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Summary

The purpose of this doctoral thesis is to prove existence for a mutually catalytic random walk

with infinite branching rate on countably many sites. The process is defined as a weak limit of

an approximating family of processes. An approximating process is constructed by adding jumps

to a deterministic migration on an equidistant time grid. As law of jumps we need to choose the

invariant probability measure of the mutually catalytic random walk with a finite branching rate

in the recurrent regime. This model was introduced by Dawson and Perkins (1998) and this thesis

relies heavily on their work. Due to the properties of this invariant distribution, which is in fact

the exit distribution of planar Brownian motion from the first quadrant, it is possible to establish

a martingale problem for the weak limit of any convergent sequence of approximating processes.

We can prove a duality relation for the solution to the mentioned martingale problem, which goes

back to Mytnik (1996) in the case of finite rate branching, and this duality gives rise to weak

uniqueness for the solution to the martingale problem. Using standard arguments we can show

that this solution is in fact a Feller process and it has the strong Markov property.

For the case of only one site we prove that the model we have constructed is the limit of finite

rate mutually catalytic branching processes as the branching rate approaches infinity. Therefore, it

seems natural to refer to the above model as an infinite rate branching process. However, a result

for convergence on infinitely many sites remains open.

Key words and phrases. martingale problem, mutually catalytic branching, infinite branching rate,

dual process, super-random walk, weak convergence
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Introduction

Motivation and main results

Branching random walks are processes that describe populations of particles that are placed in

some site space. There are two kinds of dynamics on this population: motion and branching.

Particles move independently through the space and reproduce or die according to some branching

law independent of the motion. Traditionally in branching theory, the basic assumption is that

disjoint parts develop independently. This independence assumption allows the use of a lot of

mathematical tools, which has made the development of a huge mathematical theory possible; see,

for example, the lecture notes [Da93], [Eth00] and [Per02]. If we consider two types of populations

(or substances), though, there is the possibility to introduce interaction between both substances,

and this interaction is meant to violate the basic independence assumptions. In this thesis we

assume interaction of both types via a linear influence on the opposite substance’s branching rate.

If the interaction is only one-sided, which means substance 1 is assumed to evolve autonomously

whereas the branching of substance 2 is assumed to be controlled by substance 1, then the terms

catalyst and reactant stand for both substances, respectively. In this case the catalyst makes it

possible for the reactant to grow (or die) – see for instance [GKW99] and [DF91] – hence the

names. Yet, for this one-sided interaction conditional independence is retained.

In 1998 Dawson and Perkins, see [DP98], introduced and studied a mutually catalytic branching

model. In their model both substances catalyze each other; that is to say, the branching rate of

each type at a site is proportional to the amount of the other type present at that site. This true

interaction of types destroys the usual independence assumption in branching theory. In particular,

this model is not a superprocess (if the set of sites is the real line) or a super-random walk (if the

set of sites is countable, e.g. the lattice Zd) in its standard definition. See [DF99] for a survey and

a more detailed introduction to catalytic and mutually catalytic models.

In this thesis we concentrate on (and use) the results of the semi-discrete model of Dawson

and Perkins: the site space is countable and the population size of both substances on one site is

continuous, i.e. a pair of non-negative real numbers. We will go into greater detail in Section 1.1,

in which the model of Dawson and Perkins on the lattice is described. As in [DF00], with an abuse

of language we call this model super-random walk. Nevertheless, note that the model of Dawson

and Perkins has a finite branching rate. Our aim is to establish a version of this model with an

infinite branching rate.

Now, we first specialize the model of Dawson and Perkins for one colony. We name this colony

v



Introduction

0 and indicate it as a subscript. Let the pair (Zγ
1,0,t, Z

γ
2,0,t) ∈ [0,∞)2 describe the size of both

populations, namely types 1 and 2, on colony 0 at time t ≥ 0. We consider a drift towards some

point Θ = (θ1, θ2) ∈ [0,∞)2. Then, the evolution in time is governed by the SDE

dZγ
α,0,t =

(

θα − Zγ
α,0,t

)

dt +
√

γ Zγ
1,0,t Zγ

2,0,t dBα,0,t , (1)

for all times t ≥ 0 and types α ∈ {1, 2}, where (Bα,0,t)t≥0 are two independent standard Brownian

motions. We indicate the dependence on the constant γ > 0 as a superscript. In the context of

ordinary Feller diffusions γ is called the branching rate and it indicates the variance of the off-

spring distribution of approximating Galton-Watson branching processes; see, for example, [EK86]

Theorem 9.1.3 on p.388.

One idea to establish a version of (1) with γ = ∞, which means with an infinite branching

rate (or with infinite variance), is to trade time for variance, i.e. we consider t → ∞ instead of

γ → ∞. It is best pictured in Equation (2.24) in the proof of Lemma 2.6 that this argumentation

makes good sense. At this point we note in addition that Dawson and Perkins investigated the

long-term behaviour of their model and established a limit distribution, which has full expectation

but infinite variance (under some recurrence assumption). It turns out that this limit distribution

is given by the exit distribution of planar Brownian motion from the first quadrant. We denote

this distribution by DP ; that means, we set DPx(dξ) := Px

[

BT ∈ dξ
]

if planar Brownian motion

Bt = (B1,t, B2,t) starts in x ∈ [0,∞)2 and where T = inf{ t > 0 : B1,t B2,t = 0}. In fact, we will

construct a process X = (X1,0,t,X2,0,t) such that

L[X·,0,t] = DP(µ,ν) , (2)

with parameters µ, ν ∈ [0,∞) depending on t ≥ 0 and on the initial value of X. And, moreover,

we can show that for any t ≥ 0

lim
γ→∞

L[Zγ
·,0,t] = L[X·,0,t] , (3)

provided both processes have the same initial condition. Recall that the DP -distribution only

charges the boundary of the first quadrant. Hence, the appropriate state space for X on site 0 is

L := ∂[0,∞)2. In particular, in the case of infinite rate branching, at a fixed time only one type

can live at site 0.

The proof of Equations (2) and (3) above involves a duality relation for X and Zγ , respectively,

which goes back to Mytnik, see [My98b] or [My96]. We will describe this duality below, see

Equation (7), for countably many sites. However, to establish this duality for X and Zγ as above

it is convenient to adjoin an auxiliary site, named 1, say. We choose the size of both types on

colony 1 constant and equal to (θ1, θ2). Therefore, we consider Xt =
(

(X1,0,t,X2,0,t) , (θ1, θ2)
)

and Zγ
t =

(

(Zγ
1,0,t, Z

γ
2,0,t) , (θ1, θ2)

)

as processes on two colonies. In this context it becomes more

obvious how to adopt the idea of Mytnik to establish a duality relation and how to find the proper

dual process.

The infinite variance process (X1,0,t , X2,0,t) on site 0 with drift towards (θ1, θ2), which is a

Markov process, can also be characterised by its generator AΘ. It is a Lévy-type generator of the

following form: Let x = (x1, x2) ∈ L and f : L −→ R be a smooth function. If xα > 0 (the other
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type being zero) then

AΘf(x) = θα

∫

L

[

f(y) − f(x) − (yα − xα) ∂αf(x)
]

η(x, dy) + (θα − xα) ∂αf(x) , (4)

for some σ-finite (jump) measure η on L with singularity at x. By ∂αf(x) we denote the partial

derivate ∂
∂xα

f(x) of f . See Proposition 2.1 for an explicit representation of η. Here, we only remark

that the map x 7→ η(x,A) for some open set A containing 0 ∈ L is not continuous (at zero).

Next, we turn our attention to a countably infinite site space S. In this context it will be nec-

essary to impose conditions on the migration of particles, and to restrict the class of configurations

which are permitted. To this end we introduce Liggett-Spitzer-type spaces Eγ ⊆
(

[0,∞)×[0,∞)
)S

and Lγ ⊆ LS with respect to some weight function γ on S; see page 29 for a definition. – Please do

not mistake the weight function γ on S for the branching parameter γ as in Equation (1). – Since

the spaces Eγ and Lγ are not locally compact we cannot use the usual Hille-Yoshida machinery to

establish existence of the process with state space Lγ . Instead, we have to construct ‘by hands’ a

family of approximating processes
{

X̃ε : 0 < ε ≤ 1
}

with configurations in Lγ . Such a process

X̃ε is piecewise constant and has jumps on an equidistant time grid with grid size ε > 0. The law

of jumps is given by the DP -distribution. Using standard tightness arguments we can show that

a subsequence (X̃εn)n converges to some process X, i.e.

X̃εn =⇒ X, as εn ց 0, (5)

in the sense of weak convergence of processes with paths in DLγ
[0,∞), the space of càdlàg functions

with values in Lγ . In order to show this we define truncated processes X̃K,ε which are bounded by

some arbitrary large K > 0, and hence, these processes possess a finite second moment. However,

X̃K,ε and X̃ε coincide on a set with probability close to one. For the definition of the truncated

processes we need a bounded variant of the DP -distribution – that is, the exit distribution of

planar Brownian motion when it leaves the box [0,K]2.

We will identify the limit X in Equation (5) as the solution to a martingale problem. To this

end, we need to define processes Xε with configurations in Eγ instead of Lγ , but which are close

to X̃ε in some sense; see Equation (3.21) on page 38. Then, the statement of Equation (5) remains

valid with Xε instead of X̃ε. For Mytnik’s duality functions F (·, y), indexed by y ∈ Lb, where Lb

is some subset of Lγ – see Equation (3.25) on page 39 for definitions – and some operator A given

by Equation (3.27), the processes Xε allow

t 7→ F (Xε
t , y) − F (Xε

0 , y) −
∫ t

0

A F (Xε
s , y) ds (6)

to be a martingale. X inherits this martingale property since we can show that the family of

processes
{

Xε : 0 < ε ≤ 1
}

has uniformly bounded moments of order p, where 1 ≤ p < 2. All

these facts are due to properties of the DP -distribution.

Furthermore, Mytnik’s duality remains valid. There is a dual process Y with the same dynamics

as X, but with configurations in the smaller set Lb, such that whenever X starts in x ∈ Lγ and Y

starts in y ∈ Lb then for all t ≥ 0

Ex

[

F (Xt , y )
]

= Ey

[

F (x , Yt )
]

. (7)
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Mytnik’s duality functions F (·, y), which we sometimes refer to as mixed Laplace-Fourier trans-

forms, separate distributions on Lγ if y ∈ Lb, hence, relation (7) uniquely determines the one-

dimensional distributions of X. Since X satisfies the martingale property of Equation (6) we infer

that X is a solution to the martingale problem for A and functions F (·, y), y ∈ Lb. Then (7)

implies uniqueness of the finite-dimensional distributions of X. Exploiting further duality (7) we

prove the Feller property and the strong Markov property for X. We can summarise the results of

Chapter 3 with the following statement.

The processes
{

Xε : 0 < ε ≤ 1
}

weakly converge, as ε ց 0, to the unique solution of the

DLγ
[0,∞)-martingale problem associated with Equation (6). This solution has the Feller property

and is a strong Markov process.

This process is the “mutually catalytic super-random walk” we wished to construct.

Outline

This thesis is basically composed of four chapters. Firstly, in Section 1.1, we present very briefly

and rather informally the model of Dawson and Perkins, which is the catalytic branching random

walk with finite branching rate. Then, we define the DP -distribution and investigate its properties

in Section 1.2. Chapter 2 is devoted to the model with infinite branching rate on one colony.

Tedious calculations for the model’s pregenerator of Equation (4) are deferred to the Appendix.

The conception of two colonies allows us to find a natural dual process and due to this we are able

to compute the model’s transition probabilities in Section 2.2; compare with Equation (2). By

means of duality we can show in Lemma 2.6 that the infinite rate branching model can be achieved

as the limit of finite rate branching, as stated in Equation (3).

The main part of this thesis is Chapter 3. In Section 3.1 we define the family of approximating

processes
{

Xε : 0 < ε ≤ 1
}

on countably many sites and show that this family is tight. To establish

tightness in Section 3.2 we need bounded versions of the approximating processes. Therefore,

Section 1.3 introduces a truncated version of the DP -distribution. This idea is picked up at

the end of sections 2.1 and 3.1. In Section 3.3 we establish a martingale problem, as indicated in

Equation (6), and Mytnik’s duality for the weak limit of the approximating processes, cf. Equation

(7). Duality will imply uniqueness for the martingale problem and its solution has the Feller and

the strong Markov property; see Lemma 3.23 below.

At the end Chapter 4 gives suggestions for further development in this area.

viii
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Chapter 1

Preliminaries

1.1 The model of Dawson and Perkins

In this first section, we would like to review some facts of D. Dawson’s and E. Perkins’ model

for mutually catalytic branching with finite variance, cf. [DP98]. Thereby we will introduce our

notation. The stochastic process Z describes a two-type “infinitesimal mass” interacting particle

system on Zd, i.e. Z is a vector of pairs (or a pair of vectors), namely Zt = (Z1,k,t , Z2,k,t )k∈Zd ,

where Zα,k,t ∈ [0,∞) denotes the amount of mass of particle type α ∈ {1, 2} at site k ∈ Zd at time

t ≥ 0. In the sequel we will sloppily abbreviate for example, Z1,t or Zα,·,t for (Z1,k,t)k∈Zd and at

times we simply write Zt for the configuration Z·,·,t at time t ≥ 0. We might even write Z1,k(t)

or Z1,t(k) instead of Z1,k,t, which is more close to the usual notation. However, we will use the

letters t, s or r to label time and k, j or l to mark the site, so there should be no mistake in name.

Formally the process is given by the following system of integral equations. For each type

α ∈ {1, 2} we have

Zα,k,t = Zα,k,0 +

∫ t

0

(Zα,·,sQ)k ds +

∫ t

0

√

γ Z1,k,s Z2,k,s dBα,k,s , (1.1)

for t ≥ 0 and k ∈ Zd, where { (Bα,k,t)t≥0 : α ∈ {1, 2}, k ∈ Zd } is a family of independent

one-dimensional Brownian motions, γ > 0, and, Q = (qjk)j,k∈Zd denotes the Q-matrix of a con-

tinuous time Zd-valued Markov chain, that is, qjk denotes the jump rate from j to k. The matrix

multiplication reads as (Zα,·,sQ)k :=
∑

j∈Zd Zα,j,sqjk for each k ∈ Zd.

Equation (1.1) can be interpreted in the following way: The particles migrate according to

Q, each type independent of the other. Since the process Z describes the behaviour of infinitely

many particles with infinitesimal mass, we should rather say that the mass of each particle type

flows independently of the other type. In addition, independently on each site k ∈ Zd, the mass

of each type fluctuates randomly according to Feller’s branching diffusion. The parameter γ > 0

represents the variance of the branching mechanism; see [EK86] Chap.9, p.386-389 for the simplest

case. Here, however, the diffusion rate is in addition proportional to the amount of mass of the

other type at that particular site. Hence, branching of type 1 is only possible in the presence of

type 2, and vice versa.

Theorems 1.1 and 2.2 of [DP98] ensure existence of this process Z, provided the entries of Q

1
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satisfy some exponential growth conditions; cf. the conditions (H0) to (H2) on page 1090 of that

paper. Z then has continuous paths with values in a subspace of
(

[0,∞)×[0,∞)
)Z

d

such that the

configurations only grow ‘tempered’, i.e. the term 〈Zα,·,t , e−λ|·| 〉 :=
∑

k∈Zd Zα,k,t e−λ|k| is finite

for all λ > 0, where |k| =
∑d

i=1 |ki| for k = (k1, . . . , kd) ∈ Zd.

This model (especially the continuous site version; that means if the set of sites is the real

line, R, or the plane, R2 – instead of Zd) has attracted attention of various well-known authors,

from C. Mueller, see [MP00], who, according to Dawson and Perkins, suggested this model, to

A. Etheridge, K. Fleischmann and J. Xiong, cf. the trilogy [DE02a], [DE02b] and [DE03c], or Cox

and Klenke, see [CKP99] and [CK00], to mention a few. There is also a version with more than

two types of particles; see [FX01] and [DFX05].

Equivalently, it is possible to rewrite Equation (1.1) via the process’s generator A , which,

applied to Mytnik’s duality functions F (·, y) – see Equation (3.25) on page 39 for a definition –

reads as

A F (·, y)(z) = F (z, y)
[

− 〈 z1,· + z2,· , Q∗(y1,· + y2,·) 〉

+ i〈 z1,· − z2,· , Q∗(y1,· − y2,·) 〉

+ 4 γ
∑

k∈Zd

z1,k z2,k y1,k y2,k

]

(1.2)

for appropriate z, y ∈
(

[0,∞)×[0,∞)
)Z

d

, where Q∗ denotes the transpose of Q. Compare with

Equation (2.1) in [DP98] and Remark 2.5 of the same reference. The martingale problem for A

and Mytnik’s duality functions then implies the following duality. Let Z, starting in z, satisfy

Equation (1.1) then Theorem 2.4 of [DP98] gives for t ≥ 0

Ez

[

F
(

Zt , y
)

]

= Ey

[

F
(

z , Yt

)

]

, (1.3)

for a dual process Y (with initial condition y) of the same type as Z; that means Y also satisfies

Equation (1.1) with Q replaced by Q∗. In [DP98] the dual process Y has to have configurations that

are rapidly decreasing to make the expressions in (1.3) well defined; for example, let (y1,k, y2,k) =

(0, 0) for all but finitely many k ∈ Zd. By Lemma 2.3 of [DP98] the class of functions F (·, y)

considered in (1.3) separates measures and is convergence determining. Hence, because of this self-

duality, which is due to Mytnik (see [My98b] or [My96]), it is possible to show weak uniqueness

for Equation (1.1) and, amongst others, the strong Markov property of Z, see Theorem 2.4 and

Corollary 2.7 of [DP98]. Moreover, the existence of an equilibrium distribution for Z will be an easy

consequence of the duality relation (1.3); see Theorem 1.4 of [DP98]. And under some recurrence

assumptions (on Q, satisfied, for example, by simple symmetric random walk in dimension d = 1

or d = 2) this limit law is explicitly known:

For a real number a ≥ 0 denote by a : Zd −→ [0,∞) the map which is constant and equal to a.

Fix x1, x2 ≥ 0 and let Bt =
(

B1,t , B2,t

)

be a planar Brownian motion starting at x = (x1, x2) ∈
[0,∞)2 under P(x1,x2). Define the stopping time T := inf

{

t : B1,tB2,t = 0
}

. Then Theorem 1.5

of [DP98] says that for the process Z of Equation (1.1) with initial configuration (x1, x2), i.e. all

components of type α ∈ {1, 2} equal xα,

P(x̄1,x̄2)

[

Zt ∈ ·
]

=⇒
t→∞

P(x1,x2)

[(

B1,T , B2,T

)

∈ ·
]

(1.4)

2



1.2 The DP-distribution

in the sense of weak convergence of probabilities (on the space of tempered configurations). In

particular, Z1,·,∞ = 0 or Z2,·,∞ = 0 P(x̄1,x̄2)-a.s. while the other type, which did not die out, is

constant but random. Note that Dawson and Perkins assume Q to be symmetric with row sums

equal to zero.

Statements (1.2) to (1.4) will be the key ingrediences to construct a variant of Z which has

infinite variance, very loosely speaking, with γ = ∞ in (1.1). The exit distribution of planar

Brownian motion from the upper right quadrant in Equation (1.4) will be of particular importance.

We therefore introduce the following notation. For z = (z1, z2) ∈ (0,∞)2 we set

DPz(dξ) := P(z1,z2)

[(

B1,T , B2,T

)

∈ dξ
]

. (1.5)

The distribution DPz charges L := [0,∞)2 \ (0,∞)2 = [0,∞)×{0} ∪ {0}×[0,∞). And if z ∈ L

we can consistently set

DPz := δz, (1.6)

the Dirac measure at z.

1.2 The DP-distribution

We investigate properties of the DP -distribution defined above. First, observe that if the Brownian

motion starts in x ∈ (0,∞)2 then DPx is absolutely continuous w.r.t. Lebesgue measure. The

next lemma gives the density; compare with [DP98] p.1094.

1.1 Lemma Let x = (x1, x2) ∈ (0,∞)2. Then

DPx(dξ1, dξ2) :=
1

π

4x1 x2 ξ1

4x2
1 x2

2 +
(

ξ2
1 + x2

2 − x2
1

)2 [0,∞)×{0}(ξ1, ξ2) dξ1

+
1

π

4x1 x2 ξ2

4x2
1 x2

2 +
(

ξ2
2 + x2

1 − x2
2

)2 {0}×[0,∞)(ξ1, ξ2) dξ2

(1.7)

Proof. Let Bt =
(

B1,t , B2,t

)

be planar Brownian Motion starting at (0, a) ∈ R2, a > 0. Let S

be the time when B first hits the x-axis, that means S := inf
{

t > 0 : B2,t = 0
}

. Then we have,

see [RY91] p.108 Proposition III.3.11,

B1,S
d
= a · C ,

where C is a standard Cauchy random variable. Hence, starting at (b, a), for b ∈ R, B1,S has a

distribution with density f given by

f(ξ) :=
1

π

a

a2 + (ξ − b)2
, ξ ∈ R.

Now we apply the conformal mapping z 7→ √
z. Just note (x1 + ix2)

2 = x2
1 − x2

2 + i 2x1x2 to

obtain for ξ > 0

1

π

2x1x2

(2x1x2)2 +
(

ξ2 − (x2
1 − x2

2)
)2

1

| 1
2ξ |

=
1

π

4x1x2ξ

4x2
1x

2
2 +

(

ξ2 + x2
2 − x2

1

)2 .

3
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For ξ < 0 we have to consider −ξ2. This gives (1.7). �

As square root of a Cauchy distribution, it is immediate that the DPx-distribution has finite

moments up to order stricly smaller than two, and the second moment is infinite if x ∈ (0,∞)2.

The DP -distribution and Mytnik’s duality functions are perfectly suited for each other. Here,

we give a definiton of these functions for pairs of nonnegative real numbers. To this end let

x = (x1, x2) and y = (y1, y2) be elements of [0,∞)2. Set

F (x, y) := exp
{

−(x1 + x2)(y1 + y2) + i(x1 − x2)(y1 − y2)
}

. (1.8)

And recall L = [0,∞)×{0} ∪ {0}×[0,∞). Then F has the following invariance properties under

the DP -distribution.

1.2 Lemma

(a) For all y ∈ [0,∞)2 and all x ∈ L,

F (x, y) =

∫

DPy(dz)F (x, z). (1.9)

(b) For all x, y ∈ [0,∞)2,
∫

DPy(dξ)F (x, ξ) =

∫

DPx(dζ)F (ζ, y). (1.10)

Proof. (a) Let x1, x2 ≥ 0. According to the definition of the DP -distribution we have
∫

DPy(dz)F (x, z) = Ey

[

exp
{

−(x1 + x2)(B1,T + B2,T ) + i(x1 − x2)(B1,T − B2,T )
}]

,

where Bt = (B1,t, B2,t) is planar Brownian motion starting at y = (y1, y2) and T = inf{ t :

B1,tB2,t = 0 }. Note that

Mt := e−4x1x2 t exp
{

−(x1 + x2)(B1,t + B2,t) + i(x1 − x2)(B1,t − B2,t)
}

(1.11)

is a martingal since

Ey[Mt|Fs] = Ms e−4x1x2 (t−s) Ey

[

exp
{

−(x1 + x2)(B1,t − B1,s + B2,t − B2,s)
}

× exp
{

i(x1 − x2)(B1,t − B1,s − (B2,t − B2,s))
}

∣

∣

∣

∣

Fs

]

= Ms e−4x1x2 (t−s) E0

[

exp
{

−(x1 + x2)B1,t−s + i(x1 − x2)B1,t−s

}

]

× E0

[

exp
{

−(x1 + x2)B2,t−s − i(x1 − x2)B2,t−s

}

]

= Ms .

For the last equality observe that B1,t−s is normally distributed with mean 0 and variance t − s,

hence E0

[

eiλB1,t−s
]

= e−
1
2 λ2(t−s) is analytic, and in particular for λ1 = (x1 −x2)+ i(x1 +x2) and

λ2 = −(x1 − x2) + i(x1 + x2), resp., we have

E0

[

exp
{

−(x1 + x2)B
(1)
t−s + i(x1 − x2)B

(1)
t−s

}

]

= e−
1
2

[

(x1−x2) + i(x1+x2)
]2

(t−s) ,

E0

[

exp
{

−(x1 + x2)B
(2)
t−s − i(x1 − x2)B

(2)
t−s

}

]

= e−
1
2

[

−(x1−x2) + i(x1+x2)
]2

(t−s) ,

4



1.2 The DP-distribution

and e−
1
2

[

(x1−x2) + i(x1+x2)
]2

(t−s) e−
1
2

[

−(x1−x2) + i(x1+x2)
]2

(t−s) = e

[

(x1+x2)
2 − (x1−x2)

2
]

(t−s).

Now observe that the family (Mt∧T )t≥0 is absolutely bounded by 1, hence, is uniformly inte-

grable. Since Mt∧T → MT a.s. as t → ∞ we have according to the opptional stopping theorem

e−(x1+x2)(y1+y2) + i(x1−x2)(y1−y2) = Ey[M0] = lim
n→∞

Ey[MT∧n] = Ey[MT ] , (1.12)

provided x1x2 = 0.

(b) Now we choose x = (x1, x2) ∈ [0,∞)2 and y = (y1, y2) ∈ [0,∞)2. Let B be planar

Brownian motion under P x starting in x with stopping time T , and W an independent copy

starting in y under P y and stopping time T ′ as above, but for W . Since |F | ≤ 1 we infer

Ex

[

F (BT , y)
]

=

∫

F
(

BT (ω), y
)

P x(dω)

=

∫

Ey

[

F
(

BT (ω),WT ′

)]

P x(dω)

=

∫ ∫

F
(

BT (ω),WT ′(ω′)
)

P y(dω′)P x(dω) = E(x,y)

[

F
(

BT ,WT ′

)]

=

∫

Ex

[

F
(

BT ,WT ′(ω′)
)]

P y(dω′)

=

∫

F
(

x,WT ′(ω′)
)

P y(dω′)

= Ey

[

F (x,WT ′)
]

which is equation (1.10). �

1.3 Lemma Let x ∈ [0,∞)2 and c > 0. Then, for any integrable function f : [0,∞)2 −→ C,

∫

DPc x(dz)f(z) =

∫

DPx(dz)f(c z).

Proof. Simply use the density in (1.7) and substitute. �

As a consequence of Lemma 1.2 the family of functions
{

F (·, y) : y ∈ L
}

separates measures

which charge only L.

1.4 Lemma

(a) If µ1 and µ2 are probability measures on [0,∞)2 such that
∫

F (x, y)µ1(dx) =
∫

F (x, y)µ2(dx)

for all y ∈ [0,∞)2 then µ1 = µ2.

(b) If µ1 and µ2 are probability measures on L such that
∫

F (x, y)µ1(dx) =
∫

F (x, y)µ2(dx) for

all y ∈ L then µ1 = µ2.

Proof. (a) Let E = [0,∞)2 and consider the compactification Ê = E ∪ {∞}. Then the

complex linear span of D = {F (·, y) : y ∈ E } is a sub-algebra of the space of continuous functions

with limits at infinity which separates points, and hence, is dense in Cb(Ê,C) according to the

Stone-Weierstraß Theorem, cf. [Bau90] § 23 Remark 3, on p.198. This implies µ1 = µ2, see

[Kl06] Corollary 15.3, p.283 or [Bau92] Corollary 29.1, p.214, if we take into account that F (·, y)

characterizes the distribution of (x1 + x1 , x1 − x2) which uniquely corresponds with (x1, x2).

5



Chapter 1 Preliminaries

(b) For measures on E which charge only L ⊂ E we can use Lemma 1.2(a) and Fubini. In fact,

for any y ∈ E we have
∫

F (x, y)µ1(dx) =

∫

L

∫

L

F (x, ξ)µ1(dx)DPy(dξ)

=

∫

L

∫

L

F (x, ξ)µ2(dx)DPy(dξ) =

∫

F (x, y)µ2(dx).

Hence, µ1 = µ2 by part (a). �

We present an estimate on the p-th moment of the DP-Distribution.

1.5 Lemma Let Bt = (B1,t, B2,t)t≥0 be planar Brownian motion starting in (u, v) ∈ (0,∞)2

and T = inf
{

t > 0 : B1,t B2,t = 0
}

. For 1 < p < 2 we have

E(u,v)

[(

sup
t≥0

|Bα,t∧T |
)p]

< ∞

for each α ∈ {1, 2}. Yet, we have the following upper bounds:

E(u,v)

[(

sup
t≥0

|B1,t∧T − u|
)p]

≤ Cp min
{

(u + 1)v , (v + 1)u
}

, (1.13)

E(u,v)

[(

sup
t≥0

|B2,t∧T − v|
)p]

≤ Cp min
{

(u + 1)v , (v + 1)u
}

. (1.14)

for some constant Cp, which only depends on p.

Proof. Let planar Brownian motion Bt = (B1,t, B2,t)t≥0 start in (u, v) ∈ (0,∞)2, T =

inf
{

t > 0 : B1,t B2,t = 0
}

and Tu = inf
{

t > 0 : B1,t = 0
}

and Tv = inf
{

t > 0 : B2,t = 0
}

.

Note that T = min(Tu , Tv). The stopping time Tu has Lévy distribution with parameters u2 and

0, i.e. the density

P
[

Tu ∈ ds
]

=
u√
2π

e−
u2

2s s−3/2 ds ,

where s > 0 and u > 0, compare [KS91] Section 2.8 Equation(8.5) p.96. The same is true for Tv

with u replaced by v. Since e−
u2

2s ≤ 1 we can estimate

P
[

Tu > t
]

≤
∫ ∞

t

u√
2π

s−3/2 ds =

√

2

π

u√
t

, (1.15)

for t > 0. Hence, we have

P
[

T > t
]

= P
[

Tu > t
]

P
[

Tv > t
]

≤ 2

π

uv

t
. (1.16)

Then, for 1
2 < r < 1, there exists a constant Cr which only depends on r, such that

E[T r] =

∫ ∞

0

P
[

T r > t
]

dt =

∫ ∞

0

P
[

T >
r
√

t
]

dt ≤







Cr (u + 1)v

Cr (v + 1)u
(1.17)

since
∫ ∞

1

P
[

T >
r
√

t
]

dt ≤
∫ ∞

1

2

π

uv

t1/r
dt =

2

π
u v

r

1 − r

6



1.2 The DP-distribution

by (1.16) and

∫ 1

0

P
[

T >
r
√

t
]

dt ≤
∫ 1

0

P
[

Tu >
r
√

t
]

dt ≤
∫ 1

0

√

2

π

u

t1/2r
dt =

√

2

π
u

2 r

2 r − 1

by (1.15), and similar with v.

Finally, we can apply the Burkholder-Gandy inequality, see for instance [LSh89] p.75 (Chap. 1

§9 Theorem 7). Note that we can estimate the quadratic variation, 〈Bα,·∧T 〉t ≤ T , and then,

with r = p
2 , we have

E
[(

sup
t≥0

|B1,t∧T − u|
)p]

≤ cp E
[

〈B1,·∧T 〉p/2
∞

]

≤ cp E
[

T r
]

.

The same is true for B2,t∧T − v. Thus, we can apply (1.17) and we are done. �

The above result implies that the martingale (B1,t∧T , B2,t∧T )0≤t≤∞ is uniformly integrable.

Therefore we can state the following.

1.6 Corollary With the notation from above.

lim
t→∞

E(u,v)

[

(B1,t∧T , B2,t∧T )
]

= E(u,v)

[

(B1,T , B2,T )
]

= (u, v).

In particular, a random variable which is DP(u,v)-distributed has mean u in the first coordinate

and mean v in the second.

The next Lemma gives a finer estimate on the p-th moment of the DP -distribution. It exploits

Equations (1.13) and (1.14) of Lemma 1.5.

1.7 Lemma For 1 < p < 2 there exists a constant Cp such that for (u, v) ∈ [0,∞)2 we have

∫

DP(u,v)(dξ) (ξ1 − u)p ≤ 2Cp min
{

up−1 v , u vp−1
}

, (1.18)

∫

DP(u,v)(dξ) (ξ2 − v)p ≤ 2Cp min
{

up−1 v , u vp−1
}

. (1.19)

The constant Cp is the same as in Lemma 1.5.

Proof. Let u > 0 and v > 0. By Lemma 1.3 and the estimates in Lemma 1.5 we obtain

∫

DP(u,v)(dξ)(ξ1 − u)p =

∫

DP(1, v
u )(dξ)up(ξ1 − 1)p ≤ 2Cp up−1v

∫

DP(u,v)(dξ)(ξ1 − u)p , =

∫

DP( u
v ,1)(dξ) vp

(

ξ1 −
u

v

)p ≤ 2Cp vp−1u .

The same arguments work for the integrand (ξ2 − v)p. Finally, note that if uv = 0 then DP(u,v) =

δ(u,v) and the estimates are trivial. �

7
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1.3 The DPK-distribution

Unfortunately, the distribution DPy , which is the exit distribution of planar Brownian motion

starting in y ∈ [0,∞)2 from the first quadrant, is not bounded. To overcome difficulties that arise

with this fact we pen in Brownian motion in a finite box.

Let K > 0. Consider planar Brownian motion Bt = (B1,t, B2,t) starting in y = (y1, y2) ∈
(0,K)2. Define the stopping times, for α ∈ {1, 2},

SK
α := inf{ t > 0 : Bα,t ≥ K } ,

T 0
α := inf{ t > 0 : Bα,t ≤ 0 } ,

τK
α := inf{ t > 0 : Bα,t ≤ 0 or Bα,t ≥ K } = T 0

α ∧ SK
α ,

set τK := τK
1 ∧ τK

2 and note that P −a.s holds τK −→ T := inf{ t > 0 : B1,tB2,t = 0 } as K →
∞. The distributions of, for example SK

α and τK
α are well know and can be found in [KS91] Section

2.8: See for instance Equation (8.5) and (8.6), Equation (8.24) gives the distribution of T 0
α ∧ SK

α .

In particular P y[T 0
α < SK

α ] = K−yα

K and P y[T 0
α > SK

α ] = yα

K , and Ey[T 0
α ∧ SK

α ] = yα(K − yα);

see 2.8.13 and 2.8.14. Proposition 2.8.10 of [KS91] gives the distribution of the random variable

B1,τK
1

.

1.8 Remark It is possible to compute the exit distribution, L[BτK ], of Brownian motion from

the square. Namely, let Q := (0,K)2 be the K-square and consider the Dirichlet problem

∆u = 0 in Q ,

u|∂Q = g on ∂Q ,
(∗)

where ∂Q is the boundary of Q and the function g is defined on the sides ∂Qj , j = 1, 2, 3, 4, of the

square by continuous elementary functions g1(x1), g2(x2), g3(x1) and g4(x2). The linear PDE (∗)
has solution u(x) =

∫

∂Q κ̃(x, dy)g(y), and we can write

u(x) =

∫

∂Q
κ(x, y)g(y)dy ,

if the kernel κ̃(x, dy), which exists, has a density κ(x, y) w.r.t. Lebesgue measure. On the other

hand, u has representation

u(x) = Ex

[

g(BτK )
]

where B is planar Brownian motion and, as defined above, τK = inf{ t > 0 : Bt ∈ R2 \ Q},
see [KS91] Section 4.2. Note that all points in ∂Q are regular. That means Px[BτK ∈ dy ] =

κ̃(x, dy) = κ(x, y)dy . In fact, if the boundary conditions are: u(x1, 0) = g1(x1) for 0 < x1 < K,

u(K,x2) = g2(x2) for 0 < x2 < K, u(x1,K) = g3(x1) for 0 < x1 < K and u(0, x2) = g4(x2) for

0 < x2 < K, then the solution for (∗) is given by

u(x1, x2) =

4
∑

j=1

uj(x1, x2)

8



1.3 The DPK-distribution

where

u1(x1, x2) =

∞
∑

n=1

c1,n sin
(nπ

K
x1

)

sinh
(

nπ
(

1 − x2

K

)

)

,

u2(x1, x2) =

∞
∑

n=1

c2,n sin
(nπ

K
x2

)

sinh
(nπ

K
x1

)

,

u3(x1, x2) =

∞
∑

n=1

c3,n sin
(nπ

K
x1

)

sinh
(nπ

K
x2

)

,

u4(x1, x2) =

∞
∑

n=1

c4,n sin
(nπ

K
x2

)

sinh
(

nπ
(

1 − x1

K

)

)

,

with coefficients cj,n for j ∈ {1, 2, 3, 4} and n ∈ N, given by

cj,n =
2

K sinh(nπ)

∫ K

0

gj(s) sin
(nπ

K
s
)

ds ;

compare with [Gu80] Section 2.1 p. 118 and Section 2.2 pp. 131-134. ♦

1.9 Definition Let B be planar Brownian motion starting in y = (y1, y2) ∈ (0,K)2 and τK as

above. For the random variable BτK with values in ∂(0,K)2 we set

DPK
y (dξ) := Py

[

BτK ∈ dξ
]

. (1.20)

For y ∈ [0,∞)2 \ (0,K)2 we simply set DPK
y = δy .

Next, we show that this distribution has similar properties as the DPy-distribution in Lemma

1.2.

1.10 Lemma

(a) For all y ∈ [0,∞)2 and all x ∈ L,

F (x, y) =

∫

DPK
y (dz)F (x, z) = Ey

[

F (x,BτK )
]

. (1.21)

(b) For all x, y ∈ [0,∞)2,

∫ ∫

DPy(dv)DPK
x (du)F (u, v) =

∫ ∫

DPx(du)DPK
y (dv)F (u, v). (1.22)

(c) Let x, y ∈ [0,∞)2 and let B and W be independent planar Brownian motions starting in x

and y, resp. Set T = inf{ t > 0 : B1,t B2,t = 0 } and T ′ = inf{ t > 0 : W1,t W2,t = 0 }.
Define

F̃ (x, y) := E(x,y)

[

F (BT ,WT ′)
]

=

∫ ∫

DPx(du)DPy(dv)F (u, v) .

Then

Ex

[

F̃ (BτK , y)
]

= Ey

[

F̃ (x,Wτ ′K )
]

. (1.23)

9
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Proof. (a) By Equation (1.11) in the proof of Lemma 1.2(a)

Mt := e−4x1x2 t exp
{

−(x1 + x2)(B1,t + B2,t) + i(x1 − x2)(B1,t − B2,t)
}

is a martingale. Then the optional stopping theorem yields for x ∈ L,

F (x, y) = Ey[M0] = lim
n→∞

Ey[MτK∧n] = Ey[MτK ] = Ey

[

F (x,BτK )
]

.

(b) Let x, y ∈ [0,∞)2. Then

∫ ∫

DPy(dv)DPK
x (du)F (u, v) =

∫

DPy(dv)F (x, v)

=

∫

DPx(du)F (u, y) (by (1.10))

=

∫

DPx(du)DPK
y (dv)F (u, v).

Note that the computation is even valid for x, y ∈ [0,∞)2 \ (0,K)2 since in this case DPK
x = δx

and DPK
y = δy, so the first and the last equalities are evident.

(c) By Lemma 1.2(b) the function F̃ satisfies for all x, y ∈ [0,∞)2 the following identities

F̃ (x, y) =

∫

DPx(du)F (u, y) =

∫

DPy(dv)F (x, v).

Then we use (1.22)

Ex

[

F̃ (BτK , y)
]

=

∫

DPK
x (du)F̃ (u, y)

=

∫

DPK
x (du)

∫

DPy(dv)F (u, v)

=

∫

DPK
y (dv)

∫

DPx(du)F (u, v)

=

∫

DPK
y (dv)F̃ (x, v)

= Ey

[

F̃ (x,Wτ ′K )
]

which proves (1.23). �

For easy reference we state the following equation.

1.11 Lemma

∫

DPx(dy)DPK
z (dx) = DPz(dy)

Proof. Apply the Markov property to planar Brownian motion. �

Planar Brownian motion stopped when it leaves the square [0,K]2 is a bounded process. So,

in contrast to the former section, we have a finite second moment for the DPK-distribution. The

next aim will be to give an upper bound for the variance of the DPK-distribution.
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In the spirit of Remark 1.8 we consider the Poisson equation

1

2
∆u = −g in Q ,

u|∂Q = f on ∂Q ,

(1.24)

for some bounded continuous functions g : Q → R and f : ∂Q → R; recall ∂Q is the boundary of

Q := (0,K)2. Then, cf. [KS91] Eq. (2.27) of Problem 2.25 on p. 253, the solution u of (1.24) has

representation

u(x) = Ex

[

f(BτK ) +

∫ τK

0

g(Bt) dt

]

for all x ∈ Q. In particular, for g ≡ 1 and f ≡ 0 in (1.24) we have

Ex

[

τK
]

= u(x). (1.25)

Since (Bt∧τK )t≥0 is bounded and (B2
α,t − t)t≥0 , with α ∈ {1, 2}, as well as (B1,t B2,t)t≥0 are

martingales, we infer

Ex

[

τK
]

= Ex

[

B2
α,τK − xα

]

(1.26)

and

Ex

[

(B2
1,τK − x1)(B

2
2,τK − x2)

]

= Ex

[

(B2
1,τK − x1)

]

Ex

[

(B2
2,τK − x2)

]

= 0. (1.27)

To obtain a Fourier series expansion for the function u(x1, x2) = Ex

[

τK
]

, where x = (x1, x2) ∈
Q, compare with [Gu80] p.158/159. We arrive at

u(x1, x2) =

∞
∑

m=1

∞
∑

n=1

dmn

m2 + n2
sin
(mπ

K
x1

)

sin
(nπ

K
x2

)

,

where the coefficients dmn are given by

dmn :=
8K2

π4

∫ π

0

∫ π

0

sin(mξ1) sin(nξ2) dξ1 dξ2 =







0 if m or n is even,

32 K2

π4 mn if m and n are odd.

Hence, we obtain as unique solution to the Dirichlet-Poisson equation (1.24), with g ≡ 1 and f ≡ 0,

u(x1, x2) =
∞
∑

m=0

∞
∑

n=0

amn sin
( (2m + 1)π

K
x1

)

sin
( (2n + 1)π

K
x2

)

, (1.28)

where amn, for m,n ∈ N0, are given by

amn =
32K2

π4

1
2m+1

1
2n+1

(2m + 1)2 + (2n + 1)2
. (1.29)

Next, we need to present a result of Klenke and Mytnik, see [KM07] Corollary 3.4. We therefore

introduce the following notation. For K = 1 set

V (x1, x2) := E(x1,x2)

[

τ1
]

, (1.30)

11
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where x = (x1, x2) ∈ [0, 1]2. Then the formulars above yield, for arbitrary K > 0 and for

x = (x1, x2) ∈ (0,K)2 the relations

E(x1,x2)

[

τK
]

= K2 V
( x1

K
,

x2

K

)

, (1.31)

Cov(x1,x2)

(

Bα,τK , Bβ,τK

)

= K2 V
( x1

K
,

x2

K

)

δαβ , α, β ∈ {1, 2}, (1.32)

which also can be seen by Brownian scaling. Then, Klenke and Mytnik show the following upper

bound for the second moment of the DPK-distribution. We include a detailed proof.

1.12 Lemma There exists a constant C > 0 such that for each K > 0 and for planar Brownian

motion B in [0,K]2, with initial value x = (x1, x2) ∈ (0,K)2, α, β ∈ {1, 2},

Cov(x1,x2)

(

Bα,τK , Bβ,τK

)

≤ C x1 x2

[

1 + log(K) + log(1/x1) ∧ log(1/x2)
]

δαβ . (1.33)

Proof. By Equations (1.31) and (1.32) we can restrict our attention to the case K = 1. And,

then, by symmetry in x1 and x2 it is enough to show

V (x1, x2) ≤ C x1 x2

[

1 + log(1/x1)
]

, (1.34)

for x1, x2 ∈ (0, 1).

Fix x2 and let x1 ≥ 1
3 . Note that min

x1∈[ 13 ,1]
x1

[

1 + log(1/x1)
]

= 1+log(3)
3 =: 1

C . Then, recall

statements at the beginning of this section and estimate

V (x1, x2) ≤ Ex2

[

τ1
2

]

= x2(1 − x2) ≤ x2 ≤ C x1 x2

[

1 + log(1/x1)
]

.

Now, let x1 ∈ (0, 1
3 ]. Choose M ∈ N maximal with x1 ≤ 1

2M+1 . Split the series expansion for

V (x1, x2) in Equation (1.28) in two parts, namely, V (x1, x2) = IM (x1, x2) + I∞(x1, x2), where

IM (x1, x2) :=
M−1
∑

m=0

∞
∑

n=0

32

π4

1
2m+1

1
2n+1

(2m + 1)2 + (2n + 1)2
sin
(

(2m + 1)π x1

)

sin
(

(2n + 1)π x2

)

,

I∞(x1, x2) :=
∞
∑

m=M

∞
∑

n=0

32

π4

1
2m+1

1
2n+1

(2m + 1)2 + (2n + 1)2
sin
(

(2m + 1)π x1

)

sin
(

(2n + 1)π x2

)

.

The two terms will be estimated separately. For IM note that sin
(

(2m + 1)π x1

)

≤ (2m + 1)π x1

(and similarly with n and x2). Then

IM (x1, x2) ≤ 32

π2
x1 x2

M−1
∑

m=0

∞
∑

n=0

1

(2m + 1)2 + (2n + 1)2

≤ 32

π2
x1 x2

M−1
∑

m=0

∞
∑

n=1

1

(2m + 1)2 + n2

≤ 32

π2
x1 x2

M−1
∑

m=0

∫ ∞

0

1

(2m + 1)2 + t2
dt

≤ 32

π2
x1 x2

M−1
∑

m=0

1

(2m + 1)

π

2

≤ 16

π
x1 x2

[

1 +

∫ M−1

0

1

s + 1
ds
]

=
16

π
x1 x2

[

1 + log(M)
]

.
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1.3 The DPK-distribution

For I∞(x1 , x2) note that sin
(

(2m + 1)π x1

)

≤ 1 and sin
(

(2n + 1)π x2

)

≤ (2n + 1)π x2. Then,

similar as above,

I∞(x1 , x2) ≤ 32

π3
x2

∞
∑

m=M

1

2m + 1

∞
∑

n=0

1

(2m + 1)2 + (2n + 1)2

≤ 32

π3
x2

∞
∑

m=M

1

(2m + 1)2
π

2

≤ 16

π2
x2

∫ ∞

M−1

1

(2s + 1)2
ds =

8

π2
x2

1

2M − 1
≤ 8

π2

x2

M
.

The maximality of M implies x1 ≥ 1
2(M+1)+1 ≥ 1

5M , hence,

I∞(x1 , x2) ≤ 40

π2
x1 x2 ≤ 40

π2
x1 x2

[

1 + log(M)
]

.

Since log is monotone increasing and M ≤ 1
2 x1

≤ 1
x1

both bounds (for IM and I∞, respectively)

together imply (1.34) and the proof is complete. �
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Chapter 2

Infinite branching rate on one

colony

As a first step we will present a process with an infinite branching rate on one colony. We compute

its generator and check existence and a duality relation. The duality implies weak uniqueness for

this process. Then, we identify the one-dimensional distributions of the infinite rate model. In

addition, we can show that the transition probabilities of the model with finite variance converge

to the transition probabilities for the process with infinite variance as the variance approaches

infinity. The DP -distribution will be ubiquitous.

2.1 The generator

We describe the local dynamics of the model. As already mentioned in Chapter 1, the DP -

distribution of Section 1.2 will be the key ingredient. The idea is as follows:

We consider two sites, denoted by 0 and 1. Site 1 represents an infinitely big environment

which is not affected by any kind of local dynamics or fluctuations. This means that the amount

of mass of particle type 1 is constant for all times and it equals θ1, say. The amount of mass of

particle type 2 is constant and equals θ2. That means in particular we chose variance zero for site

1. In contrast, on site 0 the dynamics is governed by the DP -distribution which is triggered by the

amount of mass that migrates, namely, the mass that leaves site 0 or pours in from outside, i.e.

from site 1. Since site 1 neither loses nor gains any mass we have to choose the following migration

kernel

Q =

(

−κ 0

ρ 0

)

, (2.1)

where κ, ρ > 0.

To establish a pregenerator for the dynamics on site 0 we consider a two-step procedure:

Step 1: During a small time interval mass of both types migrates. That means mass immigrates

from site 1 to site 0 or leaves site 0. For simplicity, we assume that this shifts the initial condition

linearly in time. Assume, for example, (x1, 0) ∈ L as initial condition (on site 0). Denote by ú, v́
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Chapter 2 Infinite branching rate on one colony

Figure 2.1: two-step procedure

the amount of mass of type 1 and 2, respectively, that migrates during a unit time interval, where

ú ∈ R and v́ ≥ 0. Then, we obtain (x1 + út, v́t), for t ≥ 0.

Step 2: From this linearly perturbed condition we randomly choose a new point on L. More

precisely, we choose a point on L according to planar Brownian motion stopped when it leaves the

first quadrant, i.e. we consider the random variable D = (D1,D2) with distribution DPx1+út,v́t.

Both steps are illustrated in Figure 2.1. The leftmost picture shows the linear shift and the

other two display how Brownian motion picks a new point on L. Note that there are two possible

outcomes for the second step. Either Brownian motion hits the same axis where the initial condition

was located or Brownian motion hits the other axis. In the later case we can say that the dynamics

forces a change of types (on site 0). Of course, the smaller the pertubation in the initial condition

the smaller the probability for a change of types. But the change of types can not be neglected

as we consider t ց 0. A precise picture of this matter describes the pregenerator Aú,v́ associated

with the pertubation (ú, v́). To identify Aú,v́ we have to compute

Aú,v́f(x1, 0) = lim
tց0

Ex1+út,v́t

[

f
(

D1,D2

)

]

− f(x1, 0)

t
, (2.2)

for some function f on L. The calculations for (2.2) are done in Section A.1 of the Appendix. They

are purely analytic and we strongly advise the reader to skip this part at any time of reading. But

note that according to the ‘infinite variance assumption’ on site 0, coexistence of both types is not

possible, i.e., the appropriate state space for the process (on site 0) with pregenerator Aú,v́ has to

be L.

Next, we combine the results for (2.2) with the migration kernel Q of (2.1). Recall that on site

1 the process is constant and equals Θ := (θ1, θ2) ∈ [0,∞)2 for all times t ≥ 0. Then, to correctly

represent the migration in step 1 above we need to choose ú = ρθ1 − κx1 for particle type 1 and

v́ = ρθ2 − κx2 for particle type 2 if we evaluate Aú,v́f at x = (x1, x2) ∈ L. To indicate the

dependency on Θ we write AΘ instead of Aú,v́. By combining all we infer the following result.

2.1 Proposition Let x = (x1, x2) ∈ L and Q be given by (2.1). Let f ∈ C2
b (L,R) and set

h(y) :=
4

π

y

(y − 1)2(y + 1)2
and g(y) :=

4

π

y

(y2 + 1)2
,

for y ≥ 0. Then we have the following.
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2.1 The generator

If x ∈ (0,∞)×{0} then

AΘf(x) =
ρθ2

x2
1

∞
∫

0

[

f(ξ, 0) − f(x1, 0) − (ξ − x1) ∂1f(x1, 0)
]

h
( ξ

x1

)

dξ

+
ρθ2

x2
1

∞
∫

0

[

f(0, ζ) − f(x1, 0) + x1 ∂1f(x1, 0)
]

g
( ζ

x1

)

dζ

+ (ρθ1 − κx1) · ∂1f(x1, 0) ,

if x ∈ {0}×(0,∞) then

AΘf(x) =
ρθ1

x2
2

∞
∫

0

[

f(ξ, 0) − f(0, x2) + x2 ∂2f(0, x2)
]

g
( ξ

x2

)

dξ

+
ρθ1

x2
2

∞
∫

0

[

f(0, ζ) − f(0, x2) − (ζ − x2) ∂2f(0, x2)
]

h
( ζ

x2

)

dζ

+ (ρθ2 − κx2) · ∂2f(0, x2) ,

and, if x = (0, 0) then

AΘf(x) = ρθ1 · ∂1f(0, 0) + ρθ2 · ∂2f(0, 0) .

To see that this result makes good sense note the similarities with generators for Lévy processes

with no Gaussian component. For example, take a closer look at the first case of Proposition 2.1.

The first integral describes the jump from x = (x1, 0), with x1 > 0, back on the x1-axis. The

Lévy measure h(ξ/x1) dξ has a peak at x1, and therefore the integrand f(ξ, 0) − f(x1, 0) has to

be made integrable by subtracting the mean of the jumps. Recall that a random variable D, with

D ∼ DP(u,v), u, v ≥ 0, has mean (u, v); cf. Corollary 1.6. A change of types, i.e. a jump to the

x2-axis, only occurs with finite intensity. These jumps are represented by the second integral. The

drift term (ρθ1 −κx1) ·∂1f(x1, 0) neutralises the subtraction of the mean. Note that in contrast to

ordinary Lévy processes our jump measures, h(ξ) dξ and g(ζ) dζ, which are normed for x = (1, 0)

(or x = (0, 1) in the case x ∈ {0}×(0,∞)), depend on x. Moreover, the jump measure is not

continuous as a function of x at the origin. Finally, note the linearity of the jump terms in ρθ2 (the

amount of mass of the other type that immigrates to site 0). The second case of Proposition 2.1,

where x ∈ {0}×(0,∞), can similarly be interpreted by interchanging the roles of x1 and x2 (and

the roles of θ1 and θ2). The somewhat odd representation of AΘf at x = (0, 0) can be accepted by

the following argument: Corollary A.4 of the Appendix shows that the generator has an additive

decomposition. The infinitesimal change which is triggered by the migration of both particle types

is the same as the infinitesimal change caused by the migration of particle type 1 only, plus the

infinitesimal change just caused by the migration of particle type 2. Thus, if x2 = 0 migration of

type 1 has to be represented by a first-order differential operator on the first coordinate; if x1 = 0

migration of type 2 is described by ∂2f .

We define a stochastic process X as a solution of the martingale problem for this operator

AΘ. By DL[0,∞) we denote the space of càdlàg-paths with values in L, and we rather look for
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Chapter 2 Infinite branching rate on one colony

a probability measure P on DL[0,∞) such that the coordinate process defined on DL[0,∞) is a

solution of the martingale problem for (AΘ , ν), where ν denotes a specified initial distribution on

L; that means PX·,0,0 = ν. See [EK86] p.173,174 for more details.

2.2 Proposition For each ν there exists a solution of the martingale problem for (AΘ, ν) with

sample paths in DL[0,∞).

Proof. In order to use Theorem IV.5.4 in [EK86] on p.199 we check its assumptions. The space

L is obviously locally compact and separable. We consider its one-point compactification L̂ = L∪
{∞}. The operator AΘ is in particular defined for twicely continuously differentiable functions that

vanish at infinity. A subset of these functions is surely dense in the space of continuous functions

that vanish at infinity. Let f ∈ C2(L) vanish at infinity. Assume supx∈L f(x) = f(y) ≥ 0 , for

some y ∈ L. Then

AΘf(y) = lim
tց0

Ey1+(ρθ1−y1)t , y2+(ρθ2−y2)t

[

f
(

D1,D2

)

]

− f(y)

t

≤ lim
tց0

Ey1+(ρθ1−y1)t , y2+(ρθ2−y2)t

[

f(y)
]

− f(y)

t
≤ 0 .

Hence, AΘ satisfies the positive maximum principle; see [EK86] p.165 for a definition. Then the

above-mentioned theorem provides a solution of the martingale problem with sample paths having

values in L̂ = L ∪ {∞}.
But moreover, ( L, 0) is in the bp-closure of the graph of AΘ; in fact, 1 is an element of its do-

main. (One might choose a sequence fn which is constant and equal to 1 on [0, n)×{0} ∪ {0}×[0, n)

with a smooth step to 0. Then for fix x ∈ L we have fn(x) → 1 and |AΘfn(x)| ≤ ε, for n large

enough, since the tails of the integrals in AΘ must vanish). Since ν(L) = 1, Theorem IV.3.8 of

[EK86] p.179, yields P
(

X·,0,· ∈ DL[0,∞)
)

= 1. �

One might object that we only found a measure that describes the dynamics on site 0. But

recall that the process on site 1 is constant and equals Θ = (θ1, θ2) ∈ [0,∞)2. Therefore, we can

simply choose dirac measure δΘ which charges the constant path t 7→ (θ1, θ2) in D[0,∞)2 [0,∞) and

consider the product measure P × δΘ on DE [0,∞), where E := L × [0,∞)2. Instead, one might

prefer to call
(

(X1,0,t , X2,0,t)
)

t≥0
a model for one colony (with drift towards Θ).

Next, we want to show a duality for our process Xt =
(

(X1,0,t , X2,0,t) , (θ1, θ2)
)

. In the same

spirit as for the finite variance model – cf. Section 1.1 – we choose a dual process Y , which obeys

the same dynamics as X but with a different migration kernel. Yt =
(

(Y1,0,t, Y2,0,t) , (Y1,1,t, Y2,1,t)
)

migrates according to

Q∗ =

(

−κ ρ

0 0

)

, (2.3)

the transpose of Q. Hence, for the generator acting on site 0 we have to choose ú = −κy1,0 and

v́ = −κy2,0. Note that we will choose (y1,0, y2,0) ∈ L. Therefore, if we compare with Proposition

2.1 – or more precisely with the results in the Appendix – we observe that the generator on site 0

only consists of drift terms. The same is true on site 1 since here the ‘branching parameter’ equals
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2.1 The generator

zero. Thus, for smooth functions f : L × [0,∞)2 −→ R, we can identify the pregenerator

A∗f(y) =

2
∑

α=1

−κyα,0 ∂α,0f(y) +

2
∑

α=1

ρ yα,0 ∂α,1f(y) , (2.4)

where ∂α,i f(y) = ∂
∂yα,i

f(y), i ∈ {0, 1}.
Now, recall the definition of Mytnik’s duality function F in Equation (1.8) on page 4. Define

the map H : (L×[0,∞)2 ) × (L×[0,∞)2 ) −→ C by

H(x, y) := H
(

(x·,0, x·,1), (y·,0, y·,1)
)

:= F (x·,0, y·,0)F (x·,1, y·,1). (2.5)

for x =
(

(x1,0, x2,0), (x1,1, x2,1)
)

∈ L × [0,∞)2 and y =
(

(y1,0, y2,0), (y1,1, y2,1)
)

∈ L × [0,∞)2.

Then, we can prove the following duality relation.

2.3 Proposition Let X and Y as defined above, starting in x and y, respectively, where x, y ∈
L × [0,∞)2 and with x·,1 = (θ1, θ2). Then

EPx

[

H(Xt , Y0 )
]

= EPy

[

H(X0 , Yt )
]

. (2.6)

Proof. We compute AΘH(·, y). Recall that x·,1 = Θ and AΘ only acts on site 0. Set µ(t) =

(µ1,t , µ2,t), where µα,t = xα,0 + t(ρθα − κxα,0), for α ∈ {1, 2}. Let D ∼ DPµ(t) and C ∼ DPy·,0
.

We use Lemma 1.2(b) and then the fact that DPy·,0
= δy·,0

for y·,0 ∈ L.

AΘH
(

(·,Θ), (y·,0, y·,1)
)

(x·,0) = lim
tց0

Eµ(t)

[

F (D, y·,0)
]

− F (x·,0, y·,0)

t
F (Θ, y·,1)

= lim
tց0

Ey·,0

[

F (µ(t), C)
]

− F (x·,0, y·,0)

t
F (Θ, y·,1)

= lim
tց0

F (µ(t), y·,0) − F (x·,0, y·,0)

t
F (Θ, y·,1) ,

and

lim
tց0

F (µ(t), y·,0) − F (x·,0, y·,0)

t

= F (x·,0, y·,0)
[

−(ρθ1 − κx1,0)(y1,0 + y2,0) − (ρθ2 − κx2,0)(y1,0 + y2,0)

+ i(ρθ1 − κx1,0)(y1,0 − y2,0) − i(ρθ2 − κx2,0)(y1,0 − y2,0)
]

.

Note that the expression on the r.h.s. is bounded in x·,0 ∈ L. Next, we write xα,1 instead of θα, for

α ∈ {1, 2}, to simplify notation. We use Q = (qjk)j,k ∈{0,1} given by (2.1), recall q01 = 0 = q11.

Then, we obtain

AΘH
(

( · , x·,1) , (y·,0, y·,1)
)

(x·,0)

= H(x, y)

{

−
2
∑

α,β=1

1
∑

j,k=0

qjk xα,j yβ,k + i

2
∑

α,β=1

1
∑

j,k=0

(−1)α+βqjk xα,j yβ,k

}

.
(2.7)

For the dual process Y with generator A∗ given by (2.4) and migration matrix Q∗ = (q∗jk)j,k=0,1
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Chapter 2 Infinite branching rate on one colony

as in (2.3) we obtain the following.

A∗H(x, ·)(y)

=

2
∑

α=1

q∗00 yα,0

[

−(x1,0 + x2,0) + i (−1)α+1(x1,0 − x2,0)
]

H(x, y)

+

2
∑

α=1

q∗01 yα,0

[

−(x1,1 + x2,1) + i (−1)α+1(x1,1 − x2,1)
]

H(x, y)

= H(x, y)

{

−
2
∑

α,β=1

1
∑

j=0

q∗0j yα,0 xβ,j + i

2
∑

α,β=1

1
∑

j=0

(−1)α+βq∗0j yα,0 xβ,j

}

= H(x, y)

{

−
2
∑

α,β=1

1
∑

j,k=0

q∗kj yα,k xβ,j + i
2
∑

α,β=1

1
∑

j,k=0

(−1)α+βq∗kj yα,k xβ,j

}

. (2.8)

For the last line recall q∗10 = 0 = q∗11. Then observe qjk = q∗kj , for j, k ∈ {0, 1}, and we infer

AΘH(·, y)(x) = A∗H(x, ·)(y). (2.9)

Then, Corollary 4.4.13 on p.195 of [EK86] implies (2.6). (To see this choose the functions α and β

of this reference equal to zero, note that |H| ≤ 1, and observe that AΘH(·, y)(x) and A∗H(x, ·)(y)

are bounded). �

Observe the similarities of Equation (2.7) above and Equation (1.2) on page 2 with γ = 0.

We remark that Proposition 2.3 implies weak uniqueness for the process X with paths in

DE [0,∞). The Markov property for X is then immediate. For example see [EK86] Theorem 4.4.2.

X is even Feller. However, we are not going into greater details here since that will be a more

interesting matter in the next chapter. But note again that by Lemma 1.4 it is enough to consider

a dual process Y such that Y·,0,t ∈ L for t ≥ 0.

Jump-measure for the box [0, K]2

For completeness, we present in this subsection the jump-measure for a process, similar to X but

which is restricted to the box [0,K]2, with K > 1, or more precisely to the boundary of the box,

∂[0,K]2. The line of reasoning is as before, but we have to substitute the DP -distribution by

the DPK-distribution of Section 1.3. Let LK := {0}×[K − 1] ∪ [K − 1]×{0}. We identify the

pregenerator AK
ú,v́. For (x1, 0) ∈ LK , with x1 > 0, we need to compute

AK
ú,v́f(x1, 0) = lim

tց0

Ex1+út,v́t

[

f
(

D1,D2

)

]

− f(x1, 0)

t
,

for some function f on ∂[0,K]2, where (D1,D2

)

∼ DPK
x1+út,v́t.

Here, we concentrate on the jump measure n on ∂[0,K]2

n( dy | (x1, 0) ) := lim
tց0

1

t
Px1+út,v́t[BτK ∈ dy]
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2.1 The generator

where B is planar Brownian motion and τK := inf{t > 0 : Bt 6∈ (0,K)2}. We use the densities

given in Remark 1.8. We denote by n1, n2, n3 and n4 the restriction of n on the sides (0,K)×{0},
{K}×(0,K), (0,K)×{K} and {0}×(0,K), respectively. We do not indicate the dependency on

(x1, 0), ú and v́. First, note that lim
tց0

1
t sin(nπ

K tv́) = v́ nπ
K and lim

tց0

1
t sinh(nπ

K tv́) = v́ nπ
K . Then, on

{K} × (0,K):

n2({K} × dy2) : = lim
tց0

1

t

∞
∑

n=1

sin
(nπ

K
tv́
)

sinh
(nπ

K
(x1 + tú)

) 2

K sinh(nπ)
sin
(nπ

K
y2

)

dy2

= v́
∞
∑

n=1

sinh
(nπ

K
x1

) 2nπ

K2 sinh(nπ)
sin
(nπ

K
y2

)

dy2 .

Note that the series converges since x1 ≤ K − 1. This also justifies the interchange of limit and

summation. Similarly, on (0,K) × {K}:

n3(dy1 × {K}) : = lim
tց0

1

t

∞
∑

n=1

sin
(nπ

K
(x1 + tú)

)

sinh
(nπ

K
tv́
) 2

K sinh(nπ)
sin
(nπ

K
y1

)

dy1

= v́
∞
∑

n=1

sin
(nπ

K
x1

) 2nπ

K2 sinh(nπ)
sin
(nπ

K
y1

)

dy1 ,

and on {0} × (0,K):

n4({0} × dy2) : = lim
tց0

1

t

∞
∑

n=1

sin
(nπ

K
tv́
)

sinh
(

nπ
(

1 − x1 + tú

K

)

) 2

K sinh(nπ)
sin
(nπ

K
y2

)

dy2

= v́
∞
∑

n=1

sinh
(

nπ
(

1 − x1

K

)

) 2nπ

K2 sinh(nπ)
sin
(nπ

K
y2

)

dy2 ,

for x1 > 0. It remains to show existence of the measure on (0,K)×{0}. As in the case of

Proposition 2.1 we expect n1 to be σ-finite only. To ensure existence of a limit we use the strong

Markov property as in [KM07] Equation (3.16). Since τK ≤ T = inf{t > 0 : B1,tB2,t = 0} we can

write

DPx1+út,v́t(dξ) = Px1+út,v́t

(

BT ∈ dξ
)

=

∫

∂[0,K]2
DPK

x1+út,v́t(dζ)DPζ(dξ)

=

∫

(0,K)×{0}
DPK

x1+út,v́t(dζ) δζ(dξ) +

∫

{K}×(0,K)

DPK
x1+út,v́t(dζ)DPζ(dξ)

+

∫

(0,K)×{K}
DPK

x1+út,v́t(dζ)DPζ(dξ) +

∫

{0}×(0,K)

DPK
x1+út,v́t(dζ) δζ(dξ) ,

hence,

n1 = lim
tց0

1

t
DPK

x1+út,v́t

∣

∣

∣
(0,K)×{0}

= lim
tց0

1

t
DPx1+út,v́t −

∫ K

0

n2({K} × dζ2)DP(K,ζ2)

−
∫ K

0

n3(dζ1 × {K})DP(ζ1,K) ,

and the limits on the r.h.s. exist by Proposition 2.1 and the calculations above.
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Chapter 2 Infinite branching rate on one colony

Thus, for AK
ú,v́ we infer (0 < x1 ≤ K − 1)

AK
ú,v́f(x1, 0) = lim

tց0

Ex1+út,v́t

[

f
(

BτK

)

− f(x1, 0) − (B1,τK − x1)∂1f(x1, 0)
]

t

+ lim
tց0

Ex1+út,v́t

[

(B1,τK − x1)∂1f(x1, 0)
]

t

=

∫ K

0

[

f(y1, 0) − f(x1, 0) − (y1 − x1)∂1f(x1, 0)
]

n1(dy1 × {0})

+

∫ K

0

[

f(K, y2) − f(x1, 0) − (K − x1)∂1f(x1, 0)
]

n2({K} × dy2)

+

∫ K

0

[

f(y1,K) − f(x1, 0) − (y1 − x1)∂1f(x1, 0)
]

n3(dy1 × {K})

+

∫ K

0

[

f(0, y2) − f(x1, 0) + x1∂1f(x1, 0)
]

n4({0} × dy2)

+ ú ∂1f(x1, 0)

since Ex1+út,v́t

[

B1,τK − x1

]

= út.

Similar expressions can be derived for AK
ú,v́f if we evaluate at (0, x2), where 0 < x2 ≤ K − 1.

For x ∈ ∂[0,K]2 \ LK we set AK
ú,v́f(x) = 0, that means the process is stopped if it leaves LK . At

the origin we certainly have AK
ú,v́f((0, 0)) = ú ∂1f(0, 0) + v́ ∂2f(0, 0).

2.2 Transition probabilities and Invariant distribution

For the process Xt =
(

(X1,0,t , X2,0,t) , (θ1, θ2)
)

with values in L × {(θ1, θ2)} as introduced in the

former section we can compute the transition probabilities and the invariant distribution.

2.4 Lemma Fix x ≥ 0 and let X·,0,0 = (x, 0). Then for all y ≥ 0 we have

E(x,0)

[

e− y (X1,0,t+X2,0,t) + i y (X1,0,t−X2,0,t)
]

= exp
{

− y
[

µx(t) + ν0(t)
]

+ i y
[

µx(t) − ν0(t)
]

}

,
(2.10)

where µx(t) = x e−κt + (1 − e−κt) ρ
κθ1 and ν0(t) = (1 − e−κt) ρ

κθ2 . In particular

lim
t→∞

E(x,0)

[

e− y (X1,0,t+X2,0,t) + i y (X1,0,t−X2,0,t)
]

= e− y ρ
κ (θ1+θ2) + i y ρ

κ (θ1−θ2). (2.11)

Proof. We use the duality relation (2.6). For the dual process Y we choose the initial condition

Yα,1,0 = 0 on site 1, for both types α ∈ {1, 2}. On site 0 we start with Y1,0,0 = y and Y2,0,0 = 0.

Then Proposition 2.3 implies

E(x,0)

[

e− y (X1,0,t+X2,0,t) + i y (X1,0,t−X2,0,t)
]

=

E(y,0)

[

e− x (Y1,0,t+Y2,0,t) + i x (Y1,0,t−Y2,0,t) e− (θ1+θ2)(Y1,1,t+Y2,1,t) + i (θ1−θ2) (Y1,1,t−Y2,1,t)
]

.
(2.12)
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2.2 Transition probabilities and Invariant distribution

It remains to identify Yt for t > 0. Due to the lack of a catalyst the dual process Y and its limit for

t → ∞ can easily be computed. Namely, the mass of the type-1-particle just migrates according

to Q∗ and that means Y1,·,· obeys the differential equations

dY1,0(t) = −κY1,0(t) dt ,

dY1,1(t) = ρ Y1,0(t) dt ,
(2.13)

hence,

Y1,0,t = y e−κt ,

Y1,1,t = y
ρ

κ
(1 − e−κt) ,

(2.14)

and (Y1,0,t , Y1,1,t ) −→ ( 0 , ρ
κ y ) as t → ∞. Putting this in Equation (2.12) gives the assertion. �

Combining Equation (1.12) of Lemma 1.2 with Lemma 1.4 we identify the DP -distributions as

transition probabilities and invariant distribution of (X·,0,t)t≥0.

2.5 Corollary Let X·,0,0 := (x1, x2) ∈ L. Then

L[X·,0,t] = DP( µx1
(t) , νx2

(t) ) , (2.15)

where µx1
(t) = x1 e−κt + (1 − e−κt) ρ

κθ1 and νx2
(t) = x2 e−κt + (1 − e−κt) ρ

κθ2. In particular

lim
t→∞

L[X·,0,t] = DP( ρ
κ θ1 , ρ

κ θ2 ) . (2.16)

Now, we adapt the finite variance mutually catalytic branching model of Dawson and Perkins

to our case of two colonies. Denote by Zγ the process with branching parameter γ > 0 on site

0, variance zero on site 1 and migration operator (2.1). Let Zγ
·,0,0 = (x1, x2) ∈ [0,∞)2 and

Θ = (θ1, θ2) ∈ [0,∞)2. The process Zγ then satisfies

dZγ
α,0,t =

(

ρ θα − κZγ
α,0,t

)

dt +
√

γ Zγ
1,0,t Zγ

2,0,t dBα,0,t ,

Zγ
α,1,t ≡ θα ,

(2.17)

for all t ≥ 0 and types α ∈ {1, 2}, where (Bα,0,t)t≥0 are two independent standard Brownian

motions. For Zγ we denote the dual process by Y γ . It has migration operator Q∗ and satisfies

dY γ
α,0,t = −κY γ

α,0,t dt +
√

γ Y γ
1,0,t Y γ

2,0,t dWα,0,t ,

dY γ
α,1,t = ρ Y γ

α,0,t dt ,
(2.18)

for t ≥ 0, α ∈ {1, 2} and independent standard Brownian motions (Wα,0,t)t≥0. Then, [DP98]

Theorem 2.4 reads as

E((x1,x2),(θ1,θ2))

[

H(Zγ
t , Y γ

0 )
]

= E((y10,y20),(y11,y21))

[

H(Zγ
0 , Y γ

t )
]

(2.19)

for t > 0, where Zγ
·,·,0 = ((x1, x2), (θ1, θ2)) ∈ [0,∞)2×[0,∞)2 and Y γ

·,·,0 = ((y10, y20), (y11, y21)) ∈
[0,∞)2 × [0,∞)2 and H as in (2.5). If we choose Y γ

·,1,0 = (0, 0) and Y γ
·,0,0 = (y, 0), with y ≥ 0, as
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Chapter 2 Infinite branching rate on one colony

we did for Y in the proof of Lemma 2.4, see Equations (2.13) and (2.14), both dual processes, Y

and Y γ , coincide. Therefore, by the duality relation (for finite gamma), we infer

E(x1,x2)

[

e− y (Zγ
1,0,t+Zγ

2,0,t) + i y (Zγ
1,0,t−Zγ

2,0,t)
]

= exp
{

− y
[

µx1
(t) + νx2

(t)
]

+ i y
[

µx1
(t) − νx2

(t)
]

}

,
(2.20)

where µx1
(t) = x1 e−κt +(1−e−κt) ρ

κθ1 and νx2
(t) = x2 e−κt +(1−e−κt) ρ

κθ2. In this case we do not

have to choose x1x2 = 0. But note that Zγ
·,0,t is not concentrated on L. Hence, the mixed Laplace-

Fourier transforms of (2.20) do not determine the distribution of Zγ
·,0,t if we choose Y γ

·,0,0 ∈ L only.

But by Corollary 2.5 and Lemma 1.2 for any random variable D = (D1,D2) with distribution

DP(y1,y2), where (y1, y2) ∈ [0,∞)2, we have

E
[

F
(

(µx1,t , νx2,t ) , D
)

]

=

∫

DP(y1,y2)(dξ1, dξ2)F
(

(µx1,t , νx2,t ) , (ξ1, ξ2)
)

=

∫

DP( µx1,t , νx2,t )(dζ1, dζ2)F
(

( ζ1 , ζ2 ) , (y1, y2)
)

= E
[

F
(

(X1,0,t , X2,0,t ) , (y1, y2)
)

]

,

(2.21)

(x1, x2) ∈ L. Finally, note that by Lemma 2.3 of [DP98] Mytnik’s duality functions are not only

separating but also convergence determining. With this in mind we can prove the following.

2.6 Lemma Let Zγ
·,0,0 = X·,0,0 := (x1, x2) ∈ L. Then for each t ≥ 0

L[Zγ
·,0,t] −→

γ→∞
L[X·,0,t] .

Proof. The strategy is to use the duality relation for finite variance and investigate the limit

of the dual Y γ of (2.18). To this end let Y γ
·,1,0 = (0, 0) and Y γ

1,0,0 = y1 and Y γ
2,0,0 = y2, where

y1, y2 ≥ 0. Observe that

Ỹ γ
α,0,t := eκt Yα,0,t , t ≥ 0 , (2.22)

are local martingales, α ∈ {1, 2}, since by Itô’s Lemma, see for instance [KS91] Theorem 3.3.6,

p.153 and choose the function f(t, x) := eκt x, we have

Ỹ γ
α,0,t = yα +

∫ t

0

κeκs Y γ
α,0,s ds +

∫ t

0

eκs dYα,0,s

= yα +

∫ t

0

κeκs Y γ
α,0,s ds +

∫ t

0

eκs
(

−κY γ
α,0,s

)

ds +

∫ t

0

eκs
√

γ Y γ
1,0,s Y γ

2,0,s dWα,0,s

= yα +

∫ t

0

eκs
√

γ Y γ
1,0,s Y γ

2,0,s dWα,0,s .

In particular E[Y γ
α,0,t] = e−κtyα . The application of Itô’s Lemma also implies that (Ỹ γ

1,0,t , Ỹ γ
2,0,t)

solves the SDE

dỸ γ
α,0,t =

√

γ Ỹ γ
1,0,t Ỹ γ

2,0,t dWα,0,t , α ∈ {1, 2}, t ≥ 0 , (2.23)

with initial condition Ỹ γ
·,0,0 = (y1, y2). Next, compare (Ỹ γ

α,0,t)t≥0 with (γ
⇀

Y α,0,t)t≥0 given by

γ
⇀

Y α,0,t := Ỹ 1
·,0,γ t = yα +

∫ γ t

0

√

Ỹ 1
1,0,s Ỹ 1

2,0,s dWα,0,s ,
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2.2 Transition probabilities and Invariant distribution

α ∈ {1, 2}. Using Brownian scaling, the accelerated process satisfies

γ
⇀

Y α,0,t = yα +

∫ γ t

0

√

Ỹ 1
1,0,s Ỹ 1

2,0,s dWα,0,s

= yα +

∫ t

0

√

γ γ
⇀

Y 1,0,s
γ

⇀

Y 2,0,s dBα,0,s

for some Brownian motion (Bα,0,s)s≥0.

Hence, both processes (Ỹ γ
1,0,t, Ỹ

γ
1,0,t)t≥0 and (γ

⇀

Y 1,0,t , γ
⇀

Y 2,0,t)t≥0 are weak solutions to SDE (2.23).

[DP98] implies weak uniqueness for this SDE (take migration equal to nil) and therefore we obtain

L
[

(Ỹ γ
1,0,t, Ỹ

γ
1,0,t)t≥0

]

= L
[

(γ
⇀

Y 1,0,t , γ
⇀

Y 2,0,t)t≥0

]

. (2.24)

Now, recall that t 7→ γ
⇀

Y α,0,t = Ỹ 1
α,0,γ t is a nonnegative local martingale, hence, a supermartingale,

cf. [RW2] IV.14.3 on p.22. Therefore, it provides an a.s. limit, see [RW1] Theorem II.69.1 on p.176.

So, for any t > 0 we have

lim
γ→∞

Ỹ 1
α,0,γ t = Ỹ 1

α,0,∞ P -a.s.

Moreover, ( Ỹ 1
1,0,∞ , Ỹ 1

2,0,∞ ) ∼ DP(y1,y2) . This is due to [DP98], compare with the proofs of their

Theorems 1.4 and 1.5 (pp.1103/1104 and pp.1111/1112): To see this note that (Ỹ 1
1,0,γ t , Ỹ 1

2,0,γ t )γ≥0

is a continuous local martingale, hence, it can be represented as a time-changed Brownian motion by

the Dubins-Schwarz Theorem, cf. [RY91] pp.181-184 Theorem V.1.10. Of course, (Ỹ 1
1,0,γ t , Ỹ 1

2,0,γ t )

stays constant after one particle dies out. That means when planar Brownian motion Bγ =

(B1,γ , B2,γ) first hits ∂[0,∞)2. Note that for both components of planar Brownian motion we have

time-change Cγ = 〈Ỹ 1
α,0,t ·〉γ =

∫ γ

0
Ỹ 1

1,0,t s Ỹ 1
2,0,t s ds , α ∈ {1, 2}. Then by the results in Section 1.2

(B1,γ∧T , B2,γ∧T )γ≥0 is uniformly integrable and (B1,T , B2,T ) ∼ DP(y1,y2), where T := inf{t > 0 :

B1,tB2,t = 0 }. Thus, for any t > 0 we infer that ( γ
⇀

Y 1,0,t , γ
⇀

Y 1,0,t ) converges in distribution to

DP(y1,y2) as γ → ∞.

For site 1 recall that by (2.18) and transformation (2.22) we have

Y γ
α,1,t =

∫ t

0

ρ Y γ
α,0,s ds =

∫ t

0

ρ e−κs Ỹ γ
α,0,s ds .

For Ỹ 1
α,0,γ s instead of Ỹ γ

α,0,s observe that P -a.s. by dominated convergence

lim
γ→∞

∫ t

0

ρ e−κs Ỹ 1
α,0,γ s ds =

∫ t

0

ρ e−κs Ỹ 1
α,0,∞ ds = ρ (1 − e−κt) Ỹ 1

α,0,∞

since t 7→ Ỹ 1
α,0,γ t is continuous and converges as t → ∞, hence sup

0≤t≤∞
Ỹ 1

α,0,γ t < ∞ P -a.s. Now,

note that both processes, (Ỹ 1
α,0,γ s)s≥0 and (Y γ

α,0,s)s≥0, have continuous paths. Then by (2.24) it

is allowed to substitute Ỹ 1
α,0,γ s for Y γ

α,0,s so that

lim
γ→∞

L[Y γ
α,1,t] = L

[

ρ (1 − e−κt) Ỹ 1
α,0,∞

]

.
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Chapter 2 Infinite branching rate on one colony

Since weak convergence of distributions implies the convergence of the mixed Laplace-Fourier

transforms of (2.20) we have

lim
γ→∞

E(x1,x2)

[

e− (y1+y2) (Zγ
1,0,t+Zγ

2,0,t) + i (y1−y2) (Zγ
1,0,t−Zγ

2,0,t)
]

= E(y1,y2)

[

e− (x1+x2) (e−κt Y 1
1,0,∞ + e−κt Y 1

2,0,∞) + i (x1−x2) (e−κt Y 1
1,0,∞ − e−κt Y 1

2,0,∞)

× e− (θ1+θ2)
(

ρ (1−e−κt)Y 1
1,0,∞+ρ (1−e−κt)Y 1

2,0,∞

)

+ i (θ1−θ2)
(

ρ (1−e−κt)Y 1
1,0,∞−ρ (1−e−κt)Y 1

2,0,∞

)

]

= E(y1,y2)

[

e− [ (x1+x2) e−κt + (θ1+θ2)ρ (1−e−κt) ]( Y 1
1,0,∞ + Y 1

2,0,∞ )

× ei[ (x1−x2) e−κt + (θ1−θ2)ρ (1−e−κt) ]( Y 1
1,0,∞ −Y 1

2,0,∞ )
]

.

Comparing with equation (2.21) we have for all (y1, y2) ∈ [0,∞)2

lim
γ→∞

E
[

F
(

(Zγ
1,0,t , Zγ

2,0,t ) , (y1, y2)
)

]

= E
[

F
(

(X1,0,t , X2,0,t ) , (y1, y2)
)

]

, (2.25)

which forces the limit-distribution to be concentrated on L. What is more, it is the distribution

of (X1,0,t , X2,0,t ). �
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Chapter 3

Construction of the process for

countably many colonies

It took numerous trials to find the appropriate method for establishing existence and uniqueness

for a mutually catalytic branching model with infinite variance on some countable graph S. For

sure, the Lévy-type generator of Section 2.1 suggests to work with a martingale problem approach

since we expect the process to be of pure jump type rather than a diffusion or an Itô process (in

the sense of [SV79] Section 4.3 p.92, say).

So our first try was to use the usual Hille-Yoshida theory as in [EK86] Theorem 4.5.4, which

provides existence of solutions to martingale problems for a large class of operators. However, this

result needs a state space which is locally compact. And this will not be the case in our setting.

As state space we wish to choose the positive cone of a weighted ℓ1-sequence space, the so-called

Liggett-Spitzer space, in which the k-th coordinate gives the mass of particles at site k ∈ S, see

page 29 below. We expect this choice to be more natural than the state space used in [DP98],

since we only deal with the discrete model, with a so-called super-random walk. That means the

set of sites S is understood to be countably infinite – for example, choose the lattice Z instead of

the real line R.

It seemed, another possible way was to mimic the existence theorem for the finite variance

process on the lattice – see [DP98] Appendix p.1127 – which is due to [SS80]. That is, we should

define a sequence (Sn)n of finite sets which exhausts S and a sequence of processes Xn that are

restricted to Sn. Then it is expected to have convergence of Xn to a process on S. However,

note that in [DP98] it was not possible to ensure existence on Sn simply by quoting standard

theorems as given in [RW2]; see sections V.23 and V.24 (Theorems V.23.5 and V.24.1, namely),

since the diffusions matrix is degenerated. In our case we cannot use standard existence theorems

for Lévy-type generators (on Rd) like in [EK86] Theorem 8.3.3 because the Lévy measure ν(dξ, x)

as given in Section 2.1 is not continuous (in zero) as a function of x. But there is much more to

find in this area; see, for example, [Ap04] Chapter 6 for an introduction and [KX95] for a much

more general setting. The processes discussed in [Bas88], [Bas04] and [Bas07] or [St75] seemed to

be pretty close to our situation at first glance.

The right argument for constructing our process was to use a weak convergence technique, as
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Chapter 3 Construction of the process for countably many colonies

Leonid Mytnik suggested to me. Then existence will follow through proving tightness. The only

problem was to find the proper approximation scheme. The trick here is not to manipulate the

jump measure, as the Lévy approach suggests, but to define a simplified process for short time

intervals of length ε > 0 and go forth in time step by step. Then as ε approaches zero the limit

is supposed to be the process in question. There are plenty of approximation schemes of this

Peano kind in the literature. For example, in [DP98], proof of Theorem 6.1, p.1134, both types

of particles evolve during a small time like independent processes with branching rate given by

the former fixed state of the other type. In [FX01] the processes of different types are catalytic

super-Brownian motions with frozen, smoothed and truncated branching rate functions, on small

time intervals. For the construction of a superprocess with killing, Fleischmann and Mytnik did

the following: On small time intervals only one type is affected by the killing that is provided by

the other type. The roles of the types are alternated on subsequent intervals. Then the interval

length is shrinked to zero. See [FM03]. Note that all three examples consider continuous site

spaces, which means superprocesses with S = R. In retrospect, we wished we had paid more

attention to these continuous site models. However, for our model we will use the most rigorous

simplification. During a small time interval there will be no random fluctuation, i.e. there is no

interplay between particle type 1 and type 2. At the small time interval’s end the proper tool to

implement interaction of both types was presented in Section 1.2, namely, the DP -distribution.

This method is rather the same as the one for the construction of the generator for the process

on one colony as in Chapter 2. But there is more to appreciate. First calculations suggested

that the infinite rate branching model should satisfy a similar martingale problem as the model

of Dawson and Perkins with branching parameter zero; see Section 1.1. Due to properties of the

DP -distribution our approximation scheme maintains this property and bequeaths it to the limit

process. Moreover, since the limit of the approximating processes is, in some way, degenerated, the

martingale problem will give uniqueness via the same duality argument as in the model of Dawson

and Perkins.

The first section of this chapter defines the approximation scheme. Tightness of this scheme

is established in the second section, and the third one deals with the martingale problem for the

limit process, duality, uniqueness and the Markov property.

3.1 Approximation Processes

We retain the notation introduced in Section 1.1. Let the matrix Q = (qjk)j,k∈S govern the

migration of particles. We assume qjk ≥ 0 if j 6= k and λ̄ := supj∈S |qjj | < ∞. Let Q∗ = (q∗jk)

denote the transpose of Q, i.e. q∗jk = qkj for all j, k ∈ S. Since we are dealing with infinitely many

sites, which means S is countably infinite, it will be necessary to impose additional restrictions on

Q and to restrict the class of configurations which are permitted. As a matter of fact, the state

space for our processes will be a version of the so-called Liggett-Spitzer space. We will define this

next. Recall L := {0} × [0,∞) ∪ [0,∞) × {0} = [0,∞)2 \ (0,∞)2.
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3.1 Approximation Processes

3.1 Definition Let γ = (γj)j∈S be a strictly positive, finite measure on S such that

∑

j∈S

γj |q∗jk| ≤ M γk ∀ k ∈ S (3.1)

for some constant M with λ̄ ∨ 1 < M < ∞; we write γ|Q∗| ≤ Mγ for short. Then set

Eγ :=
{

x ∈
(

[0,∞)×[0,∞)
)S

:

2
∑

α=1

∑

k∈S

xα,k γk < ∞
}

,

Lγ :=
{

x ∈ LS :

2
∑

α=1

∑

k∈S

xα,k γk < ∞
}

= Eγ ∩ LS .

Eγ is given the smallest σ-algebra such that the map x 7→ xα,k is measurable for each (α, k) ∈
{1, 2} × S, which is the Borel σ-algebra in fact. The topology for Eγ (or Lγ) is provided by the

metric

‖x − y‖γ =

2
∑

α=1

∑

k∈S

|xα,k − yα,k|γk ,

where x, y ∈ Eγ (or Lγ). Similarly, we will write ‖xα,· − yα,·‖γ =
∑

k∈S |xα,k − yα,k|γk for the

distance of type α.

The construction of these weighted ℓ1-sequence spaces is due to Liggett and Spitzer [LS81]

and is described in detail in [Li85] Chapter IX.1. Note that it is not always necessary to assume
∑

k∈S γk < ∞; cf. [GKW02] p.25. Compare with [Li85] Lemma IX.1.6 to see that the weight

function γ = (γk)k∈S can be found as

γk =

∞
∑

n=0

∑

j∈S

q
(n)
kj βj M−n ,

where Q(n) =
(

q
(n)
jk

)

j,k
denotes the n-fold composition of the transition matrix and β = (βk)k∈S

is a strictly positive summable function on S. It is even possible to choose two different weight

functions for both types of particles x1,· and x2,·; cf. [GKW99] p.7.

With an abuse of notation we write ‖x‖γ := 〈x, γ〉 for the ‘norm’ of x ∈ Eγ . But note that Eγ

does not possess a vector space structure. In the sense of this γ-norm Q∗ can be considered as a

bounded linear operator. Due to growth condition (3.1), for x ∈ Eγ , we have

|〈Q∗x , γ〉| ≤ M 〈x , γ〉 = M ‖x‖γ .

Hence, we write ‖Q∗‖ ≤ M . But note that Q∗x = (Q∗x1, Q
∗x2) need not be an element of Eγ

since it is possibly a signed vector.

Next, consider the deterministic differential equation

dX̄α,k,t =
(

X̄α,·,tQ
)

k
dt , α = 1, 2, k ∈ S, (3.2)

X̄·,·,0 = x ∈ Eγ

(

or Lγ

)

.

Since Q satisfies (3.1) and x ∈ Eγ the differential equation (3.2) has a unique deterministic solution

given by

X̄α,k,t =
(

etQ∗

xα

)

k
, k ∈ S, (3.3)
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Chapter 3 Construction of the process for countably many colonies

for each α ∈ {1, 2}. Moreover, (3.1) implies γ(Q∗)(n) ≤ Mnγ and hence, 〈 etQ∗

xα , γ 〉 ≤
etM 〈xα , γ〉. Let I denote the identity matrix. Since qjk ≥ 0 for all j 6= k the matrix Q + λ̄I

has only non-negative entries and so has exp
{

Q∗ + λ̄I
}

. Then the same is true for exp(tQ∗) =

exp
{

tQ∗ + λ̄I
}

e−λ̄I. Hence, Q generates the semigroup Pt = exp(tQ∗) where Ptx ∈ Eγ if x ∈ Eγ

and ‖Pt‖ ≤ etM . Thus, it holds that X̄·,·,t ∈ Eγ for all t ≥ 0. – Compare with [Li85] Theo-

rems IX.1.27 and IX.2.2 pp. 431-433 (to compare choose the identity matrix for Liggett’s random

variables Ak(·, ·) for all k ∈ S and rather read Equation (3.2) as dX̄α,k,t =
(

Q∗X̄α,·,t
)

k
dt ).

To create a link with Section 1.1 we note that Equation (3.2) is a very special case of the model

of Dawson and Perkins, namely, choose variance parameter γ = 0 in Equation (1.1). In order

to construct a process with infinite variance instead of variance zero, however, we need to put a

certain random mechanism into play. The key ingredient will be the DP -distribution, which does

not possess a finite second moment. We will do this next.

Let ε > 0. At (deterministic) time ε we introduce a (random) jump according to the DP -

distribution at each site k ∈ S independently. That means we define a process X ′ by setting

X ′
·,k,t = X̄·,k,t for 0 ≤ t < ε. And at time t = ε we let X ′

·,k,ε ∼ DPX̄·,k,ε
for all k ∈ S. Given

X ′
·,·,ε , for times t ≥ ε the process X ′

·,·,t is defined to be the solution of (3.2) starting at time t = ε

with initial condition X ′
·,·,ε.

Continuing, we can similarly define the second jump at time t = 2ε. X ′′ equals X ′ for 0 ≤ t <

2ε, and conditioned on X ′
·,k,2ε we have that X ′′

·,k,2ε ∼ DPX′

·,k,2ε
. Iterating this procedure, up to

time T > 0 , we obtain a process with ⌊T
ε ⌋ jumps at times ε, 2ε, . . . , ⌊T

ε ⌋ε. We will denote this

process by Xε. We hope to find a limit of these processes Xε afterwards as ε tends to 0. This

limit is supposed to be the process in question. In order to do this, we shall take a closer look at

the properties of the approximating processes Xε.

All processes considered here, are supposed to have paths in DEγ
[0, T ], the space of càdlàg

functions on [0, T ] with values in Eγ . By D we denote the Borel σ-algebra of DEγ
[0, T ]. Since Eγ

is separable, D is generated by the coordinate mappings πt : DEγ
[0, T ] −→ Eγ , πt(χ) = χt, see

[EK86] Proposition III.7.1. We define the filtration (Ft)0≤t≤T by setting Ft := σ(πs : 0 ≤ s ≤ t).

Analogously, we can take Lγ instead of Eγ or [0,∞) instead of [0, T ].

3.2 Lemma Let Xε be as described above. Then (Xε
t )0≤t≤T is a time-inhomogeneous Markov

process with sample paths in DEγ
[0, T ] if Xε

·,·,0 = x ∈ Eγ . Furthermore, we have

(a) for k ∈ S, α ∈ {1, 2}

E[Xε
α,k,t] =

∑

j

pt(k, j)E[Xε
α,j,0] , t ≥ 0, (3.4)

where exp(tQ∗) = Pt =
(

pt(j, k)
)

j,k∈S
;

(b) for α ∈ {1, 2} and for k ∈ S

Mε
α,k,t := Xε

α,k,t − Xε
α,k,0 −

∫ t

0

(

Xε
α,·,sQ

)

k
ds , t ≥ 0, (3.5)

is an Ft-martingale and

Mε
·,k,t =

(

Mε
1,k,t , Mε

2,k,t

)

= −
⌊T

ε ⌋
∑

j=1

(

∆Xε
·,k,jε

)

[jε,∞)(t) , t ≥ 0, (3.6)

30



3.1 Approximation Processes

with the usual notation ∆Xε
α,k,jε := Xε

α,k,jε − Xε
α,k,jε− for the jump of Xε

α,k,jε at time jε ,

j = 1, . . . , ⌊T
ε ⌋, where Xε

·,k,jε− denotes the left hand limit;

(c) for k ∈ S and α ∈ {1, 2}

Zε
α,k,t := e−qkkt Xε

α,k,t , t ≥ 0, (3.7)

is a (non-negative) Ft-submartingale and so is Zε
α,t := 〈Zε

α,·,t , γ 〉.

(d) Let K > 0. Then for all ε > 0 we have

P

[

sup
0≤s≤t

〈Xε
1,·,s + Xε

2,·,s , γ 〉 > K

]

≤ eλ̄t etM

K
E
[

〈Xε
1,·,0 + Xε

2,·,0 , γ 〉
]

. (3.8)

Proof. Since the jumps are independent and Xε obeys a deterministic flow between them, the

Markov property becomes clear. But note that the Markov process is non-homogeneous in time,

because jumps do not occur at exponential times but at deterministic ones.

For y ∈ [0,∞)2 and Y ∼ DPy , we have E
[

Y − y
]

= (0, 0), i.e. the jumps of X·,k,jε are

centered random variables, for each k ∈ S and all jump times jε , j = 1, . . . , ⌊T
ε ⌋. Note that

∆Xε
α,k,jε + Xε

α,k,jε− ≥ 0. Next observe that if x ∈ Eγ we have 〈 X̄α,·,t , γ 〉 ≤ etM 〈xα , γ 〉 < ∞
by (3.1). So for any finite sequence SN ր S we obtain

E
[

〈Xε
α,·,jε , γ 〉

]

= lim
N→∞

E
[

〈∆Xε
α,·,jε + Xε

α,·,jε− , γ SN
〉
]

= E
[

〈Xε
α,·,jε− , γ 〉

]

= 〈 X̄α,·,jε− , γ 〉 ≤ ejεM 〈xα , γ 〉

for j = 1 by monotone convergence, and hence, for all j = 1, . . . , ⌊T
ε ⌋ by induction. This yields

part (a). In particular we have Xε
·,·,t ∈ Eγ for all t ≥ 0.

Rewriting (3.2) we have

X̄α,k,t − X̄α,k,0 =

∫ t

0

(

X̄α,·,sQ
)

k
ds , for 0 ≤ t < ε , and

X ′
α,k,t − X ′

α,k,ε =

∫ t

ε

(

X ′
α,·,sQ

)

k
ds , for ε ≤ t < 2ε.

This gives

X ′
α,k,t − X ′

α,k,0 −
∫ t

0

(

X ′
α,·,sQ

)

k
ds = (X̄α,k,ε − X ′

α,k,ε) [ε,∞)(t) ,

for 0 ≤ t < 2ε and Equation (3.6) follows immediatly. Obviously, Mε
·,k,t has only finitely many

jumps on the interval [0, T ] and is constant between these jumps. As we have already mentioned,

the jumps at times t = ε, 2ε, . . . , ⌊T
ε ⌋ε are centered, and, by construction, independent given

Xε
·,·,jε− , for j = 1, . . . , ⌊T

ε ⌋, respectively, and we have ∆Xε
·,k,jε = ∆Mε

·,k,jε. Hence, the process

(Mε
·,k,t)t≥0 is an Ft-martingale.

For t ∈ [0, ε) holds (3.2) and we have

e−qkkt Xε
α,k,t = Xε

α,k,0 +

∫ t

0

[

e−qkks
(

Xε
α,·,sQ

)

k
− qkk e−qkks Xε

α,k,s

]

ds

= Xε
α,k,0 +

∫ t

0

e−qkks
∑

j 6=k

qjk Xε
α,j,s ds .

(3.9)
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Chapter 3 Construction of the process for countably many colonies

This shows that e−qkkt Xε
α,k,t is increasing. At all subsequent jump times the deterministic fac-

tors e−qkk j ε , j = 1, . . . , ⌊T
ε ⌋, let the jumps remain centered and independent. Hence, Zε

α,k,t =

e−qkkt Xε
α,k,t is a submartingale w.r.t. (Ft)t≥0. Equation (3.9) shows that

d

dt
E
[

Zε
α,k,t

]

=
(

E[Zε
α,·,t] Q̃

)

k

where Q̃ = (q̃jk)j,k∈S with q̃jk := qjk for j 6= k and q̃jj := 0 for j ∈ S. Q̃ also satisfies (3.1).

Moreover, 〈Zε
α,·,t , γ 〉 ≤ eλ̄t〈Xε

α,·,t , γ 〉, and for 0 ≤ s ≤ t we have

E
[

Zε
α,t |Fs

]

≥ lim
N→∞

E
[

∑

k∈SN

γk Zε
α,k,t

∣

∣

∣
Fs

]

≥ lim
N→∞

∑

k∈SN

γk Zε
α,k,s = Zε

α,s

by dominated convergence. Hence, Zε
α,t is a submartingale. Then we can use Doob’s submartingale

inequality.

P
[

sup
0≤s≤t

〈Xε
1,·,s + Xε

2,·,s , γ〉 > N
]

≤ P
[

sup
0≤s≤t

Zε
1,s + Zε

2,s > N
]

≤ N−1eλ̄t E
[

〈Xε
1,·,t + Xε

2,·,t , γ 〉
]

≤ eλ̄t

N
etM

〈

E
[

Xε
1,·,0 + Xε

2,·,0
]

, γ
〉

.

(3.10)

Letting N → ∞ we obtain

P
[

Xε
s ∈ Eγ ∀ 0 ≤ s ≤ t

]

= 1

which shows that the whole sample paths of Xε are in Eγ . The computation in (3.10) implies (d). �

Approximation on a finite box

Above, we constructed the process Xε by adding jumps to the deterministic migration of Equation

(3.2). The particular choice of jump distribution will allow us later to establish a Markov process

with infinite variance. However, the lack of a finite second moment causes mathematical difficulties.

To overcome this problem we compare Xε with a process XK,ε, which posesses a finite second

moment and coincides with Xε with probability close to 1. Here, we want to give a definition

for the process XK,ε. To this end we substitute the DP -distribution by the DPK-distribution as

prepared in Section 1.3.

Assume Xε starts in x = (x1,·, x2,·) ∈ Lγ . By Lemma 3.2(d) we have

P
[

sup
0≤s≤T

〈Xε
1,·,s + Xε

2,·,s , γ〉 >
K

2

]

≤ 2 eλ̄T

K
eTM 〈x1,·,0 + x2,·,0 , γ 〉 , (3.11)

which is arbirary small for K > 0 large enough. In particular, we can choose K large enough such

that 〈x1,·,0 + x2,·,0 , γ 〉 < K/2. Then, with probability close to 1, we have

(

Xε
1,k,s + Xε

2,k,s

)

γk ≤ 〈Xε
1,·,s + Xε

2,·,s , γ〉 ≤ K

2
,

for all k ∈ S and all s ∈ [0, T ]. For this reason we choose at each site j ∈ S the quantity

Kj := K/2γj . We define XK,ε
s as the solution of Equation (3.2) for 0 ≤ s < ε starting in x ∈ Lγ .
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3.2 Tightness

And for s = ε we set independently XK,ε
·,j,ε ∼ DP

Kj

X·,j,ε−
for all j ∈ S. For subsequent time intervalls

[mε, (m + 1)ε), m = 1, 2, . . . , ⌊T
ε ⌋ε, we repeat this procedure with initial value XK,ε

·,·,mε in the same

manner as at the beginning of this section for the process Xε. Then, we obtain a process XK,ε

for which holds XK,ε
·,j,mε ∈ ∂[0,Kj ]

2 for all j ∈ S and all times mε, m = 0, 1, . . . , ⌊T
ε ⌋ε (Note

that even if we might leave the box [0,Kj ]
2 for some j ∈ S it is still possible to define the jumps

by DPKj since planar Brownian motion will definitely hit ∂[0,Kj ]
2). Define the stopping times

σ̄K := inf
{

s > 0 : 〈XK,ε
1 ·,s + XK,ε

2,·,s , γ 〉 ≥ K/2
}

and σK
α,j := inf

{

s > 0 : XK,ε
α,j,s ≥ Kj

}

for j ∈ S

and α ∈ {1, 2} and set σK := inf
j∈S,α∈{1,2}

σK
α,j . Then σ̄K ≤ σK and XK,ε

·,·,s∧σ̄K ∈ ×
j∈S

[0,Kj ]
2 for all

0 ≤ s ≤ T and the process stops when any coordinate hits ∂[0,Kj ]
2 \ L. In particular we have

〈XK,ε
1,·,s + XK,ε

2,·,s , γ 〉 ≤ K/2 for all 0 ≤ s < σ̄K .

Similar results as in Lemma 3.2 hold for the process XK,ε. For instance, note that E[Y ] = y if

Y ∼ DPK
y , and hence,

XK,ε
α,k,t = XK,ε

α,k,0 +

∫ t

0

(

XK,ε
α,·,sQ

)

k
ds + MK,ε

α,k,t ,

for t ≥ 0, k ∈ S and α ∈ {1, 2}, where MK,ε
α,k,t is given as in (3.6) but with ∆XK,ε

α,k,jε instead of

∆Xε
α,k,jε. In particular, ZK,ε

α,k,t := e−qkkt XK,ε
α,k,t is a submartingale and

P
[

sup
0≤s≤t

〈XK,ε
1,·,s + XK,ε

2,·,s , γ〉 >
K

2

]

≤ 2 eλ̄t

K
etM 〈x1,·,0 + x2,·,0 , γ 〉 . (3.12)

A priori, the construction of the processes
(

XK,ε
·,·,s∧σ̄K

)

s
and (Xε

·,·,s)s are self-contained. But

it is possible to extract Xε from the process XK,ε as follows: Set Xε
s ≡ XK,ε

s for 0 ≤ s < ε.

In view of Lemma 1.11 we define the jumps of XK,ε
·,j,s as above, by using DPKj at jump times

s = mε, where m = 1, 2, . . . , ⌊T
ε ⌋ε. For Xε we use the DP -distribution in addition. That means,

we set DPXK,ε
·,j,ε+

= DPDP K

XKε
·,j,ε−

for the jump of Xε
·,j,ε at site j ∈ S. Recall that DPx = δx if

x ∈ L. This works until Xε
α,j,s > Kj for some j ∈ S and α ∈ {1, 2}. After this event, Xε

has to be constructed independently of XK,ε in the same manner as before, see p. 30. So define

τ̄K := inf
{

s > 0 : 〈Xε
1 ·,s + Xε

2,·,s , γ 〉 ≥ K/2
}

. And observe that in this way there is a coupling
(

XK,ε , Xε
)

such that

XK,ε
·,·,s = Xε

·,·,s for all s < τ̄K ∧ σ̄K . (3.13)

By (3.11) and (3.12) we have P
(

τ̄K ∧ σ̄K ≥ T
)

−→ 1 as K → ∞.

3.2 Tightness

In this section we want to establish the existence of a weak limit of the family
{

Xε : 0 < ε ≤ 1}
as ε ց 0. Therefore we have to show tighness. But note that the DP -distribution charges only

L for each site k ∈ S. So we expect the limit process to live in Lγ = Eγ ∩ LS ; and this fact will

be crucial to obtain uniqueness. Consequently, we define a process X̃ε which is piecewise constant

and equals Xε at its jump times. More precisely, let Xε
·,·,0 = x ∈ Lγ and set

X̃ε
α,k,t := Xε

α,k, jε , for t ∈ [ j ε , (j + 1)ε ) , j = 0, 1, . . . , ⌊T
ε ⌋, (3.14)
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Chapter 3 Construction of the process for countably many colonies

for each k ∈ S and α ∈ {1, 2}. Then X̃ε has paths in DLγ
[0, T ].

The subsequent lemmas will prepare the application of a standard theorem on relative com-

pactness in the Skorohod space DLγ
[0, T ], see Theorem III.9.1 in [EK86] on p.142. That is, to

show tightness of X̃ε it is enough to check a compact containment condition for X̃ε and tightness

of the real valued processes G(X̃ε) for a sufficient rich class of functions G.

3.3 Lemma Let KC be a subset of Eγ (or Lγ) with the properties

(i) there is a constant C > 0 such that 〈x1,· + x2,· , γ〉 ≤ C for all x ∈ KC ,

(ii) for all η > 0 exists a finite Sη ⊆ S such that for all x ∈ KC holds 〈x1,· + x2,· , γ S\Sη
〉 ≤ η.

Then KC is precompact.

Proof. Let (xn)n be a sequence in KC . To show compactness we have to construct a subsequence

converging to a point in KC . Since in particular 0 ≤ xn
α,k ≤ C/γk we can find for each k ∈ S and

α ∈ {0, 1} a subsequence such that x
nj

α,k converges to some x̄α,k as j → ∞. Set x̄ = (x̄1,k, x̄2,k)k∈S .

Choosing a diagonal sequence we may assume convergence in each coordinate. For notational

convenience we still denote this subsequence by (xn)n. Then by Fatou’s lemma we have C ≥
lim inf
n→∞

〈xn
1,· +xn

2,· , γ〉 ≥ 〈x̄1,·+ x̄2,· , γ〉 and η ≥ lim inf
n→∞

〈xn
1,·+xn

2,· , γ S\Sη
〉 ≥ 〈x̄1,·+ x̄2,· , γ S\Sη

〉
for any pair (η, Sη) as in property (ii) above. This implies x̄ ∈ KC . Finally let η > 0 and observe

that

2
∑

α=1

〈|xn
α,· − x̄α,·| , γ〉 ≤

2
∑

α=1

〈|xn
α,· − x̄α,·| , γ Sη/3

〉 +

2
∑

α=1

〈xn
α,· + x̄α,· , γ S\Sη/3

〉

≤ η/3 + 2η/3 = η ,

for n large enough. This gives xn → x̄ ∈ KC in Eγ . �

Note that Lγ is a closed subset of Eγ . That means, if KC ⊆ Eγ is compact (in Eγ) then

KC ∩ Lγ is compact in Lγ . So in the sequel we might consider KC as a compact set of Eγ as well

as a compact set of Lγ .

3.4 Lemma For every η > 0 and T > 0 there exists a compact set Γη,T ⊆ Eγ for which

inf
ε>0

P
[

X̃ε
t ∈ Γη,T for 0 ≤ t ≤ T

]

≥ 1 − η . (3.15)

Proof. Let η > 0 and T > 0. We will characterise the compact set Γη,T via Lemma 3.3.

We first choose C > 0: By Lemma 3.2(c) t 7→ Zε
α,k,t := e−qkkt Xε

α,k,t is a submartingale. Set

Aε
1 :=

{

sup
0≤t≤T

2
∑

α=1
〈Xε

α,k,t , γ〉 > C
}

. Recall that sup
ε>0

E
[

〈Xε
α,·,T , γ〉

]

< ∞ by Lemma 3.2. Then

by Doob’s submartingale inequality we obtain

sup
ε>0

P
[

Aε
1

]

≤ sup
ε>0

P

[

sup
0≤t≤T

2
∑

α=1

〈Zε
α,·,t , γ〉 > C

]

≤ 1

C
sup
ε>0

E

[ 2
∑

α=1

〈Zε
α,·,T , γ〉

]

≤ eT λ̄

C
sup
ε>0

E

[ 2
∑

α=1

〈Xε
α,·,T , γ〉

]

≤ η

2
,

34



3.2 Tightness

for C large enough.

Next, we choose a sequence of finite subsets SηN
⊆ S for ηN := η2

22N , N = 2, 3, . . ., which

will be consequently suitable for property (ii) in Lemma 3.3: Since sup
ε>0

E
[

〈Xε
α,·,T , γ〉

]

< ∞ there

exists a finite subset SηN
⊆ S such that for the complement (SηN

)c := S \ SηN
we have

2
∑

α=1

∑

k ∈ (SηN
)c

E
[

γk Xε
α,k,T

]

<
1

eT λ̄

η2

22N
.

For such SηN
we can set Aε

N :=
{

sup
0≤t≤T

2
∑

α=1
〈Xε

α,k,t , γ (SηN
)c〉 > η

2N

}

, N = 2, 3, . . ., and obtain

similar as above

sup
ε>0

P
[

Aε
N

]

≤ sup
ε>0

P

[

sup
0≤t≤T

2
∑

α=1

〈Zε
α,·,t , γ (SηN

)c〉 >
η

2N

]

≤ η

2N
.

The choice of C and
(

SηN

)

N
give a characterisation of a compact set Γη,T as in Lemma 3.3 and

for its complement (Γη,T )c we have

{

sup
0≤t≤T

Xε
t ∈ (Γη,T )c

}

=
∞
⋃

N=1

Aε
N .

This implies

sup
ε>0

P

[

sup
0≤t≤T

Xε
t ∈ (Γη,T )c

]

≤
∞
∑

N=1

η

2N
= η ,

and Equation (3.15), which is stated for the process X̃ε, follows immediately. �

We denote by Lipfin(Lγ) the real valued, bounded, (uniformly) Lipschitz continuous functions

on Lγ which depend on only finitely many coordinates.

3.5 Lemma Lipfin(Lγ) is a dense subset of Cb(Lγ ,R) w.r.t. uniform convergence on compact sets.

Proof. We have to show that for arbitrary f ∈ Cb(Lγ ,R), compact K ⊆ Lγ and η > 0 there

exists a function g ∈ Lipfin(Lγ) such that supx∈K |f(x) − g(x)| < η.

Denote by f|K the restriction of f on K. Obviously, Lipfin(Lγ) separates points (of Lγ) and

so does the set LipK := {g|K : g ∈ Lipfin(Lγ)} for x, y ∈ K. Moreover, LipK ⊆ Cb(K,R) is an

algebra. Then the Stone-Weierstraß Theorem, see [Kl06] on p.282, yields ‖f|K − g|K‖∞ < η for

some g ∈ LipK, and we are done. �

3.6 Lemma Let G ∈ Lipfin(Lγ) and set

Y ε
t := G(X̃ε

t ) , t ≥ 0 .

Then the family of processes {Y ε
· }ε>0 (with sample paths in DR[0, T ] ) is relatively compact.

Proof. In order to show the assertion we use the Aldous criterion, see [Al78] (in particular

Equation (13)), or [JS87] p.356 VI.§4a. That means, we have to check the following two conditions:
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(i) For each fixed t ≥ 0 , {Y ε
t }ε>0 is tight.

(ii) Let η > 0. Then there exists δ > 0 and ε0 > 0 such that

sup
ε≤ε0

P
[

∣

∣Y ε
τ+δ′ − Y ε

τ

∣

∣ > η
]

≤ η . (3.16)

for each 0 ≤ δ′ ≤ δ, and each stopping time τ bounded by T .

For condition (i) just note that |Y ε
t | = |G(X̃ε

t )| is bounded uniformly in ε > 0 since G is

bounded. Then, for instance, use [Kl06] p.248 Beispiel 13.28(ii).

The second condition is more subtle. First note that we should have constructed the processes

X̃ε up to time T ′ > T + 1 and we might assume w.l.o.g. 0 < δ < 1, so that τ + δ′ < T ′. To

keep the notation as simple as possible we omit details like τ + δ′ ∧ T . So let η > 0. Since G

is Lipschitz continuous and depends on finitely many coordinates only, we have |Y ε
τ+δ′ − Y ε

τ | ≤
C ‖(X̃ε

τ+δ′ − X̃ε
τ ) SN

‖γ , for some constant C > 0 and some finite set SN ⊆ S, with |SN | = N ,

say. Hence, it is enough to show that with probability larger than 1 − η,

∣

∣X̃ε
α,k,τ+δ′ − X̃ε

α,k,τ

∣

∣ ≤ 1

2C N γ̂
η =: η∗ , for all k ∈ SN and α ∈ {1, 2},

where γ̂ := maxj∈SN
γj .

For k ∈ SN we have

∣

∣X̃ε
α,k,τ+δ′ − X̃ε

α,k,τ

∣

∣ ≤
∫ τ+δ′

τ

∣

∣

(

Xε
α,·,sQ

)

k

∣

∣ ds +
∣

∣Mε
α,k,τ+δ′ − Mε

α,k,τ

∣

∣ , (3.17)

where Mε
·,k,t = −

⌊T
ε ⌋
∑

j=1

(

∆Xε
·,k,jε

)

[jε,∞)(t) as in Lemma 3.2. We show that both terms on the r.h.s.

of (3.17) will be smaller than η∗/2 with probability larger than 1 − η/2 for all 0 ≤ δ′ ≤ δ if δ is

small enough.

For x ∈ Lγ and for k ∈ SN we obtain by Lemma 3.2

Ex

[

∣

∣

(

Xε
α,·,sQ

)

k

∣

∣

]

≤
∑

j∈S

Ex

[

Xε
α,j,s

]

|qjk| =
∑

j∈S

∑

l∈S

ps(j, l)xα,l|qjk| ,

which is finite and can be bounded from above uniformly for all k ∈ SN and s ∈ [0, T ] since

∑

k∈S

∑

j∈S

∑

l∈S

ps(j, l)xα,l|qjk|γk ≤ M
∑

j∈S

∑

l∈S

xα,l ps(j, l) γj ≤ M eM s 〈xα,· , γ〉.

Then note that E
[

〈Xε
α,·,τ , γ〉

]

≤ eλ̄T E
[

〈Xε
α,·,T , γ〉

]

, so we can get rid of the initial condition

Xε
α,·,τ . Then we can use the elementary Markov inequality and obtain for some constant C̄ > 0,

which does neither depend on k ∈ SN nor on ε,

P

(
∫ τ+δ′

τ

∣

∣

(

Xε
α,·,sQ

)

k

∣

∣ds ≥ η∗/2

)

≤ δ′
2C̄

η∗ ≤ δ
2C̄

η∗ ≤ η

2
,

for δ small enough.

Next, we deal with the martingale term in (3.17). The strategy is as follows: We wish to use a

Doob inequality with finite second moments. Therefore we choose K > 0 large enough such that
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3.2 Tightness

the total weighted mass of Xε and XK,ε is smaller than K with probability close to 1. Then we

can use the finite second moment of the truncated process XK,ε.

We first choose K: According to Lemma 3.2(d) and Equation (3.12) there is a K > 0 such that

P

[

sup
0≤t≤T

2
∑

α=1

〈Xε
α,·,t , γ〉 ≥ K/2

]

≤ η

8
(3.18)

and

P

[

sup
0≤t≤T

2
∑

α=1

〈XK,ε
α,·,t , γ〉 ≥ K/2

]

≤ η

8
(3.19)

for all ε > 0. That means, the jumps of Xε and XK,ε coincide with probability larger than 1−η/4.

This implies

P
(

Mε
t = MK,ε

t for all t ∈ [0, T ]
)

≥ 1 − η/4 ,

where MK,ε
·,k,t = −

⌊T
ε ⌋
∑

j=1

(

∆XK,ε
·,k,jε

)

[jε,∞)(t). For MK,ε we can use Doob’s inequality.

P
(

sup
0≤δ′≤δ

∣

∣MK,ε
α,k,τ+δ′ − MK,ε

α,k,τ

∣

∣ ≥ η∗/2
)

≤ 16

(η∗)2
E
[

(

MK,ε
α,k,τ+δ − MK,ε

α,k,τ

)2
]

=
16

(η∗)2
E
[

EXK,ε
·,k,τ

[

〈MK,ε
α,k,·〉δ

]]

=
16

(η∗)2
E

[

EXK,ε
·,k,τ

[

⌊ δ
ε ⌋
∑

j=1

E
[

(∆XK,ε
α,k,jε)

2
∣

∣

∣
XK,ε

·,·,jε−

] ]

]

.

Next, we will give an upper bound for a single jump. We use the results stated in Section 1.3 for

the DPK-distribution; see page 12. Recall that

E
[

(∆XK,ε
α,k,jε)

2
∣

∣

∣
XK,ε

·,·,jε−

]

= K2
k V
(

XK,ε
1,k,jε−/Kk , XK,ε

2,k,jε−/Kk

)

,

where Kk = K
γk

, and that for (x1, x2) ∈ [0,Kk]2 we have

V (x1, x2) ≤ C ′ x1 x2

[

1 + log(Kk) + | log(x1)| ∧ | log(x2)|
]

, (3.20)

for some constant C ′ > 0. Since during time (j − 1)ε and jε particles migrate according to Q

we have (XK,ε
α,·,(j−1)εQ)k ≤ γ−1

k 〈 (XK,ε
α,·,(j−1)εQ)· , γ 〉 ≤ M

2 K̂, where K̂ = maxj∈SN
γ−1

j K. Next,

we can choose ε0 > 0 such that for all 0 < ε ≤ ε0 we have εM
2 K̂ ≤ minj∈SN

K
2γj

. Hence,

XK,ε
α,k,jε− ≤ XK,ε

α,k,(j−1)ε + εM K̂/2, for α ∈ {0, 1}. Note that XK,ε
1,k,(j−1)ε or XK,ε

2,k,(j−1)ε equals zero.

If XK,ε
2,k,(j−1)ε = 0 we can estimate x2 by εM K̂/2 in (3.20) and proceed

V
(

XK,ε
1,k,jε− , XK,ε

2,k,jε−

)

≤ C ′ K̂ · ε MK̂

2

[

1 + log(K̂)
]

+ C ′ XK,ε
1,k,jε− · ε MK̂

2
log(XK,ε

1,k,jε−)

≤ C̃ ε,

for some constant C̃. We also used x1| log(x1)| ≤ K̂ log(K̂) for x1 ∈ [0, K̂]. Interchanging the

roles of x1 and x2 we obtain in case of XK,ε
1,k,(j−1)ε = 0 the same bound. Note that this bound holds
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for all initial conditions X̃K,ε
·,·,τ . This gives

16

(η∗)2
E

[

EXK,ε
·,k,τ

[

⌊ δ
ε ⌋
∑

j=1

E
[

(∆XK,ε
α,k,jε)

2
∣

∣

∣
XK,ε

·,·,jε−

] ]

]

≤ 16

(η∗)2
C̃

⌊ δ
ε ⌋
∑

j=1

ε

≤ 16

(η∗)2
C̃ δ ≤ η

4

for δ small enough. �

Now, we are ready to summarise the previous results.

3.7 Proposition

(a) The family of processes
{

X̃ε : 0 < ε ≤ 1
}

with sample paths in DLγ
[0, T ] is tight. Hence, it

provides a subsequence which converges weakly to some process X.

(b) The same weak convergence is true for the family of processes
{

Xε : 0 < ε ≤ 1
}

.

Proof. Note that Lγ is Polish. Then DLγ
[0, T ] equipped with the Skorohod topology is complete

and separable; cf. [EK86] Chapter III, Section 5, in particular Theorem III.5.6, p. 121. Hence,

relative compactness and tightness are equivalent. Then (a) follows by Theorem III.9.1 in [EK86]

on p.142 in combination with Lemmas 3.4, 3.5 and 3.6.

Recall that the two processes Xε and X̃ε coincide on the time grid t = 0, ε, 2ε, . . . , ε⌊T
ε ⌋. As-

sume that the subsequence X̃εn converges weakly to X on the Skorokhod space
(

D([0, T ],Eγ) , d
)

.

We want to show weak convergence of Xεn to X (on the Skorokhod space). Since uniform conver-

gence implies convergence w.r.t. d, see [JS87] Prop. VI.1.17, we show

sup
s≤T

‖Xεn
s − X̃εn

s ‖γ
P−→

n→0
0 . (3.21)

This implies weak convergence of Xεn to X by Slutzky’s Theorem; see e.g. [Kl06] Satz 13.18,

p.243; here, we only need a metric space, compare with [JS87] VI.1.22 and VI.1.23.

To show (3.21) let η > 0. As in the proof of Lemma 3.4 we can choose a finite subset SN of S,

with |SN | = N ∈ N, say, such that

sup
0<ε≤1

P
[

sup
0≤t≤T

2
∑

α=1

〈Xεn
α,·,t , γ S\SN

〉 ≥ η/4
]

≤ η/4.

And then the same is true for X̃εn . It remains to show that, for k ∈ SN ,

P
[

sup
0≤t≤T

∣

∣Xεn

α,k,t − X̃εn

α,k,t

∣

∣ ≥ η/4N
]

≤ η

4N
,

for all εn < ε′, where ε′ is small enough. But as seen in Lemma 3.6 the processes Xεn or X̃εn live

with probability larger than 1 − η/4 inside a box of size K/γj for all j ∈ S if K is large enough.

Set K̂ = max
j∈SN

γ−1
j K. Then inside the box we have for all k ∈ SN

sup
0≤t≤T

∣

∣XK,εn

α,k,t − X̃K,εn

α,k,t

∣

∣ ≤ ε
M

2
K̂ ≤ η

4N
,

for all 0 ≤ εn < ε′, with ε′ small enough – compare with the arguments proceeding Equation (3.20)

on page 37. �
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3.8 Remark We cautiously considered weak convergence of subsequences of the processes Xε

(or X̃ε), 0 < ε ≤ 1, for a fixed time horizont T > 0. The generalisation to DLγ
[0,∞) is then

immediate. In fact, since T > 0 was arbitrary we can choose a sequence (Tj)j with Tj ր ∞ as

j → ∞. Then for each Tj we have a convergent subsequence, and hence, by using a diagonal

subsubsequence we obtain weak convergence on any compact time interval. ♦

3.3 Martingale Problem and Uniqueness

We wish to show that the weak limit X of the processes X̃εn is a solution to a certain martingale

problem. Mytnik’s self-duality will give uniqueness for this martingale problem. Hence, we will

have constructed a unique (strong) Markov process.

To establish a martingale problem and a self-duality relation, the process Y dual to X has to

obey the same dynamics as X but with Q∗ as migration kernel instead of Q. Therefore, we have

to assume from now on that the growth condition (3.1) holds for Q as well as for its transpose Q∗.

That means we assume both,

γ|Q∗| ≤ Mγ and γ|Q| ≤ Mγ, (3.22)

for some positive constant M . Then existence for Y follows by the results of Section 3.2.

For the dual process Y , we want to choose a slightly smaller initial configuration. We say that

y = ( y1,k , y2,k )k∈S ∈ Eγ has finite support if ( y1,k , y2,k ) 6= (0, 0) only for finitely many k ∈ S;

and we write y ∈ Efin. We say that y = ( y1,k , y2,k )k∈S ∈ Eγ is γ-bounded if there is a constant

C = Cy > 0 such that

y1,k + y2,k ≤ C γk (3.23)

for all k ∈ S. We write y ∈ Eb for short. Obviously, Efin ⊆ Eb ⊆ Eγ since we assume γ to be

summable. Analogously, we use the notations Lfin and Lb for the corresponding subsets of Lγ .

The subsets Lb and Eb will serve as some sort of pseudo-dual space of Lγ and Eγ , respectively.

With the notation ‖y‖b := supα,k
yα,k

γk
for y ∈ Lb (or ∈ Eb) we can write

〈 yα , Ptxα 〉 ≤ C〈 γ , Ptxα 〉 ≤ C etM 〈 γ , xα 〉 ,

hence, 〈 yα , Ptxα 〉 ≤ ‖y‖b‖Pt‖‖x‖γ . Conversely, property (3.23) is preserved for the process Y

taking the expectation into account,

E[Yα,k,t] =
∑

j∈S

p∗t (j, k)yα,j ≤ C etM γk , (3.24)

if Y·,·,0 = y ∈ Lb and where P ∗
t = (p∗t (j, k))j,k∈S denotes the semigroup for Y ; compare with the

discussion after Equation (3.3). Hence, 〈P ∗
t yα , xα 〉 ≤ ‖y‖b‖P ∗

t ‖‖x‖γ .

For y ∈ Eb we can define Mytnik’s duality functions F (·, y) : Eγ −→ C by

F (x, y) = exp
{

−〈x1 + x2 , y1 + y2 〉 + i〈x1 − x2 , y1 − y2 〉
}

, (3.25)
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and property (3.23) ensures that this expression is always well defined. Note that these functions

have the following ‘site-wise’ multiplicative decomposition

F (x, y) =
∏

k∈S

Fk(x·,k , y·,k)

: =
∏

k∈S

exp
{

−(x1,k + x2,k)(y1,k + y2,k) + i(x1,k − x2,k)(y1,k − y2,k)
}

.
(3.26)

Now we can state the important martingale property for the approximation processes Xε w.r.t.

the duality functions F (·, y).

3.9 Proposition Let y ∈ Lb and F (·, y) as in (3.25). Define the operator F (·, y) 7→ A F (·, y) by

A F (·, y)(x) = A F (x, y) =
[

−〈x1,· + x2,· , Q∗(y1,· + y2,·)〉 + i〈x1,· − x2,· , Q∗(y1,· − y2,·)〉
]

F (x, y),
(3.27)

for x ∈ Eγ . Then the process Xε has the following property:

For any
(

F (·, y) , A F (·, y)
)

t 7→ F (Xε
t , y) − F (Xε

0 , y) −
∫ t

0

A F (Xε
s , y) ds (3.28)

is a martingale w.r.t. (Ft)t≥0 starting from 0 at time t = 0.

Remark: The stated martingale property is exactly the same as in the martingale problem for the

process X, the weak limit of the processes Xεn (or X̃εn), see Proposition 3.16 below. However, we

assume neither the class of functions F (·, y) being rich enough to characterize the finite-dimensional

distributions of processes with paths in DEγ
[0, T ] nor existence of a unique process with martingale

property (3.28). In fact, each element of the family of processes
{

Xε : 0 ≤ ε ≤ ∞
}

satisfies the

martingale property (3.28), including the deterministic heat flow, where we have variance parameter

zero in Section 1.1. Compare with [EK86] Sections IV.4.3 and IV.4.4 for the notion martingale

problem.

Proof. Note that (3.2) can be rewritten as

(G f)(x) =

2
∑

α=1

∑

k∈S

∑

j∈S

xα,j qjk
∂

∂xα,k
f(x) (3.29)

for appropriate functions f on Eγ . G applied to F (·, y) gives (3.27). Since y ∈ Lb and |F (x, y)| ≤ 1

we have by (3.22)

sup
0≤t≤T

E
[

∣

∣A F (Xε
t , y)

∣

∣

]

≤ 2C M sup
0≤t≤T

E
[

〈Xε
1,·,t + Xε

2,·,t , γ 〉
]

≤ 2C M eMT 〈x1,· + x2,· , γ 〉,
(3.30)

where Xε
α,k,0 = xα,k, for α ∈ {1, 2}, k ∈ S, denotes the initial conditon of Xε. This shows that

the process given by (3.28) is integrable.

For t ∈ [0, ε) we have

F (Xt, y) = F (X0, y) +

∫ t

0

A F (Xε
s , y) ds
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by (3.2) and (3.29). And a similar equation holds for all subsequent time intervals [ jε , (j + 1)ε),

j = 1, . . . , ⌊T
ε ⌋ modulo the random initial condition.

Hence, to complete the proof of (3.28) we need to take a look at the jumps at times jε,

j = 1, . . . , ⌊T
ε ⌋ similarly as we did for (3.5).

Define

Mε,F
t := −

⌊T
ε ⌋
∑

j=1

∆F (Xε
·,·,jε , y

)

[jε,∞)(t) . (3.31)

Note that (Mε,F
t )t is piecewise constant and |Mε,F

t | ≤ 2T
ε for 0 ≤ t ≤ T . Let SN be finite subsets

of S with SN ր S and define yN ∈ Lfin by setting yN
α,k = yα,k for k ∈ SN and yN

α,k = 0 for

k ∈ S \ SN , α ∈ {1, 2}. Then inductively by the independence of jumps and Lemma 1.2 we have

E
[

F
(

Xε
·,·,jε , yN

) ∣

∣Xε
·,·,jε−

]

= F
(

Xε
·,·,jε− , yN

)

hence, by dominated convergence

E
[

F
(

Xε
·,·,jε , y

) ∣

∣Xε
·,·,jε−

]

= F
(

Xε
·,·,jε− , y

)

for all times j = 1, . . . , ⌊T
ε ⌋. This and integrability yields that Mε,F is a martingale and we are

done. �

The functions F (·, y) given by (3.25), where y ∈ Lb, might not be rich enough to characterise

distributions on Eγ . But recall Proposition 3.7. The limit of the processes Xε has only values in

the smaller space Lγ . The next Lemma will show that it is worth considering the above martingale

problem. In fact, for measures on Lγ the family of duality functions F (·, y) indexed by y ∈ Lfin

is rich enough to separate. For this reason we can characterize the one-dimensional distributions

of X later on. The proof of the following result uses arguments as in [My96] Lemma 3.5 p.49 and

[DP98] Lemma 2.3 p.1098.

3.10 Lemma If µ and ν are probability laws on Lγ such that

∫

F (x, y)µ(dx) =

∫

F (x, y)ν(dx), (3.32)

for all F (·, y) with y ∈ Lfin, then µ = ν.

Proof. Let us first consider the functions F (·, y) indexed by y ∈ Efin instead of Lfin. Let

φ = (φ1, φ2) be a r.v. with values in Eγ . Then note that the mixed Laplace-Fourier transform

E[F (φ, y)] actually is supposed to characterize the distribution of (φ1 + φ2 , φ1 − φ2). But this

is sufficient since there is a one-to-one correspondence between the distributions of (φ1, φ2) and

(φ1 + φ2 , φ1 − φ2). Now set

A :=
{

F (·, y) : y ∈ Efin

}

. (3.33)

We need to show that the linear span of A is an algebra which separates points. Then by [EK86]

Theorem 3.4.5(a), p.113, and linearity A separates distributions on Eγ . Obviously, the linear span

of A is stable under addition and by the structure of F stable under multiplication. Thus, it remains
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to show that it separates points. To this end let x, x′ ∈ Eγ with x 6= x′. Then there is k ∈ S such

that (x1,k , x2,k) 6= (x′
1,k , x′

2,k). This implies x1,k +x2,k 6= x′
1,k +x′

2,k or x1,k −x2,k 6= x′
1,k −x′

2,k.

In the first case choose ȳ ∈ Eγ such that (ȳ1,k , ȳ2,k) = (1, 1) and (ȳ1,j , ȳ2,j) = (0, 0) for j 6= k.

Then F (x, ȳ) 6= F (x′, ȳ). In the second case choose ȳ1,k = 1
2π (|x1,k − x2,k| + |x′

1,k − x′
2,k|)−1

and ȳ2,k = 0 and (ȳ1,j , ȳ2,j) = (0, 0) for j 6= k. Then exp
{

i(x1,k − x2,k)(ȳ1,k − ȳ2,k)
}

6=
exp
{

i(x′
1,k − x′

2,k)(ȳ1,k − ȳ2,k)
}

and again we obtain F (x, ȳ) 6= F (x′, ȳ).

Finally, let µ and ν be distributions on Lγ which satisfy (3.32). Fix F (·, y) with y ∈ Efin.

Choose a finite subset SN ⊆ S such that (y1,j , y2,j) = (0, 0) for all j ∈ S \ SN . For coordinates

k ∈ SN we use the argument as in the proof of Lemma 1.4(b). In fact, by the product structure of

F and since |F | ≤ 1 we can write
∫

F (x, y)µ(dx) =

∫

∏

k∈SN

Fk(x·,k , y·,k)µ(dx)

=

∫

∏

k∈SN

[
∫

L

DPy·,k
(dξ(k))Fk(x·,k , ξ(k))

]

µ(dx)

=
∏

k∈SN

∫

L

DPy·,k
(dξ(k))

[
∫

Fk(x·,k , ξ(k))µ(dx)

]

=
∏

k∈SN

∫

L

DPy·,k
(dξ(k))

[
∫

Fk(x·,k , ξ(k)) ν(dx)

]

=

∫

∏

k∈SN

[
∫

L

DPy·,k
(dξ(k))Fk(x·,k , ξ(k))

]

ν(dx)

=

∫

∏

k∈SN

Fk(x·,k , y·,k) ν(dx)

=

∫

F (x, y) ν(dx).

Hence, we showed that (3.32) for measures which charge only Lγ implies
∫

F (x, y)µ(dx) =
∫

F (x, y) ν(dx) for all y ∈ Efin. Thus, by the preceding argumentation we obtain µ = ν. �

Next, we state three technical Lemmas. The first one (including its proof) is taken from the

preprint of Klenke and Mytnik, [KM07]. We will apply it later for the function h(x) = xp−1, where

1 < p < 2, and the two random variables Xε
1,k,t and Xε

2,k,t.

3.11 Lemma Let U and V be non-positively correlated, non-negative, integrable random variables

and assume that h : [0,∞) −→ [0,∞) is concave, differentiable and monotone increasing. Then

E
[

Uh(V )
]

≤ E[U ]h(E[V ]).

Proof. Since h is concave, we have h(z)−h(x)
z−x ≥ h(y)−h(z)

y−z for x < z < y, compare with [Kl06]

Satz 7.7. p.142. Letting y → z we obtain h(z) − h(x) ≥ (z − x)h′(z) and, hence,

h(x) ≤ h(z) + (x − z)h′(z).

In case x > z we obtain the same inequality since for z > y we have h′(z) = lim
y→z

h(z)−h(y)
z−y ≥

h(x)−h(z)
x−z . With z := E[V ] we get

h(x) ≤ h(E[V ]) + (x − E[V ])h′(E[V ]) ,
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for all x ∈ [0,∞). Then U h(V ) ≤ U
{

h(E[V ]) + (V − E[V ])h′(E[V ])
}

, and so

E
[

U h(V )
]

≤ E
[

U h(E[V ])
]

+ E
[

U (V − E[V ])h′(E[V ])
]

= E[U ]h(E[V ]) + h′(E[V ])
{

E[U V ] − E[U ]E[V ]
}

≤ E[U ]h(E[V ])

since h′ ≥ 0 and U and V are non-positively correlated. �

3.12 Lemma Let t ≥ 0. For sites j, k ∈ S we have

E
[

Xε
1,j,t Xε

2,k,t

]

≤ E
[

Xε
1,j,t

]

E
[

Xε
2,k,t

]

, (3.34)

i.e., Xε
1,j,t and Xε

2,k,t are non-positively correlated random variables.

Proof. We assume Xε starts in x ∈ Lγ . This immediately gives E
[

Xε
1,j,t Xε

2,k,t

]

=

E
[

Xε
1,j,t

]

E
[

Xε
2,k,t

]

for t = 0. We proceed inductively. Assume (3.34) holds for all jump times

t ∈ {0, ε, 2ε, . . . , (N−1)ε} for some N ∈ N. Then for t ∈
(

Kε , (K+1)ε
)

with K ∈ {0, 1, 2, . . . , N}
we can write

E
[

Xε
1,j,t Xε

2,k,t

]

=
∑

l∈S

∑

l′∈S

pt−Kε(j, l) pt−Kε(k, l′)E
[

Xε
1,l,Kε Xε

2,l′,Kε

]

≤
∑

l∈S

∑

l′∈S

pt−Kε(j, l) pt−Kε(k, l′)E
[

Xε
1,l,Kε

]

E
[

Xε
2,l′,Kε

]

= E
[

Xε
1,j,t

]

E
[

Xε
2,k,t

]

.

At jump time t = Nε we have Xε
1,j,t Xε

2,k,t = 0 if j = k, hence, obviously E
[

Xε
1,k,t Xε

2,k,t

]

≤
E
[

Xε
1,k,t

]

E
[

Xε
2,k,t

]

. If j 6= k recall that jumps have mean zero and are independent on different

sites. Then we have

E
[

Xε
1,j,Nε Xε

2,k,Nε

]

= E
[

E
[ (

Xε
1,j,Nε− + ∆Xε

1,j,Nε

)(

Xε
2,k,Nε− + ∆Xε

2,k,Nε

) ∣

∣X·,·,Nε−
]

]

= E
[

Xε
1,j,Nε− Xε

2,k,Nε−
]

+ E
[

Xε
1,j,Nε− E

[

∆Xε
2,k,Nε

∣

∣X·,·,Nε−
]

]

+ E
[

Xε
2,k,Nε− E

[

∆Xε
1,j,Nε

∣

∣X·,·,Nε−
]

]

+ E
[

∆Xε
1,j,Nε ∆Xε

2,k,Nε

]

≤ E
[

Xε
1,j,Nε−

]

E
[

Xε
2,k,Nε−

]

= E
[

Xε
1,j,Nε

]

E
[

Xε
2,k,Nε

]

by induction hypothesis and since the last three (of four) terms in the antepenultimate line vanish.

This completes the proof. �

The following results are supposed to be very well known. We state them for easy reference.

3.13 Lemma Let I be a countable index set. Let a = (ak)k∈I ∈ [0,∞)I .

(a) Then, for 1 ≤ p ≤ 2,

(

∑

k

a2
k

)p/2

≤
∑

k

ap
k .
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(b) For a finite subset J ⊆ I let p > 1. Then
(

∑

k∈J

ak

)p

≤ |J |p−1
∑

k∈J

ap
k ,

where |J | denotes the cardinality of J .

Proof. (a) Denote by ‖a‖p :=
(

∑

k ap
k

)1/p

the ℓp-norm and let e(k) := (δjk)j∈I be the unit

vector with 1 in the k-th coordinate and 0 otherwise. Define the vector b = (bk)k∈I by setting

bk := ap
k, for all k ∈ I, and determine the sequences c(k) by c(k) := ap

k · e(k). Then
∑

k c(k) = b.

Moreover, we can write

(

∑

k

a2
k

)p/2

=

(

∑

k

(ap
k)2/p

)p/2

= ‖b‖2/p ≤
∑

k

‖ap
k e(k)‖2/p =

∑

k

(

ap
k

)
2
p

p
2 =

∑

k

ap
k

by the Minkowski inequality.

(b) By Jensen’s inequality we have

∑

k∈J

ap
k = |J |

∑

k∈J

1

|J |a
p
k ≥ |J |

(

∑

k∈J

1

|J |ak

)p

= |J |1−p

(

∑

k∈J

ak

)p

,

and we are done. �

The integral version of Lemma 3.13(b) reads as follows: Let µ be a finite measure on some

measurable space (E, E) and f a non-negative E-measurable function. Then, for p > 1,
(
∫

f(x)µ(dx)

)p

≤ µ(E)p−1

∫

f(x)pµ(dx) . (3.35)

We wish to show a similar result as in Proposition 3.9 for the weak limit of the processes Xε.

The martingale property in (3.28) will be preserved for the limit as ε tends to zero if we can

establish uniformly bounded moments. This is our next aim.

3.14 Lemma Fix y ∈ Lb, F (·, y), T > 0 and 1 < p < 2. Let Mε,F as in (3.31) above. Then

sup
0<ε≤1

E

[

sup
0≤t≤T

∣

∣

∣
Mε,F

t

∣

∣

∣

p
]

< ∞,

i.e., Mε,F is bounded in Lp(P ).

Proof. Recall that Mε,F consists of only finitely many jumps on the time grid t = jε, with

j = 0, 1, . . . , ⌊T
ε ⌋, and so we rather consider it as a discrete-time martingale. Moreover, at each

time jε we decompose the jump into |S|-many jumps, one jump at each site k. To this end we fix

an enumeration of the sites k ∈ S. We use the following decomposition of the duality function F ,

F (x, y) =
∏

k∈S

Fk(x·,k , y·,k) ,

where Fk(x·,k , y·,k) := exp
{

−(x1,k + x2,k)(y1,k + y2,k) + i(x1,k − x2,k)(y1,k − y2,k)
}

only depends

on the k-th coordinate of x (and y). Then

Zjε
n := F (Xε

·,·,jε− , y)
n
∏

k=1

Fk(∆Xε
·,k,jε , y) , for n ∈ N0 ∪ {∞},
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is a martingal since the jumps at time jε are centered and independent on each site k ∈ S. Set

X jε
n := Zjε

n − Zjε
n−1 , for n ∈ N ∪ {∞}, and note that

∞
∑

n=1

X jε
n = Zjε

∞ − Zjε
0 = ∆F (Xε

·,·,jε , y).

For the square bracket of the discrete-time, mean zero martingale N 7→
N
∑

n=1
X jε

n we have

[

·
∑

n=1

X jε
n

]

N
=

N
∑

n=1

(X jε
n )2 =

N
∑

n=1

(Zjε
n −Zjε

n−1)
2

≤
N
∑

n=1

∣

∣Fn(∆Xε
·,n,jε , y) − Fn(0 , y)

∣

∣

2

≤
N
∑

n=1

22(y1,n + y2,n)2
(

|∆Xε
1,n,jε| + |∆Xε

2,n,jε|
)2

(3.36)

by the Lipschitz continuity of Fn(·, y). Finally, instead of Mε,F we consider the martingale
·
∑

j=1

·
∑

n=1
X jε

n with directed (time-)index set I =
{

(j, n) : j = 1, . . . , ⌊T
ε ⌋ , n ∈ N ∪ {∞}

}

with

the obvious ordering (j1, n1) < (j2, n2) if and only if j2 > j1 or if j1 = j2 and n2 > n1. For this

martingale we apply the Burkholder-Davis-Gundy inequality and (3.36).

E

[

sup
0≤t≤T

∣

∣

∣

∣

⌊T
ε ⌋
∑

j=1

∆F
(

Xε
·,·,jε , y

)

[jε,∞)(t)

∣

∣

∣

∣

p
]

≤ E

[

sup
J≤⌊T

ε ⌋ , N∈N∪{∞}

∣

∣

∣

∣

J
∑

j=1

N
∑

n=1

X jε
n

∣

∣

∣

∣

p
]

≤ E

[

( ⌊T
ε ⌋
∑

j=1

∑

k∈S

22(y1,k + y2,k)2
(

|∆Xε
1,k,jε| + |∆Xε

2,k,jε|
)2
)p/2

]

.

We continue by using Lemma 3.13 (a) and (b). Hence,

E

[

sup
0≤t≤T

∣

∣

∣

∣

Mε,F
t

∣

∣

∣

∣

p
]

≤
⌊T

ε ⌋
∑

j=1

∑

k∈S

22p−1(y1,k + y2,k)p E
[

|∆Xε
1,k,jε|p + |∆Xε

2,k,jε|p
]

. (3.37)

Here is, where Lemma 1.7 comes into play. For the jump of type 1 at site k we have

E
[

|∆Xε
1,k,jε|p

]

≤ 2Cp E
[

(Xε
1,k,jε−)p−1 Xε

2,k,jε− {Xε
2,k,(j−1)ε

=0}
]

+ 2Cp E
[

(Xε
2,k,jε−)p−1 Xε

1,k,jε− {Xε
1,k,(j−1)ε

=0}
]

.
(3.38)

Then by Lemma 3.12 and Lemma 3.11, with h(x) = xp−1 for x ≥ 0, we obtain for the first

summand of the r.h.s. of (3.38)

E
[

(Xε
1,k,jε−)p−1 Xε

2,k,jε− {Xε
2,k,(j−1)ε

=0}
]

≤ E
[

Xε
1,k,jε−

]p−1
E
[

Xε
2,k,jε− {Xε

2,k,(j−1)ε
=0}
]

= E
[

Xε
1,k,jε−

]p−1∑

l 6=k

pε(k, l)E
[

Xε
2,l,(j−1)ε

]

, (3.39)
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recall
(

pt(k, l)
)

k,l∈S
= Pt = exp(tQ∗). Just as well, for the second summand of the r.h.s. of

Equation (3.38) we obtain

E
[

(Xε
2,k,jε−)p−1 Xε

1,k,jε− {Xε
1,k,(j−1)ε

=0}
]

≤ E
[

Xε
2,k,jε−

]p−1∑

l 6=k

pε(k, l)E
[

Xε
1,l,(j−1)ε

]

. (3.40)

If we consider the jump of type 2 at site k, that is to say the expression E
[

|∆Xε
2,k,jε|p

]

on the

r.h.s. of (3.37), obviously, similar estimates can be obtained along the lines of (3.38), (3.39) and

(3.40).

Going back to Equation (3.37) we summarise. Since 〈E[Xε
α,·,t] , γ 〉 ≤ eMT 〈xα, γ〉 for 0 ≤ t ≤ T

we have E[Xε
α,k,t]

p−1 ≤ C′

γp−1
k

for α ∈ {1, 2}. Then we use (3.23) and can find a constant c > 0,

which subsumes previous constants, such that

⌊T
ε ⌋
∑

j=1

∑

k∈S

22p−1(y1,k + y2,k)p E
[

|∆Xε
1,k,jε|p

]

≤ c

⌊T
ε ⌋
∑

j=1

∑

k∈S

∑

l∈S

γk pε(k, l)(1 − δkl)
(

E
[

Xε
1,l,(j−1)ε

]

+ E
[

Xε
2,l,(j−1)ε

]

)

(3.41)

by (3.39) and (3.40). To give an estimate for the r.h.s. of (3.41) we consider z = (z1, z2) ∈ Eγ to

simplify notation. Then
∣

∣

∣

∑

k∈S

∑

l∈S

γk pε(k, l)(1 − δkl)zα,l

∣

∣

∣
≤ |〈Pεzα, γ〉 − 〈P0zα, γ〉| +

∑

k∈S

∣

∣1 − pε(k, k)
∣

∣zα,k γk

since P0 equals the identity matrix I. For the first summand we have |〈Pεzα, γ〉 − 〈P0zα, γ〉| =

ε |〈Q∗Pǫzα, γ〉| ≤ εM eεM 〈zα, γ〉, where 0 ≤ ǫ ≤ ε (≤ 1). For the second summand note that

sup
k∈S

∣

∣pε(k, k) − 1
∣

∣ = sup
k∈S

〈

δk· , |eεQ∗ − I | δk·
〉

≤ sup
k∈S

‖δk·‖b · ‖eεQ∗ − I‖ · ‖δk·‖γ

≤ εM eεM ≤ εM eM

since we interpret δk· as an element of Eγ , hence, ‖δk·‖γ = γk, as well as an element of the ‘dual

space’ (Eγ)′ = Eb with elements y = (y1, y2) such that sup
j∈S

yαγ−1
j is finite, hence, ‖δk·‖b = γ−1

k .

Clearly, for the operator norm ‖eεQ∗ − I‖ ≤ εM eεM . Therefore
∑

k∈S

∣

∣1 − pε(k, k)
∣

∣zα,k γk ≤ εM eM 〈zα, γ〉.

Thus,
∣

∣

∣

∑

k∈S

∑

l∈S

γk pε(k, l)(1 − δkl)zα,l

∣

∣

∣
≤ ε 2M eM 〈zα, γ〉.

We apply this to (3.41) and resubstitute E
[

Xε
α,·,(j−1)ε

]

for zα. Also recall 〈E[Xε
α,·,(j−1)ε] , γ〉 ≤

e(j−1)ε M 〈xα, γ〉 ≤ eT M 〈xα, γ〉, for all j = 1, . . . , ⌊T
ε ⌋, where x = (x1, x2) is the inital configuration

of Xε. Then

⌊T
ε ⌋
∑

j=1

∑

k∈S

22p−1(y1,k + y2,k)p E
[

|∆Xε
1,k,jε|p

]

≤ c

⌊T
ε ⌋
∑

j=1

ε 2M eM eTM 〈x1 + x2 , γ〉

≤ 2 c TMe(T+1)M 〈x1 + x2 , γ〉 < ∞.

(3.42)

46



3.3 Martingale Problem and Uniqueness

Surely, the same estimate can be computed for the jump of type 2. This gives an upper bound

for the r.h.s. of (3.37) which is finite and does not depend on ε ∈ (0, 1]. This completes the proof. �

3.15 Lemma For 1 < p < 2 we have

sup
0<ε≤1

E
[

〈Xε
1,·,T + Xε

2,·,T , γ 〉p
]

< ∞.

Proof. According to Lemma 3.2 we can write

〈Xε
α,·,T , γ 〉 = 〈xα, γ〉 +

∫ T

0

|〈 (Xε
α,·,sQ)· , γ 〉| ds + 〈Mε

α,·,T , γ 〉

≤ 〈xα, γ〉 + M

∫ T

0

〈 γ , Xε
α,·,s 〉 ds +

∣

∣〈Mε
α,·,T , γ 〉

∣

∣ .

By Lemma 3.13(b) we then have

E
[

〈Xε
1,·,T + Xε

2,·,T , γ 〉p
]

≤ C

{

2
∑

α=1

〈xα, γ〉p +
2
∑

α=1

E
[

∣

∣〈Mε
α,·,T , γ 〉

∣

∣

p
]

+ E

[(

M

∫ T

0

〈Xε
1,·,s + Xε

2,·,s , γ 〉 ds

)p]
} (3.43)

for some constant C > 0 which only depends on p. To give an upper bound on the r.h.s. of (3.43)

compare E
[

∣

∣〈Mε
α,·,T , γ 〉

∣

∣

p
]

with the results derived in the proof of Lemma 3.14. In fact, here we

can directly consider the jumps γk|∆Xε
α,k,jε|, in contrast to (3.36), and we obtain

E
[

∣

∣〈Mε
α,·,T , γ 〉

∣

∣

p
]

≤ C ′
∑

k∈S

⌊T
ε ⌋
∑

j=1

γpE
[

|∆Xε
α,k,jε|p

]

,

which is again finite, uniformly in ε ∈ (0, 1]. Compare with (3.42).

By Jensen’s inequality for Lebesgue measure on [0, T ] and x 7→ xp, see Equation (3.35) after

Lemma 3.13, we have

E

[(

M

∫ T

0

〈Xε
1,·,s + Xε

2,·,s , γ 〉 ds

)p]

≤ MpT p−1

∫ T

0

E
[

〈Xε
1,·,s + Xε

2,·,s , γ 〉p
]

ds .

Altogether, there are constants a and b which depend on the initial condition x, p and T but not

on ε such that

E
[

〈Xε
1,·,T + Xε

2,·,T , γ 〉p
]

≤ a + b

∫ T

0

E
[

〈Xε
1,·,s + Xε

2,·,s , γ 〉p
]

ds.

An application of Gronwall’s Lemma, see for instance [RY91] p. 543, completes the proof. �

Now we are ready to apply the results of the former lemmas. Due to Remark 3.8 we consider

the time-index set [0,∞).

3.16 Proposition Let X – with paths in DLγ
[0,∞) – be any weak limit point of the family

{

Xε : 0 < ε ≤ 1
}

. Then X is a solution to the following martingale problem:
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Let A be given by (3.27). For any F (·, y), where y ∈ Lb,

t 7→ F (Xt, y) − F (X0, y) −
∫ t

0

A F (Xs, y) ds (3.44)

is a martingale starting from 0 at time t = 0.

Proof. By Proposition 3.7 we can choose from
{

Xε : ε > 0
}

a subsequence (Xεn)n converging

in law on DEγ
[0, T ]. Going to the Skorohod space, cf. Skorohod representation theorem [EK86]

Theorem III.1.8, we may assume

Xεn −→ X a.s. in DEγ
[0, T ] , as n → ∞.

By Proposition 3.9 we have

F (Xεn
t , y) − F (Xεn

0 , y) −
∫ t

0

A F (Xεn
s , y) ds = Mεn,F

t ,

with Mεn,F as in (3.31) and A F (x, y) as in (3.27). Since x 7→ F (x, y) and x 7→ A F (x, y)

are continuous, a.s.-convergence of F (Xεn
t , y), F (Xεn

0 , y) and A F (Xεn
s , y) to F (Xt, y), F (X0, y)

and A F (Xs, y), respectively, is immediate. Next, recall that s 7→ esλ̄〈Xε
1,·,s + Xε

2,·,s , γ 〉 is a

submartingale by Lemma 3.2 c). Then we can use Doob’s submartingale inequality. We have

E

[

(

sup
0≤s≤T

∣

∣A F (Xεn
s , y)

∣

∣

)p
]

≤ 2pE

[

(

sup
0≤s≤T

esλ̄〈Xε
1,·,s + Xε

2,·,s , γ 〉
)p
]

≤ Cp,T,λ̄ E
[

〈Xε
1,·,T + Xε

2,·,T , γ 〉p
]

,

for some constant Cp,T,λ̄ that depends on p ∈ (1, 2), T > 0 and λ̄ > 0. Hence,

sup
0<ε≤1

E

[

(

sup
0≤s≤T

∣

∣A F (Xεn
s , y)

∣

∣

)p
]

< ∞

by Lemma 3.15. This yields

lim
n→∞

∫ t

0

A F (Xεn
s , y) ds =

∫ t

0

A F (Xs, y) ds

P-a.s. Finally, we obtain convergence of the martingales Mεn,F as n → ∞. The limit is again a

martingale, which is provided by Lemma 3.14 and results in [JS87] Chapter IX, §1a and §1b, see

Proposition IX.1.12, p. 525. �

After we have established the martingale problem for X a similar version should hold for

the dual process. We now phrase this martingale problem for Y and give an abridged proof to

avoid excessive repetition. Furthermore, property (3.24) simplifies the proof and, chronologically

speaking, we were able to establish the martingale problem for the dual process Y at first. However,

note that the duality functions F (·, y) and F (x, ·) are indexed by different sets, namely y ∈ Lb and

x ∈ Lγ , respectively.

Let Y ε be the approximate processes for Y as described in Section 3.1.
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3.17 Proposition Let Y be any weak limit point of the family
{

Y ε : 0 < ε ≤ 1
}

. Let x ∈ Lγ

and F (x, ·) as in (3.25). Define the operator F (x, ·) 7→ A ∗F (x, ·) by

A
∗F (x, ·)(y) = A

∗F (x, y) =
[

−〈Q(x1,· + x2,·) , y1,· + y2,·〉 + i〈Q(x1,· − x2,·) , y1,· − y2,·〉
]

F (x, y),
(3.45)

for y ∈ Lb. Then Y is a solution to the following martingale problem:

For any
(

F (x, ·) , A ∗F (x, ·)
)

t 7→ F (x, Yt) − F (x, Y0) −
∫ t

0

A
∗F (x, Ys) ds (3.46)

is a martingale starting from 0 at time t = 0.

Proof. Observe that the approximate processes Y ε satisfies the following:

F (x, Y ε
t ) = F (x, Y ε

0 ) +

∫ t

0

A
∗F (x, Y ε

s ) ds + MY ε,F
t , (3.47)

where the martingal MY ε,F
t is given by

MY ε,F
t := −

⌊T
ε ⌋
∑

j=1

∆F (x , Y ε
·,·,jε

)

[jε,∞)(t) . (3.48)

Integrability of the random variable F (x, Y ε
t ) can be obtained as in (3.30) by (3.24).

To show that a similar equation as in (3.47) is still valid for the limit Y as ε approaches zero we

need to establish higher moments. First, we check that the family
{ (

Mε,F
t

)

0≤t≤T
: 0 < ε ≤ 1

}

is bounded in Lp(P ), for 1 < p < 2, and hence, is uniformly integrable. As in the proof of Lemma

3.14 we decompose F and define

Yjε
n := F (x , Y ε

·,·,jε−)
n
∏

k=1

Fk(x , ∆Y ε
·,k,jε) , for n ∈ N0 ∪ {∞},

for times jε, j = 1, . . . , ⌊T
ε ⌋. Then, we set X jε

n := Yjε
n − Yjε

n−1 for n ∈ N ∪ {∞}. For the square

bracket of the martingale N 7→
N
∑

n=1
X jε

n we have

[

·
∑

n=1

X jε
n

]

N
=

N
∑

n=1

(X jε
n )2 =

N
∑

n=1

(Yjε
n − Yjε

n−1)
2

≤
N
∑

n=1

∣

∣Fn(x , ∆Y ε
·,l,jε) − Fn(x , 0)

∣

∣

2

≤
N
∑

l=1

22(x1,l + x2,l)
2
(

|∆Y ε
1,n,jε| + |∆Y ε

2,n,jε|
)2

(3.49)

by the Lipschitz continuity of Fn(x, ·). Then, by the Burkholder-Davis-Gundy inequality, by (3.49)

49



Chapter 3 Construction of the process for countably many colonies

and by Lemma 3.13 we get

E

[

sup
0≤t≤T

∣

∣

∣

∣

MY ε,F

∣

∣

∣

∣

p
]

≤ E

[

sup
J≤⌊T

ε ⌋ , N∈N∪{∞}

∣

∣

∣

∣

J
∑

j=1

N
∑

n=1

X jε
n

∣

∣

∣

∣

p
]

≤ cpE

[

( ⌊T
ε ⌋
∑

j=1

∑

k∈S

22(x1,l + x2,l)
2
(

|∆Y ε
1,n,jε| + |∆Y ε

2,n,jε|
)2
)p/2

]

≤ c′p

⌊T
ε ⌋
∑

j=1

∑

k∈S

(x1,k + x2,k)p E
[

|∆Y ε
1,k,jε|p + |∆Y ε

2,k,jε|p
]

. (3.50)

Lemma 1.7 implies

E
[

|∆Y ε
1,k,jε|p

]

≤ Cp E
[

(Y ε
1,k,jε−)p−1 Y ε

2,k,jε− {Y ε
2,k,(j−1)ε−

=0}
]

+ Cp E
[

(Y ε
2,k,jε−)p−1 Y ε

1,k,jε− {Y ε
1,k,(j−1)ε−

=0}
]

.
(3.51)

For the first summand of the r.h.s. (3.51) we obtain by Lemma 3.12 and Lemma 3.11

E
[

(Y ε
1,k,jε−)p−1 Y ε

2,k,jε− {Y ε
2,k,(j−1)ε

=0}
]

≤ E
[

Y ε
1,k,jε−

]p−1
E
[

Y ε
2,k,jε− {Y ε

2,k,(j−1)ε
=0}
]

≤ Cp−1 eTM(p−1) γp−1
k · εC M eTM γk

= Cp M eTMp γp
k ε (3.52)

by (3.24) and since E
[

(

Y ε
2,·,sQ

)

k

]

≤ C eTM
∑

j γjqjk ≤ C M eTM γk for all s ∈ [(j − 1)ε , εj] by

(3.22) and (3.24). The same arguments are valid for the second summand of the r.h.s. of (3.51).

Similar, we can give bounds as in (3.51) and (3.52) for the jump of type 2, that is E
[

|∆Y ε
2,k,jε|p

]

.

Hence, there exists a constant Č which depends on p, T , M but not on ε such that

E

[

sup
0≤t≤T

∣

∣

∣

∣

MY ε,F

∣

∣

∣

∣

p
]

≤
∑

k∈S

⌊T
ε ⌋
∑

j=1

(x1,k + x2,k)p Č ε γp
k

≤ T Č
∑

k∈S

(x1,k + x2,k)p γp
k < ∞. (3.53)

This shows that the martingale MY ε,F is bounded in Lp(P ).

Next, observe that (3.53) allows to imitate the proof of Lemma 3.15 for Y ε using Lemma 3.2.

Thus, for 1 < p < 2 holds

sup
0<ε≤1

E
[

〈Y ε
1,·,T + Y ε

2,·,T , γ 〉p
]

< ∞.

Then the assertion follows as in Proposition 3.16. �

Now we are ready to show duality of the processes X and Y w.r.t. the functions F . The proof

follows [DP98] Theorem 2.4.

3.18 Proposition Let X and Y start in x ∈ Lγ and y ∈ Lb, respectively, i.e. X·,·,0 = x and

Y·,·,0 = y. Then, for each time t ≥ 0,

E
[

F
(

Xt , y
)

]

= E
[

F
(

x , Yt

)

]

. (3.54)
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Proof. According to Propositions 3.16 and 3.17 there exist mean zero martingales MX and MY

such that

MX
t = F (Xt, y) − F (X0, y) −

∫ t

0

A F (Xs, y) ds (3.55)

and

MY
t = F (x, Yt) − F (x, Y0) −

∫ t

0

A
∗F (x, Ys) ds . (3.56)

Define

f(s, t) := E
[

F
(

Xt , Ys

)

]

.

Recall property (3.24) for Ys. Hence, for fixed time s ≥ 0 we can assume that Ys(ω) ∈ Lb. By

(3.55) we then have

f(s, t) = E
[

F (X0, Ys)
]

+ E

[
∫ t

0

A F (Xr, Ys) dr

]

. (3.57)

Next observe that by (3.24)

E
[

∣

∣A F (Xr, Ys)
∣

∣

]

≤ E
[

〈X1,·,r + X2,·,r ,
∣

∣Q∗(Y1,·,s + Y2,·,s)
∣

∣ 〉
]

≤ C M esME
[

〈X1,·,r + X2,·,r , γ〉
]

≤ C M esM 2 erM 〈x1,· + x2,· , γ〉 ≤ 2C M e2TM 〈x1,· + x2,· , γ〉.

Hence, we can interchange expectation and integration in (3.57) and obtain

f(s, t) = E
[

F (X0, Ys)
]

+

∫ t

0

E
[

A F (Xr, Ys)
]

dr. (3.58)

From (3.56) we can similarly derive

f(s, t) = E
[

F (Xt, Y0)
]

+

∫ s

0

E
[

A
∗F (Xt, Yr)

]

dr. (3.59)

In particular, f(t, 0) = E
[

F (X0, Yt)
]

by (3.58) and f(0, t) = E
[

F (Xt, Y0)
]

by (3.59). Finally we

apply [EK86] Lemma 4.4.10 on p.192. To this end let ∂1f and ∂2f denote the partial derivatives

of the absolutely continuous functions f(·, s) and f(t, ·) respectively. Then by (3.59) and (3.58)

E
[

F (X0, Yt)
]

− E
[

F (Xt, Y0)
]

= f(t, 0) − f(0, t)

=

∫ t

0

{

∂1f(s, t − s) − ∂2f(s, t − s)
}

ds

=

∫ t

0

{

E
[

A
∗F (Xt−s, Ys)

]

− E
[

A F (Xt−s, Ys)
]}

ds = 0

since A F (x, y) = A ∗F (x, y). This shows (3.54) and we are done. �
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3.19 Remark So far, all processes Xε as well as X started in a deterministic initial condition,

i.e., we assumed Xε
0 = x for all ε > 0, and hence, X0 = x, where x ∈ Lγ . Obviously, to construct

Xε it is possible to choose any initial distribution ν on Lγ , instead. Hence, we let Xε
0 ∼ ν. For

the existence of the limit processes X we need to ensure that both the family of processes Xε is

relatively compact and the martingale property (3.28) is preserved in the limit. Thus, we impose

the following two conditions on the initial distribution. For each p ∈ [1, 2)

∫

{

〈x1, γ〉p + 〈x2, γ〉p
}

ν(dx) < ∞, (3.60)

and, for all j, k ∈ S

∫

Lγ

x1,j x2,k ν(dx) ≤
∫

Lγ

x1,j ν(dx)

∫

Lγ

x2,k ν(dx). (3.61)

It is easy to check the arguments of Sections 3.1, 3.2 and 3.3 with initial distribution ν satisfying

(3.60) and (3.61). For example note that in Lemma 3.2 Equations (3.4) to (3.8) hold in a similar

way. Substitute expressions like 〈x1 + x2 , γ〉 by E
[

〈Xε
1,·,0 + Xε

2,·,0 , γ〉
]

. Observe that in any case

the martingales Mε
α,k,t , Mε,F

t and MY ε,F
t of (3.5), (3.31) and (3.48), respectively, start in zero. Of

course, condition (3.61) ensures that Lemma 3.12 remains valid. Finally, the Gronwall argument

of Lemma 3.15 works similar since the first term on the r.h.s. of Equation (3.43) is bounded by

(3.60). So from now on we assume existence of a solution to martingale problem (3.44) with any

initial distribution which satisfys (3.60) and (3.61). ♦

3.20 Remark Now we reverse the point of view. Consider any solution to the martingale problem

(not necessarily the one(s) we constructed), i.e. assume existence of a probability measure P on
(

DLγ
[0, T ] , D

)

with canonical process (χt)t such that for any F (·, y), with y ∈ Lb,

MF
t := F (χt, y) − F (χ0, y) −

∫ t

0

A F (χs, y) ds

is a martingale, where F (·, y) and A F are given by (3.25) and (3.27), respectively. We can ap-

proximate χ in the same spirit as we established X via Xε. To this end let X̄x be the deterministic

solution to Equation (3.3) starting in x ∈ Lγ and let 0 = tn0 < tn1 < . . . < tnNn = T be any partition

of the set [0, T ] with tnk+1 − tnk ≤ 1
n for all k = 0, 1, . . . , Nn, e.g. use an equidistant partition as on

page 30 for Xε. Then we can define the process χn by setting for t ∈ [tnk , tnk+1)

χn
t := χtk

+ X̄
χtk
t−tk

.

Note that χn
tn
k

≡ χtn
k

for all k = 0, 1, . . . , Nn. Recall that for X̄ we have F (X̄x
t , y) − F (X̄x

0 , y) −
∫ t

0
A F (X̄s, y)ds = 0, hence, the family of processes

{

χn : n ≥ 1
}

also has the above martingale

property. Recall the remark after Proposition 3.9 and note that χn
t has values in Eγ but y ∈ Lγ .

In particular,

Mn,F
t := F (χn

t , y) − F (χn
0 , y) −

∫ t

0

A F (χn
s , y) ds
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is piecewise constant and has jumps at times tnk , k = 1, 2, . . . , Nn, and is given by

Mn,F
t =

Nn
∑

k=1

{

F (χn
tk−, y) − F (χtk

, y)
}

[tn
k ,∞)(t).

Moreover, we have

E
[

F (χtn
k+1

, y)
∣

∣χtn
k

]

= F (χtn
k

+ X̄
χtn

k
tn
k+1−tn

k
, y )

for any y ∈ Lb. Since χtn
k+1

has values in Lγ this idenitifies the distribution of χtn
k+1

given χtn
k
. In

fact, for each site k ∈ S we then have χ·,k,tn
k+1

∼ DPa with a = χ·,k,tn
k

+ X̄
χtn

k
tn
k+1−tn

k
. This implies

that we can imitate all the former arguments for Xε. χ inherits the moment properties in the

same manner as X from the family Xε. We want to emphasise that Lemma 3.15 and Lemma

3.14 similarly hold for χ. In particular, X̄ gives the mean of χ, and if the initial distribution of

χ satisfies (3.60) then so does the distribution of χt and the distribution of χτ for any stopping

time τ ≤ T by a submartingale argument. Lemma 3.12 remains valid if the initial distribution

of χt satisfies (3.61). Even duality holds for χ. And χ is a limit point of (χn)n since the finite

dimensional distributions eventually coincide on an appropriate dense subset, cf. [JS87] VI.§3b,

p.350 ♦

Consider two processes X and X ′ with common initial distribution ν, which satisfys (3.60) and

(3.61). Assume both processes are solutions to the martingale problem (3.44). Then, in view of

Remark 3.20, we can apply the duality result of Proposition 3.18. This gives

E
[

F
(

Xt , y
)

]

= E
[

F
(

X0 , Yt

)

]

= E
[

F
(

X ′
0 , Yt

)

]

= E
[

F
(

X ′
t , y

)

]

(3.62)

for t ≥ 0 and some dual process Y starting in y ∈ Lb. By Lemma 3.10 the processes X and X ′

have the same one-dimensional distributions, i.e. for any Borel measurable set Γ ⊆ Lγ and any

t ≥ 0 we obtain

Pν

[

Xt ∈ Γ
]

= P ′
ν

[

X ′
t ∈ Γ

]

. (3.63)

As it is well known, in the context of martingale problems this is enough to characterize the finite-

dimensional distributions of theses solutions, see e.g. Theorem 4.4.2 of [EK86]. However, we can

not directly apply this result since it requires all functions to be bounded. But here, x 7→ A F (x, y)

is an unbounded function on Lγ . For all that it was observed by Mytnik, compare with [My98a]

p.972 Sec.2 or [My98b] pp.249-251, that the boundedness assumption can be relaxed. Instead, we

only need that Xt ( and X ′
t ), t ≥ 0, has a finite p-th moment, 1 ≤ p < 2. The proof of the next

Proposition follows Mytnik, see [My96] pp.46-48.

3.21 Proposition Any solution to the martingale problem (3.44) is a Markov process and any

two solutions have the same finite-dimensional distributions.

Proof. Let X be a solution to the martingale problem (3.44). X induces a probability measure

P on DLγ
[0, T ] with σ-algebra D , hence we will consider X as the canonical process on DLγ

[0, T ].

The martingale property in (3.44) holds w.r.t. the filtration (Ft)0≤t≤T .
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Fix r ∈ [0, T ], and let F ∈ Fr satisfy P (F ) > 0. Define the conditional probabilities PFr
and

PXr
on D by

PFr
(B) :=

E
[

F E[ B |Fr]
]

P (F )
(3.64)

and

PXr
(B) :=

E
[

F E[ B |Xr]
]

P (F )
(3.65)

for any B ∈ D . Set Ys := Xs+r for 0 ≤ s ≤ T − r. Note that for any Borel measurable Γ ⊆ Lγ

PFr

[

Y0 ∈ Γ
]

=
E
[

F E[ {Xr∈Γ}|Fr]
]

P (F )

=
E
[

F E[ {Xr∈Γ}|Xr]
]

P (F )
= PXr

[

Y0 ∈ Γ
]

=
E
[

F∩{Xr∈Γ}
]

P (F )

= P
[

Xr ∈ Γ
∣

∣F
]

,

i.e. Y has under PFr
and PXr

the same initial distribution and this initial distribution satisfies

the moment property (3.60) and, by Lemma 3.12, condition (3.61) since X satisfies it under P .

We set for 0 ≤ s ≤ t ≤ T − r

ηY,y(s, t) := F (Yt, y) − F (Ys, y) −
∫ t

s

A F (Yu, y) du. (3.66)

Since X solves the martingale problem w.r.t. P and Y· = Xr+· we have

E
[

ηY,y(s, t) · G
∣

∣Fr+s

]

= 0 (3.67)

for any Fr+s-measurable, bounded function G. Then, since σ(Xr) ⊆ Fr+s,

EPXr

[

ηY,y(s, t) · G
]

=
E
[

F E[ηY,y(s, t) · G|Xr ]
]

P (F )

=
E
[

F E[E[ηY,y(s, t) · G|Fr+s] |Xr ]
]

P (F )
= 0

and similarly,

EPFr

[

ηY,y(s, t) · G
]

= 0

for any Fr+s-measurable function G. Hence, Y is a solution to the martingale problem (3.44)

w.r.t. PXr
and PFr

(and filtration (Fr+s)s).

Now note that Y under PXr
and PFr

has the ‘same finite moments’ as X under P (since PXr
and

PFr
are only conditional probabilities). So duality holds for Y . And this implies EPXr

[F (Ys, y)] =

EPFr
[F (Ys, y)] for all y ∈ Lfin. This determines the one-dimensional distributions of Y under PXr

and PFr
. Hence, for any bounded measurable function f on Lγ we have

EPXr
[ f(Ys) ] = EPFr

[ f(Ys) ] (3.68)
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by the usual arguments of linearity and monotonicity. This gives

E
[

F E[f(Xr+s) |Xr ]
]

= EPXr
[f(Ys)]P (F )

= EPFr
[f(Ys)]P (F ) = E

[

F E[f(Xr+s) |Fr ]
]

.
(3.69)

Now observe that (3.69) holds for any F ∈ Fr (it is obvious for F ∈ Fr with P (F ) = 0), and

therefore we have proved

E
[

f(Xr+s)
∣

∣Xr

]

= E
[

f(Xr+s) |Fr

]

, (3.70)

which is the Markov property.

Now let X and X ′ be two solutions to the martingale problem (3.44). Both processes in-

duce probability measures P and P ′, respectively, on the space
(

DLγ
[0, T ] , D

)

with filtration

(Ft)0≤t≤T . We want to show that their finite-dimensional distributions coincide, that is

EP

[ m
∏

j=1

{Xtj
∈Bj}

]

= EP ′

[ m
∏

j=1

{X′

tj
∈Bj}

]

(3.71)

for all choices tj ∈ [0, T ] and Borel measurable subsets Bj of Lγ . We show (3.71) by induction.

For m = 1 Equation (3.71) is valid by the discussion following (3.62) since X and X ′ are both

solutions to the martingale problem (3.44).

Next, assume that (3.71) holds for all m ≤ n. If for some j we have P (Xtj
∈ Bj) = 0 then

(3.71) holds obviously, so w.l.o.g. we assume that

P (Xtj
∈ Bj) = P ′(X ′

tj
∈ Bj) > 0,

for all j. We choose 0 ≤ t1 < t2 < . . . < tn and B1, . . . , Bn. Set A :=
{

Xt1 ∈ B1, . . . ,Xtn
∈ Bn

}

and note that A ∈ Ftn
. Similar as above, define the probability measures P̃ and P̃ ′ on DLγ

[0, T ]

by

P̃ (B) =
EP

[

B A

]

P (A)
and P̃ ′(B) =

EP ′

[

B A

]

P ′(A)

for B ∈ D . Set X̃s := Xtn+s and X̃ ′
s = X ′

tn+s for s ∈ [0, T − tn]. Then, by the same arguments

used above, X̃ and X̃ ′ are solutions to the martingale problem (3.44) w.r.t. P̃ and P̃ ′, resprectively.

Note that instead of G as in (3.67) it is enough to consider functions of the form A, see [EK86]

p.174 Equation 3.4. Then by induction hypotheses (with m = n) we have for any Borel measurable

Bn+1 ⊆ Lγ ,

P̃ (X̃0 ∈ Bn+1) =
EP

[

{X̃0 ∈Bn+1} A

]

P (A)

=

EP

[

{Xtn∈Bn∩Bn+1}
n−1
∏

j=1
{Xtj

∈Bj}

]

P (A)

=
EP ′

[

{X̃′

0 ∈Bn+1} A

]

P ′(A)
= P̃ ′(X̃ ′

0 ∈ Bn+1),
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so X̃ and X̃ ′ have the same initial distributions. Note that this initial distribution satisfies the

moment condition (3.60) since Xtn
satisfies it w.r.t. P (and w.l.o.g. P (A) > 0) and the same is

true for condition (3.61). Then duality applies and hence

P̃
(

X̃s ∈ Bn+1

)

= P̃ ′( X̃ ′
s ∈ Bn+1

)

for all 0 ≤ s ≤ T − tn and all Borel measurable Bn+1 ⊆ Lγ . Thus, with s = tn+1 − tn,

EP

[n+1
∏

j=1

{Xtj
∈Bj}

]

= P (A) P̃
(

X̃s ∈ Bn+1

)

= P (A) P̃
(

X̃s ∈ Bn+1

)

= EP ′

[n+1
∏

j=1

{X′

tj
∈Bj}

]

,

which is (3.71) for m = n + 1. �

Now we can summarize previous results. Recall the definition of the processes X̃ε in (3.14) on

page 33.

3.22 Theorem As ε tends to 0, the processes X̃ε converge weakly on DLγ
[0, T ] to a unique

Markov process X which solves the martingale problem (3.44).

Proof. By Proposition 3.7, cf. Equation (3.21), X̃ε is tight, and hence, provides weakly con-

vergent subsequences which converge to some process X with paths in Lγ . By the approximation

via Xε the limit X is a solution to the martingale problem (3.44), which turns out to be a Markov

solution with unique finite-dimensional distributions, see Proposition 3.21. Since Lγ is complete

and separable the finite-dimensional distributions uniquely determine the hole probability measure

P of X; see [EK86] Proposition 3.7.1 and [JS87] Lemma VI.3.19. �

Due to duality we can also prove the Feller property and the strong Markov property of X. To

state these results we recall some notation. Let Px denote the law of X with initial distribution

δx. If f : Lγ −→ R is a bounded and measurable function, we write

P̄tf(x) = EPx

[

f(Xt)
]

,

for x ∈ Lγ and 0 ≤ t < ∞.

3.23 Lemma

(a) P̄t : Cb(Lγ) −→ Cb(Lγ).

(b) For any finite (Ft)-stopping time τ , bounded measurable function f on Lγ and any t ≥ 0

E
[

f(Xt+τ )
∣

∣Fτ

]

= P̄tf(Xτ ). (3.72)

Proof. Let f : Lγ −→ R be bounded and continuous. Fix t ∈ [0, T ]. Obviously, P̄tf(x) =

EPx

[

f(Xt)
]

is uniformly bounded in x ∈ Lγ . Let (x(n))n ⊆ Lγ be a sequence which converges to

x ∈ Lγ (w.r.t. ‖ · ‖γ). To proof continuity we have to show limn P̄tf(x(n)) = P̄tf(x).
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First note that

Ex(n)

[

〈X1,·,t + X2,·,t , γ〉
]

≤ etM 〈x
(n)
1 + x

(n)
2 , γ〉, (3.73)

and the r.h.s. is bounded uniformly in n since (x(n))n converges. Let η > 0. Then (3.73) gives rise

to a compact set Kη ⊆ Lγ , as in Lemma 3.3, such that

inf
n

Px(n)

(

Xt ∈ Kη

)

≥ 1 − η ,

compare with the arguments in the proof of Lemma 3.4. Hence, the laws PXt

x(n) := Px(n)(Xt ∈ · )
on Lγ are tight. Next, observe that by the duality result of Proposition 3.18 we have for all duality

functions F (·, y), with y ∈ Lfin,

lim
n

Ex(n)

[

F (Xt , y)
]

= lim
n

Ey

[

F (x(n) , Yt)
]

= Ey

[

F (x , Yt)
]

= Ex

[

F (Xt , y)
]

since F is bounded and Yt is a.s. γ-bounded.

Hence, all subsequences of (PXt

x(n)) contain a weak convergent subsequence such that
∫

F (κ, y)
(

lim
j

PXt

x
(nkj

)

)

(dκ) =

∫

F (κ, y)PXt
x (dκ) ,

i.e. all limit points of (PXt

x(n)) coincide by Lemma 3.10. A fortiori, (PXt

x(n)) weakly converges to PXt
x .

Then we have limn P̄tf(x(n)) = P̄tf(x) by definition of weak convergence.

Now we prove part (b). Before Equation (3.72) makes good sense, we need to know that the

map x 7→ Px(B) is measurable for fix B ∈ D . The standard tool for proving this is a Theorem

of Kuratowski (see [Pa67] Corollary 3.3 p.22) as used in [SV79] Exercise 6.7.4 or [EK86] Theorem

4.4.6. However, we prefer to follow the proof of Theorem 4.5.19 in [EK86]; see pp.215-216 around

Equations (5.93) and (5.94). To this end we recall that in Proposition 3.21 the Markov property

for X was already established. Due to the duality relation we can also infer measurability. In

fact, by part (a) above, the Markov property and Lemma 3.2(a) the map (x, t) 7→ EPx

[

f(Xt)
]

is

continuous for any f ∈ Cb(Lγ). Therefore the transition function (t, x,Γ) 7→ Px(Xt ∈ Γ), with

t ∈ [0, T ], x ∈ Lγ and Borel measurable Γ ⊆ Lγ , matches all assumptions listed at the begining

of Sec.1 in Chapter 4 of [EK86]. We are done by quoting Proposition 4.1.2 of the same reference,

which uses a Dynkin class argument.

Next, compare with [EK86] Theorem 4.4.2(b) and (c): As in the proof of Proposition 3.21 we

can define the conditional probabilities

PFτ
(B) :=

E
[

F E[ B |Fτ ]
]

P (F )
and PXτ

(B) :=
E
[

F E[ B |Xτ ]
]

P (F )

if F ∈ Fτ satisfies P (F ) > 0, where B ∈ D . Then note that t 7→ F (Xt, y) − F (X0, y) −
∫ t

0
A F (Xu, y) du is a uniformly integrable càdlàg-martingale and τ is a finite stopping time.

Hence, we can apply the optional stopping theorem. With Ys := Xτ+s, note that

ηY,y(s, t) := F (Yt, y) − F (Ys, y) −
∫ t

s

A F (Yu, y) du (3.74)

has the same properties as η of (3.66). Hence, PFτ
and PXτ

define solutions to the martingale

problem with the same initial distribution. We obtain

E
[

f(Xτ+s)
∣

∣Fτ

]

= E
[

f(Xτ+s)
∣

∣Xτ

]
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for any bounded measurable function f on Lγ , as in Equation (3.70). This together with the

measurability gives (3.72). �
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Outlook

In this last part of the thesis we would like to hint at further developments and questions in this

area. Existence and uniqueness for the mutually catalytic super-random walk is, of course, only

the basic issue. And in fact there is a great deal of room to maneuver.

• Here is a question that my thesis advisor has raised: Consider the one-colony model (X·,0,t)t≥0

from Chapter 2 with infinite branching rate. Does

Px

(

X1,0,s + X2,0,s > 0 for all s ∈ [0, T ]
)

= 1

hold if X is started in any point x ∈ L? If we assume ρ = 1 = κ in the migration matrix Q of

(2.1) the answer might depend on the choice of parameters (θ1, θ2) ∈ [0,∞)2 like in the case

of ordinary Feller diffusions with immigration, see [IW89] Chapter IV Example 8.2 pp.235–

237. Certainly, if (θ1, θ2) = (0, 0) and x = (0, 0) then X·,0,· ≡ (0, 0). If (θ1, θ2) = (0, 0)

and x ∈ L \ {(0, 0)} then t 7→ X·,0,t does not hit (0, 0) in finite time. For any t > 0 fixed,

Corollary 2.5 implies Px(X1,0,t +X2,0,t > 0 ) = 1 if (θ1, θ2) 6= (0, 0). However, note what is

mentioned in [DP98] on page 1093 three lines before Theorem 1.4: Planar Brownian motion,

when it exits the first quadrant, is bounded away from (0, 0).

• In [DP98], Dawson and Perkins also proved existence for a mutually catalytic branching

model on R. A non-trivial existence in R2 was less obvious; see the discussion in [DF00]

Section 3.6, but it was established later in [DE02a] and [DE02b]. The model in the plane,

denoted by X, say, has similar features to the infinite rate model we constructed even though

it is a coninuous process: Consider time t > 0. For Lebesgue-almost all sites b it has infinite

variance, VarXt(b) ≡ ∞, and its distribution satisfies Xt(b) ∼ DP . In particular for almost

all b ∈ R2 we have X1,t(b)X2,t(b) = 0. Compare with Theorem 17 in [DE02a] or Theorem

3.7 in [DF00]. However, the branching rate γ > 0 has to be sufficiently small. Is it possible to

compare X with a lattice approximation by using our model X (on εZ2 as ε ց 0)? Perhaps

for large γ?

• For some time there has been interest in symbiotic catalytic branching, which means both

one-dimensional Brownian motions B1,k,· and B2,k,· (at a site k ∈ S), as in Equation (1.1),
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are correlated, i.e. for ̺ ∈ [−1, 1],

E
[

Bα,k,t Bβ,j,s

]

= ̺ min{ t , s } δ0(k − j),

where α, β ∈ {1, 2}, j, k ∈ S and s, t > 0; cf. [EF03] or [DFX05]. See [EF03] for the

correspondence with the stepping stone model (if ̺ = −1) and the Anderson model (if

̺ = 1). Mytnik’s duality only needs a slight change; see Section 2.3 of [EF03].

There are two topics we would like to discuss in more detail.

4.1 The particle version – discrete state space

Assume that the process X is supposed to describe the evolution of true particles on a countable

site space S. Then, Xα,k,t has to have values in N0, for all α ∈ {1, 2}, k ∈ S and t ≥ 0. We

maintain the infinite branching rate (or competition rate), which means if two particles of different

types collide at one site, one of both types will immediately become extinct (at that site).

For simplicity, assume X starts in x with finitely many particles only, i.e.,
2
∑

α=1

∑

k∈S

xα,k < ∞,

and each site is only occupied by one type. That is to say x1,kx2,k = 0 for all k ∈ S. Then, to

each particle we can associate an exponential clock (with rate 1, say). Let τ1 be the time when

the first clock rings. This is a well-defined time since there are only finitely many particles; and

there is exactly one clock which rings first. In particular, we have τ1 > 0 almost surely. If the

clock of a particle at site j ∈ S rings first, the particle migrates (or jumps) randomly to a new site

k according to some given distribution (for example, if S = Zd we can choose a nearest neighbour

k ∈ Zd with probability (2d)−1). Then, on site k we introduce the following ‘catalytic’ interaction

between the types.

Assume that the particle, which jumped, is of type 1. If site k is only populated by particles of

the same type (type 1), then the number of particles of that type at that site is increased by 1. If k is

occupied with the opposite type (type 2), we choose a new configuration at that site by using the law

of an independent, (continuous time rate 1) simple symmetric random walk ξt = (ξ1,t, ξ2,t) on Z2

stopped when it first hits the axes, i.e., (ξt)t≥0 is stopped at time T := inf
{

t > 0 : ξ1,t ξ2,t = 0
}

.

Set

dp(a1,a2) := L[ξT ]

when ξ is started in (a1, a2) ∈ N0 ×N0. Then we can put Xt = x for t ∈ [0, τ1), and

Xα,l,τ1
= Xα,l,τ1− for all α ∈ {1, 2} and l ∈ S \ {j, k}.

If j = k then put X·,j,τ1
= X·,j,τ1−. If j 6= k we set X1,j,τ1

= X1,j,τ1− − 1 and X2,j,τ1
= X2,j,τ1−

at site j. For site k we let

(X1,k,τ1
, X2,k,τ1

) ∼ dp(X1,k,τ1− + 1 , X2,k,τ1−) .

Note that if X2,k,τ1− = 0 then dp(X1,k,τ1−+1 , X2,k,τ1−) = δ(X1,k,τ1−+1 , 0).
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4.2 The mean field limit

Of course, we can give a similar definition if the particle that jumps is of type 2. Moreover, we

can iterate this procedure. Proceeding with configuration Xτ1
as the new initial condition we can

define τ2 – the time when the second particle jumps – and so on. We obtain a sequence of random

times 0 =: τ0 < τ1 < τ2 < τ3 < . . . and a process X on [0, supn τn) such that X is constant on each

interval [τn−1, τn).

Certainly, the dp-distribution plays a similar role as the DP -distribution before. So, as a first

step, the properties of the dp-distribution have to be investigated. Let d be a random variable

with d = (d1, d2) ∼ dp(a1,a2). If E[dα] = aα, for each α ∈ {1, 2}, then we can infer that

n 7→ Mα,n :=
∑

k∈S Xα,k,τn
is a (non-negative, discrete-time) martingale for each α ∈ {1, 2},

hence, supn Mα,n < ∞ almost surely. This implies that the process does not explode; in other

words, we have supn τn = ∞. Is it possible to compute c(a, b) := dp(a1,a2)

(

(b1, b2)
)

explicitly, for

a = (a1, a2) ∈ N0 × N0 and b = (b1, b2) ∈ N0×{0} ∪ {0}×N0? One might wish to use these

constants to define a pregenerator for the process in the present situation. Alternatively, set up a

stochastic differential equation of the pure jump type driven by a Poisson point process; compare

with [Bir03] Equation (2.9) on page 12.

For an infinite initial condition compare with Chapter 3. If the migration of particles, formerly

described by the matrix Q, satisfies a condition as in Equation 3.1 then we may introduce the

spaces EEγ := Eγ ∩ (N0×N0)
S and LLγ := Lγ ∩ (N0×N0)

S w.r.t. some weight function γ as in

Definition 3.1 on page 28. But note that an extension of the above particle process with values

in LLfin := Lfin ∩ (N0×N0)
S to a process with values in LLγ by the well-known approximation

procedure as in [Li85] Chapter IX. Theorem 1.14 (see also [Bir03] sections 2.1 and 2.2) should not

work, due to the lack of monotonicity (cf. [Bir03] Assumption A and Lemma 1b).

Instead one might want to proceed as in Section 3.1 above. Let (infinitely many) particles

migrate for a short time ε > 0. Use the space EEγ . Then at time t = ε apply the dp-distribution,

independently at each site k ∈ S with parameters given by the configuration at time t = ε−. To

find an appropriate martingale problem for these processes, one has to investigate the properties of

the dp-distributions w.r.t. a rich family of functions. Do Mytnik’s duality functions F (·, y), where

y ∈ LLfin, separate measures on LLγ? How does a duality for this process have to look like?

4.2 The mean field limit

We return to the continuous state space setting. In Chapter 2 we showed that, for fixed t ≥ 0,

the one-dimensional distributions of Zγ
·,0,t (the process with finite branching rate γ > 0 with drift

towards Θ ∈ (0,∞)2) converge to the distribution of X·,0,t (the process with infinite branching

rate with drift towards the same Θ) as γ → ∞, provided both processes start in the same initial

condition (x,Θ) ∈ L × (0,∞)2; see Lemma 2.6. Then [EK86] Theorem IV.2.5 on p.167 suggests

that Zγ =⇒
γ→∞

X. But note that the processes Zγ are continuous while X is not. Hence, weak

convergence cannot hold on the path space DE [0,∞), where E := L × {Θ}, since in this case the

limit process has to be continuous; compare with [JS87] Proposition VI.3.26(i) and (iii) on p.351.

So, at the utmost it is possible to show convergence of the finite-dimensional distributions, for the

one-colony model as well as on countably many sites.
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However, in this section we would like to hint at a possible converse. Is it possible to find a

procedure such that the process with an infinite branching rate converges to the process with a

finite branching rate? My thesis advisor suspects this to be true if the so-called mean field limit

is considered: Fix an enumeration of S. Let SN := {1, 2, . . . , N}, and let QN = (qjk)j,k∈SN

be given by qjk = 1
N for j 6= k and qjj = −1, j, k ∈ SN . Denote by XN the process on SN

with infinite branching rate and migration QN . Then, investigate the dynamics of the limit (in

the sense of finite-dimensional distributions, say) of 1
N

N
∑

k=1

XN
·,k, h(t) , for an appropriate scaling

h : [0,∞) → [0,∞) of time.

This line of argument is inspired by the connection of voter model and Wright-Fisher diffusion.

In [CK03] on page 504 it is mentioned that the voter model is the limit of the Wright-Fisher

diffusions (Wk)k∈S ,

dWk,t = (QW·,t)k dt +
√

κWk,t(1 − Wk,t) dBk,t , k ∈ Z
d,

as κ → ∞. Note that W only consists of one type of particles; the matrix Q governs the migration.

As above, this holds at most in the sense of finite-dimensional distributions. Conversely, the scaled

voter model V N on SN converges to a Wright-Fisher diffusion on one colony with migration Q ≡ 0.

Compare with [Kl99] Satz 1.26, for the following result.

lim
N→∞

P

[

(#
∣

∣{j ∈ SN : V N
j, Nt = 1}

∣

∣

N

)

t≥0
∈ A

]

= P
[

(W1,t)t≥0 ∈ A
]

,

for any Borel subset A of D[0,1][0,∞), provided the initial conditions satisfy lim
N→∞

#|{j∈SN :V N
j,0=1}|

N ∈
[0, 1]. There is an even finer result, which describes the clustering of the voter model in Z2; see

[Kl99] Section 1.9 or [CG86] for more.
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Appendix

A.1 Generator for one colony

In this section we list the computations for the generator presented at the beginning of Section

2.1. Recall the definition of the DP -distribution in Equation (1.5) at the end of Section 1.1. We

set

ϕ1(x1 |u, v ) :=
4

π

u v x1

4u2 v2 +
(

x2
1 + v2 − u2

)2 ,

ϕ2(x2 |u, v ) :=
4

π

u v x2

4u2 v2 +
(

x2
2 + u2 − v2

)2 ,

for u, v > 0. The sum

ϕ(x1, x2 |u, v ) := ϕ1(x1 |u, v ) [0,∞)×{0}(x1, x2) + ϕ2(x2 |u, v ) {0}×[0,∞)(x1, x2)

gives the density of the DP -distribution with parameter (u, v) w.r.t. Lebesgue measure, see Lemma

1.1 Now, let ú, v́ ∈ R, v́ ≥ 0. Let f : L −→ R be a bounded, real valued, appropriate smooth

function and let (u∞, v∞) be a random variable with distribution DP(u+út,v́t). Consider

1

t

{

Eu+út,v́t

[

f
(

u∞, v∞
)

]

− f(u, 0)

}

=
1

t

{
∫

f(x1, x2)ϕ(x1, x2 |u + út, v́t) dx1dx2 − f(u, 0)

}

=
1

t

∫

[

f(x1, x2) − f(u, 0)
]

ϕ(x1, x2 |u + út, v́t) dx1dx2

=
1

t

∫ ∞

0

[

f(x1, 0) − f(u, 0)
]

ϕ1(x1 |u + út, v́t) dx1

+
1

t

∫ ∞

0

[

f(0, x2) − f(u, 0)
]

ϕ2(x2 |u + út, v́t) dx2

=
1

t

∫ ∞

0

[

f(x1, 0) − f(u, 0) − (x1 − u) ∂1f(u, 0)
]

ϕ1(x1 |u + út, v́t) dx1 (*1)

+
1

t

∫ ∞

0

(x1 − u) ∂1f(u, 0)ϕ1(x1 |u + út, v́t) dx1 (*2)

+
1

t

∫ ∞

0

[

f(0, x2) − f(u, 0) + u ∂1f(u, 0)
]

ϕ2(x2 |u + út, v́t) dx2 (*3)

− 1

t

∫ ∞

0

u ∂1f(u, 0)ϕ2(x2 |u + út, v́t) dx2 . (*4)
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Since we added the term (x1 −u) ∂1f(u, 0) in the last line above, i.e., we substracted the mean,

we can compute the limits of any of the four expressions (*1) to (*4) as t tends to zero, for an

appropriate class of functions, for example, we choose f ∈ C2
b (L).

A.1 Lemma Let f ∈ C2
b (L) and assume v́ > 0.

(a)
1

t

∫ ∞

0

[

f(x1, 0) − f(u, 0) − (x1 − u) ∂1f(u, 0)
]

ϕ1(x1 |u + út, v́t) dx1

−→
tց0

∫ ∞

0

[

f(x1, 0) − f(u, 0) − (x1 − u) ∂1f(u, 0)
]

ϕ1(x1 |u, 0 ; ú, v́ ) dx1 ,

where ϕ1(x1 |u, 0 ; ú, v́ ) = 4
π

u v́ x1

(x1−u)2 (x1+u)2 .

(b)
1

t

∫ ∞

0

(x1 − u) ∂1f(u, 0)ϕ1(x1 |u + út, v́t) dx1 −→
tց0

(

ú + 2
π v́
)

∂1f(u, 0) .

(c)
1

t

∫ ∞

0

[

f(0, x2) − f(u, 0) + u ∂1f(u, 0)
]

ϕ2(x2 |u + út, v́t) dx2

−→
tց0

∫ ∞

0

[

f(0, x2) − f(u, 0) + u ∂1f(u, 0)
]

ϕ2(x2 |u, 0 ; ú, v́ ) dx2 ,

where ϕ2(x2 |u, 0 ; ú, v́ ) = 4
π

u v́ x2

(x2
2 + u2)2

.

(d)
1

t

∫ ∞

0

u ∂1f(u, 0)ϕ1(x2 |u + út, v́t) dx2 −→
tց0

2
π v́ ∂1f(u, 0) .

Proof. First, we will have a look at the densities ϕ1 and ϕ2. For any non-negative fix x1 and

x2, respectively, we obviously have

lim
tց0

1

t
ϕ1(x1 |u + út, v́t) = lim

tց0

1

t

4

π

(u + út) v́t x1

4 (u + út)2 (v́t)2 +
(

x2
1 + (v́t)2 − (u + út)2

)2

=
4

π

u v́ x1
(

x2
1 − u2

)2 = ϕ1(x1 |u, 0 ; ú, v́ ) ,

lim
tց0

1

t
ϕ2(x2 |u + út, v́t) = lim

tց0

1

t

4

π

(u + út) v́t x2

4 (u + út)2 (v́t)2 +
(

x2
2 + (u + út)2 − (v́t)2

)2

=
4

π

u v́ x2
(

x2
2 + u2

)2 = ϕ2(x2 |u, 0 ; ú, v́ ) .

We first prove (d):

lim
tց0

1

t

∫ ∞

0

u ∂1f(u, 0)ϕ2(x2 |u + út, v́t) dx2 = ∂1f(u, 0)
4u2 v́

π

∫ ∞

0

x2
(

x2
2 + u2

)2 dx2

= ∂1f(u, 0)
4u2 v́

π

1

2u2

= 2
π v́ ∂1f(u, 0) .

Note that it is allowed to interchange limit and integration. The functions ϕ2(x2 |u + út, v́t ) and

ϕ2(x2 |u, 0 ; ú, v́ ) do not have any singularities for x2 ∈ [0,∞) and 0 ≤ t < ε = ε(u), they are
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uniformly bounded, and decay like x−4
2 for x2 → ∞; compare with [BaF91] p.392 et seq. The same

arguments are valid for (c) since the bracket
[

f(0, x2) − f(u, 0) + u ∂1f(u, 0)
]

under the integral

is bounded.

Assertions (a) and (b) are more involved. At first, we modify the integral in (b).

1

t

∫

(x1 − u)
4

π

(u + út) v́t x1

4 (u + út)2 (v́t)2 +
(

x2
1 + (v́t)2 − (u + út)2

)2 [0,∞)×{0}(x1, x2) dx1dx2

=
4

π

∫ ∞

0

(u + út) v́ x1(x1 − u)

4 (u + út)2 (v́t)2 +
(

x2
1 + (v́t)2 − (u + út)2

)2 dx1

=
4 (u + út) v́

π

∫ ∞

0

x2

x4 + bx2 + c
dx − 4u (u + út) v́

π

∫ ∞

0

x

x4 + bx2 + c
dx ,

where

b := 2(v́t)2 − 2(u + út)2

c := (v́t)4 + (u + út)4 + 2(v́t)2(u + út)2 =
(

(v́t)2 + (u + út)2
)2

.

Set d := 4c − b2 = 16 (u + út)2 (v́t)2 . Clearly, for all sufficiently small t > 0 we have b < 0 and

c, d > 0. We treat both integrals above separately.
∫ ∞

0

x2

x4 + bx2 + c
dx =

1

c

∫ ∞

0

x2

(

x
c1/4

)4
+ b√

c

(

x
c1/4

)2
+ 1

dx

= c−1/4

∫ ∞

0

y2

y4 + α y2 + 1
dy

= c−1/4 π
√

2

2
√

2α + 4
,

where b√
c

=: α ∈ (−2, 0), for t > 0 small enough; and

∫ ∞

0

x

x4 + bx2 + c
dx =

1

2

∫ ∞

0

1

y2 + by + c
dy

=
1

2

2√
d

arctan

[

2y + b√
d

] ∣

∣

∣

∣

∞

y=0

=
1√
d

(

π

2
− arctan

[

b√
d

])

.

For putting both results together note that arctan
[

b√
d

]

= arccot
[ √

d
b

]

− π , since we assume

b < 0 . Then
√

d

π t
c−1/4 π

√
2

2
√

2α + 4
− u

√
d

π t

1√
d

(

π

2
− arctan

[

b√
d

])

=

√
d

2t c1/4
√

b√
c

+ 2
+

u

π t

(

arccot

[ √
d

b

]

− π

2

)

− u

t

=

√
d − 2u

√

b + 2
√

c

2 t
√

b + 2
√

c
+

u

π

arccot
[ √

d
b

]

− π
2

t
.
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For the first term of the r.h.s. above note that
√

b + 2
√

c =
√

2(v́t)2 − 2(u + út)2 + 2
(

(v́t)2 + (u + út)2
)

=
√

4(v́t)2 = 2v́t ,

hence,
√

d − 2u
√

b + 2
√

c = 4(u + út)(v́t) − 2u 2v́t = 4úv́ t2 . That yields for all t > 0

√
d − 2u

√

b + 2
√

c

2 t
√

b + 2
√

c
=

4úv́ t2

2 t 2v́t
= ú.

To simplify the second term set

G(t) := arccot

[ √
d

b

]

.

Then we have

b = b(t) = 2(v́t)2 − 2(u + út)2 , b(0) = −2u2 ,

d

dt
b = b′(t) = 4v́2 t − 4ú(u + út) , b′(0) = −4úu ,

d = d(t) = 16 (u + út)2 (v́t)2 , d(0) = 0 ,

d

dt
d = d′(t) = 32

[

ú(u + út)(v́t)2 + (u + út)2(v́t) v́
]

,

and G(0) = π
2 . We will need

d′ b

2
√

d
=

32
[

ú(u + út)(v́t)2 + (u + út)2(v́t) v́
]

b(t)

8 (u + út)(v́t)
=
(

4 úv́ t + 4 v́ (u + út)
)

b(t).

Then we have

d

dt
G(t) = − 1

1 +
[√

d
b

]2 ·
1

2
√

d
d′ b − b′

√
d

b2
=

1

b2 + d

(

b′
√

d − d′ b

2
√

d

)

,

and, hence,

G′(0) =
1

4u4

(

0 − 4u v́ b(0)
)

=
2 v́

u
.

Finally we can conclude

lim
tց0

1

t

∫

(x1 − u)
4

π

(u + út) v́t x1

4 (u + út)2 (v́t)2 +
(

x2
1 + (v́t)2 − (u + út)2

)2 [0,∞)×{0}(x1, x2) dx1dx2

= ú +
2

π
v́

which yields (b).

To justify (a) recall that

ϕ1(x1 |u, 0 ; ú, v́ ) =
4

π

u v́ x1
(

x2
1 − u2

)2 =
4

π

u v́ x1
(

x1 − u
)2(

x1 + u
)2 .
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Note that ϕ1 has a singularity of order 2 at x1 = u. But this is healed by the integrand in brackets.

For x1 in a neighbourhood of u we have

f(x1, 0) − f(u, 0) − (x1 − u) ∂1f(u, 0) = (x1 − u)2 ∂11f(ξ)

for some ξ = ξ(x1). This yields a finite integral over the interval [0, 2u + 1], say. For x1 ∈
[2u + 1 , ∞) the function ϕ1 decreases like x−4

1 while f(x1, 0) − f(u, 0) − (x1 − u) ∂1f(u, 0) only

grows linearly. Then, just like in (c) we obtain (a), compare with [BaF91] p.392 et seq. �

The careful reader might have noticed that it is enough to assume f ∈ C1+ǫ
b , where ǫ > 0,

for proving the lemma above. We additionally assumed v́ > 0. The case v́ = 0 is much simpler.

For v́ = 0 the DP -distribution degenerates to δ(u+út,0). Hence, Aú,0f(u, 0) = ú ∂1f(u, 0) and the

expressions derived are still valid.

By putting all four limits together, we can summarise the disscusion as follows. We obtain a

pregenerator Aú,v́ depending on the input data ú and v́.

A.2 Corollary Set

h(y) :=
4

π

y

(y − 1)2(y + 1)2
and g(y) :=

4

π

y

(y2 + 1)2
.

Let u > 0. Then, for ú ∈ R and v́ ≥ 0, we have

Aú,v́f(u, 0) = lim
tց0

Eu+út,v́t

[

f
(

u∞, v∞
)

]

− f(u, 0)

t

=

∫ ∞

0

[

f(x1, 0) − f(u, 0) − (x1 − u) ∂1f(u, 0)
]

ϕ1(x1 |u, 0 ; ú, v́ ) dx1

+

∫ ∞

0

[

f(0, x2) − f(u, 0) + u ∂1f(u, 0)
]

ϕ2(x2 |u, 0 ; ú, v́ ) dx2

+ ú · ∂1f(u, 0)

=
v́

u2

∫ ∞

0

[

f(x1, 0) − f(u, 0) − (x1 − u) ∂1f(u, 0)
]

h
(x1

u

)

dx1

+
v́

u2

∫ ∞

0

[

f(0, x2) − f(u, 0) + u ∂1f(u, 0)
]

g
(x2

u

)

dx2

+ ú · ∂1f(u, 0) .

By symmetry, on {0} × (0,∞) we have (v > 0, ú ≥ 0, v́ ∈ R)

Aú,v́f(0, v) =
ú

v2

∫ ∞

0

[

f(x1, 0) − f(0, v) + v ∂2f(0, v)
]

g
(x1

v

)

dx1

+
ú

v2

∫ ∞

0

[

f(0, x2) − f(0, v) − (x2 − v) ∂2f(0, v)
]

h
(x2

v

)

dx2

+ v́ · ∂2f(0, v) .

At the origin we have to adjust the above argument.
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A.3 Lemma Let f ∈ C2
b (L) and (ú, v́) ∈ [0,∞)2. Then

Aú,v́f(0, 0) = ú · ∂1f(0, 0) + v́ · ∂2f(0, 0) .

Proof. Note that we here have to consider

Aú,v́f(0, 0) = lim
tց0

1

t

{

Eút,v́t

[

f
(

u∞, v∞
)

]

− f(u, 0)

}

= lim
tց0

1

t

∫ ∞

0

[

f(x1, 0) − f(0, 0) − x1 ∂1f(0, 0)
]

ϕ1(x1 | út, v́t) dx1

+ lim
tց0

1

t

∫ ∞

0

x1 ∂1f(0, 0)ϕ1(x1 | út, v́t) dx1

+ lim
tց0

1

t

∫ ∞

0

[

f(0, x2) − f(0, 0) − x2 ∂2f(0, 0)
]

ϕ2(x2 | út, v́t) dx2

+ lim
tց0

1

t

∫ ∞

0

x2 ∂2f(0, 0)ϕ2(x2 | út, v́t) dx2 .

Observe that ϕ1(y | út, v́t) = ϕ2(y | v́t, út) . Hence it is enough to consider the integrals with

respect to the first component x1. The two other integrals are treated similarly. We follow the

arguments in the proof of Lemma A.1. Let ú, v́ > 0.

1

t

∫ ∞

0

x1 ∂1f(0, 0)ϕ1(x1 | út, v́t) dx1 = ∂1f(0, 0)
4úv́ t

π

∫ ∞

0

x2

x4 + b x2 + c
dx

= ∂1f(0, 0)
4úv́ t

π
c−1/4

∫ ∞

0

y2

y4 + αy2 + 1
dy

= ∂1f(0, 0)
4úv́ t

π
c−1/4 π

√
2

2
√

2α + 4

= ∂1f(0, 0)
2úv́ t

√

b + 2
√

c
= ú · ∂1f(0, 0),

where b = 2(v́ t)2 − 2(ú t)2 , c =
(

(v́ t)2 + (ú t)2
)2

. In particular, note that b + 2
√

c > 0 and

α = b√
c
∈ (−2, 2). For the other integral we write

1

t

∫ ∞

0

[

f(x1, 0) − f(0, 0) − x1 ∂1f(0, 0)
]

ϕ1(x1 | út, v́t) dx1

=
1

t

∫ 1

0

[

f(x1, 0) − f(0, 0) − x1 ∂1f(0, 0)
]

ϕ1(x1 | út, v́t) dx1

+
1

t

∫ ∞

1

[

f(x1, 0) − f(0, 0) − x1 ∂1f(0, 0)
]

ϕ1(x1 | út, v́t) dx1 .

For fixed x1 > 0 we have 1
t ϕ1(x1 | út, v́t) = t 4

π
úv́ x1

4ú2v́2 t4 +
(

x2
1 + (v́2−ú2)t2

)2 . This forces the integral

over [1,∞) to vanish as t ց 0. Calamities arise only for x1 = 0. Note that for x1 in a neighbourhood

of 0, we have f(x1, 0) − f(0, 0) − x1 ∂1f(0, 0) = x2
1 ∂11f(ξ) , where ξ = ξ(x1). For simplicity we

assume this neighbourhood contains the intervall [0, 1] (otherwise we might integrate over intervalls

[0, ε] and [ε,∞) with ε = ε(f) for the chosen function f). Since ∂11f is bounded on some compact
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set containing [0, 1] we can estimate

∣

∣

∣

∣

1

t

∫ 1

0

[

f(x1, 0) − f(0, 0) − x1 ∂1f(0, 0)
]

ϕ1(x1 | út, v́t) dx1

∣

∣

∣

∣

≤ K t

∫ 1

0

x3

4ú2v́2 t4 +
(

x2
1 + (v́2 − ú2)t2

)2 dx

≤ K t

∫ 1

0

x3

x4 + bx2 + c
dx ,

for a constant K > 0; recall b = 2(v́ t)2 − 2(ú t)2 and c =
(

(v́ t)2 + (ú t)2
)2

. We continue

=
K

4
t

∫ 1

0

4x3 + 2bx

x4 + bx2 + c
dx − K

2
t b

∫ 1

0

x

x4 + bx2 + c
dx

=
K

4
t ln
(

x4 + bx2 + c
)

∣

∣

∣

1

x=0
− K

4
t b

∫ 1

0

1

y2 + by + c
dy

=
K

4
t ln
(

1 + b + c
)

− K

4
t ln( c ) − K

4
t b

2√
d

arctan

[

2y + b√
d

] ∣

∣

∣

∣

1

y=0

=
K

4
t ln
(

1 + b + c
)

− K

4
t ln( c ) − K t b

2
√

d
arctan

[

2 + b√
d

]

+
K t b

2
√

d
arctan

[

b√
d

]

,

where d := 4c − b2 = 16 (út)2 (v́t)2 > 0. Now check that

lim
tց0

t ln
(

1 + b + c
)

= 0 ,

lim
tց0

t ln( c ) = lim
tց0

2 t ln
(

(v́ t)2 + (ú t)2
)

= 0 ,

lim
tց0

K t b

2
√

d
arctan

[

2 + b√
d

]

= 0 ,

lim
tց0

K t b

2
√

d
arctan

[

b√
d

]

= 0 .

Altogether we have shown

lim
tց0

1

t

∫ ∞

0

[

f(x1, 0) − f(0, 0) − x1 ∂1f(0, 0)
]

ϕ1(x1 | út, v́t) dx1 = 0 .

Thus, for Aú,v́f(0, 0) only the drift terms remain.

At the end, note that we assumed ú, v́ > 0. In the case ú = 0 or v́ = 0 the assertion is obvious. �

At last, reflecting on the results above, we observe some sort of linearity in the input data ú

and v́. Hence, the following decompostion.

A.4 Corollary In any of the cases considered above, we have

Aú,v́f = Aú,0f + A0,v́f = úA1,0f + v́A0,1f .
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