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Chapter 1

Introduction and Motivation

The renormalization of the electroweak Standard Model has already a success-
ful history. In some of its sectors experimental measurements are sensitive to loop
corrections and there, calculations with high precision are already mandatory. Sur-
prisingly, there are still open problems related to the renormalization of the quark
sector starting with the one-loop corrections. The presence of the quark mixing
matrix that needs to be renormalized and the presence of unstable particles raise
difficulties in defining correct and complete renormalized parameters that preserve
all symmetries of the Lagrangian.

Going beyond the Standard Model, one has other models that allow for fermion
mixing and there, a complete renormalization scheme is also required. For example,
there are experimental evidences for neutrino oscillations and a model that describes
the neutrino mixing has to be taken into account. One can also think of supersym-
metric or other exotic particles. Mixing is present in the Standard Model for Dirac
fermions (quarks), while beyond, it can involve also Majorana particles (possible
candidates are neutrinos).

The necessity of the renormalization for fermion mixing was already recognised
in the late ’70s [Sirlin]. In 1982, Aoki et al. [Aok82] were describing an on-shell
renormalization scheme that led to a diagonal fermion propagator. This prescription
was used in 1990 by Denner and Sack [Den90a] to calculate the one-loop counter
terms of external legs and of the quark mixing matrix. It was the first attempt to
provide an analytical result for a mixing matrix counter term. In the next decade,
few articles followed, trying to use a similar prescription to calculate the counter
term for quark or neutrino mixing matrices, for models with stable particles. In
1999, in [Gam99|, a gauge parameter dependence problem was recognized in the
renormalization prescription of [Den90a]. Starting from 2000 on, many authors tried
to find a prescription that will have as result a renormalized fermion mixing matrix
that is unitary, gauge parameter independent and that will lead to an UV-finite
amplitude. These requirements were successfully accomplished for the corrections



2 1. Introduction and Motivation

to the quark mixing matrix in [Den04], but treating all quarks as stable particles.

The difficult point remains the renormalization of the theory involving unstable
particles. In [Esp02], it was shown that a correct on-shell renormalization scheme
that accounts for unstable particles and that includes the absorptive contributions
from the self-energies leads to wave function renormalization constants not related by
hermiticity (i.e. the constant renormalizing the incoming fermion and the outgoing
antifermion is different from the one that renormalizes the outgoing fermion and the
incoming antifermion). The lack of hermiticity can destroy in this case the unitarity
of the renormalized mixing matrix.

The aim of this thesis is to provide a renormalization prescription for fermion
mixing, in a general framework, a prescription that can be applied then to specific
models. We base our calculations on a Lagrange density that describes generic in-
teraction terms for Dirac and Majorana fermions, in models that allow for mixing.
We also take into account the presence of unstable particles. The analysis of the
renormalized Lagrangian is general, but the analytic formulas for the field renormal-
ization constants and for the mass are restricted to the one-loop approximation. To
fix all the counter terms of the coupling constants in the interaction Lagrangian, and
in particular of the fermion mixing matrix, one needs to discuss specific models. We
choose the mixing of the quarks in the electroweak Standard Model and the neutrino
mixing in the seesaw mechanism. These examples provide enough information for
an application to other theories.

In the general approach, as a prescription to separate the divergences resulting
from fermion self-energies, we will use the on-shell scheme. With this scheme, one
can easily identify the physical mass and also the decay width for unstable particles.
However, we will not follow the ’classical’ prescription and fix the field renormaliza-
tion constants directly from the analysis of the full propagator, as done in [Esp02].
The wave function renormalization constants resulting in the on-shell scheme do not
have to be identical with the field renormalization constants. We will explore differ-
ent possibilities in defining the latter such that one obtains a hermitian Lagrangian
or even diagonal renormalized mass terms.

We start in chapter 2 by describing the general fermion Lagrangian underlying
our analysis. After briefly presenting the different procedures to diagonalize Dirac
and Majorana mass terms, we enumerate all possible interaction terms involving
fermions. The chapter ends with a list of Feynman rules and the prescription to
evaluate different diagrams. The one-loop self-energies are calculated on account of
the general couplings from chapter 2, in chapter 3. Chapter 4 is dedicated to the
analysis of the fermion propagator and the extraction of the ultraviolet divergences
from the one-loop self-energies. The divergences are absorbed by the counter term of
the mass and by the wave function renormalization constants, determined such that
the renormalized fermion propagator is diagonal on-shell. We will show that for a
model that has particles with decay channels that lead to absorptive contributions at



one-loop, the wave function renormalization constants will result in two independent
sets, as stated in [Esp02]. One will contribute to the renormalization of the fermion
field and the other one to the renormalization of the corresponding Dirac conjugated
field. In general, a hermiticity relation between the two is not fulfilled.

As already emphasised above, in chapter 4 we just isolate the divergences that
have to be absorbed by the renormalization constants. The fermion field renormal-
ization constants are defined in chapter 5. Here, we investigate the possibility of
defining the constants such that the hermiticity of the renormalized free Lagrangian
is not destroyed by the presence of unstable particles. Since the presence of mixing
matrices leads to non-diagonal field renormalization constants, we also explore the
possibility of re-diagonalizing the renormalized mass term. In all these cases, we
point out the consequences on self-energy corrections of external legs.

The renormalized fermion interaction Lagrangian is the subject of chapter 6. We
analyse each possible coupling of fermions to vector or scalar bosons and at the end
we derive the Feynman rules for the counter terms. Corrections to a generic process
are presented in the last section of the chapter.

In all the enumerated chapters we will firstly present the current topic for general
models with Dirac fermions and then, for models with Majorana fermions.

Chapters 7 and 8 are dedicated to the analysis of specific models. The renormal-
ization of the quark fields and of the quark mixing matrix is described in chapter 7,
as a direct application of chapter 6. We emphasise the consequences of the presence
of absorptive imaginary contributions in amplitudes and we suggest a prescription
to fix the quark mixing matrix counter terms from experimental measurements. The
same method can be used for the neutrino mixing matrix. While for the quarks the
one-loop corrections of the mixing matrix are negligible, this is no longer valid for
the neutrinos. Therefore, in chapter 8, we investigate the renormalization in the
neutrino seesaw mechanism. We start by defining the theoretical model and the
differences introduced with respect to the Standard Model, especially in the Higgs
sector. The renormalization of the massive Majorana neutrino fields and of their
mixing matrix are treated in the second part of the chapter.

The last chapter is reserved for conclusions and for future perspectives of fermion
field renormalization.
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Chapter 2

Lagrange Density and Feynman
Rules for Dirac and Majorana
Fermions

This chapter is introducing the general notions and notations that we will use
to describe particles with spin % We start presenting the fermion Lagrange density
with an emphasis on the mass term. Then, we give a general form for the interaction
of fermions with vector and scalar bosons. At the end, we list the corresponding
Feynman rules.

2.1 Remarks on Conventions and Notations

To describe Dirac and Majorana fermions, we always use 4-component spinors.
If not additionally specified, we denote the Dirac fields with v and the particle type
with indices 7, j, k£ and so on. The Majorana ones will be given by x with particle
indices from the beginning of the Latin alphabet: a, b, c. When writing z, y or z as
a subscript, we refer to both, Dirac and Majorana flavour indices.

An n, X n, matrix, where n, is the number of rows and n, the number of columns,
will have elements generally indexed xy, with x=1,...,n, and y=1,...,n.. Even if
sometimes it will seem simpler to use block matrices instead of writing explicit
indices, we will not do it. When considering particular cases, it is easier (and less
confusing) to pick up one matrix element, one specific transformation, etc. if the
indices are present.

Along this work, whenever a sum over particle indices will occur, we are going to
write it explicitly. For the sum over Lorentz indices, we keep the Einstein summation
convention. The Dirac indices will not be written explicitly.

5



6 2. Lagrange Density and Feynman Rules

2.2 Lagrange Density Mass Term

The mass is one of the important physical parameters that enter the Lagrangian.
When one takes into consideration the mixing of the particles, the mass matrix in
the Lagrangian has non-diagonal elements and the fields do not correspond to mass
eigenstates. In order to identify the particles in the model, the mass matrix needs
to be diagonalized.

In this section, we present the diagonalization procedure used for mass terms with
either Dirac or Majorana particles. One can also combine the Dirac and Majorana
structure of mass terms that will be presented in the first two subsections, in a
so-called Dirac-Majorana mass term. The last situation can occur when none of
the lepton numbers is conserved. It is especially important when describing the
neutrinos with the seesaw mechanism. After shortly presenting here the Dirac-
Majorana mass term and its diagonalization, we will later (in chapter 8) apply it for
the seesaw mechanism.

2.2.1 Dirac Mass Term

We consider a Dirac field 1y;, with the left and right components introduced as

Yo = vr¥ois
W)E - ’YRwOia (22)
where
1
YL = 5(1 —75), (2.3)
1
YR = 5(1 + ), (2.4)

are the left and right projectors. As mentioned, the index i coming with the fields
runs over the flavours. If we take the Standard Model, it can refer to the up or down-
type quarks (i=u,c,t or i=d,s,b) or to the charged leptons (i=e,u,7), etc. Its range
is not limited to 3 (3 up- or down-type quarks or 3 charged leptons or neutrinos as
in the Standard Model). We will allow values ranging from 1 to n.

A general Dirac mass term can be written as

LDy ==Y YEMJug; + hec.. (2.5)
]

"h.c.’ stands for the hermitian conjugated term and M? is a complex square matrix.
To have an interpretation for the elements of MP as particle masses, the matrix
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needs to be diagonalized. Using the singular value decomposition, one can write

k

with U and V unitary matrices. The choice can be made such that m is a nonneg-
ative, diagonal and real matrix.
Replacing the left and right-handed fields by

Yo = ZUU 7, (2.7)
J

Yo = Z Vil (2.8)
J

the mass term becomes diagonal:

;Cr?mss = — Zamz’lﬁz (29)
1; is given by 1; = ¥F + .

2.2.2 Majorana Mass Term

To define Majorana particles, we need to introduce the charge-conjugated field.
For a fermion field y it is given by

x¢=0x", (2.10)
where C' is the charge-conjugation matrix. C' is defined by
C(y")TC™ = =, (2.11)
such that (x©)¢ = x. This implies

C=-C't=-Cl=-(C",

o (2.12)
In the following, we will need some of its properties, i.e.
C ch—l — ,
(7s) Y5 (2.13)

C(vy5)" O™ = 5.
From (2.10), we find that

X = — T (2.14)
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Following from the definition of C', for the Dirac spinors we can write

u(p, s) = C' (p, ) (p, s) = —u’ (p, )" (2.15)
= .
H(pa 8) = _UT<p7 8)071'
This relation becomes useful when one wants to prove the equivalence of choosing
any orientation for a fermion flow when evaluating a Feynman diagram, as it will
be mentioned in the corresponding section.
Majorana fermions are described by

x = x5, (2.16)

i.e. particle and antiparticle are identical and therefore they are strictly neutral.
Neutrinos can be Majorana particles if the lepton generation number is not a con-
served quantity. Because of the definition (2.10), the left- and right-handed charge-
conjugated field expressions are related to the field by

(x")¢ = vrx©,

() = 7oxC (2.17)

This reversed behaviour between left and right can be seen easier if one defines
directly the Majorana field for its projections:

() =CrF 218
(®)° = xR, 21
The equivalent expressions for the conjugated fields are:
IVC — _([\To-1
(x*") (x") e, (2.19)

(XM= -

From (2.17) one can see that the condition (2.16) for Majorana particles implies in
fact

(2.20)

It means that the right-handed component of a Majorana particle can be identified
with the antiparticle of the left-handed component. The two degrees of freedom of
a Majorana fermion can be viewed as either particle or antiparticle or as left- and
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right-handed states of a particle. As a consequence, there are different ways to write
a Majorana Lagrangian mass term. In terms of left-handed fields:

massL 5 Z XOa bXOb + h.c.. (221)

In terms of the right-handed ones, the equivalent expression is

massR = -3 Z X0a b XOb + h.c.. (222)

Note that the whole Lagrangian mass term (taking also the hermitian conjugated
part) has the same structure in both cases. The written part of the Lagrangian
for the right-handed fields looks like the hermitian conjugated term of the previous
expression (2.21), if we would exchange the upper script L with R and replace the
mass. We write expressly one structure for the left-handed fields and the other one
for the right components because we need exactly these forms in the Dirac-Majorana
case. In contrast with Dirac particles, for Majorana fermions, the left and the right-
handed fields can appear alone in the mass term. The factor 1/2 appears in fact in
the entire free Lagrangian (i.e. also in the kinetic part) and it provides the correct
normalisation of the kinetic energy. M, and Mg are, as in the Dirac case, complex
square matrices. As a consequence of the properties of Majorana fields, they can be
also chosen symmetric as we will show now.

With the anticommutation properties of the fermion fields and the antisymmetry
of the charge-conjugation matrix C', one can prove that any product of the type

(XaL/ fye Xf/ ® is a symmetric tensor. As a consequence, using (2.19),

Z(XOa) Mg xg, = Z(XOb)CM(féaxgaa (2:23)
a’b ll,b
or equivalently,
Z—RMR< R)C:Z—RMR( R)C’ (224)
X0a ! ab\ Xob Xo0oMap\X0a) - .
a,b aab

The relations (2.23) and (2.24) imply that it is possible to take both matrices sym-
metric.

The diagonalizing procedure for the mass term is similar to the Dirac case.
However, we now have the advantage of a symmetric complex matrix. We can
obtain a diagonal matrix using just one unitary matrix [Zum62]:

L — (UM MEUP. (2.25)
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Adding the particle indices, the expression can be written as

Mg = (Ug) mé (Up)", (2.26)

[

where U” is unitary and m” a nonnegative, diagonal, real matrix. With

X0 = Z abXb o (2:27)

the mass term expressed in terms of the left-handed fields becomes

massL _Z Xa Cm Zxa . (228)

We have written the hermitian conjugated part explicitly, to show that one can
combine the two terms in (2.28), by defining

x =x"+ (x*")°. (2.29)

This way, the mass term reaches the form
mass - 5 Z XaMaXas (230)

where
m=mb. (2.31)

The difference to the Dirac mass terms is in the factor 1/2.
Similarly, using right-handed fields, one can find a unitary matrix U® and with

XOa Z bXba (2.32)

massR 5 Z Xgm Xa + h.c.. (233)

Along this work, we will allow for specific models that might require to introduce
both, left- and right-handed Majorana fields. For example, one may have to dis-
tinguish neutrinos which are members of isospin-doublets from neutrinos which are
isospin singlets. It is then reasonable to refer in the first case to neutrinos as left-
handed fields and use as symbol x* (together with the equations (2.21) or (2.30)),
whereas for the isosinglets to use the right-handed fields x® (with mass terms as in
(2.22) or (2.33)). This assignment has been used sometimes in the literature and will
become relevant when considering the interaction terms; e.g. only isospin-doublets
can interact with the W boson.
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2.2.3 Dirac-Majorana Mass Term
Using the previous results, one can now easily discuss the case of a mixed Dirac-
Majorana mass term:

‘CD+M ‘CmassL + wass + ‘CmassR (234)

mass

The terms are given by the equations (2.21), (2.5) and (2.22). We use x§ to denote
the left-handed fields and xZ for the right-handed ones. The flavour of the fields will
be indicated by ¢ or j. For the start, the left and the right-handed fields are treated
as independent. We assume ny types of left-handed fields and ng of right-handed
ones. After collecting all the mass terms and diagonalizing them, we will end up
with one Majorana field connected to the mass eigenstates. Written explicitly, (2.34)
is

1
Eﬁjsfééf - _5 Z (XOZ Z]XO] Z XOz Xé’] Z XRMR XO] +hC

i:l,nL
jzlanL jzlynL ]Zl,nR

(2.35)

The matrices MY, ME and MP are all complex matrices, but, as shown in the
previous part, the first two are in addition symmetric. Their dimensions are going
to fit with the number of fields, i.e. M is np x ny, M® is ngp x ng, MP is np X ny.
Using as summation indices ¢ and j in all terms is confusing, but choosing different
notations can be even more. Therefore, we indicate the range of values under each
sum symbol. The overline implies that all flavours, from 1 to n;, or ng are taken. If
it is easier, one can ignore the sums and the indices and just remember the size of
the matrices.
Since using (2.18) and (2.19) one can prove that

S oEMIxg = D O0)CME (x¢)°, (2.36)
1= 1nR 1= 17nR
Jj=lnr j=1lnr

the terms in the Lagrangian can be collected to
1 (——= MY (MP)T X

Due to its form and components, the (n;+ng) X (ny +ng) mass matrix is a complex
symmetric one. Similarly to (2.26), one can find a decomposition such that

MPTM — (UHTmUT, (2.38)
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MP+M stands for the (ny+ng) X (ny +ng) mass matrix, U is a (ny+ng) X (np+ng)
unitary matrix and m a real, nonnegative diagonal one. A suitable separation of the
unitary matrix U is

U= <<g§)> . (2.39)

U" has the dimension ny, X (ng, + ng) and U® ng x (ng, + ng). From the unitarity
relation for U, we have

ULULT:n,ULURT:On S
R( R) L }E ) . LXNR (UL)TUL + (UR)T<UR)* — lnL-l—nR-
URUR) = 1o, (U (UF)' = 00y
(2.40)
If we write (2.38) for each block of mass matrices contained in MP+M  then
ME = (UF) mU),
ME = URm(U™T, (2.41)
MP = URm(U)T.
With U as in (2.39), one can write the independent left- and right-handed fields
as linear superpositions of one Majorana field (x).

nr+ng

L L. L
Xoi = Z UigXe
a=1

nL+ng

R R_R
X5 = D Ut
a=1
Combining x% and x into y = x + %, the Lagrangian mass term becomes

1 _
'CT?L:S];/[ = _5 Z Xa™MaXa- (243)

(2.42)

a takes values from 1 to ny + ng, but from this point on, there is no necessity in
writing it explicitly.

Alternatively, due to the property of Majorana fields (2.20) , (2.43) can be written
as

1 e
Lo — -5 Z xBmaxk + h.c.

e e

=—=> OE)maxt — =) (XE)Cmaxl 9.44
2 a 2 a
1 RN\C ]‘ \C

= S T~ 5 S T ma (L, et

a
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2.3 General Form for the Lagrange Density with
Dirac and Majorana Fermions

As long as possible, we want to perform the calculations in a general manner.
Therefore, we will write the interaction Lagrangian using generic Majorana and
Dirac fields. Since in this thesis we are interested just in fermions, we restrict to
their interactions. As a model for the terms with Majorana fermions, we use the
appendix of [Hab85].

The free Lagrangian is given by

Lo= 3 Y Nalid = ma)xa + 3,00 — i) (2.45)

where, as in the previous section, x, and 1); are Majorana and Dirac fields, re-
spectively. We assume that the mass matrices have been diagonalized as described
before.

For the interaction of fermions with vector bosons we consider general V-A cou-
plings, where v,,, and a,,, are the coupling constants. While the indices z or y
stand for Majorana or Dirac fermions, v is indicating the vector bosons. Even if the
electric charge e does not appear in every model as part of all the coupling constants,
we factorise it to have a parameter to refer when considering the perturbation series.
The general form of the charged current Lagrangian is

L. =e ZYaVN(Uai,v - aai,v75)¢i¢v,u +e ZEZ/Y“(UZZ',’U - aZi,v75)Xa¢:,u
a,t,v a,t,v

+ey P (Vi — 0i5075) B0 (2.46)

i?.jiv

where ¢, , is describing the vector fields. Since here ¢, , carries also charge, it
has no coupling to two Majorana fields. For the interaction of the same type of
fermions with vector bosons (for the present situation Dirac fermions with charged
vector bosons), we do not write the hermitian conjugated term separately. By
taking every possible combination of indices (in this case 7, j and v), one includes it
automatically. The hermiticity of the Lagrangian can be guaranteed if we restrict
to couplings obeying

*

T (2.47)

*
xY,v*

Vygo =V

Ayeo = A

The coupling constants for the vertices with fermions and a vector boson can be
alternatively grouped to describe the couplings to the left and the right components
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of the field. The relation between the two sets of constants is:
S = Vo + oy (2.45)

R _
ga:y,v - Uwy,v - awy,v-

The upper script L or R indicates the couplings coming with v, or yg. From (2.47),
we have

ggf:c,?} = (g.'ﬁy,v)*’
Ty = (Gry)"

Then, the expression (2.46) for the charged current term of the Lagrangian is equiv-
alent to

Lec =Y XV (95,70 + 98 AR Vibow + €D 0" ((95.) L + (95 ) VR)XaSs

a,i,v azizv

+eY D95 L+ 98 VR P (2.50)

Z’]IU

(2.49)

Likewise, in the neutral current part we will allow for couplings of any pairs of
Dirac or Majorana fields. Including flavour mixing in the couplings,

1 _
‘C’nc = 56 Zya’)ﬂ (vab,v - aab,v’)/E))Xb(bv,u +e Z wz’f}/u(vij,v - aij,v75)wj¢v,u (251)

a,b,v £,J,U
1 . _
= 56 Z Xafyu (g(fb,v’y[/ + gﬁ;,vVR)XbQﬁv,u te Z ,wi/yu(giLj,v’yL + g;},vVR)¢j¢'U5N'
a,b,v £,7,V

From the notation point of view, we do not distinguish between charged and neutral
vector boson fields, or, as in the next relations, between charged and neutral scalar
boson fields. However, one should keep in mind that in the Standard Model the
coupling constants to neutral bosons are diagonal and a d;; will appear.

For the Yukawa couplings of the charged scalars to fermions, we can write

‘CYC =€ ZYG(CZ‘,S'}/L + Cc?i,sf}/R)wi¢s +e Z%((Cﬁ',s)*% + (Cgi’s)*')/R)XaQﬁ:

a,t,s ayi,s
+e ) whi(ch n + cf vr) Ui (2.52)
1,7,
+e ) U (@ + R0 + e 3 (T v + () R)Y; 8-
1,5, i,5,8
¢, is describing a generic scalar field and ¢f, , and cf | its couplings to the fermions,
such that

Cgac,s = (Calzzy,s)*a (2 53)

CR (CL )* .

yx,s TY,s
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This property preserves the hermiticity of the Lagrangian. The last two terms of the
Lagrangian account for Yukawa interactions of a Dirac field with another explicitly
charge conjugated one. To distingush the coupling constants in this case, we added
a tilde above c. Such interactions do not appear in the Standard Model, but they
are part, e.g., of the supersymmetric one. In the Feynman diagrams, they lead to
vertices with clashing or diverging arrows. In this paper, we will come across such
terms when considering the seesaw mechanism for neutrinos.

For the fermion coupling to neutral scalars, the possible terms entering the La-
grangian are

1 B _
Lyn = 3¢ Z Xa(Cop VL + Chy S YR)X®s + € Z Uil L+ YRV ¢s. (2.54)

a,b,s 1,3,8

With similar arguments like for (2.23) or (2.24), one can prove that for any
fermion-fermion-boson interaction term

Zyaravabqsv = ZWC(FT)ava_I(Xa)CQSv- (255)

a,b,v a,b,v

Here, we use y as a generic notation for Dirac or Majorana fermionic fields and ¢, for
any bosonic field. ', summarises all the interaction factors, like coupling constants
and Dirac matrices. In this relation, one should be careful in understanding the
transpose of I'. This transpose refers just to Dirac matrices since it is a consequence
of the interchange of the two fermionic fields. The particle indices in the coupling
constants remain unmodified.

If both fermions are Majorana particles (2.16), the previous relation implies that

11bcw = C(PT)abvcil- (256)

This constraint will be essential when writing the Feynman rules for vertices. In
addition, since we were not using any property of the boson fields in proving it,
['.s» can be replaced also by other expressions that describe the transition from a
Majorana fermion with flavour a to one with flavour b. We will see that (2.56) holds
also for the self-energy of Majorana fermions.

2.4 Feynman Rules

In the next chapter we evaluate fermion one-loop diagrams. For this we need a
consistent set of Feynman rules for both, Dirac and Majorana fermions. To describe
them, we use as framework the general Lagrangian given in the previous section.
First, we start with the diagrams for Dirac fermions and then we add the interaction
with the Majorana ones.
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2.4.1 Feynman Rules with Dirac Particles

We start by enumerating the rules for the propagators for fermions, vectors and
scalar bosons, and for the vertices including fermions. Then, we add the Feynman
rules of the external bosons and at the end we particularise the fermion coupling
constants for the Standard Model. In the next subsection we will complete the set
of Feynman rules related to fermions, by adding the ones for external particles.

As starting point for the fermion part, we use the Dirac terms of the interaction
Lagrangian given in section 2.3. The bosons’ propagators are given in a R, gauge.

9, i . i
iS(q) =
d—m;+ip
x/\/\/\/\/\/\/\/il/’\/n\l/\{/\/\/\/\/\/\/» 1DF = ! <_giu/ + ¢"q” (1- 5))
u v Y@ —mi+ip q* = &m3 +ip
s i
@ —m2+ip
1
v ZTZ&; = 1e7* (Vijo — QijvY5)

= ie’yu(giLj;quL + giI]%',v/yR)

””””””” iTijs = de(cf; o + ¢l vr)
] (2.57)

The mass m; in the scalar propagator stands as a common notation for both, physical
and unphysical particles. In the final result of a calculation (e.g. self-energy), one
can readjust the parameter m; according to the scalar type. For example, if we have
an unphysical scalar, a Goldstone boson corresponding to the longitudinal mode of
a vector boson with mass m,, than m, has to be replaced with \/Em,,.
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For the external vector and scalar bosons, the Feynman rules read:

[VAVAVAVAVAVAVAVAVA 6H(p) NN\NNNNNNNNN €Z<p)
______________ - 1 S 1

(2.58)

g, is the polarisation vector of the boson and the momentum p flows from left to
right.

In Table 2.1 we list the fermion coupling constants of the electroweak standard
model. By sy = sindy, we denote the sine of the weak mixing angle, by ¢y the

vertex gZL] v gg-’ v vertex cz-Lj, s cf; s

ol - 1 my 1 my
Yih; A —Q0i; —Q0i; Yibin sy myy i sy myy i
— 1YV —s%,Q Sw — 1 w_my 7 W _my
Yk Z | o O | —o, @i || hiix | —gg 20 g 0ig | g2y i
— 1 — + 1 m;
I/ileJr \/_Q—SW(SU 0 I/Z'lj(I) 0 s —mW(SZ'j
T — 1 T _ 1 m;

LW méij 0 Ly ® _\/_Z—SWW ij 0

TGd W+ | ——V; 0 Tid, o L mi g, Moy,
(Aad0% \/iSW K3 (At 8% \/isw mW k10 \/iSW mW k765
AattiW= | ——(Via)* 0 dou;®~ | ——A—Ma (e | Ty g
[0 Rad ] \/§SW K3 o \/§SW mW [10% \/§SW mW (76

Table 2.1: Fermion coupling constants in the electroweak standard model.

cosine, @ is the electrical charge and I3V the third component of the weak isospin.
v is the neutrino field and [ the charged lepton one. V stands for the quark-mixing

matrix. To distinguish between up- and down-type quark flavours in the same
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vertex, we use different indices: 7, j and so on for up, charm and top, and «, j3, etc.
for down, strange and bottom.

2.4.2 Feynman Rules with Dirac and Majorana Particles

To complete 2.4.1, we need to define generalised Feynman rules when one has a
theory including Dirac and Majorana particles. As mentioned, we take the whole
Lagrangian presented before and we add the new diagrams including Majorana
fermions. Additionally, we introduce the notion of general fermion flow. As support,
we use [Den92|.

The notations for indices and couplings are like in section 2.3. To distinguish
between the two types of fermions in the diagrams, the Dirac particles will carry an
arrow for the fermion number flow, while Majorana ones will be represented without
any.

For every fermion chain one can choose an arbitrary sense for the fermion flow
and evaluate the diagrams according to it. This arbitrary fermion flow (the general
fermion flow) can differ from the fermion number flow, i.e. one can choose to consider
either the propagation of particles or of antiparticles. As long as one inserts the
proper expressions, the resulting matrix element does not depend on the choice. For
Majorana particles there is no change since particle and antiparticle are identical,
while for Dirac fermions one has to find the connection between the two cases. For
example

I' becomes (')’ = CTTC™, (2.59)

when taking the antiparticles in a vertex (see (2.55)).

The general fermion flow is indicated in every diagram by an additional thinner
arrow line. The momentum ¢ runs as indicated by the arrow on the fermion line.
As above, we insert the Feynman rules proceeding opposite to the fermion flow.

q9 ma . _ Z
ZS((]) B ﬁ—ma'i'iﬁ

Cl, m; ; — —Z
i5(q) = d—m;+ic

q, my F QY — +
15(—q) = —f—m;+ie
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a

i

irgbv = 1eyt (Uab,v - aab,v’%)

= Z'ef)/u (g(fb,v’)/[/ + g(ﬁ,v,‘yR)

iT%

— ie* (Ui — s
ijv — L€Y (Vijo — Gij075)

= iev" (95,0 + 95 R)

i(FZ‘-‘jv)’ = iC(F%v)TC’*l
A\
> = —ieV" (Vijp + Gijps)
= —iev* ({1 v + 915 7R)

\_/
— o o o —
\7 v

ilaps = Ze(cab,sFyL + Cab,s’)/R)

ilijs = de(ci; 7L + Ci5 5 VR)

Z(Fws)l - iC(Fijs)TC_l
= Z.e(ciLj,sfyL + Cif;,s’)/R)

=1ljs



20

2. Lagrange Density and Feynman Rules

ilijs =

ZPjis =

irh

aiv

i(rgi'u)l

TH
ZI_\ai'u -

’i@(éz%’s’)/[, + 55,57]’3)

ie((E5; ) L + (i 6)"1R)

iefyu (Uaz',v — Qg ’75)

iev"(9e 7L + 95, VR)

= iC(Ir"

aiv)TCil
= —ie’y“ (Uai,v + a'ai,v’75)

= —iev" (g% ;v + 9% ,vR)

S W0k %
ey (Uaz',v aai,v75)

1€7"((9a30)™ VL + (Yas )" TR)

= iC(Ty;,) C™

I S e *
= —tey (Uai,v + aai,v’y‘r))

= —iey" (9o ) v + (94i.0)*VR)
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S
> 77777777777777 1l gis = ie(caLi,S’VL + cfi,sﬂyR)
S Z.<1—1ais)l = iC(Fais)Tc_l
> ,,,,,,,,,,,,,, = ie(ck; ;L + & Vr)
= irais
S _
,,,,,,,,,,,,,, iLais = te((cl ) vo + (ki o) Vr)

a
i
i(Lais) = ZO(Faw)TC_l
S
> ,,,,,,,,,,,,,, = Z€<(C§Z’5)*PYL + (caz,s) ,VR)
= Zrazs
a

The external fermion lines are not needed in the calculation of self-energies, but
they become important for the renormalization of the fields and further on for the
amplitude of different processes. Therefore, we list also their Feynman rules. The
momentum p runs from left to right.
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7(p, 5)

v(p; s)

(2.61)

When inserting the spinors in the matrix element, one has to keep track of a reference
order of the particles (given for example by the indices of the coupling constants in a
vertex) and multiply the expression with the permutation parity of the spinors with
respect to this order. This is an important condition for keeping the equivalence of
the result when different choices for the fermion flow are made. For exemplification,
let’s take the amplitude of a decay of a vector boson into a Dirac and a Majorana
particle. Along the fermion number flow, the amplitude is

Xa(p 2)

¢V(p3) .
Ti = iUa(pa, 5)eu(p3) Tt vi(p1, 5).

vi(py)

For the reversed general flow, we write

Xa(p2)

¢.(p3)
< T2 = (=1)iti(p1, 8)eu(p3) (L) Va (P2, ).

vi(py)

In 75, the spinors changed positions compared to the reference order in 7; (permu-
tation parity —1) and therefore the sign differs. Replacing (I',))’ by its equivalent
C(rh. TC™!, recognising that (73)" = 7T, since the amplitude is a number, using
(2.12) and the relations (2.15) for the transposed Dirac spinors, one can prove that

75 = (—1)@05(})2, S)Cilgli(p?’)rgi'()ca?(pla 8)

_ T (2.62)

For more complicated diagrams, the proof is longer, but based on the same tricks.
Other examples can be found in [Den92|.



Chapter 3

One-loop Fermion Self-Energies

In the first section of this chapter, we will calculate the general expression for
the fermion self-energy, considering a theory with fermions as Dirac particles. But,
for our purposes, we need to have fermions as both, Dirac and Majorana particles.
We will use the first result as a model for the next section when the Feynman
rules including Majorana fermions will be inserted and all possible diagrams for
self-energies will be considered. The results will be summarised in the last section.

3.1 General Expression for the Dirac Fermion Self-
Energy

Repeating the same calculation for different combinations of particles and models
can be avoided. Using generalised Feynman rules, one can express the self-energy as
a function of several parameters, easy to identify when specific cases are considered.
With the Feynman rules given in section 2.4.1, we calculate the self-energy separately
for the case of a vector boson in the loop and a scalar one, respectively.

3.1.1 Diagrams with Vector Bosons

In order to obtain a general expression for the self-energy of a fermion, when
a virtual vector boson is implied, one has to consider an one-loop diagram like in
Figure 3.1. We take into account the possibility of mixing from one fermion of type
1 to one of type j.

In this case the self-energy is given by

. dq . . o
_Zzz";(p) :/WZFikv,MZS(p+Q)2ijv,uZDg ) (3.1)

23
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p,my Dy  p+qg, my Fivp pomy

Figure 3.1: One-loop diagram with a fermion of mass my and a vector boson of mass
My.

where p is the total momentum and ¢ gives the momentum of the virtual boson.
The upper index V' is added to the self-energy symbol to emphasise that the internal
boson is a vector one. For the scalar part we will use E;”;(p) Notice that now we
have just one general Dirac particle of type k and one general vector boson of type
v, respectively. The sum over all possibilities will be taken into account later. To
simplify the notation, we keep explicit just the indices for external fermions. The
index V summaries in fact the indices for both internal particles, the vector boson
and the fermion.

Inserting the expressions for Feynman rules (2.57) and eliminating the matrices
in the denominator, the expression becomes:

) d* 1
=00 =€ | e g Gy ke~ s )(p 4+
AV
'71/(Ukj,v - akj,v/YS) (_guu + ﬁ(l - 5)) . (32)

. d* d . I L .
As XY (p) ~ f q—4q ~ f Fq, the previous expression is logarithmically diver-
gent. For its regularization we use the dimensional method (see Appendix A).

Changing the notation as in (B.2) and rearranging the terms with the help of (A.7),
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(A.10), (A.11) and (A.14), our regularised self-energy is:

Q 1
%)= [ Da
W= ((p+9)?—m}) (¢ —m7)
(26 = D + )00 = 0a70) 0130~ 01307 1)
+2(2 — e)my (Vik» + @ik, Y5) (Vkjo — QijnY5) (2)
1 - 5 2 2 3 . . . 3
—m(q + 2pq) §(Vik,o — Qik,wV5) (Vkjw — Qg Ys) (3a)
+q2 _; QZWJ (Vikw — @ik wY5) (Vkjo — QkjoY5) (3b)
_ikaQ(vik v F GikwYs) Vkjo — CkjoYs) | - (4)
q2 _ é'm?} ) 3 Js Js

62

o=, the fine structure constant, was identified. We can make use of (A.14)

7T
without problems since anomalies do not occur here.
Further on, we introduce the notations

+_ +_
Vil = VikwUkjp T Qikwkjws Ay = Vikwkjo T QikwVkjo (3.3)

Vi = VikwUkjp — Qikwkjws  Aij = Vikwkjo — QikwVkjos (3.4)

to evaluate the regularised self-energy term by term. As before, we omit the indices
for the internal boson and fermion. With the help of the two-point integrals defined
in Appendix B by (B.4) and (B.5), the first part of ¥}(p) becomes

p+@w
E D ik, — Wk v K
/ﬂ o+ 02 —ml) (¢ —wn%<vk’ Gik75) (Vkj0 = GhjnY5)
= EQ(& — 1) (pBo(p*; my, my) + Bu(p*; mu, my)v") (ViF — Afvs). (3.5)

With (B.6) and (B.10), we have

Y, = —EQ(e — 1)pBy(p®; mg, my) (Vi) — Afs). (3.6)

Using the expansion in terms of ¢ (B.20):

= p (L+ 2By mi, my)) (Vi = Afs) + 0(6). (3.7)

7
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Similarly one obtains

o 1
Yo =—2(2— D : .  aus
2 4 ( €)mk / Q<<p + q)2 o mi) <q2 _ m%) (Uzk,v + a/lk,’Uf)/E))(/Uk],'U ak],v%’))
47r2(2 — &)my Bo (%5 ma, i) (Vij — Aij7s) (3.8)
o
= 1M (4Bo(p”; muy, i) — 2) (Viz — A7) + Oe). (3.9)

To evaluate the third part of E}; (p), one can consider the decomposition:

1 1 1 1 .10)
(@2 —m2)(q® —&m2)  m2(1—¢€) \g> —m2 ¢*—Em? .
and the perfect square of the factor ¢* + 2pg, i.e. (¢ + p)? — p>. When adding and

subtracting an m? one can simplify the factor (p+ ¢)> — m3 in one term and obtain
0 for the corresponding integral, so

Yy = —— (3.11)

q + 2pq (Uzk v = GikwV5) (Vkjo — QkjoYs)
1 o Dq 2 2 2\ ( 2 2

a p?—mi g 1 1 n
E—— D — A
4 m?2 / q(p +q)2 —mi <q2 —m2  ¢®—E&m? (Viy - ”75)

Now the two-point functions can be identified and with their covariant decomposition

ap*—m
Y30 = —

p(Bl(p My, M) P25/ Emy, mi) ) — Afs). (3.12)

2
4T mg

For the similar term with g, the same decomposition (3.10) is used and a ¢ +

m2 —m? or ¢* + Em2 — Em? is going to be formed. Finally, one gets:

Uzkv ik v’75)(vkjv — Qkj Ws)
Ygp = — /D d d
’ W | PGt g = md) (@ = m2) (@ — Enid)
= Ep (Bo<p s, me) = EBo(p%s V/Ema,mi) ) (Vi = Abys). (3.13)

The last part of %j5(p) looks almost identical to (3.13):

Uzk v + Aif vVS)(Ukjv - a'kj 1)75)
Y= —-—— 1 —&m /D . .
! g ((p+aq) —mk) (¢> —m3)(q* — Em3)
= _Emk (Bo(p My, M) — EBo(p \[mv,mk ) — Ajs)- (3.14)

The final result for the self-energy, given by
Ex(p) = 21 + 22 + 23(1 + Egb + 24, (315)
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can be decomposed to emphasise the vectorial and scalar parts:

SY(p) = PS4 (0%) + prsSY (%) + S5 (0°) + 1555 (07), (3.16)
with  X2(p%) = 431:1)(]32;77%, Vem,, m) Vi, (3.17)
7T
a
2%(})2) = _EFv(pZQ My, \/gmvamk)A;';; (318)
a —
Efj(pQ) = Emsz<p2; My, \/gmva mk)‘/;] ) (319)
SEL(P) = =i (%, v/Emy, i) A7 (3.20)
if\Pm) = Ak DMy, vy M) Ay .
If we collect the terms, from (3.6), (3.8), (3.12), (3.13) and (3.14) we can identify:
2 _ 2
FY = —2(¢ — 1)B,(p*; my, my) + L m2 k (Bl(p My, M) \/mv,mk )
+ Bo (%5 my, my) — EBo(p; v/Emy, my)
£
= _P (A(mi) - A(mv) - (p + mk - mv)B0<p2; mkamv))
1 2y, PP — mi—2my o P mk
1
- 2m2p? (/\(pZ, mi, mg) + 3m3(p2 + mk - mv)) By (p*; g, miy)
1
+ 2m2p2 (A<p2’ mz’ gmg) + é-m%(pQ + mz - gmi)) B0<p23 myg, \/gmv)u
F? ( 2e + 3)B0(p mv,mk + €BO \[mv,mk (321)

Using (B.9), F* was written as a function of A(m?) and By, the one- and two-point
integrals explicitly calculated in B.2. X is Kallen’s function, as defined in (B.23).
If further on we consider the expansions in (3.7) and (3.9), F¥ and F* become

FY =14 2B (p*; myg, my) + P 7712 s (Bl(p My, M) P23\ Emy, mi) )
+ Bo(p%; ma, my) = EBo(p%; v/Emay, my) + O(e)
=1+ 5 A(md) + v Q”jQp 2Ty g (m2) p%;Z‘kA(gmg)
— #&02 ()\(pQ, my,m2) + 3m2(p* + m; — mv)) Bo(p*; my, my,)
+ ﬁ (A*, mi, €m3) + Emy(p* + mi; — Em)) Bo(v*; mi, v/€my) + O(e),

F* = —2 + 3By(p*; my, mi) + EBo(p \fmv,mk )+ Ofe). (3.22)
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In terms of left and right projectors, the regularised self-energy expression is:

Sv(p) = preSh(0%) + praSa(0®) + v SH(0Y) + veSH (), (3.23)
. (0
with — S5(p?) = 4—F (%5 My, \/EMey, M) (Viy + A%, (3.24)
Z50%) ~ir (% my, /e, mi) (Vif — AF), (3.25)
DM = maF (0 me, Emy,mi) (Vi + A7), (3.26)
o 8 — —
SEMP) = omkFC (R e, Eme, mi) (Vi — A7) (3.27)

If we use the alternative way to express the couplings for the vertex, i.e. in terms
of left- and right-handed components, with (2.48) the previous relations change to:

=5 () =43Fv<p2-mv,f Mo, 18) 95 9650 (3.28)
(p) = 4 Fv(ﬁ“ mv,\[mv,mk gzk) vgk]v’ (3.29)
SPE(p) = —mkF (05 M, /EMmy, ) g1t oG 0 (3.30)
SHR(p?) = Emsz(p Moy, /€My, M) gl L TH - (3.31)

3.1.2 Diagrams with Scalar Bosons

The general one-loop Feynman diagram with a scalar boson is represented in
Figure 3.2.

p,m; I p+q, my Ly pomy

J

Figure 3.2: One-loop diagram with a fermion of mass my and a scalar boson of mass
M.

The corresponding self-energy is written using the set of Feynman rules described
in 2.57.

S5 ) = [ LS+ g
i b - (271_)4 iks b q Ic]sq2 — m%
o 62 / d4q (Cz%c,s/ylz + Cgc,sfyR) (? + ﬁ + mk)(céj,sfylz + Cllc.zj,sfyR)

(2m)* ((p+ ) —mf) (> —m3)

(3.32)

(3.33)
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As mentioned in the previous subsection, the index S stands for the virtual boson
of type s and also for the internal fermion k.

For its evaluation we follow similar steps as in the case of the fermion self-energy
with vector bosons. After dimensional regularization and some rearranging of terms
with the help of formulas presented in Appendix A, the self-energy becomes:

ES /,Dq ? + 91 zk sYR T Cﬁc,sfy[/)<c£j,s’7[z + CkRj,s’YR)
((p+9)* = mi) (¢ —m3)
. gmk / (C’L-'L;C,SFYL + Cﬁc,sfyR) (Cﬁj,s’ylf + Cl@,sz) -
4 ((p+a)* —=mi) (¢* —m2)

Expression (B.4), (B.5) and the covariant decomposition of By, (p; ms, my), defined
by (B.6) lead us to
o
%5 () = = AP(Bo(p%; sy ) + Bu(p®; ms, mi)) (CisCis Vo + i sChi s V)
+ kaO (p27 myg, mk)(cﬁc,scijysf)/[/ + Cgc,sckRj,sfyR)}'

With (B.10), the self-energy can be simplified to:

(6]
S5(p) = E{ﬁBl (0% s M) (cf, 5 Chjos YL+ Cit 5 Ch s VR)
- kaO (an M, ms)(cﬁc,scﬁj,ﬂL + Cﬁg,sckRj,sfyR)}‘

Arguments of By where changed according to their symmetry. Identifying

i) = %Bl(ﬁ;mk,ms)cgc,w@,s, (3.34)
SR = - Buimem)eh of (3.35)
SPU?) = —1omeBo(p%s mi, ma)ch iof (3.36)
EDR(pZ) :—%kao(pQ;mk,ms)cﬁc,scﬁys, (3.37)

one can bring ¥7(p) in a similar form to (3.23), i.e

S5 (p) = prSL () + PreSE®?) + 1 SDH (7)) + 1rSHE (7). (3.38)

Using (B.9), we can write By (p?; my, m;) in (3.34) and (3.35) as

1
By (p*; my, ms) = 27 (A(my) — A(mg) = (p” + mg — mg) Bo(p*; ma, my)) . (3.39)
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3.1.3 Analysis of Divergent and Imaginary Parts

After regularization, the divergent parts in the self-energy are comprised in the
two-point integrals By(p*; my, ms) and Bi(p*; mi, my). In the appendix, we calculate
and isolate these parts (see formula (B.19)). One can see that there is no mass
or momentum dependence in the divergent parts of By and B;. To identify the
divergences of the self-energy, we analyse each of its components. For loops with
virtual bosons, we need first to replace the divergences of the two-point integrals in
Fv and F*, equation (3.22). We get

div[F*? (p?; m, \/gmv,mk)] = —¢A (3.40)
div[F*(p%; my, \/Emy, my)] = (3 + E)A, (3.41)

where A is given in (B.13). The divergent part for the self-energy components is
given by

le[E (pQ)] g gzk vgk] V)
le[Z (pQ)] = __é- gzk vglc] v?
o (3.42)
le[E (p )] _mk: (3 + g)Agzk ng] v?
diV[EDR<p2)] = _mk: (3 + g)Agzk vglc] v?
when the internal boson is a vector, and by
L (0 2\]
le[E”(p )] - 4 2Acik5 kj,s
al
div Efe p2 = ACZ sCR 89
R (3.43)

. o
A [SE-07)] = Ak, ol
) o
dlv[EgR(pQ)] = EmkAcf,i SckRj o

when it is a scalar. The terms of the self-energy carrying divergences have no
momentum dependence. The parameters entering these expressions are just the
mass of the internal fermion and products of coupling constants.

For the analysis of imaginary parts in the self-energy components, we do not
display the contributions coming from complex-valued coupling constants and we
focus only on the ones originating from the two-point functions.

According to (B.27)

1
Tm By (p*; my, my) = 27V AMp?,m?,m3), if (my 4+ mp)* < p°. (3.44)
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Kallen’s function A is defined in (B.23). The restriction of the momentum (see also
figure B.1) points to the kinematic requirement for a decay. From (B.9), we get

p? +mi —mj

o T/ A2, m2,m3), if (my +my)? < p®. (3.45)

ImB; (p*; my, ms) =

Replacing By and By with (3.44) and (3.45) in the formulas for the self-energy
components, one can determine the imaginary contributions that come from the
possible cuts through the one-loop diagrams. Such contributions to an amplitude
give the absorptive parts. For the self-energy with internal vector bosons, the imag-
inary contributions from the n-point integrals are comprised in F* and F*®. The
imaginary part of their expressions as given in (3.22) is

T
T F* (p%; my, \/Emay, my) = — ImIph (AMp?, mi, m3) + 3mi (p° + mi — m3))
v

Mp?, mig, m2)0(p* — (my, + m,)?)

m
+ 57 (AP, mi, ) + Emi(p* + i — Emy))
2mgp

VAW m2 Em2)007 — (i + V/Em,)?) + O(e),
ImFs(pZ; My, \/gmva mk) 22%3 \/ A(pZ’ m%a m%)e(pZ - (mk + mv)2) (346)

+ M2 e — (ms - /Em)?) + O(e),

where 6 is the Heaviside step function. The absorptive contributions of the self-
energy with internal scalar bosons result again from By and B as given in (3.44)
and (3.45).

Note that the presence of imaginary contributions in the self-energy components
is not only a consequence of the fact that particles are unstable. There are also
imaginary parts arising from unphysical intermediate states. These ones are gauge
dependent and they are present if, for example, we choose & such that p? > my +
VEm,. However, in the calculation of complete matrix elements, the £ dependent
parts will cancel eventually.

3.2 General Expressions for the Dirac and Majo-
rana Fermion Self-Energies

Since in theories beyond the Standard Model also Majorana fermions appear, we
need to evaluate the corresponding changes introduced in the self-energies. First,
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we consider the diagrams that have to be added to the Dirac fermion self-energy
and then we evaluate the ones for the Majorana fermions. We take into account all
allowed vertices, as described in (2.60).

3.2.1 Dirac Fermion Self-Energy

The cases considered in sections 3.1.1 and 3.1.2 do not cover anymore all the
possible contributions to a Dirac fermion self-energy. In addition one has to include
one-loop diagrams with a Majorana and a vector or scalar boson, like in Figure 3.3
and 3.4, respectively. Their evaluation is almost identical to the previous cases. As
it will be seen in the next steps, just several parameters should be replaced.

q, my

C/ —

p, mj l—‘ajv,v p+q, m, 1—‘aiv,u p, my

Figure 3.3: One-loop diagram with a Majorana fermion of mass m, and a vector boson
of mass m,,.

For each figure we insert the Feynman rules in a similar manner like before, this
time paying attention to the changes imposed by the choice of the general fermion
flow indicated by the additional arrow line. Using (2.57) and (2.60), the self-energy
for Figure 3.3 is:

. dq . . . o
_ZE;;(p) :/eraiv,lﬂs(p+Q)Zra]’v,u2D5

_ 2 d*q 1 .
- / 2m)% ((p + q)2 — m2) (¢ — m2) Vu(Vain = Qi 5) (P + ¢ + 1a)

)IJ(UGI’U aaiU )5) g v 2 - 2<1 é‘) -
’ ’ q fmv

If one compares this expression with (3.2), one can remark that replacing the Dirac
fermion in the loop with a Majorana one does not bring significant changes. The
result becomes identical when the mass my is changed to m, and the coupling
constants ik, Giky and vgj., Gk, are replaced with v and Vg, Gajos
respectively.

Here, we are not going to express the Feynman rules for the vertices also as
couplings to the left and right projectors. It will be done for all diagrams in the last
section of this chapter, when summarising the results.

* *
at, v’ aai,v
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For the similar diagram with a scalar boson (Figure 3.4), one also has to adjust
the mass m,, for the internal fermion and accordingly the new coupling constants to
get the result corresponding to (3.33).

p, m; 1—‘ajs p+q, m, 1—‘ais p, m;

Figure 3.4: One-loop diagram with a Majorana fermion of mass m, and a scalar boson
of mass mg.

| dq — . '
~i=5(0) = [ TS0+ Ty

(2m)* —m3
_ 2 / dq (B )y + (L ) vr) (P + d + ma)(ck v + )
(2m)* ((p+q)* —m2) (¢* —m2)
(3.48)

Because of the Feynman rules for Majorana and Dirac fermions, the coupling con-
stants cf; , cff , change to (cf)*, (ki ,)* and cf; ,, i, to ¢l ., ¢l . Note that in
the first set of couplings, the left and the right components appear interchanged.

We have not excluded models that allow for boson interactions with a Dirac field
and a charge conjugated one. In fact, as mentioned when defining the general form
of the Lagrangian, we will encounter this type of interactions in the neutrino seesaw
mechanism. There, a charged component, of a Higgs triplet will couple to a charged
lepton and a charge conjugated one. Then, diagrams as in Figure 3.5 will add to
the charged lepton self-energy.

p,m; D -p-q, my I p, my
Figure 3.5: One-loop diagram with a charge conjugated Dirac fermion of mass mj, and

a scalar boson of mass mg.
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The self-energy contribution of such a diagram is

. dlq = = i
—zEfj(p) :/—sziszS(p—Fq)szjsqi

(2m)* —m;
_ 2 / d*q (88, v + (& ) vr)(p + ¢ + mu) (& v + &5 7R)
(2m)* ((p+a)* —mg) (¢ — m3) .

(3.49)

As previously, the coupling constants cf; ,, ¢ff , in (3.33) change to (& ,)*, (¢;,)*
and cﬁj,s, ckRjys to 55]-,3, EkRj,s.

In all cases we have seen that no additional calculation is required. A simple
replacement of the mass and coupling parameters gives the final result for the self-

energies.

3.2.2 Majorana Fermion Self-Energy

Calculating the self-energy for the Majorana fermions is not more complicated.
We will end up with a rather tedious enumeration of masses and coupling constants.
However, some special attention is required for two new specific cases that appear.
The reader can also skip the next two subsections. The result will be summarised
in section 3.3.

Like before, we start with the diagrams with virtual vector bosons and then
we give the corresponding ones for scalar bosons. For the cases obviously similar
to the ones from section 3.1, we are just writing the self-energy expression and
emphasising the new parameters. When charge-conjugation is required, we will
make extra remarks. In all the diagrams, the initial momentum p is flowing from
left to right.

Diagrams with Vector Bosons

q’ mV
p, my 1—‘cbv,v ptq, m 1—‘acv,u p, m,

Figure 3.6: One-loop diagram with a Majorana fermion of mass m. and a vector boson
of mass m,,.
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, dq . . o
_Zng(p) :/WzFaw,qu(p-l-q)chbv,,,szf

_ 2 dq 1 ~
=e / (271’)4 ((p + q)2 _ m%) <q2 — mg)%(vac,v aac,v’}/f,)(p + g + mc)

?V(Ucbv acbv )5) g v : (]‘ é-) *
’ ’ q2 - fm%

Comparing the Majorana fermion self-energy with a virtual vector boson and a
Majorana fermion (formula (3.50)) with formula (3.2), one can identify my with m,
and Vi, ik and Ugjo, Gkjo With Vgep, Gaew and Vepy, Gepo, respectively.

The case when the internal Majorana fermion is replaced by a Dirac one having
the fermion number flow from left to right (the 'normal’ orientation) is considered
in Figure 3.7.

p, my Dy ptq, my Ly prmy

Figure 3.7: One-loop diagram with a Dirac fermion of mass my and a vector boson of
mMass M.

From our initial general expression for a self-energy with a vector boson given
in (3.2) one has to change vity, @ik, and Vgjy, Gkjo 10 Vakws Qake and Vg, Apg 1O
obtain (3.51).

, d'q . —
_ZEZL/I)(p):/Wzrakv,ul‘s(p‘i‘Q)Zrbkv,uzDg

— 2 d4q 1
=e / (27'(')4 ((p + q)2 _ mi) <q2 _ mg)7u<vak,v - aak’v%)(p + g + mk)

Vo (Vikw — Qo V5) | —9™ + a7 1-8).
bk,v U q2 _ é-m%
(3.51)

Majorana fermions allow a new type of diagram with reversed fermion number
flow. Therefore, we have to consider also contributions as described in Figure 3.8.
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p.m, Ty P-amg Ty pom,

Figure 3.8: One-loop diagram with a Dirac fermion of mass my and an opposite fermion
number flow and a vector boson of mass m,.

In contrast with the Dirac case where in Figure 3.5 we have a new type of process,
this one is physically equivalent to the one in Figure 3.7.

In Figure 3.8, the inner momentum flow was chosen to lead to an easy to identify
expression when comparing with (3.2). Inserting the Feynman rules, one has to
remember how we have set the initial momentum orientation. The vertices appearing
now have a general fermion flow opposite to the internal Dirac propagator one. The
self-energy is given by

. dlq ——, , 1
_chﬁ(p) = /#Z(Fa}w,u) ZS(p-FC])Z(Fbkv’U) ZDg

2 d'q 1 . .
- / 2m)* ((p+q)? —m3) (¢ — m%)%(%k,v + ang . Ys) (P + o + my)

’YV(Ubk v T bk v%) -g" + 7qﬂq" (1 - 5) .
' ’ g — §m,2,
(3.52)

It is nice to see that no real complications appear for this new case. Going back to

(3.2), the couplings ixv, Gikv; Vkjw, Gkjp DECOME V3 ) =A%y 3 Vbkws —Cbko-

Diagrams with Scalar Bosons

Switching to the loop diagrams with scalar bosons, no new problems appear. The
result obtained from (3.33) is sufficient to express a Majorana fermion self-energy
with an internal scalar. In the first case (Figure 3.9), when one has an internal Ma-

: : : L R .. R
jorana fermion, the old mass kabecolrznes nzc aunc}z the couplings c; 5, Cik 53 Cyj s Chis
have just to change indices to ¢, o, ¢y o5 Capss Copse

. dtq . . i
_Zng(p) :/WZFaCSZS<p+q)ZFcbsm
s 3.53
o [ (b el o+ o %%
B (

2m)* ((p+q)?* —m2) (¢ —m3)
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q, my
// C/" \ )
/ \
/ \
/ \
4 >
p, my 1—‘cbs p+q, m, 1—‘acs p, my

Figure 3.9: One-loop diagram with a Majorana fermion of mass m, and a scalar boson
of mass mg.

q, mg
P i it
C/ \
/ \
7/ \
‘/ \
p, my | RN p+q, my Fas p-my

Figure 3.10: One-loop diagram with a Dirac fermion of mass my and a scalar boson of
mass m.

For a Dirac fermion in the loop, with the regular fermion number flow, the self-
energy is:

: dq . . — i
~iZ5(p) :/—Zraksls(p'i_Q)ZFbkqui

(2m)* —mj
_ 2 / d*q (ke + ok YR) (P + d + M) ((chic )" Ve + (Chk.0)*VR)
(2m)t ((p+ ) —mi) (¢ —m3)
(3.54)
The new internal fermion mass is still my, and the vertex couplings ¢}, ,, ¢ 5 (cfr. )",

Ly L R .. R
(chr,s)* take the role of ¢ ., cif 3 ¢y s O s

q, My
o=

- ~

- ~
s N
s \
/ \
/ \
/ \
/ \

pm, Ty  -pqmg Tu) p,m,

Figure 3.11: One-loop diagram with a Dirac fermion of mass my, and an opposite fermion
number flow and a scalar boson of mass m.

The new case given by the reversed fermion number flow for the Dirac particle
(Figure 3.11) is simpler than before. Looking in (2.60) at the Feynman rules for
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these vertices we can see that since C'(vyr )" C~' = /g, We have no change from
the normal rules. The self-energy will be:

. dq ——,. . i
—i¥5,(p) = / (2m) 21(Lars)'iS(p + Q)Z(Fbks)lf

2

27) —m?
d*q ——. . i
= /WZFGkSZS(p'i‘ Q)'Lrbksm
_ 62/ d*q ((cf ) e+ (e, ) vr) (P + ¢ + mu) (cip 7L + it s VR)
(2m)1 ((p+9)* —mf) (¢* — m2) '

(3.55)

With (3.33) one fits the result by taking (cf ,)*, (cir.)™; Chisr Ciy, instead of the

ak,s
. L R . L R
couplings ¢, o, Cik 53 Chijss Chyjis-

Properties

Because of the nature of particles, the Majorana fermion self-energy has an addi-
tional property. It is a consequence of the invariance of the result when changing

the orientation of the general fermion flow. We consider a general one-loop diagram
described by

L
_izab(p)

The loop can contain any possible combination of particles. If we now evaluate the
diagram changing the general fermion flow, we have

L
_izba(_p)

Using the property (2.56) of Majorana couplings and the fact that
S(=q) = C(S(a))" ", (3.56)
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one can prove that the two self-energies are related by
Sa(—p) = CZL, (p)C . (3.57)
If we write the self-energies decomposed like in (3.23), i.e.
Sa(p) = prEe (@) + preSh (0°) + 1 SHE %) + RS0 (D),

and we use the properties given in (2.13), (3.57) is equivalent to

e (P°) = g ("), (3.58)
Sha (P%) = Bg" (%)

3.3 Summary of Results for Fermion Self-Energies

In section 3.2, we have proved that calculating any fermion self-energy, with
Dirac and/or Majorana fermions, the result is going to reduce to formulas of section
3.1. Here, we are summarising the possible Feynman diagrams and the parameters
that enter the results.

For fermion self-energies with a virtual vector boson, the result is given by (3.16):

Sy (p) = pEb, (0%) + Prs3, (07) + 35, (0°) + 128, (%)

with X2 (p°) = %F”(pz;mv, \/gmv,mz)V;;,
(%) = 0 ma, /Emy, m) A7,
2, (0?) = %mzf’s(p?;mm Vemy, m.)V,,,
2, (p?) = —%szs(pz;mv, VeEmy, m.) A,
Vits Vigs A, and A7 are functions of coupling constants and they are the only

parameters that change when considering different contributions to fermion self-
energies. They are listed in Table 3.1 . The trivial replacement of the internal
fermion mass m, due to notation is not written. We do also not make additional
remarks for other particle indices. It is obvious that zy refers to ij for a Dirac
fermion self-energy and to ab for a Majorana one.

Alternatively, one can express the result using the decomposition of the self-
energy in terms of left and right components (3.23):

Sy, (0) = PrSE,(0%) + prrEL (07) + S0 (07) + 7RS0T (07),
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£
Viy

I
Ay

Vik,vVkjv + ik vaAkjv Vik,wkj,v + ik vVkjv

my - Dy Mk Figyp ™
mV
% Uai,vva]a'u + aai,van;U vai,vaaﬂav + aai,vvaJ:U
My Ty Ma Faivy M
mV
% Vac,vVcb,v + Qgc,wleb,y Vac,v@ch,v + Qqc,vVch,v
my, 1—‘chv,v me racv,u my,
mV
* * * *
_@IW%H% Vak,wVpk,p £ Cakwlpgy | Vakwpgy £ CakwVpky
I Fiyy Ma

My Corry) Mk Crr)’

m,

Vgke,wUbk,w T Qg o Qbkw | —Vgp o Gbk,v TF Qg , Vbkw

Table 3.1: Fermion self-energies with a virtual vector boson.

with S (p?) :%
S50 =4
SR = g
SER(?) =

We have defined:

™

R _ v+ +
Gy =V — Ay

F*(p*; my, /€my, m)GE,,
Fv(pQ; My, \/gmva mz)nya
(p2§ My, \/gmva mz)nyLa

- 4_sz5(1723 My, \/gmva mz)Gal:)yR'

_ L L
- ng,vgzy,v’

_ R R
- gxz,vgzy,v’

DL __ y/— - _ R L
Ga:y - Va:y + Amy - gacz,vgzy,v’

DR _ /- -
Gy = Vo — Ay

_ L R
- ng,vgzy,v :

w
o
S

.:
[@))
—_

(3.63)

With the Feynman rules for vertices written as couplings to v, and g (2.60) and
with the help of formula (2.48) one can transform the parameters from Table 3.1

: L R
into Gy, Gy,

GPI and GDF. The latter are listed in Table 3.2.

For the fermion self-energy with a virtual scalar boson, one has a similar table.
The self-energy is given by (3.38), i.e.:

22, (0) = prSE, (0°) + prrEL (0%) + I (07) + R0 (07)
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self-energy G, GY GL/ GLF
my
L L R R R L L R
% gik,vgkj,v gik,vgkj,v gz’k,'ugkj,v gik,vgkj,v
my - Dy Mk Fiyp ™

S ke | @R | (0 e | (6,

mj Ty Ma Faivy M
mV
L L R R R L L R
% Yae,v9ch.w Yae.v9cb.w Yae,v9ch.w Yae.09chw
my, 1—‘chv,v me racv,u m,

L L R R R L L R
_% gak,v(gbk,v)* gak,v(gbk,v)* gak,v(gbk,v)* gak,v(gbk,v)*

R R L L L R R L
SJ\MWW\%‘H@ <gak,v>*gbk,v (gak,v)*gbk,v (gak,v)*gbk,v (gak,v)*gbk,v

My (Tyyyy) Mk (Fakv,p)’ m,

Table 3.2: Fermion self-energies with a virtual scalar boson.

with Zgy(pQ) = %Bl(pZ; m,, mS)Cgfy, (3.64)
o
Egy(p2) = 531(p2;mz,m8)05@, (365)
!
Sa (0?) = —maBo(p*ime, m) Ol (3.66)
Jo!
Sat(p?) = = omeBo(p’ime, my) Oy (3.67)
We have replaced the different products of coupling constants by ij, Cﬁ/, Cﬁf and
DR
Coy
L _ R L
ny - sz,sczy,s>
CE =cl cE
Ty r2,8%2Y,8° (368)
DL _ L L
ny - sz,sczy,sa
DR _ .R R
C:I:y - Cacz,sczy,s'

These parameters are used in Table 3.3 where we list the contributions from self-
energies with internal scalars.

It is worth making a few additional remarks on some special features of the self-
energy. These properties are not restricted to the case of Dirac fermions, therefore
we will keep in the following, the generic notation.

Consider the sum of all possible one-loop self-energies (with virtual vector and
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self-energy Cr CR chr [
ms
R L L _R L L R R
/ ! Cik,sckj,s Cik,sckj,s Cik,sckj,s Cik,sckj,s
mj T Mk Fis M
s
L \x,.L R \*.R R \x.L L \x.R
/ _ (Cai,s) Caj,s (Cai,s) Caj,s (Cai,s) Caj,s (Cai,s) Caj,s
my rui\ m, T, m;

L \kAL “R \«xR “R VAL L \«xR
L o (Cki,s)*ckj,s (Cki,s)*ckj,s (cki,s)*ckj,s (ckz',s)*ckj,s

mj T my Dy M
my
R L L R L L R _R
Cac,sCcb,s Cac,5Ccb,s Cac,sCcb,s Cac,5Ccb,s
my, T, b mg Fd m,
ms
R R \x L L * L R \x R L *
=< \ Cak,s(cbk,s) Cak,s(cbk,s) Cak,s(cbk,s) Cak,s(cbk,s)
my 1—‘bks my 1—‘aks m,
ms

L L R R R L L R
T (F\ S (Cak,s)*cbk,s (Cak,s)*cbk,s (Cak,s)*cbk,s (c )*Cbk,s
b bks. Kk aks. a

Table 3.3: Fermion self-energies with a virtual scalar boson.

scalar bosons), for a given xy combination:
Z]acy (p) = p’YLEaIc/y (p2) + p7R25y<p2) + ’YLEz?yL (pQ) + VREfyR(pz)' (369)
In the standard model, one can show that

DL 2 D2
Efy(p2) stands for the sum of the contributions to the scalar part of the self-energy
except the given mass factor. This property can be proven with the help of the
Feynman rules for the Standard Model (Table 2.1) by explicit calculation. Taking
each possible diagram and inserting the corresponding coupling constants, one can
verify that (3.61) and (3.62) or (3.66) and (3.67) differ just by one mass factor. For
the diagonal case, (3.70) implies

S (07) = X5 (9°). (3.71)

If we have models, for which there are no imaginary contributions from the
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n-point integrals in the self-energy (see section 3.1.3), then

S, (%) = (S5,0%)"
SE®) = (E50%), (3.72)

S0 (p?)

The relation can be easily proven for each possible combination of internal parti-
cles, using the hermiticity of the interaction Lagrangian reflected in the coupling
constants, see equations (2.49) and (2.53).

If we refere to Majorana fermions, to all particular cases described above, the
properties (3.58) additionally apply.

Il
e
85
—
=
~
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Chapter 4

Divergences of Fermion Self-Energies

In a Lagrangian, we have some parameters that we call 'masses’ and 'couplings’,
but they are not identical with the corresponding observable quantities. Therefore,
we have to carefully define the relations between these theoretical parameters and
the corresponding experimental quantities. This procedure is called renormaliza-
tion. An additional request for renormalization comes from the need to subtract the
divergences occurring in perturbative calculations.

One convenient prescription to solve these problems is the on-shell renormal-
ization scheme. In the following, we give a short description of the method and
its results within one-loop accuracy. The purpose of this chapter is to study the
properties of the full one-loop corrected propagator. We will write the propagator
matrix in a form which allows us to directly read off the position of its poles and
residues. This form will be convenient for the next chapter where we discuss the
renormalization of the free Lagrangian and redefine fields and parameters to absorb
divergences. Only then we can start to discuss the complete order o corrections.

The exact propagator of a particle is written as the sum of all one-particle-
irreducible diagrams added up in a series like in Figure 4.1.

O OO

Figure 4.1: Dyson summation

We are interested in perturbative corrections to the fermion propagator and there-
fore, inserting the corresponding Feynman rules in Figure 4.1, one gets

p_mﬂ%—mwﬁp_mﬁ42@»p_m

i

iﬂm=p_m

(1- =0

45
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where —iX(p) describes the loop. With the observation that the sum of all diagrams
forms a geometric series, iS(p) becomes

T p-m-3(p)

This way, the propagator has again a simple pole, but shifted due to —3(p). The

shift induces a change in the fermion mass. The physical mass (M) is given by the

real part of the pole in the full propagator. By introducing two additional constants,
1

iS(p) (4.2)

Z2 and Z?, one can rearrange iS(p) and write it as

?

=

— 7.

iS(p) = Zﬁp—M——z(m

(4.3)

We will call 3(p) the subtracted self-energy.
We denote the complex pole of the full propagator by 9t. Then,

S(p) — 7 7 (4.4)

p2—N2 p? — N2
The real and the imaginary part of 9 give

M = ReIN,

4.5
' = —2Im9In, (4:5)

where M will be identified with the physical mass and I' with the width of the

1

particle. 7 > and Z? will contribute to the residue of the propagator at the physical
mass. All these constants, together with p and Y(p) are Dirac-matrices, but as
before, we do not write it explicitly.

1

In the literature, Z > and Z? are called wave function renormalization constants.
In our approach, they do not necessarily contribute in a direct way to the renormal-
ization of the fermion field. However, not to create confusion, we will refer to them

_1
in the same manner. From the start, we consider 7 > and Z2 independent of each
other, i.e. the hermiticity condition

—1 1
A R AL (4.6)

is not necessarily fulfilled. The precise definition of the constants will become more
clear during this chapter.
We emphasise that the expression in (4.3) is achieved just by splitting 3(p) from

1 .
(4.2) into Z2, Z7, (p) and a piece that relates the two mass parameters m and
M. This way we separate the divergent parts from the finite, physical remainder:
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only Z %, 7% and the difference M — m will turn out to be divergent. These are
the constants which have to be absorbed by the renormalization of parameters and
fields in the Lagrangian.

In the discussion above we have assumed only one fermion. However, in reality
we have more fermions which mix with each other. In the following section we will

1
consider the separation of the wave function renormalization constants Z %, Z? and
the difference M — m for this more realistic situation.

4.1 Analysis of the One-loop Fermion Propagator

At one-loop, the fermion self-energy ¥(p) is the sum of the one-particle-irreducible
two-point functions given at the end of Chapter 3. Since we take into account mix-
ing, we talk about matrices in flavour space and we have to add particle indices.
If we take the inverse propagator in (4.2) and (4.3) and then we set equal the two
expressions, we can write, including particle indices

(p — mi)os; — Lij(p) = Z (Z )Z_kl ((? My,) 0 — Ekl(ﬁ)) (Z%>l_j1- (4.7)

)

From here, the subtracted self-energy is written as

$35(p) = (p — Mi)dy ZZ (F — M) — Su)) Z2. (4.8)

f]z-j (p) will emerge as a finite quantity provided that Z %, 7% and M are properly
chosen.

As one can see from the calculations in Chapter 3, the self-energy is proportional
to the fine-structure constant . In the first order approximation, one neglects terms
of order a? and higher. Therefore, it is reasonable to expand the constants in powers
of a.

M; = m; + dm; + O(a?), (4.9)
1 1

ZZ? = 5z'j + §5Z1] + 0(042),

—1 1 —

with 0m; real. Furthermore, one can consider the decomposition in left and right
projectors:

67 = 5Z]’YL + 52” r,

B (4.11)
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Note that even if we don’t assume that the hermiticity relation links the constants,
for 57”- it is still convenient to choose the notation such that the index L comes
with the constant related to the right projector and the other way around, like it
would have been derived with (4.6), from §Z;;. The notation will be helpful later,
when we treat the renormalizion of the fields.

From equation (4.8), using the relations (4.9)-(4.11), in first order, the subtracted
self-energy is

Sii(p) = Si(p) — 6mady; — %57@' (p—my) — 5(p —mi)dZy + O(%).  (4.12)

1

2
No summation over the indices is implied. For f]ij (p), we use a decomposition as in
(3.23) or (3.38). Then:

L 2\ _ L 2
Ez’j(p )= Eij(p )
R 1
X50%) = T50") — 5

- 1 — 1
Ef;-L(pQ) _ EgL(pQ) _ 5mz’51'j + 56Z§mj + Emi(SZ{;- + 0<a2)’

1 —
- 5625 +0Z,) + 0(a?),

—R
(525? +0Z;;) + O(a?),
(4.13)

A 1 —1 1
EZR(pz) _ EZR(pQ) — 6mydi; + §5Zijmj + §mi5Z£ + 0(a2)-

To determine the constants introduced above, one has to evaluate on-shell con-
ditions. First, we will consider the diagonal elements of the propagator and then the
off-diagonal ones. The approach is similar to [Esp02]. However, there, renormalized
fields and masses are considered from the beginning, while we are going to derive
the rules for the renormalization later.

One helpful remark is that the off-diagonal matrix elements of the inverse prop-
agator

S;;H(p) = (p — mi)di; — Sij(p) — S (p) = —Si;(p), for i # j, (4.14)
are proportional to a. In fact, we have to invert a matrix of type a;d;; + dA;;, with
0A;; < a;. Up to terms of order o?, for each diagonal element, we will obtain the

inverse of the initial term (see Appendix C.1, formulas (C.7) and (C.8)). Therefore,
it is sufficient to invert

Sit(p) = p —mi — Su(p). (4.15)
Using a decomposition of the self-energy like in (3.23) and identifying
A=1-35(p")
B=1-3(p’)
C'=—m; = T3"(p")
D = —m; — S3%(p?),

(4.16)
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one can rearrange
Si'(p) = prA+ pyrB +7.C + vrD. (4.17)
The inverse of this expression can be easily written as

1 _ pLA+vrB) — 7D — 7rC
P(LA+vrB) +7.C + 7rD p*AB - CD ’

Sii(p) = (4.18)
where the first fraction was simply expanded with p(v,A + ygB) — 7D — v&C.
As mentioned before, the propagator has again a simple pole, but shifted:

p*’AB — CD =0, for p* — 97, (4.19)
Like in (4.5), we write the complex pole 90 as
1
9ﬁi = MZ — Z—Fi
2 ) (4.20)

The physical mass M; was replaced with (4.9). Note that in the last expression, I';
is of order a.

It is worth now making the observation that considering any element of the
self-energy decomposition (3.23), one can expand it around p? = m? as

S(p*) = 2(m?) + (p* — m*)¥'(m?) + O((p* — m?)?), (4.21)
where X' (m?)= 8?;];2) 2 2:(’)(04). For p? = M?, where M is given by (4.9),
S(M?) = %(m?) + 2mémY' (m?) + O(a®) = X(m?) + O(a?), (4.22)

or for p? = 9%, written as in (4.20),

¥(9m?)

Y(m?) +2m <5m — z%F) ¥ (m?) + 0(a?)

(m?) + O(a?) (4.23)

= X(M?) + O(a?).

With this remark and inserting back (4.16), the vanishing condition for the
denominator (4.19) will give the mass correction:

1
om; = ;Re [mi 5 (m3) + mi S (m?) + S7F(m?) + 2% (m3)] (4.24)

7
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and the width:

I; = —Im [m;Zf;(m?) + mSi(m?) + 05 (m7) + 0% (m3)] - (4.25)
On-shell, the diagonal matrix elements of the propagator will become:
1 p + M, _1
Sii = VA 4.26
)] o (4.26)
A+ B) — D — C L9+ i)ﬁi _1
o pLA+vrB) — 7D — g 7 Lz 7 (4.27)

1 _1
If we replace Z;} and Z} with their expansions and decompositions (4.10) and
(4.11) and rearrange the terms, in order «, (4.26) is

1 1 1 —r 1 1 1
= 1+ 028 + 207, |+ =675 + 67"
p2 93?22 p2 _ thQ (p'YL < + 25 % + 26 u) +¢’7R < + 25 i + 25 u)

1 1 1 1
M, (1 + 302k + 5522) + v, (1 + 3025 + 5525)) .
(4.28)

Sii (p)

To identify the constants, one has to bring (4.18) into a similar form. Since we
talk about the on-shell limit, we will expand the numerator and the denominator
around p? = M?, i.e. around the physical mass. The expansion looks similar to
(4.21). A, B, C, and D will become:

A= 1= SO - 07 - MESE() + 007 - M)
B=1- S50 - & MEISE (M) + O — MP)P), 129
C = —m; = SPH(MP) = (5 = MP)SEY (M) + O((4% - MP)?),

D=—mi—25R(Mf)—(p—ME)EZ-?R'(MQ) O((p* = M;)?),

7

where Y/'(M?) is defined in analogy to (4.21). (4.27) requires in fact an expansion
around p®> = 9M?, the complex pole. However, at O(«), for the products of A, B,
C, and D in the denominator of (4.27), M; can be replaced with 9t;. This works
also for the numerator, where we need just the first terms of the expansions (4.29).
Making use of (4.23) and in general, of the fact that terms of order a? and higher
are neglected, one can prove that the propagator (4.18) can be written as
: (P
7 — 0T, + O —me))
+vp(mi + S7HM?)) + yr(mi + S5 (MF)) + O(p° — M)

(4.30)

Sii(p) = 1—5(M7)) + pyr(1 — S(M}))
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with

T =1 - S3(M7) - SHM?) - MP(SE (M) + 2 (MF))
—Mi(S2Y (M7) + Z2F (M7)) + O(a?).

In the limit p* — 9M?, (4.30) has to be equal to (4.28) (condition (4.27)). In
both expressions the denominators are scalar functions of p?, so one has to separately
compare the factors coming with pyr, pyr, 7 and g, respectively. We obtain for
the diagonal elements of §Z and §Z, the following system of equations:

(628467, = 258(M?) + 2Dy (M),
02%+0Z;; = 25K(M7) + 2Da (M),
1

| 02402 = SHMP) + SE(M?) — M (SR5(MP) = SRR(M7)) + 2D (M),

SZR+071 = SE(M?) + SE(M?) + — (SPH(M?) — SOR(M2)) + 2D3(My),
\

s[-

Dii(M;) = MZ(SE (M?) + S (MP)) + My(SR (M) + S2% (M7).  (431)

The solution of this system of equations is not unique and we have to choose one
free parameter. A convenient choice that leads to symmetric formulas is

SZE+ 678 =67, + 075 + 28;, (4.32)

where (3; can be chosen finite. In this case, the solution is

5ZL V(M) (EDL (M7) = S3°(M7)) + Di(M;) + %,
02 = SEOM) + 51 (SPH(MF) - SER(M2) + (M) + 5
X 5 (4.33)
025 = SEOMD) + 5y (SPMO47) — SEROE) + Da) - 5,
(57 = Si(M7) - (EDL (M?) = SER(M?)) + Dis(M;) — %
\

The free parameter 3; can not be fixed by on-shell conditions.

To complete the result, we have to determine also the off-diagonal elements of 67
and 6Z. Evaluating the real part of the pole in the propagator, we have identified
M; with the physical mass. Accordingly, the on-shell relations for the Dirac spinors
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are written with the help of M;:

(p — Mi)ui(p, s)
(p + Mi)vi(p, 5)
u;(p, s)(p — M;)
vi(p, s)(p + M;) =0,

To avoid mixing in the corrections related to external particles, we impose ad-

ditional on-shell conditions for the off-diagonal elements of ¥i;(p) (i # j). For
incoming and outgoing particles, they are:

Y

0
0 2 2
0 for p* — M. (4.34)

I

4 (p)u;(p, s) = 0, for p* — Mj2 and i # j, (4.35)
Ui(p, 5)4(p) = 0, for p> — M? and i # j. (4.36)
These relations guarantee that mixing does not occur on external lines. n (4.35)
and (4.36), the subtracted self-energy Z,j is given by the non-diagonal elements of

(4.12):
$(p) = Sy (p) — %572-]@ _ M) - %@ _ M)§Zy, for i # ;. (4.37)

Since in (4.12) the factors p — m; (m;) are always multiplied with 6.Z;; or 6Z;;, we
replaced the mass m; by M, (or accordingly m; by M;). This substltutlon can be
also applied for the components of f]ij, (4.13).

To understand the condition for an incoming fermion (4.35), consider the diagram
in Figure 4.2.

7z
M; p+q M, é

Figure 4.2: Self-energy correction to an incoming fermion.

The total momentum p flows from left to right and the general fermion flow is
expressed by the additional arrow lines. Leaving apart the terms in (4.37) that
contain the explicit wave function renormalization constants (we discuss them in
the next chapter), the diagram above will lead to a correction term, at O(«), given
by

Qi(p) (—izij (p)) u;(p,s), for p* — M7 and i # j. (4.38)
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Since we are interested just in the incoming fermion, we write explicitly just part of
the Feynman rules. §2;(p) represents the internal fermion propagator for the particle
1 and the shaded area of the diagram. If the non-diagonal components of §Z and
67 are chosen such that (4.35) is fulfilled, then this correction vanishes. A similar
diagram can be used to explain the corresponding condition for the outgoing particle
(4.36).

For antiparticles, one has to be careful in writing the on-shell requirements in a
convenient way. We want to keep the same expression as before for $;(p) (no change
in momentum sign or in particle indices) and to adjust just the external particles. To
make it more clear, we choose as example the conditions for an incoming antiparticle
related to the ones for incoming particle. For this case, the desired picture is obtained
if we mirror the previous loop, reversing the sign for the external momentum p, see
Figure 4.3.

Figure 4.3: Self-energy correction to an incoming anti-fermion.

Comprising the Feynman rules that describe the part right to the self-energy in
Q;(p) and leaving out the terms with 67 and 67 in (4.37), the diagram amounts to

vi(—p, ) (—iﬁij(p)> Q;(p), for p> — M} and i # j. (4.39)
The on-shell condition is in this case:
Ui (—p, s)flij(p) =0, for p* — M? and i # j. (4.40)
For an outgoing antiparticle, the argument is similar and
2ij(p)vj(—p, s) =0, for p* — MJ2 and 7 # j. (4.41)

In order to evaluate (4.35) and (4.36) with the help of (4.34), we use the sub-
tracted self-energy in the form (4.37). For p> — M7, with the self-energy written
on components, one gets from (4.35):

(P Sl (MD) + pyrSE(M?) + 7 S0 (MD) + veS0H(M?)) uy(p, s)

1 1 (4.42)
—50Zii(p = My)u;(p. ) — 5 (p — Mi)o Ziju;(p, 5) = 0.
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On-shell, the last two terms vanish. The first two terms coming with a p have to
be rearranged in order to emphasise ( — M;) acting directly on u;(p,s). This is
done by reversing the order between the left and right projectors and p and in most
cases just by adding and subtracting M; from p. After dropping all the terms where
(4.34) can be applied, we have to separately set to zero the factors of both, v, and
vr- The following system of equations is obtained:

1 1
M Zjj + 5 M Z}5 = MiSfi(M7) + 5 (M7),

- :
1 L 1 R L 2 DR 2 (4.43)
with the solution:
2
0Z;; = vz (MiZ5(M7) + MiMS35(M7) + MiSi (M7) + MS3" (M)
N 7
2
67f = s (MMS5(M7) + MISE (M) + MyEEH(MF) + Mis (M),
J 7

for i # j. (4.44)

Analogously, by using the condition for an outgoing particle one gets

1 =k 1 L L/ag2 DL/ 372
_iMjézz‘j + §Mi52z‘j = MiEij(Mi ) + Eij (Mz )a
1 1

(4.45)
R —L R/ag2 DR/ 342
§M1'6Zij - §Mj(5Zz‘j - Mizij<Mi ) + Eij (Mz )7

with the solution:

—L 2
0Z;j = S (M (M) + MMSE (M?) + MBSt (M7) + ME3(MD))
( J
—R 2
5Zij = M2 — M2 (MZM]EZ(MZQ) + MZ-QEf}(Mf) + szgL(MiQ) + MiEi?R(Mf)) )
? J

for i j. (4.46)

For antiparticles, the calculations should be performed similarly, but they are
not necessary. Looking at (4.40) and (4.41), one sees that we need to adapt the sign
of the momentum in (4.34):

(p — Mi)vi(—p, s)
0i(=p,s)(p — M)

This way the conditions (4.36) and (4.40) will lead to identical equations. The same
is going to happen with (4.35) and (4.41).

0,
4.47
0. (4.47)
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In conclusion, the off-diagonal elements of 6Z and §Z are given by (4.44) and
(4.46) and the diagonal ones by (4.33). While off-diagonal the constants are fully
determined, on-diagonal we have a free parameter (5;). These constants guarantee
that for external fermions, on-shell, the contributions coming from the non-diagonal
self-energy 3.;;(p) are vanishing,

Note that during the calculations of this section, even if we considered Dirac
particles, the nature of the fermion was not really taken into consideration. It
might seem so when explaining the conditions for the off-diagonal elements, but a
similar picture can be presented for Majorana fermions and we end up with the
same result. However, we have an additional property of the resulting constants.
Looking at the solutions for the wave function renormalization constants (4.44) and
(4.46) and considering also the constraint for the Majorana self-energy (3.58), one
can see that we have

—R
5Z£§7 == 5Zbl1’

for a #b. (4.48)
—L
6§78 =67,

Instead of four constants, we are left just with two. For a = b, from (4.33) we obtain
a similar property if we restrict the free parameter, i.e.

R

675 =467, ,
. if 5, =0. (4.49)
§Z8 =67,

In the next chapter, we show that as a consequence of these properties, the Majorana
nature of the particle is preserved after renormalization.

4.2 Imaginary Parts, Divergences and Gauge De-
pendence

At the beginning of the chapter, we stated that the hermiticity condition for
the wave function renormalization constants (4.6) does not automatically hold. We

have now the explicit first order expressions of Z > and 7% and we can check in
which cases (4.6) is fulfilled and in which not. Let’s start by writing the condition
for the left and right components of what we called wave function renormalization
constants. It reads

_L %
02 4y = (5ij) ,

- (4.50)
R *
072 4y = (52550) .
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For the fermion flavour indices we switch to our convention for the general notation
of Dirac and Majorana fermions (see section 2.1). We make just the remark that
due to (4.48) and (4.49), for Majorana fermions, one equation is enough. The two
relations in (4.50) are related by complex conjugation if + = a and y = b.

We start to check (4.50) for the non-diagonal constants. For the left component
of the wave function renormalization constants, with (4.44) and (4.46) written for
1 =x and j = y, we have

57y, — (675 = (M2 (25, (M2) = (20,(M2)))

+ M, My (25, (M) = (S5 (M2)") for x #vy, (4.51)
+ M, (S5 (M) — (2,7 (M))")
+My (S (M) = (20 (M,))"))

and a similar expression for the difference of the right components:

578 — (67F) = (MM, (S5,(M7) — (S5, (M2))7)

2
+ M2 (S5 (M) — (SEO2))  for o £y, (452)
+ M, (SEF(M2) - (SDE(M2))")
M, (SBROM2) — (SPHM2)))

Looking back at the property of the total self-energy when the model consists of
stable particles in the sense used in (3.72), one can see that in such a case the right

parts of the equations (4.51) and (4.52) vanish and Z2 and Z* are related by (4.50).
(3.72) is enough to check that also for z=y, (4.50) is preserved. From (4.33), we
obtain

07y — (6Z1)" =S (M2) = (8L, (M2))"

1 DR 2 DL 2\ *

— (Bt B,
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674, — (6ZE)" =SF (M2) - (BB, (M2))"

1 DL (32 DR/ 198 %
~ oo (SR (M) = (227 (M3))")
1 DR /2 DL/~ 19 s
oM, (Z2F (M) — (SoF(M2)") (4.54)
- %(@c + B3).

The contributions from D,,(M,) are (see (4.31)):

Daa(Ma) = (Daa(M,))" =M (SE,(M2) = (S(M2))")

+ M2 (SR (M2) — (SR (M2)")
(4.55)
+ M, (278 (M2) - (SEF (M2))")

+ M, (2R (M2) - (S2F (M2))")

Besides the relation for the self-energy (3.72), to cancel the terms in (4.53) and
(4.54), we need to restrict the free parameter f; from (4.32). Remember that for
Majorana fermions, it is anyway equal to zero (equation (4.49)). We require:

i.e. 3; is purely imaginary, but still not determined. In fact, 3; imaginary is related
to the freedom that one has in redeﬁnlng phases of Dirac fermion mixing matrices.

In conclusion, for stable particles, Z% and Z : are connected by hermiticity and
just one of them is required to extract the divergences from the propagator. For
unstable particles, (4.51)—(4.54) are different from zero and here, the presence of
the two wave function renormalization constants is required.

Even if (4.50) does not hold for every model, we can still prove that the structure
of the divergent parts of the self-energy allows us to verify that

div[6 7] = (div[sZL]),

. " (4.57)
le[(sty] = (div[0 Z,;])"

If we analyse the way the divergences enter the self-energy (formulas (3.42) and

(3.43)), we see that they only depend on products of coupling constants and some

constant factors. Any complex conjugated coupling constant is equal to the coupling
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constant describing the hermitian conjugated process (see (2.49) and (2.53)). Hence,

div[SE (p%)] = (div[SL, (p)])",
div[ZE ()] = (div[SE (7)), (4.58)
div[S ()] = (div[E5" (")),

for a hermitian Lagrangian and the divergent parts of the wave function renormal-
ization constants are related by hermiticity.

(4.57) can be easily recognised if we detail the expressions in (4.51)—(4.54).
For the calculation, we need the components of the self-energy expressed for every
combination of internal particles in (3.59)—(3.62), if we talk about vector bosons
and (3.64)—(3.67), if we have internal scalars. When writing the complex conjugated
self-energy, we relate the coupling constants by (2.49) and (2.53). Remember that
one has to sum over all possible internal states. The differences of wave function
renormalization constants, (4.51)—(4.54) result in

o forx #y

—L L . e ]_
5Zwy — (5Zyw) Z;7M2 M2 (

Z ImFU mva \/gm’v’ mz) (Ma%gsgz,vgfy,v + MxMyg;?z,ng/,v)
+ Z szmFs M2 3 My, fmva mz ( wng vgzy v + Myng vgzy v)

+ZImBl<Mz;mzamS) (Ma? z}czzs fys+M M, szs zy, )

_ZszmBO(MwQ;mz,ms) (Myey, b, o+ Myel cf 8)) , (4.59)
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—=R _ @ 1
Y
Z ImFU 3; My, \/gm’v’ mz) (MmMygaI:lz,vgzLy,v + Ma%g:fz,vgz/,v)
+ Z szmFs M2 mva fmvﬂ my, ( yg:cz vgzyv + Mmgzgz,vgzj,v)

ZImBl 2:m,,my) (M, M,cl + M2ck, ok )

xTzZ,8 ZyS QJLEZS ZyS

_ZmZImBO(M:z;mZ’mS) (Mycgzs zys+M C:czs 29, s)) ’ (460)

eforx =y

57 (5ZL _Z— (Z Iva mvu \/gmva mz)gﬁz,vgfm,v

1
o D MM (M iy, /Emy, me) (00050 = 9209%,0)
T v

_.I_

+ Z ImB; (M?2;m,,m,)ck .t

oty S ) ()
+ D$$<Mw) - (wa(Mw))*a (4.61)

07y — (6ZE)" —i— (ZImF“ 73 my, VEmy, m2)gl gk,

I F* (M2 my, /Emy,m.) (98 .95 . — 9% 9% )

ng,vgzw,v ng,vgzw,v

. L R
-+ E Im31 w,mzams)cwz,sczw,s

TZ,8 72,8 TZ,82T,8

ImBo(Mz2;m,, ms) (ck, by s — i cf ))

Dy (M) — (Do (M) (4.62)
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The imaginary parts of F¥, F'*, By and B; are given in section 3.1.3, by formulas
(3.44)—(3.46). From the imaginary parts of D,,(M,), we have to add to the diagonal
parts:

e 0
Daa(Ms) = (Paa(Ma))” =ig (Mi 3 (0hs8t + 08005 Im 55 F

2 2
2,0 pE— M3z

0
+ MiC Z m, (g:?z,vgsz,v + gﬁz,vgfr,v) Im a—pQFS

2,0 p2—M2
+ M2 ( R L + L R ) I iB
T Ca:z,scza:,s sz,sczz,s m 1

e (4.63)

p’—=M;

p2—>M%>

After calculating the derivative of F¥ and F* from (3.22), one can extract the imag-
inary parts of By and B] from Appendix B.2.3, equations (B.40) and (B.42).

Note that all the imaginary parts given here are different from zero if M2>(my +
my)? or M2>(my++/Em,)? in the contributions from vector bosons, and if M2 > (my+
ms)? in the ones for scalars. As expected, for models with unstable particles, the
hermiticity relation for the wave function renormalization constants is broken by the
imaginary parts of the self-energies that keep track of the possible decays. Moreover,
these imaginary parts are not gauge independent and omitting them might lead to
a gauge parameter dependence of the amplitude of a process.

87 and 67 are gauge dependent parameters and the correct separation of the
divergences of the full propagator will yield a gauge dependence that cancels in the
total one-loop amplitude. The validity of this statement was checked for 67 and 67
equal to the ones in section 4.1 by [Esp02].

Additionally, the mass correction ém should be gauge parameter independent.
For this, to the self-energies described in chapter 3, one needs to add tadpole di-
agrams. They cancel the gauge dependence in the real part of the diagonal self-
energies.

The sum of imaginary contributions in the full propagator pole collected in the
decay width T';, (4.25), is gauge independent. The gauge dependent imaginary
terms arising from self-energies with internal gauge bosons, formula (3.46), cancel
with the ones in (3.44) and (3.45) when they account for the scalar Goldstone bosons
corresponding to the longitudinal modes of vector bosons. The mass of these scalars
will be given by m,=v/€m,. One can show that adding up all the contributions in
(4.25), T'; results gauge parameter independent.

To summarise the results of this chapter, we remind that in section 4.1 we de-
termined 67 and 6Z imposing conditions that lead to a fermion propagator that is

2,8

0

L L R R
—M, E m, (sz,sczw,s + cm,scm,s) Im —8;02 By
Z,8
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diagonal on-shell and its residue equals to 1. The so-called wave function renormal-
ization constants are not usually related by hermiticity, but their divergences are.
Therefore, to assure a correct renormalization scheme based on on-shell conditions,
one should keep §7 and 67 independent.
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Chapter 5

Renormalization of the Free
Fermionic Lagrangian

In the previous chapter, using the on-shell scheme, we calculated mass corrections
and what we called wave function renormalization constants. Now we will start from
the free Lagrange density and the components that need to be renormalized. We
will try to identify the possible relations between the calculated corrections and the
renormalization constants, which conceptually are different from what we previously
determined.

Our calculations have as motivation the observation made in several articles (see
for example [Kni96] or [Pil02|) that the wave function renormalization constants
can be shifted by adding anti-hermitian, gauge-independent and UV-finite constant
matrices. Such a shift does not damage the properties of the renormalized mixing
matrix. However, other parts of the renormalized Lagrange density can be affected
and in particular, the free field one.

We will consider several possibilities for defining the connection between the wave
function renormalization constants and the constants that renormalize the fields and
we will analyse the consequences on the propagator and its counter terms.

5.1 Renormalized Free Dirac Lagrangian

This section is structured in three parts. In the first one, we consider a general
transformation of the fields and we derive the Feynman rules for counter terms.
We calculate the first order in « contributions of self-energies to external lines and
we analyse the changes implied by the shift of the wave function renormalization
constants.

In the second part, we investigate the possibility of defining field renormalization
constants related by hermiticity. We will find that this is impossible unless the

63
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fermion self-energies have some special properties.

As a step further, we test the consequences of a transformation on the renor-
malized fields that leads to a diagonal mass in the renormalized Lagrangian. In this
case, we will obtain divergent contributions for the corrections to external fermion
lines.

5.1.1 General Renormalized Free Lagrangian

As given in section 2.3, for Dirac fermions, the free Lagrangian is
L= 0,(id — mi);. (5.1)

The first obvious change induced by renormalization is in the mass term. We
express it as

M is the renormalized mass, which later is identified with the physical one and

r

i(; + O(a?). (5.3)

i =1—

We have denoted the mass correction proportional to o by dm]. For the moment,
om; is not necessarily equal to the shift dm; that was defined in section 4.1.

_1

The constants Z2 and Z2 defined in the previous chapter as wave function

renormalization constants can be absorbed into the normalisation of the fields. Leﬁ

consider the renormalized field described by 97 and the Dirac conjugated one by 97
1 1

and denote the field renormalization constants by Z:f and 7;-5. We emphasise again

that these constants are not identical to Z2 and 7%. The role of Z"2 and 7T%1 is to
renormalize the fields (this is why they get the upper index r), while Z > and Z? had
just to absorb the divergences coming in the full propagator. The first ones have to
include these wave function renormalization constants, but they are not necessarily

equal. The expansion and decomposition of the field renormalization constants is
similar to (4.10) and (4.11),

3 3L r3R 1 rL 1 TR 2
Z,'j = Zij v + Zij TR = 51']' + §5ZZ] YL+ §5Zz] YR+ O(OJ )7 (54)
.1 —rlp —rlr 1 —rr 1 —r
Zi =2+ 2} =0+ 55221' L+ §5sz Ve + O(a”). (5-5)
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The unrenormalized field changes to

ZZ 2yr (5.6)
b, = Zw]—Z] (5.7)

Since the fermion self-energy 3;;(p) can have off-diagonal elements (i # j), and
as a consequence, we have off-diagonal renormalization constants, we must allow

1
mixing when transforming the fields. To start with, we do not relate Z"s and 7
by hermiticity, i.e.

.1 )
7' #40(Z75) P, (5.8)
If we replace the bare parameters in (5.1) by the renormalized ones, we get
—Tl . Tl r
Ly = Z%T'ij? (id — m;) Zyy V- (5.9)
.5,k

With (5.2)—(5.5), in first order:
Ly = Zw_;’@'a — M{)y;
+ Zwr (i — M])= 5Z7"kwk + Zw; 0Z;(id — MI )Yy (5.10)
+ Zw;amgaikwk +O(a?).

From here, one can read the new Feynman rules: the lowest order term will give the
fermion propagator, while the terms of order « will be treated as two-point vertex
counter terms,

(p) p— M +ip
M M . N N r .

Now, the inverse full propagator is going to be given by

S5 () = (9 — M), — S5 (p), (5.11)

v
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where ¥7;(p) denotes the self-energy plus the counter terms and it is calculated as:
i) = - /\ :

The first diagram represents the unrenormalized self-energy, as given in chapter 3.
Since it is already of order «, it does not get modifications at the one-loop level.
Inserting the Feynman rules for the counter term, ¥f;(p) is equal to

- . . 1, o

At this point we can discuss the connection between the field renormalization,
and the wave function renormalization constants calculated in section 4.1. At O(«),
the unrenormalized self-energy ¥;;(p) is identified from (4.12) with:

A

1 1 —

Choosing the renormalized mass M to be the same with the physical one from the
previous chapter (M;), then

om; = om;, (5.14)

and (5.12) is equivalent to

£05(0) = S (p) + 5 (p — M) (52— D25) + (675~ 6Z5)(p~ My). (5.15)

We define:
1 | 1
ZE—Z} = 5 (62i; — 627;) =5%i) (5.16)
_1 —pl 1, — — 1

where s¢;; and 7¢;; are finite constants. In the definition, we take into account that
at one-loop, the difference between the wave function, and the field renormalization
constants is equal to the difference between their first order terms divided by 2.
»;; and 7¢;; are in this case of order a. The introduced constants also have a
decomposition in terms of the left and the right projectors:

Hij = Z-L]-’)/L + %g’}/R, (518)

ij = Fvn + i TR (5.19)
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The components are then given by:

s =025 — 62",
Y v (5.20)

R __ R TR

L _ sk L
7R =67 — 57" '
Hij = 0445 ij -

(5.15) is equivalent to

T0,(0) = Sy (0) + 3 (p — Moy + 17 (p— M)

) (5.22)
= Yi(p) + Rij(p)-
By R;;j(p) we denote the difference ¥, (p) — f?ij (p):
1 1
Rij(p) = 5(1}” — M) + Q%z‘j(p — M;). (5.23)

Taking into consideration a non-zero difference between the field renormalization
constants and the wave function ones, we introduce back non-diagonal contributions
to the fermion propagator. The relations describing the corrections from self-energy
to external particles, i.e. (4.35), (4.36) and the corresponding ones for antiparticles
are allowed not being zero any longer. For ¥7;(p), using (4.34), we have

o fori#j

= Rij(p)u;(p, s)

Ezrj (p)uj(p’ 5)
p>—M? p2—M?

((—=Misef; + M)

BN | =

, (5.24)

;1)2—>Mj2

+(—M,~x£~ + Mj%fj)’yR) u;(p, s)

= U;(p, 5)Rij (p)

p2—M?

1 _ _
i(ps 5)5 (=M + Mi325)v.

+(—M;3; + M%) vr)

S

(5.25)

p?—M?
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This difference to (4.35) and (4.36) enables us to impose (if possible), additional

conditions on » and 3¢ or, equivalently, on Z's and 7T%. Since, as one can notice
from above, these constants will contribute to predictions for measurable quantities,
they have to be chosen finite as we mentioned in their definition. Thus, for the non-
diagonal case, we have a finite expression that has to be taken into consideration
when calculating the one-loop amplitude of a process.

We will now complete the discussion of section 4.1 also for the diagonal self-
energy corrections of external legs. We will calculate the entire order o corrections,
including the counter terms. These corrections are also described by diagrams as
given in Figure 4.2 or 4.3. With the explicit propagator for the internal fermion, the
on-shell relations to be evaluated are,

o fori=7
Tl o e (S00) + Ral)) il o)
#i\P)Ui\P, 8 = ii\P ii\P) | Ui\D, S
p - M; p2—M? p - M; p2—M?
1 1
= Z_Fz uz(p7 8)
p_ M; ( 2 ) p2—M?
1
T3 (Ge +320) 7 + (o5 + 7250) ) s (s 8)
p2—M}?
1 1
g Moo (5~ 5l — (2 — ) ve) v, 9) (5.26)
p - MZ 2 2
P _>Mi
T(p, 9)Z(p) 7(p. ) (Sa(p) + Ra(p)) ——
Ui\D, §)243i\D = U\D, S ii\D ii\D
p_ Mz p2—)Mi2 p_ MZ p2—>Mi2
1 1
= T;(p, s) <—’i—ri> —
2 p_ M; p?—M}?

1
+(p,s)| 5 (G + 3D+ (4 + %) vn)
p2—M}?
_ 1 R L R_ L 1
+1;5(p, 5) 5 M; ((%u — 2i)vL — (555 — iz')VR) (5.27)
2 ﬁ_ Mz pz—>Mi2

For the diagonal case, part of the contribution is finite, but we are also left with

terms that contain the factor . There are two such terms in each equation.

K3

One is proportional to the particle width T';, calculated in (4.25) and the other one
is due to the difference between the the two sets of constants Zz and Z73.
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The presence of the pole term proportional to I'; is a consequence of the way
the perturbative expansion is performed. As one can see in equation (5.10), the
expansion is based on the separation of the free Lagrangian describing a stable
particle with a real mass M;. The calculation indicates that the assumption of a
stable particle was incorrect: the interaction allows the considered particle to decay.
The discussion at the beginning of chapter 4 has shown that the Dyson summation
will move the contributions from I'; into the denominator. According to (4.1)-(4.2)
and (4.20):

ﬁ (1 - %Fﬁ) — - (M'i_ ilr,) , (5.28)
i =izl

In fact, the re-summation of the imaginary parts is necessary to obtain well-defined
matrix elements without additional divergent contributions, see also for example
[Pes95|. The imaginary contributions from the self-energy are finite, see section 3.1.3.
Therefore, setting the momentum on-shell, the denominator will be proportional just
to finite contributions of I';.

In the further calculations, we will not discuss this term any longer. Later, we will
calculate decay rates for unstable particles and one will be able to check that due to
complex conjugation, the iI['; terms will drop out anyway in the squared amplitudes.
Even in case it turns out that such terms contribute to measurable quantities, one
will always be able to separately identify their contributions. Remember from the
discussion at the end of section 4.2 that I['; is gauge parameter independent and
therefore, the total amplitude remains gauge independent with or without this term.

Nevertheless, the pole related to ¢ and 3¢ has to cancel. Therefore, we need to
require

i = (5.29)
3 = . '

This restriction is telling us that we are allowed to shift the left and the right
components of the wave function renormalization constants by the same amount.
(5.20) and (5.21) imply that

075 =875 + (6Zf; — 02,

A 5.30
67, =07, + (671 - 0Z}) . (5:30)

With (5.29) and without the term with I';, the diagonal self-energy corrections
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to external legs come as

1 T . _ 1 —L
TR B G R AR )
1 1
u;i(p, s)X5(p) . = u;(p, )5 (5¢; +325;) (5.32)
p_ tp2 M2 p2—M?

For completeness, we should consider the self-energy corrections of antiparticles.
The expressions coming with the self-energies will be similar and (5.29) will be
required, too. We mention that

o fori#j
E:]( p)vj(pv S) = ET (p)u]<p’ ) ’ (533)
p?—M? p?—M?
p2—M? p2—M}?
o fori=7
Sl S (p)us(p, ) (5.35)
_p M 2 ? b p2_)M2 p M (X3 2 I p2 _)Mf bl .
1 1
Ui(p, $)X5(—p) ———+ = u;(p, 5)5;(p) (5.36)
_p o p?—M? p o p?—M}?

Of course, if s; = 3¢; = 0, we have ¥7;(p) identical to f]ij (p) and no supple-
mentary contributions to external legs arise. Still, we keep them non-zero since we
might need to impose additional conditions on our Lagrangian.

5.1.2 Hermitian Renormalized Free Lagrangian

One of the possible additional requirements on the field renormalization con-
stants concerns hermltlclty To keep the Lagrangian hermitian, we would prefer to

require that Z and Z have to fulfil the hermiticity condition (4.6). For the left
and right components of the renormalization constants, the condition is equivalent
to

= (Z"y
(Z

(5.37)
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This requirement is adding a restriction to s;; and 7;. If one replaces the field
renormalization constants from (5.20) and (5.21), i.e.
82 =07 — s,

rR __ R R

L L g (5.38)
—R =R _p

in (5.37), the hermiticity condition implies:
—L L\ _ s77L Ly*
M — (%ij) = 5Zji - (5Zz'j) )

—R Ryx _ >R Ry
i — (%ij) = 5ij‘ - <5Zij) .

(5.39)

If we combine now this with the restriction (5.29), we obtain an overdetermined
system that requires that the wave function renormalization constants fulfil

575 — 671 = (625) — (625, (5.40)

The equation for the diagonal constants (4.33) leads us to

1
SE(MZ) - SE(M2) + o= (SBE(MP) — SRR(ME) =
1

(S5 (M7))" = (ZH(M7))" — L (B2 (M7)" — (B (M7))7) - (5.41)
If the absorptive parts of the self-energies are zero, then the properties (3.72) apply
and the relation holds. In case we consider unstable external particles or we do not
restrict the calculation to a special gauge, we have a non-zero imaginary part in the
self-energy (see section 3.1.3). Imposing the hermiticity relation (5.37), we are left
with poles in the amplitudes. (5.39) and (5.29) can not be simultaneously fulfilled,
i.e. finiteness and hermiticity can not be concomitantly obtained. For this reason,
in a lot of renormalization approaches, all external particles are treated as stable
and the self-energy components are fixed as in (3.72). We will try not to do so.

5.1.3 Re-diagonalized Mass Term Approach

In chapter 2 we discussed possible mass terms in a Lagrangian. We start from
non-diagonal ones and using unitary transformations of the fields we bring them
in a diagonal form. In a second step, at the beginning of the previous chapter,
we considered corrections of the propagator that lead to the renormalization of the
fields. As a consequence of the fermion mixing, the diagonal form of the mass term
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is destroyed. In section 5.1.1 we were analysing the modifications that appear in
the free Lagrangian and we were defining counter terms. Now we want to start
again from the renormalized mass term, and as in section 2.2, to re-diagonalize it.
It is instructive to investigate the possibility of defing a rotation of the renormalized
fields such that the physical mass comes only in one diagonal mass term.

When inserting the renormalized fields (5.6) and (5.7) in the Lagrangian, the
Dirac mass term

R J— 1
L0 = =S UFmal 4 he. = =S UEZ i £ e, (5.42)
i ijik

is not diagonal anymore.

We define the new, real and nonnegative diagonal mass matrix by

1 ol
M= Z(Oﬁ)*Zﬂ? RmiZikzLOlgl' (5.43)

.5,k

OF and O are the two unitary matrices required by the singular value decomposi-
tion. One has to keep in mind that M; is not the physical mass. We can write

M; = M; + 6M;, (5.44)

where we have M; as the physical mass and 0M; as the first order in « correction.

To simplify the calculation details, we will assume that the field renormalization
constants are related by hermiticity, i.e. (5.37). We know what are the drawbacks
of this assumption, but still, the difficulties of the re-diagonalization approach for
a general Lagrangian are due to something else, as we will see at the end of this
subsection. To connect (5.43) to the Lagrange density, we introduce 1}, the field
related to mass eigenstates. Its left and right components are

Yt =Y 0kt (5.45)
J

Y=Y Oyt (5.46)

J

Collecting all the transformations of the unrenormalized field (i.e. also (5.6)), we
have

rip !
Wl =Y 22 0Lt (5.47)
4.k

riR ’
YF = Z Z 2 ORy, . (5.48)
7.k
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Replacing the relations in (5.42), the mass term becomes diagonal:

LD == U Mu" + hec.
[

_ _ 5.49
== Mt = g RIME + O0(a?) + hee.. (549)
! l

Now, we look closer to the peculiarities of the re-diagonalization for one-loop
corrections. If we use the expansions in powers of « of the renormalization constants
(formulas (5.4) and (5.5)), the elements of the matrix to be diagonalized are given
by

—Tl Tl ]. —r ]_
Z ZﬂmekajQL = m;0;j + §5Zifmj + m¢§5Z§}L + 0(a?). (5.50)
k

We have diagonal and real elements for the lowest order contributions and non-
diagonal complex ones for the terms of order o and higher. The detailed diagonal-
ization of such a matrix is described in Appendix C.3. Comparing the matrix with
(C.15), we can identify

G = My,

1 . 5.51

and make the corresponding replacements in the final result. For the hermitian
conjugated 6C', we use the hermiticity property of the renormalization constants
(5.37):

* L\ * TRy &
((SC]'Z') = (mj(éZjZ-L) + mi((SZﬁ ) )

— | =

- (5.52)
== (mjaz;. + mi(SZ[]R> .

The role of @ and P from the appendix is played by Of and OF, respectively.
Owing to (5.50), the required unitary matrices can be expanded as

OZL] = (Sij + (5OZL] + O(aQ),

(5.53)
Off = 65+ 060f + O(?).
Making use of (C.14), we can write in first order approximation:
OL)* = 6 — 00F + O(a?),
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The elements of OF and OF are related by (see C.38)

505 = 60f +

v

rL rR —rL —rR

For the off-diagonal elements, we have the explicit solution given in (C.39) and
(C.37):

1 —rL —TrR
L rL TR 2
! 1 ' . a for ¢ # j,
R rL 25,TR =T 2 57T
j 7
(5.56)
while for the diagonal ones we have just the constraint (5.55).
From (C.40), we can identify the diagonal mass matrix M.
1 = =
Mi = m;+ 7m; (62iF + 627 + 67, +6Z,) + 0(a?) (5.57)

If we identify the physical mass with the one given in (4.9) and replace the unrenor-
malized mass by m;=M;—0m;, then

1 —=T =
6M; = —dm; + M, (52;;L v oZIR 1 67 & 5ZZ.Z-R) . (5.58)

At the end, one will be able to check that the real part of the pole in the full fermion
propagator lies at p* = M?.

Since Z;% and 72]-% are divergent, the same is true for OY and Of. By re-
diagonalization we remove divergent terms from the mass term. We know that
unitary transformations are always possible without affecting the physical results
and therefore these terms have to re-appear somewhere else.

From the free Lagrangian, we are left with the evaluation of the kinetic part.
Since the algorithm for the term with left-handed fields is identical to the one with
right-handed fields, we detail the analysis just for the first one:

. I : L 5L 4 iDL ’
Lot =iy gFpl =i Y WEOL)ZE 82y Ohk. (5.59)

,5,k,l,m

Because we want to identify the Feynman rules for the Dirac fermion propagator,
we will expand the expression and separate the counter terms. With (5.53), (5.54)
and the expansions of the field renormalization constants, the left part of the kinetic
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term is

Lot =iy UEPpt +i> Uik ( 5O + 5Z’"L> gut
i i
+2§:¢”¢<?09+}5Z#>df“%o&f) (5.60)

=i vt +ZZ¢'L 07 vt +ZZM 57k +0(a?).
For the right component of the kinetic term, we arrive to a similar expression:

ﬁkDZf—ZZw’RW +zZ¢'R 075 B + i Zwa SZIEYE + O(a?).

(5.61)

The free field Lagrange density is given by summing the mass and the kinetic
terms. To write it more compact, we recombine the left and right components of
the field:

=yt yh (5.62)
In first order approximation, the Dirac free Lagrangian is

LY =cp +rck

mass

= ST - M)+ i S TS0+ S TS,
i 1,7 1,J

— ) WM+ O(a?).

(5.63)

The Feynman rules for propagator and counter terms are deduced in a similar way
to subsection 5.1.1. At first order, we obtain them from the expanded expressions

of the free field Lagrangian.
p; Mi . 1
S'(p) =
iS'(p) b=,

ip 25ZT +1i 57;.;,1) — i6.M;6;;.

The total self-energy, at one-loop, is the sum of the unrenormalized self-energy and
the inverse propagator counter term:

—i%;;(p) = —iS;(p) —l—in(SZT +i= 5ZUp 16 M;0y- (5.64)
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As a function of the wave function renormalization constants, using (4.12), (5.16)
and (5.17), we can write

- ZZ’Z]( ) ZEU( ) Cz] (p) (565)
1 1 1 1

with Czj(p) = ((5m, + 5M2)52J — §m1(52” 25Z2]m] —?%Z'j + —71']'? (566)
1 1 1

= (5777,@ + 5MZ)5Z] - iMz(SZU 26ZUM + Qp%” + %z]p (567)

At this point we can evaluate the one-loop self-energy contributions from external
legs, as we did in (5.24)—(5.27). Here, we start with the diagonal ones. We leave
out the terms proportional to the decay width I'; that arise from imaginary parts of
i?,-,- and we obtain:

o fori=7
S ous)| = ——CalDulp.s) (5.68)
p _ Mz 1 AV 2] a2 p _ Mz 1 i\ P2
= Sy + 6M; + 2 M, (—5ZP—575"+%P+7.L.) gl
p _ Mz ? ? 2 2 0 0 0 It L
1 R —L R | —R
+ <5mi +o0M; + - M; (—5Zii — 07+ + %u)> ’YR} ui(p, s)
2 p2—M}?
1
5 ((ML + %11)7L + (%R + %zz)fyR) U'L(pa ) 3
p2—M?
_ ' 1 _ 1
(5, 5)Slp) — = Wi(p, 5)Clp) — (569)
p p2—M? p p2—M?
1 _
— W(p,s) { <6mi +6M; + M, (—525 — 675 + 3+ 75)) T
1 — 1
+ <5m,~ + 6M; + = M; (—6Z{§ 67+ 75)) VR}
1
+Ei(p7 8)5 ((% + %zz)’yL + (%sz + ?zlz/)’YR)
p2—>Mi2

On-shell; the terms coming with the factor p—lM- should vanish. This is equivalent
1
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with

( 1 —
SM; + dmy = My (37 + 675 — ek — %)
1
5Mz + (5m, = —Mz (525 + 5ZZI; — M _zflc)
) % . (5.70)
IM; + om; = §Mi (5Z{Z + 07, — x5 — _ﬁ)
1 __
SM; + 6y = S M; (578 + 67, — sk — 2L )
\
The system of equations has a solution if
0ZE + 07, = 628 + 67, -
sk 4+ 32k = it (&:71)

While 5 and 3¢ can be chosen such that (5.71) is fulfilled, the wave function renormal-
ization constants are determined from the one-loop self-energy diagrams. Therefore,
from (4.31), we see that the upper equation of (5.71) is true only if

i (M) = S7% (M), (5.72)

As mentioned in section 3.3, in the Standard Model and some of its extensions,
the self-energy has this property. If we had not required (5.37), we would have to
separately diagonalize the mass term explicitly written in (5.42) and the hermitian
conjugated one. Then, a §M} and a 6 M would be needed and (5.72) would not
be necessary.

With (5.71), one can see that taking 0M; from (5.58) with the field renormal-
—1M- vanish. The
?

contribution of the diagonal self-energy corrections to the external legs is reduced
to a finite quantity determined by »r and 7, identical to (5.31) and (5.32).

ization constants replaced by (5.38), all the terms coming with

Concerning the non-diagonal contributions, we find
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= Cij(p)u;(p, s)

p2—=M? p?—M?
1 —R _
= 5 ((~Mi62E = 6Z5M; + <M + 28 M;) v (5.73)
— o
+ (= MO Z[E = 5735 M; + 5 Mj + 550M;) 1w ) ws(p, )
p?—>Mj2
u;(p, S)E;j@) = u;(p, 5)Ci;(p)
PP M} p2—M?
_ 1 R _
= (p, 5)5 ((—Miézig — 6Z;;Mj + Mz + Miz);)y,  (5.74)

(MO ZE — 57 M; + Misel + M)

p2—M}?

Here, we could adjust > and 3¢ to obtain zero corrections only if the wave function
renormalization constant and implicitly the self-energy have some special properties.
If we want to set the terms containing ; + 5; to zero, then

RMj

i3, (5.75)

M; —L —

ﬁ;(szg +0Z;; =025 +6Z
Inserting the sums for the wave function renormalization constants as functions of
one-loop self-energy contributions (equations (4.43) and (4.45)), we get

1 1
zfj(Ml?) - Efj(Mf) + EE,-?L(MZ?) - EEZ-?R(M]?) =0. (5.76)

An additional condition comes from the terms with %g + 75:

1 1
SEM?) — Sk — EZZ-?L(M]-Z) + MEZ-?R(MZ?) =0. (5.77)

Inspecting the results for one-loop self-energies given in chapter 3, we see that these
conditions are not fulfilled. This time a trivial condition for the coupling constants
can not help, since the problems come from the two-point integrals By, B and their
combination in the functions F and F*. They all depend on momentum and setting
first p* = M} and then p* = M? we can not obtain identical expressions for the
different components of the self-energy.

One can hope that the contributions coming from the off-diagonal self-energies
are finite, as in the first subsection, but it is not the case. We can easily analyse
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the divergences occurring in these terms. First one has to notice that there is no
momentum dependence in the divergent parts of each component of the self-energy,
as explicitly calculated in (3.42) and (3.43). Therefore, even summing over all one-
loop diagrams, we will have

div[SH(M7)] = div[S] (M),

div[SH(MP)] = div[sH(M?)],
div[S" (M})] = div[S" (M), (5.78)
div[S P (M7)] = div[sD® (M)

Using the formulas for the non-diagonal wave function renormalization constants
(4.44) and (4.46), the divergences in (5.73) and (5.74) will come from

div[M;6Z); + 575 M) = —2div[S] " (M7)] # 0, (5.79)
div[M;6 Z[F + 5ZZ-]-M]-] = —2div[S5(M})] # 0. (5.80)

To understand why such an approach causes these drawbacks related to divergent
terms, one can discuss the operations we make. First start by looking at (5.45) or
(5.46). Here we perform a rotation of the renormalized fields. The matrices we
use are not UV-finite (5.56). If initially, the field renormalization constants were
removing all the UV-divergences, with our additional transformation we introduce
part of them back in the free field Lagrange density. The consequence is obvious in
(5.64). Here we see that we have non-diagonal counter terms coming with j, but
no non-diagonal terms coming with 1. This type of divergences resulting from the
unrenormalized self-energy can not be absorbed.

Of course the transformation of the fields should be performed in the entire
Lagrangian, but for the corrections to the external spinors, just the free part counts.
If we add the interaction terms, we encounter also here the divergences reintroduced
by the rotation of the fields. Overall, these divergences have to cancel. One should
analyse a complete process to be able to check it. Since this is not too handy, we
will not choose the fields defined here.

In this section we have seen that one can define Dirac field renormalization con-
stants differing from the wave function renormalization ones by some finite quantities
that have to fulfil (5.29). Such a transformation will imply that one has to take into
account finite corrections for the external spinors. If we consider the general case
(including the decay widths of the unstable particles), a hermiticity constraint on
the field renormalization constants will lead to poles in the external line corrections.
On the other hand, a supplementary rotation of the fields to re-diagonalize the mass
term will bring divergent contributions from the non-diagonal self-energy corrections
to external particles.
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A summary of all the different choices we analysed is contained in Table 5.1.
In the first column of the table we state the choice for the field renormalization
constants, in the second one we mention if the hermiticity relation is fulfilled or not,
and the last two columns describe the result from contributions of the self-energy
on external legs. Here, we present the results for a general theory, with no special

properties.

o e . 1 . i
field ren. hermiticity =T, L (p)uip, s) Py 5 (p)uj(p, s) "
1 —ri 0 1 A0 | = 1 —
(Z73) Z7 =27 | Wil )T5(p) 5257 o ui(p, )27, (p) a2
Z3 no 0 0
77 — no finite finite
72 — yes finite + pole term finite
A %—%—i—re—diag yes finite + no/pole term divergent,

Table 5.1: Behaviour of the self-energy contribution to external legs when considering
different field renormalization constants.

5.2 Renormalized Free Majorana Lagrangian

For Majorana fields the calculation does not differ too much from the one in
the previous section and here we follow similar steps. In the second part of this
section where we will discuss the hermiticity condition, we will see that for Majorana
particles, the constraint on the field renormalization constants is not as restrictive as
for Dirac particles. However, with the re-diagonalization of the mass term method
we will still obtain divergences in the corrections to external legs. They will show
up for the same reasons as in the Dirac case.

5.2.1 General Renormalized Free Lagrangian

For the unrenormalized Majorana fields we use a transformation similar to (5.6).
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We begin by writing it separately for the left- and the right-handed fields:
T%L r
Xe =D 2y G (5.81)
b
riR r
Xe =D 2 X (5.82)
b

although they are not independent since for Majorana fields (xy%)¢ = x%. For
generality, we assume again that the hermiticity condition (4.6) is not necessarily
fulfilled and the Dirac conjugated fields are transformed like

ngLzb; , (5.83)

xE = Z XiBZ,? 2R (5.84)

As for the Dirac case, Zab2 and Za,f are the left and the right part of the field renor-
mahzatlon constant Z, ,f, and Z bj and Z baz are the left and the right components

of Z b;.

The unrenormalized left and right-handed Majorana fields are related by the
condition (2.20). It is unavoidable to require that the renormalized fields are also
Majorana, and that implicitly they obey the same condition. Using the properties
(2.18) and (2.19) and imposing (2.20) to x and X", one finds the requirement

7R _ 7t
I (5.85)
Zb; = Zal)2 .

For the wave function renormalization constants, as a consequence of the additional
properties of the Majorana fermion self-energy, this condition was fulfilled ((4.48)
and (4.49)). The renormalizing procedure does not (and it should not) change the
nature of the particles. Inserting (5.85), the renormalized fields described by (5.81)
and (5.82) are in fact defined by

rilL r
:ZZa; XiE, (5.86)
ZZT,;L R, (5.87)
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The conjugated fields become

ZXgLZb; , (5.88)

E = ZX’“RZ L (5.89)

From here on, we will not use anymore Z;,f ® and 725 "

The modified Feynman rules presented for the Dirac case are valid for the Ma-
jorana one, too. We just have to remember the special feature of the field renormal-
ization constant, i.e.

rl rl —pl 1 1 =
71 = 23+ Tt = b 20T+ ST+ 0D, (5:90
1 1 1
Zal? _Zba2 7L+Zab ’7R—5ab+ 5 ’7L+ 25Zab’}/R+O( ) (5.91)

If in the Dirac case, we had four different constants (considering the left and right
decomposition), now we have just two since

1,1
Z2 =17,z (5.92)

In terms of the renormalized fields and parameters, the Majorana part of the
free Lagrangian (2.45) is

- (sz@a — M)

+ Y Xo(id - Ma); 5Z’"bxb+ZXb25Z%(Z<? Ma)X, (5.93)
a,b a,b

+ Z%émaéabxg> + O(QQ)'
a,b

We have replaced the unrenormalized mass by the physical one, defined in chapter
4.

Remembering that the factor 1 is responsable for avoiding the double counting
in case of Majorana fermions, we see that the Feynman rules look as for Dirac
fermions. The only difference comes from the definition of the Majorana fields, and
more exactly from its consequence on the renormalization constant (5.92).

p. M,

ST (p) = —b
i5"(p) = =M Tip
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b a

i(p— M) 3025, +i 5025, (p — M) + i6madan

As in (5.12), the total self-energy is given by
1 1
Yen(@) = Zap(p) — (p — MG)E(SZgb - §5Zga(p — My) — 0mgdap- (5.94)

Similarly to the previous section, one can also define a connection to the wave
function renormalization constants (calculated in 4.1) as in (5.16) and (5.17). The
Majorana properties of 6Z and 67 (4.48)—(4.49) and the condition (5.85) imply
that sz, and 77, obey:

oy = Ty, _
{7ﬁ) iy & Hap = Hpa- (5.95)
We can identify
Sop(P) = S () + Ras (), (5.96)
where
Rab(p) = %(;ﬁﬁ — M) »a + %%ba(y/ﬁ — My). (5.97)

To evaluate the contribution of X7, (p) on external spinors, we can take the
relations for Dirac fermions (5.24)—(5.27) and replace »% and 322 as in (5.95). We
obtain

e fora #b

= Rap(p)us(p, 5)

p2—M?

T (p)us(p, )

p2—>Mf

((—Masely + Myz2y,) L

N | =

+(—M,32, + Mb%(fb)'yR) up(p, 8) (5.98)

102—)Mb2

ﬂa<p7 S)EZb(p) Ua(pa S)7zab

p?—MZ P2 M2

_ 1 _
= ua(p7 8)5 ((_szbltlz + Ma%élb)/ylz

+(—My32l, + Mosey,Vr) (5.99)

PP M2
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and
efora==5b
S ()ua( 5 b (B0a0) + Raa(p)) walp. )
aa\P)Ua\P, S = aa\P aa\P) | Ua\D, S
p— M, p2— M2 p— M, p2—M2

- _1Ma (—%Fa> o (p, )

p2—M2
1
+ = (o +720,) ua(p, 9) (5.100)
2 p2—M2
1 1
§Ma M ((ﬁaLa - %cfa)fyl/ - (ﬁga - %(]J,Ja)'yR) uCL(p? 8)
p_ a p2—M2
(D, )T (p) —— 70, 5) (Saa() + Rua(p)) -
a\ls aa = Ug\P, S aa\P aa\P
p— M, p2— M2 p— M pr—MZ
1 1
= Uy(p, 9) (—i—Fa) _—
2 zé_ M, p2—M2
1
+Ua(p, 5) 5 (Faa + #aa) (5.101)
p2—M2 2
_ 1 _ _ 1
+ua(p, S)EMG ((ZaLa - %aLa)fyL - (%511 - J{é’a)/yR) M
p_ @ lp2 M2

The discussion of the term proportional to the decay width I', would be identical
to the one in the previous section, therefore we do not repeat it here.
The condition to cancel the other pole term in (5.101) is
sk =3k (5.102)

aa aa*

The restriction on field renormalization constants for Dirac fermions (5.30) is reduced
to one equation:

OZIE = 67, + (5Zfa - 57fa) , (5.103)
and the diagonal self-energy corrections to external legs are
1
Sa (P)ta(p; 5) = s, 14(p, 5) : (5.104)
p - M, p2—M2 p2—M2
_ . 1 B
Ua(p, 8)E0a(P) 77 = Uy(p, s) kb (5.105)
zé_ @lp2— 02 p2—M2
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5.2.2 Hermitian Renormalized Free Lagrangian

Tl _Tl o e e .
If in addition, we require that Z ? and Z,; are related by hermiticity (equation
(4.6)), from (5.85) we obtain

1
T§L

rl —
zt =2 (5.106)

The renormalized left- and right-handed Majorana fields are now given by
rir
Xe=> "7z " (5.107)
b

r5Lvs r
X8 =Y (22 )k (5.108)
b

The condition that 3¢ and 3¢ have to fulfil in order to assure the hermiticity of
the field renormalization constants is

2 — (36h)* = 024, — (6Z5)". (5.109)

For Dirac fermions, the hermiticity condition implied two independent relations for
the components of » and 3¢ (see (5.39)). Since the Majorana condition relates left-
and right-handed components, the two relations are not independent anymore. Here
they are just the complex conjugated of each other and therefore we are left with
one, namely (5.109).

Together with (5.102), we have for the diagonal part
shy = (5h)" = 0Z 4y — (3ZL,)". (5.110)

aa

This equation is telling us that the wave function renormalization constants 67

and 575,1 should have equal real parts and that the imaginary part of the field
renormalization constants is

Im[5271] = % (m[52Z) — msZL,)) (5.111)

With the help of the complex conjugated expression of (5.110),
()" = 710 = (02,)" = 02,

aa aa?’

(5.112)
we can write the conditions for the real part as

57aLa - 6Zcfa = <5Z£a - 57£a)*' (5113)
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For the imaginary part:
§ZTE — (§77Ly* = (5zL (6ZLy — 67" + <57§a)*) . (5.114)
At first order, from (4.33), for 5, = 0, the restriction (5.113) can be fulfilled if
Sew (M7) = S50 (M7) — (337 (M) — 557 (M7))" = 0. (5.115)

This means that in a model (like an extension of the Standard Model) for which
(3.71) holds, we are able to shift the wave function renormalization constants by
the same amount and define hermitian Majorana field renormalization constants.
Self-energy contributions from external legs are non-zero, but finite.

5.2.3 Re-diagonalized Mass Term Approach

To analyse the modifications introduced by the renormalized fields for the Ma-
jorana sector, we start from the following form of the mass term:

1 S 1 _
LM == (E)maxE + hee. = =2 xBmaxE + hec.. (5.116)
24 22

To switch between left- or right-handed charged conjugated fields, we use (2.20).
Replacing the fields with the renormalized ones given in (5.86) and (5.89), the
Lagrangian mass term changes to

mass Y Z XzRZa(? A% Xc + h.c.. (5117)

abc

The factor to be transformed is now of type Z7'mZ and, since m? = m, symmetric.
To rediagonalize it we need just one unitary matrix [Zum62|, denoted here by A.

M= A m,Zod" Aug (5.118)

a,b,c

As a consequence, the transformation relation for the fields is
1 '
ZZZ;LA,,CXCL, (5.119)

Zz (Ape)*\E. (5.120)
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X', with the left and right components given by the previous relations and related
by (2.20), remains a Majorana field. The mass term gains the diagonal form:

mass =5 Z CMaXa + h.c.
1 ’ (5.121)
=—c Z LYC Myt — 3 > (H%Mx, + O(a?) + hec,
a
where M, and not M,, is the physical mass. We assume that (5.106) is fulfilled,
such that the 'h.c.” part is really the hermitian conjugated one.

We will not write the explicit expressions for A or M. We will restrict the
following discussion just to the steps necessary to show that this approach leads to
divergent contributions from self-energy corrections on external legs, for the same
reasons as in the Dirac case.

Looking at the kinetic term, we can see that the structure is similar to the one
for Dirac fields. We can directly write the Majorana free Lagrangian as:

(Z Xo (i — Ma)X, +ZZX¢L VAR +ZZXaa 0Zgy Xy

- Zx_a5Max;) +0(a?).

The Feynman rules for the Majorana propagator are:

(5.122)

p, Ma .y )
iS'(0) = 53,

ip 5025, +1 30Z5,p — iMadus

As expected, the Majorana counter terms have the same structure as the Dirac
ones. If we consider the action of the self-energy on external spinors, we will end
with the same divergent contributions as in 5.1.3. The difference will come in the
number of restrictions. They are reduced by a factor of two due to (5.85). But
even so, we will not be able to absorb the divergences coming from the non-diagonal
self-energy scalar structure and they will have to be cancelled by other interaction
terms of the Lagrangian.

In section 5.1 and 5.2, we introduced the renormalized mass and fields for Dirac
and Majorana fermions. We related the first ones to the wave function renormal-
ization constants calculated in 4.1 and we assimilated the difference in s and <.
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By analysing the renormalized free Lagrangian and the total self-energy, we have
observed how much freedom one has in choosing s or performing additional trans-
formations on the renormalized fields.

In conclusion, from the technical point of view, one can shift the renormaliza-
tion constants by some finite terms as long as one prevents reintroducing poles in
the diagonal self-energy contributions to external spinors. When shifting them by
terms that contain divergences, the effect is more destructive. These divergences
will show back in the terms from where they have initially been removed by the
renormalization procedure.

From now on, we will use the field renormalization constants, as defined in 5.1.1
and 5.2.1. When possible, we will try to impose the hermiticity condition. Neverthe-
less, one has to remember that the divergences of the wave function renormalization
constants were related by hermiticity (4.57). Since > and ¢ are finite, we also have

div[sZ,,] = (div[sZE))",

x

div[oZ,,] = (div[sZR)",

T

(5.123)

independent of the presence of absorptive imaginary parts in the self-energy.

5.3 Remarks on CPT Invariance

Along this chapter, we have proposed different definitions for the field renormal-
ization constants. Part of the constants were not related by hermiticity and it might
seem that the lack of this symmetry can damage other fundamental properties of
the theory, like CPT invariance. In particular, since particles receive corrections

from 7' and antiparticles from 7T%, one might suspect that decay rates or cross
sections of particles will be different from the ones for antiparticles once higher order
corrections are included. Here we show that it is not the case. We follow a similar
argumentation to [Esp02|, based on the optical theorem.

The non-hermitian renormalization constants appear due to the presence of un-
stable particles in the theory and the imaginary parts that come in their self-energies.
The optical theorem relates the imaginary part of the forward scattering amplitude
to the total cross section of the scatterer. For a transition amplitude (not necessarily
at one-loop), we have

2. (5.124)

2Im([T (Y — )] = Z/dﬂf‘”f(% — f)
f

By 1, we mean any fermion, Dirac or Majorana and by f any possible combination
of particles in the final state, i.e. f represents any possible decay channel of 1,. dIl



5.3. Remarks on CPT Invariance &9

is taken as

d’py
4
dIl = (2m)%6 (px E pk) | | o 32p0’ (5.125)

where p, is the momentum of the initial particle and & counts the particles in the
final state. If [',, is the total decay rate of the considered fermion, then

1

For the CPT conjugated process, the theorem asserts

2

2Im[T (Vg — )] = Z/dnf‘T(%% f) (5.127)
f

and

1 -
Iy = EIm[T (Ve — Ug)]- (5.128)

To prove that the two decay rates are equal, it is sufficient to show that the
imaginary parts of 7 (¢, — ;) and T (¢, — 1) are equal. In the following, we
will do a bit more. We will prove that individual contributions to the two amplitudes
are equal, i.e. the relation is true for every Feynman diagram, independent of the
process in the loop.

We start with the transition amplitude 7 (¢, — ). A generic Feynman diagram
is

p

p. M s M

—iI'7_(p) describes whatever the shaded part may include. We will assume a general
decomposition like we had for the self-energy:

I (p) = prilh(0°) + prelE (0%) + 7 ToF (0%) + veDEE (7). (5.129)

The diagram for antiparticles is
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—

P

p. M, p. M,

The extra minus-sign comes from the interchange of the fermion operators. To
probe the equality of the two amplitudes, we need to remember some relations for
the Dirac spinors and for the traces of Dirac matrices. For the spinors,

e )T p,5) = 5 (p+ M) (1950, (5130
ep, ST, 5) = 5(p = Ma)(1 + ), (5131)

P Pl 2 . .. . .
w o £° Y A
where n —( M, n+ M, (Ept M) p) is the polarisation vector along the direction

fi. For Dirac matrices, we need to know that

Tr(vs) = Tr(yuvs) = Tr(vum75) = 0, (5.132)

and that the trace of any odd product of Dirac matrices is zero. With these relations
in mind, one can follow the proof:

T (% - %) = —Uy(p, 8) (=i, (—p))va(p, s)
=1 (Sp- M) 1+ 70

(=) (=pnlr, () — Pyl L (%) + 1Tk (0%) + VRfoR(pQ))>
o (L
- T (1< p— My)(~i)

= Tr (5+ M)+ 398) (T )

= Uy (p, ) (=115, (p))uz(p, 5)
=T (y — Uy) - (5.133)

In the second line, we have used (5.131) and (5.129), in the third one we eliminated
the terms with 75, then we have replaced p with —p (since the minus-sign comes

) = BUE) + DG + T2EG)
)

)5 (¢
%(pf (0%) + PLE(G?) + T2H) + T2EGP)
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just for odd products of Dirac matrices) and finally we inserted back s factors, such
that with (5.130) we can reconstruct the amplitude for the particle.
Connecting now (5.126) and (5.128), we conclude that

r,=T,. (5.134)

In this proof we have not used any special property of I'”_(p) and therefore, there
is no special requirement for the renormalization constants. The CPT symmetry is
preserved independent of their hermiticity.
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Chapter 6

Renormalization of the Interaction
Lagrangian

In chapter 5 we investigated the consequences of renormalization of fermionic
fields in the free Lagrangian. It is obvious that the renormalization of this part is
entirely based on the field and mass renormalization constants. When we move to
the interaction terms, additional renormalization constants play a role, namely the
ones coming with the electric charge, with coupling constants and with the bosonic
field.

Since it is not our main theme, we will consider the renormalization constants
for the couplings and the bosonic fields known. The only exception will be the part
in the coupling that involves the fermion mixing matrices, since its determination is
strongly related to the field renormalization. However, we do not determine it in this
chapter. Here, we simply analyse the modification introduced by the renormalization
of parameters in the interaction Lagrangian and at the end we give the Feynman
rules for fermion propagators and vertices that involve fermion interactions. With
the formal, complete renormalized Lagrangian, in the last section, we point out the
contributions to the one-loop amplitude of a generic process with fermion mixing.

6.1 Interaction Terms with Dirac Fermions

In this section, we consider the interaction of Dirac fermions with bosons as
described in the general Lagrangian of section 2.3. We analyse first the modifications
in the terms with vector bosons and then we follow the same procedure for the scalar
ones.

93



94 6. Renormalization of the Interaction Lagrangian

6.1.1 Interaction Terms with Vector Bosons

We start by writing the terms of the Lagrangian using the left and right decom-
position of the fields. As introduced in section 2.3, such a term can be written in
the general form as

Lh=e> (g5, + 98 R bu

i’j7v
- - (6.1)
=eY Yiv'gh itlibu, +ed UE gl Arfbn,.
i’j7v Z.7jiv

The index vb coming with the Lagrangian symbol stands for vector boson. Since
the charged current term and the neutral one look similar, for the start, we analyse
them together. However, keep in mind that for the charged current part, the two
fermionic fields in (6.1) are referring to different fermion types (e.g. charged leptons
and neutrinos or up and down-type quarks).

To have a complete picture we assume that all quantities appearing in the La-
grangian were renormalized. For the bosonic field we take

1
(bv,u =7y Z,M' (62)

All renormalization constant can be expanded in terms of the fine-structure constant
1
a and for Zj:

1 1
28 =1+ 5072, + O(a?). (6.3)

Another parameter that gets corrected is the electric charge:

e=Z.e", (6.4)
with
de 5
Ze=1+7+0(). (6.5)

Depending on the interacting particles, the coupling constants g;;, and g%, can
suffer similar modifications due to the renormalization of their parameters. We
assume a general transformation of type

L _ L 7L
Gijw = Zij,vgz‘j,m
R _ 7R R
Gijow = Zij,vgij,v'

(6.6)

Remark that there is no summation over indices. Zi]iv and Zﬁv totals all constants
coming with the renormalization of g%, or ¢/ . For the Standard Model, Z;;, can
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include the renormalization constant for the weak mixing angle and for the fermion
(quark) mixing matrix.

Now we will split the renormalization constant for the coupling into two pieces.
We want to distinguish the constant that comes with the renormalization of pa-
rameters that carry explicit fermion indices (e.g. the mixing matrix), from the one
that renormalizes the other factors in the coupling. By ’other factors’, we mean
the common factors (like the weak mixing angle) that do not change when i or j
indicate different flavours of the same type of fermions. The notation aesthetically
worsens, but this splitting will be helpful when moving to particular cases.

We choose Z(;;,) to denote the constant that renormalizes the common factors
and Zj; , to denote the one for the matrix. The subscript (ij, v) should be understood
as an indication of the vertex type (e.g. a vertex with incoming down-type quarks,
outgoing up ones and W). Z;;,, is independent of the values i or j as long we do not
change the type of fermions, while Z7; is. Using the left and right decomposition,
we write

L _ L rL
Zijo = Z(ijn) i

ij 15,07
(6.7)
R _ 7R TR
Zzyv Z(ijv)Zz] v

with
Z(LM{R) =1+ 52";]/5 +0(a?),

17, £7,0

(6.8)

If we refer to the Standard Model (Table 2.1), than Z;; ) can be equal to the weak
mixing angle renormalization constant (for a vertex with Z or W bosons) and Z;;,
with the one for the quark mixing matrix (if we take W in the vertex). Explicitly,
for the vertex with incoming down-type quarks denoted by d,, outgoing up-type
ones u; and a W,

1 1
L CKMy, 7
L = V= gCKMyr
Fia, V2sw V2Z, s

where we can identify

1
Loy = 7

sw
rL CKM
Zm w=Zi -

A detailed analysis of the case will be found in the next chapter. Here we state it
just as an example for the identification of the two different constants Z;;,) and
Z’I"

2],V
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As for the kinetic part, it is enough to detail just one of the terms of the La-
grangian. We choose again the part with left-handed fields and at the end, we fit
the result to the right-handed ones, too. The renormalized fields are given as in

(5.7) and (5.6) by
ZwTLZ 2 ’

J:ZZZ
!

Inserting in (6.1) the expressions for all the transformed fields and also for the
coupling constant, we get

Lo = 2. S UEZ " (W2 Zihaiton) Zi Pt (Zi6,) . (6.0)
4,350
k,l

(6.9)

As a consequence of the renormalization of the fields, we can define now a trans-
formed coupling constant:

1
klv = Z ZZ zyv ZzTyL'u zryL'uZ]l2 ZUQ’ (611)
such that
’Ub =€ ZwTL uG:fv7L¢;L :),p‘ (612)
i] v

For an evaluation of the transformed coupling in first order in «, we have to
insert the expansion of the renormalization constants. (6.11) can be rewritten as

de
lev_gklv+ gklv+gklv25Z +5Zklvgklv+5zlvgklv
+Z§5Zkzgzlv+zgkyv2 lL+O(a2) (613)

—gklu+59klv+59klu+0(a )-

We denote by dgj; , the corrections resulting from the renormalization of all the other
parameters except the fermion fields and the explicit fermion flavour depending
parameters in the coupling. 59%@ is the part that absorbs the fermion mixing.
Therefore,

de

59]@,1} = <5Z6€l,v) + 5Z> kiw (614)

5gkl v 6ZI:Z vgkl v + Z 5Zkz gzl v + ng] v9 ZTL' (615)
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For the coupling coming with the right-handed fields we just have to exchange
left with right in the renormalization constants, then

T 6 T
Gt o= Icﬁv + glcl v T Gk v25Z + 5Z(1cz v) gm o T 8 Zif vgk;l e

= gklv +59kzv +59kzv + 0(a?),
with

de

5915,1} = (6Z(Rlicl,v) + 5Z> Iclv? (617)

59kl o= 6Zl€l vglcl ot Z 5Z}cz erlff; + Z gk]v ZTR- (6.18)

At this point, one can make an additional remark. In chapter 5 we decided not to
choose the formalism that includes the re-diagonalization of the mass term (section
5.1.3). In case we do it, instead of relation (6.9), we have

1
Z L) 77l
w Plk le' 3
_2 : 7“5 L 'L
m,n

where OF and P! are the unitary matrices required in the diagonalization of the two
fermionic fields in the vertex. Here, we wrote the ones coming with the left-handed
fields. The right ones will look like in (5.48). The presence of the fields ¢’ in the
interaction Lagrangian, forces us to include the matrices O and P in the generic
coupling G”. These changes affect dg;/, and dg;f,. They become:

r * L =L rL r

(6.19)

(6.20)
1 —r
(6.21)

The divergences reintroduced in the free part are found, as expected, in the inter-
action one, too. Contributions like the ones here appear in all terms describing
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the interaction of fermions. Because we do not intend to use this formalism, we
will not write it for the other couplings. The transformation rule is simple anyway:
wherever there is a fermion field renormalization constant, the contribution from
the corresponding unitary matrix will be added.

The expressions given in this subsection are valid in general, for both, charged
and neutral current interactions. We will give a more detailed description when
considering particular cases. Our main aim is the renormalization of fermion mixing
matrices and we will study such interaction terms in the separate chapters dedicated
to the quark and neutrino mixing matrices.

6.1.2 Interaction Terms with Scalar Bosons

The Lagrangian term describing the interaction of Dirac fermions with scalar
bosons will have similar modifications:

‘Cs% =€ ZE@'(C{;’,S’YL + Cf},sfyR)wj¢s

1,,8
=€ Z wzf{ z] s’yLwL¢S + € Z wz 17, sﬁwaR¢S (622)
"j’ 7] S
=" Y URCTEAL el + e Yt IR ypyl i,
1,38 1,58

where ¢ is the renormalized scalar field:

6o = Z2 4. (6.23)

The coupling constants were redefined to include, besides their own renormalization
constant Z;; s, the factors coming from the renormalization of the fields:

’“ls = Ze ZZ za,s :]LSZ]lZ Z32a (6.24)
kls = Z ZZ st :g},stJl ZE- (6.25)

¢y and ¢ %, are given as in (6.6) by

L _ oL rL
Cijs = Zijscij s
(6.26)
_ZR rR
2]5 17,8 zgs

In analogy to (6.7), we split the scalar coupling renormalization constants in one
part related to common factors and one related to flavour indices:

L rL
Zijs = Z(U: )sz,s’ 6.97
VARE W TRVALS (627)

7,8 (i4,8)“1j,8"
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The expansion in « is:
ZEN = 1462715 + 0(a?), 6.28)
rL/R rL/R )
Zzgs _1+6Z1]s +O( )
For the scalar field renormalization constant we have
1 1
Z; =1+ 50Z,+ O(a?), (6.29)
and we can write (6.24) and (6.25) in first order in « as
ot oe b L5z, 7 32Tk b
kls = kls+eckls+ ks 5 + (klsckls+ kl,sCkl,s
TR L L 2
+Z 5Zkz Cil,s Z k]82 Z (a ) (630)
= Ckl,s + 5%1,5 + 5%1,3 + 0(a?),
TR 56 TR
Cil' = kls+ ckls+ kls 5Z +5Z(klsckls+5zk150kls
T rR 2
+ Z —6 7 iR + Z%% ZifF 4+ 0(a?) (6.31)
= Ckls+5ckls+5ckzs+0( %),
with
oe
5C£l’s - (5Z&Dl,5 + 5Z ) ]Cl §9 (6-32)
rL __ rL TR L rL rL
OCks = 02y sclcl st Z 502y Cips + ; Ckj, 556Z]l ) (6.33)
and
R R de
6016[,5 - 6Z(kl,s + (5Z kl ) (6.34)
5ckls Zl:le Zﬁs +Z 5Zkz :lfi’ Z Ic]32 ZTlR (635)

In the scalar sector, we allowed for couplings of Dirac fermions to charge con-
jugated ones (see the last terms of equation (2.52)). Then, in the renormalized
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Lagrangian, we also have explicit charge conjugated fields. For example, ¢—f is
replaced by

—= ATTAVER Y o AR

o8 =3 (W 2+ W27 m) (6.36)
J

Here, we have used the equivalent definition of the charge conjugated fields as given

n (2.19). Accordingly, the transformed coupling constants equivalent to (6.24) and
(6.25) will be

=

lcl s Z Zsz2 ZZ] s) er]LsN:]LsZgl Z52 (637)
1
kl s Z 1] s) ZZJ{EN:]RSZ]I Z52 ' (638)

The transformed coupling constants from the last term of (2.52) can be deduced in
a similar manner:

—prl 1\ *
“” =Z ZZ ( (i5s) ZZE;NZRJ ZIW?R (Zﬁ) ; (6.39)
1 1y *
Clis)' = Ze ZZ (Z(ws ZszSNzTJL,) Zka (Zs2> : (6.40)

The prime signals the transformed couplings for the hermitian conjugated term, i.e.
for the diagrams with diverging arrows. Along this work, we do not need these
expressions, but we gave them for completeness.

6.2 Interaction Terms with Majorana Fermions

To complete the renormalization of the interaction Lagrangian described in sec-
tion 2.3, we consider now the renormalized Majorana fields and their couplings to
bosons. We begin the analysis with the interaction terms involving charged bosons
and then, we move to the neutral current and Yukawa terms. For the first type of
interactions, a Dirac fermion is required in the vertex, while for the second one we
have two Majorana fermions coupling to the neutral bosons.

The redefinition of the coupling constants evolves like before. One has just to
pay attention to the correct coupling between left and right handed fields. In the
following, we enumerate the couplings and their definitions without repeating the
whole procedure.

The interaction between Majorana fermions, Dirac fermions and vector bosons is
included in the first two terms of the charged current Lagrangian (2.50). We replace
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the fermion fields with the renormalized ones, as defined in sections 5.1.1 and 5.2.1.
For Dirac particles we need (5.6)—(5.7) and for Majorana fermions (5.86)—(5.89).
All other renormalization constants are inserted similar to section 6.1.1, with the
appropriate indices. For the transformed coupling constants related to vector bosons
we obtain

Gk, =7, ZZ Zrk gk 7t 7z, (6.41)

azv ar,v azv ’l]

1
Gl =7, Z V2ol gut 73Rz (6.42)

azv ar,v azv ’L]

from the first term of (2.50) and from the second:

1
Git, = Z. ZZ VAN 7zt (z3 Yy, (6.43)

zav 1a,v zav ab

1

]bv Z Z Z zav ZzTaRvgza UZba (Z” )* (644)

The factorisation in the coupling renormalization constants evolved as in (6.7), such
that all renormalization constants carrying explicit fermion indices (like a mixing
matrix) are contained in Z”. The two sets of renormalized coupling constants are
related by complex conjugation as the unrenormalized ones, i.e.

oo = (i)
rR rR \* (645)
gia,v = (gai,v) .
The relation is not valid for the transformed couplings G™" and G"% since the fermion
field renormalization constants are not related by hermiticity.
The interaction of Majorana and Dirac fermions with scalar bosons is comprised
in

1
bJS = Z ZZab Z(azs Zot ot Z Zb?’ (6'46)

ar,s azs ’L]

1
b] s =Ze Z Zba Z(al s) Zngs Zﬁsszz ZSZ) (647)
for the renormalization of the first term of (2.52). From the hermitian conjugated
one, we obtain

1

]bs - Z ZZ ms ZzTaLs :cflsZab (Z )*7 (648)

]bs ZZ 2 ZzasZTR TRZ (Z )*7 (649)

1a,s zas
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where
= (G -
rR __ (L \x ( . )
cia,s - (Cai,s)

The general Lagrangian of section 5.1.1 describes the Majorana fermions interac-
tion with neutral vector bosons in the first term of equation (2.51) and with scalars
in the first term of (2.54). The transformed coupling constants for the renormalized
Lagrangian are

cdv - Z Z Z abv bvgab va¢12 Z1127 (651)
1
cdv - Z ZZGC Zabv Zglfzv ZI?UZ ZU27 (652)

for the coupling to vector bosons and

cds = Z Z Z(abs bs abSZbd Z52’ (653)

cds = Ze ZZ Z(abs bs aszdb Zsz’ (654)

for the neutral scalars.

When needed, one can use expansions for the renormalization constants and write
the coupling constants as a series in a.. The first order corrections of the transformed
coupling constant can be grouped as in section 6.1. We will not enumerate here the
formulas for each type of coupling. In the next section, we present a general formula
that can be fitted to any combination of fermions and bosons.

6.3 Generic Fermion Interaction Terms

To summarise the results of the two sections allocated to the renormalization of
the interaction Lagrangian, we refer to the general notation for the fermion indices
x, y. A generic Lagrangian term for the interaction of fermions with vector bosons
can be written as

Loy =€ 67" (Ghy07e + ag Ry o

x?y”u

=" Y UG L+ Gil RS,

w?y’lu

(6.55)
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The second line introduces the renormalized parameters and the transformed cou-
pling constants. The latter are

Gggljv_Z ZZ tuvZTungtuvZ 2 Z2’

. (6.56)
Gwyv = Ze ZZ Z(tuv uvgtu vZUy ZvZa

where all renormalization constants presented before can be recognised. The expan-

sions of G, and G}Y, to first order are generally given by

G;Iva = 9;51; + 6gmyv + 5gacy'u + O( 2)

A ’ (6.57)
Gxgv = gacy,v + 5gwy,v + 595551} + O( 2)
with
Sgr 57t oe 5Z
gwyv - (zy,v) + + gwy v
T 1 T zr
5-ga:yv_5ZTyvga:yv+ Zé mtgtgfv—i_izgac{:vé ugfj?
“ (6.58)

de
695@70 = <6Z(I§y,,u) + 52) :cyv’

1
5g.ryv - 5Z;fv Gayw +5 Zé xt ggfv + 5 Zg;ivéz&lf

The general version of an interaction term with scalar bosons is shortly written
as

‘Csb =€ Z Ew(ciy,sf}/.[/ + Cﬁy’sz)quﬁb’

Z,Y,s
(6.59)
=" Y YL(CIL L+ Cok AR

Z,Y,s

The transformed couplings:

C;ggs_Z ZZ tusZ:uLs ;uLsZ 2 Zz’
i (6.60)
il =Z, ZZ Z8, IRk 7t 2,

zy,s tu,s tus
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expand to
Cily=db 46k, +odk + 0%, (6.:61)
R _ IR R 2 :
C;ys_ ;ys+5cwys+5cgys+0( )
where

de
(5c£y8— <5nys —+ (5Z) Cog.s

rL rL TR 1 rL rL

5mys 5nys wys+ Zézwt tys+§zc.ru35Zuy’
o v (6.62)

5cxy <(5Z (ys) T+ 5Z ) Cory 59

0Cy a:ys 5Z;55 ;55 +5 Zézxt ;fs +5 chﬁsé.ZTR‘

According to the fermion in the vertex, one adapts the flavour indices and the
renormalization constants. All coupling constants expressed until now can be recog-
nised in (6.56) and (6.60). For Majorana fermions, one has to remember that

73Rt ang 7ot gt (see (5.85)), as already used in this chapt
ab T “ba ba ~ “ab . ’ y p er.

6.4 Feynman Rules Derived from the Renormalized
Lagrange Density

If we look back at the first chapter, formally, there should not be many changes
in the Feynman rules. The fields are now given by complicated expressions, the
parameters in the Lagrangian changed, but if we use the new notation, the rules
will be almost identical to section 2.4.2.

The term that requires additional care is the fermion propagator. Here, we still
have to separately write counter terms coming from the free term of the Lagrange
density. The Feynman rules for Dirac fermion propagator and counter terms are
taken from section 5.1.1 and the ones for Majorana fermions from section 5.2.1.

p. M,

ST (p) = —
i5"P) = y=Matip

i(p — M,) 3020, + i 30Z5,(p — M) + imadas
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p, M

~_ 7
~_
<

car i
W5 (p) o ?—Mﬁ'il)

1

1., 1. .
5072 +1 50Z;;(p — M;) + idmidi

il = i€" v (Gop v + Gofly vR)

ZF:]uv ie ’}/M(GZ] v /L + Gzy v/YR)

ZFZI)S = (Cglf/sfyL + Crb s’yR)

ZF:]S = (C] VL + C] szR)

ZF:]S = (C] YL+ C[ﬁg’yR)
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S ~ ~ ~
> ffffffffffffff () = ie (G v + (G 1s)
J
a
V . .
>V\MW\/W ZFZ?U = e yH (GZiL,v’YL + GZ%VR)
i
v T ST Al rL rR
211z'cw =1y (Gia,vfyL + Gia,vfyR)
a
a
X ; . L R
77777777777777 ZPZ'L'S = Zer(ogi,s’y[/ + CgijszR)
1
S
ffffffffffffff iT,, = ie" (ClEv + CLfvm)
(6.63)

Each vertex diagram represents now the sum of the unrenormalized vertex plus the
vertex counter term, i.e.

u=v,s
ASAVAYAVAVAVAVAVA)

i =iy +

TYU

(6.64)
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With the generic notation for the indices of Dirac and Majorana fermion type, we
distinguish

[y = €7 (Ghy o7 + Gyl VR) (6.65)

5gL 6g7~L 5gR 5grR
=Y G | 1+ 2+ 2 i+ G [ 1+ 2+ 2 | m |
gmy,v gwy,v gwy,v gmy,v

for any allowed interaction of Dirac and Majorana fermions with a vector boson,
and

F;ys =e (C;;isfylz + C;gl/{,s’YR) (666)
dck dcrk dck st
=¢ (ng,s (1 + —CTwLy’s + —CTiy’s> VL + (1 + 2+ —C,ﬁ/’s YR |
TY,s TY,$ TY,8 TY,8

for the fermion interaction with a scalar boson. The decomposition of the trans-
formed coupling constants for the first order approximation follows the definitions
given in each of the previous sections and summarised in (6.58) and (6.62).

The external fermions will be described by u(p, s), u(p, s) and v(p, s), T(p, s), the
spinors related to the physical masses. The rules related to the fermion flow change
remain as in section 2.4.2.

6.5 One-loop Corrections to Vertices

To investigate the contribution of the renormalized interaction terms of the La-
grangian in a physical process, we consider a generic scattering with two fermion
fields, see Figure 6.1. As shown in the picture, in the process, there are contributions

Figure 6.1: General scattering process that involves fermion-antifermion-boson
vertices.

that involve vertices which connect the fermions by one single boson line to the rest
of the diagram, but also contributions that involve other one-particle-irreducible
diagrams. We will analyse the first type of contributions since at one-loop, the
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renormalized coupling constants play a role exactly in the fermion-antifermion-boson
vertices .
The first diagram in the sum, i.e.

factorises into two pieces: one for the fermion-antifermion-boson vertex and one for
everything belonging to the rest of the diagram. By everything we mean the boson
propagator, the parts inside the shaded blob of the figure and the particles in the
final state. We denote this second factor with V,, when the interaction boson is
vector like and with S for the scalar like. Like this, inserting the related Feynman
rules (see section 2.4), the contribution of the diagram to the amplitude amounts to

7?)0 = ie@x(pQ)/yu(ngy,v/YL + gi-{y,vfyR)uy(pl)Vu(pi’))a (667)

for an interaction with a vector boson and to

763 = ie@m(m)(cﬁy,s% + ny,ﬂR)Uy(m)S(ps), (6-68)

for an interaction with a scalar boson. With p;, p» we denote the momenta of the
incoming particles and with p3 the total momentum of the outgoing particles. If the
vector boson is an external line, then V),(ps) is replaced by the polarisation vector,
while if we have an external scalar, S(ps) is equal to 1.

At one-loop, one adds the contributions from vertex counter terms, one-loop
vertex diagrams and self-energy corrections of external legs. All the types of dia-
grams related to the corrections of the selected vertex and the incoming particles
are sketched in Figure 6.2. For the diagrams that involve internal particles, one has
to sum over all possibilities.

We comprise the one-loop contributions to the total amplitude from the other
one-particle-irreducible diagrams of the process in 7;‘;. Then, the total amplitude,
given as a sum of all diagrams is

ot __ ertex —se T—Sse b 2
Todt = Toy + To™ ™ + T + T2 + T + O(0). (6.69)

T,y is the contribution from the first two diagrams of Figure 6.2 added up, 7;Vyertex is
responsable for the sum of all vertex corrections (third type of diagram) and 73~
and 7,,7°¢ stand for the self-energy corrections of the external fermion lines. In
the following, we will separately discuss the detailed expressions of the one-loop
corrections for the vector and the scalar boson vertices.
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Wx(pZ) Wx(pZ)
Wy(p 1 ) Wy(p 1 )
WX(p2)
+
\Py(p 1)

Figure 6.2: Diagrams contributing to the one-loop corrections of the vertex.

One-loop Amplitude for Vertices with Vector Bosons

For vector bosons, the first term of the total amplitude, 7, reads:

Tay = 1€ 0 (D2)V" (Gl 7 + Gyl yYR) 1y (01) Vi (3).- (6.70)

Gk, and GLY, are the transformed coupling constant that describe the sum of the
lowest order vertex plus its counter term (see (6.64)). Their general expressions are

given in (6.56). Using the expansions of these couplings as written in (6.65),

. 5gL 5grL
Toy = 1€"0s(p2)7" (gg’;jﬂ, (1 + I PRy

rL rL

00sy0  Omm
+g;§’” (1+ rl? + > | TR y(p1)Vyu(ps). (6.71)

R
Ty,v g;y,v
The vertex corrections contribute to the amplitude of the given process by
Toy o = 1€"0a(p2) 0y M uy (p1) Vis(3)- (6.72)

Here, 37" totals the first order contributions from all diagrams.
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The self-energy contributions from external legs have two sources. One is the
decay width of the unstable particles and the other one the difference between the
wave function renormalization constants and the field renormalization constants. As
argued in section 5.1.1, we can leave out of the calculation the terms proportional to
I',. If the two sets of constants, the field and the wave function renormalization ones
are equal, then 72 °¢=777°¢=0. If not, in the amplitudes, there is one remainder
from the renormalized self-energy that does not vanish when acting on spinors. It is
given by R,y (p), as expressed in (5.23) for Dirac fermions and in (5.97) for Majorana.
From the fermion of type y, the contribution to the total amplitude is

TL = ie"Tn(p2) D V" (d5h Ve + GoniuVR) Ruy(p1)ty (01)Viu(ps).  (6.73)

u P — M
We sum over all possible internal fermions u that belong to the same family as .
Analogously, the amplitude of the self-energy corrections for the fermion z is

T = ie'Uy(p2) Z Rat(p2) (GtyoL + Gl vR) Uy (01)Vu(ps).  (6.74)
t

- m
Py~ Mt7
All the given amplitudes sum up in (6.82).

One-loop Amplitude for Vertices with Scalar Bosons

The list of the terms that are added up in the one-loop total amplitude (6.82)
when the fermions interact with a scalar boson is similar to formulas (6.70)—(6.74).
We have just to replace the part specific to vectors v#V,,(ps) with S(ps) and use the
correct notation for the coupling constants. We obtain

Tay = 1€"05(02) (Cry 571 + CryfvR)ty (01)S (p3) (6.75)
ock . derL
= Z‘GT@w(pQ) (C;is (1 -+ CT—Ly’ —+ Cr—Ly,) fYL
TY,S TY,8
66.{5 S 5C;R8
+025,s (1 + ﬁ + T—P‘?> ’YR) uy (p1)S(ps), (6.76)
TY,8 TY,8
Ty ' = 1€ U5 (p2) by 1y (p1) S (3), (6.77)
_se . r r 1
Ty, * = i€ 0(p2) Y (chot v + i 7R) mRuy(pl)uy(pl)S (ps),  (6.78)
U 1 u
r—Sse __ s T= 1 rL rR
Ty "= 1€a(p2) 3 Renlp) e (i + elove) wy(p)S(os)- - (6:79)
t 2
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Divergent Contributions and the One-loop Amplitude

We cannot discuss in a more detailed way the total amplitude, but we can still
make some remarks about the sources of ultraviolet divergences. At the end of
chapter 5, we have decided to fix the field renormalization constants in such a way
that they lead to finite contributions of self-energy corrections to external legs. It
means that div[72 **|=div[7.5 **|]=0. Then, the parts of the total amplitude that
contain divergences are 7., Ty and 7. Since the total amplitude is a finite
quantity, we should have

div[ Ty, + Toy™ + T,

Yy

] = 0. (6.80)

If a vertex with corrections like shown in Figure 6.2 is part of a complex dia-
gram for which the boson is an internal particle, one can not continue the study of
divergent parts without specifying the rest of the process. To carry the analysis a
bit further, we reduce the process in Figure 6.1 to one for which the boson is an
external line.

Wx(pZ)

o(p3)

JAVAVAVANAVAVAVANA

vy(p1)
By ¢ we characterise the bosonic field, scalar or vector like. Such diagrams describe
the heavy fermion decays that we will consider as examples when investigating the
quark and neutrino mixing, but also gauge boson decays. It is just a matter of
choosing the incoming and the outgoing particles.

Going to one-loop corrections, the diagrams shown in Figure 6.2 simplify to the
ones in Figure 6.3. We can picture now also the one-loop contributions from the
right part of the vertex, in this case the boson line with its self-energy. Therefore,
Figure 6.3 contains all the contributions to the one-loop amplitude of our simplified
process.

We will assume that the boson field renormalization was completed in such a
way that the self-energy contributilons of external legs are absorbed in its mass and

field renormalization constants (Z3 or Zs%) Therefore, we do not need to consider
the last type of diagram. Its contributions are included in the counter terms (second
diagram). Consequently, in this case, in formulas (6.70)—(6.74) related to the vector
boson, V,,(p3) becomes ¢7,(p3), and in those related to the scalar boson (6.75)—(6.79),
S(ps)=1.

There are no other one-particle-irreducible diagrams that contribute to the pro-
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Wx(p2) WX(pZ) Wx(pZ)
>¢<p> . >¢<p> ; )
Vy(p1) Vy(p1) Vy(p1)
Yx(p2) Yx(p2) Yx(p2)
: 2D KO (IR
\lfy(p/ly) Wy(pl) ‘Vy(pl)

Figure 6.3: Diagrams contributing to the one-loop corrections of a fermion-
antifermion-boson vertex

cess, like we had in the general case, hence,

b _
Tey =0, (6.81)
and the total amplitude is given by
7:;” = Toy + T + T + T + O(a?). (6.82)

The relation characterising the divergences (6.80) is reduced to
div[ 77, + T = 0. (6.83)

This condition will be essential for the definition of the mixing matrix corrections
that can contribute to dgil,, dgplt, or dcil  and d¢iY . as it will follow in the next
chapters.



Chapter 7

Renormalization of the Quark
Mixing Matrix

The presence of a quark mixing matrix in the interaction Lagrangian leads to
divergences that are not cancelled by the other renormalization constants that enter
in a total higher-order amplitude. Therefore, a correction to the quark mixing
matrix that absorbs the remaining divergent part is mandatory. This correction will
appear in the renormalized coupling constant. The open question is how to define
the renormalized quark mixing matrix in a complete and correct way, such that at
the end we obtain a unitary, gauge independent renormalized mixing matrix. In the
literature, there are two main ways to calculate the corrections: either by dropping
out the absorptive parts and imposing unitarity, either by considering them and
dropping the hermiticity condition for the field renormalization constants. The last
situation has as a consequence a renormalized mixing matrix that is not unitary.
Since the imaginary parts are an attribute of the theory, but also the unitarity of
the mixing matrix, we try to keep both of them.

In this chapter we particularise the results of 6.1 and 6.5 for quark mixing and we
discuss the alternatives for defining the renormalized quark mixing matrix. We start
with the renormalization of the quark-antiquark-W vertex in a general approach and
then, as a particular example, we study the corrections induced to the top decay.

7.1 Corrections to the Quark-Antiquark-1¥ Vertex

In the Standard Model, the quark mixing matrix appears in the charged-current
terms of the Lagrangian, as a part of the coupling between quarks and the W-boson.
One can also find it in the coupling to charged scalars (®*), but we limit ourselves
to the vertices with physical particles. Therefore, we consider processes involving
vertices of the type

113
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ui(p2)
W(ps) e
sy Via V"1
doc(Pl)
The coupling constants related to such a vertex are, as listed in Table 2.1,
1
L
. VA
gza,W \/§SW “ <71)
Qfx,w =0.

7.1.1 Corrections from the Renormalized Parameters

Our purpose is to determine the corrections to the coupling constant and in
particular to the mixing matrix, using the general result of section 6.1. For this, we
need to identify the renormalization factors that enter in gf .

In formula (7.1), one of the parameters that receives corrections is sy. (The
corrections can be related to the renormalized gauge boson masses W and Z.) We
choose

Sw = Z5W871‘/V7 (72)
where Z,,, can be expanded as
)
Zoy =14+ 2% 4L 0(a?). (7.3)
w

As stated at the beginning of the chapter, the other parameter in giLa’W, i.e. the
mixing matrix should also be readjusted. We denote the correction of order O(«)
by dVia.

Via = VI + 8Vi + O(a?)

= (1 + 5“;:“) Vi + 0(a?) (7.4)

__ 7CKMy/r
_Zia (1o %)

where no summation over fermion indices occurs. The upper index CKM stays for
Cabibbo-Kobayashi-Maskawa. Inserting all the renormalized parameters in (7.1),
then

1
[ —ASLS A VA 7.5
gza,W \/§st 57{/[/ 1" 1" < )
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If we compare the renormalized quantities with the general parameters introduced
n (6.6) and (6.7), we identify

1
L T
Giaw = V. (7.6)
(1% 25‘1‘;{/ (1%
and
1
Zk =
G (7.7)
Tk = 28,
as already mentioned in section 6.1.1. Substituting Z (i) ZZJLU and g7f, from (6.11)

with the particular expressions from (7.6) and (7.7), we obtain the transformed
coupling constant Gjﬁ w- the constant that describes the vertex and its counter
term:

1
Ze g3 N 70 (zgvrn) ZiEt (7.8)
i=u,c,t
a:d,s,b

e w =
JB, \/_SW -

If we insert all the expansions of the renormalization constants, we can write the
one-loop approximation for the coupling as

1 (58W de 1 1
ok m(1- + -+ 507 — 4V
W sy ( SW W) ﬁsgv ”
" 1
L5z ;; +— %4 —(5ZT§ +0(a?). (7.9)

+ _
\/58?4/ 1=u,c,t 2

To simplify notations, we take

ja
\/_SWa ds,b 2

) ) 1
b= —W 4 L 5y, (7.10)
Sty er 2

for the coefficient of g7%y, in 995y, (6.14). Then,

5gjﬂW ngBW (7.11)

Note that ¢, is not necessarily real, since 6Zy might also include imaginary parts
from absorptive contributions of the W-boson self-energy. As in (6.15), we identify
the first order correction coming with the fermion mixing. It is comprised in

r —rL
0955w = fW(WJ/ﬁLZ 07 Vi+ Y., MQ ) (7.12)

t=u,c,t a=d,s,b
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Finally, we can write the shorter version of the modified coupling constant that
will describe the quark-antiquark-WW vertex at one-loop:

1
Gty = ——VI(146,)+ 69k, + O(a?)
1, \/§S£V Q 0,

Sqrt (7.13)
— g{iw (1 + 6, + TuLxW> + O(a?).

o, W

Inserting Gy in the general expression of the amplitude for the lowest order vertex
plus the counter term (formula (6.71)), we obtain a first contribution to the total one-
loop amplitude. For example, for the decay of the W-boson into a quark-antiquark
pair we have

T

. e _ 59¢TaLw
T =i—— V', 146, + — a(p1). 7.14
o Z\/§8T ol (p2)¢(p3) ( gTL ) LY <p1) ( )

V,, in (6.71) was replaced with ¢,, the polarisation vector of the W-boson and the
Dirac spinors were fitted according to the considered process. pi, ps, p3 stand for
the momenta of the particles.

7.1.2 Corrections from the One-loop Diagrams

Section 6.5 has offered a general description of the one-loop diagrams contribut-
ing to the amplitude. Here, we can be more specific. As example, we will continue
with the evaluation of the amplitude for the W-boson decay into a quark-antiquark
pair. However, one can easily switch to another process by changing the role of
incoming and outgoing particles. The typical one-loop vertex diagram

u;(p2)

Wi(ps) . e
y gives the total contribution: Trertex = Trvertyr

do(pD) (7.15)

By 7.2 we denoted all factors in the amplitude for virtual vertex corrections, except
the mixing matrix. To understand why we are able to factorise the quark mixing
matrix, one can look at the diagrams contributing to the vertex corrections, given in
Figure 7.1. It is easy to see that in the Standard Model, in every one-loop diagram,
there is just one vertex that involves V..
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u; Y
\\\‘l\i? \\\\q)
W w
U ANNNNNANNNN da ) SANANNNANNNNN
(] ok
de dy

Figure 7.1: Vertex corrections for the quark-antiquark-W vertex

Txert comes as a sum of four types of Dirac matrix elements:

mert = 7(')53ert + 7E5\1/ert + 755\2/ert + 7;’5\3;ert’ (716)

where 7 is the lowest order amplitude of the vertex, without quark mixing:

eT‘

To=1
0 \/557{,[,

Ui (p2)¢ (P3)VLva(P1), (7.17)
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and the other three matrix elements are:

T

Th =iﬂs%ﬂz‘(l)ﬂﬁ‘(ps)%va(m), (7.18)
To=i ﬁw (92 2va(P1) (€ (P3)p2), (7.19)

To=i

NS i (p2) YrVa (1) ((P3)p2)- (7.20)

We have directly replaced e and sy with the renormalized parameters since all the
matrix elements are multiplied with factors of order a. We will not calculate all
these contributions. It is not our purpose and one can find complete results in the
literature (see for example [Den90b]). We just spot that since the matrix elements
Ti, T and T3 do not appear at the lowest order, 6, ., 62, and &3, are finite and
gauge independent.

Before writing the final total amplitude of the process, we still have to consider
the terms coming from the self-energies of the external legs. The related diagrams
are given in Figure 7.2. Rewriting (6.73) and (6.74) for the W decay into a quark-

u;(p2)

doc(p] )

Figure 7.2: Self-energy corrections for the quark-antiquark-W vertex

antiquark pair, the contributions to the amplitude from the down- and up-type
quark self-energy corrections are:

Tia =1 Ui (p2)¢(p3) VL 7 Rﬂa(pl)va(pl) (7.21)
\/5 BZ zbl

7;2756 = \/— p2 Z RZ] p2 p ]a¢(p3) Lva(pl) (722)

t=u,c,t

The total amplitude is calculated as the sum of (7.14), (7.16) times the mixing
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matrix, (7.21) and (7.22) and it amounts to

0 .
T = (1+6+ﬁwt ;WW>+VTE:’Ewm+ﬁf“+ﬁ§“+0m%

i, W k=1,2,3

ey (k=10,1,2,3), dgily and in
the two terms that include the self-energies of external legs. To recapitulate: dgj.y,
is defined in (7.12) as a sum over renormalization constants related to fermion fields
and their mixing, d,, given in (7.10), adds up the remaining corrections from the
fermion coupling to the W and 6%, keeps track of the one-loop vertex diagram
corrections.

(7.23)
The corrections of order o are comprised in 6,, 6%

7.1.3 Discussion of the One-loop Renormalized Quark Mixing
Matrix

The unrenormalized quark mixing matrix is a unitary matrix, i.e. VIV = VVT =
1. The unitarity of the quark mixing matrix is a consequence of the invariance of
the action under BRS (Becchi-Rouet-Stora) transformations, as shown in [Den04].
We will have to check whether the corrections performed on the matrix preserve its

unitarity, i.e. whether
Z (VT ) = 6aﬂ,

t=u,c,t

> VeV =6

a=d,s,b

(7.24)

Starting from the unitarity of the unrenormalized mixing matrix, one can show that,
for the first order terms, it implies:

> (Vi)oVig=— > (0Via)"Vij,

t=u,c,t t=u,c,t

Y VialdVia) == > ViV

a=d,s,b a=d,s,b

(7.25)

Now, let us look at the ultraviolet divergences that enter 7°*. As discussed in
the previous chapter (section 6.5), the sum of the divergences from all the correction
constants in (7.23) has to be zero. For the quarks, the condition (6.83) is equivalent
to

div

gL
5, + 0° %@W]:o, (7.26)

vert
o, W
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since all the other contributions in 7;%* are finite.

To analyse the contributions in (7.26), we assume first a model for which the
quark mixing matrix is equal to unity (Vi, = d;n). Without mixing, the amplitude
is finite (provided that d, is chosen properly) and the counter term 6V is not required,
hence §V;,=0. Note that in the vertex corrections we are able to factorise the mixing
matrix and therefore, the divergences in §° , are independent of its presence. The
same is valid for the divergences of §,, this time as a consequence of the unitarity of
the mixing matrix. In both models, the Standard Model and the simplified one, the
divergences from 0 . and 4, are equal. For the simplified case, (7.26) is equivalent
to

rL
5gia,w

div |6, + 6%, + =

] =0, (7.27)

as calculated in [Den90b| and used in [Den90al. In other words, if there is no
mixing in the theory, one can prove that the total amplitude is finite. All the other
divergences in (7.26) are on account of the presence of the quark mixing matrix. If
we substract (7.27) from (7.26), we are left with the constraint

rL rL
di 59m,w _ 59m,w
1V rL rL
Jia,w Gia,w

—0. (7.28)
Via=bia

To separate the correction of the quark mixing matrix, we insert 5g{oﬁw and g[oﬁw
from (7.12) and (7.6). Then,

1 1
div |0Via + Y 3025 Vi + > VirsoZj

j=u,c,t B=d,s,b

+ 027k
‘/11(1:5ia

—I/;a% (57§f )] =0. (7.29)
Via=0ia

For an unity mixing matrix, there are no non-diagonal fermion self-energies and
therefore, the field renormalization constants in ¢ g{oﬁ w (Via = i) are diagonal. This
is why for the renormalization constants calculated for the unity V' we wrote just
the diagonal parts.

We can conclude now that, as a minimum requirement, 6V;, should be defined
such that (7.29) holds. So, we can fix its divergent part by

= D 07 Via= 3 V7

Via=bia j=u,c,t B=d,s,b

div[oV;a] = %div Via (57;? + 52;5)

(7.30)
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This property of §V was first shown by [Den90al].

At this point, we have to check that div[§V](V")! fulfils the anti-hermiticity
condition (7.25) required for a unitary renormalized mixing matrix. Firstly, we select
the anti-hermitian parts present in (7.30). For this, we construct anti-hermitian
combinations of type Z—Z. The terms in (7.30) can be rearranged to

div[§Via] :%div LZ ((57;?5)* ) — NV (675E - (5255))

j=u,c,t B=d,s,b
=39 | X2 (6T + 0T ) Vi 3 Vi (675 + (0728
| j=u,c,t B=d,s,b
1 —rL
+ —div V;a 5Zzz +5Z2§ . 7.31
20| ( ) Vw_%] (7.31)

The first line of the equation contains the anti-hermitian pieces, the second line
the remainder from their construction and the last line the unchanged part from
(7.30) that was keepmg track of the divergences already absorbed by 4, and &9, ,.
By direct computation! one can prove that the sum of the last two lines is zero, i.e.
the hermitian piece (the second line) is exactly the divergence cancelled by 6, and

5% .. Hence,

vert*

div]Via] = - Z div [ (07 57;"].] Z " div [6255 — (5275)"] .
] =u,c,t /3 d,s,b
(7.32)

Let us repeat the calculation for the complex conjugated counter term (6V,)*.

Vie- Accordingly, the

We will consider a process for which the coupling is

w
Dirac conjugated field will be the one for the down-type quark and the correction
to the coupling constant from the fields (6.15) will be

r 1 % 1 —rL 7\ % r *]- r
59a]z;,w = \/—TS{/V ((5‘/%04) + Z idzab’(v;ﬁ) + Z (V]a) §5ij’L> . (7-33)

B=d,sb j=u,c,t

If we split the terms involving field renormalization constants into anti-hermitian

We have calculated the renormalization constants using the GiNaC library for computer algebra
[GiNaC]|.
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and hermitian pieces as we did in (7.31), then

Ogniw = \/518% i ( > (0705 = 6Z50)) (VR = 3 (VR ((52@#)*_52#))

B=d,s,b Jj=u,c,t
+ fl - 1(2 (57;§+(5Z3a ) Y (VR ((6zihy +5Z§f))
28W4 B=d,sb Jj=u,c,t
b (V)" (7:34)

V2sh,

Based on the same arguments as above, we can identify the divergence of (§V;,)*
such that it cancels with the divergence of the anti-hermitian contribution of the
field renormalization constants.

div[(dVia)] = 5 Z )'div [(6Z1F)" — 6Z3F]
Jj=u,c,t
1 : —rL Ly« 7\ *
-7 > div [5zaﬂ—(5zﬁa) (V7)* (7.35)

ﬂ:dis’b

To prove that (7.32) and (7.35) are related by complex conjugation and that
the divergence of the mixing matrix counter term satisfies the unitarity requirement
(7.25), we will take advantage of the properties of the divergences in the self-energy
components. These properties were given in (4.58) and they were allowing us to
check that the divergent parts of the field renormalization constants were fulfilling
the hermiticity condition (see (5.123)). Here, we need the first relation of (5.123).
For the up-type quarks we have

d1v[(5ZU | = (div[6Z}[))", (7.36)
and for the down ones
div[éiga] (div[oZ 5]) (7.37)

With this feature of the divergences, one can prove that (7.35) is indeed the complex
conjugated of (7.32) and that the restriction (7.25) from unitarity is true. From
(7.32), one can finally write the divergence of the quark mixing matrix as

div[oVia] = — Z div [62;" — (67517 Z ndiv [6255 — (52:5)"] -
] u,c,t /5 d,s;b
(7.38)
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In conclusion, we are able to prove that the divergences that are absorbed in 0V;,
preserve the unitarity of the mixing matrix after renormalization. The question left
is how to fix the finite parts of 0V}, such that we do not destroy the anti-hermiticity
condition (7.25).

If not only the divergent parts of the field renormalization constants were related
by hermiticity, but the constants themselves, it would be reasonable to extend (7.38)
over the finite parts, too. This was the approach proposed firstly in [Den90a| (see also
[Den93|). Like this, 0V;, absorbs all the anti-hermitian contributions from the field
renormalization constants, including the finite ones. Later, it was discovered that
even if this definition yields a unitary renormalized matrix, there is another problem:
it leads to a gauge dependent 6V |[Gam99|. The consequence is a gauge parameter
dependence of the physical matrix elements. The authors in [Gam99| claimed that
this gauge dependence was a consequence of the on-shell scheme used in [Den90a] to
fix field renormalization constants. They proposed then a renormalization scheme
using field renormalization constants defined at zero-momentum.

In the following years, other methods to deal with the gauge parameter depen-
dence were introduced (e.g. [Bar00], [YamO1], [Die01], [Pil02], [Zho03]). Another
on-shell approach can also be found in [Kni06]. As a solution to the scheme depen-
dence problem, [Den04] proposes to fix 6V directly on the physical matrix elements.
Because of the problems following from a non-hermitian Lagrangian, the authors
choose to treat just the dispersive parts of the self-energies.

It is of course not satisfactory to omit imaginary parts by a simple prescription.
The imaginary parts are a prediction of the theory and describe important physical
phenomena, e.g. decay processes of heavy quarks. At higher-orders, the situation
becomes even more complicated. The imaginary contributions from the self-energy
receive contributions from two sources: one is, as at the one-loop level, the loop inte-
grals and the other one the complex coupling constants (like CP-violating phases in
the quark mixing matrix). It is not obvious how these two sources can be separated.
For now, the alternative is to determine how the quark mixing matrix correction is
involved in a decay or a cross section and to identify observables that can be used
to fix the counterterms, at least in principle. If all other parameters entering an am-
plitude are determined, one might be able to extract the contribution of the mixing
matrix renormalization constant. In the next section, we consider as an example
the one-loop corrections to the decay of a top quark.

7.2 Top Decay Rate

To study the changes induced by the one-loop corrections in a process, we choose
the top decay into a W and a bottom quark. We select the bottom quark because
this decay has the highest rate, but we do not really use its special properties. In
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principal, one can replace it with any down-type quark.
In lowest order, the Feynman diagram reads

W(p3)

t(p1)
e

i\/isW Vi v ye-

b(py)

The parameters in the coupling are renormalized according to (7.2) and (7.4), such
that the renormalized coupling constant is

1 T\ *
Goew = W(th) : (7.39)
w

Similar to (7.23), we write the total amplitude, in first order:

5gTL
Tt =To (V)" (1+5T+53m+ f’ijw> + (Vi)™ D Tilhen
9t w k=123 (7.40)

F T T+ 0(a?),

where
To=i ﬁw T (p2)¢" (s Vo), (7.41)
Ti=i ﬂw T ()¢ () 1), (7.42)
To=i ﬁw o (p2) 0401 (& (p3)1), (7.43)
T = ifg—;%mpmut(pl><e*<p3>p1>, (7.44)
T =i ﬂw T (p2)f" (pa) e i;m@*ﬁm(m)uxpo, (7.45)
T =i ) 3 Raalpa) g V) ), (746)

and

r 1 * 1 —rL o\ % r *]' T
59th,W: o ((5‘41)) + Z édzba(v;ta) + Z( ) §5Zz‘tL)- (7.47)
w

a=d,s,b 1=u,c,t
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In order to simplify the following relations, we note that in the differential decay
rate, after summing all terms in the squared amplitude, one can factorise > |To|?.
Therefore, we include all the vertex corrections in a factor denoted by dyes. Following
the conventions in [Den90b]?,

5V€1"t - vert Z vert G (748)
k=1,2,3
with
Go = Z 70, (7.49)
spins
=Y To(Te)'. (7.50)
spins

This way, for the one-loop calculations, we write the squared amplitude for the
vertices as

(T) VT + (To ™) To(Vig)* = | To*IVip|* (Buers + (Bvert)”) (7.51)
where
T = (Vi)* (7653ert + Y 77c5'3ert> : (7.52)
k=1,2,3

The differential decay rate, given as the rate of transition of the top quark into
a W and a bottom quark is

drl(t — W) = 58 2l

spins

a0 ) SR ST (759
For this definition we used the conventions of [Nac90|. The sum over spins should
be interpreted as an average over the spin directions of the incoming particle and as
a summation over the ones in the final state. The total rate is given by the integral
over the phase space.

We write the total squared amplitude as a sum of two terms to separate the
contributions coming from the self-energy corrections of external legs:

TP = Pyt + P (7.54)

2We do not use exactly the same Dirac matrix elements since in our case, the role of some
incoming and outgoing particles is interchanged (from W — tb to t — Wb, see also [Den91]). In

addition, some mass factors explicitly written in [Den90b| are included for us in &%.
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From (7.40) we distinguish

vert 7|2 * 5gbt w 5ggtL w
= [Tl |Vi” [ 1+ 67 + (6,)" + dvert + (Suert)* + —7— + | 1 (7.55)

bt, W ot w

Pif = (To) Vi (T > + Tyt *) + (Tt + Ty ) To(Vip)" + O(?). (7.56)

In agreement with (7.54), the total one-loop decay rate can also be split into two
terms: TV (¢t — Wb) coming with Py and I'*¢(t — Wb) with Pge:

Tl (¢ — Wb) = TV (£ — Wb) + (¢t — Wb). (7.57)

The lowest order total decay rate Tl results from:

dUH(t — Wb) =

d’py d*ps 9
s == )5 g S Vel SOITE (759)

spins

Performing the averages and the sums over fermion helicities and W polarisations,
calculating the traces and integrating

Tt — Wb) = S Ith|2mt \/(mf — (my 4+ mw)2) (M3 — (my — mpw)?)

2 2
(mt +my (g —my)® mw)
2 2,2 2 |-
2mg 2mymyy, mg

(7.59)

Moving to one-loop, from the first line of (7.55), we identify the decay rate term
that does not include self-energy corrections for external legs as

gk 5 )
Fm@%Ww=HMWG+&+@Y+MWHMmW-%W+(%W>>-

vt w gbt,W
(7.60)
In I'y we have collected all the terms independent of the mixing matrix:
o 1
To =2+ _\/(mf — (mp + mw)?)(mf — (my — mw)?)
8(shy)?
2 2 2 2 (7.61)
m; + my n (my —my)®  myy
2m? 2mimz, m? )’

The quantities written here are the physical ones.

I'*¢(t — Wb) has to be calculated separately since in its expression one can
not find a direct factorisation of I'y. First, we need to consider the explicit ex-
pression of the sums written in (7.45) and (7.46). For the non-diagonal terms, the
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action of R (p1) and Ry (p2) on external spinors will be expressed as in (5.24) and

in (5.25), respectively. The diagonal terms of the sums (i.e. mRtt(pl) and
1

Rep(p2) m) act on external spinors as in (5.31) and (5.32). The relations are

lengthy, but easy to evaluate. Therefore, we do not write other intermediate steps
and we directly give the result. The term in the total decay rate, on account of the
external fermion one-loop corrections is

1 1 1
(¢ = W) = ClVa g ( s Xor + 06 (7.62)
2 ( tb) tb

where

Xpt = (VJb)*%L

ut

+ (Vi) sy + (Vip)* (oey + 721
+ 325, (Vi)™ + 325, (V)" + (g5 + 325) (Vig)*. (7.63)

Summing up (7.60) and (7.62), the final expression of the one-loop total rate of
the decay of a top quark into a bottom and a W is

L9t = W) = L[V (1 6+ (8:)° + Guent + (Buee)”

(V)" | Vi 1 1 )
+ Y. + —(Y,)* ). (7.64
ot T ety ) (764)

We have written explicitly the corrections of the mixing matrix hidden in dg;/y, and
we have collected all the other contributions from the fermion field renormalization
constants in Y.

1 ) 1
Yoo = 5 ( Z (Vi) oZit + Z 5Zb2(‘/;2) ) + Eth' (7.65)

t1=u,c,t a=d,s,b

As a short check of our results, one can substitute the field renormalization con-
stants in Yy with their expressions as a function of s, ¢ and the wave function
renormalization constants (5.38). The contributions from s and ¢ cancel with the
ones from I'*¢(t — Wb), included in Xj;. Yy will then depend on the wave function
renormalization constants and two remainders from Xj;, namely 3¢/; and »;. The
presence of z; and s} in the final result is a consequence of the freedom one has to
set the diagonal field renormalization constants. This freedom was first recognized
when calculating the wave function renormalization constants and there, (4.32), we
introduced the parameter ;.
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With all the components of the total decay rate evaluated, we now discuss how
one can fix the counter term of the quark mixing matrix. In (7.61), we have defined
I'y as the factor in the total decay rate that includes all the renormalized parameters
except for V7. It means that with the experimental value of T'"!(t — Wb), we can
define

1
Va2 = Ft"t(t — Wb), (7.66)

having thus a value for the absolute value of the 'tb’ component of the renormalized
quark mixing matrix. As a consequence, the sum of all first order corrections left in
(7.64) should be zero.

oVp)*  OV; 1 1

OVa) Ve | 1y o Livyr=0 (r6)
(Vi) w o (Vi) th

From here, having all the other corrections evaluated, we determine the real part of
0V, including the finite contributions. This is

57“ + (57“)* + 5vert + (5vert)* +

oV _ 1
Vi T2

1 1

Re —Y, +
(Vip)* Vt’é

((L + (6,)" + Overt + (Overt)” + —(Yy)* ) . (7.68)
This is our final result for the complete definition of counter terms for the quark
mixing matrix. Since the definition of §V}, is based on the complete matrix element
for a physical process, it is gauge independent by construction.

The dependence of Y; on §Z7F and 57;5 might raise some doubts regarding the
result when the anti-top decay is considered. We remind the reader, that in section
5.3 we have proven that regardless of the particular expression of the self-energy, the
total decay rate of the particle is equal to the decay rate of the antiparticle. For the
present case, at one-loop, the optical theorem (5.126) can be simplified. Here, we are
able to identify which processes in the self-energy give rise to imaginary parts and
in addition, to select the combination of internal particles that are related to one
specific decay channel. For the top decay into a WW-boson and a bottom quark, the
two top self-energy diagrams that should be considered are the ones with a virtual
bottom, i.e. a bottom and a W and a bottom and a charged Higgs. The optical
theorem reads

Tl (t = Wb) — %Im[T (t = (Wh+ ®b) — 1)]. (7.69)

t

From the equality of the transition amplitudes for particles and antiparticles (5.133),
we have

Im[T (t - (Wb+ ®b) — t)] =Im[T (t — (Wb+ ®b) — 1)], (7.70)
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and with the optical theorem applied for the anti-top, results
Lyt (t — Wb) = T (t — Wb). (7.71)

The same proof can be applied going to the one-loop corrections of the decay. We can
select part by part which imaginary parts from the transition amplitude T (¢ — )
contribute to the top decay and using the same argumentation, we have

[t — Wb) = ' (f — Wb). (7.72)

In conclusion, the absolute value of the 'tb’ component of the renormalized quark
mixing matrix (7.66) and the real value of its counter term (7.68) do not change if
they are calculated from the anti-top decay.

This was just one example for the determination of the renormalized quark mix-
ing matrix from an experimental measurement. Similar algorithms can be applied
to other decay rates or cross sections. It is true that the numerical effects from the
quark mixing correction are expected to be small, but they are necessary for a com-
plete renormalization scheme. Further on, when considering the neutrino mixing,
the corresponding effects are not expected to be negligible any longer. Depending
on the heavy neutrino mass scale, they can lead to corrections of O(10%) [Kni96].
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Chapter 8

Neutrino Seesaw Mechanism and the
Renormalization of the Mixing
Matrix

In this chapter, we apply the general renormalization approach beyond the Stan-
dard Model, to another up-to-date topic related to mixing, namely the neutrino one.
We analyse the neutrinos in the framework of the seesaw mechanism.

The discovery of oscillations in atmospheric neutrinos (1998) [SKam98| opened
the series of experimental results showing that the neutrinos change flavour when
propagating a macroscopic distance. By now, we have experimental evidences of
the neutrino oscillations coming from the study of atmospheric, solar, accelerator
and reactor neutrinos [PDGO6n|. The mass differences measured to be non-zero
indicate that at least two of the neutrinos have masses. We still have to find out
how many neutrinos are massive, which is the mass hierarchy, whether there are any
sterile neutrinos and which model describes them since the Standard Model alone
can not? An important issue related to the theoretical model concerns the nature
of neutrinos: are they Dirac or Majorana particles? (The neutrinos’ zero electric
charge makes them candidates for Majorana fermions.)

A minimal extension of the Standard Model to generate massive neutrinos is the
seesaw mechanism. This model can explain very well the smallness of the neutrino
masses and it may include both, Dirac and Majorana masses. For seesaw neutri-
nos, the lepton sector of the Standard Model is enriched with massive right-handed
neutrino fields to obtain the seesaw mechanism of type 1. Additionally, one can gen-
erate a mass for the left-handed fields through a Higgs triplet and then we talk about
seesaw mechanism of type II. In this chapter, we will start by describing the main
features introduced by the model, i.e. the mass matrix, we write down the terms of
the interaction Lagrangian and then we move to the renormalization of the neutrino
mixing matrix.
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8.1 Seesaw Mass Term

In the seesaw mechanism, neutrinos are described as Majorana particles, but
since left- and right-handed fields enter the mass term of the Lagrangian, they can
acquire also Dirac masses. We have a so-called Dirac-Majorana mass term. The
general formalism was presented in section 2.2.3, but for the convenience of the
reader we repeat the most important results in the following. As mentioned there,
the situation is specific to models where the lepton flavour numbers L., L, and L,
are not conserved.

The Lagrangian mass term is given as in (2.35). It is based on n; left-handed
neutrino fields and on ng, independent, heavy right-handed neutrino fields. Denot-
ing the neutrino Majorana fields by v, the mass term is written as

SSv 1 1
Loy = —3 E (V&)CM?V({“J E UOZMDVOJ — 5 E I/OlMR<VOJ) + h.c.
it il
eng

~

€

= —% ((VOL)C @) (%g (A]/\[jR)T) ((V?L)C> + h.c..

The upper script ssv indicates the seesaw neutrino model. The matrices M*, MP
and MP% have the properties described in 2.2.3. They are all complex matrices and
MY and M are chosen symmetric. The sums over i and j are taken over the
charged lepton flavours e, i, 7, ...,n /ng. The overline in the sum symbol indicates
that all values in the specified range are taken. We emphasise that we do not restrict
the number of the flavours to three or impose an equality between the number of
left and right handed fields. This leaves an open door to the existence of additional
sterile neutrinos, a possibility raised from experimental results (LSND [LSND96])
and yet under investigation (MiniBooNE [MBNE]).

The presence or the absence of ML in (8.1) makes the difference between the
two types of seesaw mechanisms. In the seesaw type I, all the terms with M* are
dropped. If one considers these terms (seesaw mechanism of type II), an additional
Higgs triplet is required for the generation of masses. We will describe the difference
between the two seesaw types, the Higgs fields required in both cases, as well as their
consequences on the whole model, in the next sections.

The Majorana fields in (8.1) do not correspond to mass eigenstates. In order
to work out the particle content of the model, one has to diagonalize the Dirac-
Majorana neutrino mass matrix. This can be done with the help of a unitary matrix

U, written as in (2.39):
UL
o (). -

by

(8.1)
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The form of U is chosen such that the mass eigenstates result from the transforma-
tion

nL+nge

L _ L L
Vo; = E UiaVss
a=1
nL+ng (8-3)
R _ R_R
Voj = E UjaVa -
a=1

Here, v~ and v are the left and the right components of the same Majorana field v,,.
The diagonal mass matrix elements will be m,, with a = 1,2,3,...,n; + ng. From
here on, the neutrino mass eigenstates will be the ones carrying indices a, b, ¢, ....
As mentioned, they will run until n; + nr and we will not write this explicitly any
longer. For the other indices, when confusion may arise, we will restate the range.
Remember that UL is ny, x (ng +ng), U is ng X (ng + ng) and

M = (U m(UM),
ME =UEm(U™T, (8.4)
MP = URm(U")T.

The unitarity relations for U (2.40) allow us to prove that
(UBRYTMP = m(UST — (U ME. (8.5)

In the seesaw mechanism of type I, the conservation of the total lepton number is
violated by the presence of the right-handed Majorana mass terms in the Lagrangian.
The scale of these terms is assumed much bigger than the scale of the electroweak
symmetry breaking, i.e. the elements of M# are much bigger than the ones of M?P.
This will lead to neutrino masses of order —(MP)T(M®)='MP for a = 1,...,n;, and
of the order of M® for a = np+1, ...,np +ng, if M*=0. For the general case (seesaw
mechanism of type II), we have additional contributions from the massive left-handed
neutrinos. The first n; elements of the mass matrix will then be characterised by
ME—(MPYT(ME)=IMP. Here, the discussion is more complex, because depending
on the parameters of the model, M% or (MP)T(ME)~1MP can dominate the mass
terms for a = 1,...,np.

Note that U, (8.2), is not directly identified with the mixing matrix describing
physical processes. As we will see in the next chapter, if we consider the charged
lepton mass matrix diagonal, than U¥ will directly take part in the interaction with
the W-boson, giving thus the lepton mixing matrix. In U%, the first n; columns
refer to the mixing of the light neutrinos. This ny x n; piece of U¥, for ny=3 is
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called in the literature the neutrino mixing matrix*. This identification is valid up
to phase conventions. Several parametrisations for the neutrino mixing matrix have
been described in the literature, see for example [MNSP|, [Gri01] or [PDGO6n|. The
light neutrino mixing matrix picked out from U’ is approximately unitary. Hence, in
this chapter, we will not restrict the mixing to the light neutrinos and the unitarity
relations will still be given by the complete set (2.40), i.e. considering also U%.

We will not investigate further the implications of the mass scale and of the
restrictions for the mixing matrix and we will procede in describing the Lagrangian
in the two versions of the seesaw mechanism. We start with the seesaw mechanism
of type I and then, we point out the terms to be added for the seesaw mechanism
of type II.

8.2 Lagrange Density for Seesaw Type I

In the seesaw mechanism of type I, the neutrino mass term in the Lagrangian is
described by (8.1) for ML=0:

1
covlo=— " My - 5 > VEMEWE)C + he. (8.6)
1=€,nR 1=€nR
Jj=eng Jj=enr

The symbol I in the upper index of £ refers to the seesaw mechanism type. Since
we believe that the full theory should be gauge invariant (with the SU(2) of isospin
being a subgroup of the gauge group), we need to have a mechanism to generate the
neutrino masses. Because of its generality, we choose what was called by Grimus
and Lavoura, a multi-Higgs-doublet Standard Model (an extension of the Standard
Model by Higgs doublets). The details can be found in [GriLav]. Here, we state the
various terms contributing to the Lagrangian and we give a short explanation for
the Yukawa couplings?.

As already stated in 8.1, we assume an extended standard model for the leptons,
with np left-handed isospin doublets, the same number of right-handed charged
isospin singlets, but ng right-handed neutrino singlets. In addition, ng Higgs dou-
blets are responsable for the generation of Dirac masses. The Yukawa Lagrangian

!The matrix is often referred to as Maki-Nakagawa-Sakata matrix or Pontecorvo-Maki-
Nakagawa-Sakata matrix after the scientists that firstly discussed the neutrino oscillations and
the mixing of mass eigenstates.

1
2The coupling constants we use are equal to the ones in [GriLav] multiplied with — because of
e

the convention we have chosen in section 2.3.
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of the lepton sector is

nyH . R ¥
o == ((ors @) I+ (6l =) W) G%)
k=1

— %V({CMR(V(?)C + h.c.. (8.7)
By [ we denote the charged lepton fields. To simplify expressions, we will sometimes
omit the flavour indices, as it is the case here. Still one has to be careful with the
dimension of matrices and vectors. In (8.7), the field multiplets /X, I[® and v} are of
size nr, x 1, while p/ft is ng x 1. According to the number of left- and right-handed
fields for each type of fermions, the size of the Yukawa coupling matrices will then
be ny X ng, for T'y, and ng x np, for Ay.

The vacuum expectation values for each of the Higgs fields,

Uk

(0lpp[0) = NG (8.8)

will be considered as free parameters. Then, the charged lepton mass matrix will be
given by

nH
I _ € *
m =— E v, (8.9)

and the Dirac neutrino one by

MP =23 g, (8.10)
V217

The interaction with all the neutral and charged scalars will be described later.
We choose a basis where the charged lepton mass matrix is diagonal, i.e.

m' = diag(me, My, Mr, ooy Myy). (8.11)

The corresponding mass term in the Lagrangian is given by (2.9) and the kinetic
and neutral current interaction terms stay as in the Standard Model.

For the neutrino part, we write the Lagrange density in terms of the mass eigen-
state fields v,, where

Vazl/{;+l/§

— v+ . 12

The relation of the left and right components v* and v® to the original field was
given in (8.3). The terms of the Lagrangian will be presented in the following in
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the same order as in 2.3: first the free part, then the interaction with charged and
neutral gauge bosons and at the end the Yukawa interaction terms. The couplings
from all the interaction terms will be summarised in two tables given at the end of
the next section. In Table 8.1 we will list the fermion couplings to the gauge bosons
and in Table 8.2, the Yukawa couplings.

For free fields, the Lagrangian is equal to the Majorana part of equation (2.45):

L3 = % > " Talid — ma)va. (8.13)

a

Since (8.13) does not change its form when considering the type II seesaw model,
we omitted the index I in £§%.

The form of the charged and neutral current interaction terms remains also
unmodified when switching from one model type to the other. The charged-current
term looks similar to the one for quarks. It is given by

le'y UﬂLVaW + — Z?ﬂ“(UZ{;)*vLZiW;, (8.14)

a, a,t

SSV __
[’cc -

€
\/§SW fSW

where [ describes the charged lepton fields. In the specific model considered here,
the general coupling constants introduced in (2.50) become
1
L\ L L
: = ¢ —_— UL,
(gaz,W) gza,W \/— Sy ia (815)
(in,w)* = gz%,W = 0.

i w 1s determined by the matrix elements of U" and therefore, in general, it is
complex. As for the charged current coupling constants of quarks which are pro-
portional to the Cabibbo-Kobayashi-Maskawa matrix elements, complex phases are
related to CP-violating interactions.

For the interaction with the Z boson, the corresponding term in the Lagrangian
is

LSSV —

nc

1 Zl/,ﬁ Uk~ — UE(UE) 'yR) Vo Ly, (8.16)
Swew o

where ¢y = cosy, is the cosine of the weak mixing angle. Identifying the general
coupling in (2.51):

1 1 &
L, = UhHtut) = Ukyuk
gab,Z 25WCW (( ) )ab QSWCW Z( za) b9
= (8.17)
1
R — _ IN\T UL UL U (AL *‘
gab,Z 25WCW ((U ) ( ) )a 25WCW Z (gab,Z)
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1
Observe that g , is hermitian and that the additional factor 3 required in the

Lagrangian by the Majorana nature of the v is included (see 2.51). In contrast with
the charged current case, these constants formally differ from the neutral current
coupling constants for quarks. While in the Standard Model these couplings are
real and diagonal, here, the presence of (UL)TU*#1 allows for mixing also in the
neutral part of the Lagrangian. The non-diagonal g£b7 , indicates that neutral-current
interactions contribute to neutrino oscillation effects. We will discuss more about
9%, 7 in section 8.5.

Now, we discuss all the Yukawa interaction terms resulting from (8.7). We
start with the couplings to charged bosons and we end with the neutral Yukawa
interactions. In general, there will be a non-diagonal mass matrix for the scalars
which has first to be diagonalized. Since we are not interested in the details of the
Higgs sector, we assume that the corresponding transformation is given. For the
charged scalars, the mass eigenfields S are defined by

- v o
P = ch,sss ’
S
+ _ +
op = E C,s94 5
S

with known complex coefficients ¢; , € C*#. Consequently, the coupling matrices in
(8.7) are re-defined by

(8.18)

*
FS - E Ck’srk7
k

(8.19)
As = Z Ck,sAk-
k

Then, the intercation of leptons with ST can be written as

Lyt =e> i (ch v+t vr) vaSy +e > T ((cf ) v+ (el ) vr) LiST,

(8.20)
with
nL
Ci[;z,s = - (FSUL)Z'G = - Z(Fs)ijUjléu
j=e
7 (8.21)

chs = (AIUR),, = > (AL,

j=e
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or correspondingly

ngR
Cg'i,s (Cﬁz,s)* = Z(U]Iz)*(AS)]'U
j=e
L (8.22)
cc?i,s = <czez,s)* = - Z(U]I;L)*<Fs):j
j=e

One pair of charged scalars that has to be part of the model is related to the W

gauge boson. If, S;t:S;tW, i.e. the Goldstone boson corresponding to the longitudinal

mode of the W boson, I'y and A, are

. 11,
= —m
Sw \/éswmw I
L (8.23)
A, = —— MP,
Yo V28, Mw

Further, we consider the Yukawa interaction terms with neutral scalar bosons.
In (8.7), the neutral scalar mass eigenfield is given by

1
0 0
Yp = Vg + E Ch.s50904, | - 8.24
k \/§<k 50 o0 0) ( )

One can denote the coupling matrix of neutrinos to the neutral scalar eigenfields So,
with

ANy = Crsols- (8.25)
k
Then, the related Lagrangian term is
L38 = 5o 3 P (g + (ehyo) 1) 1%, (3.26)
a,b,s0
where
Chisg = =5 ((UMIALU" + (U AL W),
=~ 75 (@hreaisvieosel), O
j=emnr

is symmetric. The factor % in £32¥T accounts for the Majorana nature of the neutrino
mass eigenfields.
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The interaction of charged leptons with neutral scalars can bring more terms in
the Lagrangian then it did in the Standard Model. This depends on the number of
Higgs bosons. In general, we have

Ll —e Zz Tso)isve + (Tse)5ivr) 1SS, (8.28)

i,j=e

where

Ty =Y Cholke (8.29)
k

If we consider the particular Goldstone boson coming with the longitudinal po-
larisation of the Z boson, the couplings (8.25) and (8.29) are:

r 1 1 )
sz — 1 m,
\/ﬁsw mw
L (8.30)
MP.

Ay, = i———
7 \/Esw myy

For further details related to the general behaviour of the scalars, their Feynman
rules and possible vertices, see [GriLav|.

Summarising, in the interaction Lagrangian involving neutrinos, the coupling to
W is described by (8.14), the coupling to Z by (8.16), the Yukawa interaction with
charged scalars is described by (8.20), while the one with neutral scalars by (8.26).
Regarding the couplings of charged leptons to neutral bosons, the Standard Model
Lagrangian is enlarged to include all other terms from (8.28). (The interaction
with S;,=Y is already part of the Standard Model.) The complete list of coupling
constants for neutrino and charged lepton interactions is included in Tables 8.1 and
8.2.

8.3 Lagrange Density for Seesaw Type 11

The neutrino masses in the seesaw mechanism of type II are described by the
general form of the Lagrangian (8.1). If we relate the mass term to the one in seesaw
type I (8.6), we can write

ﬁssull ‘CfrfasgL + [,SSVI (831)

mass mass”

The difference is comprised in a Majorana mass term written for the left-handed
fields:

massL —

ssy —= Z v CMLI/O] + h.c.. (8.32)
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The masses in £5°*! can be generated by Higgs doublets as described in the previous

mass
section. But this type of Higgs fields can not be responsable for the massesin £3°% .

We have to enrich the Lagrangian in (8.7) with Yukawa interaction terms from Higgs
triplets. The Yukawa Lagrangian is
ESSVII ;sz + ESYSUI, (833)

with £3%} described by (see e.g. [Seesawll])

VL = —e (—W, ﬁ) YaA, <1LL> + hc.. (8.34)

YA represents the Yukawa coupling constant matrix (ny x ny) and Ay is the Higgs

triplet?:
Ap = 5+ o (8.35)
L 1 . .

As usual, the upper script indicates the charge. Multiplying all matrices in (8.34),
the contribution to the Yukawa intercation term is

14 € Y L\C
vr=—e > () (Ya)iyvh;d® + 7 Z (WE)C (Ya)ijlkst

Z C(Ya) Z,u0]5+ +e (IF)O(Va)ylf6™ + hc.. (8.36)

3.7

Denoting by vy, the vacuum expectation value of the neutral component of the Higgs
triplet 49,

VL
0[6°0) = —=, 8.37
i) =% (5.37)
we obtain the mass of the left-handed neutrino fields,
= V2uL€eYa. (8.38)

One can see that a symmetric choice for the matrix M’ requires a symmetric Ya.
Now we can proceed in analysing which new Yukawa interactions have to be
taken into account and how their coupling constants look like. First, we replace the

3In general, one may consider models with more than one Higgs triplet. A possible mixing of
the different triplets will only complicate the following formulas without introducing new aspects
concerning the mixing of neutrinos.
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flavour neutrino fields in (8.36) by the mass eigenfields defined in (8.3).

_ e _
vr=—e> ve(UYaU") wyomnd® + 7 > VEUM) Ya)wivilis”
a,b a,t

e — _
+ % Z l?(YAUL)ia LVa5+ +e Zl?(YA)ij’yLlj5++ + h.c.. (839)

2,a %,J

The left projector v, was explicitly written and the indices indicating the left and
the right field components were dropped. It is obvious that a new type of interaction
occurs in the case of charged leptons. In the last term of (8.39), we have a 6"+ that
couples to [ and [¢. The charge conjugated lepton indicates an interaction of the
type described in (2.52) by the coupling constants ¢ and ¢F.

Before identifying the exact expression of the coupling constants, let us simplify
the other terms in (8.39). For the third term, we can use the definition of the charge
conjugated field as in (2.19) and 'move’ the charge conjugation from one field to the
other. We did the same sort of transformations at the end of section 2.4.2, when
proving the equivalence of choosing any general fermion flow to evaluate a diagram.
Here,

19(YAUR )iV = —(va) " CTTC(YAU)io(yp) C M0 "

_ (8.40)

= I/E((UL)TYA)ai’}/Llié_'—.
The minus sign in the first line originates from the anticommutation of the fermionic
fields. In the last line we replaced YI=Y4. Taking into account the Majorana nature
of the neutrino fields, we can identify (v)“=v (see (2.16)) and (8.39) is

Ly =—e Y T((U ' YaU ) avivsd +ev2 Y wa((U")Ya)aryilid™
a,b a,t
+e ZF(YA)U’YLljd_H— + h.c.. (841)
.3
The neutrinos and the antineutrinos are identical, therefore their charge conjugation
does not introduce new types of interaction. In contrast, the presence of §t* in the
couplings to charged leptons requires an explicitly charge conjugated field.

Finally, we are able to write the total Yukawa interaction Lagrangian. For the
interaction of neutrinos with charged scalars,

L = L7, + L5, (8.42)

with £§7 given in (8.20) and the interaction with the singly charge scalars 6*
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described by
Lyr, = e\/iz:V_a((UL)TYA)aﬂLli(SJr + h.c

a,t

(8.43)
- GZVa az(F’YL + CauSFYR)Z 0"+ GZZ azé ’YL + ( az&) ’)/R)llé_
The general coupling constants are
caig = V2((U") V) ZUL (Ya);i: (8.44)
cis = 0. (8.45)

(8.42) does not describe all the interactions of the charged leptons with charged
scalars. For them, we have to add the interaction with the doubly charged scalar
fields:

LY. =e Z?(YA)ij'YLlj5++ + h.c.. (8.46)
'7]’
=€ Z lC Cij, (5713 + ng Jf)/R)l 0 te Zl zg 6 fyL + ( Cij, 6) f)/R)ljcé__'
%,J ,J

When writing the hermitian conjugated term, we have used the fact that the coupling
constants are symmetric since

&5 = (Ya)iy = (Ya)ji, (8.47)
e s =0. (8.48)

The neutral Yukawa interaction term for neutrinos is the sum of (8.26) from the
seesaw type I and the corresponding term in (8.41), i.e

Lot = £33+ L3, (8.49)
In L}, we include

E?Zn = —¢€ ZV_a«UL)TYAUL)ab’YLI/béo + h.c.

a,b
) ; ; (8.50)
= 5¢ Zva(cab,ﬂL + (Cabs) VRIS
a,b
The symmetric coupling constants cl, 5 are
ks = —2((UMTYAU ) ZUL (Ya)i UL (8.51)
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Concluding, for the seesaw type II, to the Lagrangian terms already described
in section 8.2 one has to add the interaction of the neutrinos and charged leptons
with the Higgs triplet A, contained in (8.43), (8.46) and (8.50). We have collected
all coupling constants describing the interactions of charged leptons and neutrinos
in the Standard Model extended with the seesaw mechanism in Tables 8.1 and 8.2.
For the seesaw mechanism of type I, one has to leave out the interactions with ¢

from Table 8.2.

vertex ga’?y,v gﬁw
lil;A 0ij 8ij
7 1 ]. 2 SW
lzljZ SWew (—5 + SW) (51] adw
1 S L L 1 % L(77L
UgpZ U )*U, — U (Ug)*
Valp 23WCW222( za) ib QSWCWzZ:; w( i )
Liv,W— ! Uk 0
V2sw
el W L Ly 0
V2sw

Table 8.1: Lepton coupling constants to vector bosons in the seesaw mechanism.
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vertex c:%y’ s cfy’ s
l_iljSSO (T'so)ij (FSO);Z'
VaVngo VG Z {(UZIZ) (A )’L]Ujb G Z {Uiﬁz(Am)zg(Ung)
1=€,NR 1=€,NR
Jj=emng Jj=emng
+Uja(Aso)ij(Ui)"} +H(US) (D) UE
NR nr
Vali Sy DU (A = (UL (T
j=e j=e
o nr nRr
livaS; - > (T)yUf, > (85U
j=e j=e
nr nr
VaVp0o -2 UL(Ya)iUf; —2 Y (UL (Ya)5(Uf)*
i,j=e i,j=e
2 &
Talio™ A Jz_:e Uja(Ya)ji 0
_ 2 i
livad~ 0 = (Ya)5(U)"
V2=
1C1;0++ (Ya)i 0
l_il]-cd__ 0 (YA);}'

Table 8.2: Lepton coupling constants to scalar bosons in the seesaw mechanism.
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8.4 Model Restrictions and Field Renormalization
Constants

In section 5.2 we have shown that the field renormalization constants can be
chosen hermitian, provided that

S () = Sa (P%). (8.52)

This property is not obviously fulfilled if we analyse the Lagrangian for the seesaw
neutrinos.

The terms that enter in ©2F(p?) are of type (3.61) for a virtual vector boson
and of type (3.66) for a scalar one. For ©2F(p?), the contributions are characterised
by (3.62) and (3.67). These equations describe the structure of the self-energy for
one given set of internal particles. For each combination of particles, there is one
common factor in ©2F(p?) and Z2%(p?) that depends on the masses of the internal
particles. Since these masses have to be considered independent parameters (e.g.
the scalar masses depend on the details of the Higgs sector), we have to assume that
the relation (8.52) has to be fulfilled by each diagram separately. The factor to be
compared in each X2 (p?) and B2E(p?) is a product of coupling constants. Hence,
(8.52) is satisfied if the combination of coupling constants obeys

GPL — PR

aa

DL _ DR
Caa _Caa ’

for V internal fermions. (8.53)

G, refers to the couplings to vector bosons and C,, to the ones to scalar bosons.
Their expressions were listed in Tables 3.2 and 3.3, respectively. To facilitate the
reading, we remind that

DL _ R L
G - gaw,vgwa,w

DR __ L R
G - gaw,vgwa,w

aa
ODL_ L L (8.54)
aa _Caw,scwa,s’

DR _ R R

Caa _Caa:,scsca,s'

In the following, we will investigate the restrictions on the coupling matrices fol-
lowing from the requirement (8.53). We will study each combination of internal
particles in the self-energy using the coupling constants as given in Tables 8.1 and
8.2.

For a virtual W-boson, there is no coupling to the right-handed fields and there-
fore, both, GPL and GPR are zero. The situation changes when considering an
internal Z. The relation to be fulfilled is

gﬁ),ZgliL,Z = gfb,zngz,za for V a, b. (8.55)
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If we use the connection between the left and right coupling constants from (8.17),
we see that, for the coupling to Z-bosons, GPL is the complex conjugated G2E for
each possible internal neutrino.

GPL = (GPEY* | for V a and internal b and Z. (8.56)
The equality (8.53) implies then, that

GDL/DR — (GDL/DRY* = for V¥ g and internal b and Z. (8.57)

In other words, GPL and GPR must be equal and also real. For the left coupling,
(8.55) results as

((ngb,Z)*)Q = (951;,2)2 for V a, b. (8.58)

Such an equality is true if g§b7 , is either real or purely imaginary. For the upper
component of the unitary matrix U, (8.55) implies

ng
> (UL Uy = :l:ZUL (UEY*, for V a, b. (8.59)

1=e

This restriction has to be compatible with the unitarity relations for U (2.40).
One simple choice for the matrix U” is requiring equal phases for the elements
belonging to the same row, i.e.

UL =ule™ ul eR. (8.60)

In this case, (8.59) is satisfied for the plus sign. Because of the unitarity relation,
we had UL (UT)T=1. This restriction implies for the phases in (8.60) that

0, =, forVi, j. (8.61)

and we can choose an overall phase factor ¢ for a U” that otherwise has real
elements.

Another choice is (U”)TU" diagonal and either real or imaginary. Then (8.55)
is fulfilled. For this solution there is no mixing owing to the interaction with Z.
Anyway, without knowing all the details of the neutrino mass matrix, we can not
decide whether (8.59) is fulfilled or not.

Going further to the scalar couplings of Table 8.2, one can see that CPX and
CPR are also related by complex conjugation for each possible internal fermion and
scalar boson. For the charged scalar bosons, if

ek (B ) =cE (k) forVa, b, (8.62)

at,s\*-at,s at,s\*-at,s
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then (8.53) holds. If we pick up the couplings from Table 8.2, we need

nRr nr nrL nR
=D U (A5 ) (LU = = > (UL (T)y D (AU, (8.63)
j=e j=e j=e j=e

for the coupling to each charged SE. In the seesaw type I, we have specified the
couplings to the Goldstone boson corresponding to the longitudinal mode of W
(8.23). Using (8.5) for M*=0, one can easily check (8.63). For the coupling to 6=,
CPL and CEE are zero.
For the self-energies with internal neutral scalar bosons, the relation to be fulfilled
is
(caLb’SO)2 = ((c} )*)2, for V a, b. (8.64)

ab,so

As for the coupling to Z, this implies that cf,, should be either real or purely

imaginary. Writing the coupling matrices for S7 , we need

D (U (As)iUsy + Uk (As)is (UR))

1=€,NR
J=enr

€,NR

=+ Z (UE(As) 5 (UL + (UL (As)5UR), forVoa, b. (8.65)
j=emnr

Taking the neutrino coupling to the Goldstone boson corresponding to the longitu-
dinal polarisation of Z for seesaw type I (8.30), we can prove that if the condition
for U (8.59) holds, then (8.65), too. The equivalent condition for the coupling to
6% reads

N ULYA)yUy =+ (Ui) (Ya)(Us)" (8.66)

i, j=e i,j=e

Without a detailed description of the scalar bosons and their couplings to the
leptons, we can not go further with the formal analysis of (8.63), (8.65) or (8.66).
We also need a choice for the unitary matrix U, to discuss its elements and complex
phases before we can prove that S24(p?)=XPF(p?) is valid for the Standard Model
extended by the seesaw mechanism. As for the quarks, there are other symmetries
that restrict the coupling constants such that (8.52) holds. However, the situation is
more complicated than in the Standard Model since here there is a non trivial mixing
present also in the interaction with neutral (vector or scalar) bosons. Without
specifying the details of the full theory that generates mixing in the neutrino sector,
it is impossible to prove (8.52).
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For the following, we therefore simply assume that the coupling constants in
Tables 3.2 and 3.3 result in the theory such that S2L(p*)=3LE(p?). This relation
allows us to define neutrino field renormalization constants related by hermiticity.
As in 5.2.2, the renormalized fields are introduced by

1
vE=N"7 "yt (8.67)
b
with
—rirL rip %
Zye =(Zy ), (8.68)
Consequently, the Dirac conjugated neutrino fields are connected to the renormalized

one by
L — rL
vl = E iz
b

ity (8.69)

The other set of field renormalization constants that we have to consider is the
one for the charged lepton fields. As for the quarks, the presence of the neutrino
mixing matrix will lead to non-diagonal self-energies and further on to non-diagonal
field renormalization constants. To be able to decide if the latter are related by
hermiticity (5.37), we have to analyse the imaginary parts in the self-energy, more
exactly the absorptive ones (see section 3.1.3). Such imaginary contributions can
appear in case there are Higgs particles with a mass lower than the mass of the
charged leptons. The existence of these bosons is not entirely excluded [PDGO6H],
however we will assume that we do not have decay channels for charged leptons that
lead to absorptive contributions at the one-loop level?.

Another source of imaginary parts is (see 3.46) related to the choice of the gauge
parameter £. If the gauge is chosen such that the squared mass of the charged lepton
is bigger than (m, + v/€m,)?, where x is the internal fermion, then differences of
type (4.59)—(4.62) do not cancel. Since the decay width are physical observables
and, therefore, gauge invariant, imaginary parts of this type will eventually cancel
in a complete calculation. The cancellation will involve contributions from internal
gauge bosons and their corresponding Goldstone bosons. However, to simplify the
relations, we will assume from the beginning that £ is chosen such that MZ?<(m, +
VEm,)?, for V i, z and v. Then, the relation for the complex conjugated self-energy
components (3.72) is valid and therefore, the hermiticity of Z, (5.37), too. The
renormalized fields are introduced by

Li=Y ZI, (8.70)
J

4The Standard Model decays p — ev,v,, etc. are responsable for imaginary parts at the two-
loop level.



8.5. Corrections to the Neutrino Mixing Matrix and Unitarity 149

and

72 =7 7). (8.71)

Jt j

Note that a possible choice for s; is 5¢;=0, leading to field renormalization constants
which are equal to the wave function ones as determined in section 4.1.

8.5 Corrections to the Neutrino Mixing Matrix and
Unitarity

The necessity of a correction to the neutrino mixing matrix comes as in the quark
case, from UV-divergent contributions that show up in interaction amplitudes, when
mixing is present. We denote the renormalized neutrino mixing matrix by U" and
the general renormalization constant by ZMNS. The upper script MNS stands for
Maki-Nakagawa-Sakata. Remember that U is not the same as the Maki-Nakagawa-
Sakata mixing matrix described in the literature. For components:

__ r7MNSr7r
Uia - Zia Uia’

(8.72)

for Vi,a =1,...,n; + ng. At first order, we relate the renormalized matrix to the
unrenormalized one by 0U:

U:Q5;>:Q5%J+Q£%J+Ow% (873)
=U" +0U + O(a?).

As for quarks, the unitarity of the neutrino mixing matrix should be preserved after
renormalization, too, i.e.

ULT(ULT)J[ — ]_nL7 UL’I'(UR’I’)T — OannR7

ULT TULT+ URr T URr * lnL -
URT(URT)T — lnB’ (URT)*(ULT)"‘ = 0, ( ) ( ) ( ) +ng

(8.74)

For the first order correction of U, this constraint is translated into anti-hermiticity:

nr+ng nrp+ng

S (UL U=~ Y. (6UwW)'U;
(UTYU = —(sUY U = (U)o = (OUia) Uiy
T T 7\t = nr+n nr+n (875)
U (U) = —sU(U") n n

> UnlUia)" == > UulU,)"
a=1 a=1
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If we write (8.75) for the first order corrections of the two parts of U, namely U~
and U, we have:

UL (UL + sUH U Y = 0,, 4y »
UR (U + sUR(URY = 0, xm 5
UL (6URT + sUL(URNT = 0, xnps (8.76)
(U (U + (0UR)*(UP)Y = Onysens.»
(UENSUE + (sUMTUP + (U (6URY* + (U (UF)* = 04, 4

The upper relations can be deduced imposing the unitarity condition on U written
as a function of U™, U® and their corrections, and taking into account that these
two renormalized matrices also satisfy (8.74).

Another important discussion related to the matrix U concerns the number of
parameters that describe the matrix. Later, we will need to know the number of
measurements necessary to fix all the matrix elements. U has (ny + ng)? elements
and implicitly, 2(ny + ng)? real parameters (counting separately the real and the
imaginary parts). Imposing all the unitarity constraints, we are left with (ny +ng)?
real parameters. As one does for the Cabibbo-Kobayashi-Maskawa matrix, we have
to count also the restrictions coming from field re-phasing. As for quark fields, one
has the freedom to re-phase the charged lepton fields. This is no longer possible
for the Majorana neutrinos, since this would introduce wrong phases in the mass
terms. Therefore, from the interaction with the W-boson (8.14), we see that one
has the freedom of absorbing n; phases from U” in the charged leptons. Overall,

-1
in U, there are (ny + ng)? — ny parameters: (nr +ng)(nL +ng )

2
-1
and (n +ng)* —ng — (n, + nR)(ZL e = 1) CP-violating phases.

mixing angles

8.6 Corrections to the Lepton-1V Vertex

As in the quark case, the analytical expression for the counter terms of the
neutrino mixing matrix can be fixed only by calculating physical observables that
involve corrections of vertices. In contrast with the Standard Model where the
mixing matrix was part just in vertices with charged bosons, in the seesaw mecha-
nism, the neutrino mixing is present also in the neutral current term or the neutral
Yukawa interaction terms. There, we have products of mixing matrices and not only
one element. This makes their analysis more complicated than for charged current
interactions. In this section, we study the renormalized mixing matrix in the ver-
tices with W. However, the algorithm can be applied in a similar way to neutrino
interactions via the Z-boson or for the couplings to scalar bosons.
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The vertex that describes the interaction between the neutrinos and the charged
leptons, with exchange or emission of a W-boson is

li(p2)

W(ps)

. e
Z\/ESW Ua,’y YL-

Va(pl)

Here, ¢ indicates one of the ny flavours of /. In general, this vertex is part of a
Feynman diagram where the W-boson is an internal particle. The related terms in
the interaction Lagrangian are given in (8.14). The vertex is similar to the one for
quarks and formally, the corrections are alike.

Following section 6.5, we identify the contributions to the one-loop amplitude
(6.82)

Tt = T+ T 4 Ty + T 4 0(a?), (8.7
similar to equations (6.70)-(6.74), with
T = ierﬂi(pz)’YuGgaL,W’YLUa(m)é?u(ps), (8.78)
Tt = "y (p2) 03 M va (P )€ (p3), (8.79)
nr+ng 1
Tia *¢ = ie"U;(p2) Z Vug:IfWVLmRba(pl)va(pl)gu(pii)a (8.80)
b=1 1
. L 1
Tia = i€ u;(p2) ZRz’j(p2)mV“Q;CﬁWVLUa(pl)Eu(p?))- (8.81)
j=e 2 J

The amplitude written here corresponds to the process W —wvl, but an easy replace-
ment of the Dirac spinors and/or of the polarisation vector ¢, are enough to fit the
result to other decays or cross sections.

The general coupling constant Gy, introduced as in (6.43), is

TS lr
GzaW =Ze ZZ Z(]b W)Zng]b WZba2 fo)v
i L (8.82)
—ZZ ]bW)Zng]bWZ Z2

In the second line, the hermiticity of Z:ﬁ (8.71) has been used to replace the second

1
factor. From the unrenormalized coupling constant (8.15), i.e. giLa’W:\/i UL, we
Sw
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identify
1
rL Lr
Giaw = . Ui (8.83)
V2sY,
1
Z(Lia,W) = ZSW’ (8.84)
Zitw = Zi ok, (8.85)
ZMNSL refers to the upper part (the first ny rows) of the mixing matrix renormal-
ization constant ZXN5 and it is equal to
UL
ZMNSE — 1 4 ULZS + O(a?). (8.86)

Expanded in «, the general coupling constant GTLW is
G:ch = gza w + 691;[(/L7W + 5g:a,W + O(QQ)' (887)

6g{s w and dgily, are defined for the general case in (6.58). The corrections not
related to the fermion field renormalization are equal to

8Giaw = \/ Ui, (8.88)
with 6, given as in the case of quarks by (7.10). We will focus on the last term in
(8.87), the term that includes the corrections coming from the fermion field renor-
malization and from the mixing matrix, i.e.

nr+npr
Sqitw = f (5UL Z GZ U+ > UgQ(SZ"L). (8.89)
=1

To identify the suitable parts to be absorbed in 6U/, we need to rearrange the factors
in the above formula. We have to keep in mind that JUZ(U*")1 is anti-hermitian (see
(8.76)). A combination of type Z—Z' multiplied with UL", as we have already used
for the divergences of the quark field renormalization constants, is anti-hermitian,

too. (8.89) can be written as:

1 1 nr ) . ) nr+ng . . Lk
iai = Jod (—Z(azif—@zjf) ) Ujd + ; Ui (673, — (0Z37) ))

j=e
1 1 nr nr+ng
+ i (Z 6z} + CZI) Ui + Y U <5Z§f+<5zgf>*))
w j=e b=1
SUE. (8.90)

fsw
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The similar separation in g%, (hidden in equation (7.31)) and in g}y, (equation
(7.34)) for quarks was allowing us to identify the anti-hermitian divergent contribu-
tions that are absorbed by the quark mixing counter term (see section 7.1.3). There,
the expression for div[oV], (7.38), could not be extended over the finite parts. One
reason discussed there was the hermiticity problem related to the properties of the
quark field renormalization constants. Here, thanks to the properties (8.68) and
(8.71), we could extend the expression over the finite parts, too. Hence, one may
try as a solution for the counter term of U”:

1 nrL 1nL+nR
0V =72 OZ = OZFy) U = 5 > Ui (075 = (0Z5)") . (8.91)
j=e =1

Using the fact that UX(U”)T= 1,,,, one can verify the first line of the requirement
(8.76). Still, defining §UL by (8.91) can bring other disadvantages. As in [Den90al,
SUL might turn out to be gauge parameter dependent. We introduced field renor-
malization constants differing from the wave function ones by a s. For neutrinos,
we choose the sz and 7 such that the field renormalization constants are related by
hermiticity. The imaginary parts that they have to absorb are also gauge parameter
dependent (see equations (4.59) and (4.61)), hence one has to expect that one ob-
tains a gauge parameter dependent counter term of the mixing matrix. Therefore,
as for the quarks, we will determine these counter terms from physical observables.
Now one has to check that all divergences in (8.77) vanish. The condition written

for the general case (6.83) reduces to

div [Y*GiowrL + 05 '] =0
& div [7“ <7\/§;T UL + (5gfaL,W> vr + 5::“’“} =0.
w

53! as for the quarks, will be a sum of different structures of Dirac matrix ele-
ments. However, divergences will appear just from terms that lead in (8.79) to a
matrix structure identical with the one in the lowest order amplitude. We denote
the vertex correction that contributes with a y#v, structure with 6}*°. Then,

(8.92)

div [637F] = y#div [6370] 4y, (8.93)

and

Or
div st Ui + 89l + 60| =0. (8.94)
w

If we could define the U” counter term by (8.91), then we would know the exact
structure of the divergences absorbed in 6U”. Since this is not allowed, we have to
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make a separation of the hermitian and anti-hermitian contributions in all the terms
having the Dirac matrix elements of the lowest order amplitude and see which are
the candidates for div[6U”]. Remember from (8.76) that we need in fact, an anti-
hermitian combination 6U"(U*")" as we already obtained for g7, in (8.90). If we
use (8.90) and we also separate the hermitian and anti- hermitian contribution from
the vertex corrections and ¢,, the relation to analyse is

0. 1
r Lr 5 grL 6vert0
\/587{4/ ia ta, W \/_SW

T T * T 1 nL+nR r T r *
z 67+ GZP UL + 1 S UK 07k + (62Z4))
b=1
Lr vertQ Lr ( cver 0 Lr
2Uza (5+( ))+\/_ _(5iat+ZUzb 5 ' Uja)
1 nr HL+nR
- 1>z - Gz Ul + - Z o (025 — (0Z3)")
j=e

1 * T 1 Ver T vVer * T
+ §UZ{;T (57‘ - (57‘) ) + \/78[/[/5 (5111 t0 - Z UZ% <5jb tO) Uﬁ)

j?b

+ 5U£> : (8.95)

As in (8.94), the divergence of the above piece has to cancel. If the first two lines
within the parenthesis, i.e. if

nL+nR

—Zdw [627F + (6231 | Ukr + Z brdiv [625F + (027F)")

+ 5Ug“ciiv 6, 4 (6,)"] + ES;Vdiv gyerto Z SOy Ul (8.96)
then
1 nr+ng
div[sUL] = Zdw [02F — (623 | UL — T > Ukrdiv[6ZF — (671)]
b=1
1
— 5Ugdw [0, — (6,)7] — Esgvdiv [5;;“0 =) UL Uk (8.97)
7,0
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div[6U*] identified like this, will fulfil (8.76). A similar definition, extended over
the finite parts, is used in [Den04] to define the counter term of the quark mixing
matrix.

5 is not as easy to inspect as it was for quarks. The contributions from
vertex diagrams contain sums over elements of the mixing matrix, which can not
be factorised as in the quark vertex corrections (7.15). This is a consequence of the
mixing in the neutral current and Yukawa interaction terms. In the one-loop vertex
diagrams, we will have couplings of the neutrinos via the Z-boson or the neutral
scalar Sy that will introduce additional combinations of the neutrino mixing matrix.
Therefore, we can not factorise UL™ without evaluating first all the vertex diagrams.

Moreover, a comparison with a model without mixing, as we did in section 7.1.3
is not advantageous in this case. While one can still prove that the divergences of 9,
are identical no matter the presence of the mixing matrix®, the situation is different
for the vertex corrections. The non-trivial sums over the mixing matrix components
that appear in 6Y? yield different divergent contributions in the two models. One
needs to consider each type of vertex diagrams in detail. This is possible only for
specific models.

Further on, we need a better understanding of the divergences contained in the
hermitian combinations of field renormalization constants from (8.96): 6 2"+ (6 Z;F)*
and 027+ (6Z5)*. Their evaluation can be done using the formulas (4.31), (4.44)
and (4.46) to express the sums of the wave function renormalization constants and
the results of section 3.1.3 for the divergent parts in the self-energy (mainly as given
in (5.78)). We obtain

div[6ZTE + (6Z15)*) = div[6 Z5] + div[6 Z.,]

o ) Y a,b, (8.98)
= 2div[Z,; (M,)],
for the neutrino field renormalization constants and
: rL rL\%] __ 32 L . —L
d1v[(5ZZ-j + (6Zji )] = dlv[(SZij] + le[(SZij] i (8.99)

— 2div[SE (M7))

for the left components of the charged lepton constants. In our general model, it is
formally impossible to prove that these expressions contain exactly the divergences
that cancel the hermitian contributions from div[d,] and the vertex corrections, as
required in (8.96). This is obvious when one considers the contributions involving
scalar bosons since the parameters there are unrestricted. Again, we need a more
specific model based on additional assumptions that allow one to investigate the
cancellation of divergences in more detail.

50One can anyway prove that div[d,] is real.
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As an example, one can use the multi-Higgs-doublet seesaw model described in
[GriLav|, with a ’softly’ broken lepton number. This means that the lepton numbers
(Le, Ly, L;) are separately conserved in the Yukawa couplings and that they are
'softly” broken by the mass matrix M of the right-handed neutrinos®. Then, the
Yukawa coupling matrices ['y and Ay are simultaneously diagonal and therefore I,
As, T's, and Ay, are also diagonal. This implies that also the Dirac mass matrix
MP is diagonal, as well as the combinations

ULmQ(UL)T — (MD)TMD. (8100)

Another constraint on the model that will simplify the analysis is choosing U
such that (UL)TUL is diagonal. This is not an automatic consequence of the ’softly’
broken lepton number version, but without it, the mixing in the neutral sector is hard
to handle. With this choice, the model provides enough structure and additional
relations between coupling constants to allow us to prove the validity of (8.96). If
(UX)TUT =1, one is able to follow the same argumentation as in section 7.1.3.

As we have already announced, even if we are able to identify the divergences
of the neutrino mixing matrix counter term, we can not fix its finite parts similar
to those of the divergent parts. Whether there is an obvious problem related to the
hermiticity of the field renormalization constants, as it was for the quarks, or just
a hidden one related to gauge parameter dependence, as we have here, we can not
identify dU% from the one-loop anti-hermitian corrections without referring to an
observable and a corresponding complete calculation. In the next section, we will
discuss as for the quarks, how one can fix the real part of the mixing matrix counter
term from a decay rate.

8.7 Heavy Neutrino Decay Rate

The description of the neutrino decay follows the same steps as the top quark
decay, section 7.2. Therefore, we will not repeat all the details here and we will
emphasise only the differences introduced by the Majorana neutrinos.

For the tree diagram,

6In [GriLav] we have a seesaw mechanism of type I and ML = 0.
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W(p3)

Va(pl)

li(p2)
the amplitude is

e
T(ve — W) =i

< ¢ Z) \/§SW
The lowest order decay rate of a neutrino v, into a W and a charged lepton with
flavour ¢ can be written as in (7.59). One has to fit the masses to the present case:
my; becomes m, and my, m;. The result is

i (p2) ¢ (ps) Uiy tia(pr).- (8.101)

s A/ = (o e ) — G — o )

2 2 2
(ma-l-mi N (mq —m;)* mW>
2 2,2 2 )
2m; 2mimyy, mg

Lt (v, — W) =
(8.102)

The one-loop amplitude is calculated as in (8.77). wv,(p;) in formulas (8.78)-
(8.81) has to be replaced with uy(p;). Then, the related decay rate, written as in
(7.64), is

(v, — W) = To|UL"? (1 + 0+ (6,)F + 05 + (65"

SUE (UL 1 |
ia ia Yo+ —— (Vi)' ). (8.103
T e ) 610

Ug " UE)
[y is obtained from (8.102), by leaving out |UZ|? and replacing the electric charge
and the sine of the weak mixing angle with their renormalized correspondents. 6}
sums up all the terms left out after factorising 'o|U%"|* from the vertex correction
contributions, as in (7.51). Finally, Y;, is defined to be

1 nr 1 nL+npr 1
Yio= 5 SNz Uk +5 SN UgrzE + 5 X (8.104)

Jj=e b=1

X;q collects the contributions from the self-energy corrections of external legs and
similar to (7.63), reads

= Y HEUL + (s + REVUL + > UL sy + 20 5L, (8.105)

177 JaG
j#i b#a
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Remember that for Majorana particles, we considered 3% =3¢L, (5.102).

aa”
We define the absolute value of the ia element of U from the measured value
of the neutrino decay rate, i.e.

1
Ui [ = -0 (va = W). (8.106)
0

In analogy to (7.68), we set

1 1
Yie + 7—7-Yi)" ), 8.107
Y ) 6107

oU 1
| R ALt

Re Ui{f 5

identifying thus the real part of the first order correction in the renormalization
constant ZMNSL | formula (8.86). The counter term is thefore fixed by relating it to
measured values of UL". Again, by construction, dUL is gauge invariant since its
definition is based on the calculation of a complete physical amplitude. The presence
of 6, and 6} in this formula is essential for the cancellation of gauge dependent
terms contained in Yj,.

Here, we have provided just an example of how we can use an experimental value
of a decay rate to determine the real part of the correction to the mixing matrix. By
heavy neutrino decays via the W-bosons we can fix the corrections to the elements
from the (nz+1)-th until (ny, +ng)-th column of UL. For the elements that describe
the mixing of the light neutrinos (the neutrino mixing matrix as usually described
in the literature), the study of the W decay is required. Measuring all the possible
decays W—ul and v—W 1 we will be able to fix all the elements of 6U and part from
the ones of U¥ related to UL by the unitarity constraints (8.76). For a complete
set of processes that can allow us to fix all the (ny + ng)? — ny, real parameters of
U, we need observables involving scalar bosons. Because of the general approach we
considered, we can not follow this here. The steps would be very similar, once we
have a more detailed description of the model.

Some decay processes we mentioned are of course not measurable in the near
future since we talk about particles too heavy to be produced. The corresponding
parameters will remain unknown, but one expects that then, they will not play any
role for the phenomenology of low-energy experiments. Still, from the theoretical
point of view, we can and we have to discuss how these parameters should be fixed.



Chapter 9

Summary

Along this work, we have studied the renormalization of the fermionic Lagrangian
for models that involve mixing. The first part of this thesis provided a general
renormalization prescription for a Lagrangian with Dirac and Majorana fermions,
while the second one was an application to two specific models: the quark mixing in
the electroweak Standard Model and the neutrino mixing in the seesaw mechanism.

After shortly defining the general framework, we gave complete analytic results
for the Dirac and Majorana fermion self-energies. We have isolated the ultravio-
let divergences in each contribution to the self-energy and we have calculated the
imaginary parts that arise from possible cuts through the one-loop diagrams. With
the on-shell renormalization scheme we have separated the divergences in the full
propagator and we have identified the physical mass and the decay width of the par-
ticle. So-called wave function renormalization constants were calculated such that
the subtracted propagator is diagonal on-shell. As a consequence of the absorptive
contributions from self-energies, these constants are grouped in two sets not related
by hermiticity. As shown also in the literature, we proved that taking into account
just the dispersive parts of the self-energies (which include also the UV-divergences)
does not violate the hermiticity of the Lagrangian.

Instead of defining the field renormalization constants using directly the wave
function renormalization ones, we proposed to differentiate the two by a set of finite
constants. Using the additional freedom offered by this finite difference, we have
tried to impose a hermiticity relation between the constants that directly renor-
malize the field and the constants that renormalize the Dirac conjugated field. We
have shown that for Dirac fermions, unless the model has very special properties,
this restriction leads to poles in the self-energy corrections to external legs. The
requirement is less restrictive for the Majorana fermions and there, one has a better
chance to fix the field renormalization constants such that the free Lagrangian is
hermitian.

Another possibility we considered after renormalizing the fields was the re-
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diagonalization of the renormalized mass term of the Lagrangian. We have defined
transformed fields related to mass eigenstates. In this case, part of the divergences
present in the field renormalization constants were moved in other terms of the
renormalized Lagrangian. The immediate consequence was a divergent contribution
in the non-diagonal self-energy correction to external legs. Because of the compli-
cations brought in the calculation, we have decided not to follow this path.

The interaction terms of the renormalized fermionic Lagrangian were analysed
for a general theory including vector and scalar bosons with arbitrary renormaliz-
able interactions. We described the influence of the renormalization constants in
each possible vertex involving Dirac and /or Majorana fermions and vector or scalar
bosons. We have finished our analysis with the description of the total one-loop
amplitude of a generic process that involves fermion mixing in a vertex.

This was the starting point for the study of the renormalization of fermion mixing
matrices in the two models we have chosen. For the quark mixing in the electroweak
Standard Model, we have taken into account quark field renormalization constants
not related by hermiticity. This is necessary since heavy quarks may decay into
lighter ones and imaginary parts are present in one-loop self-energies. We were
able to determine the divergent contributions absorbed in the quark mixing ma-
trix, such that the renormalized matrix is unitary. The lack of hermiticity was not
permitting us to identify the full counter term of the mixing matrix (i.e. also the
finite contributions) by only taking into account the anti-hermitian contributions to
a quark-antiquark-W vertex amplitude. Therefore, we have proposed as an alter-
native method the determination of the counter term from experimental measure-
ments of decays or cross sections. In principle, we have enough physical processes
to determine all the parameters in the quark mixing matrix, even if present-day
measurements are not sensitive enough to first order corrections.

The other interesting model we have studied was an extension of the Standard
Model that describes neutrino mixing in the seesaw mechanism. The Majorana
nature of the neutrinos and the special features of the model, made possible a renor-
malization scheme where hermiticity was achieved. Still, because of the gauge pa-
rameter dependence problem related to the counter term of fermion mixing matrices
in general, we have shown that fixing the corrections directly from measurements is
the better alternative.

Since the seesaw mechanism is just a theoretical hypothesis and there is still
some way until we will know in detail the model that describes neutrinos, we were
limited to a general analysis. While for quarks, using the analytical expressions we
provide, one is able to calculate mass corrections and wave function renormalization
constants, for neutrinos we can not go yet so far. However, we hope the examples
we have presented offered a complete overview for possible situations that appear in
the renormalization of models involving fermion mixing.

As we have shown, complete one-loop calculations for fermion mixing models,
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including unstable particles, are required before proceeding to higher orders. Start-
ing from two-loop calculations, the two sources of imaginary parts in the amplitude,
dispersive and absorptive, can not be easily separated. Since imaginary parts are
related to the fact that particles are unstable, a solution is likely to be found only
if one drops the assumption that amplitudes can be calculated treating fermions as
external, free, on-shell particles.
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Appendix A

Dimensional Regularization

The prevalent method to solve integrals when an UV divergence occurs is the
dimensional regularization. This procedure preserves Lorentz and gauge invariance.
Here, we make a brief presentation of the method to support our calculations. The
convention keeps the notations of [Col98], where one can find detailed explanations.
For another compact description one can also check [Hol00].

To be able to obtain a finite integral one changes the 4-dimensional integral to
a D-dimensional one. The integral measure, defined as

/%, becomes/ é:)qD. (A.1)

For D small enough, the integrals with an UV divergence become convergent.
In order to keep the dimensions of the coupling constants independent of D, one
introduces an arbitrary mass scale y. This way

e? — ,u4_D62, (A-2)

or in terms of the gauge coupling constant g

Nlv]

g—pr g (A.3)

With an integration on an arbitrary (non-integer) D-dimensional space, the
known relations for Dirac matrices must be adapted to the case when the time-
space index p has an infinite range. The needed 7, matrices will also be infinite
dimensional. The anti-commutation relations for the Dirac-matrices

s W} =291 (A.4)
and also the hermiticity properties
ut_ it p =0,
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should be preserved.
Using the theory from the even dimensional case (D = 2n, n integer) [Aky73],
one can extend it to any y-algebra. The following relations come out:

g;‘j = gul/gwj =D (Aﬁ)
T = D1 (A7)
Yy = (2= D) (A.8)
VYYo= 4gup — (4 = D)1, (A.9)
As a consequence:
fyupfy“ = (2 — D)p, (A.lO)

{p. 4} = 2pq. (A.11)

For the trace of y-matrices we need a result for the unit matrix in the new space,
i.e. to find Tr(1) = f(D). For D — 4, we have Tr(1) = 4. Together with matrix
trace properties, one can determine

Tr(vuvw) = Tr(1) g
= f(D)g;w

The trace of any odd number of y-matrices is zero.

In the Standard Model one needs to consider chirality and therefore we need
to redefine the 5 matrix. There are different prescriptions that try to avoid the
problems implied by a general D-dimensional space. A brief description together
with a new method can be found in [Jeg01]| and [Kre94].

For our purpose, we can restrict to a definition that preserves Lorentz invariance
(see [Kre94]) on the first four dimensions, but not for the full space.

(A.12)

’Z: v
V== i€meo VY (A.13)

with 42 = 1 and fy;[ = v5. The anti-commutation relations are preserved for y =
0,1,2,3:

{v5,7*} =0, for u=0,1,2,3, (A.14)

but otherwise [y5,7#] = 0 can be used.



Appendix B

One- and Two-point Integrals

The evaluation of one-loop diagrams using dimensional regularization leads to
several types of integrals, as defined in [Hoo79] and [Pas79]. In the following, we
will present the main ones, together with some relations to determine them.

B.1 Definitions

Since at the end, the dimension D (see (A.1)) should become again 4, one can
parametrise it like:

D =4-—2¢, (B.1)
where ¢ will go to 0. In the definition of the n-point integrals, we will use the
following notation:

4=D gDy

_H
Pq= in? (2m)P-4’ (B2)

where p is the mass scale (A.2).
One-point integral:

Two-point integrals:

1

 Balpsmme) = [ D (B
sM1,Mo) = qu .
® Bulpim,m) /Dq(q2 —m3)((q+p)? —m3)’ (B9
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with the covariant decomposition:

Bu(p; m1,m2) zpuBl(pQ;ml,mz); (B-G)

e ) = Quly _
* Bty ) = [ Doty B

and its decomposition:

Buu(p; mi, mz) = QWBQo(pQ; may, m2) +pupuB21<p2; may, m2). (B-S)

It is worth to remark that, by definition, By is symmetric in m; and mo.
With some tricks, the vector integral (B.5) can be expressed in terms of A(m)
and By(p%; my, mo):

p
B, (p;mi,my) = ﬁ (A(m?) — A(m3) — (p* + mi — m3) Bo(p*; mq1, my))

1
= Bi(p*;mi,mg) = 02 (A(mf) — A(m3) — (p* + m} — m3)By(p*; my, mQ)) )
(B.9)
Keeping in mind that By(p?; m1, ma) = Bo(p* ma, my) one can deduce that
Bi(p®;my, ma) + Bo(p®; ma, my) = —By(p?; ma, ma). (B.10)

The elements of the decomposition (B.8) can also be written as function of A(m)
and By(p*; my1, mo). Note that we already have such an expression for By (p?; my, mo)
from (B.9).

1 1 1
1
By (p*; 1, mg) = D1 ((D = 2)A(m3) — 2miBy — D(p* + mi — m3)B)

B.2 Evaluation of the One- and Two-point Integrals

For this part we select the important results for the one- and two-point integrals.
Some hints for the calculations can be found in [Mut98| and [Hol00].
For the one-point integral, one gets:

2

A(m?) = m? <A +1-In %) +0(e), (B.12)
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where
1
A=—-—~+Indrm, (B.13)
£

and 7 is Euler’s constant (y = 0.577...).
For the two-point integral, one obtains the following approximation:
1

Bo(pZ;ml,mg) =A— /d:vln
0

2?p? — z(p* + m? — m2) + m?

112

+0(). (B.14)

In some particular cases, the integral is easy to evaluate:

2
1
Bdm&m%:A+1—m%;+O@%:Eywﬁ% (B.15)
m? m? m2 m2
BO(O;ml,mQ) = A+1+mlnu—; - mlnu—;—f—o&f)
1 1 I1m24+m2. m3
= 5 Am}) + ——5Am3) + -———In—> +0(c); (B.16
By(p*;m,m) = A —In m_2 + _p2 + (’)(p—2) + O(¢), for p* small; (B.17)
Y ) MQ 6m2 m2 ) Y
m2
= By(0;m,m)=A—1In "l + O(e). (B.18)

Using the expansion in terms of ¢, the expressions in (B.11) become
1 2
Boo(p®;my, mg) = 5 (A(m%) +2m3 By + (p* + mi — m3) By + (m] + mj — %)) :
1 p2)
3p? 37)°
Terms of order O(e) were omitted.

Looking at (B.12), (B.14) and (B.9) one can distinguish the divergent part of
the n-point integrals.

—(m} +mj —

321(p2;m1,m2) = 9

(A(m%) —miBy — 2(p* + m? —m3)B; —

div[A(m?)] = m?A,
div[ By (p*; m1, ma)] = A, (B.19)
div[By (p*; m1, my)] = —%A.
From the same expressions, one obtains:
eA=m*+ O(e),
eBy= 14 O(e), (B.20)

eB; :—% + O(e).
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B.2.1 Complete Evaluation of By(p?;m1, ms)

For a complete result of the n-point integrals one needs to evaluate the integral
in (B.14). The expression can be rewritten as

1
2 m2_m2 mZ_Z'
Bo(p*;mi,ma) = A — /dxln [% (x2 —r(l+ —=-2)+ 1p2 p)] . (B.21)

Here, p is a positive number, which tends to 0. From now on, O(¢) is not going to
be written anymore, but it should be considered in every relation for By, since the
following results are an expansion in €.

In order to calculate the integral, we need to find out the sign for the argument
of the logarithm:
m2 —ip

e =(x—21)(x — 29) (B.22)

2 2
my — My
)+

p

v —2(1+

With the short notation for Kallen’s function:
A= Ap%,m?,m3) = p* +mi +mj — 2p°m? — 2p°m3 — 2mim3, (B.23)

the solutions for the equation (B.22) are

1

=57 (p2 rm?—mit /At 4p2i,0) . (B.24)

T1,2

The integral is evaluated easily, but a lot of care should be paid in case imaginary
parts appear from the logarithm, i.e. when its argument is negative.

—/dxln (Z—Z(x — o)z — xQ)) - Z—Z 2 (1= 2)In(l — 21) — 2 In(—27)

(1= 22) In(1 — 7)) — xo In(—29) + 7 (%(1 — 1), (1— xz)) (B.25)

The term with the function n comes from the decomposition rule for a logarithm of
a product:

In(z129) = In(21) + In(22) + n(21, 22), (B.26)

n(z1, 22) = 2mi [0(—Imz1)0(—Imz9)0(Im(2z122)) — O(Imzy)0(Imz2)0 (—Im(2z122))] -
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We have taken the logarithm branch cut along the negative real axis.

According to the values of z; and x5 in different intervals for the square of the
incoming momentum p, we have obtained compact expressions for (B.25). When
necessary, formula (B.26) was used repeatedly to determine any possible imaginary
terms. In the following, we just present the final results for the case m; > mo.
As we have mentioned, By(p?; my, mso) is symmetric in m; and ms, so our choice is
arbitrary.

op2:0
2 2 2 2
m m m m
By(0;m1,mo) = A+1— ———In— + ———In—
my—my  p my—my p

e 0 < p? < (M1 —my)?

2 _ .2
By(p*ima,my) = A+2—In 2 T Z Ty, T
K p ma
1 2 2 .2 \
2p? m? +m3 —p? — VA
o= (my — m2)2
mym mp+m m
Bo((ml—mg)Q;ml,mg):A+2—ln 122— ! 21I1—1
H m; —my Mo

o (my —my)? < p? < (my +my)?

2
mim m?2 —m m
BO(pQ;ml,mQ)——A—i-Q—ln ;22— 1p2 2 !

ma

o p* = (my +my)?

B0<(m1 + m2)2;m1,m2) =A +2—1In mlgnz — = Mo In @
u mi+moe Mo
o (m1+me)? <p?<oo:
2 2
mi—m m
Bo(p*;mi,mg) = A+2—1In mlTZ - 5 21p —
It p m2

2p TrL1-|-7n2 p—\/_ P
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The behaviour of By is sketched in Figure B.1 for both, the real and the imaginary
part. Here, we are interested only in the shape of By, therefore on the y-axis we

ReBy(p?) — By (0)

1
I
1

1

]
1
I
/
/
’
,

2
)4
(mp—-mp)*  (my+my)’
ImBy (p*)
2
P
(my+my)?

Figure B.1: ReBy(p?;m1, my) — Bo(0;my, my) and ImBy(p?; my, ms) as a function of p?

specify a maximum for ReBy(p%; my, ma) — By(0;m1, ms) and we do no write any
ordinate for ImBy(p*; m1, ms). Note that at p*> = (my + ms)?, By(p*; my1, ms) has a
critical point (maximum). The derivative of By with respect to p? is not defined in
this point.

For the particular case m; = my = m, the previous results become simpler:

By(0;m,m) = A-ln%
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e 0 < p? <4m?:

2 4m2 2m2 — p?
BO(pQ;m,m):A+2_1nQZ+ ‘1—£2 arctan m oD _T
H p V0dpPm? —pt| - 2
o p? =4m?:
m2
Bo(4m*;m,m) = A +2—In—
U
edm? < p? < oo
4 2
2 4 2 1= 1_%
p
BO(pQ;m,m)zA—i-Q—ln%-i- 1- 77; In + i (B.28)
K p 4m?

B.2.2 Particular On-shell Cases for By, B; and Their Deriva-
tives

In the expressions of the renormalization constants, we need to set the mo-
mentum in the self-energies on-shell. When taking the diagonal elements of the
wave function renormalization constants, one will have first to differentiate the self-
energies and then set the momentum on-shell. As all the fermion self-energies contain
two-point integrals, their evaluation is mainly reduced to the evaluation of the inte-
grals. Depending on the particles in the loop, one has several relations between the
masses. In the following, we enumerate particular cases that are often encountered
in calculations and we give the results, omitting the details.

e p? —m?, my =m, my =2, where 6§ — 0:

2

Bo(m2;m, 6) = A+2—ln% +O®) + O(e), (B.29)
Bim2m o) = - - L% 06 +0e) (B.30)
O m?2  2m?  m? ’ '

1 2
Bi(m* m,6) = —3 (A+3—ln %) +O(0) + O(e), (B.31)
Blm%m,s) = > + w2 1 00) + 0 (B.32)
L 2m?2  2m2  m2 ’
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o p? —sm?, my =m, mo = M, where m?> < M?:

) M? m?
By(m ;m,M):A—i-l—ln?-i-(')(W) + O(e), (B.33)
Bimzm M) = —— +0 (™) + 0 B.34
0<m’m7 )_2M2+ W + (8)’ ( . )
1 M? 1 m?
By(m*m, M) = ) <A —In F) -1 7 O (W) + O(e), (B.35)
Bmzm M = - Lol o B.36
1<mam7 )__6M2+ W + (6)7 ( : )
9By 1 (p*; m1, my)

where By, (m* mi,my) =

8272 2 2

For the calculation of By and their derivativeps,_)vrx?e started from the corresponding
result in (B.27) and depending on the case, we either directly took limits or used
Taylor expansions. The expressions of B; were first linked to the ones of By by (B.9)
and then calculated in a similar way.

B.2.3 Complete Evaluation of B and Bj

The complete result for the derivative of By(p?; my, ms) can be obtain directly dif-
ferentiating the expressions in (B.27) with respect to p?>. As an alternative method,
one can start from the integral form of By given in (B.21): first differentiate the
expression with respect to p? and then integrate over 2. We obtain

2 2 2 ;

1 T _
1 1 2 P2
Bé<p2§m1’m2):_]§_ﬁ/dx pm2_m2 m? —ip + O(e)
0 1'2—.117(1—{— 1p2 2) + lp2
1 1
1 1 1
=—— 1+A/d:c +B/d:c ,
P r — T T — To
0 0
(B.37)
where A and B are defined as
A 1 (:Elm%—m%_m%—ip)
X1 — T2 p? p? ’
) ) ) > (B.38)
B— mel_mZ_ml_lp _
T2 — T p? P>

LQur function fullfills the conditions necessary to differentiate before integrating (the differen-
tiating theorem for the dependence of the integral on a parameter).
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x1 and xo are the solutions of the quadratic equation (B.22), given in (B.24).
After integration, (B.37) can be written in the final form as

1
Bl (p*:my, =——(14+Aln(l —z) — Aln(-

+BIn(1 — z3) — Bln(—x3))

and then evaluated considering the different intervals for p?, as done in (B.27).
The general result for the derivative of By(p?;my, my) with respect to p? is

e 0 <p? < (my—mo)?:

1 m2 _m2 my

1 ( 2 2_(m%—mg)2>lnm%+m%—p2+\/x
mi +m3 —p? — VA

o’ = (my —my)?:

2 mi + Mo ma

BI 2. — _
O(p ,ml,mg) (ml _ m2)2 (ml _ m2)3 n mo

o (my —my)? < p* < (my+mo)*:

By(p*smi,me) = —— +

2 p4 me
1 2 o (mi—md)®\  mi+mi—pP+ VA
my + m; 5 In 5 5
202\ Y m2 +m3 —p>— /A
1 2 _ 2\2
+ <m§+m§ - M) mi (B.40)
p p

B}, as a function of p? is sketched in Figure B.2.
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ReBy' (p?)
/
—-—/1
‘ ‘ 2
2 2 p
(m;y—myz)”  (mj+my)
R
12
ImBy’ (p*)
2 P’
(m;+my)

Figure B.2: ReB}(p% m1,m2) and ImBj(p?; m1,ms) as a function of p?

The derivative of B;(p* m1,ms) can be reduced to derivatives of By(p®;my, ms).
From (B.9), we get

1
Bi(p*;my, ms) = ~op (A(m3) — A(m3) — (m] — m3)Bo(p*; ma, ma))
2 2 2
+mi—m
- ]#B()(p%ml,mﬁ (B.41)
p
___B<2. )_LB(Z_ )
TR 1P My, M2 27 o\p 5 my, M2
2 2 2
+mi—m
— p—12 2B(')(pQ;ml,mz). (B.42)

2p



Appendix C

Matrix Manipulations for One-loop
Calculations

When performing calculations in the first order approximation in « (at one-loop),
we often deal with matrices whose elements are of type

.Az'j = ai&j + (SAZJ + 0(&2), (Cl)

with 0A;; o @ and A < a; for V i, j, k. Using this expansion, we present the
results for the inverse matrix, some useful relations for unitary matrices and the
matrix diagonalization procedure, together with some calculational details.

Besides this, sometimes we will need to take the square root of a matrix. (The
matrix should be positive defined.) At first order, on components, we have

If we consider the particular case a; = 1 for V i, i.e.
(-AO)ij == 5@' + 5AZ] + O(O,/Q), <C3)
then
1 1
(Aé )ij = 51']' + 5514” + 0(012). (C4)

C.1 Matrix Inversion

In most of the examples we will have 3 X 3 matrices and since the size makes the
matrices very easy to operate by hand, we give the detailed result for this case.

aq + 51411 61412 5A13
./43 = 51421 as + 51422 5A23 + O(O,/Q) <C5)
5A31 51432 as -+ 6A33
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In first order approximation, i.e. considering just terms up to 0A;; and neglecting
every product between them, the inverse matrix is

1 dAn  0Ap _0Ai3
YAl Y 5
1
A7l =| /2 =2 2 L0 (C.6)
a1a9 Q9 a; A2G3
_0Ay _0Azp 1 0As
a,as asa3 as a3

If we take the general form, with the index notation, we can write:

_ 1 0A;;
(A= —0 — —*

a; ;@

+0(a?), (C.7)

An important thing to notice is that each diagonal element of A~! is the inverse of
the corresponding term in A, up to terms of order a, i.e.

<1_5§j(%+a&0:1+0m%. (C8)

a_i a;
For the particular matrix Ay (C.3), the inverse is given by
(Ao)' = bij — 645 + O(?). (C.9)

Note that these results work for any n x n matrices and not only for the 3 x 3,
as in our example.

C.2 Unitary Matrix

In the following, we enumerate several relations necessary for calculations where
unitary matrices are involved. Let I/ be a unitary matrix with the expansion
Uij = Uy + 5UZ] + 0(&2). (ClO)
The unitarity relation for ¢/ implies

> W) Uy = Zuij(ukj)* = Oik- (C.11)

J

Inserting (C.10), we obtain

D (i) e = D wij (k)" = O
Z ((0Uj:) ugn, + (ugi) *6Usn) = Z (uij(6Ug;)* + 0U;j(ug;)*) = 0.

J J

(C.12)
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If we assume u;; = u;0;5, then the conditions become

w'ue =1 f 5. (C.13)
Or U;7 = U;044. .

(5U]z)*uj + (uz)*(SUZ] = Uz(dU],)* + 5U1]<u])* = O, J J
For u; =1, (C.13) leads to

60U = —(6Ujq)*, for uy = 05 (C.14)

C.3 Matrix Diagonalization

For the diagonalizing procedure, we restrict to a complex matrix of type
Cij = Cz'éij + 50,] + O(CYZ), (015)

that has the lowest order elements ¢; real and nonnegative. C;; € C and 0C;; < ¢;
for V 7, 7. The general case is not more complicated, but for our purpose it is not
needed. The case of a symmetric one can be calculated similarly, using for example,
the general prescription of [Zum62).

According to the singular value decomposition theorem, any complex matrix can
be written in the form:

C = ODP', (C.16)

where O and P are two unitary matrices and D is a diagonal one. In addition, the
two unitary matrices can be chosen such that the diagonal one has real and positive
entries.

If C has an inverse, then the diagonal matrix is given by [Zum62]

D = 0'c (ctc)  cto, (C.17)
and P can be identified as
P = (cfc) 2 cto. (C.18)

To perform the calculations up to terms of order o, we assume the following
expansions for the unitary matrices:

Oij = 04 + 5Oij + 0(0&2), (C.19)
Py = pij + 0P, + O(a?). (C.20)

Given the special form of C from (C.15), one can directly take

0i5 = Dij = 61’]'- (0-21)
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Still, for the intermediate steps, we keep the general assumption. At the end, we
show why the ansatz (C.21) is reasonable.

From (C.17), we will try to determine O, so that the diagonal matrix D has
entries of type

d; and 0D; are real and in addition, d; is nonnegative for V i.
On components, (C.17) is

D;; = Z(Oki)*ckl ((CTC)_%> (Cnm)*Onj. (C.23)

l
k—n n

We start by evaluating the (C‘LC)_E factor. Up to first order terms,
(€fC),. = (Cri)"Ch
TR (C.24)
= 0125”' + ciéCij + (5Cji)*0j + O(O,/2).
We used the fact that ¢; is real. To simplify the notation, we denote C'C by the gen-

eral matrix A defined in (C.1). From (C.24), we identify the terms of the expansion
as

@ = ¢ (C.25)
5142']' = Cz'écij + (5Cji)*C] ’
Applying (C.2) and (C.7), we obtain
_1
(e (e
SA. (C.26)
< i ) O(a?).
\/_ Vai +./a;
Replacing all the matrices in (C.23) by their expansions, we have to solve

(di +6D3)6;; = > ((08)" + (00ki)*) (cx0is + 6Ch) \/1— (5“" B \/i_m \/a’fi”\n/@>

(emOmn + (0Cnm)") (04 + 00y;) . (C.27)
After multiplication and inserting (C.25), we identify
dzdz] = Z(Oki)*ckija (028)
k

(SDz(SU = Z ((oki)*ckéij (50,%-)*0,90;9]-)

+ Z Okz s cn(SCkn -+ Ck(éc’nk)*) Onj- (CQQ)
Ck Cn



C.3. Matrix Diagonalization 179

We start by analysing (C.28). If we multiply from left with ZO” and we use

the unitarity relation (C.12), we obtain z
0,;d; = oy & (dj —¢)o;; = 0. (C.30)
For j # [, we have as solution o;; = 0 and for the diagonal case, taking o;; # 0,
d; = c;. (C.31)
The dominant term of the unitary matrix O can be written now as 0;0;5, i.e.
Oij = 0i0;; +00;; + O(a?). (C.32)
The elements of the diagonal matrix D become
d;0ij = c;0;j, (C.33)
5Didi; = (02)7ci60s; + (6051) c;0; + (oi)*% (¢;6Cs; + cs(5C;)) 0. (C.34)

C; Cj

In particular, with the unitarity conditions (C.13),

0D; = = (6Cy + (0Cy)") . (C.35)

N | =

One can see that for the diagonalization of C (C.15), it is enough to choose a diagonal
matrix for the dominant term of the unitary matrix . In addition, the phase factor
0; is not needed since we choose from the beginning ¢; real. Therefore, we can set
0o; =1 and

00;; is also not constrained by diagonalization.
Inserting (C.36) in (C.34) we obtain the off-diagonal elements of O.

(50@' = 2; (cj(SCij + cz((SC]Z)*) s for ¢ 7& j (C37)

2

Returning to the expression of P from (C.18), we have

(P)ij = Z <A_%)ik (Cix)* Oy

k,l

= 52']' + 501']' + (—502']' + (5011)*) —+ 0(&2). (0.38)

¢ +¢j
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Together with (C.37), we get

5F)ij = ﬁ <6250U + Cj (5031)*) s for ¢ 7é j (C39)
i (3
One can verify that 60;; and §F;; fulfil the unitarity condition (C.14).

To summarise, a complex matrix of type (C.15) can be diagonalized with the
help of two related unitary matrices that have as dominant term the identity matrix
and the off-diagonal elements given by (C.37) and (C.39). Their first order diagonal
elements are not determined. The diagonal matrix that results has real, nonnegative

elements given by

1
D;; =c; + 5 (50,1 + <5Cu)*) + (’)(042). (C.40)
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