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Zusammenfassung

Im Rahmen dieser Arbeit wurden Computersimulationen von Keimbildungs- und Kris-

tallisationsprozessen in kolloidalen Systemen durchgeführt. Eine Kombination von

Monte-Carlo-Simulationsmethoden und der Forward-Flux-Sampling-Technik wurde im-

plementiert, um die homogene und heterogene Nukleation von Kristallen monodisperser

Hartkugeln zu untersuchen. Im mäßig unterkühlten Bulk-Hartkugelsystem sagen wir

die homogenen Nukleationsraten voraus und vergleichen die Resultate mit anderen

theoretischen Ergebnissen und experimentellen Daten. Weiterhin analysieren wir die

kristallinen Cluster in den Keimbildungs- undWachstumszonen, wobei sich herausstellt,

dass kristalline Cluster sich in unterschiedlichen Formen im System bilden. Kleine Clus-

ter sind eher länglich in eine beliebige Richtung ausgedehnt, während größere Cluster

kompakter und von ellipsoidaler Gestalt sind.

Im nächsten Teil untersuchen wir die heterogene Keimbildung an strukturierten bcc

(100)-Wänden. Die 2d-Analyse der kristallinen Schichten an der Wand zeigt, dass die

Struktur der Wand eine entscheidende Rolle in der Kristallisation von Hartkugelkol-

loiden spielt. Wir sagen zudem die heterogenen Kristallbildungsraten bei verschiede-

nen Übersättigungsgraden voraus. Durch Analyse der größten Cluster an der Wand

schätzen wir zusätzlich den Kontaktwinkel zwischen Kristallcluster und Wand ab. Es

stellt sich heraus, dass wir in solchen Systemen weit von der Benetzungsregion entfernt

sind und der Kristallisationsprozess durch heterogene Nukleation stattfindet.

Im letzten Teil der Arbeit betrachten wir die Kristallisation von Lennard-Jones-

Kolloidsystemen zwischen zwei ebenen Wänden. Um die Erstarrungsprozesse für ein

solches System zu untersuchen, haben wir eine Analyse des Ordnungsparameters für

die Bindung-Ausrichtung in den Schichten durchgefürt. Die Ergebnisse zeigen, dass

innerhalb einer Schicht keine hexatische Ordnung besteht, welche auf einen Kosterlitz-

Thouless-Schmelzvorgang hinweisen würde. Die Hysterese in den Erhitzungs-Gefrier-

kurven zeigt darüber hinaus, dass der Kristallisationsprozess einen aktivierten Prozess

darstellt.





Abstract

In this thesis we have performed computer simulations of nucleation and crystalliza-

tion in colloidal systems. Monte Carlo simulation method combined with forward flux

sampling technique is implemented to study homogeneous and heterogeneous crystal

nucleation of monodisperse hard spheres. In the moderate super-cooling of bulk hard

sphere system, we predicted the homogeneous nucleation rates and compared the results

with other theoretical results and experimental data. We also analyze the crystalline

clusters in the nucleation and growth regions. We found that crystalline clusters in the

system formed in different shapes. Small clusters are more elongated in one arbitrary

direction, however, bigger clusters are more compact and have an ellipsoidal shape.

In the next part, we studied heterogeneous nucleation at the structured bcc (100)

wall. 2d analysis of crystalline layers at the wall showed that the structure of the wall

has a crucial role in solidification of hard sphere colloids. We also predicted hetero-

geneous crystal nucleation rates for different degrees of supersaturation. Additionally,

by analyzing of the largest clusters at the wall, we estimated the contact angles be-

tween crystalline clusters and the wall. We found that for such system, we are far from

wetting region and crystallization process happens via heterogeneous nucleation.

In the last part of the thesis, we reported the crystallization of Lennard-Jones col-

loidal system confined between two planar walls. In order to study freezing process

for such system, we performed the bond-orientational order parameter analysis in the

layers. The results showed that there is no hexatic order inside the layer which would

indicate the Kosterlitz-Thouless melting process. Also the hysteresis in the heating-

freezing curves shows that the crystallization process proceeds an activated process.
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1 Introduction

Vapor, liquid and ice are three different equilibrium phases of water in nature. Pure

water normally evaporates at 100◦C and freezes at 0◦C. However, it can also be ”super-

cooled” at the standard pressure down to almost −42◦C without freezing. Supercooling,

also known as under-cooling [1, 2], is the process of lowering the temperature of a liquid

or a gas below its freezing points without it becoming a solid. A liquid below its stan-

dard freezing point will crystallize in the presence of a seed crystal, a nucleus around

which a crystal structure can form or at a wall of container. However, lacking any such

nucleus or external effects, the liquid phase can be maintained all the way down to

the temperature at which crystal homogeneous nucleation occurs (In the supercooled

metastable state).

Crystal nucleation is an example of transformation at the first order phase transi-

tion. The same phenomenon happens if the starting system is a superheated liquid,

triggering in to the vapor. Nucleation is also a rare event happening in the nature. In

rare events, the average waiting time between events can be several order of magnitude

longer than the event time itself and as a consequence, rare events are basically dif-

ficult to study and investigate. However, nucleation has many practical consequences

in science and technology. In materials science, the casting of metals gives physical

properties that depend on the conditions of crystal growth. If large under-coolings can

be achieved before nucleation occurs (as in the rapid solidification processing) different

and potentially useful forms of the metals may be produced. In atmospheric sciences,

the nucleation of both water droplets and ice crystals in the atmosphere has a ma-

jor effect both short-term on the weather and long-term through global warming (or

cooling) by cloud formation.

Fahrenheit was the first who studied the crystallization of water [1], by the concept of

supercooling. Later Gibbs gave a detailed description of the criteria for the phase equi-

libria [3]. He suggested the distinction between stable, metastable and unstable phases,

to understand the phase transformation from the metastable phase to the stable phase.

Volmer and Weber [4] were the first scientist who formulated a theory of nucleation, the

so called ”classical nucleation theory” (CNT). Classical theory of nucleation is the best

qualitatively understood framework of nucleation phenomena. In CNT, the free energy

of spherical nuclei contains both surface and bulk terms. The surface term describes

the free energy needed to create an interface between solid and liquid phases. This

1



2 Chapter 1. Introduction

Figure 1.1: Snapshots of the spherical solid cluster radius R in the metastable liquid
phase (left-hand side). Also the Gibbs free energy barrier of nuclei, as a
function of R.

term is positive and proportional to the area of the liquid-solid interface. The bulk

term takes care of the fact that the solid phase is more stable than the liquid phase.

This term is negative and proportional to the volume of the solid cluster. According to

classical nucleation theory, the Gibbs free energy of a solid spherical nucleus of radius

R is written as

∆G = 4πR2γ +
4

3
πR3ρs∆µ , (1.1)

where ρs is the number density of the bulk solid, ∆µ the difference in chemical potential

between the liquid and the solid (negative value), and γ is the liquid-solid surface free

energy density.

∆G as a function of nucleus radius R, has a maximum at R∗ = 2γ/(ρ|∆µ|) and the

critical height of the nucleation barrier is given by

∆G∗ =
16π

3

γ3

(ρs|∆µ|)2
. (1.2)

Figure 1.1 shows the behavior of the Gibbs free energy barrier of a solid cluster, as a

function of radius R. The probability of the formation of the critical cluster depends

exponentially on its free energy and has the form of

P ∗ ∝ e−β∆G∗

, (1.3)

where β = 1/kBT .

The rate of nucleation in CNT is given by the product of P ∗ and a kinetic factor k.
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The expression for nucleation rate from CNT is

Rate = k e
(−

16π

3kBT

γ3

(ρs|∆µ|)2
)

(1.4)

with k = 24ρlZDsn
∗2/3/λ2. here ρl is the number density of the liquid, Z =

√
|∆µ|/6πkBTn∗

is the Zeldovich factor, Ds is the self-diffusion coefficient, n∗ is the critical nucleus size,

and λ is the typical diffusion distance for particles to attach to the critical nuclei.

Nowadays, CNT is the most used theory to understand the nucleation processes from

experimental and numerical measurements. In this thesis we attempt to study homoge-

neous and heterogeneous nucleation phenomena using numerical techniques to simulate

the crystal nucleation process. we use forward flux sampling (FFS) in combination with

the local bond-order analysis for identification of the crystal nuclei, to predict crystal

nucleation rates for homogeneous and heterogeneous systems. In addition, we analyze

the size and the shape of clusters in different trajectories and pathways.

1.1 Overview

In this thesis we study the numerical investigation of homogeneous and heterogeneous

nucleation in hard sphere colloidal systems. Forward flux sampling (FFS) technique

[5, 6, 7, 8, 9] is applied to predict crystal nucleation rates. Additionally, we used local

bond-order analysis for the identification of critical nuclei and to study the structure

of critical nuclei. We also study the solidification of Lennard-Jones system confined in

a slit pore as a firs step for studying heterogeneous crystal nucleation in such system.

This thesis is organized as follows:

In chapter I, we discuss detailed homogeneous classical nucleation theory (CNT ).

Here we review an expression for free-energy barriers and also nucleation rates. Then

we present the numerical and computational techniques used in the thesis: Forward

flux sampling (FFS) in order to predict nucleation rate constants and to analyze the

nucleation pathways during process. Before describing FFS in more details, we have

a short review about other computational methods as a history of FFS to study rare

events.

In chapter II, we study homogeneous crystal nucleation for hard sphere colloidal

systems using forward flux sampling. We predict nucleation rates in moderate under-

cooling and compare them with the umbrella sampling (US) method [10, 11, 12] of Auer

and Frenkel [13], brute force molecular dynamics and Monte Carlo simulations [14, 15]

and experimental data [16, 17, 18]. We also apply the tensor of gyration in colloidal

model to analyze crystal clusters in the hard sphere system and in different pathways

for different pressures.
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In chapter III, we develop FFS to study heterogeneous crystal nucleation of hard

spheres confined between one bcc(100) structured wall and one planar repulsive wall.

The aim of this chapter is to study the effect of structured wall on crystal nucleation.

In this part, for the first time we predict heterogeneous nucleation rates of hard sphere

and analyze the critical clusters at the bcc-wall by means of the gyration tensor.

Finally in chapter IV we apply standard molecular dynamics (MD) simulation tech-

niques to study solidification of the Lennard-Jones colloidal system confined in a slit

pore. In this system we are interested to see if hexatic order which would indicate a

melting scenario of the Kosterlitz-Thouless type is occurring in the system. For this

system we did some 2D analysis and also we study the dynamics of the system by

computing diffusion coefficients.



2 Methods

In this chapter we explain a physical description of phase transitions and in partic-

ular the nucleation phenomenon. We start with phase transitions and different phases

in the nature. Next we describe nucleation phenomena and continue with derivation of

the classical theory of nucleation and CNT expression for nucleation rates and free en-

ergy barriers. In the next part, we review numerical tools which are needed to study rare

events and the forward flux sampling (FFS) technique used in this thesis. Finally, at

the end of the chapter, we define the bond order parameter and the reaction coordinate

to identify solid-like particles and also identification of the cluster used in numerical

simulations of nucleation.

5



6 Chapter 2. Methods

2.1 Phase transitions and the nucleation phenomenon

Nucleation phenomenon is an example of the first order phase transition in the na-

ture [19]. The condensation of gases, melting of solids, freezing of liquids and etc., are

examples of thermodynamic first order phase transitions in daily life. These phenom-

ena are classified as first order phase transitions, because they involve a discontinuous

change in the density ρ, which corresponds to the first derivative of the Gibbs free

energy per particle (the chemical potential µ) with respect to the pressure (P ) at the

constant temperature T . Gibbs was the first to study the liquid to the vapor phase

transition between two phases [3]. Figure 2.1 shows an isotherm curve of a simple fluid

in the P − V plane, also corresponding diagram of the free energy.

In general phase transition can be considered as a quantitative variable of the struc-

ture or the reaction of a physical system with respect to a change of external parameters

like pressure, temperature, electric and magnetic fields. A phase transition occurs when

a phase becomes unstable in the given thermodynamic conditions described with in-

tensive variables (P , T , ...). During such a phase transition, the physical system may

transfer from the stable state to an intermediate state called ”metastable” equilibrium

state which is a thermodynamic state intermediate between stable and unstable states.

Liquid water at the temperature below 0oC typically corresponds to a meta-stable state

named ”super-cooled” water. Similarly, a substance maintained in a liquid state above

its boiling point is also in a metastable state called ”super-heated”.

In principle, when a material undergoes a transformation from an initial stable equi-

librium state, it passes from metastable state to instability and then a phase transition

is observed. The thermodynamic description of phase transitions says nothing about

the evolution of the phase in time nor about the kinetics of the transition phenomenon.

For instance, phase diagrams only give information about the coexistence of phases (as

a function of pressure, temperature, concentration, etc.) and not the time required

for passing from one phase to another one, when thermodynamic parameters of a sys-

tem are changed. So far know that the phase change is not instantaneous and that

it is a dynamic phenomenon and each transition has its own kinetics. The dynamic

description of the phase transition implies that the mechanism of transformations are

known in advance and they are very varied. The most frequently involves the formation

of micro structures which are the ”nuclei” of the new phase that appears during the

transformation: this is called the nucleation phenomenon. For example, nucleation is

encountered in a liquid during crystallization when crystallites, the nuclei of the solid

phase are formed.

When a liquid is under-cooled, the solid is more stable than the liquid. However,

the liquid will not crystallize immediately. First, nuclei of the solid phase have to be

formed. This is an activated process. The nucleus has to cross a free-energy barrier in
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Figure 2.1: Pressure-Volume and Free-energy-Volume of simple fluid in constant tem-
perature T . Filled circles in P − V curve are correspond to the coexistence
pressure between two given phases i. e. the vapor and liquid phases.
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order to grow into a bulk crystal. Nuclei at the top of the free-energy barrier are called

critical nuclei. Nuclei that are smaller than the critical nucleus size, the so-called pre-

critical nuclei, have a tendency to shrink, because in that way they can lower their free

energy. For the same reason, nuclei that are larger than the critical size, the so-called

post-critical nuclei, tend to grow.

In this case nucleation is only possible if atoms or molecules constituting the material,

can diffuse within it to aggregate and thus form the nuclei of the new phase. Diffusion

is then the key mechanism that guides the nucleation phenomenon itself and determines

its kinetics. The interfacial properties, particularly the interfacial free energy, also play

an important role in nucleation and the appearance of the nucleus of the new phase

and creation of an interface between two phases. Also external objects and effects like

surfaces and dust particles in the system change the process of nucleation in such a

phase transition.

Depending on the role of foreign bodies and external effects, nucleation phenomena

can be either homogeneous or heterogeneous. In the first case the energy barrier that a

system must overcome to generate crystal nuclei (from a homogeneous mother phase)

depends on geometrical parameters, on temperature, supersaturation and on the spe-

cific energy of the interface between the mother phase and that crystallising from it.

Therefore, in homogeneous nucleation due to spontaneous density fluctuations in the

bulk of a pure phase, transition happen. In the second case (when other bodies exist in

the system) new interfaces must be considered which exert an additional influence on

the activation barrier for nucleation and hence on the nucleation rate. Here the phase

transition can be assisted by walls or impurities within the system. Clusters on the

new phase are also formed at the surface of these foreign bodies. Figure 2.2 shows two

experimental examples of homogeneous and heterogeneous nucleation.

2.2 Classical theory of nucleation

Classical nucleation theory (CNT) is the most common theory to describe the nucleation

phenomenon. This theory is employed to predict the nucleation rates and estimate the

nucleation barrier. Starting point of the theory formulated by Volmer and Weber [4] and

extended by Farkas [20], Becker and Döring [21], and Turnbull and Fisher [2]. Volmer

and Weber applied the Gibbs formulation of the reversible work of a new stable phase

happening in a metastable parent phase. This was a first theory of nucleation which

would calculate the nucleation rate. Later on, Farkas formulated a kinetic model cluster

evolution. Afterwards, Becker and Döring argued that a steady-state distribution was

more suitable than the equilibrium distribution proposed by Volmer and Weber, and

obtained an expression for a steady-state nucleation rate in a vapour condensation

experiment.
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Figure 2.2: On the right-side: an experimental example of heterogeneous crystal nu-
cleation and growth. This AFM tapping/phase mode image shows the
nucleation of a polylactide spherulite in the melt at 95C. The nucleation
is heterogeneous, i.e. the growth starts at impurities like dust particles.
Schematic three-dimensional representation of a particle surrounded be its
neighbors (courtesy of Ralf Thomann (Freiburg Materials Research Cen-
ter)). On the left-side: bubbles in a soft drink each nucleate independently,
responding to a decrease in pressure (Photos courtesy of Wikipedia).

Figure 2.3: Schematic formation of nucleus of the new stable phase B in a meta-stable
parent phase A. The nucleation barrier in given by the free energy difference
of the two systems.

In the following we review the CNT derivation of the reversible work for the formation

of a cluster in a metastable phase and define the equilibrium distribution of cluster sizes

and also the nucleation rate.

2.2.1 Classical theory of nucleation and the free energy barrier

In this section we describe the classical nucleation theory of the free energy barrier and

the equilibrium size distribution of clusters. As a start point we assumed a system in a

metastable phase A, for instance a vapor (left-hand side of Fig. 2.3), at thermodynamic

conditions where the stable phase B (for instance liquid) exists. Phase B after reaching

the critical size starts growing in the parent phase A (right side in Fig. 2.3).

To facilitate relations, we label the initial metastable phase A (left-hand side of

Fig. 2.3) as a system I and system II is the metastable phase A when a stable phase
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B exists (on the right-hand side in Fig. 2.3). The aim is to compute the reversible

work for the formation of a cluster of the new stable phase B in the parent phase A

at constant temperature and pressure. For this reason, first we calculate the internal

energy of the system in both situations I and II. In system I which is containing only

the A phase, the internal energy is

U I
A = SIT I − P IV + µIN, (2.1)

where S is the total entropy of the system, T the absolute temperature, P the pressure,

V the total volume, µ the chemical potential and N = NA is the total number of

particles. In system II, the internal energy is

U II
A+B = SIIT II − P II

A V II
A − P II

B V II
B + γA+ µIIA NA + µIIBNB , (2.2)

where PA and PB are the pressures of phase A and B respectively, VA and VB their

volumes, γ the interfacial free energy existing between two phases, A the surface area

of the stable state B, µA and µB their chemical potential NA and NB the number of

particles in A and B phases.

We assume the temperature throughout the system is uniform (T I = T II), but no

uniformity of the pressure or the chemical potential yet required. The total number of

particles in the system is given by N = NA +NB and the total volume V = VA + VB .

Therefore, Eq. 2.2 can be written as

U II
A+B = T IISII − P II

A V + (P II
A − P II

B )V II
B + γA+ µIIA N + (µIIB − µIIA )NB . (2.3)

As the system is in constant pressure, P = P I = P II
A and also since NA ≫ NB ,

µI = µIIA . The reversible work to grow a cluster of phase B from the parent phase A is

obtained by the Gibbs free energy difference between situations I and II. We define the

Gibbs free energy of the system I by GI
A and in system II by G = GII

A+B . As the system

is in constant-pressure, constant-temperature (NPT ), the Gibbs free energy difference

is define as

∆G = ∆U + P∆V − T∆S. (2.4)

Thus, by using this equation and also Eqs. 2.1 and 2.3, ∆G can be written as

∆G = GII
A+B −GI

A = (P − P II
B )V II

B + γA+ (µIIB − µIIA )NB (2.5)

where µIIA = µIIA (PA) and µ
II
B = µIIB (PB).

The final expression of the nucleation free energy in CNT is obtained with a few

assumptions. First, the growing clusters are characterized by the bulk properties of

the stable phase B. The cluster in phase B has a spherical shape and the interfacial
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free energy γ is also independent from the radius of the cluster, and therefore γ =

γ∞, that γ∞ is the interfacial free energy of a sphere with an infinite radius, i.e. a

flat interface. Last assumption is about incompressibility of clusters. The cluster in

phase B is incompressible and its density ρ does not change with pressure. Also in

thermodynamics, we know that, at constant temperature

dµ

dP
=
V

N
= ρ−1. (2.6)

Thus the chemical potential of the new phase b can be written as

µIIB (P II
B ) = µIIB (P II

A ) +
P II
B − P II

A

ρB
(2.7)

where ρB is the density of phase B.

By using CNT assumptions and also Eq. 2.7, the expression for the free energy of a

cluster with area A containing NB particles in parent phase A is

∆G(NB) = γ∞A(NB) + [µIIB (PA)− µIIA (PA)]NB

= γ∞A(NB)− |∆µ|NB

(2.8)

where |∆µ|[µIIB (PA)−µIIA (PA)] is the chemical potential difference between two phases

and is a negative quantity, and A depends on the cluster shape which is a spherical

shape due to CNT assumptions. Hence the area of cluster is A = 4πR2 and also

VB =
4

3
πR3 and ρB = NB/VB . Finally the Gibbs free energy of formation of a spherical

cluster of phase B with radius R in the metastable phase A is

∆G(R) = 4πR2γ∞ − |∆µ|ρB
4

3
πR3 (2.9)

According to Eq. 2.9, the Gibbs free energy difference contains two terms, the surface

term and the volume term. The first term is the surface term which is the free energy

cost for creating an interface between phases A and B. This term is positive and

proportional to the surface area of the cluster and called the surface free energy. The

second term is a bulk term which is negative and proportional to the volume of the

cluster in the system and is called volume free energy. This term expresses the fact that

the phase B is more stable than the parent phase A. Figure 2.4 shows the behavior of

the Gibbs free energy versus the radius of the cluster. The function ∆G goes through

a maximum value at

R∗ =
2γ∞

|∆µ|ρB
(2.10)

which denotes the critical cluster size. For small clusters, the surface term dominates

and the free energy increases, however, if this nucleus exceeds the critical size, the
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Figure 2.4: Classical nucleation theory prediction of Gibbs free-energy of a cluster as a
function of its radius R.

volume free energy term dominates, its free energy decreases and stable phase B starts

to grow. The corresponding height of the free energy barrier of nucleation is then

∆G∗ =
16π

3

γ3∞
(|∆µ|ρB)2

. (2.11)

2.2.2 Cluster size distribution

By using Eq. 2.8 (The Gibbs free energy difference between two situations I and II at

constant temperature) and defining NB = n, we can introduce the chemical potential

of a cluster of size n as

µn(P ) = γA+ nµB(P ) (2.12)

where P is the pressure of phase A. In order to compute the equilibrium distribution of

clusters, we assume a low concentration of clusters forming in the metastable phase A

and a cluster size n exerts a partial pressure Pn on the system (such as
∑∞

i=1 Pi = P ).

Thus the chemical potential of a cluster size n at Pn is

µn(Pn) = µn(P ) + kBT ln(
Pn

P
). (2.13)
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In this equation, we used dµ/dP = 1/ρ and the ideal gas equation of state (P = ρkBT ).

By using Eq. 2.13, it is possible to rewrite Eq. 2.8 as

∆G = µn(Pn)− kBT ln(
Pn

P
)− nµA(P ). (2.14)

By using the fact that at equilibrium, µnPn = nµA(P ), the free energy barrier expres-

sion in CNT becomes

∆G = −kBT ln(
Pn

P
). (2.15)

Also by means of Raoult’s law, Pn/P is equal to Nn/NA ∼ Nn/N , the CNT expression

of the equilibrium distribution for clusters of size n is

∆G = −kBT ln(
Nn

N
) = −kBT ln(P (n)), (2.16)

where P (n) is the probability to have a cluster of size n.

2.2.3 Classical nucleation theory of the nucleation rate

Calculating a nucleation rate was first formulated by Volmer and Weber [4]. Classical

nucleation theory attempts to understand the kinetics of the nucleation process of

clusters of the new phase (called phase B) from the metastable initial phase A, by

computing the nucleation rate. This theory assumes that clusters of the phase B

slowly grow or shrink via the attachment of single particles:

Bn−1 +B1

k+,n−1
⇋

k−,n
Bn

Bn +B1

k+,n
⇋

k−,n+1
Bn+1

(2.17)

where Bn−1 is a cluster with n − 1 particles, B1 with one particle, k+,n−1 the attach-

ment rate of one monomer to the Bn−1 cluster, and k−,n the detachment rate. This

assumption was initially made for vapour-liquid nucleation, where the concentration of

monomers is much larger than the one of dimers and where collisions between growing

clusters are extremely rare [22]. By solving the following master equation, we compute

the time dependent cluster distribution Nn(t).

dNn(t)

dt
= Nn−1(t)k+,n−1 − [Nn(t)k−,n +Nn(t)k+,n] +Nn+1(t)k−,n+1. (2.18)

The nucleation rate at a given cluster size n is a time dependent flux of clusters that

reaches n, and is given by

Rn,t = Nn(t)k+,n −Nn+1(t)k−,n+1. (2.19)
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To obtain the rate in this equation, two assumptions are needed. First, when the

clusters in the system are larger than the critical cluster, the back flux is zero (N(t) =

0 for n > n∗).the second assumption is for n < n∗, N(t) is the equilibrium clusters

distribution Nn with N ∼ N1 the total number of monomers and e−β∆G(n∗) determines

the probability to find the critical cluster n∗. Therefore eq. 2.19 has become

R = Nnk+,n∗ = N1k∗,n∗e−β∆G(n∗) (2.20)

where k+,n∗ is the attachment rate of a single particle to the critical cluster, and ∆G(n∗)

is the free energy barrier to nucleation.

Becker and Döring replaced the equilibrium clusters distribution Nn with a steady-

state clusters distribution N s
n, and changed eq. 2.19 into

R = N s
nk+,n −N s

n+1k−,n−1 , (2.21)

an equation that can be solved by recurrence (see e.g. Ref. [23])

R = N1[
∞∑

i=1

1

k+,nξn
]−1 (2.22)

where

ξn =
n−1∏

j=1

k+,n

k−,n+1
for n > 1. (2.23)

To explicitly determine R, it is assumed that the rate constant does not depend on the

system being in equilibrium. Imposing the system initially in equilibrium,

nN1
K
⇋Nn (2.24)

where N1 is the equilibrium distribution of monomers, Nn the equilibrium distribution

of clusters of size n, andK the equilibrium constant and relate the ratio of rate constants
k+,n

k−,n+1
in the eq. 2.23 to the equilibrium constant. The equilibrium constant K for

this reaction is then given by eq. 2.16, and thus eq. 2.22 becomes

R = N1[
∞∑

i=1

1

k+,ne−β∆G(n)
]−1. (2.25)

Becker and Döring used several approximation in order to compute the nucleation rate

R. First, near the top of the free-energy barrier, δG(n∗) dominates the sum in eq. 2.25.

Next assumption is, δG(n) is replaced by the first two non-zero terms of the Taylor

expansion around n∗, and k+,n is replaced by k+,n∗ . Finally, the sum is replaced by

an integral from n − n∗ = −∞ to n − n∗ = ∞, considering Nn to be the continuous
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function of n. By these approximations, the final expression of the nucleation rate is:

R = N1k+,n∗(
|∆G“(n)|n∗

2πkBT
)1/2 e−β∆G(n∗), (2.26)

where |∆G
′′

(n)|n∗ is the second derivative of the Gibbs free energy ∆G(n) with respect

to n computed at the critical cluster size n∗, and

Z = (
|∆G“(n)|n∗

2πkBT
)1/2 (2.27)

is the Zeldovitch factor [24].

By using the expression of ∆G as a function of n in CNT, we can write the nucleation

rate per unit volume as

R = N1k+,n∗(
|∆µ|

6πkBTn∗
)1/2 e−β∆G(n∗). (2.28)

where

Z = (
|∆µ|

6πkBTn∗
)1/2. (2.29)

By defining κ as a kinetic pre-factor, eq. 2.29 can be written as

R = κe−β∆G(n∗), (2.30)

where

κ = N1k+,n∗Z. (2.31)

It is clear that by increasing the super saturation (∆µ), the nucleation rate R increases.

2.3 Rare events simulation methods

Simulation of first order phase transition phenomena like nucleation is difficult to in-

vestigate. The free energy barrier which separates the metastable phase from stable

phase causes nucleation to become a rare event. In conventional (brute-force) simu-

lations, the system will usually fluctuate around its metastable free energy minimum.

To study nucleation by using normal simulations on a reasonable time-scale and on the

small length scales, we have to impose an extreme supersaturation to the system. If

we are interested to reduce the supersaturation applied to the system, the free energy

barrier gets higher and the probability to detect the nucleation event on such time and

length scales gets extremely low. In this situation, the system spends a long time in a

stable state and rarely jumps to another state in a short time. Therefore, the study of

nucleation event requires advanced sampling methods.
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The separation of time scales (waiting time to observe a nucleation event and the

time that nucleation itself takes) makes it possible to describe the kinetics of rare events

as a product of two factors: the probability of reaching the top of the free energy barrier

and the rate at which it is crossed. The initial idea in this approach was contained in

transition state theory (TST) [25, 26]. The fist step in this approach is the definition of

a reaction coordinate Q and its description that measures the progress of the transition

from one metastable phase to the final stable phase. For Q < Q∗, the system is in

the domain of attraction of state A, and for Q > Q∗ the system likes to grow and

reaches the final state B. The transition surface is formed by the set of all points in

configuration space where the probability to reach states A or B is 0.5. The surface

Q = Q∗ provides an approximation to the transition state.

When we know the location of the transition state in phase space, it is then possible

to formulate the rate of the rare event like nucleation. This computation involves two

major steps. In the first step we compute the reversible work ∆W (Q) required to move

the system from the A metastable state to the transition state (at Q∗). The probability

that spontaneous equilibrium fluctuations bring the system to the transition state is

P (Q∗) = e−βW (Q∗), (2.32)

where β is 1/kBT . As we showed in the classical nucleation theory of the free energy

barrier, the reversible work to nucleate a new stable phase from the metastable parent

phase with size Q∗ is proportional to the Gibbs free energy ∆G. Therefore we have

P (Q∗) = e−β∆G(Q∗). (2.33)

As a next step, since the system is at the transition state, it is possible to calculate the

frequency of successful crossings of trajectories started from the transition state. This

term gives us the crossing rate kQ∗. The product of these two steps give an expression

for the rate of the rare events:

R = k(Q∗)P (Q∗). (2.34)

In the last twenty years, several algorithms were developed to study rare events.

Bennett-Chandler method is one of the first algorithms which is based on this two-step

procedure [26]. In this method, P (Q∗) can be computed by means of the Umbrella

Sampling (US) technique [12, 10]. Disadvantages of this method are that it is compu-

tationally demanding, and that its success depends on the choice of reaction coordinate.

By choosing a wrong Q, the system samples the wrong part of the phase space and as

a consequence the rate value is not reliable.

Transition Path Sampling (TPS) [27, 28, 29] later has been developed to solve this
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problem. In TPS, two states are defined by means of the order parameter and then

generation of an ensemble of trajectories between initial and final states using Monte

Carlo simulation in the trajectory space is performed. In this method, the order pa-

rameter does not need to be the true reaction coordinate and also we can compute the

rate constant in rare events without prior knowledge of the reaction process. However,

knowledge of the steady state phase space distribution is required for the acceptance or

rejection step in MC. The drawback of TPS is that the calculation of the rate constant

is time consuming. Although this technique needs an order parameter to distinguish

two states, the order parameter has to determine whether the system is in A or B, but

not where it is in between.

Moroni and co-workers developed this method further and called it Transition Inter-

face Sampling (TIS) [30, 31, 32]. In this method, a series of interfaces (hyper-surfaces)

are fixed between the initial and final states. Probability of crossing interfaces are used

to estimate rate constants. These authors have also developed a method that is called

Partial Path TIS (PPTIS) [33]. Using this technique, we can predict not only rate

constants, but gives us free energy barriers too [34]. Moroni and coworkers used this

method to study crystal nucleation of the Lennard-Jones fluid [35].

Forward Flux Sampling (FFS) [5, 7, 6] that we used in this thesis is a novel simulation

technique which was developed by Allen and coworkers in order to study rare events.

This method allows us to predict rate constants and follow trajectories and pathways for

rare events in both equilibrium and non-equilibrium systems with stochastic dynamics.

Similar to TIS and PPTIS, FFS uses a series of interfaces between initial and final

states to compute the rate constant.

In the next part, we describe forward flux sampling, the technique we have used

to study homogeneous and heterogeneous crystal nucleation in hard sphere colloidal

suspensions. We used FFS to predict crystal nucleation rates and analyze the pathways

during nucleation and growth processes.

2.3.1 Forward flux sampling

FFS technique was developed by Allen and coworkers in order to study rare events in the

soft matter and the biophysical related systems. This method gives us this possibility

to compute transition rates between two states and also analyze the pathways between

two phases. It should be mentioned that FFS does not involve the calculation of a free

energy barrier, which makes it suitable for the study of equilibrium processes. As a

start point, we assume two states, the metastable phase A and stable phase B in the

phase space (Fig. 2.5). Next, it is necessary to define an order parameter Q - function of

the phase space coordinate - to distinguish phases A and B and define the boundary of

these phases. We used the number of particles in the largest solid cluster n as the order
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BA

Figure 2.5: Schematic phases A and B and also interfaces between these two phases are
shown. Each interface corresponds to the given cluster size n as the order
parameter Q.

parameter in studies of crystal nucleation. In the next step, we divide the phase space

with different interfaces with a unique number of cluster size as the order parameter.

Currently we can define two stable phases by means of Q. The system is in A state

whenever Q = λA < λ0, where we define λ0 as the boundary of state A. On the other

hand, whenever Q = λB > λn, the system is in phase B and λn is defined as a boundary

of phase B.

Since the transition from A to B is a rare event, when we use conventional Monte

Carlo or molecular dynamics simulations, most of the time Q is smaller than λ0. How-

ever, the idea in FFS is to use a series of interfaces in phase space which are defined

by a value of the order parameter Q (Q = λ0, λ1, ..., λn) to drive system from A state

to the state B.

The next step after identification of interfaces is to perform a brute-force simulation

in meta-stable state A. When the system reaches the interface λ0, the configurations of

the system are stored. Also we sampled the time τ which the system crosses λ0 for the

first time. The next time measurement τ is whenever the system returns to state A ( i.e.

coming from λ0 and crossing λA) and again crossing λA and reaches boundary λ0. At

the end of this part of simulations, we have a distribution of coordinates of the system

in different times at the first interface λ0 (a) part in Fig. 2.6). This distribution of

configurations, is used as a random set of trajectories from the first interface λ0. Each

trajectory is continued until the system either crosses the next interface λ1, or returns

to the state A (b) part in Fig. 2.6). When the trajectories cross the next interface,

configurations are saved again and points are called successful shots.
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a)

b)

c)

Figure 2.6: Schematic representation of the various stages during forward flux sampling.
a) Sampling of the flux through the first interface. The crossing time τ and
also stored configuration (open circles) at the firs interface are sketched. b)
Shooting of trial trajectories from saved configurations (filled circles). Some
trajectories are successful and reach the next interface, but some of them
are not successful and return back to the initial state (open circles). c) final
path reconstruction connecting trajectories across interfaces.
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We can continue the same procedure for all interfaces and for each interface i, com-

pute the probability P (λi|λi+1), which is the probability of the crossing interface i+1,

for a trajectory that comes from state A, before it returns again to state A. Figure 2.6

(c) shows the saved configurations in different interfaces and crossing phase space to

reach the final state B. In this manner all interfaces are sampled sequentially and a

product of probabilities is obtained.

In FFS, the nucleation rate constants are computed as a product of two terms. One

of them is the flux of stochastic trajectories which leaves the initial state A and reaches

the boundary λ0 for the first time. The next term is the probability of reaching the

final state B. The rate constant R then can be written as

R = ΦA→0 · P0→B = ΦA→0 ·
n−1∏

i=0

Pi→i+1 (2.35)

where ΦA→0 is the steady state flux of trajectories crossing the state A boundary, and

P0→B is the overall probability of reaching the last interface, from trajectories which

come from the initial state A.

In practice, the flux is the number of trajectories crossing boundary λ0 per unit of

time τ and volume V (NA→0). In the simulation this part can be calculated from

conventional MC or MD in state A:

ΦA→0 =
NA→0

t · V
. (2.36)

where NA→0 is the number of saved configuration at interface λ0, V the volume of

simulation box, and t =< τ > is the average time the system spends in basin A before

crossing λ0 for the first time.

For calculating the probabilities, the N0 = NA→0, configurations saved at the first

interface are used as start points to cross the next interface λ1. For each trajectory,

we useM0 independent runs with different random seed numbers from random number

generator to improve statistics. The total number of trial runs are M0 · N0 and we

assumed the minimum number of successful runs or trajectories which reach λ1 is

N succ
0→1. A trajectory or run can reach the next interface or return back to the state A.

The probability to reach the interface is then

P0→1 =
N succ

0→1

M0 ·N0
. (2.37)

In the next step, N succ
0→1 configurations are used as a starting point to estimate the

probability to go from interface λ1 to λ2 (P1→2), and so on until the system reaches

the final state B (λn). By calculating the flux and the overall probability, and using

Eq. 2.35, we can compute rate constants. Also as we have configurations of the system
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in each interface, it is possible to analyze pathways too.

2.4 Identification of crystalline clusters: Local bond order

parameter

In the previous section we reviewed the forward flux sampling method for the study

of rare events and particularly for the crystal nucleation phenomenon. As mentioned

there, this technique requires an order parameter for identification of different states in

phase space. The criteria for a good order parameter differs in different method. For

some methods, such as transition path sampling (TPS) [27, 29] it is sufficient to identify

start and final points of the transition in the metastable and the stable phases. On the

other hand, for some other methods like forward flux sampling or umbrella sampling

(US) [12] it is essential that the order parameter correlates closely with the transition

progress and that it increases monotonously moving along the paths from the A state

to the B.

Definition of order parameter is also essential for identification of solid-like particles

and crystalline clusters. For this reason, we use a bond-order parameter analysis that

was initially introduced by Steinhardt et.al [36] to describe the orientational order

in liquids. This approach later on was extended by ten Wolde et.al [37] to study

homogeneous crystal nucleation from a supercooled Lennard-Jones liquid. This method

has the following advantages and features: first of all, it is sensitive to the difference

between liquid and solid structures. Second, it does not depend on the orientation

or its position in space of the crystal and is only sensitive to the overall degree of

crystallinity in the system and is not sensitive to any specific crystal structure. The

last important advantage is that these bond order parameters can be constructed so as

to be independent from the reference frame.

In studying crystal nucleation, we use this bond-order parameter to identify the

largest cluster of the new phase. We consider the size of the largest cluster to be the

relevant order parameter to follows the liquid to the solid transition. In practice, we

start by identifying liquid- or solid-like particles and then use a cluster definition to

group neighboring solid-like particles into crystalline clusters. Finally, we chose the size

of the largest cluster in the system as a local bond-order parameter (reaction coordinate

Q) which follows the transition. In what follows, we will review the definition of the

bond-order parameter and identification of solid clusters.

In the first step, we identify the nearest neighbors for each particle ”i”. The Voronoi

construction is one way to define nearest neighbors if their Wigner-Seitz cells share a

face (or a line in 2D). However, this model is computationally rather expensive and time

consuming. A simpler definition is based only on the particles’ distance. In this case,
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Figure 2.7: Schematic three dimensional representation of a particle surrounded by its
neighbors. Rc is the radius of the sphere and used as a cut-off value for
definition of neighboring particles.

we used a cut-off corresponding to the first minimum of radial distribution function g(r)

in the solid state at coexistence. All particles inside a sphere with radius Rc around

particles i are its neighbors. Figure 2.7 shows the schematic picture of particle i and

its neighbors inside the sphere with radius Rc. The local spatial orientation qlm(i) for

particle i which is a (2l + 1)−dimensional complex vector, is also defined as:

qlm(i) =
1

Nb(i)

Nb(i)∑

j=1

Ylm(r̂ij) (2.38)

where the sum goes over all neighboring particles (named as Nb(i)) of particle i and

Ylm(r̂ij) are spherical harmonics evaluated for normalized direction vector r̂ij between

neighboring particles. The orientation of the unit vector r̂ij is determined by the

polar and azimuthal angles θij and φij . The order l also depends on the symmetry of

the lattice and must be chosen accurately. For example, bcc and fcc lattice are well

respected using l = 6, but for the instance diamond lattice which is anti-symmetric,

order l = 3 is better suited. Components m of the spherical harmonics also range from

−l ≤ m ≤ l. The rotationally invariant local bond parameters are then defined as

follows

ql(i) = (
4π

2l + 1

m=l∑

m=−l

|qlm(i)|2)1/2 (2.39)

By this definition, we can obtain a quantity that is invariant versus both translation and
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Figure 2.8: Typical distribution function of the q6 bond order parameter from MC
simulations in a hard sphere system. Here we used Rc = 1.4σ for the local
environment of each particle. The right-hand side is for a system in the
solid state (βPσ3 = 20.00) and the left side illustration is for a system in
the liquid state (βPσ3 = 10.00)

rotation and does not depend on the frame of reference. This is an important property,

since a crystal cluster can form anywhere in the system and with any orientation.

In Fig. 2.8 we show typical distribution function of the local bond-order parameter

from Monte Carlo simulation of a hard sphere system close to the coexistence. The

figure shows that there is some separation between probability distribution function

in solid and liquid states, however, there is some overlap too and separation is never

pronounced. We can enhance this separation of the distribution function by calculating

the correlation function of the vector q6 of the neighboring particles i and j

q6(i).q6(j) =

m=6∑

m=−6

q6m(i).q6m(j)∗ (2.40)

where the ∗ is the complex conjugate. Figure 2.9 shows the corresponding distribution

function of q6(i).q6(j) for the hard sphere system. Although the distributions are

distinct, ten Wolde et.al [38] suggest additional criterion for identification solid-like

particles. They have mentioned if q6(i).q6(j) for particles i and j is larger than a

particular threshold (In our case, for hard sphere this number is around 0.7 as shown

in Fig. 2.9), these two particles are connected. We count the number of connections

between particles (nb) and define solid-like particle as a particle with at least nb = 6

(Fig. 2.10).

In the last step we need to have a criterion to define clusters in the system. The usual

criterion is that if particles i and j are solid-like particles and are less distant than a

cut off value Rc, then they are in the same solid cluster. The procedure is repeated

over all solid-like particles. Finally we use the number of particles in largest the cluster

(n∗) as the order parameter (reaction coordinate) in forward flux sampling to describe

the transition from meta-stable liquid phase to crystalline state.
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Figure 2.9: Probability distribution function (PDF) of q6(i).q6(j) for hard sphere sys-
tem from MC simulation results

Figure 2.10: Probability distribution of the number of connections per particle for a
meta-stable liquid and solid state.



3 Determination of crystal nucleation rates

of hard sphere suspensions

Using computer simulation, we study the homogeneous crystal nucleation of supersatu-

rated hard sphere colloidal suspensions. The crystal nucleation rates are determined by

Monte Carlo simulations using the forward flux sampling (FFS) technique. We compare

computed rate constants with experimental data and other theoretical results. Results

are presented for the effect of the degree of supersaturation on the nucleation rates and

critical cluster sizes. We also compare the obtained value for critical Gibbs-free en-

ergy barrier with classical nucleation theory and umbrella sampling. At the end of this

chapter we analyze the crystalline cluster by computing gyration tensor.

25
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3.1 Introduction

Nucleation [39] as a transformation in first order phase transition, is an interesting

phenomenon and it was studied extensively during last decades. This phenomenon is

occurs when a system which is in the meta-stable state, by a rare fluctuation (fluctua-

tion in density, pressure, etc.) passes a barrier in energy of the system and transforms

to the stable state. Nucleation phenomenon in the nature, is classified into two major

categories. In one case, the nucleation is observing in the bulk and because of fluctu-

ations in the system that is called ”homogeneous” nucleation. The second one which

is more common in the nature is ”heterogeneous” nucleation. In heterogeneous nucle-

ation, because of contacting system with external objects or forces, either something in

solution or dust in the air or walls of the container, the system nucleate and the phase

transition in the system is occur.

Nucleation in colloidal systems, is an example of this phase transformation. There are

several colloidal models that have been studied to explain nucleation from theoretical

and experimental point of view. As a simple model, hard sphere model has a crucial

role in condensed matter physics and material sciences, since it successfully gives the

essential and fundamental structural properties of fluids, crystals, glasses, colloidal

suspensions and granular media. Experimentally the phase behaviour of hard sphere

suspensions has been examined by Pusey and van Megen [40]. They found the freezing

volume fraction of hard sphere is η = 0.495 and the melting volume fraction of hard

sphere suspensions is η = 0.545. These values are in agreement with the theoretical

prediction of Hoover and Ree for fluid-solid transition of hard spheres [41].

Also from theoretical point of view, hard sphere suspensions are interesting to study.

The main reason of interest is the application of hard spheres in predicting many

natural behavior of simple fluids and soft matters [42]. Note that hard sphere systems

are simples models in colloidal physics and they are reference systems for studying the

behavior of more complicated fluids. Thermodynamic properties of hard sphere systems

have been investigated in the past decade. The coexistence pressure [43, 44, 45, 46],

kinetics growth coefficients [47], interracial free energies [48, 49, 50, 51], crystallization

of hard spheres, for both homogeneous [13, 52, 53, 54] and heterogeneous [55, 56,

57]cases studied using computer simulations.

The nucleation rate for hard sphere systems, is one of the interesting quantities to

investigate and study. This quantity has been measured experimentally, using different

methods like light scattering [16, 17, 18]. Also Confocal microscopy is used to gives a

direct access to particles positions, similar as in simulation and therefore any quantity

of interest can be obtain from the trajectory and position of particles [58, 59, 60, 61].

Polymethylmethacrylate (PMMA) as a hard sphere particles in a liquid mixture of

decaline and carbon disulfide is the usual system for studying hard spheres in lab [16,
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58].

On the other hand, nucleation rates are predicted theoretically by using computer

simulations. Auer and Frenkel [13] have used umbrella sampling (US) technique to

study homogeneous nucleation in hard sphere systems, in order to determine homo-

geneous crystal nucleation rates in moderate under-cooling. Also, Schilling et al. and

Filion et al. used brute-force Monte Carlo and molecular dynamics to predict nucleation

rates of hard sphere suspensions in high supersaturations [15, 14].

In this chapter, we present the study of homogeneous crystal nucleation in moderate

degrees of supersaturation to predict crystal nucleation rates and analyze growing crys-

tal clusters by using forward flux sampling [5, 6, 7]. In practice and for simulations, we

used the same conditions as Auer and Frenkel used in their work [13].

The chapter is arranged as follows. In Sec. 3.2 we outline simulation method and

computational details. We then present in Sec. 3.3 result of FFS for prediction of

crystal nucleation rates and analysis of crystalline clusters. Section 3.4 summarizes our

conclusions.

3.2 Computational methodology and simulation strategies

The system that we shall consider in this work is the suspension of spheres interacting

via the hard sphere potential. For a colloidal system of mono-disperse hard spheres

with diameter σ, the hard core interaction potential is defined as

u(r) =

{
∞ r < σ

0 r ≥ σ
(3.1)

where r is a distance between two center of mass of particles. Since any configuration

of the hard sphere system has zero potential energy, the fluid-solid transition in such

system is completely driven by the entropy and temperature T only plays the role of

the energy scale. Hence, density (ρ) or packing fraction η = (πσ3/6)(N/V ) is the only

quantity for controlling the thermodynamic properties of such system (or we can use

the pressure P in the NPT ensemble for which the total volume V fluctuate).

Our simulations operate within the isothermal-isobaric (N,P, T ) ensemble, wherein

the particle numberN , pressure P and the temperature T are constant while the system

volume V fluctuates. For the system, we used a cubic box with 13824 hard core particles

inside it and periodic boundary conditions in all directions. MC simulations were

carried out using the standard Metropolis algorithm to equilibrate the system [62, 63].

Similar to the work of Ref. [13] and for comparison, we study crystal nucleation for

three different pressures βPσ3 = 15.00, βPσ3 = 16.00 and βPσ3 = 17.00 corresponding

to different supersaturations (∆µ = 0.34, 0.44 and 0.54). In MC moves, the trial move
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Figure 3.1: Equation of state of bulk hard sphere system at constant pressure and
constant temperature.

size was chosen to be ∆x = 0.05σ and volume move was chosen ∆V = 0.00005σ3 . Also

we used 1× 10−6 sweeps for equilibration, and sampled observables every 2000 sweeps.

The results for the fluid and the crystal phases are presented in Fig. 3.1.

Since nucleation in the moderate super-cooling is a rare event, it is difficult to study

with brute-force Monte Carlo or molecular dynamics at low supersaturations (Fig. 3.2).

Hence we applied forward flux sampling technique with Monte Carlo simulation to study

crystal nucleation from the super-cooled liquid.

In the simulation of fluid-solid transition, in order to distinguish between colloidal

particles in the liquid and the solid phases, we used q6q6-bond-orientational order pa-

rameter (local bond-order parameter) [36, 37] which is one of the well characterized

order-parameter to identify the solid-like and the liquid-like local order around a col-

loidal particles. This identification has been applied to study nucleation [37, 64, 54]. In

nucleation, the number of solid-like particles in the largest cluster is used as a reaction

coordinate Q.

Then we apply the forward flux sampling method, a rare event technique developed

by Allen et al. [5, 6, 7] to determine crystal nucleation rates and configuration pathways

in the phase space. In our simulations, to have accurate statistics, all calculation for

nucleation rates and estimation of critical cluster sizes are averaged over ten indepen-

dent FFS simulation runs. Also in each run, at least 60 successful pass per interface are

used. Here the errors in cluster sizes are given by the FFS interface spacing. The size of
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Figure 3.2: Measurements of the Gibbs free-energy ∆G(n)/kBT as a function cluster
size n from brute-force Monte Carlo simulations in a system of hard sphere
at three different pressures. As shown, there are some small clusters ob-
served in the system at different pressures. Computed values for n and also
Gibbs free-energies are lower than the CNT predictions.
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the critical nucleus is also computed by corresponding value of the reaction coordinate

of the FFS interface at which the probability to reach the final state exceeds 0.5 [65].

Figure 3.3 shows a snapshot of the hard sphere system including solid clusters inside.

The snapshot is for a system at the pressure βPσ3 = 16.00 with a critical cluster in

it. Note that the size of all particles in the Fig. 3.3 is the same and to observe clusters

inside the system, we showed liquid particles in the system by black points. Also solid-

like particles with high ((nb > 10)) and low ((6 ≤ Nb ≤ 10)) symmetry are shown with

different sizes and colors.

3.3 Results and discussion

In this section, we describe our results from forward flux sampling simulations of crys-

tal nucleation of hard spheres in moderate supersaturations. Monte Carlo simulation

method in the isobaric-isothermal ensemble (NPT ) is performed to determine the crys-

tal nucleation rates and to trace the trajectory of pathways in the phase space. Since

the bulk coexistence pressure for the hard sphere is about βPcoexσ
3 = 11.67 [41], the

corresponding degrees of supersaturation that we used, are ∆P = P − Pcoex = 3.33,

4.33 and 5.33. FFS technique is a way to overcome Gibbs free-energy barriers and

computing nucleation rates.

In the first step, we used well-equilibrated configurations of the system in the liquid

metastable state. n = λ0 is chosen from brute-force simulation results (as shown in

Fig. 3.2 small clusters are existed in the system). Then we implemented brute force

Monte Carlo simulations and we collected N0 = 60 configurations at the first interface

(λ0) to measure the flux. Also in order to compute the flux, the total time consumed

by the system in the liquid basin, neglecting the time spent at the boundary λ0. In the

final step, the stored configurations (N0) at the first interface are used as start points

to compute the probability of reaching the final state. We assumed at least M0 = 60

stochastic trajectories are crossing each interface (Table 3.1).

Table 3.1: Computational details used in FFS simulation runs.

Pressure Number of interfaces λ0 N0 M0

βPσ3

15.00 60 10 60 60
16.00 48 12 60 60
17.00 34 15 60 60

According to the forward flux sampling, the rate constant can be written as

R = ΦA→0 · P0→B = ΦA→0 ·
n−1∏

i=0

Pi→i+1, (3.2)
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Figure 3.3: Snapshot of a hard sphere system with N = 13824 colloidal suspensions
containing a critical cluster size at a liquid pressure βPσ3 = 16.00. Perfect
solid-like particles (nb > 10) are shown in yellow. Solid-like particles with
low symmetry (6 ≤ Nb ≤ 10) are shown in red and for liquid-like particles
we used black points. Note that the size of all particles are the same and
different range has no physical meaning.
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where ΦA→0 is steady state flux of trajectories crossing the state A boundary in the

unit of volume and the unit of time, and P0→B is the overall probability of reaching

the last interface, from trajectories which come from the initial liquid state. Figure 3.4

shows FFS results of the probability of reaching the cluster size n (P (n)) as a function

of the number of particles in the largest cluster n. Each point is averaged over at least

ten independent FFS simulation runs. As is shown in Fig. 3.4, at the beginning of the

process, crystallization of clusters is difficult and clusters like to shrink and return to

the liquid state. Therefore the probability of reaching next interfaces is low. However,

after reaching the critical cluster size, the probability of crossing interfaces is high

(almost near one) and clusters like to grow and reach the next interfaces. Finally, by

using Eq. 3.2, we can compute the crystal nucleation rates for hard spheres in given

degrees of supersaturation (Table 3.2).

Figure 3.5 shows the density of different configurations in different interfaces for a

system in βPσ3 = 17.00. As is shown, different trajectories of configurations exist in

the phase space. At the beginning of the process, when largest clusters are small, con-

figurations are more correlated and in principle, all new configurations are created from

the same parent configurations and, they have the same thermodynamical properties

like the bulk density. For configurations with large clusters (bigger than the critical

cluster) in the growth process, the story is different. Here different systems choose

different ways and therefore many branches of trajectories in the phase space occur.

The size of critical nuclei is another quantity that we can obtain from FFS results.

The critical nucleus size in the forward flux sampling is approximated as an interface

nearest to where the probability of reaching final state for the largest clusters exceeds

0.5. Therefore stored configurations in such interface have critical cluster sizes. Av-

eraging over all largest clusters in such interface (M0 = 60 configurations), we can

predict the average critical cluster size (n∗) in such systems. Errors in critical cluster

sizes are equal to the distance between interfaces. FFS results for different pressures in

the moderate supersaturation are listed in Table 3.2.

Table 3.2: Summary of FFS simulation results of homogeneous crystal nucleation for
the hard sphere system in different degrees of supersaturation.

Pressure critical cluster size Zeldovich factor ∆G∗
FFS/kBT Nucleation rate

βPσ3 n∗ Z kσ3τL
15.00 218 ± 10 9.1 × 10−3 36.02 1.23× 10−17

16.00 126± 5 1.4 × 10−2 24.89 1.10× 10−12

17.00 109± 5 1.6 × 10−2 15.73 1.18 × 10−8

In the next part, we compare FFS results of crystal nucleation rates with other

theoretical predictions and experimental data. Figure 3.6 shows the comparison of our
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Figure 3.4: FFS results of the probability of reaching cluster size n as a function of
number of particles in the largest cluster n for different systems in pressures
βPσ3 = 15.00, 16.00 and 17.00.
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Figure 3.5: Density of different systems in different pathways in the phase space. The
x axis shows the interface id in phase space and y axis is the density of
systems. Results are for one FFS run for a system with βPσ3 = 17.00.

results with experimental results of Harland and van Megen [16], Sinn et al. [17] and

Schätzel and Ackerson [18] and also umbrella sampling simulations of monodisperse and

5% polydisperse hard sphere suspensions studied by Auer and Frenkel [13] and brute

force MC and MD [14, 15] for high supersaturations. We used the scaled value of the

experimental volume fractions and also the polydisperse results of Auer and Frenkel to

yield coexistence densities of monodisperse hard spheres [66, 67, 14]. In Fig. 3.6, we

plotted nucleation rates in the unit of the long time diffusion coefficient (τL = σ2/6DL)

as a function of the volume fraction (η). To compute diffusion coefficients, we calculated

mean square displacement (MSD) for the system in different pressures and then we

extracted the diffusion coefficient by using the Einstein equation (Fig. 3.7). Einstein

equation in three dimensions can be written as

DL =
1

6
lim
t→∞

d

dt
(MSD). (3.3)

Note that error bars in Fig. 3.6 are not shown in this plot. For FFS results, the error is

between 2 and 4 orders of magnitude. As is shown in Fig. 3.6, FFS simulation results are

in agreement with results of umbrella sampling, however there is a significant difference

between FFS results and experimental data in low supersaturations. It should mention

that the origin of this discrepancy between theoretical results and experimental data

for low degrees of supersaturation is not clear yet.
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Figure 3.6: FFS results of crystal nucleation rates for hard sphere systems compare to
the experimental results from Refs. [16, 17, 18] and theoretical data from
US simulation of Ref. [13] and brute force MC and MD [14, 15].

As explained in previous chapter, in the classical nucleation theory, the maximum

value for the Gibbs free energy barrier is defined as

∆G∗ =
16π

3

γ3ls
(|∆µ|ρs)2

. (3.4)

where |∆µ| is difference in the chemical potential between the liquid state and the solid

state from Table 3.2. The height of free energy barrier in the FFS can be approximated

from the CNT expression for rate as follows [65]

∆G∗
FFS = −kBT ln(kFFS/J0), (3.5)

were J0 is the kinetic pre factor which can be approximated by [68]

J0 ≈ Zρ2lDR
∗. (3.6)

In Eq. 3.6, D is the self diffusion coefficient and Z is the Zeldovich factor [24] and can

be defined as:

Z = (
|∆G“(n)|n∗

2πkBT
)1/2 = (

|∆µ|

6πkBTn∗
)1/2. (3.7)
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Figure 3.7: Mean square displacement (MSD) as a function of time steps are shown for
three different pressures. MSD is defined as MSD = < r2(t) > = <
1
N

∑N
i=1(ri(t)− ri(0))

2 >. Here, N is the number of particles, t corresponds
to time, and ri(t) - ri(0) is the vector distance traveled by a given particle
over the time interval. The slope of the MSD, considered for long time
intervals, is related to the self-diffusion constant DL (Eq. 3.3).
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Figure 3.8: The height of Gibbs free energy barrier is plotted as a function of pressure.
Comparison of CNT predictions with the US simulation and FFS results
are shown.

We used Eq. 3.5 and data from Table 3.2, to compute Zeldovich factor and critical

Gibbs free energy barriers from FFS results (Table 3.2) and then compare our results

with the classical nucleation theory and umbrella sampling data [52]. Figure 3.8 shows

the height of Gibbs free barrier as a function of the pressure. Classical nucleation

theory, umbrella sampling and FFS results for critical Gibbs free energies are shown

and as we can see, there are acceptable agreements between FFS results with US and

CNT predictions. CNT assumptions can be a reason for small difference between FFS

results and CNT predictions.

In the last part of this chapter, crystalline clusters in the system are analyzed. As in

the FFS we save all configurations in the nucleation process, we can analyze shape and

form of clusters in the system. At the start point, since we are interested in the shape

of critical nuclei, we focus on different configurations of hard sphere systems that have

the critical largest cluster. FFS results show that critical clusters have different shapes.

As we know from classical nucleation theory assumptions, clusters in such systems

are spherical, however, analysis of clusters shows that in reality, critical clusters with

the same sizes have different forms and they are not completely spherical. Figure 3.9

shows a typical snapshot of critical clusters for three different pressures. Note that
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Figure 3.9: Typical Snapshots of critical nucleus for a system in (a) βPσ3 = 15.00, (b)
βPσ3 = 16.00 and (c) is for βPσ3 = 17.00. Yellow particles have more than
10 solid-like neighbors(nb > 10) and red ones have 5 < nb < 10 solid-like
particles as a neighbor.

liquid particles around the cluster are not shown. Particles with more than 10 solid-

like neighbors (nb > 10) are shown by the yellow colour. These particles are almost in

middle of clusters. Red particles have 5 < nb < 10 solid-like particles as a neighbor

and they are more on the surface of clusters.

The evaluation of the shape of growing crystalline cluster can be studied quanti-

tatively by computing the gyration tensor, X̂ for the largest cluster and for different

interfaces in the phase space. Tensor of gyration is defined as the root mean square

distance of the particle in the cluster from its center of mass. X̂ can be written as

Xα,β =
1

N

N∑

i=1

Sα
i S

β
i , Si = ri −Rc.m, α, β = x, y, z. (3.8)

where ri labels the coordinate of effective particle i belonging to the cluster with N

solid particles in it and Rc.m is the position of the central mass of the cluster. We

calculated elements of the gyration tensor for all configurations in pathways and then

we averaged over all configurations in the same interface (with the same number of

particles in the largest cluster). We found that, clusters have different shapes and

forms. Also small clusters are more elongated and larger ones are more compact and

have an ellipsoidal shape rather than the spherical form. The radius of gyration of

the cluster given by R2
g = TrX̂ = 〈Xxx〉 + 〈Xyy〉 + 〈Xzz〉, is shown in Fig. 3.10 as a

function of the cluster size n over all sampled configurations. In data for all pressures

there is spread in radius of gyration. At the beginning of transformation and for small

clusters, there is a wide spread, but, for big clusters, the spread in the radius of gyration

decreases. Figure 3.11 shows the mean value of the radius of gyration as a function

of the cluster size n. Again we averaged over all configurations in the same interface.

By increasing the size of largest cluster in the system, the radius of gyration increases.

< Rg > at the beginning of process, for small cluster sizes increases faster and then
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Figure 3.10: Radius of gyration of the largest crystal cluster Rg versus number of par-
ticles in largest cluster n for the hard sphere system in three different
pressures βPσ3 = 15, 16, 17.

follows the fix rate of increasing.

3.4 Conclusion

In this chapter, we presented an accurate approach to determine crystal nucleation rates

of super-cooled hard sphere colloidal suspensions by using the forward flux sampling

(FFS) technique for different degrees of supersaturation. Even at the same degree

of under-cooling, we found a good agreement between the rate constant we obtained

with the FFS comparing to umbrella sampling (US) results in Ref. [13]. We also

compared FFS results for crystal nucleation rates with conventional molecular dynamic

and Monte Carlo simulations and also with experimental data. Similar to results of

the umbrella sampling, for low supersaturations, the discrepancy between numerical

results and experimental data exists and the origin of this discrepancy is unclear yet.

But it can be argued that the discrepancy is not because of the numerical method and

computational difficulties. Also a comparison of critical Gibbs free energy barriers for

hard sphere systems between FFS results, with US data and classical nucleation theory

predictions was done. FFS results are near and a bit higher than the CNT predictions.

The CNT assumptions can be the reason for this small difference.

On the other hand, analysis of the biggest clusters in the system by means of gyration
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Figure 3.11: Average radius of gyration < Rg > as a function of largest cluster size (n)
for the hard sphere system in pressures βPσ3 = 15, 16, 17.

tensor was made. These analysis indicate that for the small size of nuclei, clusters are

more elongated in one arbitrary direction. However, by increasing number of particles,

clusters become more compact and with ellipsoidal form.



4 Heterogeneous nucleation of hard sphere

system at the hard wall

In this chapter we use computer simulation in order to study heterogeneous crystal

nucleation. Monte Carlo simulation study of a hard sphere colloidal system confined

in a pore formed by one bcc (100) structured wall and one uniform repulsive plane is

discussed. Constant-temperature, constant-normal-pressure (NP⊥T ) ensemble is per-

formed to study heterogeneous crystal nucleation in such system. We compute crystal

nucleation rates for the hard sphere system in moderate supersaturations using forward

flux sampling (FFS) technique. We also analyze solid clusters in the system by calcu-

lating components of gyration tensor and predict a rough estimation of contact angles

in different degrees of supersaturation. Also for all systems, the averaged contact an-

gles are high and as a consequence, crystallization of hard spheres in such system are

happening via heterogeneous nucleation.

41
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4.1 Introduction

In practice many first order transitions, such as condensation and crystallization, occur

via heterogeneous nucleation [69, 70]. The nucleus of the new phase forms in contact

with the wall of container, impurity or any other external effect. In principle, het-

erogeneous nucleation at walls or impurities needs to be separated from homogeneous

nucleation in the bulk, and small changes in parameters leads to large change in nu-

cleation rates. In the case of heterogeneous nucleation at the wall, the structure and

properties of the wall control the rate of nucleation.

The Vollmer’s classical theory of nucleation in the case of heterogeneous nucleation

was extended by Turnbull, Fisher [2, 71]. They used CNT to study the heterogeneous

nucleation at the wall. Later on, Fletcher [72] used this theory to deal with nucleation

on spherical impurities of arbitrary size.

Same as homogeneous nucleation, the hard sphere model is used to study heteroge-

neous nucleation. Such systems as mentioned in previous chapter, has been studied

in great detail and its bulk properties is well understood. However, the behavior of

such system in confinement and near hard wall is less clear. The behaviour of fluids

in contact with substrates plays an important role in areas of wetting, adhesion, and

heterogeneous nucleation [73, 74]. For the heterogeneous nucleation, more work was

focused on exploring the influence of planar structureless wall on crystal nucleation

and surface freezing [56, 73]. Also in some work crystallization of hard sphere system

at patterned substrates was studied[75, 76, 77]. Effects of different wall structures on

crystallization of hard sphere colloidal particles were the main focus points on these re-

searches. However, studying of heterogeneous nucleation to determine nucleation rates

and examine the effect of the wall on structural properties of crystalline clusters have

not been well characterized.

In this context, we study the heterogeneous nucleation of the hard sphere colloidal

system, near the structured bcc(100) wall using forward-flux-sampling (FFS) technique

[5, 6, 7]. We applied the FFS technique to predict heterogeneous nucleation rates for

different degrees of supersaturation. FFS yields nucleation rates rather than free energy

barriers and allows to estimate the size of the critical nucleus directly from simulation

data. Here we predicted the rate of nucleation for different degrees of metastability,

and we analyzed crystalline clusters. Also a rough estimation for the contact angle of

crystalline clusters at the structured bcc wall was done.

The outline of this chapter is as follows: in Sec. II we describe the simulation model

and computational details. In section III we present FFS results for heterogeneous

nucleation rates and also we discuss the analyzed properties of clusters, while Section

IV presents and summarizes our conclusions.
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4.2 Computational methodology and details

In order to study heterogeneous nucleation, we used the Monte Carlo method for a

system of hard sphere colloidal particles confined in a pore with wall separation Lz.

The wall area is fixed at LxLy = 1506.48. Lz is fluctuating, but it is much larger than

any correlation length in the fluid. Then, we performed MC simulations in (NP⊥T )

ensemble where the temperature, number of particles and the pressure perpendicular to

the wall were kept constant and the volume was allowed to fluctuate in z direction. The

system consists of N = 12672 mono-dispersed particles confined between a structured

bcc (100) wall and a structureless wall. The interaction between particles is hard core.

As we are interest to study heterogeneous nucleation at the structured wall, to avoid the

effect of the planar wall and finite size effects, we used a repulsive interaction between

particles and the flat wall. The interaction is defined as follows

uw(r) = a[tanh(
z − z0
w

) + 1] (4.1)

where a = 20 and w = 2.0 are constant and z0 is the position of the flat wall. The

interaction between the wall and particles are cut at cutoff distance rc = 5.0σ. Applying

the repulsive interaction, decreases the effect of the planar wall in the nucleation process

at the wall. Figure 4.1 shows the density profile of a hard sphere confined between one

bcc structured wall and one repulsive planar wall in the liquid state (βPσ3 = 11.00). As

is shown, because of the repulsive interaction, there is no liquid layer at the planar wall

and as a consequence the effect of this wall on particles in the system is disappeared.

For the structured wall, an impurity of Nw hard sphere particles in the bcc (100)

structure was placed into the system as a hard wall with the lattice spacing a = 1.5σ.

we used the z axis in the direction perpendicular to the plane of impurities and the flat

wall. The interaction between fixed particles and other colloidal particles in the system

is also hard core. Figure 4.2 shows a schematic snapshot of the system.

Similar to the case of the homogeneous nucleation, in the first step we computed the

equation of state for such system by using brute-force MC. Then we chose three different

pressures βPσ3 = 12.00, 12.50 and 13.00, corresponding to different supersaturations.

Periodic boundary conditions applied to x and y directions of the simulation box. Other

computational conditions are the same as we did in the homogeneous case.

Next, the FFS method [5, 6, 7] was used to capture heterogeneous nucleation path-

ways and estimate heterogeneous crystal nucleation rates. Critical cluster sizes are also

computed by the value of reaction coordinate of the FFS interface at which the prob-

ability to reach the final state exceeds 0.5 [65]. Here we used the number of solid-like

particles in the largest cluster as a reaction coordinate Q. Furthermore, to identify

solid- and fluid-like particles and then colloidal clusters, we applied local-bond orien-
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Figure 4.1: Density profile ρ(z) of the liquid phase of hard spheres in confinement at
P = 11.00. Repulsive planar wall, decreases the effect of wall on crystal-
lization and heterogeneous nucleation process.Two firs picks corresponds to
the wall layers.

tational order parameter [36, 37]. All calculations for nucleation rates and estimation

of critical cluster sizes are averaged over ten independent FFS simulation runs with at

least 50 successful pass per interface.

4.3 Results and discussion

In this chapter, we investigate heterogeneous crystal nucleation at the structured hard

wall. Monte Carlo simulation in the isobaric-isothermal ensemble (NP⊥T ) is used to

compute crystal nucleation rates at three different pressures βPσ3 = 12.00, 12.50, and

13.00. Since the bulk coexistence pressure for hard spheres is βPcoexσ
3 = 11.67 [41],

corresponding degrees of supersaturation are ∆P = P − Pcoex = 033, 0.83 and 1.33.

For these pressures, due to existence of free energy barriers, nucleation process in not

accessible in brute force simulations. Using the FFS technique is a way to overcome

such barriers and compute nucleation rates.

4.3.1 2D analysis

Existence of a wall in the system has an important role in the heterogeneous nucleation.

Interaction between particles and the wall, also structure of the wall and arrangements
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Figure 4.2: Characteristic snapshot of hard sphere colloidal system confined between
one structured bcc (100) wall and one structureless wall. This picture is for
a system at pressure βPσ3 = 11.00.
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of the particles on it can change the surface tension energy between the wall and

particles in the liquid and solid states. Hence as a consequence, the crystallization

process in such systems is changed. We started to study crystallization of hard sphere

suspensions at different structured walls. To analyze the layering and the arrangement

of particles inside the layer, we consider the bond-orientational order in two dimensions

[78]: we define the local bond-orientational order parameter of particle j in layer m at

a position xj as

ψm
6 (xj) =

1

Nj

Nj∑

k=1

ei6θjk , (4.2)

where Nj is the number of neighbors of particle j within layer m, the sum is over the

neighbors k of j within m, and θjk is the angle between an arbitrary fixed axis and the

line connecting particles j and k. The order of the m-th layer Ψm
6 is defined as the

average over ψm
6 (xj) for all Nm particles within the layer

Ψm
6 =

1

Nm
|

Nm∑

j=1

ψm
6 (xj)| . (4.3)

Figure 4.3 shows an example result of Ψm
6 for the hard sphere liquid in four different

pressures. These pressures are chosen to be below and also above of the coexistence bulk

pressure for two different systems. One is for a system with the bcc (100) structured

wall and the other is for the fcc (111) structured wall. As we see, when approaching the

transition, the bond-orientational order close to the wall increases. It clearly “jumps” is

discontinuous at the transition for the system with bcc (100) wall. However, for the fcc

(111) system and for the pressure below the coexistence pressure, pre-solidification in

the system occurs and the system is starting to become to the solid phase via layering

and the system wets the structured wall. We did the same analysis for other structures

and orientations (results are not shown) and came to the conclusion that bcc (100) is

an advisable structure for the wall to study heterogeneous crystal nucleation.

In order to determine nucleation rates by the FFS, we applied brute force simulations

in the liquid metastable state. These simulations give us configurations with at least

n = λ0 particles in the largest cluster. To increase the accuracy of simulations, N0 = 50

configurations at the first interface (λ0) are collected to measure the flux. Also we

measured the total time spent by the system in the liquid basin neglecting the time

spent at the boundary λ0. Computational details of our simulation are listed in Table

4.1.

The probability of crossing interfaces in phase space is plotted in Fig. 4.4. Points

are averaged over ten independent FFS runs with at least M0 = 50 successful crossing

path per interface. According to Fig. 4.4, same as homogeneous nucleations, at the

beginning of the process, reaching interfaces are difficult and clusters like to shrink
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Figure 4.3: 2D bond orientation order parameter Ψm
6 for the stable and the metastable

hard sphere fluid versus the number of layer m from the structured wall for
fcc (111) (the left-hand side) and bcc (100) (the right-hand side) structures.

Table 4.1: Computational details of FFS, used in simulations

Pressure(βPσ3) Number of interfaces λ0 N0 M0

12.00 65 15 50 50
12.50 65 20 50 50
13.00 50 25 50 50

and return to the liquid state. However, after crossing the critical interface and in the

growth region, the probability of crossing interfaces is almost one or near it.

Table 4.2 shows results of heterogeneous crystal nucleation rates using (Eq. 2.35) and

critical cluster sizes for different degrees of supersaturation.

Table 4.2: Summary of the FFS simulation results the prediction of heterogeneous crys-
tal nucleation rates and critical nuclei in different pressures.

Pressure Nucleation rate critical cluster size
βPσ3 kσ3τL n∗

12.00 9.34 × 10−14 415± 10
12.50 1.18 × 10−9 152 ± 5
13.00 4.73 × 10−8 131 ± 5

The critical cluster size is another quantity that we can compute using the FFS

method in MC simulations. In other simulation techniques, like umbrella sampling

(US), the approach for achieving the critical cluster size is to calculate the free energy

barrier of the system, and then predict critical cluster sizes. Unlike to US, the size of

critical nucleus in FFS, is approximated to be in stored configurations in the interface

nearest to where the probability to grow to the final phase exceeds 0.5. Figure 4.5

shows a typical snapshot of critical clusters for systems in three different pressures.

Snapshots depicted from a view perpendicular to the bcc wall side. Violet particles in
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Figure 4.4: FFS results about probability of reaching cluster size n as a function of
the cluster size n in different degrees of supersaturations. Results are plot-
ted after averaging over ten runs with at least M0 = 50 successful path-
configurations per interface.

clusters have more than 10 solid-like neighbors(nb > 10) and almost have the perfect

crystal structure. Green particles have 5 < nb < 10 solid-like particles as neighbors.

As we see, middle of clusters containing compact crystalline particles.

In the next step, we examined the saved configurations with different critical cluster

inside them. Figure 4.6 shows a typical example of the computed pathway for het-

erogeneous nucleation at the structured bcc (100) wall. Results are for a system with

βPσ3 = 13.00. Largest crystalline clusters on the wall are shown from two different

point of view; parallel and perpendicular to the wall. Also three different points in the

phase space are chosen. Pre-critical, critical and post-critical crystal nucleus are shown.

Blue particles have more than 10 solid-like neighbors (nb > 10) and green particles have

5 < nb < 10 solid-like particles as a neighbor.

In the literature two ways for nucleation process are discussed [38, 79, 64]. The first is

the growth of a single nucleus in the system and the second is via the creation of many

small clusters in the systems. In our simulation results, we didn’t observe the second

scenario of phase transition and nucleation of a compact crystal nucleus, indicated that

the first way is favored. We used also these configurations and insert some brute force

Monte Carlo simulations. We observed that in many cases, the system continued the

solidification process and after some time we have completed solid phase in the system,
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Figure 4.5: Snapshots of critical clusters at three different pressures. (a) is for βPσ3 =
12.00, (b) for βPσ3 = 12.50 and (c) is for βPσ3 = 13.00. Pictures depicted
from the view perpendicular to the bcc wall. Violet particles have more
than 10 solid-like neighbors(nb > 10) and green particles have 5 < nb < 10
solid-like particles as a neighbor

however, in some cases especially for the pressure βPσ3 = 12.00, the critical cluster

in the system during MC simulation runs shrinks and the system return back to the

metastable liquid state.

To study the shape of clusters in the system at the structured wall in the nucleation

process, we implement analysis of largest clusters by identification of the gyration

tensor X̂ as defined in the previous chapter (Eq. 3.8). For this purpose, we computed

all component of X̂ in three dimensions for all biggest clusters in all interfaces. Tensor

of gyration describes the overall spread of the particles in solid cluster and is identified

as the root mean square distance of the collection of particles from their common centre

of mass. As is well-known, radius of gyration is defined as R2
g = TrX̂ = 〈Xxx〉+〈Xyy〉+

〈Xzz〉 over all sampled configurations. Xxx, Xyy and Xzz are computed from Eq. 3.8.

Figure 4.7 shows the radius of gyration < R2
g > versus the number of particles in the

largest cluster n in the system. Results are for different degrees of supersaturations.

As is shown in Fig. 4.7, by increasing the size of largest cluster in the system, radius

of gyration increases.

Comparing the behavior of radius of gyration between the bulk system and the system

confined between walls is also interesting. As is shown in Figs 4.7 and 3.10, the behavior

of Rg is independent of the degrees of supersaturation. Therefore we can compare bulk

results and data of confined systems. The average of radius of gyration between two

systems are shown in Fig. 4.8. For small cluster sizes, there is no significant difference

in Rg. However for larger clusters, radius of gyration of the cluster at the wall as a

function of the cluster size n, has a higher slop.

Finally, we applied gyration tensor analysis to predict a rough estimation for the

contact angle between crystalline clusters and the bcc (100) structured wall. Crystalline
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Figure 4.6: A typical snapshot of heterogeneous nucleation process of hard sphere parti-
cles at bcc(100) structured wall for a system at βPσ3 = 13.00. Pictures are
depicted from two different point of view, parallel and perpendicular to the
wall and for three different interfaces corresponding to pre-critical, critical
and post-critical nucleus. Only solid-like particles are shown. Blue particles
have more than 10 solid-like neighbors(nb > 10) and green particles have
5 < nb < 10 solid-like particles as a neighbor.
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Figure 4.7: Radius of gyration for all clusters in all range of sizes as a function of the
cluster size n in three different pressures βPσ3.

Figure 4.8: A comparison of the average of radius of gyration between homogeneous
and heterogeneous crystal nuclei as a function of cluster size n in different
degrees of super-cooling. We averaged over all configurations with the same
number of particles in the biggest cluster.
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Figure 4.9: Contact angle θ[◦] plotted as a function of cluster size n for different degrees
of supersaturation. Foe each interface, all data are averaged overall at least
50 configurations

clusters at the wall have different shapes and analysis of clusters shows that for each

individual interface, clusters with the same size have different forms. However, growing

process of clusters depends on the thermodynamics of the system like pressure, surface

tension and so on. Therefore we can estimate the contact angle of clusters in the system.

Relation between contact angle and gyration tensor can be written as [80]

cos(θ) =
XY − 6ZZ

XY + 2ZZ
, (4.4)

where XY and ZZ are two components of gyration tensor in xy plane and z direction.

Figure 4.9 shows results of the contact angle between crystal clusters and the wall (θ[◦])

as a function of the cluster size n. We plotted in Fig. 4.9 averaged value of contact

angle over all configurations in the same interface. For small clusters, fluctuations in

the contact angel is observed, however, for larger cluster sizes, these fluctuations are

decreased and the contact angle shifts to the fix number. Observed contact angles show

that for all three different pressures we are far from wetting region and crystallization

of the hard sphere system at bcc (100) structured wall in happens via heterogeneous

nucleation.
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4.4 Conclusion

In this chapter, we studied the heterogeneous crystal nucleation of the hard sphere

system by combining the Monte Carlo simulation technique with the forward flux sam-

pling. In our simulations we used the number of particles in the largest crystal cluster

as a reaction coordinate Q and we applied the q6 − q6 local bond order parameter to

identify liquid- and solid-like particles. In the first step, we estimated the heteroge-

neous crystal nucleation rates for the moderate supercooled liquid. These predictions

are first results for heterogeneous crystal nucleation rates in such systems. Analysis of

the trajectories and saved configurations also indicate that nucleation takes place via

the creation, formation and growth of a compact nucleus. These clusters have different

compact shapes, however, by growing the critical clusters, they were mostly compact

and had hemisphere shapes.

To determine a rough estimation of the contact angle, we analyzed the crystalline

clusters by computing the gyration tensor. For different supersaturations, we found

high value of contact angles. These results show that the crystallization process and

phase transition of hard spheres in such system happens via heterogeneous nucleation.





5 2D versus 3D Freezing of a

Lennard-Jones Fluid in a Slit Pore

In this chapter we present a computer simulation study of a (6,12)-Lennard-Jones fluid

confined to a slit pore, formed by two uniform planes. These interact via a (3,9)-

Lennard-Jones potential with the fluid particles. When the fluid approaches the liquid-

to-solid transition, layering parallel to the walls is observed. In order to investigate

the nature of the freezing transition, we performed a detailed analysis of the bond-

orientational order parameter in the layers. We found no signs of hexatic order which

would indicate a melting scenario of the Kosterlitz-Thouless type. An analysis of the

mean-square displacement shows that the particles can easily move between the layers,

making the crystallization a 3d-like process. This is consistent with the fact that we

observe a considerable hysteresis in the heating-freezing curves, showing that the crys-

tallization transition proceeds as an activated process.

with N. Gribova, A. Axel and C. Holm
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5.1 Introduction and background

Understanding the structure and dynamics of confined fluids is important for processes

such as wetting, coating, and nucleation. The properties of a fluid confined in a pore

differ significantly from the bulk fluid due to finite size effects, surface forces and reduced

dimensionality. The Lennard-Jones (LJ) model is one of the simplest models to study

classical fluids and is interesting because it reproduces the thermodynamic behavior of

simple fluids. This potential is an important model for exploring the behavior of simple

fluids and has been used to study homogeneous vapor-liquid, liquid-liquid and liquid-

solid equilibrium, melting and freezing[81, 82, 83, 84, 85, 86] and homogeneous and

heterogeneous nucleation [87, 35, 88, 89, 90, 91]. It has also been used as a reference

fluid for complex systems like colloidal and polymeric systems [92, 93].

The vapor-to-liquid transition in confined systems has been studied intensively, and

it is well understood [94]. In the liquid phase, confinement to a slit induces layering

at the walls. One could imagine this effect to facilitate crystallisation. And indeed it

is known that depending on the strength of the particle-wall interaction the freezing

scenario changes significantly [95, 96]. If the walls are strongly attractive, crystallisation

starts from the walls and at a temperature higher than a situation without confinement.

If the walls are strongly repulsive, crystallisation starts from the bulk at a temperature

lower than without confinement. A well-distinguished layer of particles close to the wall

can also, to some extent, be treated as a 2d system. This suggests that the freezing

of such a layer proceeds via the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY)

mechanism [97, 98, 99, 100], meaning that the liquid turns into a crystal going through

a hexatic phase [78].

This question has been studied by Radhakristan and coworkers [101] for a ratio of

wall-particle to particle-particle attraction varying between 0 and 2.14. The pores

were either 3 or 7.5 fluid particle diameters wide. For the narrower slit pore it was

shown that around the freezing temperature the system exhibits a hexatic phase. With

increasing wall attraction this temperature region becomes wider, i. e. an attractive

wall facilitates the formation of the hexatic phase. The phase diagram for the wider

pore with diameter 7.5 is more complicated. When the wall-particle attraction becomes

bigger than the particle-particle attraction, at first a hexatic phase and then a crystal

phase appear, however, only in the contact layers near the walls; the rest of the system

remains liquid. Only when decreasing the temperature further the system crystallises

completely. The temperature ranges, in which hexatic or crystal phases are observed

only in the contact layers, again widens with growing wall-particle attraction. This

indicates that the wall-particle attraction facilitates the formation of a hexatic phase

even in wider pores, however only in the layers close to the walls. The same group

of authors also reported that in a pore which can accommodate only a single layer
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the KTHNY transitions are of second order, while already in a pore wide enough to

accommodate two layers, they become first order transitions [101].

The type of frozen phases was studied by Vishnyakov and Neimark [102] depending

on the size of the slit for this system. The distance between the walls was gradually

increased up to a slit accommodating three layers. Depending on the width of the pore,

hexagonal or orthorhombic phases were observed in the layers. They also reported that

the diffusion coefficient in the hexatic phase is almost a magnitude smaller than in the

liquid phase. In a study by Page and Sear freezing controlled by a pre-freezing in a

similar system was also investigated [103]. Nucleation of the bulk crystal is affected by

the surface phase behaviour. With increasing wall attraction, the bulk nucleation is

smoothly transformed into nucleation of a surface crystal layer.

In this work we will discuss the liquid-to-solid transition in a slit pore and the process

of the development of the solid phase. Here we investigate an attractive pore that

is significantly wider, namely 20 diameters of a fluid particle. Studying the bond-

orientational order parameter within the layers we observe no sign of a hexatic phase.

An analysis of the mean-square displacement shows that the particles diffuse between

the layers. Hence, the crystallization proceeds as a 3d process, as is also suggested by

the noticeable hysteresis loop in the heating-freezing curve.

The chapter is structured as follows. In section 5.2 we describe our simulation

method, and in section 5.3 we present the results at first for one value of the particle-

wall interaction as a detailed example, followed by the generalisation to several other

values and a discussion in section 5.4. We conclude with a summary of the presented

results.

5.2 Simulation method

To study crystallization of confined colloidal system in a slit pore, we performed molec-

ular dynamics (MD) simulations [104, 63] in the isothermal ensemble (NVT), i. e. the

number of particles N , the volume V and the temperature T were fixed. The particles

interact via the LJ-potential

u(r) = 4ǫ

[(σ
r

)12
−

(σ
r

)6
]

(5.1)

where r is the distance between the particles, σ the particle diameter and ǫ the depth

of the minimum of the potential. The interaction between walls and particles is char-

acterized by a LJ-potential integrated over semi-space:

uw(r) = 4ǫ

[(σ
r

)9
−

(σ
r

)3
]
. (5.2)
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The particle-particle interaction was cut off at a distance rc = 2.5σ and the wall-

particle interaction at a distance rc = 4.0σ (the wall-particle potential is wider and

deeper then the particle-particle potential). Using the Steelle potential [105] or just

a (4,10)-LJ potential for the wall-particles interaction does not influence the results

qualitatively. For the following we will use ǫ as the unit of energy, σ as the unit of

length and τ =
√

1 · σ2/ǫ as unit of time (i.e. use the particle mass as the unit of

mass); consequently, temperatures are given in multiples of ǫ/kBT .

The simulations were performed in a cubic box with periodic boundary conditions

in the x- and y- directions and two walls positioned at z = 0 and z = Lz = 20.45.

The other two dimensions of the simulation box were fixed as Lx = Ly = 20.45. The

number of particles N = 7768 was chosen such that the density was kept constant

at one particle per unit cube independent of the width of the slit. We used standard

Nosé-Hoover thermostats to keep the temperature constant [106, 107, 108]. For the

Nosé-Hoover thermostat, we set the effective mass Ms = 0.5. We simulated a cooling

curve starting out from a random configuration at T = 3.0 and a melting curve starting

out from a face-centered-cubic configuration at T = 1.0. Far away from the transition,

the temperature was changed by ∆T = 0.1 from one simulation run to the next, while

close to transition we used a smaller increment/decrement, ∆T = 0.01.

The simulations were implemented with a timestep of ∆t = 0.005 and were let run

for 1.0 × 106 MD steps for equilibration and for 2.5 × 105 for sampling. In order to

compute the mean square displacement of the particles, a smaller timestep ∆t = 0.002

was chosen, and to avoid influence of thermostat on the dynamics of the system we

switched to the NVE ensemble after equilibration (keeping the total energy of the

system E constant). We monitored the temperature, which fluctuated around a mean

value practically equal to the temperature T in the NV T ensemble. Pressures were

obtained from the virial expansion [109] omitting corrections for the cut-off in the

potential.

5.3 Results and discussion

In this section, we present the results of liquid-solid transition of LJ colloidal particles

confined in a slit pore. Figure 5.1 shows the pressure-temperature curves for heating

and cooling curves. There is a considerable hysteresis, which indicates that the system

has to overcome a free energy barrier when transforming from one phase to the other.

Several runs were implemented both for heating and for cooling. The cooling lines

coincide, whereas the temperature at which the melting process starts fluctuates. In

Figure 5.1 we show the outer borders of the hysteresis region. As our system has

attractive walls, crystallization should start from the walls [95]. This can be clearly

seen in the snapshot (Figure 5.2) that was taken 90 MD steps after equilibration had
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Figure 5.1: Pressure-Temperature curves for heating and cooling of a LJ-fluid confined
between two uniform LJ(9,3)-walls. The outer borders borders of hysteresis
are shown.

started. Only another 90 MD steps later the system completely crystallized. One can

also see that no crystallization process has started at the top wall yet, demonstrating

that this event is an activated process. As it was shown in [95] the width of hysteresis

depends on the distance between the layers. If the distance differs considerably from the

lattice constant of an ideal LJ crystal (0.916), the hysteresis will be more pronounced.

For our system the distance is 0.87 in the bulk, and correspondingly the hysteresis is

quite wide.

In order to investigate the phase transformation process, we now turn to the effects

the walls have on the structure of the fluid. Figure 5.3 shows number density profiles

̺(z) for Lz = 20.0σ in the liquid and the solid phase. In the liquid phase, the maxima

of the peaks follow an exponential law A [exp(−Bx) + exp(−(Lz − x)B)]+ ρmid, where

ρmid is the density in the middle of the box. Figure 5.4 shows the behavior of the

coefficient B with temperature. It can be seen that the values of B decrease more or less

linearly at first, i. e. the number of layers increases and they become more pronounced.

As soon as we enter the regime of the hysteresis at T = 2.0, B becomes almost constant

(within the error of the simulations). This shows that the structure of the density profile

does not change, no new layers appear and the system is trapped in the under-cooled

state. As the liquid forms layers, one could assume that the transformation proceeds

inside the layers via a KTHNY transition. In order to test this assumption, we now
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Figure 5.2: Snapshot of the system in the early stage of crystallization at T = 1.60. In
this specific example it crystallizes from the bottom wall. The part on the
bottom is already a crystal while the top side is still disordered.
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Figure 5.3: Density profile ̺(z) of the liquid phase at T = 1.70. The heights of the
peaks are fitted by an exponential function. The inset shows ̺(z) for the
solid phase at T = 1.60.

turn to the structure within the layers: To characterize the transitional order in one

layer in 2D, we calculate the pair correlation (radial distribution) function:

g(r) = ̺−2〈
∑

i,i 6=j

δ(ri)δ(rj − r)〉 (5.3)

where ̺ is the number density of particles in each layer. In Figure 5.5 the 2D radial

distribution functions for the first and third layer (seen from the wall), the bulk part of

the liquid and the first three layers of the solid phase are shown. The structure within

the layers of the liquid becomes less pronounced as we move further away from the walls

and is barely visible in the center of the box. Next we consider the bond-orientational

order [78]: we define the local bond-orientational order parameter of particle j in layer

m at a position xj as

ψm
6 (xj) =

1

Nj

Nj∑

k=1

ei6θjk (5.4)

where Nj is the number of neighbors of particle j within layer m, the sum is over the

neighbors k of j within m, and θjk is the angle between an arbitrary fixed axis and

the line connecting particles j and k. The order of the m-th layer Ψm
6 is defined as the
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Figure 5.4: Coefficient B characterizing the exponential decay of density profile. In the
hysteresis region (T <= 2.0) it is almost not changing, i. e. the structure of
the density profile stays the same.

average over ψm
6 (xj) for all Nm particles within the layer

Ψm
6 =

1

Nm
|

Nm∑

j=1

ψm
6 (xj)| . (5.5)

Figure 5.6 shows Ψm
6 for various temperatures. When approaching the transition, the

bond-orientational order close to the wall increases. The temperature dependence of

Ψ1
6 for the first layer of particles at the wall is shown in Figure 5.7. It clearly “jumps”

i. e. is discontinuous at the transition. If the crystallization proceeded purely within

the two-dimensional layers, one would observe a hexatic phase, which is characterized

by a power-law decay of the correlation of the bond-orientational order

g6(r) = 〈ψ∗
6(x

′

)ψ6(x
′

− x)〉 , (5.6)

where the average is taken over all particles within a layer whose positions x are a

distance r apart. Figure 5.8 shows g6(r) for the first layer at T = 1.67 and T = 1.66.

The system jumps from the 2d-liquid phase into the 2d-solid without visiting a hexatic

phase first. Hence the crystallization process is not of the KTHNY-kind. To find

out why the crystallization process is 3d-like despite the layering, we now consider

the particle’s dynamics. One of the obvious characteristics is to estimate how long
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Figure 5.5: 2D pair correlation function in the first and third layer and the bulk part
of the system in the liquid state at T = 1.65. The inset shows g(r) for the
first three layers at the wall for the solid state at T = 1.60

Figure 5.6: 2D bond-orientation order parameter Ψm
6 for liquid states depending

on the layer m for temperatures 1.70, 1.80, 2.00, 2.20, 2.40 (from top
to bottom). The inset shows Ψm

6 for solid states for temperatures
0.80, 1.00, 1.30, 1.50, 1.60 (from top to bottom).
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Figure 5.7: 2D bond-orientation order parameter Ψ1
6 of the first layer from the wall as

a function of the temperature.

Figure 5.8: Bond-orientational correlation function for the liquid state just before freez-
ing at T = 1.67 for the layer closest to the wall. The solid line is the result
of an exponential fit. There is no signature of a hexatic phase. The inset
shows g6 for the crystalline state at the next available lower temperature
T = 1.66, right after the transition.
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particles on average stay in the layer closest to the wall. The easiest way to estimate

this is to calculate how many particles of those which were in the layer at time 0

remained there at the time t. From Figure 5.9 we can see that the ratio of particles

that remain in the layer decreases exponentially with time. Fitting it with exp(−t/τ)

we obtain the average lifetime τ of a particle in the layer (Figure 5.10). It increases

linearly with the decrease of temperature and is then fluctuating around the mean value

in the hysteresis region. As we observed already for the density, the behavior of the

system in the hysteresis region does not change much during cooling. To characterize

Figure 5.9: Ratio of particles in the layer closest to the wall that stayed there from
time 0 (N(0)) until time t (N(t)) at different temperatures above the phase
transition.

the mobility of the particles we calculated the mean square displacement (MSD). As

the system forms layers, we calculate the MSD parallel and perpendicular to the wall

separately. Looking at the plane parallel to the wall (Figure 5.11) while approaching

crystallization, we observe that the particles in the layer closest to the wall are a little

faster than the particles in the bulk, despite the fact that the crystallization typically

starts from here. We take this as another hint that the crystallization proceeds as a

3d-process, and does not first start within the layer closest to the wall. The behavior

of the particles does not change significantly on approach of the crystallization as they

enter the metastable region. The mean square displacement measured perpendicular

to the wall (Figure 5.11) shows that after the ballistic regime for a while particles are

trapped in the layer and then start leaving it. It is not meaningful to calculate the
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Figure 5.10: Average lifetime of particles in the utmost layer as a function of temper-
ature. In the hysteresis region the lifetime does not change significantly.

diffusion coefficient in our system, because the particles do not stay long enough in a

layer for the MSD to enter the linear regime.

5.4 Conclusion

We reported on a molecular dynamics study of the liquid-to-solid transformation of a

LJ fluid in a wide slit pore. Although the confinement induces layering in the liquid

phase close to the walls, we do not find a successive, layerwise crystallization. Crystal-

lization is still a 3d process, and, in particular, no hexatic phase was observed in the

layers closest to the wall, excluding the possibility of a 2D KTHNY-like crystallization

within the layers; in fact, the mobility of particles in the layers is higher than their mo-

bility in the bulk. Nevertheless, we find that crystallization in the system practically

always starts from the walls, i. e., the walls facilitate crystallization. And although

crystallization is an activated process similar to 3d crystallization, we observe a smaller

hysteresis, indicating a reduced nucleation barrier as compared to bulk crystallization.

Altogether, our simulations suggest that the nucleation of the LJ fluid close to a

planar wall does not significantly differ from the nucleation in the bulk, although with

a smaller nucleation barrier. This can however be easily understood as an effect of the

strongly increased density in the layers close to the confinement.



Chapter 5. 2D versus 3D Freezing of a Lennard-Jones Fluid in a Slit Pore 67

Figure 5.11: Mean square displacement for T = 1.64. The MSD parallel to the wall
is almost identical in the layer and in the bulk with the particles in the
layer even being slightly faster. The MSD perpendicular to the wall show
a clear trapping effect.





6 Summary and outlook

Let us summarize the most important results presented in this dissertation. In the

thesis, considering Monte Carlo simulation [62, 63], homogeneous and heterogeneous

crystal nucleation in hard sphere systems have been studied. We used forward flux

sampling (FFS) technique [5, 6, 7] combining with local bond-order parameter anal-

ysis [36, 37] for distinction of liquid- and solid-like particles and also identification of

the largest crystalline cluster. By these combinations, we predicted crystal nucleation

rates and also analyzed the feature of pathways in the phase space. We also applied

conventional molecular dynamic simulation method [104, 63] to study crystallization of

Lennard-Jones colloidal particles confined between two planar wall.

In the first step, we studied homogeneous crystal nucleation in hard spheres. Simu-

lations are don for different degrees of supersaturation in the moderate supercooling.

Brute force MC simulations showed that, it is difficult to observe spontaneous nucle-

ation for given pressures. we found a swell agreement in nucleation rates between our

results and umbrella sampling simulation results of Ref [13] for mono-disperse and 5%

polydisperse colloidal particles. Next we compare FFS results with experimental data

and also brute force molecular dynamic and Monte Carlo simulations. Similar to results

of the umbrella sampling, the discrepancy between numerical results and experimental

data for the low degree of under-cooling (low value in volume friction) is exist and let us

also add that we have still not found an intuitive physical explanation and origin of the

discrepancy between our results with experimental data in low supersaturation. Fur-

thermore, we computed the critical Gibbs free-energy barrier and compared our results

with US results and also classical nucleation theory predictions. We found an accept-

able agreement between FFS data for free energies and data for classical nucleation

theory. Finally we analyzed crystalline clusters in the system by computing gyration

tensor components. These analysis indicate that for the small size of nuclei, clusters

are more elongated. However, by increasing number of particles in largest clusters,

crystalline clusters become more compact and with ellipsoidal forms.

Next, we reported on numerical study of the effect of bcc (100) structured hard

wall on the heterogeneous crystal nucleation and crystallization of hard sphere col-

loids. Comparing to the bulk system, presence of the wall lowers the Gibbs free energy

barrier and the range of metastability becomes narrow. We systematically explored

how structure affects the ability of the wall to induce crystallization and 2D analysis
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for the layers close to different wall structures point out that bcc (100) structure is

suggestible to study heterogeneous nucleation. Then we predicted the nucleation rates

for the moderate degrees of supersaturation near and above coexistence bulk pressure.

These predictions are first numerical results for such systems. Then we analyzed the

crystalline clusters and pathways by computing the gyration tensor. Our observation

indicate that largest crystals take place via the creation, formation and growth of a

compact crystalline cluster at the wall. Also we used radius of gyration components

to predict a rough estimation of the contact angles. For different supersaturations,

The value of contact angles show that the crystallization of hard sphere colloids at bcc

(100) structured wall is occur via heterogeneous nucleation and the system is far from

wetting region.

Finally, we examined the conventional molecular dynamics study of the liquid-solid

transformation of a Lennard-Jones system in a slit pore. We performed the system

in constant temperature and constant volume (NV T ) ensemble. For such system we

performed two dimensional analysis by using local bond order parameter in 2d [78] and

found that crystallization in such system is still a 3d process, and it can be an advisable

system to study heterogeneous nucleation in LJ colloidal systems. 2d analysis shows

that in particular, no hexatic phase can be observed in the layers closest to the wall,

excluding the possibility of a 2D KTHNY-like crystallization within the layers. Nev-

ertheless, we find that crystallization in the system practically always starts from the

walls, i. e., the walls facilitate crystallization. And although crystallization is an acti-

vated process similar to 3d crystallization, we observe a smaller hysteresis, indicating

a reduced nucleation barrier as compared to bulk crystallization.
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