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Zusammenfassung

Schnitttheorie auf Modulräumen hat in vielen Bereichen der enumerativen Geome-
trie zu immensen Fortschritten geführt. Für einige wichtige Probleme, allen voran
das Zählen von stabilen Abbildungen und das Zählen von stabilen Garben, ist es
notwendig, statt mit der Fundamentalklasse des Modulraums mit einer virtuellen
Fundamentalklasse zu arbeiten. Die entscheidende Bedingung für die Existenz
einer solchen virtuellen Fundamentalklasse ist, dass ein 2-Term Komplex die De-
formationstheorie des Modulraums kontrolliert.

Für Modulräume mit dieser Eigenschaft hat Kontsevich 1994 vermutet, dass
es derivierte Versionen dieser Modulräume gibt. Ein weiteres Indiz für die Exis-
tenz dieser Räume stammt aus der Theorie der derivierten algebraischen Geome-
trie. Dort wird vermutet, dass für jedes Paar bestehend aus einem Modulraum und
einem Komplex, der die Deformationen des Modulraums kontrolliert, unter gewis-
sen Zusatzbedingungen ein derivierter Modulraum existiert, der den gewählten
Komplex als Kotangentialkomplex besitzt. In dieser Arbeit wird eine Form dieser
nötigen zusätzlichen Bedingungen formuliert. Darüber hinaus wird gezeigt, dass
diese Bedingungen für jeden Modulraum, dessen Deformationstheorie durch einen
2-Term Komplex kontrolliert wird, erfüllt sind. Schließlich werden die derivierten
Modulräume mit den vorgegebenen Eigenschaften konstruiert.

Summary

Intersection theory on moduli spaces has lead to immense progress in certain areas
of enumerative geometry. For some important areas, most notably counting stable
maps and counting stable sheaves, it is important to work with a virtual fundamen-
tal class instead of the usual fundamental class of the moduli space. The crucial
prerequisite for the existence of such a class is a two-term complex controlling
deformations of the moduli space.

Kontsevich conjectured in 1994 that there should exist derived version of spaces
with this specific property. Another hint at the existence of these spaces comes
from derived algebraic geometry. It is expected that for every pair of a space and a
complex controlling deformations of the space their exists, under some additional
hypothesis, a derived version of the space having the chosen complex as cotangent
complex. In this thesis one version of these additional hypothesis is identified. We
then show that every space admitting a two-term complex controlling deformations
satisfies these hypothesis, and we finally construct the derived spaces.
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Chapter 1

Introduction

In the modern take on enumerative problems, intersection theory on moduli spaces
has been the most successful approach. It has put a firm ground to many classical
arguments and has led to new results. One of the greatest success stories has been
the development of Gromov-Witten invariants and quantum cohomology, showing
that the modular operad acts on the cohomology of any smooth projective vari-
ety. The moduli space used to produce Gromov-Witten invariants is the moduli
space of stable maps. Performing intersection theory on this moduli space turns
out to be a very difficult task though. In general, this space is very singular. But
it gets even worse. The definition of Gromov-Witten invariants originally comes
from symplectic geometry. For nice classes of symplectic manifolds, the moduli
space used in the symplectic world that corresponds to the moduli space of stable
maps is smooth of a certain dimension. Also, deformation theory gives an expected
dimension for the moduli space of stable maps, which coincides with the dimen-
sion of the moduli space used in symplectic geometry. So to produce meaningful
invariants we need the moduli spaces of stable maps to have this dimension. But it
turns out that the moduli space of stable maps can have larger dimension than we
expect both from symplectic geometry and deformation theory. This ruins all hope
of using intersection theory on this moduli space to produce meaningful invariants,
since the fundamental class will have the wrong degree. So what to do?

As long as a singular space is still a local complete intersection, we have nice
formulas for the fundamental class. The cotangent complex of a local complete
intersection is a two-term complex of vector bundles, and a beautiful theorem of
Verdier says that

τ(OX) = td(L∨X) ∩ [X],

which is very close to what we know for smooth varieties. Kontsevich observed
that although the moduli space of stable maps can be worse than a local complete
intersection, and thus the cotangent complex will have cohomology in infinite de-
grees, there is a very nice two-term complex of vector bundles that serves as a
replacement for the cotangent complex. The key property of this two-term com-
plex is that it controls deformations and obstruction of the moduli space just as the
cotangent complex does. To quote from the original source:

1



2 CHAPTER 1. INTRODUCTION

“The general scheme described in 1.4 can be applied in other situations: mod-
uli of vector bundles on algebraic curves and surfaces, moduli of complex
structures on surfaces, moduli of vector bundles on Calabi-Yau 3-folds. The
common property of all such examples is that the natural complex whose 1-st
cohomology group is equivalent to the tangent space to the appropriate mod-
uli space, has trivial cohomology in degrees greater than or equal to 3.”

[Kon95, p.10]

Kontsevich further suggested that using this two-term complex, it should be
possible to find local presentations of the moduli space as intersection of subman-
ifolds of an ambient manifold in a coherent way. Gluing these local presentations
should lead to a derived version of the moduli space and a virtual structure sheaf.

“Globally, we can cover Z = Mg,k(V, β) by finitely many open sets: and on
each of them we have an equivalence class of representations as intersections
of manifolds. It is almost clear that different representations on intersections
of open sets are equivalent modulo homotopy and higher homotopies be-
tween homotopies on multiple intersections. Unfortunately, we do not know
how to formulate all this precisely.” [Kon95, p.7]

Locally, this virtual structure sheaf should be the Tor-sheaf of the local pre-
sentation as intersection of submanifolds in the ambient manifold. Using this extra
data, and writing E for the complex serving as replacement for the ill-behaved
cotangent complex, Kontsevich suggested to use the formula

τ(Ovir
X ) = td(E∨) ∩ [X]vir

to define a virtual fundamental class having the dimension expected both from
symplectic geometry and deformation theory.

This proposal of Kontsevich dates from 1994. In the meantime, a virtual fun-
damental class solving all problems has been constructed by Li-Tian and Behrend-
Fantechi, although with different methods than described by Kontsevich. To solve
similar problems on the symplectic side, Fukaya and Oh have introduced the no-
tion of a Kuranishi structure to define virtual chains. Such a structure consists of
covering the moduli space with local descriptions as zero-sets of sections of a vec-
tor bundle on a smooth space, which is a special case of the description proposed
by Kontsevich. Using these descriptions, they develop a theory of virtual chains by
locally perturbing the moduli space. Recently, Joyce has suggested that Kuranishi
structures could be conveniently encoded using derived geometry. His slogan is
that a space with a Kuranishi structure is a “derived orbifold with corners”. The
long-term goal is to develop a theory in which virtual cycles are formed without
locally perturbing the moduli space. The virtual cycle then is just the fundamental
cycle of the derived space itself.

A further hint at the existence of derived versions of certain moduli spaces
comes from the recent development of the foundations of derived algebraic ge-
ometry by Lurie, Toën and Vezzosi. For many examples of moduli spaces it was
possible to find derived moduli spaces with the feature that the cotangent complex
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of the derived moduli space is precisely the complex normally used to study the de-
formation theory of the classical moduli space. The construction of these examples
always consists of finding the right continuation of the moduli functor to simpli-
cial rings. Kontsevich’s proposal for the existence of derived moduli spaces does
not depend on some modular interpretation of the space, but instead only on the
existence of a chosen 2-term complex controlling deformations and obstructions.
Although the existence of these spaces seems natural from the viewpoint of Joyce
and Kontsevich it comes as a surprise from the abstract viewpoint of derived alge-
braic geometry. For a general Artin n-stack it is expected that the data consisting
of a (underived) stack, a choice of obstruction theory of arbitrary length having
a structure of co-differential graded Lie algebroid, and a map of co-differential
graded Lie algebroids to the cotangent complex is equivalent to the category of
derived Artin n-stacks. In the situation of a Deligne-Mumford stack with a chosen
2-term complex chosen as obstruction theory there is no such apparent structure
of co-differential graded Lie algebroid on the obstruction theory. Thus it is a priori
by no means clear that derived versions of the moduli space exist. Nevertheless,
from the special geometry of Deligne-Mumford stacks with a 2-term obstruction
theory as opposed to the general case of Artin stacks with an obstruction theory
of arbitrary length, we do have an additional geometric structure which serves as a
replacement of the co-differential graded Lie algebroid structure. This special ge-
ometric feature is the covering of the moduli space with a system of presentation
as zero-sets of sections of vector bundles mentioned above, or in short a Kuranishi
strucure. Such a structure is not known to exist in the general case of Artin stacks
or for obstruction theories that are longer than 2-term. In fact, using the expecta-
tion mentioned above, locally the Kuranishi structure immediately gives rise to a
structure of co-differential graded Lie algebroid on the obstruction theory together
with a morphism of co-differential graded Lie algebroids to the cotangent complex,
since taking the homtopy fiber product of the presentation as zero-set gives a local
derived extension of the moduli space.

The main result of this thesis is that for the pair of a Deligne-Mumford stack
along with a two-term complex controlling deformations and obstruction derived
versions of these moduli spaces indeed always exist. Our method of proof closely
follows the suggestions of Kontsevich and Joyce. We show that every such space
carries a system of local presentations of zero-sets of sections of vector bundles.
These give rise to local derived versions of the moduli space. Pointwise this implies
that every two-term complex controlling deformations and obstructions actually
admits the structure of a differential graded Lie algebra whose Maurer-Cartan func-
tor recovers the local moduli space. Using the conjectural correspondence above,
this actually locally comes from a morphism of co-dg Lie algebroids from the ob-
struction theory to the cotangent complex. We then go on to glue these local derived
extensions to one global derived moduli space.

Hopefully, this is only the start of the story. The precise relationship between
the derived moduli space and the virtual fundamental class is not yet absolutely
clear. The existence of a derived moduli space that is the derived version of a local
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complete intersection provides all the necessary data on the classical moduli space
to define virtual fundamental classes, either by Kontsevich’s formula or by the
approach of Li and Tian or Behrend and Fantechi. Whether these coincide is still
not settled. The most satisfactory solution would be to define the fundamental class
of the derived moduli space appropriately. This would take the virtual out of the
virtual fundamental class.

Another line of development is clarifying what happens if the chosen complex
is longer than two-term. This situation comes up naturally if one wants to study
Gromov-Witten invariants of singular projective varieties or Donaldson-Thomas
invariants of four folds. The derived versions of the moduli spaces needed to de-
fine these invariants exist, but their geometry is not yet understood. In the case of
a two-term complex, one had classical local complete intersections as analogies to
find appropriate formulas. Once the complex becomes longer, there no longer exist
classical analogues. This is because the cotangent complex of a variety can either
be up to two-term or have infinite terms. Thus derived moduli spaces lead to fasci-
nating new classes of spaces and fills the gap between local complete intersections
and more singular spaces.

Summary of the chapters

Chapters 2 and 3 give a quick tour through the theory of virtual fundamental classes
and derived algebraic geometry. I have not supplied any proofs, partly because I do
not know how to prove the results and because they can be found in the origi-
nal articles. Instead I have tried to give intermediate results that show the logical
structure between the results.

Starting from chapter 4 my own work starts. Chapter 4 uses homotopy fiber
products of schemes to provide easy examples where intersection theory, virtual
fundamental classes and derived algebraic geometry meet. It includes a proof of
Kontsevich’s formula for the virtual fundamental class for homotopy fiber prod-
ucts. In chapter 5 an algebraic version of Fukaya’s and Oh’s theory of Kuranishi
structures is introduced. We show that every space admitting a perfect obstruction
theory also carries such an algebraic Kuranishi structure. Using the Kuranishi al-
gebraic structure, it is immediate to define local derived versions of the moduli
space. In chapter 6 we glue these local derived versions to one global derived mod-
uli space. Chapter 7 contains some observations concerning virtual pullbacks and
differential graded lie algebras.

Finally, in an appendix we have collected some facts about model categories
which we have made use of, including a summary of left Bousfield localization and
homotopy pushouts and homotopy fiber products.

Notation and conventions

• A derived extension of a scheme or stackX is denoted byX ′. This hopefully
makes it clear that there is no functorial correspondence between schemes
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and derived extensions, as there can be many such extensions.

• Let X be a Deligne-Mumford stack and E a sheaf on X . For an étale mor-
phism f : U → X we will denote f∗E by E|U .

• The symbol LX will always denote the cotangent complex of X .

• All schemes and stacks are assumed to be of finite type and locally Noethe-
rian over a base k.

• We briefly recall some finiteness conditions on the derived category of OX -
modules. A complex is pseudo-coherent if it has coherent cohomology. We
say that a complex E ∈ D(X) is of finite Tor-amplitude in [a, b] if for any
OX -module M we have that H i(M ⊗L E) = 0 for i /∈ [a, b]. The complex
E ∈ D(X) is of perfect amplitude in [a, b] if it is pseudo-coherent and of
Tor-amplitude in [a, b]. A strictly perfect complex is a bounded complex of
locally free sheaves of finite rank. A complex is perfect of amplitude in [a, b]
if and only if it is locally isomorphic in D(X) to a strictly perfect complex
concentrated in degrees [a, b].

• We will often use the convention Ei = (E−i)∨ where dual make sense.

• I know this is not standard, but I find it very helpful to distinguish between
a locally free sheaf and a vector bundle. In [Ful98], the vector bundle is de-
noted by a typed letter, and sheaf of sections by a calligraphic letter. Since
the use of calligraphic letters for sheaves is forbidden by Mainz tradition,
I adopted Grothendieck’s notation of writing V(E) for Spec SymE. Thus
V(E) has sheaf of sections E∨. Unfortunately this collides with the conven-
tion used in [LT98], which is exactly opposite.

• Since we will extensively use fiber products we introduce a special notation
for the index category corresponding to fiber products. Throughout this text,
we let D = {a δ→ b

ε← c}, where only non-identity morphisms are shown.
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Chapter 2

The Virtual Fundamental Class

To define Gromov-Witten invariants, one has to perform intersection theory on the
moduli space of stable maps. Unfortunately, the dimension of this moduli space
can be larger than expected from symplectic geometry or deformation theory. To
remedy this situation, the theory of virtual fundamental classes was developed by
Li and Tian in [LT98] and by Behrend and Fantechi in [BF97]. In this chapter we
give a quick tour through their results.

For this chapter we fix an algebraically closed field of characteristic zero. All
schemes and stacks are assumed to be of finite type over k, and point will always
mean k-point.

2.1 Kuranishi Families

In the theory of Donaldson invariants, the technique of the Kuranishi map is used
to obtain smooth moduli spaces of the expected dimension. Typically, there is some
complex along with a holomorphic map from one cohomology group to another.
The zero-set of this holomorphic map then is the moduli space. For instance, if we
take E to be a holomorphic bundle on some complex compact surface Z, we have
the complex

Ω0
Z(End0E)→ Ω0,1

Z (End0E)→ Ω0,2
Z (End0E),

there is a map ψ : H1 → H2 defined on a neighborhood of 0 inH1, and the moduli
space of connections is isomorphic to the zero-set of ψ. Precise statements can be
found in [DK90, Prop. 6.4.3].

On a formal level, this picture immediately carries over to Algebraic Geometry.
We want to study the local geometry at a point x of a moduli space X , which we
assume to be a Deligne-Mumford stack.

Definition 2.1. Let Art denote the category of local Artinian algebras over k with
residue field k. The maximal ideal of an Artinian algebraAwill be denoted bymA.

7



8 CHAPTER 2. THE VIRTUAL FUNDAMENTAL CLASS

Definition 2.2. Let X be a Deligne-Mumford stack, and x a point of X . The
groupoid-valued deformation functor Xx associated to x in X is

Art −→ Grpds

A 7−→ α ∈ X(A) such that α|Spec (A/mA) = x.

Remark 2.3. The tangent space to X at x is simply Xx(k[ε]/ε2). This vector space
will be denoted by T 1

X,x.

There exists another vector space that tells us something about the local geom-
etry ofX at x. This vector space measures whether we can lift maps from fat points
to x to even fatter points. If X is smooth at x, this is of course always possible.

Definition 2.4. ([FGI+05]) Let Xx be the deformation functor introduced above.
An obstruction space for Xx is a vector space T 2

X,x such that for any small exten-
sion

0→ I → B → A→ 0

in Art there is a functorial exact sequence of groups and sets

T 1
X,x ⊗k I → Xx(B)→ Xx(A)

ob→ T 2
X,x ⊗k I.

Remark 2.5. From the exact sequence it immediately follows that a lifting of an
element ofXx(A) to an element ofXx(B) exists if and only if the obstruction map
vanishes.

We can now define an algebraic version of the Kuranishi map.

Definition 2.6. Let X be a Deligne-Mumford stack and x a point of X . Fix a
tangent-obstruction theory T 1

X,x and T 2
X,x. Let X̂x be the formal completion of X

at x, and T̂ 1
0 the formal completion of the vector space T 1

X,x at zero. A Kuranishi

model for X̂x is a morphism
φ : T̂ 1

0 → T 2
X,x

such that the zero-locus of φ is isomorphic to X̂x.

For the intrinsic choice of an obstruction theory Kuranishi models always exist.

Proposition 2.7. Let X be a Deligne-Mumford stack and x a point of X . Then the
formal completion X̂x has a Kuranishi model.

Proof. By the definition of a Deligne-Mumford stack there exists an étale mor-
phism from an affine scheme U = Spec A → X which induces an isomorphism
of complete local rings ÔX,x ' ÔU,p for some point p of U . It therefore suffices to
study the formal completion of U at p.
Let m be the maximal ideal of p in A and d = dim(m/m2) the dimension of the
tangent space. Then there exists an isomorphism

k[[x1, . . . , xd]]/J → ÔU,p.
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Let n be the maximal ideal in k[[x1, . . . , xd]]. Recall that the local ring OU,p de-
fines a deformation functor. Then T 1

X,x = (m/m2)∨ is the tangent space of the
deformation functor, and T 2

X,x = (J/nJ)∨ is an obstruction space ([FGI+05, The-
orem 6.1.19]). Let r = dim(J/nJ)∨. By Nakayama’s Lemma, J has at most r
generators. Let f1, . . . , fr be the generators. Let T 1

0 be the formal completion of
T 1
X,x at zero. We can now define the Kuranishi map

φ : T̂ 1
0 → T 2

X,x,

which on the algebraic side maps a coordinate function yi to the relation fi.

The number d− r is the difference of the number of equations and the number
of relations needed to define the Kuranishi model. In general, this difference can
of course vary as we let a point move over X . This situation changes if the space
we are studying admits a perfect tangent-obstruction complex in the terminology
of Li and Tian. For the precise definition we refer to [LT98, Definition 1.2, 1.3].
Roughly speaking it is a two-term complex such that at every point x of X one
cohomology group is the tangent space of x and the other cohomology group is an
obstruction space. An immediate consequence of the existence of such a complex
is that difference of equations and relations needed to define a Kuranishi model is
constant.
Given such a complex, we can improve the description of the Kuranishi model.

Lemma 2.8. LetX be a Deligne-Mumford stack with a perfect tangent-obstruction
complex, and x a point of X . Denote by T 1 the tangent space of x and by T 2 the
obstruction space given by the tangent-obstruction complex. Then there exists a
Kuranishi model

φ : T̂ 1
0 → T 2.

Remark 2.9. Expressed slightly differently, we have written the local completion
of X at x as the fiber product

X̂x
//

��

T̂ 1
0

φ

��
0 // T 2.

Applying intersection theory bluntly to this situation ignoring all issues of formal-
ity we obtain a cycle of dimension d − r in X̂x. This cycle is defined by pulling
back the normal cone of X̂x in T̂ 1

0 from the pullback of the tangent space of 0 in
T 2.

Definition 2.10. Let X be a Deligne-Mumford stack and x a point of X . Assume
given a Kuranishi model φ : T̂ 1

0 → T 2 for the formal completion of X at x. Then
let Cφ denote the normal cone of X̂x in T̂ 1

0 .
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So far the discussion has been purely point-wise. The next step is to move on
from points to affine schemes. We first define what we would like to have in the
end.

Definition 2.11. Let S be an affine scheme, p a point of S and Ŝp the formal
completion of S at p. Assume given a perfect tangent obstruction complex E1 →
E2. Define T i to be the cohomology of E1 → E2 at p. Consider the following
diagram.

V(T 2)× Ŝ

��

V(E∨2 )×S Ŝ
joo r //

��

V(E∨2 )

��
Ŝp

= // Ŝp // S.

The virtual normal cone is the unique (if it exists) cycle CE in V(E∨2 ) such that

r∗[CE ] = j∗[Cφ]

holds.

The key step in producing the cycle CE is to generalize the Kuranishi descrip-
tion of the formal completion of S at p to a Kuranishi description of the formal
completion of S in S × S. The main difference is that the Kuranishi map is no
longer defined as a map from the tangent to the obstruction space, but instead is a
map from the components the tangent-obstruction complex.

Definition 2.12. Let S be an affine scheme with a perfect tangent-obstruction com-
plex E1 → E2. A relative Kuranishi model for S in S × S is a morphism

Φ: V̂(E∨1 )0 → V(E∨2 )

such that zero-set of Φ is isomorphic to the completion of S in S × S.

Once we have such a relative Kuranishi model, we can define the virtual normal
cone. Since the completion of S in S × S is described as the zero-set of a function
with domain V̂(E∨1 )0, it naturally is a subspace of V̂(E∨1 )0.

Theorem 2.13. Let S be an affine scheme with a perfect tangent-obstruction com-
plex E1 → E2.

(i) Relative Kuranishi models exist.

(ii) Let Z be the formal completion of S in S×S, and let Φ: V̂(E∨1 )0 → V(E∨2 )
be a relative Kuranishi model. Let C

Z/V̂(E∨1 )
0

be the normal cone of Z in

V̂(E∨1 )0. The pullback of C
Z/V̂(E∨1 )

0

to S defined by

CE //

��

C
Z/V̂(E∨1 )

0

��
S // Z
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is the virtual normal cone.

This result is just the starting point. It remains to be checked that the virtual
normal cone is independent of the choice of the Kuranishi model, independent
of the quasi-isomorphism class of tangent-obstruction complex, and finally that it
glues. Assuming all these results and assuming the existence of a global resolution
of the tangent-obstruction complex, we can define the virtual fundamental class.

Definition 2.14. Let X be a Deligne-Mumford stack with a perfect tangent-ob-
struction complex that is globally given by a two-term complexE1 → E2 of locally
free sheaves. Then the virtual fundamental class is

s∗0([CE ]) = [X]vir

where s0 is the zero-section of V(E∨2 ).

2.2 The Intrinsic Normal Cone

In the previous section we saw that the key ingredient in constructing a virtual
fundamental class is producing a cone inside a vector bundle. This cone was de-
scribed locally and then patched to a global object. We now want to give a quick
summary on the take of Behrend and Fantechi on this problem. They produce, for
any Deligne-Mumford stack X , independent of the existence of a given obstruc-
tion theory, a cone stack over X . This cone stack is the intrinsic normal cone of X .
Instead of constructing the intrinsic normal cone on affine charts and checking that
it glues, this cone stack is a substack of another stack, the intrinsic normal sheaf,
that immediately exists globally.

At first glance, the intrinsic normal cone is different from the virtual normal
cone of Li and Tian. The virtual normal cone is in general positive dimensional,
whereas the intrinsic normal cone is by definition always of pure dimension zero.
The relationship between them emerges as soon as one chooses an obstruction
theory. Choosing an obstruction theory immediately gives an immersion of the
intrinsic normal cone into the vector bundle stack associated to the obstruction
theory. Pulling back this inclusion along the canonical chart of the vector bundle
stack gives the virtual normal cone of Li and Tian.

We now plunge into the details. We begin by describing the abstract machinery
that associates a stack to a two term complex of locally free sheaves.

Definition 2.15. LetX be a Deligne-Mumford stack and F a coherent sheaf onX .
The abelian cone associated to F is

Spec SymF → X.

Example 2.16. Let X → M , where M is smooth, be an immersion that is not
regular. Then the normal cone of X in M is in general not abelian.
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Example 2.17. To any cone C → X we can associate an abelian cone A(C) and
a closed immersion C → A(C) over X . To see this, let C = Spec

⊕
i≤0 S

i, and
define A(C) = Spec SymS1.

Definition 2.18. Let C be a cone over X , V(E) a vector bundle over X , and
V(E)→ C a morphism of cones overX . This induces a morphism V(E)→ A(C)
of abelian cones over X . If C is invariant in A(C) under the action of E, then we
say that C is an E-cone.

We generalize these definitions to stacks.

Definition 2.19. Let C → X be an algebraic stack over X with vertex 0: X → C
and A1-action γ : A1 × C→ C.1

(i) Then C is a cone stack if étale locally on X there exists a vector bundle V(E)
and an E-cone C over X such that C ∼= [C/V(E)], where the isomorphism
respects the vertex and A1-action.

(ii) A cone stack is called abelian if C can be chosen to be an abelian cone.

(iii) A cone stack is called a vector bundle stack if C can be chosen to be a vector
bundle.

We now state the theorem that explains where all abelian cones come from.

Theorem 2.20. Let X be a Deligne-Mumford stack, and let D−1,0
coh (OX) be the

derived category of OX -modules of Tor-amplitude in [−1, 0] and coherent coho-
mology. Denote by AbConeStX the category of abelian cone stacks over X .
Then there is an equivalence of categories

D−1,0
coh (OX) −→ Ho(AbConeStX).

The map is given by

[E−1 → E0] 7→ [Spec SymE−1/ Spec SymE0].

Remark 2.21. Since the category of abelian cone stacks is naturally a 2-category,
it makes sense to pass to the homotopy category in the right hand side of the above
equivalence.

Remark 2.22. Recall that in the definition of the virtual normal cone of Li and
Tian it was necessary to check independence of the quasi-isomorphism class of the
tangent-obstruction complex. The above theorem is the corresponding statement in
the approach of Behrend and Fantechi.

We can give a quick and brief definition of the intrinsic normal sheaf.

1For the exact definitions of vertex and the A1-action in this context see [BF97, Definition 1.5].



2.2. THE INTRINSIC NORMAL CONE 13

Definition 2.23. Let X be a Deligne-Mumford stack. Then the cutoff of the cotan-
gent complex at -1 τ≥−1LX is an element of D−1,0

coh (OX). Define the intrinsic
normal sheaf NX of X to be the abelian cone stack associated to the truncated
cotangent complex under the above equivalence.

Example 2.24. Let X be a scheme with an immersion i into a smooth scheme M
with ideal sheaf I . Then the intrinsic normal sheaf ofX is [Spec (Sym I/I2)/i∗TM ].
Since the quasi-isomorphism class of the cotangent complex is independent of the
choice of immersion, we get an equivalent stack for any other choice of immersion.

We now define the intrinsic normal cone as a closed substack of the intrinsic
normal sheaf.

Definition 2.25. 1. A local embedding of X is a diagram

U
i //

f
��

M

X

where

(i) U is an affine scheme;

(ii) f : U → X is an étale morphism;

(iii) M is a smooth affine scheme;

(iv) i : U →M is a closed immersion.

2. A morphism of local embeddings is a commutative diagram

Vg

xxqqqqqq
j //

p

��

N

q

��
X

U
f

ffMMMMMM

i
// M

where the rows are local embeddings. Denote the category of local embed-
dings of X by LocEmbX .

Remark 2.26. In a morphism of local embeddings as above the morphism p is
automatically étale since f and g are étale and we have g = f ◦ p.

Remark 2.27. Our definition of the category of local embeddings differs slightly
from the definition in [BF97] as we do not assume the morphism q to be smooth.
The purpose of this modification is to allow for simplicial objects in the category
of local embeddings, for which we also need degeneracy morphisms to exist. In
these degeracy morphisms the morphism q will be a closed immersion.
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Remark 2.28. Given two local embeddings X
f→ U

i
↪→M and X

g→ V
j
↪→ N , we

define the product of local embeddings to be

V
g

zzvvvvvvvvvv
j //

��

N

X V ×X U //

��

OO

oo M ×N

OO

��
U

f

ddHHHHHHHHHH

i
// M

This is not necessarily the categorical product of the local embedding.

Remark 2.29. Note that V ×X U ↪→ M × N is in fact again a local embedding
since X is a Deligne-Mumford stack and as such has an unramified diagnoal.

Definition 2.30. Define the intrinsic normal cone CX to be the unique closed sub-
stack of NX such that for every local embedding

U
i //

��

M

X

we have
CX |U = [CU/M/i

∗TM ].

Remark 2.31. The intrinsic normal cone is always of pure dimension zero. This
follows from the local description, since the normal cone of U in M has the di-
mension of M .

Remark 2.32. Of course, one has to check that this unique closed substack exists.
This is considerably easier than in the construction of the virtual normal cone. This
is because it is easier to prove that something is a subobject of a given global object
than gluing something from scratch.

We now briefly mention how to produce the virtual fundamental class from the
intrinsic normal cone if a perfect obstruction theory exists.

Definition 2.33. Let X be a Deligne-Mumford stack. A perfect obstruction theory
is a morphism in the derived category of OX -modules

φ : E −→ LX

where

(i) The complex E is of perfect amplitude in [−1, 0].

(ii) h0(φ) is an isomorphism.
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(iii) h1(φ) is surjective.

A virtually smooth stack is a Deligne-Mumford stack together with a choice of a
perfect obstruction theory.

Remark 2.34. The equivalence to the definition of Li and Tian is the equivalence
of points 1 and 3 of [BF97, Theorem 4.5].

As already mentioned previously, it sometimes is advantageous to choose a
specific resolution of the perfect obstruction theory as morphism of complexes.

Definition 2.35. 1. A local resolution of the complex E consists of an étale
morphism U → X where U is an affine scheme, a two-term complex F of
locally free sheaves on U and an isomorphism F → EU ∈ D(U).

2. A local resolution of φ : E → LX consists of an étale morphism U → X
whereU is an affine scheme, a local resolution F ofE onU , an isomorphism
L→ LU in D(U), and a morphism of complexes F → L such that

F //

��

L

��
EU

φ //// LU

commutes in D(U).

3. A global resolution for a perfect obstruction theoryE is a complex of locally
free sheaves F = [F−1 → F 0] concentrated in degrees −1 and 0 with an
isomorphism F → E ∈ D(X).

Remark 2.36. In most cases one chooses local resolutions of φ only for the mor-
phism to the −1-truncation of the cotangent complex LX . This suffices for appli-
cations to virtual classes.

Remark 2.37. The morphism φ : E → LX lives on the left hand side of the equiv-
alence of Theorem 2.20. Denote by E the vector bundle stack corresponding to E.
Translating the conditions on the morphism on cohomology to the right hand side
becomes the statement that NX → E is a closed immersion of abelian cone stacks
over X . Composing with the inclusion of CX in NX we obtain a closed immersion

CX //

!!B
BB

BB
BB

B E

����
��

��
��

X .

We can now define the virtual fundamental class.

Definition 2.38. Let X be a Deligne-Mumford stack with a perfect obstruction
theory φ : E → LX . Let s0 be the zero section of E. Then the virtual fundamental
class is defined by

[X]vir = s∗0([CX ]).
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Remark 2.39. This definition requires intersection theory for Artin stacks, which
is available due to [Kre99].

Remark 2.40. Denote the ranks of Ei by ei. Then the vector bundle stack E has
rank e−1−e0. Since the intrinsic normal cone has pure dimension zero, intersecting
this cone with the zero section gives a class of dimension 0−(e−1−e0) = e0−e−1

which is precisely the expected dimension.

In the case when global resolutions exist, we can reproduce the virtual normal
cone of Li and Tian.

Remark 2.41. LetX be a Deligne-Mumford stack with a perfect obstruction theory
φ : E → LX . Assume that the perfect obstruction theory is globally defined by
a two-term complex of vector bundles [E−1 → E0]. Then we have a canonical
atlas for E given by the quotient map from V(E−1) → E. We can then form the
following fiber product:

C //

��

V(E−1)

��
CX // E.

The pullback C is then the virtual normal cone defined by Li and Tian, [KKP03,
Proposition 2].



Chapter 3

Derived Algebraic Geometry

Derived algebraic geometry is the study of spaces obtained by gluing simplicial
commutative rings along weak equivalences.

Just as in classical algebraic geometry, there are several approaches how to
tackle these spaces. One can either use the language of the functor of points or
the language of locally ringed spaces. We here follow closely the exposition of
[HAG-II], which uses the functor of points. For a treatment closer to locally ringed
spaces, see [Lur11].

3.1 Two Motivating Theorems

3.1.1 Characterizing Sheaves Among All Functors

One of Grothendieck’s key ideas, maybe inspired from functional analysis, was
not to study the geometry of a space directly, but instead to study all possible kinds
of morphisms into this space. Expressed in more technical terms, this means to
study the functor represented by a space. Of course there are plenty of functors
that definitely do not arise from any geometric origin. This makes it necessary to
characterize those functors which really are of geometric nature. Grothendieck was
interested in easily verifiable conditions that ensure that a functor is representable.
In the long run, this was accomplished by Artin for algebraic spaces instead of
schemes. We present here a theorem that accomplishes the task for schemes, but in
general is hard to check.

In short, a functor is representable by a scheme if and only if it is a sheaf in
the Zariski topology and if it has a Zariski atlas. We first introduce the notion of a
Zariski atlas.

Definition 3.1. Let AffA be the category of affine schemes over a ring A, and
let f : F → G be a natural transformation of contravariant set-valued functors on
AffA. Then f is a Zariski open immersion if f is representable and for all test

17
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morphisms Spec S → G the induced map f ′ in the fiber square

X //

f ′

��

F

f

��
Spec S // G

is a Zariski open immersion.

We can now define a Zariski atlas.

Definition 3.2. Let AffA be the category of affine schemes over a ring A, and let
F be a contravariant set-valued functor on AffA. A Zariski atlas for F is a natural
transformation of functors ∐

i

Spec Ri → F

which is an epimorphism of sheaves and such that each component Spec Ri → F
is a Zariski open immersion.

We now can state the theorem that characterizes the functors representable by
schemes among all functors.

Theorem 3.3. [EH00, Thm. VI-14] Let F : Affop
A → Sets be a contravariant

functor. Then F is representable by a scheme if and only if

(i) F is a sheaf in the Zariski topology and

(ii) F has a Zariski atlas.

Thus we have two conditions: The topological condition of satisfying descent
and the geometric condition of having an atlas. In the sequel we will try to carry
both notions over to simplicial set valued functors on the category of simplicial
commutative rings. It will be important to keep both steps apart, first taking care of
the descent condition and later imposing the right atlas conditions.

3.1.2 Sheaves Without The Sheaf Condition

Writing down explicitly the sheaf conditions for an up-to-homotopy sheaf is an
impossible task, since there will be much more to check than just the cocycle con-
dition up to triple intersections. This problem is already apparent in the definition
of the descent conditions for a groupoid-valued functor, where one independently
has to check that morphisms and objects glue. One therefore seeks a construction
of the category of sheaves without explicit descent conditions. We briefly sketch
how to accomplish this for a sheaf of sets on a Grothendieck site. Concretely, we
will define a class of weak equivalences in the presheaf category. Localizing these
weak equivalences gives the category of sheaves.
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Definition 3.4. Let C be a category with a Grothendieck topology τ , and denote
the category of presheaves on C by Pr(C). A morphism f : F → G in Pr(C)
is locally surjective if for any X ∈ C and any ξ ∈ G(X) there exists a covering∐
i
Ui → X such that for any i the restriction ξUi is in the image of f(Ui) : F (Ui)→

G(Ui).

Definition 3.5. Let C be a category with a Grothendieck topology τ . Let W be the
set of morphisms in Pr(C) satisfying the following conditions:

(i) f is injective on all sections and

(ii) f is locally surjective.

A morphism f ∈W is called a τ -local isomorphism.

Applying the general theory of localizing a category along a set of weak equiv-
alences we obtain a category W−1Pr(C). Using this category we can describe the
category of sheaves.

Theorem 3.6. The localization functor Pr(C)→W−1Pr(C) has a right adjoint
which is fully faithful and whose essential image consists of the sheaves on C with
respect to the topology τ .

We record as a guiding principle that the sheaf conditions can be formulated
by localizing at appropriate morphisms.

3.2 Simplicial Commutative Rings

In this section we gather important facts about the category of simplicial commu-
tative A-algebras over a fixed commutative ring A. The first important fact is the
model category structure on this category, for which we refer to the appendix.

3.2.1 An Adjunction

The category of simplicial commutative A-algebras is closely tied to discrete A-
algebras via an adjoint pair.

Proposition 3.7. Let sAlgA be the category of simplicial commutativeA-algebras,
and let AlgA be the category of commutative A-algebras. Define

i : AlgA → sAlgA

by i(R)n = R and taking all simplicial morphisms to be the identity. Then

sAlgA
π0 // AlgA.
i

oo

is an adjoint pair.
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Remark 3.8. Let R be in sAlgA. Applying the adjunction to the identity π0(R)→
π0(R) we obtain a canonical morphism

R→ i(π0(R)).

The geometric version of this morphism will play an important role later.

The homotopy groups of a simplicial commutativeA-algebra are always abelian,
and can be assembled to a graded abelian group.

Definition 3.9. LetR be a simplicial commutativeA-algebra. Define the homotopy
algebra by

π∗(R) :=
⊕
i

πi(R)

The name is justified by the following proposition.

Proposition 3.10. Let R be a simplicial commutative A-algebra. Then its homo-
topy algebra is a graded commutative A-algebra.

Proof. (Sketch) Elements a ∈ πn(R) and b ∈ πm(R) are represented by the homo-
topy classes of a maps Sn → R and Sm → R. Composing with the multiplication
map on R, we obtain

Sn × Sm → R×R→ R.

Since ∗ × Sm and Sn × ∗ both get mapped to the basepoint 0 ∈ R, this morphism
factorizes over the smash product Sn ∧ Sm ' Sn+m. Define a · b ∈ πn+m(R) to
be homotopy class of the resulting map.

3.2.2 Modules

We will now study the category of modules over a simplicial commutative A-
algebra.

Definition 3.11. Let MR,≥0 be the category of simplicial modules over the sim-
plicial commutative A-algebra R.

Remark 3.12. Since R is a simplicial A-algebra, the category MR,≥0 has a for-
getful functor to the category sModA of simplicial objects in the category of A-
modules. This category is equivalent, via the Dold-Kan correspondence, to chain
complexes of modules over A concentrated in non-negative degrees. This allows
us to transfer many constructions from chain complexes to simplicial modules over
R. In particular, we can compute for M ∈MR,≥0

πi(M) = Hi(N(M)),

whereN is the normalization functor of the Dold-Kan correspondence and we have
omitted the forgetful functor from the notation.
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We next want to introduce the suspension and loop space functors. These be-
have better for the stabilization of MR,≥0. This stabilization can be constructed by
homotopy theoretic methods, but we will give a more accessible ad hoc definition
instead.

Definition 3.13. LetR be a simplicial commutativeA-algebra, and letN(R) be its
normalization, which is a commutative differential graded algebra over A. Define
MR to be the category of unbounded differential graded modules over N(R) with
its natural model category structure.

We can now define the suspension and loop functors by transporting them from
the familiar categories of chain complexes.

Definition 3.14. Let M ∈MR,≥0, and view N(M) as unbounded chain complex
of modules over A. Define the suspension

M [1] := K(N(M)[1])

where K is an inverse to the normalization functor. The loop functor is defined by

M [−1] := K(N(M)[−1]).

Remark 3.15. We have πi(M [1]) = πi+1(M) and πi(M [−1]) = πi−1(M).

Definition 3.16. Let M ∈MR.

(i) The module M is discrete if πi(M) = 0 for i 6= 0.

(ii) The module M is n-connected if πi(M) = 0 for i ≤ n. We will say that M
is connective if it is −1-connected.

(iii) The module M is n-truncated if πi(M) = 0 for i > n.

We now turn to the tensor product of R-modules.

Definition 3.17. Let M,N ∈MR,≥0. Define their tensor product M ⊗R N level-
wise, i.e. let M ⊗R N be the simplicial R-module which in degree n is given by

(M ⊗R N)n = Mn ⊗Rn Nn.

The left derived functor of the tensor product is given by

M ⊗L
R N = M ⊗R Q(N)

where Q denotes cofibrant replacement.

As usual, we have the following adjunction.
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Proposition 3.18. Let f : R → S be a morphism of simplicial commutative A-
algebras. Then their exists an adjunction

MR,≥0

−⊗RS// MS,≥0.
f∗

oo

Remark 3.19. Using the smash product of spectra or by transport of structure we
can define the tensor product and its derived version also for MR.

To compute the homotopy groups of a tensor product we have the following
result by Quillen.

Theorem 3.20. [Qui67, II.6 Theorem 6(b)] Let M,N ∈MR. There exists a spec-
tral sequence with Ep,q2 =

(
Torpπ∗(R)(π∗(M), π∗(N))

)
q
, where the right hand

side is the q-th graded piece of the Torp group calculated as the tensor product of
graded modules over a graded ring. If M,N are connective, we have

Ep,q2 ⇒ πp+q(M ⊗L
R N).

We now come to the central notion of flatness.

Definition 3.21. Let M be a connective R-module. The module M is flat if

−⊗L
RM

preserves homotopy pullbacks.

An equivalent formulation of flatness can be achieved with the following defi-
nition.

Definition 3.22. Let M be a connective R-module. The module M is strong if the
morphism

π∗(R)⊗π0(R) π0(M)→ π∗(M)

is an isomorphism.

We can now give alternative characterizations of flatness.

Proposition 3.23. LetM be a connectiveR-module. Then the following conditions
are equivalent:

(i) The module M is flat.

(ii) The module M is strong and π0(M) is flat as π0(R) module.

(iii) If N is a discrete A-module, then N ⊗L
RM is discrete.

(iv) The π0(R)-module π0(R)⊗L
RM is discrete and flat.
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Remark 3.24. This shows that the “global” properties of a flat R-module M are
determined by the “local” properties of π0(M) over π0(R), a principle formulated
in Lurie’s thesis [Lur04, Remark before Prop. 2.5.3].

We move on to projective modules.

Definition 3.25. Let M be a connective R-module. The module M is projective if
it is the retract of a free module

⊕
i∈I R.

Remark 3.26. This is a direct reformulation of the classical notion of being the
direct summand of a free module.

3.2.3 Cotangent Complex

The key tool for generalizing important geometric notions like étale and smooth
from the discrete to the simplicial case is the cotangent complex.

Definition 3.27. Let f : R → S be a morphism of simplicial commutative A-
algebras. Let QR(S) be a cofibrant replacement of S in the category of simplicial
commutative A-algebras over R. Let Ω1

QR(S)/R denote the level-wise application
of Kähler differentials. Then

LS/R := Ω1
QR(S)/R ⊗QR(S) S

is the cotangent complex of S over R.

The Kähler differentials are characterized by a universal property: they corep-
resent the functor that associates to a module derivations with values in the module.
The same statement for the cotangent complex does not hold in classical commu-
tative algebra, but becomes true if we pass to simplicial algebras.

Definition 3.28. LetR be a simplicial commutativeA-algebra andM a connective
R-module. Define the trivial square zero extension ofR byM by applying the usual
square extension levelwise.

Remark 3.29. The trivial square zero extension comes with a natural augmentation
R⊕M → R.

Definition 3.30. Let f : R → S be a morphism of simplicial commutative A-
algebras, and let M be a connective S-module. Using the augmentation map of the
trivial square zero extension S ⊕M we obtain a map

RHomsAlgA,/R
(S, S ⊕M)→ RHomsAlgA,/R

(S, S).

Now define the derived derivations with values inM as the homotopy fiber product
of the diagram of simplicial sets

RDerR(S,M) //

��

RHomsAlgA,/R
(S, S ⊕M)

��

id // RHomsAlgA,/R
(S, S).
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Remark 3.31. In discrete commutative algebra, their is an analogous definition of
the module of Kähler differentials as sections of the augmentation map of the trivial
square extension.

We can now characterize the cotangent complex by a universal property.

Proposition 3.32. Let f : R → S be a morphism of simplicial commutative A-
algebras. Then the functor

RDerR(S,−) : MS,≥0 → sSet

is corepresented by LS/R.

Only having the cotangent complex suffices to define formally smooth and
formally étale morphisms. We need an additional finiteness hypothesis.

Definition 3.33. Let f : R → S be a morphism of simplicial commutative A-
algebras, and let C : I → sAlgA,/R be a filtered diagram. The morphism f is
homotopically finitely presented if

hocolimi∈I RHomsAlgA,/R
(S,Ci)→ RHomsAlgA,/R

(S, hocolimi∈I Ci)

is a weak equivalence of simplicial sets.

We now arrive at the following definition.

Definition 3.34. Let f : R → S be a morphism of simplicial commutative A-
algebras.

(i) The morphism f is smooth if LR/S is projective and f is homotopically
finitely presented.

(ii) The morphism f is étale if LR/S ' 0 and f is homotopically finitely pre-
sented.

Again using strongness we have an alternative characterization.

Proposition 3.35. Let f : R → S be a morphism of simplicial commutative A-
algebras. The morphism f is smooth (étale) if and only if S is strong as R-module
and the induced morphism π0(R)→ π0(S) is smooth (étale).

We also can define the derived version of being a local complete intersection
morphism.

Definition 3.36. Let f : R → S be a morphism of simplicial commutative A-
algebras. The morphism f is quasi-smooth if for any discrete S-module M the
groups

πi(LS/R ⊗S M)

vanish for i > 1 and f is homotopically finitely presented.
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We wrap up by listing a number of cofiber sequences which allow for compu-
tations of the cotangent complex. These are a considerable improvement over the
non-derived setting, since the formulas 2 and 3 of the following proposition are
only valid with an additional flatness hypothesis for the underived setting.

Proposition 3.37. (i) Let R→ S → T be morphisms of simplicial commutative
A-algebras. Then we have the following cofiber sequence of T -modules:

LS/R ⊗L
S T → LT/R → LT/S .

(ii) Let
S′ Soo

R′

OO

Roo

OO

be a homotopy cofiber square of simplicial commutative A-algebras. Then

LS/R ⊗L
S S
′ → LS′/R′

is a weak equivalence of S′-modules. Furthermore the following square is a
homotopy pushout of S′-modules:

LS′ LS ⊗L
S S
′oo

LR′ ⊗L
R′ S

′

OO

LR ⊗L
R S
′oo

OO

3.3 Descent

We now want to develop the technique introduced in Section 3.1.2 to solve the
problem of defining the appropriate descent conditions. We first take care of the
easier case of simplicial set valued functors on affine schemes. The simplification
comes from the fact that the domain category itself is not a model category. We thus
have to formulate descent conditions only for ordinary coverings and not for up-to-
homotopy coverings. The key difficulty will be to identify the right set of natural
transformations such that the localized category is equivalent to the category of
sheaves.

3.3.1 Higher Stacks

We begin by equipping the category of simplicial presheaves on affine schemes
with a model category structure. This model category structure will not take into
account any topology and will have to be modified later on.
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Definition 3.38. Denote by sPr(AffA) the category of simplicial presheaves on
A-algebras.

Definition 3.39. Let f : F → G be a morphism in sPr(AffA).

(i) The morphism f is a global projective fibration if it is a levelwise fibration.

(ii) The morphism f is a global projective weak equivalence if it is a levelwise
weak equivalence.

(iii) Cofibrations are defined by the left lifting property with respect to acyclic
global projective fibrations.

This defines a model category structure on sPr(AffA) which is commonly
called the global projective model structure. We will now modify this model cat-
egory structure to incorporate a topology. Thus fix a topology, for example the
étale topology, on AffA. Denote this topology by τ . We first define the homotopy
sheaves of a simplicial presheaf.

Definition 3.40. Let F ∈ sPr(AffA).

(i) Define the presheaf πpr
0 (F ) : Affop

A → Set by sending X to π0(F (X)).

(ii) Let X ∈ AffA and fix an s ∈ F (X)0. Define the presheaf

πpr
i (F, s) : (AffA/X)op → Set

by mapping
f : Y → X to πi(F (Y ), f∗s).

These presheaves will be called the homotopy presheaves of F . The associated
sheaves will be denoted by π0(F ) and πi(F, s) and are called the homotopy sheaves
of F .

Remark 3.41. Since we take the associated sheaves, the topology really comes into
play now.

We now define the local weak equivalences we wish to localize at.

Definition 3.42. Let f : F → G be a morphism in sPr(AffA). The morphism f
is a local weak equivalence if

(i) the morphism π0(F )→ π0(G) is an isomorphism of sheaves and

(ii) for any X ∈ AffA, any s ∈ F (X)0 and any i > 0 the morphism πi(F, s)→
πi(G, f(s)) is an isomorphism of sheaves on AffA/X .

It is a theorem due to Jardine [Jar87] that the left Bousfield localization at the
class of local weak equivalences exists. The resulting model category structure is
called the local projective model structure. In [DHI04], a model category structure
which is Quillen equivalent to the local projective model structure is constructed, in
which the fibrant objects admit the following nice description. This model structure
is called the universal homotopy theory.
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Theorem 3.43. Equip sPr(AffA) with the universal homotopy model structure.
Then an object F is fibrant if and only if

(i) For any X ∈ AffA the simplicial set F (X) is fibrant.

(ii) For any X ∈ AffA and any hypercovering H → X the morphism

F (X)→ holim[n]∈∆ F (Hn)

is an equivalence of simplicial sets.

The second condition is of course the important one, since it is the up-to-
homotopy version of the usual descent condition. Recalling that the homotopy
category of a model category is equivalent to the category of fibrant objects with
homotopy classes of maps, and in view of the second condition of the theorem, the
following definition is reasonable.

Definition 3.44. Define the category of topological stacks on AffA to be the ho-
motopy category of sPr(AffA) with respect to the local model structure. This
category will be denoted by StA.

3.3.2 Derived Stacks

We now turn to the case of simplicial presheaves on the category of simplicial
commutative A-algebras. We will proceed as above, with the difference of one
additional localization. This additional localization makes sure that descent for up-
to-homotopy coverings holds.

Definition 3.45. Let dAffA be the opposite category of the category of simplicial
commutative A-algebras, and sPr(dAffA) the category of simplicial presheaves.

Using the same definition as above, endow the category sPr(dAffA) with
the global projective model structure. By the Yoneda embedding, every morphism
X → Y in dAffA gives a morphism of representable presheaves. Recall that the
category of simplicial commutative A-algebras is a model category, and it thus
makes sense to speak about weak equivalences.

Definition 3.46. LetW be the set of all morphisms in sPr(dAffA) obtained from
weak equivalences in dAffA by the Yoneda embedding. Define the model category
of prestacks to be the left Bousfield localization of sPr(dAffA) equipped with the
global model structure at the set W .

More or less by definition, we have the following result.

Proposition 3.47. An object F in the model category of prestacks is fibrant if and
only if

(i) For any X in dAff , the simplicial set F (X) is fibrant.



28 CHAPTER 3. DERIVED ALGEBRAIC GEOMETRY

(ii) F preserves weak equivalences.

The second condition is of course the important one. It ensures that a one-
element covering by a weak equivalence will also lead to equivalent simplicial
sets. But up to now, we have not made any use of the topology on dAffA. We
incorporate the topology in a similar way as in the case of higher stacks.

Definition 3.48. Let F ∈ sPr(dAffA), and equip Ho(dAffA) with a model
topology τ . Define the homotopy presheaves as in Definition 3.40. Assume F to be
fibrant in the model category of prestacks. Since F preserves weak equivalences,
the homotopy presheaves descend to functors

πpr
0 (F ) : Ho(dAffA)→ Sets

and
πpr
i (F, s) : Ho(dAffA)→ Sets.

Since Ho(dAffA) is a Grothendieck site, we can form the associated sheaves
π0(F ) and πi(F, s), the homotopy sheaves ofF . IfF is not fibrant, define π0(F ) :=
π0(RF ), where R is fibrant replacement, and the same for πi(F, s).

As above, we now localize the model category of prestacks at the local equiv-
alences, which we define now.

Definition 3.49. Let f : F → G be a morphism in the model category of prestacks.
The morphism f is a projective local weak equivalence if

(i) the morphism π0(F )→ π0(G) is an isomorphism of sheaves and

(ii) for anyX ∈ dAffA, any s ∈ F (X)0and any i > 0 the morphism πi(F, s)→
πi(G, f(s)) is an isomorphism of sheaves on AffA/X .

It is proven in [HAG-I] that the left Bousfield localization at the class of pro-
jective local weak equivalences exists. The resulting model category structure is
called the projective local model structure. Again it is possible to characterize the
fibrant objects.

Theorem 3.50. [HAG-I, Corollary 4.6.3] Equip sPr(dAffA) with the local model
structure. Then an object F is fibrant if and only if

(i) For any X ∈ AffA the simplicial set F (X) is fibrant.

(ii) F preserves weak equivalences.

(iii) For any X ∈ AffA and any hypercovering H → X the morphism

F (X)→ holim[n]∈∆ F (Hn)

is an equivalence of simplicial sets.
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Thus the goal of finding a model category in which the fibrant objects satisfy
descent for up-to-homotopy coverings is accomplished, and we can make the fol-
lowing definition.

Definition 3.51. The category of derived stacks dStA is the homotopy category of
sPr(dAffA) with respect to the local model structure.

Keeping in mind that the category of simplicial commutative A-algebras is
enriched over simplicial sets, we can define the spectrum of a simplicialA-algebra.

Definition 3.52. Let R ∈ sAlgA. Then the functor Hom(A,−) is an element in
sPr(dAffA). Define its image in dStA to be RSpec R.

Remark 3.53. It is a consequence of the Yoneda lemma for model categories,
proved in [HAG-I], that this functor is fully faithful.

Remark 3.54. The explicit formula for RSpec R(X) where X = Spec S is

RSpec R(X) = Hom(QR,S)

where Q denotes cofibrant replacement.

3.4 Atlas conditions

Looking back to the first of our motivating theorems, we have to find the appropri-
ate descent conditions and define atlases to find geometric objects. Having taken
care of descent, we now define atlases. All results apply word for word also to the
category StA.
The definition of an atlas is an inductive procedure, starting with the trivial case of
being representable by affines. From here it is possible to move on to morphisms,
defining a morphism to be representable if it is representable on any affine test
object.

Definition 3.55. (i) Let F ∈ dStA. We say that F is 0-representable if F '
RSpec R, for R ∈ sAlgA.

(ii) A morphism f : F → G in dStA is 0-representable if for any morphism
g : RSpec S → G the fiber product RSpec S ×G F is 0-representable.

(iii) A 0-representable morphism f : F → G in dStA is smooth (étale) if for any
morphism g : RSpec S → G the induced morphism from the fiber product
RSpec R→ RSpec S is smooth (étale).

Having completed the first step of the induction, we can go on to define n-
representability.

Definition 3.56. (i) Let F ∈ dStA. We say that F is n-representable if it has
an n− 1-representable smooth atlas, i.e. there exists a family RSpec Ri and
a morphism p :

∐
RSpec Ri → F such that
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•
∐
π0(RSpec Ri)→ π0(F ) is an epimorphism of sheaves and

• each component RSpec Ri → F is n − 1-representable and smooth
(étale).

(ii) A morphism f : F → G in dStA is n-representable if for any morphism
g : RSpec S → G the fiber product RSpec S ×G F is n-representable.

(iii) A 0-representable morphism f : F → G in dStA is smooth (étale) if for any
morphism g : RSpec S → G there exists an n− 1-atlas

∐
RSpec Ri for the

fiber product such that each composite morphism RSpec Ri → RSpec S is
smooth (étale).

We now arrive at the key definition of geometric derived stacks.

Definition 3.57. Let F ∈ dStA. Define F to be an Artin n-Stack if

(i) F is m-representable for some m ∈ N and

(ii) for all discrete A-algebras R the simplicial set F (Spec R) is n-truncated

If F is m-representable by an m − 1-representable étale atlas, we will say that F
is a Deligne-Mumford n-stack.

3.5 Properties of Morphisms

So far we have only defined étale and smooth morphisms. Of course, there are
many other interesting properties of morphisms. In this section we briefly outline
some facts about further interesting properties following [Lur04, Section 3.5]. The
same material can also be found in [HAG-II, Section 1.3.6].

Definition 3.58. Let P be a property of modules of simplicial commutative rings.
The property P is stable under arbitrary (étale, smooth) base change if whenever
anR-moduleM has the property P and S is an arbitrary (étale, smooth)R-algebra,
then the module B ⊗L

RM has the property P .

Definition 3.59. Let P be a property of morphisms of simplicial commutative
rings. The property P is local on the source for the étale (smooth) topology if the
following conditions are satisfied:

(i) Given any collection of morphisms fi : R → Si having the property P , the
product morphism R→

∏
i
Si has the property P .

(ii) If R
f→ S

g→ T is a pair of morphisms such that g is étale (smooth), and g ◦f
has the property P , then f has the property P .

Properties that are local on the source and stable under base change are readily
generalized to derived geometric stacks.
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Definition 3.60. Let f : F → G be a morphism of derived Artin stacks. Let P
be any property that is local on the source for the smooth topology and stable
under arbitrary base change. The morphism f has the property P if for any map
RSpec R → G and any étale morphism RSpec S → RSpec R ×hG F the R-
algebra S has the property P .

Most important for the applications we have in mind is the following result.

Proposition 3.61. [Lur04, Prop. 3.5.8] Quasi-smoothness is local on the source
and stable under arbitrary base change.

3.6 Features

3.6.1 The Canonical Inclusion

Every discrete commutative A-algebra R gives rise to a simplicial commutative
A-algebra i(R) by setting i(R)n = R and taking all simplicial morphisms to be
the identity. We also have a map in the opposite direction, taking a simplicial com-
mutative A-algebra R to π0(R), which is a discrete commutative A-algebra. These
functors are actually adjoint to each other, giving rise to the following adjunction:

AffA

i // dAffA.
π0

oo

By precomposition, we get an adjoint pair

sPr(AffA)
π∗0 // sPr(dAffA).
i∗

oo

This adjunction gives rise to Quillen functors of both sides equipped with the ap-
propriate local projective model structures, and we finally obtain the following
adjunction:

StA
i // dStA.
t0

oo

Definition 3.62. The functor t0 is called the truncation functor.

Remark 3.63. It immediately follows that t0(RSpec R) = Spec (π0(R)).

Remark 3.64. In [HAG-II, Section 2.2.4] many properties of the truncation functor
are proved, for instance that t0 maps derived Artin n-stacks to Artin n-stacks. The
key feature of the adjunction that we will constantly expose is that t0 commutes
with homotopy limits and colimits, whereas i only commutes with homotopy co-
limits. Thus taking homotopy limits after viewing a scheme as a derived scheme
gives rise to genuinely new objects.

Definition 3.65. Let F ∈ StA. A derived extension of F is a derived stack F ′ ∈
dStA with an isomorphism

F ' t0(F ′).
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Given a derived extension of a stack F , there always is a canonical inclusion
of F into its derived extension.

Definition 3.66. Let F ∈ StA, and let F ′ be a derived extension. The canonical
inclusion

j : i(F )→ F ′

is the morphism in dStA obtained by adjunction from the isomorphism F '
t0(F ′).

To study the canonical inclusion we make the following definition.

Definition 3.67. A morphism f : F → G in dStA is a closed immersion if it is
representable and for any morphism RSpec S → G the fiber product RSpec S×hG
F ' RSpec R induces an epimorphism of rings π0(S)→ π0(R).

We can now formulate the key property of the canonical inclusion.

Proposition 3.68. [HAG-II, Prop. 2.2.4.7] Let F be an Artin n-stack, and let F ′

be a derived extension. Then the canonical inclusion

j : i(F )→ F ′

is a closed immersion.

Remark 3.69. The results of this section suggest that the relationship between a
derived scheme to a classical scheme is very much like the relationship between
non-reduced to reduced schemes. The geometric intuition behind derived schemes
is that the underlying topological space is glued from the π0 components of sim-
plicial rings, with the other πi groups serve as generalized nilpotents.

The canonical inclusion makes the connection between derived stacks and per-
fect obstruction theories.

Proposition 3.70. Let F ′ be a derived quasi-smooth Deligne-Mumford 1-stack. Let
F be the truncation of F ′, and denote by j : F → F ′ the canonical inclusion. Then

j∗LF ′ → LF

is a perfect obstruction theory for F .

Proof. Since F ′ is a quasi-smooth Deligne-Mumford 1-stack, the cotangent com-
plex LF ′ is of Tor-amplitude in [−1, 0]. A standard property of the cotangent com-
plex is that it has coherent cohomology. Since pullback preserves Tor-amplitude,
we conclude

j∗LF ′ ∈ D
[−1,0]
coh (F ).

The morphism j induces a morphism

j∗LF ′ → LF .
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It remains to verify that this morphism is surjective on H1 and an isomorphism of
H0. This follows from [BF97, Theorem 4.5], especially from the equivalence of
1 and 3. The statement of point 3 follows from the fact that LF ′ is an obstruction
theory for derived small extension, thus in particular for classical small extensions
which only see the truncation F .

3.6.2 The Virtual Structure Sheaf

Given a classical Artin stack along with a derived extension, it is possible to pro-
duce a left-over of the derived extension which lives on the classical part. This is
the virtual structure sheaf of the truncation.

Definition 3.71. [Toë09, Section 4.2, point 6.] Let F ′ be a derived Artin n- stack
with truncation t0(F ′) = F . Fix an atlas

∐
i
RSpec Ri → F ′. Then

∐
i

Spec π0(Ri)

is an atlas for F . The graded π0(Ri) modules π∗(Ri) glue to quasi-coherent sheaf
on h0(F ), called the virtual structure sheaf. This sheaf will be denoted by Ovir

F .

Remark 3.72. The term virtual structure sheaf is also used in a slightly different
context. If X is a Deligne-Mumford stack with a perfect obstruction theory the K-
theoretic Gysin map yields by the same construction as for the virtual fundamental
class a sheaf on X which is also called the virtual structure sheaf. These do not
have to coincide.

Remark 3.73. [Toë09, 4.4.3] It is not clear that the cohomology groups of the vir-
tual structure sheaf are coherent and vanish starting from some value. This makes
it impossible to define the class of the virtual structure sheaf in the G-theory of the
truncation. One known case where the cohomology groups of the virtual structure
sheaf do vanish starting from some value and are coherent is the case of quasi-
smooth derived Deligne-Mumford 1-stacks over a field of characteristic zero.

3.6.3 Groupoid Presentation

A nice feature of derived schemes and stacks is that they can be described in terms
of up-to-homotopy groupoids, which is very close to defining manifolds in terms of
their charts. We will briefly review the groupoid presentation of classical schemes
and stacks and then pass on to the derived version.

Groupoid schemes

We begin by defining a groupoid object in the category of sets.

Definition 3.74. A groupoid object in the category Set consists of two sets U and
R, and five morphisms:

(i) the source s : R→ U ,

(ii) the target t : R→ U ,
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(iii) the multiplication m : Rt ×s R→ R

(iv) the unit e : U → R,

(v) and the inverse R→ R

satisfying the obvious axioms guessed from their names.1 The notation for such a
groupoid is

[R⇒ U ].

Here are two basic examples.

Example 3.75. Assume that (s, t) : R → U × U is injective. Then R defines an
equivalence relation on U .

Example 3.76. Define a category C with objects R and morphisms U . This cate-
gory is a groupoid in the sense that every morphism is invertible.

Thus the new feature of groupoid objects in comparison to equivalence rela-
tions is that elements of U can have automorphisms, namely those elements of R
with the same source and target. We now carry this description over to schemes.

Definition 3.77. A groupoid object in the category SchemesA consists of two
schemes U and R and the above mentioned five morphisms with the appropriate
axioms.

If we take U to be a disjoint union of affine schemes and view R as defining
an equivalence relation on this disjoint union, it is of course tempting to glue the
affine schemes along the equivalence relation to a scheme. With some additional
hypothesis this is possible.

Lemma 3.78. Let [R ⇒ U ] be a groupoid scheme where U is an affine scheme
and assume that

(i) s and t are Zariski open immersions and

(ii) R is a closed subscheme of U × U via the tuple (s, t).

Then the colimit of the diagram

R
s //

t
��

U

U

is a scheme.

Proof. This just amounts to checking the cocycle condition necessary for gluing.

1For the precise statement of all axioms see [BCE+20, Chapter 3]
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Remark 3.79. In the opposite vein, a scheme X defines a groupoid scheme. Take a
cover

∐
Ui → X and define U :=

∐
Ui and R := U ×X U . Source and target are

the projections.

Remark 3.80. If we relax the first condition in the previous lemma and allow s and
t to be étale, the groupoid scheme [R⇒ U ] is by definition [Art71, Definition 2.3]
an algebraic space.

Dropping the condition that R is a closed subscheme of U × U allows points
to have automorphisms and leads to the world of stacks. In general, we have the
following result.

Proposition 3.81. Let [R⇒ U ] be a groupoid scheme with s and t smooth (étale).
Then the colimit

colim(R⇒ U)

in the category of groupoid valued functors is an algebraic (Deligne-Mumford)
stack.

Segal Groupoids

We now move on to the up-to-homotopy version of a groupoid object. It will be
a special kind of simplicial object in a model category. To state the definition, we
need a special morphism in the category ∆.

Definition 3.82. Let σi,n be the morphism in ∆ defined by

[1]→ [n]

0 7→ i

1 7→ i+ 1

Definition 3.83. Let M be a Model category. A Segal groupoid object in M is a
simplicial object X∗ such that

(i) ∀n > 1, the morphism

σi :=
∏

0≤i<n
σi,n : Xn → X1 ×hX0

· · · ×hX0
X1︸ ︷︷ ︸

n times

is a weak equivalence, and

(ii) the morphism
d0 × d1 : X2 → X1d0 ×hd0 X1

is a weak equivalence.

Remark 3.84. On first sight this definition looks quite far from the definition of
a groupoid object. The relationship becomes clearer if one views X1 to play the
role of R and X0 to play the role of U . The source, target and identity is given by
the simplicial structure morphisms between X1 and X0. It remains to define the
multiplication and the inverse.
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Definition 3.85. Let X∗ be a Segal groupoid object.

(i) The multiplication is the following morphism in Ho(M):

m := d1 ◦ σ−1
2 : X1 ×hX0

X1 → X2 → X1.

(ii) The inverse in Ho(M) is given by

i := d2 ◦ (d0 × d1)−1 ◦ (id×hs0d0) : X1 → X1d0 ×hd0 X1 → X2 → X1.

The key theorem we will later use is the derived analog of the above results on
groupoid schemes.

Theorem 3.86. Let X∗ be a Segal groupoid object in dStA. Assume that

(i) X0 and X1 are disjoint unions of n-stacks and

(ii) the morphism d0 : X1 → X0 is étale.

Then the homotopy colimit
hocolim[n]∈∆Xn

is a Deligne-Mumford n+ 1 - stack.

Proof. This is a special case of [HAG-II, Prop. 1.3.4.2].

Remark 3.87. An apparent discrepancy to the above results is that we only required
d0 to be étale. But for Segal groupoids one can show that this implies that d1 is
étale.



Chapter 4

Homotopy Fiber Products of
Schemes

Homotopy fiber products provide basic first examples of derived schemes. The key
observation in this context is that the inclusion functor from schemes to derived
schemes in general does not commute with limits. It thus makes a difference if we
take the fiber product after viewing a diagram of schemes as a diagram of derived
schemes.

Curiously, fiber products also provide the basic example of virtually smooth
schemes. After reviewing some of the basic features of homotopy fiber products,
we make the connection between these two areas. Taking the homotopy fiber prod-
uct instead of the fiber product in the basic example for virtually smooth schemes
gives a derived scheme, and we verify that the induced perfect obstruction theory
on the ordinary fiber product coincides with the perfect obstruction theory of the
virtually smooth scheme. Finally, for this example we show that the class given by
Kontsevich’s formula for the virtual fundamental class is indeed the virtual funda-
mental class of the virtually smooth scheme.

4.1 Generalities on Homotopy Fiber Products

The most basic question is whether homotopy fiber products exist. We restrict our-
selves here to the case of derived schemes, although the result holds in greater
generality.

Proposition 4.1. [Lur04, Prop. 4.6.3] The category of derived schemes has all
finite homotopy limits.

In a simple example the homotopy fiber product is readily computed.

Lemma 4.2. Let X = Spec A, Y = Spec B and Z = Spec C be affine schemes
over k. Then the homotopy limit is given by

X ×hZ Y = RSpec (A⊗L
C B).

37
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Here⊗L denotes the derived tensor product in the category of simplicial k-algebras.

Proof. The category of affine derived schemes over k is dual to the category of
simplicial k-algebras. Thus homotopy limits go to homotopy colimits.

In the case treated in the previous lemma, the homotopy groups of the simpli-
cial k-algebra A⊗L

C B boil down to a well-known object.

Lemma 4.3. Let A,B,C be commutative k-algebras. Then

πi(A⊗L
C B) = TorCi (A,B).

Proof. View A and B as simplicial modules over C. Under the Dold-Kan cor-
respondence cofibrant replacements get mapped to projective resolutions and the
homotopy groups become homology groups of the complexes.

A huge advantage in derived algebraic geometry is that the base change for-
mulas for the cotangent complex hold without any flatness assumption. We will
use this to give an explicit formula for the cotangent complex of a homotopy fiber
product.

Lemma 4.4. Let X, Y and Z be schemes over k. Let

X ×hZ Y
g′ //

f ′

��

Y

f

��
X g

// Z

be a homotopy cartesian diagram. Then the cotangent complex ofX×hZ Y is given
by

LX×hZY ' cone((f ′)∗LX/Z [1]→ (g′)∗LY ).

Proof. To simplify notation, let W := X ×hZ Y .
The morphism g : X → Z gives the canonical cotangent sequence

LX/Z [1]→ g∗LZ → LX .

This can be rewritten as a homotopy pushout square

LX/Z [1] //

��

g∗LZ

��
? // LX .

(4.1)
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Since our diagram is homotopy cartesian, we have the following homotopy pushout
square on W ([HAG-II, Lemma 1.4.1.12])

(f ′)∗g∗LZ //

��

(g′)∗LY

��
(f ′)∗LX // LW .

Pulling back the diagram (4.1) to W by f ′ and piecing it together with the above
diagram we arrive at

(f ′)∗LX/Z [1] //

��

(f ′)∗g∗LZ //

��

(g′)∗LY

��
? // (f ′)∗LX // LW .

Since the two inner squares are homotopy pushouts, so is the outer and the claim
follows.

We finally come to the lemma that describes the value of homotopy fiber prod-
ucts to the problem of finding derived extensions.

Lemma 4.5. Let X , Y and Z be schemes over k. Then the truncation of the homo-
topy fiber product X ×hZ Y is the ordinary fiber product X ×Z Y .

Proof. Since the truncation functor commutes with homotopy limits we conclude

t0(X ×hZ Y ) = t0(X)×t0(Z) t0(Y ) = X ×Z Y.

4.2 The Basic Example of Behrend and Fantechi

The previous section motivated why homotopy fiber products are good candidates
for finding derived extensions. In the case of virtually smooth schemes, one asks
for more though. It does not suffice to only find a derived extension, but one also
wants this derived extension to have the fixed perfect obstruction theory built in as
cotangent complex. In one of the most basic examples of virtually smooth schemes,
this question is readily settled. To study this example, we have to impose some
more conditions on the spaces used to define the fiber product.

In the following, let M and V be smooth schemes over k with a morphism
f : V → M . Finally fix a regular immersion i : W → M . We now let X be the
fiber product of the diagram

X
i′ //

g

��

V

f

��
W

i
// M.

(4.2)
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This is the classical situation studied in intersection theory as in [Ful98]. Replacing
the top morphism by its normal cone and the bottom cone by its normal bundle we
can define the Gysin pullback of the fundamental class of V in the Chow group of
X . This is defined by

f !([V ]) = s∗0([CX/V ]),

where s0 denotes the zero-section of the pullback of the normal bundle of W in M
to X . This class is of dimension dimV − codimW . Note that the dimension of X
can be much larger than this.

We now show how in this situation X carries a perfect obstruction theory and
unravel the definition of the virtual fundamental class.

Lemma 4.6. ([BF97, Section 6, Basic Example]) Let X be as in the basic setup
(4.2). Then

[g∗N∨W/M → (i′)∗Ω1
V ] −→ LX

is a perfect obstruction theory for X .

We now relate the virtual fundamental class associated to the above perfect
obstruction theory to the class produced by intersection theory.

Proposition 4.7. Let X be as in the basic setup (4.2). Equip X with the perfect
obstruction theory of the above lemma. Then

f !([V ]) = [X]vir.

Proof. Using the immersion i′ : X → V we calculate

τ≥−1LX = [I/I2 → (i′)∗Ω1
V ].

Thus the intrinsic normal cone CX is

[CX/V /(i
′)∗TV ].

Since the perfect obstruction theory has a global resolution, we can compute the
virtual fundamental class by first forming the fiber product

C //

��

g∗NW/M

��
[CX/V /(i

′)∗TV ] // [g∗NW/M/(i
′)∗TV ]

and then pulling back the class of C from g∗NW/M by the zero-section. Obviously,

C = CX/V ,

proving the claim.
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By taking the homotopy fiber product in (4.2) and using Lemma 4.5 we have
a derived extension of X . To verify that this derived extension induces a perfect
obstruction theory on X we have to check that the derived extension is indeed
quasi-smooth. We state this in larger generality than we actually need.

Proposition 4.8. Let X,Y and Z be derived Deligne-Mumford stacks with X and
Y quasi-smooth over k and Z smooth over k. Then the homotopy fiber product

W
f ′ //

g′

��

X

g

��
Y

f
// Z

is quasi-smooth.

Proof. Since W is a homotopy fiber product we have a pushout of simplicial mod-
ules on W

(g′)∗f∗LZ //

��

(f ′)∗LX

��
(g′)∗LY // LW .

This gives us a cofiber sequence

(g′)∗f∗LZ → (f ′)∗LX ⊕ (g′)∗LY → LW .

Shifting this by one we arrive at

(f ′)∗LX ⊕ (g′)∗LY → LW → (g′)∗f∗LZ [−1].

Since we assumed Z to be smooth, we have LZ ' ΩZ which is of Tor-amplitude
0. After shifting, it thus is of Tor-amplitude ≥ −1. On the other hand, (f ′)∗LX ⊕
(g′)∗LY is also of Tor-amplitude ≥ −1 since we assumed X and Y to be quasi-
smooth. Since we squeezed LW in between these two, it must also be of Tor-
amplitude ≥ −1.

Corollary 4.9. Let X be as in the basic setup (4.2), and let X ′ be the homotopy
limit. Then X ′ is quasi-smooth.

We now want to check that the induced perfect obstruction theory coincides
with the one constructed in the basic example 4.6.

Corollary 4.10. Let X be as in the basic setup (4.2) and define X ′ to be the ho-
motopy limit of the diagram. Denote by j : X → X ′ the canonical inclusion. Then

j∗LX′ ' [g∗N∨W/M → (i′)∗Ω1
V ]

is a quasi-isomorphism.
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Proof. Since W →M is by assumption a regular immersion, we have

LW/M [1] ' N∨W/M
and since V is smooth we have

LV ' Ω1
V .

The claim then follows from Lemma 4.4.

As in the case of the pair of a scheme and a perfect obstruction theory, we
want to reproduce the class constructed using intersection theory from the derived
extension. Of course it would be possible to equip the truncation with its induced
perfect obstruction theory, but there is a more direct formula involving the virtual
structure sheaf. A different and nicer formula for this class also involving the virtual
structure sheaf will be proven in the next section.

Proposition 4.11. Let X be as in the basic setup (4.2). Let Ovir
X be the virtual

structure sheaf on X induced by the derived extension X ′. Denote by n the ex-
pected dimension of X and by τ( )n the n-th graded part of the Riemann-Roch
transformation. Then

τ
(∑

(−1)i[πi(Ovir
X )]

)
n

= f !([V ]) = [X]vir ∈ An(X)Q.

Proof. We have to show that

τ(TorOX (OV ,OW )) = f !([V ]) + lower terms.

This statement is just the well-known fact that the intersection product defined by
Serre’s Tor Formula and Fulton’s refined intersection product coincide and can be
found in [Ful98, 20.4].

4.3 Virtual Classes for Homotopy Fiber Products

Besides conjecturing the existence of derived versions of certain moduli spaces,
Kontsevich suggested an explicit formula for these classes once such derived ex-
tensions exist. It is a natural generalization for the fundamental class of a local
complete intersection. For such a space we have

τ(OX) = td(L∨X) ∩ [X].

In case the space is no longer a local complete intersection but admits a perfect
obstruction theory, Kontsevich suggested that

τ(Ovir
X ) = td(E∨) ∩ [X]vir

should hold. We here verify this formula for perfect obstruction theories and de-
rived extensions arising from the basic example of the previous sections. Here
everything can be proven using methods from classical intersection theory, most
notably the specialization morphism.
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4.3.1 Specialization

Let f : X → Y be a closed immersion. Recall that there exists a basic deformation
square

CX/Y

p

��

i // M(X,Y )

��
X

f
//

s0

OO

Y,

where i is an inclusion. The key property of M(X,Y ) is that

M(X,Y ) \CX/Y = Y × A1\{0}.

Applying the exact sequence for Chow groups, we get an exact sequence

Ak+1(CX/Y )→ Ak+1(M(X/Y ))→ Ak+1(Y × A1\{0}).

Since the normal bundle to i is trivial, we deduce that

i∗i∗ : Ak+1(NX/Y )→ Ak(NX/Y )

is zero and we thus get an induced map

ρ : Ak+1(Y × A1\{0})→ Ak(CX/Y ).

We can now define the specialization map.

Definition 4.12. Let q : Y × A1\{0} → Y be the projection. The specialization
morphism

σX/Y : Ak(Y )→ Ak(CX/Y )

is the composite ρ ◦ q∗.

We record some facts about the specialization map in the following theorem.

Theorem 4.13. ([DV76])

(i) Let f : X → Y and g : Z → Y be a closed immersions, and let

i : CX×Y Z/Z → CX/Y

be the canonical morphism of normal cones. Then

σX/Y ([Z]) = i∗([CX×Y Z/Z ]).

(ii) Let E be a vector bundle on Y , and α ∈ A∗(Y ). Then

σX/Y (ci(E) ∩ α) = ci(p
∗f∗E) ∩ σX/Y (α)
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(iii) There exists a specialization morphism σX/Y in K-theory with

σX/Y ([OZ ]) = i∗([OCX×Y Z/Z ]).

If f is a local complete intersection, then

K0(Y )
f∗ //

σX/Y &&LLLLLLLLLL
K0(X)

p∗

��
K0(NX/Y )

commutes.

(iv) Let τ denote the Riemann-Roch homomorphism. Then the following square
commutes:

K0(Y )
τY //

σX/Y
��

A∗(Y )⊗Q
σX/Y

��
K0(CX/Y )

τCX/Y// A∗(CX/Y )⊗Q.

4.3.2 Proof of the Conjecture

To prove the conjecture, we have to recall the following Riemann-Roch formula
proved by Verdier.

Theorem 4.14. ([DV76]) Let f : X → Y be a local complete intersection. Then
the following square commutes:

K0(Y )
τY //

f∗

��

A∗(Y )⊗Q

tdTf∩−
��

K0(X)
τX // A∗(X)⊗Q.

We can now prove Kontsevich’s conjecture for homotopy fiber products.

Theorem 4.15. Let X be the fiber product of

X
f ′ //

g′

��

V

g

��
W

f
// M,

and assume that V and M are smooth and f is a local complete intersection. Let
X ′ = W ×hM V , and denote by Ovir

X the virtual structure sheaf. Then

τX([Ovir
X ]) = td(j∗L∨X′) ∩ [X]vir.
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Proof. To simplify notation, letC := CX/V andN := (g′)∗NW/M . Let i : C → N
be the inclusion, q : C → X and π : N → X the projections such that q = π ◦ i.
Finally let s0 : X → N be the zero-section. By definition, we have that

f∗([OV ]) =
∑
i

(−1)i ToriOM (OV ,OW ).

By point 3 of Theorem 4.13 we have

σW/M (OV ) = π∗(Ovir
X ) = i∗([OC ]).

Applying the Riemann-Roch formula of point 4 of Theorem 4.13 to f ′ we conclude

τC(OC) = τC(σX/V ([OV ])) = σX/V (td(TV ) ∩ [V ])

= q∗ td(TV |X) ∩ σX/V ([V ]) = q∗ td(TV |X) ∩ [C].

Applying Grothendieck-Riemann-Roch and the projection formula we arrive at

τN (i∗[OC ]) = i∗τC([OC ]) = i∗(q
∗ td(TV |X) ∩ [C])

= i∗(i
∗π∗ td(TV |X) ∩ [C]) = π∗ td(TV |X) ∩ i∗([C]).

Noticing that s∗0([C]) = Xvir and using Theorem 4.14 we finally deduce

τX(Ovir
X ) = τX(i∗([OC ])) = td(N)−1 ∩ s∗0(τN (i∗([OC ])))

= td(j∗L∨X′) ∩ [X]vir.

4.4 Zero-Sets of Sections

A special case of this basic example is the zero-set of a section of a vector bundle.
In this case the virtual fundamental class is a localized version of the Euler class of
the bundle.

We begin by defining the zero-set of a section. Throughout,M will be a smooth
scheme over an algebraically closed field k, and V(E) a vector bundle over M .

Definition 4.16. Let s : M → V(E) be a section. Dually, this gives a morphism of
sheaves E∨ → OM . The image is an ideal sheaf I in OM . The closed subscheme
of M defined by the ideal sheaf I is the zero-set of s and will be denoted by Z(s).

Remark 4.17. Alternatively, a section s can be viewed as a morphism from the
trivial line bundle to V(E). The scheme Z(s) then is the locus where the rank of s
drops from one to zero.

We recall the definition of the Euler class of a vector bundle.
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Definition 4.18. Let V(E) be a rank e vector bundle on a smooth schemeM . Then
the Euler class of V(E) is defined by

ce(E) ∩ [M ].

By adding codimensions, we expect Z(s) to have dimension r := dim(M) −
rk(E). An alternative way of characterizing the zero-set of a section is by defining
it to be the fiber product

Z(s) //

i

��

M

s

��
M s0

// V(E),

where s0 denotes the zero section. This puts in the situation of our basic setup
(4.2). Applying the general intersection procedure of [Ful98] to this fiber square,
we obtain a class Z(s) ∈ Ar(Z(s)). We will now prove that this class is a localized
version of the Euler class of V(E).

Remark 4.19. We briefly recall two facts from intersection theory [Ful98, Corollary
6.5]:

(i) Any section s : M → V(E) is a regular closed immersion.

(ii) The Gysin morphism s! is independent of the choice of section.

We can now prove that the class Z(s) pushes forward to the Euler class.

Proposition 4.20. Let i : Z(s)→M be the inclusion. Then

i∗(Z(s)) = ce(V(E)) ∩ [M ].

Proof. By definition, we have that

Z(s) = s!
0([M ]).

From the push-forward property of Gysin homomorphisms, the independence of
the choice of section and the self-intersection formula, and the observation that the
normal bundle to s0 can be identified with V(E) we deduce that

i∗s
!
0([M ]) = s!

0s∗([M ]) = s∗0s∗([M ]) = s∗s∗([M ]) = ce(V(E)) ∩ [M ].

An incredibly geometric construction of the class Z(s) is provided by a special
case of MacPherson’s graph construction. To relate this construction to Z(s), we
recall the following geometric description of the operation “intersection with the
zero section”.
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Proposition 4.21. ([Ful98, Proposition 3.3]) Let X be a scheme and V(E) a rank
e vector bundle on X with zero section s0. Let [C] ∈ Ak(V(E)), and let [C] be a
class in Ak(P (V(E)⊕ 1)) that restricts to [C]. Denote by ξ the universal quotient
bundle on P (V(E)⊕ 1) and by q : P (V(E)⊕ 1)→ X the projection . Then

s∗([C]) = q∗(ce(ξ) ∩ [C]).

We now recall MacPherson’s graph construction in this special case.

Remark 4.22. Multiplying a section by a factor, we can make the section more
vertical. Letting this go to infinity, we expect to find a cycle sitting over the locus
where s vanishes. In more mathematical terms, view the section s as a morphism
from the trivial line bundle 1 to V(E). The graph of s is a 1-dimensional subspace
of V(E)⊕ 1. Define a morphism

φ : M × A1 → P (V(E)⊕ 1)× A1

(m,λ) 7→ (Γ(λs(m)), λ) ,

and compose with the immersion P (V(E)⊕1)×A1 → P (V(E)⊕1)×P1. Define
W to be the closure of the image of φ. Let i∞ be the inclusion of P (V(E)⊕ 1) in
P (V(E)⊕ 1)× P1 at infinity. Then

i∗∞[W ] = [P (C ⊕ 1)] + [M̃ ],

where M̃ projects birationally to M , and C is the normal cone to Z(s) in M . The
geometric intuition is that at infinity, the section broke into a vertical part sitting
over the zero locus and a horizontal part extending over all ofM . Throwing out the
component [M̃ ], we have indeed found a cycle sitting over the zero-locus of s. We
can immediately reproduce Z(s) by setting

Z(s) = q∗(ce(ξ) ∩ [P (C ⊕ 1)]),

keeping in mind the above proposition.
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Chapter 5

Algebraic Kuranishi Structures

In symplectic topology, Gromov-Witten invariants are defined using moduli spaces
of J-holomorphic curves. These moduli spaces are equipped with an extra geomet-
ric structure, from which then virtual chains or virtual cycles are produced. In the
approach of [FO99], this extra geometric structure is called a Kuranishi structure.
Roughly speaking, providing such a Kuranishi structure means to cover the mod-
uli space with a system of presentations as zero-sets of sections of the obstruction
bundle.

In this chapter, we propose an algebraic version of these definitions. On the
algebraic side, the geometric structure needed to define virtual cycles has long
been identified as a perfect obstruction theory. We will show that any virtually
smooth space, i.e. a space together with a choice of a perfect obstruction theory,
immediately carries an algebraic Kuranishi structure.

5.1 Review of Kuranishi Structures in Symplectic Topol-
ogy

Kuranishi structures were first introduced in [FO99] to define Gromov-Witten in-
variants on the symplectic side of the bridge. We here review the modifications
introduced by Joyce in [Joy07]. They are there treated in much greater generality
using manifolds with corners.

Definition 5.1. Let X be a paracompact topological space and p a point of X . A
Kuranishi neighbourhood of p in X consists of (Vp, Ep, sp, ψp), where

(i) Vp is a smooth orbifold, which may have boundary or corners;

(ii) Ep → Vp is an orbifold vector bundle;

(iii) sp : Vp → Ep is a smooth section, the Kuranishi map;

(iv) ψp is a homeomorphism from s−1
p (0) to an open neighbourhood of p in X .

49
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A Kuranishi neighbourhood of a point thus gives a homeomorphism from an
open neighbourhood of p to the zero-set of a section of a vector bundle. To be able
to define a Kuranishi atlas one has to introduce coordinate changes. We omit the
exact definition since it is technically involved and differs from author to author.
Once this step is accomplished, one can move on to define Kuranishi structures.
A Kuranishi structure κ on a paracompact topological space X consists of a germ
of Kuranishi neighbourhoods for all points of X along with germs of coordinate
changes for all points close to a given point.

An important remark is that it follows from the definitions that the virtual di-
mension of X , defined as dimVp − dimEp is independent of the chosen point
p.

Definition 5.2. A Kuranishi space (X,κ) consists of a paracompact topological
space X along with a Kuranishi structure κ on X .

5.2 Algebraic Kuranishi Structures

A perfect obstruction theory is an extra geometric structure on a space sufficient to
produce virtual cycles. In this section we propose an algebraic version of the ad-
ditional geometric structure described above, namely an algebraic Kuranishi struc-
ture. We will show that if a space carries a perfect obstruction theory, it automati-
cally has an algebraic Kuranishi structure. All the results needed to prove these as-
sertions are already contained in one form or the other in various papers of Behrend
and Fantechi, [Beh09, BF97].

Instead of using germs to define Kuranishi neighbourhoods, we will instead
define a category of Kuranishi neighbourhoods sitting above the étale site of a
virtually smooth space.

Remark 5.3. Since there is no danger of confusing our notion of Kuranishi neigh-
bourhoods with those used in symplectic topology, we will drop the adjective “al-
gebraic” in the following.

Definition 5.4. A Kuranishi neighbourhood for a local embedding X
f← U

i
↪→M

with ideal sheaf I consists of a diagram1 κU : D→ Affk, where κU is

M
s−→ V(F )

0←−M

such that

(i) V(F ) is a vector bundle on M ;

(ii) 0 denotes the zero section of V(F );

(iii) s is a section s : F → OM of V(F );

1Recall that the notation D is reserved for the index category a
δ→ b

ε← c.
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(iv) the limit cone of κU is

U
i //

i

��

M

0
��

M s
// V(F );

(v) the induced perfect obstruction theory

F
d◦s //

s

��

Ω1
M |U

=

��
I/I2

d
// Ω1
M |U

for U is a local resolution2 of φ : EU → τ≥−1LU .

Remark 5.5. By the condition on the limit cone of κU it follows that the section
s : F → OM is a surjection onto the ideal sheaf I of U in M .

Remark 5.6. If it is clear from the context we will often drop the morphismU → X
from a local embedding X ← U →M .

Definition 5.7. Let κU and κV be Kuranishi neighbourhoods with respect to the
local embeddings U ↪→ M and V ↪→ N of X . Then a morphism of Kuranishi
neighbourhoods is a natural transformation α : κV → κU given by

N //

α(a)

��

V(G)

α(b)
��

Noo

α(c)

��
M // V(F ) Moo

such that

(i) α(a) = α(c);

(ii) α(b) is induced by a morphism of sheaves of ON -modules ρ : (α(a))∗F →
G;

(iii) the morphism ρ induces a quasi-isomorphism of the induced perfect obstruc-
tion theories on V ;

(iv) the induced morphism between the limits

V = lim
d∈D

κV −→ lim
d∈D

κU = U

is an étale morphism over X .

2see Definition 2.35 for the definition of local resolution.
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Remark 5.8. Given a morphism of local embeddings

V
j //

p

��

N

q

��
U

i
// M

along with Kuranishi neighbourhoods κV and κU , we will call a morphism of Ku-
ranishi neighbourhoods α : κV → κU a lift of the above morphisms of local em-
beddings if the induced morphism between the limits is p and α(a) = q.

Remark 5.9. The definition of morphisms of Kuranishi neighbourhoods given here
is inspired by [Joy11].

Remark 5.10. As the composition of two morphisms of Kuranishi neighbourhoods
is again such a morphism, Kuranishi neighbourhoods form a subcategory of the
diagram category AffD

k . We will denote this category by KurX .

Definition 5.11. A Kuranishi structure κ for the virtually smooth Deligne-Mumford

stack (X,E) is a local embedding X
f← U

i
↪→ M such that f is surjective along

with a Kuranishi neighbourhood for U . We will denote a virtually smooth Deligne-
Mumford stack along with the choice of a Kuranishi structure by (X,E, κ).

With all definitions set we now want to prove that Kuranishi neighbourhoods
indeed exist. This result is well-known and can be found in [Beh09, Prop. 3.13]
and [MPT10, Appendix A].

Lemma 5.12. Étale locally on (X,E), Kuranishi neighbourhoods exist.

Proof. Let X
f← U

i
↪→ M be a local embedding of X with ideal sheaf I . As-

sume for the moment that there exists a vector bundle V(F−1) on M and a local
resolution of φ : E → τ≥−1LX on U of the form

F−1
U

dF //

ψ−1

��

F 0

ψ0

��
I/I2

d
// Ω1
M |U .

Assume further that ψ0 is an isomorphism. Then in fact there is a Kuranishi neigh-
bourhood κU for the local embedding U ↪→M : Since ψ0 is an isomorphism, ψ−1

is surjective by the 5-lemma. AsM is an affine scheme, we can lift ψ−1 to a section

s : F−1 � I.

It thus suffices to find a local resolution of φ : E → τ≥−1LX of the form given
above.
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To prove that local resolutions of such a form exist, we begin with an arbitrary

local embedding X
f← U

i
↪→ M with ideal sheaf I . As U is affine, there exists a

local resolution of φ of the form

K ′
γ //

��

K //

��

0

��
G−1

dG //

ψ−1

��

G0

ψ0

��

// coker dG

∼=
��

I/I2 d // Ω1
M |U . // coker d

where G is a complex of projectives. Here K and K ′ denote the kernels of ψ0 and
ψ−1. Now let R� I/I2 be a free resolution of I/I2. As ψ0 is an isomorphism on
H0, adding R to the complex G we can without loss of generality assume the ψ0

is surjective. As K is the kernel of a surjection of projectives, it is again projective.
We can thus choose a section of γ : K ′ → K, making K into a submodule of G−1.
Now let F be the complex

F := [G−1/K → G0/K],

which obviouly again consists of projectives and is quasi-isomorphic to G. Then
F 0 → Ω1

M is an isomorphism and we have fulfilled our first requirement. It re-
mains to show that F−1 is the restriction of a vector bundle on M . After possibly
localizingU , we can assume that F−1 is free, where the claim obviously holds.

Corollary 5.13. Every virtually smooth Deligne-Mumford stack (X,E) carries a
Kuranishi structure.

Proof. Since Kuranishi neighbourhoods exist locally, there exist Kuranishi neigh-
bourhoods κUi for local embeddings Ui ↪→ Mi such that

∐
i∈I Ui → X is surjec-

tive. Define U :=
∐
i∈I Ui. Observe that since the fiber product commutes with

direct product, we can compute∐
i∈I

Mi ×∐
i∈I V(Fi)

∐
i∈I

Mi =
∐
i∈I

(
Mi ×V(Fi) Mi

)
=
∐
i∈I

Ui,

and it follows that the direct product of the Kuranishi neighbourhoods κUi is a
Kuranishi neighbourhood κU for U .

Our next aim concerns the existence of morphisms of Kuranishi neighbour-
hoods. We want to show that given a morphism of local embeddings, we can in a
certain sense pull back a Kuranishi structure. Furthermore, given a smooth mor-
phism of local embeddings along with two Kuranishi structures, we wish to prove
that there always exists a morphism of Kuranishi neighbourhoods. Unfortunately
these seem to only exist in a non-canonical manner, since many choices are in-
volved.
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Lemma 5.14. Let

V
j //

p

��

N

q

��
U

i
// M

be a smooth morphism of local embeddings. Assume we have a Kuranishi neigh-
bourhood κU for the local embedding i : U ↪→ M . Then there exists a Kuranishi
neighbourhood κV for the local embedding j : V ↪→ N .

Proof. We have an exact sequence

q∗I −→ J −→ Ω1
N/M .

As Ω1
N/M is projective, we can choose a splitting J ' Ω1

N/M⊕q
∗I . We now define

the vector bundle needed on N to be G := q∗F ⊕Ω1
N/M , and define the section as

s′ : G
(q∗s,id)−→ q∗I ⊕ Ω1

N/M −→ J.

Define κV to be N s′→ V(G)
0← N . Using that the rows in the diagram

p∗F |U //

��





G|V //

��





Ω1
N/M |V

��





p∗I/I2 //

zzuuuuuuuuuu
J/J2 //

zzuuuuuuuuuu
Ω1
N/M |V

zzttttttttt

p∗Ω1
M |U // Ω1

N |V // Ω1
N/M |V

are exact it is straightforward to check that κV is a Kuranishi neighbourhood.

Remark 5.15. From the proof of the previous lemma it is immediate that not only
is κV a Kuranishi neighbourhood, but there also exists a morphism of Kuranishi
neighbourhoods α : κV → κU . A more general statement on the existence of Ku-
ranishi neighbourhood appears in Proposition 5.20.

Remark 5.16. As a quick sanity check, we confirm that the expected dimension of
the Kuranishi neighbourhood defined above is correct. Let dim(M) = m, rkF =
f , dimN = n and rkG = g. The expected dimension for U is m− f . As n− g =
n− (f + n−m) = m− f , this is also the expected dimension of V .

Remark 5.17. The Kuranishi neighbourhood constructed on V in the above lemma
is not canonical since it depends on the choice of the splitting.

We next want to prove the existence of morphisms of Kuranishi neighbour-
hoods. We first need two preparatory lemmas. The first will be used to lift mor-
phisms from the derived category to honest morphisms of complexes.
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Lemma 5.18. Let A
f

//

h

''
B g

// C be morphisms of two-term complexes such

that there exists a homotopy g◦f ∼ h. Assume further that g−1◦f−1 : A−1 → C−1

is surjective and that A0 is projective. Then there exists a morphism f̃ : A → B
along with a homotopy f̃ ∼ f such that

g ◦ f̃ = h.

Proof. Let the dotted morphism k in the diagram

A−1

f−1

��

dA //

h−1

��

A0

f0

��

k

��

h0

��

B−1
dB //

g−1

��

B0

g0

��
C−1

dC
// C0.

denote the homotopy between g◦f and h. As g−1◦f−1 : A−1 → C−1 is surjective
and A0 is projective, there exists a lift of k to k̃ : A0 → B−1. Now define f̃ by the
formulas

f̃0 = f0 + dB ◦ k̃
f̃−1 = f−1 + k̃ ◦ dA.

The second lemma concerns lifting a morphism of vector bundles to a smooth
ambient space.

Lemma 5.19. Let U ↪→ M be a closed immersion of affine schemes with ideal
sheaf I . Assume that F and G are locally free sheaves on M with morphisms

F
s−→ I

s′←− G

with s : F → I surjective. Assume that we have a commutative diagram

G|U
φ //

s′|U ""EE
EE

EE
EE

F |U

s|U||||yy
yy

yy
yy

I/I2.
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Then there exists a morphism Φ: G→ F such that Φ|U = φ and such that

G
Φ //

s′ ��?
??

??
??

? F

s
����

��
��

��

I

commutes.

Proof. Denote the restriction morphisms F → F |U by res. We then have a com-
mutative diagram

G

(s′,φ◦res)
��

0

''OOOOOOOOOOOOOO

F
(s,res)

// I ⊕ F |U
(res,−s|U )

// I/I2.

We thus get a morphism Φ: G→ ker(res,−s|U ). A diagram chase in

0

��

0

��
I ⊗ F // //

��

I2

��
F

��

// // I

��
F/IF // //

��

I/I2

��
0 0

shows that the lower column is exact at I ⊕ F |U , and thus the claim follows.

Note that Φ is not unique.
We can now state the result on the existence of morphisms of Kuranishi neigh-

bourhoods.

Proposition 5.20. Let

Vf

xxqqqqqq
j //

p

��

N

q

��
X

U
g

ffMMMMMM

i
// M

be a morphism of local embeddings of (X,E). Let κU and κV be Kuranishi neigh-
bourhoods for U and V . Then there exists a morphism of Kuranishi neighbour-
hoods α : κV → κU lifting the morphism of local embeddings above.
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Proof. Let [G|V → Ω1
N |V ] −→ [J/J2 → Ω1

N |V ] be the perfect obstruction the-
ory on V induced by κV , [F |U → Ω1

M |U ] −→ [I/I2 → Ω1
M |U ] be the analo-

gous object on U . Note that we have a canonical quasi-isomorphism of complexes
p∗[I/I2 → Ω1

M |U ] −→ [J/J2 → Ω1
N |V ] induced by p as p is étale. As the above

morphisms of complexes are both local presentations of the perfect obstruction
theory φ : E → τ≥−1LX , we have the following diagram in D(OV )

[G|V → Ω1
N |V ] //

a

&&

[J/J2 → Ω1
N |V ]

vv
EV

φ // τ≥−1LV

p∗[F |U → Ω1
M |U ]

b

88

// p∗[I/I2 → Ω1
M |U ]

hh

OO

The dotted morphisms are supposed to indicate morphisms that a priori only live
in the derived category, whereas the solid morphisms are morphisms of complexes.
In the derived category there clearly exists a morphism filling in the missing edge
on the left by setting γ := a−1 ◦ b. Denote by K(OV ) the category of com-
plexes of OV -modules modulo homotopy equivalence. As V is an affine scheme
and the complex p∗[F |U → Ω1

M |U ] consists of projectives, γ is actually a mor-
phism of complexes making the outer square commutative in K(OV ) by [Wei94,
Corollary 10.4.7]. By Lemma 5.18 by modifying γ this square commutes as mor-
phisms of complexes. Applying Lemma 5.19 we can lift the resulting morphism
p∗F |U → GV to a morphism p∗F → G giving the desired morphism of Kuranishi
neighbourhoods.
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Chapter 6

Gluing the Local Models

In chapter 5, we showed that every virtual smooth Deligne-Mumford stack admits
an extra geometric structure, which we called an algebraic Kuranishi structure.
In the introduction to [Joy07], Joyce outlines the expectation that such structures
should be conveniently arranged using some form of derived geometry. The extra
information encoded by the Kuranishi structure is what the space would look like
if it were perturbed locally, and such information can be conveniently handled in
derived geometry. Using the material from chapter 4 it is clear how to do this
locally. Providing an algebraic Kuranishi structure for a virtually smooth Deligne-
Mumford stack consists of finding local presentations as zero-sections of vector
bundles, thus writing locally the space as a fiber product. Taking the homotopy
fiber product instead of the ordinary fiber product encodes locally precisely the
information of what the space looks like after perturbation. It thus remains to take
care of gluing these local derived extensions to one global derived space, which we
will do in this chapter.

We begin by giving a precise definition of the homotopy limit. To ensure that
this is indeed a functor we have to choose a fibrant replacement functor in the
appropriate diagram category. This amounts to choosing functorial models for the
homotopy limit. All the model categoric details involved can be found in Appendix
A.3.

We will then fix one specific cover of our virtually smooth space that admits
a Kuranishi structure. Using material from the previous chapter, we show that the
double intersections, triple intersections and so on of this cover are infact Kuran-
ishi neighbourhoods. Choosing these Kuranishi neighbourhoods is a non-canonical
non-functorial procedure. We will then go on to show that these ambiguities dis-
apper after taking the homotopy limit of the Kuranishi neighbourhoods. This will
finally allow us to glue the homotopy limits of the Kuranishi neighbourhoods to
one global derived space.

Recall that as in the previous chapters, D denotes the index category {a ε−→
b

δ←− c}.
Functorial models for homotopy limits are given by fixing a fibrant replacement

59
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functor in the following definition.

Definition 6.1. Let i : Affk → dAffk be the inclusion functor. Equip the cate-
gory dAffD

k with the injective model structure and let R be a fibrant replacement
functor. Define

holimd∈D : KurX −→ dAffk

κU 7−→ holimd∈D κU

to be the functor defined by the restriction to KurX of the composition

AffD
k

i∗−→ dAffD
k

R−→ dAffD
k

lim−→ dAffk.

From the properties of homotopy fiber products reviewed in chapter 4 we ob-
tain the following properties of the homotopy limit of a Kuranishi neighbourhood.

Corollary 6.2. Let X
f← U

i
↪→ M be a local embedding and κU a Kuranishi

neighbourhood. Let U ′ := holimd∈D κU .

(i) On the truncation we have t0(U ′) = U .

(ii) Let jU : U ↪→ U ′ be the canonical inclusion. Then

j∗ULU ′ ' [F |U
ds→ Ω1

M |U ].

(iii) The derived scheme U ′ is quasi-smooth.

We immediately verify that the morphism between the homotopy limits is in-
dependent of some of the choices we will later make.

Lemma 6.3. Let α : κV → κU be a natural transformation lifting the morphism
of local embeddings

V
j //

p

��

N

q

��
U

i
// M.

Then the morphism holimd∈D(α) : holimd∈D κV → holimd∈D κU is independent
of α(b).

Proof. Let κU = (M → V(F )←M), and let κV = (N → V(G)← N). Let R
be the fibrant replacement functor in the diagram category dAffD

k . Denote the fi-
brant replacement by R(κU ) = (M ′ → V(F )′ ←M ′), and use the analogous no-
tation forR(κV ). Let α and α′ be two natural transformations lifting the morphism
of local embeddings above which only differ at the level α(b) : V(G)→ V(F ). We
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have to show that Rα and Rα′ define the same object limd∈DRκV → RκU in the
category of cones dAffk/RκU . We have a diagram of the fibrant replacements

limd∈DR(κU )

pp

}}

��

M ′

��

N ′

��

Rα(a)
::tttttttttt

limd∈DR(κV )

11

r

77pppppppppppp
s //

t
''NNNNNNNNNNNN
V(G)′

Rα(b) //

Rα′(b)
// V(F )′

N ′

OO

Rα(c) $$JJJJJJJJJJ

M ′

RκU (δ)

OO

The cone formed by the curved arrows on the right hand side is the terminal object
of the category dAffk/RκU . The morphisms r, s and t are induced by the universal
property of the limit of RκV . Finally, the dotted arrow is induced by the universal
property of the cone formed by the curved arrows as terminal object of dAffk/RκU .
As

Rα(b) ◦ s = RκU (δ) ◦Rα(c) ◦ t = Rα′(b) ◦ s

the cones limd∈DR(κV ) → RκU defined by different choices of α(b) : V(G) →
V(F ) define the same object in dAffk/RκU , and thus the induced morphisms of
the limits limd∈DR(κV ) → limd∈DR(κU ) coincide as both are induced by the
unversal property of the cone defined by the curved arrows as the terminal object
in dAffk/RκU .

A further important property of the induced morphism is the following. Assume
we are given a morphism of local embeddings of X which both admit Kuranishi
neighbourhoods, and that we have a natural transformation between these neigh-
bourhoods lifting the given morphism of local embeddings. By the functoriality of
the homotopy limit, we obtain a morphism between the homotopy limits of the Ku-
ranishi neighbourhoods. We next want to settle that the truncation of the morphism
between the homotopy limits is indeed the morphism over X that we started out
with.

Lemma 6.4. Let α : κV → κU be a morphism of Kuranishi neighbourhoods lifting
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the local embedding

V
j //

p

��

N

q

��
U

i
// M.

Then
t0(holimd∈D α) = p

Proof. Recall that by definition p = limd∈D α. As the homotopy limit functor
commutes with the truncation functor, we can conclude

t0(holimd∈D α) = holimd∈D(t0(α)) = lim
d∈D

α = p

A further key property we will make use of later is that the induced morphisms
are étale. To prove this we again need a preparatory lemma.

Lemma 6.5. Let A be a simplicial commutative k-algebra, and let M be a simpli-
cial A-module. Assume that M ⊗LA π0(A) ' 0 in D(π0(A)). Then M ' 0.

Proof. We have to show that πi(M) = 0 for all i. We prove this by induction. By
Quillen’s tor spectral sequence, we have

0 'π0(M ⊗L
A π0(A))

'π0(M)⊗π0(A) π0(A)

'π0(M),

proving the result for n = 0. Assume now that πi(M) = 0 for i < n, that is that
M is n− 1-connected. Thus M [n] is connective. We now conclude

0 'πn(M ⊗L
A π0(A))

'π0(M [n]⊗L
A π0(A))

'π0(M [n])⊗π0(A) π0(A)

'πn(M).

Remark 6.6. We can rephrase the previous lemma in geometric terms. Let Y ′ =
RSpec A, let Y = t0(Y ′) = Spec (π0(A)), and let jY : Y ↪→ Y ′ denote the canon-
ical inclusion, which is dual to the morphism A → π0(A). Let MY ′ be the qua-
sicoherent module obtained under the equivalence of categories φ : QCohY ′ →
MA,≥0 of [HAG-II, Section 1.3.7]. As φ is compatible with pullback [HAG-II, p.
89], we can conclude

φ(j∗MY ′) = M ⊗L
A π0(A).

Since φ maps equivalences to equivalences, the previous lemma then states that if
j∗YMY ′ ' 0, then MY ′ ' 0.
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We can now show that the induced morphism is indeed étale.

Proposition 6.7. Let α : κV → κU be a morphism of Kuranishi neighbourhoods
lifting the local embedding

V
j //

p

��

N

q

��
U

i
// M.

Then holimd∈D(α) is an étale morphsim.

Proof. Let holimd∈D κV = V ′, holimd∈D κU = U ′, and let holimd∈D α = p′.
We have to show that LV ′/U ′ ' 0. Denote the canonical inclusions by jU : U ↪→
U ′ and the analogous notation for V . By Lemma 6.5, it suffices to show that
j∗LV ′/U ′ ' 0. The diagram

V

p

��

jV // V ′

p′

��
U

jU
// U ′

commutes since t0(p′) = p by Lemma 6.4. Pulling back the cotangent sequence
for p′ back to V , we have the following exact triangle:

j∗V (p′)∗LU ′ → j∗V LV ′ → j∗V LV ′/U ′ .

Using the commutativity of the above diagram and Lemma 4.10 it follows that the
first two terms in the triangle are quasi-isomorphic to EV and the map between
them is a quasi-isomorphism. Thus LV ′/U ′ ' 0.

This settles all properties of the homotopy limit of Kuranishi neighbourhoods
we will make use of. We now show that once we have a cover of our virtually
smooth space admitting a Kuranishi structure, also the whole nerve of the cover
admits (in a non-canonical way) a Kuranishi structure.

For the remainder of this chapter, fix one algebraic Kuranishi structure κ forX .
Let U → X be the corresponding étale cover ofX and U ↪→M the corresponding
embedding. We now fix some notation. Let N(U) : ∆op → Affk be the nerve of
this cover. By definition, N(U)([0]) = U and we set

N(U)([i]) = Ri, i ≥ 1.

Let pj : Ri → Ri−1 be the face maps, and rj : Ri → Ri+1 the degeneracies. On
the other hand, we can also take the absolute nerve N(M) of M over Spec k. The
i-th level N(M)([i]) is just the i+ 1-fold absolute product of M . We will denote

N(M)([i]) = M×i+1,
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by qi the face maps, and by ti the degeneracies. By taking repeated products1 of
local embeddings we obtain commutative diagrams

Ri //

pj

��

M×i+1

qj

��
Ri−1

// M×i

and
Ri+1

// M×i+2

Ri

rj

OO

// M×i+1.

tj

OO

We thus obtain a simplicial object Ñ(U) in the category of local embeddings
LocEmbX . Denote the face maps of this simplicial object by di and the degen-
eracies by si.

All of the face maps
Ri //

pj

��

M×i+1

qj

��
Ri−1

// M×i

satisfy the conditions of Lemma 5.14. Thus sinceU has a Kuranishi neighbourhood
κU there exists a Kuranishi neighbourhood for R1. Proceeding inductively, all Ri
are in fact Kuranishi neighbourhoods. Fix one such Kuranishi neighbourhood κRi
for each Ri.

Each of the face maps si and degeneracy maps di occuring in Ñ(U) satisfy the
condition of Proposition 5.20. We can thus lift them to morphisms of Kuranishi
neighbourhoods αsi and αdi . As the choice of Kuranishi neighbourhoods is non-
canonical these will in general not fulfill the simplicial identities.

Remark 6.8. We pause briefly and recall how many choices we made and which
ones are canonical. We have listed them in the order made. Objects which canoni-
cally depend on choices made previously are listed as canonical.

object canonical non-canonical
U → X X
U ↪→M X

N(U), pi, ri X
N(M), qi, ti X

Ñ(U), di, si X
κU X
κRi X

αdi , αsi X

1see Definition 2.25
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One should note though that two of the three components of the natural transforma-
tions αdi and αsi are indeed canonical, since they are by definition the projections
qi and the inclusions ti. Only the third morphism ocurring in the natural transfor-
mation is non-canonical, but in fact the morphisms between the homotopy limits
induced by αdi and αsi are independent of this non-canonical morphism by Lemma
6.3.

Now define a mapping X ′∗ : ∆op → dAffk by setting

[0] 7−→ holimd∈D κU

[i] 7−→ holimd∈D κRi , i ≥ 1

on objects and

si 7−→ holimd∈D αsi

di 7−→ holimd∈D αdi

on morphisms. To cut down on notation, will decorate the objects obtained by a
homotopy limit by a prime, e.g. holimd∈D κU = U ′ and holimd∈D αsi = s′i.

In the remainder of this chapter will show that X ′∗ is an étale Segal groupoid in
the category dAffk. We start off by verifying that X ′∗ indeed defines a functor.

Lemma 6.9. The mapping X ′∗ : ∆op → dAffk is a functor.

Proof. Recall that every morphism in ∆ has a unique factorization into face and
degeneracy maps by [Wei94, Lemma 8.1.2]. Since we have already defined X ′∗ on
these maps, to verify that X ′∗ is indeed a functor it suffices to check the simplicial
identities. But these follow immediately from the observation that holimd∈D α is
independent of the choice made in the construction of the morphisms αsi and αdi
by Lemma 6.3. We exemplarily verify the simplicial identity d′i ◦ d′j = d′j ◦ d′i.

Let κRi =
(
M×i+1 → V(Fi+1)←M×i+1

)
. As usual, the objects of RκRi

will be decorated by primes. The morphism d′i ◦ d′j is induced by the morphism of
cones

R′n

��

��

qq(M×n)′

��

(M×n+1)′

Rqj 66mmmmmmm

��

(M×n+2)′

Rqi
66llllllll

��
R′n+2

..

//

''PPPPPPP

77nnnnnnn
V(Fn+2)′ // V(Fn+1)′ // V(Fn)′

(M×n+2)′

Rqi ((RRRRRRRR

OO

(M×n+1)′

Rqj ((QQQQQQQ

OO

(M×n)′

OO



66 CHAPTER 6. GLUING THE LOCAL MODELS

The morphism d′j ◦d′i is induced by the corresponding morphism of cones with the
roles of j and i reversed. By definition, qi ◦ qj = qj ◦ qi. Since R is a functor, we
haveRqi◦Rqj = Rqj ◦Rqi. Thus the two morphisms of cones coincide by Lemma
6.3, and for the induced morphisms on the limits we have d′i ◦ d′j = d′j ◦ d′i.

The next task is to verify that X ′∗ is a Segal groupoid.

Proposition 6.10. The simplicial object X ′∗ is an étale Segal groupoid.

Proof. Recall that a morphism of affine derived schemes is an equivalence if it is
an isomorphism on the truncation and the relative cotangent complex vanishes.

We first verify the second of the Segal conditions. We have to show that the
map γ in the diagram

R′2
γ

$$IIIIIIIIII d′1

##

d′0

$$

R′1 ×hU ′ R′1 //

β

��

R′1

d′0
��

R′1 d′0

// U ′

is an equivalence. Applying the truncation functor to this diagram we obtain the
corresponding diagram for the ordinary groupoidN(U). Thus γ is an isomorphism
on the truncation.

The morphism d′0 is étale by Proposition 6.7. Thus β is also étale since it is the
pullback of an étale morphism. As β ◦ γ = d′0, it follows that γ is étale and hence
the relative cotangent complex of γ vanishes. So γ is an equivalence.

The proof of the other Segal condition is exactly the same only involving more
indices and is hence omitted.

Theorem 6.11. Let (X,E) be a virtually smooth Deligne-Mumford stack. Then
there exists a quasi-smooth derived Deligne-Mumford stack X ′ such that

(i) the derived stack X ′ is quasi-smooth;

(ii) there is an equialence t0(X ′) ' X of stacks;

(iii) for all points p : Spec k → X ′ we have

LX′,x ' Ep

Proof. We continue to use the notation introduced above. In particular, we have
fixed a Kuranishi structure κ with respect to the local embedding U ↪→ M . We
will continue to denote by X ′∗ the étale Segal groupoid produced above.

Define
X ′ = hocolimi∈∆op X ′∗.
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AsX ′∗ is an étale Segal groupoid, the stackX ′ is indeed a derived Deligne-Mumford
stack. Since quasi-smoothness is a local on the source, quasi-smoothness ofX ′ fol-
lows from Proposisition 4.8 and Corollary 6.2. We move on to the statement on the
truncation. Again by Corollary 6.2 along with Lemma 6.4, we have

t0(X ′∗) = N(U)

where N(U) is the nerve of the étale covering U → X . Since U → X is an étale
cover, we have

hocolimi∈∆op N(U) ' X.

As the truncation functor commutes with homotopy colimits, we can compute

t0(X ′) = t0(hocolimX ′∗) ' hocolim(t0(X ′∗)) = hocolimN(U) ' X.

Finally, for the last statement we can assume that Spec k → X ′ factors as

U ′

π

��
Spec k

q
;;wwwwwwwww p // X ′

where π is the canonical projection and U ′ is the first level of the Segal groupoid
X ′∗, which is an atlas for X ′∗. Since π is étale, we can conclude

p∗LX′ = q∗π∗LX′ ' q∗LU ′ ' Ep

where the last equivalence is by Corollary 6.2 and the definition of Kuranishi neigh-
bourhood.

Example 6.12. Let C be a curve and V a smooth projective scheme. Then the
scheme of morphisms Mor(C, V ) is virtually smooth. The perfect obstruction the-
ory is obtained from the diagram

Mor(C, V )× C

π

��

f // V

Mor(C, V ),

where f is the universal morphism by choosing E = Rπ∗f
∗Ω1

V .2 By the above
result, there exists a derived scheme X ′ = Mor(C, V )′ such that for any point [g]
we have

H0(LX′,[g])∨ = H0(C, f∗TV )

H1(LX′,[g])∨ = H1(C, f∗TV ).

2For the definition of the morphism to the cotangent complex see [BF97].
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Example 6.13. In the situation of the above example, let V be a K3-surface. Then
there exists another choice of a perfect obstruction theory. This is the reduced the-
ory of [MP07]. It gives an expected dimension which is 1 dimension larger. From
our result, we conclude there are two different derived extensions of the scheme of
morphisms in this case.



Chapter 7

Some Applications

7.1 Virtual Pullbacks

Given two virtually smooth schemes and a morphism between these schemes, it is
a natural question to ask whether there exists some notion of pullback that maps the
virtual class of the one scheme to the virtual class of the other. This question was
addressed by Cristina Manolache in her thesis. The result she obtained is that such
pullbacks only exist if a certain compatibility condition holds between the perfect
obstruction theories.

We here want to verify that these compatibility conditions always hold for mor-
phisms that arise as truncations of the derived versions of the virtually smooth
schemes. The interesting part of this result is that it suggests that virtual classes
should really live in the suitably defined homology of the derived extensions. From
a practical point of view, it should be just as difficult to find a morphism between
derived moduli spaces as finding a morphism on the truncations for which the com-
patibility condition of Manolache holds.

We first recall the construction of virtual pullbacks from [Man08]. The key
idea is to use a specialization map similar to the one used in section 4.3, the major
difference being that the target of the specialization map is the intrinsic normal
cone. The deformation space necessary for defining the specialization morphism
was introduced by Kresch in [Kre99]. For simplicity we work in the absolute case
instead of working relative over an Artin stack as in [Man08].

Definition 7.1. Let f : X → Y be a morphism of Deligne-Mumford stacks, and
let CX/Y be the intrinsic normal cone of f . Let M ′ be Kresch’s deformation space
with general fiber Y and special fiber CX/Y . Define the specialization map

σ′X/Y : A∗(Y )→ A∗(CX/Y )

using the same method as in section 4.3

If we now assume that the intrinsic normal cone CX/Y embeds into some vector
bundle stack E, we can define a virtual pullback map depending on E.

69
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Definition 7.2. Let f : X → Y be a morphism of Deligne-Mumford stacks, and
assume that i : CX/Y → E is a closed immersion into a rank n vector bundle
stack. Let s0 : X → E be the zero section. Define the virtual pull back to be the
composition of

f !
E : A∗(G)

σ′
X/Y→ A∗(CX/Y )

i∗→ A∗(E)
s∗0→ A∗−n(X).

In case the morphism f : X → Y admits a relative perfect obstruction theory,
there of course is a canonical choice of E and we will drop it from the notation. For
such a relative perfect obstruction theory, Manolache obtained the following result.

Theorem 7.3. [Man08, Corollary 4] Let X,Y be Deligne-Mumford stacks admit-
ting perfect obstruction theories EX , EY , and let f : X → Y be a morphism. As-
sume that there exists a morphism φ : f∗EY → EX commuting with f∗LY → LX .
Then f admits a relative perfect obstruction theory and

f !([Y ]vir) = [X]vir.

We will now verify that for morphisms which are truncations of derived mor-
phisms, the existence of φ with the above properties is automatic. This strongly
supports that virtual classes really belong in the realm of derived algebraic geome-
try.

Theorem 7.4. Let f ′ : X ′ → Y ′ be a morphism of quasi-smooth derived Deligne-
Mumford stacks. Equip the truncations X and Y with the induced perfect obstruc-
tion theories. Then there exists a virtual pullback f ! : A∗(Y )→ A∗(X) such that

f !([Y ]vir) = [X]vir.

Proof. We have to produce the morphism φ of Theorem 7.3. Let

f∗LY → LX → LX/Y
be the canonical sequence for f , and let

(f ′)∗LY ′ → LX′ → LX′/Y ′

be the canonical sequence for f ′. From the commutative square

X
jX //

f

��

X ′

f ′

��
Y

jY
// Y ′

we deduce a morphism of exact triangles

j∗X(f ′)∗LY ′ //

��

j∗XLX′ //

��

LX′/Y ′

��
f∗LY // LX // LX/Y .

Now take φ to be the first horizontal morphism.
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Remark 7.5. Note that for morphisms of Deligne-Mumford stacks which are not
truncations of derived morphisms, it is in general not possible to produce a relative
perfect obstruction theory from the absolute ones. Thus a virtual pullback is not
always defined.

Remark 7.6. It is surprising that the virtual pullback exists without a flatness as-
sumption on f ′, since in classical intersection theory the pullback only exists for
flat morphisms.

7.2 Extended Deformation Functors

A central thesis in the study of deformation functors over a field of characteristic
zero is that every deformation functor should arise as the Maurer-Cartan elements
of a differential graded Lie algebra. In general the process of finding an appropriate
differential graded Lie algebra is a difficult task. In this brief application we will
show that for a moduli problem admitting a perfect obstruction theory, the perfect
obstruction theory itself admits the structure of a differential graded Lie-algebra
after shifting and dualizing.

The result we will be a direct corollary of a theorem of Lurie [Lur10]. Before
stating the theorem we have to recall some definitions. Lurie proposes the following
replacement for the category of Artinian rings with a fixed residue field in the
derived setting.

Definition 7.7. Let k be a field, and A a simplicial commutative algebra over k.
The algebra A is small if

(i) for every n ≥ 0, the homotopy group πn(A) is a finite dimensional k-vector
space,

(ii) for some n > 0, the homotopy groups πn(A) vanish,

(iii) and the commutative ring π0(A) is a local ring with residue field k.

Remark 7.8. A discrete small k-algebra A is an Artinian ring with residue field k.

In classical deformation theory not all functors of Artin rings are considered,
but only functors satisfying some conditions making them into a deformation func-
tors. For instance, all authors require that a deformation functor should map the
ground field k to a one-point set. The other conditions tend to vary from author
to author. Lurie proposes the following conditions, and calls the resulting functors
formal moduli problems.

Definition 7.9. Let k be a field, and skAlgsm the category of small simplicial com-
mutative k-algebras. A functor F : skAlgsm → sSet is a formal moduli problem
if

(i) the simplicial set F (k) is contractible;
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(ii) for all maps of small simplicial commutative k-algebras φ : A → B and
φ′ : A′ → B which induce surjections π0(A) → π0(B) and π0(A′) →
π0(B), the canonical map

F (A×hB A′)→ F (A)×hF (B) F (A′)

is a weak equivalence of simplicial sets.

Lurie’s theorem is stated as an equivalence of∞-categories. For a brief intro-
duction we refer to [Gro10].

Definition 7.10. Let Liekdg be the ∞-category which is the localization of the
category of differential graded Lie algebras over k at the morphisms which are
quasi-isomorphisms of chain complexes.

For the following definition we need the fact that the∞-category of∞-categories
has an internal Hom object with the correct universal property.

Definition 7.11. View skAlg and sSet as∞-categories. Let Fun∞(skAlg, sSet)
be the∞-category of functors.

Lurie then defines the tangent complex of to a formal moduli problem.

Definition 7.12. Let F be a formal moduli problem, and let k[n] be the n-fold shift
of k in the category of simplicial commutative k-algebras. Define the n-th tangent
space

TF (n) := F (k ⊕ k[n]).

It is a non-trivial fact that the collection of simplicial sets TX(n) form a spec-
trum and indeed an E∞-module over k. Using that in characteristic 0 the category
of E∞-algebras over k is equivalent as∞-category to the localization of commu-
tative algebra objects in chain complexes at quasi-isomorphisms, we can view the
spectrum TX as a differential graded module over k. The main theorem then is:

Theorem 7.13. Let k be a field of characteristic zero, and let Moduli denote the
full subcategory of Fun∞(skAlgsm, sSet) spanned by the formal moduli prob-
lems over k. Then there is an equivalence of∞-categories

Φ: Moduli→ Liekdg

with Φ(F ) = TF [−1]. The inverse to Φ is given by solutions to the Maurer-Cartan
equation of a differential graded Lie algebra.

Remark 7.14. This statement can also be found in [Pri10].

Adding up this theorem with Theorem 6.11 we obtain the following Corollary.

Corollary 7.15. Let k be a field of characteristic zero, and let X be a Deligne-
Mumford stack over k with a perfect obstruction theory E → LX . Let p be a
k-point of X , and let Ep be the pullback of E to p. Then E∨p [−1] has the structure
of a differential graded Lie algebra such that the induced deformation functor is
Xp.
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Proof. By Theorem 6.11 there exists a derived stack X ′, along with the canonical
inclusion j : X → X ′ such that p∗LX′ = Ep for every point p of X . Let

p′ := j ◦ p

be the corresponding point ofX ′, and denote byX ′p′ the functor of small simplicial
commutative k-algebras. Since it arises from a geometric object, it is a formal
moduli problem. By Theorem 7.13, we obtain that

TX′,p′ [−1] = (p′)∗L∨X′ [−1]

has the structure of a differential graded Lie algebra. The claim follows from

(p′)∗L∨X′ [−1] = p∗j∗L∨X′ [−1] = E∨p [−1].

Since the induced deformation functor of the differential graded Lie algebra is
given by the Maurer-Cartan equation, we can calculate

t0(Φ−1(E∨p [−1])) = t0(X ′p′) = Xp.

Remark 7.16. In fact it is possible to deduce the preceding corollary from a much
weaker statement. By Lemma 5.12, we know that locally Kuranishi neighbour-
hoods exist. Taking the homotopy fiber product of this Kuranishi neighbourhood
provides a local derived extension having Ep as cotangent complex. Thus Ep has
the structure of a differential graded Lie algebra.
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Appendix

A.1 Model Categories

In this appendix we collect some results on model categories that were used through-
out the text. The exposition closely follows [GS07].

We begin with the definition of a retract.

Definition A.1. Let f : A → B and g : X → Y be morphisms in an arbitrary
category C. Then f is a retract of g if there exists a commutative diagram

A //

f

��

=

''
X //

g

��

A

f

��
B //

=

66Y // B.

We now recall the definition of a model category.

Definition A.2. A model category is a category C with three types of specified
morphisms: weak equivalences, fibrations and cofibrations, satisfying the follow-
ing axioms.

M1 The category C is closed under limits and colimits.

M2 Each type of specified morphisms is closed under retracts.

M3 Given X
f→ Y

g→ Z such that any two of f , g or g ◦ f is a weak equivalence,
then so is the third.

M4 Every lifting problem
A //

i
��

X

f
��

B //

>>}
}

}
}

Y

where i is a cofibration and f is a fibration and either one of the two is a weak
equivalence has a solution.

75
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M5 Any morphism f : X → Y can be factored either as

(i) X i→ Z
r→ Y , where i is a cofibration and r is a fibration and a weak

equivalence,

(ii) or as X
j→W

s→ Y j is a cofibration and a weak equivalence and s is a
fibration.

Remark A.3. The axioms of for a model category are self-dual. If we assume that
M is a model category, then the opposite category Mop is also a model category,
where the cofibrations of Mop are the fibrations of M, the fibrations of Mop are
the cofibrations of M, and the weak equivalences remain unchanged.

The primordial example of a model category is the category of chain complexes
over a commutative ring A. We mention this result for more than just the sake of
completeness, since it will play in important role in putting a model structure on
the category of simplicial algebras.

Theorem A.4. Let A be a commutative ring, and denote by Ch∗A the category
of non-negatively graded chain complexes of A-modules1. Then Ch∗A is a model
category where a morphism f : M• → N• is

(i) a weak equivalence if it is a quasi-isomorphism;

(ii) a fibration if Mn → Nn is surjective for n ≥ 1;

(iii) and a cofibration if Mn → Nn is an injection with a projective cokernel for
n ≥ 0.

Remark A.5. It immediately follows that the cofibrant objects of this model cate-
gory are exactly the complexes of projective models. On the other hand, the fibrant
objects are not the injective modules. To identify these a different model structure
is needed.

The Dold-Kan correspondence [Wei94] gives an equivalence of categories be-
tween non-negatively graded chain complexes of A-modules and simplicial A-
modules. Transporting the structure from the above theorem and giving an alter-
native description of the fibrations, we arrive at the following result. We omit the
concrete description of the cofibrations.

Proposition A.6. Let A be a commutative ring, and denote by sModA the cat-
egory of simplicial A-modules. Then sModA is a model category where a mor-
phism f : M → N is

(i) a weak equivalence if π∗M → π∗N is an isomorphism;

(ii) a fibration if M → π0(M)×π0N N is a surjection.

1The differential goes down, i.e. C0 ← C1 ← . . .
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We now would like to lift this model structure to simplicial A-algebras. This
is not so easy, and additional assumptions on the model structures are needed. The
key property we need is being cofibrantly generated.

Definition A.7. Let C be a category and F a class of morphisms in C. Then an
object A ∈ C is sequentially small with respect to F if for any sequence X1 →
X2 → X3 → . . . of morphisms in F the natural morphism

colim Hom(A,Xn)→ Hom(A, colimXn)

is an isomorphism.

Definition A.8. (i) A model category C is cofibrantly generated if there are sets
of morphisms I and J such that

(a) the source of every morphism in I is small with respect to to the class
of all cofibrations;

(b) a morphism f : X → Y is an acyclic fibration if and only if f has the
right lifting property with respect to all morphisms in I;

(c) the source of every morphism in J is small with respect to the class of
all acyclic cofibrations;

(d) a morphism f : X → Y is a fibration if and only if f has the right lifting
property with respect to all morphisms in J .

(ii) A model category is combinatorial if it is cofibrantly generated and the un-
derlying category is presentable.

Remark A.9. The smallest class of maps that is closed under coproducts, cobase
change, sequential colimits and retracts and contains I are exactly the cofibrations.
Thus the term cofibrantly generated.

Example A.10. In the category Ch∗A, define D(n), n ≥ 1 to be the chain com-
plex with D(n)k = 0 for k 6= n, n− 1 and differential

d = idA : D(n)n = A −→ A = D(n)n−1.

Now define the set J to consist of the morphisms 0→ D(n), n ≥ 1. Define S(n)
to be the complex having a copy of A in degree n and being 0 otherwise. The set I
then is defined to consist of the inclusions

S(n− 1)→ D(n), n ≥ 1; (A.1)

0→ S(0). (A.2)

The following theorem gives general conditions on when one can lift a model
structure along a left adjoint.
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Theorem A.11. Let

C
F //

D
G

oo

be an adjoint pair, and assume that C is a cofibrantly generated model cate-
gory with chosen generating sets I and J . Suppose further that G commutes with
sequential colimits, and that D has all limits and colimits. Define a morphism
f : X → Y in D to be

(i) a weak equivalence if Gf is a weak equivalence;

(ii) a fibration if Gf is a fibration;

(iii) a cofibration if it has the left lifting property with respect to the acyclic cofi-
brations.

If furthermore every thus defined cofibration that has the left lifting property with
respect to all fibrations is a weak equivalence, then D is a cofibrantly generated
model category. The generating sets are {Fi | i ∈ I} and {Fj | j ∈ J}.

Let sAlgA denote the category of simplicial commutative algebras over A.
Applying the above theorem to the pair

sModA
Sym // sAlgA

Φ
oo

where Sym is the level-wise symmetric algebra functor and Φ is the forgetful func-
tor, and making use of the fact that the category sAlgA is presentable we obtain
the following corollary.

Corollary A.12. Let A be a commutative ring and sAlgA the category of simpli-
cial commutative algebras overA. Then sAlgA is a combinatorial model category
where a morphism f : R→ S is

(i) a weak equivalence if π∗R→ π∗S is a weak equivalence;

(ii) a fibration if R→ π0R×π0S S is a surjection.

Remark A.13. The hypothesis of Theorem A.11 are not always satisfied. If for in-
stance k is a field of characteristic p > 0, then the adjoint pair from differential
graded algebras over k to chain complexes over k does not satisfy the hypothesis.
What fails is that the symmetric algebra functor no longer preserves weak equiva-
lences between cofibrant objects.
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A.2 Left Bousfield Localization

A key technique in the construction of the categories of higher stacks and derived
stacks is left Bousfield localization. We here collect some fundamental results. We
have to add the assumption that our model category is simplicial. One of the con-
sequences of being a simplicial model category is that we do not only have a set of
morphisms, but instead have a Hom-object that is a simplicial set.
Assume M to be a simplicial model category. Suppose that we have certain set of
morphisms S in M which for some reason we would like to promote to being weak
equivalences. The left Bousfield localization of M at S, if it exists, will be a new
model structure on M such that the morphisms in S have become weak equiva-
lences and thus isomorphisms if we pass to the homotopy category. Note that we
have never changed anything in the category: The left Bousfield localization of M
at S still has exactly the same objects and morphisms as M. We have only tweaked
the sets of weak equivalences, fibrations and cofibrations.

Example A.14. ([DS95]) Let sSet be the category of simplicial sets with the stan-
dard model structure. Now fix a homology theory h∗ on the category of spaces.
Define the class S to consist of those morphisms of simplicial sets, whose geomet-
ric realizations have the property that h∗(|f |) is an isomorphism. In the homotopy
category of the left Bousfield localization not only the weak homotopy equiva-
lences have become isomorphisms, but also the equivalences with respect to the
homology theory h∗.

We now come to the exact definitions.

Definition A.15. Let M be a simplicial model category and S a set of morphisms
in M. A left localization of M with respect to S is a model category LSM together
with a left Quillen functor a : M→ LSM such that

(i) the total left derived functor La : Ho(M) → Ho(LSM) takes maps in S to
isomorphisms in Ho(LSM);

(ii) the functor a is initial among all left Quillen functors with this property.

The goal is to define an appropriate model structure on M so that we obtain a
left localization.

Definition A.16. Let S be a set of morphisms in M.

(i) An objectA ∈M is S-local if for all morphisms f : X → Y in S the induced
map f∗ : RHom(Y,A)→ RHom(X,A) is a weak equivalence of simplicial
sets.

(ii) A morphism f : X → Y is an S-local equivalence if for all S-local objectsA
the induced map f∗ : RHom(Y,A) → RHom(X,A) is a weak equivalence
of simplicial sets.
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Remark A.17. Every morphism in S is an S-local equivalence.

Definition A.18. Let M be a simplicial model category and S a set of morphisms
in M. The left Bousfield localization of M at S, if it exists, is a structure of a model
category LSM on M such that

(i) the weak equivalences in LSM are the S-local equivalences;

(ii) the cofibrations are the cofibrations of M ;

(iii) the fibrations are the maps with the right lifting property with respect to the
acyclic cofibrations.

For completeness we record the following results, wich are both attributed to
Smith:

Lemma A.19. [Bar10, Lemma 4.3] Let M be a simplicial model category and S
a set of morphisms in M. If the left Bousfield localization of M at S exists, it is a
left localization of M at S.

Theorem A.20. [Bar10, Thm. 4.7] Let M be a simplicial model category and S a
set of morphisms in M. Then the left Bousfield localization of M at S exists.

A.3 Some Facts on Homotopy Fiber Products

In this section we review some basic facts about homotopy fiber products and ho-
motopy pushouts. The results are essential for chapter 6. The exposition follows
[Lur09, Appendix A.2] and [DS95].

We begin by recalling some basic definitions. We will denote by D the category
a→ b← c. 2 For any category C, the category of diagrams of shape D will be
written as CD. Recall that there always is the diagonal functor ∆: C→ CD given
by mapping an object to the constant diagram of shape D. The same definition of
course also applies to the category of diagrams of shape D.

Definition A.21. Let C be a category.

(i) A pushout, if it exists, is a left adjoint to the diagonal functor ∆,

CDop
colim //

C.
∆

oo

(ii) A fiber product, if it exists, is a right adjoint to the diagonal functor ∆,

C
∆ //

CD.
lim

oo

2Only non-identity morphisms are shown.
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Remark A.22. Let p : Dop → C be a functor. Denote by Cp/ the category of ob-
jects under p. Objects in this category are also called cones under p. Then colimd∈D

is the initial object of Cp/.
Dually, given a functor p : D → C, the limit limd∈D is the terminal object of

the category C/p of objects over p, also called cones over p.

If we now assume that C is a model category it is possible to define a model
structures on the categories of diagrams of shape D and Dop.

Definition A.23. Let M be a model category.

(i) Define a natural transformation α : F → G in MDop
to be a

(a) projective fibration if the induced map F (D) → G(D) is a fibration in
M for each D ∈ Dop;

(b) weak equivalence if the induced map F (D) → G(D) is a weak equiv-
alence in M for each D ∈ Dop;

(c) projective cofibration if it has the left lifting property with respect to the
acyclic fibrations.

(ii) Define a natural transformation α : F → G in MD to be a

(a) injective cofibration if the induced map F (D)→ G(D) is a cofibration
in M for each D ∈ D;

(b) weak equivalence if the induced map F (D) → G(D) is a weak equiv-
alence in M for each D ∈ D;

(c) injective fibration if it has the right lifting property with respect to the
acyclic cofibrations.

Proposition A.24. [DS95, Prop. 10.6, 10.7, 10.11, 10.12]

(i) With the definitions above, the categories MDop
and MD are model cat-

egories. The model structures are called respectively the projective model
structure and the injective model structure.

(ii) Equip MDop
with the projective model structure. Then (colim,∆) is a Quillen

adjunction.

(iii) Equip MD with the injective model structure. Then (∆, lim) is a Quillen
adjunction.

Remark A.25. Using Remark A.3, we immediately obtain that the projective model
structure on MDop

gives the injective model structure on (Mop)D. Thus a homo-
topy pushout in M is the same as a homotopy fiber product in Mop.

Since the pairs (colim,∆) and (∆, lim) are Quillen adjunctions, the functors
colim and lim admit total left and total right derived functors respectively.
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Definition A.26. Let M be a model category.

(i) The homotopy pushout is the total left derived functor of colim,

hocolim: Ho(MDop
)→ Ho(M).

(ii) The homotopy fiber product is the total right derived functor of lim,

holim: Ho(MD)→ Ho(M).

Remark A.27. A crucial observation is that the domains of hocolim and holim
are not Ho(M)Dop

and Ho(M)D. So the homotopy pushout and homotopy fiber
product are not the pushout and fiber product in the homotopy category. In general,
homotopy categories of model categories tend to have only very few (co)limits.

Remark A.28. As in the case of the pushout and fiber product, there are adjunctions
on the level of homotopy categories

Ho(MDop
)
hocolim // Ho(M)

R∆
oo

and

Ho(M)
L∆ //

Ho(MD).
holim

oo

Since the homotopy pushout and homotopy fiber product are only defined as
objects of the homotopy category it is difficult to get ones hands on them. If we add
the assumption that our model category M is combinatorial we can improve on this
situation. This ensures, in particular, that we have functorial cofibrant replacements
in MDop

.
Our goal for the application in chapter 6 is to take homotopy fiber products in

the category of derived affine schemes in a functorial manner. As this category itself
is not combinatorial, the following results are not directly applicable. But since this
category is by definition the dual of the category of simplicial algebras, which is
combinatorial, the duals of the following results apply. So for the following, we ask
the reader to keep in mind the example of M being the category of simplicial alge-
bras, MDop

the category of diagrams in simplicial algebras that describe pushouts,
and (Mop)D the category describing fiber products of affine derived schemes.

The key result we will make use of is the following.

Proposition A.29. [Lur09, Prop. A.2.8.2] Let M be a combinatorial model cate-
gory, and equip MDop

with the projective model structure. Then MDop
is a com-

binatorial model category.

The above result implies that we can choose a cofibrant replacement functor
for the category MDop

. Using Remark A.25, this gives us a fibrant replacement
functor in the dual category (Mop)D.
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Let Q be a cofibrant replacement functor for the category MDop
. We can then

define a functorial model for the homotopy pushout at the level of model categories
as opposed to the previous definition which was on the level of Ho(MDop

) by the
composition

MDop Q−→MDop colim−→ M.

Dually, Let R be a fibrant replacement functor for the category (Mop)D. We
can then define a functorial model for the homotopy fiber product by the composi-
tion

(Mop)D R−→ (Mop)D lim−→M.

Remark A.30. Let p : D→Mop be a functor. Using Remark A.22, we could also
define the homotopy limit to be the terminal object in Mop

/Rp.

We can state the following simple lemma.

Lemma A.31. Let M be a combinatorial model category and let α : F → G be a
morphism in MDop

. Then there is a morphism

hocolimD∈Dop α : hocolimD∈Dop F → hocolimD∈Dop G

in M lifting the canonical morphism in Ho(M). Moreover this is functorial in
morphisms in MDop

.

Proof. LetQ be a cofibrant replacement functor for MDop
. The claim immediately

follows from
hocolim = lim ◦Q

and the functoriality of this construction.

We immediately obtain the following dual version of the lemma.

Corollary A.32. Let M be a combinatorial model category and let α : F → G be
a morphism in (Mop)D. Then there is a morphism

holimD∈D α : holimD∈D F → holimD∈DG

in Mop lifting the canonical morphism in Ho(Mop). Moreover this is functorial in
morphisms in (Mop)D.

Remark A.33. The crucial point making the lemma work is that the morphism
α : F → G exists on the level of MDop

as opposed to only on the level of
Ho(MDop

).
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