) for all f ∈ L2(H−, γ). Moreover, in
[17, p.160] it is shown that Fhα = (−i)|α|hα. For t ∈ H+ let Ut, Vt, Dt and Mt

be de�ned as in 3.2.18. According to Proposition 1.4.4 we have FUt = VtF and
thus FDt = MtF and DtF−1 = MfF−1.

Lemma 3.4.10. Let Lγ be the Ornstein-Uhlenbeck operator (cf. [104]). For

Λ := (Lγ + id)
1
2 we obtain

[F , Λs]f = 0 and [F−1, Λs]f = 0

for all f ∈ Hs and s ∈ R. Moreover, for all f ∈ Hs and s ∈ R this implies that
‖Ff‖Hs = ‖f‖Hs .

Proof. For α ∈ NN0 and s ∈ R we obtain FΛshα = F(|α| + 1)
s
2hα =

(|α| + 1)
s
2 (−i)|α|hα = ΛsFhα. Thus we get FΛs = ΛsF for all f ∈ P. Since P

is dense in all Hs and Λs is closed we have [F , Λs]f = 0 for all f in Hs. But this
implies ‖Ff‖Hs = ‖ΛsFf‖H0 = ‖FΛsf‖H0 = ‖Λsf‖H0 = ‖f‖Hs . �

Lemma 3.4.11. Let t ∈ H+ and f ∈ H1. Then we have

(30) DtFf = FMtf and MtF−1f = F−1Dtf

Proof. For t ∈ H+ and f ∈ H1 we obtain

DtFf(x) = Dt(F−1f)(−x) = (F−1Mtf)(−x) = FMtf(x) �

Let g ∈ C∞
b,cyl(H−) and a(x, p) = g(p) be a symbol. According to De�nition

3.2.2 we have a(X,D)f(x) = [F−1MgF ]f(x). Moreover, since there exists c > 0
such that ‖a(X,D)‖H0 = ‖F−1MgFf‖H0 = ‖MgFf‖H0 ≤ c ‖Ff‖H0 = c ‖f‖H0 ,
we obtain that a(X,D) is a continuous linear operator in L2(H−, γ). Moreover,
according to Corollary 3.4.6 and Lemma 3.4.10 a(X,D) leaves H∞ invariant.

Lemma 3.4.12. Let g ∈ C∞
b,cyl(H−), a(x, p) = g(p) and t ∈ H+. Then for

f ∈ H∞ we have
[Dt, a(X,D)]f = 0.

Proof. Let f ∈ H∞. Then we obtain

[Dt, a(X,D)]f) = F−1MtMgFf −F−1MgFDtf

= F−1MgFDtf −F−1MgFDtf = 0.

But this is our assertion. �

Lemma 3.4.13. Let g ∈ C∞
b,cyl(H−), a(x, p) = g(p) and t ∈ H+. Then for

f ∈ H∞ we have
[Mt, a(X,D)]f = at(X,D)f,
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where at(x, p) := ∂tg(p).

Proof. Let f ∈ H∞. Then we obtain

([Mt, a(X,D)]f)(x)

= MtF−1MgFf(x)−F−1MgFMtf(x)

= F−1Dt(g(x)Ff(x))−F−1MgFMtf(x)

= F−1∂tg(x)Ff(x) + F−1g(x)DtFf(x)−F−1MgFMtf(x)

= −at(X,D)f(x) + F−1MgFMtf(x)− F−1MgFMtf(x)

= −at(X,D)f(x).

�

Proposition 3.4.14. Let g ∈ C∞
b,cyl(H−), a(x, p) = g(p) and t ∈ H+. More-

over, let α, β ∈ NN0 and let adα(M)adβ(D) be de�ned as in 3.2.18. Then we have
for all f ∈ H∞

adα(M)adβ(D)(a(X,D))f =

{
b(X,D)f β = 0

0 else,

where b(x, p) = ∂αg(p).

Proof. The assertion follows directly by Lemma 3.4.12 and 3.4.13. �

Lemma 3.4.15. Let g ∈ C∞
b,cyl(H−), a(x, p) = g(p). Then we obtain

[Λk, a(X,D)] = F−1[Λk, Mg]F .

Proof. For g ∈ C∞
b,cyl(H−) and a(x, p) = g(p) by Lemma 3.4.10 we have

[Λk, a(X,D)] = [Λk, F−1MgF ]

= [Λk, F−1]MgF + F−1[Λk, Mg]F + F−1Mg[Λ
k, F ]

= F−1[Λk, Mg]F .

�

Proposition 3.4.16. Let g ∈ C∞
b,cyl(H−) and a(x, p) = g(p). Then for each

k, m ∈ N0, there exist ck,m ≥ 0 such that for all f ∈ H∞∥∥Λkadm(Λ)(a(X,D))f
∥∥
H0 ≤ ck,m

∥∥Λkf
∥∥
H0 .

Proof. For f ∈ H∞, g ∈ C∞
b,cyl(H−) and a(x, p) = g(p) and k,m ∈ N0 it

follows

Λkadm(Λ)(a(X,D))f = ΛkF−1adm(Λ)(Mg)Ff = F−1Λkadm(Λ)(Mg)Ff,
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by Lemma 3.4.10 and 3.4.15. Thus according to Proposition 3.4.5 there exist ck,m
such that∥∥Λkadm(Λ)(a(X,D))f

∥∥
H0 =

∥∥Λkadm(Λ)(Mg)Ff
∥∥
H0

≤ ck,m
∥∥ΛkFf

∥∥
H0 = ck,m

∥∥Λkf
∥∥
H0 ,

which shows our assertion. �

Corollary 3.4.17. Let g ∈ C∞
b,cyl(H−) and a(x, p) = g(p). Then

a(X,D) ∈ Aε ∀ 0 < ε ≤ 1.

Proof. Proposition 3.4.16 implies that a(X,D) ∈ A1 and thus our assertion
follows by [25, Theorem 2.3.11]. �

Theorem 3.4.18. Let g ∈ C∞
b,cyl(H−) and a(x, p) = g(p). Furthermore, let Ψ0

be de�ned as in 3.3.7. Then we have

a(X,D) ∈ Ψ0.

Proof. The assertion is clear by 3.3.7, Lemma 3.4.14 and Corollary 3.4.17.
�

Corollary 3.4.19. Let g ∈ C∞
b,cyl(H−) and a(x, p) = g(p). Let Ψ̃0

0,0 be de�ned
as in 3.3.9. Then we have

a(X,D) ∈ Ψ̃0
0,0.

Theorem 3.4.20. Let Ψ0
cyl be the closed algebraic span of the operatorsMfF−1

and MgF in Ψ0 where f, g ∈ C∞
b,cyl and Mf , F−1MgF are de�ned as in 3.4.1

and 3.4.12. Then Ψ0
cyl is a sub-multiplicative Ψ∗-algebra.

3.5. Fourier operators of order 0 as elements of the generalized
Hörmander classes

Let a ∈ G. In Lemma 3.2.7 we have proved that a(X,D) is a continuous linear
operator in L2(H−, γ). Moreover, in 3.2.21 we have shown that a(X,D) ∈ ΨMD

in the case of a Gaussian measure. Now it is our aim to show that under certain
restrictions this operators are elements of Ψ̃0

0,0.
Throughout this section let H+ ⊆ H0 ⊆ H− be a Hilbert space rigging such

that there exists an orthonormal basis (ej)
∞
j=1 ⊂ H+ in H0 with

(31) 〈x, y〉0 =
∞∑
j=1

〈x, ej〉0〈ej, y〉0 ∀x ∈ H−; y ∈ H+.

Moreover, let γ be the canonical Gaussian measure on B(H−).

Lemma 3.5.1. In this case Proposition 2.1.3 is true for all f ∈ C∞
int(H−) and

thus C∞
int(H−) is a domain of essential selfadjointness of Lγ1. Furthermore, Lγ

leaves the space C∞
int(H−) invariant.
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Proof. Let (ej)
∞
j=1 ⊂ H+ be an orthonormal basis in H0 such that relation

(31) holds. Then the �rst assertion follows similarly to Proposition 2.1.3 (writing
∞ instead of n in the sum), together with Lebesgue's Theorem of dominated
convergence, since

∞∑
k=1

∣∣∣∣∂f(x)

∂xk

∣∣∣∣ ∣∣∣∣∂g(x)∂xk

∣∣∣∣ =
∞∑
k=1

|〈f ′(x), ek〉0| |〈g′(x), ek〉0| ≤ ‖f ′(x)‖+ ‖g
′(x)‖+

∞∑
k=1

‖ek‖2
−

and
∞∑
k=1

∣∣∣∣∂2f(x)

∂x2
k

∣∣∣∣ ≤ ∞∑
k=1

|〈f ′′(x)ek, ek〉0| ≤ ‖f ′′(x)‖L (H−,H+)

∞∑
k=1

‖ek‖2
−

and ∣∣∣∣∣
n∑
k=1

βγ(ek, x)
∂f(x)

∂xk

∣∣∣∣∣ ≤

∣∣∣∣∣
n∑
k=1

〈βγ(x), ek〉0〈f ′(x), ek〉0

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
k=1

〈βγ(x), Pnek〉0〈f ′(x), ek〉0

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
k=1

〈P ∗
nβγ(x), ek〉0〈f ′(x), ek〉0

∣∣∣∣∣
= |〈P ∗

nβγ(x), f
′(x)〉0|

≤ ‖βγ(x)‖− ‖f
′(x)‖+ ∈ L

2(H−, γ),

where Pn is the orthogonal projection onto span{e1, . . . en} in H+. Hence Lγ is
symmetric and positive on C∞

int(H−) and thus Lγ possesses a selfadjoint extension.
Since C∞

b (H−) ⊂ C∞
int(H−) is a domain of essential selfadjointness of Lγ, our

second assertion follows directly. The third part is similar to Corollary 2.1.14 �

Example 3.5.2. Let us give some examples of Hilbert spaces riggings H+ ⊆
H0 ⊆ H−, for which there exists an orthonormal basis (ej)

∞
j=1 ⊂ H+ such that

(31) holds.

(i) As �rst example, let w := (wn)n∈N be a sequence such that wn > 0 ∀n
and

∑∞
k=1(

1
wk

)2 < ∞. Then de�ne H+ := l2w(N), H0 := l2(N) and
H− := l21

w

(N), i.e. H− and H+ are weighted sequence spaces.

(ii) Moreover, we have such a situation, if we set H0 := L2(S1) and H+ :=
Hs (s > 0), i.e. Hs is the Sobolev space of order s and H− := H−s such
that the rigging is quasi-nuclear.

Lemma 3.5.3. Let H be a separable Hilbert space and t ∈ H with ‖t‖H = 1.
Then there exist vectors {ej}∞j=1 such that t, e1, e2, . . . form an orthonormal
basis in H.
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Proof. Let t ∈ H with ‖t‖H = 1. Then we have H = span{t} ⊕ span{t}⊥.
Let (ej)

∞
j=1 be an orthonormal basis in span{t}⊥. Then t, e1, e2, . . . form an

orthonormal basis in H. �

Corollary 3.5.4. For t ∈ H+ let Mt by de�ned as in 1.2.2.and let ∂t
by de�ned as in 1.2.5. Then the operators Mt : Hs+1 −→ Hs and ∂t :
Hs+1 −→ Hs are continuous, with ‖Mt‖L (Hs+1,Hs) ≤ c′s, ‖Dt‖L (Hs+1,Hs) ≤ c′s
and ‖∂t‖L (Hs+1,Hs) ≤ cs, where cs and c

′
s are constants depending on s.

Proof. The assertion follows immediately by Lemma 3.5.3, Proposition
3.3.14 and Corollary 3.3.16. �

We will use Theorem 3.3.13 to show that for a ∈ G the pseudodi�erential
operator a(X,D) is an element of the Ψ∗-algebra Ψ0. Therefore we have to prove
the assumption of this theorem. Let us start we a rather technical lemma.

Lemma 3.5.5. Let H+ ⊆ H0 ⊆ H− such that there exists an orthonormal basis
(eν)

∞
ν=1 ⊂ H+ with (31). Moreover, for p′, x′ ∈ H+ let Wx′

2
and Up′ be de�ned

as in 1.3.2 and (25). Furthermore, let j ∈ N arbitrary and f ∈ C∞
pol(H−). For

α, β ∈ Nn
0 we set

Aα(p′) = 〈p′, f1〉α1
0 · · · 〈p′, fν〉αν0

and

Bα(x′) = (i〈x′, f1〉)α1
0 · · · (i〈x′, fν〉0)αν ,

where (fj)
n
j=1 ⊂ H+ is an arbitrary orthonormal basis in H−. For ξ ∈ M∞(H2

+)
de�ne A : C∞

pol(H−) −→ C∞
int(H−) by

Af :=

j∑
k=0

∫
H2

+

Wx′
2
Up′Wx′

2

nk∑
l=0

〈x′, x′〉m1(nk)
0 〈p′, p′〉m2(nk)

0 V (x′, p′, nk, l)f(x) dξ(p′, x′),

where

V (x′, p′, nk, l)f(x)

:= al,kAα(p′)Bβ(x′)〈x′, x〉m3(nk)
0 〈p′, x〉m4(nk)

0 〈x′, p′〉m5(nk)
0 ∂nk,lx′,p′f(x).

Moreover, we assume that m3(nk) + m4(nk) + k ≤ j, al,k ∈ C, m1(nk), . . .,

m5(nk) ∈ N0 and ∂nk,lx′,p′f := ∂
k1(l)
x′ ∂

k2(l)
p′ with k1(l) + k2(l) = k. Then we obtain

Af ∈ C∞
int(H−) and

[Λ2, A]f(x)

=

j+1∑
k=0

∫
H2

+

Wx′
2
Up′Wx′

2

ñk∑
l=0

〈x′, x′〉m̃1(ñk)
0 〈p′, p′〉m̃2(ñk)

0 Ṽ (x′, p′, ñk, l)f(x) dξ(p′, x′),
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where

Ṽ (x′, p′, ñk, l)f(x)

:= bl,kAα′(p′)Bβ′(x′)〈x′, x〉m̃3(ñk)
0 〈p′, x〉m̃4(ñk)

0 〈x, p′〉m̃5(ñk)
0 ∂

(ñk,l)
(x′,p′)f(x),

such that m̃3(ñk) + m̃4(ñk) + k ≤ j + 1, bl,k ∈ C, m̃1(ñk), . . ., m̃5(ñk) ∈ N0 and

∂ñk,lx′,p′f := ∂
k1(l)
x′ ∂

k2(l)
p′ with k1(l) + k2(l) = k and α′, β′ ∈ NN0 .

Proof. Let f ∈ C∞
pol(H−) and

g(x′, p′) := Aα(p′)Bβ(x′)〈x′, x′〉m1(nk)
0 〈p′, p′〉m2(nk)

0 〈x′, p′〉m5(nk)
0 .

Moreover, we write ∂ν := ∂eν and Mν := Meν . Using Lemma 3.2.12 and 3.2.9 we
obtain

Lγ

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)〈x′, x〉m3(nk)

0 〈p′, x〉m4(nk)
0 ∂nk,lx′,p′f(x) dξ(p′, x′)

=
−1

2

∞∑
ν=1

∂2
ν

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)〈x′, x〉m3(nk)

0 〈p′, x〉m4(nk)
0 ∂nk,lx′,p′f(x) dξ(p′, x′)

+
∞∑
ν=1

Mν∂ν

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)〈x′, x〉m3(nk)

0 〈p′, x〉m4(nk)
0 ∂nk,lx′,p′f(x) dξ(p′, x′)

=
−1

2

∞∑
ν=1

∂ν

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)∂ν [〈x′, x〉m3(nk)

0 〈p′, x〉m4(nk)
0 ∂nk,lx′,p′f(x)]dξ(p′, x′)

+
−1

2

∞∑
ν=1

∂ν

∫
H2

+

(i〈x′, eν〉0 + 〈p′, eν〉0)

Wx′
2
Up′Wx′

2
g(x′, p′)〈x′, x〉m3(nk)

0 〈p′, x〉m4(nk)
0 ∂nk,lx′,p′f(x) dξ(p′, x′)

+
∞∑
ν=1

Mν

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)∂ν [〈x′, x〉m3(nk)

0 〈p′, x〉m4(nk)
0 ∂nk,lx′,p′f(x)] dξ(p′, x′)

+
∞∑
ν=1

Mν

∫
H2

+

(i〈x′, eν〉0 + 〈p′, eν〉0)

Wx′
2
Up′Wx′

2
g(x′, p′)〈x′, x〉m3(nk)

0 〈p′, x〉m4(nk)
0 ∂nk,lx′,p′f(x) dξ(p′, x′)
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=
−1

2

∞∑
ν=1

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)∂2

ν [〈x′, x〉
m3(nk)
0 〈p′, x〉m4(nk)

0 ∂nk,lx′,p′f(x)] dξ(p′, x′)

−
∞∑
ν=1

∫
H2

+

(i〈x′, eν〉0 + 〈p′, eν〉0)

Wx′
2
Up′Wx′

2
g(x′, p′)∂ν [〈x′, x〉m3(nk)

0 〈p′, x〉m4(nk)
0 ∂nk,lx′,p′f(x)] dξ(p′, x′)

+
−1

2

∞∑
ν=1

∫
H2

+

(i〈x′, eν〉0 + 〈p′, eν〉0)2

Wx′
2
Up′Wx′

2
g(x′, p′)〈x′, x〉m3(nk)

0 〈p′, x〉m4(nk)
0 ∂nk,lx′,p′f(x) dξ(p′, x′)

+
∞∑
ν=1

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)Mν∂ν [〈x′, x〉m3(nk)

0 〈p′, x〉m4(nk)
0 ∂nk,lx′,p′f(x)] dξ(p′, x′)

−
∞∑
ν=1

∫
H2

+

〈p′, eν〉0

Wx′
2
Up′Wx′

2
g(x′, p′)∂ν [〈x′, x〉m3(nk)

0 〈p′, x〉m4(nk)
0 ∂nk,lx′,p′f(x)] dξ(p′, x′)

+
∞∑
ν=1

Mν

∫
H2

+

(i〈x′, eν〉0 + 〈p′, eν〉0)

Wx′
2
Up′Wx′

2
g(x′, p′)〈x′, x〉m3(nk)

0 〈p′, x〉m4(nk)
0 ∂nk,lx′,p′f(x) dξ(p′, x′)

= −1

2

∞∑
ν=1

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)〈x′, eν〉20m3(nk)(m3(nk)− 1)〈x′, x〉m3(nk)−2

0

〈p′, x〉m4(nk)
0 ∂nk,lx′,p′f(x) dξ(p′, x′)

−1

2

∞∑
ν=1

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)〈p′, eν〉20m4(nk)(m4(nk)− 1)〈p′, x〉m4(nk)−2

0

〈x′, x〉m3(nk)
0 ∂nk,lx′,p′f(x) dξ(p′, x′)

−
∞∑
ν=1

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)〈x′, eν〉0〈p′, eν〉0m3(nk)〈x′, x〉m3(nk)−1

0

m4(nk)〈p′, x〉m4(nk)−1
0 ∂nk,lx′,p′f(x) dξ(p′, x′)
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−
∞∑
ν=1

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)〈x′, eν〉0m3(nk)〈x′, x〉m3(nk)−1

0 〈p′, x〉m4(nk)
0

∂ν∂
nk,l
x′,p′f(x) dξ(p′, x′)

−
∞∑
ν=1

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)〈p′, eν〉0〈x′, x〉m3(nk)

0 m4(nk)〈p′, x〉m4(nk)−1
0

∂ν∂
nk,l
x′,p′f(x) dξ(p′, x′)

−1

2

∞∑
ν=1

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)〈x′, x〉m3(nk)

0 〈p′, x〉m4(nk)
0 ∂2

ν∂
nk,l
x′,p′f(x) dξ(p′, x′)

−
∞∑
ν=1

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)(i〈x′, eν〉0 + 〈p′, eν〉0)〈p′, x〉m4(nk)

0

m3(nk)〈x′, eν〉0〈x′, x〉m3(nk)−1
0 ∂nk,lx′,p′f(x) dξ(p′, x′)

−
∞∑
ν=1

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)(i〈x′, eν〉0 + 〈p′, eν〉0)〈x′, x〉m3(nk)

0

m4(nk)〈p′, eν〉0〈p′, x〉m4(nk)−1
0 ∂nk,lx′,p′f(x) dξ(p′, x′)

−
∞∑
ν=1

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)(i〈x′, eν〉0 + 〈p′, eν〉0)

〈x′, x〉m3(nk)
0 〈p′, x〉m4(nk)

0 ∂ν∂
nk,l
x′,p′f(x) dξ(p′, x′)

+
−1

2

∞∑
ν=1

∫
H2

+

(i〈x′, eν〉0 + 〈p′, eν〉0)2

Wx′
2
Up′Wx′

2
g(x′, p′)〈x′, x〉m3(nk)

0 〈p′, x〉m4(nk)
0 ∂nk,lx′,p′f(x) dξ(p′, x′)

+
∞∑
ν=1

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)〈x, eν〉0〈p′, x〉m4(nk)

0

m3(nk)〈x′, eν〉0〈x′, x〉m3(nk)−1
0 ∂nk,lx′,p′f(x) dξ(p′, x′)

+
∞∑
ν=1

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)〈x, eν〉0〈x′, x〉m3(nk)

0

m4(nk)〈p′, eν〉0〈p′, x〉m4(nk)−1
0 ∂nk,lx′,p′f(x) dξ(p′, x′)
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+
∞∑
ν=1

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)〈x′, x〉m3(nk)

0 〈p′, x〉m4(nk)
0

(cnk,l〈x′, eν〉0∂
ñk,l̃
x′,p′ + dnk,l〈p′, eν〉0∂

n̂k,l̂
x′,p′)∂νf(x) dξ(p′, x′)

+
∞∑
ν=1

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)〈x′, x〉m3(nk)

0 〈p′, x〉m4(nk)
0 ∂nk,lx′,p′Mν∂νf(x) dξ(p′, x′)

−
∞∑
ν=1

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)〈p′, eν〉0〈p′, x〉m4(nk)

0

m3(nk)〈x′, eν〉0〈x′, x〉m3(nk)−1
0 ∂nk,lx′,p′f(x) dξ(p′, x′)

−
∞∑
ν=1

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)〈p′, eν〉0〈x′, x〉m3(nk)

0

m4(nk)〈p′, eν〉0〈p′, x〉m4(nk)−1
0 ∂nk,lx′,p′f(x) dξ(p′, x′)

−
∞∑
ν=1

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)〈p′, eν〉

〈x′, x〉m3(nk)
0 〈p′, x〉m4(nk)

0 ∂ν∂
nk,l
x′,p′f(x) dξ(p′, x′)

+
∞∑
ν=1

∫
H2

+

(i〈x′, eν〉0 + 〈p′, eν〉0)

Wx′
2
Up′Wx′

2
g(x′, p′)Mν〈x′, x〉m3(nk)

0 〈p′, x〉m4(nk)
0 ∂nk,lx′,p′f(x) dξ(p′, x′)

+
∞∑
ν=1

∫
H2

+

(i〈x′, eν〉0 + 〈p′, eν〉0)〈p′, eν〉0

Wx′
2
Up′Wx′

2
g(x′, p′)〈x′, x〉m3(nk)

0 〈p′, x〉m4(nk)
0 ∂nk,lx′,p′f(x) dξ(p′, x′)

= −1

2

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′) ‖x′‖2

0m3(nk)(m3(nk)− 1)〈x′, x〉m3(nk)−2
0

〈p′, x〉m4(nk)
0 ∂nk,lx′,p′f(x) dξ(p′, x′)

−1

2

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′) ‖p′‖2

0m4(nk)(m4(nk)− 1)〈p′, x〉m4(nk)−2
0

〈x′, x〉m3(nk)
0 ∂nk,lx′,p′f(x) dξ(p′, x′)
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−
∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)〈x′, p′〉0m3(nk)〈x′, x〉m3(nk)−1

0

m4(nk)〈p′, x〉m4(nk)−1
0 ∂nk,lx′,p′f(x) dξ(p′, x′)

−
∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)m3(nk)〈x′, x〉m3(nk)−1

0 〈p′, x〉m4(nk)
0

〈x′, (∂nk,lx′,p′f)′(x)〉0 dξ(p′, x′)

−
∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)〈x′, x〉m3(nk)

0 m4(nk)〈p′, x〉m4(nk)−1
0

〈p′, (∂nk,lx′,p′f)(x)′〉0 dξ(p′, x′)

+

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)〈x′, x〉m3(nk)

0 〈p′, x〉m4(nk)
0 ∂nk,lx′,p′Lγf(x) dξ(p′, x′)

−
∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)(i〈x′, x′〉0 + 〈p′, x′〉0)〈p′, x〉m4(nk)

0

m3(nk)〈x′, x〉m3(nk)−1
0 ∂nk,lx′,p′f(x) dξ(p′, x′)

−
∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)(i〈x′, p′〉0 + 〈p′, p′〉0)〈x′, x〉m3(nk)

0

m4(nk)〈p′, x〉m4(nk)−1
0 ∂nk,lx′,p′f(x) dξ(p′, x′)

−
∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)〈x′, x〉m3(nk)

0 〈p′, x〉m4(nk)
0

(i〈x′, (∂nk,lx′,p′f)′〉0 + 〈p′, (∂nk,lx′,p′f)′(x)〉0) dξ(p′, x′)

−1

2

∫
H2

+

(i〈x′, x′〉0 + 2i〈x′, p′〉0 + 〈p′, p′〉0)

Wx′
2
Up′Wx′

2
g(x′, p′)〈x′, x〉m3(nk)

0 〈p′, x〉m4(nk)
0 ∂nk,lx′,p′f(x) dξ(p′, x′)

+

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)〈x, x′〉0〈p′, x〉m4(nk)

0

m3(nk)〈x′, x〉m3(nk)−1
0 ∂nk,lx′,p′f(x) dξ(p′, x′)
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+

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)〈x, p′〉0〈x′, x〉m3(nk)

0

m4(nk)〈p′, x〉m4(nk)−1
0 ∂nk,lx′,p′f(x) dξ(p′, x′)

+

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)〈x′, x〉m3(nk)

0 〈p′, x〉m4(nk)
0

(cnk,l〈x′, (∂
ñk,l̃
x′,p′f)′(x)〉0 + dnk,l〈p′, (∂

n̂k,l̂
x′,p′f)′(x)〉0) dξ(p′, x′)

−
∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)〈p′, x′〉0〈p′, x〉m4(nk)

0

m3(nk)〈x′, x〉m3(nk)−1
0 ∂nk,lx′,p′f(x) dξ(p′, x′)

−
∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)〈x′, x〉m3(nk)

0

m4(nk)〈p′, p′〉0〈p′, x〉m4(nk)−1
0 ∂nk,lx′,p′f(x) dξ(p′, x′)

−
∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)

〈x′, x〉m3(nk)
0 〈p′, x〉m4(nk)

0 〈p′, (∂ν∂nk,lx′,p′f)′(x)〉0 dξ(p′, x′)

+

∫
H2

+

Wx′
2
Up′Wx′

2
g(x′, p′)(i〈x′, x〉0 + 〈p′, x〉0)

〈x′, x〉m3(nk)
0 〈p′, x〉m4(nk)

0 ∂nk,lx′,p′f(x) dξ(p′, x′)

+

∫
H2

+

(i〈x′, p′〉0 + 〈p′, p′〉0)

Wx′
2
Up′Wx′

2
g(x′, p′)〈x′, x〉m3(nk)

0 〈p′, x〉m4(nk)
0 ∂nk,lx′,p′f(x) dξ(p′, x′),

where cnk,l, dnk,l ∈ Z and ∂ν := ∂eν . Moreover, ∂ñk,l̃x′,p′ (resp. ∂n̂k,l̂x′,p′) denotes

di�erentiation one time less in direction x′ (resp. p′) as in ∂nk,lx′,p′ . Taking note
of the fact that 〈t, f ′(x)〉0 = df(x)(t) = ∂tf(x), the assertion follows directly,
since Lγ is linear and the integral commutes with �nite sums. To commute
di�erentiation and integration is allowed as in 3.2.14. Now it remains to show that
we are allowed to commute integral and series. This follows again by Lebesgue's
theorem of dominated convergence. We will give an examples right now. Since
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we can assume x is �xed there exist a, c > 0 such that∣∣∣∣∣
N∑
v=1

Wx′
2
Up′Wx′

2
g(x′, p′)〈p′, x〉m4(nk)

0 m3(nk)〈x′, x〉m3(nk)−1
0

〈x′, eν〉0〈x, eν〉0∂nk,lx′,p′f(x)
∣∣∣

=

∣∣∣∣∣
∞∑
v=1

Wx′
2
Up′Wx′

2
g(x′, p′)〈p′, x〉m4(nk)

0 m3(nk)〈x′, x〉m3(nk)−1
0

〈x′, eν〉0〈P ∗
Nx, eν〉0∂

nk,l
x′,p′f(x)

∣∣∣
=

∣∣∣Wx′
2
Up′Wx′

2
g(x′, p′)〈p′, x〉m4(nk)

0 m3(nk)〈x′, x〉m3(nk)−1
0 〈x′, P ∗

Nx〉0∂
nk,l
x′,p′f(x)

∣∣∣
=

∣∣∣g(x′, p′)√%p′〈p′, x+ p′〉m4(nk)
0 m3(nk)〈x′, x+ p′〉m3(nk)−1

0

〈x′, P ∗
Nx+ p′〉0∂nk,lx′,p′f(x+ p)

∣∣∣
=

∣∣∣g(x′, p′)√%p′〈p′, x+ p′〉m4(nk)
0 m3(nk)〈x′, x+ p′〉m3(nk)−1

0

〈x′, PNx〉0dkf(x+ p′)(x′, . . . , x′, p′ . . . p′)
∣∣

≤
∣∣∣g(x′, p′)√%p〈p′, x+ p′〉m4(nk)

0 m3(nk)〈x′, x+ p′〉m3(nk)−1
0

∣∣∣
‖x′‖+ ‖PNx‖−

∥∥dk(x+ p′)
∥∥

L k(H−;C)
‖x′‖k1− ‖p

′‖k2−
≤ cea(‖x

′‖−‖p′‖+) ∈ L1(H2
+, ξ),

where PN is the orthogonal projection onto span{e1, . . . , eN} in H+. This esti-
mate is independent of N . Thus by Lebesgue's Theorem we can commute series
and integral. �

Corollary 3.5.6. Let H+ ⊆ H0 ⊆ H− be a Hilbert space rigging such that
(31) holds. Furthermore, let a be the Fourier-transform of ξ ∈ M∞(H2

+), i.e.
a ∈ G. For f ∈ C∞

pol(H−) and j ∈ N0 we obtain

adj(Λ2)(a(X,D))f(x)

=

j∑
k=0

∫
H2

+

Wx′
2
Up′Wx′

2

nk∑
l=0

〈x′, x′〉m1(nk)
0 〈p′, p′〉m2(nk)

0 V (x′, p′, nk, l)f(x) dξ(p′, x′),

where

V (x′, p′, nk, l)f(x) := al,k〈x′, x〉m3(nk)
0 〈p′, x〉m4(nk)

0 〈x′, p′〉m5(nk)
0 ∂nk,lx′,p′f(x)

and m3(nk)+m4(nk)+ k ≤ j, al,k ∈ C, m1(nk), . . . , m5(nk) ∈ N0 and ∂
nk,l
x′,p′f :=

∂
k1(l)
x′ ∂

k2(l)
p′ such that k1(l) + k2(l) = k.
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Proof. We have a(X,D)f(x) =
∫
H2

+
Wx′

2
Up′Wx′

2
f(x) dξ(p′, x′) by 3.2.6 .

Thus our assertion follows by induction and 3.5.5, 3.2.16 and 3.5.1. �

Corollary 3.5.7. Let H+ ⊆ H0 ⊆ H− be a Hilbert space rigging such that
(31) holds. Moreover, let a be the Fourier-transform of ξ ∈ M∞(H2

+), i.e. a ∈
G. In addition, let f ∈ C∞

pol(H−) and j ∈ N0. For an arbitrary orthonormal

basis (fν)
∞
ν=1 ⊂ H+ in H0 and α, β ∈ NN0 de�ne Mα, ∂β as in 3.2.18. Let

Aα′(p′), Bβ′(x′) be de�ned as in 3.5.5 for α, β ∈ Nn
0 . Then we obtain

adj(Λ2)(adα(M)adβ(D)(a(X,D)))f(x)

=

j∑
k=0

∫
H2

+

Wx′
2
Up′Wx′

2

nk∑
l=0

〈x′, x′〉m1(nk)
0 〈p′, p′〉m2(nk)

0 V (x′, p′, nk, l)f(x) dξ(p′, x′),

where

V (x′, p′, nk, l)f(x)

:= al,k(p
′)Aα

′
Bβ′(x′)〈x′, x〉m3(nk)

0 〈p′, x〉m4(nk)
0 〈x′, p′〉m5(nk)

0 ∂nk,lx′,p′f(x)

and m3(nk) + m4(nk) + k ≤ j, al,k ∈ C, m1(nk), . . . , m5(nk) ∈ N0, ∂
nk,l
x′,p′f :=

∂
k1(l)
x′ ∂

k2(l)
p′ such that k1(l) + k2(l) = k.

Proof. Let A(p′) be de�ned as in 3.2.18. Proposition 3.2.19 yields

adα(M)adβ(D)(a(X,D))f(x) =

∫
H2

+

Aα(p′)Bβ(x′)Wx′
2
Up′Wx′

2
f(x) dξ(p′, x′).

Thus the assertion follows by induction, 3.5.5 and 3.5.1. �

At next we prove a technical result, which we need in what follows.

Lemma 3.5.8. Let E be a Banach space and f ∈ C 1(E) For 0 6= t ∈ E we
have

∂f

∂t
(x) = ‖t‖ ∂f

∂ t
‖t‖

(x).

Proof. For f ∈ C 1(E) and 0 6= t ∈ E the following equality holds.

∂f

∂t
(x) = df(x)(t) = ‖t‖ df(x)(

t

‖t‖
) = ‖t‖ ∂f

∂ t
‖t‖

(x). �

Lemma 3.5.9. Let H+ ⊆ H0 ⊆ H− be a Hilbert space rigging such (31) holds.
Moreover, let a ∈ G. Then for all f ∈ H∞, k, j ∈ N0 we have∥∥Λ2kadj(Λ2)(a(X,D))f

∥∥
0
≤ a2k,j

∥∥Λ2k+jf
∥∥

0
,

where a2k,j ≥ 0. Furthermore, a(X,D) : H2k −→ H2k is continuous.
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Proof. At �rst let f ∈ C∞
pol(H−) and n, j ∈ N0. Let ∂nk,lx′,p′ = ∂k1x′ ∂

k2
p′ with

k1(l) + k2(l) = k. Then there exit m1(nk), . . . , m5(nk) ∈ N0, al,k ∈ C such that
m3(nk) +m4(nk) + k ≤ j and

(Λ2)nadj(Λ2)(a(X,D))f

=
n∑
ν=0

(
n

ν

)
(adν+j(Λ2)(a(X,D)))(Λ2)n−νf

=
n∑
ν=0

(
n

ν

) j+ν∑
k=0

∫
H2

+

Wx′
2
Up′Wx′

2

nk∑
l=0

al,k〈x′, x′〉m1(nk)
0 〈p′, p′〉m2(nk)

0 〈x′, x〉m3(nk)
0

〈p′, x〉m4(nk)
0 〈x′, p′〉m5(nk)

0 ∂nk,lx′,p′(Λ
2)n−νf(x) dξ(p′, x′)

=
n∑
ν=0

(
n

ν

) j+ν∑
k=0

∫
H2

+

Wx′
2
Up′Wx′

2

nk∑
l=0

al,k〈x′, x′〉m1(nk)
0 〈p′, p′〉m2(nk)

0 ‖x′‖m3(nk)+k1
0

〈 x′

‖x′‖0

, x〉m3(nk)
0 ‖p‖m4(nk)+k2

0 〈 p′

‖p′‖0

, x〉m4(nk)
0

〈x′, p′〉m5(nk)
0 ∂nk,lx′/‖x′‖,p′/‖p‖(Λ

2)n−νf(x) dξ(p′, x′).

Thus we get

‖
∫
H2

+

Wx′
2
Up′Wx′

2
al,k ‖x′‖2m1(nk)+m3(nk)+k1

0 ‖p′‖2m2(nk)+m4(nk)+k2
0 〈 x′

‖x′‖0

, ·〉m3(nk)
0

〈 p′

‖p′‖0

, ·〉m4(nk)
0 〈x′, p′〉m5(nk)

0 ∂nk,l
x′
‖x′‖ ,

p′
‖p‖

(Λ2)n−νf dξ(p′, x′)‖2
H0

=

∫
H−

|
∫
H2

+

Wx′
2
Up′Wx′

2
al,k ‖x′‖2m1(nk)+m3(nk)+k1

0 ‖p′‖2m2(nk)+m4(nk)+k2
0 〈 x′

‖x′‖0

, x〉m3(nk)
0

〈 p′

‖p′‖0

, x〉m4(nk)
0 〈x′, p′〉m5(nk)

0 ∂nk,l
x′
‖x′‖ ,

p′
‖p‖

(Λ2)n−νf(x) dξ(p′, x′)|2 dγ(x)

≤
∫
H−

∫
H2

+

|al,k ‖x′‖2m1(nk)+m3(nk)+k1
0 ‖p′‖2m2(nk)+m4(nk)+k2

0 〈x′, p′〉m5(nk)
0 |2 d|ξ|(p′, x′)

∫
H2

+

|Wx′
2
Up′Wx′

2
[〈 x′

‖x′‖0

, ·〉m3(nk)
0 〈 p′

‖p′‖0

, ·〉m4(nk)
0 ∂nk,l

x′
‖x′‖ ,

p′
‖p‖

(Λ2)n−νf ](x)|2

d |ξ| (p′, x′) dγ(x)
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= c

∫
H2

+

∥∥∥∥∥Wx′
2
Up′Wx′

2
〈 x′

‖x′‖0

, ·〉m3(nk)
0 〈 p′

‖p′‖0

, ·〉m4(nk)
0 ∂nk,l

x′
‖x′‖ ,

p′
‖p‖

(Λ2)n−νf

∥∥∥∥∥
2

L2(H−, γ)

d |ξ| (p′, x′)

≤ ˜̃c

∫
H2

+

∥∥∥∥∥〈 x′

‖x′‖0

, ·〉m3(nk)
0 〈 p′

‖p′‖0

, ·〉m4(nk)
0 ∂nk,l

x′
‖x′‖ ,

p′
‖p‖

(Λ2)n−νf

∥∥∥∥∥
2

L2(H−, γ)

d |ξ| (p′, x′)

≤ c

∫
H2

+

∥∥(Λ2)n−νf
∥∥2

Hm3(nk)+m4(nk)+k d |ξ| (p′, x′) ≤ c̃ ‖f‖2
H2n+j .

Since C∞
pol(H−) ⊂ Hs dense for all s and all operators are closed, we obtain the

�rst assertion. The second is clear, since Λk is closed for all k ∈ N. �

Theorem 3.5.10. Let H+ ⊆ H0 ⊆ H− be a quasi-nuclear Hilbert space rigging
such that (31) holds. Moreover, let a ∈ G. Then for all f ∈ H∞, k, j ∈ N0 we
have ∥∥Λkadj(Λ)(a(X,D))f

∥∥
H0 ≤ a2k,j

∥∥Λkf
∥∥
H0 ,

where ak,j ≥ 0. Moreover, a(X,D) : Hk −→ Hk is continuous.

Proof. The �rst part follows by 3.5.9 and Proposition 3.3.13. The second
part follows by part one, since Λ is closed. �

Theorem 3.5.11. Let H+ ⊆ H0 ⊆ H− be a quasi-nuclear Hilbert space rigging
such that (31) holds. Furthermore, let a ∈ G. Then for all f ∈ H∞, k, j ∈ N0,
α, β ∈ NN0 we have∥∥Λkad(Λ)jad(M)αad(D)β(a(X,D))f

∥∥
H0 ≤ ak,j

∥∥Λkf
∥∥
H0 ,

where ak,j ≥ 0. Moreover, ad(M)αad(D)β(a(X,D)) : Hk −→ Hk is continuous.

Proof. Similarly to 3.5.9 we obtain for all f ∈ H∞∥∥Λ2kadj(Λ2)(ad(M)αad(D)β(a(X,D)))f
∥∥
H0 ≤ a2k,j

∥∥Λ2k+jf
∥∥
H0 ,

and thus the assertion follows similarly to 3.5.10. �

Corollary 3.5.12. Let H+ ⊆ H0 ⊆ H− be a quasi-nuclear Hilbert space
rigging such that (31) holds. For a ∈ G we have

a(X,D) ∈ Ψ0,

and thus

a(X,D) ∈ Ψ̃0
0,0.

Proof. The assertion follows by Theorem 3.5.10 and Theorem 3.5.11. �
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3.6. The Ψ∗-Algebras in the �nite dimensional case

Throughout this section let H+ = H0 = H− = Rn. Furthermore, we assume
that γ = γ1 is the canonical Gaussian measure and that λ is the Lebesgue measure
in Rn. Moreover, let 〈·, ·〉 denote the euclidean inner product in Rn and let (ej)

n
j=1

be the standard orthonormal basis in Rn. For 0 ≤ δ ≤ % ≤ 1, δ < 1 and m ∈ Z
we denote by Sm%,δ the class of all symbols a ∈ C∞(Rn

x × Rn
p ) such that for all

multi-index α, β there exists a constant Cα,β with

(32)

∣∣∣∣( ∂∂p)α( ∂∂x)βa(x, p)
∣∣∣∣ ≤ Cα,β〈p〉m+δ|β|−%|α|,

where 〈p〉 =
√

1 + |p|2. Moreover, we set S∞%,δ :=
⋃
m∈Z S

m
%,δ. For a ∈ Sm%,δ let

a(x, i ∂
∂x

) be the pseudodi�erential operator with symbol a(x, p) given in Weyl-
form.3 Furthermore, we write S (Rn) for the space of all Schwartz-functions
on Rn. Conferring to [43, page 86, Theorem 2.21] for a ∈ S∞

%,δ we have
a(x, i ∂

∂x
)(S (Rn)) ⊆ S (Rn). Throughout this section let ∂

∂xk
denote the usual

partial derivative, ∂k the closure of ∂
∂xk

de�ned on C∞
b in L2(Rn, γ1) and dk the

of closure ∂
∂xk

de�ned on S (Rn) in L2(Rn, λ).

Remark 3.6.1. Let a ∈ S0
%,δ (% > 0). For ϕ, ψ ∈ C∞

c (R) such that suppϕ ∩
suppψ = ∅, de�ne B := ϕ a(X,D) ψ. According to 3.2.4 we have

B = e
‖·‖2

2 ϕ(·)a(x, i ∂
∂x

)ψ(·)e−
‖·‖2

2 .

Applying [93, Chapter 2, Theorem 2.7] we obtain that ϕ(·)a(x, i ∂
∂x

)ψ(·) maps
L2(Rn, λ) to C∞(Rn) and thus B maps L2(Rn, γ1) to C∞(Rn).

Proposition 3.6.2. Let Dj := Dej be de�ned as in 1.3.8, and xj := Mej be
de�ned as in 1.2.2. Then for a ∈ S0

0,0 and f ∈ D(Mej) resp. f ∈ D(Dj) we have

[xj, a(X,D)]f = e
‖·‖2

2 b(x, i
∂

∂x
)e−

‖·‖2
2 f = b(X,D)f,

[Dj, a(X,D)]f = e
‖·‖2

2 c(x, i
∂

∂x
)e−

‖·‖2
2 f = c(X,D)f,

where b, c ∈ S0
0,0. Thus according to 3.2.4 [xj, a(X,D)] and [Dj, a(X,D)] can be

extended to a continuous linear operators on L2(H−, γ1). Moreover, we obtain
[δj, a(X,D)]f = c1(X,D)f and [∂j, a(X,D)]f = c2(X,D)f , where c1, c2 ∈ S0

0,0.

Let ΨMD be de�ned as in 3.1.13. Then for a ∈ S0
0,0 we have a(X,D) ∈ ΨMD.

3For a ∈ Sm
%,δ there exist b, c ∈ Sm

%,δ such that a(x, i ∂
∂x ) = bKN (x, i ∂

∂x ) and aKN (x, i ∂
∂x ) =

c(x, i ∂
∂x ), where aKN (x, i ∂

∂x ), bKN (x, i ∂
∂x ) are the pseudodi�erential operator corresponding to

to the symbols a, b in Kohn-Nirenberg-form, c.f. Appendix A.1 and [43].
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Proof. At �rst let f ∈ C∞
pol(R

n). Then e−
‖·‖2

2 f(x) ∈ S (Rn) and thus we

have a(x, i ∂
∂x

)e−
‖x‖2

2 f(x) ∈ S (Rn). But this implies e
‖x‖2

2 a(x, i ∂
∂x

)e−
‖x‖2

2 f(x) ∈
C∞
int(R

n). Hence according to 1.2.5 and 3.2.4 we obtain

[xj, a(X,D)]f(x) = xja(X,D)f(x)− a(X,D)xjf(x)

= xje
‖x‖2

2 a(x, i
∂

∂x
)e−

‖x‖2
2 f(x)− e

‖x‖2
2 a(x, i

∂

∂x
)e−

‖x‖2
2 xjf(x)

= e
‖x‖2

2 [xj, a(x, i
∂

∂x
)]e−

‖x‖2
2 f(x)

= e
‖x‖2

2 b(x, i
∂

∂x
)e−

‖x‖2
2 f(x),

where b(x, i ∂
∂x

) = [xj, a(x, i
∂
∂x

)] and b ∈ S0
0,0. Moreover, there exists a c ∈ S0

0,0

such that c(x, i ∂
∂x

) = [ ∂
∂xj
, a(x, i ∂

∂x
)] and

[Dj, a(X,D)]f(x)

= [
∂

∂xj
− xj, a(X,D)]f(x)

=
∂

∂xj
e
‖x‖2

2 a(x, i
∂

∂x
)e−

‖x‖2
2 f(x)− e

‖x‖2
2 a(x, i

∂

∂x
)e−

‖x‖2
2

∂

∂xj
f(x)

−[xj, a(X,D)]f(x)

= xje
‖x‖2

2 a(x, i
∂

∂x
)e−

‖x‖2
2 f(x) + e

‖x‖2
2

∂

∂xj
a(x, i

∂

∂x
)e−

‖x‖2
2 f(x)

−e
‖x‖2

2 a(x, i
∂

∂x
)e−

‖x‖2
2

∂

∂xj
f(x)− [xj, a(X,D)]f(x)

= xje
‖x‖2

2 a(x, i
∂

∂x
)e−

‖x‖2
2 f(x) + e

‖x‖2
2 [

∂

∂xj
, a(x, i

∂

∂x
)]e−

‖x‖2
2 f(x)

+e
‖x‖2

2 a(x, i
∂

∂x
)
∂

∂xj
e−

‖x‖2
2 f(x)− e

‖x‖2
2 a(x, i

∂

∂x
)e−

‖x‖2
2

∂

∂xj
f(x)

−[xj, a(X,D)]f(x)

= xje
‖x‖2

2 a(x, i
∂

∂x
)e−

‖x‖2
2 f(x) + e

‖x‖2
2 [

∂

∂xj
, a(x, i

∂

∂x
)]e−

‖x‖2
2 f(x)

−e
‖x‖2

2 a(x, i
∂

∂x
)xje

− ‖x‖2
2 f(x)− [xj, a(X,D)]f(x)

= e
‖x‖2

2 [
∂

∂xj
, a(x, i

∂

∂x
)]e−

‖x‖2
2 f(x)

= e
‖x‖2

2 c(x, i
∂

∂x
)e−

‖x‖2
2 f(x).
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Thus [Dj, a(X,D)] extends to a continuous linear operator in L2(Rn, γ1), since
Dj is closed and a(X,D) is continuous. The two last assertions follow from
∂jf = Djf + xjf and δj = xkf −Dkf for f ∈ C∞

int(R
n). �

Lemma 3.6.3. For f ∈ C∞
pol(R

n) and a ∈ S0
0,0 and all j ∈ N0 we have

adj(Lγ1)(a(X,D))f =
m∑
l=1

clb(X,D)l∂
αlδβlk f,

where cl depends on j, αl, βl are multi-indices depending on j with |αl|+ |βl| ≤ j
and bl ∈ S0

0,0.

Proof. We will prove the assertion by induction. Let f ∈ C∞
pol(R

n) and
a ∈ S0

0,0. Then we obtain

[2Lγ1 , a(X,D)]f =
n∑
k=1

[δk∂k, a(X,D)]f

=
n∑
k=1

δk[∂k, a(X,D)]f + [δk, a(X,D)]∂kf

=
n∑
k=1

b(X,D)1,kf + b(X,D)2,kδkf + b(X,D)3,k∂kf,

where b1,k, b2,k, b3,k ∈ S0
0,0. Now let our hypothesis be true for �xed j ∈ N. Then

there exists αl, βl ∈ Nn
0 with |αl|+ |βl| ≤ j and bl ∈ S0

0,0 such that

adj+1(Lγ1)(a(X,D))f = [Lγ1 ,
m∑
l=1

clb(X,D)l∂
αlδβl ]f.

Since the commutator is additive, we have only to consider the summands.

[Lγ1 , b(X,D)l∂
αlδβl ]f

= [Lγ1 , b(X,D)l]∂
αlδβlf + b(X,D)l[Lγ1 , ∂

αl ]δβlf + b(X,D)l∂
αl [Lγ, δ

βl ]f

= [Lγ1 , b(X,D)l]∂
αlδβlf + b(X,D)l(− |α|)∂αlδβlf + b(X,D)l∂

αl |βl| δβlf.

Now using the start of our induction the assertion follows from ∂kδk − δk∂k =
2id. �

Lemma 3.6.4. For f ∈ H∞ and a ∈ S0
0,0 and all j ∈ N0 we have∥∥Λ2kadj(Λ2)(a(X,D))f

∥∥
L2(Rn, γ1)

≤ a2k,j

∥∥Λ2k+jf
∥∥
L2(Rn, γ1)

,

where a2k,j ≥ 0. Furthermore, a(X,D) : H2k −→ H2k is continuous.
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Proof. At �rst let f ∈ C∞
pol(H−). Then we obtain∥∥(Λ2)kadj(Λ2)(a(X,D))f

∥∥
L2(Rn, γ1)

=

∥∥∥∥∥
k∑
ν=0

(
k

ν

)
adν(Λ2)(adj(Λ2)(a(X,D)))(Λ2)k−νf

∥∥∥∥∥
L2(Rn, γ1)

=

∥∥∥∥∥
k∑
ν=0

(
k

ν

)
(adν+j(Λ2)(a(X,D)))(Λ2)k−νf

∥∥∥∥∥
L2(Rn, γ1)

=

∥∥∥∥∥
k∑
ν=0

(
k

ν

) mν∑
l=1

clb(X,D)l,ν∂
αlδβl(Λ2)k−νf

∥∥∥∥∥
L2(Rn, γ1)

≤
k∑
ν=0

(
k

ν

) mν∑
l=1

cl,ν
∥∥∂αlδβl(Λ2)k−νf

∥∥
L2(Rn, γ1)

≤
k∑
ν=0

(
k

ν

) mν∑
l=1

c̃l,ν
∥∥(Λ2)k−νf

∥∥
H|αl|+|βl| ≤ c

∥∥Λ2k+jf
∥∥
L2(Rn, γ1)

,

where cl,ν , c̃l,ν and c ≥ 0 and αl and βl are multi-indices with |αl|+ |βl| ≤ j. The
rest follows as in Lemma 3.5.9. �

Theorem 3.6.5. For a ∈ S0
0,0 we have a(X,D) ∈ Ψ0 and thus a(X,D) ∈ Ψ̃0

0,0.

Proof. As in Theorem 3.5.11 we now obtain∥∥Λkadj(Λ)(a(X,D))f
∥∥
H0 ≤ ak,j

∥∥Λkf
∥∥
H0 .

Thus using Lemma 3.6.2 the assertion follows as in 3.5.12. �

Our next aim is to show that for any operator A ∈ Ψ0 there exists a symbol
a ∈ S0

0,0 such that A = a(X,D). According to [105, p. 52 Prop. 5.5] and [105,

p. 47 Theorem 4.3] we have Hk ⊆ W 2,k
loc , where W

2,k denotes the usual Sobolev
space in Rn with Lebesgue measure. Thus according to [127, p. 60 Corollary 7.4]
we get H∞ ⊆ C∞(Rn). Let a(X,D) ∈ Ψ0. Then by de�nition a(X,D) leaves
the space H∞ invariant. Moreover, we de�ne ã by

ãf := e−
‖·‖2

2 a(X,D) e
‖·‖2

2 f ∀f ∈ L2(Rn, λ).

Lemma 3.6.6. Let a(X,D) ∈ Ψ0. Then ã is a continuous linear operator in
L2(Rn, λ).
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Proof. Let f ∈ L2(Rn, λ). Then e
‖·‖2

2 f ∈ L2(Rn, γ1) and thus we we obtain

‖ãf‖L2(Rn, λ) = π
n
2

∥∥∥∥a(X,D) e
‖·‖2

2 f

∥∥∥∥
L2(Rn, γ1)

≤ cπ
n
2

∥∥∥∥e ‖·‖22 f

∥∥∥∥
L2(Rn, γ1)

= c ‖f‖L2(Rn, λ) ,

where c > 0 suitable. �

Lemma 3.6.7. For f ∈ C∞
int(R

n) and a(X,D) ∈ Ψ0 we have

∂

∂xk
a(X,D)f = ∂ka(X,D)f = [∂k, a(X,D)]f + a(X,D)

∂

∂xk
f.

Furthermore, a(X,D) leaves the space C∞
int(R

n) invariant and we have H∞ =
C∞
int(R

n).

Proof. For f ∈ H∞ and g ∈ C∞
b (Rn) it is obvious that

∂k(fg) = (∂kf)g + f∂kg.

Let f ∈ C∞
int(R

n) and ζn be de�ned as in Lemma 1.2.5. Then we obtain
(a(X,D)f(x))ζn(‖x‖2) −−−→

n→∞
a(X,D)f(x) pointwisely. Moreover, we have

∂
∂xk

((a(X,D)f(x))ζn(‖x‖2)) −−−→
n→∞

∂
∂xk

a(X,D)f(x) pointwisely. By Lebesgue's

theorem of dominated convergence we get (a(X,D)f(x))ζn(‖x‖2)
L2(Rn, γ1)−−−−−−→
n→∞

a(X,D)f(x). However, we have

∂

∂xk
((a(X,D)f(x))ζn(‖x‖2))

= ∂k((a(X,D)f(x))ζn(‖x‖2))

= (∂ka(X,D)f(x))ζn(‖x‖2) + 2xk(a(X,D)f(x))ζ ′n(‖x‖
2).

Since a(X,D)f ∈ H∞, we have ∂ka(X,D)f , xka(X,D)f ∈ L2(Rn, γ1) and
thus we get by Lebesgue's theorem of dominate convergence ∂

∂xk
a(X,D)f =

∂ka(X,D)f . The rest of this lemma follows by an easy induction. �

Lemma 3.6.8. Let f ∈ H∞. Then we have ∂
∂xk

(e−
‖·‖2

2 f) = dk(e
− ‖·‖2

2 f).

Proof. Let f ∈ H∞ and ζn be de�ned as in 1.2.5. Then we obtain

e−
‖x‖2

2 f(x)ζn(‖x‖2) −−−→
n→∞

e−
‖x‖2

2 f(x)

and
∂

∂xk
(e−

‖x‖2
2 f(x))ζn(‖x‖2) −−−→

n→∞

∂

∂xk
e−

‖x‖2
2 f(x)
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pointwisely. Moreover, using Lebesgue's theorem of dominated convergence the

convergence above is in L2(Rn, λ). Since e−
‖x‖2

2 f(x)ζn(‖x‖2) has compact sup-
port, it is an element of S (Rn). But this is our assertion, since dk is closed and
coincides with ∂

∂xk
on S (Rn). �

Lemma 3.6.9. Then for a(X,D) ∈ Ψ0 and f ∈ D(xj) resp. f ∈ D(dj) we
have

[xj, ã]f = e−
‖·‖2

2 b(X,D) e
‖·‖2

2 f = b̃f,

[dj, ã]f = e−
‖·‖2

2 c(X,D) e
‖·‖2

2 f = c̃f,

where b(X,D), c(X,D) ∈ Ψ0. Thus according to Lemma 3.6.6 [dj, ã] and [xj, ã]
can be extended to a continuous linear operator on L2(Rn, λ).

Proof. Let f ∈ S (Rn). Then we have e
‖·‖2

2 f ∈ H∞. Hence we obtain

[xj, ã]f = e−
‖·‖2

2 [xj, a(X,D)]e
‖·‖2

2 f = c̃f

and

[
∂

∂xj
, ã]f(x)

= −‖x‖
2

2
(−xja(X,D) + [∂j, a(X,D)] + a(X,D)xj)e

‖x‖2
2 f(x)

= e−
‖x‖2

2 ([∂j, a(X,D)]− [xj, a(X,D)])e
‖x‖2

2 f(x).

By de�nition of Ψ0 we have [xj, a(X,D)], [∂j, a(X,D)] ∈ Ψ0 and thus according
to Lemma 3.6.6 [dj, ã] and [xj, ã] can be extended to a continuous linear operator.
The assertion for f ∈ D(xj) resp. D(dj) is now obvious, since xj and dj are
closed. �

Proposition 3.6.10. Let ∆ be the Laplace operator in Rn, a(X,D) ∈ Ψ0 and
j ∈ N. Then for all f ∈ S (Rn) and j ∈ N we have

adj(∆)(ã)f =
m∑
l=1

clb̃ld
αlf,

where αl are multi-indices with |αl| ≤ j and cl ∈ Z and b(X,D) ∈ Ψ0. Further-

more, for Λ∆ := (id−∆)
1
2 and all j, k ∈ N0 and f ∈ H∞

Λ∆
we have∥∥Λ2k

∆ adj(Λ2
∆)(ã)f

∥∥
L2(Rn, λ)

≤ a2kj

∥∥∥Λ2k+j
∆ f

∥∥∥
L2(Rn, λ)

.

Proof. (i) We will prove the �rst assertion by induction. For f ∈
S (Rn) we get

(33) [∆, ã]f =
n∑
k=1

(dk[dk, ã]f + [dk, ã]dkf) =
n∑
k=1

(
b̃kf + c̃kdkf

)
,
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where b(X,D)k, ck(X,D) ∈ Ψ0. Let our hypothesis be true for �xed
j ∈ N. Then we have adj(∆)(ã)f =

∑m
l=1 clb̃ld

αlf , where αl are multi-
indices with |αl| ≤ j, b(X,D)l ∈ Ψ0 and cl ∈ Z. Thus we obtain

adj+1(∆)ãf = [∆,
m∑
l=1

clb̃ld
αl ]f =

m∑
l=1

cl[∆, b̃l]d
αlf.

Using (33) this is our �rst assertion.
(ii) For f ∈ S (Rn) there exist cl,ν , c ≥ 0, αl ∈ Nn

0 with |αl| ≤ j and
b(X,D)l,ν ∈ Ψ0 such that∥∥(Λ2

∆)kadj(Λ2
∆)(ã)f

∥∥
L2(Rn, λ)

=

∥∥∥∥∥
k∑
ν=0

(
k

ν

)
adν(Λ2

∆)(adj(Λ2
∆)(ã))(Λ2

∆)k−νf

∥∥∥∥∥
L2(Rn, λ)

=

∥∥∥∥∥
k∑
ν=0

(
k

ν

)
(adν+j(Λ2

∆)(ã))(Λ∆
2)k−νf

∥∥∥∥∥
L2(Rn, λ)

=

∥∥∥∥∥
k∑
ν=0

(
k

ν

) mν∑
l=1

clb̃l,νd
αl(Λ∆

2)k−νf

∥∥∥∥∥
L2(Rn, λ)

≤
k∑
ν=0

(
k

ν

) mν∑
l=1

cl,ν
∥∥dαl(Λ∆

2)k−νf
∥∥
L2(Rn, λ)

≤
k∑
ν=0

(
k

ν

) mν∑
l=1

c̃l,ν
∥∥(Λ∆

2)k−νf
∥∥
H
|αl|
Λ∆

≤ c
∥∥∥Λ2k+j

∆ f
∥∥∥
L2(Rn, λ)

.

The rest follows as in Lemma 3.5.9. �

Theorem 3.6.11. For a(X,D) ∈ Ψ0 we have ã ∈ Ψ0
0,0, where Ψ0

0,0 =

{a(x, i ∂
∂x

) | a ∈ S0
0,0}.

Proof. As in Theorem 3.5.11 we now obtain∥∥Λk
∆adj(Λ2

∆)(a(X,D))f
∥∥
L2(Rn, λ)

≤ ak,j

∥∥∥Λk+j
∆ f

∥∥∥
L2(Rn, λ)

.

Thus using Lemma 3.6.6 and 3.6.7 the theorem follows as in 3.5.12 by Beals'
Theorem. �

Corollary 3.6.12. In the �nite dimensional case we have

Ψ0 = {a(X,D) | a ∈ S0
0,0}.

Moreover, any a(X,D) ∈ Ψ0 is given by a(X,D) = e
‖·‖2

2 a(x, i ∂
∂xk

)e−
‖·‖2

2 , where

a(x, i ∂
∂xk

) is the usual pseudodi�erential operator in Weyl-form.



CHAPTER 4

A symbolic calculus for pseudodi�erential operators in

Kohn-Nirenberg form and applications to Ψ∗− Algebras

In this chapter we will deal with pseudodi�erential operators on a quasi-
nuclear Hilbert space riggingH+ ⊂ H0 ⊂ H− and onRn given in Kohn-Nirenberg-
form. Using these more general pseudodi�erential operators in the classical �nite
dimensional theory and the case of the Lebesgue measure, it is shown in [81] that
these operators are still continuous operators in a scale of Sobolev-Spaces. Fur-
thermore, for there operators there still exists some kind of symbolic calculus and
some kind of Gårding inequality. In addition we will show, that the description
of the Hörmander classes by commutators is still true in the �nite dimensional
case if we replace the Lebesgue measure by the canonical Gaussian measure and
the Fourier transform by the Fourier-Wiener transform.

We de�ne classes of symbols similar to [79, De�nition 2.4.4] and the classical
case. For these symbols the corresponding pseudodi�erential operator q(x,D) is
de�ned by

q(x,D) := F−1
ξ→x[q(x, ξ)(Fu)(ξ)],

where F denotes the Fourier Wiener-Transform. We write Ψm,ψ
%k

(H−) resp.

Ψm,ψ
%,δ (H−) for the corresponding classes of pseudodi�erential operators. We show

that some well known results remain valid when dealing with the canonical Gauss-
ian measure on an in�nite dimensional Hilbert space rigging, e.g. we prove that
in the case of cylindrical symbols or symbols depending only on ξ for the cor-
responding pseudodi�erential operators there still exists some kind of symbolic
calculus. Moreover, all these operators map Hs+m

ψ (H−) continuously to Hs
ψ(H−),

where Hs
ψ(H−) is a scale of Sobolev-spaces. In addition, for q ∈ Sm,ψ%k,cyl

(H−) we
have some kind of Gårding inequality.

Concerning some special negative-de�nite functions we show that each oper-
ator q(x,D) ∈ Ψm,ψ

%,δ (H−) being cylindrical or depending only on ξ is contained
in a generalized Hörmander-class, constructed as in [67].

In the �nite dimensional case, using a work of Schrohe (cf. [122]) we show
under some minimal growth assumption on our negative de�nite function that
every uniformly elliptic symbol q ∈ S̃0,ψ

%,δ de�nes a Fredholm operator q(x,D) in
L (Hs

ψ(Rn)), where Hs
ψ(Rn) stands for the Sobolev-space of order s, with respect

to the negative de�nite function ψ and S̃0,ψ
%,δ ⊂ S0,ψ

%,δ . In addition we obtain that

121



122 4.1 Symbols of pseudodi�erential operators

if q ∈ S̃−ε,ψ%,δ q(x,D) is compact in L2(Rn, γ) and give a description of the �nite
dimensional operators.

4.1. De�nition of symbols of pseudodi�erential operators and
generalized Hörmander classes

In this section we de�ne classes of symbols with respect to a �xed negative
de�nite function. In addition, using the Fourier-Wiener transform we de�ne the
corresponding classes of pseudodi�erential operators. These pseudodi�erential
operators with negative de�nite symbols arise naturally as generators of trans-
lation invariant Feller semi groups and Dirichlet-forms. In both cases we can
associate a stochastic process to these operators.

Definition 4.1.1. Let k ∈ N ∪ {∞} such that k ≥ 2. We de�ne the sub
additive function %k : N0 −→ N0 by

l 7−→ l ∧ k

Lemma 4.1.2. Let ψ by a continuous negative de�nite function in Levi-
Khinchin-form on Rn which satis�es (12) for all k ∈ N. Then for all m ∈ R and
all α ∈ NN0 we have

(34)
∣∣∂αξ (1 + ψ(ξ))m/2

∣∣ ≤ c|α|(1 + ψ(ξ))
m−%2(|α|)

2

Proof. See [81, Lemma 2.4.4]. �

Definition 4.1.3. (i) A real-valued negative de�nite C∞-function ψ :
H− −→ R belongs to the class Λk(H−) if it satis�es∣∣∂αξ (1 + ψ(ξ))m/2

∣∣ ≤ c|α|(1 + ψ(ξ))
m−%k(|α|)

2

for all α ∈ NN0 .
(ii) Let ψ ∈ Λk and m ∈ R. We call a C∞-function q : H− ×H− −→ C a

symbol in the class Sm,ψ%k
(H−) if for all α, β ∈ NN0 there exists constants

c|α|,|β| ≥ 0 such that∣∣∂αξ ∂βxq(x, ξ)∣∣ ≤ c|α|,|β|(1 + ψ(ξ))
m−%k(|α|)

2

for all x ∈ H− and all ξ ∈ H−. We call m the order of the symbol
q(x, ξ).

(iii) Let ψ ∈ Λk(H−) and m ∈ R. We call a C∞-function q : H− ×H− −→
C a symbol in the class Sm,ψ0 (H−) if for all α, β ∈ NN0 there exists
constants c̃|α|,|β| ≥ 0 such that∣∣∂αξ ∂βxq(x, ξ)∣∣ ≤ c̃|α|,|β|(1 + ψ(ξ))

m
2

for all x ∈ H− and all ξ ∈ H−.
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(iv) Let 0 ≤ δ ≤ % ≤ 1, δ < 1. For ψ ∈ Λ∞(H−) and m ∈ R we call a
C∞-function q : H− ×H− −→ C a symbol in the class Sm,ψ%,δ (H−) if for
all α, β ∈ NN0 there exists constants c′|α|,|β| ≥ 0 such that∣∣∂αξ ∂βxq(x, ξ)∣∣ ≤ c′|α|,|β|(1 + ψ(ξ))

m−%|α|+δ|β|
2 .

Moreover, we set S−∞,ψ
%,δ (H−) :=

⋂
m∈R

Sm,ψ%,δ (H−).

(v) We denote by Sm,ψ%k,cyl
(H−), Sm,ψ0,cyl(H−) and Sm,ψ%,δ,cyl(H−) the set of all cylin-

drical symbols q in Sm,ψ%k
(H−), Sm,ψ0 (H−) resp. Sm,ψ%,δ (H−).

Lemma 4.1.4. Let ψ ∈ Λk(H−).

(i) The sets Sm,ψ%k
(H−) and Sm,ψ0 (H−) are vector spaces.

(ii) For q1 ∈ Sm1,ψ
%k

(H−) and q2 ∈ Sm,ψ%k
(H−) we have q1q2 ∈ Sm1+m2,ψ

%k
(H−).

(iii) For q1 ∈ Sm1,ψ
%,δ (H−) and q2 ∈ Sm,ψ%,δ (H−) we have q1q2 ∈ Sm1+m2,ψ

%,δ (H−).

Proof. The proof of (i) and (ii) are similar to [81, Lemma 2.4.9]. Thus let
us prove (iii). Applying the Leibniz rule we obtain∣∣∂αξ ∂βx (q1q2)(x, ξ)

∣∣
≤

∑
α′+α′′=α
β′+β′′=β

∣∣∣∂α′ξ ∂β′x q1(x, ξ)∣∣∣ ∣∣∣∂α′′ξ ∂β
′′

x q2(x, ξ)
∣∣∣

≤
∑

α′+α′′=α
β′+β′′=β

c|α′|,|β′|(1 + ψ(ξ))
m1−%|α′|+δ|β′|

2 c|α′′|,|β′′|(1 + ψ(ξ))
m2−%|α′′|+δ|β′′|

2

≤ c̃(1 + ψ(ξ))
m1+m2−%|α|+δ|β|

2 ,

where c̃ depends only on |α| and |β|. �

Considering the general situation of Beals and Fe�erman [15], Baldus showed
in [5, Example 7.7.9] that for every continuous negative de�nite function ψ λ :=√

1 + ψ is an admissible weight with respect to the euclidean metric geucl as
Hörmander metric. Thus we have Sm,ψ0 (Rn) = S(λm, geucl). Moreover Baldus
showed in [5, Example 7.7.9] that we have Sm,ψ%k

(Rn) ⊂ Sa(λ
m, g, geucl), where

g :=
∑n

j=1(‖dxj‖
2+

‖dξj‖2

λ(ξ)2
and Sa(λm, g, geucl) is de�ned as in [5, De�nition 1.3.15].

At next we de�ne pseudodi�erential operators.

Definition 4.1.5. Let ψ be in Λk(H−). For q ∈ Sm,ψ%k
(H−) or q ∈ Sm,ψ0 (H−)

we de�ne the pseudodi�erential operator q(x,D) on Sγ,cyl(H−) by

q(x,D)u(x) := F−1
ξ→x[q(x, ξ)(Fu)(ξ)].

The sign `ξ → x' means that the corresponding operator is applied to a function
of ξ and the result is considered as a function of x. The classes of these operators
are denote by Ψm,ψ

%k
(H−) resp. Ψm,ψ

0 (H−). For ψ ∈ Λ∞(H−) and q ∈ Sm,ψ%,δ (H−)
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we denote the corresponding class of pseudodi�erential operators by Ψm,ψ
%,δ (H−).

In addition, let us denote by Ψm,ψ
%k,cyl

(H−), Ψm,ψ
0,cyl(H−) and Ψm,ψ

%,δ,cyl(H−) the set of all

operators corresponding to symbols in Sm,ψ%k,cyl
(H−), Sm,ψ0,cyl(H−) resp. Sm,ψ%,δ,cyl(H−).

Remark 4.1.6. Here we have de�ned pseudodi�erential operators in Kohn-
Nirenberg form. In the classical case both are considered in many publications.
For example in the classical Weyl calculus one has a(X, D̃)∗ = a(X,D). On the
other hand in the case of the Kohn-Nirenberg form the symbol of the product
and the commutator of two operators is much easy to calculate then in Weyl
form. Moreover, having a symbol of the form a(x, ξ) =

∑
|α|≤n aα(x)ξ

α the

Kohn-Nirenberg quantization leads to a di�erential operator given by a(x, D̃ =∑
|α|≤n aα(x)(i∂)α. More about the connection between pseudodi�erential oper-

ators in Weyl and in Kohn-Nierenberrg form can be found in Appendix A2.

Lemma 4.1.7. For q ∈ Sm,ψ0,cyl(H−) resp. q ∈ Sm,ψ%,δ,cyl(H−) or q ∈ Sm,ψ0 (H−)

resp. q ∈ Sm,ψ%,δ (H−) and q(x, ξ) = p(ξ) we obtain that the operator q(x,D) is well
de�ned on Sγ,cyl(H−).

Proof. Let us �rst note that the Fourier-Wiener-transform leaves the space
Sγ,cyl(H−) invariant. Thus we �nd for �xed x F−1[q(x, ξ)(Fu)(ξ)] ∈ Sγ,cyl(H−).
Hence, in the �rst case, q(x,D)u(x) is well de�ned. In the second case the
pseudodi�erential operator is well de�ned since q is independent of x. �

Remark 4.1.8. For ψ ∈ Λk(H−) resp. ψ ∈ Λ∞(H−) we have

(i) Sm,ψ%k
(H−) ⊂ Sm,ψ0 (H−) and thus Ψm,ψ

%k
(H−) ⊂ Ψm,ψ

0 (H−),

(ii) Sm,ψ%′,δ (H−) ⊂ Sm,ψ%,δ (H−) and thus Ψm,ψ
%′,δ (H−) ⊂ Ψm,ψ

%,δ (H−) if % ≤ %′,

(iii) Sm,ψ%,δ′ (H−) ⊂ Sm,ψ%,δ (H−) and thus Ψm,ψ
%,δ′ (H−) ⊂ Ψm,ψ

%,δ (H−) if δ′ ≤ δ,

(iv) Sm,ψ1,0 (H−) = Sm,ψ%∞ (H−).

Definition 4.1.9. Let ψ be in Λk(R
n). For q ∈ Sm,ψ%k

(Rn) or q ∈ Sm,ψ0 (Rn)

we denote by q(x, D̃) the pseudodi�erential operator de�ned on S(Rn) by

q(x, D̃)u(x) := F̃−1
ξ→x[q(x, ξ)(F̃u)(ξ)],

where F̃ denotes the Fourier-transform.

Definition 4.1.10. Let ψ be in Λk(R
n) and m,m′ ∈ R. We call a C∞-

function q : Rn ×Rn ×Rn ×Rn −→ C a double-symbol in the class Sm,m
′,ψ

0 (Rn)
if for all α, β, α′, β′ ∈ NN0 there exist constants cαβα′β′ ≥ 0 such that∣∣∣∂αξ ∂βx∂α′ξ′ ∂β′x′ q(x, ξ;x′, ξ′)∣∣∣ ≤ cαβα′β′(1 + ψ(ξ))

m
2 (1 + ψ(ξ′))

m′
2 .

For q ∈ Sm,m
′,ψ

0 we de�ne on Sγ the operator

(35) q(x,Dx;x
′, Dx′)u(x) := F−1

ξ→xFx′→ξF−1
ξ′→x′ [q(x, ξ;x

′, ξ′)(Fu)(ξ)].



4 Pseudodi�erential operators in Kohn-Nirenberg form 125

Moreover we denote by q(x, D̃x;x
′, D̃x′) the usual pseudodi�erential operator on

S(Rn) with double symbol q.

Now let ψ ∈ Λ∞(Rn) be a �xed negative de�nite function. In addition let
0 ≤ δ ≤ % ≤ 1. Let δ < % and set ε := 1− δ. Moreover we set

(36) Λ := (1 + ψ(D))1/2.

Definition 4.1.11. We de�ne

Aψ,ε = {A ∈ L (H0
ψ(H−)) |A(H∞

ψ (H−)) ⊆ H∞
ψ (H−) and∥∥adj(Λε)(a)f

∥∥
H0
ψ

≤ cj ‖f‖H0
ψ

∀f ∈ H∞
ψ (H−) ∀j ∈ N0, and suitable cj ≥ 0}.

Since Λε is selfadjoint, Aψ,ε is a Ψ∗−algebra. Moreover, according to [25, Theo-
rem 2.3.11], we have Aψ,ε′ ⊆ Aψ,ε for 0 < ε ≤ ε′ ≤ 1.

Definition 4.1.12. Let α, β ∈ NN0 . Moreover, let adα(M) and adβ(D) be
de�ned as in 3.2.18. We set ε := 1−δ and de�ne the generalized Hörmander-class
Aψ,m
%,δ (H−) by

Ãψ,m
%,δ (H−) := {A ∈ ΛmAε |A,A ∗ (Sγ,cyl) ⊆ Sγ,cyl, adα(M)adβ(D)(A)

∈
⋂
s∈R

L (Hs
ψ(H−), H

s−m+%|α|−δ|β|
ψ (H−)),

∀ α, β ∈ Nn
0}.

Furthermore, let ‖·‖A1−δ ,l be a fundamental system of sub multiplicative semi

norms on A1−δ. Then for A ∈ Ãψ,0
%,δ (H−) we de�ne a system of semi norm by

‖A‖k,0,0 := ‖·‖A1−δ ,k

and
‖A‖s,l,l′ := sup

|α|≤l
|β|≤l′

∥∥adα(M)adβ(D)(A)
∥∥

L (Hs
ψ(H−),H

s+%|α|−δ|β|
ψ (H−))

,

where k, l, l′ ∈ N, s ∈ R, α, β ∈ Nn
0 . Finally, let Aψ,m

%,δ (H−) be the closure of

Ãψ,m
%,δ (H−) with respect to the system of semi norms de�ned above.

Theorem 4.1.13. Aψ,0
%,δ (H−) is a sub multiplicative Ψ∗-algebra in L (H0).

Furthermore, Aψ,0
%,δ (H−)×H∞

ψ (H−) −→ H∞
ψ (H−) : (A,ϕ) 7−→ A(ϕ) is continu-

ous and bilinear.

Proof. First let us note the following facts:

(i) Aψ,0
%,δ (H−) ⊂ L (Hs

ψ(H−), Hs
ψ(H−)) and we have id ∈ Aψ,0

%,δ (H−) .

(ii) adα(M)adβ(D) : Aψ,0
%,δ (H−) −→ L (Hs, Hs+%|α|−δ|β|)∀s ∈ R and

(iii) the Leibniz-rule is true for adα(M)adβ(D).
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Thus we obtain from [67, Lemma 3.9] that Aψ,0
%,δ (H−) is spectraly invariant in

L (Hs
ψ(H−), Hs

ψ(H)) for all s ∈ R. �

4.2. An asymptotic expansion and estimates for pseudodi�erential
operators on Rn in Kohn-Nirenberg form

In this section we show some symbolic calculus for our pseudodi�erential
operator in the �nite dimensional case. Furthermore, we use this calculus to
show that some of our classes of pseudodi�erential operators are algebras.

Proposition 4.2.1. Let ψ be in Λk(R
n). For q ∈ Sm,ψ%k

(Rn) or q ∈ Sm,ψ0 (Rn)
we have

(37) q(x,D)u = V −1
G,nq(x, D̃)(VG,nu)

for all u ∈ Sγ(Rn).

Proof. Let u ∈ Sγ(Rn). Then we have VG,nu ∈ S(Rn) and obtain

q(x,D)u(x) = F−1
ξ→x[q(x, ξ)(Fu)(ξ)]

= (V −1
G,nF̃

−1VG,n)ξ→x[q(x, ξ)(V
−1
G,nF̃VG,nu)(ξ)]

= V −1
G,nF̃

−1
ξ→x[q̃(x, ξ)F̃VG,nu(ξ)]

= V −1
G,nq̃(x, D̃)(VG,nu)(x).

But this is our proposition. �

Theorem 4.2.2. Let ψ be in Λk(R
n) and m,m′ ∈ R. For q ∈ Sm,m

′,ψ
0 (Rn)

and u ∈ Sγ(Rn) the operator in (35) is well de�ned and we have

(38) q(x,Dx;x
′, Dx′)u(x) = V −1

G,nq(x, D̃x;x
′, D̃x′)(VG,nu)(x).

Proof. For u ∈ Sγ(R
n) we get VG,nu ∈ S(Rn). Thus we only have to show

the equation above. However, this equation follows by

V −1
G,nq(x, D̃x;x

′, D̃x′)(VG,nu)(x)

= V −1
G,n[F̃

−1
ξ→xF̃x′→ξ′F̃−1

ξ′→x′ [q̃(x, ξ;x
′, ξ′)F̃VG,nu]](x)

= F−1
ξ→xV

−1
G,nF̃x′→ξ′ [(F̃−1

ξ′→x′ [q(x, ξ; ·, ξ
′)F̃VG,nu])(ξ)]

= F−1
ξ→xFx′→ξ′V

−1
G,nF̃

−1
ξ′→x′ [q(x, ξ; ·, ξ

′)F̃VG,nu(ξ′)]

= F−1
ξ→xFx′→ξ′F−1

ξ′→x′ [(q(x, ξ;x
′, ·)V −1

G,nF̃VG,nu)(ξ
′)]

= F−1
ξ→xFx′→ξ′F−1

ξ′→x′ [q(x, ξ;x
′, ξ′)(V −1

G,nF̃VG,nu)(ξ
′)]

= F−1
ξ→xFx′→ξF−1

ξ′→x′ [q(x, ξ;x
′, ξ′)(Fu)(ξ′)]

= q(x,Dx;x
′, Dx′)u(x).

Thus we have proved (38). �
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Theorem 4.2.3. Let ψ be in Λk(R
n), m,m′ ∈ R and q ∈ Sm,m

′,ψ
0 (Rn). For

u ∈ Sγ(Rn) the operator q(x,Dx, x
′, Dx′) de�nes a pseudodi�erential operator in

the class Ψm+m′,ψ
0 (Rn). This operator is given by q(x,Dx, x

′, Dx′) = qL(x,D),

where qL is the reduced symbol in Sm+m′,ψ
0 (Rn) given by

(39) qL(x, ξ) = (2π)−nOs−
∫
Rn

∫
Rn

e−i〈y , η〉q(x, ξ + η;x+ y, ξ)dydη.

Proof. For u ∈ Sγ(Rn) we have by [81, Theorem 2.4.17]

q(x,Dx;x
′, Dx′)u(x) = V −1

G,nq̃(x, D̃x;x
′, D̃x′)(VG,nu)(x)

= V −1
G,nqL(x, D̃x)(VG,nu)(x)

= qL(x,D).

Thus our theorem is proved. �

Proposition 4.2.4. Let ψ be in Λk(R
n).

(i) If qj ∈ S
m′
j ,ψ

0 (Rn) (for j=1,2) then we have q1(x,D) ◦ q2(x,D) ∈
Ψm1+m2,ψ

0 (Rn). Moreover, the symbol of q1(x,D) ◦ q2(x,D) is given
by the reduced symbol qL(x, ξ) of the double-symbol q(x, ξ;x′, ξ′) =
q1(x, ξ)q2(x

′, ξ′).

(ii) For any q ∈ Sm,ψ0 (Rn) there exists a q∗ ∈ Sm,ψ0 (Rn) such that

〈q(x,D)u , v〉0 = 〈u , q∗(x,D)v〉0
for all u, v ∈ Sγ(Rn). Furthermore we obtain the symbol of q∗ as reduced

symbol of the double-symbol q(x, ξ;x′, ξ′) = q(x′, ξ) .

Proof. Let u ∈ Sγ(Rn). Then we obtain q1(x,D)◦q2(x,D)u = V −1
G,nq1(x, D̃)◦

q2(x, D̃)(VG,nu). But now (i) follows by [81, Corollary 2.4.19] and 4.2.1. Let us
prove (ii). Again using [81, Corollary 2.4.19] and 4.2.1 we obtain

〈q(x,D)u , v〉0 = 〈V −1
G,nq(x, D̃)(VG,nu) , v〉0 = 〈q(x, D̃)(VG,nu) , VG,nv〉λ

= 〈VG,nu , (q∗(x, D̃)(VG,nv)〉λ = 〈u , V −1
G,n(q

∗(x, D̃)(VG,nv)〉0.

Note that in [81, Corollary 2.4.19] it is shown that the symbol of q1(x, D̃)◦q2(x, D̃)
is given as reduced symbol to the double symbol q1(x, ξ)q2(x′, ξ′) and the symbol
of q∗(x, D̃) by the reduced symbol of the double symbol q(x′, ξ). Thus the two
assertions follow directly by Theorem 4.2.3 . �

Let us note the following Lemma which can be found in [81, Lemma 2.4.21].

Lemma 4.2.5. Let ψ be in Λk(R
n), m,m′ ∈ R and q ∈ Sm,m

′,ψ
0 (Rn) such that

∂αξ q(x, ξ;x
′, ξ′) ∈ S

m+%k(α),m′,ψ
0 (Rn) holds for all α ∈ Nn

0 . For all N ∈ N the
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simpli�ed symbol qL satis�es

(40) qL(x, ξ)−
∑
|α|<N

1

α!
qα(x, ξ) ∈ Sm+m′−%k(N),ψ

0 (Rn),

where

(41) qα(x, ξ) = (−i∂x′)α∂αξ q(x, ξ;x′, ξ′)
∣∣
x′=x
ξ′=ξ

∈ Sm+m′−%k(|α|),ψ
0 (Rn).

Lemma 4.2.6. Let ψ be in Λk(R
n), m,m′ ∈ R and q ∈ Sm,m

′,ψ
0 (Rn), such that

∂αξ q(x, ξ;x
′, ξ′) ∈ S

m+%k(α),m′,ψ
0 (Rn) holds for all α ∈ Nn

0 and qα ∈ be de�ned as

in (41). Assume that we have k = ∞ and qα ∈ Sm+m′−|α|,ψ
%∞ (Rn). Then we obtain

qL ∈ Sm+m′,ψ
%∞ (Rn)

and

(42) qL(x, ξ)−
∑
|α|<N

1

α!
qα(x, ξ) ∈ Sm+m′−N,ψ

%∞ (Rn).

Proof. According to 4.2.5 there exist a qN ∈ Sm+m′−N
0 (Rn) such that

qL(x, ξ)−
∑
|γ|<N

1

γ!
qγ(x, ξ) = qN(x, ξ).

Now let α, β ∈ Nn
0 and choose N = |α| in the equation above. Then we obtain∣∣∂αξ ∂βxqL(x, ξ)
∣∣ ≤

∑
|γ|<|α|

1

γ!

∣∣∂αξ ∂βxqγ(x, ξ)∣∣+ ∣∣∂αξ ∂βxq|α|(x, ξ)∣∣
≤

∑
|γ|<|α|

cγ
γ!

(1 + ψ(ξ))
m+m′−|γ|−|α|

2 + c|α|(1 + ψ(ξ))
m+m′−|α|

2

≤ c(1 + ψ(ξ))
m+m′−|α|

2 .

Note that for M ∈ N we have qL(x, ξ) −
∑

|γ|<N+M

1
γ!
qγ(x, ξ) = qN+M(x, ξ), which

yields

qN(x, ξ) =
∑

N≤|γ|<N+M

1

γ!
qγ(x, ξ) + qN+M(x, ξ).

Thus our second assertion follows by the same arguments as the �rst. �

Lemma 4.2.7. Let ψ be in Λ∞(Rn)

(i) For q ∈ Sm,ψ%∞ (Rn) and p(x, ξ;x′, ξ′) = q(x′, ξ) we have p ∈ Sm,0,ψ0 (Rn)
and all conditions of 4.2.5 are ful�lled with k = ∞. Moreover, we have

pα ∈ Sm−|α|,ψ%∞ (Rn).
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(ii) For q1 ∈ Sm,ψ%∞ (Rn), q2 ∈ Sm
′

%∞(Rn) and p(x, ξ;x′, ξ′) = q1(x, ξ)q2(x, ξ)

we have p ∈ Sm,m
′,ψ

0 (Rn) and all conditions of 4.2.5 are ful�lled with

k = ∞. In addition, we have pα ∈ Sm+m′−|α|,ψ
%∞ (Rn).

Proof. The �rst part of this lemma is obvious by equation (41). Now let us
proof the second part. For α, β ∈ Nn

0 we obtain∣∣∂αξ ∂βxpγ(x, ξ)∣∣
=

∣∣∂αξ ∂βx∂γξ q1(x, ξ)(−i∂x)γq2(x, ξ)∣∣
=

∣∣∣∣∣∑
µ≤β

∑
ν≤α

(
µ

β

)(
ν

α

)
∂νξ ∂

µ
x∂

γ
ξ q1(x, ξ)∂

α−ν
ξ ∂β−µx (−i∂x)γq2(x, ξ)

∣∣∣∣∣
≤

∑
µ≤β

∑
ν≤α

(
µ

β

)(
ν

α

)
cµ,ν(1 + ψ(ξ))

m−|ν|−|γ|
2 (1 + ψ(ξ))

m′−|α−ν|
2

= c(1 + ψ(ξ))
m+m′−|α|−|γ|

2 .

But this is our assertion. �

Corollary 4.2.8. Let ψ be in Λ∞(Rn) and q1(x,D) ∈ Ψm
k∞

(Rn), q2(x,D) ∈
Ψm′

k∞
(Rn). Then we obtain q1(x,D)∗ ∈ Ψm

k∞
(Rn) and q1(x,D) ◦ q2(x,D) ∈

Ψm+m′

k∞
(Rn).

Theorem 4.2.9. Let ψ ∈ Λ∞(Rn).

(i) For q1 ∈ Sm1,ψ
%,δ (Rn), q2 ∈ Sm2,ψ

%,δ (Rn) we de�ne

(43) pα(x, ξ) = (−i)|α|∂αξ q1(x, ξ)∂αx q2(x, ξ) ∈ S
m1+m2−(%−δ)|α|,ψ
%,δ (Rn).

Then q1(x,D) ◦ q2(x,D) belongs to the class Ψm1+m2
%,δ (Rn) and for all

N ∈ N there exists an rN ∈ Sm1+m2−(%−δ)N,ψ
%,δ (Rn) such that

q1(x,D) ◦ q2(x,D)−
∑
|α|<N

1

α!
pα(x,D) = rN(x,D).

(ii) For q ∈ Sm,ψ%,δ (Rn) we de�ne

(44) p∗α(x, ξ) = (−i)|α|∂αξ ∂αx q(x, ξ) ∈ S
m−(%−δ)|α|,ψ
%,δ (Rn).

Then q(x,D)∗ belongs to the class Ψm1
%,δ (R

n) and for all N ∈ N there

exists an rN ∈ Sm−(%−δ)N,ψ
%,δ (Rn) such that

q(x,D)∗ −
∑
|α|<N

1

α!
p∗α(x,D) = rN(x,D).
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Proof. We have

q1(x,D) ◦ q2(x,D)−
∑
|α|<N

1

α!
pα(x,D)

= V −1
G,nq1(x, D̃)q2(x, D̃)−

∑
|α|<N

1

α!
pα(x, D̃)VG,n

= V −1
G,nq1(x, D̃)q2(x, D̃)−

∑
|α|<N

1

α!
(−i)|α|∂αξ q1(x, D̃)∂αx q2(x, D̃)VG,n.

and

q(x,D)∗ −
∑
|α|<N

p∗α(x,D) = V −1
G,nq(x, D̃)∗ −

∑
|α|<N

1

α!
p∗α(x, D̃)VG,n

= V −1
G,nq(x, D̃)∗ −

∑
|α|<N

1

α!
(i)|α|∂αξ ∂

α
x q(x, D̃)VG,n

Thus our theorem follows from [93, Chapter 7, Theorem 1.4]. �

So far de�ning

(45) Ψ∞,ψ
0 (Rn) :=

⋃
m∈R

Ψm,ψ
0 (Rn),

(46) Ψ∞,ψ
∞ (Rn) :=

⋃
m∈R

Ψm,ψ
%∞ (Rn)

and

(47) Ψ∞,ψ
%,δ (Rn) :=

⋃
m∈R

Ψm,ψ
%,δ (Rn)

we have proved

Theorem 4.2.10. The sets Ψ0,ψ
0 (Rn), Ψ0,ψ

∞ (Rn), Ψ0,ψ
%,δ (R

n) and Ψ∞,ψ
0 (Rn),

Ψ∞,ψ
∞ (Rn), Ψ∞,ψ

%,δ (Rn) are algebras of pseudodi�erential operators with composition

as multiplication and involution ∗. In addition for Ψ∞,ψ
0 (Rn), Ψ∞,ψ

∞ (Rn) and

Ψ∞,ψ
%,δ (Rn) we have

(i) λΨm,ψ
0 (Rn) + µΨm,ψ

0 (Rn) ⊂ Ψm,ψ
0 (Rn), λ, µ ∈ C

λΨm,ψ
∞ (Rn) + µΨm,ψ

∞ (Rn) ⊂ Ψm,ψ
∞ (Rn), λ, µ ∈ C

λΨm,ψ
%,δ (Rn) + µΨm,ψ

%,δ (Rn) ⊂ Ψm,ψ
%,δ (Rn), λ, µ ∈ C

(ii)
(
Ψm,ψ

0 (Rn)
)∗
⊂ Ψm,ψ

0 (Rn)(
Ψm,ψ
∞ (Rn)

)∗ ⊂ Ψm,ψ
∞ (Rn)(

Ψm,ψ
%,δ (Rn)

)∗
⊂ Ψm,ψ

%,δ (Rn)
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(iii) Ψm,ψ
0 (Rn) ◦Ψm′,ψ

0 (Rn) ⊂ Ψm+m′,ψ
0 (Rn)

Ψm,ψ
∞ (Rn) ◦Ψm′,ψ

∞ (Rn) ⊂ Ψm+m′,ψ
∞ (Rn)

Ψm,ψ
%,δ (Rn) ◦Ψm′,ψ

%,δ (Rn) ⊂ Ψm+m′,ψ
%,δ (Rn).

Proposition 4.2.11. Let q ∈ Sm,ψ0 (Rn) or q ∈ Sm,ψ%,δ (Rn) Moreover, let p be
a polynomial. Then we obtain for u ∈ Sγ(Rn)

(48) q(x,D)p(x)u(x) =
∑
α

1

α!
(−i∂x)αp(x)(∂αξ q)(x,D)u(x).

Proof. Since p(x)u(x) ∈ Sγ(Rn) we obtain by [119, Example 3.5 (ii)]

q(x,D)p(x)u(x) = V −1
G,nq(x, D̃)VG,np(x)u(x)

= V −1
G,nq(x, D̃)p(x)VG,nu(x)

= V −1
G,n

∑
α

1

α!
(−i∂x)αp(x)(∂αξ q)(x, D̃)VG,nu(x)

=
∑
α

1

α!
(−i∂x)αp(x)(∂αξ q)(x,D)u(x),

which proves our proposition. �

Now we prove that our pseudodi�erential operators extend to continuous op-
erators in a scale of Sobolev-spaces. Moreover, we show some kind of Gårding
inequality and prove that under some additional conditions our operators extend
to generators of L2

γ-sub Markovian-semi groups and L2
γ-sub Markovian-Dirichlet-

forms.

Definition 4.2.12. Let λ denote the Lebesgue-Measure in Rn and ψ be a
continuous negative de�nite function. Then we de�ne for all s ≥ 0 the generalized
Sobolev-space Hs

ψ,λ(R
n) as the space of all u ∈ L2(Rn, λ) such that

‖u‖ψ,s,λ :=
∥∥∥(1 + |ψ|)s/2F̃u

∥∥∥
L2(Rn,λ)

<∞.

Lemma 4.2.13. For u ∈ Hs
ψ(Rn) we have VG,nu ∈ Hs

ψ,λ(R
n) with

(49) ‖u‖ψ,s = ‖VG,nu‖ψ,s,λ .

Proof. For u ∈ Hs
ψ(Rn) we obtain by 1.4.10

‖u‖ψ,s =
∥∥(1 + ψ(·))s/2Fu

∥∥
ψ,0

=
∥∥(1 + ψ(·))s/2VG,n(Fu)

∥∥
ψ,0,λ

=
∥∥∥(1 + ψ(·))s/2(F̃VG,nu)

∥∥∥
ψ,0,λ

= ‖VG,nu‖ψ,s,λ .

This shows our assertion. �
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Theorem 4.2.14. Let q ∈ Sm,ψ0 (Rn) or q ∈ Sm,ψ%,δ (Rn). We denote by q(x,D)
the corresponding pseudodi�erential operator de�ned in 4.1.5. Then q(x,D) maps
Hs+m
ψ (Rn) continuously to Hs

ψ(Rn), i.e. there exists a c > 0 such that for all

u ∈ Hs+m
ψ (Rn) we have

(50) ‖q(x,D)u‖ψ,s ≤ c ‖u‖ψ,s+m
Proof. Since by 2.3.17 Sγ(Rn) is dense in Hs

ψ(Rn) for all s we only have to
prove (50) for all u ∈ Sγ(Rn). However, for u ∈ Sγ(Rn) we obtain by 4.2.13, 4.2.1
and [81, Theorem 2.5.4] resp. [93, Chapter 7 Theorem 1.6]

‖q(x,D)u‖ψ,s = ‖VG,nq(x,D)u‖ψ,s,λ =
∥∥∥VG,nV −1

G,nq(x, D̃)VG,nu
∥∥∥
ψ,s,λ

≤ ‖VG,nu‖ψ,s+m,λ = c ‖u‖ψ,s+m ,
where c > 0. �

Lemma 4.2.15. Let q ∈ Sm,ψ0 (Rn) or q ∈ Sm,ψ%,δ (Rn) and u, v ∈ Sγ(R
n) Then

the following equality holds:

〈q(x,D)u , v〉L2(Rn,γ) = 〈q(x, D̃)VG,nu , VG,nv〉L2(Rn,γ).

Proof. For u, v ∈ Sγ(Rn) we obtain

〈q(x,D)u , v〉L2(Rn,γ) = 〈V −1
G,nq(x, D̃)VG,nu , v〉L2(Rn,γ)

= 〈VG,nV −1
G,nq(x, D̃)VG,nu , VG,nu〉L2(Rn,λ)

= 〈q(x, D̃)V u , VG,nu〉L2(Rn,λ).

This shows our Lemma. �

Proposition 4.2.16 (Gårding inequality). Let q ∈ Sm,ψ%k
(Rn) be non-negative.

Then there exists a K > 0 such that for all u ∈ Sγ(Rn)

Re 〈q(x,D)u , u〉L2(Rn,γ) ≥ −K ‖u‖2
ψ,m−1

2
.

Proof. Using 4.2.13 and [81, Theorem 2.5.5] we obtain for u ∈ Sγ(Rn)

Re 〈q(x,D)u , u〉L2(Rn,γ) = Re 〈q(x, D̃)VG,nu , VG,nu〉L2(Rn,λ)

≥ −K ‖VG,nu‖2
ψ,m−1

2
,λ = −K ‖u‖2

ψ,m−1
2
. �

Definition 4.2.17. For q ∈ Sm,ψ0 (Rn) and u, v ∈ Sγ(R
n) we de�ne the

sesquilinear form Bq by

(51) Bq(u, v) = 〈q(x,D)u , v〉L2(Rn,γ).

Theorem 4.2.18. Let q ∈ Sm,ψ%k
(Rn) be real-valued and m > 0.

(i) Then we have

|Bq(u, v)| ≤ c ‖u‖ψ,m
2
‖v‖ψ,m

2

for all u, v ∈ Sγ(Rn) Thus we can extend Bq continuously to H
m/2
ψ (Rn).
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(ii) Moreover let us assume that there exists µ0 > 0 and R > 0 such that

(52) q(x, ξ) ≥ µ0(1 + ψ(ξ))m/2 for |ξ| ≥ R, x ∈ Rn

and

(53) lim
|ξ|→∞

ψ(ξ) = ∞.

Then we obtain for all u ∈ Hm/2
ψ (Rn) the Gårding inequality

Re Bq(u, u) ≥ µ0

2
‖u‖2

ψ,m
2
− λ0 ‖u‖2

0 ,

Re Bq(u, u) ≥ µ0

2
‖u‖2

ψ,m
2
− λ1 ‖u‖2

ψ,m−1
2
.

(iii) Under the assumptions of (ii) we obtain for s > −m and for all u ∈
Hs+m
ψ (Rn)

µ0

2
‖u‖2

ψ,m+s ≤ ‖q(x,D)u‖2
ψ,s + d ‖u‖2

ψ,m+s− 1
2

Proof. Let u, v ∈ Sγ(R
n). Then by 4.2.13, 4.2.15 and [81, Theorem 2.5.6,

Remark 2.5.7] we have

(i) Bq(u, v) = 〈q(x, D̃)VG,nu , VG,nv〉L2(Rn,λ)

≤ c ‖VG,nu‖ψ,m
2
,λ ‖VG,nv‖ψ,m

2
,λ = c ‖u‖ψ,m

2
‖v‖ψ,m

2

(ii) Re Bq(u, u) = Re 〈q(x, D̃)VG,nu , VG,nu〉L2(Rn,λ)

≤ µ0

2
‖VG,nu‖2

ψ,m
2
,λ − λ0 ‖VG,nu‖2

0,λ

= µ0

2
‖u‖2

ψ,m
2
− λ0 ‖u‖2

0

(iii) Re Bq(u, u) = Re 〈q(x, D̃)VG,nu , VG,nu〉L2(Rn,λ)

≤ µ0

2
‖VG,nu‖2

ψ,m
2
,λ − λ1 ‖VG,nu‖2

ψ,m−1
2
,λ

= µ0

2
‖u‖2

ψ,m
2
− λ1 ‖u‖2

ψ,m−1
2

(iv) µ0

2
‖u‖2

ψ,m+s = µ0

2
‖VG,nu‖2

ψ,m+s,λ

≤
∥∥∥q(x, D̃)VG,nu

∥∥∥2

ψ,s,λ
+ d ‖VG,nu‖2

ψ,m+s− 1
2
,λ

= ‖q(x,D)u‖2
ψ,s + d ‖u‖2

ψ,m+s− 1
2
.

This shows our theorem. �

Definition 4.2.19. Let q ∈ Sm,ψ%k
(Rn), µ ∈ R and f ∈ L2(Rn, γ) Then we

call u ∈ Hm/2
ψ (Rn) a variational solution of the equation

qµ(x,D)u := q(x,D)u+ µu = f

if we have Bqµ(u, ϕ) = 〈ϕ , f〉L2(Rn,γ) for all ϕ ∈ Hm/2
ψ (Rn)

Lemma 4.2.20. Let q ∈ Sm,ψ%k
(Rn) and µ ∈ R. For f ∈ L2(Rn, γ) let u ∈

H
m/2
ψ (Rn) be a variational solution of qµ(x,D)u = f . Then VG,nu is a variational
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solution of qµ(x, D̃)v = VG,nf . Conversely, let f ∈ L2(Rn, λ) and v ∈ Hm/2
ψ,λ (Rn)

be a variational solution of qµ(x, D̃)v = f , then V −1
G,nv is a variational solution of

qµ(x,D)u = V −1
G,nf .

Proof. Let f ∈ L2(Rn, γ) and u ∈ H
m/2
ψ (Rn) be a variational solution of

qµ(x,D)u = f . Then we obtain

〈qµ(x, D̃)VG,nu , ϕ〉0,λ = 〈qµ(x,D)VG,nu , V
−1
G,nϕ〉0 = 〈V −1ϕ , f〉0 = 〈ϕ , VG,nf〉0,λ.

Conversely, let f ∈ L2(Rn, λ) and v ∈ H
m/2
ψ,λ (Rn) be a variational solution of

qµ(x, D̃)v = f , then we have

〈q(x,D)V −1
G,nv , ϕ〉0 = 〈qµ(x, D̃v , V ϕ〉0,λ = 〈V ϕ , f〉0,λ = 〈ϕ , V −1f〉0. �

Theorem 4.2.21. Under the assumptions and with the notations of Theorem
4.2.18(ii) we obtain

(i) For all µ ≥ µ0 and f ∈ L2(Rn, γ) there exists a unique variational
solution of qµ(x,D)u = f .

(ii) Moreover, for m ≥ 1 and f ∈ Hs
ψ(Rn) (s ≥ 0) any variational solution

u ∈ Hm/2
ψ (Rn) of qµ(x,D)u = f belongs to Hm+s

ψ .

Proof. Let µ ≥ µ0 and f ∈ L2(Rn, γ). Then according to [81, Theorem
2.5.12] there exists a unique variational solution v of qµ(x, D̃)v = VG,nf . But
in view of Lemma 4.2.20 u := V −1

G,nv is then the unique variational solution of
qµ(x,D)u = f . To prove (ii) let u be a variational solution of qµ(x,D)u = f .
Then VG,nf ∈ Hs

ψ,λ(R
n) and we have VG,nu is a variational solution of qµ(x, D̃)v =

VG,nf . Thus by [81, Theorem 2.5.13] VG,nu ∈ Hm+s
ψ,λ (Rn). But this implies

u ∈ Hm+s
ψ (Rn). �

Proposition 4.2.22. Let ψ ∈ Λ2, such that (53) holds. Moreover, let us
assume that ψ(ξ) ≥ c0 |ξ|r for some c0 > 0, r > 0 and all |ξ| > R1. Let
q ∈ S2,ψ

%2
(Rn) such that ξ 7−→ q(x, ξ) is negative de�nite for all x ∈ Rn. In

addition, suppose that q ful�lls (52). Finally let µ > µ0. Then the operator
(−qµ(x,D), Hψ,2(Rn,R)) is generator of a contraction semi group in L2(Rn, γ).

Proof. In view of the Hille-Yoshida theorem and Theorem 4.2.21 we only
have to show that −q(x,D) is dissipative. But by [81, Theorem 2.6.10] we obtain
for ν > 0

‖νu+ qµ(x,D)‖0 = ‖νVG,nu+ qµ(x,D)VG,nu‖0,λ ≥ ν ‖VG,nu‖0,λ = ν ‖u‖0 . �

For q ∈ S2,ψ
%2

(Rn) let us denote by E the extension of Bqµ to the space H
1
ψ(Rn)

and by Ẽ the extension of 〈qλ(x, D̃)· , ·〉0,λ to the space H1
ψ,λ(R

n). Then we obtain
the following lemma
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Lemma 4.2.23. Let (Ẽ , H1
ψ,λ(R

n)) be a semi-Dirichlet-form. Then the form

(E , H1
ψ(Rn)) is a L2

γ-semi-Dirichlet-form.

Proof. The equation E(u, v) = Ẽ(VG,nu, VG,nv) extends by continuity from
H2
ψ(Rn) to H1

ψ(Rn). By de�nition E is closed. Moreover since Esym1 (u, v) =

Ẽsym
1 (VG,nu, VG,nv) we obtain that E is continuous with respect to Esym1 . Finally

we have

E(u+ u+ ∧ e
‖Pn·‖0

2 , u+ u+ ∧ e
‖Pn·‖0

2 )

= Ẽ(VG,n(u+ u+ ∧ e
‖Pn·‖0

2 ), VG,n(u+ u+ ∧ e
‖Pn·‖0

2 ))

= Ẽ(VG,nu+ (VG,nu
+) ∧ 1, VG,nu+ (VG,nu

+) ∧ 1) ≥ 0.

This is our assertion. �

Now in view of [81, Theorem 2.6.10] we have �nally proved and can state

Theorem 4.2.24. Let the assumptions of Proposition 4.2.22 hold. Then
(−qµ(x,D), H2

ψ(Rn,R)) is generator of a L2
γ sub Markovian semi group. More-

over, (−qµ(x,D), H2
ψ(Rn,R)) is a L2

γ-Dirichlet operator and (Bqµ , H
1
ψ(Rn,R)) is

a L2
γ-Dirichlet-form.

4.3. An asymptotic expansion and estimates for pseudodi�erential
operators on quasi-nuclear Hilbert space riggings

In this section we develop a symbolic calculus for pseudodi�erential operators
on a quasi-nuclear Hilbert space rigging. Let us start with some relations between
�nite dimensional pseudodi�erential operators and the in�nite dimensional case.

Notations 4.3.1. For x ∈ H− and m > n let us denote
(i) Pnx :=

∑n
k=1〈x , ej〉0ej,

(ii) P̃nx := (〈x , e1〉0, . . . , 〈x , en〉0) ∈ Rn,
(iii) P̃m,nx := (〈x , en+1〉0, . . . , 〈x , em〉0) ∈ Rn−m,

Remark 4.3.2. (i) Let q ∈ Sm,ψ%,δ (H−) or q ∈ Sm,ψ0 (H−) be cylindrical

such that q(x, ξ) = q(Pnx, Pnξ) for a �xed n ∈ N. De�ne ψ̃ : Rn −→ C

by ψ̃(ξ) = ψ(
∑n

j=1 xjej) Then there exits a function q̃ ∈ S
m,ψ̃
%,δ (Rn) (resp.

Sm,ψ̃0 (Rn)) such that q(x, ξ) = q̃(P̃nx, P̃nξ).
(ii) Let u ∈ Sγ,cyl(H−). Then there exists functions ũ ∈ Sγ(R

n) such that
u(x) = ũ(P̃nx).

Lemma 4.3.3. Let q ∈ Sm,ψ%,δ (H−) or q ∈ Sm,ψ0 (H−) be cylindrical such that

q(x, ξ) = q(Pnx, Pnξ) for a �xed n ∈ N. De�ne ψ̃ : Rn −→ C by ψ̃(ξ) =

ψ(
∑n

j=1 xjej). According to 4.3.2 there exits a cylindrical function q̃ ∈ Sm,ψ̃%,δ (Rn)

(resp. Sm,ψ̃0 ) such that q(x, ξ) = q̃(P̃nx, P̃nξ) Moreover, let u ∈ Sγ,cyl(H−). We
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assume that u(x) = f(x)g(x) where f(x) = f(Pnx) and g(x) = g((Id − Pn)x).

As above according to 4.3.2 there exists functions f̃ ∈ Sγ(Rn) and g̃ ∈ Sγ(Rm−n)

such that f(x) = f̃(P̃nx) and g(x) = (P̃n,mx). Then it follows that

(54) q(x,D)u(x) = [q(x,D)f(x)]g(x) = q̃(P̃nx, P̃nD)f̃(P̃nx)g̃(P̃n,mx),

where q̃(P̃nx, P̃nD) is the pseudodi�erential-de�ned on Rn.

Proof. Let x = (x1, · · ·xm) ∈ Rm. Then we de�ne Qn(x) := (x1, · · · , xn) ∈
Rn and Qn,m(x) := (xn+1, · · · , xm) ∈ Rm−n Let u ∈ Sγ,cyl(H−) such that u(x) =

f(x)g(x), where f and g are given as above. Let us denote by F̂ the Fourier-
Wiener-Transform in Rm. Then we have

q(x,D)u(x)

= F−1
ξ→xq(x, ξ)Fu(ξ)

= F−1
ξ→xq(Pnx, Pnξ)Fy→ξ[f(Pny)g((Id− Pn)y)]

= F̂−1

ξ→P̃mx
q̃(P̃nx,Qnξ)F̂y→ξ[f̃(Qny)g̃(Qn,my)]

= e
‖P̃mx‖2

2

∫
Rm

ei〈P̃mx , ξ〉q̃(P̃nx,−Qnξ)

∫
Rm

e−i〈ξ , y〉f̃(Qny)g̃(Qn,my)e
−‖y‖2

2

dλm(y)dλm(ξ)

= e
‖P̃nx‖2

2 e
‖P̃n,mx‖2

2

∫
Rm

∫
Rm

ei〈P̃nx ,Qnξ〉ei〈P̃n,mx ,Qn,mξ〉q̃(P̃nx,−Qnξ)

e−i〈Qnξ ,Qny〉e−i〈Qn,mξ ,Qn,my〉f̃(Qny)g̃(Qn,my)

e−
‖Qny‖2

2 e−
‖Qn,my‖2

2 dλm(y)dλm(ξ)

= e
‖P̃nx‖2

2

∫
Rn

∫
Rn

ei〈P̃nx , ξ〉q̃(P̃nx, ξ)e
−i〈ξ , y〉f̃(y)e−

‖y‖2
2 dλn(y)dλn(ξ)

e
‖P̃n,mx‖2

2

∫
Rm−n

∫
Rm−n

ei〈P̃n,mx , ξ〉e−i〈ξ , y〉g̃(y)e−
‖y‖2

2 dλm−n(y)dλm−n(ξ)

= q̃(P̃nx, P̃nD)f̃(P̃nx)g̃(Pn,mx).

But this is our assertion. �

According to [35, Rem 2.2, p. 45] we obtain γ = γn ⊗ γR, where γn is
the canonical Gaussian measure with respect to the Hilbert space rigging Rn ∼=
PnH+ ⊂ PnH0 ⊂ PnH− ∼= Rn. Furthermore, γR is the canonical Gaussian
measure with respect to the rigging H+ 	 PnH+

∼= H+ ∩ (H0 	 PnH0) ⊂ H0 	
PnH0 ⊂ {x ∈ H− |Pnx = 0} ∼= H− 	 Pn(H−). Now by [19, p.24] it follows that

(55) L2(H−, γ) = L2(Rn, γn)⊗̂L2(H− 	 PnH−, γR),
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where ⊗̂ denotes the topological tensor-product of Hilbert Spaces. Then using
Lemma 4.3.3 we obtain the following corollary.

Corollary 4.3.4. Let q ∈ Sm,ψ%,δ (H−) or q ∈ Sm,ψ0 (H−) be cylindrical such
that q(x, ξ) = q(Pnx, Pnξ) for a �xed n ∈ N. Moreover, let f ∈ Sγ(PnH−) and
g ∈ Sγ,cyl(H− 	 PnH−). Then we can consider f ⊗ g as an element of L2(H−, γ)
and obtain

q(x,D)(f ⊗ g) = [q̃(P̃nx, P̃nD)f ]g

= q̃(P̃nx, P̃nD)f ⊗ g

= (q̃(P̃nx, P̃nD)⊗ id)(f ⊗ g).

Now note that Sγ(PnH−) is a dense subset of L2(Rn, γ) and that Sγ,cyl(H−	
PnH−) is dense in L2(H− 	 PnH−, γR). Thus Sγ(PnH−) ⊗ Sγ,cyl(H− 	 PnH−)
is dense in L2(Rn, γn)⊗̂L2(H− 	 PnH−, γR). According to Theorem 4.2.14
q̃(P̃nx, P̃nD) extends to a continuous linear operator on L2(Rn, γ) and of course
the identity is continuous in L2(H−	PnH−, γR). Now following [19, Theorem 2.1]
q̃(P̃nx, P̃nD)⊗ id extends to a continuous linear operator in L2(Rn, γn)⊗̂L2(H−	
PnH−, γR) such that∥∥∥q̃(P̃nx, P̃nD)⊗ id

∥∥∥ ≤ ∥∥∥q̃(P̃nx, P̃nD)
∥∥∥ ‖id‖ .

Hence we can prove the following

Theorem 4.3.5. Let q ∈ S0,ψ
%,δ (H−) or q ∈ S0,ψ

0 (H−) be cylindrical such that
q(x, ξ) = q(Pnx, Pnξ) for a �xed n ∈ N. Then q(x,D) de�ned on Sγ,cyl(H−)
extends to a continuous linear operator on L2(H−, γ).

Proof. By the remarks above we only have to show that q(x,D) and
q̃(P̃nx, P̃nD) ⊗ id coincide on Sγ,cyl(H−). To do this let u ∈ Sγ,cyl(H−). Then
there exists a m ≥ n such that u(x) = u(Pmx) = ũ(P̃mx). According to
Lemma 4.3.3 we have q(x,D)u(x) = q̃(Pmx, PmD)ũ(P̃mx). Now choose a se-
quence (f̃k)k∈N ∈ Sγ(R

n) ⊗ Sγ(R
m−n) such that f̃k

n−→∞−−−−→ ũ in L2(Rm, γm).
This is possible since L2(Rm, γm) = L2(Rn, γn)⊗̂L2(Rm−n, γm−n). We de�ne
fk(x)=f̃k(P̃mx) for all x ∈ H−. Then we have fk ∈ Sγ(Rn)⊗ Sγ,cyl(H− 	 PnH−)

and fk
k−→∞−−−−→ u in L2(H−, γ). Hence we obtain by Theorem 4.2.14 for Rm∥∥∥(q̃(P̃nx, P̃nD)⊗ id)u− q(x,D)u

∥∥∥
L2(H−,γ)

= lim
k→∞

∥∥∥q̃((P̃nx, P̃nD)⊗ id)fk − q(x,D)u
∥∥∥
L2(H−,γ)

= lim
k→∞

∥∥∥q̃((P̃nx, P̃nD)⊗ idRm−n)f̃k − q̃(Pmx, PmD)ũ
∥∥∥
L2(Rm,γm)

= lim
k→∞

∥∥∥q̃(Pmx, PmD)(f̃k − ũ)
∥∥∥
L2(Rm,γm)

≤ cm lim
k→∞

∥∥∥f̃k − ũ
∥∥∥
L2(Rm,γm)

= 0,
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where cm is a constant depending on q and m. But this is our assertion. �

Proposition 4.3.6. Let q ∈ S0,ψ
%,δ (H−) or q ∈ S0,ψ

0 (H−) be cylindrical such

that q(x, ξ) = q(Pnx, Pnξ) = q̃(P̃nx, P̃nξ) for a �xed n ∈ N. Then for u = f ⊗ g
where f(x) = f(Pnx) and g(x) = g((id− Pn)x) and f, g ∈ Sγ,cyl(H−) we have

[q(x,D)]∗u = [q̃(P̃nx, P̃nξ)]
∗f ⊗ g,

where [q̃(P̃nx, P̃nD)]∗ ∈ Ψ0,ψ
%,δ (R

n) resp. [q̃(P̃nx, P̃nD)]∗ ∈ Ψ0,ψ
0 (Rn).

Proof. Let q ∈ S0,ψ
%,δ (H−) or q ∈ S0,ψ

0 (H−) be cylindrical such that q(x, ξ) =

q(Pnx, Pnξ) = q̃(P̃nx, P̃nξ) for a �xed n ∈ N. Moreover, let u = f1 ⊗ g1 and v =

f2 ⊗ g2 where fj(x) = fj(P̃nx) and gj(x) = gj((id− Pn)x) and fj, gj ∈ Sγ,cyl(H−)
(j = 1, 2). Then we obtain by Theorem 4.2.9 Proposition 4.2.4

〈q(x,D)u , v〉L2(H−,γ)

= 〈q(x,D)(f1 ⊗ g1) , f2 ⊗ g2〉L2(H−,γ)

= 〈q̃(P̃nx, P̃nD)f1 , f2〉L2(Rn,γn)〈g1 , g2〉L2(H−	PnH−,γR)

= 〈f1 , [q̃(P̃nx, P̃nD)]∗f2〉L2(Rn,γn)〈g1 , g2〉L2(H−	PnH−,γR)

= 〈f1 ⊗ g1 , [q(P̃nx, P̃nD)]∗f2 ⊗ g2〉,

where the symbol of [q(P̃nx, P̃nD)]∗ is an element of S0,ψ
%,δ (Rn) resp. S0,ψ

0 (Rn).
But this is our assertion since L2(PnH−, γn) ⊗ L2(H− 	 PnH−, γR) is dense in
L2(H−, γ). �

Now let us start doing symbolic calculus. At �rst we will compute the follow-
ing two concrete, but important examples:

Proposition 4.3.7. Let q ∈ Sm,ψ0,cyl(H−) or q ∈ Sm,ψ%,δ,cyl(H−). Moreover let p be
a cylindrical polynomial. Then we obtain for u ∈ Sγ,cyl(H−)

(56) q(x,D)p(x)u(x) =
∑
α

1

α!
(−i∂x)αp(x)(∂αξ q)(x,D)u(x).

Proof. Let q ∈ Sm,ψ0,cyl(H−) or q ∈ Sm,ψ%,δ,cyl(H−) and p be a cylindrical poly-

nomial. Then there exist a n ∈ N, a q̃ ∈ Sm,ψ̃0 (Rn) resp. q̃ ∈ Sm,ψ̃%,δ (Rn) and a
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polynomial p̃ on Rn such that q(x, ξ) = q̃(P̃nx, P̃nξ) and p(ξ) = p̃(P̃nξ). Accord-
ing to Corollary 4.3.4 and Proposition 4.2.11 we obtain

q(x,D)p(x) = q̃(P̃nx, P̃nD)p̃(P̃nx)⊗ idH−	PnH−

=

(∑
α

1

α!
(−i∂x̃)αp̃(P̃nx)(∂αξ̃ q)(P̃nx, P̃nD)

)
⊗ idH−	PnH−

=
∑
α

1

α!

(
(−i∂x̃)αp̃(P̃nx)(∂αξ̃ q)(P̃nx, P̃nD)⊗ idH−	PnH−

)
=

∑
α

1

α!
(−i∂x)αp(x)(∂αξ q)(x,D),

which shows our proposition. �

Proposition 4.3.8. Let q ∈ Sm,ψ0,cyl(H−) or q ∈ Sm,ψ%,δ,cyl(H−). Then we obtain
for u ∈ Sγ,cyl(H−)

(57) Dxjq(x,D)u(x) = q(x,D)Dxju(x) + (∂xjq)(x,D)u(x).

Proof. Let q ∈ Sm,ψ0,cyl(H−) or q ∈ Sm,ψ%,δ,cyl(H−) and u ∈ Sγ,cyl(H−). Then
there exist a n ≥ j such that q(x, ξ) = q(Pnx, Pnξ) and u(x) = u(Pnξ). Now
using Lebesgue's Theorem of dominate convergence and [35, Proposition 5.1] we
obtain

Dejq(x,D)u(x)

= DejF−1
ξ→xq(x, ξ)(Fu)(ξ)

=

(
∂

∂ej
− 〈ej , x〉

)
e
‖Pnx‖2

2

∫
ei〈Pnx , Pnξ〉q(Pnx, Pnξ)(Fu)(Pnξ)

= e
‖Pnx‖2

2
∂

∂ej

∫
ei〈Pnx , Pnξ〉q(Pnx, Pnξ)(Fu)(Pnξ)γ(dξ)

= e
‖Pnx‖2

2

∫
ei〈Pnx , Pnξ〉

(
iξjq(Pnx, Pnξ) + (∂xjq)(Pnx, Pnξ)

)
(Fu)(Pnξ)γ(dξ)

= q(x,D)Dxju(x) + (∂xjq)(x,D)u(x),

which shows our proposition. �

Throughout the rest of this paper let ψ ∈ Λ%k(H−) be a negative de�nite
function such that there exist a n ∈ N0 with

(58) ψ(Pnξ) ≤ cψ(ξ) for all n ∈ N(n ≥ n0)

and

(59) ψ((id− Pn)ξ) ≤ cψ(ξ) for all n ∈ N(n ≥ n0).
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In addition let us formulate the following condition, which we have to assume in
some case later on. We call ψ a negative de�nite function of cylindrical growth
if there exists a n0 ∈ N such that

(60) 1 + ψ(ξ) ≤ c̃n(1 + ψ(Pnξ)) ∀n ≥ n0, ∀ξ ∈ H−.

Proposition 4.3.9. Let m ∈ R and q ∈ Sm,ψ%,δ (H−) resp. q ∈ Sm,ψ0 (H−) be

cylindrical. Then there exists a n ≥ n0 such that q(x, ξ) = q̃(P̃n, P̃n) and we have

q̃ ∈ Sm,ψ̃%,δ (Rn) resp. q̃ ∈ Sm,ψ̃0 (Rn).

Conversely, let q̃ be in Sm,ψ̃%,δ (Rn) resp. Sm,ψ̃0 (Rn) such that one of the following
conditions hold

(i) ψ ful�lls equation (60), or

(ii) q̃ in Sm,ψ̃0,0 (Rn) resp. Sm,ψ̃0 (Rn) and m ≥ 0.

Then we obtain q(x, ξ) := q̃(P̃nx, P̃nξ) ∈ Sm,ψ%,δ (H−) resp. q(x, ξ) ∈ Sm,ψ0 (H−). In

both cases it follows that q(x,D) = q̃(P̃nx, P̃nD)⊗ idH−	PnH−.

Proof. We only have to prove the middle part. At �rst note that for α, β ∈
NN0 we have

∂αξ ∂
β
xq(x, ξ) =

{
∂αξ ∂

β
x q̃(P̃nx, P̃nξ) if max(l(α), l(β)) ≤ n

0 else,

where l(α) denotes the length of α. Thus we obtain∣∣∂αξ ∂βxq(x, ξ)∣∣ ≤
∣∣∣∂αξ ∂βx q̃(P̃nx, P̃nξ)∣∣∣

≤ c′|α|,|β|(1 + ψ(P̃nξ))
m−%|α|+δ|β|

2

≤ c̃|α|,|β|(1 + ψ(ξ))
m−%|α|+δ|β|

2 .

Similarly, we obtain the case Sm,ψ0 (H−). The rest of this proposition is now
obvious. �

Proposition 4.3.10. Let ψ be in Λk(H−) such that (58), (59) hold.

(i) Let qj ∈ S
m′
j ,ψ

0,cyl (H−) (j=1,2) and assume that (60) holds or m1+m2 ≥ 0.

Then we have q1(x,D)◦q2(x,D) ∈ Ψm1+m2,ψ
0,cyl (H−). Moreover, let n ≥ n0

such that qj(x, ξ) = q̃j(P̃nx, P̃nξ). Then the symbol q(x, ξ) of q1(x,D) ◦
q2(x,D) is given by q(x, ξ) = q̃(P̃ x, P̃ ξ), where q̃(P̃ x, P̃ ξ) is the reduced

symbol q̃L(x̃, ξ̃) of the double-symbol q̃(x̃, ξ̃; x̃′, ξ̃′) = q̃1(x̃, ξ̃)q̃2(x̃′, ξ̃′) in
Rn.

(ii) Let m ≥ 0 or assume that equation (60) holds. Then for any q ∈
Sm,ψ0,cyl(H−) there exists a q∗ ∈ Sm,ψ0,cyl(H−) such that

〈q(x,D)u , v〉0 = 〈u , q∗(x,D)v〉0



4 Pseudodi�erential operators in Kohn-Nirenberg form 141

for all u, v ∈ Sγ,cyl(H−). Furthermore let n ≥ n0 such that q(x, ξ) =

q̃(P̃nx, P̃nξ). Then we obtain the symbol of q∗ as q∗(x, ξ) = q̃∗(P̃nx, P̃nξ)

where q̃∗ is the reduced symbol of the double-symbol p̃(x̃, ξ̃; x̃′, ξ̃′) =

q̃(x̃′, ξ̃) in Rn.

Proof. To prove (i) let qj ∈ S
m′
j ,ψ

0,cyl (H−) (j=1,2). According to Proposition

4.3.9 there exist a n ∈ N and q̃j ∈ S
m′
j ,ψ̃

0 (Rn) such that qj(x, ξ) = q̃j(P̃nxP̃nξ).
For f ⊗ g ∈ Sγ(Rn)⊗ Sγ,cyl(H− 	 PnH−) we obtain by Corollary 4.3.4

q1(x,D) ◦ q2(x,D)(f ⊗ g) = q1(x,D)((q̃2(P̃nx, P̃nD)f)⊗ g)

= (q̃1(P̃nx, P̃nD) ◦ q̃2(P̃nx, P̃nD)f)⊗ g.

According to Proposition 4.2.4(i) the symbol of q̃1(P̃nx, P̃nD) ◦ q̃2(P̃nx, P̃nD)

is given by q̃(x̃, ξ̃), where q̃ is the reduced symbol of the double symbol

q̃D(x̃, ξ̃; x̃′, ξ̃′) := q̃1(x̃, ξ̃)q̃2(x̃′, ξ̃′). In addition we have q̃ ∈ Sm1+m2,ψ̃
0 (Rn). Now

by Proposition 4.3.9 we obtain q(x, ξ) := q̃(P̃nx, P̃nξ) ∈ Sm1+m2
0,cyl (H−). Thus

Corollary 4.3.4 implies that q is the symbol of q1(x,D) ◦ q2(x,D).
Now let us prove (ii). According to Proposition 4.3.9 for q ∈ Sm,ψ0,cyl(H−) there exits

a n ≥ n0 and a q̃ ∈ Sm,ψ̃0 (Rn) such that q(x, ξ) = q̃(P̃nx, P̃nξ). As in Proposition
4.3.6 we obtain

〈q(x,D)u , v〉 = 〈u , ([q̃(P̃nx, P̃nξ)]
∗ ⊗ idH−	PnH−)v〉.

Using Proposition 4.2.4(ii) we �nd that the symbol q̃∗ ∈ Sm,ψ̃0 (H−) of the
operator [q̃(P̃nx, P̃nξ)]

∗ is given as the reduced symbol of the double symbol

q̃D(x̃, ξ̃; x̃′, ξ̃′) := q̃(x̃′, ξ̃). Again by Proposition 4.3.9 we obtain q(x, ξ) :=

q̃(P̃nx, P̃nξ) ∈ Sm0,cyl(H−) and the rest is clear by Corollary 4.3.4. �

Proposition 4.3.11. Let us assume that (60) holds and let ψ be in Λ∞(H−)
and q1(x,D) ∈ Ψm

k∞,cyl
(H−), q2(x,D) ∈ Ψm′

k∞,cyl
(H−). Then we obtain q1(x,D)∗ ∈

Ψm
k∞,cyl

(H−) and q1(x,D) ◦ q2(x,D) ∈ Ψm+m′

k∞,cyl
(H−).

Proof. Using the same arguments as in Proposition 4.3.10 we obtain by
Corollary 4.2.8 that the symbols q of q1(x,D) ◦ q2(x,D) and q∗ of q1(x,D)∗ are
given by

q(x, ξ) = q̃(P̃nx, P̃nξ)

q∗(x, ξ) = q̃∗(P̃nx, P̃nξ),

where q̃ ∈ Sm+m′

k∞
(Rn) and q̃∗ ∈ Smk∞(Rn). Now (59), (60), (61) and Proposition

4.3.9 imply that q ∈ Sm+m′

k∞,cyl
(H−) and q∗ ∈ Smk∞,cyl(H−). �

Theorem 4.3.12. Let ψ ∈ Λ∞(H−) and assume that (60) holds.
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(i) For q1 ∈ Sm1,ψ
%,δ,cyl(H−), q2 ∈ Sm2,ψ

%,δ,cyl(H−) we de�ne

(61) pα(x, ξ) = (−i)|α|∂αξ q1(x, ξ)∂αx q2(x, ξ) ∈ S
m1+m2−(%−δ)|α|,ψ
%,δ,cyl (H−).

Then q1(x,D) ◦ q2(x,D) belongs to the class Ψm1+m2
%,δ,cyl (H−) and for all

N ∈ N there exists a rN ∈ Sm1+m2−(%−δ)N,ψ
%,δ,cyl (H−) such that

q1(x,D) ◦ q2(x,D)−
∑
|α|<N

1

α!
pα(x,D) = rN(x,D).

(ii) For q ∈ Sm,ψ%,δ,cyl(H−) we de�ne

(62) p∗α(x, ξ) = (−i)|α|∂αξ ∂αx q(x, ξ) ∈ S
m−(%−δ)|α|,ψ
%,δ,cyl (H−).

Then q(x,D)∗ belongs to the class Ψm1
%,δ,cyl(H−) and for all N ∈ N there

exists a rN ∈ Sm−(%−δ)N,ψ
%,δ,cyl (H−) such that

q(x,D)∗ −
∑
|α|<N

1

α!
p∗α(x,D) = rN(x,D).

Proof. First let us prove (i). As in Proposition 4.3.10 there exist a n ≥ n0,
q̃1 ∈ Sm1,ψ

%,δ (Rn) and q̃2 ∈ Sm2,ψ
%,δ (Rn) such that qj(x, ξ) = q̃j(P̃nx, P̃nξ) (j = 1, 2).

Moreover, we have

q1(x,D) ◦ q2(x,D) = (q1(P̃nx, P̃nD) ◦ q2(P̃nx, P̃nD))⊗ idH−	PnH− .

Setting

p̃α(x̃, ξ̃) = (−i)|α|∂α
ξ̃
q̃1(x̃, ξ̃)∂

α
x̃ q̃2(x̃, ξ̃) ∈ S

m1+m2−(%−δ)|α|,ψ
%,δ (Rn)

we obtain by Theorem 4.2.9

q̃1(P̃nx, P̃nD) ◦ q2(P̃nx, P̃nD)−
∑
|α|<N

1

α!
p̃α(P̃nx, P̃nD) = r̃N(P̃nx, P̃nD),

where r̃N ∈ S
m1+m2−(%−δ)N,ψ̃
%,δ (Rn). Now we de�ne rN(x, ξ) := r̃N(P̃nx, P̃nξ) and

obtain by Proposition 4.3.6 rN ∈ S
m1+m2−(%−δ)N,ψ
%,δ,cyl (H−). Obviously, we have

pα(x, ξ) := p̃α(P̃nx, P̃nξ) and

q1(x,D) ◦ q2(x,D)−
∑
|α|<N

1

α!
pα(x,D) = rN(x,D).

But this proves the �rst part.
Now let us prove (ii). Again using Proposition 4.3.9 there exist a n ≥ n0, q̃ ∈
Sm,ψ%,δ (Rn) such that q(x, ξ) = q̃(P̃nx, P̃nξ). As before we have

〈q(x,D)u , v〉 = 〈u , ([q̃(P̃nx, P̃nξ)]
∗ ⊗ idH−	PnH−)v〉.
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Setting

p̃∗α(x̃, ξ̃) = (−i)|α|∂α
ξ̃
∂αx̃ q̃(x̃, ξ̃) ∈ S

m−(%−δ)|α|,ψ
%,δ (Rn)

we obtain by Theorem 4.2.9

q̃(P̃nx, P̃nD)∗ −
∑
|α|<N

1

α!
p̃∗α(P̃nx, P̃nD) = r̃N(P̃nx, P̃nD),

where r̃N ∈ Sm−(%−δ)N,ψ
%,δ (Rn). Now again we set r(x, ξ) := r̃(P̃nx, P̃nξ) and obtain

by Proposition 2.2.2 rN ∈ Sm−(%−δ)N,ψ
%,δ,cyl (H−). Thus we �nd

q(x,D)∗ −
∑
|α|<N

1

α!
p∗α(x,D) = rN(x,D).

Finally, this shows our Theorem. �

Let us summarize the facts we proved about our pseudodi�erential operators
with cylindrical symbols in terms of graduated algebras.
Thus so far de�ning

(63) Ψ∞,ψ
0,cyl(H−) :=

⋃
m∈R

Ψm,ψ
0,cyl(H−),

(64) Ψ∞,ψ
∞,cyl(H−) :=

⋃
m∈R

Ψm,ψ
%∞,cyl

(H−)

and

(65) Ψ∞,ψ
%,δ,cyl(H−) :=

⋃
m∈R

Ψm,ψ
%,δ,cyl(H−)

we have proved

Theorem 4.3.13. The sets Ψ0,ψ
0,cyl(H−) and Ψ∞,ψ

0,cyl(H−) are algebras of pseudo-
di�erential operators with composition as multiplication and involution ∗. More-
over if (60) holds Ψ0,ψ

∞,cyl(H−), Ψ0,ψ
%,δ,cyl(H−), Ψ∞,ψ

∞,cyl(H−) and Ψ∞,ψ
%,δ,cyl(H−) are also

algebras of pseudodi�erential operators with composition as multiplication and
involution ∗. In addition we have

(i) λΨm,ψ
0,cyl(H−) + µΨm,ψ

0,cyl(H−) ⊂ Ψm,ψ
0,cyl(H−), λ, µ ∈ C;

λΨm,ψ
∞,cyl(H−) + µΨm,ψ

∞,cyl(H−) ⊂ Ψm,ψ
∞,cyl(H−), λ, µ ∈ C;

λΨm,ψ
%,δ,cyl(H−) + µΨm,ψ

%,δ,cyl(H−) ⊂ Ψm,ψ
%,δ,cyl(H−), λ, µ ∈ C.

(ii) Let m ≥ 0 resp. m+m′ ≥ 0 or equation (60) hold. Then(
Ψm,ψ

0,cyl(H−)
)∗
⊂ Ψm,ψ

0,cyl(H−);

Ψm,ψ
0,cyl(H−) ◦Ψm′,ψ

0,cyl (H−) ⊂ Ψm+m′,ψ
0,cyl (H−).
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(iii) Let equation (60) hold. Then(
Ψm,ψ
∞,cyl(H−)

)∗
⊂ Ψm,ψ

∞,cyl(H−);(
Ψm,ψ
%,δ,cyl(H−)

)∗
⊂ Ψm,ψ

%,δ,cyl(H−);

Ψm,ψ
∞,cyl(H−) ◦Ψm′,ψ

∞,cyl(H−) ⊂ Ψm+m′,ψ
∞,cyl (H−);

Ψm,ψ
%,δ,cyl(H−) ◦Ψm′,ψ

%,δ,cyl(H−) ⊂ Ψm+m′,ψ
%,δ,cyl (H−).

Now we aim to show, that some of the pseudodi�erential operators on a quasi-
nuclear Hilbert space rigging extend to continuous linear operators in a scale on
Sobolev-Spaces. We will do this in three di�erent cases.

The x independent case.
Before going on with the discussion of cylindrical symbols let us consider symbols
depending only a ξ. Let us start with the following

Theorem 4.3.14. Let q ∈ Sm,ψ%,δ (H−) or q ∈ Sm,ψ0 (H−) such that q(x, ξ) =
p(ξ). Then for all s ∈ R the corresponding pseudodi�erential operator p(D) is a
continuous linear mapping from Hs+m

ψ (H−) to Hs
ψ(H−).

Proof. For u ∈ Hs+m
ψ we obtain

‖p(D)u‖Hs
ψ

=
∥∥(1 + ψ(·))s/2Fp(D)u

∥∥
H0
ψ

=
∥∥(1 + ψ(·))s/2FF−1p(·)Fu

∥∥
H0
ψ

=
∥∥(1 + ψ(·))s/2p(·)Fu

∥∥
H0
ψ

≤ c
∥∥(1 + ψ(·))s+m/2Fu

∥∥
H0
ψ

= c ‖u‖Hs+m
ψ

.

This shows our assertion. �

Lemma 4.3.15. Let q ∈ Sm,ψ%,δ (H−) or q ∈ Sm,ψ0 (H−) such that q(x, ξ) = p(ξ).
Then we obtain for u ∈ Sγcyl(H−)

p(D)u = lim
n→∞

p(PnD)u,

where the convergence takes place in L2(H−, γ).

Proof. For u ∈ Sγ,cyl(H−) we have Fu ∈ Sγ,cyl(H−). Moreover, since
Pnξ

n→∞−−−→ ξ and p is continuous we obtain p(Pnξ)Fu(ξ)
n→∞−−−→ p(ξ)Fu(ξ) for

all ξ ∈ H−. For m > 0 we have

p(Pnξ)Fu(ξ) ≤ c(1 + ψ(Pnξ))
m/2Fu(ξ) ≤ c̃(1 + ψ(ξ))m/2Fu(ξ)

and for m ≤ 0 we �nd p(Pnξ)Fu(ξ) ≤ cFu(ξ). Thus Lebesgue's Theorem of
dominated convergence implies that

p ◦ PnFu
n→∞−−−−−→

L2(H−,γ)
pFu.

Now our assertion follows by the continuity of F−1. �
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Lemma 4.3.16. Let q ∈ Sm,ψ%,δ (H−) or q ∈ Sm,ψ0 (H−) such that q(x, ξ) =
p((id − Pn)ξ) = p̃(P∞,nξ). Moreover let u = f ⊗ g where f(x) = f(Pnx) and
g(x) = g((id − Pn)x) and f, g ∈ Sγ,cyl(H−). Then we obtain by Lemma 4.3.15
and Lemma 4.3.3

p(D)(f ⊗ g) = lim
m→∞

p(Pm(D))(f ⊗ g)

= lim
m→∞

f ⊗ p̃(PmP∞,nD)g = f ⊗ p̃(P∞,nD)g.

The case of a cylindrical function with cylindrical growth.
Now let us assume that (60) holds. Then we obtain the following

Proposition 4.3.17. Let q ∈ Sm,ψ0,cyl(H−) or q ∈ Sm,ψ%,δ,cyl(H−). Then q(x,D)

maps Hs+m(H−) continuously to Hs(H−).

Proof. Let q ∈ Sm,ψ0,cyl(H−) or q ∈ Sm,ψ%,δ,cyl(H−) and u ∈ Sγ,cyl(H−). Then
there exists a n ≥ n0 such that q(x, ξ) = q(Pnx, Pnξ). Now by condition (60) and
Proposition 4.3.9 we obtain (1 + ψ ◦ Pn)−

m
2 ∈ q ∈ S−m,ψ0,cyl (H−). Thus we have by

Theorem 4.3.12 resp. Proposition 4.3.10 q(x,D) ◦ (1 + ψ)−
m
2 (PnD) ∈ S0,ψ

0,cyl(H−)

resp. q(x,D) ◦ (1 +ψ)−
m
2 (PnD) ∈ S0,ψ

%,δ,cyl(H−). Now we obtain by Theorem 4.3.5

‖q(x,D)u‖0 =
∥∥q(x,D)(1 + ψ)−

m
2 (PnD)(1 + ψ)

m
2 (PnD)u

∥∥
0

≤ c
∥∥(1 + ψ)

m
2 (PnD)u

∥∥
0

= c
∥∥(1 + ψ)

m
2 (Pn·)Fu

∥∥
0

≤ c′
∥∥(1 + ψ)

m
2 (·)Fu

∥∥
0

= ‖u‖ψ,m ,
which proves our proposition. �

This proposition leads directly to the following

Theorem 4.3.18. Let q ∈ Sm,ψ0,cyl(H−) or q ∈ Sm,ψ%,δ,cyl(H−). Then q(x,D) ex-

tends to a continuous linear mapping from Hs+m(H−) to Hs(H−).

Proof. Let q ∈ Sm,ψ0,cyl(H−) or q ∈ Sm,ψ%,δ,cyl(H−). Thus we have by Theorem

4.3.12 Proposition resp. 4.3.10 (1 + ψ)
s
2 (PnD) ◦ q(x,D) ∈ Ss+m,ψ0,cyl (H−) resp.

(1 + ψ)
s
2 (PnD) ◦ q(x,D) ∈ Ss+m,ψ%,δ,cyl (H−). Now using Proposition 4.3.17 we obtain

for u ∈ Sγ,cyl(H−)

‖q(x,D)u‖ψ,s =
∥∥(1 + ψ)

s
2 (PnD)u

∥∥
0
≤ c ‖u‖ψ,s+m ,

which shows our theorem. �

For the next proposition we have to assume a stronger version of equation (60).
Namely we have to assume that the constants c̃n are bounded i.e we assume that
there exists constants c̃ such that

(66) 1 + ψ(ξ) ≤ c̃(1 + ψ(Pnξ)) ∀n ≥ n0, ∀ξ ∈ H−.
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Proposition 4.3.19 (Gårding inequality). Let q ∈ Sm,ψ%k,cyl
(H−) be non-

negative. Then there exists a K > 0 such that for all u ∈ Sγ,cyl(H−)

Re 〈q(x,D)u , u〉L2(H−,γ) ≥ −K ‖u‖2
ψ,m−1

2
.

Proof. Let q ∈ Sm,ψ%k,cyl
(H−) be non-negative and u ∈ Sγ,cyl(H−). Then der

exists a n ≥ n0 such that q(x, ξ) = q̃(P̃nx, P̃nξ) and u(x) = ũ(P̃nx). Thus we
obtain

Re 〈q(x,D)u , u〉L2(H−,γ) = Re 〈q̃(P̃nx, P̃nξ)ũ ◦ P̃n , ũ ◦ P̃n〉L2(H−,γ)

= Re 〈q̃(P̃nx, P̃nξ)ũ , ũ〉L2(Rn,γn)

≥ −K ‖ũ‖2
ψ̃,m−1

2

≥ −K ′ ‖u‖2
ψ,m−1

2

and so the Gårding inequality is proved. �

The case of a second order polynomial as negative de�nite function.
Now let

(67) ψ(ξ) := 〈Aξ , ξ〉, where A ∈ L (H−, H+) and ψ(ξ) =
∞∑
j=0

ajξ
2
j

(ξj = 〈ej , ξ〉0). We assume that aj 6= 0 for all j ∈ N. Moreover, in this second
case we consider only the case δ = 0. Note that in this part now % = 0 is allowed.
Thus we obtain

Lemma 4.3.20. Under the assumptions above the symbol q(x, ξ) := i〈ej , ξ〉0
is an element of S1,ψ

%,δ,cyl(H−) and thus Dej ∈ Ψ1,ψ
%,δ,cyl(H−). Using Theorem 4.3.14

we obtain that Dej is a continuous operator from Hs+1
ψ (H−) to Hs

ψ(H−) for all
s ∈ R.

Proof. This follows directly from the fact that aj 6= 0 for all j ∈ N. �

Lemma 4.3.21. Let q(x, ξ) ∈ S0,ψ
%,δ,cyl(H−) such that q(x, ξ) = q(Pnx, Pnξ) Then

we obtain for u ∈ Sγ,cyl(H−)

(1 + ψ(D))q(x,D)u

= q(x,D)(1 + ψ(D))u+
n∑
j=1

aj
(
2(∂xjq)(x,D)Dej + ((∂xj)

2q)(x,D)
)
u.
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Proof. Let q(x, ξ) ∈ S0,ψ
%,δ,cyl(H−) such that q(x, ξ) = q(Pnx, Pnξ) and u ∈

Sγ,cyl(H−) Using Proposition 4.3.8 we obtain

(Dej)
2q(x,D)u

= (Dej)[q(x,D)(Dej)u+ (∂xjq)(x,D)u]

= q(x,D)(Dej)
2u+ (2∂xjq)(x,D)Deju+ ((∂xj)

2q)(x,D)u,

where ∂xjq = 0 and (∂xj)
2q = 0 for j > n. Thus for k > n we obtain

(1 + ψ(PkD))q(x,D)u

= q(x,D)(1 + ψ(PkD))u+
n∑
j=1

aj
(
2(∂xjq)(x,D)Dej + ((∂xj)

2q)(x,D)
)
u.

Hence the assertion follows by Lemma 4.3.15 for k −→∞. �

Proposition 4.3.22. Let q ∈ S0,ψ
%,0,cyl(H−) such that q(x, ξ) = q(Pnx, Pnξ).

Then for all α ∈ NN0 there exists constants cα and symbols qα ∈ S0,ψ
%,0,cyl(H−) with

qα(x, ξ) = qα(Pnx, Pnξ) such that

adm(Λ2)(q(x,D))u =
∑
|α|≤m
l(α)≤n

cαqα(x,D)Dαu

for all u ∈ Sγ,cyl(H−).

Proof. Let us prove this proposition by induction. For m = 1 this follows
by Lemma 4.3.21, since ∂xjq and (∂xj)

2q in S0,ψ
%,0,cyl(H−). Let our assertion now

be true for a �xed m ∈ N. Then we obtain

adm+1(Λ2)(q(x,D))u

= [Λ2,
∑
|α|≤m
l(α)≤n

cαqα(x,D)Dα]u

=
∑
|α|≤m
l(α)≤n

cα([Λ
2, q(x,D)]Dαu+ q(x,D)[Λ2, Dα]u)

=
∑
|α|≤m
l(α)≤n

cα

n∑
j=1

aj
(
2(∂xjq)(x,D)Dej + ((∂xj)

2q)(x,D)
)
Dαu

=
∑

|α|≤m+1
l(α)≤n

c̃αq̂α(x,D)Dαu,

which shows our proposition. �
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Proposition 4.3.23. Let q ∈ S0,ψ
%,0,cyl(H−) such that q(x, ξ) = q(Pnx, Pnξ).

Then for all u ∈ H∞
ψ (H−) and k,m ∈ N there exist ak,m ≥ 0 such that∥∥Λkadm(Λ)(q(x,D))u

∥∥
ψ,0
≤ am,j

∥∥Λku
∥∥
ψ,0
.

Proof. Let q ∈ S0,ψ
%,0,cyl(H−) such that q(x, ξ) = q(Pnx, Pnξ). Then for all

u ∈ Sγ,cyl(H−) Proposition 4.3.23 implies that∥∥Λ2kadm(Λ2)(q(x,D))u
∥∥
ψ,0

≤
m∑
ν=0

(
k

ν

)∥∥adm+ν(Λ2)(q(x,D))(Λ2)k−νu
∥∥
ψ,0

≤
m∑
ν=0

(
k

ν

) ∑
|α|≤m+ν
l(α)≤n

cα
∥∥qα(x,D)Dα(Λ2)k−νu

∥∥
ψ,0

≤
m∑
ν=0

(
k

ν

) ∑
|α|≤m+ν
l(α)≤n

c̃α
∥∥(Λ2)k−νu

∥∥
ψ,|α| ≤

∥∥Λ2k+mu
∥∥
ψ,0
.

Now by Proposition2.3.17 Theorem 4.3.5 and 4.3.14 it is clear that we can ex-
tend this inequality to all u ∈ H∞

ψ (H−). Thus our proposition follows by [25,
Proposition 2.3.8]. �

Thus we obtain the following Theorem:

Theorem 4.3.24. Let q ∈ S0,ψ
%,0,cyl(H−) such that q(x, ξ) = q(Pnx, Pnξ). Then

q(x,D) extends to a continuous linear mapping from Hs
ψ(H−) to Hs

ψ(H−).

Proof. For s ∈ N this follows by Proposition 4.3.23. Now note that
(1 + ψ(D))1/2 is selfadjoint and strictly positive. Thus we obtain for s > 0
by interpolation q(x,D) ∈ L (Hs

ψ(H−))(cf. [25, p 61-62 Theorem 1.5.5]). Now
let us consider the case s < 0. According to Proposition 4.3.10 there exists a
symbol q′ ∈ S0,ψ

%,0,cyl(H−) such that q′(x, ξ) = q(Pnx, Pnξ) and q′(x,D) = [q(x,D]∗

Now using the case above we obtain q′(x,D) ∈ L (H−s(H−)) and thus

q(x,D) = [q′(x,D)]∗ ∈ L ((H−s
ψ )′(H−)) =∈ L (Hs

ψ(H−)). �

4.4. Ψ∗-Algebras of pseudodi�erential operators in the case of Rn and
the Fredholm property

During this section let δ < %.

Lemma 4.4.1. Let p(x,D) ∈ Ψ0,ψ
%,δ (R

n). Then we obtain

[Λε, p(x,D)] ∈ Ψ0,ψ
%,δ (R

n).
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Proof. De�ne λ(ξ) := (1 + ψ(ξ))1/2. Since % > δ there exists a N ∈ N such
that N(% − δ) > 1. According to Theorem 4.2.9 the symbol of the commutator
[Λε, p(x,D)] is given by

N∑
j=1

ij
1

j!

∑
|α|≤j

(∂αξ λ
ε)(ξ)(∂αx q)(x, ξ) + rN+1(x, ξ),

where rN+1 ∈ S
1−(N+1)(%−δ),ψ
%,δ . Now considering the summands separately we

obtain ∣∣∂γξ ∂βx (∂αξ λ
ε)(ξ)(∂αx q)(x, ξ)

∣∣
=

∣∣∣∣∣∑
ν≤γ

(
ν

γ

)
∂νξ ∂

α
ξ λ

ε(ξ)∂γ−νξ ∂βx (∂x)
αq(x, ξ)

∣∣∣∣∣
≤

∑
ν≤γ

(
ν

γ

)
cν(1 + ψ(ξ))

ε−|ν|−|α|
2 (1 + ψ(ξ))

−(%)|(γ−ν)|+δ|α+β|
2

≤ c(1 + ψ(ξ))
(1−δ)(1−|α|)−%|γ|+δ|β|

2 ≤ c(1 + ψ(ξ))
−%|γ|+δ|β|

2 .

Thus our commutator is an element of Ψ0,ψ
%,δ (R

n). �

Using Theorem 4.2.14 and Lemma 4.4.1 we immediately obtain

Corollary 4.4.2. Let p(x,D) ∈ Ψ0,ψ
%,δ (R

n). Then p(x,D) ∈ Aψ,ε.

Lemma 4.4.3. For q ∈ Sm,ψ%,δ (Rn) we have

[Mj, q(x,D)] ∈ Ψm−%,ψ
%,δ (Rn).

Proof. In view of Proposition 4.2.11 we obtain for q ∈ Sm,ψ%,δ (Rn)

[Mj, q(x,D)] = Mjq(x,D)− xjq(x,D)i(∂ξjq)(x,D)

= i(∂ξjq)(x,D) ∈ Ψm−%,ψ
%,δ .

But this is our assertion. �

Corollary 4.4.4. Let q ∈ Sm,ψ%,δ (Rn). Then it follows that for α ∈ Nn
0

adα(M)(p(x,D)) ∈ Ψ
m−|α|%,ψ
%,δ (Rn).

Lemma 4.4.5. Let q ∈ Sm,ψ%,δ (Rn). Then we obtain

[Dj, q(x,D)] ∈ Ψm+δ,ψ
%,δ (Rn).
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Proof. Let q ∈ Sm,ψ%,δ (Rn) and u ∈ Sγ(R
n). Now using Lebesgue's Theorem

of dominate convergence we obtain

Dejq(x,D)u(x)

= DejF−1
ξ→xq(x, ξ)(Fu)(ξ)

=

(
∂

∂ej
− 〈ej , x〉

)
e
‖x‖2

2

∫
ei〈x , ξ〉q(x, ξ)(Fu)(ξ)

= e
‖x‖2

2
∂

∂ej

∫
ei〈x , ξ〉q(x, ξ)(Fu)(ξ)γ(dξ)

= e
‖x‖2

2

∫
ei〈x , ξ〉

(
iξjq(x, ξ) + (∂xjq)(x, ξ)

)
(Fu)(ξ)γ(dξ)

= q(x,D)Dxju(x) + (∂xjq)(x,D)u(x).

Thus we obtain [Dj, q(x,D)] ∈ Ψm+δ,ψ
%,δ (Rn). �

Corollary 4.4.6. Let q ∈ Sm,ψ%,δ (Rn). Then we have

adα(M)adβD(p(x,D)) ∈ Ψ
m−|α|%+|β|δ,ψ
%,δ (Rn).

Thus according to Theorem 4.2.14 it follows

adα(M)adβ(D)(A) ∈ L (Hs
ψ(Rn), H

s−m+%|α|−δ|β|
ψ (Rn))

for all s ∈ R.

Now we can state the following

Theorem 4.4.7. Let ψ ∈ Λ∞(Rn) be a negative de�nite function. For 0 ≤
δ < % ≤ 1 let Ψm,ψ

%,δ (Rn) be de�ned as in De�nition 4.1.5 and Am,ψ
%,δ (Rn) as in

De�nition 4.1.11. Then we have

Ψm,ψ
%,δ (Rn) ⊆ Am,ψ

%,δ (Rn).

Proof. Let q(x,D) ∈ Ψm,ψ
%,δ (Rn). Since Λ−m ∈ Ψ−m,ψ

%,δ (Rn) we obtain by

Theorem 4.2.9 Λ−mq(x,D) ∈ Ψ0,ψ
%,δ . Thus according to Corollary 4.4.2 we have

q(x,D) ∈ ΛmAε,ψ. Hence the Theorem follows directly by Corollary 4.4.6. �

Lemma 4.4.8. Let A ∈ Am,ψ
%,δ (Rn). Then for u ∈ S(Rn) we have

(68) VG,n[Mj, A]V −1
G,nu = [Mj, VG,nAV

−1
G,n]u

and

(69) VG,n[Dj, A]V −1
G,nu = [∂j, VG,nAV

−1
G,n]u.

Thus for all α, β ∈ Nn
0 we �nd

(70) ad(M)αad(∂)β(VG,nAV
−1
G,n)u = VG,nad(M)αad(D)β(A)V −1

G,n.
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Proof. For A ∈ Am,ψ
%,δ (Rn) and u ∈ S(Rn) we obtain

VG,n[Mj, A]V −1
G,nu = (MjVG,nAV

−1
G,n − VG,nAV

−1
G,nMj)u

= VG,n(MjA− AMj)V
−1
G,nu = [Mj, VG,nAV

−1
G,n]u

and using the product rule for di�erentiation

VG,n[Dj, A]V −1
G,nu = (VG,nDjAV

−1
G,n − VG,nADjV

−1
G,n)u

= (VG,n∂jAV
−1
G,n − xjVG,nAV

−1
G,n

−(VG,nA∂jV
−1
G,n − xjVG,nAV

−1
G,n))u

= (∂jVG,nAV
−1
G,n − V AV −1

G,n∂j)u = [∂j, VG,nAV
−1
G,n]u.

But this is our assertion. �

Theorem 4.4.9. Let ψ(ξ) = ‖ξ‖2. For 0 ≤ δ < % ≤ 1 and Am,ψ
%,δ (Rn) as in

De�nition 4.1.11 we have

Ψm,ψ
%,δ (Rn) = Am,ψ

%,δ (Rn).

Proof. Because of Theorem 4.4.7 we only have to show that Am,ψ
%,δ (Rn) ⊂

Ψm,ψ
%,δ (Rn). Thus for A ∈ Am,ψ

%,δ (Rn) let us consider VG,nAV
−1
G,n. According to

Lemma 4.4.8 we have ad(M)αad(∂)β(VG,nAV
−1
G,n)u = VG,nad(M)αad(D)β(A)V −1

G,n.
Hence in view of Lemma 4.2.13 and De�nition 4.1.11 we obtain∥∥ad(M)αad(∂)β(VG,nAV

−1
G,n)u

∥∥
ψ,s,λ

=
∥∥ad(M)αad(D)β(V −1

G,n)u
∥∥
ψ,s

≤
∥∥V −1

G,nu
∥∥
ψ,s+m−%|α|+δ|β|

= ‖u‖ψ,s+m−%|α|+δ|β|,λ .

Now using [130, Satz 1.8.c] we �nd a symbol q ∈ Sm,ψ%,δ (Rn) such that VG,nAV
−1
G,n =

q(x, D̃). Thus we have A = q(x,D). �

Remark 4.4.10. Using the same proof as in Theorem 4.4.9 we obtain for
ψ(ξ) = ‖ξ‖2 and 0 ≤ δ ≤ % ≤ 1 (even in the case % = δ) Am,ψ

%,δ (Rn) ⊂ Ψm,ψ
%,δ (Rn).

Furthermore, since we �nd by Proposition 4.2.1

ad(M)αad(D)β(q(x,D))u = V −1
G,nad(M)αad(∂)β(q̃(x, D̃))VG,nu

for all u ∈ Sγ(R
n) it follows again by [130, Satz 1.8.c] that q(x,D) ∈ Ψm,ψ

%,δ (Rn)
satis�es

ad(M)αad(D)β(q(x,D)) ∈
⋂
s∈R

L (Hs
ψ(Rn), H

s−m+%|α|−δ|β|
ψ (Rn))

for all α, β ∈ Nn
0 . Thus we �nd that a continuous operator A from Sγ(R

n) to
S ′γ(R

n) is an element of Ψm,ψ
%,δ (Rn) if and only if

ad(M)αad(D)β(q(x,D)) ∈
⋂
s∈R

L (Hs
ψ(Rn), H

s−m+%|α|−δ|β|
ψ (Rn))
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for all α, β ∈ Nn
0 .

In this second part of the section we want to study compact and Fredholm
pseudodi�erential operators. Let us start with describing all �nite dimensional
operators in Ψm,ψ

0 (Rn) and Ψ0,ψ
%,δ (R

n) following an idea of Gramsch and Kalb [65].

Proposition 4.4.11. Let q ∈ Sm,ψ0 (Rn) resp. q ∈ S0,ψ
%,δ (Rn) such that q(x,D)

has �nite dimensional range. Then there exist fj, gj ∈ Sγ(R
n) (j = 1, . . . ,m)

such that

q(x,D)u =
m∑
j=1

〈u , gj〉L2(Rn,γ)fj.

Proof. Let (fj)j=1..m be a orthonormal basis of the range of q(x,D). Then
we obtain q(x,D)u =

∑m
j=1 cj(u)fj, where the cj are continuous linear forms on

L2(Rn, γ). By the Riez' representation Theorem we �nd 0 6= gj ∈ L2(Rn, γ) such
that cj(u) = 〈u , gj〉L2(Rn,γ). Now note that in view of equation (37) q(x,D) maps
Sγ(R

n) to Sγ(Rn). Since Sγ(Rn) ⊂ L2(Rn, γ) dense and q(x,D) is continuous we
obtain q(x,D)(Sγ(R

n)) ⊂ R(q(x,D)) dense. However, R(q(x,D)) �nite dimen-
sional implies R(q(x,D)) = q(x,D)(Sγ(R

n)) ⊂ Sγ(R
n). Thus fj ∈ Sγ(Rn). Now

consider the adjoint operator of q(x,D). By Proposition 4.2.4 resp. Theorem
4.2.9 we obtain [q(x,D)]∗ ∈ Ψm,ψ

0 (Rn) resp. [q(x,D)]∗ ∈ Ψ0,ψ
%,δ (R

n). On the other
hand for u, v ∈ L2(Rn, γ) arbitrary we have

〈q(x,D)u , v〉L2(Rn,γ) =
m∑
j=1

〈u , gj〉L2(Rn,γ)〈fj , v〉L2(Rn,γ)

= 〈u ,
m∑
j=1

〈v , fj〉L2(Rn,γ)gj〉L2(Rn,γ),

which implies [q(x,D)]∗v =
∑m

j=1〈v , fj〉L2(Rn,γ)gj. However, as above we obtain
gj ∈ Sγ(Rn). �

Now we want to consider compact operators and Fredholm operators. Thus
let us introduce as in the classical case (cf. [93] and [122]) the following symbol-
classes

Definition 4.4.12. Let 0 ≤ δ ≤ % ≤ 1, δ < 1. For ψ ∈ Λ∞(Rn) and m ∈ R
we call a C∞-function q : Rn ×Rn −→ C a symbol in the class

(i) Ṡm,ψ%,δ (Rn) if for all α, β ∈ NN0 there exists a bounded function c|α|,|β|(x)
such that c|α|,|β|(x) −→ 0 as x −→∞ and

(71)
∣∣∂αξ ∂βxq(x, ξ)∣∣ ≤ c|α|,|β|(x)(1 + ψ(ξ))

m−%|α|+δ|β|
2 ;

(ii) S̃m,ψ%,δ (Rn) if for all 0 6= β ∈ NN0 ∂βξ q(x, ξ) ∈ S̃
m,ψ
%,δ (Rn).
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As in the classical case (cf. [93] and [122, Lemma 1.2]) we have

(72) Ṡm,ψ%,δ (Rn) ⊂ S̃m,ψ%,δ (Rn) ⊂ Sm,ψ%,δ (Rn).

To consider compact operators we need a minimal growth of our negative de�nite
function. Thus we assume that there exists a 0 < r ≤ 1 and a constant c > 0
such that

(73) (1 + ‖ξ‖2)r ≤ c(1 + ψ(ξ)) ∀ξ ∈ Rn

On the other hand in [80] it is shown that 1+ψ(ξ) ≤ cψ(1+ ‖ξ‖2). Thus we �nd

Lemma 4.4.13. Let q(x, ξ) ∈ Sm,ψ%,δ (Rn) (Ṡm,ψ%,δ (Rn), S̃m,ψ%,δ (Rn)) Then we obtain

(i) q(x, ξ) ∈ Sm,‖·‖
2

r%,δ (Rn) (Ṡ
m,‖·‖2
r%,δ (Rn), S̃

m,‖·‖2
r%,δ (Rn)) if m ≥ 0 and

(ii) q(x, ξ) ∈ Srm,‖·‖
2

r%,δ (Rn) (Ṡ
rm,‖·‖2
r%,δ (Rn), S̃

rm,‖·‖2
r%,δ (Rn)) if m < 0.

Proof. This lemma follows directly by the following two estimates

(i) (1 + ψ(ξ))
m−%|α|+δ|β|

2 = (1 + ‖ξ‖2)
m+δ|β|

2 (1 + ‖ξ‖2)
−r%|α|

2 for m ≥ 0 and

(ii) (1 + ψ(ξ))
m−%|α|+δ|β|

2 = (1 + ‖ξ‖2)
δ|β|
2 (1 + ‖ξ‖2)

rm−r%|α|
2 for m < 0.

�

Thus we obtain by [93, Chapter 3, Proposition 5.14]

Lemma 4.4.14. Let ψ and r as in equation (73). Moreover, assume δ ≤ r%.

Then for each q ∈ Ṡ−ε,ψ%,δ (Rn) (ε > 0) q(x, D̃) is a compact operator from L2(Rn, λ)

to L2(Rn, λ).

Proof. Let q ∈ Ṡ−ε,ψ%,δ (Rn). Then we obtain by Lemma 4.4.13 q ∈
Ṡ
−rε,‖·‖2
r%,δ (Rn), where rε > 0. Thus our lemma follows by [93, Chapter 3, Propo-

sition 5.14]. �

Definition 4.4.15. We call a function q ∈ S0,ψ
%,δ (Rn) uniformly elliptic, if

there are constants R,C > 0 such that for all ‖x‖+ ‖ξ‖ > R, q(x, ξ) is invertible
and |p(x, ξ)−1| ≤ C.

Then we obtain using the same argument as in Lemma 4.4.14 by [122, The-
orem 1.8]

Proposition 4.4.16. Assume ψ and r as in equation (73) and δ ≤ r%.

Let q ∈ S̃0,ψ
%,δ (Rn) by uniformly elliptic. Then q(x, D̃) is a Fredholm operator

in L2(Rn, λ) and the index is given by Fedosov's- formula [42]

(74) ind q(x, D̃) = −(−2πi)−n
(n− 1)!

(2n− 1)!

∫
∂B

Tr(q−1dq)2n−1,

where B is an open ball in R2n such That q(x, ξ)−1 exists and is bounded outside
B. In addition R2n is oriented by dx1 ∧ dξ1 ∧ · · · ∧ dxn ∧ dξn > 0.
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Remark 4.4.17. The trace in equation 74 is not necessary, since we consider
only scalar valued symbols and no systems. But for historical reasons we will
leave the trace in Fedosov's formula, since this form of the formula is very well
known.

Since we want to deal with the case of a Gaussian measure let us state the
following

Lemma 4.4.18. Let A ∈ Hom(L2(Rn, γ)) and Ã ∈ Hom(L2(Rn, γ)) such that

A = V −1
G,nÃVG,n.

Then we obtain

(i) A ∈ L (Hs
ψ(Rn)) ⇐⇒ Ã ∈ L (Hs

ψ,λ(R
n))

(ii) N(A) = V −1
G,nN(Ã)

(iii) R(A) = V −1
G,nR(Ã)

(iv) A is compact in L2(Rn, γ) if and only if Ã is compact in L2(Rn, λ)

Proof. (i) Let u ∈ Hs
ψ,λ(R

n) and A ∈ L (Hs
ψ(Rn)). Then we have∥∥∥Ãu∥∥∥

ψ,λ,s
=
∥∥∥V −1

G,nÃVG,nV
−1
G,nu

∥∥∥
ψ,s

=
∥∥AV −1

G,nu
∥∥
ψ,s
≤ c

∥∥V −1
G,nu

∥∥
ψ,s

= c ‖u‖ψ,s,λ ,

and conversely for u ∈ Hs
ψ,γ(R

n) and A ∈ L (Hs
ψ,λ(R

n)) we obtain

‖Au‖ψ,s =
∥∥∥V −1

G,nÃVG,nu
∥∥∥
ψ,s

=
∥∥∥ÃVG,nu∥∥∥

ψ,s,λ
≤ c′ ‖VG,nu‖ψ,s,λ = c′ ‖u‖ψ,s .

(ii) Let u ∈ N(A). Then we obtain 0 = Au = V −1
G,nÃVG,nu. Thus since

V −1
G,n is invertible we �nd ÃVG,nu = 0, which implies u ∈ V −1

G,nN(Ã).

Conversely, let u ∈ V −1
G,nN(Ã). Then we obtain ÃVG,nu = 0 and thus it

follows that 0 = V −1
G,nÃVG,nu = Au.

(iii) Let v ∈ R(A). Then there exists a u ∈ L2(H−, γ) such that v =
Au. Now we obtain VG,nv = VG,nV

−1
G,nÃVG,nu = ÃVG,nu, which shows

v ∈ V −1
G,nR(Ã). Conversely, let v ∈ V −1

G,nR(Ã). Then there exists a

u ∈ L2(H−, λ) such that VG,nv = Ãu = VG,nAV
−1
G,nu. Thus we have

v = AV −1
G,nu.

(iv) Let A be compact and un a bounded sequence in L2(Rn, λ). Then
VG,nun is a bounded sequence in L2(Rn, γ). Since A is compact there
exists a subsequence VG,nunk such that AVG,nunk converges in L

2(Rn, γ).
Thus Ãunk = V −1

G,nAVG,nunk converges in L2(Rn, λ). Conversely, let Ã
be compact and un a bounded sequence in L2(Rn, γ). Then V −1

G,nun is

a bounded sequence in L2(Rn, λ). Since Ã is compact there exists a
subsequence V −1

G,nunk such that ÃV −1
G,nunk converges in L

2(Rn, λ). Thus
Aunk = VG,nAV

−1
G,nunk converges in L

2(Rn, γ).
�
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This Lemma (4.4.18) together with Lemma 4.4.14 and Proposition 4.4.16 yield
now for the Gaussian measure on Rn

Theorem 4.4.19. Let ψ and r as in equation (73). Moreover, assume δ ≤ r%.

Then for each q ∈ Ṡ−ε,ψ%,δ (Rn) (ε > 0) q(x, D̃) is a compact operator from L2(Rn, γ)

to L2(Rn, γ).

Theorem 4.4.20. Assume ψ and r as in equation (73) and δ ≤ r%. Let q ∈
S̃0,ψ
%,δ (Rn) by uniformly elliptic. Then q(x,D) is a Fredholm operator in L2(Rn, γ)

and the index is given by Fedosov's- formula [42]

ind q(x,D) = −(−2πi)−n
(n− 1)!

(2n− 1)!

∫
∂B

Tr(q−1dq)2n−1,

where B is an open ball in R2n such hat q(x, ξ)−1 exists and is bounded outside
B. In addition R2n is oriented by dx1 ∧ dξ1 ∧ · · · ∧ dxn ∧ dξn > 0.

In view of Lemma 4.4.18 and Theorem [122, Theorem 1.8] we obtain

Theorem 4.4.21. Assume ψ(ξ) = ‖ξ‖2 and let q ∈ S̃0,ψ
%,δ (Rn). Then q(x,D)

is a Fredholm operator in L2(Rn, γ) if and only if q(x, ξ) is uniformly elliptic.

Finally, we show that every operator q(x,D) with uniformly elliptic symbol
q ∈ S̃0,ψ

%,δ (Rn) is a Fredholm operator in allHs
ψ(Rn). Thus let us state the following

proposition which can be found in [56, remark 5.7] and [96, 2.1.7 Proposition].

Proposition 4.4.22. Let H be a Hilbert space, A be a Ψ∗-algebra in L (H)
and a ∈ A with closes range R(a) ⊂ H.

(i) If p = p2 = p∗ ∈ L (H) is the orthogonal projection onto N(a) = N(a∗a),
then one has p ∈ A.

(ii) There exists a b ∈ A namely b := (p+ a∗a)−1a∗ ∈ A such that
• p1 := idH − ba is the orthogonal projection onto N(a)
• p2 := idH − ab is the orthogonal projection onto R(a)⊥

• aba = a and bab = b, i.e. b is a relative inverse of a
Note that in particular R(a) is closed if a : H −→ H is a Fredholm
operator. In that case b is a Fredholm inverse of a.

In view of this lemma we can prove

Theorem 4.4.23. Assume ψ and r as in equation (73) and δ ≤ r%. Let

q ∈ S̃0,ψ
%,δ (Rn) by uniformly elliptic. Then q(x,D) is a Fredholm operator in

L (Hs
ψ(Rn)) for all s ∈ R.

Proof. Since q ∈ S̃0,ψ
%,δ (Rn) we obtain q(x,D) ∈ A0,ψ

%,δ (R
n), which is a Ψ∗-

algebra. Thus there exist by 4.4.22 b, p1, p2 ∈ A0,ψ
%,δ (R

n) such that p has �nite
dimensional range and bq(x,D) = id + p1 and q(x,D)b = id + p2. Thus b is



156 4.5 Operators in Ψ∗-algebras of pseudodi�erential operators

inverse of q(x,D) modulo �nite dimensional operators in Hs
ψ(Rn) for all s ∈ R

and q(x,D) is Fredholm in L (Hs
ψ(Rn)). �

4.5. Operators in Ψ∗-algebras of pseudodi�erential operators in the
case of the canonical Gaussian measure on quasi-nuclear Hilbert

space riggings

Now we will show that our Ψ∗-Algebras de�ned above contain lots of our
pseudodi�erential operators we considered in this paper until now. To do this let
us start with the following two lemmas.

Lemma 4.5.1. For q ∈ Sm,ψ%,δ,cyl(H−) we have

[Mj, q(x,D)] ∈ Ψm−%,ψ
%,δ,cyl (H−).

Proof. In view of Proposition 4.3.7 we obtain for q ∈ Sm,ψ%,δ,cyl(H−)

[Mj, q(x,D)] = Mjq(x,D)− xjq(x,D) + i(∂ξjq)(x,D)

= i(∂ξjq)(x,D) ∈ Ψm−%,ψ
%,δ,cyl (H−).

But this is our assertion. �

Lemma 4.5.2. Let q ∈ Sm,ψ%,δ,cyl(H−). Then we obtain

[Dj, q(x,D)] ∈ Ψm+δ,ψ
%,δ,cyl (H−).

Proof. According to Proposition 4.3.8 we have for u ∈ Sγ,cyl(H−)

[Dj, q(x,D)]u(x) = (∂xjq)(x,D)u(x)

and thus obtain [Dj, q(x,D)] ∈ Ψm+δ,ψ
%,δ,cyl (H−). �

At �rst let us show that these generalized Hörmander classes contain some
Fourier-multipliers. Thus let us note �rst that we have for q ∈ Sm,ψ%,δ (H−) such
that q(x, ξ) = p(ξ)

(75) adm(Λε)(p(D)) = 0 ∀m ∈ N
and

(76) adβ(D)(p(D)) = 0 ∀ |β| ≥ 1

Lemma 4.5.3. Let q ∈ Sm,ψ%,δ (H−) such that q(x, ξ) = p(ξ). Then we have for
all u ∈ Sγ,cyl(H−)

adα(M)(p(D))u = i|α|(∂αp)(D)u,

where (∂αp)(D) ∈ Ψ
m−|α|%,ψ
%,δ (H−).

Proof. For n ∈ N and n > j we obtain by Lemma 4.5.1 [Mj, p(PnD)] =
i(∂jp)(PnD). But now Lemma 4.3.15 implies that [Mj, p(D)] = i(∂jp)(D). Thus
our assertion follows by induction. �



4 Pseudodi�erential operators in Kohn-Nirenberg form 157

Combining the results above and Theorem 4.3.14 we obtain

Theorem 4.5.4. Let q ∈ Sm,ψ%,δ (H−) such that q(x, ξ) = p(ξ). Then

p(D) ∈ Aψ,m
%,δ (H−).

Proposition 4.5.5. Let q ∈ S0,ψ
%,δ (H−) such that q(x, ξ) = p(ξ). Moreover,

we assume that there exists a constant c > 0 such that p(ξ) > c. Then p(D) is

invertible in L2(H−, γ) and thus in Aψ,0
%,δ (H−) since Aψ,0

%,δ (H−) is a Ψ∗-algebra.

Proof. Our condition implies the p(ξ)−1 is bounded. Thus we obtain that
p−1(D) = F−1 1

p
F is a bounded operator in L2(H−, γ). In addition it is clear that

[p(D)]−1 = p−1(D). �

At next let us consider the �nite dimensional operators contained in this
classes. Following an idea of Gramsch and Kalb [65] we obtain

Proposition 4.5.6. Let a ∈ A0,ψ
%,δ (H−) such that a has �nite dimensional

range. Then there exist fj, gj ∈ H∞
ψ (H−) (j = 1, . . . ,m) such that

(77) au =
m∑
j=1

〈u , gj〉L2(H−,γ)fj.

Proof. Let (fj)j=1..m be a orthonormal basis of the range of a. Then we
obtain a =

∑m
j=1 cj(u)fj, where the cj are continuous linear forms on L2(H−, γ).

By the Riez' representation Theorem we �nd 0 6= gj ∈ L2(H−, γ) such that
cj(u) = 〈u , gj〉L2(H−,γ). Now note that a maps H∞

ψ (H−) to H∞
ψ (H−). Since

H∞
ψ (H−) ⊂ L2(H−, γ) dense and a is continuous we obtain a(H∞

ψ (H−)) ⊂ R(a)
dense. However, R(a) �nite dimensional implies R(a) = a(H∞

ψ (H−)) ⊂ H∞
ψ (H−).

Thus fj ∈ H∞
ψ (H−). Now consider the adjoint operator of a. By Theorem 4.1.13

we obtain a∗ ∈ Am,ψ
%,δ (H−). On the other hand for u, v ∈ L2(H−, γ) arbitrary we

have

〈au , v〉L2(H−,γ) =
m∑
j=1

〈u , gj〉L2(H−,γ)〈fj , v〉L2(Rn,γ)

= 〈u ,
m∑
j=1

〈v , fj〉L2(H−,γ)gj〉L2(H−,γ),

which implies a∗v =
∑m

j=1〈v , fj〉L2(Rn,γ)gj. However, as above we obtain gj ∈
H∞
ψ (H−). �

Since Dej and Mj are not necessarily continuous operators from Hs
ψ(H−) to

Hs+m
ψ (H−) for some m and all s we are not able to prove that every operator of

the form (77) is contained in A0,ψ
%,δ (H−). But if we choose fj and gj in Sγ,cyl(H−)

we obtain the even stronger result
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Proposition 4.5.7. Let fj, gj ∈ Sγ,cyl(H−) (j = 1, . . . ,m) then the operator
a de�ned by

(78) au =
k∑
j=1

〈u , gj〉L2(H−,γ)fj (k ∈ N)

is an element of Am,ψ
%,δ (H−).

Proof. Let f , g ∈ Sγ,cyl(H−) and au := 〈u , g〉L2(H−,γ)f .
(i) Then we �nd∥∥[Dej , a]u

∥∥
Hs
ψ

≤
∣∣〈u , g〉L2(H−γ)

∣∣ ∥∥Dejf
∥∥
s,ψ

+
∣∣〈Deju , g〉L2(H−γ)

∣∣ ‖f‖H,ψ
≤

∣∣〈u , g〉L2(H−γ)

∣∣ ∥∥Dejf
∥∥
s,ψ

+
∣∣〈u , Dejg〉L2(H−γ)

∣∣ ‖f‖s,ψ
≤ ‖u‖s+m,ψ ‖g‖−s−m,ψ

∥∥Dejf
∥∥
s,ψ

+ ‖u‖s+m,ψ
∥∥Dejg

∥∥
−s−m,ψ ‖f‖s,ψ

≤ c ‖u‖s+m,ψ
(ii) and

‖[Mj, a]u‖Hs
ψ

≤
∣∣〈u , g〉L2(H−γ)

∣∣ ‖Mjf‖s,ψ +
∣∣〈Mju , g〉L2(H−γ)

∣∣ ‖f‖H,ψ
≤

∣∣〈u , g〉L2(H−γ)

∣∣ ‖Mjf‖s,ψ +
∣∣〈u , Mjg〉L2(H−γ)

∣∣ ‖f‖s,ψ
≤ ‖u‖s+m,ψ ‖g‖−s−m,ψ ‖Mjf‖s,ψ + ‖u‖s+m,ψ ‖Mjg‖−s−m,ψ ‖f‖s,ψ
≤ c′ ‖u‖s+m,ψ

(iii) and �nally

‖[ψ(D), a]u‖Hs
ψ

≤
∣∣〈u , g〉L2(H−γ)

∣∣ ‖ψ(D)f‖s,ψ +
∣∣〈ψ(D)u , g〉L2(H−γ)

∣∣ ‖f‖H,ψ
≤

∣∣〈u , g〉L2(H−γ)

∣∣ ‖ψ(D)f‖s,ψ +
∣∣〈u , ψ(D)g〉L2(H−γ)

∣∣ ‖f‖s,ψ
≤ ‖u‖s+m,ψ ‖g‖−s−m,ψ ‖ψ(D)f‖s,ψ + ‖u‖s+m,ψ ‖ψ(D)g‖−s−m,ψ ‖f‖s,ψ
≤ c′′ ‖u‖s+m,ψ .

Now note thatDej andMj leave Sγ,cyl invariant and ψ(D) mapsH∞
ψ toH∞

ψ . Thus
our proposition follows by an easy induction and the linearity of the sum. �

Now we show that some of the pseudodi�erential operators with cylindrical
symbol on our quasi-nuclear Hilbert space riggings are contained in the generalizes
Hörmander classes and Ψ∗-Algebras de�ned above . During this section let ψ ∈
Λ∞(H−) be a �xed negative de�nite function which ful�lls the equations (58)
(59). In addition let 0 ≤ δ ≤ % ≤ 1 and set ε := 1 − δ. Moreover we set
Λ := (1 + ψ(D))1/2.
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The case of a cylindrical negative de�nite function.
At �rst let us now assume that ψ is a cylindrical negative de�nite function. Now
let δ < %.

Lemma 4.5.8. Let p(x,D) ∈ Ψ0,ψ
%,δ,cyl(H−). Then we obtain

[Λε, p(x,D)] ∈ Ψ0,ψ
%,δ,cyl(H−).

Proof. De�ne λ(ξ) := (1 + ψ(ξ))1/2. Since % > δ there exists a N ∈ N such
that N(%− δ) > 1. According to Theorem 4.3.12 the symbol of the commutator
[Λε, p(x,D)] is given by

N∑
j=1

ij
1

j!

∑
|α|≤j

(∂αξ λ
ε)(ξ)(∂αx q)(x, ξ) + rN+1(x, ξ),

where rN+1 ∈ S
1−(N+1)(%−δ),ψ
%,δ,cyl (H−). Now considering the summands separately

we obtain ∣∣∂γξ ∂βx (∂αξ λ
ε)(ξ)(∂αx q)(x, ξ)

∣∣
=

∣∣∣∣∣∑
ν≤γ

(
ν

γ

)
∂νξ ∂

α
ξ λ

ε(ξ)∂γ−νξ ∂βx (∂x)
αq(x, ξ)

∣∣∣∣∣
≤

∑
ν≤γ

(
ν

γ

)
cν(1 + ψ(ξ))

ε−|ν|−|α|
2 (1 + ψ(ξ))

−(%)|(γ−ν)|+δ|α+β|
2

≤ c(1 + ψ(ξ))
(1−δ)(1−|α|)−%|γ|+δ|β|

2 ≤ c(1 + ψ(ξ))
−%|γ|+δ|β|

2 .

Thus our commutator is an element of Ψ0,ψ
%,δ,cyl(H−). �

Using Theorem 4.3.18 and Lemma 4.5.8 we immediately obtain

Corollary 4.5.9. Let p(x,D) ∈ Ψ0,ψ
%,δ,cyl(H−). Then p(x,D) ∈ Aψ,ε.

Using Lemma 4.5.1 we obtain

Corollary 4.5.10. Let q ∈ Sm,ψ%,δ,cyl(H−). Then it follows that for α ∈ Nn
0

adα(M)(p(x,D)) ∈ Ψ
m−|α|%,ψ
%,δ,cyl (H−).

In view of Lemma 4.5.2 we have

Corollary 4.5.11. For q ∈ Sm,ψ%,δ,cyl(H−) we have

adα(M)adβ(D)(p(x,D)) ∈ Ψ
m−|α|%+|β|δ,ψ
%,δ,cyl (H−).

Thus according to Theorem 4.3.18 it follows

adα(M)adβ(D)(q(x,D)) ∈ L (Hs
ψ(H−), H

s−m+%|α|−δ|β|
ψ (H−))

for all s ∈ R.
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Now we can state the following

Theorem 4.5.12. Let ψ ∈ Λ∞(H−) be a cylindrical negative de�nite function.

For 0 ≤ δ < % ≤ 1 let Ψm,ψ
%,δ,cyl(H−) be de�ned as in De�nition 4.1.5 and Am,ψ

%,δ (H−)
as in De�nition 4.1.12. Then we have

Ψm,ψ
%,δ,cyl(H−) ⊆ Am,ψ

%,δ (H−).

Proof. Let q(x,D) ∈ Ψm,ψ
%,δ,cyl(H−). Since Λ−m ∈ Ψ−m,ψ

%,δ,cyl(H−) we obtain by

Theorem 4.3.12 Λ−mq(x,D) ∈ Ψ0,ψ
%,δ,cyl. Thus according to Corollary 4.5.9 we have

q(x,D) ∈ ΛmAε,ψ. Hence the Theorem follows directly by Corollary 4.5.11. �

Theorem 4.5.13. Let us denote by Ψ̂ψ,0
%,δ (H−) the closed algebraic span in

Aψ,0
%,δ (H−) of Ψψ,0,cyl

%,δ (H−), the set of all operators q(x,D) ∈ Ψψ,0
%,δ (H−) such that

q(x, ξ) = p(ξ) and the set of all �nite dimensional operators given by (78). Then

Ψ̂ψ,0
%,δ (H−) is a sub multiplicative Ψ∗-algebra in L (H0). Furthermore,

Ψ̂ψ,0
%,δ (H−)×H∞

ψ (H−) −→ H∞
ψ (H−) : (A,ϕ) 7−→ A(ϕ)

is continuous and bilinear.

The case of a second order polynomial as negative de�nite function.
As a direct consequence of proposition 4.3.24 we obtain

Theorem 4.5.14. Let q ∈ S0,ψ
%,0,cyl(H−). Then q(x,D) ∈ Aψ,ε for all 0 < ε ≤ 1,

i.e
Ψ0,ψ
%,0,cyl(H−) ⊂ Aψ,ε.

Now taking into account Lemma 4.5.1 and Lemma 4.5.2 we obtain for q ∈
S0,ψ
%,0,cyl(H−) and u ∈ Sγ,cyl(H−) the following equation

(79) adα(M)adβ(D)(q(x,D))u = (−i)|α|(∂αξ ∂βxq)(x,D)u,

where (∂αξ ∂
β
xq) ∈ S

0−%|α|,ψ
%,0,cyl (H−) ⊂ S

0|α|,ψ
%,0,cyl(H−). Thus combining Theorem 4.5.14

and Theorem 4.3.24 we obtain

Theorem 4.5.15. Let ψ(ξ) = 〈Aξ , ξ〉 such that ψ ful�lls the assumptions
above. Then we have

Ψ0,ψ
0,0,cyl(H−) ⊂ Aψ,m

0,0 (H−).

Theorem 4.5.16. Let us denote by Ψ̂ψ,0
0,0 (H−) the closed algebraic span in

Aψ,0
0,0 (H−) of Ψψ,0

0,0,cyl(H−), the set of all operators q(x,D) ∈ Ψψ,0
0,0 (H−) such that

q(x, ξ) = p(ξ) and the set of all �nite dimensional operators given by (78). Then

Ψ̂ψ,0
0,0 (H−) is a sub multiplicative Ψ∗-algebra in L (H0). Furthermore,

Ψ̂ψ,0
0,0 (H−)×H∞

ψ (H−) −→ H∞
ψ (H−) : (A,ϕ) 7−→ A(ϕ)

is continuous and bilinear.
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The case of negative de�nite functions which ful�ll (58) and (59).
Let ψ be a negative de�nite function.

Proposition 4.5.17. Let ψ be a negative de�nite function which ful�lls (58)

and (59). In addition let q ∈ S0,ψ
0,cyl(H−). Then we obtain

adα(M)adβ(D)q(x,D) ∈ L (H0(H−)).

Proof. According to Proposition 4.3.7 and 4.3.8 we have

adα(M)adβ(D)q(x,D)u = i|α|(∂αξ ∂
β
xq)(x,D)u,

where ∂αξ ∂
β
xq ∈ S

0,ψ
0 (H−). Thus our proposition follows by Theorem 4.3.5. �

Corollary 4.5.18. Let ψ be a negative de�nite function which ful�lls (58)
and (59). Then we have

Ψ0,ψ
0,cyl(H−) ⊂ ΨMD(H−),

where, ΨMD(H−) is de�ned as in Theorem 3.1.12

As in Theorem 4.5.4 we have for q ∈ S0,ψ
0 (H−) such that q(x, ξ) = p(ξ)

q(D) ∈ ΨMD
ψ (H−). Thus we obtain

Theorem 4.5.19. Let us denote by Ψ̂MD
ψ (H−) the closed algebraic span in

L (H0) of Ψψ,0
0,cyl(H−), the set of all operators q(x,D) ∈ Ψψ,0

0 (H−) such that
q(x, ξ) = p(ξ) and the set of all �nite dimensional operators given by (78). Then

Ψ̂MD
ψ (H−) is a sub multiplicative Ψ∗-algebra in L (H0).

Fredholm operators in Ψ̂ψ,0
%,δ (H−) and Ψ̂MD

ψ (H−).

Proposition 4.5.20. Let q(x, ξ) ∈ S0,ψ
%,δ,cyl(H−) resp. q(x, ξ) ∈ S0,ψ

0,cyl(H−)
such that q(x, ξ) = q(Pnx, Pnξ). Let us denote by q̃ the function de�ned on

R2n by q̃(P̃nxP̃nξ) = q(x, ξ). Then according to 4.3.5 we have q(x,D) ∈
L (L2(H−, γ)). Assume q̃(x, D̃) is invertible in L2(Rn, γn) Then q(x,D) is in-

vertible in L (L2(H−, γ)) and thus in Ψ̂ψ,0
%,δ (H−) resp. Ψ̂MD

ψ (H−).

Proof. Let q(x, ξ) ∈ S0,ψ
%,δ,cyl(H−) resp. q(x, ξ) ∈ S0,ψ

0,cyl(H−) such that

q(x, ξ) = q(Pnx, Pnξ) and assume that q̃(x, D̃) is invertible in L2(Rn, γn). Then
we obtain a := [q̃(x,D)]−1 ⊗ idH−	PnH− is in L (L2(H−, γ)), In addition for
u = f ⊗ g ∈ L2(Rn, γn)⊗ L2(H− 	 PnH−, γR) we have

q(x,D)au = (q̃(x,D)⊗ idH−	PnH−)([q̃(x,D)]−1 ⊗ idH−	PnH−)(f ⊗ g)

= q̃(x,D)[q̃(x,D)]−1f ⊗ g = u

and similarly aq(x,D)u = u. �

In view of Proposition 4.4.22 we can prove
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Theorem 4.5.21. Let q, p ∈ S0,ψ
%,δ (H−) resp. q, p ∈ S0,ψ

0 (H−) such that q
and p are cylindrical or depend only on ξ. Moreover, let a be in the closure in
our Ψ∗-Algebra of the set of all operators c of the form cu :=

∑n
j=1〈u , gj〉fj,

where fj, gj ∈ Sγ,cyl(H−) and thus a : L2(H−, γ) −→ L2(H−, γ) is compact.
Let us assume that q(x,D) is invertible in L2(H−, γ) and that ‖p(x,D)‖L (H0) <

1/ ‖q(x,D)‖−1
L (H0). Now we de�ne

A := q(x,D) + p(x,D) + a.

Then A is Fredholm in L (Hs(H−)) for all s ∈ R.
Proof. Let A, q, p, a be de�ned as in our assertion. By 4.5.7 we obtain

that a is contained in our Ψ∗-Algebra. Moreover, it is clear that a is compact
in L2(H−, γ) Since ‖p(x,D)‖L (H0) < ‖q(x,D)‖L (H0) we obtain that q(x,D) +

p(x,D) is invertible in L2(H−, γ) Let b denote this inverse. Then we have Ab =
id + ab and bA = id + ba. Thus A is invertible modulo compact operators in
L2(H−, γ) and thus Fredholm. Now since we have A ∈ ψ̂0,ψ

%,δ (H−) (resp Ψ̂MD
ψ (H−)),

which is a Ψ∗-Algebra there exist by 4.4.22 d, p1, p2 ∈ ψ̂0,ψ
%,δ (H−) (resp Ψ̂MD

ψ (H−))
such that p1 and p2 have �nite dimensional range and dA = id + p1 and Ad =
id + p2. Thus d is inverse of A modulo �nite dimensional operators in Hs

ψ(Rn)
for all s ∈ R and A is Fredholm in L (Hs

ψ(H−)). �

Now let us state a result on hypoellipticity which is due to Gramsch, Kalb
[65].

Theorem 4.5.22. Let H be a Hilbert space, D ⊆ H a dense subspace, and
A ⊆ L (H) a Ψ∗-Algebra in L(H). Assume that a(D) ⊆ D holds for all a ∈ A
and let a ∈ A be with closed range and �nite dimensional kernel. Furthermore,
let ξ ∈ H be arbitrary. Then we have the following form of abstract hypoellipticity

aξ ∈ D =⇒ ξ ∈ D.
Proof. See [97, Theorem 2.11]. �

Since H∞
ψ (H−) ⊂ L2(H−, γ) dense it follows

Corollary 4.5.23. Let q ∈ S0,ψ
%,δ (H−) such that q(x,D) is Fredholm. Then

we have he following form of abstract hypoellipticity

q(x,D)ξ ∈ H∞
ψ (H−) =⇒ ξ ∈ H∞

ψ (H−).

Finally in this chapter, we state

Theorem 4.5.24. Let ψ ∈ Λ∞(H−) such that

(80) Dj ∈ Am,ψ
%,δ (H−) for some m > 0.

In addition, let A ∈ A0,ψ
%,δ (H−) such that A is Fredholm and f ∈ L2(H−, γ) such

that Dm
j f ∈ L2(H−, γ) and

Au = f.
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Then we have Dm
j u ∈ L2(H−, γ).

Proof. Since A is Fredholm there exists a Ã ∈ A0,ψ
%,δ (H−) such that ÃA =

id− P , where P has �nite dimensional range. According to 4.5.6 we have Pu ∈
H∞
ψ (H−) and thus by (80) Dm

j Pu ∈ L2(H−, γ). Now in view of Lemma 3.3.5 and

the de�nition of A ∈ A0,ψ
%,δ (H−) we �nd that Dm

j Ãf ∈ L2(H−, γ). Thus we obtain

Dm
j u = Dm

j (ÃAu+ Pu) = Dm
j Ãf +Dm

j Pu ∈ L2(H−, γ). �

At the end of this chapter let us describe how we can attach a symbol to an
operator A ∈ L (L2(H−, γ)) using a total family. Moreover, we will show how to
get back the operator as 'pseudodi�erential' operator using a special total family.

Remark 4.5.25. Let A ∈ L (L2(Rn, γ)). Using the total family {eξ = ei〈· , ξ〉 :
ξ ∈ Rn} we de�ne the formal eξ-symbol by

(81) a(x, ξ) := e−i〈x , ξ〉Ay→xe
i〈y , ξ〉.

Then we obtain by Lebesgue's Theorem of dominated convergence that a(x, ·) ∈
C∞(Rn) for �xed x, since all polynomials are integrable with respect to the
canonical Gaussian measure. Moreover, if A maps C∞(Rn) to C k(Rn) we �nd
that a(x, ξ) ∈ C k(Rn × Rn). However, it is clear that a ∈ (L2(Rn × Rn, γ ⊗ γ))
for �xed ξ. For such a eξ-symbol A we obtain

a(x,D)f(x)

= F−1
ξ→xa(x, ξ)(Ff)(ξ)

= V −1
G,n(F̃

−1
ξ→xa(x, ξ)(F̃VG,nf)(ξ))(x)

= (
1

2π
)nV −1

G,n

∫
Rn

∫
Rn

ei〈x , ξ〉a(x, ξ)e−i〈z , ξ〉(VG,nf)(z)λn(dz)λn(dξ)

= (
1

2π
)nV −1

G,n

∫
Rn

∫
Rn

Ay→xe
i〈y , ξ〉e−i〈z , ξ〉(VG,nf)(z)λn(dz)λn(dξ)

= V −1
G,nAy→x

(
1

2π
)n
∫
Rn

∫
Rn

ei〈y , ξ〉e−i〈z , ξ〉(VG,nf)(z)λn(dz)λn(dξ)


= V −1

G,nA(VG,nf)(x)

In this way it is possible to get the symbol back from our pseudodi�erential
operator in the �nite dimensional case by the formula

(82) VG,na(x,D)f = A(VG,nf),

where a(x, ξ) is the eξ-Symbol of A. Now let us come back to the in�nite dimen-
sional case. As shown in 1.1.12 the family {eξ = ei〈· , ξ〉 : ξ ∈ H+} is total in
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L2(H−, γ). Thus we de�ne the eξ-symbol of an operator A ∈ L 2(H−, γ) by

a(x, ξ) := e−i〈x , ξ〉Ay→xe
i〈y , ξ〉 ∀x ∈ H−, ξ ∈ H+.

Let us now consider some special A, namely let us assume that A = B⊗ id, where
B ∈ L (L2(Pn(H−), γn)) for some n. However, in this case we �nd

a(x, ξ) = e−i〈x , ξ〉Ay→xe
i〈y , ξ〉

= e−i〈Pnx , ξ〉e−i〈(id−Pn)x , ξ〉Ay→xe
i〈Pny , ξ〉ei〈(id−Pn)y , ξ〉

= e−i〈Pnx , ξ〉By→xe
i〈Pny , ξ〉 ⊗ 1

= e−i〈Pnx , Pnξ〉By→xe
i〈Pny , Pnξ〉 ⊗ 1.

Thus for such A we can set

ã(x, ξ) := lim
m−→∞

a(Pmx, Pmξ) = a(Pnx, Pnξ) for all x, ξ ∈ H−.

Now using the same calculation as in the �nite dimensional case we obtain by
4.3.3 for ã

VG,nã(x,D)f = BVG,n ⊗ id = AVG,nf,

where u = f ⊗ g cylindrical and f(x) = f(Pn) and g(Pnx) = g(0). Hence in this
way we are able to get our operator back from the eξ-symbol.



CHAPTER 5

Representations of in�nite dimensional Heisenberg Groups

with applications to pseudodi�erential operators

Let H be a Hilbert Space with inner product 〈· , ·〉. Then the Heisenberg
group H is de�ned by H := H×H×R and the group law is given as in the �nite
dimensional case. If H = Rn it is well known that the Haar measure onH is given
by the Lebesgue measure on R2n+1. Moreover, in this �nite dimensional case the
irreducible representations of the Heisenberg group are well known and studied
for example by Taylor [129] and Folland [43]. They use some representations of
the Heisenberg Group to examine pseudodi�erential operators in Weyl form. In
this chapter we will do the same, but in the in�nite dimensional case. But in
the in�nite dimensional case the classical construction of the Haar measure on H
does not work.

In this chapter we consider a quasi-nuclear Hilbert space rigging H+ ⊂ H0 ⊂
H− and denote by H+ ⊂ H0 ⊂ H− the corresponding rigging of Heisenberg
groups. In this case we obtain a continuous bilinear map H+×H− −→ H− given
by

(r, s, t)� (r′, s′, t′) = (r + r′, s+ s′, t+ t′ +
1

2
〈r , s′〉0 −

1

2
〈s , r′〉0).

We will denote this map by � again. For (r, s, t) ∈ H+ let us de�ne

π(r, s, t) : L2(H−, γ) −→ L2(H−, γ)

by
π(r, s, t)f(x) :=

√
%r(x)e

i(t+〈s , x〉0+ 1
2
〈r , s〉0)f(x+ r).

Then π is a strongly continuous unitary representation of H+ in L2(H−, γ). In
addition we show, that these representation is irreducible. Furthermore, de�ning
π±λ(r, s, t) := π(

√
λr,±

√
λs,±λt) we show that no two di�erent representations

π±λ are unitary equivalent.
Let us denote by Lj, Dj and T the generators of the the semigroups π(0, τej, 0)

π(τej, 0, 0) and π(0, 0, τ) where ej ⊂ H+ is an orthonormal basis of H0. Then we
obtain the Heisenberg commutation relations

[Lj, Mj] = −[Mj, Lj] = T

and
[Lj, Mi] = [Lj, T ] = [Mj, T ] = 0.

for i 6= j.

165
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In the last two sections of this chapter we examine the connection between the
representations π±λ of the Heisenberg group H+ and pseudodi�erential operators
in Weyl-Form on L2(H−, γ). At �rst we consider the �nite dimensional case. We
determine the space C∞(π). In addition we show for k ∈ L1(Hn, λ

2n+1)

π±λ(k) = k̃(±λ,±
√
λX,

√
λD),

where

k̃(τ, y, η) = (2π)−
2n+1

2

∫
k(r, s, t)ei(tτ+〈s , y〉)+〈r , η〉λ(dt)λn(ds)λn(dr)

and k̃(±λ,±
√
λX,

√
λD) is the pseudodi�erential operator in Weyl form, cf. Def-

inition 3.2.2. Having the equations above we are able to de�ne π±λ(P ) for some
functions P even in the in�nite dimensional case. Considering the well known
Ornstein-Uhlenbeck operator we �nd that in the �nite dimensional case the sym-

bol of this operator is given by σ(x, ξ) =
∑n

j=1

xj+ξ
2
j−1

2
and describe perturbations

for which Lγ + q(X,D) is still essential selfadjoint. We use the representation
π to calculate the spectrum of some pseudodi�erential operators in the in�nite
dimensional case. Finally, we reach Ψ∗-algebras given by smooth elements with
respect to the map

(r, s, t) 7−→ π(r, s, t)Aπ(r, s, t)−1,

where A is an operator in a subalgebra of L (L2(H−, γ)). Moreover, we are able
to construct spectrally invariant generalized Hörmander classes given by smooth
elements.

5.1. The in�nite dimensional Heisenberg Group

Definition 5.1.1. Let H separable Hilbert space. Denote H := H ×H ×R.
On H we de�ne the multiplication � by

(r, s, t)� (r′, s′, t′) = (r + r′, s+ s′, t+ t′ +
1

2
〈r , s′〉 − 1

2
〈r′ , s〉).

We call H the Heisenberg Group with respect to the Hilbert space H.

Lemma 5.1.2. (H,�) is a topological group with neutral element (0, 0, 0) and
we have

(r, s, t)−1 = (−r,−s,−t).

Proof. Obviously H is closed under the multiplication �. Now let us proof
that � is associative:(

(r, s, t)� (r′, s′, t′)
)
� (r̃, s̃, t̃)

= (r + r′, s+ s′, t+ t′ +
1

2
〈r , s′〉0 −

1

2
〈r′ , s〉0))� (r̃, s̃, t̃)

= (r + r′ + r̃, s+ s′ + s̃, t+ t′ + t̃+
1

2
〈r , s′〉0 −

1

2
〈r′ , s〉0) +

1

2
〈r + r′ , s̃〉0
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−1

2
〈r̃ , s+ s′〉0))

= (r + r′ + r̃, s+ s′ + s̃, t+ t′ + t̃+
1

2
(〈r , s′〉0 − 〈r′ , s〉0 + 〈r , s̃〉0 + 〈r′ , s̃〉0

−〈r̃ , s〉0 − 〈r̃ , s〉0))

= (r + r′ + r̃, s+ s′ + s̃, t+ t′ + t̃+
1

2
〈r′ , s̃〉0 −

1

2
〈r̃ , s′〉0 +

1

2
〈r , s′ + s̃〉0

−1

2
〈r′ + r̃ , s〉0)

= (r, s, t)� (r′ + r̃, s′ + s̃, t′ + t̃+
1

2
〈r′ , s̃〉0 −

1

2
〈r̃ , s′〉0)

= (r, s, t)�
(
(r′, s′, t′)� (r̃, s̃, t̃)

)
.

An easy calculation shows that (r, s, t)−1 = (−r,−s,−t) and that (0, 0, 0) is the
neutral element. Moreover, it is clear that the operation � and the inversion is
continuous with respect to the topology on H ×H ×R. �

Remark 5.1.3. (i) Occasionally one uses for the Heisenberg Group the
group-law

(r, s, t)�̃(r′, s′, t′) = (r + r′, s+ s′, t+ t′ + 〈r , s′〉)
for (r, s, t), (r′, s′, t′) ∈ H×H×R. In this case we will call Hpol = (H×
H × R, �̃) the polarized Heisenberg group. The polarized Heisenberg
group is a topological group with neutral element (0, 0, 0) and inverse
(r, s, t)e�−1 = (−r,−s,−t〈r , s〉).

(ii) The map

(r, s, t) 7−→ (r, s, t+
1

2
〈r , s〉)

is an isomorphism from H to Hpol.

Proof. This remark can be proved as in the �nal dimensional case by an
easy calculation. �

Definition 5.1.4. Let H+ ⊂ H0 ⊂ H− be a quasi-nuclear Hilbert
space rigging. We endow H+ with the topology induced by ‖(r, s, t)‖± :=√
‖r‖2

± + ‖s‖2
± + |t|2. In addition we call

H+ ⊂ H0 ⊂ H−

the quasi-nuclear Heisenberg group-rigging and Hpol
+ ⊂ Hpol

0 ⊂ Hpol
− the quasi-

nuclear polarized Heisenberg group-rigging the with respect to the quasi-nuclear
Hilbert space rigging H+ ⊂ H0 ⊂ H−. It is clear that the embeddings H+ ↪→
H0 ↪→ H− are again quasi-nuclear and dense.

Lemma 5.1.5. Let H+ ⊂ H0 ⊂ H− be a quasi-nuclear Hilbert space rigging.

(i) (H+,�) is a subgroup of (H0,�) and of (H−,�).
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(ii) (Hpol
+ , �̃) is a subgroup of (Hpol

0 , �̃) and of (Hpol
− , �̃).

(iii) Moreover, we obtain a continuous map

H+ ×H− −→ H− :

((r, s, t), (r′, s′, t′)) 7−→ (r + r′, s+ s′, t+ t′ +
1

2
〈r , s′〉0 −

1

2
〈s , r′〉0).

We will denote this map again by �.
(iv) In addition, we obtain a continuous map

Hpol
+ ×Hpol

− −→ Hpol
− :

((r, s, t), (r′, s′, t′)) 7−→ (r + r′, s+ s′, t+ t′ + 〈r , s′〉).

We will denote this map again by �̃.

Proof. The continuity of the map de�ned above is clear, since the topology
in H+ is stronger then the topology in H−. �

From now on let H+ ⊂ H0 ⊂ H− be a quasi-nuclear Hilbert space rigging.

Proposition 5.1.6. Let (x′, y′, t′) ∈ H+ and f(x, y, t)%−x′(x)%−y(y) ∈
L1(H−, µ). Then f((x′, y′, t′)� (x, y, t)) ∈ L1(H−, µ) and we obtain∫

H−

f((x′, y′, t′)� (x, y, t))dµ(x, y, t) =

∫
H−

f(x, y, t)%−x′(x)%−y′(y)dµ(x, y, t).

Proof. For f ≥ 0 we have∫
H−

f((x′, y′, t′)� (x, y, t))dµ(x, y, t)

=

∫
H−

f(x+ x′, y + y′ + t+ t′ +
1

2
〈r , s′〉0 −

1

2
〈s , r′〉0)dµ(x, y, t)

=

∫
H−

∫
H−

∫
R

f(x+ x′, y + y′, t+ t′ +
1

2
〈r , s′〉0 −

1

2
〈s , r′〉0)dλ(t)dγ(y)dγ(x)

=

∫
H−

∫
H−

∫
R

f(x+ x′, y + y′, t)dλ(t)dγ(y)dγ(x)

=

∫
R

∫
H−

∫
H−

f(x+ x′, y + y′, t)dγ(y)dγ(x)dλ(t)

=

∫
R

∫
H−

∫
H−

f(x, y, t)%−x′(x)%−y′(y)dγ(y)dγ(x)dλ(t)
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=

∫
H−

f(x, y, t)%−x′(x)%−y′(y)dµ(x, y, t)

using Tonelli's theorem. Now the proposition follows by Fubini's theorem. �

Remark 5.1.7. Using the same arguments as above we obtain that for
(x′, y′, t′) ∈ Hpol

+ and f(x, y, t)%−x′(x)%−y(y) ∈ L1(Hpol
− , µ)f((x′, y′, t′)�̃(x, y, t)) ∈

L1(Hpol
− , µ). In addition we �nd again∫

H−

f((x′, y′, t′)�̃(x, y, t))dµ(x, y, t) =

∫
H−

f(x, y, t)%−x′(x)%−y′(y)dµ(x, y, t).

5.2. Unitary representations

In the section we will construct some unitary representations of H+ in
L2(H−, γ) and L2(H−, µ).

Definition 5.2.1. For (r, s, τ) ∈ H+ we de�ne

κ(r, s, τ) : L2(H−, µ) −→ L2(H−, µ)

by

κ(r, s, τ)f(x, y, t) :=
√
%r(x)

√
%s(y)f((r, s, τ)� (x, y, t))

Lemma 5.2.2. κ(r, s, τ) ((r, s, τ) ∈ H+) is a unitary representation of H+ in
L2(H−, µ).

Proof. At �rst let us show that κ(r, s, τ) is norm-preserving. Thus let
(r, s, τ) ∈ H+ and f ∈ L2(H−, µ). Then we obtain

‖κ(r, s, τ)f‖2
L2(H−,µ)

=

∫
H−

%r(x)%s(y) |f((r, s, τ)� (x, y, t))|2 dµ(x, y, t)

5.1.6
=

∫
H−

%r(x− r)%s(y − s) |f(x, y, t)|2 %−r(x)%−s(y)dµ(x, y, t)

=

∫
H−

|f(x, y, t)|2 dµ(x, y, t) = ‖f‖2
L2(H−,µ) .
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In addition for f, g ∈ L2(H−, µ) we obtain

〈κ(r, s, τ)f , g〉

=

∫
H−

√
%r(x)

√
%s(y)f((r, s, τ)� (x, y, t))g(x, y, t)dµ(x, y, t)

=

∫
H−

√
%r(x− r)

√
%s(y − s)f(x, y, t)g((r, s, τ)−1 � (x, y, t))

%−r(x)%−s(y)dµ(x, y, t)

=

∫
H−

f(x, y, t)
√
%−r(x)

√
%−s(y)g((r, s, τ)−1 � (x, y, t))dµ(x, y, t)

= 〈f , κ((r, s, τ)−1)g〉.
Now it is clear that κ∗(r, s, τ)κ(r, s, τ) = id and κ(r, s, τ)κ∗(r, s, τ) = id. For
(r, s, τ) and (r′, s′, τ ′) in H+ and f ∈ L2(H−, µ) we obtain

κ(r, s, τ)κ(r′, s′, τ ′)f(x, y, z)

=
√
%r(x)

√
%s(y)

√
%r(x+ r)

√
%s(y + s)f((r, s, τ)� (r′, s′, τ ′)� (x, y, t))

=
√
%r+r′(x)

√
%s+s′(y)f((r, s, τ)� (r′, s′, τ ′)� (x, y, t))

= κ((r, s, τ)� (r′, s′, τ ′))f(x, y, t),

which shows our assertion. �

Proposition 5.2.3. κ(r, s, τ) ((r, s, τ) ∈ H+) is a strongly continuously fam-
ily of unitary operators.

Theorem 5.2.4. κ(r, s, τ) ((r, s, τ) ∈ H+) is a strongly continuous unitary
representation of H+ in L2(H−, µ).

Proof. Let f = f1 ⊗ f2 ⊗ f3 where f1, f2 ∈ Cb(H−) and f3 ∈ Cc(R). More-
over, we assume that f1 and f2 have bounded support, i.e. supp f1 ∪ supp f2 ⊆
BR(0). Since f3 ∈ Cc(R) there exist a K such that supp f3 ⊆ [−K,K].
Let (r, s, τ) ∈ H+ such that ‖r‖+ ≤ 1, ‖s‖+ ≤ 1 and |τ | ≤ 1. Since
f(x+r, y+s, t+τ+ 1

2
〈r , y〉− 1

2
〈s , x〉) = 0 for |t| > 2(K+R+1) and ‖x‖ > R+1

and ‖y‖ > R + 1 we obtain by Lebesgue's theorem of dominated convergence

〈κ(r, s, τ)f , f〉

=

∫
H−

√
%r(x)

√
%s(y)f(x+ r, y + s, t+ τ +

1

2
〈r , y〉 − 1

2
〈s , x〉)

f(x, y, t)dµ(x, y, t)

(r,s,τ)→0−−−−−→
∫
H−

|f(x, y, t)|2 dµ(x, y, t) = ‖f‖2
L2(H−,µ) .
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Thus for f =
n∑
k=1

f(k,1) ⊗ f(k,2) ⊗ f(k,3), where f(k,1), f(k,2) ∈ Cb(H−) and f(k,3) ∈

Cc(R) and f(k,1), f(k,2) has bounded support we obtain

〈κ(r, s, τ)f , f〉 (r,s,τ)→0−−−−−→ ‖f‖2
L2(H−,µ) .

Hence it follows

‖κ(r, s, τ)− id)f‖2
L2(H−, µ)

= 〈(κ(r, s, τ)− id)∗(κ(r, s, τ)− id)f, f〉L2(H−, µ)

= 〈(2 id− κ(r, s, τ)− κ(r, s, τ)∗) f, f〉L2(H−, µ)

= 2 ‖f‖2
L2(H−, µ) − 2Re〈κ(r, s, τ)f, f〉L2(H−, µ) −−−−−→

(r,s,τ)→0
0.

Now we show the assertion. Therefore let g ∈ L2(H−, µ) and ε > 0 arbitrary,
but �xed. Then there exists a f as above, with ‖g − f‖ ≤ ε

3
. The computation

above shows that for f , there is a δ > 0 such that ‖(κ(r, s, τ)− id)f‖L2(H−, µ) ≤
ε
3

for all t ∈ H+ with ‖t‖H+
≤ δ. Hence for all t with ‖t‖H+

≤ δ we have

‖(κ(r, s, τ)− id)g‖L2(H−, µ)

≤ ‖κ(r, s, τ)− id‖ ‖g − f‖L2(H−, µ) + ‖(κ(r, s, τ)− id)f‖L2(H−, µ)

≤ 2
ε

3
+
ε

3
= ε.

Thus our theorem follows by 5.2.2. �

Remark 5.2.5. For a moment let us consider the similar representation of
Hpol

+ in L2(Hpol
− , µ). Thus we de�ne for (r, s, τ) ∈ Hpol

+

κpol(r, s, τ) : L2(Hpol
− , µ) −→ L2(Hpol

− , µ)

by
κpol(r, s, τ)f(x, y, t) :=

√
%r(x)

√
%s(y)f((r, s, τ)�̃(x, y, t)).

With the same arguments as above we obtain that κpol(r, s, τ) ((r, s, τ) ∈ H+) is
a strongly continuous unitary representation of Hpol

+ in L2(Hpol
− , µ).

Definition 5.2.6. For (r, s, t) ∈ H+ we de�ne

π(r, s, t) : L2(H−, γ) −→ L2(H−, γ)

by
π(r, s, t)f(x) :=

√
%r(x)e

i(t+〈s , x〉0+ 1
2
〈r , s〉0)f(x+ r).

Now let us de�ne a representation of H+ in L2(H−, γ).

Lemma 5.2.7. Let (r, s, t) ∈ H+ and (r′, s′, t′) in H+ and f ∈ L2(H−, γ) Then
π(r, s, t) is a unitary operator in L (L2(H−, γ)) and we have

π(r, s, t)π(r′, s′, t′)f = π((r, s, t)� (r′, s′, t′))f.
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Proof. At �rst let us show that π(r, s, t) is continuous. For (r, s, t) ∈ H+

and f ∈ L2(H−, γ) we obtain

‖π(r, s, t)f‖2
L2(H−,γ)

=

∫
H−

|π(r, s, t)f |2 dγ(x)

=

∫
H−

%r(x)
∣∣∣ei(t+〈s , x〉0+ 1

2
〈r , s〉0)

∣∣∣2 |f(x+ r)|2 dγ(x)

=

∫
H−

%r(x) |f(x+ r)|2 dγ(x) = ‖f‖2
L2(H−,γ)

.

Moreover, for f, g ∈ L2(H−, γ) we obtain

〈π(r, s, t)f , g〉 =

∫
H−

√
%r(x)e

i(t+〈x , s〉0)+ 1
2
〈r , s〉0f(x+ r)g(x)dγ(x)

=

∫
H−

%−r(x)
√
%r(x− r)ei(t+〈x−r , s〉0+ 1

2
〈r , s〉0)f(x)g(x− r)dγ(x)

=

∫
H−

f(x)
√
%−r(x)e

i(−t+〈x ,−s〉0+ 1
2
〈−r ,−s〉0)g(x− r)dγ(x)

= 〈f , π((r, s, t)−1)g〉.

To prove the second part of this lemma let (r, s, t) and (r′, s′, t′) in H+ and
f ∈ L2(H−, γ). Then we obtain:

π(r, s, t)π(r′, s′, t′)f(x)

= π(r, s, t)
(√

%r′(x)e
i(t′+〈s′ , x〉0)+ 1

2
〈r′ , s′〉0f(x+ r′)

)
=

√
%r(x)e

i(t+〈x , s〉0+ 1
2
〈r , s〉0)

√
%r′(x+ r)ei(t

′+〈s′ , x+r〉0+ 1
2
〈r′ , s′〉0)f(x+ r′ + r)

=
√
%r+r′(x)e

i(t+t′+ 1
2
〈r , s′〉0− 1

2
〈r′ , s〉0+ 1

2
〈r+r′ , s+s′〉0+〈s+s′ , x〉0)f(x+ r′ + r)

= π((r, s, t)� (r′, s′, t′))f(x).

�

Proposition 5.2.8. π(r, s, t) ((r, s, τ) ∈ H+) is a strongly continuously fam-
ily of unitary operators.



5 Representations of in�nite dimensional Heisenberg Groups 173

Proof. Let (r, s, τ) ∈ H+ and f ∈ Cb(H−). By Lebesgue's theorem of
dominated convergence we obtain

〈π(r, s, t)f , f〉

=

∫
H−

√
%r(x)e

i(t+〈x , s〉+ 1
2
〈r , s〉0)f(x+ r)f(x)dγ(x)

(r,s,t)→0−−−−−→
∫
H−

|f(x)|2 dγ(x) = ‖f‖2
L2(H−,γ)

.

Hence as in Proposition 5.2.8 it follows

‖π(r, s, t)− id)f‖2
L2(H−, γ)

= 2 ‖f‖2
L2(H−, γ)

− 2Re〈π(r, s, t)f, f〉L2(H−, γ) −−−−−→
(r,s,t)→0

0.

Now we show the assertion. Therefore let g ∈ L2(H−, γ) and ε > 0 arbitrary,
but �xed. Then there exists a f as above, with ‖g − f‖ ≤ ε

3
. The computation

above shows that for f , there is a δ > 0 such that ‖(π(r, s, t)− id)f‖L2(H−, µ) ≤
ε
3

for all t ∈ H+ with ‖t‖H+
≤ δ. Hence for all t with ‖t‖H+

≤ δ we have as above
‖(π(r, s, t)− id)g‖L2(H−, γ)

≤ ε. �

Theorem 5.2.9. π(r, s, t) ((r, s, t) ∈ H+) is a strongly continuous unitary
representation of H+ in L2(H−, γ).

Proof. This theorem follows directly by Lemma 5.2.7 and Proposition5.2.8
�

By using a version of Schur's lemma (cf. [129, Chapter 0 Proposition 4.1])
we will prove the following theorem

Theorem 5.2.10. π(r, s, t) is an irreducible unitary representation of H+ in
L2(H−, γ).

Proof. By a version of Schur's lemma we have to show that for a bounded
linear operator on L2(H−, γ) such that Aπ(r, s, t) = π(r, s, t)A it follows that
A = λid. We want to reduce this proof to the well known �nite dimensional case.
Thus we de�ne Pn as the orthogonal projection on c.l.s{e1, . . . , en} in H0 and Pln
the orthogonal projection in L2(H−, γ) on the c.l.s{hα : length(α) ≤ n}. Let
g ∈ Cint,cyl(H−) such that g(x) = g(Pnx) and u ∈ Cb(H−) with u =

∑
α aαhα.

Then we obtain Plngu =
∑

α aαPlnghα =
∑

α aαgPlnhα = gPlnu. Thus we have

(83) [Pln , Mg] = 0.

Now let A be a bounded linear operator on L2(H−, γ) such that Aπ(r, s, t) =
π(r, s, t)A. For (r, s, t) = (0, s, 0) where s ∈ PlnH+ we obtain

Aei〈s , x〉0 = ei〈s , x〉0A,
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which implies PlnAe
i〈s , x〉0Pln = Plne

i〈s , x〉0APln and thus we �nd by (83)

(84) PlnAPlne
i〈s , x〉0 = ei〈s , x〉0PlnAPln .

Let Ã denote the continuous linear operator on L2(Rn, λ) de�ned by

Ãu(P̃nx) = PlnAPln(VG,nu)((P̃nx)).

Now (84) leads to ei〈 ePlns , ·〉Ãu = Ãei〈
ePlns , ·〉u for all u ∈ L2(Rn, λ). Using the

�rst part of [129, Theorem 2.1 p. 46] we �nd that Ãu(x) = ãn(x)u(x), x ∈ Rn.
Thus it follows that there exists a function a on H− such that a(x) = a(Pnx) and
PlnAPlnu(x) = an(x)u(x) for all u ∈ L2(H−, γ) such that u(x) = u(Pnx). In a
second step let us choose (r, s, t) = (r, 0, 0) where r ∈ Pn(H+). Then as above
π(r, 0, 0)A = Aπ(r, 0, 0) leads to

%r(x)(PlnAPlnu)(x+ r) = PlnAPln%r(x)u(x+ r)

for all u ∈ L2(H−, γ) such that u(x) = u(Pnx). But this implies

%r(x)an(x+ r)u(x+ r) = %r(x)an(x)u(x+ r)

and thus we �nd an(x) = λn. Finally we note that Pln converges strongly and
monotone to id. Thus we obtain that there exists a λ ∈ C such that λn = λ for
all n ∈ N and A = λid. �

At next we will construct some other representations of H+ in L2(H−, γ).
Thus we de�ne for λ > 0

(85) δ±λ : H+ −→ H+ : (r, s, t) 7−→ (
√
λr,±

√
λs,±λt).

We �nd that δ±λ is a continuous automorphism of H+.

Proposition and Definition 5.2.11. For λ > 0 we de�ne π±λ(r, s, t) by

(86) π±λ(r, s, t) := π(δ±λ(r, s, t))

for all (r, s, t) ∈ H+ Then π±λ(r, s, t) is a strongly continuous unitary irreducible
representation of H+ in L2(H−, γ). We call π±λ the Schrödinger representations
of H+.

Proof. Since δ±λ is continuous the strong continuity of π±λ follows directly
by the strong continuity of π. Now note that {π±λ(r, s, t) : (r, s, t) ∈ H+} =
{π(r, s, t) : (r, s, t) ∈ H+}. Thus π±λ is irreducible since π is irreducible. �

Let us note that π±λ(r, s, t) is given explicitly on L2(H−, γ) by

(87) π±λ(r, s, t)u(x) =
√
%√λr(x)e

i(±λt+〈±
√
λs , x〉0+±λ

2
〈r , s〉0)u(x+ r).

Obviously for y, η ∈ H− we obtain the one dimensional representations of H+

given by

(88) πy,η(r, s, t) = ei〈r , y〉0+〈s , η〉0 .

We obtain the following
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Proposition 5.2.12. No two di�erent representations of H+ given by (86)
and (87) are unitary equivalent.

Proof. We only have to show that if there exits an unitary F such that
FπλF

−1 = πλ′ we have λ = λ′. Thus let us consider (0, 0, t) ∈ H+. Then we have

FeiλtF−1 = Fπλ(0, 0, t)F
−1 = πλ′ = eiλ

′t

for all t ∈ R and thus λ = λ′. �

Remark 5.2.13. Again let us consider the case of a quasi-nuclear polarized
Heisenberg group rigging. Thus for (r, s, t) ∈ Hpol

+ we de�ne

πpol(r, s, t) : L2(H−, γ) −→ L2(H−, γ)

by
πpol(r, s, t)f(x) :=

√
%r(x)e

i(t+〈s , x〉0f(x+ r).

Then again πpol(r, s, t) ((r, s, t) ∈ Hpol
+ ) is a strongly continuous irreducible uni-

tary representation of Hpol
+ in L2(H−, γ). For λ > 0 we �nd that δ±λ is an au-

tomorphism of Hpol
+ . Hence as before we see that πpol±λ(r, s, t) := πpol(δ±λ(r, s, t))

is a strongly continuous irreducible unitary representation of Hpol
+ in L2(Hpol

− , γ).
Moreover, in this case no two di�erent representations πpolλ are unitary equivalent.

Definition 5.2.14. For (a, b, τ) ∈ H+ we de�ne

V
(a,b,τ)
t := κ(ta, tb, tτ)

and
U

(a,b,τ)
t := π(ta, tb, tτ).

Lemma 5.2.15. Let (a, b, τ) ∈ H+ be �xed. Then (V
(a,b,τ)
t )t∈R and (U

(a,b,τ)
t )t∈R

are unitary strongly continuous one parameter groups.

Proof. Let (a, b, τ) ∈ H+ and t, s ∈ R. Then we obtain

(ta, tb, tτ)� (sa, sb, sτ)

= ((t+ s)a, (t+ s)b, (t+ s)τ +
1

2
〈ta , sb〉0 −

1

2
〈sa , tb〉0)

= ((t+ s)a, (t+ s)b, (t+ s)τ +
1

2
ts〈a , b〉0 −

1

2
ts〈a , b〉0)

= ((t+ s)a, (t+ s)b, (t+ s)τ).

Thus we have V (a,b,τ)
t V

(a,b,τ)
s = V

(a,b,τ)

t+s and U
(a,b,τ)
t U

(a,b,τ)
s = U

(a,b,τ)

t+s . Now our
assertion follows by Theorem 5.2.4 and Theorem 5.2.9. �

Definition 5.2.16. For f ∈ C 1(H−) and t ∈ H+ we de�ne D1
t and D

2
t by

D1
t f(x, y, τ) := lim

h→0

f(x+ ht, y, τ)− f(x, y, τ)

h
− 〈t , x〉0f(x, y, τ)
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and

D2
t f(x, y, τ) := lim

h→0

f(x, y + ht, τ)− f(x, y, τ)

h
− 〈t , y〉0f(x, y, τ).

Moreover, we denote by C k
int,bs(H−) the space of all C k-functions an H−, which

have bounded support and satisfy f(·, y, τ) ∈ C k
int(H−) for every �xed y, τ and

f(x, ·, τ) ∈ C k
int(H−) for every �xed x, τ .

Proposition 5.2.17. Let D(a,b,τ) ((a, b, τ) ∈ H+) denote the in�nitesimal

generator of the unitary C0 group V
(a,b,τ)
t (t ∈ R). For its domain of de�nition

we write D(D(a,b,τ)). According to the theorem of Stone (cf. [117, Theorem
VIII.8]) we obtain that −iD(a,b,τ) is self adjoint. For f ∈ C 1

int,bs(H−) we have

D(a,b,τ)f(x, y, s)

= D1
af(x, y, s) +D2

bf(x, y, s) + (τ +
1

2
〈a , y〉0 −

1

2
〈b , x〉0)

∂

∂s
f(x, y, s).

In addition , we have D(a,b,τ)(C
∞
int,bs(H−)) ⊂ C∞

int,bs(H−), and C∞
int,bs(H−) is a

domain of essential selfadjointness of the operator −iD(a,b,τ).

Proof. For f ∈ C 1
b,bs(H−) we obtain pointwisely

1

t
(V

(a,b,τ)
t f(x, y, s)− f(x, y, s))

=
1

t

(√
%ta(x)

√
%tb(y)f(x+ ta, y + tb, s+ tτ +

1

2
t〈a , y〉)

−1

2
t〈b , x〉)− f(x, y, s)

)
=

1

t

(√
%ta(x)

√
%tb(y)f(x+ ta, y + tb, s+ tτ +

1

2
t〈a , y〉)

−
√
%tb(y)f(x, y + tb, s+ tτ +

1

2
t〈a , y〉)− 1

2
t〈b , x〉)

)
+

1

t

(√
%tb(y)f(x, y + tb, s+ tτ +

1

2
t〈a , y〉 − 1

2
t〈b , x〉)

−f(x, y, s+ tτ +
1

2
t〈a , y〉 − 1

2
t〈b , x〉)

)
+

1

t

(
f(x, y, s+ tτ +

1

2
t〈a , y〉 − 1

2
t〈b , x〉)− f(x, y, s)

)
t→0−−→ D1

af(x, y, s) +D2
bf(x, y, s) + (τ +

1

2
〈a , y〉0 −

1

2
〈b , x〉0)

∂

∂s
f(x, y, s)

According to Proposition 1.3.8 the �rst and the second addend also converge
in L2(H−, µ), the third converges in L2(H−, µ) by Lebesgue's theorem of domi-
nate convergence since f has bounded support. Now the rest of the �rst part
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of the proof follows similarly to Proposition 1.3.8. The second part is di-
rect consequence of the theorem of Nelson (cf. [117, Theorem VIII.10]), since
V

(a,b,τ)
t (C∞

int,bs(H−)) ⊂ C∞
int,bs(H−). �

Definition 5.2.18. Let (ej)j∈N ⊂ H+ be an orthonormal in H0. Then we
set:

Lj := D(0,ej ,0) = D2
ej
− 1

2
〈ej , x〉0

∂

∂s
,

Mj := D(ej ,0,0) = D1
ej

+
1

2
〈ej , y〉0

∂

∂s
,

T := D(0,0,1) =
∂

∂s
.

Lemma 5.2.19. We have

[Lj, Mj] = −[Mj, Lj] = T

and
[Lj, Mi] = [Lj, T ] = [Mj, T ] = 0

for i 6= j.

Proof. We obtain:

[Lj, Mj] = [D2
ej
− 1

2
〈ej , x〉0)

∂

∂s
, D1

ej
+

1

2
〈ej , y〉0)

∂

∂s
]

= [D2
ej
,

1

2
〈ej , y〉0

∂

∂s
] + [−1

2
〈ej , x〉0)

∂

∂s
, D1

ej
] =

1

2

∂

∂s
+

1

2

∂

∂s
= T.

The rest of the lemma is clear. �

Remark 5.2.20. For a moment let us have a short look at a polarized Heisen-
berg group rigging. Let (ej)j∈N ⊂ H+ be an orthonormal basis of H0. Then we
obtain:

(i) κpol(tej, 0, 0) is a strongly continuous one parameter group with in�ni-
tesimal generator Mpol

j f(x, y, s) := D1
ej
f(x, y, s) + 〈ej , y〉0 ∂

∂s
.

(ii) κpol(0, tej, 0) is a strongly continuous one parameter group with in�ni-
tesimal generator Lpolj f(x, y, s) := D1

ej
f(x, y, s).

(iii) κpol(0, 0, t) is a strongly continuous one parameter group with in�nites-
imal generator T polf(x, y, s) := ∂

∂s
f(x, y, s).

(iv) Again we obtain the following commutation relations: [Lpolj , Mpol
j ] =

−[Mpol
j , Lpolj ] = T pol and [Lpolj , Mpol

i ] = [Lpolj , T pol] = [Mpol
j , T pol] = 0.

Now let us consider the unitary representation π.

Theorem 5.2.21. For u ∈ C∞
int(H−) the in�nitesimal generator DU

a,b,τ of

(U
(a,b,τ)
t )t∈R is given by

DU
a,b,τu = Dau+ i〈b , ·〉0 + iτu,
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where Da is de�ned as in 1.3.2 Furthermore, C∞
int(H−) is a domain of essential

selfadjiontness for DU
a,b,τ .

Proof. Let u ∈ C∞
int(H−). Then we obtain by Lebesgue's Theorem of domi-

nated convergence

U
(a,b,τ)
t − id

t
u(x)

=
1

t

(√
%ta(x)e

i(tτ+t〈b , x〉0+ t2

2
〈a , b〉0)f(x+ ta)u(x)− u(x)

)
= ei(tτ+t〈b , x〉0+ t2

2
〈a , b〉0)

√
%ta(x)f(x+ ta)u(x)− u(x)

t

+ei(tτ+
t2

2
〈a , b〉0) e

it〈b , x〉0u(x)− u(x)

t

+e
t2

2
〈a , b〉0) e

itτu(x)− u(x)

t
+
e
t2

2
〈a , b〉0u(x)− u(x)

t
t−→0−−−→ Dau(x) + i〈b , x〉0u(x) + iτu(x).

Moreover, since U (a,b,τ)
t leaves the space C∞

int(H−) invariant we obtain by the The-
orem of Stone and Nelson that C∞

int(H−) is a domain of essential selfadjointness
of iDU

a,b,τ . �

5.3. The Heisenberg Group and the Weyl calculus

The �nite dimensional case. Since we do not have any Haar measure on an
in�nite dimensional Heisenberg Group let us �rst consider the �nite dimensional
case whereH+ = H0 = H− = Rn and denote byHn the corresponding Heisenberg
Group.

Definition 5.3.1. Let us denote by π̃1 (cf. [129, Chapter 1]) the irreducible
unitary strongly continuous representation of Hn in L2(Rn, λn) given by

π̃1(r, s, t)u(x) = ei(t+〈s , x〉+
1
2
〈r , s〉)u(x+ r).

In [129, Chapter 1 Proposition 2.2] it is shown that

(89) C∞(π̃1) = S(Rn).

We will use this result to determine C∞(π). Thus let us prove the following

Lemma 5.3.2. Let (r, s, t) ∈ Hn and u ∈ L2(Rn, γ). Then we obtain

π(r, s, t)u(x) = e
‖x‖2

2 π̃1(r, s, t)(e
− ‖x‖

2 u(x)).
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Proof. Let (r, s, t) ∈ Hn and u ∈ L2(Rn, γ). Then we �nd since %r(x) =

e−‖r‖
2−2〈r , x〉

e
‖x‖2

2 π̃1(r, s, t)(e
− ‖x‖

2 u(x))

= e
‖x‖2

2 ei(t+〈s , x〉+
1
2
〈r , s〉)e−

‖x+r‖
2 u(x+ r)

= e
‖x‖2

2 ei(t+〈s , x〉+
1
2
〈r , s〉)

√
%r(x)e

1
2
‖r‖2+〈r , x〉e−(

‖x‖
2

+〈r , x〉+ ‖r‖
2

)u(x+ r)

= ei(t+〈s , x〉+
1
2
〈r , s〉)

√
%r(x)u(x+ r) = π(r, s, t)u(x).

Thus our proposition is proved. �

Now in view of equation (89) we obtain the following proposition as corollary.

Proposition 5.3.3. We have

C∞(π) = Sγ(R
n).

Let us consider the connection between pseudodi�erential operators in Weyl
form de�ned in 3.2.2 and our representation π.

Proposition 5.3.4. For a well-behaved symbol a(x, ξ) (a symbol a(x, ξ) such
that all oscillatory integral in [129, Proposition 3.1, Chapter 1] exist) we obtain

a(X,D) = (2π)−n
∫
â(s, r)π(r, s, 0)λn(ds)λn(dr),

where â(s, r) = (2π)−n
∫
a(x, ξ)ei(〈x , s〉+〈ξ , r〉)λn(dx)λn(dξ) is given by the Fourier-

transform of a(x, ξ).

Proof. For u ∈ Sγ(Rn) we have by 3.2.4 and 5.3.2

a(X,D)u(x) = V −1
G,na(X, D̃)VG,nu(x)

(∗)
= V −1

G,n(2π)−n
∫
â(s, r)π̃(r, s, 0)VG,nu(x)λ

n(ds)λn(dr)

= (2π)−n
∫
â(s, r)V −1

G,nπ̃(r, s, 0)VG,nu(x)λ
n(ds)λn(dr)

= (2π)−n
∫
â(s, r)π(r, s, 0)u(x)λn(ds)λn(dr),

where the equality (∗) follows from [129, Proposition 3.1, Chapter 1]. �

Let E ′(Hn) be the space of all compactly supported distributions onHn. Then
by the general theory of Lie Groups π(f) =

∫
Hn f(z)π(z)dz is de�ned on C∞(π).

In view of Proposition 5.3.4 we obtain the following

Theorem 5.3.5. For k ∈ L1(Hn, λ
2n+1) we have

(90) π±λ(k) = k̃(±λ,±
√
λix,

√
λD) = σk(±λ)(X,D),
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where

(91) k̃(τ, y, η) = (2π)−
2n+1

2

∫
k(r, s, t)ei(tτ+〈s , y〉)+〈r , η〉λ(dt)λn(ds)λn(dr)

and

(92) σk(±λ)(x, ξ) = k̃(±λ,±
√
λx,±

√
λξ).

Proof. Let k ∈ L1(Hn, λ
2n+1) and u ∈ Sγ(Rn). Then we obtain

π±λ(k) =

∫
k(t, q, p)π±λ(r, s, t)λ(dt)λn(ds)λn(dr)

= V −1
G,n

∫
k(t, q, p)π̃±λ(r, s, t)λ(dt)λn(ds)λn(dr)VG,n

(∗∗)
= V −1

G,nk̃(±λ,±
√
λX,

√
λD̃)VG,n

= k̃(±λ,±
√
λX,

√
λD),

where the equality (∗∗) follows from [129, (3.9), Chapter 1]. But this proves our
Theorem. �

Remark 5.3.6. Again let us consider the case of the polarized Heisenberg
Group. Let us remind, that in this case πpol±λ is given by

πpol±λ(r, s, t)u(x) :=
√
%√λr(x)e

i(±λt+〈±
√
λs , x〉0u(x+

√
λr).

Now we obtain∫
â(s, r)πpol(r, s, 0)λn(ds)λn(dr) = F−1

ξ→xa(x, ξ)(Fu)(ξ) = a(x,D),

where a(x,D) stands for the pseudodi�erential operator given in terms of the
Kohn-Nirenberg quantization in the case of a Gaussian measure. Consequently,
we get

πpol±λ(k) = k̃(±λ,±
√
λx,

√
λD),

i.e. the operator πpol±λ(k) is given in Kohn-Nirenberg form.

Let us denote by M̃j := ∂
∂rj

+ 1
2
sj

∂
∂t
, L̃j := ∂

∂sj
− 1

2
rj

∂
∂t

and T̃ = ∂
∂t

the well
known basis of left invariant vector �elds of the Lie-Algebra of Hn (cf. [129,
Chapter 1]). Then we obtain the commutator relation

[L̃j, M̃j] = −[M̃j, L̃j] = −T̃ .
Furthermore, we denote by

(93) L̃0 :=
n∑
j=1

(L̃2
j + M̃2

j )

the classical Heisenberg-Laplacian. Then we have

(94) π±λ(L̃j) = ±i
√
λ〈· , ej〉, π±λ(M̃j) =

√
λDej π±λ(T̃ ) = ±λid
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and

(95) κ(L̃j) = Lj, κ(M̃j) = Mj, κ(T̃ ) = T.

Thus we �nd

L0 := κ(L0) =
n∑
j=1

(L2
j +M2

j ).

We call this operator the Gaussian-Heisenberg-Laplacian.

Proposition 5.3.7. For λ > 0 we �nd that

π±λ(L̃0) = −λ(2Lγ + n id),

where Lγ denotes the Ornstein-Uhlenbeck operator de�ned in (2.1.2).

Proof. By the general theory of Lie Groups (cf. [129, Chapter 0]) it is clear
that

π±λ(L̃0) =
n∑
j=1

(
(
√
λDej)

2 + (
√
λi〈· , ej〉)2

)
= −λ

n∑
j=1

(
−D2

ej
+ 〈· , ej〉2

)
.

Now we �nd

−D2
ej

+ 〈· , ej〉2 = −
(
∂

∂ej
− 〈· , ej〉

)2

+ 〈· , ej〉2 = − ∂2

(∂ej)2
+ 2〈· , ej〉

∂

∂ej
+ id

and thus we obtain

−1

λ
π±λ(L̃0) =

n∑
j=1

(− ∂2

(∂ej)2
+ 2〈· , ej〉

∂

∂ej
+ id) = 2Lγ + n id. �

According to [129] the spectrum of − 1
λ
π̃±λ(L̃0) is given by the set σ = {n +

2j : j ∈ N} and each k ∈ σ is an eigenvalue. Moreover, in [129] it is shown that

the eigenvectors of − 1
λ
π̃±λ(L̃0) are the Hermite-functions, de�ned by hαe

− ‖·‖
2 .

Now, note again that π±λ(L̃0) = V −1
G,nπ̃±λ(L̃0)VG,n. Thus we obtain again the well

known fact

σL2(Rn,γ)(Lγ) = N

and the eigenvectors are given by the Hermite-polynomials. Since we are later
on also interested in the in�nite dimensional case let us de�ne more general
operators. Thus let b1 . . . bn be positive real numbers, (bjk)j,k=1...2n be a positive
de�nite matrix and c ∈ R a constant. Then we de�ne the operators L̃b,c and P̃b,c
by

(96) L̃b,c =
n∑
j=1

bj(L̃
2
j + M̃2

j ) + c iT
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and

(97) P̃b,c
2n∑

j,k=1

bj,kỸjỸk + c iT,

where Ỹj = L̃j and Ỹn+j = M̃j (j = 1 . . . n). Let us start with a general result
with shows again the connection between the Heisenberg Group and the Weyl
calculus.

Proposition 5.3.8. For P̃b,c being de�ned as in equation (97) we obtain

π±λ(P̃b,c) = −λ(Q(X,D)± c id),

where Q(x, ξ) :=
∑2n

j,k=1 bj,kχjχk and χj = xj and χn+j = ξ (j = 1 . . . n).

Proof. Let P̃b,c be de�ned as in equation (97). Considering [129, Chapter 0]
and 5.3.2 we obtain π±λ(P̃b,c) = V −1

G,nπ̃±λ(P̃b,c)VG,n. Thus we �nd [129, Chapter
1, (6.42)] and 3.2.4

π±λ(P̃b,c)V −1
G,n − λ(λ(Q(X, D̃)± c id))VG,n = −λ(λ(Q(X,D)± c id)). �

Let us examine the operator − 1
λ
π±λ(L̃b,c) more detailed. Thus we set

(98) Lγ,j := −1

2
(
∂

∂ej
− 2〈· , ej〉

∂

∂ej
).

Then as noted above and proved in Lemma 2.1.10 we �nd

(99) Lγ,jhα = αjhα.

Considering again Proposition 5.3.3 we obtain the following

Corollary 5.3.9. For λ > 0 we have

−1

λ
π±λ(L̃b,c) =

n∑
j=1

bj(2Lγ,j + id)± c id

= 2
n∑
j=1

bjLγ,j + (
n∑
j=1

bj ± c)id = Q(X,D)± c id,

where Q(x, ξ) :=
∑n

j=1 bj(x
2
j + ξ2

j ).

Remark 5.3.10. The equation above shows that

−λ(Q(X,D)) = π±λ(L̃0) = −λ(2Lγ + n id),

where Q(x, ξ) = ‖x‖2 + ‖ξ‖2. Thus we obtain that the symbol of the Orntein-
Uhlenbeck operator is given by

σLγ (x, ξ) =
1

2
(‖x‖2 + ‖ξ‖2)− n =

n∑
j=1

x2
j + ξ2

j − 1

2
.
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Theorem 5.3.11. Let (hα)α∈Nn0 be the basis consisting of the generalized Her-
mite polynomials of L2(Rn, γ). Moreover let Q(x, ξ) :=

∑n
j=1 bj(x

2
j + ξ2

j ), where
bj > 0 for j = 1 . . . n. Then we have

(Q(X,D)± c id)hα =

(
2

n∑
j=1

bjαj +
n∑
j=1

bj ± c

)
hα.

In addition Q(X,D)± c id extends to a selfadjoint operator with domain of de�-
nition D(Q) given by

(100) D(Q) := {f ∈ L2(Rn, γ) :
∞∑
n=1

n2 ‖PΓnf‖
2 ≤ ∞},

where PΓn is the orthogonal projection on the closed linear span of the set {hα :
|α| = n}. Moreover, we obtain that span{hα : α ∈ Nn

0} is a domain of essential
selfadjointnes In addition we have

σL2(H−,γ)(−
1

λ
π±λ(L̃b,c)) = {2

n∑
j=1

bjαj +
n∑
j=1

bj ± c : α ∈ Nn
0}.

Proof. In view of the spectral theorem for unbounded operators and (99)
this Theorem is clear except for equation (100), the domain of de�nition. First
let us note that we have 0 < bj <∞ for all (j = 1 . . . n). Clearly, D(Q) is given
by

(101) D(Q) := {f ∈ L2(Rn, γ) :
∑
α∈Nn

(
n∑
j=1

bjαj

)2

‖Pαf‖2 ≤ ∞},

where Pα is the orthogonal projection on {λhα : λ ∈ C}. Now let us de�ne
β := min bj and γ := max bj. Then we �nd β |α| ≤

∑n
j=1 bjαj ≤ γ |α|. Hence we

have
D(Q) := {f ∈ L2(Rn, γ) :

∑
α∈Nn

|α|2 ‖Pαf‖2 ≤ ∞}.

Now since hα is an orthonormal basis we obtain∑
α∈Nn

|α|2 ‖Pαf‖ =
∞∑
n=1

∑
|α|=n

n2 ‖Pαf‖ =
∞∑
n=1

n2 ‖PΓnf‖ ,

which proves our assertion. �

Essentisal selfadjointness in the �nite dimensional case. In chapter 2
we have shown the the Ornstein-Uhlenbeck Operator is essential selfadjoint on
C∞
int(R

n). Above we have discussed the symbol of this operator. Now we try to
answer the question which perturbations of this operator are still selfadjoint. Of
course there is the
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Theorem 5.3.12 (Kato-Rellich). Let (A,D(A)) be a selfadjoint operator on a
Hilbert space H and let (B,D(B)) be symmetric with D(A) ⊂ D(B). Moreover,
let us assume that B is A-bounded with A-bound less then one, e.g. there exists
an a < 1 such that ‖Bx‖ ≤ a ‖Ax‖+b ‖x‖ for all x ∈ D(A). Then (A+B,D(A))
is selfadjoint.

But now the question arises for which pseudodi�erential operators q(X,D)
Lγ + q(X,D) is selfadjoint or essential selfadjoint. Let us start with the following
Lemma:

Lemma 5.3.13. Let A : S(Rn) −→ L2(Rn, λn) be a linear operator and
de�ne Ã := V −1

G,nAVG,n. Then we have

(i) Ã : Sγ(R
n) −→ L2(Rn, γ).

(ii) Ã is closable if and only if A is closable. In this case we have D(Ã) =
V −1
G,nD(A).

(iii) Ã is symmetric if and only if A is symmetric.
(iv) Ã is essential selfadjoint on Sγ(R

n) if and only if A is essential selfad-
joint on S(Rn).

Proof. The �rst part follows since VG,n maps Sγ(Rn) to S(Rn) and V −1
G,n

maps L2(Rn, λn) to L2(Rn, γ). In addition for f ∈ Sγ(Rn) and g ∈ L2(Rn, γ) we
�nd

(102) 〈Ãf , g〉L2(Rn,γ) = 〈VG,nÃf , VG,ng〉L2(Rn,λn) = 〈AVG,nf , VG,ng〉L2(Rn,λn).

To prove (ii) let A be closable. Then for (fn)n∈N ⊂ Sγ(R) and f ∈ L2(Rn, γ)

such that fn
n→∞−−−−−→

L2(Rn,γ)
0 and Ãfn

n→∞−−−−−→
L2(Rn,γ)

f we �nd

〈f , g〉L2(Rn,γ) = lim
n→∞

〈Ãfn , g〉L2(Rn,γ) lim
n→∞

〈AVG,nfn , VG,ng〉L2(Rn,λ) = 0,

since VG,nfn
n→∞−−−−−→

L2(Rn,λ)
0 and A is closable. This shows that Ã is closable. Using the

same arguments we obtain the only if part similarly. Now let us prove the state-

ments about the domains of de�nition of the closure. Thus let f ∈ D(Ã). Then
there exists a sequence fn ⊂ Sγ(R

n) such that fn
n→∞−−−−−→

L2(Rn,γ)
f and Ãfn

n→∞−−−−−→
L2(Rn,γ)

Ãf .

Then we obtain for g ∈ L2(Rn, λ)

〈AVG,nfn , g〉2(Rn,λ) = 〈Ãfn , V −1g〉L2(Rn,γ)

n→∞−−−→ 〈Ãf , V −1g〉L2(Rn,γ) = 〈VG,nÃf , g〉L2(Rn,γ).

Thus we �nd VG,nf ∈ D(A) which implies f ∈ V −1
G,nD(A). The other inclusion

follows by the same arguments. Equation (102) implies (iii) and thus (iv) follows
from (ii) and (iii). �

Definition 5.3.14. For m,m′ ∈ R we de�ne
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(i) ψc(m,m
′) := {q ∈ C∞(Rn

x ×Rn
ξ ) : ∀α, β ∈ Nn

0∃cα,β ≥ 0∣∣∂αξ ∂βxq(x, ξ)∣∣ ≤ cα,β(1 + ‖ξ‖2)
m−|α|

2 (1 + ‖x‖2)
m′−|β|

2 }.
(ii) Gm := {q ∈ C∞(Rn

x ×Rn
ξ ) : ∀α, β ∈ Nn

0∃cα,β ≥ 0∣∣∂αξ ∂βxq(x, ξ)∣∣ ≤ cα,β(1 + ‖ξ‖2 + ‖x‖2)
m−|α|−|β|

2 }.

Now we can state

Theorem 5.3.15. (i) Let 0 ≤ δ < % ≤ 1 and p ∈ S2(%−δ),‖·‖2
%,δ (Rn) be real

valued and set A := q(X,D).
(ii) Let p ∈ G4, q ∈ ψc(2,2) be real valued and set A := p(X,D) + q(X,D).
(iii) Let p ∈ ψc2,0 be real valued and depending only on ξ, q ∈ ψc(1,1) be real

valued and r ∈ ψc(0,2) be real valued and depending only on x. Then set
A := p(X) + q(X,D) + r(X).

In all three cases A is essential selfadjoint on Sγ(R
n) in L2(Rn, γ).

Proof. Using Lemma 5.3.13 and 3.2.4 this theorem follows by [25, Theorem
4.3.2], [25, Theorem 4.3.4] and [25, Theorem 4.3.20]. �

Remark 5.3.16. O. Caps proved theses results in the case of Rn with
Lebesgue measure instead of Gaussian measure and S(Rn) instead of Sγ(Rn)
in [25] using the Fe�ermann-Phong inequality.

Remark 5.3.17. In 5.3.10 we have seen that the symbol of the Ornstein-
Uhlenbeck operator is given by q(x, ξ) = 1

2
(‖x‖2 + ‖ξ‖2) − n. It is clear that

1
2
‖x‖2 − n ∈ ψc(0,2) and ‖ξ‖2 ∈ ψc(2,0). Thus for every p ∈ ψc(1,1) being real

valued we obtain that Lγ + q(X,D) is essential selfadjoint on Sγ(Rn).

The in�nite dimensional case. Now let us return to the in�nite dimen-
sional case. Considering an in�nite dimensional Heisenberg Group-Rigging there
exist no Haar measure on these Heisenberg Groups. Moreover, we don't know
how to de�ne an "in�nite-dimensional Heisenberg-Laplacian" or what is meant
by

π±λ(L̃b,c), where L̃b,c =
∞∑
j=1

bj(L̃
2
j + M̃2

j ) + c iT.

On the other hand, if we (bn)n∈N ∈ l1(N), bn > 0 so that the symbol
Q(x, ξ) :=

∑n
j=1 bj(〈x , ej〉20 + 〈ξ , ej〉20) exists for all x, ξ ∈ H−. Then we ob-

tain a pseudodi�erential operator Q(X,D) given by 3.2.2. Using this de�nition
and the results above we try to de�ne π±λ(L̃b,c). Thus let us proof at �rst the
following

Proposition 5.3.18. Let (bn)n∈N ∈ l1(N), bn > 0 be a sequence such that
the symbol Q(x, ξ) :=

∑∞
j=1 bj(〈x , ej〉20 + 〈ξ , ej〉20) exists for all x, ξ ∈ H− and we

have |Q(x, ξ)| ≤ c ‖x‖α + ‖ξ‖α (α ∈ N). Then we obtain that Q(X,D) maps
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Sγ,cyl(H−) to Sγ,cyl(H−). In addition we have

Q(X,D)u = 2
n∑
j=1

bjLγ,ju+
∞∑
j=1

bju,

where n is chosen such that u(x) = u(Pnx).

Proof. Let u ∈ Sγ,cyl(H−) such that u(x) = u(Pnx). Then we obtain by the
continuity of the Fourier-Wiener-Transform and Lebesgue's Theorem of domi-
nated convergence

Q(X,D)u(x) = F−1
ξ→xFy→ξQ(

x+ y

2
, ξ)u(y)

= F−1
ξ→xFy→ξ

∞∑
j=1

bj(〈
x+ y

2
, ej〉20 + 〈ξ , ej〉20)u(y)

= F−1
ξ→xFy→ξ

∞∑
j=1

bj〈
x+ y

2
, ej〉20 + F−1

ξ→xFy→ξ

∞∑
j=1

bj〈ξ , ej〉20u(y)

=
∞∑
j=1

bj
(
F−1
ξ→xFy→ξ

)
〈x+ y

2
, ej〉20 + 〈ξ , ej〉20u(y)

=
∞∑
j=1

bj (2Lγ,j + id)u(x)

= 2
n∑
j=1

bjLγ,ju(x) +
∞∑
j=1

bju(x),

which shows our proposition. �

Thus in view of Proposition 5.3.18 and 5.3.8 we give the following

Definition 5.3.19. Let A ∈ L (H− × H−, H+ × H+) be a linear operator
such that 〈A(x, ξ) , (x, ξ)〉H0×H0 > 0 for all (0, 0) 6= (x, ξ) ∈ H−×H− Now we set
PA(x, ξ) = 〈A(x, ξ) , (x, ξ)〉H0×H0 . Then for c ∈ R we de�ne

π±λ(P̃A,c) := −λ(PA(X,D)± c id).

Remark 5.3.20. Let us note that using this de�nition we obtain

π±λ(L̃b,c)u(x) = lim
n→∞

π
(n)
±λ(L̃

(n)
b,c )ũ(P̃nx),

where π(n) denotes the representation of the n-dimensional Heisenberg Group,
L̃(n)
b,c :=

∑n
j=1 bj(L̃

2
j + M̃2

j ) and ũ ∈ Sγ(Rn) de�ned by ũ(P̃nx) := u(Pnx). In this

sense we can even say setting ”L̃γ :=
∑∞

j=1
1
2
(L̃2

j +M̃2
j −1)” that ”π±λ(L̃γ) = Lγ”
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and thus we will obtain for Lγ the formal Symbol

σLγ (x, ξ) =
∞∑
j=1

x2
j + ξ2

j − 1

2
.

But even if Lγ is a well known operator, this symbol remains a formal series,
which does not converge on H− ×H−.

Thus let us consider the operators, where the symbol converges, i.e. the case
of

π±λ(L̃b,c), where L̃b,c =
∞∑
j=1

bj(L̃
2
j + M̃2

j ) + c iT.

Let Q(x, ξ) be the symbol of the corresponding pseudodi�erential operator i.e.

Q(x, ξ) =
∞∑
j=1

bj(〈x , ej〉20 + 〈ξ , ej〉20).

Theorem 5.3.21. Let (hα)α∈NN0 be the basis consisting of the generalized Her-

mite polynomials of L2(H−, γ). Moreover let Q(x, ξ) :=
∑∞

j=1 bj(x
2
j + ξ2

j ). Then
we obtain

(103) (Q(X,D)± c id)hα =

(
2

∞∑
j=1

bjαj +
∞∑
j=1

bj ± c

)
hα.

In addition Q(X,D)±c id de�ned on span{hα : α ∈ Nn
0} extends to a selfadjoint

operator with domain of de�nition D(Q) given by

(104) D(Q) := {f ∈ L2(Rn, γ) :
∑
α∈Nn

(
∞∑
j=1

bjαj

)2

‖Pαf‖2 ≤ ∞},

where Pα is the orthogonal projection on {λhα : λ ∈ C}. Moreover, we obtain
that span{hα : α ∈ Nn

0} is a domain of essential selfadjointnes for Q(X,D)±c id
and thus Sγ,cyl(H−) is a domain of essential selfadjointnes for − 1

λ
π±λ(L̃b,c).

Proof. Equation (103) follows directly by Proposition 5.3.18 and (104) is
a direct consequence of the spectral theorem for unbounded operators since the
(hα)α∈NN0 form an orthonormal basis of L2(H−, γ). Considering the integration
by parts formula proved in [71, Proposition 4.1.5] we obtain that Q(X,D) is a
positive symmetric operator on Sγ,cyl(H−). Thus it has a selfadjoint extension.
Now since Q(x,D) is essential selfadjoint on span{hα : α ∈ NN0 } ⊂ Sγ,cyl(H−)
this extension must coincide with Q(X,D) and our theorem is proved. �

Let us now calculate the spectrum of our operator Q(X,D) ± cid. Thus let
us prove the following

Lemma 5.3.22. Let (bj)j∈N be a sequence, such that bj > 0 for all j ∈ N and
limj→∞ bj = 0. Then the set {

∑∞
j=1 bjαj : α ∈ NN

0 } is dense in R+.
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Proof. Since limj→∞ bj = 0 there exists a strictly monotone decreasing sub-
sequence (bjk)k∈N of (bj)j∈N such that limj→∞ bjk = 0. Now let a ∈ R+ be �xed.
Then there exists a sequence (ak)k∈N ⊂ N0 such that

n∑
k=1

akbjk ≤ a ≤
n∑
k=1

akbjk + bjn .

This implies that

a−
n∑
k=1

akbjk ≤ bjn
n−→∞−−−−→ 0.

Now we de�ne a sequence α(n) ∈ NN0 by

α
(n)
j :=

{
ak if j = jk and k ≤ n

0 else.

However, we obtain
∞∑
j=1

bjα
(n)
j

n−→∞−−−−→ a. �

This lemma leads us directly to the following Theorem:

Theorem 5.3.23. Let (bn)n∈N ∈ l1(N), bn > 0 be a sequence such the symbol
Q(x, ξ) :=

∑∞
j=1 bj(〈x , ej〉20 + 〈ξ , ej〉20) exists for all x, ξ ∈ H− and we have

|Q(x, ξ)| ≤ c ‖x‖a + ‖ξ‖a (a ∈ N). Then for c ∈ R we have

σ(Q(X,D)± c id) = {λ ∈ R λ ≥
∞∑
j=1

bj ± c}.

Proof. By Theorem 5.3.21 we obtain

{2
∞∑
j=1

bjαj +
∞∑
j=1

bj ± c : α ∈ NN0 } ⊂ σ(Q(X,D)± c id),

since 2
∑∞

j=1 bjαj +
∑∞

j=1 bj ± c are the eigenvalues of σ(Q(X,D) ± c id). But
now Lemma 5.3.22 implies that

{λ ∈ R λ ≥
∞∑
j=1

bj ± c} ⊂ σ(Q(X,D)± c id),

since the spectrum of a closed operator is closed. On the other hand in view of
Theorem 5.3.21 it is clear that for λ <

∑∞
j=1 bj±c the operator λid− (Q(X,D)±

c id) is invertible. But this proves our theorem. �
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5.4. Ψ∗-Algebras generated by a representation of the Heisenberg
Group

Let us start this section with a theorem which is due to Cordes

Theorem 5.4.1 (Cordes 1979, manuscripta mathematica (see [29])).
Let X = L2(R, λ). For A ∈ L (X) we set

αr,s(A) := π̃(r, s, 0)Aπ̃(r, s, 0)∗,

where (r, s, 0) ∈ H1 and denote by

C∞(α,L (X))

= {A ∈ L (X) : αr,s is C∞ with respect to(r, s) ∈ R2 and values in L (X)}.
Then

C∞(α,L (X)) = Ψ0
0,0(R),

where Ψ0
0,0(R) denotes the classical Hörmander class in one dimension.

Now let us note some general facts about smooth elements. We will follow
[96, Apendix 3] resp. [11, section 1.3] and use the notations of section 3.1.

Let H be a Hilbert-Space and αt(t ∈ R) a strongly continuous one parameter
group on H and denote by

V : H ⊇ D(V ) := {x ∈ H : ∃V x := lim
t→0

αtx− x

t
∈ X} −→ X : x 7−→ V x

its in�nitesimal generator. Then V is a closed, densely de�ned linear operator
on H satisfying αt(D(V )) ⊆ D(V ) and αtV = V αt. Using the notations of
section 3.1 we set ∆ := {δV }, where δV is the closed derivation given by δV :
L (H) ⊇ B(V ) −→ L (H) : a 7−→ δV (a). If the group α is unitary then δV
is a ∗-derivation. Let (A, (qj)j∈N0) be a sub multiplicative Ψ∗-algebra which is
continuously embedded in L (H). Then we set Ψα

n[A] := Ψ∆
n .

Let us consider the map ϕ de�ned by

ϕ : R −→ L (L (H)) : t 7−→ [ϕ(t) : L (H) 3 a 7−→ αtaα
−1
t ].

For a ∈ L (H) we denote by ϕa : R −→ (H) the map

ϕα(t) := ϕ(t)(a) = αtaα
−1
t .

We assume that A ⊂ L (H) is a C∗-algebra in L (H) with the induced topology
and let the maps ϕa only have values in A for all a ∈ A. For n ∈ N0 we set

Ψn
α[A] := {a ∈ A : ϕa ∈ C n(R,A)} and Ψ∞

α [A] := ∩j∈NΨj
α[A].

Then we obtain the following

Theorem 5.4.2. Let (αt)t∈R be a C0 group and A ⊂ L (H) be a C∗-subalgebra
in L (H). Then

(i) Ψn
α[A] ⊂ Ψα

n[A];
(ii) Ψα

n+1[A] ⊂ Ψn
α[A];
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(iii) Ψ∞
α [A] = Ψα

∞[A].

Proof. See [11, Theorem 1.3.1]. �

Before we return to our in�nite dimensional Heisbenberg group let us state
the following theorem which is due to Goodmann (cf. [47, Theorem 1.1]).

Theorem 5.4.3. Let G be a Lie Group, g the corresponding Lie algebra with
basis X1, . . . Xn and π be a strongly continuous unitary representation of G on a
Hilbert Space H. Let us denote by dπ(Xi) the in�nitesimal generator of the semi
group π(exp(tXi). Assume for that a ∈ H a ∈ dπ(Xi)

m for all i = 1, . . . , n and
m ∈ N. Then a ∈ C∞(π,H).

Now let us return to the in�nite dimensional Heisenberg group.

Lemma 5.4.4. Let (r, s, t) ∈ H+ and π(r, s, t) be de�ned as in 5.2.6. Then we
have

π(r, s, t)Aπ(r, s, t)∗ = π(r, s, 0)Aπ(r, s, 0)∗

for all A ∈ L2(H−, γ).

Proof. According to De�nition 5.2.6 we have π(r, s, t) = eitπ(r, s, 0). In
addition Theorem 5.2.10 implies that

π(r, s, t)∗ = π(r, s, t)−1 = π(−r,−s,−t),
which yields

π(r, s, t)Aπ(r, s, t) = eitπ(r, s, 0)Ae−itπ(r, s, 0)∗ = π(r, s, 0)Aπ(r, s, 0)∗. �

As a direct consequence of Lemma 5.4.4 we obtain

Corollary 5.4.5. For (r, s, t) ∈ H+ and (r′, s′, t′) ∈ H+ we have

π(r, s, t)π(r′, s′, t′)Aπ(r′, s′, t′)∗π(r, s, t)∗

= π(r′, s′, t′)π(r, s, t)Aπ(r, s, t)∗π(r′, s′, t′)∗

Definition 5.4.6. For (t, s, 0) ∈ H+ and A ∈ L (L2(H−, γ)) we de�ne ac-
cording to the general theory

ϕr,s(t)(A) := π(tr, ts, 0)Aπ(tr, ts, 0)∗ = U
(r,s,0)
t A(U

(r,s,0)
t )∗

and
Ψr,s := Ψ∞

U
(r,s,0)
t

[L (L2(H−, γ))].

Then we obtain that Ψr,s is a Ψ∗-algebra. In addition in view of Goodman's
theorem we set

ΨU :=
⋂
j∈N

(Ψej ,0 ∩Ψ0,ej).

Since the intersection of Ψ∗-algebras is a Ψ∗-algebra we �nd that ΨU is a Ψ∗-
algebra.
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Proposition 5.4.7. For (r, s, 0) ∈ H+ we have

π(r, s, 0) = a(X,D),

where a(x, ξ) = ei〈s , x〉0+i〈r , ξ〉0 =
∫
H2

+
ei〈x

′ , x〉0+i〈p′ , ξ〉0d(δ(s,r)(x
′, p′)).

Proof. Let a(x, ξ) = ei〈s , x〉0+i〈r , ξ〉0 and f ∈ C∞
int(H−). Then Proposition

3.2.6 yields

a(X,D)f(x) =

∫
H2

+

Wx′
2
Up′Wx′

2
f(x)d(δ(s,r)(x

′, p′))

=

∫
H2

+

ei
〈x′ , x〉0

2

√
%p′(x)e

i
〈x′ , x+p′〉0

2 d(δ(s,r)(x
′, p′))

=
√
%r(x)e

i〈s , x〉0+
〈r , s〉0

2 f(x+ r) = π(r, s, 0)f(x),

which shows our proposition since C∞
int(H−) ⊂ L2(H−, γ) dense. �

Combining now Proposition 5.4.7 and Theorem 3.5.11 we obtain

Theorem 5.4.8. For m ∈ R let Hm be de�ned as in 3.3.3. Then π leaves
Hm invariant, i.e.

π(H+)Hm ⊆ Hm.

In addition for (r, s, 0) ∈ H+ we �nd that π(r, s, 0) ∈ L (Hm).

This theorem implies that for (r, s) ∈ H2
+ and A ∈ L (Hm) we have

ϕr,s(t)(A) ∈ L (Hm(H−)). Let us �nally de�ne generalized Hörmander classes
given by smooth elements.

Definition 5.4.9. Let (r, s, 0) ∈ H+ �xed, 0 < ε ≤ 1 and %, δ ∈ R. Then we
set

Ψε,%,δ := {A ∈ Aε : [(r, s, t) 7→ ∂αs ∂
β
r ϕr,s(A) ∈ C (H+,L (Hm, Hm+%|α|−δ|β|))

∀m ∈ R∀α, β ∈ NN0 }.
Theorem 5.4.10. Ψε,%,δ is a symmetric ans spectrally invariant subalgebra of

L (L2(H−, γ)).

Proof. Let us �rst prove that Ψε,%,δ is spectrally invariant. We will do this
in three steps. Thus let A ∈ Ψε,%,δ, such that A−1 ∈ L2(H−, γ) Then we obtain
A ∈ Aε.

(i) For (r, s, 0) ∈ H+ we have

ϕr,s(A
−1) = π(r, s, 0)A−1π(r, s, 0)−1

= (π(−r,−s, 0)Aπ(−r,−s, 0)−1)−1 = (ϕ−r,−s(A))−1

But since the inversion is continuous in L (Hm) we obtain

[(r, s, t) 7→ ϕr,s(A
−1)] ∈ C (H+,L (Hm)).
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(ii) Now let t ∈ R and ej be �xed. Then we �nd

1

t
(ϕr+tej ,s(A

−1)− ϕr,s(A
−1))

= −ϕr+tej ,s(A−1)
ϕr+tej ,s(A)− ϕr,s(A)

t
ϕr,s(A

−1)

t−→0−−−→ −ϕr,s(A−1)∂r,ejϕr,s(A)ϕr,s(A
−1).

(iii) Now we obtain by induction for all α, β ∈ NN0
∂αs ∂

β
r ϕr,s(A

−1)

=
∑

α(1)+...+α(l)=α

β(1)+...+β(l)=β

cα(1),...,α(l),β(1),...,β(l)ϕr,s(A
−1)(∂α

(1)

s ∂β
(1)

r ϕr,s(A))ϕr,s(A
−1)

(∂α
(2)

s ∂β
(2)

r ϕr,s(A))ϕr,s(A
−1) · · ·

(∂α
(l)

s ∂β
(l)

r ϕr,s(A))ϕr,s(A
−1),

where cα(1),...,α(l),β(1),...,β(l) ∈ Z. This shows that Ψε,%,δ is spectrally in-
variant.

To prove that Ψε,%,δ is symmetric let us note that

1

t
(ϕ(r + tej, s)(A

∗)ϕ(r + tej, s)
−1 − ϕ(r, s)(A∗)ϕ(r, s)−1)

= −(
1

−t
(ϕ(−r − tej,−s)(A∗)ϕ(−r − tej, s)

−1 − ϕ(r, s)(A∗)ϕ(r, s)−1))∗.

Thus our assertion follows again by induction. �

Proposition and Definition 5.4.11. For m ∈ R we set

Aε,m := Λm/2AεΛm/2

and

Ãε :=
⋃
m∈R

Aε,m ⊆
⋃
m∈R

⋂
s∈R

L (Hs, Hs−m).

Moreover, let us assume that A : H∞ → H∞ is invertible and A ∈ Ãε then
A−1 ∈ Ãε, more precisely, if A−1 has order −m then A−1 ∈ Aε,−m.

Proof. Let A : H∞ → H∞ be invertible and A ∈ Ãε,m. Then we �nd that
Λ−m/2AΛ−m/2 ∈ Aε. But since Aε is a Ψ∗-algebra we �nd that Λm/2A−1Λm/2 =
(Λ−m/2AΛ−m/2)−1 ∈ Aε and thus A−1 ∈ Aε,−m. But this shows our assertion. �
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Definition 5.4.12. Let (r, s, 0) ∈ H+ �xed, 0 < ε ≤ 1 and m, %, δ ∈ R. Then
we set

Ψm
ε,%,δ := {A ∈ Aε,m : [(r, s, t) 7→ ∂αs ∂

β
r ϕr,s(A) ∈ C (H+,L (Hs, Hs−m+%|α|−δ|β|))

∀s ∈ R∀α, β ∈ NN0 }
and

Ψ∞
ε,%,δ :=

⋃
m∈R

Ψm
ε,%,δ.

Theorem 5.4.13. For every A ∈ Ψ∞
ε,%,δ being invertible on H

∞ with order −k
we have A−1 ∈ Ψ∞

ε,%,δ.

Proof. The proof of this theorem is similar to 5.4.10. We will do it again in
three steps. Thus let A ∈ Ψm

ε,%,δ, such that A−1 exists on H∞. Then be 5.4.11 we
obtain A ∈ Aε,m.

(i) For (r, s, 0) ∈ H+ we have

ϕr,s(A
−1) = π(r, s, 0)A−1π(r, s, 0)−1

= (π(−r,−s, 0)Aπ(−r,−s, 0)−1)−1 = (ϕ−r,−s(A))−1.

Thus we obtain

[(r, s, t) 7→ ϕr,s(A
−1)] ∈ C (H+,L (Hs−k, Hs)).

(ii) Now let t ∈ R and ej be �xed. Then we �nd

1

t
(ϕr+tej ,s(A

−1)− ϕr,s(A
−1))

= −ϕr+tej ,s(A−1)
ϕr+tej ,s(A)− ϕr,s(A)

t
ϕr,s(A

−1)

t−→0−−−→ −ϕr,s(A−1)∂r,ejϕr,s(A)ϕr,s(A
−1).

Since ϕr,s(A−1) maps Hs−k to Hs and ∂r,ejϕr,s(A) from Hs to Hs−k−δ

we obtain [(r, s, t) 7→ ∂r,ejϕr,s(A
−1) ∈∈ C (H+,L (Hs−k, Hs−δ).

(iii) By induction we obtain the same formula as in the proof of 5.4.10(iii).
In addition, using the same arguments as above we �nd that

[(r, s, t) 7→ ∂αs ∂
β
r ϕr,s(A

−1) ∈ C (H+,L (Hs−k, Hs+%|α|−δ|β|)).

But this is our assertion.
�

Remark 5.4.14. According to Remark 4.5.25 we can attach to every operator
A ∈ Ψε,%,δ an eξ-symbol. Moreover, if H− = Rn or A = B ⊗ id, where B ∈
L (L2(Rn, γn)) we get our operator in Ψε,%,δ back as pseudodi�erential operator
de�ned as in 4.1.5.





CHAPTER 6

Invariant measures for special groups of homeomorphisms

on in�nite dimensional spaces

Given a topological space X with σ-�nite Borel measure µ, a locally compact
group G and a representation B of G in the group of all homeomorphisms of X,
we examine how to construct a Borel measure µs on X which is invariant under
B(G) (Lemma 6.1.9). In many cases this construction leads to a non-trivial
representation of G on Lp(X,µs). We de�ne the notion of a NFp measure.
Under some additional conditions on G, X and the representation B we show
that in the case where µ has the NFp-property, the symmetrized measure µs is a
NFp measure, as well (Theorem 6.1.18). Finally we give some examples and an
application of our work leads to the construction of spectrally invariant algebras
(Ψ∗- or Ψ0-algebras, cf. [56], [65])) of C∞-elements in operator-algebras on Lp

and L2-spaces.
This chapter is a joint work with Wolfram Bauer; the main idea arose when

we considered the following two problems:

a) Let (W,µ) be an open subset of a Hilbert space H with Gaussian mea-
sure µg, where µ is the restriction of µg to W . Furthermore, let (Bt)t∈G
be a (semi) group of homeomorphisms of W where G is a compact or
locally compact group. Is it possible to �nd a measure µ̃ on W invari-
ant with respect to (Bt), namely µ̃(Bt(A)) = µ̃(A) for all µ−measurable
sets A ⊂ W and t ∈ G such that µ̃(A) > 0 for all open nonempty sets
A ⊂ W?

b) Let Hm be a product of an in�nite dimensional Hilbert-space H with a
Gaussian measure µ (e.g. product of suitable Sobolev spaces). We as-
sume that H ⊆ C(Ω,C), where Ω is the closure of an open and bounded
subset of Rn with nice boundary. Let U be a region in Cm and G a
closed subgroup of the group Aut(U) of all biholomorphic maps of U .
Let W := {f ∈ Hm : f(Ω) ⊂ U}. Is it possible to �nd an invariant
measure µ̃ on W such that µ̃(α(A)) = µ̃(A) for all µ-measurable sets
A ⊂ W and all α ∈ G such that µ̃(A) > 0 for all open nonempty sets
A ⊂ W?

Let (M, g) be a Riemannian manifold with metric g. Then it is well-known
that each isometry Φ onM leaves the Riemannian measuremR invariant (see [75],
p. 85) and so Φ leads to an isometry of the spaces Lp(M,mR) where 1 ≤ p <∞.
In particular, each semi group (αt)t≥0 of isometries on M can be represented

195
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as a semi group of isometric composition operators (Ct)t≥0 on Lp(M,mR) by
setting Ct(f) := f ◦ αt for f ∈ Lp(M,mR). In the case where (Ct)t≥0 is strongly
continuous it follows from the general theory of semi groups on Banach spaces
that it de�nes a closed generator A which is connected to the geometry of M .

If the underlying measure space X is not locally compact one has to be more
careful about the existence of invariant measures even if we deal with quite nat-
ural groups of isomorphisms acting on X. It is well-known that on an in�nite
dimensional separable Hilbert space H there is no translation invariant Borel
measure µ such that bounded sets have �nite measure and it holds µ(U) > 0
for all open nonempty sets U ⊂ H (see [94]). Hence the group action of H on
itself by translation does not lead to an unitary representation of H in Lp(H,µ)
for any Borel measure µ on H with the described properties. Moreover, Oxtoby
(cf.[112]) showed, that on a complete separable metric group G, which is not
locally compact, there exists no non-trivial left-invariant Borel measure µ such
that µ is locally �nite or µ(K) <∞ for all K ⊂ G compact.

In this paper we consider the case in between. A locally compact space G
acts on a topological space X which not necessarily has to be locally compact.
More precisely, starting with a measure µ on X and a representation B : G →
Homeo(X) of a locally compact group G into the group of all homeomorphisms
on X, we adapt µ such that it becomes invariant under all homeomorphisms
Bt ∈ B(G) (Lemma 6.1.9). This construction is quite general and, in particular, it
applies to the case whereX is an open subspace of a separable in�nite dimensional
Hilbert space or of a DFN -space (the dual space of a nuclear Frèchet space)
(Theorem 6.1.16). As a result we obtain an answer to problem a). The de�nitions
will be as follows:

Denote by m a left invariant Haar measure m on G, which is �nite if and
only if G is compact (in this case we choose m such that m(G) = 1). Let
µ be any positive and σ-�nite Borel measure on X and assume that the map
G 3 t 7→ µ(B−1

t C) ∈ [0,∞] is Borel-measurable on G for all sets C in the Borel-
σ-algebra B(X), then de�ne µs(C) :=

∫
G
µ(B−1

t C)dm(t). We obtain a measure
µs which is invariant under the action of G on X (e.g. µs(B

−1
t C) = µs(C) for all

t ∈ G) and �nite in the case where µ is �nite and G is compact (in general µs not
even has to be σ-�nite). We show that the de�nition of µs is meaningful if X is
a polish space (i.e. complete metric space with countable base of topology) or an
open set in a DFN -space. Let B̃t denote the induced group action on Lp(X,µs)
de�ned by the composition operators B̃tf := f ◦ Bt for f ∈ Lp(X,µs). Then in
many cases (B̃t)t∈G is a strongly continuous group representation if (Bt)t∈G is so
(Proposition 6.1.19, 6.1.20, 6.1.24). Here we use some measure theoretic methods
and theorems, e.g. Kuratowski's Theorem and the fact that every open subset U
of a DFN -space can be written as a countable union of compact metric spaces.

Our construction produces closed operators attached to in�nite dimensional
spaces (or manifolds). This leads to Fréchet operator algebras with spectral



6 Invariant measures 197

invariance ([67], [56], [98], [99]) respectively non-commutative geometries with
prescribed properties using systems of closed operators also in the singularities
of the underlying space.

Let F ⊂ C(X) be a subspace of all continuous complex-valued functions on X.
We de�ne the notion of a NFp measure µ. Roughly speaking µ is characterized
by the property that the embedding F̃ := F ∩ Lp(X,µ) ↪→ C(X) is continuous
if F̃ carries the Lp(X,µ)-topology and C(X) is equipped with the compact-open
topology (topology of uniform convergence on all compact subsets of X). Hence in
the case where C(X) is complete we can consider the closure F̃c of F̃ in Lp(X,µ)
as a space of continuous functions on X.

We give conditions on X, the group G and the representation B under which
the described process of symmetrization of a given NFp measure µ again de�nes
a NFp measure µs (Theorem 6.1.18). Starting with a B(G)-invariant subspace
F ⊂ C(X) (i.e. B̃t(F) ⊂ F for all t ∈ G) this enables us to consider groups of
composition operators acting on closed subspaces of Lp(X,µs).

In the case where p = 2 we can de�ne the orthogonal projection from L2(X,µs)
onto F̃c. We show that P and all B̃t commute as operators on L2(X,µs) (Corol-
lary 6.3.3). We denote by T (S) ⊂ L(F̃c) the C∗-Toeplitz algebra generated by
operators Tf := PMf on F̃c with symbols f in a space S of bounded measur-
able and B-invariant symbols. It turns out that T (S) is invariant under the
isomorphisms Bt ∈ L(L(L2(X,µ))) de�ned by Bt(A) := B̃tAB̃t−1 where t ∈ G.
This fact in connection with the general theory of [67], [56], [98] and [99] gives
the possibility to construct Ψ∗-algebras in T (S) de�ned by iterated commutators
with the in�nitesimal generator of (Bt)t∈G.

We give several examples how to obtain homeomorphisms (Bt)t∈G which can
be used in the constructions described above. In particular, we discuss the case
of measures on �nite products of Hilbert spaces which are embedded in a space
of continuous function, e.g. let us take Sobolev-spaces of continuous functions.
In case of our constructions we give an answer to problem b) mentioned above.

By quite similar methods we show that we can lift strongly continuous semi
groups (Bt)t≥0 of invertible operators on Hilbert spaces to semi groups (B̃t)t≥0 of
composition operators on L2(H,µs,α) (Theorem 6.1.27). Here µs,α (α > 0) is a
�nite Borel measure on H arising from an in�nite dimensional Gaussian measure.
The semi group (B̃t)t≥0 fails to be unitary but we obtain ‖B̃t‖ ≤ e

α
2
t for all t ≥ 0.

More general, instead of H we can take open or closed subsets U of H and assume
that (Bt)t≥0 is a semi group of homeomorphism of U .

Finally, by a di�erent method using the eigen-functions of the Beltrami-
Laplace operator we show how to construct Gaussian measures on L2-spaces over
a compact and connected Riemannian manifolds M which are invariant under
all composition operators with isometries Φ on M (Proposition 6.2.12, Theorem
6.2.13). This construction is closely related to the theory of dynamical systems.
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6.1. Symmetric Borel measures on topological spaces

Let (X,Σ1, µ) and (Y,Σ2,m) be measure spaces. We denote by M(X, Y ) the
space of all measurable functions from X to Y . Let M−1(X, Y ) be the subspace
of M(X,Y ) consisting of all invertible functions h : X → Y such that h as well
as its inverse are measurable. We often write M(X) (resp. M−1(X)) instead
of M(X,X) (resp. M−1(X,X)). Let Q ∈ M(X), then the measure µ is called
Q-invariant (or Q-preserving) i� µQ = µ where µQ(M) := µ(Q−1M) for all
M ∈ Σ1. Generalizing the notation of Q-invariance to families of measurable
maps, we de�ne:

Definition 6.1.1. Let Q ⊂ M(X), then we call µ a Q-invariant (or Q-
preserving) measure, if µ is Q-invariant for all Q ∈ Q.

In the following we write Mσ(X) for the space of all σ-�nite measures on
X. In the case where X also is considered as a topological space the σ-algebra
Σ1 always will be the Borel σ-algebra B(X) on X. We denote by Σ1 ⊗ Σ2 the
smallest σ-algebra in X × Y such that both projections PX : X × Y → X and
PY : X × Y → Y are measurable.

Assume in addition that X is a topological space and F ⊂ C(X) is a lin-
ear subspace of the algebra of continuous complex-valued functions on X. The
following de�nition can also be found in [54].

Definition 6.1.2. Let p ≥ 1, then we call µ ∈ Mσ(X) a NFp measure i�
for each compact set K ⊂ X there is a compact set H ⊂ X with K ⊂ H and
C > 0 such that for all f ∈ F

(105) sup
{
|f(x)| : x ∈ K

}
≤ C

∫
H

|f(z)|pdµ(z)

 1
p

holds. The space of all NFp measures on X is denoted by MFp(X). We call X
a NFp-space if MFp(X) 6= ∅.

Example 6.1.3. We give examples for NFp-spaces X, where F := H(X)
is the spaces of holomorphic functions on X. (For the notion of holomorphic
functions on topological spaces see e.g. [36].)

(a) Let U ⊂ Cn ∼= R2n be open and denote by V the usual Lebesgue
measure on U . Then for 1 ≤ p ≤ 2 and F := H(U) it is well-known
that V is a NFp measure and so U is a NFp-space.

(b) Let P (x,D) be a hypo-elliptic di�erential operator. Then the solution
space of P (x,D) is a NF2-space (cf. [54]).

(c) Let E be a DFN -space (i.e. the dual space of a nuclear Fréchet space
with the strong topology) and Ω ⊂ E be open in E. For the space
F := H(Ω) and 1 ≤ p ≤ 2 it can be shown that MFp(Ω) 6= ∅. Hence
Ω is a NFp-space. (see [9], [133]).
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Finally we remind of the notion of group representations. Let G be a locally
compact group, then by Homeo(X) we denote the space of all homeomorphisms
of X. A group homomorphism B : G 3 t 7→ Bt ∈ Homeo(X) is called a
representation of G in Homeo(X). The representation B is said to be continuous
(resp. measurable) i� the map (t, x) 7→ Btx of G×X into X is continuous (resp.
B(G×X)− B(X)-measurable).

Now we explicitly compute how a weighted Lebesgue measure on an open
subset of Rn can be adapted to a given group representation. We are making use
of the transformation formula for the Lebesgue integral which in general is not
available for arbitrary measure spaces.

Fix n ∈ N, let Ω ⊂ Rn be open and G a compact group with unit e ∈ G. By
Di�(Ω) we denote the group of all di�eomorphisms of Ω. Assume that B : G→
Di�(Ω) is a continuous representation of G in Di�(Ω). Starting with a weighted
Lebesgue measure µ ∈Mσ(Ω) we want to construct a measure µs ∈Mσ(Ω) which
is B(G)-invariant. This construction arises from a procedure of integration of µ
along B(G). For i = 1, · · · , n we denote by πi : Rn → R the projection on the
i-th component. Then we assume that all the maps given in (i) and (ii):

(i) Ω 3 z 7→
[
G 3 t 7→ πi ◦Bt−1z

]
∈ C(G,R), for i = 1, · · · , n;

(ii) Ω 3 z 7→
[
G 3 t 7→ ∂

∂zj
{πi ◦Bt−1z}

]
∈ C(G,R) for i, j = 1, · · · , n

are well-de�ned and continuous on Ω if C(G,R) carries the topology of uniform
convergence on G. Let m be the unique translation-invariant Haar measure on
G with m(G) = 1 and assume that g : Ω → R+ is a positive and continuous
weight-function. Let us consider µ ∈ Mσ(Ω) de�ned by dµ = gdV , where V is
the usual Lebesgue measure on Ω. We show that a B(G)-invariant measure µs
on Ω is given by dµs := fdV where

(106) f(z) :=

∫
G

g ◦Bt−1(z)
∣∣∣ det[DzBt−1 ](z)

∣∣∣dm(t), z ∈ Ω.

Lemma 6.1.4. Let Ω ⊂ Rn be open and assume that µs ∈ Mσ(Ω) is de�ned
by dµs = fdV . Then µs is B(G)-invariant.

Proof. Let t0 ∈ G and A ∈ B(Ω) be a Borel set in Ω. Then, using the
transformation formula for the Lebesgue integral, we �nd with the characteristic
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function χA of A:

µs(B
−1
t0
A)

=

∫
Ω

χB
t−1
0
A(z)f(z)dV (z)

=

∫
G

∫
Ω

χA ◦Bt0(z)g ◦Bt−1(z)
∣∣∣ det[DzBt−1 ](z)

∣∣∣dV (z)dm(t)

=

∫
G

∫
Ω

χA(z)g ◦B(t0t)−1(z)
∣∣∣ det[DzBt−1 ](Bt−1

0
(z)) det[DzBt−1

0
](z)
∣∣∣dV (z)dm(t)

=

∫
Ω

χA(z)

∫
G

g ◦B(t0t)−1(z)
∣∣∣ det[DzB(t0t)−1 ](z)

∣∣∣dm(t)dV (z)

=

∫
Ω

χA(z)f(z)dV (z) = µs(A).

Here we have used the translation invariance ofm onG in the last equality. �

The question arises whether or not the measure µs is a NFp measure for a
subspace F ⊂ C(Ω), whenever µ has this property. We can prove:

Lemma 6.1.5. Let X be a topological space, F ⊂ C(X) a subspace and µ ∈
MFp(X) where p ≥ 1. If g : X → R+ is a continuous positive function and µ̃ is
de�ned by dµ̃ = gdµ, then µ̃ ∈MFp(X) as well.

Proof. Fix a compact set K ⊂ X. Then, by assumption, there is a compact
set H ⊂ X such that K ⊂ H and C > 0 with

sup
{
|f(x)| : x ∈ K

}
≤ C

∫
H

|f(z)|pdµ(z)

 1
p

.

for all f ∈ F . De�ne ε := inf{|g(z)| : z ∈ H} > 0, then inequality (105) holds
with µ̃ instead of µ and Cε−1 > 0 instead of C. �

Remark 6.1.6. From Lemma 6.1.5 it is easy to see that for each continuous
function h : X → C and each �nite measure µ ∈MFp(X) it can be constructed
µ̃ ∈ MFp(X) such that h is µ̃-integrable (use the weight g(z) := (1 + |h(z)|)−1

for all z ∈ X).

For the next lemma let us assume that Ω ⊂ R2n ∼= Cn. Then we obtain with
our notations above:

Lemma 6.1.7. Assume that g : Ω → R+ is uniformly continuous. Then µ as
well as µs belong to MFp(Ω) where F := H(Ω) is the space of all holomorphic
functions on Ω and 1 ≤ p ≤ 2.
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Proof. According to example (a) we have V ∈ MFp(Ω) for 1 ≤ p ≤ 2. In
order to show that µs is a NFp measure it is enough to prove that f : Ω → R+

in (106) is continuous and positive (see Lemma 6.1.5). This easily follows from
assumptions (i) and (ii) on B. �

If we deal with a topological space X (e.g. X is an in�nite dimensional
Hilbert space or a DFN -space) in general we can not directly make use of the
transformation formula. Let us �nd an equivalent de�nition for µs where µ is a
�nite Borel measure on X. For a Borel set A ∈ B(Ω) where Ω ⊂ Rn is open we
have from our de�nitions above (dµ = gdV ):

µs(A) =

∫
Ω

∫
G

χA(z)g ◦Bt−1(z)
∣∣∣ det[DzBt−1 ](z)

∣∣∣dm(t)dV (z)

=

∫
G

∫
Ω

χA ◦Bt(z)g(z)
∣∣∣ det[DzBt−1 ](Btz) · det[DzBt](z)

∣∣∣dV (z)dm(t)

=

∫
G

∫
Ω

χBt−1A(z)
∣∣∣ det[DzBt−1t](z)

∣∣∣g(z)dV (z)dm(t)

=

∫
G

µ(B−1
t A)dm(t).

We have used that Bt−1t = Be = id. The expression on the right hand side
also makes sense for a wider class of Borel measures µ̃ on a topological space X,
provided that the mapping G 3 t 7→ µ̃(B−1

t A) ∈ [0,∞] is B(G)-measurable.

Definition 6.1.8. Let (X,Σ1, µ) and (Y,Σ2,m) be σ-�nite measure spaces.
Assume that there is a map B : Y →M−1(X) such that

(107) Y 3 t 7→ µ(B−1
t A) ∈ [0,∞]

is Σ2- measurable for all A ∈ Σ1. Then we de�ne the symmetrization µs of µ
w.r.t. to B to be the integral µs(A) :=

∫
Y
µ(B−1

t A)dm(t).

In our applications we often assume that X is a topological space with Borel
σ-algebra B(X) and µ is a �nite or σ-�nite Borel measure on X. For the measure
space (Y,Σ2,m) we choose a compact or locally compact group G = Y with the
translation invariant Haar measure m. The mapping B : G → M−1(X) is a
group homomorphism from G into Homeo(X).

Lemma 6.1.9. The symmetrization µs de�nes a Borel measure on Σ1. If in
addition Y = G is a locally compact group with left-invariant Haar measure m
and Σ2 := B(G) then µs is B(G)-invariant for a group homomorphism B : G→
M−1(X).

Proof. By assumption the map Y 3 t 7→ µ(B−1
t A) ∈ [0,∞] is Σ2-measurable

for any set A ∈ Σ1 and we conclude that µs is well-de�ned on Σ1. We prove the
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σ-additivity of µs. Let (Ai)i∈N ⊂ Σ1 be a sequence such that Ai∩Aj = ∅ for i 6= j.
Because for each t ∈ G the map Bt is one-to-one it follows B

−1
t Ai ∩ B−1

t Aj = ∅
for i 6= j and B−1

t [
⋃
iAi] =

⋃
iB

−1
t Ai. Hence by the σ-additivity of µ we have

(108) Y 3 t 7→
∑
i

µ(B−1
t Ai) = µ

(
B−1
t

[⋃
i

Ai

])
∈ [0,∞]

and the map (108) is Σ2-measurable. Now, the theorem of dominated convergence
applied to µ implies:

µs

(⋃
i

Ai

)
=

∫
G

∑
i

µ(B−1
t Ai)dm(t) =

∑
i

∫
G

µ(B−1
t Ai)dm(t) =

∑
i

µs(Ai).

In the case where Y = G is a locally compact group with left-invariant Haar
measure m and B : G → M−1(X) is a group homomorphism we can prove the
B(G)-invariance of µs. Fix t0 ∈ G and A ∈ Σ1, then it follows that

µ
Bt0
s (A) = µs(Bt−1

0
A) =

∫
G

µ(Bt−1Bt−1
0
A)dm(t) =

∫
G

µ(B(t0t)−1A)dm(t) = µs(A)

by the left-translation invariance of the Haar measure m on G. �

With the notations of De�nition 6.1.8 we want to �nd conditions under which
the map (107) is Σ2- measurable on Y for all A ∈ Σ1.

Lemma 6.1.10. Let F : Y × X → X with F (t, x) := Btx be Σ2 ⊗ Σ1-Σ1-
measurable. Then Y 3 t 7→ µ(B−1

t A) ∈ [0,∞] is Σ2-measurable for each A ∈ Σ1.

Proof. Let A ∈ Σ1. By our assumption χA ◦ F : Y × X → R is Σ2 ⊗ Σ1-
measurable. Using Tonelli's theorem it follows that:

Y 3 t 7→
∫
X

χA ◦ F (t, x)dµ(x) =

∫
X

χB−1
t A(x)dµ(x) = µ(B−1

t A) ∈ [0,∞]

is a Σ2-measurable function (see [8]). �

We conclude that under the assumptions of Lemma 6.1.10 the symmetrization
µs of µ is a well-de�ned measure on (X,Σ1) (which does not have to be σ-�nite
again).

Let Ω ⊂ Rn be open, g : Ω → R+ a continuous and strictly positive weight
function and µ ∈ Mσ(Ω) de�ned by dµ = gdV . Given a continuous represen-
tation B of a compact group G in Di�(Ω) with (i) and (ii) we have shown (see
Lemma 6.1.4) that the B(G)-invariant measure µs is absolutely continuous w.r.t.
the Lebesgue measure. The following example points out that this property does
not hold in the more general setting of De�nition 6.1.8. We give a �nite mea-
sure µ on a Hilbert space H with the property µ(U) > 0 for all open subsets
U ⊂ H and a group representation B : R → Homeo(H) such that µ and µs are
orthogonal ( i.e. there is X ⊂ H with µ(X) = 1 and µs(X) = 0, see [35, p. 60]).
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Example 6.1.11. Let H1, H2 be separable in�nite dimensional Hilbert spaces.
In addition we assume that there is a dense and continuous embedding I : H1 ↪→
H2. Fix a Gaussian measure µ1 on H1 with the property µ1(U) > 0 for all open
subsets U ⊂ H1 and de�ne the measure µ2 on H2 by µ2(A) := µ1(A ∩ H1) for
all A ∈ B(H2). Then µ2 = µI1 and it is well known (see [35], p. 44) that µ2 is
a Gaussian measure on H2. Moreover, µ2(H1) = µ1(H1) = 1 and µ2(V ) > 0 for
all open sets V ⊂ H2 because H1 is dense in H2. Choose 0 6= a ∈ H2 \ H1 and
consider the representation (Bt)t∈R of R in H2 de�ned by Bty := y + ta for all
y ∈ H2. Because of H1 + ta ∩ H1 = ∅ for t 6= 0 and µ2(H1) = µ2(H2) = 1 it
follows µ2(H1 + ta) = 0 for all t 6= 0. Let us choose (X,Σ1, µ) = (H2,B(H2), µ2)

and (Y,Σ2,m) = (R,B(R), e−t
2
dt) in De�nition 6.1.8. We obtain:

µ2 (H1) = 1, (µ2)s (H1) =

∫
R

µ2 (H1 + ta) e−t
2

dt = 0

and so the measures µ2 and (µ2)s are orthogonal on H2 with the desired proper-
ties.

Now let us describe how to integrate w.r.t µs. With the notations of De�nition
6.1.8 we assume that the function F : Y ×X → X with F (t, x) := Btx is Σ2⊗Σ1-
Σ1-measurable.

Lemma 6.1.12. Let f : X → [0,∞] be a non-negative Σ1-measurable nu-
merical function. Then with the product measure m ⊗ µ on Σ2 ⊗ Σ1 we have∫
X
fdµs =

∫
Y×X f ◦ Fd(m⊗ µ).

Proof. First let us assume that g : X → R+
0 is a Σ1-step-function on X.

Then we can write g =
∑n

i=1 αiχAi where Ai ∈ Σ1 and αi > 0 for i = 1, · · · , n.
It follows:∫

X

gdµs =
n∑
i=1

αiµs(Ai) =
n∑
i=1

αi

∫
Y

∫
X

χB−1
t Ai

(x)dµ(x)dm(t)(109)

=
n∑
i=1

αi

∫
Y

∫
X

χAi ◦ F (t, x)dµ(x)dm(t) =

∫
Y×X

g ◦ Fd(m⊗ µ).

For an arbitrary Σ1-measurable numerical function f ≥ 0 let (gn)n∈N be a
sequence of non-negative Σ1-step-functions with gn ↑ f . Then (gn ◦ F )n∈N is a
sequence of Σ2⊗Σ1-step-functions with gn ◦F ↑ f ◦F . From equation (109) the
assertion follows. �

In particular, under the conditions of Lemma 6.1.12 it follows that a Σ1-
measurable numerical function f : X → C is µs-integrable i� f ◦ F : G × X →
C is m ⊗ µ-integrable and the integrals coincide. Let (X,Σ1, µ) be a σ-�nite
measure space and let Y := G be a locally compact group with left-invariant
Haar measure m. If B : G → M−1(X) is a representation of G such that the
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function F : G×X → X in Lemma 6.1.10 is B(G)⊗Σ1- Σ1-measurable, then we
can prove:

Corollary 6.1.13. Let t1, t2 ∈ G and f : X → C be Σ1-measurable. Then
f ◦ Bt1 is µs-integrable i� f ◦ Bt2 is µs-integrable and in this case both integrals
coincide.

Proof. By Lemma 6.1.12, Fubini`s Theorem and using the translation in-
variance of m we �nd:∫
X

∣∣∣f ◦Bt1(z)
∣∣∣dµs(z) =

∫
G×X

∣∣∣f ◦Bt1 ◦Bt(z)
∣∣∣d(m⊗ µ)(t, z)

=

∫
X

∫
G

∣∣∣f ◦Bt1t(z)
∣∣∣dm(t)dµ(z)

=

∫
X

∫
G

∣∣∣f ◦Bt2t(z)
∣∣∣dm(t)dµ(z) =

∫
X

∣∣∣f ◦Bt2(z)
∣∣∣dµs(z).

Now the assertion follows from Tonelli`s theorem. �

For a topological space Y denote by O(Y ) the family of all open sets in Y .
A complete metric space Y with countable base X ⊂ O(Y ) (i.e. each A ∈ O(Y )
is union of sets in the countable system X ) is called polish space. In general the
inclusion B(Y ) ⊗ B(X) ⊂ B(Y ×X) holds, but if we restrict ourselves to polish
spaces or DFN -spaces we can prove:

Proposition 6.1.14. Let Y and X be polish spaces and consider Y ×X with
the product metric. Then we have B(Y ×X) = B(Y )⊗ B(X).

Proof. Fix countable bases Y (resp. X ) of open sets in Y (resp. in X).
Consider the system

Y ⊗ X :=
{
U × V : U ∈ Y and V ∈ X

}
⊂ O(Y ×X).

Then Y ⊗ X is a countable base for Y × X and so it generates B(Y × X). On
the other hand Y (resp. X ) generates B(Y ) (resp. B(X)) and so by Satz 22.1
in [8] we conclude that Y ⊗ X also generates B(Y )⊗ B(X). Hence B(Y ×X) =
B(Y )⊗ B(X). �

Now let us consider a DFN -space E (i.e. E is the strong dual of a nuclear
Fréchet space). In general there is no metric on E which induces the topology.
But it is known (see [109]) that each open subset U ⊂ E can be written as a
countable union of compact metric spaces each with countable base (we call U
hemi-compact).

Proposition 6.1.15. Let E be a DFN -space and U ⊂ E be open. If Y is a
polish space and Y ×U carries the product topology, then B(Y ×U) = B(Y )⊗B(U).



6 Invariant measures 205

Proof. Fix a fundamental system (Ki)i∈N ⊂ U of compact sets (i.e. Ki ⊂
Ki+1 for i ∈ N and U =

⋃
iKi, see [109]). Then for each i ∈ N the complete

metric space Ki has a countable base Ki ⊂ O(Ki) ⊂ B(U). Fix a countable base
Y ⊂ O(Y ) of Y and consider the system

Y ⊗K :=
⋃
i∈N

{
Z × Vi : Z ∈ Y and Vi ∈ Ki

}
.

Then Y⊗K is a countable system of sets in B(Y ×U). Indeed, if PY : Y ×U → Y
and PU : G× U → U denote the continuous projections, it follows:

Z × Vi = P−1
Y (Z) ∩ P−1

U (Vi) ⊂ B(Y × U), ∀ Z × Vi ∈ Y ⊗K.

LetW ⊂ Y ×U be open and (x,w) ∈ W . Then �x i ∈ N with (x,w) ∈ Y ×Ki.
Because W ∩ [Y ×Ki] is open in Y ×Ki and Y and Ki are metric spaces we �nd
Z × Vi ∈ Y ⊗K with

(x,w) ∈ Z × Vi ⊂ W ∩ [Y ×Ki] ⊂ W.

Hence W =
⋃
{Z × Vi ∈ Y ⊗ K : Z × Vi ⊂ W} is a countable union and so

B(Y ×U) is generated by Y ⊗K. Because Y generates the Borel-σ-algebra B(Y )
and

⋃
i{Vi : Vi ∈ Ki} generates B(U) it follows from Satz 22.1 in [8] that Y ⊗ K

also generates B(Y )⊗ B(U). �

The well-known fact, that each compact space with countable base is metriz-
able together with Lemma 6.1.10, Proposition 6.1.14 and 6.1.15 now leads to:

Theorem 6.1.16. Let G be a compact group with countable base and assume
that X is a polish space or an open set in a DFN -space. Let µ ∈Mσ(X) be �nite
and B : G → M−1(X) a measurable representation. Then for each A ∈ B(X)
the map G 3 t 7→ µ(B−1

t A) ∈ R+ is integrable over G.

Application to group representations.
We show, that under some continuity conditions on F : G × X → X with
F (t, x) := Btx the spaceMFp(X) is invariant under the symmetrization process.
In this section, if nothing else is said, we assume that X is a polish space or an
open subset of a DFN -space with the Borel σ-algebra. Moreover, let G be a
compact group with countable base and B : G→ Homeo(X) a continuous group
representation of G in the space of all homeomorphisms of X.

Definition 6.1.17. A subspace H ⊂M(X,C) is called B(G)-invariant i� for
all f ∈ H we have the inclusion {f ◦Bt : t ∈ G} ⊂ H.

For any H ⊂ M(X,C) consider HG := {f ◦ Bt : f ∈ H, t ∈ G}. Then HG is
a B(G)-invariant space and H is B(G)-invariant itself i� H = HG.

Theorem 6.1.18. Let F ⊂ M(X,C) be B(G)-invariant and µ ∈ MFp(X)
where p ≥ 1, then it follows that µs ∈MFp(X) as well.
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Proof. According to Theorem 6.1.16 µs is well-de�ned. Let K1 ⊂ X be
compact, then we conclude from the continuity of the representation B that the
spaces G×K1 ⊂ G×X and K2 := F (G×K1) ⊂ X are compact, as well. Because
µ ∈ MFp(X) and F is a B(G)-invariant space, there is C > 0 and a compact
set K3 with K2 ⊂ K3 ⊂ X such that for all f ∈ F and t ∈ G:

sup
{
|f ◦Bt(z)| : z ∈ K2

}p
≤ C

∫
K3

|f ◦Bt(u)|pdµ(u).

In particular, we have with z ∈ K1 and u := Bt−1z ∈ K2 for all t ∈ G the
estimate:

sup
{
|f(z)| : z ∈ K1

}p
≤ sup

{∣∣∣f ◦Bt(u)
∣∣∣ : u ∈ K2

}p
≤ C

∫
K3

|f ◦Bt(x)|pdµ(x).

Finally, integration over G together with m(G) = 1 and an application of Lemma
6.1.12 shows:

sup
{
|f(z)| : z ∈ K1

}p
≤ C

∫
G×K3

|f |p ◦ Fd(m⊗ µ) = C

∫
K3

|f(x)|pdµs(x)

and by de�nition it follows µs ∈MFp(X). �

Let p ≥ 1 and H ⊂ M(X,C) be a B(G)-invariant space. Assume that
B : G→M−1(X) is a measurable representation such that µs is well-de�ned the
for any µ ∈Mσ(X). According to Corollary 6.1.13 the spaceHp := H∩Lp(X,µs)
is B(G)-invariant. Denote by Hp the Lp-closure of Hp. Then we have shown that

(110) B̃ : G 3 t 7→
[
Hp ∈ f 7→ f ◦Bt ∈ Hp

]
∈ L(Hp)

is well-de�ned. For all t ∈ G the operators B̃t ∈ L(Hp) are bijective and isometric.
In the case where p = 2 we obtain a group of unitary operators. Next we give
some conditions under which (B̃t)t∈G is strongly continuous.

Proposition 6.1.19. Let p ≥ 1 and assume that H ⊂ C(X) is B(G)-
invariant and µ ∈Mσ(X) is �nite. For all h ∈ Hp let the convergence h◦Bt → h

hold uniformly on X as t→ e. Then B̃ is strongly continuous.

Proof. Denote by ‖ · ‖p the Lp(X,µs)-norm on X. Let f ∈ Hp and ε > 0.
Then choose h ∈ Hp with ‖f − h‖p < ε. It follows:

‖f ◦Bt − f‖p ≤ ‖(f − h) ◦Bt‖p + ‖h ◦Bt − h‖p + ‖h− f‖p(111)

= 2‖f − h‖p + ‖h ◦Bt − h‖p ≤ 2ε+ ‖h ◦Bt − h‖p.
From Lebesgue`s convergence theorem together with the uniform convergence
h ◦Bt → h as t tends to e ∈ G and |h|+1 ∈ Lp(X,µ) it follows ‖h ◦Bt−h‖p < ε
for t in a suitable neighborhood of e. Using (111) this implies the strong continuity
of (110). �
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Let Cb(X) be the space of bounded complex-valued continuous functions. If
we assume that H ⊂ Cb(X), then by similar arguments we can prove for all �nite
measures µ ∈Mσ(X):

Proposition 6.1.20. Let p ≥ 1 and let H ⊂ Cb(X) be B(G)-invariant. As-
sume that Btx → x as t → e for all x ∈ X. Then the group representation in
(110) is strongly continuous.

Let us choose H = Cb(X). Under certain conditions we can show that Hp =
Lp(X,µs) holds. One of these condition is that the topological space X is normal,
e.g. that Tietze's extension theorem is true in X.

Lemma 6.1.21. Let Z be a metric space or a normal locally compact Hausdor�
space. Moreover, let µ be a regular �nite Borel measure on Z and 1 ≤ p < ∞.
Then Cb(Z) is dense in Lp(Z, µ).

Proof. Choose f ∈ Lp(Z, µ) and ε > 0. Then there exists a step-function s,
such that ‖f − s‖p ≤

ε
2
. Clearly s is bounded and according to [41, 2.3.6] there

is ũ ∈ C(Z) with:

µ
(
{x | s(x) 6= ũ(x)}

)
≤
(

ε

4 ‖s‖∞

)p
.

Now we de�ne u(x) :=sgn(ũ(x)) min{|ũ(x)| , ‖s‖∞}. Then u ∈ Cb(Z) with

‖u‖∞ ≤ ‖s‖∞ and µ(B) ≤
(

ε
4‖s‖∞

)p
where B := {x | s(x) 6= u(x)}. Now

we obtain:

‖s− u‖pp =

∫
B

|u(x)− s(x)|p dµ(x) ≤ 2p ‖s‖p∞ µ(B) ≤
(ε

2

)p
.

This implies ‖f − u‖p ≤ ε. �

If we assume that p = 2 and µ is a �nite NF2 measure we can give another
condition for the strong continuity of a group of composition operators. First we
give some de�nitions:

Definition 6.1.22. A topological locally convex space Z is called a k-space
if M ⊂ Z is open i� M ∩ K is open in K with the induced topology for each
compact set K ⊂M .

In terms of continuous maps we can characterize k-spaces as follows. The
assertions (a) and (b) below are equivalent:

(a) Z is a k-space.
(b) A function f : Z → Y , where Y is a topological space, is continuous i�

its restriction to K is continuous for each compact set K ⊂ Z.
Examples of k-spaces are Hausdor�-spaces which are locally compact or satisfy

the �rst axiom of countability. Moreover, all open or closed subsets of DFN -
spaces are k-spaces.
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Lemma 6.1.23. Let Z be a k-space and F ⊂ C(Z). Assume that µ is a NF2

measure on Z. Then for each [g] ∈ F2 there is f ∈ C(Z) with [g] = [f ].

Proof. Let ([fn])n ⊂ F2 be a fundamental sequence w.r.t. the L2-topology.
We conclude from (105) and µ ∈ MF2(Z) that (fn)n is compact uniformly
convergent to f : Z → C which is continuous restricted to each compact subset
K ⊂ Z. Because Z is a k-space by assumption, it follows f ∈ C(Z). Let
[g] ∈ L2(Z,C) be the L2-limit of ([fn])n.Finally (fn)n admits a subsequence which
tends to g a.e. on Z we have [f ] = [g]. �

From Lemma 6.1.23 it is clear that F2 can be identi�ed with a space of
continuous complex-valued functions on Z.

Proposition 6.1.24. Let X be a k-space, F ⊂ C(X) be B(G)-invariant and
µ ∈ MF2(X). Then the unitary operator group (110) on H2 := F2 is strongly
continuous.

Proof. The space H2 ⊂ L2(X,µs) is a Hilbert space and because µs is a
NF2 measure by Theorem 6.1.18, the map H2 3 f 7→ f(x) ∈ C is continuous.
By the Riesz-Fischer lemma there is K : X ×X → C with K(·, x) ∈ H2 and for
x ∈ X

(112) f(x) =
〈
f,K(·, x)

〉
2
, ∀ f ∈ H2.

Because each f ∈ H2 is continuous it follows that D := lh{K(·, x) : x ∈ X} is a
dense subspace of H2. Now let h =

∑n
i=1 αiK(·, xi) ∈ D with αi ∈ C and xi ∈ X

for i = 1, · · · , n. Then we have:

‖h ◦Bt − h‖2
2 = 2

[
‖h‖2

2 −Re 〈h ◦Bt, h〉2
]

and so in order to prove ‖h ◦ Bt − h‖ → 0 as t → e it is su�cient to show that
〈h ◦Bt, h〉2 → ‖h‖2

2. Using (112) this follows from:

〈h ◦Bt, h〉2 =
n∑

i,j=1

αiαj

〈
K(Bt·, xi), K(·, xj)

〉
2

=
n∑

i,j=1

αiαjK(Btxj, xi)
t→e−−→ ‖h‖2

2.

We have used that K(·, xi) ∈ C(X) and the continuity of B : G → Homeo(X).
�

Representations of C0-semi groups on L2-spaces.
In this section let H be a separable Hilbert space and let (Bt)t≥0 ⊂ L−1(H) be a
C0-semi group of invertible bounded operators on H. Assume that µ is a �nite
Borel measure on G, where G is a Gδ-set in H (i.e. G is a countable intersection
of open sets in H) and Bt(G) ⊂ G for all t ≥ 0. We construct a C0-semigroup
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(B̃t)t≥0 ⊂ L−1(H̃) on H̃ := L2(G, µs) of composition operators B̃t(f) := f ◦ Bt

where f ∈ H̃.

Lemma 6.1.25. The mapping R+ ×H −→ H : (t, z) 7−→ Btz is continuous
w.r.t. the product topology.

Proof. Since (Bt)t≥0 is strongly continuous it is well-known that there exist
M > 1 and β > 0 such that ‖Bt‖ ≤ Meβt. Let (t, z) ∈ R+ × H and let
(tn, zn)n∈N ⊂ R+ × H be a sequence with (tn, zn) → (t, z) as n → ∞. Then we
obtain:

‖Btnzn −Btz‖ ≤Meβtn ‖zn − z‖+ ‖Btnz −Btz‖
n−→∞−−−−→ 0,

since (Bt)t≥0 is strongly continuous. �

With the notations of De�nition 6.1.8 let (X, Σ1, µ) := (G, B(G), µ), where
µ ∈Mσ(G) is �nite and de�ne (Y, Σ2, mα) := (R+, B(R+), e−tαdt) with α > 0.
Let µs,α denote the symmetrization of µ (which is well-de�ned according to the
lemma above and the fact that G (cf. [115, p. 150]) is a polish spaces) and de�ne
B̃t by B̃t(f) = f ◦Bt for all t ∈ R+.

As an example for the choice of G we can set G = H or G be an open ball in
H centered in 0 and (Bt)t≥0 be a semi group of unitary operators on H.

Lemma 6.1.26. For all t ≥ 0 and f ∈ L2(G, µs,α) it holds ‖B̃tf‖s,α ≤
e
α
2
t ‖f‖s,α, where ‖ · ‖s,α denotes the L2(G, µs,α)-norm.

Proof. Let t0 ≥ 0 and f ∈ L2(G, µs,α). According to Lemma 6.1.12 we
obtain:∫

G

|f ◦Bt0|
2 dµs,α =

∫
G×R+

|f(Bt0Btx)|2 d(µ⊗mα)(x, t)

=

∫
G

∫
[t0,∞)

|f(Bsx)|2 e−α(s−t0)dsdµ(x)

≤ eαt0
∫
G

∫
R+

|f(Bsx)|2 e−αsdsdµ(x) = eαt0 ‖f‖2
s,α .

This proves B̃t0f ∈ L2(G, µs,α) and the desired inequality. �

Theorem 6.1.27. Let G be a Gδ-set, µ ∈ Mσ(G) and α > 0. Moreover, we
assume that (Bt)t>0 ⊂ L−1(H) is a C0-semi group of invertible bounded operators
on H such that the inclusion Bt(G) ⊂ G holds. For any t ≥ 0 let B̃t be the
isomorphism de�ned above, e.g. B̃tf = f ◦ Bt. Then (B̃t)t≥0 de�nes a C0-semi
group on L2(G, µs,α).
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Proof. It is obvious that (B̃t)t≥0 is a semi group of isomorphisms on
L2(G, µs,α). Let g ∈ Cb(G), then we obtain for all x ∈ H:

[B̃tg](x)− g(x) = g(Btx)− g(x)
t−→0−−−→ 0,

since (Bt)t≥0 is strongly continuous and g is a continuous function. Moreover, g
is bounded and thus by Lebesgue's Theorem of dominated convergence it follows:

(113) ‖B̃tg − g‖s,α
t−→0−−−→ 0.

Now let f ∈ L2(G, µs,α) be arbitrary and �x ε > 0. According to Lemma 6.1.21
there exists g ∈ Cb(G) with ‖f − g‖s,α ≤ ε. Furthermore (113) implies that there

is t0 ≤ 1 such that for all 0 < t ≤ t0 we have ‖B̃tg − g‖L2(G,µs,α) < ε. Thus for
t ∈ [0, t0] we get:

‖B̃tf − f‖s,α ≤ ‖B̃tf − B̃tg‖s,α + ‖B̃tg − g‖s,α + ‖g − f‖s,α
≤ ‖B̃t‖ε+ 2ε ≤ (eα + 2)ε

which shows our assertion. �

6.2. Construction of group-actions induced by symmetries

We give examples how to construct representations G 3 t 7→ Homeo(X),
where G is a compact group with countable base, X denotes a topological space
and Homeo(X) is the group of all homeomorphisms of X.

Examples of measurable representations on topological spaces. Let
Ω ⊂ Rn be open or closed and let ω : Ω → R+ be a strictly positive and continuous
weight function. With f ∈ C(Ω) consider ‖f‖ω := sup{|f(x)|ω(x) : x ∈ Ω}.
De�ne the Banach space Cω(Ω) of continuous functions by

Cω(Ω) :=
{
f ∈ C(Ω), ‖f‖ω <∞

}
.

Assume that E is a topological space which is continuously embedded in
Cω(Ω). Fix m ∈ N, then with the product topology on ×n

i=1Cω(Ω) and the
topology on C(Ω,Cm) of uniformly compact convergence we have the continuous
inclusions

Em := ×m
i=1E ↪→ Cω(Ω)m := ×n

i=1Cω(Ω) ↪→ C(Ω,Cm).

Let U ⊂ Cm be open and bounded. For each set A ⊂ U we denote by A the
closure of A in Cm. Now consider:

(114) XU :=
{
f = (f1, · · · , fm) ∈ Em : [f · ω](Ω) ⊂ U

}
⊂ Em.

Lemma 6.2.1. The set XU ⊂ Em de�ned in (114) is open in the product
topology of Em.
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Proof. Because the embedding Em ↪→ Cω(Ω)m is continuous, it is enough to
show that the set

(115) X̃U :=
{
f ∈ Cω(Ω)m : [f · ω](Ω) ⊂ U

}
⊂ Cω(Ω)m

is open in Cω(Ω)m. Fix f ∈ X̃U and let ε := dist1([f · ω](Ω), ∂U) > 0 denote the
distance of the compact set [f · ω](Ω) to the topological boundary ∂U of U w.r.t.
the 1-norm. Fix a function g ∈ Cω(Ω)m such that

‖g1 − f1‖ω + · · ·+ ‖gm − fm‖ω <
ε

2
.

It follows [g ·ω](Ω) ⊂ [f · ω](Ω) +K ε
2
where Kr ⊂ Cm denotes the open r-ball

(r > 0) w.r.t. the 1-norm centered in 0 ∈ Cm. Then [g · ω](Ω) ⊂ U and by
de�nition g ∈ X̃U . �

Assume that b : G → Homeo(U) is a representation of G in the group of
all homeomorphisms on U . With the notation of (115) let us de�ne the induced
representation B̃t : G → Homeo(X̃U) by B̃tf := (bt ◦ [f · ω]) · ω−1 for f ∈ X̃U .
Because of [f · ω](Ω) ⊂ U and

[(B̃tf) · ω](Ω) = bt ◦ [f · ω](Ω) = bt ◦ [f · ω](Ω) ⊂ U

for all f ∈ X̃U the map B̃t is well-de�ned. It is easy to check that it is a group
homomorphism and for �xed t ∈ G the map B̃t : X̃U → X̃U is continuous.

Remark 6.2.2. Remark If in addition for t ∈ G the homeomorphism bt :
U → U extends to a linear map on Cm then we have B̃tf = bt ◦ f .

With a bounded open set U ⊂ Cn we equip the space Homeo(U) with the
topology of uniform convergence on all compact subset K ⊂ U .

Proposition 6.2.3. Let b : G→ Homeo(U) be a continuous representation,
then the induced representation B̃ : G→ Homeo(X̃U) is continuous as well.

Proof. Let s, t ∈ G and f, g ∈ X̃U . Then with the supremums-norm ‖ · ‖sup

on Ω and the product norm ‖ · ‖X̃U on X̃U ⊂ Cω(Ω)m we have:

(116) ‖B̃tf − B̃sg‖X̃U =
m∑
j=1

∥∥∥bt ◦ [f · ω]j − bs ◦ [g · ω]j

∥∥∥
sup
.

Fix a sequence (tn, fn)n∈N ⊂ G×X̃U with (tn, fn) → (t, f) ∈ G×X̃U as (n→∞).
By de�nition of the topology on X̃U we conclude that (fn ·ω)n converges to f ·ω
uniformly on Ω. Hence we can choose a compact set K ⊂ U and n0 ∈ N such
that [fn · ω](Ω) ⊂ K for all k ≥ n0 and [f · ω](Ω) ⊂ K. The continuity of the
map G 3 t 7→ bt ∈ Homeo(U) now implies:

‖btn ◦ [fn · ω]j − bt ◦ [f · ω]j‖sup

n→∞−−−→ 0
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for all j = 1, · · · ,m. Together with (116) this �nally implies B̃tnfn → B̃tf in
X̃U . �

In order to de�ne µs for µ ∈ Mσ(X) and a polish space X we only need
a measurable representation B : G → M−1(X). With our notations above let
Ṽ ⊂ Cω(Ω)m be open. In addition, assume that E is a polish space and de�ne
V := Ṽ ∩Em ⊂ Em. It is well-known that the spaces Ṽ and V with the induced
topologies are polish spaces as well (see [8]).

Proposition 6.2.4. Assume that B̃ : G → M−1(Ṽ ) is a measurable repre-
sentation with B̃t(V ) ⊂ V for all t ∈ G. Then B : G → M−1(V ) de�ned by
Bt := B̃t|V for t ∈ G is measurable, as well.

Proof. For each t ∈ G the map Bt : V → V is bijective. We show that it is
measurable as well. Fix A ∈ B(V ), then it follows from the continuous embedding
V ↪→ Ṽ , the fact that V and Ṽ are polish spaces and Kuratowski`s Theorem (see
[83], p.420) that A ∈ B(Ṽ ). Because Bt : V → Ṽ is Borel-measurable we obtain
B−1
t (A) ⊂ B(V ). Hence Bt : V → V is Borel-measurable for all t ∈ G and so B

is well-de�ned.
Now we prove that G×V 3 (t, z) 7→ Btz ∈ V is B(G×V )−B(V )-measurable.

As we have shown above B(V ) ⊂ B(Ṽ ) and by assumption the map

G× Ṽ → Ṽ : (t, z) 7→ Btz =: F (t, z)

is B(G× Ṽ )-B(Ṽ )- measurable. Hence F−1(A) ∈ B(G× Ṽ ) and by the continuity
of the embedding G × V ↪→ G × Ṽ and F−1(A) ⊂ G × V we conclude that
F−1(A) ∈ B(G× V ). �

Under some more conditions on b : G → Homeo(U) the restriction of B̃t to
XU leads to a continuous representation B : G → Homeo(XU). Let us consider
some special cases:

Example 6.2.5. Let Ω ⊂ Cn ∼= R2n be open and bounded. We can consider
the Bergman space H := H2(Ω, V ) de�ned as the L2(Ω, V )-closure of{

f ∈ C(Ω) : f|Ω : Ω → C is holomorphic
}
.

Denote by K : Ω × Ω → C the Bergman kernel of Ω and de�ne the weight
ω : Ω → R+ by ω(x) := K(x, x)−

1
2 . It is well-known that ω is strictly positive

and continuous on Ω. Moreover, for each f ∈ H and x ∈ Ω we have:

(117) |f(x)| ≤ ‖f‖2K(x, x)
1
2 = ‖f‖2ω(x)−1

where ‖ · ‖2 denotes the L2(Ω, V )-norm. Hence from (117) it follows that the
inclusion H2(Ω, V ) ↪→ Cω(Ω) is continuous. Let U ⊂ Cm be open and consider
the space

GL(U) :=
{
A ∈ GL(Cm) : A(U) = U

}
.
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(More about this de�nition can be found in [101] and [114].) Let G be a compact
group with countable base and b : G→ GL(U) a measurable representation (e.g.
U can be chosen to be the Euclidean ball in Cm and G := U(Cm), the unitary
group. Then a representation b : G → GL(U) is given by bU(z) := Uz with
U ∈ U(Cm) and z ∈ U .) Due to the remark above the induced representation

B̃ : G→ Homeo(X̃U)

(see (115)) is given by B̃tf = bt ◦ f . If U is bounded, then XU = X̃U ∩ Hm

is B(G)-invariant and by restriction of B̃t to XU we obtain a representation
B : G→ Homeo(XU) which is measurable according to Proposition 6.2.4. In the
case where b : G→ GL(U) is continuous it follows from standard arguments that
B is even a continuous representation.

Example 6.2.6. Let Ω ⊂ Rn be open or closed and bounded, such that the
boundary ful�lls e.g. the conditions of Calderons's extension theorem. Choose
s > n

2
then, by well-known results, the Sobolev-space Hs(Ω) is a Banach-algebra

and Hs(Ω) ↪→ C(Ω). Let U ⊂ Cm be open and bounded and consider Aut(U), the
group of biholomorphic mappings in U . Let G be a compact group with countable
base and b : G→ Aut(U) a representation. The induced representation

B̃ : G→ Homeo(X̃U)

is given by Btf = bt ◦ f . Since H := Hs(Ω) is a Banach-algebra XU = X̃U ∩Hm

is B(G)- invariant by holomorphic functional calculus. Thus by restriction of B̃t

to XU we obtain a representation B : G → Homeo(XU). Moreover, in the case
where b : G → Aut(U) is continuous it follows again by holomorphic functional
calculus that B is a continuous representation, as well.

Remark 6.2.7. Considering the group Diffk(U) of Ck-di�eomorphisms (k > s)
instead of Aut(U) we obtain again a representation B : G → Homeo(XU) by
well-known theorems about Sobolev-spaces.

Example 6.2.8. Let U ⊂ Cn be open or closed and G a compact group with
countable base. Assume that b : G→ Homeo(U) is a measurable representation
of G. We might think e.g of U as a symmetric space and b : G→ GL(U) where
GL(U) denotes the group of invertible homomorphisms leaving U invariant. With
the usual Lebesgue measure V on U consider Vs de�ned by the representation
b (see De�nition 6.1.8 and Theorem 6.1.16). As we have remarked in (110) we
obtain an unitary representation

(118) B̃ : G 3 t 7→
[
L2(U, Vs) 3 f 7→ f ◦ bt ∈ L2(U, Vs)

]
∈ L(L2(U, Vs)).

We have given several conditions under which the representation (118) is strongly
continuous. If this is the case it is a continuous representation in our sense.
Indeed, �x a sequences (tn, fn)n ⊂ G × L2(U, Vs) and (t, f) such that tn → t in
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G and fn → f in L2(U, Vs) as n→∞, then:

‖Btnfn −Btf‖L2 ≤ ‖fn − f‖L2 + ‖Btnf −Btf‖L2
n→∞−−−→ 0

by the strong continuity of the unitary group (Bt)t∈G. Fix any in�nite dimensional
�nite Borel measure µ on H := L2(U, Vs) (e.g. let µ be a Gaussian measure), then
we can consider the symmetrization µs of µ given by the representation (118). By

the same construction we obtain an unitary representation ˜̃B : G→ L(L2(H,µs)).
By continuing this process we build a sequence of unitary groups on Hilbert spaces
induced by symmetries of the base space U .

As we have seen in Example 2 in general the measures µ and µs in De�nition
6.1.8 are not equivalent. The following example is devoted to this question in our
construction above. Here we choose µ to be a �nite product of in�nite dimensional
Gaussian measures and Bt to be linear for all t. In this speci�c situation we obtain
conditions under which µs is absolutely continuous w.r.t. µ. It turns out that
these conditions are quite restrictive and in general absolute continuity of the
measures fails or seems to be hard to prove.

Example 6.2.9. Let H be an in�nite dimensional Hilbert space over R with
Gaussian measure µB where B is the nuclear positive correlation operator (for
de�nition see [35, pp. 40]). Fix n ∈ N and let us consider Hn with the product
measure µn := µB × · · · × µB. For each invertible matrix C ∈ Cn we de�ne
C : Hn → Hn by matrix multiplication. The space Hn is a Hilbert space with
norm

‖(z1, · · · , zn)‖2
Hn :=

n∑
j=1

‖zj‖2.

For any �nite Borel measure ν on H the characteristic function χν is de�ned by
the integral χν(z) =

∫
H

exp(i〈z, u〉)dν(u). In case of the Gaussian measure µB it

is well-know that we have χµB(z) = exp(−‖B 1
2 z‖2) for z ∈ H (see [35]) and so

we obtain for the characteristic function of µn:

χµn ((z1, · · · , zn)) =
n∏
j=1

χµB(zj) = exp

(
−
∥∥∥[diag(B 1

2 )
]
(z1, · · · , zn)

∥∥∥2

Hn

)
.

Here we denote by diag(B
1
2 ) the map (z1, · · · , zn) 7→ (B

1
2 z1, · · · , B

1
2 zn) on Hn.

Because µn is uniquely determined by χµn we conclude that it is a Gaussian
measure with correlation operator diag(B). Now let us consider the measure µCn
on Hn de�ned by µCn (X) = µn(C

−1X) for all X ∈ B(Hn). It is shown (see [35], p.
42) that µCn again is a Gaussian measure with correlation Cdiag(B)C∗. We use
the following general result about equivalence of in�nite dimensional Gaussian
measures µB1 , µB2 with nuclear positive correlations B1, B2 (see [35] remark 4.4,
p. 66):
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Let the operator B
− 1

2
1 B2B

− 1
2

1 be bounded and invertible. If B
− 1

2
1 B2B

− 1
2

1 − I
is a Hilbert-Schmidt operator, then the measures µB1 and µB2 are equivalent.
Otherwise they are orthogonal. (There is X ⊂ H such that µB1(X) = µB1(H) = 1
and µB2(X) = 0.)

Let us apply this criterion to µn and µCn . We set B1 :=diag(B) and
B2 := CB1C

∗. It is easy to see that C and diag(B
1
2 ) commute and so it follows:

B
− 1

2
1 B2B

− 1
2

1 = diag(B− 1
2 )Cdiag(B)C∗diag(B− 1

2 ) = CC∗.

Because C was invertible by assumption it follows that B
− 1

2
1 B2B

− 1
2

1 is invertible
as well and so by the criterion above the operator CC∗ − I has to be Hilbert
Schmidt for µn and µCn to be equivalent. In the case where C is an unitary
matrix it follows now that µn and µCn are equivalent. If the matrix CC∗ − I is
invertible on Hn itself (we can choose C = tI with t ∈ R \ {0, 1}) both measures
are orthogonal.

Now let us assume that Ω ⊂ Rn is open and H ⊂ Cω(Ω) where ω : Ω → R+

is a strictly positive and continuous weight function. Denote by Ur ⊂ Cn the
complex ball in Cn with radius r centered in 0 and consider the set XUr ⊂ Hn

de�ned as in (114) where E = H. Then according to Lemma 6.2.1 the set XUr is
open and so µn(Ur) > 0. In the following the restriction of µn to XUr is denoted
by µn,r. Let N ⊂ U(Cn) be a compact subgroup of the group U(Cn) of all unitary
matrices on Cn with Haar measure mN . There is a natural group action of N on
XUr by BC(z) = C(z) for C ∈ N . If we choose (X,Σ1, µ) = (XUr ,B(XUr), µn,r)
and (Y,Σ2,m) = (N ,B(N ),mN ) in De�nition 6.1.8, then we can prove:

Theorem 6.2.10. The measure (µn,r)s in De�nition 6.1.8 w.r.t. (BC)C∈N is
absolutely continuous w.r.t. µn,r.

Proof. Let C ∈ N and choose a Borel set N ⊂ XUr such that µn,r(N) =
µn(N) = 0. It follows from our computations above that µn,r(C[N ]) =
µn(C[N ]) = 0. Hence we obtain

�(119) [µn,r]s (N) =

∫
N

µn,r

(
C[N ]

)
dmN (C) = 0.

Dynamical systems on L2-spaces over Riemannian manifolds. In
this section we show, how to construct a dynamical system (H,B(H), µ, T ) (for
de�nition see [83]). Here H is a L2-space over a Riemannian manifold, µ is an
in�nite dimensional Gaussian measure on H and T : H → H a µ-preserving (i.e.
µT = µ) isomorphism. Unlike to our previous examples we are not symmetrizing
a given measure by an integration process, but the µ-preserving property will
follow more directly from our choice of parameters. Let us �rst remind of some
general results in connection with in�nite dimensional Gaussian measures.
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Let H be an in�nitely dimensional separable Hilbert space over R or C and
B ∈ L(H) a non-negative nuclear operator on H. Let us denote by νB the
Gaussian measure on H with characteristic function

χνB(z) =

∫
H

exp
(
2iRe 〈x, z〉

)
dνB(x) = exp

(
− 〈Bz, z〉

)
.

For each bounded operator A ∈ L(H) we consider the induced Borel measure
νAB de�ned by νAB(M) := νB(A−1(M)) for all M ∈ B(H). By a standard calcu-
lation using the transformation formula (see [20]) for integrals one �nds for the
characteristic function of µ := νAB :

χµ(z) = exp
(
− 〈ABA∗z, z〉

)
, ∀ z ∈ H.

Let us assume that A ∈ L(H) is unitary and [A,B] = 0. It follows χµ = χνB
and because the Gaussian measures are uniquely determined by its characteristic
functions we conclude that νAB = νB. Hence A is µ-preserving and in particular
the composition operator

CA : L2(H, νB) → L2(H, νB) : f 7→ f ◦ A
is unitary. In order to �nd H, a Gaussian measure µ on H and isomorphisms T ∈
L(H) such that (H,B(H), µ, T ) becomes a dynamical system we restrict ourselves
to L2-Hilbert spaces H over a Riemannian manifold. Due to our remarks above
we construct a nuclear operator B (which is naturally related to the geometry of
H) as well as a family of unitary operators on H commuting with B.

Let (M, g) be a Riemannian manifold with metric g (for details see [75]) and
denote by L the Laplace-Beltrami operator on M . A map Φ : M → M is called
an isometry of M if Φ is a di�eomorphism preserving the metric g. By this we
mean that for each p ∈M

gp(u, v) = gΦ(p)

(
dΦpu, dΦpv

)
, u, v ∈Mp

where Mp denotes the tangent space to M at p ∈ M . In other words dΦp

is an isometry of Euclidean vector spaces between (Mp, gp) and (MΦ(p), gΦ(p)).
According to Proposition 1.3 in [75], p. 85 and the remark following it, the
Riemannian measuremR onM is invariant under isometries. Hence each isometry
Φ : M →M leads to an unitary composition operator

CΦ : L2(M,mR) 3 f 7→ f ◦ Φ ∈ L2(M,mR).

There is the following characterization of di�eomorphisms of M which are
isometries in terms of the Laplace-Beltrami operator L. A proof can be found in
[75] Proposition 2.4:

Theorem 6.2.11. Let Φ : M → M be a di�eomorphism of the Riemannian
manifold M . Then Φ leaves the Laplace-Beltrami operator L invariant (i.e the
commutator [CΦ, L] vanishes) if and only if it is an isometry.
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From now on assume that (M, g) is a compact connected oriented Riemannian
manifold. By the well-known Hodge Theorem (see [118]) it follows that there ex-
ists an orthonormal basis [ϕn : n ∈ N] of L2(M,mR) consisting of eigen-functions
of the Laplacian L. Moreover, all the eigen-values (λn)n∈N are positive, except
that zero is an eigen-value with multiplicity one. Each eigenvalue has �nite mul-
tiplicity and they accumulate only at in�nity. The asymptotic behavior of (λn)n
is given by the formula

(120) λn ∼ n
2

dimM as n→∞
which was discovered by H. Weyl and can be found in [26]. It also is a standard
fact that the heat operator e−tL on L2(M,mR) with t ∈ R+ has a decomposition
of the form:

e−tLϕn = e−λntϕn.

for all n ∈ N. Hence it follows from the asymptotic (120) that Tr(e−tL) < ∞.
Fix an isometry Φ on M . Because the composition operators CΦ commutes with
L, it also commutes with the compact operator e−tL for all t ∈ R+. Moreover,
e−tL is positive for each t > 0 and so we can consider the Gaussian measure νL,t
on H with characteristic function χνL,t de�ned for z ∈ H by

χνL,t(z) = exp
(
−
〈
e−tLz, z

〉)
.

From our remark above each composition operator CΦ with an isometry Φ :
M →M ful�lls [CΦ, e

−tL] = 0. Hence we obtain the following Proposition:

Proposition 6.2.12. Let (M, g) be a Riemannian manifold and Φ be an
isometry on (M, g). Moreover, let νL,t be the Gaussian measure de�ned above.
Then CΦ de�ned by

CΦf := f ◦ Φ

is νL,t-preserving and we obtain the following unitary operators:

CΦ,t : L2(H, νL,t) → L2(H, νL,t) : f 7→ f ◦ Φ.

In other words (E := L2(H, νL,t),B(E), νL,t,CΦ,t) de�nes a dynamical system
on E for each t ∈ R+. Let Iso(M, g) be the isometry group of (M, g). Then
Iso(M, g) is a Lie group and compact if M is compact (cf. [90][ch. II Theorem
1.2]).

Theorem 6.2.13. Let (M, g) be a Riemannian manifold and Iso(M, g) be
the isometry group of (M,g). Moreover, let νL,t be the Gaussian measure de�ned

above, e.g. νL,t has the characteristic function χνL,t(z) = exp
(
−
〈
e−tLz, z

〉)
,

where L is the Laplace-Beltrami operator and t > 0. Then

Ct : Iso(M, g) 3 Φ 7→
[
L2(H, νL,t) 3 f 7→ f ◦ Φ ∈ L2(H, νL,t)

]
∈ L(L2(H, νL,t))

is an unitary group representation of the Lie group Iso(M, g) on L(L2(H, νL,t)).
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6.3. Group action on generalized Toeplitz-algebras

Let X be a polish space or an open subset of a DFN -space. In addition we
assume that X is a k-space with MF2(X) 6= ∅ (see example 1). Assume that
G is a compact group with countable base, B : G→ Homeo(X) is a continuous
representation and H ⊂ C(X) is B(G)-invariant. Fix µ ∈MF2(X), then accord-
ing to Theorem 6.1.18 it follows that µs ∈MF2(X) as well. With the notations
in (110) and Proposition 6.1.24 we conclude that the unitary group:

(121) B̃ : G 3 t 7→
[
H2 3 f 7→ f ◦Bt ∈ H2

]
∈ L(H2)

is strongly continuous. By de�nition H2 is a closed subspace of L2(X,µs) con-
sisting of continuous functions on X and we refer to it as H-Bergman space over
X. In the following we denote by P : L2(X,µs) → H2 the orthogonal projection
(Toeplitz projection) onto H2. Let us writeMb(X,C) for the space of all bounded
complex-valued measurable functions on X. Using our previous measure con-
structions we show how a representation of G in a generalized class of Toeplitz
C∗-algebras can be de�ned.

Definition 6.3.1. Let f ∈ Mb(X,C), then we denote by Tf ∈ L(H2) the
Bergman-Toeplitz operator de�ned by Tf (g) := P (fg) for all g ∈ H2.

As we already have mentioned in the proof of Proposition 6.1.24, the point
evaluation on X gives a continuous functional on H2 and so there is a Bergman
kernel K : X ×X → C with (112).

Lemma 6.3.2. For x, y ∈ X and t ∈ G we have the invariance K(Btx, y) =
K(x,Bt−1y) of the Bergman kernel.

Proof. Let [ej : j ∈ N] be an orthonormal base (ONB) of H2. The group
(121) acts unitarily on H2 and so [ej ◦ Bt : j ∈ N] also de�nes an ONB of H2.
Let x, y ∈ X and t ∈ G, then

�(122) K(x, y) =
∑
i

ei(x)ei(y) =
∑
i

ei ◦Bt(x)ei ◦Bt(y) = K(Btx,Bty).

Corollary 6.3.3. For all t ∈ G the commutator [P, B̃t] := PB̃t − B̃tP on
L2(X,µs) vanishes.

Proof. Fix f ∈ L2(X,µs), t ∈ G and z ∈ X. Then by the reproducing
kernel property of K and Lemma 6.3.2 we have:[
PB̃tf

]
(z) =

〈
PB̃tf,K(·, z)

〉
2

=
〈
f,K(Bt−1·, z)

〉
2

=
[
Pf
]
(Btz) =

[
B̃tPf

]
(z).

We conclude that PB̃tf = B̃tPf for all f ∈ L2(X,µs) and so [P, B̃t] = 0. �

For each space Y ⊂ X consider HY := {f ∈ H : f|Y = 0}. In the case where
Y is B(G)-invariant it directly follows that HY is B̃(G)-invariant.
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Lemma 6.3.4. Let x0 ∈ X and Y := {Btx0 : t ∈ G}. Assume that HY = {0},
then there is f0 ∈ H2 such that H2 = {B̃tf0 : t ∈ G}.

Proof. De�ne f0 := K(·, x0) ∈ H2 and assume that {B̃tf0 : t ∈ G} & H2.

Then there is g ∈ H2 \ {0} with 0 = 〈g, h〉2 for all h ∈ {B̃tf0 : t ∈ G}. We
conclude that

0 =
〈
g, B̃tf0

〉
2

=
〈
g,K(Bt·, x0)

〉
2

=
〈
g,K(·, Bt−1x0)

〉
= g ◦Bt−1(x0)

for all t ∈ G. Hence g ∈ HY = {0} and we have received a contradiction. �

With a symbol f ∈Mb(X,C) we write Mf ∈ L(L2(X,µs)) for the multiplica-
tion operator given by Mfh := f · h where h ∈ L2(X,µs).

Lemma 6.3.5. Let f ∈ Mb(X,C), then for all t ∈ G we have the identities
B̃tMf B̃t−1 = Mf◦Bt and B̃tTf B̃t−1 = Tf◦Bt.

Proof. Let h ∈ L2(X,µs) and z ∈ X. Then it follows for all t ∈ G:
[B̃tMf B̃t−1h](z) = [B̃t(f · h ◦Bt−1)](z) = f ◦Bt(z) · h(z) = [Mf◦Bth](z).

This implies the �rst equation, the second follows from the �rst and Corollary
6.3.3 which shows B̃tTf B̃t−1 = B̃tPMf B̃t−1 = PB̃tMf B̃t−1 = PMf◦Bt = Tf◦Bt .

�

Definition 6.3.6. Let S ⊂Mb(X,C), then we de�ne by T (S) := C∗{Tf : f ∈
S} ⊂ L(H2) the Toeplitz C∗-algebra generated by all operators Tf with symbols
f ∈ S.

Consider the representation of G in L(L2(X,µs)) de�ned by

B : G 3 t 7→
[
L(L2(X,µs)) 3 A 7→ B̃tAB̃t−1 ∈ L(L2(X,µs))

]
∈ L(L(L2(X,µs))).

Theorem 6.3.7. Let S ⊂Mb(X,C) be B(G)-invariant. Then T (S) is B(G)-
invariant.

Proof. De�ne S := {f : f ∈ S} where f̄ denotes the complex conjugate of
f . Moreover, for all n ∈ N consider the space Wn := {Tf1 · · ·Tfn : fj ∈ S ∪S}. It
is easy to show that T ∗f = Tf̄ and so it follows that the linear hull of W :=

⋃
nWn

is invariant under the ∗-operation. Furthermore, we have with t ∈ G and symbols
f1, · · · , fn ∈ S ∪ S:

Bt(Tf1 · · ·Tfn) = Bt(Tf1) · · ·Bt(Tfn) = Tf1◦Bt · · ·Tfn◦Bt ∈ T (S)

because S ∪ S is B-invariant. The linear hull of W is dense in T (S) and each Bt

is continuous on L2(X,µs). From this the assertion follows. �

Remark 6.3.8. With the result of Theorem 6.3.7 we can de�ne a represen-
tation of G in the Toeplitz C∗-algebra T (S). This fact in connection with the
general theory developed in [67], [56], [98] and [99] leads to the construction of
Ψ∗-algebras in T (S) induced by the group action of B and iterated commutators.





APPENDIX A

A.1. A complete proof of Proposition 2.2.2

In this section we will give a complete proof of Proposition 2.2.2. During this
chapter we will follow closely [80, Section 3.6]. Let us �rst recall the de�nition
of a negative de�nite function. Moreover, we prove the most results for general
vector-spaces over R or C. Thus let V be such a vector space.

Definition A.1.1. A function ψ : V −→ C belongs to the class N(V ) if for
any choice of k ∈ N and vectors ξ1, . . . , ξk ∈ V the matrix

(ψ(ξj) + ψ(ξl)− ψ(ξj − ξl))j,l=1,...,k

is positive Hermitian. Further for a topolgical vector space V we set CN(V ) :=
N(V ) ∩ C(V ).

Lemma A.1.2. For ψ ∈ N(V ) we have ψ(0) ≥ 0.

Proof. For ξ = 0 we �nd 0 ≥ ψ(0) +ψ(0)−ψ(0− 0) = ψ(0). Thus we have
ψ(0) ≥ 0. �

Lemma A.1.3. Let For ψ ∈ N(V ). Then we obtain ψ(ξ) = ψ(−ξ) and
Re ψ(ξ) ≥ ψ(0).

Proof. Since for ξ ∈ V the matrix(
ψ(ξ) + ψ(ξ)− ψ(0) ψ(ξ) + ψ(0)− ψ(ψ)

ψ(0) + ψ(ξ)− ψ(−ξ) ψ(0) + ψ(0)− ψ(0)

)
is positive we �nd ψ(ξ)+ψ(0)−ψ(ψ) = ψ(0)+ψ(0)−ψ(0) and thus ψ(ξ) = ψ(−ξ).
Moreover, we have ψ(ξ) + ψ(ξ)− ψ(ξ − ξ) ≥ 0 and hence Re ψ(ξ) ≥ ψ(0). �

Lemma A.1.4. The set N(V ) is a convex cone which is closed under point
wise convergence.

Proof. The convexity of N(V ) follows directly by the fact, that the sum of
two positive Hermitian matrices is positive Hermitian again. Moreover, N(V ) is
closed since the determinant on Rn is continuous. �

Lemma A.1.5. For ψ ∈ N(V ), ψ and Re ψ belong to N(V ).

Proof. This follows directly by the fact that det(A) = det(A) and
det(Re A) = Re (detA) for all matrices A. �
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Lemma A.1.6. Any non-negative constant is an element of N(V ) and for
ψ ∈ N(V ) and λ > 0 the function ξ 7−→ ψ(λξ) belongs to N(V ).

Proof. This is obvious. �

Lemma A.1.7.
We have ψ ∈ N(V ) if and only if

(i) ψ(0) ≥ 0,

(ii) ψ(ξ) = ψ(−ξ),
(iii) for any k ∈′ N and any choice of vectors ξ1, . . . , ξk ∈ V and complex

numbers c1, . . . ck with
∑k

j=1 cj = 0 we have
∑k

j,l=1 ψ(ξj − ξl)cjcl ≤ 0

Proof. Let ψ be a negative de�nite function. Then we have proved (i) and
(ii) in A.1.2 and A.1.3. Let (cj)j=1..k ∈ C such that

∑k
j=1 cj = 0. Then we have

0 ≤
k∑

j,l=1

(ψ(ξj) + ψ(ξl)− ψ(ξj − ξl))cjcl

=
k∑
l=1

cl

(
k∑
j=1

ψ(ξj)cj

)
+

k∑
j=1

cj

(
k∑
l=1

ψ(ξj)cj

)
−

k∑
j,l=1

(ψ(ξj − ξl)cjcl)

= −
k∑

j,l=1

(ψ(ξj − ξl)cjcl).

Conversely, let ψ : V −→ C be a function, which ful�lls the assumptions (i) -
(iii). Moreover, let (ξj)j=1..k ∈ V and (cj)j=1..k ∈ C. Let us consider the vectors
0, (ξj)j=1..k ∈ V and c, (cj)j=1..k ∈ C, where c = −

∑k
j=1 cj. Then (3) implies

ψ(0) |c|2 +
∑

j = 1kψ(ξj)cjc+
k∑
l=1

ψ(−ξl)ccl +
k∑

j,l=1

ψ(ξj − ξl)cjcl ≤ 0.

Using (1) and (2) we �nd
k∑

j,l=1

(ψ(ξj) + ψ(ξl)− ψ(ξj − ξl))cjcl ≥ ψ(0),

which proves our assertion. �

Corollary A.1.8. For ψ ∈ N(V ) the function ξ 7−→ ψ(ξ) − ψ(0) belongs
also to N(V ).

Proof. For (ξj)j=1..k ∈ V and (cj)j=1..k ∈ C such that
∑k

j=1 cj = 0 we have

k∑
j,l=1

ψ(ξj − ξl − ψ(0))cjcl =
k∑

j,l=1

ψ(ξj − ξl)cjcl ≤ 0.
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In addition the conditions (1) and (2) of A.1.7 are obviously true for ψ(ξ)−ψ(0).
Thus we obtain our assertion by Lemma A.1.7. �

Corollary A.1.9. Let u : V −→ C be a positive de�nite function. Then the
function ξ 7−→ u(0)− u(ξ) is an element of N(V ).

Proof. For (ξj)j=1..k ∈ V and (cj)j=1..k ∈ C such that
∑k

j=1 cj = 0 we have

k∑
j,l=1

(u(0)− u(ξj − ξl)cjcl) = −
k∑

j,l=1

u(ξj − ξl)cjcl ≤ 0.

Furthermore, (1) and (2) of A.1.7 are satis�ed, too. �

Theorem A.1.10. A function ψ is an element of N(V ) if and only if ψ is
negative de�nite in the sense that

(i) ψ(0) ≥ 0
(ii) ξ 7−→ e−tψ(ξ) is positive de�nite for t ≥ 0

Proof. Let ψ ∈ N(V ). Then (i) follows by Lemma A.1.2. To prove (ii) let
ξ1, . . . , ξk ∈ V . Then for t > 0 the matrix

(t(ψ(ξj) + ψ(ξl)− ψ(ξj − ξl)))j,l=1,...,k

is positive Hermitian. Now [80, Lemma 3.5.9] implies that

(exp(t(ψ(ξj) + ψ(ξl)− ψ(ξj − ξl))))j,l=1,...,k

is positive Hermitian. Let c1, . . . cl ∈ C and set c′j := exp(−tψ(ξj))cj. Then we
�nd

k∑
j,l=1

exp(−tψ(ξj − ξl))cjcl

=
k∑

j,l=1

exp(t(ψ(ξj) + ψ(ξl)− ψ(ξj − ξl))) exp(−tψ(ξj)) exp(−tψ(ξl))cjcl

=
k∑

j,l=1

exp(t(ψ(ξj) + ψ(ξl)− ψ(ξj − ξl))c′jc
′
l ≥ 0.

This proves (ii). Conversely, (i) implies exp(−tψ(0)) ≤ 1. Thus we obtain by
A.1.6 and A.1.9 that the function

ξ 7−→ 1

t
(1−exp(−tψ(ξ))) =

1

t
(1−exp(−tψ(0)))+

1

t
(exp(−tψ(0))−exp(−tψ(ξ)))

is negative de�nite. Thus Lemma A.1.4 implies that

ψ(ξ) = lim
t→0

1

t
(1− exp(−tψ(ξ))) ∈ N(V ). �
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Corollary A.1.11. Let ψ ∈ N(V ). Then 1
ψ+ε

is a positive de�nite function
for all ε > 0.

Proof. Lemma A.1.2 and A.1.3 imply Re ψ(0) ≥ ψ(0) ≥ 0 for all ξ ∈ V .
Thus it is su�cient to prove the corollary for all ψ such that ψ(0) > 0. For t > 0
the function ξ 7−→ e−tψ(ξ) is positive de�nite and we have

∣∣e−tψ(ξ)
∣∣ ≤ e−tψ(0).

Thus, it follows that

1

ψ
=

∞∫
0

e−tψ(ξ)dt,

�

which implies the corollary.

Corollary A.1.12. Let ψ ∈ N(V ). Then ψ
α+βψ

∈ N(V ) for all α > 0 and
β ≥ 0.

Proof. According to A.1.4 and A.1.6 α + βψ ∈ N(V ). Moreover, we have
α+βψ(0) ≥ 0. Thus A.1.11 implies that ξ 7→ 1

α+βψ
is positive de�nite, and hence

by A.1.9 we obtain(
1 + β

ψ(0)

α

)
ψ

α+ βψ
=
ψ − ψ(0)

α+ βψ
+
ψ(0)

α
=

1

α+ βψ(0)
− 1

α+ βψ
+
ψ(0)

α

is negative de�nite and thus ψ
α+βψ

∈ N(V ). �

Lemma A.1.13. For ψ ∈ N(V ) and ξ, η ∈ V we have

(i)
√
|ψ(ξ + η)| ≤

√
|ψ(ξ)|+

√
|ψ(η)|,

(ii)
∣∣∣√|ψ(ξ))| −

√
|ψ(η)|

∣∣∣ ≤√|ψ(ξ − η)|,
(iii) |ψ(ξ) + ψ(η)− ψ(ξ − η)| ≤ 2(Re ψ(ξ))1/2(Re ψ(η))1/2.

Proof. For ξ, η ∈ V we have ψ(0) ≥ 0, ψ(ξ) = ψ(−ξ) and

det

(
ψ(ξ) + ψ(ξ)− ψ(0) ψ(ξ) + ψ(η)− ψ(ξ − η)

ψ(η) + ψ(ξ)− ψ(η − ξ) ψ(η) + ψ(η)− ψ(0)

)
≥ 0,

which implies∣∣∣ψ(ξ) + ψ(η)− ψ(ξ − η)
∣∣∣ ≤ 4Re ψ(ξ)Re ψ(η) ≤ 4 |ψ(ξ)| |ψ(η)| .

Using −η instead of η and the fact that |ψ(η)| = |ψ(−η)| we obtain
|ψ(ξ) + ψ(±η)− ψ(ξ ± η)| ≤ 4Re ψ(ξ)Re ψ(η) ≤ 4 |ψ(ξ)| |ψ(η)| ,

which shows (iii) and yields

|ψ(ξ ± η)| − |ψ(ξ)| − |ψ(±η)| ≤ |ψ(ξ ± η)| − |ψ(ξ) + ψ(±η)|
≤ |ψ(ξ) + ψ(±η)ψ(ξ ± η)| ≤ 2 |ψ(ξ)|1/2 |ψ(η)|1/2 .
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This shows (i) and∣∣∣√|ψ(ξ)| −
√
|ψ(η)|

∣∣∣2 = |ψ(ξ)|+ |ψ(η)| − 2
√
|ψ(ξ)|

√
|ψ(η)| ≤ |ψ(ξ − η)| . �

Lemma A.1.14. For ψ ∈ N(V ) and ξ, η ∈ V we have

1 + |ψ(ξ)|
1 + |ψ(η)|

≤ 2(1 + |ψ(ξ − η)|).

Proof. For η, ζ ∈ V we �nd

2(1 + |ψ(η)|)(1 + |ψ(ζ)|)
= 2 + 2 |ψ(η)|+ 2 |ψ(ζ)|+ 2 |ψ(η)| |ψ(ζ)|
= (1 + |ψ(η)|+ |ψ(ζ)|+ (|ψ(η)|+ |ψ(ζ)|)) + (1 + 2 |ψ(η)| |ψ(ζ)|)
≥ 1 + |ψ(η)| |ψ(ζ)|+ 2

√
|ψ(η)| |ψ(ζ)|

= 1 +
(√

|ψ(η)|+
√
|ψ(ζ)|

)2

.

Using A.1.13 we obtain

2(1 + |ψ(η)|)(1 + |ψ(ζ)|) ≥ 1 +
√
|ψ(η + ζ)|

2
= 1 + |ψ(η + ζ)| .

Taking ζ = ξ − η we �nally �nd

2(1 + |ψ(ξ − η))|) ≥ 1 + |ψ(ξ)|
1 + |ψ(η)|

. �

Lemma A.1.15. For ψ ∈ N(V ) and ξ, η ∈ V we have

1 + |ψ(ξ ± η)| ≤ (1 + |ψ(ξ)|)(1 +
√
|ψ(η)|)2.

Proof. Using A.1.13 for ξ, η ∈ V we �nd

1 + |ψ(ξ ± η)|

= 1 +
√
|ψ(ξ + η)|

2
≤ 1 +

(√
|ψ(ξ)|+

√
|ψ(η)|

)2

= 1 + |ψ(ξ)|+ |ψ(η)|+ 2
√
|ψ(ξ)|

√
|ψ(η)|

≤ 1 + |ψ(ξ)|+ |ψ(η)|+ 2
√
|ψ(η)|(1 + |ψ(ξ)|)

≤ 1 + |ψ(ξ)|+ |ψ(η)|+ |ψ(ξ)| |ψ(η)|+ 2
√
|ψ(η)|(1 + |ψ(ξ)|)

= (1 + |ψ(ξ)|)
(
1 + |ψ(η)|+ 2

√
|ψ(η)|

)
= (1 + |ψ(ξ)|)

(
1 +

√
|ψ(η)|

)2

.

But this is our assertion. �

Corollary A.1.16. Let V by a topological vector spaces, such that continuity
and sequential continuity are equivalent. For ψ ∈ N(V ) being continuous at 0 we
obtain ψ ∈ CN(V ).
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Proof. By A.1.8 ψ−ψ(0) is negatice de�nite, too. Moreover, ψ is continuous
if and only if ψ − ψ(0) is continuous. Thus we may assume ψ(0) = 0. Taking in
A.1.15 −ξ instead of ξ we obtain

1 + |ψ(η − ξ)| ≤ (1 + |ψ(ξ)|)(1 +
√
|ψ(η)|)2

and substituting ξ 7→ ξη we �nd

1 + |ψ(ξ)| ≤ (1 + |ψ(ξ + η)|)(1 +
√
|ψ(η)|)2.

This and A.1.15 imply that

1

(1 +
√
|ψ(η)|)2

≤ 1 + |ψ(ξ + η)|
1 + |ψ(ξ)|

≤ (1 +
√
|ψ(η)|)2,

which yields our assertion for η −→ 0. �

A.2. Some remarks about the Kohn-Nirenberg and the Weyl
correspondence

Let us make some remarks about the Kohn-Nirenberg and the Weyl Corre-
spondence in the classical �nite dimensional case.

Definition A.2.1. For 0 ≤ δ ≤ % ≤ 1, δ < 1 and m ∈ Z we denote by Sm%,δ
the class of all symbols a ∈ C∞(Rn

x × Rn
p ) such that for any multi-index α, β

there exists a constant Cα,β with∣∣∂αp ∂βxa(x, p)∣∣ ≤ Cα,β〈p〉m+δ|β|−%|α|,

where 〈p〉 =
√

1 + |p|2. Moreover, Sm%,δ is a Fréchet space with semi-norms

|a|ml = max
|α|+|β|≤l

sup
x,ξ
|∂αp ∂βxa(x, p)|〈p〉−(m−%|α|+δ|β|).

Definition A.2.2. For m ∈ Z and 0 ≤ δ ≤ ρ ≤ 1 the class Ψm
ρ,δ denotes the

algebra of all pseudodi�erential operators a(x,D) given by

a(x,D)f(x) =

(
1

2π

)n/2 ∫
Rn

ei〈x , p〉a(x, p)F̃ f(p) dp,

where a ∈ Sm%,δ and f ∈ S(Rn), F̃ f is the Fourier-transform of f , i.e.

F̃ f(p) =

(
1

2π

)n/2 ∫
e−i<y,p>f(y)dy.

Here S(Rn) denotes the space of all Schwartz-functions. These pseudodi�erential
operators are called pseudodi�erential operators in Kohn-Nirenberg form.
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Definition A.2.3. Let m ∈ Z and 0 ≤ δ ≤ ρ ≤ 1. For a ∈ Sm%,δ and
f ∈ S(Rn) we de�ne the pseudodi�erential operator a(X,D) by

a(X,D)f(x) =

(
1

2π

)n ∫∫
a(

1

2
(x+ y), p)ei〈x−y , p〉dy dp.

a(X,D) is called pseudodi�erential operator in Weyl form.

Proposition A.2.4. For all m ∈ Z, 0 ≤ δ ≤ ρ ≤ 1 and all a ∈ Sm%,δ there
exists a linear operator T such that

a(x,D) = (Ta)(X,D).

Proof. See [43, p. 94]. �

Proposition A.2.5. If a ∈ S(R2n) we have

Ta(x, ξ) = 2n
∫∫

a(y, η)e4πi〈x−y , ξ−η〉dηdy.

Moreover, for a ∈ S ′(R2n) we �nd

[F̃(Ta)](x, ξ) = e−πi〈x , ξ〉[F̃(a)](x, ξ).

Proof. See [43, p. 94]. �

Theorem A.2.6. The operator T de�ned in Proposition A.2.4 maps all
classes Sm%,δ (0 ≤ δ ≤ ρ ≤ 1, δ < 1) into themselves, and is a Fréchet space
isomorphism.

Proof. See [43, p. 95]. �

Theorem A.2.7. If a ∈ Sm%,δ with % > δ then

a− Ta ∈ Sm−(%−δ)
%,δ and a(x,D)− a(X,D)Ψ

m−(%−δ)
%,δ .

Proof. See [43, p. 102]. �
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