
Symplectic Lagrangian Fibrations

Dissertation

zur Erlangung des Grades

”Doktor der Naturwissenschaften”

am Fachbereich 08 - Physik, Mathematik und Informatik

der Johannes Gutenberg-Universität

in Mainz,

vorgelegt von

Christian Lehn,

geb. in Frankfurt am Main

Mainz, den 5. Mai 2011



ii

Betreuer:

Zweiter Berichterstatter:

Datum der mündlichen Prüfung: 12.07.2011
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Abstract

In this work we investigate the deformation theory of pairs of an irreducible

symplectic manifold X together with a Lagrangian subvariety Y ⊆ X,

where the focus is on singular Lagrangian subvarieties. Among other things,

Voisin’s results [Voi92] are generalized to the case of simple normal crossing

subvarieties; partial results are also obtained for more complicated singular-

ities. As done in Voisin’s article we link the codimension of the subspace

of the universal deformation space of X parametrizing those deformations

where Y persists, to the rank of a certain map in cohomology. This en-

ables us in some concrete cases to actually calculate or at least estimate

the codimension of this particular subspace. In these cases the Lagrangian

subvarieties in question occur as fibers or fiber components of a given La-

grangian fibration f : X −→ B. We discuss examples and the question of how

our results might help to understand some aspects of Lagrangian fibrations.

Zusammenfassung

In der vorliegenden Arbeit wird die Deformationstheorie von Paaren von

einer irreduzibel symplektischen Mannigfaltigkeit X und einer Lagrange-

schen Untervarietät Y ⊆ X untersucht, wobei das Hauptaugenmerk auf

singulären Lagrangeschen Untervarietäten liegt. Die Resultate von Voisin

[Voi92] werden unter Anderem auf den Fall von Untervarietäten mit ein-

fachen normalen Überkreuzungen verallgemeinert; ebenfalls werden Teil-

ergebnisse für kompliziertere Singularitäten erzielt. Wie bereits bei Voisin

geschehen, können wir die Kodimension desjenigen Unterraumes des uni-

versellen Deformationsraumes von X, der Deformationen parametrisiert, bei

denen Y mit deformiert, mit dem Rang einer gewissen Abbildung in Koho-

mologie in Verbindung bringen. Dies erlaubt es uns, in konkreten Fällen

die Kodimension des besagten Unterraumes zu bestimmen oder wenigstens

abzuschätzen. Dabei handelt es sich bei den Lagrangeschen Untervarietäten

Y in der Regel um Fasern oder Faserkomponenten einer gegebenen La-

grangeschen Faserung f : X −→ B. Wir diskutieren Beispiele und gehen

darauf ein, wie unsere Resultate dem Verständnis gewisser Aspekte La-

grangescher Faserungen förderlich sein könnten.
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Introduction

Results and methods

The purpose of this work is to study Lagrangian fibrations on irreducible

symplectic manifolds. Matsushita [Mat99] discovered that any non-trivial

fibration from an irreducible symplectic manifold to a projective variety

of smaller dimension is a Lagrangian fibration. Since then these fibrations

have become an important tool in understanding symplectic manifolds. Mat-

sushita’s theorem is recalled as part of Theorem VII.1.1. It is also an instance

of the fact that there are strong restrictions for the base of such a fibration.

Most notably, if the base of a Lagrangian fibration on a projective irreducible

symplectic manifold is smooth and projective, then it is isomorphic to the

complex projective space Pn by a theorem of Hwang [Hwa08, Thm 1.2].

For a proper Lagrangian fibration of class C∞ between differentiable man-

ifolds, the Liouville-Arnol’d theorem [Arn89, Ch 10, § 49] says that the

smooth fibers are compact tori, that is, diffeomorphic to the n-fold carte-

sian product (
S1
)×n

= S1 × . . .× S1

of the circle S1. The holomorphic analogue of this theorem tells us that

the smooth fibers of a proper holomorphic Lagrangian fibration are complex

tori. As tori are studied quite well, singular fibers enter the focus. Every La-

grangian fibration on an irreducible symplectic manifold has singular fibers,

see [Hwa08, Prop 4]. They are an important invariant of the fibration,

hence also of the symplectic manifold itself and can for example be used in

explicit calculations, see [Moz06] or [Bea99]. General singular fibers have

been classified by Hwang-Oguiso [HO09a] and Matsushita [Mat07].

It turns out to be rewarding to forget that a given subvariety is a fiber of

a Lagrangian fibration and simply consider it as an abstract Lagrangian

subvariety. Then one can ask whether the results of Voisin’s article [Voi92]

still hold. In [Voi92] Voisin studied deformations of pairs Y ⊆ X where X

is an irreducible symplectic manifold and Y a complex Lagrangian subman-

ifold. She found out that, roughly speaking, deformations of X where Y

stays a complex submanifold are exactly those deformations, where Y stays

1



2 INTRODUCTION

Lagrangian. If MY denotes the subspace of the universal deformation space

M of X parametrizing deformations, where Y stays a complex submanifold,

she expressed the codimension of MY in M as the rank of the restriction

map H2(X,C) −→ H2(Y,C).

We generalize Voisin’s results to Lagrangian subvarieties with simple normal

crossings. Here and in the following a variety does not need to be irreducible.

To give a precise formulation of our main results, we have to introduce some

notations. Let i : Y ↪→X be a Lagrangian subvariety with simple normal

crossings, let ν : Ỹ −→ Y be the normalization and put j := i ◦ ν. Let

(M, 0) be the germ of the universal deformation space of X where 0 is the

point corresponding to X. It is known to be smooth by the Bogomolov-

Tian-Todorov theorem, see [Bog78, Tia87, Tod89]. If the representative

M is chosen small enough and simply connected, the universal family over

M is a C∞-trivial fiber bundle. For small deformations Xt of X this gives

a diffeomorphism αt : X −→ Xt and a class ωt ∈ H2(X,C) corresponding to

the symplectic form on Xt. We put jt := αt ◦ j and denote by (Mi, 0) the

germ of the universal deformation space for locally trivial deformations of

the inclusion i : Y ↪→X. It comes with a forgetful map p : Mi −→M . Then

we have

Theorem VI.5.3 — Let i : Y ↪→X be a simple normal crossing Lagrangian

subvariety in a compact irreducible symplectic manifold X, ν : Ỹ −→ Y the

normalization and j = i◦ν. Consider the germs at 0 of the complex subspaces

MY := im(p : Mi −→M) and M ′Y := {t ∈M : j∗t ωt = 0}

of M . Then M ′Y = MY and this space is smooth at 0 of codimension

codimM MY = codimM M ′Y = rk
(
j∗ : H2(X,C) −→ H2(Ỹ ,C)

)
.

in M .

The definition of MY as the image of Mi −→ M is a way of formalizing the

phrase “Y stays complex”. Similarly the defining equation for M ′Y forma-

lizes the statement “Y stays Lagrangian”. The definition of MY is quite

subtle. We do not know a good definition forMY for an arbitrary Lagrangian

subvariety Y . The problem is that we do not in general know whether the

set p(Mi) is an analytic subset of M , see Chapter VI.

Many of the intermediate steps in the proof of Theorem VI.5.3 are essentially

as in [Voi92], but for the smoothness of MY we have to argue differently.

For this we develop ideas of Ran [Ran92b], [Ran92a] by exploiting the

interplay between deformation theory and Hodge theory. On the way we
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obtain the following result, which is unrelated to symplectic geometry and

maybe of independent interest.

Theorem III.4.3 — Let S = SpecR where R is a local Artin C-algebra

with residue field C, let Y be a proper simple normal crossing C-variety

and let g : X −→ S and f : Y −→ S be proper, algebraic S-schemes. As-

sume that Y −→ S is a locally trivial deformation of Y and X −→ S is

smooth. Let i : Y −→ X be an S-morphism. Then for all p, q the morphism

i∗ : Rqg∗Ω
p
X/S −→ Rqf∗Ω̃

p
Y/S has a free cokernel.

The complex Ω̃•Y/S is Ω•Y/S modulo torsion, see Definition III.1.1. Like the

de Rham complex in the smooth case, Ω̃•Yan/S calculates cohomology with

coefficients in the constant sheaf RY an for normal crossing varieties, where

Y an is the complex space associated to the variety Y . In particular, Theorem

III.4.3 holds for smooth morphisms Y −→ S.

Let us spend some words about the content and the structure of this treatise.

For more detailed explanations we refer to the introductions of the individual

chapters.

In Chapter I we explain the necessary ingredients from deformation the-

ory. In particular, we define locally trivial deformations in the Zariski and

analytic context and show that they give rise to isomorphic deformation

functors, see Corollary I.5.1. The material is quite standard. We included

it as we did not find in the literature the particular formulations of these

results we need in later chapters.

As our central technical tool we introduce the notions of a mixed Hodge

structure and a mixed Hodge-Weil structure, both over a local Artin C-

algebra, in Chapter II. These notions appear to be new. They axiomatize

the Hodge theory of locally trivial deformations of simple normal crossing

varieties. In combination with commutative algebra over Artin rings they

are essentially used in the proof of Theorem III.4.3. Mixed Hodge structures

over a local Artin C-algebra R are intermediate objects between ordinary

mixed Hodge structures and variations of mixed Hodge structures. Mixed

Hodge structures and mixed Hodge-Weil structures over R are related to

one another by Grothendieck’s theory of Weil restriction [Gro59, Gro60].

If R = C, then both notions specialize to the ordinary notion of a mixed

Hodge structure.

Chapter III provides a construction of a mixed Hodge structure over a local

Artin C-algebra R on the cohomology of locally trivial deformations over

S = SpecR of simple normal crossing varieties. In the absolute case R = C
a very explicit construction of a mixed Hodge structure on the cohomology
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of a proper simple normal crossing variety is described in [GS75]. It uses

the canonical semi-simplicial resolution of a simple normal crossing variety,

see section III.2. We lift this resolution on the central fiber to a resolution by

schemes which are smooth over S. In this framework we can prove Theorem

III.4.3. Similar results hold for deformations of compact Kähler manifolds

over an Artinian base.

In Chapter IV we recall the basic definitions and results regarding symplectic

manifolds. An overview of the geometry of the universal deformation space

M of an irreducible symplectic manifold X is given in Chapter V. There

we discuss several important subspaces of M , most of which are defined

by the persistence of certain (properties of) geometric objects on X under

deformation. In this chapter we also explain and adapt Voisin’s results from

[Voi92], see section V.3. Only the definition and discussion of the space

MY from Theorem VI.5.3 is postponed until Chapter VI, because it is quite

involved and needs some preparation.

Chapter VI is devoted to the proof our main result, Theorem VI.5.3. We

develop Ran’s ideas and explain the T 1-lifting principle. We show that as a

consequence of work of Flenner and Kosarew [FK87] there exists a univer-

sal locally trivial deformation for the inclusion of a Lagrangian subvariety

i : Y ↪→X in an irreducible symplectic manifold. The base of this defor-

mation is the space Mi, which is shown to be smooth in Theorem VI.3.12.

By construction, there is a canonical map p : Mi −→ M . We show that

in case Y has simple normal crossings, this map factors as the composition

of a smooth map p : Mi −→ MY and a closed immersion of a submanifold

MY ↪→M , see Theorem VI.4.3. For this one maybe needs to shrink Mi and

M . Then, we prove Theorem VI.5.3 by assembling all theory developed and

collected in the previous chapters. Furthermore, the projectivity of simple

normal crossing Lagrangian subvarieties in an irreducible symplectic mani-

fold is shown. This is used to apply algebraic arguments from the previous

chapters to those subvarieties.

We give examples and applications to Lagrangian fibrations in Chapter VII.

Our results can be applied to most types of the general singular fibers of a

Lagrangian fibration in the sense of Hwang-Oguiso [HO09a]. By work of

Matsushita [Mat05, Mat09] there is a certain subspace ML of M , where

a given fibration f : X −→ B on the irreducible symplectic manifold X is

preserved and this subspace is exactly the subspace MY for a smooth fiber Y

of f . We show that if the reduction Y of a general singular fiber is preserved

under deformation of X as a subvariety, then the fibration is preserved as

well and deformations of Y are still contained in a fiber. We investigate
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which of the general singular fibers show up generically in ML. We produce

several interesting questions in this direction and we believe that our results

may be helpful to attack them.

In Chapter VIII we explain some related open problems which we encoun-

tered during this work and which we think should be guiding problems in

the struggle to understand Lagrangian fibrations. We also pose some prob-

lems and questions regarding Hodge theory, locally trivial deformations and

generalizations of our results.

Notations and conventions

We try to stick to the following notations and conventions throughout this

work. We denote by k a field of characteristic zero. As usual, for a ring R

we write R[ε] := R[x]/x2 where ε := x mod (x2). Set is the category of

sets, Sch the category of schemes. For a scheme Z the category of schemes

over Z is denoted by Sch/Z. The opposite category of a category C , that is,

the category whose objects are the objects of C and whose morphisms are

obtained by reversing the morphisms of C , is denoted by C op.

An algebraic scheme is a separated scheme of finite type over a noetherian

ring. The term algebraic variety will stand for a separated reduced k-scheme

of finite type. In particular, a variety may have several irreducible com-

ponents. Similarly, a complex variety will be a separated reduced complex

space. If there is no danger of confusion, we will drop the adjectives algebraic

respectively complex. A fibration is a proper morphism with connected fibers

from a variety to a normal variety. For a scheme Z and a ring R the R-valued

points MorSch(SpecR,Z) of Z are denoted by Z(R). The subscheme defined

by a sheaf of ideals I will be denoted by V (I). If I is generated by sections

f1, . . . , fn ∈ Γ(Z,OZ) we will also write V (f1, . . . , fn) for V (I). For an Artin

ring R we do not distinguish between a quasi-coherent sheaf on S = SpecR

and its R-module of global sections. A complex space or algebraic scheme

Y of equidimension n is called a normal crossing variety if for every closed

point y ∈ Y there is an r ∈ N0 such that ÔY,y ∼= k[[y1, . . . , yn+1]]/(y1 ·. . .·yr).
It is called a simple normal crossing variety if in addition every irreducible

component is nonsingular.

Let X be a scheme of finite type over C. We write Xan for the complex

space associated to X. For us a complex space is always separated and

is allowed to have nilpotent elements in the structure sheaf. For a quasi-

coherent OX -module F we denote by F an the associated OXan-module ϕ∗F

where ϕ : Xan −→ X is the canonical morphism of ringed spaces.
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If A is an abelian group and X a topological space, AX will denote the

constant sheaf on X with values in A.

The symbol � marks the end of a proof. If for some reason a proof is

omitted, this will be indicated by the appearance of � at the end of the

respective statement.



CHAPTER I

Deformation theory

We summarize elementary results from deformation theory. Although the

material is pretty standard, we include it as notations and terminology are

not uniform. The fundamental reference is [Sch68]. A detailed exposition

is given in [Ser06], where most of the proofs are found or obtained by easy

variations. In the presentation we restrict ourselves to algebraic schemes,

but analogous results hold also true in the category of complex spaces. Not

completely standard might be Lemma I.5.1, which shows that over the com-

plex numbers locally trivial deformations defined in Zariski- and Euclidean

topology respectively give rise to isomorphic deformation functors. We are

aware that the results we give are not the most general; they are taylored

for the applications we have in mind.

I.1. Generalities

Let k be a fixed algebraically closed field. By Artk we denote the category

of local Artinian k-algebras with residue field k. The maximal ideal of an

element R ∈ Artk will be denoted by m, sometimes we will also phrase this as

(R,m) ∈ Artk. We write Ârtk for the category of local noetherian k-algebras

with residue field k, which are complete with respect to the m-adic topology.

There is a natural inclusion Artk ↪→ Ârtk and as in the proof of [Mat80,

(28.J) Cor 1] every R ∈ Ârtk is a homomorphic image of a power series

ring k[[x1, . . . , xm]]. In particular, every R ∈ Artk is a finitely generated

k-algebra as mk = 0 for k � 0. Moreover, every element R ∈ Ârtk can be

written as a limit of objects in Artk.

R = lim←−
n∈N

R/mn

This explains why a category of noetherian algebras is denoted by Ârtk. A

small extension in Artk is an exact sequence

0 −→ J −→ R′ −→ R −→ 0,

where R′ −→ R is a surjection in Artk and the maximal ideal m′ of R′

annihilates J , that is, m′.J = 0. Because of this last condition, the R′-

module structure on J factors through R′/m′ = R/m = k.

7



8 I. DEFORMATION THEORY

Definition I.1.1. A deformation functor or functor of Artin rings is a

functor D : Artk −→ Set with D(k) = {?}, where Set is the category of sets.

The set tD = D(k[ε]) is called the tangent space of D. This terminology is

justified below.

For a deformation functor D and R ∈ Artk we consider the canonical map

(I.1.1) D(R×k k[ε]) −→ D(R)×D(k) D(k[ε]) = D(R)× tD.

If this is a bijection for every R, then tD can be endowed with a canonical

k-vector space structure by [Sch68], see also [Ser06, Ch 2.2]. Moreover,

if 0 −→ J −→ R′ −→ R −→ 0 is a small extension in Artk we can form the

algebra k[J ] = k ⊕ J where J2 = 0. Let ε1, . . . , εn be a k-basis of J . The

isomorphism

(I.1.2)

k[ε1]×k k[ε2]×k . . .×k k[εn] −→ k[J ],

(λ+ λ1ε1, . . . , λ+ λnεn) 7→ λ+
∑
i

λiεi,

of k-algebras induces an isomorphism tD ⊗k J ∼= tD × . . .× tD −→ D(k[J ]).

The algebra homomorphism

(I.1.3) k[J ]×k R′ −→ R′, (x, a) 7→ x− x0 + a,

where x0 is the first component of x with respect to k[J ] = k ⊕ J , induces

an action of tD ⊗ J = D(k[J ]) on D(R′). This action preserves the fibers

of D(R′) −→ D(R). Morphisms of deformation functors for which (I.1.1) is

bijective induce k-linear maps between their tangent spaces and are equi-

variant with respect to their respective actions. Every deformation functor

D : Artk −→ Set has a unique extension D̂ : Ârtk −→ Set given by

D̂(R) := lim←−
n∈N

D(R/mn).

We call D̂ the completion of D. For an element un ∈ D(R/mn) and R′ ∈
Artk the map

Homk(R/m
n, R′) −→ D(R′), ϕ 7→ D(ϕ)(un)

defines a morphism Un : Homk(R/m
n, ·) −→ D of functors. We will abbre-

viate a functor of the form Homk(R, ·) by hR. By [Ser06, Lem 2.2.2] this

process is compatible with taking limits and thus gives a bijection between

elements u of D̂(R) and morphisms of functors U : hR −→ D. An element

u ∈ D̂(R) for some R ∈ Ârtk is called a formal element of D.

Definition I.1.2. A deformation functor D is said to be prorepresentable,

if there is a complete local noetherian k-algebra R, such that D ∼= hR. Let
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R ∈ Ârtk and u ∈ D̂(R) be a formal element of D. If the corresponding

U : hR −→ D is an isomorphism, we call u a universal formal element. In

this case, D is prorepresented by R. A weaker notion is that of versality.

We call u a versal formal element, if the morphism U is smooth. This means

that the map

(I.1.4) D(B) −→ D(A)×hR(A) hR(B)

is surjective for every surjection B −→ A in Artk. We say that u is a semi-

universal formal element, if u is a versal formal element and the correspond-

ing map hR(k[ε]) −→ D(k[ε]) is bijective. A prorepresentable deformation

functor D ∼= hR is called unobstructed, if R is a smooth k-algebra.

Remark I.1.3. —

(1) Let D1, D2 : Artk −→ Set be functors of Artin rings and let a

morphism η : D1 −→ D2 of functors be given. If the Dj , j = 1, 2

are prorepresentable, say Dj = HomArt(Rj , ·), then η induces a ring

homomorphism η# : R1 −→ R2.

(2) If D is a prorepresentable deformation functor, then the action

(I.1.3) is free and transitive on the non-empty fibers of a small

extension by [Ser06, Prop 2.3.4 (b)].

Definition I.1.4. If D : Artk −→ Set is a deformation functor, R′ −→ R is

a morphism in Artk and η ∈ D(R) then we will write

D(R′)η := ϕ−1(η) ⊆ D(R′)

where ϕ : D(R′) −→ D(R) is the map induced by R′ −→ R.

I.1.5. Curvilinear deformations. Here we work out a criterion for

a prorepresentable deformation functor to be unobstructed. The criterion

seems to be ”well-known”: it is widely used but we were unable to find an

explicit proof in the literature.

Let R be a complete local noetherian k-algebra with maximal ideal m and

An := k[t]/tn+1. Suppose R has the following lifting property for all n ∈ N:

(I.1.5) An+1

��
R //

∃

==

An

That is, for every k-algebra homomorphism R −→ An there is a k-algebra

homomorphism R −→ An+1 making (I.1.5) commutative. In this case we say

that R is curvilinearly smooth over k. We have
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Lemma I.1.6. If R is curvilinearly smooth over k, then R is a smooth k-

algebra.

Proof. As R is a complete, noetherian k-algebra we may write R = S/I

where S = k[[x1, . . . , xm]], m = dimk m/m
2 and I ⊆ S is an ideal. In this

case we have that I ⊆ n2, where n ⊆ S is the maximal ideal. Assume that

I 6= 0. Then there is a maximal ` ∈ N with I ⊆ n`. This inclusion implies

that for every choice of λ1, . . . , λm ∈ k the algebra homomorphism

S −→ k[t], xi 7→ λi t

descends to an algebra homomorphism R −→ A`. Let ϕ : S −→ A`+1 be the

composition with the canonical morphism k[t] −→ A`+1. Then the curvilin-

ear lifting property requires that there is a lift ψ in the diagram

S

��

ϕ
// A`+1

��
R //

ψ

==

A`

Let us take f ∈ I \ n`+1 and let f` be its degree ` term. In other words,

f` ∈ k[x1, . . . , xm] is the unique homogeneous polynomial of degree ` with

the property that

f = f` + f`+1 for some f`+1 ∈ n`+1.

By assumption f` 6= 0. The existence of ψ : R −→ A`+1 requires that

0 = ϕ(f) = f`(λ1, . . . , λm)

for every choice of λi. But as k is an infinite field, this is only possible if

the polynomial f` = 0 contradicting the choice of f . Thus I = 0 and R is

smooth over k. �

The following corollary is just another way to phrase the previous lemma

and the above lifting property.

Corollary I.1.7. Let D be a prorepresentable deformation functor. Then

D is unobstructed, if for all n the map D(An+1) −→ D(An) is surjective. �

I.2. Deformations of schemes

Let X be an algebraic k-scheme, R ∈ Artk and S = SpecR.

Definition I.2.1. A deformation of X over S is a flat S-scheme X −→ S

together with an isomorphism X −→ X ×S k. An isomorphism between
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deformations X −→ S, X ′ −→ S is an isomorphism ϕ : X −→ X ′ of S-schemes

with the property that the induced diagram

X

{{ ##
X ×S k

ϕ×Sk // X ′ ×S k

is commutative. The functor

DX : Artk −→ Set, R 7→ {deformations of X over S} / ∼

where ∼ is the relation of isomorphism, is called functor of deformations of

X. A deformation X −→ S over S = SpecR, R ∈ Artk is called (Zariski)

locally trivial, if for every x ∈ X there is an open subset U ⊆ X with x ∈ U
and an isomorphism

X|U
∼= //

  

X|U ×k S

{{
S

In other words, X induces the trivial deformation on U . Note that the

topological spaces underlying X and X are the same as R is Artinian. The

functor

Dlt
X : Artk −→ Set, R 7→ {locally trivial deformations of X over S} / ∼

where ∼ is the relation of isomorphism, is called functor of locally trivial

deformations of X.

We will often use the isomorphism X −→ X ×S k to identify X with X ×S k.

If X is smooth over k, every deformation of X is locally trivial, see [Har77,

II.2, Ex 8.6]. If X is proper over k, then every deformation X −→ S over

S = SpecR, R ∈ Artk is proper by the valuative criterion for properness.

The following result is proven as Corollary 2.6.4 in [Ser06] for projective

X. The proof there works for proper X as well.

Proposition I.2.2. If X is smooth and proper over k and H0(X,TX) = 0,

the functor DX = Dlt
X is prorepresentable. �

Let X be an algebraic k-scheme and let g : X −→ S be a deformation of X

over S = SpecR. We put

(I.2.1)

T 1
X/R := R1g∗TX/S , T 1 := T 1

X/k = H1(X,TX), T 2 := H2(X,TX).
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Next we construct a map T 1
X/R −→ DX(R[ε])X . We write S[ε] := SpecR[ε].

As S is affine, R1g∗TX/S ∼= Ȟ1(X , TX/S). So let X =
⋃
i Ui be a covering

by open affines Ui = SpecAi and let an element δ ∈ R1g∗TX/S be given.

We represent δ by a Čech-1-cocyle {(δij , Uij)} where Uij = Ui ∩ Uj and

δij ∈ Γ(Uij , TX/S). We regard the δij as R-derivations of Aij := Γ(Uij ,OX )

and define an automorphism ϕij of the scheme Uij [ε] := Uij ×S S[ε] =

Spec (Aij ⊗R R[ε]) via R[ε]-linear extension of the map

Aij −→ Aij ⊗R R[ε], a 7→ a+ εδij(a).

As δ is a cocycle, the isomorphisms ϕij can be used to glue the schemes

Ui[ε] := Spec (Ai ⊗R R[ε]) along the open subschemes Uij [ε]. In this way we

obtain a flat scheme S[ε]-scheme Xδ, which is an extension of X . One can

show that the map

(I.2.2) T 1
X/R −→ DX(R[ε])X , δ 7→ Xδ

is well-defined, where DX(R[ε])X is the fiber over X in the sense of Definition

I.1.4. Furthermore we have

Lemma I.2.3. Let 0 −→ J −→ R′ −→ R −→ 0 be a small extension in Artk.

Assume that X is smooth over k. Then there is a natural isomorphism

T 1
∼=−−→ tDX . Moreover, the following holds. Let X ′ −→ S be a deformation

of X over S′ = SpecR′ such that X ′ ×S′ S = X . Then:

(1) The map T 1
X/R −→ DX(R[ε])X from (I.2.2) is a bijection and the

diagram

T 1
X ′/R′

//

��

T 1
X/R

��
DX(R′[ε])X ′ // DX(R[ε])X

is commutative, where we obtain T 1
X ′/R′ −→ T 1

X/R by applying R1g∗

to the natural map TX ′/S′ −→ TX ′/S′ .

(2) There are natural maps DX(R) −→ T 2 ⊗ J such that

DX(R′) −→ DX(R) −→ T 2 ⊗ J

is an exact sequence of pointed sets. Furthermore, for every dia-

gram

0 // J1
//

φ

��

R′1
//

��

R1
//

��

0

0 // J2
// R′2

// R2
// 0
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of small extensions the diagram

DX(R′1) //

��

DX(R1) //

��

T 2 ⊗ J1

id⊗φ
��

DX(R′2) // DX(R2) // T 2 ⊗ J2

commutes.

Proof. ad (1). This is a straight forward generalization of [Ser06, Thm

2.4.1]. The bijectivity of T 1
X/R −→ DX(R[ε])X is obtained by reversing the

construction of this map. It works as follows. Take a covering X =
⋃
i Ui

with open affines Ui = SpecAi. As X is smooth over k, also X −→ S is

smooth and so the Ai will be smooth R-algebras. Let X̃ be a deformation

of X over R[ε]. We will show that X is locally trivial. We have induced

deformations X̃ |Ui = SpecA′i of Ui, hence a diagram

A′i

ϕ

��
Ai

??

id // Ai

for which kerϕ is nilpotent. By smoothness we obtain a lifting Ai −→ A′i and

the deformation X̃ |Ui is trivial by flatness. Thus, X̃ is given by gluing the

schemes Ui ×S S[ε] where S[ε] = SpecR[ε]. The corresponding R[ε]-algebra

isomorphisms

θi : Ai ⊗R R[ε] −→ Γ(Ui,OX̃ )

restrict to the identity modulo ε. We put Uij = Ui ∩ Uj = SpecAij and

obtain isomorphisms

θij : Aij ⊗R R[ε] −→ Aij ⊗R R[ε] = Aij ⊕ εAij

defined by θij := θj |Uij ◦ θ
−1
i |Uij , which satisfy the cocycle conditions. By

R[ε]-linearity such a morphism is uniquely determined by the restriction to

Aij −→ Aij⊕εAij and has the form id+εδij . A direct calculation shows that

δij ∈ DerR(Aij) = Γ(Uij , TX/S). The derivations δij form a Čech-1-cocyle

and define a class in H1(X , TX/S) from which the deformation X̃ can be

reconstructed up to isomorphism. The rest of the argument is as in the

absolute case R = k, see [Ser06, Thm 2.4.1].

ad (2). This is [Ser06, Prop 2.4.6]. �

We call T 1 the tangent space, T 2 the obstruction space and T 1
X/R a relative

tangent space of DX . By the lemma above there is no ambiguity in these

names as tD ∼= T 1.
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I.3. Deformations of morphisms

Let i : Y −→ X be a k-morphism of algebraic k-schemes Y,X. Let (R,m) ∈
Artk and S = SpecR.

Definition I.3.1. A deformation of i over S is a diagram

(I.3.1) Y �
� I //

��

X

��
S

where X −→ S and Y −→ S are flat S-schemes together with isomorphisms

X ×S SpecR/m −→ X, Y ×S SpecR/m −→ Y and I ×S SpecR/m ∼= i under

these isomorphisms. An isomorphism between deformations of i is defined

in the obvious way. The functor

Di : Artk −→ Set, R 7→ {deformations of i over S} / ∼

where ∼ is the relation of isomorphism, is called functor of deformations of

i. A deformation I : Y −→ X as in (I.3.1) is called (Zariski) locally trivial, if

for every x ∈ X, y ∈ Y with i(y) = x there are open subsets U ⊆ X, V ⊆ Y
with y ∈ V , i(V ) ⊆ U and an isomorphism

X|U

  

∼= // X|U ×k S

{{
S

Y|V

I|V

OO

∼= //

>>

Y|V ×k S

i|V ×kid

OO

cc

In other words, I : Y −→ X induces the trivial deformation on V and U .

The functor

Dlt
i : Artk −→ Set, R 7→ {locally trivial deformations of i over S} / ∼

where ∼ is the relation of isomorphism, is called functor of locally trivial

deformations of i.

I.3.2. Sheaves controlling the deformations of a closed immer-

sion. Let i : Y ↪→X be a closed immersion of algebraic k-schemes. Recall

that i is said to be a regular embedding, if for every y ∈ Y there is an

affine open neighbourhood U = SpecA of i(y) in X such that the ideal of

i(Y )∩U is generated by a regular sequence in A, see for example Appendix

D of [Ser06]. The scheme Y is called a locally complete intersection, if for

every point y ∈ Y there is a regular scheme X ′ and a regular embedding
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SpecOY,y ↪→X ′. This is an absolute notion in contrast to the relative notion

of a regular embedding.

Suppose now that X is smooth and proper and Y is reduced and proper.

We will express the tangent space of Dlt
i in terms of cohomology of certain

sheaves. Let (R,m) ∈ Artk, S = SpecR and let

(I.3.2) Y �
� I //

f ��

X
g

��
S

be a deformation of i. Let I be the ideal sheaf of Y in X .

Assume that Y is a locally complete intersection. Then so is Y and I/I2 is

locally free. We have an exact sequence of sheaves on Y

(I.3.3) 0 // I/I2 d // ΩX/S ⊗OY // ΩY/S // 0.

Note that as Y is reduced, the map d ⊗R k is injective, hence also d is

injective. We obtain the exact sequence

(I.3.4) 0 // TY/S // TX/S ⊗OY
d∨ // NY/X // T 1

Y/S
// 0,

where NY/X := Hom(I/I2,OY). The sheaf T 1
Y/S := coker d∨ is supported

on the singular locus of Y . We define the equisingular normal sheaf

(I.3.5) N ′Y/X := ker(NY/X −→ T 1
Y/S).

Taking the preimage TI of TY/S under the natural map TX/S −→ TX/S ⊗OY
we obtain the exact sequence of sheaves on X

(I.3.6) 0 // TI // TX/S // N ′Y/X
// 0.

The sheaf TI is the relative version of a sheaf which is called the sheaf of

germs of tangent vectors to X which are tangent to Y along Y in [Ser06,

3.4.4]. It controls locally trivial deformations of a closed immersion in the

sense of Lemma I.3.4.

The following satement is given in [Ser06, Rem 3.4.18] for projective schemes

X and Y . As in the case of deformations of schemes, the proof carries over

to proper schemes.

Proposition I.3.3. Assume that i : Y ↪→X is a closed immersion of proper

k-schemes, that X is smooth and that H0(X,Ti) = 0. Then the functor Dlt
i

is prorepresentable. �
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Let 0 −→ J −→ R′ −→ R −→ 0 be a small extension in Artk, i : Y ↪→X be

a closed immersion of proper algebraic k-schemes X and Y where Y is a

reduced locally complete intersection and X is smooth over k. Let

Y �
� I //

f ��

X
g

��
S

be a deformation of i over S = SpecR. As for deformations of schemes we

introduce tangent and obstruction spaces

(I.3.7) T 1
I/R := R1g∗TI , T 1 := T 1

i/k = H1(X,Ti), T 2 := H2(X,Ti).

One constructs a natural map

(I.3.8) T 1
I/R −→ Di(R[ε])I ,

where Di(R[ε])I is the fiber over I in the sense of Definition I.1.4, similar to

the one in (I.2.2).

Lemma I.3.4. Let 0 −→ J −→ R′ −→ R −→ 0 be a small extension in Artk

and let i : Y ↪→X be a closed immersion of proper algebraic k-schemes X

and Y where Y is a reduced locally complete intersection and X is smooth

over k. Then there is a natural isomorphism T 1
∼=−−→ tDi . More precisely

the following holds. Let I ′ : Y ′ ↪→X ′ a deformation of i over R′ such that

I ′ ×S′ S = I where S′ = SpecR′. Then:

(1) The map T 1
I/R −→ Di(R[ε])I from (I.3.8) is a bijection and the

diagram

T 1
I′/R′

//

��

T 1
I/R

��
Di(R

′[ε])I′ // Di(R[ε])I

is commutative, where we obtain T 1
I′/R′ −→ T 1

I/R by applying R1g∗

to the natural map TI′ −→ TI .

(2) There are natural maps Di(R) −→ T 2 ⊗ J such that

Di(R
′) −→ Di(R) −→ T 2 ⊗ J

is an exact sequence of pointed sets. Furthermore, for every dia-

gram

0 // J1
//

φ

��

R′1
//

��

R1
//

��

0

0 // J2
// R′2

// R2
// 0
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of small extensions the diagram

Di(R
′
1) //

��

Di(R1) //

��

T 2 ⊗ J1

id⊗φ
��

Di(R
′
2) // Di(R2) // T 2 ⊗ J2

commutes.

Proof. ad (1): This is a straight forward generalization of [Ser06, Prop

3.4.17]. The sections of TI are exactly those sections of TX/S restricting

to sections of TY/S on Y. Sections of TY/S correspond to locally trivial

deformations of Y over S[ε] := SpecR[ε] extending Y. Now the proof works

as the one of Lemma I.2.3.

ad (2): This is [Ser06, Prop 3.4.17]. �

I.4. Deformations of morphisms with fixed target

Let i : Y −→ X be a k-morphism of algebraic k-schemes Y,X. Let (R,m) ∈
Artk and S = SpecR.

Definition I.4.1. A deformation of i with target X over S is a diagram

(I.4.1) Y I //

##

X ×k S
p2
��
S

where Y −→ S is flat, together with an isomorphism Y ×S SpecR/m −→ Y

such that I×S SpecR/m ∼= i under this isomorphism. If i is a closed immer-

sion, the diagram (I.4.1) is also called a deformation of Y as a subscheme

of X over R. An isomorphism between deformations of i with target X is

defined in the obvious way. The functor

Di/X : Artk −→ Set, R 7→ {deformations of i over S with target X} / ∼

where ∼ is the relation of isomorphism, is called functor of deformations

of i with target X. A deformation I : Y −→ X ×k S as in (I.4.1) is called

(Zariski) locally trivial, if for every y ∈ Y there is an open subset V ⊆ Y
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with y ∈ V and an isomorphism

X ×k S

��
S

Y|V

I|V

DD

∼= //

::

Y|V ×k S

i|V ×kid

]]

ff

In other words, I : Y −→ X ×k S induces the trivial deformation on V . The

functor Dlt
i/X : Artk −→ Set,

R 7→ {locally trivial deformations of i over S with target X} / ∼

where ∼ is the relation of isomorphism, is called functor of locally trivial

deformations of i with target X.

Let i : Y ↪→X be a closed immersion of proper algebraic k-schemes X and

Y . The following satement is proven in [Ser06, Cor 3.2.2] for deformations

of i with target X. The case of locally trivial deformations is proven in the

same way.

Proposition I.4.2. If i : Y ↪→X is a closed immersion of proper k-schemes.

Then the functors Di/X and Dlt
i/X are prorepresentable. �

Let 0 −→ J −→ R′ −→ R −→ 0 be a small extension in Artk. Let i : Y ↪→X

be a closed immersion of proper algebraic k-schemes X and Y and

Y �
� I //

f ##

X × S
g

��
S

be a deformation i over S = SpecR. As tangent and obstruction spaces will

serve

(I.4.2)
T 1
I/X/R := R0f∗NY/X×S , T 1 := T 1

i/X/k = H0(Y,NY/X),

T 2 := H1(Y,NY/X).

As in [Ser06, Prop 3.2.1] one constructs a natural map

(I.4.3) T 1
I/X/R −→ Di/X(R[ε])I ,

where Di/X(R[ε])I is the fiber over I in the sense of Definition I.1.4.

Lemma I.4.3. There is a natural isomorphism T 1
∼=−−→ tDi/X . More precisely

the following holds. Let I ′ : Y ′ ↪→X × S′ be a deformation of i with fixed

target X over S′ = SpecR′ such that I ′ ×S′ S = I. Then:
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(1) The map T 1
I/X/R −→ Di/X(R[ε])I from (I.4.3) is a bijection and the

diagram

T 1
I′/X/R′

//

��

T 1
I/X/R

��
Di/X(R′[ε])I′ // Di/X(R[ε])I

is commutative, where we obtain T 1
I′/X/R′ −→ T 1

I/X/R by applying

R0f∗ to the natural map NY ′/X×S′ −→ NY/X×S .

(2) Assume that i is a regular embedding. Then there are natural maps

Di/X(R) −→ T 2 ⊗ J such that

Di/X(R′) −→ Di/X(R) −→ T 2 ⊗ J

is an exact sequence of pointed sets. Furthermore, for every dia-

gram

0 // J1
//

φ

��

R′1
//

��

R1
//

��

0

0 // J2
// R′2

// R2
// 0

of small extensions the diagram

Di/X(R′1) //

��

Di/X(R1) //

��

T 2 ⊗ J1

id⊗φ
��

Di/X(R′2) // Di/X(R2) // T 2 ⊗ J2

commutes.

Proof. ad (1): We will show more generally that given an arbitrary

deformation I : Y ↪→X of i over S = SpecR there is a natural bijection

between R0f∗NY/X and the set of isomorphism classes of deformations of I

over R[ε]. The proof is a straight forward generalization of [Ser06, Prop

3.2.1(ii)]. As for R = k one reduces to the case where Y and X are affine.

Assume X = SpecA, Y = SpecB and B = A/I where I = (f1, . . . , fN ).

Consider the exact sequence

0 −→M −→ AN −→ I −→ 0

where the standard basis of AN maps to the generators of I and M is the

module of relations. We write (r1, . . . , rN ) for an element of M ⊆ AN .

Taking HomA(·, B) we obtain an exact sequence

0 −→ HomA(I,B) −→ HomA(AN , B)
ϕ−−→ HomA(M,B).
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Here we observe that

kerϕ ∼= HomA(I,B) ∼= HomA(I/I2, B) ∼= R0f∗NY/X

and HomA(AN , B) ∼= BN . An element of kerϕ ⊆ BN can be represented by

an N -tuple (h1, . . . , hN ) ∈ AN with∑
i

hiri ∈ I for every (r1, . . . , rN ) ∈M.

This means that we find s1, . . . , sN ∈ A with∑
i

hiri = −
∑
i

fisi

or equivalently, ∑
i

(fi + εhi) · (ri + εsi) = 0

in A⊗R R[ε]. Then it follows from Corollary A.1.3 that the ideal

(f1 + εh1, . . . , fN + εhN ) ⊆ A⊗R R[ε]

defines a first-order deformation of Y as a subscheme of X , because every

relation among the fi extends to a relation among the fi + εhi. As all

arguments may be reversed, we obtain the other direction.

ad (2): This is [Ser06, Prop 3.2.6]. �

In the same way one shows the following

Lemma I.4.4. If (I.4.2) is replaced with

(I.4.4)
T 1
I/X/R = R0f∗N

′
Y/X×S , T 1 := T 1

i/X/k = H0(Y,N ′Y/X),

T 2 = H1(Y,N ′Y/X),

where N ′Y/X is the equisingular normal sheaf defined in section I.3.2, the

analogous statements to Lemma I.4.3 hold for locally trivial deformations

of i with fixed target X, i.e. with Di/X replaced by Dlt
i/X everywhere. �

Remark I.4.5. There are natural morphisms Di/X −→ Di and Di −→ DX

of functors. They preserve local triviality and therefore induce morphisms

Dlt
i/X −→ Dlt

i and Dlt
i −→ Dlt

X of functors.

I.5. Deformation theory in the analytic category

Some general remarks about the comparison between the algebraic and the

analytic category are in order. As already mentioned, the deformation func-

tors discussed may also be defined in the category of complex spaces and

analogues of the results of the previous sections hold true in this context as

well.
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If g : X −→ S is an algebraic S-scheme where S = SpecR with R ∈ ArtC,

one can associate a complex S-space gan : X an −→ S to it. Note that San = S

as a locally ringed space for every Artinian S-scheme. As T an
X/S = TX an/S

the natural map Rig∗TX/S −→ Rigan
∗ TX an/S is an isomorphism for proper

g by [SGA1, Exp XII, Thm 4.2]. The functor X 7→ X an induces natural

transformations

(I.5.1) DX −→ DXan , Di −→ Dian , Di/X −→ Dian/Xan .

When k = C one may also define functors Dlt
X , D

lt
i and Dlt

i/X where Y and

X are complex spaces and i : Y −→ X is a morphism of complex spaces. In

the definition of local triviality, the sets U and V from Definitions I.2.1, I.3.1

and I.4.1 are requested to be open sets in the Euclidean topology instead.

Lemma I.5.1. Let i : Y ↪→X be a closed immersion of proper algebraic

C-schemes, let X be smooth and let Y be a reduced locally complete inter-

section. Then the morphism

an : Dlt
i −→ Dlt

ian

from (I.5.1) is an isomorphism of functors.

Proof. We put D := Dlt
i , D

an := Dlt
ian and write T 1 and T 2 for tangent

and obstruction spaces of Dlt
i , see Lemma I.3.4. Let R ∈ Artk. We will

show by induction on the length lg(R) that anR : D(R) −→ Dan(R) is an

isomorphism. Let 0 −→ J −→ R
p

−→ R′′ −→ 0 be a small extension in Artk.

Consider the diagram

D(R)
D(p)

//

anR

��

D(R′′) //

∼= anR′′

��

T 2 ⊗ J� _

��

Dan(R)
Dan(p)

// Dan(R′′) //
(
T 2
)an ⊗ J

We have a simply transitive action of T 1⊗J on the fibers of D(R) −→ D(R′′),

a simply transitive action of
(
T 1
)an⊗J on the fibers of Dan(R) −→ Dan(R′′)

and an isomorphism T 1 ⊗ J −→
(
T 1
)an ⊗ J such that anR is equivariant.

Now the claim follows from a version of the five-lemma for pointed sets,

where we use the group actions and the fact that anR′′ is an isomorphism

by induction. �

Remark I.5.2. The proof above is quite general. It shows, roughly speaking,

that deformation functors with the same tangent and obstruction spaces are

isomorphic. Therefore it also holds, when Dlt
i is replaced by one of the

following functors and the below-mentioned assumptions hold.
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• Dlt
X , where X is a proper k-scheme, which is a reduced, locally

complete intersection.

• Di/X , where i : Y ↪→X is a closed immersion of proper k-schemes,

Y is a reduced locally complete intersection and X is smooth.

• Dlt
i/X , where i : Y ↪→X is a closed immersion of proper k-schemes,

Y is a reduced locally complete intersection and X is smooth.

Furthermore, we see that the notion of local triviality does not depend on

whether one uses Zariski or Euclidean open sets to define it, as long as one

sticks to deformations over local Artin algebras.

I.5.3. Universality of deformations. We will conclude this chapter

with some more terminology. Let π : X −→M be a flat morphism of complex

spaces or algebraic schemes and fix a closed point 0 ∈M . We call π or X a

deformation of X = π−1(0). If M is the spectrum of an object in ArtC, this

definition clearly coincides with Definition I.2.1 or rather with its analogue

in the analytic category. Let now

R = ÔM,0 ∈ ÂrtC

be the completion of OM,0 at 0 and m ⊆ R be the maximal ideal. Taking

the limit

lim←−
n∈N

X×R R/mn

defines a formal element u ∈ D̂X(R).

Definition I.5.4. We say that the deformation π : X −→M is universal at

0 respectively versal at 0 respectively semi-universal at 0, if u is a universal

respectively versal respectively semi-universal formal element in the sense

of Definition I.1.2. Furthermore, we call π universal respectively versal

respectively semi-universal, if it has this property for every point t ∈ M .

Sometimes, we call X instead of π universal or versal or semi-universal. The

base space M of a universal deformation is sometimes called the universal

deformation space and similarly for versal or semi-universal deformations.

If π : X −→ M is universal at 0, then the ring RX = ÔM,0 prorepresents

the functor DX . We spell this out in a special case of deformations of a

closed immersion in Lemma VI.3.4. Similar statements also hold true for

deformations of other types of objects and similar terminology is applied.



CHAPTER II

Weil restriction and Hodge theory

over an Artin ring

In this chapter we axiomatize the Hodge theory of locally trivial defor-

mations f : Y −→ S of an algebraic variety Y over an Artinian scheme

S = SpecR, where R ∈ ArtC. We introduce the notion of a mixed Hodge

structure over R, see Definition II.2.1. Similar to an ordinary mixed Hodge

structure, it consists of a free R-module H, which has a real structure, to-

gether with two filtrations on H and conditions on their graded objects.

This concept plays a major role in the proofs of our main results. As far

as we know, it has not been studied before. Mixed Hodge structures over

R are intermediate objects between ordinary mixed Hodge structures and

variations of mixed Hodge structures. For R = C we recover the notion of a

mixed Hodge structure in the usual sense. In Chapter III we construct such

a structure on the de Rham cohomology of a simple normal crossing variety,

but the construction should be possible in greater generality.

The purpose of this concept is to carry out Hodge theoretic arguments in-

finitesimally. Concrete instances of this idea are treated in Chapter III, here

we work out the abstract framework. The problem for R 6= C is that there

is no analogue of the complex conjugation on the R-module H. We will

cure this by introducing the notion of a mixed Hodge-Weil structure over

R′, where R′ is now a local Artin R-algebra with residue field R. This no-

tion is a formalization of the Weil restriction of a mixed Hodge structure

over R and there is a canonical complex conjugation.

The foundations of the modern theory of Weil restriction were laid by

Grothendieck in [Gro59, Gro60]. In our special case Weil restriction is

a process of associating an R-scheme SC/R to a C-scheme S such that the

R-valued points of SC/R are exactly the C-valued points of S. Of course,

the correct way to phrase this is the language of functors and representabil-

ity. However, we think of Weil restriction simply as the algebro-geometric

analogue of the process of regarding a complex manifold as a differentiable

manifold.

23
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We extend the concept of Weil restriction to modules. We are not aware that

this has been done systematically before. Nevertheless, it is an elementary

byproduct of the functorial treatment of Weil restriction. The purpose of

this is to be able to study the properties of a mixed Hodge structure over R

on an R-module H through the mixed Hodge-Weil structure on HC/R over

RC/R obtained by Weil restriction. Therefore, we establish some comparison

results between R-modules and their Weil restrictions.

Let us begin with the discussion of the theory of Weil restriction.

II.1. Weil restriction

Let S
f→ Z

p→W be morphisms of schemes and consider the functor

(II.1.1) SZ/W : (Sch/W)op −→ Set, S′ 7→ MorSch/Z(S′ ×W Z, S).

In fact, we have MorSch/S′×WZ(S′ ×W Z, S ×W Z) = MorSch/Z(S′ ×W Z, S),

which follows from the universal property of the fiber product. Therefore,

the functor SZ/W coincides with the one defined by Grothendieck in [Gro59,

C.2, pp.12]. The functor SZ/W is representable in the following cases.

(1) If S −→ Z is proper and flat and S −→ W is quasiprojective,

this functor is representable by [Gro60, 4.c., p.20] by a W -scheme

SZ/W .

(2) Suppose that Z −→ W is finite and locally free, i.e. finite, flat and

of finite presentation, and that moreover for each x ∈ W and each

finite set of points P ⊆ S ×W k(x) there is an affine open U ⊆ S

containing P . Then SZ/W is representable by an W -scheme SZ/W

by [BLR90, 7.6, Thm 4].

The W -scheme SZ/W is called the Weil restriction of S.

II.1.1. Properties of Weil restriction. We will collect some prop-

erties of the process of Weil restriction. If not otherwise stated, proofs are

found in [BLR90, Ch 7.6]. Recall that a presheaf of sets on Sch/Z is a

functor (Sch/Z)op −→ Set. The category of presheaves of sets on Sch/Z

is denoted by Psh(Z). By the Yoneda embedding a Z-scheme S may be

interpreted as a prescheaf of sets on Sch/Z via

S : (Sch/Z)op −→ Set, T 7→ MorSch/Z(T, S).

We will not distinguish between S and S. There is a notion of pushforward

of presheaves along the morphism p : Z −→W . Pushforward is the functor

p∗ : Psh(Z) −→ Psh(W ), F 7→
(
S′ 7→ F (S′ ×W Z)

)



II.1. WEIL RESTRICTION 25

and it coincides with Weil restriction on the full subcategory Sch/Z, i.e.

SZ/W = p∗S. Representability means that

(II.1.2) MorSch/Z(S′ ×W Z, S) = MorSch/W(S′, SZ/W ).

In other words, S 7→ SZ/W is right adjoint to the pullback S′ 7→ p∗S′ =

S′ ×W Z. In particular for a Z-scheme S there is a canonical morphism

η : SZ/W×W Z −→ S. If p : Z −→W is proper, flat and of finite presentation,

then p∗ preserves open and closed immersions.

We will now specialize to Z = SpecC and W = SpecR. In this case every

quasi-projective C-scheme S has a Weil restriction. We write SC/R instead

of SZ/W . The functor p∗ sends affine schemes to affine schemes, in other

words, p∗S is representable by an affine scheme SC/R. If S = SpecR we will

write RZ/W for the cooordinate ring of SZ/W . Equation (II.1.2) in particular

gives S(C) = SZ/W (R). If S = SpecR, the morphism η from the adjointness

property gives a canonical ring homomorphism η : R −→ RC/R ⊗R C.

Let S = ∪iUi be a covering by open affine subschemes, such that for given

t1, t2 ∈ S there is an index i0 with t1, t2 ∈ Ui0 . The proof of representability

in [BLR90, 7.6, Thm 4] shows that under this assumption the (Ui)C/R will

cover SC/R. For R = C[z1, . . . , zn]/(f1, . . . , fk) we have

(II.1.3) RC/R = R[x1, y1, . . . , xn, yn]/(g1, h1, . . . , gk, hk)

where fj = gj + ihj when we evaluate at zk = xk + iyk.

If we define S := S ×σ C where σ : C −→ C is the complex conjugation then

(II.1.2) tells us that there is a canonical isomorphism SC/R ∼= SC/R and by

[Sch94, Ch 1, 4.11.3] there is a canonical isomorphism SC/R×RC −→ S×CS

such that η is identified with projection on the first factor. In particular, η

is faithfully flat as the projection S ×C S −→ S is faithfully flat.

Lemma II.1.2. If R is a local Artin C-algebra with residue field isomorphic

to C, then RC/R is a local Artin R-algebra with residue field isomorphic

to R.

Proof. By (II.1.3) we see that RC/R is an R-algebra of finite type. A

maximal ideal m ⊂ RC/R will define a homomorphism RC/R −→ RC/R/m = k,

where k is a finite field extension of R by Hilbert’s Nullstellensatz. So k = R
or C. By the defining property of Weil restriction we have HomR(RC/R,R) =

HomC(R,C) and HomR(RC/R,C) = HomC(R,C ⊗R C) = HomC(R,C × C)

both of which consist of one element. But the composition of the morphism

R −→ R with the inclusion R ⊆ C is the unique morphism R −→ C. Thus,

RR is a local ring with unique maximal ideal m and residue field R. As

RC/R is of finite type, RC/R = P/I where P is a polynomial ring and I ⊆ P
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an ideal. The preimage n of m under the natural map P −→ RC/R is the

unique maximal ideal of P containing I. Let I ⊆ p ⊆ n be a minimal

prime ideal containing I. As P is a Jacobson ring by the general form of

the Nullstellensatz, see [Eis95, Thm 4.19], the ideal p is the intersection of

maximal ideals, so that p = n. Taking a primary decomposition of I we see

that nk ⊆ I for some k, so RC/R = P/I is Artinian. �

Definition II.1.3. Let S be a C-scheme, F be a quasi-coherent sheaf of

OS-modules, denote by q : SC/R×RC −→ SC/R the canonical projection and

let η : SC/R ×R C −→ S be as in II.1.1. We define the SC/R-module

FC/R := q∗η
∗F

and call it the Weil restriction of F .

If S = SpecR and M is an R-module, then MC/R = M ⊗R (RC/R ⊗R C)

considered as an RC/R module. In the special case M = H ⊗C R for some

C-vector space H, we find MC/R = H⊗RRC/R. Weil restriction for modules

has the following useful property.

Lemma II.1.4. The functor F 7→ FC/R is faithfully exact, i.e. the sequence

K ′ −→ K −→ K ′′ is exact if and only if K ′C/R −→ KC/R −→ K ′′C/R is exact.

Proof. The morphism η is faithfully flat as noted at the end of section

II.1.1. Therefore, η∗ is faithfully exact. Also q∗ is faithfully exact, as q is

affine. �

Lemma II.1.5. Let (R,m) be a local Artin C-algebra and F be a finitely

generated R-module. Then F is a free R-module if and only if FC/R is a free

RC/R-module.

Proof. We will argue separately for η∗ and q∗. For brevity we write

(R′,m′) instead of (RC/R ⊗R C,mC/R ⊗R C). Clearly η∗F = F ⊗R R′ is free,

if F is. Suppose η∗F is free. We take a minimal set of generators for F

and obtain a surjection ϕ : Rn −→ F for some n. By Nakayama’s Lemma

n = dimC F ⊗R R/m and as F ⊗R R′ ⊗R′ R′/m′ = F ⊗R R/m ⊗R/m R′/m′

this is the rank of η∗F . But as η∗ is faithfully exact, η∗ kerϕ = ker η∗ϕ = 0.

So kerϕ = 0 and F is free.

Let F ′ be an R′-module. If F ′ is free as an R′-module, then it is free as

an RC/R-module, for R′ is free over RC/R. Suppose F ′ is free as an RC/R-

module. Since F ′ is an R′ = RC/R ⊗R C-module, the submodule mC/RF
′

is a C-vector space. Thus mC/RF
′ = m′F ′. If we take x1, . . . , xk ∈ F ′

whose residue classes modulo mC/R form a C-basis of F ′/mC/RF
′, then F
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is freely generated over RC/R by x1, ix1, . . . , xk, ixk. In other words, F is

freely generated over R′ by x1, . . . , xk. So F ′ is a free R′-module. �

Example II.1.6. For the projective space S = P1
C of lines in C2 one finds

that SC/R is isomorphic over R to the quadric Q in P3
R given by

x1x2 − x2
0 − x2

3 = 0.

To verify this, take the universal line bundle L on P1
C. It fits into an exact

sequence

0 −→ L −→ C2 ⊗C OS −→ Q −→ 0

of locally free sheaves on S. Taking the Weil restriction of this sequence, we

obtain the sequence

0 −→ LC/R −→ q∗
(
C2 ⊗C OS′

)
−→ QC/R −→ 0,

locally free sheaves on SC/R, where S′ = SC/R ×R C and q : S′ −→ SC/R is

the canonical morphism. Moreover,

q∗
(
C2 ⊗C OS′

)
= C2 ⊗R OSC/R

and rkLC/R = 2. So SC/R parametrizes 2-dimensional real subspaces in

C2 and we obtain a classifying morphism ϕ : SC/R −→ Gr(2, 4)R to the

corresponding Grassmanian. By construction, SC/R parametrizes exactly

those 2-dimensional subspaces, which are complex lines, hence ϕ is injective.

To see that ϕ is a closed embedding, it suffices to show that its set-theoretical

image is a smooth closed subvariety. We fix the R-basis e1, ie1, e2, ie2 where

e1, e2 are the standard basis vectors of C2. Consider a real plane W ⊆ C2

spanned by two vectors

w =


α1

β1

α2

β2

 , w′ =


α3

β3

α4

β4

 ∈W
and let Gr(2, 4)R ↪→P5

R be the Plücker embedding. The Plücker coordinates

of the point W are exactly the 2× 2-minors of the matrix(
α1 β1 α2 β2

α3 β3 α4 β4

)
If W is a complex line in C2, then we can choose an R-basis of W of the

form w,w′ with w′ = iw. Thus, the Plücker coordinates of W are the 2× 2

minors of the matrix (
α1 β1 α2 β2

−β1 α1 −β2 α2

)
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These are

m12 = α2
1 + β2

1 m13 = −α1β2 + α2β1 m14 = α1α2 + β1β2

m23 = −α1α2 − β1β2 m24 = −α1β2 + α2β1 m34 = α2
2 + β2

2 .

We observe that m14 = −m23 and m13 = m24. These two equations cut out

a P3
R ⊆ P5

R, which contains the image of SC/R. If we eliminate m14 and m24,

then the usual Plücker quartic

m12m34 −m13m24 +m14m23 = 0

takes the form m12m34 −m2
13 −m2

23 = 0, which is what we claimed up to

renaming the variables. A calculation shows that there are no additional

relations. Note, that indeed Q×R C ∼= P1
C ×C P1

C so SC/R ×R C ∼= S × S as

claimed in section II.1.1.

The usage of Weil restriction here may be seen as an analogue of the process

of regarding a complex manifold as a differentiable manifold. The points in

complex space of the former correspond to points in real space of the latter.

II.2. Hodge-Weil theory

We introduce the notion of mixed Hodge structure and mixed Hodge-Weil

structure over an Artin ring. The term mixed Hodge structure with no fur-

ther decoration will always stand for the classical notion, which we recorded

in Definition B.1.2.

Definition II.2.1. Let R be a local Artin C-algebra with residue field C. A

mixed Hodge structure over R is a triple H = (HR, F
•,W•), which consists

of a finite dimensional R-vectorspace HR and two filtrations F • and W• on

H := (HR ⊗R C)⊗C R. These are a finite decreasing filtration

H ⊇ . . . ⊇ F p ⊇ F p+1 ⊇ . . . ⊇ 0

and a finite increasing filtration

0 ⊆ . . . ⊆Wm ⊆Wm+1 ⊆ . . . ⊆ H

satisfying the following properties.

(1) All graded objects GrpFGrWmH are free R-modules.

(2) The fiber H⊗RC = (HR⊗RC, F •⊗RC,W•⊗RC) over the unique

point of S = SpecR is a mixed Hodge structure.

Note, that condition (1) implies that the Wm and the F p are free R-modules.

We will also call H ⊗R C the central fiber of H. In case H ⊗R C is a pure

Hodge structure of weight k, we call H a pure Hodge structure over R of

weight k.
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By Lemma A.2.3 the freeness of GrpFH and GrWmH is automatic as soon as

F pH and WmH are free. However the following example shows that freeness

of GrpFGrWmH is not automatic.

Example II.2.2. We take R = C[t]/t2 and HR = R3. We define a Hodge

filtration and weight filtration on H = HR ⊗R R = R3 as follows.

H = F 0 ⊇ F 1 =

〈 1

1 + t

0

 ,

0

1

i

〉 ⊇ F 2 =

〈0

1

i

〉

and

H = W1 ⊇W0 =

〈1

1

0

〉

where 〈·〉 denotes the R-span and all other F p, Wm are zero. A calculation

shows that indeed (HR, F
p/t,Wm/t) is a mixed Hodge structure with h1,0 =

h0,1 = h0,0 = 1 as only non-zero Hodge numbers. But

W0 ∩ F 1 =

〈tt
0

〉 ,
which is not a free module. As W0 ∩ F 2 = 0 = W−1 we have W0 ∩ F 1 =

F 1GrW0 = Gr1
FGrW0 and (HR, F

•,W•) does not define a mixed Hodge struc-

ture over R.

Definition II.2.3. Let R be a local Artin C-Algebra and H = (HR, F,W ),

H′ = (H ′R, F
′,W ′) be mixed Hodge structures over R. A morphism of

mixed Hodge structures over R is a linear map fR : HR −→ H ′R such that

the induced morphism f = fR ⊗ idR : H −→ H ′ preserves both filtrations,

i.e. f(F p) ⊆ F p′ and f(Wm) ⊆Wm
′. Here again H = (HR ⊗R C)⊗C R and

H ′ is defined analogously. We will often call f instead of fR a morphism of

mixed Hodge structures over R when there is no danger of confusion.

Remark II.2.4. —

(1) If H = (HR, F,W ) is a pure Hodge structure of weight k over an

Artin ring R, then Nakayama’s Lemma implies that W is a trivial

filtration, i.e. H = Wk ⊇Wk−1 = 0. We will therefore suppress W

in the notation and speak of a pure Hodge structure H = (HR, F )

over R.
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(2) There is a complex conjugation HR ⊗R C −→ HR ⊗R C defined by

h⊗ λ := h⊗ λ. However this does not canonically extend to an R-

linear map H −→ H, as H is a tensor product over C and complex

conjugation is only R-linear.

The notion of a mixed Hodge structure over R is an infinitesimal version of

a variation of mixed Hodge structures. The problem in replacing the base

manifold S of the variation with an Artin ring R (or rather its spectrum

S = SpecR) is that there is just one point in S and simply asking the

fiber over that point to be a mixed Hodge structure is not enough for our

purposes. It is known that the (pointwise) complex conjugates F p of the

Hodge filtration of a variation of Hodge structures do not in general form

holomorphic vector bundles in case S is a complex manifold. This is because

there is no analogue of the complex conjugate of an holomorphic vector

bundle in the algebraic category. To have a substitute we introduce the

following notion.

Definition II.2.5. Let R be a local Artin R-algebra with residue field R.

A mixed Hodge-Weil structure over R is a triple H = (HR, F
•,W•), which

consists of a finite dimensional R-vectorspace HR and two filtrations F • and

W• on H := (HR ⊗R C)⊗R R. These are a finite decreasing filtration

H ⊇ . . . ⊇ F p ⊇ F p+1 ⊇ . . . ⊇ 0

and a finite increasing filtration

0 ⊆ . . . ⊆Wm ⊆Wm+1 ⊆ . . . ⊆ H

satisfying the following properties.

(1) All graded objects GrpFGrWmH are free R-modules.

(2) The fiber H⊗RR = (HR⊗RC, F •⊗RR,W•⊗RR) over the unique

point of S = SpecR is a mixed Hodge structure.

Note, that as in Definition II.2.1 condition (1) implies that the Wm and the

F p are free R-modules. We will also call H ⊗R R the central fiber of H.

In case H ⊗R C is a pure Hodge structure of weight k, we call H a pure

Hodge-Weil structure over R of weight k.

Definition II.2.6. Let R be a local Artin R-Algebra with residue field R
and H = (HR, F,W ), H′ = (H ′R, F

′,W ′) be mixed Hodge-Weil structures

over R. A morphism of mixed Hodge-Weil structures over R is a linear map

f : HR −→ H ′R such that the induced morphism fR = f ⊗ idR : H −→ H ′

preserves both filtrations, i.e. fR(F p) ⊆ F p′ and fR(Wm) ⊆ Wm
′. Here
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again H = (HR ⊗R C)⊗R R and H ′ is defined analogously. We will write f

instead of fR when there is no danger of confusion.

Remark II.2.7. —

(1) As in the Hodge-case, we write H = (HR, F ) for a pure Hodge-Weil

structure.

(2) The complex conjugation HR⊗RC −→ HR⊗RC extends canonically

to an R-linear mapH −→ H. Since morphisms of mixed Hodge-Weil

structures are defined over R, they are compatible with complex

conjugation.

Recall that for a local Artin C-Algebra R the ring RC/R is a local Artin

R-Algebra with residue with residue field R by Lemma II.1.2. Therefore the

statement of the following Lemma makes sense.

Lemma II.2.8. Let H = (HR, F
•,W•) be a mixed Hodge structure over a

local Artin C-Algebra R. Then HC/R =
(
HR, F

•
C/R,

(
WC/R

)
•

)
is a mixed

Hodge-Weil structure over RC/R and the central fibers of H and HC/R are

isomorphic as mixed Hodge structures. Moreover the Weil restriction of a

morphism of mixed Hodge structures is a morphism of mixed Hodge-Weil

structures.

Proof. The remark after Definition II.1.3 tells us that

(II.2.1) HC/R = (HR ⊗R C⊗C R)C/R = (HR ⊗R C)⊗R RC/R.

By Lemma II.1.4 we see that the F pC/R and (Wm)C/R are submodules of

HC/R = (HR⊗RC)⊗RRC/R. By Lemma II.1.5 the modules
(
GrpFGrWmH

)
C/R

are free and by Lemma II.1.4 they are the graded objects of the filtrations

F pC/R and (Wm)C/R. Let m′ be the maximal ideal of RC/R. As RC/R/m
′ = R

we see from II.2.1 that HC/R ⊗R RC/R/m
′ = HR ⊗R C. For the same reason

F pC/R ⊗ R = F p ⊗ C and (Wm)C/R ⊗ R = Wm ⊗ C so that HC/R ⊗ R is

a mixed Hodge structure. The proof also shows the statement about the

central fibers and the statement about morphisms is immediate from the

functoriality of the Weil restriction. �

Lemma II.2.9. Let R be a local Artin R-Algebra with residue field R and

H = (HR, F
•) a pure Hodge-Weil structure of weight k. Then

H = F p ⊕ F q+1, ∀p, q, p+ q = k,(II.2.2)

H =
⊕
p+q=k

Hp,q, Hp,q = F p ∩ F q and(II.2.3)

F p =
⊕
r≥p

Hr,k−r.(II.2.4)
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In particular the last statement implies that the Hp,q are free and lift the

subquotients GrpFH to subobjects of H.

Proof. As H⊗R R is a pure Hodge structure, we have

H ⊗R R = F p ⊗R R⊕ F q+1 ⊗R R ∀p, q, p+ q = k.

Hence (II.2.2) follows from Nakayama’s Lemma. Now (II.2.2) implies (II.2.3)

just as in the case of ordinary Hodge structures. We will recall the proof.

Let α ∈ F p ⊆ H and write α = β + γ where β ∈ F p+1, γ ∈ F k−p according

to H = F p+1 ⊕ F k−p. Then γ = α − β ∈ F p ∩ F k−p = Hp,k−p. This shows

that F p = F p+1 ⊕ Hp,q, and (II.2.3) and (II.2.4) follow by induction on

p. �

Lemma II.2.10. Let R be a local Artin C-Algebra, let H = (HR, F,W ) and

H′ = (H ′R, F
′,W ′) be mixed Hodge structures over R and let f : H −→ H ′ be

a morphism of mixed Hodge structures over R. Then fp,q := f |Hp,q satisfies

fp,q (Hp,q) ⊆ (H ′)p,q and f =
∑

p,q f
p,q. Moreover, all fp,q have constant

rank in the sense of Definition A.2.1.

Proof. By (II.2.3) the image of fp,q in contained in (H ′)p,q, because f

is defined over R and preserves the Hodge filtration. Again, as f is defined

over R its cokernel is

coker f = coker
(
fR : HR −→ H ′R

)
⊗R R,

so it is free. Then

coker f =
⊕
p,q

coker fp,q

implies that coker fp,q is free. So the claim follows from Lemma A.2.2. �



CHAPTER III

Mixed Hodge structures for normal crossing

varieties

Let S = SpecR where R ∈ ArtC and let f : Y −→ S be a locally trivial

deformation of a proper simple normal crossing C-variety Y . We will con-

struct a complex Ω̃•Y/S , which calculates the cohomology with coefficients

in the constant sheaf RY an on Y an. It may be seen as a replacement for

the de Rham complex Ω•Y/S for smooth f . In the absolute case S = SpecC
the complex Ω̃•Y/C has been studied in great detail. As in [Fri83, Lem 1.5],

we will construct a resolution for Ω̃k
Y/S from a semi-simplicial resolution of

Y −→ S all of whose terms are smooth over S. For this in turn will show

that the canonical resolution of the central fiber extends.

Using the resolution of the complex Ω̃•Y/S thus obtained, we contruct a mixed

Hodge structure over R on Hk(Y an, RY an) where Y an denotes the complex

space associated to Y . The construction is very explicit and is a direct

generalization of the treatment in the absolute case R = C described in

[GS75, § 4].

We know that Hodge numbers of compact Kähler manifolds are constant

in families. In [Del68] Deligne established among other things an alge-

braic analogue of this fact over arbitrary, in particular, over non-reduced

base schemes. Deligne showed that for a smooth and proper morphism

f : Y −→ S of algebraic schemes the OS-modules Rqf∗Ω
p
Y/S are locally free

and compatible with arbitrary base change. This serves as a basis to carry

out the following Hodge theoretic arguments over Artinian schemes.

Let S = SpecR where R ∈ ArtC. We show in Theorem III.4.3 that for

a smooth and proper morphism g : X −→ S, a locally trivial deformation

f : Y −→ S of a proper simple normal crossing variety and an S-morphism

i : Y −→ X the induced morphism

i∗ : Rqg∗Ω
p
X/S −→ Rqf∗Ω̃

p
Y/S

has a free cokernel, or equivalently, has constant rank, see Definition A.2.1

and Lemma A.2.2. The essence of the argument can be captured by looking

at the case where Y −→ S is smooth. In fact, also the proof is by reduction to

the smooth case. There the morphism i∗ from above is identified as a graded

33
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component of a certain morphism HX −→ HY of pure Hodge structures

over R. Such morphisms have constant rank by Lemma II.2.10. After Weil

restriction, the graded pieces can be lifted to direct summands and therefore

have constant rank as well. The comparison results between Hodge and

Hodge-Weil structures from Chapter II allow to conclude that i∗ itself has

constant rank.

III.1. The complex Ω̃•Y/S

Definition III.1.1. Let Y be an algebraic scheme, let S = SpecR where

R ∈ Artk and let f : Y −→ S be a morphism of schemes. Assume that f is

smooth on a dense open subset of Y. We define the subsheaf τkY/S ⊆ Ωk
Y/S to

be the subsheaf of sections supported on the singular locus of Y = Y ×S k.

By abuse of language we speak of it as the torsion subsheaf of Ωk
Y/S . We put

Ω̃k
Y/S := Ωk

Y/S/τ
k
Y/S . In the same way we define Ω̃k

Y/S when Y is a complex

space.

If α ∈ Ωk
Y/S vanishes on Y reg, then dα vanishes there as well. Therefore,

τ•Y/S ⊆ Ω•Y/S is a subcomplex and Ω̃•Y/S is a complex. Next we will show

that irreducible components of a variety extend to flat subschemes on locally

trivial deformations. This will take some commutative algebra.

Lemma III.1.2. Let A be a reduced noetherian ring and p1, . . . , pn be the

pairwise distinct minimal prime ideals of A. Then Ann pj = ∩i 6=jpi for

each j.

Proof. Let Ai = A/pi and φ : A −→ A1 × . . . × An be the canonical

map. It is injective, because ∩ipi = nil(A) = 0. Suppose a ∈ ∩i 6=jpi,
b ∈ pj and write φ(a) = (a1, . . . , an) and φ(b) = (b1, . . . , bn). Then φ(ab) =

(a1b1, . . . , anbn) = 0 because ai = 0 for i 6= j and bj = 0. But φ is injective,

hence ab = 0, in other words a ∈ Ann pj , so Ann pj ⊇ ∩i 6=jpi.
Let a ∈ Ann pj . Then for every b ∈ pj we have 0 = φ(ab) = (a1b1, . . . , anbn)

in the above notation, where bj = 0. As the pi are minimal and pairwise

distinct, pj\pk 6= ∅ for every k 6= j. If we fix k and choose b ∈ pj\pk, then

bk 6= 0. So akbk = 0 implies that ak = 0 as Ak is an integral domain, so

a ∈ pk. Choosing different b we see that a ∈ ∩i 6=jpi completing the proof. �

Lemma III.1.3. Let A be a reduced noetherian ring, p ⊆ A be a minimal

prime ideal and ψ : p −→ A/p be an A-module homomorphism. Then ψ = 0.

Proof. Let p, p1, . . . , pn be the pairwise distinct minimal prime ideals

of A and N := imψ ⊆ A/p. We will show that N = 0. By Lemma III.1.2

we have Ann p = ∩ipi. So p /∈ supp(p) = V (Ann p), for otherwise ∩ipi ⊆ p
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and thus pi ⊆ p for some i as p is prime, contradicting the fact that p 6= pi

and p is minimal. Thus, p⊗A Ap = 0 and the surjection

0 = p⊗A Ap
// // N ⊗A Ap

yields that Np = N⊗AAp = 0. Therefore, N is torsion. This implies N = 0,

as it is an A/p-submodule of the torsion-free module A/p. �

Lemma III.1.4. Let A be a reduced noetherian ring, p ⊆ A a minimal prime

ideal, R ∈ Artk and P ⊆ A ⊗k R an ideal such that A ⊗k R/P is a flat

deformation of A/p over R. Then P = p⊗R.

Proof. Let m ⊆ R be the maximal ideal. As R is Artinian, there is

n ∈ N such that mn = 0. So we may argue inductively and assume that

P/mk = p ⊗ R/mk ⊆ A ⊗ R/mk. By flatness, we obtain the commutative

diagram

(III.1.1)

0

��

0

��

0

��

0 // p⊗mk/mk+1 //

��

A⊗mk/mk+1 //

��

A/p⊗mk/mk+1 //

π
��

0

0 // P/mk+1 //

��

A⊗R/mk+1
ϕ
//

��

A⊗R/(P + mk+1) //

χ
��

0

0 // p⊗R/mk

��

// A⊗R/mk

��

// A/p⊗R/mk

��

// 0

0 0 0

with exact rows and columns. If we denote the inclusion

p⊗R/mk+1 � � // A⊗R/mk+1

by ψ, then ϕ ◦ ψ factors as

A/p⊗mk/mk+1

π
��

p⊗R/mk+1

∃
55

ϕ◦ψ
// A⊗R/(P + mk+1)

Indeed, this can be seen as follows. Consider the commutative diagram

p⊗R/mk+1
ψ
//

��

A⊗R/mk+1
ϕ
//

��

A⊗R/(P + mk+1) //

χ

��

0

0 // p⊗R/mk // A⊗R/mk // A/p⊗R/mk // 0
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Then χ ◦ ϕ ◦ ψ = 0 as the bottom row is exact. Therefore ϕ ◦ ψ factors

through kerχ as claimed.

Now observe that p⊗R/mk+1 −→ A/p⊗mk/mk+1 is zero by Lemma III.1.3,

hence so is ϕ ◦ ψ. Therefore ψ factors through kerϕ = P/mk+1 as

p⊗R/mk+1

��

� � ψ
// A⊗R/mk+1

P/mk+1

66

But p⊗R/mk+1 −→ P/mk+1 becomes an isomorphism after tensoring with

R/mk, thus it is itself an isomorphism by flatness of P/mk+1, see [Ser06,

Lem A.4]. �

Lemma III.1.5. Let f : Y −→ S be a locally trivial deformation of a reduced

noetherian scheme Y over an Artinian base S = SpecR, R ∈ Artk. Then

the irreducible components Yα of Y lift uniquely to subschemes Yα ↪→Y flat

over S. Moreover, each Yα is a locally trivial deformation of Yα.

Proof. Let Y = ∪iUi be an open affine covering of Y such that there are

R-algebra isomorphisms θi : Ai ⊗k R −→ Γ(Ui,OY) where Ai := Γ(Ui,OY ).

An irreducible component Yα of Y gives a minimal prime ideal piα in each

Ai. We define Y iα to be the closed subscheme of Y|U whose ideal is θi(pα).

Then Y iα is a flat lifting of Yα|Ui for all i. Therefore, on Uij := Ui ∩ Uj also

Yjα|Uij is a flat lifting of Yα|Uij for all j. Then by Lemma III.1.4 we conclude

that Y iα|Uij = Yjα|Uij and so the Y iα are the restrictions of a closed subscheme

Yα of Y. The argument also shows that Yα is unique. �

III.2. Semi-simplicial resolutions

We define the notion of a semi-simplicial resolution for locally trivial defor-

mations of simple normal crossing varieties. For this we recall some standard

notions. Fix an arbitrary category C .

Definition III.2.1. The semi-simplicial category ∆ is the category whose

objects are the ordered sets [n] = {0, . . . , n} ⊆ (N0,≤) and whose morphisms

are strictly increasing maps. A semi-simplicial object in C is a functor

X : ∆op −→ C . A semi-cosimplicial object in C is a functor X : ∆ −→ C .

A semi-simplicial object in C is given by objects Y n := Y ([n]) in Ob C

and morphisms Y (ι) for every ι ∈ Mor ∆. In ∆ there are exactly n + 1

morphisms [n−1]→ [n], all of them injective. So dually, there are morphisms

dj : Y n −→ Y n−1 for j = 0, . . . , n. As every morphism [n] → [m] in ∆
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can be factored as [n] → [n + 1] → . . . → [m], a semi-simplicial object is

determined by the objects Y n and the morphisms dj : Y n −→ Y n−1 between

them. We will write Y • for a semi-simplicial object. An object Y in C may

be considered as a trivial semi-simplicial object, that is, as the simplicial

object having Y n = Y for all n and all dj = idY . Dual statements hold, if

Y is a semi-cosimplicial object in C .

A morphism of semi-simplicial objects is a natural transformation of func-

tors. Such a morphism a : Y −→ X is determined by a collection of mor-

phisms ak : Y k −→ Xk in C compatible with the dj . For a morphism

a : Y • −→ Y from a semi-simplicial object to a trivial semi-simplicial object

the morphism am coincides with the composition

Y m di1−−−→ Y m−1 di2−−−→ . . .
dir−−−→ Y m−r am−r−−−−→ Y, 0 ≤ ik ≤ m− k + 1

for every choice of the ik. We also say that a : Y • −→ Y is an augmentation

of Y • to Y or that Y • is augmented towards Y . We will also write an

augmented semi-simplicial object Y • −→ Y in the form

. . . ////// Y [1] //// Y [0] // Y .

Finally, if C is an additive category, we put

(III.2.1) δ := δn :=
n∑
j=0

(−1)jdj : Y n −→ Y n−1

for a semi-simplicial object Y• and

(III.2.2) δ := δn−1 :=
n∑
j=0

(−1)jdj : Yn−1 −→ Yn

for a semi-cosimplicial object Y•. A calculation shows that these make Y •

and Y• into complexes.

Definition III.2.2. Let S be a C-scheme and Y −→ S be a proper scheme

over S. A semi-simplicial resolution of Y over S is a semi-simplicial S-

scheme Y• together with a morphism a : Y• −→ Y of semi-simplicial S-

schemes such that all ak : Yk −→ Y are proper and Yk −→ S is smooth for

all k.

Note that for S = SpecC this definition does not coincide with Deligne’s

definition [Del71, Del74]. Deligne defines semi-simplicial resolutions for va-

rieties over C. In his definition such a resolution is of cohomological descent.

He uses it to construct a functorial mixed Hodge structure on the cohomol-

ogy an algebraic C-variety. In this treatise, we do not need to include any

properties in the definition of such a resolution as all our resolutions are
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explicitly given. Moreover, we prove all our Hodge theoretical statements

”by hand”. However, we took Deligne’s definition as a guideline, to see in

practice which resolutions are the right ones to look at. Certainly, it re-

quires further investigation to figure out a good class of S-schemes, where

one can built a relative Hodge theory in the spirit of [Del71, Del74], see

the discussion in section VIII.3.

III.2.3. Canonical resolution for locally trivial deformations of

simple normal crossing varieties. Let Y be a proper simple normal

crossing k-variety and let Y = ∪iYi be a decomposition into irreducible

components. By definition this means that the Yi are smooth over k. Let

f : Y −→ S be a locally trivial deformation of Y over S = SpecR where

R ∈ Artk. Lemma III.1.5 allows us to write

Y =

n⋃
i=1

Yi

with flat S-schemes Yi. This union is a decomposition into irreducible com-

ponents and Yi is a locally trivial deformation of Yi. By flatness

Y [0] :=
∐
i

Yi −→ S

is smooth as well. For a subset I ⊆ [n] we put

(III.2.3) YI :=
⋂
i∈I
Yi, Y [k] :=

∐
|I|=k+1

YI .

Here by Yi ∩ Yj we denote the scheme Yi ×Y Yj . There exists one map

ak : Y [k] −→ Y over S and k + 1 canonical maps dj : Y [k] −→ Y [k−1] for

j = 0, . . . , k over S coming from the k + 1 inclusions [k] ↪→ [k + 1]. In other

words, the collection of the Y [k] together with the dj is a semi-simplicial

S-scheme and the ak form an augmentation of Y [•] to Y.

Lemma III.2.4. The semi-simplicial S-scheme Y [•] together with the aug-

mentation a : Y [•] −→ Y is a semi-simplicial resolution of Y. We call it the

canonical resolution of Y over S.

Proof. We have to show that all Y [m] −→ S are smooth morphisms.

Lemma III.1.5 tells us (or rather the choice of Yi, which was made using

Lemma III.1.5) that Yi is a flat deformation of the smooth variety Yi and

therefore smooth as well. For m ≥ 1 we use that Y [m] is a disjoint union of

schemes of the form YI = Yi0 ×Y . . . ×Y Yim , where I = {i0, . . . , im} and

|I| = m+ 1. Moreover, smoothness is a local property, so let us assume that

all schemes are affine, say

Y = SpecA, Yi = SpecAi, Y = SpecA, Yi = SpecAi,
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where

A = A⊗R k, Ai = Ai ⊗R k

for S = SpecR. But all morphisms Yi −→ Y are S-morphisms and Yi
respectively Y are locally trivial deformations of Yi respectively Y . Thus, we

may assume that Ai ∼= Ai⊗kR and A ∼= A⊗kR. Note that by Lemma III.1.4

the trivialization A ∼= A⊗kR already induces an isomorphism Ai ∼= Ai⊗kR
so that we obtain an R-algebra isomorphism

Γ(YI ,OYI ) = Ai0 ⊗A . . .⊗A Aim ∼= (Ai0 ⊗A . . .⊗A Aim)⊗k R.

The ring Ai0 ⊗A . . . ⊗A Aim is the coordinate ring of the smooth k-variety

Y I := YI ×S k = Yi0 ×Y . . . ×Y Yim . Smoothness of Y I is immediate from

the normal crossing condition. This shows that also YI is smooth over

S = SpecR completing the proof. �

III.2.5. Semi-cosimplicial resolution for Ω̃p
Y/S. For Y as in sec-

tion III.2.3 the semi-simplicial S-scheme Y [•] induces semi-cosimplicial OY -

modules a∗Ω
p

Y [•]/S
. The formula (III.2.2) makes

a∗Ω
p

Y [•]/S
: a0∗Ω

p

Y [0]/S

δ0−−→ a1∗Ω
p

Y [1]/S

δ1−−→ . . .

a complex. The augmentation a : Y [•] −→ Y induces a coagumentation

ΩY/S
a∗0−−→ a0∗Ω

p

Y [0]/S

δ0−−→ a1∗Ω
p

Y [1]/S

δ1−−→ . . . .

As Y [0] −→ S is smooth, the morphism a∗0 factors through Ω̃p
Y/S from Def-

inition III.1.1. Clearly, the composition δ0 ◦ a∗0 is zero and we obtain a

complex

(III.2.4) 0 −→ τkY/S −→ Ωk
Y/S −→ a0∗Ω

k
Y [0]/S

−→ a1∗Ω
k
Y [1]/S

−→ . . .

All following theory is based on the important

Lemma III.2.6. Let Y be a proper simple normal crossing C-variety and

f : Y −→ S be a locally trivial deformation over an Artinian base S = SpecR

with R ∈ ArtC.

(1) The sequence (III.2.4) is exact and so is the sequence with Y re-

placed by Yan.

(2) Ω̃•Yan/S is a resolution of the constant sheaf RY an .

Proof. The question is local in Y, so we may assume that Y = Y ×S is

the trivial deformation. Then the resolution (III.2.4) is simply the pullback

of the analogous resolution for Y along the flat morphism Y ×S −→ Y . This

implies the claim, as the statement of the lemma is true for Y by [Fri83,

Prop 1.5]. �
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Lemma III.2.7. Let f : Y −→ S be a locally trivial deformation of a simple

normal crossing variety Y over an Artinian base S = SpecR with R ∈ ArtC.

(1) The canonical map
(

Ω̃k
Y/S

)an
−→ Ω̃k

Yan/S is an isomorphism.

(2) The canonical map Rif∗Ω̃
k
Y/S −→ Rifan

∗ Ω̃k
Yan/S is an isomorphism.

Proof. We clearly have
(
ΩY/S

)an ∼= ΩYan/S . Now (1) follows from (1)

of Lemma III.2.6 because analytification is an exact functor by [SGA1, Exp

XII, Prop 1.3.1] and compatible with taking the wedge product. Moreover

(1) implies (2) by [SGA1, Exp XII, Thm 4.2]. �

Remark III.2.8. In [Ser56] several comparison theorems are proven for pro-

jective varieties over C. A generalization of Serre’s work to proper schemes

of finite type over C is given in Raynaud’s exposé [SGA1, Exp XII]. The

references in the proof are to generalizations of Serre’s results [Ser56, Prop

10] and [Ser56, Thm 1].

Lemma III.2.9. Let Y be an algebraic scheme and f : Y −→ S be a locally

trivial deformation of Y over S = SpecR where R ∈ Artk. Let S′ −→ S be

a morphism where S′ = SpecR′ with R′ ∈ Artk. Consider the fiber product

Y ′ = Y ×S S′ and denote by σ : Y ′ −→ Y the induced morphism, then the

canonical morphism σ∗Ω̃Y/S −→ Ω̃Y ′/S′ is an isomorphism.

Proof. As the canonical morphism σ∗ΩY/S −→ ΩY ′/S′ is always an

isomorphism, we only have to check that the torsion is preserved. The

question is local in Y, so the claim follows immediately from local triviality.

�

The following result is due to Deligne, see [Del68, Thm 5.5], for smooth

morphisms f : Y −→ S. His proof also works in our situation. As his

arguments are part of the proof of a more general statement, we reproduce

them here.

Theorem III.2.10 (Deligne). Let Y be a simple normal crossing variety,

which is proper over C, let S = SpecR for R ∈ ArtC and let f : Y −→ S be

a locally trivial deformation of Y over S. Let S′ = SpecR′ for R′ ∈ ArtC

and let S′ −→ S be a morphism. Then the following holds.

(1) The associated spectral sequence

(III.2.5) Ep,q1 = Rqf∗Ω̃
p
Y/S ⇒ Rp+qf∗Ω̃

•
Y/S = Hp+q(Y an, RY an)

degenerates at E1.
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(2) The R-modules Rqf∗Ω̃
p
Y/S are free and compatible with arbitrary

base change in the sense that for Y ′ = Y ×S S′ the morphism

Rqf∗Ω̃
p
Y/S ⊗R R

′ −→ Rqf∗Ω̃
p
Y ′/S′

is an isomorphism.

Proof. We argue as in [Del68], Théorème 5.5. By [Del68, (3.5.1)] a

complex K of R-modules satisfies

lgR(Hn(K)) ≤ lg(R) dimC(Hn(K ⊗L
R C))

and Hn(K) is a free R-module, if equality holds. Here lg denotes the

length of a module. To apply this to the E1-term of the spectral se-

quence (III.2.5) we need [EGAIII2], Théorème (6.10.5) saying that there

is a bounded below complex L of free R-modules and an isomorphism of

∂-functors Rqf∗

(
Ω̃p
Y/S ⊗ f

∗Q
)
−→ Hq(L ⊗ Q) in the bounded complex Q

of quasi-coherent R-modules. Here we use that Ω̃•Y/S is flat over R. Let

f̄ : Y −→ SpecC be the restriction of f to the central fiber. We will compare

the spectral sequence (III.2.5) with the spectral sequence of f̄ . Again by

[Del68, (3.5.1)] we have

(III.2.6)

lgR(Rqf∗Ω̃
p
Y/S) = lgR(Hq(L))

≤ lg(R) dimC(Hq(L⊗R C))

= lg(R) dimC(Rqf̄∗Ω̃
p
Y/C)

and Rqf∗Ω̃
p
Y/S is a free R-module, if equality holds. The last equality is the

base change property for Ω̃Y/S from Lemma III.2.9. We have

lg(Rnf∗Ω̃
•
Y/S) ≤

∑
p+q=n

lgR(Rqf∗Ω̃
p
Y/S)

≤ lg(R)
∑
p+q=n

dimC(Rqf̄∗Ω̃
p
Y/C)

= lg(R) dimC(Rnf̄∗Ω̃
•
Y/C),

where the first inequality comes from the existence of the spectral sequence,

the second inequality is (III.2.6) and the last equality comes from the de-

generation of the spectral sequence for Y , which is [Fri83, Prop 1.5]. But

Lemma III.2.6 (2) implies that lg(Rnf∗Ω̃
•
Y/S) = lg(R) dimC(Rnf̄∗Ω̃

•
Y/C), so

we have equality everywhere. Hence (1) and the first assertion of (2) follows.

The second assertion of (2) follows from the first by [EGAIII2, (7.8.5)]. �

Remark III.2.11. The proof only uses the following abstract properties of

the complex Ω̃•Y/S .
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• Ω̃•Y/S is flat over S.

• For σ : S′ −→ S and Y ′ = Y ×S S′ −→ S′ we have σ∗Ω̃•Y/S
∼= Ω̃•Y ′/S′ .

• There is a functorial quasi-isomorphism RY an −→ Ω̃•Yan/S .

• For f : Y −→ Spec(C) the spectral sequence

Ep,q1 = Rqf∗Ω̃
p
Y ⇒ Rp+qf∗Ω̃

•
Y

degenerates at E1.

In particular, the proof works for smooth f : Y −→ S where ΩY/S = Ω̃Y/S .

III.3. Pure Hodge structures on smooth families

Let f : Y −→ S be a smooth and proper morphism where S = SpecR

for R ∈ ArtC. We are going to put a pure Hodge structure over R on

Hk(Y an, RY an). We define a decreasing filtration

(III.3.1) F pΩ•Y/S := Ω≥pY/S ,

which is called the Hodge filtration. It gives rise to a filtration F pHk(Y an, RY an)

on Hk(Y an, RY an) by putting

(III.3.2) F pRkf∗Ω
•
Y/S = im

(
Rkf∗F

pΩ•Y/S −→ Rkf∗Ω
•
Y/S

)
and using the isomorphisms Hk(Y an, RY an) −→ Rkfan

∗ Ω•Yan/S from [Del68,

Lem 5.5.3] and Rkf∗Ω
•
Y/S −→ Rkfan

∗ Ω•Y/S
an ∼= Rkfan

∗ Ω•Yan/S from [SGA1,

Exp XII, Thm 4.2].

Lemma III.3.1. Let f : Y −→ S be a smooth and proper morphism and

S = SpecR, R ∈ ArtC. Then

Hk(Y) =
(
Hk(Y an,R), F pHk(Y an, RY an)

)
is a pure Hodge structure of weight k over R, whose central fiber is the

usual Hodge structure on Hk(Y an,R). Moreover, the canonical morphism

Rkf∗F
pΩ•Y/S −→ Rkf∗Ω

•
Y/S is injective, so that

Rkf∗F
pΩ•Y/S

∼= F pHk(Y an, RY an).

If g : X −→ S is smooth and proper, every S-morphism i : Y −→ X induces

a morphism i∗ : Hk(X ) −→ Hk(Y) of pure Hodge structures.

Proof. The filtration defined in (III.3.2) is the one, whose graded ob-

jects are found on E∞ of the spectral sequence (III.2.5). By [Del68, Thm
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5.5] we have E∞ = E1, so GrpFR
kf∗Ω

•
Y/S = Rk−pf∗Ω

p
Y/S = Rk−pf∗GrpFΩ•Y/S .

The same theorem tells us that Rk−pf∗Ω
p
Y/S is free. Therefore using

0 // Rkf∗F
p+1Ω•Y/S

//

��

Rkf∗F
pΩ•Y/S

//

��

Rkf∗GrpFΩ•Y/S

��

// 0

0 // F p+1Rkf∗Ω
•
Y/S

// F pRkf∗Ω
•
Y/S

// GrpFR
kf∗Ω

•
Y/S

// 0

we find inductively that Rkf∗F
pΩ•Y/S

∼= F pRkf∗Ω
•
Y/S and that these are free

submodules. Again by [Del68, Thm 5.5], all graded objects are compatible

with base change and therefore restrict to a pure Hodge structure on the

central fiber. The statement about morphisms is clear. �

Corollary III.3.2. There is a natural isomorphism

Rk−pf∗Ω
p
Y/S −→ GrpFH

k(Y ),

where Hk(Y ) = Hk(Y an,R)⊗R R.

Proof. Consider the sequences

(III.3.3)

0 // Rkf∗Ω
≥p+1
Y/S

//

∼=
��

Rkf∗Ω
≥p
Y/S

//

∼=
��

Rk−pf∗Ω
p
Y/S

//

∃ ?
��

0

0 // F p+1Hk(Y ) // F pHk(Y ) // GrpFH
k(Y ) // 0

where the first two vertical maps are isomorphisms by Lemma III.3.1. These

isomorphisms imply that the upper sequence is exact on the left. As it is

part of the long exact sequence associated to the sequence

0 −→ Ω≥p+1
Y/S −→ Ω≥pY/S −→ Ωp

Y/S [−p] −→ 0

of complexes, injectivity at (k + 1)-st direct image yields surjectivity at

the k-th, hence exactness of the upper sequence. Therefore, the morphism

Rk−pf∗Ω
p
Y/S −→ GrpFH

k(Y ) exists and by the five-lemma it is an isomor-

phism. �

According to Lemma II.2.8 the Weil restriction

Hk(Y)C/R =
(
Hk(Y an,R), F pC/R

)
of Hk(Y) is a pure Hodge-Weil structure. So by Lemma II.2.9 the submod-

ules Hp,q(Y ) := F pC/R ∩ F
q
C/R of Hk(Y )C/R =

(
Hk(Y an,R)⊗R C

)
⊗R RC/R

lift the subquotients GrpFC/R
Hk(Y )C/R =

(
GrpFH

k(Y )
)
C/R.
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Corollary III.3.3. There is a natural isomorphism(
Rk−pf∗Ω

p
Y/S

)
C/R
−→ Hp,q(Y )

compatible with morphisms in the sense that for every smooth and proper

g : X −→ S and every i : Y −→ X over S the diagram(
Rk−pf∗Ω

p
Y/S

)
C/R

i∗C/R
//

��

(
Rk−pg∗Ω

p
X/S

)
C/R

��
Hp,q(Y )

ip,q // Hp,q(X)

commutes.

Proof. This follows directly by applying Weil restriction to the diagram

(III.3.3) and using Lemma II.2.9. �

Recall that a module homomorphism has constant rank if and only if its

cokernel is free by Lemma A.2.2.

Proposition III.3.4. Let f : Y −→ S, g : X −→ S be proper and smooth

over an Artinian base S = SpecR, R ∈ ArtC and let i : Y −→ X be an

S-morphism. Then the induced morphisms i∗ : Rqg∗Ω
p
X/S −→ Rqf∗Ω

p
Y/S

have constant rank.

Proof. By Lemma III.3.1 we know that the morphism i induces a

morphism Hk(X ) −→ Hk(Y) between the pure Hodge structures over R

associated to X and Y. Taking Weil restrictions this gives a morphism

Hk(X )C/R −→ Hk(Y)C/R of Hodge-Weil structures by Lemma II.2.8. Let

ip,q : Hp,q(X) −→ Hp,q(Y ) be the induced map.

By Corollary III.3.3 the diagram(
Rk−pf∗Ω

p
Y/S

)
C/R

i∗C/R
//

∼=
��

(
Rk−pg∗Ω

p
X/S

)
C/R

∼=
��

// coker i∗C/R

��

// 0

Hp,q(Y )
ip,q // Hp,q(X) // coker ip,q // 0

commutes and the first two vertical maps are isomorphisms. Therefore also

the third vertical map is an isomorphism. We know that coker ip,q is free by

Lemma II.2.10, hence so is coker i∗C/R. Now the claim follows from Lemma

II.1.5, as coker i∗C/R = (coker i∗)C/R by Lemma II.1.4. �

Proposition III.3.4 together with Lemma II.2.10 can be seen as a formaliza-

tion of the idea that if S is the base manifold of a small deformation and
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t ∈ S, the maps Hq(Xt,Ω
p
Xt

) −→ Hq(Yt,Ω
p
Yt

), the rank of which is semicon-

tinuous in t, add up to the topological map H i(X,RX) −→ H i(Y,RY ) by

the Hodge decomposition. The rank of the latter is certainly constant and

by semi-continuity the summands also have constant rank.

III.4. Mixed Hodge structures on normal crossing families

By Lemma III.2.6 there is a quasi-isomorphism Ω̃•Y/S ' s((a•)∗Ω
•
Y [•]/S

),

where s(·) denotes the single complex associated to a double complex. There-

fore we may define filtrations

W−mΩ̃•Y/S := s((a≥m)∗Ω
•
Y [≥m]/S

) and F pΩ̃•Y/S := Ω̃≥pY/S .

These give rise to filtrations F pHk(Y,R) and WmH
k(Y,R) on Hk(Y,R) by

putting

(III.4.1) WmR
kf∗Ω̃

•
Y/S = im

(
Rkf∗Wm−kΩ̃

•
Y/S −→ Rkf∗Ω̃

•
Y/S

)
and

(III.4.2) F pRkf∗Ω̃
•
Y/S = im

(
Rkf∗F

pΩ̃•Y/S −→ Rkf∗Ω̃
•
Y/S

)
.

and using the isomorphisms Hk(Y an, RY an) −→ Rkfan
∗ Ω̃•Yan/S from (2) of

Lemma III.2.6 and Rkf∗Ω̃
•
Y/S −→ Rkfan

∗ Ω̃•Yan/S from (2) of Lemma III.2.7.

Lemma III.4.1. Let Y be a proper simple normal crossing variety over C
and let f : Y −→ S be a locally trivial deformation of Y over S = SpecR for

R ∈ ArtC. Then

(III.4.3) Hk(Y) = (Hk(Y an,R),WmH
k(Y an, RY an), F pHk(Y an, RY an))

is a mixed Hodge structure over R. Moreover, Rkf∗F
pΩ̃•Y/S −→ Rkf∗Ω̃

•
Y/S

is injective.

Proof. Literally as in the pure case, see Lemma III.3.1 and Corollary

III.3.2, one shows that the R-modules GrpFR
kf∗Ω̃

•
Y/S are free and isomor-

phic to Rkf∗GrpF Ω̃•Y/S = Rkf∗Ω̃
p
Y/S and that Rkf∗F

pΩ̃•Y/S −→ Rkf∗Ω̃
•
Y/S

is injective. As only difference one has to use Theorem III.2.10 instead of

[Del68, Thm 5.5]. To verify that (III.4.3) is a mixed Hodge structure over

R, we have to show that the graded objects GrWm GrpFH
k(Y an, RY an) are free

R-modules, or equivalently that the GrWm GrpFR
kf∗Ω̃

•
Y/S are free R-modules,

and that the central fiber is a mixed Hodge structure in the ordinary sense.

The free R-module Rkf∗Ω̃
p
Y/S is the abutment of the spectral sequence

(III.4.4) Ek,m1 = Rmf∗

(
ak∗Ω

p

Y [k]/S

)
⇒ Rk+mf∗Ω̃

p
Y/S
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induced by the resolution (III.2.4) for fixed p. The filtration defined in

(III.4.1) induces a weight filtration GrpFR
kf∗Ω̃

•
Y/S in the obvious way and

the graded objects with respect to this filtration are the E∞ terms of the

spectral sequence (III.4.4). By [Del68, Thm 5.5] the R-modules Ek,m1 are

free and compatible with base change. Moreover, the differential d1 on Ek,m1

is given by the semi-simplicial differential

δ : Rmf∗

(
ak∗Ω

p

Y [k]/S

)
−→ Rmf∗

(
ak∗Ω

p

Y [k+1]/S

)
.

This morphism has constant rank by Proposition III.3.4. Hence Ek,m2 is free,

too, and compatible with base change by Lemma A.2.6. In the case R = C
the spectral sequence is known to degenerate at E2, see [PS08, Thms 3.12,

3.18]. As all E2-terms of (III.4.4) are compatible with base change we have

for all n that∑
k+m=n

lgR

(
Ek,m2

)
= lgR(R)

∑
k+m=n

dimC

(
Ek,m2 ⊗ C

)
= lgR(R) dimC

(
Rnf∗Ω̃

p
Y/C

)
= lgR

(
Rnf∗Ω̃

p
Y/S

)
.

Thus, the spectral sequence III.4.4 also degenerates at E2 and the R-modules

Ek,m∞ = GrWmR
k+mf∗Ω̃

p
Y/S = GrWm GrpFR

k+mf∗Ω̃
•
Y/S coincide with the free

R-modules Ek,m2 . Again, as all graded objects are compatible with base

change, H restricts to a mixed Hodge structure on the central fiber, which

is the usual mixed Hodge structure on Y . �

For later use we isolate an observation from the proof of the previous lemma.

Corollary III.4.2. Let Y be a proper simple normal crossing variety over

C and let f : Y −→ S be a locally trivial deformation of Y over S = SpecR

for R ∈ ArtC. Then the spectral sequence (III.4.4) degenerates at E2. �

Now we are able to deduce the main result of this chapter.

Theorem III.4.3. Let S = SpecR where R ∈ ArtC, let Y be a proper simple

normal crossing C-variety and let g : X −→ S and f : Y −→ S be proper,

algebraic S-schemes. Assume that Y −→ S is a locally trivial deformation

of Y and X −→ S is smooth. Let i : Y −→ X be an S-morphism. Then for

all p, q the morphism i∗ : Rqg∗Ω
p
X/S −→ Rqf∗Ω̃

p
Y/S has constant rank.

Proof. Let . . . ////// Y [1] //// Y [0] // Y be the semi-simplicial resolution

of Y over S from Lemma III.2.4. This means in particular that Y [0] is a

locally trivial deformation of the normalization. By Theorem III.2.10 the
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R-modules Rqg∗Ω
p
X/S , Rqf∗Ω̃

p
Y/S and Rqf∗Ω

p

Y [k]/S
are free and compatible

with base change. By Corollary III.4.2 we know that the spectral sequences

(III.4.4) degenerate at E2 for each p. As

E0,q
2 = ker

(
Rqf∗Ω

p

Y [0]/S
−→ Rqf∗Ω

p

Y [1]/S

)
this implies that the first row in

(III.4.5)

0 // Wp+q−1R
qf∗Ω̃

p
Y/S

// Rqf∗Ω̃
p
Y/S

η
// Rqf∗Ω

p

Y [0]/S

δ // Rqf∗Ω
p

Y [1]/S

Rqg∗Ω
p
X/S

i∗

OO

ϕ

99

is exact.

Here im i∗ does not intersect Wp+q−1R
qf∗Ω̃

p
Y/S , as it does not on the cen-

tral fiber. This last claim can be shown using Deligne’s weak splitting

as follows. We denote X := X ×S C and put Hp+q
Y := Hp+q(Y,C) and

Hp,q
X := Hp+q(X,C). We identify Hp+q

Y and Hp+q
X with the hypercohomol-

ogy of Ω̃•Y respectively Ω•X and obtain(
Wp+q−1R

qf∗Ω̃
p
Y/S

)
⊗ C �

� //
(
Rqf∗Ω̃

p
Y/S

)
⊗ C

(
Rqg∗Ω

p
X/S

)
⊗ Ci∗oo

Wp+q−1R
qf∗Ω̃

p
Y
� � // Rqf∗Ω̃

p
Y Rqg∗Ω

p
X

oo

Wp+q−1GrpFH
p+q
Y
� � // GrpFH

p+q
Y GrpFH

p+q
X

oo

Deligne’s weak splitting [PS08, Ex 3.3 and Lem-Def 3.4] is a decomposition

Hk
Y =

⊕
r,s

Ir,sY

such that

F pHk
Y =

⊕
r≥p

Ir,sY and WmH
k
Y =

⊕
r+s≤m

Ir,sY .

The subspaces Ir,sY ⊆ Hr+s
Y project isomorphically onto the subquotients

GrWr+sGrrFHY . The Deligne weak splitting is preserved under morphisms of

mixed Hodge structures. As the Hodge structure on Hp+q
X is pure of weight

p+ q, this yields im i∗ ⊆ Ip,qY and therefore

im i∗ ∩Wp+q−1GrpFH
p+q
Y ⊆ Ip,qY ∩

⊕
r+s≤p+q−1

Ir,sY = 0.

as claimed. We come back to diagram (III.4.5) and observe that ϕ has

constant rank by Proposition III.3.4. Also η has constant rank as δ has

constant rank by Proposition III.3.4 and hence coker η = ker δ is free. As
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im i∗∩ker η = 0, Lemma A.2.5 implies that i∗ has constant rank completing

the proof. �

III.5. The case of Kähler manifolds

When X is a compact Kähler manifold, Theorem III.2.10 is true as well.

But the references to [EGAIII2] have to be replaced.

Theorem III.5.1 (Deligne). Let X be a compact Kähler manifold, let S =

SpecR for R ∈ ArtC and let g : X −→ S be a deformation of X over S.

Let S′ = SpecR′ for R′ ∈ ArtC and let S′ −→ S be a morphism. Then the

following holds.

(1) The associated spectral sequence

(III.5.1) Ep,q1 = Rqg∗Ω
p
X/S ⇒ Rp+qg∗Ω

•
X/S = Hp+q(X,RX)

degenerates at E1.

(2) The R-modules Rqg∗Ω
p
X/S are free and compatible with arbitrary

base change in the sense that for X ′ = X ×S S′ the morphism

Rqg∗Ω
p
X/S ⊗R R

′ −→ Rqg∗Ω
p
X ′/S′

is an isomorphism.

Proof. This works literally as in the proof of Theorem III.2.10 We only

have to replace the reference to [EGAIII2, Thm 6.10.5] by [BS77, Ch 3,

Thm 4.1] and the reference to [EGAIII2, 7.8.5] by [BS77, Ch 3, Cor 3.10].

The rest of the proof of Theorem III.2.10 goes through, if we note that the

spectral sequence associated to Ω•X degenerates as X is a compact Kähler

manifold. �

With this theorem at hand, the analogues of the other results of this chapter

hold true as well. We record them for the sake of referenceability.

With the definitions (III.3.1) and (III.3.2) the analogue of Lemma III.3.1

holds.

Lemma III.5.2. Let g : X −→ S be a deformation of a compact Kähler

manifold X, where S = SpecR, R ∈ ArtC. Then

Hk(X ) :=
(
Hk(X,R), F pHk(X,RX)

)
is a pure Hodge structure of weight k over R. Moreover the morphism

Rkg∗F
pΩ•X/S −→ Rkg∗Ω

•
X/S is injective, so thatRkg∗F

pΩ•X/S
∼= F pHk(X,RX).

If h : Z −→ S is a deformation of a compact Kähler manifold, every S-

morphism i : X −→ Z induces a morphism i∗ : Hk(Z) −→ Hk(X ) of pure

Hodge structures.
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Proof. The reference to [Del68, Thm 5.5] has to be replaced by The-

orem III.5.1. Then the proof of Lemma III.3.1 works literally. �

The proof of the analogues to Corollary III.3.2 and Corollary III.3.3 is

straight forward. As this and abstract Hodge-Weil theory is all we needed

for the proof of Proposition III.3.4, we have

Proposition III.5.3. Let X and Y be compact Kähler manifolds and let

S = SpecR where R ∈ ArtC. Let f : Y −→ S and g : X −→ S be deforma-

tions of Y and X over S and let i : Y −→ X be an S-morphism. Then the

induced morphisms i∗ : Rqg∗Ω
p
X/S −→ Rqf∗Ω

p
Y/S have constant rank. �

The analogue of Theorem III.4.3 will be formulated in a way that is appro-

priate for applications in Chapter VI.

Theorem III.5.4. Let X be a compact Kähler manifold, let Y be a simple

normal crossing proper algebraic C-variety and let S = SpecR for some

R ∈ ArtC. Let g : X −→ S be a deformation of X over S, let f : Y −→ S

be a locally trivial deformation of Y over S and let i : Yan −→ X be an

S-morphism. Then for all p, q the morphism i∗ : Rqg∗Ω
p
X/S −→ Rqf∗Ω̃

p
Yan/S

has constant rank. �

III.6. Lifting the normalization

Let Y be a k-variety, let S = SpecR for R ∈ Artk and let f : Y −→ S be a

locally trivial deformation of Y . We will show that the normalization Ỹ of

Y has a lifting to a flat S-scheme.

Let 0 −→ J −→ R −→ R′ −→ 0 be a small extension in Artk with J = t ·R and

let A be a flat R-algebra. Tensoring with A we obtain an exact sequence

0 −→ I −→ A −→ A′ −→ 0,

where flatness implies that I = J ⊗A. As t ·m = 0 the A-module structure

on I factors through the projection p : A −→ A⊗RR/m =: A0, where m ⊆ R
is the maximal ideal, and write p(a) =: ā. Let σ : A −→ A be an R-algebra

automorphism that restricts to the identity on A0 and let δ ∈ Derk(A0).

Then σ′ = σ + tδ ◦ p is again an R-algebra automorphism as the following

calculation shows.

σ′(a) σ′(b) = σ(ab) + tσ(a)δ(b̄) + tσ(b)δ(ā)

= σ(ab) + t
(
aδ(b̄) + bδ(ā)

)
= (σ + tδ ◦ p)(ab)

= σ′(ab)
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Here we used that σ(a)t = at = āt. We will frequently write σ + tδ for sim-

plicity. The following lemma is a straight forward generalization of [Ser06,

Lem 1.2.6].

Lemma III.6.1. Let A be a flat R-algebra. Let 0 −→ J −→ R −→ R′ −→ 0 be

a small extension in Artk with J = t ·R and A′ = A⊗RR′. Let σ1, σ2 be R-

algebra automorphisms of A which restrict to the identity on A0 = A⊗R k
and coincide on A′. Then there is a derivation δ ∈ Derk(A0) such that

σ1 = σ2 + tδ.

Proof. It is enough to show that σ := σ−1
2 ◦ σ1 = id + tδ beacuse σ2

restricts to id on A0 and hence σ2 ◦ tδ = tδ. We define tδ := σ − id. This is

clearly R-linear and easily seen to be a derivation. �

Let Y be a k-scheme, let S = SpecR for (R,m) ∈ Artk and let f : Y −→ S

be a deformation of Y . We denote by T 0
Y/S := mTY/S ⊆ TY/S the subsheaf

of sections vanishing on Y and by Aut(Y/S)0 ⊆ Aut(Y/S) be the subgroup

sheaf of automorphisms of Y over S that restrict to the identity on Y . Note

that the continuous map underlying an automorphism ϕ ∈ Aut(Y/S) is the

identity on Y . Therefore we will identify such a ϕ with the corresponding

automorphism of OY . The following lemma seems to be well-known, but we

were unable to find a reference.

Lemma III.6.2. Let Y be a k-scheme, let S = SpecR for (R,m) ∈ Artk and

let f : Y −→ S be a locally trivial deformation of Y . Then

T 0
Y/S −→ Aut(Y/S)0, ϑ 7→ exp(ϑ) = id + ϑ+

1

2
ϑ ◦ ϑ+ . . .

is an isomorphism of sheaves of sets. In particular the logarithm

logϕ =

∞∑
n=1

(id− ϕ)n

n

of an automorphism ϕ ∈ Aut(Y/S)0 is a derivation.

Proof. Note that exp : T 0
Y/S −→ Aut(Y/S)0 is well-defined as mn and

hence also ϑ◦n vanish for n � 0 The statement is local in Y hence we may

assume that Y = SpecA is affine. The proof is by induction on the length

lg(R). Let 0 −→ J −→ R −→ R′ −→ 0 be a small extension in Artk with

J = t · R. We write S′ = SpecR′ and Y ′ = Y ×S S′ = SpecA′ where

A′ = A ⊗R R′. Let σ ∈ Aut(Y/S)0 be given and σ′ ∈ Aut(Y ′/S′)0 be the

restriction of σ to Y ′. By the inductive hypothesis there is ϑ′ ∈ T 0
Y ′/S′ with
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exp(ϑ′) = σ′. Now we have

TY ′/S′ = HomA′(ΩA′/R′ , A
′)

= HomA′(ΩA/R ⊗A A′, A′)

= HomA(ΩA/R, A
′)

and in order to lift ϑ′ to some ϑ ∈ TY/S we consider the exact sequence

HomA(ΩA/R, A) // HomA(ΩA/R, A
′) // Ext1

A(ΩA/R, JA).

TY/S TY ′/S′

In general TY/S −→ TY ′/S′ does not need to be surjective. But here Y −→ S

is a locally trivial deformation of Y = Y×S k −→ Spec(k), so we may assume

that A = A0 ⊗k R for some k-algebra A0 and hence A′ = A0 ⊗k R′. This

implies that

TY ′/S′ = HomA(ΩA/R, A
′) = HomA(ΩA0/k ⊗A0 A,A

′)

= HomA0(ΩA0/k, A0 ⊗k R′) = HomA0(ΩA0/k, A0)⊗k R′

= TY ⊗k R′

and in the same way that TY/S = TY ⊗k R. So TY/S −→ TY ′/S′ is surjective

for a locally trivial deformation. Let ϑ ∈ TY/S be a lift of ϑ′. Clearly,

ϑ ∈ T 0
Y/S = mTY/S as ϑ′ ∈ m′TY ′/S′ and the preimage of m′ is m. The

automorphisms exp(ϑ) and σ both restrict to σ′ on Y ′. Thus by Lemma

III.6.1 there is δ ∈ Derk(A0) = TY such that σ = exp(ϑ) + tδ = exp(ϑ+ tδ).

As ϑ ∈ T 0
Y/S we have ϑ + tδ ∈ T 0

Y/S . So exp : T 0
Y/S −→ Aut(Y/S)0 is

surjective.

For injectivity assume exp(ϑ) = id. Then 0 = exp(ϑ)− id = ϑ+ 1
2ϑ◦ϑ+ . . ..

If ϑ 6= 0 there is k ∈ N such that ϑ ∈ mkTY/S\mk+1TY/S . Then this equation

means ϑ = 0 mod mk+1, a contradiction. �

The isomorphism exp : T 0
Y/S −→ Aut(Y/S)0 of sheaves of sets is in general

not an isomorphism of groups as Aut(Y/S)0 is non-commutative in general.

Lemma III.6.3. Let Y be a reduced algebraic k-scheme and f : Y −→ S

be a locally trivial deformation of Y over an Artinian base S = SpecR.

Then there exists a scheme Ỹ and a morphism ν : Ỹ −→ Y such that the

composition µ = f ◦ ν : Ỹ −→ S is a locally trivial deformation of the

normalization Ỹ of Y . Moreover, the pair (Ỹ , ν) is unique. In particular, µ

is flat.

Proof. By Lemma III.1.5, we may assume that Y is integral. Let

Y = ∪iUi be a covering by open affine subsches Ui = SpecAi and put
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Aij = Γ(Uij ,OY ). The scheme Y is determined by the Yi := Y|Ui and by the

collection of R-algebra isomorphisms θij := θ−1
j ◦ θi : Aij ⊗k R −→ Aij ⊗k R,

which satisfy the cocyle conditions on the triple intersections Uijk and which

reduce to the identity modulo m. Let Ãi be the normalization of Ai, then

we will obtain ν : Ỹ −→ Y by gluing νi : Spec(Ãi) −→ Spec(Ai ⊗ R) along

ν−1
i (Uij) −→ ν−1

j (Uij). Therefore we have to find a morphism θ̃ij to make

the diagramm

Aij ⊗R

��

θij // Aij ⊗R

��

Ãij ⊗R
∃ θ̃ij? // Ãij ⊗R

commutative, where Ãij is the normalization and the cocycle conditions re-

main valid. Observe that such θ̃ij and also Ỹ will be unique. The θij are

determined by a section sij ∈ Γ(Uij , T
0
Y/S), hence the existence of θ̃ij is im-

plied by Lemma III.6.2 as follows. The restriction of Y −→ S to Uij is a

trivial deformation, so Γ(Uij , T
0
Y/S) = Γ(Uij , TY ⊗km) and the sij are deter-

mined by derivations on Y . These derivations extend to the normalization

Ỹ by a theorem of Seidenberg, see [Sei66, p. 168]. Thus, sij extends to

Ãij ⊗R determining a morphism θ̃ij . �



CHAPTER IV

Symplectic geometry

We recall basic definitions an results regarding irreducible symplectic man-

ifolds.

IV.1. Basic definitions and results

Definition IV.1.1. An irreducible symplectic manifold is a compact, con-

nected, simply connected Kähler manifold X with H0(X,Ω2
X) = C ·ω where

ω is symplectic, i.e. everywhere non-degenerate.

We fix once and for all a holomorphic symplectic form ω on X. Irreducible

symplectic manifolds are quite special. As ω is symplectic, they are even-

dimensional. By contraction, the symplectic form gives an isomorphism

ω′ : TX
∼=−−→ ΩX .

and its top exterior power is by definition nowhere vanishing, hence a trivi-

alization of the canonical bundle

ω∧n : OX
∼=−−→ ωX ,

where dimX = 2n. As a consequence, c1(X) = c1(TX) = c1(ωX) = 0. As

π1(X) = 0, also

H1(X,Z) = πab
1 (X) = 0

and thus by the universal coefficient theorem also H1(X,C) = 0. Hodge

decomposition and the Dolbeault isomorphism imply

H1(X,OX) = 0 = H0(X,ΩX).

Again using the symplectic form we find that H0(X,TX) = 0; a fact that will

guarantee the existence of a universal formal deformation for such manifolds,

see Proposition I.2.2.

Gradually one is led to believe that such manifolds have a very special

geometry. Another manifestation of the fact that symplectic manifolds are

central in the study of compact complex manifolds with vanishing first chern

class is Bogomolov’s famous decomposition theorem [Bog74]. The version

stated below is found in [Bea83, Thm 2].

53
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Theorem IV.1.2 (Bogomolov). Let X be a compact Kähler manifold with

c1(X) = 0. Then there is a finite etale covering X ′ −→ X and an isomor-

phism

X ′
∼=−−→ T ×

∏
i

Vi ×
∏
j

Xj ,

where T is a complex torus, Vi are Calabi-Yau manifolds and Xj are irre-

ducible symplectic manifolds.

Here Calabi-Yau is meant in the strong sense. A Calabi-Yau manifold is a

simply connected projective manifold of dimension ≥ 3 such that Hp,0(Vi) =

0 holds for all 0 < p < dimVi.

Irreducible symplectic manifolds have a differential geometric counterpart:

compact hyperkähler manifolds. These are compact Riemannian manifolds

X of dimension dimRX = 4n with holonomy group exactly Sp(n), the

unitary symplectic group. The group Sp(n) is the compact real form of

Sp(2n,C) and is obtained as Sp(n) = Sp(2n,C) ∩ U(2n). The following

theorem connects these two classes of manifolds.

Theorem IV.1.3. Let X be a compact Kähler manifold of dimension 2n.

The following conditions on X are equivalent.

• X admits a Kähler metric with holonomy exactly Sp(n).

• X is simply connected and admits a symplectic form which is unique

up to scalars.

This theorem is proven in [Bea83, Prop 4] as a consequence of Yau’s theorem

[Yau78] and Bogomolov’s Theorem IV.1.2, see also [GHJ03, Thm 23.5].

We will not dwell on this side of the theory; the article [Huy99] however

can also serve as an introduction.

Definition IV.1.4. A closed subvariety Y of a symplectic manifold (X,ω) is

called Lagrangian, if dimY = 1
2 dimX and i∗regω = 0 where ireg : Yreg −→ X

is the inclusion of the regular part of Y .

If Y is smooth, the above definition coincides with the classical definition of

a Lagrangian submanifold, namely that for every y ∈ Y the tangent space

TY,y ⊆ TX,y is Lagrangian, i.e. maximal isotropic with respect to ωy.

Definition IV.1.5. Let X be a symplectic manifold and B a normal com-

plex space. A proper morphism f : X −→ B is a Lagrangian fibration, if

f∗OX = OB and if the reduction of every fiber of f is a Lagrangian subva-

riety of X.



IV.2. EXAMPLES OF SYMPLECTIC MANIFOLDS 55

We postpone the discussion of the theory of Lagrangian fibrations until

Chapter VII. We only want to mention here Voisin’s argument that a La-

grangian submanifold of X is always projective, even if X is only Kähler,

see [Cam06, Prop 2.1].

Proposition IV.1.6 (Voisin). Let Y ↪→X be the inclusion of a Lagrangian

submanifold into an irreducible symplectic manifold. Then Y is projective.

This result will be generalized to some special types of singular Lagrangian

subvarieties in Chapter VI.

IV.2. Examples of symplectic manifolds

There are not many examples known of irreducible symplectic manifolds and

to find new examples is one of the most difficult problems in this area. Up to

deformation all known examples are K3 surfaces, Hilbert schemes of points

on K3 surfaces, generalized Kummer varieties and two sporadic examples

constructed by O’Grady from moduli spaces of sheaves on K3 and abelian

surfaces [O’G99, O’G03].

IV.2.1. K3 surfaces. A K3 surface is a compact complex surface S

with ωX ∼= OX and H1(S,OS) = 0. In dimension 2 irreducible symplectic

manifolds are exactly K3 surfaces. The non-trivial part is to see that K3

surfaces are irreducible symplectic, see [K3a85].

K3 surfaces which admit a fibration where the generic fiber is an elliptic

curve are called elliptic. Such a fibration is automatically Lagrangian. An

example of an elliptic K3 surface is obtained as follows. Take generic ho-

mogenous polynomials f0, f1, f2 ∈ C[x, y, z]. Then{
s2f0 + stf1 + t2f2 = 0

}
⊆ P1 × P2

can be seen to define an elliptic K3 surface via the projection to P1. Another

example is the Fermat surface

S =
{
x4

0 + x4
1 + x4

2 + x4
3 = 0

}
⊆ P3.

The map xi 7→ x2
i gives a morphism from S to the ruled surface

P3 ⊇
{
x2

0 + x2
1 + x2

2 + x2
3 = 0

} ∼= P1 × P1.

Now a projection to one of the factors gives a fibration on S.
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IV.2.2. Hilbert schemes. Let S be a K3 surface. Then the Hilbert

scheme Hilbn(S) of n points on S is an irreducible symplectic manifold,

see [Bea83, Thm 3]. If S is elliptic, then also Hilbn(S) will admit a La-

grangian fibration. It is obtained as the composition of the Hilbert-Chow

morphism % : Hilbn(S) −→ SymnS to the symmetric product and the mor-

phism SymnS −→ SymnP1 = Pn obtained by applying the functor Sym to

the elliptic fibration of S.

Other examples of at least rational Lagrangian fibrations on Hilbert schemes

are obtained as follows, see [Bea91]. Take a quartic K3 surface S ⊆ P3.

Then every subscheme ξ ↪→S ⊆ P3 of length 3 spans a plane Hξ unless it is

contained in a line ` ⊆ S ⊆ P3. Therefore we obtain a rational fibration

Hilb3(S) 99K (P3)∨

to the dual projective space by mapping ξ 7→ Hξ. If S is a double covering

S −→ P2 of P2, then we have a rational fibration

Hilb2(S) 99K (P2)∨

defined by sending a subscheme ξ ↪→S of length 2 to the line `ξ determined

by the image of ξ in P2. This is well-defined only if ξ is not contained in a

fiber of S −→ P2.

IV.2.3. Generalized Kummer varieties. Let A be an abelian sur-

face. Then the Hilbert scheme Hilbn(A) of n points on A has a symplec-

tic structure just as in the K3 case, but is not irreducible symplectic as

π1(Hilbn(A)) is non-trivial. Consider the morphisms

Hilbn(A) −→ SymnA
+−−→ A,

where the first is the Hilbert-Chow morphism and the second is the addition

in the group law on A. The composition Hilbn(A) −→ A is a holomorphic

fiber bundle and the fiber Kn−1(A) is an irreducible symplectic manifold, the

generalized Kummer variety. This is shown in [Bea83, Thm 4]. If A −→ E

is a fibration to an elliptic curve, then similar to the case of the Hilbert

scheme of a K3 surface also Kn−1(A) will admit a Lagrangian fibration.

IV.3. The Beauville-Bogomolov quadratic form

There is a quadratic form qX : H2(X,R) −→ C on the second cohomology of

an irreducible symplectic manifold defined by

(IV.3.1)

qX(α) =
n

2

∫
X
α2.ωn−1.ω̄n−1 + (1− n)

(∫
X
α.ωn.ω̄n−1

)(∫
X
α.ωn−1.ω̄n

)
.
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It was discovered by Beauville [Bea83] and is called the Beauville-Bogomolov -

form, see also [GHJ03, Def 22.8 ff]. It resembles the intersection pairing

on surfaces, in particular it coincides with the intersection pairing up to a

scalar, if X is a K3 surface. This form has a rich theory. It is to be held re-

sponsible for many things we know about irreducible symplectic manifolds.

On the other side its existence is mysterious and a natural explanation for

it would be a wonderful thing to have.

We will also write qX for the extension of this form to H2(X,C). Using the

Hodge decompositionH2(X,C) = Cω⊕H1,1(X)⊕Cω̄, writing α ∈ H2(X,C)

accordingly as α = λω + β + µω̄ with λ, µ ∈ C and normalizing ω such that∫
X ω

n.ω̄n = 1 the formula (IV.3.1) takes the form

(IV.3.2) qX(α) = λµ+

∫
X
β2.ωn−1.ω̄n−1.

We list two properties of qX ; for proofs see § 23 of Huybrecht’s lectures

in [GHJ03] and references therein. We will not distinguish between the

quadratic form qX and the bilinear form obtained from qX by polarization.

Proposition IV.3.1. The Beauville-Bogomolov form qX is non-degenerate

and has signature (3, b2(X)−3) on H2(X,R). If κ is a Kähler class, then qX

is positive on the subspace generated by κ and the real and imaginary parts

Reω and Imω of the symplectic form. Moreover, qX can be renormalized

to be a primitive integral quadratic form on H2(X,Z).

Proposition IV.3.2. There are constants ap only depending on the defor-

mation type of X such that

ap qX(α)n−p =

∫
X

cp(X).α2(n−p)

for all α ∈ H2(X,R) where cp(X) are the Chern classes of X.





CHAPTER V

The universal deformation space of an irreducible

symplectic manifold

In this chapter we explain existence and basic properties of a universal de-

formation space M for an irreducible symplectic manifold X. We define and

discuss certain subspaces. Those results of Voisin’s article [Voi92], which we

use in Chapter VI, are explained and for convenience proofs are reproduced.

V.1. Existence and properties of the universal deformation space

By Kuranishi’s theorem [Kur62] for every compact complex space X there

exists a versal deformation space M for deformations of X. This means

that there is a flat morphism π : X −→ M of complex spaces and a point

0 ∈ M with π−1(0) = X and π is versal at 0 in the sense of Definition

I.5.4. Moreover, π is also versal in an open neighbourhood of 0 ∈ M .

As H0(X,TX) = 0 for irreducible symplectic manifolds, M is a universal

deformation space, that is, π is universal at 0. We call π : X −→ M the

universal family. Close to 0 ∈ M the fibers of π are again irreducible

symplectic manifolds, see [Bea83, § 8]. Universality at 0 implies that

dim0M = dim tDX = dimH1(X,TX) = dimH1(X,ΩX) = dimH1,1(X),

where the third equality comes from the isomorphism TX
∼=−−→ ΩX induced

by the symplectic form. The universal deformation space M of X is known

to be smooth by the Bogomolov-Tian-Todorov theorem [Bog78, Tia87,

Tod89], see also [GHJ03, Thm 14.10] for an introduction. It is conve-

nient to consider the pointed complex space (M, 0) as a germ of complex

spaces. This means that instead of (M, 0) we look at the equivalence class

of (M, 0) in the category of pointed complex spaces, where two pointed

complex spaces are considered equivalent if they are biholomorphic locally

around their respective distinguished points. As M is smooth at 0 we may

take as a representative of M a polydisc at the origin in Cn.

V.1.1. Local Torelli theorem. Let M be a simply connected repre-

sentative of the universal deformation space of X and consider the universal

family π : X −→ M . Then π is a C∞-trivial fiber bundle by Ehresmann’s

59



60 V. UNIVERSAL DEFORMATION SPACE

theorem. We choose once and for all a trivialization

(V.1.1) X ×M α

C∞∼=
//

##

X

π~~
M

and a relative symplectic form ω ∈ R0π∗Ω
2
X/M . We put Xt := π−1(t) and

write ωt := ω|Xt for the symplectic form on Xt. The restriction of α to the

fiber over t ∈ M is a diffeomorphism αt : X −→ Xt. Consider the period

map

(V.1.2) P : M −→ P
(
H2(X,C)

)
, t 7→ [α∗tωt]

Beauville showed in [Bea83, Thm 5] that a local Torelli theorem holds for

irreducible symplectic manifolds. This means that locally at 0 the period

map identifies M with its period domain

(V.1.3) QX :=
{

[v] ∈ P(H2(X,C)) : qX(v, v) = 0, qX(v, v̄) > 0
}

where qX is the Beauville-Bogomolov form on H2(X,C), see section IV.3.

V.2. Subspaces of M

V.2.1. Hodge bundles and the Gauß-Manin connection. The

material presented here is taken from [VoiI, Ch 5.1.2], where we also refer

to for proofs. We use the notation of section V.1 and define the vector

bundle H k on M as

H k := Rkπ∗CX ⊗OM .

We obtain a filtration by subbundles F pH k of H k by applying the iso-

morphism

Rkπ∗Ω
•
X/M

∼= Rkπ∗CX ⊗OM
to the subbundles

im
(
Rkπ∗Ω

≥p
X/M −→ Rkπ∗Ω

•
X/M

)
of Rkπ∗Ω

•
X/M . The fiber of F pH k at t ∈ M is canonically identified with

the p-term F pHk(Xt) of the Hodge filtration on Hk(Xt). We define the

bundles

H p,q := F pH p+q/F p+1H p+q

The fiber of H p,q at t ∈ M is canonically identified with Hq(Xt,Ω
p
Xt

).

The bundle H k as well as the bundles H p,q are sometimes called Hodge

bundles. There is a local system H k
C := Rkπ∗CX ↪→H k and the associated

flat connection

∇ : H k −→H k ⊗ ΩM
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is called the Gauß-Manin connection. It can be calculated as follows. If

we take local sections s1, . . . , sm ∈HC which trivialize H k over some open

subset, any section s ∈ H can be written as a sum
∑

i fisi with local

sections fi ∈ OM . Then by definition we have ∇(s) =
∑

i si⊗ dfi where d is

just the ordinary differential d : OM −→ ΩM . In particular, the sheaf HC is

exactly the sheaf of flat sections of H . The Gauß-Manin connection fulfills

the so-called Griffiths transversality

∇
(
F pH k

)
⊆ F p−1H k ⊗ ΩM .

Therefore, it induces morphisms ∇̄p : GrpF H k −→ Grp−1
F H k ⊗ΩM between

the graded objects of the filtration. This map is OM -linear and therefore

corresponds to a map ∇̄p : GrpF H k −→ Hom(TM ,Grp−1
F H k). By a theorem

of Griffiths its fiber at the point t ∈M can be identified with the map

(V.2.1) Hk−p(Xt,Ω
p
Xt

) −→ Hom
(
H1(Xt, TXt), H

k−p−1(Xt,Ω
p
Xt

)
)

given by cup-product and contraction.

V.2.2. Hodge loci. Let β ∈ Hk(X,C) be a cohomology class of type

(p, q) with respect to the Hodge decompositionHk(X,C) =
⊕

p+q=kH
p,q(X).

Suppose that M is simply connected. Then the local system H k
C from sec-

tion V.2.1 is trivial and β extends to a global section of H k
C also denoted

by β. We interpret β as a flat section of H k and write βt for its fiber at t.

The following definition and some basic properties can be found in [VoiII,

Ch 5.3].

Definition V.2.3. The Hodge locus associated to β is the complex subspace

Mβ ↪→M defined by the vanishing of the induced section

β̄ : OM −→H k −→H k/F pH k.

So the Hodge locus Mβ is the locus of all t ∈ M , where βt ∈ F pHk(Xt). If

β is an integral or at least real cohomology class of Hodge type (p, p), then

(V.2.2) Mβ = {t ∈M | βt ∈ Hp,p(Xt)}

as β is fixed under complex conjugation and F pH2p(Xt) ∩ F pH2p(Xt) =

Hp,p(Xt).

V.2.4. Subspaces of M associated to Lagrangian subvarieties.

Let i : Y ↪→ X be the inclusion of a Lagrangian subvariety in an irreducible

symplectic manifold X of dimension 2n. Let M be a simply connected

representative of the universal deformation space of X, let 0 ∈ M be the

point corresponding to X and let π : X −→ M be the universal family.

Following Voisin [Voi92], we define three subspaces of M associated to Y .
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We denote by ν : Ỹ −→ Y a resolution of singularities and by j = i ◦ ν
the composition. We take a relative symplectic form ω ∈ R0π∗Ω

2
X/M and

write ωt := ω|Xt for the symplectic form on the fiber Xt = π−1(t). For the

C∞-trivialization α of the universal family from (V.1.1) we put jt = αt ◦ j.

Definition V.2.5. We define

(V.2.3) M ′Y :=
{
t ∈M | j∗t ωt = 0 in H2(Ỹ ,C)

}
.

The Lagrangrian property of Y means j∗0ω0 = 0.

If [Y ] ∈ H2n(X,Z) denotes the Poincaré dual of the fundamental cycle of Y ,

we write µ0 for the map H2(X,C) −→ H2+2n(X,C) given by cup product

with [Y ]. This map is a morphism of Hodge structures and can be factored

as

µ0 : H2(X,C)
j∗−−→ H2(Ỹ ,C)

j∗−−→ H2+2n(X,C).

Let us lift [Y ] to a flat section of H 2. Then µ0 can be extended to a map

µ : H 2 −→H 2+2n. Interpreting the relative symplectic form ω as a section

ω : OM −→H 2 we give the following definition.

Definition V.2.6. We put M ′[Y ] := V (µ ◦ ω). In other words,

(V.2.4) M ′[Y ] = {t ∈M | µ(ω)t = 0} = {t ∈M | [Y ]t ∪ ωt = 0} .

By the Lagrangian property we have µ0(ω0) = 0, so 0 ∈M ′[Y ].

Finally, we denote by M[Y ] the Hodge locus associated to the class [Y ] of

Y in H2n(X,C), see section V.2.2. As [Y ] is integral and of type (n, n), its

Hodge locus is set-theoretically given by

(V.2.5) M[Y ] = {t ∈M | [Y ]t ∈ Hn,n(Xt)} ,

where as above [Y ]t is the restriction to the fiber over t of the unique flat

section of H 2n extending [Y ]. In particular, we have 0 ∈M[Y ].

Remark V.2.7. Observe that the spaces M ′Y , M ′[Y ] and M[Y ] may be defined

for arbitrary subvarieties Y ↪→X. Singularities do not cause any harm,

as M ′[Y ] and M[Y ] only depend on the class [Y ] and M ′Y is defined via a

resolution of singularities. As we are only interested in the germs at 0

of these subspaces, we may and will assume that M ′Y , M ′[Y ] and M[Y ] are

connected.

Let us collect some simple observations on the relation among the spaces

M ′Y , M ′[Y ] and M[Y ]. As µ = j∗j∗ we have M ′Y ⊆ M ′[Y ]. If Y = ∪iYi is a

decomposition into irreducible components, then M ′Y = ∩iM ′Yi as a direct

consequence of the definitions. Moreover, the inclusions M ′[Y ] ⊇ ∩iM
′
[Yi]

and

M[Y ] ⊇ ∩iM[Yi] are immediate.
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V.2.8. Line bundles and Hodge loci of divisors. The subspaces of

M defined here will be used in applications of Chapter VII. Let L be a line

bundle on X. By [Huy99, 1.14], there is a universal deformation space ML

for deformations of the pair (X,L). Thus there is a family πL : X −→ ML

and a line bundle L on the total space X which have the universal property

for deformations of (X,L). If L is non-trivial, ML is a smooth hypersurface

in M . This is a consequence of H1(X,OX) = 0, see [Huy99].

When we identify M with the quadric QX from (V.1.3), then ML is given

by the equation qX(c1(L), ·) = 0 in QX ⊆ P
(
H2(X,C)

)
as explained in

[GHJ03, Lem 26.3]. More generally, if β ∈ H2(X,R) ⊆ H2(X,C) is a

class of type (1, 1) with respect to the Hodge decomposition H2(X,C) =

H2,0(X) ⊕ H1,1(X) ⊕ H0,2(X), then under this identification the Hodge

locus Mβ ↪→M parametrizing deformations of X, where β remains of type

(1, 1) is given by the equation qX(β, ·) = 0 in QX ⊆ P
(
H2(X,C)

)
.

V.3. Voisin’s results adapted

Essentially everything in this section is taken from [Voi92], but with some

slight modifications to our situation. So unless the contrary is explicitly

stated, all results presented are Voisin’s. We will freely use the notations of

section V.2.

Proposition V.3.1. M[Y ] = M ′[Y ] as sets.

Proof. We first show M ′[Y ] ⊆ M[Y ]. For t ∈ M ′[Y ] we write [Y ]t =∑
p+q=2n[Y ]p,qt with respect to the Hodge decomposition at t. We want to

show that [Y ]t = [Y ]n,nt . As [Y ] is integral, we have [Y ]p,qt = [Y ]q,pt and

so it suffices to show that [Y ]p,qt = 0 for p < n. As ωt is of type (2, 0)

on Xt the assumption µ(ωt) = 0 gives ωt ∪ [Y ]p,qt = 0 for all p, q. But

ωkt ∪ : Ωn−k
Xt

−→ Ωn+k
Xt

is an isomorphism for k ≥ 0, which can be seen

pointwise by linear algebra. Hence the map ωt∪ is injective for p < n, which

yields that [Y ]p,qt = 0 for p < n, as needed.

For the inclusion M[Y ] ⊆M ′[Y ] it suffices to show that M[Y ] ∩M ′[Y ] is non-

empty and open in M[Y ] as it is automatically closed and we may assume

that M[Y ] is connected, see Remark V.2.7. This is the only point where we

use that Y is Lagrangian, namely for the nonemptiness. For t ∈ M[Y ] the

morphism µ : H2(Xt,C) −→ H2n+2(Xt,C) is a morphism of Hodge struc-

tures of degree (n, n) and hence gives morphisms µp,q : H p,q −→H p+n,q+n

for p + q = 2. By semi-continuity they satisfy rkµp,q(t′) ≥ rkµp,q(t) for

all t′ in a small neighborhood U of t. As µ = µ2,0 ⊕ µ1,1 ⊕ µ0,2 as a C∞-

morphism on U , the rank of the summands remains constant in t. So as
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for t = 0 ∈ M[Y ] ∩M ′[Y ] we have µ2,0 = 0 = µ0,2 this remains true in a

neigbourhood and so the claim follows. �

Proposition V.3.2. The varieties M[Y ] and M ′[Y ] are smooth near t = 0

and their codimension in M is r[Y ] = rk
(
µ : H2(X,C) −→ H2n+2(X,C)

)
. In

particular, M[Y ] = M ′[Y ] as varieties by the preceding proposition.

Proof. We argue only for M ′[Y ], the case of M[Y ] is similar. Consider

the sheaf Hµ := µ(H 2) ⊆ H 2n+2. As µ is defined on the level of local

systems its rank is locally constant, so this is a vector bundle of rank r[Y ].

The varietyM ′[Y ] is defined by the vanishing of the section µ(ω) ∈Hµ, hence

codimM ′[Y ] ≤ r[Y ]. So it suffices to show that the rank of the system of

equations µ(ω) = 0 is equal to r[Y ]. Recall that the Gauß-Manin connection

is given by the differential d if we trivialize with flat sections. This implies

that for µ to have rank r[Y ] at 0 the ∇̄χ,0(µ0(ω0)) for χ ∈ TM,0 = H1(X,TX)

have to span a vector space of dimension r[Y ].

We have ∇χ(µ(ωt)) = µ(∇χωt) and by (V.2.1) the Gauß-Manin connec-

tion ∇̄ : F 2H 2 −→ Hom(TM ,F
1H 2/F 2H 2) at t is identified with the

morphism

H0(Ω2
Xt) −→ Hom

(
H1(TXt), H

1(ΩXt)
)

given by the cup product and contraction. As ω0 is non-degenerate and of

type (2, 0) the ∇χωt span the whole of H1,1(X) at t = 0 . �

Lemma V.3.3. The tangent space of M ′Y at 0 is given by

(V.3.1)

TM ′Y ,0 = ker
(
j∗ ◦ ω′ : H1(X,TX)

ω′−−→ H1(X,ΩX)
j∗−−→ H1(Ỹ ,Ω

Ỹ
)
)

where ω′ is the isomorphism induced by the symplectic form on X.

Proof. Locally at 0 ∈ M the space M ′Y is cut out by the equation

j∗t ωt = 0. Therefore the tangent space at 0 is given by the equation

0 = (∇j∗t ωt) |t=0 = j∗ (∇ωt) |t=0.

The Gauß-Manin conection at 0 can be identified with the map

H0(X,Ω2
X) −→ Hom(H1(X,TX), H1(X,ΩX)), ψ 7→ (u 7→ ψ(u))

given by cup product and contraction, which concludes the proof. �

Lemma V.3.4. Let X be an irreducible symplectic manifold of dimension

dimX = 2n. Let Y ⊆ X be an irreducible Lagrangian subvariety, let

ν : Ỹ −→ Y a resolution of singularities and put j = i ◦ ν. If n ≥ 2, assume
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that there is a Kähler class κ ∈ H2(X,R) such that j∗κ is a Kähler form on

Ỹ . Then

ker
(
µ : H2(X,C) −→ H2n+2(X,C)

)
= ker

(
j∗ : H2(X,C) −→ H2(Ỹ ,C)

)
.

Proof. We show equality of the respective kernels with real coefficients.

From µ = j∗j
∗ we immediately have ker j∗ ⊆ kerµ. For the other inclusion

we choose a Kähler class κ ∈ H2(X,R). We have to show that j∗ is injective

on im j∗.

Assume n = 1. As Ỹ is connected, H2(Ỹ ,C) ∼= C and the map j∗ :

H2(Ỹ ,C) −→ H2(X,C) is given by 1 7→ [Y ]. As X is Kähler, [Y ] 6= 0.

So j∗ is injective and the claim follows.

If n ≥ 2 and define a bilinear form

qκ(α, β) :=

∫
Ỹ

(j∗κn−2).α.β α, β ∈ H2(Ỹ ,C)

on H2(Ỹ ,C). For α, β ∈ H2(X,R) this gives

qκ(j∗α, j∗β) =

∫
Ỹ
j∗(κn−2.α.β) =

∫
X
j∗j
∗(κn−2.α.β) =

∫
X
κn−2.µ(α).β.

So if µ(α) = 0, then qκ(j∗α, j∗β) = 0 for all β ∈ H2(X,R). To conclude

that j∗α = 0 it would be sufficient to see that qκ is non-degenerate on

im j∗ ⊆ H2(Ỹ ,R). On the whole of H2(Ỹ ,R) the form qκ is non-degenerate

by the Hodge index theorem, see [VoiI, Thm 6.33]. Here we need that j∗κ

is a Kähler class. That qκ remains non-degenerate on the subspace im j∗

can also be deduced as follows. As we have seen im j∗ ⊆ H1,1(Ỹ ,R) :=

H1,1(Ỹ ) ∩ H2(Ỹ ,R) and on H1,1(Ỹ ,R) the form qκ is non degenerate and

has signature (1, h1,1 − 1). We know that qκ(j∗κ, j∗κ) > 0 and so qκ is

negative definite on j∗κ⊥. Write j∗α = c · j∗κ + α′ where α′ ∈ j∗κ⊥. The

decomposition shows that α′ ∈ im j∗ as well. Then if j∗α 6= 0 at least one of

the numbers qκ(j∗α, j∗κ), qκ(j∗α, α′) is nonzero and so µ(α) 6= 0 completing

the proof. �

In [Voi92] the condition that j∗κ be a Kähler class is automatic, as Y is

a smooth submanifold there. We show that the condition is fulfilled in the

following cases.

Lemma V.3.5. Let X be an irreducible symplectic manifold, let Y ⊆ X be

an irreducible Lagrangian subvariety, let ν : Ỹ −→ Y a the normalization

and put j = i ◦ ν. Assume that one of the following holds.

(1) Y has normal crossing singularities.

(2) X is projective and Ỹ is smooth.

Then there is a Kähler class κ on X such that j∗κ is a Kähler class on Ỹ .
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Proof. Assume that Y has normal crossings. If κ is a Kähler class

represented by a positive (1, 1)-form ψ, then j∗ψ is also positive. Indeed,

analytically locally in Ỹ the map j is a closed embedding and positivity of

forms is a local property. The class of j∗ψ is j∗κ and thus positive.

If X is projective and the normalization Ỹ of Y is smooth, then we can take

the first Chern class of any ample line bundle for κ, as the pullback of an

ample line bundle along a finite morphism is ample. �

Corollary V.3.6. Let X be an irreducible symplectic manifold, let Y ⊆ X
be an irreducible Lagrangian subvariety, let ν : Ỹ −→ Y the normalization

and put j = i ◦ ν. We have

ker
(
µ : H2(X,C) −→ H2n+2(X,C)

)
= ker

(
j∗ : H2(X,C) −→ H2(Ỹ ,C)

)
in each of the following cases:

(1) dimX = 2.

(2) Y has normal crossing singularities.

(3) X is projective and Ỹ is smooth.

Proof. The case dimX = 2 is contained in Lemma V.3.4 and in the

other cases Lemma V.3.5 guarantees that Lemma V.3.4 can be applied. �

So in these cases we can imitate [Voi92, Prop 1.7].

Proposition V.3.7. Let Y ⊆ X be an irreducible Lagrangian subvariety,

let Ỹ −→ Y be the normalization and assume that one of the following cases

holds:

(1) dimX = 2.

(2) Y has normal crossing singularities.

(3) X is projective and Ỹ is smooth.

Then we have M ′[Y ] = M ′Y . In particular, M ′Y is smooth at 0.

Proof. We observed that M ′Y ⊆ M ′[Y ] in Remark V.2.7. As M ′[Y ] is

smooth by Proposition V.3.2 it suffices to show that M ′Y ⊇M ′[Y ] holds set-

theoretically. By definition t ∈M ′[Y ] if ωt ∪ [Y ]t = 0 and t ∈M ′Y if j∗t ωt = 0.

But ωt ∪ [Y ]t = 0 if and only if j∗t ωt = 0 by Lemma V.3.4. �



CHAPTER VI

Deformations of Lagrangian subvarieties

Let X be an irreducible symplectic manifold and let i : Y ↪→X be the in-

clusion of a Lagrangian subvariety. In this chapter we construct a universal

deformation space Mi for locally trivial deformations of i as an easy appli-

cation of results of Flenner and Kosarew [FK87]. It comes with a canonical

map p : Mi −→ M , where M is the universal deformation space of X. If

Y has simple normal crossings, we prove smoothness of Mi in Theorem

VI.3.12. Moreover, we show that the image MY of p is well-defined and

smooth in Theorem VI.4.3. The difficulty is that these objects are germs of

complex spaces and taking the image does in general depend on the chosen

representative.

The proofs of our smoothness results are elaborations of Ran’s ideas [Ran92b],

[Ran92a] and the method is related to the T 1-lifting principle. Here, all

theory of the preceding chapters is put together. The main point is to show

that the cohomology sheaves T 1
I/R for a deformation I : Y ↪→X of i over

R ∈ ArtC are free R-modules and compatible with base change, see Lemma

I.3.4. The strategy is to link them to other modules via the exact sequence

(VI.3.5). These modules can be related to Hodge theory using the symplectic

form.

These smoothness results play an important role in the proof of our main

result, Theorem VI.5.3. It generalizes Voisin’s theorem [Voi92] to simple

normal crossing Lagrangian subvarieties. The other ingredients in the proof

are essentially the same as Voisin’s.

One can find similar or related smoothness statements in the literature, for

which full proofs never seemed to be written down, or this has happened

only more or less explicitly in proves of other statements. As those facts are

freely used in the literature, it might be helpful to have an explicit reference.

So we use the opportunity to collect other smoothness results in section VI.6

with proofs derived from our main results.

VI.1. Projectivity of Lagrangian subvarieties

If Y ⊆ X is a smooth Lagrangian subvariety, then Y is projective by Propo-

sition IV.1.6. If Y ⊆ X is a singular Lagrangian subvariety, it is natural to

67
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ask whether Y is still projective. Later on we want to apply the results of

the preceding sections, which involve mixed Hodge structures on the coho-

mology of Y , to Lagrangian subvarieties in symplectic manifolds. Therefore

we at least need to know that Y is an algebraic variety or more precisely,

that Y = Yan for an algebraic variety Y. We have

Lemma VI.1.1. Let i : Y ↪→X be a complex Lagrangian subvariety in an

irreducible symplectic manifold and let ν : Ỹ −→ Y be the normalization.

There is a line bundle L on Y such that c1 (ν∗L) = ν∗i∗λ for some Kähler

class λ on X. If moreover Y has normal crossings, then ν∗L is ample and

Ỹ is projective. In particular, Ỹ is a projective algebraic variety.

Proof. Isomorphism classes of line bundles on Y are classified by the

group H1(Y,O×Y ), see [GR77, Kap V, § 3.2]. This cohomology group ap-

pears in the commutative diagram

. . . // H1(Y,O×Y ) // H2(Y,Z) //

��

H2(Y,OY ) // . . .

H2(Y,C) // H2(Y, Ω̃•Y )

OO

H2(Y, Ω̃≥1
Y )

OO

where the first line is the long exact sequence associated to the exponential

sequence, see [GR77, Kap V, § 2.4], and the right vertical column comes

from the short exact sequence

0 −→ Ω̃≥1
Y −→ Ω̃•Y −→ OY −→ 0.

Here we need that Ω̃0
Y = OY . This is true, as Y is reduced, because then

Y does not have embedded points. To obtain a holomorphic line bundle L

on Y it is sufficient to find a class α ∈ H2(Y,Z), such that the image in

H2(Y, Ω̃•Y ) comes from H2(Y, Ω̃≥1
Y ). Such L will have c1(L) = α.

Let HX := im(i∗ : H2(X,Ω•X) −→ H2(Y, Ω̃•Y )) where i : Y ↪→X is the inclu-

sion. From the spectral sequence for Ω• we obtain maps

H0(X,Ω2
X) //

��

H2(X,Ω•X)

i∗

��

H2(X,C)
∼=oo

��
H0(Y, Ω̃2

Y ) // H2(Y, Ω̃•Y ) H2(Y,C)oo
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As Y is Lagrangian and by definition Ω̃2
Y is torsion free we have i∗ω = 0 in

H0(Y, Ω̃2
Y ) where ω ∈ H0(X,Ω2

X) is the symplectic form on X. By Hodge-

decomposition H2(X,Ω•X) ∼= H2(X,C) ∼= H2,0(X)⊕H1,1(X)⊕H0,2(X) and

by Dolbeault’s theorem H0(X,Ω2
X) ∼= H2,0(X) we see that H2,0(X) ∼= Cω

maps to zero under i∗. From the left square of the above diagram, we see

that also the complex conjugate H0,2(X) ∼= Cω maps to zero, as the map

H2(X,C) −→ H2(Y,C) is defined over R. Thus

(VI.1.1)
HX = im(i∗ : H2(X,C) −→ H2(Y, Ω̃•Y ))

= im(i∗ : H1,1(X) −→ H2(Y, Ω̃•Y )).

Let HX,R = im(i∗ : H2(X,R) −→ H2(Y, Ω̃•Y )). The last description in

(VI.1.1) implies that i∗(KX) is open in HX,R where KX is the Kähler cone

of X. Indeed, KX is open in H1,1(X)R = H1,1(X)∩H2(X,R) and the map

H1,1(X) −→ HX is surjective. Therefore also H1,1(X)R −→ HX,R is surjec-

tive and so that i∗(KX) is open in HX,R. We show next that i∗(KX) meets

the image of H2(Y,Z). Let us consider

HX,Q = im(i∗ : H2(X,Q) −→ H2(Y, Ω̃•Y )) ⊆ HX .

This is dense in HX,R as H2(X,Q) is dense in H2(X,R) and so it meets

i∗(KX), say in α′ ∈ HX,Q ∩ i∗(KX). Then a multiple α = m ·α′ is contained

in im(H2(X,Z) −→ H2(Y, Ω̃•Y )) ∩ i∗KX and we obtain a line bundle L on Y

with the desired property by using the exponential sequence as explained

above.

Now, suppose that Y has normal crossings. Then we have c1(ν∗L) = ν∗α,

where we define ν∗ : H2(Y, Ω̃•Y ) −→ H2(Ỹ ,C) as the composition of the

natural map H2(Y, Ω̃•Y ) −→ H2(Ỹ ,Ω•
Ỹ

) with the inverse of the isomorphism

H2(Ỹ ,C) −→ H2(Ỹ ,Ω•
Ỹ

). To show that ν∗L is ample, we will show that

the class ν∗α ∈ H2(Ỹ ,C) is represented by a positive (1, 1)-form. Indeed,

classes in KX may be represented by (1, 1)-forms, whose restrictions to every

submanifold are positive. Since α ∈ i∗KX , there is such a positive (1, 1)-

form ψ on X, whose cohomology class [ψ] ∈ H2(X,C) restricts to α on

Y . Analytically locally in Ỹ , the composition i ◦ ν : Ỹ −→ X is a closed

immersion as Y has normal crossings. Thus, ν∗ψ is positive, as positivity

is a local property. Pullback of differential forms is compatible with taking

cohomology classes, so ν∗α is represented by the positive form ν∗ψ. This

concludes the proof via Kodaira’s embedding theorem and Chow’s theorem.

�
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Proposition VI.1.2. If Y ⊆ X is a complex Lagrangian simple normal

crossing subvariety in a symplectic manifold, then Y is a projective algebraic

variety.

Proof. As the normalization Ỹ is a projective algebraic variety by

Lemma VI.1.1, so is every component Yi of Y . If we knew that Y itself

were an algebraic variety, we would be done, because an algebraic variety is

projective, if all its irreducible components are. By induction on the number

of irreducible components, we may write Y = Y1∪Y2 where Y1 is irreducible

and both Yi are projective algebraic varieties. In particular Σ = Y1 ∩ Y2 is

a projective algebraic variety. Then the diagram

Σ //

��

Y1

��
Y2

// Y

is cocartesian in the category of complex spaces. This is clear for the under-

lying topological space and is shown by an explicit computation using local

descriptions Y2
∼= {x1 · . . . · xk = 0}, Y1

∼= {xk+1 = 0}.
In detail it works like this. Suppose n = dimY and Y is locally isomor-

phic to x1 . . . xk+1 = 0 in a small polydisc in ∆ ⊆ Cn+1 with coordinates

x1, . . . , xn+1. Let B = OCn+1(∆). We have to show that the diagram

B/(x1 . . . xk, xk+1) B/(xk+1)oo

B/(x1 . . . xk)

OO

B/(x1 . . . xk+1)oo

OO

is cartesian. Therefore it suffices to show that given f, g ∈ B representing

[f ] ∈ B/(x1 . . . xk) and [g] ∈ B/(xk+1) with [f ] = [g] modulo (x1 . . . xk, xk+1)

there is h ∈ B unique up to (x1 . . . xk+1) mapping to [f ] respectively [g]. By

the condition on f and g there are α, β ∈ B with f−g = −αx1 . . . xk+βxk+1.

Then h = f+αx1 . . . xk = g+βxk+1 maps to [f ] respectively [g]. For unique-

ness assume we find h′ ∈ B mapping to [f ], [g], then h′ − h = x1 . . . xkγ =

xk+1δ for some γ, δ ∈ B. Thus x1 . . . xk+1 divides h′ − h so that [h] = [h′]

in B/(x1 . . . xk+1).

Hence by [Fer03, Scolie 4.3] the above diagram is also cocartesian in the

category of ringed spaces. Thus Y is an algebraic variety by [Fer03, Thm

5.4] and projective by [Har70, Ch 1, Prop 4.3, 4.4]. �
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VI.2. Deformation theory on symplectic manifolds

Suppose g : X −→ S is a deformation of an irreducible symplectic manifold

X over S = SpecR for R ∈ Artk. The symplectic form ω0 on X extends to

a section ω ∈ R0g∗Ω
2
X/S , as this module is free. For the same reason all such

extensions differ by a factor in R×. As ω is nondegenerate on the central

fiber and R is local, it is non-degenerate everywhere.

Lemma VI.2.1. Let i : Y ↪→X be a simple normal crossing Lagrangian

subvariety. If I : Y ↪→X is a locally trivial deformation of i over S, then Y
is Lagrangian with respect to the symplectic form ω on X .

Proof. Let f̃ : Ỹ −→ S be the locally trivial deformation of the nor-

malization of Y obtained from Lemma III.1.5. Note, that Y is projective

by Proposition VI.1.2, so Lemma III.1.5 can be applied. As Y has simple

normal crossings, f ◦ ν : Ỹ −→ S is smooth and for j = i ◦ ν the restriction

j∗ : R0g∗Ω
2
X/S −→ R0f∗Ω

2
Ỹ/S

has constant rank by Proposition III.3.4. As

rk(j∗ ⊗ C) = 0 on the central fiber, j∗ is identically zero and thus Y is

Lagrangian. �

Lemma VI.2.2. Let i : Y ↪→X be a locally complete intersection Lagrangian

subvariety in an irreducible symplectic manifold X, let S = SpecR where

R ∈ ArtC and let

(VI.2.1) Y �
� I //

f ��

X
g

��
S

be a locally trivial deformation of i over S. Then the symplectic form

ω ∈ R0g∗Ω
2
X/S induces a morphism between the exact sequences from (I.3.3)

to (I.3.4).

(VI.2.2) 0 // I/I2 //

ω−1

��

ΩX/S ⊗OY //

ω−1

��

ΩY/S

ω′

��

// 0

0 // TY/S // TX/S ⊗OY // NY/X // T 1
Y/S

// 0.

Proof. Since ω is non-degenerate, the map ω−1 : ΩX/S −→ TX/S is

an isomorphism. This will induce the other morphisms in the diagram as

explained below. The composition ϕ : I/I2 −→ NY/X = Hom(I/I2,OY)

is zero at smooth points. This follows from linear algebra and the remark

after Definition IV.1.4. So M := imϕ is torsion. But Y is a locally complete
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intersection, so I/I2 is locally free and by [Mat80, 16, Thm 30] the sub-

module M is zero. So the restriction of ω−1 to I/I2 factors through TY/S .

Once we have this, we obtain a morphism ω′ : ΩY/S −→ NY/X , as the first

line of (VI.2.2) is exact, by lifting sections to ΩX/S ⊗OY . �

Corollary VI.2.3. In the situation of the preceding lemma assume in addi-

tion that f : Y −→ S is smooth. Then ω gives an isomorphism

ω′ : ΩY/S −→ NY/X .

Proof. As f is smooth, T 1
Y/S = 0. So (VI.2.2) gives a surjection ω :

ΩY/S −→ NY/X . As both ΩY/S and NY/X are locally free, the claim follows.

�

Note that I/I2 −→ TY/S is not in general an isomorphism as ΩY/S −→ NY/X

might have a kernel. The following Proposition determines this kernel.

Proposition VI.2.4. Let i : Y ↪→X be a locally complete intersection La-

grangian subvariety in an irreducible symplectic manifold X, let S = SpecR

where R ∈ ArtC and let I : Y ↪→X be a locally trivial deformation of i over

S as in (VI.2.1). Let ω′ : ΩY/S −→ NY/X be as in (VI.2.2) and let N ′Y/X be

the equisingular normal sheaf defined in (I.3.5). Then the diagram

(VI.2.3) ΩY/S
ω //

��

NY/X

Ω̃Y/S ∃ ω̃
// N ′Y/X

?�

OO

can be completed and ω̃ : Ω̃Y/S −→ N ′Y/X is an isomorphism. The analogue

is true in the analytic setting.

Proof. As Y is a locally complete intersection, NY/X is locally free,

hence Cohen-Macaulay. Therefore it has no embedded primes by [Mat80,

16, Thm 30], hence τ1
Y/S maps to zero and ω̃ exists. But as ω is an iso-

morphism at smooth points of f , the support of kerω is contained in the

singular locus of f , hence kerω ⊆ τkY/S and ω̃ is injective. Moreover Ω̃Y/S

maps onto ker(NY/X −→ T 1
Y/S) by (VI.2.2), hence is identified with N ′Y/X .

All arguments are equally valid in the analytic category. �

This proposition determines the sheaf Ω̃Y/S as one of the main objects in our

studies. The complex Ω̃•Y/S calculates the cohomology with coefficients in

the constant sheaf RY by Lemma III.2.6 and is used to put a mixed Hodge

structure on the cohomology groups Hk(Y,RY ), see section III.4.
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VI.3. The space Mi and the T 1-lifting principle

VI.3.1. The space Mi. Let i : Y ↪→X be the inclusion of a closed

subvariety in an irreducible symplectic manifold. We explain here, why

a universal deformation space Mi for locally trivial deformations of i in

the sense of Definition I.5.4 exists as a germ of complex spaces. Given a

deformation of a holomorphic map over a complex space S, the existence of

a complex subspace of S parametrizing locally trivial deformations is due

to [FK87], as we explain in Remark VI.3.3. So we have to pick a suitable

candidate for S, obtain a subspace Mi and argue about universality.

For an irreducible symplectic manifold X there exists a universal deforma-

tion space M as explained in Chapter V. Let π : X −→ M be the universal

family and q : D(X/M) −→M the relative Douady space of π constructed by

Pourcin, see [Pou69, Thm2]. The Douady space is the complex analogue to

the Hilbert scheme and parametrizes complex subspaces of X relative over

M . The inclusion Y ↪→X ↪→X gives a point 0 ∈ D(X/M).

Proposition VI.3.2. There is a complex subspace Mi ↪→D(X/M) contain-

ing 0, whose germ at 0 is a universal deformation space for locally trivial

deformations of i. Furthermore, there is a canonical map p : Mi −→M .

Proof. Let I : Y −→ X be a locally trivial deformation of Y ↪→X over

a complex space S. After shrinking S we may assume that I is fiberwise a

closed embedding and that there is a holomorphic classifying map S −→M

so that X = X×M S. Then we obtain a classifying map S −→ D(X/M) such

that I is the pullback of U ↪→X ×M D(X/M), where U is the universal

family of subspaces of X over D(X/M). Now it follows from [FK87, Thm

5.3] that there is a maximal complex subspace Mi of D(X/M) parametrizing

locally trivial deformations. The map p is simply the composition of the

inclusion Mi ↪→D(X/M) and the projection D(X/M) −→M . �

Remark VI.3.3. Flenner and Kosarew show in [FK87] that every compact

complex space X has a semi-universal locally trivial deformation X lt −→M lt

in the sense of space germs [FK87, (0.3) Cor]. The space M lt is constructed

as a subspace of a semi-universal deformation space M of X. If X −→M is

the semi-universal deformation over M , Flenner and Kosarew show that for

every point x ∈ X ⊆ X there is a maximal subgerm Mx ↪→M , the so-called

trivial locus for x, such that the map of germs (X , x) −→ (Mx, 0) is the

trivial deformation [FK87, (0.2) Cor]. Then the subspace

(VI.3.1) M lt :=
⋂
x∈X

Mx
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has the semi-universality property for locally trivial deformations. They

remark [FK87, p. 630] that in the same article they also obtain similar

results for deformations of other types of analytic objects and introduce the

concept of data of structure preserving maps to have a unified treatment. In

particular, this notion can be used to handle deformations of holomorphic

maps as explained in [FK87, (1.5) Example]. If

Y F //

  

X

~~
Mf

is a universal or semi-universal deformation of a map f : Y −→ X, then

[FK87, Thm 5.3] shows the existence of a trivial locus My ↪→Mf , that is,

a subspace where (Y, y)
F−−→ (X , f(y)) is the trivial deformation of the map

germ (Y, y)
f−−→ (X, f(y)). This theorem holds under the condition that the

relative T 1 has finite rank, which is fulfilled for proper maps. So one can

define the subspace ∩y∈YMy of Mf , which in complete analogy to (VI.3.1)

is a universal or semi-universal deformation for locally trivial deformations

of f .

By construction there is a forgetful morphism p : Mi −→ M of complex

spaces together with p# : OM,0 −→ OMi,0. Let RX = ÔM,0 and Ri = ÔMi,0

be the completions at 0 and denote again p# : RX −→ Ri.

Lemma VI.3.4. The algebras Ri and RX prorepresent Dlt
i , DX so that

Dlt
i = Hom(Ri, ·) and Dlt

X = Hom(RX , ·)

and the ring homomorphism RX −→ Ri induced by the map of functors is

just p#.

Proof. We argue for Ri only, the case of RX is similar. Every locally

trivial deformation Y ↪→X over S = SpecR with R ∈ ArtC is itself a mor-

phism of complex spaces, so there is a classifying map ϕ : S −→ Mi. As

the underlying map of topological spaces is just the inclusion {0} ↪→Mi, the

morphism ϕ is determined by the ring homomorphism OMi,0 −→ R. This

morphism decends to ϕ# : OMi,0/m
k −→ R for some k ∈ N, where m is the

maximal ideal. But OMi,0/m
k
∼=→ Ri/m

k
i where mi = mRi and so ϕ is deter-

mined by a morphism Ri −→ R. The last statement is clear, as a morphism

of complete local rings is determined by its truncations modulo powers of

the maximal ideal. �
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Remark VI.3.5. The results of Proposition VI.3.2 and Lemma VI.3.4 de-

pend on X being symplectic only in so far that there exists a universal

deformation space M for X, which is true for every compact complex man-

ifold with H0(X,TX) = 0. The results do not at all depend on Y being

Lagrangian.

VI.3.6. The T 1-lifting Principle. In this section we will prove smooth-

ness of Mi at 0. Therefore we use Ran’s T 1-lifting principle [Ran92a], a

technique to prove unobstructedness of a given prorepresentable deforma-

tion functor D : Artk −→ Set having relative tangent spaces T 1
R and an

obstruction space T 2 as in Lemma I.3.4. Ran’s ideas were developed further

by Kawamata [Kaw92, Kaw97]. The method works in two steps.

The first step works for every prorepresentable deformation functor D, which

has an obstruction space T 2. Put An := k[t]/tn+1 and let An+1 −→ An be

the canonical projection. To prove unobstructedness of D it suffices to show

that the induced map D(An+1) −→ D(An) is always surjective by Corollary

I.1.7. However we want to replace this by a different criterion. Therefore

we introduce the k-algebras Bn := An[ε] and Cn := An[ε]/εtn. There are

canonical projections Cn −→ Bn−1 and Bn −→ Cn −→ An. The last one is

split by the inclusion An −→ Bn.

Lemma VI.3.7. Let Bn −→ Cn be the canonical surjection. If the induced

map D(Bn) −→ D(Cn) is surjective, then D(An+1) −→ D(An) is surjective.

Proof. We have a morphism of small extensions in Artk:

(VI.3.2) 0 // (tn+1) //

��

An+1
//

δ

��

An

δ

��

// 0

0 // (εtn) // Bn // Cn // 0

where δ(t) = t+ ε. The morphism (tn+1) −→ (εtn) is multiplication by n+ 1

and hence an isomorphism as char k = 0. If we apply D to diagram (VI.3.2),

we obtain

(VI.3.3) D(An+1) //

δ
��

D(An)

δ
��

// T 2 ⊗ (tn+1)

∼=
��

D(Bn) // D(Cn) // T 2 ⊗ (εtn)

Since D(Bn) −→ D(Cn) is surjective, D(Cn) −→ T 2 ⊗ (εtn) is the zero map.

The claim now follows by diagram chase. �
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For an element ξn ∈ D(An) we denote by ξn|An−1 the image of ξn under the

canonical map D(An) −→ D(An−1). Recall that D(Bn)ξn = ϕ−1
B (ξn) where

ϕB : D(Bn) −→ D(An) is the canonical map.

Lemma VI.3.8. The morphism D(Bn) −→ D(Cn) is surjective if for all ξn ∈
D(An) and ξn−1 := ξn|An−1 the map

D(Bn)ξn −→ D(Bn−1)ξn−1

between the fibers over ξn and ξn−1 is surjective.

Proof. To see this, we consider the diagram

(VI.3.4) D(Bn) //

��
χ

��

D(An)

D(Cn)
ϕC //

ψ
��

D(An)

��
D(Bn−1)

ϕB // D(An−1)

where all morphisms are induced by the canonical projections, see section

VI.3.6. Let η ∈ D(Cn) be given and put ξn := ϕC(η) ∈ D(An). The lower

square is cocartesian, as D is prorepresentable and already the square of

rings is cocartesian. Therefore the restriction of ψ to the fiber D(Cn)ξn =

ϕ−1
C (ξn) gives a bijection

D(Cn)ξn
ψ−−→ D(Bn−1)ξn−1

onto the fiber over ξn−1. By assumption, D(Bn)ξn −→ D(Bn−1)ξn−1 is sur-

jective. Hence, there is η′ ∈ D(Bn)ξn with χ(η′) = ψ(η), so η′ is a preimage

of η and the claim follows. �

We summarize Lemma I.1.6, Lemma VI.3.7 and Lemma VI.3.8 in

Lemma VI.3.9. Let D be a prorepresentable deformation functor, which has

an obstruction space T 2. Then D is unobstructed, if for all ξn ∈ D(An) and

ξn−1 := ξn|An−1 the map

D(Bn)ξn −→ D(Bn−1)ξn−1

is surjective. �

Remark VI.3.10. We have seen in Chapter I that the following functors

are prorepresentable and have an obstruction space if the below-mentioned

assumptions hold.



VI.3. THE SPACE Mi AND THE T 1-LIFTING PRINCIPLE 77

• Dlt
i by Lemma I.3.3 and Lemma I.3.4, if i : Y ↪→X is a closed

immersion of proper schemes, Y is a reduced locally complete in-

tersection, X is smooth and we have H0(X,Ti) = 0.

• DX = Dlt
X by Lemma I.2.2 and Lemma I.2.3, if X is a smooth and

proper k-scheme with H0(X,TX) = 0.

• Di/X by Lemma I.4.2 and Lemma I.4.3, if i : Y ↪→X is a closed

immersion of proper schemes, Y is a reduced locally complete in-

tersection and X is smooth.

• Dlt
i/X by Lemma I.4.2 and Lemma I.4.4, if i : Y ↪→X is a closed

immersion of proper schemes, Y is a reduced locally complete in-

tersection and X is smooth.

Therefore, the previous lemma applies in these cases.

The second step of the T 1-lifting principle is to actually prove surjectivity

of the map D(Bn)ξn −→ D(Bn−1)ξn−1 for all ξn and ξn−1 as in Lemma

VI.3.9. This is not in general fulfilled and needs more input from the concrete

geometric situation. We deduce this for D = Dlt
i from the fact that the

cohomology sheaves controlling the deformation problem are locally free

and compatible with base change, see Lemma VI.3.11. To achieve this, we

link some related deformation problems by an exact sequence.

Consider a locally complete intersection Lagrangian subvariety i : Y ↪→X in

an irreducible symplectic manifold X. Let S = SpecR for R ∈ ArtC and let

Y �
� I //

f ��

X
g

��
S

be a locally trivial deformation of i over S. Consider the long exact sequence

(VI.3.5) 0 −→ R0g∗TI −→ R0g∗TX/S −→ R0f∗N
′
Y/X −→ R1g∗TI −→ . . .

obtained from the sequence (I.3.6). If Y is a simple normal crossing subvari-

ety, then Y ↪→X is Lagrangian by Lemma VI.2.1. The symplectic form gives

an isomorphism TX/S ∼= ΩX/S and by Proposition VI.2.4 we have N ′Y/X
∼=

Ω̃Y/S . Moreover, the module R0g∗ΩX/S is free and compatible with base

change by Theorem III.5.1. This gives R0g∗ΩX/S ⊗R k = H0(X,ΩX) = 0,

where the last equality holds as X is irreducible symplectic. By Nakayama’s

Lemma this implies R0g∗ΩX/S = 0. Put together this gives the following

long exact sequence

(VI.3.6) 0 −→ R0f∗Ω̃Y/S −→ R1g∗TI −→ R1g∗ΩX/S −→ R1f∗Ω̃Y/S −→ . . .
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Lemma VI.3.11. Let i : Y ↪→X be a simple normal crossing Lagrangian

subvariety in an irreducible symplectic manifold and let I : Y ↪→X be a

locally trivial deformation of i over S = SpecR where R ∈ ArtC. Then

the modules Rkg∗TI are free for all k and all morphisms in (VI.3.6) have

constant rank. In particular, all morphisms in (VI.3.5) have constant rank.

Proof. By Theorem III.5.1 we know that Rkg∗ΩX/S is free. By Propo-

sition VI.1.2 we know that Y is a projective variety, so Theorem III.2.10

applies and Rkf∗Ω̃Y/S is free. Then by Theorem III.5.4 also the cokernel

(and hence the kernel) of Rkg∗ΩX/S −→ Rkf∗Ω̃Y/S is free. So if we break up

the sequence (VI.3.6) into pieces and use that if 0 −→ F ′ −→ F −→ F ′′ −→ 0

is exact and F ′, F ′′ are free, then so is F we obtain freenes of Rkg∗TI for

all k. �

Thus, the T 1-lifting principle may be applied.

Theorem VI.3.12. Let Y be a Lagrangian simple normal crossing subvari-

ety. Then the complex space Mi is smooth at 0.

Proof. We put D := Dlt
i and denote by An, Bn and Cn the algebras

introduced in section VI.3.6. For ξn ∈ D(An) we put ξn−1 := ξn|An−1 . By

Lemma VI.3.9 the functor D is unobstructed, if for all ξn ∈ D(An) the map

D(Bn)ξn −→ D(Bn−1)ξn−1

is surjective. For a given class ξn ∈ D(An) take a deformation locally trivial

Yn �
� in //

f   

Xn
g

��
Sn

of i over Sn = SpecAn representing ξn. Let in−1 : Yn−1 ↪→Xn−1 be the

restriction of in to Sn−1. Then by Lemma I.3.4 the diagram

R1g∗Tin //

��

R1g∗Tin−1

��
Di(Bn)in // Di(Bn−1)in−1

is commutative and the vertical maps are bijections. By Lemma VI.3.11 the

module R1g∗Tin is free and hence by [EGAIII2, Prop 7.8.5] it is compatible

with base change. This means that R1g∗Tin−1 = R1g∗Tin⊗AnAn−1. Clearly,

R1g∗Tin −→ R1g∗Tin ⊗An An−1 is surjective, which completes the proof. �
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VI.4. Definition and Smoothness of MY

Let p : Mi −→M be the canonical morphism from section VI.3.1. We learned

in Chapter V that M is smooth. Also Mi is smooth by Theorem VI.3.12,

so p is just a holomorphic map between complex manifolds. We prove that

its differential Dp has constant rank in a neighbourhood 0. This makes the

image MY of p well-defined and smooth. Our proof is an elaboration of an

idea of Ran from [Ran92a] related to the T 1-lifting principle.

First let us spend a word about why the definition of the image of a mor-

phism of space germs is subtle. The naive definition of the image could be

to choose representatives p : Mi −→ M , take the image and then its germ.

But this is not well-defined because shrinking Mi does not commute with

taking the image. The following example will illustrate this.

Example VI.4.1. Let f : C −→ C2 be given by t 7→ (t2−1, t3−t). The image

of f is the nodal cubic x2+x3 = y2 and the preimages of the node are t = ±1.

So the image is not smooth, although the differential Dtf : C −→ C2 has

constant rank 1 everywhere. But if we take U ⊆ C around 1 small enough,

then f(U) will be smooth, namely one of the two branches of the nodal

singularity. Thus, shrinking does not commute with taking the image.

Lemma VI.4.2. Let U ′ ⊆ Cm be an open neighbourhood of a point x0 ∈ Cm

and let p : U ′ −→ Cn be a holomorphic map such that the differential Dp

has constant rank k on U ′. Then there are open neighbourhoods U ⊆ U ′

of x0 and V ⊆ Cn of p(x0) such that p(U) ⊆ V is a closed k-dimensional

submanifold and p : U −→ p(U) is a smooth morphism.

Proof. We may assume that x0 = 0 and p(x0) = 0. By a suitable

choice of coordinates in Cm and Cn we achieve that the differential of p at

0 is given by

Dp(0) =

(
1k×k 0

0 0

)
We consider the decompositions of

(VI.4.1) Cm = Ck × Cm−k and Cn = Ck × Cn−k

corresponding to these coordinates. We write p = (p1, p2) according to the

decomposition Cn = Ck × Cn−k. As Dp has constant rank k on U ′, the

differential Dp1 still has constant rank k in a neighbourhood of 0. Therefore

the differential of the map

ϕ := (p1, id) : U ′ −→ Ck × Cm−k
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has rank m in a neighbourhood of 0. Thus, we find open neighbourhoods

U ⊆ U ′ of 0 and W ⊆ Ck × Cm−k of 0 such that ϕ|U : U −→ W is biholo-

morphic. Put ψ := ϕ−1 and g := p ◦ ψ. Then the diagram

U

ϕ

��

p=(p1,p2)
// Ck × Cn−k

prn1

��

W

ψ

AA

g

66

prm1

// Ck

is commutative by construction, where prm1 and prn1 are the projections on

the first factor in the decompositions (VI.4.1) of Cm and Cn. In particular,

g1 := g ◦ prn1 = prm1 . Let u, v be coordinates on W ⊆ Ck × Cm−k and write

g = (g1, g2) = (prm1 , g2) with respect to the decomposition Cn = Ck ×Cn−k.
Then

Dg(u, v) =

(
1k×k 0
∂g2
∂u

∂g2
∂v

)

But rkDg(x) = rkDp (ψ(x)) = k for all x ∈W , so ∂g2
∂u = 0 identically on W

and g2(u, v) = g2(u). This means that if we put V := prm1 (W )×Cn−k, then

g(W ) = {(z, w) ∈ V | w = g2(z)} .

Observe that V ⊆ Cn is open and g(W ) is a closed submanifold of V . This

completes the proof. �

For a subvariety i : Y ↪→X of an irreducible symplectic manifold X we

denote by 0 ∈M and 0 ∈Mi the points corresponding to X and i.

Theorem VI.4.3. Let i : Y ↪→X be a Lagrangian simple normal crossing

subvariety in an irreducible symplectic manifold X. Then there are open

neighbourhoods U ⊆ Mi of 0 ∈ Mi and V ⊆ M of 0 ∈ M such that MY :=

p(U) ⊆ V is a closed submanifold and p : U −→MY is a smooth morphism.

Proof. By Theorem VI.3.12 and the Bogomolov-Tian-Todorov theo-

rem we know that Mi and M are smooth at 0. By Lemma VI.4.2 we have

to show that the differential Dp of p : Mi −→ M has constant rank in a

neighborhood of 0. The rank of Dp is constant near 0, if the stalk of

coker(p∗ : TMi −→ p∗TM )

at 0 is free. Freeness may be tested after completion, so we have to verify

that p∗ : TRi −→ TRX has constant rank, where RX = ÔM,0 and Ri = ÔMi,0,
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compare to Lemma VI.3.4. By the local criterion for flatness [Ser06, Thm

A.5] this follows, if

(VI.4.2) TRi ⊗Ri Ri/mn
i −→ TRX ⊗RX Ri/m

n
i

has constant rank for all n. Let η : Ri −→ A be a C-algebra homomorphism

corresponding to a locally trivial deformation

Y �
� I //

f ��

X
g

��
S

of i over S = SpecA and let q : A[ε] −→ A be given by ε 7→ 0. Then

Dlt
i (A[ε])η = Hom(Ri, A[ε])η = DerC(Ri, A) = HomRi(ΩRi/k, A)

= TRi ⊗Ri A

where Hom(Ri, A[ε])η are those morphisms, which composed with q give η.

Similarly, we find that

DX(A[ε])ξ = TRX ⊗RX A

for ξ : RX −→ A. Now let A = Ri/m
n
i , let η : Ri −→ Ri/m

n
i be the canonical

projection and let ξ = η ◦ p# where p# : RX −→ Ri is the canonical map.

Then we have a another description of the fibers over η and ξ

Dlt
i (A[ε])η = R1g∗TI and DX(A[ε])ξ = R1g∗TX/S

by Lemma I.3.4 and Lemma I.2.3. Moreover, the map (VI.4.2) is identified

with the map

R1g∗TI −→ R1g∗TX/S .

from (VI.3.5), which is of constant rank by Lemma VI.3.11. This completes

the proof. �

VI.5. Main results

Let i : Y ↪→ X be the inclusion of a simple normal crossing Lagrangian

subvariety. We denote by ν : Ỹ −→ Y the normalization and by j = i ◦ ν the

composition. Let M be a simply connected representative of the universal

deformation space of the irreducible symplectic manifold X. Let Mi be the

universal deformation space for locally trivial deformations of i as in section

VI.3.1 and let p : Mi −→ M be the canonical map. Assuming we shrinked

Mi and M sufficiently we define

(VI.5.1) MY := im(Mi −→M)
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as in Theorem VI.4.3. In [Voi92] the space MY was defined pointwise and

later identified as the image of a suitable component of the relative Douady

space of the universal family over M . Then, Voisin concluded that MY

is analytic using properness of the relative Douady space over M . The

difference is that we consider locally trivial deformations here, where no

Douady space is known to exist. Therefore, at the moment we can only show

analyticity of MY for simple normal crossing subvarieties using Theorem

VI.4.3.

Lemma VI.5.1. Suppose Y has simple normal crossings. Then

ker
(
j∗ : H1(ΩX) −→ H1(Ω

Ỹ
)
)

= ker
(
i∗ : H1(ΩX) −→ H1(Ω̃Y )

)
,

where ν : Ỹ −→ Y is the normalization.

Proof. As j∗ = ν∗ ◦ i∗ the inclusion ⊇ is obvious. For the other

direction it suffices to show that ν∗ is injective on im i∗. By Proposition

VI.1.2 the subvariety Y is projective, hence by [Del71, Del74] there is a

functorial mixed Hodge structure on Hk
Y := Hk(Y,C) for every k. We denote

by F • the Hodge filtration on H2
Y and by W• the weight filtration on H2

Y .

As a special case of Corollary III.3.2 we deduce that

H1(Ω̃Y ) = Gr1
FH

2
Y = F 1H2

Y /F
2H2

Y .

Let . . . ////// Y [1] //// Y [0] // Y be the canonical semi-simplicial resolution

from Lemma III.2.4. Note that Ỹ = Y [0]. Consider the weight spectral

sequence associated to the first graded objects of the Hodge filtration given

by

(VI.5.2) Er,s1 = Hs(Y [r],Ω1
Y [r])⇒ Hr+s(Y, Ω̃1

Y )

By [PS08, Thm 3.12 (3)] it degenerates on Er if the weight spectral se-

quence degenerates at Er. In their notation the spectral sequence is de-

noted by E(Gr1
F ,W ). So because of Corollary III.4.2 both spectral se-

quences degenerate at E2. The differential d1 : E0,1
1 −→ E0,1

1 is given by

δ : H1(ΩY [0]) −→ H1(ΩY [1]) and degeneration at E2 tells us that

GrW2 Gr1
FH

2
Y = F 1H2

Y /(W1F
1H2

Y + F 2H2
Y ) = E0,1

∞ = E0,1
2

= ker
(
H1(ΩY [0]) −→ H1(ΩY [1])

)
.

In other words, as W2Gr1
FH

2
Y = Gr1

FH
2
Y = H1(Ω̃Y ) there is an exact se-

quence

0 −→W1Gr1
FH

2
Y −→ H1(Ω̃Y )

ν∗−−→ H1(ΩY [0]) −→ H1(ΩY [1]),
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so that ker ν∗ = W1Gr1
FH

2
Y . But H2

X := H2(X,C) has pure weight two

because X is smooth. In particular, W1Gr1
FH

2
X = 0. Morphisms of mixed

Hodge structures are strict with respect to both filtrations, so we have

0 = i∗(W1Gr1
FH

2
X) = im i∗ ∩W1Gr1

FH
2
Y = im i∗ ∩ ker ν∗

hence ν∗ is injective on im i∗ and we deduce ker i∗ = ker j∗ completing the

proof. �

The following lemma generalizes [Voi92, Lem 2.3] to the normal crossing

case.

Lemma VI.5.2. Suppose Y has simple normal crossings. Then we have

TM ′Y ,0 = TMY ,0 for the Zariski tangent spaces at 0 ∈MY ∩M ′Y .

Proof. By Lemma V.3.3 the tangent space of M ′Y at 0 is

TM ′Y ,0 = ker
(
j∗ ◦ ω′ : H1(X,TX) −→ H1(Ω̃Y )

)
.

By Lemma VI.5.1 we have

TM ′Y ,0 = ker
(
i∗ ◦ ω′ : H1(X,TX) −→ H1(Ω

Ỹ
)
)
,

where Ỹ −→ Y is the normalization. On the other hand, MY is the smooth

image of p : Mi −→M so that

TMY ,0 = im (p∗ : TMi,0 −→ TM,0)

= im
(
H1(X,Ti) −→ H1(X,TX)

)
= ker

(
H1(X,TX)

α−−→ H1(Y,N ′Y/X)
)

where the third equality holds because the sequence (VI.3.5) is exact.

By (VI.2.2) and Proposition VI.2.4 we have a commutative diagram

H1(X,ΩX)
j∗
// H1(Y, Ω̃Y )

ω̃

��
H1(X,TX)

ω′

OO

α // H1(Y,N ′Y/X)

where the vertical maps are isomorphisms. This implies that

TMY ,0 = ker(α) = ker(ω̃ ◦ j∗ ◦ ω′) = ker(j∗ ◦ ω′) = TM ′Y ,0

and completes the proof. �

Theorem VI.5.3. Let i : Y ↪→X be a simple normal crossing Lagrangian

subvariety in a compact irreducible symplectic manifold X, ν : Ỹ −→ Y the
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normalization and j = i ◦ ν. Then M ′Y = MY and this space is smooth at 0

of codimension

(VI.5.3) codimM MY = codimM M ′Y = rk
(
j∗ : H2(X,C) −→ H2(Ỹ ,C)

)
.

in M .

Proof. Assume that Y = ∪iYi is a decomposition into irreducible com-

ponents. As a direct consequence of Lemma III.1.5 we have MY ⊆ ∩iMYi . In

section V.2.4 we defined the subspaces M ′Y , M ′[Y ] and M[Y ] of M associated

to a Lagrangian subvariety Y of X. We have

(VI.5.4) M ′Y
� � // M ′[Y ] M[Y ]

⋂
i
M ′Yi

⋂
i
M ′[Yi]

?�

OO

⋂
i
M[Yi]

?�

OO

where the vertical relations were observed in Remark V.2.7, the horizontal

equalities on the right were shown in Proposition V.3.2 and the left lower

equality holds as Y has simple normal crossings by Proposition V.3.7. As a

consequence, we obtain the upper left inclusion.

As MYi is smooth, in particular reduced, for each i we have that MYi ⊆M[Yi]

so that

MY ⊆
⋂
i

MYi ⊆
⋂
i

M[Yi] = M ′Y .

Therefore, we find

dimMY ≤ dimM ′Y ≤ dimTM ′Y ,0 = dimTMY ,0

where the last equality comes from Lemma VI.5.2. As MY is smooth by

Theorem VI.4.3 we have equality everywhere. In particular, asM ′Y is smooth

by Proposition V.3.7 we have MY = M ′Y .

The statement about the codimension follows from the description (V.3.1)

of the tangent space of M ′Y . �

Remark VI.5.4. Let us analyse the proof of Theorem VI.5.3. The definition

of Mi in section VI.3.1 works for an arbitrary Lagrangian subvariety. The

spaces M ′Y , M ′[Y ] and M[Y ] can be defined for arbitrary Lagrangian subvari-

eties, too, and the inclusion relations in (VI.5.4) hold as soon as Proposition

V.3.7 can be applied. So let us assume that we are in one of the following

cases:

(1) dimX = 2.

(2) Y has normal crossing singularities.

(3) X is projective and Ỹ is smooth.
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Furthermore, we fix smooth, connected and simply connected represen-

tatives M ′Y , M ′[Y ], M[Y ] and M such that M ′Y is a closed subvariety of

M ′[Y ] = M[Y ] and M[Y ] is a closed subvariety of M . Moreover we fix a

connected representative Mi with a map p : Mi −→M .

Depending on this choice, we define a subset M set
Y by M set

Y := p(Mi). Then

set-theoretically, we have M set
Y ⊆M[Y ] as in the proof of the previous theo-

rem. As M[Y ] is a closed subvariety of M , the Zariski-closure MY := M set
Y

is contained in M[Y ]. In particular, from the discussion above we deduce

MY ⊆ ∩iMYi ⊆ ∩iM[Yi] = ∩iM ′[Yi] = ∩iM ′Yi = M ′Y .

Note that if Y has simple normal crossings this last chain of inclusions

together with Theorem VI.5.3 implies that this definition coincides with the

one from Theorem VI.4.3.

Although this definition of the subspace MY depends on choices, the inclu-

sion MY ⊆ M ′Y holds for every such choice. As the codimension of M ′Y is

still described by (VI.5.3) we can in any case estimate the codimension of the

locus MY in M where a certain subvariety is preserved. This fact together

with the applications in Chapter VII justify such a despicable definition.

VI.6. More smoothness results

The following results are not new. They appeared in the literature some-

where somehow, but sometimes in a different disguise, sometimes with proofs

only sketched. As they are easily obtained via the T 1-lifting technique, we

include them to have a reference and a full proof. Let X be an irreducible

symplectic manifold and let i : Y ↪→X be a connected Lagrangian subvari-

ety.

Theorem VI.6.1. Assume that Y is smooth. Then the Douady space D(X)

of X is smooth at [Y ].

Proof. Let Sn = SpecAn where An = C[t]/tn+1 and let

Yn �
� in //

f ##

X × Sn
g

��
Sn

be a deformation of Y inside X over Sn. In order to apply the T 1-lifting

technique, we will show that the An-module T 1
in/X/An

= R0f∗NYn/X×Sn
is compatible with base change. By Lemma VI.2.1 we know that Yn is

Lagrangian in X × Sn. As f is smooth, Corollary VI.2.3 tells us that

ΩYn/Sn −→ NYn/X×Sn is an isomorphism. Thus, T 1
in/X/An

∼= R0f∗ΩYn/Sn
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is a free module and compatible with arbitrary base change by [Del68,

Thm 5.5]. We denote by in−1 : Yn−1 −→ X × Sn−1 the restriction of in to

Sn−1. Then the map

R0f∗ΩYn/Sn −→ R0f∗ΩYn−1/Sn−1
= R0f∗ΩYn/Sn ⊗An An−1

is surjective. By Lemma I.4.3 there is a commutative diagram

R0f∗ΩYn/Sn
//

��

R0f∗ΩYn/Sn ⊗An An−1

��
Di/X(An[ε])in // Di/X(An−1[ε])in−1

where the vertical maps are bijections. So the map

Di/X(An[ε])in −→ Di/X(An−1[ε])in−1

is surjective as well and the claim follows from Lemma VI.3.9 and Remark

VI.3.10. �

Theorem VI.6.2. Let X be an irreducible symplectic manifold and let

g : X −→ S be a deformation of X over a connected complex space S.

Assume that X = g−1(s0) for some point s0 ∈ S and that every fiber of g is

an irreducible symplectic manifold. Let i : Y ↪→X be a smooth Lagrangian

submanifold, let p : D(X/S) −→ S be the relative Douady space of g and let

0 ∈ D(X/S) be the point corresponding to Y . Then there are open neigh-

bourhoods U ⊆ D(X/S) of 0 and V ⊆ S of s0 such that SY := p(U) ⊆ V is

a closed subvariety and the restriction p : U −→ SY is a smooth morphism.

Proof. The problem is local in S, so we may shrink S and assume that

there is a pullback diagram

X //

g

��

X

π
��

S
ϕ
// M

where π : X −→ M is the universal family over the universal deformation

space of X. Let q : Dπ −→ M be the relative Douady space of π. As Y

is smooth, every deformation over an Artinian base is locally trivial. Thus

the the space Mi from section VI.3.1 is an open neighbourhood of the point

y ∈ Dπ corresponding to Y . Let oi ∈ Mi be the point corresponding to

i and let oX ∈ M be the point corresponding to X. By Theorem VI.4.3

there are open neighbourhoods U ′ ⊆ Mi of oi and V ′ ⊆ M of oX such that

MY = q(U ′) ⊆ V ′ is a closed submanifold and q : U ′ −→ MY is a smooth
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morphism. We put V := ϕ−1(V ′) and SY := ϕ−1(MY ). Then SY ↪→V is a

closed immersion as MY ↪→V ′ is. Consider the diagram

U //

qS
��

U ′

q

��
SY //
� _

��

MY� _

��
V

ϕ
// V ′

where the outer square is a pullback. Note that as the formation of the

relative Douady space is compatible with fiber products, there is an open

immersion U ↪→D(X/S). As the lower square and the outer square are

pullbacks, so is the upper square. In particular, qS is smooth as smoothness

is preserved under basechange. This completes the proof. �

Corollary VI.6.3. Let i : Y ↪→X be a smooth Lagrangian submanifold in

an irreducible symplectic manifold and let

Y �
� I //

f ��

X
g

��
S

be a deformation of i over a smooth connected complex space S. Then the

relative Douady space D(X/S) is smooth at Y .

Proof. The existence of Y −→ S implies that in the notation of Theo-

rem VI.6.2 the variety SY is an open subset of S. Then the claim follows

from Theorem VI.6.2 as a composition of smooth maps is smooth. �





CHAPTER VII

Applications to Lagrangian fibrations

In this section we give some examples and applications of Theorem VI.5.3

to Lagrangian fibrations. We also pose some questions regarding singular

fibers, which hopefully support the quest for setting up a program to under-

stand Lagrangian fibrations. A large part of these results only uses Voisin’s

original theorem or could possibly be deduced from it with a little more

effort. However, with Theorem VI.5.3 at hand the arguments become more

conceptual and we have another hint that similar statements might be true

in greater generality.

VII.1. Properties of Lagrangian fibrations

Due to Matsushita and Hwang much is known about the structure of mor-

phisms with domain an irreducible symplectic manifold.

Theorem VII.1.1 (Hwang, Matsushita). Let X be an irreducible sym-

plectic manifold of dimension 2n. If B is a normal projective variety with

0 < dimB < 2n and f : X −→ B is a surjective morphism with connected

fibers, then

(1) dimB = n, B has only Q-factorial log-terminal singularities, −KB

is ample, the Picard number %(B) is one, the map f is equidimen-

sional and every irreducible component of the reduction of a fiber

is a Lagrangian subvariety. In particular, the fact that f is equidi-

mensional implies that it is flat if B is smooth.

(2) If X is projective and B is smooth, then B = Pn.

Moreover, if B is only assumed to be a Kähler manifold, it is automatically

projective.

Thus, such f is a Lagrangian fibration in the sense of Definition IV.1.5. Mat-

sushitas contribution (1) is earlier, see [Mat99, Mat00, Mat01, Mat03],

and (2) is due to Hwang [Hwa08, Thm 1.2]. As we mentioned in the

introduction, the holomorphic Liouville-Arnol’d theorem shows that every

smooth fiber is a complex torus. Moreover by Proposition IV.1.6 every

89
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smooth fiber is projective, hence an abelian variety. It is worthwhile to re-

mark that there is no example known of a Lagrangian fibration f : X −→ B

on an irreducible symplectic manifold, where B is not isomorphic to Pn.

We want to study the geometry of the singular fibers. We know by [Hwa08,

Prop 4.1] and [HO09a, Prop 3.1] that the analytic subset

D = {t ∈ Pn : Xt is singular}

is nonempty and of pure codimension one. We call D the discriminant locus

of f . It seems difficult to describe its geometry in general, special cases

are treated in [Thi08] and [Saw08b]. On the other hand due to [HO09a]

the structure of a general singular fiber is known. The proof uses analytic

methods and the statement is local in the base.

Theorem VII.1.2 (Hwang-Oguiso). Let Y be a general singular fiber of

a Lagrangian fibration f : X −→ B over a polydisc B with dimX = 2n.

The normalization Ỹ of Yred is smooth, the Albanese variety Alb(Ỹi) is of

dimension n − 1 for every irreducible component Ỹi of Ỹ and the Albanese

map alb : Ỹ −→ Alb(Ỹ ) is either a P1-bundle or an elliptic fiber bundle. In

the latter case Yred is smooth.

Following [HO09a] we call the image of a fiber of Ỹ −→ Alb(Ỹ ) under the

map Ỹ −→ Y a characteristic curve. A characteristic cycle is a maximal

(maybe infinite) connected union of characteristic curves. Note that by def-

inition Y is a disjoint union of its characteristic cycles. For each character-

istic curve C there is a unique irreducible component of f−1(D) containing

C. We denote by r = r(C) the multiplicity of divisor f−1(D) ⊆ X. Fix a

characteristic cycle Z. Hwang and Oguiso define the cycle

Θ :=
∑
C⊆Z

r(C)C

where the sum runs over all characteristic curves C ⊆ Z. Hwang and Oguiso

show in [HO09a, Thm 1.4] and [HO09b, Thm 1.1]

Theorem VII.1.3 (Hwang-Oguiso). There is a Cn−1-action on each gen-

eral singular fiber Y which acts transitively on the set of characteristic cycles.

The singularities of Y are locally trivial deformations of the singularities of

Θ. If n = gcd(ri) then n ≤ 6 and 1
nΘ is either a Kodaira-singular fiber of

an elliptic surface or it is of type I∞. The latter means that Θ =
∞∑
i=1

Ci with

Ci = P1 for all i and Ci ∩ Cj 6= ∅ if and only if |i− j| = 1 in which case Ci

and Cj intersect transversally in one point.



VII.2. DEFORMATIONS OF FIBERS OF LAGRANGIAN FIBRATIONS 91

Remark VII.1.4. In fact Hwang and Oguiso give more detailed classification

results, see [HO09a, Thm 1.4] and [HO09b, Thm 1.1]. Similar results on

the structure of a general singular fiber were obtained independently by

Matsushita [Mat07] in the projective case. His results are a little stronger,

but more technical and his classification might not yet be complete.

VII.2. Deformations of fibers of Lagrangian fibrations

Let X be an irreducible symplectic manifold and let f : X −→ B be a

Lagrangian fibration. We will keep this notation throughout this section.

We will need the following classical result.

Lemma VII.2.1. Let i : Y ↪→X be a Lagrangian subvariety in an irreducible

symplectic manifold X and assume that Y is contracted to a point by f .

Let S be a connected complex space and suppose we are given a diagram

Y

p ��

� � I // X
π

��

F // P

q��
S

where I : Y ↪→X is a deformation of i over S, q is a proper morphism of

complex spaces and F is a proper morphism extending f . Assume that for

every s ∈ S the morphism Fs : Xs −→ Ps obtained by base change is a

Lagrangian fibration. If Y −→ S has connected fibers, then also F (Ys) is

set-theoretically a point for all s ∈ S.

Proof. By Theorem VII.1.1 a Lagrangian fibration is equidimensional.

Then the Lemma is just a special case of the Rigidity Lemma [KM98, Lem

1.6]. �

As explained in section V.2.8, the universal deformation space ML of pairs

(X,L) where L is a non-trivial line bundle on X, is a smooth hypersurface in

M . The following result was probably first proven by Matsushita [Mat05]

in the projective case and uses Voisin’s result [Voi92]. See [Mat09, Prop

2.1] for the most general statement. We sketch the proof leaving the difficult

part to Matsushita [Mat09].

Lemma VII.2.2. Let f : X −→ B Lagrangian fibration and assume that B

is projective. Let T be a smooth fiber of f and let L = f∗A be the pullback

of a very ample line bundle on B. Then MT = ML. In particular, MT is

a smooth hypersurface in M . Moreover, there is a complex variety P , a
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projective morphism P −→M and a diagram

X
π

  

F // P

}}
ML

where π : X −→ ML is the restriction of the universal family to ML and F

is a family of Lagrangian fibrations extending f .

Sketch of proof. Let L denote the universal line bundle on the total

space of the universal family π : X −→ ML. For the above choice of L we

know by [Mat09, Cor 1.2] that π∗L is locally free and that there exists a

family of Lagrangian fibrations F : X −→ P(π∗L) extending f .

X

π   

F // P(π∗L)

q{{
ML

So if T is a smooth fiber of f , then ML ⊆MT . For example any local section

of q gives a deformation of T over ML. By Voisin’s theorem MT is smooth

of codimension equal to rk
(
i∗ : H2(X,C) −→ H2(T,C)

)
, where i : T ↪→X is

the inclusion. This rank is certainly ≥ 1, as the Kähler class restricts to a

non-trivial element. As MT contains the smooth hypersurface ML, we have

ML = MT . �

Suppose now that X is projective and f : X −→ Pn is a Lagrangian fibra-

tion. Let D ⊆ Pn be the discriminant divisor of f . We will assume that the

reduced fiber Y := (Xt)red has a smooth normalization Ỹ . In this situation

we can define the space MY as in Remark VI.5.4, after necessary choices

were made. By the classification result of Hwang and Oguiso the normal-

ization Ỹ is always smooth for general singular fibers. Let Y = ∪i∈IYi be

a decomposition into irreducible components Yi. In the situation of Lemma

VII.2.2 we deduce

Lemma VII.2.3. Under the assumptions above we have MY ⊆ML, so if the

reduced fiber is preserved as a subvariety, then the fibration is preserved.

Moreover, locally trivial deformations of Y remain fiber components.

Proof. By Remark VI.5.4 we have MY ⊆ M ′Y ⊆ ∩iM ′[Yi]. But for a

smooth fiber T of f we have
∑

i ni[Yi] = [T ] and so

∩iM ′[Yi] ⊆M
′
[
∑
i niYi]

= M ′[T ] = MT = ML,
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where the first two relations follow directly from Definition V.2.6, the third

equality is Voisin’s theorem and the last equality is Lemma VII.2.2. Put

together this gives MY ⊆ ML. The last claim follows from Lemma VII.2.1.

�

Example VII.2.4. A model of a general singular fiber with characteristic

cycle of type Ik, k ∈ N∪ {∞} and one irreducible component is obtained as

follows. Take a P1-bundle p : Z −→ A over an abelian variety A of dimension

k − 1 and suppose p has two disjoint sections ι1, ι2 : A −→ Z. We obtain

a variety Y by glueing ι1 with ι2 ◦ tk where tk : A −→ A is the translation

with an k-torsion point, k ∈ N ∪ {∞}. Observe that Y has normal crossing

singularities. Moreover, the sequence

A
ι1 //
ι1
// Z // Y

is a semi-simplicial resolution for Y . Using this resolution one can establish a

theory analogous to Chapter III. Thus, if Y is a Lagrangian subvariety of an

irreducible symplectic manifold X one can prove the analogue of Theorem

VI.3.12 and Theorem VI.4.3. So in the notation of these theorems there is

a smooth submanifold MY ⊆ M and a smooth morphism p : Mi −→ MY .

One shows the analogue of Theorem VI.5.3 in the same way, namely that

MY = M ′Y and codimM MY = rk
(
H2(X,C) −→ H2(Z,C)

)
.

For some k such singular fibers show up in Jacobian fibrations, see for ex-

ample [Bea99, 1.2] or [Saw08b, sec 2], as the compactified Jacobian of a

singular curve with a single node. Let f : X −→ B be a Lagrangian fibration

with a singular fiber Y of this kind. Let T be a smooth fiber of f an denote

by [T ] ∈ H2n(X,C) its cohomology class. As T and Y are both fibers of f

they are algebraically equivalent as cycles, hence [Y ] = [T ]. Then Lemma

VII.2.2 tells us that codimM MY = 1. Hence this type of singular fiber will

be preserved under deformation whenever the fibration is preserved.

One important question regarding singular fibers seems the following

Question VII.2.5. Given a singular fiber Xt of a Lagrangian fibration

f : X −→ B. What is the codimension of MXt in M? In other words

what is the codimension of the locus in M , where this type of singular fiber

is preserved?

This might be interesting for several reasons. One reason is that there are

several results assuming the general singular fibers to be of a special kind,

see [HO10], [Saw08b], [Saw08a], [Thi08]. If we knew that complicated
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general singular fibers only show up in higher codimension in M , we could

always deform to such special situations.

VII.3. Codimension estimates

Let f : X −→ Pn be a Lagrangian fibration on an irreducible symplectic

manifold, let and Y = (Xt)red for t ∈ D as before. In order to calculate

or at least estimate the codimension of MY in M , we associate a divisor to

each irreducible component of Y . Let D0 be an irreducible component of the

discriminant locus containing t and let X0 := X×BD0. Let Y = ∪i∈IYi and

X0 = ∪j∈JXj be decompositions into irreducible components and consider

the surjective map of sets j : I −→ J mapping i ∈ I to the unique j = j(i) ∈
J with Yi ⊆ Xj . In this way we associate a divisor in X to every irreducible

component Y . We show that if Yi is preserved under a deformation of X,

then so is Xj(i).

I am very grateful to Keiji Oguiso for explaining the following lemma.

Lemma VII.3.1. Let f : X −→ Pn be a Lagrangian fibration of a projective

irreducible symplectic manifold X. Let X0 =
⋃
j∈J Xj where J = {1, . . . , r}

and let i : Y = (Xt)red ↪→X for t ∈ D0 ⊆ Pn be the reduction of a general

singular fiber contained in X0. Then

rk
(
j∗ : H2(X,C) −→ H2(Ỹ ,C)

)
≥ r,

where ν : Ỹ −→ Y is the normalization and j = ν ◦ i. More precisely, the

subspace of H2(X,C) generated by the classes of the divisors Xj maps onto

a subspace of of dimension ≥ r − 1 not containing the class of the ample

divisor.

Proof. If we take a general line ` ⊆ Pn, then the fiber product X` =

X ×Pn ` is smooth by Kleiman’s theorem [Kle74, 2. Thm]. As t ∈ D0

is general, there is such a line with t ∈ `. Let H be a very ample divisor

on X and let H1, . . . ,Hn−1 ∈ |H| be general. Then the intersection S =

X`∩H1∩. . .∩Hn−1 is a smooth surface by Bertini’s theorem. By construction

it comes with a morphism g : S −→ P1 ∼= `.

Consider the diagram

(VII.3.1) H2(X,C)
j∗
//

%

��

H2(Ỹ ,C)

%Y
��

H2(S,C)
j∗S // H2(F̃ ,C)
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where F = Y ∩ H1 ∩ . . . ∩ Hn−1 ⊆ S and F̃ −→ F is the normalization.

Note that Ỹ is smooth by Theorem VII.1.2 and F̃ is smooth, as F is a

curve. Let Y =
⋃s
i=1 Yi and F =

⋃q
λ=1 Fλ be decompositions into irreducible

components where s = #I. We put

F (i) := Yi ∩H1 ∩ . . . ∩Hn−1 =
⋃
λ∈Λi

Fλ,

where Λi ⊆ Λ := {1, . . . , q} is the subset of all λ such that Fλ ⊆ Yi. If the

Hk are general enough, the irreducible components Fλ of F (i) are mutually

distinct for all i. In other words, Λ is the disjoint union of the Λi. Indeed,

one only has to verify that no irreducible component of Yi∩Yj∩H1 . . .∩Hk−1

is contained in Hk for all i, j, and k.

We will show that the subspace V ⊆ H2(X,C) spanned by the Xj and H

maps surjectively onto an r-dimensional subspace in H2(F̃ ,C). This would

imply the claim by diagram (VII.3.1).

Let nj ∈ N be the multiplicity of X0 = f−1(D0) along Xj . Then

X0 =
∑
j

njXj and Xt =
∑
i

nj(i)Yi

as cycles, where as above j(i) is the unique j ∈ J with Yi ⊆ Xj . Recall that

Λ =
∐
i Λi is a dijoint union. So

nλ := nj(i) for λ ∈ Λi

is well-defined and we have

F =
∑
λ

nλFλ.

As F =
⋃q
λ=1 Fλ we obtain F̃ =

⋃q
λ=1 F̃λ where F̃λ is the normalization of

Fλ. Thus,

H2(F̃ ,C) ∼=
q⊕

λ=1

H2(F̃λ,C) ∼= Cq.

If we denote the intersection pairing on S by (·, ·)S , then under this isomor-

phism j∗S : H2(S,C) −→ H2(F̃ ,C) is given by

α 7→ ((α, F1)S , . . . , (α, Fq)S) .

Let {xλ | λ ∈ Λ} ⊆ H2(F̃ ,C)∨ be the dual basis of the basis of H2(F̃ ,C)

obtained corresponding to the standard basis of Cq ∼= H2(F̃ ,C). By Zariski’s

Lemma [BHPV04, Ch III, Lem 8.2] the subspace W ⊆ H2(S,C) spanned

by the classes of the Fλ maps surjectively to the hyperplane of Cq given by
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λ nλxλ = 0, So the subspace of H2(S,C) spanned by the classes of the Fλ

and H|S maps surjectively onto Cq. We have

%Y (j∗Xj) = j∗S%(Xj) =
(
(%(Xj), Fλ)S

)
λ

As the Λi are mutually disjoint, so are the Λj :=
⋃

i:j(i)=j

Λi. We see from

(%(Xj), Fλ)S =
∑
µ∈Λj

(Fµ, Fλ)S

that the subspace of H2(X,C) generated by the Xj surjects onto a subspace

of Cq of dimension ≥ r − 1. The claim follows as the image of V does not

contain j∗S(H|S). �

Denote by MXj ⊆ M the Hodge locus associated to the class [Xj ] ∈
H2(X,C), see Definition V.2.3. This is the locus where [Xj ] remains of

type (1, 1). We identify M locally with its period domain

QX :=
{

[v] ∈ P(H2(X,C)) : qX(v, v) = 0, qX(v, v̄) > 0
}

by the local Torelli theorem as in section V.1.1. Then MXj is given by

the equation q(Xj , ·) = 0 as explained in section V.2.8 For K ⊆ I suppose

YK =
⋃
i∈K Yi and let

rK = |{j(i) | i ∈ K}| .

We obviously have rK ≤ rI = r.

Corollary VII.3.2. With the notation above

codimMY ≥ codimM ′Y ≥ r

codimMXt ≥ codimM ′Xt ≥ r

codimMYK ≥ codimM ′YK ≥ rK
codimMYK ≥ codimM ′YK ≥ rK + 1 if YK 6= Y.

Proof. This follows from Theorem VI.5.3, Lemma VII.3.1 and the fact

that the subvariety of M given by qX(V, ·) = 0 has codimension dimV for

a sub vector space V ⊆ H2(X,C). For the last statement one uses that by

Zariski’s Lemma the map j∗S from the proof of Lemma VII.3.1 is surjective,

if YK 6= Y . �

Assume as above that X is projective, that f : X −→ Pn is a Lagrangian

fibration and that the reduced fiber Y := (Xt)red over general t ∈ D has a

smooth normalization Ỹ . Let L = f∗A be the pullback of an ample divisor
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A on Pn and let Y = ∪i∈IYi be a decomposition into irreducible components.

As clearly MXt ⊆MY we have using Lemma VII.2.3 and Lemma VII.3.1

(VII.3.2) MXt ⊆MY ⊆
⋂
i∈I

MYi ⊆
⋂
j∈J

MXj ⊆ML ⊆M.

This chain of inequalities suggests the following

Question VII.3.3. Which of the first three inclusions in (VII.3.2) are strict?

Can we formulate conditions, under which this can be determined?

The following example illustrates that in general MYi ( MXj(i) . This is

already a consequence of Corollary VII.3.2.

Example VII.3.4. Let S −→ P1 be an elliptic K3 surface having a singular

fiber St of Kodaira type I3 over some t ∈ P1. Then there is an induced

fibration f : X = Hilb2(S) −→ Sym2P1 = P2. For D0 = t + P1 ⊆ Sym2P1

the pullback X0 consists of three irreducible components X1, X2, X3 having

the intersection graph of I3. The singular fiber over t + p ∈ D0 for general

p ∈ P1 is

Y = Xt+p = St × Sp = Y1 ∪ Y2 ∪ Y3,

where Yi ∼= P1 × Sp. Let λ denote the restriction of the Kähler class to Y1

and α2, α3 be the restrictions of the classes of X2, X3 to Y1. Then α2.α3 = 0

as can be read off the intersection graph but α2.λ > 0. So λ and α3 are

linearly independent, hence

codimM MY1 = rk
(
j∗ : H2(X,C) −→ H2(Y1,C)

)
≥ 2 > 1 = codimM MX1

already by Voisin’s theorem. As im j∗ ⊆ H1,1(Y1) and the latter is 2-

dimensional, we have codimM MY1 = 2. This however was to be expected,

as Y1 6= Y and hence MY1 ≥ r1 + 1 = 2 by Corollary VII.3.2. It also tells us,

that codimM MY ≥ 3. We will see in Theorem VII.3.8 that St is preserved

as a singular fiber in codimension three in the deformation space of S, hence

on a 17-dimensional submanifold. As we can always take the Hilbert scheme

of these K3 surfaces, we have dimMY ≥ 17, hence 3 ≤ codimM MY ≤ 4.

Remark VII.3.5. Corollary VII.3.2 shows that besides the elliptically fibered

case generically only singular fibers with a characteristic cycle Θ of Kodaira

type I to IV or elliptic fiber bundles show up. Indeed, the other Kodaira

fibers have at least two irreducible components with distinct multiplicities.

So X0 has to have at least two irreducible components as well.
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In view of Lemma VII.3.1 it seems that the codimension of MY is rather

influenced by the number of irreducible components of X0 than by the num-

ber of irreducible components of Y . Thus, a very interesting and important

question the following

Question VII.3.6. Let Y = ∪i∈IYi and X0 = ∪j∈JXj as in the beginning

of section VII.3. Is then #I = #J?

There is no obvious reason, why these numbers should be equal, but in all

examples we know they are equal. If always #I = #J were the case, all

singular fibers of type Im,m ≥ 2 could be excluded to show up generically.

So we pose

Question VII.3.7. Which of the general singular fibers of Hwang-Oguiso

show up in codimension one in M? Note that as codimML = 1 and there are

always singular fibers, there have to be fibers which show up in codimension

one in M . We already met one of them in Example VII.2.4.

In the case of K3 surfaces, the situation becomes easier. As the fibers are

divisors we have I = J in the notation of section VII.3. So we know that

H2(Ỹ ,C) ∼= Cr where r = #J . Singular fibers of elliptic surfaces were

classified by Kodaira [Kod63]. The canonical bundle formula for elliptic

fibrations [BHPV04, Thm 12.1] rules out multiple fibers for elliptic K3

surfaces, as they would contribute to the canonical divisor.

Theorem VII.3.8. Let X be a K3 surface and let f : X −→ P1 be a La-

grangian fibration. Let Xt be a singular fiber of f over t ∈ P1 and put

Y = (Xt)red. Then the codimension of M ′Y in M is equal to the number

of irreducible components of Y . Moreover, we always have codimM MY ≥
codimM M ′Y and we have codimM MY = codimM M ′Y for fibers of type In,

I∗n, II∗, III∗ and IV ∗. Also we have MY = MXt in all cases.

Proof. Let Ỹ −→ Y be the normalization and r := #J be the number

of irreducible components of Y . We have dimH2(Ỹ ,C) = r. Lemma VII.3.1

and Remark VI.5.4 show that codimM M ′Y = r. For fibers of type In, I∗n,

II∗, III∗ and IV ∗ the equality codimM MY = codimM M ′Y follows from

Theorem VI.5.3, as Y has normal crossings for all those fibers.

To see that MY = MXt observe that if Xt is preserved under deformation,

then so is Y . Moreover, under such a deformation the fibration is preserved

by Lemma VII.2.2 and Y and Xt remain fiber components. In particular,

the intersection graph of Y has to be a subgraph of Xt, but there are no non-

trivial inclusions among the intersection graphs of the non-reduced Kodaira

singular fibers. This completes the proof. �
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Example VII.3.9. For singular fibers Y of type II, III and IV a direct

calculation shows that the spectral sequence (III.2.5) from Theorem III.2.10

associated to Ω̃•Y does not degenerate at E1. In fact,

dimH1(Ω̃Y ) > dimH1(Ỹ ,Ω
Ỹ

)

and Lemma VI.5.1 and Lemma VI.5.2 leave the possibly that TMY ,0 (
TM ′Y ,0. In addition, one can for example explicitly write down a polynomial

f3,2 ∈ C[x, y, z, u, v] homogeneous of bidegree (3, 2) defining an elliptic K3

surface in P2×P1 with type II singular fiber, that deforms to an elliptic K3

having only type I1 singular fibers. This means that in this example the sin-

gular fiber Y does not show up in codimension one in M and so MY (M ′Y .

This means that either TMY ,0 ( TM ′Y ,0 or MY is singular or both.

VII.4. Hilb2(K3)

We will now have a look at a particular example of a Lagrangian fibration

of the irreducible symplectic manifold Hilb2(S) where S is a K3 surface. We

start with an elliptic K3 surface

g : S −→ P1.

For t ∈ P1 the fiber will be denoted Et. It is generically an elliptic curve

and degenerates over the discriminant D(g) to one of the singular fibers

classified by Kodaira [Kod63]. Now consider the 2nd Hilbert scheme X =

Hilb2(S) = S [2]. The fibration g induces a fibration

f : S [2] −→ P2.

Note that Hilbn(S) is not functorial in S. But the symmetric product is,

and so the Lagrangian fibration f is obtained as the composition g (2) ◦ %
of the Hilbert-Chow morphism % : S [2] −→ Sym2S, see [Leh04], and the

morphism g (2) : Sym2S −→ Sym2P1 = P2, where we write

SymnS = S×n/Sn = S × . . .× S/Sn

for the n-th symmetric product and Sn for the n-th symmetric group.

VII.4.1. Singular fibers. Let us decribe the fibers of f set theoreti-

cally. We denote the fiber over (t1, t2) ∈ Sym2P1 by X(t1,t2) . If t1 6= t2 ∈ P1,

then

(VII.4.1) X(t1,t2) = Et1 × Et2 .

In this case the fiber X(t1,t2) becomes singular if one of the ti happens to lie

in D(g). Thus for every point t ∈ D(g) the line `t = t + P1 is contained in
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D(f), hence `t is a component of D(f). If t1 = t2 = t and t /∈ ∆(g) then

(VII.4.2) X(t1,t2) = Sym2Et ∪Et P(ΩS |Et),

where P(ΩS |Et) is the projective space of lines in TS |Et . This contributes a

conic to Q ⊆ D(f), given by the diagonal imbedding P1 −→ Sym2P1 = P2,

p 7→ 2p. Summing up we have

D(f) = Q ∪
⋃

t∈D(g)

`t.

Let us now fix one fiber E = Et and describe the two components of the

above type of singular fiber. The curve E = P(ΩS |E) ∩ Sym2E is a section

of P(ΩS |E)-component and diagonally embedded in Sym2E. Also Sym2E is

a P1-bundle as we will explain next, but here the curve E is a four-section.

VII.4.2. Sym2E component. Let us fix a point p0 ∈ E defining a

group structure on E with p0 as unit element. We will write the group

additively. The bundle structure on Sym2E is given by

Sym2E −→ E, (e1, e2) 7→ e1 + e2,

hence the fiber over p ∈ E as a set is

Fp = {p1 + p2 : p1 + p2 = p} .

Moreover we see that the curve

E ↪→Sym2E, e 7→ (e, e),

is a four-section inside Sym2E as the composition E −→ Sym2E −→ E,

e 7→ 2e is four–to–one. It is classical that the assignment

E −→ Pic0(E), p 7→ OE(Dp −Dp0)

is an isomorphism of group schemes, where we write Dp for the divisor on

E associated to the point p. We interpret SymnS as a parameter scheme

for effective 0-cycles of degree n on S. Thus, SymnE can be interpreted as

a parameter space for effective divisors of degree n on the curve E. In this

description the addition map SymnE −→ E is given by

(VII.4.3) Dp1 + ..+Dpn 7→
n⊗
i=1

OE(Dpi −Dp0) = OE(D∑
pi −Dp0).

If we fix p ∈ E, then the right hand side of (VII.4.3) is ∼= OE(Dp −Dp0) if

and only if

Dp1 + ..+Dpn − n ·Dp0 ∼ Dp −Dp0 ,
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where ∼ means linear equivalence, in other words∑
i

Dpi ∼ (n− 1) ·Dp0 +Dp.

The left hand side are exactly the divisors in the linear system∣∣H0((n− 1) ·Dp0 +Dp)
∣∣

and we summarize the discussion in

Lemma VII.4.3. Let p : E × E −→ E be the projection on the first factor

and set F := p∗OE×E((n− 1) ·E0 + ∆), where E0 = E × {p0} and ∆ is the

diagonal. Then

P(F∨) //

""

SymnE

+{{
E

is an isomorphism of projective budles over E. �

VII.4.4. Divisors on Hilb. If D is an effective divisor on S, we obtain

a divisor DHilb on S [n] which may be described set theoretically as the locus

of all subschemes whose support has nontrivial intersection with D. We will

give a more functorial description of DHilb.

A morphism T −→ S [n] corresponds to a family Z of subschemes of S

parametrized by T , that is, a diagram

(VII.4.4) Z �
� //

""

T × S
q
//

p

��

S

T

such that Z −→ T is flat and finite of degree n. If we push forward the

natural morphism

(VII.4.5) OZ −→ OZ ⊗ q∗OS(D)

to T , take determinants we obtain the line bundle to the effective divisor we

were looking for:

(VII.4.6) OT (DHilb) := det(p∗(OZ ⊗ q∗OS(D)))⊗ det(p∗OZ)−1

By construction it comes with a section and it measures where (VII.4.5) fails

to be an isomorphism. The family Z can be reconstructed from the sheaf

of algebras p∗OZ as its relative Spec. This description holds for any T and

we are particularly interested in the case T ⊆ S [n]. So the task will be to

describe the (universal) family p∗OZ on T .
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VII.4.5. The universal family on Sym2E. Let us describe the uni-

versal family for the component Sym2E of a singular fiber of the map

f : S [2] −→ P2 of the type described in (VII.4.2). We know by Lemma

VII.4.3 that P := Sym2E = P(F∨), where F is given by the pushforward of

the sheaf F0 := OE×E(E0 + ∆) by the projection on the first factor. So we

have the diagram

(VII.4.7) P× E
π×id //

p

��

E × E
p

��

q
// E

P π // E

On P consider the canonical morphism OP(−1)
α→ π∗F , pull it back with p

and use the evaluation of relative global sections to obtain

p∗OP(−1) −→ p∗π∗F = (π × id)∗p∗p∗F0 −→ (π × id)∗F0.

The map α is the inclusion of the tautological line bundle over P and as

explained in VII.4.2 sections of F = p∗F0 parametrize length 2 subschemes

in E. So the subsheaf OP×E(−Z) := p∗OP(−1) ⊗ (π × id)∗F∨0 of OP×E is

the ideal sheaf of the universal family Z. Let us consider the exact sequence

(VII.4.8) 0 −→ OP×E(−Z) −→ OP×E −→ OZ −→ 0.

Let D be a divisor on S and let D′ be a divisor on P×E with OP×E(D′) =

(π × id)∗(OS(D)|E). In the same vein we get

0 // OP×E(−Z) //

��

OP×E

��

// OZ

φ
��

// 0

0 // OP×E(D′ − Z) // OP×E(D′) // OZ(D′) // 0

and by (VII.4.6) we are interested in the determinant of the pushforward of

N = cokerφ. The diagram above gives a resolution

0 −→ OP×E(−Z) −→ OP×E(D′ − Z)⊕OP×E −→ OP×E(D′) −→ N

of N . As [DHilb] = c1(det p∗N) ∈ H2(P,Z) is simply the degree 1 part of

ch (p∗OZ(D′)− p∗OZ), it is given by

(VII.4.9)
p∗ch

(
OP×E(−Z)−OP×E(D′ − Z)−OP×E +OP×E(D′)

)
= p∗ch

(
OP×E(D′)−OP×E

)
+ p∗ch

(
OP×E(−Z)−OP×E(D′ − Z)

)
= p∗

(
eD
′ − 1

)
+ p∗

(
ch (OP×E(−Z)) ch

(
OP×E −OP×E(D′)

))
= p∗D

′ + p∗
(
ch (p∗OP(−1)) ch

(
(π × id)∗F∨0

)
·
(
−D′

))
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where we simply write D′ for the class of D′ in cohomology. Note that we

used twice that (D′)2 = 0, which holds as already (D|E)2 = 0. Using the

projection formula and diagram (VII.4.7) we obtain

(VII.4.10)

ch(p∗OZ(D′)− p∗OZ)

= π∗p∗q
∗(D|E)−

(
1− ξ +

ξ2

2

)
p∗
(
ch
(
(π × id)∗F∨0

)
·D′

)
,

where ξ = c1(OP(1)). If d = E.D = deg (D|E) and if we denote by f the

class of a fiber of π and by δ the class of q∗(D|E), then in degree 1 we have

(VII.4.11)
ch(p∗OZ(D′)− p∗OZ)1

= −
(

(1− ξ) p∗(π × id)∗
((

1− (E0 + ∆) +
1

2
(E0 + ∆)2

)
· δ
))

1

= −
(

(1− ξ) p∗(π × id)∗
(
δ −∆.δ +

1

2
∆2.δ

))
1

= ξπ∗p∗δ + π∗p∗ (∆.δ)

= d · (ξ + f).

Here we used that p∗δ = d and p∗(∆.δ) = δ as ∆ is the diagonal.

Let j : P −→ X = Hilb2(S) correspond to the universal family Z ⊆ P × S.

We want to calculate rk(j∗ : H2(X,Q) −→ H2(P,Q)). As is well known

H2(P,Q) = Q2 = NumQ P, so all cohomology is algebraic. For ruled surfaces

the numerical Picard group is generated by the class ξ of a section and the

class f of a fiber. From (VII.4.11) we see that ξ+ f ∈ im j∗. Also c1(p∗OZ)

is in im j∗ as already the universal family over Z is the pullback of the

universal family over X. In order to show that it is linearly independent

of ξ + f we calculate this class using the exact sequence (VII.4.8).The class

c1(p∗OZ) is the degree 1 part of

ch(p∗OZ) = p∗ch (OP×E −OP×E(−Z))

− p∗
(
ch(p∗OP(−1)) · ch

(
(π × id)∗F∨0

))
− (ch(OP(−1))) · p∗(π × id)∗ch

(
F∨0
)

−
(

1− ξ +
1

2
ξ2

)
· π∗p∗ch

(
F∨0
)

Therefore we find that

c1(p∗OZ) = −π∗p∗
(
ch
(
F∨0
)

2

)
+ ξ · π∗p∗

(
ch
(
F∨0
)

1

)
.
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The first term is equal to deg
(
p∗
(
ch (F∨0 )2

))
· f and

deg
(
p∗
(
ch
(
F∨0
)

2

))
=

1

2

∫
E×E

(−E0 −D)2 = 1.

For the second term note that p∗
(
ch (F∨0 )1

)
= (p∗ch (F∨0 ))0 = rkRp∗ (F∨0 ).

By Grothendieck-Riemann-Roch we have

p∗ch
(
F∨0
)

= ch
(
Rp∗F

∨
0

)
.

From F0 = OE×E(E0 + ∆) we deduce that

Rp∗F
∨
0 = Rp∗OE×E(−E0)−Rp∗O∆(−E0)

= Rp∗ (OE×E −OE0)− p∗O∆(−E0)

= OE −R1p∗OE×E −OE −OE(−p0)

= −R1p∗OE×E −OE(−p0),

where p0 = ∆ ∩ E0. So we see that rkRp∗ (F∨0 ) = −2, which implies that

c1 (p∗OZ) = −f − 2ξ.

So c1(p∗OZ) is linearly independent from [DHilb] for a divisor D on S inter-

secting E nontrivially and hence j∗ is surjective. By Voisin’s theorem, this

means that Sym2E is preserved in a codimension 2 subset of the deformation

space M of X.



CHAPTER VIII

Open problems

Let f : X −→ B be a Lagrangian fibration of an irreducible symplectic

manifold. Besides the problems left open in chapter VII, one of the most

important open problems in the study of singular fibers of Lagrangian fi-

brations seems to be to understand the geometry of the discriminant locus.

This is defined as the analytic subset

D = {t ∈ B : Xt is singular}

of B. Although we do not at all contribute to solving those problems in this

work, we would like to put them into context. The most important problems

regarding the discriminant from our point of view is to understand its de-

formation behaviour and to control its degree. Finally, it would be valuable

to have more explicit descriptions of families of Lagrangian fibrations.

VIII.1. Discriminant locus - deformation behaviour

For any proper morphism f : X −→ B of complex spaces there is the notion

of a discriminant subspace – as opposed to a discriminant locus. This means

that D is going to have a structure of a complex space instead of an analytic

set only. It is explained by Tessier for finite morphisms in [Tei77], but there

he also claims that this works for proper morphisms in the same way. I am

very grateful to Duco van Straten for pointing out this reference.

First, one defines the image of f , see [Tei77, § 1, p 572], then the critical

subspace of C = C(f) ↪→X, see [Tei77, § 2, p 587], and then the discrim-

inant subspace D = D(f) ↪→B as the image of the critical subspace, see

[Tei77, § 2, p 588].

C �
� //

��

X

��
D �
� // B

105
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The definition uses fitting ideals and it is compatible with arbitrary base

change. Thus, if

X

π   

F // P(π∗L)

q{{
ML

is the family of Lagrangian fibrations of the restriction of the universal family

of deformations ofX toML as in Lemma VII.2.2, thenD(F )×ML
{0} = D(f)

where 0 ∈ML is the point corresponding to X.

Question VIII.1.1. Is D(F ) −→ML a flat deformation of D(f)?

This question seems to be important for the following reason: if the map

D(F ) −→ML were a flat deformation of D(f) and we could somehow control

this deformation, we could replace the problem of deforming a Lagrangian

subvariety i : Y ↪→X in a locally trivial way by the problem of deforming a

Lagrangian fibration f : X −→ B together with a point t ∈ D(f), possibly

avoiding problems with bad singularities in the fibers.

If B = Pn we know by [HO09a, Prop 3.1] and [Hwa08, Prop 4.1] that D(f)

is non-empty of pure codimension one. Then a positive answer to Question

VIII.1.1 would in particular imply that the degree of D(f) remains constant.

Question VIII.1.2. Does D(f) ↪→Pn have embedded points? Can it be

defined as the vanishing of a section in some line bundle? Can this line

bundle be described canonically in terms of the geometry of f?

Formulated in a different way, we could ask if it is possible to show that

Teissier’s description of the ideal sheaf of D can be shown to be a line

bundle. The following question is – similar to those in sections VII.2 and

VII.3 – trying to deform to an easier situation.

Question VIII.1.3. Is there a small deformation of f ′ : X ′ −→ B′ of f such

that D(f ′) is irreducible?

It is not clear to us, whether this is always possible. The reason is that

we cannot avoid the following situation: suppose D(f) = D1 ∪ D2 and

the divisors X1 = f−1(D1) and X2 = f−1(D2) are irreducible. Then their

classes in H2(X,Q) are multiples of one another as %(B) = 1 and so one is

preserved under deformation if and only if the other one is.

VIII.2. Discriminant locus - degree

Let f : X −→ Pn be a Lagrangian fibration on a projective irreducible

symplectic manifold. Another important problem is to calculate or at least
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estimate the degree of the discriminant divisor. We will derive an expression

relating the degree of the irreducible components of the discriminant divisor

with certain intersection numbers on X. A definition of the multiplicity of

the singularity is proposed. The ideas are basically contained in [Saw08b],

where only special singular fibers are considered. But in the non-principally

polarized case the arguments presented there seem to be incomplete. We

do not give any satisfying answers, but we try to put Sawon’s approach

on a more general footing. For a good reason this chapter is called Open

problems.

Recall from Proposition IV.3.2, that for the chern classes cp(X) of X there

are constants ap only depending on the deformation type of X such that for

any class α ∈ H2(X,R)

qX(α)n−p = ap ·
∫
X
α2(n−p).cp(X)

where qX is the Beauville-Bogomolov form. So given classes α, β ∈ H2(X,R)

we have

(qX(α)n)n−1 (qX(β)n−1
)n

= an−1
0 an1

(∫
X
α2n

)n−1(∫
X
c2(X).β2n−2

)n
On the other side(

qX(α)n−1
)n

(qX(β)n)n−1 = an−1
0 an1

(∫
X
c2(X).α2n−2

)n(∫
X
β2n

)n−1

,

so that(∫
X
α2n

)n−1(∫
X
c2(X).β2n−2

)n
=

(∫
X
c2(X).α2n−2

)n(∫
X
β2n

)n−1

.

If we take α = σ + t1σ̄ and β = A+ t2H where A is an f -ample divisor, H

is the pullback of an ample divisor and the ti are indeterminates, we obtain

(VIII.2.1)(∫
X

(σσ̄)n
)n−1(∫

X
c2.H

n−1.An−1

)n
=

(∫
X
c2.(σσ̄)n−1

)n(∫
X
An.Hn

)n−1

by comparing the coefficients of (t1t2)n(n−1). In [Saw08b, Lem 2] it is shown

using Roszansky-Witten techniques that

(VIII.2.2)

(∫
X c2(X).(σσ̄)n−1

)n(∫
X(σσ̄)n

)n−1 =
24n(n!)2

nn

∫
X

√
Â

where
√
Â = 1+ c2

24 +
7c22−c4

5760 +... is the square root of the Â-genus. Combining

(VIII.2.1) and (VIII.2.2) and taking the n-th root we end up with

(VIII.2.3)

∫
X c2(X).Hn−1.An−1(∫

X A
n.Hn

)n−1
n

= n

√
24n(n!)2

nn

∫
X

√
Â =: γ(X)
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where the right hand side does not depend on the ample divisor A.

The term
∫
X A

n.Hn is equal to the product degB(H) · degXη(A) of the

degrees of H on B and of A on a general fiber Xη of f . The integral∫
X
c2(X).Hn−1.An−1

is more interesting and urges us to understand c2(X). Similar to Lemma

VI.2.2 one can show that there is a morphism of short exact sequences

(VIII.2.4) 0 // f∗ΩB� _

��

// ΩX

∼=
��

// ΩX/B

��

// 0

0 // TX/B // TX // f∗TB

where by definition, the lower sequence is the dual of the upper sequence.

In general the lower sequence fails to be exact on the right. In any case, this

gives a complex

f∗ΩB
// ΩX

∼= TX // f∗TB

which is now a complex of locally free sheaves. We will refer to it as the

ΩT -complex and declare it to live in degrees 0 to 2. It is exact precisely at

the points where f is smooth.

In this way, we can calculate the Chern character of X using the exact

sequences

0 −→ TX/B −→ TX
f∗−−→ f∗TB −→ H2(ΩT ) −→ 0

0 −→ f∗ΩB −→ TX/B −→ H1(ΩT ) −→ 0

So we have

(VIII.2.5) ch(TX) = f∗ch(TB) + f∗ch(ΩB) + ch(H1(ΩT ))− ch(H2(ΩT )).

We consider degree one terms only and we find

0 = c1(X) = f∗c1(TB) + f∗c1(ΩB)︸ ︷︷ ︸
=0

+c1(H1(ΩT ))− c1(H2(ΩT )),

and we obtain c1(H1(ΩT )) = c1(H2(ΩT )). Since ch2 =
c21−2c2

2 this and

(VIII.2.5) yields

(VIII.2.6)

c2(X) =
c2

1(X)

2
− ch2(TX)

= −ch2(H1(ΩT )) + ch2(H2(ΩT ))− f∗ch2(ΩB)− f∗ch2(TB)

= c2(H1(ΩT ))− c2(H2(ΩT )) + 2c2(B)− c2
1(B).
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As B = Pn we can express this in terms of the pullback of a hyperplane H.

f∗c(Pn) = (1 +H)n+1 = 1 + (n+ 1)H +

(
n+ 1

2

)
H2 + . . . ,

so 2c2(B)− c2
1(B) = (n+ 1)nH2 − (n+ 1)2H2 leading to

c2(X) = c2(H1(ΩT ))− c2(H2(ΩT ))− (n+ 1)H2.

With this the numerator of the left hand side of (VIII.2.3) reads∫
X

(
c2(H1(ΩT ))− c2(H2(ΩT ))− (n+ 1)H2

)
.Hn−1.An−1

=

∫
X

c2(H1(ΩT )).Hn−1.An−1 −
∫
X

c2(H2(ΩT )).Hn−1.An−1

because Hn+1 = 0 so that we have to calculate δ(X) := c2(H1(ΩT )) −
c2(H2(ΩT )) and (VIII.2.3) becomes

(VIII.2.7)

∫
X δ(X).Hn−1.An−1(∫

X A
n.Hn

)n−1
n

= γ(X).

As remarked above, the complex ΩT is exact at smooth points of f , hence

the cycle δ(X) is supported on the singular locus of the singular fibers.

Assume the discriminant divisor decomposes as

D(f) =
∑
i

Di,

where Di are irreducible components. Accordingly, we will have a decom-

position

δ(X) =
∑
i

δi(X) + δ′

where δi(X) is supported over Di and δ′ is supported over a subset of B

codimension ≥ 2. The cycle Hn−1 is the pullback of a line ` ⊆ Pn. So δ′

does not play a role for the calculation of (VIII.2.7) as Hn−1.δ′ = 0.

Each cycle δi(X) gives an algebraic family of cycles {Si(t)}t∈Di in X para-

metrized by Di. We write Si ≡ Si(t), where ≡ denotes algebraic equivalence.

So we find

δi(X).Hn−1 =
∑

t∈`∩Di

Si(t) ≡ #{t ∈ ` ∩Di} · Si = deg(Di) · Si.

Going back to (VIII.2.7) the discussion gives

1(∫
X A

n.Hn
)n−1

n

∑
i

∫
X

deg(Di)Si.A
n−1 = γ(X)

which suggests to define weights

wi :=
1(∫

X A
n.Hn

)n−1
n

∫
X
Si.A

n−1,
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so that we have the nice formula

r∑
i=1

wi deg(Di) = γ(X).

As said, the whole sum does not depend on A but a priori it might happen

that the single wi depend on A. This sounds unlikely, but how to show that

this does not occur? Calculations in the case of Hilb2(S) for an elliptic K3

surface S indicate that the decomposition does indeed not depend on the

choice of A, but some work remains to be done to settle this question.

VIII.3. Generalizations

As our main results are built from many small pieces from different areas,

it should be obvious that there is ample space for generalizations. Several

calculations support this opinion. We want to explain, in which directions

we plan to generalize.

Let us first look at the Hodge theoretic part. Our goals are to generalize

Theorem III.4.3 and to construct mixed Hodge structures over Artin rings

similar to Lemma III.4.1 for more general classes of singularities and defor-

mations.

If we continue to work with the comples Ω̃•Y/S , then first of all we want to

leave simple normal crossing singularities behind. The “simple” is annoying,

i.e. the condition that irreducible components be smooth. The validity of

our results should – at least in the algebraic category – only depend on the

local structure of the singularities, not on the global geometry. The following

class of singularities seems to be a promising candidate.

Definition VIII.3.1. A variety Y is said to have transversal singularities,

if the following conditions are satisfied. For every point y ∈ Y there is an

isomorphism

ÔY,y ∼= k[[x1, . . . , xn]]/I,

where I = (f1, . . . , fk) and for each m with 1 ≤ m ≤ k there is a subset

Im ⊆ {1, . . . , n} such that

fm =
∏
i∈Im

xi.

It can be used in inductive proofs just like normal crossing singularities in

[Fri83, Lem 1.5]. The reason is this. If locally Y = ∪iYi is a decomposition

in irreducible components, then the restriction Y ′ ∩ Yj of Y ′ = ∪i 6=jYi to

the irreducible component Yj has again transversal singularities. With this

definition at hand we want to solve
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Problem VIII.3.2. Let S = SpecR where R ∈ ArtC, let Y be a proper

C-variety with transversal singularities and let f : Y −→ S be a locally

trivial deformation of Y . Then show that Ω̃•Yan/S is quasi-isomorphic to

the constant sheaf RY an and that the analogue of spectral sequence (III.2.5)

associated to Ω̃•Yan/S degenerates at E1. Use this complex to put a mixed

Hodge structure over R on the Hk(Y an, RY an).

A solution tho this problem can be used for

Problem VIII.3.3. Let S = SpecR where R ∈ ArtC, let X and Y be proper

C-variety with transversal singularities, let g : X −→ S and f : Y −→ S

be locally trivial deformations of X and Y and let i : Y −→ X be an S-

morphism. Then show that the morphism i∗ : Rqg∗Ω̃
p
X/S −→ Rqf∗Ω̃

p
Y/S has

constant rank for all p, q.

It does not sound absurd that these two results might generalize to locally

trivial deformations of arbitrary varieties. Therefore one has to take a com-

pletely new approach and understand resolution of singularities. Then it

might be possible to develop a theory in the spirit of [Del71, Del74] in the

relative locally trivial situation. The first step would be

Problem VIII.3.4. Let Y be a proper C-variety and let f : Y −→ S be a

locally trivial deformation of Y . Find a replacement for Ω̃•Y/S to generalize

and solve the preceding problems.

The question is how to find a replacement for the semi-simplicial resolution

from Lemma III.2.4 in the normal crossing case. This seems to be impor-

tant, because the resolution was explicitly used in our proofs. Here is a

proposal how to obtain such a resolution for transversal singularities. Take

the normalization Y [0] −→ Y and replace Y [k] with the k-fold fiber product

Y [0] ×Y Y [0] ×Y . . .×Y Y [0].

This is a semi-simplicial object with infinitly many terms.

Working with the complex Ω̃•Y/S would keep the relation to symplectic ge-

ometry via Proposition VI.2.4. Once we established all the properties of

Ω̃•Y/S for the class of locally trivial deformations of transversal singularities,

Voisin’s theorem is should be valid in this situation as well. The restric-

tion posed by the unnatural assumptions of Lemma V.3.4 should only be a

technical problem. More difficult seems to be the correct definition of MY .

Problem VIII.3.5. Show that the image of the natural map p : Mi −→ M

from Proposition VI.3.2 is a closed subvariety of M . Decide whether it is

smooth or not and how its codimension can be calculated.
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Then of course one should settle the applications to singular fibers of a

Lagrangian fibration f : X −→ B. It should be possible to decide whether

for the reduction Y of a general singular fiber over t ∈ B the codimension

codimM MY is equal to the number #J of irreducible components of the

divisor X0 as defined in section VII.3. To decide whether #J coincides with

the number #I of irreducible components of Y seems to be more difficult.

In this treatise, locally trivial deformations play a major role. So we want

to pose what we consider important problems regarding locally trivial de-

formations. One is to study local triviality in the large, that is, not only

over Artin rings. In the analytic category the notion of local triviality is

reasonable in the sense of germs, see [FK87]. In the algebraic category it is

not reasonable to define local triviality by replacing the Artinian scheme in

Definition I.2.1 by an affine scheme, as this is rather restrictive. Instead we

propose

Definition VIII.3.6. Let S be a k-scheme and Y −→ S be a scheme over

S. We say that Y −→ S is a locally trivial family parametrized by S, if for

every k-morphism S′ −→ S of a local Artinian k-scheme S′ the morphism f

in the diagram

Y ×S S′

f
��

// Y

��
S′ // S

is a locally trivial deformation in the sense of Definition I.2.1.

With this definition we pose the problem of constructing a Hilbert scheme

for locally trivial deformations.

Problem VIII.3.7. Let Y ↪→X be a closed immersion. Construct a Hilbert

scheme for locally trivial deformations of Y in X. This should be the

unique maximal connected subscheme Hilblt(Y ↪→X) of Hilb(X) contain-

ing the point corresponding to Y with the property that the restriction

U −→ Hilblt(Y ↪→X) of the universal family is a locally trivial family in

the sense of Definition VIII.3.6. Moreover, Hilblt(Y ↪→X) should have the

universal property with respect to connected locally trivial families.

If Hilblt(Y ↪→X) existed, it would certainly not be proper in general as the

following example shows.

Example VIII.3.8. Let f : X −→ B be a morphism of smooth and projective

algebraic C-varieties with dimB = 1 and let Y be a smooth fiber of f . As

f is flat, there is a classifying map ϕ : B −→ Hilb(X) to the Hilbert scheme
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of X. This map is clearly injective. Let V ⊆ B be the maximal open subset

such that fV : XV −→ V is smooth where XV = f−1(V ) and fV = f |XV .

Then fV is a locally trivial deformation of Y . On the other hand for every

b ∈ D := B \ V and every neighbourhood V ′ ⊆ B of b the map fV ′ is not

a locally trivial deformation of Xb := f−1(b). It is a smoothing of Xb as

V ′∩V 6= ∅. So if D 6= ∅ and if there were a Hilbert scheme Hilblt(Y ↪→X) for

locally trivial deformations the classifying map V −→ Hilblt(Y ↪→X) would

not extend to B. Hence Hilblt(Y ↪→X) cannot be proper by the valuative

criterion for properness. Clearly, such morphisms f exist in abundance.

It is obvious that the definition of a locally trivial family can be extended to

other types of algebraic objects. Problem VIII.3.7 is related to a question

of Flenner and Kosarew, see [FK87, p. 630]

If k = C we would like to know the answer to the following question.

Question VIII.3.9. Let f : Y −→ S be a locally trivial family over a C-

scheme S in the sense of Definition VIII.3.6. Suppose that San is simply

connected and f is proper. Is then fan : Y an −→ San a C∞-trivial fiber

bundle for S small enough and a suitable notion of a diffeomorphism between

complex spaces?





APPENDIX A

Commutative algebra

A.1. Flatness

The statements and proofs below are a straight forward generalization of the

corresponding material from [Ser06], Appendix A. We will include them for

convenience.

Proposition A.1.1. Let R ∈ Art, R′ be an Artinian local R-algebra and

R′�R a surjective R-algebra morphism. The following are equivalent for

an R′-module M .

(1) M is flat.

(2) TorR
′

1 (M,R) = 0 and M ⊗R′ R is flat over R.

Proof. Flatness is stable under base change, so the implication (1)⇒
(2) is clear. The local criterion for flatness as formulated in [Mat80, (20.C)

Thm 49] yields (2)⇒ (1). �

Let A be a flat noetherian R-algebra, R ∈ Artk, and I ⊆ A an ideal. Let R′

be an Artinian local R-algebra and R′�R a surjective R-algebra morphism.

Let A = A ⊗R R′ and I ⊆ A be an ideal with A/I ⊗R′ R ∼= A/I. We want

to have conditions on I that guarantee flatness of A/I over R′.

Theorem A.1.2. Assume that A/I is flat over R. Let Π be a presentation

(A.1.1) An −→ AN −→ A −→ A/I −→ 0

of A/I as an A module. Then the following conditions are equivalent for an

ideal I ⊆ A:

(1) A/I is R′-flat and A/I⊗R′ R ∼= A/I.

(2) There is a presentation Π′ : An
ϕ−−→ AN −→ A −→ A/I −→ 0 such

that Π = Π′ ⊗R′ R.

(3) There is a complex Π′ : An
ϕ−−→ AN −→ A −→ A/I −→ 0 which is

exact except possibly at AN such that Π = Π′ ⊗R′ R.

Proof. We obtain TorR
′

1 (A/I, R) as H1(Π′ ⊗R′ R) = H1(Π) which is

zero as Π is exact. Here we think of A/I as sitting in degree 1 using homo-

logical convention, i.e. degrees ascending from left to right. As A/I is flat

over R, the implication (2)⇒ (1) follows from Proposition A.1.1.
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Let us verify (1) ⇒ (2). We will first construct a surjective morphism

AN −→ I. As A/I is flat over R′ so is I by the long exact Tor-sequence and

by tensoring 0 −→ I −→ A −→ A/I −→ 0 with R we obtain an isomorphism

I ⊗R′ R
∼=−−→ I, in particular a surjective morphism I −→ I. So by lifting

generators of I we obtain a morphism AN −→ I which by tensoring with R

gives the surjective morphism AN −→ I from Π. So AN −→ I is surjective

by Nakayama’s Lemma.

Taking the kernel we obtain an exact sequence 0 −→ K −→ AN −→ I −→ 0.

As I is a flat lifting of I, applying the functor ⊗R′R gives K ⊗R′ R ∼=
ker(AN −→ I). Lifting generators of ker(AN −→ I) to K yields a surjective

morphism An −→ K and as above when tensored with R this morphism is

just An −→ ker(AN −→ I).

The implication (2)⇒ (3) is obvious. We conclude with (3)⇒ (1). If Π′ is

not exact at AN we add finitely many generators to have a presentation

Π̄ : Am
φ−−→ AN −→ A −→ A/I −→ 0.

So by construction An ⊆ Am and we have a factorization

Am
φ
// AN

An
?�

OO

ϕ

==

Hence

im(ϕ⊗R′ R) ⊆ im(φ⊗R′ R) ⊆ ker(AN −→ A) = im(ϕ⊗R′ R)

where the last equality comes from Π′ ⊗R′ R = Π. So im(φ ⊗R′ R) =

ker(AN −→ A) implying that Π̄ ⊗R′ R = Π, hence Π̄ ⊗R′ R is exact. So as

above we conclude that TorR
′

1 (A/I, R) = H1(Π̄ ⊗R′ R) = H1(Π) = 0 and

A/I is R′-flat. �

Corollary A.1.3. In the situation of the preceding Theorem assume that

I = (f1, . . . , fN ) ⊆ A and I = (F1, . . . , FN ) ⊆ A with Fi 7→ fi under

R′ −→ R. Then every relation r1f1 + . . .+ rNfN = 0 in A lifts to a relation

R1F1 + . . .+RNFN = 0

in A if and only if A/I is flat over R′ and A/I⊗R′ R ∼= A/I.

Proof. As Fi 7→ fi the sequence

AN −→ A −→ A/I −→ 0

gives

π : AN −→ A −→ A/I −→ 0
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when tensored with R. When we complete π to a presentation Π as in

(A.1.1), the lifting of relations is an other way of saying that Π lifts to a

presentation Π′ as in (3) of Theorem A.1.2 which implies the claim. �

A.2. Modules over Artin rings

Let R be a noetherian ring and ϕ : F −→ G be a morphism between finitely

generated free R-modules. We define Ij(ϕ) = im(ϕ′ : ΛjF ⊗ (ΛjG)∨ −→ R),

where ϕ′ is induced by Λjϕ : ΛjF −→ ΛjG. If we interpret ϕ as a matrix,

then Ij(ϕ) is the ideal generated by all j × j-minors of ϕ. If F and G are

finitely generated but not necessarily free, the definition still makes sense if

G is projective. One defines the rank of ϕ as rkϕ := max {i : Ii(ϕ) 6= 0}.

Definition A.2.1. Let R be a noetherian ring and ϕ : F −→ G be a mor-

phism between finitely generated R-modules. Suppose G is projective. We

say that ϕ has constant rank k, if Ik(ϕ) = R and Ik−1(ϕ) = 0. We say that

ϕ has constant rank, if there is some k such that ϕ has constant rank k.

A characterization of this property is given by the following Lemma, the

proof of which is found at [Eis95, Prop 20.8].

Lemma A.2.2. Let R be a noetherian ring and ϕ : F −→ G be a morphism

between finitely generated R-modules. Suppose G is projective. Then ϕ has

constant rank, if and only if cokerϕ is a projective R-module. �

If G is projective and ϕ : F −→ G is of constant rank, then imϕ is projective.

If moreover F is projective, then also kerϕ is projective. We will mostly

be concerned with local noetherian rings, where projectivity is equivalent to

freeness. We show next, that over local Artin rings the inclusion of a free

submodule is of constant rank.

Lemma A.2.3. Let (R,m) be a local Artin ring with residue field k and

F1 ⊆ F two finitely generated free R-modules. Then F/F1 is free and

ϕ : F1 ⊗ k −→ F ⊗ k is injective.

Proof. If F1 −→ F is injective, then F/F1 is free if and only if ϕ :

F1 ⊗ k −→ F ⊗ k is injective. This holds over any local noetherian ring by

[Ser06, Cor A.6]. As both F1 and F are free, the diagramm

0 // mF1
//

� _

��

F1
//

� _

��

F1 ⊗ k //

ϕ

��

0

0 // mF // F // F ⊗ k // 0
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has exact rows. If ϕ is not injective, then there is x1 ∈ F1 ∩ mF with

x1 /∈ mF1. Because of this last property we find x2, . . . , xk ∈ F such that

x1, x2, . . . , xk is a basis of F by Nakayama’s Lemma. In particular, if αx1 = 0

for some non-zero α ∈ R implies that α = 0. The case R = k is trivial, so

we may assume that the maximal ideal m is non-zero. So there is 0 6= α ∈
Annm. Therefore we have αx1 ∈ αmF = 0, a contradiction. �

Corollary A.2.4. Let (R,m) be a local Artin ring with residue field k and

F1, F2 ⊆ F be two free submodules in a finitely generated free R-module.

Then F1 ∩ F2 = 0 if and only if F1 ⊗ k ∩ F2 ⊗ k = 0.

Proof. The condition F1∩F2 = 0 means that F1⊕F2 −→ F is injective.

This implies injectivity of F1⊗ k⊕F2⊗ k −→ F ⊗ k by Lemma A.2.3, hence

F1⊗ k ∩F2⊗ k = 0. The converse again follows from [Ser06, Cor A.6] over

any local noetherian ring. �

Lemma A.2.5. Let R be a local Artin ring and

F
ϕ

  
ψ
��
G

η
// H

a diagram of R-modules where G,H are free, η has constant rank and imψ∩
ker η = 0. Then ϕ has constant rank if and only if ψ has.

Proof. We may assume that ψ is injective since replacing F by imψ

does not change any cokernel. As η has constant rank, ker η and coker η =

H/η(G) are free. When we consider the two exact sequences

0 −→ G/(F ⊕ ker η) −→ H/ϕ(F ) −→ H/η(G) −→ 0

and

0 −→ ker η −→ G/F −→ G/(F ⊕ ker η) −→ 0

we see that H/ϕ(F ) is free if and only if G/(F ⊕ ker η) is free. By Lemma

A.2.3 this is the case if and only if G/F is free. This proves the Lemma. �

Lemma A.2.6. Let R be a local Artin ring and

H ′
d1→ H

d2→ H ′′

a complex of free R-modules, i.e. d2 ◦ d1 = 0. If the di have constant rank,

then the cohomology ker d2/ im d1 is free.
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Proof. Consider the diagram

H ′

����

d1 // H
d2 // H ′′

F
. �

ϕ
>>

ψ
// G
?�

η

OO

where F = im d1 and G = ker d2. Here F and G are free by the remarks

following Definition A.2.1, hence the claim follows from Lemma A.2.3. �





APPENDIX B

Hodge theory

For completeness, we record the definition of a mixed Hodge structure and

comment on a difference to our definition of a mixed Hodge structure over

an Artin ring.

B.1. Mixed Hodge structures on singular varieties

Definition B.1.1. A pure Hodge structure (HZ, F
•) of weight m ∈ Z con-

sists of the following data: a finitely generated Z-module HZ and a finite

decreasing filtration H = F 0 ⊇ F 1 ⊇ . . . on H = HZ ⊗Z C such that

F p ⊕ F q+1 = H

for all p, q with p + q = m. Note that we have a complex conjugation on

H = HZ ⊗Z C defined by h⊗ λ = h⊗ λ.

In this definition we could as well start with a finitely generated Λ-module

HΛ for some subring Λ ⊆ R instead of HZ. Such a datum will be called a

pure Λ-Hodge structure.

Definition B.1.2. A mixed Hodge structure (HZ, F
•,W•) consists of the

following data: a finitely generated Z-module HZ, a finite decreasing filtra-

tion H = F 0 ⊇ F 1 ⊇ . . . on H = HZ ⊗Z C and a finite increasing filtration

. . . ⊆ Wm ⊆ . . . ⊆ HQ = HZ ⊗Z Q such that for each m ∈ Z the filtration

F pGrWm defined by

F pGrWm = im (F p ∩Wm −→Wm/Wm−1)

defines a pure Q-Hodge structure of weight m on GrWm .

If in this definition Q is replaced by a ring Λ with Z ⊆ Λ ⊆ R we speak

of a mixed Λ-Hodge structure. In this sense, the mixed Hodge structures

in the central fiber of our mixed Hodge structures over Artin rings from

Definition II.2.1 is a mixed R-Hodge structure. The condition that Λ ⊆ R
is necessary for Definition B.1.2 to be reasonable: in order that GrWm can

be a pure Hodge structure, we need to have a complex conjugation. On H

we have one coming from the real structure and this descends to GrWm only

if Wm and Wm−1 are fixed, in other words, if they are themselves defined

over R.
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