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Abstract

is thesis reports on the creation and analysis of many-body states of interacting
fermionic atoms in optical laices. e realized system can be described by the
Fermi-Hubbard hamiltonian, which is an important model for correlated electrons
in modern condensed maer physics. In this way, ultra-cold atoms can be utilized
as a quantum simulator to study solid state phenomena.
e use of a Feshbach resonance in combination with a blue-detuned optical laice
and a red-detuned dipole trap enables an independent control over all relevant pa-
rameters in the many-body hamiltonian. By measuring the in-situ density distribu-
tion and doublon fraction it has been possible to identify bothmetallic and insulating
phases in the repulsive Hubbard model, including the experimental observation of
the fermionic Mo insulator. In the aractive case, the appearance of strong corre-
lations has been detected via an anomalous expansion of the cloud that is caused by
the formation of non-condensed pairs. By monitoring the in-situ density distribu-
tion of initially localized atoms during the free expansion in a homogeneous optical
laice, a strong influence of interactions on the out-of-equilibrium dynamics within
the Hubbard model has been found.
e reported experiments pave the way for future studies on magnetic order and
fermionic superfluidity in a clean and well-controlled experimental system.
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1. Introduction

Although the study of ultracold atoms is a relatively new field that started with the
first experimental realization of a Bose Einstein condensate in 1995 [1, 2], it has
already diversified into many subbranches studying different topics ranging from
the effects of disorder on non-interacting systems over collective excitations and
superfluidity in weakly interacting systems to the study of strongly correlated states,
molecular physics and quantum information.

Starting with the first realization of a quantum degenerate gas of fermionic atoms in
1999 [3], ultracold fermions became an important subfield, especially in the presence
of strong interactions: Fermions cannot Bose condense due to the Pauli principle (cf.
sec. 2.2) and superfluidity of fermionic particles therefore relies on first converting
the fermions into boson-like pairs like e.g. molecules of fermionic atoms or Cooper
pairs of electrons (cf. sec. 3.3.3).

ere exist mainly two routes for realizing strongly interacting states of ultracold
atoms: One is the use of Feshbach resonances (cf. sec. 3.3) in order to directly boost
the interactions. e second route, the use of optical laices, in contrast mostly af-
fects the kinetic energy of the particles. In a laice, the kinetic energy of the particles
becomes confined to several distinct Bloch bands. Within a single band of a suffi-
ciently deep laice the kinetic energy becomes so small that the interaction energy
can easily dominate over the kinetic energy. is allows the realization of strongly
correlated states without the need of a Feshbach resonance, thereby avoiding the
corresponding losses.

A first hallmark experiment combining ultracold atoms and optical laices was the
observation of the superfluid to Mo insulator transition with bosonic atoms in
2001 [4]. is experiment did not only demonstrate the ability to reach strongly cor-
related states using ultracold atoms in optical laices but furthermore demonstrated
the ability to implement Hubbard models with this technique [5, 6]. is started
not only an intense research program concerning the Bose-Hubbard model [7] but
also created a lot of interest in combining fermionic quantum gases with an optical
laice.

Fermionic atoms in optical laices can be described by the fermionic Hubbard model
(cf. sec. 5), which represents one of the central models in modern condensed maer
physics: Due to the complexity of real materials an important goal in the study of
electrons in solids is the search for the simplest models that nonetheless describe the
physics of interest. In this context the Hubbard model was the first to successfully
describe the Mo transition between conducting and insulating states.
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1. Introduction

Optical laices offer the possibility to study condensed maer physics using ultra-
cold atoms and can be seen as one example of a so-called antum Simulator, which
was first proposed by Richard P. Feynman in 1982 [8]. e central idea of a quantum
simulation is to use one well-controlled quantum system to simulate another quan-
tum system. is is especially appealing in the case of electrons in a solid, sincemany
condensed maer phenomena involve a large number of electrons while exact nu-
merical simulations are still limited to less than 20 particles due to the exponentially
growing Hilbert space [9].

+ + +
Potential created by ions Potential created by

standing light wave 

-- -
J

J

tunneling interaction
U

U

:  Atoms

E
ne

rg
y

Figure 1.1.: In a tight-binding model like the Hubbard model the exact interactions
and potentials are absorbed into a few coefficients. In the easiest case of a single band
Hubbard model these coefficients are the hopping rate J and the on-site interaction
constant U . is model can therefore be realized by such diverse systems as electrons
in a solid or atoms in an optical laice.

Onemajor advantages of ultracold atoms in this context is that they represent a clean
and simple system, which allows one to study specifically the physics of interest
and nothing more: Unlike a real crystal, which always has a finite defect density, an
optical laice is a perfectly periodic potential without any defects. In addition the
physics is much simpler as no additional degrees of freedom, e.g. laice phonons,
have to be considered.

e second big advantage stems from the high controllability of atomic systems. In
contrast to a real solid, the strengths of all potentials can be controlled by varying the
laser intensities. By the use of Feshbach resonances it in addition became possible
to freely tune the interactions between the atoms, something that is impossible to
achieve in a real solid, where one has to deal with the Coulomb repulsion between
the electrons.

Apart from simulating condensed maer physics there are many more applications
for atomic laice systems, which form an intriguing and very rich many-body sys-
tem in their own right: In a deep laice, where tunneling can be neglected, one
can think of each individual laice site as a small ”test tube” in which the molecu-
lar physics of a small number of atoms can be studied in a clean and well isolated
environment [10], a topic that currently sees renewed interest due to the recent pro-
duction of ultracold ground state molecules [11, 12]. Using the capabilities to resolve
and address individual laice sites, which have recently been demonstrated [13–19],
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1.1. is thesis

single atoms on isolated laice sites can become an ideal candidate for a antum
Memory and other antum Information applications.

1.1. This thesis

e main topic of this thesis is the experimental investigation of the equilibrium
and out-of-equilibrium physics of an interacting spin mixture of ultracold fermionic
atoms in optical laices. To this end we implemented and optimized a combination
of several cooling techniques in order to prepare a sufficiently degenerate sample of
ultracold fermions in a crossed beam dipole trap. In order to gain full independent
control over the density of atoms in the laice, we implemented for the first time a
blue-detuned optical laice for ultracold atoms. In contrast to a standard red-detuned
laice, the blue-detuned case creates a repulsive potential, for which new alignment
and characterization procedures had to be established.

e blue detuned laice allowed us to create deep laices without automatically
creating a strong harmonic confinement at the same time. It therefore enabled us
to control laice depth and confinement independently, which was the key ingre-
dient to all experiments in this thesis. In addition we adapted several measurement
techniques to the fermionic case and implemented for the first time phase-contrast
imaging with fermions in an optical laice.

In the case of repulsive interactions (cf. sec. 8) the possibility to vary the harmonic
confinement at constant laice depth in combination with measurements of the in-
situ density distribution allowed us to directly measure the compressibility of the
cloud and thereby to distinguish incompressible band- and Mo-insulating states
from compressible metallic states.

In the case of aractive interactions (cf. sec. 9) the preparation of a low density sam-
ple enabled us to study the intriguing pseudogap regime in the aractive Hubbard
model, in which fermionic atoms form pairs that do not condense due to a finite
entropy.

In a last experiment, we used the possibility to change the parameters in real time to
study the expansion dynamics of a Fermi gas within a deep laice (cf. sec. 10). is
experiment at the same time revealed a fascinating many body out-of-equilibrium
dynamics and allowed us to gain a first glimpse at the characteristic timescales of
mass transport in a Hubbard model.

During the optimization of the laice wavelength we studied the photodissociation
of Feshbach molecules by blue-detuned light in order to achieve a low enough heat-
ing rate to perform equilibrium experiments in the laice, the results are given in
the appendix (cf. sec. A).

is thesis is linked to the PhD theses of Tim Rom, orsten Best and Sebastian Will
that were/are performed at the same experimental apparatus. ey are focused on
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1. Introduction

the measurement of density-density correlations of non-interacting fermions (T.R.)
and experiments with Bosons and Bose-Fermi mixtures (T.B and S.W.).

1.2. Publications

e main results of this thesis are published in the following references:

• Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D
Optical Lattice
U. Schneider, L. Hackermüller, S. Will, T. Best, I. Bloch, T. Costi, R. Helmes,
D. Rasch, and A. Rosch.
Science 322, 1520–1525 (2008)

• Anomalous Expansion of Attractively Interacting Fermionic Atoms in an
Optical Lattice
L. Hackermüller, U. Schneider, M. Moreno-Cardoner, T. Kitagawa, T. Best,
S. Will, E. Demler, E. Altman, I. Bloch, and B. Paredes.
Science 327, 1621–1624 (2010)

• Breakdown of diffusion: From collisional hydrodynamics to a continuous
quantum walk in a homogeneous Hubbard model
U. Schneider, L. Hackermüller, J. Ronzheimer, S.Will, S. Braun, T. Best, I. Bloch,
E. Demler, S. Mandt, D. Rasch, and A. Rosch.
arXiv:1005.3545v1 [cond-mat.quant-gas] (2010)

e following additional references have also been published in the context of this
thesis. ey are covered in detail in the aforementioned PhD theses:

• Free fermion antibuning in a degenerate atomic Fermi gas released from
an optical lattice
T. Rom, T. Best, D. van Oosten, U. Schneider, S. Fölling, B. Paredes, and I. Bloch
Nature 444, 733–736 (2006)

• Role of Interactions in 87Rb-40K Bose-FermiMixtures in a 3DOptical Lattice
T. Best, S. Will, U. Schneider, L. Hackermüller, D. van Oosten, I. Bloch, and D.-
S. Lühmann.
Phys. Rev. Le. 102, 30408 (2009)

• Time-resolved observation of coherent multi-body interactions in quantum
phase revivals
S. Will, T. Best, U. Schneider, L. Hackermüller, D.-S. Lühmann, and I. Bloch.
Nature 465, 197 (2010)

• Coherent Interaction of a Single Fermion with a Small Bosonic Field
S. Will, T. Best, S. Braun, U. Schneider, and I. Bloch.
Phys. Rev. Le. 106, 115305 (2011)
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2. Statistical mechanics

Classical statistical physics typically deals with distinguishable particles: Even if
two macroscopic objects would not differ by small details, they could still be dis-
tinguished by their (classical) positions and velocities. Two quantum mechanical
particles in the same internal quantum state on the other hand are indistinguishable.
If their wavefunctions overlap at some time it is later on impossible to tell which
particle originated from where. is indistinguishability of the particles gives rise
to fundamental differences between classical and quantum statistics:

In the case of two distinguishable particles (1 & 2) and two single-particle eigenstates
|a⟩ and |b⟩ there are four possible combinations:

|A⟩ = |a⟩1 |a⟩2 |B⟩ = |a⟩1 |b⟩2 (2.1)

|C⟩ = |b⟩1 |a⟩2 |D⟩ = |b⟩1 |b⟩2 (2.2)

If the particles are indistinguishable, all physical properties (e.g. expectation values)
must remain unaffected by an interchange of two particles. Formally, this can be
taken into account by requiring that any physical state |Ψ⟩ is an eigenstate of the
permutation operator P̂ij which exchanges the particles i and j: P̂12 |Ψ⟩ = a |Ψ⟩, a ∈
C. e possible eigenvalues a of P̂ij can be found by noting that (in 3D) exchanging
the same pair of particles twice is equivalent to not interchanging them at all (P̂ij)

2 =
1̂. is implies a2 = 1 and leads to a = ±1, which states that the exchange of two
particles can either leave the wavefunction unchanged (a = 1) or change its sign
(a = −1)1.

In the case of a = 1 the particles are called bosons and there are three possible two-
particle states:

|Ψ1
b⟩ = |A⟩ (2.3)

|Ψ2
b⟩ = |D⟩ (2.4)

|Ψ3
b⟩ = 1/

√
2 { |B⟩+ |C⟩} (2.5)

In the case of a = −1 the particles will be called fermions and there is only one
possible state:

|Ψf⟩ = 1/
√
2 { |B⟩ − |C⟩} (2.6)

e above argument is known as the Pauli principle and can be extended to an arbi-
trary number of particles [22]:

1In the two-dimensional case the situation is more subtle and leads to the existence of so-called
Anyons, that is particles with fractional statistics [20, 21].
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2. Statistical mechanics

• ewave function of a set ofN indistinguishable particles is either completely
symmetric and remains unchanged upon exchanging two arbitrary particles:
In this case these particles are called bosons.

• Or it is completely antisymmetric, and thus changes its sign whenever two
particles are exchanged: In this case the particles are called fermions.

e so-called Spin-Statistics eorem, which was derived for certain cases already by
Wolfgang Pauli [23], links the above distinction between bosons and fermions to
the spin of the particles and states that all particles with an integer or zero spin are
bosons and particles with half-integer spin are fermions.

e different symmetries of the wavefunction lead to the fundamentally different
Bose-Einstein and Fermi-Dirac statistics, whose consequences can be seen perhaps
most dramatically in the different Helium isotopes: Electron structure and chemical
properties of 3He and 4He are identical, the only difference is the number of neutrons
in the nucleus which leads to different nuclear spins and therefore different statistics.
Bosonic 4He becomes superfluid below 2.17K at atmospheric pressure while fermi-
onic 3He becomes superfluid only below 3mK [24].

For simplicity only non-interacting particles are considered in this chapter. While
this is a crude approximation for bosons, interactions can be safely neglected in a
single component Fermi gas at ultracold temperatures (cf. sec. 3.2.2)

2.1. Bosons

As seen in the previous section, the possible many-body wavefunctions of N in-
distinguishable and non-interacting bosonic particles are given by all completely
symmetric combinations of single-particle eigenstates. In contrast to the fermionic
case, which will be discussed in the next section, the required symmetry posses no
restrictions on the possible occupations of the single particle states.
e many-body ground state is therefore given by the state where all particles oc-
cupy the single-particle ground state |ψ0⟩ with energy ϵ0. is phenomenon of a
macroscopic occupation of a single quantum state is known as Bose-Einstein conden-
sation (BEC). It was predicted for non-interacting particles by A. Einstein in 1925
[25], expanding work by S. N. Bose [26] and was observed in dilute gases for the
first time in 1995 [1, 2].

For finite temperatures T the occupation of the single-particle eigenstates with en-
ergy ϵ is given by the Bose-Einstein distribution:

N(ϵ) =
1

e

(
ϵ−µ
kBT

)
− 1

(2.7)

where µ ≤ ϵ0 denotes the chemical potential (cf. sec. 2.3). ere exists a critical
temperature Tc below which the occupation N0 of the single-particle ground state
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2.2. Fermions
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Figure 2.1.: Absorption images of a cloud of (weakly interacting) bosonic atoms aer
time-of-flight (cf. 6.1). In the le image a partially condensed cloud is shown, the
right image shows a pure BEC whose central density exceeds the dynamic range of
the imaging setup. X denotes a horizontal and z the vertical axis.

becomes macroscopic. In the important case of a 3D harmonic trap the condensate
fraction N0/N is given by [24]:

N0(T )

N
= 1−

(
T

Tc

)3

(2.8)

In time-of-flight images (cf. sec. 2.2.3) the onset of Bose-Einstein condensation is
clearly visible in the bimodality of the cloud, which is shown in figure 2.1: e ellip-
tical central core in the le image is the condensed atoms, while the round, Gaussian
shaped background is due to the thermal component.

Most experiments so far have been carried outwithweakly interacting atoms and the
interactions were taken into account by use of the Gross-Pitaevskii equation and the
Bogoliubov approximation [24]. Only recently it became possible to use Feshbach
resonances (cf. sec. 3.3) in order to realize systems of non-interacting bosonic atoms
[27, 28].

2.2. Fermions

Fermions are particles with a half-integer spin and include the constituents of all
atoms: electrons, protons and neutrons. As a consequence, any neutral atom with
an odd number of neutrons is itself fermionic. Important examples of degenerate
fermionic particles include the electrons in a metal [29], neutrons in a neutron star
and superfluid 3He. In the context of laser-cooled atoms, the two most widely used
fermionic species are the alkali metal isotopes Potassium 40K and Lithium 6Li. Potas-
sium, which was also used in the experiments in this thesis, was first cooled into the
quantum degenerate regime by B. Demarco and D.S. Jin in 1999 [3].

An important consequence of the general Pauli principle for indistinguishable fermions
is the so-called Pauli exclusion principle [22]:
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2. Statistical mechanics

Two identical fermions cannot be in the same quantum state.

is can be seen directly from the aforementioned antisymmetry of the wavefunc-
tion: e antisymmetrized wavefunction for two identical fermions in the same
single-particle state |a⟩ vanishes:

|Ψf⟩ = 1/
√
2 { |a⟩1 |a⟩2 − |a⟩1 |a⟩2} = 0 (2.9)

Due to this principle,N identical fermions at zero temperature will not form a BEC,
where all particles would occupy the same single-particle state, but will instead form
a so-called Fermi-sea: ey will occupy the N lowest energy states by exactly one
fermion per state. Important examples for this behavior are the electronic shells
of atoms or the Fermi-sea of conductance electrons in a solid: Without the Pauli
exclusion principle all atoms would be similar to the hydrogen atom with all elec-
trons occupying the 1s energy state and (neglecting interactions) all solids would be
metallic since no band-insulating state could form.

2.2.1. Fermi-Dirac distribution

For non-interacting fermions in thermal equilibrium the average occupation of a
given (single-particle) eigenstate of the hamiltonian with energy ϵ is given by the
Fermi-Dirac distribution:

F (ϵ) =
1

e
ϵ−µ
kBT + 1

(2.10)

Here T denotes the temperature and µ is the chemical potential which controls the
particle number (cf. sec. 2.3).

Since the exponential ex is always positive, all occupations are less than or equal to
one, as required by the Pauli exclusion principle. As a consequence, there cannot
be a macroscopic occupation of any single-particle state, i.e. no BEC. In contrast to
the bosonic case there is no phase transition for non-interacting fermions. Instead
one finds a smooth crossover from the classical regime at high temperatures to the
quantum degenerate regime at low temperatures. is makes the degeneracy much
harder to detect than in the bosonic case.

At zero temperature the Fermi-Dirac distribution reduces to the step function out-
lined in the previous paragraph: N identical particles occupy the N lowest energy
states and the energy of the N th state is called the Fermi energy EF :

F (ϵ)(T=0) =

{
1 ∀ ϵ ≤ EF

0 else
(2.11)

Accordingly, the Fermi temperature TF is defined as

TF =
EF − ϵ0
kB

(2.12)

where kB denotes Boltzmann’s constant and ϵ0 is the energy of the lowest single-
particle state, which can be approximated by zero in most cases.
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Figure 2.2.: e Fermi-Dirac distribution for several reduced temperatures T/TF : At
zero temperature the distribution reduces to a step function at the Fermi energy EF ,
for small temperatures T/TF ≪ 1 the distribution deviates from the step function
only for energies close to the Fermi energy and for large temperatures it approaches
a classical Boltzmann distribution.

Fugacity

In practice, the Fermi-Dirac distribution ismostly given in a slightly different parametriza-
tion using the fugacity z = e

µ
kBT :

F (ϵ) =
1

e
ϵ−µ
kBT + 1

=
1

1
z
e

ϵ
kBT + 1

(2.13)

e fugacity is a convenient parameter to express the ”degree of degeneracy” as the
term 1/z in the Fermi-Dirac distribution determines the relative weight of the ex

and the +1 term: In the classical regime at high temperatures 1/z becomes large,
one can neglect the+1 term and the Fermi-Dirac distribution reduces to the classical
Boltzmann-distribution. In the quantumdegenerate regimeT/TF ≪ 1, 1/z becomes
very small and the +1 terms limits the occupations to one.

Entropy

e total entropy S of a set of identical non-interacting fermions is given by [30, 31]:

S

kB
=
E − µN

kBT
+
∑
n

log
(
1 + e

µ−ϵn
kBT

)
(2.14)
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2. Statistical mechanics

where E denotes the total energy and the sum is taken over all single-particle states
n. e entropy increases monotonically with temperature and depends on the den-
sity of single-particle states n.

2.2.2. Fermionic atoms in an harmonic trap

In the experiment the last step of evaporative cooling is performed in a crossed beam
dipole trap (cf. sec. 4.2) that can be approximated by a harmonic potential:

V (x, y, z) =
1

2
m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

(2.15)

It is characterized by three trap frequencies ωi for particles with mass m. In the
experiment, the horizontal trap frequencies are approximately equal ω⊥ = ωx = ωy

and the ratio between the vertical and the horizontal trap frequencies is the aspect
ratio γ of the trap γ = ωz

ω⊥
.

e corresponding single-particle hamiltonian Ĥ separates into three terms Ĥ =
Ĥx + Ĥy + Ĥz which act only on a single coordinate. Consequently, the time-
independent Schrödinger equation Ĥ |Ψ(x, y, z)⟩ = E |Ψ(x, y, z)⟩ can be split up
into three independent equations and its solutions can be wrien as a product of
three 1D harmonic oscillator eigenstates:

|Ψ(x, y, z)⟩ = |ψx(x)⟩ · |ψy(y)⟩ · |ψz(z)⟩ (2.16)

is separability of the hamiltonian into three independent 1D hamiltonians still
holds if a simple cubic laice potential (cf. sec. 4.3) is added and enormously facili-
tates the solution of the problem.
Due to the separability of the problem the eigenenergies of the system are given by
all possible combinationsE = Ex+Ey+Ez of the 1D harmonic oscillator eigenener-
giesEi(n) = ~ωi(n+1/2). e corresponding density of states can be approximated
by:

g(ϵ) =
ϵ2

2γ(~ω⊥)3
(2.17)

Using this density of states it is possible to give explicit formulas and relations for
most thermodynamic quantities (cf. appx. C for details):

• Fermi temperature

TF =
EF

kB
=

~ωr

kB
(6γN)

1
3 (2.18)

• fugacity

Li3(−z) = − 1

6(T/TF )3
(2.19)

Here Li3 denotes the trilogarithm (cf. sec. C) and the equation must be solved
numerically.
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Figure 2.3.: Entropy and fugacity in an harmonic trap as a function of the reduced
temperature T/TF . Shown is the entropy according to equation 2.20 (red) and the
result of a Sommerfield expansion π2 · T/TF (blue), which is valid for small temper-
atures. e fugacity approaches zero in the classical limit at high temperatures and
diverges for a vanishing temperature.

• entropy

S

kB
=
E − µN

kBT
+

1

2γ~3ω3

(
µ4

12kBT
+

1

6
kBµ

2π2T

+
7

180
k3Bπ

4T 3 + 2k3BT
3 Li4(−e

− µ
kBT )

) (2.20)

e most widely used parameter to measure the degeneracy is the reduced temper-
ature T/TF , which is directly related to the fugacity via equation 2.19. For a given
aspect ratio γ and constant atom number N , both temperature and Fermi energy
of the cloud scale linearly with the trap frequency ω⊥. Consequently, they increase
even if the trap frequency ω⊥ is increased adiabatically.
e entropy per particle, the fugacity and the reduced temperature, on the other
hand, stay constant and are thereby beer suited as a ”thermometer” than temper-
ature itself. In addition, at constant ”degeneracy”, i.e. constant entropy per particle,
temperature and mean energy also vary with particle number.
e emphasis on entropy per particle instead of temperature becomes especially im-
portant when adiabatically (i.e. isentropically, cf. sec. 2.3) loading into the laice,
where the density of states becomes more complex (cf. sec. 4.3.2) and does not fol-
low a power law any more.
e measurements shown in this thesis were performed at reduced temperatures
T/TF between 0.1 and 0.15.

Thomas-Fermi approximation

Since the exact eigenstates of particles in an harmonic trap are well known, both the
real-space and the momentum space distributions could in principle be calculated
by summing over all eigenstates.
In the limit of large particle numbers, however, it is more convenient to use a semi-
classical or omas-Fermi approximation that yields analytic formulas based on a
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2. Statistical mechanics

T/TF S/N (kB) z T@20Hz (nK) T@100Hz (nK)
0.02 0.20 5 · 1021 3 13
0.05 0.49 4 · 108 6 32
0.1 0.97 16000 13 64
0.15 1.42 480 19 96
0.2 1.85 77 26 129
0.4 3.3 3.4 51 257
1 5.8 0.17 129 643

N = 105 γ = 4

Table 2.1.: Entropy per particle, fugacity and temperature for a cloud of non-
interacting fermions in an harmonic potential. e measurements in this thesis were
performed at reduced temperatures between 0.1 and 0.15.

phase-space picture [32]: Every state is labeled by a position r⃗ and a momentum p⃗
which represents the center of the according wave packet. e energy of these states
is given by the classical hamiltonian: H(r⃗, p⃗) = m

2
ω2
⊥(x

2 + y2 + γ2z2) + p2

2m
and the

atom distribution in phase-space is given by:

w(r⃗, p⃗) =
1

h3
1

1
z
e

H(r⃗,p⃗)
kBT + 1

(2.21)

e real-space density distribution can be calculated by integrating this phase-space
distribution over all momenta [33]:

n(r⃗) =
1

(2π)3

∫
w(r⃗, p⃗)d3p⃗

= −(kBmT )
3/2

(2π)3/2 ~3
Li3/2

[
−z exp

(
−mω2

⊥
2kBT

(x2 + y2 + γ2z2)

)] (2.22)

In the same way the momentum distribution can be obtained by integrating over
real space:

Π(p) = − 1

(2π)3/2~3γ

(
kBT

mω2
⊥

)3/2

Li3/2

[
−z exp

(
− p2

2mkBT

)]
(2.23)

An important observation is that in the omas-Fermi approximation for fermions
the momentum distribution is always isotropic. As a consequence, the aspect ratio
of a fermionic cloud that is suddenly released from a trap, always approaches one
for sufficiently long time of flights.

2.2.3. Time-of-flight imaging

e standard way of measuring the temperature of a cloud of ultracold atoms uses
so-called time-of-flight imaging, where all trapping potentials are suddenly switched
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2.2. Fermions

off, and the cloud expands freely for some time before it is imaged. For long time-
of-flights, the initial cloud size can be neglected and, in the case of non-interacting
atoms, the observed density distribution is given by the initial momentum distribu-
tion and the effects of gravity:

x(t) = p · t/m+ 1/2gt2 (2.24)

For non-degenerate clouds the resulting distribution is a 2D Gaussian, whose width
σ =

√
⟨p2⟩t2/m2 is a measure of temperature.

An important feature of the harmonic potential is the existence of scaling relations
that lead to analytic expressions for the time evolution of an ideal gas released from
an harmonic trap [34]:

n(x, y, z, t) =
n( x√

1+ω2
xt

2
, . . . , 0)

(1 + ω2
r t

2)
√

1 + ω2
zt

2
(2.25)

Here ωi denote the trap frequencies before the sudden switch-off. ese scaling
relations are valid for all times-of-flight. For ideal gases the free expansion therefore
amounts to a rescaling of the spatial coordinates without altering the shape of the
distribution. is shape invariance under free expansion is particular for harmonic
potentials and does not hold for a general potential.
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Figure 2.4.: Absorption image of a degenerate non-interacting Fermi cloud taken
along the vertical direction aer 10ms time-of-flight.

Since every axis is rescaled separately, the aspect ratio of a fermionic cloud will
smoothly approach one, in accordancewith themomentumdistribution in theomas-
Fermi approximation (cf. eqn. 2.23).
In the case of non-interacting bosons (or a single fermionic atom) at zero tempera-
ture, however, only the single-particle ground state is occupied and the momentum
distribution is anisotropic.

21
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Extracting temperatures: Fitting procedure

e above derived equations for the density distribution aer time of flight are used
to extract the reduced temperature T/TF and thereby the entropy per particle from
standard absorption images (cf. e.g. app. 1 in [35]). ese images record the inte-
grated or column density

nc(x, y) =

∫
n(x, y, z)dz (2.26)

where the integration is taken along the imaging direction.

Combining the omas-Fermi real space density distribution (eqn. 2.22) with the
above scaling relations (eqn. 2.25) and integrating along the z direction yields:

nc(x, y) = A · Li2
(
−z · e

− x2

2σ2
x
− y2

2σ2
y

)
A =

−1

2
√
1 + (ω⊥t)2

√
1 + (γω⊥t)2

m(kBT )
2

π~3ω⊥

σi =
kBT

mω2
i

(
1 + (ωit)

2
)

(2.27)

is distribution depends on the entropy per particle in two ways: First temperature
appears directly in the prefactor and the σi, and it enters in form of the fugacity in the
argument of the dilogarithm. Extracting the entropy per particle from the prefactor
and the σi requires knowledge of the trap frequencies and a precise calibration of the
column density in terms of the recorded optical density, which is typically limited
by uncertainties due to saturation and polarization effects and optical pumping.
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Figure 2.5.: e dilogarithm Li2(x) for different ranges of x: For small values the
dilogarithm is approximately linear and the fit function of eqn. 2.28 reduces to a Gaus-
sian. For large values the dilogarithm is highly nonlinear and reflects the deviations
between Fermi-Dirac and classical statistics.

It is therefore common practice to use the fugacity z as a free fit parameter and then
calculate the reduce temperature using (eqn. 2.19):

nfit
c (x, y) = A ·

Li2

(
−z · e

− (x−xc)
2

2σ2
x

− (y−yc)
2

2σ2
y

)
Li2(−z)

+ b (2.28)
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2.2. Fermions

In this fit function the peak density A, the center position xc, yc, the background b
and the widths σx, σy of the Gaussian are free parameters. One can think of this
distribution as a classical Gaussian that becomes deformed by the dilogarithm: In
the classical limit T ≫ TF the fugacity is small against one, the dilogarithm is linear
and the distribution stays Gaussian. e nonlinearity of the dilogarithm, which can
be seen in Fig. 2.5, becomes increasingly important for larger fugacities and leads to
growing deviations from a Gaussian.

With this fit function the temperature gets extracted from the shape of the distribu-
tion, i.e. the deviations from a Gaussian distribution. is procedure requires only
that the trap is harmonic and that the imaging process is linear in the atomic density.
No additional calibrations are needed.

Figure 2.6.:Azimuthally averaged cloud together with several fits: Blue dots represent
the measured data and the green line indicates the best Gaussian fit. e black and red
lines show the result of the two Fermi-Dirac fiing procedures described in the text.
e fits were performed on the full two-dimensional distribution before the azimuthal
averaging.

We fit the full two-dimensional distribution using a Levenberg-Marquardt algorithm
[36, 37] implemented in MATLAB. In order to speed up the calculation of the dilog-
arithm we use a look-up table with 106 entries on a logarithmic grid together with a
linear interpolation scheme. In addition, all fit functions are wrien in such a way
that they can handle all points of an image in a single call, thereby massively re-
ducing the overhead associated with function calls and loops. In order to ensure
reproducible starting conditions for the Fermi-Dirac fit we perform a pre-fit using a
Gaussian distribution and initialize the Fermi-Dirac fit with z = 10−5 and the results
of the pre-fit.

As the fugacity diverges for small reduced temperatures (cf. fig. 2.3) we alternatively
use the logarithm of the fugacity as free fit parameter. Due to the different conver-
gence characteristics of the two methods their results start to differ at our coldest
clouds.
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Figure 2.7.: Examples of Fermi-Dirac fits: e same image as in Fig. 2.6 was fied for
various fixed fugacities to illustrate the effect of temperature on the distribution. For
low reduced temperatures the only significant difference occurs in the wings of the
cloud (inset). e area with significant differences strongly decreases with tempera-
ture.

e results of these fiing procedures can be seen in figure 2.6. As expected for
a degenerate Fermi gas, the distribution cannot be fied with a Gaussian anymore
(green line). e black and red lines show the results of the two varieties of Fermi-
Dirac fits, which are barely discernible, although the resulting temperatures differ
by almost a factor of two.

Figure 2.7 shows the result of Fermi-Dirac fits of the same image using various fixed
fugacities. For low reduced temperatures significant differences can be seen only at
the wings of the distribution around 55px away from the center of the image. e
thickness of this ”significance shell” shrinks rapidly with decreasing temperature.
is effectively limits this fiingmethod to temperaturesT/TF & 0.1 due to imaging
noise (cf. inset in fig. 2.6). In addition anharmonic terms in the potential need to be
taken into account at these cold temperatures.
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2.3. Ensembles

2.3. Ensembles

In statical mechanics three standard types of ensembles are used:

• A microcanonical ensemble is completely isolated from its environment and is
characterized by a fixed particle number N and fixed total energy E.

• e canonical ensemble is in thermal contact with a heat reservoir, which im-
poses its temperature T on the ensemble. It can be described by the still fixed
particle number N and the temperature.

• e grand canonical ensemble is coupled to a particle reservoir with chemical
potential µ in addition to the heat reservoir. It is characterized by temperature
T and chemical potential µ.

In the experiment the situation differs from all three ensembles:
Aer evaporative cooling the system is in principle isolated from the environment
and is characterized by an atom number N and a fixed total entropy S.
In contrast to a microcanonical ensemble, however, several parameters (trap fre-
quency, laice depth, interaction strength) are controlled externally via classical pa-
rameters. Ideally, all changes of these parameters are performed slowly enough to
be adiabatic and therefore conserve the entropy (isentropic processes). ereby the
total energy E and the temperature T of the system will change but atom number
and entropy per particle remain constant.

In the experiment, however, the chosen timescales are compromises between the
adiabaticity requirements and technical heating (cf. sec. 7).

25





3. Interactions

e role of interactions in the field of degenerate quantum gases can hardly be over-
estimated, as any experimental study of ultracold atomswould be impossiblewithout
interactions between the atoms: Elastic collisions are one of the key requirements
for evaporative cooling, since they redistribute momentum and energy between the
atoms and are therefore a necessary condition for thermalization.
But far beyond this ”technical necessity” for interactions, they are also the key to
the richness of ultracold atoms: Interactions induce correlations between the atoms
and are thereby responsible for all of the intriguing many-body physics beyond the
”bare” Bose-Einstein or Fermi-Dirac statistics. ese range from Bogoliubov excita-
tions in weakly interacting Bose gases [38] to strongly interacting phases like Mo
insulators (cf. sec. 5.5.2) or antiferromagnetically ordered phases (cf. sec. 5.5.2).

One of the most important features of ultracold atoms is the possibility to freely
tune the effective interactions by use of Feshbach resonances (cf. sec. 3.3). In many
cases, including fermionc 40K in a laice, it is possible to tune the interaction from
strongly aractive over non-interacting to strongly repulsive by simply changing
the magnetic field. is allows systematic tests of theoretical models as a function
of interaction strength. In addition, Feshbach resonances can be used in order to
produce weakly bound molecules, so-called Feshbach molecules (cf. sec. 3.3.2).

In the context of simulating condensed maer physics in optical laices, the most
important characteristic of the interactions between the atoms is their short-range
character, which allows an easy theoretical description in terms of a contact poten-
tial (cf. sec. 3.2.3) and is well suited to implement important model hamiltonians like
the Hubbard model (cf. sec. 5).

3.1. Types of interactions

e dominant character of the interaction between two atoms depends crucially on
their distance. Restricting the discussion in a first step to ground state alkali atoms
and neglecting all relativistic effects like spin-orbit coupling and hyperfine interac-
tions, two regimes remain [39]:

• At long distances, where the electron clouds of the atoms are well separated,
the interactions are dominated by the dipole-dipole interaction between mu-
tually induced dipole moments, the van der Waals interaction, which scales

27



3. Interactions

as VvdW = −C6/R
6 in the binding case. Here R denotes the internuclear

separation. e range of this potential is given by the van der Waals length

lvdW =
1

2

(
mC6

~2

)1/4

(3.1)

In the case of 40K the van derWaals coefficient in the electronic ground state is
(in spectroscopic units) C6 = 0.189× 108cm−1Å6 [40] and the corresponding
van der Waals length is lvdw = 65 a0 = 3.4 nm.

• At short distances the electron clouds start to overlap and give rise to a quan-
tum mechanical exchange interaction that depends crucially on the relative
spin of the outer electrons and splits the electronic ground state potential into
two curves, the singlet potential X1Σg and the triplet potential a3Σu.

In the Born-Oppenheimer approximation [39] these interactions give rise to the non-
relativistic Born-Oppenheimer potentials, which are shown in figure 3.1 for the elec-
tronic ground state and the first excited state (s+p) of two potassium atoms. If one
atom is in the excited state, the dominating long-range term is a resonant dipole-
dipole interaction of the form Vdd = ±C3/R

3, which can intuitively be under-
stood by considering each atom as being in a superposition of ground and excited
state [41]. e range of this dipole-dipole interaction greatly exceeds that of the
van der Waals interaction. In addition, the effects of the much weaker spin-orbit
interactions can be incorporated into these potentials and become dominant at large
distances, where the van der Waals potential is small. For negative total energies
these potentials give rise to many bound molecular states, for positive energies the
eigenstates are the scaering solutions.

e above picture of independent potentials reaches is limits, however, if one tries
to include hyperfine interactions, as these couple different Born-Oppenheimer po-
tentials and especially can couple singlet and triplet states and thereby effectively
render any collision problem into a multichannel problem. e potentials essentially
form a spin-dependent potential matrix, whose elements describe the (position de-
pendent) interactions between the different spin states [42]. Following [41], one
should think of the collision process as a kind of interferometer:

”A wave starts inward from long range. When the wave reaches the
distance where the hyperfine and exchange interactions become com-
parable in size, the wave splits. One part of the wave samples the sin-
glet potential and one part samples the triplet potential. e two parts
bounce off the inner wall of their respective potentials and recombine on
the way back out. Finally, the interference between the incoming wave
and the outgoing wave establishes the nodal paern of the scaering
wave function.”

In the following the collisional channels will be labeled by the pair of atomic hy-
perfine states with which they coincide at large internuclear distances and small
magnetic fields.
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Figure 3.1.: Molecular potentials (Born-Oppenheimer potentials) between two 40K
atoms. Ploed are the singlet (blue) and triplet (red) potential in the electronic ground
state (X1Σg , a3Σu) and those four excited potentials that can be reached by an (elec-
tric) dipole transition. e ground state potentials are taken from reference [40] and
the excited state calculations were performed by O. Dulieu (priv. comm.).

In principle, also three-body interactions would need to be considered, but due to
the low density of ultracold atoms and the short range of the dominant interac-
tions, three body interactions canmostly be ignored. e only exception are inelastic
three-body collisions, where a single collision can lead to the loss of three particles
(cf. sec. 3.3.1).

3.2. Scattering theory

e multitude of interactions described in the previous section gives rise to a vari-
ety of elastic and inelastic collision processes, whose probabilities can be calculated
using scaering theory [43].

Elastic collisions, which do not alter the relative kinetic energy, can nonetheless
redistribute momentum between the atoms and are responsible for thermalization
within the ensemble.
In addition, they change themany-bodywavefunction and thereby give rise to the in-
teraction energy (cf. below) and create correlations between the particles. In inelas-
tic collisions on the other hand, internal energy gets converted into kinetic energy.
Due to the large hyperfine and molecular energies involved, an inelastic collision
will almost always result in a particle loss, as the typical increase in kinetic energy
is much larger than the trap depth.
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3.2.1. Elastic scattering

Without interactions the relative wave function of two (distinguishable) particles in
the internal states |a⟩ and |b⟩ can bewrien asΨ0(R⃗) = eik⃗·R⃗ |a, b⟩, where k⃗ denotes
their relative momentum andR the interatomic distance. Elastic scaering can now
change this relative momentum and at large interparticle distances R, beyond the
range of the interactions, the effects of the interactions can be incorporated into the
wavefunction via

ΨIA(R⃗) ∝
(
eik⃗·R⃗ +

eik
′R

R
f(E, k̂, k̂′)

)
|a, b⟩ (3.2)

where f(E, k̂, k̂′) denotes the scaering amplitude. Its square (|f |2) describes the
probability that a pair of atoms with collision energy E is scaered from relative
momentum k⃗ to relative momentum k⃗′ [43]. Energy conservation requires k = k′

and the overall effect of the collision can be summarized by the collisional cross section
σ(E), which is defined as the integral of |f |2 over all relative momenta for a given
collisional energy.

e problem can be simplified tremendously by using spherical coordinates and ex-
panding both the incoming plane wave and the scaered wave into spherical har-
monics. In this expansion the scaering amplitude becomes a tensor flml′m′ and
describes the probability to scaer a pair of particles from the relative angular mo-
mentum state lm to l′m′. In most cases one can neglect any anisotropies like e.g.
dipole-dipole interactions [44] and angular momentum is conserved. As a con-
sequence, the scaering problem decouples into independent angular momentum
channels: l = l′, m = m′. e type of the collision is labeled accordingly as an
s-wave collision for l = 0, p-wave for l = 1 and so on.

3.2.2. Ultracold collisions

In the case of ultracold atoms, additional simplifications arise due to the fact that at
ultracold temperatures the thermal de Broglie wavelength of the relative motion is
much larger than the range of the interaction. Together with the small density of
ultracold gases, which ensures that also themean distance between the atoms is large
compared to the range of the interaction, this results in an inability to resolve details
of the potential during the collision and leads to quantum threshold effects [43]:

In the limit of small momenta k, the scaering amplitude for s-wave collisions fs(k)
can be expressed by the following expansion [45]:

fs(k) = − 1

a−1
s + ik + k2 reff/2 + · · ·

(3.3)

Here as is the (s-wave) scaering length and reff denotes the effective range of the
interaction, which typically is on the order of the van der Waals length. A positive
scaering length corresponds to a repulsive effective interaction while a negative
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3.3. Feshbach resonance

value denotes an aractive effective interaction.
In most cases, except close to Feshbach resonances (cf. below), the scaering am-
plitude is dominated by the scaering length, the cross section σs becomes energy
independent and is given for distinguishable particles by:

σs = 4πa2s (3.4)

In the case of two indistinguishable fermions, s-wave collisions are impossible since
the Pauli principle prohibits the the occurrence of a relative s-wave state. As a con-
sequence, a spin mixture of two hyperfine states is needed in order to have s-wave
collisions in a Fermi gas.

But even in a spin mixture the fermionic nature shows a strong influence on the in-
teractions in a many-body system: While the effective cross section is given by the
value for distinguishable particles (cf. eq. 3.4) in the classical regime (T/TF & 1) it
decreases in the quantum degenerate regime and ultimately vanishes at zero tem-
perature. is effect is referred to as Pauli blocking and is caused by the decreasing
number of available scaering states [46].

In the case of non-vanishing angular momentum l ≥ 1 the effective potential in-
cludes a repulsive centrifugal potential: ~2l(l + 1)/(2µR2) (µ: reduced mass). is
centrifugal barrier gives rise to classical turning points, which, for low enough mo-
menta, lie outside of the interaction potential and thereby suppress these collisions.
For p-wave interactions, the cross section scales as σp(E) ∝ E2 for low energies and
p-wave collisions can be safely ignored at typical trap temperatures [47] away from
p-wave Feshbach resonances (cf. next section).

3.2.3. Contact interaction

In most relevant cases the details of the potential are unimportant since both the av-
erage distance between the particles and their relative de Broglie wavelength greatly
exceed the range of the interactions. As a consequence, easier model potentials can
be used instead of the exact potentials, as long as they reproduce the correct scat-
tering lengths. In the case of a smooth relative wavefunction without a singularity
the complete interaction potential can be replaced by a point like contact interaction
with a delta-function potential

VCI(x⃗− x⃗′) =
4π~2as
2µ

δ3(x⃗− x⃗′) (3.5)

which reproduces the correct physics at low momenta [45].

3.3. Feshbach resonance

While a fully repulsive potential necessarily creates a positive scaering length, a
typical interatomic potential can produce any real scaering length (−∞≤a≤∞),
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3. Interactions

since it only depends on the phase a pair of atoms acquires during the traverse of the
interatomic potentials. Even more, for a given form of the potential the scaering
length is an oscillatory function of the potential depth, as it specifically depends on
the position of the last bound state in the potential [45] and more and more bound
states appear for increasing potential depths.
On the one hand, this oscillatory behavior renders a theoretical ab-initio prediction
of the scaering length nearly impossible, but on the other hand it opens the pos-
sibility to gain full control over the scaering length using only minuscule changes
in the interactions.

e key to manipulating the scaering length stems from the coupling between dif-
ferent atomic states with the same spin projectionM = m1 +m2 but different total
magnetic moments [48]. e relative offset energies between the different states in
this multichannel scaering problem can be tuned via the magnetic field, as their
different magnetic moments result in relative Zeeman shis. Typically, the atoms
enter the collision in the lowest of the involved energy channels, which is oen re-
ferred to as the open channel. e second involved channel at higher energy is called
the closed channel, since the atoms do not possess enough energy to separate in this
potential.

e relative Zeeman shis between these two channels can be used to tune the en-
ergy of the last bound state of the multichannel potential into resonance with the
kinetic energy of the atoms in the incoming hyperfine state. is results in a Fesh-
bach resonance where the scaering amplitude is greatly enhanced by the resonant
coupling to the molecular state. e scaering length in fact diverges at the reso-
nance [49–53] and is approximated by [54]:

a(B) = abg

(
1− w

B −B0

)
(3.6)

Here abg denotes the background scaering length away from the resonance, w
the width of the resonance and B0 the resonance position. e resulting scaer-
ing length is ploed in figure 3.2 for a Feshbach resonance between the two lowest
hyperfine states ( |F,mF ⟩) |9/2,−9/2⟩, |9/2,−7/2⟩ in fermionic 40K. is reso-
nance was used to control the interaction in all experiments in this thesis: While the
scaering length is positive for magnetic fields below the Feshbach resonance (the
so-called BEC side), the interaction is aractive (a < 0) directly above the resonance
(the so-called BCS side, cf. below). For larger fields the scaering length shows a zero
crossing before it rises to the positive background scaering length.

In ultracold gases, Feshbach resonanceswere first observed in 1998 by various groups
[55–58] using bosonic atoms. In fermionic 40K the first Feshbach resonances were
predicted using a numerical coupled channels calculation in 2000 [59] followed by a
first observation in 2002 by the group of D. Jin at JILA [60]1. First experiments using
a Feshbach resonance in 40K in optical laices were performed in the group of T.
Esslinger at the ETHZ [62, 63].

1e same group also characterized most known Feshbach resonances in 40K, their results are most
coherently presented in the PhD esis of Cindy Regal [61].
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Figure 3.2.: Scaering length between the two lowest hyperfine states
( |9/2,−9/2⟩, |9/2,−7/2⟩) in fermionic 40K. Background scaering length
abg and resonance position B0 are taken from the JILA parametrization [61], the
resonance width w was taken from our measurement of the free expansion in a
laice (cf. sec. 10.3.5).

3.3.1. Losses at Feshbach resonances

In addition to the change in scaering length a Feshbach resonance also strongly
enhances inelastic collisions. ese magnetic field dependent losses are oen used
to search for Feshbach resonances. We extended this search to several new combi-
nations of hyperfine states in 40K, the results are summarized in table 3.1.

Figures 3.3 and 3.4 show two examples of these loss features obtained with a mixture
of |−7/2⟩ and |−3/2⟩ atoms and a mixture of |−9/2⟩ and |−5/2⟩ (F = 9/2), re-
spectively: In the first mixture a single s-wave resonance at 260G can be seen, while
the second mixture shows in total three resonances. e sharp feature at 224G cor-
responds to the well-known s-wave resonance between the |−9/2⟩ and |−5/2⟩
atoms while the feature at 245G is also present in a pure |−5/2⟩ sample and can
therefore be ascribed to a p-wave resonance in the |−5/2⟩ channel.
In addition to these two sharp loss features there is a very broad loss feature spanning
from 200G to 240G. We aribute this loss process to a p-wave resonance between
the |−9/2⟩ and |−5/2⟩ channels. In this resonance the open channel is coupled
to the same channels that are also involved in the well known p-wave |−7/2⟩ res-
onance at 199G, which has the same total spin projection M = −7. e presence
of this loss channel prevents us from using the, otherwise very convenient, s-wave
resonance between the |−9/2⟩ and |−5/2⟩ atoms at 225G. All observed features in
this mixture agree well with a coupled channels calculation by Paul Julienne (private
communication).
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3. Interactions

open channel ( |mF ⟩) l B0 (G) w (G) prev. observation
|−9/2⟩+ |−7/2⟩ s 202.1 7.0± 0.2 [60, 64–68]
|−9/2⟩+ |−5/2⟩ s 224.2 9.7± 0.6 [62, 69, 70]
|−7/2⟩+ |−5/2⟩ s ∼ 174 ∼ 7 [61]
|−7/2⟩+ |−3/2⟩ s 168.5± 0.4 - -
|−7/2⟩+ |−3/2⟩ s 260.3± 0.6 - -

|−7/2⟩ p ∼ 198.8 - [63, 64, 71]
|−5/2⟩ p 245.3± 0.5 - -

|−9/2⟩+ |−5/2⟩ p 215± 5 - -

Table 3.1.: List of Feshbach resonances observed in our experiment for various hy-
perfine combinations in the F = 9/2 hyperfine ground state. Values printed in bold
type are new or improved measurements, all other values are taken from [61]. e
assignment of s-wave (p-wave) character to the new resonances was done according
to independent numerical coupled channels calculations performed by P. Julienne and
J. Bohn (private communication).

3.3.2. Feshbach molecules

Directly below the Feshbach resonance, where the scaering length is large and
positive, the binding energy of the last multichannel bound state is very small and
is approximately given by:

Eb =
~2

ma2
(3.7)

ese Feshbach molecules are exceptionally large halo molecules: eir size (mean
internuclear distance) is given by the scaering length ⟨r⟩ = a/2 ≈ 70 nm (B =
201.6G) and can greatly exceed the van derWaals length (lvdw = 65 a0 = 3.4 nm) [72].
In figure 3.5 the molecular wavefunction is ploed for different magnetic fields:
While the form of the wavefunction hardly changes in the closed channel, the large
outer maximum in the open channel extends to larger and larger distances upon
approaching the Feshbach resonance.

ese molecular states can experimentally be occupied in several ways [48]. e
most widely used way to convert pairs of atoms into molecules is a Landau-Zener
type sweep of the magnetic field over the resonance, starting on the BCS side at
a < 0 and ramping to the BEC side with a > 0 [73–75]. e efficiency of these
Feshbach sweeps for a gas of atoms can be calculated using a simple phase-space
model and can serve in the adiabatic case, where the sweep rate is sufficiently slow,
as a thermometer for the weakly interacting gas in the dipole trap [76]. In order to
prove that the atoms are really transfered into molecules, and not just lost from the
trap, an inverse ramp is used to dissociate the molecules. e observed increase in
atom number during this dissociation sweep, which is shown exemplarily in figure
3.6, is a direct proof for the creation of the molecules.

Especially in 6Li ultracold molecules can be created by performing evaporative cool-
ing at magnetic fields on the BEC side of the Feshbach resonance. During the fi-
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Figure 3.3.: Atom number of a |−7/2⟩ plus |−3/2⟩ spin mixture aer a hold time at
various magnetic fields. One sees one loss feature at 260G that can be aributed to a
s-wave Feshbach resonance in this channel.

nal evaporative cooling the atoms are converted into molecules through three-body
collisions [77]. Another method, which in addition allows to measure the binding
energy of the molecules, is the use of radio-frequency pulses to convert atoms into
molecules or vice versa [66, 73].

In the case of bosonic atoms, the lifetime of the resulting molecules is very short
[55, 78–80], as the molecules are created in the highest rovibrationally excited state
and can decay to deeper bound states by inelastic collisions with a third atom.
For fermionic atoms on the other hand, this process is highly suppressed by the
Pauli principle, as it requires a close approach of two identical fermions [81, 82].
Especially in the case of 6Li, this leads to extraordinarily long lifetimes on the order of
seconds [74]. In 40K the achievable lifetimes depend on the magnetic field and are on
the order of 1−100ms [83] with the longest lifetimes being observed directly below
the Feshbach resonance. In a sufficiently deep laice with one molecule per laice
sites these collisions are suppressed and even for bosonic molecules long lifetimes
up to 700ms could be observed [84].

Feshbach molecules can be used as a starting point for the creation of ultracold
ground-state molecules [11, 12], which in the case of heteronuclear molecules offer
the possibility to study many-body physics in the presence of huge dipolar interac-
tions [11].

We have used Feshbach sweeps in a deep laice in order to convert pairs of atoms
on the same laice site into molecules and thereby detect double occupied laice
sites (cf. sec. 6.6). During the optimization of the blue-detuned laice we studied the
effects of blue-detuned light onto Feshbach molecules. e resulting photodissocia-
tion spectra are presented in the appendix (cf. sec. A) and can be used to gain direct
information about the molecular wavefunction.
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Figure 3.4.: Atom number of a |−9/2⟩ plus |−5/2⟩ spin mixture aer a hold time at
various magnetic fields. e colors correspond to independent experimental runs.

3.3.3. BEC-BCS crossover

e influence of Feshbach resonances on the many-body states of a fermionic spin
mixture has received a lot of aention in recent years and is now commonly referred
to as the BEC to BCS crossover [45]: e presence of interactions can have dramatic
consequences on the many-body state of fermionic spin mixtures. Without interac-
tions, there would be no coupling between the different spin components and the
many-body ground state would consist of two independent Fermi seas. e probably
most dramatic consequence of interactions is the possibility for fermions to become
bound together into bosonic pairs, which then can Bose condense into a superfluid
state.

Above the Feshbach resonance, where the two-body interaction is weakly arac-
tive (a < 0), the many-body ground state is given by the well known BCS super-
fluid [24, 85, 86]. It was shown in 1957 by Bardeen, Cooper, and Schrieffer that
an arbitrarily weak aractive interaction between the spin components leads to the
Cooper instability: Even though there exists no two particle bound state with nega-
tive energy, the energy of a bound spin singlet state of two fermions with opposite
momenta nonetheless is less than two times the Fermi energy. At sufficiently low
temperatures all particles are bound into these Cooper pairs which condense and
form a BCS superfluid. e critical temperature for superfluidity in the BCS regime
is given by [87]:

TC,BCS/TF = 0.28e−π/(2kF |a|) (3.8)

Here kF denotes the wavevector at the Fermi momentum. e critical temperature
is exponentially small for weak interactions, but rises to experimentally reachable
temperatures close to the Feshbach resonance, where 1/|kFa| is on the order of one.
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Figure 3.5.: Wavefunctions of a Feshbach molecule in the open channel/closed chan-
nel basis for the 40K Feshbach resonance at 202.1G. e open channels corresponds to
a pair of atoms in the |F=9/2,mF=−9/2⟩+ |9/2,−7/2⟩ hyperfine states while the
closed channel corresponds to |9/2,−9/2⟩+ |7/2,−7/2⟩. Note the logarithmic scal-
ing of the x-axis. e results were obtained by P. Julienne using a numerical coupled-
channels calculation.

Far below the Feshbach resonance on the other hand, there exists a weakly bound
molecular state and the two particle interaction is repulsive (a > 0). At low tem-
peratures the fermionic atoms form bosonic diatomic Feshbach molecules which can
Bose condense, forming a superfluid BEC of molecules. In this limit the formation
of pairs (molecules) and the condensation of these pairs happen at two distinct tem-
peratures: e pair formation happens at a temperature T ∗

T ∗
BEC ≈ 1

3

|Eb|

W
((

π
6

) 1
3 |Eb|

2EF

) (3.9)

that scales with the binding energy of the molecule Eb
2 [45].

Away from the resonance the size of the molecule becomes small compared to the
intermolecular distance. Here the interaction is weak and the temperature of the
superfluid transition approaches that of a non-interacting Bose gas with twice the
mass and half of the density:

TC,BEC = 0.22EF (3.10)

It turned out that these two limits are connected by a smooth crossover, the so-called
BEC-BCS crossover, which is by now well studied in the dipole trap. Experiments
have observed superfluidity of the gas on the BEC side of the resonance and in the
strongly interacting crossover regime where 1/|kFa| < 1 [65, 88–95]. Upon varying
the interactions, the system evolves smoothly from the BCS regime, where the pair

2Here W (x) denotes the Lambert W-function, which is the solution to x = WeW and can be
expanded into W (x) ≈ log(x)− log(log(x)) for x > 3.
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Figure 3.6.: Atom number of a |−9/2⟩ plus |−7/2⟩ spin mixture aer a Feshbach
ramp to 201G followed by a dissociation ramp to a variable final value. e detected
molecule fraction of 83 ± 5% is consistent with an initial temperature of T/TF ≤
0.15 [76].

size (the size of a Cooper pair) is large compared to the interatomic distance and its
binding energy is small, through the crossover regime, where the system is strongly
interacting and the pair size is comparable to the interparticle spacing, all the way
to the BEC limit, where the pair size (the size of the molecule) is smaller than the
interatomic distance and its binding energy is large compared to the Fermi energy.

But not only the superfluid phase is affected by the BEC-BCS crossover: e nor-
mal state varies from an essentially non-interacting Fermi gas of atoms to a weakly
interacting Bose gas in the so-called pseudogap regime. In this regime, where the
fermions are paired but the pairs are not condensed, bosonic excitations are more
important than fermionic excitations and e.g. the spin susceptibility is strongly re-
duced.
Especially in the crossover region, where both bosonic and fermionic excitations are
relevant, this can lead to intriguing effects, e.g. the formation of polarons in strongly
imbalanced mixtures [96, 97].

3.4. Light assisted collisions

An additional type of collisions that becomes important in the presence of strong
light fields, i.e. laser fields, is termed light assisted collisions or radiative collisions.
ese are collisions between a ground state and an exited state atom, or, more pre-
cisely, the term describes a collision between two atoms where one atom absorbs a
photon during the collision.
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3.4. Light assisted collisions

Due to the long-range dipole-dipole interaction between a ground states and an ex-
cited state atom (cf. sec. 3.1), the excitation results in a strong force between the
atoms:
In the blue detuned case the potential is repulsive and accelerates the atoms away
from each other until the excited atom returns to its electronic ground state via the
spontaneous emission of a photon. Due to the high gain in kinetic energy, which
is on the order of a fraction of the photon detuning, the atoms will typically be lost
from the trap.
In the red-detuned case on the other hand, the atoms will be excited into a bound
molecular state in the excited potentials, whose subsequent decay can also lead to a
loss of the atoms.
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Figure 3.7.: Cartoon picture of a light assisted collision. ick red and blue lines
denote the molecular triplet and singlet potentials from fig. 3.1. in lines denote
the resp. wavefunctions in those potentials calculated by P. Julienne using a coupled
channels calculation. in green lines denote some bound molecular states in the
excited potentials (sketch). During a light assisted collision a pair of atoms is excited
at the Condon point RC into the repulsive excited potential, where the atoms are
accelerated and gain a fraction of the photon detuning as kinetic energy before they
return to the ground state via a spontaneous emission.

An intuitive model for the rate of these collisions can be gained from the Franck-
Condon principle, that is the approximation that both the position and the kinetic
energy of the nuclei remain constant during the absorption of the photon. Roughly
speaking, the timescale of the optical transition is fast compared to the typical timescales
for the motion of the nuclei, and the photon momentum is small compared to the
momenta of the nuclei.
As a consequence, for every photon energy the transition happens dominantly at the
Condon points Rc, where the photon energy ~ωL matches the difference between the
potential energies:

~ωL = Ees(Rc)− Egs(Rc) (3.11)
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Here Egs and Ees denote Born-Oppenheimer potentials (cf. sec. 3.1) between two
ground state atoms (Egs) or one ground state and one excited atom (Ees). e relevant
potentials in the case of two 40K atoms are depicted in figure 3.7 together with a
typical ground-state wavefunction.

In a quantum mechanical calculation the transition probability between two molec-
ular states (either bound or unbound) is proportional to the Franck-Condon factor,
which describes the overlap between the nuclear wave functions:

FCF (gs, es) =

∣∣∣∣∫ Ψ∗
es(R)Ψgs(R)dR

∣∣∣∣2 (3.12)

Here Ψgs, Ψes denotes the molecular wavefunctions in the ground and excited state
and R is the internuclear distance. Typically, the strongest contribution to this in-
tegral stems from the vicinity of the Condon points [39].

In the red-detuned case, i.e. light which is red-detuned with respect to the atomic
transition, the resonant absorption of a photon is only possible if the detuning of the
light matches the binding energy of a molecular state in the excited potentials, as
depicted in figure 3.7.
is is in stark contrast to the blue-detuned case, where unbound states in the scat-
tering continuum are excited and a resonant absorption is possible for all blue detun-
ings. is has important consequences for the use of red-/blue-detuned light (cf. sec.
4.1) in the trapping and manipulation of ultracold atoms: While in the red-detuned
case light assisted collisions can be efficiently suppressed by detuning the laser from
the molecular resonances [84], they are always present for blue-detuned light.

In the case of not too large detunings (∆ . 200 cm−1), the Condon point lies at
rather large internuclear distances Rc & 20 a0, where the derivative of the ground
state van der Waals potential can be neglected in comparison to the derivative of the
excited state dipole-dipole potential. In this case the reflection approximation shows
that the Franck-Condon factor of the exciting transition in the blue-detuned case is
simply proportional to the amplitude of the ground-state wave function at the Con-
don point [98, 99].
is was experimentally demonstrated by Vuletić et.al.: By use of a Feshbach reso-
nance, they could suppress the collision rate for a given detuning by a factor of 15 by
tuning the scaering length, and thereby the position of a node of the wavefunction,
to the Condon point [100].

In the regime of larger detunings, like the ones used in this thesis for the creation of
blue-detuned laices (cf. sec. 4.3.1), the Condon points are located at smaller inter-
nuclear distances. ere the form of the ground state wave function is fixed by the
molecular potential and cannot be changed by the magnetic field.
As is shown in the appendix (cf. app. A), it is however still possible to significantly
suppress light assisted collisions by use of a suitable laice wavelength. Nonethe-
less, for the used parameters light assisted collisions give rise to an additional loss
channel in the laice, which selectively affects only doubly occupied laice sites. In
the non-interacting case the mean distance between two atoms occupying the same
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laice site is on the order of the harmonic oscillator lengths (55− 70 nm), which is
already considerably smaller than the mean interparticle distance in a typical dipole
trap. In the interacting case, however, the mean distance strongly depends on the
sign and strength of the interactions. is results in a strong interaction dependence
of the lifetime of doubly occupied sites (cf. sec. 9.6), which, at least for aractive in-
teractions, creates a considerable heating rate.

Light assisted collisions are also responsible for the fast pair losses during fluores-
cence imaging in optical laices, which have been observed recently [18, 19]. In addi-
tion, these collisions constituted a major limitation for the atom numbers achievable
in a Magneto-Optical-Trap (MOT) operated at low background pressure. ey could
eventually be circumvented by the use of dark spot MOTs, where most of the trapped
atoms are pumped into a dark state of the cooling transition [101, 102].
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4. Optical potentials: Dipole trap and
lattice

4.1. Dipole potential

e interaction between atoms and light is probably the single most important tool
for the creation, manipulation, and detection of ultracold atoms. e character of
the interaction between a two-level atom and a monochromatic light field consists
of two parts, namely the absorptive and the dispersive interaction. eir relative
importance depends on the detuning δ = ω − ω0 between the frequency ω of the
light field and the transition frequency of the atom ω0 [103].
is chapter mainly deals with the resulting dipole potentials in the case of large
detunings and describes the red-detuned dipole trap and the blue-detuned optical
laice used in the experiments.

Absorptive interaction e absorptive part of the interaction describes the scat-
tering of photons from the incident light field by the atoms. It consists of the absorp-
tion of an incident photon followed by a spontaneous emission into another mode. If
a two-level atom is continuously illuminated with a not too far detuned monochro-
matic light field (δ ≫ Γ, δ ≪ ω0) of intensity I , the average scaering rate is given
by [104]:

Γsc =
3πc2

2~ω3
0

(
Γ

δ

)2

I (4.1)

Here Γ denotes the natural linewidth of the emied fluorescence light and serves as
a measure for the strength of an atomic transition.

is scaering process is used in the initial laser-cooling of the atoms (cf. sec. 7) and
in absorption imaging [35]. When trapping ultracold atoms, however, photon scat-
tering needs to be avoided: Scaering a photon transfers an average momentum of
p =

√
2~k (k = 2π/λ) onto an atom that was initially at rest, which would lead to a

severe heating of the cloud. Furthermore, the emission of the photon would localize
the atom [105] and thereby severely alter any delocalized states.
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Dispersive interaction e dispersive part of the interaction can be modeled by
a Raman process where an atom can (virtually) absorb a photon from the monochro-
matic light field and re-emit it into the light field by stimulated emission. is creates
a phase shi of the light, which is used in phase contrast imaging (cf. sec. 6.5) and
induces energy shis (light shis) of the atomic levels [103]:
For a two-level atom and not too large detunings δ ≪ ω0 the energy shi of the
ground state creates the so-called dipole potential:

Udip =
3πc2

2~ω3
0

Γ

δ
I (4.2)

While the scaering rate decreases as I/δ2 with detuning, the dipole potential scales
as I/δ. For a given dipole potential the scaering rate therefore scales as 1/δ and in
general high intensities and large detunings are used in order to achieve the needed
potential strength at the lowest possible scaering rate.

By using inhomogeneous intensity distributions I(r) it is possible to create a wide
variety of conservative potentials U(r) in order to trap and manipulate atoms. e
sign of the potential is given by the detuning of the light field:

• If the frequency of the light is smaller that the transition frequency of the atom
(δ < 0), the potential is called red detuned and negative. e potential minima
coincide with the intensity maxima and ground state atoms experience a force
towards high intensities, e.g. the center of a Gaussian beam.

• In the blue-detuned case (δ > 0) the potential is positive and the atoms feel a
force towards the intensity minima.

Figure 4.1.: Dipole potential due to a red (blue) -detuned Gaussian beam. e red
detuned beam aracts the atoms while the blue-detuned beam repels them.

In the experiment a red-detuned dipole trap at λ = 1030 nm is used together with a
blue-detuned optical laice at λ = 738 nm.
Compared to equation 4.2, at these wavelengths two additional effects need to be
taken into account: e laice wavelength is close enough to the D lines of Potas-
sium (4s → 4p) and Rubidium (5s → 5p) such that the spin-orbit coupling in the
excited state and the resulting fine structure spliing into theD1 andD2 lines needs
to be considered. e detuning of the dipole trap wavelength on the other hand is
so large that an additional term proportional to 1/(ω + ω0) becomes relevant. e
resulting potential for linear polarized light is given by [104]:

Udip(r) =
πc2

2

Γ

ω3
0

(
1

ω − ωD1

+
1

ω + ωD1

+
2

ω − ωD2

+
2

ω + ωD2

)
(4.3)
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4.2. Crossed dipole trap

where Γ and ω0 are averaged over the D1 and D2 lines.

One major advantage of optical potentials compared to magnetic potentials is their
possibility to affect all spin states in the same way, provided that the detunings are
large and linear polarizations are used. is opens the possibility to realize spin mix-
tures without differential potentials between the components and to access magnetic
Feshbach resonances at arbitrary magnetic fields. In addition the strength of the po-
tentials, and thereby the trap depth, can easily be controlled by varying the light
intensity.

4.2. Crossed dipole trap

e dipole trap used in the experiment consists of two beams1 traveling in the hor-
izontal plane and intersecting each other at right angles (cf. fig. 4.2). e elliptical
foci (wx

0,hor = 140µm, wx
0,vert = 30µm and wy

0,hor = 170µm, wy
0,vert = 70µm) overlap

and create an oblate (“pancake-shaped”) trap. In order to prevent unwanted inter-
ference effects, the two beams have orthogonal polarizations and a frequency offset
of 160MHz .

z

x

450 µmy
x

a b

Figure 4.2.: le: e two dipole trap beams are focused to overlapping elliptical foci.
right: e intensity distribution in one of the foci, the stripe paern in the upper right
corner is an artifact of interferences in the imaging path.

e resulting trapping potential is shown in figure 4.3 and consists of the sum of the
two dipole potentials and gravity. As one can see in the le image, the trap is in
general not isotropic in the horizontal directions. In most relevant cases, however,
the atoms are confined to the central part of the trap, which can bewell approximated
by a harmonic potential.

In the vertical direction the influence of gravity shis the potential minimum away
from the beam center (“gravitational sag”). is shi becomes larger for weaker
dipole traps until the so-called trap boom is reached. Below the trap boom the
dipole potential cannot hold the atoms against gravity anymore.

1e light for the dipole trap is created by a diode-pumped single-frequency Yb:YAG disc laser
(Versadisc by ELS, now Sahajanand) that creates 18W output power at λ = 1030 nm.
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Figure 4.3.: Crossed dipole trap potential. le: Equipotential lines of the crossed
dipole trap in the horizontal plane. In the center, the trap is isotropic in the horizontal
plane. right: Trapping potentials along the vertical direction, consisting of the sum of
dipole potentials of various strengths and gravity. Due to the influence of gravity the
minimum position is shied away from the center of the dipole beams (dashed line).

In the case of a mixture of Rubidium and Potassium atoms this shi is especially
important: e detuning of the dipole trap is large compared to the difference be-
tween the resonance frequencies, and the linewidths of the transitions are almost
equal. is leads to approximately equal dipole potentials for both species while
their masses differ by more than a factor of two. e resulting difference in the
gravitational sags could diminish the spatial overlap between the species and thereby
hinder sympathetic cooling, which relies on collisions between 40K and 87Rb atoms
(cf. sec. 7).

e chosen oblate trap geometry minimizes gravitational sags due to the tight ver-
tical confinement and thereby allows an efficient sympathetic cooling.

4.2.1. Trap frequencies

In most relevant cases, the atoms occupy only the central part of the trapping po-
tential, which can be approximated by a harmonic potential. e strength of the
trap can then be parameterized by three trap frequencies ωi (cf. sec. 2.2.2), which
are measured in the experiment by exciting dipole oscillations of the cloud in the
trap (”sloshing”) and recording the center of mass momentum using time of flight
imaging. e oscillations are excited by vertically displacing the trap center using a
sudden change of the dipole trap power. is sudden change of the gravitational sag
induces a vertical center of mass motion. e excitation will spread over all three
axes and induce harmonic center of mass oscillations at the trap frequency, as can
be seen in figure 4.4.

In figure 4.5 the measured trap frequencies are shown for various dipole trap powers.
e horizontal trap frequencies are equal ωx = ωy = ω⊥ and scale, as expected, like
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4.3. Optical laice

Figure 4.4.: Measured and fied trap frequencies: e le (right) image shows an ex-
ample of the horizontal (vertical) center of mass motion. e amplitude of the slower
(ω = 2π× 50Hz) horizontal oscillation increases while the faster (ω = 2π× 210Hz)
vertical motion is damped.

the square root of the power (ω2
⊥ ∝ p) in the dipole beams. In the vertical direction

gravity alters the power-law scaling of the trap frequencies: e trap boom, that
is the power where the vertical trap frequency vanishes, occurs when the steepest
gradient of the dipole potential just compensates gravity. Away from this point,
the aspect ratio γ of the trap, which is given by the ratio between the vertical and
horizontal trap frequencies γ = ωz/ω⊥ approaches γ = 4.

Figure 4.5.: Measured trap frequencies in the dipole trap as a function of total dipole
trap power together with power-law fits. Blue and green points denote the measured
trap frequencies in the two horizontal directions, the vertical frequencies are shown
in black. emeasured exponents of approx. 1/2 coincide with the expected behavior
of ω2 ∝ Imax ∝ p.

4.3. Optical lattice

e term optical laice describes a spatially periodic dipole potential, which acts on
ultracold atoms in a similar way like the coulomb potential of the ions in a crystalline
solid acts on the electrons: e periodic potential modifies the dispersion relation
of the atoms, leading to a band structure in which the allowed energy bands are
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4. Optical potentials: Dipole trap and laice

separated by band gaps. In the case of non-interacting fermionic atoms (or electrons
in a solid) this band structure can generate metallic states that are similar to the
Fermi sea in a pure dipole trap but in addition the existence of the band gaps can
give rise to band-insulating many-body states.
In the limit of a very deep optical laice every laice site can be seen as an individual
microtrap in which e.g. very clear and precise experiments concerning few-body
physics and molecular dynamics are possible [10, 106, 107].

In this chapter a brief description of the experimental implementation of the laice
and the used calibration methods is given together with a description of the single-
particle eigenstates in homogeneous and inhomogeneous laices.

A review of the physics of optical laices and previous experiments can be found
in [7, 108].

4.3.1. Implementation

Spatially periodic intensity distributions can be created by a number of methods
ranging from imaging a periodic intensity mask to exploiting interference effects
between several beams. e method used in these experiments consists of retrore-
flecting linear polarized monochromatic laser beams back onto themselves:
e superposition of two running plane waves with wave vectors k⃗ (k = 2π/λ) and
−k⃗ creates a standing wave with a periodic intensity distribution I(r⃗) ∝ cos(k⃗r⃗)2,
which gives rise to a 1D laice potential with a periodicity of d = λ/2:

V (z) = V0 · cos(kz)2 = V0
1

2
(1 + cos(2kz)) (4.4)

e laice depth V0 is typically given in units of the recoil energy Er, which denotes
the change in kinetic energy associated with the emission or absorption of a photon
with momentum ~k:

Er =
~2k2

2m
(4.5)

By superimposing more laser beams a variety of higher dimensional periodic po-
tentials can be created. In the experiment three mutually orthogonal beam pairs are
used to create a simple cubic (sc) periodic potential. Cross interferences between the
different beam pairs are minimized by choosingmutually orthogonal linear polariza-
tions and are additionally averaged out due to frequency offsets between them [109].

Blue vs. red-detuned lattice

e form of the potential in equation 4.4 is identical for both blue- and red-detuned
laser light, the only difference is the sign of V0:
In a red-detuned laice the potential minima correspond to the intensity maxima,
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4.3. Optical laice

while in a blue-detuned laice the atoms are located at the nodes of the light field.
is difference becomes important in the case of Gaussian beams instead of plane
waves, since in this case the intensity does not only depend on the longitudinal (∥k⃗)
but also the transversal (⊥ k⃗) position within the beams.

In a red-detuned laice the atoms are located around the intensitymaxima and there-
fore experience a Gaussian shaped dipole potential in the transverse direction, which
has the same width w0 and amplitude V0 as the laice potential (cf. fig. 4.6).
For a typical beam waist of w0 = 150µm and laice depth of 8Er at a red-detuned
wavelength of λ = 830 nm this creates an additional confining potential with a trap
frequency of

ωc =
√
2

√
4V0
mw2

0

= 2π × 72Hz. (4.6)

Here the factor
√
2 is due to the fact that, in any given direction, the transversal

confinements by two laice axes need to be added.

In the case of a blue-detuned laice, as used in this thesis, the atoms are located near
the intensity minima, where the (repulsive) transverse dipole potential vanishes in
the ideal case. It is proportional only to the intensity difference between the incom-
ing and retro-reflected laice beam.
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Figure 4.6.: Transverse potential in a red (le, λ = 830 nm) and blue (right, λ =
738 nm) detuned 1D optical laice with a central laice depth of V0 = 10Er and a
beamwaist ofw0 = 150µm. e black lines denote transverse cuts through the dipole
potential at a longitudinal potential minimum (red→ I = Imax, blue→ I = Imin).
e indicated small dipole potential in the blue case is due to an assumed imperfect
reflection of the laice beam. e blue line indicates the spatial dependence of the
on-site energy, and the red line shows the sum of the two terms.

Since in both cases the laice depth depends on the transverse position within the
beams, another contribution to the effective transverse potential arises from the on-
site ground state energy, i.e. the energy of the single-particle ground state of a single
laice site in 1D. In the harmonic approximation, which becomes exact for deep lat-
tices, the on-site ground state energy is given by 1

2
~ωon-site where the trap frequency
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4. Optical potentials: Dipole trap and laice

due to the laice potential is given by

ωon-site =

√
2V0k

2

m
(4.7)

and depends via ωon-site(x) ∝
√
V0(x) also on the transversal position. is depen-

dence leads to a Gaussian shaped anticonfining potential with a width of
√
2w0 in

both cases. In the harmonic approximation this yields

ωac =

√
2h

mw0λ

(
V0
Er

) 1
4

, (4.8)

which results in anticonfining trap frequencies of ωac = 2π × 30Hz for the above
red-detuned case and ωac = 2π×34Hz for a blue-detuned laice at λ = 738 nm and
otherwise equal parameters.

For a red-detuned laice the quadratic sum of both contributions amounts to an
additional confinement of ωc = 2π × 65Hz, which fundamentally limits the usable
dynamic range of the setup, since no weaker confinements can be reached in the
laice without the use of additional potentials.

For a blue-detuned laice, as used in this experiments2, both contributions are anti-
confining and can easily be compensated by the red-detuned dipole trap. is results
in a huge range of possible confinements that is independent of the laice depth
and is a key ingredient for the experiments presented in this thesis. Especially it
allows experiments with high atom numbers (and therefore strong signals) in the
interesting regime of deep laices but low to medium filling factors. e expansion
experiments presented in chapter 10 specifically exploit the possibility to realize a
homogeneous laice without any additional potential (cf. fig. 10.6).

e anticonfining trap frequencies can be measured (Fig. 4.7) for every pair of laice
beams individually by adapting the method used for the pure dipole trap. To this
means, the 1D laice is ramped up to the desired laice depth and the two trap
frequencies in the transversal directions are measured as before. e anticonfining
trap frequency is then given by ωac =

√
ω2 − ω2

0 , where ω is the measured trap
frequency with laice and ω0 is the trap frequency measured without the laice.

4.3.2. Single-particle eigenstates

In this chapter a description of the single-particle eigenstates in homogeneous and
inhomogeneous laices is given.
Together with the Fermi Dirac statistics, the resulting band structure is already suf-
ficient to describe many aspects of electrons in solids, e.g. the existence of metallic
and band-insulating states. In the experiment, these non-interacting systems can be

2e laice light is produced by a single-frequency Ti:Sa solid state laser (Coherent MBR) which
produces up to 3W power at λ = 738 nm and is optically pumped by an 18W, λ = 532 nm diode
pumped ND:YVO4 solid state laser (Coherent, Verdi V18).
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4.3. Optical laice

Figure 4.7.: Measured anticonfining trap frequencies of the vertical laice as a func-
tion of laice depth together with a power-law fit. e fied exponent of 0.28± 0.03

agrees well with the expected V
1/4
0 behaviour.

simulated using a single component Fermi gas or by using the zero crossing of the
scaering length near a Feshbach resonance.
e introduced notations will also be used in the following chapter, where interact-
ing fermions will be discussed.

Bloch waves

In order to describe the dynamics of a single particle in a strictly periodic potential
like a homogeneous laice, the Bloch theorem is a good starting point. It states that
all single particle eigenstates of a periodic potential can be wrien as periodically
modulated plane waves, that is as products of a plane wave eiq⃗·r⃗ times a periodic
function unq⃗ (r⃗) with laice periodicity:

ϕn
q⃗ (r⃗) = eiq⃗·r⃗unq⃗ (r⃗) (4.9)

ese solutions are the well-known Bloch waves and are delocalized eigenstates for
non-interacting particles in a homogeneous laice [110, 111]. e index n is called
the band index and denotes the fact that for every quasi-momentum q⃗ there exist
infinitely many orthogonal solutions with different eigenenergies.
In the following, I will mostly discuss the lowest band in one-dimension, therefore
the index n and the vector notation will be dropped.

Due to the 2kz periodicity of the laice potential in equation 4.4, the function uq(z)
in equation 4.9 can be wrien as a discrete Fourier sum

uq(z) =
∑
l

cl,q e
il2kz l ∈ Z, (4.10)
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4. Optical potentials: Dipole trap and laice

which leads to the following expression for the Bloch waves:

ϕq(z) =
∑
l

cl,q e
i(q+l2k)z (4.11)

A Bloch wave can therefore also be regarded as a superposition of plane waves with
wavevectors q + l · 2k, where l · 2k are the reciprocal laice vectors [29].

is description, which was derived solely from the periodicity of the potential, can
also be explained using the photon picture of the light field: As mentioned above
(cf. sec. 4.1), the homogeneous dipole potential of a plane wave arises due to Raman
processes where an atom absorbs a photon from the plane wave followed by a stim-
ulated emission back into the plane wave.
A standing wave consists of two counterpropagating plane waves and gives rise to
an additional type of Raman process: An atom can absorb a photon from one beam
with wavevector k⃗ and re-emit it into the second beam with wavevector −k⃗. ese
Raman processes change the momentum of the atom by 2~k and thereby couple the
momenta p and p± 2~k. is naturally leads to eigenstates in the form of equation
4.11, i.e. Bloch waves.
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Figure 4.8.: Composition of Bloch waves: for three different quasi-momenta ~q the
weight of the corresponding plane waves is shown as a function of laice depth. e
red lines denote the real space momentum p = ~q, blue (black) denote p = ~(q+2k),
(p = ~(q+4k)) and the dashed lines denote p = ~(q− 2k), (p = ~(q− 4k)). At zero
laice depth the Bloch waves are identical to plane waves with momentum p = ~q.

By inserting expression 4.11 into the Schrödinger equation with a potential given by
equation 4.4 and numerically diagonalizing the resulting matrix (cf. e.g. [109]), the
coefficients cl,q and the eigenenergies can be calculated3.

Figure 4.8 shows the composition of various Bloch waves in the lowest band as a
function of the laice depth. At zero laice depth the Bloch wave coincides with a
plane wave of momentum p = ~q and for increasing laice depth the admixtures of
higher momenta p = ~(q ± 2k) become important.

3By introducing a cutoff in the index l, a finite size matrix can be obtained. In order to calculate the
two lowest bands at the relevant laice depths, already |l| < 5 is sufficient.
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4.3. Optical laice

Band structure In figure 4.9 the four lowest eigenenergies are shown as a function
of the quasi-momentum (or laice momentum) ~q for various laice depths. In the
case of zero laice depth (upper le) the dispersion relation is given by the free space
parabola, but is periodic in q with a periodicity of 2k. is periodicity in quasi-
momentum is a consequence of the discrete translational symmetry of the laice.
Intuitively speaking, the argument q⃗ · r⃗ of the plane wave in equation 4.9 measures
the phase difference between adjacent laice sites and is 2π-periodic.
It is therefore sufficient to restrict the values of q to the the first Brillouin zone, i.e.
the interval ~q ∈]−~k, ~k].
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Figure 4.9.: Energies of 1D Bloch waves for various laice depths. e lowest band is
shown in red, the first excited band in blue and higher bands in black.

With increasing laice depth the dispersion relations differ more and more from
the free-space parabola and form distinct bands separated by band gaps, which are
energy intervals without any eigenstates. As shown in figure 4.10 there is a band
gap separating the lowest from the first excited band for every finite laice depth in
1D.
In the separable case of simple cubic laices all 3D eigenstates can be wrien as
products of three 1D eigenstates (cf. eqn. 2.16). If the laice depth is equal along the
three directions, the first excited band is threefold degenerate and consist of products
of two lowest band 1D eigenstates and one eigenstate of the first excited 1D band.
In 3D, the band gap only opens for laice depths larger than V0 ≈ 2.2Er.
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4. Optical potentials: Dipole trap and laice

All experiments in this thesis focus on the physics within the lowest band and we
consequently try to avoid any populations of higher bands. For experiments on
the dynamics in higher bands see e.g. [112]. While the band gap is large at deep
laices, where the final measurements were performed, care has to be taken during
the initial ramp of the laice. In order to avoid atoms populating the first excited
band, the Fermi energy in the dipole trap prior to the loading should be smaller than
the recoil energy EF < Er.
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Figure 4.10.: Band structure as a function of laice depth. Shown are the lowest and
the first excited band in a 1D (le) and 3D (right) homogeneous laice. e vertical
dashed line in the 3D case denotes a laice depth of V0 ≈ 2.2Er , where the band gap
opens.

e width of the allowed energy bands, the band width, decreases approximately
exponentially for increasing laice depths and vanishes for infinitely deep laices.
In this limit the harmonic approximation of equation 4.7 becomes exact and the en-
ergies in the nth Bloch band are given by (n− 1/2)~ωon-site.

is strong decrease of the kinetic energy for deeper laices promotes the relative
strength of the interactions and creates the possibility to reach the strongly corre-
lated regime without the use of Feshbach resonances. On the down side, however, it
also renders the system more susceptible to all sorts of imperfections in the poten-
tials.

Lattice depth calibration Spectroscopicmeasurements of the transition frequen-
cies from the lowest band to the first excited band have been used to measure the
laice depths. To this means, transitions were induced in a 1D laice by modulat-
ing the frequency of the laice light using an Acousto Optical Modulator. At the
position of the atoms, this frequency modulation translates into an oscillation of
the potential minima position. e number of atoms remaining in the lowest band
was measured as a function of the modulation frequency using a band-mapping
technique (cf. sec. 6.4). As can be seen in figure 4.11, there exists a rather sharp
upper edge of the resulting minimum, which corresponds to the maximal energy
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difference between Bloch-waves in the lowest band and the first excited band, i.e.
hfedge = E1(q = 0) − E0(q = 0). By comparing this frequency to the result of a
numerical band structure calculation (cf. fig. 4.10), the laice depth can be extracted
with an uncertainty of less than 5%. Due to the weak confinement used in this mea-
surement the large cloud samples a rather large fraction of the laice beam. is
leads to an asymmetric broadening of the excitation towards smaller frequencies
due to the inhomogeneous laice depth.
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Figure 4.11.: Calibrating the laice depth by laice modulation spectroscopy. e
picture shows the remaining atom number in the lowest band as a function of the
modulation frequency. e measured position of the upper flank (98± 1 kHz) results
in a laice depth calibration of V0 = 34.8± 0.7Er

Wannier states

Even though the Bloch waves are the correct eigenstates for non-interacting parti-
cles in a homogeneous laice, it is convenient to introduce the localized Wannier
functions as a second basis to describe atoms in a laice. ey are localized around
individual laice sites zi and form an orthonormal basis that is well suited to incor-
porate the effects of inhomogeneous potentials or short-range interactions. Wannier
functions can be defined as Fourier transforms of the Bloch waves

w(z − zi) =
1√
N

∑
q

eiqziϕq(z), (4.12)

where N is the number of laice sites4.

Using the Wannier basis, the hamiltonian of a single particle in a possibly inhomo-
geneous laice can be wrien as:

Hij =

{
ϵi i = j
Jij i ̸= j

(4.13)

4In a finite 1D system of N sites there exist only N discrete allowed quasi-momenta in the first
Brillouin zone, in an infinite system the sum is replaced by an integral.
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Figure 4.12.:Wannier functions for different laice depths. e Wannier functions w
are ploed in blue together with the resulting density |w|2 in red. e laice potential
is schematically shown in gray.

Here ϵi denotes the on-site energy of an atom localized on site i, which can be divided
into two parts:

ϵi = Eon-site
i +

∫
w∗(z − zi)Vext(z)w(z − zi)dV (4.14)

e first part Eon-site
i is the on-site energy due to the laice potential and the second

part is the potential energy associated with an additional potential Vext(r⃗).
e Jij denote the tunneling matrix elements between sites i and j and are given by

Jij =

∫
w(z − zi)

(
− ~2

2m

∂2

∂z2
+ Vlat(z)

)
w(z − zj) dz (4.15)

In a homogeneous laice all ϵi are equal and can be set to zero, thereby choosing
the energy of a localized atom as reference point. Furthermore, the tunneling matrix
elements (or tunneling rates) Jij only depend on the distance between the sites (Jij =
J|i−j|).
e additional potential Vext(r⃗) is assumed to be only slowly varying such that it
does not alter the tunneling matrix elements Jij . Although there exist approximate
formulas for the tunneling element at deep laices [7], they need to be calculated
numerically in the relevant regime.

Tight-binding regime

All experiments are performed in the tight-binding regimewhere (in the lowest band)
only tunneling between neighboring sites j = i± 1 needs to be taken into account
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(J ≡ J1). In this regime, which is reached for laice depths larger than approxi-
mately 5Er, the bandwidth of the lowest band becomes 4J and the 1D dispersion
relation is given by [7]

E(q) = −2J cos (qd) , (4.16)

where d = π/k denotes the laice constant. Figure 4.13 shows how the dispersion
relation evolves from a free space parabola into a cosine function in the tight-binding
regime.

e term tight-binding regime refers to the fact that in solid-state physics the same
cosine-shaped band can be derived by the Linear Combination of Atomic Orbitals
(LCAO) method using s-orbitals: In this method one starts from the tightly bound
limit where every electron occupies an atomic orbital of a single atom and incor-
porates the potentials due to all other atoms in the solid using perturbation theory
[29].
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Figure 4.13.: Normalized dispersion relation in the lowest band for various laice
depths. e shape of the dispersion relation changes from a free space parabola at zero
laice depth (blue) into a cosine band in the tight-binding regime, which starts around
a laice depth of 5Er (red). e black line corresponds to 100 Er and additional gray
lines to 1,3, and 10 Er laice depths.

Kinetic energy and group velocity

An important difference between free space and the lowest band of a laice model
stems from the fact that kinetic energies are bounded in the laice case: While all
positive kinetic energies are possible in free space, only kinetic energies within the
bandwidth l4J can occur in a tight-binding band. Here l denotes the number of di-
mensions. Furthermore, the possible kinetic energies are distributed symmetrically
around the energy of a localized atom (E = 0), i.e. they range from −6J to 6J in
the three-dimensional case. is reflects the fact that, as a consequence of Heisen-
berg’s uncertainty relation, a localized atom can actually lower its kinetic energy by
delocalizing over several laice sites.
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4. Optical potentials: Dipole trap and laice

egroup velocity of an atom in a Blochwavewith quasi-momentum ~q is in general
given by

vgr(q) =
1

~
∂E(q)

∂q
, (4.17)

where E(q) denotes the dispersion relation. In the tight-binding case of E(q) =
−2J cos(qd) (cf. eqn. 4.16) this becomes

vgr(q) =
2Jd

~
sin(qd). (4.18)

If we define the tunneling time τ to be

τ ≡ ~
J
, (4.19)

the spread of possible group velocities is given by −2d/τ ≤ vgr ≤ 2d/τ .

is group velocity distribution, which is ploed in figure 4.14, shows several im-
portant features: In sharp contrast to free space, where a higher kinetic energy
always results in higher velocities, in a tight-binding band the maximum group
velocities appear at zero energy in the center of the band, i.e. for quasi-momenta
~q = ±~k

2
= ±~ π

2d
. For both higher and lower kinetic energies the group velocities

decrease symmetrically and vanish at the upper and lower band edges, i.e. at ~q = 0
and ~q = ±~k = ±~π/d

Eq vq

q 

vmax

 π/d

-vmax

 −π/d

Figure 4.14.: Single particle energyEq and corresponding group velocity vq in a tight-
binding band.

is at first glance counterintuitive behavior can be understood by considering the
relative phase factor eiqd between neighboring laice sites (cf. eqn. 4.9): In the case of
a quasi-momentum at the edge of the Brillouin zone (~q± ~π/d), the relative phase
between neighboring laice sites is±π. Due to the 2π-periodicity of the phase, these
two cases correspond to the same state. As a consequence the velocity in the two
cases must be equal, i.e. v = −v, and therefore vanish.
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4.3. Optical laice

Combined potential

In the experiment the atoms are subjected to the combined potential of a three-
dimensional blue-detuned optical laice in the tight-binding regime and a red-detuned
dipole trap. In this situation the periodicity of the laice potential is broken and the
Bloch waves are no eigenstates anymore [113–115].

For typical dimensions of the atomic cloud in the laice (R < 60 d, cf. sec. 6.5),
the variation in laice depth over the cloud is less than 5%, which results in an
approximately constant tunneling rate J . Using the Wannier basis, the resulting 1D
hamiltonian (eqn. 4.13) for the lowest band can be wrien in second quantization:

Ĥ = −J
∑
⟨i,j⟩

ĉ†i ĉj +
∑
i

ϵin̂i (4.20)

e operators ĉ†i , ĉi denote the creation and annihilation operators of a particle on
site i and obey fermionic anticommutator relations, i.e. (ĉ†i )

2 = 0. is ensures that
two identical fermions cannot occupy the same laice site, as required by the Pauli
exclusion principle (cf. sec. 2). e number operator at site i is denoted by n̂i = ĉ†i ĉi.
Neglecting the on-site energy of laice sites in the trap center, but retaining the
anticonfining effects (cf. eqn. 4.8), the total confining potential is assumed to be har-
monic:

ϵi = Vti
2 (4.21)

e trap center is at i = 0 and the prefactor Vt is given by the trapping frequency ω
and the distance d between adjacent laice sites:

Vt =
1

2
mω2d2 (4.22)

For finite system sizes this hamiltonian can be diagonalized numerically5, examples
of the resulting eigenstates are shown in figure 4.15. Typically, the eigenstates are
extended over several laice sites and can be characterized by a density distribution
both in real space and in quasi-momentum space (cf. fig. 4.16).

e lowest lying eigenstates look like harmonic oscillator eigenstates: In this regime
the relevant quasi-momenta are small and the cosine-shaped dispersion relation can
be approximated by a parabola. e system can then be described by a particle in
a purely harmonic trap but with an effective mass that is determined by the laice
potential [108].
For higher-lying eigenstates the involved kinetic energies and quasi-momenta in-
crease, the differences between a parabola and the cosine-shaped dispersion relation
become important, and the eigenstates deviate from harmonic oscillator states.
When the total eigenenergy equals the bandwidth 4J , themaximumquasi-momentum

5In order to avoid degeneracies, the trap center can be offset by a fraction of a laice site.
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4. Optical potentials: Dipole trap and laice
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Figure 4.15.: Selected eigenstates of the 1D combined potential. e gray shaded area
depicts the spatially varying lowest energy band (see text).

~q = ~k is reached in the trap center and the maerwave will be Bragg reflected. As
a consequence, states with an eigenenergy above 4J cannot extend to the trap center
but are localized to either the right or the le wing of the harmonic potential.

If the external potential is varying slowly enough, its effects can be visualized as
a curved Bloch band: At every point in space r⃗ one can think of a 4J (or 12J in
3D) thick energy band which is offset from zero by the potential Vext(r⃗). In a semi-
classical picture a particle in this potential would be represented by a wave packet
localized at a certain position andwith a certain energy (a certain quasi-momentum).
e wave packet would travel until it reaches either the lower or the upper edge of
the band. Reaching the lower edge results in a reflection due to the potential, as in
a harmonic oscillator, reaching the upper edge results in a Bragg reflection.

is is a general feature of the combination of a periodic potential with a slowly
varying potential. In the easiest case of a linear potential (Wannier-Stark system)
this leads to Bloch oscillations [116], where non-interacting particles perform peri-
odic oscillations without a net travel [27, 28, 117, 118]. e amplitude A of these
oscillations is given by the ratio between half the bandwidth and the potential gra-
dient F :

A =
2J

F
(4.23)

e typical extension of an eigenstate in the combined potential of laice and dipole
trap can intuitively be understood in two ways: In the limit of very weak laices,
the eigenstates can be well approximated by harmonic oscillator eigenstates and the
effect of the laice can be approximated using the effective mass of the particles.
A deeper laice leads to a higher effective mass and thereby to a smaller harmonic
oscillator length. In the case of weak harmonic traps this results in a pronounced
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4.3. Optical laice

shrinking of the cloud during the loading into the laice.
Starting in the limit of an infinitely deep laice, where the tunneling vanishes (J →
0), the particles are localized to individual laice sites. For decreasing laice depths
tunneling increases and will leads to a larger extension of the eigenstates.
ese two limits are smoothly connected and, for a constant external potential, a
deeper laice will generally lead to more localized eigenstates, as expected by the
above picture of a curved Bloch band.

en
er

gy

quasi-momentum space   

4J

1st Brillouin zone  

real space  

Figure 4.16.: 1D eigenstates of a combined potential of laice and harmonic confine-
ment. e vertical axis denotes the eigenenergies and every line depicts the color
coded density distribution of a single eigenstate in real space and quasi-momentum
space. For eigenenergies higher than the bandwidth 4J , the eigenstate is localized in
either the le or the right wing of the harmonic potential. e alternation between
the wings leads to the characteristic stripe paern.
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5. Fermi-Hubbard model

Due to the sheer number of electrons and ion cores in a solid, all interacting via
long-range Coulomb interactions, the problem of calculating the many-body state
of the electrons in a solid is in general not solvable without massive approximations.
An important theme in the study of electrons in solids is therefore the search for the
simplest models that nonetheless describe the physics of interest.
Historically, these models did fall into two distinct classes:

• In order to capture the transport behavior of many metallic and band-insulat-
ing solids, the electrons are described by delocalized states. In these models,
the easiest one being the free electron model by A. Sommerfield [111], cor-
relations between the electrons are typically neglected [29]. e many-body
state can be described by using only Fermi-Dirac statistics (cf. sec. 2.2.1) and
the Bloch wave picture described in the previous chapter.
In these models a solid is metallic (conducting) if there is a partially filled band,
and insulating if all bands are either completely filled or empty.

• A second independent class of models used localized electrons in order to ex-
plain magnetic phenomena. Examples of these ordering phenomena of local-
ized spins include the paramagnetic to (anti) ferromagnetic transition in the
Heisenberg model [119] or other spin models.

Already in the late 1930s it became clear, however, that the band models used to
predict whether a material should be metallic or insulating were not sufficient, as
many transition-metal oxides like NiOwere found to be insulators or bad conductors,
although they possess partially filled d-electron bands [120, 121].
ese insulators are referred to as Mo Insulators [122–124] and it was believed that
their insulating behavior was caused by interactions between the electrons. A new
model, which incorporated possible correlations between the electrons, was needed
in order to describe the interaction-driven transition from ametal to Mo-insulating
states.

One of the most important models used to study these effects is the so-called Hub-
bard model, which was first proposed by J. Hubbard in 1963 [125]. Historically, the
Hubbard model was the first theoretical model to successfully describe the Mo
transition [126] by correlation effects in a band picture (cf. below). It has served
as a prototype model for strongly-correlated states in solid state physics, and many
other models like the t-J model [127, 128] can be derived from it in certain regimes.

During the last 20 years, the 2D Hubbard model received renewed interest in solid
state physics due to the appearance of high-temperature superconductivity in the
copper-oxide layers of cuprates [129, 130] and it still is an object of active debate to
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Figure 5.1.: In a single band tight-binding model like the Hubbard model the effects
of the actual potential and interactions are approximated by a few matrix elements
J, U .

which degree this phenomenon can be explained in terms of a Hubbard like model
[131, 132].

Despite its conceptual simplicity, already the homogeneous Hubbard model is not
analytically solvable in two- and three-dimensional situations apart from special
cases.

In the context of atomic physics, a Hubbard type model was first introduced for
bosonic atoms in optical laices [5, 6] and proved very successful in describing most
experiments up-to-date [7].

e following sections will first present the Fermi-Hubbard hamiltonian together
with some simple results on certain aspects of the homogeneous Hubbard model
in order to build an intuition of what to expect. is is followed by an overview
over some of the expected and observed phases of the Hubbard model and a brief
summary of common numerical techniques. e last section of this chapter presents
a generalization to trapped systems together with some remarks on dynamics and
the applicability of the Hubbard model for cold atoms.

5.1. Fermi-Hubbard hamiltonian

In the Hubbard model the hamiltonian is wrien using the Wannier basis (4.12) and
is given by the sum of three terms. In addition to the tunneling term and the offset
potential, that were already present in the single-particle hamiltonian of equation
4.20, the many-body Hubbard model also contains an interaction term:

Tunneling In the Hubbard model tunneling is mostly restricted to nearest neigh-
bor tunneling (cf. sec. 4.3.2), whose strength is given by the hopping amplitude J (cf.
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5.1. Fermi-Hubbard hamiltonian

eqn. 4.15), which leads to the following kinetic energy operator in second quantiza-
tion:

T = −J
∑
⟨i,j⟩,σ

ĉ†i,σ ĉj,σ (5.1)

For electrons, the index σ ∈ {↓, ↑} denotes the spin for a given quantization axes,
while for fermionic atoms it denotes two different hyperfine states. In the case of
higher dimensions the indices i, j are vectors (3D: i = (ix, iy, iz)) and the brackets
⟨i, j⟩ denote that the sum only runs over nearest neighbors. In the solid state liter-
ature the hopping (or tunneling) amplitude is typically denoted by t, while J would
refer to the exchange coupling (cf. sec. 5.5.2), which is denoted by Jex in this thesis.

Interaction One of the main approximations in the Hubbard model is the fact that
interactions are treated as local interactions between particles on the same laice
site. is is an excellent approximation in the case of ultracold atoms, where the
typical range of the interactions is given by the van der Waals length (cf. sec. 3.1),
and is much shorter than the laice constant.
Assuming only s-wave interactions and using the pseudopotential approximation
(cf. sec. 3.2.3), the effective interaction between two atoms in the same Wannier
state becomes:

U =
4π~2a
m

∫
|w(r⃗)|4dV (5.2)

With this effective interaction the total interaction energyW becomes:

W = U
∑
i

n̂i,↓n̂i,↑ (5.3)

Here n̂i,σ = ĉ†i,σ ĉi,σ measures the number of particles with spin σ on site i.

Although electrons in a solid interact primarily via the long-range Coulomb interac-
tion, the high density of additional electrons in other orbitals leads to strong shield-
ing effects that can reduce the interaction between electrons in a given band to ef-
fective short-range interactions [124].

External potential e third term in the Hubbard model is the offset energy due
to additional slowly varying potentials (cf. sec. 4.21):

V =
∑
i

ϵi (n̂i,↓ + n̂i,↑) (5.4)

By combining these terms the Fermi-Hubbard hamiltonian can be wrien as:

Ĥ = −J
∑
⟨i,j⟩,σ

ĉ†i,σ ĉj,σ + U
∑
i

n̂i,↓n̂i,↑ +
∑
i

ϵi (n̂i,↓ + n̂i,↑) , (5.5)

is model can easily be extended to include several bands as well as additional hop-
ping and interaction terms, e.g. next-to-nearest neighbor hopping, nearest-neighbor
interactions or density-induced hoppings [124].
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5. Fermi-Hubbard model

5.2. Conductivity and compressibility

While the electronic conductivity is one of the standard observables in solid state
physics it turned out that the compressibility is easier to measure in a trapped cold
atom setup (cf. sec. 6.5, 8.3,[133]). e question whether a given solid is conduct-
ing or insulating is directly related to the question whether the many-body state of
the electrons in this material is compressible or not. is electronic compressibility
[134–136] can be defined as the derivative of the electron density with respect to the
chemical potential κe = ∂n

∂µ
.

At zero temperature both the electronic compressibility and the conductance are
proportional to the single-particle density of states at the Fermi energy:
If there are unoccupied states available at the Fermi energy, an infinitesimal increase
of the chemical potential will increase the electron density, i.e. the state is compress-
ible. Applying a voltage across the solid excites electrons into these states which
results in a current, i.e. the material in question is a conductor.
If there is an energy gap between the highest occupied and the lowest empty sin-
gle particle states, any change in chemical potential or any applied voltage needs to
overcome this gap before it can create any excitation. is results in an incompress-
ible and insulating state.

5.2.1. An intuitive picture of the Mott transition

An intuitive picture of how the interaction between the particles leads to correlation
effects and insulating behavior can already be given using only two fermions with
different spin (↓, ↑) in a double well: At zero temperature and without interactions
both particles will occupy the same (not normalized) single-particle ground state:

|Ψ0⟩ = ( |l⟩+ |r⟩)↓ ( |l⟩+ |r⟩)↑ = |l↓l↑⟩+ |l↓r↑⟩+ |r↓l↑⟩+ |r↓r↑⟩ (5.6)

In this state both particles are uncorrelated (i.e. the wave function factorizes) and
delocalized over both wells.

One straightforward idea to incorporate the effects of a repulsive on-site interaction
between the particles into this wavefunction originates from the study of molecular
hydrogen andwas introduced to the field of correlated electrons byM.C. Gutzwiller [124,
137]:
Since a repulsive interaction raises the energy of all configurations in which both
particles occupy the same site, it will consequently decrease their weight in the
ground state. In the strongly interacting limit this yields:

|ΨU⟩ = |l↓r↑⟩+ |r↓l↑⟩ (5.7)

is wavefunction describes a strongly correlated or entangled [138] state: e posi-
tion of one particle depends on the position of the other and thewavefunction cannot
be wrien as a product of two individual wavefunctions for the two particles.
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5.3. Two particle Hubbard model

Generalized to an infinite system, the single-particle eigenstates are Bloch waves
(cf. sec. 4.3.2) and the non-interacting many-body state corresponds to a half filled
Brillouin zone. As the energy difference between subsequent Bloch waves vanishes
in the thermodynamic limit, this describes a compressible metallic state.
In the strongly interacting limit on the other hand, the cost of adding another particle
is on the order of U in the half-filled case, since it necessarily includes the creation
of double occupation, independent of the system size. e opening of this energy
gap, the so-called Mo gap for an exactly half-filled band drives the transition from
a compressible and conducting metal to an incompressible Mo insulator.

5.3. Two particle Hubbard model

Analogous to the BEC-BCS crossover in free space (cf. sec. 3.3.3), the existence of a
two-particle bound state will also in the Hubbard model have a profound influence
on the many-body physics.
In order to study the existence of these bound states, a homogeneous laice contain-
ing only one atom per spin state will be analyzed in this section.

e two-particle wavefunction can be wrien in center-of-mass R⃗ and relative co-
ordinates r⃗ [139, 140]:

R⃗ =
1

2
· (r⃗1 + r⃗2) r⃗ = r⃗1 − r⃗2 (5.8)

Q⃗ = q⃗1 + q⃗2 q⃗ =
1

2
(q⃗1 − q⃗2) (5.9)

e tunneling term separates into center-of-mass and relative terms and the inter-
action depends only the relative coordinate. us the total wavefunction can be
wrien as a product of the center-of-mass motion, which is a Bloch wave, and the
relative motion:

Ψ(r⃗1, r⃗2) = eiQ⃗·R⃗ ψQ⃗(r⃗) (5.10)

e remaining hamiltonian for the relative motion is:

Ĥ rel
Q⃗

=
∑
l

(
−JQl

∑
il

(ĉ†il,rĉil+1,r + h.c.)

)
+ U

∏
l

δil,0 (5.11)

Here the sum (product) over l denotes the sum (product) over the different dimen-
sions.

is hamiltonian is equivalent to a single particle tight-binding model with an addi-
tional potential at the central laice site. Due to the cosine shaped dispersion rela-
tion in the Hubbard model, the effective tunneling for the relative motion depends
on the center-of-mass momentum [139]

JQl
= 2J cos

(
Ql
d

2

)
(5.12)
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5. Fermi-Hubbard model

In the non-interacting case the solution is again a Blochwavewith quasi-momentum
q⃗ and all eigenenergies are given by1:

EQ⃗,q⃗ = Eq⃗1 + Eq⃗2 = −4J
∑
l

cos(Qld/2) cos(qld) (5.13)

In the interacting case the above hamiltonian (eqn. 5.11) can be solved numerically
using exact diagonalization. Its spectrum consists of the band of two particle scat-
tering states with energies ranging from −4Jl to 4Jl and a possible bound state:
While in 1D and 2D a bound state exists for all non-vanishing interactions, it appears
only above a critical interaction of |U/J | = 7.9136 [7] in the three dimensional case.

Similar to the case of a Feshbach resonance in free space (cf. sec. 3.3), the appearance
of a bound state causes a scaering resonance [141, 142], which leads to a BEC-BCS
crossover in the many-body case.

e appearance of this bound state and the corresponding scaering resonance is a
generic Hubbard model effect that is independent of the (molecular) Feshbach res-
onance studied in free space. e scaering resonance can be addressed either by
changing the laice depth at constant magnetic field (i.e. constant free space scat-
tering length), or by changing the free space scaering length using a (molecular)
Feshbach resonance. But also in the laer case the resonance in the Hubbard model
is reached at some finite scaering length.

Moreover, the spectrum of eigenenergies, which is shown in figure 5.2, illustrates an-
other peculiar aspect of all single-band Hubbard models: In the tight-binding regime
(cf. sec. 4.3.2) the possible kinetic energies are distributed symmetrically around the
energy of a localized particle and are bounded from below and above. is is in
stark contrast to free-space, where the kinetic energy is only bounded from below,
it needs to be positive but can be infinitely large.
One important consequence of this symmetry is the existence of repulsively bound
states: In the case of U/J > 8 the highest energy state is separated from the contin-
uum of scaering states in an exactly symmetric way to the lowest energy state for
U/J < −8. Due to the energy gap to the scaering continuum, two particles in this
repulsively bound state cannot decay into a scaering state and are therefore bound
together due their repulsive interaction. ese states, which were first observed
for bosonic atoms [143], can determine the time constants with which the system
responds to parameter changes, as will be seen in the expansion measurements in
chapter 10.

e character of the bound states can also be seen from figure 5.3, where the prob-
ability to find both particles on the same laice site is ploed together with the ex-
tension of the two lowest lying eigenstates: For |U/J | < 8 both states are scaering
states and their sizes are on the order of the simulated system size. For |U/J | > 8
the lowest (highest) lying state is a bound state and its size decreases for stronger
interactions, while the second state remains a scaering state. In the limit of domi-
nating interactions |U/t| & 20 the probability of finding both particles on the same

1e allowed values for ql depend on the value of Ql via |ql| ≤ k − |Ql/2|
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Figure 5.2.: Eigenenergies of the relative hamiltonian of the 3D two-particle Hubbard
model for Q⃗ = 0⃗. e spectrum consists of a band of scaering states with energies
ranging from−12J to 12J . For interactions larger than |U/J | = 7.9136 in addition a
bound state appears. e inset shows the two lowest eigenenergies around the critical
interaction (calculated for a finite laice size).

site approaches one and the energy of the bound state is approximately U . In this
case the two fermionic particles can be described as one composite boson, similar to
a Feshbach molecule.
In the many-body case (cf. below) the hamiltonian can then be mapped onto a Hub-
bard model for hard-core bosons [144].

5.4. Filling factor, doublon fraction, and entropy
capacity

In order to characterize the many-body states of interest, several important parame-
ters, i.e. filling factor, doublon fraction, and entropy capacity, will be defined below
together with their values in some limiting cases.

A first important parameter to characterize a state in the homogeneous Hubbard
model is the filling factor n, that is the expectation value of the number operator
nσ = ⟨n̂σ⟩, i.e. the average particle number per laice site of a given spin state. In
the experimentally studied case of a balanced spin mixture in the trap the filling
factor is independent of the spin n = n↑ = n↓ but depends on the position in the
trap n = n(r⃗) (cf. ref. 5.7). e filling factor can range from zero to one, where a
filling factor of one denotes two atoms per laice site and half-filling denotes the
important case of on average one atom per laice site.
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Figure 5.3.: Probability of finding the two particles in the 3D two-particle Hubbard
model on the same laice site. e solid lines denote this probability for the two
lowest lying states, the dashed line for the highest energy state. e inset shows
the root-mean-square extension of the two lowest lying states (calculated for a finite
laice size).

5.4.1. Doublon fraction

One important observable in the experiment is the doublon fraction, that is the frac-
tion of atoms on doubly occupied laice sites. It strongly depends on the interaction,
the temperature, and the filling factor and can be calculated exactly for certain lim-
iting cases:

Assuming a homogeneous laice and a balanced spin mixture with filling factors
n = nσ we define the doublon fraction D as:

D =
2Npair

Natoms

=
2 ⟨n̂↓ · n̂↑⟩
⟨n̂↑⟩+ ⟨n̂↓⟩

=
⟨n̂↓ · n̂↑⟩

n
(5.14)

Non-Interacting Without interactions there are no correlations between the dif-
ferent spin states and the doublon fraction simplifies to:

Dnon-IA =
⟨n̂↓ · n̂↑⟩

n
=

⟨n̂↓⟩ · ⟨n̂↑⟩
n

=
n · n
n

= n (5.15)

Strong repulsive interaction In the limit of dominating repulsive interactions
U ≫ 12J and U ≫ kBT the energy cost U of two atoms on the same laice site
is the biggest energy scale in the problem and the doublon fraction is as small as
possible for the given filling factors. Below half filling there are more laice sites
than atoms and the doublon fraction is zero. Above half filling the number of atoms
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Figure 5.4.: Doublon fraction as a function of filling in the non-interacting case and
the limits of strong interaction |U | ≫ J, kBT . In the strongly aractive and repulsive
case up to half filling, the doublon fraction is constant and yields no information about
the filling. It therefore cannot distinguish between a Mo insulator (cf. sec. 5.5.2) at
n = 0.5 and a complex metal with n < 0.5.

is bigger than the number of available laice sites and a fraction 2n − 1 of laice
sites must be occupied by two atoms, which leads to the following doublon fraction

Drep-IA =
2Npair

Natoms

=

{
0 n ≤ 0.5

2(2n− 1)

2n
= 2− 1

n
n > 0.5

(5.16)

Strong attractive interaction In the case of −U ≫ 12J and −U ≫ kBT all
atoms will form pairs: D = 1

5.4.2. Entropy capacity

Another relevant quantity in the Hubbard model is the entropy capacity Smax per
laice site, which depends on both the filling and the interaction and can be calcu-
lated using S = −kBtr(ρ log(ρ)) [145]. In the high temperature limit the density
matrix for a single laice site is diagonal

ρ = h |0↓, 0↑⟩⟨0↑, 0↓| +s↓ |1↓, 0↑⟩⟨0↑, 1↓|
+s↑ |0↓, 1↑⟩⟨1↑, 0↓| +d |1↓, 1↑⟩⟨1↑, 1↓| (5.17)

in the Fock basis. e coefficients h, s↓, s↑, and d denote the probability for zero,
single, and double occupation. ey are determined by maximizing the entropy un-
der the requirements of an equal spin mixture (s↓ = s↑), the desired filling factor
(s↓+d = n), normalization (h+s↓+s↑+d = 1) and the doublon fractions calculated
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in the previous section (5.4.1). e resulting entropy capacity is ploed in figure 5.5.
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Figure 5.5.: Entropy capacity of a homogeneous Hubbard model. le: Maximum en-
tropy per laice site in the non-interacting and strongly-interacting limits. right:
Corresponding entropy capacity per particle.

As the local (single-site) Hilbert space is four dimensional, the maximum entropy
capacity is bounded by kB log(4), which is reached for a non-interacting cloud at
half filling, where all four possible configurations have the same probability.
In the limit of strong interactions2 the effective dimensionality of the local Hilbert
space is reduced to two in the aractive case (s↓ = s↑ = 0) resp. three in the repulsive
case (n ≤ 0.5 → d = 0 and n ≥ 0.5 → h = 0). is leads to a corresponding
reduction of the entropy capacity: At half filling the entropy capacity in the repulsive
case, i.e. the Mo Insulator (cf. sec. 5.5.2), is given by kB log 2, as there are both no
holes and no doublons (h = d = 0).

e maximum entropy per particle, which is ploed in the right panel of figure 5.5,
scales as Smax/n and diverges for low fillings in the same way as the number of
available laice sites per particle diverges. For high fillings on the other hand, the
maximum entropy per particle vanishes. is limits the achievable densities for a
given entropy density and gives rise to incompressible band insulating states at all
temperatures (cf. sec. 5.5.1).
e average entropy per particle that can be reached experimentally (cf. table 2.1) is
on the order of 1−1.5 kB and is above the entropy capacity of a half-filled Hubbard
model in the strongly interacting case. is regime can nonetheless be realized ex-
perimentally by exploiting the inhomogeneity due to the trapping potential: As will
be detailed in chapter 8.2.1, most of the entropy is stored in the low filling regions
(cf. fig. 8.5), where large entropies per particle are possible.

2is assumes |U | ≫ kBT .
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5.5. Phases of the three dimensional homogeneous
Hubbard model

is section gives a brief overview over the phase diagram of the homogeneous Hub-
bard model. As there exists no analytical solution for the Fermi-Hubbard model ex-
cept from special cases, the phase diagram is not completely known andmany details
of the various published phase diagrams [146–152] depend on the approximations
made in the calculations resp. the chosen numerical method.

e phase diagram of the homogeneous model is discussed as a function of filling n
and temperature T , the connection to the trapped case will be given in section 5.7.
In the experiment the total particle number N and total entropy S (c.f. sec. 2.3) are
conserved and limit the accessible regimes. A filling of two particles per laice site
can for instance not be reached at finite entropies in the homogeneous system, as
the entropy capacity of the Hubbard model vanishes in this limit (cf. sec. 5.4.2).

5.5.1. Non-interacting

In the non-interacting case there are no correlations between particles with different
spins and all many-body states can be described using only Fermi-Dirac statistics and
the single-particles eigenstates, the Bloch waves. Every particle is delocalized over
the whole laice and there exist two zero temperature regimes, a band-insulating
state with two atoms per site and a metallic state for all other fillings.
e metallic state is conducting and compressible (cf. sec. 5.2): Adding another par-
ticle changes the Fermi energy by an amount on the order of the bandwidth divided
by the number of laice sites (∆EF ∼ 12J/Nlat), which vanishes in the thermody-
namic limit.
e band insulating state is incompressible since an additional particle would need
to occupy a higher band and would thereby increase the Fermi energy by the band
gap.
Due to the decreasing entropy capacity of the Hubbard model above half filling (cf.
fig. 5.5), this incompressible band insulating phase exists for all entropies: For every
entropy per particle there exists a maximum filling, above which the given entropy
would exceed the entropy capacity of the single band Hubbard model.

5.5.2. Repulsive interaction

e inclusion of repulsive interactions leads to modifications both in the charge and
in the spin distribution. If spin ordering is neglected, the system displays metallic
and band-insulting phases at weak interactions, similar to the non-interacting case.
For strong interactions in addition the incompressible Mo insulator phase appears
at half filling:
In the Mo insulator every particle is localized due to the mutual repulsion between
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the particles (cf. sec. 5.2.1), and the addition of another particle would change the
Fermi energy by a finite amount of order U . is energy gap, the Mo gap, gives
rise to the incompressible and insulating behavior of this phase.

In the absence of magnetic order there is a first order phase transition at a criti-
cal interaction Uc/12J = 1.26 [153] from metallic to insulating behavior for low
temperatures. Above a critical temperature [124] the phase transition turns into a
smooth crossover. In DMFT calculations (cf. sec. 5.6) the phase transition shows up
as a discontinuous jump in the doublon fraction [154]. In theMo phase the doublon
fraction is strongly suppressed and vanishes in the limit of strong repulsive interac-
tions (U → ∞), where the system reduces to a set of uncoupled micro-traps with
one particle per site.

U=0 U=∞

Figure 5.6.: le: In a non-interacting metal every atom is in a delocalized Bloch state.
right: In theMo insulating phase the atoms are localized due to the mutual repulsion
and at U = ∞ every particle is localized to a single laice site.

Including the possibility of magnetic ordering, however, the ground state at half fill-
ing shows antiferromagnetic long-range order for all interactions due to a perfect
nesting of the Fermi surface [155].
At finite temperatures the antiferromagnetic order parameter, which is given by the
sublaice magnetization or staggered magnetization, is reduced by thermal fluctua-
tions and vanishes at the Néel temperature, where a transition into the paramagnetic
regime occurs. antum Monte Carlo calculations (cf. sec. 5.6) have shown that the
Néel temperature in a 3D simple cubic laice at Uc lies well above the critical tem-
perature of theMo transition [155], so that only a crossover from a correlated metal
to a Mo insulator can be observed. At small interactions the critical temperature
for the antiferromagnetic order decreases exponentially with U [156].

In the spin-balanced case (N↑ = N↓) the staggered magnetization can point in every
direction. In the spin-imbalanced case (N↑ ̸= N↓), however, the system will form a
canted antiferromagnet, where themagnetization is the sum of a constant component
along the z-direction and a staggered magnetization in the x, y-plane.

Away from half filling, where the atoms are not localized, the system is expected
to become ferromagnetic for large interactions due to the Stoner instability [157,
158]. In the inhomogeneous trapped case the spin-imbalance can vary locally and
the system will show complex spin textures [158].

Strong repulsive interactions

In order to analyze the regime of finite but strong repulsive interactions (U ≫
12J, kBT ), the Hubbard model can be approximated using perturbation theory:
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5.5. Phases of the three dimensional homogeneous Hubbard model

Starting in the limit of uncoupled laice sites, where the hamiltonian consists only
of the interaction term of the Hubbard model, tunneling between the sites is treated
as a perturbation. At half filling the first order contribution, which describes un-
correlated single particle tunneling, can be neglected, as it is detuned by the large
on-site interaction U . e behavior of the system is dominated by two second order
contributions that are analogues to two-photon Raman processes in light fields:
e first one consists of a particle virtually hopping to the next site and back, where
the intermediate state is again detuned by U . is process creates a coherent admix-
ture of the adjacent site to the eigenstate and thereby lowers its energy by ∼ J2/U .
e second process is superexchange tunneling [159], in which two adjacent fermi-
ons interchange their positions in a correlated second order hopping.

In the half filled case, where all particles are localized due to the repulsive inter-
action, the Hubbard hamiltonian reduces to a Heisenberg hamiltonian [111] for the
remaining spin degree of freedom:

Hheis = Jex
∑
⟨i,j⟩

S⃗i · S⃗j (5.18)

e isospin operators S⃗i can be expressed in terms of the Pauli matrices σj

Ŝj
i =

1

2

∑
σ,σ′

ĉi,σσ
j
σ,σ′ ĉ

†
i,σ′ (5.19)

and the coupling between the spins is given by the exchange coupling Jex = 4J2/U ,
which favors an antiferromagnetic ordering of the spins.

is tendency towards an antiferromagnetic state can be understood by observing
that the first process lowers the energy of the localized particles but is only possible
for adjacent particles with opposite spins, as the intermediate state is otherwise Pauli
forbidden.

In the case of a balanced spin mixture the ground state of this Heisenberg model
is indeed an antiferromagnetic insulator, whose Néel temperature again scales as
J2/U while the critical entropy per particle approaches S/N = 0.34 kB [160]. Sim-
ilar critical entropy densities have also been reported for the full Hubbard model at
U/J = 8 [161].

In the case of spin-imbalanced mixtures the ground state can also show superfluid
counterflow [162]. Away from half filling the system can be described by the t−J
model [127, 128], in which t describes the uncorrelated hopping of the defects (holes
or doublons) and J refers to the exchange coupling of the Heisenberg model.

Superconducting phases

Since there exists no analytic solution for the Hubbard model (or even the t−J
model) in two and three dimensions, one has to rely on numerical and approxima-
tive methods, e.g. renormalization group methods [163], which predict rich phase
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diagrams [150]. One important question, especially in the 2D repulsive Hubbard
model, is the existence of superconducting eigenstates that could be used to model
the cuprate high-Tc superconductors [132].
Superfluid eigenstates of suitable d symmetry have indeed been found in various
approximative treatments of the 2D Hubbard model and its extensions [164–168],
but a rigorous proof of their existence is still missing, which makes an experimental
observation of these states very desirable [169]. In the case of an extended Hubbard
model with next-to-nearest neighbor tunneling, the ground state is expected to show
superfluidity also in the weakly interacting limit [170].

5.5.3. Attractive interaction

In the spin-balanced case the ground state for weak aractive interactions is a BCS-
like superfluid state, consisting of very loosely bound pairs of spin up and spin down
particles [171]. is is completely analogous to classical superconductors, where
the BCS pairing is a genuine many-body effect in the absence of two-particle bound
states [24] in the 3D case.
If the interaction becomes stronger than a critical interaction (|Uc/J | ≈ 8), a two-
particle bound state appears (cf. sec. 5.3) in the aractive 3D Hubbard model and
causes a scaering resonance that is similar to a Feshbach resonance in free space
(cf. sec. 3.3). is gives rise to a BEC-BCS crossover, which has been extensively
studied in free space (cf. [45] and references therein). At stronger interactions the
fermionic particles form tightly bound pairs, whose size decreases to a single laice
site for strong interactions (cf. sec. 5.3)3.

Without spin imbalance the ground state of the aractive 3D Hubbard model is a
superfluid for all interactions and all fillings except n = 0 and nσ = 1. At half filling
the superconducting state is degenerate with a charge density ordered state [147]
(cf. sec. 5.5.4). For weak interactions, the critical temperature Tc of the superfluid
transition grows exponentially with increasing interactions similar to free space,
and reaches a maximum at intermediate interactions in the vicinity of the geometric
resonance. In contrast to free space, where the critical temperature approaches that
of the non-interacting Bose gas in the BEC limit, it decreases as J2/|U | (cf. below) in
the 3D laice [146–148]. At half filling, the critical entropies for the superfluid phase
equal those of the antiferromagnetically ordered phase of the corresponding repul-
sive Hubbard model, as can be seen from the Lieb Mais transformation discussed
below (cf. sec. 5.5.4).

3Due to the high symmetry of the tight-binding dispersion, exactly the same physics appears also in
the high energy (small negative temperature) limit of the repulsive Hubbardmodel [172]. is can
be seen be observing that for every eigenstate with energy E of a hamiltonian H there exists an
eigenstate with opposite energy −E for the hamiltonian −H . As described in chapter 10.3.3, for
the Hubbard hamiltonian the transformationH ↔ −H consists of the transformationsU ↔ −U
and J ↔ −J , where the laer is equivalent to π-boost in quasi-momentum space (cf. sec. 10.3.3).
As a consequence, a BEC-BCS crossover exists for states centered around q⃗ = (π/d, π/d, π/d) in
the repulsive Hubbard model.

76



5.5. Phases of the three dimensional homogeneous Hubbard model

In a 2D system the superfluid is reached through a Berezinskii-Kosterlitz-ouless
transition whose critical entropy per particle has been calculated using quantum
Monte Carlo methods [173] and yielded entropies below S/N < 0.2 kB , which is
considerably colder than the entropies currently reached in the experiment (cf. sec.
2.2.2).
Even richer phase diagrams can be obtained in the spin imbalanced situation where
additional phases, e.g. the FFLO phase [151, 174–176] become relevant.

Strong attractive interactions: Hard core bosons

An important difference between the laice and free space on the BEC side of the
geometric resp. Feshbach resonance is the quantum statistics of the tightly bound
pairs:
In free space the bound state is a chemically bound molecule that can be treated as a
bosonic object at all experimentally relevant densities. e fermionic nature of the
atoms becomes relevant only in calculating the interaction strength and lifetimes of
the molecules [82] (cf. sec. 3.3.2). Consequently, the many body ground state in free
space is a superfluid for all interaction strengths [45].
In the first band of the laice on the other hand, the Pauli principle forbids the oc-
cupation of a single laice site by more than two fermions. As a consequence, the
bound states –or pairs– can be described as hard core bosons, as no laice site can be
occupied by more than one pair.

In the strongly interacting case (|U | ≫ 12J, kBT ) the binding energy of the pairs
approaches |U | (cf. sec. 5.3) and all particles will be paired. Similar to the repul-
sive case, an effective hamiltonian can be derived for the pairs using second order
perturbation theory [177]:

Heff = −
∑
⟨i,j⟩

Jpair b̂
†
i b̂j +

∑
⟨i,j⟩

Jpair n̂bin̂bj (5.20)

where b̂i = ĉi,↓ĉi,↑, b̂
†
i = ĉ†i,↓ĉ

†
i,↑, n̂bi = b̂†i b̂i are the annihilation, creation and number

operators of the pairs and Jpair = 2J2/|U |. ese pair operators indeed describe
hard core bosons, as can be seen from b̂ib̂i = ĉi,↓ĉi,↑ĉi,↓ĉi,↑ = ĉi,↓ĉi,↓ĉi,↑ĉi,↑ = 0, since
the Pauli principle requires ĉi,↑ĉi,↑ = 0.

e first term in the above hamiltonian describes the correlated hopping of a pair
from one site to the next, while the second part describes a nearest neighbor re-
pulsion between the pairs. is second term stems from the same principle as the
antiferromagnetic tendency in the repulsive case: If the neighboring site is unoccu-
pied, a localized pair can lower its energy via virtual hopping of one fermion to the
neighboring site and back.
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Pseudogap regime

e occurrence of pairing has dramatic consequences on the many-body state also
above Tc: In the pseudogap –or preformed pair– regime the particles are bound
into pairs, but the pairs are not condensed yet [148, 149, 178]. is formation of
uncondensed pairs e.g. dramatically alters the thermodynamics of the system, as
shown in chapter 9.

is regime is related to the Pseudogap regime in the cuprate based high-temper-
ature superconductors, where the formation of preformed pairs is one possible ex-
planation for the observed gap in the electronic excitation spectrum [24, 179]. is
gap opens below a crossover temperature T ∗ > TC and manifests itself in e.g. the
decrease of the spin-susceptibility, the specific heat and the in-plane d.c. resistivity
in the underdoped regime [180].

In the BCS regime of the Hubbard model the crossover temperature into the pseu-
dogap regime T ∗ > TC almost coincides with the critical temperature, but starts
to deviate from it in the BEC-BCS crossover regime. In the BEC (large |U |) limit,
where Tc decreases again as J2/|U |, T ∗ scales like the pair binding energy, which
approaches |U | (cf. fig. 5.2).

5.5.4. Lieb-Mattis transformation

eHubbard model is a highly symmetric model and incorporates many useful sym-
metries between e.g. particle and hole state or U and −U dynamical properties (cf.
sec. 10.3.3).
e Lieb-Mais transformation is a particular particle-hole transformation that can
be formulated for any bipartite laice and relates the phases of the repulsive Hub-
bard model to those of the aractive Hubbard model. It consists of a particle-hole
transformation together with an additional phase shi for one spin state, while leav-
ing the other spin state unchanged [176, 181]:

ĉi,↓ → (−1)ix+iy+iz ĉ†i,↓ (5.21)

ĉi,↑ → ĉi,↑ (5.22)

Due to the choice of the phase shi, which corresponds to an additional phase of
π on all laice sites belonging to one sublaice, the kinetic energy operator (cf.
eqn. 5.1) remains unchanged, while the number operator of the spin down particles
changes into n̂i,↓ = 1− n̂i,↓. is change in the number operator effectively flips the
sign of the interaction energy4 (U → −U) and furthermore exchanges the roles of
imbalance (ni↓ − ni↑) and doping (ni↓ + ni↑ − 1).

As localized single atoms in the repulsive Hubbardmodel are transformed into either
empty laice sites (spin down), or doublons (spin up), a paramagnetic Mo insulator

4In addition an unimportant constant energy offset (UN↑) is added, which will be neglected in the
following. To avoid this offset it is convenient to write the interaction term in symmetrized densi-
ties, where the density difference to half filling is measured: W = U

∑
i (n̂i↓ − 1/2)(n̂i↑ − 1/2).
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becomes a disordered charge density wave of doublons, i.e. a state in which doublons
are localized to random laice sites.
Any magnetic order in the repulsive Hubbard model is related to a paired or density
ordered state on the aractive side [176]: Antiferromagnetic order for instance is
mapped onto either an ordered charge density wave, where all sites belonging to
one sublaice are occupied by a doublon, or a superfluid state, depending on the di-
rection of the staggered magnetization: Its z-component corresponds to the ordered
charge density wave while the x- and y-components are mapped onto the real and
imaginery part of the superfluid order parameter [181].

As was pointed out in [181], this mapping creates the possibility to experimentally
prove the existence of a d-wave superfluid in the doped repulsive 2D Hubbard model
model by observing the corresponding phase (a d-wave antiferromagnetic phase) in
the aractive Hubbard model. One major advantage in this case is the possibility to
effectively control the doping of the repulsive model by controlling the spin imbal-
ance in the aractive case.

5.6. Numerical methods

In 1D the Fermi-Hubbard model has been solved analytically by E. Lieb and F.-Y. Wu
in 1968 and a Mo Insulator was found for any positive U at half filling [182], while
a conducting ground state was found for U=0 and away from half filling. In higher
dimensions the Hubbard model cannot be solved analytically, and one has to rely on
numerical methods or analytic approximations.

Exact diagonalization In some cases the exact many-body eigenstates can be
found by numerically diagonalizing the hamiltonian in a suitable basis. e compu-
tational costs and the memory requirements of this method scale exponentially with
the number of particles and therefore limit this method to less than 20 particles on
less than 25 laice sites, even if modern supercomputers are used [9].
Although the exponential scaling renders an application in 3D impossible, exact di-
agonalization of small model systems with only two particles or on a few laice
sights still provides valuable insight and many effects can be modeled at least qual-
itatively, several examples of which are given in this thesis. In addition, the non-
interacting problem can be solved exactly and efficiently with this method for real-
istic system sizes and a lot of trap varieties. is can be used e.g. in order to check
the validity of the local density approximation (LDA) (cf. sec. 5.7.1).

Dynamical mean field theory Another important method is dynamical mean
field theory (DMFT), in which the many-site problem is reduced to a single site
problem in the presence of an effective bath, which represents the remaining sys-
tem [183]. A variant of this method has been used by R.W. Helmes, T.A. Costi and
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Prof. A. Rosch at the University of Cologne and the Research Center Jülich in or-
der to model the metal to Mo insulator transition in the presence of an harmonic
trap [153]. In chapter 8 their results are presented in more detail and are compared
to the experimental results. In addition, this method has also been used to study the
aractive Hubbard model [147] and has been extended to the three species repulsive
Hubbard model [184].

Further methods In the context of ultracold atoms in optical laices, two further
numerical methods are in common use: e density matrix renormalization group
(DMRG) method [185] is very successful in 1D and is currently expanded to 2D. In
addition there exist several quantumMonte Carlo methods, which are very powerful
in the bosonic case, but are notoriously plagued by the so-called sign problem when
applied to repulsive fermions. It could indeed be shown that the sign problem lies
in the complexity class of nondeterministic polynomial (NP) hard problems [186],
which almost certainly excludes the existence of an efficient algorithm.
Nonetheless, they could be applied to the aractive Hubbard model in order to pre-
dict the critical entropies of various superfluid phases in 2D [173], and 3D [176]. In
addition they could predict the onset of antiferromagnetic order in the exactly half
filled repulsive Hubbard model [155, 187], where the sign problem is also absent.

5.7. Inhomogeneous system

e presence of the harmonic trap destroys the translational symmetry of the lat-
tice and could in principle change the physics of the problem completely. While
the inhomogeneity can easily be incorporated into a numerical calculation for non-
interacting particles (cf. sec. 4.3.2), it poses a severe complication in the general case.
Fortunately, it turns out that, for typical experimental parameters, the length scale
of the additional potential is sufficiently large compared to the laice constant such
that the system can locally be approximated by a homogeneous system, as detailed
in this section.

By combining the general Fermi-Hubbard hamiltonian (cf. eq. 5.5) with the three
dimensional harmonic trapping potential (cf. eq. 4.21) with aspect ratio γ one arrives
at:

Ĥ = −J
∑
⟨i,j⟩,σ

ĉ†i,σ ĉj,σ + U
∑
i

n̂i,↓n̂i,↑ + Vt
∑
i

i2 (n̂i,↓ + n̂i,↑) (5.23)

where the horizontal trap frequency ω⊥ is used in the strength of the harmonic trap
Vt (cf. eqn. 4.22) and i2 is a short hand notation for i2 = i2x + i2y + γ2i2z .
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5.7.1. Local density approximation

If the external potential varies slowly enough, the description of the inhomogeneous
Hubbard model can be simplified substantially by use of the local density approxima-
tion (LDA), in which the inhomogeneous system is locally approximated by a homo-
geneous Hubbard model. e effects of the external potential are then incorporated
by local shis in the chemical potential:

µ(r⃗) = µ0 − ϵr⃗ (5.24)

All local quantities, e.g. the filling factor n(r⃗) or the entropy density s(r⃗) are approx-
imated by the corresponding quantities of the homogeneous system:

n(r⃗) = n(µ0 − ϵr⃗, T ) (5.25)

In order to compare the results of such calculations to experimental data, the central
chemical potential µ0 and the temperature T are adjusted such that the resulting
total atom number and entropy match the experimental values:

N = 2

∫
n(µ0 − ϵr⃗, T ) dV (5.26)

S =

∫
s(µ0 − ϵr⃗, T ) dV (5.27)

e validity of the LDA for calculating thermodynamic properties and the real- and
momentum-space density (cf. sec. 6) of the repulsive Hubbardmodel in the paramag-
netic regime could be shown by a direct comparison with numerical results obtained
for the full inhomogeneous system [153, 188].

Characteristic trap energy

For a given set of hamiltonian parameters (tunneling J , interaction U , and trap fre-
quencyω⊥, γ), any thermal state in the trapped system is determined by the chemical
potential µ0 and the temperature T , which encode its total atom number N and en-
tropy S.
ese six parameters (J, U, ω⊥, γ,N, S) are, however, not independent of each other:
e number of independent degrees of freedom is for instance reduced by the free-
dom to choose a global energy scale, i.e. to express all parameters in units of the
bandwidth 12J .
In the case of a typical harmonic trapping potential (cf. sec. 4.3.2) the validity of the
LDA implies an additional scaling relation connecting the trap frequencies and the
total atom number at constant central chemical potential and temperature. is can
be seen by imagining the inhomogeneous system as a sequence of boxes with con-
stant chemical potentials (µ0, µ1, . . . ). As illustrated in figure 5.7, a change in the
trapping frequency ω amounts to a rescaling of the volume of the boxes Vbox ∝ 1/ω
(3D: Vbox ∝ 1/ω3

⊥). If all extensive parameters (E,N, S) are scaled accordingly to the
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Figure 5.7.: Illustration of the scaling relation in LDA. If one approximates the inho-
mogeneous system by a sequence of boxes with constant chemical potential, a change
in the trap frequency leads to a rescaling of the box volume. In LDA, the physics
in each box is approximated by the (infinite) homogeneous system and remains un-
changed by the rescaling.

change of the box volume, the local physics and all intensive parameters (n, s, µ, T )
remain unchanged.

A convenient parameter to exploit this scaling relation is the Fermi energy in the
limit of vanishing interactions and zero tunneling EF (J = 0, U = 0). In this limit
the eigenstates coincide with the Wannier states and the Nσ lowest energy eigen-
states correspond to the Wannier states on all laice sites within an ellipsoid of
volume Nσ/(λ/2)

3 around the trap center:

Vellip =
4π

3

r3⊥
γ

≈ Nσ/(λ/2)
3 (5.28)

Here Nσ denotes the total atom number per spin state. e Fermi energy is then
given by the confining potential at the edge of the cloud

r⊥ =

(
γNσ

4π/3

) 1
3 λ

2
(5.29)

and is denoted as the characteristic trap energy Et:

Et = Vt

(
γNσ

4π/3

) 2
3

(5.30)

Together with the entropy per particle S/N and the strength of the interaction
U/12J , the characteristic trap energy Et/12J completely determines the many-
body state up to the aforementioned rescaling.

e ratio of characteristic trap energy to bandwidth Et/12J , which is also referred
to as the compression, is equivalent to another widely used parameter, namely the
characteristic density [62, 133]: ρc ∝ (Et/12J)

3/2. e main advantage of the char-
acteristic trap energy is its dimensionality, which allows an intuitive comparison to
other energies, e.g. the bandwidth 12J or interaction strength U .

82



5.8. Validity of the Hubbard model

Et

Figure 5.8.: Illustration of the characteristic trap energy Et. It depends on both the
total atom number and the trap frequencies and can intuitively be understood as the
Fermi energy in the limit of zero tunneling and vanishing interaction.

5.8. Validity of the Hubbard model

In the context of solid state physics, theHubbardmodel should be seen as amodel, i.e.
a highly idealized system that neglects many aspects of the real system, e.g. disorder,
impurities, or phonons. With respect to ultracold atoms, the Hubbard model is a
much more precise description. Nonetheless, several assumptions of the Hubbard
model are not fulfilled in all cases and need to be checked in any given situation:

• In the Hubbard hamiltonian (cf. eqn. 5.5) only nearest neighbor tunneling is
included. is limits its applicability to the tight-binding regime of sufficiently
deep laices (V0 > 5Er, cf. sec. 4.3.2).

• An additional approximation is the use of Wannier functions as on-site wave-
functions. While this is perfectly justified for non-interacting particles, the
form of the on-site wavefunction generally depends on the interactions and
the number of particles. is was shown for bosonic systems and Bose-Fermi
mixtures in the following publications [106, 189, 190] and will be discussed in
detail in the PhD theses of orsten Best and Sebastian Will.

• For not too strong interactions, the change in the on-site wavefunction can
be accounted for by a renormalization of the Hubbard parameters J and U .
In the presence of strong interactions, however, more complicated interaction
terms, e.g. density assisted hopping, need to be included [191].

• In order for the single band approximation to be valid, the band gap needs
to be large compared to all other energy scales, esp. the interaction energy U
and the Fermi energy EF . While this is typically a good approximation in a
relatively deep laice, care has to taken during the ramp up of the laice in
order to avoid occupation of the second band (cf. sec. 4.3.2)
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6. Observables: What can we measure?

e fast progress in ultracold atoms in recent years is directly linked to technical
progress, as new technologies enable new experiments that enlarge our knowledge
about these systems.
e technical advancement in the field of ultracold atoms is threefold: It includes
beer cooling techniques, which allow us realize colder samples with less entropy.
Also more advanced tools to manipulate and engineer many-body states, such as
optical laices or Feshbach resonances, have enabled us to prepare new quantum
states.
Additionally there is a continuous effort to develop new observables that allow us
to probe and identify these states.

is chapter gives a brief introduction into several standard observables and dis-
cusses their potential in the context of the fermionic Hubbard model.

6.1. Momentum distribution

e classical probe to analyze ultracold atoms is the study of their momentum distri-
bution using time-of-flight imaging. In this method, which was already used in the
first BEC experiments [1, 2], all trapping potentials are switched off instantaneously
and the cloud is allowed to expand freely under the influence of gravity for a certain
time, the time-of-flight, before its density distribution is recorded by e.g. absorptive
imaging. For sufficiently long times-of-flight the recorded density distribution di-
rectly reflects the initial velocity distribution of the atoms (cf. sec. 2.2.3), provided
that interactions during the expansion can be neglected.

In laice experiments this method was used e.g. in the case of bosonic atoms to
detect the transition from a superfluid to aMo insulating state [4], which is signaled
by a dramatic change in the contrast or visibility of the peaks in the momentum
distribution [192], as is shown in figure 6.1.

Although the quantitative interpretation of these images can be quite involved [193],
this method has proven to give useful information on the phase coherence between
different laice sites in the system [194] and remains to be one of the key observables
in the study of bosonic systems.

For fermions in a laice on the other hand, simple time-of-flight imaging is less
useful, as no long-range phase coherence exists in this case. Nonetheless, important
information about the system can be extracted from the density-density correlations
within these images (cf. next section).
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Figure 6.1.: le: Momentum distribution of a Mo insulator of bosonic 87Rb moni-
tored using absorption imaging aer time-of-flight. right: Momentum distribution
aer a slow ramp-down of the laice depth across the transition back into a super-
fluid.

In the context of this thesis, measurements of the momentum distribution were pri-
marily used to determine the temperature of the fermionic cloud in the dipole trap
(cf. sec. 2.2.3).
It was, however, the prime observable in the related PhD thesis of orsten Best,
where the influence of the interaction between bosons and fermions on the super-
fluid to Mo insulator transition of the bosonic atoms was studied in detail [189].
It was also used in the related work on quantum phase diffusion in purely bosonic
systems [106], where Sebastian Will was the main investigator.

6.2. Second-order correlation functions

An important extension of the above method is the analysis of second-order density-
density correlations in time-of-flight images, as described in detail in the PhD thesis
of Tim Rom:
Although a bosonic Mo insulator with one atom per site and a spin polarized
fermionic band insulator have the same averagemomentum distribution at zero tem-
perature, they can be distinguished by looking at density-density correlations in the
measured column density distributions n(x⃗):

C(d⃗) =

∫
⟨n(x⃗− d⃗/2)n(x⃗+ d⃗/2)⟩d2x∫
⟨n(x⃗− d⃗/2)⟩⟨n(x⃗+ d⃗/2)⟩d2x

While bosonic atoms show positive density-density correlations at distances that
correspond to reciprocal laice vectors [195], fermionic atoms show anticorrelations
(dips) at the same positions [196], as can be seen in figure 6.2.

As the position ℓ of these dips corresponds to the periodicity of the initial density dis-
tribution, this method offers great potential to unambiguously detect ordered states
of fermionic atoms in an optical laice. In an antiferromagnetically ordered state for
instance the doubling of the unit cell leads to extra dips in the noise correlation signal
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Figure 6.2.: a: Single shot absorption image of a single species fermionic band-
insulator (inset: quasi-momentum distribution, see below), b: cut through (a) together
with Gaussian fit, c: second order correlation function of 158 images and d: high-pass
filtered cut through (c). e position of the dips corresponds to the first reciprocal
laice vector ℓ = 2~k ttof/m. e image is taken from T. Rom et.al. [196].

at exactly half of the original distance [197, 198], as could already be demonstrated
by artificially creating a density wave for bosonic atoms using a superlaice [199].
More generally, this method should allow the detection of all periodically ordered
states in both spin and charge sector and the measurements of their period [200].
By focusing on k⃗ ,−k⃗ correlations between the different spin states, noise correlation
measurements should be able to directly detect pairing between fermions, as was al-
ready demonstrated for the case of weakly bound molecules in a dipole trap [201].
In principle, noise correlations between the two spin components can not only de-
tect superfluidity in the laice but in addition distinguish between BCS and FFLO
states [202].

6.3. Collective oscillations

In a trapped system collective modes are a convenient way to probe low lying excita-
tions of the system. e typically used modes include dipole oscillations, quadrupole
oscillations and breathing modes [45]. ey can be excited by sudden changes of the
trapping frequency or the trap center and can be monitored either in real space or by
monitoring the momentum distribution using time-of-flight measurements. In pure
dipole traps they were used to measure e.g. the viscosity of a strongly interacting
fermionic gas [203] and the effective mass of fermionic polarons [97]. Oscillation
experiments were also the first experiments to show beyond-mean-field effects in
these systems [204].
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In a laice context it was shown that, at least in 1D, the metal to Mo insulator
transition can in principle also be detected by observing the dipole and breathing
modes [205].
In this thesis dipole oscillations were used to measure the trap frequencies (cf. sec.
4.2.1) and the anticonfinement produced by the laice (cf. sec. 4.3.1).

6.4. Quasi-momentum distribution: band mapping
technique

Another related method is the use of band mapping techniques, where the laice
potential is not switched of instantaneously but on a timescale that is fast compared
to the tunneling timescale in the lowest band of the laice but adiabatic with respect
to interband transitions [206, 207]. In this method a Bloch wave is adiabatically
transfered into a plane wave and the initial quasi-momentum distribution in the
lowest band becomes the final (free-space) momentum distribution. In addition this
method allows the unambiguous detection of population in higher bands, as they
are mapped onto higher momenta corresponding to higher Brillouin zones [112].

x
z 450 µm

Optical density (a.u.)

Figure 6.3.:asi-momentumdistribution for non-interacting fermions in a 8Er deep
laice. e harmonic confinement was increased from the le to the right image, lead-
ing to many-body states ranging from purely metallic (le) to mostly band-insulating
(right). e band-insulating character was tested by use of in-situ imaging, as detailed
in chapter 8.

In the case of non-interacting fermions this method can in principle be used to dis-
tinguish metallic and band-insulating states, as was first shown experimentally by
the group of T. Esslinger [62]. e situation is complicated, however, by the inho-
mogeneity of the harmonic trap, as the observed quasi-momentum distribution is
averaged over the whole trap. Furthermore, with this method alone one can only
measure the relative populations of the different quasi-momenta, but not the abso-
lute populations of the different Bloch waves, as the number of quasi-momentum
states in the lowest band is proportional to the system size. In the inhomogeneous
case therefore an additional in-situ density measurement is required, as otherwise
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the in-trap cloud size, and therefore the number of quasi-momentum states, is not
known.
On its own the Brillouin zone mapping cannot distinguish a band-insulating state
from e.g. a Mo insulator, as any collection of localized atoms, irrespective of its
temperature, has the same relative quasi-momentum distribution as a zero temper-
ature band insulator.

6.5. Density distribution: In-situ imaging

e main observable used in this thesis is the in-situ real space density distribution
of the atoms in the combined potential of optical laice and dipole trap. Within the
local density approximation this is equivalent to measuring the density as a function
of chemical potential for a given temperature (cf. sec. 5.7.1).
In 3D any in-situ imaging method cannot directly measure the density, but only the
column density, that is the density integrated along the line-of-sight, which is given
by the beam path of the imaging laser. ere exist several numerical methods to
extract the real density distribution from the recorded column densities by exploiting
symmetries of the trapping potential [208]. A second approach, which is used here,
is to integrate the corresponding theoretical data as well and to directly compare the
resulting column densities.

In combination with the blue-detuned optical laice, which offers the possibility to
change the harmonic confinement at a constant laice depth, the in-situ density
distribution allows a direct measurement of the global compressibility of the cloud
and can thereby distinguish conducting from insulating many-body states (cf. sec.
5.2).

e high column densities of the in-situ atom distribution typically result in opti-
cal densities that greatly exceed the dynamic range of standard, non-saturated ab-
sorption imaging. is can be circumvented for example by the use of saturated
absorption imaging [209] or fluorescence imaging [210].

In this thesis a different approachwas used, namely phase contrast imaging, a method
that is well known in microscopy, where it is used to image almost transparent ob-
jects, like living cells, without the need to stain them [211].
Phase contrast imaging does not rely on the absorption of photons but instead uses
the dispersive interaction between atoms and non-resonant light. It is a non-destructive
imaging method that offers the possibility to record several images of the same
cloud [212, 213].
In the experiment, both the in-situ density distribution and the quasi-momentum
distribution of the same cloud where recorded by using phase contrast imaging fol-
lowed by a band mapping technique (cf. sec. 6.4).

At typical detunings of several hundred MHz absorption of the probe light can be
neglected and only the phase shi due to the dispersive interaction has to be taken
into account:

89
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Assuming that the light enters and leaves the cloud at the same transversal position
–corresponds to the thin lens approximation in optics– the phase shi Φ is propor-
tional to the column density at these transverse coordinates Φ(x, y) ∝ nc(x, y). Ac-
cordingly, an incident plane monochromatic wave Ei(x, y, z, t) = E0 sin(kz − ωt)
acquires a position-dependent additional phase:

Eat(x, y, z, t) = E0 sin(kz − ωt+ Φ(x, y)) (6.1)

is field can be decomposed into an aenuated reference field with the original
phase, and an additional quadrature component with a π/2 phase difference com-
pared to the original field1:

Eat(x, y, z, t) = Eref + Eadd

= E0 sin(kz − ωt) cos(Φ(x, y))

+ E0 cos(kz − ωt) sin(Φ(x, y)) (6.2)

Imaged onto a CCD chip, however, the phase shi alone would not alter the recorded
intensity distribution. Phase contrast imaging relies on a homodyne-like interfer-
ence between the two quadrature components, which is created by introducing an
additional phase shi P of ±π/2 on the reference field:

Epci(x, y, z, t) = P (Eref ) + Eadd

= E0 cos(kz − ωt) [± cos(Φ(x, y)) + sin(Φ(x, y))] (6.3)

e total field can thus be described as an amplitude-modulated wave, whose mean
intensity is given by:

IPCI = I0 [± cos(Φ(x, y)) + sin(Φ(x, y))]2

= I0
[
cos2(Φ(x, y))± 2 cos(Φ(x, y)) sin(Φ(x, y)) + sin2(Φ(x, y))

]
= I0 [1± sin(2Φ(x, y))] (6.4)

For small phases Φ the intensity can be approximated by

Ipci(x, y) ≈ I0 [1± 2Φ(x, y))] , (6.5)

where, according to Φ(x, y) ∝ nc(x, y), the intensity modulation is linear in the
column density. In this limit, phase contrast images can be interpreted in a straight-
forward way, as the intensity modulation directly reflects the atomic column den-
sity. It is a very versatile method, suitable for a large range of column densities, as
the desired dynamic range can be controlled by the detuning. Without the small
phase approximation the dynamic range is even larger, at least for smooth density
distributions, as the intensity modulation is periodic in the column density.

Technically, the necessary extra phase shi of the reference field is created by a
phase plate, that is a glass plate with a small dip in the center, which produces a

1sin(x+ y) = sin(x) cos(y) + cos(x) sin(y)
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6.5. Density distribution: In-situ imaging

relative phase shi of π/2 for light that passes through this central phase spot. e
phase plate is positioned in a focus of the unscaered light. In the idealized situation
of figure 6.4, this position matches the Fourier plane of the imaging system, where
the light scaered by the atoms resembles the (extended) Fourier transform of the
column density distribution. Ideally the phase spot affects the unscaered reference
wave only, while it leaves the unfocused scaered light unchanged.

C
C

D

Phaseplate

Figure 6.4.: Schematic phase contrast imaging setup. e incident plane wave is
shown as blue rays and illuminates the atomic cloud indicated on the le. e scat-
tered light, which is indicated by green phase fronts, is imaged via a telescope onto
a CCD camera (right), where it interferes with the unscaered reference light. e
reference light is phase-shied by π/2 due to the phase plate in between the telescope
lenses.

In reality, however, a small part of the scaered light passes through the phase spot as
well and acquires the same phase shi as the reference wave. is leads to several
imaging artifacts like halos and shade-off effects that are characteristic for phase-
contrast imaging [214], and, together with the thin lens approximation, form the
fundamental limitations of this method.

In the experiment, the total imaging setup consists of two telescopes with a total
magnification of ≈ 3.3, where the phase plate (phase spot diameter 300µm resp.
170µm) was positioned in the second telescope. Due to technical problems with
unwanted interferences in the imaging setup, we used a slightly focused probe beam
instead of a plane wave. erefore the position of the phase plate, which was posi-
tioned in the focus of the probe beam, did not correspond to a Fourier plane of the
imaging system.
Nonetheless, the abovementioned aberrations are especially noticeable for the largest
clouds studied during expansion measurements (cf. sec. 10), as these clouds show a
higher spectral weight at small spatial frequencies compared to the small in-situ
clouds.

A more detailed description of the used phase contrast setup will be found in the
PhD esis of Sebastian Will. e in-situ images are taken along the vertical axis,
which exploits a second advantage of the chosen oblate trap geometry as the imaging
integrates over less atoms than with a spherical trap. In addition, any change in the
volume of the cloud corresponds to a more pronounced change in the horizontal
directions.
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6.6. Doublon fraction: Molecule creation

A third main observable used in this work is the so-called doublon fraction, that is the
fraction of atoms siing on doubly occupied laice sites. As was detailed already in
section 5.4.1, interaction effects manifest themselves also in the doublon fraction and
can lead either to a suppression of doubly occupied sites for repulsive interactions
or to a strong enhancement of the doublon fraction in the aractive case.

In the experiment, the doublon fraction is measured by first increasing the laice
depth to typically V0 = 20Er in 200µs, a timescale that is adiabatic with respect to
interband transitions but fast compared to tunneling in the lowest band. Once in the
deep laice, where tunneling can be neglected (J = 23Hz), pairs of atoms siing on
the same laice site are converted into molecules using a magnetic Feshbach sweep
(cf. sec. 3.3.2)2. e ramp parameters were chosen such that all molecules were pho-
todissociated by the laice light (cf. sec. 3.4, A) before the end of the ramp. e
kinetic energy imposed on the dissociated atoms is on the order of half the detuning
of the laice light (∆ = 15THz) and leads to a fast escape of these atoms from the
trap.
By measuring either the total atom number (time-of-flight) or the density distribu-
tion (in-situ) of the cloud both with and without the Feshbach sweep we can infer
either the total doublon fraction or the spatial doublon distribution.
During the hold time needed for the Feshbach ramps, doubly occupied sites can al-
ready be lost due to light assisted collisions (cf. sec. 3.4). is process selectively
affects only doubly occupied sites and therefore leads to an underestimation of the
measured doublon fraction p, for which the experimental data has to be corrected.
e measured doublon lifetimes in a deep laice (Vlat = 24Er) are strongly inter-
action dependent and range from below < 40ms for aractive interactions (a =
−200 a0) over 70(10)ms in the non-interacting case to 310(70)ms for repulsive in-
teractions (a = 150 a0).

Due to the necessity to calculate the doublon fraction from atom numbers obtained
in different shots, this method is less accurate than alternative methods that rely on
dissociating the formed molecules using radio-frequency pulses and subsequently
separating the different spin states using the Stern-Gerlach effect during time-of-
flight [70]. However, the potential to observe the spatial doublon distribution is a
big advantage of the used method.

6.7. Transport coefficients

One of the most prominent observables in real condensed maer systems are trans-
port properties, i.e. the currents induced by an applied biases. Depending on the
applied bias, the current can either be an electric current, carried by the electric

2e programmed ramp speed was 5G/ms and the final programmed field was 190G. Owing to
the high inductance of the used coils, however, the real field showed a considerable lag compared
to the programmed values.
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charge of the electrons, or a thermal (magnetic) current carried by the energy (spin)
of the electrons.
In ultracold atoms, the observable corresponding to an electric current is the mass
flow, which can either be measured directly in-situ or through a measurement of the
momentum distribution. Due to the perfect periodicity of an optical laice, which
is by construction defect-free, directly applying a potential gradient does not lead to
a net flow of atoms but instead creates Bloch oscillations [27, 28, 118]. In order to
avoid these oscillations we studied mass transport in a homogeneous optical laice
where the net flow of atoms was driven by initial gradients in the chemical potential,
as will be discussed in section 10.

6.8. Spectroscopic techniques

In condensed maer experiments many different spectroscopic techniques are used
e.g. to study the dispersion relations of various quasiparticles like phonons or exci-
tons.
An important example is angle-resolved photoemission spectroscopy (ARPES), which
is one of the most powerful techniques to probe the energy and momentum distribu-
tion of the electrons in a material [215]. In the context of cuprate superconductivity,
ARPES measurements e.g. provided important information about the superconduct-
ing gap, the pseudogap and enabled a direct measurement of the Fermi surface [216].

Similar methods have been implemented in ultracold atom systems using radio fre-
quency photons in order to spin-flip atoms out of a (possibly strongly-interacting)
many-body state into non- or weakly interacting states [217].
In the interpretation of these measurements an additional complication arises due to
the inhomogeneity of the trap [218, 219]. While these methods have recently been
extended to momentum resolved detection [220] or to spatially resolving the ori-
gin of the spin-flipped atoms [221], it was, however, so far not possible to combine
spatial and momentum resolution into a single method.

Another important observable in condensed maer systems is the dynamical struc-
ture factor [222], which can be measured by inelastic neutron scaering [110] and
contains information e.g. about the phonon and magnon spectrum of the material.
In ultracold atom systems, an analogous probe is the use of stimulated two-photon
Bragg scaering, where both the momentum and energy transfer are given by the
differences in momentum and energy of the two photons involved.
is method was first used to measure the real momentum width of a BEC [223]
and was recently applied to study the momentum resolved excitation spectrum of
non-interacting and interacting bosons in an optical laice [224].

An important special case is the use of Bragg spectroscopy with vanishing momen-
tum in the laice, where the excitation can be provided by amplitude modulating the
potential depth without the need of additional beams [225]. In interacting fermionic
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systems in optical laices, this spectroscopy method can be combined with a mea-
surement of the doublon fraction [70, 226]. While this procedure does provide a di-
rect measurement of the on-site interaction energy, it cannot provide a general mea-
sure of possible many-particle gaps due to the restriction to zero quasi-momentum
transfer.

In this thesis a variation of this spectroscopy, which is colloquially referred to as
shaking spectroscopy, i.e. frequency modulation of the laice light, was used to cali-
brate the laice depths by measuring the band gap between the lowest and the first
excited band (cf. sec. 4.3.2).
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7. Overview over experimental cycle

is chapter gives a brief overview over the experimental sequence and the applied
cooling techniques. e usedmethods, laser-cooling and evaporative as well as sym-
pathetic cooling, are nowadays standard techniques and will only be recalled briefly.
e experimental setup and the first part of the cooling sequence are presented in
more detail in the PhD thesis of Tim Rom.

e experimental cycle starts with a two-species magneto optical trap (MOT) [227]
in which first several 107 40K atoms are trapped and laser-cooled. During the last
few seconds of the Potassium MOT the Rubidium MOT lasers are added and several
109 87Rb atoms are laser-cooled in the MOT as well. Together with a small offset
in the positions of the clouds, which is created by slightly imbalanced light intensi-
ties, this sequence minimizes the overlap between 40K and 87Rb during the presence
of the near-resonant MOT light, and thereby minimizes losses due to light-assisted
collisions. e MOT phase is followed by a short optical molasses phase [227] dur-
ing which primarily 87Rb is further cooled. Aer an optical pumping stage both 40K
and 87Rb are recaptured in a quadrupole trap and magnetically transported within
2 s over 40 cm into a UHV glass cell [228]. is two-chamber design offers two ad-
vantages: First, it allows the MOT to operate at a background pressure of around
5× 10−10 mbar, while keeping the pressure in the glass cell, where the evaporative
cooling takes place, below 10−11 mbar. Second, the optical access to the glass cell is
improved, as no MOT optics need to be integrated into the laice, dipole trap, and
imaging setup.

Aer the magnetic transport the atoms are loaded into an optically plugged qua-
drupole trap [2], where a first evaporative cooling stage takes place. is part of
the experimental cycle is described in more detail in the PhD thesis of orsten
Best. 87Rb is actively cooled using a standard radio frequency sweep while 40K is
sympathetically cooled by collisions with 87Rb. In order to prevent Majorana losses
at the magnetic field zero [35], we focus a tapered amplifier laser at λ = 760 nmwith
a waist of 20µm to the center of the quadrupole trap and plug the ”Majorana hole”
using its repulsive dipole potential (see Fig. 7.1,7.2).

In this manner we can reach 10×106 a̲t 2µK in thermal equilibriumwith 2×106 40K
aer 9 s of evaporation. During the last 170ms of this radio frequency sweepwe start
to overlap the quadrupole trap with a crossed beam dipole trap, which is described
in detail in section 4.2. By decreasing the current in the upper quadrupole coil and
applying additional offset fields, the quadrupole field is adiabatically transformed
into a homogeneous offset field. During this field ramp the magnetic field zero is
moved along the plug beam in order to avoid losses and depolarization.
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7. Overview over experimental cycle

Figure 7.1.: le: Magnetic potential of a quadrupole trap. In the center the magnetic
field vanishes, which leads toMajorana losses. middle: Repulsive potential of a tightly
focused blue-detuned laser in the transverse direction. right: Combined potential of
quadrupole trap and optical plug.
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Figure 7.2.: le: Atom numbers of 40K (red) and 87Rb (blue) aer the radio-frequency
forced evaporation in the plugged quadrupole trap as a function of the plug power.
right: e corresponding temperatures show that 40K and 87Rb are in good thermal
contact, as they reach the same temperature although only 87Rb is actively cooled.

Once in a pure dipole trap, both species are transferred into their hyperfine ground
states (87Rb |F=1,mF=1⟩; 40K |F=9/2,mF=−9/2⟩) by use of adiabatic radio-
frequency and microwave sweeps (rapid adiabatic passage, RAP). Subsequently, a
second stage of evaporative cooling is performed by reducing the dipole trap depth.
Aer 3 − 4 s of cooling we can reach an almost pure BEC of 87Rb together with a
quantum degenerate spin-polarized Fermi gas at T/TF = 0.16 − 0.18. Images of
such clouds are shown in figures 2.1 and 2.4.

In order to create a degenerate spin mixture of 40K we use an additional RAP pulse
on the |F=9/2,mF=−9/2⟩ to |F=9/2,mF=−7/2⟩ transition. By lowering the RF
power in this sweep we can reduce its transfer efficiency to 50% and thereby create
a superposition of both hyperfine states.
Subsequent collisions and inhomogeneities of the magnetic field lead to dephasing of
this superposition [229] and transform it into an incoherent spin mixture. It turned
out to be beneficial to perform the mixing sweep rather early during the cooling
sequence, where the entropy is still high, as this process creates additional entropy.

By lowering the dipole power below the trap boom for 87Rb, all bosons are evap-
orated away and the resulting purely fermionic spin mixture can be further cooled.
Aer total evaporation times of 6− 7 s in the dipole trap we can reach reduced tem-
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peratures on the order of T/TF & 0.10, which is at the limit of the used fiing
method (cf. sec. 2.2.3).

A typical experiment then consists of seing the desired dipole trap strength and
magnetic field and subsequently ramping up the optical laice before probing the
resulting state using one of the observables described in section 6.

Most theoretical calculations relevant for this thesis are performed using the grand
canonical ensemble, which yields the desired observables (e.g. density) as a function
of chemical potential and temperature. In order to compare theoretical and experi-
mental results, these parameters are adjusted such that the calculated distributions
reproduce the measured atom number and entropy per particle (cf. sec. 8). While the
atom number can be extracted from images taken in the laice, the entropy per par-
ticle is typically extracted from dedicated time-of-flight images taken in the dipole
trap.

One experimental issue in using this entropy as a parameter in the laice system is
the presence of technical heating due to e.g. scaering of photons, technical noise,
and collisions with background gas atoms. As a consequence, the experimentally
chosen timescales for changing parameters like the laice depth are always a com-
promise between both technical and non-adiabatic heating. Up to now, the rele-
vant adiabaticity timescales for inhomogeneous, strongly interacting fermionic sys-
tems are not known in general (cf. sec. 11.3), but the dynamic expansion measure-
ments presented in chapter 10 and other recent experiments [230] suggest that these
timescales can become surprisingly long for large interactions.
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8. Repulsive Fermi-Hubbard model

is chapter presents the first main result of this thesis, the observation and exper-
imental distinction of metallic and insulating states of the Fermi-Hubbard model,
including the fermionic Mo insulator. e main parts of this chapter are published
in [231] and [134].

Aer presenting the used measurement sequence, the theoretically expected results
are discussed and then compared to the experimental data.

8.1. Measurement sequence

In order to probe the different regimes of the repulsive Fermi-Hubbard model we
created quantum degenerate spin mixtures of the two lowest hyperfine states of
fermionic potassium and transferred them into a combination of a blue-detuned op-
tical laice and a red-detuned dipole trap. At the end of the cooling sequence de-
scribed in chapter 7 the dipole trap depth was slightly increased in order to prevent
further evaporation and the experiment started with N = 1.5− 2.5× 105 atoms at
a reduced temperature of T/TF = 0.15(3).
In this experiment, where large repulsive interactions were needed, the final cool-
ing was performed either at B = 220G above the (−9/2,−7/2) Feshbach reso-
nance (cf. fig. 3.2) or at B = 165G below the resonance. While the former field al-
lowed to access interactions ranging from non-interacting up to scaering lengths of
a = 150 a0, the later allowed us to additionally access higher values up to a = 300 a0
(B = 191.3G)without the need to cross the resonance. In principle, even higher val-
ues could be achieved by a closer approach to the resonance position atB0 = 202.1G
in practice, however, this was hindered by enhanced losses and heating in the laice.

e desired interaction was chosen by adjusting the magnetic field once the evapo-
rative cooling was completed and the final optical potentials were approached in the
following sequence: First, the optical laice was increased to a depth of 1Er dur-
ing a linear 7ms ”preramp”, followed by a linear 100ms ramp to the desired dipole
power before finally the laice depth was linearly increased to its final value of 8Er

in 50ms.
In the typically assumed limit of an adiabatic/isentropic evolution (cf. sec. 2.3), the
final state in the laice is completely determined by the entropy per particle S/N
together with the final compression Et/12J and interaction U/J (cf. sec. 5.7.1), and
is independent of the specific phase-space path. In other words, the final state in the
laice would only depend on the end point of the chosen sequence, but not on the
specific ramp. Note, however, that the ramp time needed to ensure adiabaticity does
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8. Repulsive Fermi-Hubbard model

depend on the chosen path in phase-space.
In the presence of technical heating rates (cf. sec. 11.2), it is therefore of paramount
importance to use a ramp sequence that is optimized with respect to the sum of
technical heating and non-adiabaticities. Empirically we found that the best strat-
egy is to first set the trapping frequency and the scaering length in a very weak
laice, where tunneling is still fast and the system is only weakly interacting, before
ramping up the laice to its final value. In the Hubbard regime even moderate in-
teractions, on the order of half the bandwidth or less, can substantially hinder mass
transport, as studied in later experiments (cf. sec. 10).

Aer a hold time of 12ms the in-situ density distribution was measured using phase-
contrast-imaging (cf. sec. 6.5) followed by a measurement of the quasi-momentum
distribution using a band mapping technique (cf. sec. 6.4) in the same experimental
run. Alternatively, the fraction of doubly occupied laice sites (doublons) was mea-
sured using Feshbach sweeps in order to convert atoms on doubly occupied laice
sites into Feshbach molecules (cf. sec. 6.6).

8.2. Theoretical expectation

All measurements are compared to DMFT (cf. sec. 5.6) calculations engineered in the
group of Prof. Achim Rosch at the University of Cologne and performed in the John
von Neumann Institute for Computing Jülich. Details of the numerical implementa-
tion can be found in [134].

At the experimentally realizable entropies magnetic order and the low temperature
phases of the Hubbard model can be neglected and only three regimes are relevant
in the homogeneous case:
For weak interactions there exist the compressible and conducting metallic phase of
delocalized atoms and the incompressible band insulator at maximum filling. While
the maximum filling at zero temperature is exactly two atoms per laice site, it is
reduced at finite entropies due to the density dependent entropy capacity (cf. fig.
5.5). For strong repulsive interactions and low enough entropy densities, the Mo
insulator appears in addition to the metallic and band insulating regimes at precisely
half filling.

Due to the inhomogeneity of the trap the filling factor is position dependent and
always decays from a maximum at the trap center to zero at the edge of the cloud.
As a consequence, several phases can coexist in different areas of the trap. Even in
the limiting cases of figure 8.1 the density always drops below unity filling near the
edge of the cloud, leading to a metallic outer shell: e cloud can be either purely
metallic (A), or contain a Mo insulating (B) or band insulating (C) core. Away from
these limits an even more complex scenario can arise, where a band insulating core
is surrounded by a first metallic shell above half filling, followed by aMo insulating
shell at half filling and finally a second metallic shell at lower density.
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Figure 8.1.: Illustration of the eigenstates of the trapped system in the limits of dom-
inating kinetic (A), interaction (B) or trap energy (C). (right) Resulting atom distribu-
tion aer a fast ramp into a deep laice - as used in measuring the doublon fraction
(cf. sec. 6.6).

e expected density distributions were calculated as a function of the characteris-
tic trap energy (compression) Et/12J for various interactions strengths U/12J and
several average entropies per particle. Figure 8.2 shows the resulting density distri-
butions for an average entropy per particle of S/N ≈ log(2) kB , where magnetic
ordering may become important in an harmonically trapped system.
For low compressions (Et/12J . 0.25) the whole cloud is metallic for all interac-
tions, while for sufficiently strong compressions a band insulating core is formed.
BeginningwithU/12J ≈ 1, a Mo insulating core is formed for compressions above
Et/12J & 0.25. AboveEt ≈ U/2, the central density rises above unity and the Mo
insulating core becomes a Mo insulating shell.
e experimentally relevant case of S/N ≈ log(4) kB (cf. fig. 8.3) exhibits the same
qualitative behavior.
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e incompressibility of the Mo insulating phase can for instance be seen in the
central density, which is ploed in figure 8.4. For low temperatures the central den-
sity remains fixed at half filling over a large range of compressions. is indicates
a vanishing electronic compressibility ∂n/∂µ (cf. sec. 5.2), as the central chemical
potential varies with the compression. Due to the compressibility of the surround-
ing metallic shell, however, the global compressibility of the cloud stays finite in all
cases (cf. fig. 8.9).

Together with these density distributions the DMFT calculations also yield the dou-
blon distribution, which are presented in section 8.4 together with the experimental
data.

8.2.1. Entropy distribution

As shown in the previous section the DMFT calculations predict a fermionic Mo
insulator in an inhomogeneous system at an average entropy per particle of S/N ≈
log(4) kB . is is in stark contrast to the homogeneous system, where the maximum
entropy per particle in the Mo phase is given by S/N = log(2) kB (cf. sec. 5.4.2).

e reason for this difference lies in the density dependent entropy capacity of the
Hubbard model (cf. sec. 5.4.2): Even though the entropy capacity per laice site
vanishes for small filling factors, the entropy capacity per particle in fact diverges
(cf. fig. 5.5). Intuitively speaking, the number of laice sites an atom can choose
from diverges in the low density limit, leading to a diverging entropy capacity per
particle. As a consequence, for the same temperature atoms at the cloud edge carry
much more entropy (cf. fig. 8.5) than atoms at the center. is entropy redistribu-
tion enables the formation of Mo insulating regions with entropy densities below
log(2) kB in the trap at high average entropies. Furthermore, this redistribution of
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8. Repulsive Fermi-Hubbard model

entropy towards the low density regions can be used to implement further cooling
schemes (cf. sec. 11.1).
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Figure 8.5.: Entropy distribution for U/12J = 1.5 and two average entropies. e
solid lines denote the average entropy per laice site and the slashed lines denote the
average entropy per particle. (Data taken from [134])

8.3. Cloud size and compressibility

Within the local density approximation (cf. sec. 5.7.1), the in-situ density distribu-
tion allows one to measure the functional dependence of the density on the chemical
potential in a single shot (cf. sec. 6.5). As shown in figure 8.6 (column A), the ex-
istence of the Mo insulating plateau (A2) or a Mo insulating shell (A3) could in
principle be directly deduced from an inspection of the density profiles. In the ex-
periment, however, only the column density can be recorded (cf. sec. 6.5) and the
visible signatures of the Mo insulator are washed out by the integration along the
line of sight. As a consequence, a quantitative comparison between the numerically
calculated distributions (B) and the experimentally recorded ones (C) is needed in
order to reliably identify the different phases.

8.3.1. Rescaled cloud size

e comparison between numerical and experimental density distributions was per-
formed using the cloud sizeR, which denotes the expectation value of the transversal
position operator R̂ =

√
⟨x̂2 + ŷ2⟩:

R =

∫
R2(x

2 + y2)nc(x, y) dA∫
R2 nc(x, y) dA

(8.1)
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where nc(x, y) denotes the column density. Typically the cloud size is given in
rescaled units:

Rsc = R/(γNσ)
1/3 (8.2)

Here Nσ denotes the atom number per spin state and γ = ωv/ω⊥ ≈ 4 is the aspect
ratio of the trap (cf. sec. 4.2.1).

In thermal equilibrium the rescaled cloud size depends only on the compression
Et/12J , the strength of the interaction U/12J and the entropy per particle, which is
given by the initial temperature (T/TF ) in the pure harmonic trap. Within the local
density approximation (cf. sec. 5.7.1) there remains no dependence of these rescaled
units (Rsc vs. Et) on the atom number. e use of these units therefore allowed us
to greatly reduce the experimental noise, as the main noise source are shot-to-shot
fluctuations in the atom number.
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8. Repulsive Fermi-Hubbard model

In contrast to the numerical data, where the cloud size R was extracted by direct
integration of equation 8.1, imaging noise at large distances would add considerable
noise in the case of experimental data. In order to avoid this problem, the phase-
contrast images were first fied using the following adapted Fermi-Fit function:

F (x, y) = a Li2

(
−100 e

− (x−xc)
2

2σ2
x

− (y−yc)
2

2σ2
y

)
+ b+ c

√
(x− xc)2

σ2
x

+
(y − yc)2

σ2
y

(8.3)

Here Li2 denotes the di-logarithm, xc, yc, σx, σy, a, b, c are free fit parameters and the
last term models a broad funnel-shaped background, which is an artifact of phase-
contrast imaging (cf. sec. 6.5). As can be seen in figure 8.7, this function describes
the measured distributions much beer than a Gaussian. Indeed the adapted Fermi-
Fits yield on average 8% (non-interacting cloud) and 23% (interacting cloud with
U/12J = 1.5) smaller squared residuals compared to a Gaussian fit function in-
cluding the last background term. Performing the integral of eqn. 8.1 over the fit
function results in the imaged cloud size being given by:

R =
√

1.2642 (σ2
x + σ2

y)− η2 (8.4)

Here η denotes the imaging resolution (radius of Airy disc < 3µm) of the imaging
setup, which is well below one third of the smallest used cloud size.
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Figure 8.7.: Comparison of different fit functions. e azimuthally averaged data
(dots) is shown together with a fied Gaussian (red line) and an adapted Fermi-fit
(black line). Both fits were performed on the full 2D distribution before averaging.
e influence of the small deviation at the trap center on the resulting atom number
(cloud size) is below 1% (0.1%), as the statistical weight of each averaged data point
increases linearly with the distance from the cloud center.

e resulting cloud sizes are ploed in figure 8.10 together with the theoretical pre-
diction (cf. fig. 8.8). In order to perform the rescaling and to determine the com-
pression, several parameters need to be known precisely: While trap frequencies
and laice depth were calibrated independently (cf. sec. 4.2.1,4.3.1 and 4.3.2), this
turned out to be impossible in the case of the absolute atom number. Although rel-
ative atom numbers can easily be deduced from fits to absorption images, a precise
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8.3. Cloud size and compressibility

calibration of the column density in terms of the recorded optical density is limited
by uncertainties due to saturation, polarization effects and optical pumping. Within
their uncertainty, the resulting atom numbers nonetheless agree with an indepen-
dent calibration using the in-situ cloud size of non-interacting atoms in the pure
harmonic trap.

It turned out, however, that for both calibrations the resulting uncertainty (≈ 15%)
is larger than the scaer of the rescaled in-situ cloud sizes in the laice: While the
cloud size in the harmonic trap scales asR ∝ N1/6 [38] for non-interacting fermions,
the restriction to the lowest band dictates R ∝ N1/3 in the laice, rendering this
cloud size much more sensitive to the total atom number. Accordingly, the precise
adjustment of the atom number calibration was performed using the non-interacting
cloud sizes in the laice at medium high compressions, where the cloud is mostly
band-insulating and the cloud size becomes independent of the compression.

8.3.2. Results

e theoretically expected cloud size is ploed in figure 8.8 for the experimentally
relevant initial temperature of T/TF = 0.15. In the limit of small compressions
the cloud is very extended and the central density becomes very low, resulting in
metallic states for all interactions.
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Figure 8.8.: Numerically calculated cloud sizes of the interacting spin mixture ver-
sus compression for various interactions U/12J = 0, 0.5, · · · , 2.5 (increasing cloud
sizes) and an entropy per particle, which corresponds to a temperature of T/TF =
0.15 in the harmonic trap. e dashed line indicates the Mo insulating plateau. e
remaining slope at the Mo plateau is caused by the compressible metallic shells sur-
rounding the incompressible Mo insulator. (Data taken from [134])

Focusing first on the lower black line, which denotes the non-interacting case, one
sees that the cloud size decreases monotonically, approaching a limiting value for
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strong compressions. is limit is due to the formation of an incompressible band
insulator, where the maximum density is limited by the Pauli principle. It is a direct
consequence of the fermionic nature of the atoms combined with the restriction to
the lowest band of the laice. In a pure harmonic trap there exists no minimum
cloud size as there is a gapless continuum of higher states in which the atoms can
be excited. In the laice, a further compression of the cloud is only possible if either
Fermi energy or temperature are on the order of the band gap, such that atoms can
be excited into higher bands.

is behavior can be described quantitatively by defining the global compressibility
of the cloud:

κRsc = − 1

R3
sc

∂Rsc

∂(Et/12J)
(8.5)

which is the derivative of the cloud size with respect to the compression. In the non-
interacting case the compressibility, which is shown in figure 8.9, decreases mono-
tonically with increasing confinement and vanishes in the band-insulating limit.
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Figure 8.9.: Numerically calculated global compressibility and temperature of the in-
teracting spinmixture versus compression for various interactions and an entropy per
particle corresponding to a temperature of T/TF = 0.15 in the harmonic trap. le:
e formation of the Mo insulator manifests itself as a local minimum in the global
compressibility. right: e repulsive interaction leads to a stronger localization of
the particles and therefore increases their spin entropy, which leads to a decrease in
temperature. (Data taken from [134])

In the case of a repulsive interaction the resulting cloud size is larger than in the
non-interacting case, indicating that repulsive interactions tend to lower the den-
sity. For strong enough interactions the formation of the Mo insulating core/shell
leads to an intermediate plateau in the cloud size Rsc ≈ 0.52 that is significantly
larger than the band insulator at the same entropy. For stronger compressions the
harmonic confinement starts to dominate over the interaction energy and the cloud
size shrinks faster again, as a metallic core above half filling is formed. For strong
compressions the cloud size approaches that of the non-interacting band insulator.
is formation of the Mo insulating region at intermediate compressions leads to a
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characteristic feature in the compressibility, namely the appearance of a local min-
imum. As shown in figure 8.9, this local minimum appears first for U/12J ≈ 1,
where the Mo insulator starts to form, and becomes more pronounced for stronger
interactions, when the Mo insulating region becomes larger. For a given interac-
tion strength it is most pronounced for the coldest temperatures and vanishes above
a critical entropy (cf. fig. 8.11). e global compressibility is therefore an ideal ob-
servable to study the formation and melting of a fermionic Mo insulator.

For high compressions a second interesting effect can appear: At constant entropy
and medium interaction strengths the cloud size can become slightly smaller than
in the non-interacting case due to the Pomeranchuk effect [232, 233]: Repulsive in-
teractions lead to more localized particles. is increases their spin entropy or—at
constant entropy—leads to a colder temperature in the laice [191], as can be seen
in figure 8.9.

e same behaviour can also be seen in the experimental results, which are shown
in figure 8.10: e non-interacting data agrees very well with the theoretical expec-
tation for all compressions up to Et/12J ≈ 2. is shows that the chosen laice
ramp is adiabatic on the one-particle level for all trap frequencies. e insets (A-E)
show the simultaneously measured quasi-momentum distribution, which nicely il-
lustrates the observed crossover from a purely metallic phase (A-C), characterized
by a partly filled Brillouin zone to an almost completely band-insulating cloud (E)
with an evenly filled Brillouin zone. While such an evenly filled Brillouin zone could
also result from a strongly heated cloud or localized atoms, the vanishing compress-
ibility of the experimental data (cf. fig. 8.11) is a direct proof of the formation of an
incompressible (band-) insulating state.
At very high compressions (Et/12J & 2), the second Bloch band gets slightly popu-
lated during the laice ramp-up (cf. sec. 4.3.2), which leads to smaller cloud sizes for
all interactions, because a small number of atoms in a nearly empty band can carry
a considerable amount of entropy and thereby lower the temperature.

In the interacting case the lines in figure 8.10 represent a direct prediction without
free parameters! In general we achieved a good agreement between theory and ex-
periment, showing all the characteristic features expected in this system: In the limit
of low compressions the density becomes small and interaction effects are unimpor-
tant. For growing compressions, the interacting clouds become significantly larger
than in the non-interacting case, indicating that the expected suppression of dou-
bly occupied sites (cf. sec. 5.2.1) leads to lower densities. e size differences show
a maximum around Et/12J ≈ 0.7, where the Mo-insulator is expected in the
strongly interacting case, and then decrease again for higher compressions, where
the state becomes dominated by the trapping energy. In the case of strong interac-
tions (U/12J = 1.5) we find the onset of a region (0.5 < Et/12J < 0.7) where the
cloud size decreases only slightly with increasing harmonic confinement, whereas
for stronger confinements the compressibility increases again. is is consistent
with the formation of an incompressible Mo insulating core surrounded by a com-
pressible metallic shell, as can be seen in the corresponding in-trap density profiles
(cf. fig. 8.3). For higher confinements, an additional metallic core (1/2 < ni,σ < 1)
starts to form in the center of the trap and the cloud size decreases again.
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Figure 8.10.: Cloud sizes of the interacting spin mixture versus compression. Mea-
sured cloud sizeRsc in a Vlat = 8Er deep laice as a function of the external trapping
potential. Dots denote single experimental shots, lines denote the theoretical expec-
tation from DMFT for an initial temperature T/TF = 0.15. e insets (A to E) show
the quasi-momentum distribution of the non-interacting clouds (averaged over sev-
eral shots). F: Resulting cloud size for different laice ramp times at Et/12J = 0.4
for a non-interacting and an interacting Fermi gas. e arrow marks the ramp time
of 50 ms used in the main graph. (Data taken from [231])

e emergence of the Mo insulator can also be seen from the global compress-
ibilities shown in figure 8.11, where a local minimum around Et/12J ≈ 0.7 can
be observed in the strongly interacting case. While the shape of the minimum dif-
fers from the theoretical expectation, its position agrees very well with the largest
extension of the Mo insulating phase in the numerical calculations (cf. fig. 8.3).

e only region with considerable deviations between experiment and theory lies
below the Mo-insulating region at moderately weak compressions Et/12J . 0.4.
While in the non-interacting case the cloud sizes show perfect agreement between
theory and experiment, growing deviations appear for increasing interactions, where
the observed cloud sizes are systematically larger than theoretically expected. e
most probable explanation for this discrepancy are non-adiabaticities during the
loading: In this compression regime, the cloud shrinks considerably during the main
laice ramp up (cf. fig. 9.4), as its kinetic energy gets strongly reduced during the
loading (cf. sec. 4.3.2).

Although a variation of the used ramp time (cf. fig. 8.10(F)) seems to suggest that
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display the theoretically expected results for an initial temperature T/TF = 0.15.
e influence of the initial temperature on the calculated compressibility is shown in
(d) for U/12J = 1.5. (Data taken from [134])

the resulting cloud size depends only weakly on the used ramp time, this may in
fact be misleading, as the resulting cloud size incorporates the effects of both non-
adiabaticities and technical heating during the ramp sequence. In the non-interacting
case (gray) this results in a pronouncedminimum of the resulting cloud size: While a
too short ramp time increases the cloud size due to non-adiabaticies, a too long ramp
time heats the cloud considerably, resulting again in a larger cloud. In the case of
strong interactions (blue), both effects could partially compensate each other, lead-
ing to the observed weak dependence of the cloud size on the used ramp time, while
in truth there exists a much longer adiabaticity timescale.
is explanation is supported by our observation that interactions indeed dramat-
ically increase the timescale needed for mass transport in this system, as will be
shown in chapter 10. Another possible source of non-adiabaticities comes from the
decay time of excess doublons, see following section.

8.4. Doublon fraction

In addition to the global compressibility measurements, the fraction of atoms on
doubly occupied laice sites (doublon fractionD) was measured for magnetic fields
above the Feshbach resonance (U/12J = 0, 0.5, 1) by converting all atoms on dou-

111



8. Repulsive Fermi-Hubbard model

bly occupied sites into molecules using a linear magnetic field ramp (0.2ms/G) over
the Feshbach resonance (cf. sec. 6.6). e doublon fraction, which is ploed in fig-
ure 8.12 together with the theoretical expectation, gives insight into the local on-site
physics of the system. In combination with the in-situ size measurements, this frac-
tion can be compared for different interaction strengths at constant cloud size Rsc.
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Figure 8.12.: Doublon fraction versus compression for different interaction strengths.
e yellow circles indicate the doublon fraction for a constant cloud size Rsc = 0.53
(cf. fig. 8.10). Dots correspond to experimental data where the error bars denote the
standard deviation of at least four measurements, while the lines are the DMFT pre-
dictions. (Data taken from [231])

In the limit of weak confinement densities are low and the doublon fractionD tends
to zero, regardless of the strength of the repulsive interaction.
For intermediate compressions on the other hand, the doublon fraction depends cru-
cially on the interaction. At a constant sizeRsc = 0.53 the doublon fraction is around
40% for a non-interacting cloud but only around 5% for an intermediate repulsive
interaction U/12J = 1 (yellow circles in fig. 8.12). In this regime of repulsive inter-
actions, it is energetically favorable to reduce the number of doubly occupied sites
despite the cost in potential and kinetic energy. Consequently, different compres-
sions are needed to reach the same cloud size for different interactions (cf. fig. 8.10).
e observed suppression of the doublon fraction at intermediate compressions di-
rectly shows the emergence of strong correlations in the systemwhen the interaction
energy U becomes comparable or larger than the bandwidth 12J .

For strong compressions, where the trap dominates, the measured doublon fraction
becomes comparable for all interactions, as the atom distributions are expected to
contain a large band-insulating core in all cases. e pair fraction is limited to values
smaller than 60% due to the finite entropy per particle, which limits the filling factor
in the band-insulating state (cf. sec. 5.4.2).
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Although the non-interacting and the slightly repulsively interacting curveU/12J =
0.5 match the DMFT results, we see deviations for stronger repulsive interactions
(U/12J = 1). In this case, the measured pair fraction is in general ∼ 10% higher
than predicted by theory while the qualitative behavior agrees very well.
is can again be explained by non-adiabaticities during the loading: In the first
phases of the loading, where U/J is still small, doublons will form similarly to the
non-interacting case. Most of these doublons should decay again later in the se-
quence, when U/J becomes important. Recent measurement in the group of T.
Esslinger (ETHZ) have shown, however, that the decay time of excess doublons
scales almost exponentially in U/J , and is on the order of the used ramp times for
the relevant interactions [230, 234].

For strong repulsive interactions a suppression of the doublon fraction with respect
to the non-interacting case occurs for all temperatures in the laice below kB Tlat ≈
U , regardless of the formation of an incompressible Mo insulating phase in the
inhomogeneous system. Even for a compressible purely metallic phase with ni,σ <
1/2 the doublon fraction vanishes completely in the strongly interacting regime (cf.
sec. 5.4.1). As a consequence, the doublon fraction alone cannot prove the formation
of a Mo insulator.

8.5. Conclusion and outlook

By measuring the global compressibility and the doublon fraction of repulsively in-
teracting fermionic atoms in an optical laice it was possible to explore different
regimes of the repulsive Fermi-Hubbard model. e global compressibility allowed
for a direct distinction between compressible Fermi liquid states and Mo-/band-
insulating states. By comparing clouds at constant density, the suppressed dou-
blon fraction at strong interactions directly signaled the entrance into the strongly-
correlated regime.

At present, the loading into the laice is limited by a combination of technical heat-
ing, which limits the usable ramp times, and non-adiabaticities due to the limitation
of mass transport by interactions and the long decay time of excess doublons.

In order to quantify the total heating, the temperatures before loading into the lat-
tice and aer a return to the dipole trap with a reversed sequence were compared.
We found a rise in temperature between 0.010(5)T/TF for a non-interacting cloud
and 0.05(2)T/TF for a medium repulsion of U/12J = 1 at compressions around
Et/12J = 0.5. e heating increased both for very low compressions, where mass-
transport limitations are more pronounced and very high compressions, where light
assisted collisions become more important due to the higher density.

e good agreement between the experimental data and the numerical calculations,
which assume adiabatic loading and an initial temperature of T/TF = 0.15, indi-
cates that the actual initial temperatures lie rather at the lower end of the measured
temperature range T/TF = 0.15(3).
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8. Repulsive Fermi-Hubbard model

For low enough initial temperatures1 the system is expected to enter an antiferro-
magnetically ordered phase. In order to realize this state experimentally, the best
loading sequence would be to start at a higher trap frequency, such that the cen-
tral density in the harmonic trap matches the density of the Mo insulator nhar ≈
1 / (λ/2)3 and to decrease the harmonic confinement during the loading of the lat-
tice, thereby minimizing the need for mass redistribution in the laice.

Straightforward extensions of the measurements in this chapter include studying
the effects of spin imbalance on the system and the extension to the ternary Mo
insulator [184] in a mixture of three hyperfine states. In the case of one atom per
laice site three body losses should be suppressed and the atoms form a Heisenberg
spin model with approx. SU(3) symmetry [236] and an enhanced entropy capacity
of S/N = log(3)kB , compared to S/N = log(2)kB in the binary case.
For a broken SU(3) symmetry, that is different interaction strengths between the
three components, even more complex states are expected, including color selective
and paired Mo insulator states [237, 238].

Furthermore, the method of directly measuring the global compressibility can be
readily extended to bosonic systems and Bose-Fermi mixtures.

1Predictions range from T/TF ≈ 0.035 [160] to T/TF ≈ 0.058 [235] for the homogeneous system.
In a trapped system the values will be considerably higher due to the inhomogeneous entropy
distribution (cf. sec. 8.2.1,11.1).
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9. Attractive Fermi-Hubbard model

In a second set of experiments we studied the equilibrium states of the aractive
Hubbard model, using the same techniques as in the previous chapter. e arac-
tive Fermi-Hubbard model is an intriguing many-body system, which allows one to
study the effects of fermionic pairing in a laice system in a wide parameter range:
Similarly to free-space, a bound state of two particles in an otherwise empty sys-
tem exists only above a certain threshold in the interaction strength (U/J . −8,
cf. sec. 5.3). In the many-body case on the other hand, the BCS mechanism predicts
Cooper pairing for all interactions. is allows one to study the so-called BEC-BCS
crossover (cf. sec. 3.3.3) in the laice. An important difference lies in the position of
the crossover, which occurs at a finite interaction strength and not at the position of
the free space Feshbach resonance, where enhanced heating and losses are observed.

Away from special commensurate situations like half-filling, the ground state is a
superfluid state for all interactions, analogous to free space (cf. sec. 5.5.3). Its char-
acter changes gradually from a BCS like state for small interactions to a BEC of
tightly bound pairs for strong interactions (cf. sec. 3.3.3). In stark contrast to free
space, however, where the critical temperature for superfluidity in the BEC limit
approaches that of non-interacting bosons [45], the effective hopping of the pairs
(Jpair ∝ J2/U), and thereby the critical temperature, vanishes in the strongly in-
teracting limit (cf. sec. 5.5.3). In addition, the pairs in the strongly interacting limit
don’t form a weakly interacting Bose gas, but a gas of hard-core bosons, as the Pauli
principle forbids the occupation of a single laice site by more than one pair. is
highlights the differences between particles in free space and in the lowest band of
a laice.
But also above Tc the occurrence of pairing has dramatic consequences on the many-
body state, e.g. the existence of the pseudogap regime (cf. sec. 5.5.3).

9.1. Temperature tracking

By measuring the cloud size at constant compression and low densities it was possi-
ble to essentially track the temperature as a function of the interaction. In a simpli-
fied picture the extension of the low-density cloud is connected to the temperature
via:

1

2
meffω

2r2max ≈ EF + kBT (9.1)

A rising temperature, at otherwise unchanged parameters, leads to a larger cloud, as
states with higher potential energies become accessible.
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9. Aractive Fermi-Hubbard model

Tracking the temperature at constant entropy provides valuable information about
the density of states, as can easily be seen from the usual relation between temper-
ature and entropy in a canonical ensemble [22]:

S = −kB
∑
i

pi ln(pi) (9.2)

with pi = exp(−βEi)/Z (β = 1/kBT ) being the probability to find the system
in the micro state i with energy Ei and Z =

∑
i exp(−βEi) being the canonical

partition function.
By introducing the density of states ρ(E) of the many-body system and exchanging
the sum for an integral this becomes:

S = −kB
∫
E

ρ(E)
exp(−βE)

Z
ln

exp(−βE)

Z
dE (9.3)

In the experimentally relevant case of constant entropy (cf. sec. 2.3), equation 9.3 is
an implicit formula for the temperature.

e resulting temperature of the system depends on the density of states ρ(E) at
all energies smaller than the sum of Fermi energy EF and thermal energy kBT :
E . N(EF + kBT ).
is connection between the temperature and the density of states allows one in
principle to observe changes in the low energy sector of the system at relatively
high temperatures. As a specific example it enabled us to observe correlation effects
near the BEC-BCS crossover by a rise in temperature; although our entropies were
too high to observe superfluidity.

e theoretical arguments and simulations describing the effects presented in this
chapter where developed by Maria Moreno-Cardoner (Mainz, Germany), Takuya
Kitagawa and Eugene Demler (Harvard, USA), Ehud Altman (Rehovot, Israel) and
Belén Paredes (Mainz, Germany) and the results in this chapter are published in [239].

9.2. Effects of pairing

e influence of pairing on the thermodynamics of the gas can –in some limiting
cases– already be seen in the maximum entropy capacity:
e entropy capacity of a quantum system is directly related to the dimensionality
dH = dim(H) of its Hilbert space.

Smax = max

(
−kB

∑
i

pi ln(pi)

)
= −kBdH

1

dH
ln
(

1

dH

)
= kB ln(dH) (9.4)
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9.2. Effects of pairing

9.2.1. Two atoms in a double well - a toy model

In the minimal model of one spin-up and one spin-down particle in a double well,
which is shown in figure 9.1, the entropy capacity in the non-interacting case is
kB ln(4). In the limit of strong aractive interactions (|U | ≫ J, kBT ), the entropy
capacity is reduced by a factor of two, as only the two configurations with both
particles in the same well remain energetically accessible.

Non-interacting: U=0 Infinite attraction: U=-∞

size needed to store log(4) kB entropy: dim(H)=4

2 possible configurations: 
dim(H)=2

4 possible configurations: 
dim(H)=4

-U -U

N=2 T>>J
 

S=kBln4

dim(H)=4 dim(H)=4

Figure 9.1.:Accessible state and resulting entropy capacity of a minimal model of two
fermions in a double well.

In a double well model, adiabatically increasing the interaction at a constant entropy
of kB ln(4) would result in a strong temperature rise, as the temperature must re-
main large compared to the interaction (kBT ≫ |U |). Alternatively, the system
would need to expand to four laice sites in order to store all the entropy.
In the case of an harmonically trapped system at finite temperature, isentropically
increasing the interactions will therefore result in a moderate temperature increase,
such that higher lying laice sites become accessible, and consequently lead to an
expansion of the cloud.

9.2.2. Zero tunneling limit

In the zero tunneling limit the Hubbard hamiltonian reduces to a sum of uncou-
pled, local hamiltonians for each laice site that can be solved analytically [239].
In this limit, which neglects the kinetic energy of the particles, an increasing arac-
tive interaction progressively suppresses singly occupied laice sites and the system
evolves from a non-interacting spin mixture into a gas of spinless, hard-core pairs.
In a similar manner, an increasing repulsive interactions progressively suppresses
doubly occupied sites (cf. sec. 5.2.1, 8.4).
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9. Aractive Fermi-Hubbard model

At zero entropy (T = 0) the cloud size in the non- or aractively interacting case
is given by the smallest size (R0) compatible with the Pauli principle. is max-
imally packed state, which consists only of doubly occupied sites, minimizes both
the potential energy due to the trap and the interaction energy and corresponds to a
perfect band insulator. For repulsive interaction the cloud size increases due to the
competition between interaction and potential energy.
At constant, finite entropy the cloud size shows a minimum for vanishing interac-
tions and increases for both repulsive and aractive interactions due to the reduced
entropy capacity. In the aractive case the strongly interacting cloud carries only
half of the entropy of the non-interacting cloud [239] at the same cloud size.

9.2.3. Finite tunneling

At finite tunneling the above situation gets slightly modified due to the kinetic en-
ergy of the particles. is is illustrated in figure 9.2, where the results of an exact
diagonalization calculation in a finite size one-dimensional system are shown. e
simulation was performed by Maria Moreno-Cardoner and will be analyzed in detail
in her PhD thesis.
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Figure 9.2.: Numerical simulation of the cloud size as a function of interaction. right:
ecloud size at finite entropyS/N = 0.56 kB shows the interplay between the effect
of pairing on the kinetic energy and on the entropy capacity. upper le: Ground state
cloud size. lower le: Cloud size increase∆R from S/N = 0 kB to S/N = 0.56 kB .
Data courtesy of Maria Moreno-Cardoner [239].

Even though there are crucial differences between 1D and 3D with respect to the
existence of two-particle bound states and the density of states, nonetheless all prin-
cipal effects show up in this calculation. As illustrated in the upper le panel of
figure 9.2, the zero temperature cloud size for finite tunneling is larger than in the
zero tunneling case, as the ground state nowminimizes the sum of potential, interac-
tion and kinetic energy. In the case of a dominating trap Vt ≫ J, |U |, kinetic energy
can be neglected and the cloud consists of a perfect band-insulator with two atoms
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9.2. Effects of pairing

per laice site and cloud size R0. For decreasing confinement, however, kinetic en-
ergy becomes important and leads to larger cloud sizes, as the band-insulator gives
way to metallic states (cf. sec. 4.3.2).
For strong aractive interactions the cloud consists of tightly bound pairs, as dis-
cussed in chapter 5.3. Since their kinetic energy vanishes in the strongly interacting
limit (Jpair ∝ J2/U), the cloud again approaches a perfect band-insulator. Repulsive
interactions on the other hand again suppress the double occupancy of laice sites
and increase the cloud size.

At finite entropy the aforementioned decrease of the local entropy capacity comes
into play and is clearly visible in the increase of the cloud size. As shown in the
lower le panel of figure 9.2, this effect depends strongly on the confinement. While
the increase in cloud size is nearly independent of the interaction in the strongly
confined limit, it develops a very pronounced interaction dependence in the weak
confinement regime: While finite entropy results only in minor size increase in the
non-interacting or repulsively interacting case, the formation of pairs leads to a large
increase in cloud size for aractively interacting atoms.
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Figure 9.3.: Numerical simulation of the doublon fraction in a 1D model. le: At zero
temperature an increasing confinement always increases the doublon fraction. right:
At finite entropy, however, the doublon fraction decreases with increasing confine-
ment for large aractive interactions. Data courtesy ofMariaMoreno-Cardoner [239].

e competition between these two interaction effects, i.e. the shrinking of the zero
temperature cloud size and the strong increase in the entropy effects, results in a
shi of the minimum cloud size to finite aractive interactions, as can be seen in the
main panel of figure 9.2.

e formation of pairs and its interplay with the entropy capacity can also be seen in
the doublon fraction, which is shown in figure 9.3: In the zero temperature case (le),
the doublon fraction increases monotonically with both increasing confinement, i.e.
increasing density, and increasing aractive interactions.

At finite entropy, however, an increasing confinement leads to an increasing tem-
perature (cf. fig. 8.9), which becomes comparable to or larger than the interaction
energy (kB T ∼ U). As a consequence, the effect of the interaction on the doublon
fraction decreases with increasing confinement (cf. sec. 8.4). is leads to an abnor-
mal behaviour for aractive interactions, where the doublon fraction decreases for
increasing confinement, cf. figure 9.3, right panel.
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9. Aractive Fermi-Hubbard model

9.3. Experimental sequence

e key ingredient to experimentally observe the aforementioned effects once again
was the combination of a red-detuned dipole trap and a blue-detuned optical laice,
which allows an independent control of the confinement energy Et and the laice
depth and thereby offers the possibility to realize low density systems with large
atom numbers.

Aer evaporation, the dipole trap depth is ramped in 100ms to the desired value of
the external confinement (ω⊥ = 2π×20 to 70Hz) and the magnetic field is adjusted
to set the scaering length (cf. sec. 3.3). In this way, negative scaering lengths up to
a ≈ −400 a0 can be reached, before a further approach to the Feshbach resonance is
hindered by enhanced losses and heating. Subsequently, the optical laice is linearly
increased to a potential depth V0 = 0 to 9Er with a ramp rate of 7ms/Er. We used
the same adapted Fermi-Fit as in the repulsive case (cf. eqn. 8.3) to extract the cloud
size from in-situ phase-contrast images taken along the short, vertical axis of the
trap (cf. sec. 6.5) or measured the doublon fraction by converting atoms on doubly
occupied laice sites into molecules (cf. sec. 6.6).

9.4. Experimental results

eprincipal experimental result is presented in figure 9.4, where the cloud size (top)
and the doublon fraction (boom) are shown as a function of the scaering length
for various laice depths.
In the pure dipole trap (dark gray) the change in scaering length has no measur-
able effect on the cloud size, as the resulting interaction energies can be neglected
in comparison to the Fermi energy.
is changes dramatically in the laice, where interaction effects are strongly en-
hanced by the increased on-site density and, more importantly, the reduction of the
kinetic energies (cf. sec. 4.3.2): As in the previous chapter (cf. fig. 8.10), increasing
repulsive interactions lead to larger cloud sizes. Similarly, small aractive interac-
tions result in slightly smaller clouds. For larger aractive interactions, however, the
cloud sizes increases again. We observe the expected minimum at small aractive
interactions1. e minimum becomes more pronounced and ”sharper” for deeper
laices, where smaller scaering lengths are sufficient to create the same effective
interaction strength U/J .

is at first glance counter-intuitive or anomalous expansion of the cloud for increas-
ing aractive interactions can be understood intuitively by considering the thermo-
dynamic arguments presented before. In order to further check this explanation, we

1Compared to the plots in [239], the analysis presented here uses an updated parametrization of the
Feshbach resonance. is uses a new measurement of the zero-crossing of the scaering length,
which is based on the free expansion of an initially localized cloud in a homogeneous Hubbard
model (cf. sec. 10.3.5).
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Figure 9.4.: Cloud size and doublon fraction as a function on interaction. top: Mea-
sured cloud size vs. scaering length for various laice depths. Dots represent the
running average over three experimental shots. bottom: Corresponding doublon frac-
tion. Dots denote the average over at least five consecutive measurements, with the
standard deviations shown as error bars. Lines are guides to the eye. Data were taken
in a fixed external dipole trap (ω⊥ = 2π×25Hz, aspect ratio γ ≈ 4) at a fixed entropy
before loading of the laice of S/N = 1.42(26) kB (T/TF = 0.15(3))

additionally measured the doublon fraction for the same experimental parameters
(cf. fig. 9.4, boom).

In the non-interacting case there exist no correlations between the different spin
components and the number of doubly occupied sites is given by the integral over
the squared density (cf. sec. 5.4.1). In comparison to the non-interacting case we ob-
serve a strong increase in the doublon fraction for increasing aractive interactions.
is increase directly signals the occurrence of strong correlations between the spin
components, as the mean density simultaneously decreases due to the expansion.
e high observed doublon fractions of up to 80% confirm the assumption that in
this limit the cloud consists mostly of tightly bound on-site pairs.

e vertical, dashed red line in figure 9.4 denotes the threshold for the existence of a
two-body bound state (U/J ≈ −8, cf. sec. 5.3) in the deepest used laice (V0 = 9Er,
red). At this interaction strength one would expect strong correlations to appear in
the case of two particles in an otherwise empty system.
e fact that the observed minimum in cloud size appears for much smaller inter-
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9. Aractive Fermi-Hubbard model

actions hints towards a many-body origin of the pairing, as expected by the Cooper
instability (cf. sec. 3.3.3). e system is in the so-called pseudogap or preformed pair
regime where bound pairs have formed but did not condense yet (cf. sec. 5.5.3).

9.4.1. Influence of compression and temperature
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Figure 9.5.: Measured rescaled radius Rsc versus interaction strength U/J for dif-
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ages over four experimental shots. le: V0 = 7Er , S/N = 1.15(25) kB (T/TF =
0.12(3)), right: V0 = 7Er , Et/12J = 0.16(8)

As can be seen in figure 9.5 (le), the effect on the cloud size is most pronounced
for low compression (Et/12J ), where Fermi energy and temperature are lowest.
At higher compressions, where the densities are higher, stronger interactions are
needed to dominate over Fermi energy and temperature. In addition the observed
heating is more pronounced at higher compressions (cf. below). is unfortunately
prohibits a quantitative comparison of the experimental result with the perturbative
calculation in [239], which was based on a high temperature expansion [240–242]
and is only valid in the high compression regime.
As can be seen in the right part of figure 9.5, an increasing entropy leads to larger
clouds and decreasing interaction effects.
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9.5. Heating during loading

9.5. Heating during loading

In order to measure the amount of heating during the loading sequence, the atoms
were unloaded from the laice back into the harmonic trap by inverting the used
loading sequence, followed by a hold time of 150ms at a = 100 a0. During this
hold time the cloud equilibrates via elastic collisions and all previous excitations are
converted into an entropy/temperature increase. e non-isentropic temperature
increase during the loading is approximated by one-half of the temperature differ-
ence between measurements with and without the loading/unloading sequence and
is presented in figure 9.6.

For low compressions, where the anomalous expansion effect is most pronounced,
the heating during the loading is below 2% of the Fermi temperature, but rises con-
siderably for higher compressions. In addition, the heating also depends on the in-
teraction and increases for stronger aractive interactions.
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Figure 9.6.:Heating during laice loading as a function of scaering length for various
compressions and a maximum laice depth of 7Er . e ploed heating is given by
1
2(Twith Lat. − Twithout Lat.).

Note that this simple evaluation assumes equal heating during both ramps [243] and
implicitly assumes that the cloud remains in thermal equilibrium during the loading!
e main sources of heating expected in this system are pair losses due to light as-
sisted collisions, inelastic three-body collisions, technical noise, scaering of laice
photons and non-adiabaticities of the loading sequence. Concerning non-adiabaticities,
an additional possibility are unwanted reflections of the dipole trap laser stemming
from the inside of the glass cell. ese lead to a second, incommensurable standing
wave that would act as a quasi-disorder potential [244] whose depth would increase
with the compression and could hinder mass transport.

Especially non-adiabaticities during the loading will lead to non-equilibrium states
in the laice. It is, however, not clear, whether such non-adiabaticities necessarily

123



9. Aractive Fermi-Hubbard model

result in a large entropy increase. Even if the state in the laice becomes consid-
erably altered, some of the non-adiabatic effects could be ”reversed” during the un-
loading by processes similarly to a ”freezing in” and subsequent melting of a state.
Even though later expansion experiments have shown a strong increase of the adi-
abaticity timescales due to interactions (cf. sec. 10), the increase was found to be
symmetric for aractive and repulsive interactions. e observed heating in this ex-
periment on the other hand is asymmetric and is stronger for aractive interactions.

While non-adiabaticities and technical heating will play a role, the dominant effect
appears to be light assisted collisions, as the separately measured doublon lifetime,
which is shown in the next section, strongly decreases on approaching the Feshbach
resonance, matching the observed increasing heating.

9.6. Doublon lifetime

e lifetime of doubly occupied laice sites was directly measured by comparing
the doublon fractions measured aer variable hold times in a 20Er deep laice. In
such a deep laice three-body collisions can be neglected, as they are suppressed by
the Pauli principle. Binary on-site collisions, especially the light assisted collisions
introduced in section 3.4 on the other hand, should increase in deep laices. is is
due to the fact that the extension of the on-site wavefunction decreases for deeper
laices, thereby increasing the wavefunction at the Condon point. e higher light
intensity of a deep laice additionally increases the collision rate (cf. sec. A.2.2).
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Figure 9.7.: Doublon lifetime in a 20Er deep laice. red: loading at strong arac-
tive interaction and low density Et/12J = 0.25(8). blue: same sequence at higher
density Et/12J = 2.0(1). e dashed line is a guide to the eye.

In this measurement doublons where created by loading into a 9Er deep laice at
various aractive interactions and low compression. Subsequently, the laice depth
was increased to 20Er in 200µs, thereby creating a low density gas of tightly bound
on-site pairs (cf. following section and fig. 9.4). e number of doublons was mea-
sured as a function of holdtime and the resulting lifetimes are ploed in figure 9.7.
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9.7. Adiabaticity timescales

e observed lifetimes are strongly interaction dependent and decrease for increas-
ing aractive interactions. In addition the lifetime decreases for deeper laices and
higher densities. e doublon lifetime is expected to almost vanish on approaching
the Feshbach resonance, as the on-site wavefunction of the two atoms approaches
that of a Feshbach molecule, for which much shorter lifetimes have been measured
(cf. sec. A) in the presence of the laice light.

ese relatively short doublon lifetimes render light-assisted collisions the most
likely candidate for the observed non-isentropic heating. e observed compres-
sion dependence could be caused either by a direct influence of the dipole light or
by additional losses due to collisions between already dissociated atoms and atoms
on nearby laice sites.

9.7. Adiabaticity timescales

In order to get a handle on the loading dynamics and a first estimate of the relevant
adiabaticity timescales in the strongly aractive regime, both cloud size and doublon
fraction were measured as a function of laice ramp time. Figure 9.8 shows that the
doublon fraction saturates already for ramp times as short as 5ms, while the ramp
needed to be 20 times slower in order to reach the equilibrium cloud size in this deep
laice.
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Figure 9.8.: Influence of the laice ramp time on doublon fraction and cloud size. le:
Doublon fraction at an harmonic confinement of ω⊥ = 2π× 28Hz. right: Cloud size
for a harmonic confinement of ω⊥ = 2π × 40Hz. Both measurements were taken at
a = −75 a0, a final laice depth of 15Er , and utilized a 1Er preramp.

is illustrates that, in the strongly interacting limit, pair formation is a local two-
particle process that is independent of global equilibrium, as long as the temperature
remains much smaller than the binding energy of order U . e strong difference of
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9. Aractive Fermi-Hubbard model

more than an order of magnitude between the timescales also highlights the fact that
local observables, like the doublon fraction, can only yield limited information about
the global equilibrium of the system.

9.8. Conclusion and outlook

e results presented in this chapter show how pair formation in a fermionic Hub-
bard model with aractive interactions gives rise to an anomalous expansion of the
gas as the araction increases. e consequences of pairing in the first band of a
laice potential are fundamentally different from the consequences of pairing in the
continuum.

e realization of the so-called pseudogap or preformed pair regime, where bound
pairs have formed but did not condense yet (cf. sec. 5.5.3), is an important step to-
wards the the experimental study of fermionic superfluidity in the aractive Hub-
bard model. e fact that the observed minimum in cloud size appears for inter-
actions much smaller than the position of the BEC-BCS crossover hints towards a
many-body origin of the pairing, as predicted by the Cooper instability (cf. sec. 3.3.3).
In the future, these studies can be extended to include the effects of population im-
balances, where even richer phase diagrams with additional phases (e.g. the FFLO
phase) are predicted [151, 174–176].

In addition this work opens an interesting route toward the detection of quantum
many-body phases at finite entropies, where a marked change in the thermodynamic
behavior can serve as a footprint of the crossover between two phases exhibiting
substantially different entropy densities, as observed recently for a quantum critical
condensed maer system [245].
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10. Dynamics in the Fermi-Hubbard model

In this last part of the experimental work we took advantage of the fact that ultracold
atoms offer a full real-time control over all hamiltonian parameters by e.g. varying
laser intensities or magnetic fields. In particular it is possible to instantaneously
change parameters and thereby implement quantum quenches. is is a major ad-
vantage of ultracold atoms in comparison to real solids where the implementation
of quantum quenches is hindered by both the lack of real-time control and the short
relaxation timescales. In typical metals for example, electronic relaxation occurs on
timescales on the order of 10−15 − 10−11 s [246] and can only be probed at surfaces
by pump-probe spectroscopy using fast laser pulses.

e second important motivation for this experiment is of a more technical na-
ture: One open, fundamental question in optical laice experiments concerns the
timescales needed to adiabatically load into the laice (cf. previous chapters and [247–
249]) or to achieve equilibrium in the laice [230, 249]. With the exception of the
one-dimensional case, where DMRG [185, 250] enables the theoretical study of dy-
namics in the Hubbard model at least for short time spans [251], there exists no
theoretical method to calculate these timescales.
In addition it turned out that, for the inhomogeneous systems studied here, the
timescales of e.g. mass transport are more involved than simple scaling arguments
(e.g. ∝ 1/J , 1/U , 1/ω) would predict.

Although there have been several previous studies of out-of-equilibrium dynamics
in optical laices [27, 28, 68, 117, 118, 252–254], up to now all experiments were
performed in the presence of additional potentials, either in a trap or under the in-
fluence of gravity. is had profound consequences for the dynamics already on the
single particle level by e.g. inducing Bloch oscillations (cf. sec. 4.3.2).
Here it was possible to eliminate all external potentials in a two-dimensional (2D)
system by compensating the anticonfining potential of the blue-detuned optical lat-
tice (cf. sec. 4.3.1) in the horizontal directions and to study dynamics and transport
properties in a homogeneous Hubbard model. is was achieved by first preparing
a confined state in a combination of the optical laice and an harmonic trap and
suddenly switching off the harmonic confinement while retaining the laice. e
subsequent dynamic expansion is driven by density gradients instead of potentials
and therefore does not alter the single-particle dynamics. e dynamics was probed
by monitoring the evolution of the in-situ density distribution, as depicted in figure
10.1.

e theoretical analysis of the resulting dynamics was performed in collaboration
with the group of Prof. Achim Rosch from the university of Cologne and Prof. Eu-
gene Demler from Harvard University. All numerical simulations of the interacting
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10. Dynamics in the Fermi-Hubbard model

Initial State

Repulsive Interaction U/J=10

Non-interacting U/J=0b

Initial State Free Expansion in lattice

a

Non-interacting U/J=0

Figure 10.1.: top: Free expansion in a homogeneous laice. First a band-insulator is
created in the combination of an optical laice and a strong harmonic trap. Subse-
quently the harmonic confinement is switched off and the cloud expands in a homoge-
neous Hubbard model. bottom: Observed in-situ density distributions. e evolution
of the initial density distribution (le) crucially depends on the interaction (right).

system shown in this chapter were performed by Stephan Mandt, David Rasch and
Prof. Achim Rosch.

10.1. Experimental sequence

e experiment starts with the preparation of a band-insulating state of a balanced
spin mixture, using a sequence similar to the one in chapter 8: rough evaporative
cooling in the dipole trap a quantum degenerate mixture of the two lowest hyperfine
states of potassium was reached with atom numbers of N = 1−1.5 × 105 atoms
per spin state at reduced temperatures of T/TF = 0.13(2), where TF denotes the
Fermi temperature in the harmonic trap (cf. sec. 2.2.2). e trapping frequencies of
the dipole trap were then increased to approx. 2π × 100Hz (2π × 400Hz) in the
horizontal (vertical) directions.

Subsequently, the blue-detuned 3D optical laice is ramped up linearly to a depth
of 8Er in 56ms. During the ramp the magnetic field is held at 209.1G, which cor-
responds to vanishing interactions (cf. sec. 10.3.5). is loading procedure results in
a large band-insulating core with a high doublon fraction surrounded by a metallic
shell at a compression of Et/12J = 1.8 (cf. fig. 8.3). In the next step, the tunnel-
ing rate J is reduced to J = h × 23Hz by linearly increasing the laice depth to
20Er in 200µs, a timescale that is slow enough to avoid excitations into excited
bands, but fast compared to tunneling within the lowest band. Due to this reduced
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10.1. Experimental sequence

tunneling rate the density distribution is essentially frozen out during the following
40ms magnetic field ramp to Bdyn = 206− 260G, which sets the interaction for the
expansion. Combined with the strong harmonic confinement this hold time leads
to a dephasing between different laice sites and effectively localizes all particles
to individual sites, similar to the effects observed in our study of coherent multi-
body interactions using quantum phase revivals in bosonic 87Rb [106], which will be
presented in detail in the thesis of Sebastian Will.

In total, this sequence produces a cloud of localized atomswith awell-known density
distribution that is independent of the interaction between the particles.
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Figure 10.2.: Experimental Sequence. Starting with a degenerate Fermi gas in the
dipole trap a non-interacting band insulator is created. During a freeze-out period
the atoms localize to individual laice sites and the desired interaction is set without
altering the density distribution. Subsequently the harmonic confinement is switched
off and the cloud expands in a homogeneous Hubbard model.

e expansion is initiated by lowering the laice depth in 200µs to values between
4Er and 15Er while simultaneously switching off the harmonic confinement. To
this end, the strength of the dipole trap is reduced by more than 90%, such that for
the horizontal directions the remaining dipole potential precisely compensates the
anticonfinement produced by the laice beams (cf. sec. 10.2.1). While the vertical
motion is expected to be strongly suppressed by gravity-induced Bloch oscillations
of amplitude A = 2J/mg < 2λ/2, cf. eq. 4.23), the atoms are exposed to a homo-
geneous Hubbard model without additional potentials in the horizontal directions.
e evolution of the density distribution during the following expansion in this quasi
2D situation was monitored by in-situ imaging along the vertical axis of the cloud,
thereby integrating over any vertical dynamics.

For direct comparison with theoretical calculations, vertical tunneling of the atoms
during the expansion was suppressed by retaining the depth of the vertical laice
at 20Er, thereby realizing several layers of independent two-dimensional Hubbard
models without any influence of gravity.
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10. Dynamics in the Fermi-Hubbard model

10.2. Non-interacting case

In the absence of collisions and additional potentials the Hubbard hamiltonian (cf.
eqn. 5.5) consists only of the hopping term. In this case quasi-momentum, and
thereby also group velocity v⃗, is conserved and each initially localized particle ex-
pands independently with a constant velocity distribution, leading to a ballistic ex-
pansion.
e delocalized density distribution ρ(r⃗, t) aer an expansion time t of an atom,
which is initially localized at the central laice site (r⃗0 = 0), is given by the initial
velocity distribution ρv(v⃗),

ρ(r⃗, t) = ρv(r⃗/t) (10.1)

which can be characterized by the mean expansion velocity vexp:

v2exp = ⟨v̂2x + v̂2y⟩ =
∫
R3(v

2
x + v2y)ρ(v⃗) dV∫
R3 ρ(v⃗) dV

(10.2)

e root mean square (RMS) widthRsp(t) =
√
⟨x̂2 + ŷ2⟩ (cf. eqn. 8.1) of the expand-

ing particle, which will be denoted as the single particle width, scales linearly with
expansion time and is proportional to the mean expansion velocity:

Rsp = vexp · t (10.3)

e total density distribution of the whole cloud aer an evolution time t is given
by the convolution of the initial density distribution with the delocalized probability
distribution (eqn. 10.1) of the individual atoms and its RMS width is given in the
relevant cases by:

R(t) =
√
R2

0 + v2expt
2 (10.4)

In the case of an initially localized particle its wave function is given by a single
Wannier function, that is an equal superposition of all Bloch waves (cf. sec. 4.3.2). In
1D the corresponding mean expansion velocity can then be calculated by averaging
the squared group velocities vgr(q) = 2Jd

~ sin(qd) of the Bloch waves (cf. sec. 4.3.2)
over the first Brillouin zone:

v2exp =
d

2π

∫ π/d

−π/d

(
2Jd

~

)2

sin2(qd) dq (10.5)

In the separable D-dimensional case this results in a mean expansion velocity of:

vexp =

√√√√ D∑
i=1

v2exp,i =
√
2D

Jd

~
(10.6)
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Figure 10.3: Simulated den-
sity distribution for the non-
interacting expansion in a 2D
homogeneous Hubbard model.
le: Resulting density distribu-
tion of a single localized par-
ticle. right: Resulting density
distribution for a perfect band
insulator without metallic shells
(T = 0, Et/12J = ∞). Simula-
tion performed using MATLAB
and exact diagonalization on a
250x250 laice.
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10. Dynamics in the Fermi-Hubbard model

As is shown in the le panel of figure 10.3, the expanding density distribution of
an individual non-interacting atom acquires the square symmetry of the underlying
simple-cubic laice.

As a consequence also the symmetry of the expanding cloud as a whole changes
during the expansion from the rotational symmetry of the initial density distribution
into a square symmetry. is can be seen both in the numerical calculation (fig. 10.3,
right panel) and in the experimental data (fig. 10.4).
For very long expansion times this symmetry becomes distorted in the experiment
by residual inhomogeneities in the remaining potential and in the laice depth.

1ms 8ms 10ms

12ms 14ms 16ms

18ms 20ms 24ms

28ms 36ms

80ms

300 λ/2

Figure 10.4.: In-situ absorption images (column density a.u.) of an expanding non-
interacting (|U/J | . 0.3) cloud in a quasi 2D laice with laice depth 8Er . e
expansion changes the symmetry of the cloud from the rotational symmetry of the
harmonic trap to the square symmetry of the laice Brillouin zone. At long expansion
times residual potentials and laice inhomogeneities deform the cloud.

In order to experimentally measure the mean expansion velocity, the cloud size
R =

√
⟨r̂2⊥⟩ is extracted from in-situ phase-contrast images using a 2D Gaussian
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10.2. Non-interacting case

fit similar to the previous chapters (cf. sec. 8.3.1)1:

G(x, y) = Ae
− (x−xc)

2

2σ2
x

− (y−yc)
2

2σ2
y + b (10.7)

Here xc, yc, σx, σy, A, and b are free fit parameters and the perpendicular cloud size
is given byR =

√
⟨r̂2⊥⟩ =

√
σ2
x + σ2

y − w2, where w denotes the imaging resolution
(radius of Airy disc w < 3µm) of our imaging setup. e resulting cloud sizes R(t)
(fig. 10.5, orange) were fied by the expected behaviour of eqn. 10.4, thereby yielding
the desired mean expansion velocity vexp. e corresponding single-particle width
Rsp(t) is calculated by deconvolving R(t) with the initial width R(0): Rsp(t) =√
R(t)2 −R(0)2.
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Figure 10.5.: Measured cloud size (orange) and deconvolved single-particle width
(green) of an expanding non-interacting cloud in an 8Er deep laice. Solid lines
denote the quantum-mechanical prediction and dashed lines the corresponding clas-
sical randomwalk. e inset shows the linear scaling of the extractedmean expansion
velocity with tunneling J .

e measured widths R(t) (orange dots in figure 10.5) show a very good agreement
with the theoretically expected behaviour. In particular does the deconvolved single-
particle width Rsp (green) grow linearly in time, thereby confirming the ballistic
expansion. e expansion rate agrees well with the quantum-mechanical prediction
of the mean expansion velocity (cf. eqn. 10.6), which is shown as solid lines in figure
10.5). Classical hopping, on the other hand, would result in a random walk where
at every timestep the particle randomly hops to one of the neighbouring sites. A
classical randomwalk of the same hopping rate would predict a much slower square-
root expansion of the single-particle width (dashed lines). It would furthermore
preserve the spherical shape of the initial cloud.

1While the adapted Fermi-Fit of equation 8.3 is beer suited to describe the initial distribution, a
gaussian fit function yields beer fits for the expanding clouds.
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10. Dynamics in the Fermi-Hubbard model

is result directly shows that the dynamics is governed by the quantum-mechanical
tunneling from laice site to laice site and not by classical thermal hopping, which
would occur e.g. for a thermalized atom on the surface of a crystal. e ballistic
expansion therefore can be viewed as a continuous quantum walk [255–257], which
is also the basis of a recently proposed quantum computing algorithm [258].

10.2.1. Canceling the harmonic confinement

An important condition for the observed ballistic expansion is the absence of ad-
ditional potentials, as any residual potential would change the velocity distribution
during the expansion. In figure 10.6 the measured cloud sizes R(t) of an expanding
non-interacting cloud in an 8Er deep quasi 2D laice are shown as a function of the
dipole laser power during the expansion. e red line denotes a fit with the expected
dynamics (cf. eqn. 10.4) for the homogeneous case to the first 20ms.
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Figure 10.6.: Expansion of non-interacting atoms as a function of dipole beam power
p (a.u.) in an 8Er laice.

While the initial expansion velocity depends only slightly on the residual confine-
ment, it completely dominates the size aer long expansion times. e largest cloud
sizes are reached only if the confinement created by the dipole trap compensates the
anticonfinement due to the laice. is situation corresponds to dipole powers be-
tween p = 2/3 and p = 1 in figure 10.6. Both an over- and an under-compensation
leads to deviations from the expected ballistic behaviour and ultimately limits the
cloud size by either classical reflections or Bragg reflections of the expanding atoms
(cf. sec. 4.3.2).

In the well-compensated case the dominant deviation from the homogeneous situa-
tion arises due to the finite size of the laice beams (w ≈ 150µm), which leads to a
position dependent hopping rate: e laice depth in any given direction decreases
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10.3. Interacting case

t=50 ℏ/J t=75 ℏ/J

t=25 ℏ/Jt=0 ℏ/Jt=0 ℏ/J t=25 ℏ/J

x
y

Figure 10.7.: Simulated column density distribution for the non-interacting expansion
including the finite size of the laice beams. Simulation performed in the group of
Prof. A. Rosch.

with increasing distance to the center of the corresponding laser beam. is in turn
leads to an increase in the hopping rate. Including these effects into a numerical cal-
culation (cf. fig. 10.7) reproduces the star-like deformation visible in the lower row
of figure 10.4. For very long expansion times (& 35ms) additional potentials due
to imperfections in the alignment and beam shapes of the dipole and laice beams
become important and lead to further distortions of the cloud.

10.3. Interacting case

e ballistic expansion observed for non-interacting atoms is in stark contrast to the
interacting case, where a qualitatively different dynamics is observed: Figure 10.8
shows in-situ absorption images taken aer 25ms of quasi 2D expansion in an 8Er

deep laice. e observed dynamics gradually changes from a purely ballistic ex-
pansion in the non-interacting case, which results in a square density distribution,
into a more complex expansion for interacting atoms:
For increasing interaction strengths the center of the cloud expands slower and
slower and preserves the initial rotational symmetry, while a small part of the atoms
nonetheless expands ballistically.
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10. Dynamics in the Fermi-Hubbard model

 U/J=3  U/J=9  U/J=12

 U/J=−12  U/J=−9  U/J=−6  U/J=−3

 U/J=−1.7  U/J=−1  U/J=0  U/J=0.5

 U/J=1.3

 U2D/J=0  U2D/J=1.2  U2D/J=2.2  U2D/J=4.2
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Figure 10.8.: In-situ absorption images for various interactions aer 25ms expansion
in a homogeneous quasi 2D laice. e images show a symmetric crossover from a
ballistic expansion for non-interacting clouds to an interaction dominated expansion
for both aractive and repulsive interactions. Images are averaged over at least five
shots and all scales are identical to figure 10.4. e boom line shows the results of a
2D simulation of the Boltzmann equation performed by S. Mandt for the same initial
conditions.
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10.3. Interacting case

is can be understood intuitively by observing that interactions, i.e. elastic colli-
sions, lead to a diffusive dynamics and allow the particles to regain local thermal
equilibrium [259, 260]. As a consequence, sufficiently large atomic clouds, where
density gradients are small, remain close to local thermal equilibrium and their dy-
namics can be described by the laws of hydrodynamics. As the diffusion equation
(cf. below) is rotationally invariant, the initial spherical shape is preserved for most
parts of the cloud already for moderately strong interactions, cf. figures 10.1 and
10.8.
For a small fraction of atoms in the outer parts of the atomic cloud, however, the
density is so small that mean free path is larger than the distance to the cloud edge,
resulting in a ballistic expansion of these atoms. erefore the tails of the cloud show
the square symmetry characteristic for freely expanding particles (cf. fig. 10.8). Ex-
perimentally we observe that this initial fraction of ballistically expanding atoms
decreases for increasing interaction strengths. During the expansion the density
gets reduced and, in the limit of infinite expansion times, all atoms are expected to
become ballistic.

We observe the same behaviour irrespective of the sign of the interactions, although
one would intuitively expect that repulsive (aractive) interactions lead to a positive
(negative) pressure and therefore an increased (reduced) expansion rate.
is symmetry is a direct consequence of the chosen initial state, which consists
only of localized atoms, and the highly symmetric dispersion relation of the Hubbard
model and is further discussed in section 10.3.3.

10.3.1. Theoretical description

e resulting dynamics of interacting atoms was analyzed in collaboration with the
group of Prof. Achim Rosch. Elastic collisions between the interacting atoms lead
to a constant redistribution of kinetic energy and quasi-momentum and give rise
to a particular kind of diffusive dynamics: As the time τ between scaering events
strongly depends on the density n, the same holds for the diffusion constantD ∝ τ .
It shows a minimum in the half filled case and diverges in the limits of an empty or
completely filled band, where scaering is suppressed, as in this case no scaering
partners or unoccupied final states are available:

D(n) ∝ (n(1− n))−1 (10.8)

Accordingly, the dynamics is described by a highly singular, non-linear diffusion
equation [261] :

∂tn(r, t) = ∇ (D(n)∇n) (10.9)

e divergence of the diffusion constant at vanishing densitiesD(n) ∝ 1/n leads to
the unphysical prediction of diverging currents ji = D(n)∂n

∂i
and diverging veloci-

ties.
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10. Dynamics in the Fermi-Hubbard model

In reality, however, the diffusive description becomes invalid in this limit and the
dynamics gradually becomes ballistic again. Intuitively speaking, the velocity limit
imposed by the band structure constrains the maximal velocity and gives rise to a
strong feedback from the ballistic tails on the diffuse core –the ballistic outer regions
effectively hold the diffusive part of the cloud together. us the bare diffusion equa-
tion becomes invalid even in relatively dense regions, where the scaering rate is
high.

For a theoretical description of the expanding clouds one consequently needs an ap-
proach that can correctly describe both the diffusive and the ballistic regime. e
probably simplest one is a Boltzmann equation in the relaxation time approxima-
tion [29]:

∂tfq + vq∇rfq + F(r)∇qfq = − 1

τ(n, e)

(
fq − f 0

q (n, e)
)

(10.10)

It describes the evolution of the quasi-classical momentum distribution fq(r, t) as a
function of position and time in the presence of a force F. e transport scaering
time τ(n) describes the relaxation towards an equilibrium distribution f 0

q for given
energy (e) and particle densities (n).

Numerical simulations performed in the group of Prof. A. Rosch used this equation
to predict the evolution of the interacting clouds. Examples of the resulting distri-
butions are shown in the lowest row of figure 10.8, details of the calculation and the
analysis can be found in [262, 263].

In two dimensions the non-linear diffusion equation predicts a universal minimal
loss rate ∂tN ≤ −4πγ of the total number of particlesN forD(n) = γ/n [261, 264],
which describes the rate of particles reaching infinity and is completely independent
of the initial distribution. is loss rate is closely related to the rate with which the
diffusive part of the cloud emits ballistic particles [262, 263]. In addition, these effects
have an interesting geometrical interpretation [261] due to their connection with the
famous Ricci flows [265, 266], which where used e.g. in the proof of the celebrated
Poincaré conjecture in three dimensions [266].

In one dimension there exists an infinite number of conservation laws that strongly
restrict the possibilities for equilibration. is leads to a different behaviour that
cannot be described by this hydrodynamic approach.

10.3.2. Core width and core expansion velocity

For a more quantitative analysis, the same experiment was performed in a fully two-
dimensional situation. In this experiment the vertical laice is kept at a depth of
20Er during the expansion in an otherwise identical sequence. In both cases (quasi
2D and 2D) we observe a spherical, diffusive core surrounded by ballistic tails with-
out any qualitative differences between the cases.
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Figure 10.9.:Numerically calculated density distribution forU/J = 1.2 together with
Gaussian fits. Numerical simulations performed by St. Mandt.

In the case of interacting atoms the shape of the cloud changes considerably during
the expansion, evolving from a “compact” Fermi-Dirac like in-trap distribution (cf.
sec. 8.3.1) to a “fat tail” distribution, as illustrated in figure 10.9 using fits to numer-
ically simulated data. is leads to considerable systematic errors in the estimation
of ⟨r̂2⊥⟩ (̸= R2

G) in the interacting case, as no suitable fit function was found. In
principle, these systematic errors could be avoided by determining ⟨r2⟩ via direct
integration. In the experiment, however, this is hindered by imaging aberrations
and the small signal to noise ratio in the extreme dilute limit (cf. sec. 8.3.1). e
change in the shape of the cloud is due to the density dependent dynamics in the
interacting case: While the expansion remains ballistic in the low density limit, the
expansion velocity decreases for higher densities due to the increasing number of
collisions. As a consequence, ⟨r̂2⊥⟩ will be dominated by the ballistically expanding
outermost atoms for long expansion times.

In order to focus on the dynamics of the high density core, we instead use the core
width Rc, which is defined as the half width at half maximum (HWHM) of the col-
umn density distribution. It is extracted from phase-contrast images that have been
azimuthally averaged and individually normalized. e resulting core widths are
shown in figure 10.10 for various interactions and have been fied by the same fit
function as in the non-interacting case (cf. eqn. 10.4).

e resulting core expansion velocities vc, which are shown in figure 10.11, decrease
dramatically already for interactions much smaller than the bandwidth 8J .
is shows the strong impact of moderate interactions on mass transport in defect
free systems. It also has important consequences on all dynamic procedures in the
laice, e.g. loading into the laice or cooling within the laice (cf. sec. 11.1), as it
limits the required adiabaticity timescales.

e core expansion velocities vc even become negative for interactions larger than
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10. Dynamics in the Fermi-Hubbard model
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Figure 10.10.: Core widthsRc as a function of expansion time for various interactions
in an 8Er deep laice in the 2D case. Blue lines denote the fits used to extract the
core expansion velocities (Eq. 10.4)

|U/J | & 3: In this regime, the diffusive core dissolves by emiing ballistic parti-
cles and therefore shrinks in size, analogous to the melting of a block of ice. In the
diffusive regime, the particle current is proportional to the density gradient. Conse-
quently, the current in the flanks of the core is always higher than in the center of the
core, where the density gradient vanishes. e slight asymmetry observed at large
interactions can be aributed to interaction dependent losses due to light-assisted
collisions during the preparation sequence (cf. sec. 3.4 and fig. 9.7).

All qualitative features seen in the experiment, including the drastic collapse of the
expansion velocities and the shrinking of the core width for strong interactions, are
well reproduced by the numerical results obtained in the group of Prof. A. Rosch.
antitative discrepancies between experiment and numerics probably arise be-
cause the leading order perturbation theory in U/J , which has been employed in
the calculation of the diffusion constant, is not valid for U & J . Furthermore, the
relaxation time approximation breaks down in the crossover region from diffusive
to ballistic behaviour, where the colliding atoms are far from thermal equilibrium.

140



10.3. Interacting case

7 Er

8 Er

10 Er

12 Er

-15 -10 -5 0 5 10 15
U/J

-1

0

1

2

3

C
or

e 
ex

pa
ns

io
n 

ve
lo

ci
ty

 (λ
/2

 / 
(ℏ

/J
) )

Figure 10.11.: Measured core expansion velocities versus interaction for various lat-
tice depths in a 2D situation. e red line denotes the result of a numerical calculation
(see text) and the black line is a guide to the eye.

But even though the core expansion velocity can be qualitatively predicted by a
diffusive ansatz, the full quantum dynamics is certainly more complex and includes
e.g. the formation of entanglement between distant atoms [267, 268]. In the case of
a sufficiently high initial doublon density the free expansion itself could possibly be
used to locally cool the atoms via quantum distillation processes [250].

10.3.3. Dynamical U vs. -U symmetry of the Hubbard model

In this section, the observed dynamical symmetry between repulsive and aractive
interactions in the fermionic Hubbard model is addressed. e presented analysis
was performed in collaboration with Prof. A. Rosch, Prof. E. Demler and M. Moreno-
Cardoner. First some intuitive argument for the observed symmetry are given before
a formal theorem is presented.

In the interacting case elastic collisions between the atoms lead to a diffusive dynam-
ics, whose diffusion constant depends on the scaering cross section σ. Since this
cross section is proportional to the square of the interaction strength, σ ∝ a2 ∝ U2

(cf. eqn. 3.4, 5.2), it is intuitively clear that, for small expansion times, the dynamics
depends only on the absolute value of the interaction, but not on the sign.

For longer expansion times, however, an additional argument is needed, as in the
long run all interaction energy will be converted into kinetic energy: In the initial
state there is a high number of doublons ND, giving rise to an interaction energy
Eint = NDU . During the expansion, the number of doublons decreases and, in the
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10. Dynamics in the Fermi-Hubbard model

limit of long expansion times, the average density and the number of doublons typ-
ically vanish. Consequently, the initial interaction energy will be completely con-
verted into kinetic energy, except for very large interactions, where isolated dou-
blons cannot decay any more [143].

In free space, where the dispersion relation is a parabola (E ∝ p2), an increase in ki-
netic energywill always result in higher group velocities, while a decrease will result
in smaller velocities. erefore the dynamics will not show a U vs. −U symmetry
in free space!

e observed symmetry in the laice now arises from the high symmetry of the
tight-binding dispersion relation in the lowest band of a Hubbard model (cf. sec.
4.3.2), which is, for the one dimensional case, ploed in figure 4.14 and 10.12 together
with the resulting group velocities (cf. eqn. 4.18).
In contrast to free space, where a higher kinetic energy always results in a higher
group velocity, the tight-binding group velocity distribution shows a maximum at a
quasi-momentum of ~q = ~π/(2d). is maximum is located in the middle between
q = 0 and the edge of the first Brillouin zone and corresponds to an energy of
Eπ/(2d) = 0.
Any force acting on an atom in this Bloch state will slow it down, independent of
the sign of the force. Furthermore, the group velocity distribution is completely
symmetric with respect to this point.

Due to the specific loading scheme applied in the experiment (cf. sec. 10.1), themany-
body state at the beginning of the expansion consists only of localized atoms, since
any coherences between different laice sites dephased during the freeze out period
(cf. sec. 10.1). e energy of a Wannier state (EW = 0) lies in the center of the
Bloch band and coincides with the energy of the fastest Bloch wave. Furthermore,
a Wannier state can be wrien as an equal superposition of all Bloch waves (cf.
fig. 10.12, le), and, as a consequence, its quasi-momentum distribution is flat and
symmetric about ~q = ~π/(2d).

During the course of the expansion the average density will decrease and all inter-
action energy will be converted into kinetic energy.
As both the group velocity distribution and the initial quasi-momentum distribution
are symmetric with respect to ~q = ~π/(2d) it follows that the evolution of the total
group velocity distribution, and thereby the density distribution, will be independent
of the sign of the interaction.

As illustrated in right part of figure 10.12 for the case of a positive interaction, the
conversion of interaction energy to kinetic energy will lead to a redistribution of
atoms across the different quasi-momenta. Due to energy conservation, this re-
distribution will necessarily create a higher occupation of large quasi-momenta,
which have a higher kinetic energy but only a small group velocity. is explains
the observed slowing-down of the expansion in the interacting case also on longer
timescales. In the case of an aractive interaction, dominantly small quasi-momenta
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Figure 10.12.: le: Cartoon picture of the initial state in the Bloch basis. Since the
initial state consists only of localized particles, its quasi-momentum distribution is
flat over the whole Brillouin zone. right: asi-momentum distribution aer a long
expansion time at moderately large positive U . e positive initial interaction energy
has been converted into kinetic energy. is results in a non-flat distribution, which
can be described by an thermal distribution at negative temperature.

will be occupied in an analogous fashion. Due to the symmetric group velocity dis-
tribution for small and large quasi-momenta this will lead to the same slowing-down
effect.

Dynamics theorem

e above intuitive argument can be be turned into a precise theorem by considering
a coherent dynamical evolution arising from two Hubbard-type hamiltonians that
differ only in the sign of the interaction term:

Ĥ± = −J
∑
⟨ij⟩σ

ĉ†iσ ĉjσ ± U
∑
i

n̂i↑n̂i↓ (10.11)

e desired theorem can be formulated in terms of two operators:
eπ-boost operator B̂Q, which translates all quasi-momenta byQ = (π/d, π/d, π/d),
is given in second quantization notation by:

B̂Qĉ
†
qB̂Q = ĉ†q+Q (10.12)

e effect of the time reversal operator R̂t on a Bloch wave is to negate the quasi-
momentum:

R̂tĉ
†
qR̂

†
t = ĉ†−q (10.13)

Using these two operators the observed symmetry can be expressed by the following
theorem:
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10. Dynamics in the Fermi-Hubbard model

If the experimentally measured quantity Ô is invariant under both time
reversal and π-boost, and the initial state |Ψ0⟩ is time reversal invariant
and only acquires a global phase factor under the boost transformation
(B̂Q |Ψ0⟩ = eiχ |Ψ0⟩, χ ∈ R), then the observed time evolutions

⟨Ô(t)⟩± = ⟨Ψ0|eiĤ±tÔe−iĤ±t|Ψ0⟩ (10.14)

are identical: ⟨Ô(t)⟩+ = ⟨Ô(t)⟩−.

e proof of this theorem is presented in appendix B.

e experimental observable is the density distribution n̂(rj) =
∑

σ ĉ
†
jσ ĉjσ and the

initial state consists of atoms that are completely localized to individual laice sites
(cf. sec. 10.1). Because both the initial state and the measured operator fulfill the
requirements of the symmetry theorem (cf. sec. B), the dynamics is guaranteed to
show the U ↔ −U symmetry for all interaction strengths. Since the bi-partite
character of the laice is crucial to the proof of the theorem, this symmetry can be
expected to be broken in laices without the bi-partite structure, such as a triangular
laice.

Temperatures after the expansion

In the interacting case elastic collisions between the atomswill lead to thermalization
and the cloudwill regain local thermal equilibrium. But to which final temperatures?

As detailed in chapter 5.7.1, the inhomogeneous system can be locally approximated
by the homogeneous system by use of the local density approximation. In global
equilibrium this results in an inhomogeneous chemical potential and a homogeneous
global temperature. During the expansion the system will only regain local thermal
equilibrium, i.e. the system can locally again be described by a homogeneous system
in equilibrium, but in this case not only the chemical potential but also the temper-
ature becomes position dependent.

If all doublons dissolve during the expansion, the expanding cloud will reach such
low densities that interactions between the particles can be neglected. In that case
the single particle eigenstates of the homogeneous system are the Bloch waves,
whose eigenenergies lie in the interval ϵ ∈ [−4J, 4J ].

Due to the localized initial states, all Bloch waves are equally occupied and the av-
erage kinetic energy per particle is E = 0, i.e. it is located exactly in the middle
of all possible energies. In the non-interacting case this represents a thermal state
of infinite temperature, as only T = ∞ describes an even occupation of all single
particle eigenstates:

lim
T→∞

F (ϵ) = lim
T→∞

1
1
z
e

ϵ
kBT + 1

=
1

1
z
e0 + 1

= const. (10.15)
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10.3. Interacting case

In the interacting case the initial kinetic energies still follow the same distribution
as in the non-interacting case, but on top of that there is the interaction energy,
which can range from zero to U/2 per particle. During the expansion all interaction
energy will be converted into kinetic energy and, for repulsive interactions, raise the
average kinetic energy per particle well above themiddle of its possible values. In the
low density limit this corresponds to a state where high lying single-particle states
are more occupied than low lying states. In this limit, the system will consequently
equilibrate to negative local temperatures [269–271].

e observed symmetry between repulsively and aractively interacting fermions
can again be seen by observing that, for negative interactions the average energy
per particle is decreased by the same amount as it is increased in the repulsive case.
erefore the temperatures in the aractive and repulsive case are identical up to
the sign.

10.3.4. Doublon dissolution time

Both the qualitative and quantitative analysis of the experimental results assume the
relaxation of the system to local equilibrium. For very strong aractive or repulsive
interactions |U | ≫ J , however, doubly occupied sites (doublons) only decay very
slowly [143, 172, 230], as the missing or excess energy of order U needs to be dis-
tributed to several other particles, which requires a higher order process [143, 172,
230] .

Consequently, an important question for the resulting expansion is whether the rate
with which the diffusive core dissolves is determined by the decay time of individual
doublons or whether the laer is fast compared to the former.
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Figure 10.13.:Measured doublon dissolution time during the expansion in a 8Er deep
laice. e black lines is an exponential fit ∼ c1 + e|U |/c2 (c1,2: fit parameters) and
serves as a guide to the eye.
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10. Dynamics in the Fermi-Hubbard model

In order to investigate this, the remaining doublon fractions were measured (cf. sec.
6.6) during the expansion and fied by a simple exponential decay. e resulting
doublon dissolution times, which are shown in figure 10.13, are about an order of
magnitude larger than the decay time of excess doublons measured recently in a half
filled situation [230] in 3D at comparable interactions. In addition, they agree with
the timescales for melting of the diffusive core observed in the numerical simulations
performed by S. Mandt, although this simulations did not include an explicit doublon
dissolution time.
is strongly suggests that, at least in the investigated range of interactions, the
doubly occupied sites remain in local equilibrium in the diffusive regime.

10.3.5. Width of Feshbach resonance

Compared to previous dipole trap experiments, the dynamic measurements pre-
sented here are much more sensitive to small scaering lengths, since the strongly
reduced kinetic energy of atoms in a laice (cf. sec. 4.3.2) enhances the role of inter-
actions. e observed pronounced dependence on small interactions (cf. fig. 10.11)
enabled us to remeasure the zero crossing of the scaering length around the Fesh-
bach resonance at B0 = 202.1G (cf. sec. 3.3.1).

e zero crossing is located at B(a = 0) = 209.1 ± 0.2G and, using the standard
parametrization of the (free space) Feshbach resonances (cf. eqn. 3.6) this zero cross-
ing leads to a new width of

w = 7.0± 0.2G (10.16)

compared to the previous dipole trap measurement of wdipole = 7.8± 0.6G [61]. In
addition to the pronounced dependence of the slope, only the expansion at the newly
assigned zero crossing matches that of a single component Fermi gas under the same
conditions and leads to the square shape expected for non-interacting atoms. e
uncertainty of the newly assigned zero crossing is dominated by uncertainties in the
magnetic field calibrations.

A precise knowledge of the scaering length is of paramount importance for the
determination of the interaction parameter U in the Hubbard model and is therefore
an important prerequisite for any quantitative analysis of experimental data. Fur-
thermore, precise measurements of the various Feshbach resonances are a valuable
input for the global fits of the molecular ground state potentials [40]. Due to its high
sensitivity, this method enables a fast and reliable determination of zero crossings
also for other spin combinations and Feshbach resonances.

10.4. Conclusion

In this experiment the non-equilibrium dynamics of interacting and non-interact-
ing fermions in an optical laice was studied. In particular, the possibility of full
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10.4. Conclusion

real-time control of most relevant parameters was used to implement a quantum
quench, that is a sudden change of the hamiltonian. By monitoring the in-situ den-
sity distribution of an expanding cloud of initially localized atoms in a homogeneous
Hubbard model, the crossover from a ballistic expansion at small densities or vanish-
ing interactions to diffusive, hydrodynamic expansion in the interacting case could
be observed.

Even small interactions lead to a drastic reduction of the expansion velocity of the
atomic cloud and change the shape of the expanding cloud from a square in the non-
interacting case to the sum of a large spherical symmetric core and a small square
background. For strong interactions the core width shrinks instead of expanding.

e feedback between the diffusive and ballistic parts of the cloud controls the ex-
pansion: the diffusive core slowly emits ballistic particles which in turn hold the
diffusive part of the cloud together and regularize the otherwise singular diffusion
in the tails. We observed identical behaviour for both aractive and repulsive inter-
actions, highlighting the high symmetry of the (tight-binding) dispersion relation in
the Hubbard model.

e surprisingly large timescales of mass transport in an interacting Hubbard model
set lower limits on the timescales needed both to adiabatically load the atoms into the
laice and to cool the system in the laice [272]. ey are therefore of paramount
importance for all aempts to create complex, strongly correlated many-body states
like Néel-ordered states in these systems.

e method of directly measuring the expansion velocity can be generalized in a
straightforward way to more complex quantum states including metallic and Mo-
insulating states in the repulsive Hubbard model (cf. sec. 8) or the pseudogap regime
in the aractive Hubbard model (cf. sec. 9). Furthermore it can be extended to
bosonic quantum gases, where the transition from a superfluid to a Mo-insulator
can be investigated, and to Bose-Fermi mixtures [273]. In addition, the effects of
various disorder potentials on the two-dimensional dynamics can be studied.
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11. Challenges

Despite the progress made during the last years in the field, part of which is reported
in this thesis, several important challenges remain on the way to the preparation and
detection of even lower entropy states in the fermionic Hubbard model:
e main challenge is the necessity to prepare states with lower entropy densities,
i.e. the need to develop and implement new cooling or entropy management meth-
ods.
An important step in this direction is the analysis and suppression of the various
technical heating rates.
In addition, a beer understanding of the dynamics and characteristic timescales
of inhomogeneous Hubbard models is needed. ese two points are essential for
the development of new preparation and cooling schemes, as any experimental se-
quence needs to be optimized to minimize the combined effects of non-adiabaticities
and technical heating.
Last but not least new detection methods will be required in order to fully charac-
terize the many-body states.

11.1. Cooling and entropy management

In order to approach the ground states of the fermionic Hubbard model, the entropy
densities need to be further reduced. e critical entropy densities for antiferromag-
netically ordered states in the repulsive Hubbard model, or superfluid states in the
aractive case, lie approximately a factor of two (cf. sec. 5.5.2 ff.) below the currently
achieved entropy densities of S/N = log(2) kB in the fermionic Mo insulator1 (cf.
fig. 8.5). is reduction can in principle be achieved in two ways: Either by cooling,
i.e. by reducing the average entropy per particle, or by entropy management, that is
by optimizing the entropy distribution among the atoms.

It remains doubtful whether lower entropy samples can be realized by optimizing
the evaporative cooling in the dipole trap prior to the loading into the laice. e
collision rate, and thereby the cooling power, decreases and ultimately vanishes for
lower temperatures due to the effect of Pauli blocking (cf. sec. 3.2.2). In addition,
in the dipole trap setup used so far, a lower trap depth is connected to a lower trap
frequency, which leads to a lower density.

ere have been several proposals on how to utilize the laice in the cooling process:
One idea relies on transferring the entropy onto a second species that is subjected

1In the Mo insulator the entropy density, i.e. the entropy per laice site, and the entropy per atom
are identical.
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to a different laice [152, 274, 275]. In the presence of a BEC in a weakly confining
laice, the creation of a highly compressed band-insulator leads to a high net en-
tropy flow from the fermions to the BEC, which could subsequently be evaporated
away [275]. In the case of a Rb-K system, however, the needed potentials would
result in strong technical heating due to the small detunings necessary to achieve
the needed selectivity.
Further ideas include using Raman sideband cooling [276] or implementing filtering
operations on states with high initial densities [277].

An alternative possibility is to create lower entropy regions in the laice by ap-
plying entropy management: Due to the combination of the optical laice with an
additional trapping potential not only the density distribution, but also the entropy
distribution becomes inhomogeneous. As was shown in chapter 5.4.2, the entropy
capacity per atom diverges in the low density limit and the entropy is dominantly
stored in the outer low density parts of the cloud (cf. sec. 8.2.1).
Using optimized trapping potentials that go beyond a simple harmonic trap, it is
possible to further enhance the effect of the low density parts, and thereby to sig-
nificantly reduce the entropy density in the high density regions [272, 278]. If the
potential is tailored such that a large part of the atoms sits in a low density shell,
these atoms could carry most of the entropy and thereby enable low temperatures
also in the high density part. e reduction in entropy density achievable through
this scheme should be sufficient to reach magnetic order in the Mo insulator or
superfluid states in the aractive Hubbard model.
ismethod requires a slow enough loading in order to facilitate the entropy transfer
from the high density to the low density regions, but it requires no further change of
parameters in the laice. It is similar to the highly successful “dimple trick” already
applied in the loading of dipole traps [45]. Alternatively, the loading procedure could
be tailored such that some particles are excited into higher bands, where their av-
erage entropy would again be large. In addition the trapping potential could also
be changed dynamically in the laice, thereby providing additional cooling [278]
during any further preparation steps.

As the low density (high entropy) areas are located near the edge of the cloud, it
would also be possible to evaporatively cool the ensemble in the laice by selectively
removing the outer atoms using either resonant light at moderate spatial resolution
or by employing e.g. microwave addressing in the presence of magnetic field gra-
dients [279, 280]. Another possible route would be the introduction of a repulsive
barrier between the inner and the outer parts of the cloud. is barrier could then be
used to separate the low entropy from the high entropy region [272]. esemethods,
however, create an intermediate out-of-equilibrium state that subsequently needs to
reequilibrate and therefore is affected by technical heating during the sequence and
the reequilibration.

While several methods hold the potential for global cooling, i.e. for lowering the
average entropy per particle, they also represent severe additional challenges. Not
only do they require additional microwave and light fields, which introduce addi-
tional heating sources, they furthermore are based on a reequilibration within the
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laice. is includes mass and entropy redistribution and will lead to rather long
timescales, which in turn amplify the accumulated heating. erefore, the best route
for the reduction of entropy density needed to achieve superfluidity and magnetic
ordering at the moment seems to be the use of entropy management, i.e. optimized
potentials.

11.2. Heating rates

e practical limitation of all cooling techniques is given by the various heating
processes: ese constantly generate entropy and limit the final temperatures to a
value set by an equilibrium between heating and cooling.

Relevant heating mechanisms in the dipole trap include fermionic hole heating [281]
due to collisions with background gas atoms and three body collisions as well as
light assisted collisions and spontaneous photon scaering due to the dipole laser.
In addition, all kinds of technical noise on e.g. the magnetic fields or the frequency,
power, and pointing of the dipole laser lead to further technical heating.

In the optical laice, most heating rates will increase due to the increased density of
the sample and the presence of the additional laice light. In the current experiment,
the dominant heating process in the laice seems to be given by pair losses on doubly
occupied sites due to light assisted collision (cf. sec. 3.4,9.6,A).

11.3. Dynamics

All preparation schemes for ultracold atoms, including all coolingmethods as well as
all loading procedures for the optical laice, require suitable timescales. ey must
not only be performed fast compared to the technical heating discussed above, but at
the same time they need to be slow enough to ensure adiabaticity and thermalization.
A thorough understanding of the dynamics is therefore required in order to find the
optimal sequences. ere exists, however, no theoretical tools that can model time-
dependent problems in the two or three dimensional fermionic Hubbard model.

Up to now, all experiments rely on the preparation of a low entropy sample in ther-
mal equilibrium in an harmonic trap. e sample is subsequently loaded into the
laice and all comparisons with theoretical calculations assume adiabatic loading,
i.e. they assume that the final state in the laice is a thermal state whose total entropy
equals the initial entropy prior to the loading (cf. sec. 2.2.3).

e amount of heating during the laice ramp is typically monitored by measuring
the total entropy increase aer reversing the loading sequence (cf. sec. 8.5,9.5 and
[70, 231]). While this gives an upper bound on technical heating, it is insufficient
to determine the many-body state in the laice, as it is by no means clear whether
the final state in the laice is a thermal state in global equilibrium or not! Recent
experiments have in fact shown surprisingly long time scales for mass transport
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(cf. sec. 10 and [249]) and the relaxation of excess doublons [230]. An additional
complication arises due to unwanted reflections of the dipole trap laser from the
inside of the glass cell. ese lead to a second, incommensurable standing wave that
acts as a quasi-disorder potential [244], which could hinder mass transport.

Especially in future experiments aimed at realizing more complex many-body states
involving long-range order, e.g. antiferromagnetic order, even longer time scales can
be expected due to the lower energy scales.

In addition, a dynamical model is required to analyze experiments on dynamical
properties of the Hubbard model, e.g. the expansion experiments presented in the
previous chapter. is is a fascinating subject by itself and especially the study of
transport properties of mass, spin, and energy or entropy will be a rich field in the
future, reaching far beyond being a mere necessity for the preparation of interesting
equilibrium states.

11.4. Detection

In addition to the preparation of more complex many-body states in the laice, the
reliable detection of these states presents a challenge as well. In the case of the repul-
sive Fermi-Hubbard model, many observables have been identified that can be used
to detect antiferromagnetic order. ese include the use of superlaices to directly
measure the staggered magnetization and detect nearest-neighbor singlet correla-
tions (cf. the PhD thesis of Stefan Trotzky), the use of noise correlation methods to
detect the doubling of the unit cell (cf. sec. 6.2), the increase in doublon fraction [282],
Bragg scaering [283] and many more [284, 285]. e detection will be complicated
by the fact that, in practice, the staggered magnetization will always point in a di-
rection perpendicular to the quantization axis and therefore cannot be detected by a
method that can just distinguish the bare hyperfine states [286]. e noise correla-
tion and superlaice methods, however, do not suffer from this problem. A further
challenge for the detection stems from the requirement that the measurement must
be fast compared to the magnetic dephasing times. In addition, only a fraction of
the system will be in the desired quantum state, while the remaining atoms form a
metallic shell, thereby diluting the desired signal.

In the case of the aractive Hubbard model on the other hand, much less work has
been devoted to finding the best observables in order to observe fermionic super-
fluidity in the laice. In dipole traps, the most common method relies on the pro-
jection of Cooper pairs onto bound molecules by means of a fast magnetic sweep
across the Feshbach resonance [45]. While the center-of-mass momentum of the
pair remains unaffected in free space, the vanishing pair hopping in the BEC limit
of the aractive Hubbard model (Jpair ∝ J2/|U |, cf. sec. 5.5.3) will lead to a localiza-
tion of these pairs. Superfluid correlations should, however, again show up in noise
correlation measurements, especially in the correlations between the different spin
components [202].
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11.4. Detection

e ultimate tool will be the use of recently demonstrated imaging techniques with
single site resolution [13–19] in combination with single site spin operations and
various correlation techniques. Once adapted to the fermionic case, they are in prin-
ciple capable of measuring the full quantum states of the atoms in the laice, similar
to what is routinely performed for ions [287] and photons [288].
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12. Conclusion & Outlook

e main topic of this thesis has been the realization of the Fermi-Hubbard model
using spin mixtures of ultracold 40K in optical laices. By use of a Feshbach reso-
nance and a blue-detuned laice it was possible to implement the Hubbard model
with an independent control over all relevant parameters.
is created the possibility to study several equilibrium phases of both the repulsive
and the aractive Hubbard model as well as out-of-equilibrium dynamics in these
systems.
To this end, in-situ density measurements, which were implemented using phase-
contrast imaging, and measurements of the doublon fraction were performed.

By measuring the global compressibility and the doublon fraction of repulsively in-
teracting fermionic atoms in an optical laice it was possible to explore different
regimes of the repulsive Fermi-Hubbard model and to directly identify compressible
metallic states and Mo-/band-insulating states by measuring the cloud size and the
global compressibility. is constitutes one of the first realizations of a fermionic
Mo insulator using ultracold atoms. By comparing clouds at constant average den-
sity, the suppressed doublon fraction at strong interactions directly signaled the en-
trance into the strongly-correlated regime.

In a second experiment it could be shown how pair formation in a fermionic Hubbard
model with aractive interactions gives rise to an anomalous expansion of the gas
as the araction increases. e consequences of pairing in the first band of a laice
potential are fundamentally different from the consequences of pairing in the con-
tinuum. e realization of the so-called pseudogap or preformed pair regime, where
bound pairs have formed but did not condense, is an important step towards the
experimental study of fermionic superfluidity in the aractive Hubbard model. e
fact that the observed minimum in cloud size appears for interactions much smaller
than the position of the BEC-BCS crossover hints towards a many-body origin of the
pairing, as predicted by the Cooper instability.

In a third experiment, the free expansion of a cloud of initially localized atoms in a
homogeneous Hubbard model has been studied. is experiment utilized the real-
time control over most relevant parameters and demonstrates the possibility to im-
plement quantum quenches and to study the resulting non-equilibrium dynamics in
these systems. By monitoring the in-situ density distribution during the expansion,
a crossover from a ballistic expansion at small densities or vanishing interactions to
a hydrodynamic expansion in the interacting case could be observed. Even small
interactions lead to a drastic reduction of the expansion velocity of the atomic cloud
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and finally, for strong interactions, the core width of the atomic cloud shrinks in-
stead of expanding. Surprisingly, only the magnitude but not the sign of the inter-
action maers: the dynamics is identical for repulsive and aractive interactions,
highlighting the high symmetry of the dispersion relation in the Hubbard model.

Although the experiments were performed at entropies per particle on the order
of S/N = (log(3) − log(4))kB , lower entropy states could be reached in parts of
the system, as the combination of laice and harmonic trap leads to a substantial
entropy redistribution.
In addition, the performed studies also revealed the remaining challenges on the way
to experimental studies of superfluidity and quantum magnetism in these systems.
e dominant heating processes in the laice seem to be light-assisted collisions,
which have been studied extensively (cf. sec. A) and will be further analyzed in the
future.
e surprisingly large timescales of mass transport in an interacting Hubbard model
set lower limits on the timescales needed both to adiabatically load the atoms into
the laice and to cool the system in the laice. ey are therefore of paramount
importance for all aempts to create complex, strongly correlated many-body states
like Néel-ordered states in these systems.

12.1. Outlook

In addition to the extension of the current work to lower entropies, there are many
important experiments that still remain to be done using already available technol-
ogy and already demonstrated entropy densities. In the equilibrium case these in-
clude a study of the effects of spin imbalance in the various regimes as well as an
extension of the developed measurement schemes to the case of a fermionic three
component system, i.e. a mixtures of three hyperfine states. In addition these new
diagnostics will also be used to study various Bose-Fermi mixtures.

In the repulsive case, the study of the ternary Mo insulator [184] with one atom
per laice site seems especially promising, since in this case three body losses are
suppressed. is system approximately realize a Heisenberg spin model with SU(3)
symmetry [236] and an enhanced entropy capacity of S/N = log(3)kB , compared
to S/N = log(2)kB in the binary case. For a broken SU(3) symmetry, i.e. different
interaction strengths between the three components, even more complex states are
expected, including color selective and paired Mo insulator states [237, 238].

In the aractive case, we plan to extend our studies to the spin imbalanced case,
where even richer ground state phase diagrams with additional phases like the FFLO
phase are predicted [151, 174–176].

e method of directly measuring the expansion velocity can be generalized in a
straightforward way to more complex quantum states including metallic and Mo-
insulating states in the repulsive Hubbard model (c.f. 8) or the pseudogap regime
in the aractive Hubbard model (c.f. 9). Furthermore it can be extended to bosonic
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quantum gases, where the transition from a superfluid to a Mo-insulator can be in-
vestigated, and to Bose-Fermi mixtures [273], where polaronic physics can be stud-
ied. In addition, the effects of various disorder potentials on the two-dimensional
dynamics can be studied.

Major goals for the future include the observation of superfluidity in the aractive
Hubbardmodel and antiferromagnetic order in the repulsive Hubbardmodel. To this
end, several technical enhancements are currently implemented during the rebuild-
ing of the setup aer the move to Munich. ey include a new dipole trap setup,
beer magnetic field control, an improved laser system and an enhanced optical ac-
cess and should enable the preparation of larger and colder clouds. ese can serve
as a starting point for analyzing the various heating mechanisms and implementing
new entropy management methods.

In a second experimental setup, which is currently under construction, we plan to
extend all of the above measurements into the crossover regime between 2D and 3D
and to implement superlaice structures.
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A. Photo dissociation

In this appendix, photodissociation measurements of 40K2 Feshbach molecules are
presented together with a qualitative interpretation. A detailed quantitative anal-
ysis, however, is still missing. e photodissociation of Feshbach molecules in the
presence of blue-detuned light was studied with two applications in mind:

One important technical goal was to find wavelengths where the photodissociation
rate is minimal, as for these wavelengths also heating rates due to light assisted
collisions in the laice are minimal. is is due to the fact that for blue-detuned
light photodissociation of a molecule and a light assisted collision of a pair of atoms
are essentially the same process. In both cases one of the atoms absorbs a photon and
the pair of atoms is excited into a repulsive molecular potential where subsequently
a fraction of the photon detuning is converted into kinetic energy (c.f. 3.4).

e typical distance of two atoms on the same laice site is on the order of the
harmonic oscillator length of the on-site wavefunction, which is in the blue detuned
case around 55 − 70 nm ≈ 1100 − 1400 a0. is is comparable to the size of a
Feshbach molecule close to resonance, which is on the order of half the scaering
length ⟨r⟩ ≈ a/2 ≈ 70 nm@201.6G (c.f. 3.3.2). In the range of large detunings
∆ ≫ 10 nm used for optical laices, the Condon point lies within the van der Waals
potential (c.f. 3.1). At these distances, the wave function is completely governed by
the molecular potential, i.e. it is identical for atoms forming a Feshbach molecule
and atoms on the same laice site.

e second motivation for this experiment stems from molecular physics: Provided
the repulsive excited state molecular potentials are known precisely, it should be
possible to infer the position of the nodes of the Feshbach molecule wavefunction
from the dissociation spectra. In the simplest approximation the excitation takes
place only at the Condon point, where the energy difference between the molecular
potentials equals the photon energy (c.f. 3.4). Consequently, the Franck-Condon
factor is proportional to the square of the ground state wave function at this point.
In this picture, a minimum in the excitation rate directly corresponds to a node in the
molecular wavefunction. In reality, however, there are several further complications:

• ere exist in total four excited state molecular potential with dipole allowed
transitions to the ground state potentials

• In some of these potentials there exists more than one Condon point

• For large detunings the above approximation breaks down and the Franck-
Condon factor becomes more complex.
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A. Photo dissociation

In addition, it is not clear at presence whether the excited potentials are known
accurately enough for such a direct mapping. In a complete analysis, this photodis-
sociation data should be used together with the position of the Feshbach resonances
and the numerous photoassociation data in a global fit for the molecular potentials,
similar to the method used in [40, 289].

A.1. Experimental sequence

ese measurements were performed in a pure dipole trap without a laice. An
equal mixture of the (|F,mF ⟩) |9/2,−9/2⟩ and |9/2,−7/2⟩ hyperfine states was
cooled to T/TF ≈ 0.3 at a magnetic field of B ≈ 219G, which corresponds to weak
repulsive interactions above the Feshbach resonance located at B = 202.1G .
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Figure A.1.: Feshbach molecules are produced with an adiabatic magnetic field ramp
over the Feshbach resonance at 202.1G and aer a hold time get dissociated by a sec-
ond ramp in the opposite direction. During this (constant) hold time a light pulse of
variable wavelength, intensity and duration can photodissociate the molecules.

en about 60% of the atoms were converted into Feshbach molecules using an adi-
abatic ramp of the magnetic field down to 201G. Aer a short hold time (≤10ms)
the molecules were converted back into atoms by a second magnetic field ramp and
the atom number was measured using standard time-of-flight imaging.
By applying a blue-detuned light pulse during the hold time between the two mag-
netic field sweeps, a fraction of the molecules was photodissociated.

In this sequence, the detected atom number consists of two parts: Atoms that were
not converted into molecules by the first magnetic sweep (atomic background), and
molecules that were dissociated by the second magnetic sweep. Due to their high
kinetic energy, atoms stemming from photodissociated molecules leave the trap im-
mediately and are detected as a reduction of the final atom number. In addition, the
atomic background was measured directly by skipping the second magnetic field
ramp, since molecules remain invisible on absorption images taken with light reso-
nant on the atomic transition.
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A.2. Experimental results

A.2. Experimental results

A.2.1. Varying the dissociation wavelength

e main measurement in this experiment is the effect of the wavelength on the
dissociation rate. As measuring the dissociation rate for every wavelength would
be very time consuming, instead scans of the remaining atom number were taken
for constant ramps, timings and intensities: Only the wavelength of the dissociation
laser (a cw Ti:Sa) was varied. Every point in the following curves corresponds to an
individual run of the experiment.
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Figure A.2.: Final atom number aer the experimental sequence described above. e
intensity and duration of the photodissociation pulse were constant; only the wave-
length was varied around the atomic D2 transition at 766.5 nm (766.7 nm vacuum
wavelength)

e behaviour of the remaining atom number around the atomic resonance is de-
picted in Figure A.2 and shows a completely different behaviour for red- and blue-
detuned light: On the blue-detuned side (λ < 766.5nm) all molecules were pho-
todissociated and only the atomic background was measured. On the atomic D2

resonance both molecules and atoms leave the trap. In the red-detuned case on the
other hand, most molecules survive already for modest detunings of 0.2 nm, except
on narrow bound-bound resonances, where the Feshbach molecules are excited into
excited molecular states. ere should be many more of these narrow resonances,
but only a few were hit during this rather coarse scan.

For larger detunings on the blue-detuned side, the photodissociation rate decreases
non-monotonically, exhibiting a rather strong oscillating behaviour, as can be seen
in figure A.3. A maximum in the observed atom number corresponds to a minimum
in the photodissociation rate, which is proportional to the Franck-Condon factor.
As the photodissociation in the blue detuned case is a bound-free transition into a
continuum of states, the Franck-Condon factor will mostly depend on the absolute
value of the bound state wavefunction at the Condon point. In this simple picture
every maximum corresponds to a node of the Feshbach molecule wavefunction.

On top of the oscillatory behaviour the photodissociation rate strongly decreases for
increasing detuning. In order to extend the above measurement to a larger wave-
length range, several scans were taken with different intensities and pulse duration.
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Figure A.3.: A single scan taken on the blue-detuned side of the atomicD2 resonance
at constant magnetic field, intensity and pulse duration, which shows the oscillatory
behaviour of the photodisssociation rate. Based on this measurement, a wavelength
of 738 nm was chosen for the final optical laice setup.
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Figure A.4.: Combined data of several scans spanning in total 45 nm on the blue-
detuned side of the atomic resonance, taken in steps of 0.05-0.15nm. Almost 30 max-
ima were found. e graph is created out of nine individual scans which were taken
for different pulse durations and intensities and subsequently were rescaled and dis-
placed vertically in order to produce a continuous curve. e wavelengths were not
scaled or shied!

e combined results of this measurements are shown in figure A.4, displaying in to-
tal almost thirty minima of the photodissociation rate. is would in principle allow
the determination of equally many node positions of the Feshbach wavefunction.

A.2.2. Dissociation rate

In order to extract the global scaling of the photodissociation rate Γdis with detun-
ing, the lifetime τ of the Feshbach molecules in the presence of blue-detuned light
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with intensity I was measured for several detunings. Since the photodissociation
rate is proportional to the intensity of the light, the intensity in every measurement
was chosen such that the resulting lifetime (τ < 10ms) was short compared to the
lifetime without any light τbg ≈ 26ms@ 201G, which is given by collisions. We
checked that the number of molecules decays exponentially as a function of pulse
duration at constant intensity, and as a function of intensity at constant pulse length.

Figure A.5.:emain graph shows the product I ·τ taken at several maxima of figure
A.4. is data cannot be fied by a parabola, a power law fit would suggest ∼ 1/∆3

and the dashed line is a guide to the eye. e inset shows another measurement of I ·τ
for various randomly chosen wavelengths in a log-log plot. is data is compatible
with a 1/∆2 scaling of the photodissociation rate.

In Figure A.5 the resulting product I · τ is ploed for various measurements. While
the data for randomly chosen detuningswould be compatible with a 1/∆2 behaviour,
a second measurement performed at several minima of the photodissociation rate
displays deviations from the above power for large detunings. Such a deviation is
to be expected, since for small distances the molecular potentials deviate from their
long distance power-law behaviour and eventually become non-monotonic (c.f. Fig-
ure 3.1).

is deviation from power-law potentials can also be seen in Figure A.6, where the
distance between subsequent minima in the photodissociation rate is ploed. e
pronounced minimum around 750 nm could mean that more than one upper poten-
tial is involved or may correspond to a turning point of the upper potential. e
measured position at 750 nm would however be inconsistent with the calculated po-
tentials of O. Dulieu, which are shown in figure 3.1.

A.2.3. Influence of the magnetic field

In Figure A.7, a detailed scan of the photodissociation rate around the minimum at
738 nm is shown for two different values of the magnetic field and shows that the
position of the minimum is independent of the magnetic field, illustrating that the
shape of the molecular wavefunction (i.e. the position of the nodes) in the inner
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Figure A.6.: e main graph shows the distance from one observed peak to the next,
the inset shows the peak positions. e pronounced minimum around 750 nm could
mean that more than one upper potential is involved or may correspond to a turning
point of the upper potential.

part of the molecular potential does not depend on the (kHz scale) variation of the
molecular binding energy.

Even though the magnetic field has no influence on the positions of the minima, it
has a profound effect on the absolute scale of the photodissociation rate. As is shown
in Figure A.8, the photodissociation rate decreases by a factor of two upon changing
the magnetic field from B = 201G to B = 201.6G.

is decrease in the photodissociation rate with respect to magnetic field can be
understood by considering the molecular wavefunction, which is ploed in figure
3.5 in the main text: On approaching the Feshbach resonance, the outermost maxi-
mum in the open channel will extend to larger and lager distances, giving rise to the
halo character of the molecular wavefunction. Even though the form of the wave
function in the inner part does not change, its amplitude will decrease due to nor-
malization. is results in a reduced Frank-Condon factor and leads to a reduced
photodissociation rate.
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Figure A.7.: Two scans for two different magnetic fields with all other parameters
being identical.
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Figure A.8.:Measured 1/e-intensities of the number of molecules for a constant pulse
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B. Dynamical U vs. -U symmetry

In this appendix the dynamical symmetry theorem, which was found during the
analysis of the expansion data shown in chapter 10, is presented in some detail to-
gether with an analytical proof. e analysis was performed in collaboration with
A. Rosch, E. Demler and M. Moreno-Cardoner.

We consider a coherent dynamical evolution arising from two Hubbard-type hamil-
tonians that differ only in the sign of the interaction term:

Ĥ± = −J
∑
⟨ij⟩σ

ĉ†iσ ĉjσ ± U
∑
i

n̂i↑n̂i↓ (B.1)

In order to state and proof the desired theorem we first introduce two operators, the
π-boost operator BQ and the time reversal operator Rt.

Boost operator e π-boost operator B̂Q, which translates all quasi-momenta
by Q = (π/d, π/d, π/d), is a linear self-adjoint operator (B̂2

Q = 1) and is given in
second quantization notation by:

B̂Qĉ
†
qB̂Q = ĉ†q+Q (B.2)

Here ĉ†q denotes the creation operator for the Bloch wave with quasi-momentum q.
From the definition of a Wannier state (cf. eqn. 4.12)

ĉ†r =
1√
N

∑
q

e−iqr ĉ†q (B.3)

we get

B̂Qĉ
†
rB̂Q =

1√
N

∑
q

e−iqr B̂Qĉ
†
qB̂Q =

1√
N

∑
q

e−iqr ĉ†q+Q

=
eiQr

√
N

∑
q

e−i(q+Q)r ĉ†q+Q =
eiQr

√
N

∑
q′

e−iq′r ĉ†q′

= eiQrĉ†r (B.4)

e Boost operator assigns an additional position-dependent phase eiQr to every
Wannier state. As a consequence, applying the boost operator to a coherent su-
perposition of Wannier states changes the relative phase between the components:

B̂Q(ĉ
†
r + ĉ†r′)B̂Q ∝ (ĉ†r + eiQ(r′−r)ĉ†r′) (B.5)
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Time reversal operator e time reversal operator R̂t is an anti-linear operator
that obeys R̂tz = z∗R̂t, z ∈ C and R̂tR̂

†
t = 1. Its effect on a Bloch wave is to negate

the quasi-momentum:

R̂tĉ
†
qR̂

†
t = ĉ†−q (B.6)

is means for a Wannier state:

R̂tĉ
†
rR̂

†
t =

1√
N

∑
q

R̂te
−iqr ĉ†qR̂

†
t =

1√
N

∑
q

e+iqr R̂tĉ
†
qR̂

†
t

=
1√
N

∑
q

e+iqr ĉ†−q =
1√
N

∑
q′

e−iq′r ĉ†q′

= ĉ†r (B.7)

Note the complex conjugation in the prefactor at the second equal sign, which is due
to the anti-linear nature of the operator.
A Wannier state is invariant under time reversal.

Applying the time reversal operator turns the wavefunction into its complex conju-
gate [290] or, equivalently, modifies the time evolution operator:

R̂te
−iĤtR̂†

t = eiĤt (B.8)

The theorem

If the experimentally measured quantity Ô is invariant under both time reversal and
π-boost, and the initial state |Ψ0⟩ is time reversal invariant and only acquires a global
phase factor under the boost transformation (B̂Q |Ψ0⟩ = eiχ |Ψ0⟩, χ ∈ R), then the
observed time evolutions

⟨Ô(t)⟩± = ⟨Ψ0|eiĤ±tÔe−iĤ±t|Ψ0⟩ (B.9)

are identical: ⟨Ô(t)⟩+ = ⟨Ô(t)⟩−.

In order to proof the above symmetry theorem we first observe that

⟨Ô(t)⟩+ = ⟨Ψ0|R̂†
tR̂te

iĤ+tR̂†
tR̂tÔR̂

†
tR̂te

−iĤ+tR̂†
tR̂t|Ψ0⟩

= ⟨Ψ0|e−iĤ+tÔeiĤ+t|Ψ0⟩ (B.10)

e last equation follows from the definition of time reversal invariance, R̂t|Ψ0⟩ =
|Ψ0⟩ and R̂tÔR̂

†
t = Ô, and from the unitarity property R̂†

tR̂t = 1. Note that equation
(B.10) corresponds to the symmetry of time evolutions for Ĥ → −Ĥ.
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From the definition of the π-boost we get:

B̂QĤ±B̂Q = −J
∑
⟨ij⟩σ

B̂Qĉ
†
iσB̂

2
QĉjσB̂Q ± U

∑
i

B̂Qn̂i↑B̂
2
Qn̂i↓B̂Q

= +J
∑
⟨ij⟩σ

ĉ†iσ ĉjσ ± U
∑
i

n̂i↑n̂i↓

= −Ĥ∓ (B.11)

Here we used the unitarity of the boost operator B̂2
Q = 1 and the transformation

behaviour of the density operator B̂Qn̂i↕B̂Q = B̂Qĉ
†
i↕B̂

2
Qĉi↕B̂Q = n̂i↕. With this we

can continue equation (B.10):

⟨Ô(t)⟩+ = ⟨Ψ0|B̂2
Qe

−iĤ+tB̂2
QÔB̂

2
Qe

iĤ+tB̂2
Q|Ψ0⟩

= ⟨Ψ0|B̂Qe
+iĤ−tÔe−iĤ−tB̂Q|Ψ0⟩

= ⟨Ψ0|e−iχe+iĤ−tÔe−iĤ−teiχ|Ψ0⟩
= ⟨Ô(t)⟩−e−iχeiχ

= ⟨Ô(t)⟩− (B.12)

In the last equation we used the π-boost invariance of the observable B̂QÔB̂Q = Ô,
the required transformation behavior of the initial state B̂Q |Ψ0⟩ = eiχ |Ψ0⟩, and the
unitarity of the boost operator B̂2

Q = 1.

Initial state

e many-body state given in the experiment can be wrien as an incoherent mix-
ture of states of the form:

|Ψmb⟩ =
n∏

i=1

ĉ†ri |vac⟩ (B.13)

is state describes n particles localized at the positions ri and transforms under B̂Q

according to:

B̂Q |Ψmb⟩ = B̂Q

n∏
i=1

ĉ†ri |vac⟩

= B̂Q ĉ
†
r1
B̂2

Q ĉ
†
r2
B̂2

Q ĉ
†
r3
B̂2

Q · · · ĉ†rn B̂
2
Q |vac⟩

= eiQr1 ĉ†r1 e
iQr2 ĉ†r2 e

iQr3 ĉ†r3 · · · e
iQrn ĉ†rn |vac⟩

=
∏
i

eiQri |Ψmb⟩

= eiQ
∑

i ri |Ψmb⟩ (B.14)
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On the second line we used B̂2
Q = 1 and on the third line we used B̂Q |vac⟩ = |vac⟩.

An according calculation with R̂t results in R̂t |Ψ⟩ = |Ψ⟩. is shows that a many-
body state of the form of eqn. B.13 fulfills the requirements of the above symmetry
theorem. e extension to the mixed state used in the experiment is straightforward.
Due to the definition of a general density matrix ρ =

∑
j pj |Ψj⟩⟨Ψj| we get:

⟨Ô⟩ρ = tr[ρÔ] =
∑
j

pj⟨Ψj| Ô |Ψj⟩ (B.15)

and see that the theorem also holds for mixed states, as it holds for every term in the
sum.

e experimental observable is the density distribution n̂(rj) =
∑

σ ĉ
†
jσ ĉjσ and the

initial state consists of atoms that are completely localized to individual laice sites
(cf. sec. 10.1). Because both the initial state and the measured operator fulfill the
requirements of the symmetry theorem, we are guaranteed to find the described
U ↔ −U symmetry in the dynamics for all interaction strengths.

Since the bi-partite character of the laice is crucial to the proof of the theorem, this
symmetry can be expected to be broken in laices without the bi-partite structure,
such as a triangular laice.
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C. Poly-logarithmic functions

A class of useful functions are the poly-logarithmic functions, which appear in the
analytic solution of the following common integrals [33]:

∞∫
0

ϵn F (ϵ)dϵ = −(kbT )
1+nΓ(1 + n)Li1+n(−Z) (C.1)

Here Z denotes the fugacity (c.f. sec. 2.2.1), Lin(z) denotes the poly-logarithm of
order n and Γ is the Euler gamma function. e poly-logarithms can be calculated
using the following power series

Lin(−z) =
∞∑
k=1

(−z)k

kn
(C.2)

which converges for all complex numbers with |z| ≤ 1.

In the case of the dilogarithm an arbitrary argument can be mapped into the unit
circle using the following reflection identity [291]:

Li2(x) = −Li2

(
1

x

)
− π2

6
− 1

2
(log(−x))2 (C.3)
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