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Für meine Eltern

Falls Gott die Welt geschaffen hat, war
seine Hauptsorge sicher nicht, sie so zu
machen, dass wir sie verstehen können.

(Albert Einstein)



Zusammenfassung

Die minimale Standard Modell Erweiterung (SME) von Kostelecký und Mitarbeitern, die
die allgemeine Behandlung von CPT- und Lorentz-Invarianz-Verletzungen parametrisiert,
prognostiziert siderische Modulationen von atomaren Übergangsfrequenzen aufgrund der
Drehung der Erde relativ zu einem Lorentz-verletzenden Hintergrundfeld. Eine Methode zur
Suche nach diesen Modulationen ist das sogenannte Uhrenvergleichsexperiment, bei dem die
Frequenzen zweier Uhren verglichen werden, die sich relativ zum Fixsternhimmel bewegen.
In dieser Arbeit wird ein Experiment vorgestellt, bei dem polarisierte Proben von 3He und
129Xe Gas in einer Glaszelle als Uhren fungieren, deren Kernspinpräzessions-Frequenzen
mit Hilfe von hochempfindlichen SQUID-Sensoren detektiert werden. Die Besonderheit
dieses Experimentes ist die Tatsache, dass die Spins frei präzedieren, mit transversalen
Relaxationszeiten T ∗2 von bis zu 4.4 h für 129Xe und 14.1 h für 3He.

Um auf Lorentz-verletzende Effekte empfindlich zu sein, wird der Einfluss von äußeren Mag-
netfeldern aufgehoben durch Bildung der gewichteten Phasendifferenz ∆Φ = Φhe − γhe

γxe
Φxe.

Die Lorentz-verletzenden SME-Parameter des Neutrons, b̃nX und b̃nY, werden aus einem
χ2-Fit an die Phasendifferenz-Daten von 7 Spinpräzessions-Messungen mit einer Länge
von 12 bis 16 Stunden ermittelt. Die abschnittsweise definierte Fitfunktion enthält einen
Sinus- und einen Kosinus-Term zur Parametrisierung der siderischen Modulation, sowie 7
Offset-Terme, 7 lineare Terme und 7 · 2 mit T ∗2,he und T ∗2,xe abfallende exponentielle Terme,
die den jeweiligen Einzelmessungen zugeordnet sind. Der lineare Term in der gewichteten
Phasendifferenz ist im Wesentlichen auf Abweichungen der gyromagnetischen Verhältnisse
von ihren Literaturwerten aufgrund von chemischen Verschiebungen zurückzuführen,
während die exponentiellen Terme von Phasenverschiebungen herrühren, die durch Ent-
magnetisierungsfelder in der nicht ideal sphärischen Messzelle bedingt sind.

Die aus dem χ2-Fit ermittelte Grenze für den Parameter b̃n⊥ =
√

(b̃nX)2 + (b̃nY)2 ist
3.7 ·10−32 GeV, bei einem Konfidenzniveau von 95%. Dieser Wert ist nicht durch das Signal-
Rausch-Verhältnis limitiert, sondern durch die starken Korrelationen zwischen den Fitpa-
rametern, die durch eine stückweise ähnliche Zeitstruktur der gewichteten Phasendifferenz
und der siderischen Phasenmodulation im Fitmodell bedingt sind. Um die Korrelationen zu
reduzieren und damit die Sensitivität von zukünftigen Experimenten zu erhöhen, muss die
Zeitstruktur der gewichteten Phasendifferenz geändert werden, was durch eine Erhöhung
der 129Xe Relaxationszeit realisiert werden kann. Neben der Reduzierung der Korrelationen
würde dies auch zu längeren Messzeiten und damit zu einer zusätzlichen Steigerung der
Sensitivität führen.



Abstract

The minimal Standard Model Extension (SME) of Kostelecký and coworkers, which
parametrizes the general treatment of CPT- and Lorentz invariance violation, predicts
sidereal modulations of atomic transition frequencies as the Earth rotates relative to a
Lorentz-violating background field. One method to search for these modulations is the
so-called clock-comparison experiment, where the frequencies of co-located clocks are
compared as they rotate with respect to the fixed stars. In this work an experiment is
presented where polarized 3He and 129Xe gas samples in a glass cell serve as clocks, whose
nuclear spin precession frequencies are detected with the help of highly sensitive SQUID
sensors inside a magnetically shielded room. The unique feature of this experiment is the
fact that the spins are precessing freely, with transverse relaxation times T ∗2 of up to 4.4 h
for 129Xe and 14.1 h for 3He.

To be sensitive to Lorentz-violating effects, the influence of external magnetic fields is
canceled via the weighted 3He/129Xe phase difference, ∆Φ = Φhe − γhe

γxe
Φxe. The Lorentz-

violating SME parameters for the neutron, b̃nX and b̃nY, are determined out of a χ2 fit on
the phase difference data of 7 spin precession measurements of 12 to 16 hours length.
The piecewise defined fit model contains a sine and a cosine term to describe the sidereal
modulation, as well as 7 offset terms, 7 linear terms and 7 · 2 exponential terms decreasing
with T ∗2,he and T ∗2,xe, which are assigned to the respective measurement. The linear term
in the weighted phase difference mainly arises from deviations of the gyromagnetic ratios
from their literature values due to chemical shifts, while the exponential terms reflect
the phase shifts resulting from demagnetization fields in the non-ideally spherical sample cell.

The result of the χ2 fit constrains the parameter b̃n⊥ =
√

(b̃nX)2 + (b̃nY)2 to be< 3.7·10−32 GeV
at the 95% confidence level. This value is not limited by the signal-to-noise ratio, but by the
strong correlations between the fit parameters, which are caused by a piecewise similar time
structure of the weighted phase difference and the sidereal phase modulation in the fit model.
To reduce the correlations and therewith improve the sensitivity of future experiments, it
will be necessary to change the time structure of the weighted phase difference, which can be
realized by increasing the 129Xe relaxation time. Besides the reduction of the correlations,
this would also lead to longer observation times and therewith an additional increase in
sensitivity.
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Chapter 1

Introduction: Beyond the Standard

Model

The Standard Model of particle physics (SM), which is a relativistic quantum field theory,
describes very well the characteristics of the particles known so far, and 3 of the 4 known
fundamental interactions are included: the electromagnetic, weak and strong interaction.
By contrast, the gravitation is described as a geometric property of spacetime by Einstein’s
General Relativity (GR), which is a classical theory. Both the SM and GR are founded
on a fundamental principle called CPT symmetry, which means the invariance under CPT
transformations, i.e., the simultaneous transformation of charge (C, interchange of particle
and antiparticle), parity (P, space-inversion) and time (T, time-reversal). Another important
symmetry is the Lorentz symmetry, i.e., the invariance under Lorentz transformations, which
was first postulated by Einstein in Special Relativity in 1905. Lorentz symmetry states that
the physics of any system does not change under rotations or boosts of the laboratory. One
can distinguish between the observer Lorentz transformation, which describes rotations or
boosts of the observer, and the particle Lorentz transformation, i.e., a transformation of the
experiment with respect to an inertial frame [43]. The observer Lorentz transformation can
be described as a transformation of the coordinates of the Lorentz vector xν into x ′µ:

x ′µ = Λµν x
ν + aν . (1.1)

The particle Lorentz transformation, in contrast, can be expressed as

U(Λ, a)Ψ(x)U−1(Λ, a) = Ψ(Λx+ a) , (1.2)

1



2 CHAPTER 1. INTRODUCTION: BEYOND THE STANDARD MODEL

where Ψ(x) is the wave function that describes the system and U(Λ, a) a transformation
matrix that contains rotations, boosts and translations. For a system that is Lorentz-
invariant, both transformations are identical and do not change the physics of the system.
In Lorentz-violating theories, however, they are distinct, and only the observer Lorentz
symmetry is maintained in principle, while particle transformations may be limited to a
given subset of Lorentz transformations [80]. In most of the Lorentz violating theories the
existence of a privileged reference frame is predicted. Nowadays we have a rather unique
choice for this preferred frame: the frame where the Cosmic Microwave Background (CMB)
looks isotropic (see Sec. 1.2). In principle, the experimental tests of Lorentz Symmetry are
modern analogues of the Michelson-Morley experiment, i.e., they can be seen as searches
for “the new aether”.

Although the SM and GR are very successful in describing all physical phenomena observed
so far, and no experimental evidence exists that contradicts one of these models, efforts are
taken to find a more fundamental theory that gives a complete description of nature and
combines quantum theory and gravity into a theory of “Quantum Gravity”. While a lot of
work has been done in the Quantum Gravity field during the past forty years, there exists
still no completely satisfactory theory. One of the big problems is the fact that General
Relativity is not only a theory of gravity, but also a theory of spacetime itself. Hence a
theory of Quantum Gravity has to master the challenge of finding a description of the
quantum nature of space and time.

Promising approaches for such a “theory of everything” are for example String Theory
and Loop Quantum Gravity. String Theory is based on the idea that particles can be
described as one-dimensional objects that are called “strings”. The vibrational modes of
the strings then represent, for instance, the mass or the charge of a particle. In contrast
to String Theory, Loop Quantum Theory is a so-called background independent theory,
i.e., the geometry of spacetime is not fixed. The main prediction is the discreteness of
geometrical properties such as area and volume, which becomes important at the Planck
scale [71], the energy scale where an overlap of General Relativity and quantum field
theory is expected. In General Relativity, the important constants are the speed of light
c and Newton’s gravitational constant G, while in quantum field theory the speed of
light appears together with the reduced Planck constant h̄ . Therefore, it is reasonable to
assume that a theory of Quantum Gravity comprises all three constants c, G and h̄ [4].
Using these constants one can for example define units of length and energy, the Planck
length lP =

√
h̄G
c3
≈ 10−35 m and the Planck energy EP =

√
h̄c5

G ≈ 1020 GeV. Both for
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String Theory and Loop Quantum Gravity, it has been shown that Lorentz violation can
be induced at an energy near the Planck scale [46, 73]. But what kind of experiments have
to be performed to search for Lorentz violation? At first sight, it seems to be impossible to
reach this energy scale experimentally. If one wanted to build an accelerator that reaches
Planck energy, it would have to be bigger than our solar system [29]. Nevertheless, there
is hope that effects of Lorentz violation could be measured indirectly in experiments of
extraordinary sensitivity at low energies. These experiments look for small shifts in the
atomic energy levels that are expected to be strongly suppressed by some power of the ratio
E/EP, where E is a typical energy scale of the atom and EP the Planck energy. In recent
years, many experiments that search for Lorentz violation have been performed in different
sectors. Some examples are presented in Sec. 1.3. A very successful method is the so-called
clock-comparison experiment, where the frequencies of co-located clocks are compared as
they rotate with respect to the fixed stars. These kind of experiment was originally proposed
by Hughes [35] and Drever [24] and is therefore also called “Hughes-Drever type experiment”.

The most general theoretical treatment of Lorentz violation is the so-called minimal Stan-
dard Model Extension (short: SME) worked out by Kostelecký and coworkers, that will be
presented in the next section. In Sec. 1.2, the Cosmic Microwave Background (CMB) is
considered as a preferred frame that could cause Lorentz-violating effects.

1.1 The minimal Standard Model Extension

The minimal Standard Model Extension (SME) is a general theoretical framework that
includes Lorentz- and CPT-violating terms and allows to compare the results of different
experiments searching for Lorentz violation [44]. The SME is a low-energy effective
field theory1 that possesses all important properties of the Standard Model, like gauge
symmetry2, renormalizability and energy-momentum conservation. It predicts small shifts
in the atomic energy levels that vary periodically due to the Earth rotating relative to a
Lorentz-violating background tensor field.

The Lagrangian of the SME for a particle with spin I = 1
2 is the one of the Standard

Model, extended by terms that violate Lorentz invariance and CPT (the Einstein summation
1An effective field theory is an approximate theory that only takes into account the degrees of freedom for
some low-energy scale Λ, i.e., those states with m << Λ [61].

2In electromagnetism, as example, the gauge transformation is defined by Φ → Φ′ = Φ + ∂f
∂t

and
~A→ ~A′ = ~A− ~∇f , where (Φ, ~A) are the electromagnetic potentials. A theory whose physical predictions
are not changed by such a transformation is called gauge invariant, and the corresponding symmetry gauge
symmetry [49].
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convention is used in the following):

LSME =
1
2
iΨΓν

↔
∂ν Ψ−ΨMΨ (1.3)

with Γν :=γν + cµνγ
µ + dµνγ5γ

µ + eν + ifνγ5 +
1
2
gλµνσ

λµ (1.4)

and M :=m+ aµγ
µ + bµγ5γ

µ +
1
2
Hµνσ

µν . (1.5)

Here m is the mass of the particle, γµ are the gamma-matrices (see, e.g., in [68]),
γ5 ≡ γ5 ≡ iγ0γ1γ2γ3 and σµν = γµγν − γνγµ, and aµ, bµ, cµ, dµ, eµ, fµ, gλµν , Hµν

are the components of the Lorentz-violating tensor-parameters. The terms with
aµ, bµ, eµ, fµ, and gλµν do violate Lorentz and CPT symmetry, while the others only
violate Lorentz symmetry. For the tensor-parameters being zero, one gets again the known
Lagrangian with γν instead of Γν and m instead of M.

From Eq. (1.3) one can derive the non-relativistic Hamilton operator h = ĥ+ δh, where ĥ is
the usual Fouldy-Wouthuysen-Hamiltonian and δh the Lorentz-violating perturbation term:

δh = (a0 −mc00 −me0) + (−bj +mdj0 − 1
2mεjklgkl0 + 1

2εjklHkl)σj + [−aj +m(c0j + cj0) +mej]
pj
m

+[b0δjk −m(dkj + d00δjk)−mεklm( 1
2gmlj + gm00δjl)− εjklHl0] pj

mσ
k

+[m(−cjk − 1
2c00δjk)]pjpk

m2 + {[m(d0j + dj0 − 1
2 (bj +mdj0 + 1

2mεjmngmn0 + 1
2εjmnHmn)]δkl

+ 1
2 (bl + 1

2mεlmngmn0)δjk −mεjlm(gm0k + gmk0}pjpk
m2 σ

l .

(1.6)
Here σj are the Pauli-matrices3, pj the momenta components, and δij the Kronecker delta
with δij = 1 (0) for i = j (i 6= j). The Levi-Civita symbol εjkl is defined as

εjkl =


1 for i, j, k cyclical,
−1 for i, j, k counter-cyclical,

0 else.

The clock-comparison experiments are sensitive to the second term in Eq. (1.6), as will be
seen later. To get the Hamiltonian for an atom, the perturbation Hamiltonians for every

3The Pauli-matrices are given by:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
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single particle (electrons, neutrons and protons) have to be added:

h′ =
∑
w

Nw∑
N=1

δhw,N , (1.7)

where w stands for the proton, neutron or electron and Nw is the number of each particle.

The Lorentz-violating energy shift

The perturbative energy shift of the state |F,mF〉 is maintained by taking the expectation
value of the perturbative Hamiltonian, ELV = 〈F,mF|h′ |F,mF〉, where F is the quantum
number of the total momentum ~F = ~I + ~J with the nuclear spin ~I and the electronic spin ~J

( ~J = 0 for 3He and 129Xe). In the calculation of the energy ELV some terms vanish due to the
properties of h′ and of the states |F,mF〉. Furthermore, it follows from the Wigner-Eckart
theorem that for particles like 3He and 129Xe with F = I = 1

2 one can neglect the energy
shifts that arise from an expectation value of a tensor of rank 2 (quadrupole shift). So the
leading-order Lorentz-violating energy shift for an atom W with F = I = 1

2 (J = 0) is given
by

ELV =〈F,mF|h′ |F,mF〉 = m̂FE
W
d , (1.8)

where m̂F :=
mF

F
= ±1 , (1.9)

and the dipolar energy shift

EW
d =

∑
w

(βw · b̃w3 + δw · d̃w3 + κw · g̃wd ) . (1.10)

The (dimensionless) coefficients βw, δw and κw appearing in Eq. (1.10) are linear combina-
tions of expectation values of certain operators of the perturbation Hamiltonian (1.6) in the
special state |F, F 〉:

βw :=−
Nw∑

N=1

〈[σ3]w,N〉 , (1.11)

δw :=
1
m2

w

Nw∑
N=1

〈[p3 pj σ
j]w,N〉 , (1.12)

κw :=
1

2m2
w

Nw∑
N=1

〈[p3 pj σ
j − pj pj σ

3]w,N〉 . (1.13)
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The subscript w,N on each operator means that it acts on particle N of type w. The
quantities with tildes in Eq. (1.10) are combinations of the parameters for Lorentz violation
appearing in (1.6),

b̃w3 :=bw3 −mw d
w
30 +mw g

w
120 −Hw

12 , (1.14)

d̃w
3 :=mw d

w
03 +

1
2
mw d

w
30 −

1
2
Hw

12 , (1.15)

g̃w
d :=mw (gw

102 − gw
201 + gw

120)− bw3 . (1.16)

Now one can further simplify the above expressions with the help of the Schmidt nuclear
shell model [55], where for 3He as well as for 129Xe the valence neutron is assumed to carry
the entire spin of the nucleus. Thus for Eq. (1.10) only the neutron term remains:

En
d = βn · b̃n3 + δn · d̃n

3 + κn · g̃n
d . (1.17)

Moreover, if one assumes similar sizes of the Lorentz-violating parameters b̃n3 , d̃n
3 and g̃n

3 ,
one can show that the second and third term of (1.17) are strongly suppressed compared to
the first term. This can be seen when the coefficients βn, δn and κn are calculated according
to Eq. (1.11)-(1.13). By assuming that 〈p 2

1 〉 ≈ 〈p 2
2 〉 ≈ 〈p 2

3 〉 = 1
3〈p

2〉, we get

βn = −1 , δn =
1
3
〈p2〉n
m2

n

and κn = −1
3
〈p2〉n
m2

n

. (1.18)

The mean quadratical momentum component 〈p2〉n can be estimated with the help of
Heisenberg’s uncertainty principle ∆p ·∆x ≈ h̄. With the size of the nucleus of some fm we
get a momentum of ∆p = O (100 MeV). Together with the neutron mass of mn ≈ 1000 MeV,
one can see that 〈p

2〉n
m2

n
is in the order of 10−2. For this reason, the second and third term of

Eq. (1.17) will be neglected in the following.

Temporal dependence of the parameters

The parameters for Lorentz violation from Eq. (1.11)-(1.13) are defined in the laboratory
frame (x̂, ŷ, ẑ). Since this frame rotates with the Earth, the components of the parameters
vary in time with the periodicity of the Earth’s rotation, ΩE ≈ 2π/(23 h 56 min). The time
dependence of the energy shift of Eq. (1.8) can be determined by introducing a nonrotating
frame (X̂, Ŷ , Ẑ), with the Ẑ axis being equal to the Earth’s rotation axis. The laboratory and
the nonrotating frame are shown in Fig. 1.1 (for better visualization the origin of (x̂, ŷ, ẑ) has
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Figure 1.1: Laboratory (x̂, ŷ, ẑ) and nonrotating frame (X̂, Ŷ , Ẑ) to derive the temporal
dependence of the parameters in the SME.

been set to the center of the Earth, so that it coincides with the origin of the nonrotating
frame). In terms of equatorial coordinates (see Sec. 1.2), the Ẑ axis has a declination of
90◦, while X̂ has both declination and right ascension 0◦, and Ŷ declination 0◦ and right
ascension 90◦. If the precession of the Earth’s axis is neglected, this coordinate frame is
constant in time. For the laboratory frame, the ẑ axis corresponds to the quantization axis
of the atoms in the specific experiment. A nonzero signal in a clock-comparison experiment
requires a nonzero angle χ between ẑ and Ẑ, i.e., the Earth’s rotation axis. The time t = 0
is chosen such that ẑ(t = 0) lies in the first quadrant of the X̂ − Ẑ plane, while x̂ lies in the
plane spanned by ẑ and Ẑ. The (non-relativistic) transformation between both coordinate
systems is given by: x̂

ŷ

ẑ

 = T

 X̂

Ŷ

Ẑ

 with T =

 cosχ cos(ΩEt) cosχ sin(ΩEt) − sinχ
− sin(ΩEt) cos(ΩEt) 0

sinχ cos(ΩEt) sinχ sin(ΩEt) cosχ

 . (1.19)

Now one can introduce the nonrotating-frame analogue of the parameter b̃n3 in Eq. (1.14),

b̃J := bJ −m · dJ0 +
1
2
m · εJKL · gKLO −

1
2
m · εJKL ·HKL , (1.20)

where εJKL is again the Levi-Civita symbol. The spatial indices here are denoted by
J = X,Y, Z and the time index is denoted by 0. Now the transformation matrix (1.19)
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can be used to determine the time dependence of the parameter b̃n3 in the laboratory frame:

b̃n3 = b̃Z · cosχ+ b̃X · sinχ cos(ΩEt) + b̃Y · sinχ sin(ΩEt) . (1.21)

The energy shift then becomes

ELV = 〈F,mF|h′ |F,mF〉 = E0 + E1X cos(ΩEt) + E1Y sin(ΩEt) (1.22)

with En
1X ≈ m̂F sinχ(βn b̃

n
X) and En

1Y ≈ m̂F sinχ(βn b̃
n
Y ) , (1.23)

where m̂F is given in Eq. (1.9) and βn in Eq. (1.11). In our case, for F = I = 1
2 , we have

m̂F = ±1 and βn = −1, and hence

En
1X(mF = ±1

2
) =∓ sinχ b̃nX , (1.24)

En
1Y(mF = ±1

2
) =∓ sinχ b̃nY . (1.25)

The Lorentz violating frequency shift corresponding to the difference between the energy
levels with mF = ±1

2 then becomes

hνLV = ∆ELV =
∣∣〈 1/2,+1/2 |h′ |1/2,+1/2 〉 − 〈 1/2,−1/2 |h′ |1/2,+1/2 〉

∣∣
= |E0 − sinχ b̃nX cos(ΩEt)− sinχ b̃nY sin(ΩEt)

− (E0 + sinχ b̃nX cos(ΩEt) + sinχ b̃nY sin(ΩEt))|

= 2 sinχ b̃nX cos(ΩEt) + 2 sinχ b̃nY sin(ΩEt) . (1.26)

If we now define the Lorentz-violating frequencies νX and νY as the amplitudes of the
cosine/sine part of the sidereal frequency variation,

νLV =: νX cos(ΩEt) + νY sin(ΩEt) =
2 sinχ
h

(b̃nX cos(ΩEt) + b̃nY sin(ΩEt)) , (1.27)

we get a relation between νX(Y) and the Kostelecký parameters b̃nX(Y),

νX(Y) =
2 sinχ
h

b̃nX(Y) . (1.28)

This equation is used later in Chap. 4.4 to determine a limit for the parameters for Lorentz-
violation out of the 3He/129Xe clock-comparison experiment.
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Figure 1.2: The Earth and with it the magnetic field ~B0 in the laboratory rotate around the
axis ΩE with respect to a Lorentz-violating background field βε̂.

1.2 The Cosmic Microwave Background

To make the Lorentz-violating coupling a bit more descriptive, one can write the energy
shift that occurs in the Standard Model Extension as

ELV = −b̃J · σJ = −~̃b · ~σ = −β ~σ · ε̂ , (1.29)

where ~̃b = βε̂ is the hypothetical, Lorentz-violating background field with magnitude β and
the fixed direction ε̂ in space. So the coupling of the spin ~σ to the background field is analog
to the Zeeman coupling of a spin to a magnetic field. This coupling is illustrated in Fig.
1.2: The spin quantization axis is given by the magnetic field ~B0, which rotates about ΩE

together with the Earth relative to the background field. So the angle between ~B0 and ε̂

changes with the period of the Earth’s rotation. Then the energy difference ∆ELV and the
corresponding frequency νLV due to a spin coupling to ~̃b is given by

∆ELV = hνLV = ELV(mF = +
1
2

)− ELV(mF = −1
2

) = 2β cos(ΩEt+ Φ) . (1.30)

Such a privileged reference frame as defined by the direction ε̂ is given by the Cosmic
Microwave Background (CMB), whose dipole anisotropy describes a preferred direction in
space. In Fig. 1.3 the dipolar dependence of the temperature distribution in space due to
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Figure 1.3: Dipole anisotropy of the cosmic microwave background [78].

Figure 1.4: Galactic coordinate system [82]: It is aligned in the plane of the Milky Way
galaxy (“Disc”), and the origin is the Sun. The coordinates are given as the longitude l,
which is the azimuth angle in the galactic plane that lies between 0◦(the direction to the
galactic center) and 360◦, and the latitude b that lies between -90◦ (at the South Galactic
Pole) and +90◦ (at the North Galactic Pole).

the movement of the solar system relative to the CMB is shown. If the background field
is assumed to point into the direction of the CMB dipole, the expected phase developing
of a possible signal due to Lorentz violation can be calculated. In the galactic coordinate
system which is centered on the sun and aligned in the plane of the Milky Way galaxy [76],
the dipole direction is given by (l, b) = (264.31◦ ± 0.17◦, 48.05◦ ± 0.10◦) [72], where l is the
longitude and b the latitude (see Fig. 1.4).
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Figure 1.5: Left : The equatorial coordinate system. The Earth’s equatorial plane and rotation
axis serve as references that are projected onto the celestial sphere. The origin lies in the
vernal equinox point. The coordinates are the right ascension RA, which is the azimuth
angle in the equatorial plane and lies between 0 h and 24 h, and the declination Dec, which
is the elevation angle between -90◦ and +90◦. Right : The horizontal coordinate system. The
reference plane is the local horizon on the Earth’s surface; the direction is given by the
azimuth az, which is 0◦ at the north direction, and the altitude al, which is +90◦ at the
zenith and -90◦ at the nadir. The outer circle going through the north pole, the zenith, the
south pole and the nadir is called meridian.

Equatorial coordinate system and sidereal time

The galactic coordinates can be transferred into the equatorial coordinate system, where
the Earth’s equatorial plane and rotation axis serve as references that are projected onto
the celestial sphere (see Fig. 1.5, left side). The coordinates are the declination Dec, which
is the elevation angle between -90◦ and +90◦, and the right ascension RA, which is the
azimuth angle in the equatorial plane. RA is measured relative to the apparent location
of the center of the Sun at the moment of the March equinox, a position known as the
vernal equinox point. The right ascension is often expressed in sidereal hours (0 h to 24
h) instead of degrees, because an apparent rotation of the equatorial coordinate system
takes 24 hours of sidereal time to complete, which corresponds to 23 hours, 56 minutes
and 4.091 seconds of SI time. The direction given by the vernal equinox point, i.e., RA
0◦ or 0 h, corresponds to the X̂-axis in the coordinate system shown in Fig. 1.1. As
the position of the vernal equinox point on the celestial sphere changes slightly due to
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the precession of the Earth’s axis, one has to give a reference time together with this
system. Commonly used is the time known as J2000, which is 12:00 UT (Universal Time,
earlier: Greenwich Mean Time) on 2000 January 1. By use of Ref. [54] the direction of
the CMB dipole in equatorial coordinates is given as (RA 11 h 11 min 57 s, Dec -7◦ 13’ 14”).

To get the angle α between the CMB dipole and the magnetic field of our experiment, the
dipole coordinates have to be converted into the horizontal coordinate system, where the
reference plane is given by the Earth’s local horizon. The coordinates are defined by the
azimuth angle az, which is 0◦ at north direction, and the altitude al, which is +90◦ at the
zenith and -90◦ at the nadir (see Fig. 1.5, right side). Given in this reference system, the
direction of the CMB dipole depends on the point in time and the position on the Earth’s
surface. For our experiment the position is the BMSR-2 in Berlin, which lies at northern
latitude 52.516◦= 52◦ 31’ and eastern longitude 13.320◦ = 13◦ 19’ [79]. With the help of
Ref. [20] one can now determine the direction of the CMB dipole in horizontal coordinates
at BMSR-2 for certain points in time. Then the angle α can be calculated as

cos(α) = cos(azCMB − azB) · cos(alCMB) ,

where azCMB and azB = 28◦ are the azimuth of the CMB dipole and the magnetic field,
respectively, and alCMB is the altitude of the CMB dipole. The altitude of the field is zero,
because the field vector lies inside the horizontal plane. The angle was calculated for a
period of 24 hours at intervals of 2 hours, starting at t0,1, the beginning of the first one
of the clock-comparison measurements that are described in Chap. 4. The cosine of α is
shown in Fig. 1.6. One can see that the CMB dipole and the field are directed such that the
sensitivity for an anomalous coupling between spins and CMB background is about 80% of
the maximum possible sensitivity.

1.3 Experimental searches for Lorentz violation

The sidereal modulations of atomic transition frequencies predicted by the SME for the
case of Lorentz violation could be measured in high-precision experiments at the low-energy
scale. A famous experiment that can be interpreted as a search for Lorentz violation was
the Michelson-Morley experiment performed in 1887, that was looking for a change in the
speed of light under rotation [51]. The aim of this experiment was to prove the existence of
the ether. Michelson and Morley measured the speed of light via interference of two light
beams passing through two perpendicular arms of a rotatable interferometer (the Michelson
interferometer). Today, modern Michelson-Morley-type experiments exist (see, for example,
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Figure 1.6: Cosine of the angle α between the spin quantization axis (magnetic field ~B0)
and the CMB dipole direction ε̂ over a period of 24 hours (see Fig. 1.2). t0,1 is the starting
time of the first one of the clock-comparison measurements described in Chap. 4, i.e., on
2009 March 21 at 21:25 GMT (22:25 Berlin time).

[31]), which measure the resonance frequency of a cavity as its orientation changes with
respect to a stationary frequency standard. These experiments are sensitive to the SME
parameters for the photon.

The experiment presented in this work belongs to the group of clock-comparison experi-
ments: the spin precession frequencies of 3He and 129Xe nuclear spins are compared while
the spin quantization axis rotates together with the Earth in respect to the fixed stars.
Therefore, both noble gases are filled into a 6 cm diameter spherical glass cell, and the
free Larmor precession is detected with the help of SQUID4 sensors inside a magnetically
shielded room, the BMSR-2 (Berlin Magnetically Shielded Room) at the Physikalisch-
Technische Bundesanstalt (PTB) in Berlin. By measuring at low pressures (in the order
of mbar) and low magnetic field, it is possible to reach transverse spin relaxation times
of several hours (see Chap. 2.5.2), and hence to observe the free precession signal over a
period of approximately 1 day. As the weighted 3He/129Xe frequency (or phase) difference,
∆ω = ωhe − γhe

γxe
ωxe, is considered, the influence of external magnetic fields is canceled, and

one gets sensitive to possible Lorentz-violating effects concerning the neutron. Other exam-
ples for clock-comparison experiments, that are sensitive to neutron and proton parameters

4SQUIDs (Superconducting Quantum Interference Devices) are highly sensitive detectors for magnetic flux
changes.
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of the SME, are the 3He/129Xe maser and the K-3He co-magnetometer that will be presented
in Sec. 1.3.1 and 1.3.2. Furthermore, the most sensitive measurement so far in the electron
sector is introduced in Sec. 1.3.3.

1.3.1 3He/129Xe maser

Figure 1.7: Setup of the 3He/129Xe maser experiment [5].

The Walsworth group at Harvard University uses 3He and 129Xe gas in a clock-comparison
experiment to constrain the SME parameters for the neutron [7]. The difference to our
experiment is that they do not measure free spin precession, but operate 3He and 129Xe as
a two-species maser. The setup is shown in Fig. 1.7: The dual noble-gas maser sits inside a
homogeneous magnetic field of ≈ 3 Gauss that is provided by a solenoid, and is surrounded
by a three-layer magnetic shielding. The maser cell consists of two glass chambers, which
are named the pump and the maser bulb, and is filled with 129Xe at a pressure of about
100-200 Torr, 3He at about 1100-2400 Torr and N2 as buffer gas at 60-100 Torr. In the
pump bulb the gases are spin polarized by means of spin-exchange optical pumping (SEOP,
see Chap. 2.2.2) with Rubidium. The D1 transition of Rubidium is excited by a 795 nm
circularly polarized laser beam. The polarized gas atoms then diffuse into the maser bulb,
where maser oscillations are maintained with the help of two resonant circuits for the 3He and
129Xe Larmor frequencies of≈ 10 kHz and≈ 3.5 kHz, respectively. The resonant coils provide
positive feedback to these transitions, so that the 3He and 129Xe spin ensembles perform
continuous and independent maser oscillations. The static magnetic field is stabilized via
active feedback by phase-locking the 129Xe maser to a stable frequency standard, while
the free-running 3He maser serves as a sensitive probe for Lorentz-violating interactions.
Therefore, the relative phases and Larmor frequencies of both masers are monitored while the
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spin quantization axis rotates about the Earth’s axis with respect to a hypothetical Lorentz-
violating background field. The expected sidereal variation according to the Standard Model
Extension takes the from

δνHe = δνX cos(ΩEt) + δνY sin(ΩEt) ,

where ΩE is the Earth’s rotation frequency, and δνX(Y) represents the effect of the Lorentz-
violating couplings on the 3He maser frequency (with the 129Xe maser acting as co-
magnetometer) and is proportional to the SME parameter b̃nX(Y). In total, 90 days of data
that was taken during 3 measurement periods was used to extract a limit for b̃nX(Y). For
each one-sidereal day run a model that contained at least 7 free parameters was fitted to
the data using a linear least-squares routine. Besides the Lorentz-violating terms of the
above equation, the model consisted of a phase offset, a linear term, as well as quadratic
and maser amplitude-correlated phase drifts. The total weighted means and uncertain-
ties were then formed from all data sets. These values were used to extract the mean
Lorentz-violating frequency shift of R ≡

√
δν2

X + δν2
Y = 53± 45 nHz, which corresponds to

b̃nJ ≡
√

(b̃nX)2 + (b̃nY)2 = (6.4± 5.4) · 10−32 GeV [6], where the error is the 1-σ error.

1.3.2 K-3He Clock-comparison experiment

The so far most sensitive experiment that constrains the Lorentz violating parameter b̃J
for the neutron and the proton is accomplished at the group of M.V. Romalis at Prince-
ton university [14]. In this experiment, K and 3He atoms are used in a co-magnetometer
configuration. The setup is shown in Fig. 1.8: The whole apparatus is positioned inside an
evacuated bell jar which sits on a rotary platform. The heart of the experiment is the 2.4 cm
diameter spherical cell filled with 9.4 amagats of 3He, 29 Torr of N2 as buffer gas, and a
drop of K metal. A circularly polarized laser beam optically pumps the K atoms, which
then transfer their polarization to the 3He atoms via spin-exchange collisions. The cell sits
inside a vacuum chamber and is magnetically and thermally shielded. Outside the shielding
the optical elements are arranged. An applied magnetic field in z-direction, i.e., coaxial with
the polarized spins, can be tuned such that it cancels the magnetic field experienced by
the K atoms due to the 3He magnetization and external fields. Hence the K magnetome-
ter operates at quasi zero field (at the “compensation point”), and is therefore sensitive to
anomalous non-magnetic spin interactions. The measured quantity in this experiment is the
polarization of the K atoms in x direction P e

x , which is detected optically with the help of
a probe laser in x-direction. At the compensation point it is to a good approximation given
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Figure 1.8: Experimental setup of the K-3He comagnetometer.

by

P e
x =

γeP
e
z

Rtot
(βN

y − βe
y +

Ωy

γN
) , (1.31)

where βN
y and βe

y are the anomalous background fields in y-direction that couple to the 3He
nuclear and K electron spin, respectively, P e

z is the K electron spin polarization in z direction,
Rtot the K relaxation rate, γe and γN the gyromagnetic ratios for the electrons and the
3He nuclei, respectively, and Ωy the rotation rate of the apparatus. The co-magnetometer
also acts as a very sensitive gyroscope that sees a sinusoidal signal when the platform is
rotating. To remove this and other unwanted background effects, the sidereal oscillations
resulting from a 180◦ reversal of the apparatus are measured. The position is changed
between the NS- and the EW-orientation every 22 seconds; the signal is recorded while
the apparatus is stationary at each position. From 143 days of data taking the constraints
on the Lorentz-violating parameters are measured to be b̃nX = (0.1 ± 1.6) · 10−33 GeV,
b̃nY = (2.5 ± 1.6) · 10−33 GeV and b̃pXY < 6 · 10−32 GeV, with the uncertainties being the
1σ-errors.

1.3.3 Spin polarized torsion pendulum

An experiment that searches for Lorentz violating effects in the electron sector is the
one carried out by the Eöt-Wash group at the university of Washington, where a spin



1.3. EXPERIMENTAL SEARCHES FOR LORENTZ VIOLATION 17

Figure 1.9: The Eöt-Wash torsion pendulum [30]: It consists of 4 octagons, each made out
of 4 AlNiCo (light green) and 4 SmCo5 magnets (dark blue). Upper left: top view of a
single octagon; the arrows with filled heads show the relative densities and directions of the
electron spins. Lower right: The pendulum is surrounded by a magnetic shield (shown cut
away) that supports 4 mirror plates (light gold) that are used to monitor the twist of the
pendulum. The arrows with open heads show the direction of ~B; the outer magnetic field is
negligibly small.

polarized torsion pendulum is used to search for new interactions that couple to the
electronic spin [30]. The pendulum is suspended from a 75 cm long tungsten fiber inside
of a vacuum vessel that sits on a turntable. Magnetic fields and gradients are reduced
by a set of Helmholtz coils and 4 layers of mu-metal shielding. Torques on the pendulum
are monitored by a highly sensitive optical autocollimator system. The pendulum is
made out of four octagonal rings that consist of two different types of magnets (SmCo5

and AlNiCo), with four SmCo5 magnets on the one and four AlNiCo magnets on the
other side of each ring (see Fig. 1.9). To minimize any magnetic interactions, both
types of magnets were equally magnetized by sending appropriate current pulses through
coils that were temporarily wound around the octagons. The magnetization was set to
be in the angular direction of the octagons, such that the external magnetic field is
negligibly small. In AlNiCo, as in most ferromagnetic materials, the magnetic field is
almost entirely produced by the electronic spins, while in SmCo5 a great part of the
field comes from the orbital magnetic moment. This leads to the desired fact that one
gets a substantial number of about 1023 polarized electrons without having an external field.

The coupling of the electronic spin σe to some Lorentz-violating background field b̃e is
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described by the interaction potential

V = −~σe · ~̃be . (1.32)

Thus, when the turntable rotates, the potential (1.32) produces a torque on the pendu-
lum that can be detected by measuring its induced twist. This experiment constrained the
Lorentz violating parameters b̃X and b̃Y for the electron to be less than 1.4 · 10−31 GeV at
the 2-σ level.



Chapter 2

Theory of spin precession

This Chapter deals with the theory that is important for this work. In Sec. 2.1 the equations
describing an atom with spin in a static, external field are repeated. Afterwards, in Sec. 2.2,
the optical pumping of 3He and 129Xe that leads to a nuclear spin polarization will be
explained. Sec. 2.3 is about the Larmor precession of magnetic moments in a field, which is
described by the Bloch equations. In Sec. 2.4 the equations are given for the dipolar field
that is produced by spin-polarized atoms. Finally, in Sec. 2.5, the relaxation mechanisms
that lead to a decay of the polarization are described.

2.1 Spins in a magnetic field

Let us consider an atom with nuclear spin ~I, where |~I| =
√
I(I + 1)h̄ with the nuclear spin

quantum number I that can take integral or half-integral values. The spin is associated with
a (nuclear) magnetic moment given by

~µ = γ ~I, (2.1)

where γ = g µN
h̄ is the gyromagnetic ratio with the nuclear g-factor g, the nuclear magneton

µN = eh̄
2mp

and the reduced Planck constant h̄ = h
2π [57]. If the spin quantization axis is

given by the z-axis, the z-component of the magnetic moment is given by

µz = γ h̄ mI, (2.2)

where mI = −I,−I + 1, · · · , I − 1, I is the projection of the nuclear spin on the z-axis.

In a magnetic field ~B = B0 êz the magnetic moment interacts with the field which leads to

19
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a splitting in the energy levels, the so-called Zeeman effect:

EZeeman = −µz B0 = −γ h̄ mIB0. (2.3)

In our experiment the noble gases 3He and 129Xe are used that both have nuclear spin I = 1
2

(and electron spin J = 0). The projection mI then can take the values +1
2 (“spin-up”)

and −1
2 (“spin-down”), i.e., the z-component of the nuclear spin is directed parallel or anti-

parallel to the magnetic field. As the g-factors and therewith the gyromagnetic ratios of both
3He and 129Xe are negative, the state with mI = −1

2 is energetically more favorable. The
energy difference ∆E of the spin-up and spin-down state and the corresponding transition
frequency, the so-called Larmor frequency ωL, are given by

∆E = γ h̄ B0,

ωL = γB0. (2.4)

2.2 Hyperpolarization through optical pumping

In thermal equilibrium the population numbers of the Zeeman levels are distributed accord-
ing to the Boltzmann statistics. This means that for a given temperature T in a magnetic
field B0, the fraction of the population numbers for a two-level system such as 3He or 129Xe
is given by

N+

N−
= exp

(
−E+ − E−

kT

)
= exp

(
−γ h̄ B0

kT

)
, (2.5)

where (E+ − E−) is the energy difference of Eq. 2.4, k the Boltzmann constant and N+(−)

the population numbers of the spin-up and the spin-down state, respectively. This unequal
distribution of different spin states leads us to the definition of the spin polarization of an
atom with spin F = I + J :

P :=
1
F

∑
FmF ·N(mF)∑

FN(mF)
, (2.6)

where N(mF) is the population number of the state with the magnetic quantum number
mF. For 3He and 129Xe with F = I = 1/2 the (nuclear spin) polarization is equal to

P (I =
1
2

) =
N+ −N−
N+ +N−

. (2.7)

At a field B0 of 1 Tesla and a temperature of 300 K, the so-called thermal or Boltzmann
polarization for 3He or 129Xe is in the order PB ≈ 10−6. Much higher degrees of polarization,
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the so-called hyperpolarization, can be reached by means of optical pumping, where momen-
tum is transferred to the atom from a resonant light source (usually a laser). In our group
3He is polarized with the method of metastability exchange optical pumping (MEOP), where
polarization degrees of up to 90% can be reached. Xenon, in contrast, can be polarized by
spin exchange optical pumping (SEOP), where one first polarizes 87Rb atoms which then
transfer their momentum to the 129Xe atoms via spin exchange collisions. Both methods
will be explained in the next sections; detailed descriptions can be found in [84] and [3].

2.2.1 Metastability exchange optical pumping

At the Mainz polarizer, the optical pumping of 3He is done at low pressures of about 1
mbar. A weak gas discharge excites the atoms from the ground state into the metastable
23S1 state. From there the atoms are pumped into the 23P0,1,2 states. In total nine hyperfine
structure lines exist between these two levels, that are named C1 to C9 in the order of
increasing energies [53]. A weak homogeneous field of roughly 10 G leads to a splitting of
the hyperfine levels into the Zeeman sub-levels with quantum number mF. For the optical
pumping the lines C8 and C9, that correspond to transitions from the 23S1 into the 23P0

state, are the preferred transitions. In the following, the pumping process on the C9-line
will be explained with the help of Fig. 2.1.

Right-circularly polarized laser light (σ+ light) with λ = 1083.03 nm excites transitions
into the 23P0 state with ∆mF = +1. During the lifetime of this state of τ = 97.8 ns [21],
collisions lead to radiationless transitions into the other 23P levels, that are approximately
equally occupied. So the following de-excitation happens almost isotropically into the Zee-
man levels of the 23S1 state. Repeated absorption and spontaneous re-emission then leads
to a redistribution of the population numbers towards increasing mF. This corresponds to a
polarization of the electronic spin. The electronic and the nuclear spin are coupled via the
hyperfine interaction in the 23S1 level. The characteristic time constant of this interaction
is τHF = 1/A = 1/(4.493 GHz) = 2.2310−10 s [65], which is much shorter than the lifetime τ
of the 23S1 state (see above). At first the polarized atom is still in the metastable state, but
during the long lifetime of the 23S1 state the atom collides with unpolarized atoms in the
ground state. Some of these collisions lead to an exchange of the excitation energy between
the colliding atoms, while the nuclear spins stay unchanged. This can be expressed through
the following reaction:

3He∗(A,mF) +3 He(B,mI = −1/2) ⇀↽ 3He(A,mI = +1/2) +3 He∗(B,mF − 1) , (2.8)
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Figure 2.1: Metastability exchange optical pumping (MEOP) of 3He: From the metastable
23S1 state, that is excited by a gas discharge, the atoms are pumped to 23P0 with the help
of resonant σ+ light. Repeated absorption and isotropic re-emission leads to a redistribu-
tion of the population numbers towards increasing mF. Via the hyperfine interaction the
electronic polarization is transferred to the nucleus. Exchange collisions between metastable
and ground state atoms then lead to a nuclear spin polarization in the ground state.

where 3He∗ is the excited atom, and (A) and (B) define the nuclei of the atoms. As there
are more atoms in the states with higher mF, i.e., N(mF) > N(mF − 1), the reaction
preferentially happens from the left to the right side. So the ground state atoms go from
mF = −1/2 to mF = +1/2, i.e., the polarization according to Eq. (2.7) is positive. At the
Mainz polarizer, polarization degrees of typically 70% are reached.

2.2.2 Spin exchange optical pumping

The PTB Berlin features a polarizer for 129Xe that we used for our experiments in the
Berlin magnetically shielded room (BMSR-2). In the following the method of spin exchange
optical pumping (SEOP) will be explained using the example of the PTB polarizer. A
detailed description can be found in [40]. In SEOP, one firstly polarizes the electron shell of
an alkali atom (here: Rubidium), and then the polarization is transfered from the atomic
shell of the alkali atom to the 129Xe nucleus via the spin-exchange interaction. A scheme of
the PTB polarizer is shown in Fig. 2.2. It works in a continuous-flow-mode, i.e., the gases
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are pumped through the system continuously, controlled by digital mass flow controllers
(MFC). The gas mixture, that is cleaned from oxygen and water through filters1, typically
contains 100 mbar of isotopically enriched Xe (91.2 % 129Xe), 200 mbar of N2 and 4.7
bar of 4He (the latter ones are used as buffer gases). It flows through the pumping cell, a
cylindrical Duran glass cell of volume V = 30 cm3, that contains a droplet of Rubidium
metal. The cell is heated to about 150◦C to reach a Rb vapor pressure such that the Rb
can be regarded as optically thick. The gas is optically pumped by circularly polarized laser
beams (about 50 W coming from one side and 70 W from the other) that excite the D1

transition (λ = 794.8 nm) of Rubidium. The comparatively low xenon pressure is chosen
because the depolarization rate for Rb-Xe collisions is quite high. To achieve a higher total
pressure and therewith a pressure broadening of the Rb absorption line so that it fits better
to the spectral linewidth of the laser, 4He is used as buffer gas. The second buffer gas,
nitrogen, serves as quenching gas to avoid radiation trapping: during collisions with the
nitrogen molecules the excited alkali metal atoms can deexcite nonradiatively instead of
reradiate a photon. This is desirable because the reemitted photons are unpolarized and
can pump unwanted transitions and therewith lead to depolarization. Another advantage
lies in the fact that the nonradiative deexcitation happens with equal probability into both
ground state levels, whereas the deexcitation through photon emission prefers the unwanted
branch. This advantages have to be weighted against the disadvantage of nitrogen breaking
up the Rb-Xe van der Waals molecules and so slowing down the spin transfer.

When the Rubidium atom has been polarized, its electronic spin polarization can be trans-
fered to the 129Xe nucleus. This can happen either during binary collisions or during the
lifetime of a van der Waals molecule. The relevant interaction is the nuclear-electron spin-
exchange interaction

VIS = α~I · ~S, (2.9)

that couples the nuclear spin ~I of the xenon atom to the electron spin ~S of Rubidium. The
coupling constant α depends on the internuclear separation R between the Rb and the Xe
atom. The cross-section for the spin-exchange interaction is much higher for xenon than
for helium [25]. Therefore, 129Xe can be polarized much faster with SEOP than 3He. This
is the reason why in our group the metastable optical pumping method is used for 3He.

After flowing through the pumping cell, the polarized 129Xe can be separated from the buffer
gases in a liquid-nitrogen Dewar: the heavier 129Xe atoms are frozen out, while the other

1OxiSorb from the company MESSER
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Figure 2.2: Scheme of the PTB 129Xe polarizer: The gases N2, 129Xe and 4He are directed
through filters to mass flow controllers (MFC) that provide the desired mixing ratios. The
gas mixture is flowing through the pumping cell that contains a droplet of Rb metal and
is heated to about 150◦ C. Circularly polarized laser beams that are in resonance with the
D1 transition of Rubidium are irradiated from both sides to optically pump the Rb atoms,
which then transfer the polarization to the 129Xe atoms via spin exchange collisions. In a
liquid-nitrogen (LN) Dewar, the polarized 129Xe atoms are frozen out and thus separated
from the buffer gases (N2 and 4He).
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gases are released into the ambient air. Then the 129Xe can be unfrozen and filled into the
measurement cell. To reach a pressure of about 1 bar in the measurement cell (volume circa
100 ml), one has to freeze out for approximately one hour. The polarization after the freezing
and unfreezing, where about half of the polarization is lost, amounts to 15± 2%.

2.3 Bloch equations

The dynamics of a magnetic moment in an external magnetic field is described in detail in
[70] and will be summarized here. The equations of motion for a classical magnetic moment
~m in a magnetic field ~B, the Bloch equations, are given by:

~̇m(t) = γ ~m(t)× ~B(t) , (2.10)

where γ is the gyromagnetic ratio. In [70] it is shown that a quantum mechanical treatment
of an atomic magnetic moment ~̂µ = γh̄~̂I, i.e., solving the Schroedinger equation for the
Hamiltonian Ĥ = −~̂µ · ~̂B, leads to the same result as the classical equation (2.10). The
classical magnetic moment vector ~m then just has to be replaced by the expectation value
〈~̂µ〉. Eq. (2.10) not only holds true for the expectation value of the magnetic moment of a
single spin, but even for the expectation value of the total magnetic moment,

〈 ~̂m〉 =
∑
〈~̂µ〉 , (2.11)

if we assume that the single spins do not interact with each other. To simplify matters, the
classical notation will be used in the following.

For a spin-polarized gas, the magnitude of the magnetic moment is proportional to the po-
larization P and the number of gas atoms, N = pV

kT (with pressure p, volume V , temperature
T and Boltzmann constant k):

m = N P µ = N P γ I h̄ . (2.12)

Another quantity often used is the magnetization ~M , that is defined as the quantity of
magnetic moment per unit volume V :

~M =
1
V
~m =

1
V

∑
~µ . (2.13)

If the (static) magnetic field is pointing to the z-direction, ~B = B0 êz, and the magnetic
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moment is tilted by an angle α relative to the magnetic field axis, i.e.,

~m =

 m sinα cosϕ
m sinα sinϕ
m cosα

 (2.14)

with an arbitrary azimuth angle ϕ, it follows from Eq. 2.10 that

~̇m = −γB0m sinα êϕ , (2.15)

where êϕ is the normal vector in azimuthal direction. Eq. 2.15 means that the magnetic
moment ~m is rotating clockwise, i.e., with a negative sense of rotation, around the magnetic
field axis (z-axis) with the angular frequency ωL = |γB0|. This rotation is called Larmor
precession and the corresponding frequency the Larmor frequency. The energy ∆E = h̄ ωL

corresponds to the energy difference between the two Zeeman levels according to Eq. 2.4.

An easy way to tilt the magnetic moment vector away from the axis of the guiding field
~B0 is to switch on an additional, constant field ~B1 perpendicular to ~B0. If the switching
operation of the ~B1 field happens sufficiently fast (non-adiabatic field change), i.e.,

tswitch �
2π
ωL
, (2.16)

the magnetic moment cannot follow the magnetic field vector and then starts to precess
around the new field axis, ~B0 + ~B1, under the angle α = arctan B1

B0
. If, by contrast, the

magnetic field changes slowly (adiabatic field change), i.e.,

tswitch �
2π
ωL
, (2.17)

the magnetic moment vector follows the field and is then aligned along the new field axis,
~B0 + ~B1, without precessing. For our experiments at PTB Berlin we used this method of
switching on an additional field to generate spin precession (see Chap. 3.2 and 4.1.4).

Another way to reach a tilting of the magnetic moment, that is used for example in magnetic
resonance imaging, is by irradiating an additional magnetic field ~B1(t) that is rotating2 in

2In practice one usually does not use a rotating but an alternating field Bx(t) = Bx0 cosωrt. This can be
broken down into two rotating components, one rotating clockwise and the other counterclockwise. One
can show that the component rotating in the opposite sense as the precessing magnetic moment can be
neglected.
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the plane perpendicular to the static field (here the x-y-plane) with angular frequency ωr,

~B1(t) = B1(êx cosωrt+ êy sinωrt) . (2.18)

The Bloch equations (2.10) with ~B(t) = ~B0 + ~B1(t) then can be solved using a coordinate
system rotating around the z-axis at frequency ωr (see [70]). For the simplest case that the
~B1 field rotates in resonance with the Larmor frequency, ωr = γB0, the tilting angle is given
by

α = γ B1 tirr , (2.19)

where tirr is the duration of irradiation of the ~B1 field. After the magnetic moment has
been tilted (either by a fast field switch or by irradiating a rotating field), it precesses freely
around the axis of the ~B0 field. Due to different relaxation processes that are described in
Sec. 2.5, the longitudinal component of the magnetic moment tends to reach its equilibrium
value m0, while its transverse components tend to vanish (the magnetic moment will wish to
be parallel to the static ~B0 field). Therefore, we have to extend Eq. (2.10) by the following
relaxation terms:

ṁx = γ (~m× ~B)x −
mx

T2
, (2.20)

ṁy = γ (~m× ~B)y −
my

T2
, (2.21)

ṁz = γ (~m× ~B)z +
m0 −mz

T1
. (2.22)

The precession signal can be detected with a so-called pickup coil pair, whose axis is oriented
perpendicular to the ~B0 axis (in our experiment SQUID detectors are used, see Sec. 3.2). The
magnetic moment induces a periodically variating current in the pickup coils. The detected
signal is referred to as the FID (Free-Induction-Decay) signal.

Ramsey-Bloch-Siegert shift

Such fields as in Eq. (2.18) that rotate in the plane perpendicular to the static B0-field
have an influence on the Larmor precession frequency as can be deduced from the results of
Ramsey [64] who generalized the results of Bloch and Siegert [11]. If the rotation frequency,
ωr, is not exactly equal to the Larmor frequency ωL of the atoms, the precession frequency
is shifted according to

∆ωRBS =

{
+
√

(ωL − ωr)2 + ω2
1 − (ωL − ωr) for ωL < ωr ,

−
√

(ωL − ωr)2 + ω2
1 − (ωL − ωr) for ωL > ωr ,

(2.23)
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where ω1 is related to the magnitude of the B1-field as ω1 = γ B1.

2.4 Magnetic field produced by spin-polarized atoms

A homogeneous distribution of magnetic moments in a spherical cell produces a magnetic
dipole field outside the cell [37], that is described by the formula

~B(~r) =
µ0

4π
3r̂(r̂ · ~m)− ~m

r3
. (2.24)

If the magnetic moments are oriented along the z-axis, i.e., the dipole axis is equal to the
z-axis, the z-component of the magnetic field outside the cell at the distance r from the
center of the cell is given by

Bz(r) =
µ0

4π
m
(
3cos2Θ− 1

)
r3

for r > RZ , (2.25)

with RZ being the cell radius, µ0 the vacuum permeability, m = NPγIh̄ the magnitude of
the magnetic moment of the 3He or 129Xe atoms (see Eq. (2.12)) and Θ the angle between
the z-axis and the line that connects the cell center and the point of measurement. For
Θ = 0, i.e., for a point on the z-axis, and by using Eq. (2.12) and the ideal gas law, one can
write the above equation as

Bz(r) =
pV

kT

2µ0PγIh̄

4πr3
, (2.26)

where p is the pressure in the cell, V the volume of the cell, k the Boltzmann constant,
T the temperature, P the degree of polarization, γ the gyromagnetic ratio and I = 1

2 the
nuclear spin of the gas atoms. So the magnetic field produced by a spin-polarized gas is
proportional to the γ-ratio of the species, the polarization P , and the number of gas atoms
N , and it decreases with the distance r according to 1

r3 .

Demagnetization field

For an ideally spherical cell the average magnetic field produced by the polarized spins inside
the cell is zero, because the fields of the single magnetic moments cancel each other [81].
This has also been verified in a calculation with “Mathematica”. Due to the fact that in
reality the measurement cell is not an ideal sphere but has an appendix, for example, the
spins of each species (3He or 129Xe) in the appendix produce a so-called demagnetization
field, ~Bdemag. So the field inside a non-spherical cell can not be regarded as zero anymore.
In a simple model one can view the main part of the cell as an ideal sphere A, and the
appendix as a second small sphere B (see Fig. 2.3). The magnetic moment of the polarized
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Figure 2.3: Demagnetization field produced by the magnetic moment in the cell’s appendix,
approximated as a second small sphere B. It can be seen that the field in the spherical
part of the cell depends on if the cell’s appendix is aligned parallel or perpendicular to the
magnetic field.

gas in volume B now produces a magnetic dipole field in volume A, and, the other way
around, the gas in volume A produces a field in volume B. Looking at the magnetic field
lines in Fig. 2.3, one can see that the size and the orientation of the demagnetization field
depends on the orientation of the appendix relative to the magnetic holding field ~B0. When
the magnetic moment of 3He (129Xe) in volume A is precessing around the main field B0,
also the moment in volume B is precessing around B0. Because of field inhomogeneities, the
precession frequency in volume A differs slightly from the precession frequency in volume
B. This leads to unwanted effects in the weighted frequency (or phase) difference which is
considered in our experiment (see Chap. 4.3.3).

2.5 Relaxation

Due to different mechanisms that will be explained in the following sections, the polarization
P and with it the magnetic moment is not stable in time, but it decreases exponentially
until it reaches the equilibrium (Boltzmann) polarization PB,

P (t) = (P (t0)− PB) exp(−t/T1) + PB . (2.27)

This process is called relaxation, and the corresponding decay time is the so-called longi-
tudinal relaxation time T1 that will be discussed in the following section. In Sec. 2.5.2 I
will deal with the transverse relaxation time T ∗2 which is the decay time of the transverse
polarization, i.e., the part of the magnetic moment that is precessing around an external
magnetic field.



30 CHAPTER 2. THEORY OF SPIN PRECESSION

2.5.1 Longitudinal Relaxation

The relaxation mechanisms that are relevant for this work are the gradient relaxation
(T1,grad), as well as the relaxation due to collisions of the noble gas atoms with the wall
(T1,wall) and with each other due to binary or van der Waals collisions (T1,bin and T1,vdW).
So the total longitudinal relaxation time T1 is given by:

1
T1

=
1

T1,grad
+

1
T1,wall

+
1

T1,bin
+

1
T1,vdW

. (2.28)

The single terms will be explained in the following.

Wall relaxation

During collisions of the polarized noble gas atoms with the walls of the glass cell, the
dipolar coupling as well as the Fermi-contact interaction with small para- or ferromagnetic
impurities in the glass matrix can lead to spin relaxation. This can happen either during the
adsorption of the atoms at the glass wall, or during the diffusion into the glass matrix. The
latter process can be deeply suppressed by using quasi impermeable aluminosilicate glass, as
the GE-180 glass3 that was used for our cells. The wall relaxation rate 1/T1,wall is pressure
independent and proportional to the surface-to-volume ratio of the cell:

1
T1,wall

∝ S

V
. (2.29)

A detailed description of the longitudinal relaxation of hyperpolarized 3He in glass cells can
be found in [66], [67] and [23].

Gradient relaxation

If a polarized noble gas atom moves through an inhomogeneous magnetic field, transverse
gradients generate a temporally fluctuating magnetic field in the rest frame of the atom.
This field can cause spin flips if its Fourier spectrum contains components near the Larmor
frequency ωL = γ · B. Let the magnetic holding field ~B be oriented in x-direction (to be
consistent with the coordinate system of the shielded room as shown in Fig. 3.6). Then
according to [16] the longitudinal relaxation rate in a spherical volume due to the transverse

3GE-180 is produced by “General Electric” and mainly consists of SiO2 (60%), BaO (18%), Al2O3 (14%)
and CaO (7%).
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field gradients ~∇B1,y = (∂B1,y

∂x ,
∂B1,y

∂y ,
∂B1,y

∂z ) and ~∇B1,z = (∂B1,z

∂x ,
∂B1,z

∂y ,
∂B1,z

∂z ) is given by

1
T1,grad

= 2D
|~∇B1,y|2 + |~∇B1,z|2

B2
0

×
∑
n

1
(x2

1n − 2)(1 +D2x4
1n(γB0)−2R−4)

. (2.30)

Here D is the diffusion coefficient, ~B0 = B0 · êx the average homogeneous field in x-direction,
γ the gyromagnetic ratio, R the cell radius and x1n (n = 1, 2, 3, ...) are the zeros of the
derivative of the spherical Bessel function ( d

dxj1(x1n) = 0). ~B1(~r) is the deviation of the
local field from the average homogeneous field ~B0, and its mean value is assumed to be
zero. The diffusion coefficient for 3He and 129Xe in a gas mixture (GM) with helium, xenon
and nitrogen, which in our experiment is used as buffer gas to suppress the van der Waals
relaxation (see below), is given by [52]:

1
DGM

He

=
(
pHe

DHe
+

pXe

DHe in Xe
+

pN2

DHe in N2

)
1
p0

T
3/2
0

T 3/2
,

(2.31)

1
DGM

Xe

=
(
pXe

DXe
+

pHe

DXe in He
+

pN2

DXe in N2

)
1
p0

T
3/2
0

T 3/2
,

where pHe, pXe and pN2 are the 3He, 129Xe and nitrogen partial pressures, DHe/Xe is the
diffusion coefficient of pure 3He or 129Xe gas at standard conditions4 (p0 = 1013.25 mbar,
T0 = 273.15 K), and DX in Y the diffusion coefficient of species X in species Y for pX → 0.
The different coefficients for a pressure of 1 mbar are listed in Tab. 2.5.1.
If one considers, according to [16], the characteristic diffusion time τd = R2/D and the char-
acteristic precession time τp = 1/ωL, Eq. (2.30) can be approximated by simpler expressions,
depending on the size of the ratio

τd

τp
=
R2ωL

D
∝ pB0 . (2.32)

For τd/τp � 1, i.e., when the precession time is long compared to the diffusion time, which
is the case for low pressures and low magnetic fields (the regime of motional narrowing), we

4There exist different conventions about the standard conditions. In the context of spin relaxation and
chemical shifts the unit amagat (amg) is often used, which is a unit of number density that is defined as
the number of ideal gas molecules per unit volume at 1 atm (= 101.325 kPa) and 0◦C (= 273.15 K). In this
work these values are taken as standard pressure and temperature.
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get

1
T1,grad

≈ 8R4

175D
γ2 (|~∇B1,y|2 + |~∇B1,z|2) . (2.33)

On the other hand, at high fields and high pressures, when the precession time is short
compared to the diffusion time, i.e., τd/τp � 1, the following approximation can be used:

1
T1,grad

= D
|~∇B1,y|2 + |~∇B1,z|2

B2
0

. (2.34)

So one can see that in the upper case, the longitudinal relaxation rate is proportional to 1
D

and hence proportional to the pressure, while in the lower case 1
T1,grad

is inversely proportional
to the pressure. Furthermore, in the motional narrowing regime, the T1 relaxation depends
on the absolute field gradients, while in the other case it depends on the relative gradients.

Binary and van der Waals relaxation

Another relaxation mechanism arises during collisions between the 3He or 129Xe atoms,
when the magnetic dipole-dipole interaction couples the nuclear spins to the relative angular
momentum of the noble gas atoms. As a result, nuclear spin polarization is lost to orbital
angular momentum. This can happen either during binary collisions or during the lifetime
of weakly bound van-der-Waals molecules. The latter are dominating for the heavier, polar
129Xe atoms, while for the lighter 3He atoms only the binary collisions play a role. According
to [56] the binary relaxation rate for 3He at pressure p and temperature T is given by

1
THe

1,bin

≈ 1
754 h

p

p0

T0

T
. (2.35)

where p0 and T0 are the standard pressure and temperature. For 129Xe the binary relaxation
can be found in [36]:

1
TXe

1,bin

≈ 1
56 h

p

p0

T0

T
. (2.36)

In [18] the pressure-independent van der Waals relaxation rate for 129Xe is deduced. In the
case of pure 129Xe the maximum relaxation time is

TXe
1,vdW = 4.1 h . (2.37)

Anyhow, by adding buffer gases such as helium or nitrogen, one can suppress the van der
Waals relaxation, because the buffer gas molecules can break up the Xe-Xe van der Waals



2.5. RELAXATION 33

Diff. coeff. Value ( cm2

s ) Ref. Temperature (K)

DHe ≈ 1880 [52] 293
DHe in Xe ≈ 600 [59] 300
DHe in N2 ≈ 770 [59] 300
DXe ≈ 58 [28] 300
DXe in He ≈ 790 [28] 300
DXe in N2 ≈ 210 [28] 353

Table 2.1: Diffusion coefficients for 3He and 129Xe at a pressure of 1 mbar

molecules. Then we get [18]:

1
TXe in B

1,vdW

=
1/TXe

1,vdW

1 + r[B]/[Xe]
, (2.38)

where [B]/[Xe] is the ratio of the partial pressures of the buffer gas and 129Xe, and r the
breakup rate coefficient relative to the breakup rate for 129Xe molecules. For 129Xe it is
r = 1 per definition, while for N2 it was measured to be r = 1.05(8) [18].

2.5.2 Transverse Relaxation

If the transverse magnetic moment is precessing around an external field as described in Sec.
2.3, the amplitude of the precession signal decreases exponentially with the characteristic
time constant T ∗2 , the (effective) transverse relaxation time. The reason for this relaxation
is the loss of phase coherence of the single magnetic moments due to collisions of the atoms
with the walls and with each other, and due to magnetic field gradients. The T ∗2 relaxation
rate depends on the longitudinal relaxation times T1,wall, T1,bin and T1,vdW discussed in the
previous section, and on a gradient term 1/T2,grad:

1
T ∗2

=
1

T1,wall
+

1
T1,bin

+
1

T1,vdW
+

1
T2,grad

. (2.39)

Analytical expressions for the gradient relaxation rate 1/T2,grad for spherical sample cells in
a field ~B that is oriented in x-direction are derived in [16]:

1
T2,grad

=
8R4γ2|~∇B1,x|2

175D
+D
|~∇B1,y|2 + |~∇B1,z|2

B2
0

×
∑

n

1
(x2

1n − 2)(1 +D2x4
1n(γB0)−2R−4)

. (2.40)
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Here D is again the diffusion coefficient according to (2.31), ~B0 = B0 · êx the average
homogeneous field in x-direction, ~B1(~r) the deviation of the local field from ~B0, γ the
gyromagnetic ratio, R the cell radius and x1n (n = 1, 2, 3, ...) are the zeros of the derivative
of the spherical Bessel function ( d

dxj1(x1n) = 0).

Now one can introduce approximations to Eq. (2.40) as was done in Sec. 2.5.1. For the case
of motional narrowing, where τd/τp � 1 is valid, i.e., at low pressures and low magnetic
field, we get

1
T2,grad

=
4R4γ2

175D
·
(
|~∇B1,y|2 + |~∇B1,z|2 + 2|~∇B1,x|2

)
, (2.41)

whereas for τd/τp � 1, i.e., at high pressures and high magnetic field, the following equation
is valid:

1
T2,grad

=
8R4γ2|~∇B1,x|2

175D
. (2.42)

In both cases the transverse relaxation rate is inversely proportional to D and hence propor-
tional to the pressure, and it depends on the absolute field gradients. For high pressures and
high magnetic field, only the longitudinal gradient components ~∇B1,x = (∂B1,x

∂x ,
∂B1,x

∂y ,
∂B1,x

∂z )
play a role.



Chapter 3

Spin precession of 3He: Experiment

and results

In preparation of the 3He/ 129Xe clock-comparison experiments that will be dealt with
in Chap. 4, in December 2006 the spin precession of 3He alone was measured. 3He can
be used as a highly sensitive magnetometer by measuring precisely its spin precession
frequency, which is proportional to the external magnetic field (see Eq. (2.4)). The sensitive
detection and control of magnetic fields is of great importance both in the applied sector
(e.g. geomagnetic [22] or biomagnetic measurements [9]) and in fundamental physics.
An example for an application of the 3He magnetometer in fundamental research is the
measurement of the Electric Dipole Moment of the neutron (nEDM), which is a highly
sensitive probe for CP-violation [1]. In the “n2EDM” research project at the Paul Scherrer
Institut (PSI) in Villigen/CH the magnetometry with 3He is an important component. As
the experimental limit of the neutron EDM is pushed lower, fluctuations of the magnetic
field in the spectrometer region become a principal source of error. Therefore, it is of
great importance to measure the magnetic field in this region with high sensitivity. Ref.
[27] presents the proposed layout of the neutron EDM spectrometer, as well as test
measurements with a prototype of a flat 3He magnetometer vessel.

The idea for a magnetometer based on the detection of spin precession of gaseous, nuclear
spin-polarized 3He arises from Cohen-Tannoudji et al. [19], who in 1969 used a 87Rb-
magnetometer to detect the magnetic field produced by precessing 3He spins. The setup of
his experiment is shown in Fig. 3.1: Two spherical cells of 6 cm diameter, one filled with
87Rb and the other with 3He at a pressure of 4 mbar, are optically pumped by resonant,
circularly polarized light (B1 for 87Rb and B2 for 3He). They are situated in a magnetic

35
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Figure 3.1: Setup of the Cohen-Tannoudji experiment: The 87Rb and 3He atoms are optically
pumped by resonant, circularly polarized light (B1 for 87Rb and B2 for 3He). The Rb
magnetometer detects the alternating dipole field BHe cos(2πνHet) produced by the freely
precessing 3He atoms.

shielding that reduces the external magnetic noise by a factor 105. Additional compensation
coils lead to a low residual field with a field homogeneity such that the relaxation time
is no longer limited by field gradients. When the maximum polarization of 3He of about
5% is reached, an additional field ~h of 2 µG perpendicular to the 3He pumping direction
is switched on. The nuclear spins now start to precess around ~h at a Larmor frequency
νHe of about 6 mHz and thereby produce an alternating dipole field BHe cos(2πνHet) that
is seen by the Rb atoms. To measure the spin precession the transmitted light of B1 is
detected by a photomultiplier. The alternating field induces spin flips in the Rubidium that
change its absorption behavior. By irradiating an alternating magnetic field H1 cos(ωt),
with the frequency ω being near the Larmor frequency of the Rubidium atoms, one reaches
a resonant behavior that increases the sensitivity. Fig. 3.2 shows the recorded precession
signal over a period of 11 hours. In his experiment Cohen-Tannoudji already reached a
sensitivity of about 100 fT/

√
Hz and a transverse nuclear relaxation time T ∗2 of 140 min.

Our 3He magnetometer works according to the same principle, but instead of the Rb-
magnetometer SQUIDs are used as magnetic field detectors (see Sec. 3.2). The 3He atoms
are optically pumped using the MEOP method described in Sec. 2.2.1. With signal-to-noise
ratios of more than 4000 and a measured transverse spin relaxation time T ∗2 of up to 60 hours
(see Sec. 3.3), it is possible to apply the 3He magnetometer for long-term measurements with
ultra-high sensitivity (see Sec. 3.4).
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Figure 3.2: Spin precession of 3He observed by Cohen-Tannoudji in 1969.

3.1 Preparation of the measurement cells

In order to reach long T1 and therewith long T ∗2 relaxation times, one has to put some
effort in the preparation of the measurement cells. For our magnetometer cells we used
GE180 glass that in previous experiments pointed out to have good relaxation properties
[66, 67, 23]. The cells are spherical and have a diameter of 6 cm (see Fig. 3.3).
To get rid of ferromagnetic contaminations, the cells were cleaned with a 2 percent
solution of Mucasol, a cleaning agent of the company Merz that contains surfactants and
phosphates1. Afterwards the cells were baked-out at 450◦ C at a vacuum pumping station
until the vacuum reached less then 10−7 mbar. The cleaning is not only important to reach
good relaxation properties, but also to get a high efficiency during the optical pumping
process. If there are too many foreign atoms like nitrogen or oxygen in the cell, they can
reduce the density of the metastable atoms via so called quench collisions, which leads to a
reduced polarization [84].

After the cleaning process the cells were demagnetized. Therefore, they were put into a

1The cells used for the clock-comparison measurements were additionally treated with so-called “Piranha
solution” consisting of a mixture of concentrated sulfuric acid and hydrogen peroxide at the mixing ratio
7:3 [13].
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Figure 3.3: Magnetometer cell out of GE 180 glass with appendix and stopcock (left) and
filled with 3He after the sealing (right)

strong magnetic field of about 700 G that is reduced periodically to zero, whereas the
envelope of the field decreases linearly. This procedure reduces the magnetization of small
ferromagnetic particles (e.g. magnetite particles of µm sizes) in the glass [34].

The measurement of the T1 times of the cells was done with two different methods. Firstly
the cells were filled with 1 bar of polarized 3He, and T1 was measured in a nuclear magnetic
resonance (NMR) setup: The atoms were kept in a holding field of about 8 G, and every
15 minutes the spins were flipped by a small angle (α < 3◦), and the FID signal was
recorded. The amplitude, which is proportional to the polarization, was determined via
a Fast Fourier Transformation. An exponential fit to the amplitude-time data (with one
data point every 15 minutes) then gave the T1 time. The measurement typically took
several days, depending on T1. If the measured relaxation times were too low, the cells
were baked-out and demagnetized once more, which sometimes led to a significant im-
provement of T1. In total 8 cells were measured, which had T1 times between 34 and 53 hours.

In this first T1 measurement the cells were measured with appendix and stopcock and at
high pressures. For the magnetometer measurements it is better to work at low pressures
in the regime of motional narrowing (see Chap. 2.5.2). Furthermore, the stopcock could
be a handicap, because impurities could enter into the cell. For this reason we used sealed
cells that are closed to the outside. The sealing was done by strongly heating the appendix
at the point of its smallest diameter, so that the glass narrows down under the increased
air pressure. Such a sealed cell is shown on the right side of Fig. 3.3. When the first T1

measurement led to sufficient results, the cells were evacuated again and then filled with
3He at pressures between 1 and 4.5 mbar. This is the pressure regime where reasonable
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Figure 3.4: Setup for the T1 measurements of the magnetometer cells.

polarization degrees can be reached using metastability exchange optical pumping.

The second T1 measurement of the sealed cells at low gas pressures was done as follows (see
Fig. 3.4): In a homogeneous magnetic field of about 10 Gauss the 3He atoms were optically
pumped with circularly polarized laser light (λ = 1083 nm). To ignite the gas discharge that
excites the atoms to the metastable state, two ring-shaped copper electrodes were fixed at the
cell. They were part of a resonance circuit with a function generator, an amplifier and a Tesla
coil. The polarization was measured with a so called optical polarization detection (OPD)
that analyzes the circular polarization of the 668 nm fluorescence line of the weak discharge
spectrum. The degree of polarization of the 668 nm light is proportional to the nuclear spin
polarization, with a pressure-dependent gauge factor given in [47]. The functioning of the
OPD is described in detail in [26]. After the first polarization measurement the cell was left
in the magnetic field for a time ∆t (1-3 days), and then the gas discharge was re-ignited and
the residual polarization Pres was measured. With the initial polarization Pi the T1 time can
be calculated according to

Pres = Pi exp
(
−∆t
T1

)
. (3.1)

The T1 times were measured to be between 14 h for a 1 mbar and 85 h for a 4.5 mbar cell.
One could see a trend of increasing T1 with increasing pressures, which is reasonable because
for a field of 10 Gauss Eq. (2.34) is valid, i.e., the gradient relaxation time is proportional
to the pressure. At the NMR-measurement that was done with pressures around 1 bar,
the wall relaxation is the dominating term in T1, while at low pressures of some mbar the
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Figure 3.5: BMSR-2. Left: Horizontal cut view through building, shielded room and annex
with data acquisition chamber and sample cell preparation area. Right : Mu-metal shielding
during construction.

gradient relaxation starts to play a role. For some cells the T1 times measured with the
second method for the sealed cell is bigger than the one measured for the same cell in the
NMR setup when the cell still had its appendix. This can be explained by the fact that the
small appendix with a capillary of 3 mm diameter has a very bad surface-to-volume ratio,
so that, according to Eq. (2.29), the gas relaxes quite fast in this region. The biggest T1 of
(85± 5) h (at 4.5 mbar) was measured for cell number Z10. This cell was used for the 3He
magnetometer measurements described in the following.

3.2 Experimental realization

The experiments with the 3He magnetometer were done at the Physikalisch-Technische
Bundesanstalt Berlin (PTB) in the Berlin magnetically shielded room (BMSR-2, [12]). With
a residual field of less than 1 nT [75] and good field homogeneities, the BMSR-2 provides
excellent conditions for measurements in the motional narrowing regime, i.e., at low pressures
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and low magnetic fields (see Sec. 2.5), where it is possible to achieve T ∗2 relaxation times for
3He of several days. The cubic room with an inner edge length of 2.9 m consists of 7 layers
of mu-metal2 surrounded by a highly conductive eddy current layer made out of 10 mm
aluminum. Its passive shielding factor exceeds 108 above 6 Hz, and with additional active
shielding the room has a shielding factor of more than 7 ·106 down to 0.01 Hz. The complete
shielding system is situated in a building with 15 m cubic outer dimension and a two-story
annex with rooms for data acquisition and measurement preparation (see Fig. 3.5).

Figure 3.6: Experimental setup in the BMSR-2 (side view seen from the door opening). The
outer open rectangle shows the inner shielding layer, the other open rectangles are the Bx-
and By-coil pairs. The pneumatically driven sliding door is indicated by dashed lines. The
gray rectangle is the Dewar housing the SQUID detectors, the small circle below the Dewar
the sample cell (fixation not shown).

3.2.1 Experimental setup

The experimental setup is shown in Fig. 3.6. The SQUID3 vector magnetometer system
that was used for our experiments is installed permanently inside the BMSR-2, and has
been originally designed for biomagnetic measurements. It is housed in a liquid-helium
Dewar with a flat bottom and an inner diameter of 250 mm that is suspended from the

2Mu-metal is a nickel-iron alloy with very high magnetic permeability
3A SQUID (Superconducting Quantum Interference Device) is a highly-sensitive magnetic flux detector
based on superconducting loops containing Josephson junctions. A more detailed description of SQUIDs
can be found, for example, in [41].
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ceiling. The 304 DC-SQUID magnetometers are divided up into 19 identical modules and
are arranged in such a way that x-, y- and z-components of the magnetic field can be
measured.

Inside the shielded room two square coil pairs (Bx- and By-coils) of edge length 180 cm
and 175 cm were mounted perpendicular to each other, where the distance between the
Bx(y)-coils was 97(94) cm, respectively. Each coil pair (with n = 20 windings per coil)
produced a homogeneous magnetic field of around 400 nT at a current of 20 mA, which was
provided by a low noise current source4. The use of two coil pairs was chosen in order to
manipulate the sample spins. A slow rotation of the magnetic field from Bx to By (or vice
versa) causes an adiabatic rotation of the spins for Ωrot/ωL � 1, while for Ωrot/ωL � 1 the
non-adiabatic condition is met (see Chap. 2.3). A fast rotation of the magnetic field was
used to realize a “π/2-pulse”. This way, nuclear spin-precession in the xz-plane (through a
fast rotation from Bx to By) or, alternatively, in the yz-plane (through a fast rotation from
By to Bx) could be monitored.

To choose the coil configuration that gives a good magnetic field homogeneity, a simulation
was done with the program “Comsol32” (see App. C.1). All 9 gradient components of the
simulated field, i.e., ∂Bx,y,z/∂(x, y, z), were below 4 pT/cm. The magnetic field gradients
were also measured by the SQUID magnetometer system itself (for a detailed description
of the measurement procedure see [27]). The main uncertainty in the determination of the
gradient components is the incorrect alignment of the Dewar and the fact that in presence of
a magnetic guiding field this misalignment has a strong influence mainly on the extraction
of the transverse components of the field gradient. From these measurements the absolute
values of the gradient vectors for each field component were determined (see Tab. 3.1). The
fact that the measured gradients are much higher than the simulated ones could be explained
by an incorrect alignment and spacing of the coils. It is also possible that the Dewar itself
was magnetized, which would have led to additional gradients. These gradients could not be
detected with the SQUID system itself, because the SQUIDs have a fixed position relative
to the Dewar. We know that the Dewar was magnetized during later measurements, and
it cannot be excluded that it already was magnetized in December 2006, when the 3He
measurements described in this chapter were done.

4The current source is produced by “Magnicon” as part of the “SEL-1 SQUID Electronics”
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∣∣∣~∇B1,x

∣∣∣ ∣∣∣~∇B1,y

∣∣∣ ∣∣∣~∇B1,z

∣∣∣
(32.7± 3.5) pT

cm (44.4± 8) pT
cm (27.0± 0.8) pT

cm

Table 3.1: Field gradients of the field produced by the Bx-coils in the BMSR-2, measured
with the SQUID system itself during the 3He precession measurements in Dec. 2006.

3.2.2 The measurement procedure

The sealed spherical sample cell (Z10 with radius R = 3 cm, phe = 4.5 mbar) with a
longitudinal relaxation time T1 = (85± 5) h was placed below the Dewar inside the Bx field
as close as possible to a lower z-SQUID sensor. To reduce global magnetic field drifts, a
lower and an upper z-SQUID was used in gradiometer configuration, i.e., we looked at the
difference between the signals seen by the lower and the upper SQUID sensor. The distance
from the center of the cell to the lower SQUID sensor was d ≈ 6 cm, the one to the upper
SQUID about 20 cm. As the 3He magnetization drops with 1/r3, for the upper SQUID
the 3He precession signal is vanishingly small. So by building the difference between both
SQUID signals, global magnetic field changes that are seen by both sensors are suppressed.
The gas was optically pumped by means of a 2W Yb-doped fiber laser (wavelength: 1083
nm), where the fiber was laid through one of the holes in the mu-metal shielding. The optics
to achieve a circularly polarized beam was mounted on an optical plate inside the shielding
about 1 m away from the cell. The polarization build-up along the x-axis was monitored
optically with the method described in Sec. 3.1. After switching off the discharge and laser
light, a slow (adiabatic) rotation from Bx to By, followed by a fast (non-adiabatic) rotation
back into the x-direction caused the spins first to orient themselves into the y-direction, and
then to start to precess in the yz-plane. Now the door of the shielded room was closed, and
the SQUID detection was started.

3.3 Results

The left side of Fig. 3.7 shows the recorded SQUID signal over a time interval of 0.5 s at
the beginning of the precession cycle. The signal amplitude reaches Bs = 12.5 pT and the
precession frequency ν ≈ 13 Hz. This corresponds to a magnetic field of B0 = 2πν

γ ≈ 401nT.
With a noise level of about 3 fT/

√
Hz (see Sec. 4.1.4) this leads to a signal-to-noise ratio of

SNR = 12500 fT
3 fT ≈ 4167 in a bandwidth of 1 Hz. With the help of Eq. (2.26) the achieved

polarization can be calculated out of the signal amplitude to be P ≈ 15%.

On the right side of Fig. 3.7 the exponentially decaying envelope of the signal amplitude over
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Figure 3.7: Left : 3He precession signal recorded with a SQUID detector. Right : Envelope of
the signal that shows a slow exponential decay corresponding to a T ∗2 time of 60 hours.

a period of about 10 h is shown. From an exponential fit we get a transverse relaxation time
of T ∗2 = (60.2 ± 0.1) h, which is the longest coherent spin relaxation time of a macroscopic
sample measured so far. Theoretically the T ∗2 time can be calculated from Eq. 2.39, where
the binary relaxation rate can be neglected for a pressure of 4.5 mbar. With DHe = 470 cm2

s

(at p = 4.5 mbar), B0 = 401 nT and the magnetic field gradients given in Tab. 3.1, the
expected gradient relaxation time according to Eq. 2.40 is T2,grad = (370 ± 64) h. With
the measured longitudinal relaxation time T1 = (85 ± 5) h, the estimated total transverse
relaxation time is T ∗2 = ( 1

T1
+ 1

T2,grad
)−1 = (69 ± 4) h. This is very close to the measured

T ∗2 , which shows that the main sources of the transverse spin-relaxation are understood
quantitatively. This result also demonstrates that even longer spin coherence times for 3He
can be obtained, and that our present value for T ∗2 is mainly limited by the wall relaxation
time T1,wall of the sample cell. For future measurements the wall relaxation properties could
be improved by using cells with a bigger radius and therewith better surface-to-volume ratio
(see Eq. (2.29)), or with the help of a better demagnetization procedure.

3.4 Sensitivity estimation

The sensitivity of the 3He-magnetometer can be estimated using the statistical signal pro-
cessing theory described, e.g., in [39]. As the magnetic field is proportional to the precession
frequency ν, the sensitivity for the magnetic field measurement can be deduced from the
Cramer Rao lower bound (CRLB) that sets the lower limit on the variance of any frequency
estimator. The signal S from the precessing spins consisting of N data points recorded at a
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sampling rate rs can be written as:

S[n] = A · e−β·n · cos(2π(ν/rs)n+ φ) + ω[n] (3.2)

with n = 0, 1, · · · , N − 1,

where A is the amplitude, β the damping factor due to relaxation (β = 1
rsT ∗2

), φ the phase
and ω[n] the White Gaussian Noise. For detection times T ≤ T ∗2 , where the exponential
damping of the signal amplitude A does not affect the sensitivity of the magnetometer too
much, we can use the average value SNR = Ā/Nα for the measured signal-to-noise ratio.
The noise Nα is defined as the square root of the integrated power spectral density ρα of
the corresponding signal fluctuations,

Nα =
(∫ νBW

0
ρ2
α · dν

)1/2

. (3.3)

where νBW = rs/2 is the sampling rate limited bandwidth (Nyquist frequency). If the noise
is white, i.e., ρα = const., the noise level is given by Nα = ρα

√
νBW. According to [39], the

Cramer-Rao Lower Bound (CRLB), i.e., the lower limit for the variance σ2
ν of the frequency,

is then given by:

σ2
ν ≥

12
(2π)2 · (Ā/Nα)2 · νBW · T 3

. (3.4)

With Eq. (2.4) one can now derive the theoretical sensitivity δB for the measurement of the
magnetic field B, which increases with the observation time T according to

δB ≥
√

12
(Ā/ρα) · T 3/2 · γ

. (3.5)

This equation is valid for a sinusoidal signal with constant frequency and amplitude. In the
appendix of Ref. [27] an improvement to the sensitivity estimate is given that takes the
exponential damping of the precession signal into account.
The T−3/2 dependency of Eq. (3.5), together with the measured T ∗2 time of 60 hours and the
signal-to-noise ratio SNR ≈ 4167, leads to a magnetic field sensitivity of δB ≈ 2fT after
an integration time of 200 s, which is roughly the typical cycle time in the neutron EDM
experiment [1], and δB ≈ 10−4 fT after 24 hours. In Ref. [27] it is shown that the CRLB
limit is actually reached. In order to prove this, 129Xe is used as reference magnetometer in
a clock comparison experiment, so that the magnetic field fluctuations are canceled out and
one can study the remaining noise sources inherent to the magnetometer.



Chapter 4

Clock-comparison experiments

with 3He and 129Xe

In the experiments described in this chapter, co-located polarized 3He and 129Xe spin samples
are used to search for Lorentz-violating signatures by monitoring their Larmor precession
frequencies (or phases) as the laboratory reference frame rotates with respect to distant
stars. When looking at the weighted frequency difference, any dependence on magnetic field
fluctuations should be canceled:

∆ω(t) = ωhe(t)−
γhe

γxe
ωxe(t)

= (γhe −
γhe

γxe
γxe)︸ ︷︷ ︸

0

·B(t) + (1− γhe

γxe
) · ωLV(t) + ... , (4.1)

where ωhe/xe are the Larmor frequencies of 3He and 129Xe, γhe/xe their gyromagnetic ratios
(see Sec. 4.3.2), B(t) the magnetic field and ωLV = 2πνLV = ωLV,he ≈ ωLV,xe the Lorentz-
violating frequency shift according to Eq. (1.26). Since according to the Schmidt nuclear
shell model (see, e.g., in [55]) ωLV is roughly the same for 3He and 129Xe and does not depend
on the gyromagnetic ratio, it does not drop out in the weighted frequency difference. As will
be discussed in detail in Sec. 4.3, ∆ω contains additional small terms that are not completely
eliminated in the weighted frequency difference. Instead of the frequency difference one can
as well consider the weighted phase difference,

∆Φ(t) = Φhe(t)−
γhe

γxe
Φxe(t) , (4.2)

with the phase being the time integral of the frequency, Φ(t) =
∫ t

0 ω(t′)dt′ = γ
∫ t

0 B(t′)dt′.

46
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Figure 4.1: Left: View into the shielded room at PTB: The white Dewar is filled with liquid
helium and contains the SQUID detectors. The quadratic coils made out of aluminum can be
seen as well. The wooden support in front of the Dewar is used to hold the transport coil when
the measurement cell is positioned on the cell holder made out of POM (Polyoxymethylen)
that is fixed on the Dewar. Right: Cell (Z146) with stopcock and appendix that was used
for the clock-comparison measurements.

4.1 Experimental realization

As well as the precession measurements with 3He described in the preceding chapter, the
clock-comparison measurements were performed in the magnetically shielded room BMSR-2
at PTB Berlin. The SQUID detection system was the same as described in Chap. 3.2.

4.1.1 Magnetic field

Fig. 4.1 shows a view inside the BMSR-2, with the white Dewar that contains the SQUID
detectors, and the quadratic coil pairs for the magnetic guiding field. The measurement
region directly below the Dewar was at (0, 0, -6.6 cm) (cell center), where (0, 0, 0) marks
the center of the shielding (see as well Fig. C.2 in the appendix). For symmetry reasons it
would have been better to place the cell as well as the coils in the shielding center, but this
was not possible due to the dimensions of the Dewar which was already shifted up to its
highest z-position. Simulations with “Comsol32” showed that for this position of the mea-
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surement cell, a good field homogeneity is reached if the center of the Bx(y)-coils is shifted to
(0, 0, -2 cm). These simulations are presented in App. C.1. The coils were changed slightly
compared to the 3He magnetometer measurements: the dimensions and distances were the
same (Bx(y)-coils: length 180(175) cm, distance 97(94) cm), but the coils had n = 40 wind-
ings instead of 20. Moreover, the aluminum frame was cut at some point, and the two sides
were separated by a non-magnetic and non-conducting PVC block. The reason for this was
the fact that in previous measurements, small currents were induced in the aluminum frame,
which produced stray fields that changed the field homogeneity. The number of windings was
changed to have the opportunity to measure at higher field strengths than before, because
this could lead to a reduced gradient relaxation according to Eq. (2.40). The current source
used provides a maximal current of 25 mA, so with 40 windings a maximal field of about
1 µT could be reached. However, for the experiments described here (March 2009 runs),
the coil was driven with 10 mA, which gives a field of about 400 nT, the same as in the
measurements with the 3He magnetometer. It was observed that a higher field strength did
not improve the T ∗2 times, and, furthermore, the noise in the region of the 3He and 129Xe
frequency was worse at the higher field.
The magnetic field produced by the Bx-coils inside the BMSR-2 was measured in February
2009, some weeks before the clock-comparison experiments were accomplished1. The mag-
nitude of the field was determined out of the Larmor precession frequency νxe of polarized
129Xe gas inside a 6 cm diameter spherical cell via the formula B = 2πνxe

γxe
, with γxe being the

gyromagnetic ratio. The Larmor precession was measured at 10 different positions around
the measurement region (0, 0, -6.6 cm), at two different heights, each with 5 measurement
points (see Fig. C.3). The measured gradients in the x-y-plane laid between 1 pT/cm and
17 pT/cm, while in the z-direction values between 2 pT/cm and 48 pT/cm were measured.
The results of the field measurements are presented in detail in App. C.2.

4.1.2 Filling system

To achieve good relaxation properties not only for 3He but especially for 129Xe, it is neces-
sary to add a buffer gas, in our case N2, to the gas mixture to suppress the van-der-Waals
relaxation (see Chap. 2.5). To be able to fill different gases with varying pressures into the
measurement cell, the cells for the clock-comparison experiments were not sealed but had
an appendix with stopcock (see Fig. 4.1). The gases were also not polarized in-situ as in the
experiment described before, but the already polarized gases were filled from low-relaxation

1As the coils used during the March run were not finished yet, the field was measured with older coils, which
are in principle identical in construction, but do have only 20 instead of 40 windings. The field homogeneity,
however, should not differ a lot between both coil systems.
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storage vessels into the measurement cell. This was realized with a specially designed glass
construction with 3 sluice valves with different volumes. Since it is very important that
during the filling process the spin polarization of the gases is not destroyed due to magnetic
field gradients, conventional valves can not be used, because they usually contain parts
made out of magnetic materials. For this reason, the filling system was produced completely
out of glass, because it is non-magnetic. To avoid gradients it is also necessary that the
whole construction is placed in a homogeneous magnetic field, which is produced by a pair
of Helmholtz coils with a diameter of 140 cm, which produce a field of B0 ≈ Bz ≈ 8.5 G at a
current of 5 A. The relative field gradient components dBz/dx

Bz
= dBz/dy

Bz
and dBz/dz

Bz
have been

measured to be ≈ 10−4 1
cm [48]. With the help of Eq. (2.30) the gradient relaxation times

T1,grad for 3He and 129Xe can be calculated. For relative gradients of the order 10−4 1
cm , a

field of 8.5 G, and the typical storage cell pressures phe
stor ≈ 2.1 bar and pxe

stor ≈ 1 bar, one
gets the values T he

1,grad = 5609 h and T xe
1,grad = 80120 h. Thus the gradient relaxation of the

gases in the storage cells can be neglected.

The filling system, that is described in detail in [77], is shown in Fig. 4.2: Three storage
vessels filled with N2, polarized 3He and polarized 129Xe, respectively, at pressures of
typically 1-2 bar, are connected to the flanges on one side of the glass construction.
The 3He gas was polarized at the Mainz polarizer to values of typically 70%. From
there it was transported to the PTB in 1 liter storage vessels with wall relaxation times
T1,stor of typically 200 hours at a pressure pstor ≈ 2.1 bar. Magnetized transport boxes
provided a homogeneous field during transport [32]. As 129Xe relaxes faster than 3He,
the 129Xe gas was polarized at the PTB polarizer at any one time directly before the
measurement. The flange on the upper right side in Fig. 4.2 is connected to a vacuum
pumping system. The valves V1 and V2 can be opened to evacuate the system and are
closed during the filling process. With the valves in the middle (SV1 -SV3), which work
as sluices with different volumes, the desired gas quantity of either 3He, 129Xe or N2 can
be filled into the measurement cell that is connected to the upper left flange. A pres-
sure sensor2 with a non-magnetic sensor head measures the pressure in the measurement cell.

When choosing adequate pressures for the measurement, one has to weight between a high
signal-to-noise ratio on the one hand, and good relaxation properties regarding both the
gradient and the van der Waals relaxation on the other hand. In Fig. 4.3 the theoretical
dependence of T2 (disregarding the wall relaxation) with 1

T2
= 1

T2,grad
+ 1

T1,vdW
is plotted as

2The “Vacuubrand” vacuum measurement “DCP 3000” with pressure sensor VSK 3000”, with a specially
fabricated non-magnetic sensor head out of aluminum
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Figure 4.2: Scheme of the gas filling system (not true to scale): The polarized 3He is trans-
ported from the Mainz polarizer to the PTB in Berlin via magnetized transport boxes [32],
while 129Xe is polarized at the PTB polarizer. The filling system made out off glass has
three sluice valves in the middle (SV1, SV2 and SV3), with which different gas quantities
can be filled into the measurement cell. Nitrogen is used as buffer gas to suppress the van-
der-Waals relaxation. The whole system is situated inside a homogeneous Helmholtz field
~B0. To minimize polarization losses, care has to be taken regarding the correct positioning
of the transport coil, which is used for the transport of the measurement cell to the shielded
room (see Sec. 4.1.3).

a function of the N2 buffer gas pressure in a 3He/129Xe gas mixture at fixed 3He and 129Xe
pressures phe = 4.1 mbar and pxe = 8.3 mbar. For 3He, the formation of van der Waals
molecules can be neglected, i.e., 1

T1,vdW
≈ 0, so that the gradient relaxation time T he

2,grad

decreases with increasing pressure. In case of 129Xe , T xe
2 is maximal at N2 partial pressures

between 30 and 60 mbar. So for the long-term co-magnetometer measurements we chose
pressures of about 4-9 mbar for 3He, 8-9 mbar for 129Xe, and about 30 mbar for N2.

4.1.3 Transport of the polarized gases

The transport of the measurement cell from the filling region to the shielded room,
as well as the transport of the 129Xe storage cell from the polarizer lab to the filling
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Figure 4.3: Calculated relaxation times T2,he/xe due to gradient and van der Waals relaxation
in a 3He/129Xe/N2 gas mixture as a function of the nitrogen pressure, for phe = 4.1 mbar
and pxe = 8.3 mbar.

system, was realized with a specially designed transport coil (see Fig. 4.4). It consists
of an inner (i) and outer (o) solenoid of lengths L = 60 cm, with magnetic moments
Mo = −Mi = no IoAo, where n is the number of windings, I the current and A the cross
section area. With the chosen values no = ni/2, Io = −Ii and Ao = 2Ai, the resulting field
is Btrans = Bi +Bo = µ0 (ni/2) Ii/L. The voltage is provided by two 6 V batteries connected
in series, leading to a field of about 3.6 G along the coil axis. Since the axial stray field
of this double-solenoid system drops proportional to 1/z5, the fringe field of the transport
coil reaches the 400 nT level already at a distance of z ≈ 30 cm from the solenoid. This
guarantees that the inner µ-metal walls are not magnetized while entering the shielded
room, and therewith that the field gradients do not change too much from measurement to
measurement.

In order to minimize polarization losses during transport, some things have to be paid
attention to during the gas transport:

• Since the transport field is quite inhomogeneous at the ends of the transport coil,
where the magnetic field lines bend, it is better to put the cell into and out of the
coil while it is switched-off. During this time a homogeneous holding field is either
provided by the Helmholtz coils of the filling system, or by the By coils inside the
shielded room.

• To avoid spin flips during the switch-on (switch-off), it is necessary to slowly ramp up
(down) the current in the coil, so that the field change happens adiabatically according
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Figure 4.4: Transport coil for the transfer of the polarized gas from the filling station to the
shielded cabin.

to Eq. (2.17). Therefore, the transport coil has a switch that slowly ramps up (down)
the coil current, so that 10 seconds after pressing the switch the field inside the coil
has increased to its maximal value (decreased to less than 0.1 nT, respectively).

• As magnetic field zero crossings can as well cause spin flips, it is very important that
the transport coil is inserted into the coils of the filling system and the coils inside the
shielded room in such a way that the magnetic field lines always point into the same
direction.

The transport from the filling system to the shielded room happened as follows: After the
measurement cell was filled with the desired gas mixture, the disabled transport coil was
held into the Helmholtz coils, with both coils overlapping in a region of at least 24 cm (see
Fig. 4.2). Then the cell was laid into the transport coil about 17 cm away from the coil edge,
thus in a region where the field of the Helmholtz coils is still quite homogeneous. The coil
was switched on, and after about 10 seconds, when the current reached its maximum value,
was carried into the shielded cabin, with the By field switched on (see Fig. 3.6). There it was
put onto a wooden support (see Fig. 4.1) on the same height as the measurement position,
i.e., in a region where the homogeneity of the By field is quite good. After switching off the
coil and waiting 10 seconds, the cell was taken out of the coil and placed below the dewar.
Now the door of the shielded room was closed and the measurement was started.
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4.1.4 Measurements

Figure 4.5: Magnetic flux density spectrum of the 3He/129Xe precession signal (run C92),
detected with a single SQUID (above) and with a gradiometer (below). The upper spectrum
shows big disturbances that are due to vibrations of the Dewar with respect to the measure-
ment cell. The gradiometer suppresses the predominant part of the disturbances, and only
a small peak at the main vibrational mode of about 8 Hz remains.

To force the spins to precess around the Bx-field, i.e., in the yz-plane, a non-adiabatic
field rotation from By to Bx was used (see Chap. 3.2). The signals measured by different
SQUID detectors in the lower and the upper level of the SQUID detection system were
monitored. For the analysis later on a gradiometer signal was used, i.e., the difference of
two z-SQUIDs, one in the lower and one in the upper level (see Chap. 3.2.2). This allows
to suppress global magnetic field changes, for example microphonic effects that are due
to the vibration of the Dewar relative to the measurement cell. In Fig. 4.5 two magnetic
flux density spectra3 (in units of fT/

√
Hz) are shown for measurement C92, the first one

3The density spectrum was determined with the LabView8.5 utility routine Spectral measurements, using
the Hamming window function. The first 220 data points of C92 were used, and it was averaged over every
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t0 tSD T BHe(t0) BXe(t0) pHe pXe pN ptot

(s) (d) (h) (fT) (fT) (mbar) (mbar) (mbar) (mbar)
C92 0 0.4051 14.61 8006 4818 4.1 8.3 29.3 41.7
C94 137554 0.0015 13.19 12880 3546 9.2 8.8 35.2 53.7
C95 186033 0.5641 15.00 22083 4138 9.3 8.8 32.8 51.4
C99 243779 0.2343 11.86 16173 3196 5.1 9.3 33.4 47.8

C101 302171 0.9120 13.80 29982 6269 5.2 9.6 34.2 49.6
C102 355491 0.5308 15.00 29699 5309 5.1 8.3 27.8 41.2
C103 417506 0.2505 15.95 12492 4838 5.0 8.3 26.0 39.3

Table 4.1: Parameters of the 7 main measurements: starting times t0 relative to C92, Local
Sidereal Time tSD in units of days (see Chap. 4.4), observation times T , amplitudes of the
precession signals BHe/Xe at t = t0, and pressures p of 3He,129Xe, N2 and the total pressure
in the measurement cell.

of the 7 long-term measurements. The upper plot is the spectrum for a single SQUID
signal (sensor Z1E), whereas the lower one shows the spectrum for the gradiometer signal
(sensors Z1E and Z9E). In addition to the 129Xe and 3He peaks at 4.9 Hz and 13.4 Hz,
respectively, one can see a sharp peak at 50 Hz, as well as vibrational frequency components
that partly overlap with the 129Xe and 3He peaks. In the case of the gradiometer, the
vibrational frequencies are quite suppressed, and only a small peak at the main vibrational
mode of about 8 Hz remains. The background noise level for both spectra is located at
approximately 3 fT/

√
Hz. The fact that is falls down at ≈ 100 Hz is due to internal filters

used in the SQUID electronics.

In total, seven long-term measurement runs (between 12 and 16 hours observation time)
were performed during one week in march 2009. The parameters of these measurements
(starting time, Local Sidereal Time, observation time, amplitudes and pressures) are listed
in Tab. 4.1. From the amplitudes of the 3He and 129Xe SQUID signals at t = t0 one can
calculate the polarization according to Eq. (2.26). For 3He, we had polarizations between
6% and 26%, for 129Xe between 4% and 8%. In App. B the polarization losses due to the
filling process and the transport from the filling station to the BMSR-2 are discussed.

The left side of Fig. 4.6 shows the precession signal for the first one of the measure-
ments (C92), the superposition of the 3He and 129Xe precession at the Larmor frequen-
cies νhe = γhe

2π B ≈ 13.4 Hz and νxe = γxe

2π B ≈ 4.9 Hz. With the help of a digital filter with
a bandwidth of, e.g., 1 Hz, one can separate the signals of both gases as shown on the
right side of the figure. It can be seen that for C92, the amplitudes at the beginning of the

20 points of the spectrum.
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Figure 4.6: Left : 3He and 129Xe precession signal for measurement C92. Right : Precession
signals for 3He (above) and 129Xe (below), separated through a digital filter (bandwidth 1
Hz) around 13.4 Hz and 4.9 Hz, respectively.

measurement were Bhe(t0) ≈ 8 pT and Bxe(t0) ≈ 4.8 pT. From the magnetic flux density
spectrum in Fig. 4.5 one can read a background noise level of about 3 fT/

√
Hz, thus we have

a signal-to-noise ratio at the beginning of run C92 of SNRXe = 4800 fT
3 fT = 1600 for 129Xe and

SNRHe = 8000 fT
3 fT ≈ 2667 for 3He in a bandwidth of 1 Hz.
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4.2 Raw data fits, transverse relaxation and phase determi-

nation

To search for Lorentz-violating signatures the relevant quantity to examine is the weighted
phase difference of Eq. (4.2). During data analysis we used two different methods for
phase extraction. The first method we tried is the digital lock-in method that works in
principle like a lock-in amplifier, as it uses frequency mixing to convert a higher-frequency
to a low-frequency signal. After the mixing operation, which is accomplished in the time
domain, the signal is Fourier transformed, then filtered through a Gaussian filter, and
afterwards transformed back into time domain. Out of this mixed and filtered signal the
phase is determined. This method works quite well for phase extraction, but it has one
disadvantage: it is not clear how the Fourier transformations and the filtering change the
errors of the data points. For this reason the phase errors have to be determined afterwards
out of the scattering of the phase data. Thereby the filter has to be considered with a
scaling factor, but it was not really clear how this scaling factor has to be determined. As
we could not find a satisfying solution for the error determination, we later on used another
method for phase extraction: the piecewise fitting of the raw data. Therefore, the SQUID
signal is divided into data sets of length τ , and each of this data set is fitted to an equation
that describes the 3He and 129Xe spin precession. The phase is then determined out of the
best-fit-parameters. In this method no filtering or Fourier transformation is used. This has
the advantage that the phase errors can be calculated straightforward out of the errors of
the raw data using the error propagation law.

4.2.1 Piecewise fitting of raw data

The piecewise fitting of the raw data was performed with a Mathematica program developed
by one of our collaborators from University of Heidelberg. The fitting routine is based on
the standard Least-Squares method for multiple dimensions. A discrete pseudo-dimension
is used to allow for the fitting of several measurement runs simultaneously, while specific fit
parameters for each run can be implemented (see Sec. 4.4.2).

To extract the 3He and 129Xe phase developing, the SQUID (gradiometer) data of each run
(j = 1, . . . ,7 corresponding to C92, C94, C95, C99, C101, C102 and C103) are divided into
sequential time intervals (i) of length τ = 3.2 s (i = 1, . . . , Nj). The number of obtained
sub-data sets laid between 13350 < Nj < 18000 corresponding to observation times Tj
of coherent spin precession in the range of 12 h < Tj < 16 h. For each sub-data set a χ2
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Figure 4.7: Typical sub-data set of 3.2 s length used for fitting

minimization was performed, using the fit-function

f i(t) = Ai
he sin(ωi

het) +Bi
he cos(ωi

het) +Ai
xe sin(ωi

xet) +Bi
xe cos(ωi

xet) + (ci
0 + ci

lint) (4.3)

with a total of 8 fit-parameters. Within the relatively short time intervals, the term (ci0 +
cilin · t) represents the adequate parameterization of the SQUID offset showing a small linear
drift due to the elevated 1/f -noise at low frequencies (< 1 Hz). The sine and cosine terms
describe the spin precession signal of the noble gas atoms with the frequencies ωi

he/xe. Instead
of writing C i

he/xe sin(ωi
he/xet+ φi

he/xe), it is better to use the sum of a sine and cosine term,
because the amplitudes Ai

he/xe and Bi
he/xe are linear parameters, while the phase φi

he/xe in
the other notation is nonlinear and therefore can lead to problems during the fitting, because
nonlinear parameters are very sensitive on the initial values used for the fit. Both notations
can be transformed into each other with the sine addition theorem,

C i
he/xe sin(ωi

he/xet+ φi
he/xe) = C i

he/xe sin(ωi
he/xet) cos(φi

he/xe) + C i
he/xe cos(ωi

he/xet) sin(φi
he/xe)

= Ai
he/xe sin(ωi

he/xet) +Bi
he/xe cos(ωi

he/xet) , (4.4)

where Ai
he/xe = C i

he/xe cos(φi
he/xe) and Bi

he/xe = C i
he/xe sin(φi

he/xe) are termed the quadrature
amplitudes of the oscillation.

In Fig. 4.7 a typical sub-data set is shown. It consists of 800 data points, which at our
sampling rate of rs = 250 Hz corresponds to τ = 3.2 s. The length for one sub-data set has
to be chosen such that on the one hand the number of data points provide enough statistics
for the fit, while on the other hand the 3He and 129Xe frequencies can be regarded as
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constant and the SQUID offset drift as linear. The length τ = 3.2 s fulfills these conditions.
The time values for each sub-data set are always shifted in such a way that the zero-point
lies in the middle of the sub-data set. The error for each data point was estimated to be 34
fT, which is the typical noise in the sampling rate limited bandwidth (Nyquist frequency)
fBW = fs/2 = 125 Hz (with the sampling rate fs = 250 Hz). This can be seen in Fig.
4.5, where the magnetic flux density spectrum of run C92 is shown. The background noise
is approximately 3 fT/

√
Hz at the 3He and 129Xe frequencies; this corresponds to a total

noise of 3 fT/
√

Hz ·
√

125Hz ≈ 34 fT.

From the flux density spectrum one can as well determine the starting values for the fit
parameters ωi

he and ωi
xe. As the fit model is nonlinear in the frequency, it is important to have

good starting values, even for the linear parameters. For this reason the fit is accomplished
in two steps: Firstly, the frequencies ωi

he/xe are kept fixed at the values determined from
the flux density spectrum. By this means, the model becomes linear, so that the starting
values for the other parameters are not critical and the fit converges easily. Secondly, the
best-fit-parameters from the first fit are chosen as starting values for the second fit, where
now the frequencies can be varied as well. This method guarantees that one really reaches
the minimal χ2 in the nonlinear fit.

Best-fit parameters and uncertainties

The fit routine delivers the 8 best-fit parameters for each sub-data set, i.e., the 3He and
129Xe frequencies ωi

he/xe, the sine and cosine amplitudes Ai
he/xe and Bi

he/xe, as well as the
SQUID drift parameters ci

0 and ci
lin. The uncertainty of each parameter, that I will refer

to as the correlated error, is given by the 1σ-error for this parameter, i.e., the interval
that contains 68.3% of normally distributed data. Additionally, the uncorrelated error of
each parameter is given by the fitting routine. This value corresponds to the uncertainty of
the parameter if there would be no correlations between the parameters. In App. A more
information is given about the error determination. The uncorrelated error is solely used
for comparison with the correlated error, to get a feeling on the strength of the correlations
between the parameters. If both errors are roughly equal, one can neglect the correlations.
If they differ too much, one has to consider the correlations in the error propagation, i.e.,
the Gaussian error propagation law is not longer valid. In the case of the raw data fits, with
sub-data sets consisting of 800 points, the correlations between the parameters are always
small (the correlated and uncorrelated error differs by less than 10%), so that Gaussian
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error propagation can be used4 when determining the error of the phase later on (Sec. 4.2.5).

Moreover, the fit routine gives the reduced chi-square value (χ2/dof) for each fit, as well as
the probability Q that this value is due to chance, which is given by the integral over the
probability density function (PDF) of the chi-square distribution,

Q =
∫ ∞
χ2

min

PDF (x; ν)dx . (4.5)

In Fig. 4.8, where the PDF of the chi-square distribution for 15000 dof is shown, Q
corresponds to the size of the gray area below the PDF curve. If this probability is smaller
than 5%, i.e., for values of χ2/dof that are too high, the routine automatically re-scales
the error of the raw data with the factor S =

√
χ2/dof , so that a χ2/dof = 1 is reached,

which also leads to larger errors of the best-fit parameters. This is a standard method often
used in error determination, especially when the errors of the primary data are not known
(see for example [62], Chap. 15.1).

The following section deals with the chi-square distributions for the 7 main measurements.
Afterwards, in Sec. 4.2.3, some residuals of raw data fits are shown. Sec. 4.2.4 treats the
decay of the 3He and 129Xe amplitudes with the transverse relaxation time T ∗2 . Finally, in
Sec. 4.2.5, the extraction of the 3He and 129Xe phases is described. These phases are then
used to calculate the weighted phase difference of Eq. (4.2), which is the quantity of interest
that is needed to determine the limits for the Lorentz-violating parameters (Sec. 4.4).

4.2.2 Chi-square distributions

For such a large number of degrees of freedom as in the case of our raw data fits
(dof > 10000), the PDF of the chi-square distribution approaches a normal distribution
with the mean value 〈χ2/dof〉 = 1 and the standard deviation σχ2/dof =

√
2 · dof − 1/dof

(see Fig. 4.8).

Looking at the chi-square distributions of the raw data fits of the 7 main runs (Fig. 4.9),
we can see that the distributions are all much broader than the theoretical one, and that
they are not symmetric, but have a tail at higher χ2/dof values. For this reason the mean
value 〈χ2/dof〉 is shifted to the right (indicated by the gray dashed line). Furthermore,
there are some outliers where the χ2/dof is ≥ 2 (not shown in the figures). In Tab. 4.2

4Another requirement for the validity of Gaussian error propagation is the possibility of linearising the fit
model in a region around the minimal chi-square, which is fulfilled in our case.
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Figure 4.8: Probability density function of the chi-square distribution for 15000 de-
grees of freedom. The mean value is 〈χ2/dof〉 = 1 and the standard deviation
σχ2/dof =

√
2dof − 1/dof . The gray area corresponds to the chi-square probability Q given

in Eq. (4.5).

the number of sub-data sets with χ2/dof ≥ 2 is listed for the 7 main measurements.
The main reason for these outliers lies in the fact that in some sub-data sets the SQUID
offset jumps slightly for so far unknown reasons (see Sec. 4.2.3). Additionally, as was seen
already in the magnetic flux density spectrum (Fig. 4.5) and will be illustrated again in
Sec. 4.2.3, we had disturbance frequencies in the raw data due to vibrations of the Dewar
relative to the measurement cell. The strength of these disturbances can fluctuate during
the measurement, which is the main reason for the broader distributions.

In Fig. 4.9 and Tab. 4.2 one can see that the mean chi-square value is approximately 1
only for the runs C94 and C95. For run C103 it is smaller than 1 (< χ2/dof >= 0.91),
while for the other runs it is slightly bigger (between 1.11 and 1.22). As explained in the
preceding section, the error for each data point was estimated from the background noise
that can be read out of the flux density spectrum to be ≈ 34 fT in the sampling rate limited
bandwidth fBW = 125 Hz (see Fig. 4.5). Due to the fact that the noise changes from run to
run (and also in the course of one run), the value of 34 fT is not the true error for all data
points in all 7 runs. This is the reason why < χ2/dof > fluctuates from measurement to
measurement: for run C103 the error was overestimated, while for the runs C92, C99, C101
and C102 it was underestimated. For the further analysis, however, this is not a problem,
because the fitting routine automatically re-scales the error for each fit if the chi-square
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Figure 4.9: Chi-square distributions of the raw data fits of the 7 main measurements: The
gray dashed line indicates the mean chi-square value 〈χ2/dof〉, which is shifted to the right
due to the tail at higher χ2/dof values. The χ2/dof values that are ≥ 2 are not included in
the mean value.

probability Q, i.e., the probability that the error of the data points reflects the statistical
noise, is smaller than 5% (see preceding section and App. A).
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< χ2/dof > σχ2/dof #(fits) #(χ2/dof ≥ 2)

C92 1.216 0.179 16437 995
C94 0.996 0.124 14835 17
C95 1.004 0.112 16875 8
C99 1.118 0.123 13348 24
C101 1.137 0.136 15522 28
C102 1.105 0.143 16875 45
C103 0.914 0.136 17938 98

Table 4.2: Overview over the χ2 statistics for the raw data fits: mean and standard deviation
of the chi-square distribution (sub-data sets with χ2/dof ≥ 2 are not included), total number
of fits and the number of sub-data sets that were discarded because of a χ2/dof ≥ 2.

Figure 4.10: Residuals of raw data fits with a χ2 ≥ 2: The data shows jumps in the SQUID
amplitude in the order of 1 pT.

To assure the usage of solely “good data” for the fit of the weighted phase difference, the
sub-data sets with χ2/dof ≥ 2 were discarded for the further analysis. For measurement
C92, which had the most disturbances, about 6% of the sub-data sets were discarded; for
the other measurements it was less than 0.5% of the data.

4.2.3 Raw data residuals

The jumps in the SQUID amplitude as well as the disturbance frequencies due to the
vibrations of the Dewar can also be seen by looking at the residuals of the raw data fits,
that are determined by subtracting the fitted function from the data. In Fig. 4.10 two
examples of sub-data sets with offset jumps in the order of 1 pT are shown. It is obvious
that for these sub-data sets the model (4.3) does not fit, which leads to a large χ2/dof .
These sub-data sets were discarded for the further analysis.
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Figure 4.11: Residuals of two raw data fits of run C92 with χ2/dof = 1.05 (upper left)
and χ2/dof = 1.75 (upper right). Below : Parts of the respective Fourier spectra. For the
sub-data set shown at the left-hand side the disturbances are small, while the spectrum at
the right-hand side has peaks at about 0.5 Hz and 8 Hz. The latter frequency is the main
vibration mode of the Dewar that was already seen in the magnetic flux density spectrum
in Fig. 4.5. The peak at 0.5 Hz is due to the change in the offset drift that can be seen in
the residuals plot. The different magnitudes of the disturbances are reflected in the different
reduced chi-squares of the two fits.

The upper part of Fig. 4.11 shows the residuals for two of the “good” sub-data sets of
run C92, one with χ2/dof = 1.05 and another one with χ2/dof = 1.75. One can see that
the residuals still show some structure and are not normally distributed. The reason for
this are nonlinearities in the offset drift, as well as additional frequency components that
are contained in the spectrum. This is illustrated in the lower part of Fig. 4.11, where
parts of the respective Fourier spectra of the residuals are shown. For the sub-data set with
χ2/dof = 1.05 shown at the left-hand side, the disturbances are small, while the spectrum at
the right-hand side (larger χ2/dof) has peaks at about 0.5 Hz and 8 Hz. The latter frequency
is the main vibration mode of the Dewar, which was already seen in the magnetic flux density
spectrum in Fig. 4.5. The peak at 0.5 Hz is due to the change in the offset drift that can be
seen in the residuals plot. Although the gradiometer signal is used, these disturbances, whose
strengths change in the course of the measurement, can not be eliminated completely. To
take these frequencies into account one could add another sine/cosine function with a third
frequency component to the fit model. This was tried during analysis, but it did not lead
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T ∗2,he(s) δT ∗2,he(s) T ∗2,xe(s) δT ∗2,xe(s)
C92 50899.6 0.77 15835.2 0.62
C94 30293.3 0.35 14745.5 0.55
C95 29986.1 0.15 14102.3 0.34
C99 28159.4 0.17 14406.7 0.54

C101 25655.0 0.12 11413.8 0.45
C102 31235.6 0.14 12110.5 0.32
C103 34434.9 0.24 13057.7 0.31

Table 4.3: Transverse relaxation times of measurements C92-C103.

to better results in total. Indeed, the χ2/dof then becomes better for some fits, so that the
chi-square distributions are more symmetric. But with this third frequency component the
fitting takes much longer, and sometimes the fit does not converge at all. As the values for
the best-fit parameters do not differ significantly for the two models, it was at last decided
to use the simpler model of Eq. (A.1).

4.2.4 Transverse relaxation time and field gradients

The 3He and 129Xe amplitudes are calculated out of the fit parameters as

C i
he/xe =

√
(Ai

he/xe)
2 + (Bi

he/xe)
2 . (4.6)

The amplitude errors δC i
he/xe are determined via Gaussian error propagation. In Fig.

4.12 the amplitude developing for run C92 is plotted, which shows the decay due to the
transverse relaxation (the error bars are too small to be visible in the plot). The T ∗2 times
can be determined with the help of an exponential fit. Because of the long measurement
time, the fit gives very small uncertainties: δT ∗2 is smaller than 1 s for all runs. The results
for the measurements C92-C103 are shown in Tab. 4.3. For measurement C92 the biggest T ∗2
times were observed (T ∗2,he = 14.14 h and T ∗2,xe = 4.40 h), while for the other measurements
the relaxation times were between 7.13 h and 9.57 h for 3He, and 3.17 h and 4.10 h for 129Xe.

To compare these values with the theoretical prediction according to Eq. (2.39) and Eq.
(2.40), let us look at the magnetic field gradients of the Bx-field measured in February 2009
with two 129Xe cells (see Sec. 4.1.1 and App. C.2). As with this method only the magnitude
of the field can be measured, the single components of the field gradient are not known. From
the Maxwell equations div ~B = 0 and rot ~B = 0 one can conclude that only 6 independent



4.2. RAW DATA FITS, TRANSVERSE RELAXATION, PHASE DETERMINATION 65

Figure 4.12: Decay of the 3He and 129Xe amplitudes of run (1). The error bars are too small
to be visible in the plot.

gradient components exist, i.e.,∣∣∣∣ ∂Bx
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Now let’s assume similar sizes of the x- and y-gradients on the one hand, and of the
z-gradients on the other hand, i.e., Gxy :=

∣∣∣ ∂Bx
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∣∣∣ =
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∣∣∣ ≈ ∣∣∣ ∂Bz
∂z

∣∣∣. To do a conservative estimation,
we take the worst of the measured values, i.e., Gxy ≈ 17 pT/cm for the x-y-plane and
Gz ≈ 48 pT/cm for the z-direction (see Fig. C.3 in the appendix). Now the theoretical
gradient relaxation time for measurement C92, with the (inner) cell radius R = 2.9 cm,
B0 ≈ 400 nT and the 3He diffusion coefficient according to Eq. (2.31) (with the pressures
given in Tab. 4.1), can be calculated according to Eq. (2.40) to be THe

2,grad ≈ 13.0 h and
TXe

2,grad ≈ 18.4 h. The wall relaxation times for 3He and 129Xe for the clock-comparison
measurement cell (Z146) were measured beforehand in a conventional NMR setup to be
THe

1,wall ≈ 130 h and TXe
1,wall ≈ 16 h. Together with the binary relaxation according to Eq.

(2.35) and (2.36), as well as the van der Waals relaxation for 129Xe (Eq. (2.38)), the total
theoretical relaxation times for measurement C92 according to Eq. (2.39) are T ∗,cal

2,he ≈ 11.8 h
and T ∗,cal

2,xe ≈ 5.9 h. For 3He this is a bit smaller than the measured value of 14.14 h, for
129Xe the measured value was 4.40 h, i.e., the theoretical prediction is too high. As for 3He,
with THe

1,wall > 100 h, the gradient relaxation surely is the dominant mechanism, one can
draw the conclusion that the gradients above are rather over- than underestimated. This
gives rise to the assumption that the wall relaxation for 129Xe in reality was much smaller
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than 16 hours, if there exist no other relaxation mechanism that was not regarded. For
3He it was observed that the wall relaxation time for some cells fluctuated strongly from
one NMR measurement to another. The reason for this is not yet known, perhaps it could
be magnetic impurities that somehow get into the cell. That’s why the error in the wall
relaxation time has to be regarded as quite high.

To get a more realistic estimation of the gradients and T xe
1,wall during run (1), one

can use the measured transverse relaxation times. Therefore, we take again Eq. (2.40)
for 3He and assume for the moment that all gradient components are equal, i.e.,
G := |~∇B1,x| = |~∇B1,y| = |~∇B1,z|. By solving Eq. (2.40) for G and inserting the measured
T ∗2,he of 14.14 h, together with the 3He parameters given above for run (1), we get
G = 48.8 pT/cm. If we insert this value of G again in Eq. (2.40), together with the 129Xe
parameters of run (1), the gradient relaxation time becomes T xe

2,grad = 22.8 h. Using Eq.
(2.28), with the measured T ∗2,xe of 4.4 h for run (1), we then get a wall relaxation time of
T xe

1,wall ≈ 7.7 h.

The reason for the fluctuations in the T ∗2 times from run to run (see Tab. 4.3) is assumed to
be changes in the magnetic field gradients. In between run C92 and C94, where the biggest
changes were observed, the Dewar was refilled with liquid helium. During this procedure the
square coil pairs were possibly shifted, which would have led to a change in the orientation of
the magnetic guiding field and therewith a change in the field homogeneity. Another reason
could be additional gradients that are produced by 3He and 129Xe demagnetization fields,
which would also change from run to run due to changes in the pressures, polarizations and
the orientation of the cell appendix (see Sec. 4.3.3).

4.2.5 Phase determination

To determine the limit for Lorentz violation, the quantity of interest is the accumulated 3He
and 129Xe phase for the ith sub-data set, Φi

he/xe = ni
he/xe · 2π + ϕi

he/xe, with i = 1, . . . , N ,
where N is the total number of sub-data sets for the corresponding measurement run. The
part of the phase that lies between zero and 2π, ϕi

he/xe, is determined from the fit parameters
Ai

he/xe and Bi
he/xe using the arctangent (atan2) function, that is defined the following way:

atan2(y, x) =


arctan( yx) x > 0,

π + arctan( yx) y ≥ 0, x < 0 ,
−π + arctan( yx) y < 0, x < 0 .

(4.7)
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Hence, the value of atan2 depends on the quadrant of the x and y phase vectors in the unit
circle, and takes values in the interval from −π to π. To assure that ϕi

he/xe does not take
negative values (to avoid phase wraps later on), the value π is added to Eq. (4.7):

ϕi
he/xe = atan2

(
Ai

he/xe

Bi
he/xe

)
+ π . (4.8)

To determine the total, running phase of 3He and 129Xe, one also needs to know the number
of traversed periods ni

he/xe since the beginning of the measurement run. ni
he/xe is determined

indirectly in the following way: In a first step, an estimation of the accumulated phase of
the ith sub-data set Φest,i

he/xe is done using the phase of the (i-1)th sub-data set Φi−1
he/xe (where

the phase offset of the first data set is Φ1
he/xe = ϕ1

he/xe):

Φest,i
he/xe = Φi−1

he/xe + ω̄he/xe · τ . (4.9)

Here τ = 3.2 s is the length of one sub-data set, and ω̄he/xe the average frequency of the
corresponding run, which consists of N sub-data sets,

ω̄he/xe =
1
N

N∑
i=1

ωi
he/xe . (4.10)

Due to the fact that the frequency stays more or less constant during the course of one
run, the maximal frequency deviation (∆ωmax) from the mean ω̄he/xe was smaller than
5 · 10−6 rad/s (both for 3He and 129Xe) for all 7 runs. Hence, as ∆ωmax � 2π, the accumu-
lated phase between the middle of data set (i− 1) and the middle of data set i is estimated
quite well with ω̄he/xe · τ . Anyhow, to get the true accumulated phase Φi

he/xe of the actual
sub-data set, the estimation Φest,i

he/xe has to be corrected by the term

∆Φcorr,i
he/xe = ϕi

he/xe −mod

(
Φest,i

he/xe

2π

)
. (4.11)

The accumulated phase Φi
he/xe is then given by:

Φi
he/xe = Φest,i

he/xe + ∆Φcorr,i
he/xe

= Φi−1
he/xe + ω̄he/xe · τ + ϕi

he/xe −mod

(
Φi−1

he/xe + ω̄he/xe · τ
2π

)
. (4.12)

Here the number of traversed periods ni
he/xe corresponds to the integer value of Φest,i

he/xe
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divided by 2π.

A problem can now occur in the cases where the phase ϕi
he/xe (Eq. (4.8)) is either close to

zero or close to 2π. If the former case is given, and if in addition ω̄he/xe is smaller than
the real frequency of the sub-data set, it happens that one underestimates the number of
periods ni

he/xe by one, i.e., a phase wrap appears. On the other hand, if ϕi
he/xe is close

to 2π and ω̄he/xe bigger than the real frequency, ni
he/xe is overestimated. In these cases

the correction phase ∆Φcorr,i
he/xe of Eq. (4.11) takes values near ±2π. The phase unwrapping

is accomplished with the help of an if statement: if |∆Φcorr,i
he/xe| > Φtest, 2π is subtracted

from Φi
he/xe; if |∆Φcorr,i

he/xe| < Φtest, 2π is added to Φi
he/xe. If no phase wrap appears, the

magnitude of ∆Φcorr,i
he/xe is smaller than 0.2 rad, so Φtest can have any value between 0.2 and 2π.

It is important to note that the errors of Φi−1
he/xe and ω̄he/xe do not influence the error

of Φi
he/xe, because the mod(...) term is subtracted in Eq. (4.12). In this way, Φhe/xe

est,i is used
solely to determine the number of traversed periods. Hence, the error of Φi

he/xe only depends
on the values Ai

he/xe and Bi
he/xe and their errors, δAi

he/xe and δBi
he/xe, which are determined

by the χ2-fit. It has been verified that these two parameters are not much correlated (the
correlated and uncorrelated errors differ by less than 10%), so one can use the Gaussian
error propagation law to determine the error δΦi

he/xe:

δΦi
he/xe =

1(
Ai

he/xe

)2
+
(
Bi

he/xe

)2

√(
Bi

he/xe

)2
·
(
δAi

he/xe

)2
+
(
Ai

he/xe

)2
·
(
δBi

he/xe

)2
,

(4.13)
where the derivative of the arctangent function, d

dxarctan(x) = 1
1+x2 , was used.
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4.3 Weighted phase difference and phase shifts

For each measurement run, the dependence of the phase of Eq. (4.12) on the time t can be
expressed as

Φhe/xe(t = mτ) = Φhe/xe(t = (m− 1)τ) + ω̄he/xe · τ + ϕm
he/xe (4.14)

−mod
(

Φhe/xe(t = (m− 1)τ) + ω̄he/xe · τ
2π

)
, (4.15)

where the phase offset of the first time interval is Φhe/xe(t = 0) = ϕ1
he/xe (Eq. (4.8)) and

ω̄he/xe is the average frequency of the corresponding run according to Eq. (4.10). To make
small phase variations visible, the dominant contribution to the phase, the linear term
m · ω̄he/xe · τ = ω̄he/xe · t, is at first subtracted. The residual phases for 3He and 129Xe after
the subtraction of the main linear term are shown in Fig. 4.13, exemplary for run (2) (C94).
For better comparison the phase offset Φhe/xe(t = 0) is subtracted as well (here t = 0 is the
starting point of run (2)), and the 129Xe phase is already multiplied with the ratio γhe

γxe
, i.e.,

Φ′he(t) = Φhe(t)− Φhe(t = 0)− ω̄he · t ,
γhe

γxe
Φ′xe(t) =

γhe

γxe
(Φxe(t)− Φxe(t = 0)− ω̄xe · t) . (4.16)

The variations in the phases arise from drifts of the magnetic holding field during the
measurement.

The relevant quantity to consider further is the weighted phase difference ∆Φ(t) according
to Eq. (4.2), which is shown in Fig. 4.14 for run (1) (upper curve). The plot shows that
there exist contributions to the phase difference that are not eliminated. The dominant
term in ∆Φ(t) has a linear time dependence, and can be explained by the Earth’s rotation,
i.e., the rotation of the SQUID detector with respect to the precessing spins. This term can
be calculated theoretically (see Sec. 4.3.1), and subtracted from ∆Φ(t) to get the remaining
phase difference ∆Φrem(t) (lower curve in Fig. 4.14).

Furthermore, there are exponential terms that can be attributed to demagnetization fields
that are produced by the precessing 3He and 129Xe nuclear spins themselves inside a non-
spherical cell (Sec. 4.3.3). Other phase shifts arise from deviations of the ratio γhe

γxe
from the

literature value due to chemical shifts (Sec. 4.3.2), and from magnetic field gradients (Sec.
4.3.4). Some smaller possible contributions will be discussed in Sec. 4.3.5.
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Figure 4.13: Extracted Helium and Xenon phases for run (2) (C94), after subtraction of
the linear term ω̄

(2)
he/xe · t and the phase offset Φ(2)

he/xe(t = 0) (see Eq. (4.16)). For better
comparison, the 129Xe phase is scaled with γhe

γxe
. The time t starts with the beginning of run

(2), and one data point comprises 20 sub-data sets.
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Figure 4.14: Weighted phase difference for run (1) before (∆Φ(1)) and after (∆Φ(1)
rem) the

subtraction of the Earth’s rotation term ΦE (Eq. (4.21)). One data point comprises 20
sub-data sets.
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Figure 4.15: Left : The Earth’s rotating coordinate system (X´,Y´,Z´) is shown, where the
Y´-axis is parallel to the Earth’s rotation axis, ΩE. The laboratory system (X,Y,Z) is located
at the BMSR-2 in Berlin with Θ being the northern latitude. The Z and Z´-axis are parallel.
Right : In the laboratory system, the X-axis points to the southern and the Z-axis to the
western direction. The holding field ~B inside BMSR-2 points to the north-eastern direction,
and the angle between field and north direction is ρ = 28◦. The field direction is identical
with the -x-direction in the BMSR-2 coordinate system.

4.3.1 Contribution of the Earth’s rotation

The dominant contribution to the time dependence of ∆Φ(t) can be explained by the rotation
of the SQUID detector (ωdet) with respect to the precessing spins (ωL,he/xe) due the Earth’s
rotation with ΩE = 7.2921150(1)·10−5 rad/s [10]. In the laboratory system a reduced Larmor
precession frequency is measured, ωhe/xe = ωL,he/xe − ωdet, since the 3He/129Xe magnetic
moments as well as the SQUID detector are rotating in the same sense with respect to the
magnetic guiding field. The field was oriented in the (-x)-direction in the BMSR-2 coordinate
system, which is the north-eastern direction, and the angle between field and north direction
was ρ = 28◦ (see Fig. 4.15). The sense of rotation of the precessing magnetic moments can
be deduced from the Bloch equations (2.10). As the nuclear magnetic moment is negative for
both 3He and 129Xe, the sense of rotation is right-handed with respect to the magnetic field
direction (see Fig. 4.16, right side). This can also be verified by looking at the precession
signals seen by different SQUID sensors. In Fig. 4.16 the 3He/129Xe precession signal of
measurement C92 is shown, detected with the SQUID sensors Z3K, Z1E and Z1B that are
placed at different positions along the y-axis. One can see that the maximum amplitude is
first detected at Z3K, then at Z1E and then at Z1B, which shows that the sense of rotation
of the precessing moments is right-handed with respect to the field direction and to the
Earth’s rotation axis, i.e., magnetic moments and the Earth rotate in the same sense.

To calculate the size of the frequency shift caused by the rotating detector, ωdet, a coordi-
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Figure 4.16: Left : Precession signal of run C92 detected with 3 different SQUID sensors:
Z3K (black dots), Z1E (red triangles) and Z1B (blue squares). For better visualization, the
offsets are shifted and the amplitudes scaled. Right : Position of the respective SQUIDs and
sense of rotation of the precessing magnetic moments.

nate transformation from the laboratory system (X,Y,Z) to the Earth system (X’,Y’,Z’) is
performed (see Fig. 4.15). In the laboratory system, the unit vector in field direction, i.e,
the axis of precession ω̂L, is given by (see Fig. 4.15, right side)

ω̂L =
~ωL

ωL
=

− cos(−ρ)
0

− sin(−ρ)

 =

− cos ρ
0

sin ρ

 , (4.17)

where ρ = 28◦ is the angle between field and north direction. Knowing the northern latitude
Θ = 52.5164◦, where the PTB Berlin is located [79], ω̂L can be transformed into the rotating
system (X’,Y’,Z’):

ω̂′L =

 sin Θ cos Θ 0
− cos Θ sin Θ 0

0 0 1

 ·
− cos ρ

0
sin ρ

 =

− sin Θ cos ρ
cos Θ cos ρ

sin ρ

 . (4.18)

The angle χ between the Earth’s rotation axis, Ω̂E, and the axis of precession, ω̂′L, can be
calculated via the scalar product:

cosχ = Ω̂E · ω̂′L =

0
1
0

 ·
− sin Θ cos ρ

cos Θ cos ρ
sin ρ

 = cos Θ cos ρ . (4.19)

We get χ = 57.33◦. Finally, the size of the shift in the 3He and 129Xe Larmor frequencies
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caused by the rotating detector, ωdet, can be given:

ωdet = |ΩE| cos Θ cos ρ . (4.20)

In the weighted phase difference this leads to the following linear term

ΦE = ∆ωE · t = −(1− γhe

γxe
) ωdet · t

= 6.87263 · 10−5 rad
s
· t . (4.21)

The contribution of the Earth’s rotation can be subtracted from the weighted phase dif-
ference ∆Φ. The remaining temporal change of ∆Φ after the subtraction of Eq. (4.21),
∆Φrem(t), is shown in Fig. 4.14 for run (1). It still contains small linear terms plus the ex-
ponential terms that will be discussed in Sec. 4.3.3. Part of the remaining linear term is due
to the uncertainty in the determination of the angle ρ between the magnetic guiding field
and the north direction which is assumed to be below 1◦. ΩE and Θ, in contrast, are known
precisely enough, so their error can be neglected. The uncertainty δρ = 1◦ corresponds to a
maximum frequency uncertainty of δ(∆ωE) = 6.3 · 10−7 rad/s and therewith a linear term
in the remaining weighted phase difference ∆Φrem of

|ΦδE| ≤ 6.3 · 10−7 rad
s
· t . (4.22)

4.3.2 Gyromagnetic ratios and Chemical shift

The literature values we took as the gyromagnetic ratios of 3He and 129Xe are valid for the
shielded nucleus in a gaseous state at vanishing particle density. Here “shielded” means that
the whole atom is considered, with the electron sheet that serves as a shield for the nucleus
against outer magnetic fields (diamagnetic shielding). For the 3He gyromagnetic ratio we
used the CODATA value given in [57], γhe = 2.037894730(56) · 108 rad

Ts . In [60] the magnetic
moment of 129Xe is given, that is calculated using a value for the proton magnetic moment µp

from the year 1987. With the latest CODATA value for µp [57], we recalculated the magnetic
moment of 129Xe and therewith the gyromagnetic ratio to be γxe = 7.39954378(50) ·107 rad

Ts .
The ratio of the gyromagnetic ratios γhe

γxe
used in the weighted phase difference (4.2) then

becomes
γhe

γxe
= 2.75408159(20) . (4.23)

In our experiment, deviations of the gyromagnetic ratios from the literature value arise
from interactions of the noble gas atoms with each other [69] and with the N2 buffer gas
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∆ωXe−Xe ∆ωXe−N2 pXe pN2

(10−7 rad/s) (10−7 rad/s) (mbar) (mbar)

C92 1.28 1.67 8.3 29.3
C94 1.35 2.01 8.8 35.2
C95 1.35 1.87 8.8 32.8
C99 1.43 1.90 9.3 33.4
C101 1.48 1.95 9.6 34.2
C102 1.28 1.58 8.3 27.8
C103 1.28 1.48 8.3 26.0

Table 4.4: Chemical shifts of xenon in xenon and xenon in nitrogen for measurements C92-
C103 according to Eq. (4.24) and (4.25).

[38]. The reason for these so-called chemical shifts (CS) lies in the fact that due to collisions
with other atoms the electron sheet of the 129Xe/3He atoms gets deformed. This changes
the diamagnetic shielding against the external field B0, so that the nucleus experiences a
slightly different field, which leads to a shift in the Larmor frequency, ∆ωL,CS. As the 3He
nucleus has only 2 surrounding electrons, the chemical shift is very small for helium. In [33]
the pressure dependence of the 3He chemical shift at standard temperature (T0 = 273.15 K)
is given to be about 0.1 · 10−9 p

p0
, where p0 = 1013.25 mbar is the standard atmospheric

pressure. This is more than three orders of magnitude smaller than the 129Xe chemical shift
(see below), so it can be neglected.

As the pressure p and the temperature T can be seen as constant in the course of the
measurement, and also the magnetic guiding field (except for small changes in the order of
less than 10−5), the chemical frequency shift is constant to leading order, which leads to a
linear term in the 129Xe phase. The shift that results from collisions of 129Xe atoms with
each other is given by [69]:

ΦCS,Xe−Xe = ∆ωCS,Xe−Xe · t = ωL,Xe · t · 5.66 · 10−7 p

p0
· T0

T
, (4.24)

while the chemical shift of 129Xe due to N2 can be estimated from Ref. [38]:

ΦCS,Xe−N2 = ∆ωCS,Xe−N2 · t = ωL,Xe · t · 2.1 · 10−7 p

p0
· T0

T
. (4.25)

For the measurements C92 to C103 the shifts for the xenon Larmor frequency are listed in
Tab. 4.4. They are all in the order of 10−7 rad/s. The fluctuations of up to ±26% from one
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run to another are caused by the different pressures used.

Another term may arise due to the adsorption of 129Xe atoms at the walls of the glass bulb
[63]. As the average sticking time of 129Xe at the cell walls is not known, it is not possible to
give an estimation for this additional term. If we assume that it is in the same order as the
shifts described above, i.e., between 1 · 10−7 and 2 · 10−7 rad/s, we get a total shift in the
129Xe frequency in the range 4 · 10−7 rad/s < |∆ωCS,Xe| < 6 · 10−7 rad/s. Thus the chemical
shift contributes to the linear term in the phase difference with

∆ΦCS ≈
∣∣∣∣−γhe

γxe
ΦCS,Xe

∣∣∣∣ ≤ 1.65 · 10−6 rad
s
· t . (4.26)

4.3.3 Ramsey-Bloch-Siegert (RBS) shift due to demagnetization fields

As mentioned in Chap. 2.4, the magnetic field produced by the magnetic moments of polar-
ized gases inside a non-spherical cell is not equal to zero anymore due to demagnetization
effects. The components of the demagnetization field that are rotating in the plane perpen-
dicular to B0 can produce a shift in the spin precession frequency, the Ramsey-Bloch-Siegert
(RBS) shift (see Eq. (2.23)). Let the magnetic guiding field B0 be oriented in x-direction.
The demagnetization field ~Bdemag(~r, t) that is produced by the magnetic moments in the
appendix volume is rotating with the Larmor frequency ωr = ωL,demag around the outer field
~B0, and its strength is decreasing exponentially with the T ∗2 time. According to Eq. (2.23),
the component of the demagnetization field that is rotating perpendicular to ~B0,

~Byz(~r, t) = Byz(~r, t) (êx cos(ωrt) + êy sin(ωrt))

= Byz(~r, t0) · exp
(
− t

T ∗2

)
· (êx cos(ωrt) + êy sin(ωrt)) , (4.27)

leads to a RBS-shift of the Larmor frequency of the noble gas atoms in the spherical part of
the cell. It is difficult to estimate the size of the demagnetization field, but as the appendix
volume of the measurement cell (Z146) is roughly a factor 450 smaller than the total cell
volume, it is assumed that the demagnetization field is about 450 times smaller than the
main dipole field produced by the noble gas atoms. The dipole field for 3He according to
Eq. (2.26) at a distance of r = 3 cm (which is roughly the distance between the center of
the cell and the appendix) for typical values of P = 0.1 and p = 4.1 mbar is BHe ≈ 81.6 pT.
So the 3He demagnetization field at the distance r = 3 cm, i.e., in the middle of the cell,
can be estimated to be BHe

demag ≈ (81.6/450) pT ≈ 0.2 pT.



76 CHAPTER 4. CLOCK-COMPARISON EXPERIMENTS

To get the mean RBS frequency shift, one has to integrate over the cell volume, i.e., with
Eq. (2.23) and ωdemag(~r, t) = γByz(~r, t) we get

〈∆ωRBS(~r, t)〉 =


+
∫
cell dV

′
(√

(∆ωL(~r′))2 + (ωdemag(~r′, t))2 −∆ωL(~r′)
)

for ∆ωL < 0,

−
∫
cell dV

′
(√

(∆ωL(~r′))2 + (ωdemag(~r′, t))2 −∆ωL(~r′)
)

for ∆ωL > 0.

(4.28)

Here ∆ωL(~r′) is the difference between the Larmor frequencies of the magnetic moments in
the spherical part of the cell, ωL,sph(~r′), and the rotation frequency of the demagnetization
field ωr (which is assumed to be constant), i.e.,

∆ωL(~r′) = ωL,sph(~r′)− ωr . (4.29)

As the Larmor frequency ωL,sph is proportional to the local magnetic field, ∆ωRBS depends
on the actual magnetic field gradients across the cell. Furthermore, motional narrowing
effects due to particle diffusion should play a role. Because of the complexity of this problem
it was not possible to give an estimation for the size of ∆ωRBS within the scope of this work.
Anyhow, with the help of the following considerations, one can draw conclusions about the
qualitative developing of the frequency (and phase) shift and therewith the developing of
the weighted phase difference.

Depending on the sizes of ∆ωL and ωdemag, one can use different approximations for ∆ωRBS

(in the following, without loss of generality, we will assume that ∆ωL is negative, so that
we consider only the first part of Eq. (2.23).):

1. ∆ωRBS = ωdemag

√
1 +

(
∆ωL

ωdemag

)2

−∆ωL

≈ ωdemag

(
1 +

1
2

(
∆ωL

ωdemag

)2

− ...

)
−∆ωL for ∆ωL < ωdemag, (4.30)

2. ∆ωRBS = ∆ωL

√
1 +

(
ωdemag

∆ωL

)2

−∆ωL

≈ 1
2

(
ωdemag

∆ωL

)2

− ... for ∆ωL > ωdemag. (4.31)

For the first case, the dominant term in ∆ωRBS is linear in ωdemag, which is proportional to
exp(−t/T ∗2 ), because Bdemag decreases exponentially with T ∗2 . For the second case, ∆ωRBS

shows a behavior proportional to exp(−2t/T ∗2 ).
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Now it has to be distinguished between the frequency shift that one species evokes on the
other (the RBS cross-shift ∆ωHe(Xe)

RBS,c ), and the one that each species evokes on itself (the RBS

self-shift ∆ωHe(Xe)
RBS,s ). For the cross-shift, |∆ωHe(Xe)

L,c | = |ωHe(Xe)
L,sph −ω

Xe(He)
r | ≈ (13.4−4.9) Hz =

8.5 Hz is much greater than ωHe(Xe)
demag , so the second formula is valid. With the estimated size

of ≈ 0.2 pT for the 3He demagnetization field we get ωHe
demag = γBHe

demag ≈ 3.7 · 10−5 Hz,
which would lead to a cross-shift for 129Xe of ∆ωXe

RBS,c = 1
2ω

He
demag/|∆ωXe

L,c| ≈ 9 · 10−12 rad
s .

The cross-shift for 3He is of similar size. Hence, the RBS cross-shift is many orders of
magnitude smaller than the chemical shift of Eq. (4.26) and thus can be neglected.

For the self-shift, ∆ωHe(Xe)
L,s (~r) = ω

He(Xe)
L,sph (~r) − ωHe(Xe)

r is much smaller and is strongly de-

pending on ~r. As the sizes of ∆ωHe(Xe)
L,s and the demagnetization fields can not be predicted,

we do not know a priori which of the two cases (Eq. (4.30) or (4.31)) is the dominating one
for the self-shift. When looking at the weighted phase difference data, for example of run (1)
in Fig. 4.14, one can conclude from the time constant of the exponential developing that the
first case with ∆ωHe(Xe)

L,s (~r) < ω
He(Xe)
demag is more likely, i.e., that the RBS frequency shift, and

thus the phase shift, is proportional to exp(−t/T ∗2 ). To prove this, we fitted the following
model to the phase difference data:

f(t) = Φ0 + ∆ωlint+ Ehe exp
(
−t
τhe

)
+ Exe exp

(
−t
τxe

)
, (4.32)

and compared the χ2 and the residuals for τhe(xe) = T2,he(xe) and τhe(xe) = T2,he(xe)/2. The
fits with τhe(xe) = T2,he(xe) led to better results, thus we assume that ∆ωHe(Xe)

L,s (~r) < ω
He(Xe)
demag

is fulfilled for the majority of the magnetic moments in the cell volume. Hence, for our
model we assume that ∆ωRBS ∝ exp(−t/T ∗2 ).

The strength of the RBS-shift mainly depends on the deviation of the cell’s geometry from
sphericity, as well as on the orientation of the cell with respect to the magnetic guiding field.
The latter can be seen in Fig. 4.17, where the change of the remaining phase signal, after
subtraction of the Earth’s rotation effect, due to a 90◦ rotation of the cell is shown. The
dominating exponential terms almost disappear for the case that the appendix is oriented
almost perpendicular to ~B0. The glass cell used here had a larger bulge towards its appendix
than the one used in the runs C92-C103, where we have already regarded the sphericity of
our glass bulb to be an important factor to minimize demagnetization induced effects.
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Figure 4.17: Position dependence of the remaining phase signal due to demagnetization
fields for a non-ideal spherical cell oriented either parallel or perpendicular to the magnetic
guiding field ~B0.

4.3.4 Field gradient induced shifts

In Ref. [17] Cates et al. derive shifts in the spin precession frequency due to static and
oscillating magnetic field gradients for a spin polarized gas in a spherical volume of radius
R. For a magnetic guiding field that is the sum of a static mean field ~B0 (which is ori-
ented in x-direction), a static inhomogeneous field ~B1(~r) and an oscillating magnetic field
~B2 = ~B′2(~r) cos(ωt) + ~B′′2 (~r) sin(ωt), i.e.,

~B(~r, t) = ~B0 + ~B1(~r) + ~B′2(~r) cos(ωt) + ~B′′2 (~r) sin(ωt),

the frequency shift is given by

∆ωgrad = ωgrad,stat + ωgrad,osc

= R2 γB0

∑
n

γ2(|~∇B1,y|2 + |~∇B1,z|2)
x2

1n(x2
1n − 2)(D2 x4

1n R
−4 + γ2B2

0)
(4.33)

+
∑

n

R2 γ2

x2
1n(x2

1n − 2)

(
|~∇B2−|2(ω0 − ω)

D2 x4
1n R

−4 + (ω0 − ω)2
+

|~∇B2+|2(ω0 + ω)
D2 x4

1n R
−4 + (ω0 + ω)2

)
.

Here γ is the gyromagnetic ratio, D the diffusion constant according to Eq. (2.31),
ω0 = γB0 the mean Larmor frequency, x1n (n = 1, 2, 3, ...) are the zeros of the derivative
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of the spherical Bessel function ( d
dxj1(x1n) = 0) and B2± = B2x ± iB2y.

The first term ∆ωgrad,stat of (4.33) describes the frequency shift due to the static, transverse
field gradients. To estimate its size, we take the gradient that was estimated in Sec. 4.2.4
to be G := |~∇B1,x| = |~∇B1,y| = |~∇B1,z| ≈ 48.8 pT/cm. Together with the pressures
of measurement C92 (see Tab. 4.1), Eq. (4.33) gives ∆ωhe

grad,stat ≈ 2.0 · 10−6 rad/s and
∆ωxe

grad,stat = 3.7 · 10−7 rad/s. If the gradients stay constant during the measurement, this
leads to a linear shift in the weighted phase difference of

∆Φgrad,stat =
(

∆ωhe
grad,stat −

γhe

γxe
∆ωxe

grad,stat

)
· t ≈ 1 · 10−6 rad

s
· t , (4.34)

which is in the order of the size of the chemical shift.

The second term ∆ωgrad,osc accounts for the gradients of the oscillating field, which can
either be the demagnetization field of the own gas species (gradient self-shift), or the one
of the other species (gradient cross shift). In Sec. 4.3.3 the size of the demagnetization
fields was estimated to be in the order of 1 pT or smaller. Thus the gradients |~∇B2±| of
the oscillating demagnetization field must be smaller than 1 pT/cm. For the cross-shift,
with (ω0 ± ω) = (ωHe(Xe) ± ωXe(He)) and with the pressures of measurement C92 (see Tab.
4.1), we get ∆ωHe

grad,c ≈ 1 · 10−9 rad/s and ∆ωXe
grad,c ≈ −5 · 10−11 rad/s. Thus the gradient

cross-shift can be neglected.

Considering the gradient self-shift, one has to estimate the size of the difference ∆ω between
the Larmor frequencies of the magnetic moments in the spherical part of the cell, ωL,sph(~r),
and the frequencies of the magnetic moments in the appendix, i.e., the rotation frequency
of the demagnetization field ωr:

∆ω = ω0 − ω = ωL,sph(~r)− ωr . (4.35)

As already discussed in the previous section, ∆ω depends on the local magnetic field gra-
dients across the cell, and on motional narrowing effects due to particle diffusion. To give a
rough estimation, we assume again a mean static gradient of ≈ 50 pT/cm over the cell vol-
ume. So the maximum field difference between 3He (129Xe) atoms at a diametrical distance
of 6 cm is ∆B = 50 pT/cm · 6 cm = 300 pT. With |~∇B2±|=1 pT/cm and the pressures
of C92, the corresponding frequency difference, ∆ωHe(Xe) = γHe(Xe)∆B leads to a gradient
self-shift of ∆ωHe

grad,s < 2 · 10−10 rad/s and ∆ωXe
grad,s < 5 · 10−11 rad/s. So these shifts can be

neglected as well.
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4.3.5 Other phase shifts

The following effects that can also shift the phase are quite small compared to the ones
discussed in the previous sections, but for the sake of completeness they should be mentioned.

Gravitational shift

Another phase and frequency shift, that I will call the gravitational shift, is resulting from
the difference in the molar masses of 3He and 129Xe (M3He = 3.016 g

mol and M129Xe =
128.955 g

mol) that leads to a shift in the center of masses (the center of mass of 129Xe lies
deeper than the one of 3He). Due to this imperfect geometrical overlap, 3He and 129Xe do
not exactly see the same magnetic field, and thus the Zeeman term is not canceled out
completely:

∆ωgrav = ωhe −
γhe

γxe
ωxe = γhe · (Bxe + ∆B)− γhe ·Bxe = γhe ·∆B . (4.36)

The difference in the center of masses can be calculated using the barometric height formula
that gives the pressure at height z for each gas:

p(z) = p0 exp
(
− z

z0

)
with z0 =

RT

Mg0
, (4.37)

where p0 is the pressure at the bottom, R the molar gas constant (R = 8.413 J
mol K), T the

temperature, M the molar mass and g0 = 9.81 m
s2 the gravitational acceleration. The center

of mass then can be calculated by integrating over the z-direction of the cell volume (with
radius R):

s =
1

2R

∫ 2R
0 z p(z) dz

1
2R

∫ 2R
0 p(z) dz

. (4.38)

For the (inner) cell radius of R = 2.9 cm we then get a difference in center of masses of

CMhe − CMxe ≈ 1.5 · 10−7 m. (4.39)

Taking the maximal measured field gradient in z-direction, G = ∆B
∆z ≈ 47.8 pT

cm (see App.
C.2), the field difference amounts to ∆B ≈ 0.7 fT. Thus, we get an upper estimation for the
gravitational phase shift of

|∆Φgrav| = γhe ·∆B · t = 1.4 · 10−7 rad
s
· t . (4.40)

This is about one order of magnitude smaller than the contribution due to static gradients
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and chemical shifts (4.26) and thus can be neglected.

Flip angle 6= 90◦

If the flip angle is not exactly 90◦, which can easily happen if the two coil pairs are not
positioned accurately perpendicular to each other, one gets additional static longitudinal
field components of the 3He and 129Xe demagnetization fields in a non ideally spherical
cell. This leads to a shift of the 3He and 129Xe Larmor frequencies, which should decrease
exponentially with the corresponding T1 times. In the weighted frequency or phase difference,
however, this effect should be eliminated, because both the 3He and 129Xe atoms experience
these additional fields (if we neglect the small difference in the center of masses discussed
above). But problems could arise due to additional gradients that are produced by the
longitudinal fields, which could lead to an increased T ∗2 relaxation. For this reason the coils
pairs should be aligned as accurately as possible.

Interaction between precessing spins and SQUID detectors

As the SQUID sensors are superconducting, dissipation should not happen, i.e., the SQUIDs
should not withdraw energy from the precessing spin system. If this would be the case, the
decay time of the precession signal would depend on the distance d between the sensor and
the measurement cell. Due to the fact that the Dewar was slightly magnetized during the
measurements, which also leads to a dependency of the T ∗2 time on d, it cannot be completely
excluded that an interaction exists between the precessing spins and the SQUID detectors,
which would lead to an additional decrease of the decay time T ∗2 .

4.3.6 Phase residuals

Now we can make an ansatz for a model to fit the remaining weighted phase difference ∆Φ(j)
rem

(after subtraction of the Earth’s rotation term) for each run (j = 1, . . . , 7). Assuming for
now that there is no sidereal variation of the 3He/ 129Xe phases induced by Lorentz-violating
couplings, the model contains a linear term with ∆ω(j)

lin (due to chemical and field gradient
induced shifts), two exponential terms with the amplitudes E(j)

he/xe and the decay times

T
∗(j)
2,he/xe (RBS-shift), plus an offset term Φ(j)

0 :

Φ(j)
fit (t) =Φ(j)

0 + ∆ω(j)
lin ( t− t0,j) + E

(j)
he · exp

− ( t− t0,j)
T
∗ (j)
2,he

+ E(j)
xe · exp

(
− ( t− t0,j)
T
∗ (j)
2,xe

)
,

(4.41)
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Figure 4.18: Contributions of the different terms to the remaining phase difference ∆Φ(1)
rem

for run (1).

where t0,j is the starting time of each run (see Tab. 4.1). The T ∗2 times were determined
beforehand with a fit on the amplitudes (see Sec. 4.2.4) and are listed in Tab. 4.3. For the
fit on the phase difference, T ∗2,he/xe was only varied within the errors determined by the
amplitude fit, that were all in the order of δT ∗2,he/xe ≈ 1s. Hence, the fit model is effectively
a linear function in the parameters.

As an example, I will discuss the fit of ∆Φ(1)
rem, i.e., the remaining phase difference of mea-

surement C92, to the model (4.41). Fig. 4.18 illustrates the sizes of the terms that contribute
to the remaining phase difference. One can see that, after the subtraction of the Earth’s con-
tribution, the exponential terms are the dominant ones, while the remaining linear term is
quite small (in the order of 10−6 rad/s). If now the fitted function is subtracted from ∆Φ(1)

rem,
one gets the phase residuals as shown in Fig. 4.19. Due to the exponential decay of the signal
amplitudes, mainly that of 129Xe with the shorter T ∗2,xe of only 4.4 h, the signal-to-noise ratio
decreases, which means an increase of the residual phase noise, i.e., σΦ,res ∝ exp

(
t/T ∗2,xe

)
[27].
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Figure 4.19: Phase residuals of run (1) after subtraction of the fitted function of Eq. (4.41)
from ∆Φ(1)

rem (one data point comprises 20 sub-data sets, i.e., ∆t = 64 s).

4.4 Limit on Lorentz violation

The possible sidereal modulation due to Lorentz-violating couplings is described by
sine/cosine terms with the Earth’s rotation frequency ΩE and the Lorentz-violating para-
meters as and ac (see Chap. 1.1). So the complete model for the combined fit of the weighted
phase difference of all runs (j = 1, . . . , 7) is given by:

ΦSD
fit (t) =

7∑
j=1

Φ
′(j)
fit (t) + as sin

(
ΩE(t− t0,1) + ϕ1

SD

)
− ac cos

(
ΩE(t− t0,1) + ϕ1

SD

)
,

with Φ
′(j)
fit (t) =

{
Φ(j)

fit (t) for t0,j ≤ t ≤ (t0,j +Nj · τ)
0 elsewhere,

(4.42)

where Φ(j)
fit is given in Eq. (4.41), t0,j and Nj are the starting times and the number of

sub-data sets for run (j), respectively, and τ = 3.2 s is the length of one sub-data set. To
be consistent with the coordinate system described in Chap. 1.1 and Ref. [44], the sidereal
phase offset ϕ1

SD = 2π · t1SD has to be added, where t1SD is the Local Sidereal Time5 (in units
of day) at the BMSR-2 in Berlin on 2009 March 21 at 20:52 UT, the starting time of run (1).

5The Local Sidereal Time has the same value as the right ascension (RA) of an celestial body that is crossing
the local meridian (the imaginary circle on the celestial sphere going through the north pole, the zenith, the
south pole and the nadir) at that moment (see Fig. 1.5). This means that at the moment when the vernal
equinox point crosses the local meridian, the Local Sidereal Time is equal to zero.
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Determination of the Local Sidereal Time

t1SD can be calculated with the help of Ref. [74]. At first the Julian date, i.e., the interval of
time in days since January 1, 4713 BC Greenwich noon, is determined for 2009 March 21
20:52 UT to be JD = 2454912.369444. This value is now referred to the Julian date on 2000
January 1, 12:00 UT (coordinate system J2000, see Chap. 1.2), which is JD0 = 2451545.0.
Out of the difference D = JD − JD0 = 3367.369444 the Greenwich mean sidereal time
(GMST’) can be calculated as [74]

GMST′ = (18.697374558 + 24.06570982441908 ·D) h = (3377 · 24 + 8.83327) h . (4.43)

The multiples of 24 h are neglected, so it rests GMST = 8.83327 h. To get the Berlin local
sidereal time LST, the eastern longitude α = 13.320◦, where the BMSR2 is located, has to
be considered:

LST = GMST + α ∗ 24 h/360◦ = 9.72127 h . (4.44)

Expressed in units of sidereal day, this gives t1SD = 0.40505.

4.4.1 Fit of single measurements

Before we did a combined fit of all 7 runs with the piecewise defined fit function given in
Eq. (4.42), we first fitted every single measurement for its own using the model

ΦSD,(j)
fit (t) = Φ(j)

fit (t) + as sin
(

ΩE(t− t0,j) + ϕ
(j)
SD

)
− ac cos

(
ΩE(t− t0,j) + ϕ

(j)
SD

)
, (4.45)

with (j = 1, . . . , 7), Φ(j)
fit (t) given in Eq. (4.41), the Earth’s rotation frequency ΩE, the

starting time t0,j for run (j) (see Tab. 4.1), and the sidereal phase offset ϕ(j)
SD = 2π · t(j)SD,

with t
(j)
SD being the Local Sidereal Time (in units of day) at the beginning of run (j). For

these seven χ2 fits, as well as for the combined fit described in the following section, the
Mathematica fitting routine as described in Chap. 4.2.1 was used again. The fitting results for
the χ2 fits of runs C92-C103, i.e., the chi-square per degree of freedom, as well as the best-fit
parameters with correlated and uncorrelated 1σ-errors, are shown in Tab. 4.5. The χ2/dof

value lies between 1.5 and 2.2, so it is always much greater than 1. Reasons for this could be
an underestimation of the 3He and 129Xe phase errors, as well as an incompleteness of the fit
model for the phase difference. These reasons are discussed in detail in Sec. 4.4.3. The higher
χ2/dof values were made allowance for by re-scaling the errors to reach a χ2/dof = 1. This
means that the error δacorr

c(s) is the 1σ-error, scaled with the factor S =
√
χ2/dof .
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Out of the values for ac and as in Tab. 4.5, the corresponding weighted average and uncer-
tainty can be calculated as

āc(s) ± δāc(s) =

∑
iwc(s),ia

corr
c(s),i∑

iwc(s),i
±

(∑
i

wc(s),i

)−1/2

, (4.46)

where the weight is given by wc(s),i = 1/
(
δacorr

c(s),i

)2
. This uncertainty is the standard weighted

least squares error (1σ-error) as described in the introduction of [2]. The results are

āc = (−0.22± 1.12) mrad (1σ) and ās = (−3.41± 1.70) mrad (1σ). (4.47)

Out of Eq. (1.27) one can calculate the Lorentz-violating term in the 3He or 129Xe phase
via the time integral of the frequency as

ΦLV =
∫ t

0
2πνLV(t′) dt′ = 2π

∫ t

0
(νX cos(ΩEt

′) + νY sin(ΩEt
′)) dt′ (4.48)

=
2π
ΩE

(νX sin(ΩEt) − νY cos(ΩEt)) + Φ0,LV . (4.49)

The Lorentz-violating part in the phase difference ∆Φ = Φhe− γhe
γxe

Φxe then becomes

∆ΦLV = (1− γhe

γxe
) ΦLV = (1− γhe

γxe
)

2π
ΩE

(νX sin(ΩEt) − νY cos(ΩEt)) + Φ′0,LV . (4.50)

If we now compare the coefficients of Eq. (4.50) and the fit model (4.42) and include further
Eq. (1.28), we get a relation between the Kostelecký parameter b̃nX,Y and the fit parameters
as,c:

as,c =
(

1− γhe

γxe

)
2π
ΩE

νX,Y =
(

1− γhe

γxe

)
2π
ΩE

2 sinχ
h

b̃nX,Y , (4.51)

where χ is the angle between the Earth’s rotation axis and the magnetic field axis (see Eq.
(4.19)), and h the Planck constant. To give a limit for Lorentz violation, we are interested not
only in the single parameters āc and ās, but also in the rms magnitude of the sidereal phase
variation, ΦSD :=

√
ā2

c + ā2
s . Before we can give the uncertainty of ΦSD that corresponds

to a confidence level of 95%, we have to know the probability distribution for ΦSD that is
formed by multiplying the distributions for ac and as, converting to polar coordinates, and
integrating over the polar angle. If ac and as have zero mean value and the same error σ,
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Φ0 ∆ωlin EHe EXe as ac

χ2/dof (rad) (µrad/s) (rad) (rad) (mrad) (mrad)
C92 1.705 value 0.691 5.76 -0.465 -0.214 -11.87 -2.58

δcorr 0.204 2.31 0.241 0.033 6.54 1.34
δuncorr 3E-5 3E-3 3E-5 4E-5 0.07 0.03

C94 2.021 value 0.831 -2.74 -0.732 -0.088 -4.49 8.65
δcorr 0.185 2.85 0.262 0.073 12.43 4.18
δuncorr 4E-5 4E-3 5E-5 6E-5 0.08 0.05

C95 2.058 value 1.263 -2.80 -1.093 -0.166 5.63 0.18
δcorr 0.105 1.59 0.148 0.041 5.72 5.49
δuncorr 3E-5 4E-3 4E-5 5E-5 0.05 0.05

C99 1.750 value 0.916 -4.75 -0.947 0.030 -0.61 -14.39
δcorr 0.263 4.33 0.375 0.110 3.39 20.44
δuncorr 4E-5 4E-3 5E-5 6E-5 0.05 0.09

C101 2.209 value 1.235 -5.17 -1.155 -0.078 -18.28 13.16
δcorr 0.095 1.68 0.123 0.028 8.60 5.25
δuncorr 3E-5 4E-3 3E-5 4E-5 0.07 0.03

C102 1.864 value 1.637 -3.98 -1.535 -0.104 11.36 3.90
δcorr 0.099 1.55 0.125 0.024 7.14 3.52
δuncorr 3E-5 3E-3 3E-5 4E-5 0.05 0.03

C103 1.495 value 0.687 -0.91 -0.672 -0.009 -5.85 -0.25
δcorr 0.084 1.20 0.106 0.021 2.46 5.08
δuncorr 3E-5 3E-3 3E-5 4E-5 0.03 0.05

Table 4.5: Chi-square per degree of freedom and best-fit parameters with correlated and
uncorrelated 1σ-errors for the single fits of runs C92-C103, determined by a χ2 fit using the
model (4.45).

the probability distribution takes the form [8]

P (ΦSD) =
ΦSD

σ2
exp

(
−Φ2

SD

2σ2

)
, (4.52)

with the most probable value of ΦSD occurring at ΦSD = σ. In our case, āc and ās do not have
the same error, so as an approximation we take the average of both errors, σ = δāc+δās

2 . Now
we can calculate ΦSD and the corresponding frequency, νSD, as well as their 95% confidence
errors (which are not the 2-σ errors in this case, because the distribution is not normal!) by
integrating over the probability distribution. We get

ΦSD :=
√
ā2

c + ā2
s = (3.41± 3.45) mrad (95% CL) (4.53)

and νSD = ΦSD ·
ΩE

2π
= (39.6± 40.0) nHz (95% CL) . (4.54)
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Figure 4.20: Weighted phase differences with fit function (white) for the combined fit of
measurements C92-C103 (one data point comprises 50 sub-data sets).

The Lorentz-violating parameter that corresponds to this amplitude is

b̃n⊥ =
√

(b̃nX)2 + (b̃nY)2 = (5.55± 5.61) · 10−32 GeV (95% CL), (4.55)

where the error δb̃n⊥ is again the 95% confidence error. This error can be regarded as a
limit for Lorentz-violating effects for the neutron. A more stringent limit we get from the
combined fit of all measurements described in the next section.

4.4.2 Combined fit of all measurements

For the combined fit of the phase differences ∆Φ(j)
rem(t) of all 7 runs, the piecewise defined

fit function of Eq. (4.42) was used. Besides the two Lorentz-violating parameters as and ac,
it contains (7 · 6) parameters (Φ(j)

0 , ∆ω(j)
lin, E(j)

he , E(j)
xe , T ∗(j)2,he and T ∗(j)2,xe with j = 1, . . . , 7) that

are defined for the individual runs, i.e., in the interval t0,j ≤ t ≤ (t0,j + Nj · τ), where t0,j
and Nj are the starting times and the number of sub-data sets for run (j), respectively. As
before in the single fits, for the T ∗2 times the values that were determined by the amplitude
fit were used as starting parameters (see Tab. 4.3), and the fit routine was only allowed to
vary the values within their errors (δT ∗2,he/xe ≈ 1s). The weighted phase differences for all
measurements together with the fitted function are shown in Fig. 4.20. The χ2/dof for the
fit was 1.868, so here again the errors are re-scaled such that the χ2 per degree of freedom
gets one. The fitting results for all parameters with the correlated and uncorrelated errors
are shown in Tab. 4.6.
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value δcorr δuncorr value δcorr δuncorr

ac (mrad) -0.882 0.814 0.015 as (mrad) -2.067 1.057 0.019
Φ(1)

0 (rad) 0.999 0.035 3.01E-5 E
(1)
xe (rad) -0.159 0.007 4.30E-5

Φ(2)
0 (rad) 0.851 0.017 3.88E-5 E

(2)
xe (rad) -0.046 0.008 5.51E-5

Φ(3)
0 (rad) 1.183 0.014 3.31E-5 E

(3)
xe (rad) -0.182 0.006 4.68E-5

Φ(4)
0 (rad) 0.739 0.014 4.50E-5 E

(4)
xe (rad) -0.048 0.009 6.35E-5

Φ(5)
0 (rad) 1.036 0.011 2.62E-5 E

(5)
xe (rad) -0.128 0.005 3.71E-5

Φ(6)
0 (rad) 1.456 0.014 2.83E-5 E

(6)
xe (rad) -0.144 0.004 4.01E-5

Φ(7)
0 (rad) 0.720 0.014 2.97E-5 E

(7)
xe (rad) 0.007 0.005 4.20E-5

∆ω(1)
lin (µrad

s ) 2.367 0.397 2.69E-9 E
(1)
he (rad) -0.835 0.042 3.46E-5

∆ω(2)
lin (µrad

s ) -2.609 0.267 3.75E-9 E
(2)
he (rad) -0.803 0.025 4.74E-5

∆ω(3)
lin (µrad

s ) -1.393 0.228 3.37E-9 E
(3)
he (rad) -0.998 0.020 4.02E-5

∆ω(4)
lin (µrad

s ) -1.904 0.238 4.50E-9 E
(4)
he (rad) -0.690 0.023 5.53E-5

∆ω(5)
lin (µrad

s ) -1.495 0.184 3.22E-9 E
(5)
he (rad) -0.911 0.015 3.15E-5

∆ω(6)
lin (µrad

s ) -1.118 0.235 3.34E-9 E
(6)
he (rad) -1.313 0.018 3.34E-5

∆ω(7)
lin (µrad

s ) -1.249 0.206 3.21E-9 E
(7)
he (rad) -0.725 0.019 3.49E-5

Table 4.6: Best-fit parameters for the combined fit of C92-C103 with correlated and uncor-
related 1σ-errors determined by a χ2 fit using the model (4.42). The T ∗2 times are not listed
because they were only varied within their error of ≤ 1 s and thus do not differ nameable
from the values in Tab. 4.3.

Now we can again calculate the rms magnitude of the sidereal phase ΦSD and the corre-
sponding frequency νSD from Eq. (4.53) and (4.54). We get

ΦSD = (2.25± 2.29) mrad (95% CL) (4.56)

and νSD = (26.1± 26.6) nHz (95% CL), (4.57)

where the uncertainties are again the 95% confidence errors. Now the Lorentz-violating
parameters for the neutron, b̃nX and b̃nY according to Eq. (4.51), as well as b̃n⊥ =

√
b̃nX + b̃nY,

can be given as:

b̃nX = (3.36± 3.44) · 10−32 GeV (2σ),

b̃nY = (1.43± 2.65) · 10−32 GeV (2σ), (4.58)

b̃n⊥ = (3.65± 3.72) · 10−32 GeV (95% CL).
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4.4.3 Errors, correlations and sensitivity

When we compare the 95% confidence limits for b̃n⊥ achieved with the single fits (Eq. (4.55))
and the combined fit (Eq. (4.58)), we see that the latter one is a factor 1.5 smaller. So with
the combined fit we are slightly more sensitive as with building the mean value for ac and
as out of the 7 single fits. The problem of both fits are the strong correlations between the
Lorentz-violating parameters ac,s and the other parameters, which lead to a high corre-
lated error. For the single fits these correlations have a bigger effect than for the combined fit.

Tab. 4.5 and Tab. 4.6 show that, both for the single fits and the combined fit, the
uncorrelated errors of ac and as are about 2 orders of magnitude smaller than the correlated
errors. This means that the sensitivity of our experiment is not limited by the uncorrelated
error and therewith the signal-to-noise ratio, but only by the strong correlations between
the parameters. This was confirmed also by repeating the analysis with only one SQUID
channel instead of two channels in gradiometer configuration. Even though the noise is
reduced significantly with the gradiometer (see Fig. 4.5), the comparison of both analyses
showed that the correlated errors of the fit parameters do not differ a lot.

The correlations are caused by a piecewise similar time structure of the remaining phase
difference and the sidereal phase modulation in the fit function of Eq. (4.42). On a closer
look, this can be traced back to the relatively short T ∗2 times of 129Xe (compared to the
sidereal period TSD = 2π

ΩE
= 23 h 56 min 4.091 s) that enter in the argument of the

exponential terms of Eq. (4.41). In order to show that longer T ∗2,xe times would increase
the sensitivity significantly, we repeated the combined fit of the weighted phase differences
and changed the fit-model of Eq. (4.42) replacing ΩE by Ω

′
E = g · ΩE, i.e., the sidereal

period TSD changes to T
′
SD = TSD/g. In this way the time structure of the sidereal phase

modulation is changed relative to the time structure of the weighted phase difference. Tab.
4.7 shows the results of the fits with multiples of ΩE. The correlated error of ac,s approaches
the uncorrelated one already for g ≥ 3. The uncorrelated error, however, is only marginally
affected by this procedure, as expected. The data in Tab. 4.7 also show that with increasing
g the magnitudes of as and ac scale down, too, being consistent with zero within their
3σcorr-errors. If we take, for example, the fit results for Ω

′
E = 2 ·ΩE and calculate again the

rms magnitude of the sidereal variation, together with its 95% confidence level with help of
Eq. (4.52), we get Φ′SD = (0.16 ± 0.28) mrad. This would mean an increase in sensitivity
of a factor 8. Thus, it is very important to improve the relaxation properties for 129Xe,
because increasing T ∗2,xe by a factor of two should have the same effect as lowering the
sidereal period TSD by the same factor.
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ac δcorr
ac δuncorr

ac as δcorr
as δuncorr

as

Ω
′
E (mrad) (mrad) (mrad) (mrad) (mrad) (mrad)

0.5·ΩE 3.353 6.572 0.018 0.488 7.991 0.016
ΩE -0.882 0.814 0.015 -2.067 1.057 0.019

2·ΩE -0.048 0.120 0.016 -0.149 0.112 0.017
3·ΩE -0.184 0.052 0.019 -0.011 0.043 0.016
4·ΩE -0.001 0.034 0.018 0.057 0.030 0.016

Table 4.7: Results for ac and as out of the χ2-fit of the weighted phase difference according
to Eq. (4.42), where the angular frequency of the sidereal day ΩE is replaced by multiples
of ΩE, i.e., Ω

′
E = g ·ΩE. The correlated errors are reduced significantly for higher multiples

of ΩE, where the time structures of the remaining phase difference and the sidereal phase
modulation differ more and more.

The correlations can also be quantified with the help of the linear correlation coefficient ρx,y

between two parameters x and y that is defined as [50]

ρx,y =
cov(x, y)
σxσy

, −1 ≤ ρx,y ≤ 1 , (4.59)

where cov(x, y) = is the covariance6 between the two parameters and σx(y) their standard
(1σ-) error. ρx,y is a measure for the degree of linear dependence between the variables:
the closer the coefficient is to either -1 or 1, the stronger the (anti-) correlation between
the variables. As example, in Tab. 4.8 the correlation coefficients for the parameters of the
single fits of C92 (run 1) and C99 (run 4) are listed. Many values of |ρx,y| are very close to
1, which leads to a large uncertainty in the parameters. The correlation coefficient |ρas/ac,y|
between ac/s and the other parameters (y = Φ0, ∆ωlin, EHe, EXe) strongly depends on
the sidereal starting phase ϕj

SD for the individual run. This can be seen when we compare
|ρas/ac,y| for C92 and C99. For C92 (ϕ1

SD = 2π · 0.4051) we have |ρas,y| ≈ 1, while |ρac,y| is
always smaller than 0.13. For C99 (ϕ4

SD = 2π · 0.2343), in contrast, |ρas,y| is always smaller
than 0.16, while |ρac,y| ≈ 1. Tab. 4.9 shows the correlation coefficients for ac and as for the
combined fit, where 3 of them are ≥ 0.9, and 11 of them are ≥ 0.8. This is still a high
correlation, but not as strong as in the single fits. This is the reason why the sensitivity is
improved with the combined fit, compared to the averaged result of the 7 single fits.

6The covariance is defined as cov(x, y) = E[(x − µx)(y − µy)], where E is the expected value operator and
µx(y) the mean value of x(y).
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as ac Φ0 ∆ωlin EHe EXe

C92 as 1.000 -0.012 0.999 -0.998 -0.998 0.988
ac -0.012 1.000 -0.003 0.034 -0.018 0.121
Φ0 0.999 -0.003 1.000 -1.000 -1.000 0.992

∆ωlin -0.998 0.034 -1.000 1.000 0.999 -0.988
Ehe -0.998 -0.018 -1.000 0.999 1.000 -0.994
Exe 0.988 0.121 0.992 -0.988 -0.994 1.000

C99 as 1.000 -0.031 0.056 -0.020 -0.095 0.159
ac -0.031 1.000 -0.999 0.999 0.997 -0.990
Φ0 0.056 -0.999 1.000 -0.999 -0.999 0.994

∆ωlin -0.020 0.999 -0.999 1.000 0.997 -0.990
Ehe -0.095 0.997 -0.999 0.997 1.000 -0.998
Exe 0.159 -0.990 0.994 -0.990 -0.998 1.000

Table 4.8: Linear correlation coefficient ρx,y (see Eq. (4.59)) between the parameters for the
fit of run (1) (C92) and run (4) (C99).

ac as ac as

ac 1.00 0.06 as 0.06 1.00
Φ(1)

0 0.09 0.94 E
(1)
xe 0.45 0.82

Φ(2)
0 -0.31 -0.85 E

(2)
xe -0.59 -0.59

Φ(3)
0 0.62 0.70 E

(3)
xe 0.82 0.25

Φ(4)
0 -0.73 0.11 E

(4)
xe -0.46 0.48

Φ(5)
0 0.25 -0.86 E

(5)
xe -0.18 -0.86

Φ(6)
0 0.38 0.85 E

(6)
xe 0.70 0.49

Φ(7)
0 -0.76 0.44 E

(7)
xe -0.33 0.80

∆ω(1)
lin 0.02 -0.94 E

(1)
he -0.16 -0.94

∆ω(2)
lin 0.18 0.87 E

(2)
he 0.44 0.77

∆ω(3)
lin -0.48 -0.79 E

(3)
he -0.73 -0.56

∆ω(4)
lin 0.73 0.10 E

(4)
he 0.64 -0.30

∆ω(5)
lin -0.42 0.76 E

(5)
he -0.07 0.89

∆ω(6)
lin -0.24 -0.88 E

(6)
he -0.50 -0.77

∆ω(7)
lin 0.83 -0.24 E

(7)
he 0.64 -0.59

Table 4.9: Linear correlation coefficient ρx,y (see Eq. (4.59)) between the Lorentz-violating
parameters ac/s and the other parameters for the combined fit of runs (1) to (7). Values of
|ρx,y| that are larger than 0.8, which means a relatively high correlation, are printed in bold
type.
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Chi-square

Both for the single fits and the combined fit, the chi-square per degree of freedom χ2/dof

was too large. This was made allowance for by re-scaling the errors such that χ2/dof = 1,
i.e., multiplying the errors with the factor S =

√
χ2/dof . One reason for the large χ2/dof

lies in the fact that already the model for the raw data fit (4.3) is not perfect: The offset drift
can also have higher order terms, there can be other frequency components in the signal
due to microphonic effects that are not completely suppressed by the gradiometer (see Fig.
4.11), and there can be jumps in the SQUID offset (we can not be sure that all sub-data
sets with jumps were discarded, because also very small jumps could happen). For these
reasons, the data is not normally distributed. This leads to the fact that the errors for the
amplitudes Ahe/xe and Bhe/xe are underestimated by the fit, which involves that the phase
errors are underestimated as well. In addition, also the model for the fit of the weighted
phase difference is only an approximation, as higher order terms of the RBS-shift discussed
in Sec. 4.3.3 were neglected. But a more complex model that contains higher order terms of
Eq. (4.28) would be difficult to fit without having appropriate starting values, because then
the fit function would be nonlinear in the parameters. For this reason we have chosen the
linear model of Eq. (4.42) for the fit of the weighted phase difference, using the T ∗2 times
out of the amplitude fit.

4.4.4 Residuals and comparison with other experiments

In Fig. 4.21 the residuals of the combined fit are shown: The function
∑7

j=1 Φ
′(j)
fit (t), i.e.,

the part of the model (4.42) without the sine/cosine term, is subtracted from the data
to show the remaining phase variations. The gray curve is the sine/cosine term of (4.42)
with the best-fit parameters for as and ac, inside the error band that shows the correlated
error at 95% confidence level. Although the plot suggests a sidereal variation, our result
is consistent with the null hypothesis “no Lorentz-violation” within the 95% confidence
error. The variations in the phase residuals are due to the strong correlations between the
parameters, which can also be seen by doing a fit without the sine/cosine term, i.e., with
the model Φ

′
fit(t) =

∑7
j=1 Φ(j)

fit (t) (with Φ(j)
fit (t) of Eq. (4.41)). The chi-square for this fit is the

same as in the fit before (χ2/dof = 1.868), which means that a set of parameters without
as/c exists that fits as good as the parameter set that includes as and ac. In Fig. 4.22 the
residuals of this fit are plotted, where no sidereal variation can be seen.
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Figure 4.21: Residuals of the combined fit using the model (4.42) with sine/cosine term (one
data point comprises 50 sub-data sets, i.e., ∆t = 64 s). The function

∑7
j=1 Φ

′(j)
fit (t), i.e., the

part of function (4.42) without the sine/cosine term, is subtracted from the data to show
the remaining phase variations. The gray curve is the sine/cosine term of the fit function
with the best-fit parameters for as and as, together with the error band at 95% CL.
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Figure 4.22: Residuals of the combined fit using the model
∑7

j=1 Φ
′(j)
fit (t), i.e., the part of

Eq. (4.42) without sine/cosine term (one data point comprises 50 sub-data sets). The plot
shows the remaining phase noise after the subtraction of the fit function from the data. No
sidereal variation is visible.
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Electron/Proton Neutron

b̃eX (−0.9± 1.4) · 10−31 [30] b̃nX (0.1± 3.2) · 10−33 [14]
b̃eY (−0.9± 1.4) · 10−31 [30] b̃nY (2.5± 3.2) · 10−33 [14]
b̃pX < 6 · 10−32 [14] b̃nX (2.2± 7.9) · 10−32 [15]
b̃pY < 6 · 10−32 [14] b̃nY (8.0± 9.5) · 10−32 [15]

b̃nX (3.4± 3.4) · 10−32 [this work]
b̃nY (1.4± 2.6) · 10−32 [this work]

Table 4.10: Sensitivities of other experiments for the Lorentz-violating coefficients b̃X and
b̃Y (in GeV) for electron, proton and neutron. The errors are the 2σ-errors.

Comparison with other experiments

Now the sensitivity of our experiment can be compared to the one reached in other ex-
periments. In Tab. 4.10 the most sensitive measurements so far for b̃X and b̃Y for protons,
neutrons and electrons are shown, where the values are given in GeV and the uncertainty
is the 2σ-error [45]. The limit for the electron parameters is the one from the experiment
with the spin polarized torsion pendulum that was described in Chap. 1.3.3. It is about a
factor 5 larger than our limit for the neutron. The proton limit given in the table stems from
a recent measurement with the K-3He comagnetometer (see Chap. 1.3.2), and is twice as
large as our value. The same experiment gives the currently best limit for Lorentz-violating
effects for the neutron, which is roughly one order of magnitude smaller than the limit from
our experiment. For comparison, the values determined by the 3He/129Xe maser experiment
(see Chap. 1.3.1) are shown as well, which are a factor 2-3 larger than our values.



Chapter 5

Conclusion and outlook

In this thesis a clock-comparison experiment was presented, in which the free spin precession
of co-located, spin polarized 3He and 129Xe atoms was monitored with the help of highly
sensitive SQUID detectors. The spin coherence times were measured to be up to 4.4 hours
for 129Xe and 14.1 hours for 3He at total pressures of 40 - 50 mbar. In a measurement
with 3He alone, at a smaller pressure of 4.5 mbar, a coherence time of about 60 hours
was reached, which is the longest coherent spin relaxation time of a macroscopic sample
measured so far.

The 3He/129Xe spin clock is sensitive to non-magnetic spin-dependent interactions, e.g., the
coupling of the nuclear spin to a Lorentz-violating background field ~̃bn as described in the
minimal Standard Model Extension [44], which would lead to a sidereal modulation of the
relative 3He/129Xe phases or frequencies. Our experiment constrains the Lorentz-violating
parameters b̃nX(Y) for the neutron to be

b̃nX < 3.44 · 10−32 GeV , b̃n
Y < 2.65 · 10−32 GeV ,

where the limit is the 2σ-error. This is about a factor 2-3 smaller than the values from the
3He/129Xe maser experiment [15]. In a recent experiment, where a K- 3He co-magnetometer
was used [14], the sensitivity of our experiment was exceeded by one order of magnitude.
For their analysis 143 days of data were used, while we got our limit from 7 measurements
of 12 - 16 hours length. If one considers the uncorrelated error for the combined fit, which
follows the ∝ T−3/2 power law according to the Cramer Rao Lower Bound of Eq. (3.4),
one can see that it is about a factor 50 smaller than the correlated error (see Tab. 4.6).
This shows clearly that, for measurement times smaller than about 3 T ∗2,xe, the sensitivity
of the experiment is limited through the strong correlations between the fit parameters,

95
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and not through the signal-to-noise ratio, which is SNR ≥ 1000 at the beginning of
each measurement and decreases exponentially due to the T ∗2 relaxation. To reduce the
correlations, it is necessary to change the time structure of the weighted phase difference
relative to the time structure of the sidereal phase modulation. The fit of the weighted
phase difference described in the previous section, where the sidereal frequency was changed
to Ω

′
E = g · ΩE, showed that the correlated errors for ac and ac are reduced significantly

with increasing g. Considering, for example, the fit results for Ω
′
E = 2 · ΩE (see Tab. 4.7),

the 95% confidence level of the rms magnitude of the sidereal phase Φ′SD becomes a factor
8 smaller. Increasing the 129Xe relaxation time by a factor 2 should have the same effect
as multiplying the sidereal frequency ΩE by the same factor. Thus, to increase the sen-
sitivity of the experiment, it will be necessary to improve the relaxation properties for 129Xe.

Optimizing the transverse relaxation time of 129Xe

As the SNR does not limit the sensitivity of our experiment at the moment, one possibility
to improve the 129Xe relaxation time is to decrease the 129Xe and N2 pressures. In
Chap. 4.2.4, the field gradient G := |~∇B1,x| = |~∇B1,y| = |~∇B1,z| and the wall relaxation
time for 129Xe were estimated out of the measured transverse relaxation times to be
G = 48.8 pT/cm and T xe

1,wall ≈ 7.7 h. Based on these values, the transverse relaxation time

for 129Xe due to gradient and van der Waals relaxation, i.e., T2,xe =
(

1
T xe

2,field
+ 1

T xe
2,vdW

)−1
,

can now be optimized by varying the pressures for 129Xe and N2. The 3He pressure effects
T2,xe only marginally and thus is kept fixed at 1 mbar. In Fig. 5.1 the relaxation time
T2,xe is shown as function of the N2 pressure for 129Xe pressures of 1 mbar, 2 mbar and
4 mbar. With decreasing pxe, the relaxation time increases, and reaches its maximal value
of T2,xe = 35.1 h for pxe = 1 mbar and pN2 ≈ 17 mbar. Comprising again the wall relaxation
time T xe

1,wall ≈ 7.7 h (the binary relaxation can be neglected here), one gets a total relaxation
time of T ∗2,xe ≈ 6.3 h, which is already a factor 1.4 larger than the 4.4 h reached in run (1).
Assuming equal 129Xe polarizations, reducing the 129Xe pressure to 1 mbar would mean a
factor 8 loss in the SNR compared to run C92 where the 129Xe pressure was 8.3 mbar. But
as the correlated error for ac(s) was about a factor 50 larger than the uncorrelated error,
this should still not constrain the sensitivity of the experiment.

However, the limiting relaxation mechanism for 129Xe is the wall relaxation. From Eq.
(2.29) we know that the wall relaxation time T1,wall is proportional to the volume-to-surface
ratio V/S, i.e., T1,wall(R) = c · VS = c · 4/3πR3

4πR2 = c · R3 . Let us assume for the moment that
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Figure 5.1: Calculated 129Xe relaxation time T2,xe =
(

1
T xe

2,field
+ 1

T xe
2,vdW

)−1
due to gradient

and van der Waals relaxation for 3 different 129Xe pressures as a function of the nitrogen
buffer-gas pressure in a 3He/129Xe/N2 gas mixture (phe = 1 mbar).

one could build a cell that has exactly the same characteristics as the one used for the
clock-comparison measurements, but a different radius R′. Then the 129Xe wall relaxation
time of this cell would be T xe

1,wall(R
′) = 7.7 h · R′

2.9 cm . Based on this assumption, we can
optimize again the total transverse relaxation time reached with the parameters above
(pxe = pxe = 1 mbar, pN2 ≈ 17 mbar and G = 48.8 pT/cm.), now varying the cell radius.
The best value T ∗2,xe ≈ 6.53 h is reached for R′ = 3.4 cm. So for these field gradients we
cannot gain much by enlarging the cell, as the radius contributes in the 4th power to
the gradient relaxation (see Eq. (2.40)). But if we could reduce the gradients by, e.g., a
factor of two, we would get a T ∗2,xe time of already 8.4 h for a cell radius of 4.5 cm, where
T1,wall ≈ 12 h. The field homogeneity could be improved by optimizing the coil positioning,
or by further demagnetizing the Dewar (see App. C.2).

These considerations show that there is still room for improvements concerning the trans-
verse relaxation time of 129Xe. Besides the reduction of the correlations between the fit
parameters, an enlargement of T ∗2,xe would also lead to longer observation times T and
therewith an additional increase in sensitivity due to the ∝ T−3/2 dependence according to
CRLB (Eq. (3.4)). A further improvement is reached by increasing the total measurement
time to a period of about 100 days. In addition to the gain in statistics, the long time span
provides an important separation between sidereal and possible diurnal variations.



Appendix A

Chi-square minimization

This appendix is a short summary of Chap. 15 of Ref. [62]. Given a set of N measured data
points (xi, yi) with i = 0, ..., N-1, the problem is now to fit the data to a model (fit function)

y(x) = y(x; a0, ..., aM−1) (A.1)

that has M free parameters aj with j = 0, ..., M-1. One method to do this is the so-
called maximum-likelihood estimation, which means that one has to find those values for
the parameters that maximize the likelihood of the parameters to give the measured data
points, or, in other words, that maximize the probability of the measured data set to give
these parameters. They are then called the best-fit parameters. Suppose that each data point
yi has an independent and normally distributed measurement error with standard deviation
σi. Then the probability of the data set is the product of the probabilities of the single data
points,

P ∝
N−1∏
i=0

exp

[
−1

2

(
yi − y(xi)

σi

)2
]

∆y , (A.2)

where ∆y is some constant factor. Maximizing Eq. (A.2) is equivalent to minimizing its
negative logarithm,

N−1∑
i=0

[yi − y(xi)]
2

2σ2
i

−N log ∆y . (A.3)

Since N and ∆y are constant, one just has to minimize the quantity

χ2 ≡
N−1∑
i=0

(
yi − y(xi)

σi

)2

, (A.4)
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which is called chi-square. So maximizing the likelihood is equal to minimizing the chi-
square. The chi-square function is one representation of a so-called figure-of-merit function
that measures the agreement between the data and the model: small values represent a
close agreement. The probability distribution for the chi-square in Eq. (A.4) is given by the
chi-square distribution for ν = N −M degrees of freedom1 (dof ). The probability density
function (PDF) of the chi-square distribution is given by

PDF (x; ν) =
e−x/2 xν/2−1

2ν/2 Γ(ν/2)
, (A.5)

where Γ(x) is the Euler gamma function given by Γ(x) =
∫∞

0 tx−1e−tdt. In Fig. 4.8 the PDF
for ν = 15000 was shown (in the fits described in Chap. 4.4 the degrees of freedom were
between ν = 13300 and ν = 18000). For such large values of ν, the chi-square distribution
approaches a normal distribution with the mean value 〈χ2/ν〉 = 1 and the standard
deviation σχ2/ν =

√
2ν − 1/ν.

The probability Q that the minimal chi-square value χ2
min calculated for an experiment with

ν degrees of freedom is due to chance was given in Eq. (4.5) (see as well Fig. 4.8). It gives a
quantitative measure for the goodness-of-fit of the model. If Q is a very small probability,
one can conclude that either (i) the model is wrong/incomplete, or (ii) the measurement
errors are underestimated, or (iii) the measurement errors may not be normally distributed.
As the last case happens quite often, it is not unusual to accept models with Q > 0.001.

From the derivatives of Eq. (A.4) with respect to the parameters ak one obtains a set of M
(generally nonlinear) equations that must hold at the chi-square minimum χ2

min,

0 =
N−1∑
i=0

(
yi − y(xi)

σ2
i

)(
∂y(xi; ...ak...)

∂ak

)
, k = 0, ...,M − 1 . (A.6)

To solve these equations there exist many procedures, for example the often used Levenberg-
Marquardt-algorithm (see, for example, [58], Chap. 8.6).

Confidence Limits

Solving Eq. (A.6), one gets the minimal chi-square χ2
min and the best-fit-parameters. To

1Strictly seen, this is only valid for models that are linear in the parameters, but in most cases one can
assume that the chi-square distribution holds also for models that can be linearized in a region around the
minimal chi-square χ2

min.
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judge about the goodness-of-fit, one can calculate the probability Q. What misses now is
some information about the uncertainties of the best-fit-parameters, or what is called the
confidence limits.
Let us first make some principal considerations: When an experimenter measures some data
set D(0), this can be seen as a statistical representation of the true parameter set ~atrue that
is unknown to the experimenter. The experimenter now fits the data to a model by doing,
e.g., a χ2 minimization. From this he or she gets best-fit values for the M parameters, ~a(0).
Because the data set D(0) has random measurement errors (in addition to possible systematic
errors), D(0) is not the only realization of the true parameters ~atrue. Every new measurement
D(1), D(2), ... would give a slightly different set of best-fit-parameters ~a(1), ~a(2), ... . So one
can say that these parameter sets are distributed according to some probability distribution
in the M-dimensional space of all possible parameter sets ~a. The actual measured (fitted) set
~a(0) is one member drawn from this distribution. A confidence region (CR) now is a region of
that M-dimensional space (normally an M-dimensional ellipsoid), centered around the best-
fit-parameters ~a(0), that contains a certain fraction of the total probability distribution. This
fraction is called the confidence level (CL), and of course it is wishful that it is quite large
(e.g. 90 %), because this means to have a “good confidence” in the measured data, i.e.,
you then could say that “with 90 % probability, the true parameter values lie inside the
CR”. The confidence region, on the other hand, should be small, because this corresponds
to small uncertainties (errors) of the parameters. Frequently used CLs in science are 68.3 %,
90%, 95.4%, 99.73% or higher ones. For a normal distribution, a 68.3 %, 95.4% or 99.73%
confidence level corresponds to a 1-σ, 2-σ or 3-σ (standard) error, respectively. But also for
non-normal distributions these CLs are often used for matters of convention.

Correlated and uncorrelated error

In most cases one is interested in the confidence region, or confidence interval, of one single
parameter, say a1. When a chi-square minimization is used for parameter estimation, this
confidence interval is determined as follows: The parameter a1 is varied by an arbitrary value
δa1, while the other parameters are varied in such a way that the χ2 is minimized. If we call
this minimum χ2

a1, we can define our confidence region by the difference ∆χ2 ≡ χ2
a1 − χ2

min.
For normally distributed data, the region within which ∆χ2 < 1 defines the confidence
region for a1 that contains 68.3% of the probability distribution. In this case the confidence
region is equal to the standard error σ1 =

√
C11, that is given by the square root of the

corresponding diagonal element of the covariance matrix of the fit. This is what we also
call the correlated error, because here the correlation between the parameters is accounted



101

Figure A.1: Confidence region ellipse for the case of two parameters: The projection on the
a-axis (interval AA’) gives the confidence interval for parameter a that contains 68.3% of
normally distributed data, i.e., this interval corresponds to the 1-σ error, or what we call the
correlated error. The uncorrelated error is given by the interval BB’. If the principal axes
of the confidence region ellipse would be parallel to the coordinate axes, the correlated and
uncorrelated errors would be equal, which means that there exist no correlation between
the parameters a and b.

for. In Fig. A.1 a confidence region ellipse is shown for the case of two parameters. The
projection on the a-axis (interval AA’) corresponds to the 1-σ error, i.e., the confidence
interval for parameter a1 that contains 68.3% of normally distributed data.
To determine what we call the uncorrelated error, only δa1 is varied away from the minimum
to find the region where ∆χ2 < 1, while the other parameters remain fixed. Using this
method, the correlations between the parameters are neglected. In the confidence region
ellipse in Fig. A.1, this error corresponds to the interval BB’. The uncorrelated error is
calculated only to get an idea about the strength of the correlations between the parameters.
If the correlated and uncorrelated error are of equal size, it means that the parameters are
weakly correlated. In Fig. A.1 this would correspond to the case where the principal axes of
the confidence ellipse is parallel to the coordinate axes.



Appendix B

Polarization losses

To estimate the polarization losses during filling and transport into the shielded room,
one has to know the polarization in the 3He and 129Xe storage cells at the time of filling,
P

he/xe
fill , and the polarization at the beginning of the measurement, P he/xe

meas . The latter can
be determined out of the amplitudes of the 3He and 129Xe SQUID signals according to Eq.
2.26. For 129Xe the polarization at the time of filling, P xe

fill, is assumed to be equal to the
one reached at the 129Xe polarizer, which is about 13 to 14%. This can be done because
the 129Xe is always polarized directly before each measurement, and the losses during the
transport from the polarizer to the filling station, that takes only about 10 minutes, can
assumed to be negligible.

To determine the 3He polarization, P he
fill , one has to consider the losses during the trans-

port from Mainz to PTB, and the losses during the time where the storage cell lies in the
Helmholtz field at PTB, i.e., the time between the arrival of the gas and the measure-
ment. The 3He gas that was filled into the storage cells in Mainz always had a pressure of
pstor ≈ 2.1 bar and a polarization PMz of about 70%. The T1 time during transport depends
on the wall relaxation time of the storage cell used, T1,stor, the gradient relaxation time in
the field of the transport box, T1,box, the relaxation time T1,bin due to binary collisions, and
the duration of the transport, ttrans. With these parameters the polarization at the time of
arrival of the storage cell at PTB, Parr, can be calculated as:

Parr (ttrans) = PMz · e
− ttrans

T1 (B.1)

where
1
T1

=
1

T1,box
+

1
T1,stor

+
1

T1,bin
. (B.2)

For measurements C92-C95 the storage cell St-1 was used with T1,stor ≈ 189±8 h, while the
storage cell for measurements C99-C103, St-14, had a relaxation time of T1,stor ≈ 231± 7 h.
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tHelm P he
fill P he

meas loss P xe
fill P xe

meas loss
(h) (%) (%) factor (%) (%) factor

C92 36.42 42.3 8.6 4.9 13.0 7.1 1.8
C94 73.00 31.7 6.2 5.1 14.0 4.9 2.9
C95 86.58 28.5 10.5 2.7 14.0 5.7 2.4
C99 6.50 54.4 14.0 3.9 14.0 4.2 3.3
C101 22.97 48.2 25.5 1.9 14.0 8.0 1.8
C102 37.17 43.7 25.7 1.7 14.0 7.8 1.8
C103 54.83 38.70 11.0 3.5 14.0 7.1 2.0

Table B.1: Overview over the polarization losses for 3He and 129Xe for the measurements
C92-C103. tHelm is the duration the storage cell is laying in the Helmholtz field, P he/xe

fill

the estimated polarization of the gas in the storage cell at the time of filling and P
he/xe
meas

the polarization determined out of the measured SQUID signal at the beginning of each
measurement. In the fifth and eighth column the loss factors are listed for 3He and 129Xe,
respectively.

The transport boxes used in both cases had T1 times of T1,box ≈ 300 h at the given
pressure of 2.1 bar. The binary relaxation time at this pressure, calculated according to
Eq. (2.35) for a temperature of T = 293 K, is T1,bin = 385 h. The duration the storage cells
were laying in the transport boxes was ttrans = 19.33 h for C92-C95, and ttrans = 20.83 h
for C99-C103. Using these values the polarization in the 3He storage cells at the time
of arrival becomes Parr = 56.3 h for C92-C95, and Parr = 56.5 h for C99-C103. For the
storage cell St-1 that was used for C92-C95, the polarization was also measured on the
day after the arrival at PTB, with a method that is described in [83]: The cell with the
polarized 3He is alternately held close to and far away from a magnetic field sensor1. The
measured field difference then corresponds to the field that is produced by the 3He magnetic
moments. Knowing the distance between the sensor and the cell (which was r = 5.9 cm),
one can then calculate the polarization according to Eq. (2.26). With this method the
polarization in cell St-1 25 hours after the arrival was determined to be 46.3%. The cal-
culated polarization, using the values from above, is 47.0%. So this is a quite good agreement.

After arriving at PTB, the storage cell is taken out of the storage box and connected to the
filling system, i.e., it is laying in the Helmholtz field during the time tHelm until it is filled
into the measurement cell. As explained above, the homogeneity of this field is good enough
to neglect the gradient relaxation, so that the polarization in the storage cell at the time of

1The three axis magnetometer MAG-03 MS from Bartington with a sensitivity of 10−6 Gauss
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filling can be calculated as

Pfill (t) = Parr · e
−(

tHelm
T1,stor

+
tHelm
T1,bin

)
. (B.3)

In Tb. B the calculated 3He and 129Xe polarizations and the corresponding loss factors
Pfill/Pmeas for each measurement are listed. For 129Xe the loss factor lies between 1.8 and
3.3, for 3He between 1.9 and 5.1. Even though it was paid attention to the reproducibility
of the filling and transport process, and care was taken on the critical points discussed in
Sec. 4.1.3, for some measurements more than 50% of the polarization was lost. So far it is
not clear where these great losses come from, and why in the average more polarization was
lost for 3He than for 129Xe. But as the polarization in the storage cell St-1 was measured
as decribed above, one can say that the main losses for 3He do happen during the filling
and transport at PTB and not during the transport from Mainz to PTB.



Appendix C

Magnetic field: simulations and

measurements

C.1 Simulations

To simulate the magnetic field of the Bx-coils inside the BMSR-2 (see Fig. 3.6), the pro-
gram “Comsol 32” was used, which is a simulation environment based on the finite element
method. The field was calculated using a 3-dimensional magnetostatic model inside “Com-
sol 32”, where the two quadratical Bx-coils were simulated as homogeneously magnetized
cuboids with the edge lengths a = b = 180 cm and c = 2 cm and the magnetization M . The
absolute value of the magnetic moment of a coil with n windings and the cross-section area
A = a · b is given by m = n · I · A = n · I · a · b, where I is the current through the coil. In
our case (n = 20, I = 20 mA) we get a magnetization

M =
m

a · b · c
=
n · I
c

= 20
A
m
. (C.1)

For the simulation only the inner mu-metal layer of the BMSR-2 shielding was considered,
with the dimensions (3208 x 3208 x 3224) mm3, the thickness d = 4 mm and the relative
magnetic permeability µr = 13000 [12]. Outgoing from the Helmholtz condition for quadrat-
ical coils (d ≈ a/1.837 [42]), the distance d between the coils was varied. The best distance
was found to be at d = 97 cm, quite near to the Helmholtz distance of ≈ 98 cm. The reason
for the approximate agreement lies in the mu-metal shielding that slightly changes the field
characteristics.
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During the measurements described in Chap. 3 and 4, the center of the 6 cm diameter
measurement cell was positioned at (0, 0, -6.6 cm), where the coordinate origin (0, 0, 0) cor-
responds to the center of the shielding. So this is the region where the field should be most
homogeneous. For symmetry reasons it would have been better to center the cell as well as
the coils also in the z-direction, but this was not possible due to the dimensions of the Dewar
which was already shifted up to its highest position. Without the mu-metal the best position
for the coil center would be identical with the cell center, i.e., at (0, 0, -6.6 cm). However, if
one considers the mu-metal, which serves as mirror for the magnetic field lines, this simple
fact does no longer hold. For this reason the z-position for the coils was varied to find the
optimum distance ∆z between the coil center and the center of the shielding (in the x-
and y-direction the coils were centered). A good field homogeneity was found for ∆z = -2 cm.

In Fig. C.1 the simulated field distribution relative to the field at the cell center ~Bcc =
(401.923 nT, 0.612 pT,−0.385 pT) is shown. From left to right, the three components ∆Bx,
∆By and ∆Bz are plotted, first against y and z at x = 0 (upper row), then against x and z
at y = 0 (mean row), and against y and x at z = -6.6 cm (lower row). The 6 cm diameter
measurement cell around (0, 0, -6.6 cm) is marked with a black circle. One can see that
the field difference over the size of the cell is less then 1 pT for ∆By at x = 0 and y = 0,
and for ∆Bz at x = 0. For ∆By,z at z = -6.6 cm, for ∆Bz at y = 0 and for ∆Bx the field
difference is still less than 20 pT over the size of the cell. For the gradient this means that
all components ∂Bx

∂x,y,z , ∂By

∂x,y,z and ∂Bz
∂x,y,z are smaller than 4 pT/cm.
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Figure C.1: Relative field distribution (in pT) of the simulated field of the Bx-coils inside the
BMSR-2, referred to the field at the cell center ~Bcc = (401.923 nT, 0.612 pT,−0.385 pT).
The position of the measurement cell around (0, 0, -6.6 cm) is marked with a black circle.
From left to right: Relative field components ∆Bx, ∆By and ∆Bz. Upper row : Field depen-
dence of y and z at x = 0. Mean row : Field dependence of x and z at y = 0. Lower row:
Field dependence of y and x at z = -6.6 cm. The coils are centered in x- and y-direction,
while in z-direction they are shifted 2 cm below the center of the shielding.
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Figure C.2: Position of the Dewar, the center of the mu-metal shielding, the center of the
Bx-coils and the cell relative to the flooring during the measurements in February 2009.
The zero-point of the coordinate system used for the measurements lies in the center of the
shielding.

C.2 Field measurements in February 2009

In February 2009, some weeks before the clock-comparison experiments, the magnitude
B(~r) = | ~B(~r)| of the magnetic field produced by the Bx-coils inside the BMSR-2 (see Fig.
3.6) was measured. Therefore the coils as well as the Dewar were centered in the x- and
y-direction, while in the z-direction the coil center was shifted 2 cm below the center of the
shielding1. The positions of the coil center, the Dewar and the cell are shown in Fig. C.2.
The measurement was done with the help of a spherical cell (Z92, diameter 6 cm) filled with
spin polarized 129Xe, together with 4He which served as buffer gas, at a total pressure of
≈ 360 mbar ([129Xe]/[4He]≈ 1 : 1). The magnitude of the magnetic field was determined
out of the 129Xe Larmor precession frequency νxe via

B =
2πνxe

γxe
, (C.2)

where γxe is the gyromagnetic ratio. The measurement was done at 2 different heights,
z = −6.6 cm (position 1 in Fig. C.2) and z = −8.7 cm, where the coordinate origin (0, 0, 0)
corresponds to the center of the shielding. To change the height to z = −8.7 cm the cell
holder was screwed down relative to the Dewar, while the Dewar remained fixed, i.e., the cell

1Here the center of the mu-metal shielding is meant, which is not equal to the room center, because of the
thickness of the flooring of 7 cm.
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y ↓ x→ -5 cm 0 +5 cm
z=-6.6 cm 10.210 cm 4.0276E-07 4.02876E-07 ← B (T)

6.495 cm 4.0282E-07 ← B (T)
2.165 cm 4.0275E-07 4.02838E-07 ← B (T)

z=-8.7 cm 10.210 cm 4.0282E-07 4.02934E-07 ← B (T)
6.495 cm 4.0283E-07 ← B (T)
2.165 cm 4.0282E-07 4.02938E-07 ← B (T)

Table C.1: Field values measured with a 6-cm 129Xe cell

was shifted away from the Dewar, and at the same time away from the most homogeneous
region of the magnetic field. For each z-position, the cell was shifted to 5 different positions
in the x-y plane (see Fig. C.3). The measured field magnitudes for the different positions are
listed in Tab. C.1. The gradient component Gi,j for the region between two measurement
points ~ri and ~rj was calculated by building the difference between the two corresponding
field values, divided by the distance between these points, i.e.,

Gi,j =
|B(~ri)−B(~rj)|
|~ri − ~rj|

, (C.3)

where the vector ~ri(j) points to the cell center. The results are shown in Fig. C.3: The
light blue circles A, B, C, etc. are the SQUID modules. The zero-point of the coordinate
system lies in the middle of the K module, which sits in the center of the Dewar. The dark
blue dots mark the measurement positions, and the number in the white circle gives the
gradient in pT/cm between the corresponding measurement points. The first two pictures
show the gradients in the x-y-plane for z = −6.6 cm (upper picture) and z = −8.7 cm
(middle picture). In the lower picture the gradients in z-direction between these two levels,
i.e., for z = −7.65 cm are plotted. For the level z = −6.6 cm, the measured gradients in
the x-y-plane are between 1.1 and 11.5 pT/cm, while for z = −8.7 cm they are between 0.6
and 17.2 pT/cm. The biggest field inhomogeneity we have in the z-direction (lower picture),
where values between 2.3 and 47.8 pT/cm were measured. From these measurements it can
be seen that the gradients are in reality much bigger than in the simulation, and show
large irregularities. The reason for this could be an incorrect alignment of the coils, as
well as additional fields produced by the Dewar that was slightly magnetized. For future
measurements it is important to optimize the alignment and the z-position of the coils, and
to demagnetize the Dewar as good as possible.
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Figure C.3: Gradients in pT/cm of the field produced by the Bx-coils inside the BMSR-2,
measured with a 6-cm-diameter cell filled with polarized 129Xe. The light blue circles that
are named A, B, C, etc. are the SQUID modules. The zero-point of the coordinate system is
the center of the mu-metal shielding. The dark blue dots mark the measurement positions,
and the number in the white circle gives the gradient in pT/cm between the corresponding
measurement points. The upper picture shows the gradients for z = −6.6 cm, the middle
one the gradients for z = −8.7 cm. In the lower picture the gradients between these two
levels, i.e., for z = −7.65 cm are plotted.



Bibliography

[1] I. Altarev et al. Towards a new measurement of the neutron electric dipole moment.
Nucl. Instr. and Meth. in Phys. Res. A, 611(2-3):133 – 136, 2009. doi:10.1016/j.

nima.2009.07.046.

[2] C. Amsler et al. Phys. Lett. B, 667(1), 2008.

[3] S. Appelt et al. Theory of spin-exchange optical pumping of 3He and 129Xe. Phys. Rev.
A, 58(2):1412–1439, 1998.

[4] J. C. Baez. Higher-dimensional algebra and planck scale physics. In C. Callender and
N. Huggett, editors, Physics meets philosophy at the Planck scale. Cambridge University
Press, 2001.

[5] D. Bear et al. Improved frequency stability of the dual-noble-gas maser. Phys. Rev. A,
57(6), 1998.

[6] D. Bear, R. E. Stoner, R. L. Walsworth, V. A. Kostelecký, and C. D. Lane. Erratum:
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thesis, École Normale Supérieure Paris (France), 2001.

http://hpiers.obspm.fr/eop-pc/models/constants.html
http://dx.doi.org/10.1103/PhysRev.57.522
http://dx.doi.org/10.1103/PhysRevLett.105.151604
http://dx.doi.org/10.1103/PhysRevLett.105.151604
http://dx.doi.org/10.1103/PhysRevLett.93.230801
http://dx.doi.org/10.1103/PhysRevLett.88.113201
http://dx.doi.org/10.1103/PhysRevLett.88.113201
http://www.roman-britain.org/astronomy/astro.htm
http://www.roman-britain.org/astronomy/astro.htm


BIBLIOGRAPHY 113

[22] H. B. Dang, A. C. Maloof, and M. V. Romalis. Ultra-high sensitivity magnetic field
and magnetization measurements with an atomic magnetometer. 2009. Available from:
http://arxiv.org/abs/0910.2206v1.

[23] A. Deninger et al. Paramagnetic relaxation of spin polarized 3He at coated glass walls.
Eur. Phys. J. D, 38:439 – 443, 2006. Available from: http://dx.doi.org/10.1140/
epjd/e2006-00051-1.

[24] R. W. P. Drever. A search for anisotropy of inertial mass using a free precession
technique. Philosophical Magazine, 6(65), 1961. doi:10.1080/14786436108244418.

[25] A. Fink, D. Baumer, and E. Brunner. Production of hyperpolarized xenon in a static
pump cell: Numerical simulations and experiments. Phys. Rev. A, 72(5):053411, 2005.
doi:10.1103/PhysRevA.72.053411.

[26] C. Gemmel. Voruntersuchungen zu Lorentzinvarianz-Tests mit Hilfe eines 3He-
Magnetometers. Dipl. thesis, Universität Mainz, 2006.

[27] C. Gemmel et al. Ultra-sensitive magnetometry based on free precession of nuclear
spins. Eur. Phys. J. D, 57(3):303–320, 2010. doi:10.1140/epjd/e2010-00044-5.

[28] K. C. Hasson et al. Spin relaxation due to magnetic-field inhomogeneities: Quartic
dependence and diffusion-constant measurements. Phys. Rev. A, 41(7):3672–3688, 1990.

[29] S. Hawking. Das Universum in der Nußschale. Hoffmann und Campe, 2001.

[30] B. R. Heckel et al. Preferred-frame and CP -violation tests with polarized electrons.
Phys. Rev. D, 78(9):092006, 2008. doi:10.1103/PhysRevD.78.092006.

[31] S. Herrmann et al. Rotating optical cavity experiment testing Lorentz invariance at
the 10−17 level. Phys. Rev. D, 80(10), 2009. doi:10.1103/PhysRevD.80.105011.

[32] S. Hiebel et al. Magnetized boxes for housing polarized spins in homogeneous fields.
J. of Magn. Res., 204(1), 2010. Available from: http://www.sciencedirect.com/

science/article/B6WJX-4YCWNP1-1/2/01cb25aa5692c37766e956c272bfea72.

[33] R. E. Hoffman and E. D. Becker. Temperature dependence of the 1H chemical shift of
tetramethylsilane in chloroform, methanol, and dimethylsulfoxide. J. of Magn. Res.,
176(1):87 – 98, 2005.

[34] D. M. Hopstock. A reexamination of the performance of demagnetizing coils on finely
ground natural magnetite. Int. J. Miner. Process., 59:45–68, 1999.

http://arxiv.org/abs/0910.2206v1
http://dx.doi.org/10.1140/epjd/e2006-00051-1
http://dx.doi.org/10.1140/epjd/e2006-00051-1
http://dx.doi.org/10.1080/14786436108244418
http://dx.doi.org/10.1103/PhysRevA.72.053411
http://dx.doi.org/10.1140/epjd/e2010-00044-5
http://dx.doi.org/10.1103/PhysRevD.78.092006
http://dx.doi.org/10.1103/PhysRevD.80.105011
http://www.sciencedirect.com/science/article/B6WJX-4YCWNP1-1/2/01cb25aa5692c37766e956c272bfea72
http://www.sciencedirect.com/science/article/B6WJX-4YCWNP1-1/2/01cb25aa5692c37766e956c272bfea72


114 BIBLIOGRAPHY

[35] V. W. Hughes, H. G. Robinson, and V. Beltran-Lopez. Upper limit for the anisotropy
of inertial mass from nuclear resonance experiments. Phys. Rev. Lett., 4(7), 1960.

[36] E. R. Hunt and H. Y. Carr. Nuclear Magnetic Resonance of 129Xe in Natural Xenon.
Phys. Rev., 130(6), 1963. doi:10.1103/PhysRev.130.2302.

[37] J. D. Jackson. Classical Electrodynamics. John Wiley and Sons, 1998.

[38] C.J. Jameson, A.K. Jameson, and H. Parker. J. Chem. Phys., 8(68), 1978.

[39] S. M. Kay. Fundamentals of Statistical Signal Processing. Prentice Hall PTR, 1993.

[40] W. Kilian. Erzeugung von hyperpolarisiertem 129Xe-Gas und Nachweis mittels in vivo
NMR-Bildgebung, NMR-Spektroskopie sowie SQUID-Messtechnik. PhD thesis, Freie
Universität Berlin, 2001.

[41] S. Knappe. Optimierte SQUID-Sensoren für Anwendungen in zerstörungsfreier Werk-
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[46] V. A. Kostelecký and S. Samuel. Spontaneous breaking of Lorentz symmetry in string
theory. Phys. Rev. D, 39(2):683 – 685, 1989. doi:10.1103/PhysRevD.39.683.

[47] W. Lorenzon, T. R. Gentile, H. Gao, and R. D. McKeown. NMR calibration of optical
measurement of nuclear polarization in 3He. Phys. Rev. A, 47(1):468–479, 1993.

[48] C. Ludwig. Voruntersuchungen zu Lorentzinvarianz-Tests mit Hilfe eines 3He-129Xe-
Komagnetometers. Dipl. thesis, Universität Mainz, 2008.

[49] B.R. Martin and G. Shaw. Particle Physics. Wiley, 2002.

http://dx.doi.org/10.1103/PhysRev.130.2302
http://arxiv.org/abs/0801.0287v3
http://dx.doi.org/10.1103/PhysRevD.39.683


BIBLIOGRAPHY 115

[50] Stuart L. Meyer. Data Analysis for Scientists and Engineers. John Wiley & Sons, 1975.

[51] A. A. Michelson and E. W. Morley. On the relative motion of the earth and the
luminiferous Æther. Philosophical Magazine Series, 5(24), 1887.

[52] A. E. Morbach. Diffusionsgewichtete Helium-3 Magnetresonanztomographie zur Unter-
suchung der Lunge. PhD thesis, Universität Mainz, 2006.

[53] P.J. Nacher and M. Leduc. Optical pumping in 3He with a laser. J. Physique, 46:2057–
2073, 1985.

[54] NASA. HEASARC: NASA’s High Energy Astrophysics Science Archive Research Cen-
ter. Available from: http://heasarc.gsfc.nasa.gov/ [cited Nov. 08, 2010].

[55] J. W. Negele and E. W. Vogt. Advances in Nuclear Physics, volume 27. Springer, 2003.

[56] N. R. Newbury, A. S. Barton, G. D. Cates, W. Happer, and H. Middleton. Gaseous
3He-3He magnetic dipolar spin relaxation. Phys. Rev. A, 48(6), 1993. doi:10.1103/

PhysRevA.48.4411.

[57] NIST (National Institute of Standards and Technology). Latest (2006) values of the
constants. Available from: http://physics.nist.gov/cuu/constants/ [cited Nov.
08, 2010].

[58] D. K. Robinson P. R. Bevington. Data Reduction and Error Analysis for the Physical
Sciences. McGraw-Hill, 2003.

[59] L. A. Pedrós. Diffusion of laser polarized gases in MRI. PhD thesis, Universität Mainz,
2007.

[60] M. Pfeffer and O. Lutz. 129Xe Gas NMR Spectroscopy and Imaging with a Whole-Body
Imager. Journal of Magnetic Resonance A, 108:106–109, 1994.

[61] A. Pich. Effective field theory. Available from: http://arxiv.org/abs/hep-ph/

9806303v1.

[62] W. H. Press. Numerical Recipes in C++: the art of scientific computing. Cambridge
University Press, 2003.

[63] D. Raftery et al. Spin-polarized 129Xe NMR study of a polymer surface. J. Phys.
Chem., 97(8), 1993.

http://heasarc.gsfc.nasa.gov/
http://dx.doi.org/10.1103/PhysRevA.48.4411
http://dx.doi.org/10.1103/PhysRevA.48.4411
http://physics.nist.gov/cuu/constants/
http://arxiv.org/abs/hep-ph/9806303v1
http://arxiv.org/abs/hep-ph/9806303v1


116 BIBLIOGRAPHY

[64] N. F. Ramsey. A New Molecular Beam Resonance Method. Phys. Rev., 76(7):996,
1949. doi:10.1103/PhysRev.76.996.

[65] S. D. Rosner and F. M. Pipkin. Hyperfine Structure of the 23S1 state of 3He. Phys.
Rev. A, 1:571–586, 1970.

[66] J. Schmiedeskamp et al. Paramagnetic relaxation of spin polarized 3He at bare glass
surfaces. Eur. Phys. J. D, 38:427 – 438, 2006. Available from: http://dx.doi.org/
10.1140/epjd/e2006-00050-2.

[67] J. Schmiedeskamp et al. Paramagnetic relaxation of spin polarized 3He by magnetized
ferromagnetic contaminants. Eur. Phys. J. D, 38:445 – 454, 2006. Available from:
http://dx.doi.org/10.1140/epjd/e2006-00052-0.

[68] F. Schwabl. Quantenmechanik. Springer, 2004.

[69] N. Segebarth et al. Novel Method for the Measurement of Xenon Gas Solubility Using
129Xe NMR Spectroscopy. J. Phys. Chem. A, 110:10770–10776, 2006.

[70] C. P. Slichter. Principles of Magnetic Resonance. Springer, 1978.

[71] L. Smolin. An invitation to Loop Quantum Gravity. 2005. Available from: http:
//arxiv.org/abs/hep-th/0408048v3.

[72] G. F. Smoot and D. Scott. Cosmic background radiation. Eur. Phys. J. C, 15(1-4),
2000. doi:10.1007/BF02683415.
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[75] F. Thiel, A. Schnabel, S. Knappe-Grüneberg, D. Stollfuss, and M. Burghoff. Demagne-
tization of magnetically shielded rooms. Review of Scientific Instruments, 78:035106,
2007.

[76] B. Tschumy. The Galactic Coordinate System. Available from: http://www.

thinkastronomy.com/M13/Manual/common/galactic_coords.html [cited Nov. 08,
2010].

http://dx.doi.org/10.1103/PhysRev.76.996
http://dx.doi.org/10.1140/epjd/e2006-00050-2
http://dx.doi.org/10.1140/epjd/e2006-00050-2
http://dx.doi.org/10.1140/epjd/e2006-00052-0
http://arxiv.org/abs/hep-th/0408048v3
http://arxiv.org/abs/hep-th/0408048v3
http://dx.doi.org/10.1007/BF02683415
http://dx.doi.org/10.1103/PhysRevLett.89.231301
http://dx.doi.org/10.1103/PhysRevLett.89.231301
http://www.usno.navy.mil/USNO/astronomical-applications/astronomical-information-center/approx-sider-time
http://www.usno.navy.mil/USNO/astronomical-applications/astronomical-information-center/approx-sider-time
http://www.thinkastronomy.com/M13/Manual/common/galactic_coords.html
http://www.thinkastronomy.com/M13/Manual/common/galactic_coords.html


BIBLIOGRAPHY 117

[77] K. Tullney. Test der Lorentzinvarianz mit Hilfe eines 3He-129Xe-Komagnetometers.
Dipl. thesis, Universität Mainz, 2009.

[78] University of Colorado at Boulder. CASA: Center for Astrophysics and Space Astron-
omy. Available from: http://casa.colorado.edu/ [cited Nov. 08, 2010].

[79] B. Vatant. Find latitude and longitude with google maps. Available from: http:

//pagesperso-orange.fr/universimmedia/geo/loc.htm [cited Nov. 08, 2010].

[80] H. Vucetich. Testing Lorentz Invariance Violation in Quantum Gravity Theories. 2005.
Available from: http://arxiv.org/abs/gr-qc/0502093v1.

[81] J. H. Wesenberg and K. Mølmer. Field Inside a Random Distribution of Parallel Dipoles.
Phys. Rev. Lett., 93(14), 2004.

[82] Wikipedia. Galactic coordinates. Available from: http://en.wikipedia.org/wiki/
File:Galactic_coordinates.JPG [cited Nov. 08, 2010].

[83] E. Wilms, M. Ebert, W. Heil, and R. Surkau. Polarimetry on dense samples of spin-
polarized 3He by magnetostatic detection. Nucl. Instr. and Meth. A, 401:491–498,
1997.
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