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Abstract

The investigation performed in this work aims to identify and disentangle the
signal of prompt neutrinos from the inclusive atmospheric spectrum. We have
analysed data recorded in the years 2000-2003 by the AMANDA-II detector
at the geographical South Pole. After a tight event selection, our sample is
composed of about 4 · 103 atmospheric neutrinos.

Prompt neutrinos are decay products of heavy quark hadrons, which
are produced in the collision of a cosmic ray particle with a nucleon in the
atmosphere. The technique used to recognise prompt neutrinos is based on
a simulated information of their energy spectrum, which appears harder than
that of the conventional component from light quarks. Models accounting
for different hadron production and decay schemes have been included in a
Monte Carlo simulation and convoluted with the detector response, in order
to reproduce the different spectra.

The background of conventional events has been described with the Bar-
tol 2006 tables. The energy spectrum of our data has been reconstructed
through a numerical unfolding algorithm. The reconstruction is based on a
Monte Carlo simulation and uses as an input three parameters of the neu-
trino track which are correlated with the energy of the event. Numerical
regularisation is introduced to achieve a result free of unphysical oscillations,
typical unfortunate feature of unfolding. The reconstructed data spectrum
has been compared with different predictions using the model rejection factor
technique. The prompt neutrino models differ in the choice of the hadron
interaction model, the set of parton distribution functions and the numerical
parameterisation of the fragmentation functions describing the transition from
quark to hadrons.

Here we considered mainly three classes of models, known in the litera-
ture as the Recombination Quark Parton Model, the Quark Gluon String Model
and the Perturbative QCD model. Upper limits have been set on the expected
flux predictions, based on our observations. The quark gluon string model
seems to be disfavoured at 90% confidence level. Theoretical uncertainties
strongly affect the predictions, as the deep inelastic QCD scattering process
contains quantities that cannot measured at high Q2 and small x. Systematics
affecting the measurements are partly ascribed to the ice structure and partly
to the detector efficiency. For the former, we use a reference description of the
optical properties of the South Pole glacier. As for the latter, the acceptance
of the photomultipliers has been estimated in this work with a geometrical
method based on the probability of detecting photon at a given distance.

Chances to improve upon the current limits are assigned to the future
large neutrino telescopes, which will allow to increase the sensitivity to both
prompt and extraterrestrial neutrinos.
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Introduction

Neutrino astrophysics offers an endeavouring possibility of accessing informa-
tion on extra-galactic objects through the observation of high energy particles.
The flux of neutrinos of atmospheric origin creates an important background
for neutrino telescopes, in that it limits their sensitivity to astrophysical sig-
nals. Energies above 1 TeV are critical; in this region prompt neutrinos orig-
inating from decays of heavy quark hadrons give a considerable rise to the
atmospheric flux. This work focuses on the possibility of identifying the sig-
nal of prompt neutrinos using data recorded by the AMANDA-II detector.
Besides the need to describe the high energy atmospheric background, the
search for prompt neutrinos is motivated by the fact that an observation, or
failure to observe them, might impose constraints on the charm production
cross sections at high energy. Prompt neutrinos have not been yet observed.
The chance to identify them lies with very large telescopes, which could com-
pensate for their low expected flux, together with a refined analysis strategy
to isolate the prompt signal from the atmospheric background.

The principles of neutrino detection are illustrated in chapter 1. In the
same chapter, some general aspects of neutrino physics are summarised. The
purpose of this introductory part is to outline, with reference to the literature,
how neutrinos are elusive particles to detect, and consequently how critical a
goal is to draw physical conclusions in the presence of such a weak signal.

The AMANDA-II detector, described in chapter 2 together with its data
acquisition system, is a Cherenkov telescope operating at the geographical
South Pole. The data used in this work are atmospheric neutrino events,
reconstructed from their charged current interaction products, recorded in the
years 2000-2003.

A Monte Carlo simulation is used to refine the selection techniques. In
chapter 3 the AMANDA simulation chain is described. The production, prop-
agation and detection of a neutrino is reproduced in different steps, and con-
voluted with a simulation of the detector response.

Chapter 4 illustrates the algorithms developed by the AMANDA Collab-
oration to identify neutrino-induced events in the ice, and reconstruct their
tracks. The background is represented by a very large amount of leptons di-
rectly produced in cosmic ray showers; besides this, electronic artefacts can
originate unphysical events. The rejection of these events is achieved through

1
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dedicated filters, which are described in the same chapter.

The selection of events suitable for this analysis is described in chapter
5. Some track parameters are considered as indicators of good events with
which to build the final sample of data. The rejection of background is based
on a comparison with a simulated sample, and optimal filter conditions are
established to ensure minimal signal suppression. After selection, about 4 ·103

atmospheric neutrino events compose our data sample. The reconstructed
tracks are obtained with a likelihood based reconstruction algorithm and hence
are of high quality.

In chapter 6 a brief description of a method to determine the detector
acceptance is presented; the result achieved in this chapter is included in the
systematic uncertainties affecting the result.

The identification of prompt neutrinos is based on the difference of their
spectral shape from that of conventional particles, showing more events in the
high energy region. A numerical unfolding algorithm has been applied to our
data to reconstruct the neutrino energy spectrum, with input from variables
correlated with the neutrino energy; a Monte Carlo simulation provides the
basis for the procedure. The unfolding problem is illustrated in chapter 7,
together with the details of the code.

In chapter 8, the results obtained with this work are presented. The at-
mospheric neutrino spectrum has been investigated with specific focus on those
processes leading to the production of heavy quarks from a cosmic ray collision
in the atmosphere. The question of whether or not we see a signal of prompt
neutrinos strongly depends on the accuracy of the predicted flux, which is not
absolutely known, but modelled on a certain number of assumptions. Several
models for prompt hadron production have been taken into account in this
work, included in simulated samples and convoluted with the AMANDA de-
tector response. The different spectra obtained have been compared with the
unfolded data spectrum using the model rejection factor technique. Systematic
and theoretical uncertainties have been considered. Theoretical errors largely
affect the description of heavy quark production from cosmic ray collisions.
The deep inelastic QCD process needs input from non-perturbative physics
for the determination of the parton distribution functions and fragmentation
of quarks into hadrons. Fits on the data are used to extend our current infor-
mation to the high energy region, where no data from colliders are available.
Systematics mostly originate from our understanding of the ice properties, for
which we quote the specific literature. Regarding the detector response, the
acceptance of the AMANDA photomultipliers has been evaluated in chapter
6.

We conclude with a summary of the achieved results and a short out-
look on the future, where possible improvements of the current analysis are
presented. We point out with particular emphasis the importance of inves-
tigating cosmic ray neutrinos for the opportunity offered to access the high
energy region.



Chapter 1

Neutrinos

"Wie der Überbringer dieser Zeilen, den ich huldvollst anzuhören bitte,

Ihnen des näheren auseinandersetzen wird, bin ich angesichts der falschen

Statistik der N- und Li 6-Kerne, sowie des kontinuierlichen ß-Spektrums

auf einen verzweifelten Ausweg verfallen, um den Wechselsatz der Statistik

und den Energiesatz zu retten. Nämlich die Möglichkeit, es könnten

elektrisch neutrale Teilchen, die ich Neutronen nennen will, in den

Kernen existieren, welche den Spin 1/2 haben und das Ausschließungsprinzip

befolgen und sich von Lichtquanten außerdem noch dadurch unterscheiden,

daß sie nicht mit Lichtgeschwindigkeit laufen. [...]" [1].

1.1 Theory and Discovery of Neutrinos

The history of neutrinos begins in Zurich, on December 4th 1930.

During the last century, it has often happened that contradictory obser-
vations have led theorists to invent a new particle which has kept the com-
munity busy in finding a way to detect it1. When Wolfgang Pauli, at the end
of 1930, suggested the existence of the neutrino, he was probably sceptical
himself about the possibility of proving its existence.

The idea is typewritten in an open letter sent to a physics meeting gath-
ered at Tübingen, although Pauli did not dare publishing his hypothesis until
the Solvay conference which took place in Brussels in 1933. It took another 23
years for the academic community to find proof of the existence of the particle
proposed by Pauli.

The theorisation of a neutral fermion follows from the observation of the
continuum beta decay spectrum, which is is characteristic for a three-body
decay, but in contrast with the observation of just two products in the final
state. The spectrum is consistent with the postulation of the emission of an
additional undetected fermion. Basing himself on Pauli’s idea, Enrico Fermi

1Examples are the Z0 boson at LEP, the antiproton, the top quark and the yet undetected
Higgs boson.

3



4 CHAPTER 1. NEUTRINOS

Figure 1.1: The 7th Solvay Conference, Brussels, 1933.

developed his theory of beta decay. He named “neutrino” the neutral fermion
predicted by Pauli. The name “neutron” assigned in the original Tübingen
letter had been given to the neutral particle observed in the nucleus in 1932,
whose mass was too large to identify it with Pauli’s conjecture.

It was immediately recognised that the neutrino would have been an
elusive particle to detect, due to its extraordinarily weak coupling to matter.
As Pauli claims in his letter,

"[I] trustfully turn first to you, dear radioactive people, with

the question of how likely it is to find experimental evidence for

such a neutron [...]"

The discovery was made in 1956 when Cowan and Reines detected anti-
neutrinos emitted from a nuclear reactor at Savannah River in South Carolina,
USA. Twenty-three years had passed since the Solvay conference. The claim
for evidence awarded Reines the Nobel Prize in 1995.
The Savannah River Neutrino Detector consisted of two large, flat plastic tanks
filled with water. Protons in water provided the target for the inverse beta
decay. Those two tanks were deployed between three scintillator detectors,
each equipped with 110 photomultiplier tubes to collect light and convert it
to an electric signal; the setup is sketched in figure 1.2.

On June 14, 1956, a telegram was sent to CERN announcing “we are
happy to inform you that we have definitely detected neutrinos from fission
fragments by observing inverse beta decay of protons” [2]. History tells us
that Pauli celebrated the discovery with a case of champagne.

In 1963, the experiment of Lederman, Schwartz and Steinberg proved
that a second neutrino was associated with the muon in the way the known
electron neutrino was associated with the electron [3]. The discovery was
awarded the Nobel Prize in 1988 and provided the first hint of a second gen-
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Figure 1.2: The Savannah River experimental setting. A neutrino-induced
event in one of the two water tanks would create two pairs of proton pulses
in the two neighbouring detectors, the first from positron annihilation and
the second from neutron capture. No signal would be detected in the third
scintillator detector which could not be reached by such a low energy event.

Figure 1.3: Reines and Cowan at the site of the Savannah River detector, where
after 23 years from its theorisation, the first neutrino event was detected.
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Figure 1.4: Left - Frederick Reines. Right - Leon Lederman.

eration of neutrinos.
Finally, in 1975, the third lepton flavour discovery awarded the Nobel Prize
to Martin Perl (1995). To complete the puzzle, in the year 2000 the DONUT
collaboration claimed the observation of the tau neutrino, up to now the last
particle of the Standard Model of particle physics to be detected.

1.2 Neutrinos and the Standard Model

The Standard Model of particle physics is a gauge theory which summarises
almost one century of elementary particle investigation. Currently, it is the
best description of the nature of matter and interaction, built on the gauge
group SU(3) ⊗ SU(2) ⊗ U(1) with spontaneous symmetry breaking. On this
structure the classification of particles in matter (fermions) and gauge (bosons)
is based. Only gravity is at the current time not yet framed in a quantum
field theory interpretation.

Neutrinos are fermions of spin 1
2 and belong to three different generations

of flavour, an experimental observation based on the fact that they appear to
be related to the three elementary fermions e, µ and τ . The total number of
neutrino families is confirmed by the results at LEP in 1989 [106]. Neutrinos
take part only in weak processes. They are probably the most elusive elemen-
tary particles to detect and the most problematic to fit in the standard model
framework.

Elementary particles are arranged in multiplets according to the repre-
sentations2 of the gauge group. To the group SU(2) is associated an opera-
tor I whose square I2 diagonalises simultaneously with its third component
I3, with the two quantum numbers of total isospin and third component as
eigenvalues. Total isospin identifies a multiplet, and the values of its third
component identify the position of the particle inside the multiplet3. One of

2Representation theory is a mathematical tool to describe particles and symmetries in a
gauge theory.

3The description of neutrino interactions require the electroweak standard model SU(2)⊗



1.2. NEUTRINOS AND THE STANDARD MODEL 7

Figure 1.5: Left: the pad showing the idea of T.D.Lee and C.N.Yang, 1956.
Right: T.D.Lee and C.N.Yang.

the eccentric properties of neutrino interactions is the violation of parity4. An
interaction, or physical event, symmetric under parity is an event reproducing
itself under the exchange of its spacial coordinates. In words it means that
given a mirror, we are incapable of distinguishing the reality from its specular
image. Until January 1957, it had been natural to think of it as a natural
symmetry of physical interactions. The unexpected downfall of parity was
first observed in β decays[7, 6]. Neutrinos maximally violate it, as they exist
in a left-handed state only. It is an odd property: physics welcomes symmetric
systems. As Lederman writes [4], “Parity was useful.[...] It also saves work.
[...] by studying the half that you do see, you can pretty much know what
is behind the screen”. The two theorists of parity violation are T.D.Lee and
C.N.Yang. In the Summer of 1956, in visit to Brookhaven, they attempted
to interpret a puzzling result of the Cosmotron accelerator, question usually
known as “θ − τ” puzzle. The matter was the observation of a particle which
decays into two pions, named θ, very similar to the τ , observed in cosmic rays
by Powell in 1949, which decays into three pions. All the quantum numbers,
masses and lifetimes of those particles appeared to be identical. The two seem
to be distinguishable only when looking at their decay channels. Pions have
parity −1. If parity is conserved, a particle which decays to an odd number
of pions cannot coincide with a particle whose decay results in an even num-
ber. Their theory of β decays and parity violation is proposed in their paper
“Question of parity conservation in weak interactions” [5], and won them the
Nobel Prize in 1957.

In Dirac’s theory, a fermion is represented by a spinor ψ of 4 components,
which can be decomposed into its two chirality eigenstates.

ψ = ψR ⊕ ψL. (1.1)

The observation of parity violation implies that the spinor of a neutrino field is

U(1) only, that can be factorised as no mixing occurs between it and the SU(3) component.
4Parity is the discrete symmetry mirror-reflecting the space coordinates P (~x) = −~x.
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composed by its left-handed component only5. The γ5 in the neutrino-lepton-
W vertex projects the particles interacting with a neutrino on helicity eigen-
states, restricting them to take part in the interaction with their left-handed
component only. Interacting particles, i.e. those arranged in a doublet, are
left-handed spinors only. The right-handed components transform as singlets;
the action of the group leaves them unchanged. As a consequence, left- and
right-handed particles are represented by different multiplets

(
νe

e

)

L

,

(
νµ

µ

)

L

,

(
ντ

τ

)

L

(
e

)
R

(
µ

)
R

(
τ

)
R

(1.2)

A SU(2) vertex allows for the transition between upper and lower compo-
nents of a doublet, conserving the lepton number for each flavour. This phe-
nomenological rule suggested by observations is violated by the hypothesis of
oscillations, that introduce flavour transitions. The Standard Model does not
include any vertex in the Standard Model for this process.

1.3 What does not Match the Standard Model

It is accepted that the Standard Model, if not the ultimate theory of particle
physics, is at least the most satisfactory one restricted to the the high energy
range reached at present. However, if there are reasons to suspect the need to
write a theory beyond the Standard Model, neutrinos are for sure responsible
of many of them. Last detected particles, neutrinos showed a remarkable
amount of sides that were not in accord with the predictions.

The first question arises about masses: neutrinos are massless according
to the standard model, but recent observations, i.e. oscillation analyses [9],
state the contrary. However, they only make a statement on the mass differ-
ences. The upper limit on the absolute neutrino mass has been obtained by
tritium decay data [11]6. If neutrinos have a mass, a right-handed component
should be present. The first and minimal extension of the standard model
including massive neutrinos predicts a right-handed component in a SU(2)
singlet, which does not originate any vertex. The mass term for neutrinos is
introduced with a coupling of the type mνLνR. No new processes originate
from this extension, so that the non-observation of such a right-handed neu-
trinos is respected. A larger extension can be realised with the introduction
of a right-handed neutrino in a SU(2) doublet. This would be achieved with
the addition of a heavy lepton to the model, which is however not observed.

Besides this, if mass eigenstates do not coincide with flavour eigenstates,
the system can oscillate. Flavour number seems to be violated by oscillations,

5The left- and right-handed projectors are defined as PR/L = 1±γ5

2
with action PR/Lψ =

ψR/L
6The Mainz neutrino experiment sets an upper limit of m(νe) ≤ 2.3 eV/c2 at 95% confi-

dence level
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which are at the current moment the preferred theory to explain neutrino
disappearance from the Sun and from reactors.

To go further, in the field of speculative physics, neutrinos might prove
violation of Lorentz invariance [37], extra-dimensions [36], the discrete struc-
ture of the space-time, quantum decoherence and CPT violation under the
Planck scale [37, 38, 39, 40]. At the present moment, all those effects have
very uncertain possibilities to be proved; however, they would support with a
further proof the need of writing an extension of the Standard Model.

1.4 Neutrino Detector and Telescopes

Currently, several neutrino experiments take data with the purpose of detect-
ing atmospheric, solar and reactor neutrinos. The majority of such detectors
work on the principle of Cherenkov effect, although lately new techniques as
acoustic and radio have been developed. The setup of a neutrino telescope
requires a considerable technical effort, because the the low reaction cross
section of neutrino interactions requires a very large instrumented volume.
Experiments as Super-Kamiokande [13], SNO [14], ANTARES [15], Bajkal
[16], NEMO [17], NESTOR [18], AMANDA and IceCube are all based on a
large volume of a scintillator medium (water or ice) instrumented with photo-
multipliers, of different design. Another series of detectors is associated with
nuclear reactors with the aim of investigating the typical neutrino appearance
and disappearance phenomena basing on a known production rate, like in the
case of Double CHOOZ [19]. Neutrino beam experiments are similar, with a
neutrino factory represented by either a reactor or an accelerator ring, and
a far detection location placed at an interesting distance for the purpose of
detecting oscillations, like MINOS [20], associated with the Tevatron, OPERA
[21], associated with the CERN, and T2K [22]. Also observatories designed
for cosmic ray detection, as AUGER [25], recently elaborated techniques to
detect and identify neutrino events. Another class of detectors is designed for
neutrino detection from double beta decay, as GERDA [29], COBRA [30] and
the setup of the Heidelberg-Moscow Collaboration [31]. Finally, other detec-
tion methods than Cherenkov light are used in the radio experiments RICE
[27] and AURA [26] and in the acoustic set-up SPATS [28] at South Pole.

1.5 Mixing and Oscillations

Oscillations are a typical quantum mechanics phenomenon appearing when
describing a system whose states are not eigenstates of the Hamiltonian. Neu-
trinos oscillate because the Hamiltonian eigenstates evolve according to differ-
ent eigenvalues represented by the masses of the neutrino states. When after
a certain time t the initial state is re-composed from its components, it turns
out to be rotated in the flavour space (figure 1.6 illustrates the situation). In
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Figure 1.6: Time evolution in quantum mechanics. The states of defined mass
(energy) are eigenstates of the Hamiltonian: hence they are contracted or
dilated by their eigenvalues and maintain their direction. A state of defined
flavour, after time t, is rotated in the flavour space.

quantum mechanics, a measurement determines the choice of a basis of physi-
cal states, formed by the eigenstates of the measured operator. Different bases
associated to different operators can be connected by a linear transformation.
Any state, if expanded on a basis, can be seen as a mixing of the various
eigenstates. A particle produced in a certain flavour state originates from a
weak interaction process described by an Hamiltonian Hf . On the nature of
flavour states, a remark should be done to clarify their definition. The canon-
ical brackets for the operators a, a+ are not conserved between the mass and
flavour basis, due to the mass term [8]. Neutrino weak eigenstates can only
be defined in the approximation

mi

2Ei
→ 0, (1.3)

in which case it is possible to correctly define a Fock space of states. Addition-
ally, the description of neutrinos as plane waves is based on the ideal assump-
tion of free particles propagating without interruptions, with no sources and
no ending points. In reality, neutrinos do have sources. They are produced
and detected in processes involving reactions with other particles; hence they
are better described by the wave packets formalism [35]. The typical size of a
wave packet determines the coherence length, or overlapping length of the two
packets. Wave packet effects are weak when neutrinos are highly relativistic.
If this approximation is not valid, when the separation between wave packets
is large, neutrinos do not interfere and no oscillations occur.

An initial state of a neutrino of flavour l is written in the Schroedinger
representation as |ψ(0)〉 = |νl〉. This state obeys the equation

i
∂|ψ(t)〉

∂t
= H|ψ(t)〉 (1.4)
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As time evolves, particles propagate as described by an Hamiltonian Hm. A
flavour state at time 0 can be expanded on the mass basis in

|να(0)〉 =
∑

j

Uαj |νj(0)〉 (1.5)

in the Schroedinger representation, as time evolution is given for defined mass
(four-momentum) states7:

|ψ(t)〉 = e−iH0t|ψ(0)〉. (1.6)

In the vacuum, hence in absence of potential, the eigenvalues of H are

Ei = p +
m2

i

2p
given by H|i〉 = Ei|i〉. (1.7)

The initial state of neutrino of flavour l recomposed after a time t on the initial
basis is

|νl(t)〉 =
3∑

i=1

|νi〉e−iEitU∗
li. (1.8)

According to the rules of quantum mechanics, if at t = 0 a neutrino of flavour
l is produced, at t > 0 the state turns into a superposition of stationary states,
with phases due to the different masses of the mass states. Finally the neutrino
is detected via a charged current or neutral current process νl + N → l + X..
The matrix element leading to the cross section for this event is

〈l′X|S|νl′N〉 = −i
Gf√

2
N2ūL(p′)γαuL(p)〈X|Jα(0)|N〉(2π)4δ(P ′ − P ). (1.9)

The time evolution equation, with Ei = p+
m2

i
2p , yields the standard oscillation

formula8

P (νl → νl′) = 〈νl′(t)|νl(t)〉 =

∣∣∣∣∣δl′l +
∑

i

Ul′i e
δm2

2E
L−1 U∗

li

∣∣∣∣∣

2

, (1.10)

where L is the distance travelled by neutrinos between production and detec-
tion, for the relativistic case L ≃ t.
All those theoretical issues turned out to be interesting when, in 1964, John

Bahcall and Raymod Davis Jr. uncovered the so-called problem of the missing
neutrinos from the Sun. They were investigating the conversion of protons to

7Note, the unitarity of time evolution, or equivalently the hermicity of H, does not hold
for unstable particles.

8The unitarity of the U matrix ensures the normalisation of probabilities.

U
†
U = 1 ⇒

∑

l

P (νl → νl′) = 1.
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Figure 1.7: Raymond David Jr. (left) and John Bahcall about a mile under-
ground in the Homestake Gold Mine in Lead, South Dakota, USA.

Helium, proposed at the beginning of the century as the source of sunlight,
happening in the Sun through the reaction

4p →4 He + 2e+ + 2νe. (1.11)

The first results were announced in 1968. They detected only about one third
as many radioactive argon atoms as were predicted to be produced by solar
neutrinos, discrepancy which could not be ascribed at the solar model. This
observation suggested that the idea proposed by Pontecorvo [12] of neutrinos
oscillating between flavour eigenstates might be the correct way to describe the
results. This was the year 1969, and the possibility of detecting the neutrino
oscillations effect was still far to come.

A first proposal to investigate neutrino oscillations was made in 1989 by
the Kamiokande collaboration. Their setup consisted of a large underground
water detector with which to detect the rate at which electrons in the wa-
ter scattered the highest-energy neutrinos emitted from the Sun. Despite the
Kamiokande detector confirming that the number of neutrino events that were
observed were less than that predicted by the theoretical model of the Sun,
the discrepancy in the water detector was less stringent than Davis’s limit. A
larger version of the detector followed, named Super-Kamiokande and whose
purpose was to improve upon the Kamiokande results. On June 5 1998 the
Super-Kamiokande collaboration announced the discovery of evidence for neu-
trino mass during the Neutrino ’98 conference, and their result was published
in the paper, “Measurement of the flux and zenith angle distribution of up-
ward going muons by Super-Kamiokande” [9].
In June 2001 another milestone in the missing neutrino mystery was posed by
the Canadian detector SNO in the Sudbury mine, Ontario. The SNO collab-
oration looked at high energy solar electron neutrinos using heavy water D2O
Cherenkov detection. They observed approximately one third of the predicted
electron neutrinos expected from the Solar standard model predictions. This
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Figure 1.8: Left: Masatoshi Koshiba, leader of the pioneering Kamiokande
collaboration. Right: A view of the Kamiokande detector.

result is independently proved by the Kamland collaboration, which report
a deficit in the detected number of anti-neutrinos emitted by nuclear power
reactors [10].

1.6 Neutrinos in Cosmology and Astrophysics

Cosmology is the branch of physics investigating the history of the first seconds
of the universe. Neutrinos are often indicated as the ideal cosmic messenger in
space and time as they can travel large distances through extra-galactic electric
and magnetic fields without bending, and minimally interacting with matter.
However, no extra-galactic neutrinos have ever been detected on Earth, and
only one case of extra-terrestrial neutrinos has been observed from the su-
pernova 1987A [23], if we exclude solar neutrinos. The nature of objects as
supernovae, gamma ray bursts and active galactic nuclei could be investigated
through neutrinos emitted from those sources. The identification of a neutrino
abundance from a certain direction in the sky would indicate the possible pres-
ence of a source, either optically visible, in which case listed in a catalogue,
or new. Similar observation are currently giving the first results with gamma
rays [24] and cosmic radiation [81], opening a new window of possibilities for
astronomy through particle physics. The search for cosmic neutrinos is addi-
tionally interesting as they could be messengers announcing the explosion of
a supernova [47]. A prompt identification of neutrino abundance at low en-
ergy might allow for the real-time detection of a supernova explosion, a very
promising tool to understand the dynamic of such rare process in our galaxy.
Theories predicting the existence of micro black holes [36] see in neutrinos a
possible source of information; the predicted effect should realise through loss
of quantum numbers over long paths and hence decoherence effects in oscilla-
tions. An open question is the cosmic neutrino background [32], an up to now
undetected sign of relic neutrinos released soon after the big bang.
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1.7 Dark Matter?

Dark matter is supposed to be non-luminous and non-absorbing matter whose
evidence is inferred from gravitational effects on cosmic objects such as stars,
gas clouds and galaxies. This theorised, yet undetected matter does not inter-
act in any of the known ways (strong, weak or electromagnetic) with visible
matter. Despite this, evidence for dark matter is suggested by many effects, as
the observation of galactic rotation curves and gravitational lensing [33]. With
the current assumptions on neutrino mass limits, the contribution of neutrinos
to dark matter density has strong constraints [34]. It has been argued that the
most dark matter should be “cold”, i.e. non-relativistic. In great unification
theories new particles are predicted as possible dark matter candidates and
decay channels of such particles into standard model particles have been inves-
tigated. This has suggested the neutrino search from neutralino annihilation;
the AMANDA Collaboration has been investigating this topic [49, 50].

1.8 Neutrinos and the Nature of Space Time

Recently developed theories, as loop quantum gravity, suggest that the space-
time might not have a continuous structure, but rather be in a form of a
lattice or foam9. One of the many aspects predicted by such theories is the
violation of Lorentz invariance. It is well accepted that every transformation
belonging to the Lorentz group is a symmetry of a physical system or equation.
Invariance is broken by the introduction of a fundamental scale (the length of
the lattice) or preferred reference frame (the one respect to which the lattice
is at rest). This conflicts with the general equivalence principle stating the
independence of physics from the choice of coordinates, in a general inertial or
not inertial reference frame. Mathematically, Lorentz invariance violation can
be realised as a perturbation by adding to the Lagrangian of a physical system
one violating term, whose value can be conveniently chosen to guarantee that
the invariance is preserved at energies far under the Planck scale. Extremely
relativistic particles as neutrinos (m/E → 0) could prove Lorentz invariance
effects in alternative oscillation models [41]. Related to this topic is the idea
of CPT violation due to quantum decoherence effects [37]. This is realised
through the loss of quantum numbers in objects as topological defects or micro
black holes whose typical dimension is smaller than the minimum resolvable
length, defined as the lattice scale. With the current limits reached at colliders,
all experiments aiming to investigate physics beyond the Planck scale must
turn to astronomical environments, where the largest distances and higher
energies are available.

9A foam is a random, not regular lattice
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Figure 1.9: Neutral current (charged current in brackets) deep inelastic scat-
tering process for neutrino-nucleon scattering.

1.9 High Energy Neutrino-Nucleon Interactions

We focus in this section on the neutrino scattering process which is related
to neutrino detection in AMANDA, as further explained in the next chapter,
section 2.1. The charged current scattering of a neutrino on a nucleon in ice
is described as a neutrino-parton process with two kinematic variables 10 x
and Q2. All Cherenkov telescopes work on the principle that charged leptons
emitted from a neutrino interaction can be identified and used for indirect
observation of the neutrino itself. The cross section for the inclusive process
ν + N → ν(l) + X, calculated in the framework of effective theory, is

d2σ(νN)

dxdy
=

2G2
F MEν

π

(
M2

W

Q2 + M2
W

)2 [
xq(x, Q2) + xq̄(x, Q2)(1 − y)2

]
,

(1.12)
where M is the mass of the nucleon, MW the W mass, GF = 1.16632 ×
10−5GeV−2 the Fermi constant and y is the fraction of energy loss which has
the expression

y =
Eν − Eµ

Eν
, (1.13)

10Those variable are typical to describe a deep inelastic scattering process. They are
defined as the momentum fraction of the proton carried by the parton and the negative of
the square four-momentum transfer (see figure 1.9)

Q
2 = −q2

x = Q2

2p·q
.



16 CHAPTER 1. NEUTRINOS

Figure 1.10: High-energy neutrino-nucleon cross section [109].

where Eν−Eµ is the energy loss in the rest reference frame. In equation (1.12),
q and q̄ are the quark and anti-quark distributions, labelled V for valence and
S for sea. These distributions are composed as:

q(x, Q2) =
uV (x, Q2) + dV (x, Q2)

2
+

uS(x, Q2) + dS(x, Q2)

2
+ sS(x, Q2) + bs(x, Q2)

q̄(x, Q2) =
uS(x, Q2) + dS(x, Q2)

2
+ cS(x, Q2) + tS(x, Q2) (1.14)

The total neutrino cross section is obtained integrating the double differen-
tial d2σ

dxdy on the kinematic variables. The cross section given in terms of the
structure functions F2,F3 and FL is

σ(νN) =
(
Y+F ν

2 (x, Q2) − y2F ν
L(x, Q2) + Y−xF ν

3 (x, Q2)
)

(1.15)

The results published by the ZEUS collaboration [107] provide a range of
values for F2. The total cross sections are shown in figure 1.10, for both charge
and neutral current scattering. At the region around the TeV the neutrino
and antineutrino cross sections differ, due to the valence contribution to F3,
becoming significant at high x.



Chapter 2

The AMANDA Neutrino

Detector

AMANDA is a Cherenkov detector at the geographical South Pole. It consists
of a lattice of photomultipliers deployed in the ice and connected via cables
to the surface. The Antarctic ice provides a transparent Cherenkov medium
for light production. The detector was built in several stages, and we refer in
this analysis to its last configuration named AMANDA-II. Neutrinos are de-
tected through their charged interaction products. When a neutrino-induced
lepton traverses the ice, Cherenkov photons illuminate the several photomul-
tipliers. A high multiplicity in such light signals triggers the data acquisition
system which records the event in a specific ASCII format called F2K. Time
and location of each hit are stored on tape and later transfered North. The
challenging geographical environment in which the detector is built makes it
necessary to control the most of the operations remotely. A monitoring soft-
ware samples some quantities from the data to check on their quality and
transfers this information North in real time. A correct understanding of the
ice optical properties has been achieved during deployment with the use of a
standard candle and reproduced with a simulation; its structure is determinant
to interpret the systematic uncertainties affecting our measurements.

2.1 Neutrino Detection and Cherenkov Effect

Neutrinos are the only particles in the Standard Model which just interact
weakly. This makes their direct observation technically impossible with the
current detectors, and suggests an indirect detection through particles result-
ing as a product of neutrino interactions. Neutrinos are detected in AMANDA
by the Cherenkov light produced by their charged interaction products. A de-
tectable event is a charged lepton of family l produced out of a neutrino νl in
a charged current scattering process happening on a nucleon in ice (see figure
2.2). The charged current cross section for the process νlN → l±X lowers the

17
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Figure 2.1: Left: Cherenkov cone. The phase refraction index of ice is np =
1.32, meaning for highly relativistic muons an angle θ = 41 ◦. Right: the
appearance of Cherenkov light in the detector

rate of detectable neutrino events, making it necessary to compensate for it
with very large instrumented volumes.
The emission of light by Cherenkov effect occurs when a charged particle tra-
verses a transparent medium faster than the velocity of light in that medium.
Light propagates in a medium of group refraction index ng with velocity

cmedium =
c

ng
. (2.1)

When a charged particle propagates with a velocity bigger than this value,
photons emitted remain constrained in a cone whose opening angle depends
on the refraction index of the medium (cos θC = 1/np), as illustrated in figure
2.1. In the specific case of ice, however, the distinction bewteen group and
phase indices can be neglected [65]. Cherenkov effect appears for

vparticle >
c

n
⇔ βparticle >

1

n
. (2.2)

Cherenkov light in ice extends to visible wavelength and appears light blue. It
is the most commonly used detection technique for neutrinos; recently, radio
and acoustic detection have been developed, but they remain at the current
time in an experimental phase. Photomultiplier tubes convert a light signal
into a pulse that can be transmitted to the surface. A charged lepton which
enters the instrumented volume originates a high multiplicity of such light
signals, which trigger the data acquisition system. We will describe later in
this chapter which quantities are recorded. The basic concept is that the set of
pulses (or hits) recorded by the detector allows for a later reconstruction of the
lepton track. Muons produce a linear signature traversing the ice. Relating
the direction of the detected lepton to its parent particle is straight-forward,
as the angle between the two has been estimated in [70] as

θνµ ≈ 0, 7 ◦

(Eν/TeV)0.7
. (2.3)
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Figure 2.2: Charged current neutrino-nucleon scattering. If such a process
happens on a proton or neutron in ice, in the vicinity of the instrumented
volume of the detector, the outcoming lepton track is revealed via Cherenkov
light.

At the energy range of atmospheric neutrinos, the two particles are almost
collinear. Not all leptons derive from a neutrino interaction; they can also be
directly produced from cosmic rays. We refer as ‘background’ to the leptons
which do not derive from a neutrino, and ‘signal’ for those who do. To filter
out this kind of background, most of the neutrino telescopes use the Earth
itself as a screening medium. The choice is due to the fact that neutrinos
can travel almost undisturbed across rock, iron and heavy matter while all
charged leptons are stopped because of their shorter interaction lengths. Only
lepton tracks coming from across the Earth are considered, i.e. those from the
opposite hemisphere with respect to the geographical position of the detector.

Figure 2.3: The filter provided by the Earth: neutrinos are the only particles
able to travel across it.
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2.2 Short Profile of the South Pole Glacier

Antarctica is entirely covered by a glacier of very ancient formation whose
depth rises to a few kilometers in the central part of the continent. Ice layers
originate from continuous hoarfrosts, although of moderate proportion due to
the extremely low precipitable water vapour in the atmosphere [42]. In this
cold and dry climate, snow crystals grow in a simple form, different from the
common snow, as the exagonal prisms shown in figure 2.4. The fact that the
Antarctic glacier moves very slowly implies that the ice we observe at the
current days is rather old. The inner part of the Antarctic continent is a dry
and cold desert at high altitude. The complete lack of external light pollution
and the stability for seasonal changes indicate it as an optimal location for
astronomical observations of several types. Antarctic ice is a good medium for
Cherenkov neutrino detection because of the low concentration of radioactive
isotopes which increase background rates. Its optical properties, fundamental
for photon detection, strongly depend on some dust layers deposited as the
glacier grew. A different chemical composition characterises the different ge-
ological eras in which every layer originated. In particular, four main beds of
unclean ice are interposed between clear ice. From about 1000 metres depth,
the ice is compact and contains no air bubbles, hence optimal for photon detec-
tion. The measurements have been performed with a “dust logger”, profiting
from the occasion of having holes drilled in the ice before deployment of the
strings. Such a device is equipped with a light source and is deployed together
with the string. During its descent in ice, it emits and records photons of
known wavelength allowing for reconstruction of the ice scattering properties.
The ice structure is illustrated in the next chapter, figure 3.1, with the sketch
of the light propagation simulation code.

Figure 2.4: Left: the shape of snow crystals in the Antarctic ice is rather
simple, due to their very slow growth [43]. Right: the Antarctic continent.
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2.3 Flavour Identification - νe, νµ, ντ

The data collected in this analysis consist of muon neutrinos and antineutri-
nos; however, light signatures produced by the different neutrino flavours can
be identified by their topology in the detector.
Electron neutrinos produce electromagnetic showers, originating a localised
event contained in the detector volume and characterised by a few channels
and a spherical shape. The short free path of the electron is a consequence
of bremsstrahlung. Because of the low amount of light produced, to detect
an electron neutrino event a charge current reaction must happen inside the
detector. This considerably lowers the flux of such events. Such events hardly
fulfill the trigger condition (see section 2.5.3) due to the limited number of
hits of which they are composed, unless very energetic. The search for elec-
tromagnetic cascades in AMANDA has not yet found evidence of events [45].

Muons produce a linear track which traverses the detector, as shown in
figure 2.5. The Cherenkov photons are emitted along the path originating a
cone which propagates with the particle, enclosing the Cherenkov light. The
typical signature for a muon event is a set of hit photomultipliers clustering
along a line, and ordered according to an increasing time.

Tau neutrinos may show a typical “double bang” event topology due to
the short lifetime of the tau lepton, that once created tends to decay inside
short distance originating another tau neutrino. Such events, if contained in
the detector, are characterised by a double vertex.

Figure 2.5: Signature produced by a muon crossing the detector. The track
is reconstructed from the position and time records of the optical modules
detecting light.
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2.4 The AMANDA Setup in Ice

AMANDA is composed of a lattice of 677 photomultipliers embedded in the
Antarctic ice at the geographical South Pole. The photomultipliers (or opti-
cal modules) are organised in a set of 19 strings which occupy a cylindrical
volume of about 1.8 × 107 m3. With the exception of string 17, which was
subject to a deploying problem, all optical modules lie at a depth of 1500 -
2000 metres from the surface. The strings are distributed in three concentric
cylinders of diameter 70, 120 and 200 meters. AMANDA had several con-

Figure 2.6: Left: the South Pole Station, with the AMANDA site on the right.
Right: a schematic view of the AMANDA detector

struction stages starting from 1995 (as summarised in table 2.1). In its final
configuration it has been taking data since the Antarctic summer 1999/2000,
under the name of AMANDA-II. The deployment of the strings took place
in consequent Antarctic Summers. To hole the ice a hot water drill is used1,
and the string is deployed in its final position while the ice is melt. In around
24 hours the position of the string is stabilised and the ice starts re-freezing
from the top to the bottom. The complete freezing process can last years,
but in general after a couple of months the string is sufficiently fixed. The
disadvantage of having such a setting is that in case a module fails, it is not
possible to recover it for external repair. On the other side, the resulting lat-
tice is stable compared to similar detectors deployed in sea water. Modules
are tested at cold temperatures before being shipped to the South Pole sta-
tion and again once on the camp, before being connected to the string. The
signal is transmitted through a cable passing in the inner part of the string.
Between the years 1997 and 1998 the transmission medium has been changed
from electrical to optical cable. A schematic view of the detector is illustrated
in figure 2.7.

1The same drilling procedure is used for the current deployment of the IceCube optical
modules, undergoing since 2005 up to now at the South Pole.
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Figure 2.7: A sketch of the AMANDA detector in its components: AMANDA-
B10, embedded in AMANDA-II, and a detail showing the optical module. On
the left, a scale indicates the depth in the ice.

2.5 Data Acquisition

All photomultipliers are connected to the surface via coaxial, twisted pair or
optical cables. On the surface, at roughly 500 meters from the geographical
South pole, all cables converge to the Martin A. Pomeranz Observatory (shown
in figure 2.8), where the electronics are stored. Communication with institu-
tions in the North is achieved via satellite connection. A subset of preselected
data that needs to be available soon after acquisition can be transferred via
satellite; this includes monitoring and calibration data (see section 2.8) and
supernova trigger warnings (see section 2.5.4).

Season No. of strings No. of OM Transmission

AMANDA-B4 1995/96 4 86 electrical (coaxial)
AMANDA-B10 1996/97 10 302 electrical (twisted)
AMANDA-B13 1998/99 13 428 optical
AMANDA-II 1999/00 19 677 optical

Table 2.1: The subsequent AMANDA construction phases and configurations.
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Figure 2.8: Left: the Martin A. Pomeranz Observatory (MAPO), hosting the
AMANDA data acquisition system. Right: AMANDA string n. 10, in front
of the MAPO door

2.5.1 The AMANDA Optical Module

The detector unit of AMANDA is a photomultiplier enclosed in a thick glass
shell; the set of the two is often called optical module, or OM. The pho-
tomultiplier is placed in the lower half-sphere, embedded in silicon gel. All
AMANDA modules look downwards, as the detector is optimised for the de-
tection of neutrinos coming from the Northern hemisphere. Many optical
modules are equipped with an artificial light source used as calibrating signal.
This source emits light at different frequencies and calibration is repeated ev-
ery year. The photomultiplier used in AMANDA is an Hamamatsu R5912-02.
The gain factor of such a device reaches 109, while the nominal value given for
the noise rate is about 6000 Hz, which is strongly reduced in ice at −40 ◦C.
The first optical modules to be deployed had an electrical connection to the
surface, whilst mixed optical and electrical cables were used for the following
stages. The length of the connecting cables can reach values of about 2 km,
which brings up the problem of signal dispersion along the way. For this is-
sue the high gain factor of the photomultiplier is fundamental. The optical
transmission does not suffer from this problem.

2.5.2 The Data Acquisition System

On the ice surface all cables gather in the counting house (MAPO). The elec-
trical signal is amplified2; signals coming from optical cables are collected in
the optical receiver board. The complete DAQ is sketched in figure 2.10. The
analog signal coming either from the amplifiers or from the optical receiver
board is turned into a rectangular pulse by a discriminator. The leading and
trailing edges of the pulse are measured in time-to-digital converters (TDC).

2The amplifiers are named SWAMPs, produced by the Swedish part of the AMANDA
Collaboration
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Figure 2.9: Left: AMANDA optical modules, composed by a photomultiplier
enclosed in a glass sphere. Right: Deployment of a string in ice seen from the
surface.

In parallel, both signals are sent to the trigger system. When an event is
triggered, the TDCs are read out by the data acquisition system. The TDC
capacity allows the storage of up to 16 edges per OM in 32 µs, distributed as
[−22 µs, +10µs] around the triggered time. The TDCs have a resolution of 1
ns. Simultaneously, an analog to digital converter (ADC) converts and records
the maximum value of the pulse in a 10 µs window. In case a photomultiplier
gives more than one pulse, the highest value is recorded. TDC, ADC and the
whole trigger logic are hosted by crates as shown in figure 2.13. The whole
system is synchronised on a GPS clock. Information coming from both the
TDC and ADC are collected and sent to the DAQ. The muon DAQ takes
about 2.5 ms to record an event, during which no data acquisition is possible.

Figure 2.10: A schematic representation of the AMANDA DAQ. The signal
coming either from the amplifiers or from the optical receiver board is sent in
parallel to the trigger and to the TDCs. If the trigger condition is fulfilled,
the DAQ is started.
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2.5.3 Trigger

The trigger logic has the function of collecting pulses from the different optical
modules and deciding within a short time if they form a signal. When the
trigger condition is fulfilled, the event is recorded by the data acquisition
system.

Multiplicity Trigger
A neutrino-induced muon traversing the ice originates photons along its
track. A certain amount of light is deposited in the detector inside a short
time interval. The multiplicity trigger looks for coincident signals inside
a time window of 2500 ns. It is implemented with an adder, which sums
up all the pulses inside this time and checks whether the result reaches a
threshold. The required minimum number is N = 24 pulses for an event
to pass the trigger; this value has been set and remains constant since
year 2000.

Figure 2.11: Scheme of the adder providing the multiplicity trigger. When
N pulses are recorded within a time window od 2,5 µs the event triggers the
detector DAQ.

String Trigger
It is reasonable to assume that out of the set of light signals produced
by a track, several should belong to the same string. On the other hand,
isolated signals without close neighbours are likely to be due to electronic
defects rather than to a lepton event. The string trigger condition re-
quires a combination of n modules out of m on the same string (the value
of n varies according to the years). It has been working in addition to
the multiplicity trigger since 2001.
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External Trigger
An additional trigger condition is established by considering other de-
tectors which work in coincidence with AMANDA, as the surface array
SPASE2 (South Pole Air Shower Array), which helps to identify tracks
entering the detector from the upper surface (south direction). Coinci-
dent events can be identified and rejected as background.
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Figure 2.12: The shape of the ADC pulse recorded by the muon DAQ. The
quantities recorded, leading edge, trailing edge, time over threshold and ADC
peak, are the basis for the reconstruction of a neutrino-induced lepton track.

After the event has passed the trigger conditions, it is recorded by DAQ. Each
light signal is recorded as a pulse with three basic pieces of information: the
starting time or leading edge, the time over threshold, which is the time interval
during which the voltage remains higher than the normal noise rate, and the
ADC, which is the voltage peak. In addition to the standard muon DAQ, the
transient waveform recorder (TWR) data acquisition system was installed at
the Pole in the Antarctic summer 2001/2002. The TWR modules read out
the signal from either the amplifiers or the optical receiver board and keep a
record of the whole pulse with its functional form. The TWR DAQ records
events at a frequency of about 150 Hz and has a much smaller dead time
between two events, so that the trigger condition can be lowered at N = 18
events. The values recorded are sketched in figure 2.12

2.5.4 The Supernova DAQ

The supernova data acquisition system runs parallel to the muon and TWR
DAQ. It is optimised for neutrino searches at very low energy as expected in the
case of a supernova explosion [47]. This data acquisition system, in contrast
to the muon DAQ, has no trigger threshold because low energy events do
not emit enough Cherenkov photons to pass the condition. For each optical
module, the deviation from the average rate is recorded. If the rate exceeds
a certain threshold value, a program switches the binning to a finer value
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Figure 2.13: Some components of the muon DAQ. Left: one of the AMANDA
crates - right: the DMADs, discriminator and adders which compose the trig-
ger logic. Both are located in the Martin A. Pomeranz building.

and maintains this setting for 10 minutes. Triggers from the superova DAQ
need to be transferred North in almost real time, as in case of a supernova
explosion neutrinos precede the event by about two hours, and would allow
for a prompt alert to optical telescopes which could be pointed directly at the
object. AMANDA and IceCube take part in the Supernova Early Warning
System network together with other neutrino detectors and telescopes, with
the aim is to take note of neutrino excess and communicate it in real time to
other detectors to check the coincident observations.

2.6 Data Storage

Data are recorded in an ASCII format named F2K and stored in packages of
about 50 MByte each. The F2K format has been developed to offer good user
readability and the interface to different applications, as filtering, reconstruc-
tion, calibration, analysis software, with different programming languages. A
F2K file contains all the information about a triggered event: GPS time, num-
ber and position of each optical module contributing to the signal, time over
threshold and ADC of each channel. A few first level reconstructed quantities
(direction of the track, neutrino flavour) are as well recorded. An example
is illustrated in figure 2.14. Later we will illustrate the several steps of the
reconstruction chain. The typical size of a F2K file (200 MByte) covers about 8
minutes of detector time. For practical purposes F2K files are organised in runs
of variable length. At this first stage of the data acquisition, a huge number of
events (around 8 × 106 per day) is recorded, as they still include atmospheric
muons which constitute the background for the most of the analyses.



2.7. DATA TRANSFER 29

Figure 2.14: Values recorded in a F2K file. The header contains general event
information. Time over threshold and leading edge time are in nanoseconds.
The ADC peak is in millivolt. A question mark indicates the module has no
ADC entry. Trigger time and type are in the end.

2.7 Data Transfer

The South Pole Station is connected to the rest of the World via satellite.
Once recorded from the muon, TWR or Supernova DAQ, the data need to
be transferred North. Normally three satellites are operating, covering a time
interval of almost 20 hours per day. Standard satellites in orbit on the Equator
plane cannot reach the station. In figure 2.15 a picture of the satellite coverage
of the station at a certain time of the day is shown. An additional satellite
communication system named iridium ensures a 24 hour coverage allowing
data transfer and e-mail and phone contact. The satellite band width does
not allow all data to be transfered in real time; only the SNEWS triggered
events and the monitoring data follow this way. The complete data set is
recorded to tape and shipped via airplane at the end of each season.

2.8 Data Monitoring

A monitoring software, consisting of a set of scripts installed at the Pole, checks
the status of the data acquisition system and the data quality. It is fundamen-
tal to have automatic control supervising the data taking and allowing for re-
mote operation on the electronics, as few people from the AMANDA/IceCube
Collaboration remain at the South Pole station over the Antarctic winter. The
monitoring system observes several values recorded by the detector. It works
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Satellite Rise Set Azimuth Elevation Other Info

MARISAT 2 11:18 17:55 325.47 - 3.82

TDRS 1 13:21 19:38 310.15 -0.58 Currently below the horizon

GOES 3 16:24 23:18 251.66 -11.28 Currently below the horizon

Figure 2.15: The satellite covering of the South Pole Station. All times are
expressed in UTC (Coordinate Universal Time). This picture refers to Central
European Time 14:07.

on-line, and the most of the values are histogrammed and stored into root files
at the Pole. After they are transferred to the main data warehouse in Madi-
son, each collaborating institution contributes to the monitoring checking on
the recorded values. The system is organised in runs, and recorded values
are compared with the previous runs to establish whether they are within a
reasonable interval from the average. In each file, global histogram are stored,
which include the monitored quantities for the whole detector. The values
recorded by the monitoring system at the Pole are

• ADC rates, ADC peak position, ADC peak-to-valley ratios (over a short
and long period of time: values are recorded per F2K file inside a run,
and per run over a larger time window, and for each channel)

• exclusive, inclusive and total trigger rates (referred to the run or longer
time window). Both the single optical modules and the total detector
are monitored.

• distribution of peak of trigger time per channel

• flary events fraction and flare indicator to be used as a filter flag [63]

• dark noise rates per F2K file (8 minutes) and per run (8 hours)

• dead-time fraction per channel

2.9 Detector Calibration

The strictly necessary information to reconstruct a track are the leading and
trailing edge of the pulse (sketched in figure(2.12)), the amplitude peak ADC
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and the location of the optical modules which gave a signal. Those quantities
require a calibration of the time, amplitude and geometry of the detector. The
arrival time of a photon at the photomultiplier depends on the leading edge
time as

t = tLE − t0 −
α√

VADC
. (2.4)

Delays related to the signal propagation along all the cables and the electronics
are included in t0. The second term is a correction for the time delay between
the pulse start and the threshold crossing, depending on the dispersion of the
cable. The square root is due to the parabolic approximation of the curve
shape at the beginning of the pulse.

Those two calibration constants are measured by flashing artificial light
signals, produced with a laser and transmitted with optical fibres, and check-
ing the detector response for each optical module. Amplitude calibration is
related to the number of detected photoelectrons. This number depends on
the photomultiplier gain, amplification factor of the SWAMPs/ORB and at-
tenuation in cables and electronics. Down-going muon data (muons from the
Southern hemisphere) are used to calibrate the amplitude of the pulse.

Finally, the geometry calibration is necessary considering that the Antarc-
tic glacier is not fixed and small changes in the positions of modules can oc-
cur. At deployment stage, the x-y position of each string is determined by
geographical triangulation and the z coordinate is accurately measured with
the pressure. After the string is deployed, the positions of modules can be
verified with the use of standard flashers.

2.10 The Successor of AMANDA: IceCube

From a publication of Antarctic Astronomy 1994 [51]:
“During the 1991/2 Austral Summer, a small neutrino experiment was

established at the South Pole. [...] This modest telescope system is an excellent
first stage in the development of a large neutrino telescope for the Antarctic
Plateau. If the technique proves to be as successful as expected then a large
system could be constructed [...]”

In the Antarctic season 2008/09, the AMANDA neutrino detector is go-
ing to be decommissioned while its larger successor IceCube will take over the
task of neutrino detection at South Pole. A considerable effort has been made
over the last years to provide the synchronisation of AMANDA and IceCube,
ensuring a common data taking period for the years 2006 up to now.
IceCube will cover an instrumented volume of 1 km3 and will result as a less
dense lattice of photomultipliers optimised for the high energy neutrino detec-
tion [52]. At the moment of writing this thesis, half of the detector has been
completed with 40 strings deployed in ice. Additionally, to ensure efficiency
of such a telescope in the low energy region, an additional component of the
detector has recently been approved and will serve to all the neutrino searches
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at O(GeV), including τ physics, search for neutrinos from supernovae and
dark matter neutralino annihilation. It will be realised as a dense smaller unit
placed at the bottom of the detector (IceCube deep core).
In its final configuration, IceCube will be composed of 80 strings of 60 photo-
multipliers each. The completed detector will reach an effective area about 30
times larger than AMANDA-II; a rate of events of roughly 5000 atmospheric
neutrinos per year is expected. Besides this, the experience accumulated in
more than 10 years of neutrino detection in the Antarctic ice allowed for a
considerable improvement of the electronics, ensuring a loss smaller than 2%
in the deployed equipment. The detector will be associated with the surface
array IceTop, composed of two Cherenkov water tanks in correspondence of
each string. This sub-detector will serve as a veto for cosmic ray events, allow-
ing for neutrino detection over a 4π region. Seen the modular composition of
the detector, the IceCube data acquisition system is already running at pole
since 2006, providing the first data samples. Analyses achieved with the first
22 strings have already being published [48].
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Event Simulation

Neutrino-induced events have been simulated with a Monte Carlo method and
convoluted with a simulation of the detector response. Event simulation is a
useful tool to investigate the features of our measured data sample, based on
the knowledge of neutrino interactions and flux. In this chapter the complete
simulation chain is described, from the production of a very large statistics
sample of neutrino events to the detector response simulation. The atmo-
spheric background is reproduced as well, to improve the study of the signal
to background separation. Technical details about the software implementa-
tion of the simulation are omitted, but can be found in the references.

3.1 Step 1 - Neutrino Production

Neutrino events are generated with a random starting point in the atmosphere,
distributed isotropically around the Earth. Propagation to the detector loca-
tion occurs without any energy loss, as the Earth is transparent to neutrinos
below 1 PeV. Neutrino interactions are simulated with the NUSIM package [53].
A weighting factor accounts for the probability for each neutrino event to in-
teract along the propagation path. The initial neutrino spectrum is simulated
with a user-defined power law that can be altered with an appropriate weight.
Events that can be detected in AMANDA induce a charge current scatter-
ing interaction in the vicinity of the detector producing a charged lepton. In
NUSIM, the angle between the incoming neutrino and the outgoing lepton is
set equal to 0 for the sake of simplicity; we mentioned in section 2.1, equation
(2.3) that this angle has been estimated to be negligible at energies below 10
TeV. Another simplification in NUSIM consists of the fact that only flavour µ
has been included. For the purpose of this analysis, this assumption will not
bring any changes, as our data selection only includes νµ and νµ. The initial
spectrum is simulated with the power law

dΦ(E)

dE
∝ E−1 (3.1)

33
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where Φ(E) is the neutrino flux in dependence of the neutrino energy E. A
re-weighting has been consequently applied to fit the energy spectrum to the
actual atmospheric spectrum model [8], i.e.

dΦ

dE
∝ E−3.7. (3.2)

3.2 Step 2 - Muon Propagation

Muons propagate from the production point, represented by the vertex of the
charge-current neutrino-nucleon scattering, and traverse the ice across the de-
tector. The propagation simulation has to take all possible sources of energy
loss along the path into account; the package used to simulate muon propaga-
tion in ice is MMC [54]. The calculation approximates the muon energy loss as
continuous, although it is actually ascribed to discrete events (interaction, ion-
isation, bremsstrahlung) that occur along the particle free propagation path.
This package is suitable for several neutrino experiments, hence the propaga-
tion medium can be chosen from among ice, snow, air or standard rock.

3.3 Step 3 - Photon Propagation

Muons emit Cherenkov photons which remain confined in a cone of opening
angle θC and propagate to the optical modules1.

The distribution of the dust in the Antarctic glacier is grouped in layers
(as shown in figure (3.1)), hence photons scatter unisotropically according to
the depth. To account for this asymmetry, an effective scattering length is
defined as

λeff =
λ

1 − 〈cos θ〉 , (3.3)

where λ is the scattering length of photons in ice, of the order of a few meters,
and cos θ = 0, 94 is the value of the average scattering angle measured by [58].
Dust molecules cause scattering and absorption of light; an accurate descrip-
tion of the photon loss has been implemented in the AMANDA simulation
[44]. Photon scattering and consequent deviation from the Cherenkov cone
direction make the track reconstruction more complicated.

The standard package used for photon propagation is the photon trans-
port and detection code PTD [56], from which follows the more updated PHO-

TONICS [55]. Any of those models can use a different ice model simulation
as input [58]. Simplifications are necessary, as lepton tracks traversing the ice
can emit up to O(106) photons, whose propagation must be described through
average values. The ice in PTD is modelled with tables accounting for photon
detection probability in a homogeneous medium. Absorption has been esti-
mated through a matching with a Monte Carlo simulation of the number of

1θC is the Cherenkov angle. The Cherenkov effect is described in chapter 2 2.1.
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Figure 3.1: Photon scattering length (left) and absorption length (right) as
a function of the depth and photon wavelength. Layers of ice of different
properties are identified by the peaks. The values provided by the dust logger
are ls = 110 m for scattering and la =20 m for absorption. Both measurements
were taken with respect to a photon wavelength λ = 400 nm.

photomultiplier hits composing muon events. A reference for this model (muon
absorption model) can be found in [57]. PTD distinguishes four classes of ab-
sorption and scattering parameters, and groups the different photomultipliers
according to their position in one of those classes. The package simulates all
photons with an average wavelength λ = 420 nm. In photonics, ice layers of
different optical features are accounted in the tables. We described in section
2.2 the geological origin of such a structure.

3.4 Step 4 - Detector Simulation

Data acquisition, photomultiplier response, electronics, detector dead time and
noise rates are simulated and reproduced by the AMASIM software [59]. For
each detected photon, the waveform from the photomultiplier is reproduced
and the read-out electronics are simulated, including the delay due to the cable
transfer of the pulse. The entire AMANDA electronics are installed in a chal-
lenging geographical location for detector maintenance and subject to severe
weather conditions. As it is impossible to correctly simulate all the possible
problems in the data acquisition, such as bad optical modules, cross-talk2 and
instability of the electronics due to weather changes, the measured data are
filtered to exclude events belonging to any of the above mentioned problematic
cases. Data and simulation then undergo the same selection criteria.

2Cross-talk is an electronic artefact. See section 4.1.
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Figure 3.2: The AMANDA simulation chain.

3.5 Background Simulation

Although all the AMANDA optical modules point downwards to use the Earth
as a filter, this limits but does not suppress the detection of background events,
composed of charged leptons directly produced from cosmic rays. A simula-
tion of the cosmic ray background is achieved with the CORSIKA package
[60]. The simulated data sample composed of cosmic ray muons and neutrinos
reproduces our measured raw data. The complete simulation chain is sketched
in figure 3.2.

3.6 Weights

The introduction of weights is a way to save computing time and include
a large number of different possibilities in a smaller simulated data sample.
This allows the user to reproduce different neutrino spectra out of one unique
simulated data sample.

An initial simulated sample is produced with a flux proportional to E−1.
The vertices of the charge scattering processes are simply isotropically dis-
tributed in the detector volume. This simplifies the situation considerably,
in which it disregards the cross section computing and the medium density
information related to the nucleon distribution. After the whole simulation
chain has reproduced the final data sample, weights are applied.

One weight describes the atmospheric neutrino flux model, where the
standard value is obtained with the Lipari flux calculation [91], but can be al-
tered by the user as we will see in more detail in chapter 8. The cross section
for neutrino interactions, including all the information about the scattering
probability, the neutrino absorption length in the ice, the energy of the par-
ticles and the features of ice is described by a second weighting factor. The
use of weights allows for a faster and less computer challenging calculation,
producing a sample of O(106) simulated events.



Chapter 4

Event Reconstruction

In this chapter we illustrate the reconstruction sequence leading to the iden-
tification of a neutrino track, using the time record of each hit, and the co-
ordinates of the channels composing the signal. The same reconstruction al-
gorithms apply to both data and Monte Carlo simulated events, as they are
recorded in the same format. Reconstruction fits are performed in increas-
ing order of complexity, while the amount of data is reduced at each step
with tighter filtering conditions. Likelihood-based algorithms, which are quite
computing intensive, are applied in the last steps of the procedure. The recon-
struction is implemented in the recoos program with use of the SiEGMuND
software package. A technical reference can be found in [68].

4.1 Pattern Recognition

The AMANDA data acquisition system records pulses from the photomultipli-
ers and stores all the values in F2K format (see 2.6). The only selection applied
at this level is the fulfillment of the trigger conditions described in chapter
2.5.3. A pattern of light signals inside a short time window can be ascribed
to a neutrino-induced event; aim of the reconstruction is to determine the
direction of such lepton tracks. Atmospheric neutrinos, which form the signal
in this analysis, are produced with equal probability around the Earth. How-
ever, the tracks coming from the Southern hemisphere are indistinguishable
from the atmospheric muon background; an accurate reconstruction allows for
rejection of those events. Step after step, tracks which show problematic or
uncertain reconstruction are rejected. The information form the final sample
of tracks is then recorded in a ROOT file in the structure of a ROOT tree.
Simulated data are produced according to the simulation chain described in
chapter 3 and stored in the same ROOT format, with additional information on
the true variables. From this stage on, the same selection and reconstruction
criteria are applied to the measured and simulated data.

37
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4.2 Background Classes

The recognition algorithm of a muon track can be influenced by several types
of background events, that require specific filters. They are basically of two
types: physical events, i.e. down-going particles, and events due to electronic
artefacts.

Background of Physical Events

Multiple muons from a single air shower (muon bundles) can be misinterpreted
as a single, extremely bright muon track. The energy reconstruction could fail
in such case. Radiative energy loss processes, generated along the muon trajec-
tory, can originate stochastic light emission which distorts the Cherenkov cone
direction. Stopping muons, that are events which loose all their energy inside
the detector, emit photons that can be interpreted as product of an up-going
event. Muons that enter the detector with a nearly horizontal angle can be
mis-reconstructed because of the finite resolution of the algorithm. Moreover,
two or more muons from independent air showers have a small probability of
crossing the detector in coincidence. Finally, the ice layers structure described
in section 2.2 can distort the photon trajectories in such a way that they can
be interpreted as up-going.

Background of non-Physical Events

Before proceeding with the reconstruction chain, data files recorded in un-
stable detector conditions or events having possible electronic artefacts are
excluded. To localise such cases, the F2K files are investigated. The photo-
multipliers in ice have a low noise rate, however, noise and after-pulse hits
must be removed. Finally, data are calibrated in time, geometry and ampli-
tude as described in section 2.9. These processes go under the name of hit
cleaning.

Flares

Flary events are events triggered as a particle, although generated by electronic
noise. It can happen that randomly generated hits due to electromagnetic in-
duction pass the trigger condition and hence are recorded as a muon event.
This situation is not unlikely especially in case of storms or other bad weather
conditions at South Pole, as cables connecting the strings to the MAPO build-
ing are so close to the surface, that storms can induce electromagnetic noise.
Most of the suspected flary events are already excluded from the data sample
by selecting only the good data taking period with the monitoring system.
However, some of those events might show up in the regular data taking files
and must be rejected. An algorithm to label such events has been developed
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in [63], where a flare indicator is constructed on the base of some opportune
variables. The probability of rejecting a real particle event by the flare filter
is < 10−10.

Cross Talk

With “cross talk” we indicate a correlation between the electronics of neigh-
bouring optical modules. Events showing a very peaked ADC value1 over a
quite short time over threshold are likely to be due to electronic noise rather
than to a real triggered event. For this reason, in the space ADC-TOT, a
region of physical events is identified, outside which entries are rejected as
suspected of cross-talk. The ADC-TOT dependence is fitted for each opti-
cal module with a function f(TOT). To avoid possible rejection of physical
events, the border line is shifted by 20 ns in TOT. Only the hits fulfilling
the condition ADC < f(TOT − 20 ns) are considered valid for higher order
reconstruction. The situation is illustrated in figure 4.1.

Figure 4.1: Cross talk pairs can influence the track reconstruction. Here the
ADC vs TOT distribution for one channel is illustrated. The physical region
lays right of the fit function. To avoid rejection of physical events, the actual
function is further shifted by -20 ns (curve on the left).

1ADC is the maximum value of the pulse; time over threshold (TOT) is the interval in
which the function has values over a noise rate threshold. Those quantities are described in
section 2.5.2.
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4.3 Variables used for Reconstruction

Geometry

The coordinates of the photomultiplier transmitting a signal are the basic
variable used to identify a track. A muon traversing the detector produces a
linear signature, along which we expect clusters of hits. Cherenkov photons
illuminate a cone of opening angle θC ≃ 41◦. Muon and neutrino are almost
collinear, so even though the interaction vertex can be far outside the detec-
tor, the reconstruction is straight-forward. All other possible geometries, i.e.
spherical cluster of hist typical of an electromagnetic cascade, are not relevant
for this analysis which looks at muon neutrinos only.

Time Residual

Given a track hypothesis, and a point laying on the track, it is possible to
evaluate the expected arrival time of a photon at every optical module. The
solution is unique if we assume a scattering-free medium. The time residual,
defined as the difference between the observed and the expected arrival time
of a Cherenkov photon, is a useful variable for reconstruction, as it gives a
measure for the weight of each hit in the reconstructed track. The situation
is illustrated in figure 4.2. The coordinate of a particle propagating at the
velocity of light is

l(t) = l0 + c(t − t0)d̂, (4.1)

where d̂ is the direction versor of the track. The initial initial condition is the
point l0 = l (t0). The time of arrival in point C is

tC = t0 +
1

c
(~rOM −~l0) · d̂. (4.2)

The distance of the optical module from the track, indicated with ρ in figure
4.2, can be written as

ρ = | (~rOM −~l0) ∧ d̂ |. (4.3)

The geometry of the situation is described by the Cherenkov angle θ whose
value, for very relativistic particles, depends only on the phase refraction index
np of the propagation medium. Light propagation in ice is determined by the
group refraction index ng:

cice =
c

ng
. (4.4)

In the pure geometrical, scattering free case, the expected arrival time of a
photon at an optical module with coordinate ~rOM (point D) is

te = tC +
ρ

c

(
ng

sin θ
− 1

np sin θ

)
. (4.5)
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Figure 4.2: Sketch of the distance travelled by photons to reach an optical
module. The Cherenkov angle, for particles with β = 1, is ĈBD = 41 ◦. A
photon travelling unscattered follows the path BD. A general point of the track
l0 (t = t0) is the initial condition.

If tγ is the observed photon arrival time at the optical module, and te the
expected arrival time, the time residual is defined as the difference

t = tγ − te, (4.6)

The distribution of the variable t is determined by different effects: physical,
as scattering and showers, and electronic, as jitters and random noise.

4.4 Reconstruction Fits

The main reconstruction algorithms are described in a sequence according to
their growing complexity. A detailed list of all fits and filter conditions applied
to the data sample of this analysis is reported in appendix A.
Two fits of rather simple implementation (direct walk and JAMS) allow for
a first guess of the track direction, making it possible to reduce the amount
of triggered events from about 8 · 109 to the order of 106. More than 95%
of cosmic ray background can be identified and rejected at this level, be-
fore undergoing an elaborated reconstruction. To this reduced data sample,
likelihood-based fits are applied, based on the starting values provided by the
first guess algorithms.
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4.4.1 First Guess Methods

Direct Walk

This is a first approximate fit to try to estimate the direction of a muon travers-
ing the detector [61]. The algorithm considers all the pairs of optical modules
transmitting a signal in a certain time window ∆t = 30 ns and assuming as
a track hypothesis the line passing through the two points. The condition is
that the two optical modules are separated by a distance d > 50 m. This
ensures a certain resolution, as one scattered photon could contribute twice
if the optical modules considered were close to each other. In case of events
with high hits multiplicity, there can be many candidate tracks: if their num-
ber exceeds 200, the procedure is started again within a smaller time window
∆t = 25 ns. The quality of the reconstructed track is established considering
the distribution of all hits inside the selected time window. Time residual and
distance of the photomultipliers from the track are evaluated for each hit, and
a parameter is determined to evaluate the quality of the reconstruction:

Q = min(Nhits, 30 σ + 7), (4.7)

where σ is a measure of the spread of hits along the line:

σ =
1

N

∑

i

(di − d̄)2. (4.8)

Tracks with Q > Qmax are selected, where Qmax is the maximum for all candi-
dates in the event. Since there can be more than one candidate track, a cone
of opening angle 15 ◦ around each track is considered and the number of other
candidates belonging to that cone is counted. In the end the cone with the
largest multiplicity is selected, as exemplified in figure 4.3.

Figure 4.3: The direct walk fit geometry. A possible neutrino track is esti-
mated considering pairs of distant optical modules, connecting them with a
line and searching for the cone around the line having the highest multiplicity
of possible candidate tracks.
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“Just Another Muon Search”

This algorithm (often shortened JAMS) is meant to identify a typical mis-
interpreted event composed by two nearly simultaneous down-going muons
reconstructed as an up-going event. It is possible that two almost coincident
down-going particles traverse the detector so that the lower event slightly pre-
cedes in time the upper one. Such a pattern in the set of hit photomultipliers
would be easily misinterpreted as an up-going neutrino. The fit algorithm is
based on an analysis of the hit topology [62].
The coordinates (x0, y0, c t0) of hit signals are investigated2. A search for clus-
ters of hits is performed along 26 regularly spread directions, defined by cones
of an opening angle of 25◦. Clusters with the higher hit multiplicity are se-
lected, and a track candidate is reconstructed on the direction of the cone axis,
taking as a reference point the average coordinates of the hits in the cluster.
The expected arrival time at the second cluster is evaluated (see figure 4.4).
For each track, defined by a set of parameters (x, y, z, θ, φ), a basic likelihood
function is defined as a product over all hits of Gaussian distributions around
the time residual. A quality parameter is assigned to each track, investigating
the distribution of neighbour hits. Track candidates which fit a down-going
hypothesis are identified and rejected.

Figure 4.4: The situation in which two down-going muons are misreconstructed
as an up-going particle. This track should be rejected by the JAMS algorithm.

2written here respect to a reference frame where the z axis is the versor of of the particle
direction
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4.4.2 Advanced Reconstruction

The reconstruction of a lepton track out of a pattern of light signals is a typical
problem of likelihood maximisation. It can be summarised as the question to
estimate a set of parameters {a}, given a set of measured values {x}. If
P(xi,a) is the probability density function of observing the value xi for given
values of the parameters {a}, a likelihood function is defined as

L(x|a) =
∏

i

P(xi,a). (4.9)

The maximisation of L(x|a) gives an estimate for the parameters {a}. All fits
based on likelihood maximisation use an initial track hypothesis from a first
guess method. In the AMANDA pattern recognition procedure, a likelihood
function is assigned to the track. The measured values {x} can be either the
time residual, or the hit photomultipliers coordinates, whilst the quantities
to be determined {a} are the geometrical parameters of the track, i.e. one
point (x, y, z) and one direction defined in polar coordinates by the zenith and
azimuth angles (θ, φ). The best track is obtained by varying those parameters
until the minimum of the likelihood function is found.

Likelihood based on the Pandel Function

The Pandel function is an analytical parameterisation of the photon arrival
time distribution, analysed for the case of an isotropic, monochromatic source
[64]. The probability density of photon arrival time at distance d is parame-
terised as

P(t, d) = N0(d)
t

d
λs−1 τ

−d
λs

Γ
(

d
λs

) e−
([

1
τ
+ c

λa

]
t+ d

λa

)
, (4.10)

where N0 is a distance-dependent normalisation constant, and τ = 557 ns,
λs = 33.3 m and λa = 98 m are parameters related to ice properties. Details
can be found in the reference quoted.
Given a certain track hypothesis τ , the probability density functions P(t) of
measuring a photon arrival time t are considered, assumed that the hypothesis
is true. A likelihood function based on the photon arrival times is defined as

L =
∏

i

P(ti|τ), (4.11)

where ti are the observed photon arrival times at the i-th optical module.
The track is dependent on the five parameters: τ = τ(x, y, z, θ, φ). The vari-
ation of this hypothesis in the parameter space which shows the maximum
likelihood value is taken as a best guess for the true direction of the particle.
The main numerical problem is represented by the fact that the maximisation
algorithms might converge around a local maximum. To avoid this problem,
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the algorithm is performed a certain number of times with random track hy-
potheses (“n-fold iterative likelihood fit”).
Furthermore, expression (4.10) is to be convoluted with the fluctuation prob-
ability of the single optical module, which is assumed to be Gaussian dis-
tributed. This results in the probability

P ′(t, d) =

∫ +∞

−∞

1√
2πσt

e
−

(t−t′)2

2σ2
t P(t′, d) dt′. (4.12)

The angular resolution of the tracks obtained with a likelihood-based algo-
rithm is largely improved, reaching the precision of 2.5 ◦, from the initial 7.5 ◦

of the direct walk fit.

Bayesian Likelihood

The Bayesian algorithm is developed to try whether an hypothesis of down-
going particle could match the reconstructed up-going track. A large fraction
of apparently up-going neutrino tracks are in fact misreconstructed muons ar-
riving with the same Cherenkov angle, as shown in figure 4.5, and must be
rejected to resolve the signal. Instead of searching the best track for a given
a set of measured quantities, one could ask how likely is that another known
source produced the observed signal. The key of the Bayesian algorithm is to
assume an a-priori knowledge of the muon flux, and reconstruct the track as
forcely down-going. The information is based on measurements of down-going
muons recorded in AMANDA, and used as a weight for the track hypothe-
sis. According to Bayes’ theorem [70], the probability that a hit pattern H
observed in the data is reconstructed as a muon track µ is

P(µ|H) = P(H|µ)
P(µ)

P(H)
. (4.13)

P(H|µ) is the likelihood that a muon is responsible for the hit pattern H
observed in the data; P(µ) is the probability of having a muon, assumed
the prior knowledge of the flux, and P(H) a normalisation representing the
probability of a pattern H. A bayesian likelihood can then be defined based
on the probability obtained from expression (4.13)

LB =
∏

hits

P(µ|H). (4.14)

As we are interested on the zenith angle of the reconstructed event, we consider
a polynomial fit P (θ) which weights the track fitting it to the muon flux curve.
With this assumption, the Bayesian likelihood can be put in the form

LB = P (θ)L(t|d, θ), (4.15)

where L is the general likelihood, evaluated from the time residual, and θ the
zenith angle of the track. Comparing the likelihood of a reconstruction fit
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Figure 4.5: Two particles, one down-going and the other up-going, can have
the same photon arrival angle at one optical module.

with the Bayesian likelihood, it is possible to reject additional background of
misreconstructed down-going particles.

Likelihood based on Hit Probability

The evaluation of the hit probability of each optical module, as a function
of its distance from the track, allows for the definition of a likelihood function
which does not depend on the time residual, but is purely geometric. The not-
hit probability of an optical module is determined by 1 − Phit and increases
with the distance. The likelihood function of a track hypothesis is constructed
in this case as the joint probability that hit channels be hit, and quiet channels
not be hit, for a given event [65]

L =
nhit∏

i=1

P i
hit

NOM∏

i=nhit+1

P i
no−hit, (4.16)

where nhit is the number of hit channels, and nOM the number of total channels
(677 for AMANDA).
The PhitPnohit method reconstructs tracks with an improved resolution respect
to the Pandel likelihood fit. A reconstruction with this algorithm has been
applied to the Mainz L6 data sample (see 5.3), and used in this analysis as
standard reconstruction fit. The method of hit probability has been used in
this work, chapter 6 to estimate the detector efficiency.

4.4.3 Reconstruction of the Energy of a Lepton Track

The number of emitted Cherenkov photons depends on the energy of the muon
track. A likelihood function as the one defined in expression (4.16), which
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takes into account the expected and observed number of hit signals, can be
used to estimate the muon energy. Assuming that the photon arrival times
are described by the Pandel function (4.10), the light intensity at distance d
can be obtained from the integral

W (d) =

∫ ∞

0
P(d, t) dt . (4.17)

The average number of detected photons n(d, θ, E) can be expressed as [66]

n(d, θ, E) =
a(θ, E)

W (d)
+ b , (4.18)

where θ is the zenith angle, and E the energy of the lepton track. The coef-
ficient a contains the photomultiplier quantum efficiency, and b accounts for
noise contribution.
Let P(1)

hit be the hit probability for a single photon. The no-hit probability for

one single photon is 1 −P(1)
hit . From this, the no-hit probability for n photons

can be obtained as

P(n)
no−hit =

(
1 − P(1)

hit

)n
, (4.19)

as for the composed probability for independent events. This last expression
represents the probability that given n photons, none hits the photomultiplier.
At this point one can write the hit probability generalised to n photons:

P(n)
hit = 1 − P(n)

no−hit = 1 −
(
1 − P(1)

hit

)n
. (4.20)

Expression (4.20) represents the probability that, given n photons, at least
one is seen.
The energy of a lepton is a sixth track parameter, further to the five geometri-
cal (x, y, z, θ, φ). In principle, it could be estimated minimising the likelihood
in a six-dimensional space, but from a technical point of view, the numerical
procedure gets slower. Therefore the energy reconstruction is performed in
two steps: first the geometry of the track is reconstructed, and then a second
minimisation leads to a best estimate for the enegy. This procedure is possible
only in those cases where the measured values given as an input to the like-
lihood function do not depend on the energy, as in the case of the PhitPnohit

likelihood. For other cases, as for the likelihood based on the amplitude value,
the minimisation must be achieved in one unique step.
As mentioned in section 2.3, most of the muons traverse and exit the detec-
tor. This fact limits the information about the actual number of Cherenkov
photons emitted, so that in case of very energetic events the energy is often
underestimated. The energy estimator provided by this algorithm has been
corrected with a polynomial function [74] and used in this analysis as basis for
the unfolding.



48 CHAPTER 4. EVENT RECONSTRUCTION

4.4.4 Paraboloid Fit and Track Resolution

Once a track candidate has been identified with any of the above described like-
lihood methods, the question remains about its geometrical resolution (δθ, δφ).
Let us assume that the best estimate for the track parameters is provided by
a maximum likelihood Lmax, and that the maximum value has been found in
the space (θ, φ). We consider the set of parallel tracks, disregarding the point
(x, y, z); this reduction simplifies considerably the problem. The negative log-
arithm − logL is approximated with a Gaussian at the minimum. An ellipse
is identified in the two dimensional space, so that − logL, constrained on the
ellipse, has increased by 1/2 with respect to the minimum value − logLmax:

− logLellipse + logLmax =
1

2
. (4.21)

An analytic χ2 minimisation provides the best paraboloid approximating − logL
at the minumum [67]. Writing the paraboloid in the parametric form, the
problem reduces to the determination of a set of 7 parameters:

P : a + b1 φ + b2θ +
1

2
(φ, θ)C (φ, θ)T . (4.22)

The three parameters a, b1, b2 are related with the position of the minimum;
the matrix C contains the curvature. The errors on the resolution can be
obtained by the coefficients (C)ij , as the covariance matrix of the Gaussian
approximation is the inverse of C.

σ2
φ = C−1

11

σ2
θ = C−1

22

cov(φ, θ) = C−1
12 . (4.23)

In a reference frame where the matrix C is diagonal, the errors on the two pa-
rameters (θ, φ) can be read as the axes of the rotated ellipse. The geometrical
average

S =
√

σ1 · σ2 , (4.24)

representing the area of the ellipse, is used as an estimate of the track resolu-
tion.



Chapter 5

Event Selection

The data sample investigated in this analysis consists of atmospheric neutrino
events recorded over the four year period 2000 - 2003, selected according to
some quality requirements. The filtering criteria are established by comparing
real data to Monte Carlo simulation, optimising the matching on a 20% of
the data events1. The raw data were first elaborated and selected at Zeuthen.
Selection criteria are applied both to detector stability and to the quality of
the signal recorded, and in a second stage to the reconstructed track. Further
advanced reconstruction algorithms and rejection criteria are developed and
applied in Mainz to the Zeuthen filtered sample. As a last step, selection
conditions are applied to some variables for the specific purpose of this analysis,
which is to optimise the agreement between data and simulation and reject
background with minimal signal loss.

5.1 Measured Data at Initial Level

Data are initially recorded by the AMANDA data acquisition system in F2K

format and shipped North via airplane. The complete data sample from the
years 2000-03, which will be investigated in this analysis, occupies about 8
TBytes on tape. It consists of about 109 events, of which the vast majority
are atmospheric muon events and will be rejected as background during the
selection and reconstruction process. F2K is ASCII format which has been
described in section 2.6. The whole simulated data sample covering the four
year time period analysed here contains about 8 × 105 events.

5.2 Zeuthen Selection and Reconstruction

Raw data of the years 2000-03 have been accurately selected and reconstructed
in successive stages in Zeuthen with the SIEGLINDE software package [46].

1According to the AMANDA blindness policy, the analysis criteria are established basing
on a 20% of the events. The rest is disclosed after the procedure has been approved.

49
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In chapter 4 the reconstruction algorithms are described.
Firstly the raw data are processed with a general set of selection criteria based
on detector stability and hit quality. In addition, whole files are rejected when
they show unstable rates in the AMANDA monitoring system.

• Detector stability

– exclusion of unclean data taking periods, including flare periods,
detection maintenance periods, changes of the trigger conditions,
and all possible alterations which could make data taking unstable.

– exclusion of known defective optical modules, which are either not
working or showing unstable noise rates.

– selection of files after amplitude and geometry calibration (see 2.9).
Data taken with uncertain calibration, on the other side, are disre-
garded.

• Hit quality

– exclusion of the time over threshold values falling outside a window
of 50 to 200 ns for electric cable connected modules and 5 ns for
optical connected modules.

– selection of the first hit in the case of multiple hit signals.

– exclusion of topologically isolated hits, which are unlikely to belong
to a track and may instead be a result of electrical noise.

Applying the different exclusion conditions can mean that the remaining hits
for an event do not fulfill the trigger condition any longer. Such events will
be rejected at this level. The recorded hits passing the conditions are pro-
cessed with the first reconstruction algorithm. After every reconstruction,
with the increasing complexity of the algorithms used, further selection con-
ditions based on some quality parameters are applied to reject all possible
sources of background.

Fit performed in Zeuthen

1. As mentioned in chapter 4, the easiest and least computer intensive
algorithm is the direct walk reconstruction fit. This allows for a first
rough estimate of the track direction. After the direct walk result, all
the tracks with zenith θ < 70 ◦ are rejected. The coordinate system of
AMANDA labels θ = 0 as a particle coming from the Southern direction,
and we often refer to events from the Southern hemisphere as down-
going.

2. The second reconstruction fit is performed with the JAMS algorithm
(4.4.1). Events identified as suspected double-muons are rejected. The
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angular resolution provided by the direct walk fit is slightly improved
with this second level. After the JAMS reconstruction, all events with
zenith θ < 80 ◦ are rejected.

3. At this level, all hits suspected of cross-talk2 are rejected and the trigger
condition is verified. Events that do not fulfil the trigger condition are
rejected.

4. This considerable reduction of events allows likelihood-based reconstruc-
tion fits to be applied, more advanced from the point of view of com-
puting time and complexity. At first, the JAMS reconstructed track is
assumed as starting hypothesis and the Pandel function is applied to
evaluate the expected photon arrival time at each optical module. The
iterative likelihood is computed and maximised with a 32-fold iterative
process.
The likelihood algorithm can reconstruct a track with a slightly different
zenith respect to the JAMS fit; again all tracks with θ < 80 ◦ are rejected.

5. Finally, the possibility of a misreconstructed down-going event is in-
vestigated evaluating the likelihood of a down-going track according to
the Bayes reconstruction fit. Considering the up-going track from the
JAMS result, the comparison with a possible down-going track is per-
formed with a 64-fold iterative likelihood. All tracks which result in a
maximum likelihood as down-going are rejected.

The Zeuthen selection provides a final data sample containing about 7 · 106

events. The exact values are shown in table 5.1.
This sample has been used as a basis for a large number of AMANDA analyses
[71, 72, 73, 74].

Raw data 7, 14 × 109

Level 1 θdirect walk > 70 260 × 106

Level 2 θJAMS > 80 28 × 106

Level 5 θPandel > 80 7, 85 × 106

Table 5.1: Number of events after each step of the Zeuthen selection.

5.3 Mainz Selection and Reconstruction

The data sample resulting from the Zeuthen selection has undergone further
processing in Mainz to other reconstruction levels. Stricter selection conditions

2Cross-talk is an electronic artefact. See section 4.2 for an explanation.
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have been established, seen the high computing time of the reconstruction
algorithms used.

1. All tracks with θ < 90 ◦ from the 32-folded Bayesian likelihood are re-
jected. This restricts the data sample to events below the horizon.

2. A fit algorithm based on the hit probability is applied. The 10-fold
likelihood is evaluated and the angular resolution of the reconstructed
track is further refined. After this level a hit cleaning is applied to those
hits having a residual time that exceeds the expected value by 3σ.

3. The Pandel function is applied to evaluate the expected photon ar-
rival times with reference to the high resolution track obtained from
the last reconstruction step. After this level the residual time condition
is checked and events not fulfilling the condition are rejected.

The data sample obtained after the Mainz reconstruction is further re-
duced by about a factor of 10 with respect to the Zeuthen sample.

Raw data 7, 14 × 109

Zeuthen sample 7, 85 × 106

Mainz sample 8, 28 × 105

Table 5.2: Number of events after each selection step.

5.4 Variables Used in the Final Selection

A few variables are considered in this analysis to check data quality and com-
pare data with simulation. The only quantity directly recorded is the number
of hit channels, all the others depend on the reconstruction fit. Unless dif-
ferently specified, we refer to the PhitPno−hit fit described in point (2) of the
previous paragraph. In the following paragraph, we describe the conditions
applied to those variables to reject background.

1. The zenith angle, or declination angle of the track, with respect to a
coordinate system where 90 ◦ is the horizon direction, and 180 ◦ is the
North Pole.

2. The number of hit channels Nch contributing to the signal.

3. The smoothness, which is a measure of the uniformity in the distribution
of hits along the track. We consider the hits within 50 m from the track
and with a low residual time −25 ns < t < 75 ns. For each optical module
within the distance l, the hit probability is evaluated as a function of
the distance. The expected number of hits is then compared with the
observed number, as a function of the position along the track (see figure
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5.1). The observed and expected number of hits, respectively, are given
by

N(l) =
∑

i

θ (l − li) (5.1)

Nexpected(l) =
∑

j

P(dj) θ (l − lj) (5.2)

with i running over hits, and j over the optical modules within the
distance d. P(dj) is the probability that module j is hit. The smoothness
is defined as

S =
sgn [N(lmax) − Nexpected(lmax)]

N(∞)
max

l
|N(l) − Nexpected(l)| (5.3)

By definition −1 < S < +1. For a given track hypothesis, a value
S → +1 indicates that hits are missing. S → −1 instead means that
unexpected hits appear in optical modules too far away from the track.
In all cases, S 6= 0 indicates a possible misreconstruction.

4. The likelihood difference between the considered track and a track com-
ing from the opposite direction with same angle. Figure 4.5 illustrates
this case. When the likelihoods of the two tracks are too close, a misre-
constructed event is difficult to identify (see figure 5.3).

5. The angle ψ between two tracks hypotheses3, results of two subsequent
fits of the same event, whose geometry is illustrated in figure 5.2. Each
track is identified by zenith and azimuth (θ, φ), so if e1 and e2 are the
two versors of the tracks

t1 : e1(sin θ1 cos φ1, sin θ1 sin φ1, cos θ1)

t2 : e2(sin θ2 cos φ2, sin θ2 sinφ2, cos θ2). (5.4)

the angle ψ can be determined from the relation t1 · t2 = cos ψ

cos ψ = sin θ1 sin θ2 cos(∆φ) + cos θ1 cos θ2 (5.5)

ψ lies in the plane individuated by the two versors. A large value of this
angle indicates that the two subsequent fits strongly disagree, rather
than represent an adjustment of each other.

6. The angular resolution of the track. The negative logarithm of the like-
lihood, which is a function of the track parameters (θ, φ), shows a mini-
mum in correspondence of the most likely track hypothesis. The likeli-
hood function is approximated with a second degree polynomial at the
minimum, whose parameters are determined with a least square fit in
this two-dimensional parameter space. The resolution is defined from
the paraboloid fit errors σ1 and σ2 (see expression (4.24)).

3often called “space angle” in AMANDA
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Figure 5.1: Projection of the photon distances to each optical module hit along
the direction of the track.

Figure 5.2: The space angle between two tracks, defined on the plane individ-
uated by the two versors. As the two tracks are resulting from two different
fits of the same event, the angle should be small.

Figure 5.3: The negative likelihood logarithm can have a local minimum not
far from the absolute one, in correspondence of a down-going track. When the
two minima are not clearly resolved, the track can be misreconstructed
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5.5 Final Selection

Dedicated selection conditions have been applied to some parameters of the
track to refine our data sample. A sample of 20% of our measured data is
compared with a simulated sample to establish the strength of the rejection
condition and check the quality of the selected events. The variables that
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Figure 5.4: Distributions of the six variables considered for the selection, after
the Mainz L6 filtering. Monte Carlo simulation is represented by a filled
histogram. Data points are obtained by 5 · 20% of the total sample. Vertical
lines show the threshold value for events to pass the final selection.

have been compared between data and Monte Carlo simulations are described
in paragraph 5.4. The zenith angle distribution (figure 5.4 plot 1) allows for
an initial, simple rejection of tracks coming from the Northern direction. As
shown in the figure, background is still largely present in the sample. No
condition is applied to the variable Nch, whose distribution is anyway used to
look at the matching between data and Monte Carlo (plot 2). The condition
on the smoothness (plot 3) is meant to reject tracks whose reconstruction
does not optimally match the hits pattern, as either channels are missing, or
signals are spread far from the track region. The likelihood difference (plot
4) allows for rejection of tracks which could be misreconstructed as upgoing,
although originated by cosmic ray muons. Here the likelihood difference is
calculated between a down-going Pandel fit and upgoing Bayesian. Small
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values indicate that there is no clear distinction between the up- and down-
going reconstruction, hence it is prudent to dismiss the track. The space
angle (plot 5) is considered in which it represents a measure of the goodness
of the fit. A track showing no reconstruction ambiguity has small space angle
between different fits. The angular resolution of the track (plot 6) indicates
the precision of the fit result. Background identification based on zenith angle
rejection is more efficient by good resoluted tracks.
The sample before the final selection is composed of 7.3·105 data events, and
about 104 simulated events (figure 5.4). A first set of conditions (A) for refining
the sample are set to:

zenith > 110 ◦

smoothness > −0.4
likelihood difference > 25
space angle < 15 ◦

median resolution < 4.5 ◦

(A)

After this selection level the remaining simulated sample is composed of 7145
measured data events, and 5219 simulated events4. These results are shown
in figure 5.5.
Background is still present in the sample, as it is evident from the absolute
normalisation, hence the strength of the conditions has been tightened (B) to
the following values

zenith > 110 ◦

smoothness > −0.375
likelihood difference > 32.5
space angle < 7.5 ◦

median resolution < 3 ◦

(B)

Once the conditions of level (B) are applied, the data sample is composed of
2640 events and the simulated sample of 3194. Those results are shown in
figure 5.6.
Although the agreement between data and Monte Carlo at level (B) is satis-

factory, it can be refined by choosing a variable threshold on some variables,
so that the strength of the selection is different in the high and low energy re-
gions. This would also allow less signal suppression in the data. The selection
is further optimised substituting the fix condition on the two variables median
resolution and likelihood difference with a condition which is function of zenith
and number of channels. The values used for the selection are illustrated in
figure 5.7 and have been optimised in a previous analysis [74]. In particular,

4Simulated events are weighted, hence their absolute number does not correspond with
the integral of the distribution.
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Figure 5.5: The six variables investigated after selection level (A); the blue
lines represent the selection value threshold. Results from Monte Carlo sim-
ulations are not normalised to data. Data events considered are 20% of the
total sample, multiplied by a factor 5.

the dependence of the condition on the number of hits ensures that events with
high hit multiplicity are selected with looser conditions. It is crucial for this
analysis not to suppress signal in the high energy region, as the contribution
of neutrinos from charm becomes important around one TeV, where statistics
are low according to the expected flux prediction. This last case (C) optimises
the agreement between simulation and data, and simultaneously ensures min-
imal signal loss, and hence it will be used in this analysis. To summarise, the
conditions for an event to pass the final selection are

zenith > 110 ◦

smoothness > −0.375
likelihood difference > fa(θ, Nch) (see fig. 5.7 [a])
space angle < 7.5 ◦

median resolution < fb(θ, Nch) (see fig. 5.7 [b])

(C)

After the selection level (C), the data sample is composed of 3395 atmospheric
neutrino events, and 3974 simulated events. An overview of the six variables
analysed is shown in figures 5.8 and 5.9. The normalisation of the Monte Carlo
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Figure 5.6: The six variables investigated after selection level (B). Results
from Monte Carlo simulations are not normalised to data.

distribution is affected by small variation due to the flux model applied. In all
the plots shown is this chapter, the weight for simulated events is calculated
with respect to the Lipari model [91]. The variable Nhits is of particular
interest as strongly related to the energy of the event, hence no condition is
applied on its distribution. In chapter 8, this variable will play an essential
role in the unfolding and reconstruction of neutrino energy.
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Figure 5.7: threshold for likelihood difference [a] and median resolution [b].
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Figure 5.8: Comparison between data and simulation after the last selection
level. The variables zenith, number of channels and smoothness are shown.
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Chapter 6

Detector Efficiency and

Effective Area

A way to determine the acceptance of the detector is to count how many
Cherenkov photons are missed when a charged particle traverses the detector,
as a function of the distance of the photomultiplier from the track. Ice has
low absorption, but many of the recorded photons have been scattered before
reaching one photomultiplier. This affects both arrival time and direction,
making the reconstruction challenging. The comparison of data with simula-
tions assuming various efficiencies allows us to extrapolate and estimate the
detector acceptance. Moreover, the acceptance is a function of the arrival an-
gle of the photons. This last aspect is to be ascribed to the geometry of the
AMANDA optical modules. In the final paragraph, the neutrino effective area
is evaluated as a function of the energy and zenith angle of the lepton track.

6.1 Hit Probability

A charged particle traversing the ice emits Cherenkov photons along its path
with an angle θC respect to the trajectory direction. Light is detected by
a lattice of photomultipliers around the track. For each photomultiplier we
evaluate the photon distance d, defined as the distance that a photon has to
travel to reach unscattered the position of the photomultiplier (see fig. 6.1).
The information about the photon distance is purely geometrical and depends
on the declination angle of the track only. Each track is reconstructed from
a set of hits H, selected as described in chapter 4. For each optical module
which has been hit, we evaluate the photon distance from the track, as shown
in figure 6.4 and 6.5. The first shows the distribution of the distance of each
track from each optical module, up to a value of 50 meters. The second one
shows the number of photomultipliers which did actually see at least one hit,
among the ones lying within the distance d from the track. In figure 6.2,
the situation for one single track is illustrated. The coloured numbers indicate

61



62 CHAPTER 6. DETECTOR EFFICIENCY AND EFFECTIVE AREA

Figure 6.1: The geometrical definition of photon distance d, from the track to
the photomultiplier.

the photomultiplier detecting light which passed the trigger condition. Such a
pattern is the input for the reconstruction chain. The information about the
set of hit channels is stored in the F2K files, and is later no longer recorded,
after the event is identified as reconstructed track. This makes it necessary
to use the original F2K files for the analysis described in this chapter. An
example of F2K is shown in figure 2.14; it contains time and position of each
photomultiplier hit after hit cleaning. One example of reconstructed track
is shown in figure 6.3, where the coloured numbers indicate the hit channels
laying within a photon distance of 50 meters from the track. If we name N0 the
number of photomultipliers within a certain distance d, and NH the number
of photomultipliers within the distance d detecting a light signal, the efficiency
is defined through the hit probability as

ǫ =
NH

N0
. (6.1)

The distributions of the variables NH and N0 are shown in figures 6.4 and
6.5. In the simulated data it is possible to vary the efficiency of the optical
modules with respect with the nominal value. We use here a ±30% variation
in the photon detection efficiency of the simulated data. Figure 6.6 shows the
variable ǫ defined in expression (6.1) as a function of the photon distance, for
data and three Monte Carlo simulations with acceptance 70%, 100%, 130%.
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Figure 6.2: A pattern to be reconstructed as a track. The hit optical modules
(coloured) embedded in the whole detector.

The binning is in 25 bins of the width of 2 m each.

6.2 Determination of the Detector Efficiency

Comparing the data distribution of hit optical modules with the variable accep-
tance Monte Carlo, it is possible to extrapolate the photon detection efficiency
in the data. To this purpose, we plot the efficiency obtained for each simulated
data sample (unbinned) and interpolate with an appropriate fit between the
three points. We present here the result of polynomial fits of degree 1 and 2
(see figure 6.7). To evaluate the detector efficiency we choose to compare the
measured data with the second degree polynomial P (x) = ax2 + bx + c inter-
polating the three varied efficiencies Monte Carlo. The least squares method
gives as a best estimate

a = 1.3 · 10−5

b = 0.004
c = 0.166

(6.2)

Our data point has the value d = 0.438, leading to the crossing point with the
polynomial curve

ax2 + bx + c = d ⇒ x = 94.6

Our estimate of the detector efficiency is then

ǫ = 95% (6.3)
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Figure 6.3: The hit optical modules lying within 50 meters from the track,
and the track line reconstructed and embedded in the complete detector view.

This result is compatible with the value previously obtained in other analyses,
see for instance [73] and [74].

6.3 Expected Number of Photons

We assume that the hit probability is Poisson distributed. The Poisson statis-
tics describes the probability for a number of events occurring with a known
average rate in a defined time interval, independently of the time since the
last event. If we name Phit the hit probability, r the distance1 of each optical
module from the track, N(r) the number of hits at distance r, and λ(r) the
average expected number of photons at distance r, we have

Phit(λ(r), N(r)) =
λ(r)N(r)e−λ(r)

N(r)!
. (6.4)

Having previously defined the hit probability (expression 6.1), we consider the
probability to see no photons Pno hit = 1 − Phit at distance r. If the hit
probability is Poissonian distributed, the substitution N = 0 in equation 6.4
yields

Pnot hit = P (0, λ) = e−λ (6.5)

We obtain a relation between the hit probability investigated in the previous
part and the expected number of photons λ. Both functions of the distance r

Phit(r) = 1 − e−λ(r) (6.6)

1As often in this chapter, we refer to the distance traveled by photons as illustrated in
figure 6.1.
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We assume the functional form for λ to be linear in the distance r with general
coefficients a, b to be obtained with a fit

λ = a + b r, (6.7)

with r being the photon distance from the optical module. We interpolate
the not-hit probability to fit this parameterised curve. The fit is shown in
figure 6.8. The efficiencies are plotted in figure 6.8 respectively for data and
simulation with 100% acceptance.

6.4 Errors on Efficiencies

The efficiency ǫ is generally defined as the ratio between the number of the
events which pass the count Np out of N0 candidates, and the total counts N0

ǫ =
Np

N0
. (6.8)

The measure of Np events out of a sample of size N0 is a binomial process [69]
whose probability is expressed by

P(Np, ǫ, N0) =

(
N0

Np

)
ǫNp(1 − ǫ)N0 , (6.9)
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with mean value Np = ǫN0 and variance σ2
Np

= nǫ(1 − ǫ). According to the
definition of efficiency given in equation (6.8), the error on ǫ is

σ2
ǫ =

Np(N0 − Np)

N3
0

(6.10)

Note that he two quantities Np and N0 are correlated, hence we cannot apply
the usual error propagation relation and have to take into account the covari-
ance term σNf

σNp . The resulting statistical error obtained with the formula
of expression (6.10) is very small. As we have only three measurements for
the simulated data, however, there is a clear uncertainty in the choice of the
fit. We have chosen for the measured efficiency

ǫ = (95 ± 5)% (6.11)

6.5 Detector Effective Area

The flux of produced neutrinos is related to the flux of detected lepton events
through the effective area. This quantity accounts for both the neutrino
charged current cross section and for the finite geometry of the detector. To
detect a neutrino, a charged current scattering has to occur in the ice in the
vicinity of the detector and originate a lepton. It is useful to ask how many
neutrinos we expect in the instrumented volume, and how many do we actu-
ally see. The first information is provided by the neutrino flux Φν , convoluted
with the charge current scattering cross section, the detector geometry and ef-
ficiency. The second information consists of our observed data. This relation
is expressed in equation 6.12.

Nobs = Φν · Aeff · t (6.12)

The quantity Aeff is the effective area and includes both the detector efficiency
and the cross section σ(νN → lX); t is the time of data taking. We can also
refer to the rates

Robs =
Nobs

t
Rtrue =

Ntrue
t

(6.13)

If we take into account the detector efficiency, namely the ratio Robs/Rtrue,
the measured rate of events can be expressed as

Robs = Φν σ n

∫

V
ǫ dV , (6.14)

where n is the particle density and V the detector volume. In the case where
ǫ is constant, this expression reduces to ǫ Rtrue. The effective area is then
written as

Aeff = σ n

∫

V
ǫ dV. (6.15)
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Figure 6.9: The relation between true and observed number of events is the
ratio between the generation area and the effective area.

When referring to a simulated data sample, the true number of events is the
generated amount of events on the Earth surface, and the following relation
holds

Aeff
Atrue

=
Nobs
Ntrue

(6.16)

The neutrino effective area represents the area of an ideal telescope (100%
efficiency) detecting the same number of events as our detector sees, given the
same number of starting (generated) events. In other words it represents the
area of a telescope having its finite geometry as a unique cause of loss.
In analogy, the effective volume represents the volume of an ideal detector
observing the same number of events Nobs as our detector sees:

Veff =

∫

V
ǫ dV = Vtrue

Nobs
Ntrue

. (6.17)

Whilst the neutrino effective volume coincides with the muon effective volume,
the two effective areas differ. This is due to the fact that the two expected
fluxes differ by a factor proportional to the cross-section σ(ν → µ)

Φµ = Φν σ n 〈rµ〉 (6.18)

with n being the particle density and 〈rµ〉 the average muon free path. To
identify the rate of observed muons as a function of the expected muon flux
and the muon effective area, we obtain

Rµ

obs = Φµ Aµ

eff = Φµ
1

〈rµ〉

∫

V
ǫ dV (6.19)

The following geometrical relation holds between muon effective area and ef-
fective volume

V µ

eff = 〈rµ〉Aµ

eff. (6.20)

We have estimated the detector effective area comparing the two quantities
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Figure 6.10: The neutrino effective area, as a function of the neutrino energy,
for different values of the zenith angle θ.

• Nobs, integral of the true energy distribution of a simulated sample,
shown in figure 6.11

• Φν , expected flux according to a model prediction, shown in figure 6.12

The predicted flux of neutrino events has been propagating through the detec-
tor over a period of 807 days. This considered, we make a distinction between
declination arrival angles, as the detector geometry gives different responses
in efficiency to vertical or horizontal tracks. The resulting effective area, as
a function of the neutrino energy and for different declination bins, is shown
in figure 6.10. It will serve in chapter 8 to reconstruct the flux of observed
events, from the measured counts Nobs of a real data sample.
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Figure 6.11: Neutrino flux, in different bins according to the zenith angle θ of
arrival of the particle.

true_energy_histogram_01
Entries  187917
Mean    2.816
RMS    0.5312

 / GeVν E
10

Log
2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

co
un

ts

0

20

40

60

80

100

true_energy_histogram_01
Entries  187917
Mean    2.816
RMS    0.5312

true_energy_histogram_01

 < -0.8θ-1 < cos 

 < -0.6θ-0.8 < cos 

 < -0.4θ-0.6 < cos 

 < -0.2θ-0.4 < cos 

Figure 6.12: True neutrino energy in different bins according to the zenith
angle.



Chapter 7

The Unfolding Problem

Let us suppose we travel around Europe and take a look at what people are
reading on the train. We have some statistics from bookshops in different
countries concerning the amount of copies sold of some literary genres, let’s
say detective stories, poetry and dramatic literature. Most of the British read
detective stories, while the French prefer poetry and the Russians dramatic
pieces, with some exceptions. We take note of this information, put it in our
pocket and board a train. Travelling around we don’t ask anyone for their
nationality, but we throw a glance on their reading. After a few months we
build a three class histogram stating: how many British, French and Russians
did we meet?

Two remarks are in order: first, there is no possibility of defining a
mathematical function “literary taste (nationality)”. Second, we believe in
our bookshop quest, allowing for some limited fluctuations from the expected
distribution and rejecting large fluctuations as unphysical. If our statistics
from the bookshop is sufficiently large, this bias will be negligible.

Unfolding is a simple problem to state with a fairly complicated solution.

7.1 The Unfolding Problem

Let us suppose we want to investigate a certain physical quantity x with its
statistical distribution f(x). Due to the fact we are using a real detector, the
following points should be taken into account:

1. The variable x is not directly accessible with a measurement, but a
quantity y related to it is available.

2. Limited acceptance: the probability of measuring each event is smaller
than 1. This will result in a difference between the integrals of the true
and measured distributions.

3. Finite resolution: the precision of a measurement is limited. If the result
is in the form of a binned distribution, values in a certain bin of the true
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distribution could contribute to another bin of the measured distribution.
In general, a smearing or shift in the measured distribution g(x) can
occur.

4. The functional relation y = h(x) is analytically unknown. If this is the
case, the only information about the true variable and its distribution
comes from a simulated data sample, having a model of the source as
initial assumption.

Let us denote the probability density functions of the true variable x and
unfolded variable y as f(x) and g(y) respectively. This kind of problem has
the general solution

g(y) =

∫
A(x, y)f(x)dx + b(y) (7.1)

where A(x, y) represents the detector effect and b(y) an arbitrary background
parameterisation.

Def . Unfolding is the inverse problem of solving for f(x) from g(y).

The problem of solving for f(x) is a so called ill posed problem, because of
its non-stable, rapidly oscillating behaviour, meaning that small variations in
the input variable can result in large changes in the solution. In the general
case, a solution of the unfolding problem does not exist. If the unfolding pro-
cess is the functional f connecting objects of a space A (true variables) with
objects of an image space B (measured variables), such a function has the
property

Ker{f} 6= 0.

The true and measured distributions, whose relation is given by equation (7.1)
are more conveniently expressed in their discrete version, as any numerical so-
lution of the integral equation for continuous variables will require an approx-
imation by a finite number of elements. A measure of g(y) will be represented
in the form of a histogram gi, with i running over bins. For the sake of sim-
plicity we will describe the discrete case. A more general expression can be
obtained by adding a background term bi (see expression 7.1), which we will
ignore for now. In the discrete case we write the transition operator in a
matrix form

yi = Aijxj (7.2)

If the true and measured variable coincide, in the most ideal case we can
describe, the transition operator is the identical function. If we take into
account limited acceptance, but no smearing, Aij will still be a diagonal matrix
with eigenvalues λ(i) ≤ 1. Those values can be seen as the acceptance, or
probability of measurement, for each entry. In reality, a smearing between
input data and results can occur, due to correlations between neighbouring
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bins. The matrix element on the main diagonal of A will deviate from the
identity by a small quantity ǫ. The better the resolution of the measurement,
the greater the number of zero-value off-diagonal elements. The better the
acceptance, the smaller the value of ǫ:

A =




1 − ǫ ǫ 0 ... 0
ǫ 1 − 2ǫ ǫ ... 0
... ... ... ... ...
0 0 ... 0 1 − ǫ




The only off-diagonal terms are connecting neighbour bins. In the general case
x and y are chosen with the same binning, which implies a square matrix. As
we will see later in this chapter, it is possible to choose any binning for the
input and output variables, so we will not lack generality with this assumption.
Beside this, we can assume a symmetric matrix. In general, if no systematics
affect the measurement, we can expect the smearing to be symmetric around
the central value, provided that the number of measurements is large enough.
The unfolding process consists of finding and inverting the matrix A

~x = A−1~y (7.3)

with the error propagation given by

σx = A−1σyA
−1T

. (7.4)

The result is easily achieved with a matrix A with dominating diagonal, and
becomes worse as A shows large correlations between bins, namely large off-
diagonal elements. In general, if A is a symmetric matrix, we can change basis
to its diagonal form D = UAUT so that

~y = Ax = UT DUx ⇒ UT ~y = DUT~x. (7.5)

In the new basis c = UT y and b = UT x, and the unfolding relation is brought
to diagonal form

c = Db. (7.6)

The components do not mix (cj = λ(j)bj) and the statistical fluctuation on the
coefficients cj is magnified or reduced by multiplication with the correspond-
ing eigenvalue. As we will describe in the next paragraph, the direct inversion
does not always fulfil the requirements of good statistical properties.
Our aim is to provide a numerical solution for the problem, applicable to the
case of neutrino energy reconstruction. For this reason we will describe the
perturbative approach to the solution, related to an iterative solution by like-
lihood maximisation.
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7.2 Origin of the Problem Oddities

The point where the problem of unfolding encounters some difficulties can be
identified trying to solve the problem by simple inversion. To do that, we can
reduce to a 2 bins case, which does not lack generality respect to n bins. The
relation between true and measured variables y = Ax is defined through the
operator A for which we assume the form

A =
1

2

(
1 + ǫ 1 − ǫ
1 − ǫ 1 + ǫ

)
(7.7)

with ǫ ∈ [0, 1] representing the efficiency of the detector, so that ǫ → 1 rep-
resents an ideal case. From elementary linear algebra, in general it is always
possible to find two matrices U and V so that A can be written as A = UDV T

with D being a diagonal matrix [75]. In particular if A is symmetric, this is
a proper rotation of the form A = UDUT . A matrix A of the form given in
expression (7.7) is diagonalised to

D =

(
1 0
0 ǫ

)
(7.8)

by the matrix

U =
1√
2

(
1 1
1 −1

)
. (7.9)

Let us consider the vector y and the covariance matrix S which represent the
measured variable and the statistical errors on the measured values in case
there is no correlation between bins:

y =

(
y1

y2

)
S =

(
y1 0
0 y2

)
. (7.10)

Solving the linear equation y = Ax implies inverting A, which is more conve-
niently brought in its diagonal form

y = Ax = UDUT x (7.11)

Multiplying both sides by U−1 = UT we obtain

DUT x = UT y (7.12)

Dx′ = y′ (7.13)

here x′ and y′ denote the rotated vectors

x′ = UT x =
1√
2

(
x1 + x2

x1 − x2

)
y′ = UT y =

1√
2

(
y1 + y2

y1 − y2

)
. (7.14)
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The problem is solved inverting the matrix D. The inverse of a diagonal matrix
is a diagonal matrix with inverse eigenvalues

D−1 =

(
1 0
0 1

ǫ

)
. (7.15)

This matrix exists ∀ǫ 6= 0. This allows for the solution of the system. Rotating
back to the original basis we obtain the vector x

x = Ux′ = UD−1y′ =
y1 − y2

2ǫ

(
1
−1

)
+

y1 + y2

2

(
1
1

)
. (7.16)

The parameterisation of equation (7.16) illustrates the source of ill-poseness of
the problem. If ǫ → 0 and the measured values y1, y2 are such that (y1−y2)

2 <
y1 + y2, the first term coefficient y1 − y2 is not statistically significant, whilst
the second coefficient y1 + y2 has a statistical weight. But for ǫ → 0 the
first coefficient becomes much larger than the second, so that in the solution
the statistically random part prevails on the statistically well-behaving one.
This originates a so called random oscillation problem. The errors are the
components of the covariance matrix. In the rotated basis, for (y1 − y2)

2 <
y1 + y2, the covariance matrix is diagonal and the two equations described by
the system y = Ax are decoupled:

S′ = UT SU =
1

2

(
y1 + y2 y1 − y2

y1 − y2 y1 + y2

)
→ 1

2

(
y1 + y2 0

0 y1 + y2

)
(7.17)

y′1 =
1√
2

(
(y1 + y2) ±

√
y1 + y2

)
(7.18)

y′2 =
1√
2ǫ

(
(y1 − y2) ±

√
y1 + y2

)
(7.19)

The second component y2 becomes random and strongly amplified for small
ǫ. When solving the system, this components contributes to both components
of x, bringing the random factor contribution to have a strong part in the
solution. This lays in the fact that the inverse of the matrix A has rank
smaller than its dimension for ǫ → 0, as can easily be seen from the fact that
the two lines of the first term are not linearly independent:

A−1 =
1

2

(
1 1
1 1

)
+

1

2ǫ

(
1 −1

−1 1

)
(7.20)

For this reason the solution of the problem requires a regularisation term with
the function of limiting the random oscillating behaviour of the solution. The
question is finding not an exact solution, but a best estimated for an unfolded
vector x holding in the case of (y1 − y2)

2 < y1 + y2 and for small ǫ.
When going back to the origin of the problem, a small value of ǫ characterises
a poor efficiency detector, implying a bigger difficulty in determining through
unfolding both the components of x, process which is directly correlated with
the size of the errors on y.
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7.3 Covariance and correlation

A complication in the unfolding process occurs in cases of correlations between
bins. Let f be the true variable obtained by the direct inversion of A

f = A−1g (7.21)

If the measured g has no bias, the expectation value 〈f̂〉 is equal to the true
〈f〉. Error propagation from the measured g to the estimated f yields

σ (f̂) = A−1 σ (ĝ)A (7.22)

providing the covariance matrix σ(f̂) from the covariance matrix σ(ĝ) of the
measured data. Equation (7.17) shows that in A−1 there is a random oscil-
lating term, which can amplify unphysical oscillations of σ(ĝ) giving them a
large weight. In this sense the direct inversion method turns out to be not
reliable.

Acceptable unfolding results can be obtained by regularisation. Regular-
isation is a sort of a-priori information on the smoothness of the true solution,
which allows to keep random fluctuations under control. Since this can intro-
duce a bias, the weight of the a-priori information has to be determined by
statistical methods so that the resultant bias is small compared to the statis-
tical errors. This means that a measure with limited resolution always means
a loss of statistical accuracy.

7.4 The Likelihood Approach

The likelihood approach, implemented in the numerical unfolding code used in
this thesis, is an alternative to the direct inversion. Let L(x, y, A) be the like-
lihood of having a measure y for the quantity x assuming a detector response
A, with probability distributions f(x) and g(y). The number of events in bin
i is yi =

∑
j Aijxj . Assuming that the observed quantity ŷ follows the Poisson

distribution, an estimate for x is obtained by maximising the likelihood

L(x, y, A) =
n∏

i=1

P(yi, ŷi). (7.23)

For numerical implementation, this is better achieved minimising the negative
logarithm

S = − lnL(x) =
n∑

1

yi −
n∑

1

ŷi log yi + k, (7.24)

where the constant k contains the factorial ŷ!. From now on we will disregard
the constant terms, as the problem is to minimise this function. To determine
the minimum, S is approximated by a quadratic function in the neighbourood
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of a point x0. The density function f(x) is expanded on the functions pj
1 with

coefficients aj

f(x) =
m∑

j=1

ajpj(x). (7.25)

As the purpose is to solve the problem perturbatively, in a region around a
minimum x0, the likelihood function can be written in the form

S(x) = S(x0) − (x − x0)
T∇S +

1

2
(x − x0)

T H(x − x0) (7.26)

with the gradient ∇S and the Hessian H having as components the first and
second derivatives of S. In this approximation, a minimum of the likelihood
function is described by ∇S = 0. The approximated result is

xapp = x0 + H−1∇S. (7.27)

The second iteration is obtained by substituting x0 with the first solution
xapp. The convergence of such an iteration steps method is ensured by the
condition that for every correction ∆S ≪ S (perturbative regime). In the
case of logarithm likelihood functions, it can be shown that it is reasonable to
approximate them with a quadratic form close to the solution, therefore the
convergence is reached within a few iteractions.

7.5 Interpolating spline functions

Spline functions are one of the possible solutions to interpolate between pairs
(xi, yi) with xi ∈ [a, b]. The discrete set Y = y1...yn represents the values of
a function y = f(x) for x = xi, with x1 = a, xn = b. A cubic spline function
S(x) is a function with S(xi) = yi, twice continuously differentiable in the
interval [a, b], coinciding on every subinterval [xi, xi+1] with a third degree
polynomial

Si(x) = ai + bi(x − xi) + ci(x − xi)
2 + di(x − xi)

3 . (7.28)

The points xi are called knots. At every inner knot xi the two polynomi-
als defined on adjacent intervals have the same value and the same first two
derivatives. If the x axis is divided into n− 1 intervals, resulting into n knots,
4(n − 1) parameters have to be determined for the interpolating cubic spline
(ai, bi, ci, di, i = 1...n). The conditions of S(xi) = yi are n and allow the de-
termination of the n parameters ai. The conditions of continuity at the inner

1We have introduced orthogonal functions pj(x) defined in an interval [a, b], with the
property

(pj , pk) =

∫ b

a

pj(x)pk(x)dx = δjk
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knots are n − 2 for S′(x) and S′′(x), providing 3n − 2 equations for the re-
maining 3n parameters. What remains to be determined are just the first and
last knot. An usual, but not unique, choice is the “not-a-knot” condition

S′′(x) continuous across x1, xn−1. (7.29)

The difference |S(x)−f(x)| is bound by a quantity proportional to (xn− xn−1)
4,

where xn − xn−1 is the distance between neighbouring knots.

7.6 Regularisation

As mentioned before, the inverse problem of obtaining f(x) can show an un-
satisfactory solution, with oscillating behaviour and fluctuations much larger
than any physically motivated expectations. Mathematically the fluctuations
are caused by minor components of the solution which get a large weight in
the unfolding. A measure of those fluctuations can be done considering the
total curvature

r(x) =

∫
[f ′′(x)]2dx. (7.30)

The regularisation term is chosen as τ · r(x) and added to the negative likeli-
hood logarithm

−logL → −logL +
1

2
τ · r(x) . (7.31)

The parameter τ has to be balanced between two limit cases

τ → 0 ⇒ no effect of regularisation (7.32)

τ → ∞ ⇒ large bias in the resulting function (7.33)

The reason why such a regularisation term is chosen, which is just one among
different possible choices, is that the curvature of a cubic spline function has
the expression of a quadratic form

∫
[f ′′(x)]2dx = xTCx (7.34)

with C being a symmetric matrix. After the introduction of the regularisation
term, the problem reduces to find the minimum of

−logL +
1

2
τ · r(x) ≃ xT∇ +

1

2
xT Hx +

1

2
τ · xTCx (7.35)

C can be brought in diagonal form simultaneously with H. In the new basis,
naming cj the eigenvalues of C, the regularised vector is

yreg
j =

(
1

1 + τcj

)
yj . (7.36)

The bias introduced by the regularisation can be kept small compared to the
number of events by an appropriate choice of τ .
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7.7 A Numerical Solution

In this thesis, we make use of the numerical algorithm RUN [76], implemented
in FORTRAN, applied to reconstruct the neutrino energy spectrum. Our prob-
lem belongs to the category of cases in which the transition operator A is not
known, and the true distribution is simulated with a Monte Carlo method.
In words, we have available two samples: a simulated one in which both the
true and the measured variables are known, and a real one, in which only
the measured variable is known. The larger the amount of data available, the
more precise the unfolding rule; additionally, this allows us to introduce the
regularisation condition keeping the bias small enough not to influence the
statistical accuracy of the result. Both samples, the simulated and the real
data, are given in the form of an ASCII table. A steering file contains the
options to be set by the user, namely

• XLIMITS: lower and upper limit of the interval where the unfolding is
performed.

• XBINS: bin edges for the unfolded variable, defined between the two
limits mentioned above.

• VARIABLE: name or number of the input variable, followed by the num-
ber of bins of its distribution. Up to three variables are accepted as
unfolding inputs.

• NRDF: number of degrees of freedom, related to the strength of the reg-
ularisation. It is recommended to choose this parameter as the number
of data points, which in our case is the number of bins.

• KNOTS: number of knots of the cubic spline interpolating functions. A
reasonable choice is twice the number of the degrees of freedom.

• FXPOSITIVE: option that allows only positive values for the unfolded
variable.

• SMOOTH: smoothness of the interpolating function of the Monte Carlo
n-tuples.

The steering file is read out by a main script which performs the unfolding
in three steps. First he true and measured variable are read in from the
kernel file; with these two bits of information, the transition operator A can
be created. Secondly, the table containing the measured variables is read in.
It has to be pointed out that it is possible to consider weighted Monte Carlo
events, in which case one of the columns of the kernel file will be reserved for
the weight of each event. This is the case of this analysis, in which different
weights are used to reproduce the different neutrino spectral shapes. The
routine CALL UEVENT reads the event information from ASCII format and
creates an n-tuple of the type
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Figure 7.1: The RUN algorithm receives a simulated data file in ASCII format,
as input, with the three variables that will be used for the unfolding and the
true variable (with weight if required). With the simulated file, the kernel is
built. When real data are processed, RUN calls the pre-built kernel to unfold
and reconstruct the variable for data.

LABEL NY WT X Y(1)... Y(NY)

where LABEL is a string of four characters indicating the data type: data,
Monte Carlo background, Monte Carlo signal. NY is an integer representing
the number of y values. WT is the weight of the event, in the general case. X is
the true variable. Y(1)... Y(NY) is an array containing measured or simulated
data, according to the type. A likelihood function can be constructed at
this point, having the expected and observed number of entries for each bin.
Minimisation is performed in iterative steps. The results are regularised by a
term containing the curvature of a cubic spline function, whose interpolating
function parameters knots and degrees of freedom are chosen by the user.
The output is stored into a data and a log file. In the data file, a binned
distribution (bin, value) is given for the unfolded variable. All the details about
the processes, the minimisation procedure, the covariance matrix analysis and
the regularisation parameter determination are stored in the log file.
Finally, the correlations between neighbouring bins are analysed and provided
in the output, in the form of a χ2 probability distribution. If the trend is almost
constant, the correlations can be ignored, the data point can be considered
with their diagonal errors only and the regularisation procedure has worked
successfully.



Chapter 8

The Atmospheric Neutrino

Flux

Atmospheric neutrinos are decay products of secondary particles that are cre-
ated in cosmic ray interactions. Most of them originate from pion and kaon
decays; minor contributions, of great interest for this analysis, are due to de-
cays of charmed mesons and baryons (“prompt neutrinos”). In this chapter
we compare the data taken with the AMANDA detector during the 2000-
2003 period with simulated models of various spectral shapes. Neutrinos from
heavy quark decays are expected to show a different energy dependence with
respect to neutrinos from pion decays. A numerical unfolding algorithm is
applied to reconstruct the neutrino energy spectrum. We aim to resolve the
signal of prompt neutrinos from the background of conventional events and
set an upper limit to the prompt flux. This investigation is motivated by the
need to describe as precisely as possible the complete atmospheric spectrum,
which is a background to all searches for celestial neutrinos extraterrestrial ori-
gin. Particular emphasis is given to the prompt contributions, as they become
important in the high energy region.

8.1 Particles Produced by Cosmic Rays

Cosmic rays consist of protons and nuclei. The question of their origin is not
yet resolved, however there have been recent observations of very high energy
events which might be correlated with astrophysical objects, as nearby active
galactic nuclei [81]. The acceleration mechanism that can produce particles at
the highest observed energies (1020 eV) still needs to be understood. Those
particles traverse the atmosphere and originate air showers, with of a broad
series of secondary products. Neutrino-induced muons, which are the signal
detected in AMANDA for this analysis, are produced in most cases for neutrino
energies between 1 and 104 GeV [82]. In this energy range, the dominant
primary particles are protons and α particles. Heavy nuclei start contributing

83
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Figure 8.1: Left: Primary cosmic rays interact in the atmosphere to produce
a large number of secondary particles.

around 105 GeV per nucleon [111]. Neutrinos originate in air showers as
secondary decay products. The main channel for neutrino production in the
atmosphere is the decay of charged pions

π± → µ± + νµ(νµ) → νµ(νµ) + e± + νe(νe) + νµ(νµ). (8.1)

The charged pion has a lifetime of τ = 2, 603 × 10−8 s, and the relative
branching ratio for its decay to neutrinos is 99, 99% [112]. As can be seen
from expression (8.1), charged pions produce twice as many muon neutrinos
to electron neutrinos. Considering that pions are one of the most abundant
particles produced in the atmosphere, it follows that muon neutrinos are the
predominant flavour. Other relevant reactions that lead to the production of
neutrinos in the atmosphere are the decay of charged kaons (τ = 1, 238×10−8s)
and the decay of the neutral kaon (τ = 5, 18 × 10−8 s)

K± → µ± + νµ(νµ)

K± → π0 + e± + νe(νe)

K± → π0 + µ± + νµ(νµ) (8.2)

K0
L → π± + e∓ + νe(νe)

K0
L → π± + µ∓ + νµ(νµ)

The cosmic ray spectrum has been largely investigated with balloon experi-
ments, satellites and ground arrays. In general, the flux of primary cosmic rays
(number of particles per unit area per unit time) depends on the energy with
a power law, described by the spectral index γ. For primary cosmic ray parti-
cles the spectral shape is governed by γ = 2 to 2, 7. The spectrum smoothens
after the first interaction; as a consequence, the atmospheric neutrino flux is
characterised by a spectral index going from γ = 3, 7 at low energies (10 GeV)
to γ = 2, 7 at about 100 GeV. As shown in figure 8.2, there are additional
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regions, the knee and the ankle, where the slope changes again. A suppression
of events at energies above 1018 eV reflects the effect of the interaction of high
energy particles with the cosmic microwave background, which is known as
the GZK cutoff [83].

Figure 8.2: The primary cosmic ray spectrum [118]. The shape of this distri-
bution is parameterised with a power law with exponent γ = 2 to 2.7. This
fit is based on several observations by ground arrays and balloon experiments.
The very high energy region, of great interest for astro-particle physics, still
carries remarkable uncertainties. Observing particles in this region is unlikely,
which justifies the construction of large arrays to detect them.

8.2 Conventional and Prompt Neutrino Flux

In the literature, the so called conventional neutrino flux includes contribu-
tions of the light quarks u, d and s. Processes of this type are decays of light
hadrons (expressions (8.1) and (8.2)). The decays in flight of charged kaons
and pions contribute to the atmospheric lepton flux up to O(10 TeV). Above
this threshold, the semileptonic decay of charmed particles becomes the dom-
inant source of atmospheric leptons. The main contribution to the creation of
prompt neutrinos is represented by the channels

D+ → K0 + l+ + νl

D0 → K− + l+ + νl (8.3)

Λc → Λ0 + l+ + νl.
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Figure 8.3: The region between the typical critical energy for a conventional
source and that of a prompt source is dominated by contributions of prompt
neutrinos. Most of neutrinos come from decay of secondary particles rather
than from interaction processes; in the figure, νc and νp are respectively con-
ventional and prompt.

Prompt neutrinos have a harder energy spectrum than the conventional ones,
because of the short life time of their mother particle. The parameter estab-
lishing the preferred source of atmospheric neutrinos is the critical energy Ec

of the parent particle, defined as the energy at which decay and interaction
lengths are equal:

Ec =
mc2

cτ
h0, (8.4)

where h0 is a constant whose value is determined from the isothermal atmo-
sphere approximation [89], τ is the lifetime of the particle and m the mass.
The critical energy is a constant for each particle type. Above Ec the parti-
cle interacts before decaying into a neutrino, with the interaction probability
dependent on the atmospheric density as well as the propagation length. The
values of the critical energy for some conventional and charmed particles are
reported in table (8.1). It is immediately clear that values of Ec for particles
belonging to the first group are higher; the energy region where interaction
prevails over decay, suppressing the probability of neutrino production, begins
later than for conventional parts. The conventional and prompt spectrum are
compared in figure 8.5 for a simulated sample. We point out that the region
of predominance of prompt neutrinos is almost at the edge of the visibility
threshold of the AMANDA detector; the large instrumented volume of Ice-
Cube will definitely increase the sensitivity to such events. The actual failure
to observe prompt neutrinos might impose constraints on the charm produc-
tion cross sections at high energy. Such an investigation is also related to the
determination of the gluon parton distribution function, as it has been shown
that the spectral index of prompt neutrinos depends linearly on the slope of
the gluon PDF at very small x, which is a region not accessible at colliders.
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Figure 8.4: Conventional and prompt contributions to the neutrino energy
spectrum. Prompt becomes dominant for E > 105 GeV.

Log E / GeV
1 2 3 4 5 6 7 8

co
un

ts

-710

-610

-510

-410

-310

-210

-110

1

10

210

conventional

prompt

true_energy

AMANDA

Figure 8.5: Comparison of conventional and prompt spectra. The AMANDA
accessible region is indicated with an arrow. The lower threshold is due to
the multiplicity trigger (see 2.5.3), requiring a minimal energy of around 100
GeV to fulfil the condition. The upper threshold is due to lack of statistics in
the very high energy region. The latter makes it a challenging task to identify
prompt events.
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Particle Elementary mc2 Ec

components (MeV ) (GeV )

D+, D− cd̄, c̄d 1870 3.8 × 107

D0, D0 cū, c̄u 1865 9.6 × 107

D+
s , D−

s cs̄, c̄s 1969 8.5 × 107

Λ+
c udc 2285 2.4 × 108

µ+, µ− 106 1.0
π+, π− ud̄, ūd 140 115
K+, K− us̄, ūs 494 855

Λ0 uds 1116 9.0 × 104

Table 8.1: Values of the critical energy for some charmed and conventional
neutrino sources [114].





conventional sources





prompt sources

8.3 Heavy Quark Production

To understand the prompt neutrino spectrum, the production of charmed
hadrons in the atmosphere is investigated. Unlike up and down quarks, which
are abundant in nature (cosmic rays are composed mostly of protons and
nuclei), heavy quarks have their origin in scattering processes happening in
the atmosphere. The collision of a cosmic ray particle on an atmospheric
nucleus producing one or more charm quarks is a deep inelastic QCD process.
The diagrams contributing to the inclusive charm production cross section,
from a general hadronic initial state, are shown in figure 8.9. The scattering
or annihilation can take place on either sea or valence components; with the
exclusion of diagram (b), all the processes can lead to the production of a c c̄
pair. The transition p + Nair → c(c̄) + X is a process whose evaluation is
affected by different uncertainties of theoretical nature:

• Parton distribution functions (PDFs) of the quarks and gluons in the
proton/neutron (see section 1.9), which cannot be calculated in pertur-
bative QCD, and must rely on fits to data and numerical extrapolation.
Additional uncertainties appear because the data available at colliders
need to be extended the energy region of interest for cosmic rays. This
requires some prior assumptions on the behaviour of the PDFs as a
function of x and Q2 (see section 1.9).

• Fragmentation functions, describing meson and baryon production via
hadronisation processes of the outcoming quarks (see section 8.4). Quarks
in the final state first evolve in parton showers loosing energy, and then
combine into hadronic final states, bound by confinement. Parton show-
ers are simulated numerically based on QCD; at a certain energy thresh-
old (∼ 1 GeV), where quarks condensate in hadrons, the perturbative
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Figure 8.6: Channels leading to the production of charm quarks from cosmic
rays. Diagram (a) describes the annihilation of valence or sea quarks to a
gluon. Diagrams (b), (c), (d) represent scattering off a sea quark. Diagrams
(e), (f), (g) are for scattering on a sea gluon.

approach is no longer valid.

• QCD cross section for the elementary process

p1 + p2 → c ( c̄ ) + X

where p1, p2 are two generic partons in the nucleon and X can be any
quark or a gluon.

• Higher order corrections to the QCD process. This is a general issue
to increase precision of any perturbative calculation. The diagrams in
figure 8.9 are all at Born level; their number grows considerably at next-
to-leading orders.

• Evaluation of the scale dependence of the process. When computing the
elementary cross section with light quarks in the high energy regime, the
quarks are assumed to be massless. This is not a valid approximation
for charm quarks, where a mass term remains in the final cross section
introducing a scale dependence.

Often in all what follows the main attention will focus on cc̄ pairs, whilst a
minor role is played by bb̄. The contribution of bottom quark is suppressed
until Q2 ≫ m2

t ∼ 3 · 104 GeV2, as the dominant coupling is represented by
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b → t. Atmospheric flux has a strong dependence on gluon PDF at momentum
fraction x < 10−5. Charm pair production happens via scattering of a cosmic
ray parton of momentum fraction x on an atmospheric nucleon, originating
a lepton of energy El in the atmospheric reference frame. The lepton energy
El is of the order of 0.1 E, where E is the energy of the incoming cosmic ray
nucleon. In this kind of process, the parton momentum fraction involved is of
the order of E−1 [110], hence, if a lepton of energy El = 105 GeV is produced,
a parton with momentum x < 10−5 takes part to the scattering process. For
x ≪ 1, the PDFs are described by the parameterisation

xf(x, Q2) ∼ A x−λ(Q2) (8.5)

The gluon density grows as x descreases, reaching the order of quark density
at x ≃ 0.3 and being strongly predominant at x < 10−3. In perturbative QCD
calculations applied to charm pairs production from cosmic rays interactions,
the quark density is normally disregarded. For this reason, the predominant
contribution to σ(hadron-hadron → cc̄) is apported by the diagrams in figure
8.7 Models predicting the flux of neutrinos from heavy quarks contributions

Figure 8.7: The two main contribution to σcc̄. At x ≤ 10−5, the major contri-
bution to the inclusive charm quark production cross section is given by the
gluon PDFs.

differ by more than two orders of magnitude. The arbitrary choice of a way
to extend the parton distribution functions at high energy is the reason of
such discrepancies. Both phenomenologic and perturbative methods have to
estrapolate input parameters in a region of (x, Q2) where no data are available.

The cross section for charm production happening through the process
of figure 8.7 can be factorised as

dσ

dx
(pp → c + X) =

∫
dx1 dx2 dz g(x1, µ

2)
dσgg→cc̄

dz
g(x2, µ

2) δ(zx1 − x) (8.6)

where x is the scaling variable, approximated at this high energy regime as
Ec/E, being Ec the charm quark energy, and E the proton energy. The
functions g are the gluon PDFs referred to a momentum fraction x1, x2 for
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the two partons. µ2 is the energy scale. The gluon PDFs in the energy region
x < 10−5 can be obtained from the DGLAP evolution equation. At fix Q2, for
variable x, the gluon PDFs are dominated by logarithmic terms ∼ αs ln(1/x).

Figure 8.8: The different cross sections involved in the process of a prompt
neutrino production and detection from cosmic rays. The incoming cosmic ray
primaries with flux Φp participate to a DIS scattering process producing a qq̄
pair (Φcc). Each quark hadronises through fragmentation and combines into
secondary mesons or baryons (with flux ΦD,Λ). Consequently, this particle
decays with a cross section σdecay to prompt neutrinos, which are emitted
with flux Φν . A charged current scattering (σµν) originates a muon with flux
Φµ. Last, this particle traverses the detector, which has a finite geometry
Adetector. The resulting number of observed events is nobs. The Z-moment
(mentioned further in section 8.6.1) includes the probability of producing a
secondary particle of type (i) with energy Ei, from a primary with energy E.
The neutrino effective area of the detector has been evaluated on the basis of
a simulation in section 6.5 and relates the number of observed events in the
detector with the neutrino flux.

8.4 Fragmentation Functions

Fragmentation is the process through which quarks combine into an hadronic
final state, with a fast recombination governed by confinement forces. It links
the hard process of parton showers, which can be described in perturbative
QCD, with a condensation in bound states. A specific function is given for
each transition

q(q̄) → h. (8.7)

The QCD potential at low energy, necessary to describe quark bound states,
cannot be described in a perturbative framework; it must rely on numerical
methods based on phenomenological observations. Heavy quarks show a dif-
ferent fragmentation behaviour with respect to u, d, s. In particular, charmed
hadrons might result from the recombination of the produced quark with a
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sea parton of the initial state [79]. Because of the charm quark mass, the cc̄
pair is disfavoured respect to one signle charm production. The recombination
process of one charm produced in the scattering (leading charm) with one sea
charm happens inside a short time; consequently the spectrum of the charmed
meson or baryon is similar to that of the charm quark before fragmentation.
This last fact suggests to use charm production data from collider experi-
ments [80] We refer for the topic of evaluation of the fragmentation function
to specific works, as [79] and [80].

8.5 Decay of Charmed Hadrons

Prompt neutrinos are the decay product of a hadron containing heavy quarks.
The lifetime of such heavy particles is short, of the order of 10−14 − 10−15

seconds. This means that the average path lengths vary from O(300)µm for
D± to O(100)µm for Λ+

c [114]. The decay rate information is included in
the models, as will be mentioned in the following section. Prompt neutrinos
carry a large fraction of their parent particle energy. In the case of prompt
particles, no remarkable difference is observed in the ratio between vertical
and horizontal events. In the short time which precedes the decay, a change
in the atmospheric density cannot be appreciated. Zenith angle dependence
is less peaked for prompt lepton fluxes.

As an order of magnitude, the inelastic interaction cross-sections for D
and Λ decays can be approximated with the elastic values. Such approxi-
mation is valid up to O(104 TeV) and yields σ(D − Nucleus) ∼ 100 mb and
σ(Λ − Nucleus) ∼ 200 mb, with D = D±, D0, D0 and Λ = Λ±

c . The muon
spectrum deriving from charmed hadron decay depends on the branching ratio
B(i → µνX), the ratio Ecr/E with critical energy defined in expression 8.4,
the cinematic of the process regulated by the mass of the charmed hadron
involved and the secondary particle production spectrum [95].

Figure 8.9: The decay of a charmed hadron is realised through a W exchange.
The charm quark is converted into strange, and an highly energetic neutrino-
lepton pair is emitted.

The neutrino effective area accounts for both the effects of detector ac-
ceptance and neutrino-muon cross-section. Convoluting the measured number
of events with the effective area and the time analysed, we obtain the starting
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neutrino flux Φν . It would be interesting to proceed further back to the deep
inelastic process pN → qq̄. The Z-momentum includes all information about
the decay of the secondary particles to neutrinos. We refer to prompt neutri-
nos, as we aim to use the limit on their expected flux to constrain parameters
of the deep inelastic process. The scattering of a cosmic ray proton on an
atmosphere nucleus is a fix target process. The flux of incoming particles is
known from the cosmic ray parameterisation. On the other side, the flux of
outcoming particles Φout can be deduced by our observation convoluted with
the effective area. This represents the number of prompt hadrons produced
in the cosmic ray-air collision, after fragmentation. The transition probability
depends also on the atmosphere density and on the length traveled by the
incoming particle: those two parameters, together, can be summarised in the
superficial density ρ = 1/A2. The two fluxes are linked by the relation

Φout = Φin · σpN→qq̄→hadrons · ρ (8.8)

where Φin is the primary cosmic ray flux. Through this relation, a limit ob-
tained on the neutrino flux at the detector could be translated into a limit on
the QCD process, inclusive of all quantities which parameterise it. Of course
this would imply a precise knowledge of the atmospheric density.

8.6 Calculation of the Neutrino Flux

Constructing a model which successfully reproduces the observed neutrino
flux is quite a complicated issue for whose details we refer to the specific
literature (see e.g. [114] and [95]). Here only the main steps of the calculation
are summarised. The starting point is the primary cosmic ray spectrum at
the outer edge of the atmosphere (x = 0), mainly composed of protons, and
described by a power law

Φ(E, x = 0) = N0E
−γ . (8.9)

From the moment they enter the Earth’s atmosphere, cosmic rays originate
showers through interactions with air molecules, producing secondary parti-
cles. At the depth x, the nucleon flux is given by

Φ(E, x) = N0 E−γ e−
x
λ , (8.10)

with λ being the nucleonic attenuation length. A convolution of the spectrum
of equation (8.10) with the production spectrum Ki of the secondary channel
i yields

Φi(Ei, x) = Ki(Ei, γ − 1)

∫ x

0
dy

(
y

x

)η

e

(
−

x−y
λi

−
y
λ

)
(8.11)

where λi are the interaction lengths of the particle i. The variable η is defined
as

η =
Ec

Ei cos θ
. (8.12)
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As a third step, to obtain the flux of leptons originated by decays of secondary
particles, the energy spectrum of the produced lepton is convoluted with the
spectrum of the decaying parent particles

Φlepton(Elepton, x) =

∫ x

0
dz

∫ Emin
i

Emax
i

dEi

(
dflepton

dElepton

)
Di(Ei, z), (8.13)

where x, y, z are altitudes in the atmosphere, dflepton/dElepton is the energy
distribution of the produced lepton, and Di(Ei, z) the spectrum of the decaying
secondary particle of type i. This last quantity depends on the production
spectrum, declination angle, critical energy of the secondary particle i, and its
branching ratio for leptonic decays Bi:

Di(Ei, z) = Bi
Ec

z cos θ Ei
Φi(Ei, z). (8.14)

Parameters still to be fixed by fits on experimental data are the primary cosmic
ray spectrum normalisation N0 and the slope γ, the nucleon attenuation length
λ, the secondary particles interaction lengths λi, and the secondary production
spectrum Ki.

8.6.1 A note about the Z-moment

As it will turn out to be of particular interest for this analysis, we will investi-
gate the charm production spectrum in more details. To do so, we select the
D-mesons D±, D0, D̄0, D±

s and the Λ+
c baryon as possible secondary particles.

The production spectrum of charmed particles convoluted with the primary
nucleon spectrum is

Ki(Ei) =

∫ ∞

Ei

dE
N0

λ
E−γ dWi(Ei, E)

dEi
, (8.15)

with dWi(Ei, E)/dEi being the probability distribution of the secondary par-
ticle i to be created from a nucleus of energy E, calculated from the inclusive
cross-section σ(pN → iX). Often in literature, the cross-section dependence
is isolated in the Z-moment

ZNi =

∫ 1

0
dxF

dWi

dxF
xγ

F , (8.16)

where the variable xF is the fraction of energy of the nucleon going to the
produced particle i

xF =
Ei

E
. (8.17)

The quantity dWi
dxF

in expression (8.16), contains the difference between prompt
production models. In particular, the hadronic interaction model chosen in
the calculation of the cross section p+N → c+X labels the different schemes
(see section 8.9).
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8.7 Flux Models

The aim of this and the following chapter is to reproduce the spectrum of
atmospheric neutrinos, accounting for different models and convoluting them
with the features of the AMANDA detector. The neutrino flux is introduced
in our simulated data sample with the use of the C++ class neutrinoflux de-
veloped within the framework of the AMANDA Collaboration software [115].
The flux value has been used in the present work as a weight to the neu-
trino spectrum, by changing the standard weight parameter introduced in the
original NUSIM Monte Carlo simulation. In our analysis we take the zenith
dependence into account by referring to the zenith angle of the lepton track
(see section 4.4.2); tables for the diffuse flux, integrated over zenith angle, are
however also available.

8.7.1 Calculation Details

One-dimensional vs Three-dimensional Models

Early calculations of the neutrino flux were based on a 1-dimensional ap-
proximation. This means that the whole chain leading to neutrino production
is adapted to a linear track, which is the direction of the primary cosmic ray
particle at the first interaction vertex. This simplification reduces the compu-
tation time, as it limits the simulation to tracks pointing to the detector site.
What is missed is the bending of charged secondaries (muons) caused by the
geomagnetic field. This correction, which is included in the three-dimensional
models, is of great importance to analyses focused on the arrival direction of
neutrino-induced events, i.e. in oscillation searches. However, the effects of
magnetic curvature only influence particles up to O(GeV).

Interaction Model

The interaction vertex of a cosmic ray particle in the atmosphere is simu-
lated and convoluted with the cosmic ray primary flux. The probability that
two neutrinos from the same shower are detected is practically zero, due to
the extremely low cross section for charged current scattering, which turns a
neutrino into a visible lepton. For this reason only inclusive, single particle
hadron production is considered. Typical input parameters for the interaction
simulation are a proton as the incoming particle, and a light atmospheric nu-
cleus as the target (beryllium, carbon or oxygen). The initial proton energy
is shared between the different daughter particles of the shower. Whenever
a meson (pion or kaon) is produced as a secondary particle, a neutrino origi-
nates from its decay. The atmospheric density affects this process for energies
> 200 GeV in the case of pions, and > 600 GeV for kaons. Uncertainties on
the hadron production have been evaluated on the basis of measurements at
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accelerators.

Geomagnetic Effects

Geomagnetic effects influence the zenith angle distribution of low energy neu-
trinos below 1 GeV [92]. They result in a breaking of the up-down symmetry
and lead to an azimuthal dependence of the neutrino fluxes called east-west
effect. The development of a hadronic shower only depends on the zenith
angle once the mass and energy of the originating primary particle is fixed.
Cascades at large zenith angle develop in a less dense atmosphere, so that
decays to neutrinos at large angles are enhanced. Apart from small effects
due to the temperature, the development of a shower does not depend on the
position of its impact point on the Earth’s surface. This means that the pro-
duction of secondary particles in the atmosphere is symmetric when replacing
cos θ → − cos θ with θ being the zenith angle. The effects of the geomagnetic
field modify the spectrum of cosmic rays as a function of zenith and azimuth.
Low energy neutrinos (E ≤ 1 GeV) carry the imprint of geomagnetic effects.
The geomagnetic field prevents cosmic rays of low rigidity entering the at-
mosphere, providing a sort of barrier. This screening effect is lowest at the
magnetic poles and highest at the equator. The nuclear component of cosmic
rays is positively charged, and this introduces a dependence on the azimuth
angle known as the East-West effect. Basically the neutrino flux is highest
from the west direction.

8.8 Conventional Flux Models

The conventional flux is quite well understood, with uncertainties dominated
by the primary cosmic ray flux and the hadron production models. Four
models of conventional neutrino flux have been considered in this work. The
difference observed between different spectra turn out not to be relevant for
the sake of our analysis (a comparison of the energy distributions is shown
in figure 8.10). Here we opt for the Bartol 2006 tables [84], often referred to
as a solid, reliable model. This choice is also justified by the fact that the
predictions of the Bartol model (as illustrated in figure 8.10) are the most
conservative ones, in which the highest number of events at high energy is
expected. This is the worst scenario when the aim is to identify the signal of
prompt neutrinos, which should top the conventional contribution at the TeV
region.

Bartol

The original Bartol model [85] consists of a one dimensional Monte Carlo
simulation of the flux of neutrinos and antineutrinos of e and µ flavour pro-
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duced by cosmic rays in the atmosphere; however, in this analysis we refer to
the later extended three dimensional calculation [86]. A cosmic ray cascade is
followed step-by-step and each channel leading to neutrino production is con-
sidered; charged pions contribute at low energies and charged kaons enter the
game at ≃ 103 GeV. The composition of the primary cosmic rays is approx-
imated with 80% in the form of free protons and 20% in that of of nucleons
bound in nuclei. The primary flux is parameterised as a function of the energy
with the “Bartol” fit (by Gaisser, Stanev, Honda and Lipari [85])

φ(Ep) = a
(
Ep + b e c

√
Ep

)−(γ+1)
, (8.18)

where Ep is the primary energy in GeV/nucleon, and γ the spectral index.
The parameters a, b, c, γ are determined from different sets of measurements
from balloons and spacecrafts. This parameterisation refers to a minimum
point of the solar magnetic cycle; effects of solar modulations can be included
to adapt the simulation to the current solar conditions. The authors make
use of a non-isothermal atmosphere to convert altitude to depth in grams per
squared centimetre, to include explicitly the effects of the geomagnetic cutoff
and solar modulations (section 8.7.1) which are relevant for Eν ≤ 10 GeV.
Uncertainties on the absolute neutrino fluxes are estimated to be around 15%,
are partly ascribed to the primary spectrum composition, as for instance the
π+/π− ratio, which determines the ν/ν ratio, and the kaon/pion ratio, which
influences the relative abundance of νe with respect to νµ.

Honda

The Honda model [87] is a three-dimensional calculation which uses DPMJET-
III as the hadronic interaction model, with input information from cosmic ray
data at balloon altitudes. The atmospheric model used in this calculation is
the US-standard 1976 [88], with the Earth approximated as a sphere of radius
R = 6378, 180 km, and the IGRF model for description of the geomagnetic
field [113] (improving upon the dipole model). Cosmic rays are simulated fol-
lowing their spectrum (see figure 8.2), tested to pass the geomagnetic barrier,
and then propagated through the atmosphere. The primary cosmic ray flux
is parameterised by the Bartol fit given in expression (8.18). Neutrinos pro-
duced in primary cosmic ray reactions have an energy E ≤ 100 MeV, due to
the rapid energy loss of cosmic radiation after entering the atmosphere. As
many detectors are not sensitive at such a low threshold, these contributions
are disregarded. The simulation includes existing neutrino detectors placed
at their actual geographical location. This model has also been improved
with a three-dimensional extension; the differences between the improved 3-
dimensional model and the previous 1-dimensional one are the enhancement
of low energy events at the horizon. However, there are no remarkable differ-
ences at the energies of interest for this work.
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Fluka

The latest version of Fluka is described in [90]. It is a three-dimensional model
built on an interaction and transport Monte Carlo which includes hadron-
hadron, hadron-nucleus, electromagnetic and µ interactions, energy loss by
ionization, and low energy neutron multigroup transport and interactions.
The atmosphere model used in this simulation is a medium composed of a
mixture of N, O and Ar arranged to the standard atmosphere model [88]. Dif-
ferences due to the latitude are included in the systematics. The Bartol fit
(equation 8.18) is used as the primary cosmic ray spectrum. The geomagnetic
field is described with the IGRF model [113] (expansion of spherical harmon-
ics). Geomagnetic effects are simulated to reproduce the primary cutoff and
the particle bending during shower development. Modifications according to
the effective potential corrections in the so called “force fields approximation”
are introduced to modify the spectrum including the phase of the solar cycle,
adapting the Bartol fit to the actual solar condition. Hadronic interactions
are included by an effective QCD Lagrangian at low energy.

Lipari

The Lipari model is described in [91] and is the standard atmospheric flux
model used in the AMANDA simulation. In the present work, we altered this
value taken from the AMANDA simulation code NUSIM[53], and re-calculated
the weight for atmospheric neutrinos according to different models. The Lipari
prediction is based on the same production and transport Monte Carlo used in
FLUKA. The primary cosmic ray flux is assumed to be uniform and isotropic,
and its dependence on the primary energy per nucleon is obtained from the
Bartol fit (expression 8.18). Primary particles have their starting point at
about 100 kilometres of altitude in the atmosphere, which is modelled here as
51 concentric shells of increasing density. Results for νe and νµ are provided in
[91] with a cosmic ray spectrum at solar minimum and no geomagnetic effects.
Correction coefficients are provided to include the effects due to the epoch of
solar cycle and the geomagnetic cutoff at the location of the specific detector.

8.9 Prompt Models

The prompt neutrino models investigated here belong to three major classes
according to the hadronic interaction model used in the cross section evalua-
tion. Two of them (QGSM, RQPM) are non-perturbative, phenomenological
models obtained through numerical methods. Instead, the pQCD calculation is
semi-analytical, and is based on NLO QCD. In the present work the simulation
is performed, as for conventional models, using the C++ class neutrinoflux
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Figure 8.10: Distribution of the Monte Carlo true energy of a neutrino data
sample, weighted with three different conventional models. The Bartol predic-
tion (curve on the right) is the one adopted in this analysis for a description
of the conventional neutrino background. This choice is motivated by the
fact that the Bartol model represents a conservative situation, in which the
identification of a prompt signal is the worst-case scenario.

[115]. The fundamental different approaches to the evaluation of the prompt
flux are:

• QGSM: Quark Gluon String Model, based on a topological 1/nf expan-
sion of QCD diagrams for the elastic process, and is non-perturbative.

• RQPM: Recombination Quark Parton Model, phenomenological model
with intrinsic charm. The incoming proton contains sea charm from
gluon-gluon fusion; based on numerical code, and is non-perturbative.

• pQCD: Perturbative QCD at next-to leading order, integrated with PYTHIA,
accounting for gluon PDFs only.

Naumov / Recombination Quark Parton Model

The first prompt model examined is the one-dimensional parameterisation
described in [96]. Here the cosmic ray composition is approximated with five
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types of nuclei (H, He, CNO, Ne-S and Fe). According to the atomic mass,
different energy spectra are used for the different elements:

dΦ

dE
=

{
Φ

(1)
A ε−ΓA

A for E < WA

Φ
(2)
A ε−γA

A for E > WA

(8.19)

where E is the energy per nucleon in GeV, A is the atomic mass, and the
following relation holds

ΓA =
3∑

k=0

γ
(k)
A logk εA. (8.20)

The spectrum is required to be continuous with continuous first derivative at
E = WA. All the other parameters remaining are determined from fits to
data. Balloon experiments such as BESS and JACEE [97] provide reliable
measurements of the hydrogen and helium spectra. The other three classes
are modelled assuming that

dΦA

dE
= cA

dΦ4

dE
(A=15, 27, 56 for CNO, Ne-S and Fe). (8.21)

The CORT code [98] is used for transport and nucleon-nucleus interactions.
Accelerator data, which refer to protons, have been extended to air nuclei (N,
O, Ar, C). A description of the nucleus-nucleus collisions can be achieved with
the simplification of the superposition model. Here the collision of a cosmic ray
nucleus of energy EA and atomic number A against an air molecule is approx-
imated as the sum of A independent collisions of nucleons, each with energy
EA/A. This simplification is justified when the energy of the incoming nucleus
is much larger than the nucleon binding energy, hence each single nucleon in-
teracts incoherently. In fact, the approximation fails in low energy regions,
where the geomagnetic field affects particles according to their rigidity Z/A.
In the perspective of describing prompt fluxes, however, the superposition
model provides a reliable description. The atmosphere is simulated according
to the Dorman isothermal model. Uncertainties in this calculation can be as-
cribed mainly to the input data providing the nucleus-nucleus cross-sections
and the primary spectrum composition. In particular, corrections have been
applied to match the relative π+/π− abundance to the data (a change of 5-
9% in the ratio is observed). Moreover, simplifications have been introduced.
Isotopes of the air nuclei have not been accounted, as their contribution to
the spectrum contributes with minor changes. The channel π + air → π + X
(meson regeneration) has been disregarded; at the energies considered, its con-
tribution is small.

Quark Gluon String Model

The QGSM approach is an alternative to perturbative methods. It is based on
an idea by ’t Hooft [99], consisting of a theory with local gauge group U(N),
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for large N , so as to allow for a perturbative expansion is terms of 1/N . The
inclusive cross section for hadron production is written as a sum of several con-
tributions, given by the interaction vertices contained in a Lagrangian with
U(N) invariance. The 1/N series is often called topological expansion, and is
related to the Euler characteristic of the gauge manifold 2 − 2g, with g being
the genus1. The functional integral

Z =

∫
DΦ eiS[Φ], with S =

∫
d4xL(x), (8.22)

which originates the terms of the perturbative series, can be written in the
N → ∞ limit as

Z = N2−2g (8.23)

Within this approximation, it is possible to evaluate all interaction vertices,
and consequently amplitudes of processes involving hadrons, in the low en-
ergy limit. In the limit N → ∞, it has been shown that only a certain class of
diagrams (i.e. planar diagrams) contribute to the amplitude, whilst the oth-
ers can be neglected. The QCD potential between partons is approximated
at low energies with a linear function of the distance V = kr, where k is a
constant. Once parameterised the parton-parton potential, PDFs and frag-
mentation functions can be determined. Fragmentation functions of partons
to charmed particles have then been evaluated in this formalism [100]. Parton
distribution functions of the constituent quarks are approximated according
to the Regge theory. The assumption made here is that the trajectories of
cc̄ are linear, as is the case for light quarks, which results in a steep longitu-
dinal momentum distribution. The QGSM scheme for hadronic interactions
is convoluted with Z-moments calculated numerically, to account for prompt
secondary production. Its applicability to QCD, where N = 3, is valid in
restricted cases. Additionally, the production of Ds is neglected.

Perturbative QCD

The pQCD calculation [101] is obtained with a semi-analytical method which
merges next-to-leading order QCD with a Monte Carlo simulation and ap-
proximate cascade equations. The production of a charmed hadron of type j
from a proton-air collision, occurs with with a probability described by the
Z-moment (see 8.6.1)

Zpj = 2fj

∫ 1

0

dxE

xE

Φp(E/xE)

Φp(E)

1

σp−air(E)

dσp+air→cc̄(E/xE)

dxE
, (8.24)

where fj is the fragmentation function for the hadron j, and σp−air the total
proton-air cross section. The factor of 2 accounts for both particle and an-
tiparticle production. The following values are used for the charm mass mc,

1The genus is the number of handles, or equivalently, the number of different classes of
closed paths which are not continuously deformable into each other.
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the factorisation scale M and the renormalisation scale µ:

mc = 1.3 GeV

M = 2mc

µ = mc. (8.25)

Parton distribution functions are taken either from the CTEQ3 fit, or from the
MRSD fit. The prompt lepton flux is calculated at leading order in the matrix
element (with the two-loop coupling constant αs(µ

2)) and convoluted with
next-to-leading order PDFs. The next-to-leading order to the matrix element
is obtained by rescaling the leading order by a factor K determined from a
Monte Carlo method [102]. Lepton fluxes are compared with the results from
PYTHIA. The resulting flux is written in the parametric form

log10(E
3 Φl(E)) = −A + BxE + Cx2

E − Dx3
E . (8.26)

The prompt flux is isotropic. Because of the short lifetime of charmed hadrons,
no substantial differences in the atmospheric density can influence the process.
Horizontal and vertical events follow the same decay probability distribution.
The main source of uncertainty is the x-dependence of the parton distribution
functions. When comparing fluxes obtained with different sets of PDFs, the
different predictions deviate at lepton energies around 108 GeV. The x range
of importance for lepton flux calculations is 10−5, which is well below the
last data points provided by HERA. The gluon PDFs dominate, justifying the
approximation neglecting the quark PDFs. This argument has been discussed
in section (8.3).

8.10 The Model Rejection Factor Technique

The question of isolating a prompt signal belongs to the general problem
of identifying one channel out of many, given only a measurement of their
sum. Let us suppose we have a signal event in the presence of background.
Both signal and background are described by models; let ns be the expected
number of signal events and nb the expected number of background events. In
the measurement no events are counted. The model rejection factor [116] is a
tool to investigate whether we can exclude a model for the signal at a given
confidence level.
The problem of resolving signal from background must rely on some statistical
technique. Let us start by assuming that the events we measure belong to the
background. If we count no events expecting nb, the 90% confidence belt from
the Feldman & Cousin tables provides an interval where the measured value
should fall with a 90% probability

µ90(no, nb) = [· , µmax]. (8.27)
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The upper limit is the upper edge µmax of the interval. This number represents
the maximum value that we would observe at 90% confidence level, assuming
that our model represents the variable we are measuring. We interpret an
excess as the appearance of a signal, described by another model, with ns

expected events. The significance of an excess must be referred to the expected
signal counts ns, as this would give a measure of the possibility of this being
the cause. On the other hand, the absence of excess would suggest that the
signal is not observed. A model rejection factor is defined as

MRF =
µmax

ns
. (8.28)

A MRF value smaller than 1 implies that the measured counts are consistent
with background, and the model for signal can be rejected at 90% confidence
level. An upper limit on the flux of signal events can be established on the
basis of our observations as

Φ90 = Φ · MRF. (8.29)

The closer the model rejection factor is to 1, the more stringent is the limit that
we are able to pose. The aim of resolving signal from background is achieved by
placing an optimal threshold, such that background is maximally suppressed
by keeping most of the signal. As evident from expression (8.29), the best
limit is obtained for the smallest value of MRF. If we perform a measurement
of the variable x, with its statistical distribution f (obs)(x) (or f (obs)i=f(xi) in
case of a discrete case), and the expectation values are described by f (b)(x)
for the background, and f (s)(x) for the signal, the partial number of expected
events are

n =

∫ xT

0
f(x) dx, (8.30)

with xT being the threshold value. f(x) is either f (obs)(x), f (b)(x) or f (s)(x).
For each xT , we evaluate the model rejection factor MRF (x). The min-
imum value indicates the optimal threshold for distinguishing signal from
background. In the framework of a blind analysis, the search for an optimal
threshold cannot be based on the observed number of events. The quantity
µ90, however, depends on no; to be independent of the observation, an average
upper limit is defined as

µ̄90 =
∞∑

n=0

µ90(n, nb)w(n, nb), (8.31)

with the Poissonian distribution as the weighting function, stating the proba-
bility for each value nb:

w(n, nb) =
(nb)

n e−nb

n!
. (8.32)
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Figure 8.11: Signal and background distributions for various prompt neutrino
models, as a function of energy, with background represented by the Bartol
conventional model.

The model rejection factor is defined in an analogous way to expression (8.28),
as the ratio between the upper limit and the number of expected signal events

MRF =
µ̄

ns
(8.33)

from which a limit on the model can be set in the same way as in expression
(8.29). In this analysis, we are looking for exclusion potential rather than
discovery. The best limit is obtained with the minimum value for the model
rejection factor, as a function of the unfolded neutrino energy. The recon-
structed energy variable is a good indicator to distinguish between prompt
and conventional contributions in the spectrum.
In this analysis we consider the Bartol flux model as the background descrip-
tion and eleven different possibilities for the prompt contributions, as illus-
trated in figure 8.11.
It is interesting to investigate the functional dependence of MRF on the vari-
able E, to establish if we expect a non-trivial minimum. Since the MRF is
defined as a ratio of two functions (8.28) the prime derivative is written as

MRF =
f(E)

g(E)
⇒ MRF ′ =

1

g
f ′ − 1

g2
g′ f (8.34)

The condition of extreme MRF ′(E∗) = 0 is verified for:

MRF ′ = 0 ⇒ f ′

g′
=

f

g
(8.35)

To find the value E∗ for which relation (8.35) is satisfied, we have to make some
assumptions on the way f and g depend on E. It is reasonable to describe the
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distribution of signal and background events with an exponential law, generally
expressed as

nb ∼ E−γ1 (8.36)

ns ∼ E−γ2 , (8.37)

with γ1, γ2 ∈ R. If nb represents conventional neutrinos and ns represents
prompt, we can state that γ1 ≃ γ2 + 1. For the dependence of the upper limit
µ we use the parameterised form

µ ∼ a1 + a2
√

nb + a3 nb + O(n2
b). (8.38)

The parameters ai are O(1). The condition (8.35) is verified when

−1
2γ1 a2 E− 1

2
γ1−1

−γ2 E−γ2−1
=

a1 + a2 E− 1
2
γ1

E−γ2
. (8.39)

The remaining expression yields

E∗ =

(
a1

γ1 a2

2γ2
− a2

) 2
γ1

(8.40)

with γ1 > γ2. This ensures the existence of an extremal for a finite value
E∗, for the case in which signal and background are described by exponential
laws. Substituting estimated values for a1, a2 and the indices γ, it is possible
to show that such value lies inside the regime of interest, namely a non trivial
minimum of the model rejection factor exist.

8.11 Unfolding of the Atmospheric Spectrum

Our search for a prompt neutrino signal is based on a reconstructed energy
spectrum of AMANDA-II data measured over the four year period 2000-2003,
for a total detector livetime of 807 days. As described in chapter 7, unfolding
is a reconstruction technique based on information of a simulated data sample
to reproduce variables which are cannot be directly measured.
As previously mentioned, neutrinos are not directly detected, but reconstructed
from the track of a charged lepton, originating from a charged current scat-
tering process in the ice. Additionally, the muon energy is itself a problematic
variable to measure, and has to be reconstructed from some variables corre-
lated to the energy. In short, we are here in the case of reconstructing our
unknown variable through a set of quantities correlated with it, measured by
a detector with finite acceptance and resolution: a classical problem of un-
folding. Three variables showing a correlation with the neutrino energy are
chosen by investigating their dependence on the true energy of a Monte Carlo
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simulation. As mentioned in chapter 7, RUN allows the unfolding to be per-
formed with up to three variables that can be used to construct the kernel.
The first variable to be intuitively correlated with the energy is the number of
hits which compose the event. The motivation for this is that highly energetic
leptons emit a large number of Cherenkov photons, illuminating a large part
of the detector. The second variable used is the energy estimator obtained
with a likelihood function, based on the PhitPno hit algorithm, as described
in section 4.4.2. For the third variable we consider the zenith angle θ, which
goes from 90 ◦ to 180 ◦ for tracks coming from the Northern hemisphere ac-
cording to the AMANDA coordinate system. The dependence on the zenith
angle is justified with the fact that the number of hit channels depends on the
arrival direction of the track, because AMANDA has a cylindrical form with
z dimension larger than x and y. The correlation with the Monte Carlo true
energy is shown in figure 8.12.
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Figure 8.12: Correlation of the true energy of the Monte Carlo simulation
with the number of channels (left), and the reconstructed energy (right). The
energy estimator from the PhitPno hit likelihood has been corrected with a
polynomial function [74], to account for the tendency of under-estimating the
energy at high values.

A remark must be made about weights. Each simulated event has a weight
(namely the atmospheric weight) associated with it, which fits the original E −1

spectrum to the atmospheric prediction. This factor w ∈ [0, 1] is associated
with the energy distribution and rescales each entry according to the model
chosen. RUN has a pre-built function taking the problem of weighted events
into account. In this case, an additional column of the input and kernel files
is filled with the event weights. This case can be generalised to any weight,
which allows us to repeat the unfolding process with an E −2 spectrum, which
is better suited to reconstruction, as its energy dependence is almost flat in
the considered region.
The distribution has been regularised to provide a result free of unphysical
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oscillations through the introduction of interpolating spline functions (see sec-
tion 7.5), whose regularisation parameters degrees of freedom and knots have
to be set by the user. As mentioned in chapter 7, a reasonable choice for
the number of degrees of freedom is the number of data points. In our case,
the input variable is distributed in 10 bins, meaning that we provide 10 data
points for the unfolding rule. The result has been proved to remain stable un-
der small variations of the binning, as well as the regularisation parameters.
To evaluate the grade of precision for the unfolding process, the covariance
matrix is provided as output. The distribution of χ2 probabilities obtained
with simulation is shown in figure 8.16; a flat distribution is the indicator of
a successful reconstruction.

8.12 Results

8.12.1 Unfolding of Monoenergetic Bins

In order to check that the distribution reconstructed through the unfolding
technique provides a reliable result, we prove that a general kernel can unfold
a distribution localised in a fixed energy region. For this purpose we produced
data samples containing events localised in a single energy bin; the true en-
ergy distribution is shown in figure 8.13 bin by bin. The unfolding process is
repeated for each bin with regularisation parameters NRDF = 5, KNOTS =
12; we expect the unfolded points to distribute with Gaussian shape around
the central value. The correlation between the mean value of the Gaussian
〈E〉 and the true values is shown in figure 8.14, with a linear fit interpolating
the point. The best fit is given by

f(x) = ax + b with a = 0.90 ± 0.01 and b = 0.466 ± 0.07

An estimate of the detector energy resolution is obtained from the spread of
the unfolded points around the central value. We report in figure 8.15 the
value of the width σ of the Gaussian curve as a function of the true energy,
with values between 0,3 and 0,4 in log E.

8.12.2 Unfolding of the Energy Spectrum

First we unfolded a simulated sample, to compare it with the distribution of
the true variable. The atmospheric flux is reproduced with a spectral index
γ = 3, 7 (see figure 8.17). This has been repeated for the case of a spectral
shape Φ ∝ E−2 (see figure 8.18). The result is stable and reproduces the
true distribution. The covariance histogram shown in figure 8.16 looks quite
uniform, implying that the regularisation procedure was successful without
introducing any bias. The result achieved with a Monte Carlo simulated
sample allows us to find an optimal combination of the unfolding parameters
degrees of freedom and knots. The values of these parameters are set by this
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Figure 8.13: Data belonging to monoenergetic bins in the true energy distri-
bution (histogram) with unfolded points. The points are Gaussian distributed
around the central value. The width of the Gaussian gives a measure of the
energy resolution (see figure 8.15)
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Figure 8.14: True versus reconstructed energy, obtained unfolding monoener-
getic bins. The reconstructed value for each bin is represented by the mean
value of the Gaussian curve interpolating the unfolded points, as shown in
figure 8.13
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Figure 8.15: Detector resolution, obtained from the width of the Gaussian
curve interpolating unfolded points (figure 8.13). The values lay between 0.3
and 0.4 in log E
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Figure 8.16: Probability distribution of an unfolding with 10 bins in energy.
This histogram is automatically generated by RUN and allows for an estimate
of the success of the unfolding procedure. A flat or almost flat distribution
identifies a succesful regularisation process.

method. We apply the unfolding algorithm to the real data sample. To observe
the blindness criteria of AMANDA analyses, a subset of data containing 20% of
the total events is investigated. The unfolded distribution is reported in figures
8.19 and 8.21, together with the prediction from the Bartol conventional model
(filled histogram), and three different charm production models added to the
conventional one.

8.12.3 Test of Prompt Production Models: Results

The model rejection factor, defined in expression (8.28), has been evaluated for
each of the prompt production models examined in order to set upper limits
on the expected flux of prompt neutrinos. A selection threshold to disentangle
a possible prompt signal from atmospheric background has been established
on the basis of a Monte Carlo simulation, replacing the upper limit µ with the
average upper limit µ̄, as defined in expression (8.31) and motivated in section
8.10. In this way, the choice of an optimal threshold does not depend on the
number of observed events in the data no. The minimum value of the model
rejection factor indicates the optimal energy region to separate signal from
background. The model rejection factor obtained from simulation is shown
in figure 8.20; it can be seen that the function has a minimum in the central
region of the spectrum. In this figure we have included three models out of
the many available, selecting the following criteria: an extreme prediction ob-
tained with the QGSM model, a medium one from the Naumov/RQPM, and
a moderate one from the pQCD formalism. These models are also represen-
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Figure 8.17: Simulated atmospheric spectrum unfolded with three variables.
The points and lines represent the reconstructed values and the true distribu-
tion respectively.
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Figure 8.18: Simulated spectrum with E−2 dependence, unfolded with three
variables. The points and lines represent the reconstructed values and the true
distribution respectively.
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Figure 8.19: The unfolded energy spectrum obtained with the AMANDA-
II data over a four year time period (2000-2003). The band represents the
uncertainties on the unfolded points, as obtained from the unfolding algorithm

tative of three different hadron interactions models. After this step, we look
at the reconstructed distribution of the real data obtained through unfolding.
We expect the model rejection factor to have a minimum in the energy region
where the signal-to-background ratio becomes optimal. The number of real
data events is obtained as the integral of the curve starting from the critical
energy

nobs(E > Ec) =

∫ ∞

Ec

f(E) dE (8.41)

where f is the statistical distribution function of E. The values obtained are
reported in table (8.22). Basing our criterium on the model rejection factor,
we are able to state that the QGSM model seems to be disfavoured at 90%
confidence level, but not yet accounted for systematic errors. On the basis of
our observations, upper limits can be set on pQCD and Naumov / RQPM,
which cannot be excluded as of yet. Those limits are obtained as:

ΦpQCD
90 = 8.8 · ΦpQCD

Φ
Naumov/RQPM
90 = 2.2 · ΦNaumov/RQPM (8.42)

The upper limit obtained for the pQCD and Naumov/RQPM model is shown
in figure 8.23. To convert the number of observed events into a flux, we use
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Figure 8.20: Model rejection factor obtained from three models accounting for
prompt production. Background is provided by the Bartol conventional flux.

the relation

nobs =

∫
dE

dΦν

dE
Aeff t (8.43)

This relation includes the effective area obtained in section 6.5, which is
energy-dependent. Such an integral equation can be solved discretely as our
input value is a binned distribution. The flux (differential in energy) is ob-
tained as (

dΦν

dE

)

(i)
=

1

∆Ei
ni

1

Aeff(Ei)
. (8.44)

The unfolded spectrum, compared with an atmospheric model including prompt,
is shown is figure 8.24.

8.13 Theoretical and Systematic Uncertainties

In the evaluation of the contribution of prompt neutrinos, it is fundamental
to have a good understanding of the theoretical and systematics uncertainties
affecting the measurement. Our current non-observation of prompt neutrinos
is used to set an upper limit on the flux of such particles, that can be improved
upon with a higher statistics of events allowing for rejection of those models
lying near the exclusion threshold

The theoretical uncertainties affecting the calculation of the neutrino
flux can be grouped in the following classes, one general group affecting the
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Figure 8.21: The unfolded energy spectrum obtained with the AMANDA-II
data over a four year time period (2000-2003). Points represent the unfolded
distribution. The filled histogram is the prediction based on the Bartol 2006
model. Three different prompt production models are shown with coloured
lines: QGSM, Naumov/RQPM and pQCD

Model Background Data Signal MRF
events events events

Bartol / QGSM 0.92 1.22 5.3 0.65
Bartol / pQCD 0.92 1.22 0.39 8.8

Bartol / Naumov RQPM 0.92 1.22 1.5 2.2

Figure 8.22: Model rejection factors obtained by the comparison of unfolded
data with three different prompt production models. The value obtained for
the Bartol / QGSM prediction is smaller than 1, allowing for the rejection of
this model at 90% confidence level, based on the Feldman and Cousins tables.
Upper limits can be set on the other models, with strength proportional to
the value of the model rejection factor
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Figure 8.23: Upper limits at 90% confidence level obtained for the pQCD
and Naumov/RQPM model. The dashed lines represent the AMANDA upper
limits based on the events observed over a four year period; the continuous
lines represent the expectations from the two flux models. The background
of conventional neutrino contributions is simulated according to the Bartol
prediction. Neither of the two model has been excluded on the basis of the
current observation.

conventional flux calculation, and one second group regarding in particular
the prompt models. Those last show a larger theoretical error, due to the
many uncertainties in the evaluation of the deep inelastic QCD process leading
to heavy quark production. In particular, uncertainties on the PDFs and
fragmentation functions dominate.

As to systematics, they are basically of two types: those dependent on
the detector itself and to the propagation medium in which the detector is
embedded. We refer to a reference value for the latter, that has been estimated
with a Monte Carlo simulation of the ice. In this thesis, the acceptance of
the detector photomultiplier has been evaluated with a method based on the
photon hit probability 4.4.2.

1. Uncertainties related to the conventional spectrum

Cosmic ray spectrum
Uncertainties in the cosmic ray spectrum depend both on the slope
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Figure 8.24: The unfolded atmospheric neutrino flux obtained with data taken
over a four year time period (2000-2003). The energy distribution has been
convoluted with the detector effective area and the total data taking time (807
days) to obtain the reconstructed flux. The points represent our measured
data, with error band from the unfolding algorithm. The continuous line
is the Bartol conventional flux prediction. The dashed line represents the
Bartol conventional flux with addition of an extreme prompt production model
(QGSM). Such model has been excluded at 90% C.L.

and the absolute normalisation; Ref. [82] reports an overall un-
certainty going from 15% at lower energies, up to 30% at higher
energies.

Atmospheric Model
A description of the atmosphere in its details in technically diffi-
cult to achieve; however, cross-checks have been done with different
models. This source of error does not largely affect the neutrino
flux calculation. Average values are used, as neutrinos detected at
neutrino telescopes are produced with equal probability in the at-
mosphere around the Earth. The amount of uncertainty due to the
atmospheric model should remain constrained to O(1%).

Hadronic interaction model
This is probably a large source of uncertainties in the whole calcu-
lation. The fact that QCD is a non-perturbative theory at low en-
ergies makes it necessary to use some approximations in describing
the quark potential in mesons and baryons. Neutrino flux models



8.13. THEORETICAL AND SYSTEMATIC UNCERTAINTIES 117

make use of different numerical solutions. The Bartol calculation,
used in this thesis for the conventional background description, is
based on the TARGET code. The differences between various codes
have been examined. Uncertainties ascribed to this source amount
to O(10%) for the conventional fluxes, going up to a maximum of
20% for high energies. Beside this, further assumption on the heavy
quark production model are made for the prompt calculation. As
to that, we summarise the main uncertainties into two groups: the
PDFs and the fragmentation functions.

PDFs
Parton distribution functions are extrapolated at high Q2 and low
x from fit on experimental data. In a semi-perturbative framework,
an assumption is made on the analytical form of the PDFs. In par-
ticular, the main contribution is represented by the gluon density,
whilst quark PDFs can be neglected at small x. The DGLAP evo-
lution equation is used to continue the functions in the region where
no data are available. The uncertainties on PDFs depend on the
energy of the process, and have been estimated between 2 and 3%
[109].

Fragmentation functions
Heavy flavour production has been investigated at colliders. The
function describing the transition of quarks to hadrons can be eval-
uated in different formalisms, according to the scheme chosen to
describe parton potential. We mentioned in this thesis two numeri-
cal phenomenological approaches (RQPM and QGSM) and a semi-
analytical one (pQCD). An overall estimate, including both PDFs
and renormalisation and factorisation scales, give a fluctuation of
the order of 20% [119].

2. Systematic uncertainties related to the detector

Acceptance of the optical modules
The detector acceptance has been estimated in chapter 6. We used
a geometrical method based on the photon hit probability. Our
data are compared with a varied efficiency Monte Carlo simulation
to estrapolate the acceptance of the optical modules. The value
obtained with this method is 95%, with respect to nominal accep-
tance. We estimate therefore a 5% systematic error ascribed to the
loss in the detector acceptance.

Ice Model
The propagation medium must be correctly understood to interpret
the detector response. A considerable effort has been made in the
AMANDA collaboration to produce an optimal simulation of the
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South Pole glacier optical properties. In particular, the presence
of dust layers distorts unequivocally the measurement of a lepton
track. The systematic uncertainties due to our description of the
ice are estimated to 12% [117].

Detector Calibration
Changes in the status of the detector and of the data acquisition
system can give contribution to the error on the measurement of a
lepton track. An overall uncertainty of 5% has been estimated due
to effects of geometrical variations and changes in the trigger[74].

Source of uncertainties Estimate

Primary cosmic ray spectrum 15% to 30%
Atmospheric model O(1)%
Parton Distribution Functions 1% to 5%
Hadronic Interaction Model 10% to 20%
Fragmentation functions O(10)%

OM efficiency 5%
Ice Model 12%
Detector setting 5%

Table 8.2: Uncertainties affecting the neutrino flux calculation. The first group
represents the theoretical errors and the second the systematic uncertainties
on our measurements.

Considering the definition of the model rejection factor given in expres-
sion (8.28), it is reasonable to assume that the theoretical uncertainties of the
model will simplify in the ratio. Our systematics are estimated to 14%, which
we add as a shift to the error bars provided by the unfolding algorithm, as
shown in figure 8.19.

The possibilities of constraining, through our upper limits on prompt
neutrino fluxes, the QCD process for hadron production is strongly limited by
theoretical uncertainties. Besides this, it is difficult to disentangle those effects
due to the models for the primary cosmic ray and the atmosphere from the
cross section parameterisation. The relation between the flux of cosmic ray
particles and neutrino-induced leptons detected is given in expression (8.8).
A precise knowledge of the properties of the atmosphere, as well as the Z-
momenta for secondary creation, would allow to transfer the limit on observed
neutrino flux on a limit on the PDF and fragmentation function parameteri-
sation.



Conclusions

In this thesis we presented and discussed results achieved in the search for
prompt neutrinos with the AMANDA-II neutrino detector. The search for
prompt neutrinos is motivated by the enormous interest which raised about
the possibility of detecting celestial neutrinos from extra-galactic regions. Such
particles could be messengers from environments otherwise impossible to ac-
cess. Consequently, it is important to have a good understanding of the com-
plete atmospheric spectrum, as it forms the background to an astrophysical
signal. The flux of neutrinos from heavy quark hadron decays becomes rele-
vant at energies beyond 104 GeV, exceeding the expected flux of conventional
particles. This enhancement in the high energy region creates an annoying
background to all the searches for high energetic events of cosmic origin. The
extremely low rate expected for cosmic neutrinos requires a very accurate de-
scription of the high energy atmospheric contributions from prompt particles.
In this work, we use a simulated information of the spectra of prompt neu-
trinos to disentangle them from the conventional spectrum (i.e. from light
quark). The simulated prompt spectra are based on several prompt produc-
tion models, and have been convoluted with the AMANDA detector response
to be compared with data. Our data consist of atmospheric neutrino events
recorded by the AMANDA-II detector in the deep Antarctic ice. The detec-
tion principle, as well as the functioning of the data acquisition system, are
described in chapter 2.

Neutrino-induced events have been reconstructed in several steps and
accurately selected to ensure a maximal background suppression. Background
is represented in our case both by physical events, i.e. leptons originating in
cosmic ray showers, and by electronic artefacts of the detector. A pre-selection
and reconstruction is performed in Zeuthen. The reconstruction algorithm
which have been applied to the raw data are described in chapter 4. The
same algorithms are applied to simulated data, obtained with a Monte Carlo
method described in chapter 3. All filter conditions to obtain a clean sample
of atmospheric neutrino events are described in the same chapter.

In chapter 5, the specific selection of data used for this analysis is pre-
sented. We chose some parameters of the neutrino tracks which allow for an
identification of good events, and establish appropriate selection condition by
matching our data with a Monte Carlo simulation. To preserve the AMANDA

119



120 CHAPTER 8. THE ATMOSPHERIC NEUTRINO FLUX

blindness policy, we optimised our selection on a subsample containing 20%
of the total data. After the final selection, our data consist of about 4 · 103

atmospheric neutrinos, recorded over 807 days of detector livetime. The track
reconstruction has been achieved with a likelihood-based algorithm, built on
the geometrical photon detection probability.

The energy spectrum of our data was then reconstructed with a numeri-
cal unfolding technique. The determination of neutrino energy is not straight-
forward in AMANDA; a good indicator for it lies in the number of photo-
multiplier composing each event, which can be used to feed a likelihood-based
algorithm. However, a correction has to be done, as muon tracks traverse and
exit the detector, part of the light can be deposited outside the instrumented
volume, causing a tendency of underestimating values in the high energy re-
gion.

Unfolding seems to be a suitable technique to reconstruct the neutrino
energy. In this work we use a FORTRAN numerical method [76] based on a
Monte Carlo simulation. The reconstruction is based on three input variables
correlated with the true neutrino energy: the number of hits, the energy esti-
mator constructed with the photon detection likelihood ( see section 4.4.2) and
the declination angle of the track. The main oddity of the unfolding problem
is that, form a mathematical point of view, it does not have a well defined
a solution, although a numerical approach is possible. A regularisation term
is introduced to ensure that the result is free from unphysical oscillations,
typical of this kind of reconstructions. All those issues are described from a
theoretical point of view in chapter 7.

In chapter 8, the results achieved with this work are presented. The neu-
trino energy spectrum has been unfolded and reconstructed. We performed
some checks to verify the stability of our unfolded result. A convolution with
the neutrino effective area allows for extrapolation of the measured flux of
events. The atmospheric spectrum has been investigated, in order to isolate
the main differences between prompt production schemes [96, 100, 101]. The
resulting simulated energy spectrum is illustrated in this chapter for the differ-
ent models considered. We altered the weighting parameter in the AMANDA
simulation software NUSIM, to adjust the spectral shape according to the differ-
ent models. All input information on which the models are based are described.
The choice of set of parton distribution functions, as well as the fragmentation
functions describing the hadronisation of the quark pair, is crucial to quantify
the prompt neutrino flux. As collider data cannot provide any point in the
region of interest (high Q2 and small x), an extrapolation is needed. The
different assumptions result in large differences in the prompt flux at energies
beyond 105 GeV.

A comparison between the unfolded energy spectrum and different mod-
els including prompt contributions has been achieved. The model rejection
factor technique has been used to evaluate the significance of an excess in the
high energy region. The optimal threshold in energy to distinguish prompt
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contributions from conventional background has been identified minimising
the model rejection factor as a function of the energy. The minimum value
gives the most stringent limit. For the description of conventional background,
we rely on the Bartol 2006 tables, which represent in our case the conservative
scenario, in which they show the highest prediction of conventional events in
the high energy region with respect with other conventional models considered
(Honda, Fluka, Lipari).

The prompt production schemes considered belong to the three main cat-
egories of RQPM (recombination quark parton model), QGSM (quark-gluon
string model) and pQCD (perturbative QCD).

The model rejection factor technique allows for the exclusion of the
QGSM model at 90% confidence level. Upper limits have been set on the
expected flux predictions, based on our observation:

ΦpQCD
90 = 8.8 · ΦpQCD

Φ
Naumov/RQPM
90 = 2.2 · ΦNaumov/RQPM

Systematic and theoretical uncertainties have been considered. The accep-
tance of the AMANDA photomultipliers has been evaluated in chapter 6 with
a method based on the geometrical photon detection probability, with compar-
ison with a Monte Carlo simulation of varied efficiency respect to the nominal
value. The uncertainties ascribed to the ice structure have been taken from a
standard reference value used in AMANDA. Theoretical errors are the largest
source of uncertainty in the evaluation of the prompt and conventional neu-
trino flux. In the evaluation of the model rejection factor, however, it is a
reasonable assumption that the theoretical uncertainties cancel out. Theoreti-
cal errors are dominated by uncertainties on the parton distribution functions
extrapolated at high Q2 and low x.

There is a chance that the next generation of large neutrino telescopes
will provide evidence of both prompt and extraterrestrial neutrinos. If this
will not be the case, the large statistics collected will allow for more stringent
limits on the flux of these events, and possible exclusion of other models.

An interesting extension of the results achieved is the extrapolation of
the upper limit of the flux of prompt neutrinos to the deep inelastic cross
section for pN → qq̄ → hadrons. The energy region that can be reached by
cosmic rays offers a unique opportunity to collect data where no information
from colliders will be available in the near future.
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Appendix A

Reconstruction Fits

Here the reconstruction fits on the Mainz data selection are listed. For likelihood-
based algorithms, the fit seed is written in the last column.
LEVEL NAME SEED

L1
FIT 0 Direct Walk
FIT 1 Direct WIMP
FIT 2 CFirst
FIT 3 JAMS
FIT 4 Pandel 1-fold JAMS(3)
FIT 5 Cascade likelihood SPE CFirst(2)
FIT 6 Cascade likelihood MPE SPE(5)

L2
FIT 7 Pandel 32-fold
FIT 8 16-fold Pandel MPE likelihood Pandel 1-fold(4)
FIT 9 16-folded Bayes likelihood Pandel 1-fold(4)
FIT 10 16-fold Pandel Point Source likelihood CFirst(2)

L3
FIT 11 Paraboloid Pandel 32-Pandel(7)
FIT 12 64-folded Bayes likelihood 32-Pandel(7)

L4
FIT 13 1-folded Pandel likelihood 64-Bayes(12)
FIT 14 PhitPnohit likelihood fit 32-Pandel(7)
FIT 15 Paraboloid fit

L5
FIT 16 32-fold Pandel likelihood 32-Pandel(7)
FIT 17 0- Pandel likelihood 32-Pandel(16)
FIT 18 0- Bayes likelihood 64-Bayes(12)

L6
FIT 19 PhitPnohit likelihood fit PhitPnohit(14)
FIT 20 Paraboloid fit PhitPnohit(19)
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