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Zusammenfassung

Diese Dissertation beschiftigt sich mit Ahnenlinien in einem zeitdiskreten, rdumlichen Populations-
modell mit lokaler Regulierung, ndmlich dem (zeitdiskreten) Kontaktprozess. Die Ahnenlinien kénnen
ebenfalls als gerichtete Irrfahrten in einer zufilligen, dynamischen Umgebung (RWDRE) interpretiert
werden. Die Umgebung, die wir in dieser Arbeit betrachten, wird in der Literatur als “backbone” eines
gerichteten Perkolationsclusters bezeichnet. In unserem Modell wéhlt ein Individuum seinen Elter in
jedem diskreten Zeitschritt gleichverteilt unter allen Individuen, welche sich in der vorherigen Gene-
ration in seiner néchsten Nachbarschaft befinden. Die Wahl des Elters in jedem Zeitschritt geschieht
dabei unabhingig von allem anderen. Im Jahr 2013 wurde dieses Modell von Birkner, éerny, Depper-
schmidt und Gantert analysiert, siehe [BCDGlS]. Die Autoren haben bewiesen, dass die Irrfahrten,
welche die Ahnenlinien modellieren, ein Gesetz der groken Zahl und einen “quenched” zentralen Grenz-
wertsatz erfiillen. Dieser Artikel ist im Zusammenhang mit weiteren, anschliefsenden Verdffentlichungen
Grundlage fiir die in dieser Arbeit behandelten Fragestellungen und Probleme.

Im ersten Kapitel dieser Arbeit definieren wir das von uns betrachtete Modell und fithren die im
Weiteren verwendete Notation ein. Im zweiten Kapitel betrachten wir die gemeinsame Verteilung der
Ahnenlinien aller Individuen der verschiedenen Generationen im eindimensionalen Fall. Der Ausdruck
“eindimensionaler Fall” bezieht sich darauf, dass sich die Individuen in einem eindimensionalen Raum
befinden. Es stellt sich heraus, dass die diffusiv reskalierte Sammlung aller Pfad schwach gegen das
Brownsche Web konvergiert. Wir verifizieren hierzu die Konvergenzkriterien in [FINR04| und [Sun05].
Hauptaufgabe ist es, hierzu geeignete Abschitzungen fiir die Anzahl an Generationen bis zu einem
Verschmelzen zweier Ahnenlinien zu finden. Es stellt sich heraus, dass der asymptotische Abfall fiir
die Wahrscheinlichkeit, dass ein gemeinsamer Vorfahre erst nach n Generationen gefunden wird, im
eindimensionalen Fall von der Ordnung (’)(n_%) ist. Diese Abfallrate wiirde man auch fiir die Treffzeit
zweier einfacher Irrfahrten erwarten. Man kann daher sagen, dass nicht besetzte Gebiete, welche die
Verschmelzung der Ahnenlinien verhindern kdnnten, im eindimensionalen Fall die Wartezeit auf den
ersten gemeinsamen Vorfahren nicht “wesentlich” verlangern.

Im dritten Kapitel beschiftigen wir uns mit Abschétzungen fiir die Differenz zwischen “annealed”
und “quenched” Wahrscheinlichkeiten, Boxen unterschiedlicher Groke zu treffen. Das Finden solcher
Abschétzungen ist durch einen aktuellen Artikel von Berger, Cohen und Rosenthal (siehe [BCR16])
motiviert, in welchem die Autoren Abschitzungen dieser Art verwenden, um einen “quenched” lokalen
zentralen Grenzwertsatz fiir ballistische Irrfahrten in einer u.i.v. Umgebung zu beweisen. Hierbei ist
es uns gelungen, ihre Beweisideen auf unser Modell bis auf das Treffen von Boxen der Seitenldnge
eViog(N)loglog(N) 7y iibertragen. Fiir Raumdimensionen mindestens drei impliziert dieses Ergebnis
bereits den “quenched” zentralen Grenzwertsatz (qCLT) von Birkner et al. und stellt eine wesentliche
Verfeinerung der aus dem qCLT zu gewinnenden Abschitzungen zwischen “annealed” und “quenched”
Wabhrscheinlichkeiten dar.
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Abstract

This thesis deals with ancestral lineages in a time discrete spatial population model with local den-
sity regulation, namely the (discrete time) contact process. The ancestral lineages can be seen as
directed random walks in a dynamic random environment (RWDRE), where at each discrete time step
a particle chooses its parent uniformly among the particles in the previous generation, located at its
nearest neighbourhood. The choice at each time step is independent of everything else in the model.
In the literature the dynamic random environment we focus on is called the “backbone” of an oriented
percolation cluster. In [BéDGlS] Birkner, Cerny, Depperschmidt and Gantert analysed this model
and proved a law of large numbers and a quenched central limit theorem for the random walks that
model the ancestral lineages. In this thesis we mainly focus on problems and questions that arise out
of their work and which have been additionally inspired by subsequently published articles.

Within the first chapter we give a precise definition of the model and establish the notation that will
be used within the rest of the thesis. Afterwards, in the second chapter we focus on the common
distribution of the ancestral lineages of all individuals over all generations in the one-dimensional case.
Talking about the “one-dimensional case”, we mean that the dimension of the space in which the par-
ticles are located equals one. It turns out that the diffusively rescaled collection of all the ancestral
paths converges weakly to the Brownian web. Checking the convergence criteria given in [FINRO4]
and extended by Sun in his PhD thesis (see [Sun05]), the main task is to find suitable bounds on the
number of generations one has to wait, until the ancestral lineages of two individuals located within a
fixed distance coalesce. We are able to prove that the tail bounds for the event of the coalescing time
to be greater than n are of order O(n_%) in the one-dimensional case. Therefore the tail bounds are
of the same order one would expect from ordinary nearest neighbour simple random walks. Hence one
could say that in the one-dimensional case unoccupied areas that might prevent a coalescing event do
not substantially increase the time until a coalescing event occurs.

In the third chapter we prove estimates between quenched and annealed hitting probabilities of dif-
ferently sized boxes. Investigation of this problem is motivated by a paper of Berger, Cohen and
Rosenthal (see [BCR16]), in which the authors used this kind of estimates to prove a quenched local
central limit theorem for a (ballistic) random walk in an i.i.d. environment. We are able to adapt their
ideas to our model up to a comparison for boxes of side length eV!eg(N)loglog(N) " Thig regult already
implies the quenched central limit theorem (qCLT) proved by Birkner et al., for space dimension at
least three and provides a comparison between quenched and annealed hitting probabilities on a much

finer scale than the comparison that follows out of the qCLT.
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Introduction

In this thesis we focus on ancestral lineages in a spatial population model with local density regulation.

In order to motivate our interest in models of this kind we quote a statement by Etheridge:

“The main purpose of theoretical population genetics is to understand the complex patterns of

genetic variation that we observe in the world around us.”!

The understanding of ancestral structures in a population model is one of the key elements to deduce
information on genetic variation. Knowing the ancestral lineages of particles, we can answer questions
on the type of individuals or identify the most recent common ancestor of an arbitrary subgroup of
particles. The ancestral lineages within the population model we focus on can be seen as belonging
to the huge class of random walks in random environment (RWRE). RWRE is a field that received
considerable attention within the last decades. Models of RWRE can be helpful to understand phys-
ical, geological or biological problems such as the motion of electrons in crystals with impurities (see
e.g. [BHI1], [HKS87, section 10] and [BG90b]), fluid flows in reservoirs consisting of a “mixture of good
sandstones with high permeability (i.e. flow units) and poorer siltstones, mudstones and shales with
low permeability”? (see e.g. [SZ11] ), and as already mentioned above, ancestral lineages in population

models.

In general RWRE means that at each step the transition probabilities or transition rates of the ran-
dom walk depend on the random configuration of the environment. The transition probabilities do not
need to be determined by a local configuration of the random environment. In our case, for example,
transition probabilities depend on the whole (possible) ancestry given by the environment. A random
walk in random environment can basically be understood as a two-step random experiment. In the
first step the environment is created according to some given probability measure. The outcome of the
second step is a realisation of a random walk path whose dynamics depend on the environment. If the
environment changes in time as well, we speak about random walk in dynamic random environment
(RWDRE). Including the time-component as an additional dimension, we can, of course, think about
RWDRE belonging to the class of RWRE but the special importance of the time component in many
cases legitimates thinking about RWDRE as a different kind of model.

Recalling that we want to focus on ancestral lineages in a spatial population model, we are interested

in the configuration of inhabited sites at different times in order to identify ancestors. Since the time

!Eth11]
Zsee |SZ11|, page 668, second paragraph
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Introduction

component has a “special role” within the model, it is obvious that our model belongs to the class of
RWDRE. In this context of RWDRE one usually refers to the whole environment (including the time
component) as a random space-time environment.

In the literature a huge variety of different random space-time environments is discussed. The first
group of random space-time environments we want to mention are independent and identically dis-
tributed (i.i.d.) environments where at each space-time point transition probabilities of the random
walk are chosen independently according to a identical distribution (see e.g. [RASO05]). A slight vari-
ation of this environment, where independence is only assumed between different time slices, can be
found for example in [JRA11]. In this case one can think of the environment as being “refreshed at
each time step”. Random environments where individual sites evolve in time as independent Markov
chains are for example analysed in [BMPO0§|, [DL09] and [BZ06]. A more generalized case where uni-
form coupling conditions are imposed on the Markovian environment is discussed in [RV13|. At last
we want to mention the group of environments generated by particle systems. For example [dHKS14]
and [HdHAST15] focused on models of random walks on random walks. Random environments gener-
ated by an interacting particle system are for example considered by [AdHR11], [dHdSS13]. Classical
examples are spin systems or exclusion processes. The environment we focus on is generated by a
time-discrete version of the contact process.

In general the contact process 1 := (n;)er on Z%, where I = [0,00) or I = Ny, is a {0,1}%" valued
Markov process that can be seen as a model for the spread of an infection or the growth of a population.
At some given time t € I we think of the sites {b € Z¢ : ny(z) = 1} as being “infected”, whereas the
sites in {b € Z¢ : m(z) = 0} are considered to be “healthy”. In the continuous time case a healthy
site becomes infected at a rate proportional to the number of infected neighbours and an infected site
becomes healthy at rate 1. Hence the flip rate ¢(n, 2) by which the state of 7; at = € Z? is flipped from

0 to 1 or vice versa is given by

1, if n(z)
A (#Hy e —ylly = Linly) =1}), ifn(x)

where A > 0 is called the infection parameter. In this case the set U(z) = {y € Z : ||z —y|, = 1}

1,
c(n,x) =

0,

is considered as the nearest neighbourhood of € Z?. In the discrete time case, a healthy site will
be infected at the next time step with probability p € (0, 1) if there exists an infected particle in its
nearest neighbourhood and an infected site recovers with probability (1—p). A precise definition of the
discrete version of the contact process considered within this thesis will be given in section 1.2. Other
articles dealing with random walks on discrete or continuous time versions of the contact process are
[BCDG13], [BH15], [Mil16], [Bet16], [BCD16] and [BV16]. The list of examples on different environ-
ments given above is, of course, not complete and neither is the list of references. We just list some
models in order to give an impression of how random environments could look like. When working on
RWRE, one usually deals with the following two probability measures: The law of the random walk
on a fixed environment is called the quenched law, whereas averaging over random environment and

random walk is called the annealed law of the random walk.

The “groundwork” for this thesis is an article by Matthias Birkner, Jif éerny, Andrej Depperschmidt



and Nina Gantert [BCDG13|, which deals with the same RWDRE-model we are working on. In
[BCDGlS] the authors describe a regeneration construction for the random walk on the discrete time
contact process and derive a law of large numbers (LLN) and a quenched central limit theorem (qCLT)
from it. In [Mill6] the results by Birkner et al. are extended to a contact process with fluctuating
population size. This is realized by supplementary “carrying capacities” fulfilling certain mixing con-
ditions. In fact, the random walks are defined on a subgraph of an oriented (site) percolation cluster.
The link between oriented percolation and the discrete time contact process is discussed in section
1.2.1 below. The restriction to the subgraph was necessary to avoid traps in which a directed random
walk might get stuck.

In [BCDG13] Birkner et al. also proved that two random walks defined on the same oriented perco-
lation cluster are “essentially independent” when they are far apart. Based on their observations the

question arises how several (or infinitely many) random walks on the same oriented cluster behave.

In this thesis we prove that the diffusively rescaled system of coalescing random walks, starting from
each space time point contained in the subgraph (traps are deleted) of an oriented percolation cluster
of dimension 1 + 1, converges weakly towards the Brownian web (BW). Systems of one-dimensional
coalescing Brownian motions starting from R x {0} have first been studied by Arratia [Arr79|. Later on
Toth and Werner [TW98| analyse “coalescing reflected-absorbed Brownian motions” which they need
for construction and analysis of their “true self-repelling motion”. A new characterization of the BW
is given by [FINRO04], [FINR02|. They characterize the BW as a random variable taking values in a
complete separable metric space, whose elements are compact sets of paths. Additionally, they give
criteria for a whole system of rescaled coalescing random walks to converge in distribution towards
the Brownian web. In [FINRO4| convergence criteria for the case of non-crossing and crossing random
walk paths have been developed. These results are extended by Sun in [Sun05] to the case of crossing
random walks, whose increments fulfil a finite fifth moment condition. In the second chapter of this
thesis we will prove that our model fulfils the generalized convergence criteria given by Sun. Some
further articles dealing with properties of the BW and its dual are [NRS10| and [SSS14]. In [SS13]
the authors prove that the centered and diffusively rescaled collection of the right most paths in an
oriented percolation cluster converges weakly towards the Brownian web. In our case the situation is
different, since one of the main problems we have to deal with is the crossing of “nearest neighbour

paths” which does not occur, if always the rightmost path is chosen.

The second main problem we focus on is a comparison between quenched and annealed hitting prob-
abilities of differently sized boxes. In [BCR16| Berger et al. use this kind of estimates to prove a
quenched local central limit theorem (qLCLT) for (ballistic) random walks in an i.i.d. environment.
Although we do not prove a qLCLT within this thesis, we are able to adapt some ideas in [BCR16] to
our set-up and get a comparison between quenched and annealed probabilities for hitting boxes of side

length e log(N) loglog(N)

. This comparison together with the annealed central limit theorem implies the
quenched central limit theorem (qCLT) proved by Birkner et al., for space dimension at least three.
Additionally, it provides a comparison between quenched and annealed hitting probabilities on a much

finer scale than the comparison that follows out of the qCLT. The most helpful tool for proving the

x1



Introduction

estimates between the quenched and annealed probabilities is the environmental exposure procedure
first invented by Bolthausen and Snitzman in [BS02]. A lot of the ideas we use can also be found in

[Ber12].
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CHAPTER 1

Description of the model: (Coalescing) Random walks on the

backbone of an oriented percolation cluster

1.1. Primary notation

In this chapter we give a precise definition of the model we are working on. We want to point out that
a very detailed description of the model can also be found in [BCDG13].
Let

w:={w(x,n): (x,n) € Z¢ x 7} (1.1)

be a family of i.i.d. Bernoulli(p) random variables defined on some probability space

(2, A,P). (1.2)

Vis a Bernoulli product measure on {0, 1}ZdXZ. Given a site (x,n) € Z¢ x Z, we usually

Hence P o w™
refer to the first component z € Z% as space and to the second component n € Z as time. We call
a (space-time) point (z,n) to be open or inhabitable if w(xz,n) = 1, and closed or uninhabitable if
w(z,n) = 0. During the rest of the thesis || - || refers to the supremum-norm unless stated otherwise.
An open (directed) path in w that starts from (y,m) and ends in (z,n) for some z,y € Z% and m,n € Z
with m < n, is a sequence Ty, Tpy1, ..., tn € Z% such that z,, =y, z, = z, ||z — 21| < 1 for all
k=m+1,..,n and w(zg, k) = 1 for all &k = m,...,n. If there exists an open directed path in w from
(y,m) to (z,n) we will write (y,m) > (x,n). If for some w for every n > m there exists 2 € Z? such

that (y,m) = (x,n), we will write (z,n) < co.

Remark 1.1. In the proofs that follow, C' and ¢ denote some positive constants that are only allowed
to depend on the success probability p of w(z,n), (z,n) € Z¢ in (1.1) and the space dimension d. If
the explicit value of some constants is not important for the result, they will always be denoted by C
and c¢. The constants C' and ¢ may also vary within a chain of inequalities. If the value of a certain

constant is important for a later step, we will add a subscript to it Cy,c1, Co, ca....

1.2. The discrete time contact process

As already mentioned in the introduction we focus on random walks in random environment, where in
our case the environment is generated by a discrete time version of the contact process. The (continuous
time) contact process was first introduced by Harris in [Har74]. It is one of the classical interacting

particle systems and serves as a model for the spread of an infection or the growth of a population. In



1. Description of the model

the discrete time case, a healthy site will be infected at the next time step with probability p, if there
exists an infected particle in its nearest neighbourhood and an infected site recovers with probability
(1 — p). In this section we will give a precise definition of the discrete time contact process and the
random environment we are interested in. Furthermore, some already known facts about the contact
process will be listed. For the proof of these facts we will often refer to results about the continuous
time contact process. Although in many cases a precise reference in the literature is missing, one
agrees on these results to hold true for the discrete time contact process as well. We apologize for this

inaccuracy, but giving all the proofs would go beyond the scope of this thesis.

Definition 1.2. We fix m € Z and A C Z%. The discrete time contact process n™™ = (n,’?’m(y))nzm

starting at time m from the set A is defined as

nam(y) = 1a(y), y € Z¢,
and for n > m

Am 1 ifw(z,n+1)=1and 57" (y) =1 for some y € Z% with ||z — y|| < 1,
M (7) = (1.3)
0 otherwise.

With the convention that w(z,m) = 14(z), whereas for n > m the w(z,n) are i.i.d. Bernoulli(p) as
defined in (1.1), we have

™ (x) =1, if and only if (y,m) = (z,n) for some y € A.

™ as the contact process driven by w or defined on w. For some given

Sometimes we refer to n?
distribution p on {0, 1}Zd we write "™ := (n}")p>m for the discrete time contact process with initial

configuration np;" distributed according to p.

If n,’f’m(y) = 1, we consider the particle in y at time n to be “infected” by some particle x € A at time
m. Sometimes the random variable 7; "™ (y) also refers to the set of infected sites at time n > m. For

x € Z%, we often refer to the set
Uz) :=A{y:[lv -yl <1} (1.4)

in (1.3) as the nearest neighbourhood of x (with respect to ||-||). For A C Z? the nearest neighbourhood
of A is defined as

UA) = U). (1.5)

€A

(z,m)

If A= {z} for some z € 74 we write m, instead of m{f}’m.

Define
™ =inf{n>0: 90 =0} (1.6)

as the time that the contact process starting from A C Z? at time 0 dies out. If A = {z}, = € Z¢ we

write 7% instead of 7%



1.2. The discrete time contact process

There exists a critical value p. € (0, 1) such that P(10 = c0) = 0 if p < p. and P(7% = o0) > 0 if p > p,
(see e.g. Theorem 1 in [GHO02|), where 0 = (0, ...,0) € Z¢. During the rest of this thesis we assume
P> Pe.

The discrete time contact process is a Markov process on {0, 1}2". Notice that on {0, 1}% there exists

a partial order of elements given by
n <17, if n(x) < n'(x) for all z € Z4. (1.7)

We always assume {0, 1}Zd to be equipped with the product topology. A continuous function
f e C{o, 1}Zd) is called increasing if

n<n' implies f(n) < f(n). (1.8)

We call two probability measures p1, po on {0, 1}Zd to be stochastically monotone, denoted by p1 < po,
iff

/ fdur < / fdus for all increasing f € C({0, 1}Zd). (1.9)
{0,132 {0.y2

If 1 < o, we also say that uo stochastically dominates .

Next we will focus on the weak limit of ngd’m as m tends to —oco. Notice that the definition of

the contact process defined on w yields a monotone and additive coupling for arbitrary initial states
A, B C Z%, which means that
AC B = pimcpbm (1.10)

and
nTz?UB,m :nﬁymunfzm (111)

Furthermore, for A, B C Z¢ the following (self-)duality relation holds true
P(r, ™ NU(B) # 0) = B(n"™(w) N U(A) # 0) (1.12)

for the definition of U(A) see (1.5). The duality relation has to be written like this because of the
convention that is made within the definition of 77;? ™. The relation can be easily verified by reversing
the directed paths in w between A x {m} and B x {n + 1}.

Now we focus on the discrete time contact process with initial configuration Z¢. Let p,, be the
distribution of n?d’m and let f € C({0,1}%") be an increasing function. Since ngd’m c 74 as. for all
m < 0 the monotone coupling in (1.10) and the Markov property of the discrete time contact process
imply

/ . fdp, < / . fdp,, for all m' <m <0. (1.13)
{o,1}% {o,1}%

which means that g, < ., for all m’ < m < 0. Hence compactness of the set of probability measures
on {0, 1}Zd implies the existence of a unique weak limit
1%

2 fim g, = lim L0EO™), (1.14)

m——0o0 m——0o0



1. Description of the model

which is also non-trivial since we assume p > p.. The measure ¥ is called the upper invariant mea-
sure of the discrete time contact process. Hence, taking m to —oo, we obtain a stationary process

N := (Mn)nez = (n%d)nez, where for a given configuration w € {0, I}ZdXZ

nmn(z) =1, if and only if (1.15)

for every m < n there exists y € Z¢ such that (y,m) > (z,n).

1.2.1. Link to oriented percolation

A very nice explanation of how oriented percolation is connected to the contact process can be found
in [Lig99, page 13], yet for the sake of completeness we give a short explanation with notation adapted
to our case.

We change our view on the contact process slightly. Let A be a finite subset of Z%. If the contact

process (17;? ™) n>m is seen as a Markov process with state space given by the collection of finite subsets
of Z%, its evolution in time can be described as follows:

Given the information on the process up to time n, the events {z € nfjﬁf}mezd are independent and

Plw@n+1)=1)=p i 0 {y:[lz—y| <1} #0

A, A, ) 9

P({ € P Hm ™ ™) = (1.16)
0 otherwise.

This description of the contact process is not usual but shows its connection to oriented (site) perco-

lation and in fact exhibits it as a “probabilistic cellular automaton”.

1.2.2. Some facts about the contact process and its upper invariant measure

In this section we will list some facts about the contact process, which will be needed for later results.
As already mentioned the references often refer to the continuous time contact process, nevertheless,
the statements also hold true for the discrete time case.

The first Lemma shows how the survival probability of the (discrete time) contact process is related
to its initial configuration and gives an estimate on the probability that the contact process dies out

after surviving for n steps. Recall the definition of 74 in (1.6).
Lemma 1.3. There exist constants C,c > 0 such that for every n >0 and A C Z% we have
P(n < 71° < 00) < Ce™" (1.17)

and
P(r4 = 00) < e~ (1.18)

Proof: For the proof of the continuous time case we refer to [Lig99, Theorem 2.30]. Furthermore,

Birkner et al. gave a proof of (1.17) for the discrete time case in [BCDG13, Lemma A.1.].
u

We already mentioned that the upper invariant measure ¥ is non-trivial. The next Lemma gives an

easy example of a non-trivial measure that is stochastically dominated by .
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Lemma 1.4. The upper invariant measure of the contact process stochastically dominates a Bernoulli

product measure vy 1= Ber(p’)®zd for some p' > 0.

Remark 1.5. Recall the definition of stochastic domination from (1.9). The stochastic domination
in Lemma 1.4 is equivalent to the existence of a probability measure p on {0, 1}Zd x {0, 1}Zd with

marginals v, and v, which means
d d
vp(A) = p((¢.¢") € {0, 11" x {01} : C € 4),
P(4) = (6, ¢") € {0,177 x {0,1}" : ¢ € 4),
such that
p((¢,¢):¢<)=1
See also the remarks at the beginning of section two in [L.S06| and [Lig85, page 72, Theorem 2.4].

Proof of Lemma 1.4: For the continuous time contact process, the proof of Lemma 1.4 is given in

|LS06, Theorem 1.1].
]

The next Lemma is a discrete time analogue of the shape theorem given in [DG82, Theorem, equation
(8)], see also [BG90a, Theorem (5)|. Before we are able to write it down, we need a little more notation.

For z,y € Z* and m € Z we define the stopping time

t@m™) () := inf{n > m: z € ™},

n

with convention inf() := oo. The random time t(™)(z) is the first time at which a site z € Z¢ is

infected by the discrete time contact process starting from y € Z% at time m. Furthermore, we define
1
HWY™) .= {y' e R?: Jz e 24 with H:L' - y'” < B and tW™) () < n} ) (1.19)

which is the set of all sites infected by the contact process (nS”m))n up to time n. Next we define the

d
set of successful coupling between 777(1 ™) and 77% ™ by

n

1
KWwm) .— {y cR?: Jz €24 with ||z —y|| < 3 and nU™ (z) = ngd’m(x)} : (1.20)

Note that for each z € Z¢ that is contained in Hfly’m) or K,(Ly’m), the random sets also contain a cube

of side length one and center x.

Lemma 1.6. (shape theorem) There exists a conver subset U C RY, which is a neighbourhood of

0 € R?, such that for any € > 0
n-(1—¢e)-UcHP cn-(1+¢)-U eventually,
almost surely on the event {70 = co}. Additionally,
n-(1—e)-Uc HO KO cn.(1+¢)-U eventually,

almost surely on the event {70 = co}.
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Proof: For the continuous time contact process, this is proved in [DG82, Theorem, equation (8)], see

also [BG90a, Theorem (5)].
]

There also exists a more quantitative version of the shape theorem which is literally formulated for the

continuous time case:

Lemma 1.7. There exist constants C,c,vy > 0 such that

P(ni0@) £nil@)) <C7" we (1.21)
P (000 (@) # 0 (@) | 0 = 00) < Ce™, el < m, (1.22)

and
P (t(z) > n| 70 = 00) < Ce ™, |z|| <yn (1.23)

Proof: The proof for the continuous time case can be found in [DG82]. See especially “Theorem” and
Proposition 6, equation (33) and (34). Note that (1.21) follows immediately by (1.17), self duality of
n and the fact that

P (nZ"0() # ni(@)) =P (0" 0(@) = 1) = P (1°(x) = 1)

O

Remark 1.8. In [GM14] a shape theorem is proven for the continuous time contact process in random
environment. The term “random environment” in the context of [GM14] refers to randomly chosen

rates according to which an infected site infects its nearest neighbours.

1.3. The backbone of an oriented percolation cluster

In this section we give a new interpretation of n and explain what is meant by the backbone of an
oriented percolation cluster. The definition of 1 can be found in (1.15). The term “backbone of an
oriented percolation cluster” was used by Birkner et al. in [BéDGlS]. A precise definition of the model

can also be found therein.

For the rest of this thesis we want to think of n as a population process. We call a site x inhabited
or occupied by an individual at time n, iff n,(x) = 1. Recall the definition of U in (1.4). By the
way 1 was constructed, n,(x) = 1 for some (z,n) € Z? x Z implies that at time n — 1 there exists
a particle in the nearest neighbourhood of z, more precisely 7, (x) = 1 implies 7,_1(y) = 1 for some
y € U(z). We call the particle in = at time n to be an offspring of the particle in y at time n — 1. If
there exists more than one particle in the nearest neighbourhood at time n — 1, we choose the parent
uniformly among the possible ones. This is also the place where local competition comes into play. In
sparely crowded regions a particle has higher probability to leave an offspring for the next generation.
Or from a different point of view, in sparely crowded areas a particle has an increased chance to be

chosen as parent. Since we are interested in ancestral lineages, respectively random walks in random
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environment moving “backwards in time” (relative to the natural dynamics of 1), we reverse the time

direction to avoid negative signs. We denote the time reversal of n by £ := ({,)nez-

Recognize that for a given configuration w € {0, 1}20ZXZ the time-reversed process £ = (&,)nez can be

characterized as

1 if (z,n) =5 oo,
&n(x) = (1.24)
0 otherwise.
Since 7 is a stationary Markov process its time reversal £ is a stationary Markov process as well. The
invariant measure of £ is the upper invariant measure of the discrete time contact process. The random

set

C:={(z,n): & (z) =1} (1.25)
is called the backbone of an oriented percolation cluster. If we want to emphasize the dependence of £
on w or some special w is chosen, we write &, 1= (§u(,1))(zn)ezdxz = (§n(®))(2n)czexz- Notice that

¢ is measurable with respect to o (w(z,n) : (z,n) € Z¢ x Z).

1.4. Random walks on C

In this section we give a precise definition of the random walks on C we are interested in. We fix some
z = (y,m) € Z? x Z which will be the initial value of the random walk and restrict ourselves to the
event

B, = {{m(x) =1} = {(z,m) € C}. (1.26)
By stationarity of 7, it would have been enough to focus on the event Bgg) := {£0(0) = 1}. But
the construction of the random walk for an arbitrarily chosen initial value is better to establish the
notation that will be used later on. Note that P(B.) = P(Bq,)) > 0.
We fix some configuration w € B,. As described before, given w, we want to construct a random
walk starting from y at time m that chooses its next step (resp. its parent) uniformly among all
possible states (resp. parents) in the next time-layer. We want the choice among the possible states
to be independent of everything else in the model. Given some fixed environment the random walk is

defined as follows:

Definition 1.9. (Quenched law) For some given w € B, the quenched law of the random walk

starting from z, usually denoted by PZ, is characterized by P%(X,, = y) = 1 and transition probabilities

§n+1<37/)
P (X = 2'|X, =) 1= ,
ot =2 ) 2 ia—a)<1 En+1(Z)

which means that X is a time-inhomogeneous Markov-chain under P,,.

(1.27)

Remark 1.10. By the definition of the quenched law above the random walk X on the environ-
ment w starting from space-time point z = (y,m) € Z¢ x Z remains undefined up to time m. This
appears to be more natural since in fact we consider a (d 4 1)-dimensional directed random walk
(Yo)n>0 := (Xntm,n + m),>0 and do not want to shift the space and time component against each

other.
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Definition 1.11. (Annealed law) Define P*( - ) := P( - |B,). The annealed law P* of the random

walk starting from the space time point z is defined as

P () ::/P;(.) P*(dw) = P(zz)/ P2(-) P(dw). (1.28)

By a common abuse of notation, the measure P* also refers to P* @ PZ, which is the joint law of the
environment and the random walk. Note that P* ® P? is technically a semidirect product and not a

product law.

We denote the expectations with respect to P2, P* and P? by E?, E* and E?.

1.4.1. Definition of the regeneration structure

In this subsection we focus on a regeneration structure of the random walks on C. This regeneration
structure allows us to cut the random walks into independent and identically distributed (i.i.d.) incre-
ments. The lemmas and arguments within this subsection are given in much more detail at [BCDGlB,
section 2|. Birkner et al. adapted arguments from [Kuc89] and [Neu92] to prove exponential moments
on the random walk increments between regeneration times. Cutting the random walk path into i.i.d.
increments which have exponential and hence second moments, they immediately derived an annealed
central limit theorem and a (strong) law of large numbers for the random walks. Also for their proof
of the quenched central limit theorem, the regeneration structure was one of the main ingredients. For
the sake of completeness we list some of the lemmas in [BCDG13], which will be needed later on and

try to explain the ideas behind them as briefly as possible.

The first thing we want to explain is how a random walk path with dynamics given at (1.27) can be
constructed using only “local” information on w. Instead of choosing some arbitrary space-time point
the random walk starts from, we will locally construct a path of the random walk starting from 0 at
time 0 on the event B(gq) (see (1.26)). We start by defining some additional randomness on (€2, A, P)
(see (1.2)). For each (x,n) € Z¢ x Z let

wp(z,1) = (Wnp(x, n)[1], ..., wap(x, n)[3%) (1.29)

be a uniform (random) permutation of the nearest neighbours of z that is independent of everything
else in the model. Let 7,20’0) = (712070) (n))n=0,...k be a directed open path of length £ € N starting

from space-time point (0,0) € Z? x 7Z, defined as follows:
729%0) =0 € Z¢
and

the element of
09, 1 1 el @+t )32 {1} 0 #97m) =z and 1<n<k-2,
T (ntl)= that appears first in wpy(z, n)

wap(z, k — 1)[1] if y,io’o)(n) =zandn=~Fk—1.
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We interpret 7,&0’0)(14:) as a “possible ancestor” of the individual at space-time point (0,0). We want to

point out that 7,20’0) is measurable with respect to

Gh = o(w(z,n),wn(z,n) 2 € 29,0 < n < k).

Furthermore, if %(60,0) (n) € C for some n € 1,...,k it follows that 7,(7?’0) (n) = 7,2070) (n) for all m > k.
On B(O,O) the limit
() = lim 57 (j) (1:30)

k—o0

&0

exists for all j € Ny. The properties of the local construction (see [BCDG13, Lemma2.1 and Remark
2.2]) yield a coupling on B(g ) of the random variables w,wp; and the random walk X starting from
0 at time 0 by
. (0,0)
Xy = lim 5,7 (n). (1.31)
k—o00

Using the local construction, we define a sequence (73,),>0 of random times by
- s : (0,0) _
Ty:=0 and T:= 1nf{k: > Ty & (’yk (k)) - 1}. (1.32)

Notice that 7(;;,0) (T;) = (0.0) (T;) for all m > Tj, which by (1.31) and the definition of the local
construction implies that X, = r}?’o) (m) for all m < T;. We interpret (T});>0 as the times at which
the local construction discovers a “real ancestor” of the individual located at (0,0) and call them

regeneration times. For ¢ > 1, we define
T — T:L - T%,1 and Y; = XT'L - XT'L—I' (133)

According to [BCDG13, Lemma 2.5] Y; is symmetrically distributed, the sequence (7, Y;)i>1 is i.i.d

and there exist constants C,c > 0 such that
POO (1] > n) < Ce™ and POO (1) >n) < Ce™". (1.34)

The proof of these statements is given in [BCDG13, section 2.3]. The main idea for the proof of (1.34) is
to dominate the number of attempts before the local construction hits the cluster C by a geometrically
distributed random variable with positive success probability. Furthermore, one needs to make use of

the fact that for each failure one has to explore a “dead end” whose length has exponential tail bounds
by (1.17).

1.4.2. Finite number of random walks starting from deterministic space-time
points

In this section we introduce different models of several random walks defined on the same and inde-
pendent copies of C. The definitions within this subsection are essential for the rest of this thesis. If
we consider several random walks, we slightly change our notation. Instead of considering the random
walk X with respect to the probability measures P? and P? we rather add a subscript z to X in order
to indicate the initial value. Since we extended the probability space (€2, A, P) by some additional ran-

domness wpyy, it is consistent with Definition 1.11 to refer to P( - | B,) as the annealed law of the random
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walk X (%) starting from the space-time point z. Recall the definition of B, in (1.26). Furthermore, for
21y ey 2 € Z% X 7 we define

Bz1,...,zn = ﬂ sz~ (135)
k<n

(i) Random walks defined on a joint oriented percolation cluster

At first we want to consider a model of [ € N random walks which for one given oriented percolation
cluster move independently of each other on the same backbone. We refer to this model as the joint case,
since several random walks are defined on a joint oriented percolation cluster, respectively its backbone.
Notice that talking about “independent random walks” would be too much in this context since the
cluster creates a dependence between them. If two random walks visit the same sparely crowded area,
it is more likely that they choose the same ancestors. We fix 21 = (y1,m1), ..., 21 = (y1,m) € Z%xZ and
extend the probability space (£2, 4, P) (see (1.2)) by [ independent copies of wyy, which will be denoted
by w;II,), . wgg If the probability space is extended like this, we will add the subscript “joint” to it and

denote it by (Qjoints Ajoint, Pjoint). On the event B, . we construct random walks X)L x (=)

starting from z1, ..., z; in the way we described in (1.31), but for each random walk the ancestral choice
will be done according to some independent copy of wy. Since for a given configuration of w, for each
random walk the choice of its parent at the next time step is independent of everything else in the
model, we indeed get [ random walks which for a given oriented percolation cluster move independently

of each other. Notice that

1

Pioint (X € A1y, X3V € Al | By ) = P(AriB.,)
<Dz,

/ P2 (Xp, € A1)+ ..o P2(Xp, € A))dP
Nk<i1Bz,

for Ay, ..., A € B(R), n1 > mq,...,n; > my.

(i) Random walks defined on independent copies of the oriented percolation cluster

Next we will define the model corresponding to what one would call “independent” random walks

on oriented percolation clusters. Again we fix z; = (y1,m1),....,2z1 = (y,my) € Z% x Z and ex-
1) (1)
b

nh s W
w®, ..., w® of w. The probability space extended like this will be denoted by (Qind, Aind, Ping). Now

for each pair (w(k),wgz)) we construct a random walk X (%) starting from 2, conditioned on the event

tend (€, .A,P) not only by [ independent copies w of wyp, but also by [ independent copies

{2z € C(w®)} = {&, ) (21) = 1}. What we obtain is a system of | actually independent random walks

defined on independent copies of C, hence we refer to this model as the independent case. Notice that

z Z i 1 Z
Ping(XV € Ay, X0 e A | B2 ) =1] BE.) / P(X,, € Ag)dP,
k=1 2k sz;
for Ay, ..., A; € B(R) ny > my,...,n; > my, where
B . = {m(=n) = .. =& () = 1} (1.36)

10
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(iii) Coalescing random walks defined on a joint oriented percolation cluster

At last we want to define a model of [ coalescing random walks moving on the same oriented percolation
cluster. This model is basically the one that fits our interpretation of the random walks as ancestral
lineages the most. Once a common ancestor of two particles is found, the ancestral lineages coalesce
into one and we have to trace back the ancestral lineage of the common ancestor. As before we
fix 21 = (y1,m1),..., 2t = (yi,my) € Z% x Z. On the event Nip<;B,, we construct random walks
XG0 x (=) starting from z1,..., z; in the way we described above, but for each random walk the
ancestral choice will be done according to the same wp;. This leads to [ coalescing random walks
moving on the same oriented percolation cluster. Since for each space-time point (x,n) € Z¢ x Z the
permutation of the nearest neighbours wy(z,n) is independent of everything else in the model, the
random walks move independently until they hit a common space-time point and coalesce. We refer to
this model as the coalescing case. The notation of the probability space will not be changed, since we
already extended (€2,.4,P) by a uniform (random) permutation of the nearest neighbourhood of each

space-time point, see (1.29).

1.4.3. Definition of a joint regeneration structure

Considering several random walks on a joint oriented percolation cluster in analogy to subsection 1.4.1
one can define simultaneous regeneration times for the random walks (see [BCDG13, section 3]). We
fix 21 = (y1,m), ..., 21 = (y;,m) € Z¢ x Z. Notice that we want the random walks to start at the same

time m € Z. The individual regeneration times of the random walks X 1), ... X(#) are given by

(J)

=m,
7Y, = inf {k > T g (V,Sﬂ(k)) - 1}, (1.37)
compare to (1.32). The simultaneous regeneration time for the random walks X *1), ..., X (%) are defined
as
T5m .= m,
T .= min ﬂ{T D) > TEm > 0}, (1.38)
j=1

Extending the notation of (1.33) to the set-up of [ different random walks, we write

W =X -xG) ., A= -1, 0
and
X = X;?;Zn. (1.40)

The index of the individual regeneration time of X (%) at which a simultaneous regeneration occurs

will be denoted by

Tl = {T > 9 7l) = pgimy. (1.41)

11
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Furthermore, the pieces between simultaneous regenerations are defined as

= . (21) _(1)yJY (1) (DI < o
- <(Yk21 Tk )k:J“)ﬁl""’(YkZl ' Tk )k:J@lﬂ’X?ng)’"'7Xr(zzl) : (1.42)

The random variable =,, takes values in Xi:l F x Xi:l 7%, where F := |0, (Z¢ x N)™.
This construction is done in [BCDG13} for two random walks. Slightly adapting the proof of [BGDG13,

Lemma 3.1] to an arbitrary number [ € N of random walks, we derive the following lemma.

Lemma 1.12. (exponential tail bounds for simultaneous regeneration times)

There exist constants C,c > 0, such that
Pjoint (T§™™ >k | B, .,) < Ce " (1.43)

Proof: The lemma can be proven by a simple adaptation of the proof of Lemma 3.1 in [BCDG13].
O
The properties described in [BCDGlS, Lemma 3.2 and Remark 3.3] still hold true. For the sake of

completeness we list them in the following remark.

Remark 1.13. We fix 21 = (y1,m), ...,z = (y;,m) € Z% x Z. Let (Zg)ren, denote the pieces be-
tween simultaneous regenerations of the random walks X (1) .. X() as defined in (1.42), where
= i= (a(l), ey oy ..., y1) for some arbitrarily chosen a®, ... a® e F. Under Pioint( - | Bz ... 2, ) the

stochastic process (Ex)ren, is a discrete time Markov chain with transition probability function

\Ijjoint ((Oé(l), ceey a(l)axly ...,l’l), (B(1)7 "'75(1)72/17 791))
=. \I/joint ((xl? "'7xl)7 (6(1)7 "'75(”7 Y1, 73/1))

that has the following spatial-homogeneity property

\Ijjomt ((1‘1 +2Z,..,2 + Z), (ﬁ(l), ...,ﬁ(l), Y1+ 2,.., Y + z))

= \I]jOint ((‘,1:17 ceey .’L’l), (5(1)7 ceey /B(m)7y17 seey yl)) (144)
for all z € Z%. Note that the process ()A(,gzl), '-'7)?1i21))k>0 is a Markov chain itself, with transition
probabilities -

\/I}jOiNt((xlv "'7xl>7 (yla 72/1)) = \Pjoint((xlv ~-'7xl>7F X ... xFx {(y17 7311)}) . (145)

The next lemma is quite essential for the proof of Proposition 2.1 in chapter 2. It basically tells us
that random walks on a joint oriented percolation cluster behave similar to random walks defined on
independent copies of the cluster as long as they are far apart of each other. The error that is made
decays exponentially within the distance between the random walks.

Definitions (1.37)-(1.42) can be formulated analogously for random walks being defined on independent

copies of the oriented percolation cluster. For the independent case the statements of Lemma 1.12 and

12



1.4. Random walks on C

7777

probabilities of (Z,,),, will be denoted by

\Ijind ((04(1)7 cey a(l)a T1yeeny xl)v (ﬁ(l)a ceey B(Z)a Y1, 7yl))

= \Ide ((xlv "‘7561)7 (6(1)7 '“76(1)7y17 7yl)> .

Furthermore, let

\/I\/md((xl, ...,xl), (yl, --~7yl)) = \Ijind ((.%'1, ...,xl),IF X ... x F x {(yL --~7yl)})7 (146)

denote the transition probabilities of ()?,gzl), . )?,gzl))po with respect to Piq( - \BZ”dZn) Adapting

21

the proof of [BCDG13, Lemma 3.4], we get the following:

Lemma 1.14. There exist constants C,c > 0, such that

1P ind(215 s 1), ) = Coint((15 ey 1), )|y < CemCmmizslri=aill, (1.47)

1.4.4. Construction of a coalescing stochastic flow

Now we want to define a model of infinitely many coalescing random walks X®™) = (Xfly’m))n>m
starting (in principle) from any space-time point (y,m) € Z¢ x Z, and moving on a joint oriented
percolation cluster. Hence in comparison to the models introduced in section 1.4.2 we need to get rid
of conditioning on the event that the space-time point the random walks start from is contained in the
backbone of the oriented percolation cluster. This can be done by changing the transition probabilities
in the following way:

Recall the definition of wyp in (1.29). Define

D(rm) = wnp(x,n) [min{i s (wpp(z,m)[il,n+1) € C}], if CN (U(:n) x {n + 1}) #), (1.48)

wnp(z,n)[1], otherwise.

Note that for (x,n) € C, the first case occurs and ®(z,n) gives back a uniformly chosen element of
{y € U(x) : (y,n+ 1) € C}, which is the set of possible ancestors of (x,n). For (z,n) & C, ®(z,n)

gives back a uniformly chosen neighbour of x. We define

XWwm) .=y and XflyJ;T) = ®(XW™ n), n>m. (1.49)

For fixed (y,m) € Z% x Z, given w, X®m) is a time-inhomogeneous Markov chain with

ny1() , fCNU(z) x {n+1}) #0,
Py (X&) = o | Xpm) = z) = { Eete—siz1 &1 @ st (1.50)
U ()]} if CN(U(z) x {n+1}) =0

and Pw(XffL/’m) =y) = 1. In fact, (1.49) implements a coalescing stochastic flow with individual paths
having transition probabilities given by (1.50). Note that for z = (y,m) € Z¢ x Z and w € B, the
transition probabilities (1.50) of the random walk X (*) coincide with the transition probabilities of the
quenched law P? defined in (1.27). If n = 0 is fixed, we will abbreviate X ) = X ©:0),

13
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1.5. (Neutral) multi-type contact process

In this section we extend the discrete time contact process driven by w as defined in section 1.2 by
assigning different types to the particles. Let E be a set of possible types. We stipulate 0 ¢ E (e.g.
E = {1,2} or E = (0,1]), since we want to interpret type 0 as “unoccupied site”. For simplicity we
focus on the case E = {1,2}. First we fix some ng € Z and let 75" = ¢ € {0,1,2}2" be the initial
configuration of “type 17-and “type 2"-particles. The idea is to extend the contact process such that
a “type 1”-particle can only give birth to “type 1”-particles and as before leave its offspring only at
inhabitable sites. The same holds true for “type 2”-particles. In other words, we want each particle
to inherit its type from its parent. Since we reversed time as mentioned at the end of section 1.3,
the multi-type contact process evolves backwards with respect to the ancestral time. Remember the

definition of ® given at (1.48). For n < ng we define

¢,no :
" " (®(z,n — 1)), if (z,n—1)€C,
0" (@) = (1.51)
0, otherwise,

since we think of the particles at time layer n — 1 to be offspring of the particles at time layer n,

whereby the parental choice is determined by wy;. See also the discussion in [BCDG13, p. 1-2].
By the definition of n the following duality relation holds true

CvnO (iE,n) 3
" o (X ), if (z,n—1) €C,
N () = (1.52)
0, otherwise,

for z € Z% n < m < ng. Here as in Definition 1.2 we use the convention that w(z,n¢) = 1 if {(z) > 0,

whereas the w(x,n) are i.i.d. Bernoulli(p) at all other space-time points. This is the discrete-time

analogue of the Harris construction. For n € Z and pairwise different x1,...,2; € Z%, | € N write
By = {(2z1,n),..., (z1,n) € C}. (1.53)
In particular, for Cy,...,C; C E measurable and [ pairwise different points z1,...,z; € Z¢,

l
P(n$™(z1) € C1, ..., 5™ (21) € C | Bay,oayin) = E[H Lo, (nSm (X)) | Bxh,__@m} (1.54)
i=1

for all m € {n,...,ng}. We expect that on sufficiently large space-time scales, any finite collection
X@oto) x(zit1) X (@ntn) should look similar to (coalescing) random walks. By duality, this trans-
lates into a meta-theorem: “Everything” that is true for the (neutral) multi-type voter model should
also be true for the (neutral) multi-type contact process. A first progress on this meta-theorem can be

found in subsection 2.1.2 below.

14



CHAPTER 2

Brownian web scaling limit

In this chapter we will prove that the diffusively rescaled collection of random walk paths starting
from every space time point contained in the backbone of an oriented percolation cluster of dimension
1+ 1 converges in distribution to the Brownian web. This is done by verifying the convergence criteria
Sun formulated in [Sun05]. The main ingredients are tail bounds on coalescing events, which will be
proved in the first section of this chapter. The second section is dedicated to the characterization of
the Brownian web. As mentioned in the introduction a nice characterization of the Brownian web can
also be found in [FINRO4|. A detailed proof that the convergence criteria given by Sun are fulfilled in

our case is then given in the third section of this chapter.

2.1. Tail bounds on coalescing events

In the first section we focus on tail bounds for the hitting or meeting events of independent random
walks on a “joint” oriented percolation cluster. A discussion on Proposition 2.1 can be found in
Remark 2.3 and Remark 2.4 below. In order to prove the tail bounds we make use of the estimates on

the transition probabilities given at (1.47) and estimates on return probabilities of supermartingales.
For z1,xo € Z¢ define

T(Ihﬂﬁz) = inf{n >0 Xéxl) — X7(L902)}7 (2.1)

meet

with X (@) as defined in (1.49) and the usual convention inf () = +o0o. Note that both random walks

start at time 0.

Proposition 2.1. Let x1,z9 € Zd, x1 # xy. We have

(x1,z2) =1, d<2,
PjOint(Tmeet <0 ’ BJ?LIZ%O) (22)
€(0,1), d>3.
In dimension d = 1 we have the following asymptotic behaviour
7 1 — T2
Pjoint(Tvgfeletm) >n ‘ Bm1,x2;0) = M (2.3)

vnoo
uniformly in n and x1,x2 with x1 # x2 as n tends to infinity. The definition of By, 2,0 15 given al
(1.53).

15



2. Brownian web scaling limit

Remark 2.2. The asymptotic behaviour in (2.3) is needed to verify the convergence criteria given in
section 2.3 below. Since we do not need the precise tail behaviour in the two-dimensional case, we
do not further investigate this question here. We believe that this can be done analogously to the
one-dimensional case, by showing that for
r T /
fr)y:=C +/ c 2. exp (—ce_C T) dr, with C,C’,¢,c,r9 > 0 chosen properly,
T
70
the stochastic process f (H)?,(fl) - )?T(L”)

come closer than some fixed distance K > 0. If this holds true, the arguments given in section 2.1.4

2) is a supermartingale, up to the time that the random walks

below should be adaptable to the two-dimensional setting. Up to now we know that for every initial

separation zy = x1 — 2 there exist constants C,C’" > 0 and M > 0, such that

C/
[ —
~ log(m)

C
Log(m)

(2.4)

n

< Pjoint (inf {k’ >0: H)/(\'r(fl) _ X(@2)

) < K} >m ’ Bw1,x2;0>

for all m > M, where the dependency of C' and C” on xg requires further investigation. The upper
bound in (2.4) is a consequence of Remark 2.7 and [LPWO09, Proposition 17.19], whereas the lower

bound can be proved similar to the one-dimensional case.

2.1.1. Comments on Proposition 2.1

Remark 2.3. We are interested in collision events of two random walks X @), X(#2) moving on the
space-time cluster C. A collision event occurs, if the two walks are at the same time at the same
site. Equation (2.2) tells us that a collision event between two random walks occurs almost surely in
dimension d=1,2. This is not entirely obvious because the “holes” in the space-time cluster C might
prevent collision events. Furthermore, in the one-dimensional case the tail bounds given in (2.3) of
Proposition 2.1 coincide (at least up to a constant) with the tails bounds one would expect from
ordinary random walks with ii.d. increments, see e.g. Corollary 1.3 in [Uchll| or Theorem 8 in
[Kes63]. Roughly speaking in the one-dimensional case the holes that occur in the space-time cluster
have no substantial influence on the tail bounds for the probability of two random walks to meet after

n steps.

In order to prove (2.2), we have a look at the difference of two walks at their simultaneous regeneration
times (T5"™),, see (1.38). Recall the definition of X in (1.40) and the definition of @joim and U,
in (1.45) and (1.46).

In the joint as well as in the independent case, the difference between the random walks X (1) and

X (@2) at their simultaneous regeneration times is a Markov chain with transition probabilities

Wl (2,1) = ot (<x,o>, U=+ y,z>}) ,

respectively

V(@ y) = Wing ((x,m, Ui+ w)}) ,

16



2.1. Tail bounds on coalescing events

see the remarks at the end of section 1.4.3. We want to point out that the transition probability function
diff
0

joint 18 1LOG (space-)homogeneous. This means that the transition probability for the distance between
the random walks does not only depend on the increment but also on the initial distance between the
two random walks itself. In the independent case the transition probability function of the difference is
(space-)homogeneous, which means that the initial distance between two random walks is not important

for calculating the probability of a certain increment. Hence we are allowed to define

Wiy — ) = W0,y — x) = Uil y).

Furthermore, the transition probability function in the independent case is symmetric. In both cases
the transition probability functions have exponential tails by Lemma 1.12.

Notice that by the spatial homogeneity of \If%g, the difference between the two random walks is itself
a d-dimensional random walk. By symmetry of the increments and the exponential tails, we know for
example by the Chung-Fuchs-Theorem that the Markov chain ()? ,STI) - X ;im))kzo is recurrent under
Pina( - |Bi, o) (in d = 1). In the joint case we know at least that the Markov chain ()Aflgxl) —)A(IEIQ));CZO

is irreducible under Pjoins( - |Bey 2:0)-

Remark 2.4. Proposition 2.1 (see also Lemma 2.8 and Lemma 2.9 below) is in some sense a “trivial”
instance of a so-called Lamperti problem: The difference (Xj(fil) — Xj(ﬂ?))n at simultaneous regeneration
times is (under Pjoini( - | Bz, ,20:0)) @ Markov chain that is a local perturbation of a symmetric random
walk and the drift at « vanishes exponentially fast in ||z||, which is a consequence of Lemma 1.14. A
very fine analysis in the nearest-neighbour case can be found in [Alell], see also the references there
for background.

Denis Denisov, Dima Korshunov and Vitali Wachtel (in contemporaneous work, see [DKW16]) have
established a generalisation of Alexander’s results to the non-nearest neighbour case which in particular
refines the case d = 1 in (2.3) to asymptotic equivalence. For the sake of completeness we present a

short, rough proof of the coarser estimates that suffice for our purposes.

2.1.2. Consequences for the (neutral) multi-type contact process

In this subsection we discuss briefly consequences of Proposition 2.1 for the (neutral) multi-type contact

process introduced in section 1.5.

Proposition 2.5.

Let p denote the Bernoulli product measure on {1, Q}Zd with p(n(z) =1) =1—p(n(z) =2) =a € (0,1)
for all x € Z¢. We write n™ := (™ Yn<m for the discrete time two-type contact process with initial
configuration nky" distributed according to p. Furthermore, we denote by vt and U? the weak limits

-1 w . 1,m
v = nlgnooﬁ(n() )7

722 lim Lip™),

m—00

m

where nb™ and n®™ denote discrete time two-type contact processes starting at time-layer m and

evolving backwards in time, with initial configuration given by n,ln’m =1 and n,zn’m = 2. In dimension

17



2. Brownian web scaling limit

d < 2 we have
If d > 2, then the weak limit

exists and
" (g € {0,1,2)%" : ¢|a, = 1,C|a, = 2) >0
for every finite Ay, Ay C 72, with Ay N Ay = 0.

Proof: In order to prove existence of the limits in (2.5) and (2.6), we need to show that for n € N,

L1, .., Ty € Z% and iy, ..., 4, € {0,1,2} chosen arbitrarily, the limit of

P(Ug’m(xl) — ila ceey Ug’m(ﬂﬂn) = 'Ln) (27)

exists as m tends to infinity. We fix n € N, z1,...,z, € Z% and i1,...,i, € {0,1,2} and define
Ag = {xg i =0}, Ay :={w} 1 i = 1} and Ay := {z} : iy, = 2}. We can assume that Ay, A; and Aq
are disjoint, since the limit in (2.7) would be zero if zx = z and iy, # i for some k, k' € {1,...,n}.

Using the inclusion-exclusion formula we get that

P(T](‘L)L’m|z40 = 0’ n03m|A1 =1, 7707m|A2 = 2)

- Z (_1)‘3‘ Z P(ng7m|A1UB1 =1, ng7m‘A2UBl =2).
BCA() Bl,BQ:B1UBQZB

Notice that we sum up over disjoint subsets B1, Bo C B. Hence it is enough to focus on the limit of
P(Ug’li =1, 7707m|A2 = 2)7 (28)
as m tends to infinity. Define A := A;UAs and note that

P (g™ a =1, mp™" 4, = 2)

=P(ny™(z) >0forallz € A)-P (g™ |a, =1, 0" 4, =2 | ™ (x) >0 forallz € A)  (2.9)

We focus on the factors in (2.9) separately. The limit of the first factor can be characterized easily.

- . d
Since p is a measure on {1,2}%" we know

lim P(n™(z) > 0 for all € A) = & (g e {0,112 (la= 1) :

m—0o0

where 7 is the upper invariant measure of the (single-type) contact process defined in (1.14). Hence

we focus on the second factor. Recall the definition of £ in (1.24). First of all note that
{&(x) =1for all z € A} C {n{" (x) > 0 for all x € A},

and

P(ny™(x) > 0 for all z € A) — P (§o(z) =1 for all z € A) < C|Ale™ " (2.10)

18



2.1. Tail bounds on coalescing events

by (1.17). Since on the other hand the FKG-inequality yields
P (™ (x) > 0 for all z € A) > P (&(z) = 1 for all 2 € A) > (P(Bo )",
we get that

dry <IP( |t (x) > 0 for all @ € A) P ( - |go(x) = 1 for all z € A) )

= (9([IP)(B(0,0))]_‘A||A|e_cm), as m tends to infinity,

by Lemma 3.2 proven below.
Therefore

P(nhy™|a, =1, 0" a, =2 | g™ () >0 for all z € A)
=P (Ug’m|A1 =1, "4, =2 ‘ &) =1forall z € A) + O([P(B(o,o))}_w|A\e‘cm)

= /P (n(%’m‘fh =1, 7707m

4y =2 &o(z) = 1for all € A) 1(d<) + O([B(Bio))] | Ale—™)

— /1{» (C(ijf)) =iforallze A;; i=1,2]&(x)=1forallz e A) (d¢) (2.11)
+ O([P(Bo,0)] [ Ale™™). (2.12)

By (2.2) of Proposition 2.1 this implies

lim P(nh"™|a, =1, nh™a, =2 | nf™ (@) > 0forallz € A) =0 (2.13)

m— 00

if Ay #0, Ay # 0 and d < 2. On the other hand if d < 2 and we assume without loss of generality
that Ay = 0, we get

P (ng’m|A1 =1, "4, =2 ‘ ny" (z) > 0 for all x € A)

=P (™4, = 1| &olx) =1 for all x € Ay) + O([P(Bo )] /| A1 ]e=™)

- /IF’ (g(x,g?) —1forall z € Ay | &(x) =1forall o € A1> u(d<) + O([P(Bio))] 11 Ar e o)
<P (\{X},? cze A} > 1] (x) =1forall € A1>

+ 3 P({XE  ze A} =y} | Gole) =1 forall w € Ay) p(C(y) = 1)

y€Z4
+ O([P(Bo,0)] M| Arfe™)
< a+P(|{X§,§> L ze A} > 1] &(x) = 1forall 2 € Al)

v <IP’ (y{x,g? ze A} =1]&() =1forall z € Al) - 1) o+ O([P(Bg )] 1| Are=om)
and hence

P (™ 4y = 1| mf™ () > 0 forall z € A;) — a

< 9P (’{X,(rf) Lz e Al}] > 1| &w)=1forall x e A1> + O([P(B(o.o)] 1114y [e=om).
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2. Brownian web scaling limit

The weak convergence in (2.5) of Proposition 2.5 then follows by (2.2) of Proposition 2.1. If d > 3
equation (2.11) yields

P(ny™|a, =1, 0", =2 | ™ (z) >0 for all z € A)
= /IP’ (g(X,g?) =iforalla € A;; i=1,2|&(z)=1forallz € A) u(de)
+ O([P(Bo,0)] [ Ale™)

SIS P({X},ﬁf):xeAl}zBl,{Xg%xeAg}:Bg\50(x)=1forauxeA)

B1CZ* Byczd
|B1|<|A1] [B2|<[Az|

(¢ € {1,217 1 ¢lp, = 1,¢] 3, = 2) + O([P(Byo )] | Ale™™)

-y X P({X},f):xeAl}:Bl,{X;f%xeAQ}:BQ\go(x):uorauxeA)

B1CZ% BoC(Z4\B1)
|B1|<|A1] |Bz|<|As

-l Pi(1 — )2l + O([P(Bo,0)] 1 Ale™)
—E (a\{xﬁmem}\ (1 — a)lxRwedz} g

{{Xf,?:x€A1}ﬂ{X7(f):a:€A2}:@} ‘ fo(x) =1forall x € A)

+ O([P(Bo,)] | Ale™™).
Since HXT(,f) T x € AZH on {&(z) =1 for all z € A} is non-increasing in m and

P({X(x):xeAl}ﬂ{Xéf):xEAQ}:Qforallm>0‘fo(x)zlforallazEA)>O

m

by Proposition 2.1, the last term converges by the monotone convergence theorem as m tends to infinity
and

lim P(nf"[a, =1, )4, =2 | 95" (x) > 0 for all z € A) > 0.

m— 00

2.1.3. Proof of Proposition 2.1, equation (2.2)
Proof of Proposition 2.1, equation (2.2) for d < 2

In order to prove (2.2), we focus on the difference between the random walks X@) and X@2). Notice

that by translation invariance of Pjyi,s and Pi,q we have
LX® = XOPjoimi( - [Bro0)) = LX) = XO[Prini( - | Bary o)),

LX) = XOPiyg( - |BYG0)) = LX) = X Bina( - [BLY, 10)

for every y € Z%. The same equalities hold true for X replaced by X. This means that only the initial

distance and not the exact configuration is important. Hence we define D) = X)) _ x (e

D,(fl_m) = XT(Lxl) — X,(lm). Remember that (ﬁﬁfl_m))n is a Markov chain with transition probability

and

function \Il;l(fglt or \Ilgig depending on whether the two random walks are defined on the same or on
independent copies of the oriented percolation cluster. Since only the difference between the random

walks will be considered, we omit the subscript (x; — z2) and indicate the initial distance as well as
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2.1. Tail bounds on coalescing events

the fact that we condition on (0,0) and (z1 — z2,0) to be contained in the backbone of the oriented
percolation cluster by the family {P} ;. },cze (vesp. {P§, },ez4) of probability measures, where x takes

the role of x1 — x9. This is done just to simplify notation within the proof of Proposition 2.1.

In dimension d = 1,2, we can prove that there exists a function s on Z¢ such that s(z) — oo as
diff

||z|| — oo, which is superharmonic for \Ijjom

. outside a finite subset of Z*. According to Proposition 5.3

in [Asm03], the existence of such a function implies recurrence for the Markov chain (ﬁk)kzo in the

joint case.
The key ingredient for the proof is the estimation on the total variation distance between \Ijjomt and
\I/md given in Lemma 1.14. By Lemma 1.14 we know that there exists C,c > 0 such that

Ul () = W) < 2 | Toind(@,0),) = Dinal(2,0), )|, < ceellel, (214)
for any x,y € Z®. This means that the error term between \Iljdoglt(m y) and \Il%]g (x,y) decays exponen-
tially in the initial distance between the two random walks.
With the help of (2.14), we are able to prove that in dimension d = 1

Z WAl (2, y)lyl” < |2|* = Cla]*™? 4 CemeV
< |z|* for all |x| > Kj. (2.15)

In dimension d = 2 let the covariance matrix of 131 in the independent case be given by

Coving <ﬁ1> = (52 :2> :

where |p| < 32, since Birkner et al. proved in [BCDG13] that the limit law is not concentrated on a

)

subspace. We can show that

YUl (e, y)log® (| Ayll) < log®(|Az]) for all ||| > Ka, (2.16)

joint
Y

where K> is a large constant, o € (0,1) and

1 1
A (VD VI ) 1)

V2@2-p)  \267p)

A detailed proof can be found in the appendix in section A.1. Notice that, inspired by the simple

random walk case, s(z) := |z|* is a natural candidate for a superharmonic function in the one-
dimensional setting and s(z) = log®(||z||) is a natural candidate for a superharmonic function in the

two-dimensional setting.
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2. Brownian web scaling limit

Remark 2.6. Let d=1. If

Z Gy — 1) |y|* < || for all > K, (2.18)

ind
yeZe

this means that (‘ﬁmh([(l)

a) is a supermartingale with respect to the filtration
n

F! = (FL)n = (0(Dpmym < n))n, (2.19)
where h(K1) is the first time the process (Dy,), enters the interval [— K1, K1].

Remark 2.7. Let d =2. If

> Wi, y) log® (| Ayll) < log® (|| Az]l) for all ||| > K, (2.20)

joint
Yy

this means that (logo‘ <HAﬁn/\h(K2)

) Y 1)) is a supermartingale with respect to the filtration
n
F? := (F2)n = (0(Dpym < n)), (2.21)

where h(K3) is the first time the process (lA?n)n enters the ball of radius K5 around zero.
Let C,Cs be constants such that

Cillzlly < [ Az]] < Cy [l (2.22)

and assume K> to be large enough such that C% < K5. Notice that above we truncated HAﬁn from

1

below to avoid difficulties. But since HAﬁn , < 1 implies HﬁnHz < & < K, this is no problem

because the process is stopped if HﬁnH < K.

Proof of Proposition 2.1, equation (2.2) for d > 2

The proof of (2.2) for d > 3 is not very difficult. By Theorem 2(a) in [GH02|, we already know that
IP’jomt(T(xl’xQ) < 00 | By, 29:0) > 0. Therefore it is left to prove that

meet

meet meet

Pjomt(T(zhz2) =0 | le’z%(]) = lim ij‘nt(T(zhzﬂ >n ‘ Bml,xQ;O) >e > 0.
n—->00

This can be done by using similar arguments as in the proof of Lemma 2.9 below. Since Lemma 2.9 is

more important for later use, we skip the proof at this place.

2.1.4. Proof of Proposition 2.1, equation (2.3)

In this section we focus our attention on “how fast” a collision event occurs. We will answer this
question by finding upper and lower bounds for the (annealed) probability that a coalescing event
happens after time n.

The structure of this section is as follows. At first we compute tails for the hitting times of a large

but finite interval around zero. Since two random walks on the cluster are comparable to independent
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2.1. Tail bounds on coalescing events

random walks if the distance between them is large, this is much easier than the computation for the
tails of hitting zero itself. At the end of the section we will prove that the hitting time of a large
but finite neighbourhood of zero has the same tail behaviour as the hitting time of zero itself. As in

[BCDGlB, Lemma 3.6] we introduce for » > 0 the following stopping times

h(r) := inf{k € Ng : |Dg| < r}, (2.23)
H(r) :=inf{k € Ng : |Dg| > r}, (2.24)

additionally, we define

Tineet = inf{k € Ny : | Dy| = 01,
Trneet == inf{k € Np: ‘Dk| = 0}.

Notice that 7, meet and Tiyeer do not need to coincide, since fmeet is the first time that the random walks
meet at simultaneous regeneration times. Making use of the fact that the simultaneous regeneration
times have exponential tail bounds (see Lemma 1.12), equation (2.3) of Proposition 2.1 holds true if
it holds true for Tiy,ees replaced by fmeet (see section A.1.4 in the appendix). Therefore it is enough to

focus on calculating tail bounds for fmeet.

Before proving equation (2.3) of Proposition 2.1 we prove the following two lemmas.

Lemma 2.8. Letd = 1. Consider two random walks defined on a joint oriented percolation cluster and
let ﬁn be the difference at their simultaneous regeneration times. There exist constants Cs, K, M > 0

such that for all xg > K

P20, (H(v/m) < h(K)) < C:;%) forall m>M and (2.25)
P (M) > m) < C:j%) for all m > M. (2.26)

Lemma 2.9. Let d = 1. Consider two random walks defined on a joint oriented percolation cluster
and let ﬁn be the difference at their simultaneous regeneration times. There exist constants Cy, K > 0

such that for all xy > K there exists M := M (xg) > 0 such that

P (W) < h(K) > T2 forall m > M and (2.27)
P () 2 m) = 0 forall m> M, (2.98)

—_ m
Proof of Lemma 2.8: The proof will be divided into five steps.

Step 1: We fix some constants K, L > 0. Furthermore, for j € N chosen arbitrarily we define
Tk (jenkss = nf{n >0: Dy > (j+ 1)K + L or D, < jK}, (2.29)

which is a stopping time with respect to the filtration defined in (2.19). Let b; := (j + 1)K + L and

a; := jK in order to shorten notation.
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2. Brownian web scaling limit

In the first step we will prove that there exist constants C5, M > 0 such that for all 7 € N and all
w0 € (K, (j + 1)K]

]Pmo(ﬁT > b) S 05

wjb; = 0 T for all L > M, (2.30)

if K is chosen large enough and L > M > K.

First of all note that by (2.14) and Lemma 1.12 there exists a constant ¢; > 0 such that for all z > K

(U4 (3 ) — O (3 )| < e % for all y € Z,

ind ind

IP)]zomt (Tlszm > %) ]P);:omt (Tszm g) < e 1Y for all y>x,

if K is chosen large enough. Furthermore, we assume K to be chosen so large that
log(x) < 57 for all z > 5

We will show that

fly) = /Oyl exp (e*qés - 1) ds

is a superharmonic function on (K, c0) with respect to w]omt

Although this can be done similarly
to the proof of (2.14) (see section A.1.1 in the appendix), we will give the main points at this place.
Notice that

. |yl Ceps
el < 5w = [ e (e 1) s <y

for all y € R. Hence

d d
Xl%ﬁxy v (2, )| f(y)

d d d d
< N U, y) v oyl Y e, y) — O (2, )1y
y:ly—z|<5 yily—z|>5
< Soeery ST (e > bl g pind(rpim > vl
yily—z[>3

3 4 4
2 _—cix c1y 2 _—cix
xr'e + 2 E e < =z%e + —e 4
¥y= 2 C1 ’

Y>35
where for the last inequality we made use of the fact that log(y) < §y. Similarly we get that

d mn sim — 4 -z
oo viayfy) < Y, PRI > |z29‘)\y|§ae oz

yily—z|>3 yily—z[>3
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2.1. Tail bounds on coalescing events

Furthermore,

SoovMa iy <Y Vil ) (fy) - f@) + f(2)

yily—z|<5 yily—z|<3

y=1
:L'2 c1-s C1 _cs
< —- sup exp(e 9 —1)-(——)6 5 + f(x)
8 SE[*%,% 9
A )
- T2 Th

where in the second line one needs to replace f(x + y) and f(z — y) by their Taylor expansion to see

that the third inequality holds true. Altogether we get

d d d d
Z \I’](Zﬁ;t 33 y < Z |\Ij]ozjzﬁ;t ‘T y \Iluz]?lt .’L‘ y + Z‘I’nﬁ I y )
< f( ) — @ _L%VL + 7x2 —C1T + ﬁeizlL
- T2e 2 c1
< f(z) forall z > K,

if K is chosen large enough. Since by previous calculations f (ﬁn AR( K)) is a non-negative supermartin-
gale (for the definition of h(K) see (2.23)), we conclude

@) =B |1 (Bo)] = B 1 (D, )
> f(b) Bt (Dray, 2 b5) + F(ag) - Py (Dr,,

@j J

f < aj)
E.;Egznt |:f(a-7) - f (DTav,b‘> ‘ DTa.j,b‘ S a]i| ]P);Egznt(DTa. b S 0/])

by =

77
> 1(05) Pl (Dra, o, 2 b5) + 1) - Plli(Dr, > 1)
Efgzm‘ |:‘D7—aj,bj - aj| } D‘ra.,b~ < (Ij]

2 f(b ) ]P);:ooznt (D’raj,b ) =+ f(a]) ]oznt(D’T’aj,bj S aJ) - C7
where C' > 0 can be chosen independently of j. This yields

f=z

0)—f(ag)+0<xo—aj+0< K+C
fo) = flaj) e t(bj—a;) ~ e K+ L)

]P)foomt <D7-aj,bj 2 b])
it xo € (JK, (j + 1) K] which implies (2.30). Additionally, we define
i = inf{n > 0:|Dy| > v/m or |D,| < K}. (2.31)
The fact that f <1A?n/\h( K)) is a non-negative supermartingale also implies that

and (2.25) follows.
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2. Brownian web scaling limit

Step 2: In the second step we will prove that if K is chosen large enough there exist constants Cg, M > 0
such that for all j € N

Ce
sup P int(Tik > m) < — forall m > M, (2.32)
ser K] vm
where
Tk = 1inf{n > 0: D, < jK}. (2.33)
We fix some z € (JK, (j + 1)K]NZ and define
~ 9 kL
M, = (Dn — :ro) S d(Dy), (2.34)
k=0
where
T ) 2 2
duo (1) 1= Ky [(Dl — x()) — (z — x) } (2.35)

~ 2
is the expected increment of ((Dn — x()) ) after one step. Notice that by (2.14) we have

n

day(&) = | (D1 = 0) = (&= o]
= Efpint [(Dl—x) —I-Q(ﬁl—x) (as—xg)}
—XM%' Y)?+0(e™) + 2(z — 20) Y VEL(y) - (y) + (& — 20)O(e™)

=62+ O0(e ) + (z — 20)O(e™®) > 0,

where 3, PET () - ()2 = Vargg(D1) =: 62. Since |(z — 20)| < K and z € (K, (j + 1)K] we can

ind\Y

choose K so large that for all j € N

~2
day () = 6| > =
2
for all z,z9 € (JK,(j +1)K|NZ. Since
{7a, 2 m} C {7ay, >m}U{Ds, , >bs}, (2.36)

we can prove (2.32) by finding suitable bounds on the probability of the events {7, > m} and
{lA)T > b;}. Note that ET

0 fointlTa; b;] < 0o. Furthermore,

~ 2 ~
Ejoint [(Dm.,b. - 930) | Dy, ,. 2> bj]

AN
= (bj — 20)* + Ejgy, {( - %‘O) — (bj = @0)* | Dr,.,, > b;}
= (bj - :UO E;E(?mt[ ( ) + 2 (DT b bj) (b] l’o) ‘ Eﬂz b > b]] < 00, (2 37)
>0 on {D bj >bj}
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2.1. Tail bounds on coalescing events

and

~ 2 ~
0 .
EjDint [(DTaj,bj - Qj0) ’ DTa.’b. < (l]:|

- 2 .
= (aj — $0)2 + Ef(?mt[ (aj — Draj,b]) +2 (aj - D, b,) (xo — aj) ‘ D;, , <uaj| < oc. (2.38)

VAR

>0 on {B"aj,bj <aj}

Since in (2.37) and (2.38) only differences between points inside the interval and the process occur, we
can find C > 0 such that for all j € N

~ 2 ~ ~
0 < Eff(?lnt[ (DTu.j,b - b.]) + 2 (DTaj,b~ - bj) (b] - :CO) ‘ DTaj,b > b.]:| < C’

770

J J
~ 2 ~
0 < Bl (4= Dr,,) +2(a5=Dr, ) (w0 —a;) | Dr < 5] <€,

and this holds uniformly in j5 € N. By the previous calculation we obtain

~ 2 g ~
0 = B[] = B3l 1,1 = B | (B, —0) | =Bt 30 (D)
k=0
< (b —@0)* - P*(Dy, , > b))+ (a; —w0)* - P*(Dr, , <ay)
~ 2 ~ ~ ~
+ E;Eoomt[ (DTaj,bj - b]) + 2 (‘DTaj,bj - b]) (b] - .’1}'0) | DTa]-,bj Z b.ji| ’ P‘?(())int (‘DTaJ b Z b])
~ 2 ~ ~
+ Ef(?lnt[ <a'.7 - DTaj,bj> + 2 (a] - DTaJ,bj> (.T}O - a’]) ‘ DTaj,bj S a]:| ’ ]P);:(())Znt (DTH. b; < a])

5- I
- §Ej;mt [Taj,bj}
0 [ T 0/ 1 o T
< (bj — mp)? - P *(Dr,, 0, = bj) + (a5 = 20)? - P °(Dr,., < ;) +C — §Ejgmt [Ta; ;] (2.39)

which yields

x 2 o () 20 (D
Ejz;)z'nt[Taj,bj] < 52 ((bj - 560)2 P O(DTajvbj 2 bj) + (aj - 330)2 P 0<DT@j’bj = aj) + C)
2(L + K)?-P* (D, , >b;)+ (K)?+C)
< 3’27 for all j € N.
o

Hence using the Markov inequality we conclude that

2((L+ K)?-P*(D,, , >b;)+(K)?+C)
ot~ forall j €N (2.40)
asm

P*

]oz’nt(Taj7bj = m) <

which implies (2.32) by (2.30) if L = /m.

Step 3: In the third step we will prove that there exist a constant C7 > 0 and € > 0 such that for all
jeN

Eloint [e’”j’(} >1-C7vVA (2.41)

for all x € (—o0, (j +1)K] and all X € (0,¢).

First we fix j € N. Note that (2.41) holds true trivially for « € (—oo, 7K]. Hence it is enough to focus
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2. Brownian web scaling limit

onz € (jK,(j+ 1)K]. For x € (K, (j + 1)K] chosen arbitrarily we define G,(m) := Pfomt(TjK >m)
in order to simplify notation. By (2.32) we know that for a € (M, o) chosen arbitrarily

Cée
sup Gylar) < — for all r € (££,00 (2.42)
e€ (K, (j+1)K] var (&00).

-1

Define o := a~!. If we multiply G, (ar) with the term e~*" for some A > 0 and integrate over r we

[e's) Mo 00
/ e N Gy(ar) dr = / e M dr +/ e Gy (ar) dr
0 0 Ma

1— 7)\Ma
< (e)\ + CG\F/ —dr

(1—ee)  Coval(})
X\ I

where I'( - ) is the I'-function. Furthermore, notice that

obtain

/ e " Gylar) dr = / e~ Q@) G (ar) dr = a G, (Aa), (2.43)
0 0

where @x is the Laplace transform of G,. Hence

_ ef)\Ma> N Cﬁ\/&r(%)
A VA

foralla™! =a > M, all z € (K, (j +1)K] and X > 0 chosen arbitrarily. If we evaluate this inequality

aG, (Aa) < a

(2.44)

at A = «, we obtain

R _ _—Mo? C I‘l
G, (o2) < L) Colla)

_ ~ 1-E70 4 le” K]
Taking into account that Gz(a) = —**——

«

(07 «

we conclude that

N e—MaQ)

E{L’ [ —CZQTjK:I S (]‘

]omt

C. (L.
o + Cps (2) o
foralla =a ! < M~!andall x € (K, (j + 1)K], which implies (2.41).

Step 4: In the fourth step we will prove that there exist € > 0 and a constant Cg > 0 such that for all
x> K

Ex

joint

[ m} >1—Cg-z-VA forall Ae(0,e). (2.45)
We fix some = > K and choose j € N such that z € (K, (j + 1)K]. Hence by (2.41)

Eaj 7/\TK E ]OZnt 7)\7‘2;(:[]_ R /\(TKfTQK)]

]omt {D ok y}

—>\T AT —T

Z jomt Kﬂ{DTQK_y} ]omt[ (ric=72xc) | TQK]]
—)\ -

Z jointl Ly il ]

Z ‘joint _ATQKH{DTQK }(1 - 07\/X)]7
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2.1. Tail bounds on coalescing events

if A < e, where F! := (F1), := (6(Dp, m < n))p (see (2.19)). A repetition of this argument leads to

Efoint[e_/\w] > (11— C7\F/\)] > (1- C?\F/\)? >1- %x A,
where the last inequality holds true by Bernoulli’s inequality, if A < % A€ small enough. Hence (2.45)
7

follows.

Step 5: Since every time the interval [—K, K] is crossed by the process (D,), we have a positive
probability to regenerate inside the interval. The number of times that the process (ﬁn)n jumps
over the interval [— K, K] before it finally lands inside can be bounded by a geometrically distributed

random variable. Hence there exists a constant Cg > 0 and € > 0 such that

B2, le ™) >1 - Co-2- VA forall e (0,¢) (2.46)

'joint

for all z > K. Note that a detailed proof of a similar statement is given at (2.52) below. We skip the
proof at this place. Out of (2.46) we conclude that

(1—e P2, (h(K)>m)<EZ, [1—e MK

joint joint

which for A = m~! yields

Cy- -z
Pioint(R(K) = m) < m-

Hence we conclude that for all x > K

Cgm%
Jm

r imt(R(K) >m) < for all m > M, (2.47)

joint

where C3 := (1_(’;9_1) and M :=¢ 1.

O

Proof of Lemma 2.9: Let K be a large constant. We choose xg > K and assume that m > M for
some M = M (xg) > 0. We prove (2.27) first. The idea is to show that

1

P?j{gt(H(Qj“K) < WK)) =~ 3

Hence using the Markov property we get

log(mK %) 4 o,
2log(2) log(mK %)
K ~ 21 K G+1 N 1 2Moe(m C- K
Jj=0

Because of technical reasons we assume that 2°K > z9. We treat the case 2°K < z( at the end of
the proof. Notice that the event, that distance 2°K is reached before the distance between the two
random walks becomes less than K, has positive probability and can be bounded away from zero. In
order to get a suitable bound for this event which is independent of xy we construct “corridors” as
described in the proof of [BCDG137 proof of Lemma 3.8] and force the random walks to walk along

these corridors. The probability for the random walks to increase their distance by at least 1 and
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2. Brownian web scaling limit

regenerate simultaneously within the next step can be bounded from below by some d; > 0. Hence

using the Markov property at simultaneous regeneration times we get that

x 5 5
PSo(H(Vm) < h(K)) > (61)*" - P, (H (Vm) < h(K)),
where 01 is independent of x.

log(mK—2)
2log(2)

“independent” law holds true by the coupling argument given in Lemma 1.14:

Now we choose j € {5, } N Z arbitrarily. The following estimation between the “joint” and

Bl m(H (27 K) < h(jK) > BN (H(2H K) < h(jK) A (277 K)?)

joint joint
> PYE(H(2HTK) < h(GK) A (27T K)3) — (27 K)3e K.
In the independent case the process (ﬁn)n is a sum of independent increments (with zero mean) and
therefore a martingale. We define 7; := inf{k > 1: |Di| < jK or |Dy| > 271K}, Using the martingale

property and the fact that the simultaneous regeneration times have exponential tail bounds we get

that

i KR 1w KR YK
2K = Emd [DT]'] - Emd [DTj ]l{|ﬁ7—j—]57—j71|<jK}] +Emd [DTj ]l{|ﬁfj_ﬁfj*1|2jK}]
<K - (1—PLE(HQMK) < h(jK)))

+ (2K + jK) - PEE(H(2HK) < h(jK))

nd
+ CY T Ke 9K,

where C27 1 Ke~%K < K if K is large. Therefore we get

J+1
2j+1 "

LK (H@VK) < h(K)) > 5 -

The following estimation looks strange but will give us good control over all the error terms that occur,

see (2.48). Because j > 5, we have

1 >2j—5(j—1) 2j—5
2 2+l = 2jtl _5; 2j+1 °

Since
PLE(H(2MK) < h(GK) A (271 K)%) > PLE(H (2 K) < h(jK))
_ ZjK(H(QjJrlK) > (2j+1K)3)’

ind

we need to find bounds for the second term on the right side. A simple application of Donsker’s

invariance principle yields

max P?(H(27TK) > (27T K)?) < (1 —¢),

z|z|<20+1K "

for some € € (0, 1) if K is chosen large enough. Hence making use of the Markov property, we get that

PLE(H2HK) > (2771K)%) < (1 - )P K.
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2.1. Tail bounds on coalescing events

Putting all the error terms together we conclude

j ; . 27 —5(j — 1)
Plom(H@E) < h(K)) 2 —5rr—=,

if K is chosen sufficiently large. If we consider the product over these factors we obtain

log(mK —2)
2log 2 -1
Phmi(H(vVm) < h(K)) > exp Y log(2 —5(j — 1)) — log(2/ ! — 55)
J=5
xo_

>C- (2.48)

/m 9
it m> M and M = M (x) is chosen sufficiently large.
The invariance principle yields that after having reached distance ~ /m, the probability that the
distance between the two random walks remains greater than %\/ m during the next m steps is bounded

from below by a small constant d2 > 0. Therefore

Q

pRo 0

joint

(h(K) > m) >

3

If 22K <z, we define K/ := [2_5130] > K and hence

Pro (H(V/m) < h(K)) > (61) X KPLE (H (vm) < h(K")).

Adapting the proof of the previous case we get that

25K, i)

P2 K (H (ey/m) < h(K")) > C - >C- NG

joint

3

as before.
O
Now that we finished the proof of Lemma 2.8 and Lemma 2.9, we turn to the proof of Proposition 2.1,

equation (2.3):

Proof of Proposition 2.1, equation (2.3):

Remember that 7, meet Was defined as the time (ﬁn)n hits zero. As mentioned at the beginning of the

section it is enough to prove that there exist constants C;, M > 0 such that for all zg > 0

C- i)
vm

Some comments on the lower bound can be found in section A.1.4 in the appendix. Assume for the

po

joint

(Toneet > m) < for all m > M. (2.49)

moment that there exist C',e > 0 such that

1 — E%. [e=meet] < 02 v/X - 1 (2.50)

'joint
for all A € (0,¢). By the simple estimation

~

(Tmeet > m) < EZ°

—\T,
]oznt[l —e meelz]’

(1— e )P

joint
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2. Brownian web scaling limit

we conclude that
C . \A - X0

pro _—
(1 —em)’

joint

(T\meet > m) <

which for A = L implies (2.49).
Hence it is enough to prove (2.50). We define the following stopping times
T =0,

T = inf{n > 70 |Di| < K},

U = inf{n > 7", | D] > K}

out in out

Tk Tkt1 Tk+1
We define
pr= min Pl > K) >0
and
ppi=  min P4 it (Dimg = 0) > 0,

where my = mo(K) is suitably chosen. Recognize that (Tk =T T — T +1,D751t1 > is a
k>0

Markov process with state space Ng x Ny x Z and adapted to the filtration

(j}n)n = (U <ﬁ7;5'f1a k< TL))n, (2.51)
where

Yk

. ‘ ~ _ ~ _ y
P Ko < ];L;C'L_l — 'T]gu 2 m ‘ DT{)ut =Yl ... _DT]?ut = yk) P k ﬁ

joint joint

(h(K)>m) <Cs-
for all m > M (see (2.26)) and

K t ‘ D D -
pko (71311 Tlﬁ-l > mo-m | DTlout =Y ... DT;Cmt = yk> < (1 —pl)m :

joint

We assume without loss of generality that the process (D), always exits the interval [~ K, K] to the
positive side, since \Iffoiglt(—x, —y) = \If;lgﬁt(:z: y) for all z,y > 0. For the first time leaving the interval
[— K, K] the following bound holds true:

Let the initial difference between the random walks be given by y € [~K, K], hence 7§% = ri* = 0

and

[out] >1—Ci0- A,

'‘joint

E]yomt [ _A( - ”L)} E?omt |: _ATfUt] > 1- )‘ Ey
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2.1. Tail bounds on coalescing events

'] < o0, since the time inside the interval [~ K, K] has exponential

where Co := maxyc[_ i k] E]omt [
tail bounds. Choose z > K. By (2.46) there exists € > 0 such that for the whole period of entering
and exiting the interval [— K, K| we get

x _)\( out 7_out x _)\Tout
IEjomt [ ) IE]omt !

. M —\ zn+( out Tfn) . N

- Z Z joint | € ( ) ]l{Tfnzm,Dm:y}
—K m=1 B

_ [ —)xm —\(rout —gin n N N

- Z Z 'Joint ]l{q-m—m Dp =y} ]omt [ (i ! ) ‘ 1 7D1a 7Dm]:|
—K m=1 B

_ [ —)xm ~ Y —Arout

- z Z 'Joint H{T}n:m,Dm:y}E]‘omt [e ! :H
—K m=1 B

> IE:;vomt [ _Aﬁm] (1 - 010)‘)

> <1 - Cgﬁ . .73) (1 - C10>\)

Z 1—09\/X'1‘—010)\
for all A € (0,¢) and all x > K. Next, we split up the whole path up to the first hitting time of zero
into pieces inside and outside the interval [—K, K|. Let zyp > K be fixed. Let N be a geometrically
distributed random variable with success probability ps, which is independent of everything else. N

gives us an upper bound on the number of times the random walks enters the interval [— K, K] before

it hits zero. We get that

N
B9, le~ ] > EFo exp< A (=) + (- ni"))] (2.52)
k=1
OO .
Z (1= p2)" " Ejginy exp( AZ ") (- m)]
where
jomt eXp( AZ Tk _Tlgutl (TISUt len)>]

_ T AR = ) (g =)
- 2 Z E]Olnt ¢ 11{DT0ut :znfl} "€
Tp_1=14+K n—1
o) -
_ T P, 7o [ AT g ) (g i) | F
=2 > BN e Lp oy Bl e : [P
Tpn_1=1+K - n—1
00 -
o 0 7)\7_071‘? . . Tp—1 7ATout
=2 30 ER|e B [ H
Tp_1=1+K - n—l1
0o -
o —ATout X - o X .
22 Z E]omt e nt ]l{D_rout =Tp_1} (1 09\5 Tn—1 ClOA):|
Tp_1=1+K - n-1
_ out
= By [ - (1= Cov/A - Dygue — Cro)|
_)\ out _)\ out
= Bl [ = By [ -(Cgf Dgus +Crod) |
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2. Brownian web scaling limit

For the definition of (F,,), see (2.51). We claim that there exists a constant C' > 0 such that

o [ —W“’i} VA (2.53)

'joint

[ ATt (Cg\/X‘ 13731551 + 010)\” < Ely;

'joint

for all A € (0,e). If we assume this claim to be true, we get by a repetition of the arguments above
that

o= 372") > (1 _ (Jﬁ)n >1 - CnvA,
and hence

EZ°.

'joint

[ _)\Tmegt] _ ZPQ(l _p2)n—1(1 — 'I’LC\/X) Z 1-— 172\/X7
n=1

which implies (2.50) and therefore (2.3). So all that is left to do is to prove (2.53). For ease of notation

we define the following event
An(k,y) = {7" | <k, |D,| < K for all 7" | <r <k, Dj_1 =y} € (Do, ..., Di_1),

which is the event that the process (D), visits the interval [—K, K] for the (n — 1)-th time before
time k, that it stays within the interval from 7" ; to time £ — 1 and that at time k£ — 1 the process is
at y € [~ K, K]. Hence

20 [ —ATRM (Cgf Do +010A)}

'joint
S Z ZE;Eoomt L (k)L {|Dy|>K}€ ’ <C9\F>"DT;{T1 +010)‘)]
ly|<K keN ]
< Z ZE;C(;)mt ILA (k,y 7)\]6 E;C(;)mt [R{D >K} (Cg\& ﬁTﬁqitl + ClOA) ‘ BO’ ”"ﬁk_lﬂ
ly|<K keN ]
T —)\k
= Z ZE]gznt 11An(ky Ejom [H{D >K} (Cgf D put +Clo)\>“
ly|<K keN
< Z ZE%)mt ﬂAn(k7y _)\k] < )\ T+ 010)\) ]omt( .17)
ly|<K keN )
T - d
VNS D B [ﬂAnw)e ”“} DI HMORIE
ly|<K keN >K

< (CV\) -E™.

7)\7.out1
'joint [ " ] ’

where the fifth inequality holds true since

0< Z (Cy -z + Cho) ‘I’%gn(ya ) < 00,
>K

diff

which together with the exponential tail bounds for ¥}, (compare Lemma 1.12 and Lemma 1.14)

implies the existence of a constant C' > 0, such that

Z (09\5\ x+ ClOA) ]oznt(y’ ) < CVA Z \I,]dozgzt (y,x

z>K z>K
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2.2. Characterization of the Brownian web

2.2. Characterization of the Brownian web

In this section give a short introduction into the topic of the Brownian web and formulate the conver-
gence theorem precisely. The characterization of the Brownian web given below, can also be found for
example in [FINRO4] or [Sun05].

We define a metric on R? by

tanh(z;) tanh(zo)
1+ [t 1+ [to

p((ﬂ?l, tl), (1,‘2, tg)) = | tanh(tl) — tanh(t2)| V

Let R? be the completion of R? under p. We can think of R? as the image of [—o0, 00] X [—o0, 00]

under the mapping

tanh(x)
1+ [t

(x,t) = (P(x,t),V(t)) := < ,tanh(t)) € R2.

This means that R? can be identified with the square [—1,1] x [~1,1] where the line [~1,1] x 1 and
the line [—1, 1] x —1 are squeezed to two single points which will be denoted by (*,00) and (%, —c0).

We define II to be the set of functions f : [0, 00] — [—00, 0] with “starting time” o € [—o0, 0], such
that the mapping t — (f(o V t),t) from (R,|-|) to (R2,p) is continuous. We consider the elements
in I as a tuple of the function f and its starting time o. If we identify the elements in Il with their

paths (f(o Vt),t)ier in R?, the set I together with the metric

N ~ tanh(o’ ‘1 tanh(f(t\/a))_tanh(g(t\/a’))
0(£,0).(9:0) 5= [1anblo) — (o] v sup | L e

)

becomes a complete separable metric space. Let H be the set of compact subsets of (II,d). Together

with the Hausdorfl metric

dH(K17K2) ‘= Sup inf d((f7 U),(Q,OJ)) \ sup inf d((f> 0)7(970/))7
(f,0)eK, (9,0")EK (g,0")€K, (f0)€K1

‘H becomes a complete separable metric space. Let By be the Borel o-algebra associated with the

metric dy. We can characterize the Brownian web (BW) as follows:

Definition 2.10. (Brownian web) The Brownian web is a (H, By )-valued random variable W, de-
fined on a probability space (£2,.4, P), whose distribution is uniquely determined by the following

properties:

(i) For any deterministic point (z,t) € R?, there is almost surely a unique path W& starting from

(z,1).

(ii) For any deterministic z1, ..., 2z, € R?, the joint distribution of W) W zk) ig that of coalescing

Brownian motions (with unit diffusion constant).

(iii) For any deterministic, countable dense subset D of R2, almost surely, W is the closure of
(W) . 2 € D} in (11, d).
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2. Brownian web scaling limit

2.3. Verification of convergence criteria

Now we give a precise definition of the system of coalescing random walks starting from each point
contained in the oriented percolation cluster, which we expect to converge to the Brownian web.
Remember that as said at the beginning of this chapter, the space dimension d equals one.

Let C C Z x Z be the set of all space-time points connected to infinity, as defined in (1.25). If a point
z = (x,n) € Z x Zis in C let 7% be the linearly interpolated path of the random walk X () starting
from z defined in (1.49). If a point z € Z x Z is not in C, we choose the next point left to z that is
connected to infinity and define 7% as the linearly interpolated copy of the random walk path starting

there. In particular, if z = (x,n) ¢ C we define
c((z,n)) == max{y < z: (y,n) € C} and (7*(t))¢>n := (T (1)) (2.54)

We formulate our result in a similar way Sarkar and Sun did in [SS13]. Let I' be the collection of all
paths I' := {n* € Z x Z} = {n* : z € C}. Since all paths in C are equicontinuous the closure of T',

which we also denote by T, is a random variable taking values in (H, By).

There will be situations in which we need to consider the collection of the piecewise constant paths
instead of the linearly interpolated ones. We denote the piecewise constant paths by x® and the

collection of these paths by K :={k*: 2 € Z x Z} = {k*: z € C}.

In order to formulate the convergence theorem precisely we define
Sbﬁ = (Sl},é’ Sl?,(?) : (Rg,d) — (Rzﬂd)v

where

(22,6%),  if (z,t) € R?,

Sp5(w,t) := (Sp5(w,1), Sps(t) 1= Q (oo, 6%t), if (2,t) = (£oo,1),t € R,

(*, +00), if (z,t) = (%, £00).
In the literature, the mapping S s is called the diffusive scaling map. The mapping Sj 5 can be extended
to (I1, d), where S 5((m, o)) is the path whose graph equals the image of (7(t),).e[,0c] under Sps. If
K is a subset of II we define Sy s K := {Sp5((m,t)) : (7,t) € K}. For K € H we have Sy sK € H.
Theorem 2.11. The sequence of (H, By )-valued random variables (S, sT)s, where

E[Y{ o
o? = IE[[ 1]} (compare [BCDG13, Remark 1.2]),
T1

converges in distribution to the Brownian web.
pts := L(SysT|P) - LOW|P) =: p, for 6 — 0. (2.55)

Notation 2.12. First we introduce a little more notation which will be needed to formulate Sun’s
convergence criteria. Most of the ideas Sun used to verify the convergence criteria for his model are

adaptable to our case. Therefore the work done in this chapter is very similar to the work done by
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2.3. Verification of convergence criteria

Sun in [Sun05].

We define Apr = [-L,L] x [-T,T] C R?. For some xo,ty € R and u,t > 0 let R(zo,to,u,t) be
the rectangle [zg — u, zo + u] X [to,to + t] C R? and define Ay (xo,to) to be the event that K € H
contains a path that touches both the rectangle R(z,to,u,t) and the left or right boundary of the
bigger rectangle R(zo, to, 20u, 2t), see Figure 2.1 below.

For a,b,ty,t € R,a < b,0 < t and K € H we define the number of distinct points in R x {¢g + ¢} which
are touched by some path in K € H that also touches [a,b] x {to} by

77K(t07 tv a, b) =
#{y € R:3x € [a,b] and a path in K which touches both (z,ty) and (y,to+t)}.

If X is a (H,By)-valued random variable, we define X*  to be the subset of paths in X which start
before or at time s. We restrict the paths in X* to [t,00] and define X'* T as the collection of these
restricted paths. Note that X* "7 is also an (H, By )-valued random variable. If s = ¢, we will simply

write X7,

Sun shows [Sun05, Theorem 1.3.2, Lemma 3.4.1| that a family {X,},, of (#, By)-valued random vari-
ables with distribution {u,} converges in distribution to the standard Brownian web W, if it satisfies

the following conditions:

(I;) There exist single path valued random variables (97(«3’) € X, fory € R?, satisfying: For D a
deterministic countable dense subset of R?, for any deterministic 21, ..., 2z, € D, 97(121), ...,9,(12'”)
converge jointly in distribution to coalescing Brownian motions (with unit diffusion constant)

starting from z1, ..., 2, as n tends to infinity.
(Ty) For every u,L,T € (0,00)

g(t,u; L, T) =t limsup  sup pin (At u(mo,t0)) — 0 as t — 0T,

n——>00 (xg,to)EAL,T

which is a sufficient condition for the family {X,}, to be tight.
(B}) Forall 3> 0

limsup sup sup pn,({K € H :ni(to,t;a —e,a+¢) > 1}) — 0ase — 07.
n—>o0 t>f tg,a€R

(E}) Fix tg € R. If Z;, is any subsequential limit of {Xfla tn, defined on some probability space
(Q,A, P), then for all t,a,b € R, with t > 0 and a < b,

b—a
N

Remark 2.13. Instead of X, we usually write X5 to denote the (#,By)-valued random variable

Ep[nz,, (to, t;a,b)] < Ep[nw(to, t;a,b)] =

Sy (compare (2.55)). If we want to consider the weak limit of (Xs)so along a certain subsequence
(0n)n, where 6, — 0 as n — oo, we denote the random variables S, 5, I' by &5, . The probability

measure P o (S, 5, ')~ on (H, By) is denoted by us, .

37



2. Brownian web scaling limit

Checking condition (/)

First of all let D be a dense countable subset of R? and choose 1 = (21,%1), ..., Ym = (Tm,tm) € D.
Define ys; := (Z;,4;) := (|ziod 1], [t:672]) and let (x},t5) denote the function in (II,d) whose graph
equals the image of the graph of (Tr(y&i),fi) under S, 5. In order to shorten notation, we will suppress

the starting time in the following calculations.

Step 1: The first thing to show is that for every i € {1,...,m} the linearly interpolated and diffusively
rescaled random walk ﬂg, converges weakly under P to a Brownian motion starting from y;. Using
[B(jDGlS7 Theorem 1.1, Remark 1.5] we know that for (z,n) € Z x Z the diffusively rescaled random
walk wéx’n) converges weakly under P( - [B(, ,)) to a Brownian motion, where By, ) is the event that
(z,n) is connected to infinity. Define G, ,,) to be the event that the quenched functional central limit
theorem holds for a path starting in (z,n). From [BCDG13, Theorem 1.1, Theorem 1.4] we get that

P(G (20| Bz,n)) = 1, which means that P((G ;)¢ N B(gn)) = 0. Define

G = ﬂ Gan) U (B = U (Glan)) N Bz
(z,n)€Z? (z,n)€Z?
Note that P(G) = 1 since the complement is a countable union of null sets. Hence up to a P-null set
either (z,n) € Z x Z is not connected to infinity or the functional central limit theorem holds in (x,n).
Keeping this in mind, the only thing left to do in order to prove the claim of step 1, is to show that

c )0,
(y(sn 71) n — Jz‘i,
o n—00

in probability, for any (6,), with §, | 0, where ¢((z,n)) was defined in (2.54). We fix some null
sequence (0 )n. According to [Dur84, Section 10] we know that there exist K, C > 0 such that

P (|z — c((z,m))] > Klog(1/6,)) < C32 for all (x,m) € Z x Z, (2.56)

where {|z—c((z,m))| > K} is the event that the next point left to =, which is contained in the oriented
percolation cluster, is more than distance K apart from z. Or, said differently, (2.56) is an estimate

on the probability of holes of order ~ log(1/d,) to occur. Hence

"

from which the desired convergence follows.

> 5) =P <|x¢o’5;1 — c(y(;mi)‘ > z;a) — 0, asn— oo,
n

C(yén,i)‘sn
e

Step 2: Before formulating the claim we want to prove in step 2, we require a little more notation.
Consider the tuple (7}, ...,77") (the starting time is suppressed) as a random variable on the product

space (I, d*™), where

dm [((fl,a'l); ) (me Um)) ) ((917 Ui)"'v (gm,o';n))] = max d ((fzv Ui)? (gi,Ug)) :

1<i<m

Denote by II the space of cadlag paths and define

d((f,0),(g,0") = |o =o'l v ig}g\f(t Vo) —g(tVa)l.
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2.3. Verification of convergence criteria

The metric d*™ on the product space I is defined analogously. Next we will define two coalescing
rules, which can be considered as mappings from (ﬁm, d*™) to (ﬁm, J*m).

The first coalescing rule Iy, is defined as follows:

Let ((f1,t1); -, (fmstm)) be an element of II'". Define T as the first time that the paths fis £

coincide or change their relative order after time t; V ¢;
T7 w=mf{t > t; iy« (filts Vi) = fi(ti V1)) (fit) = f5(t) < 0}

Start with the equivalence relation i ~ i, i ¢ j for all i # j on {1,...,m}. Define Iy, on
((f17t1)7 Sz (fmu tm)) by

To:= min T2 with min{) = oo,
1<i,j<m,ik]

and
fi(t), ift<7'a,
La(fi(t)) =
fz*(t)y iftZTon
where * = min{j|(j ~ i) or (j % i and T’ = 7,)}. Enhance the equivalence relation by i ~ i*. Iter-
ating this procedure, we get the desired structure of coalescing random walks. We label the successive

times 7, by 7., ..., 7%, where k € 1,...,m is chosen such that 7% = oo.

The second coalescing rule I'g is defined very similarly, but TE s replaced by
Ty =inf{t > t; Vt; : fi(t) = f;(t)},

the time when two paths coincide. In order to simplify notation we add subscripts « or 8 to (fi, ..., fm)
it I'y or I'g is applied to it.

Let mg denote the piecewise constant cadlag versions of 7r§. The claim of step 2 is that for all ¢ > 0
P (A [(K5 s s b)) > (Ks s - Kig) ] =€) — 0, (2.57)

as d J 0.
Notice that d((f1,t1), (f2,t2)) < d((f1,t1), (f2,t2)) for all (f1,t1), (f2,t2) € II, since tanh(-) is Lipschitz

continuous with Lipschitz constant one. Hence, in order to prove (2.57), it is enough to show that

B (47 (6 s s w70 (L g 6T0)] = 52 ) — 0, (2.58)

as 6 . 0, where k! denotes the piecewise constant cadlag version of 773 inthecase 6 =1. If 6 =1 we
sometimes denote kj by x’. We prove the claim by induction over m. Let m = 2. Since mia = K1 5= Kt

we get that
A (K100 F1.a) » (K15 K1,5) | = dlit s 1 ]
In Proposition 2.1 (see also Lemma A.1 and discussion there) we proved that two random walks on

a joint oriented percolation cluster coalesce almost surely. Choose & > 0 arbitrarily and let N, K be

large enough such that P(Ta? > N) < %/ and

/

IP) T(Ivn)v(z'i_lﬂn) > K < € X
<n,|:cr£132}i;<N 22N + 1)(N 1 1)
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2. Brownian web scaling limit

Furthermore, choose § such that ¢ > 2K. We get that

P (d_(/ﬁ%a, n%ﬁ) > %)

g €
<5+ E P sup K@M (5) — K@ (5)| > —0, K2(TH?) =2, TI? =n
2 . (2,n),(2+1,1) 0
7ICB‘,TL§N S<Tmeet
e ¢
<4< 2.59
Sy 259

where the first inequality follows from the fact that when two paths cross, they can miss each other
by at most “one step”. Since ¢’ > 0 is chosen arbitrarily, the statement in (2.57) is proved for the case
m = 2.

Now let m > 2. There are two possibilities for the event in (2.58) to occur.

The first possibility is that a “wrong (a—)coalescing event” occurs, which means that for some k and
¢t < j a path ng, l < 1 coalesces or changes its relative order with Hf; after time Tgfa = Té’i and
before time Tg”é, where there is no need for ﬁf; and mg to coalesce “soon”, since their paths never
crossed. Let us consider this case. First notice that (m},...,7§") converges weakly in (II"*,d*™) to
m independent Brownian motions (B!, ..., B™) starting from (y1, ..., ym) by [BCDGB, Theorem 1.3,
Remark 1.5, Remark 3.11| and step 1. Hence Skorohod’s representation theorem yields that we can

choose a joint probability space on which

am [(7’[’%, ...,ﬂ'gl) , (Bl, ...,Bm)] — 0 almost surely, asd — 0. (2.60)
Since ”?5 is the piecewise constant cadlag version of 7rf;, we know that also

am [(H};, ...,&g”) , (Bl, ...,Bm)] — 0 almost surely, asd — 0. (2.61)

We denote the crossing and coalescing times of (i, ..., £5*) by {T57 }1<ij<m. Since {Ty7 }1<ij<m are

continuous mappings from (IT", d*™) to R we get that
Tg’i — 7% almost surely, as d — 0, (2.62)

where 797 is the first time that the paths of B; and Bj cross. Since all these times are distinct a. s.

and hence
|T(§’fx - Tgi| >0 almost surely, asd — 0, (2.63)
whereas
sup |T47 —T4’| — 0 in probability, (2.64)
1<i<j<m

by arguments similar to the ones we used to prove (2.59). Hence the probability of a “wrong”
(a—)coalescing event to occur tends to 0.

The second possibility for the event in (2.58) to occur is that there is “too much” time between the
crossing and the coalescence of two paths, without any other interactions with additional paths. “Too
much” time means there is a positive probability that two random walks need more than ~ §~ 22

steps to coalesce after their paths crossed, for some € > 0. Therefore the random walks have positive
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2.3. Verification of convergence criteria

probability to reach distance 6~'e before they finally coincide. According to the case m = 2 the

probability of this event to occur tends to zero as § tends to zero. This proves (2.58) for m > 2.

Step 3: Verification of (I;)

This step is just putting together the previous steps:

Since (Iiéa, ...y Ky, ) converges in distribution to Brownian motions (BL, ..., B™) starting from y1, ..., Ym
by step 1 and the distance between ((/féa, Y51)s s (/{{fa, Ysm)) and (m}w, ey /if{fﬁ) converges to zero in
probability by step 2, we get that (Iﬁ}%, o s ngfﬂ) and therefore (77(%7 oo 71(%) converges in distribution
to (BL,...,B™).

Checking condition (77)

Let Azfu(xo,to) be the event that K € H contains a path touching both R(xq,to,u,t) and the right
boundary of the bigger rectangle R(zo,to,20u,2t). Similarly, we define A4, (xo,%) as the event that
the path hits the left boundary of the bigger rectangle. If a variable is diffusively scaled we will add
“~7 to it, where t = 672 if ¢ is a time variable and & = oxd~! if x is a space-variable. In order to
verify condition (77) it is enough to show that for every u € (0, 00)

t~Him sup ,ul(A;ﬁ(O, 0)) — 0astlO0, (T7h)
6—0 ’

where in comparison to condition (77) we omitted the supremum because of the spatial invariance of

p1 :=Po (S,1T)~. Condition (T}) is defined analogously with the event AT replaced by A~. It is

enough to show (7;") since condition (77" ) can be verified similarly and (7}) is true if condition (7}")

and (77 ) hold, since Az ;(wo,%0) = Aga(mo,to) U Aga(xo,to)_

We will show that for every u > 0 fixed, limsup ,ul(Atfﬁ(0,0)) is in o(t). Let w > 0 and de-
0—0 ’

fine x5 = [3u],225 := [84],x35 := |13t and x4s := |18u]. We are interested in the paths

rtis = (@80 §=1 2 3 4.

We denote by B; the event that 7% stays within distance @ from ;s up to time 2t. For a fixed

(z,m) € R(i,t) := R(0,0,1,%) denote the times (stopping times) when the random walker 7(®™) first

exceeds 5u, 104, 15a and 20a by Tl(x’m), Tz(z’m), Téx’m) and T£x7m). Furthermore, define Téx’m) =0 and
Téz’m) = 2. Denote by Cj(x,m) the event that 7(*™) does not coalesce with 7%:5 before time 2f. We

assume that ¢ € Z, if not we replace ¢ by [t~| We estimate the probability in (7}") in the following way

0} (Agﬂ(O,U)) < <O Bf) (%)

i=1

4 4
+m (B, U (ﬂ C’,-(w,m)) n{r™™ <2i | . (%)
=1

(x,m)ER(G,) \i=1

We estimate the terms (%) and (#x*) separately. First note that

4
1 (U Bf) < m(BY) + pa(B3) + pa(Bg) + pa (B),
i=1
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2. Brownian web scaling limit

2t
i ' R(1, 1)
0: - 211 3 412 711 S8u 911 E E IQfL 13u 14111 E E 17& 18u 1912
Figure 2.1.: Tllustration of the event A;fu(xo, to)-
and that

’LL2
lim p1(BY) = P | sup |Bs| >u | <4e 2t co(t)ast |0,
610 s€[0,¢]

where B is a standard Brownian motion on a probability space (£2, 4, P). The second term (k%) can

be estimated by

4 4
(k)< D> m (ﬂBz-,ﬂcz«(x,m),{ff’m’<2£}>.

r€[~a,a)NZ i=1 =1
me|0,E]NZ
From now on we come back to the underlying Markovian structure of the random walks X (*™) and

X@is0).5 = 1. .. 4 and focus on their simultaneous regeneration times. Note that the estimates in
Lemma 1.12 and Lemma 1.14 hold true for any finite number of random walks. We fix « € [—a,a]|NZ
and m € [0,f] N Z. We denote by 6; the first regeneration time that r@m) (n) — 7@o)(n) > 0.
Recognize that on the event in (%) we have 6; < 2{. Furthermore, let B; be the event that (i) stays
within distance @ of x;5 at simultaneous regeneration times up to time 2t and denote by @(x,m)
the event that 7(*™) does not coincide with 7(#i4) at simultaneous regeneration times before time
2t. In analogy to the previous notation let %i(m’m) be the first time that a simultaneous regeneration

event occurs after the random walk path 7(®™) exceeds (5 -4)@. Only considering the random walks

at simultaneous regeneration times, we can estimate a single summand of the sum above by

4 4
m ( Bi, () Ci(x,m), {rj"™ < 25})
=1 =1

4 4
< (ﬂ Biy () Cile,m). (77 < 2+ e)f}) (2.65)
] =1

+ correction term, that sim. reg. after Téx’m) takes “too long”

4
< ( Bi, () Cilw,m), {#"™ < (2 + o)} {T5im — T3, < cmg(;)}) +6¢

3 3 ) ol R ) i
< (ﬂ B, Cilar,m), {37™ < (2 + a)t}> P, e (H@a) < Tmeet) + (28)Cect 4 6C, (2.66)
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2.3. Verification of convergence criteria

where C, ¢ > 0 are positive constants. The last inequality holds true since by the regeneration structure,
every information we gained up to time T;jm about the “future” of the cluster is that every random
walk is placed at a space-time point that is connected to infinity, therefore the “future” of the cluster
after time T, jjm can be replaced by some identical copy in which all the points the random walks sit
in are connected to infinity. By the coupling argument alluded to before Lemma 1.14 the cluster right
to the third red bar can be chosen independently of what is left to the third red bar.

Note that by (2.25), we know (with suitably controlled error term) that for every 0 < o/ < a < 1

Clog(L N ~
PjoiZf(é) (H(gu) < Tmeet)
Clog(3 - S S Py Clog(% - -~ -~ py
< ]P)jo;:i(é) (H(eu) < Tmeeh Tmeet > 2ta> + Pjoi(:g(s) (H(Eu) < TmeEtv Tmeet < 2ta>

3 (7 0 Clog(%) NP o
S PjOint (Tmeet > 2t ) + IP)]oimf (H(Eu) < Tmeeta Tmeet <2t )

co~ Clog(3)
< /*ta + IEDjoint ’
We define

(H(ew) < 2t%).

RY™ = {T5"™ — T < log?(67") for all k < 2}
4
Notice that

POlog(é)

Cos) (H(ew) < 26°) < P2 (H(eq) < 20%) + C(2i%)e

joint

(H(ew) < 2t%) < P2’

ind

|20
<y P2" (D > €u> +Ces

n=1

Z [P)Z%Z( Eu| > £l | Rszm) +Ce —clog?(8) + Ce—cé_6

2t ~
(5U)2 —clog2 (s
<C S G, O
< Zexp< e

25242
< Ctad_Qa exp <_ (Eu) 0

C —clog?(3) € o(8%

where the second inequality holds true by (1.14) for some € > 0 and in the fifth inequality we made use
of Azuma’s inequality, since under P? , the process (ﬁn)n is a martingale. Repetition of the arguments

given in (2.65) leads to

4 4
; (ﬂ Bi, () Cilx,m), 7{"™ < 25) < (064,
=1 =1

for some o/ € (0,1), where o/ can be chosen close to one. Using this estimation, the term in (xx%) can

be bounded from above by
(ﬂBl,E!xm)ER( ) s.t. ﬂC a:m)andT(wm)<2t>
=1
< DD (e

zE€[—u,a)NZ me[0,t]|NZ

< (0540/) 24t < C(u)té® for some & > 0,
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2. Brownian web scaling limit

since o’ can be chosen close to one. Hence condition (7}") is satisfied.

Checking condition (Bj)

We fix t > 3 > 0 and tg,a € R. We want to show that for each & > 0 there exists € > 0 independent
of t,ty and a, such that

ps(n(to, t;a —e,a+¢e) > 1) = ui(nlto, t;a — & a+8) > 1) <€
for all 6 > 0 sufficiently small. First we assume that o = ng € Z. In this case only paths that start
from the interval [a — £,a + €] N Z at time ng are counted by 7. Therefore

pi(n(ng,t;a — &,a+ &) > 1)

< P(r(®m0) (k) % 7@ F1m0) (k) for all k € [no, no + |£]]).

(]

{z,x+1}Cla—¢E,a+E]NZ

By (2.3) of Proposition 2.1 and Lemma A.1 in the appendix, which is the extension of (2.3) for random
starting points as defined in (2.54), we get that

i (W(I’”O)(k) £ (@ 1m0) (1Y for all k € [ng, no + |f J]) <

Slo

for some C' > 0. Hence

s (n(no, B — &, 4 8) > 1) < 2eC < 20eC < 20eC
1 05 4y ) = \/;_ \/i > \/B’

. . ;- e'\/B
which is smaller than ¢’ if € < ol -

If g € (ng,no + 1) for some ng € N, it is enough to show that ui(n(no,t;a — 28,a + 28) > 1) < &,

which is true by similar estimates as above.

Checking condition (FE})

In order to verify condition (E]) we need to prove a statement similar to Lemma 3.5.2 in [Sun05] which
is formulated in Lemma 2.15 below. This can be done by adapting Lemma 2.0.7 in [Sun05| to our case
(see Lemma 2.14 below). The rest of the proof follows by more general results, proved by Sun and

does not need any adaptation.

Lemma 2.14. Remember that K was defined as the collection of piecewise constant random walk paths.

For ACZ and m,n € N, m > n, we define
KA .= (™" (m) : z € A}.
If n = 0 we simply write KA := K0, Then

. :zIP’(O c K%ﬂ) <

3

for some constant C independent of m.
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2.3. Verification of convergence criteria

Proof: Let By := [0, M — 1] NZ and in order to simplify notation define

1, if (x,m) € KA
Kf@(a:) = "
0, otherwise,

for some A C Z. Using translation invariance of P we obtain

em(Bu) = B[KE N Bul] =B | 3 Ki(@)| = > E[KE(@)] = pm- M,

TEB xE€By

where e,,(B) can be estimated by

em(By) < Y B[N A By (] = ) E[KM 0 (B + kM)[] = E[[KM]).
keZ kEZ

Recognize that the difference M — |[KBM| is larger than the number of nearest neighbour pairs that

coalesced before time m. Using translation invariance of P we get that

M—2
E[M — |K§LM|] > Z E[ﬂ{n(z’o)(t):rg(”l»O)(t) for some tgm}]
=0
= (M — )P (t) = kO(t) for some t < m).
By (2.3) of Proposition 2.1 and Lemma A.1 in the appendix, we obtain

E[|KEv || < M — (M — 1P (¢) = k10 (t) for some t < m]
C
w0 )

C
1+ M—
<1+ —

and therefore

< 1 n C
pm M m‘
Using the fact that M can be chosen arbitrarily large, we get that

vm .

Now we are ready to prove our analogue of [Sun05, Lemma 3.5.2]. Recall the definition of X;O_ within the
comments after Theorem 2.11. Also recall that (77) is a sufficient condition for the family ({Xs5}s5>0)s
to be tight, hence let Z;, be a subsequential limit of X tg, defined some probability space (€2, A, P),
where X5 := S, 5T

Lemma 2.15. The intersection of paths in Z, with the line {to+c} X R is almost surely locally finite.

Proof Let Z;, be the weak limit of a sequence (X gg)n We denote the diffusively scaled piecewise
constant paths that start before or at time tg by ygi, where Vs := S, K. Remember that K is the

collection of all piecewise constant paths.
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2. Brownian web scaling limit

If we denote the space of compact subsets of (R2,p) by (P, pp), where pp is the induced Hausdorff

metric and consider y;g (to+¢) and X (stg (to +¢) as (P, pp)-valued random variables, we get that
pp <X§3 (to+e), Y (to + s)> —0 as n— oo (2.67)

in probability. Therefore yj;f (to + €) also converges weakly to Z,(to + ) as (P, pp) valued random
variables. Since for all a,b € R, a < b the set

{KE (Pvp’P) : |Kﬂ(a,b) X R| > k}
is an open set in (P, pp), we get that
Ep[|Z1,(to +2) N (a,b) x R[] =Y P[|Z4,(to +¢) N (a,b) x R| > k]
k=1

<> liminf P[[Y; (to + ) N (a,b) x R| > K]
k=1

n——~oo

. iy
< 0
< liminf B[y (fo +¢) N (a,b) x R]]
< C(b—a) ’
R
where the last inequality holds true by Lemma 2.14, since
E[|Y}” (to + ) N (a,b) x K]

SE[ > K?(w)]g S EKE, @) < 20 -9

z€(a,b)NZ z€(a,b)NZ O

Condition (E1) then follows by Lemma 2.15 and [Sun05, Lemma 3.5.3]. For completeness’ sake [Sun05,
Lemma 3.5.3| is given below. Recall the definition of X'*7 in Notation 2.12.

Lemma 2.16. (siehe [Sun05, Lemma 3.5.3])
For anye > 0, Zt(sOJrE)T, the set of paths in Z, truncated before time to+¢, is distributed as BZto(to+e)

i.e., coalescing Brownian motions starting from the random set Zy,(to +¢) C R2.

Verification of (Ef):
Notice that p/ := L£(BZ(to+e)|P) < L(W|P) =: 1 which means that for every bounded measurable

function f with
f(K) < f(K'), forevery K,K' € H, with K C K’

[ saut < [ san

E[nZtO (t(), l;a, b)] - E[T/Zt(fO‘FE)T (tO +e,t—ea, b)}
0

we have

Hence we conclude

= E[T]BZtO(t0+e) (t() + E, t - 6; a, b)]
b—a

S E[WW(tO +€7t — e a, b)] = T
w(t—¢)

for every e € (0,¢) which implies (EY).
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CHAPTER 3

Comparison between annealed and quenched hitting probabilities

In this chapter we focus on the difference between quenched and annealed probabilities of hitting boxes
with different side length. By the quenched central limit theorem given by Birkner et al. in [BCDGlB,

Theorem 1.1], we know that

|EG [f (Xa/ V)] = B2 [f (Xa/V)]|
< |E [f (Xn/vn)] = ()] + [@(f) — E* [f (Xa/v/n)]]

— 0, as n — oo, forP*-almost all w, (3.1)

where f € Cp(R?) and ®(f) := [ f(z)®(dz) with ® a non-trivial, centered isotropic d-dimensional
normal law.

If we choose f to be a smooth approximation of an indicator function, the quenched CLT tells us
that the error between quenched and annealed hitting probability of boxes of side length y/n vanishes.
Within this chapter we will refine the estimates in (3.1) down to boxes of sub-algebraic side length
eVioa(N)loglog(N) which gives a comparison between quenched and annealed hitting probabilities on
a much finer scale than proven by Birkner et al. in [BCDG13]. One of the key ingredients is, as it
was in the previous chapter, the regeneration structure of the random walks. The techniques within
the proofs below have been used by Berger, Cohen and Rosenthal in [BCRI16| to prove a quenched
local central limit theorem (qLCLT) for random walks in an i.i.d. and uniformly elliptic environment
of dimension d > 4. Uniform ellipticity means that there exists a uniform positive lower bound on
the transition probabilities of nearest neighbour jumps. This condition is violated in our case. We
have been able to work out the proofs for d > 3, since we focus on a directed random walk in a
dynamic random environment and hence we have an “additional” time component. The next step
towards proving a qLCLT would be an estimate on hitting probabilities of constant box size which
would give us a coupling between quenched and annealed probability measures. This coupling can be
used to prove the existence of a probability measure on the set of environments, which is invariant with
respect to the point of view of the particle and also absolutely continuous with respect to the original
environmental measure P#( - ) (see Definition 1.11). In Remark 3.29 we will point out some problems
that arise within the proof of Theorem 3.28 and which prevent us from getting an analogue of (3.1)
for constant box size. Up to now, we have no idea how to solve them.

One of the main tools that we use within this chapter is the environmental exposure procedure originally

developed by Bolthausen and Snitzman in [BS02] for i.i.d. environments and which we need to adapt
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3. Comparison between P* and P}

to our case. We also want to point to Corollary 3.25 which shows how a qCLT for dimension d > 3
can be derived from the estimates between quenched and annealed hitting probabilities given below.
We start with a section on useful notation and Lemmas, whereas the rest of the chapter is dedicated

to decrease the box size within the estimates on the hitting probabilities.

3.1. Useful notation and general results

Definition 3.1.

Define an order relation “<” on
P(N) = (Zd X Z> N ([—N10g3(N),N10g3(N)]d x [0, N2 + log3(N)]> ,

by ordering the sites in P(N) increasing in time and then lexicographically in each time-layer. Let
(2k)p>1 = (z,(cN)>k>1 be an “increasing” enumeration of all sites in P(IN), which means that z; < zp11
for all k. We usually denote by v the space component and by my, the time component of 2.

Furthermore, define

P(N) i= (29 x Z) 0 ([-4 N log* (), ¥ log? (N)] x [0, 5] | (3.2)
I =1 (N) := {2z, : n < k}, (3.3)

Oy := O(N) = (Zd x Z) \ I, (3.4)

Ly == Ly(N) := {(y,m) : m < my —log?(N)} NP(N), (3.5)

0TIy, == 0TI (N) == {(y,m) € I, : m = max{n : (y,n) € I} }, (3.6)

Fi = FL(N) == o(w(zn) :n < k), Fo:={Q,0}, (3.7)
Fp:=F2(N):=0(w(z): 2 € 0), F§:=1{Q,0}, (3.8)
Ap(wlt,) == Ag(w, N) := {o' : |1, = wlr, }- (3.9)

These definitions are needed to simplify notation within the proofs below, see Figure 3.1. We will
write (wlr,,w'|o,) for an element w € Q such that @, = wly, and @|o, = w'|o,. The notation

(wlt,_,51,w'|0,) should also be clear from that point of view.

Lemma 3.2. Let u be a probability measure on a measurable space (2, A). Choose € > 0 and assume
there exists A € A such that p(A) > 1—¢e. Then

drv (p, p( - [A)) < O(e).

Proof:
drv (s p( - |4)) = sup |u(B) — pu(B|A)| = sup ‘M(B) - Mf(z)A)‘
<o () 55 |+ < g S|+
< 12—55 =0(e) O
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3.1. Useful notation and general results

Ve
o) &

log?(N) | N2 4 logd (V)

log®>(N)N

Figure 3.1.: Figure shows the subsets of Z? x Z defined above. P(N) is surrounded by a red frame.
Oy, is the union of the light grey and white area. The area of Ly is hatched. Ij is painted
in dark grey.

In this chapter the positive constants C,c > 0 will be used in the way described in Remark 1.1. They
are only allowed to depend on the space dimension d and the success probability p of the Bernoulli

random variables (w(x,n)) 4 n)ezdxz-

Lemma 3.3. Let z = (y,m) € P(N) and (9,)n>m be the time discrete version of the contact process
defined in Definition 1.2. There exists C,c,p > 0 such that

P ((B:)°U (B: N{[nj| > plog*(N)})) > 1 — CN~lsl), (3.10)
for n chosen arbitrarily such that n —m > log?(N) and N chosen large enough.

Proof of Lemma 3.3: We choose z = (y,m) € Z? x Z arbitrarily. Remember the definition of
(H,(Ly’m))nZW and (K,(ly’m))nzm in (1.19) and (1.20). By a discrete time version of the shape theorem
given in Lemma 1.6 and Lemma 1.7, we know that there exists a convex subset U C R? and constants
e =¢(U),C,c> 0, such that

plum) ((y +(1—&Yn—m) U)c HH™ AN K,gw)) >1— CNelos)

for all n > m + log?(V), where N is chosen sufficiently large. Lemma 1.4 together with (lower) large
deviation estimates for the particle density in the upper invariant measure of the discrete time contact

process yield the existence of C, ¢, p > 0 such that

Pu) (|| > plog?(N)) > 1 — CN~—e1oE)
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3. Comparison between P* and P}

for all n > m + log?(N). We conclude that

P (Blyam 0 1™ > plog?(V)})

Y

(Blym)) — ON~15NP(B, )

v

P
P(B(y,m)) — CN 5 MP(By)
]P)(B(%m)) o CN_CIOg(N),

Y

by translation invariance of IP.

Corollary 3.4. Lemma 3.3 together with (1.17) implies the existence of ¢,C,p > 0 such that

Pl ) (Bl N {iy,m) <10g2(N) = 21) U (Blym) N {00 0| = plog%(N)})
(y,m)eP(N)

>1-— C«]\f—clog(N)7

where [(y,m) denotes the length of the longest open path starting from (y,m). In the following we refer
to the set above as D(N).

Remark 3.5. Recall the definition of (7},)n>0 in (1.32). Define
Ry = Rn(X) := {T} — Th_1 < log?(N) for all k < N?}. (3.11)

By (1.34) we know that
P* (Ry) > 1 — CN—clos(V),

Lemma 3.6. Let z = (y,m) € 75(]\7) and NTQ <n < N2%. There exist constants C,c > 0 such that

P* (|| Xn =yl > Vnlog*(N)) < ON~elosN), (3.12)
Additionally, let Q(z, N) be the event that

PZ (X0 — yll > Vnlog*(N)) < CN 250, (3.13)
then P*(Q(z,N)) > 1 — CN~z198(V),

Remark 3.7. Notice that by Lemma 3.6 a random walk starting from z = (y,m) € P(N) stays within
P(N) up to time N? with high probability. An event is said to occur with “high probability”, if the
probability of the complement decays super-algebraically in N.

Proof of Lemma 3.6: We prove the Lemma for z = (0,0). Conditioned on the event Ry, that the

time between two regenerations up to time N2 is at most log?(N), we get that
POO(|[ X, = Vnlog*(N)) < POY(|| X, > Vlog*(N)|Ry) + CN~e1osN)

<POOGE <n: || Xp | > %\/ﬁlog3(N)|RN) + CNclos(N)

= 1
< > PO X, || = 5V log (V)| Ruy) + CN e loe)
k=1

n 6
< dZexp <_ Cn 10g4 (N)> + CNfclog(N)
pt 4klog™(N)

< ONfclog(N)’
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3.1. Useful notation and general results

where the fourth inequality holds true by Azuma’s inequality applied to each coordinate.

For the second inequality note that on Ry it is impossible for the random walk to leave the box
[—/nlog3(N), v/nlog®(N)]? between two regeneration times and then be inside

[—%\/ﬁlogS(N), %\/ﬁlog?’(]\f)]d when the next regeneration occurs.

We turn to the proof of (3.13). By (3.12) we know that PO (| X, || > \/nlog®(N)) < CN—cle),
Hence the Markov inequality yields

p(0.0) ({w € Q: PO (|X,]| > alogd(N)) > \/CN—Clog(N)})
EOO) [P0 (X, > inlogh(V)) |
<

C N —clog(N)
<CON 3 1f>g(1\7)7

which proves (3.13).

O
As required within the next Lemma, let z = (y,m) € P(N) and z; = (yp,mi) € P(N), k € N,
Lemma 3.8 basically tells us that the law of w on Oy under P? is “similar” in total variation distance

to some Bernoulli product measure, as long as (my, —m) > log?(N). Recall definitions (3.3)-(3.9).
Lemma 3.8. Fiz z = (y,m) € P(N) and choose k € N such that z < z,. For w fized we define
V(W) = {(x,n) € 9T : 2% (z,n)}.
Note that Vk(z) is measurable with respect to Fy,. Choose zr, = (yg, my) and w, € B,, then
P*(wlo, € - |Fi)(ws) = mi(wsly,. ) = P(wlo, € - Vi (ws) % o0).
If (mg —m) > log?(N) there exist constants C,c > 0 such that
P* (drv(ki(wh, - ), Ber®%%) < CN~¢1EN) > 1 — oy —elos),

Proof: Note that P o (w|o,)”! is a Bernoulli product measure on {0,1}9%.  As required, we fix

z=(y,m) € P(N) and w. € B.. Furthermore, we choose
Ae FP co(w(z,n): (x,n) € Z x 7)
arbitrarily and define A := {w|o, 1w € A}. We get

KZ(UJZ’IINA) = Pz(w|0k €A |fk)(wz‘1k)
: /
TP (A ) 14(wlo,) P*(dw
P (An(rl1)) a0 )
1 /

- 14(wlo,) P(dw
P(Ak(w:lr,) N Bz) Jay(wslr, nB- (wlo,) P(dw)
1

Ber®0’“(Vk(z) (w2) KA o0) /{Vk(Z)(wIk)goo}

14(9) Ber®O* (dy).

ol



3. Comparison between P* and P}

The definition of Ag(wly,) is given in (3.9). Recall that w, € B, is fixed, hence Vk(z) (wy) is fixed subset
of 011,

If 2z, = (yr,mx), k € N is chosen such that (my —m) > log?(N), then by Lemma 3.3 there exists
C,c,p > 0 such that

p= ({w L4V (W) > plogQ(N)}> >1— ON—clos™), (3.14)
Note that for all w, € B, with #Vk(z) (wz) > plog?(N) we have
Ber®Ok ({19 : Vk(z) (wy) LA oo}) >1— CN—cloe),

since the probability that ~ log?(N) points are not connected to infinity is of order CN—¢lg(N) by
(1.18). The Theorem then follows by (3.14) and Lemma 3.2.

U
Lemma 3.9. (Annealed derivative estimates)
We fix z = (y,m) € P(N). There ezists a constant C > 0 such that
i) for every x € [—log®(N)N,log®(N)N] and every M such that %NQ <M < N?
P*(Xpy =) < CN~¢
i) for every x € [—log3(N)N,log®(N)N], every 2N? < M < N? and every 1 < j <d
5
PO (X = 2) — PUTe™ (X = 2)| < CN 74+
3 3 2 72 2
i) for every x € [—log”(N)N,log”(N)N] and every eN* < M < N
PO (X = 2) — PO™HD (X, = 2)] < CN@FD,
Proof: See Appendix A.2.1.
(I

The following Theorem belongs to the class of Azuma type inequalities and is proven by McDiarmid in
1998 (see [HMRAR98, Theorem 3.14]). Some comments on the usefulness of this theorem for proving
the estimates on the hitting probabilities are given in Remark 3.14 below, after some further notation

is established.

Theorem 3.10. (McDiarmid (1998)) Let {My}r>0 be a martingale with respect to some probability

measure P and some filtration (Fy)g>0, given by
My, = Ep[X|F], where My=Ep[X] and |X|<C P —a.s..

For 1 <k <n define

Uj := esssup (|Mk—Mk—1H]:k—1) and U := ZU]?
k=1
Then

o2

P(|M,, — My| > a,U <¢) <2 2.

Proof: See [HMRAR98, Theorem 3.14| and [BCR16, Theorem 2.13] .
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3.2. Estimates on hitting probabilities for “large” boxes

3.2. Estimates on hitting probabilities for “large” boxes

This section is dedicated to the proof of Proposition 3.11. Some important comments on Proposi-

tion 3.11 can be found in Remark 3.12 below. Notice that in Proposition 3.11 the side length of the

1
split up into two cases treated separately by Lemma 3.15 and Lemma 3.18. The distinction of cases

boxes is of order N? and % < 0 < 1, whereas M is of order N?. The proof of Proposition 3.11 is

is also illustrated in Figure 3.2. The uniformity of Proposition 3.11 in M and A is necessary for fur-
ther improvements on the box size, done within the next sections. Recall the definition of D(N) in

Corollary 3.4.

Proposition 3.11. Let d > 3 and d%ﬁ < 6 < 1. In addition we fiz some starting point z € 73(N) Let
Gi1(2,0,N) C B. N D(N) be the event that for every 2N? < M < N? and every (d-dimensional) cube
A C [-Nlog®(N), Nlog®(N)]?* of side length NY we have

|P*( X € A) —P*(Xp € A)| < NUO-D), (3.15)
Then for every ﬁ < 0 <1 there exist constants C,c > 0, independent of z, such that
P*(G1(z,0,N)) =1 — CN—cloeW), (3.16)

and hence

Pl () Gi(z6,N)U(B.)|>1- > P(Gi(26,N))°nB.)

z€P(N) z€P(N)

>1— CN—clog(N)'

Remark 3.12. Proposition 3.11 is not an improvement of the quenched central limit theorem given
by Birkner et al. in the sense that Proposition 3.11 already implies the qCLT. It should be considered

as a quenched analogue of Lemma 3.9 i) instead, since
P (X € A) —P*( Xy € A) < |P*( Xy € A) —P*( Xy € A)| < NUO-D, (3.17)

and hence
P*(Xpy € A) < CNYO-Y on Gyi(z,0,N), (3.18)

by Lemma 3.9 i), where parameters are chosen as in Proposition 3.11. This is exactly the sense in

which the proposition will be used later on.

As already mentioned within the introduction of this section, we will prepare the proof of Proposi-
tion 3.11 by first proving some lemmas. For the rest of the section we fix z € 75(]\7), % <6 <1,
w, € D(N)N B, and zp = (mg,yr) € P(N). We define the set My, depending on z; and N as

M, == My(2x, N) == {(y,m) € P(N): 0 < ||y — x| < mp —m < log?(N)}.
See also Figure 3.2. The “bottom” of My, is defined as

0 My :={(y,m) € M : m =min{n: (y,n) € My}}.
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3. Comparison between P* and P}

Furthermore, we fix %Nz < M < N?, #‘ll <0 <0,veZand define V := LNWJ. During the rest

of the section, we focus on the quantity
Ur(w:) = esssup (|E¥ [PZ (Xarv = v) [Fyo] = B[RS (Xarsv = 0) [l [ Fin ) ()
< esssup (‘EZ [PZ ({ X4y = v} N {My is not visited}) | Fg_1]

— 7 [P* ({Xarsv = v} N {Mj is not visited}) | Fi] ‘ ‘ .P,H> (w:) (%)

+ esssup ( E* [P2 ({Xarsy = v} N {My is visited}) | Fj_1]

B[P ({Xarpv = v} N {My is visited}) | Fi] ‘ ’ Fi) (). ()

The event we are interested in is illustrated in Figure 3.2. The meaning of the differently coloured
areas is the following:

Notice that w, € D(N) N B, is fixed whereas “ E* [PZ (Xp+v = v) |Fi]” has to be read as the con-
ditional expectation of the random variable (P? (Xp4v =v))(w) = B2 (Xam+v =v). Due to the
conditional expectation, one should think of w being fixed or ezposed within the grey area, whereas
we average over w within the white area conditioned on the fact that z is connected to infinity. Hence
“E* [PZ(Xm+v =v) |Fg]” is in some sense a mixture of quenched and annealed laws. If we focus on
a specific realization Uy (w,) of Uy, as it is done above, the configuration of w within the fixed area

coincides with w,. Computing the conditional essential supremum of
[E* [P (Xarqv = ) [Fea] = B2 [BS (Xarqv = v) | ] (3.19)

we get an estimate on how the “quenched” hitting probability of v changes if in addition the space-time
point zx of the environment is fixed or exposed. One way in which the process (Ug)x could also be
interpreted path-wise is that at each time & the random real number Uy (w, ) equals the distance between
E* [Pz (Xm+v = v) [Fi] and E? [PZ (Xaqv = v) [Feo1] in L (P? (- [Ap—1(w:lr,_,))). In detail

Up(ws) = esssup()Ez [P* (Xariv = ) |[Fe1] — E* [P* (Xasgy = ) |Fil] ‘ ‘]—"k_l) (w5)
=

In order to prove Proposition 3.11, we expose the environment step by step up to time M + logQ(N).
Hence one should think of k being chosen such that z, = (yr, ms) € P(N) where my, < M + log?(N).

E* [PZ (Xm4v =0) |Fr—1] — B2 [P5 (Xpmsv = v) | Fi] HL“ (P*(- 1 Akr(wslry_))
—1\Wzln, 4

Remark 3.13. Notice that by Lemma 3.6 and mixing properties of the environment (see Lemma 1.14

and Lemma 3.8), the configuration of the environment on
(Zd x{z€Z:xe[0,N*+ 1og3(N)]}) \ P(N) (3.20)

has negligible influence on the probability P2 (Xy/+v = v) and therefore does not need to be exposed.
“Negligible” means that the set of environments for which PZ (Xjr4+y = v) is influenced by a change
of the environment on (3.20) has small probability. To be more precise the probability of the set of
those environments decays exponentially in N and can therefore be hidden within the complement of
G1(z,0,N) (see (3.16)). Further comments on mixing properties of the environment can be found in
|Mil16, section 2].
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3.2. Estimates on hitting probabilities for “large” boxes

w averaged 2 |

log?(N) M+V

My —]

w fixed

0

log?>(N)N

Figure 3.2.: Hitting v at time M + V with and without visiting My

Remark 3.14. First we want to give a short overview on how the estimates of the difference between
the quenched and annealed hitting probabilities will be proved. Roughly speaking, the squared “errors”
we make exposing the environment step by step up to a certain time layer need to be summable and
“well” bounded. The errors mentioned in the previous sentence are exactly the random variables
Uy defined above. The bound on U = Y, U2 will of course be growing in N. This is the point
where McDiarmid’s inequality (see Theorem 3.10) comes into play. The martingale considered in
Theorem 3.10 will be defined as My, := E* [PZ (Xp4+v = v) | Fi]. Conditioning on Fy = {Q, 0} means
“nothing is exposed” and My = E? [PZ (Xa+v = v) |Fo] = P* (Xar4+v = v) equals the annealed law. If
on the other hand the environment up to time-layer M 4+ log?(N) is “exposed”, with high probability
P?[P%(Xn € ) |Fk,) = P2 (Xum € -) by Remark 3.13. In the previous sentence kg is chosen such
that the configuration of the environment in P(NN) up to time to time-layer M +log?(N) is measurable
with respect to Fj,. Making use of annealed estimates for the last ~V steps, by McDiarmid’s inequality
the difference between quenched and annealed hitting probabilities fulfils (3.15) with high probability,

if the bound on the sum of squared errors is of the “right” order.

Lemma 3.15. (The term (x) - My is not visited)

If we choose the parameters as described above, there exists constants C,c > 0 such that

E* [PZ ({Xpm+v = v} N {My is not visited}) | Fj—_1]

esssup (

~E*[P? ({Xasgy = v} N {My, is not visited}) | Fi] ‘ ‘Fk_1>(wz) < ON—cle(™) (3.21)

Proof: Let z, w, and k be as required. It is obvious that (3.21) holds true if 2z < z or z = z,

therefore we assume that z < z;. We distinguish the cases my —m > log?(N) and my —m < log?(N).

95



3. Comparison between P* and P}

First we consider the case my —m > log?(N). For w € B,, we define
i (w) == PZ ({Xmyv = v} N {Mj is not visited}) .
To be more precise, we can define f}V as
1y (§w|(zdxz)\Mk> = P5 ({Xariv = v} N {My is not visited}) ,
for some @ € {w' ol @zaxzymy, = fw\(deZ)\Mk} :

which means that the quenched probability of hitting the space-time point (v, M + V') and not visiting
Mj, in fact only depends on the values of & on (Z% x Z) \ M. For the definition of & see (1.24).
Hence we get that

(EZ [P ({Xarev = v} 0 {My, is not visited}) |Fy_1]

~E*[P? ({Xasgy = v} N {My, is not visited}) | Fi] ) (w,)
:/f;“w (g(WZ‘Ik_pﬂ)'(deZ)\Mk) ﬁil(wzhk—vdﬁ)_/ﬂgv fwzllk:ﬁ’)‘(zdxz)\M > ok (wzr, , d9")

nv (0]
< /fk wz\lk 10 |(dez)\ ) Ber®9k-1(di) — /fk f(wz\lk ')
+ CN—clog( )

<C- Ber®0k ({19 g(wz|1k 1 }(deZ N\My, 7£ f(wz\lk 140 19)’ (Z4xZ)\ M}, }) + CN_Clog(N)’

where the first inequality holds true by Lemma 3.8. It is obvious by the way in which £ is defined, that

Ber®O% (d')

)| (24 % Z)\M )

g(wzhkil,l, ) ‘{(y,m): (y,m)¢My,, mka—logQ(N)} = é-("-’Z‘Ik,l ,0, 9) ‘{(y,m): (y,m)¢My, mka—logZ(N)}'

Therefore it is enough to bound

Ber®Or ({19 He(wsln 1, 9) ‘{(y,m» m<my—log?(N)} 7 S(w:lry_, 0. 9) ‘{ (y,m) :m<mkflog2(zv>}})
= Ber?©» ({?9 2 3(y,m) m <y —log?(N), €ty 1, 0)(Um) # Epnly, 0, 0) (U m )}) :
Remember the definition of Vk(z) (w:]1,) in Lemma 3.8. By Remark 3.13 it is enough to focus on
{(y,m) : m <my —log?®(N)} N P(N) =Ly, see (3.5).
Since w, € D(N) (see Corollary 3.4), we know that for all (y, m) € Ly, for which &,_(y,m) = 1 we have

w; € {Ugﬁggz(]v) > pIOgQ(N)}. Hence

Ber®Ox ({19: I(y,m) : m < my — log?(N), §(w 21,1 9)(y,m) # nghk 10 0, ) (¥, m )}>
S B ({0 gy a0 (m) # &wzhk,l,a o(m)})

(yrm)GLk
> Ber®% ({19 t(walr, 0,0y ,m) =0 for all (y,m') € ngﬁgg 2(N)
(yvm)ELk

and (o, 1,0) (1 m) = &gy, 1,0 (2k) = 1})

< Z CON—¢ log(N)
(yzm)ELk

< CN~clos(N), (3.22)
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3.2. Estimates on hitting probabilities for “large” boxes

This completes the proof for my, —m > log(N). If my —m < log?(N) the function f2V (-) is positive iff
z ¢ My. But then the value of f{V (w) is not changed by changing the value of w at zj, which implies

that also in this case the Lemma holds true.
O

Lemma 3.16. (special regeneration point)

We fiz some z = (y,m) € Z% and define a “special” regeneration point R as

R(z2) := R(y,m, N) := inf{T, : for all x € [y — 21og?(N),y + 2log?(N)]? N Z? we have
(w,m) == (X1, Tn) if &u(w,m) =1,
l(x,m) <T, if £w(az7m) = 0}7

Z0,

where (T )k>0 denote the regeneration times of X with respect to PE0™) for some

zo € [y — 2log?(N),y + 21og?(N)]? N Z24. As before, I(x,m) denotes the length of the longest directed
open path starting from (x,m).
Fiz z;, € P(N). There exist constants C,c > 0, independent of zy, such that

P0m) (R(z) = my + 210g™ O (N) | {€(ye +r,m) = C(r) ¥r}) < CNeloE) (3.23)

for all zo € [yr —21og?(N), yp +2log(N)]4NZ% and ¢ € {0, 1}[_210g2(N)’21°g2(N)]dmZd chosen such that
C(wo —yi) = 1.

Note that in (3.23) the variable “s” ranges over all elements of [~2log?(N), +2log?(N)]? N Z¢. The

regeneration point R(zx) is illustrated in the following picture:

.....................................................................

M+V
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3. Comparison between P* and P}

Before proving Lemma 3.16, we need to prove the following lemma:

Lemma 3.17. As before, we denote by (nf(f’m))HZm the discrete time version of the contact process as

defined in Definition 1.2. We fix ¢ € {0,1}[=2108*(N):210g*(MINZ? - £ 0 gnd 2z = (y,m) € P(N) and
define

C(C? Z) = ﬂ USIS;ZLH(N)
r:(r)=1
Then there exist C,c,e > 0 such that

P (#C(g, 2) > elog2*+2(N) ) €y +r,m) = C(r) w}) >1 - ON~—clos(N), (3.24)

Moreover, there exist C,c > 0 such that for any xo € [y — 21log®(N),y + 21log*(N)]¢ N Z¢ and any
¢ € {0,1}[=2108*(N).200g®(NINZY ity ¢ (20 — y) = 1, we have

PO (C(C,2) x {m +108™ 2 (N)} 5 (X, aggsasoquy m 4+ 10g" (V) | {(y + rom) = ¢(r) ¥}
>1-— CNfclog(N)'

Proof: Fix some ¢ € {0, 1}[*21°gQ(N)’21°g2(N)}d”Zd and let 29 € [y — 2log?(N), y + 2log?(N)]? N Z? be
such that {(zo —y) = 1. We define

J(¢) :== J(N,¢) :== {f(yk +r,my) = C(r) Vr € [-21log?(N), 21og?(N)]4 N Zd} . (3.25)

The proof of the Lemma will be separated into three steps.
Step 0: Since we condition on the event J((), we need to bound the probability for this event to occur

from below. Recognize that

P(J(Q)) = P({&(y +r,m +1) = 1¥r € [y — 2log?(N) + 1,y + 2log*(N) + 1Y N Z})
P({wly + 1 m) = (1) Vr € [y — 210g(N), y + 2logX (N N Z7})
> P(BO)(4log2(N)+2)d ] (p(l B p))(410g2(N)+2)‘i

> (p(1 — p)P(By))e™ '), (3.26)

where the second inequality holds true by the FKG-inequality.

Step 1: Let (z;);>1 be an enumeration of the elements
{z €[y —2log*(N),y +21og®(N)]* N Z*: (& —y) = 1}.

Remember the definition of (Hfly’m))an and (Kr(Ly,m))an in (1.19) and (1.20). By the discrete time
version of the shape theorem given in Lemma 1.6 and Lemma 1.7, we know that there exists a convex

subset U C R? and constants ¢/ = &'(U), C, ¢ > 0, such that
PO ({(an + (1 = )(n —m)-U) € (HF™ A K™Y A T(Q) 2 PU™ (J(Q) — Ce )
for all [ and all n chosen sufficiently large. Additionally choose € = £&(U) > 0 such that

Elog?*t2(N) < ’ ﬂ (xl + (1 — &) 1og?™*2(N) - U) ’
!
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3.2. Estimates on hitting probabilities for “large” boxes

for all N sufficiently large. Since by Lemma 1.7 the upper invariant measure of the discrete time

contact process has positive density, there exist C, ¢ > 0 and € > 0 such that
P ({#C((,2) 2 elog? 2 (N)} N7 (Q)) 2 P(J(()) — Cee e ),

Hence inequality (3.24) follows from (3.26).

Step 2: Making use of (1.18) we get that
P ({3(2,n) € C((,2) : &(w,n) = 1} N {#C(C, 2) = elog™ 2(N)} 1J(C) )
=P ({#C((,2) = clog™™2(N)} nJ(() )
P ({g(e.n) = 0¥(z,n) € C(¢,2) }N{#O(C, 2) = elog™ ()} NI ()
> P (J(()) — Ce " N) — emelos N
for some constants C, ¢ > 0. On the event

G1(q) = {&(q, 1og>™(N) +m) = 1} N {g € C((, )},

22 ()

for some ¢ € Z%, the discrete time contact process n(@m+log fulfils a shape theorem as described

in step 1. Hence we know that there exists a convex subset U C R? and constants ¢’ = £'(U), C, ¢ > 0,

such that

P({(g+ (1 =)(n—m—1og2(N)) - U)  (HEm+os 0 o lamlos200) k0 G (g) )

> P(G1(q)) — Ceelos™ ()
forall n > m+ 210g2d+2(N), where N is chosen sufficiently large. Define

Un(q) = (¢ + (1 —=&)n-U).
In analogy to (3.11) we define
Ry = {Tjt1 — Tp <log?%(N) for all k < N2}, (3.27)

Calculations similar to the proof Lemma 3.6 yield

o |

m+10g6d+9(N) — .CUOH > log6d+8(N)>

< P (X, goar ) = @o|| > 10g8H8 (W) | Ry ) + Cemelo8* ()

1 ~
< pleom (Hk <log™ (N) : | Xn, = woll > 5 log6d+8(N>\RN> + Ceelos )

10g6d+9(N) 1
DI (||XTk —aoll > 5 log6d+8<N>\RN) T CemeIoB )
k=1

=d Z dd+4
P klog (N)

< Ce¢ log2@+2(N)

log®¥+9(N) 12d+16
ox (_C’log (N)) 4 Ce*CIOg2d+2(N)

)
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3. Comparison between P* and P}

which, using the triangle inequality, implies that
]P)(J:(),m) (“Xm+]og6d+9(N) _ yH > 210g6d+8(N)) < 06_610g2d+2(N).

We focus on the event
Ga(q) = {Xmt10goato ) = ¢}
for some ¢’ such that ||¢’ — y|| < 21og%*8(N).

We define ﬁ(q/’m“"ngH(N )) as the dual discrete time contact process starting from a single infec-

tion (¢/,m +1ogb4™?(N)) and evolving backwards in time. Since there exists a “backwards™path of

_ 6d+9
clog®™ 2 (N) for some

length logfa+? (N), the dual process survives with probability greater than 1 —Cle
C,c > 0. On the event that ﬁ(ql’mﬂogﬁdww )) survives (which happens with high probability) the
process fulfils a shape theorem backwards in time. Let H and K be the “backward” analogues of H

and K in (1.19) and (1.20). There exist U C R? and e = £(U), C, ¢ > 0 such that

P ({(q/ + (1 — &) (m+ 10g6d+9(N) _ TL) ) (7) - (f{'éq’,longJrg(N)-ﬁ-m) N [?éQ’710g6d+9(N)+m))} N G2<q’)>

> P(Ga(q')) — Ceclog™ ()

for all n < m + logb??(N) — 10g??*2(N), where N is chosen sufficiently large. Define

Un(d) = (¢ + (m +1og® ™+ (N) —n) - ).
For ng = (log®™*(N) — log®**(N))/2 and since ||¢' — q|| < [l¢ = yll + ¢ — y[| < Clog®™**(N), we
know that
q, € UQTLD(Q)'

Since convergence towards the upper invariant measure of the contact process happens exponentially

2d+2
fast we know that with probability greater than 1 — C'e™“"0 the intersection between nﬁl%’mﬂog (V)

’ d
and 17% mHog® (N) i non-trivial. Since all the error terms are elements of o(N—cle(M)) after dividing
by P(J({)) the desired result follows on G1(q) N Ga(q'). The union over “typical” ¢ and ¢’ then gives

the result.
O

Proof of Lemma 3.16: We fix z;, € P(N). By Lemma 3.17 we know that for any configuration ¢
with high probability the set C(C, z;) x {m + log?**2(N)} is connected with the random walk path at

time my, + log®*? (V). In order to shorten notation, we define

L(N,¢) := {I(yx + r,mp) < log?™2(N) if {(r) = 0}, (3.28)
where [(y,m) denotes the length of the longest open path starting from (y, m),

I(N,¢) = {C(Q o) % {my + log? 2 (N)} <% (ka+10g6d+9(N),mk +log6d+9(N>>} (3.29)

Also recall the definition of J(N,¢) and Ry in (3.25) and (3.27). Note that there exist constants
C, ¢ > 0 such that
P(zo,mu) (EN) >1— Ce—CIOdeH(N)’
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3.2. Estimates on hitting probabilities for “large” boxes

(see (1.34)) and
P@omk) (L(N, ¢) N I(N, ) N J(N,¢)) > PEoms) (J(N, ) — Ceclos™ (V)

for all xg, ¢ such that ((xg —yx) = 1.

Hence
Pleom) (LN, ¢) N I(N,¢) N J(N, ()
< PO (L(N, ¢) N I(N,¢) N J(N,¢) N Ry) + Ceelog™ ()

< PO ({R(z4) < my + 210g% O (N)} N J(N, ) + Ce 1™ (),

together with (3.26) implies the desired result.

Lemma 3.18. (The term (x*) - My, is visited)
Let the parameters be as described at the beginning of the section. There exist constants C,c > 0 such

that

esssup ( E* [PZ ({ Xprsy = v} N {My is visited}) | Fy_1]
CEF [P ({Xarsy = v} 0 {My is visited}) | Fi] ‘ ‘ ]-'k_1> (w:)

<C (1og6d+9(N)) PZ_ (M, is visited)V =% 4+ O(N—clos(V)),

Proof: If z; < z the random walk starting from z has no possibility to visit My, therefore we as-
sume that z < 2z or z = 2z;. As in the proof of Lemma 3.15 we distinguish between the cases
my, —m < log?(N) and my —m > log?(N). We first consider the case my, — m < log?(N).

Recognize that mp — m < logQ(N) and the fact that My is visited, implies z € My. Remember the
definition of J(¢) := J(N,¢) in (3.25), where ¢ € {0, 1}[72log*(N).21og®(N}*NZ? - Aqditionally, we define

E* [PZ(Xim, = ) | A(welr,) N Q)] if P* (Ap(w:l,) N J(¢)) > 0,
0, it P* (Ap(wslr,) N J(C)) = 0.

f(wiz,lk’ C) =

Note that on Ag(w.|1,) N B, N J(¢) the random variable P?(X,,, = x)(w) is almost surely constant

(since we assumed m > my, — log?(V)) and for w, and ¢ fixed
Z f(xawZ’Ik7C):1
z:((z—yr)=1
Choose some w € Ag(w.|1,) N B,. By making use of the Markov property of the quenched law, we get
that
Lyo)(W)P; ({Xpv = v} N {My is visited })
= D LyWPR(Xm, = 2) I (Xaryy = v)

z:{(z—yx)=1
- Z HJ(C)(w)f('rvwz‘Ika C)Pugx’mk) (XM+V = ’U) .
z:((x—yr)=1
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3. Comparison between P* and P}

Hence for ¢ € {0, 1}[_2IOgQ(N)’QIOgQ(N)]dmZd and x such that f(x,w.|1,,¢) > 0, it is enough to focus on

(z,my,) (

the conditional expectation of the term 1 ;(¢)(w) Py X4y = v) in the sum above.

E* [ 150 (@) PS™) (Xarey = ) [ P (w2)

- IW /Ak el L) (w) P& (X ppyv = v) P*(dw)

- P(Ak(wzllxk) N B,) / Lay (- o )n8. (@) L0 (@) PS™) (X a4y = v) P(dw)
P(Ay (wz|11k) NB.) / LAy (2 g 1By (@) L) (W) PE™) (Xarey = ) P(dw)

- (Akgfjlgkm) B.) / 1 e, ) (9) L) (W) PE™) (X v = 0) P (duw)

P(Ag(w:1,) N J(Q))
P(Ak(Wth) N B;)

/ P (Xp iy = v) P@™) (dw | Ag(wslr,) N J(C))

(The previous equality holds true since by construction Ay (w:|1,) N J(¢) C B(zmy)-)

P(Ag(w:|1,) N J(C))

(z,my,) _
PAn(a i) P By L Ky = v Ak ln) 07(0),

where

P(x’mk) (XM+V = ’ Ak(“’z‘h) N J(C))
=PEm) (X =v | J(Q))

= O(N_Clog(N)) =+ Z ]P)(x’mk) (XR(Zk) = w,R(Zk) — | ‘](C))
(wrl):waxH<l*mk<210g6d+9(N)

PO Xy =0,).

The random variable R denotes the special regeneration point defined in Lemma 3.16.
Also note that
=1.

P(Ag(w:]r,) N J(C))
ZC: P(Ag(w:]r,) N Bz)

Altogether we get that

E* [P, ({Xnm4v = v} N{My, is visited}) | Fi| — E* [Py { X4y = v} N {My, is visited}) | Fr41] |(w2)

< sup PEL) (X = v) — P@2m2) (X0 = )| + CN—elos) (3.30)
(z1,n1),(z2,n2)EG(2k,N)

where G(z, N) := {(x,n) : |lyx — || < 310g%?(N),0 < n —my, < 21og%+9(N)}.

Hence Lemma 3.9 yields

E* [Pw ({X]VI+V = U} N {Mk is ViSited}) ‘Fk] - F* [Pw ({X]V[-i-V = 1)} N {Mk is ViSited}) |fk+1] (wz)

d+1

< C (log™**(N) ) V=5,

where the last inequality holds true uniformly in k since we expose the environment only up to time

M +log?(N). This proves the Lemma for my, —m < log®(N), since in this case P2_ (M} is visited) = 1.
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3.2. Estimates on hitting probabilities for “large” boxes

Now let my, —m > log?(N). Recall the definition of Ly, in (3.5). Furthermore, by Lemma 3.8 there

exists a subset
G2, N) € D(N) B 0 {w s drv (ki (wlyy. -), Ber®0r) < ON~¢ls L,
with P#(G1(z, N)) > 1 — CN—<18(N) guch that for all w, € G1(z, N) we have
E* [P2 ({Xarpy = v} N {My is visited}) | Fe] (ws)

= /P(szhk 0) {Xn+v = v} N {My is visited }) 7, (w;]1, , d¥)

= / Plopy o) {Xarsv = v} 0 {My, is visited}) Ber®Ok (di) + O(N—clos(V))

- / ]l{g(wzhk vﬁ)‘Lkzng|Lk}P(Zcuz|Ikﬂg) ({XM+V = 'U} N {Mk’ is VISlted}) Ber®0k (dﬁ)

[ M el Py (s = v} 1 {My s visited}) Bex 0+ (d) + O(N—*5(),
By an argumentation similar to (3.22) we get that

E* [P ({Xnm+v = v} N {My is visited }) | Fi] (w2)

= / 1{5(wzllk ,ﬂ)\Lk=€wz|Lk}P(sz|1k ) ({XM+V =v}N{My is Visited})Ber®0k (dv9) + O(N*CIOg(N))_
This implies

E* [P ({Xam+v = v} N {My is visited}) | Fi] (w2)
- /H{fwuk»ﬂ)h‘k :fwz|Lk}P(sz|1k ) { Xrr+v = v} N {My, is visited }) Ber®Ok (d9) + O(N—CIOg(N))

:/ﬂ{g(wzlkﬂ)lf-‘k:&vzhk}
z z,my—log?(N —elo
. Z P(“’th’ﬁ) (ka—logQ(N) - x) P((wz\lzﬂ) &) (Xar4y = v) Ber®O% (d9) + O(N~¢losN))

€0~ My,
- Z Fo. (erlog2(N) - a:)
xea—Mk
z,my—log?(N . e
Vgt PR (K = o) Ber®© (a) + O(N—1o2)
= Z sz (ka—logQ(N) = x)
€0~ My
log?
./P((j;ﬁ:,ﬁl)og (V) (Xpr4v = v) Ber®9k (d9) + O(N—clos))
= Z P(:jz (ka—logQ(N) = gj)
€0~ My,

. E(@mi—log®(N) [Ptngmrlogw D ({Xarsy = v} N {My is visited}) |f4 (w) + O(N L)y,

where the conditional expectation in the last line fits exactly the case we discussed before. Hence
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3. Comparison between P* and P}

altogether we get

E* [P, ({ X4y = v} N{My, is visited}) | Fi| — E* [Py { X4y = v} N {My, is visited}) | Fr41] |(w2)

d+

< CPZ. (M, is visited) (1og6d+9(N)) V= L o(Nelos)), (3.31)

O

Lemma 3.19. Let XY and X@ be two independent random walks defined on the same oriented

percolation cluster. As in the previous chapter we denote the difference between the random walks by

(Dm)m>0 = (X(l) Xr(r%))mzo. We define
Ry (X% .= {T]gi) (l) <log?(N) for all k < N?}
and
R = {T™ — T < log?(N) for all k < N?},

where (TS, are the times at which both random walks regenerate. For the definition of (T,gi))n and

(T, see (1.37) and (1.38). If d > 3, there exist constants C,c > 0 such that for every n

Ppint ({# {m < N? : || Dp|| <log*(N)} > nlog®(N)} N RY™)

< <1 _ f) L+ ON—eloE(Y),
log*(N)

The probability measure P}, is defined within the comments at the beginning of section 2.1.3.

Proof: We know that
]oznt (RSZm) >1- CNfClOg(N)'

We focus on the difference between the random walks at their simultaneous regeneration times. As in

chapter 2 let ﬁn = )?7(3) — )2-7(12) = Xj(,ls)im — Xj(i)m. Furthermore, we define the following sequence of

stopping times

T}'\?O =0,
2(N)},
2(N)},

out s in .||
TN,k—‘rl = lnf{n > TN,k: . ’ n

n N out

with the convention inf () := oo.
Notice that

IP’Jomt(EI k such that TNk =o0) =1,

since in dimension d > 3 the process (Dn)nzo is transient. Denote by

=p(N) = min in HD H>lo >>87
pi=pN)i= i, P ([|Diagsn | > log (V)

where € > 0 can be chosen independently of N. Notice that

. ~ . 2
P?omt (T&%H — TN 2 log®(N) ‘ DT;‘V% =T, TN < OO) <(@1- 5)log (V) < N—elosV),
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3.2. Estimates on hitting probabilities for “large” boxes

Therefore the probability of the event

Ry == R¥™ N {8 — 73 < log®(N) for all k < N2 : 7if, < oo}

=RY" 0 [ () [{r&4% — 7% <log®(N)} N {ri < oo}) U {7y, = oo}]
k<N?2

is bounded from below by
]P)jomt(ﬁN) >1— CN—clog(N).

On the event ﬁN the number of times that the distance between the random walks becomes less than
log?(N) can be bounded by

#{n < N?:||Dp|| <log*(N)} <log®(N) - (inf{k < N®: 7'y, — T'x_1 > N*} AN?),

with the convention inf () := oo, since on Ry the difference T4 — i is bounded by log®(N) regen-

eration steps, each of which is bounded by logQ(N ). Next we will prove that
1

> — >0, 3.32
~ log*(N) (332

0 mn mn 2 in
Ploint (TN — TN k—1 > N° [ TN 1 < 00)

which allows us to bound inf{k : T]’ak — T]Z-\?kil > N2} by a geometrical random variable with success

probability e(N) := m > 0. Using the Markov property it is enough to prove that
P?oint(T};\?l > N2) Z G(N) > 07 (333)
for y € Z%,||y| < log?(N) chosen arbitrarily. By the strong Markov property, we factorize (3.33) as
follows
Pgomt(T]i\?,l > Nz) = Z Pjyoint(DTﬁﬁ = x)P;?oint(T]i\?,l > N2)

z:||z||>log? (N)

XL
We focus on ]P’]-Omt

generality that the first component of x, denoted by 1, satisfies |z1| > log?(N). By Lemma 1.14 we

(T3, > N?) for some z € Z% with ||z| > log*(N) and assume without loss of

can couple the joint and independent measures until T}'\?I. The probability that the coupling breaks
within the next N? steps is bounded by CN 2¢—clog®(N) | The estimation of independent random walks

(see [BCDG13, Lemma 3.6]) gives us
?nd(T]i\?,l > NQ)

> P?nd(TJi\’;fl = OO)

> Z P? 4 (Hi(K log*(N)) = n < hi(log*(N)), Dn, = y) P? , (h(log*(N)) = 00))
y€Z4 neN
(log®(N))*~4 — |ly[l5~*
(log?(N))2—¢

>(1—¢e) Y Pl (Hi(Klog’(N)) =n < hi(log*(N)), Dp = y)

y€eZd neN
>(1—e) Y Phy(Hi(Klog’(N)) =n < hi(log*(N)), D, = y) (1—1/C)

y€Zd neN

z1| — log?(N
= (- g)Klogy(N) - 1<(>g2)(N) (1-1/0)
C

>
~ log?(N)’
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3. Comparison between P* and P}

where K > 1 is a large constant, C' > 0 and
hi(r):=inf{n >0: (D)1 <r} and Hi(r):=inf{n >0:(Dy)1 >r}.
The last estimate yields

]P)?oint ({# {n < N?: |1 Dy || < logQ(N)} > nlogS(N)} N Rf\}m)
<P ({# {n <N2: | D,| <log(N)} > nlog®(N)} N JTzN) + ON~clog™)

< (1 = f) + CN—clogV), (3.34)
log”(N) 0

Corollary 3.20. Let X and X@ be two independent random walks defined on the same oriented
percolation cluster. If d > 3, then

PO int H# {n < N?%: HX7(L1) _x®

) <log¥(N)} <log2(N) } N Ry™| > 1 CN~elox™),

Proof:
P?omt ({# {n <N?: HXS) - X2 ‘ < logQ(N)} > log?(N) logS(N)} N R%m>
log*(N)
<(1- %) + CN~elos)
B ( (1 - % >1og2(zv>>1og2<zv) Jp———
< ON—clog(V)

Remark 3.21. Note that Corollary 3.20 implies

p> ((Ej ® E7) [# {n < N2 HX,QU - X,<3>H < 1og2(N)} 1R%m] > 010g12(N))

z z z 2 .
<P <(Ew ® Ey) [1 +N ﬂ{#{n<N2:nXS>—XS)||<log2(N>}zlog12<N>}RR?V””’] 2 C)
<P (B30 23 [t < V72 19 - X2 < 1og?() 2 hog b ] 2 C1 )
< C«]\ffclog(N)7

for some constant C > 1.

Now we turn to the proof of Proposition 3.11.

Proof of Proposition 3.11: By Lemma 3.15 and Lemma 3.18, we know that there exists a subset
Gi1(z,N) of D(N) N B, with P*(G1(z,N)) > 1 — CN—¢e() uch that on G4 (z, N)

Uk = esssup( EZ [P(j (XM+V = U) |./T"k_1] — EZ [Pj (XM+V = U) ‘Fk] ) ‘Fk_1>

d+1

<C (10g6d+9(N)) P? (M, is visited) V™2 4 CN—clos),
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3.2. Estimates on hitting probabilities for “large” boxes

We define

{weB.: (Bzo B [#{n < N |x - xP

‘ < 1og2(N)} 1 Rﬁ-m} < 01og12(N)}
— W (2 N) C B, (3.35)

and prove that for U := Y, U? we have
U<C-I(N) vt

on

Gi(z, N)NW(z,N), (3.36)

where I(N) is a slowly varying function. The sum 3°, U2 is taken up to time-layer M + log?(N).
In order to simplify notation we define [(N) := (10g6d+9(N )), which is also a slowly varying function.
For w € G1(z,N) N W (z, N) we have

2 Uk
k

< CP(N)V=1Y (P2 (M is visited))® + CN~¢loelN)
k

SCPNVEIY | > P (ka—logQ(N) = xl) >, P (ka—logQ(N) = @)
k

$1€87Mk $2€87Mk
+ CNfclog(N)

< ClNz(N)Vidil Z Z Pj <kaflog2(N) = 1‘1) Pj (kaflogQ(N) — $2> + CNfclog(N)
k x1,22€0~ My

zk: Z (B @ F) (HXSZ—logQ(N) - ng—log2(N)H < 2log*(N), Ximp—log?(N) = x1>
1 €0~ My

+ CN—clog(N)
M+1og?(N)

< CPV2102(N) > (Bre P (|| X - x| < 2108() ) + N o)
k=1

< CP(N)V41210g%(N) log'?(N) + CN—cls(N), (3.37)

where the last inequality holds true by the definition of W (z,n) in (3.35).

With I(N) = 202(N) log?(N)log'2(N) the desired result follows.

Let ko be such that my, = M + log?(N) and (yp,mp) = 2z, < Zky = (Yky, Mi,) for all z such
that my < M + log?(N). We denote the o-Algebra Fj, by G. Using McDiarmids inequality (see
Theorem 3.10) we get that

p* (\EZ P2 (Xarsv = 0)[6) (@) — B (Xaray = 0)] > 1N-d)

2
CN—2 )

<P*(D(N)*UW(z,N)) +2exp (‘l(N)V_CH
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3. Comparison between P* and P}

Remember that V := LNWJ and d%‘il-l < #' < 0, hence

CN—2d C , C ,
Il S R —7N_2dN29 (d+1) ) _ —7N_2(d_0 (d+1)) < N—clog(N)_
P ( 1<N>v—d-1> =P ( i) T =¢

For z € P(N) chosen arbitrarily, let Ga(z, N) C B. be the event that
1
[ (B2 (Xarsv =) [0 (w) = FZ (Xaspy = 0)| < gN

for every %NQ < M < N? and every v € Z¢ with |jv]| < Nlog?(N). By the previous calculations
we know that P?(Ga(z, N)) > 1 — CN—18(N) Now we fix w € Ga(z, N), d%‘il-l < 0 <1 and a cube
A, C Z% of side length N? and center = € Z%. We are interested in estimates on the following quantity

|P5( X = Ay) —P*( X € Ay)l.

We denote by Ag(cl) a cube with center x and side length %N % that is slightly smaller than A, and by
A:(f) a cube with center z and side length %Ne that is slightly bigger than A,. There exist C,¢ > 0
such that

P*(Xpav € AM) < P*(X) € A,) + CN—ClosV) (3.38)
P*(Xpav € AP) > P*( Xy € A,) — CN—ClosV) (3.39)

Furthermore, there exists a subset Gs(z, N) C B, such that for all w, € Gs(z, N)

E: [Pj (XMW € A;U) ‘g] (ws) < P2 (X € A) + ON—clos), (3.40)
e P2 (Xarsv € AP) 6] (we) > P5(Xor € A) — ON—eos), (3.41)

and P*(Gs(z,N)) > 1 — CN—<e@)  The proof of (3.38)-(3.41) can be found in section A.2.2 in the
appendix. Since Ga(z, N) N Gs(z, N) C Gi(z,0,N) the proof of Proposition 3.11 is complete.
O

3.3. Estimates on hitting probabilities for “small” boxes

As already mentioned in Remark 3.12, the next thing we want to do is to use Proposition 3.11 in order

to improve our bounds on the term

> (P2 (M is visited))? (3.42)

k
that appears in (3.37). The new bounds on (3.42) we get out of Lemma 3.22 below, will then be used
to prove Lemma 3.23 which leads to an improved version of Proposition 3.11 (see Theorem 3.24). In
Corollary 3.25 we discuss how the quenched central limit theorem given by Birkner et al. in [BCDG13]

can be derived from Theorem 3.24 for dimension d > 3.
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3.3. Estimates on hitting probabilities for “small” boxes

Lemma 3.22. Assume that d > 3. For every 0 < 0 < 1 and z € P(N) let Gy(z,0,h,N) C B, be
the event that for every %NQ < M < N? and every cube A of side length N? that is contained in
[N log*(N), N log?(N)]4

P(Xy € A) < log"(N)N—41-9),

Then for every 0 <0 <1, z € ﬁ(N) there exist C,c > 0 and h = h(0) > 0, independent of z, such that
P*(Ga(2,0,h,N)) > 1 — CN—clslN),
Hence
P| () G20, N)U(B.)"| 21— > P((Ga(z,0,h,N))°NB,)

2eP(N) z€P(N)

> 1 ON-elost),
Proof: Let (0,),>0 be a decreasing sequence of real numbers with

0 € (7%5,1) and 3950, < Ony1 < On.

We prove the lemma by induction over n for the sequence (6y)n>0. For 6y the Lemma holds true by

Proposition 3.11 and Lemma 3.9 7). For the induction step we fix n > 0 and assume that the statement

holds true for 8,,. We define p := 9’5:1 > ﬁ‘il. By Proposition 3.11 and Lemma 3.9 ¢) there exists

h = h(p) such that by translation invariance of P, we have

P ﬂ Gao(z,p,h, N)U(B,)°| >1— O N—clog(N)
z€P(N)

Since the statement holds true by induction hypothesis for 6,, there also exists A’ = h/(6,,) such that

P () Galz6n 1, [N?)U(B.)" | = 1—C|NP|-clalND),

z€P(N)
We define
R(p,h,N):= [ (Ga(zp,h,N)U(B.)),
z€P(N)
R(0n, 1, IN?]) = (] (Ga(z,6n, 1, |N*])U(B.)"),
z€P(N)
and

L= R(p, h,N)N ﬂ Ux(R(0n7h/7 [N?])),
z€P(2N)

where o, denotes the shift of the environment in direction 2. In detail for = (v,t) € Z? x Z the shift
operator o, on € is defined as

op(w) i=w( +v, - +1).
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3. Comparison between P* and P}

Note that P(L) > 1 — CN—¢1¢(V) by translation invariance of P.

Now we choose z = (y,m) € P(N), 2N%? < M < N? and a cube A, of side length N+ = (N#)%n
and center z that is contained in [—N log3(N), N log3(N)]¢ arbitrarily. Let V = | N?].

Denote by Q(N) the event that

> Liewar—vy=1} (@) BM V) (X € Ay) < ON—elosN)|
vilu—c][>2N° log} (V)

where C, ¢ > 0. By (3.13) we know that there exist C,& > 0 such that P(Q(N)) > 1 — CN—¢ls(N),
We will prove the lemma by showing that

LNQ(N) C Ga(z,0n11,h, N) U (B,)°.

We fix w e LNQ(N). If £,(2) = 0 we have w € (B,)° C Ga(z,0,h, N) U (B,)¢, hence we focus on the

case that z is chosen such that £, (z) = 1. By the Markov property of the quenched measure we have

PW™ (X e Ay) = > PY™ (X = 0)POMV) (X € Ay) + CN—Clo8(N),
villv—z||<2NP log3(N)

If &, (v, M — V) = 0 we have P¥"™ (X,_y = v) = 0. On the other hand if &,(v, M — V) = 1, the fact
that w € R(p, h, N) implies that for all cubes A’ of side length N”, we have

PY™ (Xpr_y € A) < logh(N) (V) 417,
Additionally, w € (,epan) 0o(R(0,, 1, | N?])) and the fact that N1 = (N?)% implies that
PUMVI (X € Ag) < logh (NP)(NP)~40=00) < ogh TH (V) (V) ~dle=ns),

Since [—N?” logg(Np),Np log3(N”)]d is the union of at most C’loggd(N) < 10g3d+1(N) cubes of side
length N?, we get that
pugy,m) (Xar € A,) < Clog3d+1(N)N_d(1_p) -logh/“(N)N_d(/’_enH),
< Clog*tth T2 (N) N =1 =0ner),

For h(0,,41) := 2d + h' + 2 the statement holds true for 6,,1.
(|

Lemma 3.23. Let d > 3. Similar to the proof of Proposition 3.11 let G denote the o-Algebra Fy,,
where ko is such that my, = LNQ + logz(N)J and (yi, mi) = 2k < 2k, = (Yo, Mk, ) for all z, = (yg, mg)
with my, < N? +1og?(N). Let n > 0, V = |[N"| and define G3(z,V,N) as the event that for every
v ez

|E* [PZ(Xn2qy = 0)[G] — P*(X 24y = 0)| < NIV 5,

Then there exist C,c > 0 such that

P*(Gs(z,V,N)) > 1 — CN—clsV),
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3.3. Estimates on hitting probabilities for “small” boxes

Hence

P| () Gs(zViN)U(B.)|>=1- > P((Gs(zV,N))°nB.)
2€P(N) 2€P(N)
>1— CN_ClOg(N).

Proof: Fix v € Z% 6 > 0 and let > 0 be such that 6 < %n. Furthermore, let L := L(NN) be a large
integer such that 2-(F*DN2 <V —1log?(N) < 27LN2. For 1 <1 < L we define

PO .= P(N)N {(x,n) cxeZt 27 INZ < N? —n < 2—lN2} :
Additionally, we define
N2
PO .= P(N)N {(:U,n) cxeZb0<n< 2},
PE = P(N)N {(:z:,n) xeZ0< N —n< 2_LN2} ,

F(v) == {(x,n) eP(N):|lz—v|| < VNZ+V - n10g3<zv)} ,

and
POW) :=PO A Fw), POW):={y:3z e PY(v) such that |y — z|| <log®(N)}.

First we want to improve the estimates on the term

> (P2 (M is visited))?,
k

which appears in (3.37), where w is chosen out of Ga(z,6,h, N) (see Lemma 3.22). We define

V()= > (P (My is visited))®.
k:zePO (v)

First of all recall the definition of W (z, N) in (3.35), and note that on W (z, N) we have

V(0) < (B> ® E7) [# {n < N?: HXﬁLU —Xx®@

) < log?(N) } 1] < log!2(N),

Remember that we usually denote by yi the space component and by my the time component of z
According to Lemma 3.22 we can bound V' (I), I > 1, for w € G2(0, z, h, N) by

2

V()= > >0 P (KXo = 7)

Ek:(zg,mp—logZ(N)eP®) (v) \z€d~ My

<C > log(V) Y- (B (melog%N):”f))Q

k:(zg,mi—log?(N))eP®) (v) r€0~ My,
< Clog™(N) ) (Pé (ka—logQ(N) = Z’))2
2 ePW (v)
< Clog? 2 (N) Z log2h (V) N2(0-1d
2/ePW (v)
< CU'(N)N2O-Dd Na+29-1952 (3.43)
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3. Comparison between P* and P}

For the first estimate we made use of the Cauchy-Schwarz inequality. The second inequality is due to
the fact that each point is counted at most log(N) times. The third inequality follows by Lemma 3.22
and for the last inequality we estimated the number of points in P®)(v). The function I(N) is a slowly

varying function. We consider the process
Uk—ebSSupOE (XNQ V—’U)‘J—"k 1]—E [ (XN2 V—v |fk “fk 1)

on Ga(0,z,h, N). Remember that the calculations in the proof of Lemma 3.15 and Lemma 3.18 have

lead us to
Uk(w) <IU(N) - P; (M, is visited)

sup ]}D(m,m) (XN2+V = ’U) _ P(xz,m) (XN2+V — 1)) + CNfclog(N)?
(z;,n;)EG(2,N)

where [(N) is a slowly varying function and
G (ot N) = {(,) ¢ i — ] < Blog®*(N),0 < n — . < 2logh+I(N)}.
For k such that z, € PY(v) we have

sup ‘]}D(Ihm) (Xnoqpy =) — Pp(z2.n2) (Xnzpy =0) < C(Q_l]\ﬂ)_ﬁ
(%i,m:)€G(2k,N)

Now making use of the more precise estimates given in Lemma 3.22 which yield to (3.43), we get
U< CZ 27N~y (1) + CNelosN)
L

< CN—Q(CH—I)V(O) + O N~2(d+1) p2(0-1)d prd+2 Z 2l(d+1)2—zd—;2
k=1

< CN—Q(d-‘rl (0) + CN—3d+29d2L7
< CN—Q(CH—I (0) + CN—3d+29dev—f
< O N~20+20dy— g

Hence, using McDiarmid’s inequality, we get P*(G3(z,V,N)) > 1 — CN—clog(N),
O

Theorem 3.24. Let d > 3. For every 0 < 0 <1 and z € P(N) let G4(z,N) denote the event that for
every cube A of side length N? we have

|PZ(Xy2 € A) — P*(Xy2 € A)| < ON—U1-0)—30
Then there exist C,c > 0 such that
P*(Ga(z,N)) > 1 — O N—¢clog(N)

Hence

Pl () GalzN)U(B.) | =1- > P((Gs(z,N))°NB.)
2€P(N) 2€P(N)

>1— CNfclog(N)'
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3.3. Estimates on hitting probabilities for “small” boxes

Proof: Fix0<6<1, z¢ ﬁ(N) as required. We choose %9 <# <fBand V = {N%J. We know by
Lemma 3.23 that there exist constants C, ¢ > 0 such that the event G3(z, V, N), that

g, _d
E* [PZ(Xn2yy = 0)|G]) — P*(X 2y =v)| < N9V 75

for all v € Z%, has probability P*(G3(z,V, N)) > 1 — CN~¢e(N)_ Let A be a cube of side length N?
and center ¢(A) = z that is contained in [—~Nlog3(N), Nlog®(N)]%. Let A and A® be cubes of
side length N? —log3(N)VV and N? 4 1og3(N)v/V and center ¢(AM) = ¢(A®) = ¢(A) = x. Then
on Gs(z,V, N) we have

E* [P2(Xxoey € AD)G] — P (X = AD)| < [AOIN-IY S,
As in the proof of Proposition 3.11 we know that

PZ(XN2+V S A(l)) < PZ(XNz e A) + CN—clog(N)7
P*(Xpn2yy € A(2)) > P (X2 € A) — O N—¢log(N)

Additionally, there exists C~}4(z, N) C B, such that for all w, € 64(2/, N) we have
E* [PS (XN2+V € A(U) |g} (w:) < Pﬁz(XN2 €A+ CN_Clog(N),
E? {Pj <XN2+V S A(2)> |g} (Wz) > sz (XN2 c A) o Cvj\/ffclog(N)7

and P*(Gy(z, N)) > 1 — CN—<e() for some C, ¢ > 0. Making use of Lemma 3.23 and “standard”

bounds on the annealed transition kernel we obtain

PZ(Xy2 € A) — P*(Xy2 € A)
< B [PZ (Xyopr € AQ) [G] = % (Xposy € AW) 4 CN—bos)

<E? [P~ (XNQW c Al ) ’g} (XNQW € A<1>) +E? [Pg (XNQW c A® \A<1>) \g]
4 ON—clog(V)
e [P (Xnasy € A0) ]g} *(Xne € A(l))‘ +E [P2 (Xpeay € A® N\ AD) ]g}
+ CN—clos(N)
< |ADINTIV=E 4 N AR\ AD] 4 o erE®)

< ON~U-ON-¥ | Clogh(N) NN DN T 4 oN—clos(V)
< ON~I-0) N5,

By similar estimates on E* [Pg (XN2+V € A(l)) ‘Q] - P (XN2+V € A(2)) the theorem follows.
O

Corollary 3.25. (Quenched CLT) Letd > 3. For any continuous and bounded function f € Cy(R?)
|EZ[f (Xn2/N)| —@(f)] — 0, as N — oo, for P*-almost all w, (3.44)

where ®(f) := [ f(x)®(dx) with ® a non-trivial, centered isotropic d-dimensional normal law.
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3. Comparison between P* and P}

In [BCDG13] Birkner et al. proved a quenched CLT for all d > 1.

Notation 3.26. For any real number M € R we define ITj; as a partition of Z¢ into boxes of side
length M. For A € II); we denote the center of A by ¢(A). If the center of the box or the side length
is important, we sometimes denote the box A with z = ¢(A) and side length M by A, or AM. We
define 7 := Z(IIps) := {c(A) : A € Iy} as the set of all centers of boxes in IIp;. The partition I,/ is
sometimes also denoted by (Az)zez.

For some z € P(N), n < N and w €  we say that a box A € II is z-n-reachable in w if there exists

z € A such that z =3 (z,n) 2 co.

Proof of Corollary 3.25: By the Portmanteau theorem it is enough to prove (3.44) for all bounded
and uniformly continuous functions f € C,(R%).

We fix 0 € (0,1), f € Cu(R?) and ¢ > 0. We choose § > 0 such that for all z,y € R? with ||z —y| <
we have | f(z) — f(y)| < 5. Let (Az)zez be a partition of Z¢ into boxes of side length N?. Furthermore,
we assume N to be large enough such that N1 < §. We prove (3.44) for z = (0,0) € Z? x Z but
omit the superscript “(0,0)”. By Theorem 3.24 we get

Eulf Xn/N)] = 3 £ (%) Po (Xnz = 2)

x€Z4

=3 Y F (%) P (X =)

yEL x€Ay

< sz ( ) (Xn2 € Ay) + 3
ye

<> r(2)P(xyeay)+ €Y NI o) 4 :
yel yeLT

: d
z Nlog*(N) —d(1-6)—1¢ —cl 2e
<Y s _ Nlog®(N) ! clog(N) , 2€
TE

<E(f(Xn2/N)) +e

where 7 := {z € T : ||z]| < Nlog®(N)} and N is chosen large enough. Corollary 3.25 follows by the

annealed CLT.
O

3.4. Estimates on hitting probabilities for “sub-algebraic boxes”

Decreasing the box size within the estimates between the quenched and annealed hitting probabilities
down to a constant real number would probably be the next step towards proving a quenched local
central limit theorem (qLCLT). At least this is the next step within the proof of the qLCLT for ballistic
random walks in an uniformly elliptic, i.i.d. environment published by Berger et al. (see [BCRI6,
Theorem 5.1]). In this section we give a proof of decreasing the box size in Theorem 3.24 down to
boxes of side length eV108(V)loglog(N) yiging techniques similar to the proof of [BCR16, Theorem 5.1|. If
only boxes of sub-algebraic side length greater than log?(N) will be considered, this guarantees that all
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3.4. Estimates on hitting probabilities for “sub-algebraic boxes”

boxes in [—v/N log®(N), VN log3(N)] are (0,0)-n-reachable (see Notation 3.26) with high probability,
at least if n is of order N. This statement is proved in Lemma 3.27 below.

Adapting the proof of [BCR16, Theorem 5.1] to our case, some problems arise which we have not been
able to solve up to now, and which prevent us from decreasing the box size down to constant side
length independent of N. These problems also seem to appear within the proof of |[BCR16, Theorem
5.1] itself. It is not quite clear to us how the authors overcome these difficulties and if there exists
a suitable solution for our case as well. The analogue of [BCR16, Theorem 5.1] for boxes of side

length e log(N) log log(N)

is formulated in Theorem 3.28 below. Nevertheless, Theorem 3.28 provides a
comparison between quenched and annealed hitting probabilities on a finer scale than Theorem 3.24
which is already finer than the comparison that follows from the qCLT by Birkner at al. in [B(jDGlS7

Theorem 1.1] (see (3.1)).
See also Remark 3.29, where the problem of proving a version of Theorem 3.28 for constant box size

is discussed.

Lemma 3.27. Let z = (y,m) € P(VN) and Iy = (Ay)wer be a partition of Z% into bozes of side
length M > log®(N). For every ||z|| < v/nlog?(N), where § <n < N, we have

P? (A, is z-n-reachable) > 1 — CN—¢loe(V), (3.45)

Proof: The proof of Lemma 3.27 is very similar to the proof of Lemma 3.8. Using analogous arguments

we can show that there exists p > 0 such that
p? (\Aw nnz| > plogQ(N)) >1— CN—cle),
if IV is sufficiently large and hence
P* (AsNm; % 00) 21— CNeE),

where (92)n>m denotes the discrete time contact process starting at time m with only one infected
particle at site .
O

Theorem 3.28. Let d > 3 and define Il yp.q14. as a partition of 7% into “sub-algebraic boxes” of side
length eV108(N)loglog(N) - pior N € N denote by G5(N) := G5(N,C’,c) C Bo,0) the set of environments
such that

> IPPO(Xy € A) —POO(Xy € A)| < (e VIea(N) loglos(N) (3.46)

AerIsu.b—alg.

Then for an appropriate choice of C', ¢ > 0 there exist constants C,c > 0 such that
P(O’O)(Gg,(N)) >1— CN—clog(log(N))‘

Note that there is a small “notation break” compared to Theorem 3.24: Now, time runs up to N and

not up to N2.
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3. Comparison between P* and P}

Proof: Let 6 > 0 be some small constant. We define N; := LN2%J and

. 0log(N)
r(N) = { (2\/log N)loglog(N )>J ’

such that r(N) is the minimal integer for which N( Ny < eVios(N)loglog(N) "1 addition we define
= N — Z N and ny :—Z 1 Nj +ng, where 1 < k < r(N). For 0 < k < r(N) we define
Hk =TI

0 and
LV,

M= > ‘PUSO’O)(XM e A)—POO(x, € A)l.
A€l
The definition of IIj; for some arbitrary real number M € R is given in Notation 3.26. We will prove

that

Ak < Ag—1 +CON“,  for some a € (0, 1), (3.47)
and hence
r(N)
Ay SM+C YN,
k=1

where \; < CN~¢ for some C,c > 0 by Theorem 3.24 and the second term on the right side is bounded
by C'e=¢ Vios(W)loglog(N) for some €7, ¢ > 0. Note that

)\r(N) = Z ’PLEJO’O) (an(N) € A) - P(O’O) (XHT(N) € A)
ATl ()
= > |IPPY(Xyer)-POO(Xy e D),
AEHT(N>

is the total variation distance between quenched and annealed hitting probabilities of boxes of side

4
length NTQ(N) < eVIeg(N)loglog(N) we are interested in. To be more precise, within the last iteration

o
step in (3.47) one should replace Nf( N) by eVlog(N)loglog(N) " [oywever the arguments given below hold

true in both cases.

Let & > 2. Define
Jn, = {A is (0,0)-ng-reachable for all z with ||z|| < v/Nlog3(N)}.
Note that by (3.45) we have P(© 0)(OT(N)J ) >1—CN—cle(N) To shorten notation, we define

My, = {As € Ty« ||| < /g log*(N)}. (3.48)
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3.4. Estimates on hitting probabilities for “sub-algebraic boxes”

By Lemma 3.6 we have

Ak < Z ‘P Xnk € A) (0 0) (Xnk c A) :H.{Az is (0,0)-nk—reach.}(w) + CN*C]Og(N)
AEHk
Z Z ‘ 00 Xnk €A X, , € A/) P(OO)(Xnk €A X, , A,)
AGHk A’EHk71

“1{A is (0,0)-ny-reach.} (W) L{A" is (0,0)-ny_y-reach.} (W) + O N —clos(N),

on Jy = ﬂT(N Jn, N Q((0,0), N). For the definition of Q((0,0), N) see Lemma 3.6. The triangle
inequality and the Markov property of P, then yield

>y ‘Pu(f”o)(Xnk €A Xy, €A)—POO(X, €A X, , cA)
Aeﬁk Aleﬁk,1

: H{A is (0,0)—nk—reach.}(w)ﬂ{A/ is (0,0)—nk,1—reach.}(w>

=D OB D S LN

A€Il, Alell,_; ueA!
' ‘P(Om (Xnk—l =u) — p(®0) (Xnk—l € A/)Pu(JO’O) (Xnkﬂ = u|Xnk71 € A,)

w

: ﬂ{A is (0, 0)-ng-reach.}N{A’ is (0O, O)—nk,l—reach.}(w) (349)

+ 3 3 Y POYX,, € A)PLO(Xy, = ulXy,_, €A

Aeﬁk Aléﬁk_l VISV

| RS (X, € A) = U (X, € A)

: ﬂ{A is (0, 0)-ng-reach. }N{A’ is (0,0)—nk,1—reach.}(w) (350)

+ YD | D Peme(x,, € A)

A€, A/ell,_,  UEA!

' (IP(O,O) (Xnk—l S A/>P(O’O) (Xnk—l = u’Xnk—1 € A/) - P(O’O) (Xnk—l - u)> '

: ﬂ{A is (0, 0)-ng-reach. }N{A’ is (0,0)—nk,1—reach.}(w) (351)

Z P(“’"’“’l)(Xnk c A)P(O’O)(Xnk,l =) — P(O’O)(Xnk eEN X, , €A
ueA’

EDIEDY

Aeﬁk A/Eﬁk,1

) IL{A is (0, 0)-ng-reach.}N{A’ is (0, 0)—nk,1—reach.}<w)’ (352)
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We estimate (3.49)-(3.52) separately. We start with (3.49).
(uvnkfl)
POED DD P B O
Aeﬁk Aleﬁk,1 u€A’

: PUSO’O) (Xny_y, = u) — p(:0) (Xn,_, € A/)Pu(;o’o) (Xny_y = ulXn,_, € A')

: H{A is (0, 0)-ng-reach.}N{A’ is (0,0)-ny_1-reach.} (w)

< Y Y|P, =) = PO, € AVPOO(X,, = ulXe,, €4)
A'Eﬁkfl ueA’

) ﬂ{A’ is (0,0)—nk,1—reach.}(w)

= Y S POYX,, =ulX,,_, €4
Aleﬁkfl ueA!

Pu()o,o) (Xn,_, € A’) _ p(0,0) (Xn,_, € A/)

: ﬂ{A/ is (0,0)—nk,1—reach.}(w)

- Z ‘P“SQO) (X’Vlk—1 € A/) - P(Op) (Xnk—l € A/)‘ ]l{A/ is (0, 0)—nk,1—reach.}(w)

A’elly
< Y POV, € &) - BONX,, e A =N,
A’elly_q

Now we turn to the second term (3.50). First of all note that

S Y POX,, € APPIX,, = ulX,,, € A)
AEﬁk Aleﬁk,1 IS

AR (x, e A) — PUm-D (X, € A)

' H{A is (0,0)-ng-reach.}N{A’ is (0,0)—nk_1—reach.}(w)
- Z Z P(O’O)(Xnkfl S A/)P£070)(Xnk71 = U|Xnk71 € A,)
Aleﬁk,1 u€A’
' Z ‘P"guynk_l)(X"kfl'f‘Nk € A) - ]P)(u’nkil)(Xnkfl-i-Nk € A)
Aeﬁk

) 11{A is (0,0)-ng-reach.}N{A’ is (0,0)-ng_1-reach.} (w)

As in the proof of [BCR16, Theorem 5.1] we call a cube A’ € I;_1 to be “good” if for every u € A’
with &(u,ng_1) = 1 and every A € I},

(umic—1) (1) ~4(1-0)-16
PO (X i, € A) = PO (X, Ly, € A) < ON, , (3.53)

otherwise we call A’ to be “bad”.

Additionally, we call a cube A’ € I to be “well connected” if for every u € A" with &(u,ng_1) =1
> PSS (X yin, € Ag) 21— N 050, (3.54)

Axeﬁkl
[|lz—u|| <N logS(Nk)
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3.4. Estimates on hitting probabilities for “sub-algebraic boxes”

otherwise we call A’ to be “badly connected”.

Recall the definition of ﬁk,l in (3.48) and note that the number of boxes A’ € ﬁk,l is bounded by

d

oV log®(ny—1)
6
Ng

By Lemma 3.6 there exists a set Q((u,nx-1), Nx) C B(yn,_,), With

P ((Bluy 1) U QU(usm5-1), Ny)) = 1 — ON,, <)

)

such that on Q((u,nk—1), Ni) the bound given in (3.54) holds true. Furthermore, Theorem 3.24 yields
that for every u € A’(€ II;_1) there exists a set G4((u, np_1), Nj,) with

P ((Bumy_)) U Ga((uyng—1), Njp)) > 1 — C (Nj,) ~108We)

such that on G4((u,ng—1), Ny) for every A(€ IIx) the bound given in (3.53) holds true. Hence for
“good” and “well connected” boxes A’ € I, 1 we get that

S POO(X,, , € AVPPO(X,, , =ulX,,_, €A) Y ‘Pﬁ“’"’“l)(Xnk € A) —PEm-D (X, € A)
ueA’ A€l

: ]l{A is (0,0)-ng-reach.}N{A’ is (0,0)—nk_1—reach.}(w)
AN d 1
< PO (X, €A <<m10g3(Nk)Nk2> NP0l C(Nk)—“og(Nk>>

_1
< CPOY(X, | € A)log*(N,)N; ©°.

d
3
Since basically C—mlogg (1)
N2
each cube A’ to be “good” and “well connected” is of order

cubes A’ € ﬁk—l need to be considered where the probability for

P ( ﬂ [(B(u,nk,l))c U (Q((UvnkA),Nk) N G4((U7nk1)7Nk)>D
ueA”

>1- zg, (IP) (B(u,nk,l) N (Q((ua nk—1)7 Nk))c) +P (B(u,nk,l) N (G4((’LL, nk—1)7 Nk))c) )

>1— N—closloeN) for all k < r(N),
we get that the probability of the event

Gy := {all the cubes in II;_; are “good” and “well connected”} (3.55)

is bounded from below by

P(Gn)>1-— Z P ({A’ is “bad” and “badly connected”})
Alelly,
d
-1 Cm10§3(nk_1) N —cloglog(N)
B Ney
>1— CNfcloglog(N).

(3.56)

79



3. Comparison between P* and P}

Hence on Gy

S Y PO, , € AVPOI(X,, | =ulX,,_, €A
Aleﬁk—l ueA’

: Z ’P£U7nk71)(Xnk71+Nk € A) - P(uynk_l)(Xnkq-&-Nk € A)‘
Aeﬁk

: ]l{A is (0,0)-ng-reach.}N{A’ is (0,0)—nk,1—reach.}(w)

_1
< 3 CPOO (X, € A)logd(Ni)N, ¢ + Y CPOY(X,, , ed)
A,Eﬁk_lt AIEﬁk_ll
“good” and “well connected”

“bad” or “badly connected”

_1g
<CN, ¢

Next we focus on (3.51). We have

2 2

> plem-l(X,, € A)

Aeﬁk A/Gﬁk,1 ueA’
' [P(Om (Xn,_, € A/)PLSQO) (Xny_y = ulXn,_, € A) - p(0:0) (X = u)} ‘
: H{A is (0,0)-ng-reach. }N{A’ is (0,0)—nk,1—reach.}(w)
< Z ~ > POO(X,, , €A LréaA);]P’(“’”k*l)(Xnk € A,;) — min Pm-1) (X, € A,)
A€ _q AGHk:diSt(A/,C(A))

<v/Ni log®(N)
+ O (NN,

on Gy, defined in the previous step. Making use of the annealed derivative estimates we get that the
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3.4. Estimates on hitting probabilities for “sub-algebraic boxes”

last term is bounded by

> S PO, en)

A'€lly_1 Agelly:dist(A' )
<V/Nj log®(Ny,)

' Z%B’A%P(uynkilxXnkﬂ-i-Nk S Aﬂs) - fLIEHAn, P(u’nkil)(Xnkﬂ-&-Nk = Aw)

+C (Nk)—clog(Nk)

CN,> N
A'ell_y Ay Eﬁk,:dist(A’,x) Nk 2
<Ny log?®(Ng)
Lo\ onE N
NZ | +2/Ny;log® (N, CN.2 N2 B
< Z (0 0) nk,1 c A/) k—1 - . kuk 1 +C(Nk) clog(Ng)
A€Ml *Nk2 Nkz2
de 0
C (VN:) 1og®(N,) CN,2 N2
< Z (00 nk71 € A/) . ( ) — . kﬂk 1 —FC(Nk) clog(Ng)
A€l Nk2 Nk:2

_1
< ON, 7 10g¥(Ny,).

Finally we consider the last term (3.52).

2. 2

A€, AVelly,_q

Z ]P)(u,nk_l)(Xnk c A)P(O’O) (Xp,_, =u) — P(0,0) (Xn, €A, X, , €A
ueA’

) ]l{A is (0,0)-ng-reach.}N{A’ is (0,0)-ng_1-reach.} (w)
Z Z p(0-0) (Xnk—l =u)
A/Eﬁkfl ueA’
’ Z ’P(uynkil)(Xnk €A) - P(QO)(XW € AlXy,_, = u)
Aeﬁk

: ]l{A is (0,0)-ng-reach.}N{A’ is (0,0)—nk,1—reach.}(w)'

On Ry (see (3.11)) the first regeneration after time ny — 1 occurs with probability greater than
1—n, lo8(m) before time ny + log?(ng). Similar arguments hold true for the annealed walk starting in
u. Hence in fact we have to deal with the difference of two annealed laws whose starting points differ

in space and time at most by 210g2(N ). Hence the annealed derivative estimates yield

de
Clog®(Ny)N,? Clog (NN, >
(Ne —log®(Np) 5~ (V)%

Pl (X, € A) = POO(X,, € AlXn, , =u)| <

Since we only need to consider boxes A whose center is distance /i log3(Nk) apart from u, we get
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that

> D POX, =u)

Ay, ueD!
3 ‘p(umk*ﬂ(xnk_nkfl € A) —POO(X,, € AlX,,_, =u)
Aelly,
“1{A is (0,0)-njp-reach.}A{A" is (0,0)-nj_;-reach.} (W)
d
< Z Z P(O’O)(Xnk,l — ). mlog;(Nk) ‘ Clog3d(]\ﬁ2Ng
Aefl,_, uEA! N¢? (Nk) 2
< C'log®(Ny)N,, :
Hence all together we get that on the event Ry N Gy with
POO(Ry N Gy) > 1 — CN—cloglog()
for every k € {1,..,r7(N)} we have
e < Mot + ON; % 4 ONT 2 10g%(Ny) + Clog®(Ny) N, 2 < Ay + CN, 5,

if IV is sufficiently large. This yields

™, oW
)‘r(N) S)\l—l-CZNk 3 S)\l—i-CZN_W
k=1 k=1

r(N)+1 0
§)\1—|—C/ e loeW)zas g5
1

u=log(N)=2- Bn —u
S5\ ¢ / L
an —log(2)u

where ay = glog(N) and By = Wlog(]\f) > \/log(N)éoglog(N)_ Hence
BN —u BN
ANy < A1 +/ ——ds < )\ +/ —e "du
™) an —log(2)u an

<\ + [e—u]ilj\:f <\ +e—5N <\ +e ¢ log(N) log log(N)

for some ¢ > 0. The proof is complete since by Theorem 3.24 we have \; < CN-5. -

Remark 3.29. Recall the definition of G in (3.55). Decreasing the box size of the partition of Z%
down to a constant real number, we need to find suitable bounds on the number of “bad” or “badly

connected” boxes in which we have not succeed up to now. “Suitable” means that
do

0,0 / _d 5
§ PO (x, eA)< § Cnp—1) 2 N2,
A’Gﬁk_ll Aleﬁk_li
“bad” or “badly connected” “bad” or “badly connected”

< CN™¢, for some a > 0.

Hence the number of “bad” or “badly connected” cubes should be of order N? for some 8 < % with
high probability. Further investigation in decreasing box size down to a constant real number would

probably be the next step towards proving a quenched local central limit theorem.
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CHAPTER A

Appendix

A.1. Proofs of chapter 1

A.1.1. Proof of Proposition 2.1; equation (2.2) for d =1

We separate the proof into 4 steps:
Step 1: We prove that there exists a large constant K such that

SO (@, y) — U (2, y)ly1* < CemVIE for all [a] > K.

Y

We choose K; sufficiently large, split the sum in two parts and estimate them separately.

y=z+/|z|
dy dz a dz de, a
Z'wlng T, y ]o]?:zt(x y)||y| = Z |\I/1njg($ y) \Iljogzt(x y)Hy|
y=z—+/|=|
+ Y ) - Ul ()l
yily—z|>4/|z]
By (2.14) the first sum can be bounded by
y=z+4/|z|
o WL y) = Vi, y)llyl* < 2V ]al(l2] + V]al)* Ce e < Ceel]
y=z—+/|z|

for all |z| > K, if K is chosen large enough. The second sum can be estimated as

ST () — U (@, y)lly
yily—z[>+/ |z
< DD PETHTET > e - y)) + PTUTET > e — y) |y
yily—z[>/]z|
< Qe cVlel

Thus step 1 is proved.

Step 2: By using similar estimations as in step 1, we see that

ST Uyt < Cem VI for all o] > K,

yily—z|>4/|z|
if K is chosen large enough.
Step 3: We prove
y=z+vT
Z TP (e )|y < Jz|* = Clz|*?  for all |z] > K.
y=r—/T
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A. Appendix

Using Taylor’s theorem we know that (1+2)* =1+ az + Sa(a —1)z*(1 + £)* 2 for some & € (—|z|, |z|). Therefore we

get
y=z+4/|z| y=
de, [eY d, e oa— a a—
Yo U@yl = e Z COA(y)(L+ ) < 2| — Gall —all2[*7* < |a|” - Clz|* 77,
y=z—/]z| y=—+/lz|
where the linear term vanishes because of the symmetry of \I/:i;g .
Step 4: Putting together the results of step 1-3 we obtain
Y=+
ds, ds, ds, et di, a ds, a
Z‘I’]oﬂt z,y)ly” < Z Ul y) =Vl @ ™+ > U@yt + Y i@yl
yily—zl>/|z] y=e—ve

S |x‘o¢ _ C|$|a—2 + Ce—c\/|x\
<|z|* for all |z| > K,

X @1)

which therefore proves the recurrence of (X, — X ,5”)) k>0 in the joint case.

A.1.2. Proof of Proposition 2.1, equation (2.2) for d = 2

In order to simplify notation we define
B 1= (B, D) = RO — R,

where Pjoint(ﬁ(()xl —2)

= 21 — ®2|Bz;—25,0,0) = 1. First we assume the covariance for ﬁg’f{“’ and ﬁéxf ~*2) ynder
Pind( - | Bz —=24,0,0) to be zero. The proof in the two-dimensional case is very similar to the one-dimensional case. In the
two-dimensional case a natural candidate for the superharmonic function with the desired properties is h(z) := log®(||z||,)

for some « € (0,1). Within the following calculations ||-|| := |||, We divide the proof into similar steps:

Step 1-2: The estimations of step 1 and step 2 in the one-dimensional case can be adapted to the two-dimensional setting.

Therefore similar results hold true:

There exists a large constant K> such that

di di a —c ¥z
Z |05 @, y) = W5l (@, y)og® (lyll) < Ce™* VIl for all |z > Ko,
and
dz (e -z
S U ay) log® (yll) < Ce VI for all la]] > Ko.
yilly—z||> /Il

The fourth root is needed for technical reasons in order to get suitable bounds on the remainder of the Taylor expansion
in step 3.

Step 3: As in the one-dimensional case we use a Taylor expansion to prove that there exists a positive function F' which

decays polynomially as ||z|| tends to infinity, such that

> U@y log™(lyl) < log(lz])* — F(x) for all |lz]| > K.
villy—al< /Tl

We define f(hi, h2) := log® (HxH [(—1 +h1)? 4 (2 + hQ)Q]) and write the term above as

[zl [E3]

S eyl = 5 Y VEIW)- Ly ). (A1)
yilly—= )< /Nl villyll< 3/l
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Using Taylor’s theorem, the function f;(hi,h2) can be written as

A.1. Proofs of chapter 1
fac(h17h2)

log®(||z]|") + Pz(h1,h2) + Ra(h1, h2)
where Pm(hl,hz) = Ts(hl,h&)

log®(||z||*) and T2 is the third Taylor polynomial. Notice that P,(0,0) = 0. At first
we focus on the term Zy Ivll< &/ Ty . P (151> 127)- The linear and cubic terms in

o Rl P

T 1
yillyll < 3/l=ll
vanish because of the symmetry of
that

2
x|’ HEII)

wnd*

U4 Since we assumed the covariance of D(”1 *2) and D(Q:1 *2) to be zero, we know

S o f0,0WE ) < ooV
villyll< /Tl
For the quadratic terms the following bound holds true

> el

MU%mwmw+ >oooowid
y:lyll < \4/|le
< —4a(l -

4
yillyll< /M=l

()0, f=(0, 0)
llz ||
@&W 4 Ce—c VTl
i

The remainder R;(h1, h2) can be bounded by ERE
Altogether we get that

Z g diff

o a C C —cd |z
ind (7, y) 10g” ([ly[l) < log™([|])) CEPy— o7 + Ce VIl
" g™ = ([lz*) l=[I" [l
yilly—=zl|< /2|l
Step 4:
Using the results of step 1-3 we get that
diff
Z\Ij]oznt

x,y) log™(||yll)
< Z (W (2, y) — Ual (z, y)  log® (lyl) + > 13
> whd

ind (%) 1og” ([ly[])
wnd

villy—all< /=]

+ (z,y) log”([lyl)
villy=al> ¥/l

N c

< log”([l=]]) —

c
log =) (|||

4 Ce—e¥Vlal
[l

2 2
) Il

<log®(zl) for all 2] > K,

which proves the recurrence of (X" — X*2)),~, under Pj,q(
ﬁgfcll_m) and ﬁémll ~*2) s zero.

Now we assume that

where |p| < &2

92 _
Coyind (ﬁ§:€1—x2)> — (a P)
) L -
define A :=

| Bz, —a5,0;0) in dimension two, if the covariance of

p o’
1
V2(c%+p)

since Birkner et al. proved in [BCDG13] that the limit law is not concentrated on a subspace. If we
V2(c2+p)

1 1 )
V2(e2=p)

V2(02—p)

~ 1
we know that Cov (AD?”*’”)) = (

the function h to be h(x)

0
0 1)
There exist constants C1, Cz2, depending only on p and o such that Ci ||z|| < ||Az|| < Ca ||z| for all z € R®. We choose

log®(||Az||) and define Z := Az. From the inequalities above, we know that ||Z| is large if

91



A. Appendix

||| is large.

If K3 is chosen large enough, similar estimates as in step 1 — 2 hold true.

4
Z U5 h (@, y) = i (@ y) log™ (| Ayll) < Ce™ VIl for all |laf| > Ko,

]alnt

S (e, y)log® (| Ayl) < Ce VIl for all ||z > K.
yr\lylel>\4/\IiH

In order to get a result similar to step 3 we introduce the function fz(h1, h2) := log® (Hi‘“2 [(H%H +h)%+ (HiTZH + h2)2:|)
and write the term
> k) log* (lAyl)
villy—=l< /12

on which we focus in step 3 in the following way

« 1 7,
S vyl (lAyl) = 5 S0 W) £ (G, ).
yilly—=l|< ¥/l yillyl< Y3

We know that
JAyll _ Colwll . _C

lzl = Azl = =)/

which means that (ﬁyﬁl and ! T ‘>‘2 are small if K> is large.

By using similar arguments as in the uncorrelated case we get that

Z\pdlﬁ‘ x,y) log® (|| Ay|) < log®(||Az||) for all ||z| > Ko,

joint

which proves the result in the general case. |

A.1.3. Proposition 2.1 equation (2.3) for random initial values

In Proposition 2.1 we prove tail bounds conditioned on the event that the initial points are connected to infinity. In this
section we give a proof for the tail bounds of dimension d = 1 to hold true, if we do not condition on the event that the
starting points are connected to infinity. We use the convention introduced at the beginning of section 2.3 where the

random walks start from the next point left to the given site that is connected to infinity. See especially (2.54).
Lemma A.1. Let d = 1. There exist constants C, M > 0 such that

PIEGEO© s oy <« € o ms M (A.2)

meet \/ﬁ

Proof: Since both random walks start at time 0, we suppress the time component in ¢( - ) and write B, instead of
B(z,0), © € Z, see (1.26). First notice that ¢(—1) = ¢(0) on (Bo), hence T <) = 0. Therefore

meet

]P)(T(C( 1), C(O)) ) ]P(T(c( 1),¢(0)) >m, BO)

meet meet

We get

P (Txegetl) () > m) = Z P (Tvsnce(etl) > m, B—’ﬂ (B—k+1)c 3ty (Bfl)c ) BO)

K log(m)

< Z P (T,sle’ecto) > m, B_, (B—k41)", ..., (B_1)°, BO) 1 O oK los(m)
k=1
K log(m) }
< P (Ty(n_e’:’o) > m, Bi, (B—jt1)® ooy (B—1)° ,Bo) L

where K is chosen such that K-c > 2 and K’ > 0 is a constant. The first inequality holds true by (2.56), see also [Dur84,

Section 10], whereas the last inequality follows by (2.3) of Proposition 2.1. Hence we focus on

meet

P (T( B S, By (Bopg1)© s oens (B_l)C,BO) , for ke {K',..., | Klog(m)|}. (A.3)
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Conditioned on the event that there exists a hole of length k — 1 left to 0 we get

meet

p (T< B0 S m, Bog, (Boig1)® s ooy (B1)°, Bo)

—P (T( 5O > m | Bog, (Bog41)" 5 o) (Bfl)c7BO) “P(B_y, (B=k+1)", ..., (B-1)°, Bo)

meet

meet

<P (T< B0 S | Bog, (Bojs1)® s oo (B,l)C,BO) O,
since the probability of holes of length k£ — 1 to occur, decays exponentially in k. Define
Ry, = inf{T5"™ > 0:1(=r,0)+1 < T, for all 0 < r < k},
where [(y, m) denotes the length of the longest open path starting from (y,m). Then

P (T( 50 S i | B_g, (B—ks1) oo (B_l)C,Bo)

meet

=>_ > P (Tvstefto) >m, Ry =7, X7 =21, X =25 | By, (B-g11)", . (Bfl)C’BO)

>0 zjy:|z;+k|}<r
waileal<r

C(k +2 _ . .
D <7( +2r) A1>1P>(Rk=r,x£ M =21, X\ =25 | Bk, (Bg41)", ... (B-1) 730)
>0 zi:|zi+k|<r mer

@o:|wa|<r

= Z ( = ) P(Ry =7|B_k,(B_k41)%,...,(B-1)°, Bo) (4

r>0
where the second inequality holds true by Proposition 2.1 with fixed starting points z1 and z2 with |21 — z2| < k + 2r.
Note that

P (B*k, (Bkarl)C PIREE) (B—l)c ) BO)
>P (w(_k70) = 17w(_k + 170) =0, --~7w(_170) = O,M(0,0) = 1,B(,k71),B<071))
=p*(1—p)"""P (B4, Bo)
Z 67Ck]P (B—k7 BO) . (A5)
For the event {Ry > %2} conditioned on {B_y, (B_41),...,(B-1)°, Bo}, we get that
m c c
P (Rk > 2 Bty (Bogan) s (B1)° Bo)

(Rk > 2 (Born)” e (Boy) |B_k,Bo) ek

<lc Y P(l(—j,O) > 2L (B-) )+c 3 [Pjomt( T s %) ek
0<j<k 0<j<m

< (C log(m)efcm + Cmefcm) . &S log(m)

<Ce ", (A.6)

where the first inequality holds true by (A.5) and the third inequality holds true since k < K log(m), by (A.3). Together
with (A.4), this yields

P (Tr(nefto) >m | Bog, (Bog+1), ., (B_I)C,Bo)

< Z ( o 1> P(Rr =71 | Bk, (B-k4+1) ..., (B-1)", Bo)

< (% A 1) P(Ro =1 | Bog, (B_gs1) oo, (B—1), Bo)
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Hence we focus on

k? .

PRz ST B (Boi) o (Boa) B0 )
2 ~
SP(RIC 2 i ;r7(B—k?+1) ) 7( ) |B—kaU>
. k2+7: c sim sim k2+7: ck
< (C Z P (l(—j,O) 2 4 s (B—5) ) +C Z Pjoint( G =I5 > 4 e
0<j<k 0<j<k247
< (Che ™0 4 O 4 e ¢ et
< Qe o), (A7)
if k> K’', # > 0. Hence
€l C(k+2r . e
Gtz \y P(Re =7 | Bk, (B-k+1)", ..., (B-1)", Bo)
r=0 \/771'
k+2 c
P (R =7 | Bory (Bosn)® s oy (B-1)° , Bo)
r=k2
Ck2 (k2+7‘) —c(k?+r)
<= 4+C —
=V Z vm
Ck?
— m’
if k > K’. Altogether we get that
B (14505 > m)
S P Tmeet >myB—k7(B—k+1)c7"'7(B—1)caB0 + —
o vm
K log(m) ( ko) ) c
< Y P(T5n” >m | Bog, (Bk1), . (B1)S, Bo) - CeF + ——=
! Vvm
Klog(m) [ &

C(k+2’f‘) c c —cm —ck C
< ———= A1 |P = B_i,(B_ ., (B= B . —
< 3 S (TG A1) P = B (B s (B ) 4 e | 0o

K log(m) 2
Ck —cm —ck c
< = . .
<2 (Grroem) e
which proves (A.2).
O

A.1.4. From regeneration times to real time

Let the parameters be as defined in section 2.1.4. We show that (2.3) of Proposition 2.1 holds true if it holds true for
Tmeet replaced by A

We fix some x € Z%. Let M > 0 be some large constant. We choose K > 0 large enough, such that

Pfoine(T™ > Km) < ™™ (A.8)
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for all m > M and some ¢ > 0. Inequality (A.8) holds true by Lemma 1.12 and standard large deviation estimates. By
Lemma 2.8 we obtain
;'comt (Tmeet > Km) < P;Eomt (ngez > Km, Tfnim < Km) +e
S P]I'Oint (fmeet > m) + e—Cm

S \/?03 +6—cm
vKm
C

<

vVEm’

which proves the upper bound on P%,;,.; (T'mee: > m). On the other hand notice that within the proof of (2.28) we could
also have conditioned on the event that the time between two regeneration is smaller than % within the next (2971 K)?

steps if the initial value of (D), lies inside the interval [2/ K, 2/*1K), which would have give us a lower bound on

T

K K\ : .- . .
joint (Tmeet >m, (77, 7) is never visited between two regeneration times ) .

Since

T

joint (Tmeet > m)

> Ploint (Tmeet > m, (—%, %) is never visited between two regeneration times )

the lower bound on P}, (Tmeet > m) follows.

A.2. Annealed estimates

A.2.1. ADE

The proof of Lemma 3.9 is very similar to the proof of Lemma 2.14 in [BCR16]. Nevertheless, we give the proofs here for
the sake of completeness and because the requirements in [BCR16] such as “uniform ellipticity (UE)” are not satisfied in

our case. First we need to prove two useful Lemmas.

Lemma A.2. Let {Y;}{2, and {Z;}{2, be a sequence of d-dimensional random variables and a sequence of 1-dimensional
non-negative integer valued random variables, such that {(Yi, Z;)}i21 are independent and identically distributed with re-
spect to some probability measure P. Assume in addition that there exists v € Z%, k € N such that P((Y1, Z1) = (v,k)) > 0
and P((Y1,Z1) = (w,k+1)) > 0 for every w with |jw —v|| < 1. Let Sp, => 1, Yi and T, = >, Zi. Then there ezists
C < oo which is determined by P such that for every n,m € N, every x,y € Z* with ||z — y|| = 1

P((Sn,Tn) = (z,m)) < Cn~ "%, (A.9)
\P((Sn, To) = (2,m)) — P((Sn, T) = (z,m + 1))| < Cn~ %, (A.10)

and
IP((Sn, To) = (,m)) — P((Sn, Tn) = (y,m))| < Cn~ %" (A.11)

Remark A.3. The Lemma above is similar to Claim A.2 in [BCR16]. But since in our case the space-time random

walk (X,, T ) does not always have the same parity, we adapted the Lemma slightly.

Proof Lemma A.2: Let x be the characteristic function of (Y1, Z1). Note that the characteristic function x is periodic,
as (Y1, Z1) is concentrated on a lattice. The existence of (v, k) € Z? x N as described in the requirements of Lemma A.2,

implies that the period is 2r. By Lemma 2.3.2 in [LL10] there exist D,§ > 0 such that
i) [x(0,s)] <1— D for every (0,s) € [~m,n]*"" such that ||(9,s)], > 9,

ii) |x(0,s) <1—DI(,s)|: for every (0,s) € [~m,7|*"" such that ||(8,s)]|, < 9.
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Inequality (A.9) follows by i) and ii) since

- 1 —i(0,x)—i(s-m)_n
P <Z(Y1,Z) (z, m)) = W/p ]d+16 (Om)=ilsm)yng s)dfds

=1
< / IX" (0, s)|dods
[77\',7T]d+1

< / X" (6, 5)|d0ds + / X" (6, 5)|d0ds
1(0,s)[l; =6 [1(0,s)]l; <o

<@n™ta-py+ [ (1= D6, 5)I?)" dods
10,9l <5
< @2m)*" (1 -D)" + / e PRI gg s
10,9l <5
@ m)* (1 - D)" + _ 1 / e~ PO gy gy
- (V)4 Jyo.011, < vms
c
S @ b
n 2

where (%) can be obtained by substituting ¢ = \/nf, t = sy/n. Inequality (A.10) follows by i) and ii) since

P (Z(YQ,ZZ‘) = (x,m)) - P (Z(Yi,Zi) = (z,m + 1)>‘

1=1 =1

/ e oMMy (9, 5)dfds — / T HOm =MD\ (9 5)dhds
[-m W]d-f—l

[_W’W]d+1

(27T

(..
(...
(/..
</[_Md+1 [sllx (6, 5)[" d0ds>

<c(1-D)" +/ |s|e~ P12 g
1(6,s)]l; <o

<

7’L<9 z)—i(s-m) —e i(G,z)—i(s<(m+1))‘ |X(9,S)nd0d8)

<

e i(sm) _ 7i(s-(m+1>>‘ Ix(8, s)|”d0ds>

1—e ™

Ix(6,s)|™ d@ds)

<

IN
Q

d+2 °
2

3

Inequality (A.11) follows by i) and ii) in the same way. O

Lemma A.4. Letd > 3. Fiz 2N* < M < N” and some starting point z = (y,m) € P(N).
Note that P*(Ty = m) = 1. We define the events Z(l) := Up{Ti — To = I} and

M—k

Zu—k(l) == Z()N ﬂ (Z(4), wherem <k<M-—1-1.
j=1+1
Then the following holds:

i) For everyl < M —m and x € Z°

P (XmH —z| 2M_m(l)) <crs. (A.12)
ii) For everyl < M —m and x,y € Z% such that ||z —y|| = 1

‘IP’W”") (Xmi1 =2 | Zarm®)) =PU+™ (Xppp = | 2M_m(1))‘ <cr . (A.13)

iii) For every | < M —m and z € Z¢
‘PW") (Xmsr =2 | Za-m®) = PO (Xpnpr = 2 | Zar-ma(l = 1))( <cr 't (A.14)
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Remark A.5. The Lemma above is almost the same as Lemma A.4 in [BCR16], we give the proof in order to convince
the reader that the Lemma also holds true in our case with conditions such as “(UE)” and “i.i.d. environment” being

violated.
Proof: We first prove part ). Since on Z(I) the event {X,,4; = z} is independent of ﬂj 11 (Z(5)) we get that

P* (Xt = 2| Zas-m (1)) = P* (X1 = 2| Z(1))

- m;wm,m:(x,mw)
Z (XTk,Tk)—(CE m+l) |'E-| Zé—i—m)
k-: 2
ZPZ (Xr,,Ty) = (x,m+l),Tk—T(§] > Ly
i P*(X1,,Tx) = (x,m+1),Trk S%—i—m)
P ar [5]
+ % k:ZL:H]P’ (X, Te) = (@,m + 1), T = Trap < . (A.15)

Lemma A.2 yields

P* ((XTk,Tk) = (z,m+ l),T@ <i +m)

_d+1 . 1
<Ck 2P T|'E-| <s+m]),
and using similar arguments and translation invariance of P*

P ((XTk,Tk) = (x,m +1), Ty —Tm < é)

< Z Z P? ( (X1, Tk) = (x,m +1) ‘ (XT%],T%]) = (w,m+s)> P? <(XT(§TT{§]) = (w,m—i—s))

wezd

<Ck77 Z Z P? < (X1, Tk) = (x,m +1) ’ (XT{E-VT{g—‘): (y+w,m+s)>

1L wezd
=2

SC’k*% i Z P* <(XTk,Tk) =(x—w,m+I) ‘ (XT{ 1 T%P = (y,m+s)>

k
L wezd 2

s=3

<ChkF P (Trpq <t
= {EW_QJFm .

2
Additionally, we get that

N~
+
3
N———

P? ((XTk,Tk) = (x,m—{—l),T{%] > 1L +m> <Ck™z P? (Tm >

A%
|~
_|_
3
N———

P* ((XTkka) =(z,m+1),Tx —T"g-l > %) < Ck—d;rlpz (T"g-‘

Coming back to (A.15) we have

Mh

kP (Tm > é+m) + 3 rEP (T{g] §§+m>>.

P*( Xy =2|2(1) < C (

k=1
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We choose
l
L:= o),
BT, —To] ()
and since
k
2
P? (Tm > 1 +m> =P* Z((T Ti—1) — E*[Th — To)) > L — EE*[Ty — To)
2 i=1
k
2
< P? Z((T‘ —Ty_1) —E°[Th — To))| > w
i=1
& 2d
c 2
< ——5F° i —Tio1) —E° -
< (L_k)QdE Z;((T Ti-1) — E°[Th — To))
. & 2d
c 2 < d
< — —F* - i — di—1) — 5 — k
< gopm® ﬁ;«T T 1) - E°(1 - )
Ck?
(L — k)24’
we get that
PZ<T >L—|—m) P2<T <L—|—m><m1n{1 Ok }
[5] =2 ’ [5] =2 (L — k)2
Hence

As in [BCR16] we split up the sum into four parts. For k € [1, £] we have that ﬁ < 1 and hence

d d—1
5 min {17 (Lki} =N"_*° <Nk L ¥<or =01

d—1

L—VL d L—VL d—1 L—vL a—2
Zk—%min LA :27’” _C/ 52 g
(L — k)2d (L — k)2d (L —s)2d

L

d—1 d—1 )
(L-)7 g <cL s /2 2

VL

—2d+1
<cL 7 (ﬁ) <CcL % <cI %,

For k € [L — VL, L + VL] we have

L+VL d L+VL
d+1 k —d—1 _d _d
E k™2 m1n{ m}g E k2 <CL f<CL <Cl™z2.
k=L—VL k=L—VL
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At last for k € [L + /L, 00|, the proof is very similar to the second case and we get that

d—1

_ds1 k¢ = k2
> e Fan{l A mls ¥ o
k=L+VL k=L+VL
<of” e is+c [ i d
= S S
L+\F( *L)Qd gear (s — L)%
— d—1
(L+t) =8 * (L+t) 2z
<C/ v2d —dt+C T pd dt
k=L
a1 b, < ad 4-2d
< CL 2 / t 2%t + C t 2 dt
VL k=L

_d _d
<CL z2<Cl 2.
The last estimates yield
P*( Xyt = 2| Z(1)) < CU 2.
Next we prove part i4). As in the previous part we have
’P(y”") (Xm+l —z ZM,m(l)) — pltesm) (Xm_H =2 EM,W(Z))’
= 'P(y’m) (Xm+z =z ! Z(l)) — plute;m) (Xm+z =z | Z(l))’

- (11»(%"0 (Xmir=a | Z1)) —PY™ (X1 =z — ¢; | Z(l))‘

< Frm oo [P (K Te) = (@ +0) = PO (X, B = (2 = ey +1)

IA
g
Mh i

PY™ (X, Th) = (z.m+0, 757 < Lam) —PY™ (X, Ti) = (z—ejm+0), Tk §§+m)‘
2 2

PO™ (X, Th) = (,m + D, Tpsy =Tk < §) - PO (X1, Th) = (@ — ej,m + DT
2

‘P(yym) ((XTk,Tk) — (x,m—&—l),T[g] < % +m) plm) ((XTk,Tk) =(z—ej,m+I) [gw < %—Fm)‘
5]
< Z p&™ <(XT’—k—| 7T’,g_l) _ (w,m+ S)) p&™ <(XTk7Tk) = (x,m—l—l) ’ (XT{E—‘ 7T|’§‘|) = (w,m+ S))

- P(y,m) <(XT|'k"| ’T|'§-|) = (wvm + 5)) P(y,m) <(XTk7Tk) = (‘T —ej,m+ l) ’ (XT{E" ’T|'§‘|) = (wvm + 5)) ‘
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and

’P(y,m ((XTk,Tk) = (z,m + l),T(E] > %—i—m) —pm™ ((XTszk) =(z—¢€,m +l)7T(E1 >3 +m)‘
2 2

(y,m) — (w.m 4 s (y,m) .. T:) = (z,m T k1) = (w,m+s
P ((XT’—S-‘vT{g"‘)_( ) + ))P ((X va) ( ) +l)‘(X |'§'|’T{§—|) ( ) + )>

+
—plym =(w—ej,m+s (y,m) A =(x—ej,m T
P ((XTP;‘:T{I;])_( 3, M+ ))P ((X A,7Tk) ( Js +l)|(X ?T|'

[

—_

I

g

|

o

.

3
+
&

~__

H
plv-m) ((XTm ,T{gw) = (w,m+ s)> —plem <(XTW ,T{g]) = (w—ej,m+ s)> ‘

1

> X

1—

IA

. plym) = (z.m T 1) = (w,m+s
P <<XTk7Tk> (@m+0) | Xy Tpg) = +)>

2

we get, by similar bounds on the other terms in (A.15), that

‘P(y’w (Xm+z =z | 2Mfm(l)) — Pt (XmH =7| ZMfm(l))‘

L oo
<C<Z’“%ZPZ (T2 4em) + 3 e (1 <é+m)>
k=1 k=L+1
i d+2 kd
< CZ/(T mln{l, }
o (L — k)2

and hence

‘P(y,m) (Xm+l - } ZM—m(l)) _ ]P)(y+6_7‘7m) (Xm+l - ’ Z\M—m(l))‘ < Cl*%,

The proof of i) requires slightly different arguments. We start in a similar fashion as in the previous case.

‘]P’(y’”o (Xm+l = ’ Z\]\/[,m(l)) — ]P(y'erl) (Xm+l =X | /Z\M,m71(l — 1))’
= ‘W’m) (Xmpr =2 | ZQ0) —PY™ (X =2 | Z(1 - 1))(
= ‘W’m*” (X =2 | ZQ) —PY™ ) (X =2 | Z(1 - 1))(

‘ 1

oz oo P (¥n, 1) = (em 4 141)

k=1
1 (oo}
— P@™Y (.. T) —
]p<y,m+1>(z(l_1))z (X, Tx) = (z,m +1))
k=1
< 1 _ L
= [Pem(Z@) T Per iz - 1)

ZHD(ymLJrl) (X1, Tx) = (z,m +1+1))
k=1

[e'9]

ST (X, To) = (2m 4+ 14 1) = PO (X, T) = (w,m+ D)
=1

1
T Rem (21— 1)) 2

where the last summand can be estimated analogously to part i7). The first summand can be estimated in the following
way

oo

S P (X, Ty) = (z,m + 1+ 1))
k=1

[P (Z(1 — 1) = PO Z0)] by
Plvmt+D)(Z(1 - 1))

< CIP ™D (Z(1 - 1)) — PO (Z(0) 17 F

1 1
‘P(y,m+1>(z(l)) © PlmtD (Z(1— 1))

(Xint141 = z|Z(1))

Therefore we need to prove that

P@mHD (7(1 1)) — P (Z(0))| < €17 (A.16)

100



A.2. Annealed estimates

Since
PO (Z(1 - 1)) = PYT I (Z(0) = | Y PYTT (T = m 1) = Y PYT (T =m 41+ 1)
k=1
< TPYTT = m4 1) = P (T = m 4+ 1+ 1)),
k=1

which can be treated similarly to the differences we had a look at before. Hence the result follows by standard Fourier

analysis similar to Lemma A.2.

Proof of Lemma 3.9: First we prove part i). We have

PZ(XM = .Z')
= 3 P (ZM_m(z)) P (XWH - w|2M_m(z)) P (XM = 2| Zar-m(l), Xyt = w)
I<M—-m wezZd
—~ d o~
< 3 P (Zuen) Y U P (Xar = ] Zarm (1), Xt = w)
I<M-—m wezd
< 3 P (EM,m(l)) crs
I<KM—m
< Z Cefc(M m l>177
I<KM—-m
2m M—m
< C G*C(M m— l)l g+ Z 7C(M77nfl)l—%
=1 M m
=
4 M—m
<Ce 7T +CM-m) 2 Y e M
M—m
="
<OM—m)" 2,

where for the first inequality we made use of the translation invariance of P.

For part ii) we have
|P(y,m)(XNI — m) _ Ip(y+ej:m) (XM = I)|
= [PY™ (Xp = z) — PY™ (X =z — ¢5)]

=| > PYT ) 32 PO (Xt = w0l Zatn O)PC (Xar = 0| X1 = w, Zas (1))

I<M—m weZd
- Z P (Zagem (D)) 3 PO (X = w — €5 2o ()PP (Xar = & — 5| Xonss = w — €5, Zar—m (1))
<M weZd

< X P ()

<M
Z ’P(y’m) mtt = | Za (1) = PO (Xops = w = €] Zar - (1) | PY™ (X ar = 2/ Xonps = w, Znr—m (1))

wezd
~ d ~
ST P (Zaym() S CUF P (Xay = @l Xsr = w, Zas—m (1))
I<M-m wezd
Z Cefc(M m— l)lfﬂ
I<SM—m

1

d+
<OM —m)~ %,
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A. Appendix

As before the proof of iii) requires slightly different arguments.

|]P>(y,m}(XM =) — P(y,m+l)(XM =)

= ( ST PYTNZy ) D PY ( Xy = wl Zym (D)PY (X as = 2] Xt = w, Zn—m (1))

I<M—m wezd
S PET(Z (- 1))
I<M—m

TP (X = w] Zy w1 (- 1D)PYT (X = 2] Xt = w0, Zn - (1 1))

weZd
= | Z PO (Zarem(@) S PO (Xt = 0] 2ot (D)™ (Xar = 2| Xonst = w, Zas—m (1)
1< wezd
- > P@vmﬂ)(zM_m_l(z — 1)) > PYT (X = w|Zn 1 (= D)PY (X = 2] X = w, ZM_m(l))’
I<M—m wezZd
<| > PO ®) Y B (Kt = 0] Zar i 0P (Xas = 2l Xonis = 0, Zas-n(1))
I<M—m weZd
= 3 PO Zan®) Y PO (Xt = | Zar—ma (0= DPY (Xar = 2| X = w, Zar— (1)
I<M—m weZd
30 PO Zan@) 3 PO (Xt = 0] Zagmmoa (U= DIPYT (Xar = 2l Xt = 0, Zas-m (1))
I<M—m weZd
S PUTT(Zy o a(1=1) Y PO (X = w| Zn (L= 1P (X = 2| X = w, 2M_m(z))‘
I<M-m wezZ
ST PY(Zym(l) Y ‘wyvm)(me = w|Zp—m (1) = PC™ (X, = w| 21 (1= 1))
I<M—m weZd

. ]P:(yvm) (XM = CC|Xm+l =w, 2M—m(l))

+ 3 PG ®) - B (Zag il - 1))

I<M—-m

TP (X = w| Za 1 (L= D)PYT (X = 2] Xyt = w, Zus—m (1)

wezd

The first summand can be estimated similarly to part i7). For the last summand note that

PO (Za (1))~ PP (Zag (1 1))

— B (zayn () @Gne) —prm (za-nn () @)
j=l+1 Jj=l
= [P@™ (Z(1))P¥™ /ﬁm(zo))c 20) | —Bom 0z - nyper (T z6)° | 20-1)
j=l+1 Jj=l
_ )P(ym(z(l)) — POt (Z(1 1))’P<y‘m’ ﬁm (Z(5)° | Z(1)
j=l+1

< C[P@ ™ (2) — PO (Z(1 = 1) e MY

< leéefc(lwfmfl)
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A.2. Annealed estimates

where the last inequality follows by (A.16). Hence

3 ’p(%w(zM_m(z)) = PO (Zar i (1= 1))

I<M—-m
3 P (X = w] Z e (U D) (Xag = 2] Xt = w, 2t (1)
weZd
< Y crtEem M N p (X = w| 2y (- 1) (X s = 2] Xt = w, Zas—m (1)
I<M—-m weZd
< Z Cl7%676<M7m7l) Z lfgp(y’erl)(XM =z Xmpr = UJyZMfm(l))
I<M—m weZd
d+1
< Z Ce—c(M—m—l)l—T
I<M—m

d+1

<OM—m)~ 7.

Hence part i7) follows.

A.2.2. Further annealed estimates

In this section we prove estimates (3.38)-(3.41). As required let 2 < M < N?, % <60 <1, ﬁ < ¢ < 6 and
V= {NMIJ. Furthermore, we fix some cube A, C 7.2 of side length N? and center = € Z%. We denote by AECD a cube

with center x and side length %NG that is slightly smaller than A, and by AP a cube with center z and side length
1L N that is slightly bigger than A,. Hence

PO (X € ALY

=P (Xpiv € A, X € Ay) + PO (Xpnv € AW X ¢ A,)

<POY(Xu € Ar) + PO (Xnpv € ALY, Xy ¢ Ay, Ry) + CN 18

M
<P (Xar € An) + Y S PO (Xarsy € A Xos ¢ Ay, R, Teos < M < T, (X1, Tit) = 2) + CN 5™
k=1 2z’

z/:<zlv”/> A X
PO ( Xy € A)+ M > P ) (X v € AY) 4 N elos()

n/ <M+log?(N)
||z—2"||>N?—log?(N)

<PO(Xy €A)+ M > PO Xarpyon € AL ) + CN18N)

x/
M<n'<M+log?(N)
||.7:—z/||>N9—log2(N)

1 —clo.
<POY( Xy € A)+ M > POO (| X pppy || > ENe) + CNeloe®)
M<n/<M+log?(N)

S ]P)(O,O)(XM c Az) _"_CNfclog(N)’

where the last inequality holds true by Lemma 3.6. Inequality (3.39) follows by similar arguments. Hence we turn to

the proof of (3.40). An argumentation similar to (3.22) (see also Remark 3.13) leads to
E” [PZ(Xar € A)[G] (w:) < PZL(Xar € A) + CNT1800,
hence it is enough to prove that
E* [P (Xarsv € AD) = Pi(Xar € A)\g] < CN—Clos),
Notice that
E* [Pj (XM+V € A;(tl)) —Pi(Xm € A)‘Q] <FE* [Pj (XM+V e AV, Xy ¢ Az) ’g] .

Arguing as in Lemma 3.18, we can compare the term above to the annealed probability of hitting ALY at time M + V
without hitting A, at time M + [(N), where [(N) is a slowly varying function. Hence (3.39) follows by the annealed

estimates we proved above.
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