

Johannes Gutenberg–Universität Mainz Institut für Kernphysik

Aufbau des Crystal Ball-Detektorsystems und Untersuchung der Helizitätsasymmetrie in γ p \rightarrow p π^0 π^0

Dissertation

zur Erlangung des Grades "Doktor der Naturwissenschaften" am Fachbereich Physik der Johannes Gutenberg-Universität Mainz

> Dirk Krambrich geboren in Bad Kreuznach

> > Mainz, Januar 2007

Verwendete Einheiten:

In dieser Arbeit werden, wie in der Mittelenergie-Physik üblich, Energien in Elektronvolt (eV) angegeben. Die Umrechnung in Joule (J) erfolgt nach $1 \text{ eV} = 1,602176462(23) \times 10^{-19} \text{ J}$. Desweiteren wird $\hbar = c = 1$ gesetzt, wodurch beispielsweise Massen $[M] = [E]/c^2$ und Impulse [p] = [E]/c ebenfalls in Elektronvolt gemessen werden.

Der Crystal Ball Detektor wurde in zölligen Längenmaßen konstruiert. Um die glatten, leicht zu merkbaren Zahlen zu erhalten, wird an einigen Stellen auf eine Umrechnung ins metrische System verzichtet. Ein internationales Zoll misst nach der Definition von 1956 exakt 25,4 mm und umfasst 1000 mil.

Tag der mündlichen Prüfung: 26. April 2007

Zusammenfassung

Seit Frühjahr 2004 wird der Crystal Ball-Detektor am Photonenstrahl des Mainzer Mikrotrons für Koinzidenzexperimente zur Untersuchung der Struktur der Nukleonen genutzt. Aufbau und Inbetriebnahme des Kalorimeters, insbesondere der neuen Detektorelektronik, bilden einen Schwerpunkt dieser Arbeit. Komponenten wurden neu konstruiert oder auf ihre Verwendbarkeit geprüft und nötigenfalls modifiziert. Nach erfolgreichem Abschluss der Aufbauphase wurden Experimente zur Produktion von π - und η -Mesonen am Proton mit mehr als 2500 Stunden Strahlbetrieb durchgeführt.

Den zweiten Schwerpunkt der Dissertation bildet die erstmalige Messung der Helizitätsasymmetrie I^{\odot} in der Photoproduktion zweier neutraler Pionen. Zum Verständnis des Anregungsspektrums der Nukleonen müssen Experimente mit polarisierten Photonen und/oder polarisierten Targets durchgeführt werden. Da Modelle trotz unterschiedlicher Annahmen unpolarisiert gemessene Größen vergleichbar gut reproduzieren, ist die Bestimmung der auf Modellunterschiede empfindlichen Polarisationsobservablen unumgänglich. Im Gegensatz zur Einpionproduktion tritt in der Zweipionproduktion eine Einfachpolarisationsobservable auf, die mit zirkular polarisierten Photonen am unpolarisierten Proton gemessen werden kann. Diese wurde in der Reaktion $\gamma p \rightarrow p \pi^0 \pi^0$ und in $\gamma p \rightarrow p \pi^+ \pi^-$ energie- und winkelabhängig bestimmt. Die Ergebnisse weichen stark von den Modellvorhersagen ab.

Abstract

Since spring 2004 the Crystal Ball Detector has been used for coincidence experiments probing the structure of the nucleons with real photons at the Mainzer Microtron. A major part of the commissioning, which was the first goal of this work, was the development and implementation of a new system for the Crystal Ball electronics. Components were designed or tested and, if necessary, modified to fit the experimental needs. After the commissioning, the set-up was then used successfully in several pion and eta production experiments for more than 2500 hours of beamtime.

The second focus of this dissertation is the first measurement of the beam helicity asymmetry I^{\odot} in photoproduction of two neutral pions. The understanding of the excitation spectra of the nucleon requires experiments using polarised photons and/or polarised targets. Models based on different assumptions do reproduce the quantities measured without polarisation equally well but differ in the prediction of polarisation observables. The determination of more sensitive quantities is therefore mandatory. In contrast to single meson production, an observable appears in double pion production when using circularly polarized photons incident on an unpolarized target. This observable was determined as a function of energy and angle in the reactions $\gamma p \rightarrow p \pi^0 \pi^0$ and in $\gamma p \rightarrow p \pi^+ \pi^-$. The results differ significantly from the model predictions.

Inhaltsverzeichnis

	Zusammenfassung/Abstract											
1	Mot	ivation	und Einleitung	7								
2	The 2.1 2.2 2.3	Eoretische Grundlagen Vollständiges Experiment in der Einpionphotoproduktion Definition der Helizitätsasymmetrie in der Doppelpionproduktion Modell der Valencia-Gruppe und Bedeutung der Helizitätsasymmetrie										
3	Apparativer Teil											
5	2 1	Dag M	Teinzer Mikrotron MAMI	21								
	3.1 3.2	Erzenie	rung und Markierung polarisierter Photopen	21								
	3.3	Das W	Jung und Markierung polarisierter i notonen	$\frac{25}{27}$								
	3.4	Das D	etektorsystem	28								
	0.1	341	Der Crystal Ball-Detektor	29								
		342	Der Teilchenidentifikationsdetektor	31								
		3.4.3	Die Drahtkammern	32								
		3.4.4	Die TAPS-Vorwärtswand	33								
	3.5	Detekt	orelektronik, Trigger und Auslese	34								
		3.5.1	Vorherige Ausleseelektronik	36								
		3.5.2	Schema der aktuellen Crystal Ball-Detektorelektronik	38								
		3.5.3	Neuverkabelung und Numerierung der Detektorkanäle	40								
		3.5.4	Photomultiplier und Basen	40								
		3.5.5	Aktiver Splitter	43								
		3.5.6	Diskriminatoren	43								
		3.5.7	Trigger-Kontrollsystem	44								
		3.5.8	Zeit-nach-Digital-Wandler und Zähler	47								
		3.5.9	Analog-nach-Digital-Wandler	50								
		3.5.10	Integration der Drahtkammern und des PID	54								
		3.5.11	Triggerelektronik und On-Line Datenerfassung	56								
		3.5.12	Ausblick: Schneller Clusterzähler	60								
4	Aus	wertung	g der Messdaten	65								
	4.1	Grund	legende Eichungen	66								
		4.1.1	Energieeichung des Crystal Balls	66								
		4.1.2	Zeitabgleich des Crystal Balls	69								
	4.2	Identifikation geladener Teilchen										
	4.3	Verbesserung der Richtungsinformation										

Inhaltsverzeichnis

	4.4 Analyse der Reaktion $p \pi^0 \pi^0 \dots \dots$	74
	4.5 Analyse der Reaktion $p \pi^+ \pi^-$	78
	4.6 Abschließende Bemerkungen zur Analyse	80
5	Ergebnisse	83
	5.1 Gemessene Asymmetrie in p $\pi^0 \pi^0 \dots \dots$	84
	5.2 Gemessene Asymmetrie in p $\pi^+ \pi^-$	87
	5.3 Ausblick	91
Aı	nhänge	93
Α	Numerierung der Crystal Ball-Kanäle	95
В	Energieeichung der Taggerleiter	101
С	Statistischer Fehler der Markierungseffizienz	105
D	Gemessene Anregungsfunktionen	107
E	Zusammenstellung der AmplitudenE.1 Fourierkomponenten in p $\pi^0 \pi^0 \dots \dots$	109 109 110
Lit	teraturverzeichnis	115

1 Motivation und Einleitung

Ein Schwerpunkt des Forschungsprogramms der A2-Kollaboration ist die Untersuchung des Nukleons, insbesondere seiner Resonanzstruktur, mit Hilfe hochenergetischer Photonen. Abbildung 1.1 zeigt den totalen Photonabsorptionsquerschnitt des Protons für einlaufende Photonen mit Energien von bis zu 800 MeV. Der prominente Pik unterhalb 450 MeV ist durch die erste Resonanz, die Δ - oder P₃₃(1232)-Resonanz gegeben. In diesem Bereich wird der Wirkungsquerschnitt durch die Erzeugung eines Pions dominiert. Oberhalb von 500 MeV wird eine zweite Erhebung beobachtet. Diesem zweiten Resonanzgebiet, es reicht bis E_{γ} $\approx 900 \,\mathrm{MeV}$, werden breite, überlappende Resonanzen zugeordnet: Die $P_{11}(1440)$ mit einer Breite von $\Gamma = (250-450)$ MeV, die $D_{13}(1520), \Gamma = (110-135) \text{ MeV}, \text{ und die}$ $S_{11}(1535)$ mit $\Gamma = (100-200)$ MeV. Die Resonanzmechanismen sind zum Teil umstrit-

Abbildung 1.1: Totaler Photonabsorptionsqerschnitt des Protons unterhalb von $E_{\gamma} =$ 800 MeV, aufgeschlüsselt in die Partialkanäle. Entnommen aus [KS03].

ten und damit Gegenstand gegenwärtiger Forschung [KS03]. Experimentelle Herausforderung ist die eindeutige Bestimmung der Beiträge der einzelnen Resonanzen.

Dies ist jedoch nur mit einer Partialwellenanalyse der experimentell zugänglichen Observablen möglich. In den Meson-Produktionsexperimenten konnten bisher im Wesentlichen differentielle Wirkungsquerschnitte bestimmt werden. Dies reicht jedoch nicht aus, um eine eindeutige Zerlegung durchführen zu können. Um Mehrdeutigkeiten aufzulösen, sind Messungen von Polarisationsobservablen unumgänglich. Durch Einschränkung der Freiheitsgrade im Eingangskanal, also Nutzung linear oder zirkular polarisierter Photonen und polarisierter Targets, ist es möglich, weitere Information zu gewinnen. Sowohl Einfachals auch Doppelpolarisationsexperimente werden im Sonderforschungsbereich SFB443 am Mainzer Mikrotron durchgeführt.

Im Rahmen dieser Arbeit wurde zum ersten Mal eine Helizitätsasymmetrie in der Photoproduktion zweier neutraler Pionen im zweiten Resonanzgebiet gemessen. Ferner wurde eine reduzierte Form der Asymmetrie in der Produktion zweier geladener Pionen untersucht.

Um auf dieses Ziel hinzuarbeiten, wurde die vorliegende Arbeit wie folgt gegliedert:

Abschnitt 2.1 führt in das Fernziel, das "vollständige Experiment", das heißt die Ermittlung aller Übergangsamplituden vom einlaufenden zum auslaufenden Proton am Beispiel

1 Motivation und Einleitung

der Ein-Mesonphotoproduktion ein. Formal werden die Amplituden durch Betrachtung der allgemeinsten Matrix gewonnen, die das einlaufende und das auslaufende Proton verbindet. Die Reaktionsrate wird durch Quadrieren der Übergangsmatrix errechnet. Ordnen der Terme nach Eingangsbedingungen und Merkmalen im Endzustand liefert die Definition der Observablen und verknüpft diese sowohl untereinander, als auch mit den Übergangsamplituden. Gleichzeitig werden dabei die Messvorschriften für die Observablen geliefert.

Im Gegensatz zur Einpionproduktion tritt in der Doppelpionproduktion eine Einfachpolarisationsobservable auf, die mit zirkular polarisierten Photonen am unpolarisierten Target gemessen werden kann. Diese *Helizitätsasymmetrie* wird in Abschnitt 2.2 in ein allgemeineres theoretisches Umfeld gestellt und dann am Modell wieder aufgenommen.

In Abschnitt 2.3 wird stellvertretend für viele andere das Modell zur Doppelpionproduktion der Theoriegruppe um E. Oset in einigen Grundzügen skizziert. Direkte und mit Nukleonresonanzen verbundene Erzeugungsmechanismen für die auslaufenden Pionen werden dort kombiniert. L. Roca hat demonstriert, dass die Helizitätsasymmetrie auf die Wechselwirkungen der Mechanismen, ihre Interferenzen, empfindlich ist, also erlaubt, die Modelle tiefergehend zu prüfen oder sogar zu verbessern. Ihre Extraktion aus den im Juli 2004 mit dem Crystal Ball genommenen Daten, der ersten Messung der Helizitätsasymmetrie im Kanal $\gamma p \rightarrow p \pi^0 \pi^0$ wird in Kapitel 4 besprochen.

Im Frühjahr 2004 wurde der Crystal Ball-Detektor, ein Photonenspektrometer, das fast den gesamten Raumwinkel um das Target abdecken kann, zusammen mit zwei radial um das Target angebrachten Drahtkammern und einem Zylinder aus Plastik-Szintillatoren, sowie 510 TAPS BaF₂-Kristallen in Vorwärtsrichtung am Mainzer Photonenstahl in Betrieb genommen. Vorbereitend wurde die in die Jahre gekommene Crystal Ball-Detektorelektronik durch eine neue ersetzt. Alle Komponenten, zum Beispiel Signalsplitter, Diskriminatoren, Zeit- und Analog nach Digital-Wandler mussten konstruiert oder beschafft und auf ihre Eignung für Experimente in der A2-Umgebung geprüft, nötigenfalls angepasst und als Gesamtaufbau in Betrieb genommen werden. Dazu standen nur etwa zwei Jahre Vorbereitungszeit zur Verfügung. Nach einer Bestandsaufnahme bildet die Beschreibung der neuen Komponenten den Schwerpunkt von Kapitel 3.

In diesem Kapitel wird zunächst die Untersuchung der Struktur des Nukleons über Pion-Photoproduktionsexperimente vorgestellt. Am Beispiel der Einpionproduktion werden Überlegungen zum "vollständigen Experiment" rekapituliert und eine Verbindung zwischen Übergangsamplituden und Observablen hergestellt. Die Diskussion wird dann auf die Doppelpionproduktion erweitert, was die aus den Daten extrahierte Helizitätsasymmetrie motiviert. Einige Bemerkungen zum Modell von Oset/Roca runden die Überlegungen ab.

2.1 Vollständiges Experiment in der Photoproduktion pseudoskalarer Mesonen

Die Pion- oder Etaphotoproduktion, skizziert in Abbildung 2.1, wird kinematisch über zwei Variable vollständig charakterisiert. In der Energie- und Impulsbilanz

$$\gamma(k^{\mu}) + N(p^{\mu}) \to N'(p'^{\mu}) + \pi(q^{\mu})$$
 (2.1)

bezeichnen p^{μ} und p'^{μ} den Viererimpuls des einlaufenden bzw. des auslaufenden Nukleons, sowie k^{μ} und q^{μ} die Viererimpulse des Photons und des erzeugten Pions. Über obige Beziehung sind zunächst nur drei der vier kinematischen Variablen voneinander unabhängig. Definiert man die drei Mandelstam-Variablen

Abbildung 2.1: Kinematik der Einmesonprodukion.

und berücksichtigt, dass alle Teilchen auf der Massenschale liegen, so gilt als weitere Bedingung:

$$s + t + u = m_N^2 + m_{N'}^2 + m_{\pi}^2$$

Daraus folgt, dass bereits zwei Größen ausreichen, um den Prozess kinematisch zu beschreiben. Eine übliche Wahl sind s, also das Quadrat der Gesamtenergie im Schwerpunktsystem ($\sqrt{s} = W$) und der Polarwinkel des auslaufenden Nukleons $\theta_{N'}$ oder des auslaufenden Pions θ_{π} , der beispielsweise über

$$t = (k^{\mu} - q^{\mu})^2 = 2(E_{\gamma}E_{\pi} - k_zq_z\cos\theta_{\pi}) + m_{\pi}^2$$

mit dem Vierimpulsübertrag $t = (p'^{\mu} - p^{\mu})^2$ auf das Nukleon verknüpft ist. (Der Impuls des einlaufenden Photons definiert die \hat{z} -Richtung.)

In der Drehimpulsbilanz kann das reelle Photon die beiden Spineinstellungen +1 und -1, das Nukleon im Anfangs- und im Endzustand die Spineinstellungen +1/2 und -1/2 besitzen. Das Übergangsmatrixelement vermittelt also zwischen $2_{(\gamma)} \times 2_{(N)} \times 2_{(N')} = 8$ Möglichkeiten. Die Paritätserhaltung der elektromagnetischen und der starken Wechselwirkung halbiert die Anzahl der zur Beschreibung nötigen komplexwertigen Funktionen der kinematischen Variablen. Das heißt, dass in einem "vollständigen Experiment" zu jedem Punkt (W, θ) vier komplexwertige Amplituden, also acht reelle Größen, gemessen werden müssten. Tatsächlich sind nur vier Amplituden und drei relative Phasen, also sieben Größen zu bestimmen. Eine übergreifende Phase kann willkürlich festgelegt werden.

Die Wahl einer konkreten Form der Amplituden wird durch die Fragestellung bestimmt: Während sich beispielsweise die Spin- (CGLN-) Amplituden $F_1 \dots F_4$ besonders zur Multipolentwicklung in θ_{π} eignen [CGLN57], lassen sich Polarisationsobservable einfacher in den oben motivierten Helizitätsamplituden $H_1 \dots H_4$ oder den durch unitäre Transformation daraus gewonnenen Transversalitätsamplituden ausdrücken. Im Zusammenspiel von Nukleonmodell und Experiment müssen die Observablen durch das Modell reproduziert oder Amplituden aus den Observablen gewonnen werden.

Die obige Diskussion der Spineinstellungen liefert dabei die Anleitung für die Experimente: Der Spin der Teilchen im Anfangszustand kann festgelegt und der Spin der Teilchen im Endzustand kann gemessen werden. Ein Ergebnis der Arbeit von [BDS75] ist, dass Dreifachpolarisationsexperimente, d.h. Experimente mit polarisiertem Strahl, polarisiertem Target und Messung der (Rückstoß-)Polarisation des auslaufenden Nukleons nicht nötig sind. Aus einem geschickt gewählten Satz von maximal Doppelpolarisationsexperimenten lassen sich alle nötigen Informationen gewinnen. Im Folgenden werden, der obigen Referenz und [KDT95] folgend, Einfach- oder Doppelpolarisationsexperimente vorgestellt, die insgesamt 16 Observable definieren:

 Polarisierter Strahl und/oder polarisiertes Target (Typ S und BT): Bei Messung mit polarisiertem Strahl und/oder polarisiertem Target lässt sich der Reaktionsquerschnitt wie folgt parametrisieren:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = \left. \frac{\mathrm{d}\sigma}{\mathrm{d}t} \right|_{\mathrm{unpol}} \left\{ \begin{aligned} 1 & -\delta_L \Sigma \cos(2\varphi) \\ & +\Lambda_x \left[-\delta_L H \sin(2\varphi) + \delta_C F \right] \\ & -\Lambda_y \left[-T + \delta_L P \cos(2\varphi) \right] \\ & -\Lambda_z \left[-\delta_L G \sin(2\varphi) + \delta_C E \right] \end{aligned} \right\}$$
(2.3)

2.1 Vollständiges Experiment in der Einpionphotoproduktion

A bezeichnet dabei den Polarisationsgrad des Targets in \hat{x} -, \hat{y} - und \hat{z} -Richtung, δ_L den Grad an Linearpolarisation des Photonenstrahls mit dem Winkel φ zwischen dem elektrischen Feldvektor und der Reaktionsebene. δ_C gibt den Grad an rechtshändiger Zirkularpolarisation des Photonenstrahls an. Konventionsgemäß ordnet man Größen $\{ d\sigma/dt |_{unpol}, P, \Sigma, T \}$ dem Satz \mathcal{S} (für "single", P tritt unter Punkt 2 als Einfachpolarisationsobservable auf) und die übrigen Doppelpolarisationsobservablen dem Typ $\mathcal{BT} = \{H, F, G, E\}$ zu. Im Vorgriff auf die Polarisationsobservable I^{\odot} in der Doppelpionproduktion sei an dieser Stelle darauf hingewiesen, dass Σ bei unpolarisiertem Target, also in der abgeschlossenen Crystal Ball-Experimentrunde, die einzige in der Einmesonproduktion zugängliche Polarisationsobservable war.

Bei Experimenten mit in \hat{z} -Richtung polarisiertem Frozen Spin-Target reduziert sich Gleichung (2.3) auf:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = \left. \frac{\mathrm{d}\sigma}{\mathrm{d}t} \right|_{\mathrm{unpol}} \left\{ 1 - \delta_L \Sigma \cos(2\varphi) - \Lambda_z \left[-\delta_L G \sin(2\varphi) + \delta_C E \right] \right\}$$
(2.4)

Es lassen sich also G und E bestimmen, siehe beispielsweise den Experimentvorschlag [RBL05].

2. Polarisierter Strahl, Messung der Rückstoßpolarisation (Typ \mathcal{BR}): In diesem Falle schlüsselt sich der Wirkungsquerschnitt in folgende Form auf:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = \left. \frac{\mathrm{d}\sigma}{\mathrm{d}t} \right|_{\mathrm{unpol}} \begin{cases} 1 & -\delta_L \Sigma \cos(2\varphi) \\ & +\Lambda_{x'} \left[-\delta_L O_{x'} \sin(2\varphi) - \delta_C C_{x'} \right] \\ & -\Lambda_{y'} \left[-P + \delta_L T \cos(2\varphi) \right] \\ & -\Lambda_{z'} \left[-\delta_L O_{z'} \sin(2\varphi) + \delta_C C_{z'} \right] \end{cases}$$

 $\Lambda_{x'}$, $\Lambda_{y'}$ und $\Lambda_{z'}$ bezeichnen die Polarisation des gestreuten Nukleons, O und C die hinzukommenden Doppelpolarisationsobservablen bei linear bzw. zirkular polarisiertem Photonstrahl.

Das von Daniel Watts in [WRGP05] vorgeschlagene Rückstoßpolarimeter würde am Wasserstofftarget Zugriff auf die Observablen $O_{x'}$ und $C_{x'}$, sowie P und T erlauben.

3. Polarisiertes Target, Messung der Rückstoßpolarisation (Typ TR): Hier nimmt der Wirkungsquerschnitt folgende Form an:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = \left. \frac{\mathrm{d}\sigma}{\mathrm{d}t} \right|_{\mathrm{unpol}} \quad \begin{cases} 1 & +\Lambda_{y'}P \\ & +\Lambda_x \left[\Lambda_{x'}T_{x'} + \Lambda_{z'}T_{z'}\right] \\ & +\Lambda_y \left[T + \Lambda_{y'}\Sigma\right] \\ & +\Lambda_z \left[\Lambda_{x'}L_{x'} + \Lambda_{z'}L_{z'}\right] \end{cases}$$

In diesem Fall kommen die indizierten Observablen T und L hinzu.

Tabelle 2.1 fasst die Observablen noch einmal zusammen. Diese sind im Allgemeinen, wie in den Anhängen von [BDS75] und [KDT95] tabelliert, bilinear, quadratisch oder

Strahl	Target			Ri	Rückstoß			$Target + R\"ucksto beta$			
	_	-	-	_	x'	у'	\mathbf{z}'	x'	x'	\mathbf{z}'	\mathbf{z}'
	_	х	У	\mathbf{Z}	_	_	_	x	\mathbf{Z}	x	\mathbf{Z}
unpol.	σ_0	—	Т	—	—	Р	_	$T_{x'}$	$-L_{x'}$	$T_{z'}$	$\mathcal{L}_{z'}$
lin. pol.	$-\Sigma$	Η	-P	-G	$\mathcal{O}_{x'}$	-T	$\mathcal{O}_{z'}$	$-L_{z'}$	T'_z	$-L_{x'}$	$-T_{x'}$
zirk. pol.	—	\mathbf{F}	_	-E	$-\mathbf{C}_{x'}$	_	$-\mathbf{C}_{z'}$	_	—	_	_

Tabelle 2.1: Sechzehn Observable der Einmesonphotoproduktion, entnommen aus [KDT95]. Man beachte, dass einige Observable an mehreren Stellen auftreten.

über trigonometrische Gleichungen von den Amplituden abhängig, was die Suche nach "kompletten Experimenten" durch Doppeldeutigkeiten erschwert. Barker et al. zeigen in [BDS75] unter anderem, dass der Satz S zusammen mit fünf weiteren Doppelpolarisationsobservablen, von denen maximal drei aus einem Satz stammen dürfen, alle Mehrdeutigkeiten ausräumen kann (BDS-Regel). Das heißt allerdings nicht, dass dies für jede so gewählte Kombination gilt oder man nicht mit einem Experiment weniger auskommen kann, wenn man eine besonders "geschickte" Kombination findet.

1996 wurden von [KW96] Sätze von Experimenten gefunden, die die BDS-Regel erfüllen, jedoch keine eindeutige Extraktion der vier Amplituden und der Phasen zulassen. Von diesem Ergebnis inspiriert untersuchten Chiang und Tabakin 1997 die Gleichungen erneut und stellten zu ihrer eigenen Überraschung fest, dass es Sätze von vier Doppelpolarisationsobservablen gibt, die zusammen mit S alle Mehrdeutigkeiten ausräumen, man also mit acht Experimenten auskommen könnte [CT97]. Tabelle 2.2 listet auf, welche Doppelpolarisationsexperimente zusammen mit S, G und E ein vollständiges Experiment bilden. Das heißt jedoch nicht, dass sich das vollständige Experiment anhand dieser oder den in der Referenz angegebenen Tabellen auswählen und durchführen ließe. Die bilinearen Verknüpfungen von Observablen und Amplituden lassen sich auch als Randbedingungen interpretieren, die die Größe der Observablen einschränken. Das heißt, dass man möglicherweise eine Vorauswahl trifft, die Observablen enthält, deren Messung sich aufgrund ihrer geringen Größe als nicht praktikabel herausstellt.

$O_{x'}$	Х	Ο	Ο	Ο	Ο	Ο	Ο	Ο	
$\mathcal{O}_{z'}$	Ο	Х	Ο	Ο	Ο	Ο	Ο	Ο	\mathcal{BR}
$\mathbf{C}_{x'}$	Ο	Ο	Х	Ο	Ο	Ο	Ο	Ο	
$C_{z'}$	Ο	Ο	Ο	Х	Ο	Ο	Ο	Ο	
$T_{x'}$	Ο	Ο	Ο	Ο	Х	_	Ο	_	
$\mathbf{T}_{z'}$	Ο	Ο	Ο	Ο	_	Х	_	Ο	$T\mathcal{R}$
$\mathcal{L}_{x'}$	Ο	Ο	Ο	Ο	Ο	_	Х	_	
$\mathbf{L}_{z'}$	Ο	0	Ο	0	—	Ο	—	Х	

Tabelle 2.2: Ausschnitt aus Tabelle III in [CT97]. Experimente in der Einmesonproduktion, die den Satz S zusammen mit den Observablen E und G zu einem vollständigen Experiment ergänzen. X markiert das gewählte siebte Experiment, O diejenigen die dann als achtes in Frage kommen. (Man lese die Tabelle spaltenweise.) Es sei daran erinnert, dass das geplante Rückstoßpolarimeter $O_{x'}$ und $C_{x'}$ erschließt, zusammen mit dem in z-Richtung polarisierten Target also Spalte eins und drei in greifbare Nähe rückt.

2.2 Definition der Helizitätsasymmetrie in der Doppelpionproduktion

Abbildung 2.2: Kinematik der Doppelpionproduktion und Definition des *Helizitätssystems*: $\hat{z}' = \hat{q}$, $\hat{y}' = \hat{y}$ und $\hat{x}' = \hat{y}' \times \hat{z}'$. Wie auch bei der Einmesonproduktion wird die durch k und p' gebildete Ebene als Reaktionsebene bezeichnet. Die durch die beiden Pionen aufgespannte Ebene wird Produktionsebene genannt.

Da die Wirkungsquerschnitte der Doppelpionproduktion im zweiten Resonanzgebiet bis auf etwa 50% des Gesamtwirkungsquerschnitts anwachsen, ist die Konstruktion vollständiger Experimente auch dort von Interesse. Der folgende Abschnitt fasst erste Schritte zusammen und definiert außerdem eines der Ziele dieser Arbeit.

2.2 Observablen in der Doppelpionproduktion und Definition der Helizitätsasymmetrie

Während bei der Einmesonproduktion alle beteiligten Teilchen eine Ebene, die Reaktionsebene, aufspannen, siehe Abbildung 2.1, kommen im Drei-Körper-Endzustand der Doppelpionproduktion, Abbildung 2.2, weitere kinematisch verknüpfte Ebenen hinzu. Eine mögliche Wahl ist die "Produktionsebene", aufgespannt durch die auslaufenden Mesonen, die gegenüber der "Reaktionsebene" um den Winkel ϕ verkippt ist. (ϕ ist auch der Azimutwinkel des π^+ im gestrichenen System.)

An dieser Stelle werden die kinematischen Variablen am Beispiel der Reaktion

$$\gamma(k^{\mu}) + p(p^{\mu}) \to p'(p'^{\mu}) + \pi^+(p^{\mu}_{\pi^+}) + \pi^-(p^{\mu}_{\pi^-})$$

eingeführt, aus der sich die beiden anderen Kanäle, $\gamma p \rightarrow p \pi^0 \pi^0$ und $\gamma p \rightarrow n \pi^+ \pi^0$, leicht ableiten lassen. Notation und Konventionen orientieren sich dabei an denen von L. Roca [Roc05], die sich von W. Roberts [RO05] in Vorzeichen, beispielsweise in der Wahl der \hat{z}' -Richtung, unterscheiden. Zusätzlich zu den oben eingeführten Vierervektoren definiert man $q^{\mu} = p_{\pi^+}^{\mu} + p_{\pi^-}^{\mu} = -p'^{\mu}$ und analog zu (2.2) die Mandelstam Variablen:

$$s = (k^{\mu} + p^{\mu})^2,$$

$$t = (k^{\mu} - q^{\mu})^2 = (p'^{\mu} - p^{\mu})^2,$$

sowie

$$s_{\pi\pi} = (p_{\pi^+}^{\mu} + p_{\pi^-}^{\mu})^2 = q^2$$

$$s_{N\pi^{+,-}} = (p'^{\mu} + p_{\pi^{+,-}}^{\mu})^2,$$

$$t_{\pi^{+,-}} = (k^{\mu} - p_{\pi^{+,-}}^{\mu})^2.$$

 $s_{\pi\pi}$, $s_{N\pi^+}$ und $s_{N\pi^-}$ sind mit s über

$$s_{\pi\pi} + s_{N\pi^+} + s_{N\pi^-} = s - 2m_N^2 - 2m_\pi^2$$

verknüpft. Insgesamt wird der Prozess durch fünf kinematische Variablen, üblicherweise zwei Lorentz-Invariante und drei Winkel, beschrieben. Roberts wählt beispielsweise s und t (bzw. $\theta_{p'}$), sowie $s_{\pi\pi}$ und $d\Omega'_{\pi\pi} \equiv d\theta d\phi$, deren Definition ebenfalls Abbildung 2.2 entnommen werden kann.

Formal unterscheidet sich die Doppel- von der Einpionproduktion durch ein weiteres spinloses Teilchen im Endzustand. Beide Prozesse werden deshalb ähnlich beschrieben. Insgesamt sind in den 64 Observablen acht komplexe Amplituden, d.h. acht Beträge und acht Phasen enthalten. Die Paritätserhaltung verknüpft die fünffach differentiellen Amplituden nun an unterschiedlichen kinematischen Punkten, wodurch sich ihre Anzahl nicht verringert. Es lässt sich aber feststellen, welche der Amplituden ihr Vorzeichen beim Übergang von ϕ nach $2\pi - \phi$ wechseln. Da die Observablen die Amplituden nur bilinear enthalten, sind experimentell nur die Beträge und Phasendifferenzen der Amplituden, also 15 Größen bestimmbar. Für das vollständige Experiment sind neben dem differentiellen Wirkungsquerschnitt Einfach-, Doppel- und Dreifachpolarisationsexperimente nötig. Roberts skizziert in seinem Artikel [RO05] einen Weg dorthin.

Für den vollständigen Wirkungsquerschnitt mit seinen 64 Polarisationsobservablen sei auf die Literatur ([RO05], Gleichung 59), verwiesen. Analog zu 2.4 reduziert sich der differenzielle Wirkungsquerschnitt ohne Messung von Rückstoßpolarisationen allerdings auf¹

$$\frac{\mathrm{d}\sigma}{\mathrm{d}x_i} = \frac{\mathrm{d}\sigma}{\mathrm{d}x_i}\Big|_{\mathrm{unpol}} \quad \begin{cases} 1 & -\Lambda_z P_z + \delta_C (I^{\odot} - \Lambda_z E) \\ & -\delta_L \left[(I^S - \Lambda_z G) \sin(2\varphi) + (\Sigma - \Lambda_z P_z^C) \cos(2\varphi) \right] \end{cases},$$
(2.5)

wovon am unpolarisierten Target nur die Terme

$$\frac{\mathrm{d}\sigma}{\mathrm{d}x_i} = \frac{\mathrm{d}\sigma}{\mathrm{d}x_i}\Big|_{\mathrm{unpol}} \quad \{1 \quad +\delta_C I^{\odot} \\ \quad -\delta_L \left[I^S \sin(2\varphi) + \Sigma \cos(2\varphi)\right]\} \quad (2.6)$$

bleiben.

Ziel der Datenanalyse dieser Arbeit ist die erstmalige Untersuchung der Helizitätsasymmetrie I^{\odot} in Abhängigkeit der Gesamtenergie im Schwerpunktsystem \sqrt{s} und dem Winkel ϕ zwischen Reaktions- und Produktionsebene: $I^{\odot}(\sqrt{s}, \phi) = A$ im neutralen Zerfallskanal.

¹Benennung der Observablen und Wahl der Vorzeichen sind in der Literatur nicht einheitlich. 2.5 und 2.6 orientieren sich des "Wiedererkennungswerts" wegen an [Tho05]. Σ wird manchmal mit I^C bezeichnet.

Die Observablen I^S und $\Sigma \ (\equiv I^C)$ sollen im Rahmen der Dissertation von Fabien Zehr [Zeh06] untersucht werden.

Während Gleichung (2.5) verdeutlicht, dass I^{\odot} beispielsweise bei der Messung von E als Untergrund durch unpolarisierte Targetatome absepariert werden muss, gibt (2.6) zusammen mit obiger Definition des Winkels ϕ die Anleitung zur in Kapitel 4 beschriebenen Analyse der Daten:

$$A(\sqrt{s},\phi) = \frac{1}{\delta_C} \frac{N^+(\phi) - N^-(\phi)}{N^+(\phi) + N^-(\phi)},$$
(2.7)

wobei $N^+(\phi)$ bzw. $N^-(\phi)$ die bei rechtshändigem bzw. linkshändigem Photonenstrahl registrierten Ereignisse mit rekonstruiertem Winkel ϕ im Energiebereich um \sqrt{s} darstellen.

Die Extraktion des Winkels ϕ aus dem Skalarprodukt der Flächennormalen von Reaktions- und Produktionsebene geschieht über die in [Roc05] angegebenen Vorschriften:

$$\cos \phi = \frac{(\vec{k} \times \vec{q}) \cdot (\vec{q} \times \vec{p}_{\pi^+})}{|\vec{k} \times \vec{q}| \cdot |\vec{q} \times \vec{p}_{\pi^+}|}$$

$$= \frac{(\vec{k} \times \vec{p}') \cdot (\vec{p}_{\pi^+} \times \vec{p}_{\pi^-})}{|\vec{k} \times \vec{p}'| \cdot |\vec{p}_{\pi^+} \times \vec{p}_{\pi^-}|}$$
(2.8)

und

$$\sin \phi = -1 \cdot \frac{\left((\vec{k} \times \vec{q}) \times \vec{q} \right) \cdot (\vec{q} \times \vec{p}_{\pi^+})}{|(\vec{k} \times \vec{q}) \times \vec{q}| \cdot |\vec{q} \times \vec{p}_{\pi^+}|}$$

$$= \frac{\left((\vec{k} \times \vec{p}') \times \vec{p}' \right) \cdot (\vec{p}_{\pi^+} \times \vec{p}_{\pi^-})}{|(\vec{k} \times \vec{p}') \times \vec{p}'| \cdot |\vec{p}_{\pi^+} \times \vec{p}_{\pi^-}|}$$
(2.9)

Damit ist

$$\phi = \begin{cases} \arccos(\phi) & \text{falls } \sin(\phi) > 0\\ 2\pi - \arccos(\phi) & \text{sonst.} \end{cases}$$
(2.10)

Mit Hilfe von Abbildung 2.2 lassen sich modellunabhängige Eigenschaften der Asymmetrie erkennen:

- Die Asymmetrie verschwindet bei koplanarer Kinematik. Ist $\phi = 0$, so liegen alle Teilchen in einer Ebene. Die Paritätstransformation kehrt die Helizität der Photonen um, belässt die Teilchen aber in der Reaktionsebene. Sie führt also $A(\phi)$ nach $-A(\phi)$ über. Wegen der Paritätserhaltung gilt also $A(\phi = 0) = -A(\phi = 0) = 0$ und natürlich auch $A(\phi = 2\pi) = 0$.
- Der Übergang $\phi \to 2\pi \phi$ kann als Spiegelung der Produktionsebene an der Reaktionsebene aufgefasst werden, was äquivalent zum Übergang $\hat{y} \to -\hat{y}$ ist. Anhand der Feldvektoren rechts- bzw. linkshändig polarisierter ebener elektrischer Wellen $\vec{E}^{\pm} \sim \mathcal{R}e\left((\mp 1, -i, 0)e^{i(kz-\omega t)}\right)$ kann man sich klarmachen, dass dies ebenfalls dem Übergang von rechtshändigen zu linkshändig Photonen entspricht. Deshalb gilt: $A(\phi) = -A(2\pi - \phi)$. Obige Aussage $A(\phi = 0) = 0$ ist in dieser Beziehung als Spezialfall enthalten.

• $A(\phi)$ kann also in eine reine Sinusreihe entwickelt werden:

$$A(\phi) = \sum_{n=1}^{\infty} a_n \sin(n\phi) \text{ mit } n = 1, 2, 3, \dots$$
 (2.11)

• Vertauscht man die beiden produzierten Pionen, so geht ϕ in $\phi + \pi$ über. Sind die beiden Pionen identisch, oder können sie im Experiment nicht unterschieden werden, so gilt $A(\phi) = A(\phi + \pi)$. Das heißt insbesondere, dass dann in (2.11) nur Terme zu geradem *n* beitragen. Falls der niedrigste Fourierkoeffizient dominiert, erwartet man also eine sin(2 ϕ)-Kurve zu beobachten.

Der letzte Punkt bedeutet insbesondere, dass ohne Teilchenunterscheidung zwischen π^+ und π^- für den Kanal $\gamma p \to p \pi^+ \pi^-$ nur eine "reduzierte Asymmetrie" beobachtbar ist. Die in dieser Arbeit erzielten Ergebnisse sind also weder mit den in [Str05] veröffentlichten Messungen, noch mit den in [Roc05] angegeben Vorhersagen direkt vergleichbar. Die in Kapitel 5 folgenden Modellvorhersagen wurden von den Theoriegruppen unter Aufgabe der Unterscheidbarkeit von π^+ und π^- angefertigt.

2.3 Modell der Valencia-Gruppe und Bedeutung der Helizitätsasymmetrie

L. Rocas Vorhersagen der Helizitätsasymmetrie [Roc05] stützen sich auf das seit den 1990er Jahren von der Theoriegruppe um E. Oset, [GTO94], [GTO96], entwickelte Modell, insbesondere auf den in [NOVVR01] skizzierten Stand. Die Stärke des Modells liegt darin, unpolarisierte Observablen, also Wirkungsquerschnitte und invariante Massenverteilungen, von der Produktionsschwelle bis zu Photonenergien von etwa 800 MeV für alle Ladungskanäle zu beschreiben, vergleiche Abbildung 2.3.

Abbildung 2.3: Vergleich zwischen gemessenen und berechneten Produktionsquerschnitten. Links: $\gamma p \rightarrow p \pi^+ \pi^-$, rechts: $\gamma p \rightarrow p \pi^0 \pi^0$. Die Daten stammen aus [Bra95], [Kot01] und [Ass01], die Vorhersagen aus [GTO96].

Das Modell berücksichtigt die in Abbildung 2.4 zitierten Baumdiagramme, engl. "tree level diagrams", die aus Photonen, Pionen, ρ -Mesonen, Nukleonen, Nukleon- und Δ -Resonanzen (betrachtet werden P₃₃: $\Delta(1232)$, P₁₁: N*(1440), D₁₃: N*(1520) und D₃₃: N*(1700)) aufgebaut sind. Nicht jeder Mechanismus liefert Beiträge in jedem Isospinkanal. Während beispielsweise die Produktion zweier geladener Pionen vom $\pi \Delta \rightarrow N \pi \pi$ -Übergang (Δ -Kroll-Ruderman-Kontakt-Term, Mechanismus i) dominiert wird, fehlt dieser im neutralen Kanal aufgrund fehlender Kopplung des Photons an das neutrale Pion. Zum neutralen Kanal tragen nur die Mechanismen e, f, g, h, k, l, m, o, p, q, r und u bei.

Die Empfindlichkeit der Observable $I^{\odot}(\sqrt{s}, \phi)$ auf Beiträge der Mechanismen beziehungsweise Interferenzen und ihre Energieabhängigkeit wird für den Endzustand p $\pi^0 \pi^0$ mit Hilfe der Abbildungen 2.5 und 2.6 demonstriert: Oben links wird die Amplitude der durch Mechanismus (k) allein produzierten Asymmetrie mit etwa 2% angegeben. Darunter ist zu sehen, dass die Brutto-Asymmetrie ohne diesen Mechanismus bei $\sqrt{s} = 1400 \text{ MeV}$ verschwindet, während die Amplitude bei $\sqrt{s} = 1500 \text{ MeV}$, siehe Abbildung 2.6, im gleichen Fall 10% übersteigt. Für (k) allein ist sie allerdings nahezu energieunabhängig. Die beiden anderen Graphen der ersten Zeile demonstrieren die Interferenz der nukleonischen Beiträge (e, f, g) mit denen des $\Delta(1232)$ (h, k, m, o, p). In der letzten Zeile wird die Änderung der Amplitude bei Auslassung der Roper- bzw. D₁₃-Resonanz gezeigt. Der Graph unten rechts gibt das Ergebnis für das gesamte Modell an. Neben einem Anstieg der Amplitude von etwa 2% auf mehr als 5% wird also beispielsweise ein Vorzeichenwechsel zwischen $\sqrt{s} = 1400 \text{ und } \sqrt{s} = 1500 \text{ MeV}$ erwartet.

Abbildung 2.4: Im $\gamma p \to p \pi^+ \pi^-$ -Modell berücksichtigte Mechanismen. Unbeschriftete durchgezogene Linien symbolisieren Nukleonen, mit Δ ist das $\Delta(1232)$ gemeint. Zur Reaktion $\gamma p \to p \pi^0 \pi^0 \pi^0$ tragen nur e, f, g, h, k, l, m, o, p, q, r, u bei. Entnommen aus [Roc05].

2.3 Modell der Valencia-Gruppe und Bedeutung der Helizitätsasymmetrie

Abbildung 2.5: Helizitätsasymmetrie $I^{\odot}(\sqrt{s} = 1400 \text{ MeV}, \phi)$ im Kanal $\gamma \text{ p} \rightarrow \text{p} \pi^0 \pi^0$ ausgewertet für ausgewählte Beiträge zum Modell bzw. Gesamtergebnis (unten rechts). Entnommen aus [Roc05].

Abbildung 2.6: Dieselben Beiträge zur Helizitätsasymmetrie wie in Abbildung 2.5, jedoch bei einer Schwerpunktsenergie von $\sqrt{s} = 1500$ MeV, ebenfalls entnommen aus [Roc05].

Von der Elektronenquelle und der Beschleunigeranlage ausgehend wird in diesem Teil der Arbeit der Gesamtaufbau des *Crystal Ball und TAPS-Experiments* vorgestellt. Während auf die Erzeugung hochenergetischer polarisierter Photonen nur kurz eingegangen wird, bilden die im Rahmen dieser Promotion konzipierten und aufgebauten Systeme, sowie die in der Datenanalyse (Kapitel 4, ab Seite 65) verwendeten Komponenten den Schwerpunkt des Kapitels.

3.1 Das Mainzer Mikrotron MAMI

Abbildung 3.1: Aufbau eines Rennbahnmikrotrons. Der Strahl wird unten links ein- und oben rechts über einen "Extraktionsmagneten" ausgekoppelt.

Der Elektronenbeschleuniger MAMI (*Ma*inzer *Mi*krotron) bildet das Kernstück der Experimentieranlagen am Institut für Kernphysik, siehe Abb. 3.2.

Die an einer Glühkathode oder für spinpolarisierten Strahl aus einem GaAsP-Kristall per Photoeffekt freigesetzen Elektronen werden im Injektor-Linearbeschleuniger (ILAC) auf relativistische Geschwindigkeiten (3,5 MeV) vorbeschleunigt und über die Rennbahnmikrotrone RTM1 ($\approx 14 \text{ MeV}$), RTM2 ($\approx 180 \text{ MeV}$) und RTM3 auf 855 MeV kinetische Energie (maximal $\approx 883 \text{ MeV}$) gebracht. Eine weitere Beschleunigerstufe, die als Harmonisches Doppelseitiges Mikrotron (HDSM) ausgeführt wird, wird derzeit aufgebaut. Die geplante Endenergie liegt bei 1500 MeV.

Eine Grundidee bei der Konstruktion der Rennbahnmikrotrone, siehe Abb. 3.1, ist, die Beschleunigungssektion möglichst effizient zu nutzen. Dazu ist diese zwischen zwei

Abbildung 3.2: Überblick über die Experimentieranlagen des Instituts. Die in der Quelle freigesetzten Elektronen werden vom Injektor-Linearbeschleuniger für das erste Rennbahnmikrotron RTM1 vorbeschleunigt und über die Kaskade RTM1, RTM2 und RTM3 auf bis zu $\approx 883 \text{ MeV}$ gebracht. Das im Bau befindliche Harmonische Doppelseitige Mikrotron wird Elektronenenergien von etwa 1500 MeV ermöglichen. Die in dieser Arbeit vorgestellten Experimente fanden in der mit A2 gekennzeichneten Halle statt.

Dipolmagneten angebracht, die den Strahl um jeweils 180° umlenken und so wieder in die Beschleunigungssektion zurückführen. Da die Elektronen bei jedem Umlauf Energie gewinnen, sich also die Bahnradien vergrößern, ist diese Methode durch Abmessungen und Feldstärke der Umlenkmagnete begrenzt. Das Volumen und damit das Gewicht der Magnete skaliert mit der dritten Potenz der Elektronenenergie. Die Diplole der dritten Stufe wiegen je 450 t. Damit wird die Erweiterung der Anlage nach dem RTM-Prinzip unpraktikabel. Um weiterhin mit normalleitenden Magneten auszukommen, werden für die nächste Stufe vier Magnete (je 125 t) verwendet, die den Strahl um je 90° ablenken. Auf der Kostenseite steht, dass wegen der komplizierteren Strahldynamik die Polschuhe speziell geformt werden müssen. Man gewinnt allerdings eine zweite dispersionsfreihe Rückführung, die mit einem zweiten Linearbeschleuniger genutzt wird, siehe z.B. [Jan02]. Einige Parameter der Anlage sind in Tabelle 3.1 zusammengestellt.

Die Beschleuniger werden mit einer Arbeitsfrequenz von 2,45 GHz betrieben. Die etwa 1° langen "Bunches" haben somit einen Abstand von etwa 400 ps. Experimenten mit typischerweise 1 ns Zeitauflösung erscheint der Strahl also als Gleichstrom, d.h. er hat ein

	Linac	RTM1	RTM2	RTM3	HDSM	
Endenergie [MeV]	$3,\!45$	14,34	179,7	855,0	1500	
Anzahl der Umläufe		18	51	90	43	
Energiegewinn/Uml. [MeV]		0,599	$3,\!24$	$7,\!50$	$16,\!63 - 13,\!93$	
Energiebreite [keV]		9	18	60	110	
Magnetfeldstärke [T]		1,026	0,555	$1,\!284$	$1,\!54$	
Gewicht der Magnete [t]		$2 \times 1,3$	2×43	2×450	4×250	
Tastverhältnis	100%					
Maximalstrom	$100 \mu A (30 \mu A \text{ polarisiert})$					
Endenergie	180–855 MeV, in 15 MeV Stufen 1500 MeV					

3.2 Erzeugung und Markierung polarisierter Photonen

Tabelle 3.1: Einige Kenngrößen des Elektronenbeschleunigers MAMI (entnommen aus [Jah91] und [Jan02]). Bei Erhöhung der Beschleunigerleistung und der Magnetfeldstärken über die Nominalwerte hinaus ist zur Zeit eine Endenergie von bis zu ≈ 883 MeV möglich.

makroskopisches Tastverhältnis von 100%. Die Behandlung zufälliger Koinzidenzen zwischen Elektronen und Experimenttrigger wird dadurch erleichtert, siehe zum Beispiel Abschnitt 4.4. Außerdem steht der Strahl unterbrechungsfrei zur Verfügung. Es werden keine Beschleunigerringe gefüllt und anschließend entleert. Das bedeutet, dass anders als z.B. im COMPASS-Experiment, keine durch die Struktur des Strahls vorgegebenen Zeitmarken oder Zeiträume ohne Strahl ("off-spill-periods") zur Verfügung stehen, siehe Abschnitt 3.5.7. Die in dieser Arbeit analysierten Daten wurden mit longitudinal spinpolarisiertem Strahl bei einer Energie von $E_0 \approx 883 \,\text{MeV}$ mit einen Strom von zuerst 8,5 nA, später 10 nA genommen.

3.2 Erzeugung und Markierung hochenergetischer polarisierter Photonen

Dieser Abschnitt gibt einen kurzen Einblick in Physik und Technik der Erzeugung des Photonenstrahls und des "Bremsstrahlungstaggings", siehe auch [Ahr93]. Da der Strahl reeller Photonen am Mainzer Mikrotron durch Bremsstrahlung an einer dünnen Folie erzeugt wird, steht ein kontinuierliches Spektrum bis fast zur Energie des einlaufenden Elektrons zur Verfügung. Für viele Experimente, so auch für das hier beschriebene, ist die Festlegung der Energie des einlaufenden Photons als kinematische Eingangsgröße, d.h. ein quasimonochromatischer Photonstrahl, nötig oder wünschenswert. Dieser wird durch die Photonmarkierungsanlage, den *Glasgow-Tagger*, mit einem Fluss von etwa 10⁸ Photonen/s zur Verfügung gestellt.

Bremsstrahlung

Freie geladene Teilchen können keine reellen Photonen abstrahlen. Zum Ausgleich der Energie-Impulsbilanz ist immer Wechselwirkung mit einem Feld, z.B. dem der Atomkerne einer Radiatorfolie nötig. Wegen der im Vergleich zur Elektronenmasse sehr großen Kernmasse ist der Energieübertrag an die Kerne vernachlässigbar. Es gilt also in sehr guter Näherung:

$$\vec{p}_{\gamma} = \vec{p}_0 - \vec{q} - \vec{p}_{e'}$$
 und $E_{\gamma} = E_0 - E_{e'}$ (3.1)

Dabei bezeichnen E_0 bzw. \vec{p}_0 und $E_{e'}$ bzw. $\vec{p}_{e'}$ die Elektroneigenschaften vor und nach dem Streuprozess, E_{γ} und \vec{p}_{γ} die Photoneigenschaften, sowie \vec{q} den Impulsübertrag auf den Kern. Stellt man sich stark vereinfachend vor, das Elektron behielte seine Bewegungsrichtung bei und werde beim Passieren des Kernfeldes harmonisch beschleunigt und abgebremst, so würde in seinem Ruhesystem monoenergetische Dipolstrahlung abgegeben, deren "Keulen" durch Lorentztransformation ins Laborsysten stark nach vorne "geboostet" sind. Tatsächlich ist die Bewegung des Elektrons im Feld nicht harmonisch, wodurch ein kontinuierliches Energiespektrum mit

$$\frac{d\sigma}{dE_{\gamma}} \propto \frac{1}{E_{\gamma}} \tag{3.2}$$

entsteht. Die Winkelverteilung der Photonen wird über $\vartheta_c = m_e/E_0$, den charakteristischen Winkel, parametrisiert. Für kleine Winkel und relativistische Elektronen ist $d\sigma/d\vartheta \propto \vartheta/(\vartheta^2 + \vartheta_c^2)^2$. Daraus folgt, dass der Anteil an Photonen innerhalb eines Konus mit Öffnungswinkel ψ , $\alpha(\psi)$ näherungsweise zu

$$\alpha(\psi) \approx \frac{1}{1 + \left(\vartheta_c/\psi\right)^2} \tag{3.3}$$

abgeschätzt werden kann¹. Etwa 50% der Photonen liegen also im Konus mit $\psi = \vartheta_c$.

Der Impulsübertrag an den Rückstoßpartner ist, wie auch der Energieübertrag, klein, meist nahe dem minimal möglichen von $|\vec{q}_{min}| = |\vec{p}_0| - |\vec{p}_{e'}| - |\vec{p}_{\gamma}| \approx p_{\gamma} \cdot m_e^2/(2E_0E_{\gamma})$. Deshalb ist die Richtung des auslaufenden Elektrons mit der des Photons stark korreliert und es lässt sich ebenfalls ein charakteristischer Öffnungswinkel, $\vartheta_c^e = (E_{\gamma}/E_{e'})\vartheta_c$, definieren. Der Spektrometermagnet des Photonentaggers, siehe nächsten Abschnitt, bildet die auslaufenden Elektronen möglichst unabhängig von ihrem Polarwinkel θ , (Öffnungswinkel ϑ) nach den Impulsen aufgefächert in seiner Fokalebene ab. Die Energie der Photonen kann dann über Gleichung 3.1 aus dem Bahnradius bestimmt werden.

Während der meisten Experimente mit dem Crystal Ball wurden sowohl *linear* als auch *zirkular* polarisierte Photonen erzeugt.

Linear polarisierte Bremsstrahlung entsteht, wenn der Impulsübertrag \vec{q} an den Radiator festgelegt ist. Dazu wird sie durch kohärente Bremsstrahlung an einem Kristallgitter produziert. Da der elektrische Feldvektor in der durch den Impuls des einlaufenden Elektrons \vec{p}_0 und der durch den Impulsübertrag \vec{q} aufgespannten Ebene schwingt, ist es möglich, polarisierte Photonen in Bereichen, den "kohärenten Überhöhungen", des Bremsstrahlungsspektrums anzureichern. Dazu wird eine 100 μ m dünne Diamantfolie wird so gegen den Primärstrahl orientiert, dass durch Auswahl entsprechender Gittervektoren parallel oder senkrecht zum Hallenboden polarisierte Photonen in einem Ausschnitt des Bremsstrahlungsspektrums zur Verfügung stehen, siehe Abbildungen 3.3 und 3.5. Weitere Informationen zur Erzeugung kohärenter Bremsstrahlung findet man beispielsweise in [Sch01].

Der zur Messung der Helizitätsasymmetrie nötige zirkular polarisierte Photonenstrahl wird durch Einschuss von in oder entgegen der Strahlrichtung spinpolarisierten Elektronen

¹Zahlenspiel: Ein Kollimator mit 2,5 mm Durchmesser im Abstand von 2,5 m hinter dem Radiator öffnet einen Konus mit $\psi \approx 1 \text{ mrad.} 5$ m hinter der Folie erhält man bei E₀ = 880 MeV einen 5 mm durchmessenden Strahlfleck mit etwa $\alpha \approx 43\%$ der Photonen. (Genauere Rechnungen liefern etwa 10% niedrigere Werte).

Abbildung 3.3: Polarisation des Photonenstrahls: Rechnung nach [OM59] für die zirkulare (glatter Verlauf) und Simulation für die lineare Polarisation. Oberhalb von $E_{\gamma} = 440 \text{ MeV}$ ist der Polarisationsgrad bei linearer Polarisation sehr gering, vergleiche Abbildung D.1. Die Parameter beider Graphen sind so gewählt, dass sie den Einstellungen der in dieser Arbeit ausgewerteten Strahlzeiten entsprechen. Die Simulation wurde mir von Erik Heid zur Verfügung gestellt.

erzeugt. Dazu werden die Elektronen in der Quelle mit zirkular polarisiertem Laserlicht aus einem direkten Halbleiter² ausgelöst, [Ste98]. Die Händigkeit des Laserlichtes und damit auch die des Elektronenstrahls wird über eine Pockelszelle gewählt. Um systematische Effekte zu unterdrücken wird sie regelmäßig, von einem Pseudozufallszahlengenerator gesteuert, neu festgelegt. Über einen Geschwindigkeitsfilter (Wien-Filter) direkt hinter der Quelle und Feinabstimmung der Endenergie in RTM3 kann die Lage des Spinvektors am Ort des Experiments, in unserem Falle am Bremsstrahlungsradiator, ausgerichtet werden. Eine Änderung von $\Delta E/E = \pm 1, 4 \times 10^{-3}$ rotiert den Spinwinkel bei E₀ = 855 MeV um $\pm 60^{\circ}$, [Tio02]. Die Spinfehlstellung (oder Spinmissweisung) beträgt nach Rechnungen der Beschleunigergruppe bei der höchsten im μ_{Δ^+} -Experiment gemessenen Energie von 883,28 MeV 13,91° und bei der Niedrigsten (883,06 MeV) 5,81°. Die Zuordnung der Elektronenhelizität (+/-) zur in den Experimentdaten protokollierten Pockelszellen-Einstellung (ADC10, niederwertigstes Bit zeigt positive Helizität an) wurde im Dezember 2005 von Kurt Aulenbacher und mir über Mott-Polarimetrie geprüft. Zur Auswertung der $E_0 = 570,19$ MeV-Strahlzeit vom 10. bis zum 28. Januar 2005 muss das Polarisationsbit umgekehrt interpretiert werden ($\alpha = -179^{\circ}$), [Aul06]. Im Bremsstrahlungsprozess wird Helizität vom Elektronenstrahl (Polarisationsgrad P_e) auf den Photonstrahl übertragen. Nach [OM59] beträgt der Polarisationsgrad des Photonstrahls P_{γ} :

$$P_{\gamma} = P_e \frac{4x - x^2}{4 - 4x + 3x^2} \quad \text{mit} \quad x = \frac{E_{\gamma}}{E_0}.$$
 (3.4)

²Direkter Halbleiter: Elektronen lassen sich direkt, d.h. ohne Zwischenprozesse vom Valenz- ins Leitungsband heben.

Die Beschleunigergruppe [Aul05] gibt $P_e = (82 \pm 5)\%$ für den Polarisationsgrad des Elektronstrahls am Ort des Radiators an. Zusammen mit der Strahlenergie von $E_{\gamma} =$ 883 MeV ergibt sich bei Vernachlässigung der oben erwähnten Spinfehlstellung der in Abbildung 3.3 dargestellte Verlauf der Photonstrahlpolarisation. Eine Überwachung der Elektronen- oder Photonenstrahlpolarisation, beispielsweise durch Møller- oder Compton-Transmissions-Polarimetrie, war während der Strahlzeiten 2004/2005 nicht möglich.

Photonenmarkierung

Abbildung 3.4: Photonenmarkierungsanlage (Glasgow-Tagger) der A2-Kollaboration

Zweck der Photonenmarkierung (engl. Photontagging) ist a) die Bestimmung der Energie des reaktionsauslösenden Photons durch Koinzidenz mit dem Produktdetektor und b) die Bestimmung des einlaufenden Elektronenflusses in Abhängigkeit der Energie.

Hinter der Radiatorfolie ist dazu der "Glasgow-Tagger" aufgebaut. Der etwa 70 t schwere Dipolmagnet reinigt den Photonenstrahl von den Elektronen und lenkt den Primärstrahl zum Strahlfänger, in dem die Strahlenergie abgebaut wird. Dieser wirkt außerdem als Faradaybecher, mit dessen Hilfe der Strahlstrom überwacht wird. In der Nähe der Fokalebene des Magneten sind 353 Plastikszintillatoren angebracht, die mit ihren Nachbarn jeweils zur Hälfte überlappen. Zur Rauschunterdrückung sind Nachbarn in Koinzidenz geschaltet, wodurch 352 logische Kanäle entstehen. Die "Tagger-Leiter" deckt etwa 7% bis 95% des Elektronenimpulsspektrums mit einer Auflösung von ≈ 2 MeV pro Kanal ab (bei $E_0 = 883$ MeV). Bild 3.4 zeigt ein Schema des Aufbaus. Ein typisches Leiterspektrum aus der in Kapitel 4 vorgestellten Datenanalyse ist in Abbildung 3.5 dargestellt. Die Überhöhnung (etwa ab Kanal 187) ist auf den Beitrag kohärenter Bremsstrahlung zurückzuführen.

Im Bereich $E_{\gamma} = 674 - 728$ MeV ist zur Verbesserung der Energieauflösung die Taggerlupe oder Tagger-Microscope montiert, siehe [Rei99]. In der Fokalebene des Magnetspektrometers sind 96 teilüberlappende Plastikszintillator-Fasern (BC408) mit einem Querschnitt

3.3 Das Wasserstofftarget

Abbildung 3.5: Verteilung der Elektronen auf der Taggerleiter ("Scalerspektrum"). Kanal 0 entspricht einer Photonenergie von $E_{\gamma} = 819 \text{ MeV}$, Kanal $284 \approx 205 \text{ MeV}$. Man erkennt die kohärente Überhöhung auf der $1/E_{\gamma}$ -Verteilung. Die Einbrüche stammen aus (zeitweise) defekten Kanälen.

von $2 \times 3 \text{ mm}^2$ angeordnet, die über sechs Hamamatsu 6568 Multianodenphotomultiplier ausgelesen werden. Aufgrund der Anordnung erhält man 191 logische Kanäle unterschiedlicher Breite (Kanal: Einzelfaser oder Koinzidenz zweier benachbarter Fasern, "Fenceplot"). Die Photonenenergien lassen sich so genauer als 400 keV bestimmen, vergl. [Rei04b].

Zur Bestimmung von Wirkungsquerschnitten ist die genaue Kenntnis des einfallenden Photonenflusses nötig. Die Zählrate eines Leiterkanals ist ein Maß für die Photonenrate im zugehörigen Energiebereich. Durch Kollimation, Møllersteuung und andere Prozesse ist die Anzahl der Photonen am Target immer niedriger als die Leiterzählrate. Das Verhältnis am Experiment einlaufender Photonen zu Elektronen auf der Leiter, $\eta_T = N_{\gamma}/N_e$, die Markierungseffizienz oder Tagging-Efficiency, wird deshalb regelmäßig gemessen. Dazu wird ein Bleiglas-Čerenkov-Detektor mit 100 %iger Ansprechwahrscheinlichkeit und sehr kurzen Signalen bei niedrigem Strom in den Photonstrahl gefahren. Für die Bestimmung der Helizitätsasymmetrien in der Doppelpionproduktion wird η_T nicht benötigt. Die Messungen dienen allerdings als Ausgangspunkt für die Zeiteichung des Experiments, siehe Abschnitt 4.1.2 auf Seite 69. Die erreichte Zeitauflösung ist besser als 1 ns.

Die Analyse der Markierungseffizienzen gehörte während der Strahlzeiten zu meinen Aufgaben. Anhang C zeigt die Berechnung des statitischen Fehlers auf η_T .

3.3 Das Wasserstofftarget

Für die Flüssigwasserstoff- und Deuteriumstrahlzeiten wurde das DAPHNE-Kryotargetsystem verwendet, siehe z.B. [Tho04a]. Die zylindrische Kaptonzelle (Wandstärke 125 μ m, nutzbarer Durchmesser ≈ 24 mm) wurde auf eine Länge von etwa 48 mm verkürzt, vergl. Abb. 3.6. Die Zelle ist von 8 Lagen "Superisolationsfolie" (8 μ m Mylar, 2 μ m Aluminium) umschlossen. Da sich am Austrittsfenster Eis ablagerte, wurde ein zusätzlicher 10 μ m

Kaptonzylinder um die Isolationsschicht montiert. Als Streukammer dient eine Röhre aus 1 mm dickem kohlefaserverstärktem Kunststoff (Durchmesser 82 mm). Die Endkappe ist ebenfalls aus Kapton.

Das Targetgas strömt durch die Wärmetauscher des Verflüssigers, einer Expansionskolbeneinheit in der ⁴He adiabatisch, d.h. ohne Wärmeaustausch mit der Umgebung, von 21 bar auf 9 bar entspannt wird. Dabei kühlt der Wasserstoff oder das Deuterium ab und kondensiert schließlich. (Wasserstoff siedet unter Normaldruck bei 21,4 K, Deuterium bei 23,7 K. Das Target wird bei etwa 20 K und 1077 mbar betrieben.) Das verflüssigte Gas fließt dann in ein Reservoir und kann zur Targetzelle weitergeleitet werden. Die Temperatur wird an verschiedenen Stellen des Systems über Gegenheizungen geregelt. Eine ausführlichere Beschreibung des DAPHNE-Targets findet man beispielsweise in [War97].

Abbildung 3.6: "Röntgenaufnahme" der Targetzelle. Sechs Belichtungen eines Polaroid-Sofortbildfilmes mit dem Photonstrahl. Das Target wurde dazu quer zum Strahl aufgestellt und verschoben. Die Maske misst $40 \text{ mm} \times 20 \text{ mm}$, die Löcher haben Durchmesser von 10 mmund 2 mm. Links liegt der Kupferring, in den das Eintrittsfenster eingeklebt ist. Rechts erkennt man das Kapton-Austrittsfenster. Aus der Aufnahme wurde die Targetlänge ($47,6\pm0,3 \text{ mm}$) bestimmt, [Tho04b].

3.4 Das Detektorsystem: Gesamtaufbau und Subdetektoren

Der ideale Detektor erlaubt, eine Reaktion vollständig zu rekonstruieren. Das heißt, er misst die Viererimpulse (z.B. als Energie, Polarwinkel (θ) und Azimutwinkel (φ) sowie z-Koordinate) aller beteiligten Teilchen und bestimmt die Teilchenart. Die Eingangsseite der Reaktion wird in unserem Fall über die Photonenmarkierungsanlage und das Target festgelegt.

- Photonenmarkierungsanlage: Das Tagging-System besteht aus den 353 Szintillatoren des Fokalebenendetektors, den 96 Fasern des Tagger-Mikroskops und dem Bleiglasdetektor am Ende des Photonstrahls. (Dieser Teil des Aufbaus wurde bereits im Abschnitt 3.2 auf Seite 26 vorgestellt.)
- **Target:** Als Protonentarget diente die in Abschnitt 3.3 vorgestellte mit flüssigem Wasserstoff gefüllte Zelle. Je nach experimentellen Möglichkeiten muss über die Energie-Impuls-Bilanz der vermuteten Reaktion oder eine Spurrekonstruktion nachgewiesen werden, dass die Produktteilchen tatsächlich am Proton der Targetfüllung und nicht etwa an den Ein- oder Austrittsfenstern der Targetzelle oder an der Streukammer produziert wurden.
- Die Produktteilchen werden in ortsauflösenden Kalorimetern nachgewiesen.
- **Crystal Ball:** Der Crystal Ball besteht aus 672 NaI(Tl) Kristallen, die in zwei Halbkugeln um das Target herum angeordnet sind. Für Strahlein- und -Ausgang ist der Detektor nach vorne und hinten etwa $\Delta \theta = 20^{\circ}$ offen. In seinem Strahltunnel befinden sich der Teilchenidentifikationsdetektor und zwei Vieldrahtproportionalkammern.
- **Teilchenidentifikationsdetektor:** (Particle Identification Detector, PID). Ein Zylinder aus 24 Plastik-Szintillatorstreifen erlaubt, den in den NaI-Kristallen nachgewiesen Teilchen das Attribut "geladen" oder "neutral" zuzuordnen. Über die Energiedeposition im Plastik und den dahinterliegenden Kristallen können ferner Protonen von Pionen oder Elektronen unterschieden werden. Der PID ist direkt um die Streukammer angebracht.
- **Drahtkammern:** Der PID wird von zwei zylindrischen *Vieldrahtproportionalkammern* umschlossen. Im Idealfall erlauben diese, die Winkel θ und φ geladener Teilchen mit guter Auflösung zu messen, sowie die z-Komponente der Trajektorie zu rekonstruieren.
- **TAPS:** Die Vorwärtsöffnung des Crystal Balls wird durch das TAPS-Kalorimeter bis auf eine kleine Öffnung für den Primärstrahl geschlossen. TAPS besteht aus 510 BaF_2 -Kristallen und ihren Vetokacheln (Charged Particle Veto, CPV) aus Plastik-Szintillator.

Auf diese Einzeldetektoren wird im Folgenden eingegangen.

3.4.1 Der Crystal Ball-Detektor

Als fein segmentierter NaI(Tl)-Detektor eignet sich der Crystal Ball besonders zur Vermessung von Multiphotonen-Endzuständen in Zeit, Energie, Polar- und Azimutwinkel.

In diesem Abschnitt werden hauptsächlich mechanische Merkmale des Detektors erläutert, die zum Beispiel den Rahmen für die Konstruktion der Innendetektoren festlegen aber auch helfen, die Auflösung des Systems und die Winkelverteilungen der nachgewiesenen Teilchen zu verstehen.

Die Detektorgeometrie baut auf einem Ikosaeder, demjenigen regelmäßigen Polyeder auf, der bei gegebenem Durchmesser das größte Volumen bietet. Die zwanzig Dreiecksflächen (*Major Triangles*) sind in vier *Minor Triangles* eingeteilt, die ihrerseits aus jeweils

Abbildung 3.7: Der Crystal Ball-Detektor. Ein *Major Triangle* bestehend aus vier *Minor Triangles* ist markiert. Der Strahltunnel ist sechseckig.

Abbildung 3.8: Ein Crystal Ball-Einzelmodul.

neun Kristallen aufgebaut sind. Für den Strahltunnel wurden im Ein- und Ausgangsbereich je 24 Kristalle weggelassen, so dass durch insgesamt 672 Module ein Raumwinkel von $\Delta \Omega \approx 4\pi \times 94\%$ abgedeckt wird, siehe Abb. 3.7. Die Kristalle haben die Form von Pyramidenstümpfen mit dreieckiger Grundfläche mit einer Kantenlänge von meist 5,1 cm innen und 12,7 cm außen. Die Länge der Kristalle beträgt 40,6 cm, entsprechend 15,7 Strahlungslängen, siehe Abbildung 3.8. Insgesamt gibt es elf verschiedene Kristallgeometrien. Die hexagonalen Strahlein- und -Ausgänge haben einen Durchschuss von 11,3 cm Radius.

Um Arbeiten am Target und den Innendetektoren zu erleichtern, sind die Kristalle in zwei Halbkugeln montiert, die einzeln um den Targetmittelpunkt justiert werden. Über ein Spindelgetriebe lässt sich die Obere bis auf einen Luftspalt von ≈ 5 mm an die Untere heranfahren. Zusammen mit den 1,6 mm (0,9 Strahlungslängen) dicken abschließenden Stahlblechen entsteht so eine insensitive Äquatorregion von $4\pi \times 1,6\%$.

Nach außen wird der Detektor durch Halbschalen aus 2,5 cm dickem Aluminium (Durchmesser etwa 66 cm, entsprechend 26 Zoll) begrenzt. In diese sind unter anderem die Glasfenster zur Ankopplung der Photomultiplier und die Stahlseile, mit denen die Konstruktion im Inneren verspannt ist, eingelassen. Zwischen den Kristallen und den Fenstern liegt ein Spalt von etwa 1/2 Zoll. Beide Halbkugeln werden auf niedrigem Innendruck gehalten. Damit

sollen sowohl Schäden an den Kristallen durch Hydratation vermieden als auch die Stabilität der Konstruktion weiter verbessert werden.

Um die Kristalle optisch voneinander zu isolieren, sind sie in 0,15 mm dickes reflektierendes Papier und zusätzlich 0,05 mm Aluminiumfolie eingepackt. Die Wirkung der die Photomultiplier umgebenden μ -Metall-Abschirmungen wird durch einen 1 Zoll langen randverspiegelten Luftspalt auf Kosten der Lichtsammeleffizienz verbessert. Da sich weder die eingearbeitete Leuchtdiode, noch die Glasfaser zur Kalibration bewährt haben, wurde über den Einbau von Lichtleitern aus Silikon nachgedacht.

Tabelle [3.2] fasst einige Daten des Detektors nocheinmal zusammen. Weitere Informationen, insbesondere zur Lichtsammeleffizienz, Eichung bei niedrigen Photonenergien und Niederenergieauflösung des Systems sind in Abschnitt 4.1.1 sowie in [Cha77] und in [Unv04] zu finden.

Raumwinkelekzentenz	$0^{\circ} \le 10 \le 360^{\circ}$	$20^{\circ} < \theta < 160^{\circ}$			
Raumwinkeiakzeptanz	$0 \leq \varphi < 300$	$20 \leq 0 \leq 100$			
Winkelauflösung	$\sigma(\varphi) = 2^{\circ} \operatorname{bis} 3^{\circ} / \operatorname{sin} \theta$	$\sigma(\theta) = 2^{\circ}$ bis 3°			
Länge der Kristalle	40,6 cm, entspr. 15,7 Strahlungslängen				
Energieauflösung	FWHM $m_{\gamma\gamma} < 17$ MeV in p $\gamma \rightarrow p \pi^0$ s. Abb. 4.				
Zeitauflösung	\approx 2,5 ns FWHM in p	π^0 gegen den Tagger			
Innenradien	Tunnel 10,3 cm	Kavität ≈ 10 Zoll			

Tabelle 3.2: Einige Daten des Crystal Balls.

3.4.2 Der Teilchenidentifikationsdetektor

Der Particle Identification Detector (PID) wurde maßgeblich von Evangelie Downie an der Universität Glasgow entwickelt und gebaut [Dow03]. Hauptzweck ist, durchgehende Protonen, Pionen und Elektronen über das Verhältnis der Energiedeposition im Plastik und im Crystal Ball $(\Delta E/E)$ voneinander zu unterscheiden, siehe Abschnitt 4.2. Außerdem wurde in Strahlzeiten mit Deuterium-Target, $d(\gamma, p)n$, und für Kalibrationsmessungen mit Höhenstrahlung für den Trigger das Diskriminator-ODER der PID-Elemente und die im Ball deponierte Gesamtenergie kombiniert, siehe Abschnitt 3.5.10 ab Seite 55, sowie Abschnitt 3.5.11.

Als zylindrischer Detektor besteht der PID aus 24 Streifen aus EJ-204 Plastikszintillator. Das Material zeichnet sich durch seine geringe Dichte und kurze Signalanstiegszeit ($\approx 0.7 \text{ ns}$) aus. Jeder der 315 mm langen, 13,1 mm breiten und 2 mm dicken Detektoren ist in aluminisierte Mylarfolie eingepackt. Der Zylinder wird mit schwarzer Kunststofffolie vom Umgebungslicht isoliert.

Der enge Strahltunnel des Crystal Balls sowie die bereits vorhandenen Drahtkammern und das Kryotarget setzen die Rahmenbedingungen für die Konstruktion: Aus Platzgründen musste er zwischen Streu- und innerer Drahtkammer angebracht werden. Da durch Vielfachstreuung die Auflösung der Spurrekonstruktion aus den Drahtkammern vermindert wird, mussten die Streifen auf Kosten von Energiedeposition und Lichtausbeute so dünn wie möglich gehalten werden. Die Simulation liefert für mit $\theta = 20^{\circ}$ einlaufende Protonen einer Energie

Abbildung 3.9: Maße eines PID-Szintillatorstreifens.

Abbildung 3.10: Geometrie des Teilchenidentifikationsdetektors. Entnommen aus [Dow03].

von 25 MeV eine Aufweitung von 4° FWHM bei einem Energieverlust von 20 MeV, $\Delta E \approx 1.4$ MeV FWHM. Jeder Streifen wird durch einen Photomultiplier (Hamamatsu R1635 mit E1761-04 Spannungsteiler) über einen kurzen Lichtleiter in Strahlrichtung ausgelesen.

Die Struktur wird strahlaufwärts von einem Aluminiumring in einer Messingröhre und strahlabwärts ebenfalls durch einen Aluminiumring von den Drahtkammern gehalten. Das Aluminium dient gleichzeitig als Kühlkörper für die Photomultiplierbasen.

Für die kommenden Messperioden ist ein neuer Detektor geplant, dessen Photomultiplier nicht strahlabwärts, sondern strahlaufwärts motiert werden.

3.4.3 Die Drahtkammern

Abbildung 3.11: Rekonstruktion des Durchtrittsortes eines ionisierenden Teilchens.

	Kam	mer
	1	2
Länge [mm]	360	560
Innenradius [mm]	60	92
Außenradius [mm]	68	100
Drähte	192	288
Innere Streifen	60	92
Äußere Streifen	68	100

 Tabelle 3.3: Geometrie der Drahtkammern.

Während der Planungsphase 2001/2002 war noch nicht klar, welche Innendetektoren für den Crystal Ball geeignet sind und auch tatsächlich Verfügung stehen könnten. Ein Plastikzur Faserdetektor, ähnlich dem Erlanger-Innendetektor des Crystal Barrel-Experiments in Bonn, ein Hohlzylinder aus leicht gegen die Strahlachse verdrehten Straw-Tubes und die Vieldrahtproportionalkammern des DAPHNE Detektors [Aud91] wurden in Erwägung gezogen. Die beiden letzten Möglichkeiten wurden im Rahmen der Diplomarbeit [Alb03] näher untersucht. Beide Detektoren erwiesen sich als geeignet, den im Experiment zur Messung des magnetischen Moments des Δ^+ erwarteten Raten standzuhalten. Die Wahl fiel auf die Drahtkammern, da sie die bessere Auflösung in Strahlrichtung besitzen, sich durch Abdrehen der Kunststoffhalterung von Kammer 2 schnell für den Einsatz im Crystal Ball modifizieren ließen und, nicht zuletzt, weil sie ein in der A2 bewährtes System sind.

Die Kammern bestehen aus einer inneren und einer äußeren Rohacell Röhre (1 mm Wandstärke, $\rho = 0.05 \text{ g/cm}^2$) auf die beidseitig 25 μ m dicke Kaptonfolien geklebt sind. Zur Abschirmung gegen elektromagnetische Einstrahlung sind die Außenflächen mit Aluminium überzogen. Auf den Innenflächen sind Kathodenstreifen aufgebracht (0,1 μ m dick, 4 mm breit, 0,5 mm Abstand). Als Anoden werden vergoldete Wolframdrähte mit einem Durchmesser von 20 μ m verwendet, die im Abstand vom 2 mm nebeneinander verlötet sind. Die Lücke zwischen den Kathoden und der Anode beträgt 4 mm.

Als Kammergas wird eine Mischung aus 74,5% Argon, 25% Ethan und 0,5% Freon benutzt. Ionisierende Teilchen hinterlassen eine Wolke von Elektron-Ion-Paaren entlang ihrer Spur (Primärionisation). Diese Elektronen werden schnell vom positiv geladenen

3.4 Das Detektorsystem

Abbildung 3.12: Module der TAPS-Vorwärtswand, Blick in Strahlrichtung. TAPS ist logisch in acht Segmente aufgeteilt, von denen je zwei für den Trigger zusammengefasst werden.

Draht aufgesammelt und erzeugen dabei weitere Ladungspaare, während die Ionen langsamer zu den Kathodenstreifen driften. Die Kammern werden im Proportional-Bereich betrieben (Kammerspannung U₁ ≈ 2445 V, U₂ ≈ 2475 V), d.h. die in Primär- und Sekundärionisation erzeugten Ladungen sind proportional zueinander. Die auf den Streifen influenzierten Ladungen werden über Alcatel 1757 Verstärker ausgelesen. Die Signale der Drähte werden über LeCroy PCOS 2735PC Verstärker-Diskriminatorkarten digitalisiert.

Die inneren und äußeren Kathoden winden sich helixförmig mit entgegengesetztem Drehsinn unter $\pm 45^{\circ}$ zu den Drähten um die Kammer und kreuzen sich zwei mal. Über den angesprochenen Draht kann entschieden werden, welche der beiden möglichen z-Koordinaten zur Teilchenspur gehört, siehe Abbildung 3.11.

Durch Bildung des Ladungsschwerpunktes aus den Analogsignalen ist die Auflösung nicht auf die mechanischen Abstände beschränkt. $\Delta \varphi = 1,4^{\circ}$ und $0,7^{\circ} < \Delta \theta < 1,1^{\circ}$ wurden erreicht. $\Delta \theta$ ist von θ abhängig, da die Breite der Ladungsverteilungen mit dem im Gas zurückgelegten Teilchenpfad steigt ($\Delta \theta = f(\sin \theta)$). Details zur Spurrekonstruktion werden in Abschnitt 4.3 und [Sch06] erörtert.

3.4.4 Die TAPS-Vorwärtswand

Der TAPS-Detektor (*Two/Three Arm Photon Spectrometer* oder passender *Travelling Around Photon Spectrometer*) wurde bereits in vielen Experimenten am Mainzer Photonstrahl als ortsauflösendes Kalorimeter eingesetzt. Hier seien das Jüngste [Ros04] und das Pilotexperiment zur Messung des magnetischen Moments des Δ^+ , [Kot01], stellvertretend für viele andere detaillierte Beschreibungen der Aufbauten genannt. [NBD+02] gibt einen Überblick über die besonderen Eigenschaften von BaF₂ und vergleicht es mit anderen anorganischen Szintillatoren. An dieser Stelle sei nur kurz angesprochen, dass sich das Szintillationslicht aus zwei Komponenten unterschiedlicher Abklingzeit ($\lambda_s^{max} = 220 \text{ nm}, \tau_s = 0,7 \text{ ns}$ und $\lambda_l^{max} \approx 310 \text{ nm}, \tau_l = 620 \text{ ns}$) zusammensetzt. Mit zunehmender durch das einfallende Teilchen verursachter Ionisationsdichte verschiebt sich das Verhältnis, mit

dem die beiden Komponenten angeregt werden, zur langen Komponente hin. Dadurch lassen sich beispielsweise Photonen von Protonen (Neutronen) nach Auswertung zweier unterschiedlich langer Integrationsfenster auf das Energiesignal unterscheiden (Pulsformanalyse, PSA).

Im vorliegenden Experiment wurde eine Wand aus 510 TAPS BaF₂-Kristallen zur Abdeckung der Raumwinkel mit $\theta < 20^{\circ}$ im Abstand von 174 cm vom Targetmittelpunkt aufgebaut. Die hexagonalen Kristalle (Durchmesser des Innenkreises 59 mm) sind 250 mm, entsprechend 12 Strahlungslängen, tief. Jeder Kristall ist zusammen mit seinem Photomultiplier (Hamamatsu R2059-1), dem Spannungsteiler und der μ -Metall Abschirmung lichtdicht und mechanisch stabil eingepackt. Dadurch lassen sich aus den Modulen schnell und flexibel Detektorwände aufbauen. 2,35 cm vor den Kristallen wurde je eine Vetokachel aus 5 mm dickem Plastikszintillator montiert. Um die Massenbelegung durch Lichtleiter gering zu halten, werden deren Pulse über Glasfasern zu Multianodenphotomultipliern am Rande der Vetowand geführt [Jan98].

Die BaF₂-Kristalle haben eine Energieauflösung von $\sigma(E)/E = (0.59 \%/\sqrt{E/\text{GeV}} + 1.9\%)$ für $E_{\gamma} < 800 \text{ MeV}$ und eine hervorragende Zeitauflösung von $\Delta t < 200 \text{ ps}$ FWHM. Damit stehen für die Identifikation einfallender Teilchen die Ionisationsdichte im BaF₂, die Vetoinformation (bis zur Fertigstellung der neuen Elektronik nur ja/nein, dann auch ΔE und Zeit) und die Flugzeit (TOF), z.B. bezüglich des Tagger-Elektrons, zur Verfügung.

Abbildung 3.13: Pulsformanalyse. Aufgetragen ist die während des kurzen gegen die während des langen Zeitfensters im Kristall deponierte Energie (Nr. 455 wurde zufällig herausgegriffen). Bild von Stefan Lugert [Lug06].

PSA	Veto	Teilchen
\in Photonband	Ja	Elektron
$\in \mathbf{Photonband}$	Nein	Photon
\notin Photonband	Ja	Proton
\notin Photonband	Ja	Neutron
Nicht möglich	Ja	Proton
Nicht möglich	Nein	Photon

Schlüssel: $\in (\notin)$ Photonband: innerhalb (außerhalb) des Photonbandes.

Tabelle 3.4: Teilchenidentifikation. Beispiel für eine Entscheidungstabelle. Neben Pulsformanalyse und Vetoinformation steht die Flugzeit, z.B. bezüglich des Elektrons auf der Taggerleiter, zur Verfügung.

3.5 Detektorelektronik, Trigger und Auslese

Die Messung des magnetischen Moments des Δ^+ war Hauptexperiment der ersten Crystal Ball Runde am Mainzer Mikrotron: Die interessierende Reaktion $\gamma p \rightarrow p \pi^0 \gamma'$ hat im Bereich der Delta-Resonanz einen Wirkungsquerschitt von nur $\sigma_T \approx 60 \text{ nb}$, [Kot01], während die Einfach π^0 -Photoproduktion bei $E_{\gamma} \approx 330 \,\text{MeV}$ auf $300 \,\mu\text{b}$ ansteigt. Die Signatur beider Reaktionen unterscheidet sich hingegen nur um ein Photon. Für ein erfolgreiches Experiment mussten in der Detektorausleseelektronik zwei Voraussetzungen geschaffen werden: Eine "schnelle" Ereignisverarbeitung und ein "selektiver" Trigger.

Die in der Mitte der 1970er Jahre entworfene Digitalisierungskette des Crystal Balls war allerdings nur für Ereignisraten von einigen Hertz, wie sie an Elektron-Positron-Collidern auftraten, ausgelegt. Außerdem wurde sie immer schwieriger zu betreiben: Ersatz für defekte elektronische Bauteile ist teilweise nicht mehr erhältlich.

Der Neuaufbau sollte also unter anderen folgende, teilweise auseinander hervorgehende, Anforderungen, erfüllen:

- Etwa 1000 Ereignisse/Sekunde sollten verarbeitet werden können. Für *jeden* beteiligten Kristall müssen *Energie- und Zeitinformation* ausgelesen werden. Um rauschende Kanäle schnell zu identifizieren, sollte die Rate der Einzelkristalle mit Scalern überwachbar sein.
- Der Crystal Ball muss den Experimenttrigger liefern. Dazu soll die Anzahl der getroffenen Cluster, also Regionen benachbarter Kristalle, in die Hardware-Entscheidung einfließen.
- Das Experiment, also nicht nur die Elektronik, musste nach zwei Jahren Vorbereitungs- und Aufbauzeit betriebsfertig sein.
- Es sollten am Markt erhältliche Komponenten verwendet werden. Auf Eigenentwicklungen sollte wegen des Zeit- und Personalbedarfs möglichst verzichtet werden. Trotzdem musste das System finanzierbar bleiben.
- Die Komponenten mussten in die A2-Umgebung, insbesondere in das Datenerfassungssystem ACQU integrierbar sein. Die Neuimplentierung einer Datenerfassung kam nicht in Frage.
- Das System muss für verschiedene Experimente flexibel konfigurierbar sein. Das heißt nicht nur, dass es den Anforderungen der ersten Experimente genügen, sondern insbesondere auch, dass es auf höhere Ausleseraten ausbaufähig sein muss.

Diesen Überlegungen folgend wurde der Aufbau aufgabenorientiert modularisiert: Im Gegensatz zur neu aufgebauten TAPS-Elektronik sollte nicht eine Baugruppe möglichst alle Signalverarbeitungsschritte in sich vereinen (siehe [Dre04]), stattdessen wurde "klassisch" vorgegangen. Ein Modul übernimmt nur eine Teilaufgabe, z.B. Signalaufteilung oder Zeitmessung. Dem Nachteil des hohen Verkabelungsaufwands und Platzbedarfs stehen bei Planung und Betrieb zahlreiche Vorteile gegenüber, unter anderen:

- Arbeiten können parallelisiert und Entscheidungen hinausgeschoben werden. Das heißt, Teilsysteme können aufgebaut werden, während man andere noch spezifiziert, prüft oder produziert.
- Jeder Signalausgang liefert gleichzeitig einen Diagnosepunkt. An diesem ist zu sehen, wie das Signal *tatsächlich* am nächsten Modul ankommt.

• Fehler können leichter ausgeglichen werden. Nur Teilsysteme müssen geändert, repariert, ergänzt oder ausgetauscht werden. Das erleichtert auch den Ausbau des Systems für spätere Experimente: Komponenten können wiederverwendet werden.

Im nächsten Abschnitt wird noch einmal kurz der Ausgangspunkt, die alte Crystal Ball-Elektronik, vorgestellt. Danach wird der Neuaufbau schematisch präsentiert. Mit dem Neuaufbau war auch eine neue Zusammenfassung der Detektoren zu Kabelgruppen nötig. Diese wird in Abschnitt 3.5.3 erläutert. Anschließend werden die Subsysteme und Module detaillierter beschrieben. Das Triggersystem und die Auslese werden in Abschnitt 3.5.11 erörtert. Das Konzept für einen neuen Cluster-Multiplizitätstrigger schließt das Kapitel ab.

3.5.1 Vorherige Ausleseelektronik

Aufgabe der ursprünglichen Crystal Ball-Elektronik war es, die Ladungsinformation der 672 Photomultiplier innerhalb von 6 ms zu digitalisieren und einen auf der Gesamtenergie beruhenden Trigger zu liefern. Der dynamische Bereich erstreckte sich vom elektronischen Rauschen, also etwa 0,5 MeV, bis 4 GeV bei weniger als 1% Nichtlinearität³.

Die Linearität wurde durch spezielle Auswahl der Photomultiplier (SRC L50B01) und Konstruktion angepasster Basen sichergestellt, siehe Abschnitt 3.5.4.

Der weite Bereich wurde durch Aufteilung des Signals auf zwei Zweige erreicht: Es wurde für den "Low Energy Channel" (LEC, 0-200 MeV) nachverstärkt. Um Kosten für Analog-Digital-Wandler zu sparen, wurde die Ladung mit einer Integrate-and-Hold-Schaltung (im gleichnamigen Modul, I&H-Module) zwischengespeichert und dann kanalweise nacheinander über wenige ADCs digitalisiert.

Zur Vermeidung von Masseschleifen werden die Signale der Photomultipler mit 2:1 Übertragern ausgekoppelt und über zweiadrige abgeschirmte Twisted-Pair Kabel (Belden 9271, 124 Ω) zur Rückseite der I&H-Module geleitet, in die sie ebenfalls differentiell, per 1:1 Übertrager, eingekoppelt werden. Das Signal wird, wie bereits erwähnt, für den LEC nachverstärkt und für beide Kanäle an zwei RC-Gliedern mit 620 ns Zeitkonstante kontinuierlich aufintegriert. Über Feldeffekttransistoren müssen die Kondensatoren 380 ns nach Ereignisbeginn, entsprechend dem Maximum des integrierten Signals, von den Eingängen abgekoppelt werden (HOLD-Eingang), vergl. [God76]. Ein Operationsverstärker, als Spannungsfolger beschaltet, hält die Momentanspannung zur Digitalisierungsseite.

Die neun Kanäle eines Minor Triangles sind in einem Modul zusammengefasst. Per CAMAC-Kommando können die 18 Einzelkanäle über HI-506-CMOS-Multiplexer zum Modulausgang durchverbunden werden. Ursprünglich wurden die Ausgänge aller 80 I&H-Module parallel geschaltet und mit einem einzigen 13-Bit-, etwa 8000 Kanäle, ADC (Tracor Northen 1213) nacheinander digitalisiert. Für den Energiesummentrigger führte das Modul Teile der Eingangsströme zu einem Addierer vor dem "Fast Sum Output".

 2×4 Summensignale werden durch zehn "Back-to-Back 36'er"-Module wieder zu Summen aus 36 bzw. 72 Kristallen zusammengefasst, aus denen im nächsten Schritt der Experimenttrigger und das HOLD-Signal abgeleitet werden. Jede 9er-Summe kann über einen Diskriminator (gemeinsame Schwelle für alle Summen eines Moduls) ein Register setzten.

³Das hier zitierte Papier, [Cha77], liegt in zwei Versionen vor. Der Entwurf spricht von 1 MeV, die spätere Version von 0,05 MeV. 0,5 MeV erscheint mir unter optimalen Bedingungen möglich.

Abbildung 3.14: Schema der alten Crystal Ball-Digitalisierungskette.

Für die 36er-Summen gibt es je drei Register mit individuellen Schwellen. Das "Latch-Pattern", d.h. welche Minor Triangles Signale über Schwelle lieferten, kann über CAMAC ausgelesen werden. Werden Register gesetzt, kann das Modul per CAMAC-Look-at-me auf sich aufmerksam machen.

Für jedes Ereignis wurden also zuerst die beteiligten I&H Module ermittelt und anschließend nacheinander deren 18 Energieinformationen digitalisiert.

Eine kurze Abschätzung verdeutlicht, dass dieses Konzept unsere Anforderungen nicht erfüllt: Ein CAMAC Kommando dauere mit Abfrage der Statusinformation $2 \times 1 \,\mu$ s. Seien 6 Photonen im Endzustand, die auf 10 Dreiecke aufschauern. Der ADC (TN1213) benötige etwa 40 μ s pro Konversion. Damit dauert eine Auslese netto, d.h. ohne Rechenzeit, $10 \times 2 \,\mu s + 10 \times 18 \times (2 \,\mu s + 40 \,\mu s) \approx 7,5 \,\mathrm{ms}$, entsprechend 130 Hz.

3.5.2 Schema der aktuellen Crystal Ball-Detektorelektronik

Präludium:

- In der frühen Evaluationsphase zeichnete sich bereits ab, dass die für das COMPASS-Experiment von der Universität Freiburg entwickelten CATCH TDCs für den Crystal Ball in Frage kamen. Damit einhergehend wurde der Einsatz eines COMPASS Trigger-Kontrollsystems nötig. Die CATCH-Scaler schienen ebenfalls für unsere Zwecke geeignet.
- Die Triggerelektronik könnte auf ähnlichen Komponenten wie die von Pawel Marciniewski für WASA (Uppsala) und AMANDA (Südpol) entwickelte Logik beruhen. Diese setzt die für den WASA-Detektor (CsI-Kristalle) entwickelten Diskriminatoren voraus. Um die Signale auf einen logischen- und einen analogen Zweig für Multiplizitätstrigger und TDCs bzw. ADCs aufzuteilen, war die Entwicklung eines "Splitters" nötig, der außerdem Teilsummen der Eingangssignale für den Energiesummentrigger liefern musste. Pawel Marciniweski erklärte sich bereit, seine Diskriminatoren nach unseren Anforderungen weiter- und sogar Splitter neu zu entwickeln.
- Die Suche nach geeigneten ADCs dauerte am längsten. LeCrov LRS1885F-Fastbus-ADCs haben lange Konversionszeiten (bis zu 265 μ s bei 96 Kanälen) und waren, auch gebraucht, nur noch schwer in ausreichender Anzahl zu beschaffen. Der als Prototyp evaluierte CAEN 792N-Dual-Range-ADC wurde gründlich getestet. Er erfüllte die grundsätzlichen Anforderungen bezüglich des dynamischen Bereiches und der Linearität, hatte aber mit nur 4 Kanälen pro Modul eine sehr geringe Packungsdichte und wurde teuer angeboten. Eine geringe Packungsdichte zieht außerdem eine aufwendige Auslese nach sich, sollte also vermieden werden. Der ebenfalls getestete FIADC-64, betreut von Igor Konorow, TU-München, bietet eine für integrierende QDCs kurze Konversionszeit ("Fast-Integrating ADC", 120 ns) und mit 64 Kanälen pro Modul enge Packungsdichte, ist in der Produktion jedoch sehr aufwendig. Deshalb wird nur ein Exemplar zur Auslese der kurzen Signale des Teilchenidentifikationsdetektors eingesetzt, siehe Abschnitt 3.5.10. Die Technische Universität München überließ uns jedoch einen ADC, der das Signal ständig mit 40 MHz abtastet (Sampling-ADC). Außerdem erklärte man sich bereit, diesen mit von uns zu spezifizierenden Datenreduktionsmechanismen zu versehen. Der SADC wurde ebenfalls für COMPASS entwickelt und kann ähnlich den CATCH-Modulen betrieben und ausgelesen werden. Die Eignung des Gerätes für hochauflösende Spektroskopie musste der Kollaboration vor der Anschaffung bewiesen werden.

Abbildung 3.15 zeigt stark vereinfachend die verwendeten Komponenten. Die Analogsignale werden über die oben genannten 124Ω -Kabel zu den aktiven Splittern geleitet. Die Kabel wurden gekürzt und zu Achtergruppen zusammengefasst. Jeder Splitter summiert die 2 × 8 Eingänge für den Gesamtenergietrigger. Ein Ausgang (16 Kanäle) ist direkt mit dem Diskriminator verbunden, der andere Zweig wird durch Delay-Line-Chips um 300 ns verzögert und führt zu den ADCs. Die Verzögerung wurde eingebaut, um "gegatete" ADCs verwenden zu können. (Die Splitter wurden entwickelt bevor die Entscheidung für die SADCs gefallen war.) Das Diskriminatormodul bietet für jeden Kanal zwei Einzeldiskriminatoren mit eigenen Schwellen. Eine Schwelle wird möglichst knapp über

Abbildung 3.15: Stark vereinfachendes Planungsschema der neuen Crystal Ball-Digitalisierungskette. Dieses "historische" Bild half bei ungezählten Diskussionen. Die Abbildungen im weiteren Verlauf des Kapitels zeigen mehr Details. Anders als hier eingezeichnet, wird nur ein Scaler verwendet. Dieser ist, wie auch der einfache Multiplizitätstrigger, mit den logischen ODER-Ausgängen der Diskriminatoren verbunden.

dem Rauschen eingestellt und liefert das Zeitsignal für die CATCH-TDCs, die andere ist für den Cluster-Multiplizitätszähler vorgesehen, vergleiche Abschnitt 3.5.12. Ihr ODER-Signal wird zur Zeit für den einfachen Multiplizitätstrigger, siehe Abschnitt 3.5.11, und den Scaler benutzt. Auf den Einbau eines Scalerkanals für jeden Kristall wurde verzichtet. Der Platz in den VME-Crates wurde zur Auslese der Drahtkammern verwendet, siehe Abschnitt 3.5.10.

Wichtiges Merkmal der Messelektronik ist, dass die ADCs und TDCs die Signale ständig abtasten, bzw. ständig Signale an ihren Eingängen akzeptieren. Es muss kein GATE-Signal *vorbereitet* werden. Die Geräte arbeiten freilaufend. Der Experimenttrigger wird über das Trigger-Kontrollsystem (TCS) an alle "Front-End"-Module verteilt, woraufhin diese die Daten aus einem Bereich ihres Puffers an die nächste Ausleseinstanz weiterreichen. Das heißt, dass der Trigger auf die Signale folgt und kostspielige, aufwändige und die Qualität vermindernde Verzögerung tausender Einzelkanäle nicht nötig ist. Bei unserem Aufbau werden die Daten in Zwischenspeicher ("Spionagepuffer"), die ursprünglich nur zur Fehlersuche vorgesehen waren, geschrieben und dort von Prozessrechnern über VME-Bus ausgelesen.

Bei COMPASS und in den nächsten A2-Experimenten senden die Module ihre Daten per S-Link, ein 160 MByte/s schnelles optisch ausgeführtes Übertragungsverfahren, an PCs.

Die ADCs sind zwar als VME-Einschübe ausgeführt, besitzen jedoch keine Möglichkeit zur direkten Kommunikation über dem Bus oder per S-Link. Mit einem speziellen Multiplexer (dem GeSiCA oder iMUX) werden bis zu 8 Module gesteuert und ausgelesen.

3.5.3 Neuverkabelung und Numerierung der Detektorkanäle⁴

Abbildung 3.16: Numerierung der Kristalle eines Bunches. Erläuterung der Struktur im Text.

Als Spezialentwicklung konnten die I&H-Module der Geometrie des Crystal Balls folgen: ein I&H-Modul verarbeitete die Signale der 9 Kristalle eines Minor Triangles. 4 Minor Triangles wurden zu einem Major Triangle zusammengefasst. Die 20 Major Triangles bilden den Ikosaeder mit 720 möglichen Elementen. Um keine Spezialfälle berücksichtigen zu müssen, war für jedes Element eine Digitalisierungskette aufgebaut. Die Numerierung erfolgte nach dem Schema: Major Triangle/Minor Triangle/Kristall, also M/m/c. Moderne Digitalelektronik hat meist $2^n, n \in \mathbb{N}_0$, also 1, 2, 4, 8, 16, 32, 64 oder 128 Kanäle pro Modul.

(Tatsächlich sind alle aufgeführten Gruppierungen, n > 1, in der Crystal-Ball Elektronik zu finden.) Es musste also eine neue Möglichkeit gefunden werden, die Kristalle in Gruppen zusammen zu fassen.

Die Signale einer rautenförmigen Gruppe aus 8 aneinandergrenzenden Kristallen sind nun zu einem Bündel (Bunch) zusammengefasst. Rautenform, d.h. Vierecke mit 8 Nachbarvierecken, ist Voraussetzung für den geplanten Clusterzähler, siehe Abschnitt 3.5.12, Seite 60. Außerdem ist $2^n \forall n \geq 3$ durch 8 teilbar. Es entstehen also 720/8 = 90 Bunches. Die Numerierung innerhalb eines Bunches ist in Abb. 3.16 dargestellt. Bis auf die Gruppe {3, 6} haben alle vier Unterrauten aufeinanderfolgende Kristallnummern. Die Signalsummen der 4 Kristalle des "oberen" bzw. des "unteren" Dreiecks sind an der Vorderseite der Splits herausgeführt, vergl. Abschnitt 3.5.5. Abbildung 3.17 zeigt die Verteilung der Bündel über den Detektor. Tabelle A.1 in Anhang A enthält zusätzlich die Elementnummern im Analyseprogramm sowie die ADC- und TDC-Kanalnummern.

3.5.4 Photomultiplier und Basen

Da die gesamte Verstärkung durch die Photomultiplier erfolgte, wurden diese aufgrund ihrer Linearität ausgewählt. Zur Auslese der 672 Kristalle werden SRC L50B01 Sekundärelektronenvervielfacher zusammen mit einem speziell für den Detektor entwickelten Spannungsteiler verwendet, siehe Abbildung 3.18. Die Kombination liefert bei 4 GeV deponierter Energie Pulse mit etwa 80 mA im Maximum (40 V Anodenausschlag) und toleriert pro Sekunde etwa 80 solcher Pulse, bevor die Verstärkung um mehr als 1% zusammenbricht.

Alle Spannungsteiler werden mit +1500 V an der Anode betrieben. Der $10 \, k\Omega$ -Vorwiderstand in der Versorgung dient als Sicherung. Die Kathoden liegen auf (Hochspannungs-) Masse. Durch ein Potentiometer zwischen der dritten und der vierten Dynode werden die Verstärkungen aneinander angeglichen, so dass alle Digitalisierungsketten möglichst gleiche Energieinformation bei gleicher Energiedeposition in den Kristallen liefern. Der Abgleich war ein Gegenstand der Diplomarbeit von Marc Unverzagt, [Unv04].

Treffen Elektronen auf die Anode, sinkt deren Potential, so dass am $10 \,\mathrm{k}\Omega$ -Widerstand

⁴Ich war lange im Zweifel, ob ein eigener Abschnitt für dieses Thema gerechtfertigt ist. Zu meiner "Rechtfertigung" möchte ich dem Leser die Lektüre von [Por82], 16 Seiten, empfehlen.

Abbildung 3.17: Verteilung der Kabelbündel über den Crystal Ball. Die Bündelnummern sind mit den großen Zahlen bezeichnet. Die kleine Zahlen entsprechen der Kristallnummer nach dem Schema Major-Triangle/Minor-Triangle/Kristall.

ein Spannungsabfall entsteht. Der Puls wird durch die 20 nF-Kondensatoren vom Gleichspannungsanteil befreit und mit dem Übertrager 2:1 ins Kabel eingespeist. Die 100 k Ω -Widerstände halten die Primärwindungen auf definiertem Potential. Um Einstreuungen gering zu halten, erfolgt die Übertragung also differentiell über abgeschirmtes Twisted Pair-Kabel (verdrillte Aderpaare). Die Kabelabschirmung ist mit der Masse der Signalsplitter, siehe nächsten Abschnitt, verbunden.

Fast alle Basen sind in Gießharz eingebettet, so dass Defekte nicht zu beheben sind. Die Ersatzbasen sind fast vollständig aufgebraucht.

Abbildung 3.18: Beschaltung der Crystal Ball-Photomultiplier

3.5.5 Aktiver Splitter

Aufgabe der Splitter ist, das differentielle Eingangssignal der Photomultiplier-Basis-Kombination in zwei Ausgangszweige aufzuteilen. Um auf den folgenden Stufen "Standardkomponenten" nutzen zu können, sollten die Signale außerdem negativ und auf Masse bezogen werden. Des Weiteren müssen die Energiesummen vorbereitet werden. Eine Platine verarbeitet die Signale von 2 Kabelgruppen, also 16 Detektoren. Insgesamt sind 45 Module in 23 Gehäusen im Einsatz.

Alle Stufen sind mit Operationsverstärker-Grundschaltungen (MAXIM 4016) ausgeführt: Die Stromschleife ("Blaue Kabel", siehe 3.5.1) wird über Hochpässe ($\tau = 10 \, \mathrm{k\Omega} \times$ $100 \,\mathrm{nF}$) am $130 \,\Omega$ -Abschlusswiderstand in einen 1 : 1 Differenzverstärker eingekoppelt. Dieser treibt über einen Stern $(0\Omega \rightarrow 2 \times 51\Omega)$ die Ausgänge. Die Schaltung ist nicht offsetkompensiert, die Nullinien liegen bei etwa -20 mV. Aus diesem Grund werden die Signale kapazitiv in die Diskriminatoren eingekoppelt. Die ADCs führen eine Software-Offsetkompensation durch, siehe folgenden Abschnitt und Abschnitt 3.5.9. Um Zeit zur Erzeugung von Gate-Signalen für ADCs zu gewinnen, laufen die Signale eines Zweiges über 300 ns Delay Line-Chips. (Ursprünglich wurde spezifiziert, dass die CB-Elektronik innerhalb von 300 ns nach Ereignisbeginn einen Trigger liefern können sollte. Die Signale der Elektronenleiter können ebenfalls 300 ns verzögert abgegriffen werden.) Die Energiesumme wird in zwei Stufen erzeugt: Die Untersummen von vier Kristallen werden (kapazitiv ausgekoppelt) per Umkehraddierer und Inverter gebildet. Sie sind an der Frontplatte herausgeführt (2×4-Pin DIL-Stecker) und können dort gedämpft oder ganz aus der nach dem selben Prinzip gebildeten Gesamtenergiesumme (LEMO-Buchse) genommen werden. Alle 5 Summensignale sind über 100-nF-Kondensatoren ausgekoppelt.

3.5.6 Diskriminatoren

Aus dem unverzögerten Zweig eines Splitters, also 16 Detektorkanälen, werden an einem Diskriminator Signale für Triggerlogik, TDCs und Scaler (Zähler) erzeugt. Die für den WASA-Detektor (1020 CsI(Na)-Kristalle, Signalanstiegszeit (0-100%) etwa 100 ns und Signalabfallzeit etwa 1 ms) konstruierten Module, siehe [Mar01], wurden für den Crystal Ball, der eine ähnliche Signalform (Abschnitt 3.5.9) hat, weiterentwickelt.

Um die Offsetspannung der Splitter zu eliminieren, werden die Signale kapazitiv in die Eingangsverstärker ($v_u \approx 10$) eingekoppelt. Jeder Kanal ist mit zwei "Leading-Edge Diskriminatoren" (MAX962-Komparator) ausgestattet, die in der Regel auf unterschiedliche Schwellen eingestellt werden. Eine wird mit "low threshold", die andere mit "high threshold" bezeichnet. Die Schwellen werden über Spindeltrimmer oder einen Digitalnach-Analog-Wandler für alle Eingangskanäle eines Moduls gemeinsam gesetzt. Die Wahl zwischen programmierten oder am Trimmer gesetzten Schwellen erfolgt über den Schalter an der Frontplatte. Zehn DAC-Einheiten entsprechen etwa 4 MeV im Kristall deponierter Energie. Über die programmierbare Logik lassen sich die Ausgänge den Schwellen recht flexibel zuordnen. Außerdem ist eine digitale Kompensation der Anstiegszeit möglich. Um "Afterpulsing", das erneute Auslösen des Diskriminators durch Störungen auf der fallenden Flanke des Signals, zu unterdrücken, wird die Schaltung nach jedem Puls für etwa 650 ns blockiert.

Im μ_{Δ^+} -Experiment wurden die TDCs an der niedrigen Schwelle ($\approx 2 \,\mathrm{MeV}$) betrieben.

Diese Einstellung liegt deutlich über dem elektronischen Rauschen, so dass die Diskriminatoren nicht zu schwingen beginnen. Das logische ODER der Signale, die über die hohe Schwelle (typ. 20 MeV) kamen, wird für den einfachen Clustertrigger, Abschnitt 3.5.11, und die Scaler genutzt.

Über den LOG-Eingang lässt sich das Modul sperren. (Man könnte in der Programmierung auch festlegen, dass einen spezieller Ausgangsblock, z.B. der für die Scaler vorgesehene, gesperrt wird.) An THR1 und THR2 können die Diskriminatorschwellen nachgemessen werden. Der analoge Summenausgang ist wegen starken Rauschens nicht für Triggerzwecke einsetzbar. Der Frontplattenausgang und der linke Seitenausgang liefern PECL-Signale, der rechte Seitenausgang ECL. An der Rückseite befinden sich zwei 16kanälige TTL-Ausgänge für ein Triggersystem, siehe Abschnitt 3.5.12.

Logik und Zuordnung der Ausgänge zu den implementierten Funktionen ist über sechs CPLDs (Lattice ispLSI, komplexe programmierbare Logikbausteine, die ihr Programm auch nach Abschalten der Versorgungsspannung halten) verwirklicht. Zusätzlich wird der Diskriminator über einen I²C-ähnlichen Bus, der über ein VME-Modul angesprochen wird, gesteuert. Zur Inbetriebnahme *müssen* die Schwellen gesetzt und danach die Maske zurückgenommen werden. Um nachfolgende Module zu testen, lassen sich die Ausgänge softwaregesteuert über einen eingebauten Pulsgenerator triggern. Die Länge der Ausgangspulse ist ebenfalls einstellbar.

Insgesamt sind 45 Diskriminatoren im Einsatz, die in vier Rahmen $(3 \times 11 + 1 \times 12 \text{ Modu-} 1e)$ montiert sind. Einem Rahmen entspricht ein logischer Zweig (Branch) der Steuerung.

3.5.7 Trigger-Kontrollsystem

Bevor in den nächsten Abschnitten auf die verwendete "Front-End-Elektronik"(TDCs, Scaler und ADCs) eingegangen wird, wird in diesem Abschnitt kurz das Auslesekonzept des COMPASS-Experiments, insbesondere in Hinblick auf die Verteilung des Triggers vorgestellt. Ausführliche Informationen können z.B. in [Grü02] und [Gru01] nachgelesen werden.

Um hohe Triggerraten erreichen zu können, müssen lange Totzeiten in der Datenerfassung eliminiert werden. Ein ergiebiger Schritt dazu ist der Verzicht auf eine ereignissynchrone Auslese des Detektorsystems. Traditionell, so auch im beschriebenen Crystal Ball-Aufbau, wird die Erfassungselektronik bei Erzeugung eines Triggersignals verriegelt, die Digitalisierung veranlasst und die ADCs und TDCs nacheinander, z. B. über CAMAC, FASTBUS und VME, ausgelesen. Danach wird das Triggersystem bis zum Eintreffen der nächsten gültigen Ereignissignatur wieder geöffnet. Da auf den Rechnern Multitasking-Betriebssysteme und teilparallelisierte Software eingesetzt werden, können die Daten pseudoparallel zur Auslese zur Speicherung auf Band oder Platte an übergeordnete Instanzen gesendet werden. Die entstehende Totzeit setzt sich unter anderem aus der Zeit, die zwischen der Erzeugung des Triggersignals und dessen Registrierung durch das Ausleseprogramm vergeht und der Zeit für die sequentielle Auslese der Module zusammen. Auf dem verwendeten Ausleserechner liegt die Latenz bei 2,3 bis $3.5 \,\mu s$, für die Auslese eines Wortes aus dem CATCH wurden $1,25\,\mu s$ gemessen. Ein weiteres Problem dieser Methode ist, dass die analogen Signale meist zwischengespeichert werden müssen bis eine erste Ausleseentscheidung gefallen ist. In der Regel sind dazu einige zehn bis einige hundert Nanosekunden nötig. (Ein Koaxialkabel verzögert das Signal etwa 5 ns/m. Für den Tagger sind 300 ns "Delay-Line" installiert.)

Abbildung 3.19: Schema der COMPASS-Auslese. In enger Anlehnung an [Dan02].

Im COMPASS-Datenerfassungssystem, Abbildung 3.19 zeigt eine Übersicht, werden die Signale kontinuierlich durch "freilaufende Frontend-Karten" digitalisiert. Die so erzeugte Datenmenge, zum Beispiel $40 \text{ MHz} \times 10 \text{ Bit/Kanal} \approx 48 \text{ MByte/s/Kanal}$, ist zur Zeit technisch nicht handhabbar, d.h. bei vielen Kanälen weder transportier-, noch speicheroder analysierbar. Deshalb muss die Datenmenge nach wie vor in Hardware reduziert und konzentriert werden. Dazu wird die digitale Information mindestens bis zum Eintreffen eines Triggers in FIFO-Speichern (first in, first out) zwischengepuffert. (Das TDC-System kann beispielsweise $2^{16} \times 117,1 \text{ ps} = 7,67 \,\mu\text{s}$ überbrücken.) Der Trigger muss nun an alle Frontend-Karten verteilt werden, woraufhin diese nur die innerhalb eines eingestellten Zeitfensters angefallenen Informationen mit einer eindeutigen Triggernummer versehen und an die nächste Verarbeitungsstufe, z.B. das CATCH (COMPASS Accumulate Transfer and Control Hardware) weiterreichen. Dadurch wird parallele Verarbeitung möglich. Das nächste Ereignis kann digitalisiert werden, während die Daten der letzten Ereignisse noch zusammengesammelt, d.h. in den CATCHes oder GeSiCAs (GEM Silicon Control and Acquisition) zu "Puffern" konzentriert und abtransportiert werden. Im COMPASS-Experiment werden die Daten von den Ausleseschnittstellen per S-Link (Simple Link, ein am CERN entwickelter Übertragungsstandard mit 160 MByte/s/Verbindung) an Zwischenspeicher (PC-Einsteckkarten) gesendet. Die Zwischenspeicher-PCs (Read Out Buffer, ROB) kontrollieren die Daten auf Korrektheit, fassen sie nach Ereignisnummern zusammen und senden sie dann per Ethernet an "Event Builder"-PCs, die interessante Ereignisse vorselektieren und für die Speicherung sorgen. Die ROB müssen nach Spezifi-

Abbildung 3.20: Schema des Trigger-Kontrollsystems, Erläuterungen siehe Text.

kation die Daten eines SPS-Spills (5,1 s) vollständig aufnehmen können. Für Verarbeitung steht der gesamte Zyklus, d.h. weitere 11,7 Sekunden, zur Verfügung. An MAMI müssen die Daten hingegen in Echtzeit verarbeitet werden.

Im Crystal Ball-Experiment werden die Daten aus den "Spionagepuffern" der CAT-CHES und GeSiCAs per VME-Bus ausgelesen, siehe Abschnitt 3.5.8 und 3.5.9 diese Kapitels.

Das Trigger-Kontrollsystem dient also zur Synchronisation der verwendeten COMPASS-Komponenten. Es muss, obwohl einige Informationen nach der Auslese verworfen werden, in den Aufbau integriert werden. Seine wichtigsten Funktionen sind:

- Verteilung eines Taktsignals (38,88 MHz) mit einer Genauigkeit besser als 50 ps zur Synchronisation der Komponenten. Dies ist besonders für die TDCs wichtig, siehe Abschnitt 3.5.8.
- Verteilung des Triggersignals an alle Ausleseschnittstellen. Laut COMPASS-Spezifikation müssen alle Komponenten die Detektorinformation für mindestens $1,4\,\mu s$ zwischenspeichern können.
- Erzeugung und Verteilung der Ereignisnummer.

Abbildung 3.20 stellt das Trigger-Kontrollsystem schematisch dar. Der 2nd-Level-Trigger, siehe Abschnitt 3.5.11, ist Eingangssignal des TCS-Controllers. Dieser erzeugt für jeden Trigger die Spill- und Ereignisnummer sowie den Triggertyp. Die TCS-Receiver verwerfen alle Ereignisse, die nicht vom für sie eingestellten Typ sind. Dadurch lässt sich der Aufbau in Gruppen einteilen, die nur auf für sie bestimmte Trigger reagieren, von eigenen DAQs gelesen werden und unabhängig von den anderen Gruppen getestet werden können. Im CB-Aufbau sind alle Empfänger auf den gleichen Typ eingestellt. Trigger und Daten werden getrennt zum "Laser Modul" (TTCvx oder TTCex) gesendet. Dieses führt sie zu einem Datenstrom von $2 \times 38, 88 \text{ MBit/s} = 77, 76 \text{ MBit/s}$ zusammen. Das Signal wird "Time-Division-Multiplexed", "biphase encoded" übertragen, d.h. die erste Hälfte jeder 25,72 ns-Periode wird für den Trigger, die zweite für den Datenkanal genutzt. Ein Signalwechsel innerhalb der halben Periode bedeutet "1", das Fehlen eines Übergangs "0". Dadurch wird erstens der 38,88 MHz-Takt ständig übertragen und zweitens die Übertragung des Triggersignals und damit das Zeitraster aller davon abhängigen Systeme an 25,72 ns-Perioden gebunden!

Wie bereits erwähnt, gewinnt der TCS-Empfänger, ein Extramodul am P2 Anschluss der CATCHes, auf den iMUX-Modulen bereits integriert, den Takt aus dem Datenstrom zurück und reicht den Trigger an die Ausleseschnittstellen weiter. Außerdem dekodiert er spezielle Kommandos, wie z.B. Start/Stop DAQ (Aktivierung/Anhalten aller Module per Software-Kommando über die VME-Schnittstelle des TCS-Controllers), Beginn/Ende eines Spills (BOS/EOS: Begin/End Of Spill, NIM-Signale an den Eingängen des TCS-Controllers), RESET der Front-End-Karten, etc. Ein NIM-Eingang erlaubt zusätzlich 1 Bit an die CATCHES weiter zu reichen. Im Falle der Scaler wird es als GATE genutzt.

Zum Betrieb des Systems sind folgende Schritte nötig:

- 1. Laden des TCS-FPGAs und Laden der FPGAs der Empfängerkarten über die CAT-CHes, bzw. Laden der iMUX-FPGAs.
- 2. Anbinden der TCS Empfänger an den Trigger-Typ und Start der DAQ per VME-Kommando über das TCS (config_tcs).
- 3. Begin Of Spill: Das Freischalten der Module wird über den Testpulsgenerator eines CAMAC-Diskriminators bei Eingabe von start oder newrun an der ACQU-Konsole ausgelöst.
- $4. \ Datennahme$
- 5. End Of Spill bei Eingabe von stop oder endrun an der ACQU-Konsole.
- 6. Für den nächsten "Run" zurück zum 3. Schritt⁵.

3.5.8 Zeit-nach-Digital-Wandler und Zähler

Das CATCH-Modul

Das CATCH-Modul (siehe z.B. [Grü02], [Sch02] und [Dan02]) dient als "universelle Ausleseschnittstelle für die Detektorelektronik". Das 9U-VME-Modul besitzt vier Steckplätze für Eingangskarten im CATCH oder Common Mezzanine Card-Format (CMC). Im Crystal Ball-Aufbau werden TDC- und Scalerkarten verwendet. Außerdem stehen beispielsweise HOTLink-CMCs zur Verfügung, die wiederum Daten von anderen Eingangskarten, z.B. dem FIADC (siehe Abschnitt 3.5.10) annehmen können. Bei COMPASS werden die Messdaten per S-Link mit Hilfe einer an der Rückseite des VME-P3 Anschlusses aufgesteckten Ausgangskarte abtransportiert, im Crystal Ball-Experiment werden sie, wie

⁵Man könnte meinen, das System könnte während der gesamten Messzeit "On Spill" gehalten werden. Das ist jedoch nicht möglich, da beispielsweise das vorgeschriebene regelmäßige RESET der CATCH Front-End-Karten mit BOS verbunden ist und die Scaler nur über die Spillstruktur und nicht durch Auslesen auf Null zurückgesetzt werden können.

bereits erwähnt, über den VME-Bus aus einem Zwischenspeicher, der eigentlich zur Fehlersuche dient, ausgelesen. Das Modul erfüllt im Wesentlichen folgende Funktionen:

- Bereitstellung einer einheitlichen Schnittstelle zur Konfiguration der Front End-Karten.
- Verteilung der Trigger und der Ereignisnummern an die Front End-Karten.
- Ereignisweise Zusammenstellung der von den Eingangskarten kommenden Daten und Formatierung in ein einheitliches Format, das S-Link Format [Fis02].
- Zwischenspeicherung der S-Link-Datenblöcke ("Puffer") bis zur Auslese.

Abbildung 3.21: Schema des Datenflusses im CATCH-Modul, entnommen aus [Sch02].

Abbildung 3.21 zeigt den Aufbau des CATCH-Moduls schematisch. Die vier CMCs werden parallel von je einem Merger-FPGA gelesen, der die Daten ereignisweise zusammenstellt und auf Konsistenz prüft. Der Formatter-FPGA fügt diese wiederum zusammen, versieht sie mit einer Herkunftskennzeichnung und speichert die Daten in einem FIFO. Das TCS-FPGA generiert einen Teil des Headers und speichert diesen ebenfalls in einem FIFO. Beide FIFOs werden vom S-Link-FPGA gelesen, der Header, Messdaten und End-Marker zusammenstellt und das Ereignis parallel zum S-

Link-Sender (an P3) und zum "Spy-Buffer" schickt, von dem sie per VME-Bus ausgelesen werden können. An der Frontplatte zeigen 8 LEDs den Status des Moduls an, von denen insbesondere die folgenden für Betrieb und Fehlersuche hilfreich sind: PRG erlischt nach korrektem Laden der FPGAs, NOT nach Laden des TCS Empfängers. TRG zeigt, dass das Modul Trigger annimmt und weiterreicht, das TCS also korrekt in den Messmodus gebracht wurde und Trigger gesendet werden. OFF zeigt an, dass die Front End-Karten zu ihrem Schutz abgeschaltet wurden. Dies geschieht zum Beispiel, wenn das Rauschen der Drahtkammern die knapp eingestellten Schwellen übersteigt. Zur Initialisierung des Moduls sind folgende Schritte wichtig: Laden der FPGAs, Laden des FPGAs auf dem an P2 angeschlossenen TCS-Receiver, Einstellen, dass *alle* Ereignisse *nur* in den Spy-Buffer kopiert werden, Setzen der SOURCE ID für den S-Link-Header und Setzen der geographischen ID der MERGER-FPGAs so, dass die getroffenen Detektorelemente aus den Daten unabhängig von den Identifikationsnummern der Hardware berechnet werden können.

Die TDC-Karte

Die TDC-Eingangskarten sind mit je vier $\mathcal{F}1$ -TDC Bausteinen bestückt, die in "Standard-Digitalisierungsbreite" betrieben werden. Deshalb stehen pro Chip 8 Kanäle mit einer Auflösung von 117,1 ps zur Verfügung⁶. Für den Crystal Ball sind 6 CATCH-Module im

 $^{^6\}text{Die}~\mathcal{F}1\text{-}\text{Chips}$ können auch mit doppelter Auflösung bei halber Kanalzahl oder als "Pattern Units" betrieben werden.

Einsatz. Von den $4 \times 8 \times 4 \times 6 = 768$ Kanälen werden 720 für die NaI-Detektoren verwendet, mit den restlichen werden Triggerzeiten und die Zeitinformation des PID gemessen. Die Karten erfassen LVDS- oder LVPECL-Signale mit einer Mindestlänge von 8 ns. Die Doppelpulsauflösung beträgt 20 ns Flanke-zu-Flanke.

Für den Benutzer erscheinen die TDCs als synchronisierte 16-Bit Zähler: Bei jedem gültigen Treffer wird der Zählerstand zusammen mit der Kanalnummer (totzeitfrei) im Puffer abgelegt. Jeder $\mathcal{F}1$ besitzt einen Puffer für 4 Triggerpulse und 128 Treffer pro Kanal. Gültig bedeutet, dass die Treffer in einem programmierten Zeitfenster vor dem Triggersignal liegen müssen. Trifft ein Triggersignal ein, wird die eingestellte Latenz (auch Wartezeit oder Trigger-Offset) abgezogen und mit den Trefferzeiten verglichen. Der Treffer wird akzeptiert, wenn er innerhalb der eingestellten Fensterbreite lag. Sowohl Latenz, als auch Fensterbreite sind im CB-Experiment auf etwa 1,18 μs eingestellt. Der Trigger muss also *nach* den Treffern geschickt werden. Genau diese Einrichtung macht die Verzögerungsleitungen im Aufbau überflüssig.

Um Zeiten aus den Zählerständen genauer als auf 25 ns rekonstruieren zu können, wird das L1-Triggersignal, siehe Abbildung 3.27 auf Seite 58, als Referenz mitgemessen (ADC2000) und durch die Rekonstruktionsroutine (CatchTDC_t.h) kanalweise abgezogen (diff = d->adc - *fRef, $\Delta t = t_{ADC} - t_{Ref}$). Dabei muss berücksichtigt werden, dass die Zähler umgelaufen sein könnten. Der Überlauf ist von den Betriebseinstellungen des $\mathcal{F}1$ abhängig und liegt im CB-Aufbau bei ETDCOverflow = 62054. Die Zähler werden bei Begin-Of-Spill synchronisiert, die dritte LED auf der Frontplatte zeigt an, dass die PLLs eingerastet sind.

Die Scaler-Karte

Die Scaler-Eingangskarte wurde im Rahmen der Arbeit von Marc Niebuhr [Nie00] entwickelt. Wie die TDCs verarbeitet die Karte 32 Eingangssignale nach dem LVDS- oder LVPECL-Standard. Die maximale Rate beträgt 310 MHz, die Tiefe 31 Bit, also mehr als 2,1 Milliarden. Herausragende Eigenschaft ist, dass er totzeitfrei, d. h. ohne Unterbrechung des Zählvorganges ausgelesen wird.

Jeder Zähler besteht aus einem 4-Bit Johnson-Counter⁷. Bei jedem Takt des TCS (alle 25,7 ns) wird deren Stand an zwei kaskadierte Schieberegister weitergereicht, so dass diese $N(t_n)$ und $N(t_{n-1})$ enthalten. Die Differenz $N(t_n) - N(t_{n-1})$ entspricht genau der Zahl an inzwischen eingegangenen Treffern und wird durch einen Addierer zum Gesamtzählerstand hinzugerechnet. Das heißt, der Gesamtzählerstand wird alle 25,7 ns aktualisiert. Durch Anlegen eines NIM-Signals an den Eingang der TCS-Receiver-Karte kann der Scaler "gegatet" werden, d.h. in diesem Falle, dass die Takteingänge der Addierer blockiert werden, die Johnson-Counter also weiterzählen! Deshalb sollten die Eingangssignale bereits durch die Diskriminatoren blockiert werden. Auf das TCS-Triggersignal hin wird der Zählerstand an das CATCH weitergereicht und kann (muss) ausgelesen werden. Da der Zähler akkumuliert und die Daten bei vollem Puffer verwirft, besteht die "schnelle Auslese" darin, den Inhalt des Spy-Buffers zu löschen und nur bei "Scaler-Events", also zum Beispiel alle 1000 Ereignisse tatsächlich zu lesen. Die Zählerstände können nur mit einem BOS-

⁷4-Bit-Johnson-Counter: Das zu zählende Signal taktet ein Schieberegister, dessen Ausgang invertiert auf den Eingang zurückgeführt wird. Die Periode beträgt $2^3 = 8$. Bei jedem Übergang ändert sich nur ein Register, so dass der Zähler besonders fehlerarm ausgelesen werden kann.

Signal zurückgesetzt werden. Ein "Software Reset" durch das Ausleseprogramm ist nicht möglich.

Da der Platz in den 19"-Überrahmen zur Auslese der Drahtkammer benötigt wird und eine Erweiterung des Aufbaus einen unverhältnismäßigen Aufwand bedeutet hätte, ist zur Zeit nur ein mit Zählern bestücktes CATCH-Modul im Einsatz. Die 45 logischen ODER der Diskriminatoren werden an zwei Eingangskarten überwacht, so dass rauschende Kanäle/Diskriminatoren leicht zu identifizieren sind. Die anderen beiden Karten stehen für Testzwecke zur Verfügung.

3.5.9 Analog-nach-Digital-Wandler

Ahnlich der CATCH-CMC-Kombination besteht auch das ADC-System aus Front-End-Karte und Ausleseschnittstelle: Die i-SADC108032 ADC-Karte [Itr03] und der iMUX wurden auf dem "GEM and silicon readout system" [Gru01] des COMPASS-Experiments basierend entwickelt.

Das ADC-Modul

Der SADC108032 – 10 Bit Wertebereich, Maximalfrequenz 80 MHz, 32 Kanäle/Platine – tastet die aus dem verzögerten Ausgang der Splitter kommenden Signale kontinuierlich mit 38,88 Millionen Stützpunkten/s, d.h. der TCS-Frequenz, ab⁸. Mit den gegenwärtigen Firmwareversionen, siehe unten, lassen sich für jeden Kanal bis zu 128 aufeinanderfolgende Samples aus einem Zeitbereich vor Eintreffen des Triggers digital verarbeiten. Wichtigste Aufgabe ist die Rekonstruktion einer Zahl, der Energieinformation, aus diesen Daten.

Das Detektorsignal kann aufgrund der in Basis und Splitter stattfindenden Formung in zwei Bereiche eingeteilt werden, die mit "Signal" (S) und "Tail" (T) bezeichnet werden, siehe Abbildung 3.22. Der Puls steigt innerhalb von etwa 75 ns auf sein Maximum S_{max} an und fällt dann innerhalb von ≈ 500 ns wieder auf die Nulllinie ab. Der Überschwinger (Tail), durch die Pulsformung in Basis und Splitter verursacht, hat die gleiche Fläche wie das Signal (im Bild abgeschnitten). Die im Kristall deponierte Energie ist proportional zur Fläche des Signalbereichs $E \propto \sum_i S_i$, diese ist wiederum proportional zu S_{max} , T_{max} und zur Summe $\sum_i T_i$. Dadurch stehen zur Energierekonstruktion mehrere gemessene Informationen zur Verfügung, siehe [Sch04].

Die Verarbeitung der digitalen Daten findet in drei FPGAs statt, weshalb die folgenden Funktionsbeschreibungen nur mit den für uns erstellen Firmwareprogrammen richtig sind. Zur Zeit sind drei Betriebsmodi implementiert:

- Im Latch-All-Betrieb werden N (N ≤ 128 einstellbar, normalerweise N = 90) Abtastwerte und drei Summen über einstellbare Bereiche der Abtastwerte ausgegeben. Dieser Modus dient zum Test der ADCs und zur Einstellung der Triggerlatenz so, dass die Detektorsignale richtig im Verarbeitungsfenster liegen. Er ersetzt den klassischen Abgleich des Integrationsfensters an das Signal durch Anpassung der Verzögerungsleitung(en).
- Im *Sparse-Betrieb* werden nur drei Summen über Teilbereiche der Abtastwerte (einstellbar, z. B. für den Crystal Ball die Samples 0 bis 29, 30 bis 59, 60 bis 89) ausgeben.

⁸Der Betrieb $2 \times f_{TCS} \approx 80 \,\mathrm{MSamples/s}$ war wegen technischer Probleme nicht möglich.

Abbildung 3.22: Typisches Signal an den CB-ADC Eingängen, aufgezeichnet mit dem SADC bei 38,88 MSamples/s. Das Bild ist in die Bereiche "Pedestal" (P, Summe 0), "Signal" (S, Summe 1) und "Tail" (T, Summe 2), jeweils 30 Samples, eingeteilt.

Um am Ereignis unbeteiligte Kanäle zu unterdrücken ("Zero Suppression") werden die Daten aller Kanäle verworfen, bei denen die Differenz zwischen Summe Eins und Summe Null kleiner als eine (für jeden Kanal einzeln) eingestelle Schwelle ist. Dieser Modus wird normalerweise für die Messung der NaI-Energien am CB verwendet.

• Die Datenmenge lässt sich weiter reduzieren, wenn nach der Zero Suppression nicht die drei Summen, sondern nur die Differenz zweier Summen, d.h. die "offsetkorrigierte" Energieinformation herausgeschrieben wird. Dieser Modus wird zur Auslese der Drahtkammerstreifen verwendet.

Der Crystal Ball wird, wie oben erwähnt, im Sparse-Modus ausgelesen. Der ADC liefert für Signale über der Ausleseschwelle drei Werte: Die Signalsumme ist so plaziert, dass ihr Ende auf den Nulldurchgang fällt. Da die Latenz nur im Raster des TCS-Taktes einstellbar ist, das Signal also um etwa ±1 Sample im Fenster springt, liefert dies den geringsten Fehler auf die Summe. 30 Samples sind zweckmäßig, da die ansteigende Flanke damit sicher im Fenster liegt. Vor dem Signal werden 30 Abtastwerte für das Pedestal (die Offsetkompensation) aufsummiert. Das Modul kann die Teilsummen nicht gegeneinander wichten, für die Nullunterdrückung müssen Signal- und Pedestalsumme deshalb über die gleiche Anzahl an Samples gebildet werden. Das Herausschreiben der nullten Summe erlaubt, das Pedestal für jeden Kanal ereignisweise zu korrigieren und zusätzlich dessen Stabilität zu überwachen. Bei einem Quantisierungsfehler von einem Bit kann die Unsicherheit der Summe (mit N = 30 und $\sigma_Q \approx 1$) auf $\sigma_S = \sqrt{N} \cdot \sigma_Q \approx 5,4$ Kanäle nach oben abgeschätzt werden. Damit ist die Unsicherheit der pedestal-subtrahierten Energie-information auf $\sigma_{S-P} = \sqrt{2 \cdot N} \cdot \sigma_Q$ Kanäle begrenzt und die Energieauflösung σ_E/E

proportional zu $1/\sqrt{N}$, für kleine Energien also schlechter, als für große⁹. Die Auswertung der letzten Summe (Tail) ist in der jetzigen Analyse nicht nötig, sie ließe sich jedoch nutzen, um den dynamischen Bereich von etwa 620 MeV im Kristall deponierter Energie auf Kosten der Auflösung um das etwa 2,5-fache zu erhöhen oder ungültige Ereignisse zu verwerfen, siehe [Sch04].

Bei vielen Gelegenheiten wurde ich um einen Vergleich der Auflösung der summierenden ADCs mit der der vorher eingesetzen integrierenden 13 Bit-ADCs gebeten. Dieser Bitte läßt sich nur schwer nachkommen, da die Geräte weder direkt vergleichbar sind, (Rauschen, Ausnutzung des dynamischen Bereiches, Fensterlänge, etc.) noch der Hintergedanke der Frage beantwortet wird. Eine kurze Diskussion gibt jedoch einen Eindruck: Nimmt man an, das Signal habe Dreiecksform und habe eine Maximalhöhe von 800 Kanälen und eine Länge von 30 Samples, so beträgt die Fläche $0.5 \times 800 \times 30 = 12000 > 2^{13}$. Welche Auflösung das Gesamtsytem hat, muss aus der Analyse der Messdaten abgelesen werden: "Experimentell bestätigt: Die Energieauflösung des Crystal Ball-Aufbaus ist nun etwas besser als früher." Das Spektrum der invarianten Masse des π^0 , $m_{\gamma\gamma}$, ist schmaler als bei den Messungen an BNL. Außerdem sind die niederenergetischen Photonen, γ' , aus der kohärenten Pionproduktion $\gamma + A \rightarrow A + \pi^0 + \gamma'$ hervorragend nachweisbar, siehe [Tar06]. Abschnitt 4.1.1 wird weitere Details aufgreifen. Die Vorgabe, die Energieauflösung der früheren Experimente wieder zu erreichen wurde also mehr als erfüllt. "Ist denn nun alles besser als früher?". Erwartungsgemäß nicht, siehe Abschnitt 3.5.10 (Integration der Drahtkammern).

Der dynamische Bereich, -1,25 V bis +0,25 V, gleichspannungsgekoppelt, wurde den Charakteristika der Signale, siehe Abbildung 3.22, folgend gewählt. Bedingt durch diese Wahl und die Offsetspannung an den Splittern liegt die Nulllinie etwa bei Kanal 220. Für die Signalhöhe stehen somit etwa 800 Kanäle zur Verfügung, für die Taltiefe ≈ 200 . Die Eingänge schließen mit 50 Ω ab. Jedes Modul besitzt zwei 34-polige DIL-Eingangsstecker, die *oberen* beiden Pins liegen auf *Masse*, Pin 1 befindet sich unten rechts! Das Modul ist mechanisch zu 6U-VME kompatibel, hat jedoch keine Anbindung an den VME-Bus. Kommunikation ist nur über die optische Verbindung möglich. Jede Karte nimmt 35 W elektrischer Leistung auf, davon 10W über -12 V, nur Pin P1A31, was beim Betrieb in den üblichen VME-Überrahmen (Kühlung, Backplane, Netzteil) unbedingt bedacht werden muss!

Abbildung 3.23 zeigt das Modul schematisch. Nach den Eingangsverstärkern werden werden die Signale kontinuierlich von 32 Analog Devices AD9214-80 Sampling-ADCs abgetastet. Die Daten von jeweils 16 Kanälen werden in den mit ZR0 und ZR1 bezeichneten FPGAs verarbeitet. Zum Ausgleich der Triggerlatenz werden die Samples zunächst in einem Schieberegister programmierbarer Tiefe gepuffert. (Bis zu 512 Worte, d.h. 13,2 μ s bei 38,88 MHz, 6,6 μ s bei doppelter Frequenz). Auf das Triggersignal hin werden bis zu 128

⁹Dies beantwortet einen Teil der Frage: "Bringt es mehr, die Abtastfrequenz zu erhöhen, also auf 80 MHz zu verdoppeln, oder ADCs mit ein oder zwei Bit feinerer Auflösung zu benutzen?" Eine Verdoppelung der Abtastfrequenz liefert die doppelte Anzahl an Messwerten N im gegebenen Zeitintervall, also einen Faktor 2 unter der Wurzel, ein 11-Bit-ADC die doppelte Kanalzahl bei gleichem Quantisierungsfehler. Zur Zeit beträgt die ADC-Auflösung ≈1,5 mV/Kanal und liegt damit etwa auf dem Niveau des Signalrauschens. Da das Drahtkammersignal, siehe Abschnitt 3.5.10, nur durch etwa zehn Samples abgedeckt wird, wird eine Verdoppelung der Frequenz angestrebt. – Als die ADCs gebaut wurden, waren geeignete 11 oder 12 Bit ADC Bausteine am Markt nicht verfügbar. – Eine genauere quantitative Diskussion zum Signal/Rausch-Verhältnis von ADC-Systemen würde den Rahmen dieses Abschnittes sprengen.

Abbildung 3.23: Schema des SADC, entnommen aus [Itr03].

Samples in den Ereignispuffer übertragen. Dieser kann bis zu 4 Ereignisse, deren Samples zeitlich nicht überlappen dürfen, aufnehmen. Das heißt, der *Minimalabstand* zweier Trigger ist durch die Anzahl zu verarbeitender Samples begrenzt (z.B. $90 \times 25 \text{ ns} = 2,25 \,\mu\text{s}$). Da die Auswertung der 16 Kanäle nacheinander geschieht, sind hierfür etwas mehr als $16 \times N_{\text{samples}}$ Takte nötig. Die *durchschnittliche Triggerrate* ist bei 90 Samples also auf etwa $(90 \times 16 \times 25 \,\text{ns})^{-1} = (36 \,\mu\text{s})^{-1} = 27,8 \,\text{kHz}$ begrenzt.

Die Bereiche, aus denen die drei Teilsummen gebildet werden, ist über die Samples frei wählbar. Die anschließende Nullunterdrückung verwirft im Sparse-Modus alle Kanäle, bei denen die Differenz zwischen erster und nullter Summe unter der eingestellten Schwelle liegt. Den Daten wird ein Startwort vorangestellt, das unter anderem den Verlust der Synchronisation aufgrund zu schnell aufeinanderfolgender Trigger anzeigt (auch erkennbar an der FF-LED auf der Frontplatte). Der HOTLink-FPGA fasst die Datenströme der beiden ZR-FPGAs für die Übertragung zum iMUX zusammen.

Mit der VME-Auslese muss gewartet werden, bis die Daten an die iMUX gesendet werden. (Interrupt-4 Verzögerung, Abbildung 3.27 auf Seite 58.) Es kann allerdings begonnen werden, während das iMUX die Daten noch einsammelt. Die Daten treffen schneller ein, als sie gelesen werden können. Im Latch-All-Modus ist die Rate durch die Bandbreite der optischen Verbindung (320 MBit/s) begrenzt.

Der iMUX

Das iMUX-Modul, oder auch GeSiCA (GEM Silicon CATCH oder GEM Silicon Control and Acquisition), dient der Kommunikation mit den iSADCs. Das Modul besitzt einen eingebauten TCS-Receiver, verteilt über 8 optische Transceiver Takt und Trigger an die angeschlossenen ADCs, sammelt deren Datenblöcke nacheinander ein und stellt die Messdaten mit S-Link-Header und -Trailer versehen zur Auslese via VME-Bus zur Verfügung. Zur Initialisierung müssen zunächst die FPGAs geladen werden, danach müssen den ange-

schlossenen ADCs über die optische Verbindung neue Identifikationsnummern zugewiesen werden. Anschließend werden deren FPGAs per "Broadcast" parallel geladen. Das Modul mit dem zeitkritischsten Verhalten muss wegen des "Handshakings" am ersten Transceiver angeschlossen sein. Im nächsten Schritt werden die FPGA-Register der ADCs nacheinader programmiert: Anzahl der Samples pro Ereignis, Latenz, Betriebsmodus (Latch-All oder Sparse), Start und Länge der Samples und Ausleseschwellen werden gesetzt. Dann wird der Kommunikationscontroller in den Messmodus geschaltet. Die internen Puffer reichen aus, um einen ADC pro iMUX im Latch-All-Betrieb mit 90 Samples/Ereignis zu lesen.

Für die NaI-Detektoren sind 4 iMUX-Module mit 23 (8, 3, 8, 4) angeschlossenen ADC-Karten im Einsatz. Die ADCs sind, nach linker und rechter Hälfte des Balls getrennt, in 2 VME-Crates mit besonders leistungsfähigen Netzgeräten montiert. Es sollten keine weiteren Module in diesen Rahmen betrieben werden.

3.5.10 Integration der Drahtkammern und des PID

Integration der Drahtkammern

In den DAPHNE-Experimenten wurde das Ansprechmuster der Kammerdrähte über "CEN-Saclay-Selbstbau-Pattern-Units" per CAMAC, die ADC-Informationen der Streifen über FERA-Ketten aus CES High-Speed-Memories (VME) ausgelesen. Der zuverlässige Betrieb der recht alten Module wurde in den letzten Jahren immer schwieriger.

Im Crystal Ball-Aufbau, Abbildung 3.24 zeigt die Verschaltung der Kammer, wird das Ansprechmuster der 480 Drähte der beiden Kammern über vier mit TDCs bestückte CAT-CHes ausgelesen. Deshalb muss das Zeit-über-Schwelle ECL-Signal der PCOS-Karten, siehe Abschnitt 3.4.3, in ein LVD-Signal mit einer Mindestlänge von 8 ns gewandelt werden. Dazu wurden mit der Elektronikabteilung unseres Instituts ECL nach LVDS-Pegelwandler entwickelt. Diese sind als eine Kette aus NECL-Empfänger, D-Flip-Flop mit Resetlogik und LVDS-Leitungstreiber im NIM-Modulformat aufgebaut. Die Haltezeit lässt sich mit den beiden in die Frontplatte eingelassenen Spindeltrimmern auf etwa 5 ns bis 30 ns einstellen. In der Kassette befinden sich zwei Platinen für je 16 Kanäle. Bei Änderungen der Verkabelung oder der Kammerspannungen muss vorsichtig vorgegangen werden: Überschreitet das Rauschen die Diskriminatorschwellen, so beginnen die PCOS-Karten hoch-

Abbildung 3.24: Elektronik der Drahtkammer, vergleiche auch [Lan04].

frequent zu schwingen und der Strombedarf der TDC-Karten überschreitet das zulässige Maximum, woraufhin das CATCH abschaltet und neu initialisiert werden muss.

Um die Drahtkammerauflösung über die mechanische Auflösung hinaus zu verbessern, werden Ladungsschwerpunkte der Streifensignale berechnet. Die Pulse der 320 Kammerstreifen werden von 10 iSADC-Karten an 2 iMUX-Modulen (4 bzw. 6 ADC-Karten) digitalisiert. Das Signal deckt bei 38,88 MHz Abtastfrequenz nur etwa Zehn Samples ab. Die Auflösung ist deshalb schlechter als die im DAPHNE-Aufbau erreichte, siehe auch Abschnitt 4.3. Ab September 2004 wurden ADCs so eingestellt, dass nur die pedestalsubtrahierte Summe übertragen wird.

Integration des PID

Von den 24 Streifen des PID-Detektors werden Zeit- und Ladungsinformation ausgelesen. Das Analogsignal wird mit LeCroy 612 Modulen verstärkt und für den ADC- und TDC-Zweig verdoppelt, siehe Abbildung 3.25. Per Übertrager wird es nach einer Kabelverzögerung von 300 ns in den FIADC64, ein für COMPASS entwickelter 64-kanaliger schnell integrierender ADC, eingekoppelt. Leading-Edge-Diskriminatoren (D) digitalisieren Signale über Schwelle für die Zeitmessung per CATCH-TDC. Über die Module L (2 log. ODER aus 16 bzw. 8 Kanälen), H (einstellbare Verzögerung) und F (ODER mit Sperrmöglichkeit) kann das ODER aller Streifen zum Experimenttrigger beitragen. Der PID-Trigger wurde z.B. bei Kalibrationsmessungen oder als Indikator für das Proton der Deuteron-Photospaltung ($\gamma d \rightarrow n p$) benutzt.

Der FIADC64 [Kon00] ist ein 12 Bit Ladungs nach Digital-Wandler mit 64 Kanälen im 9U VME-Format. Das Modul arbeitet für integrierende ADCs besonders schnell. Die Konversionszeit beträgt nur 120 ns. Momentan wird es über VME ausgelesen, es kann die Daten allerdings auch über HOT-Link an CATCHes senden. Beim Betrieb sind einige Besonderheiten zu beachten. Die Konversion wird durch das Öffnen des Integrationsfensters angestoßen. Der genaue Zeitpunkt wird durch einen (gesockelten) Delay-Line-Chip festgelegt, d.h. bei Verlängerung des Fensters muss die Verzögerung so angepasst werden, dass die Konversion erst nach dem Schließen des Fensters und/oder dem Abklingen des Pulses stattfindet. Außerdem verwirft das Modul die Daten, wenn das Ereignis nicht innerhalb von 300 ns nach der Konversion durch den Trigger bestätigt wird.

Abbildung 3.25: Elektronik des PID-Detektors. In enger Anlehnung an die von John Annand gezeichneten Schaltpläne.

Abbildung 3.26: Erzeugung der First- und Second-Level Trigger. Der Energiesummentrigger wird über den Zweig A, C, E, F, der Multiplizitätstrigger über A, B, J, D, C, E, H, G generiert. In die Multiplizität wird TAPS, eingeteilt in 4 Sektoren, einbezogen. Einstellungen, wie im μ_{Δ^+} -Experiment. Zeichnung in enger Anlehnung an die von John Annand gezeichneten Schaltpläne.

3.5.11 Triggerelektronik und On-Line Datenerfassung

"Ein guter Trigger triggert den Nobelpreis weg." Jürgen Ahrens

Da es weder wünschenswert noch möglich ist, alle im Detektor auftretenden Ereignisse aufzuzeichnen, wird ein Triggersystem benötigt, das für die interessierenden effizient anspricht. Effizient heißt, dass in den Messdaten ein möglichst gutes Verhältnis zwischen interessanten und uninteressanten Ereignissen (Signal zu Untergrund-Verhältnis) besteht. Außerdem muss die Triggerrate hoch genug sein, das Experiment mit angemessenem statistischem Fehler in angemessener Zeit durchführen zu können. Zur Bestimmung von Wirkungsquerschnitten muss das Triggersystem simulierbar sein.

Für die Crystal Ball-Experimente wurde ein mehrstufiges System aufgebaut: ein schnell (innerhalb einiger zehn Nanosekunden) erzeugbares Muster an L1, siehe Abbildung 3.27, muss nach einiger Zeit, im Beispiel 150 ns, an L2 bestätigt werden, siehe unten.

Für den Experimentierbetrieb wurden zwei Triggermöglichkeiten realisiert: Der Energiesummen- und der Clustermultiplizitätstrigger. Zu Testzwecken kann außerdem auf Gruppen von Kristallen, bis hinunter zu Einzelkristallen, getriggert werden.

Der Energiesummentrigger

Der Energiesummentrigger, oberer Zweig in Abbildung 3.26, liefert ein Signal, wenn die Analogsumme aller NaI-Signale eine eingestellte Schwelle überschreitet. Eine Summe über alle Kristalle, einschließlich der $TAPS-BaF_2$ ist nicht möglich, da die TAPS-Elektronik kein geeignetes Analogsignal nach außen reicht. Die Splitter (Abschnitt 3.5.5, Modul (A) in Abbildung 3.26) stellen die AC-gekoppelte Analogsumme von bis zu 16 Kristallen zur Verfügung. Diese werden über LeCroy 428F analoge FIFO-Module (C) in drei Stufen aufsummiert. Die Verteilung der Untersummen über die Kristalle ist in [Unv04] abgedruckt. Die Amplitude der Gesamtsumme beträgt etwa 2,5 mV/MeV. Die Energieschwelle wird am unteren der beiden Diskriminatoren (E) eingestellt. (×10-Verstärkung am Messpunkt beachten!) Da der Energiesummentrigger über CB0 an L1, siehe Abbildung 3.27, Zeitreferenz des Ereignisses ist und durch L1 möglicherweise weitere Bedingungen an das Ereignis gestellt werden, muss die Amplitudenabhängigkeit des Schaltzeitpunktes gering gehalten werden. Deshalb wird über den oberen Diskriminator eine einfache Anstiegszeitkompensation durchgeführt: Seine Schwelle wird niedrig eingestellt und das Ausgangssignal verzögert. An (F) wird es in Koinzidenz zum Signal der hohen Schwelle verlangt, so dass die Überschreitung der niedrigen Schwelle den Schaltzeitpunkt bestimmt.

Im μ_{Δ^+} -Experiment wurde die Energieschwelle typischerweise auf 40 MeV, zur Untersuchung seltener η -Zerfälle auf 300 MeV eingestellt.

Der Cluster-Multiplizitäts- und der ODER-Trigger

Der Cluster-Multiplizitätstrigger soll die Zahl der Endzustandsteilchen in die Ausleseentscheidung einbeziehen: Das Verhältnis der Wirkungsquerschnitte des inneren Zerfalls des Δ^+ in p $\pi^0 \gamma'$ zur Ein- π^0 -Produktion beträgt im interessierenden Energiebereich nur etwa 1:5000. Die Signaturen der beiden Reaktionen unterscheiden sich jedoch nur um ein Photon. Um die Messzeit zur Bestimmung des magnetischen Moments des Δ^+ kurz zu halten, sollen deshalb 3-Photon-Ereignisse in den Daten angereichert werden.

Die aufgebaute Logik, mittlerer Zweig in Abbildung 3.26, fällt eine Entscheidung über die Zahl der im Ereignis angesprochenen Diskriminatoren. Der Bereich des Crystal Balls, der durch die 16 Kanäle eines Diskriminators abgedeckt wird, definiert also die Clustergröße. Schauert ein Teilchen auf zwei Cluster auf, so wird es wie zwei Teilchen gezählt. Treffen den Detektor hingegen zwei Teilchen innerhalb eines Blockes, so wird nur ein Cluster registriert. Bei der Wahl der Clustergröße muss also, unter Berücksichtigung der Reaktionskinematik, zwischen Clustergröße und Anzahl der Grenzlinien zwischen den Clustern abgewogen werden. Die hier beschriebene Elektronik hat sich trotz ihrer Einfachheit sehr gut bewährt. Ein anderes, fortgeschritteneres Konzept wird in Abschnitt 3.5.12 vorgestellt.

Die ODER der 16 Kristalle eines Diskriminators (B) werden in NIM-Signale umgesetzt. Diese werden an vier LeCroy 4413-Diskriminatoren (D) erfasst. Auf der Rückseite stellen diese Stromquellen zur Verfügung, die pro angesprochenem Kanal 1 mA in den 50 Ω -Abschluss treiben. Die Diskriminatoren (E) hinter dem linearen FIFO müssen also für Multiplizitäten ≥ 3 auf eine Schwelle zwischen 100 mV und 150 mV eingestellt werden. Modul H verzögert das Signal für den 2nd Level-Trigger. Das VUCAM, Modul G, erlaubt die Anzahl durchgelassener Trigger (programmierbar) zu untersetzen. TAPS trägt mit

Abbildung 3.27: Trigger und Event-Latch für den Crystal Ball. Zeichnung in enger Anlehnung an die von John Annand gezeichneten Schaltpläne.

maximal vier Clustern (Sektoren) zur Multiplizität bei. Um genügend Ereignisse einer bekannten Reaktion zur Kalibration und zum Verständnis des Aufbaus aus den Daten zu haben, wurde bei jedem Experiment sichergestellt, die Ein- π^0 -Produktion ($M \ge 2$) mitzumessen.

Für den ODER-Trigger werden alle Diskriminator-ODER in zwei weiteren Stufen verknüpft (L). Durch Ausmaskieren, d.h. Abschalten von Kanälen durch Setzen der Diskriminatormaske, lässt sich so gezielt auf Kristalle oder Kristallgruppen, z.B. geometrisch gegenüberliegende, triggern. Für die herausgenommenen Kanäle steht dann allerdings weder TDC- noch Scaler-Informationen zur Verfügung.

Event Latch und Auslese

Das Event-Latch, siehe Abbildung 3.27, Kernschaltung der Trigger- und Ausleselogik wurde in ähnlicher Form bereits in vielen A2-Experimenten verwendet. Hauptaufgabe der Anordnung ist, ein Eingangsmuster an L1 zu erkennen, daraufhin erste für die Messung nötige Signale zu generieren, eine Bestätigung an L2 zu erfassen und, falls das Ereignis gültig ist, die Auslese zu initiieren.

Die beiden Register L1 und L2 sind vorprogrammierte Speicher: Jedem Eingangsmuster wird ein Ausgangsmuster zugeordnet (memory lookup unit). Über den programmierbaren Untersetzer (D) lassen sich Level-1-Trigger gegeneinander wichten. Im Diskriminator (A) werden unerwünschte Triggersignale ausmaskiert. Das ODER der aktiven Triggersignale löst die Mustererkennung in L1 aus. Auf gültige L1-Trigger hin verriegelt L1-Ausgang 7 den Diskriminator, durch ungültige Muster wird das System zurückgesetzt. A und L1 bilden also das eigentliche Ereignis-Flipflop. L1 stoppt außerdem die Tagger TDCs, gibt die Zeitreferenz für den Crystal Ball und löst in Koinzidenz mit den 2nd-Level-Triggern die Mustererkennung in L2 aus. Über die drei niederwertigsten Bits bezieht L2 den L1-Trigger in die Entscheidung ein und verwirft das Ereignis endgültig oder generiert das FIADC-Gate, den TCS-Trigger und startet die Auslese von TAPS und Crystal Ball. Die Ausleserechner ("slarti" und "deepthought") pollen¹⁰ auf das Interrupt-4-Bit der CAMAC Branch-Treiber in ihren VME-Crates und lesen die ihnen unterstehenden Module. Die programmierbare Interrupt-Verzögerung, im Beispiel $28 \,\mu s$, stellt sicher, dass die iMUX ihre ADC-Daten bereithalten. "slarti" sammelt die Daten von "deepthought" über eine VIC-Verbindung¹¹ (VME interconnect) ein. Das Event-Latch wird freigegeben, wenn "slarti" fertig und die TAPS-Auslese beendet ist. Die TAPS- und die Crystal Ball-Datenerfassung arbeiten gleichzeitig. Beide senden ihre Ereignisteile per Netzwerk an einen PC im Messraum ("a2mistral") der die Ströme kombiniert und auf Platte schreibt. Auf "slarti" laufen Auslese und Abtransport der Daten pseudoparallel in verschiedenen Prozessen.

Die Synchronität von TAPS und Crystal Ball wird auf mehreren Ebenen überwacht: Die TAPS-Datenerfassung übergibt eine Ereignisnummer über gekoppelte SIS3820-Register an die Crystal Ball-Auslese. Die von beiden Systemen aufgezeichnete Zahl darf sich (wegen einer race-condition¹² in der Auslese) um maximal eins unterscheiden. Von beiden Systemen werden Zeitreferenzen aufgezeichnet, beispielsweise das Eintreffen eines TAPS-Triggers in TDC2005, vergleiche Abbildung 3.27. Laufen CB und TAPS asynchron, geht die feste Zeitbeziehung verloren. In der zweidimensionalen Darstellung von TDC2005 gegen den zugehörigen TAPS-TDC liegen die Ereignisse nicht im "synchronen Pik". Ein Photon-Ereignisse in TAPS werden mit Ein-Photon-Ereignissen in CB kombiniert. Das Spektrum der invarianten Masse zeigt einen deutlichen Pik bei m_{π^0} . Geht die Synchronisation verloren, wächst, von einigen "Zufallstreffern" abgesehen, nur noch der Untergrund.

In Abbildung 3.27 ist links unten die Steuerung des TCS über den Testpulser eines maskierbaren CAMAC-Diskriminators dargestellt. Ein zusätzliches Register verhindert, dass während der simulierten "off spill-Zeit" TCS-Trigger erzeugt werden können und erlaubt gezieltes Freischalten für das erste Ereignis.

¹⁰Als "pollen" bezeichnet man das ständige Durchlaufen einer Schleife bis ein äußeres Ereignis, z.B. die Änderung eines Statusbits durch ein Hardwareereignis, eintritt. (while(condition_not_ful-filled){do_nothing}.) "Polling" lastet den Rechner meist vollständig aus. Um das zu verhindern, wird die Auslese in LynxOS etwas niedriger als die übrigen Prozesse priorisiert. Diese Methode arbeitet schneller und ist einfacher zu handhaben, als die Interruptverarbeitung zu nutzen.

¹¹Die Module sind am Ende ihres Lebenszyklus angekommen. Die Verbindung ist recht instabil, von den 5 vorhandenen Modulen wollten nur 2 "miteinander kommunizieren". Betreibt man die Kammer-ADCs im 3-Summen-Modus, lassen sich sehr einfach Einzelbitfehler in den übertragenen Daten nachweisen.

¹² "race-condition", wird wörtlich mit "Wettlaufsituation" übersetzt. In unserem Falle kommt es vor, dass "slarti" die gemeinsame Ereignisnummer aus dem Register liest bevor diese von der TAPS-Datenerfassung neu gesetzt wurde.

3.5.12 Ausblick: Schneller Clusterzähler

Bereits zu Beginn meiner Arbeit wurde ein schneller Clusterzähler für den Crystal Ball entworfen, der die Nachteile der in 3.5.11 beschriebenen Anordnung nicht hat, [Kra02]. Er ist nicht an die 16-Kristall-Gruppen der Diskriminatoren gebunden und das Aufschauern in benachbarte Gruppen führt nicht dazu, dass zu viele Cluster gezählt werden. Die Methode beruht auf dem in [Mar01] vorgestellten Trigger für den WASA Detektor.

Voraussetzung ist, dass sich der Detektor auf eine Matrix viereckiger Elemente reduzieren lässt (prinzipiell funktioniert die Methode auch mit den sechseckigen TAPS-Kristallen, bereitet jedoch zusätzliche Probleme). Im linken Teil von Abbildung 3.28 repräsentieren dunkle Felder wahre Treffer im Detektor. Die Clustermultiplizität kann durch Zählen von Übergängen (Transitions t und t') berechnet werden. Ein Übergang wird durch ein getroffenes Element $m_{i,j}$ definiert, dessen darüberliegendes $m_{i-1,j}$ nicht getroffen wurde $(t_{i,j} = 1, \text{ falls } m_{i,j} \equiv 1 \text{ AND } m_{i-1,j} \equiv 0)$. Verschiebt man nun das Muster um ein Element nach rechts, d.h. $m'_{i,j} = m_{i,j}$ OR $m_{i,j-1}$, so lassen sich erneut Übergänge t' definieren und zählen. Die Anzahl der Cluster ist dann $C = \Sigma t' - \Sigma t = T' - T$, im Beispiel C = 6 - 4 = 2.

Es fällt auf, dass

- die Methode "invariant unter Drehung" ist,
- diagonal aneinandergrenzende Treffer einen Cluster bilden, siehe Abbildung 3.28,
- der Clusterzähler "löchrige Cluster", also auch Ringe, ignoriert, siehe Abbildung 3.29.

Der Aufbau in programmierbarer Hardware gewinnt seine Geschwindigkeit aus Parallelität. Der gesamte Algorithmus kann, wie durch die angegebenen "Gleichungen" skizziert wurde, in Gatterlogik abgebildet werden. Es werden keine getakteten Elemente oder Flipflops benötigt – es muss nicht gezählt werden, es werden Addierstufen benutzt. Mit modernen FPGAs sollte die Triggerentscheidung für die unten beschriebene Anpassung an den Crystal Ball laut Pawel Marciniewski in weniger als 40 ns möglich sein.

Abbildung 3.28: Veranschaulichung des Cluster-Multiplizitätsalgorithmus. Zählen der Übergänge T (links) und T' (rechts) ergibt vier beziehungsweise sechs. Daraus folgt eine Clustermutiplizität von C = T' - T = 6 - 4 = 2. Erläuterungen siehe Text.

Abbildung 3.29: Cluster-Multiplizitätsalgorithmus: Fehlzählung durch "löchrige Cluster". Zählen der Übergänge T und T' ergibt in beiden Fällen vier, d.h. eine Clusteranzahl von C = T' - T = 4 - 4 = 0. Der Cluster wird also übersehen.

Um den Algorithmus am Crystal Ball anwenden zu können, sind weitere Vorüberlegungen nötig. Abbildung 3.30 zeigt eine am Strahltunnel geschnittene Abwicklung des Detektors. Die kleinen Dreiecke stellen die Einzelkristalle dar. Um eine viereckige Geometrie zu erhalten, können zwei oder acht Kristalle (entsprechend einem Kabelbündel oder einer "Unterraute" des Bündels, vergl. Abbildung 3.16 auf Seite 40) zu einer "Einheit" zusammengefasst werden. Zusammenfassen entspricht dem logischen ODER der Diskriminatorsignale. Auf der Rückseite der Diskriminatoren stehen TTL-Ausgänge zur Verfügung, die über das CPLD-Programm entsprechend belegt werden können. Die in der Abbildung eingetragenen Zahlen numerieren die kleinstmöglichen Rauten, d.h. die Verknüpfung der 720/2 Kristallpaare, einschließlich der wegen des Strahltunnels fehlenden.

Ein weiteres Problem sind die verlorengegangenen Nachbarschaften der Kristalle. Durch Abwickeln des Balls stoßen beispielsweise Element 1 und 37 nicht mehr zusammen. Eine Lösung besteht im Hinzufügen von "Kristallsklaven" ("slave-" oder "fake-units"), die die Verbindungen herstellen und dem Status der physischen Kristalle folgen, denen sie zugeordnet sind. Abbildung 3.31 zeigt eine mögliche Wahl der Matrix. Leider lassen sich auch damit nicht alle Einzelfälle richtig lösen: Es gibt zwei Orte, an denen fünf Einheiten zusammentreffen ({1, 37, 109, 181, 253} und {108, 180, 252, 324, 360}). Falls beispielsweise 37 und 181 getroffen werden, werden fälschlicherweise zwei Cluster erkannt. Bei einem Trigger, der auf eine Mindestanzahl anspricht, sollte dies allerdings kein Problem sein.

Kurz nach Abschluss der Strahlzeiten wurde ein programmierbares "universelles Triggerboard" fertig, in dem der Cluster-Algorithmus implementiert werden kann. Dieses Modul soll auch für die neue Møller-Elektronik benutzt werden.

Abbildung 3.30: Cluster-Multiplizität: Spezielle Abwicklung des Crystal Balls. Man beachte Orientierung und Schnitt der Projektion am Strahltunnel. Die Numerierung der Elemente wird im Text erklärt.

Abbildung 3.31: Matrix zur Berechnung der Cluster-Multiplizität. Rote (dunkle) Felder entsprechen Kristallpaaren im Detektor, weiße (negativ numeriert) Strahlein- und -ausgang, rosa Felder (grau, Nummer >0) stellen die hinzugefügten Verbindungen zwischen den Kristallen dar. Ihre Nummern zeigen die Elemente, denen sie folgen, an. Unbenutzte Matrixelemente tragen die Nummer 0 und sind grau eingefärbt.

4 Auswertung der Messdaten

Ziel der Datenanalyse ist, die in Abschnitt 2.2 motivierte Helizitätsasymmetrie für den Kanal $\gamma p \rightarrow p \pi^0 \pi^0$ und die um die Unterscheidung der geladenen Pionen reduzierte Asymmetrie für den Kanal $\gamma p \rightarrow p \pi^+\pi^-$ aus den aufgezeichneten Ereignissen zu gewinnen. Gleichung (2.7) auf Seite 15 liest sich dazu:

$$A_{exp}(\sqrt{s},\phi) = \frac{1}{P_{\gamma}} \frac{N^{+}(\phi) - \alpha N^{-}(\phi)}{N^{+}(\phi) + \alpha N^{-}(\phi)}.$$
(4.1)

 P_{γ} gibt den mittleren Polarisationsgrad des Photonstrahls im Energiebin, siehe Abschnitt 3.2, und α das Verhältnis einlaufender Photonen positiver zu Photonen negativer Helizität an. Nähert man α über die Gesamtzahlen nachgewiesener Ereignisse während der die jeweilige Helizität geliefert wurde, geht also davon aus, dass die Effizienz der Elektronenquelle und Transfersysteme für beide Einstellungen gleich ist, so beträgt $\alpha - 1$ etwa 5,5 × 10⁻⁴, α kann also vernachlässigt werden.

Zusammenfassend sind zur Berechnung der Helizitätsasymmetrie also folgende Analyseschritte nötig:

- Extraktion einer möglichst untergrundfreien Stichprobe von Ereignissen des gewünschten Typs aus den Messdaten.
- Rekonstruktion des Winkels ϕ gemäß seiner Definition in Gleichung (2.10) und Zählen der in einem ϕ -Intervall rekonstruierten Ereignisse in Abhängigkeit der Gesamtenergie im Schwerpunktsystem \sqrt{s} für beide Polarisationseinstellungen: $N^{\pm}(\phi, \sqrt{s})$.
- Aufbau der Asymmetrie A_{exp} gemäß Gleichung (4.1) unter Berücksichtigung der Strahlpolarisation P_{γ} für die gewünschten Energieintervalle.

Einige Stationen dieses Weges werden im Folgenden beschrieben. Zunächst werden grundlegende Eichungen des Detektorsystems vorgestellt und die Gewinnung der Teilchenhypothesen aus den Detektorsignaturen erläutert. Danach wird weiter auf die Identifikation der Reaktionskanäle eingegangen und dabei Details zur Rekonstruktion der Asymmetrie ergänzt. Es handelt sich hier um einen Statusbericht. Einige Methoden sollen in naher Zukunft weiter verfeinert werden.

Die Eichung des Detektorsystems ist ein iterativer Prozess. Parameter sind oft von bestimmten Verfahren oder voneinander abhängig, so dass zunächst ein "grober Parametersatz" gefunden werden muss, der dann zusammen mit den Analysemethoden verbessert wird.

4.1 Grundlegende Eichungen

4.1.1 Energieeichung des Crystal Balls

Ziel der Energieeichung oder Kalibration ist, den Zusammenhang zwischen der am Ende der Digitalisierungskette nachgewiesenen Ladung (gemessen in ADC-Kanälen) und der in den Kristallen deponierten Energie (gewünscht in MeV) zu finden. Dieser Zusammenhang ist von den Wechelwirkungsmechanismen der Teilchen mit dem Detektormaterial, also von der Teilchenart, abhängig.

Die Kalibration für Photonen erfolgt in zwei Schritten: Um eine grobe Kalibration durchführen zu können, werden zuerst die Verstärkungen des PMT-Basis-Systems aneinander angeglichen, siehe [Unv04]. Im zweiten Schritt, siehe [Bru06], wird die invariante Masse der in $\gamma p \rightarrow p \pi^0 \rightarrow p \gamma_1 \gamma_2$ nachgewiesenen Photonen auf $m_{\pi^0} \approx 135$ MeV geschoben. Da sich die elektromagnetischen Schauer meist über mehrere Kristalle erstrecken, ist die Energieeichung wiederum von der Methode abhängig, mit der die getroffenen Kristalle zu "Clustern", die später die Teilchenkandidaten definieren, zusammengefasst werden.

Diese "Photoneneichungen" sind für die Energiebestimmung bei Protonen oder geladenen Pionen nicht sehr gut geeignet. Deshalb wurden in dieser Arbeit, wenn nötig und möglich, die Proton- oder Pionenergien aus der Reaktionskinematik bestimmt.

Der Clusteralgorithmus für den Crystal Ball

Der Clusteralgorithmus fasst benachbarte getroffene Kristalle so zusammen, dass diese später als Teilchenkandidaten dienen können. Jedem erzeugten Cluster werden zunächst Energie-, Orts- (θ, φ) und Zeitinformation zugeordnet. "Getroffen" heißt in diesem Zusammenhang also, dass für den Kristall sowohl Energie-, als auch Zeitinformationen vorliegen, das Analogsignal also Diskriminatorschwelle und Ausleseschwelle der ADCs überstieg.

Dabei tritt direkt ein Zielkonflikt auf: Fasst man zu große Bereiche zusammen, fügt man dem Cluster möglicherweise weitere Teilchen hinzu, verliert diese also in der Analyse, was dann unter anderem zu Problemen bei der späteren Festlegung des Reaktionskanals führt. Fasst man zu wenige Kristalle zusammen, "entweicht" ein Teil des Schauers, die im Cluster deponierte Energie wird zu niedrig eingeschätzt und man generiert (möglicherweise) einen zweiten Cluster, der ebenfalls Probleme bei der Festlegung des Reaktionskanals macht. Erschwerend kommt hinzu, dass ein Teilchen aus dem elektromagnetischen Schauer zunächst entkommen und dann an anderer Stelle einen zweiten Schauer auslösen kann ("split-off").

In der hier vorgestellten Analyse wurde ein einfacher – oder sogar der einfachste – Algorithmus verwendet: Der Kristall mit der höchsten Energiedeposition wird gesucht und die Energiedeposition in (maximal 12) direkten Nachbarn hinzuaddiert. Die Clusterposition wird aus dem energiegewichteten Mittel der Kristallpositionen bestimmt, die Zeitinformation aus dem Zentralkristall¹. Das Verfahren wird für die übrigen Kristalle solange wiederholt, bis alle Treffer abgearbeitet sind. Cluster mit Energiedepositionen unterhalb der eingestellten Schwelle (meist $\approx 25 \text{ MeV}$) werden verworfen. Abbildung 4.1 zeigt unter anderem die Anzahl der getroffenen Kristalle pro Cluster für Photonkandidaten.

¹Ein energiegewichtetes Zeitmittel führte nicht zu einer signifikanten Veränderung der Zeitauflösung.

Abbildung 4.1: Anzahl der getroffenen Kristalle pro Cluster für Photon-, Proton- und Pionkandidaten. Die Zuordnung der Teilchenart zum Cluster wird im Haupttext erklärt.

Versuche, den Algorithmus zu verfeinern, wurden von mehren Mitgliedern der Kollaboration durchgeführt. Es ist zum Beispiel möglich, weitere Ringe zu berücksichtigen und dann nach entfernteren lokalen Maxima in der Energiedeposition zu suchen, um das Hinzufügen eines weiteren Teilchens zum Cluster zu unterdrücken. Auch könnte für die Zeitinformation ein energiegewichtetes Mittel benutzt werden. Das Verwerfen von Clustern, die unter Winkeln $< 30^{\circ}$ zu identifizierten Photonen liegen führt zur effektiven Unterdrückung der Split-Offs.

Abgleich bei niedrigen Energien

Die Verstärkungen der Verarbeitungsketten können bei niedrigen Photonenergien, mit Hilfe von γ -Strahlungsquellen aneinander angeglichen werden. Aus einer ²⁴¹Am/⁹Be-Quelle mit $E_{\gamma} = 4,438 \,\text{MeV}$ emittierte Photonen erwiesen sich als geeignet.

Randbemerkung: Die $^{241}\text{Am}/^{9}\text{Be-Quelle}$ ist primär als Neutronenquelle (0 bis ca.10 MeV) konzipiert. Beryllium emittiert bei Bestrahlung mit α -Teilchen ($^{241}_{95}\text{Am} \rightarrow ^{237}_{93}\text{Np} + \alpha$, 5,486 MeV zu 85% und 5,443 MeV zu 13%) Neutronen über

$$\alpha + {}^{9} \operatorname{Be} \to {}^{13} \operatorname{C}^{*} \to \begin{cases} {}^{12} \operatorname{C}^{*} + \operatorname{n} \\ {}^{8} \operatorname{Be} + \alpha + \operatorname{n} \\ {}^{3} \alpha + \operatorname{n} \end{cases}$$

Der dominante Kohlenstoff-Zerfall ${}^{12}C^* \longrightarrow {}^{12}C + \gamma$ liefert die von uns gewünschten Photonen mit einer Energie von 4,438 MeV. Siehe [Alb03], [Unv04] und dortige Verweise auf tiefergehende Literatur.

Um eine gute Ausgangssituation zu haben, wurden beim Wiederaufbau des Detektors in Mainz alle Photomultiplier zu den Kristallen zurückmontiert, die sie bereits in Brookhaven auslasen. Die Quelle wurde in einem Behälter aus boriertem Polyethylen im Zen-

Abbildung 4.2: Typisches ADC-Spektrum bei Verwendung der ²⁴¹Am/⁹Be-Quelle. Die durchgesogene Linie zeigt die Anpassung der Summe einer Exponentialfunktion für den Untergrund und einer Gaußglocke für die Schulter. Beide Funktionen sind einzeln nocheinmal gestrichelt eingezeichnet. Das Maximum der Gaußfunktion, entsprechend 4,4 MeV, liegt etwa bei Kanal 59. Die Abbildung wurde mir von Marc Unverzagt [Unv04] zur Verfügung gestellt.

trum des Crystal Ball platziert, der durch eine Einfangreaktion (B + n \rightarrow Li + He) den Neutronenuntergrund leicht verringerte. Als Experimenttrigger diente das Diskriminator-ODER eines einzigen nicht maskierten Moduls, siehe Abschnitt 3.5.6. Um den gesamten Crystal-Ball abzudecken sind somit 45 Messungen nötig. Die Ereignisse wurden aufgezeichnet, wenn die Energiedeposition in mindestens einem der sechzehn Kristalle etwa 2,3 MeV überstieg. Die Ausleseschwelle der SADCs wurde auf etwa 800 keV eingestellt. Alle übrigen Bedingungen entsprachen denen der Strahlzeiten. Um den Untergrund in den Energiespektren weiter zu reduzieren, wurde zusätzlich auf den Pik im zum Kristall gehörigen TDC-Spektrum geschnitten. Abbildung 4.2 zeigt ein typisches Energiespektrum. Für Kanäle, bei denen die Position der 4,438 MeV ¹²C*-Linie mehr als 20% neben dem Mittel lag, wurde die Verstärkung über das in der Basis integrierte Potentiometer, siehe Abschnitt 3.5.4, angepasst.

Energieeichung aus p π^0

Die Kalibration für hochenergetische Photonen wurde, wie bereits erwähnt, über die Zerfallsphotonen aus der Photoproduktion neutraler Pionen am Wasserstofftarget durchgeführt. Dazu werden Ereignisse mit zwei Photon- und keinem oder einem Protonkandidaten in Crystal Ball genutzt. Erläuterungen zur Zuordnung der Teilchenart zum Cluster folgen in Abschnitt 4.2. Da Detektorantwort und Elektronik in guter Näherung als linear angenommen werden, besteht die Aufgabe darin, den Verstärkungs- oder Umrechnungsfaktor von ADC-Kanälen in Energien (in MeV) zu bestimmen. Die Kalibration ist Teil der Dissertation Jason Brudviks [Bru06], weshalb sie an dieser Stelle nur der Vollständigkeit halber skizziert wird.

Für Cluster, bei denen mehr als 70% der Gesamtenergie im Zentralkristall deponiert wurde, wird die Photonenergie aus der Reaktionskinematik bestimmt und der Umrechnungsfaktor von ADC-Kanälen nach Energien so verstimmt, dass die invariante Masse der beiden Photonen bei $m_{\pi^0} = 134,98$ MeV zu liegen kommt. Da eine Abschätzung der Energie im Laufe der Kalibration benötigt wird und die Änderung des Faktors für einen Kristall die Kalibration der Nachbarkristalle über die Clusterbildung beeinflusst, nähert man sich über mehrere Iterationen stabilen Werten an. Vier Umläufe stellten sich als ausreichend heraus.

Im ersten Schritt wird durch Addition der vom Cluster-Algorithmus gelieferten Photonkandidaten ein "Pion" konstruiert. Über einen Schnitt auf die invariante Masse des Photonpaares $m_{\gamma\gamma} = 135 \pm 50 \text{ MeV}$ und die fehlende Masse $m_x = m(k^{\mu} + p^{\mu} - q^{\mu} = 938 \pm 100 \text{ MeV})$, siehe Gleichung (2.1) auf Seite 9, wird die Stichprobe weiter gereinigt.

Die Energie des Pionkandidaten lässt sich aus dem Polarwinkel θ_{π^0} , der Energie des einlaufenden Photons und den Massen der beteiligten Teilchen bestimmen. An dieser Stelle werden also die im Detektor gemessenen Energien genutzt, um θ_{π^0} aus der Summe der beiden Photon-Viervektoren zu berechnen. Da im Schwerpunktsystem des Pions beide Photonen die gleiche Energie haben, können die Photonenergien nun neu berechnet werden. Für die Lorentztransformation ins Ruhesystem des Pions und zurück ins Laborsystem wird nur die Energie des einlaufenden Photons und die Annahme beim Target handele es sich um ein Proton benötigt. Für jeden Kristall wird nun das Verhältnis erwarteter zu gemessener Energie histogrammiert und das Maximum der Verteilung μ durch Anpassung einer Gaußglocke bestimmt. Die neue Verstärkung g' ist nun $g' = g \cdot \mu$.

Abbildung 4.3 zeigt die invariante Masse des Photonenpaares bei Ereignissen mit zwei Photon- und einem Protonkandidaten aus meiner Analyse.

4.1.2 Zeitabgleich des Crystal Balls

Aufgrund des hohen Strahlstromes und der Radiatordicke werden in den aufgezeichneten Ereignissen im Mittel 10 Elektronen auf der Taggerleiter registriert, (bei 8,5 nA Strahlstrom) von denen nur eines zum reaktionsauslösenden Photon gehören kann. Für alle Analyseschritte, die die Energie des einlaufenden Photons benötigen, also insbesondere die Lorentztransformation der Produktteilchen vom Labor- ins Schwerpunktsystem, ist deshalb eine Koinzidenzanalyse nötig, siehe Abschnitt 4.4. Für die Koinzidenzanalyse werden die Zeiten der auf der Leiter nachgewiesenen Elektronen mit denen der Treffer (oder Cluster oder Teilchen) in den übrigen Detektoren verknüpft.

Die Tagger-TDCs werden durch das jeweils letzte nachgewiesene Elektron gestartet und durch das Triggersignal, vergleiche Abbildung 3.27, Signal J2, gestoppt, so dass für die gemessene Zeit

$$t_{\text{Tagger}} = t_{\text{Trigger}} - t_{e^-}$$

gilt.

Die Trefferzeit im Crystal Ball errechnet sich aus der Differenz der Zählerstände für

Abbildung 4.3: Invariante Masse von Photonpaaren für die Signatur p $\gamma \gamma$. Die Mindestenergie der akzeptierten Cluster beträgt 25 MeV, Dateien CB_2752.dat bis CB_2759.dat, ca. 220 Minuten Strahlzeit. Die eingezeichneten Hilfslinien markieren die Lage der Pion- beziehungsweise der Etamasse. Der Pik um die Pionmasse hat ein volle Breite bei halber Höhe von etwa 17 MeV. Ereignisse mit $m_{\gamma\gamma} > 400$ MeV sind mit 200 gewichtet eingetragen.

den getroffenen Einzelkanal und dem Referenzsignal in den CATCH-TDCs²

$$t_{\text{NaI}} = t_{\text{Hit}} - t_{\text{Ref}}.$$

Das Referenzsignal ist ebenfalls in Abbildung 3.27 gekennzeichnet. Bei Vernachlässigung kleiner Schwankungen der Signallaufzeiten in den beiden Zweigen erhält man die Zeitdifferenz zwischen Teilchen im Crystal Ball und Elektron auf der Leiter also aus der Summe beider gemessenen Zeiten:

$$t_{\rm Hit} - t_{\rm e^-} = t_{\rm Tagger} + t_{\rm NaI} \tag{4.2}$$

In dieser Beziehung wurde der aus dem Crystal Ball-Energiesummensignal gewonnene Triggerzeitpunkt eliminiert!

Um mit Schnitten auf Zeitspektren, die von den Einzelkanälen unabhängig sind, arbeiten zu können, besteht der Zeitabgleich des Systems also mindestens aus

- einem Relativabgleich der Leiterzeiten, der beispielsweise unterschiedlich lange Wegstrecken der Elektronen im Spektrometer und unterschiedlich lange Signalkabel kompensiert,
- einem Relativabgleich der Produktdetektorzeiten,
- im Falle des Crystal Balls einer Kompensation der Pulshöhenabhängigkeit der gemessenen Zeiten.

 $^{^2 \}text{Dabei}$ sind eventuelle Überläufe der TDC-Zähler zu beachten. Bei den im Experiment verwendeten Einstellungen zählen die $\mathcal{F}1\text{-Chips}$ bis 62054.

Abbildung 4.4: Walk-Korrektur für den Crystal Ball: Aufgetragen ist die in Kristall Nr. 0 gemessene Energie gegen die rekonstruierte Zeit, links vor und rechts nach der "Walk-Korrektur". Man sieht, dass die Pulshöhenabhängigkeit der Zeiten nicht vollständig kompensiert wird.

Wegen des niedrigen Strahlstroms, der damit verbundenen Elektronmultiplizität von ≈ 1 und der Hardwarekoinzidenz mit dem einzigen Produktdetektor, dem Bleiglas Čerenkov, wird der Abgleich der Leiterzeiten mit Hilfe der zur Messung der Markierungseffizienz, siehe Abschnitt 3.2, aufgenommenen Daten durchgeführt. An alle Zeitdifferenzspektren zwischen Trigger (Treffer im Bleiglas Detektor) und Treffer im Tagger-Leiterdektektor wird eine Gaußglocke angepasst. Aus der Lage des Maximums lässt sich berechnen, wie viele Kanäle zu den Einzelzeiten addiert werden müssen, um das Maximum zur gewünschten Zeit zu schieben.

Der nächste Schritt ist der Relativabgleich der Kristallzeiten und die Kompensation der Pulshöhenabhängigkeit ("Walk-Korrektur"). Dazu wird für Photonen aus der Signatur $\gamma p \rightarrow p \pi^0$ Kristallzeit (TDC-Rohzeit) gegen deponierte Energie aufgetragen, in vertikalen Scheiben ein Maximum bestimmt und, wie auch in [Kra01], die (empirische) Funktion

$$f(y) = p_0 + p_1(1 - \sqrt{p_2/x})$$

angepasst³. Der "Offset" wird durch p_0 erfasst oder kann wieder direkt aus der Zeitdifferenz zwischen Trigger- und Kristallzeit bestimmt werden. Abbildung 4.4 zeigt Energie-Zeit-Beziehung für Kristall Nr. 0 vor und nach der Korrektur.

4.2 Identifikation geladener Teilchen

Die Festlegung der Teilchenart eines Clusters basiert auf den von E. Downie [Dow06] erarbeiteten Methoden und wird in diesem Abschnitt kurz erläutert.

Alle im Crystal Ball rekonstruierten Teilchen werden zunächst als Photonen aufgefasst. Liegt der Cluster im Überlappbereich ($\varphi \pm 11^{\circ}$, siehe Abbildung 4.5) um das Zentrum eines getroffenen PID-Detektorstreifens, so gilt dieser als geladen und wird anhand zweidimensionaler Schnitte in der E_{PID} - E_{Cluster} -Ebene, siehe Abbildung 4.6, in die Kategorie

³In der Wahl der Funktion gibt es Freiheiten. Man kann beispielsweise den Exponenten (hier 1/2) freilassen. Die Qualität der Korrektur lässt sich beispielsweise am Koinzidenzspektrum, siehe unten, für $p \pi^0$ vergleichen. Mit diesem Verfahren habe ich eine Pikbreite von 2,5 ns erhalten. Der Vergleich zeigt, dass andere Funktionen keine signifikant besseren Ergebnisse liefern.

Abbildung 4.5: Azimutwinkeldifferenz zwischen getroffenem Szintillatorstreifen und Cluster im Crystal Ball. Für jeden Cluster im Crystal Ball wurde die Winkeldifferenz zu jedem Treffer im PID eingetragen. Der als zusammengehörig akzeptierte Bereich von $\pm 11^{\circ}$ ist unterlegt.

Abbildung 4.6: Unterscheidung von Protonen und Pionen über die Energiedeposition im Veto- und im zugehörigen Cluster im Crystal Ball-Detektor. Die Protonen sammeln sich im oberen, die Pionen im unteren Band. Weitere Erläuterungen im Haupttext.

Proton, Pion oder "anderes geladenes Teilchen" eingeordnet. "Andere geladene Teilchen" sind beispielsweise Elektronen. Um unterschiedlich lange Spuren in den Szintillatorstreifen zu korrigieren, wird die Energieinformation mit dem Sinus des Cluster-Polarwinkels gewichtet. Die Einbeziehung der Abschwächlängen der Szintillatorstreifen brachte keine Verbesserung der Separation. Um mit einer Schnittdefinition für alle Streifen auskommen zu können, wurden die Verstärkungen aller Signale in Hard- und Software aneinander angepasst.

Der Algorithmus bietet Raum für vielfältige Verbesserungen. Unter anderem könnte, so vorhanden, die Drahtkammerinformation einfließen. Benachbarte Detektorstreifen könnten zu Clustern zusammengefasst werden. Auch könnten Ereignisse markiert werden, bei denen mehrere Crystal Ball-Cluster hinter einen Streifen liegen.

4.3 Verbesserung der Richtungsinformation

Die Winkelinformation für geladene Teilchen kann mit Hilfe der beiden Drahtkammern und dem PID-Detektor verbessert werden. Dazu werden Routinen verwendet, die auf der DAPHNE-Software basieren und von J. R. M. Annand, V. Lisin und S. Schumann [Sch06] für die Crystal Ball-Analyse angepasst und weiterentwickelt wurden.

Für jedes geladene Teilchen soll die Drahtkammeranalyse eine Spur als Paar $S = (\phi, \theta)$ bereit stellen. Diese wird aus den von den beiden Drahtkammern gelieferten Punkten $\vec{P_1} = (r_1, \phi_1, z_1)$ und $\vec{P_2} = (r_2, \phi_2, z_2)$ rekonstruiert $(r_1$ bzw. r_2 sind dabei die Radien der Drahtebenen, vergleiche Tabelle 3.3). Für jedes Paar, bei dem die Azimutwinkeldifferenz $\Delta \phi$ weniger als 0,6 rad beträgt, wird der Richtungsvektor $\vec{R} = (\vec{P_2} - \vec{P_1})/|\vec{P_2} - \vec{P_1}|$ konstruiert, aus dem die Spur S direkt entnommen werden kann. Für die Gerade mit Aufpunkt $\vec{P_1}$ und Richtung \vec{R} wird dann die nächste Annäherung an die z-Achse bestimmt und es kann an dieser Stelle auf im Target mündende Spuren geschnitten werden, siehe Abbildung 4.7. Die Richtungsinformation aus den NaI-Clustern wird durch die Richtungsinformation S

Abbildung 4.7: Aus den beiden Drahtkammern rekonstruierte Pseudovertices, d.h. Punkte der nächsten Annäherung der rekonstruierten Spuren an die z-Achse. Häufigkeitsverteilungen, links in der xy-Ebene, rechts Häufigkeitsverteilung in z-Richtung. Das Target ist 48 mm lang und hat einen Durchmesser vom 24 mm. In Vorwärtsrichtung erkennt man außerdem das Austrittsfenster der Streukammer. Datei: CB_2752.dat.

aus den Drahtkammern ersetzt, falls sowohl $\Delta \theta$ als auch $\Delta \phi$ in einem Fenster mit $\Delta \theta$ und $\Delta \phi$ von $\pm 15^{\circ}$ liegen.

Die Punkte $\vec{P_1}$ und $\vec{P_2}$ werden aus den beiden Kammern bestimmt, ohne Informationen der jeweils anderen Kammer zu verwenden oder Informationen doppelt zu nutzen. Im Idealfall liefert eine Kammer für jede Spur Ladungsinformation (q) für mehrere benachbarte Streifen (s_i) des inneren und des äußeren Zylinders. Diese ist durch die SADCs bereits auf eine Nullmessung korrigiert (Pedestalsubtraktion) und wird nun noch auf die Antwort auf ein mit Hilfe eines Generators erzeugten Referenzsignals normalisiert. Durch mit den Ladungen gewichtete Mittelwertbildung werden die Streifencluster (je nach Lage etwa $3 \pm 1,5$ Streifen) auf eine mittlere Streifenposition reduziert ($\bar{s} = \sum_i (q_i s_i) / \sum_i q_i$). In den Abwicklungen der Zylinder sind die Beziehungen zwischen $z_{I/E} = z_{I/E}(\phi, i)$, (I: innen, E: außen) zwar nicht stetig, aber in den Teilstücken linear, so dass die Gleichungen der Regel zwei Schnittpunkte (z_1^s, ϕ_1^s) und (z_2^s, ϕ_2^s) mit um $\Delta \phi = 180^\circ$ verschiedenen Lösungen liefern. Diejenige mit einer ϕ -Winkeldifferenz zwischen ϕ^s und dem Schwerpunkt des Drahtclusters (meist nur ein, manchmal bis zu drei Drähte) ϕ^w von weniger als 0,04 rad wird akzeptiert⁴.

Probleme in der Spurrekonstruktion treten unter anderem durch defekte oder im Ereignis fehlende Drähte oder Streifen auf. In den Draht- und Streifenclustern werden Lücken von einem Element übergangen, um einen Cluster nicht fälschlich in zwei aufzuteilen. Fehlen die Drähte, um den richtigen Kreuzungspunkt zweier Streifen ermitteln zu können, so wird der Plastik-Innendetektor zur Entscheidung benutzt. Eine Tabelle defekter Streifen erlaubt, Kreuzungspunkte mit bekanntermaßen defekten Streifen im Zweifelsfall zu bevorzugen. Für mit der oben beschriebenen $\Delta E/E$ -Methode identifizierte Protonen aus γ p \rightarrow p π^0 werden je nach Betriebsbedingungen der Drahtkammer etwa 90 bis 95% der Spuren rekonstruiert.

Die Auflösung der Spurrekonstruktion lässt sich beispielsweise aus der Analyse von Höhenstrahlungsereignissen gewinnen. Ein beide Kammern durchlaufendes Teilchen sollte

⁴Randbemerkung: Laufen N Teilchen durch die Kammern, fallen $2 \cdot N^2$ Kandidaten (z^s, ϕ^s) und N^3 Beziehungen für $|\phi^s - \phi^w|$ an.

4 Auswertung der Messdaten

zu zwei Spuren führen, die Rücken an Rücken liegen, also in $\Delta \phi$ um 180° auseinander sind und sich in θ_1 und θ_2 auf 180° ergänzen. Die Breite σ der an die Verteilungen angepassten Gaußglocken beträgt $\sigma_{\theta} = 2,66°$ und $\sigma_{\phi} = 1,91°$, für die Auflösung folgt also $\delta_{\theta} = 1/\sqrt{2} \cdot \sigma_{\theta} = 1,88°$ und analog $\delta_{\phi} = 1,35°$. Während sich die ϕ -Auflösung gegenüber den Messungen mit DAPHNE erwartungsgemäß nicht verändert hat, wurde die θ -Auflösung von damals $\approx 1°$ nicht wieder erreicht [Sch05]. Das ist vor allem darauf zurückzuführen, dass bei einer Abtastfrequenz von 40 MHz das Streifensignal an nur wenigen (etwa zehn) Stützstellen erfasst wird, siehe auch Abschnitt 3.5.9. Die Umstellung der iSADCs auf eine Frequenz von 80 MHz sollte deshalb zu einer deutlichen Verbesserung der Auflösung führen.

4.4 Analyse der Reaktion $p \pi^0 \pi^0$

Zur Rekonstruktion der Reaktion $\gamma \ p \rightarrow p \ \pi^0 \ \pi^0$ werden vier neutrale Cluster oder vier neutrale Cluster und ein als Proton eingeordneter geladener Cluster im Crystal Ball gefordert.

Für die Weiterbehandlung der vier Photonen sind mehrere Strategien möglich. Es können zum Beispiel alle drei Kombinationen von jeweils zwei Photonen zu zwei Pionen in der Hoffnung weiter analysiert werden, die Falschkombinationen durch kinematische Schnitte wieder zu eliminieren. Merkmal dieser Methode ist also, dass für ein physikalisches Ereignis nun mehrere "Softwareereignisse" anfallen, von denen nur eines die richtige Kombination enthalten kann. Eine Alternative ist, bereits an dieser Stelle eine kinematische Bedingung zu stellen. Nämlich nur diejenige Kombination zu verwenden, die mit größter Wahrscheinlichkeit aus dem Zerfall der beiden Pionen stammt, also die invarianten Massen $m_{\pi^0} = 134,98$ MeV am besten misst. Man verwirft wegen der Detektorauflösungen also möglicherweise an dieser Stelle die richtige Kombination und akzeptiert die falsche ("Kombinatorischer Untergrund"). In der vorliegenden Analyse wird der zweite Weg gegangen.

Abbildung 4.8: Invariante Massen der rekonstruierten Pionen. Die invarianten Massen der zusammengefassten Photonenpaare sind gegeneinander aufgetragen sind . Links, falls zusätzlich ein Proton nachgewiesen wurde, rechts, falls dieses nicht in Crystal Ball und PID gesehen wurde. Man sieht direkt, dass die Stichprobe bei nachgewiesenem Proton wesentlich weniger Untergrund enthält.

Abbildung 4.9: Azimutwinkeldifferenz zwischen gestreutem Proton und der Summe der Pionimpulse für die Signatur p $\pi^0 \pi^0$.

Zu Beginn der Rekonstruktion wird also diejenige Kombination verwendet, die aus den vom Cluster-Algorithmus gelieferten Photonkandidaten-Viervektoren das kleinste

$$\chi' = (m_{1\gamma\gamma} - m_{\pi^0})^2 + (m_{2\gamma\gamma} - m_{\pi^0})^2$$

liefert. In Abbildung 4.8 sind die beiden invarianten Massen der resultierenden Photonpaare (im Folgenden rekonstruierte Pionen genannt) gegeneinander aufgetragen. Weiterverwendet werden nur die Ereignisse, bei denen beide Massen im Bereich von 110 MeV bis 150 MeV liegen.

Die Reinheit der Stichprobe muss an weiteren Spektren beurteilt und, falls möglich, durch Schnitte weiter verbessert werden. Bei nachgewiesenem Proton bietet sich als einfache Größe zum Beispiel die Azimutwinkeldifferenz zwischen der Summe der beiden Pion-Viervektoren und dem Protonkandidaten an, vergleiche Abbildung 4.9. Dazu ist keine Lorentztransformation nötig, die Kenntnis des einlaufenden Photons also nicht erforderlich. Für alle Spektren, die die Energie des einlaufenden Photons benutzen, zum Beispiel die fehlende Masse, ist eine Koinzidenzanalyse nötig. Auf diese wird im Folgenden kurz eingegangen.

Wie bereits erwähnt, werden aufgrund des hohen Strahlstroms im Tagger-Trigger-Zeitfenster (160 ns) im Mittel 10 Elektronen, also 10 Kandidaten für das einlaufende Photon registriert. Ein Merkmal des reaktionsauslösenden ist, dass es mit den Reaktionsprodukten in einem festen Zeitzusammenhang stehen muss, während die anderen Elektronen statistisch im Messfenster verteilt liegen. Abbildung 4.10 zeigt für jedes nachgewiesene Elektron die *Summe* aus Tagger- und Ereigniszeit, vergleiche Gleichung (4.2) auf Seite 70, also eine *Zeitdifferenz*⁵ zwischen Elektron und Ereignis. Als "Ereigniszeit" wird dabei das Zeitmittel der beiden Pionzeiten, jeweils gemittelt aus den beiden Photon-Clusterzeiten

⁵Die Lage des Koinzidenzpiks wird durch die oben vorgestellte Zeitkalibration von Tagger und Crystal Ball eingestellt und ist eine "Geschmacksfrage". In den ursprünglich von mir erstellten Kalibrations-

Abbildung 4.10: Koinzidenzanalyse für (p) $\pi^0 \pi^0$: Die mit einem Tagger-Elektron koinzidenten Ereignisse liegen im Pik C 47,5 und 54,5 ns (FWHM ≈ 2 ns). Die zeitzufällingen sind über die gesamte Breite des Messfensters verteilt. Für sie wurden in der Koinzidenzanalyse die Fenster U₁ zwischen 24,0 und 45,0 ns sowie U₂ zwischen 60,0 und 137,0 ns, wie auch der Koinzidenzpik unterlegt dargestellt, benutzt. Weitere Erläuterungen im Haupttext.

benutzt⁶. Daraus, dass die mit dem betrachteten Elektron errechnete Ereigniszeit innerhalb des Zeitfensters C liegt, kann also nicht geschlossen werden, dass dieses Elektron reaktionsauslösend war. Geht man jedoch davon aus, dass die Energieverteilung der zeitzufälligen Elektronen über das gesamte Zeitfenster gleich ist, kann man den im Fenster C liegenden Untergrund in anderen Spektren abziehen, indem man diese auch für Ereignisse in den Untergrundfenstern U_i aufbaut und nach Normierung über die Fensterbreiten die Spektren für U-Ereignisse von denen für C-Ereignisse subtrahiert. Die Anzahl der "guten" Ereignisse ist dann also

$$N_S = N_C - \frac{\Delta t_C}{\Delta t_U} N_U.$$

Dieses einfache Vorgehen setzt implizit voraus, dass die Untergrundereignisse konstant über die Zeit, oder wenigstens die verwendeten Zeitfenster verteilt liegen. An Abbildung 4.10 ist zu sehen, dass dies nicht ganz der Fall ist. Da das Fenster C in einem Minimum der Verteilung liegt, überschätzt man mit dem Faktor $\alpha = \Delta t_C / \Delta t_U = 1/14$ die Zahl der im Untergrundereignisse leicht, was sich beispielsweise durch einen "Unterschwinger" in den Spektren bemerkbar machen kann. Nähert man die Verteilungen in den Untergrundfenstern durch Trapeze, findet man $\alpha^{-1} = 14,098 \pm 0,011$. Die Koinzidenzanalyse lässt

dateien schob ich alle Piks auf Null. Für die hier gezeigten Spektren wurde die von Richard Codling [Cod06] erstellte Tagger-Zeitkalibration benutzt.

⁶Diese Ereigniszeit kann für alle drei untersuchten Detektorsignaturen $(p)\pi^0\pi^0$ und $p\pi^+\pi^-$ einheitlich definiert werden. Naheliegende Alternativen sind z.B die Protonzeit aus dem PID-Detektor, falls das Proton nachgewiesen wurde, oder ein Zeitmittel aus den PID-Pionzeiten im geladenen Kanal. Wesentliche Verbesserung der Signal-Untergrund Verhältnisse gegenüber den hier gezeigten Spektren sind dadurch allerdings nicht zu erwarten.

Abbildung 4.11: Fehlende Masse $m_x = m(\mathbf{k}^{\mu} + \mathbf{p}^{\mu} - \mathbf{q}^{\mu})$ für die Signatur p $\pi^0 \pi^0$. Links: Durchgezogene Linie für den Zeitbereich C, schraffierte Fläche: Auf die Fensterbreiten normiert für die Untergrundbereiche U. Rechts: Differenz der links dargestellten Spektren. Bei niedrigen fehlenden Massen wird der Untergrund sehr gut durch zufällig im Zeitfenster liegende Photonen erklärt. Bei höheren fehlenden Massen wird ein anderer Beitrag sichtbar. Weitere Erläuterungen im Haupttext.

sich vermutlich durch bessere Zeiteichungen und Betrachtung der Koinzidenzspektren in Abhängigkeit vom Taggerkanal (die gezeigten Spektren integrieren über alle Kanäle) weiter verbessern.

Abbildung 4.11 zeigt die Wirksamkeit des Verfahrens unter Verwendung der oben angegebenen Zeitfenster für die fehlende Masse $m_x = m(\mathbf{k}^{\mu} + \mathbf{p}^{\mu} - \mathbf{q}^{\mu})$, vergleiche Seite 9, bei p $\pi^0\pi^0$ -Ereignissen unter Auslassung des Protons. (Es sei daran erinnert, dass für die Analyse keine Kalibration der Protonenergien benutzt wurde.) Abbildung 4.12 zeigt die Verteilung der fehlenden Masse, falls das Proton nicht im Detektor nachgewiesen wurde für mehrere Intervalle in der Einschussenergie. Oben links ist m_x für Photonenergien unterhalb der Zwei-Pion Schwelle ($E_{\gamma} = 309 \text{ MeV}$), unten rechts für Ereignisse oberhalb der Eta-Schwelle ($E_{\gamma} = 707 \text{ MeV}$) dargestellt. Als Hauptquellen für den Untergrund werden im Moment mehrere Möglichkeiten in Betracht gezogen:

- Möglicherweise wird die falsche Kombination der vier Photonen zu zwei Pionen benutzt.
- Geladene Teilchen könnten wegen ineffizienter PID-Kanäle als Photon identifiziert worden sein.
- Ereignisse aus $\gamma p \to p \eta$, $\eta \to 3\pi^0(\Gamma = 32,5\%)$ könnten für die Schulter in der unteren rechten Abbildung mitverantwortlich sein $(m_p + m_{\pi^0} \approx 1073 \,\text{MeV})$.

Auf den Abdruck mit Abbildung 4.12 vergleichbarer Verteilungen mit nachgewiesenem Proton wird an dieser Stelle verzichtet, da die Spektren aufrund der restriktiveren Ereignisauswahl weniger Untergrund, insbesondere bei $E_{\gamma} > 707 \,\text{MeV}$ enthalten, siehe 4.11. Die nachfolgenden Analyseschritte wurden nur für Elektronen auf der Taggerleiter durchgeführt, bei denen die Photonenergie zu m_x im Intervall [890 ... 980]MeV führt.

Nächster Schritt ist die Transformation der beteiligten Viervektoren vom Labor- in das durch $\vec{k}^* + \vec{p}^* = 0$ definierte Schwerpunktsystem. \vec{k}^* bzw. \vec{p}^* stehen dabei für die Impulse des einlaufenden Photons bzw. Targetprotons. Aus diesen Vektoren kann nun

Abbildung 4.12: Verteilung der fehlenden Masse m_x für Ereignisse, bei denen das das Proton nicht im Detektor nachgewiesen wurde. Die senkrechten Linien markieren Schnittgrenzen für die nachfolgende Analyse. Weitere Erläuterungen im Haupttext.

der Winkel ϕ gemäß Gleichung (2.10) bestimmt und die Anzahl der Ereignisse pro ϕ -Bin gegen den Leiterkanal des zugehörigen Photons aufgetragen werden $(N(\phi, E_{\gamma}))$. Da nach den Zeitfenstern U und C und der Polarisation links- und rechtshändig unterschieden wird, sind insgesamt vier solche zweidimensionalen Histogramme für jeden "Reaktionskanal" nötig. Um Programmierfehler in der Analyse zu vermeiden, werden also alle Berechnungen für beide Strahlhelizitäten mit denselben Funktionen durchgeführt. Erst beim Einfüllen der rekonstruierten Winkel in die Histogramme wird nach Helizität unterschieden.

Abbildung 4.13 zeigt die Verteilung der rekonstruierten ϕ -Winkel nach der Koinzidenzanalyse in einem Energieintervall für beide Polarisationszustände. Aus solchen Verteilungen werden die in Kapitel 5 gezeigten Asymmetrien gewonnen.

4.5 Analyse der Reaktion $p \pi^+ \pi^-$

Ursprünglich wurde dieser Kanal ausgewertet, weil in Messungen am CLAS-Detektor eine Asymmetrie $I^{\odot}(\phi, \sqrt{s})$ nachgewiesen wurde, mittlerweile in [Str05] veröffentlicht. Im Unterschied zum dortigen Aufbau erlaubt der Crystal Ball Detektor keine zuverlässige Trennung positiv und negativ geladener Pionen, weshalb hier nur eine reduzierte Form

Abbildung 4.13: Verteilung der rekonstruierten Winkel ϕ in (p) $\pi^0 \pi^0$ für das Energieintervall $E_{\gamma} = [708...819]$ MeV, vergleiche Abb. 4.12 unten rechts. Durchgezogene Linie: Ereignisse, bei denen das Polarisationsbit gesetzt ist. Gestrichelte Linie: das Polarisationsbit ist nicht gesetzt.

der Helizitätsasymmetrien bestimmt werden kann. Die Analyse des neutralen und des geladenen Kanals ähneln sich sehr stark. In vielen wichtigen Teilen werden dieselben Routinen benutzt.

Erstes Merkmal gültiger $p \pi^+ \pi^-$ -Ereignisse sind genau ein in Crystal Ball und PID nachgewiesenes Proton und genau zwei nachgewiesene geladene Pionen. Es darf kein weiterer Cluster rekonstruiert worden sein. Für alle Teilchen wird, wie in Abschnitt 4.2 besprochen, ein $\Delta E/E$ -Schnitt zur Festlegung der Teilchenart benutzt.

Die für die Lorentztransformation vom Labor- ins Schwerpunktsystem nötigen Teilchenenergien werden aus den Clusterwinkeln errechnet. Das verwendete Verfahren ähnelt demjenigen in [Mur93]. Die Drahtkammerinformation wird, so vorhanden, einbezogen. Im Laborsystem gilt mit den Notationen aus Abschnitt 2.2:

$$\mathbf{k}^{\mu} + \mathbf{p}^{\mu} = \mathbf{p}^{\prime \mu} + \mathbf{p}^{\mu}_{\pi^{+}} + \mathbf{p}^{\mu}_{\pi^{-}}$$

$$x: \quad 0 + \quad 0 = p_{p'} \sin \vartheta_{p'} \cos \varphi_{p'} + p_{\pi^{+}} \sin \vartheta_{\pi^{+}} \cos \varphi_{\pi^{+}} + p_{\pi^{-}} \sin \vartheta_{\pi^{-}} \cos \varphi_{\pi^{-}}$$

$$y: \quad 0 + \quad 0 = p_{p'} \sin \vartheta_{p'} \sin \varphi_{p'} + p_{\pi^{+}} \sin \vartheta_{\pi^{+}} \sin \varphi_{\pi^{+}} + p_{\pi^{-}} \sin \vartheta_{\pi^{-}} \sin \varphi_{\pi^{-}}$$

$$z: \quad p_{\gamma} + \quad 0 = p_{p'} \cos \vartheta_{p'} + p_{\pi^{+}} \cos \vartheta_{\pi^{+}} + p_{\pi^{-}} \cos \vartheta_{\pi^{-}}$$

Etwas eingängiger in Matrixschreibweise:

$$\begin{pmatrix} 0\\ 0\\ p_{\gamma} \end{pmatrix} = \underbrace{\begin{pmatrix} \sin\vartheta_{p'}\cos\varphi_{p'} & \sin\vartheta_{\pi^{+}}\cos\varphi_{\pi^{+}} & \sin\vartheta_{\pi^{-}}\cos\varphi_{\pi^{-}}\\ \sin\vartheta_{p'}\sin\varphi_{p'} & \sin\vartheta_{\pi^{+}}\sin\varphi_{\pi^{+}} & \sin\vartheta_{\pi^{-}}\sin\varphi_{\pi^{-}}\\ \cos\vartheta_{p'} & \cos\vartheta_{\pi^{+}} & \cos\vartheta_{\pi^{-}} \end{pmatrix}}_{\mathcal{M}} \begin{pmatrix} p_{p'}\\ p_{\pi^{+}}\\ p_{\pi^{-}} \end{pmatrix}$$
(4.3)

Die drei gesuchten Teilchenenergien lassen sich also nach Gleichung (4.3) aus den Clusterwinkeln rekonstruieren falls a) die Teilchenzuordnung Proton/Pion richtig und b) die

4 Auswertung der Messdaten

Matrix \mathcal{M} invertierbar ist. \mathcal{M} ist insbesondere dann *nicht* invertierbar, wenn das Volumen des von den Spaltenvektoren aufgespannten Spats (Betrag der Determinante von \mathcal{M}) gleich Null, also die drei Teilchen im *Laborsystem*⁷ in einer Ebene liegen. Die Matrixinversion wird numerisch mit den im **root**-Paket enthaltenen Routinen durchgeführt, vergleiche [BR06]. Der Algorithmus ist für Ereignisse mit $|\det \mathcal{M}| > 10^{-6}$ stabil, die übrigen müssen verworfen werden. Abbildung 4.14 zeigt die Azimutwinkeldifferenz zwischen Proton und einem der Pionen. Die Versuche, die Energie aus den Winkeln zu rekonstruieren sind denen gegenüber gestellt, bei denen die Matrix \mathcal{M} invertiert werden konnte. Wie erwartet bricht die Rekonstruktionseffizienz um $|\Delta \varphi| = 180$ ° deutlich ein. Auch für diese Reaktion wurde die fehlende Masse unter Auslassung des Protons berechnet und auf das Fenster 890 bis 1060 MeV geschnitten. Für die Koinzidenzanalyse wurden die Zeitfenster $U_1 = [25$...40]ns, $U_2 = [60 \dots 127, 5]$ ns und $C = [47, 5 \dots 55]$ ns sowie $\alpha = 1/11$ gewählt.

Abbildung 4.14: Verteilung der φ -Winkeldifferenz zwischen Proton und einem der Pionen. Gestrichelte Linie: vor der Energierekonstruktion, durchgezogene Linie: bei erfolgter Rekonstruktion.

4.6 Abschließende Bemerkungen zur Analyse

An vielen Stellen der vorangegangenen Abschnitte wurde bereits eingestreut, wo Verbesserungen an der Analyse oder weitere Untersuchungen möglich oder notwendig erscheinen. Leider weiß man oft erst nachdem man Erfolg gehabt oder einen Irrweg gegangen ist, ob sich die investierte Zeit gelohnt hat. Am drängendsten erscheint mir, jetzt, da viele Detailprobleme von anderen Mitgliedern der Kollaboration untersucht wurden, die erneute Aufnahme der TAPS Vorwärtswand in die Analyse. Damit ließe sich ein Teil der Ereignisse besser rekonstruieren, bei denen das Proton im Moment nach vorne verloren geht. Damit einhergehend sollte der Untergrund im Spektrum der fehlenden Massen, vergleiche

⁷VORSICHT: Geprägt durch Abbildung 2.2 mag man an dieser Stelle geneigt sein, im *Schwerpunktsystem* zu denken!

Abbildung 4.12 besser verstanden oder sogar reduziert werden. Insgesamt wurden für die Reaktion (p) $\pi^0 \pi^0$ etwa 800.000 + 1.260.000 und für p π^+ π^- etwa 6 Millionen "Signaler
eignisse" akzeptiert.

 $4 \, Auswertung \, der \, Messdaten$

5 Ergebnisse

In diesem Abschnitt wird die gemessene Asymmetrie den Vorhersagen von L. Roca [Roc05] und denen von A. Fix [FA05] gegenüber gestellt. Vorher wird der statistische und der systematische Fehler besprochen. Außerdem werden einige Angaben der vorhergehenden Kaptitel zusammenfassend wiederholt.

Die Asymmetrie wird nach Gleichung 4.1 aus den gemessenen Verteilungen des ϕ -Winkels gegen den Leiterkanal, als Maß für die einlaufende Photonenergie, berechnet, vergleiche Abschnitt 4.4, insbesondere Abbildung 4.13. Betrachtet man die Erfassung von $N^+(E_{\gamma}, \phi)$ und $N^-(E_{\gamma}, \phi)$ in den gewählten Energie- und Winkelintervallen als voneinander unabhängige Zählexperimente, kann der *statistische* Fehler der Zählratenasymmetrie zu

$$\sigma_A = \frac{2}{P_{\gamma}(N^+ + N^-)^2} \left(N^{-2} \sigma_{N^+}^2 + N^{+2} \sigma_{N^-}^2 \right)^{1/2}$$
(5.1)

abgeschätzt werden¹. N^+ bzw. N^- stehen dabei für die Anzahl der beobachteten Signalereignisse N_S im jeweiligen Intervall, in deren Varianzen die Normierung $\Delta t_C / \Delta t_U$ eingeht. Aus diesem Fehler werden die in den untenstehenden Abbildungen eingezeichneten Fehlerbalken bestimmt. Der Polarisationsgrad des Photonenstrahls (P_{γ}) kann nach Gleichung 3.4 für jede einlaufende Photonenergie berechnet werden. Der dazu nötige Polarisationsgrad des Elektronenstrahls wird von Kurt Aulenbacher [Aul06] mit $P_e = (82 \pm 5)\%$ angegeben. Als weiterer Faktor wird die elektronenenergieabhängige Spinfehlstellung am Ort des Radiators (13,91° bei $E_{\gamma} = 883,28$ MeV) einbezogen. P_{γ} wird als größte Quelle systematischer Unsicherheit bei der Berechnung der Asymmetrien angesehen.

Die Umrechnung der Leiterkanäle in Photonenenergie bzw. Gesamtenergie im Schwerpunktsystem erfolgt über die in Tabelle B.1 in Anhang B angegebenen mittleren Energien im Leiterkanal. Die Einzelkanäle haben nicht die gleiche Energiebreite und zählen aufgrund des Bremsstrahlungsspektrums, vergleiche Abbildung 3.5 unterschiedlich viele Photonen. Die dargestellten Energieintervalle wurden mit Hilfe des Scaler-Spektrums so gewählt, dass die mittlere Energie möglichst nahe an der Energie liegt, für die Vorhersagen der Asymmetrie vorliegen. Die Abweichung beträgt nur etwa ein MeV. Auf eine Wichtung von $N(\phi)$ bei festem Leiterkanal mit dem dazugehörigen Photonenfluss wurde wurde deshalb verzichtet.

Um die gewählten Intervallbreiten von 20° in ϕ und die Breite der Energieintervalle zu begründen kann Gleichung (5.1) betrachtet werden. Sie erlaubt die Anzahl an Ereignissen abzuschätzen, die für einen gewünschten statistischen Fehler für beide Polarisationseinstellungen im Energie- und Winkelintervall nötig sind.

¹Die Abschätzung wurde per "Toy Monte Carlo"-Simulation geprüft.

5 Ergebnisse

5.1 Gemessene Asymmetrie in $p \pi^0 \pi^0$

Die Abbildungen 5.2 und 5.3 zeigen die gemessene Asymmetrie in vier Energieintervallen. Um möglichst gute Vergleichbarkeit mit Modellvorhersagen zu erreichen, wurden die Intervallgrenzen in möglichst guter Übereinstimmung mit den mit A. Fix verabredeten Grenzen gewählt. Von L. Roca stehen Vorhersagen nahe den Intervallmitten $\langle \sqrt{s} \rangle = (1410, 1450, 1490, \ldots)$ MeV zur Verfügung. Für die (schwarze) durchgezogene Linie wurden die ersten beiden nichtverschwindenden Glieder der Reihe (2.11) an die Daten angepasst:

$$I^{\odot}(\phi) = a_2 \sin(2\phi) + a_4 \sin(4\phi)$$
(5.2)

Die Modellvorhersage von A. Fix wurde als (braune) lang gestrichelte Kurve, die von L. Roca als (blaue) kurz gestrichelte Kurve eingezeichnet. Die Detektorakzeptanz ist in den Vorhersagen noch nicht berücksichtigt.

Tabelle 5.1 listet die erhaltenen Amplituden sowie das Verhältnis von χ^2 zur Anzahl der Freiheitsgrade (16) der Kurvenanpassung, in Abbildung 5.1 sind diese Amplituden gegen die Gesamtenergie im Schwerpunktsystem aufgetragen. Die zweite und dritte Ordnung $(a_4 \text{ bzw. } a_6)$ treten nicht signifikant in Erscheinung, vergleiche auch Anhang E.

Inte	ervall [Me	eV]	A	mplit	ude [%	6]		
\sqrt{s}_{\min}	$\sqrt{s}_{\rm max}$	$\langle \sqrt{s} \rangle$	a_2	σ_{a_2}	a_4	σ_{a_4}		$\chi^2/{ m NDF}$
1390	1429	1409	5.2	0.4	-0.2	0.4	•	1.71
1429	1470	1450	6.8	0.3	-0.6	0.3		1.83
1470	1510	1489	7.2	0.3	-0.3	0.3		0.98
1510	1551	1531	5.0	0.3	-0.0	0.3		1.06

Tabelle 5.1: Details zu den in Abbildung 5.2 und 5.3 dargestellten Ergebnissen.

Abbildung 5.1: Amplituden a_2 und a_4 aufgetragen gegen die Gesamtenergie im Schwerpunktsystem $\langle \sqrt{s} \rangle$ für p $\pi^0 \pi^0$.

Abbildung 5.2: Ergebnisse für p π^0 π^0 . Die Daten mit und ohne nachgewiesenem Proton wurden zusammengefasst. Der Fehlerbalken stellt nur die statistische Unsicherheit dar. Durchgezogene (schwarze) Linie: Anpassung von $I^{\odot}(\phi) = a_2 \sin(2\phi) +$ $a_4 \sin(4\phi)$ an die Daten. Lang gestrichelte (braune) Linie: Vorhersage von A. Fix im angegebenen Intervall. Kurz gestrichelte (blaue) Linie: Vorhersage von L. Roca an der Intervallmitte.

5 Ergebnisse

Abbildung 5.3: Ergebnisse für p $\pi^0 \pi^0$. (Fortsetzung) Der Fehlerbalken stellt nur die statistische Unsicherheit $\operatorname{dar.}$ Durchgezogene Linie: (schwarze) Anpassung von $I^{\odot}(\phi)$ = $a_2\sin(2\phi) + a_4\sin(4\phi)$ an die Daten. Lang gestrichelte (braune) Linie: Vorhersage von A. Fix im angegebenen Intervall. Eng gestrichelte (blaue) Linie: Vorhersage von L. Roca an der Intervallmitte.

I[☉]_{π⁰π⁰}(φ, √s=(1510-1551)MeV)

5.2 Gemessene Asymmetrie in $p \ \pi^+ \ \pi^-$

Aufgrund der höheren Anzahl nachgewiesener Ereignisse (größerer Wirkungsquerschnitt) sind für diesen Kanal engere Energieintervalle möglich. Für Abbildung 5.5 und folgende wurden die Energieschwerpunkte derjenigen Graphen, für die zwei Vorhersagen vorlagen, in Anlehnung an Abbildung 5.2 gewählt. Wie vorhergesagt ist hier in manchen Diagrammen ein Beitrag zweiter Ordnung (a_4) sichtbar. Tabellen 5.2 und Abbildung 5.4 zeigen die erhaltenen Koeffizienten bei Anpassung von (2.11). In Anhang E werden diesen die Amplituden bei Hinzunahme der nächsten Ordnung gegenübergestellt.

Inte	ervall [Me	eV]	A	mplit	ude [%	6]	
\sqrt{s}_{\min}	$\sqrt{s}_{\rm max}$	$\langle \sqrt{s} \rangle$	a_2	σ_{a_2}	a_4	σ_{a_4}	$\chi^2/{ m NDF}$
1359	1399	1380	1.6	0.3	-0.3	0.3	0.78
1399	1420	1409	2.9	0.3	-0.1	0.3	1.48
1420	1440	1430	3.4	0.2	0.4	0.3	0.70
1440	1460	1450	4.1	0.2	0.7	0.2	0.69
1460	1479	1470	5.2	0.2	1.9	0.2	0.82
1481	1500	1489	5.7	0.2	2.2	0.2	1.40
1510	1551	1531	4.3	0.2	2.2	0.2	2.16

Tabelle 5.2: Details zu den in Abbildung 5.5, 5.6 und 5.7 dargestellten Ergebnissen.

Abbildung 5.4: Amplituden a_2 und a_4 aufgetragen gegen die Gesamtenergie im Schwerpunktsystem $\langle \sqrt{s} \rangle$ für p $\pi^+ \pi^-$.

Abbildung 5.5: Ergebnisse für p π^+ π^- . Der Fehlerbalken stellt nur die statistische Unsicherheit dar. Durchgezogene (schwarze) Linie: Anpassung von $I^{\odot}(\phi) =$ $a_2 \sin(2\phi) + a_4 \sin(4\phi)$ an die Daten. Lang gestrichelte (braune) Linie: Vorhersage von A. Fix im angegebenen Intervall. Eng gestrichelte (blaue) Linie: Vorhersage von L. Roca an der Intervallmitte.

I[©]_{π⁺π}(φ, √s=(1359-1399)MeV)

Abbildung 5.6: Ergebnisse für p π^+ π^- . (Fortsetzung)

Der Fehlerbalken stellt nur die statistische Unsicherheit dar.

Durchgezogene (schwarze) Linie: Anpassung von $I^{\odot}(\phi)$ = $a_2 \sin(2\phi) + a_4 \sin(4\phi)$ an die Daten. Lang gestrichelte (braune) Linie: Vorhersage von A. Fix im angegebenen Intervall. Eng gestrichelte (blaue) Linie: Vorhersage von L. Roca an der Intervallmitte. 5 Ergebnisse

Abbildung 5.7: Ergebnisse für p π^+ π^- . (Fortsetzung) Der Fehlerbalken stellt nur statistische Unsicherdie heit $\operatorname{dar.}$ Durchgezogene (schwarze) Linie: Anpassung von $I^{\odot}(\phi)$ = $a_2\sin(2\phi) + a_4\sin(4\phi)$ an die Daten. Lang gestrichelte (braune) Linie: Vorhersage von A. Fix im angegebenen Intervall. Eng gestrichelte (blaue) Linie: Vorhersage von L. Roca an der Intervallmitte.

I@_{π⁺π}(φ, √s=(1510-1551)MeV)

5.3 Ausblick

Der nach meiner Einschätzung gewichtigste Kritikpunkt am in den vorangegangenen Kapiteln dargestellten Vergleich zwischen Modellerwartung und Messdaten ist, dass die Akzeptanz des Detektors und der Analyse nicht berücksichtigt wurde. Dies könnte durch Extrapolation der Ergebnisse in die nicht abgedeckten Teile des Phasenraumes oder durch Einschränkung der Modelle auf die akzeptierten Bereiche geschehen, geht jedoch über die Aufgabenstellung dieser Arbeit hinaus. Da in [Str05] der zweite Weg gegangen wurde, würde auch eine Extrapolation der Crystal Ball-Daten und anschließende Wiederholung der Analyse der CLAS-Daten unter Vernachlässigung der Teilchenunterscheidbarkeit keine Vergleichbarkeit der experimentellen Ergebnisse herstellen.

Für eine Interpretation der gemessenen Verteilungen ist es noch zu früh, dazu muss der Einfluss der Subprozesse auf I^{\odot} in den jeweiligen Modellen genauer studiert werden. Es könnte unter anderem hilfreich sein, I^{\odot} in Abhängigkeit anderer kinematischer Variablen, z. B. $I^{\odot}(\phi, s_{\pi\pi})$, aufzubauen. Das theoretische Interesse scheint groß zu sein. Neben L. Roca und A. Fix wurde bereits Kontakt mit A. Sarantsev, V. Mokeev und W. Roberts aufgenommen. F. Zehr [Zeh06] arbeitet an der Auswertung der Crystal Ball-Daten im dritten Isospinkanal ($\gamma p \rightarrow n \pi^+ \pi^0$). U. Thoma hat in [Tho05] die Messung der Helizitätsasymmetrie mit dem CRYSTAL BARREL-Aufbau an ELSA (Bonn) vorgeschlagen.

5 Ergebnisse

Anhänge

A Numerierung der Crystal Ball-Kanäle

Numerierung der Kristalle: Beziehung von Bunch (B) und Kabelnummer (K) zu Kristallnummer im alten (M/M/C) Schema, siehe Abschnitt 3.5.3, Seite 40.

Е	В	Κ	М	m	С	ADC	TDC	Е	В	Κ	Μ	m	С	ADC	TDC
0	1	1	5	1	1	3015	2032	50	7	3	5	3	6	3061	2082
1	1	2	5	1	3	3014	2033	51	7	4	5	4	1	3060	2083
2	1	3	5	1	2	3013	2034	52	7	5	5	4	3	3059	2084
3	1	4	5	1	4	3012	2035	53	7	6	5	3	2	3058	2085
4	1	5	5	1	8	3011	2036	54	7	7	5	4	2	3057	2086
5	1	6	5	1	6	3010	2037	55	7	8	5	4	6	3056	2087
6	1	$\overline{7}$	5	1	7	3009	2038	56	8	1	5	3	3	3055	2088
7	1	8	5	3	7	3008	2039	57	8	2	5	3	1	3054	2089
8	2	1	5	1	5	3007	2040	58	8	3	5	2	9	3053	2090
9	2	2	5	3	9	3006	2041	59	8	4	5	4	5	3052	2091
10	2	3	5	2	1	3005	2042	60	8	5	6	2	9	3051	2092
11	2	4	5	3	8	3004	2043	61	8	6	6	4	5	3050	2093
12	2	5	5	3	4	3003	2044	62	8	$\overline{7}$	6	3	1	3049	2094
13	2	6	5	2	3	3002	2045	63	8	8	6	3	3	3048	2095
14	2	$\overline{7}$	5	2	4	3001	2046	64	9	1	6	4	6	3079	2096
15	2	8	5	2	8	3000	2047	65	8	2	6	4	2	3078	2097
16	3	1	5	2	2	3031	2048	66	8	3	6	4	3	3077	2098
17	3	2	5	2	6	3030	2049	67	8	4	6	3	2	3076	2099
18	3	3	5	2	5	3029	2050	68	8	5	6	3	6	3075	2100
19	3	4	5	2	7	3028	2051	69	8	6	6	4	1	3074	2101
20	3	5	6	4	$\overline{7}$	3027	2052	70	8	$\overline{7}$	6	3	5	3073	2102
21	3	6	6	4	9	3026	2053	71	8	8	6	1	9	3072	2103
22	3	7	6	4	8	3025	2054	72	10	1	3	1	9	3071	2104
23	3	8	6	4	4	3024	2055	73	10	2	3	3	5	3070	2105
24	4	1	3	1	1	3023	2056	74	10	3	3	3	6	3069	2106
25	4	2	3	1	3	3022	2057	75	10	4	3	4	1	3068	2107
26	4	3	3	1	2	3021	2058	76	10	5	3	4	3	3067	2108
27	4	4	3	1	4	3020	2059	77	10	6	3	3	2	3066	2109
28	4	5	3	1	8	3019	2060	78	10	$\overline{7}$	3	4	2	3065	2110
29	4	6	3	1	6	3018	2061	79	10	8	3	4	6	3064	2111
30	4	7	3	1	$\overline{7}$	3017	2062	80	11	1	3	3	3	3095	2112
31	4	8	3	3	7	3016	2063	81	11	2	3	3	1	3094	2113
32	5	1	3	1	5	3047	2064	82	11	3	3	2	9	3093	2114
33	5	2	3	3	9	3046	2065	83	11	4	3	4	5	3092	2115
34	5	3	3	2	1	3045	2066	84	11	5	4	2	9	3091	2116
35	5	4	3	3	8	3044	2067	85	11	6	4	4	5	3090	2117
36	5	5	3	3	4	3043	2068	86	11	$\overline{7}$	4	3	1	3089	2118
37	5	6	3	2	3	3042	2069	87	11	8	4	3	3	3088	2119
38	5	7	3	2	4	3041	2070	88	12	1	4	4	6	3087	2120
39	5	8	3	2	8	3040	2071	89	12	2	4	4	2	3086	2121
40	6	1	3	2	2	3039	2072	90	12	3	4	4	3	3085	2122
41	6	2	3	2	6	3038	2073	91	12	4	4	3	2	3084	2123
42	6	3	3	2	5	3037	2074	92	12	5	4	3	6	3083	2124
43	6	4	3	2	7	3036	2075	93	12	6	4	4	1	3082	2125
44	6	5	4	4	7	3035	2076	94	12	$\overline{7}$	4	3	5	3081	2126
45	6	6	4	4	9	3034	2077	95	12	8	4	1	9	3080	2127
46	6	7	4	4	8	3033	2078	96	13	1	5	4	4	3111	2128
47	6	8	4	4	4	3032	2079	97	13	2	5	4	8	3110	2129
48	7	1	5	1	9	3063	2080	98	13	3	5	4	7	3109	2130
49	7	2	5	3	5	3062	2081	99	13	4	5	4	9	3108	2131
Forts	etzun	g auf	der i	nächs	ten S	eite									

${\cal A}\,$ Numerierung der Crystal Ball-Kanäle

Е	В	Κ	Μ	m	С	ADC	TDC	Е	В	Κ	М	m	С	ADC	TDC
100	13	5	6	2	5	3107	2132	163	21	4	9	2	7	3172	2195
101	13	6	6	2	7	3106	2133	164	21	5	10	4	7	3171	2196
102	13	7	6	2	6	3105	2134	165	21	6	10	4	9	3170	2197
103	13	8	6 6	2	2	3104	2135	160	21	(10	4	8	3169	2198
104	14	1	6	2	0	3103 2109	2130	169	21	1	10	4	4	3108 2167	2199
105	14 14	2	6	2	4	3102 3101	2137	160	22	1	7	1	2	3166	2200
107	14	1	6	5 9	4	3101	2130	109	22	2	7	1	3 9	3165	2201
107	14	5	6	2	1	3099	2133 2140	170	22	4	7	1	4	3164	2202
100	14	6	6	3	8	3098	2141	172	22	5	7	1	8	3163	2203
110	14	7	6	3	9	3097	2141	173	22	6	7	1	6	3162	2204 2205
111	14	8	6	1	5	3096	2143	174	22	7	7	1	7	3161	2206
112	15	1	6	3	7	3127	2144	175	22	8	7	3	7	3160	2207
113	15	2	6	1	7	3126	2145	176	23	1	7	1	5	3191	2208
114	15	3	6	1	8	3125	2146	177	23	2	7	3	9	3190	2209
115	15	4	6	1	6	3124	2147	178	23	3	7	2	1	3189	2210
116	15	5	6	1	2	3123	2148	179	23	4	7	3	8	3188	2211
117	15	6	6	1	4	3122	2149	180	23	5	7	3	4	3187	2212
118	15	7	6	1	3	3121	2150	181	23	6	7	2	3	3186	2213
119	15	8	6	1	1	3120	2151	182	23	7	7	2	4	3185	2214
120	16	1	3	4	4	3119	2152	183	23	8	7	2	8	3184	2215
121	16	2	3	4	8	3118	2153	184	24	1	7	2	2	3183	2216
122	16	3	3	4	7	3117	2154	185	24	2	7	2	6	3182	2217
123	16	4	3	4	9	3116	2155	186	24	3	7	2	5	3181	2218
124	16	5	4	2	5	3115	2156	187	24	4	7	2	7	3180	2219
125	16	6	4	2	7	3114	2157	188	24	5	8	4	7	3179	2220
126	16	7	4	2	6	3113	2158	189	24	6	8	4	9	3178	2221
127	16	8	4	2	2	3112	2159	190	24	7	8	4	8	3177	2222
128	17	1	4	2	8	3143	2160	191	24	8	8	4	4	3176	2223
129	17	2	4	2	4	3142	2161	192	25	1	9	1	9	3207	2224
130	17	3	4	3	4	3141	2162	193	25	2	9	3	5	3206	2225
131	17	4	4	2	3	3140	2163	194	25	3	9	3	6	3205	2226
132	17	5	4	2	1	3139	2164	195	25	4	9	4	1	3204	2227
133	17	6	4	3	8	3138	2165	196	25	5	9	4	3	3203	2228
134	17	7	4	3	9	3137	2166	197	25	6	9	3	2	3202	2229
135	17	8	4	1	5	3136	2167	198	25	7	9	4	2	3201	2230
130	18	1	4	3 1	7	3135	2168	199	25	8	9	4	0	3200	2231
137	18	2	4	1	(3134	2109	200	20 20	1	9	ა ე	3	3199	2232
138	18	3	4	1	8	3133	2170	201	20	2	9	ა ე	1	3198	2233
139	18	4	4	1	0	3132 2121	2171	202	20	3	9	2	5	3197 2106	2234
140	10	0 6	4	1	2 1	3131	2172 2173	203	20 26	4	9 10	4	0	3190	2200
141	10	7	4	1	4	2100	2175	204	20	6	10	4	5	2104	2230
142	10	8	4	1	ა 1	3129	2174 2175	205	20	7	10	4	1	3194	2237
145	10	1	4	1	1	3120	2175	$200 \\ 207$	20 26	8	10	3 3	3	3102	2230
144	10	2	g	1	3	3158	2170	201	$\frac{20}{27}$	1	10	4	6	3223	2233
146	10	3	g	1	2	3157	2177	200	27	2	10	4	2	3220	2240
140	19	4	g	1	4	3156	2170	205	27	3	10	4	3	3221	2241
148	19	5	9	1	8	3155	2180	210	27	4	10	3	2	3220	2243
149	19	6	9	1	6	3154	2180	212	27	5	10	3	6	3219	2244
150	19	7	9	1	7	3153	2182	213	27	6	10	4	1	3218	2245
151	19	8	9	3	7	3152	2183	214	27	7	10	3	5	3217	2246
152	20	1	9	1	5	3151	2184	215	27	8	10	1	9	3216	2247
153	20	2	9	3	9	3150	2185	216	28	1	7	1	9	3215	2248
154	20	3	9	2	1	3149	2186	217	28	2	7	3	5	3214	2249
155	20	4	9	3	8	3148	2187	218	28	3	7	3	6	3213	2250
156	20	5	9	3	4	3147	2188	219	28	4	7	4	1	3212	2251
157	20	6	9	2	3	3146	2189	220	28	5	7	4	3	3211	2252
158	20	7	9	2	4	3145	2190	221	28	6	7	3	2	3210	2253
159	20	8	9	2	8	3144	2191	222	28	7	7	4	2	3209	2254
160	21	1	9	2	2	3175	2192	223	28	8	7	4	6	3208	2255
161	21	2	9	2	6	3174	2193	224	29	1	7	3	3	3239	2256
162	21	3	9	2	5	3173	2194	225	29	2	7	3	1	3238	2257
Forts	setzun	g auf	der	nächs	ten S	eite									

F	P	V	٦.1		C	ADC	TDC	F	п	12	М		C	ADC	TDC
王 226	29 29	<u>к</u> 3	M 7	2 2	9	ADC 3237	2258	280 280	В 37	<u> </u>	M 13	m 1	3	ADC 3302	2321
227	29	4	7	4	5	3236	2259	203	37	3	13	1	2	3301	2322
228	29	5	8	2	9	3235	2260	291	37	4	13	1	4	3300	2323
229	29	6	8	4	5	3234	2261	292	37	5	13	1	8	3299	2324
230	29	7	8	3	1	3233	2262	293	37	6	13	1	6	3298	2325
231	29	8	8	3	3	3232	2263	294	37	$\overline{7}$	13	1	7	3297	2326
232	30	1	8	4	6	3231	2264	295	37	8	13	3	7	3296	2327
233	30	2	8	4	2	3230	2265	296	38	1	13	1	5	3295	2328
234	30	3	8	4	3	3229	2266	297	38	2	13	3	9	3294	2329
235	30	4	8	ა ა	2	3228	2267	298	38	3	13	2	1	3293	2330
$230 \\ 237$	30	6	8	3 4	1	3226	2208	298	38	4 5	13	3 3	0 4	3292	2331
238	30	7	8	3	5	3225	2200 2270	301	38	6	13	2	3	3290	2333
239	30	8	8	1	9	3224	2271	302	38	7	13	2	4	3289	2334
240	31	1	9	4	4	3255	2272	303	38	8	13	2	8	3288	2335
241	31	2	9	4	8	3254	2273	304	39	1	13	2	2	3319	2336
242	31	3	9	4	7	3253	2274	305	39	2	13	2	6	3318	2337
243	31	4	9	4	9	3252	2275	306	39	3	13	2	5	3317	2338
244	31	5	10	2	5	3251	2276	307	39	4	13	2	7	3316	2339
245	31	6	10	2	7	3250	2277	308	39	5	14	4	7	3315	2340
240	31 91	0	10	2	0	3249	2278	309	39	07	14	4	9	3314 2212	2341
241 248	32	0	10	∠ ?	∠ 8	3240 3247	2280	310	30	1 8	14 14	4 1	0 4	3319	2342 2343
249	$\frac{32}{32}$	2	10	2	4	3246	2280	312	40	1	11	-1 1	- - 1	3311	2344
$\frac{2}{250}$	32	3	10	3	4	3245	2282	313	40	2	11	1	3	3310	2345
251	32	4	10	2	3	3244	2283	314	40	3	11	1	2	3309	2346
252	32	5	10	2	1	3243	2284	315	40	4	11	1	4	3308	2347
253	32	6	10	3	8	3241	2285	316	40	5	11	1	8	3307	2348
254	32	7	10	3	9	3241	2286	317	40	6	11	1	6	3306	2349
255	32	8	10	1	5	3240	2287	318	40	7	11	1	7	3305	2350
256	33	1	10	3	7	3271	2288	319	40	8	11	3	7	3304	2351
257	33	2	10	1	7	3270	2289	320	41	1	11	1	5	3335 2224	2352
250	33 33	3 4	10	1	0 6	3268	2290	321	41	2	11	3 2	9	3333	2353 2354
260 260	33	5	10	1	2	3267	2292	323	41	4	11	2	8	3332	2355
$\frac{200}{261}$	33	6	10	1	4	3266	2293	324	41	5	11	3	4	3331	2356
262	33	7	10	1	3	3265	2294	325	41	6	11	$\tilde{2}$	3	3330	2357
263	33	8	10	1	1	3264	2295	326	41	7	11	2	4	3329	2358
264	34	1	7	4	4	3263	2296	327	41	8	11	2	8	3328	2359
265	34	2	7	4	8	3262	2297	328	42	1	11	2	2	3327	2360
266	34	3	7	4	7	3261	2298	329	42	2	11	2	6	3326	2361
267	34	4	7	4	9	3260	2299	330	42	3	11	2	5	3325	2362
268	34 24	5 6	8	2	5	3259 3259	2300	331	42	4 F	11 19	2	7	3324	2363
209 270	34 34	7	0 8	⊿ ?	6	3250 3257	2301 2302	232	42 42	о 6	12 19	4 4	í Q	აა∠ა 33??	2304 2365
271	34 34	8	8	2	2	3256	2302	334	42	7	12	4	8	3321	2366
272	35	1	8	2	8	3287	2304	335	42	8	12^{12}	4	4	3320	2367
273	35	2	8	2	4	3286	2305	336	43	1	13	1	9	3351	2368
274	35	3	8	3	4	3285	2306	337	43	2	13	3	5	3350	2369
275	35	4	8	2	3	3284	2307	338	43	3	13	3	6	3349	2370
276	35	5	8	2	1	3283	2308	339	43	4	13	4	1	3348	2371
277	35	6	8	3	8	3282	2309	340	43	5	13	4	3	3347	2372
278	35	7	8	3	9	3281	2310	341	43	6	13	3	2	3346	2373
279	35 96	8 1	8 0	1	5 7	3280 2270	2311	342	43	7	13 19	4	2	3345 2244	2374
280 281	30 36	1	ð R	う 1	(7	ə∠(9 ३२७₽	∠312 2212	343 244	43	8 1	13 12	4 ૧	0 २	3344 3342	2378 2376
$\frac{201}{282}$	36	∠ 3	8	1 1	8	3270 3277	2313 2314	344	44	2	13 13	3 3	э 1	3342 3342	2377
283	36	4	8	1	6	3276	2314 2315	346	44	$\frac{2}{3}$	$13 \\ 13$	2	9	3341	2378
284	36	5	8	1	$\tilde{2}$	3275	2316	347	44	4	13	4	5	3340	2379
285	36	6	8	1	4	3274	2317	348	44	5	14	2	9	3339	2380
286	36	7	8	1	3	3273	2318	349	44	6	14	4	5	3338	2381
287	36	8	8	1	1	3272	2319	350	44	7	14	3	1	3337	2382
288	37	1	13	1	1	3303	2320	351	44	8	14	3	3	3336	2383
Forts	etzun	g auf	der 1	nächs	$ten \overline{S}$	eite									-

${\cal A}\,$ Numerierung der Crystal Ball-Kanäle

Е	В	Κ	М	m	С	ADC	TDC	 Е	В	Κ	М	m	С	ADC	TDC
352	45	1	14	4	6	3367	2384	415	52	8	12	2	2	3400	2447
353	45	2	14	4	2	3366	2385	416	53	1	12	2	8	3431	2448
354	45	3	14	4	3	3365	2386	417	53	2	12	2	4	3430	2449
300 256	45 45	4	14	ა ე	2	3304 2262	2381	418	03 52	3	12	ა ე	4	3429	2450 2451
550 257	45	0 6	14	3 4	1	0000 0060	2000	419	00 52	4	12	2	ა 1	0420 2497	2401
358	45	7	14	4	5	3361	2309	420	53	6	12	2	8	3427	2452
359	45	8	14	1	g	3360	2390	421	53	7	12	3	9	3425	2455
360	46	1	11	1	g	3359	2392	423	53	8	12	1	5	3424	2455
361	46	2	11	3	5	3358	2393	424	54	1	12	3	7	3423	2456
362	46	3	11	3	6	3357	2394	425	54	2	12	1	7	3422	2457
363	46	4	11	4	1	3356	2395	426	54	3	12	1	8	3421	2458
364	46	5	11	4	3	3355	2396	427	54	4	12	1	6	3420	2459
365	46	6	11	3	2	3354	2397	428	54	5	12	1	2	3419	2460
366	46	7	11	4	2	3353	2398	429	54	6	12	1	4	3418	2461
367	46	8	11	4	6	3352	2399	430	54	7	12	1	3	3417	2462
368	47	1	11	3	3	3383	2400	431	54	8	12	1	1	3416	2463
369	47	2	11	3	1	3382	2401	432	55	1	17	1	1	3447	2464
370	47	3	11	2	9	3381	2402	433	55	2	17	1	3	3446	2465
371	47	4	11	4	5	3380	2403	434	55	3	17	1	2	3445	2466
372	47	5	12	2	9	3379	2404	435	55	4	17	1	4	3444	2467
373	47	6	12	4	5	3378	2405	436	55	5	17	1	8	3443	2468
374	47	7	12	3	1	3377	2406	437	55	6	17	1	6	3442	2469
375	47	8	12	3	3	3376	2407	438	55	7	17	1	7	3441	2470
376	48	1	12	4	6	3375	2408	439	55	8	17	3	7	3440	2471
377	48	2	12	4	2	3374	2409	440	56	1	17	1	5	3439	2472
378	48	3	12	4	3	3373 2270	2410	441	56	2	17	3	9	3438	2473
379	48	4	12	ა ე	2	3372 9971	2411 2412	442	00 56	3	17	2	0	3437	2474 2475
381	40	6	12	3 4	1	3370	2412 2413	445	56	4 5	17	ว ว	4	3430	2475
389	40	7	12	4	5	3360	2413	444	56	6	17	3 2	4 2	3430	2470
383	48	8	12	1	9	3368	2414	446	56	7	17	2	4	3433	2478
384	49	1	13	4	4	3399	2416	447	56	8	17	2	8	3432	2479
385	49	2	13	4	8	3398	2417	448	57	1	17	2	2	3463	2480
386	49	3	13	4	7	3397	2418	449	57	2	17	2	6	3462	2481
387	49	4	13	4	9	3396	2419	450	57	3	17	2	5	3461	2482
388	49	5	14	2	5	3395	2420	451	57	4	17	2	7	3460	2483
389	49	6	14	2	7	3394	2421	452	57	5	18	4	7	3459	2484
390	49	7	14	2	6	3393	2422	453	57	6	18	4	9	3458	2485
391	49	8	14	2	2	3392	2423	454	57	7	18	4	8	3457	2486
392	50	1	14	2	8	3391	2424	455	57	8	18	4	4	3456	2487
393	50	2	14	2	4	3390	2425	456	58	1	15	1	1	3455	2488
394	50	3	14	3	4	3389	2426	457	58	2	15	1	3	3454	2489
395	50	4	14	2	3	3388	2427	458	58	3	15	1	2	3453	2490
396	50	5	14	2	1	3387	2428	459	58	4	15	1	4	3452	2491
397	50	6	14	3	8	3386	2429	460	58	5	15	1	8	3451	2492
398	50	7	14	3	9	3385	2430	461	58	6	18	1	6	3450	2493
399	50	8	14	1	5	3384	2431	462	58	7	15	1	7	3449	2494
400	51	1	14	3 1	7	3415	2432	463	58	8	15	3 1	7	3448	2495
401	51	2	14	1	0	0414 9419	2433	404	59	1	10	1	0	3479 2479	2490
402	01 51	う 1	14 17	1	ð 6	3413 3419	2434 9425	400 466	59 50	2	10 15	ა ი	9 1	3418 3477	2497 2409
403	51	4 5	14 17	1	0 9	0412 3/11	2430 2436	400 467	50	ა ⊿	10 15	⊿ ૨	1 8	3411 3476	2490 2/00
404	51	6	14	1	2 1	3410	2430 2437	468	59	5	15	3	4	3475	2499 2500
406	51	7	14	1	3	3409	2438	469	59	6	15	2	3	3474	2500
400	51	8	14	1	1	3408	2439	470	59	7	15	2	4	3473	2502
408	52	1	11	4	4	3407	2440	471	59	8	15^{-10}	$\overline{2}$	8	3472	2503
409	52^{-1}	2	11	4	8	3406	2441	472	60	1	15^{-5}	2	$\tilde{2}$	3471	2504
410	52	3	11	4	7	3405	2442	473	60	2	15	2	6	3470	2505
411	52	4	11	4	9	3404	2443	474	60	3	15	2	5	3469	2506
412	52	5	12	2	5	3403	2444	475	60	4	15	2	7	3468	2507
413	52	6	12	2	7	3402	2445	476	60	5	16	4	7	3467	2508
414	52	7	12	2	6	3401	2446	477	60	6	16	4	9	3466	2509
Forts	setzun	o auf	der i	nächs	ten S	eite									

Е	В	К	М	m	С	ADC	TDC	Е	В	К	М	m	С	ADC	TDC
478	60	7	16	4	8	3465	2510	541	68	6	18	3	8	3530	2573
479	60	8	16	4	4	3464	2511	542	68	7	18	3	9	3529	2574
480	61	1	17	1	9	3495	2512	543	68	8	18	1	5	3528	2575
481	61	2	17	3	5	3494	2513	544	69	1	18	3	$\overline{7}$	3559	2576
482	61	3	17	3	6	3493	2514	545	69	2	18	1	$\overline{7}$	3558	2577
483	61	4	17	4	1	3492	2515	546	69	3	18	1	8	3557	2578
484	61	5	17	4	3	3491	2516	547	69	4	18	1	6	3556	2579
485	61	6	17	3	2	3490	2517	548	69	5	18	1	2	3555	2580
486	61	7	17	4	2	3489	2518	549	69	6	18	1	4	3554	2581
487	61	8	17	4	6	3488	2519	550	69	7	18	1	3	3553	2582
488	62	1	17	3	3	3487	2520	551	69	8	18	1	1	3552	2583
489	62	2	17	3	1	3486	2521	552	70	1	15	4	4	3551	2584
490	62 62	3	17	2	9	3485	2522	553	70	2	15	4	8	3550	2585
491	62	4	17	4	5	3484	2523	554	70	3	15	4	7	3549	2586
492	62 62	5	18	2	9	3483	2524	555	70	4	15	4	9	3548	2587
493	62 62	6	18	4	5	3482	2525	556	70	5	16	2	5	3547	2588
494	62	1	18	3	1	3481	2526	557	70	6	10	2		3546	2589
495	62 62	8	18	3	3 6	3480	2527	558	70	1	10	2	0	3545	2590
490 407	03 62	1	10 19	4	บ ก	3510 3510	2028 2520	009 560	70	ð 1	10 16	2	2	3544 3575	2091 2502
497 700	03 62	⊿ २	10 19	4 1	∠ ૨	3200	2029 2520	500	(1 71	1 9	10 16	∠ ົ	0	3874 3574	2092 2502
490	00 62	ა ⊿	10 19	4 2	ა ი	3509	2000 2531	569	71	⊿ २	10 16	⊿ २	4 /	3572	2090 2504
499 500	00 62	4 5	10 19	ა ი	⊿ 6	3507	⊿JJJ1 9539	562	71	ა 1	10 16	ა ი	4 2	3579	2094 2505
500	00 62	0 6	10 19	ა ⊿	1	3506	2002 2533	564 564	71	4 5	10 16	⊿ ೧	ა 1	3571	2090 2506
501 509	63 63	7	10 19	4 ૨	1 5	3505	2000 2534	565	71	0 6	10 16	⊿ ૨	8	3570	2590 2507
502	63	8	18	1	a	3504	2534	566	71	7	16	3	9	3560	2598
504	64	1	15	1	a	3503	2536	567	71	8	16	1	5	3568	2590
504 505	64	2	15	3	5	3502	2530 2537	568	72	1	16	3	7	3567	2600
506	64	3	15	3	6	3501	2538	569	72	2	16	1	7	3566	2600
507	64	4	15	4	1	3500	2539	570	72	3	16	1	8	3565	2602
508	64	5	15	4	3	3499	2540	571	72	4	16	1	6	3564	2602
509	64	6	15	3	2	3498	2541	572	72	5	16	1	2	3563	2604
510	64	7	15	4	2	3497	2542	573	72	6	16	1	4	3562	2605
511	64	8	15	4	6	3496	2543	574	72	7	16	1	3	3561	2606
512	65	1	15	3	3	3527	2544	575	72	8	16	1	1	3560	2607
513	65	2	15^{-5}	3	1	3526	2545	576	73	1	1	1	1	3591	2608
514	65	3	15	2	9	3525	2546	577	73	2	1	1	3	3590	2609
515	65	4	15	4	5	3524	2547	578	73	3	1	1	2	3589	2610
516	65	5	16	2	9	3523	2548	579	73	4	1	1	4	3588	2611
517	65	6	16	4	5	3522	2549	580	73	5	1	1	8	3587	2612
518	65	7	16	3	1	3521	2550	581	73	6	1	1	6	3586	2613
519	65	8	16	3	3	3520	2551	582	73	7	1	1	7	3585	2614
520	66	1	16	4	6	3519	2552	583	73	8	1	3	7	3584	2615
521	66	2	16	4	2	3518	2553	584	74	1	1	1	5	3583	2616
522	66	3	16	4	3	3517	2554	585	74	2	1	3	9	3582	2617
523	66	4	16	3	2	3516	2555	586	74	3	1	2	1	3581	2618
524	66	5	16	3	6	3515	2556	587	74	4	1	3	8	3580	2619
525	66	6	16	4	1	3514	2557	588	74	5	1	3	4	3579	2620
526	66	7	16	3	5	3513	2558	589	74	6	1	2	3	3578	2621
527	66	8	16	1	9	3512	2559	590	74	7	1	2	4	3577	2622
528	67	1	17	4	4	3543	2560	591	74	8	1	2	8	3576	2623
529	67	2	17	4	8	3542	2561	592	75	1	1	2	2	3607	2624
530	67	3	17	4	7	3541	2562	593	75	2	1	2	6	3606	2625
531	67	4	17	4	9	3540	2563	594	75	3	1	2	5	3605	2626
532	67	5	18	2	5	3539	2564	595	75	4	1	2	7	3604	2627
533	67	6	18	2	7	3538	2565	596	75	5	2	4	7	3603	2628
534	67	7	18	2	6	3537	2566	597	75	6	2	4	9	3602	2629
535	67	8	18	2	2	3536	2567	598	75	7	2	4	8	3601	2630
536	68	1	18	2	8	3535	2568	599	75	8	2	4	4	3600	2631
537	68	2	18	2	4	3534	2569	600	76	1	19	1	1	3599	2632
538	68	3	18	3	4	3533	2570	601	76	2	19	1	3	3598	2633
539	68	4	18	2	3	3532	2571	602	76	3	19	1	2	3597	2634
540	68	5	18	2	1	3531	2572	603	76	4	19	1	4	3596	2635
Forts	etzun	g auf	der i	lachs	ten S	eite									

${\cal A}\,$ Numerierung der Crystal Ball-Kanäle

Е	В	К	М	m	С	ADC	TDC	Е	В	К	М	m	С	ADC	TDC
604	76	5	19	1	8	3595	2636	662	83	7	20	3	1	3665	2694
605	76	6	19	1	6	3594	2637	663	83	8	20	3	3	3664	2695
606	76	7	19	1	7	3593	2638	664	84	1	20^{-5}	4	6	3663	2696
607	76	8	19	3	7	3592	2639	665	84	2	20	4	2	3662	2697
608	77	1	19	1	5	3623	2640	666	84	3	20	4	3	3661	2698
609	77	2	19	3	ğ	3622	2641	667	84	4	20	3	2	3660	2699
610	77	2	10	2	1	3621	2641	668	8/	5	20	3	6	3650	2033
611	77	4	10	2	8	3620	2642	660	84	6	20	4	1	3658	2700
619	77	4 5	19	ა ა	4	2610	2043	670	04 04	7	20	4 9	5	2657	2701
012	11	0	19	3	4	3019	2044	070	04	(20	ა 1	0	3037	2702
613	11	6	19	2	3	3618	2645	671	84	8	20	1	9	3656	2703
614		7	19	2	4	3617	2646	672	85	1	1	4	4	3687	2704
615	77	8	19	2	8	3616	2647	673	85	2	1	4	8	3686	2705
616	78	1	19	2	2	3615	2648	674	85	3	1	4	7	3685	2706
617	78	2	19	2	6	3614	2649	675	85	4	1	4	9	3684	2707
618	78	3	19	2	5	3613	2650	676	85	5	2	2	5	3683	2708
619	78	4	19	2	7	3612	2651	677	85	6	2	2	7	3682	2709
620	78	5	20	4	7	3611	2652	678	85	7	2	2	6	3681	2710
621	78	6	20	4	9	3610	2653	679	85	8	2	2	2	3680	2711
622	78	7	20	4	8	3609	2654	680	86	1	2	2	8	3679	2712
623	78	8	20	4	4	3608	2655	681	86	2	2	2	4	3678	2713
624	79	1	1	1	9	3639	2656	682	86	3	2	3	4	3677	2714
625	79	2	1	3	5	3638	2657	683	86	4	2	2	3	3676	2715
626	79	3	1	3	6	3637	2658	684	86	5	2	2	1	3675	2716
627	79	4	1	4	1	3636	2659	685	86	6	2	3	8	3674	2717
628	70	5	1	4	3	3635	2659	686	86	7	2	3	0	3673	2717
620	70	6	1	2	ວ າ	3634	2661	687	86	8	2	1	5	3679	2710
620	79	7	1	1	2	2024	2001	600	07	1	2	1	7	2702	2719
030	79	1	1	4	2	2022	2002	000	01	1	2	3 1	1	3703	2720
031	79	8	1	4	0	3032	2003	089	81	2	2	1	(3702	2721
632	80	1	1	3	3	3631	2664	690	87	3	2	1	8	3701	2722
633	80	2	1	3	1	3630	2665	691	87	4	2	1	6	3700	2723
634	80	3	1	2	9	3629	2666	692	87	5	2	1	2	3699	2724
635	80	4	1	4	5	3628	2667	693	87	6	2	1	4	3698	2725
636	80	5	2	2	9	3627	2668	694	87	7	2	1	3	3697	2726
637	80	6	2	4	5	3626	2669	695	87	8	2	1	1	3696	2727
638	80	7	2	3	1	3625	2670	696	88	1	19	4	4	3695	2728
639	80	8	2	3	3	3624	2671	697	88	2	19	4	8	3694	2729
640	81	1	2	4	6	3655	2672	698	88	3	19	4	7	3693	2730
641	81	2	2	4	2	3654	2673	699	88	4	19	4	9	3692	2731
642	81	3	2	4	3	3653	2674	700	88	5	20	2	5	3691	2732
643	81	4	2	3	2	3652	2675	701	88	6	20	2	7	3690	2733
644	81	5	2	3	6	3651	2676	702	88	7	20	2	6	3689	2734
645	81	6	2	4	1	3650	2677	703	88	8	20	2	2	3688	2735
646	81	7	2	3	5	3649	2678	704	89	1	20	2	8	3719	2736
647	81	8	2	1	ģ	3648	2679	705	89	2	20	2	4	3718	2737
648	89	1	10	1	a	3647	2680	706	80	2	20	2	-± _/	3717	2738
640	802	1 0	10	5 Т	5	3646	2681	707	80	1	20	ວ ດ	2 -1	3716	2730
049	04 00	⊿ 2	10	ა ი	о С	2645	2001	700	09	4 E	20 20	∠ ົ	ა 1	971E	2139
000	02	ა ∡	19	ა ⊿	1	3043	2002	708	09	Э С	20 20	2	1	3714	2740
001	82	4	19	4	1	3044	2083	709	89	0	20	ა ი	ð	3/14	2741
052	82	5	19	4	3	3643	2684	710	89	1	20	3	9	3713	2742
653	82	6	19	3	2	3642	2685	711	89	8	20	1	5	3712	2743
654	82	7	19	4	2	3641	2686	712	90	1	20	3	7	3711	2744
655	82	8	19	4	6	3640	2687	713	90	2	20	1	7	3710	2745
656	83	1	19	3	3	3671	2688	714	90	3	20	1	8	3709	2746
657	83	2	19	3	1	3670	2689	715	90	4	20	1	6	3708	2747
658	83	3	19	2	9	3669	2690	716	90	5	20	1	2	3707	2748
659	83	4	19	4	5	3668	2691	717	90	6	20	1	4	3706	2749
660	83	5	20	2	9	3667	2692	718	90	7	20	1	3	3705	2750
661	83	6	20	4	5	3666	2693	719	90	8	20	1	1	3704	2751
	-	-	-		-		-	-	-	-	-			-	

B Energieeichung der Taggerleiter

Die Zuordnung von Elektronenergie zur Kanalnummer wurde mit Hilfe A2-Standardsoftware tagcal erstellt. Das Programm ist Beispielsweise online unter http://wwwa2.kph.uni-mainz.de/A2/ \rightarrow Experiments \rightarrow Standard Instrumentation at A2 Mainz \rightarrow Tagger Calibration Programme verfügbar.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Element	Kanal	$E_e [\mathrm{MeV}]$	Element	Kanal	$E_e [\mathrm{MeV}]$	Element	Kanal	E_e [MeV]
1 1521 65,18 48 1504 144,68 95 1487 232,54 234,56 3 1522 66,43 49 1505 146,40 96 1424 234,56 3 1523 67,72 50 1506 148,13 97 1425 236,59 4 1524 65,06 51 1507 149,87 98 1426 238,62 5 1525 70,45 52 1508 151,61 99 1427 240,66 51 1526 71,89 53 1509 153,36 100 1428 242,70 7 1527 73,39 54 1510 155,12 101 1429 244,75 8 1528 74,94 55 1511 156,88 102 1430 246,80 9 1529 76,54 56 1512 158,65 103 1431 248,86 10 1530 78,18 57 1513 100,42 104 1432 250,93 11 1533 83,37 60 1515 163,99 106 1434 255,08 13 1533 83,37 60 1515 163,99 106 1434 255,08 13 1533 83,37 60 1516 165,78 107 1435 257,16 14 1534 85,17 61 1517 167,58 107 1443 255,16 14 1534 85,17 61 1517 167,58 107 1443 255,16 14 1534 85,17 61 1517 167,58 107 1443 255,16 14 1534 88,87 63 1519 171,20 110 1428 263,44 17 1537 90,75 64 1456 173,02 111 1438 263,44 17 1537 90,75 64 1456 173,02 111 1438 263,44 17 1537 90,75 64 1456 173,02 111 1438 263,44 17 1537 90,75 64 1456 173,02 111 1438 263,44 1269,77 20 1540 96,46 67 1459 178,51 114 1442 271,90 21 1541 98,37 66 1458 176,68 113 1441 2267,66 19 1539 94,55 66 1457 174,84 112 1440 267,66 19 1539 94,55 66 1458 176,68 113 144 2271,90 21 1541 98,37 69 1461 182,21 116 1444 276,16 23 1543 102,15 70 1462 184,06 117 143 255,8 26 1546 107,67 73 1465 189,68 120 1448 284,74 276,26 19 1541 102,27 69 1461 182,21 116 1444 276,16 23 1543 102,15 70 1462 184,06 117 1445 278,29 24 1544 104,02 71 1463 185,93 118 1446 280,44 25 1545 105,86 72 1464 187,80 119 1447 282,58 26 1545 105,86 72 1464 187,80 119 1443 224,99 77 1547 109,45 74 1466 191,56 121 1449 286,90 28 1548 111,20 75 1467 193,45 122 1464 284,74 282,58 26 1546 107,67 73 1467 193,45 122 1464 280,44 255,98 26 1546 107,67 73 1467 193,45 122 1464 289,46 28 144 257,89 29 1448 114,20 77,75 1467 193,45 122 1464 289,47 282,58 26 1546 107,67 73 1467 193,45 122 1464 289,47 282,58 26 1546 107,67 73 1467 193,45 122 1464 289,47 282,58 26 1546 107,67 73 1467 193,45 122 1464 289,47 282,58 26 1546 107,67 73 1467 120,29 177 1467 123,45 1299,96 1448 1470 246,55 129 1398 306,55 37 1493 126,10 84	0	1520	63,99	47	1503	142,96	94	1486	230,53
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1521	65,18	48	1504	$144,\!68$	95	1487	232,54
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	1522	66,43	49	1505	146,40	96	1424	234,56
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	1523	67,72	50	1506	148, 13	97	1425	236,59
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	1524	69,06	51	1507	149,87	98	1426	238,62
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	1525	70,45	52	1508	151, 61	99	1427	240,66
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	1526	71,89	53	1509	153,36	100	1428	242,70
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7	1527	73,39	54	1510	155, 12	101	1429	244,75
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	1528	74,94	55	1511	156,88	102	1430	246,80
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	1529	76,54	56	1512	$158,\!65$	103	1431	248,86
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	1530	78,18	57	1513	160,42	104	1432	250,93
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11	1531	79,87	58	1514	162,20	105	1433	253,00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	12	1532	81,60	59	1515	163,99	106	1434	255,08
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	1533	83,37	60	1516	165,78	107	1435	257, 16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	1534	85,17	61	1517	167,58	108	1436	259,25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	1535	87,01	62	1518	169,39	109	1437	261,34
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	1536	88,87	63	1519	171,20	110	1438	263,44
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	1537	90,75	64	1456	173,02	111	1439	265,55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	1538	92,64	65	1457	174,84	112	1440	267, 66
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	1539	94,55	66	1458	176,68	113	1441	269,77
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	1540	96,46	67	1459	178,51	114	1442	271,90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	1541	98,37	68	1460	180,36	115	1443	274,02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	1542	100,27	69	1461	182,21	116	1444	276, 16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	1543	102, 15	70	1462	184,06	117	1445	278,29
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	1544	104,02	71	1463	185,93	118	1446	280,44
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	1545	105,86	72	1464	187,80	119	1447	282,58
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	1546	$107,\!67$	73	1465	189,68	120	1448	284,74
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27	1547	109,45	74	1466	191,56	121	1449	286,90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28	1548	111,20	75	1467	193,45	122	1450	289,06
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29	1549	112,92	76	1468	195,34	123	1451	291,23
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	1550	$114,\!61$	77	1469	197,24	124	1452	293,40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	1551	116,27	78	1470	199, 15	125	1453	295,58
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	1488	117,92	79	1471	201,07	126	1454	297,77
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33	1489	119,55	80	1472	202,99	127	1455	299,96
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34	1490	121,18	81	1473	204,91	128	1392	302,15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35	1491	122,81	82	1474	206,85	129	1393	304,35
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36	1492	124,45	83	1475	208,79	130	1394	306,55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37	1493	126,10	84	1476	210,73	131	1395	308,76
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38	1494	127,76	85	1477	$212,\!68$	132	1396	310,98
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39	1495	129,43	86	1478	$214,\!64$	133	1397	313, 19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	1496	131,10	87	1479	$216,\!61$	134	1398	315,42
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41	1497	132,78	88	1480	$218,\!58$	135	1399	$317,\!64$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42	1498	134,46	89	1481	220,55	136	1400	319,88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43	1499	136, 15	90	1482	222,54	137	1401	322,11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	44	1500	$137,\!84$	91	1483	224,53	138	1402	324,35
<u>46 1502 141,25 93 1485 228,52 140 1404 328,85</u>	45	1501	139,54	92	1484	226,52	139	1403	$326,\!60$
	46	1502	141,25	93	1485	228,52	140	1404	328,85

B Energieeichung der Taggerleiter

	Element	Kanal	E_e [MeV]	Element	Kanal	$E_e [\text{MeV}]$	Element	Kanal	$E_e [\text{MeV}]$
142 1406 333,36 205 1341 482,60 268 1276 633,54 144 1407 335,63 207 1343 487,50 270 1278 641,50 145 1409 340,17 208 1344 489,95 271 1278 645,97 144 1410 342,44 209 1345 492,41 272 1280 656,83 144 1413 344,029 211 1344 497,32 274 1282 665,85 150 1414 351,59 213 1349 502,24 276 1284 665,85 151 1416 353,84,99 216 1355 507,16 278 1286 666,71 155 1419 363,11 218 1354 514,09 283 1291 675,65 156 1423 377,29 222 1356 514,94 284 1294 666,87 157 1423	141	1405	331,10	204	1340	480,15	267	1275	636,06
144 1408 335,63 206 1342 485,05 209 1277 641,02 145 1409 340,17 208 1344 487,50 270 1278 643,57 146 1410 342,44 209 1345 492,41 272 274 1281 650,93 148 1412 347,00 211 1347 497,32 274 1282 653,40 150 144 351,59 213 1349 502,42 276 1284 658,35 151 1445 353,88 214 1350 504,70 277 1285 666,32 155 1449 363,11 218 1355 517,02 282 1288 668,77 156 1423 367,74 220 1356 517,02 282 1290 673,18 156 1423 377,06 224 1355 526,90 286 1294 683,51 156 13	142	1406	333,36	205	1341	482,60	268	1276	$638,\!54$
144 1408 337,89 207 1343 457,50 270 1278 643,50 145 1409 340,17 208 1345 492,41 272 1280 645,57 144 1411 344,72 210 1346 494,86 273 1281 650,83 149 1413 349,29 212 1348 490,78 275 1283 655,85 150 1414 351,59 213 1349 502,24 276 1284 660,82 152 1416 356,18 215 1351 141,71 858,49 216 1352 207,128 1286 660,71 154 1418 364,42 219 1355 517,02 282 1290 670,71 155 1420 305,42 219 1355 514,64 284 1292 673,85 156 1420 306,42 219 1355 514,64 284 1298 670,71	143	1407	$335,\!63$	206	1342	485,05	269	1277	641,02
146 1409 340,17 208 1344 489,95 271 1279 664,97 146 1410 342,44 200 1345 492,41 272 1281 663,97 148 1412 347,00 211 1347 497,32 274 1282 663,40 144 1413 316,59 213 1349 502,42 276 1283 668,57 151 1414 351,59 213 1349 502,62 279 1284 668,32 152 1416 366,18 215 1351 507,16 278 1288 666,37 154 1418 360,79 217 1353 517,02 281 1289 676,57 155 1422 370,06 221 1357 514,02 283 1290 676,18 156 1423 372,39 222 1258 544,32 286 1292 686,51 156 1363	144	1408	$337,\!89$	207	1343	487,50	270	1278	643,50
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	145	1409	$340,\!17$	208	1344	489,95	271	1279	645, 97
	146	1410	342,44	209	1345	492,41	272	1280	648, 45
	147	1411	344,72	210	1346	494,86	273	1281	650, 93
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	148	1412	347,00	211	1347	497,32	274	1282	653,40
	149	1413	349,29	212	1348	499,78	275	1283	$655,\!88$
151 1415 353,88 214 1350 504,70 277 1285 660,82 152 1416 356,18 215 1351 507,16 278 1286 666,30 153 1417 358,49 216 1352 509,62 279 1287 666,24 155 1419 363,11 218 1355 517,02 282 1290 673,18 156 1420 366,42 219 1355 517,02 282 1290 673,18 157 1421 367,74 220 1356 524,43 285 1233 680,58 160 1360 374,72 223 1359 526,90 286 1294 683,05 161 1363 381,73 226 1298 534,52 289 1236 696,34 164 1364 384,07 227 1298 534,52 289 1236 696,36 166 1366 388,77 229 1301 541,75 292 1236 697,89	150	1414	351,59	213	1349	502,24	276	1284	658, 35
152 1416 356,18 216 1351 507,16 278 1286 6663,77 154 1417 358,49 216 1352 509,62 279 1287 6665,77 155 1419 363,11 218 1534 514,455 281 1289 677,17 156 1420 365,42 219 1355 517,02 282 1290 673,18 157 1421 367,74 220 1356 519,49 283 1291 676,65 160 1360 374,72 223 1359 526,690 284 1292 678,97 162 1362 379,39 225 1299 53,4,22 289 1233 690,44 164 1364 384,07 227 1299 53,6,79 290 1234 692,90 165 1365 386,42 228 1300 540,70 294 1235 696,38 166 1366	151	1415	353,88	214	1350	504,70	277	1285	660, 82
153 1417 358,49 216 1352 509,62 279 1287 666,74 155 1419 363,11 218 1353 512,09 228 1288 666,24 156 1420 366,42 219 1355 517,02 282 1290 673,18 157 1421 367,74 220 1356 514,09 283 1291 675,65 158 1422 370,06 221 1357 521,96 284 1292 678,11 159 1423 372,39 222 1358 524,43 285 1293 680,58 161 1363 381,73 226 1296 534,32 289 1234 692,90 165 1365 386,42 228 1301 541,75 292 1236 697,82 166 1366 388,77 229 1303 546,70 294 1233 700,27 168 1393,49	152	1416	356, 18	215	1351	507, 16	278	1286	663, 30
154 1418 360,79 217 1353 512,09 280 1288 668,24 155 1420 365,42 219 1355 517,02 282 1290 673,18 157 1421 367,74 220 1356 519,49 283 1291 675,65 158 1422 370,06 221 1357 521,96 284 1292 678,11 159 1423 377,39 222 1359 526,90 286 1294 683,05 161 1361 377,05 224 1296 529,37 287 1295 685,51 162 1363 381,73 226 1298 534,32 289 1234 692,90 165 1365 386,42 228 1300 539,27 291 1234 692,90 166 1368 394,9 231 1303 546,70 294 1238 702,73 168 1368 394,9 231 1305 551,66 298 1240 706,47	153	1417	358,49	216	1352	509,62	279	1287	665,77
	154	1418	360,79	217	1353	512,09	280	1288	668,24
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	155	1419	363,11	218	1354	514,55	281	1289	670,71
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	156	1420	365,42	219	1355	517,02	282	1290	673,18
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	157	1421	367,74	220	1356	519,49	283	1291	$675,\!65$
	158	1422	370,06	221	1357	521,96	284	1292	678, 11
	159	1423	372,39	222	1358	524,43	285	1293	680,58
	160	1360	374,72	223	1359	526,90	286	1294	683,05
1621362379,392251297531,852881232667,971631363381,732261298534,322891233600,441641364384,072271299536,792901234692,901651365386,422281300541,752921235695,361661366388,772291301541,752921236697,821681368393,492311303546,702941238702,731691369395,852321304549,182951239705,191701370398,212331305551,662961240707,641711371400,582341306559,102991243715,001741374407,692371309561,583001244717,451751375410,072381310564,063011246722,341761376412,452391311566,543021246722,341761376412,452391311566,023031247724,781761377414,842401312560,023031247724,781761376412,452391311576,473061250732,111801380422,012431315576,4730612	161	1361	377,05	224	1296	529,37	287	1295	685,51
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	162	1362	379,39	225	1297	531,85	288	1232	687, 97
1641364386,422271299536,792901234662,901651366386,772291301541,752921236695,361661366393,492311302544,222931237700,271681369395,852321304549,182951239705,191701370398,212331305551,662961240707,641711371400,582341306554,142971241710,091721372402,952351307556,622981242712,541731373405,32236130859,102991243715,001741374407,692371309561,583001244717,451751375410,072381310564,063011245719,891761376412,452391311566,543021246722,341771377419,622421314573,993051249729,671801380422,012431315576,473061250732,111811381424,412441312569,023031247724,781791379419,622421314578,963071251734,5518213824412461315576,473061250 </td <td>163</td> <td>1363</td> <td>381,73</td> <td>226</td> <td>1298</td> <td>534,32</td> <td>289</td> <td>1233</td> <td>690,44</td>	163	1363	381,73	226	1298	534,32	289	1233	690,44
1651366386,422281300539,272911235665,361661366388,772291301541,752921236607,821671367391,132301302544,222931237700,271681368393,492311303546,702941238702,731691360395,852321304549,182951239705,191701370398,212331305551,662961240707,641711371400,582341306554,142971241710,091721372402,952351307566,583001244717,451731373405,322361308559,102991243715,001741374407,692371309561,583001244717,451751375410,072381310566,543021246722,341761376412,452391311566,543021247724,781781378417,232411313571,503041248727,231791379419,622421314578,963071251734,551801380422,012431315576,473061250732,111811381424,412461316578,9630712	164	1364	384,07	227	1299	536,79	290	1234	$692,\!90$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	165	1365	386,42	228	1300	539,27	291	1235	695, 36
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	166	1366	388,77	229	1301	541,75	292	1236	697, 82
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	167	1367	391,13	230	1302	544,22	293	1237	700,27
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	168	1368	393,49	231	1303	546,70	294	1238	702,73
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	169	1369	395,85	232	1304	549,18	295	1239	705, 19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	170	1370	398,21	233	1305	$551,\!66$	296	1240	$707,\!64$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	171	1371	400,58	234	1306	554, 14	297	1241	710,09
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	172	1372	402,95	235	1307	556,62	298	1242	712,54
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	173	1373	405,32	236	1308	559,10	299	1243	715,00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	174	1374	407,69	237	1309	561,58	300	1244	717,45
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	175	1375	410,07	238	1310	564,06	301	1245	719,89
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	176	1376	412,45	239	1311	566,54	302	1246	722,34
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	177	1377	$414,\!84$	240	1312	569,02	303	1247	724,78
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	178	1378	417,23	241	1313	571,50	304	1248	727,23
1801380422,012431315576,473061250732,111811381424,412441316578,963071251734,551821382426,812451317581,443081252736,991831383429,212461318583,923091253739,431841384431,612471319586,403101254741,861851385434,012481320588,893111255744,291861386436,422491321591,373121256746,731871387438,832501322593,863131257749,161881388441,252511323596,343141258751,591891389443,662521324598,833151259754,011901390446,082531325601,313161260756,441911391448,502541326603,793171261758,861921328450,922551327606,283181262761,291931329453,352561264608,763191263763,711941330455,772571265611,243201200766,131951331458,002611269621,1732412	179	1379	419,62	242	1314	573,99	305	1249	$729,\!67$
1811381 $424,41$ 2441316578,963071251734,551821382 $426,81$ 2451317581,443081252736,991831383 $429,21$ 2461318583,923091253739,431841384431,612471319586,403101254741,861851385434,012481320588,893111255744,291861386436,422491321591,373121256746,731871387438,832501322593,863131257749,161881388441,252511323596,343141258751,591891389443,662521324598,833151259754,011901390446,082531325601,313161260756,441911391448,502541326603,793171261758,861921328450,922551327606,283181262761,291931329453,352561264608,763191263763,711941330455,772571265611,243201200766,131951331458,002611269618,693231203773,371981334463,072601268618,69323	180	1380	422,01	243	1315	576,47	306	1250	732,11
182 1382 $426,81$ 245 1317 $581,44$ 308 1252 $736,99$ 183 1383 $429,21$ 246 1318 $583,92$ 309 1253 $739,43$ 184 1384 $431,61$ 247 1319 $586,40$ 310 1254 $741,86$ 185 1385 $434,01$ 248 1320 $588,89$ 311 1255 $744,29$ 186 1386 $436,42$ 249 1321 $591,37$ 312 1256 $746,73$ 187 1387 $438,83$ 250 1322 $593,86$ 313 1257 $749,16$ 188 1388 $441,25$ 251 1323 $596,34$ 314 1258 $751,59$ 189 1389 $443,66$ 252 1324 $598,83$ 315 1259 $754,01$ 190 1390 $446,08$ 253 1325 $601,31$ 316 1260 $756,44$ 191 1391 $448,50$ 254 1326 $603,79$ 317 1261 $758,86$ 192 1328 $450,92$ 255 1264 $608,76$ 319 1263 $761,29$ 193 1329 $453,35$ 256 1264 $608,76$ 319 1263 $763,71$ 194 1330 $455,77$ 257 1265 $611,24$ 320 1200 $766,13$ 195 1331 $458,20$ 258 1266 $613,73$ 321 1201 <	181	1381	424,41	244	1316	578,96	307	1251	734,55
1831383429,212461318583,923091253739,431841384431,612471319586,403101254741,861851385434,012481320588,893111255744,291861386436,422491321591,373121256746,731871387438,832501322593,863131257749,161881388441,252511323596,343141258751,591891389443,662521324598,833151259754,011901390446,082531325601,313161260756,441911391448,502541326603,793171261758,861921328450,922551327606,283181262761,291931329453,352561264608,763191263763,711941330455,772571265611,243201200766,131951331458,202581266613,733211201768,541961332460,642591267616,213221202770,961971333463,072601268618,693231203773,371981334465,502611269621,1732412	182	1382	426,81	245	1317	581,44	308	1252	736,99
184 1384 $431,61$ 247 1319 $586,40$ 310 1254 $741,86$ 185 1385 $434,01$ 248 1320 $588,89$ 311 1255 $744,29$ 186 1386 $436,42$ 249 1321 $591,37$ 312 1256 $746,73$ 187 1387 $438,83$ 250 1322 $593,86$ 313 1257 $749,16$ 188 1388 $441,25$ 251 1323 $596,34$ 314 1258 $751,59$ 189 1389 $443,66$ 252 1324 $598,83$ 315 1259 $754,01$ 190 1390 $446,08$ 253 1325 $601,31$ 316 1260 $756,44$ 191 1391 $448,50$ 254 1326 $603,79$ 317 1261 $758,86$ 192 1328 $450,92$ 255 1327 $606,28$ 318 1262 $761,29$ 193 1329 $453,35$ 256 1264 $608,76$ 319 1263 $763,71$ 194 1330 $455,77$ 257 1265 $611,24$ 320 1200 $766,13$ 195 1331 $458,20$ 258 1266 $613,73$ 321 1201 $768,54$ 196 1332 $460,64$ 259 1267 $616,21$ 322 1202 $770,96$ 197 1333 $463,07$ 260 1268 $618,69$ 323 1203 <	183	1383	429,21	246	1318	583,92	309	1253	739,43
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	184	1384	431,61	247	1319	586,40	310	1254	741,86
186 1386 $436,42$ 249 1321 $591,37$ 312 1256 $746,73$ 187 1387 $438,83$ 250 1322 $593,86$ 313 1257 $749,16$ 188 1388 $441,25$ 251 1323 $596,34$ 314 1258 $751,59$ 189 1389 $443,66$ 252 1324 $598,83$ 315 1259 $754,01$ 190 1390 $446,08$ 253 1325 $601,31$ 316 1260 $756,44$ 191 1391 $448,50$ 254 1326 $603,79$ 317 1261 $758,86$ 192 1328 $450,92$ 255 1327 $606,28$ 318 1262 $761,29$ 193 1329 $453,35$ 256 1264 $608,76$ 319 1263 $763,71$ 194 1330 $455,777$ 257 1265 $611,24$ 320 1200 $766,13$ 195 1331 $458,20$ 258 1266 $613,73$ 321 1201 $768,54$ 196 1332 $460,64$ 259 1267 $616,21$ 322 1202 $770,96$ 197 1333 $463,07$ 260 1268 $618,69$ 323 1203 $773,37$ 198 1334 $465,50$ 261 1269 $621,17$ 324 1204 $775,78$ 199 1335 $467,94$ 262 1270 $623,66$ 325 1206	185	1385	434,01	248	1320	588,89	311	1255	744,29
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	186	1386	436,42	249	1321	591,37	312	1256	746,73
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	187	1387	438,83	250	1322	593,86	313	1257	749,16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	188	1388	441,25	251	1323	596,34	314	1258	751,59
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	189	1389	443,66	252	1324	598,83	315	1259	754,01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	190	1390	446,08	253	1325	601,31	316	1260	756,44
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	191	1391	448,50	254	1326	603,79	317	1261	758,86
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	192	1328	450,92	255	1327	606,28	318	1262	761,29
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	193	1329	453,35	256	1264	608,76	319	1263	763,71
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	194	1330	455,77	257	1265	611,24	320	1200	766,13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	195	1331	458,20	258	1266	613,73	321	1201	768,54
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	196	1332	460,64	259	1267	616,21	322	1202	770,96
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	197	1333	463,07	260	1268	618,69	323	1203	773,37
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	198	1334	465,50	261	1269	621,17	324	1204	775,78
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	199	1335	467,94	262	1270	623,66	325	1205	778,20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200	1336	470,38	263	1271	626,14	326	1206	780,60
202 1538 475,20 205 1273 631,10 328 1208 785,41 203 1339 477,71 266 1274 633,58 329 1209 787,82 Dependence of the pick before Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan=470,71 Colspan=470,711 266 1274 633,58 329 1209 787,82	201	1337	477.00	264	1272	628,62	327	1207	783,01
203 1339 4/7,71 200 1274 633,58 329 1209 787,82	202	1338	475,26	265	1273	631,10	328	1208	785,41
the second se	203	1339	4//,/1	266	1274	633,58	329	1209	181,82

Element	Kanal	$E_e [\text{MeV}]$	Element	Kanal	$E_e [\text{MeV}]$	Element	Kanal	$E_e [\text{MeV}]$
330	1210	790,22	338	1218	809,30	345	1225	826,01
331	1211	$792,\!62$	339	1219	811,75	346	1226	828, 38
332	1212	795,02	340	1220	814, 13	347	1227	830,75
333	1213	797,41	341	1221	816,51	348	1228	833, 11
334	1214	799,81	342	1222	818,89	349	1229	$835,\!48$
335	1215	802,20	343	1223	821,26	350	1230	837, 84
336	1216	804,59	344	1224	$823,\!64$	351	1231	840,20
337	1217	806,98						

B Energieeichung der Taggerleiter

C Statistischer Fehler der Markierungseffizienz

Die Markierungseffizienz $\eta_T(i)$ entspricht der Wahrscheinlichkeit, ein in das Experiment einlaufendes Photon zu finden, falls ein Elektron im *i*-ten Leiterkanal gesehen wurde.

$$\eta_T(i) = \frac{N_{\gamma}^L(i)}{N_e^L(i)} = \frac{\varepsilon_c \cdot \varepsilon_L(i) \cdot N_{\gamma}(i)}{\varepsilon_L(i) \cdot N_e(i)} = \varepsilon_c \frac{N_{\gamma}(i)}{N_e(i)}.$$

Dabei gibt $N_x^L(i)$ die Anzahl der nachgewiesenen Ereignisse und $N_x(i)$ die Anzahl der Teilchen des Typs x an. $\varepsilon_L(i)$, die Effizienz des Leiterkanals, spielt hier keine Rolle. ε_c bezeichnet die Effizienz, mit der die Photonen am Ort des Targets in Koinzidenz mit dem Spektrometer nachgewiesen werden. Bei Verwendung eines geeigneten Detektors (Bleiglas-Čerenkov) sind das praktisch 100%. Das Ereignis "Photon gesehen" ist durch die Koinzidenzbedingung statistisch vom Ereignis "Elektron gesehen" abhängig. Das Ereignis "Photon verloren" jedoch nicht. Die Anzahl der verlorenen Photonen, $N_{miss} = N_e^L - N_{\gamma}^L$, entspricht der Anzahl an Elektronen, für die kein Photon gefunden wurde. Sie wird durch die *"freilaufenden Tagger-Scaler"* erfasst. Damit gilt für jeden Leiterkanal i:

$$\eta_T = \frac{N_{\gamma}^L}{N_{\gamma}^L + (N_e^L - N_{\gamma}^L)} = \frac{N_{\gamma}^L}{N_{\gamma}^L + N_{miss}}$$

Unter der Annahme, die Ereignisse seien poissonverteilt, d.h $\sigma_x^L = \sqrt{N_x^L}$, lässt sich der statistische Fehler der Markierungseffizienz σ_{η_T} nun über die Fehlerfortpflanzung abschätzen:

$$\sigma_{\eta_T} = \frac{1}{N_e^{L^2}} \sqrt{N_\gamma^L N_e^L (N_e^L - N_\gamma^L)}.$$

Hierbei sind weder Untergrundprobleme (z.B. verfälschte Elektronzählraten durch andere Prozesse, Aufaktivierung des Strahlfängers oder der Markierungsanlage, etc.) noch Totzeiteffekte berücksichtigt.

Alternativ kann der Nachweis des Photons im Bleiglas auch als Ergebnis eines zweiwertigen Versuchs gedeutet werden: das durch das Elektron erzeugte Photon passiert den Kollimator oder passiert ihn nicht. Die Markierungseffizienz ist also das Verhältnis der N_{γ} erfolgreichen Ausgänge zu den N_e voneinander unabhängigen Versuchen. Der statistische Fehler auf η_T folgt also aus der Breite der Binomialverteilung mit Erwartungswert N_{γ} : $\sigma_{N_{\gamma}}^2 = N_e \eta_T (1 - \eta_T)$, also

$$\sigma_{\eta_t}^2 = \left(\frac{\partial \eta_T}{\partial N_\gamma}\right)^2 \cdot \sigma^2(N_\gamma) = \frac{1}{N_e} \eta_T (1 - \eta_T),$$

was nach nach einigen Schritten zum selben Ergebnis führt. In [Rei04a] sind weitere Überlegungen zur Auswertung von Experimenten am Photonstrahl zusammengestellt.

 ${\cal C}$ Statistischer Fehler der Markierungseffizienz

D Gemessene Anregungsfunktionen

Abbildung D.1: Anregungsfunktionen für p $\pi^0 \pi^0$ bzw. p $\pi^+ \pi^-$. Die Rekonstruktion der eingetragenen Ereignisse aus den gemessenen Daten wird in den Abschnitten 4.4 bzw. 4.5 besprochen. Die Ursache der systematischen Struktur in Gruppen von vier Leiterkanälen ist ungeklärt. Dieses Phänomen wird auch in den Analysen der Kollegen beobachtet. $D \ Gemessene \ Anregungsfunktionen$
E Zusammenstellung der Amplituden

Den Überlegungen in Abschnitt 2.2 folgend, wird an den gemessenen Verlauf der Helizitätsymmetrie $I^{\odot}(\phi)$, Kapitel 5, eine Sinusreihe

$$I^{\odot}(\phi) = a_2 \sin(2\phi) + a_4 \sin(4\phi) + \dots$$
 (E.1)

angepasst. Die folgenden Tabellen stellen die erhaltenen Amplituden für Anpassung bis zur zweiten und bis zur dritten Ordnung einander gegenüber. Da die Daten bei Anpassung von $I^{\odot}(\phi) = a_2 \sin(2\phi)$ im p $\pi^+ \pi^-$ -Endzustand nicht befriedigend beschrieben werden, wurden die Kurven mit mindestens den ersten beiden Gliedern angepasst. Die Messung zeigt keine Empfindlichkeit auf die vierte Ordnung ($a_6 \sin(6\phi)$).

E.1 Fourierkomponenten in p π^0 π^0

Inte	А	mplit							
\sqrt{s}_{\min}	$\sqrt{s}_{\rm max}$	$\langle \sqrt{s} \rangle$		a_2	σ_{a_2}	a_4	σ_{a_4}	_	$\chi^2/{ m NDF}$
1390	1429	1409		5.2	0.4	-0.2	0.4	•	1.71
1429	1470	1450		6.8	0.3	-0.6	0.3		1.83
1470	1510	1489		7.2	0.3	-0.3	0.3		0.98
1510	1551	1531		5.0	0.3	-0.0	0.3		1.06

Tabelle E.1: Amplituden bei Anpassung der ersten beiden Glieder, a_2 und a_4 , an die in gemessene Asymmetrie, vergleiche Abbildung 5.2 und 5.3 sowie Tabelle 5.1.

Tabelle E.2 zeigt das Ergebnis der Anpassung mit einer weiteren Ordnung von Gleichung (E.1) an die experimentellen Daten:

Intervall [MeV]					A					
\sqrt{s}_{\min}	$\sqrt{s}_{\rm max}$	$\langle \sqrt{s} \rangle$	(a_2	σ_{a_2}	a_4	σ_{a_4}	a_6	σ_{a_6}	$\chi^2/{ m NDF}$
1390	1429	1409	L L	5.2	0.4	-0.2	0.4	0.4	0.4	1.74
1429	1470	1450	6	5.8	0.3	-0.7	0.3	-0.5	0.3	1.79
1470	1510	1489	7	7.2	0.3	-0.2	0.3	0.2	0.3	1.03
1510	1551	1531	L.	6.0	0.3	-0.0	0.3	-0.1	0.3	1.13

Tabelle E.2: Details zu den in Abbildung 5.2 und 5.3 dargestellten Ergebnissen: Hinzunahme der dritten Ordnung führt weder zu signifikanter Änderung der Parameter der ersten und zweiten Ordnung, noch zu einer Verbesserung vom χ^2 /Freiheitsgrad.

Inte	ervall [Me	A	Amplit				
\sqrt{s}_{\min}	$\sqrt{s}_{\rm max}$	$\langle \sqrt{s} \rangle$	a_2	σ_{a_2}	a_4	σ_{a_4}	χ^2/NDF
1359	1399	1380	1.6	0.3	-0.3	0.3	0.78
1399	1420	1409	2.9	0.3	-0.1	0.3	1.48
1420	1440	1430	3.4	0.2	0.4	0.3	0.70
1440	1460	1450	4.1	0.2	0.7	0.2	0.69
1460	1479	1470	5.2	0.2	1.9	0.2	0.82
1481	1500	1489	5.7	0.2	2.2	0.2	1.40
1510	1551	1531	4.3	0.2	2.2	0.2	2.16

E.2 Fourierkomponenten in p π^+ π^-

Tabelle E.3: Amplituden bei Anpassung der ersten beiden Glieder, a_2 und a_4 , an die in gemessene Asymmetrie, vergleiche Abbildung 5.5 und folgende sowie Tabelle 5.2.

Inte									
\sqrt{s}_{\min}	$\sqrt{s}_{\rm max}$	$\langle \sqrt{s} \rangle$	a_2	σ_{a_2}	a_4	σ_{a_4}	a_6	σ_{a_6}	$\chi^2/{ m NDF}$
1359	1399	1380	1.6	0.3	-0.4	0.3	-0.3	0.3	0.78
1399	1420	1409	2.8	0.3	-0.3	0.3	-0.5	0.3	1.36
1420	1440	1430	3.4	0.3	0.4	0.3	0.1	0.3	0.74
1440	1460	1450	4.2	0.2	0.7	0.3	0.1	0.2	0.71
1460	1479	1470	5.2	0.2	2.0	0.2	0.2	0.2	0.84
1481	1500	1489	5.7	0.2	2.2	0.3	0.0	0.2	1.49
1510	1551	1531	4.3	0.2	2.2	0.2	0.2	0.2	2.24

Tabelle E.4: Details zu den in Abbildung 5.5ff dargestellten Ergebnissen: Hinzunahme der dritten Ordnung führt weder zu signifikanter Änderung der Parameter der ersten und zweiten Ordnung, noch zu einer Verbesserung vom χ^2 /Freiheitsgrad.

Abbildungsverzeichnis

1.1	Totaler Photonabsorptionsqueschnitt des Protons	7
2.1	Kinematik der Einmesonprodukion	9
2.2	Doppelpionproduktion: Kinematik & Definition des Helizitätssystems	13
2.3	Gemessene und berechnete Doppelpionproduktionsquerschnitte	16
2.4	Im Modell berücksichtigte Mechanismen in der Doppelpionproduktion	18
2.5	Modellvorhersagen für $I^{\odot}(\sqrt{s} = 1400 \text{ MeV}, \phi)$ im neutralen Kanal	19
2.6	Modellvorhersagen für $I^{\odot}(\sqrt{s} = 1500 \text{ MeV}, \phi)$ im neutralen Kanal	19
3.1	Aufbau eines Rennbahnmikrotrons	21
3.2	Überblick über die Experimentieranlagen des Instituts für Kernphysik	22
3.3	Polarisation des Photonenstrahls	25
3.4	Photonenmarkierungsanlage (Glasgow-Tagger)	26
3.5	Verteilung der Elektronen auf der Taggerleiter	27
3.6	"Röntgenaufnahme" der Targetzelle	28
3.7	Crystal Ball: Geometrie, minor- und major triangles	30
3.8	Crystal Ball: Einzelnes Detektormodul	30
3.9	Maße eines PID-Szintillatorstreifens	31
3.10	Geometrie des Teilchenidentifikationsdetektors	31
3.11	Drahtkammer: Rekonstruktion des Durchtrittsortes eines Teilchens	32
3.12	TAPS Vorwärtswand: Ansicht aus Strahlrichtung	33
3.13	Pulsformanalyse in TAPS: kurze gegen lange Integration	34
3.14	Schema der alten Crystal Ball-Digitalisierungskette	37
3.15	Planungsschema der neuen Crystal Ball-Digitalisierungskette	39
3.16	Numerierung der Kristalle eines Bunches	40
3.17	Verteilung der Kabelbündel über den Crystal Ball	41
3.18	Beschaltung der Crystal Ball-Photomultiplier	42
3.19	Schema der COMPASS-Auslese	45
3.20	Schema des Trigger-Kontrollsystems	46
3.21	Schema des Datenflusses im CATCH-Modul	48
3.22	Typisches Signal an den CB-ADC Eingängen	51
3.23	Schema des SADC	53
3.24	Elektronik der Drahtkammer	54
3.25	Elektronik des PID-Detektors	55
3.26	Erzeugung der First- und Second-Level Trigger	56
3.27	Trigger und Event-Latch für den Crystal Ball	58
3.28	Veranschaulichung des Cluster-Multiplizitätsalgorithmus	60

Abbildungsverzeichnis

3.29	Cluster-Multiplizitätsalgorithmus: "löchrige Cluster"	61
3.30	Cluster-Multiplizität: Spezielle Abwicklung des Crystal Balls	62
3.31	Matrix zur Berechnung der Cluster-Multiplizität	63
4.1	Anzahl der getroffenen Kristalle pro Cluster	67
4.2	Typisches ADC-Spektrum bei Verwendung der 241 Am/ 9 Be-Quelle	68
4.3	Invariante Masse von Photonpaaren für die Signatur p $\gamma~\gamma$	70
4.4	Walk-Korrektur für den Crystal Ball	71
4.5	Winkeldifferenz zwischen Szintillatorstreifen CB-Cluster	72
4.6	Unterscheidung von Protonen und Pionen	72
4.7	Aus den beiden Drahtkammern rekonstruierte Pseudovertices	73
4.8	Invariante Massen der rekonstruierten Pionen	74
4.9	Azimutwinkeldifferenz zwischen p' und q für p $\pi^0 \pi^0$	75
4.10	Koinzidenzanalyse für (p) $\pi^0 \pi^0 \dots \dots$	76
4.11	Fehlende Masse für die Signatur für p $\pi^0 \pi^0 \dots \dots \dots \dots \dots \dots \dots$	77
4.12	Verteilung der fehlenden Masse m_x für $\pi^0 \pi^0$	78
4.13	Verteilung der rekonstruierten Winkel ϕ in (p) $\pi^0 \pi^0 \dots \dots \dots \dots$	79
4.14	Verteilung der $\varphi\text{-Winkeldifferenz}$ zwischen Proton und einem der Pionen .	80
5.1	Amplituden a_2 und a_4 für p $\pi^0 \pi^0 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	84
5.2	Ergebnisse für p $\pi^0 \pi^0$	85
5.3	Ergebnisse für p $\pi^0 \pi^0$ (Fortsetzung)	86
5.4	Amplituden a_2 und a_4 für p π^+ π^-	87
5.5	Ergebnisse für p $\pi^+\pi^-$	88
5.6	Ergebnisse für p π^+ π^- (Fortsetzung)	89
5.7	Ergebnisse für p π^+ π^- (Fortsetzung)	90
D.1	Anregungsfunktionen für p $\pi^0 \pi^0$ und p $\pi^+ \pi^-$	107

Tabellenverzeichnis

2.1	Observable der Einmesonphotoproduktion	12
2.2	Vollständige Experimente in der Einmesonproduktion	12
3.1	Einige Kenngrößen des Elektronenbeschleunigers MAMI	23
3.2	Einige Daten des Crystal Balls	31
3.3	Geometrie der Drahtkammern	32
3.4	Entscheidungstabelle: Teilchenidentifikation in TAPS	34
5.1	Details zu Abbildung 5.2 und 5.3	84
5.2	Details zu Abbildung 5.5, 5.6 und 5.7	87
E.1	Amplituden bei Anpassung von $a_2 \sin(2\phi) + a_4 \sin(4\phi)$ in p $\pi^0 \pi^0 \ldots$	109
E.2	Wie E.1, Hinzunahme der dritten Ordnung	109
E.3	Amplituden bei Anpassung von $a_2 \sin(2\phi) + a_4 \sin(4\phi)$ in p $\pi^+ \pi^- \ldots$	110
E.4	Wie E.3, Hinzunahmme der dritten Ordnung	110

Tabellen verzeichnis

Literaturverzeichnis

[Ahr93]	AHRENS, J.: Experiments with real photons – some basic tools. Bosen, 1993.
[Alb03]	ALBERT I FORT, J.: Test Measurements for the Crystal Ball-Detector at MAMI. Diplomarbeit, Institut für Kernphysik der Johannes Gutenberg-Universität Mainz, 2003.
[Ass01]	ASSAFIRI, Y.: Photoproduction of two pions and ω mesons at GRAAL. In: AIP Conference Proceedings Vol. 610: International Nuclear Physics Confe- rence INPC 2001, Seiten 362–365, 2001.
[Aud91]	AUDIT, G. et al.: DAPHNE: a large-acceptance tracking detector for the study of photoreactions at intermediate energies. Nuclear Instruments and Methods in Physics Research Section A, 301:473–481, 1991.
[Aul05]	AULENBACHER, K.: <i>Private Kommunikation</i> . Institut für Kernphysik der Johannes Gutenberg-Universität Mainz, 2005.
[Aul06]	AULENBACHER, K.: Private Kommunikation. Januar 2006.
[BDS75]	BARKER, I.S., A. DONNACHIE und J.K. STORROW: Complete Experiments in Pseudoscalar Photoproduction. (Preprint) subm. to Nucl. Phys. B., 1975.
[BR06]	BRUN, R. und F. RADEMAKERS: root, An Object-Oriented Data Analysis Framework. Projektseite im "worldwide web": root.cern.ch, Stand 2005, 2006.
[Bra95]	BRAGHIERI, A. et. al: Total cross section measurement for the three double pion production channels on the proton. Phys. Lett. B, 363:46, 1995.
[Bru06]	BRUDVIK, J. Doktorarbeit, in Vorbereitung, University of California, Los Angeles, Department of Physics and Astronomy, 2006.
[CGLN57]	CHEW, G. F., M. L. GOLDBERGER, F. E. LOW und Y. NAMBU: <i>Relativistic Dispersion Relation Approach to Photomeson Production</i> . Phys. Rev., 106(6):1345–1355, Jun 1957.
[Cha77]	CHAN, Y. et al.: Design and performance of a modularized NaI(Tl) Detector (The Crystal Ball Prototype). In: Proceedings of the 1977 Nuclear Science Symposium, 1977.
[Cod06]	CODLING, R. Doktorarbeit, in Vorbereitung, Department of Physics and Astronomy, University of Glasgow, 2006.

Literatur verzeichnis

[CT97]	CHIANG, W. und F. TABAKIN: Completeness rules for spin observables in pseudoscalar meson photoproduction. Phys. Rev. C, 55:2054–2066, 1997.
[Dan02]	DANASIONO, A. <i>et al.</i> : <i>CATCH Users Manual.</i> Fakultät für Physik, Albert- Ludwigs-Universität Freiburg, Mai 2002.
[Dow03]	DOWNIE, E.: The Magnetic Moment of the Δ^+ , First Year PhD report. University of Glasgow, September 2003.
[Dow06]	DOWNIE, E. Doktorarbeit, in Vorbereitung, Department of Physics and Astronomy, University of Glasgow, 2006.
[Dre04]	DREXLER, P.: Entwicklung und Aufbau der neuen TAPS-Elektronik. Dok- torarbeit, II. Physikalisches Institut der Justus-Liebig-Universität Gießen, Januar 2004.
[FA05]	FIX, A. und H. ARENHÖVEL: Double pion photoproduction on nucleon and deuteron. Eur. Phys. J., A25:115–135, 2005.
[Fis02]	FISCHER, H. et al.: The COMPASS Online Data Format Version 3. Technischer Bericht, Fakultät für Physik, Albert-Ludwigs-Universität Freiburg, Nov. 2002.
[God76]	GODFREY, G.: Integrate and Hod Module. Crystal Ball Note No. 121, 1976.
[Gru01]	GRUBE, B.: The Trigger Control System and the Common GEM and Silicon Readout for the COMPASS Experiment. Diplomarbeit, Technische Univer- sität München, Dezember 2001.
[Grü02]	GRÜNEMAIER, A.: <i>Eine universelle Ausleseschnittstelle für das COMPASS-</i> <i>Experiment</i> . Doktorarbeit, Fakultät für Physik, Albert-Ludwigs-Universität Freiburg, September 2002.
[GTO94]	GÓMEZ TEJEDOR, J.A. und E. OSET: A model for the $\gamma \ p \to \pi^+ \ \pi^- \ p$ reaction. Nuclear Physics A, 571:667–693, 1994.
[GTO96]	GÓMEZ TEJEDOR, J.A. und E. OSET: Double pion photoproduction on the nucleon: study of the isospin channels. Nuclear Physics A, 600:413–435, 1996.
[Itr03]	ITRONICS: Multi-channel Sampling Analogue-to-Digital Converter Module i- SADC108032 for the Mainz Crystal Ball Detector – User's Manual. i-trOnics GmbH, Erikastraße 18b, D-85521 Hohenbrunn, Oktober 2003.
[Jah91]	Jahresbericht des Instituts für Kernphysik 1991. Mainz, 1991.
[Jah05]	JAHN, O.: Measurement of the Helicity Dependence of Deuteron Photodi- sintegration for Photon Energies below 450 MeV. Doktorarbeit, Institut für Kernphysik der Johannes Gutenberg-Universität Mainz, 2005.
[Jan98]	JANSSEN, S.: <i>Entwicklung einens neuen CPV-Systems für TAPS</i> . Diplomar- beit, II. Physikalisches Institut der Justus-Liebig-Universität Giessen, 1998.

- [Jan02] JANKOWIAK, A. et al.: Design and Status of the 1.5 GeV-Harmonic Double Sided Microtron for MAMI. In: Proc. of the 2002 European Particle Accelerator Conference, Paris, 02, p.1085, 2002.
- [KDT95] KNOCHLEIN, G., D. DRECHSEL und L. TIATOR: *Photoproduction and electroproduction of eta mesons.* Z. Phys., A352:327–343, 1995.
- [Kon00] KONOROV, I.: FIADC 9U VME module, Memorandum. COMPASS note, Mai 2000.
- [Kot01] KOTULLA, M.: Experiment zur Bestimmung des magnetischen Moments der $\Delta^+(1232)$ Resonanz. Doktorarbeit, II. Physikalisches Institut der Justus-Liebig-Universität Gießen, 2001.
- [Kra01] KRAMBRICH, D.: Aufbau und Test eines Neutrondetektorsystems zur Messung der π^+ -Polarisierbarkeit. Diplomarbeit, Institut für Kernphysik der Johannes Gutenberg-Universität Mainz, 6 2001.
- [Kra02] KRAMBRICH, D.: Upgrade of the Crystal Ball Electronics. Technischer Bericht, Institut für Kernphysik der Johannes Gutenberg-Universität Mainz, 2002.
- [KS03] KRUSCHE, B. und SCHADMAND S.: Study of non-strange baryon resonances with meson photoproduction. Prog. Part. Nucl. Phys., 51:399–485, 2003.
- [KW96] KEATON, G. und R. WORKMAN: Amplitude ambiguities in pseudoscalar meson photoproduction. Phys. Rev. C, 53:1434–1436, 1996.
- [Lug06] LUGERT, S. Doktorarbeit, in Vorbereitung, II. Physikalisches Institut der Justus-Liebig-Universität Gießen, 2006.
- [Mar01] MARCINIEWSKI, P.: Fast Digital Trigger Systems for Experiments in High Energy Physics. Doktorarbeit, Uppsala University, 2001.
- [Mur93] MURPHY, L.: Double Pion Photon Production on Single Nucleons from Threshold up to 780 MeV. Doktorarbeit, Rensselaer Polytechnnic Institute, Troy, New York, Oktober 1993.
- [NBD⁺02] NOVOTNY, R., R. BECK, W. DÖRING, V. HEJNY, M. HOEK, A. HOF-STAETTER, V. METAG und K. RÖMER: Scintillators for photon detection at medium energies – a comparative study of BaF₂, CeF₃ and PbWO₄. Nuclear Instruments and Methods in Physics Research Section A, 486:131–135, 21 June 2002.

Literatur verzeichnis

- [Nie00] NIEBUHR, M.: Entwicklung eines 250 MHz-Zählers mit totzeitfreier Auslese für das Compass-Experiment. Diplomarbeit, Fakultät für Physik, Albert-Ludwigs-Universität Freiburg, Nov. 2000.
- [NOVVR01] NACHER, J.C., E. OSET, M.J. VICENTE VACAS und L. ROCA: The role of $\Delta(1700)$ excitation and ρ production in double pion photoproduction. Nuclear Physics A, 672:295–327, 2001.
- [OM59] OLSEN, H. und L.C. MAXIMON. Phys. Rev., 114:887, 1959.
- [Por82] PORTER, F.: Crystal Ball Numbering Conventions. Crystal Ball Note No. 14, 1972, überarbeitet 1982.
- [RBL05] ROST, M., R. BECK und K. LIVINGSTON: Measurement of the G asymmetry in $\gamma p \rightarrow p\pi^0$ and $\gamma p \rightarrow n\pi^+$. Proposal for an Experiment MAMI/A2/8-05, 2005.
- [Rei99] REITER, A.: Entwicklung und Test eines ortsauflösenden Detektors für die Photonenmarkierungsanlage. Diplomarbeit, Institut für Kernphysik der Johannes Gutenberg-Universität Mainz, 1999.
- [Rei04a] REITER, A.: Differential photoneutron cross sections of light nuclei for neutron dosimetry. Doktorarbeit, Department of Physics and Astronomy, University of Glasgow, Januar 2004.
- [Rei04b] REITER, A.: A study of the energy calibration of the tagger microscope. Internal Report, A2 Kollaboration, Oktober 2004.
- [RO05] ROBERTS, W. und T. OED: Polarization Observables for Two-Pion Production off the Nucleon. Phys. Rev., C71:055201, 2005.
- [Roc05] ROCA, L.: Helicity asymmetries in double pion photoproduction on the proton. Nucl. Phys., A748:192–205, 2005.
- [Ros04] ROST, M.: Strahlungsbegleitete Pion-Photoproduktion am Proton. Doktorarbeit, Institut für Kernphysik der Johannes Gutenberg-Universität Mainz, 2004.
- [Sch01] SCHMIDT, A.: Photoproduktion neutraler Pionen am Proton mit linear polarisierten Photonen im Bereich der Schwelle. Doktorarbeit, Institut für Kernphysik der Johannes Gutenberg-Universität Mainz, 2001.
- [Sch02] SCHMIDT, T.: A Common Readout Driver for the COMPASS Experiment. Doktorarbeit, Fakultät für Physik, Albert-Ludwigs-Universität Freiburg, Mai 2002.
- [Sch04] SCHUMANN, S.: Test der Sampling-ADCs für den Crystal Ball-Detektor. Diplomarbeit, Institut für Kernphysik der Johannes Gutenberg-Universität Mainz, 9 2004.

- [Sch05] SCHUMANN, S.: Vortrag am 7. Treffen der Crystal Ball und TAPS Kollaboration. Los Angeles, Juni 2005.
- [Sch06] SCHUMANN, S. Doktorarbeit, in Vorbereitung, Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, 2006.
- [Ste98] STEIGERWALD, M.: Aufbau einer Quelle polarisierter Elektronen am Injektorlinac und Untersuchungen zur Spindynamik in MAMI. Doktorarbeit, Institut für Kernphysik der Johannes Gutenberg-Universität Mainz, 1998.
- [Str05] STRAUCH, S. et. al.: Beam-Helicity Asymmetries in Double-Charged-Pion Photoproduction on the Proton. Phys. Rev. Lett., 95(16):162003, 2005.
- [Tar06] TARBERT, C. Doktorarbeit, in Vorbereitung, The University of Edinburgh, School of Physics, 2006.
- [Tho04b] THOMAS, A.: Status of the Crystal Ball Hydrogen/Deuterium Target. Vortrag am 5. Crystal Ball Kollaborationstreffen, 2004.
- [Tho05] THOMA, U. et. al.: Search for missing resonances in the reaction $\gamma p \rightarrow p\pi^0\pi^0$ using a polarised beam and a polarised target. Proposal for an Experiment ELSA/6-05, 2005.
- [Tio02] TIOUKINE, V.: Spin Manipulation at MAMC C. In: Proceedings of EPAC 2002, Paris, France, 2002.
- [Unv04] UNVERZAGT, M.: Energie-Eichung des Crystal Ball-Detektors am MAMI. Diplomarbeit, Institut für Kernphysik der Johannes Gutenberg-Universität Mainz, 2004.
- [War97] WARTENBERG, S.: Die Strahlasymmetrie in der Deuteron-Photospaltung im Bereich von 160 bis 410 MeV. Doktorarbeit, Institut für Kernphysik der Johannes Gutenberg-Universität Mainz, 1997.
- [WRGP05] WATTS, D.P., G. ROSNER, D.I. GLAZIER und P. PEDRONI: Recoil nucleon polarimetry observables in meson photoproduction at MAMI. Proposal for an Experiment MAMI/A2/5-05, 2005.
- [Zeh06] ZEHR, F.: Measurment of the $2\pi^0$ photoproduction off the proton at threshold and in the second Resonance region. Doktorarbeit, in Vorbereitung, Institut für Physik der Universität Basel, 2006.