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Zusammenfassung

Diese Dissertation beschäftigt sich mit Ahnenlinien in einem zeitdiskreten, räumlichen Populations-

modell mit lokaler Regulierung, nämlich dem (zeitdiskreten) Kontaktprozess. Die Ahnenlinien können

ebenfalls als gerichtete Irrfahrten in einer zufälligen, dynamischen Umgebung (RWDRE) interpretiert

werden. Die Umgebung, die wir in dieser Arbeit betrachten, wird in der Literatur als �backbone� eines

gerichteten Perkolationsclusters bezeichnet. In unserem Modell wählt ein Individuum seinen Elter in

jedem diskreten Zeitschritt gleichverteilt unter allen Individuen, welche sich in der vorherigen Gene-

ration in seiner nächsten Nachbarschaft be�nden. Die Wahl des Elters in jedem Zeitschritt geschieht

dabei unabhängig von allem anderen. Im Jahr 2013 wurde dieses Modell von Birkner, �erný, Depper-

schmidt und Gantert analysiert, siehe [B�DG13]. Die Autoren haben bewiesen, dass die Irrfahrten,

welche die Ahnenlinien modellieren, ein Gesetz der groÿen Zahl und einen �quenched� zentralen Grenz-

wertsatz erfüllen. Dieser Artikel ist im Zusammenhang mit weiteren, anschlieÿenden Verö�entlichungen

Grundlage für die in dieser Arbeit behandelten Fragestellungen und Probleme.

Im ersten Kapitel dieser Arbeit de�nieren wir das von uns betrachtete Modell und führen die im

Weiteren verwendete Notation ein. Im zweiten Kapitel betrachten wir die gemeinsame Verteilung der

Ahnenlinien aller Individuen der verschiedenen Generationen im eindimensionalen Fall. Der Ausdruck

�eindimensionaler Fall� bezieht sich darauf, dass sich die Individuen in einem eindimensionalen Raum

be�nden. Es stellt sich heraus, dass die di�usiv reskalierte Sammlung aller Pfad schwach gegen das

Brownsche Web konvergiert. Wir veri�zieren hierzu die Konvergenzkriterien in [FINR04] und [Sun05].

Hauptaufgabe ist es, hierzu geeignete Abschätzungen für die Anzahl an Generationen bis zu einem

Verschmelzen zweier Ahnenlinien zu �nden. Es stellt sich heraus, dass der asymptotische Abfall für

die Wahrscheinlichkeit, dass ein gemeinsamer Vorfahre erst nach n Generationen gefunden wird, im

eindimensionalen Fall von der Ordnung O(n−
1
2 ) ist. Diese Abfallrate würde man auch für die Tre�zeit

zweier einfacher Irrfahrten erwarten. Man kann daher sagen, dass nicht besetzte Gebiete, welche die

Verschmelzung der Ahnenlinien verhindern könnten, im eindimensionalen Fall die Wartezeit auf den

ersten gemeinsamen Vorfahren nicht �wesentlich� verlängern.

Im dritten Kapitel beschäftigen wir uns mit Abschätzungen für die Di�erenz zwischen �annealed�

und �quenched� Wahrscheinlichkeiten, Boxen unterschiedlicher Gröÿe zu tre�en. Das Finden solcher

Abschätzungen ist durch einen aktuellen Artikel von Berger, Cohen und Rosenthal (siehe [BCR16])

motiviert, in welchem die Autoren Abschätzungen dieser Art verwenden, um einen �quenched� lokalen

zentralen Grenzwertsatz für ballistische Irrfahrten in einer u.i.v. Umgebung zu beweisen. Hierbei ist

es uns gelungen, ihre Beweisideen auf unser Modell bis auf das Tre�en von Boxen der Seitenlänge

e
√

log(N) log log(N) zu übertragen. Für Raumdimensionen mindestens drei impliziert dieses Ergebnis

bereits den �quenched� zentralen Grenzwertsatz (qCLT) von Birkner et al. und stellt eine wesentliche

Verfeinerung der aus dem qCLT zu gewinnenden Abschätzungen zwischen �annealed� und �quenched�

Wahrscheinlichkeiten dar.
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Abstract

This thesis deals with ancestral lineages in a time discrete spatial population model with local den-

sity regulation, namely the (discrete time) contact process. The ancestral lineages can be seen as

directed random walks in a dynamic random environment (RWDRE), where at each discrete time step

a particle chooses its parent uniformly among the particles in the previous generation, located at its

nearest neighbourhood. The choice at each time step is independent of everything else in the model.

In the literature the dynamic random environment we focus on is called the �backbone� of an oriented

percolation cluster. In [B�DG13] Birkner, �erný, Depperschmidt and Gantert analysed this model

and proved a law of large numbers and a quenched central limit theorem for the random walks that

model the ancestral lineages. In this thesis we mainly focus on problems and questions that arise out

of their work and which have been additionally inspired by subsequently published articles.

Within the �rst chapter we give a precise de�nition of the model and establish the notation that will

be used within the rest of the thesis. Afterwards, in the second chapter we focus on the common

distribution of the ancestral lineages of all individuals over all generations in the one-dimensional case.

Talking about the �one-dimensional case�, we mean that the dimension of the space in which the par-

ticles are located equals one. It turns out that the di�usively rescaled collection of all the ancestral

paths converges weakly to the Brownian web. Checking the convergence criteria given in [FINR04]

and extended by Sun in his PhD thesis (see [Sun05]), the main task is to �nd suitable bounds on the

number of generations one has to wait, until the ancestral lineages of two individuals located within a

�xed distance coalesce. We are able to prove that the tail bounds for the event of the coalescing time

to be greater than n are of order O(n−
1
2 ) in the one-dimensional case. Therefore the tail bounds are

of the same order one would expect from ordinary nearest neighbour simple random walks. Hence one

could say that in the one-dimensional case unoccupied areas that might prevent a coalescing event do

not substantially increase the time until a coalescing event occurs.

In the third chapter we prove estimates between quenched and annealed hitting probabilities of dif-

ferently sized boxes. Investigation of this problem is motivated by a paper of Berger, Cohen and

Rosenthal (see [BCR16]), in which the authors used this kind of estimates to prove a quenched local

central limit theorem for a (ballistic) random walk in an i.i.d. environment. We are able to adapt their

ideas to our model up to a comparison for boxes of side length e
√

log(N) log log(N). This result already

implies the quenched central limit theorem (qCLT) proved by Birkner et al., for space dimension at

least three and provides a comparison between quenched and annealed hitting probabilities on a much

�ner scale than the comparison that follows out of the qCLT.
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Introduction

In this thesis we focus on ancestral lineages in a spatial population model with local density regulation.

In order to motivate our interest in models of this kind we quote a statement by Etheridge:

�The main purpose of theoretical population genetics is to understand the complex patterns of

genetic variation that we observe in the world around us.�1

The understanding of ancestral structures in a population model is one of the key elements to deduce

information on genetic variation. Knowing the ancestral lineages of particles, we can answer questions

on the type of individuals or identify the most recent common ancestor of an arbitrary subgroup of

particles. The ancestral lineages within the population model we focus on can be seen as belonging

to the huge class of random walks in random environment (RWRE). RWRE is a �eld that received

considerable attention within the last decades. Models of RWRE can be helpful to understand phys-

ical, geological or biological problems such as the motion of electrons in crystals with impurities (see

e.g. [BH91], [HK87, section 10] and [BG90b]), �uid �ows in reservoirs consisting of a �mixture of good

sandstones with high permeability (i.e. �ow units) and poorer siltstones, mudstones and shales with

low permeability�2 (see e.g. [SZ11] ), and as already mentioned above, ancestral lineages in population

models.

In general RWRE means that at each step the transition probabilities or transition rates of the ran-

dom walk depend on the random con�guration of the environment. The transition probabilities do not

need to be determined by a local con�guration of the random environment. In our case, for example,

transition probabilities depend on the whole (possible) ancestry given by the environment. A random

walk in random environment can basically be understood as a two-step random experiment. In the

�rst step the environment is created according to some given probability measure. The outcome of the

second step is a realisation of a random walk path whose dynamics depend on the environment. If the

environment changes in time as well, we speak about random walk in dynamic random environment

(RWDRE). Including the time-component as an additional dimension, we can, of course, think about

RWDRE belonging to the class of RWRE but the special importance of the time component in many

cases legitimates thinking about RWDRE as a di�erent kind of model.

Recalling that we want to focus on ancestral lineages in a spatial population model, we are interested

in the con�guration of inhabited sites at di�erent times in order to identify ancestors. Since the time

1[Eth11]
2see [SZ11], page 668, second paragraph
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Introduction

component has a �special role� within the model, it is obvious that our model belongs to the class of

RWDRE. In this context of RWDRE one usually refers to the whole environment (including the time

component) as a random space-time environment.

In the literature a huge variety of di�erent random space-time environments is discussed. The �rst

group of random space-time environments we want to mention are independent and identically dis-

tributed (i.i.d.) environments where at each space-time point transition probabilities of the random

walk are chosen independently according to a identical distribution (see e.g. [RAS05]). A slight vari-

ation of this environment, where independence is only assumed between di�erent time slices, can be

found for example in [JRA11]. In this case one can think of the environment as being �refreshed at

each time step�. Random environments where individual sites evolve in time as independent Markov

chains are for example analysed in [BMP08], [DL09] and [BZ06]. A more generalized case where uni-

form coupling conditions are imposed on the Markovian environment is discussed in [RV13]. At last

we want to mention the group of environments generated by particle systems. For example [dHKS14]

and [HdHdS+15] focused on models of random walks on random walks. Random environments gener-

ated by an interacting particle system are for example considered by [AdHR11], [dHdSS13]. Classical

examples are spin systems or exclusion processes. The environment we focus on is generated by a

time-discrete version of the contact process.

In general the contact process η := (ηt)t∈I on Zd, where I = [0,∞) or I = N0, is a {0, 1}Z
d
valued

Markov process that can be seen as a model for the spread of an infection or the growth of a population.

At some given time t ∈ I we think of the sites {b ∈ Zd : ηt(x) = 1} as being �infected�, whereas the

sites in {b ∈ Zd : ηt(x) = 0} are considered to be �healthy�. In the continuous time case a healthy

site becomes infected at a rate proportional to the number of infected neighbours and an infected site

becomes healthy at rate 1. Hence the �ip rate c(η, x) by which the state of ηt at x ∈ Zd is �ipped from

0 to 1 or vice versa is given by

c(η, x) =

1, if η(x) = 1,

λ · (#{y : ‖x− y‖1 = 1, η(y) = 1}), if η(x) = 0,

where λ ≥ 0 is called the infection parameter. In this case the set U(x) = {y ∈ Zd : ‖x− y‖1 = 1}
is considered as the nearest neighbourhood of x ∈ Zd. In the discrete time case, a healthy site will

be infected at the next time step with probability p ∈ (0, 1) if there exists an infected particle in its

nearest neighbourhood and an infected site recovers with probability (1−p). A precise de�nition of the

discrete version of the contact process considered within this thesis will be given in section 1.2. Other

articles dealing with random walks on discrete or continuous time versions of the contact process are

[B�DG13], [BH15], [Mil16], [Bet16], [B�D16] and [BV16]. The list of examples on di�erent environ-

ments given above is, of course, not complete and neither is the list of references. We just list some

models in order to give an impression of how random environments could look like. When working on

RWRE, one usually deals with the following two probability measures: The law of the random walk

on a �xed environment is called the quenched law, whereas averaging over random environment and

random walk is called the annealed law of the random walk.

The �groundwork� for this thesis is an article by Matthias Birkner, Ji°í �erný, Andrej Depperschmidt

x



and Nina Gantert [B�DG13], which deals with the same RWDRE-model we are working on. In

[B�DG13] the authors describe a regeneration construction for the random walk on the discrete time

contact process and derive a law of large numbers (LLN) and a quenched central limit theorem (qCLT)

from it. In [Mil16] the results by Birkner et al. are extended to a contact process with �uctuating

population size. This is realized by supplementary �carrying capacities� ful�lling certain mixing con-

ditions. In fact, the random walks are de�ned on a subgraph of an oriented (site) percolation cluster.

The link between oriented percolation and the discrete time contact process is discussed in section

1.2.1 below. The restriction to the subgraph was necessary to avoid traps in which a directed random

walk might get stuck.

In [B�DG13] Birkner et al. also proved that two random walks de�ned on the same oriented perco-

lation cluster are �essentially independent� when they are far apart. Based on their observations the

question arises how several (or in�nitely many) random walks on the same oriented cluster behave.

In this thesis we prove that the di�usively rescaled system of coalescing random walks, starting from

each space time point contained in the subgraph (traps are deleted) of an oriented percolation cluster

of dimension 1 + 1, converges weakly towards the Brownian web (BW). Systems of one-dimensional

coalescing Brownian motions starting from R×{0} have �rst been studied by Arratia [Arr79]. Later on
Tóth and Werner [TW98] analyse �coalescing re�ected-absorbed Brownian motions� which they need

for construction and analysis of their �true self-repelling motion�. A new characterization of the BW

is given by [FINR04], [FINR02]. They characterize the BW as a random variable taking values in a

complete separable metric space, whose elements are compact sets of paths. Additionally, they give

criteria for a whole system of rescaled coalescing random walks to converge in distribution towards

the Brownian web. In [FINR04] convergence criteria for the case of non-crossing and crossing random

walk paths have been developed. These results are extended by Sun in [Sun05] to the case of crossing

random walks, whose increments ful�l a �nite �fth moment condition. In the second chapter of this

thesis we will prove that our model ful�ls the generalized convergence criteria given by Sun. Some

further articles dealing with properties of the BW and its dual are [NRS10] and [SSS14]. In [SS13]

the authors prove that the centered and di�usively rescaled collection of the right most paths in an

oriented percolation cluster converges weakly towards the Brownian web. In our case the situation is

di�erent, since one of the main problems we have to deal with is the crossing of �nearest neighbour

paths� which does not occur, if always the rightmost path is chosen.

The second main problem we focus on is a comparison between quenched and annealed hitting prob-

abilities of di�erently sized boxes. In [BCR16] Berger et al. use this kind of estimates to prove a

quenched local central limit theorem (qLCLT) for (ballistic) random walks in an i.i.d. environment.

Although we do not prove a qLCLT within this thesis, we are able to adapt some ideas in [BCR16] to

our set-up and get a comparison between quenched and annealed probabilities for hitting boxes of side

length e
√

log(N) log log(N). This comparison together with the annealed central limit theorem implies the

quenched central limit theorem (qCLT) proved by Birkner et al., for space dimension at least three.

Additionally, it provides a comparison between quenched and annealed hitting probabilities on a much

�ner scale than the comparison that follows out of the qCLT. The most helpful tool for proving the
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estimates between the quenched and annealed probabilities is the environmental exposure procedure

�rst invented by Bolthausen and Snitzman in [BS02]. A lot of the ideas we use can also be found in

[Ber12].
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CHAPTER 1
Description of the model: (Coalescing) Random walks on the

backbone of an oriented percolation cluster

1.1. Primary notation

In this chapter we give a precise de�nition of the model we are working on. We want to point out that

a very detailed description of the model can also be found in [B�DG13].

Let
ω := {ω(x, n) : (x, n) ∈ Zd × Z} (1.1)

be a family of i.i.d. Bernoulli(p) random variables de�ned on some probability space

(Ω,A,P). (1.2)

Hence P ◦ ω−1 is a Bernoulli product measure on {0, 1}Zd×Z. Given a site (x, n) ∈ Zd × Z, we usually
refer to the �rst component x ∈ Zd as space and to the second component n ∈ Z as time. We call

a (space-time) point (x, n) to be open or inhabitable if ω(x, n) = 1, and closed or uninhabitable if

ω(x, n) = 0. During the rest of the thesis ‖ · ‖ refers to the supremum-norm unless stated otherwise.

An open (directed) path in ω that starts from (y,m) and ends in (x, n) for some x, y ∈ Zd and m,n ∈ Z
with m ≤ n, is a sequence xm, xm+1, ..., xn ∈ Zd such that xm = y, xn = x, ‖xk − xk−1‖ ≤ 1 for all

k = m+ 1, ..., n and ω(xk, k) = 1 for all k = m, ..., n. If there exists an open directed path in ω from

(y,m) to (x, n) we will write (y,m)
ω→ (x, n). If for some ω for every n ≥ m there exists x ∈ Zd such

that (y,m)
ω→ (x, n), we will write (x, n)

ω→∞.

Remark 1.1. In the proofs that follow, C and c denote some positive constants that are only allowed

to depend on the success probability p of ω(x, n), (x, n) ∈ Zd in (1.1) and the space dimension d. If

the explicit value of some constants is not important for the result, they will always be denoted by C

and c. The constants C and c may also vary within a chain of inequalities. If the value of a certain

constant is important for a later step, we will add a subscript to it C1, c1, C2, c2....

1.2. The discrete time contact process

As already mentioned in the introduction we focus on random walks in random environment, where in

our case the environment is generated by a discrete time version of the contact process. The (continuous

time) contact process was �rst introduced by Harris in [Har74]. It is one of the classical interacting

particle systems and serves as a model for the spread of an infection or the growth of a population. In

1



1. Description of the model

the discrete time case, a healthy site will be infected at the next time step with probability p, if there

exists an infected particle in its nearest neighbourhood and an infected site recovers with probability

(1 − p). In this section we will give a precise de�nition of the discrete time contact process and the

random environment we are interested in. Furthermore, some already known facts about the contact

process will be listed. For the proof of these facts we will often refer to results about the continuous

time contact process. Although in many cases a precise reference in the literature is missing, one

agrees on these results to hold true for the discrete time contact process as well. We apologize for this

inaccuracy, but giving all the proofs would go beyond the scope of this thesis.

De�nition 1.2. We �x m ∈ Z and A ⊂ Zd. The discrete time contact process ηA,m := (ηA,mn (y))n≥m

starting at time m from the set A is de�ned as

ηA,mm (y) = 1A(y), y ∈ Zd,

and for n ≥ m

ηA,mn+1(x) =

1 if ω(x, n+ 1) = 1 and ηA,mn (y) = 1 for some y ∈ Zd with ‖x− y‖ ≤ 1,

0 otherwise.
(1.3)

With the convention that ω(x,m) = 1A(x), whereas for n > m the ω(x, n) are i.i.d. Bernoulli(p) as

de�ned in (1.1), we have

ηA,mn (x) = 1, if and only if (y,m)
ω→ (x, n) for some y ∈ A.

Sometimes we refer to ηA,m as the contact process driven by ω or de�ned on ω. For some given

distribution µ on {0, 1}Zd we write ηµ,m := (ηµ,mn )n≥m for the discrete time contact process with initial

con�guration ηµ,mm distributed according to µ.

If ηA,mn (y) = 1, we consider the particle in y at time n to be �infected� by some particle x ∈ A at time

m. Sometimes the random variable ηA,mn (y) also refers to the set of infected sites at time n ≥ m. For

x ∈ Zd, we often refer to the set

U(x) := {y : ‖x− y‖ ≤ 1} (1.4)

in (1.3) as the nearest neighbourhood of x (with respect to ‖·‖). For A ⊂ Zd the nearest neighbourhood
of A is de�ned as

U(A) :=
⋃
x∈A

U(x). (1.5)

If A = {x} for some x ∈ Zd, we write η(x,m)
n instead of η{x},mn .

De�ne

τA := inf{n ≥ 0 : ηA,0n = ∅} (1.6)

as the time that the contact process starting from A ⊂ Zd at time 0 dies out. If A = {x}, x ∈ Zd we
write τx instead of τ{x}.
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1.2. The discrete time contact process

There exists a critical value pc ∈ (0, 1) such that P(τ0 =∞) = 0 if p ≤ pc and P(τ0 =∞) > 0 if p > pc

(see e.g. Theorem 1 in [GH02]), where 0 = (0, ..., 0) ∈ Zd. During the rest of this thesis we assume

p > pc.

The discrete time contact process is a Markov process on {0, 1}Zd . Notice that on {0, 1}Zd , there exists
a partial order of elements given by

η ≤ η′, if η(x) ≤ η′(x) for all x ∈ Zd. (1.7)

We always assume {0, 1}Zd to be equipped with the product topology. A continuous function

f ∈ C({0, 1}Zd) is called increasing if

η ≤ η′ implies f(η) ≤ f(η′). (1.8)

We call two probability measures µ1, µ2 on {0, 1}Z
d
to be stochastically monotone, denoted by µ1 ≤ µ2,

i� ∫
{0,1}Zd

fdµ1 ≤
∫
{0,1}Zd

fdµ2 for all increasing f ∈ C({0, 1}Zd). (1.9)

If µ1 ≤ µ2, we also say that µ2 stochastically dominates µ1.

Next we will focus on the weak limit of ηZ
d,m

0 as m tends to −∞. Notice that the de�nition of

the contact process de�ned on ω yields a monotone and additive coupling for arbitrary initial states

A,B ⊂ Zd, which means that

A ⊂ B ⇒ ηA,mn ⊂ ηB,mn , (1.10)
and

ηA∪B,mn = ηA,mn ∪ ηB,mn . (1.11)

Furthermore, for A,B ⊂ Zd the following (self-)duality relation holds true

P(ηA,mn ∩ U(B) 6= ∅) = P(ηB,mn (ω) ∩ U(A) 6= ∅) (1.12)

for the de�nition of U(A) see (1.5). The duality relation has to be written like this because of the

convention that is made within the de�nition of ηA,mn . The relation can be easily veri�ed by reversing

the directed paths in ω between A× {m} and B × {n+ 1}.
Now we focus on the discrete time contact process with initial con�guration Zd. Let µm be the

distribution of ηZ
d,m

0 and let f ∈ C({0, 1}Zd) be an increasing function. Since ηZ
d,m

0 ⊂ Zd a.s. for all
m ≤ 0 the monotone coupling in (1.10) and the Markov property of the discrete time contact process

imply ∫
{0,1}Zd

fdµm′ ≤
∫
{0,1}Zd

fdµm for all m′ ≤ m ≤ 0. (1.13)

which means that µm′ ≤ µm for all m′ ≤ m ≤ 0. Hence compactness of the set of probability measures

on {0, 1}Zd implies the existence of a unique weak limit

ν̄
w
= lim

m→−∞
µm = lim

m→−∞
L(ηZ

d,m
0 ), (1.14)
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1. Description of the model

which is also non-trivial since we assume p > pc. The measure ν̄ is called the upper invariant mea-

sure of the discrete time contact process. Hence, taking m to −∞, we obtain a stationary process

η := (ηn)n∈Z := (ηZ
d

n )n∈Z, where for a given con�guration ω ∈ {0, 1}Zd×Z

ηn(x) = 1, if and only if (1.15)

for every m ≤ n there exists y ∈ Zd such that (y,m)
ω→ (x, n).

1.2.1. Link to oriented percolation

A very nice explanation of how oriented percolation is connected to the contact process can be found

in [Lig99, page 13], yet for the sake of completeness we give a short explanation with notation adapted

to our case.

We change our view on the contact process slightly. Let A be a �nite subset of Zd. If the contact

process (ηA,mn )n≥m is seen as a Markov process with state space given by the collection of �nite subsets

of Zd, its evolution in time can be described as follows:

Given the information on the process up to time n, the events {x ∈ ηA,mn+1}x∈Zd are independent and

P({x ∈ ηA,mn+1}|η
A,m
1 , ..., ηA,mn ) =

P(ω(x, n+ 1) = 1) = p if ηA,mn ∩ {y : ‖x− y‖ ≤ 1} 6= ∅,

0 otherwise.
(1.16)

This description of the contact process is not usual but shows its connection to oriented (site) perco-

lation and in fact exhibits it as a �probabilistic cellular automaton�.

1.2.2. Some facts about the contact process and its upper invariant measure

In this section we will list some facts about the contact process, which will be needed for later results.

As already mentioned the references often refer to the continuous time contact process, nevertheless,

the statements also hold true for the discrete time case.

The �rst Lemma shows how the survival probability of the (discrete time) contact process is related

to its initial con�guration and gives an estimate on the probability that the contact process dies out

after surviving for n steps. Recall the de�nition of τA in (1.6).

Lemma 1.3. There exist constants C, c > 0 such that for every n ≥ 0 and A ⊂ Zd we have

P(n ≤ τ0 <∞) ≤ Ce−cn (1.17)

and

P(τA =∞) ≤ Ce−c|A| (1.18)

Proof: For the proof of the continuous time case we refer to [Lig99, Theorem 2.30]. Furthermore,

Birkner et al. gave a proof of (1.17) for the discrete time case in [B�DG13, Lemma A.1.].
�

We already mentioned that the upper invariant measure ν̄ is non-trivial. The next Lemma gives an

easy example of a non-trivial measure that is stochastically dominated by ν̄.
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1.2. The discrete time contact process

Lemma 1.4. The upper invariant measure of the contact process stochastically dominates a Bernoulli

product measure νp′ := Ber(p′)⊗Z
d
for some p′ > 0.

Remark 1.5. Recall the de�nition of stochastic domination from (1.9). The stochastic domination

in Lemma 1.4 is equivalent to the existence of a probability measure µ on {0, 1}Zd × {0, 1}Zd with

marginals νp and ν̄, which means

νp(A) = µ((ζ, ζ ′) ∈ {0, 1}Zd × {0, 1}Zd : ζ ∈ A),

ν̄(A) = µ((ζ, ζ ′) ∈ {0, 1}Zd × {0, 1}Zd : ζ ′ ∈ A),

such that

µ((ζ, ζ ′) : ζ ≤ ζ ′) = 1

See also the remarks at the beginning of section two in [LS06] and [Lig85, page 72, Theorem 2.4].

Proof of Lemma 1.4: For the continuous time contact process, the proof of Lemma 1.4 is given in

[LS06, Theorem 1.1].
�

The next Lemma is a discrete time analogue of the shape theorem given in [DG82, Theorem, equation

(8)], see also [BG90a, Theorem (5)]. Before we are able to write it down, we need a little more notation.

For x, y ∈ Zd and m ∈ Z we de�ne the stopping time

t(y,m)(x) := inf{n ≥ m : x ∈ η(y,m)
n },

with convention inf ∅ := ∞. The random time t(y,m)(x) is the �rst time at which a site x ∈ Zd is

infected by the discrete time contact process starting from y ∈ Zd at time m. Furthermore, we de�ne

H(y,m)
n :=

{
y′ ∈ Rd : ∃ x ∈ Zd with

∥∥x− y′∥∥ ≤ 1

2
and t(y,m)(x) ≤ n

}
, (1.19)

which is the set of all sites infected by the contact process (η
(y,m)
n )n up to time n. Next we de�ne the

set of successful coupling between η(y,m)
n and ηZ

d,m
n by

K(y,m)
n :=

{
y ∈ Rd : ∃ x ∈ Zd with ‖x− y‖ ≤ 1

2
and η(y,m)

n (x) = ηZ
d,m

n (x)

}
. (1.20)

Note that for each x ∈ Zd that is contained in H(y,m)
n or K(y,m)

n , the random sets also contain a cube

of side length one and center x.

Lemma 1.6. (shape theorem) There exists a convex subset U ⊂ Rd, which is a neighbourhood of

0 ∈ Rd, such that for any ε > 0

n · (1− ε) · U ⊂ H(0,0)
n ⊂ n · (1 + ε) · U eventually,

almost surely on the event {τ0 =∞}. Additionally,

n · (1− ε) · U ⊂ H(0,0)
n ∩K(0,0)

n ⊂ n · (1 + ε) · U eventually,

almost surely on the event {τ0 =∞}.
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1. Description of the model

Proof: For the continuous time contact process, this is proved in [DG82, Theorem, equation (8)], see

also [BG90a, Theorem (5)].
�

There also exists a more quantitative version of the shape theorem which is literally formulated for the

continuous time case:

Lemma 1.7. There exist constants C, c, γ > 0 such that

P
(
ηZ

d,0
n (x) 6= ην̄,0n (x)

)
≤ C−cn, x ∈ Zd, (1.21)

P
(
η(0,0)
n (x) 6= ηZ

d,0
n (x) | τ0 =∞

)
≤ Ce−cn, ‖x‖ ≤ γn, (1.22)

and

P
(
t(x) > n| τ0 =∞

)
≤ Ce−cn, ‖x‖ ≤ γn (1.23)

Proof: The proof for the continuous time case can be found in [DG82]. See especially �Theorem� and

Proposition 6, equation (33) and (34). Note that (1.21) follows immediately by (1.17), self duality of

η and the fact that

P
(
ηZ

d,0
n (x) 6= ην̄,0n (x)

)
= P

(
ηZ

d,0
n (x) = 1

)
− P

(
ην̄,0n (x) = 1

)
= P (τx > n)− P (τx =∞) .

�

Remark 1.8. In [GM14] a shape theorem is proven for the continuous time contact process in random

environment. The term �random environment� in the context of [GM14] refers to randomly chosen

rates according to which an infected site infects its nearest neighbours.

1.3. The backbone of an oriented percolation cluster

In this section we give a new interpretation of η and explain what is meant by the backbone of an

oriented percolation cluster. The de�nition of η can be found in (1.15). The term �backbone of an

oriented percolation cluster � was used by Birkner et al. in [B�DG13]. A precise de�nition of the model

can also be found therein.

For the rest of this thesis we want to think of η as a population process. We call a site x inhabited

or occupied by an individual at time n, i� ηn(x) = 1. Recall the de�nition of U in (1.4). By the

way η was constructed, ηn(x) = 1 for some (x, n) ∈ Zd × Z implies that at time n − 1 there exists

a particle in the nearest neighbourhood of x, more precisely ηn(x) = 1 implies ηn−1(y) = 1 for some

y ∈ U(x). We call the particle in x at time n to be an o�spring of the particle in y at time n − 1. If

there exists more than one particle in the nearest neighbourhood at time n− 1, we choose the parent

uniformly among the possible ones. This is also the place where local competition comes into play. In

sparely crowded regions a particle has higher probability to leave an o�spring for the next generation.

Or from a di�erent point of view, in sparely crowded areas a particle has an increased chance to be

chosen as parent. Since we are interested in ancestral lineages, respectively random walks in random
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1.4. Random walks on C

environment moving �backwards in time� (relative to the natural dynamics of η), we reverse the time

direction to avoid negative signs. We denote the time reversal of η by ξ := (ξn)n∈Z.

Recognize that for a given con�guration ω ∈ {0, 1}Zd×Z the time-reversed process ξ = (ξn)n∈Z can be

characterized as

ξn(x) =

1 if (x, n)
ω−→∞,

0 otherwise.
(1.24)

Since η is a stationary Markov process its time reversal ξ is a stationary Markov process as well. The

invariant measure of ξ is the upper invariant measure of the discrete time contact process. The random

set

C := {(x, n) : ξn(x) = 1} (1.25)

is called the backbone of an oriented percolation cluster. If we want to emphasize the dependence of ξ

on ω or some special ω is chosen, we write ξω := (ξω(x, n))(x,n)∈Zd×Z := (ξn(x))(x,n)∈Zd×Z. Notice that

ξ is measurable with respect to σ
(
ω(x, n) : (x, n) ∈ Zd × Z

)
.

1.4. Random walks on C

In this section we give a precise de�nition of the random walks on C we are interested in. We �x some

z = (y,m) ∈ Zd × Z which will be the initial value of the random walk and restrict ourselves to the

event

Bz := {ξm(x) = 1} = {(x,m) ∈ C}. (1.26)

By stationarity of η, it would have been enough to focus on the event B(0,0) := {ξ0(0) = 1}. But

the construction of the random walk for an arbitrarily chosen initial value is better to establish the

notation that will be used later on. Note that P(Bz) = P(B(0,0)) > 0.

We �x some con�guration ω ∈ Bz. As described before, given ω, we want to construct a random

walk starting from y at time m that chooses its next step (resp. its parent) uniformly among all

possible states (resp. parents) in the next time-layer. We want the choice among the possible states

to be independent of everything else in the model. Given some �xed environment the random walk is

de�ned as follows:

De�nition 1.9. (Quenched law) For some given ω ∈ Bz the quenched law of the random walk

starting from z, usually denoted by P zω , is characterized by P
z
ω(Xm = y) = 1 and transition probabilities

P zω(Xn+1 = x′|Xn = x) :=
ξn+1(x′)∑

x̃:‖x̃−x‖≤1 ξn+1(x̃)
, (1.27)

which means that X is a time-inhomogeneous Markov-chain under Pω.

Remark 1.10. By the de�nition of the quenched law above the random walk X on the environ-

ment ω starting from space-time point z = (y,m) ∈ Zd × Z remains unde�ned up to time m. This

appears to be more natural since in fact we consider a (d + 1)-dimensional directed random walk

(Yn)n≥0 := (Xn+m, n + m)n≥0 and do not want to shift the space and time component against each

other.
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1. Description of the model

De�nition 1.11. (Annealed law) De�ne Pz( · ) := P( · |Bz). The annealed law Pz of the random
walk starting from the space time point z is de�ned as

Pz(·) :=

∫
P zw(·) Pz(dω) =

1

P(Bz)

∫
Bz

P zw(·) P(dω). (1.28)

By a common abuse of notation, the measure Pz also refers to Pz ⊗ P zw, which is the joint law of the

environment and the random walk. Note that Pz ⊗ P zw is technically a semidirect product and not a

product law.

We denote the expectations with respect to P zω , P
z and Pz by Ezω, Ez and Ez.

1.4.1. De�nition of the regeneration structure

In this subsection we focus on a regeneration structure of the random walks on C. This regeneration
structure allows us to cut the random walks into independent and identically distributed (i.i.d.) incre-

ments. The lemmas and arguments within this subsection are given in much more detail at [B�DG13,

section 2]. Birkner et al. adapted arguments from [Kuc89] and [Neu92] to prove exponential moments

on the random walk increments between regeneration times. Cutting the random walk path into i.i.d.

increments which have exponential and hence second moments, they immediately derived an annealed

central limit theorem and a (strong) law of large numbers for the random walks. Also for their proof

of the quenched central limit theorem, the regeneration structure was one of the main ingredients. For

the sake of completeness we list some of the lemmas in [B�DG13], which will be needed later on and

try to explain the ideas behind them as brie�y as possible.

The �rst thing we want to explain is how a random walk path with dynamics given at (1.27) can be

constructed using only �local� information on ω. Instead of choosing some arbitrary space-time point

the random walk starts from, we will locally construct a path of the random walk starting from 0 at

time 0 on the event B(0,0) (see (1.26)). We start by de�ning some additional randomness on (Ω,A,P)

(see (1.2)). For each (x, n) ∈ Zd × Z let

ωnb(x, n) := (ωnb(x, n)[1], ... , ωnb(x, n)[3d]) (1.29)

be a uniform (random) permutation of the nearest neighbours of x that is independent of everything

else in the model. Let γ(0,0)
k := (γ

(0,0)
k (n))n=0,...,k be a directed open path of length k ∈ N starting

from space-time point (0, 0) ∈ Zd × Z, de�ned as follows:

γ
(0,0)
k (0) = 0 ∈ Zd

and

γ
(0,0)
k (n+ 1) :=



the element of

{y ∈ U(x) : (y, n+ 1)
ω→ Zd × {k − 1}}

that appears �rst in ωnb(x, n)

 if γ(0,0)
k (n) = x and 1 ≤ n ≤ k − 2,

ωnb(x, k − 1)[1] if γ(0,0)
k (n) = x and n = k − 1.
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1.4. Random walks on C

We interpret γ(0,0)
k (k) as a �possible ancestor� of the individual at space-time point (0, 0). We want to

point out that γ(0,0)
k is measurable with respect to

Gk0 := σ(ω(x, n), ωnb(x, n) : x ∈ Zd, 0 ≤ n < k).

Furthermore, if γ(0,0)
k (n) ∈ C for some n ∈ 1, ..., k it follows that γ(0,0)

m (n) = γ
(0,0)
k (n) for all m ≥ k.

On B(0,0) the limit

γ(0,0)
∞ (j) := lim

k→∞
γ

(0,0)
k (j) (1.30)

exists for all j ∈ N0. The properties of the local construction (see [B�DG13, Lemma2.1 and Remark

2.2]) yield a coupling on B(0,0) of the random variables ω, ωnb and the random walk X starting from

0 at time 0 by

Xn := lim
k→∞

γ
(0,0)
k (n). (1.31)

Using the local construction, we de�ne a sequence (Tn)n≥0 of random times by

T0 := 0 and Tj := inf
{
k > Tj−1 : ξk

(
γ

(0,0)
k (k)

)
= 1
}
. (1.32)

Notice that γ(0,0)
Tj

(Tj) = γ
(0,0)
m (Tj) for all m > Tj , which by (1.31) and the de�nition of the local

construction implies that Xm = γ
(0,0)
Tj

(m) for all m ≤ Tj . We interpret (Tj)j≥0 as the times at which

the local construction discovers a �real ancestor� of the individual located at (0, 0) and call them

regeneration times. For i ≥ 1, we de�ne

τi := Ti − Ti−1 and Yi := XTi −XTi−1 . (1.33)

According to [B�DG13, Lemma 2.5] Yi is symmetrically distributed, the sequence (τi, Yi)i≥1 is i.i.d

and there exist constants C, c > 0 such that

P(0,0)(‖Y1‖ > n) ≤ Ce−cn and P(0,0)(τ1 > n) ≤ Ce−cn. (1.34)

The proof of these statements is given in [B�DG13, section 2.3]. The main idea for the proof of (1.34) is

to dominate the number of attempts before the local construction hits the cluster C by a geometrically

distributed random variable with positive success probability. Furthermore, one needs to make use of

the fact that for each failure one has to explore a �dead end� whose length has exponential tail bounds

by (1.17).

1.4.2. Finite number of random walks starting from deterministic space-time

points

In this section we introduce di�erent models of several random walks de�ned on the same and inde-

pendent copies of C. The de�nitions within this subsection are essential for the rest of this thesis. If

we consider several random walks, we slightly change our notation. Instead of considering the random

walk X with respect to the probability measures Pz and P zw we rather add a subscript z to X in order

to indicate the initial value. Since we extended the probability space (Ω,A,P) by some additional ran-

domness ωnb, it is consistent with De�nition 1.11 to refer to P( · |Bz) as the annealed law of the random
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1. Description of the model

walk X(z) starting from the space-time point z. Recall the de�nition of Bz in (1.26). Furthermore, for

z1, ..., zn ∈ Zd × Z we de�ne

Bz1,...,zn :=
⋂
k≤n

Bzk . (1.35)

(i) Random walks de�ned on a joint oriented percolation cluster

At �rst we want to consider a model of l ∈ N random walks which for one given oriented percolation

cluster move independently of each other on the same backbone. We refer to this model as the joint case,

since several random walks are de�ned on a joint oriented percolation cluster, respectively its backbone.

Notice that talking about �independent random walks� would be too much in this context since the

cluster creates a dependence between them. If two random walks visit the same sparely crowded area,

it is more likely that they choose the same ancestors. We �x z1 = (y1,m1), ..., zl = (yl,ml) ∈ Zd×Z and

extend the probability space (Ω,A,P) (see (1.2)) by l independent copies of ωnb, which will be denoted

by ω(1)
nb , ..., ω

(l)
nb . If the probability space is extended like this, we will add the subscript �joint� to it and

denote it by (Ωjoint,Ajoint,Pjoint). On the event Bz1,...,zn we construct random walks X(z1), ..., X(zl)

starting from z1, ..., zl in the way we described in (1.31), but for each random walk the ancestral choice

will be done according to some independent copy of ωnb. Since for a given con�guration of ω, for each

random walk the choice of its parent at the next time step is independent of everything else in the

model, we indeed get l random walks which for a given oriented percolation cluster move independently

of each other. Notice that

Pjoint(X
(z1)
n1
∈ A1, ..., X

(zl)
nl
∈ Al | Bz1,...,zl) =

1

P(∩k≤lBzk)

∫
∩k≤lBzk

P z1w (Xn1 ∈ A1) · ... ·P zlw (Xnl ∈ Al)dP

for A1, ..., Al ∈ B(R), n1 ≥ m1, ..., nl ≥ ml.

(ii) Random walks de�ned on independent copies of the oriented percolation cluster

Next we will de�ne the model corresponding to what one would call �independent� random walks

on oriented percolation clusters. Again we �x z1 = (y1,m1), ..., zl = (yl,ml) ∈ Zd × Z and ex-

tend (Ω,A,P) not only by l independent copies ω(1)
nb , ..., ω

(l)
nb of ωnb, but also by l independent copies

ω(1), ..., ω(l) of ω. The probability space extended like this will be denoted by (Ωind,Aind,Pind). Now

for each pair (ω(k), ω
(k)
nb ) we construct a random walk X(zk) starting from zk, conditioned on the event

{zk ∈ C(ω(k))} = {ξω(k)(zk) = 1}. What we obtain is a system of l actually independent random walks

de�ned on independent copies of C, hence we refer to this model as the independent case. Notice that

Pind(X(z1)
n1
∈ A1, ..., X

(zl)
nl
∈ Al | Bind

z1,...,zl
) =

l∏
k=1

1

P(Bzk)

∫
Bzk

P zkw (Xnk ∈ Ak)dP,

for A1, ..., Al ∈ B(R) n1 ≥ m1, ..., nl ≥ ml, where

Bind
z1,...,zn := {ξω(1)(z1) = ... = ξω(l)(zl) = 1}. (1.36)
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(iii) Coalescing random walks de�ned on a joint oriented percolation cluster

At last we want to de�ne a model of l coalescing random walks moving on the same oriented percolation

cluster. This model is basically the one that �ts our interpretation of the random walks as ancestral

lineages the most. Once a common ancestor of two particles is found, the ancestral lineages coalesce

into one and we have to trace back the ancestral lineage of the common ancestor. As before we

�x z1 = (y1,m1), ..., zl = (yl,ml) ∈ Zd × Z. On the event ∩k≤lBzk we construct random walks

X(z1), ..., X(zl) starting from z1, ..., zl in the way we described above, but for each random walk the

ancestral choice will be done according to the same ωnb. This leads to l coalescing random walks

moving on the same oriented percolation cluster. Since for each space-time point (x, n) ∈ Zd × Z the

permutation of the nearest neighbours ωnb(x, n) is independent of everything else in the model, the

random walks move independently until they hit a common space-time point and coalesce. We refer to

this model as the coalescing case. The notation of the probability space will not be changed, since we

already extended (Ω,A,P) by a uniform (random) permutation of the nearest neighbourhood of each

space-time point, see (1.29).

1.4.3. De�nition of a joint regeneration structure

Considering several random walks on a joint oriented percolation cluster in analogy to subsection 1.4.1

one can de�ne simultaneous regeneration times for the random walks (see [B�DG13, section 3]). We

�x z1 = (y1,m), ..., zl = (yl,m) ∈ Zd × Z. Notice that we want the random walks to start at the same

time m ∈ Z. The individual regeneration times of the random walks X(z1), ..., X(zl) are given by

T
(j)
0 := m,

T
(j)
r+1 := inf

{
k > T (j)

r : ξm+k

(
γ

(zj)
k (k)

)
= 1
}
, (1.37)

compare to (1.32). The simultaneous regeneration time for the random walksX(z1), ..., X(zl) are de�ned

as

T sim
0 := m,

T sim
k+1 := min

l⋂
j=1

{T (j)
r : T (j)

r > T simk , r ≥ 0}. (1.38)

Extending the notation of (1.33) to the set-up of l di�erent random walks, we write

Y
(zj)
k := X

(zj)

T
(j)
k

−X(zj)

T
(j)
k−1

, τ
(j)
k := T

(j)
k − T

(j)
k−1. (1.39)

and

X̂
(zj)
k := X

(zj)

T simk
. (1.40)

The index of the individual regeneration time of X(zj) at which a simultaneous regeneration occurs

will be denoted by

J
(j)
0 := 0,

J
(j)
k+1 := {r > J

(j)
k : T (j)

r = T simk+1}. (1.41)

11



1. Description of the model

Furthermore, the pieces between simultaneous regenerations are de�ned as

Ξn :=

(
(Y

(z1)
k , τ

(1)
k )J

(1)
n

k=J
(1)
n−1+1

, ..., (Y
(zl)
k , τ

(l)
k )J

(l)
n

k=J
(l)
n−1+1

, X̂(z1)
n , ..., X̂(zl)

n

)
. (1.42)

The random variable Ξn takes values in×l
i=1 F××l

i=1 Z
d, where F :=

⋃∞
n=1(Zd × N)n.

This construction is done in [B�DG13] for two random walks. Slightly adapting the proof of [B�DG13,

Lemma 3.1] to an arbitrary number l ∈ N of random walks, we derive the following lemma.

Lemma 1.12. (exponential tail bounds for simultaneous regeneration times)

There exist constants C, c > 0, such that

Pjoint

(
T sim1 ≥ k | Bz1,...,zn

)
≤ Ce−ck. (1.43)

Proof: The lemma can be proven by a simple adaptation of the proof of Lemma 3.1 in [B�DG13].

�

The properties described in [B�DG13, Lemma 3.2 and Remark 3.3] still hold true. For the sake of

completeness we list them in the following remark.

Remark 1.13. We �x z1 = (y1,m), ..., zl = (yl,m) ∈ Zd × Z. Let (Ξk)k∈N0 denote the pieces be-

tween simultaneous regenerations of the random walks X(z1), ..., X(zl) as de�ned in (1.42), where

Ξ0 := (α(1), ..., α(l), y1, ..., yl) for some arbitrarily chosen α(1), ..., α(l) ∈ F. Under Pjoint( · |Bz1,...,zn) the

stochastic process (Ξk)k∈N0 is a discrete time Markov chain with transition probability function

Ψjoint

(
(α(1), ..., α(l), x1, ..., xl), (β

(1), ..., β(l), y1, ..., yl)
)

=: Ψjoint

(
(x1, ..., xl), (β

(1), ..., β(l), y1, ..., yl)
)

that has the following spatial-homogeneity property

Ψjoint

(
(x1 + z, ..., xl + z), (β(1), ..., β(l), y1 + z, ..., yl + z)

)
= Ψjoint

(
(x1, ..., xl), (β

(1), ..., β(m), y1, ..., yl)
)

(1.44)

for all z ∈ Zd. Note that the process
(
X̂

(z1)
k , ..., X̂

(z1)
k

)
k≥0

is a Markov chain itself, with transition

probabilities

Ψ̂joint ((x1, ..., xl), (y1, ..., yl)) := Ψjoint ((x1, ..., xl),F× ...× F× {(y1, ..., yl)}) . (1.45)

The next lemma is quite essential for the proof of Proposition 2.1 in chapter 2. It basically tells us

that random walks on a joint oriented percolation cluster behave similar to random walks de�ned on

independent copies of the cluster as long as they are far apart of each other. The error that is made

decays exponentially within the distance between the random walks.

De�nitions (1.37)-(1.42) can be formulated analogously for random walks being de�ned on independent

copies of the oriented percolation cluster. For the independent case the statements of Lemma 1.12 and

12



1.4. Random walks on C

Remark 1.13 still hold true and appear even more obvious. Under Pind( · |Bind
z1,...,zn) the transition

probabilities of (Ξm)m will be denoted by

Ψind

(
(α(1), ..., α(l), x1, ..., xl), (β

(1), ..., β(l), y1, ..., yl)
)

=: Ψind

(
(x1, ..., xl), (β

(1), ..., β(l), y1, ..., yl)
)
.

Furthermore, let

Ψ̂ind ((x1, ..., xl), (y1, ..., yl)) := Ψind ((x1, ..., xl),F× ...× F× {(y1, ..., yl)}) , (1.46)

denote the transition probabilities of
(
X̂

(z1)
k , ..., X̂

(z1)
k

)
k≥0

with respect to Pind( · |Bind
z1,...,zn). Adapting

the proof of [B�DG13, Lemma 3.4], we get the following:

Lemma 1.14. There exist constants C, c > 0, such that

‖Ψind((x1, ..., xl), ·)−Ψjoint((x1, ..., xl), ·)‖TV ≤ Ce
−cmini 6=j‖xi−xj‖. (1.47)

1.4.4. Construction of a coalescing stochastic �ow

Now we want to de�ne a model of in�nitely many coalescing random walks X(y,m) =
(
X

(y,m)
n

)
n≥m

starting (in principle) from any space-time point (y,m) ∈ Zd × Z, and moving on a joint oriented

percolation cluster. Hence in comparison to the models introduced in section 1.4.2 we need to get rid

of conditioning on the event that the space-time point the random walks start from is contained in the

backbone of the oriented percolation cluster. This can be done by changing the transition probabilities

in the following way:

Recall the de�nition of ωnb in (1.29). De�ne

Φ(x, n) :=

ωnb(x, n)
[

min{i : (ωnb(x, n)[i], n+ 1) ∈ C}
]
, if C ∩

(
U(x)× {n+ 1}

)
6= ∅,

ωnb(x, n)[1], otherwise.
(1.48)

Note that for (x, n) ∈ C, the �rst case occurs and Φ(x, n) gives back a uniformly chosen element of

{y ∈ U(x) : (y, n + 1) ∈ C}, which is the set of possible ancestors of (x, n). For (x, n) 6∈ C, Φ(x, n)

gives back a uniformly chosen neighbour of x. We de�ne

X(y,m)
m := y, and X

(y,m)
n+1 := Φ(X(y,m)

n , n), n ≥ m. (1.49)

For �xed (y,m) ∈ Zd × Z, given ω, X(y,m) is a time-inhomogeneous Markov chain with

Pω(X
(y,m)
n+1 = x′ |X(y,m)

n = x) =


ξn+1(x′)∑

x̃:‖x̃−x‖≤1 ξn+1(x̃) , if C ∩ (U(x)× {n+ 1}) 6= ∅,

|U(x)|−1 if C ∩ (U(x)× {n+ 1}) = ∅
(1.50)

and Pω(X
(y,m)
m = y) = 1. In fact, (1.49) implements a coalescing stochastic �ow with individual paths

having transition probabilities given by (1.50). Note that for z = (y,m) ∈ Zd × Z and ω ∈ Bz the

transition probabilities (1.50) of the random walk X(z) coincide with the transition probabilities of the

quenched law P zω de�ned in (1.27). If n = 0 is �xed, we will abbreviate X(y) := X(y,0).
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1. Description of the model

1.5. (Neutral) multi-type contact process

In this section we extend the discrete time contact process driven by ω as de�ned in section 1.2 by

assigning di�erent types to the particles. Let E be a set of possible types. We stipulate 0 6∈ E (e.g.

E = {1, 2} or E = (0, 1]), since we want to interpret type 0 as �unoccupied site�. For simplicity we

focus on the case E = {1, 2}. First we �x some n0 ∈ Z and let ηζ,n0
n0 ≡ ζ ∈ {0, 1, 2}Zd be the initial

con�guration of �type 1�-and �type 2�-particles. The idea is to extend the contact process such that

a �type 1�-particle can only give birth to �type 1�-particles and as before leave its o�spring only at

inhabitable sites. The same holds true for �type 2�-particles. In other words, we want each particle

to inherit its type from its parent. Since we reversed time as mentioned at the end of section 1.3,

the multi-type contact process evolves backwards with respect to the ancestral time. Remember the

de�nition of Φ given at (1.48). For n < n0 we de�ne

ηζ,n0
n−1(x) :=

η
ζ,n0
n

(
Φ(x, n− 1)

)
, if (x, n− 1) ∈ C,

0, otherwise,
(1.51)

since we think of the particles at time layer n − 1 to be o�spring of the particles at time layer n,

whereby the parental choice is determined by ωnb. See also the discussion in [B�DG13, p. 1�2].

By the de�nition of η the following duality relation holds true

ηζ,n0
n−1(x) :=

η
ζ,n0
m (X

(x,n)
m ), if (x, n− 1) ∈ C,

0, otherwise,
(1.52)

for x ∈ Zd, n ≤ m ≤ n0. Here as in De�nition 1.2 we use the convention that ω(x, n0) = 1 if ζ(x) > 0,

whereas the ω(x, n) are i.i.d. Bernoulli(p) at all other space-time points. This is the discrete-time

analogue of the Harris construction. For n ∈ Z and pairwise di�erent x1, . . . , xl ∈ Zd, l ∈ N write

Bx1,...,xl;n :=
{

(x1, n), . . . , (xl, n) ∈ C
}
. (1.53)

In particular, for C1, . . . , Cl ⊂ E measurable and l pairwise di�erent points x1, . . . , xl ∈ Zd,

P
(
ηζ,n0
n (x1) ∈ C1, . . . , η

ζ,n0
n (xl) ∈ Cl | Bx1,...,xl;n

)
= E

[ l∏
i=1

1Ci

(
ηζ,n0
m (X(xi,n)

m )
)
| Bx1,...,xl;n

]
(1.54)

for all m ∈ {n, ..., n0}. We expect that on su�ciently large space-time scales, any �nite collection

X(x0,t0), X(x1,t1), . . . , X(xn,tn) should look similar to (coalescing) random walks. By duality, this trans-

lates into a meta-theorem: �Everything� that is true for the (neutral) multi-type voter model should

also be true for the (neutral) multi-type contact process. A �rst progress on this meta-theorem can be

found in subsection 2.1.2 below.

14



CHAPTER 2

Brownian web scaling limit

In this chapter we will prove that the di�usively rescaled collection of random walk paths starting

from every space time point contained in the backbone of an oriented percolation cluster of dimension

1 + 1 converges in distribution to the Brownian web. This is done by verifying the convergence criteria

Sun formulated in [Sun05]. The main ingredients are tail bounds on coalescing events, which will be

proved in the �rst section of this chapter. The second section is dedicated to the characterization of

the Brownian web. As mentioned in the introduction a nice characterization of the Brownian web can

also be found in [FINR04]. A detailed proof that the convergence criteria given by Sun are ful�lled in

our case is then given in the third section of this chapter.

2.1. Tail bounds on coalescing events

In the �rst section we focus on tail bounds for the hitting or meeting events of independent random

walks on a �joint� oriented percolation cluster. A discussion on Proposition 2.1 can be found in

Remark 2.3 and Remark 2.4 below. In order to prove the tail bounds we make use of the estimates on

the transition probabilities given at (1.47) and estimates on return probabilities of supermartingales.

For x1, x2 ∈ Zd de�ne

T
(x1,x2)
meet := inf{n ≥ 0 : X(x1)

n = X(x2)
n }, (2.1)

with X(xi) as de�ned in (1.49) and the usual convention inf ∅ = +∞. Note that both random walks

start at time 0.

Proposition 2.1. Let x1, x2 ∈ Zd, x1 6= x2. We have

Pjoint(T
(x1,x2)
meet <∞ | Bx1,x2;0)

= 1, d ≤ 2,

∈ (0, 1), d ≥ 3.
(2.2)

In dimension d = 1 we have the following asymptotic behaviour

Pjoint(T
(x1,x2)
meet > n | Bx1,x2;0) � |x1 − x2|√

n
, (2.3)

uniformly in n and x1, x2 with x1 6= x2 as n tends to in�nity. The de�nition of Bx1,x2;0 is given at

(1.53).
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2. Brownian web scaling limit

Remark 2.2. The asymptotic behaviour in (2.3) is needed to verify the convergence criteria given in

section 2.3 below. Since we do not need the precise tail behaviour in the two-dimensional case, we

do not further investigate this question here. We believe that this can be done analogously to the

one-dimensional case, by showing that for

f(r) := C +

∫ r

r0

C ′ · r0

r
· exp

(
−ce−c′r

)
dr, with C,C ′, c, c′, r0 > 0 chosen properly,

the stochastic process f
(∥∥∥X̂(x1)

n − X̂(x2)
n

∥∥∥
2

)
is a supermartingale, up to the time that the random walks

come closer than some �xed distance K > 0. If this holds true, the arguments given in section 2.1.4

below should be adaptable to the two-dimensional setting. Up to now we know that for every initial

separation x0 = x1 − x2 there exist constants C,C ′ > 0 and M > 0, such that

C

log(m)
≤ Pjoint

(
inf
{
k ≥ 0 :

∥∥∥X̂(x1)
n − X̂(x2)

n

∥∥∥
2
≤ K

}
≥ m

∣∣∣ Bx1,x2;0

)
≤ C ′

log(m)
(2.4)

for all m > M , where the dependency of C and C ′ on x0 requires further investigation. The upper

bound in (2.4) is a consequence of Remark 2.7 and [LPW09, Proposition 17.19], whereas the lower

bound can be proved similar to the one-dimensional case.

2.1.1. Comments on Proposition 2.1

Remark 2.3. We are interested in collision events of two random walks X(x1), X(x2) moving on the

space-time cluster C. A collision event occurs, if the two walks are at the same time at the same

site. Equation (2.2) tells us that a collision event between two random walks occurs almost surely in

dimension d=1,2. This is not entirely obvious because the �holes� in the space-time cluster C might

prevent collision events. Furthermore, in the one-dimensional case the tail bounds given in (2.3) of

Proposition 2.1 coincide (at least up to a constant) with the tails bounds one would expect from

ordinary random walks with i.i.d. increments, see e.g. Corollary 1.3 in [Uch11] or Theorem 8 in

[Kes63]. Roughly speaking in the one-dimensional case the holes that occur in the space-time cluster

have no substantial in�uence on the tail bounds for the probability of two random walks to meet after

n steps.

In order to prove (2.2), we have a look at the di�erence of two walks at their simultaneous regeneration

times (T simn )n, see (1.38). Recall the de�nition of X̂(z)
n in (1.40) and the de�nition of Ψ̂joint and Ψ̂ind

in (1.45) and (1.46).

In the joint as well as in the independent case, the di�erence between the random walks X(x1) and

X(x2) at their simultaneous regeneration times is a Markov chain with transition probabilities

Ψdi�
joint(x, y) := Ψ̂joint

(
(x, 0),

⋃
z

{(z + y, z)}

)
,

respectively

Ψdi�
ind(x, y) := Ψ̂ind

(
(x, 0),

⋃
z

{(z + y, z)}

)
,
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2.1. Tail bounds on coalescing events

see the remarks at the end of section 1.4.3. We want to point out that the transition probability function

Ψdi�
joint is not (space-)homogeneous. This means that the transition probability for the distance between

the random walks does not only depend on the increment but also on the initial distance between the

two random walks itself. In the independent case the transition probability function of the di�erence is

(space-)homogeneous, which means that the initial distance between two random walks is not important

for calculating the probability of a certain increment. Hence we are allowed to de�ne

Ψdi�
ind(y − x) := Ψdi�

ind(0, y − x) = Ψdi�
ind(x, y).

Furthermore, the transition probability function in the independent case is symmetric. In both cases

the transition probability functions have exponential tails by Lemma 1.12.

Notice that by the spatial homogeneity of Ψdi�
ind , the di�erence between the two random walks is itself

a d-dimensional random walk. By symmetry of the increments and the exponential tails, we know for

example by the Chung-Fuchs-Theorem that the Markov chain (X̂
(x1)
k − X̂(x2)

k )k≥0 is recurrent under

Pind( · |Bind
x1,x2;0) (in d = 1). In the joint case we know at least that the Markov chain (X̂

(x1)
k −X̂(x2)

k )k≥0

is irreducible under Pjoint( · |Bx1,x2;0).

Remark 2.4. Proposition 2.1 (see also Lemma 2.8 and Lemma 2.9 below) is in some sense a �trivial�

instance of a so-called Lamperti problem: The di�erence (X
(x1)
Tn
−X(x2)

Tn
)n at simultaneous regeneration

times is (under Pjoint( · |Bx1,x2;0)) a Markov chain that is a local perturbation of a symmetric random

walk and the drift at x vanishes exponentially fast in ‖x‖, which is a consequence of Lemma 1.14. A

very �ne analysis in the nearest-neighbour case can be found in [Ale11], see also the references there

for background.

Denis Denisov, Dima Korshunov and Vitali Wachtel (in contemporaneous work, see [DKW16]) have

established a generalisation of Alexander's results to the non-nearest neighbour case which in particular

re�nes the case d = 1 in (2.3) to asymptotic equivalence. For the sake of completeness we present a

short, rough proof of the coarser estimates that su�ce for our purposes.

2.1.2. Consequences for the (neutral) multi-type contact process

In this subsection we discuss brie�y consequences of Proposition 2.1 for the (neutral) multi-type contact

process introduced in section 1.5.

Proposition 2.5.

Let µ denote the Bernoulli product measure on {1, 2}Zd with µ(η(x) = 1) = 1−µ(η(x) = 2) = α ∈ (0, 1)

for all x ∈ Zd. We write ηµ,m := (ηµ,mn )n≤m for the discrete time two-type contact process with initial

con�guration ηµ,mm distributed according to µ. Furthermore, we denote by ν̄1 and ν̄2 the weak limits

ν̄1
w
= lim

m→∞
L(η1,m0 ),

ν̄2
w
= lim

m→∞
L(η2,m0 ),

where η1,m and η2,m denote discrete time two-type contact processes starting at time-layer m and

evolving backwards in time, with initial con�guration given by η1,mm ≡ 1 and η2,mm ≡ 2. In dimension
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2. Brownian web scaling limit

d ≤ 2 we have

L(ηµ,m0 )
w−→ αν̄1 + (1− α)ν̄2, as m→∞. (2.5)

If d > 2, then the weak limit

lim
m→∞

L(ηµ,m0 ) =: νµ (2.6)

exists and

νµ
(
ζ ∈ {0, 1, 2}Zd : ζ|A1 ≡ 1, ζ|A1 ≡ 2

)
> 0

for every �nite A1, A2 ⊂ Zd, with A1 ∩A2 = ∅.

Proof: In order to prove existence of the limits in (2.5) and (2.6), we need to show that for n ∈ N,
x1, ..., xn ∈ Zd and i1, ..., in ∈ {0, 1, 2} chosen arbitrarily, the limit of

P (ηµ,m0 (x1) = i1, ..., η
µ,m
0 (xn) = in) (2.7)

exists as m tends to in�nity. We �x n ∈ N, x1, ..., xn ∈ Zd and i1, ..., in ∈ {0, 1, 2} and de�ne

A0 := {xk : ik = 0}, A1 := {xk : ik = 1} and A2 := {xk : ik = 2}. We can assume that A0, A1 and A2

are disjoint, since the limit in (2.7) would be zero if xk = xk′ and ik 6= ik′ for some k, k′ ∈ {1, ..., n}.
Using the inclusion-exclusion formula we get that

P (ηµ,m0 |A0 ≡ 0, ηµ,m0 |A1 ≡ 1, ηµ,m0 |A2 ≡ 2)

=
∑
B⊂A0

(−1)|B|
∑

B1,B2:B1∪̇B2=B

P (ηµ,m0 |A1∪B1 ≡ 1, ηµ,m0 |A2∪B1 ≡ 2) .

Notice that we sum up over disjoint subsets B1, B2 ⊂ B. Hence it is enough to focus on the limit of

P (ηµ,m0 |A1 ≡ 1, ηµ,m0 |A2 ≡ 2) , (2.8)

as m tends to in�nity. De�ne A := A1∪̇A2 and note that

P (ηµ,m0 |A1 ≡ 1, ηµ,m0 |A2 ≡ 2)

= P (ηµ,m0 (x) > 0 for all x ∈ A) · P
(
ηµ,m0 |A1 ≡ 1, ηµ,m0 |A2 ≡ 2

∣∣ ηµ,m0 (x) > 0 for all x ∈ A
)

(2.9)

We focus on the factors in (2.9) separately. The limit of the �rst factor can be characterized easily.

Since µ is a measure on {1, 2}Zd we know

lim
m→∞

P (ηµ,m0 (x) > 0 for all x ∈ A) = ν̄
(
ζ ∈ {0, 1}Zd : ζ|A ≡ 1

)
,

where ν̄ is the upper invariant measure of the (single-type) contact process de�ned in (1.14). Hence

we focus on the second factor. Recall the de�nition of ξ in (1.24). First of all note that

{ξ0(x) = 1 for all x ∈ A} ⊂ {ηµ,m0 (x) > 0 for all x ∈ A},

and

P (ηµ,m0 (x) > 0 for all x ∈ A)− P (ξ0(x) = 1 for all x ∈ A) ≤ C|A|e−cm (2.10)
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2.1. Tail bounds on coalescing events

by (1.17). Since on the other hand the FKG-inequality yields

P (ηµ,m0 (x) > 0 for all x ∈ A) ≥ P (ξ0(x) = 1 for all x ∈ A) ≥ (P(B(0,0)))
|A|,

we get that

dTV

(
P
(
·
∣∣ηµ,m0 (x) > 0 for all x ∈ A

)
,P
(
·
∣∣ξ0(x) = 1 for all x ∈ A

) )
= O

(
[P(B(0,0))]

−|A||A|e−cm
)
, as m tends to in�nity,

by Lemma 3.2 proven below.

Therefore

P
(
ηµ,m0 |A1 ≡ 1, ηµ,m0 |A2 ≡ 2

∣∣ ηµ,m0 (x) > 0 for all x ∈ A
)

= P
(
ηµ,m0 |A1 ≡ 1, ηµ,m0 |A2 ≡ 2

∣∣ ξ0(x) = 1 for all x ∈ A
)

+O
(
[P(B(0,0))]

−|A||A|e−cm
)

=

∫
P
(
ηζ,m0 |A1 ≡ 1, ηζ,m0 |A2 ≡ 2

∣∣ ξ0(x) = 1 for all x ∈ A
)
µ(dζ) +O

(
[P(B(0,0))]

−|A||A|e−cm
)

=

∫
P
(
ζ(X(x)

m ) = i for all x ∈ Ai ; i = 1, 2
∣∣ ξ0(x) = 1 for all x ∈ A

)
µ(dζ) (2.11)

+O
(
[P(B(0,0))]

−|A||A|e−cm
)
. (2.12)

By (2.2) of Proposition 2.1 this implies

lim
m→∞

P
(
ηµ,m0 |A1 ≡ 1, ηµ,m0 |A2 ≡ 2

∣∣ ηµ,m0 (x) > 0 for all x ∈ A
)

= 0 (2.13)

if A1 6= ∅, A2 6= ∅ and d ≤ 2. On the other hand if d ≤ 2 and we assume without loss of generality

that A2 = ∅, we get

P
(
ηµ,m0 |A1 ≡ 1, ηµ,m0 |A2 ≡ 2

∣∣ ηµ,m0 (x) > 0 for all x ∈ A
)

= P
(
ηµ,m0 |A1 ≡ 1

∣∣ ξ0(x) = 1 for all x ∈ A1

)
+O

(
[P(B(0,0))]

−|A1||A1|e−cm
)

=

∫
P
(
ζ(X(x)

m ) = 1 for all x ∈ A1

∣∣ ξ0(x) = 1 for all x ∈ A1

)
µ(dζ) +O

(
[P(B(0,0))]

−|A1||A1|e−cm
)

≤ P
(
|{X(z)

m : z ∈ A1}| > 1
∣∣ ξ0(x) = 1 for all x ∈ A1

)
+
∑
y∈Zd

P
(
{X(z)

m : z ∈ A1} = {y}
∣∣ ξ0(x) = 1 for all x ∈ A1

)
µ(ζ(y) = 1)

+O
(
[P(B(0,0))]

−|A1||A1|e−cm
)

≤ α+ P
(
|{X(z)

m : z ∈ A1}| > 1
∣∣ ξ0(x) = 1 for all x ∈ A1

)
+
(
P
(
|{X(z)

m : z ∈ A1}| = 1
∣∣ ξ0(x) = 1 for all x ∈ A1

)
− 1
)
α+O

(
[P(B(0,0))]

−|A1||A1|e−cm
)

and hence

∣∣P (ηµ,m0 |A1 ≡ 1
∣∣ ηµ,m0 (x) > 0 for all x ∈ A1

)
− α

∣∣
≤ 2P

(∣∣∣{X(z)
m : z ∈ A1}

∣∣∣ > 1
∣∣ ξ0(x) = 1 for all x ∈ A1

)
+O

(
[P(B(0,0))]

−|A1||A1|e−cm
)
.
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2. Brownian web scaling limit

The weak convergence in (2.5) of Proposition 2.5 then follows by (2.2) of Proposition 2.1. If d ≥ 3

equation (2.11) yields

P
(
ηµ,m0 |A1 ≡ 1, ηµ,m0 |A2 ≡ 2

∣∣ ηµ,m0 (x) > 0 for all x ∈ A
)

=

∫
P
(
ζ(X(x)

m ) = i for all x ∈ Ai ; i = 1, 2
∣∣ ξ0(x) = 1 for all x ∈ A

)
µ(dζ)

+O
(
[P(B(0,0))]

−|A||A|e−cm
)

=
∑
B1⊂Zd
|B1|≤|A1|

∑
B2⊂Zd
|B2|≤|A2|

P
(
{X(x)

m : x ∈ A1} = B1, {X(x)
m : x ∈ A2} = B2

∣∣ ξ0(x) = 1 for all x ∈ A
)

· µ(ζ ∈ {1, 2}Zd : ζ|B1 ≡ 1, ζ|B2 ≡ 2) +O
(
[P(B(0,0))]

−|A||A|e−cm
)

=
∑
B1⊂Zd
|B1|≤|A1|

∑
B2⊂(Zd\B1)
|B2|≤|A2|

P
(
{X(x)

m : x ∈ A1} = B1, {X(x)
m : x ∈ A2} = B2

∣∣ ξ0(x) = 1 for all x ∈ A
)

· α|B1|(1− α)|B2| +O
(
[P(B(0,0))]

−|A||A|e−cm
)

= E
(
α|{X

(x)
m :x∈A1}| · (1− α)|{X

(x)
m :x∈A2}| · 1{{X(x)

m :x∈A1}∩{X(x)
m :x∈A2}=∅}

∣∣ ξ0(x) = 1 for all x ∈ A
)

+O
(
[P(B(0,0))]

−|A||A|e−cm
)
.

Since
∣∣∣{X(x)

m : x ∈ Ai
}∣∣∣ on {ξ0(x) = 1 for all x ∈ A} is non-increasing in m and

P
(
{X(x)

m : x ∈ A1} ∩ {X(x)
m : x ∈ A2} = ∅ for all m > 0

∣∣ ξ0(x) = 1 for all x ∈ A
)
> 0

by Proposition 2.1, the last term converges by the monotone convergence theorem asm tends to in�nity

and

lim
m→∞

P
(
ηµ,m0 |A1 ≡ 1, ηµ,m0 |A2 ≡ 2

∣∣ ηµ,m0 (x) > 0 for all x ∈ A
)
> 0.

�

2.1.3. Proof of Proposition 2.1, equation (2.2)

Proof of Proposition 2.1, equation (2.2) for d ≤ 2

In order to prove (2.2), we focus on the di�erence between the random walks X̂(x1) and X̂(x2). Notice

that by translation invariance of Pjoint and Pind we have

L(X(x) −X(0)|Pjoint( · |Bx,0;0)) = L(X(x+y) −X(y)|Pjoint( · |Bx+y,y;0)),

L(X(x) −X(0)|Pind( · |Bind
x,0;0)) = L(X(x+y) −X(y)|Pind( · |Bind

x+y,y;0))

for every y ∈ Zd. The same equalities hold true for X replaced by X̂. This means that only the initial

distance and not the exact con�guration is important. Hence we de�ne D̂(x1−x2)
n = X̂

(x1)
n − X̂(x2)

n and

D
(x1−x2)
n = X

(x1)
n −X(x2)

n . Remember that (D̂
(x1−x2)
n )n is a Markov chain with transition probability

function Ψdi�
joint or Ψdi�

ind depending on whether the two random walks are de�ned on the same or on

independent copies of the oriented percolation cluster. Since only the di�erence between the random

walks will be considered, we omit the subscript (x1 − x2) and indicate the initial distance as well as

20



2.1. Tail bounds on coalescing events

the fact that we condition on (0, 0) and (x1 − x2, 0) to be contained in the backbone of the oriented

percolation cluster by the family {Pxjoint}x∈Zd (resp. {Pxind}x∈Zd) of probability measures, where x takes

the role of x1 − x2. This is done just to simplify notation within the proof of Proposition 2.1.

In dimension d = 1, 2, we can prove that there exists a function s on Zd such that s(x) −→ ∞ as

‖x‖ −→ ∞, which is superharmonic for Ψdi�
joint outside a �nite subset of Zd. According to Proposition 5.3

in [Asm03], the existence of such a function implies recurrence for the Markov chain (D̂k)k≥0 in the

joint case.

The key ingredient for the proof is the estimation on the total variation distance between Ψdi�
joint and

Ψdi�
ind given in Lemma 1.14. By Lemma 1.14 we know that there exists C, c > 0 such that

|Ψdi�
joint(x, y)−Ψdi�

ind(x, y)| ≤ 2
∥∥∥Ψ̂joint((x, 0), ·)− Ψ̂ind((x, 0), ·)

∥∥∥
TV
≤ Ce−c‖x‖, (2.14)

for any x, y ∈ Zd. This means that the error term between Ψdi�
joint(x, y) and Ψdi�

ind(x, y) decays exponen-

tially in the initial distance between the two random walks.

With the help of (2.14), we are able to prove that in dimension d = 1∑
y

Ψdi�
joint(x, y)|y|α ≤ |x|α − C|x|α−2 + Ce−c

√
|x|

≤ |x|α for all |x| ≥ K1. (2.15)

In dimension d = 2 let the covariance matrix of D̂1 in the independent case be given by

Covind

(
D̂1

)
=

(
σ̄2 ρ̄

ρ̄ σ̄2

)
,

where |ρ̄| < σ̄2, since Birkner et al. proved in [B�DG13] that the limit law is not concentrated on a

subspace. We can show that∑
y

Ψdi�
joint(x, y) logα(‖Ay‖) ≤ logα(‖Ax‖) for all ‖x‖ ≥ K2, (2.16)

where K2 is a large constant, α ∈ (0, 1) and

A :=

 1√
2(σ̄2+ρ̄)

1√
2(σ̄2+ρ̄)

1√
2(σ̄2−ρ̄)

− 1√
2(σ̄2−ρ̄)

 . (2.17)

A detailed proof can be found in the appendix in section A.1. Notice that, inspired by the simple

random walk case, s(x) := |x|α is a natural candidate for a superharmonic function in the one-

dimensional setting and s(x) = logα(‖x‖) is a natural candidate for a superharmonic function in the

two-dimensional setting.
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2. Brownian web scaling limit

Remark 2.6. Let d = 1. If∑
y∈Zd

Ψdi�
ind(y − x)|y|α ≤ |x|α for all x ≥ K1, (2.18)

this means that
(∣∣∣D̂n∧h(K1)

∣∣∣α)
n
is a supermartingale with respect to the �ltration

F1 := (F1
n)n := (σ(D̂m,m ≤ n))n, (2.19)

where h(K1) is the �rst time the process (D̂n)n enters the interval [−K1,K1].

Remark 2.7. Let d = 2. If∑
y

Ψdi�
joint(x, y) logα(‖Ay‖) ≤ logα(‖Ax‖) for all ‖x‖ ≥ K2, (2.20)

this means that
(

logα
(∥∥∥AD̂n∧h(K2)

∥∥∥
2
∨ 1
))

n
is a supermartingale with respect to the �ltration

F2 := (F2
n)n := (σ(D̂m,m ≤ n))n, (2.21)

where h(K2) is the �rst time the process (D̂n)n enters the ball of radius K2 around zero.

Let C1, C2 be constants such that

C1 ‖x‖2 ≤ ‖Ax‖ ≤ C2 ‖x‖2 (2.22)

and assume K2 to be large enough such that 1
C1
≤ K2. Notice that above we truncated

∥∥∥AD̂n

∥∥∥
2
from

below to avoid di�culties. But since
∥∥∥AD̂n

∥∥∥
2
< 1 implies

∥∥∥D̂n

∥∥∥
2
≤ 1

C1
≤ K2, this is no problem

because the process is stopped if
∥∥∥D̂n

∥∥∥ ≤ K2.

Proof of Proposition 2.1, equation (2.2) for d > 2

The proof of (2.2) for d > 3 is not very di�cult. By Theorem 2(a) in [GH02], we already know that

Pjoint(T
(x1,x2)
meet <∞ | Bx1,x2;0) > 0. Therefore it is left to prove that

Pjoint(T
(x1,x2)
meet =∞ | Bx1,x2;0) = lim

n−→∞
Pjoint(T

(x1,x2)
meet > n | Bx1,x2;0) > ε > 0.

This can be done by using similar arguments as in the proof of Lemma 2.9 below. Since Lemma 2.9 is

more important for later use, we skip the proof at this place.

2.1.4. Proof of Proposition 2.1, equation (2.3)

In this section we focus our attention on �how fast� a collision event occurs. We will answer this

question by �nding upper and lower bounds for the (annealed) probability that a coalescing event

happens after time n.

The structure of this section is as follows. At �rst we compute tails for the hitting times of a large

but �nite interval around zero. Since two random walks on the cluster are comparable to independent
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2.1. Tail bounds on coalescing events

random walks if the distance between them is large, this is much easier than the computation for the

tails of hitting zero itself. At the end of the section we will prove that the hitting time of a large

but �nite neighbourhood of zero has the same tail behaviour as the hitting time of zero itself. As in

[B�DG13, Lemma 3.6] we introduce for r > 0 the following stopping times

h(r) := inf{k ∈ N0 : |D̂k| ≤ r}, (2.23)

H(r) := inf{k ∈ N0 : |D̂k| ≥ r}, (2.24)

additionally, we de�ne

T̂meet := inf{k ∈ N0 : |D̂k| = 0},

Tmeet := inf{k ∈ N0 : |Dk| = 0}.

Notice that T̂meet and Tmeet do not need to coincide, since T̂meet is the �rst time that the random walks

meet at simultaneous regeneration times. Making use of the fact that the simultaneous regeneration

times have exponential tail bounds (see Lemma 1.12), equation (2.3) of Proposition 2.1 holds true if

it holds true for Tmeet replaced by T̂meet (see section A.1.4 in the appendix). Therefore it is enough to

focus on calculating tail bounds for T̂meet.

Before proving equation (2.3) of Proposition 2.1 we prove the following two lemmas.

Lemma 2.8. Let d = 1. Consider two random walks de�ned on a joint oriented percolation cluster and

let D̂n be the di�erence at their simultaneous regeneration times. There exist constants C3,K,M > 0

such that for all x0 > K

Px0joint(H(
√
m) < h(K)) ≤ C3x0√

m
for all m > M and (2.25)

Px0joint(h(K) ≥ m) ≤ C3x0√
m

for all m > M. (2.26)

Lemma 2.9. Let d = 1. Consider two random walks de�ned on a joint oriented percolation cluster

and let D̂n be the di�erence at their simultaneous regeneration times. There exist constants C4,K > 0

such that for all x0 > K there exists M := M(x0) > 0 such that

Px0joint(H(
√
m) < h(K)) ≥ C4x0√

m
for all m > M and (2.27)

Px0joint(h(K) ≥ m) ≥ C4x0√
m

for all m > M. (2.28)

Proof of Lemma 2.8: The proof will be divided into �ve steps.

Step 1: We �x some constants K,L > 0. Furthermore, for j ∈ N chosen arbitrarily we de�ne

τjK,(j+1)K+L := inf{n ≥ 0 : D̂n ≥ (j + 1)K + L or D̂n ≤ jK}, (2.29)

which is a stopping time with respect to the �ltration de�ned in (2.19). Let bj := (j + 1)K + L and

aj := jK in order to shorten notation.
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2. Brownian web scaling limit

In the �rst step we will prove that there exist constants C5,M > 0 such that for all j ∈ N and all

x0 ∈ (jK, (j + 1)K]

Px0(D̂τaj,bj
≥ bj) ≤

C5

L
for all L > M, (2.30)

if K is chosen large enough and L > M � K.

First of all note that by (2.14) and Lemma 1.12 there exists a constant c1 > 0 such that for all x > K

|Ψdi�
ind(x, y)−Ψdi�

ind(x, y)| ≤ e−c1·x for all y ∈ Z,

Pxjoint
(
T sim1 >

y

2

)
+ Pxjoint

(
T sim1 >

y

2

)
≤ e−c1·y for all y > x,

if K is chosen large enough. Furthermore, we assume K to be chosen so large that

log(x) <
c1

2
x for all x > K

2 .

We will show that

f(y) :=

∫ |y|
0

exp
(
e−

c1·s
9 − 1

)
ds

is a superharmonic function on (K,∞) with respect to ψdi�
joint. Although this can be done similarly

to the proof of (2.14) (see section A.1.1 in the appendix), we will give the main points at this place.

Notice that

e−1 · |y| ≤ f(y) =

∫ |y|
0

exp
(
e−

c1·s
9 − 1

)
ds ≤ |y|

for all y ∈ R. Hence

∑
y

|Ψdi�
ind(x, y)−Ψdi�

joint(x, y)|f(y)

≤
∑

y:|y−x|≤x
2

|Ψdi�
ind(x, y)−Ψdi�

joint(x, y)||y|+
∑

y:|y−x|>x
2

|Ψdi�
ind(x, y)−Ψdi�

joint(x, y)||y|

≤ 3

2
x2e−c1x +

∑
y:|y−x|>x

2

(Pjoint(T sim1 ≥ |x−y|2 ) + Pind(T sim1 ≥ |x−y|2 ))|y|

≤ 3

2
x2e−c1x + 2

∑
y>x

2

e−c1yy ≤ 3

2
x2e−c1x +

4

c1
e
−c1x

4 ,

where for the last inequality we made use of the fact that log(y) < c1
2 y. Similarly we get that

∑
y:|y−x|>x

2

Ψdi�
ind(x, y)f(y) ≤

∑
y:|y−x|>x

2

Pind(T sim1 ≥ |x−y|2 )|y| ≤ 4

c1
e
−c1x

4 .

24



2.1. Tail bounds on coalescing events

Furthermore, ∑
y:|y−x|≤x

2

Ψdi�
ind(x, y)f(y) ≤

∑
y:|y−x|≤x

2

Ψdi�
ind(x, y)(f(y)− f(x)) + f(x)

≤

x
2∑

y=1

Ψdi�
ind(y)(f(x+ y)− 2f(x) + f(x− y)) + f(x)

≤ x2

8
· sup
s∈[−x

2
, 3x
2

]

exp
(
e−

c1·s
9 − 1

)
·
(
−c1

9

)
e−

c1s
9 + f(x)

≤ −c1x
2

72e
e−

c1x
6 + f(x),

where in the second line one needs to replace f(x+ y) and f(x− y) by their Taylor expansion to see

that the third inequality holds true. Altogether we get∑
y

Ψdi�
joint(x, y)f(y) ≤

∑
y

|Ψdi�
joint(x, y)−Ψdi�

ind(x, y)|f(y) +
∑
y

Ψdi�
ind(x, y)f(y)

≤ f(x)− c1x
2

72e
e−

c1x
6 +

3

2
x2e−c1x +

8

c1
e
−c1x

4

≤ f(x) for all x ≥ K,

if K is chosen large enough. Since by previous calculations f
(
D̂n∧h(K)

)
is a non-negative supermartin-

gale (for the de�nition of h(K) see (2.23)), we conclude

f(x0) = Ex0joint
[
f
(
D̂0

)]
≥ Ex0joint

[
f
(
D̂τaj,bj

)]
≥ f(bj) · Px0joint

(
D̂τaj,bj

≥ bj
)

+ f(aj) · Px0joint(D̂τaj,bj
≤ aj)

− Ex0joint
[
f(aj)− f

(
D̂τaj,bj

) ∣∣ D̂τaj,bj
≤ aj

]
· Px0joint(D̂τaj,bj

≤ aj)

≥ f(bj) · Px0joint
(
D̂τaj,bj

≥ bj
)

+ f(aj) · Px0joint(D̂τaj,bj
≥ bj)

− Ex0joint
[
|D̂τaj,bj

− aj |
∣∣ D̂τaj,bj

≤ aj
]

≥ f(bj) · Px0joint
(
D̂τaj,bj

≥ bj
)

+ f(aj) · Px0joint(D̂τaj,bj
≤ aj)− C,

where C > 0 can be chosen independently of j. This yields

Px0joint
(
D̂τaj,bj

≥ bj
)
≤ f(x0)− f(aj) + C

f(bj)− f(aj)
≤ x0 − aj + C

e−1(bj − aj)
≤ K + C

e−1(K + L)
,

if x0 ∈ (jK, (j + 1)K] which implies (2.30). Additionally, we de�ne

τ̃K,
√
m := inf{n ≥ 0 : |D̂n| ≥

√
m or |D̂n| ≤ K}. (2.31)

The fact that f
(
D̂n∧h(K)

)
is a non-negative supermartingale also implies that

x0 ≥ Ex0joint
[
f
(
D̂0

)]
≥ Ex0joint

[
f
(
D̂τ̃K,

√
m

)]
≥ f(

√
m) · Px0joint

(
|D̂τ̃K,

√
m
| ≥
√
m
)

and (2.25) follows.
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2. Brownian web scaling limit

Step 2: In the second step we will prove that ifK is chosen large enough there exist constants C6,M > 0

such that for all j ∈ N

sup
x∈(jK,(j+1)K]

Pxjoint(τjK ≥ m) ≤ C6√
m

for all m > M, (2.32)

where

τjK := inf{n ≥ 0 : D̂n ≤ jK}. (2.33)

We �x some x0 ∈ (jK, (j + 1)K] ∩ Z and de�ne

Mn :=
(
D̂n − x0

)2
−
k−1∑
k=0

d(D̂k), (2.34)

where

dx0(x) := Exjoint
[(
D̂1 − x0

)2
− (x− x0)2

]
(2.35)

is the expected increment of
((

D̂n − x0

)2
)
n

after one step. Notice that by (2.14) we have

dx0(x) = Exjoint
[(
D̂1 − x0

)2
− (x− x0)2

]
= Exjoint

[(
D̂1 − x

)2
+ 2

(
D̂1 − x

)
(x− x0)

]
=
∑
y

ψdi�
ind (y) · (y)2 +O(e−cx) + 2(x− x0)

∑
y

ψdi�
ind (y) · (y) + (x− x0)O(e−cx)

= σ̃2 +O(e−cx) + (x− x0)O(e−cx) > 0,

where
∑

y ψ
di�
ind (y) · (y)2 = Varind(D̂1) =: σ̃2. Since |(x − x0)| ≤ K and x ∈ (jK, (j + 1)K] we can

choose K so large that for all j ∈ N

|dx0(x)− σ̃2| > σ̃2

2

for all x, x0 ∈ (jK, (j + 1)K] ∩ Z. Since

{τaj ≥ m} ⊂ {τaj ,bj ≥ m} ∪ {D̂τaj,bj
≥ bj}, (2.36)

we can prove (2.32) by �nding suitable bounds on the probability of the events {τaj ,bj ≥ m} and

{D̂τaj,bj
≥ bj}. Note that Exjoint[τaj ,bj ] <∞. Furthermore,

Ex0joint

[(
D̂τaj,bj

− x0

)2 ∣∣ D̂τaj,bj
≥ bj

]
= (bj − x0)2 + Ex0joint

[(
D̂τaj,bj

− x0

)2
− (bj − x0)2

∣∣ D̂τaj,bj
≥ bj

]
= (bj − x0)2 + Ex0joint

[ (
D̂τaj,bj

− bj
)2

+ 2
(
D̂τaj,bj

− bj
)

(bj − x0)︸ ︷︷ ︸
>0 on {D̂τaj,bj≥bj}

∣∣ D̂τaj,bj
≥ bj

]
<∞, (2.37)
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2.1. Tail bounds on coalescing events

and

Ex0joint

[(
D̂τaj,bj

− x0

)2 ∣∣ D̂τaj,bj
≤ aj

]
= (aj − x0)2 + Ex0joint

[ (
aj − D̂τaj,bj

)2
+ 2

(
aj − D̂τaj,bj

)
(x0 − aj)︸ ︷︷ ︸

>0 on {D̂τaj,bj≤aj}

∣∣ D̂τaj,bj
≤ aj

]
<∞. (2.38)

Since in (2.37) and (2.38) only di�erences between points inside the interval and the process occur, we

can �nd C > 0 such that for all j ∈ N

0 < Ex0joint
[ (
D̂τaj,bj

− bj
)2

+ 2
(
D̂τaj,bj

− bj
)

(bj − x0)
∣∣ D̂τaj,bj

≥ bj
]
< C,

0 < Ex0joint
[ (
aj − D̂τaj,bj

)2
+ 2

(
aj − D̂τaj,bj

)
(x0 − aj)

∣∣ D̂τaj,bj
≤ aj

]
< C,

and this holds uniformly in j ∈ N. By the previous calculation we obtain

0 = Ex0joint[M0] = Ex0joint[Mτaj,bj
] = Ex0joint

[(
D̂τaj,bj

− x0

)2
]
− Ex0joint

[ τaj,bj−1∑
k=0

f(D̂k)

]
≤ (bj − x0)2 · Px0(D̂τaj,bj

≥ bj) + (aj − x0)2 · Px0(D̂τaj,bj
≤ aj)

+ Ex0joint
[ (
D̂τaj,bj

− bj
)2

+ 2
(
D̂τaj,bj

− bj
)

(bj − x0)
∣∣ D̂τaj,bj

≥ bj
]
· Px0joint

(
D̂τaj,bj

≥ bj
)

+ Ex0joint
[ (
aj − D̂τaj,bj

)2
+ 2

(
aj − D̂τaj,bj

)
(x0 − aj)

∣∣ D̂τaj,bj
≤ aj

]
· Px0joint

(
D̂τaj,bj

≤ aj
)

− σ̃

2
Ex0joint

[
τaj ,bj

]
≤ (bj − x0)2 · Px0(D̂τaj,bj

≥ bj) + (aj − x0)2 · Px0(D̂τaj,bj
≤ aj) + C − σ̃

2
Ex0joint

[
τaj ,bj

]
, (2.39)

which yields

Ex0joint[τaj ,bj ] ≤
2

σ̃2

(
(bj − x0)2 · Px0(D̂τaj,bj

≥ bj) + (aj − x0)2 · Px0(D̂τaj,bj
≤ aj) + C

)
≤

2((L+K)2 · Px0(D̂τaj,bj
≥ bj) + (K)2 + C)

σ̃2
for all j ∈ N.

Hence using the Markov inequality we conclude that

Pxjoint(τaj ,bj ≥ m) ≤
2((L+K)2 · Px0(D̂τaj,bj

≥ bj) + (K)2 + C)

σ̃2m
for all j ∈ N (2.40)

which implies (2.32) by (2.30) if L =
√
m.

Step 3: In the third step we will prove that there exist a constant C7 > 0 and ε > 0 such that for all

j ∈ N

Exjoint
[
e−λτjK

]
≥ 1− C7

√
λ (2.41)

for all x ∈ (−∞, (j + 1)K] and all λ ∈ (0, ε).

First we �x j ∈ N. Note that (2.41) holds true trivially for x ∈ (−∞, jK]. Hence it is enough to focus
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2. Brownian web scaling limit

on x ∈ (jK, (j + 1)K]. For x ∈ (jK, (j + 1)K] chosen arbitrarily we de�ne Gx(m) := Pxjoint(τjK ≥ m)

in order to simplify notation. By (2.32) we know that for a ∈ (M,∞) chosen arbitrarily

sup
x∈(jK,(j+1)K]

Gx(ar) ≤ C6√
ar

for all r ∈
(
M
a ,∞

)
. (2.42)

De�ne α := a−1. If we multiply Gx(ar) with the term e−λr for some λ > 0 and integrate over r we

obtain ∫ ∞
0

e−λrGx(ar) dr =

∫ Mα

0
e−λrdr +

∫ ∞
Mα

e−λrGx(ar) dr

≤ (1− e−λMα)

λ
+ C6

√
α

∫ ∞
0

e−λr
1√
r
dr

=
(1− e−λMα)

λ
+
C6
√
αΓ(1

2)
√
λ

,

where Γ( · ) is the Γ-function. Furthermore, notice that∫ ∞
0

e−λr Gx(ar) dr =

∫ ∞
0

e−(λα)(ar) Gx(ar) dr = α Ĝx (λα) , (2.43)

where Ĝx is the Laplace transform of Gx. Hence

αĜx (λα) ≤ (1− e−λMα)

λ
+
C6
√
αΓ(1

2)
√
λ

(2.44)

for all α−1 = a > M , all x ∈ (jK, (j+ 1)K] and λ > 0 chosen arbitrarily. If we evaluate this inequality

at λ = α, we obtain

Ĝx
(
α2
)
≤ (1− e−Mα2

)

α2
+
C6 Γ(1

2)

α
.

Taking into account that Ĝx(α) =
1−Exojoint[e

−ατjK ]

α we conclude that

1− Exjoint[e−α
2τjK ] ≤ (1− e−Mα2

)

α
+ C6 Γ(1

2) · α

for all α = a−1 ≤M−1 and all x ∈ (jK, (j + 1)K], which implies (2.41).

Step 4: In the fourth step we will prove that there exist ε > 0 and a constant C8 > 0 such that for all

x > K

Exjoint
[
e−λτK

]
≥ 1− C8 · x ·

√
λ for all λ ∈ (0, ε). (2.45)

We �x some x > K and choose j ∈ N such that x ∈ (jK, (j + 1)K]. Hence by (2.41)

Exjoint[e−λτK ] =
∑
y

Exjoint[e−λτ2K1{D̂τ2K=y}e
−λ(τK−τ2K)]

=
∑
y

Exjoint[e−λτ2K1{D̂τ2K=y}E
x
joint[e

−λ(τK−τ2K) | F1
τ2K

]]

=
∑
y

Exjoint[e−λτ2K1{D̂τ2K=y}E
y
joint[e

−λ(τK)]]

≥
∑
y

Exjoint[e−λτ2K1{D̂τ2K=y}(1− C7

√
λ)],
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2.1. Tail bounds on coalescing events

if λ < ε, where F1 := (F1
n)n := (σ(D̂m,m ≤ n))n (see (2.19)). A repetition of this argument leads to

Exjoint[e−λτK ] ≥ (1− C7

√
λ)j ≥ (1− C7

√
λ)

x
K ≥ 1− C7

K
x
√
λ,

where the last inequality holds true by Bernoulli's inequality, if λ < 1
C2

7
∧ ε small enough. Hence (2.45)

follows.

Step 5: Since every time the interval [−K,K] is crossed by the process (Dn)n we have a positive

probability to regenerate inside the interval. The number of times that the process (D̂n)n jumps

over the interval [−K,K] before it �nally lands inside can be bounded by a geometrically distributed

random variable. Hence there exists a constant C9 > 0 and ε > 0 such that

Exjoint[e−λh(K)] ≥ 1− C9 · x ·
√
λ for all λ ∈ (0, ε) (2.46)

for all x > K. Note that a detailed proof of a similar statement is given at (2.52) below. We skip the

proof at this place. Out of (2.46) we conclude that

(1− e−λm)Pxjoint(h(K) ≥ m) ≤ Exjoint[1− e−λh(K)],

which for λ = m−1 yields

Pxjoint(h(K) ≥ m) ≤ C9 · x√
m(1− e−1)

.

Hence we conclude that for all x > K

Pxjoint(h(K) ≥ m) ≤ C3 · x√
m

for all m > M, (2.47)

where C3 := C9
(1−e−1)

and M := ε−1.

�

Proof of Lemma 2.9: Let K be a large constant. We choose x0 > K and assume that m ≥ M for

some M = M(x0) > 0. We prove (2.27) �rst. The idea is to show that

P2jK
joint(H(2j+1K) < h(K)) ≈ 1

2
.

Hence using the Markov property we get

PKjoint(H(
√
m) < h(K)) ≈

log(mK−2)
2 log(2)

−1∏
j=0

P2jK
joint(H(2j+1K) < h(K)) ≈

(
1

2

) log(mK−2)
2 log(2)

=
C ·K√
m

.

Because of technical reasons we assume that 25K > x0. We treat the case 25K < x0 at the end of

the proof. Notice that the event, that distance 25K is reached before the distance between the two

random walks becomes less than K, has positive probability and can be bounded away from zero. In

order to get a suitable bound for this event which is independent of x0 we construct �corridors� as

described in the proof of [B�DG13, proof of Lemma 3.8] and force the random walks to walk along

these corridors. The probability for the random walks to increase their distance by at least 1 and
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2. Brownian web scaling limit

regenerate simultaneously within the next step can be bounded from below by some δ1 > 0. Hence

using the Markov property at simultaneous regeneration times we get that

Px0joint(H(
√
m) < h(K)) ≥ (δ1)25K · P25K

joint(H(
√
m) < h(K)),

where δ1 is independent of x0.

Now we choose j ∈
[
5, log(mK−2)

2 log(2)

]
∩ Z arbitrarily. The following estimation between the �joint� and

�independent� law holds true by the coupling argument given in Lemma 1.14:

P2jK
joint(H(2j+1K) < h(jK)) ≥ P2jK

joint(H(2j+1K) < h(jK) ∧ (2j+1K)3)

≥ P2jK
ind (H(2j+1K) < h(jK) ∧ (2j+1K)3)− C(2j+1K)3e−cjK .

In the independent case the process (D̂n)n is a sum of independent increments (with zero mean) and

therefore a martingale. We de�ne τj := inf{k ≥ 1 : |D̂k| ≤ jK or |D̂k| ≥ 2j+1K}. Using the martingale

property and the fact that the simultaneous regeneration times have exponential tail bounds we get

that

2jK = E2jK
ind [D̂τj ] = E2jK

ind [D̂τj1{|D̂τj−D̂τj−1|<jK}] + E2jK
ind [D̂τj1{|D̂τj−D̂τj−1|≥jK}]

≤ jK · (1− P2jK
ind (H(2j+1K) < h(jK)))

+ (2j+1K + jK) · P2jK
ind (H(2j+1K) < h(jK))

+ C2j+1Ke−cjK ,

where C2j+1Ke−cjK < K if K is large. Therefore we get

P2jK
ind (H(2j+1K) < h(jK)) ≥ 1

2
− j + 1

2j+1
.

The following estimation looks strange but will give us good control over all the error terms that occur,

see (2.48). Because j ≥ 5, we have

1

2
=

2j

2j+1
≥ 2j − 5(j − 1)

2j+1 − 5j
+

2j − 5

2j+1
.

Since

P2jK
ind (H(2j+1K) < h(jK) ∧ (2j+1K)3) ≥ P2jK

ind (H(2j+1K) < h(jK))

− P2jK
ind (H(2j+1K) ≥ (2j+1K)3),

we need to �nd bounds for the second term on the right side. A simple application of Donsker's

invariance principle yields

max
x:|x|≤2j+1K

Pxind(H(2j+1K) > (2j+1K)2) ≤ (1− ε),

for some ε ∈ (0, 1) if K is chosen large enough. Hence making use of the Markov property, we get that

P2jK
ind (H(2j+1K) ≥ (2j+1K)3) ≤ (1− ε)2jK .
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2.1. Tail bounds on coalescing events

Putting all the error terms together we conclude

P2jK
joint(H(2j+1K) < h(jK)) ≥ 2j − 5(j − 1)

2j+1 − 5j
,

if K is chosen su�ciently large. If we consider the product over these factors we obtain

P25K
joint(H(

√
m) ≤ h(K)) ≥ exp


log(mK−2)

2 log 2 −1∑
j=5

log(2j − 5(j − 1))− log(2j+1 − 5j)


≥ C · x0√

m
, (2.48)

if m ≥M and M = M(x0) is chosen su�ciently large.

The invariance principle yields that after having reached distance ∼
√
m, the probability that the

distance between the two random walks remains greater than 1
2

√
m during the next m steps is bounded

from below by a small constant δ2 > 0. Therefore

Px0joint(h(K) ≥ m) ≥ Cx0√
m
.

If 25K ≤ x0, we de�ne K ′ :=
⌈
2−5x0

⌉
≥ K and hence

Px0joint(H(
√
m) < h(K)) ≥ (δ1)25KP25K′

joint (H(
√
m) < h(K ′)).

Adapting the proof of the previous case we get that

P25K′
joint (H(ε

√
m) < h(K ′)) ≥ C · 25K ′√

m
≥ C · x0√

m
,

as before.

�

Now that we �nished the proof of Lemma 2.8 and Lemma 2.9, we turn to the proof of Proposition 2.1,

equation (2.3):

Proof of Proposition 2.1, equation (2.3):

Remember that T̂meet was de�ned as the time (D̂n)n hits zero. As mentioned at the beginning of the

section it is enough to prove that there exist constants C, M > 0 such that for all x0 > 0

Px0joint(T̂meet ≥ m) ≤ C · x0√
m

for all m > M. (2.49)

Some comments on the lower bound can be found in section A.1.4 in the appendix. Assume for the

moment that there exist C , ε > 0 such that

1− Ex0joint[e
−λT̂meet ] ≤ C ·

√
λ · x0 (2.50)

for all λ ∈ (0, ε). By the simple estimation

(1− e−λm)Px0joint(T̂meet ≥ m) ≤ Ex0joint[1− e
−λT̂meet ],
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2. Brownian web scaling limit

we conclude that

Px0joint(T̂meet ≥ m) ≤ C ·
√
λ · x0

(1− e−λm)
,

which for λ = 1
m implies (2.49).

Hence it is enough to prove (2.50). We de�ne the following stopping times

τ out0 := 0,

τ ink+1 := inf{n ≥ τ outk : |D̂k| ≤ K},

τ outk+1 := inf{n ≥ τ ink+1 : |D̂k| > K}.

τoutk τ ink+1 τoutk+1

K

We de�ne

p1 := min
x ∈ [−K,K]

Pxjoint(|D̂m0 | > K) > 0

and

p2 := min
x ∈ [−K,K]

Pxjoint(D̂m0 = 0) > 0,

where m0 = m0(K) is suitably chosen. Recognize that
(
τ ink+1 − τ outk , τ outk+1 − τ ink+1, D̂τoutk+1

)
k≥0

is a

Markov process with state space N0 × N0 × Z and adapted to the �ltration

(F̃n)n :=
(
σ
(
D̂τoutk+1

, k ≤ n
))

n
, (2.51)

where

PK0
joint

(
τ ink+1 − τ outk ≥ m | D̂τout1

= y1 ... D̂τoutk
= yk

)
≤ Pykjoint(h(K) ≥ m) ≤ C3 ·

yk√
m

for all m > M (see (2.26)) and

PK0
joint

(
τ outk+1 − τ ink+1 ≥ m0 ·m | D̂τout1

= y1 ... D̂τoutk
= yk

)
≤ (1− p1)m−1.

We assume without loss of generality that the process (D̂n)n always exits the interval [−K,K] to the

positive side, since Ψdi�
joint(−x,−y) = Ψdi�

joint(x, y) for all x, y > 0. For the �rst time leaving the interval

[−K,K] the following bound holds true:

Let the initial di�erence between the random walks be given by y ∈ [−K,K], hence τ out0 ≡ τ in1 ≡ 0

and

Eyjoint
[
e−λ(τout1 −τ in1 )

]
= Eyjoint

[
e−λτ

out
1

]
≥ 1− λ · Eyjoint

[
τ out1

]
≥ 1− C10 · λ,
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2.1. Tail bounds on coalescing events

where C10 := maxy∈[−K,K] E
y
joint

[
τ out1

]
<∞, since the time inside the interval [−K,K] has exponential

tail bounds. Choose x ≥ K. By (2.46) there exists ε > 0 such that for the whole period of entering

and exiting the interval [−K,K] we get

Exjoint
[
e−λ(τout1 −τout0 )

]
= Exjoint

[
e−λτ

out
1

]
=

K∑
y=−K

∞∑
m=1

Exjoint
[
e−λ(τ

in
1 +(τout1 −τ in1 ))

1{τ in1 =m,D̂m=y}

]

=

K∑
y=−K

∞∑
m=1

Exjoint
[
e−λm1{τ in1 =m,D̂m=y}E

x
joint

[
e−λ(τout1 −τ in1 )

∣∣ τ in1 , D̂1, ..., D̂m

]]

=

K∑
y=−K

∞∑
m=1

Exjoint
[
e−λm1{τ in1 =m,D̂m=y}E

y
joint

[
e−λτ

out
1

]]
≥ Exjoint

[
e−λτ

in
1

]
(1− C10λ)

≥
(

1− C9

√
λ · x

)
(1− C10λ)

≥ 1− C9

√
λ · x− C10λ

for all λ ∈ (0, ε) and all x > K. Next, we split up the whole path up to the �rst hitting time of zero

into pieces inside and outside the interval [−K,K]. Let x0 > K be �xed. Let N be a geometrically

distributed random variable with success probability p2, which is independent of everything else. N

gives us an upper bound on the number of times the random walks enters the interval [−K,K] before

it hits zero. We get that

Ex0joint[e
−λT̂meet ] ≥ Ex0joint

[
exp

(
−λ

N∑
k=1

(τ ink − τ outk−1) + (τ outk − τ ink )

)]
(2.52)

=
∞∑
n=1

p2(1− p2)n−1Ex0joint

[
exp

(
−λ

n∑
k=1

(τ ink − τ outk−1) + (τ outk − τ ink )

)]
,

where

Ex0joint

[
exp

(
−λ

n∑
k=1

(τ ink − τ outk−1) + (τ outk − τ ink )

)]

= 2

∞∑
xn−1=1+K

Ex0joint

[
e−λτ

out
n−11{D̂

τout
n−1

=xn−1} · e
−λ((τ inn −τoutn−1)+(τoutn −τ inn ))

]

= 2

∞∑
xn−1=1+K

Ex0joint

[
e−λτ

out
n−1 · 1{D̂

τout
n−1

=xn−1} · E
x0
joint

[
e−λ((τ inn −τoutn−1)+(τoutn −τ inn ))

∣∣F̃n−1

]]

= 2

∞∑
xn−1=1+K

Ex0joint

[
e−λτ

out
n−1 · 1{D̂

τout
n−1

=xn−1} · E
xn−1

joint

[
e−λτ

out
1

]]

≥ 2
∞∑

xn−1=1+K

Ex0joint

[
e−λτ

out
n−1 · 1{D̂

τout
n−1

=xn−1}

(
1− C9

√
λ · xn−1 − C10λ

)]
= Ex0joint

[
e−λτ

out
n−1 ·

(
1− C9

√
λ · D̂τoutn−1

− C10λ
)]
,

= Ex0joint
[
e−λτ

out
n−1

]
− Ex0joint

[
e−λτ

out
n−1 ·

(
C9

√
λ · D̂τoutn−1

+ C10λ
)]
.
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For the de�nition of (F̃n)n see (2.51). We claim that there exists a constant C > 0 such that

Ex0joint
[
e−λτ

out
n−1 ·

(
C9

√
λ · D̂τoutn−1

+ C10λ
)]
≤ Ex0joint

[
e−λτ

out
n−1

]
· C
√
λ (2.53)

for all λ ∈ (0, ε). If we assume this claim to be true, we get by a repetition of the arguments above

that

Ejoint
x0 [e−λτ

out
n ] ≥

(
1− C

√
λ
)n
≥ 1− Cn

√
λ,

and hence

Ex0joint[e
−λT̂meet ] =

∞∑
n=1

p2(1− p2)n−1(1− nC
√
λ) ≥ 1− C

p2

√
λ,

which implies (2.50) and therefore (2.3). So all that is left to do is to prove (2.53). For ease of notation

we de�ne the following event

An(k, y) := {τ inn−1 < k, |D̂r| < K for all τ inn−1 ≤ r < k, D̂k−1 = y} ∈ σ(D̂0, ..., D̂k−1),

which is the event that the process (D̂n)n visits the interval [−K,K] for the (n − 1)-th time before

time k, that it stays within the interval from τ inn−1 to time k − 1 and that at time k − 1 the process is

at y ∈ [−K,K]. Hence

Ex0joint
[
e−λτ

out
n−1 ·

(
C9

√
λ · D̂τoutn−1

+ C10λ
)]

≤
∑
|y|≤K

∑
k∈N

Ex0joint
[
1An(k,y)1{|D̂k|>K}e

−λk ·
(
C9

√
λ · D̂τoutn−1

+ C10λ
)]

≤
∑
|y|≤K

∑
k∈N

Ex0joint
[
1An(k,y)e

−λk · Ex0joint
[
1{D̂k>K}

(
C9

√
λ · D̂τoutn−1

+ C10λ
) ∣∣∣ D̂0, ..., D̂k−1

]]
≤
∑
|y|≤K

∑
k∈N

Ex0joint
[
1An(k,y)e

−λk · Ejoint
y

[
1{D̂1>K}

(
C9

√
λ · D̂τout1

+ C10λ
)]]

≤
∑
|y|≤K

∑
k∈N

Ex0joint
[
1An(k,y)e

−λk
]
·
∑
x>K

(
C9

√
λ · x+ C10λ

)
Ψdi�

joint(y, x)

≤ (C
√
λ) ·

∑
|y|≤K

∑
k∈N

Ex0joint
[
1An(k,y)e

−λk
]
·
∑
x>K

Ψdi�
joint(y, x)x

≤ (C
√
λ) · Ex0joint

[
e−λτ

out
n−1

]
,

where the �fth inequality holds true since

0 ≤
∑
x>K

(C9 · x+ C10) Ψdi�
joint(y, x) <∞,

which together with the exponential tail bounds for Ψdi�
joint (compare Lemma 1.12 and Lemma 1.14)

implies the existence of a constant C > 0, such that∑
x>K

(
C9

√
λ · x+ C10λ

)
Ψdi�

joint(y, x) ≤ C
√
λ
∑
x>K

Ψdi�
joint(y, x).

�
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2.2. Characterization of the Brownian web

In this section give a short introduction into the topic of the Brownian web and formulate the conver-

gence theorem precisely. The characterization of the Brownian web given below, can also be found for

example in [FINR04] or [Sun05].

We de�ne a metric on R2 by

ρ((x1, t1), (x2, t2)) := | tanh(t1)− tanh(t2)| ∨
∣∣∣∣tanh(x1)

1 + |t1|
− tanh(x2)

1 + |t2|

∣∣∣∣ .
Let R2

c be the completion of R2 under ρ. We can think of R2
c as the image of [−∞,∞] × [−∞,∞]

under the mapping

(x, t) 7→ (Φ(x, t),Ψ(t)) :=

(
tanh(x)

1 + |t|
, tanh(t)

)
∈ R2

c .

This means that R2
c can be identi�ed with the square [−1, 1] × [−1, 1] where the line [−1, 1] × 1 and

the line [−1, 1]×−1 are squeezed to two single points which will be denoted by (∗,∞) and (∗,−∞).

We de�ne Π to be the set of functions f : [σ,∞] −→ [−∞,∞] with �starting time� σ ∈ [−∞,∞], such

that the mapping t 7→ (f(σ ∨ t), t) from (R, | · |) to (R2
c , ρ) is continuous. We consider the elements

in Π as a tuple of the function f and its starting time σ. If we identify the elements in Π with their

paths (f(σ ∨ t), t)t∈R in R2
c , the set Π together with the metric

d((f, σ), (g, σ′)) := | tanh(σ)− tanh(σ′)| ∨ sup
t∈R

∣∣∣∣tanh(f(t ∨ σ))

1 + |t|
− tanh(g(t ∨ σ′))

1 + |t|

∣∣∣∣ ,
becomes a complete separable metric space. Let H be the set of compact subsets of (Π, d). Together

with the Hausdor� metric

dH(K1,K2) := sup
(f,σ)∈K1

inf
(g,σ′)∈K2

d((f, σ), (g, σ′)) ∨ sup
(g,σ′)∈K2

inf
(f,σ)∈K1

d((f, σ), (g, σ′)),

H becomes a complete separable metric space. Let BH be the Borel σ-algebra associated with the

metric dH. We can characterize the Brownian web (BW) as follows:

De�nition 2.10. (Brownian web) The Brownian web is a (H,BH)-valued random variable W, de-

�ned on a probability space (Ω,A, P ), whose distribution is uniquely determined by the following

properties:

(i) For any deterministic point (x, t) ∈ R2, there is almost surely a unique path W (x,t) starting from

(x, t).

(ii) For any deterministic z1, ..., zk ∈ R2, the joint distribution ofW (z1), ...,W (zk) is that of coalescing

Brownian motions (with unit di�usion constant).

(iii) For any deterministic, countable dense subset D of R2, almost surely, W is the closure of

{W (z) : z ∈ D} in (Π, d).
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2. Brownian web scaling limit

2.3. Veri�cation of convergence criteria

Now we give a precise de�nition of the system of coalescing random walks starting from each point

contained in the oriented percolation cluster, which we expect to converge to the Brownian web.

Remember that as said at the beginning of this chapter, the space dimension d equals one.

Let C ⊂ Z× Z be the set of all space-time points connected to in�nity, as de�ned in (1.25). If a point

z = (x, n) ∈ Z × Z is in C let πz be the linearly interpolated path of the random walk X(z) starting

from z de�ned in (1.49). If a point z ∈ Z × Z is not in C, we choose the next point left to z that is

connected to in�nity and de�ne πz as the linearly interpolated copy of the random walk path starting

there. In particular, if z = (x, n) /∈ C we de�ne

c((x, n)) := max{y < x : (y, n) ∈ C} and (πz(t))t≥n := (π(c(z),n)(t))t≥n. (2.54)

We formulate our result in a similar way Sarkar and Sun did in [SS13]. Let Γ be the collection of all

paths Γ := {πz ∈ Z × Z} = {πz : z ∈ C}. Since all paths in C are equicontinuous the closure of Γ,

which we also denote by Γ, is a random variable taking values in (H,BH).

There will be situations in which we need to consider the collection of the piecewise constant paths

instead of the linearly interpolated ones. We denote the piecewise constant paths by κz and the

collection of these paths by K := {κz : z ∈ Z× Z} = {κz : z ∈ C}.

In order to formulate the convergence theorem precisely we de�ne

Sb,δ := (S1
b,δ, S

2
b,δ) : (R2

c , d) −→ (R2
c , d),

where

Sb,δ(x, t) := (S1
b,δ(x, t), S

2
b,δ(t)) :=


(xδb , δ

2t), if (x, t) ∈ R2,

(±∞, δ2t), if (x, t) = (±∞, t), t ∈ R,

(∗,±∞), if (x, t) = (∗,±∞).

In the literature, the mapping Sb,δ is called the di�usive scaling map. The mapping Sb,δ can be extended

to (Π, d), where Sb,δ((π, t0)) is the path whose graph equals the image of (π(t), t)t∈[t0,∞] under Sb,δ. If

K is a subset of Π we de�ne Sb,δK := {Sb,δ((π, t)) : (π, t) ∈ K}. For K ∈ H we have Sb,δK ∈ H.

Theorem 2.11. The sequence of (H,BH)-valued random variables (Sσ,δΓ)δ, where

σ2 :=
E[Y 2

1 ]

E[τ1]
(compare [B�DG13, Remark 1.2]),

converges in distribution to the Brownian web.

µδ := L(Sσ,δΓ|P)
w−→ L(W|P ) =: µ, for δ −→ 0. (2.55)

Notation 2.12. First we introduce a little more notation which will be needed to formulate Sun's

convergence criteria. Most of the ideas Sun used to verify the convergence criteria for his model are

adaptable to our case. Therefore the work done in this chapter is very similar to the work done by

36



2.3. Veri�cation of convergence criteria

Sun in [Sun05].

We de�ne ΛL,T := [−L,L] × [−T, T ] ⊂ R2. For some x0, t0 ∈ R and u, t > 0 let R(x0, t0, u, t) be

the rectangle [x0 − u, x0 + u] × [t0, t0 + t] ⊂ R2 and de�ne Au,t(x0, t0) to be the event that K ∈ H
contains a path that touches both the rectangle R(x0, t0, u, t) and the left or right boundary of the

bigger rectangle R(x0, t0, 20u, 2t), see Figure 2.1 below.

For a, b, t0, t ∈ R, a < b, 0 < t and K ∈ H we de�ne the number of distinct points in R×{t0 + t} which
are touched by some path in K ∈ H that also touches [a, b]× {t0} by

ηK(t0, t; a, b) :=

#{y ∈ R : ∃x ∈ [a, b] and a path in K which touches both (x, t0) and (y, t0 + t)}.

If X is a (H,BH)-valued random variable, we de�ne X s− to be the subset of paths in X which start

before or at time s. We restrict the paths in X s− to [t,∞] and de�ne X s−,tT as the collection of these

restricted paths. Note that X s−,tT is also an (H,BH)-valued random variable. If s = t, we will simply

write X sT .

Sun shows [Sun05, Theorem 1.3.2, Lemma 3.4.1] that a family {Xn}n of (H,BH)-valued random vari-

ables with distribution {µn} converges in distribution to the standard Brownian web W, if it satis�es

the following conditions:

(I1) There exist single path valued random variables θ(y)
n ∈ Xn, for y ∈ R2, satisfying: For D a

deterministic countable dense subset of R2, for any deterministic z1, ..., zm ∈ D, θ(z1)
n , ..., θ

(zm)
n

converge jointly in distribution to coalescing Brownian motions (with unit di�usion constant)

starting from z1, ..., zm, as n tends to in�nity.

(T1) For every u, L, T ∈ (0,∞)

g̃(t, u;L, T ) ≡ t−1lim sup
n−→∞

sup
(x0,t0)∈ΛL,T

µn(At,u(x0, t0))→ 0 as t −→ 0+,

which is a su�cient condition for the family {Xn}n to be tight.

(B′1) For all β > 0

lim sup
n−→∞

sup
t>β

sup
t0,a∈R

µn({K ∈ H : ηK(t0, t; a− ε, a+ ε) > 1}) −→ 0 as ε −→ 0+.

(E′1) Fix t0 ∈ R. If Zt0 is any subsequential limit of {X t
−
0
n }n, de�ned on some probability space

(Ω,A, P ), then for all t, a, b ∈ R, with t > 0 and a < b,

EP [ηZt0 (t0, t; a, b)] ≤ EP [ηW(t0, t; a, b)] =
b− a√
πt
.

Remark 2.13. Instead of Xn, we usually write Xδ to denote the (H,BH)-valued random variable

Sσ,δΓ (compare (2.55)). If we want to consider the weak limit of (Xδ)δ>0 along a certain subsequence

(δn)n, where δn −→ 0 as n −→ ∞, we denote the random variables Sσ,δnΓ by Xδn . The probability

measure P ◦ (Sσ,δnΓ)−1 on (H,BH) is denoted by µδn .
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2. Brownian web scaling limit

Checking condition (I1)

First of all let D be a dense countable subset of R2 and choose y1 = (x1, t1), ..., ym = (xm, tm) ∈ D.
De�ne yδ,i := (x̃i, t̃i) := (

⌊
xiσδ

−1
⌋
,
⌊
tiδ
−2
⌋
) and let (πiδ, t

i
δ) denote the function in (Π, d) whose graph

equals the image of the graph of (π(yδ,i), t̃i) under Sσ,δ. In order to shorten notation, we will suppress

the starting time in the following calculations.

Step 1: The �rst thing to show is that for every i ∈ {1, ...,m} the linearly interpolated and di�usively

rescaled random walk πiδ, converges weakly under P to a Brownian motion starting from yi. Using

[B�DG13, Theorem 1.1, Remark 1.5] we know that for (x, n) ∈ Z× Z the di�usively rescaled random

walk π(x,n)
δ converges weakly under P( · |B(x,n)) to a Brownian motion, where B(x,n) is the event that

(x, n) is connected to in�nity. De�ne G(x,n) to be the event that the quenched functional central limit

theorem holds for a path starting in (x, n). From [B�DG13, Theorem 1.1, Theorem 1.4] we get that

P(G(x,n)|B(x,n)) = 1, which means that P((G(x,n))
c ∩B(x,n)) = 0. De�ne

G :=
⋂

(x,n)∈Z2

G(x,n) ∪ (B(x,n))
c =

 ⋃
(x,n)∈Z2

(G(x,n))
c ∩B(x,n)

c

.

Note that P(G) = 1 since the complement is a countable union of null sets. Hence up to a P-null set
either (x, n) ∈ Z×Z is not connected to in�nity or the functional central limit theorem holds in (x, n).

Keeping this in mind, the only thing left to do in order to prove the claim of step 1, is to show that

c(yδn,i)δn
σ

−→
n→∞

xi,

in probability, for any (δn)n with δn ↓ 0, where c((x, n)) was de�ned in (2.54). We �x some null

sequence (δn)n. According to [Dur84, Section 10] we know that there exist K,C > 0 such that

P (|x− c((x,m))| ≥ K log(1/δn)) ≤ Cδ2
n for all (x,m) ∈ Z× Z, (2.56)

where {|x−c((x,m))| ≥ K} is the event that the next point left to x, which is contained in the oriented
percolation cluster, is more than distance K apart from x. Or, said di�erently, (2.56) is an estimate

on the probability of holes of order ∼ log(1/δn) to occur. Hence

P
(∣∣∣∣xi − c(yδn,i)δn

σ

∣∣∣∣ > ε

)
= P

(∣∣xiσδ−1
n − c(yδn,i)

∣∣ > εσ

δn

)
−→ 0, as n −→∞,

from which the desired convergence follows.

Step 2: Before formulating the claim we want to prove in step 2, we require a little more notation.

Consider the tuple (π1
δ , ..., π

m
δ ) (the starting time is suppressed) as a random variable on the product

space (Πm, d∗m), where

d∗m
[
((f1, σ1), ..., (fm, σm)) ,

(
(g1, σ

′
1)..., (gm, σ

′
m)
)]

= max
1≤i≤m

d
(
(fi, σi), (gi, σ

′
i)
)
.

Denote by Π the space of càdlàg paths and de�ne

d̄((f, σ), (g, σ′)) := |σ − σ′| ∨ sup
t∈R
|f(t ∨ σ)− g(t ∨ σ′)|.
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2.3. Veri�cation of convergence criteria

The metric d̄∗m on the product space Π
m

is de�ned analogously. Next we will de�ne two coalescing

rules, which can be considered as mappings from (Π
m
, d̄∗m) to (Π

m
, d̄∗m).

The �rst coalescing rule Γα is de�ned as follows:

Let ((f1, t1), ..., (fm, tm)) be an element of Π
m
. De�ne T i,jα as the �rst time that the paths fi, fj

coincide or change their relative order after time ti ∨ tj

T i,jα := inf{t > ti ∨ tj : (fi(ti ∨ tj)− fj(ti ∨ tj)) (fi(t)− fj(t)) ≤ 0}.

Start with the equivalence relation i ∼ i, i 6∼ j for all i 6= j on {1, ...,m}. De�ne Γα on

((f1, t1), ..., (fm, tm)) by

τα := min
1≤i,j≤m,i 6∼j

T i,jα , with min ∅ =∞,

and

Γα(fi(t)) :=

fi(t), if t < τα,

fi∗(t), if t ≥ τα,

where i∗ = min{j|(j ∼ i) or (j 6∼ i and T i,jα = τα)}. Enhance the equivalence relation by i ∼ i∗. Iter-

ating this procedure, we get the desired structure of coalescing random walks. We label the successive

times τα by τ1
α, ..., τ

k
α , where k ∈ 1, ...,m is chosen such that τkα =∞.

The second coalescing rule Γβ is de�ned very similarly, but T i,jα is replaced by

T i,jβ := inf{t ≥ ti ∨ tj : fi(t) = fj(t)},

the time when two paths coincide. In order to simplify notation we add subscripts α or β to (f1, ..., fm)

if Γα or Γβ is applied to it.

Let κiδ denote the piecewise constant càdlàg versions of πiδ. The claim of step 2 is that for all ε > 0

P
(
d∗m

[(
κ1
δ,α, ..., κ

m
δ,α

)
,
(
κ1
δ,β, ..., κ

m
δ,β

)]
≥ ε
)
−→ 0, (2.57)

as δ ↓ 0.

Notice that d((f1, t1), (f2, t2)) ≤ d̄((f1, t1), (f2, t2)) for all (f1, t1), (f2, t2) ∈ Π, since tanh(·) is Lipschitz
continuous with Lipschitz constant one. Hence, in order to prove (2.57), it is enough to show that

P
(
d̄∗m

[(
κ1

1,α, ..., κ
m
1,α

)
,
(
κ1

1,β, ..., κ
m
1,β

)]
≥ σε

δ

)
−→ 0, (2.58)

as δ ↓ 0, where κi1 denotes the piecewise constant càdlàg version of πiδ in the case δ = 1. If δ = 1 we

sometimes denote κiδ by κ
i. We prove the claim by induction overm. Letm = 2. Since κ1

1,α = κ1
1,β = κ1

we get that

d̄∗m
[(
κ1

1,α, κ
2
1,α

)
,
(
κ1

1,β, κ
2
1,β

)]
= d̄[κ2

1,α, κ
2
1,β].

In Proposition 2.1 (see also Lemma A.1 and discussion there) we proved that two random walks on

a joint oriented percolation cluster coalesce almost surely. Choose ε′ > 0 arbitrarily and let N,K be

large enough such that P(T 1,2
α > N) < ε′

2 and

P
(

max
n,|x−y2|<N

T
(x,n),(x+1,n)
meet > K

)
<

ε′

2(2N + 1)(N + 1)
.
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2. Brownian web scaling limit

Furthermore, choose δ such that εσ
δ > 2K. We get that

P
(
d̄(κ2

1,α, κ
2
1,β) >

εσ

δ

)
≤ ε′

2
+

∑
0≤|x|,n≤N

P

 sup
s<T

(x,n),(x+1,n)
meet

|κ(x,n)(s)− κ(x+1,n)(s)| > εσ

δ
, κ2(T 1,2

α ) = x, T 1,2
α = n


≤ ε′

2
+
ε′

2
≤ ε′, (2.59)

where the �rst inequality follows from the fact that when two paths cross, they can miss each other

by at most �one step�. Since ε′ > 0 is chosen arbitrarily, the statement in (2.57) is proved for the case

m = 2.

Now let m > 2. There are two possibilities for the event in (2.58) to occur.

The �rst possibility is that a �wrong (α−)coalescing event� occurs, which means that for some k and

i < j a path κlδ, l < i coalesces or changes its relative order with κiδ after time τkδ,α = T i,jδ,α and

before time T i,jδ,β, where there is no need for κlδ and κjδ to coalesce �soon�, since their paths never

crossed. Let us consider this case. First notice that (π1
δ , ..., π

m
δ ) converges weakly in (Πm, d∗m) to

m independent Brownian motions (B1, ...,Bm) starting from (y1, ..., ym) by [B�DG13, Theorem 1.3,

Remark 1.5, Remark 3.11] and step 1. Hence Skorohod's representation theorem yields that we can

choose a joint probability space on which

d∗m
[(
π1
δ , ..., π

m
δ

)
,
(
B1, ...,Bm

)]
−→ 0 almost surely, as δ → 0. (2.60)

Since κiδ is the piecewise constant càdlàg version of πiδ, we know that also

d∗m
[(
κ1
δ , ..., κ

m
δ

)
,
(
B1, ...,Bm

)]
−→ 0 almost surely, as δ → 0. (2.61)

We denote the crossing and coalescing times of (κ1
δ , ..., κ

m
δ ) by {T i,jδ,α}1≤i,j≤m. Since {T

i,j
δ,α}1≤i,j≤m are

continuous mappings from (Π
m
, d∗m) to R we get that

T i,jδ,α −→ τ i,j almost surely, as δ → 0, (2.62)

where τ i,j is the �rst time that the paths of Bi and Bj cross. Since all these times are distinct a. s.

and hence

|T l,iδ,α − T
i,j
δ,α| > 0 almost surely, as δ → 0, (2.63)

whereas

sup
1≤i<j≤m

|T i,jα − T
i,j
β | −→ 0 in probability, (2.64)

by arguments similar to the ones we used to prove (2.59). Hence the probability of a �wrong�

(α−)coalescing event to occur tends to 0.

The second possibility for the event in (2.58) to occur is that there is �too much� time between the

crossing and the coalescence of two paths, without any other interactions with additional paths. �Too

much� time means there is a positive probability that two random walks need more than ∼ δ−2ε2

steps to coalesce after their paths crossed, for some ε > 0. Therefore the random walks have positive
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2.3. Veri�cation of convergence criteria

probability to reach distance δ−1ε before they �nally coincide. According to the case m = 2 the

probability of this event to occur tends to zero as δ tends to zero. This proves (2.58) for m > 2.

Step 3: Veri�cation of (I1)

This step is just putting together the previous steps:

Since (κ1
δ,α, ..., κ

m
δ,α) converges in distribution to Brownian motions (B1

α, ...,Bmα ) starting from y1, ..., ym

by step 1 and the distance between ((κ1
δ,α, yδ,1), ..., (κmδ,α, yδ,m)) and (κ1

δ,β, ..., κ
m
δ,β) converges to zero in

probability by step 2, we get that (κ1
δ,β, ..., κ

m
δ,β) and therefore (π1

δ,β, ..., π
m
δ,β) converges in distribution

to (B1
α, ...,Bmα ).

Checking condition (T1)

Let A+
t,u(x0, t0) be the event that K ∈ H contains a path touching both R(x0, t0, u, t) and the right

boundary of the bigger rectangle R(x0, t0, 20u, 2t). Similarly, we de�ne A−t,u(x0, t0) as the event that

the path hits the left boundary of the bigger rectangle. If a variable is di�usively scaled we will add

�∼� to it, where t̃ = tδ−2 if t is a time variable and x̃ = σxδ−1 if x is a space-variable. In order to

verify condition (T1) it is enough to show that for every u ∈ (0,∞)

t−1lim sup
δ→0

µ1(A+
t̃,ũ

(0, 0)) −→ 0 as t ↓ 0, (T+
1 )

where in comparison to condition (T1) we omitted the supremum because of the spatial invariance of

µ1 := P ◦ (Sσ,1Γ)−1. Condition (T−1 ) is de�ned analogously with the event A+ replaced by A−. It is

enough to show (T+
1 ) since condition (T−1 ) can be veri�ed similarly and (T1) is true if condition (T+

1 )

and (T−1 ) hold, since At̃,ũ(x0, t0) = A+
t̃,ũ

(x0, t0) ∪A−
t̃,ũ

(x0, t0).

We will show that for every u > 0 �xed, lim sup
δ−→0

µ1(A+
t̃,ũ

(0, 0)) is in o(t). Let u > 0 and de-

�ne x1,δ := b3ũc , x2,δ := b8ũc , x3,δ := b13ũc and x4,δ := b18ũc. We are interested in the paths

πxi,δ := π(xi,δ,0), i = 1, 2, 3, 4.

We denote by Bi the event that πxi,δ stays within distance ũ from xi,δ up to time 2t̃. For a �xed

(x,m) ∈ R(ũ, t̃) := R(0, 0, ũ, t̃) denote the times (stopping times) when the random walker π(x,m) �rst

exceeds 5ũ, 10ũ, 15ũ and 20ũ by τ (x,m)
1 , τ

(x,m)
2 , τ

(x,m)
3 and τ (x,m)

4 . Furthermore, de�ne τ (x,m)
0 = 0 and

τ
(x,m)
5 = 2t̃. Denote by Ci(x,m) the event that π(x,m) does not coalesce with πxi,δ before time 2t̃. We

assume that t̃ ∈ Z, if not we replace t̃ by
⌈
t̃
⌉
. We estimate the probability in (T+

1 ) in the following way

µ1

(
A+
t̃,ũ

(0, 0)
)
≤ µ1

(
4⋃
i=1

Bc
i

)
(∗)

+ µ1

 4⋂
i=1

Bi ,
⋃

(x,m)∈R(ũ,t̃)

(
4⋂
i=1

Ci(x,m)

)
∩ {τ (x,m)

4 < 2t̃}

 . (∗∗)

We estimate the terms (∗) and (∗∗) separately. First note that

µ1

(
4⋃
i=1

Bc
i

)
≤ µ1(Bc

1) + µ1(Bc
2) + µ1(Bc

3) + µ1(Bc
4),
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τ
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τ
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τ
(x,m)
1
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Figure 2.1.: Illustration of the event A+
t,u(x0, t0).

and that

lim
δ↓0

µ1(Bc
1) = P

(
sup
s∈[0,t]

|Bs| > u

)
< 4e−

u2

2t ∈ o(t) as t ↓ 0,

where B is a standard Brownian motion on a probability space (Ω,A, P ). The second term (∗∗) can
be estimated by

(∗∗) ≤
∑

x∈[−ũ,ũ]∩Z
m∈[0,t̃]∩Z

µ1

(
4⋂
i=1

Bi,
4⋂
i=1

Ci(x,m), {τ (x,m)
4 < 2t̃}

)
.

From now on we come back to the underlying Markovian structure of the random walks X(x,m) and

X(xi,δ,0); i = 1, .., 4 and focus on their simultaneous regeneration times. Note that the estimates in

Lemma 1.12 and Lemma 1.14 hold true for any �nite number of random walks. We �x x ∈ [−ũ, ũ]∩Z
and m ∈

[
0, t̃
]
∩ Z. We denote by θi the �rst regeneration time that π(x,m)(n) − π(xi,δ)(n) > 0.

Recognize that on the event in (∗∗) we have θi < 2t̃. Furthermore, let B̂i be the event that π(xi,δ) stays

within distance ũ of xi,δ at simultaneous regeneration times up to time 2t̃ and denote by Ĉi(x,m)

the event that π(x,m) does not coincide with π(xi,δ) at simultaneous regeneration times before time

2t̃. In analogy to the previous notation let τ̂ (x,m)
i be the �rst time that a simultaneous regeneration

event occurs after the random walk path π(x,m) exceeds (5 · i)ũ. Only considering the random walks

at simultaneous regeneration times, we can estimate a single summand of the sum above by

µ1

(
4⋂
i=1

Bi,

4⋂
i=1

Ci(x,m), {τ (x,m)
4 < 2t̃}

)

≤ µ1

(
4⋂
i=1

B̂i,

4⋂
i=1

Ĉi(x,m), {τ̂ (x,m)
4 < (2 + ε)t̃}

)
(2.65)

+ correction term, that sim. reg. after τ (x,m)
4 takes �too long�

≤ µ1

(
4⋂
i=1

B̂i,

4⋂
i=1

Ĉi(x,m), {τ̂ (x,m)
4 < (2 + ε)t̃}, {T simθ4 − T simθ4−1 < C log(1

δ )}

)
+ δC

≤ µ1

(
3⋂
i=1

B̂i,

3⋂
i=1

Ĉi(x,m), {τ̂ (x,m)
3 < (2 + ε)t̃}

)
PC log( 1

δ
)

joint

(
H(εũ) < T̂meet

)
+ (2t̃)Ce−cũ + δC , (2.66)
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2.3. Veri�cation of convergence criteria

where C, c > 0 are positive constants. The last inequality holds true since by the regeneration structure,

every information we gained up to time T simθ4
about the �future� of the cluster is that every random

walk is placed at a space-time point that is connected to in�nity, therefore the �future� of the cluster

after time T simθ4
can be replaced by some identical copy in which all the points the random walks sit

in are connected to in�nity. By the coupling argument alluded to before Lemma 1.14 the cluster right

to the third red bar can be chosen independently of what is left to the third red bar.

Note that by (2.25), we know (with suitably controlled error term) that for every 0 < α′ < α < 1

PC log( 1
δ

)

joint

(
H(εũ) < T̂meet

)
≤ PC log( 1

δ
)

joint

(
H(εũ) < T̂meet, T̂meet ≥ 2t̃α

)
+ PC log( 1

δ
)

joint

(
H(εũ) < T̂meet, T̂meet < 2t̃α

)
≤ PC log( 1

δ
)

joint

(
T̂meet ≥ 2t̃α

)
+ PC log( 1

δ
)

joint

(
H(εũ) < T̂meet, T̂meet < 2t̃α

)
≤ Cδα

′

√
tα

+ PC log( 1
δ

)

joint

(
H(εũ) < 2t̃α

)
.

We de�ne

Rsim
1
δ

:= {T simk − T simk−1 ≤ log2(δ−1) for all k ≤ 2t
δ2
}.

Notice that

PC log( 1
δ

)

joint

(
H(εũ) ≤ 2t̃α

)
≤ P

ε
2
ũ

joint

(
H(εũ) ≤ 2t̃α

)
≤ P

ε
2
ũ

ind

(
H(εũ) ≤ 2t̃α

)
+ C(2t̃α)e−cδ

−1

≤
b2t̃αc∑
n=1

P
ε
2
ũ

ind

(
D̂n > εũ

)
+ Ce−

c
δ

≤
b2t̃αc∑
n=1

P
ε
2
ũ

ind

(
|D̂n − εũ

2 | >
εũ
2

∣∣ Rsim
1
δ

)
+ Ce−c log2(δ) + Ce−cδ

−ε

≤ C
2t̃α∑
k=1

exp

(
− (εũ)2

Ck log2(1
δ )

)
+ Ce−c log2(δ)

≤ Ctαδ−2α exp

(
− (εu)2δ−2+2α

Ct2α log2(1
δ )

)
+ Ce−c log2(δ) ∈ o(δα)

where the second inequality holds true by (1.14) for some ε > 0 and in the �fth inequality we made use

of Azuma's inequality, since under Pxind the process (D̂n)n is a martingale. Repetition of the arguments

given in (2.65) leads to

µ1

(
4⋂
i=1

Bi,

4⋂
i=1

Ci(x,m), τ
(x,m)
4 < 2t̃

)
≤ (Cδα

′
)4,

for some α′ ∈ (0, 1), where α′ can be chosen close to one. Using this estimation, the term in (∗∗) can
be bounded from above by

µ1

(
4⋂
i=1

Bi, ∃(x,m) ∈ R(ũ, t̃) s.t.
4⋂
i=1

Ci(x,m) and τ (x,m)
4 < 2t̃

)
≤

∑
x∈[−ũ,ũ]∩Z

∑
m∈[0,t̃]∩Z

(Cδα
′
)4

≤ (Cδ4α′) · 2ũt̃ ≤ C(u)tδε for some ε > 0,

43



2. Brownian web scaling limit

since α′ can be chosen close to one. Hence condition (T+
1 ) is satis�ed.

Checking condition (B′1)

We �x t > β > 0 and t0, a ∈ R. We want to show that for each ε′ > 0 there exists ε > 0 independent

of t, t0 and a, such that

µδ(η(t0, t; a− ε, a+ ε) > 1) = µ1(η(t̃0, t̃; ã− ε̃, ã+ ε̃) > 1) < ε′

for all δ > 0 su�ciently small. First we assume that t̃0 = n0 ∈ Z. In this case only paths that start

from the interval [ã− ε̃, ã+ ε̃] ∩ Z at time n0 are counted by η. Therefore

µ1(η(n0, t̃; ã− ε̃, ã+ ε̃) > 1)

≤
∑

{x,x+1}⊂[ã−ε̃,ã+ε̃]∩Z

P(π(x,n0)(k) 6= π(x+1,n0)(k) for all k ∈ [n0, n0 + bt̃c]).

By (2.3) of Proposition 2.1 and Lemma A.1 in the appendix, which is the extension of (2.3) for random

starting points as de�ned in (2.54), we get that

P
(
π(x,n0)(k) 6= π(x+1,n0)(k) for all k ∈ [n0, n0 + bt̃c]

)
≤ C√

t̃
,

for some C > 0. Hence

µ1(η(n0, t̃; ã− ε̃, ã+ ε̃) > 1) ≤ 2ε̃C√
t̃
≤ 2σεC√

t
≤ 2σεC√

β
,

which is smaller than ε′ if ε < ε′
√
β

2σC .

If t̃0 ∈ (n0, n0 + 1) for some n0 ∈ N, it is enough to show that µ1(η(n0, t̃; ã − 2ε̃, ã + 2ε̃) > 1) < ε′,

which is true by similar estimates as above.

Checking condition (E ′1)

In order to verify condition (E′1) we need to prove a statement similar to Lemma 3.5.2 in [Sun05] which

is formulated in Lemma 2.15 below. This can be done by adapting Lemma 2.0.7 in [Sun05] to our case

(see Lemma 2.14 below). The rest of the proof follows by more general results, proved by Sun and

does not need any adaptation.

Lemma 2.14. Remember that K was de�ned as the collection of piecewise constant random walk paths.

For A ⊂ Z and m,n ∈ N, m > n, we de�ne

KA,n
m := {κ(x,n)(m) : x ∈ A}.

If n = 0 we simply write KA
m := KA,0

m . Then

pm := P
(

0 ∈ KZ
m

)
≤ C√

m
,

for some constant C independent of m.
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2.3. Veri�cation of convergence criteria

Proof: Let BM := [0,M − 1] ∩ Z and in order to simplify notation de�ne

KA
m(x) :=

1, if (x,m) ∈ KA
m

0, otherwise,

for some A ⊂ Z. Using translation invariance of P we obtain

em(BM ) := E[|KZ
m ∩BM |] = E

 ∑
x∈BM

KZ
m(x)

 =
∑
x∈BM

E
[
KZ
m(x)

]
= pm ·M,

where em(B) can be estimated by

em(BM ) ≤
∑
k∈Z

E[|KBM+kM
m ∩BM |] =

∑
k∈Z

E[|KBM
m ∩ (BM + kM)|] = E[|KBM

m |].

Recognize that the di�erence M − |KBM
m | is larger than the number of nearest neighbour pairs that

coalesced before time m. Using translation invariance of P we get that

E[M − |KBM
m |] ≥

M−2∑
x=0

E[1{κ(x,0)(t)=κ(x+1,0)(t) for some t≤m}]

= (M − 1)P[κ(0,0)(t) = κ(1,0)(t) for some t ≤ m].

By (2.3) of Proposition 2.1 and Lemma A.1 in the appendix, we obtain

E[|KBM
m |] ≤M − (M − 1)P[κ(0,0)(t) = κ(1,0)(t) for some t ≤ m]

≤M − (M − 1)

(
1− C√

m

)
< 1 +M

C√
m
,

and therefore

pm <
1

M
+

C√
m
.

Using the fact that M can be chosen arbitrarily large, we get that

pm ≤
C√
m
.

�

Now we are ready to prove our analogue of [Sun05, Lemma 3.5.2]. Recall the de�nition of X t
−
0
δ within the

comments after Theorem 2.11. Also recall that (T1) is a su�cient condition for the family ({Xδ}δ>0)δ

to be tight, hence let Zt0 be a subsequential limit of X t
−
0
δ , de�ned some probability space (Ω,A, P ),

where Xδ := Sσ,δΓ.

Lemma 2.15. The intersection of paths in Zt0 with the line {t0 +ε}×R is almost surely locally �nite.

Proof Let Zt0 be the weak limit of a sequence (X t
−
0
δn

)n. We denote the di�usively scaled piecewise

constant paths that start before or at time t0 by Yt
−
0
δn
, where Yδ := Sσ,δK. Remember that K is the

collection of all piecewise constant paths.
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2. Brownian web scaling limit

If we denote the space of compact subsets of (R2
c , ρ) by (P, ρP), where ρP is the induced Hausdor�

metric and consider Yt
−
0
δn

(t0 + ε) and X t
−
0
δn

(t0 + ε) as (P, ρP)-valued random variables, we get that

ρP

(
X t
−
0
δn

(t0 + ε),Yt
−
0
δn

(t0 + ε)

)
−→ 0 as n→∞ (2.67)

in probability. Therefore Yt
−
0
δn

(t0 + ε) also converges weakly to Zt0(t0 + ε) as (P, ρP) valued random

variables. Since for all a, b ∈ R, a < b the set

{K ∈ (P, ρP) : |K ∩ (a, b)× R| ≥ k}

is an open set in (P, ρP), we get that

EP [|Zt0(t0 + ε) ∩ (a, b)× R|] =

∞∑
k=1

P [|Zt0(t0 + ε) ∩ (a, b)× R| ≥ k]

≤
∞∑
k=1

lim inf
n−→∞

P[|Yt
−
0
δn

(t0 + ε) ∩ (a, b)× R| ≥ k]

≤ lim inf
n−→∞

E[|Yt
−
0
δn

(t0 + ε) ∩ (a, b)× R|]

≤ C(b− a)√
ε

,

where the last inequality holds true by Lemma 2.14, since

E[|Yt
−
0
δ (t0 + ε) ∩ (a, b)× R|]

≤ E
[ ∑
x∈(ã,b̃)∩Z

KZ
ε̃ (x)

]
≤

∑
x∈(ã,b̃)∩Z

E[KZ
t̃0+ε̃

(x)] ≤ C(b̃− ã)√
ε̃

≤ C(b− a)√
ε

.

�

Condition (E′1) then follows by Lemma 2.15 and [Sun05, Lemma 3.5.3]. For completeness' sake [Sun05,

Lemma 3.5.3] is given below. Recall the de�nition of X sT in Notation 2.12.

Lemma 2.16. (siehe [Sun05, Lemma 3.5.3])

For any ε > 0, Z(t0+ε)T
t0

, the set of paths in Zt0 truncated before time t0 +ε, is distributed as BZt0 (t0+ε),

i.e., coalescing Brownian motions starting from the random set Zt0(t0 + ε) ⊂ R2.

Veri�cation of (E′1):

Notice that µ′ := L(BZt0 (t0+ε)|P ) ≤ L(W|P ) =: µ which means that for every bounded measurable

function f with

f(K) ≤ f(K ′), for every K,K ′ ∈ H, with K ⊂ K ′

we have ∫
fdµ′ ≤

∫
fdµ.

Hence we conclude

E[ηZt0 (t0, t; a, b)] = E[η
Z(t0+ε)T
t0

(t0 + ε, t− e; a, b)]

= E[ηBZt0 (t0+ε)(t0 + ε, t− e; a, b)]

≤ E[ηW(t0 + ε, t− e; a, b)] =
b− a√
π(t− ε)

,

for every ε ∈ (0, t) which implies (E′1).
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CHAPTER 3
Comparison between annealed and quenched hitting probabilities

In this chapter we focus on the di�erence between quenched and annealed probabilities of hitting boxes

with di�erent side length. By the quenched central limit theorem given by Birkner et al. in [B�DG13,

Theorem 1.1], we know that∣∣Ezω [f (Xn/
√
n
)]
− Ez

[
f
(
Xn/
√
n
)]∣∣

≤
∣∣Ezω [f (Xn/

√
n
)]
− Φ(f)

∣∣+
∣∣Φ(f)− Ez

[
f
(
Xn/
√
n
)]∣∣

−→ 0, as n→∞, for Pz-almost all ω, (3.1)

where f ∈ Cb(Rd) and Φ(f) :=
∫
f(x)Φ(dx) with Φ a non-trivial, centered isotropic d-dimensional

normal law.

If we choose f to be a smooth approximation of an indicator function, the quenched CLT tells us

that the error between quenched and annealed hitting probability of boxes of side length
√
n vanishes.

Within this chapter we will re�ne the estimates in (3.1) down to boxes of sub-algebraic side length

e
√

log(N) log log(N), which gives a comparison between quenched and annealed hitting probabilities on

a much �ner scale than proven by Birkner et al. in [B�DG13]. One of the key ingredients is, as it

was in the previous chapter, the regeneration structure of the random walks. The techniques within

the proofs below have been used by Berger, Cohen and Rosenthal in [BCR16] to prove a quenched

local central limit theorem (qLCLT) for random walks in an i.i.d. and uniformly elliptic environment

of dimension d ≥ 4. Uniform ellipticity means that there exists a uniform positive lower bound on

the transition probabilities of nearest neighbour jumps. This condition is violated in our case. We

have been able to work out the proofs for d ≥ 3, since we focus on a directed random walk in a

dynamic random environment and hence we have an �additional� time component. The next step

towards proving a qLCLT would be an estimate on hitting probabilities of constant box size which

would give us a coupling between quenched and annealed probability measures. This coupling can be

used to prove the existence of a probability measure on the set of environments, which is invariant with

respect to the point of view of the particle and also absolutely continuous with respect to the original

environmental measure Pz( · ) (see De�nition 1.11). In Remark 3.29 we will point out some problems

that arise within the proof of Theorem 3.28 and which prevent us from getting an analogue of (3.1)

for constant box size. Up to now, we have no idea how to solve them.

One of the main tools that we use within this chapter is the environmental exposure procedure originally

developed by Bolthausen and Snitzman in [BS02] for i.i.d. environments and which we need to adapt
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3. Comparison between Pz and P zω

to our case. We also want to point to Corollary 3.25 which shows how a qCLT for dimension d ≥ 3

can be derived from the estimates between quenched and annealed hitting probabilities given below.

We start with a section on useful notation and Lemmas, whereas the rest of the chapter is dedicated

to decrease the box size within the estimates on the hitting probabilities.

3.1. Useful notation and general results

De�nition 3.1.

De�ne an order relation �≺� on

P(N) :=
(
Zd × Z

)
∩
(

[−N log3(N), N log3(N)]d × [0, N2 + log3(N)]
)
,

by ordering the sites in P(N) increasing in time and then lexicographically in each time-layer. Let

(zk)k≥1 :=
(
z

(N)
k

)
k≥1

be an �increasing� enumeration of all sites in P(N), which means that zk ≺ zk+1

for all k. We usually denote by yk the space component and by mk the time component of zk.

Furthermore, de�ne

P̃(N) :=
(
Zd × Z

)
∩
(

[−1
3N log3(N), 1

3N log3(N)]d × [0, 1
3N

2]
)
, (3.2)

Ik := Ik(N) := {zn : n ≤ k}, (3.3)

Ok := Ok(N) :=
(
Zd × Z

)
\ Ik, (3.4)

Lk := Lk(N) := {(y,m) : m < mk − log2(N)} ∩ P(N), (3.5)

∂+Ik := ∂+Ik(N) := {(y,m) ∈ Ik : m = max{n : (y, n) ∈ Ik}} , (3.6)

Fk := F i
k(N) := σ(ω(zn) : n ≤ k), F0 := {Ω, ∅}, (3.7)

Fo
k := Fo

k (N) := σ(ω(z) : z ∈ Ok), Fo
0 := {Ω, ∅}, (3.8)

Ak(ω|Ik) := Ak(ω,N) := {ω′ : ω′|Ik = ω|Ik}. (3.9)

These de�nitions are needed to simplify notation within the proofs below, see Figure 3.1. We will

write (ω|Ik , ω′|Ok
) for an element w̃ ∈ Ω such that ω̃|Ik = ω|Ik and ω̃|Ok

= ω′|Ok
. The notation

(ω|Ik−1
, 1, ω′|Ok

) should also be clear from that point of view.

Lemma 3.2. Let µ be a probability measure on a measurable space (Ω,A). Choose ε > 0 and assume

there exists A ∈ A such that µ(A) > 1− ε. Then

dTV (µ, µ( · |A)) ≤ O(ε).

Proof:

dTV (µ, µ( · |A)) = sup
B∈A
|µ(B)− µ(B|A)| = sup

B∈A

∣∣∣∣µ(B)− µ(B ∩A)

µ(A)

∣∣∣∣
≤ sup

B∈A

∣∣∣∣µ(B)− µ(B)

µ(A)

∣∣∣∣+
µ(Ac)

µ(A)
≤ sup

B∈A

∣∣∣∣εµ(B)

µ(A)

∣∣∣∣+
ε

1− ε

≤ 2ε

1− ε
= O(ε).

�
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3.1. Useful notation and general results

0

zk

N2 + log3(N)

log3(N)N

P(N)

Ok

log2(N)

IkL k

Figure 3.1.: Figure shows the subsets of Zd × Z de�ned above. P(N) is surrounded by a red frame.

Ok is the union of the light grey and white area. The area of Lk is hatched. Ik is painted

in dark grey.

In this chapter the positive constants C, c > 0 will be used in the way described in Remark 1.1. They

are only allowed to depend on the space dimension d and the success probability p of the Bernoulli

random variables (ω(x, n))(x,n)∈Zd×Z.

Lemma 3.3. Let z = (y,m) ∈ P(N) and (ηzn)n≥m be the time discrete version of the contact process

de�ned in De�nition 1.2. There exists C, c, ρ > 0 such that

P
(
(Bz)

c ∪
(
Bz ∩ {|ηzn| ≥ ρ log2(N)}

))
≥ 1− CN−c log(N), (3.10)

for n chosen arbitrarily such that n−m ≥ log2(N) and N chosen large enough.

Proof of Lemma 3.3: We choose z = (y,m) ∈ Zd × Z arbitrarily. Remember the de�nition of

(H
(y,m)
n )n≥m and (K

(y,m)
n )n≥m in (1.19) and (1.20). By a discrete time version of the shape theorem

given in Lemma 1.6 and Lemma 1.7, we know that there exists a convex subset U ⊂ Rd and constants

ε′ = ε′(U), C, c > 0, such that

P(y,m)
(

(y + (1− ε′)(n−m) · U) ⊂ (H(y,m)
n ∩K(y,m)

n )
)
≥ 1− CN−c log(N)

for all n ≥ m+ log2(N), where N is chosen su�ciently large. Lemma 1.4 together with (lower) large

deviation estimates for the particle density in the upper invariant measure of the discrete time contact

process yield the existence of C, c, ρ > 0 such that

P(y,m)
(
|η(y,m)
n | ≥ ρ log2(N)

)
≥ 1− CN−c log(N)
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3. Comparison between Pz and P zω

for all n ≥ m+ log2(N). We conclude that

P
(
B(y,m) ∩ {η(y,m)

n ≥ ρ log2(N)}
)
≥ P(B(y,m))− CN−c log(N)P(B(y,m))

≥ P(B(y,m))− CN−c log(N)P(B0)

≥ P(B(y,m))− CN−c log(N),

by translation invariance of P.
�

Corollary 3.4. Lemma 3.3 together with (1.17) implies the existence of c, C, ρ > 0 such that

P

 ⋂
(y,m)∈P(N)

(
(B(y,m))

c ∩ {l(y,m) ≤ log2(N)− 2}
)
∪
(
B(y,m) ∩ {|η

(y,m)

m+log2(N)
| ≥ ρ log2(N)}

)
≥ 1− CN−c log(N),

where l(y,m) denotes the length of the longest open path starting from (y,m). In the following we refer

to the set above as D(N).

Remark 3.5. Recall the de�nition of (Tn)n≥0 in (1.32). De�ne

RN := RN (X) := {Tk − Tk−1 ≤ log2(N) for all k ≤ N2}. (3.11)

By (1.34) we know that

Pz (RN ) ≥ 1− CN−c log(N).

Lemma 3.6. Let z = (y,m) ∈ P̃(N) and N2

2 ≤ n ≤ N
2. There exist constants C, c > 0 such that

Pz
(
‖Xn − y‖ ≥

√
n log3(N)

)
≤ CN−c log(N). (3.12)

Additionally, let Q(z,N) be the event that

P zω
(
‖Xn − y‖ ≥

√
n log3(N)

)
≤ CN−

c
2

log(N), (3.13)

then Pz(Q(z,N)) ≥ 1− CN−
c
2

log(N).

Remark 3.7. Notice that by Lemma 3.6 a random walk starting from z = (y,m) ∈ P̃(N) stays within

P(N) up to time N2 with high probability. An event is said to occur with �high probability�, if the

probability of the complement decays super-algebraically in N .

Proof of Lemma 3.6: We prove the Lemma for z = (0, 0). Conditioned on the event RN , that the

time between two regenerations up to time N2 is at most log2(N), we get that

P(0,0)(‖Xn‖ ≥
√
n log3(N)) ≤ P(0,0)(‖Xn‖ ≥

√
n log3(N)|RN ) + CN−c log(N)

≤ P(0,0)(∃k ≤ n : ‖XTk‖ ≥
1

2

√
n log3(N)|RN ) + CN−c log(N)

≤
n∑
k=1

P(0,0)(‖XTk‖ ≥
1

2

√
n log3(N)|RN ) + CN−c log(N)

≤ d
n∑
k=1

exp

(
−Cn log6(N)

4k log4(N)

)
+ CN−c log(N)

≤ CN−c log(N),
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3.1. Useful notation and general results

where the fourth inequality holds true by Azuma's inequality applied to each coordinate.

For the second inequality note that on RN it is impossible for the random walk to leave the box

[−
√
n log3(N),

√
n log3(N)]d between two regeneration times and then be inside

[−1
2

√
n log3(N), 1

2

√
n log3(N)]d when the next regeneration occurs.

We turn to the proof of (3.13). By (3.12) we know that P(0,0)
(
‖Xn‖ ≥

√
n log3(N)

)
≤ CN−c log(N).

Hence the Markov inequality yields

P(0,0)
({
ω ∈ Ω : P (0,0)

ω

(
‖Xn‖ ≥

√
n log3(N)

)
≥
√
CN−c log(N)

})
≤

E(0,0)
[
P

(0,0)
ω

(
‖Xn‖ ≥

√
n log3(N)

)]
√
CN−c log(N)

≤ CN−
c
2

log(N),

which proves (3.13).

�

As required within the next Lemma, let z = (y,m) ∈ P̃(N) and zk = (yk,mk) ∈ P(N), k ∈ N.
Lemma 3.8 basically tells us that the law of ω on Ok under Pz is �similar� in total variation distance

to some Bernoulli product measure, as long as (mk −m) > log2(N). Recall de�nitions (3.3)-(3.9).

Lemma 3.8. Fix z = (y,m) ∈ P̃(N) and choose k ∈ N such that z ≺ zk. For ω �xed we de�ne

V
(z)
k (ω) := {(x, n) ∈ ∂+Ik : z

ω→ (x, n)}.

Note that V (z)
k is measurable with respect to Fk. Choose zk = (yk,mk) and ωz ∈ Bz, then

Pz(ω|Ok
∈ · |Fk)(ωz) =: κzk(ωz|Ik , · ) = P(ω|Ok

∈ · |V (z)
k (ωz)

ω→∞).

If (mk −m) > log2(N) there exist constants C, c > 0 such that

Pz
(
dTV(κzk(ω|Ik , · ),Ber⊗Ok) ≤ CN−c log(N)

)
≥ 1− CN−c log(N).

Proof: Note that P ◦ (ω|Ok
)−1 is a Bernoulli product measure on {0, 1}Ok . As required, we �x

z = (y,m) ∈ P̃(N) and ωz ∈ Bz. Furthermore, we choose

Ã ∈ Fo
k ⊂ σ(ω(x, n) : (x, n) ∈ Zd × Z)

arbitrarily and de�ne A := {ω|Ok
: ω ∈ Ã}. We get

κzk(ωz|Ik , A) = Pz(ω|Ok
∈ A |Fk)(ωz|Ik)

=
1

Pz(Ak(ωz|Ik))

∫
Ak(ωz |Ik )

1A(ω|Ok
) Pz(dω)

=
1

P(Ak(ωz|Ik) ∩Bz)

∫
Ak(ωz |Ik )∩Bz

1A(ω|Ok
) P(dω)

=
1

Ber⊗Ok(V
(z)
k (ωz)

ϑ→∞)

∫
{V (z)
k (ω|Ik )

ϑ→∞}
1A(ϑ) Ber⊗Ok(dϑ).
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The de�nition of Ak(ω|Ik) is given in (3.9). Recall that ωz ∈ Bz is �xed, hence V (z)
k (ωz) is �xed subset

of ∂+Ik.

If zk = (yk,mk), k ∈ N is chosen such that (mk − m) > log2(N), then by Lemma 3.3 there exists

C, c, ρ > 0 such that

Pz
(
{ω : #V

(z)
k (ω) ≥ ρ log2(N)}

)
≥ 1− CN−c log(N). (3.14)

Note that for all ωz ∈ Bz with #V
(z)
k (ωz) ≥ ρ log2(N) we have

Ber⊗Ok

(
{ϑ : V

(z)
k (ωz)

ϑ→∞}
)
≥ 1− CN−c log(N),

since the probability that ∼ log2(N) points are not connected to in�nity is of order CN−c log(N) by

(1.18). The Theorem then follows by (3.14) and Lemma 3.2.
�

Lemma 3.9. (Annealed derivative estimates)

We �x z = (y,m) ∈ P̃(N). There exists a constant C > 0 such that

i) for every x ∈ [− log3(N)N, log3(N)N ] and every M such that 2
5N

2 ≤M ≤ N2

Pz(XM = x) < CN−d

ii) for every x ∈ [− log3(N)N, log3(N)N ], every 2
5N

2 ≤M ≤ N2 and every 1 ≤ j ≤ d

|P(y,m)(XM = x)− P(y+ej ,m)(XM = x)| < CN−(d+1)

iii) for every x ∈ [− log3(N)N, log3(N)N ] and every 2
5N

2 ≤M ≤ N2

|P(y,m)(XM = x)− P(y,m+1)(XM = x)| < CN−(d+1).

Proof: See Appendix A.2.1.
�

The following Theorem belongs to the class of Azuma type inequalities and is proven by McDiarmid in

1998 (see [HMRAR98, Theorem 3.14]). Some comments on the usefulness of this theorem for proving

the estimates on the hitting probabilities are given in Remark 3.14 below, after some further notation

is established.

Theorem 3.10. (McDiarmid (1998)) Let {Mk}k≥0 be a martingale with respect to some probability

measure P and some �ltration (Fk)k≥0, given by

Mk := EP [X|Fk], where M0 = EP [X] and |X| ≤ C P − a.s. .

For 1 ≤ k ≤ n de�ne

Uk := esssup
(
|Mk −Mk−1|

∣∣Fk−1

)
and U :=

n∑
k=1

U2
k .

Then

P (|Mn −M0| ≥ α,U ≤ c) ≤ 2e−
α2

2c .

Proof: See [HMRAR98, Theorem 3.14] and [BCR16, Theorem 2.13] .
�
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3.2. Estimates on hitting probabilities for �large� boxes

This section is dedicated to the proof of Proposition 3.11. Some important comments on Proposi-

tion 3.11 can be found in Remark 3.12 below. Notice that in Proposition 3.11 the side length of the

boxes is of order N θ and d
d+1 < θ ≤ 1, whereas M is of order N2. The proof of Proposition 3.11 is

split up into two cases treated separately by Lemma 3.15 and Lemma 3.18. The distinction of cases

is also illustrated in Figure 3.2. The uniformity of Proposition 3.11 in M and ∆ is necessary for fur-

ther improvements on the box size, done within the next sections. Recall the de�nition of D(N) in

Corollary 3.4.

Proposition 3.11. Let d ≥ 3 and d
d+1 < θ ≤ 1. In addition we �x some starting point z ∈ P̃(N). Let

G1(z, θ,N) ⊂ Bz ∩D(N) be the event that for every 2
5N

2 ≤M ≤ N2 and every (d-dimensional) cube

∆ ⊂ [−N log3(N), N log3(N)]d of side length N θ we have

|P zω(XM ∈ ∆)− Pz(XM ∈ ∆)| ≤ Nd(θ−1). (3.15)

Then for every d
d+1 < θ ≤ 1 there exist constants C, c > 0, independent of z, such that

Pz(G1(z, θ,N)) = 1− CN−c log(N), (3.16)

and hence

P

 ⋂
z∈P̃(N)

G1(z, θ,N) ∪ (Bz)
c

 ≥ 1−
∑

z∈P̃(N)

P (G1(z, θ,N))c ∩Bz)

≥ 1− CN−c log(N).

Remark 3.12. Proposition 3.11 is not an improvement of the quenched central limit theorem given

by Birkner et al. in the sense that Proposition 3.11 already implies the qCLT. It should be considered

as a quenched analogue of Lemma 3.9 i) instead, since

P zω(XM ∈ ∆)− Pz(XM ∈ ∆) ≤ |P zω(XM ∈ ∆)− Pz(XM ∈ ∆)| ≤ Nd(θ−1), (3.17)

and hence

P zω(XM ∈ ∆) ≤ CNd(θ−1) on G1(z, θ,N), (3.18)

by Lemma 3.9 i), where parameters are chosen as in Proposition 3.11. This is exactly the sense in

which the proposition will be used later on.

As already mentioned within the introduction of this section, we will prepare the proof of Proposi-

tion 3.11 by �rst proving some lemmas. For the rest of the section we �x z ∈ P̃(N), d
d+1 < θ ≤ 1,

ωz ∈ D(N) ∩Bz and zk = (mk, yk) ∈ P(N). We de�ne the set Mk depending on zk and N as

Mk := Mk(zk, N) := {(y,m) ∈ P(N) : 0 ≤ ‖y − yk‖ ≤ mk −m ≤ log2(N)}.

See also Figure 3.2. The �bottom� of Mk is de�ned as

∂−Mk := {(y,m) ∈Mk : m = min{n : (y, n) ∈Mk}} .
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Furthermore, we �x 2
5N

2 ≤ M ≤ N2, d
d+1 < θ′ < θ, v ∈ Zd and de�ne V :=

⌊
N2θ′

⌋
. During the rest

of the section, we focus on the quantity

Uk(ωz) = esssup
(
|Ez [P zω (XM+V = v) |Fk−1]− Ez [P zω (XM+V = v) |Fk]|

∣∣∣Fk−1

)
(ωz)

≤ esssup
(∣∣∣Ez [P zω ({XM+V = v} ∩ {Mk is not visited}) |Fk−1]

− Ez [P zω ({XM+V = v} ∩ {Mk is not visited}) |Fk]
∣∣∣ ∣∣∣ Fk−1

)
(ωz) (∗)

+ esssup
(∣∣∣Ez [P zω ({XM+V = v} ∩ {Mk is visited}) |Fk−1]

− Ez [P zω ({XM+V = v} ∩ {Mk is visited}) |Fk]
∣∣∣ ∣∣∣ Fk−1

)
(ωz). (∗∗)

The event we are interested in is illustrated in Figure 3.2. The meaning of the di�erently coloured

areas is the following:

Notice that ωz ∈ D(N) ∩ Bz is �xed whereas � Ez [P zω (XM+V = v) |Fk] � has to be read as the con-

ditional expectation of the random variable (P z· (XM+V = v))(ω) = P zω (XM+V = v). Due to the

conditional expectation, one should think of ω being �xed or exposed within the grey area, whereas

we average over ω within the white area conditioned on the fact that z is connected to in�nity. Hence

� Ez [P zω (XM+V = v) |Fk] � is in some sense a mixture of quenched and annealed laws. If we focus on

a speci�c realization Uk(ωz) of Uk, as it is done above, the con�guration of ω within the �xed area

coincides with ωz. Computing the conditional essential supremum of

|Ez [P zω (XM+V = v) |Fk−1]− Ez [P zω (XM+V = v) |Fk]| (3.19)

we get an estimate on how the �quenched� hitting probability of v changes if in addition the space-time

point zk of the environment is �xed or exposed. One way in which the process (Uk)k could also be

interpreted path-wise is that at each time k the random real number Uk(ωz) equals the distance between

Ez [P zω (XM+V = v) |Fk] and Ez [P zω (XM+V = v) |Fk−1] in L∞
(
Pz
(
· |Ak−1(ωz|Ik−1

)
))
. In detail

Uk(ωz) = esssup
(∣∣∣Ez [P zω (XM+V = v) |Fk−1]− Ez [P zω (XM+V = v) |Fk]

∣∣∣ ∣∣∣Fk−1

)
(ωz)

=
∥∥∥Ez [P zω (XM+V = v) |Fk−1]− Ez [P zω (XM+V = v) |Fk]

∥∥∥
L∞

(
Pz( · | Ak−1(ωz |Ik−1

))
).

In order to prove Proposition 3.11, we expose the environment step by step up to time M + log2(N).

Hence one should think of k being chosen such that zk = (yk,mk) ∈ P(N) where mk ≤M + log2(N).

Remark 3.13. Notice that by Lemma 3.6 and mixing properties of the environment (see Lemma 1.14

and Lemma 3.8), the con�guration of the environment on(
Zd × {x ∈ Z : x ∈ [0, N2 + log3(N)]}

)
\ P(N) (3.20)

has negligible in�uence on the probability P zω (XM+V = v) and therefore does not need to be exposed.

�Negligible� means that the set of environments for which P zω (XM+V = v) is in�uenced by a change

of the environment on (3.20) has small probability. To be more precise the probability of the set of

those environments decays exponentially in N and can therefore be hidden within the complement of

G1(z, θ,N) (see (3.16)). Further comments on mixing properties of the environment can be found in

[Mil16, section 2].
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log2(N)

0

v

Mk

zk

M + V

log3(N)N

ω averaged

ω �xed

Figure 3.2.: Hitting v at time M + V with and without visiting Mk

Remark 3.14. First we want to give a short overview on how the estimates of the di�erence between

the quenched and annealed hitting probabilities will be proved. Roughly speaking, the squared �errors�

we make exposing the environment step by step up to a certain time layer need to be summable and

�well� bounded. The errors mentioned in the previous sentence are exactly the random variables

Uk de�ned above. The bound on U =
∑

k U
2
k will of course be growing in N . This is the point

where McDiarmid's inequality (see Theorem 3.10) comes into play. The martingale considered in

Theorem 3.10 will be de�ned as Mk := Ez [P zω (XM+V = v) |Fk]. Conditioning on F0 = {Ω, ∅} means

�nothing is exposed� and M0 = Ez [P zω (XM+V = v) |F0] = Pz (XM+V = v) equals the annealed law. If

on the other hand the environment up to time-layer M + log2(N) is �exposed�, with high probability

Pz [P zω (XM ∈ · ) |Fk0 ] = P zω (XM ∈ · ) by Remark 3.13. In the previous sentence k0 is chosen such

that the con�guration of the environment in P(N) up to time to time-layerM+log2(N) is measurable

with respect to Fk0 . Making use of annealed estimates for the last ∼V steps, by McDiarmid's inequality

the di�erence between quenched and annealed hitting probabilities ful�ls (3.15) with high probability,

if the bound on the sum of squared errors is of the �right� order.

Lemma 3.15. (The term (∗) - Mk is not visited)

If we choose the parameters as described above, there exists constants C, c > 0 such that

esssup
(∣∣∣Ez [P zω ({XM+V = v} ∩ {Mk is not visited}) |Fk−1]

− Ez [P zω ({XM+V = v} ∩ {Mk is not visited}) |Fk]
∣∣∣ ∣∣∣Fk−1

)
(ωz) ≤ CN−c log(N). (3.21)

Proof: Let z, ωz and k be as required. It is obvious that (3.21) holds true if zk ≺ z or z = zk,

therefore we assume that z ≺ zk. We distinguish the cases mk −m > log2(N) and mk −m ≤ log2(N).
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First we consider the case mk −m > log2(N). For ω ∈ Bz, we de�ne

fnvk (ω) := P zω ({XM+V = v} ∩ {Mk is not visited}) .

To be more precise, we can de�ne fnvk as

fnvk

(
ξω|(Zd×Z)\Mk

)
:= Pω̃ ({XM+V = v} ∩ {Mk is not visited}) ,

for some ω̃ ∈
{
ω′ : ξω′ |(Zd×Z)\Mk

= ξω|(Zd×Z)\Mk

}
,

which means that the quenched probability of hitting the space-time point (v,M +V ) and not visiting

Mk in fact only depends on the values of ξ on (Zd × Z) \Mk. For the de�nition of ξ see (1.24).

Hence we get that(
Ez [P zω ({XM+V = v} ∩ {Mk is not visited}) |Fk−1]

− Ez [P zω ({XM+V = v} ∩ {Mk is not visited}) |Fk]
)

(ωz)

=

∫
fnvk

(
ξ(ωz |Ik−1

, ϑ)

∣∣
(Zd×Z)\Mk

)
κzk−1(ωz|Ik−1

, dϑ)−
∫
fnvk

(
ξ(ωz |Ik , ϑ

′)

∣∣
(Zd×Z)\Mk

)
κzk(ωz|Ik , dϑ

′)

≤
∫
fnvk

(
ξ(ωz |Ik−1

, ϑ)

∣∣
(Zd×Z)\Mk

)
Ber⊗Ok−1(dϑ)−

∫
fnvk

(
ξ(ωz |Ik , ϑ

′)

∣∣
(Zd×Z)\Mk

)
Ber⊗Ok(dϑ′)

+ CN−c log(N)

≤ C · Ber⊗Ok

({
ϑ : ξ(ωz |Ik−1

,1, ϑ)

∣∣
(Zd×Z)\Mk

6= ξ(ωz |Ik−1
,0, ϑ)

∣∣
(Zd×Z)\Mk

})
+ CN−c log(N),

where the �rst inequality holds true by Lemma 3.8. It is obvious by the way in which ξ is de�ned, that

ξ(ωz |Ik−1
,1, ϑ)

∣∣
{(y,m): (y,m)/∈Mk, m≥mk−log2(N)} = ξ(ωz |Ik−1

,0, ϑ)

∣∣
{(y,m): (y,m)/∈Mk, m≥mk−log2(N)}.

Therefore it is enough to bound

Ber⊗Ok

({
ϑ : ξ(ωz |Ik−1

,1, ϑ)

∣∣
{(y,m): m<mk−log2(N)} 6= ξ(ωz |Ik−1

,0, ϑ)

∣∣
{(y,m): m<mk−log2(N)}

})
= Ber⊗Ok

({
ϑ : ∃(y,m) : m < mk − log2(N), ξ(ωz |Ik−1

,1, ϑ)(y,m) 6= ξ(ωz |Ik−1
,0, ϑ)(y,m)

})
,

Remember the de�nition of V (z)
k (ωz|Ik) in Lemma 3.8. By Remark 3.13 it is enough to focus on

{(y,m) : m < mk − log2(N)} ∩ P(N) = Lk, see (3.5).

Since ωz ∈ D(N) (see Corollary 3.4), we know that for all (y,m) ∈ Lk for which ξωz(y,m) = 1 we have

ωz ∈
{
η

(y,m)

m+log2(N)
≥ ρ log2(N)

}
. Hence

Ber⊗Ok

({
ϑ : ∃(y,m) : m < mk − log2(N), ξ(ωz |Ik−1

,1, ϑ)(y,m) 6= ξ(ωz |Ik−1
,0, ϑ)(y,m)

})
≤

∑
(y,m)∈Lk

Ber⊗Ok

({
ϑ : ξ(ωz |Ik−1

,1, ϑ)(y,m) 6= ξ(ωz |Ik−1
,0, ϑ)(y,m)

})
≤

∑
(y,m)∈Lk

Ber⊗Ok

({
ϑ : ξ(ωz |Ik−1

,0, ϑ)(y
′,m′) = 0 for all (y′,m′) ∈ η(y,m)

m+log2(N)

and ξ(ωz |Ik−1
,1, ϑ)(y,m) = ξ(ωz |Ik−1

,1, ϑ)(zk) = 1
})

≤
∑

(y,m)∈Lk

CN−c log(N)

≤ CN−c log(N). (3.22)
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This completes the proof for mk−m > log2(N). If mk−m ≤ log2(N) the function fnvk (·) is positive i�
z /∈Mk. But then the value of fnvk (ω) is not changed by changing the value of ω at zk, which implies

that also in this case the Lemma holds true.
�

Lemma 3.16. (special regeneration point)

We �x some z = (y,m) ∈ Zd and de�ne a �special� regeneration point R as

R(z) := R(y,m,N) := inf{Tn : for all x ∈ [y − 2 log2(N), y + 2 log2(N)]d ∩ Zd we have

(x,m)
ω−→ (XTn , Tn) if ξω(x,m) = 1,

l(x,m) < Tn if ξω(x,m) = 0},

where (Tk)k≥0 denote the regeneration times of X with respect to P(x0,m) for some

x0 ∈ [y − 2 log2(N), y + 2 log2(N)]d ∩ Zd. As before, l(x,m) denotes the length of the longest directed

open path starting from (x,m).

Fix zk ∈ P(N). There exist constants C, c > 0, independent of zk, such that

P(x0,mk)
(
R(zk) ≥ mk + 2 log6d+9(N)

∣∣ {ξ(yk + r,mk) = ζ(r) ∀r}
)
≤ CN−c log(N) (3.23)

for all x0 ∈ [yk−2 log2(N), yk + 2 log2(N)]d∩Zd and ζ ∈ {0, 1}[−2 log2(N),2 log2(N)]d∩Zd chosen such that

ζ(x0 − yk) = 1.

Note that in (3.23) the variable �r� ranges over all elements of [−2 log2(N),+2 log2(N)]d ∩ Zd. The

regeneration point R(zk) is illustrated in the following picture:

log2(N)

0

v

M + V

log2(N)N

2 log2(N)

Mk

T3

T2

T1

T0

=R
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Before proving Lemma 3.16, we need to prove the following lemma:

Lemma 3.17. As before, we denote by (η
(x,m)
n )n≥m the discrete time version of the contact process as

de�ned in De�nition 1.2. We �x ζ ∈ {0, 1}[−2 log2(N),2 log2(N)]d∩Zd , ζ 6≡ 0 and z = (y,m) ∈ P(N) and

de�ne

C(ζ, z) :=
⋂

r:ζ(r)=1

η
(y+r,m)

m+log2d+2(N)
.

Then there exist C, c, ε > 0 such that

P
(

#C(ζ, z) ≥ ε log2d+2(N)
∣∣∣ {ξ(y + r,m) = ζ(r) ∀r}

)
≥ 1− CN−c log(N). (3.24)

Moreover, there exist C, c > 0 such that for any x0 ∈ [y − 2 log2(N), y + 2 log2(N)]d ∩ Zd and any

ζ ∈ {0, 1}[−2 log2(N),2 log2(N)]d∩Zd with ζ(x0 − y) = 1, we have

P(x0,m)
(
C(ζ, z)× {m+ log2d+2(N)} ω−→ (Xm+log6d+9(N),m+ log6d+9(N))

∣∣∣ {ξ(y + r,m) = ζ(r) ∀r}
)

≥ 1− CN−c log(N).

Proof: Fix some ζ ∈ {0, 1}[−2 log2(N),2 log2(N)]d∩Zd and let x0 ∈ [y − 2 log2(N), y + 2 log2(N)]d ∩ Zd be
such that ζ(x0 − y) = 1. We de�ne

J(ζ) := J(N, ζ) :=
{
ξ(yk + r,mk) = ζ(r) ∀r ∈ [−2 log2(N), 2 log2(N)]d ∩ Zd

}
. (3.25)

The proof of the Lemma will be separated into three steps.

Step 0: Since we condition on the event J(ζ), we need to bound the probability for this event to occur

from below. Recognize that

P(J(ζ)) ≥ P({ξ(y + r,m+ 1) = 1 ∀r ∈ [y − 2 log2(N) + 1, y + 2 log2(N) + 1]d ∩ Zd})

· P({ω(y + r,m) = ζ(r) ∀r ∈ [y − 2 log2(N), y + 2 log2(N)]d ∩ Zd})

≥ P(B0)(4 log2(N)+2)d · (p(1− p))(4 log2(N)+2)d

≥ (p(1− p)P(B0))log2d+1(N), (3.26)

where the second inequality holds true by the FKG-inequality.

Step 1: Let (xl)l≥1 be an enumeration of the elements

{x ∈ [y − 2 log2(N), y + 2 log2(N)]d ∩ Zd : ζ(x− y) = 1}.

Remember the de�nition of (H
(y,m)
n )n≥m and (K

(y,m)
n )n≥m in (1.19) and (1.20). By the discrete time

version of the shape theorem given in Lemma 1.6 and Lemma 1.7, we know that there exists a convex

subset U ⊂ Rd and constants ε′ = ε′(U), C, c > 0, such that

P(y,m)
({

(xl + (1− ε′)(n−m) · U) ⊂ (H(xl,m)
n ∩K(xl,m)

n )
}
∩ J(ζ)

)
≥ P(y,m) (J(ζ))− Ce−c(n−m)

for all l and all n chosen su�ciently large. Additionally choose ε̃ = ε̃(U) > 0 such that

ε̃ log2d+2(N) ≤
∣∣∣⋂
l

(
xl + (1− ε′) log2d+2(N) · U

) ∣∣∣
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for all N su�ciently large. Since by Lemma 1.7 the upper invariant measure of the discrete time

contact process has positive density, there exist C, c > 0 and ε > 0 such that

P
(
{#C(ζ, z) ≥ ε log2d+2(N)} ∩ J(ζ)

)
≥ P (J(ζ))− Ce−c log2d+2(N).

Hence inequality (3.24) follows from (3.26).

Step 2: Making use of (1.18) we get that

P
(
{∃(x, n) ∈ C(ζ, z) : ξ(x, n) = 1} ∩ {#C(ζ, z) ≥ ε log2d+2(N)} ∩ J(ζ)

)
= P

(
{#C(ζ, z) ≥ ε log2d+2(N)} ∩ J(ζ)

)
− P

(
{ξ(x, n) = 0 ∀(x, n) ∈ C(ζ, z) } ∩ {#C(ζ, z) ≥ ε log2d+2(N)} ∩ J(ζ)

)
≥ P (J(ζ))− Ce−c log2d+2(N) − Ce−c log2d+2(N)

for some constants C, c > 0. On the event

G1(q) := {ξ(q, log2d+2(N) +m) = 1} ∩ {q ∈ C(ζ, z)},

for some q ∈ Zd, the discrete time contact process η(q,m+log2d+2(N)) ful�ls a shape theorem as described

in step 1. Hence we know that there exists a convex subset U ⊂ Rd and constants ε′ = ε′(U), C, c > 0,

such that

P
({

(q + (1− ε′)(n−m− log2d+2(N)) · U) ⊂ (H(q,m+log2d+2(N))
n ∩K(q,m+log2d+2(N))

n )
}
∩G1(q)

)
≥ P(G1(q))− Ce−c log2d+2(N)

for all n ≥ m+ 2 log2d+2(N), where N is chosen su�ciently large. De�ne

Un(q) := (q + (1− ε′)n · U).

In analogy to (3.11) we de�ne

R̃N := {Tk+1 − Tk ≤ log2d+2(N) for all k < N2}. (3.27)

Calculations similar to the proof Lemma 3.6 yield

P(x0,m)
(∥∥∥Xm+log6d+9(N) − x0

∥∥∥ > log6d+8(N)
)

≤ P(x0,m)
(∥∥∥Xm+log6d+9(N) − x0

∥∥∥ > log6d+8(N)
∣∣∣R̃N)+ Ce−c log2d+2(N)

≤ P(x0,m)

(
∃k ≤ log6d+9(N) : ‖XTk − x0‖ >

1

2
log6d+8(N)

∣∣∣R̃N)+ Ce−c log2d+2(N)

≤
log6d+9(N)∑

k=1

P(x0,m)

(
‖XTk − x0‖ >

1

2
log6d+8(N)

∣∣∣R̃N)+ Ce−c log2d+2(N)

≤ d
log6d+9(N)∑

k=1

exp

(
−C log12d+16(N)

k log4d+4(N)

)
+ Ce−c log2d+2(N)

≤ Ce−c log2d+2(N),
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which, using the triangle inequality, implies that

P(x0,m)
(∥∥∥Xm+log6d+9(N) − y

∥∥∥ > 2 log6d+8(N)
)
≤ Ce−c log2d+2(N).

We focus on the event

G2(q′) := {Xm+log6d+9(N) = q′},

for some q′ such that ‖q′ − y‖ < 2 log6d+8(N).

We de�ne η̃(q′,m+log6d+9(N)) as the dual discrete time contact process starting from a single infec-

tion (q′,m+ log6d+9(N)) and evolving backwards in time. Since there exists a �backwards�-path of

length log6d+9(N), the dual process survives with probability greater than 1−Ce−c log6d+9(N), for some

C, c > 0. On the event that η̃(q′,m+log6d+9(N)) survives (which happens with high probability) the

process ful�ls a shape theorem backwards in time. Let H̃ and K̃ be the �backward� analogues of H

and K in (1.19) and (1.20). There exist Ũ ⊂ Rd and ε = ε(U), C, c > 0 such that

P
({

(q′ + (1− ε)(m+ log6d+9(N)− n) · Ũ) ⊂ (H̃(q′,log6d+9(N)+m)
n ∩ K̃(q′,log6d+9(N)+m)

n )
}
∩G2(q′)

)
≥ P(G2(q′))− Ce−c log2d+2(N)

for all n ≤ m+ log6d+9(N)− log2d+2(N), where N is chosen su�ciently large. De�ne

Ũn(q′) := (q′ + (m+ log6d+9(N)− n) · Ũ)).

For n0 := (log6d+9(N) − log2d+2(N))/2 and since ‖q′ − q‖ ≤ ‖q′ − y‖ + ‖q − y‖ < C log6d+8(N), we

know that

q′ ∈ U2n0(q).

Since convergence towards the upper invariant measure of the contact process happens exponentially

fast we know that with probability greater than 1− Ce−cn0 the intersection between η(q,m+log2d+2(N))
n0

and η̃(q′,m+log6d+9(N))
n0 is non-trivial. Since all the error terms are elements of o(N−c log(N)) after dividing

by P(J(ζ)) the desired result follows on G1(q) ∩ G2(q′). The union over �typical� q and q′ then gives

the result.
�

Proof of Lemma 3.16: We �x zk ∈ P(N). By Lemma 3.17 we know that for any con�guration ζ

with high probability the set C(ζ, zk)×{m+ log2d+2(N)} is connected with the random walk path at

time mk + log6d+9(N). In order to shorten notation, we de�ne

L(N, ζ) := {l(yk + r,mk) < log2d+2(N) if ζ(r) = 0}, (3.28)

where l(y,m) denotes the length of the longest open path starting from (y,m),

I(N, ζ) :=
{

C(ζ, zk)× {mk + log2d+2(N)} ω−→
(
Xmk+log6d+9(N),mk + log6d+9(N)

)}
(3.29)

Also recall the de�nition of J(N, ζ) and R̃N in (3.25) and (3.27). Note that there exist constants

C, c > 0 such that

P(x0,mk)
(
R̃N

)
≥ 1− Ce−c log2d+2(N),
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(see (1.34)) and

P(x0,mk) (L(N, ζ) ∩ I(N, ζ) ∩ J(N, ζ)) ≥ P(x0,mk) (J(N, ζ))− Ce−c log2d+2(N)

for all x0, ζ such that ζ(x0 − yk) = 1.

Hence

P(x0,mk)(L(N, ζ) ∩ I(N, ζ) ∩ J(N, ζ))

≤ P(x0,mk)(L(N, ζ) ∩ I(N, ζ) ∩ J(N, ζ) ∩ R̃N ) + Ce−c log2d+2(N)

≤ P(x0,mk)({R(zk) < mk + 2 log6d+9(N)} ∩ J(N, ζ)) + Ce−c log2d+2(N),

together with (3.26) implies the desired result.
�

Lemma 3.18. (The term (∗∗) - Mk is visited)

Let the parameters be as described at the beginning of the section. There exist constants C, c > 0 such

that

esssup
(∣∣∣Ez [P zω ({XM+V = v} ∩ {Mk is visited}) |Fk−1]

− Ez [P zω ({XM+V = v} ∩ {Mk is visited}) |Fk]
∣∣∣ ∣∣∣ Fk−1

)
(ωz)

≤ C
(

log6d+9(N)
)
P zωz(Mk is visited)V −

d+1
2 +O(N−c log(N)).

Proof: If zk ≺ z the random walk starting from z has no possibility to visit Mk, therefore we as-

sume that z ≺ zk or z = zk. As in the proof of Lemma 3.15 we distinguish between the cases

mk −m ≤ log2(N) and mk −m > log2(N). We �rst consider the case mk −m ≤ log2(N).

Recognize that mk −m ≤ log2(N) and the fact that Mk is visited, implies z ∈ Mk. Remember the

de�nition of J(ζ) := J(N, ζ) in (3.25), where ζ ∈ {0, 1}[−2 log2(N),2 log2(N)]d∩Zd . Additionally, we de�ne

f(x, ωz|Ik , ζ) :=

Ez
[
P zω(Xmk = x)

∣∣ Ak(ωz|Ik) ∩ J(ζ)
]
, if Pz (Ak(ωz|Ik) ∩ J(ζ)) > 0,

0, if Pz (Ak(ωz|Ik) ∩ J(ζ)) = 0.

Note that on Ak(ωz|Ik) ∩ Bz ∩ J(ζ) the random variable P z· (Xmk = x)(ω) is almost surely constant

(since we assumed m ≥ mk − log2(N)) and for ωz and ζ �xed∑
x:ζ(x−yk)=1

f(x, ωz|Ik , ζ) = 1.

Choose some ω ∈ Ak(ωz|Ik) ∩Bz. By making use of the Markov property of the quenched law, we get

that

1J(ζ)(ω)P zω ({XM+V = v} ∩ {Mk is visited})

=
∑

x:ζ(x−yk)=1

1J(ζ)(ω)P zω(Xmk = x)P (x,mk)
ω (XM+V = v)

=
∑

x:ζ(x−yk)=1

1J(ζ)(ω)f(x, ωz|Ik , ζ)P (x,mk)
ω (XM+V = v) .
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Hence for ζ ∈ {0, 1}[−2 log2(N),2 log2(N)]d∩Zd and x such that f(x, ωz|Ik , ζ) > 0, it is enough to focus on

the conditional expectation of the term 1J(ζ)(ω)P
(x,mk)
ω (XM+V = v) in the sum above.

Ez
[
1J(ζ)(ω)P (x,mk)

ω (XM+V = v)
∣∣Fk] (ωz)

=
1

Pz(Ak(ωz|Ik))

∫
Ak(ωz |Ik )

1J(ζ)(ω)P (x,mk)
ω (XM+V = v)Pz(dω)

=
1

P(Ak(ωz|Ik) ∩Bz)

∫
1Ak(ωz |Ik )∩Bz(ω)1J(ζ)(ω)P (x,mk)

ω (XM+V = v)P(dω)

=
1

P(Ak(ωz|Ik) ∩Bz)

∫
1Ak(ωz |Ik )∩B(x,mk)

(ω)1J(ζ)(ω)P (x,mk)
ω (XM+V = v)P(dω)

=
P(B(x,mk))

P(Ak(ωz|Ik) ∩Bz)

∫
1Ak(ωz |Ik )(ω)1J(ζ)(ω)P (x,mk)

ω (XM+V = v)P(x,mk)(dω)

=
P(Ak(ωz|Ik) ∩ J(ζ))

P(Ak(ωz|Ik) ∩Bz)

∫
P (x,mk)
ω (XM+V = v)P(x,mk)(dω | Ak(ωz|Ik) ∩ J(ζ))

(The previous equality holds true since by construction Ak(ωz|Ik) ∩ J(ζ) ⊂ B(x,mk).)

=
P(Ak(ωz|Ik) ∩ J(ζ))

P(Ak(ωz|Ik) ∩Bz)
P(x,mk) (XM+V = v | Ak(ωz|Ik) ∩ J(ζ)) ,

where

P(x,mk) (XM+V = v | Ak(ωz|Ik) ∩ J(ζ))

= P(x,mk) (XM+V = v | J(ζ))

= O(N−c log(N)) +
∑

(w,l):‖w−x‖<l−mk<2 log6d+9(N)

P(x,mk)
(
XR(zk) = w,R(zk) = l | J(ζ)

)
· P(w,l) (XM+V = v, ) .

The random variable R denotes the special regeneration point de�ned in Lemma 3.16.

Also note that ∑
ζ

P(Ak(ωz|Ik) ∩ J(ζ))

P(Ak(ωz|Ik) ∩Bz)
= 1.

Altogether we get that∣∣∣Ez [Pω ({XM+V = v} ∩ {Mk is visited}) |Fk]− Ez [Pω ({XM+V = v} ∩ {Mk is visited}) |Fk+1]
∣∣∣(ωz)

≤ sup
(x1,n1),(x2,n2)∈G(zk,N)

∣∣∣P(x1,n1) (XM+V = v)− P(x2,n2) (XM+V = v)
∣∣∣+ CN−c log(N) (3.30)

where G(zk, N) := {(x, n) : ‖yk − x‖ < 3 log6d+9(N), 0 ≤ n−mk < 2 log6d+9(N)}.
Hence Lemma 3.9 yields∣∣∣Ez [Pω ({XM+V = v} ∩ {Mk is visited}) |Fk]− Ez [Pω ({XM+V = v} ∩ {Mk is visited}) |Fk+1]

∣∣∣(ωz)
≤ C

(
log6d+9(N)

)
V −

d+1
2 ,

where the last inequality holds true uniformly in k since we expose the environment only up to time

M+log2(N). This proves the Lemma for mk−m ≤ log2(N), since in this case P zωz (Mk is visited) = 1.
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Now let mk −m > log2(N). Recall the de�nition of Lk in (3.5). Furthermore, by Lemma 3.8 there

exists a subset

G̃1(z,N) ⊂ D(N) ∩Bz ∩
{
ω : dTV(κzk(ω|Ik , · ),Ber⊗Ok) ≤ CN−c log(N)

}
,

with Pz(G̃1(z,N)) ≥ 1− CN−c log(N) such that for all ωz ∈ G̃1(z,N) we have

Ez [P zω ({XM+V = v} ∩ {Mk is visited}) |Fk] (ωz)

=

∫
P z(ωz |Ik ,ϑ) ({XM+V = v} ∩ {Mk is visited})κzk(ωz|Ik , dϑ)

=

∫
P z(ω|Ik ,ϑ) ({XM+V = v} ∩ {Mk is visited}) Ber⊗Ok(dϑ) +O(N−c log(N))

=

∫
1{ξ(ωz |Ik ,ϑ)

|Lk=ξωz |Lk}
P z(ωz |Ik ,ϑ) ({XM+V = v} ∩ {Mk is visited}) Ber⊗Ok(dϑ)

+

∫
1{ξ(ωz |Ik ,ϑ)

|Lk 6=ξω |Lk}
P z(ωz |Ik ,ϑ) ({XM+V = v} ∩ {Mk is visited}) Ber⊗Ok(dϑ) +O(N−c log(N)).

By an argumentation similar to (3.22) we get that

Ez [P zω ({XM+V = v} ∩ {Mk is visited}) |Fk] (ωz)

=

∫
1{ξ(ωz |Ik ,ϑ)

|Lk=ξωz |Lk}P
z
(ωz |Ik ,ϑ)

(
{XM+V = v} ∩ {Mk is visited}

)
Ber⊗Ok(dϑ) +O(N−c log(N)).

This implies

Ez [P zω ({XM+V = v} ∩ {Mk is visited}) |Fk] (ωz)

=

∫
1{ξ(ωz |Ik ,ϑ)

|Lk=ξωz |Lk}
P z(ωz |Ik ,ϑ) ({XM+V = v} ∩ {Mk is visited}) Ber⊗Ok(dϑ) +O(N−c log(N))

=

∫
1{ξ(ωz |Ik ,ϑ)

|Lk=ξωz |Lk}

·
∑

x∈∂−Mk

P z(ωz |Ik ,ϑ)

(
Xmk−log2(N) = x

)
P

(x,mk−log2(N))
(ωz |Ik ,ϑ) (XM+V = v) Ber⊗Ok(dϑ) +O(N−c log(N))

=
∑

x∈∂−Mk

P zωz

(
Xmk−log2(N) = x

)
·
∫
1{ξ(ωz |Ik ,ϑ)

|Lk=ξωz |Lk}
P

(x,mk−log2(N))
(ωz |Ik ,ϑ) (XM+V = v) Ber⊗Ok(dϑ) +O(N−c log(N))

=
∑

x∈∂−Mk

P zωz

(
Xmk−log2(N) = x

)
·
∫
P

(x,mk−log2(N))
(ωz |Ik ,ϑ) (XM+V = v) Ber⊗Ok(dϑ) +O(N−c log(N))

=
∑

x∈∂−Mk

P zωz

(
Xmk−log2(N) = x

)
· E(x,mk−log2(N))

[
P (x,mk−log2(N))
ω ({XM+V = v} ∩ {Mk is visited})

∣∣Fk] (ωz) +O(N−c log(N)),

where the conditional expectation in the last line �ts exactly the case we discussed before. Hence
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altogether we get∣∣∣Ez [Pω ({XM+V = v} ∩ {Mk is visited}) |Fk]− Ez [Pω ({XM+V = v} ∩ {Mk is visited}) |Fk+1]
∣∣∣(ωz)

≤ CP zωz (Mk is visited)
(

log6d+9(N)
)
V −

d+1
2 +O(N−c log(N)). (3.31)

�

Lemma 3.19. Let X(1) and X(2) be two independent random walks de�ned on the same oriented

percolation cluster. As in the previous chapter we denote the di�erence between the random walks by

(Dm)m≥0 := (X
(1)
m −X(2)

m )m≥0. We de�ne

RN (X(i)) := {T (i)
k − T

(i)
k−1 ≤ log2(N) for all k ≤ N2}

and

RsimN := {T simk − T simk−1 ≤ log2(N) for all k ≤ N2},

where (T simn )n are the times at which both random walks regenerate. For the de�nition of (T
(i)
n )n and

(T simn )n see (1.37) and (1.38). If d ≥ 3, there exist constants C, c > 0 such that for every n

P0
joint

({
#
{
m < N2 : ‖Dm‖ < log2(N)

}
> n log8(N)

}
∩RsimN

)
≤
(

1− C

log2(N)

)n
+ CN−c log(N).

The probability measure Pxjoint is de�ned within the comments at the beginning of section 2.1.3.

Proof: We know that

P0
joint

(
RsimN

)
≥ 1− CN−c log(N).

We focus on the di�erence between the random walks at their simultaneous regeneration times. As in

chapter 2 let D̂n = X̂
(1)
n − X̂(2)

n = X
(1)

T simn
−X(2)

T simn
. Furthermore, we de�ne the following sequence of

stopping times

τ inN,0 := 0,

τ outN,k+1 := inf{n ≥ τ inN,k :
∥∥∥D̂n

∥∥∥ > log2(N)},

τ inN,k+1 := inf{n ≥ τ outN,k+1 :
∥∥∥D̂n

∥∥∥ ≤ log2(N)},

with the convention inf ∅ :=∞.

Notice that

P0
joint(∃ k such that τ inN,k =∞) = 1,

since in dimension d ≥ 3 the process (D̂n)n≥0 is transient. Denote by

p := p(N) := min
x:‖x‖≤log2(N)

Pxjoint
(∥∥∥D̂log4(N)

∥∥∥ ≥ log2(N)
)
> ε,

where ε > 0 can be chosen independently of N . Notice that

P0
joint

(
τ outN,k+1 − τ inN,k ≥ log6(N)

∣∣ D̂τ inN,k
= x, τ inN,k <∞

)
≤ (1− ε)log2(N) ≤ CN−c log(N).
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Therefore the probability of the event

R̂N := RsimN ∩ {τ outN,k − τ inN,k < log6(N) for all k ≤ N2 : τ inN,k <∞}

= RsimN ∩

 ⋂
k≤N2

[(
{τ outN,k − τ inN,k < log6(N)} ∩ {τ inN,k <∞}

)
∪ {τ inN,k =∞}

]
is bounded from below by

Pjoint(R̂N ) ≥ 1− CN−c log(N).

On the event R̂N the number of times that the distance between the random walks becomes less than

log2(N) can be bounded by

#
{
n < N2 : ‖Dn‖ < log2(N)

}
< log8(N) · (inf{k ≤ N2 : τ inN,k − τ inN,k−1 > N2} ∧N2),

with the convention inf ∅ := ∞, since on R̂N the di�erence τ outN,k − τ inN,k is bounded by log6(N) regen-

eration steps, each of which is bounded by log2(N). Next we will prove that

P0
joint(τ

in
N,k − τ inN,k−1 > N2 | τ inN,k−1 <∞) ≥ 1

log2(N)
> 0, (3.32)

which allows us to bound inf{k : τ inN,k − τ inN,k−1 > N2} by a geometrical random variable with success

probability e(N) := 1
log2(N)

> 0. Using the Markov property it is enough to prove that

Pyjoint(τ
in
N,1 > N2) ≥ e(N) > 0, (3.33)

for y ∈ Zd, ‖y‖ ≤ log2(N) chosen arbitrarily. By the strong Markov property, we factorize (3.33) as

follows

Pyjoint(τ
in
N,1 > N2) =

∑
x:‖x‖≥log2(N)

Pyjoint(DτoutN,1
= x)Pxjoint(τ inN,1 > N2).

We focus on Pxjoint(τ inN,1 > N2) for some x ∈ Zd with ‖x‖ > log2(N) and assume without loss of

generality that the �rst component of x, denoted by x1, satis�es |x1| > log2(N). By Lemma 1.14 we

can couple the joint and independent measures until τ inN,1. The probability that the coupling breaks

within the next N2 steps is bounded by CN2e−c log2(N). The estimation of independent random walks

(see [B�DG13, Lemma 3.6]) gives us

Pxind(τ inN,1 > N2)

≥ Pxind(τ inN,1 =∞)

≥
∑

y∈Zd,n∈N

Pxind
(
H1(K log2(N)) = n < h1(log2(N)), Dn = y

)
Pyind

(
h(log2(N)) =∞)

)
≥ (1− ε)

∑
y∈Zd,n∈N

Pxind
(
H1(K log2(N)) = n < h1(log2(N)), Dn = y

) (log2(N))2−d − ‖y‖2−d2

(log2(N))2−d

≥ (1− ε)
∑

y∈Zd,n∈N

Pxind
(
H1(K log2(N)) = n < h1(log2(N)), Dn = y

)
(1− 1/C)

≥ (1− ε) |x1| − log2(N)

K log2(N)− log2(N)
(1− 1/C)

≥ C

log2(N)
,
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where K > 1 is a large constant, C > 0 and

h1(r) := inf{n ≥ 0 : (Dn)1 ≤ r} and H1(r) := inf{n ≥ 0 : (Dn)1 ≥ r}.

The last estimate yields

P0
joint

({
#
{
n < N2 : ‖Dn‖ < log2(N)

}
> n log8(N)

}
∩RsimN

)
≤ P0

joint

({
#
{
n < N2 : ‖Dn‖ < log2(N)

}
> n log8(N)

}
∩ R̂N

)
+ CN−c log(N)

≤
(

1− C

log2(N)

)n
+ CN−c log(N). (3.34)

�

Corollary 3.20. Let X(1) and X(2) be two independent random walks de�ned on the same oriented

percolation cluster. If d ≥ 3, then

P0
joint

[{
#
{
n < N2 :

∥∥∥X(1)
n −X(2)

n

∥∥∥ < log2(N)
}
≤ log12(N)

}
∩RsimN

]
≥ 1− CN−c log(N).

Proof:

P0
joint

({
#
{
n < N2 :

∥∥∥X(1)
n −X(2)

n

∥∥∥ < log2(N)
}
> log4(N) log8(N)

}
∩RsimN

)
<
(

1− C
log2(N)

)log4(N)
+ CN−c log(N)

<

((
1− C

log2(N)

)log2(N)
)log2(N)

+ CN−c log(N)

≤ CN−c log(N).

�

Remark 3.21. Note that Corollary 3.20 implies

Pz
(

(Ezω ⊗ Ezω)
[
#
{
n < N2 :

∥∥∥X(1)
n −X(2)

n

∥∥∥ < log2(N)
}
1RsimN

]
≥ C log12(N)

)
≤ Pz

(
(Ezω ⊗ Ezω)

[
1 +N2

1{#{n<N2:‖X(1)
n −X

(2)
n ‖<log2(N)}≥log12(N)}1RsimN

]
≥ C

)
≤ Pz

(
(P zω ⊗ P zω)

[
{#{n < N2 : ‖X(1)

n −X(2)
n ‖ < log2(N)} ≥ log12(N)} ∩RsimN

]
≥ C − 1

N2

)
≤ CN−c log(N),

for some constant C > 1.

Now we turn to the proof of Proposition 3.11.

Proof of Proposition 3.11: By Lemma 3.15 and Lemma 3.18, we know that there exists a subset

G̃1(z,N) of D(N) ∩Bz with Pz(G̃1(z,N)) ≥ 1− CN−c log(N) such that on G̃1(z,N)

Uk = esssup
(∣∣∣Ez [P zω (XM+V = v) |Fk−1]− Ez [P zω (XM+V = v) |Fk]

∣∣∣ ∣∣∣Fk−1

)
≤ C

(
log6d+9(N)

)
P z· (Mk is visited)V −

d+1
2 + CN−c log(N).
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We de�ne{
ω ∈ Bz : (Ezω ⊗ Ezω)

[
#
{
n < N2 :

∥∥∥X(1)
n −X(2)

n

∥∥∥ < log2(N)
}
1RsimN

]
< C log12(N)

}
=: W (z,N) ⊂ Bz (3.35)

and prove that for U :=
∑

k U
2
k we have

U ≤ C · l(N) · V −d−1

on

G̃1(z,N) ∩W (z,N), (3.36)

where l(N) is a slowly varying function. The sum
∑

k U
2
k is taken up to time-layer M + log2(N).

In order to simplify notation we de�ne l̃(N) :=
(
log6d+9(N)

)
, which is also a slowly varying function.

For ω ∈ G̃1(z,N) ∩W (z,N) we have∑
k

U2
k

≤ Cl̃2(N)V −d−1
∑
k

(P zω (Mk is visited))2 + CN−c log(N)

≤ Cl̃2(N)V −d−1
∑
k

 ∑
x1∈∂−Mk

P zω

(
Xmk−log2(N) = x1

) ∑
x2∈∂−Mk

P zω

(
Xmk−log2(N) = x2

)
+ CN−c log(N)

≤ Cl̃2(N)V −d−1
∑
k

 ∑
x1,x2∈∂−Mk

P zω

(
Xmk−log2(N) = x1

)
P zω

(
Xmk−log2(N) = x2

)+ CN−c log(N)

≤ C(l̃2(N)V −d−1) ·

∑
k

 ∑
x1∈∂−Mk

(P zω ⊗ P zω)
(∥∥∥X(1)

mk−log2(N)
−X(2)

mk−log2(N)

∥∥∥ < 2 log2(N), Xmk−log2(N) = x1

)
+ CN−c log(N)

≤ Cl̃2(N)V −d−12 log2(N)

M+log2(N)∑
k=1

(P zω ⊗ P zω)
(∥∥∥X(1)

k −X
(2)
k

∥∥∥ < 2 log2(N)
)

+ CN−c log(N)

≤ Cl̃2(N)V −d−12 log2(N) log12(N) + CN−c log(N), (3.37)

where the last inequality holds true by the de�nition of W (z, n) in (3.35).

With l(N) = 2l̃2(N) log2(N) log12(N) the desired result follows.

Let k0 be such that mk0 = M + log2(N) and (yk,mk) = zk ≺ zk0 = (yk0 ,mk0) for all zk such

that mk ≤ M + log2(N). We denote the σ-Algebra Fk0 by G. Using McDiarmids inequality (see

Theorem 3.10) we get that

Pz
(
|Ez [P zω̃ (XM+V = v) |G] (ω)− Pzω (XM+V = v)| > 1

2
N−d

)
≤ Pz (D(N)c ∪W (z,N)c) + 2 exp

(
− CN−2d

l(N)V −d−1

)
.
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3. Comparison between Pz and P zω

Remember that V :=
⌊
N2θ′

⌋
and d

d+1 < θ′ < θ, hence

exp

(
− CN−2d

l(N)V −d−1

)
= exp

(
− C

l(N)
N−2dN2θ′(d+1)

)
= exp

(
− C

l(N)
N−2(d−θ′(d+1))

)
≤ CN−c log(N).

For z ∈ P̃(N) chosen arbitrarily, let G̃2(z,N) ⊂ Bz be the event that

|Ez [P zω̃ (XM+V = v) |G] (ω)− Pzω (XM+V = v)| ≤ 1

2
N−d

for every 2
5N

2 ≤ M ≤ N2 and every v ∈ Zd with ‖v‖ ≤ N log3(N). By the previous calculations

we know that Pz(G̃2(z,N)) ≥ 1 − CN−c log(N). Now we �x ω ∈ G̃2(z,N), d
d+1 < θ ≤ 1 and a cube

∆x ⊂ Zd of side length N θ and center x ∈ Zd. We are interested in estimates on the following quantity

|P zω(XM = ∆x)− Pz(XM ∈ ∆x)| .

We denote by ∆
(1)
x a cube with center x and side length 9

10N
θ that is slightly smaller than ∆x and by

∆
(2)
x a cube with center x and side length 11

10N
θ that is slightly bigger than ∆x. There exist C, c > 0

such that

Pz(XM+V ∈ ∆(1)
x ) < Pz(XM ∈ ∆x) + CN−c log(N), (3.38)

Pz(XM+V ∈ ∆(2)
x ) > Pz(XM ∈ ∆x)− CN−c log(N). (3.39)

Furthermore, there exists a subset G̃3(z,N) ⊂ Bz such that for all ωz ∈ G̃3(z,N)

Ez
[
P zω

(
XM+V ∈ ∆(1)

x

) ∣∣∣G] (ωz) < P zωz(XM ∈ ∆) + CN−c log(N), (3.40)

Ez
[
P zω

(
XM+V ∈ ∆(2)

x

) ∣∣∣G] (ωz) > P zωz(XM ∈ ∆)− CN−c log(N), (3.41)

and P z(G̃3(z,N)) ≥ 1− CN−c log(N). The proof of (3.38)-(3.41) can be found in section A.2.2 in the

appendix. Since G̃2(z,N) ∩ G̃3(z,N) ⊂ G1(z, θ,N) the proof of Proposition 3.11 is complete.

�

3.3. Estimates on hitting probabilities for �small� boxes

As already mentioned in Remark 3.12, the next thing we want to do is to use Proposition 3.11 in order

to improve our bounds on the term

∑
k

(P zω (Mk is visited))2 , (3.42)

that appears in (3.37). The new bounds on (3.42) we get out of Lemma 3.22 below, will then be used

to prove Lemma 3.23 which leads to an improved version of Proposition 3.11 (see Theorem 3.24). In

Corollary 3.25 we discuss how the quenched central limit theorem given by Birkner et al. in [B�DG13]

can be derived from Theorem 3.24 for dimension d ≥ 3.
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3.3. Estimates on hitting probabilities for �small� boxes

Lemma 3.22. Assume that d ≥ 3. For every 0 < θ ≤ 1 and z ∈ P̃(N) let G2(z, θ, h,N) ⊂ Bz be

the event that for every 2
5N

2 ≤ M ≤ N2 and every cube ∆ of side length N θ that is contained in

[−N log3(N), N log3(N)]d

P zω(XM ∈ ∆) ≤ logh(N)N−d(1−θ).

Then for every 0 < θ ≤ 1, z ∈ P̃(N) there exist C, c > 0 and h = h(θ) ≥ 0, independent of z, such that

Pz(G2(z, θ, h,N)) ≥ 1− CN−c log(N).

Hence

P

 ⋂
z∈P̃(N)

G2(z, θ, h,N) ∪ (Bz)
c

 ≥ 1−
∑

z∈P̃(N)

P ((G2(z, θ, h,N))c ∩Bz)

≥ 1− CN−c log(N).

Proof: Let (θn)n≥0 be a decreasing sequence of real numbers with

θ0 ∈ ( d
d+1 , 1) and d

d+1θn < θn+1 < θn.

We prove the lemma by induction over n for the sequence (θn)n≥0. For θ0 the Lemma holds true by

Proposition 3.11 and Lemma 3.9 i). For the induction step we �x n ≥ 0 and assume that the statement

holds true for θn. We de�ne ρ := θn+1

θn
> d

d+1 . By Proposition 3.11 and Lemma 3.9 i) there exists

h = h(ρ) such that by translation invariance of P, we have

P

 ⋂
z∈P̃(N)

G2(z, ρ, h,N) ∪ (Bz)
c

 ≥ 1− CN−c log(N).

Since the statement holds true by induction hypothesis for θn there also exists h′ = h′(θn) such that

P

 ⋂
z∈P̃(N)

G2(z, θn, h
′, bNρc) ∪ (Bz)

c

 ≥ 1− CbNρc−c log(bNρc).

We de�ne

R̄(ρ, h,N) :=
⋂

z∈P̃(N)

(G2(z, ρ, h,N) ∪ (Bz)
c) ,

R̄(θn, h
′, bNρc) :=

⋂
z∈P̃(N)

(
G2(z, θn, h

′, bNρc) ∪ (Bz)
c
)
,

and

L := R̄(ρ, h,N) ∩
⋂

x∈P(2N)

σx(R̄(θn, h
′, bNρc)),

where σx denotes the shift of the environment in direction x. In detail for x = (v, t) ∈ Zd × Z the shift

operator σx on Ω is de�ned as

σx(ω) := ω( · + v, · + t).
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3. Comparison between Pz and P zω

Note that P(L) ≥ 1− CN−c log(N) by translation invariance of P.
Now we choose z = (y,m) ∈ P̃(N), 2

5N
2 ≤ M ≤ N2 and a cube ∆x of side length N θn+1 = (Nρ)θn

and center x that is contained in [−N log3(N), N log3(N)]d arbitrarily. Let V = bN2ρc.
Denote by Q(N) the event that∑

v:‖v−x‖>2Nρ log3(N)

1{ξ(v,M−V )=1}(ω)P (v,M−V )
ω (XM ∈ ∆x) ≤ CN−c log(N),

where C, c > 0. By (3.13) we know that there exist C̃, c̃ > 0 such that P(Q(N)) ≥ 1− C̃N−c̃ log(N).

We will prove the lemma by showing that

L ∩Q(N) ⊂ G2(z, θn+1, h,N) ∪ (Bz)
c.

We �x ω ∈ L ∩Q(N). If ξω(z) = 0 we have ω ∈ (Bz)
c ⊂ G2(z, θ, h,N) ∪ (Bz)

c, hence we focus on the

case that z is chosen such that ξω(z) = 1. By the Markov property of the quenched measure we have

P (y,m)
ω (XM ∈ ∆x) =

∑
v:‖v−x‖≤2Nρ log3(N)

P (y,m)
ω (XM−V = v)P (v,M−V )

ω (XM ∈ ∆x) + CN−c log(N).

If ξω(v,M − V ) = 0 we have P (y,m)
ω (XM−V = v) = 0. On the other hand if ξω(v,M − V ) = 1, the fact

that ω ∈ R̄(ρ, h,N) implies that for all cubes ∆′ of side length Nρ, we have

P (y,m)
ω (XM−V ∈ ∆′) ≤ logh(N)(N)−d(1−ρ).

Additionally, ω ∈
⋂
x∈P(2N) σx(R̄(θn, h

′, bNρc)) and the fact that N θn+1 = (Nρ)θn implies that

P (v,M−V )
ω (XM ∈ ∆x) ≤ logh

′
(Nρ)(Nρ)−d(1−θn) ≤ logh

′+1(N)(N)−d(ρ−θn+1).

Since [−Nρ log3(Nρ), Nρ log3(Nρ)]d is the union of at most C log3d(N) ≤ log3d+1(N) cubes of side

length Nρ, we get that

P (y,m)
ω (XM ∈ ∆x) ≤ C log3d+1(N)N−d(1−ρ) · logh

′+1(N)N−d(ρ−θn+1),

≤ C log3d+h′+2(N)N−d(1−θn+1).

For h(θn+1) := 2d+ h′ + 2 the statement holds true for θn+1.

�

Lemma 3.23. Let d ≥ 3. Similar to the proof of Proposition 3.11 let G denote the σ-Algebra Fk0,
where k0 is such that mk0 =

⌊
N2 + log2(N)

⌋
and (yk,mk) = zk ≺ zk0 = (yk0 ,mk0) for all zk = (yk,mk)

with mk ≤ N2 + log2(N). Let η > 0, V = bNηc and de�ne G3(z, V,N) as the event that for every

v ∈ Zd

|Ez [P zω(XN2+V = v)|G]− Pz(XN2+V = v)| ≤ N−dV −
d
5 .

Then there exist C, c > 0 such that

Pz(G3(z, V,N)) ≥ 1− CN−c log(N).
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3.3. Estimates on hitting probabilities for �small� boxes

Hence

P

 ⋂
z∈P̃(N)

G3(z, V,N) ∪ (Bz)
c

 ≥ 1−
∑

z∈P̃(N)

P ((G3(z, V,N))c ∩Bz)

≥ 1− CN−c log(N).

Proof: Fix v ∈ Zd, θ > 0 and let η > 0 be such that θ < 1
20η. Furthermore, let L := L(N) be a large

integer such that 2−(L+1)N2 ≤ V − log2(N) < 2−LN2. For 1 ≤ l < L we de�ne

P(l) := P(N) ∩
{

(x, n) : x ∈ Zd, 2−l−1N2 ≤ N2 − n < 2−lN2
}
.

Additionally, we de�ne

P(0) := P(N) ∩
{

(x, n) : x ∈ Zd, 0 ≤ n ≤ N2

2

}
,

P(L) := P(N) ∩
{

(x, n) : x ∈ Zd, 0 ≤ N2 − n < 2−LN2
}
,

F (v) :=
{

(x, n) ∈ P(N) : ‖x− v‖ ≤
√
N2 + V − n log3(N)

}
,

and

P(l)(v) := P(l) ∩ F (v), P̂(l)(v) := {y : ∃z ∈ P(l)(v) such that ‖y − z‖ ≤ log3(N)}.

First we want to improve the estimates on the term∑
k

(P zω (Mk is visited))2 ,

which appears in (3.37), where ω is chosen out of G2(z, θ, h,N) (see Lemma 3.22). We de�ne

V (l) :=
∑

k:zk∈P(l)(v)

(P zω (Mk is visited))2.

First of all recall the de�nition of W (z,N) in (3.35), and note that on W (z,N) we have

V (0) ≤ (Ezω ⊗ Ezω)
[
#
{
n < N2 :

∥∥∥X(1)
n −X(2)

n

∥∥∥ < log2(N)
}
1RsimN

]
≤ log12(N).

Remember that we usually denote by yk the space component and by mk the time component of zk
According to Lemma 3.22 we can bound V (l), l ≥ 1, for ω ∈ G2(θ, z, h,N) by

V (l) =
∑

k:(xk,mk−log2(N))∈P(l)(v)

 ∑
x∈∂−Mk

P zω

(
Xmk−log2(N) = x

)2

≤ C
∑

k:(xk,mk−log2(N))∈P(l)(v)

log2d(N)
∑

x∈∂−Mk

(
P zω

(
Xmk−log2(N) = x

))2

≤ C log2d+2(N)
∑

z′∈P̂(l)(v)

(
P zω

(
Xmk−log2(N) = z′

))2

≤ C log2d+2(N)
∑

z′∈P̂(l)(v)

log2h(N)N2(θ−1)d

≤ Cl′(N)N2(θ−1)dNd+22−l
d+2
2 . (3.43)

71



3. Comparison between Pz and P zω

For the �rst estimate we made use of the Cauchy-Schwarz inequality. The second inequality is due to

the fact that each point is counted at most log2(N) times. The third inequality follows by Lemma 3.22

and for the last inequality we estimated the number of points in P̂(l)(v). The function l′(N) is a slowly

varying function. We consider the process

Uk = esssup
(∣∣Ez [P zω (XN2+V = v) |Fk−1]− Ez [P zω (XN2+V = v) |Fk]

∣∣∣∣∣Fk−1

)
,

on G2(θ, z, h,N). Remember that the calculations in the proof of Lemma 3.15 and Lemma 3.18 have

lead us to

Uk(ω) ≤ l(N) · P zω (Mk is visited)

· sup
(xi,ni)∈G(zk,N)

∣∣∣P(x1,n1) (XN2+V = v)− P(x2,n2) (XN2+V = v)
∣∣∣+ CN−c log(N),

where l(N) is a slowly varying function and

G(zk, N) := {(x, n) : ‖yk − x‖ < 3 log6d+9(N), 0 ≤ n−mk < 2 log6d+9(N)}.

For k such that zk ∈ P(l)(v) we have

sup
(xi,ni)∈G(zk,N)

∣∣∣P(x1,n1) (XN2+V = v)− P(x2,n2) (XN2+V = v)
∣∣∣ ≤ C(2−lN2)−

d+1
2 .

Now making use of the more precise estimates given in Lemma 3.22 which yield to (3.43), we get

U ≤ C
L∑
l=0

(2−lN2)−(d+1)V (l) + CN−c log(N)

≤ CN−2(d+1)V (0) + CN−2(d+1)N2(θ−1)dNd+2
L∑
k=1

2l(d+1)2−l
d+2
2

≤ CN−2(d+1)V (0) + CN−3d+2θd2L
d
2

≤ CN−2(d+1)V (0) + CN−3d+2θdNdV −
d
2

≤ CN−2d+2θdV −
d
2 .

Hence, using McDiarmid's inequality, we get Pz(G3(z, V,N)) ≥ 1− CN−c log(N).
�

Theorem 3.24. Let d ≥ 3. For every 0 < θ ≤ 1 and z ∈ P̃(N) let G4(z,N) denote the event that for

every cube ∆ of side length N θ we have

|P zω(XN2 ∈ ∆)− Pz(XN2 ∈ ∆)| ≤ CN−d(1−θ)− 1
3
θ.

Then there exist C, c > 0 such that

Pz(G4(z,N)) ≥ 1− CN−c log(N).

Hence

P

 ⋂
z∈P̃(N)

G4(z,N) ∪ (Bz)
c

 ≥ 1−
∑

z∈P̃(N)

P ((G4(z,N))c ∩Bz)

≥ 1− CN−c log(N).
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3.3. Estimates on hitting probabilities for �small� boxes

Proof: Fix 0 < θ ≤ 1, z ∈ P̃(N) as required. We choose 3
4θ < θ′ < θ and V =

⌊
N

4θ′
d

⌋
. We know by

Lemma 3.23 that there exist constants C, c > 0 such that the event G3(z, V,N), that

|Ez [P zω(XN2+V = v)|G]− Pz(XN2+V = v)| ≤ N−dV −
d
5

for all v ∈ Zd, has probability Pz(G3(z, V,N)) ≥ 1− CN−c log(N). Let ∆ be a cube of side length N θ

and center c(∆) = x that is contained in [−N log3(N), N log3(N)]d. Let ∆(1) and ∆(2) be cubes of

side length N θ − log3(N)
√
V and N θ + log3(N)

√
V and center c(∆(1)) = c(∆(2)) = c(∆) = x. Then

on G3(z, V,N) we have∣∣∣Ez [P zω(XN2+V ∈ ∆(i))|G
]
− Pz(XN2+V = ∆(i))

∣∣∣ ≤ |∆(i)|N−dV −
d
5 .

As in the proof of Proposition 3.11 we know that

Pz(XN2+V ∈ ∆(1)) < Pz(XN2 ∈ ∆) + CN−c log(N),

Pz(XN2+V ∈ ∆(2)) > Pz(XN2 ∈ ∆)− CN−c log(N).

Additionally, there exists G̃4(z,N) ⊂ Bz such that for all ωz ∈ G̃4(z,N) we have

Ez
[
P zω

(
XN2+V ∈ ∆(1)

)
|G
]

(ωz) < P zωz(XN2 ∈ ∆) + CN−c log(N),

Ez
[
P zω

(
XN2+V ∈ ∆(2)

)
|G
]

(ωz) > P zωz(XN2 ∈ ∆)− CN−c log(N),

and Pz(G̃4(z,N)) ≥ 1 − CN−c log(N) for some C, c > 0. Making use of Lemma 3.23 and �standard�

bounds on the annealed transition kernel we obtain

P zω(XN2 ∈ ∆)− Pz(XN2 ∈ ∆)

≤ Ez
[
P zω̃

(
XN2+V ∈ ∆(2)

) ∣∣∣G]− Pz
(
XN2+V ∈ ∆(1)

)
+ CN−c log(N)

≤ Ez
[
P zω̃

(
XN2+V ∈ ∆(1)

) ∣∣∣G]− Pz
(
XN2+V ∈ ∆(1)

)
+ Ez

[
P zω̃

(
XN2+V ∈ ∆(2) \∆(1)

)
|G
]

+ CN−c log(N)

≤
∣∣∣Ez [P zω̃ (XN2+V ∈ ∆(1)

) ∣∣∣G]− Pz
(
XN2+V ∈ ∆(1)

)∣∣∣+ Ez
[
P zω̃

(
XN2+V ∈ ∆(2) \∆(1)

) ∣∣∣G]
+ CN−c log(N)

≤ |∆(1)|N−dV −
d
5 +N−d

∣∣∣∆(2) \∆(1)|+ CN−c log(N)

≤ CN−d(1−θ)N−
3θ
5 + C log3(N)N−dN θ(d−1)N

4θ′
2d + CN−c log(N)

≤ CN−d(1−θ)N−
θ
3 .

By similar estimates on Ez
[
P zω̃
(
XN2+V ∈ ∆(1)

) ∣∣∣G]− Pz
(
XN2+V ∈ ∆(2)

)
the theorem follows.

�

Corollary 3.25. (Quenched CLT) Let d ≥ 3. For any continuous and bounded function f ∈ Cb(Rd)

|Ezω [f (XN2/N)]− Φ(f)| −→ 0, as N →∞, for Pz-almost all ω, (3.44)

where Φ(f) :=
∫
f(x)Φ(dx) with Φ a non-trivial, centered isotropic d-dimensional normal law.
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3. Comparison between Pz and P zω

In [B�DG13] Birkner et al. proved a quenched CLT for all d ≥ 1.

Notation 3.26. For any real number M ∈ R we de�ne ΠM as a partition of Zd into boxes of side

length M . For ∆ ∈ ΠM we denote the center of ∆ by c(∆). If the center of the box or the side length

is important, we sometimes denote the box ∆ with x = c(∆) and side length M by ∆x or ∆M
x . We

de�ne I := I(ΠM ) := {c(∆) : ∆ ∈ ΠM} as the set of all centers of boxes in ΠM . The partition ΠM is

sometimes also denoted by (∆x)x∈I .

For some z ∈ P̃(N), n ≤ N and ω ∈ Ω we say that a box ∆ ∈ ΠM is z-n-reachable in ω if there exists

x ∈ ∆ such that z ω→ (x, n)
ω→∞.

Proof of Corollary 3.25: By the Portmanteau theorem it is enough to prove (3.44) for all bounded

and uniformly continuous functions f ∈ Cu(Rd).
We �x θ ∈ (0, 1), f ∈ Cu(Rd) and ε > 0. We choose δ > 0 such that for all x, y ∈ Rd with ‖x− y‖ ≤ δ
we have |f(x)−f(y)| < ε

3 . Let (∆x)x∈I be a partition of Zd into boxes of side length N θ. Furthermore,

we assume N to be large enough such that N (θ−1) < δ. We prove (3.44) for z = (0, 0) ∈ Zd × Z but

omit the superscript �(0, 0)�. By Theorem 3.24 we get

Eω [f (XN2/N)] =
∑
x∈Zd

f
( x
N

)
Pω (XN2 = x)

=
∑
y∈I

∑
x∈∆y

f
( x
N

)
Pω (XN2 = x)

≤
∑
y∈I

f
( y
N

)
Pω (XN2 ∈ ∆y) +

ε

3

≤
∑
y∈I

f
( y
N

)
P (XN2 ∈ ∆y) + C

∑
y∈Ĩ

N−d(1−θ)− 1
3
θ + CN−c log(N) +

ε

3

≤
∑
x∈Zd

f
( x
N

)
P (XN2 = x) + C

(
N log3(N)

N θ

)d
N−d(1−θ)− 1

3
θ + CN−c log(N) +

2ε

3

≤ E (f(XN2/N)) + ε,

where Ĩ := {x ∈ I : ‖x‖ ≤ N log3(N)} and N is chosen large enough. Corollary 3.25 follows by the

annealed CLT.
�

3.4. Estimates on hitting probabilities for �sub-algebraic boxes�

Decreasing the box size within the estimates between the quenched and annealed hitting probabilities

down to a constant real number would probably be the next step towards proving a quenched local

central limit theorem (qLCLT). At least this is the next step within the proof of the qLCLT for ballistic

random walks in an uniformly elliptic, i.i.d. environment published by Berger et al. (see [BCR16,

Theorem 5.1]). In this section we give a proof of decreasing the box size in Theorem 3.24 down to

boxes of side length e
√

log(N) log log(N) using techniques similar to the proof of [BCR16, Theorem 5.1]. If

only boxes of sub-algebraic side length greater than log2(N) will be considered, this guarantees that all
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boxes in [−
√
N log3(N),

√
N log3(N)] are (0, 0)-n-reachable (see Notation 3.26) with high probability,

at least if n is of order N . This statement is proved in Lemma 3.27 below.

Adapting the proof of [BCR16, Theorem 5.1] to our case, some problems arise which we have not been

able to solve up to now, and which prevent us from decreasing the box size down to constant side

length independent of N . These problems also seem to appear within the proof of [BCR16, Theorem

5.1] itself. It is not quite clear to us how the authors overcome these di�culties and if there exists

a suitable solution for our case as well. The analogue of [BCR16, Theorem 5.1] for boxes of side

length e
√

log(N) log log(N) is formulated in Theorem 3.28 below. Nevertheless, Theorem 3.28 provides a

comparison between quenched and annealed hitting probabilities on a �ner scale than Theorem 3.24

which is already �ner than the comparison that follows from the qCLT by Birkner at al. in [B�DG13,

Theorem 1.1] (see (3.1)).

See also Remark 3.29, where the problem of proving a version of Theorem 3.28 for constant box size

is discussed.

Lemma 3.27. Let z = (y,m) ∈ P̃(
√
N) and ΠM = (∆x)x∈I be a partition of Zd into boxes of side

length M ≥ log2(N). For every ‖x‖ ≤
√
n log3(N), where N

2 ≤ n ≤ N , we have

Pz (∆x is z-n-reachable) ≥ 1− CN−c log(N). (3.45)

Proof: The proof of Lemma 3.27 is very similar to the proof of Lemma 3.8. Using analogous arguments

we can show that there exists ρ > 0 such that

Pz
(
|∆x ∩ ηzn| ≥ ρ log2(N)

)
≥ 1− CN−c log(N),

if N is su�ciently large and hence

Pz
(

∆x ∩ ηzn
ω−→∞

)
≥ 1− CN−c log(N),

where (ηzn)n≥m denotes the discrete time contact process starting at time m with only one infected

particle at site y.

�

Theorem 3.28. Let d ≥ 3 and de�ne Πsub-alg. as a partition of Zd into �sub-algebraic boxes� of side

length e
√

log(N) log log(N). For N ∈ N denote by G5(N) := G5(N,C ′, c′) ⊂ B(0,0) the set of environments

such that ∑
∆∈Πsub-alg.

|P (0,0)
ω (XN ∈ ∆)− P(0,0)(XN ∈ ∆)| ≤ C ′e−c′

√
log(N) log log(N). (3.46)

Then for an appropriate choice of C ′, c′ > 0 there exist constants C, c > 0 such that

P(0,0)(G5(N)) ≥ 1− CN−c log(log(N)).

Note that there is a small �notation break� compared to Theorem 3.24: Now, time runs up to N and

not up to N2.
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Proof: Let θ > 0 be some small constant. We de�ne Nj := bN
1

2j c and

r(N) :=

⌊
log2

(
θ log(N)

2
√

log(N) log log(N)

)⌋
,

such that r(N) is the minimal integer for which N
θ
2

r(N) ≤ e
√

log(N) log log(N). In addition we de�ne

n0 := N −
∑r(N)

j=1 Nj and nk :=
∑k

j=1Nj + n0, where 1 ≤ k ≤ r(N). For 0 ≤ k ≤ r(N) we de�ne

Πk := Π
bN

θ
2
k c

and

λk :=
∑

∆∈Πk

∣∣∣P (0,0)
ω (Xnk ∈ ∆)− P(0,0)(Xnk ∈ ∆)

∣∣∣ .
The de�nition of ΠM for some arbitrary real number M ∈ R is given in Notation 3.26. We will prove

that

λk ≤ λk−1 + CN−αk , for some α ∈ (0, 1), (3.47)

and hence

λr(N) ≤ λ1 + C

r(N)∑
k=1

N−αk ,

where λ1 ≤ CN−c for some C, c > 0 by Theorem 3.24 and the second term on the right side is bounded

by C ′e−c
′
√

log(N) log log(N) for some C ′, c′ > 0. Note that

λr(N) =
∑

∆∈Πr(N)

∣∣∣P (0,0)
ω (Xnr(N)

∈ ∆)− P(0,0)(Xnr(N)
∈ ∆)

∣∣∣
=

∑
∆∈Πr(N)

|P (0,0)
ω (XN ∈ ∆)− P(0,0)(XN ∈ ∆)|,

is the total variation distance between quenched and annealed hitting probabilities of boxes of side

length N
θ
2

r(N) ≤ e
√

log(N) log log(N) we are interested in. To be more precise, within the last iteration

step in (3.47) one should replace N
θ
2

r(N) by e
√

log(N) log log(N). However the arguments given below hold

true in both cases.

Let k ≥ 2. De�ne

Jnk := {∆x is (0, 0)-nk-reachable for all x with ‖x‖ <
√
N log3(N)}.

Note that by (3.45) we have P(0,0)(∩r(N)
k=1 Jnk) ≥ 1− CN−c log(N). To shorten notation, we de�ne

Π̃k := {∆x ∈ Πk : ‖x‖ ≤
√
nk log3(N)}. (3.48)
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By Lemma 3.6 we have

λk ≤
∑

∆∈Π̃k

∣∣∣P (0,0)
ω (Xnk ∈ ∆)− P(0,0)(Xnk ∈ ∆)

∣∣∣1{∆x is (0, 0)-nk-reach.}(ω) + CN−c log(N)

≤
∑

∆∈Π̃k

∑
∆′∈Π̃k−1

∣∣∣P (0,0)
ω (Xnk ∈ ∆, Xnk−1

∈ ∆′)− P(0,0)(Xnk ∈ ∆, Xnk−1
∈ ∆′)

∣∣∣
· 1{∆ is (0, 0)-nk-reach.}(ω)1{∆′ is (0, 0)-nk−1-reach.}(ω) + CN−c log(N),

on JN := ∩r(N)
k=1 Jnk ∩ Q((0, 0), N). For the de�nition of Q((0, 0), N) see Lemma 3.6. The triangle

inequality and the Markov property of Pω then yield

∑
∆∈Π̃k

∑
∆′∈Π̃k−1

∣∣∣P (0,0)
ω (Xnk ∈ ∆, Xnk−1

∈ ∆′)− P(0,0)(Xnk ∈ ∆, Xnk−1
∈ ∆′)

∣∣∣
· 1{∆ is (0, 0)-nk-reach.}(ω)1{∆′ is (0, 0)-nk−1-reach.}(ω)

≤
∑

∆∈Π̃k

∑
∆′∈Π̃k−1

∑
u∈∆′

P
(u,nk−1)
ω (Xnk ∈ ∆)

·
∣∣∣P (0,0)
ω (Xnk−1

= u)− P(0,0)(Xnk−1
∈ ∆′)P (0,0)

ω (Xnk−1
= u|Xnk−1

∈ ∆′)
∣∣∣

· 1{∆ is (0, 0)-nk-reach.}∩{∆′ is (0, 0)-nk−1-reach.}(ω) (3.49)

+
∑

∆∈Π̃k

∑
∆′∈Π̃k−1

∑
u∈∆′

P(0,0)(Xnk−1
∈ ∆′)P (0,0)

ω (Xnk−1
= u|Xnk−1

∈ ∆′)

·
∣∣∣P (u,nk−1)
ω (Xnk ∈ ∆)− P(u,nk−1)(Xnk ∈ ∆)

∣∣∣
· 1{∆ is (0, 0)-nk-reach.}∩{∆′ is (0, 0)-nk−1-reach.}(ω) (3.50)

+
∑

∆∈Π̃k

∑
∆′∈Π̃k−1

∣∣∣∣ ∑
u∈∆′

P(u,nk−1)(Xnk ∈ ∆)

·
(
P(0,0)(Xnk−1

∈ ∆′)P (0,0)
ω (Xnk−1

= u|Xnk−1
∈ ∆′)− P(0,0)(Xnk−1

= u)
) ∣∣∣∣

· 1{∆ is (0, 0)-nk-reach.}∩{∆′ is (0, 0)-nk−1-reach.}(ω) (3.51)

+
∑

∆∈Π̃k

∑
∆′∈Π̃k−1

∣∣∣∣∣∑
u∈∆′

P(u,nk−1)(Xnk ∈ ∆)P(0,0)(Xnk−1
= u)− P(0,0)(Xnk ∈ ∆, Xnk−1

∈ ∆′)

∣∣∣∣∣
· 1{∆ is (0, 0)-nk-reach.}∩{∆′ is (0, 0)-nk−1-reach.}(ω). (3.52)
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We estimate (3.49)-(3.52) separately. We start with (3.49).∑
∆∈Π̃k

∑
∆′∈Π̃k−1

∑
u∈∆′

P
(u,nk−1)
ω (Xnk ∈ ∆)

·
∣∣∣P (0,0)
ω (Xnk−1

= u)− P(0,0)(Xnk−1
∈ ∆′)P (0,0)

ω (Xnk−1
= u|Xnk−1

∈ ∆′)
∣∣∣

· 1{∆ is (0, 0)-nk-reach.}∩{∆′ is (0, 0)-nk−1-reach.}(ω)

≤
∑

∆′∈Π̃k−1

∑
u∈∆′

∣∣∣P (0,0)
ω (Xnk−1

= u)− P(0,0)(Xnk−1
∈ ∆′)P (0,0)

ω (Xnk−1
= u|Xnk−1

∈ ∆′)
∣∣∣

· 1{∆′ is (0, 0)-nk−1-reach.}(ω)

=
∑

∆′∈Π̃k−1

∑
u∈∆′

P (0,0)
ω (Xnk−1

= u|Xnk−1
∈ ∆′)

∣∣∣P (0,0)
ω (Xnk−1

∈ ∆′)− P(0,0)(Xnk−1
∈ ∆′)

∣∣∣
· 1{∆′ is (0, 0)-nk−1-reach.}(ω)

=
∑

∆′∈Π̃k−1

∣∣∣P (0,0)
ω (Xnk−1

∈ ∆′)− P(0,0)(Xnk−1
∈ ∆′)

∣∣∣1{∆′ is (0, 0)-nk−1-reach.}(ω)

≤
∑

∆′∈Πk−1

∣∣∣P (0,0)
ω (Xnk−1

∈ ∆′)− P(0,0)(Xnk−1
∈ ∆′)

∣∣∣ = λk−1.

Now we turn to the second term (3.50). First of all note that∑
∆∈Π̃k

∑
∆′∈Π̃k−1

∑
u∈∆′

P(0,0)(Xnk−1
∈ ∆′)P (0,0)

ω (Xnk−1
= u|Xnk−1

∈ ∆′)

·
∣∣∣P (u,nk−1)
ω (Xnk ∈ ∆)− P(u,nk−1)(Xnk ∈ ∆)

∣∣∣
· 1{∆ is (0, 0)-nk-reach.}∩{∆′ is (0, 0)-nk−1-reach.}(ω)

=
∑

∆′∈Π̃k−1

∑
u∈∆′

P(0,0)(Xnk−1
∈ ∆′)P (0,0)

ω (Xnk−1
= u|Xnk−1

∈ ∆′)

·
∑

∆∈Π̃k

∣∣∣P (u,nk−1)
ω (Xnk−1+Nk ∈ ∆)− P(u,nk−1)(Xnk−1+Nk ∈ ∆)

∣∣∣
· 1{∆ is (0, 0)-nk-reach.}∩{∆′ is (0, 0)-nk−1-reach.}(ω).

As in the proof of [BCR16, Theorem 5.1] we call a cube ∆′ ∈ Π̃k−1 to be �good� if for every u ∈ ∆′

with ξ(u, nk−1) = 1 and every ∆ ∈ Π̃k∣∣∣P (u,nk−1)
ω (Xnk−1+Nk ∈ ∆)− P(u,nk−1)(Xnk−1+Nk ∈ ∆)

∣∣∣ ≤ CN− d2 (1−θ)− 1
6
θ

k , (3.53)

otherwise we call ∆′ to be �bad�.

Additionally, we call a cube ∆′ ∈ Π̃k−1 to be �well connected� if for every u ∈ ∆′ with ξ(u, nk−1) = 1∑
∆x∈Π̃k:

‖x−u‖≤
√
Nk log3(Nk)

P
(u,nk−1)
ω (Xnk−1+Nk ∈ ∆x) ≥ 1−N− log(Nk)

k , (3.54)
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otherwise we call ∆′ to be �badly connected�.

Recall the de�nition of Π̃k−1 in (3.48) and note that the number of boxes ∆′ ∈ Π̃k−1 is bounded byC√nk−1 log3(nk−1)

N
θ
2
k−1

d

.

By Lemma 3.6 there exists a set Q((u, nk−1), Nk) ⊂ B(u,nk−1), with

P
((
B(u,nk−1)

)c ∪Q((u, nk−1), Nk)
)
≥ 1− CN−c log(Nk)

k ,

such that on Q((u, nk−1), Nk) the bound given in (3.54) holds true. Furthermore, Theorem 3.24 yields

that for every u ∈ ∆′(∈ Π̃k−1) there exists a set G4((u, nk−1), Nk) with

P
((
B(u,nk−1)

)c ∪G4((u, nk−1), Nk)
)
≥ 1− C (Nk)

−c log(Nk) ,

such that on G4((u, nk−1), Nk) for every ∆(∈ Πk) the bound given in (3.53) holds true. Hence for

�good� and �well connected� boxes ∆′ ∈ Π̃k−1 we get that∑
u∈∆′

P(0,0)(Xnk−1
∈ ∆′)P (0,0)

ω (Xnk−1
= u|Xnk−1

∈ ∆′)
∑

∆∈Π̃k

∣∣∣P (u,nk−1)
ω (Xnk ∈ ∆)− P(u,nk−1)(Xnk ∈ ∆)

∣∣∣
· 1{∆ is (0, 0)-nk-reach.}∩{∆′ is (0, 0)-nk−1-reach.}(ω)

≤ CP(0,0)(Xnk−1
∈ ∆′)

((√
Nk log3(Nk)N

− θ
2

k

)d
N
− d

2
(1−θ)− 1

6
θ

k + C (Nk)
−c log(Nk)

)
≤ CP(0,0)(Xnk−1

∈ ∆′) log3d(Nk)N
− 1

6
θ

k .

Since basically

(
C
√
nk−1 log3(nk−1)

N
θ
2
k−1

)d
cubes ∆′ ∈ Π̃k−1 need to be considered where the probability for

each cube ∆′ to be �good� and �well connected� is of order

P

( ⋂
u∈∆′

[ (
B(u,nk−1)

)c ∪ (Q((u, nk−1), Nk) ∩G4((u, nk−1), Nk)
)])

≥ 1−
∑
u∈∆′

(
P
(
B(u,nk−1) ∩ (Q((u, nk−1), Nk))

c)+ P
(
B(u,nk−1) ∩ (G4((u, nk−1), Nk))

c) )
≥ 1−N−c log log(N) for all k ≤ r(N),

we get that the probability of the event

GN := {all the cubes in Π̃k−1 are �good� and �well connected�} (3.55)

is bounded from below by

P(GN ) ≥ 1−
∑

∆′∈Π̃k−1

P
(
{∆′ is �bad� and �badly connected�}

)

≥ 1−

C√nk−1 log3(nk−1)

N
θ
2
k−1

d

N−c log log(N)

≥ 1− CN−c log log(N). (3.56)
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Hence on GN

∑
∆′∈Π̃k−1

∑
u∈∆′

P(0,0)(Xnk−1
∈ ∆′)P (0,0)

ω (Xnk−1
= u|Xnk−1

∈ ∆′)

·
∑

∆∈Π̃k

∣∣∣P (u,nk−1)
ω (Xnk−1+Nk ∈ ∆)− P(u,nk−1)(Xnk−1+Nk ∈ ∆)

∣∣∣
· 1{∆ is (0, 0)-nk-reach.}∩{∆′ is (0, 0)-nk−1-reach.}(ω)

≤
∑

∆′∈Π̃k−1:
�good� and �well connected�

CP(0,0)(Xnk−1
∈ ∆′) log3(Nk)N

− 1
6
θ

k +
∑

∆′∈Π̃k−1:
�bad� or �badly connected�

CP(0,0)(Xnk−1
∈ ∆′)

≤ CN−
1
6
θ

k .

Next we focus on (3.51). We have

∑
∆∈Π̃k

∑
∆′∈Π̃k−1

∣∣∣∣ ∑
u∈∆′

P(u,nk−1)(Xnk ∈ ∆)

·
[
P(0,0)(Xnk−1

∈ ∆′)P (0,0)
ω (Xnk−1

= u|Xnk−1
∈ ∆′)− P(0,0)(Xnk−1

= u)
] ∣∣∣∣

· 1{∆ is (0, 0)-nk-reach.}∩{∆′ is (0, 0)-nk−1-reach.}(ω)

≤
∑

∆′∈Π̃k−1

∑
∆∈Π̃k:dist(∆′,c(∆))

≤
√
Nk log3(Nk)

P(0,0)(Xnk−1
∈ ∆′)

∣∣∣∣max
u∈∆′

P(u,nk−1)(Xnk ∈ ∆x)− min
u∈∆′

P(u,nk−1)(Xnk ∈ ∆x)

∣∣∣∣
+ C (Nk)

−c log(Nk) ,

on GN , de�ned in the previous step. Making use of the annealed derivative estimates we get that the
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last term is bounded by

∑
∆′∈Π̃k−1

∑
∆x∈Π̃k:dist(∆′,x)

≤
√
Nk log3(Nk)

P(0,0)(Xnk−1
∈ ∆′)

·
∣∣∣∣max
u∈∆′

P(u,nk−1)(Xnk−1+Nk ∈ ∆x)− min
u∈∆′

P(u,nk−1)(Xnk−1+Nk ∈ ∆x)

∣∣∣∣
+ C (Nk)

−c log(Nk)

≤
∑

∆′∈Π̃k−1

P(0,0)(Xnk−1
∈ ∆′)

∑
∆x∈Π̃k:dist(∆′,x)

≤
√
Nk log3(Nk)

CN
dθ
2
k N

θ
2
k−1

N
d+1
2

k

+ C (Nk)
−c log(Nk)

≤
∑

∆′∈Π̃k−1

P(0,0)(Xnk−1
∈ ∆′) ·

N θ
2
k−1 + 2

√
Nk log3(Nk)

N
θ
2
k

d

·
CN

dθ
2
k N

θ
2
k−1

N
d+1
2

k

+ C (Nk)
−c log(Nk)

≤
∑

∆′∈Π̃k−1

P(0,0)(Xnk−1
∈ ∆′) ·

C
(√
Nk

)d
log3d(Nk)

N
dθ
2
k

·
CN

dθ
2
k N

θ
2
k−1

N
d+1
2

k

+ C (Nk)
−c log(Nk)

≤ CN−
1
2

+θ

k log3d(Nk).

Finally we consider the last term (3.52).

∑
∆∈Π̃k

∑
∆′∈Π̃k−1

∣∣∣∣∣∑
u∈∆′

P(u,nk−1)(Xnk ∈ ∆)P(0,0)(Xnk−1
= u)− P(0,0)(Xnk ∈ ∆, Xnk−1

∈ ∆′)

∣∣∣∣∣
· 1{∆ is (0, 0)-nk-reach.}∩{∆′ is (0, 0)-nk−1-reach.}(ω)

≤
∑

∆′∈Π̃k−1

∑
u∈∆′

P(0,0)(Xnk−1
= u)

·
∑

∆∈Π̃k

∣∣∣P(u,nk−1)(Xnk ∈ ∆)− P(0,0)(Xnk ∈ ∆|Xnk−1
= u)

∣∣∣
· 1{∆ is (0, 0)-nk-reach.}∩{∆′ is (0, 0)-nk−1-reach.}(ω).

On RN (see (3.11)) the �rst regeneration after time nk − 1 occurs with probability greater than

1− n− log(nk)
k before time nk + log2(nk). Similar arguments hold true for the annealed walk starting in

u. Hence in fact we have to deal with the di�erence of two annealed laws whose starting points di�er

in space and time at most by 2 log2(N). Hence the annealed derivative estimates yield

∣∣∣P(u,nk−1)(Xnk ∈ ∆)− P(0,0)(Xnk ∈ ∆|Xnk−1
= u)

∣∣∣ ≤ C log2(Nk)N
dθ
2
k

(Nk − log3d(Nk))
d+1
2

≤
C log2(Nk)N

dθ
2
k

(Nk)
d+1
2

.

Since we only need to consider boxes ∆ whose center is distance
√
Nk log3(Nk) apart from u, we get
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that ∑
∆′∈Π̃k−1

∑
u∈∆′

P(0,0)(Xnk−1
= u)

·
∑

∆∈Π̃k

∣∣∣P(u,nk−1)(Xnk−nk−1
∈ ∆)− P(0,0)(Xnk ∈ ∆|Xnk−1

= u)
∣∣∣

· 1{∆ is (0, 0)-nk-reach.}∩{∆′ is (0, 0)-nk−1-reach.}(ω)

≤
∑

∆′∈Π̃k−1

∑
u∈∆′

P(0,0)(Xnk−1
= u) ·

√Nk log3(Nk)

N
θ
2
k

d

·
C log3d(Nk)N

dθ
2
k

(Nk)
d+1
2

≤ C log6d(Nk)N
− 1

2
k .

Hence all together we get that on the event RN ∩GN with

P(0,0)(RN ∩GN ) ≥ 1− CN−c log log(N)

for every k ∈ {1, .., r(N)} we have

λk ≤ λk−1 + CN
− 1

3
θ

k + CN
− 1

2
+θ

k log3d(Nk) + C log6d(Nk)N
− 1

2
k ≤ λk−1 + CN

− θ
3

k ,

if N is su�ciently large. This yields

λr(N) ≤ λ1 + C

r(N)∑
k=1

N
− θ

3
k ≤ λ1 + C

r(N)∑
k=1

N
− θ

3·2k

≤ λ1 + C

∫ r(N)+1

1
e− log(N) θ

3·2s ds

u=log(N) θ
3·2s= λ1 +

∫ βN

αN

e−u

− log(2)u
du,

where αN = θ
6 log(N) and βN = θ

3·2r(N)+1 log(N) ≥
√

log(N) log log(N)

6 . Hence

λr(N) ≤ λ1 +

∫ βN

αN

e−u

− log(2)u
ds ≤ λ1 +

∫ βN

αN

−e−udu

≤ λ1 +
[
e−u
]βN
αN
≤ λ1 + e−βN ≤ λ1 + e−c

√
log(N) log log(N),

for some c > 0. The proof is complete since by Theorem 3.24 we have λ1 ≤ CN−
θ
3 .

�

Remark 3.29. Recall the de�nition of GN in (3.55). Decreasing the box size of the partition of Zd

down to a constant real number, we need to �nd suitable bounds on the number of �bad� or �badly

connected� boxes in which we have not succeed up to now. �Suitable� means that∑
∆′∈Π̃k−1:

�bad� or �badly connected�

CP(0,0)(Xnk−1
∈ ∆′) ≤

∑
∆′∈Π̃k−1:

�bad� or �badly connected�

C(nk−1)−
d
2N

dθ
2
k−1

≤ CN−α, for some α > 0.

Hence the number of �bad� or �badly connected� cubes should be of order Nβ for some β < d
2 with

high probability. Further investigation in decreasing box size down to a constant real number would

probably be the next step towards proving a quenched local central limit theorem.
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CHAPTER A
Appendix

A.1. Proofs of chapter 1

A.1.1. Proof of Proposition 2.1; equation (2.2) for d = 1

We separate the proof into 4 steps:

Step 1: We prove that there exists a large constant K1 such that∑
y

|Ψdi�

ind(x, y)−Ψdi�
joint(x, y)||y|α ≤ Ce−c

√
|x| for all |x| > K1.

We choose K1 su�ciently large, split the sum in two parts and estimate them separately.

∑
y

|Ψdi�

ind(x, y)−Ψdi�
joint(x, y)||y|α =

y=x+
√
|x|∑

y=x−
√
|x|

|Ψdi�

ind(x, y)−Ψdi�
joint(x, y)||y|α

+
∑

y:|y−x|>
√
|x|

|Ψdi�

ind(x, y)−Ψdi�
joint(x, y)||y|α.

By (2.14) the �rst sum can be bounded by

y=x+
√
|x|∑

y=x−
√
|x|

|Ψdi�
joint(x, y)−Ψdi�

ind(x, y)||y|α ≤ 2
√
|x|(|x|+

√
|x|)αCe−c|x| ≤ Ce−c|x|

for all |x| ≥ K1, if K1 is chosen large enough. The second sum can be estimated as∑
y:|y−x|>

√
|x|

|Ψdi�
joint(x, y)−Ψdi�

ind(x, y)||y|α

≤
∑

y:|y−x|>
√
|x|

(Pjoint(T sim1 ≥ |x− y|) + Pind(T sim1 ≥ |x− y|))|y|α

≤ Ce−c
√
|x|.

Thus step 1 is proved.

Step 2: By using similar estimations as in step 1, we see that∑
y:|y−x|>

√
|x|

Ψdi�

ind(x, y)|y|α ≤ Ce−c
√
|x| for all |x| ≥ K1,

if K1 is chosen large enough.

Step 3: We prove
y=x+

√
x∑

y=x−
√
x

Ψdi�

ind(x, y)|y|α ≤ |x|α − C|x|α−2 for all |x| > K1.
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Using Taylor's theorem we know that (1 + z)α = 1 + αz + 1
2
α(α− 1)z2(1 + ξ)α−2 for some ξ ∈ (−|z|, |z|). Therefore we

get

y=x+
√
|x|∑

y=x−
√
|x|

Ψdi�

ind(x, y)|y|α = |x|α
y=
√
|x|∑

y=−
√
|x|

Ψdi�

ind(y)(1 + y
x

)α ≤ |x|α − C
8
α|1− α||x|α−2 ≤ |x|α − C|x|α−2,

where the linear term vanishes because of the symmetry of Ψdi�

ind .

Step 4: Putting together the results of step 1-3 we obtain

∑
y

Ψdi�
joint(x, y)|y|α ≤

∑
y

|Ψdi�
joint(x, y)−Ψdi�

ind(x, y)||y|α +
∑

y:|y−x|>
√
|x|

Ψdi�

ind(x, y)|y|α +

y=x+
√
x∑

y=x−
√
x

Ψdi�

ind(x, y)|y|α

≤ |x|α − C|x|α−2 + Ce−c
√
|x|

≤ |x|α for all |x| ≥ K1,

which therefore proves the recurrence of (X̂
(x1)
k − X̂(x2)

k )k≥0 in the joint case.

�

A.1.2. Proof of Proposition 2.1, equation (2.2) for d = 2

In order to simplify notation we de�ne

D̂(x1−x2)
n := (D̂

(x1−x2)
1,n , D̂

(x1−x2)
2,n ) := X̂(x1)

n − X̂(x2)
n ,

where Pjoint(D̂(x1−x2)
0 = x1 − x2|Bx1−x2,0;0) = 1. First we assume the covariance for D̂(x1−x2)

1,1 and D̂
(x1−x2)
2,1 under

Pind( · |Bx1−x2,0;0) to be zero. The proof in the two-dimensional case is very similar to the one-dimensional case. In the

two-dimensional case a natural candidate for the superharmonic function with the desired properties is h(x) := logα(‖x‖2)

for some α ∈ (0, 1). Within the following calculations ‖·‖ := ‖·‖2. We divide the proof into similar steps:

Step 1-2: The estimations of step 1 and step 2 in the one-dimensional case can be adapted to the two-dimensional setting.

Therefore similar results hold true:

There exists a large constant K2 such that∑
y

|Ψdi�

ind(x, y)−Ψdi�
joint(x, y)| logα(‖y‖) ≤ Ce−c

4
√
‖x‖ for all ‖x‖ > K2,

and ∑
y:‖y−x‖> 4

√
‖x‖

Ψdi�

ind(x, y) logα(‖y‖) ≤ Ce−c
4
√
‖x‖ for all ‖x‖ ≥ K2.

The fourth root is needed for technical reasons in order to get suitable bounds on the remainder of the Taylor expansion

in step 3.

Step 3: As in the one-dimensional case we use a Taylor expansion to prove that there exists a positive function F which

decays polynomially as ‖x‖ tends to in�nity, such that∑
y:‖y−x‖≤ 4

√
‖x‖

Ψdi�

ind(x, y) logα(‖y‖) ≤ log(‖x‖)α − F (x) for all ‖x‖ > K2.

We de�ne fx(h1, h2) := logα
(
‖x‖2

[
( x1‖x‖ + h1)2 + ( x2‖x‖ + h2)2

])
and write the term above as

∑
y:‖y−x‖≤ 4

√
‖x‖

Ψdi�

ind(x, y) logα(‖y‖) =
1

2α

∑
y:‖y‖≤ 4

√
‖x‖

Ψdi�

ind(y) · fx( y1
‖x‖ ,

y2
‖x‖ ). (A.1)
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Using Taylor's theorem, the function fx(h1, h2) can be written as

fx(h1, h2) = logα(‖x‖2) + Px(h1, h2) +Rx(h1, h2),

where Px(h1, h2) := T 3
x (h1, h2) − logα(‖x‖2) and T 3

x is the third Taylor polynomial. Notice that Px(0, 0) = 0. At �rst

we focus on the term
∑
y:‖y‖≤ 4

√
‖x‖Ψdi�

ind(y) · Px( y1
‖x‖ ,

y2
‖x‖ ). The linear and cubic terms in

∑
y:‖y‖≤ 4

√
‖x‖

Ψdi�

ind(y) · Px( y1
‖x‖ ,

y2
‖x‖ )

vanish because of the symmetry of Ψdi�

ind . Since we assumed the covariance of D̂(x1−x2)
1 and D̂(x1−x2)

1 to be zero, we know

that ∑
y:‖y‖≤ 4

√
‖x‖

∂h1∂h2fx(0, 0)Ψdi�

ind(y) y1y2‖x‖2 ≤ Ce
−c 4
√
‖x‖.

For the quadratic terms the following bound holds true

∑
y:‖y‖≤ 4

√
‖x‖

Ψdi�

ind(y)∂2
h1fx(0, 0)

y21

‖x‖2
+

∑
y:‖y‖≤ 4

√
‖x‖

Ψdi�

ind(y)∂2
h2
fx(0, 0)

y22

‖x‖2

≤ −4α(1− α)σ2 log(α−2)(‖x‖2)

‖x‖2
+ Ce−c

4
√
‖x‖.

The remainder Rx(h1, h2) can be bounded by C

‖x‖9/4 .

Altogether we get that∑
y:‖y−x‖≤ 4

√
‖x‖

Ψdi�

ind(x, y) logα(‖y‖) ≤ logα(‖x‖)− C

log(2−α)(‖x‖2) ‖x‖2
+

C

‖x‖9/4
+ Ce−c

4
√
‖x‖.

Step 4:

Using the results of step 1-3 we get that∑
y

Ψdi�
joint(x, y) logα(‖y‖)

≤
∑
y

|Ψdi�
joint(x, y)−Ψdi�

ind(x, y)| logα(‖y‖) +
∑

y:‖y−x‖≤ 4
√
‖x‖

Ψdi�

ind(x, y) logα(‖y‖)

+
∑

y:‖y−x‖> 4
√
‖x‖

Ψdi�

ind(x, y) logα(‖y‖)

≤ logα(‖x‖)− C

log(2−α)(‖x‖2) ‖x‖2
+

C

‖x‖9/4
+ Ce−c

4
√
‖x‖

≤ logα(‖x‖) for all ‖x‖ ≥ K2,

which proves the recurrence of (X̂
(x1)
k − X̂

(x2)
k )k≥0 under Pind( · |Bx1−x2,0;0) in dimension two, if the covariance of

D̂
(x1−x2)
1,1 and D̂(x1−x2)

2,1 is zero.

Now we assume that

Covind
(
D̂

(x1−x2)
1

)
:=

(
σ̄2 ρ̄

ρ̄ σ̄2

)
,

where |ρ̄| < σ̄2, since Birkner et al. proved in [B�DG13] that the limit law is not concentrated on a subspace. If we

de�ne A :=

 1√
2(σ2+ρ)

1√
2(σ2+ρ)

1√
2(σ2−ρ)

− 1√
2(σ2−ρ)

, we know that Cov
(
AD̂

(x1−x2)
1

)
:=

(
1 0

0 1

)
.

There exist constants C1, C2, depending only on ρ and σ such that C1 ‖x‖ ≤ ‖Ax‖ ≤ C2 ‖x‖ for all x ∈ R2. We choose

the function h to be h(x) := logα(‖Ax‖) and de�ne x̃ := Ax. From the inequalities above, we know that ‖x̃‖ is large if
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‖x‖ is large.
If K2 is chosen large enough, similar estimates as in step 1− 2 hold true.∑

y

|Ψdi�

ind(x, y)−Ψdi�
joint(x, y)| logα(‖Ay‖) ≤ Ce−c

4
√
‖x‖ for all ‖x‖ > K2,

∑
y:‖y−x‖> 4

√
‖x̃‖

Ψdi�

ind(x, y) logα(‖Ay‖) ≤ Ce−c
4
√
‖x‖ for all ‖x‖ ≥ K2.

In order to get a result similar to step 3 we introduce the function fx̃(h1, h2) := logα
(
‖x̃‖2

[
( x̃1‖x̃‖ + h1)2 + ( x̃2‖x̃‖ + h2)2

])
and write the term ∑

y:‖y−x‖≤ 4
√
‖x̃‖

Ψdi�

ind(x, y) logα(‖Ay‖)

on which we focus in step 3 in the following way∑
y:‖y−x‖≤ 4

√
‖x̃‖

Ψdi�

ind(x, y) logα(‖Ay‖) =
1

2α

∑
y:‖y‖≤ 4

√
‖x̃‖

Ψdi�

ind(y) · fx̃
(

(Ay)1
‖x̃‖ ,

(Ay)2
‖x̃‖

)
.

We know that
‖Ay‖
‖x̃‖ ≤

C2 ‖y‖
‖Ax‖ ≤

C

‖x‖3/4
,

which means that (Ay)1
‖x̃‖ and (Ay)2

‖x̃‖ are small if K2 is large.

By using similar arguments as in the uncorrelated case we get that∑
y

Ψdi�
joint(x, y) logα(‖Ay‖) ≤ logα(‖Ax‖) for all ‖x‖ ≥ K2,

which proves the result in the general case. �

A.1.3. Proposition 2.1 equation (2.3) for random initial values

In Proposition 2.1 we prove tail bounds conditioned on the event that the initial points are connected to in�nity. In this

section we give a proof for the tail bounds of dimension d = 1 to hold true, if we do not condition on the event that the

starting points are connected to in�nity. We use the convention introduced at the beginning of section 2.3 where the

random walks start from the next point left to the given site that is connected to in�nity. See especially (2.54).

Lemma A.1. Let d = 1. There exist constants C,M > 0 such that

P(T
c((−1,0)),c((0,0))
meet > m) ≤ C√

m
for all m > M. (A.2)

Proof: Since both random walks start at time 0, we suppress the time component in c( · ) and write Bx instead of

B(x,0), x ∈ Z, see (1.26). First notice that c(−1) = c(0) on (B0)c, hence T (c(−1),c(0))
meet = 0. Therefore

P(T
(c(−1),c(0))
meet > m) = P(T

(c(−1),c(0))
meet > m,B0).

We get

P
(
T

(c(−1),c(0))
meet > m

)
=
∞∑
k=1

P
(
T

(c(−1),c(0))
meet > m,B−k, (B−k+1)c , ..., (B−1)c , B0

)

≤
K log(m)∑
k=1

P
(
T

(−k,0)
meet > m,B−k, (B−k+1)c , ..., (B−1)c , B0

)
+ Ce−cK log(m)

≤
K log(m)∑
k=K′

P
(
T

(−k,0)
meet > m,B−k, (B−k+1)c , ..., (B−1)c , B0

)
+

C√
m
,

where K is chosen such that K ·c > 2 and K′ > 0 is a constant. The �rst inequality holds true by (2.56), see also [Dur84,

Section 10], whereas the last inequality follows by (2.3) of Proposition 2.1. Hence we focus on

P
(
T

(−k,0)
meet > m,B−k, (B−k+1)c , ..., (B−1)c , B0

)
, for k ∈

{
K′, ..., bK log(m)c

}
. (A.3)
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Conditioned on the event that there exists a hole of length k − 1 left to 0 we get

P
(
T

(−k,0)
meet > m,B−k, (B−k+1)c , ..., (B−1)c , B0

)
= P

(
T

(−k,0)
meet > m | B−k, (B−k+1)c , ..., (B−1)c , B0

)
· P (B−k, (B−k+1)c , ..., (B−1)c , B0)

≤ P
(
T

(−k,0)
meet > m | B−k, (B−k+1)c , ..., (B−1)c , B0

)
· Ce−ck,

since the probability of holes of length k − 1 to occur, decays exponentially in k. De�ne

Rk := inf{T simn > 0 : l(−r, 0) + 1 < Tn for all 0 < r < k},

where l(y,m) denotes the length of the longest open path starting from (y,m). Then

P
(
T

(−k,0)
meet > m | B−k, (B−k+1)c , ..., (B−1)c , B0

)
=
∑
r>0

∑
x1:|x1+k|}≤r
x2:|x2|≤r

P
(
T

(−k,0)
meet > m,Rk = r,X(−k)

r = x1, X
(0)
r = x2 | B−k, (B−k+1)c , ..., (B−1)c , B0

)

≤
∑
r>0

∑
x1:|x1+k|≤r
x2:|x2|≤r

(
C(k + 2r)√
m− r

∧ 1

)
P
(
Rk = r,X(−k)

r = x1, X
(0)
r = x2 | B−k, (B−k+1)c , ..., (B−1)c , B0

)

=
∑
r>0

(
C(k + 2r)√
m− r

∧ 1

)
P (Rk = r | B−k, (B−k+1)c , ..., (B−1)c , B0) (A.4)

where the second inequality holds true by Proposition 2.1 with �xed starting points x1 and x2 with |x1 − x2| ≤ k + 2r.

Note that

P (B−k, (B−k+1)c , ..., (B−1)c , B0)

≥ P
(
ω(−k, 0) = 1, ω(−k + 1, 0) = 0, ..., ω(−1, 0) = 0, ω(0, 0) = 1, B(−k,1), B(0,1)

)
= p2(1− p)k−1P (B−k, B0)

≥ e−ckP (B−k, B0) . (A.5)

For the event {Rk > m
2
} conditioned on {B−k, (B−k+1)c , ..., (B−1)c , B0}, we get that

P
(
Rk >

m

2
| B−k, (B−k+1)c , ..., (B−1)c , B0

)
≤ P

(
Rk >

m

2
, (B−k+1)c , ..., (B−1)c | B−k, B0

)
· eck

≤

C ∑
0<j<k

P
(
l(−j, 0) >

m

4
, (B−j)

c
)

+ C
∑

0≤j≤m

Pjoint
(
T sim
j+1 − T sim

j >
m

4

) · eck
≤
(
C log(m)e−cm + Cme−cm

)
· ec log(m)

≤ Ce−cm, (A.6)

where the �rst inequality holds true by (A.5) and the third inequality holds true since k ≤ K log(m), by (A.3). Together

with (A.4), this yields

P
(
T

(−k,0)
meet > m | B−k, (B−k+1)c , ..., (B−1)c , B0

)
≤
∑
r>0

(
C(k + 2r)√
m− r

∧ 1

)
P (Rk = r | B−k, (B−k+1)c , ..., (B−1)c , B0)

≤

m
2∑
r=0

(
C(k + 2r)√
m− r

∧ 1

)
P (Rk = r | B−k, (B−k+1)c , ..., (B−1)c , B0)

+
∞∑

r=m
2
+1

P (Rk = r | B−k, (B−k+1)c , ..., (B−1)c , B0)

≤

m
2∑
r=0

(
C(k + 2r)√

m
∧ 1

)
P (Rk = r | B−k, (B−k+1)c , ..., (B−1)c , B0)

+ Ce−cm.
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Hence we focus on
m
2∑
r=0

(
C(k + 2r)√

m
∧ 1

)
P (Rk = r | B−k, (B−k+1)c , ..., (B−1)c , B0) .

Calculations similar to (A.6) yield

P
(
Rk ≥

k2 + r̃

2
| B−k, (B−k+1)c , ..., (B−1)c , B0

)
≤ P

(
Rk ≥

k2 + r̃

2
, (B−k+1)c , ..., (B−1)c | B−k, B0

)
· eck

≤

C ∑
0<j<k

P
(
l(−j, 0) ≥ k2 + r̃

4
, (B−j)

c

)
+ C

∑
0≤j≤k2+r̃

Pjoint
(
T sim
j+1 − T sim

j ≥ k2 + r̃

4

) · eck
≤
(
Cke−c(k

2+r̃) + C(k2 + r̃)e−c(k
2+r̃)

)
· eck

≤ Ce−c(k
2+r̃), (A.7)

if k > K′, r̃ > 0. Hence

m
2∑
r=0

(
C(k + 2r)√

m
∧ 1

)
P (Rk = r | B−k, (B−k+1)c , ..., (B−1)c , B0)

≤ Ck2√
m

+

∞∑
r=k2

C(k + 2r)√
m

P (Rk = r | B−k, (B−k+1)c , ..., (B−1)c , B0)

≤ Ck2√
m

+ C

∞∑
r=1

(k2 + r)√
m

e−c(k
2+r)

≤ Ck2√
m
,

if k > K′. Altogether we get that

P
(
T

(c(−1),c(0))
meet > m

)
≤
K log(m)∑
k=K′

P
(
T

(−k,0)
meet > m,B−k, (B−k+1)c , ..., (B−1)c , B0

)
+

C√
m

≤
K log(m)∑
k=K′

P
(
T

(−k,0)
meet > m | B−k, (B−k+1)c , ..., (B−1)c , B0

)
· Ce−ck +

C√
m

≤
K log(m)∑
k=K′

 m
2∑
r=0

(
C(k + 2r)√

m
∧ 1

)
P (Rk = r | B−k, (B−k+1)c , ..., (B−1)c , B0) + Ce−cm

 · Ce−ck +
C√
m

≤
K log(m)∑
k=K′

(
Ck2√
m

+ Ce−cm
)
· Ce−ck +

C√
m
,

which proves (A.2).

�

A.1.4. From regeneration times to real time

Let the parameters be as de�ned in section 2.1.4. We show that (2.3) of Proposition 2.1 holds true if it holds true for

Tmeet replaced by T̂meet.

We �x some x ∈ Zd. Let M > 0 be some large constant. We choose K > 0 large enough, such that

Pxjoint(T simm ≥ Km) ≤ e−cm (A.8)
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for all m > M and some c > 0. Inequality (A.8) holds true by Lemma 1.12 and standard large deviation estimates. By

Lemma 2.8 we obtain

Pxjoint (Tmeet > Km) ≤ Pxjoint
(
Tmeet > Km,T simm < Km

)
+ e−cm

≤ Pxjoint
(
T̂meet > m

)
+ e−cm

≤
√
KC3√
Km

+ e−cm

≤ C√
Km

,

which proves the upper bound on Pxjoint (Tmeet > m). On the other hand notice that within the proof of (2.28) we could

also have conditioned on the event that the time between two regeneration is smaller than jK
2

within the next (2j+1K)3

steps if the initial value of (D̂n)n lies inside the interval [2jK, 2j+1K), which would have give us a lower bound on

Pxjoint
(
Tmeet > m,

(
−K

2
, K

2

)
is never visited between two regeneration times

)
.

Since

Pxjoint (Tmeet > m)

≥ Pxjoint
(
Tmeet > m,

(
−K

2
, K

2

)
is never visited between two regeneration times

)
the lower bound on Pxjoint (Tmeet > m) follows.

A.2. Annealed estimates

A.2.1. ADE

The proof of Lemma 3.9 is very similar to the proof of Lemma 2.14 in [BCR16]. Nevertheless, we give the proofs here for

the sake of completeness and because the requirements in [BCR16] such as �uniform ellipticity (UE)� are not satis�ed in

our case. First we need to prove two useful Lemmas.

Lemma A.2. Let {Yi}∞i=1 and {Zi}∞i=1 be a sequence of d-dimensional random variables and a sequence of 1-dimensional

non-negative integer valued random variables, such that {(Yi, Zi)}∞i=1 are independent and identically distributed with re-

spect to some probability measure P . Assume in addition that there exists v ∈ Zd, k ∈ N such that P ((Y1, Z1) = (v, k)) > 0

and P ((Y1, Z1) = (w, k+ 1)) > 0 for every w with ‖w − v‖ ≤ 1. Let Sn =
∑n
i=1 Yi and Tn =

∑n
i=1 Zi. Then there exists

C <∞ which is determined by P such that for every n,m ∈ N, every x, y ∈ Zd with ‖x− y‖ = 1

P ((Sn, Tn) = (x,m)) < Cn−
d+1
2 , (A.9)

|P ((Sn, Tn) = (x,m))− P ((Sn, Tn) = (x,m+ 1))| < Cn−
d+2
2 , (A.10)

and

|P ((Sn, Tn) = (x,m))− P ((Sn, Tn) = (y,m))| < Cn−
d+2
2 . (A.11)

Remark A.3. The Lemma above is similar to Claim A.2 in [BCR16]. But since in our case the space-time random

walk (Xn, Tn) does not always have the same parity, we adapted the Lemma slightly.

Proof Lemma A.2: Let χ be the characteristic function of (Y1, Z1). Note that the characteristic function χ is periodic,

as (Y1, Z1) is concentrated on a lattice. The existence of (v, k) ∈ Zd×N as described in the requirements of Lemma A.2,

implies that the period is 2π. By Lemma 2.3.2 in [LL10] there exist D, δ > 0 such that

i) |χ(θ, s)| < 1−D for every (θ, s) ∈ [−π, π]d+1 such that ‖(θ, s)‖1 ≥ δ,

ii) |χ(θ, s)| < 1−D ‖(θ, s)‖21 for every (θ, s) ∈ [−π, π]d+1 such that ‖(θ, s)‖1 < δ.
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Inequality (A.9) follows by i) and ii) since

P

(
n∑
i=1

(Yi, Zi) = (x,m)

)
=

1

(2π)d+1

∫
[−π,π]d+1

e−i〈θ,x〉−i(s·m)χn(θ, s)dθds

≤
∫
[−π,π]d+1

|χn(θ, s)|dθds

≤
∫
‖(θ,s)‖1≥δ

|χn(θ, s)|dθds+

∫
‖(θ,s)‖1<δ

|χn(θ, s)|dθds

≤ (2π)d+1(1−D)n +

∫
‖(θ,s)‖1<δ

(1−D ‖(θ, s)‖21)ndθds

≤ (2π)d+1(1−D)n +

∫
‖(θ,s)‖1<δ

e−nD‖(θ,s)‖
2
1dθds

(∗)
≤ (2π)d+1(1−D)n +

1

(
√
n)d+1

∫
‖(ϑ,t)‖1<

√
nδ

e−D‖(ϑ,t)‖
2
1dϑdt

≤ C

n
d+1
2

,

where (∗) can be obtained by substituting ϑ =
√
nθ, t = s

√
n. Inequality (A.10) follows by i) and ii) since∣∣∣∣∣P

(
n∑
i=1

(Yi, Zi) = (x,m)

)
− P

(
n∑
i=1

(Yi, Zi) = (x,m+ 1)

)∣∣∣∣∣
=

1

(2π)d+1

∣∣∣∣∣
∫
[−π,π]d+1

e−i〈θ,x〉−i(s·m)χn(θ, s)dθds−
∫
[−π,π]d+1

e−i〈θ,x〉−i(s·(m+1))χn(θ, s)dθds

∣∣∣∣∣
≤

(∫
[−π,π]d+1

∣∣∣e−i〈θ,x〉−i(s·m) − e−i〈θ,x〉−i(s·(m+1))
∣∣∣ |χ(θ, s)|ndθds

)

≤

(∫
[−π,π]d+1

∣∣∣e−i(s·m) − e−i(s·(m+1))
∣∣∣ |χ(θ, s)|ndθds

)

≤

(∫
[−π,π]d+1

∣∣∣1− e−is∣∣∣ |χ(θ, s)|ndθds

)

≤

(∫
[−π,π]d+1

|s||χ(θ, s)|ndθds

)

≤ C(1−D)n +

∫
‖(θ,s)‖1<δ

|s|e−nD‖(θ,s)‖
2
1dθds

≤ C

n
d+2
2

.

Inequality (A.11) follows by i) and ii) in the same way. �

Lemma A.4. Let d ≥ 3. Fix 2
5
N2 ≤M ≤ N2 and some starting point z = (y,m) ∈ P̃(N).

Note that Pz(T0 = m) = 1. We de�ne the events Z(l) := ∪k{Tk − T0 = l} and

ẐM−k(l) := Z(l) ∩
M−k⋂
j=l+1

(Z(j))c , where m ≤ k ≤M − l − 1.

Then the following holds:

i) For every l ≤M −m and x ∈ Zd

Pz
(
Xm+l = x

∣∣ ẐM−m(l)
)
≤ Cl−

d
2 . (A.12)

ii) For every l ≤M −m and x, y ∈ Zd such that ‖x− y‖ = 1∣∣∣P(y,m)
(
Xm+l = x

∣∣ ẐM−m(l)
)
− P(y+ej ,m)

(
Xm+l = x

∣∣ ẐM−m(l)
)∣∣∣ < Cl−

d+1
2 . (A.13)

iii) For every l ≤M −m and x ∈ Zd∣∣∣P(y,m)
(
Xm+l = x

∣∣ ẐM−m(l)
)
− P(y,m+1)

(
Xm+l = x

∣∣ ẐM−m−1(l − 1)
)∣∣∣ < Cl−

d+1
2 . (A.14)
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Remark A.5. The Lemma above is almost the same as Lemma A.4 in [BCR16], we give the proof in order to convince

the reader that the Lemma also holds true in our case with conditions such as �(UE)� and �i.i.d. environment� being

violated.

Proof: We �rst prove part i). Since on Z(l) the event {Xm+l = x} is independent of
⋂M−m
j=l+1 (Z(j))c we get that

Pz(Xm+l = x
∣∣ẐM−m(l)) = Pz(Xm+l = x

∣∣Z(l))

=
1

Pz(Z(l))

∞∑
k=1

Pz((XTk , Tk) = (x,m+ l))

=
1

Pz(Z(l))

L∑
k=1

Pz((XTk , Tk) = (x,m+ l), T⌈ k
2

⌉ ≥ l
2

+m)

+
1

Pz(Z(l))

L∑
k=1

Pz((XTk , Tk) = (x,m+ l), Tk − T⌈ k
2

⌉ > l
2
)

+
1

Pz(Z(l))

∞∑
k=L+1

Pz((XTk , Tk) = (x,m+ l), T⌈ k
2

⌉ ≤ l
2

+m)

+
1

Pz(Z(l))

∞∑
k=L+1

Pz((XTk , Tk) = (x,m+ l), Tk − T⌈ k
2

⌉ < l
2
). (A.15)

Lemma A.2 yields

Pz
(

(XTk , Tk) = (x,m+ l), T⌈ k
2

⌉ ≤ l
2

+m

)

=

l
2∑
s=1

∑
w∈Zd

Pz
(

(XTk , Tk) = (x,m+ l)
∣∣∣ (XT⌈ k

2

⌉ , T⌈ k
2

⌉) = (w,m+ s)

)
Pz
(

(XT⌈ k
2

⌉ , T⌈ k
2

⌉) = (w,m+ s)

)

≤ Ck−
d+1
2

l
2∑
s=1

∑
w∈Zd

Pz
(

(XT⌈ k
2

⌉ , T⌈ k
2

⌉) = (w,m+ s)

)

≤ Ck−
d+1
2 Pz

(
T⌈ k

2

⌉ ≤ l
2

+m

)
,

and using similar arguments and translation invariance of Pz

Pz
(

(XTk , Tk) = (x,m+ l), Tk − T⌈ k
2

⌉ < l
2

)
≤

l−1∑
s=

l
2

∑
w∈Zd

Pz
(

(XTk , Tk) = (x,m+ l)
∣∣∣ (XT⌈ k

2

⌉ , T⌈ k
2

⌉) = (w,m+ s)

)
Pz
(

(XT⌈ k
2

⌉ , T⌈ k
2

⌉) = (w,m+ s)

)

≤ Ck−
d+1
2

l−1∑
s=

l
2

∑
w∈Zd

Pz
(

(XTk , Tk) = (x,m+ l)
∣∣∣ (XT⌈ k

2

⌉ , T⌈ k
2

⌉) = (y + w,m+ s)

)

≤ Ck−
d+1
2

l−1∑
s=

l
2

∑
w∈Zd

Pz
(

(XTk , Tk) = (x− w,m+ l)
∣∣∣ (XT⌈ k

2

⌉ , T⌈ k
2

⌉) = (y,m+ s)

)

≤ Ck−
d+1
2 Pz

(
T⌈ k

2

⌉ ≤ l
2

+m

)
.

Additionally, we get that

Pz
(

(XTk , Tk) = (x,m+ l), T⌈ k
2

⌉ ≥ l
2

+m

)
≤ Ck−

d+1
2 Pz

(
T⌈ k

2

⌉ ≥ l
2

+m

)
,

Pz
(

(XTk , Tk) = (x,m+ l), Tk − T⌈ k
2

⌉ > l
2

)
≤ Ck−

d+1
2 Pz

(
T⌈ k

2

⌉ ≥ l
2

+m

)
.

Coming back to (A.15) we have

Pz(Xm+l = x
∣∣Z(l)) ≤ C

(
L∑
k=1

k−
d+1
2 Pz

(
T⌈ k

2

⌉ ≥ l
2

+m

)
+

∞∑
k=L+1

k−
d+1
2 Pz

(
T⌈ k

2

⌉ ≤ l
2

+m

))
.
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We choose

L :=
l

Ez[T1 − T0]
= O(l),

and since

Pz
(
T⌈ k

2

⌉ ≥ l
2

+m

)
= Pz


k
2∑
i=1

((Ti − Ti−1)− Ez[T1 − T0]) ≥ l
2
− k

2
Ez[T1 − T0]



≤ Pz


∣∣∣∣∣∣∣
k
2∑
i=1

((Ti − Ti−1)− Ez[T1 − T0])

∣∣∣∣∣∣∣ ≥
∣∣∣ (L−k)Ez [T1−T0]

2

∣∣∣


≤ C

(L− k)2d
Ez




k
2∑
i=1

((Ti − Ti−1)− Ez[T1 − T0])


2d


≤ C

(L− k)2d
Ez


√ 2

k

k
2∑
i=1

((Ti − Ti−1)− Ez[T1 − T0])


2d
 kd

≤ Ckd

(L− k)2d
,

we get that

Pz
(
T⌈ k

2

⌉ ≥ l
2

+m

)
,Pz

(
T⌈ k

2

⌉ ≤ l
2

+m

)
≤ min

{
1,

Ckd

(L− k)2d

}
.

Hence

Pz(Xm+l = x
∣∣Z(l)) ≤ C

∞∑
k=1

k−
d+1
2 min

{
1,

kd

(L− k)2d

}
.

As in [BCR16] we split up the sum into four parts. For k ∈ [1, L
2

] we have that kd

(L−k)2d < 1 and hence

L
2∑
k=1

k−
d+1
2 min

{
1,

kd

(L− k)2d

}
=

L
2∑
k=1

k
d−1
2

(L− k)2d
≤

L
2∑
k=1

Ck
d−1
2 L−2d ≤ CL−d = Cl−d.

For k ∈ [L
2
, L−

√
L] we also have kd

(L−k)2d ≤ 1 and hence

L−
√
L∑

k=
L
2

k−
d+1
2 min

{
1,

kd

(L− k)2d

}
=

L−
√
L∑

k=
L
2

k
d−1
2

(L− k)2d
≤ C

∫ L−
√
L

L
2

s
d−1
2

(L− s)2d ds

= C

∫ L
2

√
L

(L− t)
d−1
2 t−2ddt ≤ CL

d−1
2

∫ L
2

√
L

t−2ddt

≤ CL
d−1
2

(√
L
)−2d+1

≤ CL−
d
2 ≤ Cl−

d
2 .

For k ∈ [L−
√
L,L+

√
L] we have

L+
√
L∑

k=L−
√
L

k−
d+1
2 min

{
1,

kd

(L− k)2d

}
≤

L+
√
L∑

k=L−
√
L

k
−d−1

2 ≤ CL
−d−1

2
√
L ≤ CL−

d
2 ≤ Cl−

d
2 .
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At last for k ∈ [L+
√
L,∞], the proof is very similar to the second case and we get that

∞∑
k=L+

√
L

k−
d+1
2 min

{
1,

kd

(L− k)2d

}
≤

∞∑
k=L+

√
L

k
d−1
2

(L− k)2d

≤ C
∫ 2L

L+
√
L

s
d−1
2

(s− L)2d
ds+ C

∫ ∞
k=2L

s
d−1
2

(s− L)2d
ds

≤ C
∫ L

√
L

(L+ t)
d−1
2

t2d
dt+ C

∫ ∞
k=L

(L+ t)
d−1
2

t2d
dt

≤ CL
d−1
2

∫ L

√
L

t−2ddt+ C

∫ ∞
k=L

t
d−1
2 t−2ddt

≤ CL−
d
2 ≤ Cl−

d
2 .

The last estimates yield

Pz(Xm+l = x
∣∣Z(l)) ≤ Cl−

d
2 .

Next we prove part ii). As in the previous part we have∣∣∣P(y,m)
(
Xm+l = x

∣∣ ẐM−m(l)
)
− P(y+ej ,m)

(
Xm+l = x

∣∣ ẐM−m(l)
)∣∣∣

=
∣∣∣P(y,m) (Xm+l = x

∣∣ Z(l)
)
− P(y+ej ,m) (Xm+l = x

∣∣ Z(l)
)∣∣∣

=
∣∣∣P(y,m) (Xm+l = x

∣∣ Z(l)
)
− P(y,m) (Xm+l = x− ej

∣∣ Z(l)
)∣∣∣

≤ 1

Pz(Z(l))

∞∑
k=1

∣∣∣P(y,m)((XTk , Tk) = (x,m+ l))− P(y,m)((XTk , Tk) = (x− ej ,m+ l))
∣∣∣

≤ 1

Pz(Z(l))

L∑
k=1

∣∣∣∣P(y,m)((XTk , Tk) = (x,m+ l), T⌈ k
2

⌉ ≥ l
2

+m)− P(y,m)((XTk , Tk) = (x− ej ,m+ l), T⌈ k
2

⌉ ≥ l
2

+m)

∣∣∣∣
+

1

Pz(Z(l))

L∑
k=1

∣∣∣∣P(y,m)((XTk , Tk) = (x,m+ l), T⌈ k
2

⌉ − Tk ≥ l
2
)− P(y,m)((XTk , Tk) = (x− ej ,m+ l), T⌈ k

2

⌉ − Tk ≥ l
2
)

∣∣∣∣
+

1

Pz(Z(l))

∞∑
k=L+1

∣∣∣∣P(y,m)((XTk , Tk) = (x,m+ l), T⌈ k
2

⌉ ≤ l
2

+m)− P(y,m)((XTk , Tk) = (x− ej ,m+ l), T⌈ k
2

⌉ ≤ l
2

+m)

∣∣∣∣
+

1

Pz(Z(l))

∞∑
k=L+1

∣∣∣∣P(y,m)((XTk , Tk) = (x,m+ l), T⌈ k
2

⌉ − Tk ≤ l
2
)− P(y,m)((XTk , Tk) = (x− ej ,m+ l), T⌈ k

2

⌉ − Tk ≤ l
2
)

∣∣∣∣

By applying (A.10) to∣∣∣∣P(y,m)

(
(XTk , Tk) = (x,m+ l), T⌈ k

2

⌉ ≤ l
2

+m

)
− P(y,m)

(
(XTk , Tk) = (x− ej ,m+ l), T⌈ k

2

⌉ ≤ l
2

+m

)∣∣∣∣
≤

⌈
k
2

⌉∑
s=1

∑
w∈Zd

∣∣∣∣P(y,m)

(
(XT⌈ k

2

⌉ , T⌈ k
2

⌉) = (w,m+ s)

)
P(y,m)

(
(XTk , Tk) = (x,m+ l)

∣∣∣ (XT⌈ k
2

⌉ , T⌈ k
2

⌉) = (w,m+ s)

)

− P(y,m)

(
(XT⌈ k

2

⌉ , T⌈ k
2

⌉) = (w,m+ s)

)
P(y,m)

(
(XTk , Tk) = (x− ej ,m+ l)

∣∣∣ (XT⌈ k
2

⌉ , T⌈ k
2

⌉) = (w,m+ s)

)∣∣∣∣
≤

⌈
k
2

⌉∑
s=1

∑
w∈Zd

P(y,m)

(
(XT⌈ k

2

⌉ , T⌈ k
2

⌉) = (w,m+ s)

)

·
∣∣∣∣P(y,m)

(
(XTk , Tk) = (x,m+ l)

∣∣∣ (XT⌈ k
2

⌉ , T⌈ k
2

⌉) = (w,m+ s)

)

− P(y,m)

(
(XTk , Tk) = (x− ej ,m+ l)

∣∣∣ (XT⌈ k
2

⌉ , T⌈ k
2

⌉) = (w,m+ s)

)∣∣∣∣,
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and∣∣∣∣P(y,m)

(
(XTk , Tk) = (x,m+ l), T⌈ k

2

⌉ > l
2

+m

)
− P(y,m)

(
(XTk , Tk) = (x− ej ,m+ l), T⌈ k

2

⌉ > l
2

+m

)∣∣∣∣
≤

l−1∑
s=
⌈
k
2

⌉
+1

∑
w∈Zd

∣∣∣∣P(y,m)

(
(XT⌈ k

2

⌉ , T⌈ k
2

⌉) = (w,m+ s)

)
P(y,m)

(
(XTk , Tk) = (x,m+ l)

∣∣∣ (XT⌈ k
2

⌉ , T⌈ k
2

⌉) = (w,m+ s)

)

− P(y,m)

(
(XT⌈ k

2

⌉ , T⌈ k
2

⌉) = (w − ej ,m+ s)

)
P(y,m)

(
(XTk , Tk) = (x− ej ,m+ l)

∣∣∣ (XT⌈ k
2

⌉ , T⌈ k
2

⌉) = (w − ej ,m+ s)

)∣∣∣∣
≤

l−1∑
s=
⌈
k
2

⌉
+1

∑
w∈Zd

∣∣∣∣P(y,m)

(
(XT⌈ k

2

⌉ , T⌈ k
2

⌉) = (w,m+ s)

)
− P(y,m)

(
(XT⌈ k

2

⌉ , T⌈ k
2

⌉) = (w − ej ,m+ s)

)∣∣∣∣
· P(y,m)

(
(XTk , Tk) = (x,m+ l)

∣∣∣ (XT⌈ k
2

⌉ , T⌈ k
2

⌉) = (w,m+ s)

)

we get, by similar bounds on the other terms in (A.15), that∣∣∣P(y,m)
(
Xm+l = x

∣∣ ẐM−m(l)
)
− P(y+ej ,m)

(
Xm+l = x

∣∣ ẐM−m(l)
)∣∣∣

≤ C

(
L∑
k=1

k−
d+2
2 Pz

(
T⌈ k

2

⌉ ≥ l
2

+m

)
+

∞∑
k=L+1

k−
d+2
2 Pz

(
T⌈ k

2

⌉ ≤ l
2

+m

))

≤ C
∞∑
k=1

k−
d+2
2 min

{
1,

kd

(L− k)2d

}
and hence ∣∣∣P(y,m)

(
Xm+l = x

∣∣ ẐM−m(l)
)
− P(y+ej ,m)

(
Xm+l = x

∣∣ ẐM−m(l)
)∣∣∣ ≤ Cl− d+1

2 .

The proof of iii) requires slightly di�erent arguments. We start in a similar fashion as in the previous case.∣∣∣P(y,m)
(
Xm+l = x

∣∣ ẐM−m(l)
)
− P(y,m+1)

(
Xm+l = x

∣∣ ẐM−m−1(l − 1)
)∣∣∣

=
∣∣∣P(y,m) (Xm+l = x

∣∣ Z(l)
)
− P(y,m+1) (Xm+l = x

∣∣ Z(l − 1)
)∣∣∣

=
∣∣∣P(y,m+1) (Xm+l+1 = x

∣∣ Z(l)
)
− P(y,m+1) (Xm+l = x

∣∣ Z(l − 1)
)∣∣∣

=

∣∣∣∣ 1

P(y,m+1)(Z(l))

∞∑
k=1

P(y,m+1) ((XTk , Tk) = (x,m+ l + 1))

− 1

P(y,m+1)(Z(l − 1))

∞∑
k=1

P(y,m+1) ((XTk , Tk) = (x,m+ l))

∣∣∣∣
≤
∣∣∣∣ 1

P(y,m+1)(Z(l))
− 1

P(y,m+1)(Z(l − 1))

∣∣∣∣ ∞∑
k=1

P(y,m+1) ((XTk , Tk) = (x,m+ l + 1))

+
1

P(y,m+1)(Z(l − 1))

∞∑
k=1

∣∣∣P(y,m+1) ((XTk , Tk) = (x,m+ l + 1))− P(y,m+1) ((XTk , Tk) = (x,m+ l))
∣∣∣ ,

where the last summand can be estimated analogously to part ii). The �rst summand can be estimated in the following

way ∣∣∣∣ 1

P(y,m+1)(Z(l))
− 1

P(y,m+1)(Z(l − 1))

∣∣∣∣ ∞∑
k=1

P(y,m+1) ((XTk , Tk) = (x,m+ l + 1))

=
|P(y,m+1)(Z(l − 1))− P(y,m+1)(Z(l))|

P(y,m+1)(Z(l − 1))
P(y,m+1)(Xm+l+1 = x|Z(l))

≤ C|P(y,m+1)(Z(l − 1))− P(y,m+1)(Z(l))|l−
d
2 .

Therefore we need to prove that

|P(y,m+1)(Z(l − 1))− P(y,m+1)(Z(l))| ≤ Cl−
1
2 . (A.16)
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Since

|P(y,m+1)(Z(l − 1))− P(y,m+1)(Z(l))| = |
∞∑
k=1

P(y,m+1)(Tk = m+ l)−
∞∑
k=1

P(y,m+1)(Tk = m+ l + 1)|

≤
∞∑
k=1

|P(y,m)(Tk = m+ l)− P(y,m)(Tk = m+ l + 1)|,

which can be treated similarly to the di�erences we had a look at before. Hence the result follows by standard Fourier

analysis similar to Lemma A.2.

�

Proof of Lemma 3.9: First we prove part i). We have

Pz(XM = x)

=
∑

l≤M−m

Pz
(
ẐM−m(l)

) ∑
w∈Zd

Pz
(
Xm+l = w

∣∣ẐM−m(l)
)
Pz
(
XM = x

∣∣ẐM−m(l), Xm+l = w
)

≤
∑

l≤M−m

Pz
(
ẐM−m(l)

) ∑
w∈Zd

Cl−
d
2 Pz

(
XM = x

∣∣ẐM−m(l), Xm+l = w
)

≤
∑

l≤M−m

Pz
(
ẐM−m(l)

)
Cl−

d
2

≤
∑

l≤M−m

Ce−c(M−m−l)l−
d
2

≤ C


M−m

2∑
l=1

e−c(M−m−l)l−
d
2 +

M−m∑
l=
M−m

2

e−c(M−m−l)l−
d
2


≤ Ce−c

M−m
2 + C(M −m)−

d
2

M−m∑
l=
M−m

2

e−c(M−m−l)

≤ C(M −m)−
d
2 ,

where for the �rst inequality we made use of the translation invariance of P.
For part ii) we have

|P(y,m)(XM = x)− P(y+ej ,m)(XM = x)|

= |P(y,m)(XM = x)− P(y,m)(XM = x− ej)|

=
∣∣∣ ∑
l≤M−m

P(y,m)(ẐM−m(l))
∑
w∈Zd

P(y,m)(Xm+l = w|ẐM−m(l))P(y,m)(XM = x|Xm+l = w, ẐM−m(l))

−
∑

l≤M−m

P(y,m)(ẐM−m(l))
∑
w∈Zd

P(y,m)(Xm+l = w − ej |ẐM−m(l))P(y,m)(XM = x− ej |Xm+l = w − ej , ẐM−m(l))
∣∣∣

≤
∑

l≤M−m

P(y,m)(ẐM−m(l))

·
∑
w∈Zd

∣∣∣P(y,m)(Xm+l = w|ẐM−m(l))− P(y,m)(Xm+l = w − ej |ẐM−m(l))
∣∣∣P(y,m)(XM = x|Xm+l = w, ẐM−m(l))

≤
∑

l≤M−m

P(y,m)(ẐM−m(l))
∑
w∈Zd

Cl−
d+1
2 P(y,m)(XM = x|Xm+l = w, ẐM−m(l))

≤
∑

l≤M−m

Ce−c(M−m−l)l−
d+1
2

≤ C(M −m)−
d+1
2 .
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As before the proof of iii) requires slightly di�erent arguments.

|P(y,m)(XM = x)− P(y,m+1)(XM = x)|

=
∣∣∣ ∑
l≤M−m

P(y,m)(ẐM−m(l))
∑
w∈Zd

P(y,m)(Xm+l = w|ẐM−m(l))P(y,m)(XM = x|Xm+l = w, ẐM−m(l))

−
∑

l≤M−m

P(y,m+1)(ẐM−m−1(l − 1))

·
∑
w∈Zd

P(y,m+1)(Xm+l = w|ẐM−m−1(l − 1))P(y,m+1)(XM = x|Xm+l = w, ẐM−m−1(l − 1))
∣∣∣

=
∣∣∣ ∑
l≤M−m

P(y,m)(ẐM−m(l))
∑
w∈Zd

P(y,m)(Xm+l = w|ẐM−m(l))P(y,m)(XM = x|Xm+l = w, ẐM−m(l))

−
∑

l≤M−m

P(y,m+1)(ẐM−m−1(l − 1))
∑
w∈Zd

P(y,m+1)(Xm+l = w|ẐM−m−1(l − 1))P(y,m)(XM = x|Xm+l = w, ẐM−m(l))
∣∣∣

≤
∣∣∣ ∑
l≤M−m

P(y,m)(ẐM−m(l))
∑
w∈Zd

P(y,m)(Xm+l = w|ẐM−m(l))P(y,m)(XM = x|Xm+l = w, ẐM−m(l))

−
∑

l≤M−m

P(y,m)(ẐM−m(l))
∑
w∈Zd

P(y,m+1)(Xm+l = w|ẐM−m−1(l − 1))P(y,m)(XM = x|Xm+l = w, ẐM−m(l))
∣∣∣

+
∣∣∣ ∑
l≤M−m

P(y,m)(ẐM−m(l))
∑
w∈Zd

P(y,m+1)(Xm+l = w|ẐM−m−1(l − 1))P(y,m)(XM = x|Xm+l = w, ẐM−m(l))

−
∑

l≤M−m

P(y,m+1)(ẐM−m−1(l − 1))
∑
w∈Zd

P(y,m+1)(Xm+l = w|ẐM−m−1(l − 1))P(y,m)(XM = x|Xm+l = w, ẐM−m(l))
∣∣∣

≤
∑

l≤M−m

P(y,m)(ẐM−m(l))
∑
w∈Zd

∣∣∣P(y,m)(Xm+l = w|ẐM−m(l))− P(y,m+1)(Xm+l = w|ẐM−m−1(l − 1))
∣∣∣

· P(y,m)(XM = x|Xm+l = w, ẐM−m(l))

+
∑

l≤M−m

∣∣∣P(y,m)(ẐM−m(l))− P(y,m+1)(ẐM−m−1(l − 1))
∣∣∣

·
∑
w∈Zd

P(y,m+1)(Xm+l = w|ẐM−m−1(l − 1))P(y,m)(XM = x|Xm+l = w, ẐM−m(l))

The �rst summand can be estimated similarly to part ii). For the last summand note that

∣∣∣P(y,m)(ẐM−m(l))− P(y,m+1)(ẐM−m−1(l − 1))
∣∣∣

=

∣∣∣∣∣∣P(y,m)

Z(l) ∩
M−m⋂
j=l+1

(Z(j))c

− P(y,m+1)

Z(l − 1) ∩
M−m−1⋂
j=l

(Z(j))c

∣∣∣∣∣∣
=

∣∣∣∣∣∣P(y,m)(Z(l))P(y,m)

M−m⋂
j=l+1

(Z(j))c
∣∣∣ Z(l)

− P(y,m+1)(Z(l − 1))P(y,m+1)

M−m−1⋂
j=l

(Z(j))c
∣∣∣ Z(l − 1)

∣∣∣∣∣∣
=
∣∣∣P(y,m)(Z(l))− P(y,m+1)(Z(l − 1))

∣∣∣P(y,m)

M−m⋂
j=l+1

(Z(j))c
∣∣∣ Z(l)


≤ C

∣∣∣P(y,m)(Z(l))− P(y,m)(Z(l − 1))
∣∣∣ e−c(M−m−l)

≤ Cl−
1
2 e−c(M−m−l),
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where the last inequality follows by (A.16). Hence∑
l≤M−m

∣∣∣P(y,m)(ẐM−m(l))− P(y,m)(ẐM−m−1(l − 1))
∣∣∣

·
∑
w∈Zd

P(y,m+1)(Xm+l = w|ẐM−m−1(l − 1))P(y,m)(XM = x|Xm+l = w, ẐM−m(l))

≤
∑

l≤M−m

Cl−
1
2 e−c(M−m−l)

∑
w∈Zd

P(y,m+1)(Xm+l = w|ẐM−m−1(l − 1))P(y,m)(XM = x|Xm+l = w, ẐM−m(l))

≤
∑

l≤M−m

Cl−
1
2 e−c(M−m−l)

∑
w∈Zd

l−
d
2 P(y,m+1)(XM = x|Xm+l = w, ẐM−m(l))

≤
∑

l≤M−m

Ce−c(M−m−l)l−
d+1
2

≤ C(M −m)−
d+1
2 .

Hence part iii) follows.
�

A.2.2. Further annealed estimates

In this section we prove estimates (3.38)-(3.41). As required let 2
5
≤ M ≤ N2, d

d+1
< θ ≤ 1, d

d+1
< θ′ < θ and

V :=
⌊
N2θ′

⌋
. Furthermore, we �x some cube ∆x ⊂ Zd of side length Nθ and center x ∈ Zd. We denote by ∆

(1)
x a cube

with center x and side length 9
10
Nθ that is slightly smaller than ∆x and by ∆

(2)
x a cube with center x and side length

11
10
Nθ that is slightly bigger than ∆x. Hence

P(0,0)(XM+V ∈ ∆(1)
x )

= P(0,0)(XM+V ∈ ∆(1)
x , XM ∈ ∆x) + P(0,0)(XM+V ∈ ∆(1)

x , XM /∈ ∆x)

≤ P(0,0)(XM ∈ ∆x) + P(0,0)(XM+V ∈ ∆(1)
x , XM /∈ ∆x, RN ) + CN−c log(N)

≤ P(0,0)(XM ∈ ∆x) +

M∑
k=1

∑
z′

P(0,0)(XM+V ∈ ∆(1)
x , XM /∈ ∆x, RN , Tk−1 < M ≤ Tk, (XTk , Tk) = z′) + CN−c log(N)

z′=(x′,n′)
≤ P(0,0)(XM ∈ ∆x) +M

∑
n′≤M+log2(N)

‖x−x′‖>Nθ−log2(N)

P(x′,n′)(XM+V ∈ ∆(1)
x ) + CN−c log(N)

≤ P(0,0)(XM ∈ ∆x) +M
∑

M≤n′≤M+log2(N)

‖x−x′‖>Nθ−log2(N)

P(0,0)(XM+V−n′ ∈ ∆
(1)

x−x′) + CN−c log(N)

≤ P(0,0)(XM ∈ ∆x) +M
∑

M≤n′≤M+log2(N)

P(0,0)(‖XM+V−n′‖ ≥
1

10
Nθ) + CN−c log(N)

≤ P(0,0)(XM ∈ ∆x) + CN−c log(N),

where the last inequality holds true by Lemma 3.6. Inequality (3.39) follows by similar arguments. Hence we turn to

the proof of (3.40). An argumentation similar to (3.22) (see also Remark 3.13) leads to

Ez [P zω(XM ∈ ∆)|G] (ωz) < P zωz (XM ∈ ∆) + CN−c log(N),

hence it is enough to prove that

Ez
[
P zω

(
XM+V ∈ ∆(1)

x

)
− P zω(XM ∈ ∆)

∣∣∣G] < CN−c log(N).

Notice that

Ez
[
P zω

(
XM+V ∈ ∆(1)

x

)
− P zω(XM ∈ ∆)

∣∣∣G] ≤ Ez
[
P zω

(
XM+V ∈ ∆(1)

x , XM /∈ ∆x

) ∣∣∣G] .
Arguing as in Lemma 3.18, we can compare the term above to the annealed probability of hitting ∆

(1)
x at time M + V

without hitting ∆x at time M + l(N), where l(N) is a slowly varying function. Hence (3.39) follows by the annealed

estimates we proved above.
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